
................. CHAPTER FOUR

SPECTRAL DENSITY
A Air)n

I n this Chapter we complete the characterization of signals and gystems
by focusing on the energy or power of a signal. In so doing, we
introduce the notion of spectral density, which defines the distribution of
energy or power per unit bandwidth as a function of frequency. When
dealing with energy signals, it is natural to use energy spectral density as
the parameter of interest. Likewise, when dealing with power signals,
power spectral density is used to characterize the signal. In this chapter
we also introduce another important parameter called correlation, which
may be viewed as the time-domain counterpart of spectral density.
Throughout the chapter, we deal with real-valued energy and power
signals. We begin the discussion with energy spectral density.
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128 SPECTRAL DENSITY AND CORRELATION

.......... 4.1 ENERGY SPECTRAL DENSfTV

Consider an energy signal g(t) defined over the interval — oc < t < x, and

let its Fourier transfdrth or spectrum be denoted by G(f). The signal g(t)

is assum-ed to be 
real valued. T_ he total energy of the signal is defined by

^see Section 1.2)

E	 gl(t) dt	 (4.1)

Equation 4.1 is the standard formula for evaluating the energy E. Never-

theless, there is another method based on the amplitude spectrum G(f)j,

which may also be used to evaluate the energy E. To develop this alternative

method, we start with the relation (see Exercise 10, Chapter 2):

f 
g,(t)g,(t) dt	

f 
G j (f)G2 ( — f) df	 (4.2)

where g,(t) and 92(t) are a pair of energy signals with Fourier transforms

G I (f) and G2 (f), respectively. Let

g'( t)	 Of) = g(t)

Correspondingly, we may set

G I (f) = G(f)

and for real-valued signals,

G2(-f) = G*(f)

Accordingly, we may simplify Eq. 4.2 as

f-'. 

g2(t) dt = 
L 

G(f)J I df	 (4.3)

where JG(f)j is the amplitude spectrum of the signal g(t). Equation 4.3 is

known as the Rayleigh energy theorem.

The Rayleigh energy theorem is important not only because it provides

a useful method for evaluating energy, but also because it highlights IG(f)l'

as the distribution of energy of the signal g(t) in the frequency domain. It

is for this reason that the squared amplitude spectrum IG( 
f)12 is called the

energy spectral density or energy density spectrum. Using T,(f) to denote

this new parameter, we may thus write

P,(f) = IG( f)12	 (4.4)
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.......................................................................................................................

EXAMPLE I StNC PULSE

Consider the sin^: pulse defined by

g(t) = A sinc(2Wt)

The energy of this pulse equals

E = A ' f sin,'(2W,) 11	 (4.5)

The integral on the right side of Eq. 4^^ is difficult 
to 

cNaluate. We rna^

obtain the desired result indirectIN hv applNing the Ra),Icigh cnergN theo-

rern. We start with the Fourier transform pair (see Exiijilple 6, Chapter -2)

	

A sinIc(1 2-Vi't),	 rect
2 W

Hence. with the Fourier transform

A
G(_f) = — rect

2 VV	 2 W

and rect-	 1 W)	 rectff/2W), the energy spectral denmtv of the sinc

pulse is given b^

A
(4.6)rect

2"'2W

rg^ theorem ^iclds the resultHence, the application of the RL-,icigh ene

A
rect — dE

	2W	 2 W

2W

A' (4.7)

2W

................. ........................................ ...............................................................
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EXERCISE I Show that the total area under the curve of sinc(t) equals

1; that is,

	

'.. 

L 
sincl(t) dt = 1	 (4.8)

PROPERTIES OF ENERGY SPECTRAL DENSITY

The cnerg^ spectral densit^ V',(j ) h as se^eral properties that follow from

the basic dehnition gken in Eq. 4.4. Ahich are formally described in the

sequel.

PROPERTY1

The energy spectral density of an energy signal g(t) is a nonnegative real-
valued function of frequency, that is,

P^(f) - 0,	 for all	 (4.9)

This property follo%%^, directlx from the fact that the amplitude spectrum

of i ^wmal g(r) is a nonne o ati%e real function of the frequenc%

PROPERTY 2

The energy spectral density of a real-valued energy signal g(t) is an even

function of frequency, that is,

P,( — f) = V"^f)	 (4.10)

This propert^ means that the cner g^ spectral clensit^ of a real-Nalued

nal is s^mmetric about zero frequency. It follows directl y from the factsw
that the amplitude spectrum G(j )' of a real-%alued signal g(t) is an even

fUn1:ti0fl of the frequenc^ J, as shoAn b^

!G( --f); = G(f)j

PROPERTY 3

The total area under the curve of energy spectral density of an energy signal
g(t) equals the signal energy; that is,

E = 
j	

P,(f) of	 (4.11)
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Suppose that g(t) denotes the %oltage of a source connected across a

I-ohm load resistor. Then, the integral

f	
t) (it

equals the energy E delkered hN the ^ourcc 
to 

the load. From RaOcivh'^

energ^ theorem described by Eq. 4.3. the total area under the cur% e

equals the enerp E.

EXERCISE2 Using the energy spectral density for the sinc pulse given by
Eq. 4.6, derived ; n Example 1. demonstrate the validity of Properties 1

through 3.

PROPERTY 4

When an energy signal is transmitted through a linear time-invariant system,
the energy spectral density of the output equals the energy spectral density
of the input multiplied by the squared amplitude response of the system.

This pr( , I, crt .N tollcms from the freqiicnc^-doriiain dc^cription of a linear

turic-in%ariant \^tcjri gi\cn in Eq. 3.-",, Specificall \%ith X(^t ) denotinp

the Fourier transform of a a p rial x (t) applied to the input of a linear time-

in%ariant N\stem 
of 

tran
s
fer function H(J- ), the FoUrier transtorm Y(f) of

the signal ^ (t) produced at the output of tile ^\Stenl is 6\Cn h%

Y(f) = H(j ),V( t )	 (4. 12)

Taking the ^quarcd amplitude of hoth S1dCS of thi, equation. \ke 2et

Y(j ) ` ^	 H(j )^` !A' ( 1 1 ) '	 (4. 1 ',)

Equkalent] .\. %^e maN %%rite

P' (f) = ff(pj : P' ( f)	 (4.14)

,Ahere P,(J)	 and P,(f) = A'(f), ` . The quantities PJJ)

and V1, (f) denote the encrg^ spectral densities of the output i, (t) and the

input x(t), respectively. Equation 4.14 is a mathematical statement of

Property 4.
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..........................................................................................................................

EXAMPLE 2

A rectangular pulse of unit amplitude and unit duration is passed through

an ideal low-pass filter of bandwidth B, as illustrated in Fig. 4. 1 a. Part b

of the figure depicts the waveformof the rectangular pulse. The amplitude

response of the filter is defined by (see Fig. 4. 1 c)

B ­: f B
JH(f)j

0,	 otherwise

The rectangular pulse constituting the filter input has unit energy. We wish

to evaluate the effect of varying the bandwidth B on the energy of the filter

output.
We-Aart with the Fourier transform pair:

rect(t)	 sinc(f)

x(t)	 Ideal	 Y(t)
low-pass

-fitter

(a)

x (t)

1.0

t

0

2

(b)

H(f)j

1.0

I —
—B	 B	 f

(C)

Figure 4.1
(a) Ideal lo^_joass filter. lb ) Filter input. (c) Amplitude response of the filter.
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This represents the normalized version of the Fourier transform pair given
in Eq. 2.33. Hence, with the filter input defined by

X(t) = rect(t)

its Fourier transform equals

X(f) ^ sinc(f)

The energy spectral density of the filter input therefore equals

PP) = X(A-'

= sinc-(f)	 (4.15)

This normalized energy spectral density is shown plotted in Fig. 4.1

To evaluate the energy spectral density P,(f) of the filter output (t).

we use Eq. 4 14. We thus obtain

P,(f)	 IH(f)1 2 P,(f)

PJP,	 — B f !!^z B
(4.16)

0,	 otherwise

10

08

0,6

04

0.2

0

Normalized frequency, f

Figum 4.2
Normalized energy spectral density of filter input x(t),

I

I

q
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The energy of the filter output therefore equals

E,	P,(f) df

Pjf) df
B

2 
LB 

Pjf) df

Substituting Eq. 4.15 in 4.17 yields

fB

E, — 2	 sinC2( f) df	 (4.18)
0

Since the filter input is normalized to have unit energy, we may also

view the result given in Eq. 4.18 as the ratio of the energy of thefilter ouput
to that of the filter input for the general case of a rectangular pulse of

arbitrary amplitude and arbitrary duration, processed by , an ideal band-

pass filter of bandwidth B. Accordingly, we may also write

Energy of filter output
p= Energy of filter input

C2(	 (4.19)2	 sin f) dffo"
According to Fig. 4. lb, the rectangular pulse applied to the filter input has

Figure 4.3
Output energy-to-input energy ratio versus normalized bandwidth.

(4.17)

1.0
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0.6

0.4
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0.2

0
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unit duration; hence, the variable f in Eq. 4.19 represents a normatized
frequency. Equation 4.19 is plotted in Fig. 4.3.

The graph of Fig. 4.3 shows that just over 90% of the total energy of a
rectangular pulse lies inside the main spectral lobe of this pulse.

.........................................................................................................................

INTERPRETATION OF THE ENERGY SPECTRAL DENSITY

Equation 4.14 is important because it not only relates the output energy

spectral density of a linear time-invariant s ystem to the input energy spec-
tral density but it also provides a basis for' the physical interpretation of

the concept of energy spectral density itself. To be specific, consider the

arrangement shown in Fig. 4.4a, where an energy signal x(t) is passed

Narrow-band	 (t	 E,,,ter	 y	 egy

I 

"ter	
^nergyE_an

H(f)

H(f)	 meter

---------- I

(a)

Figure 4.4
(a) Circuit arrangement for measuring energy spectral density. (b) Idealized
amplitude response of the filter. (c) Energy spectral density of filter output.
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through a narrow-band filter followed by an 
energy meter. Figure 4.4b

shows the idealized amplitude response of the filter. That is, the amplitude

response of the filter is defined by

f	 4f
1	 f, —, 4— ^^ If I -- f, +	 (4.20)

JH(f)j =	 2	 2

1 0 1,	 otherwise

We assume that the filter bandwidthAf is small enough for the amplitude

respons^ of the input signal x(t) to be essentially constant over the fre-

quency interval covered b y the passband of the filter. Accordingly, we may

express the amplitude spectrum of the filter output by the approximate

formula:

Y(f)I	 IH(f)I JX(f)I	

Af	 Af

I

X(f,)I ,	 f, — 
2 

!Z^ If I	 f, + 
2	 (4.21)

0,	 otherwise

Corresponding]	 the energy spectral densitv T,(f) of the filter output

(t) is approximatel,, related to the energy spectral density T,(f ) of the

filter input x(t) as follows

PJf' )	 f, — _L
f w^ ^ f 1 -_ f, + Af
	

(4.22)
P,M ^	 2	 2

^ 0.	 otherwise

This relation is illustrated in Fig. 4.4c, which shows that only the frequency

components of the signal x(t) that lie inside the narrow pass band of the

ideal band-pass filter reach the output. From Rayleigh ' s energy theorem,

the energy of the filter output y(t) is given b^

E, =	 V1,(f) df

= 2	 W,(f) df

^ 2 P. (f,) A f	 (4.23)

where the multiplying factor of 2 accounts for the contributions of negative

as well as positive frequency components, We may rewrite Eq. 4.23 as

E,	
(4.24)

2 Af
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Equation 4.24- states that the energy spectral density of the filter input at
some frequency f, equals the energy of the filter output divided by 2 Af,
where Af is the filter bandwidth centered on f'. We may therefore interpret
the energy spectral density of an energy signal for any frequenc y f as the
energy per unit bandwidth, which is contributed by frequency co"'iponenty
of the signal around the frequency , f.

The arran2ement shown in the block diagram of Fig. 4.4a provides the

basis for measuring the energy spectral density of an energy signal. Spe-
cifically, by using a variable band-pass filter to scan the frequency band of

interest, and determining the energy of the filter output for each midband

frequency setting of the filter, a plot of the energy spectral densitN Nersus
frequency is obtained.

.............. 4.2 CORRELATION OF ENERGY SIGNALS

The energy spectral density is an important frequency-dependent param-

eter of an energy signal. With the interplay between time-domain and
f req uency-do main descriptions of a signal that',Ae have become accustomed
to, it is natural for us to seek the time-domain counterpart of enerv% spectral

density. From the defining equation (4.4), %^e ha^e

Pg(f) = G(f)G*(f)	 (4.25)

where the signal g(t) and its Fourier transform G(f) are related b^

g(l) ;^-- G(f)

Equation 4.25 states that the energy spectral density VJ,(f) of an energy
signal g(t) equals the product of G(f), the Fourier transform of g(t), and

its complex conjugate, G * (f). Hence, given G(f), we need to perform

two frequenc% -domain operations to get V,(f), namelv, complex conju-

gation and multiplication. This suggests that we may dete' rmine the inverse
Fourier transform of Vlx (f) by making use of two fundamental properties
of the Fourier transform (see Section 2.3):

L The complex conjugation property, according to which time reversal of

a real-valued signal translates to complex conjugation of its Fourier
transform.

2. The time-domain convolution property, according to which the con-

volution of two signals translates to the multiplication of their Fourier

transforms.

Accordingly, we may formulate the following Fourier transform pair:

g(r) -j^- 9( — r) — G(f) G'(f)	 (4.26)
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R 9(T)

g (t)	
x	 Integrator

g(t — 7)
Adjusstabl^V

R 
y

delay T

Figure 4.5
Circuit arrangement for measuring the autocorrelation function of an energy signal.

where -^- 
denotes convolution. For the convolution on the left side of

Eq. 
4.26, we have purposely used r as the time variable of the energy

signal of interest, because we wish to reserve the use of time t as the dummy

variable of the integral describing the convolution there. Specifically, we

define the time-domain convolution on the left side of Eq. 4.26 as

R,	 9 ( r ) -^)- 9 ( — T)

f

g(t)g(t — T) dt	 (4.27)

The T-dependent parameter R,(T) is called the 
autocorrelation function

of the energy signal g(t). In the defining equation (4-27), the time function

g(t — r) represents a 
delayed version of the signal g(t), and Rg (r) provides

a measure of the similarity between the waveforms of the time functions

g(t) and g(t — r). In particular, the 
time lag or time delay r plays the role

of a scanning or searching parameter. 
This role is highlighted in the block

diagram of Fig. 4.5, which provides the basis for measuring the autocor-

relation function Rg(r).

EXERCISE 3 Show that the definition for the autocorrelation function

Rjr) may also be formulated as

Rg(r)	 g(t + r)g(t) dt	 (4.28)

PROPERTIES OF THE 
AUTOCORRELATION FUNC77ON OF

ENERGY SIGNALS

The autocorrelation function of a real-valued energy signal has several

useful properties. They follow directly from the defining equation (4.27)

or (4.26), from which the definition of autocorrelation function originated.
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PROPERTY1

The autocorrelation function of a real-valued energy signal g(t) is a real-
valued even function, as shown by

R,( — r) = R^(r)	 (4.29)

This property follows directly from Eq. 4.27. The implication of this

property is that the autocorrelation function exhibits symmetry about the

origin.

PROPERTY 2

The value of the autocorrelation function of an energy signal g(t) at the origin
is equal to the energy of the signal, that is,

R, (0) = E	 (4.30)

This result is obtained by putting r = 0 in Eq. 4.27.

PROPERTY 3

The maximum value of the autocorrelation function of an energy signal g(t)
Occurs at the origin, as shown by

R,W' -- R,(0),	 for all z	 (4.31)

To prove this property, we start with the observation that for any r.

[ g ( t ) ± g( t - T ) 1 2 -- 0

Equivalently, we may write

±2g(t)g(t — r) _- g 2 (t) + g 2(t — r)

Integrating both sides of this relation with respect to time I from — - to

+ x , and using Eqs. 4 27 and 4.30, we get the result given in Eq. 4.3 1.
According to Property 3, the degree of similarity between the signal

g(t) and its time-delayed version of g(t — r) attains its maximum value at

T = 0. This is intuitively satisfying.

PROPERTY 4

For an energy signal g(t), the autocorrelation function and energy spectral
density form a Fourier transform pair; that is,

R.(r) ;::^ P,(f) 	 (4.32)

This property follows directly from Eqs. 4.25 through 4.27.
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EXERCISE 4 
Write the formulas for the Fourier transform of R,(r) and

rm of wff). 
Hence, do the follow.ing:'

the inverse FouEier transfo

(a) Show that the total area under WIM 
equals the sigrial energy, by

evaluating the formula for the Fourier transform of RJO for T = 0-

(b) Show that the total area under R,(T) equals 
PJO), by evaluating

the inverse Fourie r transform of V,(f) for f = 0.

................ : ...................................... ...................................................................

EXAMPLE 3 SINC PULSE (CONTINUED)

From Example 1. the energy spectral dcnsit^ of the sinc pulse 
A sinc(2W[)

is given bN (see Eq. 4.6)

rect(-LT"M - '7"
G	 2 VV)

Taking the inverse Fourier transform of 
pjf). %vc find that the autocor-

n of the sinc pulse A sjnc(2VVt) is vi%en b\relation functio

A'
R,(r)	 — smc(N'r)	 (4.33)

2 VV

^Oich has a similar \kaveform to the sinc pulse itself.

......................................... ................................................................................

CROSS-CORRELATION OF ENERGY SIGNALS

The autocorrelation function provides a measure of the similarity bet%keen

a signal and its tinic-delaved version. in a similar way, \ke may use the

cross - co rrelation f14?Iction 'as a measure of the similarity bemeen a signal

and the time-delayed version of a second signal. Let g l (t) and gjt) denote

a pair of real-valued energy signals. The cross-correlation function of this

pair of signals is defined by

R^jr) 
= f 

g 1 (t)g 2 (t — r) dt	 (4.34)

We see that if the two signals g l (t) and gjt) are somewhat similar^ then

the cross-correlation function R j ,(r) will be finite over some range of T,

thereby providing a quantitative measure of the similarity, or coherence,

between them. The energy signals gjt) and g,(t) are said to be 
orthogonal

over the entire time interval if R,JO) is zero, that is, if

f'. 
g,(t)g,(t) dt = 0	 (4.35)
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Equation 4.34 defines one Possible value for the cross-correlation func-
tion for a specified value of 

the delay variable r. We may define a second
cross-correlation function 

-for the energy signals g i (t) and g2 (t) as

R2 1 (r) = 
f. 

92(09M — r) dt	 (4.36)

From the definitions Of the cross-correlation functions R,,(r) and R,,(r)
just given, we obtain the fundamental relationship

R,,( — r)
(4.37)

Equation 4.37 indicates that unlike convolution, correlation is not in gen-
eral commutative, that is, R 12( .[ ) 54 R,,(r).

Another important property of cross-correlation is shown b y the Fourier
transform pair

GI(f) G2*(f)	 (4.38)

This relation is known as the correlation theorem. 
The correlation theorem

states that the cross-correlation of two energy signals corresponds to the
multiplication of the Fourier transform of one signal by the complex con-
)ugate of the Fourier tran^form of the other.

EXERCISE 5 Prove the property Of cross-correlation functions described
in Eq. 4.37.

EXERCISE 6 Prove the correlation theorem described by Eq, 4.38.

....... 4.3 POWER SPECTRAL DENSITY

Consider next the case Of a power signal g(t), which remains finite as time
t approaches infinity. We assume g(t) to be real valued. The average power
of the signal is defined by (see Section 1.2)

P = lim	 f" g 2(1) d,	 (4.39)
T_ 2T

To develop a frequency-domain description of power, we need to know

the Fourier transform of the signal g(t). However, this may pose a problem,

because power signals have infinite energy and may therefore not be Fou-
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rier transformable. To overcome the problem, we consider a 
truncated

version of the signal g(t). In particular, we define

g,(t) = g(r) r'ct 
^' )e G—T

t

g(t),	 — T -- i ^— T	 (4.40)

0,	 otherwise

has finite energy; hence
As long as T is finite, the truncated signal 9T(t)

9T(t) 
is Fourier transformable. Let GTM 

denote the Fourier transform of

9T(t); 
that is,

9T(t)	 GTM

Using the definition Of 9T(t), 
we may rewrite Eq. 4. 39 for the average

power P in terms Of 9T(t) as

1 f' g 2 (t) dr	 (4.41)

	

P = lim —
	

T
T-2T —

Since 9T(t) has finite energy, We may use the Rayleigh enefgy theorem to

express the energy Of 9T(t) 
in terms of its Fourier transform GTM as

	

L

g2 (t) dt =	 IGT(f)12 df	
(4.42)

I	
L

where G,(f)j is the amplitude spectrum 
Of 940. Accordingly, we may

rewrite Eq. 4.41 in the equivalent form

	

P ^ I im 2 1 
T	

GTM12 df	 (4.43)

As T increases, the energy Of 940 
increases. Correspond i ngI N

. , the energy

spectral density JGT(f 
)12 increases with T. Indeed as T approaches infinity,

so Will jGT(A2- 
However, for the average power P to be finite. IGT(f)!'

must approach infinity at the same rate as T. This requirement ensures the

convergence of the integral on the right side of 
Eq. 4.43 in the limit as T

approaches infinity. This convergence, in turn, permits us to interchange

the order in which the limiting operation and integration in 
Eq. 4.43 are

performed. We may thus rewrite this equation as

1	 (4.44)
p	 I 

T
int TT ^G 

'(f)12 df
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Let the integrand be denoted by

I	 -
S,(f) = lim — IG7(f)12	 (4.45)

T­ 2 T

The frequency-dependent function S,(f) is called the power spectral den-
sity or power spectrum of a power signal, and G j (f)j-'12T is called the
periodograrn' of the signal.

..........................................................................................

EXAMPLE 4 MODULATED WAVE

Consider the modulated wave

x(t) = g(t) cos(27ift) (4.46)

where g(t) is a power signal band-limited to B hertz. We refer to x(t) as
a "modulated wave" in the sense that the amplitude of the sinusoidal
carrier" of frequency f, is varied linearly With the signal g(t). We wish to

find the power spectral density of x(t) in terms of that of g(t), given that
the frequency f. is larger than the bandwidth B.

Adapting the formula of Eq. 4.45 to the situation at hand, we ma y define
the power spectra[ density of the modulated wave x(t) as

I
Sjf) = lim — XT(f)J2	 (4.47)

r— 2T

where XT(f) is the Fourier transform of XT(t), the truncated version of
x(t). From Eq. 4.46, we have

X T( t) = gr(t) cos(27tft)	 (4.48)

where the truncated signal 9T(t) is itself defined in Eq. 4.40. Since

cos(27rf,t) = I (exp(j27rft) + exp( — j27rft)]	 (4.49)
2

it follows from the frequency-shifting property of the Fourier transform
that

X?(f)	 [GT(f — M + GT(f + MI	 (4.50)
2

where Gr(f ) is the Fourier transform of 9T(t) -

'The periodogram is a misnomer since it is a function of frequency not period.
Nevertheless, the term has wide usage. It was first used by statisticians to look for
periodicities such as seasonal trends in data.
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Given that f, > B, we find that GT(f — f,) and GT(f 
+ f,) represent

nonoverlapping spectra; their product is therefore zero. Accordingly, using

de of X I (f) we getEq 4.50 to evaluate the squared amplitu

[IG	 + IG	 f, > B (4-51)
)CAP1 2 	T(f	 M12	 I T(f + M1211

4

Finally, substituting Eq. 4.51 in 4.47, and then using the definition of Eq.

4.4 5 for- the power spectral density of the power signal g(t), we get the

desired result:

Sjf)	 1 Jyf	 fj + S,(f + fj],	 f, > B	 (4.52)
4

........................	 ........

PROPERTIES OF POWER SPECTRAL DENSITY

The role of power spectral density for power signals is similar to that of

energ^ density for energy signals. Indeed. the power spectral density has

properties that parallel those of the ener gy spectral densit%. In the sequel,

we present the properties of power spectral density without proof; these

properties may be verified by using arguments similar to those used in

Section 4.1 for verifying the proper-ties of enagy spectral density.

PROPERTY 1

The power spectral density of a power signal g(t) is a nonnegativereal-valued

function of frequency; that is, 
t^

S, (f) _- 0,	 for all f	 (4.53)

PROPERTY 2

The power spectral density of a real-valued power signal _q(t) is an even

function of frequency; that is,

SI ( — P = SIM	 (4.54)

PROPERTY 3

The total area under the curve of the power spectral density ofa power signal

g(t) equals the average signal power; that is,

P = f- S,(f) df	 (4.55)
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PROPERTY4

When a power signal is transmitted through a 11 *near time.invariant system,

the power spectral density of the output equals the power spectral density

of the input multiplied by the squared amplitude response 
of the system.

That is, if S.(1) is the power spectral density of a power signal x(t) applied

to a linear time-invariant system of transfer function F11f), the power spectral

density Sy (l) of the power signal y(t) produced at the output of the system

is defined by

	

Sy^f) = Mf)1' S.(f)	 (4.56)

where I H(f)j is the amplitude response of the system.

ExEmmE 7 Justify the validity of the input—output relation described in

Eq. 4.56.

INTERPRETATION OF POWER SPECTRAL DENSITY

The input—output relation of Eq. 4.56 provides a basis tor the ph^sical

interpretation of power spectral density, and therefore its measurement.

Juwas we did for the interpretation of energ^ spectral density. 
s
uppose a

power signal x(t) is applied to a band-pass filter followed bN a power meter

as in Fig. 4.6a. The filter has a narrow bandwidth if centered on some

frequency f_ as in Fig. 4.6b. Application of Eq. 4.
56 %ields the power

spectral density of the resulting filter output 
Y (t) approximatelN as follows

S^(f ' )	 f, —	
!E^^ ^f I -_ f, - 

1	 (4.57)
S'	 2

10,	 otherwise

The average power of the filter outputY (t) is therefore approximately given

by

	

P, = 2 S^ (f,) J f	 (4.58)

The evaluation of S.(f) is illustrated in Fig. 4.6c. Equivalently. we may

write

S^ (fl) ^ P,	
(4.59)

2,1 f

Ln other words, the power spectral density of the filter input x(t) at some

frequency f, is equal to the average power of the filter output divided 
by

2Af, where If is the bandwidth of the filter centered on fr The factor 
of

2 accounts for the contributions of neizative as well as positi ve frequency

components.
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0

Figure 4.6

(a) Circuit arrangement for measuring power spectral density. (b) Idealizedamplitude response of narrow-band filter. (c) Power spectral density of the filterOutput.

Equ ation 4.59 pro^ ides the basis for the measurement 
of po^k . cr spectral

densit^. Specifically, b î  %ar%ing the midband frequcnc^ f of the band-pass
filter in Fig. 4.6a, and mca^uring the a%erage poAcr of the filter output
for each setting of f, , ^ke ma^ measure the po%&er spectral densit y of a
power signal ( a pplied to the filter input) over a frequenc% hand of interest.

4.4 CORRELATION OF POWER SIGNALS

We may develop a formula for the autocorrelation function of power signals
by following a procedure sim ilar to that described for the case of energy

signals in Section 4 2. Specifically, we start with the defining equation (4.45)
for the power spectral density Sjf) of a 

power signal g(t), and rewrite it
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in the form

Sg(f) = lim ' Gl-(f)G;(f)	 (4.60)
T_ 2T

where GT(f) is the Fourier -transform of the truncated version gr(t) of the

power signal g(t). Next, we use the Fourier transform pair

	

91( t ) '^- 9T(-T) ;::^ G,(f) G;(f)	
(4.61)

Multiplying both members of this pair by the factor 1/2T and then taking

the limit as T approaches infinity, we have

lim 
I 

9T( T) 4- 94 - 01	
lim 

I 
GT(f)G;(f)	 (4,62)

T__ 2T	 T_ 2T

The function on the right side of this pair is recognized as the power spectral

density of the power signal g(t). Accordingly, we adopt the function on

the left side of Eq. 4.62 as the autocorrelation function of the power signal

g(t), and thus write

R,(r) = lim	 f 9T(t)gT(t	 dt	 (4.63)
T_ 2T —

We may formulate the autocorrelation function Rg(T) in terms of the power

signal g(t) itself by using the definition given in Eq. 4.40 for the truncated

signal 9T(t). By 
so doing, we define the autocorrelation function of a power

signal g(t) as follows

	

Rg(T) = lim I f g(t)g(t — T) dt	 (4.64)
T, 2 T - T

PROPERTIES OF THE AUTOCORRELATION FUMC770JW OF
POWER SIGNALS

The autocorrelation function of a power signal has properties that are

similar to those of the autocorrelation function of energy signals. Indeed,

by following arguments similar to those presented in Section 4.2, we may

readily establish the following properties of the autocorrelation function

of power signals, which are presented without proof.

PROPER" I

The autocorrelation function ofa real-valued power signal g(t) is a real-valued

even function, as shown by

R,(—r) = RJO	 (4.65)
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PROPERTY 2

The value of the autocorrelation function of a power signal g(t) at the origin
is equal to the average power of the signal; that is,

R,,(0) = P	 (4.66)

PROPERTY 3

The maximum value of the autocorrelation function of a power signal g(t)
occurs at the origin, as shown by

j R,, (r) I _- R,, (0)	 (4.67)

PROPERTY4

For a power signal g(t), the autocorrelation function and power spectral
density form a Fourier transform pair; that is,

R, (r)	 S,(t)	 (4.68)

Equation 4.68 states that the power spectral density S,(f) of a power
signal g(t) is the Fourier transform of the autocorrelation function R,(r)
of the signal, as shown in the expanded form:

SIM = f. Rg(r) exp( — j27zfr) dT	 (4.69)

Equation 4.68 also states that the autocorrelation function Rg (r) is the
inverse Fourier transform of the power spectral density Sg (f), as shown
in the expanded form:

Rg (r) = f. Sg(f) exp(j27rfT) df	 (4.70)

Equations 4.69 and 4.70 are known as the Einstein— Wiener— Khintchine
relations. 2 Given the autocorrelation function Rx(T), we may use Eq. 4.69
to compute the power spectral density Sg (f). Conversely, given the power

'Traditionally, Eqs. 4.69 and 4.70 have been referred to in the literature as the
Wiener- Khintchi ne relations in recognition of pioneering work done by Wiener and
Khintchine; for their original papers, see Wiener (1930) and Khintchine (1934). A
recent discovery of a forgotten paper by Albert Einstein on time-series analysis
(delivered at the Swiss Physical Society's February 1914 meeting in Basel) reveals
that Einstein had discussed the aulocorrelation function and its relationship to the
spectral conte.nt of a time series many years before Wiener and Khinichine. For this
very brief paper, see Einstein (1914). An English translation of Einstein's paper is
reproduced in the IEEE Acoustics, Speech, and Signal Processing Magazine, vol. 4,
October 1987. This particular issue also contains articles by W. A. Gardner and
A. M. Yaglom, which elaborate on Einstein's original work.
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spectral density S,(f), we may use Eq. 4.70 to compute the autocorrelation

function R,(r).

EXEMBES Verify the properties of autocoffelation function of a power

signal, described in Eqs. 4.65 through 4.68.

EXAMPLE 5

Consider again the modulated wave x(t), defined in Eq. 4.46, reproduced

here for convenience:

x(t) = g(t) cos(21tf,t)

The signal g(t) is a power signal band-limited to B hertz, where B < f_
In this example, we evaluate the aCitocorrelation function of x(t) in terms

of that of g(t).
We do the evaluation by using Property 4 of the autocorrelation function,

namely, the fact that autocor-Eclation function and power spectral density
form a Fourier transform. From Eq. 4.52 of Example 4, we have

I
S.(f)	 — [ SI (f — f' ) + SP + _01

4

T'herefore, taking the inverse Fourier transform of both sides of the equa
tion, we get

R, (r)	 [R,(T) exp(j277f,T) + R',( r) exp(-j27rfj)j
4

- Rg (r) cos(27zf,r)	 (4.71
2

which is the desired result.
...........................................................................................................................

Ewww q Using the relation of Eq. 4.71, show that the average power

of the modulated signal x(t) equals one-half the average power of the

original signal g(I).

CROSS-CORRELATION OF POWER SIGNALS

We complete the discussion of correlation of power signals by considering
their cross-correlation. Let g,(t) and gjt) denote a pair of power signals-

M
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We define the cross-correlation between g l (t) and g2(t) as

Ri jr) ^ Jim —1 fT 91(092( t — r) dt	 (4.72)
T­ 2T 

_ 

T

In a similar way we may define a second cross-correlation function R2,(T)-

The pair of power signals g l (t) and g2 (t) are said to be orthogonal over
the entire time interval if

Jim 
—1 fT 91(092(t) dt = 0	 (4.73)

T­ 2T 
_ 

T

............ 4.5 FLOWCHART SUMMARIES

In this section we summarize the signilicance of the time-frequency rela-

tions derived for ener gy and power ^,i^nak.

Given an energy signal g(r) of Fourier transform G(f), we mav sum-

marize this relationship and its interpla y with the formula of Eq. 4' .4 for
the energy spectral density V1,(f) and that of Eq. 4.27 for the autocorre-
lation function R,(-,) as in Fig. 4.7. This chart clearly shows that whatever

operation or sequence of operations is used to obtain the autocorrelation

function Rjr) or the energy spectral density Pjf). that operation or
sequence of operations is irreo ersible. The implication of this is that w hen

a signal g(t) is converted to Rjr) or Wjf), in general, information is lost

about the original sitzrial g(t) or its Fourier transform G(f). In going from

g(t) to R,(r), dependence on the physical time i is destro%ed. In going from

G(f) to Pjf). information on the phase ^pectrurn of' the signal is de-
stro^ed. This means that it 

two 
(or more) different signals have the same

amplitude spectrum but different phase spectra. then they will have the

same energ^ spectral density or. equivalently. the same autocorrelation

function. In other words. for a given cnerg^ signal g(t). there is a unique

enery -̂  spectral densitN P,(f) or. equivalently. a unique autocorrelation

function RJO. The converse of this statement. howc%er, is not true.

The flowchart of Fig. 4.7 shows that gi%cn the energy signal g(t), we

mj^ compute the enervy spectral density P,(f) in one of two equivalent
wa^s:

I. We compute the Fourier transform G(f). and then use the definition

of Eq. 4.4.

2. We compute the autocorrelation function R,(r) using Eq. 4.27, and then

compute the Fourier transform of Rjr).

The interrelations between time-domain and frequency-domain descrip-

tions of power signals are analogous to those for energy signals. In partic-

ular. for a power signal g(t) we may draw a chart similar to that of Fig.
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g(t)	 GO

Figure 4.7
Flowchart summary of interrelations between time-domain and frequency-domain

descriptions of energy signals.

4.7, except that the chart is now based on a truncated version 9T(t) of the

power signal. The point to note is that information is lost in the process

of computing and retaining only the autocorrelation function R,(r) of the

power signal or its power spectral density Vl,(f). Moreover, given the signal

g(t), we may compute the power spectrai density S,(f) using one of two

equivalent procedures:

1. We compute the Fourier transform Gr(f) of the power signal g(t) for

the interval — T !^^ t -_ T for large T. and then use Eq. 4.45 to compute

the power spectral density S,(f).

2, We use Eq. 4.63 to compute the autoccirrelation function R,( r), and

then take the Fourier transform of R,(r).

EXERCISE io Given the energy signal g(l), outline the two procedures

that may be used to compute the autocorrelation function R,(T).

EXERCISE 11 Given the power signal g(t), outline the two procedures

that may be used to compute the autocorrelation function R,(T).

........ 4.6 SPECTRAL CHARACTERISTICS OF PERIODIC SIGNALS

The definitions of poAer spectral density and autocorrelation function for

power signals given in Eqs. 4.60 and 4.64 take on special forms for the

case of periodic signals. These signals constitute an important class Of pO'Aer

signals. Consider a periodic signal g,,(r) of period T,,. represented in terms

of its complex Fourier series as

00	 1, exp(t^0	 (4.74)
T^

"here the c, are complex Fourier coefficients. For the situation at hand.

the time average in the defining equation (4.39) for the a%erage power of
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the signal may tic taken over one period, its shown b%

1, =	 f	 (4.75)
Tl^

Correspondingly. the formula for the power spectral den ,,it y oven in Eq.

4.60 takes, on a discrete form defined in terms of the complex Fourier

coefficients its

	

S"(f)	 f	 (4.76)
T.

Naturally, the power spectral density S, (f) has all the properties listed in
Section 4.3. Moreox er. it is a discr^ete function offtetyuctic i. Allich is a
consequence of the periodic nature of the signal gjt). Since the total area
under 

it 
curve of power spectral densit% equals the axerage po%oer. we ma^

define the total a%erage power of the periodic signal Q,-
frequency-domain dcs,:ription as	

(I) in terms of it^

P	 (4.77)

This relation is know n as Pulseval's power theorem. It states that the a^ -

erage power of a periodic signal g,(f) is equal to the surn of the squared

amplitudes of all the harmonic components of the signal o!,,(t). Note that

the Parseval power theorem. as\%jth the Ra\lcigh encri:% theorem. require,

knowledge of the amplitude spectrum only'.

The power spectral densitN of Eq. 4.76 has a delta function at zero
frequency, which is weighted by c,,j -' - The presence of this delta function
implies that the periodic signal g,ji) has dc poticr, gi\en by

P", = c'' F	 (4.78)

The coefficient (-,, equals the Incan or aterage talue of ti l e periodic signal
9,(t); that is,

	

C',	 g,(t) dt	 (4.79)
T,

The ac power of the periodic signal g,,(t) is defined h\ the surn of the

weights associated with the remaining delta functions in S, its shmA it

by

P^l	 1C.12
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The square root of P,, defines the root mean square (rms) value of the

signal. Naturally, the su-m of dc power P, and ac power P, equals the

total average power P.

When the power signal of interest is periodic, the integrand in the

defining equation (4.64) for the autocorrelation function R,(T) of the signal

is likewise periodic. Hence, the time average in this formula ma^ be taken

over one period. Thus, we may express the autocorrelation function of a

periodic signal gp (t) of period T, as

R,, (r) = , f	 g,(I)g,(t — ') at
T"	- T, -1

The autocorrelation function R,(r) exhibits all the properties listed in

Section 4.4 for the autocorrelation function of power signals. In addition,

the autocorrelation function R g, (T) is periodic with the same period as the

periodic signal gp (l) itself, that is

R,(r) = R,, (r -_ nT,).	 n = I ^ 2, . . . .	 (4.82)

............................................................................................................................

EXAMPLE 6 -SINUSOIDAL WAVE

Consider the sinusoidal wave

g,(t) = A cos(27rfj + 0)	 (4.83)

Ahich is plotted in Fig. 4.8a, the period T, =. l/ft . The requirement is to

evaluate the power spectral density. average po"er, and dutocorrelation

function of this sinusoidal wave.

To express the given sinusoidal Aa%e as a complex Fourier series, we
u 
se the formula for a cosine function in terms of a pair of complex ex-

ponentials. We thus write

g,(t) = c^ ^xp(j2tzf, t) — c , exp( —j2r ,f, t)

where

cl = 
A 

exp(j())
2

and

A
c	 — exp( — j 0)

2
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(a)

S 
9P 

(f)

r f
0

(b)

T.

(c)

Figure 4.8
(a) Sinusoidal wave. (b) Power spectral density. (c) Autocorrelation function.

Hence, the use of Eq. 4.76 yields the power spectral duality

A
S" W	 (f — M + — 6(f + M	 (4.84)4	 4

That is, the power spectral density of a sinusoidal wave consists of a pair
of delta functions located at f = tf, , both of which are weighted by the
factor A '14, as depicted in Fig. 4.8b. Note that the power spectral de'nsity
is independent of the phase 0 of the sinusoidal wave.

By evaluating the total area under the power spectral density Sg	 we
obtain the average power of the sinusoidal wave as

A 2
P	 (4.85)2

I
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Finally, the use of Eq. 4.81 yields the autocorrelation function of the

given sinusoidal wave as

R

	

	
f

(r)	 Aj,	 cos(27rf,t + 0) cos(27rf,t — 27ift + 0) (it

Aj, f	
[cos(27if,r) + cos(4.7f,t — 27Tf,r + 20)] dt

2

A
— cos(27^f r)	 (4.86)
2

Equation 4.86 is plotted 
in 

Fig. 4.8c. It shows that the autocorrelation

function of a sinusoidal wave is a sinusoidal function of r, with the same

period as the given sinusoidal wave. Nloreo%er, putting - 0 in Eq. 4.86,

we find that R,, (0) = P, as expected.

...........................................................................................................................

EXERCISE 12 Show that the power spectral density and autocorrelation

function of Eqs. 4.84 and 4.86 constitute a Fourier transform pair.

..........................................................................................................................

EXAMPLE 7 SQUARE WAVE

Consider next the square Aa%e of Fig. 4.9u, one period of Nkhich is defined

bv

T,	 T,
A ,

4	 4	 (4.87)g' (t)
0,	 for the remainder of the period

The requirement is to determine the power spectral densitN and autocor-

relation function of this square \Aave.

In Example 1, Chapter 2, we derived the formula for the complex

Fourier coefficient c, of a rectangular pulse train ^^ith arbitrary dut y cycle:

the result is given in Eq. 2.19- The square \^ave described here has a duty

cycle of one-half. Hence, adapting Eq. 2.19 for this duty cycle, we find

that the complex Fourier coefficient of the square wave of Fig. 4.9a is gi^.en

by

	

c, = 
A 

sinc 
(11	

(4.88)
2

Substituting Eq. 4.88 in 4.76 yields the desired ro^ker spectral densit^ ot
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g, (t)

A-0=- 
2 T,	

— TO — 
TO 0 TO	

TO	
2 T,	

t

4	 4

(a)

I	 — 1	 0	 1	 3

TO	 TO	 (b)	 TO	 TO

(C)

Figure 4.9

(a) Square wave. (b) Povver spectrdl density. (c) Autocorrelation function-

the square wave as

S, M =	 j sinc2 (,,) 
+ _ n	

(4.89)4 , - - ,	 2	 'F,,

which is plotted in Fig. 4.9b.
The most expedient approach for obtaining the autocorrelation func-

tion is to use the formula of Eq- 4.81. Figure 4.10 presents a graphical
portrayal of the steps involved in the application of this formula for

f
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TO 	 TO	 0	 TO	 TO

2	 4	 4	 2

(a)

TO	 To 0	 3 To To

2	 8	 (b)	 0 2

gp(t) gp^t — To /8)

^ A 
2

I I	 1 11 //'	
t

To 0	 TO
4

Figure 4.10

The computation of autocorrelation function R., (T) for lag T 	T^ 8.

a delay r = T018. Parts a, b, and c of the figure present plots of the

square wave &(t), its delayed version g,,(t — T,,18), and the product

g,(t)g,(t — T,/8), respectively, for the period — ( T,,,2) -- t T,,12). The

area under the product gp (t)gp (t — T,,18) for this period is shown shaded

in Fig. 4.10c. Evaluating this area and scaling it by the factor I/To.

we get

3A'
R,, ( T)

8

t

t

3A2T0

Area 8
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Procceding in a similar manner for other values of delay r, we obtain

2r) , —0

T"	 2
R, (4.90)

T.	 2

Recog nizin& that the autocorrelation function of a periodic wake with pe-

riod T, is ako periodic %kith the ^ame period, we find that the use of Eq.
4.90 \ields the plot shov%rn in Fi g . 4.9c for the autocorrelation function of
the _^i\en square wake.

............................................................................................................................

EXERCISE 13 Use Eq. 4.89 to illustrate the properties of the power spec-
tral density of a periodic signal.

EXERCISE 14 Use Eq. 4.90 to illustrate the properties of the autocor-
relation function of a periodic signal.

EXERCISE 15 Determine the power spectral density and autocorrelation
function of a rectangular wave, one period of which is defined by

A	 TY

g,(t) =	 8

0,	 for the remainder of the period

............. 4.7 SPECTRAL CHARACTERISTICS OF RANDOM SIGNALS AND NOISE

Random mgti al^ con^tijutc another important cl, i , of po"cr si gnals. We
sa^ a m l-I nal is random if there IS un(erlamtj about the signal before it
actuallN occurs. Such a signal Ma% be vieAed its helon&mg to an ensemble
of si g nals, the generation of which I ,, 2overned hv a mechanism that I,,
probubdi-stic in nature. Hence, no t%ko Signals in th 'e ensemble exhibit the
Same variation %kith time. Each %ka%eform (signal) in the ensemble I ,, re-
ferred to as a 3ut?,ple filtIctiotI, 

and the ensemble of all pwooble sample
functions is referred to as a rundoin proce^.s.

Let i(t) denote a sample function of it random proce^^ X(i). Figure
4.1 lu shokks a plot of the A avefornn of x(t). Since x(t) is a power signal,
its Fourier transform does not exist. This necessitates dcaling Aith it trun-
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X(t)

0

(a)

XT(t)

-T	 T

(b)

Figure 4.11
(a) Sample function of a random process. (b) Truncated version of the sample
function.

cated version of the sample function, namely,

X T( t) 
= x (t),	 T	 t	 T	

(4.91)
to,	 otherwise

Figure 4.11b depicts the truncated signal XT(t): From the discussion pre-

sented in Section 4.3, we note that the time average power spectral density

of the sample function x(t) over the interval — T -_ t -- T is XT(f)F12 T,

where X T(f) is the Fourier transform Of XT(t). This time-averaged power

spectral density depends on the particular sample function x(t) drawn from

the random process X(t). Accordingly, we must perform an ensemble av-

eraging operation, and then take the limit as T approaches infinity. The

value of frequency f is held fixed while averaging over the ensemble. The
ensemble averaging op&ation requires using the probability distribution
of the ensemble.' For the purpose of our present discussion, it is sufficient
to acknowledge the ensemble averaging operation by using the operator

E, commonly referred to as the expectation operator. We thus write the

ensemble-averaged or mean value Of IXT(fW simply as E[jXT(f)j1] and the

3The issue of ensemble averaging is considered in Chapter 8.
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corresponding power spectra] densitv of the random process X(t) as

Sx(f) = lim ' E[jX,(f)j-'j	 (4.92)T­ 2T

It is important to note that in Eq. 4.92 the ensemble averaging must be

performed before the limit is taken. Also, we have used an uppercase letter
as the subscript for the po\\er spectral density in Eq. 4.92 to distinguish

this definition of power spectral density for a random process from that

for a power signal of deterministic form,

Our involvement with random processes in this book will be in the
context of ,noise analysis of communication sN stems. The term noise is used
customarily to designate unwanted \A, ,a\eforms that tend to disturb the

transmission and processing of si gnals in communication s^stems, and over

which Ae have incomplete control. In practice. we find that there are many

potential sources of noise in a communication system. The sources of noise'
may be external to the sNstem (e.g., atmospheric noise, gal actic noise,

man-made noise), or internA to the system. The second categorY includes

an important type of noise that arises owing to spontaneousfluctuations of
current or voltage in electrical circuits. This t%pe of noise, in one way or

another, is present in ever\ .
 communication s ystem and represents a b'asic

limitation on the reliable transmission of information. It originates at the

front end of the receiver part of the s^ stem ^ hence. it is commonN referred
to as receiver noise.' it is also referred to as channel noise-

WHITE NOISE

The noise anal \ sis of communication systems is customarily based on an
idealized form of a noise process called i0lite noise, the power spectral
densit of which is independent of frequenc\ The adjective white is used

in the sense that white light contains equa amounts of all frequencies

within the visible band of electromagnetic radiation. We denote the power

spectral density of it "hite-noise process W(t) as

S. (f) ^	
(4.93)

2

where the factor 1/2 has been included to indicate that half the power is
associated wit h positive frequencies and half A ith negative frequencies, as

illustrated in Fig. 4.12a. The dimensions of N, are in watts per hertz. The
parameter N, is usually measured at the input stage of the receiver of a
communication system.

'For a discussion of various types of noise encountered in COMMunication systerns,
see Appendix C.
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H

2

0

Figure 4.12
Characteris^,cs of white noise. (a) Power spectral density, (b) Autocorrelation

function.

The ab^ence of a delta function in the power spectral density of Fig.

4.12a at the origin means that the white noise so described has no dc

power. That is, its mean or average value is zero.

Since the autocorrelation function is the inverse Fourier transform of

the power spectral density. it follows that for white noise

Jy
? 
12 	 (4.94)

That is, the autocorrelation function of white noise consists of a delta

function weighted by the factor N012 and occurring at r = 0, as in Fig.

4.12b. We note that R,, (r) is zero for r 5,' 0. Accordingly, any two different

samples of white noise, no matter how close together in time they are

taken, are uncorrelated.

Strictly speaking, white noise has infinite average power and, as such,

it is not physically realizable. Nevertheless, white noise has convenient

mathematical properties and therefore is useful in system analysis.

The utility of a white-noise process is parallel to that of an impulse

function or delta function in the analysis of hnea^ systems. The effect of

an impulse is observed only after it has been passed through a system with

finite bandwidth. Likewise, the effect of white noise is observed only after

passing through a system with finite bandwidth. We may state, therefore,

that as long as the bandwidth of a noise process at the input of a system
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is appreciably larger than that of the system itself, we may model the noise
process as white noise.

..........................................................................................................................

EXAMPLE 8 IDEAL LOW-PASS FILTERED WHITE NOISE

Suppose that a white-noise process W(t) of zero mean and power spectral
density No12 is applied to an ideal low-pass filter of bandwidth B and a
passband amplitude response of 1. The power spectral density of the noise
process N(t) appearing at the filter output is therefore (see Fig. 4.13a)

—B < f < B
SN(f)	 2 (4.95)

0,	 fj > B

The autocorrelation function of N(i) is the inverse Fourier transform of

Irm

4b)

Figure 4.13
Characteristics O f low-Pass filtered white noise. (a) Power spectral density.
(b) Autocorrelation function.
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the power spectral density shown in Fig. 4.13a:

N.
R,(T) =	 exp(j2rfr) ulf

f ", 2

= N,, B sinc(2 B r)	 (4.96)

This autocorrelation function is plotted in Fig. 4.13h. We see that R,(T)

has its maximum value of N,,B at the orivin. and it pahses through zero at

r = 1_n12B, where it = 1, 2. 3 . . . . .

...........................................................................................................................
.........................................................................................................................

EXAMPLE 9 RC LOW-PASS FILTERED WHITE NOISE

Consider next a ^Nhite-noise process W(t) of zero mean and po^Ner spectral

density N, 2 applied to a low-pass filter, as in Fi g . 4.14a. The transfer

function of the filter is

H(f)

	

	 (4.97)
- -12,7 fR(

The power. spectral density of the noise,V(t) appe-qing at the lo%% -pass RC

^"- filter output is therefore (see Ei g . 4,14b)

(4.98)
S , M

(2,7j RC)'

From Example 4 of Chapter 2, we have

2
cxp	 (4.99)

Therefore using the time-scaling property of the Fourier transform. %%e

R

White	 FNo^,,se
noise	 C

Figure 4.14
Characteristics of RC-filtered white noise. (a) Low-pass RC filter. (b) Power spectral

dghsity offilter output Nit). (c) Aurocorrelation function OfN(t),
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S,ifi
NO

2

7

f0

2^RC	 2 R(

1b)

R (7)A
N,

4RC

(71

—4^61RC -2RC-RC 0 RC 2RC	 461RC

(C/

Figure 4.14 (continued)

find that the autocorrelation function of the filtered noise process A'(t) is

N,
exp	 (4. 1 W)

RC4RC

Ahich is plotted in Fig. 4.14c.

........................................................................................... ........ I ............

EXERCISE IS Using the autocorrelation function of Eq. 4. 100, find the
average power of the RC filter output.

EXERCISE 17 Using the power spectral density of Eq. 4.98, find the av-
erage po%yer of the RC filter output. Check this result against that of
Exercise 16.
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...........................................................................................................................

EX4MPLE 10 AUTOCORRELATION OF A SINUSOIDAL W4VE PLUS*WfrE NOISE

Consider a random process X(t) consisting of a sinusoidal wave component
and a white-noise P rocess Of zero mean and power spectral density N,12.
A sample function (i.e., single realization) of X(t) is denoted by

x(t) = A cos(27rft + 0) + w(t) (4.101)

The phase 0 of the sinusoidal component may lie anywhere inside the
interval 0 -- 7r with equal likelihood. The problem is to determine
the autocorrelation function of the random process X(t) represented by
the sample function x(t).

The two components ofx(t) originate from independent sources. There-
fore, the autocorrelation function Of X(t) is the sum of the individual
autocorrelation functions of the sinusoidal wave and white-noise compo-
nents. In Example 6, we showed that the autocorrelation functi on ofthe
sinusoidal com onent is equal to (A'12) cos(27 , f,r). The autocorrelationP
function of the white-noise component is equal to 	 We maytherefore write

2A	 NoRx(r)	 — cos(27zf,r) + —	 (4.102)2	 2

w
hich is plotted in Fig. 4.15. We thus see that for Irl > 0, the autocorrelation

function of the random process X(t) is the same as that of the sinusoidal
wave component. This shows that by determining the autocorrelation func-
tion of X(t) we can detect the presence of a periodic signal component
that is corrupted by additive white noise.

R

2

2

0

Figure 4.15
Autocorrelation function of sinusoidal wave plus white noise.

...................................................... . ...................................................................
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4.8 NOISE-EOUIVALENT BANDWIDTH

In Example 8 we observed that when a source of white noise of zero mean

and power spectral density N012 is connected across the input of an ideal

low-pass filter of bandwidth B and passband amplitude response of one,

the average output noise power [or equivalently R N(0)j is equal to NoB,

In Example 10 
we observed that when such a similar noise source is

connected to the input of the simple RC low-pass filter of Fig. 4.14a,

the corresponding value of the average output noise power is equal to

Nol(4RC). For this filter, the half-power or 3-dB 
bandwi8th is equal to

11(27rRC). 
We may therefore make two important observations. First,

filtered white noise has finite average power. Second, the average power

is proportional to bandwidth.

We may generalize these observations to include all kinds of low-pass

filters by defining a noise-equivalent bandwidth as follows. Suppose that

We have a source of white noise of zero mean and power spectral density

No12 connected to the input of an arbitrary low-pass filter of transfer func-

tion H(f). The resulting average^ output noise power is therefore

	

P, = ^_-	 IH (f) 12 df

2 L

	

= No	 IH( J)1' df (4.103)

where, in the last line, we ha%e made use of the fact that the amplitude

response H(f)j is an even function of frequency. Consider next the same

source of white noise connected to the input of an ideal low-pass filter of

zero-frequency response H(0) and bandwidth B ., In this case, the average

output noise power is

P, = No B,,H 2(0)	 (4.104)

Equation 4.104 shows that the filtered noise power Ps is finite and pro-

portional to bandwidth B, The bandwidth B, is called the noise-equivalent

bandwidth for a low-pass filter; its definition follows directly from Eqs.

4.103 and 4.104 as

t JH (f)12 df

B, = —ii-2(o)	
(4.105)

Thus the procedure for calculating the noise-equivalent bandwidth consists

of rqlacing the arbitrary low-pass filter of transfer , function 
H(f) by an

I
equiV^aleAt ideal low-pass filter of ' ero-frequOcy response H(0) and band

width B, as illustrated in Fig. 4.16.
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- BA 0	 BN

Figure 4.16

The definition of noise-equivalent bandwidth for low-pass fitter.

In a similar way, we may define a noise-equivalent hancl^%iclth for a

band-pass filter, as illustrated in Fi ,-, . 4.17. this figure depicts the squared

amplitude response of the filter for positive frequencies onl^. Thu^. the

noise-equkalent bandwidth for a band-pass filter ma% be defined as

11(f)j-' df

_" — 
J, " -
	 -	

1	

(4.1()6)

1 H(f, ) 12

where 11(fj is the center-frequency amplitude response of the filter.

We mav combine the definitions of Eqs. 4. 105 and 4.106 for the noise-

I 11,f) I

jj , f' , 2

0

Figure 4.17
The definition of noise equivalent bandwrdth for band-pass filters; only the
response for positive frequencies is shown
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equivalent bandwidth of low-pass and band-pass filters into a single for-

mula -

B,	 11(f)1' df	 (4.107)

^khcre 11(f), i s the amplitude response of the filt
e
r. The parameter g, in

Eq. 4.107 is the maxinium available power gain of the filter, defined by

g^ = maximum value of H(ft'

	

^ j

jH(K ` ,	 loA-pLss filter	
(4.108)

	

1 11(f, )F,	 band-pass filter

Correspondingly, we may express the output noise power of a filter (for

both positive and negative frequencies) as

P., = N,^g,B,	 (4.109)

%k here .V,,/2 is the noise po"er spectral density at the filter input. According

to Eq. 4.109. the effect of passing ^khite noise through a filter may be

separated into tNko parts:

1. The maximum aN ailable poAer gain of the filter. g,.

2. The noise-equivalent bandwidth B, . representing relath e frequen(^v se-

lectivin of the filter.

Eq. 4.109 also shows that. whether the filter of interest is lm^-pass or band-

pass. the filtered noise poxer P, is proportional to the noise-equivalent

banch,^idth B, Hence, as a general rule. ^Ne ma^ state that the effect of

noi
s
e in a system (e.g., communication receiver) is reduced bN narro^Ning

the s^stem bandwidth.

EXERCISE18 What is the noise-equivalent bandwidth of the RC low-pass

filter of Fig. 4.14a? Expiess your answer in te rms of the 3-dI3 bandwidth

of the filter.

..................................................................................................................................

PROBLEMS

P4.1 EnergV Spectral DensitV

Problem I Consider the decaying exponential pulse

P( - at),	 t > 0

	

00 = 
2'	

0

le)x
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Find the percentage of the total energy of g(t) contained inside the fre-

quency band — W -- f -- W, where IV = a127r.

Problem 2 Show that the two different pulses defined in parts a and b
of Fig. P4.1 have the same energy spectral dcnsit^:

4A ' T-' cos'(7z Tf)
V'M — , . —, —__

r (4T-f-

g (t)	 g (t)

A
A

47^ST_ 
t	 tT	 0	 T 0	 T

2	 2

(ay	 (bl

Figure P4.1

P4.2 Correlation of Energy Signals

Problem 3 Determine and sketch the autocorrelation functions of the
following exponential pulses:

(a) 9(t) = exp( — at)u(i)

(b) g(t) = exp(—alt)

(c)9( t ) = exp( — a0u(t) — exp(at)u( — t)

where u(t) is the unit step function, and u( — t) is its time-reversed
version,

Problem 4 Determine and sketch the autocorrelation function of a Gaus-

sian pulse defined by

p(
g ( l )	 ex

Q,

Problem 5 The Fourier transform of a signal is defined by sinc(f)j. Show

that the autocorrelation function of this signal is triangular in form.

Problem 6 Specify two distinctly different pulse signals that have exactly

the same autocorrelation function.

Problem 7 Consider a signal g(t) defined by

g(t) ^ A li + A, cos(27rf i t + 0 1 ) + A, cos(27tf.,t + 0,)
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Figure P4.2

.1

(a) Determine the autocorrelation function R,(T) of this signal.

(b) What is the value of R,(0)?
(c) Has any information about g(t) been lost in obtaining the autocor-

relation function')

Problem 8 Determine the autocorrelation function of the triplet pulse

shown in Fig. P4.2

Problem 9 Let G(f) denote the Fourier transform of a real-valued energy

signal g(t), and R,(r) its autocorrelation function. Show that

dr	
dT = 4X2	 G(f)1' df

Problem 10 Determine the cross-correlation function R12(0 of the pair

of rectangular pulses shown in Fig. P4.3, and sketch it, What is R,(r)?

Problem 11 Determine the cross-correlation function R,,(T) of the rect-

angular pulse g l (t) and triplet pulse g 2(t) shown in Fig. P4.4, and sketch
it. What is R.,(T)? Are these signals orthogonal? Why?

Figure P4.3
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Figure P4.4

Problem 12 Consider two signals g,(t) and g,(t). These two signals are
delayed by amounts equal to t j and t, seconds. respectively. Show that the
time delays are additive in convolving the pair of dela yed signals, whereas
they are subtractive in cross-correlating them.

P4.3 Power Spectral Den3itY

Problem 13 Consider the truncated version of a complex exponential,
defined by

9T(t) = A exp(j27rf,t) rect (2 
t 

T)

where rect(i/2T) is a rectangular function of unit amplitude and duration
2T. Find the powerspectral density of9T(0 for finite T. What is the limiting
value of this power spectral density as T approaches infinity9

Problem 14 Figure P4.5 shows the power spectral density of a power
signal g(t). Find the average power of the signal.

Figure P4.5
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Figure P4.6

P4.4 Correlation of Power Signals

Problem 15 Find the autocorrelation function of the truncated version

of a complex exponential, defined in Problem 13. What is the limiting value

of this autocorrelation as T approaches infinity"

Problem 16 Find the autocorrelation function of a power signal g(t)'

whose power spectral density is depicted in Fig. P4.6. What is the value

of this autocorrelation function at the origin.'

P4.6'!^^Spectral Characteristics of Periodic Signals

Problem 17 Consider the square wave shown in Fig. P4.7. Find the power

spectral density, average power, and autocorrelation function of this square

wave. Does the wave have dc pov^er" Explain your answer,

Problem 18 Consider two periodic signals g,jt) and gp2 (t) that ha
v
e the

following complex Fourier series representations:

g"(0	 cl, exp 
—11T11"t)

gp m (volts)

Figure P4.7
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and

9,2(1)	 c2,, exp 
L2m

T^

Ile two signals have a common period equal to T,
Using the following definition of cross-correlation for a pair of periodic

signals,

RIAT) = I f 
T^" 2 

gpi(Og,92( t - 7 ) dt
TO - T^"

show that the prescribed pair of periodic signals satisfies the Fourier trans-
form pair

C I C2, (f

T,

P4.7 Spectral Characteristics of Random Signals and Noise

Problem 19 The power spectral density of a random process X(t) is
shown in Fig. P4.8.

(a) What is the dc power contained in this random process?
(b) What is the ac power contained in it?

Figure P4.8

Problem 20 A Ahite noise process of zero mean and power spectral
density N,12 is applied to the low-pa s

s RL filter shoAn in Fig. 4.9. Deter-

L

Figure P4_9	

I L7nputt TROut put
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mine the power spectral density and autocorrelation function of the out-

put.-

Problem 21 Consider a white-noise process of zero mean and power

spectral density Na12 applied to the input of the system shown in Fig.

P4. 10.

(a) Find the power spectral density of the random process at the output

of the system.

(b) What is the average power of this output?

Hint: You may use Eq. 4.52, interpreted for a random process, to evaluate

the power spectral density of the low-pass filter input.

P4.8 Noise-Equivalent Bandwidth

Problem 22 Find the noise-equivalent bandwidth for the low-pass RL

filter shown in Fig. P4.9.

Problem 23 A white-noise process of power spectral density No/2 is ap-

plied to a Butterworth low-pass filter of order n with its amplitude response

Who,	
d	

Lo^ pass	
outp.1

x	 filter

P	
" (f)	

I

^os (2^f'd

Figure P4.10
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defined by

H(f)j =	
I

1 1 + (flf")21112

(a) Determine the noise-equivalent bandwidth for this low-pass filter.
(b) What is the limiting value of the noise-equivalent bandwidth as n
approaches infinity?
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.............. CHAPTER FIVE

DIGITAL CODING
---OF AV4LOG WIME&=

Ttransport an information-bearing signal from one point to another
over a communication channel, we may use digital or analog techniques.
As mentioned in Chapter 1, the use of digital communications offers
several important advantages as compared to analog communications. In
particular, a digital communication system offers the following highly
attractive features:

1. Ruggedness to channel noise and external interference, unmatched by
any analog communication system.

2. Flexible operation of the system.

3. Integration of diverse sources of information into a common format.

4. Security of information in the course of its transmission from source to
destination.

177
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For these reasons, digital communications have become the dominant form

of communication technology in our society.

To handle the transmission of analog ' message signals (e.g., voice and

video signals) by digital means, the signal has to undergo an analog-to-

digital conversion. In the next section, we present an overview of three

important methods of analog-to-digital conversion, which are known as

pulse-code modulation, differential pulse-code modulation, and delta mod-

ulation. Their detailed descriptions are presented in subsequent sections

of the chapter.

5.1 DIGITAL PULSE MODULATION

The process of analog-to-digital conversion is sometimes referred to a
, 
s

digital pulse modulation. The use of the terminology "pulse modulation"

is justified by virtue of the fact that the first operation performed in the

conversion of an analog signal into digital form involves the representation

of the signal by a sequence of uniformly spaced pulses, the amplitude of

which is modulated by the signal. Naturally, the pulse-repetition frequency

must be chosen in accordance witb the sampling theorem. In both pulse-

code modulation and differential pulse-code modulation, the pulse-repe-

tition frequency or the sampling rate is chosen to be slightly greater than

the Nyquist rate (i.e., greater than twice the highest frequency component)

of the analog signal. In delta modulation, on the other hand, the sampling

rate is purposely chosen to be much greater than the Nyquist rate. The

reason for such a choice in the latter case is to increase correlation between

adjacent samples derived from the information-bearing analog signal and

thereby to simplify the physical implementation of the delta modulation

proces^. The distinguishing feature between pulse-code modulation and

differential pulse-code modulation is that in the latter case, additional

circuitry (designed to perform linear prediction) is used to exploit the

correlation between adjacent samples of the analog signal so as to reduce

the transmitted bit rate.

Figure 5.1 summarizes the comparison between delta modulation, pulse-

code modulation, and differential pulse-code modulation in the context of

two important system features: circuit complexity , and transmitted bit rate.

The bit rate refers to the rate at which bits (binary digits) constituting the

digital version of an analog information-bearing signal are transmitted over

the communication channel.

Pulse-code modulation is usually viewed as a benchmark against which

other methods of digital pulse modulation are measured in performance

and circuit complexity. It is therefore appropriate that 
we 

begin our study

of digital pulse modulation by considering the operations involved in pulse-

code modulation, which we do in the next section.
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Figure 5,11

Diagrammatic comparison of the three basic forms of digital pulse modulation.

............. 5.2 PULSE-CODE MODULATION

Pulse-code modulation' WCM) is complex in the sense that the message

signal is subjected to a great number of operations. The essential operations

in the transmitter of a PCM system are sampling, quantizing, and encoding,

as shown in Fig. 5.2. The quantizing and encoding operations are usually

performed in the same circuit. A hich is called an unalog-to-digital converter.

The essential operations in the recei% er are regeneration of impaired signals,

decoding, and demodulation of the train of quantized samples. These op-

erations are usuall^ performed in the same circuit, \k hich is called a digital-

to-analog conierter. At intermediate points along the transmission route

from the transmitter to the receiver, regenerative repeaters are used to

reconstruct (regenerate) the tran
s
mitted sequence of coded pulses in order

to combat the accumulated effects of ^ignal distortion and noise.

Quantizing refers to the use of a finite set of amplitude levels and the

selection of a level nearest to a particular sample value of the message

signal as the representation for it. This operation, combined with sampling,

permits the u ge of codedpulses for representing the message signal. indeed,

it is the combined use of quantizing and coding that distinguishes pulse-

code modulation from analog modulation techniques.

In the next three sections. we discuss the operations of sampling, quan-

tizing, and coding, in that order.

'Pulse-code modulation is the oldest method for analog-to-digital conversion. It was

invented by Reeves in 1937. For a historical account of this invention, see Reeves

(1975).
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PCM

cor,ti-O.- __'.	 Lo^ pass	 Quantizer -*	 Encoder	 wit e
time 

r"e".9e	 fifte,

Transmitter

(a)

Distorted	
Regenerated

	

PCM	
— — — — — — — -	 PcM

.&e
wa^e

Transmission path

(b)

Inp.t ­0- 
Regeneration	 Decoder	 Destination

ci rcuit

Receiver

Figure 5.2

The basic elements of a PCM system. (a) Transmitter. (b) Transmission path.

(c) Receiver.

............. 5.3 SAMPLING

The sampling operation is performed in accordance with the sampling

theorem. Specifically, we may state the sampling theorem for band-limited

signals of finite energy in two equivalent parts (see Section 2.7):

I . A band-limited signal of finite energy, which has no frequency comP o

-nents higher than W hertz, is completely described by specifying the values

of the signal at instants of time separated by 112W seconds.

2. A band-limited signal of finite energy, which has no frequency compo-

nents h igher than W hertz, may be completely recovered from a knowl-

edge of its samples taken at the rate of 2W per second.

Part I of the sampling theorem is exploited in the transmitter; part 2 of

the theorem is exploited in the receiver. The sampling rate 2W is called

the Nyquist rate, and its reciprocal 1/2W is called the Nyquist interval.

The derivation of the sampling theorem, presented in Section 2.7, was

based on the assumption that the message signal of interest is strictly band-

limited. In practice, however, the amplitude spectrum of the signal ap-

proaches zero asymptotically as the frequency approaches infinity, as il-
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lustrated in Fig. 5.3a. This factor gives rise to an effect called aliasing or

fold-over, which refers to a high-frequency component in the spectrum of

the message signal apparently taking on the identity ota lower frequency

in the spectrum of a sampled version of the signal.

The aliasing effect is illustrated in Fig. 5.3b. This figure shows the mes-

sage spectrum and two frequency-shifted replicas of it ^ one replica is shifted

to the right by the sampling rate f, = 2W, and the other replica is shifted
to the left by f, These replicas are manifestations of the periodic spectrum

that results from sampling the message signal at the rate f,; see Section

2.7. Inspection of the spectrum of the sampled signal, which is the sum of

the message spectrum and its frequency-shifted replicas, shows that we are

no longer able to recover the original message spectrum without distortion,

owing to the presence of aliasing.

The presence of aliasing results in signal distortion, To combat the effects

of aliasing in practice, we use two corrective measures:

1. Prior to sampling, a low-pass pre-alias filter is used to attenuate those

high-frequency components of the signal that lie outside the band of

interest.

2. The filtered signal is sampled at a rate higher than the Nyquist rate.

Figure 5.4 is the block diagram of a system for performing the sampling

process. The low-pass pre-alias filter is included at the input of the sampling

system, in accordance with point 1. The sampling rate is determined in

accordance with point 2 by setting the pulse repetition frequency f, of the

Message

spectrum

_W 0	 W	
f

(a)

Spectrum of	
Replica Of	

Replica o

Replica of message	

sampled signal	
message 

s 

pectrum	
t message

spectrum shifted

spectrum shifted	 to the right by the

to the left by the	
,am 

piing rate f,

sampling rate f.

I
f

W 0 W

(b)

Figure 5.3

The aliasing effect (a) Message spectrum. (b) Spectrum of sampled signal.
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Message
:nal	 -pass
	

Sample-and- hold	 Sampled
I ^a Ss^	

- 

signalpz^^ .1 ias	 circuit

t.,

Sig ;T_^filter

Timing pulse

generator

Figure 5.4
Practical sampling circuit arrangement.

timing pulse generator at a value greater than the Nyquist rate 2W, where

W is the pre-alias filter bandwidth.

SAMPLE-AND-HOLD CIRCUIT

The generation of samples is actually performed by 
a functional block

termed the sample-and-hold circuit 
in Fig. 5.4. This circuit produces flat-

top samples rather than the idealized instantaneous samples as postulated

by the sampling theorem. Basically, the sample-and-hold circuit consists

of two field-effect transistor (FET) switches and a capacitor connected

together as in Fig. 5.5a. The "sampling switch" is closed briefly by a short

pulse applied to gate G, of one transistor. The capacitor is thereby quickly

charged up to a voltage equal to the instantaneous sample value of the

incoming signal. It holds the sampled voltage until discharged by a pulse

applied to gate G, of the other transistor. The output of the sample-and-
hold circuit thus consists of a sequence of flat-top samples, as depicted in

Fig. 5.5b.

PULSE-AMPLITUDE MODULATION

The sequence of flat-top samples depicted as s(t) in Fig. 5.5b represents

a pulse-amplitude modulated wave. In pulse-amplitude modulation (PAM),

the amplitudes of regularl ' y 
spaced rectangular pulses vary with the instan-

taneous sample values of an analog message signal in a one-to-one fashion.'

^Pulse-amplitucle modulation is one basic type of analog pulse modulation. There

are two other basic types of analog pulse modulation: pulse-duration modulation

a nd pulse-position modulation. In pulse-duration modulation (PDM), the samples 
Of

the message signal are used to vary the duration of the individual rectangular

pulses. This form of modulation is also referred to as pulse-width modulation of

pulse-length modulation. In pulse-position modulation
( PPM) the position of a

pulse relative to its unmodulated time of occurrence is varied in accordance with

the message signal. For a detailed discussion of analog pulse modulation

techniques, see Carlson (1986, Chapter 10) or Black 
(1953).
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,b)

Figure 5.5

(a) Sample-and-hold circuit. (b) Flat-top samples.

The waveform denoted b y s(t) in Fig. 5.5b befits this definition exactiv.

Note that in PAM the carrier wave consists of a periodic train of rectangular

pulses, and the carrier frequency (i.e., the pulse repetition frcquenc^) is

the same as the sampling rate.

For a mathematical representation of the PAM wave s(t), we may " rite

S(t)	 g(nTjh(t — nT,)	 (5.1)

The term h(t) is a rectangular pulse of unit amplitude and duration T,

defined as follows (see Fig. 5.6a)

	

1	 0 < t < T

h (t)	 j	 t = 0, t = T	 (5.2)

	

10,	 otherwise
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'Me term g(nT,) is the value of the input signal g(t) at time t = nT,. The

instantaneously sampled version of the signal g(t) is given by

00	 &T,)6(t — nTJ	 (5.3)

Convolving g6(t) with the pulse h(t), we get

g,(t) J^- h(t)	
E 

g,(r)h(t — r) dr

g(nT,)6(T	 nT,)h(t	 r) dr

g(nT,)	 6(-r	 nT,)h(t

Using the sifting property of the delta function, we thus obtain

g^(t) -^j- h(t)	 g(nT,)h(t — nTj	 (5.4)

Therefore, from Eqs. 5.1 and 5.4 it-follows-that s(t) is mathematically

equivalent to the convolution of g6(t), the instantaneously sampled version

of g(t), and the pulse h(t), as shown by

s(t) = gj (t) J^- h(t)	 (5.5)

Taking the Fourier transform of both sides of Eq. 5.5 and recognizing

that the convolution of two time functions is transformed into the multi-

plication of their respective Fourier transforms, we get

S(f) = G6(f)H(f)	 (5.6)

where S(f ) = F[s(t)], Gj (f ) = F[g,(t)], and H(f) = F[h(t)]. In Section

2.7 we showed that instantaneous sampling of the time function g(t) in-

troduces periodicity into the spectrum, as described in Eq. 2.131. This

equation is reproduced here in the form

G6(f) = f,	 G(f — -f,)	 (5.7)

where f, = 11T, is the sampling rate. Therefore, substitution of Eq. 5.7

into 5.6 yields

SM = f,	 G(f — mf,)H(f)	
(5.8)

where Mf) = Fle(tll.
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Figure 5.6
(a) Rectang 

u 
tar pulse h(t). (b) Spectrum H(f)

Finally, suppose that g(t) is strictly band-limited and that the sampling

rate f, is greater than the Nyquist rate. Then. passing s(t) through a low-
pass reconstruction filter, we find that the spectrum of the resulting filter
output is equal to G(f)H(f). This is equivalent to passing the original
analog signal g(t) through a low-pass filter of transfer function H(f).

From Eq. 5.2 we find that

H(f ) = T sinc(f T) exp( —j7rf T)	 (5.9)

which is plotted in Fig. 5.6b. Hence, we see that by using pulse-amplitude
modulation to represent an analog message signal we introduce amplitude
distortion as well-as a delay of T/2. This effect is similar to that caused by
the finite size of the scanning aperture in television and facsimile. Ac-
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Sampled	 econstructed
message signal	 Low-pass	 4ssage signal
---------------- 0	 interpolation	 Equalizer

filter

Figure 5.7
Block diagram of reconstruction circuit.

cordingly, the distortion caused by the use of flat-top samples in the gen-

eration of a PAM wave, as in Fig. 5.5b, is referred to as the aperture effect.

EXERCISE I What happens to the transfer function H(f )/ T of Eq. 5.9
as the pulse duration T approaches zero?

RECONSTRUCTION

Since sampling of the incoming message signal is the first basic operation

performed in a PCM transmitter, reconstruction of the message signal is
the final operation performed in the PCM receiver. Figure 5.7 is a block

diagram of the circuitry used to perform this reconstruction. It consists of

two components connected in cascade. The first component is a low-pass

interpolation filter with a bandwidth that equals the message bandwidth W.

The second component is an equalizer that corrects for the aperture effect

due to flat-top sampling in the sample-and-hold circuit. The equalizer has

the effect of decreasing the in-band loss of the interpolation filter as the

frequency increases in such a manner as to compensate for the aperture

effect. Ideally, the amplitude response of the equalizer is given by

I	
—	 I	

— I	 7rf T

H(f)j T sinc(f T) — T _^n_(,,f T)

where H(f) is the transfer function defined in Eq. 5.9. The amount of
equalization needed in practice is usually small.

...........................................................................................................................
EXAMPLE I

At f = f^12, 
which corresponds to the highest frequency compon ent of

the message signal for a sampling rate equal to the Nyquist rate, we find
from Eq. 5.9 that the amplitude response of the equalizer normalized to
that at zero frequency is equal to

1	 (11:12)( TIT,)

sinc(O.5T/T,)	 sinj(;z/2)T/TjJ
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Duty cycle TIT,

Figure 5.8
Normalized equalization (to compensate for aperture effect) plotted versus T/T..

where the ratio TIT, is equal to the duty cycle of the sampling pulses. In

Fig. 5.8 this result is plotted as a function of TIT,. Ideally, it should be
equal to I for all values of TIT,. For a duty cycle of 10%, it is equal to
1.0041. It follows therefore that for duty cycles of less than 10% the ap-
erture effect becomes negligible.

...................................................................................................................

........... 5.4 QUANTWING

A continuous signal, such as voice, has a continuous range of amplitudes
and therefore its samples have a continuous amplitude range. In other
words, within the finite amplitude range of the signal we find an infinite
number of amplitude levels. It is not necessary in fact to transmit the exact
amplitudes of the samples. Any human sense (the ear or the eye), as
ultimate receiver, can only detect finite intensity differences. This means
that the original continuous signal may be approximated by a signal con-
structed of discrete amplitudes selected on a minimum error basis from an
available set. The existence of a finite number of discrete amplitude levels
is a basic condition of PCM. Clearly, if we assign the discrete amplitude
levels with sufficiently close spacing, we may make the approximated signal
practically indistinguishable from the original continuous signal.

The conversion of an analog (continuous) sample of the signal into a
digital (discrete) form is called the quantizing process. Graphically, the

quantizing process means that a straight line representing the relation be-
tween the input and output of a linear continuous system is replaced by a

staircase characteristic, as in Fig. 5.9a. The difference between two adjacent

, discrete values is called a quantum or step size. Signals applied to a quan-

fizer, with the input—output characteristic of Fig S.9a, are sorted into
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The quantizing principle. (a) Quantizing characteristic. (b) Characteristic of errors in
quantizing. (c) A quantized signal wave and the corresponding error curve. This
figure is adapted from Bennett (1948) by permission of AT and T
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amplitude slices (the treads of the staircase), and all input signals within
plus or minus half a quantum step of the midvalue of a slice are replaced

in the output by the midvalue in question.
The quantizing error consists of the difference between the input and

output signals of the quantizer. it is apparent that the maximum instan-
taneous value of this error is half of one quantum step, and the total range
of variation is from minus half a step to plus half a step. In part b of Fig.

5.9 the error is shown plotted as a function of the input signal. In part c
of the figure typical variations of the quantizer input, the quantizer output,
and the difference between them (i.e., the quantizing error) as functions

of time are indicated.
A quantizer having the input-output amplitude characteristic of Fig.

5.9a is said to be of the midtread type, because the origin lies in the middle

of a tread of the staircase-like graph. According to this characteristic, the
quantizer output may be expressed as iA, where i = 0, ± 1, ±2, - - . I ± K.

These discrete amplitude values of t ' he quantizer output are called repre-

sentation levels. A quantizer of the midtread type has an odd number of

representation levels, as shown by

L = 2K + 1	 (5.10)

The dynamic range or peak-to 
I

-peak excursion of the qua1trizer input is LJ--

One half of this excursion defines the absolute value o. f the
. 
overload level

of the quantizer. Clearly, the amplitude of the quantizer input must not

exceed the overload level; otherwise, overload distortion results.

In the quantizer example illustrated in Fig. 5.9a, the step size J equals

1; the integer K is 6; and the number of representation levels L is 13. The

corresponding absolute value of the overload level is 13/2.

OUAN71ZING NOISE

Quantizing noise or quantizing error is produced in the transmitting end

of a PCM system by rounding off the sampled values of a continuous message

signal to the nearest representation level. 
We assume a quantizing process

with a uniform step size denoted by I volts, so that the representation

levels are at 0, ±A, ±2A, ±3A . . . . . Consider a particular sample at the

quantizer input, with a* n amplitude that lies in the range iA — (1/2) to

i-4 + (Al2), where i is an integer (positive or negative, including ze .
to)

and iJ 
defines the corresponding quantizer output. We thus have a region

of uncertainty 
of width A, centered about iA, as illustrated in Fig. 5.10.

Let q, denote the value of the error produced by the quantizing process-
Then the amplitude of the sample at the quantizer input is iJ + q,. It. is

apparent that with a random input signal, the quantizing error q e varies

randomly within the interval —Al2 -- q, -- J/2.	
-)n

When the quantization is fine enough (sa ,N, the number of representatic

levels is greater than 64), the distortion produced by quantizing noise affects
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Figure 5.10

Illustrating the quantizing error %.

the performance of a PCM s ystem as though it were an additive indepen-
dent source of noise with ze'ro mean and mean-square value determined
b% the quantizer step size J. The reason for this is that the power spectral
de nsit\ of the quantizing noise in the quantizer output is practicall

y in-
dependent of that of the message signal oNer a wide range of input signal

amplitudes. Furthermore, for a message signal of a root mean-square value

that is large compared to a quantum step, it is found that the power spectral

densit) of the quantizing noise has a large bandwidth compared with the

si2nal bandwidth. Thus, with the quantizing noise uniformly distributed

throughout the signal band, its interfering effect on a signal is similar to

that of thermal noise. (Thermal noise is discussed in Appendix 
C.)

We say that the quantizing noise is unifortn ŷ distributed w hen the error
may take on a sample value q, anywhere inside the interval ( — J/2, J/2)
with equal likelihood. Under this assumption, we may determine the 

av-
eragepower of the quanfiZing noise b^ averaging q 2 , the squared quantizing
error. over all possible values of q_ We may thus express the average
power of quantizing noive, P., as follows

P"	 q2 dq,

,42

12	 (5.11)

Thus, the average power of quantizing noise grows as the square of the
step size A. 

This is perhaps the most often used result in quantization.
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Length

n

TABLE 5.1

Number of

Representation Levels

L

32

Signal-to-Quantizing

Noise Ratio, dB

31.8
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The step size zl is under the designer 's control. Hence, the signal dis-

tortion due to quantizing noise can be controlled by choosing the step size

A small enough. as illustrated in the following example.

EXAMPLE 2 SIGNAL-TO-QUANTIZING NOISE RATIO FOR

SINUSOIDAL MODULATION

Consider the-special case of a full-load 
sinusoidal nodulating wave of

amplitude'A,_ which uses all the representation levels provided. The av-

crage signal power is A", 12. The peak-to-peak excursion of the quantizer

input is 2A,,,. because the modulating AaNe sN%invs betAeen — A, and A_

Assuming that the number of representation levels equal ,., L. the quantizer

step size is

2 A,
(5. 12)

Therefore Eq.	 I gi%es the a^erage quantizin g noise power as

45.13)
3L-'

for a
Thus the output signal-ro-quantizing noise rutio of the PCNI S\Stern,

full-load test tone, is

A

2

Expressing the signal -to-quant izi ng noise ratio in decibels. we get

10 log,,,(SNR),, = 1,8 + 20 lo g , L

Hence, the. output si g nal-tO-WiSe ratio Of a PCN4 s\stem in decibels, due

to quantizing noise. increa 

I 
ses logarithinicalk with the number of repre-

sentation levels. L.

(5.14)

(5. 1 5)

64	
37.8

128	 7	 43.8

256	 8	 49.8
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For various values of L, the corresponding values of signal-to-quantizing
noise ratio are as given in Table 5.1. The second column of this table
corresponds to the binary code word length, an issue that is considered in
Section 5.5.

..........................................................................................................................

EXERCISE 2 A sinusoidal signal is transmitted using PCM. 'Me output
signal-to-quantizing noise ratio is required to be 55.8 dB. Find the minimum
number of representation levels L required to achieve this performance.

COMPANDING

The quantizing process based on Fig. 5.9a uses a uniform separation be-
tween the representation levels. In certain applications, however, it is
preferable to use a variable separation between the representation leNels.
For example, the ratio of voltage levels covered by voice signals, from the
peaks of loud talk to the weak passages of weak talk, is on the order of
1000 to 1. The excursions of the voice signal into the large amplitude ranges,
which occur in practice relatively infrequently, can be taken care of by
using a nonuniform quantizer. Such a quantizer is designed so that the step
size increases as the separation from the origin of the input-output ampli-
tude characteristic is increased. We thus find that the weak passages, which
need more protection, are favored at the expense of the loud passages. In
this way, a nearly uniform percentage precision is achieved throughout the
amplitude range of the input signal, with the result that fewer steps are
needed than would be the case if a uniform quantizer were used.

The use of a nonuniform quantizer is equivalent to passing the baseband
signal through a compressor and then applying the compressed signal to a
uniform quantizer. A particular form of compression law that is used in
practice is the so-called p-law defined by

log(' + ulud
log(I + 11)

where u, and v, are normalized input and output voltages, and P is a positive
constant. Figure 5.1 la plots the u-Jaw for vary ing p. The case Of uniform
quantization corresponds to p = 0. For a given value of p, the reciprocal
slope of the compression curve, which defines the quantum steps, is

dlv,l	 log(I + u)

dlv,l	 lu	
(I + 'U l v d) 	(5.17)

We see therefore that the u-law is neither strictly linear nor strictly loga-
rithmic, but it is approximately linear at low input levels corresponding to
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Figure 5.11

Compression lav^s. (a) l-law. (b) A-law.

p ju t ' << 1, and approximately logarithmic at high input levels corresponding

to /1 1 V, I >

Another compression law that is used in practice is the so-called A-law

defined by

— 
Alvj	

0	 V ll -- 
1

I + logA	 A	
(5.18)

1 + log(Alvd)	 lull

I + logA	
A

which is shown plotted in Fig. 5. 1 lb Practical values of A (as of p in the

ji-law) tend to be in the vicinity of 100 The case of uniform quantization

corresponds to A = 1. The reciprocal slope of this compression curve is

I + logA	

0 -- I V , I -- 
I

dju,j	 A	

I	

A	
(5.19)

dlv,l	
(I + logA)lu l l	 — ^ I V, I

A

Thus the quantum steps over the central linear segment. which have

a dominant effect on small signals, are diminished by the factor

A I(I + logA). This is typically about 25 
dB in practice, as compared with

uniform quantization.

To restore the signal samples to-their correct relative levels, we must,

of course, use a device in the receiver with a characteristic complementary
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to the compressor. Such a device is called an e.irpander. Ideally, the

compression and expansion laws are exactly inverse so that, except for the

effect of quantization, the expander output is equal to the compressor input.

The combination of a compressor and an expander is called a compander.
In actual PCM systems, the companding circuitry does not produce an

exact replica of the nonlinear compression curves show n in Fig. 5.11. Rather,
it provides a pieceivise linear approximation to the desired curve. By using'
a large enough number of linear segments, the approximation can approach

the true compression curve very closely. This form of approximation is
illustrated in Section 5. 11.

.......... 5.5 CODING

In combining the processes of sampling and quantizing, the specification

of a continuous message signal becomes limited to a discrete sequence of
val ues, but not in the form best suited to transmission over a line or radio

path. To fully exploit the advantages of sampling and quantizing, we require
the use of an encoding process to translate the discrete sequence of sample

values to a more appropriate form of signal. Any plan for representing

each element of this discrete set of values as a particular arrangement of
discrete events is called a code. One of the discrete events in a code is
called a code eleineni or sYnibol. For example, the presence or absence of

TABLE 5.2

Ordinal Number of
Representation Level

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Level Number Expressed

as Sum of Powers of 2

2 1 + 21

+ 20
12 +

22 +	 + 2"

2'	 +

+

13	 + 2' + 2"

2 ^ + 22

2 1 + 2`	 + 2u

2 1 + 22 + 2'

21 + 2' + 2' + 2-

Binary Number

0000

000 1

00 1 0

00 1 1

0 1 00

0 1 0 1

0 1 1 0

0 1 1 1

1 000

1 00 1

1 0 1 0

1 0 1 1

1 100

I 1 0 1

1 1 10

I I I I
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a pulse is a symbol. A particular arrangement of symbols used in a code

to represent a single value of the discrete set is called a code word or

character.

In a binary code, each symbol may be either of two distinct values or

kinds, such as the presence or absence of a pulse. The two s^mbols of a

binary code are customarily denoted as 0 and 1. In a ternar ' v code, each

symbol may be one of three distinct values or kinds. and so on for other

codes. However, the maximurn advantage over the effe(is of noise in a

transmission medium is obtained b ' ^' using a binarY code, because a binarl,

sYmbol withstands a relativelly high level of noise and 
is easY to re^encraie.

Suppose that, in a binary code, each code word consists of n bit.%: the

bit is an acronym for binary digit. Then. using Such it code. we may rep-

resent a total of 2' distinct numbers. For example, it sample quantized into

one of 128 levels may be represented by 
a 7-bit code Aord. There are

several ways of establishing a one-to-one correspondence het'Accn rcpre-

sentation levels and ,code words. A convenient one is to express the ordinal

number of the representation level its it binar% number. In the hinar,,^

number system, each digit has a placc-%aluc that is it pok^cr of 2. as 11ILls-

trated in Table 5.2 for the case of n = 4.

............................................................................................ . .............. . ............

EXAMPLE 3 SIGNAL-TO-OUANTIZING NOISE RATIO FOR 
SINUSOIDAL

MODULATION (CONTINUED)

In this example. we reformulate the Output signal-to-quarnizin g noise ratio

of Eq. 5.15 for a PCNI systern operatinii ^%ith 
a tull-lojd test tone. This

equation is reproduced here for convenience

lo,-, , 1_ dB10 Iog j jSNR),, = 1 8 + 2

^%steni. As-here L is the number of representation ic% cls u,ed in the

surning the u
s e of Lin n-bit hinar^ code " ord . %%c rnaN define L for it

quantizer of the rnidtread t^pe as

L	 2,,	 1

Accordingly. we ma^ redefine the output signal-to-quantizing noise ratio

in terms of the code word length n its

10 log (SNR). ^ (1 .8 , 6n), dB

For various values of 11, the corresponding %alues 
of sienal-to-quantiLing

noise ratio are as gi
v
en in Table 5.1. The formula of Eq, 5. 2 1 states that

each bit in the code word of a PCN1 s^stein contributes 6 
dB to the output

signal-to-quantiziniz noise ratio
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........................................................................................................

EXAMPLE 4 TRADEOFF BETWEEN CHANNEL BANDWIDTH AND
SIGNAL-TO-OUAN77ZING NOISE RATIO

We may develop further insight into the performance of -a PCM system by
examining the relat ionship between the si gnal-to-quantizing noise ratio and
tra

nsmission bandwidth requirement of a binary PCM system. F
or the

purpose of this evaluation, we will again consider 'the use of a sinusoidal
modulating wave.

From our discussion of the sampling process. we have seen that a mes-
sage signal of bandwidth W requires a minimum sampling rate of2W. With
each signal sample represented by an it-bit code word, the bit duration T,
hasa maximum value of I 2nW. In Section 6.4, it is shown that the channel
bandwidth B required to transmit a pulse of this duration is given 

by

B = KnW
(5.22)

where K is a constant with a value between I and 2.
Expressing the output signal-to- quantizing noise ratio simply as a ratio,

we have from Eqs. 5.14 and 5,20:

3
(SNR),,	 - (41)

2	 (5.23)

Accordingly, using Eqs. 5.22 and 5,23, we get

3
(SNR),,	 (411*4)	 (5.24)2

This relation shows that a PCM sNstem is capable of improving the out-
Put signal-to-noise ratio exponentially with the bandwidth expansion ra-
tio B! W.

..........................................................................................................................

EXERCISE 3 A television ( TV) signal with a bandwidth of 4.2 MHz is
transmitted using binary PCM. The number of representation levels is 512.Calculate the following parameters:

(a) The code word length.
(b) The final bit rate.
(0 The transmission bandwidth, assuming that K = 2 in Eq. 5.22.

EXERCISE 4 The frequency content of a studio-quafity audio signal that
we like to hear extends from 20 Hz to 20 kHz. For P

rofessional use, the
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signal is sampled at the rate of 48 x 103 samples per second. The standard

code word used for conversion into a PCM format is 16 bits per sample.

What is the final bit rate for digital storage of the signal?

DIGITAL FORMATS

To send the encoded digital data over a channel, we require the use of a

format or ' waveform for representing the data.' In this context. we ha
,.e a

number of formats available to us. Figure 5.12 
illustrates some commonly

used ones for the example of binary sequence 0110100011 
Specifically,we

have illustrated the following formats:

(a) Symbol I is represented by 
transmitting a pulse of constant ampli-

tude for the duration of the symbol, and symbol 0 is represented 
by

switching off the pulse, as in Fig. 5.12a. This type of format is referred

to as on-off or unipolar signaling.

(b) Symbols I and 0 are represented by 
pulses of equal positive and

negative amplitudes, as in Fig. 5.12b. 
This type offormat is referred to

as polar signaling. .

(c) A rectangular pulse (half-symbol wide) is used for a 
I and no pulse

for a 0-as in Fig. 5.12c. This type of format is called 
return-to-zero (RZ)

signaling.

(d) Positi ,
,e and negative pulses (of equal amplitude) are used alter-

'I d. This
nately for symbol 1. and no pulse for symbol 

0, as in Fig. A-

type of format is called bipolar signaling. 
A useful propert\ of this

method of signaling is that the po%ker spectrum of the transmitted signal

has no dc component and relatiNely in5ignificant lo"-frequency com-

portents.

(e) Svmbol I is represented by 
a positi%e pulse follo\ked b\ a negati^e

-)ol w ide
pulse. with both pulses being of equal amplitude and half-sN

.ml:	
1.)

s are reversed. as in Fie. 5.
for symbol 0. the polarities of these pulse

This'type of format is called a 
sptit-phase or Manchester code. It also

suppresses the dc component and has relatively insignificant low-fre-

quency components.

Note that the polar signal N% aveform of Fig. 5. l2b and the Manchester

code of Fig. 5.12e are examples ot
- 
nonreturn-to-zero (NRZ) signaling.

The binary code is a special case of M-ar ' Y code. In practice, %\ e usually

find that M, the number of sNmbols in the code, is an integer power of

2. Then, each code word in the Al-ary code carries the equi\alent in-

formation of log -,M bits. Consider. for example. a 
four-level (quarter-

nary) code (i.ez, M = 
4). In such a code, we may identify four distinct

'Digita l formats (wa y
eforms) are also referred to in the literature as line or

t,ansm,ssion codes,
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Binary data
0	 1	 1 0	 1	 0	 0	 0	 1	 1

0 

1 

Lj___]	
(a)

01

(b)

0 1 n F1 n	 n n
I	

(C)

0	 r_1	 r-
(d)	

I	 I

0 M E

01
Tirne­a-

rT i,

Figure 5.12
Electrical representations of binary data. (a) On-off signaling. (b) Polar signaling.
W Return-to-zero signaling. (d) Bipolar signaling. (e) Split-phase or Manchester
code. M four-level Gray coding.

dibits (pairs of bits). In Table 5.3a, we show two arrangements for the
four possible dibits together with their individual electrical represen-
tations. In particular, the dibits are shown in both their natural code
and Gray code. Using the notations of the Gray code in Table 5.3a, the
binary sequence 0110100011 is thus represented by the waveform shown
in Fig. 5.12f. To obtain this waveform, the given sequence is viewed
as a new sequence of dibits, namely, 01 ,10,10,00,11, and each clibit is
represented in accordance with the Gray code of Table 5.3a.
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TABLE 5.3 Examples of Natural and Gray Codes
(a) Four-level code
Code Word	 Electrical
Number	 Natural Code	 Gray Code	 Representation

3
0	 00	 00	 - 2

1	 01	 01	 - 2

1
2	 10	 11	 + 2

3
3	 11	 10	 + 2

(b) Eight-level Code
Code Word	 Electrical
Number	 Natural Code	 Gray Code	 Representation

7
0	 000	 000	 i

5
1	 601	 001	 2

3
2	 010	 Oil	 2

3	 Oil	 010	 2
1

4	 100	 110	 + 2

3
5	 101	 +

5
6	 110	 101	 +	

2
7

7	 lit	 100	 +	
2

The distinguishing feature of a Gray code' is that there is a one-bit
change as we move from one code word to another. This is well illus-
trated in the two Gray codes shown in Table 5.3 for M = 4,8. Note
that in Table 5.3b for M = 8, for example, the rule of a one-bit change
per transition applies not only to all the transitions for code word 0 to

'The origin of Gray codes goes back to the development of the rotary form of
mechanical encoders known as shaft encoders. The use of Gray encoding makes it
possible for electromechanical arrangements to change from one code word to
another by changing the state of a single digit. With natural encoding, on the other
hand, two or more digits may be required to change state simultaneously, which is
difficult for electromechanical devices.
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code word 1. from code word I to code word 2. and so on up to the
transition from code word 6 to code word 7, but also to the "wrap-
around " transition from code word 7 to code word 0, This wrap-around
fe ature makes a Grav encoder 

cvclic in nature.
The choice of a particular d igital waveform is influenced b ,v the ap-

plication of interest Ne%ertheless. it is highly desirable for a digital
wa%eform to have the following properties:

I. Timing content. 
The transmitted digital wa^cform should have adc-

quate timing content to permit the extraction of clock information
required for the purpose of S ^ nchronizing the receiver to the trans-
mitter.

2 Ruggedness. The "aveform should Possess immunity tochannel noise
and interference for prescribed channel bandwidth' and transmitted
power.

3. Error detection -Pabilif\ - 
The ^kaveform should permit the detection

of errors that ma% occur in the course of 
tr ansmission due to the

presence of channel noise.

4. Maiched poit er spectrion. 
The Power spectral density of the trans-

mitted digital 'Aa^eform should match the frequency r
'esponse of the

channel as closeb, 
as Possible so as to minimize signal distortion.

5. Transpuren(y. The correct tr ansmission of digital data over a channel
should he transparent to the pattern of I's and 

O ' s contained in thedata.

It is for these reasons that "e find. for example. the bipolar format has
become the standard for t ransmitting hinarN encoded PCM data overtelephone channels.

EXERCISE 5 Rank the six d igital waveforms depicted in Fig. 5,12 ini ncreasing order of transm ission bandwidth requirement.

DECODING

The first operation in the receiver is to regenerate (i.e.. reshape and clean
up) 

the received pulses. These clean pulses are then rejjrouped into code

words and decoded (i.e., mapped back) into a quantized PAM signal. The
decoding 

process involves generating a pulse the amplitude of which is the
linear sum of all the pulses in the code 

word. with each pulse weighted by
its place-%alue (2", 2 1 , 2 2 , 2', . . -) in the code.

It is noteworthy that every operation performed in the transmitter of a
PCM 

system. except forthe quantizing opefation. is reversible. Specifically,

the operations of sampling and encoding performed in the 
tr ansmitter arereversed by 

performing decoding and interpolation (in that order) in the
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receiver. On the other hand, quantizing is an irreversible process that

manifests itself by destroying information; once quantizing noise is intro-

duced in the transmitter, there is nothing we can do in the receiver to make

up for the loss of information thereby incurred.

5.6 REGENERA77ON

The most important feature of PCM systems lies in the ability to control

the effects of distortion and noise produced by 
transmitting a PCM wave

through a channel. This capability is accomplished by reconstructing the

PCM wave by means of a chain of 
regenerative repeaters sufficiently close

along the transmission route. As illustrated in Fig. 5.13, three basic func-

tions are performed by a regenerative repeater: 
equalization, timing, and

decision making. The equalizer shapes the received pulses so as to com-

pensate for the effects of amplitude and phase distortions produced by the

transmission characteristics of the channel. - The timing circuitry provides

a periodic pulse train, derived from the received pulses, for sampling the

equalized pulses at the instants of time where the signal-to-noise ratio is

a maximum. The decision device is enabled at the sampling times deter-

mined by the timing circuitry. It makes its decision based on whether or

not the amplitude of the quantized pulse plus noise exceeds a predeter-

mined voltage level. Thus, for example, in a PCM system with on—off

signaling, the repeater makes a decision in each bit interval as to whether

or not a pulse is present. If the decision is "yes" a clean new pulse is

transmitted to the next repeater. If, on the other hand, the decision is

"no," a clean base line is transmitted, In this way, the accumulation of

distortion and noise in a repeater span is completely removed, provided

that the disturbance is not too large to cause an error in the decision-

making process. Ideally, except for delay, the regenerated signal is exactly

the same as the signal originally transmitted. In practice, however, the

regenerated signal departs from the original signal for two main reasons:

1. The presence of transmission noise and interference causes the repeater

to make wrong decisions occasionally, thereby introducing bit errors

into the regenerated signal; we will have more to say on this issue in

Chapter 10.

Disto^t	
Dec,,,:^", I PC

PC

wave

T,­g

­­ 1

Figure 5.13
Block diagram of a regenerative repeater.
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2. If the spac, ng be^ween received pulses deviates from its assigned value,

a jitter is introduJod into the regenerated pulse po , ition, thereby causing
distortion.

............. 5.7 DIFFERENTIAL PULSE-CODE MODULATION

When a voice or video signal is sampled at a rate slightly higher than the

Nyquist rate, the resulting sampled signal is found to exhibit a high cor-

relation between adjacent samples. The meaning of this high correlation

is that, in an average sense, the signal does not change rapidly from one

sample to the next. When these highly correlated samples are encoded, as

in a standard PCM system, the resulting encoded signal contains redundant
information. This means that symbols that are not absolutely essential to

the transmission of information are generated as a result of the encoding

process. By removing this redundancy before encoding, we obtain a more

efficient coded signal.

Now, if we know a sufficient part of a redundant signal, we may infer
the rest. or at least make the most probable estimate. In particular

', if we
know the past behavior of a signal up to a certain point in time, it is possible

to make some inference about its future N alues: such a process is commonly
called prediction. Suppose then a message signal m(t) is sampled at the

rate I IT, to produce a sequence of correlated samples T, seconds apart;
,which is denoted b y f m(n T,)). The fact that it is possible to predict future
% aloes of the signal ;n(t) provides motivation for the differential quantization
scheme shown in Fig. 5.14a. In this scheme, the input to the quantizer is

	

e (n T,) = m (n T, ) — h (n T^)	
(5.25)

which is the difference between the unquantized input sample m(n T,) and

a prediction of it. denoted by rh(nT,). This predicted value is produced by
using a prediction filter with an input, as we will see, that consists of a
qlantized version of the message sample m(nT,). The difference signal
e(nT,) is called a prediction error, since it is the amount by which the
prediction filter fails to predict the input exactly.

By encoding the quantizer output, as in Fig. 5.14a, we obtain a variation
of PCM, known as differential pulse-code modulation (DPCM). It is this
encoded signal that is used for transmission.

The quantizer output may be represented as

	

e. (n T.) = e (n T,) + . q, (n T,)	 (5.26)

-here q,(n TJ is the quantizing error. According to Fig. 5.14a, the quan-
tizer output e.(n TJ is added to the predicted value rh(n T,) to produce the
prediction-filter input

	

-,(nT,) = th(nT,) + e,(nT,)	 (5.27)
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Figure 5.14
DPCM system . ia) Transmitter. 

(b) Receiver.

Substituting Eq. 5.26 in 5.27, we get

n, j, (nTj = ?h(nTJ + e(nTj + q,(nT,)	 (5.28)

However, from Eq. 5.25 we observe that rh(n T,) plus e(n Tj 
is equal to

the incoming message sample ni(n Tj. Therefore, we may re\k rite 
Eq. 5.28

as follows

r?lq(nT,) = -(nT,) + q,(nT,) 	 (5.29)

which represents a quantized version of m(nTj. That is, irrespective of

the properties of the prediction filter, the quantized sample, m,(nT,), at

the prediction filter input, differs from the sample m(nT,) of the original

message signal m(i) by the quantizing error q,(nT,). Accordingly, if the

prediction is good, the average power of the prediction error sequence

fe(nT,)) will be smaller than that of the message sequence (m(nTjj. Hence,



204 DIGrrAL CODING OF ANALOG WAVEFORMS

a quantizer with a given number of le vels can be adjusted to produce a
quantizing error sequence with a smaller average power than would be
possible if the incoming message sequence were quantized directly as in a

standard PCM system.

The receiver for reconstructing the quantized version of the input is

shown in Fig. 5.14b. It consists of a decoder to reconstruct the quantized

error sequence. The quantized version of the original input is reconstructed

from the decoder output using the same prediction filter as used in the

transmitter of Fig. 5.14a. In the absence of transmission noise, we find

that the encoded signal at the receiver input is identical to the encoded

signal at the transmitter ouput. The corresponding receiver output differs

from the original message signal only by the quantizing error incurred as
a result of quantizing the prediction error.

From the foregoing analysis we observe that, in a noise-free environ-

ment, the prediction filters in the transmitter and receiver operate on the

same sequence of samples, (m,(n T,)). It is with this purpose in mind that

a feedback path is added to the quantizer in the transmitter, as shown in
Fig. 5.14a.

The average power of the message sequence Jm(nT,)) is given by

I 
N - I

P_ =	 E m'(n T.)	 (5.30)
N _0

where N is the length of the message sequence. The average power of the
quantizing error sequence fqJnT,)J, also assumed to be of length N, is
given by

I 'V- I

Pq = — E q,'(n T^)	 (5.31)
N _0

We may thus define the output signal-to-quantizing noise ratio of a DPCM
system as

(SNR). = P__	 .	 (5.32)
P,

It is clear that we may rewrite Eq. 5.32 as

(SNR)o = L' ^^' = GP(SNR),
P, P"

where (SNR)Q is the signal-to-quantizing noise ratio defined by

(SNR)Q = E,	
(5.33)

P.,
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and G. is the prediction gain produced by the differential quantization
scheme, defined by

G, = L^	 (5.34)
Pe

The quantity G, when greater than unity, represents the gain in signal-

to-noise ratio that is due to the differential quantization scheme of Fig.

5.14. Now for a given message signal, the average power P, is fixed, so

that G, is maximized by minimizing the average prediction error power

P,. Accordingly, our objective should be to design the prediction filter so

as to minimize P­ while the signal-to-quantizing noise ratio is maintained
constant.

THE PREDICTION FILTER

One approach to specify the nature of the prediction filters in the trans-

mitter and the receiver of the DPCM system shown in Fig. 5.14 is to use

a tapped-delay-line filter as the basis of the design. An advantage of this

approach is that it leads to tractable mathematics, and it is simple to

implement. Thus the predicted value rh(nT,) is modeled as a linear com-
bination of past values of the quantized input as shown by (see Fig. 5.15)

Pth (-T)	 W,m,(nT. — kTJ	 (5.35)

where the tap weights W,, W2, - . . , w^ define the prediction filter coeffi-

cients, dnd p is the order of the prediction filter. Substitution of Eq. 5.35
in 5.25 yields the prediction error

Pe (n T)	 (n T) — Z W, -, (n T, — k T^)	 (5.36)
k-1

4 (. T')

Figure 5.15
Tapped-del8y-line filter used as a prediction filter.
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The mathematical basis for the design of the prediction filter is that of

minimizing the average prediction-error power with respecttothet ap weights

of the filter.'

......... 5.8 DELTA MODULATION

The exploitation of signal correlations in DPCM suggests the further pos-

sibility of oversampling a message signal (i.e., at a rate much higher than

the Nyquist rate) to purposely increase the correlation between adjacent

sampjes of the signal. This would permit the use of a s6ple quantizing

strategy for constructing the encoded signal. Delta modulation (DM), which

is the one-bit (or two-level) version of DPCM, is precisely such a scheme.

In its simple form, DM provides a staircase approximation to the over-

sampled version of an incoming message signal, as illustrated in Fig. 5.16a.

The difference between the input and the approximation is quantized into

only two representation levels, namely, ±6, corresponding to positive and

negative differences. Thus, if the approximation falls below the signal at

any sampling epoch, it is increased by 6. If, on the other hand, the ap-

proximation lies above the signal, it is diminished by 0. Provided that the

signal does not change too rapidly from sample to sample, we find that

the staircase approximation remains within ±6 of the input signal.

Denoting the input signal as m(t) and the staircase approximation as

rri,(t). the basic principle of delta modulation may be formalized in the

following set of discrete-time relations:

e (n TJ. = - (n T.) — -, (n T, — TJ 	 (5.37)

e,(n TJ = J sgn[e(n TJJ	 (5.38)

and

m,(nT,) = m,(nT. — T^) + eq(nT,)	
(5.39)

^The result of this minimization is a set of simultaneous equations, expressed in

matrix form as follows

	

1	 P(TJ	
...	 M p T^	 T.)	

wiP(T.)	 p(pT.	 2 T,)	 p(2 T,)
[p( : T.)

	

p(pT,	 Tj p(pT,	 2 TJ	 P( P, T,)]

Here it is assumed that the ouput signal-to-noise ratio, [SNR),,, is large co ipared to

unity. The parameter p(kT,) is the normalized autocorrelation function of the

prediction filter's input signal for a lag of kT,, as shown by

	

p (k TJ ^ ^^, k 0, 1,	 p
R.(0)

where the subscript M refers to the input. Hence, given the set of autocorretation

functions [R.(kT.), k = 0, 1, . . . , pl, we may compute the prediction filter's tap

weights. For a detailed treatment of prediction filters, see the following books:

Jayant and Noll (1984) and Haykin (1986).
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Figure 5.16
Delta modulation

where T, is the sampling period: e(n Tj is an error signal representing the
difference between the present sample value m(nTj of the input signal
and the latest approximation to it, namely, m(nTj = m q (nT, — Tj; and
eq (nT,) is the quantized version of e(nTj. The quantizer output e,(nT,)
is the desired DM wave for Narying n.

Part a of Fig. 5.16 illustrates the Aay in which the staircase approxi-
mation m,(t) follows variations in the input signal m(r) in accordance with
Eqs. 5.37 through 5.39. and part b of the figure displays the corresponding
binary sequence at the delta modulator output. It is apparent that in a
delta modulation system the rate of information transmission is simply
equal to the sampling rate 1 , T,

The principal virtue of delta modulation is its -,implicity. It may be
generated by applying the sampled version of the incoming message signal
to a modulator that involves a summer, quantizer, and accumulator inter-
connected as shown in Fig. 5.17a. Details of the modulator follow djrectly
from Eqs. 5.37 and 5.39. In particular, the quantizer consists of a hard
limiter with an input—output relation defined by Eq. 5-38, which is depicted
in Fig. 5.18. The quantizer output is applied to an accumulator, producing
the result

m,(nT,) = 6	 sgn[e(iT,)]

e, (i Tj	 (5.40)
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Figure 5.17
DM system. (a) Transmitter. (b) Receiver.

Figure 5.18
input-output characteristic'of quantizer for OM system.
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which is obtained by solving Eqs. 5.38 and 5.39 for nt,(n TJ. Thus, at the
sampling instant nT,, the accumulator increments the approximation by
an amount equal to 6 in a positive or negative direction, depending on the
algebraic sign of the error signal e(n TJ. If the input signal in(n 7,) is greater
than the most recent approximation ih (it T,), a positive increment + (5 is
applied to the approximation. If, on * the other hand, the input signal is
smaller. a negative increment - 6 is applied to the approximation. In this
way, the accumulator does the best it can to track the input samples by
one step at a time. In the receiver, shown in Fig. 5.17b, the staircase
approximation m,(t) is reconstructed by passing the sequence of positive
and negative pulses, produced at the decoder output, through an accu-

mulator in a manner similar to that used in the transmitter. The out-of-

band quantizing noise in the high-frequency staircase waveform nt,(t) is

rejected by passing it through a low-pass filter with a bandAidth equal to

the original message bandwidth.

In comparing the DPCM and DM networks of Fig. 5.14 and 5.17, we
note that they are similar, except for two important differences. namely,

the use of a one-bit (two-level) quantizer in the delta-modulator and the

replacement of the prediction filter by a single delay element.

QUANTIZING NOISE

Delta modulation systems are subject to two types of quantizing error: (I)
slope overload distortion, and (2) granular noise. We first discuss the cause

of slope overload distortion, and then granular noise.

We observe that Eq. 5.40 is the digital equivalent of integration in the

sense that it represents the accumulation of positive and negative incre-
ments of magnitude 6. Also, denoting the quantizing error by q,(nT,), as
shown by,

-,(nT,) ^ -(nT,) + qjnTj	 (5.41)

we observe from Eq. 5.37 that the input to the quantizer is

e (n TJ = in (n T) - in (n T, - TJ - q, (it T, - TJ 	 (5.42)

Thus, except foi the quantizing error q,(n T, - TJ, the quantizer input is
a first backward difference of the input signal, which may be viewed as a
digital approximation to the derivative of the input signal or, equivalently,

as the inverse of the digital integration process. If we consider the maximum

slope of the original input waveform m(t), it is clear that in order for the

quantized sequence fm,(n T,)J to increase as fast as the message sequence

fm(nTJJ in a region of maximum slope of in(t), we require that the con-
dition

:-:- m a x 
I -(,) 1	

(5.43)
T,	 di
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Figure 5.19
Quantizing error in delta modulat,on.

be satisfied. Otherwise, we find that the absolute %aluc of the representation

level j i s too small for the staircase approximation tn,(t) to follow a steep

,egment of the input %kavCforin 
In ( t ) . 'Ar ith the result that in,(t) falls behind

M(l), as illustrated in Fig. 5.19. This condition is called 
slope overload.

and the resultin g quantizing error is called 
slope-overload distortion (noise).

Note that since- the maximum slope of the ' staircase approximation rn,(t)

is fixed bv the Naluc of 0. increases and decreases in ni,(t) tend to occur

alomi strawl-it lines. For this reason. a delta modulator using a fixed 6 is

of
. 
ten referred to as a linear delta modulator.

In contrast to slope-overioad distortion, granular noise occurs when 6

is too larizo: relati%e it) the local slope characteristics of the input waveform

t 1 creb% causing the 
s
tairca

s
e approximation ni,U) to hunt around a

flat scument of the input ^Navcform; this phenomenon is also

illustrated in Fik:. 5. 19, The granular noise is analogous to quantizing noise

in a PCM s^stcm.

^Nc thus see that there is it need to ha^e a large rJ so as to accommodate

a %Nide dNnamic ram_,e. Ahercas a small o i s required for the accurate

rcpresentation ot reI Lj tj % eIN lo\N-lc\cl signals. It is therefore clear that the

choice of the optimum oJ tha t minimizes the mean-square value of the

quantizin g error in linear delta modulation \&ill be the result of a compro-

mise hemeen slope overload distortion and granular noise.

EXERCISE 6 From Fig. 5.18 we see that the step size of a linear delta

modulator is

'j = 26

What is the average power of the granular noise expressed in terms of 6?

........... S.9 DISCUSSION

In this section we discuss the advantages and disadvantages of DPCM and

DNI. compared A ith standard PCM. for the encoding of voice and television

si2nals.
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The -relative" behavior of standard PCM and DPCM systems is much

the same with either uniform or logarithmic quantizing, because the rep-

ertoire of signals consists of waveforms similar in character, but differing

in mean level. In the case of voice signals, it is found that the signal-to-

quantizing noise advantage of DPCM over standard PCM is in the neigh-

borhood of 4-11 dB. The greatest improvement occurs in going from no

prediction to first-order prediction, with some additional gain resulting

from increasing the order of the prediction filter up to 4 or 5, after which
little additional gain is obtained. Since 6 dB of quantizing noise is equivalent
to I bit per sample, by virtue of Eq. 5.21, the advantage of DPCM may
also be expressed in terms of bit rate. For a constant sign al-to- quantizing
noise ratio, and assuming a sampling rate of 8 kHz, the use of DPCM may
provide a sa

v
ing of about 8-16 kilobits per second (I to 2 bits per sample)

over standard PCM.

In the case of television signals, DPCM provides more of an advantage

for high-resolution television systems than for low-resolution systems. For

monochrome entertainment television, DPCM provides a signal-to-quan-

tizing noise ratio of approximately 12 dB higher than standard PCM. For

a constant signal-to-quantizing noise ratio, and assuming a sampling rate

of 9 MHz, this represents a saving of about 18 megabits per second (2 bits
per sample) by DPCM over PCM.

Turning next to delta modulation, subjective voice tests and noise mea-

surements have shown that a DM system operating at 40 kilobits per second

is equivalent to a standard PCM system operating with a sampling rate of

8 kHz and 5 bits per sample. At lower bit rates, DM is better than the
standard PCM (the latter still using 8-kHz sampling and a reduced number

of bits per sample), but at higher bit rates PCM is superior to DM. The

quality of 5-bit PCM is low for most purposes in telephony. For telephone

quality voice signals, it has become conventional to use 8-bit PCM. Equiv-

alent voice quality with DM can be obtained only by using bit rates much
higher than 6.4 kilobits per second.

Also, in a delta modulation system, operating on voice signals under

optimum conditions, the SNR is increased by 9 dB by doubling the bit
rate. By comparison, in the case of standard PCM, we achieve a 6 dB
increase in SNR'for each added bit. For example, by doubling the bit rate
from 40 to 80 kilobits per second, the SNR is increased by 9 dB using DM.
On the other hand, if PCM is employed and the bit rate is similarly doubled
by increasing the number of bits per sample from 5 to 10 (keeping the
sampling rate fixed at 8 kl­f^), the SNR is improved by 30 dB. Thus the
increase of SNR with bit rate is much more dramatic for PCM than for

DM.

The use of delta modulation is therefore recommended only in certain

special circumstances: (1) if it is necessary to reduce the bit rate below 40

kilobits per second and limited voice quality is tolerable; or (2) if extreme

circuit simplicity is of overriding importance and the accompanying use of

a high-bit rate is acceptable. Note that since delta modulation uses a high
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sampling rate, there is no need for employing a pre-alias filter prior to

sampling in the transmitter.

ADAPTIVE DIGITAL coDING OF YK4VEFORMS

From the discussion presented on PCM using a uniform quantizer with a
fixed step size, we see that we have a dilemma in quantizing speech signals.
On the one hand, we wish to choose the quantization step size large enough

'maximum peak-to-peak range of the input signal with
to accommodate the ther hand,
the lowest possible number of representation levels. On the o
we would like to make the quantization step size small enough to minimize
the average power of the quantizing noise. This issue is further compounded
by the fact that the amplitude of the speech signal can vary over a wide
range, depending on the speaker, the communication environment, and

within a given utterance, from voiced to unvoiced sounds.' One approach

to accommodating these conflicting requirements is to use a i1cmuniform
quantizer; this approach is commonly used in PCM systems for telephony
as described in Section 5.4. An alternative approach is to use an adaptive

quantizer, wherein the step size is varied automatically so as to match the
average power of the input speech signal; this second approach is commonly

used in adaptive DPCM (ADPCM) systems.

"fA ADPCM systems iised in telephony, the prediction filter is also adap-

tive. An adaptive prediction filter is responsive to changing level and spec-

trum of the input speech signal. The variation of performance with speakers
and speech material, together with variations in signal level inherent in the
speech communication process, make the combined use of adaptive quan-
tization and adaptive prediction necessary to achieve best performance
over a wide range of speakers and speaking situations.

it is of interest to note that improvements in circuit design and tech-
nology have made it possible for ADPCM to provide toll quality speech
coding at 32 kb/s'; this corresponds to a sampling rate of 8 kHz and 4 bits
per sample. By "toll quality" we mean the quality of commercial telephone
service. This performance is comparable to that of 64 kb/s PCM incor-
porating the use of p-law (logarithmic) companding with p = 255. How-
ever, unlike log-PCM, the performance of the ADPCM system is very

signal dependent.
Finally, we should mention that a delta modulator may also be made

adaptive, wherein the variable step size increases during a steep segment

-Voiced sounds are produced by forcing air through the glottis with the tension of
the vocal cords adjusted so that they vibrate in a relaxation oscillation, thereby
producing cluasiperiod ic pulses of air that excite the vocal tract. Fricative or

unvoiced sounds are generated by forming a constriction at some point in the vocal
tract (usually toward the mouth end) and forcing air through the constriction at a
high enough velocity to produce turbulence. This creates a broad-spectrum noise
source to excite the vocal tract.
'Jayant and Noll, 1984. pp. 309- 311.
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of the input signal and decreases when the modulator is quantizing an input
signal with a slowly varying segment. In this way the step size is adapted
to the level of the input signal. The resulting system is called an adaptive
delta modulator (ADM).

... 5.10 nME-DIVISION MULTIPLExING

The sampling theorem enables us to transmit the complete information
contained in a band-limited message signal by using samples of the message
signal taken uniformly at a rate that is usually slightly higher than the
Nyquist rate. An important feature of the sampling process is a conser-
vation of time. That is, the transmission of the message samples engages
the transmission channel for only a fraction of the sampling interval on a
periodic basis, and in this way some of the time interval between adjacent
samples is cleared for use by other independent message sources on a time-
shared basis. We thereby obtain a time-division multiplex system (TDM),
which enables the joint use of a common transmission channel by a plurality
of independent message sources without mutual interference.

The concept of TDM is illustrated by the block diagram shown in Fig.
5.20. Each input message signal is first restricted in bandwidth by a low-
pass filter to remove the frequencies that are nonessential to an adequate
signal representation. The low-pass filter outputs are then applied to a
commutator that is usually implemented using electronic switching cir-
cuitry. Tle function of the commutator is two-fold: (1) to take a narrow
sample of each of the N input messages at a rate I / T, that is slightly higher
than 2 W, where W is the cutoff frequency of the low-pass input filter, and
(2) to sequentially interleave these N samples inside a sampling interval
T, Indeed, this latter function is the essence of the time-division multi-
plexing operation. Following the commutation process, the multiplexed
signal is applied to a pulse modulator, (e.g., pulse-amplitude modulator),
the purpose of which is to transform the multiplexed signal into a form
suitable for transmission over the common channel. It is clear that the use
of time-division multiplexing introduces a bandwidth expansion factor N,
because the scileme must squeeze N samples derived from N indepefident
message sources into a time slot equal to one sampling interval. At the
receiving end of the system, the received signal is applied to a pulse de-modulator, which performs the inverse operation of the pulse modulator.
The narrow samples produced at the pulse demodulator output are dis-
tributed to the appropriate low-pass reconstruction filters by means of a
decommutator, which operates in synchronism with the commutator in the
transmitter. This synchronization is essential for the satisfactory operation
of the system.

'ne TDM system is highly sensitive to dispersion in the common trans-
mission channel, that is, to variations of amplitude with frequency or non-
linear phase response. Accordingly, accurate equalization of both the am-
plitude and phase responses of the channel is necessary to ensure a satisfactory
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operation of the system. This issue is discussed in Chapter 6. To a first

approximation, however, TDM is immune to amplitude nonlinearities in

the channel as a source of crosstalk, because-the different message signals

are not simultaneously impressed on the channel.

5.11 APPLICATION: DIGITAL MULTIPLEXERS FOR TELEPHONY

In the previous section we introduced the idea of time-division multiplexing

whereby a group of analog signals (e.g., voice signals) are sampled se-

quentially in time at a common sampling rate and then multiplexed for

transmission over a common line. In this section we consider the mulli-

plexing of digital signals' at different bit rates. This enables us to combine

several digital signals, such as computer outputs, digitized voice signals,

and digitized facsimile and television signals, into a single data stream (at

a considerably higher bit rate than any of the inputs). Figure 5.21 shows

a conceptual diagram of the digital multiplexing—clemultiplexing operation.

The multiplexing of digital signals may be accomplished 
by 

using a bit-

by-bit interleaving procedure with a selector switch that sequentially takes

a bit from each incoming line and then applies it to the high-speed common

line. At the receiving end of the system the output of this common line is

separated out into its individual low-speed components and then delivered

to their respective destinations.

Two major groups of digital multiplexers are used in practice:

One group of multiplexers is designed to combine relatively low-speed

digital signals, up to a maximum rate of 4800 bits per second, into a

higher speed multiplexed signal with a rate of up to 9600 bits per second.

These multiplexers are used primarily to transmit data over voice-grade

channels of a telephone network. Their implementation requires the

use of modems in order to convert the digital format into an analog

format suitable for transmission over telephone channels. The operation

of a modem (mod ulator—clemodulator) is covered in Section 7.14.

2	 2
High—speed

Multiplexer	 1,.n—i.,.n	 Dmult,plexer
line

Data ^rces	 Destinations

Figure 5.21
Conceptual diagram of multiplexing-demultiplexing.

'For more detailed information on the multiplexing of digital signals, see Bell
Telephone Laboratories (1970).
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2, The second group of multiplexers, designed to operate at much higher

bit rates, forms part of the data transmission service generally provided

by communication carriers. For example, Fig. 5.22 
is a block diagram

of the digital hierarchy based on the T1 carrier, which has been devel-

oped by the Bell System. The TI carrier, described later on, is designed

to operate at 1.544 megabits per second, the T2 at 6.312 megabits per

second, the T3 at 44.736 megabits per second, and the T`̂  at 274.176

megabits per second. The system is thus made up of various combi-

nations of lower order T-carrier subsystems. These sub^systems are cle-

signed to accommodate the transmission of voice signals, Picture-

phoneg service, and television signals using PCM, as well as (direct)

digital signals from data terminal equipment.

There are some basic problems involved in the design of a digital mul-

tiplexer, irrespective of its grouping:

Digital signals cannot be directly interleaved into a format that allows

for their eventual separation unless their bit rates are locked to a com-

mon clock. Accordingly, provision has to be made for synchronization

of the incoming digital signals, go that they can be properly interleaved.

The multiplexed signal must include some form of framing, so that its

individual components can be identified at the receiver.

The multiplexer has to handle small variations in the bit rates of the

incoming digital signals. For example, a 1000-kilometer coaxial cable

carrying 3 x 101 pulses per second will have about 1 million pulses in

transit, with each pulse occupying about I meter of the cable. A 0.01%

Voice	
Ti	 I

signals	 2	 t
xt
x

T2	 I

3

5	
2-o- t

4

7

DO i I

d

IDPCMI

T
Picturephon,

Television

Pi

3

Figure 522

Digital hierarchy, Bell system.
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variation in the propagation delay, produced by a I *F decrease in tem-
perature. will result in 100 fewer pulses in the- cable. Clearly, these
pulses must be absorbed by the multiplexer.

To cater to the requirements of synchronization and rate adjustment to
accommodate small variations in the input data rates, we may use a tech-
nique know n as bit stuffing. The idea here is to have the outgoing bit rate
of the multiplexer slightly higher than the sum of the maximum expected
bit rates of the input channels. This is achieved by stuffing in additional
non-information-carrying pulses. All incoming digital signals are stuffed
with a number of bits sufficient to raise their respective bit rates to that of
a locally generated clock. To accomplish bit stuffing, each incoming digital
signal or bit stream is fed into an elastic store at the multiplexer. The elastic
store is a device that stores a bit stream in such a manner that the stream
may be read out at a rate different from the rate at which it is read in. At
the demultiplexer, the stuffed bits must obviously be removed from the
multiplexed signal. This requires some method of identifying the stuffed
bits. To illustrate one such method, and also to show one method of
providing frame synchronization, we describe the signal format of the Bell
System M12 multiplexer, which is designed to combine four TI bit streams
into one T22 bit stream. We begin the description by considering the TI
system.

TI SYSTEM

The TI carriers ' vstern is designed to accommodate 24 voice channels, pri-
marily for short-distance, heavy usage in metropolitan areas. The TI system
was pioneered by the Bell System in the United States in the early 1960s,
and with its introduction the shift to digital communication facilities started.
The T1 system has been adopted for use throughout the United States,
Canada, and Japan. It forms the basis for a complete hierarchy of higher-
order multiplexed systems that are used for either long-distance transmis-
sion or transmission in heavily populated urban centers.

A voice signal (male or female) is essentially limited to a band from 300
to 3400 Hz in the sense that frequencies outside this band do not contiibute
much to articulation efficiency. Indeed. telephone circuits that respond to
this range of frequencies give quite satisfactory service. Accordingly, it is
customary to pass the voice signal through a low-pass filter with a cutoff
frequency of about 3.4 kHz prior to sampling. Hence, the nominal value
of the Nyquist rate is 6.8 kHz. The filtered voice signal is usually sampled
at a slightly higher rate, namely, 8 kHz, which is the standard sampling
rate in digital telephony.

For companding, the TI system uses a piece wise- linear characteristic
(consisting of 15 linear segments) to approximate the logarithmic p-law of
Eq. 5.16 with the constantp = 255. This approximation is constructed in
such a way that the segment end points lie on the compression curve
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computed from Eq. 5.16, and their projections onto the vertical axis are
spaced uniformly. Table 5.4 gives the projections of the segment end points
onto the horizontal axis and the step sizes of the individual segments. The
table is normalized to 8159, so that all values are represented as integer
numbers. Segment 0 of the approximation is a linear segment, passing
through the origin; it contains a total of 31 uniform representation levels.

	

Linear segments I a, 2a, 	 7a	 lie above the horizontal axis, whereas

linear segments lb, 2b, 7b lie below the horizontal axis; each of
these 14 segments contains 16 uniform representation levdls. For colineaT
segment 0 the representation levels at the compressor input are ± 1, -± 3,

t3l, and the corresponding compressor output levels are 0, ±1,
t 15. For linear segments la and I b the representation levels at the

compressor input are _-t33, ±35, . . . ±95, and the corresponding com-
pressor output levels are t 16, t 17, 3 1, and so on for the other

linear segments.
There are a total of 31 + 14 x 16 255 output levels associated with

the 15-segment companding characteristic described herein. To accom-
modate this number of output levels, each of the 24 voice channels uses a
binary code with an 8-bit word. The first bit indicates whether the input
voice sample is positive or negative. The next three bits of the code word
identify the particular segment inside which the amplitude of the input
voice sample ties. and the last iour bits identify the actual quantizing step
inside that segment.

With a sampling rate of 8 kHz, each frame of the multiplexed signal
occupies a period of 125 ps. In particular, it consists of twenty-four
8-bit words, plus a single bit that is added at the end of the frame for the
purpose of synchronization. Hence, each frame consists of a total of
24 x 8 + I = 193 bits. Correspondingly, the duration of each bit equals

0.647 ps, and the resultant transmission rate is 1.544 megabits per second.
In addition to the voice signal, a telephone system must also pass special

TABLE 5.4 The 15-Segmenty-law Companding Characteristic (,U = 255)

Projections of
Linear Segment	 Segment End Point
Number	 Step Size	 onto the Horizontal AiJis

0	 2	 _-t 31

	

4	 ±95

	

8	 223

	

16	 479

	

32
	

:t 991

	

64	 ±2015

	

128	 ±4063

	

256
	 ±8159

la, lb

2a , 2b

3a, 3b

4d, 4b

5a, 5b

6 a. , 6 b

7a, 7 b
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supervisory signals to the far end. This signaling information is needed to
transmit dial pulses, as well as telephone off-hook/on-hook signals. In the
TI system this requirement is accomplished as follows. Every sixth frame,

the least significant (i.e., the eighth) bit of each voice channel is deleted
and a signaling bit is inserted in its place, thereby yielding an average 78-
bit operation for each voice input. The sequence of signaling bits is thus

transmitted at a rate equal to the sampling rate divided by six, that is,
1.333 kilobits per second.

M12 MULTIPLEXER

Figure 5.23 illustrates the signal format of the M12 multiplexer. Each frame

is subdivided into four subframes. The first subframe (first line in Fig. 5.23)
is transmitted, then the second, the third, and the fourth, in that order.

Bit-by-bit interleaving of the incoming four TI bit streams is used to

accumulate a total of 48 bits, 12 from each input. A control bit is then
inserted by the multiplexer. Each frame contains a total of 24 control bits,
separated by sequences of 48 data bits. Three types of control bits are used

in the M12 multiplexer to provide synchronization and frame indication,

and to identify which of the four input signals has been stuffed. These

control bits are labeled as F, M, and C in Fig. 5.23. Their functions are:

The F-control bits, two per subfrarne, constitute the main framing pulses.

The subscripts on the F-control bits denote the actual bit (0 or 1)
transmitted. Thus the main framing sequence is FoF^FoFj F0F' F0F j or
01010101.

The M-control bits, one per subframe, form secondary framing pulses
to identify the four subframes. Here again the subscripts on the M-
control bits denote the actual bit (0 or 1) transmitted. Thus the secondary
framing sequence is MO M, M, M, or 0111.

The C-control bits, three per subframe are stuffing indicators. In par-
ticular, C, refers to input channel 1, C11 refers to input channel 11, and
so forth. For example, the three C-control bits following Mo in the first

subframe are stuffing indicators for the first TI signal. The insertion of

a stuffed bif in this TI signal is indicated by setting all three C-control
bits to 1. To indicate no stuffing, all three are set to 0. If the three G

control bits indicate stuffing, the stuffed bit is located in the position of

M. [481 C,	 [48] F^ [481 C,	 [48] C,	 [481 F, [481

M, (481 C.. 1481 F. [481 C,, (48] C,, 1481 F^ [48]

A (48] C[u 148] Fo 1481 Cui [481 C	 [481 F^ [48]

A [481 Civ 1481 Fo [481 Cm [481 C, 148] F, [48]

Rgure 5.23
Signal format of Bell system M12 multiplexer.

2.

3
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the first information bit associated with the first TI signal that follows

the F,-control bit in the same subframe. In a similar way, the second,

third, and fourth TI signals may be stuffed, as required. By using 
ma-

jority logic decoding in the receiver, a single error in any of the three

C-control bits can be detected. This form of decoding means simply

that the majority of the C-control bits determine whether an all-one or

all-zero sequence was transmitted. Thus three I's or combinations of

two I's and a 0 indicate that a stuffed bit is present in the information

sequence, following the control bit F1 'in the pertinent subframe. On

the other hand, three O's or combinations of two O's and a I indicate

that no stuffing is used.

The demultiplexer at the receiving M12 unit first searches for the main

framing sequence FOFI FO FI FOFI FO FI . This establishes identity for the four

inputTl signalsand also forthe M- and C-controtbits. From the M
O M, A A

sequence, the correct framing of the C-control bits is verified. Finally, the

four T1 signals are property demultiplexed and destuffed.

This signal format has two safeguards:

1. it is possible, although unlikely, that with just the FJ1F^F1FOF1F0FJ

sequence, one of the incoming TI signals may contain a similar se-

quence..This could then capse the receiver to lock onto the wrong

sequence. The presence of the M^M^M,M, sequence provides ver . ifi-

cation of the genuine FoF,F0 F1 F0 F1 FgF1 sequence, thereby ensuring

that the four TI signals are properly demultiplexed.

2. The single-error correction capability built into the C-control bits en-

sures that the four TI signals are properly destuffed.

................................................................................ ; ........................ ...............

EXAMPLE 5: cApAC[rY OF M12 MULTIPLEXER

The capacity of the M12 multiplexer to accommodate small variations in

the input data rates can be calculated from the format of Fig. 5.23. In each

M frame, defined as the interval containing one cycle of MO M, M, M, bits,

one bit can be stuffed into each of four input TI signals. Each such signal

has 12 x 6 x 4 = 288 positions in each M frame. Also the T1 signal has

a bit rate equal to 1.544 megabits per second. Hence, each input can be

incremented by

1-544 X 10' X	 5.4 kilobits/s
288

This result is much larger than the expected change in the bit rate of the

incoming T1 signal. it follows therefore that the use of only one stuffed

bit per input channel in each frame is sufficient to accommodate. expected-

variations in the input signal rate.
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The local clock that determines the outgoing bit rate also determin s

the nominal stu ng rate S, defined as the a%crage number of bits st uffed
per channel in anv frame. The M 1 -1 multiplexer is designed for S	 1 '3^
Accordingl y , the nominal bit rate of the T2 line is

49	 288
1.544 x 4 x -- x — - 6.312 mepabits/s,^ -,S	 S

48

This also ensures that the nominal -1 -2 clock frequencN is a multiple of 8
kliz (the norninal samplin g rate of a %oice ^ignal), \^hich is a desirable
featUfe.

..........................................................................................................................

EXERCISE 7 Given that the data rate for one PicturephoneS service is
6:312 

megabits per second, and that for one television service is 44.736

megabits persecond, determine the capacity ofeach Bell Telephone system

level measured in terms of the number of (a) voice. (b) picturephone, or
(c) television channels that it can accommodate.

..................................................................................................................................
PROBLEMS

P5.3 Sampling

Problem I	 Fi g ure P5.1 depicts the pectrum of a nies ^- 'iVnal n?([).
The signal is un-dersarnpled at a rate of 1.^ Hz.	

s,,-,c -

(a) Skeich the spectrum o f the sampled Nersion of this signal.
(b) The sampled si gnal is passed through an idealized lo\A, , -pass inter-
polation filter of handAidth I Hz Sketch the spectrum of the resulting
filter output,

Figure P5.1

Problem 2 Consider the operation of a sample-and-hold circuit with the
following parameters:
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Message bandwidth, W = I Hz

Sampling period, T. = 0.4 s

Pulse duration, T = 0.2 s

(a) Calculate the amplitude distortion produced by 
the aperture effect

(arising from the use of flat-tOp samples) at the highest frequency Com-

ponent of the message signal.

(b)
Find the amplitude response of the equalizer required to compensate

for the aperture effect.

P5.4 Quantizing

Problem 3

(a) A sinusoidal signal, with an amplitude of 
3.25 V is applied to a

uniform quantizer of the midtread type with output values of 
0, ± 1, . ±2,

±3 V, as in Fig. P5.2a. Sketch the waveform of the resulting quantizer

output for one complete cycle of the input.

(b)
Repeat this eNaluation for the case when the quantizer is of the

rnidriser type with output values 
±0.5, --1.5, --2.5, t3.5 V, as in Fig.

P5.2b.

Problem 4 The signal

,n(t) = 6 sin(27zt) volts

is transmitted using a 4-bit binary PCM 
system. The quantizer is of the

midriser type, with a step size of I 
V. Sketch the resulting sequence of

quantized samples for one complete cycle of the input. Assume a sampling

W	 W

Figure P5.2
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Figure P5.3

	

rate of four samples per second, with samples taken at 	 t	 1/8, = 3/8,

±5/8, , . . , seconds.

P5.5 Coding

Problem 5 Consider the following binary sequences:

(a) An alternating sequence of I's and O's.

(b) A long sequence of I's followed by a long sequence of O's.

(c) A long sequence of I's followed by a single 0 and than a long

sequence of I's.

Sketch the waveform for each of these sequences using the following meth-

ods of representing symbols I and 0:

(a) On--off signaling.

(b) Polar signaling.

(c) Return-to-zero signaling.

(d) Bipolar signaling.

(e) Manchester code.

Problem 6 Figure P5.3 shows a PCM wave in which the amplitude levels

of + I V and — I V are used to represent binary symbols I and 0, respec-

tively. The code word used consists of three bits. Find the sampled version

of an analog signal from which this PCM wave is derived.

Problem 7 The bipolar waveform of Fig. 5.12d, representing the binary

sequence 011010WI I, is transmitted over a noisy channel. The received

waveform is shown in Fig. P5.4, which contains a single error. Locate the

position of this error, giving reasons for your answer.

+1

0

T6

Figure PSA
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Problem 8 A PCM system uses a uniform quantizer followed by a 7-bit

binary encoder. The bit rate of the system is equal to 50 megabits per

second.

(a) What is the maximum message bandwidth for which the system

operates satisfactorily?

(b) Determine the output signal-to-quantizing noise ratio when a full-

load sinusoidal modulating wave of frequency I MHz is applied to the

input.

135.7 Differential PU13e-Code Modulation

Problem 9 In th ' e DPCM system depicted in Fig. P5.5, show that in the
absence of noise in the channel, th

e
 transmitting and receiving prediction

filters operate on slightly different input signals.

P5.8 Delta Modulation

Problem 10 Consider a sine wave of frequency f, and amplitude A_

applied to a delta modulator with representation - levels --6- Show that

slope-overload distortion will occur if

A, 27Ef, T,

where T, is the sampling period. What is the maximum power that may

be transmitted without slope-overload distortion?

Problem 11 The ramp signal m(t) = at is applied to a delta modulator

that operates with a sampling period T, and representation levels --6.

(a) Show that slope-overioad distortion occurs if 6 < aT,

(b) Sketch the modulator output for the following three values of 6:

(i) 6 = 0. 75 a T,

00 6 = a T,

(iii) 6 = 1. 25 a T,

Input

11 . ^. =n

Ch­­ l

Pl^d,^

­n 1.1—

Transrri;ttif

Figure P5.5

+	

output
Dmode,

+

Pl,d;l

Rm­ ,er
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Problem 12 Consider a speech signal with maximum frequency of 3.4
kHz and maximum amplitude of I V. This speech signal is applied to a
delta modulator with its bit rate set at 20 kilobits per second. Discuss the
choice of an appropriate step size for the modulator.

P5.10 Time-Division Multiplexing

Problem 13 Six independent message sources of bandwidths W, W, 2 W,
2W, 3W, and 3 W hertz are to be transmitted on a time-division multiplexed
basis using a common communication channel.

(a) Set up a scheme for accomplishing this multiplexing requirement,
with each message signal sampled at its Nyquist rate.
(b) Determine the minimum transmission bandwidth of the channel.

Problem 14 Twenty-four voice signals are sampled uniformly and then
time-division multiplexed. The sampling operation uses flat-top samples
with 1 us duration. The multiplexing operation includes provision for syn-
chronization by adding an extra pulse of sufficient amplitude and also I Ps
duration. The highest frequency component of each voice signal is 3.4 kHz.

(a) Assuming a sampling rate o* f 8 kHz, calculate the spacing between
successive pulses of the multiplexed signal.
(b) Repeat your calculation assuming the use of Nyquist rate sampling.





................. CHAPTER SIX

INTERSYMBOL INTERFERENCE

When digital data (of whatever origin) is transmitted over a band-

limited channel, dispersion in the channel gi%es rise to a troublesome

form of interference called inters^mbol interference. As the name

implies, intersYmbol interference refers to interference caused b^ the

time response of the channel spilling over from one symbol into another.

This has the effect of introducing deviations (errors) between the data

sequence reconstructed at the receiver output and the original data

sequence applied to the transmitter input. Hence, unless corrective

measures are taken, intersymbol interference may impose a limit on the

attainable rate of data transmission that is far below the ph^sical

capability of the channel.

227



228 INTERSYN11301. I N IERHRLN(E AND 11S CURES

In this chapter, we study the intersymbol interference problem and the
use of baseband pulse shaping as the solution to the problem. The term

"baseband" is used to designate the band of frequencies -representing the
original signal as delivered by a source of information.

............. 6.1 BASEBAND TRANSMISSION OF BINARY DATA

For the baseband transmission of digital data, the use of discrete pulse-

amplitude modulation (PAM) provides the most efficient form of discrete

pulse modulation in terms of power and bandwidth use. In discrete PAM,

the amplitude of the transmitted pulses is varied in a discrete manner in

accordance with the given digital data.

The basic elements of a baseband binary PAM system are shown in Fig.
6. 1. The signal applied to the input of the system consists of a binary data

sequence jbk j with a bit duration of T, seconds; bk is in the form of 1 or
0. This signal is applied to a pulse generator, producing the pulse waveform

X(1) = i A,g(t — kTb )	 (6.1)
k - - .

where g(t) denotes a shaping pulse with its value at time t = 0 defined by

g (0) = I

The amplitude A k depends on the identity of the input bit bk; specifically,
we assume that

Ak	
+ a,	 if the input bit b k is symbol 1	

(6.2)
— a,	 if the input bit b k is symbol 0

The PAM signal x(t) passes through a transmitting filter of transfer
function HAP . The resulting filter output defines the transmitted signal,

which is modified in a deterministic fashion as a result of transmission

through the channel of transfer function Hc(f). The signal at the receiver

input is passed through a receiving filter of transfer function HR(f ). This
filter output is sampled synchronously with the transmitter, with the sam-
pling instants being determined by a clock or timing signal that is usually

extracted from the receiving filter output. Finally, the sequence of samples

thus obtained is used to reconstruct the original data sequence by means
of a decision device. The amplitude of each sample is compared to a thresh-
old. If the threshold is exceeded, a decision is made in favor of symbol 1
(sa^). If the threshold is not exceeded, a decision is made in favor of

symbol 0. If the sample amplitude equals the threshold exactly, the symbol

may be chosen as 0 or I without affecting overall performance. In such an
event, we will choose symbol 0.
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The model shown in Fig. 6.1 represents not only a data transmission

system inherently baseband in nature (e.g., data transmission over a coaxial
cable) but also the baseband equivalent of a linear modulation system used
to transmit data over a band-pass channel (e.g., telephone channel). In

the latter case, the baseband equivalent model of the data transmission

system is developed by using the ideas presented in Section 3.5. Linear
modulation techniques for transmitting digital data over band-pass channels'

are considered in Chapter 7.

........... 6.2 THE INTERSYMSOL INTERFERENCE PROBLEM

For the present discussion, we assume that the channel is noiseless. We do
so in order to focus attention on the effects of i mperfections in the frequency
response of the channel (i.e.. dispersion of the pulse shape by the channel)

on data transmission through the channel. The effect of cha'nn' el noise on
the receiver output is considered in Chapter 10.

The receiving filter output in Fig. 6.1 may be written as'

A k p (t - k TO	 (6.3)

^khere li is a scaling factor. The pulse p(t) has a shape different from that
of g(t). but it is normalized such that

P ( 0) = I

The pulse uA ^p(t) is the response of the cascade connection of the trans-

mitting filter, the channel, and the receiving filter, which is produced 
by

the pulse A,g(t) applied to the input of this cascade connection. Therefore,
we ma y relate p(t) to g(t) in the frequency domain as follows (after
cancelling the common factor A, )

11P(f) = G(f)H,(f)H,(f)H,,(f)	 (6.4)

,Ahere Pff) and G(f) are the Fourier transforms of p(t) and g(t), re-
spect i% ely.

The receiving filter output y(t) is sampled at time 
t, = iTb (with i taking

'To be precise, an arbitrary time delay to should be included in the argument of the
pulse p(t - kT.) in Eq. 6 3 to represent the effect of transmission delay through the
system. For convenience, we have put this delay equal 

to zero in Eq. 6.3.
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on integer values), yielding

Y(tJ	 A,pi(i — k)Tbl

yA, + p	 A,pi(i — k)Tb]	 i = 0,	 2....	 (6.5)

k

In Eq. 6.5 the first term pA, represents the contribution of the ith trans-

mitted bit. The second term represents the residual effect of all other

transmitted bits on the decoding of the ith received bit; this residual effect

is called intersymbol interference (IS[).

In the absence of ISI (and, of course, channel noise), we observe from

Eq. 6.5 that

y(t,) = pA,	 (6.6)

which shows that, under these conditions, the ith transmitted bit can be

decoded correctly. The unavoidable presence of ISI in the system, however,

introduces errors in the decision device at the receiver output. Therefore,

in the design of the transmitting and receiving filters, the objective is to

minimize the effects of ISI, and thereby deliver the digital data to its

destination with the smallest error rate possible.

Typically, the channel transfer function H(-(f) and the pulse spectrum

G(f) are specified, and the problem is to determine the transfer functions

of the transmitting and receiving filters. Hr(f) and HRM, so as to enable

the receiver to correctly decode the received sequence of sample values

Jy(tJ) in accordance with Eq. 6.6. Deviation from this ideal condition is

caused by the presence of intersymbol interference that arises owing to

dispersion of the pulse shape by the channel. To solve the problem, we

have to exercise control over intersymbol interference. an issue that is

discussed next.

.... 8.3 IDEAL SOLUTION

Control of intersymbol interference in the system is achieved in the time

domain by controlling the function p(t), or in the frequency domain by

controlling P(f). One signal waveform that produces zero interiymbol

interference is defined by the sinc function:

sin(2nB^1)
PM =	

27rB,t	

= 
sinc(2B,,t)	 (6.7)
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where

Bo = _^
2 T,	 (6.8)

The parameter & is called the Nyquist bandwidth; it defines the minimum
transmission bandwidth for zero intersymbol interference. According to
Eq. 6.8, the Nyquist band%Nidth B,) is equal to one half of the bit rate
IlTb . Note the analogy bet%keen this relation and the sampling theorem

for strictly band-limited signals. (The sampling theorem was discussed in
Sections 2.7 and 5.3).

The frequency response P(f). representing the Fourier transform of the
pulse p(t) of Eq. 6.7, is defined by

P(f)	
0 -- If I < B,	

(6.9)
0	

B, < if ^

This means that no frequencies of absolute value exceeding half the bit
rate are needed, The function p (t) can be regarded as the impulse response
of an ideal low-pass filter with an amplitude response of 11(2B

O ) in the
passband and a bandwidth B,) . The function p(t) has its peak value at

the origin and goes through zero at integer multiples of the bit duration
T, 

It is apparent that if the received waveform y(t) is sampled at the in-
stants of time t = 0, ztT6 , :t2T, . . . . then the pulses defined by
A,p(t — iT,,) with arbitrary amplitude A, and i = 0, -_l, ±2,
will not interfere with each other.

Although this ideal choice of pulse shape for p(t) achieves economy in
bandwidth in that it solves the problem of zero intersymbol interference

with the minimum bandwidth possible, there are two difficulties that make

its use for system design impractical:

L It requires that frequency response PM be flat from —B O to BO, and
zero elsewhere. This is physically unrealizable, and very difficult to

approximate in practice because of the abrupt transitions at ±BO.
2. The time function p(t) decreases as 111tj for large ItI, resulting in a slow

rate of decay. This is caused by the discontinuity of P(f) at -tB..
Accordingly, there is practically no margin of error in sampling times
in the receiven

To evaluate the effect of this timing error, consider the sample of y(t) at
I = At, where At is the timing error. To simplify the analysis, we have put
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the correct sampling time t i equal to zero. We thus obtain, in the absence

of noise:

y (A t) = u A kP GJ t — k TO

= JU	 Ak sinc[2B O(A t — k Tb)]

Since 2B OTb = 1, we may rewrite this relation as

y (,I t) = p I A k sinc(2 & A t — k)
k

uA 0 sinc(2 B0 A 1) + u 
sin(2 n & J t) Z ( — 1)'Ak	

(6.10)
717	 k 2B O Jt — k

koo

The first term on the right side of Eq. 6.10 defines the desired symbol,

whereas the remaining series represents the intersymb6l interference caused

by the timing error At in sampling the signal y(t). In certain cases, it is

possible for this series to diverge, thereby causing erroneous decisions in

the receiver.

We therefore have to look to other pulse shapes not only to combat the

intersymbol interfer6nce problem but also to do so in a feasible way. In

the next section, we present one such solution that is a natural extension

of the minimum-bandwidth (ideal) solution just described.

............. 8.4 RAISED COSINE SPECTRUM

The solution we have in mind differs from the ideal solution in one im-

portant respect: the overall frequency response P(f) decreases toward

zero gradually rather than abruptly. In particular, P(f ) consists of a flat

portion and a rolloff portion that has the form of a raised-cosine function,

as follows'

I

2 B,'

P(f)
	

4B, 

11
0,

0 -- If! < f.

f, < If I < 2B, — f,

2Bo — f^ < IfI

(6.11)

	

7t(IfI	 fl)

+ Cos —
	[2Bo	 2flij,

7The solution described in Eq. 6.11 was first proposed by Nyquist (1928) in his

studies of telegraph transmission theory.
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The frequency f, and the Nyquist bandwidth B O are related by

a = I — f^	 (6.12
B,

which is called the rolloff factor. For a = 0, i.e., f I = Bo, we get the
minimum bandwidth solution described in Section 6.3.

The frequency response P(f), normalized by multiplying it by 2B O' is
plotted in Fig. 6.2a for three values of a, namely, 0, 0.5, and 1. We see
that for a = 0.5 or 1, the function PM cuts off gradually as compared

with an ideal low-pass filter (corresponding to a = 0), and it is therefore
easier to realize in practice. Also the function Pff) exhibits odd symmetry
about the cutoff frequency B, ) of the ideal low-pass filter.

The time response p(i), that is. the inverse Fourier transform of Pff
is defined by

p(t) = sinc(2B,,t) cos(27raB,t)
1 — 16a2B2t2	

(6.13)

This function consists of the product of two factors: the factor sinc(2BOt)

associated with the ideal solution, and a second factor that decreases as
I / I t12 

for large ItI. The first factor ensures zero crossings of p(t) at the
desired sampling instants of time t = iT with i an integer (positive and
negative). The second factor reduces the tails of the pulse considerably

below that obtained from the ideal low-pass filter, so that the transmission

of binary waves using such pulses is relatively insensitive to sampling time

errors. In fact, the amount of intersymbol interference resulting from this

timing error decreases as the rolloff factor a is increased from zero to unity.

The time response p (t) is plotted in Fig. 6.2b for a = 0, 0.5 and 1. For
the special case of a = 1, the function p(t) simplifies as

sinc(4BOt)

B2 t 2	 (6.14)
1 — 16 0

This time response exhibits two interesting properties:

1. At t = ± T^12 = ± 114B (,, we have p(t) = 0.5; that is, the pulse width
measured* at half amplitude is exactly equal to the bit duration Tb.

2. There are zero crossings at t = ±3Tbl2, ± 5TbI2, . . . in addition to
the usual zero crossings at the sampling times t = :t Tb , ± 2 Tb, . .

These two properties are particularly useful in generating a timing signal

from the received signal for the purpose of synchronization.
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H

(b)

Figure 6.2
Responses for different rolloff factors. (a) Frequency response. (b) Time response

ExERasE i Given the frequency response P(f) defined in Eq. 6.11,

show that the inverse Fourier transform p(t) is as given in Eq. 6.13.
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TRANSMISSION BANDWIDTH REQUIREMENT

From Eq. 6.11 we see that the nonzero portion of the frequency response

PM, resulting from use of the raised cosine spectrum, is limited to the
interval (0, 2B O — f,) for positive frequencies. Accordingly, the transmis-
sion bandwidth required by using the raised cosine spectrum is given by

B = 2Bo — f^	 (6.15)

Eliminating the frequency f 1 between Eqs. 6.12 and 6.15. we get

B = B,jI + a)	 (6.16)

where B, is the Nyquist bandwidth and a is the rolloff factor. Thus, the

transmission bandwidth requirement of the raised cosine solution exceeds

that of the ideal solution b_^ an amount equal to aB, Note that the ratio
of the excess bandwidth (resulting from the raised cosine solution) to the

Nyquist bandwidth (required by the ideal solution) equals the rolloff fac-
tor a.

The following two cases, one ideal and the other practical, are of par-

ticular interest:

1. When the rolloff factor ce is zero, the excess bandwidth aB,, is reduced

to zero, thereby permitting the transmission bandwidth B to assume its

minimum value B,

2. When the rolloff factor a is unity, the excess bandwidth is increased to

B, Correspondingly. the transmission bandwidth B is doubled. com-

pared to the (ideal) case 1.

............................................................................................................................
EXAMPLE 1 BANDWIDTH REQUIREMENTS OF THE TI SYSTEM

In Chapter 5 we described the signal format for the TI carrier system that

is used to multiplex 24 independent voice inputs, based on an 8-bit PCM
word. It was shown that the bit duration of the resulting time-division

multiplexed signal (including a framing bit) is

Tb	 0.647 ps

The bit rate of the TI system is

Rb	 1.544 Mb/s
Tb

Assuming an ideal low-pass characteristic for the channel, it follows that

the Nyquist bandwidth of the TI system is

I
772 kHz

2 T,
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This is the minimum transmission bandwidth of the T1 system for zero

intersymbol interference. However, a more realistic value for the trans-

mission bandwidth B is obtained by using a raised cosine spectrum with

a	 1. In this case, we find that

I
— = 1.544 MHz
T,

..................... ......................................................................................................

ExEWJSE 2 Calculate the transmission bandwidth requirement of the

M12 multiplexer described in Section 5.11. Assume the use of a raised

cosine spectrum with rolloff factor a = 1 for the baseband pulse shaping.

.............. 6.5 CORRELA77VE CODIIWG

Thus far we have treated intersymbol interference as an undesirable phe-

nomenon that produces a degradation in system performance. Indeed, its

very name connotes a nuisance effect. Nevertheless, by adding intersymbol

interference to the transmitted signal in a controlled manner, it is possible

to achieve a signaling rate of 2B O symbols per second in a channel of

bandwidth B0 hertz. Such schemes are called correlative coding or partial-

response signaling schemes.' The design of these schemes is based on the

premise that since the intersymbol interference that is introduced into the

transmitted signal is known, its effect can be accounted for at the recei^er,

Thus correlative coding may be regarded as a practical means of achieving

the theoretical maximum signaling rate of 2B O symbols per second in a

bandwidth of B 0 hertz, using realizable and perturbation-tole rant filters.

In this section, we illustrate the basic idea of correlative coding by

considering two specific examples: duobinary signaling and modified duo-

binary signaling. Duobinary signaling employs a correlation span of one

binary digit, whereas modified ducibinary signaling employs a correlation

span of two binary digits; the use of "duo" is intended to imply doubling

of the transmission capacity of a straight binary system.

DUOBINARY SJGNAUNG

Consider a binary input sequence (N) consisting of uncorrelated binary

digits each having duration Tb seconds, with symbol I represented by a

'Correlative coding and partial response signaling are synonornous; both terM5 are

used in the literature. The idea of correlative coding was originated by Lender

(1963). For an overview on correlative coding, see Pasupathy J1977).
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Input

bi nar 
y r — — — — — — — — — — — — — — — — — — —

sequence
	 —I

(bk I	 Ideal J 
I	

output
channel
	

sequence
Hc (f)	 Sample at	 Ica,

time r = k1b

Delay

Tb

L------------------- J
Duobinary conversion filter

H (f)

Figure 6.3
Duobinary signaling scheme.

pulse of amplitude + I V, and symbol 0 by a pulse amplitude — I V. When
this sequence is applied to a duobinar ' v encoder, it is converted into a three-
level output, namel y , — 2, 0, and + 2 V. To produce this transformation,
we may express th^ digit c, at t he cluobinary coder output as the sum of
the present binary digit b, and its previous value bi -,, as shown by

ck = b i + b i- ,	 (6.17)

One of the effects of the transformation described by Eq. 6 17 is to change
the input sequence Jb A J of uncorrelated binary digit's into a sequence fc,J

of correlated digits. This correlation between the adjacent transmitted

levels may be viewed as introducing intersymbol interference into the trans-

mitted signal in an artificial manner. However, this intersymbol interfer-

ence is under the designer's control; this is the basis of correlative coding.

Figure 6.3 depicts the block diagram of a duobinary encoder, including
a band-limited channel assumed to be ideal. The binary sequence fbA ) is
first passed through a simple filter consisting of the parallel combination

of a direct path and an ideal element producing a delay of T,, seconds,
where Th is the bit duration. For every unit impulse applied to the input

of this filter, we get two unit impulses spaced Th seconds apart at the filter
Output. The output of this filter in response to the incoming binary sequence
^ bkl is then passed through the channel of transfer function Hc(f). A
continuous waveform is therefore produced at the channel output. The

resulting waveform is sampled uniformly every Tb seconds, thereby pro-

ducing the duobinary encoded sequence (cJ. Note that the effect of the

channel is included in this encoding operation.

The cascade connection of the delay-line filter and the channel is called

a duobinary con version filter. In Fig. 6.3, we have enclosed this filter inside
a dashed rectangle. The response of the filter may be characterized in terms

of an overall transfer function H(f), which is evaluated next.
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An ideal delay element, producing a delay of Tb seconds, has the transfer
function exp(—j27rfTb ), so that the transfer function of the delay-line
filter shown in Fig. 6.3 is 1 + exp( —j27rf Tb ). Hence, the overall transfer
function of this filter connected in cascade with the ideal channel H((f)
is

H(f) = Hc(f)[1 + exp(—j27zfTb)]

= Hc(f)[exp(j7rfTb) + exp( — j7rfTb)] exp(—j7rfTh)

— 2Hc(f) cos(7zf T,) exp( — j7rf T,)	 (6.18)

For an ideal channel of bandwidth B 0 - 112Tt,, we have

	

Hc(f) = 1,
	 If I -- 112T,	

(6.19)

	

to,	 otherwise

Thus the overall frequency response has the form of a half-cNcle cosine
function, as shown by

H(f) = 
2 cos(7r f Tb) exp( — pr f Th ),	 IfI -- 112T,	

(6.20)
to,	 otherwise

for which the amplitude response and phase response are as sho'An in parts
a and b of Fig. 6.4, respectively. An advantage of this frequency response
is that it can be easily approximated in practice.

arg '1 11(f) I

Figure 6.4
Frequency response of the duobinary conversion filter. (a) Amplitude response.
(b) Phase response.
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The corresponding value of the impulse response consists of two sine
pulses, time-displaced by T,-seconds, as shown by (except for a scaling
factor)

h(t)	
siri(,,TtIT^) 	 sinjn(i - T6)IT,j

7, 1/ T,	 '	 ,(t - T,)IT,

sin(izt/T,)	 sin(7rt/T,)

7WT^	 7: (1 — TJ / T,

T 2 sin(nt T,)b	

(6.21)
V(T6

which is shown plotted in Fig. 6.5. We see that the overall impulse response

h(t) has only two distinguishable values at the sampling instants.

The original data ^b k ) may be detected from the cluobinarN -coded se-

quence Jc,J by subtracting the previous decoded binary digit from the

^urrently received digit Ck in accordance with Eq. 6.17. Specifically, letting

bk represent the estimate of the original binary digit b k as conceived by the
receiver at time t = k T, w e have

^k ^ c k — bk-1	 (6.22)

!t is apparent that if c k is received without error and if the previous estimate

bk_ I at time t = (k - I) T, also corresponds to a correct decision, then
the current estimate b k will be correct too. The technique of using a stored

estimate of the previous symbol in the estimation of the current symbol is

called decision feedback.

We observe that the detection procedure as described here is essentially

an inverse of the operation of the simple filter at the transmitter. However,

a major drawback of this detection process is that once errors are made,

they tend to propagate. This is because a decision on the current binary

hit)

Figure 6.5

Impulse response of duobinary conversion filter.
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digit b k depends on the correctness of the decision made on the previous

binary digit bk-1-

A practical means of avoiding this error propagation is to use precoding

before the duobinary coding, as shown in Fig. 6.6. The precoding operation

performed on the input binary sequence fbj converts it into another binary

sequence fa A j defined by

ak ^ b* (D ak-1	 (6.23)

where the symbol (@ denotes modulo-two addition of the binary digits b,

and a k , This addition is equivalent to the EXCLUSIVE OR operation.

An EXCLUSIVE OR gate operates as follows. The output of a two-input

EXCLUSIVE OR gate is a I if exactly one input is a I ^ otherwise, the

output remains a 0. The resulting precoder output (aj is next applied to

the cluobinary coder, thereby producing the sequence (cj that is related

to (akj as follows

Ck ^ ak + a,	 (6.24)

Note that unlike the linear operation of duobinary coding. precoding is a

nonlinear operation.

We assume that symbol I at the precoder output in Fig. 6.6 is represented

by + 1 V and symbol 0 by — I V. Therjefore. from Eqs. 6.23 and 6.24, we

find that

ck = 1±2 V, if b k is represented by symbo 0	
(6.25)

0 V	 if bk is represented by symbo^ I

which is illustrated in Example 2. From Eq. 6.25 we deduce the following

decision rule for constructing the decoded binary sequence fb,j at the

Inputb	

2
"nZy"	 0-q	 ^dde,	 Output
(bk)	 ^equence

f)
kT.

L------------
Precoder

Figure 6.6

A precoded duobinary scheme. Details of the duobinary coder are given in Fig. 
6.3.
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(141	 ThrOShold	 (bk

detector

Figure 6.7

Detector for recovering original binary sequence from the Precoded duobinary
coder output.

receiver output:

	

bk = 

fsymbol 0,	 if Ic k j > I V	

(6.26)

	

symbol 1,	
if I Ck I _— I V

According to Eq. 6.26. the detector (decoder) consists of a rectifier, the

output of which is compared to a threshold of I V, and the original binary
sequence jbj is thereby detected. A block diagram of the detector is shown
in Fig. 6.7. A useful feature of this detector is that no knowledge of any

input sample other than the present one is required. Hence, error prop-

agation cannot occur in the detector of Fig. 6.7.

Moreover. we may note the following two points:

I. In the absence of channel noise, the decoded sequence jbj derived
from Eq. 6.26 is exactly the same as the original binary sequence jbj
at the transmitter input.

2. The use of Eq. 6.23 requires the addition of an extra bit to the precoded
sequence (aj. The decoded sequence ^ bk) is invariant to the use of a I
or a 0 for this extra bit.

..........................................................................................................................
EXAMPLE 2

Consider the input binary sequence 0010110. Toproceed %kith the precoding
of this sequence, which involves feeding the precoder output back to the

input, we add an extra bit to the precoder output. This extra bit is chosen
arbitrarily as a bit 1. Hence, using Eq. 6.23, we find that the sequence (akj
at the precoder output is as shown in row 2 of Table 6. 1. We assume that
symbol I is represented by + I V and symbol 0 by — I V. Accordingly,
the precoder output has the amplitudes shown in row 3. Finally, using Eq.
6.24, we find that the duobinary coder output has the amplitudes given in
row 4 of Table 6. 1.

To detect the original binary sequence, we apply the decision rule of
Eq. 6.26, and so obtain the sequence given in row 5 of Table 6.1. This
shows that, in the absence of noise, the original binary sequence is detected
correctly.
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TABLE 6.1
0

0	
0

i,,J

of ,q­ ,­ J'J

2	 0	 -2
	

0

Al

............................................. .............................................. ..............................

EXERCISE 3 Repeat the calculations of Table 6. 1, assuming that the extra

bit at the beginning of the precoded sequence {a k J is a 0. Hence, show that

the decoded sequence {Q is unaffected by this change (compared to the
initial bit used in Example 2).

ExEwSE-4 The ducibinary, ternary, and bipolar signaling techniques

have one common feature: They all employ three amplitude levels. In what

way does the duobinary technique differ from the other two?

MODIFIED DUOBINARY SIGNALING

In the duobinar\ sienAin g. technique just described. the transfer function

H(f). andconsequend '\ the po^^erspectral densityof the transmitted pulse,

is nonzero at the origin. In sorne applications. this is an undesirable feature.

NN c rna^ correct tor this draA back b^ using the modified duobinar.̂  signaling

technique. \%Iiich imokes a correlation span of two binary digits. This is

achie^ed b\ subtractin g input binar^ di gits spaced 2T, second s, apart. Spe-

clficall^ ' the output of the niodifi-- j du obinary comersion filter is related

to the sequence ^aJ at its input ^is follo^%s

	

Ck ^ a k — "—Z	 (6.27)

Here, a ,_, ain. " e find that a threede^ el signal is generated. If a, = -- I V.

as assurned pre\iousl%. c, takeson oneofthree values: 2.0, and — 2 V.

Figure 6.8 depicts the complete block diagram of a modified duobinar^

encoder. incorporating an appropriate precoder and a band-limited channel

assumed to be ideal. Here a g ain the channel is included as an integral part

of the encodin g operation. The incominiz binary sequence fb,^ produces a

Continuous %%J^crorrn at the channel output. This Aa^eform is therefore
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Figure 6.8

Modified ducibinary signaling scheme.

H(f) I

	- Lb - Lb	 0	 Rb	 Rb
2	 4	 T	 T

U

ang [H(f) I

(b)
Figure g.9

FrOqu&ncY response Of modified duobinary conversion filter. (a) Amplituderesponse. (b) Phase response.
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sampled uniformly every T, seconds 
to 

produce the modified duobinary

encoded sequence Jcj.

Let 11(f) denote the overall transfer function of the nioihfied duohinarY

con version -filter that consists of the cascade connection of the delay-fine-

filter and the channel: this filter is enclosed irr,ide the second da,hed rec-

tangle in Fig. 6.8. Hence. A e may write

H(f	 H, (f )[ I — exp( — j47, f T,.)]	 (6.28)

2jH ( ( f) sin(27zf 1^) exp( — j2;z .f Th)

where H, (f ) is defined in Eq. 6.19. We, therefore. have an o% crall f re-

quency response in the form of a half-cvcle sine function, as sho^%n bv

H(f) =	

2j sin (27TfT h ) exp( —j27zfTh ).	 If, _- 112T, 

(6.29)

	

10,	 elsewhere

The corresponding amplitude response and phase response of the modified

duobinary-coder are as shown in parts a and h of Fig. 6.9. respccti^el\.

Note that the phase response depicted in Fig. 6.9b does not include the

constant 90'-phase shift due to the multiplying factorj in Eq. 6.29. A useful

feature of the modified duobinarN coder is the fact that its output has no

dc component. This property is important since. in practice. many com-

munication channels cannot transmit a dc component.

The impulse response of the modified duobinary coder con s ists of two

sine pulses that are time-displaced by 2Tb seconds, as shown by (except

for a scaling factor)

	

h(t)	
sin(7z tl Th )	 sin[iz(t — 2T,)IT,j

7t t/ T,	 7r(t — 2T&Th

sin( 71 t/ Th)	 sm( ;z tl TO

77 t/ T,	 7r(i — 2T,)IT,

2T'h sin(7zt/Th)	
16.30)

77t(2T, — t)

This impulse response is plotted in Fig. 6.10, which shows that it has three

distinguishable levels at the sampling instants.

To eliminate the possibility of error propagation in the modified duo-

binary system, we use a precoding procedure similar to that used for the

duobinary case. Specifically, prior to the generation of the modified duo-

binary signal, a modulo-two logical addition is used on signals 2T, seconds

apart, as shown by (see Fig. 6.8)

a A ^ b k (a) a,_ 2	 (6.31)
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h (t)

Figure 6.10

Impulse response of the modified duobinary conversion filter.

where jbj is the input binary sequence and Jakl is the sequence at the
precoder output. The sequence faj thus produced is then applied to the
modified cluobinary conversion filter.

In Fig. 6.8, the output digit ck equals 0, + 2, or — 2V, assuming the use
of a polar representation for the precoded sequence fak ). Also we find that
the decoded (detected) digit bk at the receiver output may be extracted
from Ck by disregarding the polarity of Ck . Specifically, we may write

bk = fsymbol I if Ick l > I V	
(6.32)

symbol 0 if CkI _— 1 V

As with the cluobinary signaling, we may note the following:
L In the absence of channel noise, the decoded binary sequence fbk) is

exactly the same as the original binary sequence (b,j at the transmitter
input.

2. The use of Eq. 6.31 requires the addition of two extra bits to the
precoded sequence faj. The composition of the decoded sequence (bkj
using Eq. 6.32 is invariant to the selection made for these two bits.

EXERCISE5 Consider again the binary sequence 0010110 used to illustrate
the operation of the duobinary signaling scheme in' Example 2. Using this
sequence as the input (bk 1, calculate the following -sequences for the mod-
ified duobinary signaling scheme of Fig. 6.8:

(a) The sequence (ak j at the precoder output.

(b) The polar representation of fad.



BASEBAND I RANSMISSION, OF.V-ARY DAI A 247

(c) The sequence (cAj at the modified ducibinary conversion filter out-

put, assuming the addition of bits I I at the beginning of the I 

ptecoded

Sequence lak)'

(d) 'ne decoded sequence Jbk ) at the receiver outpuf- Compare this

sequence with the original binary sequence tbk)-

EXERc#sEo Repeat the calculations of Exercise 5, assuming that the bits

added at the beginning of the precoded sequence (ak} are 00. Hence, show

that the decoded sequence Jbk) is unaffected by 
this choice of initial bits

for the sequence (a,:).

6.6 BASEBAND TRANSMISSION OF WARY DATA

in the baseband binary PAM system of Fig. 6.1, 
the output of the pulse

generator consists of binary pulses. that is. pulses with one 
I 

of two possible

amplitude levels. On the other hand, in a baseband M-ar ' N 
version of the

system, the output of the pulse Penerator takes on one of 
M possible

amplitude levels with M > 2^ the dieital waveform of a 
quaternar '%, system

(that is. Nf = 4) is illustrated in ^ig. 5.12f. 
In an M-ary system, the

information source emits a sequence of symbols from an alphabet that

consists of M 
symbols. Each amplitude level at the pulse generator output

corresponds to a distinct symbol, so that there are M distinct amplitude

levels to be transmitted.

Consider then an M-ary PAM 
system with a signal alphabet that contains

M symbols. with the s1w1bol duration denoted by 
T seconds. We refer to

I/T'as the signaling rate of the system. which is expressed in 
symbols per

second or bauds. it is informati^e to relate the signaling rate of this system

to that of an equivalent binary PAM system for which the 
v
alue of M is 2

and the bit duration is T^ seconds. The binary PAM system transmits data

at the rate of I / T, bits per second. We also observe that in the case of a

quaternar ' %I PAM system, for example. the four possible symbols may be

identified with the dibits 00, 10, 11, and 01. 
We thus see that each symbol

represents 2 bits of data and I baud is equal to 2 bits per second. We may

generalize this result by . stating that in an Al-ary PAM system, 
I baud is

equal to logM bits per second. and the symbol duration T of the M-ary

PAM system is related to the bit duration T, of the equivalent binary PAM

system as follows:

T = T. log2 M	
(6.33)

Therefore, in a given channel bandwidth, we find that by 
using an M-ary

PAM system we are able to transmit data at a rate that is 1092M 
faster

than the corresponding binary PAM system.

However, this improvement in bandwidth use is attained at a price.
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Specifically, the transmitted power must be increased by a factor equal to
M'11092M, compared to a binary PAM system, if we are to realize the
same performance in the presence of channel noise.' Also, system com-
Plexitv is increased.

EKERCISE 7 - An M-ary PAM system uses a raised cosine spectrum with -
rolloff factor a. Show that the signaling rate of the system is given by

1 = 2 I'gM B
T I + a

where B is the channel bandwidth.

............ 6.7 k-YE PAMRN

One way to study intersymbol interference in a PCM or data transmission
system experimentally is to apply the received wave to the vertical deflec.
tion plates of an oscilloscope and to apply a sawtooth wave at the trans-
mitted symbol rate I/ T to the horizontal deflection plates. The waveforms
in successive symbol intervals are thereby translated into one interval on
the oscilloscope display, as illustrated in Fig. 6.11 for the case of a binary
wave for which T = Tb . The resulting display is called an eye pattern
because of its resemblance to the human eye for binary waves. The interior
region of the eye pattern is called the eye opening.

An eye pattern provides a great deal of information about the perform-
ance of the pertinent system, as described here (see Fig. 6.12):

I. The width of the eye opening defines the time interval over which the
received wave can be sampled without error from intersymbol inter-
ference. It is apparent that the preferred time for sampling is the instant
of time at which the eye is open widest.

2. The sensitivity of the system to timing error is determined by the rate
of closure of the eye as the sampling time is varied.

3. The height of the eye opening, at a specified sampling time, defines the
margin over channel noise.

`Thd performance of a data transmission system in the presence of channel noise is
usually measured in terms of the average probability of symbol error. When M is
much larger than 2 and the average probability of symbol error is small compared
to unity, an M-ary PAM system requires a transmitted power larger than in a
binary PAM by a factor of M'/Io%M. For a proof of this result, see Haykin (1988),
pp. 78-80.
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Bin"	 1	 0	 1	 1	 0	 1

data

Tb

(b)

Figure 6.11

(a) Distorted binary wave. (b) Eye pattern.

When the effect of intersymbol interference is severe, traces from the upper

portion of the eye pattern cross traces from the lower portion, with the

result that the eye is completely closed. In such a situation, it is impossible

to avoid errors due to the combined presence of intersymbol interference

and channel noise in the system.

	

In the case of an M-ary system, the eye pattern contains (M 	 1) eye
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Figure 6.12
interpretation of the eye pattern.
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openings stacked up vertically one on the other, where M is the number

of discrete amplitude levels used to construct the transmitted signal. In a

strictly linear system with truly random data, all these eye openings would

be identical. In practice, however, it is often possible to discern asym-

metries in the eye pattern, which are caused by nonlinearities in the trans-

mission channel.

6.8 ADAPTIVE EOUALIZATION

A study of baseband data transmission would be incomplete without some

discussion of the equalization problem. By equalization we mean the pro-

cess of correcting channel-induced signal distortion. Equalization is of par-

amount importance in the high-speed transmission of digital data over a

band-limited channel. In this final section of the chapter, we briefly discuss

the need for equalization in the context of data transmission over a voice-

grade telephone channel, which is essentially linear and is also character-

ized by a limited bandwidth and a high signal-to-noise ratio.

An efficient approach to high-speed data transmission over such a chan-

nel involves the combined use of two basic forms of modulation:

1. Discrete pulse-amplitude modulation (PAM): In this operation, the am-

plitudes of successive pulses in a periodic train (acting as a carrier) are

varied in a discrete fashion in accordance with the incoming data stream.

2. Linear modulation: In this second operation, the amplitude or phase of

a sinusoidal carrier is varied in accordance with the discrete PAM signal

resulting from the first stage of modulation. The selection of a specific

type of linear modulation is made with the aim of conserving channel

bandwidth. Linear modulation schemes for data transmission are con-

sidered in Sections 7.15 and 10.7.

At the receiving end of the system, the received wave is demodulated, and

then synchronously sampled and quantized. As a result of dispersion of

the pulse shape by the channel, however, we find that the number of

detectable amplitude levels is often limited by intersymbol interference

rather than by additive noise. In principle, if the channel is known precisely,

it is virtually always possible to make the intersymbol interference (at the

sampling instants) arbitrarily small by using a suitable pair of transmitting

and r^!ceiving filters, so as to control the overall pulse shape in the manner

described in Section 6.4. The transmitting filter is placed directly before

the modulator, whereas the receiving filter is placed directly after the

demodulator. Thus, insofar as intersymbol interference is concerned, we

may consider the data transmission as being essentially baseband.

However, in a switched telephone network, we find that two factors

contribute to the distribution of pulse distortion on different link connec-

tions: (1) differences in the transmission characteristics of the individual
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links that may be switched together, and (2) differences in the number of

links in a connection. The result is that the telephone channel is random

in the sense of being one of an ensemble of possible channels. Conse-

quently, the use of a fixed pair of transmitting and receiving filters designed

on the basis of average channel characteristics maN not adequately reduce

intersymbol interference. To realize the full transmission capability of a

telephone channel, there is need for aduptii c equalization. An equalizer

is a filter that compensates for the dispersiNe effects of a channel. The

process of equalization is said to be adaptive when the equalizer is capable

of adjusting its coefficients continuously during the transmission of data;

it does so 
by 

operating on the received signal (channel output) in accord-

ance with some algorithm.

Among the philosophies for adaptive equalization of data transmission

systems, we h^iveprecliati?ieleqiializatioti at the transmitter and postchannel

equalization at the receiver. Because the first approach requires a feedback

channel, we consider only adaptive equalization at the receiving end of the

system. This equalization can he achieved, prior to data transmission. by

training the filter with the guidance of a suitable rraining sequence trans-

mitted through the channel so as to adjust the filter paranicteis to optimum

values. The typical telephone channel changes little during an merage data

call, so that precall equalization ^Nith a training sequence is sufficient in

most cases encountered in practice. The equalizer is positioned after the

receiving filter in the receiver.

Figure 6, 13 shows a popular structure used to design adapti%e equalizers.

The structure is a tapped-delay-line filter that con
s
ists of a set of delay

elements, a set of multipliers connected to the delay-line taps. a corre-

sponding set of adjustable tap weights, and a summer for adding the mul-

tiplier outputs. Let the sequence Jx(n T)), appearing at the output of the

receiving filter, be applied to the input of this tapped-delay-line filter.

producing the output (see Fig. 6.13).

Al - I

(n T)	 iv, x (n T — i T)	 (6.34)

where w, is the Aeight at the ith tap, and M is the total number of taps.

These M tap weights constitute the adaptive filt ,.^r coefficients. The tap

spacing is chosen equal to the symbol duration T of the transmitted signal

or the reciprocal of the signaling rate.

The adaptation of the filter may be achieved by proceeding as follows:

1. A known sequence Jd(nT)l is transmitted, and in the receiver the re-

sulting response sequence fy(nT)J is obtained by measuring the filter

output at the sampling instants.

2. Viewing the known transmitted sequence Jd(nT)) as the desired re-

sponse, the differences between it and the response sequence (y(nT)J
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Figure 6.13
Elements of an adaptive filter.

is computed. This difference is called the error sequence, denoted by

fe(nT)J; thus,

e(nT) = d(nT) — y(nT),	 n = 0, 1.... N — 1 (6.35)

where N is the total length of the sequence.

3. The error sequence fe(nT)) is used to estimate the direction in which

the weights f w,J of the filter are changed so as to make them approach

their optimum settings JwJ.

We assume that all sequences (signals) of interest are real valued. A cri-

terion appropriate for optimization is the total error energy defined by

e 2(n T)	 (6.36)

­ 0

The optimum values of the tap weights, namely, wo, w, 	 v,,m- , result

when the total error energy & is minimized.

The solution to this optimization problem may be developed in the form

of an algorithm that adjusts the tap weights of the filter in a recursive

manner, which means that the tapped-delay-line filter assumes a time-

varying form. In particular, the present estimate of each tap weight is

updated by incrementing it by a correction term proportional to the error
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signal at that time. Thus, starting from some arbitrary initial condition, the

algorithm learns (about the operating channel conditions) from the incom-

ing data, sample by sample, and thereby automatically adjusts the tap

weights toward the optimum solution.

A simple and yet effective solution to this adaptation procedure is pro-

vided by the least-mean-square (LMS) algorithm.' According to the LMS

algorithm, the tap weights are adapted as follows:

^v, (n T + T) = ^v, (n T) + u e (n T) x (n T — i T) 	 (6.37)

where i = 0, 1, . . . , M — 1, and ^!,, (n T) is the present estimate of the

optimum weight w., for tap i at time nT, and iivJnT + T) is the updated

estimate. The parameteru in Eq. 6.37 is called the adaptation constant. In

particular, it controls the amount of correction applied to the old estimate

^v j (n T) to produce the updated estimate iiv, (n T + T). In addition to the

parameter ji, the correction depends on the filter input x(n T — i T) and

the error signal e(n T), both measured at time n T. Thus, by a proper choice

of the adaptation constant p, the use of the recursive equation (6.37) helps

the adjustment of the tap weights move toward their optimum settings in

a step-by-step fashion. Typically, for the starting condition, all the tap

weights of the equalizer are set equal to zero.

The LMS algorithm requires knowledge of the desired response d(nT)

and the filter response y(n T) to form the error signal e(n T) in accordance

with Eq. 6.35. For y(n T), we may use Eq. 6.34 with s^Jn T) substituted

for w,. However, by the very nature of data communications, the desired

response (providing a frame of reference for the adaptation process) orig-

inates at the channel input, which is separated physically from the receiver

where the adaptive equalization is preformed. There are two methods in

which a replica of the desired response d(nT) may be obtained, as illus-

trated in Fig. 6.14. These two methods and their applicability are described

in the following paragraphs.

In the first method, a replica of the desired response is stored in the

receiver. Naturally, the generator of this stored reference has to Lie syn-

chronized with the known transmitted sequence. The use of a stor ed ref-

erence is well suited for the initial training of the equalizer. This operation

of the equalizer corresponds to position I of the switch in Fig. 6.14 ' (In

Section 8.9 we describe a pseudo-random sequence known as a linear

maximal sequence that may be used for this purpose.)

In the second method, the output from a decision device in the receiver

is used. Under normal operating conditions, the decisions made by the

receiver are correct with high probability. This means that the error esti-

6For a detailed discussion of the LMS and other adaptive filtering algorithms, see
the following references: Haykin (1986), and Widrow and Stearns (1985).



254 INTERSYMBOL INTERFERENCE AND ITS CURES

Figure 6.14
Illustrating the two modes of operation of an adaptive equalizer: Position I of the
switch corresponds to the training mode. Position 2 corresponds to the
decision-directed mode.

mates thus obtained are correct most of the time, thereby permitting the
adaptive equalizer to operate satisfactorily. This second method of oper-
ation is referred to as the decision-directed mode of the adaptive equalizer;
it corresponds to position 2 of the switch in Fig. 6.14. It is well suited for
tracking relatively slow variations in channel characteristics during the course
of transmission.

The adaptive equalizer depicted in Fig. 6.14 represents a closed-loop
feedback system, irrespective of its mode of operation. As such, there is a
tendency for the adaptive equalizer to become unstable. To ensure stability,
care has to be exercised in the value assigned to the adaptation constant
p in the time update of Eq. 6.37. On the one hand,,u must be large enough
to ensure a reasonably fast rate . of convergence of the LMS algorithm. On
the other hand, it must be small enough to make it possible for the 'LMS
algorithm to track slow statistical variations in the channel.

..................................................................................................................................
PROBLEMS

P6.3 Ideal Solution

Problem I The pulse shape p(t) of a baseband binary PAM system is
defined by

p(t) = sine T,( I )

where Tb is the bit duration of the input binary data. The amplitude levels
at the pulse generator output are + I V or — I V, depending on whether
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the binary symbol at the input is I or 0, respectively. Sketch the waveform
at the output of the receiving filter in response to the input data 001101001.

P6.4 Raised Cosine Spectrum

Problem 2 An analog signal is sampled, quantized. and encoded into a
binary PCM wave. The specifications of the PC?/l system include the fol-
lowing:

Sampling rate = 8 kHz
Number of representation levels = 64

The PCM wave is transmitted over a baseband channel using discrete pulse-
amplitude modulation. Determine the minimum bandwidth required for
transmitting the PCM wave if each pulse is allowed to take on the following
number of amplitude levels:

(a) 2
(b) 4
(c) 8

Problem 3 The raised cosine pulse spectrum for a rolloff factor of unity
is given by

COS'	 0	 if I < 2B,
2B,	 4B,P(f)	
0,	 2&	 If I

Show that the time response p(t), the inverse Fourier transform of P(f),
is

inc(4B,,t)
P ( 1 )

	

	 2t2I — 16BO

Problem 4 A computer puts out binary data at the rate of 56 kilobits per
second. The computer output is transmitted using a baseband binary PAM
system that is designed to have a raised cosine pulse spectrum. Determine
the transmission bandwidth required for each of the following rolloff fac-
tors:

(a) a = 0.25
(b) a = 0.5
(c) a = 0.75
(d) a = 1.0
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Problem 5 A binary PAM wave is to be transmitted over a low-pass

channel with an absolute maximum bandwidth of 75 kHz. The bit duration

is 10 ps. Find a raised cosine spectrum that satisfies these requirements.

136.5 Correlative Coding

Problem 6 The binary data 00 1101001 is applied to the input of a duo-

binary system.

(a) Construct the duobinary coder output and correspohding receiver

output, without a precoder.

(b) Suppose that owing to error during transmission, the level at the

receiver input produced by the second input digit is reduced to zero.

Construct the new receiver output.

Problem 7 Repeat Problem 6, assuming the use of a precoder in the

transmitter.

Problem 8 The binary data 011100101 is applied to the input of a modi-

fied cluobinary system.

(a) Construct the modified duobinary coder output and corresponding

receiver output, without a precoder.

(b) Suppose that owing to error during transmission. the level produced

by the third input digit is zero. Construct the new receiver output.

Problem 9 Repeat Problem 8, assuming the use of a precoder in the

transmitter.

Problem 10 Using conventional analog filter design methods, it is difficult

to approximate the frequency response of the modified cluobinary system

defined by Eq. 6.29. To get around this problem, Ae may use the arran ge-

ment shown in Fig. P6.1. Justify the validitv of this scheme.

P6.6 Baseband Transmission of hf-ary Data

Problem 11 Repeat Problem 4, given that-each set of three successive

binary digits in the computer output are coded into one of eight possible

Input

b,,^,y	 Output

sequence	 sequence
hk 	 FDu. ^.­j

17" _j

Figure P6.1
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amplitude levels, and the resulting signal is transmitted by using an 8-level

PAM system designed to have a raised cosine pulse spectrum.

Problem 12 An analog signal is sampled, quantized, and encoded into a

binary PCM wave. The number of representation levels used is 128. A

synchronizing pulse is added at the end of each code word representing a

sample of the analog signal. The resulting PCM wave is transmitted over

a channel of bandwidth 12 kHz using a quaternary PAM system with a

raised cosine pulse spectrum. The rolloff factor is unity.

(a) Find the rate (in bits per second) at which information is transmitted

through the channel.

(b) Find the rate at which the analog signal is sampled. What is the

maximum possible value for the highest frequency component of the

analog signal?

P6.7 Eye Pattern

Problem 13 A binary wave using polar signaling is generated by repre-
senting symbol I by a pulse of amplitude + I V and s^mbol 0 by a pulse
of amplitude — I V; in both cases the pulse duration equ 'als the bit 'duration.

This signal is applied to a low-pass RC filter with transfer function:

H(f) =
I + jflf^

Construct the eye pattern for the filter output for the following sequences:

(a) Alternating I's and O's.

(b) A long sequence of I's followed by a long sequence of O's.
(c) A long sequence of I's followed by a single 0 and then a long
sequence of I's.

Assume a bit rate of 2fo bits per second.

Problem 14 - The binary sequence 011010 is transmitted through a channel

having a raised cosine characteristic with a rolloff factor of unity. Assume

the use of polar signaling, with symbols I and 0 represented by + I and
— 1 V, respectively.

(a) Construct, to scale, the received wave, and indicate the best sam-

pling times for regeneration.

(b) Construct the eye pattern for this received wave and show that it

is completely open.

(c) Determine the zero crossings of the received wave.




