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SPECTRAL DENSITY
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In this Chapter we complete the characterization of signals and systems
by focusing on the energy or power of a signal. In so doing, we
introduce the notion of spectral density, which defines the distribution of
energy or power per unit bandwidth as a function of frequency. When
dealing with energy signals, it is natural to use energy spectral density as
the parameter of interest. Likewise, when dealing with power signals,
power spectral density is used to characterize the signal. In this chapter
we also introduce another important parameter called correlation, which
may be viewed as the time-domain counterpart of spectral density.
Throughout the chapter, we deal with real-valued energy and power
signals. We begin the discussion with energy spectral density.
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128 SPECTRAL DENSITY AND CORRELATION

4.1 ENERGY SPECTRAL DENSITY

Consider an energy signal g(1) defined over the interval —< <t < =, and
let its Fourier transform or spectrum be denoted by G(f). The signal g()
is assumed to be real valued. The total energy of the signal is defined by
(see Section 1.2) ’

B r (o) dt (4.1)

Equation 4.1 is the standard formula for evaluating the energy E. Never-
theless, there is another method based on the amplitude spectrum |G(f)l,
which may also be used to evaluate the energy E. To develop this alternative
method, we start with the relation (see Exercise 10, Chapter 2):

-

[ ssma= [ 6nG-nd (42)

where g,(f) and g(f) are a pair of energy signals with Fourier transforms
G,(f) and G,(f), respectively. Let

_‘g»;(r) = g1 = g(t)

-

Correspondingly, we may set

G.\(f) = G(f)

and for real-valued signals,
Gy(-f) = G*(f)

Accordingly, we may simplify Eq. 4.2 as
[ gwa= [ 16(Eas (4.3)

where |G(f)| is the amplitude spectrum of the signal g(). Equation 4.3 is
known as the Rayleigh energy theorem. ‘

The Rayleigh energy theorem is important not only because it provides
a useful method for evaluating energy, but also because it highlights |G (f)[*
as the distribution of energy of the signal g(1) in the frequency domain. It
is for this reason that the squared amplitude spectrum |G(f)[ is called the
energy spectral density or energy density spectrum. Using ¥,(f) to denote
this new parameter, we may thus write

¥.(f) = IG(IF (4.4)
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EXAMPLE 1 SINC PULSE
Consider the sine pulse defined by

g(r) = A sinc(2Wr)
The encrgy of this pulse equals

E = At f sinc3(2Wr) dt (4.5)

The integral on the right side of Eq. 4.5 is difficult to evaluate. We may
obtain the desired result indirectly by applying the Rayleigh energy theo-
rem. We start with the Fourier transform pair (see Example 6. Chapter 2)

_ A §
2Wi) — — rect| =
A sinc(2Wr) W reu(zw)
Hence. with the Fourier transform
A f
Gl = 5w r“‘(:w)

and rect’(f/2W) = rect(f/2W), the energy spectral density of the sinc
pulse is given by

Y.(f) = (Z%V) rect(-ifﬁ,) (4.6)

Hence. the application of the Rayieigh energy theorem vields the result
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EXERCISE 1 Show that the total area under the curve of sinc’(f) equals
1; that is,

J * sinc(t) dr = 1 ‘ (4.8)

PROPERTIES OF ENERGY SPECTRAL DENSITY

The energy spectral density #,(f) has several properties that follow from
the basic definition given in Eq. 4.4. which are formally described in the
sequel. 1

- b » = % R ]

PROPERTY 1

The energy spectral density of an energy signal g(t) is a nonnegative real-
valued function of frequency, that is, ’ i

w.(f) =0, forall f (4.9)

This property follows directly from the fact that the amplitude spectrum
(G f) of a signal g(r is a nonnegative real function of the frequency f.

PROPERTY 2

The energy spectral density of a real-valued energy signal g(t) is an even
function of frequency, that is,

W—f) = ¥(f) (4.10)

This property means that the energy spectral density of a real-valued
signal is symmetric about zero frequency. It follows directly from the fact
that the amplitude spectrum [G(f)| of a real-valued signal g(1) is an even
function of the frequency f, as shown by

IG(- Nl = |G

PROPERTY 3 -

The total area under the curve of energy spectral density of an energy signal
g(t) equals the signal energy; that is,

£ = J w.(f) df (4.11)
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Suppose that g(r) denotes the voltage of a source connected across a
1-ohm load resistor. Then. the integral

g0 dt

x

equals the energy E delivered by the source to the load. From Rayvleigh's
energy theorem described by Eq. 4.3, the total area under the ¥,(f) curve
equals the energy E.

EXERCISE 2 Using the energy spectral density for the sinc pulse given by
Eq. 4.6, derived in Example 1. demonstrate the validity of Properties 1
through 3.

PROPERTY 4

When an energy signal is transmitted through a linear time-invariant system,
the energy spectral density of the output equals the energy spectral density
of the input multiplied by the squared amplitude response of the system.

This property follows from the frequency-domain description of a linear
time-invariant system given in Eq. 3.23. Specificallv. with X'(f) denoting
the Fourier transform of a signal x (1) applied to the input of a linear time-
invariant system of transfer function H(f). the Fourier transform Y(f) of

the signal v (1) produced at the output of the system is given by
Y(f) = H(f)X(f) (4.12)

Taking the squared amplitude of both sides of this equation. we get

IY(A)F = [H(OF | X(F (4.13)
Equivalently. we may write
YAV = tHWF PAP (4.14)

where ¥ (f) = [Y(f) and ¥.(f) = |X(f). The quantitics ¥, (f)
and ¥,(f) denote the energy spectral densities of the output v(r) and the
input x(r), respectively. Equation 4.14 is a mathematical statement of
Property 4.



ase

sessssnsssasann

ssessssscssses

snesaen

sesessensse

vesne

ssssssssscsnsnes

ssssssessssanas

. output.
We-start with the Fourier transform pair: - o 3

132 SPECTRAL DENSITY AND CORRELATION

EXAMPLE 2 :

A rectangular pulse of unit amplitude and unit duration is passed through
an ideal low-pass filter of bandwidth B, as illustrated in Fig. 4.1a. Part b i
of the figure depicts the waveform-of the rectangular pulse. The amplitude
response of the filter is defined by (see Fig. 4.1¢) :

_JL -B=sf<B8B
IH(f)l = {0. otherwise '

The rectangular pulse constituting the filter input has unit energy. We wish
to evaluate the effect of varying the bandwidth B on the energy of the filter

rect(t) = sinc(f)

x(t) Ideal y(t)
—» low-pass ——»
Pl % fiter

(a) £

- x(t)

[H(f)|
1.0

—B 0 B
(c)

Figure 4.1 )
(a) Ideal low-pass filter. (b) Filter input. (c) Amplitude response of the filter.
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This represents the normalized version of the Fourier transform pair given
in Eq. 2.33. Hence, with the filter input defined by

x(f) = rect(r)
its Fourier transform equals
X(f) = sinc(f)

The energy spectral density of the filter input therefore equals

¥.(f) = |X(f)I

= sinc’(f) (4.15)
This normalized energy spectral density is shown plotted in Fig. 4.2.

To evaluate the energy spectral density ¥,(f) of the filter output y(r).
we use Eq. 4 14. We thus obtain

¥,(f) = [H(H)IF ¥.(f)

¥.(f) ~B= =4
5 AT ) ) 4.16
{(), otherwise ( )
1.0 T T
08| 7]
06 i
=
o~
2
“ 04t 7]
02} gi
0 i P,
0 1.0 20 3.0
Normalized frequency, f
Figure 4.2

Normalized energy spectral density of filter input x(t).
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The energy of the filter output therefore equals

g = [

[“wanas

0 ‘

2 r w.(f) df 4.17)

Substituting Eq. 4.15 in 4.17 yields

E, 2J'5 sinc’(f) df @
: :

Since the filter input is normalized to have unit energy, we may also
view the result given in Eq. 4.18 as the ratio of the energy of the filter ouput
to that of the filter input for the general case of a rectangular pulse of :
arbitrary amplitude and arbitrary. duration, processed by an ideal band-
pass filter of bandwidth B. Accordingly, we may also write :

Energy of filter output
Energy of filter input

2 [Msnepdy e

According to Fig. 4.1b, the rectangular pulse applied to the filter input has
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Figure 4.3
Output energy-to-input energy ratio versus normalized bandwidth.
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unit duration; hence, the variable f in Eq. 4.19 represents a normalized :
frequency. Equation 4.19 is plotted in Fig. 4.3.

The graph of Fig. 4.3 shows that Just over 90% of the total energy of a :
rectangular pulse lies inside the main spectral lobe of this pulse. :

INTERPRETATION OF THE ENERGY SPECTRAL DENSITY

Equation 4.14 is important because it not only relates the output energy
spectral density of a linear time-invariant system to the input energy spec-
tral density but it also provides a basis for the physical interpretation of
the concept of energy spectral density itself. To be specific, consider the
arrangement shown in Fig. 4.4a, where an energy signal x(r) is passed

% E
x(t) Narrf?lzverl.)and yit) Everay y
H(ﬂ meter
(a)
[H(f)]
WU L E—
1 1 f
_fc 0 fz'
"A
Af (b) f
\Py([}
Yo it
1 | I
_fc fc
Af Af
fc)

Figure 4.4 ) )
(a) Circuit arrangement for measuring energy spectral density. (b) Idealized

amplitude response of the filter. (c) Energy spectral density of filter output.
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through a narrow-band filter followed by an energy meter. Figure 4.4b
shows the idealized amplitude response of the filter. That is, the amplitude
response of the filter is defined by y

oy

: el ey ot
lH(fH: 1, ft_T\lfl\fr'*' 7

0, otherwise

" (4.20)

We assume that the filter bandwidth 4 f is small enough for the amplitude
responsé of the input signal x(f) to be essentially constant over the fre-
quency interval covered by the passband of the filter. Accordingly, we may
express the amplitude spectrum of the filter output by the approximate
formula:

e B

Y (Al = [HHXS) 3 : ;
| 4
0, otherwise = =. .~ o .3
Correspondingly. the energy spectral density ¥ (f) of the filter output

v(1) is approximately related to the energy spectral density ¥.(f) of the
filter input x(r) as follows

Y5y k= A‘zf <|fl=f+ %f (4.22)

0, otherwise

w\(f) =

This relation is illustrated in Fig. 4.4¢, which shows that only the frequency
components of the signal x(¢) that lie inside the narrow pass band of the
ideal band-pass filter reach the output. From Rayleigh's energy theorem,
the energy of the filter output y(r) is given by

E = [ waf

2[ w1 df

0

W) Af (4.23)

I

where the multiplying factor of 2 accounts for the contributions of negative
as well as positive frequency components. We may rewrite Eq. 4.23 as

Y(f)= 2—3—‘? (4.29)
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Equation 4.24 states that the energy spectral density of the filter input at
some frequency f, equals the energy of the filter output divided by 2 4 f,
where 4 f is the filter bandwidth centered on fe- We may therefore interpret
the energy spectral density of an energy signal for any frequency f as the
energy per unit bandwidth, which is contributed by frequency components
of the signal around the frequency f.

The arrangement shown in the block diagram of Fig. 4.4a provides the
basis for measuring the energy spectral density of an energy signal. Spe-
cifically, by using a variable band-pass filter to scan the frequency band of
interest, and determining the energy of the filter output for each midband
frequency setting of the filter, a plot of the energy spectral density versus
frequency is obtained.

4.2 CORRELATION OF ENERGY SIGNALS

The energy spectral density is an important frequency-dependent param-
eter of an energy signal. With the interplay between time-domain and
frequency-domain descriptions of a signal that we have become accustomed
to, itis natural for us to seek the time-domain counterpart of energy spectral
density. From the defining equation (4.4), we have

¥(f) = G(f)G*(f) (4.25)
where the signal g(r) and its Fourier transform G(f) are related by
gt) == G(f)

Equation 4.25 states that the energy spectral density ¥,(f) of an energy
signal g(r) equals the product of G(f), the Fourier transform of g(r), and
its complex conjugate, G*(f). Hence, given G(f), we need to perform
two frequency-domain operations to get #.(f), namely, complex conju-
gation and multiplication. This suggests that we may determine the inverse
Fourier transform of ¥,(f) by making use of two fundamental properties
of the Fourier transform (see Section 2.3); s

1. The complex conjugation property, according to which time reversal of
a real-valued signal translates to complex conjugation of its Fourier
transform.

2. The time-domain convolution property, according to which the con-
volution of two signals translates to the multiplication of their Fourier
transforms.

Accordingly, we may formulate the following Fourier transform pair:

8(1) 9 g(—1) == G(f) G*(f) (4.26)
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&gt B

»{ x | Integrator

¢ —
Adjustable g7

delay 7

—_—}

Figure 4.5
Circuit arrangement for measuring the autocorrelation function of an energy signal.

where {}- denotes convolution. For the convolution on the left side of
Eq. 4.26, we have purposely used 7 as the time variable of the energy
signal of interest, because we wish to reserve the use of time t as the dummy
variable of the integral describing the convolution there. Specifically, we
define the time-domain convolution on the left side of Eq. 4.26 as

Ry(x) = g() 4 8(~ )
" J_:g(:)g(: I i @)

The t-dependent parameter R,(1) is called the autocorrelation function
* of the energy signal g(7). In the defining equation (4.27), the time funetion
g(t — ) represents a delayed version of the signal g(1), and R,(r) provides
a measure of the similarity between the waveforms of the time functions
g(1) and g(t — 7). In particular, the time lag or time delay t plays the role
of a scanning or searching parameter. This role is highlighted in the block
diagram of Fig. 4.5, which provides the basis for measuring the autocor-
relation function R,(7).

EXERCISE 3 Show that the definition for the autocorrelation function
R, (1) may also be formulated as

Ry(c) = [ : g(t + )g(0) dt (4.28)

PROPERTIES OF THE AUTOCORRELATION FUNCTION OF
ENERGY SIGNALS

The autocorrelation function of a real-valued energy signal has several
useful properties. They follow directly from the defining equation (4.27)
or (4.26), from which the definition of autocorrelation function originated.
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PROPERTY 1

The autocorrelation function of a real-valued energy signal g(t) is a real-
valued even function, as shown by

R,(—1) = R,(x) (4.29)

This property follows directly from Eq. 4.27. The implication of this
property is that the autocorrelation function exhibits symmetry about the
origin.

PROPERTY 2

The value of the autocorrelation function of an energy signal g(t) at the origin
is equal to the energy of the signal; that is,

R,0) = E (4.30)

This result is obtained by putting t = 0 in Eq. 4.27.

PROPERTY 3

The maximum value of the autocorrelation function of an energy signal g(t)
occurs at the origin, as shown by

|Rylz) = R,(0), forallt (4.31)
To prove this property, we start with the observation that for any t,
(8() = g(t = )] =0
Equivalently, we may write
*2g(nglr — 1) < g0 + gt - 1)
Integrating both sides of this relation with respect to time ¢ from — = to
+=, and using Eqgs. 4.27 and 4.30, we get the result given in Eq. 4.31.
According to Property 3, the degree of similarity between the signal

g(1) and its time-delayed version of g(tr — t) attains its maximum value at
t = 0. This is intuitively satisfying.

PROPERTY 4

For an energy signal g(t), the autocorrelation function and energy spectral
density form a Fourier transform pair; that is,

Ry(t) == ¥,(f) (4.32)

This property follows directly from Egs. 4.25 through 4.27.
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EXERCISE 4 Write the formulas for the Fourier transform of R,(z) and
_ the inverse Fourier transform of ¥,(f). Hence, do the following: - e B
(a) Show that the total area under ¥,(f) equals the signal energy, by
evaluating the formula for the Fourier transform of R,(z) for = = 0.
(b) Show that the total area under R,(t) equals ¥,(0), by evaluating
the inverse Fourier transform of ¥( f)for f = 0.

EXAMPLE 3 SINC PULSE (CONTINUED)

From Example 1, the energy spectral density of the sinc pulse A sinc(2Wr)
is given by (see Eg. 4.6)

v.(f) = (%) recl(sz)

- Taking the inverse Fourier transform of ¥,(f). we find that the autocor-
relation function of the sinc pulse A sinc(2W1) is given by

R (1) = % sinc(2W1) (4.33)

which has a similar waveform to the sinc pulse itself.

...........................................................................................................................

CROSS-CORRELATION OF ENERGY SIGNALS

The autocorrelation function provides a measure of the similarity between
a signal and its time-delayed version. In a similar way, we may use the
cross-correlation function as a measure of the similarity between a signal
and the time-delayed version of a second signal. Let g,(¢) and g-(f) denote
a pair of real-valued energy signals. The cross-correlation function of this
pair of signals is defined by

Ru(z) = j T st - 0 (4.34)

We see that if the two signals g,(1) and g.(t) are somewhat similar, then
the cross-correlation function Ryy(t) will be finite over some range of t,
thereby providing a quantitative measure of the similarity, or coherence,
between them. The energy signals g,(1) and g2(1) are said to be orthogonal
over the entire time interval if R,:(0) is zero, that is, if

fx gi(ngar) drt =0 (4.35)
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Equation 4.34 defines one possible value for the cross-correlation func-
tion for a specified value of the delay variable r. We may define a second
cross-correlation function for the energy signals g,(1) and g,(¢) as

Ra() = [ ggitc - o) ar (436)

From the definitions of the cross-correlation functions Ryy(7) and Ry (1)
Just given, we obtain the fundamental relationship

Rp(7) = Rzl(‘f) (4‘37)

Equation 4.37 indicates that unlike convolution, correlation is not in gen-
eral commutative, that is, Ri(1) # Ry(7).

Another important property of cross-correlation is shown by the Fourier
transform pair

R:(r) = Gi(f) G:(f) (4.38)

This relation is known as the correlation theorem. The correlation theorem
states that the cross-correlation of two energy signals corresponds to the
multiplication of the Fourier transform of one signal by the complex con-
Jugate of the Fourter transform of the other.

EXERCISE5 Prove the property of cross-correlation functions described
in Eq. 4.37.

EXERCISE 8 Prove the correlation theorem described by Eq. 4.38.

4.3 POWER SPECTRAL DENSITY

Consider next the case of a power signal g(r), which remains finite as time
! approaches infinity. We assume 8(1) to be real valued. The average power
of the signal is defined by (see Section 1.2)

1 T
e e & 2 4.39
- 2Tj_73 Wt =

To develop a frequency-domain description of power, we need to know
the Fourier transform of the signal g(r). However, this may pose a problem,
because power signals have infinite energy and may therefore not be Fou-
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rier transformable. To overcome the problem, we consider a truncated
version of the signal g(¢). In particular, we define

Z 2 t
gr() = g(t) rect(z—T)
_ g(l)v —Rs= T
i {0, otherwise (4.40)

As lo‘ng as T is finite, the truncated signal gr(1) has finite energy; hence
gr(r) is Fourier transformable. Let G7(f) denote the Fourier transform of
gr(r); that is,

gr(t — Gk )ik

Using the definition of gr(f), we may rewrite Eq. 4.39 for the average
power P in terms of g(r) as ;

i T % i '
P = lim 2_TL gh(0) dt L (441)

Since gr(1) has finite energy, we may use'the Rayleigh enefgy theorem: to--
express the energy of g7() in terms of its Fourier transform Gr(f) as

[ s = [ 16D f (+42)

where |G7(f)| is the amplitude spectrum of gr(f). Accordingly, we may
rewrite Eq. 4.41 in the equivalent form

df. (4.43)

et BERYE 2
P lim 2TL 1G+(f)

T—x

As T increases, the energy of g7(r) increases. Correspondingly. the energy
spectral density |G+(f)F increases with T. Indeed as T approaches infinity,
so will |G(f)F. However, for the average power P to be finite, |Gr(f)I’
must approach infinity at the same rate as T. This requirement ensures the
convergence of the integral on the right side of Eq. 4.43 in the limit as T
approaches infinity. This convergence, in turn, permits us to interchange
the order in which the limiting operation and integration in Eq. 4.43 are
performed. We may thus rewrite this equation as

N 1 .
p= [ tim 521G df (4.44)
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Let the integrand be denoted by

N R
8:(f) = lim = |G(f)f (4.45)

The frequency-dependent function S,(f) is called the power spectral den-
sity or power spectrum of a power signal, and |G(f)[*/2T is called the
periodogram’ of the signal.

EXAMPLE 4 MODULATED WAVE

Consider the modulated wave
x(t) = g(r) cos(2nf.r) (4.46)

where g(f) is a power signal band-limited to B hertz. We refer to x(1) as
a “modulated wave” in the sense that the amplitude of the sinusoidal
“carrier” of frequency f is varied lineatly with the signal g(r). We wish to
find the power spectral density of x(¢) in terms of that of g(r). given that
the frequency f, is larger than the bandwidth B.

Adapting the formula of Eq. 4.45 to the situation at hand, we may define
the power spectral density of the modulated wave x(r) as

. :
S.(f) = lim = [ X7(f)? (4.47)

where X;(f) is the Fourier transform of x,(¢), the truncated:-version of

x(t). From Eq. 4.46, we have .
w

x:(t) = gr(t) cos(2nf.0) (4.48)

where the truncated signal gr() is itself defined in Eq. 4.40. Since

cos(2nf.1) = %[exp(ian,:) + exp(—j2nf.1)] (4.49)

it follows from the frequency-shifting property of the Fourier transform
that

X:f) = %‘[Gr(f —f)+ Gi(f + )] (4.50)

where G(f) is the Fourier transform of g.(1).

'The periodogram is a misnomer since it is a function of frequency not period.
Nevertheless, the term has wide usage. It was first used by statisticians to look for
periodicities such as seasonal trends in data.
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Given that f. > B, we find that G.(f — fJ) and G:(f + f.) represent
nonoverlapping spectra; their product is therefore zero. Accordingly, using
Eq. 4.50 to evaluate the squared amplitude of ._l.{,(f),‘_we get

- . .

XK = FUGHS = FF +1GH(f + fOFl fo> B (431)

Finally, substituting Eq. 4.51 in 4.47, and then using the definition of Eq.
4.45 for-the power spectral density of the power signal g(r), we get the
desired result:

S = SIS0 -0+ SR f>B (45

PROPERTIES OF POWER SPECTRAL DENSITY

The role of power spectral density for power signals is similar to that of
energy density for energy signals. Indeed. the power spectral density has
properties that parallel those of the energy spectral density. In the sequel,
we present the properties of power spectral density without proof; these
properties may be verified by using arguments similar to those used in
Section 4.1 for verifying the properties of -energy spectral density.

PROPERTY 1

The power spectral density of a power signal g(t) is a nonnegative real-valued
function of frequency, that is,ﬁ_

S,(f)=0, forall f {4.53)

PROPERTY 2

The power spectral density of a real-valued power signal glt) is an even
function of frequency; that is,

S (=f) = S,(f) (4.54)
PROPERTY 3
The total area under the curve of the power sbectral density of a power signal

glt) equals the average signal power; that is,

B f " s,(f) df (4.55)

sessscsnsss
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PROPERTY 4

When a power signal is transmitted through a linear time-invariant system, - |

the power spectral density of the output equals the power spectral density
of the input multiplied by the squared amplitude response of the system.
That is, if S, f) is the power spectral density of a power signal x(t) applied
to a linear time-invariant system of transfer function Htf), the power spectral
density S, f) of the power signal y(1) produced at the output of the system
is defined by

S,(f) = [H(f)? S,(f) (4.56)

where |H(f)| is the amplitude response of the system.

EXERCISE 7 Justify the validity of the input-output relation described in
Eq. 4.56. < F 2 e ; :

INTERPRETATION OF POWER SPECTRAL DENSITY

The input-output relation of Eq. 4.56 provides a basis for the physical
interpretation of power spectral density, and therefore its measurement.
Just-as we did Tor the interpretation of energy spectral density. suppose 4
power signal x(1) is applied to a band-pass filter folowed by a power meter
as in Fig. 4.6a. The filter has a narrow bandwidth 4 f centered on some
frequency f., as in Fig. 4.6b. Application of Eq. 4.56 yields the power
spectral density of the resulting filter output y () approximately as follows

sifo f-Yemiend

0, otherwise

5,(f) = (4.57)

The average power of the filter output y(¢) is therefore approximately given
by

P, =25,(f) Af (4.58)

The evaluation of S,(f) is illustrated in Fig. 4.6c. Equivalently. we may
write

P
8:.(f) = fo (4.59)

In other words, the power spectral density of the filter input x(1) at some
frequency f, is equal to the average power of the filter output divided by
24f, where 4f is the bandwidth of the filter centered on f,. The factor of
2 accounts for the contributions of negative as well as positive frequency
components.
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X | Narrow-band | ¥t/ Power Py
. filter meter ~
(a) :
|H{f)|
Sl
| | f
= 0 £
Af A
(by i
Syff/
Syfe)
1 1 f
~f. 0 f,
SXf Af
‘c)

Figure 4.6

(a) Circuit arrangement for measuring power spectral density. (b) Idealized
amplitude response of narrow-band filter. (c) Power spectral density of the filter
output.

Equation 4.59 provides the basis for the measurement of power spectral
density. Specifically. by varying the midband frequency f, of the buand-pass
filter in Fig. 4.6a. and mcasuring the average power of the filter output
for each setting of f,, we mdy measure the power spectral density of a
power signal (applied to the filter input) over a frequency band of interest.

4.4 CORRELATION OF POWER SIGNALS

We may develop a formula for the autocorrelation function of power signals
by following a procedure similar to that described for the case of energy
signals in Section 4.2. Specifically, we start with the defining equation (4.45)
for the power spectral density 3.(f) of a power signal g(r). and rewrite it
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in the form
5,f) = lim 5 Gr{f)GH() (4.60)

where G1(f) is the Fourier transform of the truncated version g(f) of the
power signal g(f). Next, we use the Fourier transform pair

gr(1) 4y gr(—-1) = G(f) Gi(f) (4.61)

Multiplying both members of this pair by the factor 1/2T and then taking
the limit as T approaches infinity, we have

1
lim 5 1(0) i 8r(—1) = lim . Gr(GI() (462

The function on the right side of this pair is recognized as the power spectral
density of the power signal g(r). Accordingly, we adopt the function on
the left side of Eq. 4.62 as the autocorrelation function of the power signal
g(1), and thus write

R() = lim o= [ grl0grte — 0 de (4.63)

We may formulate the autocorrelation function R,(7) in terms of the power
signal g(¢) itself by using the definition given in Eq. 4.40 for the truncated
signal g7(t). By so doing, we define the autocorrelation function of a power
signal g(r) as follows

.1 [T
R(x) = lim 37 [ g(0g(t ~ 0 dr (4.64)

PROPERTIES OF THE AUTOCORRELATION FUNCTION OF
POWER SIGNALS .

The autocorrelation function of a power signal has properties that are
similar to those of the autocorrelation function of energy signals. Indeed,
by following arguments similar to those presented in Section 4.2, we may
readily establish the following properties of the autocorrelation function
of power signals, which are presented without proof.

PROPERTY 1

The autocorrelation function of a real-valued power signal g(t) is a real-valued
even function, as shown by

R,(—1) = Rylr) (4.65)
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PROPERTY 2

The value of the autocorrelation function of a power signal g(t) at the origin
is equal to the average power of the signal; that is,

R,(0) = P (4.66)

PROPERTY 3

The maximum value of the autocorrelation function of a power signal g(t)
occurs at the origin, as shown by

|R,(7)] < R,(0) (4.67)

PROPERTY 4

For a power signal g(1), the autocorrelation function and power spectral
density form a Fourier transform pair; that is,

R,(1) == S,(f) (4.68)

Equation 4.68 states that the power spectral density Se(f) of a power
signal g(1) is the Fourier transform of the autocorrelation function Ry(7)
of the signal, as shown in the expanded form:

5,(f) = f" R,(1) exp(~j2nfr) dr (4.69)

Equation 4.68 also states that the autocorrelation function Ry(1) is the
inverse Fourier transform of the power spectral density S,(f), as shown
in the expanded form:

R(D) = [ 8,1) expljznse) af (4.70)

Equations 4.69 and 4.70 are known as the Einstein-Wiener-Khintchine
relations.” Given the autocorrelation function R,(r), we may use Eq. 4.69
to compute the power spectral density S(f). Conversely, given the power

Traditionally, Egs. 4.69 and 4.70 have been referred to in the literature as the
Wiener-Khintchine relations in recognition of pioneering work done by Wiener and
Khintchine; for their original papers, see Wiener (1930) and Khintchine (1934). A
recent discovery of a forgotten paper by Albert Einstein on time-series analysis
(delivered at the Swiss Physical Society’s February 1914 meeting in Basel) reveals
that Einstein had discussed the autocorrelation function and its relationship to the
spectral content of a time series many years before Wiener and Khintchine. For this
very brief paper, see Einstein (1914). An English transiation of Einstein’s paper is
reproduced in the IEEE Acoustics, Speech, and Signal Processing Magazine, vol. 4,
October 1987. This particular issue also contains articles by W. A. Gardner and

A. M. Yaglom, which elaborate on Einstein’s original work.
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spectral density S,(f), we may use Eq. 4.70 to compute the autocorrelation
function R,(7).

EXERCISE8 Verify the properties of autocorrelation function of a power
signal, described in Egs. 4.65 through 4.68.

............................................................................................................................

EXAMPLE 5

i Consider again the modulated wave x(r), defined in Eq. 4.46, reproduced
i here for convenience: |

x(0) = () cos(2nf.t)

The signal g(r) is a power signal band-limited to B hertz, where B < f..
In this example, we evaluate the aiutocorrelation function of x(r) in terms
of that of g(s).

: We do the evaluation by using Property 4 of the autocorrelation function,
_i...namely, the fact that autocorelation function and power spectral density
‘ form a Fourier transform. From Eq. 4.52 of Example 4, we have

H
-
.

S.0F) = 31,07 = £ + S + )]

Therefore, taking the inverse Fourier transform of both sides of the equa-
tion, we get

R.(1) = %[Rg(l’) exp(j2nf.r) + R(1) exp(—j2nf.7)]

Il

% R, (1) cos(2nf 1) (4.71)

which is the desired result.

.
............................................................................................................................

EXERCISE® Using the relation of Eq. 4.71, show that the average power
of the modulated signal x(f) equals one-half the average power of the
original signal g(t). FEEE

CROSS-CORRELATION OF POWER SIGNALS

We complete the discussion of correlation of power signals by considering
their cross-correlation. Let g,(r) and g.(z) denote a pair of power signals.
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We define the cross-correlation between 8,(t) and g,(1) as

= I ] J
~ Ru) = lim = [* 0~ 0 de @.72)

In a similar way we may define a second cross-correlation function Ry (7).
The pair of power signals g,(f) and g,(1) are said to be orthogonal over
the entire time interval if

1T -
lim > L g(Ng:(t) dt = 0 (4.73)

T—x

4.5 FLOWCHART SUMMARIES

In this section we summarize the significance of the time-frequency rela-
tions derived for energy and power signals.

Given an energy signal g(r) of Fourier transform G(f). we may sum-
marize this relationship and its interpiay with the formula of Eq. 4.4 for
the energy spectral density ¥,(f) and that of Eq. 4.27 for the autocorre-
lation function R,(z) as in Fig. 4.7. This chart clearly shows that whatever
operation or sequence of operations is used to obtain the autocorrelation
function R,(t) or the energy ‘spectral density ¥,(f), that operation or
sequence of operations is irreversible. The implication of this is that when
a signal g(1) is converted to R,(7) or ¥,(f). in general, information is lost
about the original signal g(t) or its Fourier transform G(f). In going from
&(1) to R (7). dependence on the physical time ¢ is destroved. In going from
G(f) to #,(f). information on the phase spectrum of the signal is de-
stroyed. This means that if two (or more) different signals have the same
amplitude spectrum but different phase spectra, then they will have the
same energy spectral density or, equivalently, the same autocorrelation
function. In other words. for a given energy signal g(r). there is a unique
encrgy spectral density #,(f) or. equivalently. a unique autocorrelation
function R,(r). The converse of this statement. however. is not truc.

The flowchart of Fig. 4.7 shows that given the energy signal g(1). we
may compute the energy spectral density ¥.(f) in one of two equivalent
WdVvs:

1. We compute the Fourier transform G(f). and then use the definition
of Eq. 4.4.

2. We compute the autocorrelation function R,(t) using Eq.4.27 and then
compute the Fourier transform of R (1).

The interrelations between time-domain and frequency-domain descrip-
tions of power signals are analogous to those for energy signals. In partic-
ular, for a power signal g(r) we may draw a chart similar to that of Fig.
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g(t) =—— Glf)

l

Rg(r) ﬁ (Pg(/}

Figure 4.7
Flowchart summary of interrelations between time-domain and frequency-domain
descriptions of energy signals.

4.7, except that the chart is now based on a truncated version g(r) of the
power signal. The point to note is that information is lost in the process
of computing and retaining only the autocorrelation function R, (1) of the
power signal or its power spectral density ¥.(f). Moreover, given the signal
g(1), we may compute the power spectrai density S.(f) using one of two
equivalent-procedures: . ; . = ,

1. We compute the Fourier transform G(f) of the power signal g(r) for
the interval — T = ¢t < T for large T. and then use Eq. 4.45 to compute
the power spectral density S,(f).

2, We use Eq. 4.63 to compute the autocorrelation function R,(7), and
then take the Fourier transform of R,(1).

EXERCISE 10 Given the energy signal g(r), outline the two procedures
that may be used to compute the autocorrelation function R, (7).

EXERCISE 11 Given the power signal g(t), outline the two procedures
that may be used to compute the autocorrelation function R,(1).

4.6 SPECTRAL CHARACTERISTICS OF PERIODIC SIGNALS

The definitions of power spectral density and autocorrelation function for
power signals given in Eqs. 4.60 and 4.64 take on special forms for the
case of periodic signals. These signals constitute an important class of power
signals. Consider a periodic signal g, (1) of period T,. represented in terms
of its complex Fourier series as

< 9
g = ¢ exp(";m) (4.74)

n=-x

where the ¢, are complex Fourier coefficients. For the situation at hand.
the time average in the defining equation (4.39) for the average power of
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the signal may be taken over one period, as shown by
) I
P _j g3(1) di (4.75)
Tol.g,.

Correspondingly, the formula for the power spectral density given in Eq.
4.60 takes on a discrete form defined in terms of the complex Fourier
cocfficients as

S5,)= > Irﬁd(.f = 'T—') (4.76)

=-x 0

Naturally, the power spectral density S, (f) has all the properties listed in
Section 4.3. Moreover. it is a discrete function of frequency, which is a
consequence of the periodic nature of the signal £,(1). Since the total area
under a curve of power spectral density equals the average power. we may
define the total average power of the periodic signal g, (1) in terms of its
frequency-domain description as

le.? (4.77)

n=-x

This relation is known as Parseval’s power theorem. It states that the av-
erage power of a periodic signal g,(r) is equal to the sum of the squared
amplitudes of all the harmonic components of the signal g,(r). Note that
the Parseval power theorem. as with the Rayleigh energy theorem. requires
knowledge of the amplitude spectrum only.

The power spectral density of Eq. 4.76 has a delta function at zero
frequency, which is weighted by |c,.. The presence of this delta function
implies that the periodic signal g, (1) has dc power, given by

P, = |af (4.78)
The coefficient ¢, equals the mean or average value of the periodic signal
£,(1); that is, '

L2
¢y = —[ g,(1) dr (4.79)
I, :

The ac power of the periodic signal g,(¢) is defined by the sum of the
weights associated with the remaining delta functions in S, (f). as shown
by

Pe=3 |cf (4.80)
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The square root of P, defines the root mean square (rms) value of the
“signal. Naturally, the sum of dc power P, and ac power P, equals the
total average -power P.

When the power signal of interest is penodlc, the integrand in the
defining equation (4.64) for the autocorrelation function R,(7) of the signal
is likewise periodic. Hence, the time average in this formula may be taken
over one period. Thus, we may express the autocorrelation function of a
periodic signal g,(t) of period T, as

1 Tyi2
R, (7) = FJ : 1g,,(r)g,(1 = t)at (4.81)

The autocorrelation function R, (7) exhibits all the properties listed in
Section 4.4 for the autocorrelation function of power signals. In addition,
the autocorrelation function R, (t) is periodic with the same period as the
periodic signal g,(t) itself; that is

R, (7) = R (z. % nT,). w=E 12 0 (4.82)

..........................................................................................................................

. EXAMPLE 6 _SINUSOIDAL WAVE

Consider the sinusoidal wave
g(t) = Acos2nf.r + 0) (4.83)

which is plotted in Fig. 4.8a; the period T, = 1/f,. The requirement is to
evaluate the power spectral density, average power, and autocorrelation
function of this sinusoidal wave.

To express the given sinusoidal wave as a complex Fourier series, we
use the formula for a cosine function in terms of a pair of complex ex-
:  ponentials. We thus write

E g (1) = c,exp(j2nf.t) + c_, exp(—j2nf.t) :
5 where
= Bt

and
A,

c., = Eexp(*/())
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Figure 4.8
(a) Sinusoidal wave. (b) Power spectral density. (c) Autocorrelation function.

Hence, the use of Eq. 4.76 yields the power spectral duality:
A? A :
Sulf) = 6 = f) + 7 o(f + f) (4.84)

That is, the power spectral density of a sinusoidal wave consists of a pair
of delta functions located at f = =, both of which are weighted by the
factor A%/4, as depicted in Fig. 4.8b. Note that the power spectral density
is independent of the phase @ of the sinusoidal wave.
By evaluating the total area under the power spectral density S, (f), we
obtain the average power of the sinusoidal wave as
Al

P = > (4.85)
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Finally, the use of Eq. 4.81 yields the autocorrelation function of the
given sinusoidal wave as 4 o

R, (1) = A%, j‘[:f' cos(2nf.t + 0) cos(rnf.t — 2nf.r + 0) dt
R

A’f.
2

f [cos@nf.c) + cos(dnfut — 2nf.r + 20] de
=12

é?_—_ cos(2n f.t) (4.86)

Equation 4.86 is plotted in Fig. 4.8¢c. It shows that the autocorrelation
function of a sinusoidal wave is a sinusoidal function of 7, with the same
period as the given sinusoidal wave. Moreover, putting r = (in Eq 4.86,
we find that R, (0) = P, as expected. '

EXERCISE 12 Show that the power spectral density and autocorrelation
function of Eqs. 4.84 and 4.86 constitute a Fourier transform pair.

! EXAMPLE 7 SQUARE WAVE '
Consider next the square wave of Fig. 4.9a. one period of which is defined

t by
A, _ 5L SEES .

8(1) = 4 + , (4.87)

: 0, for the remainder of the period .

The requirement is to determine the power spectral density and autocor-
relation function of this square wave.
: In Example 1, Chapter 2, we derived the formula for the complex
i Fourier coefficient c, of a rectangular pulse train with arbitrary duty cycle:
i the result is given in Eq. 2.19. The square wave described here has a duty i
cycle of one-half. Hence, adapting Eq. 2.19 for this duty cycle, we find
that the complex Fourier coefficient of the square wave of Fig. 4.9a is given
by

< A n 4 R
c, = 5 >1nc(3) (4.88)

Substituting Eq. 4.88 in 4.76 yields the desired power spectral density of
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Figure 4.9
(a) Square wave. (b) Power spectral density. (c) Autocorrelation function.

the square wave as

Al ET I Y P
S,’(f) =7 ] sinc (2) ()(f T‘,) (4.89)

n= -

which is plotted in Fig. 4.95.

The most expedient approach for obtaining the autocorrelation func-
tion is to use the formula of Eq. 4.81. Figure 4.10 presents a graphical
portrayal of the steps involved in the application of this formula for
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Figure 4.10
The computation of autocorrelation function F{,,D (1) forlag 1 = T,/8.

a delay t = T,/8. Parts a, b, and c¢ of the figure present plots of the
square wave g,(f), its delayed version g,(+ — Ty/8). and the product
g,(2)g,(r — Ty/8), respectively, for the period —(Ty/2) <t < (T,/2). The
area under the product g,(1)g,(r — T,/8) for this period is shown shaded
in Fig. 4.10c. Evaluating this area and scaling it by the factor 1/T,.

we get
T\ 34
R"( 8) =R
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Proceeding in a similar manner for other values of delay r, we obtain

A= 21') T
Sl =) —==c<
; ( *T 3 - =50
Ru,.(f) = A—‘ : ;__T) i o (E (490)
Y 2

Recognizing that the autocorrelation function of a periodic wave with pe-
riod T, is also periodic with the same period, we find that the use of Eq.
4.90 vields the plot shown in Fig. 4.9¢ for the autocorrelation function of
the given square wave.

EXERCISE 13  Use Eq. 4.89 to illustrate the properties of the power spec-
tral density of a periodic signal.

EXERCISE 14 Use Eq. 4.90 to illustrate the properties of the autocor-
relation function of a periodic signal.

EXERCISE 15 Determine the power spectral density and autocorrelation
function of a rectangular wave, one period of which is defined by

-

8 8

8(1) =
g for the remainder of the period

0,

4.7 SPECTRAL CHARACTERISTICS OF RANDOM SIGNALS AND NOISE

Random signals constitute another important class of power signals. We
say a signal is random if there is uncertainty about the signal before it
actually occurs. Such a signal may be viewed as belonging to un ensemble
of signuls, the generation of which is governed by a mechanism that is
probabilistic in nature. Hence, no two signals in the ensemble exhibit the
same variation with time. Each waveform (signal) in the ensemble is re-
ferred to as a sumple function, and the ensemble of all possible sample
functions is referred to as a random process.

Let x(r) denote a sample function of a random process X(tr). Figure
4.11a shows a plot of the waveform of x(t). Since x(1) is a power signal,
its Fourier transform does not exist. This necessitates dealing with a trun-
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(b)

Figure 4.11
(a) Sample function of a random process. (b) Truncated version of the sample
function. 2l ; = S . A, B

cated version of the sample function, namely,

_ =@ -T=t=<T
xi(t) = {O, otherwise (4.91)

Figure 4.11b depicts the truncated signal x(¢): From the discussion pre-
sented in Section 4.3, we note that the time average power spectral density
of the sample function x(r) over the interval —T <t < Tis | X+(f)IP/2T,
where X;(f) is the Fourier transform of x;(r). This time-averaged power
spectral density depends on the particular sample function x(r) drawn from
the random process X(r). Accordingly, we must perform an ensemble av-
eraging operation, and then take the limit as T approaches infinity. The
value of frequency f is held fixed while averaging over the ensemble. The
ensemble averaging opération requires using the probability distribution
of the ensemble.’ For the purpose of our present discussion, it is sufficient
to acknowledge the ensemble averaging operation by using the operator
E, commonly referred to as the expectation operator. We thus write the
ensemble-averaged or mean value of | X1(f)|* simply as E[|X7(f)] and the

IThe issue of ensemble averaging is considered in Chapter 8.
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corresponding power spectral density of the random process X (t) as

: S$¢(f) = lim = E[1X, (/) (492)

It is important to note that in Eq. 4.92 the ensemble averaging must be
performed before the limit is taken. Also. we have used an uppercase letter
as the subscript for the power spectral density in Eq. 4.92 to distinguish
this definition of power spectral density for a random process from that
for a power signal of deterministic form.

Our involvement with random processes in this book will be in the
context of noise analysis of communication systems. The term noise is used
customarily to designate unwanted waveforms that tend to disturb the
transmission and processing of signals in communication systems, and over
which we have incomplete control. In practice, we find that there are many
potential sources of noise in a communication system. The sources of noise
may be external to the system (e.g., atmospheric noise. galactic noise,
man-made noise), or internal to the system. The second category includes
an important type of noise that arises owing to spontaneous fluctuations of
current or voltage in eiectrical circuits. This type of noise, in one way or
another. is present in every communication system and represents a basic
limitation on the reliable transmission of information. It originates at the
front end of the receiver part of the system; hence. it is commonly referred
to as receiver noise.* It is also referred to as channel noise.

WHITE NOISE

The noise analysis of communication systems is customarily based on an
idealized form of a noise process called white noise, the power spectral
density of which is independent of frequency. The adjective white is used
in the sense that white light contains equal amounts of all frequencies
within the visible band of electromagnetic radiation. We denote the power
spectral density of a white-noise process W(r) as

Sul(f) = % L (4.93)

where the factor 1/2 has been included to indicate that half the power is
associated with positive frequencies and half with negative frequencies, as
illustrated in Fig. 4.124. The dimensions of Ny are in watts per hertz. The
parameter N, is usually measured at the input stage of the receiver of a
communication system.

“For a discussion of various types of noise encountered in communication systems,
see Appendix C.
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Figure 4.12

Characteristics of white noise. (a) Power spectral density. (b) Autocorrelation
function.

The absence of a delta function in the power spectral density of Fig.
4.12a at the origin means that the white noise so described has no dc
power. That is, its mean or average value is zero.

Since the autocorrelation function is the inverse Fourier transform of
the power spectral density, it follows that for white noise

Ru(2) = 3 0(0) (4.94)

That is, the autocorrelation function of white noise consists of a delta
function weighted by the factor Ny/2 and occurring at t = 0, as in Fig.
4.12b. We note that Ry (1) is zero for t # 0. Accordingly, any two different
samples of white noise, no matter how close together in time they are
taken, are uncorrelated.

Strictly speaking, white noise has infinite average power and, as such,
it is not physically realizable. Nevertheless, white noise has convenient
mathematical properties and therefore is useful in system analysis.

The utility of a white-noise process is parallel to that of an impulse
function or delta function in the analysis of linear systems. The effect of
an impulse is observed only after it has been passed through a system with
finite bandwidth. Likewise, the effect of white noise is observed only after
passing through a system with finite bandwidth. We may state, therefore,
that as long as the bandwidth of a noise process at the input of a system
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is appreciably larger than that of the system itself, we may model the noise

process as white noise.

EXAMPLE 8

Suppose that a white-noise process W(t) of zero mean and power spectral
density No/2 is applied to an ideal low-pass filter of bandwidth B and a

IDEAL LOW-PASS FILTERED WHITE NOISE

passband amplitude response of 1. The power spectral density of the noise :
process N(r) appearing at the filter output is therefore (see Fig. 4.13a)

Ny
L
10,

Sx(f) =

B<f< B
Ifl > B

(4.95) i

The autocorrelation function of N(t) is the inverse Fourier transform of

Snif)
f!ﬂ
H
-8 0 B /
(a)
Rylr)
NyB
.. N
] = A ! 0 L\-/l A
28 B Y] 28 B B
(1]
Figure 4.13

Characteristics of low-pass filtered white noise.
(b) Autocorrelation function.

(a) Power spectral density.
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the power spectral density shown in Fig. 4.13a:

Rukt) = j" N exp(j2nfo) df

B H

N, B sinc(2Br) - (4.96)

This autocorrelation function is plotted in Fig. 4.13b. We see that R\(1)
has its maximum value of N, B at the origin, and it passes through zero at
1= +n/28, wheren = 1,2, 3, .. ..

...........................................................................................................................
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EXAMPLE 9 RC LOW-PASS FILTERED WHITE NOISE

Consider next a white-noise process W(¢) of zero mean and power spectral
density A, 2 applied to a low-pass filter. as in Fig. 4.14a. The transfer
function of the filter is

1

RS S, . - 197
HUY = ejke (et

The power spectral density of the noise A'(1) appearing at the low-pass RC

- ~filterdutput'is therefore (see Fig. 4.13b)

N,/2

) = ————— 19
$() = T3 @rfROY e
From Example 4 of Chapter 2, we have
By )
exp (7)) = — 4.99
exp (—lz) T (4.99)

Therefore, using the time-scaling property of the Fourier transform, we

R

o— A~ —o
White l —

noise € Nrt)
Wrt) I
¢ O

fal

Figure 4.14
Characteristics of RC-filtered white noiseé. (a) Low-pass RC filter. (b) Power spectrai
déhsity of filter output Nit). (¢) Autocorrelation function ‘of N(t). :

-
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Snlh)
/
: -461RC -2RC-RC O RC 2RC _ 461RC
' (c) :
i Figure 4.14 (continued)
find that the autocorrelation function of the filtered noise process N(1) is
Ru(t) = — It (4.100)
1) = —exp| —— :
W7 4Re P\ "Re
which is plotted in Fig. 4.14c :

...........................................................................................................................

EXERCISE 16  Using the autocorrelation function of Eq. 4.100, find the
average power of the RC filter output.

EXERCISE 17 Using the power spectral density of Eq. 4.98, find the av- :
crage power of the RC filter output. Check this result against that of
Exercise 16 ;
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EXAMPLE 10 AUTOCORRELATION OF A SINUSOIDAL WAVE PLUS
WHITE NOISE

Consider a random process X (1) consisting of a sinusoidal wave component
and a white-noise process of zero mean and power spectral density N,/2.
A sample function (i.e., single realization) of X(1) is denoted by

x(t) = A cos(2nf.t + 0) + w(r) (4.101)

The phase ¢ of the sinusoidal component may lie anywhere inside the
interval —7 < 0 < 7 with equal likelihood. The problem is to determine
the autocorrelation function of the random process X (r) represented by
the sample function x(1).

The two components of x(¢) originate from independent sources. There-
fore, the autocorrelation function of X(¢) is the sum of the individual
autocorrelation functions of the sinusoidal wave and white-noise compo-
nents. In Example 6, we showed that the autocorrelation function of the
sinusoidal component is equal to (A?%/2) cos(2nf.7). The autocorrelation
function of the white-noise component is equal to (N,/2)d(z). We may
therefore write

Ry(1) = A?zcos(bszr) i %6(1’) (4.102)

which is plotted in Fig. 4.15. We thus see that for |t| > 0, the autocorrelation
function of the random process X(1) is the same as that of the sinusoidal
wave component. This shows that by determining the autocorrelation func-
tion of X(r) we can detect the presence of a periodic signal component
that is corrupted by additive white noise.

Ry(r)

A

SN

Figure 4.15 ) )
Autocorrelation function of sinusoidal wave plus white noise.

srsssssnne
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4.8 NOISE-EQUIVALENT BANDWIDTH

In Example 8 we observed that wher a source of white noise of zero mean
and power spectral density N,/2 is connected across the input of an ideal
low-pass filter of bandwidth B and passband amplitude response of one,
the average output noise power [or equivalently Ry(0)] is equal to NyB-
In Example 10 we observed that when such a similar noise source is
connected to the input of the simple RC low-pass filter of Fig. 4.14a,
the corresponding value of the average output noise power is equal to
N,/(4RC). For this filter, the half-power or 3-dB bandwidth is equal to
1/(2nRC). We may therefore make two important observations. First,
filtered white noise has finite average power. Second, the average power
is proportional to bandwidth. -

We may generalize these observations to include all kinds of low-pass
filters by defining a noise-equivalent bandwidth as follows. Suppose that
we have a source of white noise of zero mean and power spectral density
N,/2 connected to the input of an arbitrary low-pass filter of transfer func-
tion H(f). The resulting average output noise power is therefore

Py

Ny (= .
LT

w ] HhEa T ey

where. in the last line, we have made use of the fact that the amplitude
response |H(f)| is an even function of frequency. Consider next the same
source of white noise connected to the input of an ideal low-pass filter of
zero-frequency response H(0) and bandwidth By. In this case, the average
output noise power is

Equation 4.104 shows that the filtered noise power Py is finite and pro-
portional to bandwidth By. The bandwidth By is called the noise-equivalent
bandwidth for a low-pass filter; its definition follows directly from Eqgs.
4.103 and 4.104 as

f H(PF df

Be=—tm@y . :

(4.105)

Thus the procedure for calculating the noise-equivalent bandwidth consists

. of replacing the arbitrary low-pass filter of transfer function H(f) by an

equi\f‘hl‘erﬁ ideal low-pass filter of ?zero-fieqﬁéicy response H(0) and band-
width By, as illustrated in Fig. 4.16.
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i’

H(0)
7 %
1%

Equal
areas

-By 0 By

Figure 4.16
The definition of noise-equivalent bandwidth for low-pass filter.

In a similar way, we may define a noise-equivalent bandwidth for a
band-pass filter, as illustrated in Fig. 4.17; this figure depicts the squared
amplitude response of the filter for positive frequencies only. Thus. the
noise-equivalent bandwidth for a band-pass filter may be defined as

| 1HE af

By = RGO

(4.106)

where |H(f.)| is the center-frequency amplitude response of the filter.
We may combine the definitions of Egs. 4.105 and 4.106 for the noise-

[Hif)2

;Hffr,2 —

Figure 4.17
The definition of noise equivalent bandwidth for band-pass filters; only the
response for positive frequencies is shown
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equivalent bandwidth of low-pass and band-pass filters into a single for-
mula:

L. -
By =— | |H()}df (4.107)
a J0
where |H(f)] is the amplitude response of the filter. The parameter g, in
Eq. 4.107 is the maximum available power gain of the filter. defined by

maximum value of |H(f)
_JHO)], low-pass filter
~ |IH(f)F.  band-pass filter

8
(4.108)

Correspondingly, we may express the output noise power of a filter (for
both positive and negative frequencies) as

Py = Nyg.By - (4.109)

where N,/2 is the noise power spectral density at the filter input. According
to Eq. 4.109, the effect of passing white noise through a filter may be
separated into two parts:

1. The maximum available power gain of the filter, gu.'
2. The noise-equivalent bandwidth By, representing relative frequency se-
lectivity of the filter.

Eq. 4.109 also shows that. whether the filter of interest is low-pass or band-
pass. the filtered noise power P, is proportional to the noise-equivalent
bandwidth By. Hence, as a general rule. we may state that the effect of
noise in a system (e.g., communication receiver) is reduced by narrowing
the system bandwidth.

EXERCISE 18 What is the noise-equivalent bandwidth of the RC low-pass
filter of Fig. 4.14a? Express your answer in terms of the 3-dB bandwidth
of the filter.

PROBLEMS

P4.1 Energy Spectral Density

Problem 1 Consider the decaying exponential pulse
exp( -at). r>0
1

g(t) = B t =0
0. <1
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Find the percentage of the total energy of g(r) contained inside the fre-
quency band - W < f < W, where W = a/2x.

Problem 2 Show that the two different pulses defined in parts @ and b
of Fig. P4.1 have the same energy spectral density:

_ 4AT? cos¥(nTf)
wﬁ(f) = T:(4T:f2 = 1):

£t g(t)

|
I
m]-.,

(a) (b)

Figure P4.1

P4.2 Correlation of Energy Signals

Problem 3 Determine and sketch the autocorrelation functions of the
following exponential pulses:

(a) g(1) = exp(—ar)u(r)

(b) g(¢) = exp(—alt))

(c) g(r) = exp(—at)u(r) — explar)u(—1t)

where w(r) is the unit step function, and u( 1) is its time-reversed
version.

Problemd4 Determine and sketch the autocorrelation function of a Gaus-
sian pulse defined by

1 ntr?
glt) = ;“CXP(“ ,.)

a ]

Problem 5 The Fourier transform of a signal is defined by [sinc(f)|. Show
that the autocorrelation function of this signal is triangular in form.

Problem 6  Specify two distinctly different pulse signals that have exactly
the same autocorrelation function.

Problem 7 Consider a signal g(r) defined by

glt) = Ay + A, cosQ2nfit + 0)) + A, cos(nfu + 0,)
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glt)

~|g
wl%

Ny
i

Figure P4.2

v

(a) Determine the autocorrelation function R,(7) of this signal.

(b) What is the value of R,(0)? _

(¢) Has any information about g(r) been lost in obtaining the autocor-
relation function?

Problem 8 Determine the autocorrelation function of the triplet pulse
shown in Fig. P4.2
Problem9 Let G(f) dendie the Fourier transform of a real-valued energy
signal g(1), and R, (1) its autocorrelation function. Show that

[ [—L—def”] s = [ plGUIds

Problem 10 Determine the cross-correlation function R;x(t) of the pair
of rectangular pulses shown in Fig. P4.3, and sketch it. What is Ry (1)?

Problem 11 Determine the cross-correlation function Ryy(7) of the rect-

angular pulse g,(r) and triplet pulse g,(t) shown in Fig. P4.4, and sketch
it. What is R.,(t)? Are these signals orthogonal? Why?

g0 g,le)

-2Tr 0 2T

L
o
"l

Figure P4.3
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g i) g2(0)

=3 =1 1 3

Figure P4.4

Problem 12 Consider two signals g,(r) and g.(¢). These two signals are
delayed by amounts equal to ¢, and 1, seconds, respectively. Show that the
time delays are additive in convolving the pair of delayed signals, whereas
they are subtractive in cross-correlating them.

P4.3 Power Spectral Density

Problem 13  Consider the truncated version of a complex exponential,
defined by

gr(t) = Aexp(j2nf.t) rect(ﬁ_)

where rect(t/2T) is a rectangular function of unit amplitude and duration
2T. Find the power spectral density of g (¢) for finite T. What is the limiting
value of this power spectral density as T approaches infinity?

Problem 14 Figure P4.5 shows the power spectral density of a power
signal g(). Find the average power of the signal.

Sglf)

Figure P4.5
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Sglh)

10

Figure P4.6 ‘

P4.4 Correlation of Power Signals

Problem 15 Find the autocorrelation function of the truncated version
of a complex exponential, defined in Problem 13. What is the limiting value
of this autocorrelation as T approaches inﬁnity?

Problem 16 Find the autocorrelation function of a power signal g(t)
whose power spectral density is depicted in Fig. P4.6. What is the value
of this autocorrelation function at the origin?

P4.6 Spectral Characteristics of Periodic Signals Giaasda=

Problem 17 Consider the square wave shown in Fig. P4.7. Find the power
spectral density, average power, and autocorrelation function of this square
wave. Does the wave have dc power? Explain your answer.

Problem 18 Consider two periodic signals g,,(t) and g,() that have the
following complex Fourier series representations:

= 2nnt
gpl(t) = Z Cin CXP(“] T )
0

n=-=

&p(t) (volts)

=7 -5 -3 ST I 3 5 7| t(seconds)

Figure P4.7
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and
o [2nnt
gAt) = Y ey, exP(—j—T—)
n=-x 0

The two signals have a common period equal to T,.
Using the following definition of cross-correlation for a pair of periodic
signals,

1 (12
Ra() = 3 [ 60800 -~ 1) a
0/-Ty

show that the prescribed pair of periodic signals satisfies the Fourier trans-
form pair

: n
Rll(r) — E Cl.nczn J(f - ?)
0

n=-x

P4.7 Spectral Characteristics of Random Signals and Noise

Problem 19 The power spectral density of a random process X(r) is
shown in Fig. P4.8.

(a) What is the dc power contained in this random process?
(b) What is the ac power contained in it?

Sy(p)

L 60f)

Figure P4.8

Problem 20 A white noise process of zero mean and power spectral
density N,/2 is applied to the low-pass RL filter shown in Fig. 4.9. Deter-

L

Input R Output

Figure P4.9
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mine the power spectral density and autocorrelation function of the out-
put.

Problem 21 Consider a white-noise process of zero mean and power
spectral density Ny/2 applied to the input of the system shown in Fig.
P4.10.

(a) Find the power spectral density of the random process at the output
of the system.
(b) What is the average power of this output?

Hint: You may use Eq. 4.52, interpreted for a random process, to evaluate
the power spectral density of the low-pass filter input.

P48 Nouo—Equwalom Band\mdth

Problem 22 Find the noise- equ:valent bandwidth for the low- pass RL
filter shown in Fig. P4.9.

Problem 23 A white-noise process of power spectral density Ny/2 is ap-
plied to a Butterworth low-pass filter of order n with its amplitude response

White

N oice Band-pass Low:-pass Output
filter filter e
H,(f) Hy (N
cos (2xf.1)
M, () IHy ()

7/:; 0 ;f ] "
| —ak—

Figure P4.10
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defined by

1

WLl ey
L= T g
(a) Determine the noise-equivalent bandwidth for this low-pass filter.

(b) What is the limiting value of the noise-equivalent bandwidth as n
approaches infinity?
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DiGITAL coDING

T 1 AT S VA

1-0 transport an information-bearing signal from one point to another
over a communication channel, we may use digital or analog techniques.
As mentioned in Chapter 1, the use of digital communications offers
several important advantages as compared to analog communications. In
particular, a digital communication system offers the following highly
attractive features:

1. Ruggedness to channel noise and external interference, unmatched by
any analog communication system.

Flexible operation of the system.
Integration of diverse sources of information into a common format.

PNV o ]

Security of information in the course of its transmission from source to
destination.

177
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For these reasons, digital communications have become the dominant form
of communication technology in our society. )

To handle the transmission of analog message signals (e.g., voice and
video signals) by digital means, the signal has to undergo an analog-to-
digital conversion. In the next section, we present an overview of three
important methods of analog-to-digital conversion, which are known as
pulse-code modulation, differential pulse-code modulation, and delta mod-
ulation. Their detailed descriptions are presented in subsequent sections
of the chapter.

5.1 DIGITAL PULSE MODULATION

The process of analog-to-digital conversion is sometimes referred to as
digital pulse modulation. The use of the’ ferminology “‘pulse modulation”
is justified by virtue of the fact that the first operation performed in the
conversion of an analog signal into digital form involves the representation
of the signal by a sequence of uniformly spaced pulses, the amplitude of
which is modulated by the signal. Naturally, the pulse-repetition frequency
must be chosen in accordance with the sampling theorem.-In both pulse-
code modulation and differential pulse-code modulation, the pulse-repe-
tition frequency or the sampling rate is chosen to be slightly greater than
the Nyquist rate (i.e., greater than twice the highest frequency component)
of the analog signal. In delta modulation, on the other hand, the sampling
rate is purposely chosen to be much greater than the Nyquist rate. The
reason for such a choice in the latter case is to increase correlation between
adjacent samples derived from the information-bearing analog signal and
thereby to simplify the physical implementation of the delta modulation
process. The distinguishing feature between pulse-code modulation and
differential pulse-code modulation is that in the latter case, additional
circuitry (designed to perform linear prediction) is used to exploit the
correlation between adjacent samples of the analog signal so as to reduce
the transmitted bit rate.

Figure 5.1 summarizes the comparison between delta modulation, pulse-
code modulation, and differential pulse-code modulation in the context of

- two important system features: circuit complexity and transmitted bit rate.

The bit rate refers to the rate at which birs (binary digits) constituting the
digital version of an analog information-bearing signal are transmitted over
the communication channel.

Pulse-code modulation is usually viewed as a benchmark against which
other methods of digital pulse modulation are measured in performance
and circuit complexity. It is therefore appropriate that we begin our study
of digital pulse modulation by considering the operations involved in pulse-
code modulation, which we do in the next section.
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Delta -
modulation

Simplified
Pulse-code circuit E?tduced

modulation implementation e

Differential
pulse-code
modulation

Figure 5.1
Diagrammatic comparison of the three basic forms of digital pulse modulation.

5.2 PULSE-CODE MODULATION

Pulse-code modulation' (PCM) is complex in the sense that the message
signal is subjected to a great number of operations. The essential operations
in the transmitter of a PCM system are sampling, quantizing, and encoding,
as shown in Fig. 5.2. The quantizing and encoding operations are usually
performed in the same circuit. which is called an analog-to-digital converter.
The essential operations in the receiver are regeneration of impaired signals,
decoding, and demodulation of the train of quantized samples. These op-
erations are usually performed in the same circuit, which is called a digital-
to-analog converter. At intermediate points along the transmission route
from the transmitter to the receiver, regenerative repeaters are used to
reconstruct (regenerate) the transmitted sequence of coded pulses in order
to combat the accumulated effects of signal distortion and noise.

Quantizing refers to the use of a finite set of amplitude levels and the
selection of a level nearest to a particular sample value of the message
signal as the representation for it. This operation, combined with sampling,
permits the use of coded pulses for representing the message signal. Indeed,
it is the combined use of quantizing and coding that distinguishes pulse-
code modulation from analog modulation techniques.

In the next three sections, we discuss the operations of sampling, quan-
tizing, and coding. in that order.

'Pulse-code modulation is the oldest method for analog-to-digital conversion. It was
invented by Reeves in 1937. For a historical account of this invention, see Reeves
(1975).
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PCM
Continuous— Low-pass Sampler Quantizer k34 Encoder |3
time message —> filter B4 P > 2 wave
signal
Transmitter
(a)
Distorted R . 8 Regenerated
egenerative Regenerative M
PCM e — > PC
v repeater repeater wave
Transmission path
(b)
!
* Input = Regeneration | Decoder Reconstruction| | pestination
circuit filter
Receiver SR .
(c) )
Figure 5.2

The basic elements of a PCM system. (a) Transmitter. (b) Transmission path.
(c) Receiver.

5.3 SAMPLING

The sampling operation is performed in accordance with the sampling
theorem. Specifically, we may state the sampling theorem for band-limited
signals of finite energy in two equivalent parts (see Section 2.7):

1. A band-limited signal of finite energy, which has no frequency compo-
nents higher than W hertz, is completely described by specifying the values
of the signal at instants of time separated by 1/12W seconds.

2. A band-limited signal of finite energy, which has no frequency compo-
nents higher than W hertz, may be completely recovered from a knowl-
edge of its samples taken at the rate of 2W per second.

Part 1 of the sampling theorem is exploited in the transmitter; part 2 of
the theorem is exploited in the receiver. The sampling rate 2W is called
the Nyquist rate, and- its reciprocal 1/2W is called the Nyquist interval.
The derivation of the sampling theorem, presented in Section 2.7, was
based on the assumption that the message signal of interest is strictly band-
limited. In practice, however, the amplitude spectrum of the signal ap-
proaches zero asymptotically as the frequency approaches infinity, as il-
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lustrated in Fig. 5.3a. This factor gives rise to an effect called aliasing or
fold-over, which refers to a high-frequency component:in the spectrum of
the message signal apparently taking on the identity of a lower frequency
in the spectrum of a sampled version of the signal.

The aliasing effect is illustrated in Fig. 5.3b. This figure shows the mes-
sage spectrum and two frequency-shifted replicas of it; one replica is shifted
to the right by the sampling rate f, = 2W, and the other replica is shifted
to the left by f,. These replicas are manifestations of the periodic spectrum
that results from sampling the message signal at the rate f,; see Section
2.7. Inspection of the spectrum of the sampled signal, which is the sum of
the message spectrum and its frequency-shifted replicas, shows that we are
no longer able to recover the original message spectrum without distortion,
owing to the presence of aliasing.

The presence of aliasing results in signal distortion. To combat the effects
of aliasing in practice, we use two corrective measures:

1: Prior to sampling, a low-pass pre-alias filter is used to attenuate those
high-frequency components of the signal that lie outside the band of
interest.

2. The filtered signal is sampled at a rate higher than the Nyquist rate.

Figure 5.4 is the block diagram of a system for performing the sampling
process. The low-pass pre-alias filter is included at the input of the sampling
system, in accordance with point 1. The sampling rate is determined in
accordance with point 2 by setting the pulse repetition frequency f, of the

Message
spectrum

Spectrum of
sampled signal

Replica of

f message
message spectrum Replicn wlmessag

spectrum shifted
to the right by the
sampling rate f

Replica of message

spectrum shifted

to the left by the \

sampling rate f, ~/ \‘(
w

-f‘ =

£ IS 1 b 508 f
o w7
(b)

Figure 5.3
The aliasing effect. (a) Message spectrum. (b) Spectrum of sampled signal.
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Message 1
signal OW-pass Sample-and-hold Sampled
S pre-alias = ———*% circuit —* signal
filter
Timing pulse
generator
Figure 5.4

Practical sampling circuit arrangement.

timing pulse generator at a value greater than the Nyquist rate 2W, where
W is the pre-alias filter bandwidth. =

SAMPLE-AND-HOLD CIRCUIT

The generation of samples is actually performed by a functional block
termed the sample-and-hold circuit in Fig. 5.4. This circuit produces flat-
“top samples rather than the idealized instantaneous samples as postulated
by the sampling theorem. Basically, the sample-and-hold circuit consists
of two field-effect transistor (FET) switches and a capacitor connected
together as in Fig. 5.5a. The “sampling switch” is closed briefly by a short
pulse applied to gate G, of one transistor. The capacitor is thereby quickly
charged up to a voltage equal to the instantaneous sample value of the
incoming signal. It holds the sampled voltage until discharged by a pulse
applied to gate G, of the other transistor. The output of the sample-and-
hold circuit thus consists of a sequence of flat-top samples, as depicted in
Fig. 5.5b.

PULSE-AMPLITUDE MODULATION

The sequence of flat-top samples depicted as s(t) in Fig. 5.5b represents
a pulse-amplitude modulated wave. In pulse-amplitude modularion (PAM),
the amplitudes of regularly spaced rectangular pulses vary with the instan-

taneous sample values of an analog message signal in a one-to-one fashion.?

?pulse-amplitude modulation is one basic type of analog pulse modulation. There
are two other basic types of analog pulse modulation: pulse-duration modulation
and pulse-position modulation. In pulse-duration modulation (PDM), the samples of
the message signal are used to vary the duration of the individual rectangular
pulses. This form of modulation is also referred to as pulse-width modulation or
pulse-length modulation. In pulse-position modulation ( PPM) the position of a
pulse relative to its unmodulated time of occurrence is varied in accordance with
the message signal. For a detailed discussion of analog pulse modulation
techniques, see Carlson (1986, Chapter 10) or Black (1953).
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Sampling
switch
O~ ?]
Input G, —1_ Output
g G, s(t)
Discharging
switch
O— 3

Figure 5.5
(a) Sample-and-hold circuit. (b) Flat-top samples.

The waveform denoted by s(r) in Fig. 5.5b befits this definition exactly.
Note that in PAM the carrier wave consists of a periodic train of rectangular
pulses, and the carrier frequency (i.e., the pulse repetition frequency) is
the same as the sampling rate.

For a mathematical representation of the PAM wave s(r), we may write

s()) = Y g(nT)h(t — nT,) (5.1)

n=-%

The term h(t) is a rectangular pulse of unit amplitude and duration T,
defined as follows (see Fig. 5.6a)

1, 0<r<T
h(t) = {4, t=0,t=T (5.2)
0, otherwise
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The term g(nT,) is the value of the input signal g(r) at time t = nT,. The
instantaneously sampled-version of the signal g(r) is given by

gs(1) = Z g(nT,)é(t - nT) (5.3

Convolving g,(t) with the pulse h(f), we get

80 1 0 = [ gioh( - D) e

] i g(nT,)o(r — nT)h(t — 1) dt

-® p=—-®

5, g(nT,) jfma@ ~ AT)A(t = 1) dr

n=-2

Using the sifting property of the delta function, we thus obtain

gs() $F k() = 3 g(nT)h(t - nT) (5.4)

n=-—-x

A

Therefore, from Egs. 5.1 and 5.4 it_followssthat s(t) is mathematically
equivalent to the convolution of g,(¢), the instantaneously sampled version
of g(1), and the pulse h(t), as shown by

s() = ga(r) 9 () (5.5)

Taking the Fourier transform of both sides of Eq. 5.5 and recognizing
that the convolution of two time functions is transformed into the multi-
plication of their respective Fourier transforms, we get

S(f) = Gs(f)H(f) (56

where S(f) = F[s(¢)], Gs(f) = Flgs()], and H(f) = F[A(r)]. In Section
2.7 we showed that instantaneous sampling of the time function g(t) in-
troduces periodicity into the spectrum, as described in Eq. 2.131. This
equation is reproduced here in the form

Gi(f) = f. 2 G(f - mf) (57

m=-x

where f, = 1/T, is the sampling rate. Therefore, substitution of Eq. 5.7
into 5.6 yields

S(f) = f, 2 G(f - mf)H(f) (5-8)

m= -

where G(f) = Fle(n].
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Figure 5.6
(a) Rectangular pulse h(t). (b) Spectrum Hif).

Finally, suppose that g(¢) is strictly band-limited and that the sampling
rate f, is greater than the Nyquist rate. Then. passing s(r) through a low-
pass reconstruction filter, we find that the spectrum of the resulting filter
output is equal to G(f)H(f). This is equivalent to passing the original
analog signal g(r) through a low-pass filter of transfer function H(f).

From Eq. 5.2 we find that

H(f) = Tsinc(fT) exp(—jnfT) (5.9)

which is plotted in Fig. 5.6b. Hence, we see that by using pulse-amplitude
modulation to represent an analog message signal we introduce amplitude
distortion as well-as-a delay of T/2. This effect is similar to that caused by
the finite size of the scanning aperture in television and facsimile. Ac-
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Sampled Reconstructed
message signal Low-pass message signal
—————»{ interpolation Equalizer ———

filter
Figure 5.7

Block diagram of reconstruction circuit.

cordingly. the distortion caused by the use of flat-top samples in the gen-
eration of a PAM wave, as in Fig. 5.5b. is referred to as the aperture effect.

EXERCISE 1 What happens to the transfer function H(f)/T of Eq. 5.9
as the pulse duration T approaches zero?

RECONSTRUCTION

Since sampling of the incoming message signal is the first basic operation
performed in a PCM transmitter, reconstruction of the message signal is
the final operation performed in the PCM receiver. Figure 5.7 is a block
diagram of the circuitry used to perform this reconstruction. It consists of
two components connected in cascade. The first component is a low-pass
interpolation filter with a bandwidth that equals the message bandwidth W.
The second component is an equalizer that corrects for the aperture effect
due to flat-top sampling in the sample-and-hold circuit. The equalizer has
the effect of decreasing the in-band loss of the interpolation filter as the
frequency increases in such a manner as to compensate for the aperture
effect. Ideally, the amplitude response of the equalizer is given by

1 B 1 _ 1 afT
|H(f)]  Tsinc(fT) T sin(nfT)

where H(f) is the transfer function defined in Eq. 5.9. The amount of
equalization needed in practice is usually small.

EXAMPLE 1

At f = f,/2, which corresponds to the highest frequency component of
the message signal for a sampling rate equal to the Nyquist rate, we find
from Eq. 5.9 that the amplitude response of the equalizer normalized to
that at zero frequency is equal to

1 _ _(mr2)(TiT))
sinc(0.5T/T,) sin[(n/2)T/T,)]

sesssscssnssns
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0 0.2 0.4 06 08
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Figure 5.8

Normalized equalization (to compensate for aperture effect) plotted versus T/T,.

Ay

.-

where the ratio T/T, is equal to the duty cycle of the sampling pulses. In
Fig. 5.8 this result is plotted as a function of T/T. Ideally, it should be
equal to 1 for all values of T/T,. For a duty cycle of 10%, it is equal to
1.0041. It follows therefore that for duty cycles of less than 10% the ap- "3
erture effect becomes negligible.

.5.4 QUANTIZING

A continuous signal, such as voice, has a continuous range of amplitudes
and therefore its samples have a continuous amplitude range. In other
words, within the finite amplitude range of the signal we find an infinite
number of amplitude levels. It is not necessary in fact to transmit the exact
amplitudes of the samples. Any human sense (the ear or the eye), as
ultimate receiver, can only detect finite intensity differences. This means
that the original continuous signal may be approximated by a signal con-

* structed of discrete amplitudes selected on a minimum error basis from an

available set. The existence of a finite number of discrete amplitude levels
is a basic condition of PCM. Clearly, if we assign the discrete amplitude
levels with sufficiently close spacing, we may make the approximated signal
practically indistinguishable from the original continuous signal.

The conversion of an analog (continuous) sample of the signal into a
digital (discrete) form is called the quantizing process. Graphically, the
quantizing process means that a straight line representing the relation be-
tween the input and output of a linear continuous system is replaced by a
staircase characteristic, as in Fig. 5.9a. The difference between two adjacent
discrete values is called a quantum or step size. Signals applied to a quan-
tizer, with the input—output characteristic of Fig. 5.9a, are sorted into
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The quantizing principle. (a) Quantizing characteristic. (b) Characteristic of errors in
quantizing. (c) A quantized signal wave and the corresponding error curve. This
figure is adapted from Bennett (1948) by permission of AT and T.
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amplitude slices (the treads of the staircase), and all input signals within
plus or minus half a quantum step of the midvalue of a slice are replaced
in the output by the midvalue in question.

The quantizing error consists of the difference between the input and
output signals of the quantizer. It is apparent that the maximum instan-
taneous value of this error is half of one quantum step, and the total range
of variation is from minus half a step to plus half a step. In part b of Fig.
5.9 the error is shown plotted as a function of the input signal. In part ¢
of the figure typical variations of the quantizer input, the quantizer output,
and the difference between them (i.e., the quantizing error) as functions
of time are indicated.

A quantizer having the input-output amplitude characteristic of Fig.
5.9a s said to be of the midtread type, because the origin lies in the middle
of a tread of the staircase-like graph. According to this characteristic, the
quantizer output may be expressed as i4, where i = 0, =1, 7 SN ] A
These discrete amplitude values of the quantizer output are called repre-
sentation levels. A quantizer of the midtread type has an odd number - of
representation levels, as shown by

L=3K + 1 . (5.10)

" The dynamic range or peak-to-peak excursion of the quatitizer input is L4-
One half of this excursion defines the absolute value of the overload level
of the quantizer. Clearly, the amplitude of the quantizer input must not
exceed the overload level; otherwise, overload distortion results.

In the quantizer example illustrated in Fig. 5.9a, the step size 4 equals
1; the integer K is 6; and the number of representation levels L is 13. The
corresponding absolute value of the overload level is 13/2.

QUANTIZING NOISE

Quantizing noise or quantizing error is produced in the transmitting end
of a PCM system by rounding off the sampled values of a continuous message
signal to the nearest representation level. We assume a quantizing process
with a uniform step size denoted by 4 volts, so that the representation
levels are at 0, £4, £24, =34, . . .. Consider a particular sample at the
quantizer input, with an amplitude that lies in the range id — (4/2) to
id + (4/2), where i is an integer (positive or negative, including zero)
and i4 defines the corresponding quantizer output. We thus have a region
of uncertainty of width 4, centered about i4, as illustrated in Fig. 5.10.
Let g, denote the value of the error produced by the quantizing process.
Then the amplitude of the sample at the quantizer input is id + g.. Itis
apparent that with a random input signal, the quantizing error g, vanes
randomly within the interval —4/2 < g, < 4/2.

*‘When the quantization is fine enough (say. the number of representation
levels is greater than 64), the distortion produced by quantizing noise affects
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J, —————————— A+ —'_:—
de =
Representation level f A

; A
el R —— [AY ?

Sample of

amplitude

A +gq,

Figure 5.10
Illustrating the quantizing error q,.

the performance of a PCM system as though it were an additive indepen-
dent source of noise with zero mean and mean-square value determined
by the quantizer step size 4. The reason for this is that the power spectral
density of the quantizing noise in the quantizer output is practically in-
dependent of that of the message signal over a wide range of input signal
amplitudes. Furthermore. for a message signal of a root mean-square value
thatistarge compared to a quantum step. it is found that the power spectral
density of the quantizing noise has a large bandwidth compared with the
signal bandwidth. Thus, with the quantizing noise uniformly distributed
throughout the signal band, its interfering effect on a signal is similar to
that of thermal noise. (Thermal noise is discussed in Appendix C.)

We say that the quantizing noise is uniformly distributed when the error
may take on a sample value 4. anywhere inside the interval (=412, 4/2)
with equal likelihood. Under this assumption, we may determine the av-
erage power of the quantizing noise by averaging g2, the squared quantizing
error, over all possible values of g.. We may thus express the average
power of quantizing noise, P,, as follows

P, =1 0y
q‘dffdeQf q'
Az

— I
o (5.11)

Thus, the average power of quantizing noise grows as the square of the
step size 4. This is perhaps the most often used result in quantization.
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The step size 4 is under the designer’s control. Hence, the signal dis-
fortion due to quantizing noise can be controlled by choosing the step size
A small enough. as illustrated in the following example.

EXAMPLE 2 SIGNAL-TO-QUANTIZING NOISE RATIO FOR
SINUSOIDAL MODULATION

Consider the_special case of a full-load sinusoidal nodulating wave of
amplitude’A .. which uses all the representation levels provided. The av-
erage signal power is A;,/2. The peak-to-peak excursion of the quantizer
input is 2A,,. because the modulating wave swings between — A,and A,

Assuming that the number of representation levels equals L. the quantizer
step size is

9

A
4 = - 5.12
=5 (5.12)

Therefore Eq. 3.11 gives the average quantizing noise power as

)
Il
Py
n
2%
2
=

Thus the output signal-to-quantizing noise ratio of the PCM system. for a
full-load test tone, is

. Ay2 3L )
( SS r\\ F{ )x) =L 1“ i' /‘:; 14 3 "‘ :1 ( D - l *1)
Expressing the signal-to-quantizing noise ratio in decibels. we get
10 log,(SNR),, = 1.8 + 20 log, L (3:15)

Hence. the output signal-to-noise ratio of a PCM system in decibels. due
to quantizing noise. increases logarithmically with the number of repre-
sentation levels. L.

TABLES.1 L i ) e csmmea e
Number of Code Word

Representation Levels, Length - Signnl-m—Quanlizing
L n - Noise Ratio, dB

32 S = 31.8

64 6 37.8

128 7 43.8
256 8 49.8
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For various values of L, the corresponding values of signal-to-quantizing
noise ratio are as given in Table 5.1. The second column of this table
corresponds to the binary code word length, an issue that is considered in
Section 5.5.

EXERCISE 2 A sinusoidal signal is transmitted using PCM. The output
signal-to-quantizing noise ratio is required to be 55.8 dB. Find the minimum
number of representation levels L required to achieve this performance.

COMPANDING

The quantizing process based on Fig. 5.9a uses a uniform separation be-
tween the representation levels. In certain applications, however, it is
preferable to use a variable separation between the representation levels.
For example, the ratio of voltage levels covered by voice signals, from the
peaks of loud talk to the weak passages of weak talk, is on the order of
1000 to 1. The excursions of the voice signal into the large amplitude ranges,
which occur in practice relatively infrequently, can be taken care of by
using a nonuniform quantizer. Such a quantizer is designed so that the step
size increases as the separation from the origin of the input-output ampli-
tude characteristic is increased. We thus find that the weak passages, which
need more protection, are favored at the expense of the loud passages. In
this way, a nearly uniform percentage precision is achieved throughout the
amplitude range of the input signal, with the result that fewer steps are
needed than would be the case if a uniform quantizer were used.

The use of a nonuniform quantizer is equivalent to passing the baseband
signal through a compressor and then applying the compressed signal to a
uniform quantizer. A particular form of compression law that is used in
practice is the so-called u-law defined by

_ log(1 + ulv)|)
log(1 + u)

(5.16)

where v, and v, are normalized input and output voltages, and M is a positive
constant. Figure 5.11a plots the u-law for varying u. The case of uniform
quantization corresponds to u = 0. For a given value of x, the reciprocal
slope of the compression curve, which defines the quantum steps, is

dlv,| - log(1 + u)
d|v,| H

(I + ulv) (5.17)

%

We see therefore that the u-law is neither strictly linear nor strictly loga-
rithmic, but it is approximately linear at low input levels correspanding to
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Compression laws. (a) p.-law. (b) A-law.

ulv,| < 1, and approximately logarithmic at high input levels corresponding
to uly| > 1. _ : ‘

Another compression law that is used in practice is the so-called A-law
defined by

Alvy| !
1 + logA Dbl =7y
|va| = 1 (5.18)
1 + log(Alv)) 7 <yl =1
1 + logA

which is shown plotted in Fig. 5.11b. Practical values of A (as of u in the
u-law) tend to be in the vicinity of 100. The case of uniform quantization
corresponds to A = 1. The reciprocal slope of this compression curve is

1 + logA

1
0= S
dlv| _ A ol <% (5.19)
d 1 ‘
) 1+ togal S =lal <1

Thus the quantum steps Over the central linear segment. which have
a dominant effect on small signals, are diminished by the factor
A/(1 + logA). This is typically about 25 dB in practice, as compared with
uniform quantization.

_ To restore the signal samples to-their correct relative levels, we must,
of course, use a device in the receiver with a characteristic complementary
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to the compressor. Such a device is called an expander. ldeally, the
compression and expansion laws are exactly inverse so that, except for the
effect of quantization. the expander output is equal to the compressor input.
The combination of a compressor and an expander is called a compander.

In actual PCM systems, the companding circuitry does not produce an
exact replica of the nonlinear compression curves shown in Fig. 5.11. Rather,
it provides a piecewise linear approximation to the desired curve. By using’
a large enough number of linear segments, the approximation can approach
the true compression curve very closely. This form of approximation is
illustrated in Section 5.11.

5.5 CODING

In combining the processes of sampling and quantizing, the specification
of a continuous message signal becomes limited to a discrete sequence of
values, but not in the form best suited to transmission over a line or radio
path. To fully exploit the advantages of sampling and quantizing, we require
the use of an encoding process to translate the discrete sequence of sample
values to a more appropriate form of signal. Any plan for representing
each element of this discrete set of values as a particular arrangement of
discrete events is called a code. One of the discrete events in a code is
called a code element or symbol. For example, the presence or absence of

WABLES2 S

Ordinal Number of Level Number Expressed

Representation Level as Sum of Powers of 2 Binary Number
0 0000
1 20 0001
2 2 0010
3 2 + 20 0011
4 2 0100
5 2 +2 0101
6 2% 2 0110
7 4 g o 0111
8 2 1000
9 2° + 20 1001
10 2 2 1010
11 2 2'+ 2 1011
12 2% 45 ) 1100
13 2 & 2 & 2 1101
14 2+ 2242 1110

—
(&]

P A L 1111
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a pulse is a symbol. A particular arrangement of symbols used in a code
to represent a single value of the discrete set is called a code word or
character.

In a binary code, each symbol may be either of two distinct values or
kinds, such as the presence or absence of a pulse. The two symbols of a
binary code are customarily denoted as 0 and 1. In a ternary code, each
symbol may be one of three distinct values or kinds. and so on for other
codes. However, the maximum advantage over the effects of noise in a
transmission medium is obtained by using a binary code. because a binary
symbol withstands a relatively high level of noise and is easy to regeneraie.

Suppose that, in a binary code, each code word consists of n bits: the
bit is an acronym for binary digir. Then. using such a code. we may rep-
resent a total of 27 distinct numbers. For example. a sample quantized into
one of 128 levels may be represented by a 7-bit code word. There are
several ways of establishing a one-to-one correspondence between repre-
sentation levels and code words. A convenient one is 1o express the ordinal
number of the representation level as a binary number. In the binary
number system, each digit has a place-value that is a power of 2. as illus-
trated in Table 5.2 for the case of n = 4.

EXAMPLE 3 SIGNAL-TO-QUANTIZING NOISE RATIO FOR SINUSOIDAL
MODULATION (CONTINUED)

In this example, we reformulate the output signal-to-quantizing noise ratio
of Eq. 5.15 for a PCM system operating with a tull-load test tone. This
equation is reproduced here for cony enience

10 log,(SNR), = 1.8 + 20 logy.L. dB
where L is the number of representation levels used in the system. As-
suming the use of an n-bit binary code word, we may define L for a

quantizer of the midtread type as

L= 2r =
LS n large (3.20)

]

Accordingly, we may redefine the output signal-to-quantizing noise ratio
in terms of the code word length n as

N

10 log(SNR), = (1.8 + 6n). dB (5.21)
For various values of n. the corresponding values of signal-to-quantizing
noise ratio are as given in Table 5.1. The formula of Eq. 5.21 states that
each bit in the code word of a PCM system contributes 6 dB to the output
signal-to-quantizing noise ratio.
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............................................................................................................................

EXAMPLE 4 TRADEOFF BETWEEN CHANNEL BANDWIDTH AND
SIGNAL-TO-QUANTIZING NOISE RATIO

We may develop further insight into the performance of-a PCM system by
examining the relationship between the signal-to-quantizing noise ratio and
transmission bandwidth requirement of a binary PCM system. For the
purpose of this evaluation, we will again consider the use of a sinusoidal
modulating wave.

From our discussion of the sampling process, we have seen that a mes-
sage signal of bandwidth W requires a minimum sampling rate of 2W. With
each signal sample represented by an n-bit code word, the bit duration T,
has a maximum value of 1'2nW. In Section 6.4, it is shown that the channel
bandwidth B required to transmit a pulse of this duration is given by

B = knW (5.22)

where x is a constant with a value between 1 and 2.
Expressing the output signal-to-quantizing noise ratio simply as a ratio,
we have from Egs. 5.14 and 5.20:

. 3
(SNR), = 5(4") (5.23)
Accordingly, using Egs. 5.22 and 5.23, we get
“_ B .
(SNR), = 5 (435N (5.24)

This relation shows that a PCM system is capable of improving the out-
put signal-to-noise ratio exponentially with the bandwidth expansion ra-
tio B/W.

EXERCISE 3 A television ( TV) signal with a bandwidth of 4.2 MHz is
transmitted using binary PCM. The number of representation levels is S12.
Calculate the following parameters:

(@) The code word length.
(b) The final bit rate.
(c) The transmission bandwidth, assuming that x = 2 in Eq. 5.22.

EXERCISE 4 The frequency content of a sludio-quhlk’:y audio signal that
we like to hear extends from 20 Hz to 20 kHz. For professional use, the ;
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 signal lssamlzledat the rate of 48 X 10° samples per second. The standard
code word used for conversion into a PCM format is 16 bits per sample.
What is the final bit rate for digital storage of the signal?

DIGITAL FORMATS

To send the encoded digital data over a channel, we require the use of a
format or waveform for representing the data.} In this context, we have a
number of formats available to us. Figure 5.12 illustrates some commonly
used ones for the example of binary sequence 01 10100011, Specifically, we
have illustrated the following formats:

(a) Symbol 1 is represented by transmitting a pulse of constant ampli-
tude for the duration of the symbol, and symbol 0 is represented by
switching off the pulse. as in Fig. 5. 12a. This type of format is referred
to as on—off or unipolar signaling.
(b) Symbols 1 and 0 are represented by pulses of equal positive and
negative amplitudes, as in Fig. 5.12b. This type of format is referred to
as polar signaling. .
(c) A rectangular pulse (half-symbol wide) is used for a 1 and no pulse
for a0..as in Fig. 5.12c. This type of format is called return-to-zero (RZ)
signaling. ’ ' '
(d) Positive and negative pulses (of equal amplitude) are used alter-
nately for symbol 1, and no pulse for symbol 0, as in Fig. 5.12d. This
type of format is called bipolar signaling. A useful property of this
method of signaling is that the power spectrum of the transmitted signal
has no dc component and relatively insignificant low-frequency com-
ponents.
(e) Symbol 1 is represented by a positive pulse followed by a negative
pulse, with both pulses being of equal amplitude and half-symbol wide:
for symbol 0, the polarities of these pulses are reversed. as in Fig. 5.12e.
This type of format 1s called a spiit-phase or Manchester code. It also
suppresses the dc component and has relatively insignificant low-fre-
quency components.

Note that the polar signal waveform of Fig. 5.12b and the Manchester
code of Fig. 5.12e are examples of nonreturn-10-zero (NRZ) signaling.

The binary code isa special case of M-ary code. In practice, we usually
find that M. the number of symbols in the code, is an integer power of
2. Then, each code word in the M-ary code carries the equivalent in-
formation of log.M bits. Consider. for example. a four-level (quarter-
nary) code (i.ez M = 4). In such a code. we may identify four distinct

IDigital formats (waveforms) are also referred to in the literature as line or
transmission codes.
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Binary data
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Figure 5.12

Electrical representations of binary data. (a) On-off signaling. (b) Polar signaling.
(c) Return-to-zero signaling. (d) Bipolar signaling. (e) Split-phase or Manchester
code. (f) four-level Gray coding.

dibits (pairs of bits). In Table 5.3a, we show two arrangements for the
four possible dibits together with their individual electrical represen-
tations. In particular, the dibits are shown in both their natural code
and Gray code. Using the notations of the Gray code in Table 5.3a, the
binary sequence 0110100011 is thus represented by the waveform shown
in Fig. 5.12f. To obtain this waveform, the given sequence is viewed
as a new sequence of dibits, namely, 01,10,10,00,11, and each dibit is
represented in accordance with the Gray code of Table 5.3a.
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TABLE 5.3 Examples of Natural and Gray Codes
(a) Four-level code

Code Word Electrical
Number Natural Code Gray Code Representation

3

0 00 00 St~

2

1 01 | 01 .

2

" 1

z . 0 11 -

1 +3

3

3 11 10 =

AE

(b) Eight-level Code

Code Word Electrical
Number Natural Code Gray Code Representation

0 © 000 000 = %

1 -~ o0 001 -

2

2 010 011 =2

2

3 011 010 =i

2

4 100 110 s

2

3

101 111 =

5 + 5

5

110 101 =

o _ =5

7

11 =

7 1 100 ®2

The distinguishing feature of a Gray code* is that there is a one-bit
change as we move from one code word to another. This is well illus-
trated in the two Gray codes shown in Table 5.3 for M = 4.8. Note
that in Table 5.3b for M = 8, for example, the rule of a one-bit change
per transition applies not only to all the transitions for code word 0 to

“The origin of Gray codes goes back to the development of the rotary form of
mechanical encoders known as shaft encoders. The use of Gray encoding makes it
possible for electromechanical arrangements to change from one code word to
another by changing the state of a single digit. With natural encoding, on the other
hand, two or more digits may be required to change state simultaneously, which is
difficult for electromechanical devices.
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code word 1, from code word 1 to code word 2, and 50 on up to the
transition from code word 6 to code word 7, but also to the “wrap-
around™ transition from code word 7 to code word (. This wrap-around
feature makes a Gray encoder cyclic in nature.

The choice of a particular digital waveform is influenced by the ap-
plication of interest. Nevertheless. it is highly desirable for a digital
waveform to have the following properties:

1. Timing content. The transmitted digital waveform should have ade-
quate timing content to permit the extraction of clock information
required for the purpose of synchronizing the receiver to the trans-
mitter.

2. Ruggedness. The waveform should possess immunity to channel noise
and interference for prescribed channel bandwidth and transmitted
power.

3. Error detection capability. The waveform should permit the detection
of errors that may occur in the course of transmission due to the
presence of channel noise.

4. Matched power spectrum. The power spectral density of the trans-
mitted digital waveform should match the frequency response of the
channel as closely as possible 5o as to minimize signal distortion.

5. Transparency. The correct transmission of digital data over a channel
should be transparent to the pattern of 1's and 0's contained in the
data.

Itis for these reasons that we find. for example. the bipolar format has
become the standard for transmitting binary encoded PCM data over
telephone channels.

EXERCISE 5 Rank the six digital waveforms depicted in Fig. 5.12 in
increasing order of transmission bandwidth requirement.

DECODING

The first operation in the recejver Is to regenerate (i.ce., reshape and clean
up) the received pulses. These clean pulses are then regrouped into code
words and decoded (i.e.. mapped back) into a quantized PAM signal. The
decoding process involves generating a pulse the amplitude of which is the
linear sum of all the pulses in the code word. with each pulse weighted by
its place-value (2°, 2, 22, 2%, . . .) in the code.

It is noteworthy that €very operation performed in the transmitter of a
PCM system. except for the quantizing operation, is reversible. Specifically,
the operations of sampling and encoding performed in the transmitter are
reversed by performing decoding and interpolation (in that order) in the
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receiver. On the -other hand, quantizing is an irreversible process that
manifests itself by destroying information; once quantizing noise is intro-
duced in the transmitter, there is nothing we can do in the receiver to make
up for the loss of information thereby incurred.

5.6 REGENERATION

The most important feature of PCM systems lies in the ability to control
the effects of distortion and noise produced by transmitting a PCM wave
through a channel. This capability is accomplished by reconstructing the
PCM wave by means of a chain of regenerative repeaters sufficiently close
along the transmission route. As illustrated in Fig. 5.13, three basic func-
tions are performed by a regenerative repeater: equalization, timing, and
decision making. The equalizer shapes the received pulses so as to com-
pensate for the effects of amplitude and phase distortions produced by the
transmission characteristics of the channel. The timing circuitry provides
a periodic pulse train, derived from the received pulses, for sampling the
equalized pulses at the instants of time where the signal-to-noise ratio is
a maximum. The decision device is enabled at the sampling times deter-
mined by the timing circuitry. It makes its decision based on whether or
not the amplitude of the quantized pulse plus noise exceeds a predeter-

mined voltage level. Thus, for example, in a PCM system with on—off .

signaling, the repeater makes a decision in each bit interval as to whether
or not a pulse is present. If the decision is “yes” a clean new pulse is
transmitted to the next repeater. If, on the other hand, the decision is
“no.” a clean base line is transmitted. In this way, the accumulation of
distortion and noise in a repeater span is completely removed, provided
that the disturbance is not too large to cause an error in the decision-
making process. Ideally, except for delay, the regenerated signal is exactly
the same as the signal originally transmitted. In practice, however, the
regenerated signal departs from the original signal for two main reasons:

1. The presence of transmission noise and interference causes the repeater
to make wrong decisions occasionally, thereby introducing bit errors
into the regenerated signal, we will have more to say on this issue in
Chapter 10.

Distorted 5 Decision Regenerated
Amplifier- 4

PCM —> equalizer » making —> PCM
wave device wave

Timing
circuit

Figure 5.13
Block diagram of a regenerative repeater.
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2. If the spacing beyween received pulses deviates from its assigned value,
a jitter is introduced into the regenerated pulse pocition, thereby causing
distortion.

5.7 DIFFERENTIAL PULSE-CODE MODULATION

When a voice or video signal is sampled at a rate slightly higher than the
Nyquist rate, the resulting sampled signal is found to exhibit a high cor-
relation between adjacent samples. The meaning of this high correlation
is that, in an average sense, the signal does not change rapidly from one
sample to the next. When these highly correlated samples are encoded, as
in a standard PCM system, the resulting encoded signal contains redundant
information. This means that symbols that are not absolutely essential to
the transmission of information are generated as a result of the encoding
process. By removing this redundancy before encoding, we obtain a more
efficient coded signal.

Now, if we know a sufficient part of a redundant signal, we may infer
the rest, or at least make the most probable estimate. In particular, if we
know the past behavior of a signal up to a certain point in time, it is possible
to make some inference about its future values: such a process is commonly
called prediction. Suppose then a message signal m(r) is sampled at the
rate 1/7, to produce a sequence of correlated samples T, seconds apart;
which is denoted by {m(nT,)}. The fact that it is possible to predict future
values of the signal m(r) provides motivation for the differential quantization
scheme shown in Fig. 5.14a. In this scheme, the input to the quantizer is

e(nT,) = m(nT,) — m(nT,) - (5.25)

which is the difference between the unquantized input sample m(nT,) and
a prediction of it, denoted by rit(nT,). This predicted value is produced by
using a prediction filter with an input, as we will see, that consists of a
quantized version of the message sample m(n T,). The difference signal
e(nT,) is called a prediction error, since it is the amount by which the
prediction filter fails to predict the input exactly.

By encoding the quantizer output, as in Fig. 5.14a, we obtain a variation
of PCM, known as differential pulse-code modulation (DPCM). It is this
encoded signal that is used for transmission.

The quantizer output may be represented as

&(nT) = e(nT,) + q,(nT,) (5.26)
where g.(nT,) is the quantizing error. According to Fig. 5.14a, the quan-
tizer output €,(nT,) is added to the predicted value m(nT,) to produce the

prediction-filter input

my(nT) = #(nT) + e,(nT,) (5.27)
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Figure 5.14

DPCM system. (a) Transmitter. (b) Receiver.
Substituting Eq. 5.26 in 5.27, we get

my(nT,) = m(nT,) + e(nT,) + g.(n 1) (5.28)

However, from Eq. 5.25 we observe that ri(nT,) plus e(nT,) is equal to
the incoming message sample m(n T,). Therefore, we may rewrite Eq. 5.28
as follows

‘my(nT)) = m(nT,) + q.(nT)) (5.29)

which represents a quantized version of m(n T,). That is, irrespective of
the properties of the prediction filter, the quantized sample. m,(nT,), at
the prediction filter input. differs from the sample m(nT,) of the original
message signal m(f) by the quantizing error q.(nT). Accordingly. if the
prediction is good, the average power of the prediction error sequence
{e(nT,)} will be smaller than that of the message sequence {m(n T,)}. Hence,
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a quantizer with a given number of levels can be adjusted to produce a
quantizing error sequence with a smaller average power than would be
possible if the incoming message sequence were quantized directly as in a
standard PCM system.

The receiver for reconstructing the quantized version of the input is
shown in Fig. 5.14b. It consists of a decoder to reconstruct the quantized
error sequence. The quantized version of the original input is reconstructed
from the decoder output using the same prediction filter as used in the
transmitter of Fig. 5.14a. In the absence of transmission noise, we find
“that the encoded signal at the receiver input is identical to the encoded
signal at the transmitter ouput. The corresponding receiver output differs
from the original message signal only by the quantizing error incurred as
a result of quantizing the prediction error.

From the foregoing analysis we observe that, in a noise-free environ-
ment, the prediction filters in the transmitter and receiver operate on the
same sequence of samples, {m,(nT,)}. It is with this purpose in mind that
a feedback path is added to the quantizer in the transmitter, as shown in
Fig. 5.14a.

The average power of the message sequence {m(nT,)} is given by

N-1
Bo= 1% sdear (5.30)
N n=0

where N is the length of the message sequence. The average power of the
quantizing error sequence {g,(nT,)}, also assumed to be of length N, is
given by

' N-1

1§ 2
Po= 5 Z 4inT) (5:31)

We may thus define the output signal-to-quantizing noise ratio of a DPCM
system as

(SNR), = % . (532)

It is clear that we may rewrite Eq. 5.32 as

o[

m Pl
(SNR)y = 32 5 = G,(SNR),

where (SNR)y, is the signal-to-quantizing noise ratio defined by

(SNR), = % (5.33)

q
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and G, is the prediction gain produced by the differential quantization
scheme, defined by

G, = % (5.34)

L4

The quantity G,, when greater than unity, represents the gain in signal-
to-noise ratio that is due to the differential quantization scheme of Fig.
5.14. Now for a given message signal, the average power P, is fixed, so
that G, is maximized by minimizing the average prediction error power
P,. Accordingly, our objective should be to design the prediction filter so
as to minimize P,, while the signal-to-quantizing noise ratio is maintained
constant.

THE PREDICTION FILTER

One approach to specify the nature of the prediction filters in the trans-
mitter and the receiver of the DPCM system shown in Fig. 5.14 is to use
a tapped-delay-line filter as the basis of the design. An advantage of this
approach is that it leads to tractable mathematics, and it is simple to
implement. Thus the predicted value /1(nT,) is modeled as a linear com-
bination of past values of the quantized input as shown by (see Fig. 5.15)

m(nT,) = i wem (nT, — kT)) (5.35)

where the tap weights wy, w,, . . ., w, define the prediction filter coeffi-
cients, and p is the order of the prediction filter. Substitution of Eq. 5.35
in 5.25 yields the prediction error

P
e(nT,) = m(nT) = ¥ wym,(nT, — kT) (5.36)
k=1
{ rDelav Delay — Delay
mg(nTy) ———my T T, — T,
w, wy Yoy ot

m (nT,)

Figure 5.15
Tapped-delay-line filter used as a prediction filter.
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The mathematical basis for the design of the prédiction filter is that of
minimizing the average prediction-error power with respect to the tap weights
of the filter.’ )

5.8 DELTA MODULATION

The exploitation of signal correlations in DPCM suggests the further pos-
sibility of oversampling a message signal (i.e., at a rate much higher than
the Nyquist rate) to purposely increase the correlation between adjacent
samples of the signal. This would permit the use of a simple quantizing
strategy for constructing the encoded signal. Delta modulation (DM), which
is the one-bit (or two-level) version of DPCM, is precisely such a scheme.

In its simple form, DM provides a staircase approximation to the over- -
sampled version of an incoming message signal, as illustrated in Fig. 5.16a.
The difference between the input and the approximation is quantized into
only two representation levels, namely, £4, corresponding to positive and
negative differences. Thus, if the approximation falls below the signal at
any sampling epoch, it is increased by 0. If, on the other hand, the ap-
proximation lies above the signal, it is diminished by é. Provided that the
signal does not change too rapidly from sample to sample, we find that
the staircase approximation remains within +4 of the input signal.

Denoting the input signal as m(t) and the staircase approximation as
mi,(1). the basic principle of delta modulation may be formalized in the
following set of discrete-time relations:

e(nT,). = m(nT,) — m,(nT, — T) o (5.37)
e,(nT,) = dsgnle(nT)] (5.38)

and
m,(nT) = my(nT, — T,) + e(nT) (539

sThe result of this minimization is a set of simultaneous equations, expressed in
matrix form as follows

1 LT woplpTo = T |l wy plT)
p(T.) 1 o plpT, = 2T) || wa | _ | pl2T)
p(pT,A- T) plpT. —271) - 1 v;r, p(bT,)

Here it is assumed that the ouput signal-to-noise ratio, (SNR),, is large compared to
unity. The parameter p(kT,) is the normalized autocorrelation function of the
prediction filter's input signal for a lag of kT,, as shown by

RulkT)
(kT) = ———, ki=0,1,...0 =
? Rul0) ; F .
where the subscript M refers to the input. Hence, given the set of autocorrelation
functions {Ru(kT,), k = 0,1, ..., p}, we may compute the prediction filter’s tap

weights. For a detailed treatment of prediction filters, see the following books:
Jayant and Noll (1984) and Haykin (1986).
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where T, is the sampling period; e(nT,) is an error signal representing the
difference between the present sample value m(nT) of the input signal
and the latest approximation to it, namely, m(nT,) = m,(nT, — T,); and
e,(nT,) is the quantized version of e(nT,). The quantizer output e (nT,)
is the desired DM wave for varying n.

Part a of Fig. 5.16 illustrates the way in which the staircase approxi-
mation m,(t) follows variations in the input signal m(r) in accordance with
Eqs. 5.37 through 5.39, and part b of the figure displays the corresponding
binary sequence at the delta modulator output. It is apparent that in a
delta modulation system the rate of information transmission is simply
equal to the sampling rate 1/7,.

The principal virtue of delta modulation is its simplicity. It may be
generated by applying the sampled version of the incoming message signal
to a modulator that involves a summer, quantizer, and accumulator inter-
connected as shown in Fig. 5.17a. Details of the modulator follow djrectly
from Eqs. 5.37 and 5.39. In particular, the quantizer consists of a hard
limiter with an input—output relation defined by Eq. 5.38, which is depicted
in Fig. 5.18. The quantizer output is applied to an accumulator, producing
the result

my(nT,) = 6 i sgnle(:iT,)]

> e, (iT,) (5.40)

i=1

I
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Input-output characteristic’of quantizer for DM system.
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which is obtained by solving Eqgs. 5.38 and 5.39 for m,(nT,). Thus, at the
sampling instant nT,, the accumulator increments the approximation by
an amount equal to ¢ in a positive or negative direction, depending on the
algebraic sign of the error signal e(n T,). If the input signal m(nT,) is greater
than the most recent approximation m(nT,), a positive increment + 3 is
applied to the approximation. If, on the other hand, the input signal is
smaller. a negative increment -4 is applied to the approximation. In this -
way, the accumulator does the best it can to track the input samples by
one step at a time. In the receiver, shown in Fig. 5.17b, the staircase
approximation m,(r) is reconstructed by passing the sequence of positive
and negative pulses, produced at the decoder output, through an accu-
mulator in a manner similar to that used in the transmitter. The out-of-
band quantizing noise in the high-frequency staircase waveform m, (1) is
rejected by passing it through a low-pass filter with a bandwidth equal to
the original message bandwidth.

In comparing the DPCM and DM networks of Fig. 5.14 and 5.17, we
note that they are similar, except for two important differences, namely,
the use of a one-bit (two-level) quantizer in the delta-modulator and the
replacement of the prediction filter by a single delay element.

QUANTIZING NOISE

Delta modulation systems are subject to two types of quantizing error: (1)
slope overload distortion, and (2) granular noise. We first discuss the cause
of slope overload distortion, and then granular noise.

We observe that Eq. 5.40 is the digital equivalent of integration in the
sense that it represents the accumulation of positive and negative incre-
ments of magnitude é. Also, denoting the quantizing error by q.(nT,), as
shown by,

my(nT,) = m(nT,) + q.(nT,) (5.41)
we observe from Eq. 5.37 that the input to the quantizer is
e(nT) = m(nT) = m(nT, = T)) — q.(nT, - T,)  (5.42)

Thus, except for the quantizing error ¢,(nT, — T,), the quantizer input is
a first backward difference of the input signal, which may be viewed as a
digital approximation to the derivative of the input signal or, equivalently,
as the inverse of the digital integration process. If we consider the maximum
slope of the original input waveform m(r), it is clear that in order for the
quantized sequence {m,(nT,)} to increase as fast as the message sequence
{m(nT,)} in a region of maximum slope of m(r), we require that the con-
dition

é d m(r)
—= —_— 5.43
T; R dr l ( )
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be satisfied. Otherwise. we find that the absolute value of the representation
level & is too small for the staircase approximation m,(t) to follow a steep
segment of the input waveform m(r). with the result that m, (1) falls behind
mi(r). as illustrated in Fig. 5.19. This condition is called slope overload.
and the resulting quantizing error is called slope-overload distortion (noise).
Note that since the maximum slope of the staircase approximation m,(1)
is fixed by the value of . increases and decreases in m,(r) tend to occur
along straight lines. For this reason. a delta modulator using a fixed d is
often referred to as a linear delta modulator.

In contrast to slope-overload distortion. granular noise occurs when ¢
is too large relative to the local slope characteristics of the input waveform
m(7). thereby causing the staircase approximation m, (1) to hunt around a
relatively flat segment of the input waveform; this phenomenon is also
illustrated in Fig. 5.19. The granular noisc is analogous to quantizing noise
in a PCM system.

We thus sce that there is a need to have a large d so as to accommodate
a wide dynamic range. whercas a small o is required for the accurate
representation of relatively low-level signals. It is therefore clear that the
choice of the optimum ¢ that minimizes the mean-square value of the
quantizing error in lincar delta modulation will be the result of a compro-
mise between slope overload distortion and granular noise.

EXERCISE 6 From Fig. 5.18 we see that the step size of a linear delta
modulator is

4 =26

What is the average power of the granular noise expressed in terms of a7

5.9 DISCUSSION p=-

Inthis section we discuss the advantages and disadvantages of DPCM and
DM. compared with standard PCM, for the encoding of voice and television
signals.
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The *‘relative” behavior of standard PCM and DPCM systems is much
the same with either uniform or logarithmic quantizing, because the rep-
ertoire of signals consists of waveforms similar in character, but differing
in mean level. In the case of voice signals, it is found that the signal-to-
quantizing noise advantage of DPCM over standard PCM is in the neigh-
borhood of 4-11 dB. The greatest improvement occurs in going from no
prediction to first-order prediction, with some additional gain resulting
from increasing the order of the prediction filter up to 4 or 5, after which
little additional gain is obtained. Since 6 dB of quantizing noise is equivalent
to 1 bit per sample, by virtue of Eq. 5.21, the advantage of DPCM may
also be expressed in terms of bit rate. For a constant signal-to-quantizing
noise ratio, and assuming a sampling rate of 8 kHz, the use of DPCM may
provide a saving of about 8-16 kilobits per second (1 to 2 bits per sample)
over standard PCM.

In the case of television signals, DPCM provides more of an advantage
for high-resolution television systems than for low-resolution systems. For
monochrome entertainment television, DPCM provides a signal-to-quan-
tizing noise ratio of approximately 12 dB higher than standard PCM. For
a constant signal-to-quantizing noise ratio, and assuming a sampling rate
of 9 MHz, this represents a saving of about 18 megabits per second (2 bits
per sample) by DPCM over PCM.

Turning next to delta modulation, subjective voice tests and noise mea-
surements have shown that a DM system operating at 40 kilobits per second
is equivalent to a standard PCM system operating with a sampling rate of
8 kHz and 5 bits per sample. At lower bit rates, DM is better than the
standard PCM (the latter still using 8-kHz sampling and a reduced number
of bits per sample), but at higher bit rates PCM is superior to. DM. The
quality of 5-bit PCM is low for most purposes in telephony. For telephone
quality voice signals, it has become conventional to use 8-bit PCM. Equiv-
alent voice quality with DM can be obtained only by using bit rates much
higher than 64 kilobits per second.

Also, in a delta modulation system, operating on voice signals under
optimum conditions, the SNR is increased by 9 dB by doubling the bit
rate. By comparison, in the case of standard PCM, we achieve a 6 dB
increase in SNR'for each added bit. For example, by doubling the bit rate
from 40 to 80 kilobits per second, the SNR is increased by 9 dB using DM.
On the other hand, if PCM is employed and the bit rate is similarly doubled
by increasing the number of bits per sample from 5 to 10 (keeping the
sampling rate fixed at 8 kHz), the SNR is improved by 30 dB. Thus the
increase of SNR with bit rate is much more dramatic for PCM than for
DM.

The use of delta modulation is therefore recommended only in certain
special circumstances: (1) if it is necessary to reduce the bit rate below 40
kilobits per second and limited voice quality is tolerable; or (2) if extreme
circuit simplicity is of overriding importance and the accompanying use of
a high-bit rate is acceptable. Note that since delta modulation uses a high
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sampling rate, there is no need for employing a pre-alias filter prior to
sampling in the transmitter.

ADAPTIVE DIGITAL CODING OF WAVEFORMS

From the discussion presented on PCM using a uniform quantizer witha ~
fixed step size, we see that we have a dilemma in quantizing speech signals.
On the one hand, we wish to choose the quantization step size large enough
to accommodate the maximum peak-to-peak range of the input signal with
the lowest possible number of representation levels. On the other hand,
we would like to make the quantization step size small enough to minimize
the average power of the quantizing noise. This issue is further compounded
by the fact that the amplitude of the speech signal can vary over a wide
range, depending on the speaker, the communication environment, and
within a given utterance, from voiced 1o unvoiced sounds.® One approach
to accommodating these conflicting requirements is to use a fionuniform
quantizer; this approach is commonly used in PCM systems for telephony
as described in Section 5.4. An alternative approach is to use an adaptive
quantizer, wherein the step size is varied automatically so as to match the
average power of the input speech signal; this second approach is commonly
used in adaptive DPCM (ADPCM) systems. _

‘In ADPCM systems used in telephony, the prediction filter is also adap-
tive. An adaptive prediction filter is responsive to changing level and spec-
trum of the input speech signal. The variation of performance with speakers
and speech material, together with variations in signal level inherent in the
speech communication process, make the combined use of adaptive quan-
tization and adaptive prediction necessary 1o achieve best performance
over a wide range of speakers and speaking situations.

It is of interest to note that improvements in circuit design and tech-
nology have made it possible for ADPCM to provide toll quality speech
coding at 32 kb/s’; this corresponds to a sampling rate of 8 kHz and 4 bits
per sample. By “toll quality” we mean the quality of commercial telephone
service. This performance is comparable to that of 64 kb/s PCM incor-
porating the use of u-law (logarithmic) companding with 4 = 255. How-
ever, unlike log-PCM, the performance of the ADPCM system is very
signal dependent.

Finally, we should mention that a delta modulator may also be made
adaptive, wherein the variable step size increases during a steep segment

s\Voiced sounds are produced by forcing air through the glottis with the tension of
the vocal cords adjusted so that they vibrate in a relaxation oscillation, thereby
producing quasiperiodic pulses of air that excite the vocal tract. Fricative or
unvoiced sounds are generated by forming a constriction at some point in the vocal
tract (usually toward the mouth end) and forcing air through the constriction at a
high enough velocity to produce turbulence. This creates a broad-spectrum noise
source to excite the vocal tract.

7Jayant and Noll, 1984, pp. 309-311.
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of the input signal and decreases when the modulator is quantizing an input
signal with a slowly varying segment. In this way the step size is adapted
to the level of the input signal. The resulting system is called an adaptive
delta modulator (ADM).

5.10 TIME-DIVISION MULTIPLEXING

The sampling theorem enables us to transmit the complete information
contained in a band-limited message signal by using samples of the message
signal taken uniformly at a rate that is usually slightly higher than the
Nyquist rate. An important feature of the sampling process is a conser-
vation of time. That is, the transmission of the message samples engages
the transmission channel for only a fraction of the sampling interval on a
periodic basis, and in this way some of the time interval between adjacent
samples is cleared for use by other independent message sources on a time-
shared basis. We thereby obtain a time-division multiplex system (TDM),
which enables the joint use of a common transmission channel by a plurality
of independent message sources without mutual interference.

The concept of TDM is illustrated by the block diagram shown in Fig.
5.20. Each input message signal is first restricted in bandwidth by a low-
pass filter to remove the frequencies that are nonessential to an adequate
signal representation. The low-pass filter outputs are then applied to a
commutator that is usually implemented using electronic switching cir-
cuitry. The function of the commutator is two-fold: (1) to take a narrow
sample of each of the N input messages at a rate 1/T, that is slightly higher
than 2W, where W is the cutoff frequency of the low-pass input filter, and
(2) to sequentially interleave these N samples inside a sampling interval
T,. Indeed, this latter function is the essence of the time-division multi-
plexing operation. Following the commutation process, the multiplexed
signal is applied to a puise modulator, (e.g., pulse-amplitude modulator),
the purpose of which is to transform the multiplexed signal into a form
suitable for transmission over the common channel. It is clear that the use
of time-division multiplexing introduces a bandwidth expansion factor N,
because the scheme must squeeze N samples derived from N independent
message sources into a time slot equal to one sampling interval. At the
receiving end of the system, the received signal is applied to a pulse de-
modulator, which performs the inverse operation of the pulse modulator.
The narrow samples produced at the pulse demodulator output are dis-
tributed to the appropriate low-pass reconstruction filters by means of a
decommutator, which operates in synchronism with the commutator in the
transmitter. This synchronization is essential for the satisfactory operation
of the system.

The TDM system is highly sensitive to dispersion in the common trans-
mission channel, that is, to variations of amplitude with frequency or non-
linear phase response. Accordingly, accurate equalization of both the am-
plitude and phase responses of the channel is necessary to ensure a satisfactory
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operation of the system. This issue is discussed in Chapter 6. To a first
approximation, however, TDM is immune to amplitude nonlinearities in
the channel as a source of crosstalk, because-the different message signals
are not simultaneously impressed on the channel.

5.11 APPLICATION: DIGITAL MULTIPLEXERS FOR TELEPHONY

In the previous section we introduced the idea of time-division multiplexing
whereby a group of analog signals (e.g., voice signals) are sampled se-
quentially in time at a common sampling rate and then multiplexed for
transmission over a common line. In this section we consider the multi-
plexing of digital signals® at different bit rates. This enables us to combine
several digital signals, such as computer outputs, digitized voice signals,
and digitized facsimile and television signals, into a single data stream (at
a considerably higher bit rate than any of the inputs). Figure 5.21 shows
a conceptual diagram of the digital multiplexing—-demultiplexing operation.

The multiplexing of digital signals may be accomplished by using a bit-
by-bit interleaving procedure with a selector switch that sequentially takes
a bit from each incoming line and then applies it to the high-speed common
line. At the receiving end of the system the output of this common line is
separated out into its individual low-speed components and then delivered
to their respective destinations.

Two major groups of digital multiplexers are used in practice:

1. One group of multiplexers is designed to combine relatively low-speed
digital signals, up to a maximum rate of 4800 bits per second, into a
higher speed multiplexed signal with a rate of up to 9600 bits per second.
These multiplexers are used primarily to transmit data over voice-grade
channels of a telephone network. Their implementation requires the
use of modems in order to convert the digital format into an analog
format suitable for transmission over telephone channels. The operation
of a modem (modulator-demodulator) is covered in Section 7.14.

High—speed
Multiplexer —={ transmission |~ Demultiplexer
line

v

o

Data sources Destinations

Figure 5.21
Conceptual diagram of multiplexing-demuitiplexing.

*For more detailed information on the multiplexing of digital signals, see Bell
Telephone Laboratories (1970).
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2. The second group of multiplexers, designed to operate at much higher

bit rates, forms part of the data transmission service generally provided
by communication carriers. For example, Fig. 5.22 is a block diagram
of the digital hierarchy based on the T1 carrier, which has been devel-
oped by the Bell System. The T1 carrier, described later on, is designed
to operate at 1.544 megabits per second, the T2 at 6.312 megabifs per
second, the T3 at 44.736 megabits per second, and the T4 at 274.176
megabits per second. The system is thus made up of various combi-
nations of lower order T-carrier subsystems. These subsystems are de-.
signed to accommodate the transmission of voice signals, Picture-
phone® service, and television signals using PCM, as well as (direct)
digital signals from data terminal equipment.

There are some basic problems involved in the design of a digital mul-

tiplexer, irrespective of its grouping:

I

Digital signals cannot be directly interleaved into a format that allows
for their eventual separation unless their bit rates are locked to a com-
mon clock. Accordingly, provision has to be made for synchronization
of the incoming digital signals, so that they can be properly interleaved.

2. The multiplexed signal must include some form of framing, so that its
individual components can be identified at the receiver. £
3. The multiplexer has to handle small variations in the bit rates of the
incoming digital signals. For example, a 1000-kilometer coaxial cable
carrying 3 X 10° pulses per second will have about 1 million pulses in
transit, with each pulse occupying about 1 meter of the cable. A 0.01%
1
2—
Voicc: -gi o I
signels | g g 248
> 2. ln 1
24— 3 =
> 3 2> &
s .
4 : ':i 737" A
. = 2 &
2 x
£ | E P
Digital v £
data 6 S
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Figure 5.22 <

Digital hierarchy, Bell system.



APPLICATION: DIGITAL MULTIPLEXERS FOR TELEPHONY 217

variation in the propagation delay, produced by a 1°F decrease in tem-
perature. will result in 100 fewer pulses in the-cable. Clearly, these
pulses must be absorbed by the multiplexer.

To cater to the requirements of synchronization and rate adjustment to
accommodate small variations in the input data rates, we may use a tech-
nique known as bit stuffing. The idea here is to have the outgoing bit rate
of the multiplexer slightly higher than the sum of the maximum expected
bit rates of the input channels. This is achieved by stuffing in additional
non-information-carrying pulses. All incoming digital signals are stuffed
with a number of bits sufficient to raise their respective bit rates to that of
a locally generated clock. To accomplish bit stuffing, each incoming digital
signal or bit stream is fed into an elastic store at the multiplexer. The elastic
store is a device that stores a bit stream in such a manner that the stream
may be read out at a rate different from the rate at which it is read in. At
the demultiplexer, the stuffed bits must obviously be removed from the
multiplexed signal. This requires some method of identifying the stuffed
bits. To illustrate one such method, and also to show one method of
providing frame synchronization, we describe the signal format of the Bell
System M 12 multiplexer, which is designed to combine four T1 bit streams
into one T2 bit stream. We begin the description by considering the T1
system.

T1 SYSTEM

The T1 carrier system is designed to accommodate 24 voice channels, pri-
marily for short-distance, heavy usage in metropolitan areas. The T1 system
was pioneered by the Bell System in the United States in the early 1960s,
and with its introduction the shift to digital communication facilities started.
The T1 system has been adopted for use throughout the United States,
Canada, and Japan. It forms the basis for a complete hierarchy of higher-
order multiplexed systems that are used for either long-distance transmis-
sion or transmission in heavily populated urban centers.

A voice signal (male or female) is essentially limited to a band from 300
to 3400 Hz in the sense that frequencies outside this band do not contribute
much to articulation efficiency. Indeed, telephone circuits that respond to
this range of frequencies give quite satisfactory service. Accordingly, it is
customary to pass the voice signal through a low-pass filter with a cutoff
frequency of about 3.4 kHz prior to sampling. Hence, the nominal value
of the Nyquist rate is 6.8 kHz. The filtered voice signal is usually sampled
at a slightly higher rate, namely, 8 kHz, which is the standard sampling
rate in digital telephony.

For companding, the T1 system uses a piecewise-linear characteristic
(consisting of 15 linear segments) to approximate the logarithmic u-law of
Eq. 5.16 with the constant 4 = 255. This approximation is constructed in
such a way that the segment end points lie on the compression curve
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computed from Eq. 5.16, and their projections onto the vertical axis are
spaced uniformly. Table 5.4 gives the projections of the segment end points
onto the horizontal axis and the step sizes of the individual segments. The
table is normalized to 8159, so that all values are represented as integer
numbers. Segment 0 of the approximation is a linear segment, passing
through the origin; it contains a total of 31 uniform representation levels.
Linear segments la, 2a, . . ., 7a lie above the horizontal axis, whereas
linear segments 1b, 2b, . . ., 7b lie below the horizontal axis; each of
these T4 segments contains 16 uniform representation levels. For colinear
segment 0 the representation levels at the compressor input are ) B
.., +31, and the corresponding compressor output levels are 0, *1,

., =15. For linear segments 1a and 1b the representation levels at the
compressor input are +33, +35, ..., =95, and the corresponding com-
pressor output levels are =16, 17, ..., *31, and so on for the other
linear segments.

There are a total of 31 + 14 x 16 = 255 output levels associated with
the 15-segment companding charatteristic described herein.” To accom-
modate this number of output levels, each of the 24 voice channels uses a
binary code with an 8-bit word. The first bit indicates whether the input
voice sample is positive or negative. The next three bits of the code word
identify the particular segment inside which the amplitude of the input
voice sample lies, and the last four bits identify the actual quantizing step
inside that segment.

With a sampling rate of 8 kHz, each frame of the multiplexed signal
occupies a period of 125 us. In particular, it consists of twenty-four
8-bit words, plus a single bit that is added at the end of the frame for the
purpose of synchronization. Hence, each frame consists of a total of
24 x 8 + 1 = 193 bits. Correspondingly, the duration of each bit equals
0.647 us, and the resultant transmission rate is 1.544 megabits per second.

In addition to the voice signal, a telephone system must also pass special -

TABLE 5.4 The 15-Segment u-law Companding Characteristic (u = 255)

Projections of

Linear Segment Segment End Point
Number Step Size onto the Horizontal Axis
0 2 +31
la, 1b 4 *95
2a, 2b 8 +223
3a, 3b 16 +479
4a, 4b 2 +991
Sa, 5b 64 +2015
6a, 6b - 128 = +4063

7a, 7b 256 +8159
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supervisory signals to the far end. This signaling information is needed to
transmit dial pulses, as well as telephone off-hook/on-hook signals. In the
T1 system this requirement is accomplished as follows. Every sixth frame,
the least significant (i.e., the eighth) bit of each voice channel is deleted
and a signaling bit is inserted in its place, thereby yielding an average 73-
bit operation for each voice input. The sequence of signaling bits is thus
transmitted at a rate equal to the sampling rate divided by six, that is,
1.333 kilobits per second.

M12 MULTIPLEXER

Figure 5.23 illustrates the signal format of the M12 multiplexer. Each frame
is subdivided into four subframes. The first subframe (first line in Fig. 5.23)
is transmitted, then the second, the third, and the fourth, in that order.
Bit-by-bit interleaving of the incoming four T1 bit streams is used to
accumulate a total of 48 bits, 12 from each input. A control bit is then
inserted by the multiplexer. Each frame contains a total of 24 control bits,
separated by sequences of 48 data bits. Three types of control bits are used
in the M12 multiplexer to provide synchronization and frame indication,
and to identify which of the four input signals has been stuffed. These
control bits are labeled as F, M, and C in Fig. 5.23. Their functions are:

1. The F-control bits, two per subframe, constitute the main framing pulses.
The subscripts on the F-control bits denote the actual bit (0 or 1)
transmitted. Thus the main framing sequence is FoF, FyF\ FyF, FyF, or
01010101. '

2. The M-control bits, one per subframe, form secondary framing pulses
to identify the four subframes. Here again the subscripts on the M-
control bits denote the actual bit (0 or 1) transmitted. Thus the secondary
framing sequence is MyM, M, M, or 0111.

3. The C-control bits, three per subframe are stuffing indicators. In par-
ticular, C, refers to input channel I, C,, refers to input channel II, and
so forth. For example, the three C-control bits following M, in the first
subframe are stuffing indicators for the first T1 signal. The insertion of
a stuffed bit in this T1 signal is indicated by setting all three C-control
bits to 1. To indicate no stuffing, all three are set to 0. If the three C-
control bits indicate stuffing, the stuffed bit is located in the position of

M, [48] G [48] F, [48] C, [48] ¢, [48] F, [48]
M, [48] C, [48] F, [48] C, [48] C, [48] F, [48]
M, [48] C, [48] F, [48] C, (48] Cu [48] F, [48]
M 1 [48] CIV [48] F 0 [48] CN [48] Cw [48] F 1 [48]

Figure 5.23 )
Signal format of Bell system M12 multiplexer.
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the first information bit associated with the first T1 signal that follows
the F,-control bit in the same subframe. In a similar way, the second,
third, and fourth T1 signals may be stuffed, as required. By using ma-
jority logic decoding in the receiver, a single error in any of the three
C-control bits can be detected. This form of decoding means simply
that the majority of the C-control bits determine whether an all-one or
all-zero sequence was transmitted. Thus three 1's or combinations of
two 1's and a 0 indicate that a stuffed bit is present in the information
sequence, following the control bit F,'in the pertinent subframe. On
the other hand, three 0’s or combinations of two 0’s and a 1 indicate
that no stuffing is used.

The demultiplexer at the receiving M12 unit first searches for the main
framing sequence FoF\ FoF) F,F, F,F,. This establishes identity for the four
input T1signals and also for the M- and C-control bits. From the MM MM,
sequence, the correct framing of the C-control bits is verified. Finally, the

_ four T1 signals are properly demultiplexed and-destuffed. R

This signal format has two safeguards:

1. It is possible, although unlikely, that with just the FyF FoF, F,F,F,F,
sequence, one of the incoming T1 signals may contain a similar se-
quence.- This could then cause the receiver.to lock onto. the wrong
sequence. The presence of the M,M, M, M, sequence provides verifi-
cation of the genuine F,F,FyF,FyF, FyF, sequence, thereby ensuring
that the four T1 signals are properly demultiplexed.

. 2. The single-error correction capability built into the C-control bits en-
sures that the four T1 signals are properly destuffed.

............................................................................................................................
H

EXAMPLE 5: CAPACITY OF M12 MULTIPLEXER

The capacity of the M12 multiplexer to accommodate small variations in
the input data rates can be calculated from the format of Fig. 5.23. In each
M frame, defined as the interval containing one cycle of MyM, M\ M, bits,
one bit can be stuffed into each of four input T1 signals. Each such signal
has 12 X 6 x 4 = 288 positions in each M frame. Also the T1 signal has
a bit rate equal to 1.544 megabits per second. Hence, each input can be
incremented by

1
1.544 0* x — = 5.4 kilobi
x 10X 788 5.4 kilobits/s

This result is much larger than the expected change in the bit rate of the
incoming T1 signal. It follows therefore that the use of only one stuffed

bit per input channel in each frame is sufficient to accommodate expected:
variations in the input signal rate. '

resssssssssssenssnssenarranane
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The local clock that determines the outgoing bit rate also determines
the nominal swuffing rate S, detined as the average number of bits stuffed
per channel in any frame. The M12 multiplexer is designed for § = 1/3.
Accordingly. the nominal bit rate of the T2 line is

49 88 _ §
1.544 x 4 x yre X MRS - 6.312 megabits/s

This also ensures that the nominal T2 clock frequency is a multiple of 8
kHz (the nominal sampling rate of a voice signal). which is a desirable
feature.

...........................................................................................................................

EXERCISE 7 Given that the data rate for one Picturephone® service is
6:312 megabits per second, and that for one television service is 44.736
megabits per second, determine the capacity of each Bell Telephone system
level measured in terms of the number of (a) voice, (b) picturephone, or
(c) television channels that it can accommodate.

...................................................................................................................................

PROBLEMS
P5.3 Sampling

Problem 1  Figure P5.1 depicts the spectrum of a message signal m(r).
The signal is undersampled at a rate of 1.5 Hz.

(a) Skeich the spectrum of the sampled version of this signal.

(b) The sampled signal is passed through an idealized low-pass inter-
polation filter of bandwidth 1 Hz. Sketch the spectrum of the resulting
filter output.

Mif)

1.0

Figure P5.1

Problem 2 Consider the operation of a sample-and-hold circuit with the
following parameters:
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Message bandwidth, W = 1 Hz
Sampling period, 7, = 0.4s
Pulse duration, T = 0.2s

(a) Calculate the amplitude distortion produced by the aperture effect
(arising from the use of flat-top samples) at the highest frequency com-

ponent of the message signal.
(b) Find the amplitude response of the equalizer required to compensate

for the aperture effect.

P5.4 Quantizing

Problem 3

(a) A sinusoidal signal, with an amplitude of 3.25 V is applied to a
uniform quantizer of the midtread type with output values of 0, 1, %2,
+3 V, as in Fig. P5.2a. Sketch the waveform of the resulting quantizer
output for one complete cycle of the input.

(b) Repeat this evaluation for the case when the quantizer is of the
midriser type with output values *0.5, +1.5, +2.5, £3.5 V, as in Fig.
P5.2b.

Problem 4 The signal

m(t) = 6 sin(2nt) volts

is transmitted using a 4-bit binary PCM system. The quantizer is of the
midriser type, with a step size of 1 V. Sketch the resulting sequence of
quantized samples for one complete cycle of the input. Assume a sampling

Output Qutput
(volts) (volts)
a- 4
2+ ;)
| | | Input | | | Input
-4 -2 0 2 4 (volts) 4 ) 0 2 s Wolts) . .

Figure P5.2
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+l;lll—ll_‘t li= 1_] T t
5 = Bl
=4 =T

Figure P5.3

rate of four samples per second, with samples taken at r = *1/8, *3/8,
+5/8, ..., seconds.

P5.5 Coding
Problem § Consider the following binary sequences:

(a) An alternating sequence of 1's and 0’s.

(b) A long sequence of 1's followed by a long sequence of (’s.

(¢) A long sequence of 1's followed by a single 0 and than a long
sequence of 1's.

Sketch the waveform for each of these sequences using the following meth-
ods of representing symbols 1 and 0:

(a) On—off signaling.

(b) Polar signaling.

(c) Return-to-zero signaling.
(d) Bipolar signaling.

(e) Manchester code.

Problem 6 Figure P5.3 shows a PCM wave in which the amplitude levels
of +1Vand —1 V are used to represent binary symbols 1 and 0, respec-
tively. The code word used consists of three bits. Find the sampled version
of an analog signal from which this PCM wave is derived.

Problem 7 The bipolar waveform of Fig. 5.12d, representing the binary
sequence 0110100011, is transmitted over a noisy channel. The received
waveform is shown in Fig. P5.4, which contains a single error. Locate the
position of this error, giving reasons for your answer.

Figure P5.4
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Problem 8 A PCM system uses a uniform quantizer followed by a 7-bit
binary encoder. The bit rate of the system is equal to 50 megabits per
second.

(a) What is the maximum message bandwidth for which the system
operates satisfactorily?

(b) Determine the output signal-to-quantizing noise ratio when a full-
load sinusoidal modulating wave of frequency 1 MHz is applied to the
input. ]

P5.7 Differential Pulse-Code Modulation

Problem 9 In the DPCM system depicted in Fig. P5.5, show that in the
absence of noise in the channel, the transmitting and receiving prediction
filters operate on slightly different input signals.

P5.8 Delta Modulation

Problem 10 Consider a sine wave of frequency f, and amplitude A,
applied to a delta modulator with representation levels =4. Show that
slope-overload distortion will occur if

e
2nf . T,

A, >

where T, is the sampling period. What is the maximum power that may
be transmitted without slope-overload distortion?

Problem 11 The ramp signal m(r) = at is applied to a delta modulator
that operates with a sampling period T, and representation levels =J.

(a) Show that slope-overload distortion occurs if ¢ < aT,.
(b) Sketch the modulator output for the following three values of é:

(i) 0 = 0.75 T,
(ii) 0 = aT,
(iii) 6 = 1.25 aT,
Input
mi(nT,) + Quan— Output
3= = tizer and Channel Decoder
Z coder T T
lh(nT.) T | |
| |
; |
tion filter | { tion filter
g b s ) Aireie :
< Transmitfer ——————»f Je———————— Receiver —————»

Figure P5.5
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Problem 12 Consider a speech signal with maximum frequency of 3.4

kHz and maximum amplitude of 1 V. This speech signal is applied to a
delta modulator with its bit rate set at 20 kilobits per second. Discuss the

choice of an appropriate step size for the modulator.

P5.10 Time-Division Multiplexing

Problem 13  Six independent message sources of bandwidths W, W, 2W,
2W, 3W, and 3W hertz are to be transmitted on a time-division multiplexed
basis using a common communication channel.

(a) Set up a scheme for accomplishing this multiplexing requirement, |
with each message signal sampled at its Nyquist rate.
(b) Determine the minimum transmission bandwidth of the channel.

Problem 14 Twenty-four voice signals are sampled uniformly and then
time-division multiplexed. The sampling operation uses flat-top samples -
with 1 gs duration. The multiplexing operation includes provision for syn-
chronization by adding an extra pulse of sufficient amplitude and also 1 us
duration. The highest frequency component of each voice signal is 3.4 kHz.

(a) Assuming a sampling rate of 8 kHz, calculate the spacing between
successive pulses of the multiplexed signal.
(b) Repeat your calculation assuming the use of Nyquist rate sampling.
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CHAPTER SIX

sssssssssensesene

INTERSYMBOL INTERFERENCE

When digital data (of whatever origin) is transmitted over a band-
‘limited channel, dispersion in the channel gives rise to a troublesome
form of interference called intersymbol interference. As the name
implies, intersymbol interference refers to interference caused by the
time response of the channel spilling over from one symbol into another.
This has the effect of introducing deviations (errors) between the data
sequence reconstructed at the receiver output and the original data
sequence applied to the transmitter input. Hence. unless corrective
measures aré taken, intersymbol interference may impose a limit on the
attainable rate of data transmission that is far below the physical
capability of the channel.

227
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In this chapter, we study the intersymbol interference problem and the
use of baseband pulse shaping as the solution to the problem. The term
“baseband” is used to designate the band of frequencies-representing the
original signal as delivered by a source of information. .

6.1 BASEBAND TRANSMISSION OF BINARY DATA

For the baseband transmission of digital data, the use of discrete pulse-
amplitude modulation (PAM) provides the most efficient form of discrete
pulse modulation in terms of power and bandwidth use. In discrete PAM,
the amplitude of the transmitted pulses is varied in a discrete manner in
accordance with the given digital data.

The basic elements of a baseband binary PAM system are shown in Fig.
6.1. The signal applied to the input of the system consists of a binary data
sequence {b,} with a bit duration of T, seconds; b, is in the form of 1 or
0. This signal is applied to a pulse generator, producing the pulse waveform

x() = 3 Al - kT,) (6.1)

k=-x
where g(1) denotes a shaping pulse with its value at time ¢ = 0 defined by

g(0) =1
The amplitude A, depends on the identity of the input bit b,; specifically,
we assume that

o {+ a,  if the input bit b, is symbol 1 (6.2)

— 4, if the input bit b, is symbol 0

The PAM signal x(r) passes through a transmitting filter of transfer
function H7(f). The resulting filter output defines the transmitted signal,
which is modified in a deterministic fashion as a result of transmission
through the channel of transfer function H.(f). The signal at the receiver
input is passed through a receiving filter of transfer function Hg(f). This
filter output is sampled synchronously with the transmitter, with the sam-
pling instants being determined by a clock or timing signal that is usually
extracted from the receiving filter output. Finally, the sequence of samples
thus obtained is used to reconstruct the original data sequence by means
of a decision device. The amplitude of each sample is compared to a thresh-
old. If the threshold is exceeded, a decision is made in favor of symbol 1
(say). If the threshold is not exceeded, a decision is made in favor of
symbol 0. If the sample amplitude equals the threshold exactly, the symbol
may be chosen as 0 or 1 without affecting overall performance. In such an
event, we will choose symbol 0.

ol
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The model shown in Fig. 6.1 represents not only a data transmission
system inherently baseband in nature (e.g., data transmission over a coaxial
cable) but also the baseband equivalent of a linear modulation system used
to transmit data over a band-pass channel (e.g., telephone channel). In
the latter case, the baseband equivalent model of the data transmission
system is developed by using the ideas presented in Section 3.5. Linear
modulation techniques for transmitting digital data over band-pass channels-
are considered in Chapter 7.

6.2 THE INTERSYMBOL INTERFERENCE PROBLEM

For the present discussion, we assume that the channel is noiseless. We do
so in order to focus attention on the effects of imperfections in the frequency
response of the channel (i.e.. dispersion of the pulse shape by the channel)
on data transmission through the channel. The effect of channel noise on
the receiver output is considered in Chapter 10.

The receiving filter output in Fig. 6.1 may be written as!

x

y(t) = pu X Awp(t - kT,) (6.3)

k=-x

where 4 is a scaling factor. The pulse p() has a shape different from that
of g(r). but it is normalized such that

p(0) =1

The pulse uA,p(1) is the response of the cascade connection of the trans-
mitting filter, the channel, and the receiving filter, which is produced by
the pulse A,g(¢) applied to the input of this cascade connection. Therefore.,
we may relate p(t) to g(t) in the frequency domain as follows (after
cancelling the common factor A,)

KP(f) = GUf)H A FYH (f)Ha(f) (64)

where P(f) and G(f) are the Fourier transforms of p(r) and g(1), re-
spectively.
The receiving filter output y(t) is sampled at time 1, = iT, (with i taking

'To be precise, an arbitrary time delay t, should be included in the argument of the
pulse p(t — kT,) in Eq. 6.3 to represent the effect of transmission delay through the
system. For convenience, we have put this delay equal to zero in Eq. 6.3.
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on integer values), yielding

u Y Awpl(i = k)TW]

k=-»

y(1)

0, 1, £2,. .= (6:5)

pA, + p 2 Aplli — KT) i

k=-=
k#t

In Eq. 6.5 the first term uA, represents the contribution of the ith trans-
mitted bit. The second term represents the residual effect of all other
transmitted bits on the decoding of the ith received bit; this residual effect
is called intersymbol interference (1SI).

In the absence of ISI (and, of course, channel noise), we observe from
Eq. 6.5 that

y(1) = uA, (6.6)

which shows that, under these conditions, the ith transmitted bit can be
decoded correctly. The unavoidable presence of ISl in the system, however,
introduces errors in-the decision device at the receiver output. Therefore,
in the design of the transmitting and receiving filters, the objective is to
minimize the effects of ISI, and thereby deliver the digital data to its
destination with the smallest error rate possible.

Typically, the channel transfer function Hc(f) and the pulse spectrum
G(f) are specified, and the problem is to determine the transfer functions
of the transmitting and receiving filters, Hr(f) and Hg(f), so as to enable
the receiver to correctly decode the received sequence of sample values
{y(1,)} in accordance with Eq. 6.6. Deviation from this ideal condition is
caused by the presence of intersymbol interference that arises owing to
dispersion of the pulse shape by the channel. To solve the problem, we
have to exercise control over intersymbol interference. an issue that is
discussed. next.

6.3 IDEAL SOLUTION

Control of intersymbol interference in the system is achieved in the time
domain by controlling the function p(r), or in the frequency domain by
controlling P(f). One signal waveform: that produces zero intersymbol
interference is defined by the sinc functon: .

sin(2aB,t)

= si ol
27But sinc(2Bt) (6.7)

p(1) =
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where

Oy S e (6.8)

The parameter B, is called the Nyquist bandwidth; it defines the minimum
transmission bandwidth for zero intersymbol interference. According to
Eq. 6.8, the Nyquist bandwidth B, is equal to one half of the bir rate
1/T,. Note the analogy between this relation and the sampling theorem
for strictly band-limited signals. (The sampling theorem was discussed in
Sections 2.7 and 5.3).

The frequency response P(f), representing the Fourier transform of the
pulse p(1) of Eq. 6.7, is defined by

1
e U= < B,
P(f) = {2Bs d (6.9)

0 By < |fl

This means that no frequencies of absolute value exceeding half the bit
rate are needed. The function p(r) can be regarded as the impulse response
of an ideal low-pass filter with an amplitude response of 1/(2B,) in the
passband and a bandwidth B,. The function p(1) has its peak value at
the origin and goes through zero at integer multiples of the bit duration
T,. It is apparent that if the received waveform y(r) is sampled at the in-
stants of time ¢t = 0,.+7,, +27, ... . then the pulses defined by
A,p(t = iT,) with arbitrary amplitude A, and i = 0, 1, %2, i .
will not interfere with each other.

Although this ideal choice of pulse shape for p(t) achieves economy in
bandwidth in that it solves the problem of zero intersymbol interference
with the minimum bandwidth possible, there are two difficulties that make
its use for system design impractical:

1. It requires that frequency response P(f) be flat from - B, to B,, and
zero elsewhere. This is physically unrealizable, and very difficult to
approximate in practice because of the abrupt transitions at + B,.

2. The time function p(r) decreases as 1/1| for large |¢|, resulting in a slow
rate of decay. This is caused by the discontinuity of P(f) at £B,.
Accordingly, there is practically no margin of error in sampling times
in the receiver.

To evaluate the effect of this timing error, consider the sample of y(r) at
t = 4t, where 4t is the timing error. To simplify the analysis, we have put
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the correct sampling time ¢; equal to zero. We thus obtain, in the absence
of noise: :

y(4t) = u Y Ap(At — kTy)

u D Agsinc[2By(dt — kT,)]
k

Since 2B,T, = 1, we may rewrite this relation as

y(4t) = u Y, A, sinc(2B, 4t — k)
k

Sin(zﬂBo At) E (_l)kAk
k ZBO At - k

k#0

HAysinc(2B, 4t) + p (6.10)

The first term on the right side of Eq. 6.10 defines the desired symbol,
whereas the remaining series represents the intersymbol interference caused
by the timing error 4t in sampling the signal y(r). In certain cases, it is
possible for this series to diverge, thereby causing erroneous decisions in
the receiver.

We therefore have to look to other pulse shapes not only to combat the
intersymbol interferénce problem but also to do so in a feasible way. In
the next section, we present one such solution that is a natural extension
of the minimum-bandwidth (ideal) solution just described.

6.4 RAISED COSINE SPECTRUM

The solution we have in mind differs from the ideal solution in one im-
portant respect: the overall frequency response P(f) decreases toward
zero gradually rather than abruptly. In particular, P(f) consists of a flat
portion and a rolloff portion that has the form of a raised-cosine function,
as follows?

1 ;
TR 0=|fi<fi
y ;
PLE) = 4B, {1 + Cos[%] i fi<I|fl <2B, - f,
0 1
0, 2B, - fi<|fl

(6.11)

TThe solution described in Eq. 6.11 was first proposed by Nyquist (1928) in his
studies of telegraph transmission theory.
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The frequency f, and the Nyquist bandwidth B, are related by

) fi
3 a=1 B, (6.12)
which is called the rolloff factor. For a = 0,ie., f; = B,, we get the
minimum bandwidth solution described in Section 6.3.

The frequency response P(f), normalized by multiplying it by 2B,, is
plotted in Fig. 6.2a for three values of a, namely, 0, 0.5, and 1. We see
that for a = 0.5 or 1, the function P(f) cuts off gradually as compared
with an ideal low-pass filter (corresponding to a = 0), and it is therefore
easier to realize in practice. Also the function P(f) exhibits odd symmetry
about the cutoff frequency B, of the ideal low-pass filter.

The time response p(1), that is. the inverse Fourier transform of P(P);
is defined by

cos(Zna Bt)

p([) = SinC(:B(Jt) 1 — 16“23(%[2

(6.13)

This function consists of the product of two factors: the factor sinc(2B,t)
associated with the ideal solution, and a second factor that decreases as
1/]e[? for large |¢|. The first factor ensures zero crossings of p(t) at the
desired sampling instants of time + = iT with i an integer (positive and
negative). The second factor reduces the tails of the pulse considerably
below that obtained from the ideal low-pass filter, so that the transmission
of binary waves using such pulses is relatively insensitive to sampling time
errors. In fact, the amount of intersymbol interference resulting from this
timing error decreases as the rolloff factor a is increased from Zero to unity.

The time response p(r) is plotted in Fig. 6.2b for a = 0, 0.5 and 1. For
the special case of @ = 1, the function p(t) simplifies as

sinc(4 Bt)

p(r) = I = 1681 (6.14)

This time response exhibits two interesting properties:

1. Atr = =T,/2 = +1/4B,, we have p(1) = 0.5; that is, the pulse width
measured at half amplitude is exactly equal to the bit duration T,.

2. There are zero crossings at t = *37,/2, + ST,/2, . . . in addition to
the usual zero crossings at the sampling times 1 = +T,, +2T, ...

These two properties are particularly useful in generating a timing signal
from the received signal for the purpose of synchronization.
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28, P(f)

pla)

~i~

>

(b)

Figure 6.2
Responses for different roiloff factors. (a) Frequency response. (b) Time response

EXERCISE 1 Given the frequency response P(f) defined in Eq. 6.11,
show that the inverse Fourier transform p(r) is as given in Eq. 6.13.
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TRANSMISSION BANDWIDTH REQUIREMENT

From Eq. 6.11 we see that the nonzero portion of the frequency response
P(f), resulting from use of the raised cosine spectrum, is limited to the
interval (0, 2B, — f,) for positive frequencies. Accordingly. the transmis-
sion bandwidth required by using the raised cosine spectrum is given by

B =128~ f, (6.15)
Eliminating the frequency f, between Egs. 6.12 and 6.15, we get
B = By(1 + «) (6.16)

where B, is the Nyquist bandwidth and a is the rolloff factor. Thus, the
transmission bandwidth requirement of the raised cosine solution exceeds
that of the ideal solution by an amount equal to a B, Note that the ratio
of the excess bandwidth (resulting from the raised cosine solution) to the
Nyquist bandwidth (required by the ideal solution) equals the rolloff fac-
tor a.

The following two cases. one ideal and the other practical. are of par-
ticular interest:

1. When the rolloff factor a is zero, the excess bandwidth a8, is reduced
to zero, thereby permitting the transmission bandwidth B to assume its
minimum value B,.

2. When the rolloff factor a is unity, the excess bandwidth is increased to
B,. Correspondingly, the transmission bandwidth B is doubled. com-
pared to the (ideal) case 1.

.............................................................................................................................

EXAMPLE 1 BANDWIDTH REQUIREMENTS OF THE T1 SYSTEM

In Chapter 5 we described the signal format for the T1 carrier system that
is used to multiplex 24 independent voice inputs, based on an 8-bit PCM
word. It was shown that the bit duration of the resulting time-division
multiplexed signal (including a framing bit) is

T, = 0.647 us

The bit rate of the T1 system is

1
R, = — = 1.544 Mb/s
T,

Assuming an ideal low-pass characteristic for the channel, it follows that
the Nyquist bandwidth of the T1 system is

1
B(, = 2_Tb = 772 kHz
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This is the minimum transmission bandwidth of the T1 system for zero
intersymbol interference. However, a more realistic value for the trans-
mission bandwidth B is obtained by using a raised cosine spectrum with
! a = 1. In this case, we find that

.
H
.
.
.
.
.
H
H
.

EXERCISE 2 Calculate the transmission bandwidth requirement of the
M12 multiplexer described in Section 5.11. Assume the use of a raised
cosine spectrum with rolloff factor a = 1 for the baseband pulse shaping.

6.5 CORRELATIVE CODING

Thus far we have treated intersymbol interference as an undesirable phe-
nomenon that produces a degradation in system performance. Indeed, its
very name connotes a nuisance effect. Nevertheless, by adding intersymbol
interference to the transmitted signal in a controlled manner, it is possible
to achieve a signaling rate of 2B, symbols per second in a channel of
bandwidth B, hertz. Such schemes are called correlative coding or partial-
response signaling schemes.’ The design of these schemes is based on the
premise that since the intersymbol interference that is introduced into the
transmitted signal is known, its effect can be accounted for at the receiver.
Thus correlative coding may be regarded as a practical means of achieving
the theoretical maximum signaling rate of 2B, symbols per second in a
bandwidth of B hertz, using realizable and perturbation-tolerant filters.

In this section, we illustrate the basic idea of correlative coding by
considering two specific examples: duobinary signaling and modified duo-
binary signaling. Duobinary signaling employs a correlation span of one
binary digit, whereas modified duobinary signaling employs a correlation
span of two binary digits; the use of “duo” is intended to imply doubling
of the transmission capacity of a straight binary system.

DUOBINARY SIGNALING

Consider a binary input sequence {b;} consisting of uncorrelated binary
digits each having duration T, seconds, with symbol 1 represented by a

3Correlative coding and partial response signaling are synonomous; both terms are
used in the literature. The idea of correlative coding was originated by Lender
(1963). For an overview on correlative coding, see Pasupathy (1977).




238 INTERSYMBOL INTERFERENCE AND ITS CURES

Input
binary pFe————— e e |
*‘1(19"09 ! Ideal ! Qutput
. I az 3 channel +-—o\a——> sequence
[ h He (f) Sample at {cx)
| I timee = kT,
| |
| |
I Delay |
| T |
| |
e P Jd
Duobinary conversion filter
H(f)
Figure 6.3

Duobinary signaling scheme.

pulse of amplitude +1 V, and symbol 0 by a pulse amplitude —1 V. When
this sequence is applied to a duobinary encoder, it is converted into a three-
level outpur, namely, —2, 0. and +2 V. To produce this transformation,
we may express the digit ¢, at the duobinary coder output as the sum of
the present binary digit b, and its previous value bs_,, as shown by

v = by + by (6.17)

One of the effects of the transformation described by Eq. 6.17 is to change
the input sequence {b,} of uncorrelated binary digits into a sequence {c,}
of correlated digits. This correlation between the adjacent transmitted
levels may be viewed as introducing intersymbol interference into the trans-
mitted signal in an artificial manner. However, this intersymbol interfer-
ence is under the designer’s control; this is the basis of correlative coding.

Figure 6.3 depicts the block diagram of a duobinary encoder, including
a band-limited channel assumed to be ideal. The binary sequence {b,} is
first passed through a simple filter consisting of the parallel combination
of a direct path and an ideal element producing a delay of T, seconds,
where T, is the bit duration. For every unit impulse applied to the input
of this filter, we get two unit impulses spaced T, seconds apart at the filter
output. The output of this filter in response to the incoming binary sequence
{by} is then passed through the channel of transfer function H-(f). A
continuous waveform is therefore produced at the channel output. The
resulting waveform is sampled uniformly every T, seconds, thereby pro-
ducing the duobinary encoded sequence {c,}. Note that the effect of the
channel is included in this encoding operation.

The cascade connection of the delay-line filter and the channel is called
a duobinary conversion filter. In Fig. 6.3, we have enclosed this filter inside
a dashed rectangle. The response of the filter may be characterized in terms
of an overall transfer function H(f), which is evaluated next.
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An ideal delay element, producing a delay of T, seconds, has the transfer
function exp(—;2rnfT,), so that the transfer function of the delay-line
filter shown in Fig. 6.3 is 1 + exp(—j2afT,). Hence, the overall transfer
function of this filter connected in cascade with the ideal channel H.(f)
is

H(f) = Hc(HI1 + exp(—j2nfTy)]
Hc(f)lexp(jnfT,) + exp(—jnfT,)] exp(—jnfT,)

2H(f) cos(nfTs) exp(—jnfT,) (6.18)

For an ideal channel of bandwidth B, = 1/2T,, we have

1, |f| <127,

0, otherwise (6.19)

Hc(f) = {

Thus the overall frequency response has the form of a half-cycle cosine
function, as shown by

2cos(nfT,) exp(—jnfT,), |fl < 1/2T,

6.20
0, otherwise ( )

MLF) = {

for which the amplitude response and phase response are as shown in parts
a and b of Fig. 6.4, respectively. An advantage of this frequency response
is that it can be easily approximated in practice.

arg [HI(f)]
HU)
20 -
. 21,
0 —/
I
I
i
2
= 0 ] J
27, 2Ty
(a) : b)

Figure 6.4

Frequency response of the duobinary conversion filter. (a) Amplitude response.
(b) Phase response.
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The corresponding value of the impulse response consists of two sinc
pulses, time-displaced by T, seconds, as shown by (except for a scaling
factor) :

sin(nt/T,) N sin[n(t — T,)/T,)
nt/T, n(t — Ty)/T,
_osin(at/T,) sin(nt/T,)

7t/ T, n(t = T,)IT,

© Tisin(nt/T,) 5
= 22 AT Tih) 21
nt(T; —t) 6.48)

h(r) =

which is shown plotted in Fig. 6.5. We see that the overall impulse response
h(r) has only rwo distinguishable values at the sampling instants.

The original data {b;} may be detected from the duobinary-coded se-
quence {c;} by subtracting the previous decoded binary digit from the
currently received digit ¢, in accordance with Eq. 6.17. Specifically, letting
b, represent the estimate of the original binary digit b, as conceived by the
receiver at time t = kT,, we have

5* = Cg~ bk~] (622)

Itis apparent that if ¢, is received without error and if the previous estimate
by_, at time 1 = (k = 1)T, also corresponds to a correct decision, then
the current estimate b, will be correct too. The technique of using a stored
estimate of the previous symbol in the estimation of the current symbol is
called decision feedback.

We observe that the detection procedure as described here is essentially
an inverse of the operation of the simple filter at the transmitter. However,
a major drawback of this detection process is that once errors are made,
they tend to propagate. This is because a decision on the current binary

A(r)

I

|

|

5 1 I e O
21, ~—"T1, 0 T, 2T, ~—"31, 41,

Figure 6.5
Impulse response of duobinary conversion filter.
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digit b, depends on the correctness of the decision made on the previous
binary digit by .

A practical means of avoiding this error propagation is to use precoding
before the duobinary coding, as shown in Fig. 6.6. The precoding operation
performed on the input binary sequence {b,} converts it into another binary
sequence {a,} defined by

a=b,®Dac, (6.23)

where the symbol @ denotes modulo-two addition of the binary digits by
and a,_,. This addition is equivalent to the EXCLUSIVE OR operation.
An EXCLUSIVE OR gate operates as follows. The output of a two-input
EXCLUSIVE OR gate is a 1 if exactly one input is a 1; otherwise, the
output remains a 0. The resulting precoder output {a,} is next applied to
the duobinary coder, thereby producing the sequence {c,} that is related
to {a,} as follows

Cp = Ay + a;_, (624)

Note that unlike the linear operation of duobinary coding. precoding is a
nonlinear operation.

We assume that symbol 1 at the precoder output in Fig. 6.6 is represented
by +1 V and symbol 0 by —1 V. Therefore, from Egs. 6.23 and 6.24, we
find that

Eobt {:2 V, ?f by ?s represented by symbol 0 (6.25)
ov if b, is represented by symbol 1

which is illustrated in Example 2. From Eq. 6.25 we deduce the following
decision rule for constructing the decoded binary sequence {b:} at the

Input
(1t o il BT i e |
e Mml:} : I Duob Qutput
b uobinary
B : —f\,r— I[ 2 - coder ——o\>——— sequence
\ H{f) Sample (cx!)
: : att = kT,
| I 5
l Delay |
| T, l =
| |
S — =l
Precoder
Figure 6.6

A precoded duobinary scheme. Details of the duobinary coder are given in Fig. 6.3.
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{ep) (iea 1) (5a)
: Rectifier 2 Threshold | k

detector

Figure 6.7 2
Detector for recovering original binary sequence from the precoded duobinary
coder output.

receiver output:
. i >1V
§. {symbol 0, Tf lex] > 1 (6.26)
symbol 1, ifle,] s1V

According to Eq. 6.26, the detector (decoder) consists of a rectifier, the
output of which is compared to a threshold of 1 V, and the original binary
sequence {b,} is thereby detected. A block diagram of the detector is shown
in Fig. 6.7. A useful feature of this detector is that no knowledge of any
input sample other than the present one is required. Hence, error prop-
agation cannot occur in the detector of Fig. 6.7.

Moreover, we may note the following two points:

1. In the absence of channel noise, the decoded sequence {b;} derived
from Eq. 6.26 is exactly the same as the original binary sequence {b,}
at the transmitter input.

2. The use of Eq. 6.23 requires the addition of an extra bit to the precoded
sequence {a,}. The decoded sequence {{E’J Is invariant to the use of a 1
or a 0 for this extra bit.

...........................................................................................................................

EXAMPLE 2

Consider the input binary sequence 0010110. To proceed with the precoding
of this sequence, which involves feeding the precoder output back to the
input, we add an extra bit to the precoder output. This extra bit is chosen
arbitrarily as a bit 1. Hence, using Eq. 6.23, we find that the sequence {a,}
at the precoder output is as shown in row 2 of Table 6.1. We assume that
symbol 1 is represented by +1 V and symbol 0 by —1 V., Accordingly,
the precoder output has the amplitudes shown in row 3. Finally, using Eq.
6.24, we find that the duobinary coder output has the amplitudes given in
row 4 of Table 6.1.

To detect the original binary sequence, we apply the decision rule of
Eq. 6.26, and so obtain the sequence given in row 5 of Table 6.1. This
shows that, in the absence of noise, the original binary sequence is detected
correctly.
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TABLE 6.1

Input binary 0 0 1 0 | 1 0
sequence {bil

Precoded binary 1 1 1 ] 0 1 0 0

seguence {ac}
Polar representation el | +1 =], =1 +1 =1 -1
of sequence {a,}

Duobinary coder 2 2 0 -2 0 0 -2
output. {e}
Decoded binary 0 0 1 0 1 1 0

wequence (b}

EXERCISE 3 Repeat the calculations of Table 6.1, assuming that the extra
bit at the beginning of the precoded sequence {a,} is a 0. Hence, show that
the decoded sequence {b,} is unaffected by this change (compared to the
initial bit used in Example 2).

EXERCISE4 The duobinary, ternary, and bipolar signaling techniques
have one common feature: They all employ three amplitude levels. In what
way does the duobinary technique differ from the other two?

MODIFIED DUOBINARY SIGNALING

In the duobinan signaling technique just described. the transfer function
H(f).and consequently the power spectral density of the transmitted pulse.
is nonzero at the origin. In some applications. this is an undesirable feature.
We may correct for this drawback by using the modified duobinary signaling
technique. which involves a correlation span of two binary digits. This 1s
achieved by subtracting input binary digits spaced 2T seconds apart. Spe-
cifically. the output of the modifizd duobinary conversion filter is related
to the sequence {a.} at its input as follows '

Cy = Uy — Uj-3 (6.27)
Here. again. we find that a three-level signal is generated. Ifa, = =1V,
as assumed previously, ¢ takes on one of three values: 2. 0. and —2 V.
Figure 6.8 depicts the complete block diagram of a modified duobinary
encoder, incorporating an appropriate precoder and a band-limited channel
assumed to be ideal. Here again the channel is included as an integral part
of the encoding operation. The incoming binary sequence {b:} produces a
continuous waveform at the channel output. This waveform is therefore

desssssssssssssssssssasasessacsancnsne

........................................................................... sssssessstssesssensatranessstnesssatRsereas
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Modified duobinary signaling scheme.
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sampled uniformly every T, seconds to produce the modified duobinary
encoded sequence {c,}.

Let H(f) denote the overall transfer function of the modified duobinary
conversion filter that consists of the cascade connection of the delay-line-
filter and the channel; this filter is enclosed inside the second dashed rec-
tangle in Fig. 6.8. Hence, we may write

H(f)

He( [ ~ exp(—janfT,)] (6.28)
2JH(f) sin2rfT,) exp(—j2rfTs)

where H(f) is defined in Eq. 6.19. We, therefore. have an overall fre-
quency response in the form of a half-cycle sine function. as shown by

2jsin(2afT,) exp(—j2nfT,). [ {12 12T

6.29
0, elsewhere ( )

H(f) ={

The corresponding amplitude response and phase response of the modified
duobinary-coder are as shown in parts a and b of Fig. 6.9, respectively.
Note that the phase response depicted in Fig. 6.9b does not include the
constant 90°-phase shift due to the multiplying factor jin Eq. 6.29. A useful
feature of the modified duobinary coder is the fact that its output has no
dc component. This property is important since. in practice. many com-
munication channels cannot transmit a dc component.

The impulse response of the modified duobinary coder consists of two
sinc pulses that are time-displaced by 2T, seconds. as shown by (except
for a scaling factor)

h(t) = sin(n1/T,)  sin[n(t = 2T,)/T,]

atlT, n(t = 2T,/ T,
sin(nt/Ty) sin(mt/Ty)
nt/T, n(t — 2T/ T,
_ 2Ty sin(nt/T,)
nt(2T, — 1)

{6.30)

This impulse response is plotted in Fig. 6.10, which shows that it has three
distinguishable levels at the sampling instants.

To eliminate the possibility of error propagation in the modified duo-
binary system, we use a precoding procedure similar to that used for the
duobinary case. Specifically, prior to the generation of the modified duo-
binary signal, a modulo-two logical addition is used on signals 27, seconds
apart, as shown by (see Fig. 6.8)

a, = b, ®a,_, (6.31)
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Figure 6.10
Impulse response of the modified duobinary conversion filter.

where {b,} is the input binary sequence and {a,} is the sequence at the
precoder output. The sequence {a,} thus produced is then applied to the
modified duobinary conversion filter.

In Fig. 6.8, the output digit ¢, equals 0, +2, or —2V, assuming the use
of a polar representation for the precoded sequence {a,}. Also we find that
the decoded (detected) digit b, at the receiver output may be extracted
from ¢, by disregarding the polarity of c,. Specifically, we may write.

_ {symbol 1 ?f ledl =1V 632)
symbol 0 if |e,] < 1V

As with the duobinary signaling, we may note the following:

1. In the absence of channel noise, the decoded binary sequence {b,} is
exactly the same as the original binary sequence {b,} at the transmitter
input.

2. The use of Eq. 6.31 requires the addition of two extra bits to the
precoded sequence {a;}. The composition of the decoded sequence {b,}
using Eq. 6.32 is invariant to the selection made for these two bits.

EXERCISE5  Consider again the binary sequence 0010110 used to illustrate
the operation of the duobinary signaling scheme in Example 2. Using this
sequence as the input {b,}, calculate the following sequences for the mod-
ified duobinary signaling scheme of Fig. 6.8:

(a) The sequence {a;} at the precoder output.
(b) The polar representation of {a,}.
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(¢) The sequence {c,} at the modified duobinary conversion filter out-
put, assuming the addition of bits 11 at the beginning of the precoded
sequence {a;}. :"
(8) The decoded sequence {b,} at the receiver output: Compare this
sequence with the original binary sequence {bs}-

EXERCISES Repeat the calculations of Exercise 5, assuming that the bits
added at the beginning of the precoded sequence {a.} are 00. Hence, show
that the decoded sequence {b;} is unaffected by this choice of initial bits
for the sequence {a;}.

6.6 BASEBAND TRANSMISSION OF M-ARY DATA

In the baseband binary PAM system of Fig. 6.1. the output of the pulse
generator consists of binary pulses, that is, pulses with one of two possible
amplitude levels. On the other hand. in a baseband M-ary version of the
system, the output of the pulse generator takes on one of M possible
amplitude levels with M > 2: the digital waveform of a quaternary system
(that is, M = 4) is illustrated in Fig. 5.12f. In an M-ary system, the
information source emits a sequence of symbols from an alphabet that
consists of M symbols. Each amplitude level at the pulse generator output
corresponds to a distinct symbol. so that there are M distinct amplitude
levels to be transmitted.

Consider then an M-ary PAM system with a signal alphabet that contains
M symbols. with the symbol duration denoted by T seconds. We refer to
1/T as the signaling rate of the system. which is expressed in symbols per
second or bauds. 1t is informative to relate the signaling rate of this system
to that of an equivalent binary PAM system for which the value of M is 2
and the bit duration is T, seconds. The binary PAM system transmits data
at the rate of 1/T, bits per second. We also observe that in the case of a
quaternary PAM system. for example, the four possible symbols may be
identified with the dibits 00, 10, 11, and 01. We thus see that each symbol
represents 2 bits of data and 1 baud is equal to 2 bits per second. We may
generalize this result by .stating that in an M-ary PAM system, 1 baud is
equal to log, M bits per second. and the symbol duration T of the M-ary
PAM system is related to the bit duration T, of the equivalent binary PAM
system as follows:

Therefore, in a given channel bandwidth, we find that by using an M-ary
PAM system we are able to transmit data at a rate that is log, M faster

than the corresponding binary PAM system.
However, this improvement in bandwidth use is attained at a price.
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Specifically, the transmitted power must be increased by a factor equal to
M?/log;M, compared to a binary PAM system, if we are to realize the
same performance in the presence of channel noise.* Also, system com-
plexity is increased.

EXERCISE 7.~ An M—afy PAM system uses a raised cosine spectrum with .
rolloff factor a. Show that the signaling rate of the system is given by

s : 1 2logM
I

where B is-the channel bandwidth.

6.7 EYE PATTERN

One way to study intersymbol interference in a PCM or data transmission
system experimentally is to apply the received wave to the vertical deflec-
tion plates of an oscilloscope and to apply a sawtooth wave at the trans-
mitted symbol rate 1/T to the horizontal deflection plates. The waveforms
in successive symbol intervals are thereby translated into one interval on
the oscilloscope display, as illustrated in Fig. 6.11 for the case of a binary
wave for which T = T,. The resulting display is called an eye pattern
because of its resemblance to the human eye for binary waves. The interior
region of the eye pattern is called the eye opening.

An eye pattern provides a great deal of information about the perform-
ance of the pertinent system, as described here (see Fig. 6.12):

- 1. The width of the eye opening defines the time interval over which the

received wave can be sampled without error from intersymbol inter-
ference. It is apparent that the preferred time for sampling is the instant
of time at which the eye is open widest.

2. The sensitivity of the system to timing error is determined by the rate
of closure of the eye as the sampling time is varied.

3. The height of the eye opening, at a specified sampling time, defines the
margin over channel noise.

“The performance of a data transmission system in the presence of channel noise is
usually measured in terms of the average probability of symbol error. When M is
much larger than 2 and the average probability of symbol error is small compared
to unity, an M-ary PAM system requires a transmitted power larger than in a

binary PAM by a factor of M*/log,M. For a proof of this result, see Haykin (1988),
pp. 78-80.
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(b)

Figure 6.11
(a) Distorted binary wave. (b) Eye pattern.

When the effect of intersymbol interference is severe, traces from the upper
portion of the eye pattern cross traces from the lower portion, with the
result that the eye is completely closed. In such a situation, it is impossible
to avoid errors due to the combined presence of intersymbol interference

and channel noise in the system.

In the case of an M-ary system, the eye pattern contains (M — 1) eye
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Figure 6.12
Interpretation of the eye pattern.
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openings stacked up vertically one on the other, where M is the number
of discrete amplitude levels used to construet the transmitted signal. In a
strictly linear system with truly random data, all these eye openings would
be identical. In practice, however, it is often possible to discern asym-
metries in the eye pattern, which are caused by nonlinearities in the trans-
mission channel.

vereseenennss 8.8 ADAPTIVE EQUALIZATION '

A study of baseband data transmission would be incomplete without some
discussion of the equalization problem. By equalization we mean the pro-
cess of correcting channel-induced signal distortion. Equalization is of par-
amount importance in the high-speed transmission of digital data over a
band-limited channel. In this final section of the chapter, we briefly discuss
the need for equalization in the context of data transmission over a voice-
grade telephone channel, which is essentially linear and is also character-
ized by a limited bandwidth and a high signal-to-noise ratio.

An efficient approach to high-speed data transmission over such a chan-
nel involves the combined use of two basic forms of modulation:

1. Discrete pulse-amplitude modulation (PAM): In this operation, the am-
plitudes of successive pulses in a periodic train (acting as a carrier) are
varied in a discrete fashion in accordance with the incoming data stream.

2. Linear modulation: In this second operation, the amplitude or phase of
a sinusoidal carrier is varied in accordance with the discrete PAM signal
resulting from the first stage of modulation. The selection of a specific
type of linear modulation is made with the aim of conserving channel
bandwidth. Linear modulation schemes for data transmission are con-
sidered in Sections 7.15 and 10.7.

At the receiving end of the system, the received wave is demodulated, and
then synchronously sampled and quantized. As a result of dispersion of
the pulse shape by the channel, however, we find that the number of
detectable amplitude levels is often limited by intersymbol interference
rather than by additive noise. In principle, if the channel is known precisely,
it is virtually always possible to make the intersymbol interference (at the
sampling instants) arbitrarily small by using a suitable pair of transmitting
and receiving filters, so as to control the overall pulse shape in the manner
_ described in Section 6.4. The transmitting filter is placed directly before
> the modulator, whereas the receiving filter is placed dnrecl]y after the
-~ demodulator. Thus, insofar as intersymbol interference is concerned, we
may consider the data transmission as being essentially baseband.
However, in a switched telephone network, we find that two factors
contribute to the distribution of pulse distortion on different link connec-
tions: (1) differences in the transmission characteristics of the individual
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links that may be switched together, and (2) differences in the number of
links in a connection. The result is that the telephone channel is random
in the sense of being one of an ensemble of possible channels. Conse-
quently. the use of a fixed pair of transmitting and receiving filters designed
on the basis of average channel characteristics may not adequately reduce
intersymbol interference. To realize the full transmission capability of a
telephone channel, there is need for adaptive equalization. An equalizer
is a filter that compensates for the dispersive effects of a channel. The
process of equalization is said to be adaptive when the equalizer is capable
of adjusting its coefficients continuously during the transmission of data;
it does so by operating on the received signal (channel output) in accord-
ance with some algorithm.

Among the philosophies for adaptive equalization of data transmission
systems, we have prechannel equalization at the transmitter and postchannel
equalization at the receiver. Because the first approach requires a feedback
channel, we consider only adaptive equalization at the receiving end of the
system. This equalization can be achieved, prior to data transmission, by
training the filter with the guidance of a suitable training sequence trans-
mitted through the channel so as to adjust the filter parameters to optimum
values. The typical telephone channel changes little during an average data
call, so that precall equalization with a training sequence is sufficient in
most cases encountered in practice. The equalizer is positioned after the
receiving filter in the receiver.

Figure 6.13 shows a popular structure used to design adaptive equalizers.
The structure is a tapped-delay-line filter that consists of a set of delay
elements, a set of multipliers connected to the delay-line taps. a corre-
sponding set of adjustable tap weights, and a summer for adding the mul-
tiplier outputs. Let the sequence {x(nT)}, appearing at the output of the
receiving filter, be applied to the input of this tapped-delay-line filter,
producing the output (see Fig. 6.13).

M-1

v(nT) = 2 w,x(nT — iT) (6.34)

i=0

where w, is the weight at the ith tap, and M is the total number of taps.
These M tap weights constitute the adaptive filter coefficients. The tap
spacing is chosen equal to the symbol duration T of the transmitted signal
or the reciprocal of the signaling rate.

The adaptation of the filter may be achieved by proceeding as follows:

1. A known sequence {d(nT)} is transmitted, and in the receiver the re-
sulting response sequence {y(nT)} is obtained by measuring the filter
output at the sampling instants.

2. Viewing the known transmitted sequcnce {d(nT)} as the desired re-
sponse, the differences between it and the response sequence {y(nT)}
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Elements of an adaptive filter.

is computed. This difference is called the error sequence, denoted by
{e(nT)}; thus,

e(nT) = d(nT) — y(nT), n=201...N—-1 (635

where N is the total length of the sequence.

3. The error sequence {e(nT)} is used to estimate the direction in which
the weights {w,} of the filter are changed so as to make them approach
their optimum settings {w,}.

We assume that all sequences (signals) of interest are real valued. A cri-
terion appropriate for optimization is the total error energy defined by

B = zo eX(nT) (6.36)

The optimum values of the tap weights, namely, w, w,, . . . w,_, result
when the total error energy & is minimized.

The solution to this optimization problem may be developed in the form
of an algorithm that adjusts the tap weights of the filter in a recursive
manner, which means that the tapped-delay-line filter assumes a time-
varying form. In particular, the present estimate of each tap weight is
updated by incrementing it by a correction term proportional to the error
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signal at that time. Thus, starting from some arbitrary initial condition, the
algorithm learns (about the operating channel conditions) from the incom-
ing data, sample by sample, and thereby automatically adjusts the tap
weights toward the optimum solution.

A simple and yet effective solution to this adaptation procedure is pro-
vided by the least-mean-square (LMS) algorithm.®* According to the LMS
algorithm, the tap weights are adapted as follows:

w,(nT + T) = w,(nT) + pe(nT)x(nT — iT) (6.37)

where i = 0,1,..., M — 1, and w,(nT) is the present estimate of the
optimum weight w,, for tap i at time nT, and w,(nT + T) is the updated
estimate. The parameter u in Eq. 6.37 is called the adaptation constant. In
particular, it controls the amount of correction applied to the old estimate
W;(nT) to produce the updated estimate w,(nT + T). In addition to the
parameter y, the correction depends on the filter input x(nT — iT) and
the error signal e(nT), both measured at time nT. Thus, by a proper choice
of the adaptation constant u, the use of the recursive equation (6.37) helps
the adjustment of the tap weights move toward their optimum settings in
a step-by-step fashion. Typically, for the starting condition, all the tap
weights of the equalizer are set equal to zero.

The LMS algorithm requires knowledge of the desired response d(nT)
and the filter response y(nT) to form the error signal e(nT) in accordance
with Eq. 6.35. For y(nT), we may use Eq. 6.34 with W,(nT) substituted
for w,. However, by the very nature of data communications, the desired
response (providing a frame of reference for the adaptation process) orig-
inates at the channel input, which is separated physically from the receiver
where the adaptive equalization is preformed. There are two methods in
which a replica of the desired response d(nT) may be obtained, as illus-
trated in Fig. 6.14. These two methods and their applicability are described
in the following paragraphs.

In the first method, a replica of the desired response is stored in the
receiver. Naturally, the generator of this stored reference has to Ye syn-
chronized with the known transmitted sequence. The use of a stored ref-
erence is well suited for the initial training of the equalizer. This operation
of the equalizer corresponds to position 1 of the switch in Fig. 6.14. (In
Section 8.9 we describe a pseudo-random sequence known as a linear
maximal sequence that may be used for this purpose.)

In the second method, the output from a decision device in the receiver
is used. Under normal operating conditions, the decisions made by the
receiver are correct with high probability. This means that the error esti-

SFor a detailed discussion of the LMS and other adaptive filtering algorithms, see
the following references: Haykin (1986), and Widrow and Stearns (1985).
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lllustrating the two modes of operation of an adaptive equalizer: Position 1 of the
switch corresponds to the training mode. Position 2 corresponds to the
decision-directed mode.

mates thus obtained are correct most of the time, thereby permitting the
adaptive equalizer to operate satisfactorily. This second method of oper-
ation is referred to as the decision-directed mode of the adaptive equalizer;
it corresponds to position 2 of the switch in Fig. 6.14. It is well suited for
tracking relatively slow variations in channel characteristics during the course
of transmission.

The adaptive equalizer depicted in Fig. 6.14 represents a closed-loop
feedback system, irrespective of its mode of operation. As such, there is a
tendency for the adaptive equalizer to become unstable. To ensure stability,
care has to be exercised in the value assigned to the adaptation constant
w in the time update of Eq. 6.37. On the one hand, x must be large enough
to ensure a reasonably fast rate of convergence of the LMS algorithm. On
the other hand, it must be small enough to make it possible for the LMS
algorithm to track slow statistical variations in the channel.

........................... sesssssrrrsneresraratnsttsentsstasacnessnnsasnns

PROBLEMS
P6.3 Ideal Solution

Problem 1 The pulse shape p(r) of a baseband binary PAM system is
defined by

p(t) = sinc(Tib)

where T, is the bit duration of the input binary data. The amplitude levels
at the pulse generator output are +1 V or —1 V, depending on whether
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the binary symbol at the input is 1 or 0, respectively. Sketch the waveform
at the output of the receiving filter in response to the input data 001101001.

P6.4 Raised Cosine Spectrum

Problem 2 An analog signal is sampled, quantized, and encoded into a
binary PCM wave. The specifications of the PCM system include the fol-
lowing:

Sampling rate = § kHz
Number of representation levels = 64

The PCM wave is transmitted over a baseband channel using discrete pulse-
amplitude modulation. Determine the minimum bandwidth required for
transmitting the PCM wave if each pulse is allowed to take on the following
number of amplitude levels:

(a) 2
(b) 4
(c) 8

Problem 3 The raised cosine pulse spectrum for a rolloff factor of unity
is given by

L0 cosl("—f), 0<|fl <2B,
2B, < |f|

Show that the time response p(t), the inverse Fourier transform of P(f),
is

_ sinc(48,1)
PO =T " lemir

Problem 4 A computer puts out binary data at the rate of 56 kilobits per
second. The computer output is transmitted using a baseband binary PAM
system that is designed to have a raised cosine pulse spectrum. Determine
the transmission bandwidth required for each of the following rolloff fac-
tors:

(@) a = 0.25
(b) @ = 0.5
() a =075
d) a =10
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Problem 5 A binary PAM wave is to be transmitted over a low-pass
channel with an absolute maximum bandwidth of 75 kHz. The bit duration
is 10 us. Find a raised cosine spectrum that satisfies these requirements.

P6.5 Correlative Coding

Problem 6 The binary data 001101001 is applied to the input of a duo-
binary system.

(a) Construct the duobinary coder output and corresponding receiver
output, without a precoder. )

(b) Suppose that owing to error during transmission, the level at the
receiver input produced by the second input digit is reduced to zero.
Construct the new receiver output.

Problem 7 Repeat Problem 6, assuming the use of a precoder in the
transmitter.

Problem 8 The bginary data 011100101 is applied to the input of a modi-
fied duobinary system.

(a) Construct the modified duobinary coder output and corresponding
receiver output, without a precoder.

(b) Suppose that owing to error during transmission, the level produced
by the third input digit is zero. Construct the new receiver output.

Problem 9 Repeat Problem 8, assuming the use of a precoder in the
transmitter.

Problem 10  Using conventional analog filter design methods. it is difficult
to approximate the frequency response of the modified duobinary system
defined by Eq. 6.29. To get around this problem, we may use the arrange-
ment shown in Fig. P6.1. Justify the validity of this scheme.

P6.6 Baseband Transmission of M-ary Data

Problem 11 - Repeat Problem 4, given that-each set of three successive
binary digits in the computer output are coded into one of eight possible

Input

binary Qutput
sequence sequence
by - Duobinary 1€ -
conversion F——>
filter
—

Figure P6.1
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amplitude levels, and the resulting signal is transmitted by using an 8-level
PAM system designed to have a raised cosine pulse spectrum.

Problem 12 An analog signal is sarﬁpled. quantized, and encoded into a
binary PCM wave. The number of representation levels used is 128. A
synchronizing pulse is added at the end of each code word representing a
sample of the analog signal. The resulting PCM wave is transmitted over
a channel of bandwidth 12 kHz using a quaternary PAM system with a
raised cosine pulse spectrum. The rolloff factor is unity.

(a) Find the rate (in bits per second) at which information is transmitted
through the channel.

(b) Find the rate at which the analog signal is sampled. What is the
maximum possible value for the highest frequency component of the
analog signal?

P6.7 Eye Pattern

Problem 13 A binary wave using polar signaling is generated by repre-
senting symbol 1 by a pulse of amplitude +1 V and symbol 0 by a pulse
of amplitude — 1 V; in both cases the pulse duration equals the bit duration.
This signal is applied to a low-pass RC filter with transfer function:

1

HE) = 55777,

Construct the eye pattern for the filter output for the following sequences:

(a) Alternating 1's and 0's.

(b) A long sequence of 1's followed by a long sequence of 0's.

(¢) A long sequence of 1's followed by a single 0 and then a long
sequence of 1's.

Assume a bit rate of 2, bits per second.

Problem 14 ' The binary sequence 011010 is transmitted through a channel
having a raised cosine characteristic with a rolloff factor of unity. Assume
the use of polar signaling, with symbols 1 and 0 represented by +1 and
—1V, respectively.

(a) Construct, to scale, the received wave, and indicate the best sam-
pling times for regeneration.

(b) Construct the eye pattern for this received wave and show that it
is completely open.

(¢) Determine the zero crossings of the received wave.






