CHAPTER ONE
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cssonee veeee 1.1 COMMUNICATIONS

COmmunicution enters our daily lives in so many different ways that it
is easy to overlook the multitude of its facets. The telephones in our
homes and offices make it possible for us to communicate with others,

: no matter how far away. The radio and television sets in our living

‘ rooms bring us entertainment from near as well as far-away places.
Communication by radio or satellite provides the means for ships on the
high seas, aircraft in flight, and rockets and exploratory probes in space
to maintain contact with their home bases. Communication keeps the
weather forecaster informed of atmospheric conditions that are
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measured by a multitude of sensors. Communication makes it possible for
computers to interact. The list of applications involving the use of com-
munications in one way or another goes on.'

In the most fundamental sense. communication involves implicitly the
transmission of information from one point to another through a succession
of processes, as described here:

I. The generation of a thought pattern or image in the mind of an origi-
nator.

2. The description of that thought pattern or image, with a certain measure
of precision, by a set of aural or visual symbols.

3. The encoding of these symbols in a form that is suitable for transmission

over a physical medium (channel) of interest.

The transmission of the encoded symbols to the desired destination.

The decoding and reproduction of the initial symbols.

The re-creation of the original thought pattern or image—with a defin-
able degradation in quality—in the mind of a recipient, with the deg-
radation being caused by imperfections in the system.
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The form of communication just described involves a thought pattern or
image originating in a human mind. Of course. there are many other forms
of communication that do not directly involve the human mind in real time.
In space exploration, for example, human decisions may enter only the
commands sent to the space probe or to the computer responsible for pro-
cessing images of far-away planets (e.g., Mars, Jupiter, Saturn) that are
sent back by the probe. In computer communications, human decisions
enter only in setting up the computer programs or in monitoring the results
of computer processing.

Whatever form of communication is used, some basic signal-processing
operations are involved in the transmission of information. The next section
describes the different types of signals encountered in the study of com-
munication systems. The signal-processing operations of interest are high-
lighted later in the chapter.

weeeeases 1.2 SIGNALS AND THEIR CLASSIFICATIONS

For our purposes, a signal is defined as a single-valued function of time
that conveys information. Consequently, for every instant of time there is
a unique value of the function. This value may be a real number, in which
case we have a real-valued signal, or it may be a complex number, in which
case we have a complex-valued signal. In either case, the independent
variable (namely, time) is real-valued.

'For an essay on communications, see Berkner (1962).
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For a given situation, the most useful method of signal representation
hinges on the particular type of signal being considered. Depending on the
feature of interest, we may identify four different methods of dividing
signals into two classes:

1. PERIODIC SIGNALS, NONPERIODIC SIGNALS

A periodic signal g(t) is a function that satisfies the condition

g() = g(r +°Ty) (1.1)

for all ¢, where ¢ denotes time and T, is a constant. The smallest value of
T, that satisfies this condition is called the period of g(t). Accordingly, the
period T, defines the duration of one complete cycle of g(t).

Any signal for which there is no value of T to satisfy the condition of
Eq. 1.1 is called a nonperiodic or aperiodic signal.

2. DETERMINISTIC SIGNALS, RANDOM SIGNALS

A deterministic signal is a signal about which there is no uncertainty with
respect to its value at any time. Accordingly, we find that deterministic
signals may be modeled as completely specified functions of time.

On the other hand, a random signal is a signal about which there is
uncertainty before its actual occurrence. Such a signal may be viewed as
belonging to an ensemble of signals, with each signal in the collection
having a different waveform. Moreover, each signal within the ensemble -
has a certain probability of occurrence.

3. ENERGY SIGNALS, POWER SIGNALS

In communication systems, a signal may represent a voltage or a current.
Consider a voltage v(¢) developed across a resistor R, producing a current
i(t). The instantaneous power dissipated in this resistor is defined by

vi(1)
= 1.2
P="%x (1.2)
or, equivalem_ly,
" p =R (1.3)

In both cases, the instantaneous power p is proportional to the squared
amplitude of the signal. Furthermore, for a resistance R of 1 ohm, we see
that Eqs. 1.2 and 1.3 take on the same mathematical form. Accordingly,
in signal analysis it is customary to work with a 1-ohm resistor, so that,
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regardless of whether a given signal g(r) represents a voltage or a current,
we may express the instantaneous power associated with the signal as

P =g (1.4)

Based on this convention, we define the fotal energy of a signal g(r) as

E = lim fT g (1)dt
=T

T—x
= | gwa (1.5)
and its average power as
im— (" g¥nd 1.6
PH;};gf_rg(t)f (1.6)

We say that the signal g(r) is an energy signal if and only if the total
energy of the signal satisfies the condition

0<E<x=

We say that the signal g(1) is a power signal if and only if the average
power of the signal satisfies the condition

0<P<L=

The energy and power classifications of signals are mutually exclusive.
In particular, an energy signal has zero average power, whereas a power
signal has infinite energy. Also, it is of interest to note that, usually, periodic
signals and random signals are power signals, whereas signals that are both
deterministic and nonperiodic are energy signals.

4. ANALOG SIGNALS, DIGITAL SIGNALS

An analog signal is a signal with an amplitude (i.e., value of the signal at
some fixed time) that varies continuously for all time: that is, both amplitude
and time are continuous over their respective intervals. Analog signals arise
when a physical waveform such as an acoustg wave or a light wave is
converted into an electrical signal. The conversion is effected by means of
a transducer; examples include the microphone, which converts sound pres-
sure variations into corresponding voltage or current variations, and the
photodetector cell, which does the same for light-intensity variations.

On the other hand, a discrete-time signal is defined only at discrete
instants of time. Thus, in this case, the independent variable takes on only



INTRODUCTION &

discrete values, which are usually uniformly spaced. Consequently, dis-
crete-time signals are described as sequences of samples that may take on
a continuum of values. When each sample of a discrete-time signal is
quantized (i.e., it is only allowed to take on a finite set of discrete values)
and then coded, the resulting signal is referred to as a digital signal. The
output of a digital computer is an example of a digital signal. Naturally,
an analog signal may be converted into digital form by sampling in time,
then quantizing and coding.

sesesseeenes 1.3 FOURIER ANALYSIS OF SIGNALS AND SYSTEMS

In theory, there are many possible methods for the representation of sig-
nals. In practice, however, we find that Fourier analysis, involving the
resolution of signals into sinusoidal components, overshadows all other
methods in usefulness. Basically, this is a consequence of the well-known
fact that the output of a system to a sine-wave input is another sine wave

' of the same frequency’ (but with a different phase and amplitude) under
two conditions:

1. The system is linear in that it obeys the principle of superposition. That
is, if y,(r) and y,(¢) denote the responscs of a system to the inputs x,(r)
and x,(1), respectively, the system is linear if the response to the com-
posite input @, x:(¢) + a,x,(r) is equal to a,y,(t) + a,y,(r), where a,
and a, are arbitrary constants.

2. The system is time-invariant. That is, if y(t) is the response of a system
to the input x(7), the system is time-invariant if the response to the
time-shifted input x(t — 1,) is equal to y(r — 1,), where 1, is constant.

Given a linear time-invariant system, the response of the system to a
single-frequency excitation represented by the complex exponential time
function A exp(j2xnfr) is equal to AH(f) exp(j2nft), where H(f) is the
transfer function of the system; the complex exponential exp(j2nft) con-
tains the cosine function cos(2nfr) as its real part and the sine function
sin(2nft) as its imaginary part. Thus, the response of the system exhibits
exactly the same variation with time as the excitation applied to the system.

‘s remarkable property of linear time-invariant systems is realized only

7 the complex exponential time function.

1e study of communication systems, we are usually interested in a
vu..w Of frequencies. For example, although the average voice spectrum
extends well beyond 10 kHz, most of the energy is concentrated in the
range of 100 to 600 Hz, and a voice signal lying inside the band from 300
to 3400 Hz gives good articulation. Accordingly, we find that telephone

*For a historical account of the concept of frequency, see Manley (1982).
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circuits that respond well to the band of frequencies from 300 to 3400 Hz

give satisfactory commercial telephone service.

To talk meaningfully about the frequency-domain description or spec-
trum of a signal, we need to know the amplitude and phase of each fre-
quency component contained in the signal. We get this information by
performing a Fourier analysis on the signal. However, there are several
methods of Fourier analysis available for the representation of signals. The
particular version that is used in practice depends on the type of signal
being_considered. For example, if the signal is periodic, then the logical

-choice is to use the Fourier series to represent the signal as a set of har-
monically related sine waves. On the other hand, if the signal is an energy
signal, then it is customary to use the Fourier transform to represent the
signal. Irrespective of the type of signal being considered, Fourier methods
are invertible. Specifically, if we are given the complete spectrum of a
signal, then the original signal (as a function of time) can be reconstructed
exactly. The Fourier analysis of signals and systems is considered in Chap-

ters 2 through 4.

veesenss 1.4 ELEMENTS OF A COMMUNICATION SYSTEM

The purpose of a communication system is to transmit information-bearing
signals from a source, located at one point, to a user destination, located
at another point some distance away. When the message produced by the
source is not electrical in nature, which is often the case, an input transducer
is used to convert it into a time-varying electrical signal called the message
signal. By using another transducer connected to the output end of the
system, a “distorted” version of the message is re-created in its original
" form, so that it is suitable for delivery to the user destination. The distortion
mentioned here is due to inherent limitations in the communication system.
Figure 1.1 is a block diagram of a communication system consisting of
three basic components: transmitter, channel, and receiver. The transmitter
has the function of processing the message signal into a form suitable for
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transmission over the channel; such an operation is called modulation. The
function of the channel is to provide a physical connection between the
transmitter output and the receiver input. The function of the receiver is
to process the received signal so as to produce an “estimate” of the original
message signal; this second operation is called detection or demodulation.

There are two types of channels, namely, point-to-point channels and
broadcast channels. Examples of point-to-point channels include wire lines,
microwave links, and optical fibers. Wire lines operate by guided electro-
magnetic waves; they are used for local telephone transmission. In micro-
wave links, the transmitted signal is radiated as an electromagnetic wave
in free space; microwave links are used in long-distance telephone trans-
mission. An optical fiber is a low-loss, well-controlled, guided optical me-
dium; optical fibers are used in optical communications.? Although these
three channels operate differently. they all provide a physical medium for
the transmission of signals from one point to another point; hence. the
térm ‘‘point-to-point channels.”

Broadcast channels, on the other hand, provide a capability where many
receiving stations may be reached simultaneously from a single transmitter.
An example of a broadcast channel is a sarellite in geostationary orbit,
which covers about one third of the earth’s surface. Thus. three such
satellites provide a complete coverage of the carth’s surface, except for
the polar regions.

1.5 TRANSMISSION OF MESSAGE SIGNALS

To transmit a message (information-bearing) signal over a communication
channel, we may use analog or digital methods. The use of digital methods
offers several important operational advantages over analog methods. which
include the following:

Increased immuniry to channel noise and external interference.
Flexible operation of the system.

A common format for the transmission of different kinds of message
signals (e.g.. voice signals. video signals, computer data).

2 b -

4. Improved securiry of communication through the use of encryption.

These advantages are attained. however, at the cost of increased trans-
mission (channel) bandwidth and increased system complexity. The first
requirement is catered to by the availability of wideband communication
channels (e.g., optical fibers, satellite channels). The second requirement
is taken care of by the use of very large-scale integration (VLSI) technology.
which offers a cost-effective way of building hardware. Accordingly, there

°For a discussion of electronic and photonic (optical) communication systems, see
Williams (1987).
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is an ever-increasing trend toward the use of digital communications and
away from analog communications. This trend is being accelerated by the
pervasive influence of digital computers in so many facets of our daily lives.
Nevertheless, analog communications remain a force to be reckoned with.
Most of the broadcasting systems and a large part of the telephone networks
in use today are analog in nature and, moreover, they will remain in service
for some time yet. It is therefore important that we understand the op-
erations and requirements of both analog and digital communications.
Notable among the digital methods that may be used for the transmission
of message signals over a communication channel is pulse-code modulation

(PCM). In PCM, the message signal is sampled, quantized, and then en-

coded. The sampling operation permits representation of the message signal
by a sequence of samples taken at uniformly spaced instants of time. Quan-
tization trims the amplitude of each sample to the nearest value selected
from a finite set of representation levels. The combination of sampling and
quantization permits the use of a code (e.g., binary code) for thetrans-
mission of a message signal. Pulse-code modulation and related methods
of analog-to-digital conversion are covered in Chapter 5.

When digital data are transmitted over a band-limited channel. a form
of interference known as intersymbol interference may result. The effect of
intersymbol interference, if left uncontrolled, is to severely limit the rate

at which digital data may be transmitted over the channel. The cure for

controlling the effects of intersymbol interference lies in shaping the trans-
mitted pulse representing a binary symbol 1 or 0. Intersymbol interference
is considered in Chapter 6.
To transmit a message signal (be it in analog or digital form) over a
band-pass communication channel (e.g.. telephone channel, microwave
~radio link. satellite channel) we need to modify the message signal into a
form suitable for efficient transmission over the channel. Modification of
the message signal is achieved by means of a process known as modulation.
This process involves varying some parameter of a carrier wave in accord-

ance with the message signal in such a way that the spectrum of the mod-

ulated wave matches the assigned channel bandwidth. Correspondingly,
the receiver is required to re-create the original message signal from a
degraded version of the transmitted signal after propagation through the
channel. The re-creation is accomplished by using a process known as
demodulation, which is the inverse of the modulation process used in the
transmitter.

There are other reasons for performing modulation. In particular, the
use of modulation permits multiplexing, that is, the simultaneous trans-
mission of signals from several message sources over a common channel.
Also, modulation may be used to convert the message signal into a form
less susceptible to noise and interference.

A carrier wave commonly used to perform modulation is the sinusoidal
wave. Such a carrier wave has three independent parameters that can be
varied in accordance with the message signal; they are the carrier ampli-
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tude, phase. and frequency. The corresponding forms of modulation are
known as amplitude modulation, phase modulation, and frequency mod-
ulation, respectively. Amplitude modulation: offers simplicity of imple-
mentation and a transmission bandwidth requirement equal to twice the
message bandwidth; the message bandwidth is defined as the extent of
significant frequencies contained in the message signal. With special pro-
cessing, the transmission bandwidth requirement may be reduced to a value
equal to the message bandwidth, which is the minimum possible. Phase
and frequency modulation, on the other hand, are more complex. requiring
transmission bandwidths greater than that of amplitude modulation. In
exchange, they offer a superior noise immunity, compared to amplitude
modulation. Modulation techniques for analog and digital forms of message
signals are studied in Chapter 7.

1.6 LIMITATIONS AND RESOURCES OF COMMUNICATION SYSTEMS

Typically, in propagating through a channel, the transmitted signal is dis-
torted because of nonlinearities and imperfections in the frequency response
of the channel. Other sources of degradation are noise and interference
picked up by the signal during the course of transmission through the
channel. Noise and distortion constitute two basic limitations in the design
of communication systems.

There are various sources of noise. internal as well as external to the
system. Although noise is random in nature, it may be described in terms
of its statistical properties such as the average power or the spectral distri-
bution of the average power. The mathematical discipline that deals with
the statistical characteristics of noise and other random signals is probability
theory. A discussion of probability theory and the related subject of random
processes is presented in Chapter 8. Sources of noise and related system
calculations are covered in Appendix C.

In any communication system, there are two primary communication
resources to be employed, namely. average rransmitted power and channel
bandwidth. The average transmitted power is the average power of the
transmitted signal. The channel bandwidth defines the range of frequencies
that the channtl can handle for the transmission of signals with satisfactory
fidelity. A general system design objective is to use these two resources as
efficiently as possible. In most channels, one resource may be considered
more important than the other. Hence, we may also classify communication
channels as power-limited or band-limited. For example, the telephone
circuit is a typical band-limited channel, whereas a deep-space communi-
cation link or a satellite channel is typically power-limited.

The transmitted power is important because, for a receiver of prescribed
noise figure, it determines the allowable separation between the transmitter
and receiver. Stated in another way, for a receiver of prescribed noise
figure and a prescribed distance between it and the transmitter, the avail-
able transmitted power determines the signal-to-noise ratio at the receiver
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input. This, in turn, determines the noise performance of the receiver.
- Unless this performance exceeds a certain design level, the transmission
of message signals over the channel is not considered to be satisfactory.

The effects of noise in analog communications are evaluated in Chapter
9. This evaluation is traditionally done in terms of signal-to-noise ratios.
In the case of digital communications, however, the preferred method of
assessing the noise performance of a receiver is in terms of the average
probability of symbol error. Such an approach leads to considerations of
optimum receiver design. In this context, the matched filter offers optimum
perfotmance for the detection of pulses in an idealized form of receiver
(channel) noise known as additive white Gaussian noise. As such, the matched-
filter receiver or its equivalent, the correlation receiver, plays a key role*in
the design of digital communication systems. The matched filter and related
issues are studied in Chapter 10. .

Turning next to the other primary communication resource, channel
bandwidth, it is important because, for a prescribed band of frequencies
characterizing a message signal, the channel bandwidth determines the
number of such message signals that can be multiplexed over the channel.
Stated in another way, for a prescribed number of independent message%
signals that have to share a common channel, the channel bandwidth de- *
termines the band of frequencies that may be allotted to the transmission
of each message signal without discernible distortion.

There is another important role for channel bandwidth, which is not
that obvious. Specifically, channel bandwidth and transmitted (signal) power
are exchangeable in that we may trade off one for the other for a prescribed
system performance. The choice of one modulation scheme over another

)r the transmission of a message signal is often dictated by the nature of

is trade-off. Indeed, the interplay between channel bandwidth and signal-
--noise ratio, and the limitation that they impose on communication, is
highlighted most vividly by Shannon’s famous channel capacity theorem.*
Let B denote the channel bandwidth, and SNR denote the received signal-
to-noise ratio. The channel capacity theorem states that ideally these two
parameters are related by

C = Blog,(1 + SNR), bits/s (1.7)

where C is the channel capacity, and a bit refers to a binary digit. The
channel capacity is defined as the maximum rate at which information may
be transmitted without error through the channel; it is measured in bits
per second. Equation 1.7 clearly shows that for a prescribed channel ca-
pacity, we may reduce the required SNR by increasing the channel band-

“n 1948, Shannon published a paper that laid the foundations of communication
theory (Shannon, 1948). The channel capacity theorem is one of three theorems
presented in that classic paper.
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width B. Moreover, it provides an idealized framework for comparing the
noise performance of one modulation system against another.

Finally, mention should be made of the issue of system complexity. We
usually find that the efficient exploitation of channel bandwidth or trans-
mitted power or both is achieved at the expense of increased system com-
plexity. We therefore have to keep the issue of system complexity in mind,
alongside that of channel bandwidth and transmitted power when consid-
ering the various trade-offs involved in the design of communication sys-
tems.






CHAPTER TWO

In this chapter, we begin our study of Fourier analysis. We first rewiew
the Fourier seriés, hy means of which we are able to represent a periodic
signal as an infinite sum of sine-wave components. Next, we develop the
Fourier transform, which performs a similar role in the analysis of
nonperiodic signals. The Fourier transform is more general in
application than the Fourier series.! The primary motivation for using
the Fourier series or the Fourier transform is to obtain the spectrum of a

'The origin of the theory of Fourier series and Fourier transform is found in
J. B. J. Fourier, The Analytical Theory of Heat (trans. A. Freeman), Cambridge
University Press, London, 1878.

13
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given signal, which describes the frequency content of the signal. In eﬁect,
this transformation provides an alternative method of viewing the signal

that.is often more revealing than the original description of the signal as

a function of time.

2.1 FOURIER SERIES

Let g,(¢) denote a periodic signal with period T,. By using a Fourier series
expansion of this signal, we are able to resolve the signal into an infinite
sum of sine and cosine terms. This expansion may be expressed in the form

go(t) = ap + 2 é“, |:a,, cos(zj;m) + b, sin(g?ﬁ)] | (2.1)

0 0

where the coefficients a, and b, represent the unknown amplitudes of the
cosine and sine terms, respectively. The quantity n/T, represents the nth
harmonic of the fundamental frequency f, = 1/T,. Each of the cosine and
sine functions in Eq. 2.1'is called a basis function. These basis functions
form an orthogonal set over the interval Ty in that they satisfy the following
set of relations:

o2 2amt 2nnt T m=n

cos cos de = 20 2.2
j—TQIZ ( T, ) ( T, ) {0’ m#n - (2:2)
jTu-’Z cos(znm‘) Sin(Znnt) dr

—Tol2 Ty T,
jTo/Z Sm(anl) Sin(?.ﬁnt) P

T2 T, T,
To determine the coefficient a;, we integrate both sides of Eq. 2.1 over

a complete period. We thus find that a, is the mean value of the periodic
signal g,(t) over one period, as shown by the time average

0 forallmandn (2.3)

{To/z, m=n (2.4)

0, m#n

1 To/2
w=7 [ g 2.5)
0

-Ty2

To determine the coefficient a,, we multiply both sides of Eq. 2.1 by the
cosine function cos(2znt/Ty) and integrate over the interval — T,/2 to
Ty/2. Then, using Egs. 2.2 and 2.3, we find that )

1 (12 2nnt
a, = ﬁj’ &(1) cos( T ) dt, n=51.2.u: (2.6)

-Ty2 0
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Similarly, we find that

1- (1 2t
b, = — sin| — : Ly iy = 2.7
. T,,f g,(r) sm( T ) dt n @

~Ty2 0

To apply the Fourier series representation of Eq. 2.1, it is sufficient that
inside the interval —(7,/2) < < (T7,/2) the function g,(r) satisfies the
following conditions:

- The function g, (1) is single-valued.

The function g,(t) has a finite number of discontinuities.

The function g,(¢) has a finite number of maxima and minima.
The function g,(r) is absolutely integrable. that is,

PSSR US I O L.

o2
[* Jgtwl ar < =

0+
where g,(1) is assumed to be complex valued.

These conditions are known as Dirichlet’s conditions. They are satisfied by
the periodic signals usually encountered in communication systems.

COMPLEX EXPONENTIAL FOURIER SERIES

The Fourier series of Eq. 2.1 can be put into a much simpler and more
elegant form with the use of complex exponentials. We do this by substi-
tuting in Eq. 2.1 the exponential form for the cosine and sine, namely:

OS(M) 1 - j27zm) g (_jZnnr)
S Y ] P\™,
. [2nnt _ l - j2nnt _ = (_}'an
Ty 57\ T, P

We thus obtain

8 (1) = a, + E [(an - Jjb,) eXP(j Z;nr)

+ (a, + jb,) exp(—jz;m)] (2.8)

The two product terms inside the square brackets in Eq. 2.8 are the complex
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conjugate of each other. We may also note the following relation:

&

= ) i2nnt =l ) i2mnt
S (a, + jba) exp(—’ . ) =3 (a - ;bn)exp(’ = )
n=1

n=-x

Let ¢, denote a complex coefficient related to a, and b, by

a, = jb,, n>0
Cn = 4 Q. »n=0 ' (2.9)
a, + jb,, n<0

Accordingly, we may simplify Eq. 2.8 as follows:

= 2 nt
&) =3 ¢ exp(’ = ) (2.10)
n=-x 0
where
1 (T2 j2mnt .
L= — — : =0, =1, £2.. o (@41
.c T, J’_Tul2 g,(1) exp( T, ) dt n ..h__O 1‘ 2 (2.11)

The series expansion of Eq. 2.10 is referred to as the complex exponential
Fourier series. The ¢, are called the complex Fourier coefficients. Equation
2.11 states that, given a periodic signal g,(r), we may determine the com-
plete set of complex Fourier coefficients. On the other hand, Eq. 2.10
states that, given this set of values, we may reconstruct the original periodic
signal exactly.

According to this representation, a periodic signal contains all frequen-
cies (both positive and negative) that are harmonically related to the fun-
damental. The presence of negative frequencies is simply a result of the
fact that the mathematical model of the signal as described by Eq. 2.10
requires the use of negative frequencies. Indeed, this representation also
requires the use of a complex-valued basis function exp(j2nnt/Ty), which
has no physical meaning either. The reason for using complex-valued basis
functions and negative frequency components is merely to provide a com-
pact mathematical description of a periodic signal, which is well-suited for
both theoretical and practical work.

DISCRETE SPECTRUM

The representation of a periodic signal by a Fourier series is equivalent to
the resolution of the signal into its various harmonic components. Thus,
using the complex exponential Fourier series. we find that a periodic sig-
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nal g,(t) with period T, has components of frequencies 0, *f,, =2f;,
+3fq, . . ., and so forth, where f, = 1/T, is the fundamental frequency.
That is, while the signal g,(r) exists in the time domain, we may say that
its frequency-domain description consists of components of frequencies.
0, *fo, *2fy, . . ., called the spectrum.? If we specify the periodic signal
8,(#), we can determine its spectrum; conversely, if we specify the spectrum,
we can determine the corresponding signal. This means that a periodic
signal g,(¢) can be specified in two equivalent ways: (1) the time-domain
representation where g,(r) is defined as a function of time, and (2) the
frequency-domain representation where the signal is defined in terms of
its spectrum. Although the two descriptions are separate aspects of a given
phenomenon, they are not independent of each other, but are related, as
Fourier theory shows.

In general, the Fourier coefficient ¢, is a complex number; so we may
express it in the form

¢, = |c.| exp[j arg(c,)] (2.12)

The term |c,| defines the amplitude of the nth harmonic component of the
periodic signal g, (r), so that a plot of |c,| versus frequency yields the discrete
amplitude spectrum of the signal. A plot of arg(c,) versus frequency yields
the discrete phase spectrum of the signal. We refer to the spectrum as a
discrete spectrum because both the amplitude and phase of ¢, have nonzero
values only for discrete frequencies that are integer (both positive and
negative) multiples of the fundamental frequency.

For a real-valued periodic function g,(¢), we find from the definition of
the Fourier coefficient ¢, given by Eq. 2.11 that

Co =368 (2:13)
where ¢ is thc‘complex conjugate of ¢,. We therefore have
le_al = leal (2.14)
and
arg(c_,) = —arg(c,) (2.15)
That is, the amplitude spectrum of a real-valued periodic signal is symmetric

(an even function of n) and the phase spectrum is asymmetric (an odd
function of n) about the vertical axis passing through the origin.

2The term “‘spectrum’” comes from the Latin word for “image.” It was originally
introduced by Sir Isaac Newton. For a historical account of spectrum analysis, see
Gardner (1987).
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............................................................................................................................

EXAMPLE 1 PERIODIC PULSE TRAIN -

Consider a periodic train of rectangular pulses of duration T and period
T,, as shown in Fig. 2.1. For convenience, the origin has been chosen to
coincide with the center of the pulse. This signal may be described ana-
lytically over one period, —(7y/2) <t < (T,/2), as follows

A _I st < I LR
gty =47 g =g & (2.16)
0, for the remainder of the period

Using Eq. 2.11 to evaluate the complex Fourier coefficient c,, we get

1 (17 j2n nt)
Cp = — A exp| — dt
P f - p( T

= ;insin(%), n=0,z%1,22... (2.17)

To simplify notation in the foregoing and subsequent results, we will

use the sinc function defined by ,

sin(n/)
T

sinc(1) = (2.18)

where 4 is the independent variable. The sinc function plays an important
role in communication theory. As shown in Fig. 2.2, it has its maximum
value of unity at A = 0, and approaches zero as A approaches infinity,
oscillating through positive and negative values. It goes through zero at

4 = =1, =2, ..., and so on. Thus, in terms of the sinc function we
may rewrite Eq. 2.17 as follows
TA . (nT
c, = T, smc(TO) (2.19)
g0
1 i ¢
R "o

Fioure 2 1
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The sinc function.
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where n has discrete values only. In Fig. 2.3 we have plotted the amplitude
spectrum |c,| and phase spectrum arg(c,) versus the discrete frequency
n/T, for a duty cycle T/T, equal to 0.2. We see that

1. The line spacing in the amplitude spectrum in Fig. 2.3a is determined
by the period T,

2. The envelope of the amplitude spectrum is determined by the pulse
amplitude A and duration T. ) )

3. Zero-crossings occur in the envelope of the amplitude spectrum at fre-
quencies that are multiples of 1/T. 7

4. The phase spectrum takes on the values 0° and =180°, depending on
the polarity of sinc(nT/T,); in Fig. 2.3b we have used both 180° and
— 180° to preserve asymmetry.

EXERCISE 1  Plot the amplitude spectra of rectangular pulses of unit am-
plitude and the following two values of duty cycle:

T

a. 7,;-—0.1
T

b. =—=0.
T, 0.4

2.2 FOURIER TRANSFORM

In the previous sections we used the Fourier series to represent a periodic
signal. We now wish to develop a similar representation for a signal g(r)
that is nonperiodic. the representation being in terms of exponential time
functions. In order to do this, we first construct a periodic function g,(1)
of period T, in such a way that g(r) defines one cycle of this periodic
function. as illustrated in Fig. 2.4. In the limit we let the period T, become
infinitely large, so that we may write

g(r) = lim g, (1) (2.20)
Ti—x

Representing the periodic!function g,(1) in terms of the complex ex-
ponential form of the Fourier series. we have

g = 2 ¢ exp(ﬂ;n{) (2.21)
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Figure 2.4
The construction of a periodic function from an arbitrarily defined function of time.

where
1 [nn2 ]'ZJmt)
Oy == t) exp| — dt 2.22
T() f“]‘njz gP( ) p( To ( )
Define
1
AT = =
f T
n
fn 5= TO
and
G(f») = el

Thus, making this change of notation in the Fourier series represer;tation
of g,(r), given by Eqs. 2.21 and 2.22, we get the following relations for
the interval —(Ty/2) <t < (T,/2),

&) = 2 G(f.) exp(j2nfyr) Af (2.23)

where

Gt = [ g(0) exp(~j2nfut) d (2:29)

- TU
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Suppose we now let the period T, approach infinity or, equivalently, its
reciprocal 4f approach zero. Then we find that, in the limit, the discrete
frequency f, approaches the continuous frequency variable f, and the
discrete sum in Eq. 2.23 becomes an integral defining the area under a
continuous function of frequency f, namely, G(f) exp(j2rft). Also, as
T, approaches infinity, the function g,(t) approaches g(¢). Therefore, in
the limit, Eqs. 2.23 and 2.24 become, respectively,

g(t) = f T G explizafn df (2.25)

where

G(f) = f g(¢) exp(—j2nfr) dr (2.26)

We have thus achieved our aim of repr:senting an arbitrarily defined signal
g(t) in terms of exponential time fun:tions over the entire time interval
from —« to =. Note that in Egs. 2.25 and 2.26 we have used a lowercase
letter to denote the time function and an uppercase letter to denote the -
corresponding frequency function.

Equation 2.26 states that, given-a time function g(r), we can determine
a new function G(f) of the frequency variable f. Equation 2.25 states
that, given this new or transformed function G(f), we can recover the
original time function g(r). Thus, since from g(¢) we can define the function
G(f) and from G(f) we can reconstruct g(¢), the time function is also
specified by G(f). The function G(f) can be thought of as a transformed -
version of g(¢) and is referred to as the Fourier transform of g(t). The time
function g(¢) is similarly referred to as the inverse Fourier transform of
G(f). The functions g(t) and G(f) are said to constitute a Fourier trans-
form pair.

DIRICHLET'S CONDITIONS
For a signal g(r) to be Fourier transformable, it is sufficient that g(¢) satisfies
Dirichlet’s conditions:

1. The function g(¢) is single-valued, with a finite number of maxima and
minima and a finite number of discontinuities in any finite time interval.

2. The function g(r) is absolutely integrable, that is,
[ 1s0la <=

The Dirichlet conditions are not strictly necessary but sufficient for the
Fourier transformability of a signal These conditions include all energy
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signals, for which we have?
[ lsrdi< =

In the two conditions described herein, the signal g(r) is assumed to be
complex.

NOTATIONS

The formulas for the Fourier transform and the inverse Fourier transform
presented in Eqs. 2.25 and 2.26 are written in terms of time ¢ and frequency
f, with t measured in seconds (s) and f measured in hertz (Hz). The
frequency f is related to the angular frequency w as w = 2nf, which is
measured in radians per second (rad/s). We may simplify the expressions
for the exponents in the integrands of Eqgs. 2.25 and 2.26 by using w instead
of f. However, the use of f is preferred over w for two reasons. First, we
~have the mathematical symmetry of Eqs. 2.25 and 2.26 with respect to each
.~ cther. Second, the frequency contents of communication signals (i.e.,
speech and video signals) are usually expressed in hertz.
A convenient shorthand notation for the transform relations of Egs.
2.26 and 2.25 is

G(f) = Flg(1)] (2.27a)
g(r) = F[G(f)] (2.27b)

Another convenient shorthand notation for the Fourier transform pair,
represented by g(t) and G(f), is

g(t) == G(f) (2.28)
The shorthand notations described herein are used in the text where ap-

propriate.

SPECTRUM

By using Fourier transformation, an energy signal g(r) is represented by
the Fourier transform G(f), which is a function of the frequency variable

*If the function g(t) is such that the value of‘J':. |g(t)]? dt is defined and finite, then
- the Fourier transform G(f) of the function g(t) exists and

lim U' |glt) - f‘ G(f) exp( j2nft) df|? dt] = 1

This result is known as Plancherel’s theorem.
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f. A plot of the Fourier transform G(f) versus the frequency f is called
the spectrum of the signal g(t). The spectrum is continuous in the sense
that it is defined for all frequencies. In general, the Fourier transform G( f)
is a complex function of the frequency f. We may therefore express it in
the form :

G(f) = |G(f)| exp[jo(f)] (2.29)

where |G(f)| is called the amplitude spectrum of g(r), and 6( f) is called
the phase spectrum of g(t).
For the special case of a real-valued function g(¢), we have

G(f) = G*(-f)
Therefore, it follows that if g(¢) is a real-valued function of time ¢, then
|GE=£)I = 1G(f)] (2:30)
and |
K1) = =8f) (2.31)

Accordingly, we may make the following statements on the spectrum of a
real-valued signal:

1. The amplitude spectrum of the signal is an_even function of the fr.=
quency; that is, the amplitude spectrum is symmetric about the vertical
axis:: - s

2. The phase spectrum of the signal is an odd function of the frequency;
that is, the phase spectrum is antisymmetric about the vertical axis.

These two statements are often summed up by saying that the spectrum
of a real-valued signal exhibits conjugate symmetry.

EXAMPLE 2 RECTANGULAR PULSE

Consider a rectangular pulse of duration T and amplitude A, as shown in
Fig. 2.5. To define this pulse mathematically in a convenient form, we use
the following notation

rect(t) = {(1)’ -4 <1:‘|<>ii (2.32)

T Nmr v
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Figure 2.5
Rectangular pulse.

which stands for a rectangular function of unit amplitude and unit duration
centered at ¢+ = 0. Then, interms of this function, we may express the
rectangular pulse of Fig. 2.5 simply as follows:

g(t) = A rect(%)

The Fourier transform of this rectangular pulse is given by

2
’ A exp(—j2nft) dt

-T2

sin(nfT)
ke [ RS T ]

AT sinc(fT)

Il

G(f)

We thus have the Fourier transform pair

A rect(iT) — AT sinc(fT) (2.33)

The amplitude spectrum |G(f)| of the rectangular pulse g(¢) is shown
plotted in Fig. 2.6a. From this spectrum, we may make the following
observations:

1. The amplitude spectrum has a main lobe of total width 2/T, centered
on the origin.
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:  Figure 2.6
i Spectrum of rectangular pulse. (a) Amplitude spectrum. (b) Phase spectrum.

i 2. The side lobes, on either side of the main lobe, decrease in amplitude
with increasing |f|. Indeed, the amplitudes of the side lobes are bounded
by the curve 1/|f]. >

3. The zero crossings of the spectrum occur at f = =1/T, =2/T, . . .

sssssssnssnne

The phase spectrum 0( f) of the rectangular pulse g(r) is shown plotted
in Fig. 2.6b. Depending on the sign of the sinc function sinc(fT), the phase
i spectrum takes on the values 0° and *180° in an asymmetric fashion.

.
...................

sssssssssgssscsnsass

sssssssce

! EXAMPLE 3 EXPONENTIAL PULSE

A truncated form of decaying exponential pulse is shown in Fig. 2.7a. We
i may define this pulse mathematically in a convenient form by using the
i unit step function:

(o >0
u(t) =44, 1=0 (2.34)
H 0, t<0

seesace
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Figure 2.7
(a) Decaying exponential pulse. (b) Rising exponential pulse.

We may then express the exponential pulse of Fig. 2.7a as

8(1) = exp(=n)u(r) (2.35)

The Fourier transform of this pulse is

G(f) = f " exp(—1) exp(—j2nft) dt

F exp[—t(1 + j2nf)] dt '
0

1
= m (2.36)

Thus, combining Egs. 2.35 and 2.36, we obtain the Fourier transform pair:

1

exp(—u(t) — m

(2.37)

Figure 2.8 shows the spectrum of the decaying exponential pulse.
A truncated rising exponential pulse is shown in Fig. 2.7b, which is
defined by ?

g(t) = exp(thu(—1) (2.38)

Note that u(—1t) is equal to unity for ¢+ < 0, one-half at + = 0, and zero
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Figure 2.8

Spectrum of decaying exponential pulse. (a) Amplitude spectrum. (b) Phase
spectrum.

for ¢ > 0. The Fourier transform of this pulse is given by

G(f) = [ exp) exp(~j2nfi) d

f" explt(1 — j2nf)] dt

1
= — .39
1 = j2nf (2.39)

We thus have the Fourier transform pair:

1

CXP(’)“(-’) — m

(2.40)

Figure 2.9 shows the spectrum of the rising exponential pulse.
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Figure 2.9
Spectrum of rising exponential pulse. (a) Amplitude spectrum. (b) Phase spectrum.

Comparing the spectra of Figs. 2.8 and 2.9, we may make the following
two observations:

1. The decaying and rising exponentials of Fig. 2.7 have the same ampli-
tude spectrum.

2. The phase spectrum of the rising exponential is the negative of that of
the decaying exponential.
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................. 2. 3 PROPERTIES OF THE FOURIER TRANSFORM

It is useful to havc a feeling for the relatlonshlp belween a function g(t)
and its Fourier transform G(f), and for the effect that various operations
on the function g() have on the transform G(f). This may be achieved
by examining certain properties of the Fourier transform. This section
describes 10 of these propemes which will be proved, one by one. These
properties are summarized in Table 1 of Appendix D.
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PROPERTY 1 LINEARITY (SUPERPOSITION)
Let gi(t) = G,\(f) and g,(t) = G,(f). Then for all constants a and b, we have

ag,(t) + bg,(t) = aG,(f) + bG,(f) (2.41)

The proof of this property follows simply from the linearity of the in-
tegrals defining G(f) and g(1).

...........................................................................................................................

- EXAMPLE 4 DOUBLE EXPONENTIAL PULSE

Consider a double exponential pulse defined by (see Fig. 2.10)

exp(—1). >0
glt) = 41, t=20 :
i exp(1), t<0
= exp(—|t|) (2.42)

i This pulse may be viewed as the sum of a truncated decaying exponential
i pulse and a truncated rising exponential pulse. Therefore, using the lin-
earity property and the Fourier-transform pairs of Eqs. 2.37 and 2.40, we
find that the Fourier transform of the double exponential pulse of Fig. 2.10
is as follows

1 1
S =155 YTy
2
"1+ (2nf)

We thus have the Fourier transform pair

2

5 exp( - |ff) = —=—— 2.43
s p( —]) T+ Gafy (2.43)
gl)
'
1.0
Figure 2.10
Double exponential pulse.

s, il
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PROPERTY 2 TIME SCALING
Let g(t) = G(f). Then,

glat)=— |—;—| G(;f) (2.44)

where a is a time-scaling factor that may be positive or negative.

To prove this property, we note that
Flg(an] = | g(an) exp(~j2nfo) dr

Set © = at. There are two cases that can arise, depending on whether the
scaling factor a is positive or negative. If a > 0, we get

H;g(r) exp[—jZn (i—r) r] i
o)

On the other hand, if a < 0, the limits of integration are interchanged so
that we have the multiplying factor —(1/a) or, equivalently, 1/|a|. This
completes the proof of Eq. 2.44.

Note that the function g(at) represents g(¢) compressed in time by a
factor a, whereas the function G(f/a) represents G(f) expanded in fre-
quency by the same factor a. Thus the scaling property states that the
compressxon of a function g(¢) in the time domain is equivalent to the
expansion of its Fourier transform G(f) in the frequency domain by the
same factor, and vice versa.

F[g(ar)]

EXARWLE § RECTANGULAR PULSE (CONTINUED)

Example 2 evaluated the Fourier transform of a rectangular pulse;
the result of the evaluation is given by the Fourier transform pair of i
Eq. 2.33. For convenience of presentation, let the rectangular pulse i
be normalized to have unit amplitude and unit duration. Then, putting
A =1and T = 1in Eq. 2.33, we have :

rect(r) = sinc(f)
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Hence, applying the time-scaling property to this Fourier transform pair,

9

Figure 2.11 shows the rectangular pulse and its amplitude spectrum for
three different values of the time-scaling factor a, namely a = 1/2, 1, 2.
With a = 1 regarded as the frame of reference, we may view the use of
a = 1/2 as expansion in time, and a = 2 as compression in time. These

we get

L .
rect(at) = g sine

gft) |G
20
1.0
t
-1 0 1 -1 0
Parameter a = %
8g(t) |G(f)|
1.0
1.0
_1 0 1 -3 -2 -1 0
2 ° 2
Parametera = 1
g(t)
- 1G (1)
\/05-
_i101 -2 0
a 4
Parametera = 2
Figure 2.11

The inverse relation between time- and frequency-domain descriptions of

rectangular puise g(t) = rect(at).

ssssece

sssssssas
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observations are confirmed by the three time-domain descriptions depicted
on the left side of Fig. 2.11. The corresponding effects of these time-scale
changes on the amplitude spectrum of the rectangular pulse are shown on
the right side of Fig. 2.11. The two sets of plots depicted in this figure
clearly show that the relationship between the time-domain and frequency-
domain descriptions of a signal is an inverse one. That is, a narrow pulse
(in time) has a wide spectrum (in frequency). and vice versa.

assscssssssssnssssnas

caene
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EXERCISE 2 Example 3 showed that the decaying exponential pulse and
rising exponential pulse of Fig. 2.7 have the same amplitude spectra but
opposite phase spectra. Use the time-scaling property of the Fourier trans-
form to explain this behavior.

PROPERTY 3 DUALITY

If g(t) = GIf), then
Glt) = g(~f) (2.45)

This property follows from the relation defining the inverse Fourier
transform by writing it in the form

gl =B = J G(f) exp(~j2nft) df

and then interchanging t and f. Note that G (1) is obtained from G(f) by
using ¢ in place of f, and g( - f) is obtained from g(1) by using — f in place
of r. )

EXAMPLE 6 SINC PULSE

Consider a signal g(¢) in the form of a sinc function, as shown by
g(t) = A sinc(2W1) (2.46)

To evaluate the Fourier transform of this function, we apply the duality
and time-scaling properties to the Fourier transform pair of Eq. 2.33. Then.
recognizing that the rectangular function is an even function, we obtain
the following result:

o A i ,
A sinc(2Wir) ——= W rcct(%) (2.4
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Figure 2.12
(a) Sinc pulse g(t). (b) Fourier transform G(f).

which is illustrated in Fig. 2.12. We thus see that the Fourier transform of
a sinc pulse is zero for |f| > W. Note also that the sinc pulse itself is only
asymptotically limited in time.

-------------- *trasecccenssscecssssnctosnssscess esescnase Srssecsssteccntsnssnsetresatraransnnsranad

EXERCISE3 Show that the total area under the curve of the sinc function
equals one; that is,

f " sinc(r) dt = 1

EXERCISE 4 Consider a one-sided frequency function G(f), defined by

exp(=f), >0
’ f=0
<D

G{f) =

(==l S N

Applying the duality property to the Fourier transform pair of Eq. 2.40,
write the inverse Fourier transform of G(f).

PROPERTY 4 THME SHIFTING

If glt) = GIf), then for a constant time shift .

gt — t)) == Glf) exp{ - j2rft,). (2.48)
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To prove this property, we take the Fourier transform of g(¢ — &) and
then set t = t — f, to obtain

exp(~2nf1) [ g() exp(=j2af0) de.
exp(~j20f) G ()

Flg(t — )]

The time-shifting property states that if a function g(r) is shifted in the
positive direction by an amount £, the effect is equivalent to multiplying
its Fourier transform G(f) by the factor exp(—j2nft). This means that
the amplitude of G(f) is unaffécted by the time shift but its phase is changed
by the amount — 2nft,.

EXAMPLE 7 RECTANGULAR PULSE (CONTINUED)

Consider the rectangular pulse g,(¢) of Fig. 2.13a, which starts at time
t = 0 and terminates at t = 7. This pulse is defined by

g.(1) = A rect({f_TT/z) . --(2.49)

This pulse is obtained by shifting the rectangular pulse of Fig. 2.5 to the
right by 7/2 seconds. Therefore, applying the time-shifting property to the
Fourier transform pair of Eq. 2.33, we find that the Fourier transform
G.(f) of the rectangular pulse g,(t) defined in Eq. 2.49 is given by

G.(f) = AT sinc(fT) exp(—jnfT) (2.50)
ATl gl
A A
0 T ‘ = 0 :
(a) < (k)

Figure 2.13
Time-shifted versions of a rectangular pulse.
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Consider next the rectangular pulse g,(t) of Fig. 2.13b, which starts at
time t = —T and terminates at r = 0. This second pulse is defined by

t+ T/Z) 2.51)

g(t) = A rect(

The pulse gy(t) is obtained by shifting the rectangular pulse of Fig. 2.5 to
the left by 7/2 seconds. Therefore, applying the time-shifting property to
the Fourier transform pair of Eq. 2.33, we find that the Fourier transform
Gy(f) of the rectangular pulse g,(r) defined in Eq. 2.51 is given by

Gy(f) = AT sinc(fT) exp(jzfT) (2.52)

.......

PROPERTY 5 FREQUENCY SHIFTING

If g(t) = G(f), then for a constant frequency shift f.,
exp(j2nft) g(t) — G(f - f). (2.53)

This property follows from the fact that

" (1) exp[—j2ne(f ~ £.)] dr

G(f - £)

That is, multiplication of a function g(1) by the factor exp(j2nf.t) is equiv-
alent to shifting its Fourier transform G(f) in the positive direction by the
amount f.. Note the duality between the time-shifting and frequency-shift-
ing operations.

Flexp(j2nf.t)g(1)]

EXAMPLE 8 RADIO FREGUENCY PULSE

Consider the radio frequency (RF) pulse signal g(r) shown in Fig. 2.14a,
which consists of a sinusoidal wave of amplitude A and frequency f.. The
pulse occupies the interval from ¢t = ~T/2 to ¢t = T/2. This signal is
referred to as an RF pulse when the frequency f, falls in the radio-frequency
band. Such a pulse is commonly used in radar for the detection of targets
of interest (e.g., aircraft) and for the estimation of useful target parameters
(e.g., range).

The signal g(r) of Fig. 2.14a may be expressed mathematically as follows:

t

glt)y =A rect(?,) cos(2nf 1) (2.54)




PROPERTIES OF THE FOURIER TRANSFORM 37

gle)

-

— Y
frr———)
3

1G(f)]

= | 0 | fe |
| |

(b)

Figure 2.14
(a) RF pulse: (b} Amplitude spectrum.

To find the Fourier transform of this signal, we note that
cos(2nfu) = #exp(j2nf.t) + exp(—j2nf.1)]

Therefore, applying the frequency-shifting property to the Fourier trans- \
form pair of Eq. 2.33, we get the desired result ;

G(f) = A‘B—T{sinc[T(f - f)] + sinc[T(f + fOl} (2.55)
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i When the number of cycles within the pulse is large, that is, f T > 1, we
i may use the approximate result )

WsindT( - £, f>0
' G(f) ={ [ &
ATTsinc[T(f + f)l f<0

2
wn
o
-

i The amplitude spectrum of the RF pulse is shown in Fig. 2.14b. This’
diagram, in relation to Fig. 2.6a, clearly illustrates the frequency-shifting
i property of the Fourier transform.

...........................................................................................................................

EXERCISE5 Consider an exponentiaily damped sinusoidal wave defined
by

gl {STP(—” sin(2nf.1), g (2.57)

Using the expansion

sin(2nf.t) = %j[exp(errfc!) — exp(—j2nf.t)]

and applying the frequency-shifting property to the Fourier transform pair
of Eq. 2.37, write the Fourier transform of g(1).

PROPERTY 8 DIFFERENTIATION IN THE TIME DOMAIN

Let g(t) = G(f), and assume that the first derivative of g(t) is Fourier trans-
formable. Then

d )
pe glt) = j2nfG(f) (2.58)

That is, differentiation of a time function g(t) has the effect ofmuftiplyfng its
Fourier transform G(f) by the factor j2nf.

This result is obtained simply by taking the first derivative of both sides
of the relation defining the inverse Fourier transform of G(f), namely,
Eq. 2.25, and then interchanging the operations of integration and differ-
entiation; we are justified to make this interchange because integration
and differentiation are both linear opcrations.

Multiplication of the Fourier transform G(f) by the factor j2rf on the
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right side of Eq. 2.58 implies that differentiation of g(¢) with respect to
time enhances the high frequency components of the signal g(¢). .
We may generalize Eq. 2.58 as follows: '

dn
o 8() = (j2nf)"G(f) (2.59)

...........................................................................................................................

EXAMPLE 9 GAUSSIAN PULSE ) 5

In this example we wish to use the differentiation property of the Fourier
transform to derive the pulse signal g(r) whose Fourier transform G(f)
has the same form.

Let g(r) denote the pulse as a function of time, and G(f) its Fourier
transform. We note that by differentiating the formula for the Fourier
transform G(f) with respect to f, we have

d
—j2mig(t) = df G(f) (2.60)

-which expresses the effect of differentiation in the frequency domain. Equa-
tion 2.60 is the dual of Eq. 2.58 that describes the time-differentiation
property. Dividing both sides of Eq. 2.60 by j. we may also write

1 d
= Prtglth == —— G} (2.61)
: L& :
Suppose that the pulse-signal g(r) satisfies the first-order differential equa-
tion

{
‘—g(r) = — 2nrg(t) (2.62)
dt

The imposition of this_condition on the pulse signal g() 1s equivalent to
equating the left-hand members of Egs. 2.58 and 2.61. Correspondingly.
we may equate the night-hand members of Eqs. 2,38 and 2.61, and thus
write

1 d

5 == = 2nfG 2.63

e (f) = j2nf G(f) {\ )
Since j° = — 1. we may rewrite Eq. 2.63 as

d
= = _dnfG 2.64
dfG(f) nfG(f) ( )



40 FOURIER ANALYSIS

g(r)

Figure 2.15
Gaussian pulse.

We may now state that if a pulse signal g(r) satisfies the first-order differ-
ential equation (2.62). then its Fourier transform G(f) must satisfy the
first-order differential equation (2.64). However, these two differential
equations have exactly the same mathematical form. Hence, the pulse
signal and its transform are the same function. In other words, provided
that the pulse signal g(r) satisfies the differential equation (2.62), then
G(f) = g(f). Solving Eq. 2.62 for g(t), we obtain

glr) = exp(—nt?) (2.65)

This result is shown plotted in Fig. 2.15.

The pulse defined by Eq. 2.65 is called a Gaussian pulse, the name being
derived from the similarity of the function to the Gaussian probability
density function. We conclude therefore that the Gaussian pulse is its own
Fourier transform as shown by '

exp( —nt’) == exp(—nf?) ‘ (2.66)

EXERCISE 8 Show that
f " exp(-nf) dr = 1 2.67)

Hinr: Consider the formula for the Fourier transform of exp(—nr?) eval-
uated at f = 0.

eesscssscnnnee
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PROPERTY 7 INTEGRATION [N THE TIME DOMAIN -
Let g(t) = G(f). Then, provided G(0) = 0, we have

' 1
f,, glt) dt = - G (2.68)

That is, integration of a time function g(t) has the effect of dividing its Fourier
transform G(f) by the factor j2rnf, assuming that G(0) is zero.

To prove this property, we write the Fourier transform of the integrated
signal as follows

FU £t1) dr] B J exp(—j2zf1) f g(z)drdt  (2.69)

On the right side of this relation, we have a definite integral with respect
to the variable . Clearly, we may view the corresponding integrand as the
product of two time functions: the exponential exp(—/2xfr) and the in-
tegrated signal [* .g(r) dr. Hence, using the formula for integration by
parts and assuming that

G(0) = J’ gt} e =0

and then simplifying the result, we get the relation of Eq. 2.68. The con-
dition G(0) = 0 ensures that g(t) integrates out to zero as t approaches
infinity. The more general case, for which G(0) # 0, is treated later in
Section 2.5.

Division of the Fourier transform G(f) by the factor j27f on the right
side of Eq. 2.68 implies that integration of g(r) with respect to time sup-
presses the high-frequency components of g(r). As-expected, this effect is
the opposite of that produced by differentiation of g(¢).

B e e e T T

EXAMPLE 10 TRIANGULAR PULSE

Consider the doublet pulse g,(tr) shown in Fig. 2.16a. By integrating this
pulse with respect to time, we obtain the triangular pulse g,(t) shown in
Fig. 2.16b. The duration of this triangular pulse at the half-amplitude points
is the same as the duration of the rectangular pulse of Fig. 2.5. We note
that the doublet pulse g,(f) consists of two rectangular pulses: one of
amplitude A, defined for the interval — T < ¢ < 0, and the other of am-
plitude — A, defined for the interval 0 < ¢ < T. Therefore, using the results
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Figure 2.16
(a) Doublet pulse g,(1). (b) Triangular pulse g,(t) obtained by integrating g,(t).

of Example 7, we find that the Fourier transform G,(f) of the doublet
pulse g,(¢) of Fig. 2.16a is given by

AT sine(fT) [exp (jafT) - exp(~jfT)]
2JAT sinc(fT) sin(nfT) (2.70)

Gi(f)

We further note that G,(0) is zero. Hence, using Eqgs. 2.68 and 2.70, we
find that the Fourier transform G,(f) of the triangular pulse g,(¢) of Fig.
2.16b is given by

1
Gy(f) = W‘Gl(f)
= AT%’E‘IE sinc(fT)

AT? sinc(fT) 2.71)

I
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Figure 2.17
Spectrum of triangular pulse.

The Fourier transform G,(f) is a positive real function of f, which means
that the amplitude spectrum of g,(¢) is the same as G,(f), and its phase
spectrum is zero for all f. The Fourier transform G,(f) is plotted in Fig.
2.17. Note that the spectrum of the triangular pulse is more tightly centered
around the origin than the spectrum of the rectangular pulse. Also, the
spectrum of the triangular pulse decreases as 1/f2, whereas the spectrum
of the rectangular pulse is discontinuous and decreases as 1/]f].

a. Show that the Fourier transform of a triangular pulse of unit amplitude
and unit duration (measured at the half-amplitude points) is equal to

sinc’(f).
b. Using the result in part a, show that
f' sinc(f) df = 1

Hint: For part b, consider the formula for the inverse Fourier transform
of sinc(f) evaluated at t = 0.

PROPERTY 8 CONJUGATE FUNCTIONS

If g(t) = G(f), then for a complex-valued time function g(t) we have
T gt(t) = G*(-f) (2.72)

where the asterisk denotes the complex conjugate operation.
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To prove this property, we know from the inverse Fourier transform
that -

8() = [* G exp(jnfo) df
Taking the complex conjugates of both sides:
§°) = [ G*(f) exp(~j2nfr) df

Next, replacing f with — f:
8°() = = |G (=P explj2nfr) df
[ 6= 1) exptiznsn as

That is, g*(r) is the inverse Fourier transform of G*(— f), which is the
desired result.

e T T e T T LY P IO

EXAMPLE 11 REAL AND IMAGINARY PARTS OF A TIME FUNCTION

Expressing a complex-valued function g(¢) in terms of its real and imaginary
parts, we may write

8(1) = Re[g(1)] + j Im[g(s)] (2.73)

where Re denotes the “real part of” and Im denotes the “imaginary part
of.” The complex conjugate of g(r) is

8*(1) = Re[g(n)] — j Im[g()] - @27

Adding Eqgs. 2.73 and 2.74:

Relg(1)] = 3 [8(1) + g"(1)] 275)

and subtracting them:

Im{g(r)] = 211.11;(:) - g*(0)] (2.76)
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Therefore, applying Property 8, we obtain the following two Fourier trans-
form pairs:

1
Re[g(1)] == ;G + GH(=f)] (2.77)
1
Imfg(1)] = % [G(f) = G*(— )] (2.78)
From Eq. 2.78, it is apparent that in the case of a real-valued time
function g(r), we have G(f) = G*(—f); that is, G(f) exhibits conjugate

symmetry. This result is a restatement of Eqs. 2.30 and 2.31.

.
...........................................................................................................................

EXERCISE 8 Show that for a real-valued signal g(¢), Eq. 2.72 may be
rewritten in the equivalent form:

g(=0 = G*(f)

PROPERTY 9 MULTIPLICATION IN THE TIME DOMAIN
Let g,(t) = G,(f) and g,(t) = G,(f). Then

gt gi(t) :f G4 Gy(f — 4) di (2.79)

To prove this property, we first denote the Fourier transform of the
product g,(r)g,(1) by Gy;(f), so that we may write

£:(1) g2(1) = Gi(f)

where

Gdf)=f:&ﬂkﬂﬂﬂm—ﬂwﬂdr

For g,(1), we next substitute the inverse Fourier transform
80 = [ Guf) explins'sy af
in the integral defining G,(f) to obtain

Gulf) = [ [ 80GA" expl-r2n(s ~ g0 g s
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Define 4 = f — f'. Then, interchanging the order of integration, we obtain
Gulf) = [ a1 Gf = ) [ gile) exp(-j2n) di_
The inner integral is recognized simply as G,(4), so we may write
Gulf) = [ GHGAS - i) di

which is the desired result. This integral is known as the convolution integral
expressed in the frequency domain, and the function G () is referred to
as the convolution of G,(f) and G,(f). We conclude that the multiplication
of two signals in the time domain is transformed into the convolution of
their individual Fourier transforms in the frequency domain; This property
is known as the multiplication theorem.

In a discussion of convolution, the following shorthand notation is fre-

quently used:

Gu(f) = Gi(f) T G:(f)

where the star {}- denotes convolution. Note that convolution is com-
mutative, that is,

G\z(f) = G21(f)
or

G.(f) 9¢ Gof) = Gif) ¢ Gi(f)
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EXAMPLE 12 TRUNCATED SINC PULSE

Consider the truncation of the sinc pulse sinc(2Wr), so that the resulting
signal g(r) is zero outside the interval —(7/2) <t < (T/2), as shown in
Fig. 2.18a. This signal may be expressed as the product of a sinc pulse and
a rectangular pulse, as shown by

g(r) = sinc(2Wr) rect(i) (2.80)

T

S
1
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Figure 2.18
The Gibbs phenomenon. (a) A truncated sinc function g(t). (b) Fourier transform
G(f).

From Egs. 2.33 and 2.47, we have

o)

F[sinc(2Wr)] = ﬁ rect (%)

Il

T sinc(fT)

Therefore, using Eq. 2.79, we find that the Fourier transform of the trun-
cated sinc pulse g(¢) is given by

G(f) = Z%Vj:. rect(%) sinc[(f — A)T] dA

= z_Tﬁf_ww sinc[(f — 1)T] da

T % sin(r(f - A)
2wf sinfx(f = O] ,, (2.81)

w alf - )T

|
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Figure 2.19

The sine integral.

»

The integral of the function sinx/x from zero up to some upper limit is
called the sine integral, which is defined as follows

Si(u)=f“ﬂﬂ’fdx 28
0 X

The sine integral Si(u) cannot be integrated in closed form in terms of
elementary functions, but it can be integrated as a power series.* It is
plotted in Fig. 2.19. We see that: (1) the sine integral Si(u) is odd symmetric
about u = 0; (2) it has its maxima and minima at multiples of =; and (3)
it approaches the limiting value n/2 for large values of u.

Substituting x = n(f — 4)T in Eq. 2.81, we find that the Fourier
transform G(f) of the truncated sinc pulse.may be expressed conveniently
in terms of the sine integral as follows:

B fy = 5:—“,[Si(nwr - nfT) + Si(aWT + nfT)] (2.83)

This relation is plotted in Fig. 2.18b for the case when T = 8/W. We see
that G(f) approximates the Fourier transform of a sinc pulse sinc(2We)
of infinite duration in an oscillatory fashion, with a maximum deviation of
about 9%. Furthermore, for a given value of W, as the pulse duration T




PROPERTIES OF THE FOURIER TRANSFORM 49

is increased. the ripples in the vicinities of the discontinuities of the rect-
i angular function show a proportionately increased rate of oscillation versus
i the frequency, f, whereas their amplitudes relative to the magnitude of
the discontinuity remain the same. This effect is an example of Gibbs
phenomenon in Fourier transforms.

EXERCISE 9 Using Eq. 2.79, show that
[ swg@a = [ GnG-1 df

How is the left side of this relation affected by replacing G,(—f) with
G,(f) in the integral on the right side of the relation?

PROPERTY 10 CONVOLUTION IN THE TIME DOMAIN
Let g,(t) = G.(f) and g,(t) = G,(f). Then

j’ gitlgilt = 1) de = G £)Gil f) (2.84)

This result follows directly by combining Property 3 (duality) and Prop-
erty 9 (time-domain multiplication). We may thus state that the convolution
of two signals in the ume domain is transformed into the multiplication of
their individual Fourier transforms in the frequency domain. This property
is known as the convolution theorem. Its use permits us to exchange a
convolution operation for a transform multiplication, an operation that is

ordinarily easier to manipulate.
Using the shorthand notation for convolution, we may rewrite Eq. 2.84

in the form
&) 9 &) = G(f)GAf) +(2.85)
where the star 4y denotes convolution.

EXAMPLE 13 DERIVATIVE OF A CONVOLUTION INTEGRAL

Let g,5(t) denote the result of convolving two signals g,(¢) and g:(t). Then
the derivative of g,,(1) is equal to the convolution of g, () with the derivative
of gy(1), or vice versa. That is, if

gu(r) = (1) ﬁ" g:(1)
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then i

d

aglz(f) = ["%,gl(‘)] ﬁ’ ga(t) ‘

To prove this result, we use the differentiation property (i.e., Eq. 2.58)
in conjunction with the convolution property (i.e., Eq. 2.85), obtaining

d ' .
2 1810 9 8:(0] = 27 f[G\(f)GAf)].

Associatiné the factor jzlnf with G,(f), we may write

[ditgl(f)] ﬁ &(t) = [j22f G ()] GAf)

which yields the desired result:

d
ACOR SO [d% g,(r)] 2 &) (2.86)

Equation 2.86 shows that the derivative of the convolution of two time
functions is equal to the convolution of one function with the derivative
of the other.

EXERCISE 10 Using Eq. 2.84, show that
[ ae-0a = [ GG af

How is the right side of this relation affected by replacing g,(—¢) with
g3(t) in the integral on the left side of the relatnon" How does this result
compare with that of Exercise 9? #,

......... 2.4 INTERPLAY BETWEEN TIME-DOMAIN AND
FREQUENCY-DOMAIN DESCRIPTIONS

The properties of the Fourier transform and the various examples used to
illustrate them clearly show that the time-domain and frequency-domain
descriptions of a signal are inversely related. In particular, we may make
the following statements:

1. If the time-domain description of a signal is changed, the frequency-
domain description of the signal is changed in an inverse manner, and
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vice versa. This inverse relationship prevents arbitrary specifications of
a signal in both domains. In other words, we may specify an arbitrary
function of time or an arbitrary .pectrum, but we cannot specify both of
them together.

2. If a signal is strictly limited in frequency. the time-domain description
of the signal will trail on indefinitely. even though its amplitude may
assume a progressively smaller value. We say a signal is strictly limited
in frequency or strictly band-limited 1f its Fourier transform is exactly
zero outside a finite band of frequencies. The sinc pulse is an example
of a strictly band-limited signal. as illustrated in Fig. 2.12. This figure
also shows that the sinc pulse is only asympiotically limited in time,
which confirms the opening statement we made for a strictly band-
limited signal. In an inverse manner. if a signal is strictly limited in time
(i.e.. the signal is exactly zero outside a finite time interval). then the
spectrum of the signal is infinite in extent. even though the amplitude
spectrum may assume a progressively smaller value. This behavior is
exemplified by both the rectangular pulse (described in Figs. 2.5 and
2.6) and the triangular pulse (described in Figs. 2.16b and 2.17). Ac-
cordingly. we may state that a signal cannot be strictly limited in both
time and frequency.

BANDWIDTH

The bandwidih of a signal provides a measure of the extent of significant
speciral content of the signal for positive frequencies. When the signal is
strictly band-limited, the bandwidth is well defined. For example, the sinc
pulse described in Fig. 2.12 has a bandwidth equal to W. When, however,
the signal is not strictly band-limited, which is generally the case, we en-
counter difficulty in defining the bandwidth of the signal. The difficulty
arises because the meaning of “significant” attached to the spectral content
of the signal is mathematically imprecise. Consequently, there is no uni-
versally accepted definition of bandwidth.

Nevertheless, there are some commonly used definitions for bandwidth.
In this section. we consider two such definitions;® the formulation of each
definition depends on whether the signal is low-pass or band-pass. A signal
is said to be low-pass if its significant spectral content is centered around
the origin. A signal is said to be band-pass if its significant spectral content
is centered around * f., where f, is a nonzero frequency.

When the spectrum of a signal is symmetric with a main lobe bounded
by well-defined nulls (i.e., frequencies at which the spectrum is zero), we
may use the main lobe as the basis for defining the bandwidth of the signal.
Specifically, if the signal is low-pass, the bandwidth is defined as one half

sAnother definition for the bandwidth of a signal is presented in Section 4.8.
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the total width of the main spectral lobe, since only one half of this lobe
- lies inside the positive frequency region. For example, a rectangular pulse
of duration T seconds has a main spectral lobe of total width 2/T hertz
centered at the origin, as depicted in Fig. 2.6a. Accordingly, we may define
the bandwidth of this rectangular pulse as 1/T hertz. If, on the other hand,
the signal is band pass with main spectral lobes centered around + f,, where
fo is large, the bandwidth is defined as the width of the main lobe for
positive frequencies. This definition of bandwidth is called the null-to-null
bandwidth. For example, an RF pulse of duration T seconds and frequency
f. has main spectral lobes of width 2/T hertz centered around *f,, as
depicted in Fig. 2.14b. Hence, we may define the null-to-null bandwidth
of this RF pulse as 2/T hertz. ‘ .

Another popular definition of bandwidth is the 3-dB bandwidth.® Spe-
cifically, if the signal is low-pass, the 3-dB bandwidth is defined as the
separation between zero frequency, where the amplitude spectrum attains
its peak value, and the positive frequency at which the amplitude spectrum
drops to 1/V2 of its peak value. For example, the decaying exponential
and rising exponential pulses defined in Fig. 2.7 have a 3-dB bandwidth
of 1/2z hertz. If, on the other hand, the signal is band pass, centered at
*f.. the 3-dB bandwidth is defined as the separation (along the positive

frequency axis) between the two frequencies at which the amplitude spee- ...

“trum-of the signal drops to 1/V2 of the peak value at f_. The 3-dB band-
width has the advantage in that it can be read directly from a plot of the
amplitude spectrum. However, it has the disadvantage in that it may be
misleading if the amplitude spectrum has slowly decreasing tails.

EXERCISE 11 Using the idea of a main spectral lobe, what is the band-
width of a triangular pulse defined in Figs. 2.16b and 2.17?

EXERCISE 12 What is the 3-dB bandwidth of the decaying exponential
pulse exp( —ar) that is zero for negative time?

TIME-BANDWIDTH PRODUCT

For any family of pulse signals that differ by a time-scaling factor, the
product of the signal’s duration and its bandwidth is always a constant, as
shown by =

(duration) - (bandwidth) = constant

®For a discussion of the decibel (dB), see Appendix A.
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DIRAC DELTA FUNCTION &3

The product is called the time-bandwidth product or bandwidth—duration
product. The constancy of the time-bandwidth product is another mani-
festation of the inverse relationship that exists between the time-domain
and frequency-domain descriptions of a signal. In particular, if the duration
of a pulse signal is decreased by reducing the time scale by a factor a, the
frequency scale of the signal’s spectrum, and therefore the bandwidth of
the signal, is increased by the same factor a, by virtue of Property 2, and
the time-bandwidth product of the signal is thereby maintained constant.
For example, a rectangular pulse of duration T seconds has a bandwidth
(defined on the basis of the positive-frequency part of the main lobe) equal
to 1/T hertz, making the time-bandwidth product of the pulse equal unity.
Whatever definition we use for the bandwidth of a signal, the time-band-
width product remains constant over certain classes of pulse signals. The
choice of a particular definition for bandwidth simply changes the value of
the constant.

2.5 DIRAC DELTA FUNCTION

Strictly speaking, the theory of the Fourier transform, as described in
Sections 2.2 and 2.3, is applicable only to time functions that satisfy the
Dirichlet conditions. Such functions include energy signals. However, it
would be highly desirable to extend this theory in two ways:

1. To combine the Fourier series and Fourier transform into a unified
theory, so that the Fourier series may be treated as a special case of
the Fourier transform.

2. To include power signals in the list of signals to which we may apply
the Fourier transform.

It turns out that both these objectives can be met through the “‘proper
use” of the Dirac delta function or unit impulse.

The Dirac delta function belongs to a special class of functions known
as generalized distributions that are defined by the use of assignment rules
given in Eqs. 2.87 and 2.88. In particular, the Dirac delta function,’” denoted
by d(t), is defined as having zero amplitude everywhere except at ¢ = 0,
where it is infinitely large in such a way that it contains unit area under its
curve, as shown by the pair of rules:

8(1) = 0, t#0 (2.87)

For a detailed treatment of the delta function, see Bracewell (1978) or Lighthill

. (1959). The notation 4(t), which was first introduced into quantum mechanics by

Dirac, is now in general use; see Dirac (1947).
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and
J’" 5(e) dt = 1 (2.88)

It is important to realize that no function in the ordinary sense can
satisfy the two rules of Eqs. 2.87 and 2.88. However, we can imagine a
sequence of functions that have progressively taller and thinner peaks at

= 0,.with the area under the curve remaining equal to unity, whereas
the value of the function tends to zero at every point, except at t = 0
where it tends to infinity. That is, we may view the delta function as the
limiting form of a unit-area pulse as the pulse duration approaches zero. It
is immaterial what sort of pulse shape is used. For example, we may use
a rectangular pulse of unit area, and thus write

5(t) = limlrect(g) (2.89)

—0 T

The rectanguldr pulse is plotted in Fig. 2.20a for t = 5, 1, 0.2. For another
example, we may use a Gaussian pulse of unit area and thus write

8(0) = umlexp(— “t') (2.90)

=0 T

The Gaussian pulse is plotted in Fig. 2.20b for r = 5, 1, 0.2. From Fig.
2.20, we clearly see that both pulses take on an impulse-like appearance
as the parameter v becomes progressively smaller. Some other examples
are considered in Problem 18.

EXERCISE 13 Plot the spectra for the rectangular and Gaussian pulses
for the different values of parameter 7 given in Fig. 2.20.

PROPERTIES OF THE DELTA FUNCTION

The delta function 8(¢) has several useful properties that are consequences
- of the two rules defining it, namely, Eqs. 2.87 and 2.88. These properties
- are discussed here:

1. The delta function is an even function-of time; that is,
a(t) = d(—1) (2.91)

R e SRR
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Figure 2.20
(8) Rectangular pulse g(t) = 1/ rect(th) for varying . (b) Gaussian pulse
g(t = 1/1 exp(—wti/r?) for varying 1.
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2. The integral of the product of 4(¢) and any time function g(r) that is
continuous at ¢ = 0 is equal to g(0); thus ’

[ 80 60) i = 500) 2.92)

We refer to this statement as the sifting property of the delta function,
since the operation on g(t) indicated on the left side of Eq. 2.92 sifts out
a single value of g(r), namely, g(0). Equation 2. 92 may ajso be used as
the defining rule for a delta function.

3. The sifting property of the delta function may be generalized by writing
[ 8066 - wat = gtw) (2.93)

Since the delta function 4(¢) is an even. function of ¢, we may rewrite Eq. -
2.93 in a way emphasizing resemblance to the convolution integral, as
follows:

r g(z) 6(t — 1) dr = g(1) (2.94)

or

g(t) 4% (1) = g(t) (2.95)

That is, the convolution of any function with the delta function leaves that
function unchanged. We refer to this statement as the replication property
of the delta function.

4. The Fourier transform of the delta function is given by
F[5(1)] = f 5(t) exp(— j2nft) dr

Using the sifting property of the delta function and noting that the expo-
nential function exp(—j2n ft) is equal to unity at t+ = 0, we obtain

Flo(r)] =
We thus have the Fourier transform pair:
8 —==1 (2.96)

This relation states that the spectrum of the delta function 5(r) extends
uniformly over the entire frequency interval from — to o, as shown in
Fig. 2.21.

APPLICATIONS OF THE DELTA FUNCTION

dc Signal By applying the duality property to the Fourier transform pair
of Eq. 2.96, and noting that the delta function is an even function, we
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Figure 2.21
(a) Dirac delta function (b) Spectrum.
obtain

1= 4(f) (2.97)

Equation 2.97 states that a dc signal is transformed in the frequency domain
into a delta function &(f) occurring at zero frequency, as shown in Fig.
2.22. Of course, this result is intuitively satisfying. From Eq. 2.97 we also
deduce the useful relation

f expl ~f2n f8) & = &(f) (2.98)

where the integral on the left side is simply the Fourier transform of a
function equal to one for all time r.

Complex Exponential Function Next, by applying the frequency-shifting
property to Eq. 2.97, we obtain the Fourier transform pair

exp(j2nf.t) == é(f - f.) (2.99)

(r)
F4 én

o

0

(a) (&)

Figure 2.22
(8) dc signal. (b) Spectrum.
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for a complex exponential function of frequency f.. Equation 2.99 states
that the complex exponential function exp(j2znf.r) is transformed in the
frequency domain into a delta function d(f — f.) centered at f = f..

Sinusoidal Functions Consider next the problem of evaluating the Fourier
transform of the cosine function cos(2nf.t). We first note that

0

cos(2nf.1) = 5 [exp(j2nf.) + exp(~j2nf0)

Therefore, using Eq. 2.99, we find that the cosine function cos(2nf.!) is
represented by the Fourier transform pair

cos(?.rtf'(r) :%[6(}’ - fo) + 8(f + fol (2.100)

In other words, the spectrum of the cosine function cos(2nf.t) consists of
a pair of delta functions centered at f = =f, each of which is weighted
by the factor Y2, as shown in Fig. 2.23.

Similarly, we may show that the sine function sin(2nf.) is represented
by the Fourier transform pair

sin(nf.r) = 2% 6(f - £) - 8¢ + f)]  (.101)

which is illustrated in Fig. 2.24.

GiH
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(a) ) (b)

Figure 2.23
{a) Cosine function. (b) Spectrum.
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(a) Sine function. (b) Spectrum.

Signum Function  The signum function, denoted by sgn(r). is an odd func-
tion of time defined as follows:

1, t>0
sgn(r) = 0, =0 (2.102)
=1 <0

The waveform of the signum function is shown in Fig. 2.25a. We may view
the signum function as the limiting form of a time function that consists
of a positive decaying exponential for positive time and a negative rising
exponential for negative time. That is, we write

sgn(t) = lim g(a, ) (2.103)
a—0
JG(f)

gt/

1.0 p————

0 ! ) f
——— | ()
(a) (&)

Figure 2.25
(&) Signum function. (b) Spectrum.
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where

exp(—at), t>0
gla, 1) =40, t=20 (2.104)
—exp(at), t<0

We may also express g(a, ) in the compact form
gla,t) = exp(—at)u(t) — exp(at)u(—1t) (2.105)

where u(t) is the unit step function. The function g(a, t) is plotted in Fig.
2.26 for the parameter a = 1,0.5, 0.1. We clearly see that as the value of
parameter a is progressively reduced, the function g(a, t) becomes closer
to the signum function in appearance. Applying the time-scaling property
to the Fourier transform pairs of Eqs. 2.37 and 2.40, we get

1/a

exp(=anu() == ;o

and
T, 1/a
explat)u(—t) =
Pau(~0) == T —2nfia)
8fa, t)
1.0 -
a=0.1
-a=0.5"
a=1.0
1 1 L 1 ¢
-1.0 -0.5. 10 0.5 10
a=10
a=05 ¥
a=0.1
- —-1.0
Figure 2.26

The function gl(a, t) for varying a.
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Subtracting the second Fourier transform pair from the first one, and then
using the definition of Eq. 2.105, we get (after combining terms and sim- -
plifying):

nf

S 2.106
jla* + 4a°f°) (2. By

gla, 1) =

For the limiting condition when the parameter a approaches zero, the
function g(a. t) approaches the signum function. in accordance with Eq.
2.103. Therefore. puttinga = 0 in Eq. 2.106. we obtain the desired Fourier
transform pair for the signum function:

sgn(t) — I%’ (2.107)

The spectrum of the signum function is plotted in Fig. 2.25b.

Another useful Fourier transform pair. involving a signum function de-
fined in the frequency domain. is obtained by applying Property 3 (duality)
to Eqg. 2.107. We thus obtain the following result:

1 & 8l
_ = 2 1
”—;sgn(f) (2.108)

where the signum function sgn(f) is defined by

L
sgn(f) = 0.
=t

AV

e P T o

EXERCISE 14 Plot the spectrum of the function g(a, t) for parameter
a =1,0.5,0.1, and compare your results with the spectrum of the signum
function shown in Fig. 2.25b.

Unit Step Function The wnit step function. u(1). is defined in Eq. 2.34.
reproduced here for convenience:

0
0 (2.109)
0

u(r) =

o
ANV

The waveform of the unit step function is shown in Fig. 2.27a. From Egs.
2.102 and 2.109. or from the corresponding waveforms shown in Figs. 2.254
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1G{

gl
10—_
4
0 ! 0 !
(a) ) (b)

Figure 2.27
(a) Unit step function. (b) Amplitude spectrum.

and 2.27a. we see that the unit step function and signum function are
related by

u(ry :'é [sgn(r) % 1] (2.110)

Hence. using the linearity property of the Fourier transform and the Fourier
transform pairs of Eqs. 2.97. and 2.107. we find that the unit s!ep function
Is represented by the Fourier transform pair

7 —— - %n‘([) (2.111)

This means that the spectrum of the unit step function contains a delta
function weighted by a factor of 172 and occurring at zero frequency, as.
shown in Fig. 2.275h.

EXERCISE 15  Using the frequency-shifting property, determme the Four-
ier transform of the signal

g(t) = u(r) cos(2nf.t)
where u(¢) is the unit step function.
Integration in the Time Domain (Revisited) The relation of Eq. 2.68 de-
seribes the effect of integration on the Fourier transform of a signal g(t),
assuming that G (03 1s zero. We now consider the more general case, with

no such assumption made.
Let

¥t} = J pbt) (2.112)



FOURIER TRANSFORMS OF PERIODIC SIGNALS 63

The integrated signal y() can be viewed as the convolution of the original
signal g(r) and the unit step function u(r), as shown by

y(t) = r g(u(r — t)dr (2.113)
where the time-shifted unit step function u(r — t) is defined by
T <t
u(t — 1) = %, T=1 (2.114)
0 T>t

Recognizing that convolution in the time domain is transformed into mul-
tiplication in the frequency domain, and using the Fourier transform pair
of Eq. 2.111 for the unit step function u(¢), we find that the Fourier
transform of y(r) is

_ A
Y(f) = G(f) LGf.+ > 5(f)] (2.115)

where G(f) is the Fourier transform of g(¢). Since

G(f) o(f) = G(0) 4(f)
we may rewrite Eq. 2.115 in the equivalent form:

=

Yif) = 7z

G(f) +3GO) 6() (2.116)

That is, the effect of integrating the signal g(¢) is described by the Fourier
transform pair:

I = 1 :
[ sdr=rzom + 360 @)

which is the desired result.

This proof is indirect in that it relies on knowledge of the Fourier trans-
form of the unit step function. For a direct proof from first principles, refer
to Problem 20.

2.6 FOURIER TRANSFORMS OF PERIODIC SIGNALS

From Section 2.1 we recall that by using the Fourier series, a periodic
signal g, () can be represented as a sum of complex exponentials. Also we
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know that, in a limiting sense, we can define Fourier transforms of complex
exponentials. Therefore, it seems reasonable that a periodic signal can be
represented in terms of a Fourier transform, provided that this transform
is permitted to include delta functions.

Consider a periodic signal g,(¢) of period T;,. We can represent g,(¢) in
terms of the complex exponential Fourier series as in Eq. 2.10, which is
reproduced here for convenience,

« st .
&= 3 exp(’ﬂ) (2.118)
n= - TU
where c, is the complex Fourier coefficient defined by
1 (12 1
e f £(1) exp(—’z"”') dt (2.119)
T, -T2 T,

Let g(r) be a pulse-like function, which equals g, () over one period
and is zero elsewhere; that is,

- To E
gy = | &~y si=3 (2.120)
0, elsewhere

The periodic signal g,(f) may be expressed in terms of the function g(r)
as an infinite summation, as shown by

&) = X g(t —mlTy) (2:121)

m=-x

Based on this representation, we may view g(r) as a generating function,
which generates the periodic signal g, ().

The function g(t) is Fourier transformable. Accordingly, we may rewrite
Eq. 2.119 as follows:

1 e j2nnt
T, J:., g(n) exp( - T, ) dt

1 n
= _T-o G(?u) (2:122)

Cn

where G(n/T,) is the Fourier transform of g(t), evaluated at the frequency
n/Ty. We may thus rewrite Eq. 2.118 as

I A2 b i2
Giy== % G(%) exp(]%om) (2.123)

0n=-w
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or, equivalently,

S st-mi)-7 3 ( ) (’2;’") 214

m=-x

Equation 2.124 is one form of Poisson’s sum formula.

Finally. using Eq. 2. 99, which defines the Fourier transform of a complex
exponential function, and Eq. 2.124, we deduce the following Fourier
transform pair. for a periodic signal g,(f) with a generating function g(t)
and period Ty: -

m=-x n=-x

5: gt — mTy) = 2 G( )5(f - %) (2.125)

This relation simply states that the Fourier transform of a periodic signal
consists of delta functions occurring at integer multiples.of the fundamental
frequency 1/7y, including the origin, and that each delta function is weighted
by a factor G(n/T,). Indeed, this relation merely provides an alternate
way of displaying the frequency content of a periodic signal g,(¢)-

It is of interest to observe that the function g(¢), constituting one period
of the periodic signal g,(¢), has a continuous spectrum defined by G(f).
On the other hand, the periodic signal g,(¢) itself has a discrete spectrum.
We conclude, therefore, that periodicity in the time domain has the effect
of making the spectrum of the signai take on a discrete form, where the
separation between adjacent spectral lines equals the reciprocal of the period.

e L T LR R ettt btd

EXAMPLE 14 IDEAL SAMPLING FUNCTION

An ideal sampling function, or Dirac comb, consists of an infinite sequence
of uniformly spaced delta functions, as shown in Fig. 2.28a. We will denote
this waveform by

b1,(0) = 2 8(t — mTy) (2.126)

i . We observe that the generating fur;ction g(1) for the ideal sampling function -

d7,(t) consists simply of the delta-function 4(r). Therefore, G(f) = 1, s0
that

G(ﬁ) =1, foralln (2.127)
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&It
A
i r
=37, — 21, -1, 0 T 27, 31,
(a)
(f)
e mwed el = gk 0 g 2 3 . 5 /
Ty To To Ty Ty L Ty Ty o 7,
(b)
Figure 2.28
(a) Dirac comb. (b) Spectrum.
Thus the use of Eq. 2.125 yields the result
. 1 2 -
2 r-mhjy==%= % g§lf-= (2.128)
m=-x 7’“ n=-x TU

Equation 2.128 states that the Fourier transform of a periodic train of delta
functions in the time domain consists of another periodic train of delta
functions in the frequency domain as in Fig. 2.28b. In the special case of
the period T}, equal to 1 second, a periodic train of delta functions is, like
a Gaussian pulse, its own Fourier transform.

We also deduce from Poisson's sum formula, Eq. 2.124, the following
useful relation

o N - j2mnt
2 o= mT) =+ 3 e"p( T, )
The dual of this relation is

S explj2nmfT,) = Fl 3 6(1’ - i) (2.129)

m=-x On=-x

2.7 SAMPLING THEOREM

An operation that is basic to digital signal processing and digital commu-
nications is the sampling process, whereby an analog signal is converted
into a corresponding sequence of samples that are usually spaced uniformly

sesssssccanns
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in time. For such a procedure to have practical utility, it is necessary that
we choose the sampling rate properly, so that the sequence of samples
uniquely defines the original analog signal. This is the essence of the sam-
pling theorem, which is derived in the sequel. B

Consider the arbitrary signal g(r) of finite energy, which 1s specified for
all time. A segment of the signal g(¢) is shown in Fig. 2.29a. Suppose that
we sample the signal g(7) instantaneously and at a uniform rate, once every
T, seconds. Consequently, we obtain an infinite sequence of samples spaced
T, seconds apart and denoted by {g(nT,)} where n takes on all possible
integer values. We refer to T, as the sampling period, and to its reciprocal
f, =*1/T, as the sampling rate. This ideal form of sampling is called in-
stantaneous sampling. ' ,

Let g;(t) denote the signal obtained by individually weighting the ele-
ments of a periodic sequence of delta functions spaced T, seconds apart

gl

(a)

gﬁm

velT'I I e .
l .

b)

o
A =~

-

-

-ty

Figure 2.29 .
The sampling process. (a) Analog signal. (b) Instantaneously sampled version of the

signal.
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by the sequence of numbers {g(nT,)}, as shown by (see Fig. 2.29b)

8:(r) = i g(nT,)o(t - nT,) (2.130)

We refer to g,(1) as the ideal sampled signal. The ideal sampled signal g;(1)
has a mathematical form similar to that of the Fourier transform of a
periodic signal. This is readily established by comparing Eq. 2.130 for g,(t)
with the Fourier transform of a periodic signal given in Eq. 2.125. This
correspondence suggests that we may determine the Fourier transform of
the ideal sampled signal g,(¢) by applying the duality property to the Fourier
transform of Eq. 2.125. By so doing, and using the fact that a delta function
is an even function, we get the desired result:

g()=f, Y G(f - mf,) (2.131)

m=-=

where G(f) is the Fourier transform of the original signal g(1), and f, is
the sampling rate. Equation 2.131 states that the process of uniformly
sampling a continuous-time signal of finite energy results in a periodic spec-
trum with a period equal to the sampling rate.

Another useful expression for the Fourier transform of the ideal sampled
signal g,(r) may be obtained by taking the Fourier transform of both sides
of Eq. 2.130 and noting that the Fourier transform of the delta function
o(t = nT,) is equal to exp(—j2nnfT,). Let G4(f) denote the Fourier
transform of g,(r). We may therefore write

Gs(f) = 2 8(nT,) exp(~j2anfT,) (2.132)

n=-x

This relation is called the discrete-time Fourier transform. It may be viewed
as a complex Fourier series representation of the periodic frequency func-
tion G,(f), with the sequence of samples {g(nT,)} defining the coefficients
of the expansion. :

The relations, as derived here, apply to any continuous-time signal g(r)
of finite energy and infinite duration. Suppose, however, that the signal is
strictly band-limited, with no frequency components higher than W hertz.
That is, the Fourier transform G(f) of the signal g(r) has the property
that G(f) is zero for |f| = W, as illustrated in Fig. 2.30a; the shape of the
spectrum shown in this figure is intended for the purpose of illustration
only. Suppose also that we choose the sampling period T, = 1/2W. Then
the corresponding spectrum Gy(f) of the sampled signal 84(t) is as shown
in Fig. 2.30b. Putting T, = 1/2W in Eq. 2.132 yields

Gif) = S g(#v) exp( -""vjf) 2.133)




SAMPLING THEOREM 69

GiN

G(0)

| | | |
| | | |
| | | |
1 1 I I f
-2f, —f; —W 0 W 5 2f, P
()

Figure 2.30
(@) Spectrum of a strictly band-limited signal g(t). (b} Spectrum of sampled version
of g(t) for a sampling period T, = 1/2W.

From Eq. 2.131, we have

G,(f) = f.G(fy+ f, > G(f— mf) (2.134)

m=—-x

m=()
Hence, under the following two conditions:

1. G(f) = 0for |fl=W
2. f, = 2W

. we find from Eq. 2.134 that

G(f) = EIWG"(”‘ -W<f<W (2.135)

Substituting Eq. 2.133 in Eq. 2.135, we may also write

: ) - =
G(f) = 57 2 g(ﬁ) exp(—’ ‘:f). W< f<W (2.136)

Therefore. if the sample values g(n/2W) of a signal g(r) are specified for
all time. then the Fourier transform G f) ot the signal is uniquely deter-
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mined by using the discrete-time Fourier transform of Eq. 2.136. Because
g(¢) is related to G(f) by the inverse Fourier transform., it follows that
the signal g(¢) is itself uniquely determined by the sample values g(n/2W)
for —= < n < . In other words, the sequence {g(n/2W)} has all the
information contained in g(¢).

Consider next the problem of reconstructing the signal g(r) from the
sequence of sample values {g(n/2W)}. Substituting Eq. 2.136 in the for-
mula for the inverse Fourier transform defining g(t) in terms of G(f), we
get

80) = [~ G(f) exptiznfy df

s [" A T 4n janf\
- f.WZW,IZE_*g(ZW) CXP( W ) exp(j2nft) df
Interchanging the order of summation and integration:

gy =3 g(ziw) ziwf"u exp[jan (r - 2Lw)] df (2.137)

n==-x

The integral term in Eq. 2.137 may be readily evaluated yielding

< n_\ sinrWr - nn)
JORSDY g(zw) @2Wr — nn)

n=-x

3 g(ﬁ) SinCQWr — n), —w<r<w® (2.138)

n=-=

Equation 2.138 provides an interpolation formula for reconstructing the
original signal g(¢) from the sequence of sample values {g(n/2W)}, with
the sinc function sinc(2Wr) playing the role of an interpolation function.
Each sample is multiplied by a delayed version of the interpolation func-
tion, and all the resulting waveforms are added to obtain g(t).

We may now state the sampling theorem® for band-limited signals of
finite energy in two equivalent parts:

1. A band-limited signal of finite energy, which has no frequency compo-
nents higher than W hertz, is completely described by specifying the values
of the signal at instants of time separated by 1/12W seconds.

*The sampling theorem was introduced to communication theory by Shannon
(1949). It is for this reason that the theorem is sometimes referred to in the
literature as the “Shannon sampling theorem.” However, the interest of
communication engineers in the sampling theorem may be traced back to Nyquist
(1928). Indeed, the sampling theorem was known to mathematicians at least since
1915. For historical notes on the sampling theorem, see the review paper by Jerri
(1977).
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2. A band-limited signal of finite energy, which has no frequency compo-
nents higher than W hertz, may be completely recovered from a knowl-
edge of its samples taken at the rate of 2W samples per second.

The sampling rate of 2W samples per second, for a signal bandwidth of W
hertz, is called the Nyquist rate; its reciprocal 1/2W (measured in seconds)
is called the Nyquist interval. The sampling theorem serves as the basis for
the interchangeability of analog signals and digital sequences, which is so
valuable in digital signal processing and digital communications.

The derivation of the sampling theorem, as described herein, is based
on the assumption that the signal g(r) is strictly band-limited. In practice,
however, an information-bearing signal is not strictly band-limited. Hence,
distortion may result from the application of the sampling theorem to such

~ a signal. (More will be said on this issue in Chapter 5.)

. EXERCISE 16 Apply the duality property to the Fourier transform’pair

of Eq 2.125 and thereby derive Eq. 2.131 for the ideal sampled signal
go(l)' )

2.8 NUMERICAL COMPUTATION OF THE FOURIER TRANSFORM

This section briefly describes a procedure for the computation of the Fou-
rier transform, which is particularly well suited for use on a digital com-
puter. We assume- that the given- signal g(t) is of finite duratior. The
procedure involves first, the uniform sampling of g(t) to obtain a finite
sequence of samples denoted by g(0), o 7. ):e(2T:)s. b s gCNT, — .T}),
where T, is the sampling period and N is the number of samples. For a
correct representation of the signal, the sampling rate 1/T; must be equal
to or greater than twice the highest frequency component of the signal.
For the purpose of our present discussion, it is adequate to assume that
this requirement has been satisfied. It is possible, of course, that the signal
initially may be in the form of a sequence of samples. In any event, for -
this sequence of samples, we may define a discrete Fourier transform de-
noted by {G(kF,)}, which consists of another sequence of N samples sep-
arated in frequency by F, hertz, as shown by

N-1

G(kF,) = T,:E g(nT)) exp(—j%t kn), k=0,0,2 ... ,N—1
n=0

(2.139)

Equation 2.139 is precisely the formula that w.ould be obtained by using

the trapezoidal rule for approximating the integral that defines the Fourier
transform of the given signal g(r). The difference between the actual Fou-
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rier transform and the sequence {G(kF,)} obtained from Eq. 2.139 gives
the integration error evaluated at f = kF,. The parameters T, and F, are
related by

L= = (2.140)

To derive the inverse relationship expressing the sequence {g(nT,)} in
terms of the discrete spectrum {G(kF,)}, we multiply both sides of Eq.
2.139 by exp(j2nkm/N) and sum over k, obtaining

N=1 N-1AN-1
> G(kF,) exp(j%km) =T, % X gnT) exp[j-z—;k(m = n)]
k=0 k=0 n=0

(2.141)

Interchanging the order of summation on the right side of Eq. 2.141, and
using the fact that

s 2n N m=n
N = = =" - 2.142
£ exp[j N fefm n)] {0, otherwise (2.142)
we get
N-1 27{
> G(kF,) exp(j X km) = NT,g(mT,) (2.143)
k=0

Next, substituting the index n for m and rearranging the terms in Eq. 2.143,
we get the desired relation

N-1
g(nT,) = F, > G(KF,) exp(j:%kn), n=01...,N—1
k=0
(2.144)

which defines the inverse discrete Fourier transform. Here again, it is of
interest to note that Eq. 2.144 is precisely the formula that would be
obtained by using the trapezoidal rule for approximating the integral that
defines the inverse Fourier transform.

The discrete Fourier transform, as defined in Eq. 2.139, has properties
that are analogous to those of the continuous Fourier transform.

An important feature of the discrete Fourier transform is that the signal
{g(nT,)} and its spectrum { G (kF,)} are both in discrete form. Furthermore,
they are both periodic, with the period of either one consisting of a finite
number of samples N. That is,

g(nT,) = g(nT, + NT,) (2.145)
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and

G(KF) = G(kF, + NF) (2.146),

We thus find that the numerical computation of the discrete Fourier trans-
form is well suited for a digital computer or special-purpose digital pro-
cessor. Indeed, it is this feature that makes the discrete Fourier transform
so eminently useful in practice for spectral analysis and for the simulation
of filters on digital computers. This is all the more so by virtue of the
availability of an algorithm known as the fast Fourier transform algorithm
(FFT), which provides a highly efficient procedure for computing the dis-
crete Fourier transform of a finite-duration sequence. This algorithm takes
advantage of the fact that the calculation of the coefficients of the discrete
Fourier transform may be carried out in an iterative manner, there-
by resulting in a comsiderable saving of computatiorr time.® To compute
the discrete Fourier transform of a sequence of N samples using the
FFT algorithm, we require, in general, N log,N complex additions and

(N/2) log,N complex multiplications. On the other hand, by using Eq. -

2.139 to compute the discrete Fourier transform directly, we find that for
each of the N output samples, we require (N — 1) complex additions and
N complex multiplications, so that the direct computation of the discrete
Fourier transform requires a total of N(N — 1) complex additions and N?
complex multiplications. Accordingly, by using the FFT algorithm, the
number of arithmetic operations is reduced by a factor of N/log,N, which
represents a considerable saving in computation effort for large N. For
example, with N = 1024, we reduce the computation effort by about two
orders of magnitude. Indeed, it is this kind of improvement that also makes
it possnble to use special-purpose digital processors for the hardware im-
plementation of the FFT algorithm. AP >

2.9 RELATIONSHIP BETWEEN THE FOURIER AND
LAPLACE TRANSFORMS

The Fourier transform (as we have described it) is fully adequate for han-
dling the frequency-domain description of signals encountered in the study
of communication theory. Nevertheless, it can be helpful to briefly examine
the relation between it and the Laplace transform, which is commonly used
in transient analysis.

Consider the special case of a causal signal g(t), defined as a signal that
is zero for negative time. In other words, the signed g(¢) starts at or after
t = 0. In such a case, the formula for the Fourier transform of g() takes

*For a description of the FFT algorithm and its applications, see Roberts and Mullis
(1987) or Oppenheim and Schafer (1975).

e
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the form

G(f) = j " (1) exp(—j2nft) di @147

This integral bears a close resemblance to the one-sided Laplace transform
of g(r), as shown by

Gls) = jo " g(1) exp(—st) dt (2.148)

which implies that g(¢) = 0 for t < 0. The quantity
s=0+ jo (2.149)

is a complex variable whose real and imaginary’ parts are ¢ and w, respec-
tively. Comparing Eqs. 2.147 and 2.148, we see that the Fourier transform
G(f) may be obtained from the Laplace transform G(s) by putting

s = jo = j2nf

This is the link that connects the Fourier and Laplace transforms.

As mentioned previously, the Fourier transform is adequate for most
purposes in communication theory. As such, we will use it exclusively in
the rest of the book.

.............................................. G estasessaseset ittt ssiasiesettsEsssaEtItIIsItEsIINRTsNINRRIRERORIRRERRRSITE

PROBLEMS

The problems are divided into sections that correspond to the major sec-
tions in the Chapter. For example, the problems in Section P2.1 pertain
to Section 2.1. This practice is followed in subsequent chapters.

P2.1 Fourier Series

Problem 1 A signal that is sometimes used in communication systems is
a raised cosine pulse. Figure P2.1 shows a signal g,(r) that is a periodic

g1

2.0 1 + cos (271)

l 1 ¢ (seconds)
2

I
[N}
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sequence of these pulses with equal spacing between them. Show that the
first three terms in the Fourier series expansion of g,(¢) are as follows:

g =14+ %cos(m) + Ycos(2nr) + - -

Problem 2  Evaluate the amplitude spectrum of the periodic pulsed RF
-~ waveform shown in Fig. P2.2, assuming that f, 7, > 1.

£, (0

Figure P2.2

_ Problem 3 Prove the following properties of the Fourier series:
(a) If the periodic function g,(r) is even. that is.
&(—1) = gl1)~

then the Fourier coefficients, the c,. are purely real and even. that is.
Cs S
(b) If g,(r) is odd, that is,

g;’(_l) = Agﬁ“)
then the ¢, are purely imaginary and an odd function of n.
(c) If g,(¢) has half-wave symmetry, that is.

1
8 (: =k T..)= =gAr)

where T, is the period of g,(r), then the Fourier series of such a signal
consists of only odd-order terms.

P2.2 Fourier Transform

Problem 4 Determine the Fourier transform of the signal g(r) consisting
of three rectangular pulses. as shown in Fig. P2.3. Sketch the amplitude
spectrum of this signal for the case when T < T,
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gle)

Figure P2.3

Hint: Consider a rectangular pulse of amplitude A and duration 7. and
use the linearity and time-shifting properties of the Fourier transform.

Problem 5§ Determine the inverse Fourier transform of the frequency
function G(f) defined by the amplitude and phase spectra shown in Fig.
P2.4.

Problem 6 Show that the spectrum of a real symmetric signal is either
(a) purely real and even, or (b) purely imaginary and odd.

P2.3 Properties of the Fourier Transform

Problem 7 Let
!
g\ = x(g)

&:(t) = x(51)

G arg [G(f)]

; _——l
.

Figure P2.4
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(8) Determine the Fourier transforms G,(f) and G,(f) in terms of
the Fourier transform X( f).

(b) Which of the two time functions, g;() and g,(1), corresponds to~
time compression, and which one to time expansion?

(c) Let

y(1) = agi(t)

Find the value of scaling factor a required to make Y(0) = X(0), where
Y(f) is.the Fourier transform of y(t). Repeat your calculation for g:(1)
in place of g,(r).

Problem 8

(a) Find the Fourier transform of the half-cosine pulse shown in Fig.

P2.5a.

(b) Apply the time- -shifting property to the result obtained in part (a)

to evaluate the spectrum of the half-sine pulse shown in Fig. P2.5b.

(c) What is the spectrum of a half-sine pulse having a duration equal

to aT?

(d) What is the spectrum of the negative half-sine pulse shown in Fig.

P2.5¢?

(e) Find the spectrum of the single sine pulse shown in Fig. P2.5d.
‘Problem 9 Any function g(t) can be splii una'mbig{fousfy into an even
part and an odd part, as shown by

g(r) = g.(t) + g.(1)

gl gln)

= o T lo T
2
(b)
(a)
glo) glt)
A
= =T
t 4
0 - 0 T
—-A —|-A
- (d) -

Figure P2.5
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The even part is defined by

g.(t) = 4g(t) + g(—1)]

and the odd part is defined by

g.(t) = 3[g(t) - g(-1)]

(a) Evaluate the even and odd parts of a rectangular pulse defined by

g = A rect(% = %)

(b) What are the Fourier transforms of these two parts of the pulse?

Problem 10 Assume the availability of a device that is capable of com-
puting the Fourier transform of an energy signal g(¢) used as input. Explain
the modifications that will have to be made to the input and output signals
of such a device so that it may also be used to compute the inverse Fourier
transform of the quantity G(f), where g(r) = G(f).

Problem 11 The Fourier transform of a signal g(r) is denoted by G( f).
Prove the following properties of the Fourier transform:

(a) The total area under the curve of g(r) is given by

j’ ¢(1) di = G(0)

where G(0) is the zero-frequency value of G( f).
(b) The total area under the curve of G(f) is given by

[ atnydr = 50

where g(0) is the value of g(¢) at time ¢r = 0

(c) If a real signal g(r) is an even function of time ¢, the Fourier trans-
form G(f) is real. If a real signal g(¢) is an odd function of time ¢, the
Fourier transform G( f) is imaginary.

Problem 12 You are given the Fourier transform pair
exp(—nt?) = exp(—nf?)

for a standard Gaussian pulse. Using the time-scaling property, show that

1 nrz)
. expl —— | = —2n2fi?
. V2nt p( 272 P =2a )
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Problem 13  Prove the following properties of the convolution process:
(a) The commutative property:

gi(t) € (1)

(b) The associative property:

(1) {r [8:(1) {?‘ 8:(n)] = [8:(1) ﬁ}‘ g:(1)] 1{} g:(1)

(¢) The distributive property:
80 A [8:00) + £5(0) = g(0) 4F 8:() + £.() P &:(0)

g:(t) 9% ()

P2.4 Interplay Between Time-Domain and
Frequency-Domain Rescriptions

Problem 14 ~ Consider a triangular pulse of hE]ght A and base 2T. The --
duration of the pulse is measured at half-amplitude points. The bandwidth
of the pulse is defined as one-half the main lobe of the pulse’s spectrum.
Show that the time-bandwidth product of the pulse equals unity.

Problem 15 Consider the sinc pulse
g(t) = A sinc(2Wr)

The duration of the pulse is defined as the duration of the main lobe of
the pulse. Hence, show that the time-bandwidth product of the sinc pulse
equals unity.

Problem 16 Consider the Gaussian pulse

Chef-)
V2nt P\ 2

The parameter ¢ provides one possible measure for the duration of the
pulse. Defining the bandwidth of the pulse in a similar manner, show that
the time-bandwidth product is 1/4.

Hint: Evaluate the Fourier transform of g(r).

g(r)

P2.5 Dirac Delta Function

Problem 17 Show that the effect of scaling the argument of the delta
function by a constant a is described by

oat) = —1 a(t)

|a



80 FOURIER ANALYSIS

Problem 18 The delta function may be considered as the limiting form
of an ordinary function. Some useful representations are

— tim L expl M
(1) = ]T(]\ > exp( :
= (i es——s
= _vl..u (l: + 1'2)
in(t/
5 it sin(t/1)

r=—0 nt

For each representation, plot the time function and its Fourier transform
for different values of parameter 7. Hence, demonstrate that each time
function approaches the delta function in the limit.

Problem 19 Determine the Fourier transform of the signal
g(t) = cos’(2nf.1)
Problem 20 Let
g(t) = G(f)

and assume that G(0) is nonzero. Starting with the Fourier transform
of a signal. evaluate the Fourier transform of the integrated signal

J-. g(r) dr.

Hints:

(a) Use the formula for integration by parts.
(b) Use the limiting forms

_sinQ2refr)
lrljl(? T[f- B a(f)
. cos(2nft)

I,LT nf =1

P2.6 Fourier Transforms of Periodic Signals

Problem 21  Consider again the periodic signal g,(r) defined in Problem
1, which has a period of 2 seconds. The generating function of the signal
is defined by

@) = {l + cos(2nt), —-i=<r<}
& 0, for remainder of the period
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(a) Determine the Fourier transform of the generating function g(r).
(b) Hence, using the formula of Eq. 2.125, determine the Fourier trans-
form of the periodic signal gﬂ(t). Compare your result-with that of
Problem 1. ' :

P2.7 Sampling Theorem

Problem 22 Specify the Nyquist rate and the Nyquist interval for each of
the following energy signals:

(a) g(t) = sinc(200r)

(b) g(r) = sinc?(2001)
(¢) g(t) = sinc(200r) + sinc*(200r)
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CHAPTER THREE

...............

FILTERING AND

ln Chapter 2 we used Fourier methods to study spectral properties,

of various kinds of signals and relationships between spectra and time-
domain characteristics of the signals. We also studied the effects that
various time-domain operations on a signal have on the spectrum of the
signal. In this chapter we study filtering characteristics of systems. The
system may be a linear time-invariant filter or communication channel.
We also consider the linear and nonlinear forms of signal distortion,
which result from transmission through linear and nonlinear system¢
respectively. We begin the study by considering the time response o1 1
linear time-invariant system.

83
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3.1 TIME RESPONSE

A system refers to any physical device that produces an output signal in
response to an input signal. It is customary to refer to the input signal as
the excitation and to the output signal as the response. A system is said to
be linear if the principle of superposition holds; that is, the response of a
linear system to a number of excitations applied simultaneously is equal to
the sum of the responses of the system when the excitations are applied
individually. The system is said to be time-invariant if a time shift in the
excitation applied to the system produces the same time shift in the response
of the system. In this section, we study the time response of linear time-
invariant systems, with particular reference to filters and channels. A filter
refers to a frequency-selective device that is used to limit the spectrum of
a signal to some band of frequencies. A channel refers to a physical medium
that connects the transmitter of a commrunication system to the receiver.
The operation of limiting the spectrum of signal to some band of fre-
quencies (by passing the signal through 1 filter or channel) is called filtering.
In the time domain, a linear system i; described in terms of its impulse
response, which is defined as the response of the system (with zero initial
conditions) to a unit impulse or delta function 6(t) applied to the input of
the system. If the system is time-invariant, then the shape of the impulse
response is the same no matter when the unit impulse is applied to the
system. Thus, assuming that the unit impulse or delta function is applied
attime t = 0, we may denote the impulse response of a linear time-invariant
system by h(1). Let this system be subjected to an arbitrary excitation x(1),
as in Fig. 3.1a. To determine the response y () of the system, we begin by
first approximating x(r) by a staircase function composed of narrow rec-
tangular pulses, each of duration 47, as shown in Fig. 3.1b. Clearly the
approximation becomes better for smaller 47. As Az approaches zero,
each pulse approaches, in the limit, a delta function weighted by a factor
equal to the height of the pulse times A7, Consider a typical pulse, shown
shaded in Fig. 3.1, which occurs at 1 = 1, This pulse has an area equal
to x(7) 41. By definition, the response of the system to a unit impulse
or delta function 4(r), occurring at t = 0, is A(¢). It follows, therefore, that
the response of the system to a delta function, weighted by the factor
x(t) A4 and occurring at t = 7, must be x(t)h(t — t) 47. To find the total
response y () at some time t, we apply the principle of superposition. Thus,
summing the various infinitesimal responses due to the various input pulses,
we obtain in the limit, as At approaches zero,

yo) = f" (A - 1) de (.1)

This relation is called the convolution integral. Note that for the response
y(¢) to have the same dimension as the excitation x(r), the impulse response
A(t) must have a dimension that is the inverse of time.
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Impulse

x (1) e response >y (1)
hir)

(a)

x (r)

3approximation

,
e
(b)

Figure 3.1
(a) Linear systemn. (b) Approximation of input xit).

In Eq. 3.1. three different time scales are involved: excitation time t,
response time 1, and system-memory time t — t. This relation is the basis
of time-domain analysis of linear time-invariant systems. It states that the
present value of the response of a linear time-invariant system is a weighted
integral over the past history of the input signal, weighted according to the
impulse response of the system. Thus the impulse response acts as a memory
function for the system.

In Eq. 3.1, the excitation x(r) is convolved with the impulse response
h(r) to produce the response v (). Since convolution is commutative, it
follows that we may also write

: Sl = f h(t)x(t — 1) de (3.2)

where A(t) is convolved with x(1).
Using the shorthand notation for convolution, we may rewrite Eq. 3.1
simply as
Y0 = x() £ h(r) (3.3)

where ﬁ denotes convolution. Similarly, we may rewrite Eq. 3.2 as

y() = h(t) 9 x( (3.4)
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86 FILTERING AND SIGNAL DISTORTION

Equations 3.3 and 3.4 highlight the commutative nature of convolution or
linear filtering.

EXAMPLE 1 GRAPHICAL INTERPRETATION OF CONVOLUTION

We may develop further insight into convolution by presenting a graphical
interpretation of the convolution integral, which is defined in mathematical
terms in Eq. 3.1 or 3.2. We will do so in this example by considering Eq.
3.1 first and then 3.2. The example is simple and yet illustrative of the
various steps involved in evaluating the convolution integral. Specifically,
we consider a linear time-invariant system with an impulse response that
is a decaying exponential function and that is driven by a unit step function.

Parts a and b of Fig. 3.2 depict the impulse response h(7) and excitation

—a

h(7)
(a)
- v e - =;
0
x(7)
(b)
Y
-
0
h(—=71)
(c)
T
0

Figure 3.2 =

The steps mvolve_d iq computing one form of the convolution integral. (8) Impulse
response. (b) Excitation. (c) Image of the impulse response. (d) Time-shifted image
of the impulse response. (&) Evaluation of the response.

cssesssans
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h(t—1)

(d)

x(1) h(t—1)

fe)
Area = y(t)

T

Figure 3.2 (continued)

x(1), respectively. For reasons that wil] become apparent presently, the
time variable in both cases is shown as . In accordance with Eq. 3.1, the
integral consists of the product x()h(t - 7). We already have x(7). To
obtain A(r - 7). we proceed in two steps. First. we formulate h( ~t). which
is the mirror image of h(z) with respect to the vertical axis. as shown in
Fig. 3.2c. Then, we shift h(-1) to the right by an amount equal to the
specified time ¢ to obtain (s — 7)i this second step is shown in Fig. 3.24d.
Next, we multiply x(t) by h(r — 7). as in Fig. 3.2¢. and thereby obtain
the desired integrand x(t)h(r 7) for the specified value of time t. Finally,
we calculate the total areg under x(t)h(r - 7). which is shown shaded
in Fig. 3.2e. This area cquals the value of the system response y(t) at
time .

For the graphical interpretation of Eq. 3.2 we may proceed in a similar
way, as illustrated in Fig. 3.3 In this second case, the integrand equals
h(t)x(t - 1). The first multiplying factor h(r) js already available, as in
Fig. 3.3a. The second multiplying factor x(; — 7) is obtained by forming
the image x( - 1) of the specified excitation x(1), and then shifting the
image x( - 1) to the right by an amount equal to the specified time . The
functions x(7), x(—1), and x(1 = 1) are depicted in Figs. 3.3b, ¢, and d,
respectively. The resulting product h(r)x(r — 7) is shown in Fig. 3.3e.
Comparing Figs. 3.2¢ and 3.3e, we see that the products x(t)h(t — 1) and
h(7)x(t — 1) are reversed with respect to each other. Naturally, they both
have the same total area under their individual curves, which confirms the
commutative property of convolution.

sssss
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EXAMPLE 2 TAPPED-DELAY-LINE FILTER

Consider a linear time-invariant filter with impulse response h(r). We as-
sume that

1. The impulse response A(r) = 0 for r < 0. :
2. The impulse response of the filter is of finite duration, so that we may i
write A(1) = 0 fort = T,

Then we may express the filter output y(r) produced in response to the
input x(r) as follows:

y(t) = jr’ h(t)x(r — 1) dt (3.5)

Let the input x(r). impulse response h(r). and output y(r) be uniformly
i sampled at the rate 1/47 samples per second, so that we may put
[ =ndrt (3.6)
and

T =kdr (2:7)

where k and n are integers, and Jt is the sampling period. We assume that
d7 is small enough for the product A(7)x(r — 1) to remain essentially
constant for k 47 < 1 =< (k + 1) 4z for all values of k and ¢ of interest.
Then we can approximate Eq. 3.5 by the convolution sum: :

N =1
y(n dt) = Y h(k At)x(n At - k A1) 4t (3.8)
k=0

where N At =T, Defining
W, = h(k A1) 47
we may rewrite Eq. 3.8 as
N=1 h

y(n A1) = E wix(n At — k 4r) (3.9)

k=0

Equation 3.9 is realized using the circuit shown in Fig. 3.4, which consists
i of a set of delay elements (each producing a delay of At seconds), a set of i
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x(n A7) .
Delay Delay . S Delay . Delay
! Ar | ar Ar

—
4

yln A7)

Figure 3.4
Tapped-dela)(-!ine filter.

multipliers connected to the delay-line taps, a corresponding set of weights
applied to the multipliers, and a summer for adding the multiplier outputs.
This circuit is known as a tapped-delay-line filter or transversal filter. Note
that in Fig. 3.4 the tap-spacing or basic increment of delay is equal to the
sampling period of the input sequence {x(n 47)}. =~ .

When a tapped-delay-line filter is implemented using digital hardware,
it is commonly referred to as a finite-duration impulse response (FIR) digital
filter. The required delay is provided by means of a shift register, with the
basic increment of delay, 47, equal to the clock period. An important
feature of a.digital filter is'that it is programmable, thereby offering a high
degree of flexibility in design.'

ssssvane
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CAUSALITY AND STABILITY

A system is said to be causal if it does not respond before the excitation
is applied. For a linear time-invariant system to be causal, it is clear that
the impulse response h(t) must vanish for negative time. That is, the nec-
essary and sufficient condition for causality is

h() =0, <0 (3.10)

Clearly, for a system operating in real time to be physically realizable, it
must be causal. However, there are many applications in which the signal

'For a detailed treatment of the theory and design of digital filters, see Roberts and
Mullis (1987) or Oppenheim and Schaffer (1975).
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to be processed is available in stored form; in these situations the system
can be noncausal and yet physically realizable.

The system is said to be stable if the output signal is bounded for all
bounded input signals. Let the input signal x(¢) be bounded. as shown by

|x()] = M, —m << (3.11)

where M is a positive real finite number. Using Eqgs. 3.2 and 3.11, we may
write '

Iy (@) < f h(D)] |x(t — )| dr = Mj_" h(0)| dx

It follows therefore that for a linear time-invariant system to be stable, the
impulse response /() must be absolutely integrable. That is, the necessary
and sufficient condition for stability is

j‘ lh()| dt < = (3.12)

EXERCISE 1 The impulse response of a linear time-invariant system is
defined by

h(t) = exp(at)u(—1)

where w( —17) is the time-reversed version of the unit step function u(z). Is
this system casual? Is it stable? Give reasons for vour answers.

3.2 FREQUENCY RESPONSE

Consider a linear time-invariant system of impulse response /(1) driven by
a complex exponential input of unit amplitude and frequency f, that is,

x(1) = exp(j2nft) (3.13)

Using Eq. 3.2, the response of the system is obtained as

v = [ he) explj2af(c - ) de

exp(j2nf1) J' " h(z) exp(~j2xfr) de (3.14)
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Define

~H(f) = Eh(r) exp(=j2nfe) dr-+ = - (&15) -

Then we may'vréwrite Eq. 3.14 in the form
y(1) = H(f) exp(j2rft) . (3.16)

The response of a linear time-invariant system to a complex exponential
function of frequency f is, therefore, the same complex exponential func-
tion multiplied by a constant coefficient H(f). The quantity H(f) is called
the transfer function of the system. The transfer function H(f) and impulse
response h(f) form a Fourier transform pair, as shown by the pair of
relations: 4

H(f) = j h(t) exp(—j2nft) dt (.17
and

b0 = [ H(D explianfdf G189

An alternative definition of the transfer function may be deduced by di- .
viding Eq. 3.16 by 3.13 to obtain

H(p) = 20

0 (3.19)

x(1) =exp(j2nfr)

Consider next an arbitrary signal x(r) applied to the system. The signal
x(f) may be expressed in terms of its Fourier transform as

(1) =f X(f) exp(j2nft) df . (3:20)
or, equivalently, in the limiting form

i 3 X(7) exply2n) 4f (3.21)
fekag

x(1) =

That is, the input signal x(f) may be viewed as a superposition of complex
exponentials of incremental amplitude. Because the system is linear, the
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response to this superposition of complex exponential inputs is

y( = lim ¥ H(f)X(f) exp(j2nfr) Af

If—=0 k=_=
f=kaf
= [* HEIX() expljonfy df G2

The Fourier transform of the output is therefore
Y(f) = H(f)X(f) (3.23)

A linear time-invariant system may thus be described simply in the fre-
quency domain by noting that the Fourier transform of the output is equal
to the product of the transfer function of the system and the Fourier
transform of the input.

The result ¢f Eq. 3.23 may, of course. be deduced directly by recognizing
that the response y(r) of a linear time-invariant system of impulse response
h(r) to an arbitrary input x(r) is obtained by convolving x(r) with A(¢), or
vice versa, and by the fact that the convolution of a pair of time functions
is transformed into the multiplication of their Fourier transforms. The
foregoing derivation is presented primarily to develop an understanding
of why the Fourier representation of a time function as a superposition of
complex exponentials is so useful in analyzing the behavior of linear time-
invariant systems.

AMPLITUDE RESPONSE AND PHASE RESPONSE

The transfer function H(f) is a characteristic property of a linear time-
invariant system. It is, in general, a complex quantity, so that we may
express it in the form

H(f) = |H(f)| expljB(f)] (3.24)

where |H(f)| is called the amplitude response, and f(f) is called the phase
response. The phase response is related to the transfer function H(f) by

B(f) = arg[H(f)] (3.25)

In the case of a linear system with a real-valued impulse response h(t), the
transfer function H(f) exhibits conjugate symmetry, which means that

|H(f)l = [H(-f) (3.26)
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and

B(f) = —B(-f) (3.27)

That is, the amplitude response |H(f)| is an even function of frequency,
whereas the phase respense B(f) is an odd function of frequency. Plots of
the amplitude response |H(f)| and the phase response B(f) versus fre-
quency f represent the frequency-domain description of the system. Hence,
we may also refer to H(f) as the frequency response of the system.

In some applications it is preferable to work with the logarithm of H(f)
rather than with H(f) itself. Define

InH(f) = a(f) + jB(f) - (328
. where
a(f) = In[H(f)| (3.29)

The function a( f) is called the gain of the system. It is measured in nepers,
whereas B(f) is measured in radians. Equation 3.28 indicates that the gain
a(f) and phase response f(f) are the real and imaginary parts of the
“logarithm of the transfer function H(f), respectively: The squared ampli-
tude response |H(f)® is identified with power. Accordingly, we may also
apply the decibel (dB) measure to the gain by writing

“ @(f) = 20 logol H(S) | (3.30)
The two gain functions a(f) and o'(f) are related by
o'(f) = 8.69a(f) (3.31)
That is, 1 neper is equal to 8.69 dB..

e e e L L

EXAMPLE 3

Consider a linear time-invariant device with a transfer function defined by

=, f>0
H(f)={ 0. f=0
i f<0 3
= -jsga(f) - (3:32)

where sgn(f) is the signum function.
The amplitude response and phase response of the device are shown in
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[H(f)] Bff1.
degrees
10

+90

.| SR

(a) (b)

Figure 3.5
Characteristics of a Hilbert transformer. (a) Amplitude response. (b) Phase response.

Fig. 3.5a and b. respectively. That is, the device produces a phase shift of
—90° for all positive frequencies and a phase shift of = 90" for all negative
frequencies. The amplitudes of all frequency components of the input signal
are unaffected by transmission through the device. Such an ideal device is
called a Hilbert transformer.

Figure 3.6 shows a black-box representation of the Hilbert transformer
with a Fourier transformable signal x(r) acting as input. and the resulting
output® denoted by x(r). We wish to determine the output ¥(1). given the
input x(7). To do so. we first determine the impulse response of the device.
Specifically. we use the Fourier transform pair of Eq. 2.107 to express the
impulse response of the Hilbert transformer as

1
im)=;; (3.33)

Hence, the convolution of this impulse response with a signal x(1) applied
to the input of the Hilbert transformer yields the resulting output ¥(s) as

' fm:eun{}(i)

L %
=—f fﬂldr (3.34)

According to this formula, X(1) is the Hilbert transform of x(1).

*When dealing with Hilbert transformation, it is customary to denote the output by
placing a circumflex (or “hat”) over the symbol for the input; th's explains the
reason for using x(t) rather than y(t) to denote the output.
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Input time function Output time function
x(t) , i)

H > Hilbert e

: transformer ;

i Figure 3.6

Black-box representation emphasizing that both the input and output of a Hilbert
transformer are time functions.

E L i g Pt Bl R iieratesn 8 Bl ot g
. Starting with the transfer_function of Eq. 3.32; derive the formula of Eq.
335, N #i Saniheat il | o

SYSTEM BANDWIDTH

To specify the degree of dispersion of the amplitude response or gain of
a system, we use a parameter called the system bandwidth. A common
definition of system bandwidth is the 3-dB bandwidth, the exact formulation
of which depends on the type of system being considered, In the case of
a low-pass system, the 3-dB bandwidth is defined as the difference between
zero frequency, at which the amplitude response attains its peak value

|H(0)|, and the frequency at which the amplitude response drops to a value

equal to \H(O)\/\/i as illustrated in Fig. 3.7a. In the case of a band-
pass system, the 3-dB bandwidth is defined as the difference between the
frequencies at which the amplitude response drops to a value equal to
1/V/2 times the peak value |H(f,)| at the midband frequency f., as illus-
trated in Fig. 3.7b. Note that in both cases, the system bandwidth is defined

for positive frequencies. Note also that an amplitude response value equal .

to 1/V2 times the peak value of the amplitude response is equivalent to
a drop in the gain of 3-dB below its peak value; hence, the name “'3-dB
bandwidth.”

I MY

i 3.3 LINEAR DISTORTION AND EQUALIZATION

Two basic forms of signal distortion result from the transmission of a signal
through a physical system: linear distortion and nonlinear distortion. In the
context of telecommunications, the sysiem of interest is comprised of all
the components that constitute the path from the source of information to
the desired destination. When the system is viewed as being linear and

sssssansssssssnscssan
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Figure 3.7
The definition of svstem bandwidth. (a) Low-pass system. (b) Band-pass system.

time invariant. lincar distortion arises owing to imperfections in the fre-
quency response of the system. On the other hand, nonlinear distortion
arises owing to the presence of nonlinearities in the makeup of the system.
In this section, we discuss the linear distortion problem: nonlinear distor-
tion is considered in Section 3.7. We begin the discussion by formulating
the conditions for distortionless transmission of a signal through a linear
time-invariant system.

CONDITIONS FOR DISTORTIONLESS TRANSMISSION

By distortionless transmission we mean that the output signal of a system
is an exact replica of the input signal, except for a possible change of
amplitude and a constant time delay. We may therefore say that a signal
x(r) is transmitted through the system without distortion if the output signal
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y(f) is defined by

y(n) = Kx(t = 1) (3.36)

where the constant K accounts for the change in amplitude and the constant
1, accounts for the delay in transmission.

Let X(f) and Y(f) denote the Fourier transforms of x(r) and y(1),
respectively. Then, applying the Fourier transform to Eq. 3.36 and using
the time-shifting property of the Fourier transform, we get

Y(f) = KX(f) exp(—j2nft) (3
The transfer function of a distortionless system is therefore

H) = 32

K exp(—j2nfu) (3.38)

Correspondingly, the impulse response of the system is given by
h(r) = Ko(t — &) (3:39)

where (1 — 1) is a Dirac delta function shifted by ¢, seconds.

Equation 3.38 indicates that in order to achieve distortionless trans-
mission through a system, the transfer function of the system must satisfy
two conditions:

1. The amplitude response |H(f)|is constant for all frequencies, as shown
I T i % '

H(f) = K (340)

2. The phase §(f) is linear with frequency, passing through zero as shown
by

B(f) = -2xf1, ' U (3.41)

These two conditions are illustrated in parts a and b of Fig. 3.8, re-
spectively.

EXERCISE 3 Using the impulse response of Eq. 3.39 in the convolution
integral, show that the input—output relation of a distortionless system is
as defined in Eq. 3.36.



LINEAR DISTORTION AND EQUALIZATION 99

[H(f)| B
K
£ 0 f
Slope = =27ty
0
‘a) b)

Figure 3.8 .
Frequency response for distortionless transmission. (a) Amplitude response.
(b) Phase response.

EXERCISE 4 Show that the condition of Eq. 3.41 on the phase response
B(f) for distortionless transmission may be modified by adding a constant
equal to a positive or negative integer multiple of 180°. How can such a
modification arise in practice?

AMPLITUDE DISTORTION AND PHASE DISTORTION

In practice. the conditions for distortionless transmission, as just described,
can only be satisfied approximately. That is to say. there is always a certain
amount of linear distortion present in the output signal. In particular. we
may distinguish two components of signal distortion produced by trans-
mission through a linear time-invariant system:

1.

to

When the amplitude response [H( f)| of the system is not constant with
frequency inside the frequency band of interest. the frequency com-
ponents of the input signal are transmitted with ditferent amounts of
gain or attenuation. This effect is called amplinude distorion. The most
common form of amplitude distortion is excess gain or attenuation at
one or both ends of the frequency band of interest.

The second form of distortion arises when the phase response fi(f) of
the system is not linear with frequency. Then if the input signal is divided
into a set of components, each one of which occupics a narrow band
of frequencies. we find that each of them is subject to a different delay
in passing through the system, with the result that the output signal has
a different waveform from the input. This form of distortion is called
phase or delay distortion. We will have more to say on this issue in
Section 3.6.
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You should carefully note the distinction between a constant delay and
a constant phase shift. These two conditions have different implications.
_Constant delay is a requirement for distortionless transmission. Constant
“phase shift, on the other hand, causes signal distortion.

EQUALIZATION

To compensate for linear distortion, we may use a network known as an
equalizer connected in cascade with-the system in question. The equalizer
is designed in such a way that, inside the frequency band of interest, the.
overall amplitude and phase responses of this cascade connection approx-
imate the conditions for distortionless transmission to within prescribed
limits.

Consider, for examplé, a communicationchannel with transfer function
H_(f). Let an equalizer of transfer function H,,(f) be connected in cascade
with the channel, as in Fig. 3.9. The overall transfer function of this com-
bination is equal to H.(f)H(f). For overall transmission” through the
cascade connection of Fig. 3.9 to be distortionless, we require that (see
Eq: 3.38)

‘HAf)H(f) = K exp(—j2xaft;) w3, 42)

where K is a scaling factor and 7, is a constant time delay. Ideally, therefore,
the transfer function of the equalizer is inversely related to that of the
channel, as shown by :

K exp(—j2nfty)
H = ———— 3.43
w(f) 5 (3.43)
In practice, the equalizer is designed such that its transfer function ap-
proximates the ideal value of Eq. 3.43 closely enough for the linear dis-
tortion to be reduced to a satisfactory level.
A network structyre that is well-suited for the design of equalizers is
the tapped-delay-line filter, depicted in Fig. 3.4. From the time-shifting
property of the Fourier transform, we know that when a signal is shifted

Delayed version

Input Channel, Equalizer - of channel input
. H.(f) Heo(f) ¥

Figure 3.9
Block diagram of equalization.
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in time by At seconds, its Fourier transform is multiplied by the complex
exponential exp(—j2nf At). Accordingly. the transfer function of this tapped-
delay-line filter, used as an equalizer, is given by

N-|

Ho(f) = X wyexp(—j2rkf A1) (3.44)

=
A=0

For convenience of analysis, let the number of taps be odd. as shown by
N=2M+1 (3.43)

where M is an integer. Also, setting

e=mep 20 LGt G
and
Wy = C (3.47)
we may rewrite Eq. 3.44 as
i
Ho () = | X o exp(—j2rmf 1o)|exp(—j2nMf 17)  (3.48)
m= - A

The expression inside the square brackets on the right side of Eq. 3.48
represents the discrete-time Fourier transform of the sequence of tap coef-
ficients ¢ 4, ....c . Con €y .., cy. with a tap spacing (sampling in-
terval) of A7 seconds. This discrete-time Fourier transform mayv be viewed
as a truncated version of the complex Fourer series with a frequency
periodicity of 1/41 hertz; note that in this interpretation. the usual roles
of time and frequency in the complex Fourier series are interchanged.

We may now describe a procedure for designing the equulizer. Specif-
ically, given a channel of transfer function H_(f) to be equalized over the
interval — B < f = B, we first approximate the reciprocal transfer function
1/H (f) by a complex Fourier series with periodicity (1/47) = B. Typically.
H.(f) is specified numerically in terms of its amplitude and phase com-
ponents, in which case numerical integration i1s used to compute the com-
plex Fourier coefficients. The total number of significant terms, 2.V + |,
is chosen to be just big enough to produce a satisfactory approximation
to the prescribed H, (f). The tap coefficients of the equalizer. namely,
CopMs-- -+ Cy.Cy €y - . ., Cy are then matched to the complex Fourier
coefficients. ’
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EXERCISE 5 Wirite the formula for evaluating the coefficients of the
complex Fourier series used to_approximate 1/H.(f) with periodicity
(1/47) = B. I i

3.4 IDEAL LOW-PASS FILTERS

As previously mentioned. a filter is a frequency-selective devite thatis used

to limit the spectrum of a signal to some specified band of frequencies. Its
frequency response is characterized by a passband and a stopband, which =+
are separated by a guardband. The frequencies inside the passband are
transmitted with little or no distortion, whereas those in the stopband are
rejected. The filter may be of the low-pass, high-pass, band-pass, Or band-
stop type. depending on whether it transmits low. high, intermediate, or
all but intermediate frequencies, respectively.

~In this section we study the time response of the ideal low-pass filter,
which transmits. without any distortion all frequencies inside the passband =
and completely rejects all frequencies inside the stopband. as illustrated
in Fig. 3.10. Note that the conditions for distortionless transmission need
only be satisfied inside the pass band of the filter. The transfer function of
the ideal low-pass filter so illustrated is defined by

exp(—j2nft).  —B Sif T (3.49)

where. for convenience. we have set K = 1. The parameter B defines the
bandwidth of the filter. For a finite 1,. the ideal low-pass filter is noncasual,

<B
> B

[H(f)| Bifi
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|
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I

Slope = — 21ty
fa) (b)
Figure 3.10

Frequency response of ideal low-pass filter. (&} Ampmbde response
(b) Phase response.
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which may be confirmed by examining the impulse response /(r). Specif-
ically, by evaluating the inverse Fourier transform of the transfer function
of Eq. 3.49, we get

h(r) = fﬁg exp[j2nf(t — 1,)] df (3.50)

where the limits of integration have been reduced to the frequency band
inside which H(f) does not vanish. Equation 3.50 is readily integrated.
yielding

sin[2nB(r - 1)]
n(t = 1)
2B sinc[2B(1 — )] (3.51)

h(t) =

This impulse response has a peak amplitude of 2B centered on time ly,
as shown in Fig. 3.11. The duration of the main lobe of the impulse response
is 1/B, and the build-up time from the zero at the beginning of the main
lobe to the peak value is 1/2B. We see from Fig. 3.11 that, for any finite
value of f, there is some response from the filter before the time r = 0 at
which the unit impulse is applied to the input, confirming that the ideal
low-pass filter is noncausal. However, despite its noncausality, the ideal
low-pass filter serves as a useful standard against which the response of
causal filters may be measured.

hlt)

28 P————————
|
|
|
|
|

- 0 ,/-\\/ ‘l V/\VJ Y

Figure 3.11
Impulse response of ideal low-pass filter.
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EXAMPLE 4 PULSE RESPONSE OF IDEAL LOW-PASS FILTER

Consider a rectangular pulse x(¢) of unit amplitude and duration T, which
is applied to an ideal low-pass filter of bandwidth B. The problem is to
determine the response y(z) of the filter.

The impulse response h(t) of the filter is defined by Eq. 3.51. lisresponse
is theréfore given by the convolution integral

‘ wild) = f x(D)h(t = 1) dr
B 2 sin[2nB(t — t, — 1)]
= BL: el (3.52)
Define

1 =21Blt — t, — 7)

Then, changing the integration vatiable from t to A, we may rewrite Eq.
3.52 as ; e

di

Il

y(n)

1fznﬂ<f-:ucrz) sin /4

2rB(r—tg-T/2) 4

1 mB(t-t0+T12)  Sin A . 22BU-n-T/2) St A 7.
e J' —d i — J — d 4
b4 0 i . £ ) 0 : A

%{Si[ZnB(l — 1 + TI2)] - Si[2nB(t — t, — T/} (3.53)

/8

I

where the sine integral is defined by

Si(u) = fﬁ%ﬁ di (3.54)

0

% Figure 3.12-plots the respomnse y(t) for three different values of the filter
bandwidth B, assuming that ¢, is zero. We see that. in each case, the output
is symmetric about ¢ = 0. We further observe that the shape of the output
is markedly dependent on the filter bandwidth B. In particular, we note:

1. When B is large compared with 1/T, as in Fig. 3.12a, the output has
~ approximately the same duration as the input. However, it differs from
the input in two major respects. First, the output, unlike the input, has
nonzero rise and fall times that are inversely proportional to the filter
bandwidth. Second. the output exhibits ringing at both the leading and
trailing edges.
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Figure 3.12

2/T.

1/4T. The dashed rectangles represent the input signal.

ndwidth. (3) B

eal low-pass filter for varying filter ba

Pulse response of id.
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2. When B = 1/T, as in Fig. 3.12b, the output is recognizable as a pulse;
however, the rise and fall times of the output are significant compared
with the input pulse duration 7.

3. When the filter bandwidth B is small compared with 1/7, the output is
a grossly distorted version of the input, as in Fig. 3.12¢.

sssssssses
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EXERCISE6 How large would you have to make the delay 1, for the ideal
low-pass filter to be causal?

3.5 BAND-PASS TRANSMISSION N

A problem often encountered in the study of communication systems is
that of analyzing the transmission of a signal through a band-pass system.
Typically, the incoming signal and the system of interest are both narrow-
band with a common midband frequency. We say that a band-pass signal
is narrow-band if the bandwidth of the signal is small compared to its
midband frequency. A similar definition holds for a band-pass system. A
precise statement about how small the bandwidth must be in order for the
signal to be considered narrow-band is not necessary for our present dis-
cussion. Obviously, we may analyze the band-pass transmission problem
directly by using the convolution integral of Eq. 3.1 or its Fourier-trans-
formed version given in Eq. 3.23. However, a more efficient approach is
to replace the problem with an equivalent low-pass transmission model,
the development of which proceeds in two stages. First, a coumpiex 1ow-
pass representation is devised for the incoming band-pass signal. Next, a
similar representation is devised for the band-pass system. In the sequel,
these two representations are considered in turn.

COMPLEX LOW-PASS REPRESENTATION OF NARROW-BAND SIGNALS

Consider a narrow-band signal x(t) with Fourier transform X(f). The am-
plitude spectrum |X(f)| of the signal is depicted in Fig. 3.13a. The pre-
envelope of the signal x(t) is defined by

x,(0) = x(1) + j£(2) (3.55)

where £(t) is the Hilbert transform of the signal x(r). The pre-envelope
x,(r) is a complex-valued function of time with the original signal x(r) as
the real part and the Hilbert transform £(r) as the imaginary part. Let
X, (f) denote the Fourier transform of the pre-envelope x, (). We may
thus write, in the frequency domain,

X.(f) = X(f) + jX(f) (3.56)
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Figure 3.13
(a) Amplitude spectrum of band-pass signal x(t). (b) Amplitude spectrum of pre-
envelope x.(1). (c) Amplitude spectrum of complex envelope x(1).

where X(f) is the Fourier transform of £(r). From Example 3, we deduce
that X(f) equals the product —j sgn (f) X(f). where sgn(f) is the signum
function. Accordingly, we may rewrite Eq. 3.56 as

X(f) + jl -7 sen(£)X()
X(f) + sen(HHIX(f)

X.(f)
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Moreover, using the definition of the signum function, we get

2X(f), f>0
X.(f) = { X(0), f=0
0. f<0 (3.57)

where X(0) is the zero-frequency value of X(f). Equation 3.57 states that
the pre-envelope of a Fourier transformable signal has no frequency con-
tent for negative frequencies, as illustrated in Fig. 3.13b.

The frequency-shifting property of the Fourier transform suggests that
We may express the pre-envelope x_(¢) in the form

x(t) = £() exp(j2zf.) (3.58)

where %(1) is a complex-valued low-pass signal. The amplitude spectrum
of X(r) is illustrated in Fig. 3.13c.

Given the narrow-band signal x(r), we may determine the complex en-
velope %(1) by first using Eq. 3.55 to find the pre-envelope x (1), and then
solving Eq. 3.58 for ¥(7) in terms of x., (1). Alternatively, we may determine
X(r) by using a frequency-domain approach based on X(f). the Fourier
transform of x(r). Specifically, we retain the positive-frequency half of X(f)
centered on f,, shift it to the left by f.. and then scale it by a factor of
two. The spectrum so obtained is the Fourier transform of the complex
envelope ¥(t). The rationale for this second method of determining £(¢)
follows from the spectra depicted in Fig. 3.13. The second'method is usually
the preferred method, because it bypasses the need to know the Hilbert
transform %(r).

The complex envelope (1) provides the basis for the complex low-pass
representation of the narrow-band signal x(¢). Indeed, in accordance with
Eqgs. 3.55 and 3.58, the real part of the product #() exp(j2nf.t) is equal
to x(r), as shown by

x(t) = Re[x(r) exp(;2nf.t)] (3.59)

where Re[*] denotes the “‘real part of” the quantity enclosed in the square
brackets. Using the Euler identiry

exp(j2nf.) = cos(2nf.1) + Jsin(2nf.t)

and the definition for the complex envelope £(r), we readily find from Eq.
3.59 that x(1) may be expressed as®

x(t) = x(t) cos(2nf.t) — xo(t) sin(2nf,1) (3.60)

*Equation 3.60 follows directly from the following rule. Let a, b, and ¢ denote three
complex numbers related to one another as

c = ab
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This is the canonical representation for a narrow-band signal in terms of
the in-phase component x(t) and quadrature component x(t) of the com-
plex envelope associated with the signal. Indeed, it is a representation basic
to all linear modulation schemes; more will be said on this issue in-Chap--
ter 7.

The complex envelope () is defined in terms of the in-phase component
x,(t) and the quadrature component x(f) as follows:

(1) = x (1) + jxo(r) (3.61)

In other words, x,(r) is the real part of £(t), and x(r) is its imaginary part.

EXERCISE 7 Consider a narrow-band signal x(1) with Fourier transform
" X(f). Show that the value of X.(f), the Fourier transform’of the pre-
envelope of x(t), at frequency f = 0 is X(0).

EXERCISE 8 Let x(t) = m(f) cos(2nf.f), where m(z) is an information-
bearing signal. What are the in-phase and quadrature components of x(1)?
What is the complex envelope of x(r)?

oA

OMPLEX LOW-PASS REPRESENTATION OF NARROW-BAND SYSTEM

Consider next a narrow-band system defined by the impulse response /(1)
or. equivalently. the transfer function H(f). To develop a complex low-
pass representation for this system. we may perform time-domain opera-
tions on A(r) or frequency-domain operations on H(f). From the previous
discussion of narrow-band signals. we expect the second approach to be
the preferred one. as it is computationally less intensive. Accordingly, from
analogy with the complex low-pass representation of a narrow-band signal.
we may develop the desired complex low-pass representation of the narrow-
band system by retaining the positive-frequency half of the transfer function
H(f) centered on f.. and shifting it to the left by f.. Let H(f) denote the
transfer function of the complex low-pass system so defined. Figure 3.14
illustrates the relationship between H(f) and H(f). shown in parts a and
b of the figure. respectively. Note. however. that in going from H(f) to
H(f). we have purposely avoided amplitude scaling (see Exercise 9). Note
also that for the frequency-domain transformation depicted in Fig. 3.14 10
hold. the midband frequenéy fymust be larger than half the bandwidth of
the narrow-band system. _

Then, the real part of cis given by

Rel[c] = Relal Re[b] - Im[a] Im[b]
where Re[+] denotes the “real part of” and Im|[+] denotes the "“imaginary part of”* the
respective quantities enclosed in the square brackets
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Figure 3.14
(a) Amplitude response of narrow-band system. (b) Amplitude response of complex
low-pass system.

EQUIVALENT LOW-PASS TRANSMISSION MODEL

We are now equipped with the tools we need to formulate the equivalent
low-pass transmission model for solving the band-pass transmission prob-
lem. Specifically. the analysis of a narrow-band system with transfer func-
tion H(f) driven by a narrow-band signal with Fourier transform X(f), as
depicted in Fig. 3.15a. is replaced by an equivalent but simpler analysis
of a complex low-pass system with transfer function H(f) driven by a
complex low-pass input with Fourier transform X(f), as depicted in Fig.
3.15b. This band-pass to low-pass transformation completely retains the
essence of the filtering process.

According to Fig. 3.15a, the Fourier transform of the output of the
narrow-band system is given by

Y(f) = H(f)X(f)

The narrow-band output y(¢) itself is given by the inverse Fourier transform
of Y(f).

According to Fig. 3.15b, the Fourier transform of the output of the
complex low-pass system is given by

Y(f) = H(f)X(f) (3.62)
Xt Narrow-band Y(f) X (f) Complex low-pass )7(,‘)
—_— system, — —— system, —
H ﬁ(/)
(@) (b)

Figure 3.15
Transformation of narrow-band to complex low-pass system.
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The complex low-pass output y(r) itself is given by the inverse Fourier
transform of Y(f). Having determined y(1)., we may find the desired nar-
row-band output y(r) simply by using the relation:

y(t) = Re| ¥(r) exp(j2nf.0)] (3.63)

The low-pass transmission model of Fig. 3.15b 1s said to be the baseband
equivalent of the narrow-band system in Fig. 3.15q¢. The equivalence is in
the sense that the model of Fig. 3.15b completely preserves the information
content of the incoming narrow-band signal x(t) and also that of the outgoing
narrow-band signal v(t). In general. the term “baseband™ is used to des-
ignate the band of frequencies representing a signal of interest as delivered
by a source of information. In the context of our present situation, the
term baseband refers to both input and output.

EXERCISE 9 Evaluate y(0) using the two models of Fig. 3.15. Hence,
justify the peed for scaling the spectrum of the complex low-pass input
X(1) by a factor of two, as depicted in Fig. 3.13c.

R T P P P PP PP PPy
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EXAMPLE 5 RESPONSE OF AN IDEAL BAND-PASS FILTER TO A
PULSED RF WAVE '

Consider an ideal band-pass filter of midband frequency f . and bandwidth
Basin Fig. 3.16a, with f_ > B/2. Note that the conditions for distortionless
transmission need only be satisfied for the pass band of the filter. Note
also that the phase response of the filter is zero at the mid-band frequence
f.. We wish to determine the response of this filter to an RF pulse of
duration T and frequency f, defined by (see Fig. 3.17a)

x(r) = A rect(%_) cos(2nf )

where f T > 1.

Retaining the positive-frequency half of the transfer function H(f).
defined in Fig. 3.16a, and then shifting it to the origin. we find that the
transfer function H(f) of the low-pass equivalent filter is given by [see Fig.
3.16b]

- _ Jexp(—j2nfty), -Bi2 < f< Bi2
The complex impulse response in this example has only a real component,
as shown by

h(t) = Bsinc[B(t - 1,)] (3.65)
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Figure 3.16
(a) Amplitude response H(f)| and phase response fi(f) of an ideal band-pass filter.
(b) Corresponding components of complex transfer function H(f).

From Example 3 we recall that the complex envelope k(1) of the input RF
pulse also has only a real component, as shown by (see Fig. 3.17h):

x()=A rect(if) (3.66)

The complex envelope y(1) of the filter output is obtained by convolving
the A(r) of Eq. 3.65 with the X(1) of Eq. 3.66. This convolution is exactly
the same as the low-pass filtering operation that we studied in Example 3.
Thus, using Eq. 3.53 we may write

s =2 {Si[nB (r -3- ,)J i S‘[”" (’ =g - ’)]}

(3.67)

As expected, the complex envelope y(1) of the output has only a real
component. Accordingly, from Eqs. 3.63 and 3.67, the output is obtained
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Figure 3.17
The response of an ideal band-pass filter to RF pulse input. (a) RF pulse input x(t).
(b) Complex envelope x(t) of RF pulse. (c) Response y(1).

as

y(r) = % {Si[nB (t + % - [n)] - Si[nB (l - %-— r.,)]}cos(zrrf‘r)

(3.68)

which is the desired result. Equation 3.68 is shown sketched in Fig. 3.17¢
for the case when the band-pass filter bandwidth B = UT.
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3.6 PHASE DELAY AND GROUP DELAY

Suppose a steady sinusoidal signal at frequency f, is transmitted through
a dispersive channel that has a total phase-shift of f(f.) radians at that
frequency. By using two phasors to represent the input signal and. the
received signal, we see that the received signal phasor lags the input signal
phasor by f(f,) radians. The time taken for the received signal phasor to
sweep out this phase lag is simply equal to f(f.)/2xnf. seconds. This time
is called the phase delay of the channel.

Itisimportant, however, to realize that the phase delay is not necessarily
the true signal delay. This follows from the fact that a steady sinusoidal
signal does not carry information. In actual fact, as we will see in subsequent
chapters, information can be transmitted only by applying some appro-
priate change to the sinusoidal wave. Suppose then a slowly varying signal
is multiplied by a sinusoidal wave, so that the resulting modulated wave
consists of a narrow group of frequencies. When this modulated wave Is
transmitted through the channel, we find that there is a delay between the
envelope of the input signal and that of the received signal. This delay is
called the envelope or group delay of the channel and represents the true
signal delay.

Assume that the dispersive channel is described by the transfer function

H(f) = K exp[jB(f)] (3.69)

where the amplitude K is a constant and the phase f(f) is a nonlinear
function of frequency. The input signal x(r) consists of a narrow-band sig-
nal defined by

x(r) = x/(r) cos(2nf.r) (3.70)

where x (1) is a low-pass function with its spectrum limited to the frequency
interval |f| < W. We assume that f, > W. By expanding the phase f(f)
in a Taylor series* about the point f = f_ and retaining only the first two
terms, we may approximate f4(f) as

B = B + (f - 1) -a%f-’ 3 (3.71)
Define
- _A4) (3.72)

% 2nf.

“For a general definition of the Taylor series, see Appendix D, Table 4.
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and

1 ag()
Tg = “2n af I;f, (373)

" Then we may rewrite Eq. 3.71 in the form

B(f) = —2afr, = 2n(f - fI)5 (3.74)

Correspondingly, the transfer function of the channel takes the form
H(f) = K exp| - j2nf1, — j2n(f = fI)z,] (3.75)

Following the procedure described in Section 3.5, we may replace the
channel described by H(f) by an equivalent low-pass filtér with complex*
transfer function

H(f) =K exp(—j2nfc, —.-.-jznfr_i). B (3.76)

Similarly, we may replace the input narrow-band signal x(r) by its low-pass
complex envelope x(t), which is

2 = BNy e . BT
The Fourier transform of x(t) is simply
X(f) = X(f) (3.78)

where X,(f) is the Fourier transform of x.(1). Therefore, the Fourier trans-
form of the complex envelope of the received signal is given by

Y(f) = H(HX()

K exp(—j2nf.7,) exp(—j2nft,) XA(f) (3.79)

/o]

We note that the multiplying factor K exp(—j2nf.7,) is a constant. We
also note, from the time-shifting property of the Fourier transform. that
the term exp( —j2nft,) X.(f) represents the Fourier transform of the de-
layed signal x.(¢ — 7,). Accordingly, the complex envelope of the received
signal equals

_)7(!) =K exP( —jznfétp)xc(' . tg) (380)

Finally, we find that the received signél is itself given by

Re[ y(¢) exp(j2nf )]
Kx.(r — t,) cos[2nf(t — 1,)] (3.81)

y(0)
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Equation 3.81 shows that, as a result of transmission through the channel,
two delay effects occur:

L. The sinusoidal carrier wave cos(2nf,1) is delayed by 7, seconds; hence
T, represents the phase delay. Sometimes, 7, is also referred to as the
carrier delay.

2. The envelope x.(r) is delayed by 7, seconds; hence, t, represents the
envelope or group delay. Note that 7, Is related to the slope of the
phase f§(f), measured at f = f.. as in Eq. 3.73.

Note also that when the phase response fi(f) is linear with frequency,
and f(0) = 0. the phase delay and group delay assume a common value.

EXERCISE 10 Explain why a linear time-invariant system with a phase
response equal to a constant suffers from phase distortion.

3.7 NONLINEAR DISTORTION

Up to this point in our study of signal transmission through a system, we
have assumed linearity. In practice, however, we find that the system
connecting a source of information to its destination inevitably exhibits
some form of nonlinear behavior. This occurs whenever the output is in-
creased beyond a limit prescribed by the power that the system is capable
of suppiving. In such a situation. we say that the system is overloaded.
When the system is overloaded, a change in the input signal does not
produce a corresponding change in the output signal.

Figure 3.18 shows a typical input-output relation, called the transfer
characteristic, that may give rise to nonlinear distortion. For the purpose
of our discussion here, we assume that the system is memoryless in the
sense that the output y(r) depends only on the input x(r) at time 1. We
may consider the transfer characteristic of Fig. 3.18 to be composed of the
following parts: ;

1. A reasonably linear region centered at the origin, where a change in
the input produces a proportional change in the output.

2. Two saturation regions, where the output is not affected by the input.

3. Two "knees" that join the linear region to the saturation regions. The
useful amplitude range of operation of the system is defined by points
P and Q that lie somewhere on the knees of the curve. Their precise
locations are determined by the extent of nonlinear distortion that is
considered to be tolerable. We may thus view P and Q as overload
points.
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region region region

Figure 3.18
Transfer characteristic. _

To evaluate the nonlinear distortion, the common procedure is to ex-
press the transfer-characteristic mathematically by writing the output y(r)
as a power series of the input x(r):

y(1) = ax(t) + a,x*(1) + a;xit) + - - - (3.82)

The first term, a,x(#), represents the linear response of the system. The
second term. a-,x*(t), accounts for a lack of symmetry that may exist be-
tween the positive and negative parts of the transfer characteristic. (This
term would be zero for the symmetric curve shown in Fig. 3.18.) The third
term. a,x*(r), provides a first approximation to the flattening of the transfér
characteristic due to overloading. Higher order terms on the right side of
Eq. 3.82 are usually neglected when operation of the system is bounded
by the overload points (P and Q in Fig. 3.18).

Let X(f) denote the Fourier transform of the input x(¢r). Then, the
Fourier transform of the output y(z) is

Y(f) = e, X(f) + a, X(f) 4 X(f)
+ a; X(f) 9 X(f) 9 X(f) + - (3.83)

where ﬁ} denotes convolution. Thus, X(f)ﬁ' X(f) denotes the convo-
lution of X(f) with itself, and so on. Let x(t) be band-limited in W, such
that X(f) = O for |f| = W. Then, x*(1) is band-limited in 2W, such that
X(j){}X(f) = 0 for |f| = 2W. Similarly, x*(r) is band-limited in 3W,
such that X(f)ﬁX(f) X(f) = 0 for|f| =:3W, and so on. We may
therefore make two observations: =

1. The output of a nonlinear system contains new frequency components
for f > W, which are not present in the input.

2. The presence of nonlinearities (second order, third order, etc.) in the
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transfer characteristic produces undesirable frequency components for
Ifl = w. -

The first set of components can be suppressed by appropriate filtering. On
the other hand, the second set of components lying inside the frequency
band of interest cannot be removed, thereby giving rise to nonlinear dis-
tortion.

Two examples to illustrate the analysis of nonlinear distortion follow.
In both cases, the problem is simple enough to be handled without having
to resort to the use of Fourier transformation.

R T

EXAMPLE 6 HARMONIC DISTORTION

Let the input consist of a single sinusoidal wave:
x(t) = A cos(2nfr) (3.84)

We assume that only second- and third-order nonlinearities in the transfer
characteristic of Fig. 3.18 are of concern, so that fourth- and higher-order
terms in Eq. 3.82 may be ignored. Then, substitution of Eq. 3.84 in 3.82
yields the output

y(@) = za,A* + (a,A + %a;A") cos(2nft)

B | =

- %a;Azcos(f-hzfr) + %a,xﬁ cos(6mfr) (3.85)

Since we are concerned primarily with distortion (i.e., changes in the shape
of the waveform), we may ignore the dc component, }a,A2. The compo-

nents of interest in the output waveform are therefore as follows, with
their respective amplitudes shown:

Fundamental: a,A + %a;A’
Second harmonic: _1) a,A*?

. : 1
Third harmonic: 3 a;A’?

Accordingly, we define the second-harmonic distortion, D,, as the ratio of
the amplitude of the second-harmonic component in the output to that of
the fundamental:

1
iazA
By e (3.86)

3
a, + = a,A?
1 403
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Similarly, we define the third-harmonic distortion, D5, as the ratio of the
amplitude of the third-harmonic component in the output to that of the
: fundamental:

sssssssas

& x “ &

|
2
w
b
s

1

il ;e (3.87)

The harmonic distortion factors D, and D; are usually expressed as per-
centages.

EXAMPLE 7 INTERMbDULAﬂO~ DISTORTION

Let the input x(r) consist of the sum of two sinusoidal waves:

e
ssssssssesssesssnesnnnt

x(£) =-A, cos(2nfit) + A cos(2nfat) o (3.88)

sessnnsss

Here again we assume that fourth- and higher-order terms in Eq. 3.82 may
be ignored. Then, substituting this expression for x(¢) in Eq. 3.82, we find
that the effects produced by the second- and third- order nonlinearities in
the transfer characteristic are:

1. The second-order term, a,x*(t), produces a dc and a second-harmonic
component corresponding to the single-frequency input, as expected. :

In addition, however, it produces new components at f, + f. and
fi — f, that are the sum and difference frequencies, respectively. Such
components are referred to as second-order intermodulation products.
! TABLE 3.1
i Type of
{  Intermodulation : ‘
¢ Product Frequency Amplitude
Second-order fi + ¥ @A A,
=1 @A A, :
3 :
Third-order 2fi + fi i a;,AfA;
3 2
2fi — f; Za,A,AZ :
3 = it
: 2f: # J; Zﬂ;A.Az ®
H 3 :
2f) = Sy ZGSA:IAZ
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2. The third-order term, a;x*(r), produces the expected fundamental and
third-harmonic components. In addition, it gives rise to intermodulation
products of its own at the frequencies 2f, + f, and 2f, = f,, which are
referred to as third-order intermodulation products.

Table 3.1 presents a summary of the frequencies and amplitudes of the
various second- and third-order intermodulation products.

PROBLEMS

P3.1 Time Response

Problem 1 The excitation applied to a linear time-invariant system with
impulse response h(r) consists of two delta functions, as shown by

x(t) = 6(r + 1)) + 6(t — 1))
where 1, is a constant time shift. Find the response of the system.

Problem 2 The impulse response of a linear time-invariant system is
defined by

h(r) = exp(—at)u(t)

where u(r) is the unit step function. Determine the response of the system
produced by an excitation consisting of the unit step function u(r).

Problem3 A periodic signal x,(1) of period Ty is applied to a linear time-
invariant system of impulse response h(r). Use the complex Fourier series
representation of x,(r) and the convolution integral to evaluate the re-
sponse of the system.

Problem 4 The impulse response of a linear time-invariant system is
defined by the Gaussian function:

h(t) = exp[—n(r - 1)}

where 1, is a constant.

(a) Is this system causal?
(b) Is it stable?

Give reasons for your answers.
P3.2 Frequency Response

Problem 5 Continuing with the linear time-invariant system described in
Problem 2, do the following:

(a) Determine the transfer function of the system.
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(b) Plot the amplitude response and phase re:sponse of the system.
(¢) Find the 3-dB bandwidth of the system.

Problem 6 Find the transfer function of the linear time-invariant system
with its impulse response defined in Problem 4. Hence, plot the amplitude
response and phase response of the system. Indicate the 3-dB bandwidth
of the system on the plot of the amplitude response.

Problem 7 Evaluate the transfer function of a linear system represented
by the block diagram shown in Fig. P3 1.

Problem 8

(a) Determine the overall amplitude response of the cascade connection
shown in Fig. P3.2 consisting of N identical stages, each with a time
constant RC equal to 7.

(by Show that as N approaches infinity, the dmplltude response of the
cascade connection approaches the Gaussian function exp(—3ifT7),
where for each value of N, the time constant 7, is selected so that

T:
4n*N

2 =
Ty =

P3.3 Linear Distortion and Equalization

Problem 9

(a) Consider a signal x(¢) with Fourier transform X(f) limited to the
band —B =< f =< B. This signal is applied to a linear time-invariant
system with an amplitude response |H(f) and linear phase, as in Fig.
P3.3a. Determine the resulting output of the system.

R R R

l Buffer I Buffer Buffer
Cl amplifier CT amplifier CI amplifier

Figure P3.2
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Figure P3.3

(b) Suppose that the system has a constant amplitude response but
nonlinear phase, as in Fig. P3.3b. Determine the resulting output. As-
sume that the constant b, is small enough to justify using the approxi-

mation:
exp[jb, sin(%f)] =1+ jb, sin(%)

Problem 10 Figure P3.4 shows an idealized model of a radio channel. It
consists of two paths. One path introduces a propagation delay f,. The

Delay
» t
Input * ¥ Output
—
+
Delay
» T+,

Figure P3.4
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other path introduces an additional delay r and an attenuation represented

by the-scaling factor « that is less than one. A channel so characterized is

referred to as a multipath channel. To correct for the multipath distortion,

a three-tap equalizer is connected in cascade with the channel. Given that
o? < 1, calculate the three tap coefficients of the tapped-delay- line equal-

izer.

Hint: Use the binomial expansion:

1
1 + aexp(—j2nfr)

=1 - aexp(—j2nfr) + o’ exp(—jdzfr) - - -

P3.4 |deal Low-Pass Filters

Problem 11 The transfer func__;ion of an ideal low-pass filter is defined
.by v ' £ - o e . 7

_ | Kexp(—j2nft), Ifl <1
H{f) = {0, s

where 4 is a constant. Find the impulse response of the.system.

Problem 12  An ideal low-pass filter has zero time delay and bandwidth
B. It is driven by a rectangular pulse of unit amplitude and duration
T equal to 1/B and centered at r = 0.

0 is given by

Il

(a) Show that the filter output at ¢

NS

y(0) = = Si(n)

where Si(n) is the value of the sine integrai for an argument equal

.tom.
(b) Show that the filter output at t = T/2 is given by

y(g) = l Si(2n)

where Si(2n) is the value of the sine integral for an argument of 2x.
(¢) Calculate these two values of the filter output and check them against
the corresponding pulse response shown in Fig. 3.10b.

Note lhat Si(n) = 1.85 and Si(2n) = 1.42.

Problem 13 Suppose that, for a given signal x(¢), the integrated value
of the signal over an interval T is required, as shown by

y(t) = J',rx(t) dt
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(a) Show that y(t) can be obtained by transmitting the input signal x(¢)
through a filter with its transfer function given by
H(f) = Tsinc(fT) exp(—jnfT)

(b) An adequate approximation to this transfer function is obtained by
using a low-pass filter with a bandwidth equal to 1/T, passband ampli-
tude response T, and delay 7/2. Assuming this low-pass filter to be
ideal, determine the filter output at time t = T due to a unit step func-
tion applied to the filter and compare the result with the correspond-
ing output of the ideal integrator.

Note that Si(n) = 1.85 and Si(x) = n/2.

P3.5 Band-Pass Transmission

Problem 14  An ideal band-pass filter has zero time delay and bandwidth
B. An RF pulse of unit amplitude, duration T = 1/2B, and frequency f.

is applied to the filter; the pulse is centered at r = 0. Show that the filter
output is given by

y(1) = %[Si(ant + n) — Si(2nBt - n)] cos(2nf.t)

where Si(*) is the sine integral. Sketch the waveform of y(2).

Problem 15  Consider an ideal band-pass filter with center frequency f.
and bandwidth B, as defined in Fig. P3.5. The carrier wave A cos(27n fyt)
is suddenly applied to this filter at time ¢ = 0. Assuming that |f, — fi| is
large compared to the bandwidth B, determine the response of the filter.

IH(f)]
B8(f)

I\ l\;o/pe- =2nt,

| |

1 1 | I

—/e 0 fe ! I i 0 /e ¥
e B 2 |

Figure P3.5
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P3.6 Phase Delay and Group Delay

Problem 16 The impulse response of a linear time-invariant system is
defined by

exp(—1), t>0
1

I = = =
1(1) > t=0
0, <90

(a) Determine the phase delay 1,(f) and group delay 7,(f) of the system.
(b) Plot both delays versus frequency f, and comment on your results.

P3.7 Nonlinear Distortion

Problem 17  Verify the frequencies and amplitudes of the intermodulation
products listed in Table 3.1 for an input consisting of the sum of two
sinusoidal waves of frequencies fiand f, and amplitudes A, and A,
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