
........... CHAPTER ONE

. ........... 1.1 COMMUNICATIONS

Corninunica tion enters our daily lives in so mariv different ways that it

is easy to overlook the multitude of its facets. The telephones in our

homes and offices make it possible for us to communicate with others,

no matter how far away. The radio and television sets 
in 

our living

rooms bring us entertainment from near as well as far-^away places.

Communication by radio or satellite provides the means for ships on the

high seas, aircraft in flight, and rockets and exploratory probes in space

to maintain contact with their home bases. Communication keeps the

weather forecaster informed of atmospheric conditions that are
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2 INTRODU"ON

measured by a multitude of sensors, Communication makes it possible for

computers to interact. The list of applications involving the use of com-

munications in one way or another goes on.'

In the most fundamental sense, communication involves implicitly the

transmission of information from one point to another through a succession

of processes, as described here:

I. The generation of a thought pattern or image in the mind of an origi-
nator.

2. The description of that thought pattern or image. with a certain measure

of precision, by a set of aural or visual symbols.

3. The encoding of these symbols in a form that is suitable for transmission

oxer a physical medium (channel) of interest.

4. The transmission of the encoded symbols to the desired destination.

5. The decoding and reproduction of the initial symbols.

6. The re-creation of the original thought pattern or jmage—^kith a defin-

able degradation in quality—in the mind of a recipient, "ith the deg-

radation being caused by imperfections in the system.

The form of communication just described involves a thought pa , -,ern or
image originating in a human mind. Of course. there are manN ot lier forms

of communication that do not directly involve the human mind' in real time.

In space exploration. for example, human decisions ma y enter onl y the
commands sent to the space probe or to the computer resp' orisible for pro-

cessing images of far-away planets (e.g., Mars. Jupiter, Saturn) that are

sent back by the probe. In computer communications, human decisions

enter only in setting up the computer programs or in monitoring the results
of computer processing.

Whatever form of communication is used, some basic signal-processing

operations are involved in the transmission of information. The next section

describes the different types of signals encountered in the study of com-

munication systems. The sign a ]-processing operations of interest are high-

lighted later in the chapter.

.......... 1.2 SIGNALS AND THEIR CLASSIFICATIONS

For our purposes, a signal is defined as a single-valued function of time

that conveys information. Consequently, for every instant of time there is

a unique value of the function. This value may be a real number, in which

case we have a real-valued signal, or it may be a complex number, in which
case we have a coniplex- valued signal. In either case, the independent
variable (namely, time) is real-valued.

'For an essay on communications, see Berkner (1962).
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INTRODUC-nON 3

For a given situation, the most useful method of signal representation

hinges on the particular type of signal being considered. Depending on the

feature of interest, we may identify four different methods of dividing

signals into two classes:

1. PERIODIC SIGNALS, NONPERIODIC SIGNALS

A periodic signal g(t) is a function that satisfies the condition

g ( t ) = g ( t -F 'T')	 (1.1)

for all t, where t denotes time and To is a constant. The smallest value of

To that satisfies this condition is called the period of g(t). Accordingly, the

period To defines the duration of one complete cycle of g(t).

Any signal for which there is no value of To to satisfy the condition of

Eq. 1. 1 is called a nonperiodic or aperiodic signal.

2. DETERMINISTIC SIGNALS, RANDOM SIGNALS

A deterministic signal is a signal about which there is no uncertainty with

respect to its value at any time. Accordingly, we find that dete ' rministic

signals may be modeled as completely specified functions of time.

On the other hand, a random signal is a signal about which there is

uncertainty before its actual occurrence. Such a signal may be viewed as

belonging to an ensemble of signals, with each signal in the collection

having a different waveform. Moreover, each signal within the ensemble -

has a certain probability of occurrence.

3. ENERGY SIGNALS, POWER SIGNALS

In communication systems, a signal may represent a voltage or a current.

Consider a voltage v(t) developed across a resistor R, producing a current

i(t). The instantaneous power dissipated in this resistor is defined by

p = !^_(t)	 (1.2)
R

or, equivalently,

p = Ri2 (t)	 (1.3)

In both cases, the instantaneous power p is proportional to the squared

amplitude of the signal. Furthermore, for a resistance R of I ohm, we see

that Eqs. 1.2 and 1.3 take on the same mathematical form. Accordingly,

in signal analysis it is customary to work with a I-ohm resistor, so that,
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regardless of whether a given signal g(t) represents a voltage or a current,

we may express the instantaneous power associated with the signal as

p = Of )	 (1.4)

Based on this convention, we define the total energy of a signal g(t) as

E = I 
T
im 

YT 

g2(t)dt

= f g 2 (t)dt	 (1.5)

and its average power as

P ^ lim 
I fT 

g 2 (t)dt	 (1.6)
T_ ' 2T -T

We say that the signal g(t) is an energy signal if and only if the total
energy of the signal satisfie^ the condition

0 < E < x

We say that the signal g(t) is a power signal if and only if the average
power of the signal satisfies the condition

0 < P < -

The energy and power classifications of signals are mutually exclusive.

In particular, art energy signal has zero average power, whereas a power

signal has infinite energy. Also, it is of interest to note that, usually, periodic

signals and random signals are power signals, whereas signals that are both

deterministic and nonperiodic are energ^ signals.

4. ANALOG SIGNALS, DIGITAL SIGNALS

An analog signal is a signal with an amplitude (i.e., value of the signal at
some fixed time) that varies continuously forall time^ that is, both amplitude
and time are continuous over their respective intervals. Analog signals arise
when a physical waveform such as an acoust#: wave or a light wave is

converted into an electrical signal. The conversion is effected by means of
a transducer; examples include the microphone, which converts sound pres-

sure variations into corresponding voltage or current variations, and the

photodetector cell, which does the same for light-intensity variations.

On the other hand, a discrete-time signal is defined only at discrete

instants of time. Thus, in this case, the independent variable takes on only
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discrete values, which are usually uniformly spaced. Consequently, dis-

crete-time signals are described as sequences of samples that may take on

a continuum of values. When each sample of a discrete-time signal is

quantized (i.e., it is only allowed to take on a finite set of discrete values)

and then coded, the resulting signal is referred to as a digital signal. The

output of a digital computer is an example of a digital signal. Naturally,

an analog signal may be converted into digital form by sampling in tirne,
then quantizing and coding.

............. 1.3 FOURIER ANALYSIS OF SIGNALS AND SYSTEMS

In theory, there are many possible methods for the representation of sig-

nals. In practice, however, we find that Fourier analysis, involving the
resolution of signals into sinusoidal components, overshadows all other

methods in usefulness. Basically, this is a consequence of the well-known

fact that the output of a system to a sine-wave input is another sine wave

of the same frequency 2 (but with a different phase and amplitude) under

two conditions.

I . The system is linear in that it obeys the principle ofsuperposition. That
is, if Y, (t) and y,(t) denote the responses of a systeni to the inputs xl(t)
and x 2 (t). respectively, the system is linear if the response to the com-

posite input a i x,(t) + axJt) is equal to a,y l (t) + a, ,v 2 (t), where a,

and a, are arbitrary constants.

2. The system is time-invariant. That is, if Y(t) is the response of a system

to the input x(t), the system is time-invariant if the response to the

time-shifted input x(t — t,,) is equal to Y(t — t,,), where t, is constant.

Given a linear time-invariant system, the response of the system to a
single-frequency excitation represented by the complex exponential time
function A exp(j277ft) is equal to AH(f) exp(j27rft), where H(f) is the
transfer function of the system, the complex exponential exp(j27ift) con-

tains the cosine function cos(27ift) as its real part and the sine function

sin(277ft) as its imaginary part. Thus, the response of the system e0ibits

exactly the same variation with time as the excitation applied to the system.

remarkable property of linear time-invariant systems is realized only

11 the complex exponential time function.

ie study of communication systems, we are usually interested in a

)ffrequencies. For example, although the a^cragc voice spectrum

extends well bevond 10 kHz, most of the energy is concentrated in. the

range of 100 to 6(X) liz, and a voice signal lying inside the band from 300

to 3400 Hz gives good articulation. Accordingly, we find that telephone

'For a historical account of the concept of frequency, see Manley (1982).
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circuits that respond well to the band of frequencies from 300 to 3400 Hz

give satisfactory commercial telephone service.

To talk meaningfully about the frequency -domain description or spec-

trum of a signal, we need to know the amplitude and phase of each fre-

quency component contained in the signal. We get this information by

performing a Fourier analysis on the signal. However, there are several

methods of Fourier analysis available for the representation of signals. The

particular version that is used in practice depends on the type of signal

being , considered. For example, if the signal is periodic, then the logical

choice is to use the Fourier series to represent the signal as a set of har-

monicaliv related sine waves. On the other hand. if the signal is an energy

signal, &n it is customary to use the Fourier transform to represent the

signal. Irrespective of the type of signal being considered, Fourier methods

are invertible. Specifically, if we are given the complete spectrum of a

signal, then the original signal (as a function of time) can be reconstructed

exactly. The Fourier analysis of signals and systems is considered in Chap-

ters 2 through 4.

1.4 ELEMENTS OF A COMMUNICATION SYSTEM

The purpose of a communication system is to transmit information-bearing

signals from a source, located at one point, to a user destination, located

at another point some distance away. When the message produced by the

source is not electrical in nature, which is often the case, an input transducer

is used to convert it into a time-varying electrical signal called the message

signal. By using another transducer connected to the ou tput end of the

system, a -distorted" version of the message is ' re-created in its original

form, so that it is suitable for delivery to the user destination. The distortion

mentioned here is due to inherent limitations in the communication system.

Figure 1. 1 is a block diagram of a communication system consisting of

three basic components: transmitter, channel, and receiver. The transmitter

has the function of processing the message signal into a form suitable for

----------------

I- - - - - - - - - - - - - - - - - - - - -

Commur^,on system

Figure 1.1
Elements of an electrical communication system.
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transmission over the channel; such an operation is called modulation. The
function - of the channel is to provide a physical connection between the

transmitter output and the receiver input, The function of the receiver is
to process the received signal so as to produce an "estimate" of the original

message signal; this second operation is called detection or demodulation.

There are two types of channels. namely, point-to-point channels and

broadcast channels. Examples of Point-to-point channels include wire lines,

microwake links, and optical fibers. Wire lines operate by guided electro-

magnetic waves, they are used for local telephone transmission. In micro-
wave links, the transmitted signal is radiated as an electromagnetic wave

in free space; microwave links are used in long-distance telephone trans-

mission. An opticalfiber is a low-loss, well-controlled, guided optical me-

dium^ optical fibers are used in optical communications.' Although these

three channels operate differently. they all provide a physical medium for

the transmission of signals from one point to another point^ hence. the

tdrm "point-to-point channels."

Broadcast channels, on the other hand, pro^ide a capability w here many
recci% iniz stations may be reached simultaneously from a single transmitter.

An example of a broadcast channel is a sareffite in geostationar - v orbit,

which co^ers about one third of the earth's surface. Thus, three such

satellites provide a complete cmerage of the earth's surface, except for

the polar regions.

............. 1.5 TRANSMISSION OF MESSAGE SIGNALS

To transmit a messa ,_, e (inforniation-bcarinL) si gnal over a communication
channel, 'A e may use analog or digiral methods. 'I he use of digital methods

offers, several important operational idvantages over analog methods. which

include the following:

1. Increased immunitY to channel noise and external interference.

2: Flexible operation of the sNstern.

3. A corninon formar for the tran^mission of different kinds of message
signals (e.g.. %oice signals. %idco signals, computer data).

4. Impro%ed securitv of communication through the use of encryption.

These advantages are attained, ho%^e%er, at the cost of incieascd lran5-

inission (channel) bandiiidth and increased s vstem (otnplexitv. The first

requirement is catered to b y the a%ailability of itideband (oinnumication

channels (e.g., optical fibers, satellite channels). The second requirement

is taken care ofby the use of verY lar^ge-scale integration (VLSI) technology,

which offers a cost-effective way of building hardware. According]) , , there

'For a discussion of electronic and photonic (optical) communication systems, see
Williams (1987).
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is an ever-increasing trend toward the use of digital communications and

away from analog .communications. This trend is being accelerated,by the

pervasive influence of digital computers in so many facets of our daily lives.

Nevertheless, analog communications remain a force to be reckoned with.

Most of the broadcasting systems and a large part of the telephone networks

in use today are analog in nature and, moreover, they will remain in service

for some time yet. It is therefore important that we understand the op-

erations and requirements of both analog and digital communications.

Notab l e among the digital methods that mav be used for the transmission

of m.e9sage signals over a communication channel is 
pulse-code modulation

(PCM). In PCM, the message signal is sampled, quantized, 
and then en-

coded. The sampling operation permits representation of the message signal

by a sequence of samples taken at uniformly spaced instants of time - Quan-

tization trims the amplitude of each sample to the nearest value selected

from a finite set of representation levels. The combination of sampling and

quantization permits the use of a code (e.g., binary code) for the'trans-

mission of a message signal. Pulse-code modulation and related methods

of analog-to-digital conversion are covered in Chapter 5.

When divital data are transmitted over a band-limited channel, a form

of interference known as inters ' vmbol interference may iesult. The effect of

intersymbol interference, if left uncontrolled, is to severely limit the rate

at which digital data may be transmitted over the channel. The cure for

controlling the effects of intersymbol interference lies in shaping 
the trans-

mitted pulse representing a binary symbol I or 0. lnters^mbol interference

is considered in Chapter 6.

To transmit a message signal (be it in analog or digital form) over a

band-pass communication channel (e.g.. telephone channel. microwave

-radio link. satellite channel) we need to modify the-gicssage signal into a

form suitable for effici. ent transmission over the channel. Modification of

the messa g e signal is achieved by means of a process known as 
modulation.

This process in
volves varying some parameter of a carrier wave in accord-

ance with the message signal in such a way that the spectrum of the mod-,

ulated wave matches the assigned channel bandwidth. Correspondingly,

the receiver is required to re-create the original message signal from a

degraded version of the transmitted signal after propagation through the

channel, The re-creation is accomplished by using a process known as

demodulation, which is the inverse of the modulation process used in the

transmitter.
There are other reasons for performing modulation. In particular, the

use of modulation permits multiplexing, that is, the simultaneous trans-

mission of signals from several message sources over a common channel.

Also, modulation may be used to convert the message signal into a form

less susceptible to noise and interference.

A carrier wave commonly used it) perform modulation is the sinusoidal

wave. Such a carrier wave has three independent parameters that can be

varied in accordance with the mes
s age signal, they are the carrier ampli-
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tude, phase. and frequency. The corresponding forms of modulation are
known as amplitude modulation, phase modulation, and frequency mod-
ulation, respectively. Amplitude modulation offers simplicity of imple-
mentation and a transmission bandwidth requirement equal to twice the
message bandwidth: the message bandwidth is defined as the extent of
significant frequencies contained in the message signal. With special pro-
cessing, the transmission bandwidth requirement may be reduced to a value
equal to the messa g e bandwidth, which is the minimum possible. Phase
and frequency modulation, on the other hand, are more complex, requiring
transmission bandwidths greater than that of amplitude modulation. In
exchange, they offer a superior noise immunity, compared to amplitude
modulation. Modulation techniques for analog and digital forms of message
signals are studied in Chapter 7.

............ 1.6 LIMITATIONS AND RESOURCES OF COMMUNICATION SYSTEMS

Ty
pically, in propagating through a channel, the transmitted signal is dis-

torted because of nonlinearifies and imperfections in thefrequencY response
,9f the channel. Other sources of degradation are noise and interference
picked up by the signal during the course of transmission through the
channel. Noise and distortion constitute two basic limitations in the design
of communication systems.

There are various sources of noise, internal as well as external to the
s y

stem. Although noise is random in nature. it may be described in terms
of its statistical properties such as the average power or the spectral distri-
bution of the average power. The mathematical discipline that deals with
the statistical characteristics of noise and other random signals isprobability
theory. A discussion of probability theory and the related subject of random
processes is presented in Chapter 8. Sources of noise and related system
calculations are covered in Appendix C.

In any communication system. there are two primary communication
resources to be employed, namely. average transmitted power and channel
bandwidth. The average transmitted power is the average power of the
transmitted signal. The channel bandwidth defines the range of frequencies
that the charintl can handle for the transmis s ion of signals with satisfactory
fidelity. A general system design objective is to use these two resources as
efficiently as possible. In most channels, one resource may be considered
more important than the other. Hence, we may also classif y communication
channels as power-lirnited or band-linuted. For example, the telephone
circuit is a typical band-limited channel, whereas a deep-space communi-
cation link or a satellite channel is typically power-limited.

The transmitted power is important because, for a receiver of prescribed
noisefigure, it determines the allowable separation between the transmitter
and receiver. Stated in another way, for a receiver of prescribed noise
figure and a prescribed distance between it and the transmitter, the avail-
able transmitted power determines the signal-to-noise ratio at the receiver
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input. This, in turn, determines the noise performance of the receiver.

Unless this performance exceeds a certain design level, the transmission
of message signals over the channel is not considered to be satisfactory.

The effects of noise in analog communications are evaluated in Chapter
9. This evaluation is traditionally done in terms of signal-to-noise ratios.
In the case of digital communications, however, the preferred method of
assessing the noise performance of a receiver is in terms of the average
probability of symbol error. Such an approach leads to considerations of
optimum receiver design. In this context, the matchedfilter offers optimum
perfotmance for the detection of pulses in an idealized form of receiver
(channel) noise known as additive white Gaussian noise. As such, the matched-

filter receiver or its equivalent, the correlation receiver, plays a key roleit
the design of digital communication systems. The matched filter and related
issues are studied in Chapter 10.

Turning next to the other primary communication resource, channel
bandwidth, it is important because, for a prescribed band of frequencies
characterizing a message signal, the channel bandwidth determines the
number of such message signals that can be multiplexed over the channel.
Stated in another way, for a prescribed number of independent message""
signals that have to share a common channel, the channel bandwidth de-
termines the band of frequencies that may be allotted to the transmission
of each message signal without discernible distortion.

There is another important role for channel bandwidth, which is not
that obvious. Specifically, channel bandwidth and transmitted (signal) power
are exchangeable in that we may trade off one for the other for a prescribed
system performance. The choice of one modulation scheme over another

)r the transmission of a message signal is often dictated by the nature of
us trad.e-,off. Indeed, the interplay between channel ba-ndwidth and signal-
-noise ratio, and the limitation that they impose on communication, is

highlighted most vividly by Shannon's famous channel capacity theorem.'
Let B denote the channel bandwidth, and SNR denote the received signal-
to-noise ratio. The channel capacity theorem states that ideally these two
parameters are related by

C = B 10920 + SNR), bits/s	 (1.7)

where C is the channel capacity, and a bit refers to a binary digit. The
channel capacity is defined as the maximum rate at which information may
b, transmitted without error through the channel; it is measured in biLs
per second. Equation 1.7 clearly shows that for a prescribed channel ca-
pacity, we may reduce the required SNR by increasing the channel band-

'In 1948, Shannon published a paper that laid the foundations of communication
theory (Shannon, 1948). The channel capacity theorem is one of three theorems
presented in that classic paper.
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width B. Moreover, it provides an idealized framework for comparing the
noise performance of one modulation system against another.

Finally, mention should be made of the issue of system complexity. We
usually find that the efficient exploitation of channel bandwidth or trans-
mitted power or both is achieved at the expense of increased system com-

plexity. We therefore have to keep the issue of system complexity in mind,
alongside that of channel bandwidth and transmitted power when consid-
ering the various trade-offs involved in the design of communication sys-
tems.





......... CHAPTER TWO

Lthis chapter, Ae bcon our stucl^ of Fourier analNsis. We first revic'A

the Fourier serit`s, bN means of Ahich Ae are able to rcprcscnt a periodic

signal as an infinite sum of sine-wa^c components. Next, 'Ae dc\clop the

Fourier tranAform, Ahich performs a similar role in the anak^is of

nonperiodic signals. I he Fourier transform is more general in

application than the Fourier series.' The primary moti%ation for using

the Fourier series or the Fourier transform is to obtain the spectrum of a

'The origin of the theory of Fourier series and Fourier transform is found in

J. B. J. Fourier, The Analytical Theory of Heat (trans. A. Freeman), Cambridge

University Press, London, 1878.

13
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given signal, which describes the frequency content of the signal. In effect,

this transformation provides an alternative method of viewing the signal

that,is often more revealing than the original description of the signal as

a function of time.

2.1 FOURIER SERIES

Let gp (t) denote a periodic signal with period T, By using a Fourier series

expansion of this signal, we are able to resolve the signal into an infinite

sum of sine and cosine terms. This expansion may be expressed in the form

gp (t) = ao + 2	
a^ (:.S(27rnt) 

+ b, sin 
27rnt	

(2.1)
TO	 ( —To ) I

where the coefficients a, and b, represent the unknown amplitudes of the

cosine and sine terms, respectively. The quantity nIT O represents the nth

harmonic of the fundamental frequency fo = I/ To. Each of the cosine and

sine functions in Eq. 2.1 is called a basis function. These basis functions

form an orthogonal set over the interval To in that they satisfy the following

set of relations:

Cos 
(27r.t) cos(27r 

tit) dt	
To/2,	 m = n	

(2.2)

	

f T""2,2	 TO	 TO	 0,	 m 76 n

fT,T'^2^' C.,(2,.t) 

sin(^" ) dt = 0	 for all m and n	 (2.3)
TO	 TO

fT" 

sin 
27zmt 

sin 
27rnt 

dt — 
TO /2,	 m	 n	

(2.4)

	

1.', 2	 ( TO )	 ( TO )	 to,	 m 54 n

To determine the coefficient a^. we integrate both sides of Eq. 2.1 over

a complete period. We thus find that ao is the mean value of the periodic

signal gp (t) over one period, as shown by the time average

T^J 2

	

g,, (t) dt	 (2.5)
TIO -r,/2

To determine the coefficient a., we multiply both sides of Eq. 2.1 by the

cosine function cos(2nnt/To) and integrate over the interval —TO/2 to

To12. Then, using Eqs. 2.2 and 2.3, we find that

a. = 
I T^12 

gp (t) Cos 
(Inn) 

d,,	 n = 1, 2,	 (2.6)
TO f- T^12	 TO
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Similarly, we find that

b^ =	
f"'2' g,(,)	 dt,	

I ^ 2,	 (2.7)

	

To 	 ,	 T"

To apply the Fourier series representation of Eq. 2. 1, it is sufficient that
inside the inter% al —(T,,12) -_ t ^^ (T,,12) the function g,(t) satisfies the
following conditions:

1. The function g,(t) is single-valued.

^- The function g,(1) has a finite number of discontinuities.

3. The function g,(t) has a finite number of maxima and minima.

4. The function gp (t) is absolutely integrable. that is,

I g, (t) I dt < x

where g,(t) is assumed to be complex valued.

These conditions are known as Dirichlet's conditions. They are satisfied by
the periodic signals usually encountered in communication systems.

COMPLEX EXPONENTIAL FOURIER SERIES

The Fourier series of Eq. 2.1 can be put into a much simpler and more

elegant form with the use of complex exponentials. We do this by substi-
tuting in Eq. 2.1 the exponential form for the cosine and sine, namely:

	

COST)

27int	 (L2gnt)
2 exp	 + exp

	

TO 	 I	 TO	 T^

sin 
2;rnt) _ I [ exp(j277n!) _ exp( — j27r it t)

2j	
^ TO	 TO

We thus obtain

9,(t) ^ a. +	 [(a. — jb,) exp 
(27,nl)

TO

7,
+ (a. + jb,) exp 

(_j2 

T^ 

n,	

(2.8)

The two product terms inside the square brackets in Eq. 2.8 are the complex
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conjugate of each other. We may also note the following relation:

	

(a. + jb,) exp(	 (a. — jb,) 
exp (,2,,nl)

T"	L

Let c, denote a complex coefficient related to a, and b, by

c^ = la, — jb_	 n > 0
a, ) ,.	 J1 = 0	 (2.9)

a, + jb,,	 n < 0

Accordingly, we may simplify Eq. 2.8 as follows:

g,(t)	 c. exp 
(j2nnt)
	 (2.10)

Tl^

where

'2

	

C, ^ 

TO 
f T'T oo exp	

T̂) dt,
	 n	 0, -1, ±2.... (2.1 1

The series expansion of Eq. 2.10 is referred to as the complex exponential

Fourier series. The c, are called the complex Fourier coefficients. Equation

2.11 states that. given a periodic signal g,(t). we may determine the com-

plete set of complex Fourier coefficients. On the other hand, Eq. 2.10

states that, given this set of values, we may reconstruct the original periodic

signal exactly.

According to this representation, a periodic signal contains all frequen-

cies (both positive and negative) that are harmonically related to the fun-

damental. The presence of negative frequencies is simply a result of the

fact that the mathematical model of the signal as described by Eq. 2. 10

requires the use of negative frequencies. Indeed, this representation also

requires the use of a complex-valued basis function exp(j27znt/T,,), which

has no physical meaning either. The reason for using complex-valued basis

functions and negative frequency components is merely to provide a com-

pact mathematical description of a periodic signal, which is well-suited for

both theoretical and practical work.

DISCRETE SPECTRUM

The representation of a periodic signal by a Fourier series is equi
v
alent to

the resolution of the signal into its various harmonic components. Thus,

using the complex exponential Fourier series, we find that a periodic sig-
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nal gp (i) with period To has components of frequencies 0, ±fu, ±2fo,

±3fg, . . . , and so forth, where fo = IITO is the fundamental frequency.

That is, while the signal g,(t) exists in the time domain, we may say that

its frequency-domain description consists of components of frequencies.

0, ±fo, ±2fo, . . . , called the spectrum. 2 If we specify the periodic signal

gp (t), we can determine its spectrum; conversely, if we specify the spectrum,

we can determine the corresponding signal. This means that a periodic

signal gr (t) can be specified in tAo equivalent ways: (1) the time-domain

representation where gp (t) is defined as a function of time, and (2) the

frequency-domain representation where the signal is defined in terms of

its spectrum. Although the two descriptions are separate aspects of a Piven

phenomenon, they are not independent of each other, but are related, as

Fourier theory shows.

In general, the Fourier coefficient c, is a complex number: so we may

express it in the form

c. = lc.^ exp[j arg(c,)]	 (2. 12)

The term c,J defines the amplitude of the nth harmonic component of the

periodic signalg,(t), so that a plot of c,J versus frequency yields the discrete

amplitude spectrum of the signal. A plot of arg(cJ versus frequency yields

the discrete phase spectrum of the signal. We refer to the spectrum as a

discrete spectrum because both the amplitude and phase of c, have nonzero

values only for discrete frequencies that are intever (both positive and

negative) multiples of the fundamental frequency.

For a real-valued periodic function gp(t), we find from the definition of

the Fourier coefficient c, given by Eq. 2. 11 that

C_ = C,* 	(2.13)

where c: is the complex conjugate of c,. We therefore have

C -1 = lc^l	 (2.14)

and

arg(c-,) = —arg(c,)	 (2.15)

That is, the amplitude spectrum of a real-valued periodic signal is symmetric

(an even function of n) and the phase spectrum is asymmetric (an odd

function of n) about the vertical axis passing through the origin.

2The term "spectrum" comes from the Latin word for "image." It was originally

introduced by Sir Isaac Newton. For a historical account of spectrum analysis, see

Gardner (1987).
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..........................................................................................................................

EXAMPLE I PERIODIC PULSE TRAIN

Consider a periodic train of rectangular pulses of duration T and period

To, as shown in Fig. 2. L For convenience, the origin has been chosen to

coincide with the center of the pulse. This signal may be described ana-

	

lytically over one period, — (TO /2) -- t	 (Ta12), as follows

	

T	 T
A,	 t

	

g' ( t )	 2	 2	 (2.16)

0,	 for the remainder of the period

Using Eq. 2.11 to evaluate the complex Fourier coefficient c., we get

I f T12	 j27rnt

	

c^	 A exp	 dt
TO - T

A	 (n7rT

n7r 
sin ( 

TO	
n = 0, ±I, ±2....	 (2.17)

To simplify notation in the foregoing and subsequent results, we will

	

use the sinc function defined by	
. I

sinc(A) = 
sin(ir;.)

7r ;L

where ;. is the independent variable. The sinc function plays an important

role in communication theory. As shown in Fig. 2.2, it has its maximum

value of unity at ). = 0, and approaches zero as ), approaches infinity,

oscillating through positive and negative values. It goes through zero at

^ = t1, t2, . . . , and so on. Thus, in terms of the sinc function we

may rewrite Eq. 2.17 as follows

TA
c, = 

T. 
sinc 

(nT)

TO

R.- 7 1

(2.18)

(2.19)
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Figure 2.2

The sinc function.

Un

(b I

Figure 2.3

Discrete spectrum of periodic train of rectangular pulses for duty cycle T. T^ = 0.2
(a) Amplitude specrrum, (b) Phase spectrum.
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where n has discrete values only. In Fig. 2.3 we have plotted the amplitude
spectrum 1c,j and phase spectrum arg(cj versus the discrete frequency

n1T, for a duty cycle TIT, equal to 0.2. We see that

1. The line spacing in the amplitude spectrum in Fig. 2.3a is determined

by the period T,.

2. The envelope of the amplitude spectrum is determined by the pulse
amplitude A and duration T.

3. Zero-crossings occur in the envelope of the amplitude spectrum at fre-
quencies that are multiples of I!T.

4. The phase spectrum takes on the values 0' and ±180', depending on
the polarity of sinc(nT/T,,); in Fig. 2.3b we have used both 180' and

180' to preserve asymmetry.
............................................................................................................................

EXERCISE I Plot the amplitude spectra of rectangular pulses of unit am-

plitude and the following two values of duty cycle:

a.
T 

= 0.1
TO

T
b. — = 0.4

To

........... 2.2 FOURIER TRANSFORM

In the previous sections we used the Fourier series to represent a periodic
signal. We now wish to develop a similar representation for a signal g(t)
that is nonperiodic, the representation being in terms of exponential time

functions. In order to do this. we first construct a periodic function g,(t)
of period T, in such a way that g(t) defines one cycle of this periodic
function. as illustrated in Fig. 2.4. In the limit we let the period T, become
infinitely large, so that we may \,%rite

g ( l ) = lim 00	 (2.20)
T,-,

Representing the periodic - function g.(r) in terms of the complex ex-

ponential form of the Fourief series. we have

gjt)	 c, exp	 (2.21)
T,
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0
W

gp

Al,

TO	 0	 TO

Figure 2.4

The construction of a periodic function from an arbitrarily defined function of time.

where

C^ = I fTT"" g,(t) exp	
In n1) 

dt	 (2.22)
TO	 TO

Define

Af = 
I

TO

n
f.

TO

and

G(fj = c.To

Thus, making this change of notation in the Fourier series representation

of gp (t), given by Eqs. 2.21 and 2.22, we get the following relations for

the interval — (TO/2) ^, t ^, (To/2),

gp(t)	 G(f.) e.p(j2.f.t) Af	 (2.23)

where

G(f.) = f^)2 g,(t) exp(—j2nf,t) dt	 (2.24)
- T^12
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Suppose we now let the period To approach infinity or, equivalently, its
reciprocal Jf approach zero. Then we find that, in the limit, the discrete
frequency f. approaches the continuous frequency variable f, and the
discrete sum in Eq. 2.23 becomes an integral defining the area under a
continuous function of frequency f, namely, G(f) exp(j27rft). Also, as
To approaches infinity, the function g p (t) approaches g(t). Therefore, in
the limit, Eqs. 2.23 and 2.24 become, respectively,

g (t)	 f G(f) exp(j27rft) df	 (2.25)

where

	

G(f) = L g(t) exp( — j27rft) dt	 (2.26)

We have thus achieved our aim of repr -senting an arbitrari1v defined signal
g(t) in terms of exponential time fun-'tions over the entire time interval
from -- to -. Note that in Eqs. 2.25 and 2.26 we have used a lowercase
letter to denote the time function and an uppercase letter to denote the
corresponding frequency function.

Equation 2.26 states that, given a time function g(t), we can determine
a new function G(f) of the frequency variable f. Equation 2.25 states
that, given this new or transformed function G(f), we can recover the
original time function g(t). Thus, since from g(t) we can define the function
G(f) and from G(f) we can reconstruct g(t), the time function is also
specified by G(f). The function G(f) can be thought of as a transformed
version of g(t) and is referred to as the Fourier transform of g(t). The time
function g(t) is similarly referred to as the inverse Fourier transform of
G(f). The functions g(t) and G(f) are said to constitute a Fourier trans-
form pair.

DIRICHLE7'S COND177ONS

For a signal g(t) to be Fourier transformable, it is sufficient that 9(t) satisfies
Dirichlet's conditions:

1. The function g(t) is single-valued, with a finite number of maxima and
minima and a finite number of discontinuities in any finite time interval.

2. The function g(t) is absolutely integrable, that is,

f. lg(()l dt < -

The Dirichlet conditions are not strictly necessary but sufficient for the
Fourier transformability of a signal These conditions include all energy
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signals, for which we haVC3

f. Ig(t)J I dt < w

In the two conditions described herein, the signal g(t) is assumed to be
complex.

NOTATIONS

The formulas for the Fourier transform and the inverse Fourier transform
presented in Eqs. 2.25 and 2.26 are written in terms of time t and frequency
f, with t measured in seconds (s) and f measured in hertz (Hz). The
frequency f is related to the angular frequency (i as (o = 27rf, which is
measured in radians per second (rad/s). We may simplify the expressions
for the exponents in the integrands of Eqs. 2.25 and 2.26 by using (") instead
of f. However, the use of f is preferred over o) for two reasons. First, we
have the mathematical symmetry of Eqs. 2.25 and 2.26 with respect to each
other. Second, the frequency contents of communication signals (i.e.,
speech and video signals) are usually expressed in hertz.

A convenient shorthand notation for the transform relations of Eqs.
2.26 and 2.25 is

	

G(f) = F(g(t)]	 (2.27a)

g(r) = F - '[G(f)] (2.27b)

Another convenient shorthand notation for the Fourier transform pair,
represented by g(t) and G(f), is

g W	 G(f)	 (2.28)

The shorthand notations described herein are used in the text where ap-
propriate.

SPECTRUM

By using Fourier transformation, an energy signal g(t) is represented by
the Fourier transform G(f), which is a function of the frequency variable

'if the function gM is such that the value of f-. I gf0j' dt is defined and finite, then
the Fourier transform G( f) of the function g(t) exists and

lirn	 1,7(t)	 G(f) exp(j21rft) dfi l dt	 0

This result is known as Plancherel's theorem,
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f. A plot of the Fourier transform G(f) versus the frequency f is called
the spectrum of the signal g(t). The spectrum is continuous in the sense

that it is defined for all frequencies. In general, the Fourier transform G(f)
is a complex function of the frequency f. We may therefore express it in
the form

G(f) = IG(f)l exp(j0(f)]	 (2.29)

where JG(f)l is called the amplitude spectrum of g(t), and 0(f) is called
the phase spectrum of g(t).

For the special case of a real-valued function g(t), we have

G(f) = G*(—f)

Therefore, it follows that if g(t) is a real-valued function of time t, then

IC-( — f)l = G(f)J	 (2 ^ 30)

and

q(_f) = _ 0(f)	 (2.31)

Accordingly, we may make the following statements on the spectrum of a

real-valued signal:

I. The amplitude spectrum of the signal is an.even function of the fr.^
quency; that is, the amplitude spectrum is symmetric about the vertical
axis.:

2. The phase spectrum of the signal is an odd function of the frequency;

that is, the phase spectrum is antisymmetric about the vertical axis.

These two statements are often summed up by saying that the spectrum
of a real-valued signal exhibits conjugate symmetry.

EXAMPLE 2 RECTANGULAR PULSE

Consider a rectangular pulse of duration T and amplitude A, as shown in
Fig. 2.5. To define this pulse mathematically in a convenient form, we use
the following notation

	

rect (t ) = 1,
	 —1 < t <	

(2.32)

	

to,	 Itl >

FA_
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T
2

Figure 2.5

Rectangular pulse.

which stands for a rectangular function of unit amplitude and unit duration

centered at t = 0. Then, in -terms of this function, we may express the

rectangular pulse of Fig. 2.5 simply as follows:

g(t) = A rect —
Tt

The Fourier transform of this rectangular pulse is given by

G(f) = 
fT12 

A exp(—j2;zft) dt
T12

= AT 
sin(7rfT)

I 7rfT

= A T sinc(fT)

We thus have the Fourier transform pair

A rect ( 
^'̂)	

A T sinc(f T)	 (2.33)

, The amplitude spectrum JG(f)j of the rectangular pulse g(t) is shown

plotted in Fig. 2.6a. From this spectrum, we may make the following

observations:

1. The amplitude spectrum has a main lobe of total width 21T, centered

on the origin.
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3	 _ 2	 _ 1	 0	 1	 2	 3
T	 T	 T	 T 7	 7

(a)

0 (f),
degrees

180 1	

2

F-1	 T T T
3	 0

T	 T T-	 F180

(b)

Figure 2.6

Spectrum of rectangular pulse. (a) Amplitude spectrum. (b) Phase spectrum.

2. The side lobes, on either side of the main lobe, decrease in amplitude

with increasing Ifl. Indeed, the amplitudes of theside lobes are bounded

b v the curve I / ^ f 1.

3. The zero crossings of the spectrum occur at f = -- I / T, ± 2/ T. . . .

The phase spectrum 0(f) of the rectangular pulse g(t) is shown plotted

in Fig. 2.6b. Depending on the sign of the sinc function sinc(f T), the phase

spectrum takes on the values 0' and ± 180' in an asymmetric fashion.

..........................................................................................................................
............ . ................................ . .................. . ................... . ............ I ....................

EXAMPLE 3 EXPONENTIAL PULSE

A truncated form of decaying exponential pulse is shown in Fig. 2.7a. We

may define this pulse mathematically in a convenient form by using the
unit step function:

	

ii,	 t > 0

u(I	 t = 0	 (2.34)

	

0,	 t < 0

I

f



0	 1.0

1.)

-1.0	 0

(b)

I

9 U
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Figure 2.7
(a) Decaying exponential pulse. (b) Rising exponential pulse.

We may then express the exponential pulse of Fig. 2.7a as

g ( t ) = exp(—t)u(t)	 (2.35)

The Fourier transform of this pulse is

G(f)	 exp(—t) exp(—j2nft) dt

f

j. 
exp[—t(l + j27rf)] dt

0

(2.36)T+ _J271f

Thus, combining Eqs. 2.35 and 2.36, we obtain the Fourier transform pair:

exp( — 0 U ( t )	 (2.37)
I + j27rf

Figure 2.8 shows the spectrum of the decaying exponential pulse.
A truncated rising exponential pulse is shown in Fig. 2.7b, which is

defined by

g(l) = exp(()U(—')	 (2.38)

Note that u	 t) is equal to unity for t < 0, one-half at t 	 0, and zero
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1	 0	 1
T^	 T^

(a)

0 (A
degrees

- - - - - - - - - - - - 90

-tZ127r 0 

41 

1/27r

1/,

f

r

-^Ut - - - - - - - - - - - -

(b)

Figure 2.8

Spectrum of decaying exponential pulse. (a) Amplitude spectrum. (b) Phase
Spectrum.

for t > 0. The Fourier transform of this pulse is given by

I

	

G(f)	 exp(t) exp( —j27rft) dt

fexp[t(I — j27rf)] dt

I

J2.f
	

(2.39)

We thus have the Fourier transform pair:

exp(t)u( —t)	
1

1 — j27rf
	

(2.40)

Figure 2.9 shows the spectrum of the rising exponential pulse.

f

I

P
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-1/27r
f

0 1/21r

-45
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(b)

Figure 2.9
Spectrum of rising exponential pulse. (a) Amplitude spectrum. (b) Phase spectrum.

Comparing the spectra of Figs. 2.8 and 2.9, we may make the following

two observations:

1. The decaying and rising exponentials of Fig. 2.7 ha
v
e the same ampli-

rude spectrum.

2. The phase spectrum of the rising exponential is the negative of that of

the decaving exponential.

.......................................................................................................................

................. 2.3 PROPER77ES OF THE FOURIER TJMNSFORM

It is useful to have a feeling for the relationship between a function g(t)

and its Fourier transform G(f), and for the effect that various operations

on the function g(t) have on the transform G(f). This may be achieved

by examining certain properties of the Fourier transform. This section

describes 10 of these properties, which will be proved, one by one. These

properties are summarized in Table I of Appendix D.

f

I

I

I
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PROPERTY I UNEARITY (SUPERPOSITION)

Let g, (t) ^^ G, M and g,(t) _-f G,V) . Then for all constants a and b, we have

ag,(t) + bg,(t)	 aG,(f) + bG,(f)	 (2.41)

The proof of this property follows simply from the linearity of the in-

tegrals defining G(f) and g(t).

........................................................... I .............................................................

EXAMPLE 4 DOUBLE EXPONENTIAL PULSE

Consider a double exponential pulse defined by (see Fig. 2. 10)

exp( — t).	 t > 0

g ( 1 )	 t	 t = 0

exp(t),	 I < 0

exp(—jtj)	 (2.42)

This pulse may be vie"ed as the sum of a truncated decaying exponential

pulse and a truncated rising exponential pulse. Therefore, using the lin-

earity property and the Fourier-transform pairs of Eqs. 2.37 and 2.40, we

find that the Fourier transform of the double exponential pulse of Fig. 2. 10

is as follows

G(f) =	
I	

+ — I
I + j27tf	 I — j27zf

2

1 + (27rf)2

We thus have the Fourier transform pair

2
exj)( — I

l
l)

	

	 (2.43)
I + (27tf)2

-10	 0	 1'0

Figure 2.10

Double exponential pulse.

......................................................................................................
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PROPERTY 2 
77ME SCALING

Let g(t) .-± GM. Then,

	

g(at) — 
1 
G 

f	
(2.44)

	

lal	 (a)

where a is a time-scaling factor that may be positive or negative.

To prove this property, we note that

	

F[g(at)]	 g(at) exp( —j27rft) dt

Set r = at. There are two cases that can arise, depending on whether the

scaling factor a is positive or negative, If a > 0, we get

	

F[g(at)] = 
1	

g(r) exp	 j27r 
(f) 

T dr
a L	 I —	 a I

1 
G f

a (-)

On the other hand, if a < 0, the limits of integration are interchanged so
that we have the multiplying factor — (1 la) or, equi^ alently, I / ^al. This

completes the proof of Eq. 2.44.

Note that the function g(at) represents g(t) compressed in time by a

factor a, whereas , the function G(f la) represents G(f) expanded in fre-

quency by the sarne factor a. Thus the scaling property states that the

compression of a function g(t) in the time domain is equivalent to the

expansion of its Fourier transform G(f) in the frequency domain by the

same factor, and vice versa.

............. . .....	 . ....... .............................. I ....................

EXAMPLE 9 RECTANGULAR PULSE ICONMUED)

Example 2 evaluated the Founler transform of a rectangular pulse;

the result of the evaluation is gi^en by the Fourier transform pair of

Eq. 2.33. For convenience of presentation, let the rectangular pulse

be normalized to have unit amplitude and unit duration. Then, putting

A = 1 and T = I in Eq. 2.33, we have

rect(t)	 sinc(f)



—1	 0	 1 -1	 0
f

Parameter a = 
-12
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Hence, applying the time-scaling property to this Fourier transform pair,

we get

rect(at)	 sinc
alal	 (f)

Figure 2.11 shows the rectangular pulse and its amplitude spectrum for

three different values of the time-scaling factor a, namely a = 1/2, 1, 2.

With a = I regarded as the frame of reference, we may view the use of

a = 1/2 as expansion 
in 

time, and a = 2 as compression in time. These

g(t)
	

G(f)j

1.0

1.0

0
	

—3 —2 — 1	 0	 1	 2	 3 
f

2

Parameter a = I

g(t)

1.0
	

JG(f)l

0^5

L 0
	

2	 0	 2
	

f

4	 4

Parameter a = 2

Figure 2.11
The inverse relation between time- and frequency-domein descriptions of
rectangular pulse g(t) = rect(at).
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observations are confirmed by the three time-domain descriptions depicted

on the left side of Fig. 2.11. The corresponding effects of these time-scale

changes on the amplitude spectrum of the rectangular pulse are shown on

the right side of Fig. 2.11. The two sets of plots depicted in this figure

clearly show that the relationship between the time-domain and frequenc y -

That is, a narro'A pulsedomain descriptions of a signal is an inverse one.

(in time) has a wide spectrum (in frequencv), and vice versa.

......................................................................................................

EXERME2 Example 3 showed that the decaying exponential pulse and

rising exponential pulse of Fig. 2.7 have the same amplitude spectra but

opposite phase spectra. Use the time-scaling property of the Fourier trans-

form to explain this behavior.

PROPERrY 3 DUALIrY

lfg(t)	 GM, then

GW	 g^ - f)	 QA5)

This property follows from the relation defining the inverse Fourier

transform by writing it in the form

g(-0	 G(f) exp( —127rft) df

and then interchanging t and f. Note that G(t) is obtained from 6(f) b^

using t in place of f, and g( — f) is obtained from g(t) by using — f in place

of t.

............... ....................................................................................................

EXAMPLE 6 SINC PULSE

Consider a signal g(t) in 'the form of a sinc function, as shown b^

	

g(t) = A sinc(2VVt)	 (2.40)

To e
valuate the Fourier transform of this function, 'Ac appl y the duaht^

and time-scalin g properties to the Fourier transform pair of Eq. 2.33. Then,

recognizing that the rectan g ular function is an even function, we obtain

the following result:

t
	rcct	 (2 4-;A sinc(2VVt)
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G(f)

2W

t	 F 0
(bi

Figure 2.12
(a) Sinc pulse g(t). (b) Fourier transform G(f).

%% hich is illustrated in Fig. 2.12. '*Ve thus see that the Fourier transform of
a sine pulse is zero for > W Note also that the sine pulse itself is onl%

as ymptoticallN limited in time.

I .................. . .................................................................................................... :

EXERCISE 3 Show that the total area under the curve of the sine function
equals one; that is,

fsinc(t) dt = I

EXERCISE 4 Consider a one-sided frequency function G(f), defined by

exp(—f),	 f > 0

	

G (f) = 1- 1 	 f = 0
2

	

10,	 f < 0

Applying the duality property to the Fourier transform pair of Eq. 2.40,
write the inverse Fourier transform of G(f).

PROPERTY 4 THWE SMFTING

If gft) _^ G(f), then for a constant tirne shift t,,

g (t - tj	 G(f) exM -j2,ftr). 	 1 2.48)
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To prove this property, we take the Fourier transform of g(t — to) and

then set r = t — to to obtain

F[g(t — t,)] = exp(—j21rfto) f^ g(r) exp( — j27ifr) dT

= exp(—j27rfto)G(f)

The time-shifting property states that if a function g(t) is shifted in the

positive direction by an amount to, the effect is equivalent to multiplying

its Fourier transform G(f) by the factor exp(—j27rfto). This means that

the amplitude of G(f) is unaffected by the 'time' shift but its phase is changed

by the amount — 27rf to.

EXAMPLE 7 RECTANGULAR PULSE (CONTINUED)

Consider the rectangular pulse g,(t) of Fig. 2.13a, which starts at time

t ^ 0 and terminates at t = T. This pulse is defined by

g' (t) = A rect ( 
t 
I — 

T T2 ) I	 - 

(149)

This pulse is obtained by shifting the rectangular pulse of Fig. 2.5 to the

right by T12 seconds. Therefore, applying the time-shifting property to the

Fourier transform pair of Eq. 2.33, we find that the Fourier transform

G,(f) of the rectangular pulse g,(t) defined in Eq. 2.49 is given by

Gjf) = AT sinc(f T) exp(—j7zf T)	 (2.50)

Figure 2.13
Time-shifted versions of a rectangular pulse.
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Consider next the rectangular pulse 9b( l ) of Fig. 2.13b, which starts at
time I = — T and terminates at t = 0. This second pulse is defined by

&W = A rect ( 
t + T T12 )

	
(2.51)

The pulse 9b(t) is obtained by shifting the rectangular pulse of Fig. 2.5 to
the left by T12 seconds. Therefore, applying the time-shifting property to
the Fourier transform pair of Eq. 2.33, we find that the Fourier transform
Gb(f) of the rectangular pulse 9bW defined in Eq. 2.51 is given by

GbW = A T sinc(f T) exp(j7rf T)	 (2.52)

PROPERTY 5 FREQUENCY SHIFTING

If g(t) = G(f), then for a constant frequency shift f,,

exp(j2nfj) g(t)	 G(f — fj.	 (2.53)

This property follows from the fact that

F[exp(j27zfc t)g(t)j =	 g(t) exp[ — j2nt(f — fc)] dt

= G(f — fl)

That is, multiplication of a function g(t) by the factor exp(j27rfc t) is equiv-
alent to shifting its Fourier transform G(f) in the positive direction by the
amount fc . Note the duality between the time-shifting and frequency-shift-
ing operations.

EXAMPLE a RADIO FREQUENCY PULSE

Consider the radio frequency (RF) pulse signal g(t) shown in Fig. 2.14a,
which consists of a sinusoidal wave of amplitude A and frequency fc . The
pulse occupies the interval from t = — T12 to t = T12. This signal is
referred to as an RFpulse when the frequency f, falls in the radio-frequency
band. Such a pulse is commonly used in radar for the detection of targets
of interest (e.g., aircraft) and for the estimation of useful target parameters
(e.g., range).

The signal g(t) of Fig. 2.14a may be expressed mathematically as follows:

9(t) = A rect 

4 1̂) 

cos(27rfj)	 (2.54)
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I

	

2

	

I
T

^b'

Figure 2.14

(a^ RF pulse^ (b) Amplitude spectrum.

To find the Fourier transform of this signal, we note that

cos(27rf,t) = J[exp(j2nf^t) + exp( —j27rf, t)]

Therefore, applying the frequency-shifting property to the Fourier trans-

form pair of Eq. 2 33, we get the desired result

A T

	

G(f)	 ^sinc[T(f — f)] — sinc[T(f , f,)]) 	 (2.55)

2
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When the number of c^cles within the pulse is large, that is,
-f,.T > 1, 'Ae

may use the approxim ate result

A T
sinc[ T(f – f,)],	 f > o

G (f) (2. 5o)
A T
— sinc[T(f + f,)],	 f < o
2

The amplitude spectrum of the RF pulse is shown in Fig. 2.14b. Thi's

diagram. in relation to Fi g . ".6a, cleariv illustrates the frequenc)-shiftina

property of the Fourier transform.

...................................................................................................... ...................

EXERCISE5 Consider an exponentially damped sinusoidal wave defined
by

g(t) =	

exp( — t) sin(27zft), 	 t > o	
(2.57)to,	 t - 0

Using the expansion

sin(27rf,t) = 1 lexp(j21rft) — exp(—j27rf,t)J
2j

and applying the frequency-shifting property to the Fourier transform pair

of Eq. 2.37, write the Fourier transform of g(t).

PROPERTY 6 DIFFERENTIATION IN THE TIME DOMAIN

Let g(t) = G(f), and assume that the first derivative of g(t) is Fourler trans-
formable. Then

d
— 9 (t) ^^ i2, fG (f)	 (2.58)or

Thatis, diffe rentiation ofa time function g(t) has the effect ofmultiplying its
Fourier transform G(f) by the factor j2,7 f

This result is obtained simpl y by taking the first clemati^e of both md"
of the relation defining the inverse Fourier transform of G(f), namely,

Eq. 2.25, and then interchanging the operations of integration and diffe,

entiation; we are justified to make this interchange because integration

and differentiation are both linear operations.

Multiplication of the Fourier transform G(f) by the factor j27rf on the
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right side of Eq. 2.58 implies that differentiation of g(t) with respect to

time enhances the high frequency components cif the signal g(l).

We may generalize Eq. 2.58 as follows:

d^ 
g(t) ;=^ (j21tf)"G(f)

dt"

.........................................................................................................................

EXAMPLE 9 GAUSSIAN PULSE

In this example we wish to use the differentiation property of the Fourier

transform to derive the pulse signal g(t) whose Fourier transform G(f)

has the sanic form.

Let g(t) denote the pulse as a function of time, and G(f) its Fourier

transiorm. We note that by differentiating the ormu a or t e our er

transform G(f) with respect to f. we have

d
_j27ztg(t)	 G(f)	 (2.60)

df

-which expresses theeffectof differentiation in the frequency ^omain. Equa-

tion -1 .60 is the dual of,Eq. 2.58 that describes the time-differentiation

propertN. Dividing both sides of Eq 2.00 by j, we may also write

27TIg^t)" "'. ,	

^f 
G(f)	 (2.61)

Suppose that the pukc-si g nal g(t) satkfics the first-order differential equa-

tion

d
— '^ ( t	 1,4 ( t

dt

'Ihe imposition of this condition on the puke signal g(:) is equl%alent to

equating the left-hand mctnhcr^ of Eq , '. S 8 arid 2.61 Corresponclingl^.

"e ma^ qu,tte the ri g ht-hand members ot Eq ,,. 2. 5 8 and 2.ol, and thus

%% rite

d 
G (f)	 2 7zi G (j

df

Since j '	 1, we ma^ re%k rite Eq. 2.63 as

- 
d 

G(j	 2,7j ("( t

df

(2.59)

(2,62)

I

(Z.63)

(2 64)
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g(l) I

0 47	 0	 0.47

Figure 2.15

Gaussian pulse

We ma^ no^k ^tate that if a pulse si g nal g(t) satisfies the first-order differ-
ential equation (2.02). then its Fourier transform G(f) must satisfy the
first-order differential equation (2.64). Ho^ke%er. these two differential

equations ha^e exactly the same mathematical form. Hence, the pulse

signal and its transform are the same function. In other words, pro^icled

that the pulse si g nal g(t) satisfies the differential equation (2.62), then
G( f) = Of) -Soh, ing Eq. 2.62 for g(l), we obtain

	

g(l) ^ exp( —7Tt-')	 (2.65)

This result is shown plotted in Fig. 2.15,

The pulse defined bx Eq. 2.65 is called a Gaussianpulse, the name being

clemed from the similaritv of the function to the Gaussian probability

density function. We conclude therefore that the Gaussian pulse is its own

Fourier transform as shown bv

	

CX P( — rt - ^=^ CXP( —	 7rf-	 (2.66)

..........................................................................................................................

EXERCISE a Show that

	fexp( — irt') dt = 1	 (2.67)

Hint: Consider the formula for the Fourier transform of exp( — nt') eval-
uated at f = 0.
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PROPERTY 7 INTEGRATION, IN - THE TIME DOMAIN

Let g(t) = G(f). Then, provided G(0) = 0, we have

L g(t) dt	 T2 
1 
rf G(f)	 (2.68)

That is, integration ofa time function g(t) has the effect of dividing its Fourier
transform G(f) by the factor j27z f, assuming that G(0) is zero.

To prove this property, we write the Fourier transform of the integrated
signal as follows

F[f . g(,) dr]	 L exp( —j27rft) 
L 

g(r) dr dt	 (2.69)

On the right side of this relation, we have a definite integral with respect
to the variable t. Clearly, we may view the corresponding integrand as the
product of two time functions: the exponential exp(—j27-ft) and the in-
tegrated signal f'-.g(r) dr. Hence, using the formula for integration by
parts and assuming that

G (0) = f- g(r) dr = 0

and then simplifying the result, we get the relation of Eq. 2.68. The con-
dition G(0) = 0 ensures that g(r) integrates out to zero as r approaches
infinity. The more general case, for which G(0) ,6 0, is treated later in
Section 2.5.

Division of the Fourier transform G(f) by the factor j27rf on the right
side of Eq. 2.68 implies that integration of g(t) with respect to time sup-
presses the high-frequency components of g(t). As expected, this effect is
the opposite of that produced by differentiation of g(t).

..........................................................................................................................

EXAMPLE 10 TRIANGULAR PULSE

Consider the doublet pulse g,(t) shown in Fig. 2.16a. By integrating this
pulse with respect to time, we obtain the triangular pulse gjt) shown in
Fig. 2.16b. The duration of this triangular pulse at the half-amplitude points
is the same as the duration of the rectangular pulse of Fig. 2.5. We note
that the doublet pulse g,(t) consists of two rectangular pulses: one of
amplitude A, defined for the interval T _- t -- 0, and the other of am-
plitude —A, defined for the interval 0 t -- T. Therefore, using the results
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rim

H

Figure 2.16
(a) Doublet pulse g,U). (b) Triangular pulse g 2 (t) obtained by integrating g,(t).

of Example 7, we find that the Fourier transform G I (f) of the doublet
pulse g i (t) of Fig. 2.16a is given by

Q (f) = A T sinc(fT) [exp (j7rfT) — exp( — j7zf T)l

= 2jA T sinc(fT) sin(itfT)	 (2.70)

We further note that G,(0) is zero. Hence, using Eqs. 2.68 and 2.70, we
find that the Fourier transform GAP of the triangular pulse g 2 (t) of Fig.
2.16b is given by

GAP = -1 GI(f)
j2nf

sin(nf T)
= AT	 sinc(f T)

nf
= AT' sinC 2 (f T)	 (2.71)

4

I

I
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2	 1	 0	 1	 2

T	 T	 T	 T

Figure 2.17
Spectrum of triangular pulse.

The Fourier transform G,(f) is a positive real function of f, which means
that the amplitude spectrum of 92(l) is the same as G,(f). and its phase
spectrum is zero for all f. The Fourier transform G,(f) is plotted in Fig.
2.17. Note that the spectrum of the triangular pulse is more tightl y centered
around the origin than the spectrum of the rectangular pulse. Also, the
spectrum of the triangular pulse decreases as I J2' whereas the spectrum
of the rectangular pulse is discontinuous and decreases as 111fl.

..........................................................................................................................

EMMME 7

a. Show that the Fourier transform of a triangular pulse of unit amplitude
and unit duration (measured at the half-amplitude points) is equal to
sinc2(f).

b. Using the result in part a, show that

fsincl(f ) df

Hint For part b, consider the formula for the inverse Fourier transform
of sinc2i(f) evaluated at t = 0.

PROPERTY 8 CONJUGATE FUNCTIONS

If g(t) = G(f), then for a complex-valued time function g(t) we have
g * (t)	 is.(- f)	 (2.72)

where the asterisk denotes the complex conjugate operation.

ri
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To prove this property, we know from the inverse Fourier transform
that

g(t) = f G(f) exp(i2nft) df

Taking the complex conjugates of both sides:

	

g*(1)	 L G*(f) exp(—i27rft) 	df

Next, replacing f with —f:

g* ( t )	 — t G * (—f) exp(j2-ft) df

f G * (—f) exp(j27,ft) df

That is, g * (t) is the inverse Fourier transform of G*(—f), which is the
desired result.

..........................................................................................................................

EXAMPLE 11 REAL AND IMAGINARY PARTS OF A TIME FUNC77ON

Expressing a complex-valued function g(t) in terms of its real and imaginary
parts, we may write

	

g(t) = Re[g(t)] + j Jm[g(I)J	 (2.73)

where Re denotes the "real part of" and Im denotes the "imaginary part
of." The complex conjugate of g(l) is

	

g * ( 1) = Refg(t)] — j im[g(t)]	 (2.74)

Adding Eqs. 2.73 and 2.74:

	

Re[g(r)) = 
1 

Ig ( t ) + g* ( t )]	 (2.75)
2

and subtracting them:

I
g.'-[g ( t)]	 [g(t)	 (t)]	 (2.76)
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Therefore, applying Property 8, we obtain the following two Fourier trans-

form pairs:

I
Re[g(t),11 	— [G(f)	 G * (—f))	 (2.77)

2

lm 1g ( t )11J	 [G(f) — G * (—f)]	 (2.78)
2j

From Eq. 2.78, it is apparent that in the case of a real-valued time

function g(t), we have G(f) = G * (—f); that is, G(f) exhibits conjugate
symmetry. This result is a restatement of Eqs. 2.30 and 2.31.

.........................................................................................................................

EXERCISE 8 Show that for a real-valued signal g(t), Eq. 2.72 may be
rewritten in the equivalent form:

9( — t) ;=-- G*(f)

PROPERTY 9 MULTIPLICATION IN THE TIME DOMAIN

Let g,(t) = G,(f) and g,(t) ;:-- G,V). Then

g ' (t) g ' (t)	 G,(;.^G2(f — ^) d;	 (2.79)

To prove this propert y , we first denote the Fourier transform of the
product g i (t)g 2 (t) by G12(f), so that we may write

g ,(k f )/6g 2(k l )/ -	 —G,,(f)

where

G 12(f) = 
L 

91(092( t) exp(—j27rft) dt

For g.,(t), we next substitute the inverse Fourier transform

g4 t ) = 
f 

G 2 (f') exp(j27rf't) df'

in the integral defining G 12 (f) to obtain

G1 2(f)	 g.(t)G,(f') exp[ —j27r(f — f')tl df' di
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Define A = f — f'. Then, interchanging the order of integration, we obtain

G12(f)	 d) G 2(f	 g,(t) exp( — j27rAt) dt
L	 L

The inner integral is recognized simply as G,(),), so we may write

G j ,(f) =	 Gi())G2(f — A) d^
L

which is the desired result. This integral is known as the convolution integral

expressed in the frequency domain, and the function G12(f) is referred to

as the convolution of G I (f) and G2(f)- We conclude that the multiplication

of two signals in the time domain is transformed into the convolution of

their individu^l Fourier transfio 7rms in the frequency domain, This property

is known as the multiplication theorem.

In a discussion of convolution, the following shorthand notation is fre-

quently used:

G^,(f) = G.(f) 4- G,(f)

where the star * denotes convolution. Note that convolution is com-

mutative, that is,

Gj,(f) = G,^(f)

or

G,(f) -J^- G,(f) = G,(f) J^- G.(f)

.........................................................................................................................

EXAMPLE 12 TRUNCATED SINC PULSE

Consider the truncation of the sinc pulse sinc(2M), so that the resulting

signal g(t) is zero outside the interval T/2) -_ t T12), as shown in

Fig. 2.18a. This signal may be expressed as the product of a sinc pulse and

a rectangular pulse, as shown by

g(t) = sinc(2Wt) rec^	 (2.80)
Tt(t)
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Figure 2. 18
The Gibbs phenomenon. (a) A truncated sinc function g(t). (b) Fourier transform
G(f).

From Eqs. 2.33 and 2.47, we have

F rect 
T'̂	

T sinc(f T)

F[sinc(2Wt)]	 —rect
2W	 2WGL)

Therefore, using Eq. 2.79, we find that .the Fourier transform of the trun-
cated sinc pulse g(t) is given by

T
sincf(f	 Tj dA

2W
G(f) 

= 

2W f. 
rect

T
= — fw sinc[(f ^)Tj dA
2W

	

T fw sin[7r(f	 A)_w	

— A)T dA
	 (2.81)

2W	 n(f

I
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I

Figure 2.19
The sine integral

The integral of the function sinx/x from zero up to some upper limit is

called the sine integral, which is defined as follows

u sinx
Si(u)	 dx	 (2,82)

0 X

The sine integral Si(u) cannot be integrated in closed form in terms of
elementary functions, but it can be integrated as a power series." It is

plotted in Fig. 2-19. We see that: (1) the sine integral Si(u) is odd symmetric

about u = 0; (2) it has its maxima and minima at multiples of 7z; and (3)

it approaches the limiting value ir/2 for large values of u.

Substituting x = 7r(f — ).)T in Eq. 2.81, we find that the Fourier

transform G(f) of the truncated sine pulsemay be expressed conveniently
in terms of the sine integral as follows:

G(f) = 
I 

[Si(7zWT — 7rfT) + Si(7rWT + 7zfT)l	 (2.83)
27rW

This relation is plotted in Fig. 2.18b for the case when T = 8/W. We see

that G(f) approximates the Fourier transform of a sine pulse sinc(2Wt)
of infinite duration in an oscillatory fashion, with a maximum deviation of
about 9%. Furthermore, for a given value of W, as the pulse duration T
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is increased. the ripples in the vicinities of the discontinuities of the rect-

angular function show a proportionately increased rate of oscillation versus

the frequency, f, whereas their amplitudes relative to the magnitude of

the discontinuity remain the same. This effect is an example of Gibbs

phenomenon in Fourier transforms.

.................................. .........................................................................................................

Exmcm a Using Eq. 2.79, show that

f. 
g,(t)g2(I) dt = 

f. 
G i (f )G^-( — f ) df

How is the left side of this relation affected by replacing GA - f) with

GAP in the integral on the right side of the relation?

PROPERTY 10 CONVOLUTION IN THE TIME DOMAIN

Let g,W ^^ G M and g,(t) ;^ G,M. Then

f'. g,(t)g,(t - -) di	 G,^ f)G,(f)	 (2.84)

This result follows directl^ by combininiz PropertN 3 (duality) and Prop-

erty 9 (time-domain multiplication). We may thus state that the Convolution

of two signals 
in the time doniain is transformed into the multiplication of

their individual Fourier transforms in the frequency domain. This property

is known as the convolution theorem. Its use permits us to exchange a

convolution operation for a transform multiplication, an operation that is

ordinarily easier to manipulate.

Using the shorthand notation for convolution, we may rewrite Eq. 2.84

in the form

g,(t) -^- g 2 (t) ;::^ G j ( f)G,( f)	 .(2.85)

where the star -^- denotes convolution.

.................................................................... I .....................................................

EXAMPLE 13 DERIVATIVE OF A CONVOLUTION INTEGRAL

Let g 12 (t) denote the result of convolving two signals g l (t) and g 2 (t). Then

the derivative of g i ,(I) is equal to the convolution of g,(t) %kith the derivative

of 92( t ), or vice versa. That is, if

9140 = g '(0 1^- g2(t)
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then

d	 d
g "(0

	

	 00	 00dtdt

To prove this result, we use the differentiation property (i.e., Eq. 2.58)

in conjunction with the convolution property (i.e., Eq. 2.85), obtaining

d 
[91( t ) 4- 92(01 . j27rf[G-(f)G2ffifdt

Associating the factor j27rf with G^ff), we may write

d
g '(0] '^r 92( t )	 [j27TfG1(f)1G2(f)

dt

which yields the desired result:

d	 d
[ g '(0	 001	 g](0]	 92(t)	 (2.86)

dt	 dt

Equation 2.86 shows that the derivative of the convolution of two time

functions is equal to the convolution of one function with the derivative

of the other.

................... I ......................................................................................................

EXERCISE io Using Eq. 2.84, show that

f. 
9,(t)g,(—t) di =	 G,(f)G2ffl df

How is the right side of this relation affected by replacing 92(-t) with

g2* (t) in the integral on the left side of the relation? How does this result

compare with that of Exercise 9?

2.4 INTERPLAY BETWEEN TIME-DOMAIN AND
FREOUENCY-DOMAIN DESCRIPTIONS

The properties of the Fourier transform and the various examples used to

illustrate them clearly show that the time-domain and frequency-domain

descriptions of a signal are inversely related. In particular, we may make
the following statements:

1. If the time-domain description of a signal is changed, the frequency-

domain description of the signal is changed in an inverse manner, and
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Nice versa. This inverse relationship prevents arbitrary specifications of

a signal in both domain%. In other words, ite rnav specify an arbitrary

function o ' f tinie or an arbitrarv.,pectrum, but we cannot specifv both of

thern together.

2. If a signal is strictly limited 
in frequencv. the time-domain description

of the swrial will trail on indefinitely. cNen though its amplitude may

assume a progressively smaller value. We sa^ a signal is strictl% limited

in frequency or strictlY bu;jd-limited if its Fourier transform is exactly

zero outide a finite hand of frequencies. The sitic pulse is an example

of a strictIv band-limited si g nal, as illustrated in Fig. 2.12. This figure

also sho\Ns that the sinc pulse is only (15 ^ . j npjojicalls limited 
in 

tirne,

which confirms the opening statement we made for a strictly band-

limited si^_, nal. In an inserse nianner. if a swnal is strictlY limited 
in 

arne

(i.e_ the si ,_, nal is exactiv Zero Outside a finite time interval). then the

spectrum ot the signal is infinite in extent. e^cn thouvh the amplitude

spectrum ma^ assume a progressi%ely smaller Nalue. This behavior is

exemplified bN both 
the 

rectan gular pulse (described in Figs. 2.^ and

2 .0) and the Imingular pulse (de^cribed 
in 

Fi gs. 2.16b and 2,17). Ac-

cordingl^ . \% e maN state that a signal cannot be strictl l̂  linuted in both

tirne and frc,jU0tCs .

BANDWIDTH

The bumbtidth of a signal provides a measure of the e.krent of significant

spectral contcla of the signal for posim e frequencies. When the signal is

strictIN band-limited, the bandwidth is well defined. For example. the sinc

pulse 'described in Fig. 2.12 has a bandwidth equal to W. When, however,

the signal is not strictly band-limited, which is generally the case, we en-

counter difficulty in defining the bandwidth of the signal. The difficulty

arises because the meaning of "significant " attached to the spectral content

of the signal is mathematically imprecise. Consequently, there is no uni-

versally accepted definition of bandwidth.

Nevertheless, there are some commonly used definitions for bandwidth.

In this sectiori. we consider two such definitions.' the formulation 6f each

definition depends on Ahether the signal is low-pass or band-pass. A signal

is said to be l( ,K-pass if its significant spectral content is centered around

the origin. A signal is said to be band-pass if its significant spectral content

is centered around ±f, , where f, is a nonzero frequency.

When the spectrum of a signal is symmetric with a inain lobe bounded

by well-defined nulls (i.e., frequencies at which the spectrum is zero), we

may use the main lobe as the basis for defining the bandwidth of the signal.

Specifically, if the signal is low-pass, the bandwidth is defined as one half

'Another definition for the bandwidth of a signal is presented in Section 4.8.
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the total width of the main spectral lobe, since only one half of this lobe

lies inside the positive frequency region. For example, a rectangular pulse

of duration T seconds has a main spectral lobe of total width 21T hertz

centered at the origin, as depicted in Fig. 2.0a. Accordingly, we may define

the bandwidth of this rectangular pulse as I/Thertz- If, on the other hand,

the signal is band pass with main spectral lobescentered around ±f,, where
f, is large, the bandwidth is defined as the width of the main lobe for

positive frequencies. This definition of bandwidth is called the null-to-null
bandwidth. Forexample, an RFpulse of duration Tsecondsand frequency

f, ha^ main spectral lobes of width 211 T hertz centered around ±f,., as

depicted in Fig. 2.14b. Hence, we may define the null-to-null bandwidth

of this RIF pulse as 2/ T hertz.

. Another popular definition of bandwidth is the 3-dB bandwidth.' Spe-

cifically, if the signal is low-pass, the 3-dB bandwidth is defined as the

separation between zero frequency, where the amplitude spectrum attains

its peak value, and the positive frequenc y at which the amplitude spectrum

drops to I/V^2 of its peak value. For ex' ample, the decaying exponential

and rising exponential pulses defined in Fig. 2.7 have a 3-dB bandwidth
of 1 271 hertz. If, on the other hand, the signal is band pass, centered at

— f, . the 3-dB handAidth is defined as the separation (along the positive

frequency axis) between the two frequencies at which the amplitude spec-

trum of the signal drops to 1/% 2 of the peak value at f,. The 3-dB band-

width has the advantage in that it can be read directl% from a plot of the

amplitude spectrum. However, it has the disadvantage in that it may be

misleading if the amplitude spectrum has slowly decreasing tails.

EXERCISE 1 If Using the idea of a main spectral lobe, what is the band-

width of a triangular pulse defined in Figs. 2,16b and 2.17?

EXERCISE 12 What is the 3-dB bandwidth of the decaying exponential
pulse exp( — at) that is zero for negative time?

TIME-BANDWIDTH PRODUCT

For any family of pulse signals that differ by a time-scaling factor, the

product of the signal's duration and its bandwidth is always a constant, as

shown by

(duration) - (bandwidth) _— constant

'For a discussfon of the decibel (dB), see Appendix A.
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The product is called the time—bandwidth product or bandwidth—duration
product. the constancy of the time—bandwidth product is another mani-
festation of the inverse relationship that exists between the time-domain
and frequency-domain descriptions of a signal. In particular, if the duration
of a pulse signal is decreased by reducing the time scale by a factor a, the
frequency scale of the signal's spectrum, and therefore the bandwidth of
the signal, is increased by the same factor a, by virtue of Property 2, and
the time—bandwidth product of the signal is thereby maintained constant.
For example, a rectangular pulse of duration T seconds has a bandwidth
(defined on the basis of the positive-frequency part of the main lobe) equal
to 11T hertz, making the time—bandwidth product of the pulse equal unity.
Whatever definition we use for the bandwidth of a signal, the time—band-
width product renmins constant over certain classes of pulse signals. The
choice of a particular definition for bandwidth simply changes the value of
the constant.

............ 2.5 DIOMC DELTA FUNC7700V

Strictly speaking, the theory of the Fourier transform, as described in
Sections 2.2 and 2.3, is applicable only to time functions that satisfy the
Dirichlet conditions. Such functions include energy signals. However, it
would be highly desirable to extend this theory in two ways:

1. To combine the Fourier series and Fourier transform into a unified
theory, so that the Fourier series may be treated as a special case of
the Fourier transform.

2. To include power signals in the list of signals to which we may apply
the Fourier transform.

It turns out that both these objectives can be met through the "proper
use" of the Dirac delta function or unit impulse.

The Dirac delta function belongs to a special class of functions known
as generalizeg distributions that are defined by the use of assignmeAt rules
given in Eqs. 2.87 and 2.88. In particular, the Dirac delta function,' denoted
by 6(t), is defined as having zero amplitude everywhere except at t = 0,
where it is infinitely large in such a way that it contains unit area under its
curve, as shown by the pair of rules:

6(t) = 0,	 t 0 0	 (2.87)

7 For a detailed treatment of the delta function, see Bracewell (1978) or Lighthill,
(1959). The notation 6(t), which was first introduced into quantum mechanics by
Dirac, is now in general use; see Dirac (1947).
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and

	

f6(t) dt = 1	 (2.88)

It is important to realize that no function in the ordinary sense can

satisfy the two rules of Eqs. 2.87 and 2.88. However, we can imagine a

sequence of functions that have progressively taller and thinner peaks at

t = 0,.with the area under the curve remaining equal to ^nity, whereas

the value of the function tends to zero at every point, except at I = 0

where it tends to infinity. That is, we may view the delta function as the

limiting form of a unit-area pulse as the pulse duration approaches zero. It

is immaterial what sort of pulse shape is used. For example, we may use

a rectangular pulse of unit area, and thus write

	

6(t) = lim 
I 
rect	 (2.89)_0	

rT	 (!)

The rectanguldr pulse is plotted in Fig. 2.20a for r ^ 5, 1, 0.2. For another

example, we may use a Gaussian pulse of unit area and thus write

t2)

6(t) = lim exp	 (2.90)
0 T

The Gaussian pulse is plotted in Fig. 2.20b for r = 5, 1, 0.2. From Fig.

2.20, we clearly see that both pulses take on an impulse-like appearance

as the parameter T becomes progressively smaller. Some other examples

are considered in Problem 18.

EXERCISE 13 Plot the spectra for the rectangular and Gaussian pulses

for the different values of parameter r given in Fig. 2.20.

PROPERTIES OF THE DELTA FUNCTION

The delta function 6(t) has several useful properties that are consequences

of the two rules defining it, namely, Eqs. 2.87 and 2.88. These properties

are discussed here:

1. The delta function is an even function of time; that is,

6(t) = j(—t)	 (2.91)
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—5.0	 —1.0	 0	 Lo	 5.0

(a)

—1.0	 —0.5	 0	 O^5	 1.0

(b)

Figure 2.20

is) Rectangular pulse g(t) = I/T rect(VT) for varying T. (b) Gaussian pulse

g( t) = 1/T exp( — ^t2/T2 ) for varying T.
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2. The integral of the product of 6(t) and any time function g(t) that is
continuous at t = 0 is equal to g(0); thus

fg(t) 6(t) at = g(0)	 (2.92)

We refer to this statement as the sifting property of the delta function,
since the operation on g(t) indicated on the left side of Eq. 2.92 sifts out
a single value of g(t), namely, g(0). Equation 2.92 may also be used as
the clMning rule for a delta function.

3. The sifting property of the delta function may be generalized by writing

fg(t) 6(t — to) dt = g (to)	 (2.93)

Since the delta function 6(l) is an even. function of t, we may rewrit.e Eq.
2.93 in a way emphasizing resemblance to the convolution integral, as
follows:

g(T) 3(t - T) dr = g(t)	 (2.94)

or

g W	 W = g W	 (2.95)

That is, the convolution of any function with the delta function leaves that
function unchanged. We refer to this statement as the replication property

of the delta function.

4. The Fourier transform of the delta function is given by

F[6(t)]	 6 (t) exp( — j 27rft) dt

Using the sifting property of the delta function and noting that the expo-
nential function exp( —j27rft) is equal to unity at t = 0, we obtain

F[6(t)] = 1

We thus have the Fourier transform pair:

6 (t)	 1	 (2.96)

This relation states that the spectrum of the delta function 6(t) extends
uniformly over the entire frequency interval from -- to x, as shown in
Fig. 2.21.

APPLICATIONS OF THE DELTA FUNCTION

de Signal By applying the duality property to the Fourier transform pair
of Eq. 2.96, and noting that the delta function is an even function, we
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g(r)
	

G (f)

1 0

0
	

0	

f

(h)

Figure 2.21

(a) Dirac delta function (b) Spectrum.

obtain

1 ^=^ j (f)
	

(2.97)

Equation 2.97 states that a dc signal is transformed in the frequenc^ domain

into a delta function 6(f) occurring at zero frequency. as shown in Fig.

122. Of course, this result is intuiti\ely satisfying. From Eq. 2.97 we also

deduce the useful relation

	

Lexp(—j27-,ft) dt = tJ(f)
	

(2.98)

where the integral on the left side is simply the Fourier transform of a

function equal to one for all time t.

Complex Exponential Function Next, 
by 

applying the frequency-shifting

property to Eq. 2.97, we obtain the Fourier transform pair

exp(j27rf,t)	 '5(f — f')	 (2.99)

(b)

Figure 2.22

(a) dc signal, (b) Spectrum.
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for a complex exponential function of frequency f,. Equation 2.99.states

that the complex exponential function exp(j27tft) is transformed in the

frequency domain into a delta function 6(f — f,) centered at f = f,.

Sinusoidel Functions Consider next the problem of evaluating the Fourier

transform of the cosine function cos(21rf,t). We first note that

cos(27rfct) = 1 [exp(j2nfct) + exp(—j27rf,t)]
2

Therefore, using Eq. 2.99, we find that the cosine function cos(21rf ct) is

represented by the Fourier transform pair

cos(27rf t)	
1 
[6(f — fc ) + 6(f + fj]	 (2.100)

2

In other words, the spectrum of the cosine function cos(27rf,t) consists of

a pair of delta functions centered at f = --fc , each of which is weighted

by the -factor 1/2, as shown in Fig. 2.23.

Similarly, we may show that the sinefunction sin(27rf,t) is represented

by the Fourier transform pair

sin(27rf,t) ;::^ 
1 

[^(f — fc) — 6(f + f,)]	 (2.101)
2j

which is illustrated in Fig. 2.24.

a

-^ - fl̂  ^-

G (f)

-fl	 0	 L

(a)	 (b)

Figure 2.23

(a) Cosine function. (b) Spectrum.
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Figure 214
(a) Sine function. (b) Spectrum,

SignumFunction The signurn function, denoted by sgn(t), is an odd func-

tion of time defined as follows:

> 0

sgn(t)	 01:	 t' = 0	 (2.102)

	

1,	 t < 0

The waveform of the signum function is shown in Fig. 2.25a. We may view

the signum function as the limiting form of a time function that consists

of a positive decaying exponential for positive time and a negative rising

exponential for negative time. That is, we write

sgn(t) = lim g (a, t)	 (2.103)

—0

(bi

Figure 2.25

(a) Signum function. M Spectrum.
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The function g(a, 6 for varying a.
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where

exp( — at),	 t > 0

g(a,	 0,	 t = 0	 (2.104)

— exp(at),	 t < 0

We may also express g(a, t) in the compact form

g(a, t) = exp( — at)u(t) — exp(at)u(—t) - 	 (2.105)

where u(t) is the unit step function. The function g(a, t) is plotted in Fig.

2.26 for the parameter a = 1, 0.5, 0.1. We clearly see -that as the value of

parameter a is progressively reduced, the function g(a, t) becomes closer

to the signum function in appearance. Applying the time-scaling property

to the Fourier transform pairs of Eqs. 2.37 and 2.40, we get

exp(—at)u(t)	
Ila

I + (j2nfla)

and

Ila
exp( at ) u ( — 0	

1 — (j27rfla)
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SubtractiriL the second Fourier transform pair from the first one, and then

using the definition of Eq. 2.105, Ae get (after cornhininiz terms 
and 

.,IM-

plifying):

g(a, t)

	

	
47z f	

(2.106)
j(a ' +

For the limitiniz, condition %khen the parameter a approaches /ero, the

function g(a, t) approaches the signum function. in accordance %kith Eq.

2.103. Therefore. putting a = 0 in Eq. 1106, we obtain the dewed Fourier

transform pair for the signum function:

	

^gn(t) ;^^ -
	

(2.107)
j 71

The spectrum of the si gnum function 
is 

plotted in Fi g . 2.25b.

Another useful Fourier transform pair. in\ol\ing a ^ignum function de-

finedin the frequenc^ domain. isobtained h\ appl^ingf'ropert .\ I (dualit\)

to Eq. 2.107. \Ve thus obtain the follmking result:

I	
j ^gn(	 (2.108)

7- t

%khere the SiLTIUM function gn(f) is defined h.^

1^	 f	 0

s&, n( t	 f

< f)

EXERCISE 14 Plot the spectrum of the function g(a, t) for parameter

a = 1, 0.5, 0. 1, and compare your results with the spectrum of the signum

function shox%n in Fig. 2.25b.

Unit Step Function	 The (,,ut ^t(,,) function. u(t). is defined in Eq. 2.34,

reproduced here for comenience:

t ^ 0

	

t	 0	 (2.109)

The kkavelorm of the unit step function is shown in Fig. 2.27u. From Eq^.

2.102 and 2.109, or from the correspondingkkaveforms sho\kn 
in 

Figs. 2.25u
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Figurp 2.27

(a) Unit step function (b) Amplitude spectrum.

and 2_1 7 11, ^^c see that the unit step function and signum function are

related hN

I 

isgn(t)	 (2.110)
2

I ien cc. using the I inearit% propert^ oft he Fourier transform and the Fourier

transtorm pairs of Eqs. 2.97. and '. 107. ^kc find that the unit step function

is represented lh^ the Fourier transform pair

11(l) ;==	
I	

- .1 ()( t )	 (2.111)
j 2 7: t	 —1

Fht^ rnean^ that the spectrum of the unit step function contains a delta

tUnction ^^ci,_, htcd h^ 
it 

factor of 1 '2 and occurrim! at zero frequency, as-
,hm^n in Fil-1. 2,17b.

EXERCISE 15 Using the frequency-shifting property, determine the Four-

ier transform of the signal

9(t) = u(t) cos(27Ef,t)

,Ahere u(t) is the unit step function.

Integration in the Time Domain (Revisited) The relation of Eq. 2.68 de-

,,:rihe, the ctlect o

' 

t nitegratimi )it the Fourier transform ot it sit-'nal g(t).

zt ,s ,amiin^ that G(0) i, zero \k c nox% con,idCr the more general case. with

110 such assumption made.

Let

(t)	 4(r) (IT	 (2.112)
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The integrated signal y(t) can be viewed as the convolution of the original

signal g(t) and the unit step function u(t), as shown by

Y ( t ) ^ 
L 

g(r)u(t — r) dr	 (2.113)

where the time-shifted unit step function u(I — r) is defined by

1,	 r < t

U (t — r) =	
1 

1	 r = t	 (2.114)
2

0,	 r > t

Recognizing that convolution in the time domain is transformed into mul-

tiplication in the frequency domain, and using the Fourier transform pair

of Eq. 2.111 for the unit step function u(t), we find that the Fourier

transform of y(t) is

Y(f) = IG(f) —L. + I W)	 (2.115)
knf 2 1

where G(f) is the Fourier transform of g(t). Since

G(f) 6(f) = G(0) 6(f)

we may rewrite Eq. 2.115 in the equivalent form:

Y(f) =	
I 

G(f) + 
I 
G(0) 6(f)	 (2.116)

j27rf	 2

That is, the effect of integrating the signal g(t) is described oy the Fourier

transform pair:

f
 g(r) dr	

I 
G(f) + 

I 

G(0) Mfl	 (2.117)

Jinf	 2

which is the desired result.

This proof is indirect in that it relies on knowledge of the Fourier trans-

form of the unit step function. For a direct proof from first principles, refer

to Problem 20.

: 2.6 FOURIER TRANSFORMS OF PERIODIC SIGNALS

From Section 2.1 we recall that by using the Fourier series, a periodic

signal g,(t) can be represented as a sum of complex exponentials. Also we
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know that, in a limiting sense, we can define Fourier transforms of complex

exponentials. Therefore, it seems reasonable that a periodic signal can be

represented in terms of a Fourier transform, provided that this transform

is permitted to include delta functions.

Consider a periodic signal g,(t) of period To. We can represent g,(t) in

terms of the complex exponential Fourier series as in Eq. 2.10, which is

reproduced here for convenience,

	

00	 c, exp 
j2nn,	

(2.118)
( T^ )

where c, is the complex Fourier coefficient defined by

C, = 
1 fT,1^2" g'(j) 

exp	 12"nt dt	 (2.119)

	

TO 

_ T	

T^ )

Let g(t) be a pulse-like function, which equals g,(t) oNer one period
and is zero elsewhere; that is,

To
g' ( t ),	 — _T^ _^ I ^_ —

g ( t ) =	 2	 2	 (2.120)

	

10,	 elsewhere

The periodic signal g,(t) may be expressed in terms of the function g(t)

as an infinite summation, as shown by

	

gp ( t )	 g(t — - T')	 -(2.'121)

Based on this representation, we may view g(t) as a generating function,
which generates the periodic signal gp(t).

The function g(t) is Fourier transformable. Accordingly, we may rewrite

Eq. 2.119 as follows:

c^	 g(t) exp(	 d,

	

TO	 To

(2.122)
To To

where G(nlTo) is the Fourier transform ofg(t), evaluated at the frequency
n1 TO . We may thus rewrite Eq. 2.118 as

g' ( 1 ) = —1 ^ ^. G( " ) e.p(-2 n̂ )	 (2.123)
To M -	 T"	 TO
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or, equivalently,

	

g (t — m TO)	 G 
(n) 

exp 
(j27rn')

	
^2.124)

T.	 TO	 ^ TO

Equation 2.124 is one form of Poisson's sum formula.

Finally, using Eq. 2.49, which defines the Fourier transform of a complex

exponential function, and Eq. 2.124, we deduce the following Fourier

transform pair for a periodic signal g p (t) with a generating function g(t)

and period TO:

111101 -	
I	

G 
(n) 6 (f _ n)	

(2.125)gp( t )	 g(t — - To)	 — Y—	 —
TO	 TO	 TO

This relation simply states that the Fourier transform of a periodic signal

consists of delta functions occurring at integer multiplesof the fundamental

frequency 11TO , including the origin, and that each delta function is weighted

by a factor G(nlTo). Indeed, this relation merely provides an alternate

way of displaying the frequency content of a periodic signal gp(t).

It is of interest to observe that the function g(t), constituting one period

of the periodic signal gp (t), has a continuous spectrum defined by G(f).

On the other hand, the periodic signal g,(t) itself has a discrete spectrum.

We conclude, therefore, that periodicity in the time domain has the effect

of making the spectrum ef the signal take on a discrete form, where the

separation between adjacent spectral lines equals the reciprocal of the period.

........................................................ ...................................................................

EXAMPLE 14 IDEAL SAMPLING FUNCTION

An ideal sampling function, or Dirac comb, consists of an infinite sequence

of uniformly spaced delta functions, as shown in Fig. 2.28a. We will denote

this waveform by

	

6TJt)	 6(t — mTo)	 (2.126)

We observe that the generating function g(t) for the ideal sampling function

6 T,(t) consists simply of the deltalunction 6(t). Therefore, G(f) so

that

G

	

	 I	 for all n	 (2.127)

TO)
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2F^ T	
- TO 3 To0	 0	 0	 7^	 2

(a)

G 1,

4	
f

T^	 T.	 TO

	

2	 0	 2	 4	 S
To	 r.	 ra

Figure 2.28

(a) Dirac comb. (b) Spectrum.

Thus the use of Eq. 2.125 yields the result

f _ n)	
(2.128)

T,

Equation 2.128 states that the Fourier transform of a periodic train of delta

functions in the time domain consists of another periodic train of delta

functions in the frequency domain as in Fig. 2.28b. In the special case of
the period T, equal to I second, a periodic train of delta functions is, like

a Gaussian pulse, its own Fourier transform.

We also deduce from Poisson's sum formula, Eq. 2.124, the following
useful relation

1	 2 7r n t
mT,,) = Y_ ex

T' ,	 T,

The dual of this relation is

exp(j2;Tmf Tu)	 6 f	 (2.129)
T,	 TO

..........................................................................................................................

2.7 SAMPLING THEOREM

An operation that is basic to digital signal processing and digital commu-

nications is the sampling process, whereby an analog signal is converted

into a corresponding sequence of samples that are usually spaced uniformly
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in time. For such a procedure to have practical utility, it is necessary that

we choose the sampling rate property, so that the sequence of samples

uniquely defines the original analog signal. This is the essence of the sam-

pling theorem, which is derived in the sequel.

Consider the arbitrary signal g(t) of finite energy. which is specified for

all time. A segment of the signal g(t) is shown in Fig. 2.29a. Suppose that

we sample the signal g(t) instantaneously and at a uniform rate, once every

T, seconds. Consequently, we obtain an infinite sequence of samples spaced

T, seconds apart and denoted by fg(nT,)j where n takes on all possible

integer vaiues. We refer to T, as the sampling period, and to its recipf ocal

'I IT, as the sampling rate. This ideal form of sampling is called in-

stantaneous sampling.

Let g,(t) denote the signal obtained by individually weighting tile ele-

ments of a periodic sequence of delta functions spaced T, seconds apart

0

(b)

Figuye 2.29
The sampling process. (a^ Analog signal. (b) 

Instantaneously sampled version of the

signal.
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by the sequence of numbers fg(nT,)), as shown by (see Fig. 2.29b)

g, W	 g (" To 6 ( t — " T^)	 (2.130)

We refer to g,(t) as the ideal sampled signal. The ideal sampled signal g,(t)
has a mathematical form similar to that of the Fourier transform of a

periodic signal. This is readily established by comparing Eq. 2.130 for gjt)
with the Fourier transform of a periodic signal given in Eq. 2.125. This

correspondence suggests that we may determine the Fourier transform of
the ideal sampled signal gjt) by applying the duality property to the Fourier
transform of Eq. 2.125. By so doing, and using the fact that a' delta function
is an even function, we get the desired result:

g'( t ) -	 G(f — rnfj	 (2.131)

where G(f) is the Fourier transform of the original signal g(t), and f, is
the sampling rate. Equation 2.131 states that the process of uniformly
sampling a continuous-time signal offinite energy results in a periodic spec-
trum with a period equal to the sampling rate.

Another useful expression for the Fourier transform of the ideal sampled
signal &(t) may be obtained by taking the Fourier transform of both sides
of Eq. 2.130 and noting that the Fourier transform of the delta function
3(t — nTj is equal to exp( —j27rnf Tj. Let G,(f) denote the Fourier
transform of gj (t). We may therefore write

G6(f)	 g(nT,)exp(—j27rnfTj 	 (2.132)

This relation is called the discrete-time Fourier transform. It may be viewed
as a complex Fourier series representation of the periodic frequency func-
tion Gj(f), with the sequence of samples Jg(nT,)) defining the coefficients
of the expansion.

The relations, as derived here, apply to any cont inuous-time s . ignal g(t)
of finite energy and infinite duration. Suppose, however, that the signal is

strictly band-limited, with no frequency components higher than W hertz.

That is, the Fourier transform G(f) of the signal g(t) has the property
that G(f) is zero for If I ^: W, as illustrated in Fig. 2.30a; the shape of the
spectrum shown in this figure is intended for the purpose 

of illustration
only. Suppose also that we choose the sampling period T, = 1/2W. Then
the corresponding spectrum Gj(f) of the sampled signal gj (t) is as shown
in Fig. 2.30b. Putting T, = 1/2W in Eq. 2.132 yields

Gj (f)	 g 
G^) 

exp( _j, 
W 
f)	

(2.133)
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f

G(f)

G (0)

f
-it	 0	 W

W

W

Figure 2.30
(a) Spectrum of a strictly band-limlted signal g(t). (b) Spectrum of sampled version

of g(t) for a sampling period T, = I 2W

From Eq. 2.131, we have

G,(f) ^ f,G(f) + f,	 G(f	 tnf,)	 (2.134)

Hence, under the folloAing 
two 

conditions:

1. G(f) = 0 for If -- W

2. 2W

we find from Eq. 2.134 that

G (f) = —1 Qjf),	 — IV < f < W,	 (2.135)

2 9'

Substituting Eq. 2.133 in Eq. 2.135, we may also write

I	 .

G(f)	 'V g(	 exp(	 W < f < W (2.136)
W	 2 W

Therefore. if the sample values g(n 21V) of a signal g(r) are specified for

all time. then the Fourier tr^tnsform (;( t ) ot the sienal is uniquely deter-
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mined by using the discrete-time Fourier transform of Eq. 2.136. Because

g(t) is related to G(f) by the inverse Fourier transform, it follows that

the signal g(t) is itself uniquely determined by the sample values g(n12 W)
for – - < n < -. In other words, the sequence jg(n12 W)) has all the
information contained in g(t).

Consider next the problem of reconstructing the signal g(t) from the

sequence of sample values fg(nl2W)). Substituting Eq. 2.136 in the for-

mula for the inverse Fourier transform defining g(t) in terms of G(f), we

get

g(t) = 
f 

G(f) exp(j27rfl) df

f
g(	 exp(–^"—nf) exp(j27rft) df

	

_ 
w 21V	 2W	 W

Interchanging the order of summation and integration:

	

9 (
	 )	

exp j2nf t – n )] df (2.137)
2 W 2 W f"',	 1	 2 W

The integral term in Eq. 2.137 may be readily evaluated yielding

g(l)	
g( n ^ sin(27rWt – mr)

2 _F2nWtW)

g ( n )
	sinc(2Wt – n),	 < t <	 (2.138)

2W

Equation 2.138 provides an interpolation formula for reconstructing the
original signal g(t) from the sequence of sample values fg(n/2W)I, with

the sinc function sinc(2Wt) playing the role of an interpolation function.
Each sample is multiplied by a delayed version of the interpolation func-

tion, and all the resulting waveforms are added to obtain g(t).

We may now state the sampling theorem' for band-limited. signals of
hnite energy in two equivalent parts:

I - A band-limited signal of finite energy, which has no frequency compo-

nents higher than W hertz, is completely described by specifying the values
of the signal at instants of time separated by 112W seconds.

'rhe sampling theorem was introduced 10 communication theory by Shannon
(1949). It is for this reason that the theorem is sometimes referred to in the
literature as the "Shannon sampling theorem." However, the interest of
communication engineers in the sampling theorem may be traced back to Nyquist
(1928). Indeed, the sampling theorem was known to mathematicians at least since
1915. For historical notes on the sampling theorem, see the review paper by Jerri
(1977).
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2. A band-limited signal of finite energy, which has no frequency compo-

nents higher than W hertz, may be completely recovered from a knowl-

edge of its samples taken at the rate , of 2 W samples per second.

The sampling rate of 2W samples per se^ond, for a signal bandwidth of W

hertz, is called the Nyquist rate; its reciprocal 1/2 W (measured in seconds)

is called the Nyquist interval. The sampling theorem serves as the basis for

the interchangeability of analog signals and digital sequences, which is so

valuable in digital signal processing and digital communications.

The derivation of the sampling theorem, as described herein, is based

on the assumption that the signal g(t) is strictly band-limited. In practice,

however, an information-bearing signal is not strictly band-limited. Hence,

distortion may result from the application of the sampling theorem to such

a signal. jMore will be said on this issue in Chapter 5.)

EXERCISE 16 Apply . the duality. pFoperty to the Fourier transform'pair

of Eq 2.125 and thereby derive Eq. 2.131 for the ideal sampled signal

00

............ 2.8 NUMERICAL COMPUTATION OF THE FOURIER TRANSFORM

This section brieflv describes a procedure for the computation of the Fou-

rier transform, which is particularly well suited for use on a digital com-

puter. We assume- that the given signal g(t) is of finite duration. The

procedure involve's first. the uniform sampling of g(t) to obtain a finite

sequence of samples denoted by g(0), g(Tj. g(2T,), - . . , g(NT, — Tj,

where T, is the sampling period and N is the number of samples. For a

correct representation of the signal, the sampling rate 11T, must be equal

to or greater than twice the highest frequency component of the signal.

For the purpose of our present discussion, it is adequate to assume that

this requirement has been satisfied. It is possible. of course, that the signal

initially may be in the form of a sequence of samples. In any event, for

this sequence of samples, we may define a discrete Fourier transform de-

noted by JG(kF,)I, which consists of another sequence of N samples sep-

arated in frequency by F, hertz, as shown by

IV -I

G(kF,)	 g(nT,) exp	 Ln kn	 k = 0, 1, 2,	 N — I
N	 ),

(2.139)

Equation 2.139 is precisely the formula that would be obtained by using

the trapezoidal rule for approximating the integral that defines the Fourier

transform of the given signal g(t). The difference between the actual Fou-
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rier transform and the sequence IG(kf,)) obtained from Eq. 2.139 gives
the integration error evaluated at f = kF,. The parameters T, and F, are
related by

T^ f, =	 (2.140)

To derive the inverse relationship expressing the sequence jg(nTjj in

terms of the discrete spectrum (G(kF,)), we multiply both sides of Eq.
2.139 by exp(j2;zkm/,V) and sum over k, obtaining

N-1	

27r	
N-1 IN-1	

It k(mI G(kF,) exp If	 kin	 T, Z "-S' g (, T,) exp i L	 - n)
k -11	 N	 4=0 —0	 N	 1

(2.141)

Interchanging the order of summation on the right side of Eq. 2.141, and
using the fact that

2 7r	 V,	 rn = nexp	 k(- - n)Z-	
0,	 otherwise

we get

G(kFj exp i L77 kin	 NTg(-zT,)
( N ) -

(2.14 21)

(2.143)

Next, substituting the index n for rn and rearranging the terms in Eq. 2.143,
we get the desired relation

N- I	

27r
g (n T.) 

= F,	

G(kF,) exp j — kn	 n = 0, 1,	 N
N

(2.144)

which defines the inverse discrete Fourier transform. Here again, it is of
interest to note that Eq. 2.144 is precisely the formula that would be
obtained by using the trapezoidal rule for approximating the integral that

defines the inverse Fourier transform.

The discrete Fourier transform, as defined in Eq. 2.139, has properties
that are analogous to those of the continuous Fourier transform.

An important feature of the discrete Fourier transform is that the signal
jg(nT,)j and its spectrum f G(kF,)) are both in discrete form. Furthermore,
they are both periodic, with the period of either one consisting of a finite

number of samples N. That is,

9(nT,) = g(nT. + NT,)	 (2.145)
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and

G(kF,) = G(kF, +, NF,)	 (2.146),

We thus find that the numerical computation of the discrete Fourier trans-

form is well suited for a digital computer or special-purpose digital pro-

cessor. Indeed, it is this feature that makes the discrete Fourier transform

so eminently useful in practice for spectral analysis and for the simulation

of filters on digital computers. This is all the more so by virtue of the

availability of an algorithm known as the fast Fourier transform algorithm
(FFT), which provides a highly efficient procedure for computing the dis-

crete Fourier transform of a finite-duration sequence. This algorithm takes

advantage of the fact that the calculation of the coefficients of the discrete

Fourier transform may be carried out in an iterative manner, there-

by resulting in a considerable saving of computatiorr time.' To compute

the discrete Fourier transform of a sequence of N samples using the

FFT algorithm, we require, in general, N 1092N complex additions and
(N12) 1092N complex multiplications. On the other hand, by using Eq.
2.139 to compute the discrete Fourier transform directly, we find that for

each of the N output samples, we require (N — 1) complex additions and

N complex multiplications, so that the direct computation of the discrete

Fourier transform requires a total of N(N — 1) complex additions and N1

complex multiplications. Accordingly-, by using the FFT algorithm, the

number of arithmetic operations is reduced by a factor of N11092N, which

represents a considerable saving in computation effort for large N. For

example, with N = 1024, we reduce the computation effort by about two
orders of magnitude. Indeed, it is this kind of improvement that also makes

it possible to use special-purpose digital processors for the hardware im-

plementation of the FFT algorithm.

... 2.9 RELATIONSHIP BETWEEN THE FOURIER AND
LAPLACE TRANSFORMS

The Fourier transform (as we have described it) is fully adequate for han-

dling the frequency-domain description ofsignals encountered in the study

of communication theory. Nevertheless, it can be helpful to briefly examine

the relation between it and the Laplace transform, which is commonly used

in transient analysis.

Consider the special case of a causal signal g(t), defined as a signal that

is zero for negative time. In other words, the signed g(t) starts at or after

I = 0. In such a case, the formula for the Fourier transform of. g(t) takes

'For a description of the FFT algorithm and its applications, see Roberts and Mullis

(1987) or Oppenheim and Schafer (1975).

R
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the form

G(f) = f., g (t) e xp( — j2 7z f t) dt	 (2.147)

This integral bears a close resemblance to the one-sided Laplace transform
of g(t), as shown by

6 (s) = L, g(t) exp(—st) dt	 (2.148)

which implies that g(t) = 0 for t < 0. The quantity

S = a -4- fto	 (2.149)

is a complex variable whose real and imaginary*parts are or and 0), respec-
tively. Comparing Eqs. 2.147 and 2.148, we see that the Fourier transform
G(f) may be obtained from the Laplace transform 6(s) by putting

s = fto = i27rf

This is the link that connects the Fourier and Laplace transforms.
As mentioned previously, the Fourier transform is adequate for most

purposes in communication theory. As such, we will use it exclusively in
the rest of the book.

..........................................................................................................................
PROBLEMS

The problems are divided into sections that correspond to the major sec-
tions in the Chapter. For example, the problems in Section P2.1 pertain
to Section 2. 1. This practice is followed in subsequent chapters.

P2.1 Fourier Series

Problem I A signal that is sometimes used in communication systems is
a raised cosine pulse. Figure P2.1 shows a signal gp ( t) that is a periodic

1	 —2	 J	 — 1	 0	 1	 2	 2
2	 2	 2

RqUrs P2.1
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sequence of these pulses with equal spacing between them. Show that the

first three terms in the Fourier series expansion of g,(t) are as follows:

00	 + 8 cos(7r t) + t cos(27rt) +
3)7

Problem 2 Evaluate the amplitude spectrum of the periodic pulsed RIF

waveform shown in Fig. P2.2, assuming that f, T,, > 1.

Figure P2.2

.	 Problem 3 Prove the following propertic^ of the Fourier series:

(a) If the periodic function gp (i) is even. that is,

g' ( — 0 = g, (t)

then the Fourier coefficients, the c_ are pLjrel% real and e%en. that is,

c - , = c'.

(b) It g,(t) is odd, that is,

g,( — t) = —g"(O

then the c, are purely imaginary and an odd function of n.

(c) If g,(t) has half-wave symmetry, that is,

,gp 
t	 T,,) — —gp(,)

where T, is the period of g,(t), then the Fourier series of such a signal

consists of only odd-order terms.

P2.2 Fourier Transform

Problem 4 Determine the Fourier transform of the signal g(t) consisting

of three rectan gular pulses. as shown in Fig. P2.3. Sketch the amplitude

spectrum of this signal for the case when T <- T,,
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U,	

TO

Figure P2.3

Hint: Consider a rectangular pulse of amplitude A and duration T. and
use the linearity and time-shifting properties of the Fourier transform.

Problem 5 Determine the inverse Fourier transform of the frequency
function G(f) defined by the amplitude and phase spectra shown in Fig.
P2.4.

Problem 6 Show that the spectrum of a real symmetric signal is either
(a) purely real and even, or (b) purely imaginary and odd.

P2.3 Properties of the Fourier Transform

Problem 7 Let

g' ( t )	 x -
5(1)

g 2 (t)	 x(5t)

Figure P2.4
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(a) Determine the Fourier transforms G I (f) and G2(f) in terms of
the Fourier transform X(f).
(b) Which of the two time functions, g l (t) and 92( t), corresponds to
time compression, and which one to time expansion?
(c) Let

y(t) = a g,(t)

Find the value of scaling factor a required to make Y(0) = X(0), where
Y(f ) is.the Fourier transform of y(t). Repeat your calculation for g,(t)
in place of gl(t).

Problem 8

(a) Find the Fourier transform of the half-cosine pulse shown in Fig.
P2.5a.
(b) Apply the time-shifting property to the result obtained in part (a)
to evaluate the spectrum of the half-sine pulse shown in Fig. P2.5b.
(c) What is the spectrum of a half-sine pulse having a duration equal
to a T?
(d) What is the spectrum of the negative half-sine pulse sho'An in Fig.
P2.5c?
(e) Find the spectrum of the single sine pulse shown in Fig. P2.5d.

Problem 9 Any function g(t) can be split unambiguously into an even
part and an odd part, as shown by

g ( t ) = 00 + g,(t)

g(l)

A

T	 0	 T	 0	 T
2	 2

(a)

g(t)

T

0

IM

g1l)

T	

A

0 

A	

T

(d)

Figure P2.5
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The even part is defined by

M t ) ^ ^W t ) + g( – t)]

and the odd part is defined by

gJ0 = IWO – g(-01

(a) Evaluate the even and odd parts of a rectangular pulse defined by

g(r) – A rect 
(T – 2)

(b) What are the Fourier transforms of these two parts of the pulse9

Problem 10 Assume the a^ailability of a de%ice that is capable of com-

puting the Fourier transform of an energy signal g(t) used as input. Explain

the modifications that A ill have to be made to the input and output signals

of such a device so that it mav also be used to compute the inverse Fourier

transform of the quantitv G( f ), where g(t) z^ G( f

Problem 11 The Fourier transform of a signal g(t) is denoted 
by 

G(f)

Prove the following properties of the Fourier transform:

(a) The total area under the curve of g(i) is given by

Lg(t) dt = G(0)

where G(0) is the zero-frequency value of G(f).

(b) The total area under the curve of G ( f ) is given by

f 
G(f) df = g(0)

where g(0) is the value of g(t) at time t = 0

(C) If a real signal g(t) is 
an 

even function of time t, the Fourier trans-

form G(f) is real. If a real signal g(i) is an odd function of time t, the

Fourier transform G(f) is imaginary.

Problem 12 You are given the Fourier transform pair

	

exp( — IT t2)	 exp( — 'Zf2)

for a standard Gaussian pulse. Using the time-scaling property, show that

1	 ( _ 71 t2)

	exp —	 exp( – 2n2f'T')
72 ̂ n,	 2r'
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Problem 13 Prove the following properties of the convolution process:

(a) The commutative property:

g , ( t ) J^- g,z - ( t ) = g , ( t ) i^r g,(t

(b) The associative property:

91( t ) J^_ [92( t ) "^- 93( t )] = 19-0) '^_ 9401 '^_ 93(t)

(c) The distributive property:

91( t ) '^P [92( t ) + 91(t)] = 91(t) '^r g,(t) + g,(t) 4- g,(t)

P2.4 Interplay Between Time-Domain and

Frequency-Domain Descriptions

Problem 14 Consider a triangular pulse of height A and base 2T. The

duration of the pulse is measured at half-amplitude points. The bandwidth

of the pulse is defined as one-half the main lobe of the pulse ' s spectrum.
Shov% that the time —bandwidth product of the pulse equals unity.

Problem 15 Consider the sinc pulse

g(t) = A sinc(2Wt)

The duration of the pulse is defined as the duration of the main lobe of

the pulse. Hence, show that the time-bandwidth product of the sinc pulse
equals unit.%.

Problem 16 Consider the Gaussian pulse

g ( l ) =	 exp

The parameter r provides one possible measure for the duration of the

pulse. Defining the bandwidth of the pulse in a similar manner, show that

the time-bandwidth product is 1/4.

Hint: Evaluate the Fourier transform of g(t).

P2.5 Dirac Delta Function

Problem 17 Show that the effect of scaling the argument of the delta

function by a constant a is described bN

J(al) = I
Fa
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Problem 18 The delta function may be considered as the limiting form

of an ordinary function. Some useful representations are

I

	

6(T) = liM	 exp

T
= 11, In

:—" (1 2 + TI)

= lim !i^^

	

' -0	 711

For each representation. plot the time function and its Fourier transform

for different values of parameter T. Hence, demonstrate that each time

function approaches the delta function in the limit.

Problem 19 Determine the Fourier transform of the signal

g ( t ) = COS2(2irft)

Problem 20 Let

	

g (t)	 G(f)

and assume that G(0) is nonzero. Starting %kith the Fourier transform

of a si^nal. evaluate the Fourier transform of the integrated signal

f'- . g(r) d-.

Hints

(a) Use the formula for integration by parts.

(b) Use the limiting forms

sin(27rft)

	

im	 M f)

	

Ir—O	 7rf

cos(27zft

	

I 
im	 0

	

'—()	 7rf

P2.6 Fourier Transforms of Periodic Signals

Problem 21 Consider again the periodic signal gp (t) defined in Problem

1, which has a period of 2 seconds. The generating function of the signal

is defined by

(1)

	 1

1 + cos(27rt),	 — j -- I -- j

0,	 for remainder of the period
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(a) Determine the Fourier transform of the generating function g(t).

(b) Hence, using the formula of Eq. 2.125, determine the Fourier trans-
form of the periodic signal Compare your result ,with that of

Problem 1.

P2.7 Sampling Theorem

Problem 22 Specify the Nyquist rate and the Nyquist interval for each of

the following energy signals:

(a) g(t) = sinc(200t)
(b) g(t) = sinC2 (200t)
(c) g(t) = sinc(200t) + sinC 2 (200t)





CHAPTER THREE

M

FiLTERING AND

1. Chapter 2 we used Fourier methods to study spectral properties

of various kinds of signals and relationships between spectra and time-
domain characteristics of the signals. We also studied the effects that
various time-domain operations on a signal have on the spectrum of the
signal. In this chapter we study filtering characteristics of sysierns. The
system may be a linear time-invariant filter or communication channel.
We also consider the linear and nonlinear forms of signal distortion,
which result from transmission through linear and nonlinear system!
respectively. We begin the study by considering the time response oi -i
linear time-invariant system.

83
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3.1 TIME RESPONSE

A system refers to any physical device that produces im output signal in

response to an input signal. It is customary to refer to the input signal as
the excitation and to the output signal as the response. A system is said to
be linear if the principle of superposition holds; that is, the response of a
linear system to a number of excitations applied simultaneously is equal to
the sum o

- 

f the responses of the system when the excitations are applied
individually. The system is said to be time-invariant if a time shift in the
excitation applied to the system produces the same time shift in the response

of the system. In this section, we stud y the time response of linear time-
in variant s - vstems, with particular refere 'nce to filters and channels. A filter
refers to a frequency-selective device that is used to limit the spectrum of
a signal to some band of frequencies. A channel refers to a physical medium
that connects the transmitter of a corntrunication system to the receiver.
The operation of limiting the spectrum of a signal to some band of fre-
quencies (by passing the signal through -i filter or channel) is called filtering.
In the time domain, a linear system ^^ described in terms Of i ts impulse
response, which is defined as the response of the system (with zero initial

conditions) to a unit impulse or delta 
f
unction 6(t) applied to the input of

the s - vstem. If the system is time-invariant, then the shape of the impulse
response is the same no matter when the unit i mpulse is applied to the
system. Thus, assuming that the unit impulse or delta function is applied
at time t = 0, we may denote the impulse response of a linear time-invariant
system by h(t). Let this system be subjected to an arbitrary excitation x(t),
as in Fig. 3.1 a. To determine the response y(t) of the syst 'em, we begin by
first approximating x(t) by a staircase function composed of narrow rec-
tangular pulses, each of duration JT, as shown in Fig. 3.1b. Clearly the
approximation becomes better for smaller J r. As J r approaches zero,
each pulse approaches, in the limit, a delta function weighted by a factor
equal to the height of the pulse times A r. 

Consider a typical pulse, shown
shaded in Fig. 3.1b, which occurs at t = r. This pulse has an area equal
to X(r) A r. By definition, the response of the system to a unit impulse
or delta function 6(t), occurring at t = 0, is h(t). I t follows, therefore, that
the response of the' system to a delta function, weighted by.the factor
x(r) J r and occurring at I = 'r, must be X(T)h(t — r) Jr. To find the total
response y (t) at some time t, we apply the principle of superposition. Thus,
summing the various infinitesimal responses due to the various input pulses,
we obtain in the limit, as Ar approaches zero,

Y W =	 X(T)h(t — r) dr	 (3.1)

This relation is called the convolution integral. Note that for the response
y(t) to have the same dimension as the excitation x(t), the impulse response
AW must have a dimension that is the inverse of time.
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I.P^l
x (1) 

_

1::'esponw 
I- Y (1)

h W

Figure 3.1

(a) Linear system. (b) Approximat;on of input x(t).

In Eq. 3. 1. three different time scales are invoked: excitation time r,
rcspo ptse time t, and s i.5tem lernori time f — T. This relation is the basis
of ti me-domain ana lysis of linear ti me-imariant systems. It states that the
present value ofthe response ofa linear t ime-invariant s ystem is a Aeighted
integral over the past histor% of the input signal, Aeight 'ed according to the
impulse response of the s^ste' m- Thus the impulse response acts as a memory
function for the system.

In Eq. 3.1, the excitation x(t) is convolved with the impulse response
h(t) 

to produce the response y(t). Since convolution is commutative, it
follows that we may also write

h(T)x(t	 dT	 (3.2)

where h(i) is convolved with i(i).

Using the shorthand notation for convolution, we may rewrite Eq. 3.1
simply as

V ( 1 ) ^ x (t) -J^- h (t)	 (3-3)

where 1^_ denotes convolution, Similarly, we may rewrite Eq. 3.2 as

y (1) = h (t) -,^- x (t)	 (3.4)
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Equations 3.3 
and 3.4 highlight the commutative nature 

of convolution or

linear filtering.

..........................................................	 ...........
..............................................

INTERPRETATION OF CONVOLUTION
EXAMPLE I GRAPHICAL

a graphical
ight into convolution by presenting

We may develop further ins
integral, which is defined in mathematical

interpretation of the convolution
e will do so in this example by considering 

Eq.
terms in Eq. 3.1 or 3.2. W

i yet ill^strative of the
3.1 first and then 3.2. 

The example is simple an(

various steps involved in evaluating the convolution integral. Specifically,
an impulse response that

we consider a linear time-invariant system with

is a decaying exponential function and that is driven by 
a unit step function.

Parts a and b of Fig. 3.2 
depict the impulse response h(r) and excitation

h(7-)

(a)

0

x (-r)

(b)

7

0

h(— r)

(c)

0

Figure 3.2
The steps involved in computing one form of the convolution integral. (a) Impulse

response. (b) Excitation. (c) Image of the impulse response. 
(d) Time-shifted image

of the impulse response (e) Evaluation of the response
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Figure 3.2 (continued)

x(7) - respect ivel y . For reason, that will

time v ariable in both cases is shown as , 
becom e apparent presentiv, the

In accordance %kith Eq. 3. , I. thei ntegral consists Of the product x(r)jj(j ' -- - A, c 
alrcad^ have -1 (0- Toohlainh(t — 7). weprocced in Mo steps. First, we formuiatc/1( — T). whichis th e mirror ' Ma QC Of/1(7) with respect t o the vertical a .xis , as shown inFig. 3 2c. Then, %ke shift 12(	 to the right by an amo unt equal to thes

Pecified time I t o Obtain h(i	 7) this second st ep is shown in Fig. 3.2d.Next, we multi k Alt) h\ h(l —P^	 T), as in Fig. 3.2e. and thcrch^ O btainthe desired integrand-r(-)/j(t 	 forthe specified ^alueoftinj t" Finally,we calculate the to tal area under x(r)II(t — r). Ahich is s ho CA'n shadedin Fig. 3 2e. This area equals 
the valu e of the systern response y(l) attime t.

ror Inc graphical interpi-clation 
Of Eq. 3.2 wc Ma

y 
Proceed in a sim'dar

\va 

Y . as illustrated in Fig. 3.3. In this second case the inicgrand equals
T ) . The first mulli Pking factor h(r) is already a % ailable, as inFig. 3.3a. The second Mult iplNing factor x(t is Obtained 

by formingthe image x( — 
T ) Of the specified excit ation Or), and then shifting the

image x( — 0 to the right by an amount equal to the specified time 
t. Thefunctions X(T), X ( — 0, and 'x(t — r) are depicted in Figs. 3.3b, c , and d,respectively. The resulting p roduct h(r)x(j — 

r) 

is sho%kn in Fig. 3.3e.Comparing Figs. 3.2e and 3.3e, we see that the products,r(r ) 11(t — I) andh ( r ) X (f — r) are reversed with respect to each other. Naturally, they both
have the same total area under their i ndividual curves, which confirms the
comm utative property of convolution.
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J, (^)

X(t- T)

(d)

_; 0 
t

h(T)X(t — T)

Area = y(t)

0	 t

(a)

(b)

(c)

X (T)

T

X(- T)

T
0

Figure 3.3 mputing the second form of the convolution integral. (a)The steps involved in cO	
mage of the excitation. (d) 

Time-sh,fted image

se response . (b) Excitation (c)

lmpul^
0	 excitation. (e) Evaluation of the response Y(t)
f the ........................................................ ..................

........................................



FIME RESPONSE 89

.........................................................................................................................

EXAMPLE 2 TAPPED-DELAY-LINE FILTER

Consider a linear time-invariant filter with impulse response h(t). We as-

sume that

1. The impulse response h(t) = 0 for t < 0.

2. The impulse response of the filter is of finite duration, so that we may

ri t e h (t) = 0 for t _- Tf

Then ^^e maN express the filter output Y(i) produced in response to the

input x (t) as follows:

^' (0 = 
f 

li(T)x(t — r) dT	 (3.5)

Let the input x(r), impulse response h(t), and output ' v(t) be unifornil')
sampled at the rate IlAr samples per second, so that we may put

I ^ n Jr	 (3.6)

and

k AT	 (3.7)

where k and n are integers, and.jr is the sampling period. We assume that

JT is small enough for the product li(T)x(i — 7) to remain essentially

constant for k A r, ^_ r _- (k + I ) A r for all ^ alues of k and t of interest.
Then we can approximate Eq. 3.5 by the convolution surn.

A r)	 h (k J 7)x (n J r — k A r) J r	 (3.8)

where NAr ^, Tf . Defining

h(k Ar) AT

we ma^ rewrite Eq. 3.8 as

r)	 w, x (n , I	 k A r)	 (3.9)

A - 0

Equation 3.9 is realized using the circuit shown in Fig. 3.4, which consists

of a set of delaly elements (each producing a delay of A r seconds), a set of
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ME

y

Figure 3.4
Tapped-delay-line filter.

multipliers connected to the delav-line taps, a corresponding set of weights

applied to the multipliers, and a summer for adding the multiplier outputs.
This circuit is known as a taDped-delay'-Iine filter or transversal filter. Note
that in Fig. 3.4 the tap-spacing or basic increment of delay is equal to the
sampling period of the input sequence Jx(n A r)j.

When a tapped-delay-line filter is implemented using digital hardware,
it is commonly referred to as afinite-duration impulse response (FIR) digital

filter. The required delay is provided by means of a shift register, with the
basic increment of delay, Jr, equal to the clock period. An important
feature of a digital filter is , that it is programmable, thereby offering a high
degree of flexibilit y in design.'

..........................................................................................................................

CAUSALITY AND STABILITY

A system is said to be causal if it does not respond before the excitation
is applied. For a linear time-invariant system to be causal, it is clear that
the impulse response h(t) must vanish for negative time. That is, the nec-
essary and sufficient condition for causality is

h (t) = 0,	 t < 0	 (3.10)

Clearly, for a system operating in real time to be physically realizable, it
must be causal. However, there are many applications in which the signal

'For a detailed treatment of the theory and design of digital filters, see Roberts and
Mullis (1987) or Oppenheim and Schaffer (1975).
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to be processed is available in stored form; in these situations the system

can be wricausal and yet physically realizable.

The system is said to be stable if the output signal is bounded for all

bounded input signals. Let the input signal x(t) be bounded, as shown by

	

I X(t) I _- M,	 —X <	 t < .	 (3.11)

where M is a positive real finite number. Using Eqs. 3.2 and 3.11, we may
write

	

W01 --	 h(r)j lx(t — r)l dr = 	 A4 
L 

h(r)j d-r

It follows therefore that for a linear time-invariant system to be stable, the

impulse response h(t) must be absolutely integrable. That is, the necessary

and sufficient condition for stability is

	

f^ 
jh(t)^ at < x	 (3.12)

EXERCISE I The impulse response of a linear time-invariant system is

defined bN

h(t) = cxp(at)u(—r)

where u( —t) i s the time-re%ersed version of the unit step function u(t). Is

this s%stem casual '? Is it stable'? Give reasons for Nour answers.

........... 3.2 FREOUENCY RESPONSE

Consider a linear time-invariant system of impulse response It (t) driven by

a complex exponential input of unit amplitude and frequency f, that is,

	

x(t) = exp(j27rft)	 (3.13)

Using Eq. 3.2, the response of the system is obtained- as

y ( t) = 
L 

h(r) exp[j2;7f(t — T)j dT

exp(j27rft) 
L 

h(r) exp(—j27rfz) dr	 (3.14)
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Define

H(f) = 
L 

h(r) exp(-127rfr) dr -	 (3-15)

'Men we may rewrite Eq. 3.14 in the form

y(t) = H(f) exp(j27rft)	 (3.16)

The response of a linear time-invariant system to a complex exponential

function of frequency f is, therefore, the same complex exponential func-

tion multiplied by a constant coefficient H(f). The quantity H(f) is called

the transfer function of the system. The transfer function H(f) and impulse

response h(t) form a Fourier transform pair, as shown by the pair. of

relations:

H(f) = L h (t) exp( —j27zft) dt	 (3.17)

and

b. ( t) = 
f 

Y (f ) exp(j2 nf t) df	 . -	 (3.18)

An alternative definition of the transfer function may be deduced by di-

viding Eq. 3.16 by 3.13 to obtain

H(f) — Y 
(t) 

I , (t) = xpO 2 , ft)	
(3.19)

Consider next an arbitrary signal x(t) applied to the system. The signal

x(t) may' be expressed in terms of its Fourier transform as

X (t) =_ L X(f) exp(j21rf^) df	 . (3.20)

or, equivalently, in the limiting form

At) = lim	 X(f) exp(j2,,i t) Af	 (3.21)

f ^W

That is, the input signal x(t) may be viewed as a superposition of complex

exponentials of incremental amplitude. Because the system is linear, the
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response to this superposition of complex exponcritial inputs is

Y(1)	 lim	 H(f)-V(f) exp(j2)Tft) Af
-I f-n k

f	 f

H(f)X(f) expQ2,,fl) df	 (3.22)

The Fourier transform of the output is therefore

Y(f) = H (f)X(f)	 (1.23)

A linear time-invariant system may thus be described simply in the fre-
quency domain by noting that the Fourier transform of the output is equal
to the product of the transfer function of the system and the Fourier
transform of the input.

The result c I Eq. 3.23 may. of course. be clAuced directly by recognizing
that the response y(t) of a linear time-invariant system of impulse response
h(t) to an arbitrary input x(r) is obtained by convolving x(t) with h(t), or
vice versa, and by the fact that the convolution of a pair of time functions
is transformed into the multiplication of their Fourier transforms. The
foregoing derivation is presented primarily to develop an understanding
of why the Fourier representation of a time function as a superposition of
complex exponentials is so useful in analyzing the behavior of linear time-
invariant systems.

AMPLITUDE RESPONSE AND PHASE RESPONSE

The transfer function H(f) is a characteristic property of a linear time-
invariant system. It is, in general, a complex quantity, so that we may
express it in the form

H(f) = H(ft e-xp[j/3(f)J	
1 

(3.24)

where H(f)J is called the amplitude response, and fl(f) is called the phase
response. The phase response is related to the transfer function H(f) by

fl(f) = arg[JI(f))	 (3.25)

In the case of a linear system with a real-valued impulse response h(t), the
transfer function H(f) exhibits conjugate symmetry, which means that

JH(f)l = IH(—f)l	 (3.26)



94 FILTERING AND SIGNAL DISTORTION

and

W) = —#(—f)	 (3.27)

That is, the amplitude response H(f)j is an even function of frequency,

whereas the.phase response fl(f) is an odd function of frequency. Plots of

the amplitude response H(f)j and the phase response fl(f) versus fre-

quency f represent the frequency-domain description of the system. Hence,

we may also refer to H (f ) as the frequency response of the, system.

In some applications it is preferable to work with the logarithm of H(f)

rather than with H(f) itself. Define

	

InH(f) = -(f) + ifl(f)	
1	

(3.28)

:where

a(f) = InjH(f)j	 (3.29)

The function a(f) is called the gain of the system. It is measured in nepers,

whereas fl(f) is measured in radians. Equation 3.28 indicates that the gain

a(f) and phase response fl(f) are the real and imaginary parts of the

logarithm of the transfcr function H(f), respectively: The squared ampli-

tude response Hff)^-' is identified with power. Accordingly, we may also

apply the decibel (dB) measure to the gain by writing

	

a'(f) = 20 log jojH(f)j	 (3.30)

The two gain functions a(f) and a'(f) are related by

a'(f) = 8.69-(f)	 (3.31)

That is, 1 neper is equal to 8.69 dB.

.........................................................................................................................

EXAMPLE 3

Consider a linear time-invariant device with a transfer function defined by

	

—j,	 f > 0

H(f)	 0,	 f = 0

	

j ,	 f < 0
(3.32)—j sgn(f)

where sgn(f) is the signum function.

The amplitude response and phase response of the device are shown in
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Figure 3.5

Characteristics of a Hilbert transformer (a) Amplitude response (b) Phase response

Fig. - 15a and h, respecti%cl%. 'I fiat i^. the dc\ ice produces a phase shift of

- 90' for all pomti^e frequencies and a ph ase shift of - 90 for a I I neg at i^e

frequencies. The amplitudes of all frequcnc\ components of the input signal

are unaffected by transmission throu0i the dc%ice. Such an ideal dc^ice i,

called a Ildbert trattslormer.

Fi2ure 3.6 shoAs a black-box representation of the Hilbert tran,foriner

with a Fourier transformable signal 01) actinL ,. a^ input. and the resulting

output ' denoted by -i(t). ^ke Aish to determine the output x(t), Lixen the

input x(t). To do so. N^e first determine the impulse re^pon^e of the de%ice.

Specifically, we use the Fourier transform pair of Eq. -'^ Ill - to the

impulse response of the Hilbert transformer a^

h(t) ^	 ( 3, 13

Hence, the convolution of this imptike response ^% ith a signal .1 (1) appliccl

to the input of the Hilbert transformer ^ielcls the resulting output i(i) as

7'

According to this formula, x(t) is the Hilbert trunsJorm of t(t).

Mhen dealing with Hilbert transformation, it is customary to denote the output by
placing a circumflex (or "hat") over the symbol for the input; Th s explains the

reason for using i(t) rather than 00 to denote the output
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Input time function	 Output time function

_^LCHhlbertform,t'.

sformer

Figure 3.6
Black-box representation emphasizing that both the input and output of a Hilbert

transformer are time functions.
................... ; ......................................................................................................

EXERCISE2 The inverse Hilbert transform, defining x(t) in terms of f(J),

is described by

X(t) = —' f-. l(T) 
r 
d,	 (3-35)

Starting with the transferfunction of Eq. 3.32, de .
rivp the formula of Eq.

3.35.

SYSTEM BANDWIDTH

To specify the degree of dispersion of the amplitude response or gain of

a system, we use a parameter called the system bandwidth. A common

definition of s
ystem bandwidth is the 3-dB bandwidth, the exact formulation

of which depends on the type of system being considered, In the case of

a low-pass s ' istern, the 3-dI3 bandwidth is defined as the difference between

zero frequency. at which the amplitude response attains its peak value

^H(0)^,, and the freq ' uency at which the amplitude response drops to a value

equal to IH(0)11\11 2. as illustrated in Fig. 3.7a. In the case of a 
band-

pass sysiern, the 3-dB bandwidth is defined as the difference between the

frequencies at which the amplitude response drops to a value equal to

11V_2 times the peak value H(fjj at the midband frequency f_ 
as illus-

trated in Fig. 3.7b. Note that in both cases, the system bandwidth is defined

for positive frequencies. Note also that an amplitude response value equal

to I I/ ^, 5- times the peak value of the ' amplitude response is equivalent to

a drop in the gain of 3-dB below its peak value^ hence, the name

bandwidth."

.......... 3.3 
LINEAR DISTORTION AND EGUALIZATIQN

Two basic forms of signal distortion result from the -transmission of a signal

through a physical system: linear distortion and nonlinear distortion. In the

context of telecommunications, the system of interest is comprised of all

the components that constitute the path from the source of information to

the desired destination. When the system is viewed as being linear and
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Figure 3.7

The definition o f s ystem bandwidth. (a) Low-pass system. ^b) Band pass system.

time inN ariant. linear distortion arises o^% ing to imperjec lioni; in tile fre-

quctu ^ re.,,ponse of the s ,%stem. On the other hand, nonlinear distortion

arises cmin., to tile presclICC Oftionlinearities in the inakeup ofthe s%stem.

In this `,CCtion,^ 'AC di^CLII!s tile linear dmortion problern: nonlinear distor-

tion is con,,idcrcd in Section .1.7. We begin the di
s
cussion hy formulating

the condition, for distortionless trarimnission of a ^ignal through a linear

time-in^artajit ,%stein

CONDITIONS FOR DISTORTIONLESS TRANSMISSION

By distortionle.ss transmission we mean that the output signal of a system

is an exact replica of the input signal, except for a possible change of

amplitude and a constant time delay. We may therefore say that a signal

x(t) is transmitted through the system without distortion if the output signal
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y(t) is defined by

	

y (t) = K. x (t — tj	 (3.36)

where the constant K accounts for the change in amplitude and the constant
t, accounts for the delay in transmission.

Let X(f) and Y(f) denote the Fourier transforms of x(t) and y(t).
respectively. Then, applying the Fourier transform to Eq. 3.36 and using
the time-shifting property of the Fourier transform, we get

Y(f) = KX(f) exp(—j27rft,,)	 (3.37)

The transfer function of a distortionless system is therefore

H(f) = Y(f)
X(f)

= K exp( —j2;, ft, ) )	 (3.38)

Correspondingly. the impulse response of the system is given by

	

h(t) = K6(t — t,,)	 (3.39)

where 0(t — tj is a Dirac delta function shifted by t, seconds.
Equation 3.38 indicates that in order to achieve distortionless trans-

mission through a system, the transfer function of the system must satisfy

two conditions:

1. The amplitude response . H(f)j is constant for all frequencies, as shown

by

H(f)j = K	 (3.40)

2. The phase 13(f ) is linear with frequency, passing through zero as shown

by

	

#(f) = — 27rft,,	 (3.41)

These two conditions are illustrated in parts a and b of Fig. 3.8, re-

spectively.

EXERCISE 3 Using the impulse response of Eq. 3.39 in the convolution
integral, show that the input—output relation of a distortionless system is
as defined in Eq. 3.36.
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ia)	 1b)

Figure 3.8

Frequency response^ for distorTionless transmission (a^ Amplitude response.
(b^ Phase response.

EXERCISE4 Show that the condition of Eq. 3.41 on the phase response

fl(f) for distortionless transmission may be modified bN adding a constant

equal to a positive or negative integer multiple of 180'. How can such a

modification arise in practice?

AMPLITUDE DISTORTION AND PHASE DISTORTION

In practice, the conditions for distortionless triiii,nii-ion. il^ jkl^t dCsCf]bCCJ,

can onl^ be satisfied approximately. That is to a^ . thcrc- 1^ ltk^A .̂ ^ A ccrtain

amount of linear di
s
tortion present in the output ^iLnid. In particular. we

rnj^ di^tin guish mo components of ^i griiil dktortion prodlj^:cd h^ trans-

mi
s
sion throu,-,h it lincar tniic-in^iiriant ^stcni:

I . When the amplitude response 11(f) of the s%^tcrn i,, not constant with

frequcnc^ inide the frequency hand Of interest, Ill(: frequenc% coal-

ponents of-the input signal Lire tran^nnitted kwh ditict -ciit am()^Ilts of

i!ain or attenuation. I his effect is called amplitude dolorti(m. 'I he most

common fortli of amplitude distortion 
is 

exce,s -,ain or ittenuation at

one or both ends of the frequcnc^ hand of irircjl^t

2. -1 
he second form of distortion arises ^Ocn the phiiNc rc^ponsc fl(f I of

the systein is not linear A ith frequency. Then if 
the 

input ^ignitl is di% ided

into a set of comporicilts, each one of Ahich occupic^ it narro" band

of frequencies. we find that cacti of them is ^uhjcct t(i a cliffcrent dela^

in passing through the system, with the result that the output 
s
ignal has

a different k%aveform from the input. -this form of distortion is called

pha.se or dela di.stornon. We %kill have more to oil this issue in

Section I.o.
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You should carefully note the distinction between a constant delay and

a constant phase shift. These two conditions have different implications.

Constant delay is a requirement for distortionless transmission. Constant

phase shift. on the other hand, causes signal distortion.

EQUALIZATION

To compensate,for linear distortion, we mav use a network known as an

equali'zer connected in cascade with the system in question. The equalizer

is designed in such a %k ay that, inside the frequency band of interest, the

overall amplitude and phase responses of this cascade connection approx-

imate the conditions for distortionless transmission to within prescribed

limits.

Consider, for example, a communication- channel with transfer function

H,(f). Let an equalizer of transfer function H,,(f) be connected in cascade

with the channel, as in Fig. 3.9. The overall transfer function of this com-

bination is equal to Hjf)H,,(f). For overall transmission through the

cascade connection of Fig. 3.9 to be distortionless, we require that (see

Eq. 3.38)

H,(f)H,(f) = K exp(—j27rft,)	 . (3.42)

where Kis a scaling factor and tc, is a constant time delay. Ideally. therefore,

the transfer function of the equalizer is inversely related to that of the

channel, as shown by

H 11 (f) = 
K exp( — j2 7tf t,)	

(3.43)
H,(f)

In practice, the equalizer is designed such that its transfer function ap-

proximates the ideal value -if Eq. 3.43 closely enough for the linear dis-

tortion to be reduced to a satisfactory,level.

A network structure that is well-suited for Ihe design of equalizers is

the tapped- delay- line filter, depicted in Fig. 3.4. From the time-shifting

property of the Fourier transform, we know that when a signal is shifted

Delayed version

In ^ i t	 I	 Ecluaii^zerof^chya^nnel input

He(i (

(ff)

Figure 3.9
Block diagram of equalization.
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in time by A 7- seconds. its Fourier transform is multiplied h\ the complex

exponential exp( — j27rf A 0. Accordingly, the transfer function of this tapped-

delay-line filter, used as ail equalizer, is given by

H,,(f) = V kv, exp( —j2rk f . , I r)	 (3,44)
1 ^,

For convenience of analNsis, let the number ot taps he odd. as shc^^n h^

	

V = 2M — 1	 (3.43)

where M is an integer. Also, citing

k	 .11	
k	 0. . . ^ . \	 1	

(3.46)
In = — .1L . , . , - 1. 0, 1 . . . . W

and

W4 = ('11,

	 I' . 47)

we may reN^ rite Eq. 3.44 as

H-o	 C_ CXP( - 127Mt	 A-)	 I

The expression inside the square bracket, 
on 

the right side of Eq. 3.48

represents the discrete-tirne Fourier transform of the sCqUCl1CC of tap coef-

ficients c c,,, c, c, %^ith a tap 
s
pacing (saniplin, in-

ter^al) of .1 r seconds. This discrete-tinic Fourici tianstorni nm% Ile % lc%^cd

as a truncated version of the complex Fourier series %%ith a frcquenc^

periodicity of l/.Jr hertz: note that 
in 

this interprCtatil)[1. the U^ULII i0iCs

of time and frequencv in the complex Fourier series are interch,im.,ccl.

We mav no%% describe 
a 
procedure for designing the equ,dier. Specit-

icallY, giNcri a channel of transfer function 11,(f) 
to 

he equalizcd o%cr the

interval -- B ^— ' t !^^ H, ^kc first approximate the reciprocal transtct function

1 /11, (f) bv a complex Fourier series %^ith periodicit% ( 1 1 T) — B I % picalk ,

H,(f ) is specified numericall in terms ot it^ amplitude and [)It 

'Z 

C0111-

ponLnts, in which case numerical integration is Used to compute the coln-

plex Fourier coefficients. -File total [lumber of ignificant tcrm,. -'M - I ,

is chosen to be just big enough to produce a satisfactor_% approximation

to the prescribed 11,(f). The tap coefficients of the equali/er. najilcl^,

C 14 - - - , (' 1 , C11, Ci 
cw are then matched to the complex Fou^ier

coefficients.
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ExERcjsE 5 Write the formula for evaluating the coefficients of the

complex Fourier series used ^o approximate 11Hc(f) with periodicity

.......... 3.4 IDEAL Low-PASS FILTERS

As preyiously men tioned. a filter is a frequency-selective dcNi^e that is used

to limit the spectrum of 
a 

signal 10 Some Spccli fie d band of frequencies. Its

frequenc y response is characterized by a passhand 
and a stopband, which'

are separated by a guardband. 
The frequencies inside the passband are

transmitted with little or no distortion, whereas those in the stopband are

rejected. The filter maN be of the low-pass, high-pass, band-pass, or band-

stop type. dependin g on whether it transmits low. high. intermediate, or

all but intermediate frequencies, respectivel% '

In this section we ^tud^ the time re.
sponse of the ideal low-pass filter,

which transmits, without an^ distortion all frequencies inside the passband

and completel y rejects all frequencies inside the stophand. as illustrated

in Fiv. 3.10. N'ote that the conditions for distortionlc^s transmission need

onk be satisfied inside the pass band of the filter. The transfer function of

the ' ideal loA-pass filter so illustrated is defined 
by

exp( - j2 rf tJ	 B !:-i ^^- B	 (3.49)
HM ^ 0,	

^f! > B

,Ahere, for convenience. we have set K = 
1. The parameter B defines the

bandwidth of the filter For a finite L, 
the ideal loA -pass filter is noncasual.

0 (f)

f	

B	
f

—B 0 V"',

Siope = —27rto

(a)	 (b)

Figure 3.10'es	
-Pass filter ^ a; Arnpht 'ude response

Frequencv	 ponse of ideal low

(b) Phase response.
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which may be confirmed by examining the impulse response h(t). Specif-
icall y , by evaluating the inverse Fourier transform of the transfer function

of Eq. 3.49, we get

h (t) = 

f aR 
exp[j27rf(t - I,)] df	 (3.50)

where the limits of integration ha^c been reduced to the frequency band

inside which H(f) does not vanish. Equation 3.50 is readily integrated.
yielding

h(t)	
'in[-'17-,B(t	 t,,)]

I ( I	 I , )

2B sinc[2B(i — r,	 (3.51)

This impulse response has a peak amplitude of 2B centered on time I,

as shown in Fig. 3.1 1. The duration of the main lobe of the impulse response
is I / B, and the build-up time from the zero at the beginning of the main
lobe to the peak value is 1128- We see from Fig. 3.11 that, for an y finite
value of to, there is some response from the filter before the time I ' = 0 at
which the unit impulse is applied to the input. confirming that the ideal

low-pass filter is noncausal. Howe%er, despite its noncausality, the ideal

low-pass filter serNes as a useful standard against which the 'response of
causal filters may be measured.

Figure 3.11

Impulse response of ideal low-pass filter.
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..............................................................................................................

EXAMPLE 4 PULSE RESPONSE OF IDEAL. LOW-PASS FILTER

Consider a rectangula r pulse x(i) of unit amplitude and duration T, which

eis applied to an ideal low-pass filter of bandwidth B. The probl m is to

determine the response y(t) of the filter.

The impulse response h(t)of the filteris defined by Eq. 3.51. Its response

is therefore given by the convolution integral

x(r)h(t — r) d-rY (t)	
f

fT' sin[27zB(t	 r)]
dr	 (3.52)2B

-T'	 2 7z B (t 	t,)

Define

27zB(t

Then, changing the integration vatiable from r to 	 we may rewrite Eq.

3.52 as

f'^B(l - 1^ I T 2) 	 sin
d;^

T 2) sin[f,2-B( 1 T2) Sin;.
at;	 f2"	 d;,]

7Z

fSi[27rB(t — t, + T12)] — Sit27, B(t — t, — T12)1)	 (3.53)

7Z

where the sine integral is defined by

Si(14) =	
sin	

d;.
f I"	;.

Fi^ure 3.12 plots the response y(t) for three different values of the filter

bandwidth B, assuming that t,, is zero. We see that. in each case. the output

is symmetric about t = 0. We further observe that the shape of the output

is markedly dependent on the filter bandwidth B. In particular, we note:

I. " When B is large compared with 1/7', as in Fig. 3.12a, the output has

approximately the same duration as the input. However, it differs from

the input in two major respects. First, the output, unlike the input, has

nonzero rise and fall times that arc inNersely proportional to the filter

bandwidth. Second, the output exhibits ringing at both the leading and

trailing edges.

(3.54)
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(b)

m

Figure 3.12
Pulse response of ideal low-pass filter for varying filter bandwidth. (a) B = 2 , T

(b) 8 - 1 1 T (0 B - I 4T The dashed rectangles represent the input signal.
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2. When B = IIT, as in Fig. 3.12b, the output is recognizable as a pulse;

however, the rise and fall times of the output are significant compared

with the input pulse duration T.

3. When the filter bandwidth B is small compared with 11T, the output is

a grossly distorted version of the input, as in Fig. 3.12c.

..........................................................................................................................

EXERCISE 6 How large would you have to make the delay t, for the ideal
low-pass filter to be causal?

......... 3.5 BAND-PASS TRANSMISSION	 -

A problem often encountered in the study of communication systems is

that of analyzing the transmission of a signal through a band-pass system.

Typically, the incoming signal and the s ystem of interest are both narrow-
band with a common midband frequency. We sa y that a band-pass signal
is narrow-band if the bandwidth of the signal i 's small compared to its
midband frequency. A similar definition holds for a band-pass system. A
precise statement about how small the bandwidth must be in order for the

signal to be considered narrow-band is not necessary for our present dis-

cussion. Obviously, we may analyze the band-pass transmission problem
directly by using the convolution integral of Eq. 3.1 or its Fourier-trans-
formed version given in Eq. 3.23. However, a more efficient approach is
to replace the problem with an equivalent low-pass transmission model,

the development of which proceeds in two stages. First. a co ... VirA iow-

pass representation is devised for the incoming band-pass signal. Next, a

similar representation is devised for the band-pass system. In the sequel,

these two representations are considered in turn.

COMPLEX LOW-PASS REPRESENTATION OF NARROW-BAND SIGNALS

Consider a narrow-band signal x(t) with Fourier transform X(f). The am-
plitude spectrum JX(f)l of the signal is depicted in Fig. 3.13a. The pre-
envelope of the signal x(t) is defined by

X - ( 1 ) = X ( t) + j-f ( 1 )	 (3.55)

where i(t) is the Hilbert transform of the signal x(t). The pre-envelope

x.(t) is a complex-valued function of time with the original signal x(t) as
the real part and the Hilbert transform 1(1) as the imaginary part. Let

X^ff) denote the Fourier transform of the pre-envelopc x,(i). We may

thus write, in the frequency domain,

XX) = X(f) + jfw)	 (3.56)
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^_2W—^	
C.)	

^_ 2. —^

(b)

(0

Figure 3.13

(a) Amplitude spectrum of band-pass signal x(t). (b) Amplitude spectrum of pre-
envelope x,(t). (c) Amplitude spectrum of complex envelope i(t).

where '^(f) is the Fourier transform of i(t). From Example 3, we deduce

that )^(f) equals the product —j sgn (f)X(fl. %&here sgn(f) is the signum

function. Accordingly, we may rewrite Eq. 3.56 as

jf) = X(f) + ji —j sgn(f)]X(f)

= X(f) + sgn(f),V(f)
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Moreover, using the definition of the signum funct ion, we get

2 X(f),	 f > 0

X. (f)	 X(0),	 jr ^ 0

10,	 jr < 0	 (3.57)

where X(0) is the zero-frequenc^ Value of X(f). Equation 3.57 states that
the pre-envelope of a Fourier transformable signal has no frequency con-

tent for negative frequencies, as illustrated in Fig. 3.13b.
The frequency-shifting propertN of the Fourier transform suggests that

we may express the pre-envelope r_(t) in the form

Xjt ) ^ ^(t) exp(j27zf,t)	 (3. ^8)

where x(t) is a complex-valued low-pass signal. The amplitude spectrum
of i (t) is illustrated in Fig. 3.13c.

Given the narrow-band Signal x(t), we mav determine the complex en-
velopex(t) by first using Eq. 3. 55 to find the 'pre-envelope x_(t). and then
solvingEq. 3.58forr(t) in term sof-r-(t). Alternati^elN. we ma^ determine
-i(t) by using a frequenc^ -domain approach based on X(f). 'the Fourier
transform ofx(t). Specifically, we retain the positi^e-frequency half of X(_()
centered on f_ shift it to the left bv f_ and then scale it bv a factor of
two. The spectrum so obtained is the Fourier transform of 'the complex
envelope x(t). The rationale for this second method of cletermininiz x(t)
fol lows from the spectra depicted in Fig. 3.13. The second-inethod is usually
the preferred method, because it bypasses the need to know the Hilber't
transform qt).

The complex envelope x(t) provides the basis for the complex low-pass

representation of the narrow-band signal x(t). Indeed, in accordance with
Eqs. 3.55 and 3.58, the real part of the product i(t) exp(127zf,f) is equal
to x(t), as shown by

X(t) = Re[.i(t) exp(12?zf,r)l	 (3.59)

where Re[ ,] denotes the "real part of" the quantity enclosed in the square
brackets. Using the Euler identity

exp(j2-f,t) = cos(27rf,t) ^ i sin(27if,t)

and the definition for the complex envelope _i(j) , we readily find from Eq.
3.59 that x(t) may be expressed aS3

x(t) = x i (t) cos(27rft) — xQ( t ) sin(27rf,t)	 (3.60)

'Equation 3.60 follows directly from the following rule. Let 
a, b, and c denote three

cOmPlex numbers related to one another as

c = ab
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This is the canonical representation for a narrow-band signal in terms of

the in-phase component x l (t) and quadrature component xo(t) of the com-

plex envelope associated with the signal. Indeed, it is a representation basic

to all linear modulation schemes^ more will be said on this i!§sUe in Chap-

ter 7.

The complex envelope i(t) is defined in terms of the in-phase component

x 1 (t) and the quadrature component x,(t) as follows:

x ( r ) = X I( t ) + i X,) (t)	 (3.61)

In other words, x l (t) is the real part of x(t), and x 0 (t) is its imaginary part.

EXERCISE 7 Consider a narrow-band signal x(t) with Fourier transform

X(f). Show that tfie value of k,ff), the Fourier transform ' of the pre-

envelope of x(t), at frequency f = 0 is X(0).

EXERCISE 

a Let x(t) = m(t) cos(27zfc t), where m(t) is an information-

bearing signal. What are the in-phase and quadrature components of x(t)?

What is the complex envelope of x(t)?

COMPLEX LOW-PASS REPRESENTATION OF NARROW-BAND SYSTEM

Consider next a narroA-band s ystern defined 
by 

the impulse response h(t)

or. equi%alcritk. the transfer function H(f). To develop a complex low-

pass representation for this s%stem. we mav perform time-domain opera-

tions on h(t) or frequenc^-doniain operations on H(f). From the previous

discussion of narrow-band signals, we expect the second approach to be

the preferred one. as it is computationally less intensive. Accordin g l^ . from

analogy w ith the complex low -pass representation of a narrow-band signal.

we may de% clop the desired complex low -pass representation of the narrow-

band system by retaining the positivc-frecluenc^ half of the transfer function

H(f) centered on f . and shifting it to the left 
by 

f. Let H(f) denote the

transfer function of the complex lo"-pass s^stem so defined. Figure 3.14

illustrates the relationship between H( () and 1^(f). shown in parts a and

b of the figure. respectively. Note. however. that in going from H(f) to

H( J- ), we have purposel y avoided amplitude scaling (see Exercise 9). Note

also that for the frequencN -domain transformation depicted in Fig. 3.14 to

hold, the midband frequenc\ f z^must be larger than half the bandw idth of

the narrow-band system.

Then, the real part of c is given by

Re(c) - Rela j Re[bl - m1al Im[b]
where Rel-1 denotes the "real part of" and ml-) denotes the "imaginary part of" the

respective quantives e-c(osed in the square brackets
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	(a)	 (b)

Figure 3.14

(a) Amplitude response of narrow-band system. (b) Amplitude response of complex
low-pass system.

EOUIVALENT LOW-PASS TRANSMISSION MODEL

We are now equipped with the tools we need to formulate the equivalent
lo ,A-pass transmi s

sion model for solving the band-pass transmission prob-

lem. Specificall^. the analysis of a narrow-band system with transfer func-

tion H(f) dri%en by a narrow-hand signal with Fourier transform X(f), as
depicted, in Fig. 3.15a. is replaced by an equivalent but simpler analysisof a complex low-pass system with transfer function H(f) driven by a
complex loA-pass input with Fourier transform X(f), as depicted in Fig.
3.1 5 b. This hand-pass io 10K-pass transformation completely retains the
essence of the filtering process.

According to Fig. 3.15a. the Fourier transform of the output of the
narro ,A -band s^ stem is given by

Y(f) = H(f)X(f)

The narro\k -hand output y(i) itself is given by the inverse Fourier transform
of Y(f).

According to Fig. 3.15b. the Fourier transform of the output of the
complex lo^%-pass system is gi v

en by

W) = mf) x(f)	 (3.62)

X (f)	 Narrow-band	 Y(f)	 (f) tCojplex low-pass
system,	

Sys

H (f)	
systêm^,

	

_[^E	 if (f)

(9d	 (b)

Figur* 3.15

Transformation of narrow-band to complex low-pass system.
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The complex low-pass output 

* 

y (t) itself is given by the inverse Fourier

transform of Y(f). Having determined .^(t). we may find the desired nar-

row-band output Y(t) simply by using the relation:

y(t) = Rcj .^(t) cxp(j2,-J , t)J	 (3.63)

The low-pass transmission model of Fig. 3,151) 
is 

said to be the hasebund

equiv alent of the narrow-hand s\stcm in Fig. 3. 1 5u. The cquk alence is in

the sense that the model of Fig. 3. 1 Sb coniplctelv prewrt c,s the injormation

content o ' fthe incomttlK narroii -hand % (t) alld also that oJ the outgoing

narrow-band s(gnul - v(t). In general, the term  hii^ehand  i s used to des-

ignate the band of frequencies representing a si g nal of interest its delivered

by a source of information. In the conte\t of our present situation. the

term baseband refers to both input and output.

E)CERCISE 9 Evaluate y(0) using the two models of Fig. 3.15. Hence,

justify the ueed for scaling the spectrum of the complex low-pass input

fr(f) by a factor of two, as depicted in Fig. 3.13c.

EXAMPLE 5 RESPONSE OF AN IDEAL BAND-PASS FILTER TO A
PULSED RF WAVE

Consider an ideal band-pass filter of midband fr^qumc^ t , and handA idth

B as in Fig. ',. 16a, ,A ith f > B,'2. Note that the conditions for distortionless

transmission need only be satisfied for the pa^^ ^,ind of the filter. Note

t the phase resalso tha	 ponse of the filter is zero at the mid-band frequence

^\e wish to determine the response of this filter to an RF pulse of

duration T and frequency f, defined b^ (see Fiv. ',. 17a)

x(t) = A rect ( 
t ) 

cos(2nf, i)
T^

where f,T > 1.

Retaining the positiNe-frequency half of the transfer function H(f).

defined in Fig. 3.16a, and then shifting it to the origin. we find that the

transfer function H(f) of the low-pass equivalent filter is g iven by [see Fig.

3.16b]

I

 exp( - j21rf t,), 	 -B12 < f < B12	
(J. 04)Pm = 

0,	 f > B12

The complex impulse response in this example has only a real component

as shown by

h (t) = B sinc[ B (t — rj	 (3 65)
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(b I

Figure 3.16
(a)Amplitude response HMI and phase response 11(f) of an ideal band-pass filter.
(b)Corresponding components of complex transfer function H(f).

From Example 3 we recall that the complex envelope x(t) of the input RF

pulse also has only a real component, as shown by (see Fig. 3.17b):

t
x(t) = A rect — (3.66)

T)

The complex envelope v(t) of the filter output is obtained b y convolving
the h(t) of Eq. 3.65 with the _i(t) of Eq. 3.66. This convolution is exactIv
the same as the low-pass filtering operation that we studied in Example 3'.
Thus, using Eq. 3.53 we may write

T TA01 — ^^ Si 7rB t	 —	 to	 Si 7ZB t — —
)7	 2	 2

(3.67)

As expected, the complex envelope y(t) of the output has only a real

component. Accordingly, from Eqs. 3.63 and 3.67, the output is obtained
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A

0
2

(a I

YM

0

Figure 3.17
The response of an ideal band-pass filter to RF pulse input. (a) RF pulse mput x(t).

(b) Complex envelope x(t) of RF pulse. (c) Response y(t).

as

	

4 
Si [,,B 

( t , T	 Si 
IrB t — 

T	
cos(27,f,t)

	

2	 2 Iffl
7z

(3.68)

which is the desired result. Equation 3.68 
is shoAn sketched in Fig. 3 17c

for the case when the band-pass filter bandk%idth B ^ 11T.

.......................................................................................................................
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............. 3.6 PHASE DELAY AJVD GROUP DELAY

Suppose a steady sinusoidal signal at frequency f, is transmitted through
a dispersive channel that has a total phase-shift of fl(f,) radians at that
frequency. By using two phasors to represent the input signal and the

received signal, we see that the recei ved signal phasor lags the input signal
phasor by fl(f,) radians. The time taken for the received signal phasor to

sweep out this phase lag is simply equal to fl(f,)/2;zf, seconds. This time
is called the phase dela ' v of the channel.

It is important, however, to realize that the phase delay is not necessarily

the true signal delay. This follows from the fact that a steady sinusoidal

signal does not carry information. In actual fact, as we will see in'subsequent

chapters. information can be transmitted onl y by applying some appro-
priate change to the sinusoidal wave. Suppose 'the'n a slowly % ar^ ing signal
is multiplied by a sinusoidal wave, so that the resulting modulated wave

consists of a narrow group of frequencies. When this modulated wave is

transmitted through the channel, we find that there is a delaN between the

envelope of the input signal and that of the received signal. This delay is
called the envelope or group delav of the channel and represents the true
signal clela^.

Assume that the dispersive channel is described by the transfer function

H(f) = K exp[jfl(f)]	 (3.69)

where the amplitude K is a constant and the phase #(f) is a nonlinear

function of frequency. The input signal x(t) consists of a narrow-band sig-
nal defined b^

X(t) = X,(t) cos(2;7ft)	 (3.70)

where x , (t) is a low-pass function with its spectrum limited to the frequency
interval ' 0 -- W. We assume that f,	 W. By expanding the phase fl(f)
in a Ta.i lor series' about the point f	 and retaining only the first two
terms, we may approximate 9(f) as

I'M ^ fl(f,) + (f — M 
afl(f)	

(3.71)
af Lf,

Define

tp	 Afl)	
(3.72)

27rf,

'For a general definition of the Taylor series, see Appendix D. Table 4.
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and

Ig - - I 
afl(f)	 (3.73)

271	 df if^jl

Then we may rewrite Eq. 3.71 in the form

fi(f) ^ —27rf,r, — 27r(f — fjr,	 (3.74)

Correspondingly, the transfer function of the channel takes the form

H(f) ^ K exp[—j27rf,r, — j27r(f — fjr,j	 (3.75)

Following the procedure described in Section 3.5, we may replace the

channel described by H(f) by an equivalent low-pass fifter with complex-

transfer function

fiff) ^ K exp( — j27zf,r,	 j27rfr,
1	

(3.76)

Similarly, we may replace the input narrow-band signal x(t) by its low-pass

complex envelope x(t), which is

. I	 'i (0 = X, (t)	
.	

(177^

The Fourier transform of i(t) is simply

,W) ^ XIM	
(3.78)

where X,(f) is the Fourier transform of xjt). Therefore, the Fourier trans-

form of the complex envelope of the received signal is giNen by

Kexp(—j277f,-, ,,) exp(—j27rfr x )X,(f)	 (3.79)

We note that the multiplying factor K exp(—j27rf,z p ) is a constant. We

also note, from the time-shifting property of the Fourier transform. that

the term exp(—j27zfT g)X,(f) represents the Fourier transform of the de-

layed signal x,(t — r,). Accordingly, the complex envelope of the received

signal equals

y(t) = K exp( -j27rf'ITp)x,(t - Tg)	
(3.80)

Finally, we find that the received signal is itself given by

y(t) = Re[y(t) exp(j27rf,I)j

= Kx,(t — r.) cos[27rf,(t — T,)]
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Equation 3.81 shows that, as a result of transmission through the channel,

two delay effects occur:

I . The sinusoidal carrier w ave cos(27rf, t) is delayed by r, seconcls^ hence
r, represents the phase dela y . Sometimes, r. is also referred to as the
carrier delay.

2. The envelope xJt) is delaved bv -r. hence, r, represents the

envelope or group delay. Note that r, is related to the slope of the

phase fl(f), measured at f ^ f_ as in Eq. 3.73.

Note also that when the phase response #(f) is linear with frequency,
and 9(0) = 0, the phase delay and group delay assume a common value'.

EXERCISE 10 Explain why a linear time-invariant system with a phase

response equal to a constant suffers from phase distortion.

.......... 3.7 NONLINEAR DISTORTION

Up to this point in our study of signal transmission through a system, we

have assumed linearity. In practice, however. we find that the system

connecting a source of information to its destination inevitably exhibits
some form of nonlinear beha%ior. This occurs whenever the output is in-

creased beyond a limit prescribed 
by 

the power that the s\stem is capable
of suppl\ing. In such a situation. Ae sa y that the system' is overloaded.
When the system is overloaded, a chan'ge in the input signal does not
produce a corresponding change in the output siRnal.

Figure 3,18 shows a typical input—output relation, called the transfer
characteristic, that may give rise to nonlinear distortion. For the purpose
of our discussion here, we assume that the system is memorviess in the
sense that the output ' y (t) depends onl^ on the input x(t) at . time t. We
may consider the transfer characteristic of Fig. 3.18 to be composed of the
following parts:

I. A reasonably linear region centered at the origin, where a change in
the input produces a proportional change in the output.

2. Two satururion regions, "here the output is not affected by the input.
3. Two "knees" that join the linear region to the saturation regions. The

useful amplitude range of operation of the s ystern is defined by points
P and Q that lie somewhere on the knees o'f the curve. Their precise
locations are determined by the extent of nonlinear distortion that is
considered to be tolerable. We may thus view P and Q as overload
points.
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I	 I	 I	 I
,*--Saturation ---*1	 14- Linear -01	 f4— Saturation-0,

region	 region	 region

Figure 3.18
Transfer characteristic.

To evaluate the nonlinear distortion, the common procedure is to ex-

press tire transfer 'characteristic mathematically by writing the output y(t)

as a power series of the input x(t):

a I X ( t) + a , X 2(t) 
+ a 3X3(0 +	 (3.82)

The first term. aji(t), represents the linear response of the system. The

second term, a,x 2 (t). accounts for a lack of syrnmetry that may exist be-

tween the positi 
v 
e and negative parts of the transfer characteristic. (This

term would be zero for the symmetric curve shoxn in Fig. 3.18.) The third

term, a3X'(t). provides a first approximation to the flattening of the trinsf6r

characteristic due to overloading. Higher order terms on the right side of

Eq. 3.82 are usually neglected when operation of the systern is bounded

by the overload points (P and Q in Fig. 3.18).

Let X(f) denote the Fourier transform of the input x(t). Then, the

Fourier transform of the output y(t) is

Y(f) = aj(f) + a,X(f) -^- X(f)

+ a,X(f) 4- X(f) -'^- X(f) +	 (3.83)

where -?j- denotes convolution. Thus, X(f) lj^- X(f) denotes the convo-

lution of X(P with itself, and so on. Let x(t) be band-limited in W, such

that X(f) = 0 for W. Then. x ' (t) is band-limited 
in 

2W, such that

X(f) ,^rXff) = 0 for Jfj -- 2W. Similarly, x( i) is band-limited in 3W,

such that X(f) '^- A'(f) -Q- X(f) = 0 for Jj` j -- 3 VV, and so on. We may

therefore make two observations: 	 -

1. The output of a nonlinear system contains new frequency components

for f > W, which are not present in the input.

2. The presence of nonlinearities (second order, third order, etc.) in the
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transfer characteristic produces undesirable frequency components for

W -- W.

The first set of components can be suppressed by appropriate filtering. On

the other hand, the second set of components lying inside the frequency

band of interest cannot be removed, thereby giving rise to nonlinear dis-
tortion.

Two examples to illustrate the analysis of nonlinear distortion follow.

In both cases, the problem is simple enough to be handled without having

to resort to the use of Fourier transformation.

.........................................................................................................................

EXAMPLE 6 HARMONIC DISTORTION

^et the input consist of a single sinusoidal wave:

x(t) = A cos(2;rft)	 (3.84)

We assume that only second- and third-order nonlinearities in the transfer

characteristic of Fig. 3.18 are of concern. so that fourth- and higher-order
terms in Eq. 3.82 ma y be ignored. Then, substitution of Eq. 3.84 in 3.82
yields the output

1	 3
a,A-' + (a,A +	 a3A")cos(27zft)Y(t)

4

3+	 .,A' cos(47zft) + a,A cos(67rft) (3.85)
2	 4

Since we are concerned primaril y with distortion (i.e., changes in the shape

of the waveform), we may ignore the dc component, ja,,A 1 . The compo-
nents of interest in the output waveform are therefore as follows, with

their respective amplitudes shown:

3
Fundamental.	 a, A + a,A

4

Second harmonic:	 "A'
2

3Third harmonic:	 - a A
4

Accordingly, we define the second-harmonic distortion, D 2 , as the ratio of
the amplitude of the second-harmonic component in the output to that of

the fundamental'

- 

a2A
2

D2	 (3-86)
3	 2a, + - a3A
4



TABLE 3.1

Type of
Intermodulation

Product

Second-order

Third-order

Ampfitude

a2AIA,

a, A, A,

3 
a,A,A2

4

3 a,A',A,
4

3 
a3A,A2,

4

3 
a3A,A2,

4

Frequency

f, + f2

f^ — f2

2f, + f,

2f, — f2

2f, + f,

2f2
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Similarly, we define the third-harmonic distortion, D3 , as the ratio of the

amplitude of the third-harmonic component in the output to that of the

fundamental:

— a3A'
4

D3	
(3.87)

3
a, + — a3A

4

The harmonic distortion factors D2 and D3 are usually expressed as per-

centages.
...................................... I ...................................................................................

: **  ***  ' ... *"*'****'*"** ..... * .... ***"** .... *'*'**'** ... *** ....................
	 ................

EXAMPLE 7 iNTERMODULATION DISTORTION

Let the input x(t) consist of the sum of two sinusoidal waves

x(t) = A, cos(277f,t) + A, cos(27rf2t)
	

(3.88)

Here again we assume that fourth- and higher-order terms in Eq. 3.82 may

be ignored. Then, substituting this expression for x(t) in Eq. 3.82, we find

that the effects produced by the second- and third-order nonlinearities in

the transfer characteristic are:

1. The second-order term. 
aX2(t), produces a dc and a second-harmonic

component corresponding to the single-frequency input, as expected.

In addition, however, it produces new components at f, + f., and

fl — f2 that are the sum and difference frequencies, respectively. Such

components are referred to as second-order intermodulation products.
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2. The third-order term, ax l(t), produces the expected fundamental and

third-harmonic components. In addition, it gives rise to intermodulation

products of its own at the frequencies 2f, - f2 and 2f., ± f, which are
referred to as third-order intermodulation products.

Table 3.1 presents a summary of the frequencies and amplitudes of the

various second- and third-order intermodulation products.

........................................................................................................................
.................................................. I ..................................................................................

PROBLEMS

P3.1 Time Response

Problem 1 The excitation applied to a linear time-invariant s ystern with
impulse response h(t) consists of two delta functions, as shown' by

X(t) ^ 6(t — to) + j (t — to)

where t,) is a constant time shift. Find the response of the system.

Problem 2 The impulse response of a linear time-invariant system is
defined by

h(t) = exp(—ar)u(t)

,A here u(t) is the unit step function. Determine the response of the system

produced by an excitation consisting of the unit step function u(t).

Problem 3 A periodic signal xP (t) of period To is applied to a linear time-

invariant system of impulse response h(t). Use the complex Fourier series

representation of x,(t) and the convolution integral to evaluate the re-

sponse of the system.

Problem 4 The impulse response of a linear time-invariant system is

defined by the Gaussian function:

h(t) = expf—n(t — t^)21

where to is a constant.

(a) Is this system causal?

(b) Is it stable?

Give reasons for your answers.

P3.2 Frequency Response

Problem 5 Continuing with the linear time-invariant system described in
Problem 2, do the following:

(a) Determine the transfer function of the system.
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I	

'NAM

Delay	

L^_H DelayT	 T

Figure P3.1

(b) Plot the amplitude response and phase re.,ponse of the system.

(c) Find-the 3-dB bandwidth of the system.

Problem 6 Find the transfer function of the linear time-invariant system

with its impulse response defined in Problem 4. Hence, plot the amplitude

response and phase response of the system. Indicate the 3-dB bandwidth

of the s ystem on the plot of the arnp!itude response.

Problem 7 Evaluate the transfer function of a linear system represented

by the block diagram shown in Fig. P3. 1.

Problem 8

(a) Determine the overall amplitude response of the cascade connection

shown in Fig. P3.2 consisting of N identical stages, each with a time

coq^tant RC equal to r,

(b) Show that as N approaches infinit^. the amplitude response of the

cascade connection approaches the Gaussian function exp( — f- T),
where for each value of N, the time constant 7 , is selected so that

V

P3.3 Linear Distortion and Equalization

Problem 9

(a) Consider a signal x(t) with Fourier transform X(f) limited to the

band — B -_ f -_ B. This signal is applied to a linear time-invariant

system with an amplitude response IH(f) and linear phase, as in Fig.

P3.3a. Determine the resulting output of the system.

R	 R	 R

Buffe 

r	

Buffer	 Buffer

amplifier	
C	

a mplifier	 C==	 amplifier

Figure P3.2
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o

	
f

-8	 ol	 f
slope

2,ft, + h, s,^

o	
f

f

slope - - 27 r,

,b)

Figure P3.3

(b) Suppose that the system has a constant amplitude response but

nonlinear phase, as in Fig. P3.3b. Determine the resulting output. As-

sume that the constant b, is small enough to justify using the approxi-

mation:

exp jb, sin 
B	

+ jb, sin 
BI	 ("')] ^ 1	 (111)

Problem 10 Figure P3.4 shows an idealized model of a radio- channel. It

consists of two paths. One path introduces a propagation delay t, The

Delay
to

Output

Delay
T + to

Figure P3.4
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other path introduces an additional delay T and an attenuation represented

by the scaling factor a that is less than one. A channel so charactqrized is

referred to as a multipath channel. To correct for the multipath distortion,

a three-tap equalizer is connected in cascade with the channel. Given that

a' <. 1, calculate the three tap coefficients of the tapped-delay-line equal-

izer.

Hint. Use the binomial expansion:

I +

	
= I — a exp( -j27rf-c) + 

a2 exp(—j4rfr)
I + a exp(—j27zfT)

P3.4 Ideal Low-Pass Filters

Problem 11 The transfer func.tion of an ideal low-pass filter is defined

-by

K exp( -j27rftu).	 If < I
H(f)	 0.	

A > I

where to is a constant. Find the impulse response of the-systern.

Problem 12 An ideal low-pass filter has zero time dela y and bandwidth

B. It is driven by a rectangular pulse of unit amplitude and duration

T equal to 1 / B and centered at t ^ 0.

(a) Show that the filter output at t = 0 is given by

	

y(0)	 Si(7T)

where Si(7r) is the value of the sine integral for an argument equal

to 7r.

(b) Show that the filter output at t ^ T12 is given b^

Y(
T 

= I Sj(2,,)

	

2)	
7r

where Si(27r) is the value of the sine integral for an argument of 27,.

(c) Calculate these two values of the filter output and check them against

the corresponding pulse response shown in Fig. 3.10b.

Note that Si(7r) = 1.85 and Si(27r) = 1.42.

Problem 13 Suppose that, for a given signal x(t), the integrated value

of the signal over an interval T is required, as shown by

Y (0 = 
f- 

x ( r) dr
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(a) Show that y(r) can be obtained by transmitting the input signal x(t)

through a filter with its transfer function given by

H(f) = T sinc(f T) exp( — j7rf T) -

(b) An adequate approximation to this transfer function is obtained by

using a low-pass filter with a bandwidth equal to I / T, passband ampli-

tude response T, and delay T12. Assuming this low-pass filter to be

ideal, determine the filter output at time t = T due to a unit step func-

tion applied to the filter and compare the result with the correspond-

ing output of the ideal integrator.

Note that Si(n) = 1.85 and Si( x ) = Tr12.

P3.5 Band-Pass Transmission

Problem 14 An ideal band-pass filter has zero time delay and bandwidth

B. An RF pulse of unit amplitude, duration T = 112B, and frequency f,
is applied to the filter; the pulse is centered at t = 0. Show that the filter
output is given by

Y ( t ) = 

I 

[Si(27zBt + 7r) — Si(27rBt — 7r)] cos(21rfr)
7Z

where Si(-) is the sine integral. Sketch the waveform of y(i).

Problem 15 Consider an ideal band-pass filter with center frequency f,

and bandwidth B, as defined in Fig. P3.5. The carrier wave A cos(27zfot)

is suddenly applied to this filter at time i = 0. Assuming that If, — f^j is

large compared to the bandwidth B, determine the response of the filter.

Aif)

slope - —2wr^

f	 f
0	 fc

Figure P3.5
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P3.6 Phase Delay and Group Delay

Problem 16 The impulse response of a linear time-invariant system is
defined by

exp( — t),	 t > 0
I	

t = 0
2

0,	 t < 0

(a) Determine the phase delay T,(f) and group delay r g (f) of the system.
(b) Plot both delays versus frequency f, and comment on your results.

P3.7 Nonlinear Distortion

Problem 17 Verify the frequencies and amplitudes of the intermodulation
products listed in Table 3.1 for an input consisting of the sum of two
sinusoidal waves of frequencies f, and f^ and amplitudes A, and A,.




