
.............. CHAPTER SEVEN

Ordinarily.' the transmission of a message signal (be it in analog or
digital form) over a band-pass communication channel (e.g., telephone
line, satellite channel) requires a shift of the range of frequencies
contained in the signal into other frequency ranges suitable for
transmission, and a corresponding shift back to the original frequency
range after reception. For example, a radio system must operate with
frequencies of 30 kHz and upward, whereas the message signal usually
contains frequencies in the audio frequency range, so some form of
frequency-band shifting must be used for the system to operate
satisfactorily. A shift of the range of frequencies in a signal is
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260 MODULATION TECHNIQUES

accomplished by using modulation, defined as the process by which some

characteristic of a carrier is varied in accordance with a modulating wave.'

The message signal is referred to as the modulating wave, and the result

of the modulation process is referred to as the modulated wave. At the

receiving end of the communication system, we usually require the message

signal to be recovered. This is accomplished by using a process known as

demodulation, or detection, which is the inverse of the modulation process.

In this chapter we study modulation techniques for both analog and

digital.forms of message (i nformat ion - bearing) signals. Th^ chapter is a

long one, which is the result of integrating a variety of modulation tech-

niques, side-by-side. The chapter is organized as follows:

1. In Sections 7.1 through 7.8, we study the various types of amplitude

modulation that constitute the first family of analog modulation tech-

niques. In amplitude modulation the amplitude of a sinusoidal carrier

wave is varied in accordance with the information-bearing signal. The

applications of amplitude modulation in broadcasting are considered in

Section 7.9.

2. In Sections 7.10 through 7.13, we study the second family of analog

modulation techniques known collectively as angle modulation. In this

method of modulation the phase or frequency of a sinusoidal carrier

wave is varied in accordance with the information-bearing signal. The

application of frequency modulation, an important type of angle mod-

ulation, in broadcasting is considered in Section 7.14.

3. Finally, in Section 7.15 we describe digital modulation techniques. The

discussion is completed in Section 7.16 with a description of digital

satellite communications.

............. 7.1 AMPLITUDE MODULATION

Consider a sinusoidal carrier wave c(t) defined by

c(t) = A, cos(2nfct)	 (7.1)

where the peak value A, is called the carrier amplitude and f, is called the

carrier frequency% For convenience, we have assumed that the phase of the

carrier wave is zero in Eq. 7. 1. We are justified in making this assumption

since the carrier source is always independent of the message source. Let

m(t) denote the baseband signal that carries specification of the message.

From here on, we refer to m(t) as the messagesignal. Amplitude modulation

is defined as a process in which the amplitude of the carrier wave c(t) is

varied linearly with the message signal m(t). This definition is general enough

'IEEE Standard Dictionary of Electrical and Electronics Terms, 
p. 351 JWiley-

Interscience, 1972).
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to permit different interpretations of the linearity. Correspond i ngl y, am-

plitude modulation may take (in different forms, depending on the fre-

quency content of the modulated wave. In the following section we consider

the standard form of amplitude modulation.

TIME-DOMAIN DESCRIPTION

The standardform of 
an 

ainplitude-modulated (AM) vi a^ e is defined b\

s(t) = A c [I + k.m(t)] cos(27rf,t)	 (7. 2)

where k. is a constant called the amplitude sensitoity of the modulator.

The modulated wave so defined is said to be a "standard" 
AM 

wave,

because (as we will see presently) its frequency content isfull-v represen-

tative of amplitude modulation.

The amplitude of the time function multiplying cos(2rf . t) in Eq. 7.2 is

called the envelope of the AM wave s(t). Usine a(t) to denote this enselope.

we may thus write

a(t) = A, I ^ kyz(t)^	 (7. ',)

Two cases of particular interest arise. depending on the magnitude of

k,m(t), compared to unity. For case 1, Ae ha^e

lk^in(t). 7E^ 1.	 for all t	 (7.4)

Under this condition, the term I + k,??z(t) is always nonnepative. We mav

therefore simplify the expression for the en%elope of the AM wave lb^

writing

a(t) = AJI + k,ni(rfl,	 for all t	 (7.

For case 2, on the other hand, we have

k,m(t)^ > 1,	 for

Under this condition, we must use Eq. 7.3 for evaluating the emclopc of

the AM wave.

The maximum absolute value of k,m(t) multiplied 
by 

IW is referre,' to

a:, the percentaKe modulation. Accordingly. case I corresponds 
to 

a , -r-

centage modulation less than or equal to I(Ve , whereas case 2 corresponds

to a percentage modulation in excess of 100"C'.

The waveforms of Fig. 7.1 illustrate the amplitude modulation process.

Part a of the figure depicts the waveform of a message sipnal tn(t). Part b

of the figure depicts an AM wave produced by this me%,age signal for a

value of k, for which the percentage modulation is 6,).7"^ (i.e., case I ).
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Figure 7.1

(a) Message signal m(t). (b) AM wave s(t) for k.m(t)j ^ 1 for all t. (c) AM wave s(t)
for Jk.m(t)j > 1 some of the time.

On the other hand, the AM wave shown in part c of the figure corresponds

to a value of k. for which the percentage modulation is 166.7% (i.e., case

2). Comparing the waveforms of these two AM waves with that of the

message signal, we draw an important conclusion. Specifically, the envelope

of the AM wave has a waveform that bears a one-io-one correspondence

with that of the message signal if and only if the percentage modulation is
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less than or equal to 100%. This correspondence is destroyed if the per-

centage modulation exceeds I(K)%. In the latter case, the modulated wave

is said to suffer from envelope distortion, and the wave itself is said to be
overmodulated.

The complexity of the detector (i.e., the demodulation circuit used to

recover the message signal from the incoming AM wave at the receiver)

is greatly simplified if the transmitter is designed to produce an envelope

a(t) that has the same shape as the message signal m(t). For this require-

ment to be realized, we must satisfy two conditions:

I. The percentage modulation is less than 100%, so as to avoid envelope

distortion.

2. The message bandwidth, W. is small compared to the carrier frequency
f_ so that the envelope a(t) may be visualized satisfactorilv. Here, it

is assumed that the spectral content of the message signal is' negligible

for frequencies outside the interval — W _- f _- W.

EXERCISE 1 Demonstrate that the percentage modulation for the AM
wave shown in Fig. 7.1b equals 66.7%, whereas for the AM wave shown
in Fig. 7.1c it equals 166.7%.

FREQUENCY-DOMAIN DESCRIPTION

Equation 7.2 defines the standard AM wave s(t) as a function of time. To

develop the frequency description of this AM wave, we take the Fourier

transform of both sides of Eq. 7.2. Let S(f) denote the Fourier transform
of s(t), and M(f) denote the Fourier transform of the message signal m(t);

we refer to M(f) as the message spectrurn. Accordingly, using the Fourier

transform of the cosine function A, cos(27Tf,t) and the frequency-shifting

property of the Fourier transform (see Sections 2.3 and 2.5), we may %^ rite

SW w^_, 1
j(f - M + Of + MI

2

+

2 
IMU — fJ + M(f + Mi	 (7.7)

Let the message signal m(t) be band-limited to the interval — W -- f -- W,

as in Fig. 7.2a. The shape of the spectrum shown ir, this figure is intended

for the purpose of illustration only. We find from Eq. 7.7 that the spectrum

S(f) of the AM wave is as shown in Fig. 7.2b for the case when f, > W.

This spectrum consists of two delta functions weighted by the factor A,/2

and occurring at --f, and two versions of the baseband spectrum translated
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^a) Spectrum of messages signal. (b) Spectrum of AM wave

in frcquenc^ h^	 and scaled in amplitude by k,A,12. The spectrum of

Fiv, 7.21). ma% be described as follows:

1. For positke frequencies. the portion of the spectrum of the modulated

%ka ,.e kin g abo%e the carrier frequency f, is called the uppersidebund,

where `̂is the symmetric portion below f, is called the lower sideband.

For neizati^e frequencies. the imageof the upper sideband is represented

b^ the portion of the spectrum below —f, and the image of the lower

sideband by the portion above — f,. The condition f, > W ensures that

the sidebands do not overlap. Otherwise. the,modulated wave exhibits

.spectral ocerlap and. therefore, frequcnc^ distortion.

For RositiNe frequencies, the high(^st frequency component of the AM

wa%e is f, + W, and the lowest frequency component is f, — W. ne

difference between these two frequencies defines the transmission band-

width B for an AM wave, which is exactly twice the message bandwidth

W^ that is,

B = 2 14'	 (7.8)

The spectrum of the AM wave as depicted in Fig. 7.2b is full in that the

carrier. the upper sidcbancl^ and the lower sideband are all completely

represented. It is for this reason that we treat this form of amplitude
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modulation as the "standard" against which other form s of amplitude mod-

ulation are compared.

................................

EXAMPLE 1 SINGLE-TONE MODULATION

Consider a modulating wave m(t) that consists of a single tone or frequency

component, that is,

m(t) = A, cos(27zfm t)	 (7.9)

where A, is the amplitude of the modulating wave and f, is its frequency

(see Fig. 7.3a). The sinusoidal earrier wave c(t) has amplitude A c and

frequency f, (see Fig. 7.3b). The requirement is to evaluate the time-

domain and frequency-domain characteristics of the resulting AM wave.

The AM wave is described by

s(t) = A c[l + p cos(27zf,t)] cos(27rfc t)	 (7.10)

where

p = k^A,	 (7.11)

The dimensionless constant u is the modulation factor, or the percentage

modulation when it is expressed numerically as a percentage. To avoid

envelope distortion due to overmodulation, the modulation factor u must

be kept below unity.

Figure 7.3c is a sketch of s(t) for u less than unity. Let A_ and Amm

denote the maximum and minimum values of the envelope of the modu-

lated wave. Then, from Eq. 7.10 we get

A	 AJI + u)

A	 AJI — p)

That is,

	

A_ — A.m	
(7.12)

A... + A.m

Expressing the product of the two cosines in Eq. 7.10 as the sum of two

sinusoidal waves, one having frequency f, + f, and the other having

frequency f, — f_ we get

s(t) = A, cos(2nf,t) + JuA, cos[2n(f, + f_)tJ

+ JpA, cos[27r(f, — f^)tj	 (7.13)
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The t1me-domain and frequency-domain characteristics of different modulated
waves produced by a single tone.

The Fourier transform of s(t) is therefore

S(f) = iit,[6(f — fj + J(f + fj]
+ I4 ,uA,16(f — fc — f^) + 6(f + f, + jf^)]+ 1

4pAj6(f — f, + f.) + 6(f + f, — f^)] 	 (7.14)

Thus the spectrum of an AM wave, for the special case of sinusoidal

modulation, consists of delta functions at ±f,, f, ± f_ and —fc -- f,, as

in Fig. 7.3c.
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Perc^tagoe modulat,on

Figure 7.4

Variations of carrier power and total sideband power with percentage modulation.

In practice, the AM wave s(t) is a voltage or current wave. In either

case, the average power delivered to a I-ohm load resistor by s(t) is com-

prised of three components:

Carrier power = iA 2
C

Upper side-frequency power = Au'A,2

Lower side-frequency power = J 'U 2 A2

The ratio of the total sideband power to the total power in the modulated
to U 2/	 +wave is therefore equal (2 

U2), which depends only on the mod-

ulation factor u. If u = 1, that is, 160% modulation is used, the total

power in the two side-frequencies of the resulting 
AM 

wave is only one

third of the total power in the modulated wave.

Figure 7.4 shows the percentage of total power in both side-frequencies

and in the carrier plotted versus the percentage modulation. Note that

when the percentage modulation is less than 20%, the power in one side-

frequency is less than 1 17c of the total power in the AM wave.

..........................................................................................................................

GENERATION OF AM MWES

Having familiarized ourselves with the characteristics of a standard AM

wave, we may go on to describe devices for its generation. Specifically, we

describe the square-law modulator and the switching modulator, both of

which require the use of a nonlinear element for their implementation.

These two devices are well-suited for low-power modulation purpo^es.
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Square-Low Modulator A square-law modulator requires three features:
a means of summing the carrier and modulating waves, a nonlinear ele-

ment, and a band-pass filter for extracting the desired modulation products.

These features of the modulator are illustrated in Fig. 7.5. Semiconductor

diodes and transistors are the most common nonlinear devices used for

implementing square-law modulators. The filtering requirement is usually
satisfied by using a single- or double-tuned filter.

When a nonlinear element such as a diode is suitably biased and operated

in a restricted portion of its characteristic curve, that is, the signal applied

to the diode is relatively weak. we find that the transfer characteristic of
the diode–load resistor combination can be represented closely by a square
la w:

v-.(t) ^ alvi(t) + a2V 21(l)	 (7.15)

where a, and a2 are constants. The input voltage v,(t) consists of the carrier

wave plus the modulating wave, that is,

vi(t) = A, cos(21rft) + m(t)	 (7.16)

Therefore, substituting Eq. 7.16 in 7.15, the resulting voltage developed

across the primary winding of the output transformer is given by

2a2
v 2 (t) = a jA, I + — 

m 
( t) cos(27rf,i)

I	 a,	 I
AM wave

+ a l m(t) + a 2m2( t ) + a2A 2 COS2(27rfct) (7.17)

Unwanted terms

Figure 7.5
Square-low modulator.
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The first term in Eq. 7.17 is the desired AM wave with amplitude sensitivity

k. = 2a 2la, The remaining three terms are unwanted terms; thev are
removed by appropriate filtering.

EXERCISE 2 Show that the unwanted terms in Eq. 7.17 are removed by
the tuned (band-pass) filter at the modulator output of Fig. 7.5 provided

that it safisfies the following specifications:

Midband frequency

Bandwidth = 2W

f, > 3W

Switching Modulator A switching modulator is shown in Fig. 7.6a, where

it is assumed that the carrier wave c(t) applied to the diode is large in

amplitude. so that it swings right across the characteristic curve of the

diode. We assume that the diode acts as an ideal switch ^ that is, it presents

zero impedance when it is forward-biased [corresponding to c(t) > 01 and
infinite impedance when it is reverse-biased [corresponding to c(t) < Oj^

c(t) = Ac cos (2 Trfc 0

(a)

w

(b)

Figure 7.6

Swiching modulator. (a) Circuit diagram. (b) Idealized input-output relation.
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We may thus approximate the transfer characteristic of the diode-load

resistor combination by a piece wise-linear characteristic,
-
 as shown in Fig.

7.6b. Accordingly, for an input voltage v l (t) given by

v l (t) = A, cos(27rfj) + m(t)	 (7.18)

where rn(t)j < A_ the resulting load voltage v2(t) is

V-( 1 ) ^	
V I (t),	 C(t) > 0	

(7. 1.9)
10,	 C(1) < 0

That is. the load voltage vjt) varies periodically between the values vi(t)

and zero at a rate equal to the carrier frequency f,. In this way, by assuming

a modulating wave that is weak compared with the carrier wave, we have

effectively replaced the nonlinear behavior of the diode by an approxi-

mate]% equivalent linear time-%arying operation.

we may express Eq. 7.19 mathematically as

v-(O ^ [A, cos(27zf,t) + ni(iflg p (t)	 (7.20)

,Ahere i^,(t) is a periodic pulse train of duty cycle equal to one half and

period T, = I j . as in Fi g . 7.7. Representing this g,jt) b y its Fourier

series. Ac have

	

I	 I	 ,	 ( — I ), I
g' (1) = - - - IV -5- cos[2;-f, t(2tz - I)]
	2 	 :7

= I - 
2 
Cos(-1 77_f,t) - odd harmonic components	 (7.21)

	2 	 7

Therefore suhstitutin g Eq 7.21 in 71.20. %^c find that the 
load 

voltage u,(t)

Is as follows:

1--(t)	
4,	

1 -
	

"I([	 cos(27.0) - unAanted term ,,	 -

	

2 [	 ;7A	
(7.22)

0	 1

Figure 7.7

Periodic pulse train
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The first term of Eq, 7.22 is the desired AM wave with amplitude sensitivity
k, = 4/7rA,. The unwanted terms are removed from the load voltage v,(t)
by means of a band-pass filter.

EXERCISE 3 Show that removal of the unwanted terms in Eq. 7.22 is
accomplished if the band-pass filter satisfies the following specifications:

Midband frequency

Bandwidth = 2W

f, > 2W

DETECTION OF AM WAVES

The process of detection or demodulation provides a means of recovering
the message signal from an incoming modulated wave. In effect, detection
is the inverse of modulation. In the sequel, we describe two devices for
the detection of AM waves, namely, the square-law detector and the en-
velope detector.

Square-Law Detector A square-law detector is essentially obtained by us-
ing a square-law modulator for the purpose of detection. Consider Eq.
7.15 defining the transfer characteristic of a nonlinear device, which is
reproduced here for convenience:

U2(t) = a,u,(t) + a,u 2i (t)	 (7.23)

where v,(t) and u,(t) are the input and output voltages, respectively. and
a, and a, are constants. When such a device is used for the demodulation
of an AM wave, we have for the input

v 1 (t) = A,[1 + k,m(t)] cos(2;zf,t) 	 (7.24)

Therefore, substituting Eq. 7.24 in 7.23. we get

V2(t) = a,A,[l + k.m(t)] cos(21zf,t)
+ Ja2A 2 [ 1 + 2k,m(t) + kW(t)][I + cos(47rf,t)] (7.25)

The desired signal, namely, a 2 A c2 k,m(t), is due to the av 2 (t) term—hence,
the description "square-law detector." This component can be extracted
by means of a low-pass filter. This is not the only contribution within the
baseband spectrum, however, because the term 'a,A'k-nz 2 (t) will give risej	
to a plurality of similar frequency components. The ratio of wanted signal
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to distortion is equal to 21k,m(t). To make this ratio large we limit the
percentage modulation, that is, we choose lk.m(t)l small compared with
unity for all t. We conclude therefore that distortionless recovery of the
baseband signal m(t) is possible only if the applied AM wave is weak (so
as to justify the use of a square-law input-output relation as in Eq. 7.23)
and if the percentage modulation is very small.

Envelope Detector An envelope detector is a simple and yet highly effec-
tive device that is well-suited for the demodulation of a narrow-band AM
wave (i.e., the carrier frequency is large compared with the message band-
width). for which the percentage modulation is less than 100%. Ideally,
an envelope detector produces an output signal that follows the envelope
of the input signal waveform exactly; hence, the name. Some version of
this circuit is used in almost all commercial AM radio receivers.

Figure 7.8a shows the circuit diagram of an envelope detector that
consists of a diode and a resistor-capacitor filter. The operation of this
envelope detector is as follows. On the positive half-cycle of the input
signal. the diode is forward-biased and the capacitor C charges up rapidly
to the peak value of the input signal. When the input signal falls below
this value, the diode becomes reverse-biased and the capacitor C discharges
slowly through the load resistor R, The discharging process continues until
the next positive half-cycle. When the input signal becomes greater than
the voltage across the capacitor, the diode conducts again and the process
is repeated. We assume that the diode is ideal, presenting zero impedance
to current flow in the forward-biased region, and infinite impedance in the
reverse-biased region. We further assume that the AM wave applied to
the envelope detector is supplied by a voltage source of internal impedance
R,. The charging time constant R,C must be short compared with the carrier
period Ilf,, that is,

R,C <	 (7.26)

Hence, the capacitor C charges rapidly and thereby follows the applied
voltage up to the positive peak when the diode is conducting. On the other
hand, the discharging time constant R I C must be long enough to ensure
that the capacitor discharges slowly through the load resistor R, between
positive peaks of the carrier wave, but not so long that the capacitor voltage
will not discharge at the maximum rate of change of the modulating wave,
that is,

	

< R IC 1 
1	

(7.27)
-	 W
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Figure 7.8

Envelope deteCtOr. (a) Circuit diagram. (W AM wave input (c) Envelope detector
output.

%%here W is the message bandwidth. The result is that the cap,icitor Noltage

or detector output is very nearly the same as the en% elope of the ANI wave,

as illustrated in Fi,-, ,. 7.8b and c. The detector output usuall .̂  has a small

ripple (not shov,n 
in 

Fig. T8c) at the carrier frcqucncy^ this ripple is easily

removed bY 10^k-pa-^s filtering.
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.............. 7.2 DOUBLE-SIDEBAND SUPPRESSED-CARRIER MODULATION

In 
-the standard form of amplitude modulation, the carrier wave c(t) is

completely independent of the message signal m(t), which means that the

transmission of the carrier %%ave represents a waste of power. This points

to a shortcoming of amplitude modulation: namely, that onl y a fraction of

the total transmitted power is affected bv in(t). To overcore this short-

coming, we may suppress the carrier comp'onent from the modulated wave..
resulting in double-sidehand suppressed carrier modulation. Thus, by sup-
pressing the carrier, Ae obtain a modulated wave that is proportional to

the product of the carrier "a^e and the message signal.

TIME-DOMAIN DESCRIPTION

To describe a double-sideband suppressed-carner (DSBSQ modulated wave
as a function of time, we w rite

S ( t ) = c(')m(f)
= A, cos(21rf,t)m(t)	 (7.28)

This modulated wave undergoes a phase reversal whenever the message

signal ni(t) crosses zero, as illustrated in Fig. 7.9; part a of the figure depicts
the waveform of a message si g nal. and part b depicts the corresponding
DSBSC-modulated wave. Accordingly. unlike amplitude modulation, the
envelope of a DSBSC modulated " ave is different from the message signal.

EXERCISE 4 Sketch the envelope of the DSBSC modulated wave shown
in Fig. 7.9b and compare it to the message signal depicted in Fig. 7.9a.

FREOUENCY-DOMAIN DESCRIPTION

The suppression of the carrier from the modulated wave of Eq. 7.28 is
well-appreciated 

by 
examining its spectrum. Specifically, by taking the

Fourier transform of both sides of Eq. 7.28, we get

S(f) ^ 2 A,j,V(f — f,) + W(f + fj)	 (7.29)

where, as before, S(f) is the Fourier transform of the modulated wave
s(t), and %1(f) is the Fourier transform of the message signal m(t). When
the message signal m(t) is limited to the interval — W -- f -- W,
as in Fig. 7.10a, we find that the spectrum S(f) is as illustrated in part b
of the figure. Except for a change in scale factor, the modulation process

simply translates the spectrum of the baseband signal by -f,. Of course,
the transmission bandwidth required by DSBSC modulation i^ the same
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(a)

(b)

Figure 7.9
(a) Message signal. (b) DSBSC-modulated wave s(t).
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Figure 7.10
(a) Spectrum of message signal. (b) Spectrum of DSBSC modulated wave.
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as that for standard amplitude modulation, namelv, 2W. However, com-

paring the spectrum of Fig. 7. 10b for DSBSC modulation with that of Fic.

7.2h for standard amplitude modulation, we clearly see that the carrier is

suppressed in the former case. whereas it is present in the latter case, as
exemplified by the existence of the pair of delta functions at -_f,

GENERATION OF DSBSC WAVES

A double-sideband suppressed-carrier modulated wave consists simply of

the product of the message signal and the carrier wave, as shown by Eq.
7.28. A device for achieving this requirement is called aproduct modulator,

In this section, we describe two forms of a product modulator—the bal-

anced modulator and the ring modulator.

Balanced Modulator A balanced modulator consists of m o standard am-

plitude modulators arranged in a balanced configuration so as to suppress

the carrier wa^ e . as shown in the block diagram of Fig. 7. 11. We assume

that the two modulators are identical, except for the sign reversal of the

modulating wave applied to the input of one of them. Thus, the outputs

of the two modulators may be expressed as follo\ks:

S,(t) = AJI + k^m(t)j cos(277ft)

and

S2(t) = AJI — k.m(t)] cos(2,7f,t)

Subtracting s,(t) from s,(t), we obtain

S ( t ) = S '( t ) - SAO

— 2k,A, cos(27rf,t)?n(t)	 (7.30)

Hence, except for the scaling factor 2k., the balanced modulator output

is equal to the product of the modulating wave and the carrier, as required.

Ring Modulator One of the most useful product modulators that is well-
suited for generating a DSBSC modulated wave is the ring modulator show n
in Fig. 7.12a^ it is also known as a lattice or double-halanced modulator.
The 

four 
diodes in Fig. 7.12a form a ring in which they all point in the

same way. Fhe diodes are controlled 

b - 

v a squarc-wave carrier c(t) of
frequency f,. which is applied by means of two center-tapped transformers.

We assume that the diodes are ideal and the transformers are perfectly

balanced. When the carrier supply is positive, the outer diodes are switched'
on, presenting zero impedance, whereas the inner diodes are switched off,

presenting infinite impedance, as in Fig. 7.12b, so that the modulator



E

M d.l.ted_"ve
wave

Modulating(t)

1]wave m(t)

DOUBLE-SIDEBAND SUPPRESSED-CARRIER MODULATioN 277

	

A M	 W

modulator

A, cos j(2rft)	 W,

O^illator	 y

A, co, t21rffl

AMm 
odulator

Figure 7.11
Balanced modulator.
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(a)

a	 b	 a	 b

:

_01^K:XC	 d	 c	 d

(b)	 (c)

Figure 7.12
Ring modulator (a) Circuit diagram . (b) The condition when the otiter diodes are

switched on and the inner diodes are switched off (c) The condition when the outer

diodes are switched off and the inner diodes are switched on.
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multiplies the message signal m(t) by + 1. When the carrier supply is

negative, the situation becomes reversed as in Fig. 7.12c, and the modulator

multiplies the message signal by — 1. Thus the ring modulator, in its ideal

form, is a product modulator for a square-wave carrier and the message

signal, as illustrated in Fig. 7.13 for the case of a sinusoidal modulating
wave.

The square-wave carrier c(t) can be represented by a Fourier series as

C(t) = 
4 j 

L_^ cos[27zft(2n	 (7.31)
n _, 2n — I

The ring modulator output is therefore

S( t )	 c(l)m(t)

j LI^ cos[27rft(2n — I)jm(t)	 (7.32)
71 _ 1 2n — I

We see that there is no output from the modulator at the carrier frequency;

that is, the modulator output consists entirely of modulation products.

0

(a)

I
I I I I I I	 -Umm
I 

I 
I IF64 nd I

(c)

Figure 7.13

WavefOrms illustrating the operation of the ring modulator for a sinusoidal
modulating wave. (a) Modulating wave. (b) Square-wave carrier. (c) Modulated
wave.
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EKERCISE 5 The spectrum of the ring modulator output s(t), deftned by

Eq. 7.32, consists of sidebands around the fundamental frequency of the

square wave c(t) and its odd harmonics. Suppose that the message signal

m(t) is band-limited to the interval. — W -_ f _- W. Hence, show that the

DSBSC modulated wave 4 cos(27zft)m(t)/7z may he selected by using a

band-pass filter with the following specifications:

Nfidband frequency

Bandwidth = 2W

f, > W

COHERENT DETECTION OF DSBSC MODULATED WAVES

The message signal m(t) is recovered from a DSBSC wave s(t) b^ first

multiplyings(t) with a locally generated sinusoidal wave and then low-pass

filtering the product, as in Fig. 7.14. It is assumed that the local oscillator

output is exactly coherent or synchronized, in both frequency and phase^

with the carrier wave c(t) used in the product modulator to Pencrate s(t).

This method of demodulation is known as coherent detection or s^achron-

ous detection.

It is instructive to derive coherent detection as a special case of the

more general demodulation process using a local oscillator signal of the

same frequency but arbitrary phase difference 0, measured with respect

to the carrier wave c(t). Thus, denoting the local oscillator si gnal bN

cos(27rfj + (P), assumed to be of unit amplitude for comenience. and

using Eq. 7.28 for the DSBSC modulated %vave s(t), we find that the product

modulator output in Fig. 7.14 is given b,%

u(t) = cos(21rf,t + O)s(t)

= A, cos(27if,t) cos(27if,t — 0)1n(t)

= JA, cosont(t) + 2'A, cos(47rf,t	 0)in(t)	 (7.33)

Scaled version	 Unwanted term

of message
signal

The low-pass filter in Fig. 7.14 removes the unwanted term in the product

modulator output of Eq: 7.33, The overall output ujt) is therefore given

by

vjt) = iA, cos(P m(l)	 (7.34)

The demodulated signal v,,(t) is therefore proportional to rn(t) when the

phase error 0 is a constant. The amplitude of this demodulated signal is
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0^duct L
(̂1),I Low pass

^PO,cfu I alo f F-7 filler r

cos(2rf,j ^q$)

Locdl

Figure 7.14

Coherent detec6on of DSBSCmodulated a,e.

maximum Ahen 0 = (). and is minimum (zero) ^N r hen 0 = - 7r '. The zero
demodulated signal, ^N hich occurs forb = ^t 7T^2. representsthe quadrature
null effect of the coherent detector. Thus the phase error 0 in the local
oscillator causes the detector output to he attenuated b^ a factor equal to
c0s(P . As lon2 as the phase error p is con^tant. the detector output pro% ides
an undistorted %ersion of the original mes.,age signal ni(t) . In practice,
ho^keNer, we usuall^ find that the phase error ^) %aries rancloml^ with time,
o ,Aing to random %ariations in the communication channel. The result is
that at the detector output. the niultipl^ll)Lt^ictorcosoL^lso%,ariesrandonil^
,Aith tinie, Ahich is ob^iousl^. undesirable. Therefore, circuitr^ must be

pro%ided in the recci^cr to maintain the l ocal oscillator in perfect s y n-
chronism, in both frequency and phase. N^ith the carrier wave usedto
. generate . the DSBSC modulated Aa%e in the transmitter. The resulting

increase in recei% cr complexit^ is the price that must be paid for suppressing

the carrier Aa^e to save transmitter po"er.

EXERCISE 6 Suppose that the message signal m(t) is band-limited to the
interval — W -- f -- W. Hence, show that the low-pass filter in Fig. 7.14
removes the unwanted term in the product modulator output of Eq. 7.33,
provided that it satisfies t he following specifications:

Midband frequency

Bandwidth = 2W

f, > W

..............................................................................................................

EXAMPLE 2 SINGLE-TONE MODULATION (CONTINUED)

Consider again the sinusoidal modulating signal

A, cos(2;zf,j)
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The corresponding DSBSC modulated wave is given by

s(t) = A, A, cos(2nf,t) cos(27zf,^t)

— iA,,A. cos[21z(f, + fjtj + 2'A,A, cosJ27T(f, — f,)(1 	 (7.35)

Figure 7.3d is a sketch of this modulated wave.

The Fourier transform of s(t) is therefore

S(f) ^ ^A,-A^[(5(f — f, — fJ + 6(f + , + J,J

+ (5(f — L + f"' ) + Mf + L — f.)]	 (7.36)

Thus the spectrum of the DSBSC modulated wave, for the case of a s i-

nusoidal modulating wave, consists of delta functions located at f.

and —f, -_ f_ as in Fig. 7.3d.

Assuming perfect synchronism between the local oscillator in Fig. 7.14

and the carrier wave, we find that the product modulator output is

u(t)	 cos(27rf,i)(iA,.A, cos[27z(f, — f,)tl

+ 1A, A, cosf27z(f, + f,)tjj

1,A,A,, cos[27r(2f, — f,)tj + 41A, A, cos(2,rf,,[)

+ 4 A,A, cos[2;7(2f, + jr,)tj + 'A,A, cos(2YT _t 1 0	 (7.37)

where the first tAo terms are produced by the lower side-frequency. and

the last two terms are produced 
by 

the upper side-frequenc^. The first and

third terms, of frequencies 2f, — f, and 2f, + f,. respecti%ek. are re-

moved by the low-pass filter in Fig. 7.14. The coherent detector output

thus reproduces the original modulating wave. Note, hoAever, that this

detector output appears as two equal terms. one derived from the upper

side-frequency and the other from the lower sicle-frequenc^. We conclude.

therefore, that for the transmission of information, onlN one side-frequency

is necessary. We will have more to sa\ about this issue in Section 7.4.

.......................................................................................................................

COSTAS LOOP

One method of obtaining a practical synchronous receiving system, suitable

for use with DSBSC modulated waves. is to use ihe Coslas loop-' shown

in Fig. 7.15. This receiver consists of two coherent detectors supplied with

the same input signal, namely, the incoming DSBSC modulated wave

A. cos(21rf,t)m(f), --but with individual local oscillator signals that are in

phase quadrature to each other. The frequency of the local oscillator is

The Costas loop is named in honor of its inventor; see Costas (1956).
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FiGure 7.15

Costas loop.

adjusted to be the same as the carrier frequency f_ which is assumed
known a priori. The detector in the upper path is referred to as the in-
phase coherent detector or I-channel, and that in the lower path is referred
to as the quadrature-phase coherent detector or Q-channel. These two de-
tectors are coupled to form a negative feedback system designed in such

a way as to Maintain the local oscillator synchronous with the carrier wave.

To understand the operation of this receiver, suppose that the local oscil-

lator signal is of the same phase as the carrier wave A,cos(2nf ct) used to
generate the incoming DSBSC wave. Under these conditions, we find that
the I-channel output contains the desired demodulated signal m(t), whereas

the Q-channel output is zero owing to the quadrature null effect of the Q-
channel. Suppose next the local oscillator phase drifts from its proper value
by a small amount 0 radians. The 1-channel output will remain essentially

unchanged, but there will now be some signal appearing at the Q-channel

output, which is proportional to sino ^ 0. This Q-channel output will have
the same polarity as the 1-channel output for one direction of local oscillator

phase drift and opposite polarity for the opposite direction of local oscillator

phase drift. The I- and Q-channel outputs are combined in a phase dis-
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criminator (which consists of a multiplier followed by a low-pass filter) . A

dc control signal proportional to the phase error 0 is obtained at the

discriminator output. Hence, the receiver automatica lly corrects for local

oscillator phase errors.
it is apparent that phase control in the Costas loop ceases with modu-

lation, and that phase-lock has to be re-established with the reappearance
of modulation. This is not a serious problem when receiving voice trans-
mission, because the lock-up process normally occurs so rapidly that no

perceptible distortion is observed.

EXERCISE 7 
Show that the phase discriminator output in the receiver of

Fig. 7.15 is proportional to ao, where a is the average value 
Of M2 (t) and

0 is the phase error (assumed small).

............... 7.3 QUADRATURE-CARRIER MULTIPLEXING

n dation
A quadrature-carrier multiplexing or quadrature-amplitUde r odi

(QAM) scheme enables two DSBSC modulated waves (resultin g from the

application of two independent 
message signals) to occupy the same trans-

ge
mission bandwidth, and yet it allows for the separation of the tA( messa,
signals at the receiver output. it is therefore a 

bandwidth-conservatz on

scheme.	 quadrature-carrierFigure 7.16 is a block diagram of the	
Z 

multiplexing

system. The transmitter of the system, shown in part a of the fi -ure, im olves

the use of two separate product modulators that are supplied with two
carrier waves of the same frequency but differing in phase by —90'. The

multiplexed signal s(t) consists of the sum of these two product modulator

outputs, as shown by

	

s(t) = A,-.(t) cos(27rfct) + A,m4t) sin(27rf,r) 	 (7.38)

where m j (t) and m 2 (t) denote the two different message signals applied to
the product modulators. Thus, the multiplexed signal s(t) occupies a trans-

mission bandwidth of 2W. centered at the carrier freq uency f, , where W

is the message bandwidth of in,([) or m,(t), %Nhichever is largest-

The receiver of the system is show n in Fig. 7.16b. The multiplexed signal

s(t) 

is applied simultaneously to two separate coherent detectors that are
supplied with two local carriers of the same frequency, but differing in

phase by —90'. The Output of the top detector is 1,A,m j (t), where - as the

output of the bottom detector is jA,rn_,W-	
te satisfactorilv.

For the quadrature-carrier multiplexing system to opera v relationships
it is important to maintain the correct phase and frequenc.
between the local oscillators used in the transmitter and receiver parts of
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Figure 7.16

Quadrature-carrier Multiplexing system (a) Transmitter. (b) Receiver.

the system. This requirement may be 
s atisfied, for ex ample, *by using aCostas IOOP; see Section 7.2.

........ 7.4 SINGLE-SIDEBAND MODULATION

Standard amplitude modulation and double-sideband suppressed-carriermodulation are wasteful of ba
ndwidth because they both require atransmission bandwidth equal to twice the message bandwidth. In eithercase, one half the transmission bandwidth 

is occupied by the upper side-band Of the modulated wave, whereas the other half is occupied by thel ower sideband. However, the upper and lower sidebands are uniquely

j
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related to each other by virtue of their symmetry about the carrier fre-

quencv; that is, given the amplitude and phase spectra of either sideband,

we can uniquely determine the other. This means that insofar as the trans-

mission of information is concerned, only one sideband is necessary, and

if both the carrier and the other sideband are suppressed at the transmitter,

no information is lost. Thus the channel needs to provide only the same

bandwidth as the message signal, a conclusion that is intuitively satisfying.

When oniv one sideband is transmitted, the modulation is referred to as

single-sideband modulation.

In the stucl^ of standard amplitude modulation and double sideband-

suppressed carrier modulation, pursued in Sections 7.1 and 7.2, we first

formulated a time-domain description of the modulated wave and then

mo,,ed on to its frequency-domain description. In the study of single-

sideband modulation, we find it easier in conceptual terms to reverse the

order in which these two descriptions are presented.

FRECILIENCY-DOMAW DESCRIPTION

The precise frequency-domain description of a single-sideband (SSB) mod-

ulated wa
v
e depends on which sideband is transmitted. Consider a message

signal m(t) with a spectrum Af (f) limited to the band — W -_ f -_ W, as

in Fig. 7.17a. The spectrum of the DSBSC modulated wa^e, obtained by

multiplying m(t) by the carrier wave A, cos(27rf,r), is as shown in Fig.

7 17b. The upper sideband is represented in duplicate by the frequencies

above f, and those below —f,: and when only the upper sideband is

transmitted, the resulting SSB modulated wave has the spectrum shown

in Fig. 7.17c. Likewise, the lower sideband is represented in duplicate by

the frequencies below f, (for positive frequencies) and those above —f,

(for negative frequencies); and Ahen only the lower sideband is transmit-

ted, the spectrum of the corresponding SSB modulated wave is as shown

in Fig. 7.17d. Thus the essential function of SSB modulation is to translate

the spectrum of the modulating wave, either with or without inversion, to

Message spectrum

M(f)

/ \M' 0,
W 0 W	 f

(a)

Figure 7.17
(a) Spectrum of message signal. (h) Spectrum of OSBSC modulated wave. (c)

Spectrum of SSB modulated wave with the upper sideband transmitted. 
(d)

Spectrum of SSB modulated wave with the lower sideband transmitted.
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Figure 7.17 (continued)

a new location in the frequency domain. Moreover, the transmission band-
width requirement of an SSB modulation system is one half that of a
standard AM or DSBSC modulation system. The benefit of using SSB
modulation is therefore derived principally from the reduced bandwidth
requirement and the elimination of the high-power carrier wave. The prin-
cipal disadvantage of SSB modulation, however, is the cost and complexity
of its implementation.

FRECUENCY DISCRiMINATION METHOD FOR r7ENERATING AN SSB
MODULATED WAVE

The frequency-domain description presented for SSB modulation leads us
naturally to the frequency discrimination method for generating an SSB
modulated wave. Application of t- he method, however, requires that the
message signal satisfy two conditions:

1. The message signal m(t) has little or no low-frequency content; that is,
the message spectrum M(f) has "holes" at zero frequency. An impor-
tant type of message signal with such a property is an audio signal



SINGLE-SIDEBAND MODULATION 287

(speech or music). In telephony, for example, the useful frequency

content of a speech signal is restricted to the band 0.3-3.4111z, thereby

creating an energy gap from zero to 300 Hz.

2. The highest frequency component W of the message signal rn(t) is much

. less than the carrier frequency f,.

Then, under these conditions, the desired sideband will appear in a non-

overlapping interval in the spectrum in such a way that it may be selected

by an appropriate filter. Thus an SS13 modulator based on frequency dis-

crimination consists basically of a product modulator and a filter designed

to pass the desired sideband of the DS13SC modulated wave at the product

modulator output and reject the other sideband. A block diagram of this

modulator is shown in Fig. 7.18a. The most severe requirement of this

method of SSB generation usually arises from the unwanted sideband, the

nearest frequency component of which is separated from the desired side-

band by twice the lowest frequency component of the message signal.

In designing the band-pass filter in the SSB modulation scheme of Fig.

7.18a, we must therefore satisfy two basic requirements:

1. The passband of the filter occupies the same frequency range as the

spectrum of the desired SSB modulated wave.

2. The width of the guardband of the filter, separating the passband from

the stopband where the unwanted sideband of the filter input lies, is

twice the lowest frequency component of the message signal.

We usually find that this kind of frequency discrimination can be satisfied

only by using highly selective filters, which can be realized using crystal

resonators with a Q factor per resonator in the range of 1000 to 2000.

SSB

A, WS (2tfrt)

P-d-1	 Band p—	 P'.d-t	 Band pa^	 SSB

modulator	 fil-
modulator	 fili^r

c- (2,f, 1)	 A, co^ (2,rft)

Figure 7.18
(a) Block diagram of the frequency discrimination method (single stage) for

generating SSB modulated waves. i b) Block diagram of a two-stage SSB modulator.
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When it is necessary to generate an SSB modulated wave occupying a
frequency band that is much higher than that of the message signal (e.g.,
translating a voice signal to the high-frequency region of the radio spec-
trum), it becomes very difficult to design an appropriate filter that will pass
the desired sideband and reject the other using the simple arrangement of
Fig. 7.18a. In such a situation it is necessary to resort to a multiple-mod-
ulation process so as to ease the filtering requirement. This approach is
illustrated in Fig. 7.18b involving two stages of modulation. The SSB mod-
ulated wave at the first filter output is used as the modulating wave for the
secona product modulator, which produces a DSBSC modulated wave with
a spectrum that is symmetrically spaced about the second carrier frequency

f2. The frequency separation between the sidebands of this DSBSC mod-
ulated wave is effectively twice the first carrier frequency f, thereby per-
mitting the second filter to remove the unwanted sideband.

TIME-DOMAIN DESCRIPTION

The spectra shown in Fig. 7.17 clear!y display the frequency-domain de-
scription of SSB modulated waves; also, they highlight the relation between
this frequency-domain description and that of the message signal. It is
interesting to observe that we were able to relate the spectral content of
SSB modulated waves to that of the message signal without having to resort
to the use of mathematics. But how do we define an SSB modulated wave
in the time domain? The answer to this question is desired not only because
it completes the description of SSB modulated A aves but also it provides
the mathematical basis of another method for their generation. Unfortu-
nately, the task of developing the time-domain description of SSB mod-
ulated waves is mathematically more difficult than that of standard AM or
DSBSC modulated waves. To solve the problem, we use the idea of a
complex envelope, which was discussed in Section 3.5.

Consider first the mathematical representation of an SSB modulated
wave s,(t), in which only the upper sideband is retained. The spectrum of
this modulated wave is depicted in Fig. 7.17c. We recognize that s,(t) may
be generated by passing a DSBSC modulated wave through a band-pass
filter of transfer function H.(ft The DSBSC spectrum is illustrated in Fig.
7.17b, which corresponds to the message spectrum M(f) of Fig. 7.17a. As
for the transfer function H.(f), ideally, it has the frequency dependence
shown in Fig. 7.19a.

The DSBSC modulated wave is defined by

SDSBSC( t ) = A,-(t) cos(27rf,t)	 (7.39)

where m(t) is the message signal and A, cos(2nf,t) is the carrier wave.
Naturally, it is a band-pass signal with an in-phase component only. The
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Figure 7.19
(a^ Frequency response of ideal band-pass filter for selecting the upper sideband of
a DSBC moo-lated wave. (b) Freq^ency response of equivalent low-pass filter (c)

Spectrum of complex envelope of DSBSC modulated wave.

low-pass comple.k entelope (if the DSBSC modulated ^Na^e is gi\en b,,

(7.40)

The SSB modulated A a^c s ,,(t) is a] so a bit nd-pa^s signal. I I o^%Nc\cr, un I ike

the DSBSC modulated wa\e, it has a quadraturc as \\ell as an in-phase

component. Let the low-pass signal s,,(t) denote the complex en^clope of

s,(t). We mm then \%rite

s,([) = Rels,(r) exp(j2;zf,t)j	 (7.41)

To determine 9,(t), we proceed as follows (see Section 3.5):

1. The band-pass filter of transfer function H,(f) is replaced by an equiv-

alent low-pass filter of transfer function Hjf). which is as shown in Fig.
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7.19b. From this figure, we see that Rjf) may be expressed as

ffl + sgn(f)],	 0 < f < WH.(f) =- 
to,	 otherwise	

(7.42)

where sgn(f) is the signurn function.

2. The DSBSC modulated wave is replaced by its complex envelope. The

spectrum of this envelope is as shown in Fig. 7.19c, which follows from
Eq. 7.40. That is to say,

SDSBSC(f) = A c M(f)	 (7.43)

3. The desired complex envelope S,(t) is determined by evaluating the
inv; erse Fourier transform of the product hjf)9,s,,,(f). Since, by defi-
nition, the message spectrum M(f) is zero outside the frequency interval
— W < f < W, we find from Eqs. 7.42 and 7.43 that

li-ws.^.w = a^_'
2 
P + sgnM]MW	 (7.44)

Given that m(t) = M(f), we find (from Example 3 of Chapter 3) that
the corresponding Fourier transform pair for th(t), the Hilbert transform
of M(t), is

	

—j sgn(f)M(f)	 (7.45)

Accordingly, the inverse Fourier transformation of Eq. 7.44 vields

S. W = 
A-

	

2 , I-W + irh ( t )]	 (7.46)

which is the desired result.

Having determined ^jt), we are now ready to formulate the mathe-

matical description of the SSB modulated wave s.(t). Specifically, placing

Eq. 7.46 in Eq. 7.41, we get

S' (t) = A, [m(t) cos(21rf,t) — rh(t) sin(2nf,t)j	 (7.47)
2

This equation reveals that, except for a scaling factor, a modulated wave

containing only an upper sideband has an in-phase component equal to

the message signal m(t) and a quadrature component equal to rh(t), the
Hilbert transform of m(i).
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EXERCISE a Let sl (t) denote an SSB modulated wave in which only the

lower sideband is retained. To determine s,(t), proceed as follows:

1. Identify the transfer function H,(f) of a band-pass filter the output of

which equals s,(t) in response to a DSBSC modulated wave.

2. Determine the transfer function fil(f) of the equivalent low-pass filter

corresponding to HI(f).

3. Hence, using the results in parts (1) and (2), show that sjt) is given by

sl (r)	 [ni(t) cos(27rf,t) + rh(t) sin(2nf,t)) 	 (7.48)

What are the in-phase and quadrature components of s,(t)9

DISCUSSION

Equations 7.47 111d 7.48 
are 

(anoni, al rcprc,entations 01 L11)JICI and loxker

^ j dchands modulated on a carrier of trcquenc -% I . ' Ihe,c mo equations

deark demonstrate ho^k the ulll)cr and loAer sidef l and , cmi he i,olat'-d

from each other h^ suhlra^ting or JJ11ML t
h e 

Outputs of t^ko pr,,du,:t mod-

ulators. - 1 he 1110dillalOrs differ from cach othcr h\ the in,cition of - 90-

phase shifts het^kccn the modulatim-, \%a\cs a, %^ell as hemeen the carrier

^kaNes at their 1111)Ut^: ^\C %^Ill ha%c more to sa\ 011 thl, 111LIC MICII ^kC

rcxi^it the gcncr^ition of SSB modulated x^a\cs. The mathematical corn-

pjCXjt\ 
of 

J_q^ 7 47 and 7.4.1,. imoking, not onk the nic-acc si ,_, n,tl ln^f)

but also its Hilbert transform M(t). Tuakes it difficult for us to Sketch the

kka\efornis of SSB modulated ^ka\e,. in i!eneral. We therefore ha\e to

resort to the use of single-tone modulation 
in 

order to infer time-domain

properties ot SSB modulation.

EXAMPLE 3 SINGLE-TONE MODULATION (CONTINUEM

Consider again,the SIFIL1101dal 1110JUlatlu l-' \ka\C

In ( I	 t I

The I lilhcrt transform of this sion,il t, obtained l l ^	 it thrOU01 a

90 - phase shifter. %khich \ield,

th(l) - A,,	 (7 ^0)

Therefore. substituting Eqs. 7.49 and 7.50 
in 

7.47. Ae find that the SSB

"a%e. obtained hN transmitting onh
, th

e
 Lipper mdc-frequenc^, is d0ined
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: by

s(t) = JA,A.jcos(27rf,t) cos(27rf,t) — sin(27rf,t) sin(27rft)]

= JA,A,, cos[27r(f, + f,)tl
(7.51)

This is exactly the same as the result obtained by suppressing the lower
side-frequency of the corresponding DSBSC wave of Eq. 7,35.
The SSB wave of Eq. 7.51 and its spectrum are illustrated in Fig. 7.3e.

Next, using Eq. 7.48, we find that the SSB wave, obtained by trans
mitting only the lower side-frequency, is defined by

s(t) = iA,A,tcos(27rf,j) cos(21rf,t) + sin(27zf,t) siti(27rf,t)]

= JA,.A, cos[27z(f, — f,)t] 	 (7.52)

which is exactly the same as the result obtained by suppressing the upper
side-frequency f, + f, of the DSBSC wave of Eq. 7.35. The SSB wave
of Eq. 7.52 and its spectrum are illustrated in Fig. 7.3f.

...........................................................................................................................

PHASE DISCRIMINATION METHOD FOR
GENERATING AN SSB MODULATED WAVE

The phase discrimination method of generating an SSB modulated wave
involves two separate simultaneous modulation processes and subsequent
combination of the resulting modulation products, as shown in Fig. 7.20.
The derivation of this system follows directly from Eq. 7.47 or 7.48. which
defines the canonical representation of SSB modulated wa ves in the time-
domain. The system uses two product modulators, I and Q. supplied with
carrier waves in phase quadrature to each other. The incoming baseband
signal m(t) is applied to product modulator I, producing a modulated
DSBSC w ave that contains reference phase sidebands symmetrically spaced
about carrier frequency f,. The Hilbert transform rh(t) of ?n(t) is applied
to product modulator Q, producing a DSBSC modulated wave that contains
sidebands having identical amplitude spectra to those of modulator I, but
with phase spectra such that vector addition or subtraction of the two
modulator outputs results in cancellation of one set of sidebands and re-
inforcement of the other set. The use of a plus sign at the summing Junction,
yields an SSB wave with only the lower sideband, whereas the use of a
minus sign yields an SSB wave with only the upper sideband. In this way
the desired SSB modulated wave is produced. The SSB modulator of Fig.
7.20 is also known as the Hartle.v modulator.
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'j_

	

Fn	
Q

Quadrature path

Figure 7.20
Block diagram of the phase discrimination method for generating SSB modulated
waves.

DEMODULATION OF SSB WAVES

To recover the baseband signal ni(t) front the SSB Aa\e s(l). equal to

s,(t) or si(t), we have to shift the spectrum 
in 

Fig. 7.17c or d by the amounts

±f, so as to convert the transmitted sideband back into the baseband signal.

This can be accomplished using coherent detection, which inkolN es appl^ ing

the SSB wave s(t), together with a locally generated carrier cos(2:: f, 1).

assumed to be of unit amplitude for convenience, to a product modulator

and then low-pass filtering the modulator output, as in Fig. 7.21^. Thus.

using Eq. 7.47 or 7.48, we find that the product modulator output is gi%en

by

v(t) = cos(27,f,t)s(t)

= JA, cos(_17zf,t)[,,?i(t) cos(2trf,t) 2: rh(t) sin(27zf,t)]

= 41 A,ni(r) + 'A,[m(t) cos(47zf,t) ^ th(t) sin(41Tf,t)j

Scaled	 Unwanted component
message
signal	 (7.53)
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sss ^Ve	 od.ct	
(1) 

Lo. pass

M	 ulator	 filter

.. 

(2mil,t)

Figure 7.21

Coherent detection of an SS8 modulated wave.

Fhe first term in Eq. 7.53 is the desired message si gnal. The combination

of the remainin g terms represents Lin SSB modulated %%ave with it carrier

frequency of 2f, ; its such, it represents an unwanted component in the

product modulator output that is removed by low-pass filtering.

The detection of SS13 modulated waves, just presented, assumes ideal

conditions, namely. perfect syrichronization between the local carrier and

that in the transmitter both in frequency and phase.
. The effect of a phase

error o in the locally generated carrier Aa%e is to modify the detector

output as follo'As'

t),Jt) = 4 A,irn(t) coso 4- 4 A,th(r) sin(P	 (7.54)

,Ahere the plus sign applies to an incoming SS13 modulated wave containing

on1v the upper sideband (i.e.. the modulated wave of Eq. 7.47). and the

minus sign applies to one containing only the lower sideband (i.e., the

modulated wave of Eq. 7.48). 0 ,Ainv to the phase error o. the detector

qutput vjt) contains not only the message signal m(t) but also its Hilbert

transform th(t). Consequently, the detector output suffers from phase dis-

tortion. This phase distortion is usually not serious with voice communi-

cations because the human ear is relatively insensitive to phase distortion.

The presence of phase distortion gives rise to what is called the Donald

Duck voice effect. In the transmission of music and video signals, on the

other hand. phase -distortion in the form of a constant phase difference in

all components can be intolerable.

EXERCISE 9 Show that the low-pass filter in the coherent detector of

Fig. 7.21 only passes the message signal component of the product mod-

ulator output, provided it satisfies the following conditions:

(a) Bandwidth = W

(b) Width of guardband -_ 2f, — aW, where a = I for an SSB mod-

^For a more complete discussion of the effects of carrier phase and frequency errors

in single-sideband modulation, see Haykin (1983. pp 146-149).
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ulated wave containing only the upper sideband, and a = 2 for an SSB

modulated wave containing only the lower sideband.

EXERCISE 10 Let cos(27zf,t + 0) denote the local carrier applied to the

product modulator in Fig. 7.21. Show that the effect of the phase error

is to modifv the detector output v,P) as in Eq. 7.54.

.............. 7.5 VESTIGIAL SIDEBAND MODULATION

Sin ,de-sidehand modulation is NkC11-sL1i1Cd for the transmission of ^oice

bccause of the criergN gap that exist,, in the spectrUrn of %oicc signals

bci%%een zero and it fe^^ hUndred hertz. When the message signal contains

siumifiCant :ornponents at extrerncl^ lo%% frCLJUCnC1eS (it', in the case of

tcle%i,ion and %^idchand data). the LII)I)Cr it[)(] lo^^cr sidehands niect

at the carrier freqiicnc^. This ineans that the use of SSB modUlatiOn is

inappropri,ite for the tran^nnssion of such rnc^ ,,^we si2nals okking to the

difficult^ of isolatin g one sidcbancl. This difficult^ sugge^sts another

Kno^k n 
its 

1 esitgul/ ^idehand modulation (% SB). ^% hich is 
it 
compromise

hct%%cen SS13 and L)SBSC modulation. In this modulation chcrnc. one

sidehand i, passed alrno^t cornplctcl^ \%hercas just it trace. or tesliye. of

the (,[her idehand i, retained.

FREQUENCY-DOMAIN DESCRIPTION

I-it, ure 7 22 ilhistrates the spectrurn of it i cmgwl wdeband ( VSB ) modulawd
^iaie s(t) in relation to that of the niessaLc si ,_, nal m(t), assurnini-, that the

1(mer sideband is modified into the ^ ,cstwi:d sidCband. SPCCItIC^111X^ the

transmitted \esti2e 
of 

the IwAcr sidebLind compensates for 
the 

A111''Unt

remo%ed front the ul)per ^tdehand. The tratimu.s.sion hanQkk1dth rcquired

b^ the VSB modulated ^^a\e 
is 

therefore 6\cn lb^

B - W - L	 (7.55)

\khere VV is the messiwe baridAidih and 1 , is the Aidth of the \csfigial

,idehand.

Ve s ti g ial sideband modulation has the mtue of conscr\inl! band^%idth

almost its ufficient1% as single-sideband modulation, "title retaining the

excellent loA-frequency hasehand characteristics of double-sicicband mod-

ulation. Thus VSB modulation has become standard for the transmission

oftele%ision and similar signals \& r here good phase characteristics 
and 

trans-

mission of lom-frequency components are important, but the han(kkidth

required for double-sideband transmission is unavailablc or uneconomical.
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M(f)

—W 0 W

Figure 7.22
(a) Spectrum of message signal. (b) Spectrum of VSB modulati rd wave containing a
vestige of the lower sideband.

GENERATION OF VSB MODULATED WAVE

'lo gencrate a VSB modulated wave, we pass a DSBSC modulated wave

throu ,_, h awdebund.shuping filter. as in Fig. 7.23a. The exact design of this

filter depends on the desired spectrum of the VSB modulated wave. The

relation between the transfer function H(f) of the filter and the spectrum

S(f) of the VSB modulated wave s(t) is defined by

S(f) = A, [M(f 
_ f') + Nf(f + fjjH(f)	 (7.56)

2

where Af(f) is the message spectrum We wish to determine the specifi-

cation of the filter transfer function 11(f), so that S(f) defines the spectrum

of the desired N'SB wave s(t). This can be established by passing s(t)

throuLih a coherent detector and then determining the necessary condition

for the detector output to provide an undistorted version of the original

message si gnal m(t). Thus, multiplying s(i) 
by 

a locally generated sine-

wa^e cos(2,7f,r). %%hich i s synchronous with the carrier wave A, cos(27if,t)

in both frequency and phase, as in Fig. 7.23b, we get

u(t) = cos(2,7f,i)s(t)	 (7.57)

Fran,torming this relation into the frequency domain gives the Fourier
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DSBII	 Sdbad	 VSB wave

filie,

A, cos(2rf r)

VSB 
w",	

Product	 Low pass	 v^ (t)

'(1,	 —dulat.,	 f, ter

cus,

(b)

-W 0 W
f, + W	 f, + W

(C^

Vu (f)

A ' MIO) IHI—f,) + HI,, I
4

	

/ \

	
f

— W 0 W

(d)

Figure 7.23
Scheme for the generation and demodulation of a VSB modulated wave. (a) Block
diagram of VSB modulator. (b) Block diagram of VSB demodulator. (c) Spectrum of
the product modulator output v(t) in the demodulation scheme. (d) Spectrum of the
demodulated signal v,(I).
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transform of v(1) as

V(f)	 [S(f — fl) + S (f + f')j	 (7.58)
2

Therefore, substitution of Eq. 7.56 in 7.58 yields

V (f I = !^-' M (f ) I H (f — fj + H (f + fj 1
4

+ 
A , 

[M(f 2f,)H(f — fj + M(f + 2f,)H(f + f^)]
4

(7.59)

The spectrum V(f) is illustrated in Fig. 7.23c. The second term in Eq.

7.59 represents a VSB wave corresponding to carrier frequency 2f,. This

term is removed by the low-pass filter in Fig. 7.23b to produce an output

vjt), the spectrum of which is given by

V.(f) = 
A, 

M(f)[H(f — fj + H(f + f,)]	 (7.60)
4

The spectrum V,(f) is illustrated in Fig. 7.23d. For a distortionless repro-

duction of the original baseband signal m(t) at the coherent detector out-

put, we require V.(f) to be a scaled %ersion of M(f). This means, there-

fore, that the transfer function H(f) must satisfy the condition

H(f — fj + H(f + fj = 2H(f,)	 (7.61)

where H(fj is a constant. With the message spectrum M(f) assumed to

be essentially zero outside the interval — W -- f -_ W, we need to satisfy

Eq. 7.61 only for values of f in this interval.

The requirement of Eq. 7.61 is satisfied by using a filter with a frequency

response H(f) such as that shown in Fig. 7.24 for positive frequencies.

This response is normalized so that H(f) falls to one half at the carrier

frequency f,. The cutoff portion of this response around f, exhibits odd

symmetry in the sense that inside the transition interval defined by

f, — f, -_ f -_ f, + f_ the sum of the valuesof H(f) at any two frequencies

equally displaced above and below f, is unity. Such a filter is much less

elaborate than that required if one sideband is to be completely suppressed.

In general, to preserve the baseband spectrum, the phase response of

the sideband sh^ping filter in Fig. 7.23a must exhibit odd symmetry about

the carrier frequency f,. Specifically, it must be linear over the frequency

intervals f, — f^ -_ If I -- f, + W, and its value at the frequency f, has to

equal zero or an integer multiple of 2n radians. The effect of this linear

phase characteristic is merely to introduce a constant delay in the recovery

of the message signal m(t) at the receiver output.
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JI(f)

i
I OL - - - - - - -

05 - - - - - -

0

Figure 7.24

Frequency response of sideband shaping filter for a VSB modulated wave
containing a vestige of lower sideband, only the positive-frequency portion is
shown.

The trequenc^ response of Fig. 7.24 pertains to it %'SB modulated ^Na^c

containing it %c ,,tige of the lo%ker sidehand. In the situation depicted here.

control over the frequency response of the sidehand ;haping filter need

onl,^ he exercised over the hand f, - f, -_ fj -- f , W. I his is the reason
for shoAin2 the frequency re ,;ponse of the sideband shaping filter in Fig.

7.24 for f > f - IV a,; 
a 
dashed line.

EKERCISE 11 Construct the pOsitive-frequency portion of the frequency

response of a sideband shaping filter for a VSB modulated wave that

contains a vestige of the upper sideband.

TIME-DOMAIN DESCRIPTION

Our next task is to determinc the time-dornain description of it VS -B mod-

ulated wa%ci 
To 

do this, Ae follow 
it 

procedure similar to that used for

SSB modulated Aa%es in Section 7.4.

Let s(t) denote a VSB modulated wave containing it 
vestige of the lower

sideband. This modulated va%e may be vieAed as the output of a sideband

shaping filter produced in response to a DSBSC modulated Aa%e defined

in Eq. 7.39. The filter has a transfer function H(f) as illu
s
trated in Fig.

7.24. Using the band-pass to low-pass transformation technique of Section

3.5, we may replace the sideband shaping filter by an equivalent complex

low-pass filter of transfer function H(f), which is depicted in Fig. 7.25a.

(For convenience of presentation, we have ignored the dashed portion of

H(f) in Fig. 7.24 as it is not pertinent to our present discussion.) Clearly,
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H (f)
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Figure 7.25

(a) Idealized frequency response H(f) of a low-pass filter equivalent 
to 

the sideband

shaping filter that passes a vestige of the lower sideband, (b) First component of

H(f). (c) Second component of H(fl. (d) Frequency response of a filter with transfer

function jHfl).

we may express t^(f) as the difference between two components H.(f)

and H,(f) as shown by

mf) = '^-(f) — irl,,(f)	
(7.62)

These two components are described individually as follows:

1. The transfer function H.ffl, shown in Fig. 7.25b, pertains to a complex

low-pass filter equivalent to a band-pass filter designed to reject the

lower sideband completeIN .^ it is defined in Fq. 7.42.
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2. The transfer function 11, (f), shown in Fitz. 7.25c, accounts for both the

generation of a vestige of the lower sideband and the removal of a

corresponding portion from the upper sidcband.

Thus, sub
s
tituting Eq. 7.42 

in 
7.62, we maN rcdcfine the transfer function

11(f) as

= ^l 
[I + sgn(f) — 2fI,(f)j,	 —.f, < f < W

P (f)	 2	 (7.03)

0,	 otherwise

The signum function sgn(f) and the transfer function 11, ( f) are both

odd functions of the frequency f. Hence, they both have pure4 itnaginarl%

inverse Fourier transforms. Accordingly, we may introduce a new transfer

function

Hc,(f)	 Isgn(f) — 2H,(f)]	 (7.b4)

that has a purely real inverse Fourier transform. Let h,,(t) denote the

inverse Fourier transform of Hv(f)^ that is,

	

lic' (1)	 H'(f)	 (7.65)

Figure 7.25d shows a plot ofjH^Jfl as a function of frequency in accord-

ance with both Eq. 7.64 and Fig. 7.25c. To go on \kith our task,, we rewrite

Eq. 7.63 in terms of H,(f) as

I

 I 
[I + jH^Jffl,	 — f'. < f < W

2	 (7.66)
elsewhere

We are now ready to determine the VSB modulated wave s(t). First,

we write

s(t) = Rels(t) exp(j27z .f,t)j	 (7.67)

where s(r) is the complex envelope of s(t). Since s(t) is the output of the

complex low-pass filter of transfer function H(f), which is produced in

response to the complex envelope of the DSBSC modulated wave, we may

express the spectrum of s(t) as

	

sm =	 (f)	 (7.68)

Where SDSBS(-(f) is defined in Eq. 7.43. Hence, substituting Eqs. 7.43 and
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7.66 in 7.68, we get

A,
(f) = 

2 
[1 + jHQ (f)jM(f)	 (7.69)

Taking the inverse Fourier transform of S(f), we thus obtain

9(t) = 
A, 

[M ( t ) + j-C,(1)j	 (7.70)
2

where m Q (t) is the response produced by passing the message signal m(t)

through a low-pass filter of impulse response hQ (t). Finally, substituting

Eq. 7.70 in 7.67, we get

	

S(t) = 
A, 

m(t) cos(27rf,t)'— 
A, 
mQ (t) sin(27rf,t)	 (7.71)

2	 2

This is the desired representation for a VSB modulated wave containing

a vestige of the lower sideband.' The component JA,m(t) constitutes the

in-phase component of this VSB modulated wave, and JA,m Q (t) consti-

tutes the quadrature component.

The DSBSC and SSB waves may be regarded as special cases of the

VSB modulated wave defined by Eq. 7.71. If the vestigial sideband is

increased to the width of a full sideband, the resulting wave becomes a

DSBSC wave with the result that m,(t) vanishes. If, on the other hand,

the width of the vestigial sideband is reduced to zero, the resulting wave

becomes an SSB wave containing the upper sideband, with the result that

tn Q (i) = ti^(t), where th(t) is the Hilbert transform of m(t).

EKERCISE 12 Show that a VSB modulated wave s(t), containing a vestige

of the upper sideband, is defined by

	

S (1) = 
I 
A,m(t) cos(27Ef,t) + 

1 
A,mQ (t) sin(27rft)	 (7.72)

2	 2

where m(t) is " the message signal, and mg(t) is defined by Eqs. 7.64 and

7.65.

'Another time-domain representation of a VSB modulated signal consists of the

product of a narrow-band "envelope" function and an SSB modulated signal. For
details of this representation, see Hill (1974).
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EKERCISE 13 - How would you modify the block diagram of Fig. 7.20 so
that it may be-used to generate VSB modulated waves?

ENVELOPE DETECTION OF A VSB WAVE PLUS CARRIER

In commercial television broadcasting, a sizable carrier is transmitted to'-

gether with the modulated wave. This makes it possible to demodulate the

incoming modulated wave by an envelope detector in the receiver. It is,

therefore, of interest to determine the distortion introduced bv the enve-

lope detector. Adding the carrier component A, cos(2;zf,t) to Eq. 7.71,
scaled by a factor k., modifies the modulated wave applied to the envelope

detector input as

s(l) = A,[I + 21 k^nz(tfl cos(27rf , j) — 2'k,A,m,,(t) sin(27rf,t)

(7.73)

where the constant k, determines the percentage modulation. The envelope

detector output, denoted by a(t). is therefore

a(t) = A,([I + 2'k^m(t)1 2 + f2'k,m,2(t)]`^1+ ,	

'k,m	 1 2

= A,[1	 2k,n7(t)]	 I +	
I	 C, (t)	

(7.74)
1	 1 1 + 21k,"i(t)

Equation 7.74 indicates that the distortion is contributed by the quadrature

component mjt) of the incoming VSB wave. This distortion can be re-

duced using two methods: (1) reducing the percentage modulation to re-

duce k. and (2) increasing the width of the vestigial sideband to reduce

rn (,(t). Both methods are used in practice. In commercial television broad-

casting, the vestigial sideband occupies a width of about 1.25 MHz, or

about one-quarter of a full sideband. This has been determined empirically

as the width of vestigial sideband required to keep the distortion due to

m,jt) within tolerable limits when the percentage modulation is marly

100.

7.6 COMPARISON OF AMPLITUDE
MODULAY70N TECHNIQUES

Having studied the characteristics of the different forms of amplitude mod-

ulation, we are now in a position to compare their practical merits:

1. In standard AM systems the sidebands are transmitted in full, accom-

panied by the carrier. Accordingly, demodulation is accomplished sim-

ply by using an envelope detector or square-law detector. On the other
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hand, in suppressed-ca rrier systems the receiver is more complex be-

cause additional circuitry must be provided for the purpose of carrier

recovery. It is for this reason we find that in commercial AM radio

broadcast systems, which involve one transmitter and numerous receiv-

ers, standard AM is used in preference to DSBSC or SSB modulation.

2. Suppressed-carrier modulation systems have an advantage over stan-

dard AM systems in that they require much less power to transmit the

same amount of information, which makes the transmitters for such

systems less expensive than those required for standard AM. Sup-

pressed-carrier systems are therefore well-suited for point-to-point corn-

munication involving one transmitter and one receiver, which would

justify the use of increased receiver complexity.

3. Single-sideband modulation requires the minimum trans 

i 

mitter power

and minimum transmission bandwidth possible for conveying a message

signal from one point to another. We thus find that single-sideband

modulation is the preferred method of modulation for long-distance

transmission of voice^signals over metallic circuits, because it permits

longer spacing between the repeaters, which is a more important con-

sideration here than simple terminal equipment. A repeater is simplv

a wideband amplifier that is used at intermediate points along the trans-

mission path so as to make up for the attenuation incurred during the

course of transmission.

4. Vestigial-sideband modulation requires a transmission bandwidth that

is intermediate between that required for SSB or DSBSC modulation.

and the savin2 car be significant if modulatin g waves with large band-

widths are be I ng handled, as in the case of television signals and wide

band data.

5. Double-sideband suppressed-carrier modulation, single-sideband mod-

ulation, and v estigi al -side band modulation are all examples of 
linear

modulation. The output of a linear modulator can be expressed in the

canonical form

s(t) ^ s l (t) cos(27rf,.t) — sc,(t) sin(27rf,t) 	 (7.75)

The in-phase component s l (t) is a scaled ver
sion of the incoming mes-

sage signal tri(t). The quadrature component s,,(t) is derived from m(t)

by some linear filtering operation. AccordingIv. the principle of super-

position can be used to calculate the modulator output s(r) as the sum

of responses of the modulator to individual components of m(t). In

Table 7.1 we hav' e summarized the definitions for 
s l (t) and sc,(t) . in

terms of m(t) for DSBSC, SSB, and VSJ3 
modulated waves, assuming

a carrier of unit amplitude- In a strict s6nse. ordinary amplitude mod-

ulation fails to meet the definition of a linear modulator with respect

to the message signal, If s,(t) is the AM wa%e produced 
by a message
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Table
-
7.1 Different Forms of Linear Modulation - __ -

In-phase	 Quadrature
Type of	 component	 component
Modulation	 S, (0	 Sell)

DSBSC	 M (1)	 0

Comments

m(t) = message signal

SSB

I . Upper

sideband

transmitted

2. Lower

sideband
transmitted

VSB

1. Vest 'ge of
lower

sideband
transmitted

2. Vestige of

upper

sideband

transmitted

IM(t)	 j rh (t)

IM(t)	 jrh (t)

IM(t)	 I-Q(()

IM(t)	 IMQ(t)

rh(t) = Hilbert

transform of

M (t)

mv(t) = output of filter

of transfer

function Hc^(jf),

produced by

M (t)
For the definition of

H,(J), see Eq. 7.69

signal m,(t) and sjt) is the AM wave produced by a second message

signal rri,(t), then the AM wave produced by m l (t) plus mjt) is not

equal to s,(t) plus s 2 (t). However, the departure from linearity in AM

is of a mild sort, such that many of the mathematical procedures ap-

plicable to linear modulation may be retained. For example, the band-

pass representation is still applicable to an AM wave, with the in-phase

and quadrature components defined by, respectively,

s l (t)	 + k.m(t)

and

SQ(t) = 0

where k, is the amplitude sensitivity of the modulator.

R In both SSB and VSB modulation schemes, the role of the quadrature

component i's merely to interfere with the in-phase component, so as

to eliminate power in one of the sidebands. Herein lies the reason for

the fact that SSB- and VSB-modulated waves have favorable spectral

properties. Note, however, that regardless of the nature of the quad17

rature component, the message signal m(t) may be recovered from the

modulated signal s(i) with the use of coherent detection.

7 The band-pass representation may also be used to describe quadrature

amplitude modulation. In this case, we have (assuming a carrier of unit
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amplitude)

SAO = rn'(0

and

SQW = -M^w

where ni,(t) and mjt) are the two independent message signals at the
q uadrature-modulator input (see Eq. 7.38).

8. The complex envelope of the linearly modulated wave s(t) equals

9( t) = SAO + jSQ(0

This compact notation retains complete infori mation about the modu-
lation process.

............ 7.7 FREQUENCY TRANSLATION

In the processing of signals in co mmunication systems, it is often convenient

or necessary to translate the modulated wave upward or downward in

frequency , so that it occupies a new frequency band. This frequency trans-
lation is accomplished by multiplication of the signal by a localk generated
sine wave, and subsequent filtering. For example, consider the DSBSC
wave

s(t) = m(t) cos(2nf,t)	 (7.76)

The modulating wave m(t) is limited to the frequency band W f -_ W.
The spectrum of s(t) therefore occupies the bands fc — W f fc + w
and — f, — 

W -- f -- — f, + W, as in Fig. 7.26a. Suppose that it is required

to translate this modulated wave downward in frequency, so that its carrier
frequency is changed from f, to a new value f_ where f. < f,. To accom-
plish this requirement, we first multiply the incoming modulated wave s(t)
by a sinusoidal wave of frequency f, supplied by a local oscillator to obtain

v i(t) = S(t) cos(27rf,t)

= M(t) cos(277f,t) cos(21rfit)

= irn(t) cos[27r(f, — f,)tj + im(t) cosf21rff, + f,)Ij

(7.77)

The multiplier output v t (l) consistsof two DSBSCwaves, one withacarrier
frequency of f, — f, and the other with a carrier frequency of f, + fl . The
spectrum of u l (t) is therefore as shown in Fig. 7.26b. Let the frequency f,
of the local oscillator be chosen so that

f, — f, = f^	 (7.78)
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f,	

0	 f
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A fr	 0

2W	 214	 2K	 2H

0

211	 2H

Figure 7.26
The frequency translation process. (a) Spectrum of DSBSC wave. (b) Spectrum of
signal obtained by multiplying DSBSC wave with a local carrier. (c) Spectrum of
desired DSBSC wave, translated downward in frequency.

Then from Fig. 7.26b we see that the modulated wave Aitfi the desired
carrier frequency f. may be extracted by passing the multiplier output V,(l)
through a band-pass filter of midband frequenc) f, and bandwidth 2W,

provided

f, + f, — W > f, — f, + W

or

f, > W	 (7.79)

The filter output is therefore

v,(t) = Jm(t) cos[27r(f, — fjtj

= Jm(r) cos(2 yzfj)	 (7.80)

This output is the desired modulated wave. translated downward in fre-
quency, as shown in Fig. 7.26c.
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filter

Figure 7.27
BLock diagram of mixer.

A device that carries out the frequency translation of a modulated wave
is called a mixer. The operation itself is called mixing or heterodvning. For
the implementation of a mixer, we may use a multiplier and'band-pass
filter, as shown in Fig. 7.27. The multiplier is usually constructed by using
nonlinear or switching devices, similar to modulators. Note that mixing is
a linear operation in that it completely preserves the relation of the side-
bands of the incoming modulated wave to the carrier.

EXERCISE 14 How would you choose the local oscillator frequency f,
SO that the spectrum of the mixer input is translated upward in frequency?

................................................................................ I ...........................
EXAMPLE 4

Consider an incoming narrow-band signal of bandwidth 10 kHz, and mid-
band frequency that may lie in the range 0,535-1.605 MHz. It is required
to translate this signal to a fixed frequency band centered at 0.455 MHz.
The problem is to determine the range of tuning that must be provide d in
the local oscillator. (The frequencies used in this example pertain to the
AM broadcast band of frequencies, on which more will be said in Section
7.9.)

Let f, denote the midband frequency of the incoming signal, and
denote the local oscillator frequency. Then we may write

0.535 < fc < 1.605

and

f, — f, = 0.455

where both f, and f, are expressed in MHz. That is.

fi = fir — 0.455

When f, = 0.535 MHz, we get f, = 0.08 MHz; and when f, = 1.605 MHz.
we get f, = 1.15 MHz. Thus the required range of tuning of the local
oscillator is 0.08-1.15 MHz.

..........................................................................................................................
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........... 7 .8 FREQUENCY-DIVISION 11IFULTIPLEXIING

Multiplexing is a technique whereby a number of independent signals can

be combined into a composite signal suitable for transmission over a com-

mon channel. This operation requires that the signals be kept apart so that

they do not interfere with each other, and thus they can be separated at

the receiving end. This is accomplished by separating the signals either in

frequency or in time. The technique of separating the signals in frequency

is referred to as frequency -division multiplexing 
(FDM), whereas the tech-

nique of separating the signals in time is called time-division multiplexing

(TDM). In this section, we discuss FDM systems, whereas TDM systems

were discussed in Section 5.10.

A block diagram of an FDM system is shown in Fig. 7.28. 
The incoming

message signals are assumed to be of the low-pass type, but their spectra

do not necessarily have nonzero values all the way down to zero frequency.

Following each signal input, we have shown a low-pass filter, which is

designed to remove high-frequency components that do not contribute

significantly to signal representation but are capable of disturbing other

message signals that share the common channel. These low-pass filters may

be omitted only if the input signals are sufficiently band-limited initially.

The filtered signals are applied to modulators that shift the frequency ranges

of the signals so as to occupy mutually exclusive frequency intervals. The

necessary carrier frequencies, to perform these frequency translations, are

obtained from a carrier supply. For the modulation, we may use any one

of the processes described in previous sections of this chapter. However,

Mesup Low Pm Modulators 6^.d P..	
aand.pm Dmodulators Low PM Me~

,nputs filt."	 fifters	 fillm	 WWI	 output,

1 14 71	 -^' I ^ I

2 --j L:^ MOD	 BP	 1	 0?	 DI %I 
tLr-,*, 

2

Channe(

LP	 %IOD	 III,	 D \ 1	 LP	 I N

I

co-
lyI.Pp	 Pply

Figure 7.28

Block diagram of FDM system.
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the most widely used method of modulation in freq uency-di vision multi-
plexing is single-sideband modulation, which requires a bandwidth that is
approximately equal to that of the original message signal. The band-pass
filters following the modulators are used to restrict the band of each mod-
ulated wave to its prescribed range. The resulting band-pass filter outputs
are next combined in parallel to form the input to the common channel.
At the receiving terminal, a bank of band-pass filters, with their inputs
connected in parallel, is used to separate the message signals on a fre-
quency-occupancy basis. Finally, the original message signals are recovered
by individual demodulators.

.........................................................................................................................

EXAMPLE 5 COMPA RISON OF SSB1FDM WfTH pCMITDM

Consider an FDM system using SSB modulation to transmit 24 independent
voice inputs. Assume a bandwidth of 4 kHz for each voice input. Thus, in
order to accommodate an FDM system using SSB modulation to transmit
the 24 voice inputs, the communication channel must provide the trans-
mission bandwidth:

B = 24 x 4 = 96 kHz

In Example 1, Chapter 6, we showed that for the TI system (based on
the combined use of PCM and TDM), the minimum channel ban dwidth
required to transmit 24 voice inputs is equal to 772 kHz. This is an order
of magnitude larger than the bandwidth requirement of the corresponding
SSB/FDM system. However, in spite of the excessive transmission band-
width requirement of a PCM system, we find that in practice it is preferred
over an SSI3 system. This is because PCM offers system flexibility, increased
ruggedness in the presence of noise, and integration of a wide range of
services into a common digital format (see Chapter 5).

...........................................................................................................................

............ 7.9 APPLICA77ON I: RADIO BROADCASTING

In radio broadcasting, a central transmitter is used to radiate message
signals for reception at a large number of remote points. The message
signals transmitted are usually intended for entertainment purposes. There
are three general types of radio broadcasting, AM broadcasting, which uses
standard amplitude modulation; FM broadcasting, which uses frequency
modulation; and television broadcasting, which uses amplitude modulation
of one carrier for picture transmission and frequency modulation of a
second carrier for sound transmission. Standard AM radio and television
(for picture transmission) are considered in this section. Frequency mod-
ulation is considered in Section 7. 11.
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AM RADIO

The usual AM radio receiver is of the superheterodyne type, which is

represented schematically in Fig. 7.29. Basically, the receiver consists of

a radio frequency (RF) section, a mixer and local oscillator, an intermediate

frequency (IF) section, and a demodulator. Typical frequency parameters

of commercial AM radio are:

RF carrier range = 0.535-1.605 MHz

Midband frequency of IF section = 455 kHz

IF bandwidth = 10 kHz

The incoming ampiitude modulated wave is picked up 
by 

the receiving

antenna and amplified in the RF section, which is tuned to the carrier

frequency of the incoming wave. The combination of mixer and local os-

cillator (of adjustable frequency) provides a 
frequency conversion or het-

erodyning 
function, whereby the incoming signal is converted to a pre-

determined fixed intermediate frequency, 
usually lower than the signal

frequency. This frequency conversion is achieved without disturbing the

relation of the sidebands to the carrier. The result of this conversion is to

produce an intermediate-frequency carrier defined by

flF ^ fRF — fLO

where JrL0 
is the frequency of the local oscillator and fR, is the carrier

frequency of the incoming RF si gnal. We refer 
to 

flF 
as the intermediate

frequency (IF). because the signal is neither at the orivinal input frequency

nor at the final baseband frequency. The mixer-local oscillator combination

is sometimes referred to as the first detector, 
in which case the demodulator

is called the second detector.

The IF section consists of one or more stages of tuned amplification.

with a bandwidth corresponding to that required for the particular type of

signal that the receiver is intended to handle. This section provides most

Antenna

	

I	 IF	 I _J En^elope I _J AudioRF n	 M,.er ---- I't	 —1 detector 
F'J amplifier

sectio	 ^ction

Common	 Local
Z	 tuning	 I Oscillator

Figure 7.29
Basic elem 

ents 
0 f an AM receiver of the superheterodyne type,

Loudspeaker
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of the a mplification and selectiviiN in the receiver. The 
Ou tput of the IF

section is applied to an envelope cle . lector, the purpose of which is to recover

the baseband signal. The final operation in the receiver is the power am-

plification of the recovered message. The loudspeaker constitutes the load
of the power amplifier.

The superheterodyne operation refers to the frequency conversion from
the variable 

carrier frequency of the incoming RF signal to the fixed IFsignal.

In a superheterodyne receiver the mixer will develop an intermediate

frequency output when the input signal frequency is greater or less than
the local oscillator freq u ency by 

an amount equal to the intermediate
frequency. That is, there are two input frequencies, namely,
which will result in fjF at the mixer output. This introduces the 

IhO -_^: f[Fl-

possibilityof simultaneous reception of two signals differing in frequency by twice
the intermediate frequency. Accordingl%. it is necessary to employ selective
stages in the RF section (i.e.. between t 'he antenna and the mixer) in order
to favor the desired signal and discriminate against the undesired or 

imagesignal. The effectiveness Of s uppressing unwanted image signals increases
as the number of selective stages in the radio frequency section increases.
and as the ratio of intermedi ate-to-signal frequency increases.

TELEVISION

Televt^sion (TV) refers to the transmission of pictures in motion by meansof electrical si
gnals. To accomplish this transmission, each complete picture

has to be sequentially, scanned. 
The scanning process is carried out in a TVcamera. 5 In a black-and-white 
TV, the camera contains optics designed to

focus an image on a photocathode that consists of a large number of pho-t
osensitive elements. The charge pattern so generated on the photosensitive
surface is scanned by an electron beam, thereby producing an output current
that varies temporally 

in accordance with the way in which the brightness
of the original Picture varies spatially from one point to another. The
resulting Output current is called the video signal.

The type of scanning used in television is called a 
raster scan; it isso

mewhat analogous to the manner in which we read a printed paper in

that the scanning is performed from left to right on a line-by-line basis. In
particular, a picture is divided into 525 lines that constitute a frame. Eachframe is decomposed into two interlaced fields, each one of which consistsof 262.5 lines. For convenience of presentation, we will refer to the twofields as I and 11. The scanning procedure is illustrated in Fig. 7.30. The

'For a detailed discussion of TV camera imaging devices, black and white, and color
TV, see Williams (1987, pp. 231- 259).
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End of field I

Figure 7.30
lnter^a,:ed raster scan

Starl of

field I

End of

field 11

lines of field I are depicted as solid lines, and those of field H are depicted

as dashed lines. The start and e pid of each held are also included in the

figure. Field I is scanned first. The scanning spot of the TV camera moNes

with constant velocity across each line of the field from left to right. When

the end of a particular line is reached. the scanning spot quickly flies back

(in a horizontal direction) to the start of the next line down in the field.

This flyback is called the horizontal retrace. The scanning process described

here is continued 'until the whole field has been accounted for. When this

condition is reached, the scanning spot moves quickly (in a vertical direc-

tion) from the end of field I to the start of field 11. This 
s
econd flyback is

called the tertical retrace. Field 11 is treated in the same fashion as field 1.

The time taken for each field to be scanned is 1/60 second. Correspond-

ingly. the time taken for a frame or a complete picture to be scanned is

1 30 second. With ^25 lines in a frame. the line s(aniting frequency equals

ls.7 ,̂ kliz.

Thus, b^ flashing 30 still pictures per second on the chspla^ tube of the

TV recei%er. the hunidn eye perceives them to be mosing pictures. This

effect is due to it phenomenon known as the persistence of vision.

During the horizontal- and vert ical-re trace intervals, the picture tube is

made inoperative by means of blanking pulses that are generated at the

transmitter. Moreo
v
er. synchronization between the various scanning op-

erations at both the transmitter and receiver is accomplished by means of

special pulses that are transmitted during the blanking periods^ as such.

the s^nchronizing pulses do not show on the reproduced picture. Figure

7. 3,1 illustrates the use of blanking periods and synchronizing pulses for

one full line of 
it 
video waveform.
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Figure 7.31

Video waveform for one full line of TV picture.

Video Bandwidth The reproduction quality of a I V picture is limited h^
two basic factors

1. The number of lines mailable in a raster scan, which limits resolution

of the picture in the %ertical direction.

2. The channel bandwidth inailable for transmitting the %ideo sil!nal. which

limits resolution of the picture in the horizontal direction.

For each direction. resolution is expressed in terins of the m,,ximurn nUmhcr
of lines alternating between black and white that can he reS011Cd In the
TV image along the pertinent direction b^ it human oh^cr%er.

Consider first the image resolution in the %critical direction. Licnoted 
h%R_ It is tempting to equate the vertical resolution R, to the total number

of scan lines per frame minus tho s
e lines in the %ertical intcrN,il that ar

not used for display . In practice. ho"e ,-er, this is not No. heCaUsC the
scanning process that changes the image into it 

%jdco signal in the camera
(at the transmitter) and then reconstructs the 

i mage on the dtspla^ (at the
receiver) is in reality it Aumpling proce5s. Front our discussion of the sam-
pling process in Section 5.3, we know that a message signal 111uj he strictly
band-limited or else di st o rtion due to aliasing w ill occur. Consequently,
we find that the vertical resolution in a TV picture is reduced not onl y by
the vertical retrace. but also by aliasing, as shown b^

R. ^ k(N - 2N_)	 (T81 )
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where N is the total number of raster scan lines, and N, 
is the number of

lines per field that are lost during the vertical retrace. The fact that the

vertical resolution R, in Eq. 7.81 is a fraction of 
(N — 2N,,) is called the

Kell effect: correspondingly, k is called the Kell factor. 
Normally, the Kell

factor ranges between 0.6 and 0.7.

Let a denote the raster height, as in Fig. 7.30. Then, we may express

the vertical resolution in a TV picture in terms of vertical lines per unit

distance as

R,	
k (N — 2N,,) lines/unit distance 	 (7.82)

a	 a

Consider next the horizontal resolution, denoted as R,^ this resolution

is expressed in terms of the maximum number of lines that can be resolved

in a TV picture along the horizontal direction. To determine R h . we assume

that the picture elements or pixels are arranged as alternate black and

white squares along the scanning line. The corresponding video signal is

a square wave with a fundamental frequency equal to the video bandwidth.

Since there are two pixels per cycle of the square wave. we may express

the horizontal resolution of a TV picture as

R, = 2B(T — T,,,)	 (7.83)

where B is the video bandwidth, T 
is the total duration of one scannine

line. and T,,, is the duration of a horizontal retrace.

Let b denote the raster w idth. as in Fig. 
7.30. We 

may then express the

horizontal resolution of a TV picture in terms 
of horizontal lines per umt

distance as

R, 
= 

2B 
(T — T,,,) lines / unit distance	 (7.84)

b	 b

A 
natural choice for the video bandwidth B is to make the vertical

resolution equal the horizontal resolution, as shown bN

R, — R,

	

a	 b

Hence, using Eq%. 7.82, 7.84 and 7.85 
to sol%e for the bandwidth 13^ we

get the desired result

B 
= k (b)(N — 2N^,)	 (7.86)

	

2 a	 T — T;,

The ratio of raster width b to raster height a 
is 

called the aspect ratio.
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In the NTSC' system, we have the following parameter values:

Aspect ratio = 
b _ 4
a	 3

Total lines per frame	 N = 525
Vertical retrace = N^,	 21 lines/field
Kell factor = k = 0.7
Total line time = T = 63.5 ps
Horizontal retrace time ^ Th, = 10 /,s

Su bstituting these values in Eq. 7.86. we get the video bandwidth:

B = 4.21 MHz

This result is very close to the actual Maximum frequency in the standard
video signal, which is 4.2 MHz.

Choice of Modulation The tY Pe of modulation chosen to transmit the
video signal is influenced by t"' o factors:

I The video signal exhibits a large bandwidth and sienificant low-fre-
quency content. This suggests the 

use Of 
v
estigial sideband modulation.

2. The circuitry used for de modulation in the receiver should be simple
and therefore cheap. This suggests the use of envelope detection, which
requires the addition of a carrier to the VSB modulated wave.

With re gard to point I . alt hough there is a basic desire to conserve
bandwidth, nevertheless in commercial TV broadcasting the transmitted
signal is not quite V

S13-modulated. The reason is that at the transmitter

the power levels are high, with the result that it would be expensive to

rigidly control the transition region. Instead, a VSB filter is inserted in
each receiver A here the power levels are low. 

'The overall performance is
the same as conventional vest igial-side band modulation except for some

wasted power and bandwidth. These remarks are illustrated in Fig. 
7.32.In particular, part a of the fig u re shows the idealized specturm of a trans-

mitted TV signal. The upper sideband, 25 17,̂  of the lower sideband, and
the Picture carrier are transmitted. The frequency response Of the VSB
filter used to do the required spectrum shaping in the receiver is shown in
part b of the figure.

With regard to point 2, the use of envelope detection (applied to a VSB-
modulated wave plus carrier) produces 

waveform distortion in the message
signal recovered at the.detector 

Output. The distortion is contributed by

'NTSC is the abbreviation for National Television System Committee.
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Figure 7.32
(a) IJealized amplitude spectrum of transmitted TV signal. (b) Amplitude response

of VSB shaping filter in the recei. ver.

the quadrature component of the VSB wave. This issue was discussed in

Section 7.5.

The channel bandwidth used for NTSC TV broadcast is 6 MHz^ see

Fig. 7.32b. This channel bandwidth not only accommodates the bandwidth

requirement of the VS13-modulated video signal but also provides for the

accompanying sound signal that modulates a carrier of its own.

The values presented on the frequency axis in parts (a) and (b) of Fig.

7.32 pertain to a specific TV channel. According to this figure, the picture

carrier frequency is at 55.75 MHz, and the sound carrier frequency is at

59.75 MHz. Note, however, that the information content of the TV signal

lies in a baseband spectrum extending from 1.25 MHz below the picture

carrier to 4.5 MHz above it.
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COLOR TELEVISION

The transmission of color in commercial TV broadcasting is based on the

premise that all colors found in nature can be approximated by mixing
three additive primary, colors. red, green, and blue. These three primary
colors are represented by the video signals mm(t), m ( ,(1), and in ji (i), re-
spectively. To conserve bandwidth and also produce a picture that can be

viewed on a conventional black-and-white (monochrome) television re-

ceiver, the transmission of these three primary colors is accomplished by

observing that they can be uniquely represented by an^ three signals tha't
are independent linear combinatio'ns of "'R(0, M G( t ), and ni jjt). In the
standard color-television s ystem, the three signals that are transmitted have
the form

ML(t) = 0.30nz,(t) + 0.59nz (,(t) + 0.11injjt)

m i (t) = 0.60ni,(i) – 0.28m,(t)	 0.32ni,(t)

M Q (r) = 0.21in,(t) — 0.i2m,(j)	 0,31in,(t)	 (7.87)

The signal "00 is called the li'aninance signal,- when received on a con-

ventional monochrome television receiver, it produces a black -and-^k hitc

version of the color picture. The signals my(t) and ni,(t) are called the
chrominance signals; they indicate the way the color of the picture departs
from shades of gray. With m, (1), m i (t). and mc,(t) defined as before, we
ha%e by simultaneous solution:

M R( t ) = m L( t) — 096ni j (t)	 0.62tn"(t)

-,,( t ) = m,(t) — 0.28ni l (t)	 0.64m,,(1)

-,9( 1 ) = M tJ t ) — 1-10nijt) + 1.70ni ^' (I) 	 (7.88)

The luminance signal m,,(1) is assigned the entire 4.2 N111z bandwidth.
Owing to certain properties of human % ision. tests shoA that if the nominal
bandwidths of the chrominance signals ni l(f) and are 1.6 Mill and
0.6 NlHz, respectively, then satisfactory color reproduction is 

possible.

Figure 7.33a shows a simplified block diagram of the color-tcle%ision

transmitter. The chrominance signals ni,(t) and mc,(t) are combined using
a variation of q uadrature-multiplcxing wilh a subcarrier ha% ing a frequency
denoted by f_ The output resulting from the quadrature-multiplexing

operation is next superimposed on the luminance signal 
rn, (t) to gi%e a

combined video signal m(i). The composite video signal m(t) is thus de-
scribed by

-( t) = mL( 1) + -,(1) cos(21rf,j) + mQ (t) sin(2;rf,,t)

+ rh iji (l) sin(27rf,j)	 (7.89)
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where th lH (t) is the quadrature component, consisting of the Hilbert trans-

form of the high-frequency portion of m l (t). The presence of th, 11 (t) ac-

counts for the presence of asymmetric sidebands. Naturally, rh 111 (t) arises

because of the built-in asymmetric nature of the band-pass filter that passes

frequencies in the band 2.0-4.2 MHz; see Fig. 7.33a.

The standard blanking and synchronizing pulses are added to the video

signal m(t). In addition, a "burst" of 8 cycles of the subcarrier is super-

imposed on the trailing portion or "back porch" of the horizontal blanking

pulses for color subcarrier synchronization at the receiver.'

Th^ chrominance subcarrier frequency f,c is equal to 455/2 times the

horizontal-sweep frequency or line-scanning frequency fh . In color TV, f,

is 4.5 MHz/286. Hence,

455

2

3.579545 MHz

For brevity, the value of f,, in Fig. 7.33 (and hereafter) is approximated

as 3.58 MHz. The frequency f,, serves as the frame of reference in color

TV in the sense that the reference signals for the color demodulators in

the receiver are obtained from a crystal-cont rolled oscillator of frequency

f_ This oscillator is synchronized to the burst of the subcarrier in the

transmitted TV signal by means of a phase-locked loop; the phase-locked

loop is described in Section 7.12.

At the receiver, clemultiplexing of the video signal m(t) into the three

primary color signals is performed after envelope detection. Figure 7.33b

is a block diagram of the demultiplexing system. Since the luminance signal

M L( t ) constitutes a baseband component of the video signal m(t), it re-

quires no further processing (except for the use of a 3.58 MHz rejection

filter needed to suppress a flicker component at the subcarrier frequency).

Moreover, assuming perfect synchronization, we can recover the remaining

baseband components m i (t) and mc,(t) by means of the coherent detectors

whose local carriers are in phase quadrature. Thus, given m, (t), mJt),

and m Q (t), we can generate the original primary color signals rn R(0, M6(t)
and MBW by using the matrixer shown at the output of Fig. 7.33b. The

operation of the matrixer is described by Eq. 7.88.

HIGH-DEFINITION TELEVISION

In a high-definition television (HDTV) SyStern,7 the image quality is im-

proved by a quantum leap as compared to the NTSC system. In particular,

'From a historical perspective, research into high-definition wide-screen television
started in Japan in 1968; the outstanding contributor here is Takashi Fugio. The
material presented herein is based on Rzeszewski 11983). This paper and several
others on HDTV are reproduced in Rzeszewski (1985).
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HDTV offers the following improvements:

1. Improved vertical resolution.

2. Improved horizontal resolution.

3. Less crosstalk between the components of the signal.

The improved image quality together with a large screen size provides the

viewer with a feeling of realism and involvement that is unattainable oth-

erwise.

However, for HDTV to be widely acceptable, two requirements are

critical. First, there should be receiver compatibility, which means that the

signal must be able to feed an HDTV and NTSC TV simultaneously and

be rece i ved on the NTSC receiver with substantially the same picture

quality as that achievable by conventional means. Meanwhile, the HDTV

receiNer realizes the full benefits, including increased resolution. Second,

Additional signal for

improved chrominanre

resolution

Same as NTSC

L s,,7al

Additional signal for

improved horizontal

resolution

Bandwidth for

teletext and

multichannel sound

s gnI	 a I

2	 4 -5.03 6	 8

Video frequency, MHz

(a)

Picture	 Sound carrier

carrier	 frequency

T ---

10.03 10^75

m

0

—1,25

75

9 53:

4	 6	 8	 1003 1 0,75

12 MHz

(b)

Figure 7.34
Split-luminance and split-chrominance high-definition television (a) Baseba. nd

spectru- (b) Ideal i zed amplitude spectrum of broadcast picture transmission.
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a bandwidth of no more than twice the 6 MHz per channel for NTSCTv
broadcast should be required.

Figure 7.34a shows the baseband format of a split-luminance and split-
chrominance (SLSQ IN pe of transmission system that satisfies both of these
requirements. It uses a 10-MHz baseband composite signal that can be
transmitted as a vestigial sideband modulated wave in a channel bandwidth

of 12 MHz. Also, an NTSC receiver (tuned to the lower 6 MHz portion
of the 12 MHz spectrum) will operate with the same quality achieved in a

conventional system. Figure 7.34b shows the baseband version of the am-
plitude response of an idealized broadcast picture transmission system.

measured with respect to the picture carrier frequency.

The composite signal of Fig. 7.34a is obtained by starting with a 1050-
line scan source of high-bandAidth red. green, blue (R, G. B) signals.
These signals are filtered and converted to a 525-line signal b y a scan
conversion technique that deletes every second line to obtain a'525-linc

signal suitable for transmission. lmpro^ed horizontal resolution is p'rovided
for by the use of the second S 25-line signal that occupies a frequencv range
of approximateIN 5 to 10 MHz in the baseband. The baseband sp'ectrum
of Fig. 7.34a also includes provision for an additional signal for improved

chrominance resolution.

Improved vertical resolution is catered to by using twice as man y scan
linesasin NTSC. Moreover, the method of vertical resolution impro%e'ment
permits the Kell factor to approach unitN.

......... 7.10 ANGLE MODULATION: BASIC CONCEPTS

In the previous sections of this chapter we investigated the effect of slowly

varying the amplitude of a sinusoidal carrier wave in accordance \kith thc'
baseband information-bearing signal. There is another method of modu-
lating a sinusoidal carrier wave, namel y , angle modulation in which either
1hephase orfrequency ofthe carrier wat',e is iaried according to the message
signal. In this method of modulation the amplitude of the carrier wave is
maintained constant.

We begin our study of angle modulation b .N writing the modulated wave
in the general form

_%O) = A, coslo(t)]	 (7.90)

where the carrier amplitude A, is maintained constant, and the angular
arguniep ir 0(t) is 

v
aried by a message signal ?n(t). The mathematical form

of this 
v
ariation is determined by the t^pe ofangle modulation of interest.

In any event, a complete oscillation occurs whenever 0(t) changes by 27z
radians. If Olt) increases monotonically with time, the average frequency
in hertz, over an interval from t to t + 41, is given by

f W = 
0 (t + it) — 0(t)	

(7.91)
21r it
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We define the instantaneous frequency 
of the angle-modulated wave s(t)

by

f'(t)	 lim f"(t)
J-0

li	
[O(t + At) — 0(t)

M	 2,, At.1, 0

I dO(t)	 (7.9 2)

27z dt

Thus, according to Eq. 7.90, we may interpret the angle-modulated

wave s(t) as a rotating phasor of length A, and angle Olt). 
The angular

velocity of such a phasor is dl)(t)ldt, in accordance with 
Eq. 7.92. In the

simple case of an unmodulated carrier, the angle 0(t) is

Olt) = 27zf,t + 0,

and ,the corresponding phasor rotates with a constant angular %elocit^ equal

to 27zf,. The constant 0, is the value of 0(t) at t = 0-

There are an infinite number of ways in which the angle NO may be

varied in some manner with the message signal. Howe^er, we \hill consider

only two commonly used methods. phase modulation and frequenc^ mod-

ulation, as next defined:

Phase modulation (PM) is that form of angle modulation in ^i hich the

angular argument 0(t) is varied linearli, with the message signal m(t), as

shown by
	

0(t) = 2rf,r — k,rn(t)	
(7.91)

The term 27rf,t represents the angular argument of the unniodulated

carrier, and the constant kP represents the phase sensitit it,̂  of the mod-

ulator, expressed in radians per % olt. This assumes that m(r) is a % oltage

waveform. For con^enience. %ke haNe assumed in Eq. 7.93 that the

angular argument of the unmodulated carrier is zero at t = 0. The

phase-modulated wa%e s(t) is thus described in the time domain b.^

s(t) = A, cos[27zf.t ^ k^,oi(oj	
(7.94)

2. Frequency modulation (FW) is that 10rin of angle modulation in 
v^ hich

the instantaneous frequency f,(t) is varied linearlY with the niessage signal

m(t). as shOK,n by	

f,(t) = f , - k^m(t)	 (7.95)

The term f, represents the frcquenc^ of the unmodulated carrier, and

the constant k f repiesents the ' trequt. nc^ sensitivit ' ̂ . of the modulator,

expressed in hertz per volt. This assumes that m(t) is a %oltaEc ^Ara"'e_

form. Integrating Eq. 7.95 
with respect to time and multipl^ing the

result by 27T. we get

0(t) = 27zft ^ 2:-,k, f" in (I) (it	
(7,9())
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where, for convenience, we have assumed that the angular argument

of the unmodulated carrier wave is zero at t = 0. The fre quency-mod-
ulated wave is therefore described in 

t he time domain by

s(t) = A, cos[21zft + 27rk f f Pn(t) dt	 (7.97)0	
1

A co
nsequence of allowing the angular argument O(t) to become de-

pendent on the message signal m(l) as in Eq. 7.93 or on its integral as in
Eq. 7.96 is that the :ero crossings of a PM wave or FM wave no longer
have a perfect re gularity in their spacing; zero crossings refer to the instants
of time at which a Aaveform changes from a negative 

to a positive value
or vice versa. This is one important feature t hat distinguishes both P.M and

FM waves from an AM wave. Another important difference is that the
envelope of a PM or FM wave is constant (equal to the carrier amplitude).
whereas the envelope of an 

AM 
wave is dependent on the message signal.

Comparing Eq. 7.94 "ith 7.97 reveals that an FM wave mav be regarded
as a PM wave in which the modulating wave is P, ln(t) dt in place of in(t).
This means that an FM wave can be generated by first inte g rating tn(t)
and then using the result as the input to a phase modulato

-r. as i-n Fig.
7.35a. Conversely, a PM wave can be generated b y first differentiatingm(t) and then using the result as the input to a freq'uency modulator. as
in Fig. 7.35b. We ma y thus deduce all the properties of PM \& aves from
those of FM waves, arid %ice versa.

.d^ 'at., FM

Mod,jag

modularo,
f,e a'O,	

PM

.1, -, 12 /, it
Ibi

Figure 7.35

The relationship between frequency modulation and phase modulation. Ja) Schemefor generating an FM wave by using a phase modulator. (b) Scheme for generating8 PM wave by using a frequency modulator.
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................................................................................................................

EXAMPLE 6 SINUSOIDAL MODULATION

Consider a sinusoidal modulatiti is-ale ni(l), two full cycles of which are

plotted in Fig. 7.36a. The FM wave produced by this modulating %%ave is

plotted in Fig. 7.16h.

To determine the PNI "ave for m(t), we note that it is the same as the

with respect to timeFM wave produced b y dm(r)/dt, the demative of ni(t)

(see Fig. 7.35b). In Fig. 7.30c. we plot the derivative dm(t) '41t. which

consists of the original sinusoidal modulating wave shifted 
in 

phase tl^ 90-'^

The desired PNI wa^c 
is 

Plotted in Fig. 7,36d.

(a)

11 A A HHOU A A A A A
RH VUHNUH VVV

^h)	 b t,-e

A A A A MONA A A A A W1
VVMN1fl V V V V V ff I

(d)	 1, bme

Figure 7.36
(a) Sinusoidat modulating wave mit). (b^ Frequ ency-modulated wave. (c) Derivative
of m(t) with respect to time. (d) Phase-modulated wave,
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From the waveforms of Fig. 7.36, we see that for sinusoidal modulation

a distinction between FM and PM waves can be made only by comparing

with the actual modulating waves.

...........................................................................................................................

...............................................

EXAMPLE 7 SOUARE MODULATION

Consider next a square modulating wave m(t), two full cycles of which are

shown plotted in Fig. 7.37a. The FM wave produced by this modulating

%Nave is plotted in Fig. 7.37b-

To plot the PM wave produced by the square modulating wave m(t),

we follow a procedure similar to that in Example 6. Specifically, the de-

rivative din(t),'dt is plotted in Fig. 7.37c^ it consists of a periodic sequence

of alternating delta functions. The desired PM wave is plotted in Fig. 7,37d.

Unlike the case of sinusoidal modulation, we see that for square mod-

ulation the FM and PM waves are distinctly different from each other.

I L__j L_

(a)
I	

(c)	
I

(d)	 10 time

Figure 7.37
(a) Square modulating wave m(t). (b) Frequency modulated wave. (c) Denvatwe of
m(t) walh respect to time, (d) Phase-modulated wave.

...........................................................................................................................

EXERCISE 15 An FM wave is defined by

s(t) = A, cosil0itt + sin(4jzt)]

Find the instantaneous frequency of s(t).
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EXERCISE 10 The square wave of Fig. 7.37a is applied to the scheme

shown in Fig. 7.35a. Plot the waveforms at the input and output of the

phase modulator in Fig. 7.35a.

.............. 7.11 FREQUENCY MODULATION

The FNI wave s(t) defined by Eq. 7.97 is a nonlinear function of the

modulating wave m(t). Hence, frequency modulation is a nonlinear rnod-

ulation process. Consequently, unlike amplitude modulation, the spectrum

of an FM wave is not related in a simple manner to that of the modulating

wave. Thus, in order to study the spectral properties of an FM wave, the

traditional approach is to start with single-tone modulation and build on

the knowledge thus gained.

SINGLE-TONE FREQUENCY MODULATION

Consider then a sinusoidal modulating wave defined by

?n(t) ^ A, cos(21rf.t)	 (7.98)

The instantaneous frequency of the resulting FM wave equals

f,(t) = f, + k fA, cos(27if,t)

= f, + Af cos(27rf,t)	 (7.99)

where

Af = k f A,	 (7.100)

The quantity A f is called the frequency deviation, representing the maxi-

mum departure of the instantaneous frequency of the FM wave from the

carrier frequehcy f,. A fundamental characteristic of an FM wave is that

the frequency deviation Af is proportional to the amplitude of the mod-

ulating wave and is independent of the modulation frequency.

Using Eq. 7.99, the regular argument 0(t) of the FM wave is obtained

as

0(t) = 27t 
f 

f,(t) dt

27ift +	 sin(2nf,t)	 (7.101)
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The ratio of the frequency deviation Af to the modulation frequency f,

is commonly called the modulation index of the FM wave. We denote it

by fl, so that we may write

Lf	 (7.102)
f-

and
a

0(t) = 27rf,t + fl sin(21tf,t)	 (7.103)

From Eq. 7.103 we see that, in a physical sense, the parameter# represents

the phase deviation of the FM wave; that is, the maximum departure of

the angular argument 0(t) from the angle 27zf,t of the unmodulated carrier.

AWERCISE 17 A sinusoidal modulating wave of amplitude 5 V and fre-

quency 1 kHz is applied to a frequency modulator. The frequency sensitivity

of the modulator is 40 Hz/V. The carrier frequency is 100 kHz. Calculate

(a) the frequency deviation, and (b) the modulation index.

SPECTRUM ANALYSIS OF SINUSOIDAL FM WAVE

The FM wave for sinusoidal modulation is given by

s(t) = A, cos[27zf,t + # sin(27rf,,t)]	 (7.104)

Using a well-known trigonometric identity, we may expand this relation

as

s(t) = A, cos(27rf, t) cosV3 sin(27zf,t)]

— A, sin(27zf,.t) sin[fl sin(27-,f,,t)J	 (7.105)

From this expanded form, we see that the in-phase and quadrature com-

ponents of the FM wave s(t) for the case of sinusoidal modulation are as

follows:

sl(t) = A, cos[fl sin(27rf,t)]	 (7.106)

su(t) ^ A, sin[# sin(21rf,,t)j	 (7.107)

Hence. the complex envelope of the FM wave equals

s( t ) = S il t ) + jSQ(t)

= A, exp[jfl sin(27rf,t)i 	 (7.108)
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The complex envelope ^(t) retains complete information about the mod-

ulation process. Indeed, we may readily express the FM wave s(l) in terms

of the complex envelope S(t) by writing

s(t) = Re[A, exp(j27rf,t + j11 sin(27rf,i))]

^ Refs(t) exp(j27rf,t)]	 (7.109)

From Eq. 7.108 we see that the complex envelope is a periodic function

of time, with a fundamental frequency equal to the modulation frequency

f_ We may therefore expand s(t) in the form of a complex Fourier series

as follows

	

S(t)	 c, exp(j27rnf,t)	 (7.110)

where the complex Fourier coefficient c, equals

c^ = f^ 

f 1; 2f- 

9(t) exp( — j27znf,t) dt
- 1,2f.

= f^A, 
fi 2f^ 

expfj# sin(27rf,t) — j27rnf,t] dt	 (7.111)
-I 2f,

For convenience, we define the variable

x = 2nf,t	 (7.112)

in terms of which we may rewrite Eq. 7. 111 as

	

A,	
exp[j(fl sinx — nx)] dx	 (7.113)

27r f—

The integral on the right side of Eq. 7.113 is recognized as the nth order

Bessel function of the first kind and argument fl (see Appendix B). This

function is commonly denoted by the symbol J,(#)^ that is,

J^W_	 exp[j(#sinx — nx)]dx	 (7.114)
27r

Hence, we may rewrite Eq. 7.113 as

c. = A,J^(fl)	 (7.115)
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Substituting Eq. 7.115 in 7.110, we get, in terms of the Bessel function

J,(#), the following expansion for the complex envelope of the FM wave:

9(1) = A,	 J^(fl) exp(j27rnf.t)	 (7.116)

Next, Substituting Eq. 7.116 in 7.109, we get

	

A, Re	 J,(#) explj27r(f, + nf,)tl	 (7.117)

Interchanging the order of summation and evaluating the real part of the

right side of Eq. 7.117, we get

	

s(t) = A,	 J.(#) cos[27r(f, + nf,)tj	 (7.118)

This is the desired form for the Fourier series representation of the single-

tone FNI wave s(t) for an arbitrary value of fl. The discrete spectrum of
s(t) is obtained by taking the Fourier transforms of both sides of Eq. 7.118;
thus

S(f) = !^_' Y—' J^ ( #)P(f — f, — 1^f^) + Of + f, + nf.)] (7.119)2 _-

In Fig. 7.38 we have plotted the Besse[ function J,(fi) versus the mod-

I

ulation index 9 for n = 0, 1, 2, 3, 4. These plots show that for fixed n,

J,(9) alternates between positive and negative values for increasing # and
that IJ,(#)l approaches zero as # approaches infinity. Note also that for
fixed fl, we have

	

J-0)	

J^	 n even	
(7.120)

J^	 n odd

Accordingly, we need only plot or tabulate J,( ,6) for positive values of
order n.

From Eqs. 7.97 and 7.118, we deduce the following properties of FM
waves:

PROPERrY 1: NARROW-BAND FM

For small values of the modulation index fl compared to one radian, the FM
wave assumes a narrow-band form consisting essentially of a carrier, an
upper side-frequency component, and a lower side-frequency component.
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Figure 7.38
Plots of Bessel functions of the first kind.

This property follows from the fact that for small values of fl, we have

JOW ^ 1

J ' (fl) ^ ^
2

	

J' ( '6) = 0,	 n > 1	 (7.121)

The approximations indicated in Eqs. 7.121 are closely justified for values

of the modulation index defined by 0.3 rad. Thus, substituting Eqs.
7.121 in 7.118, we get

s(t) ^ A, cos(2nf,t) + 
PA, 

cos[2n(f, + f,)tl
2

	

#A, 
COS[27t(f,	 (7.122)

2

This equation shows that for small fl, the FM wave s(t) may be closely

approximated by the sum of a carrier of amplitude A_ an upper side-
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frequency component of amplitude flA,/2, and a lower side-frequency

component of amplitude flA,/2 and phase-shift equal to 180* (represented

by the minus sign in Eq. 7.122). An FM wave so characterized is said to

be narrow-band.

ExEncm is In what ways do a standard AM wave and a narrow-band

FM wave differ from each other?

PROPERTY 2: WIDEBAND FM

For large values of the modulation index fl compared to one radian, the FM
wave (in theory) contains a carrier and an infinite number of side-frequency
components located symmetrically around the carrier.

This second property is a restatement of Eq. 7.118 with no approximations

made. An FM wave thus defined is said to be wideband. Note that the

amplitude of the carrier component contained in a wideband FM wave

varies with the modulation index # in accordance with JO(fl).

ExERCFSE is In what ways do a standard AM wave and a wideband FM

wave differ from each other?

PROPERTY 3: CONSTANT AVERAGE POWER

The envelope of an FM wave is constant, so that the average power of such
a wave dissipated in a 1-ohm resistor is also constant.

This property follows directly from the definition given in Eq. 7.97 for an

FM wave. Specifically, the FM wave s(t) defined in Eq. 7.97 has a constant

envelope equal to A c . Accordingly, the average power dissipated by s(t)

in a 1-ohm resistor is given by

P = 
I 

A;'	 (7.123)
2

This result may also be derived from Eq. 7.118. In particular, A;e note

from the series expansion of Eq. 7.118 that the average powe, ef a-single-

tone FM wave s(t) may be expressed in the form of a corresponding series

as:

P	 A"^	 J2(11)	 (7.11-4)
2



FREQUENCY MODULATION 333

Next, we note that (see Appendix B)

J2(fl)
(7.125)

Thus, substituting Eq. 7.125 in 7.124, we get the result given in Eq. 7.123.

..........................................................................................................................
EXAMPLE 8

We wish to investigate the ^ka ys in which variations in the amplitude and

frequency of a sinusoidal modulating wave affect the spectrum of the FM

wave. Consider first the case when the frequency of the modulating wave

is fixed, but its amplitude is varied, producing a corresponding variation
in the frequency deviation Jf. Thus, keeping the modulation frequency

fixed, we find that the amplitude spectrum of the resulting FM wave is
as plotted in Fig. 7.39 for	 1. 2, and 5. In this diagram we have

1 0

2 4/

-10

2 Al —4

fb)

Figure 7,39

Discrete amplitude spectra of an FM signal. normalized with respect to the carrie,
amplitude, for the case of sinusoidal modulation of fixed f requency and varying
amplitude, Only the spectra for Positive frequencies are shown.



334 MODULATION TECHNIQUES

tW.

k

Figure 7.39 (continued)

J	 1 0

3 " C

2 %f

(h)

Figure 7.40
Oiscrere amplitude spectra of an FM signal, normalized with respect to the carrier
amplitude, for the case of sinusoidal modulation of varying frequency and fixed
amplitude. Only the spectra for positive frequencies are shown
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I ---- 2,%l – —"

Figure 7.40 (continued)

normalized the spectrum with respect to the unmodulated carrier ampli-
tude.

Consider next the case when the amplitude of the modulating wave is
fixed^ that is. the frequency deviation Jf is maintained constant and the
modulation frequency f, is' ^aried. In this case we find that the amplitude
spectrum of the resulting FNI wave is as plotted in Fig. 7.40 for 1, 2,
and 5. We see that when Af is fixed and #is increased, we have an increasing
number of spectral lines crowding into a fixed frequency interval defined
by	 J f < f < f, + Jf. That is, when # approaches infinit y

 the
bandwidth of the FM wave approaches the limiting value of 2 Jf.

...........................................................................................................................

EXERCISE 20 Expand the discrete amplitude spectra shown in Figs. 7.39
and 7.40 by including the spectrum of an FM wave with # = 0.2.

TRANSMISSION BANDWIDTH OF FM WAVES

In theory, an FNI wave contains an infinite number of side -frequencies so

that the bandwidth required to transmit such a signal is similarly infinite

in extent. In practice, however. we find that the FM wave is effectively

limited to a finite number of significant side-frequcncies compatible with'
a 

s
pecified amount of distortion. We may therefore specify an effective

b
andwidth required for the transmission of an FM wave. Consider first the

case of an FM wave generated by a single-tone modulating wave of fre-
quency f_ In such an FM wave, the side-frequencies that are separated
from the carrier frequency f, by an amount greater than the frequency
deviation Af decrease rapidly toward zero, so that the bandwidth always

exceeds the total frequency excursion, but nevertheless is limited. Specif-

ically, for large values of the modulation index #, the bandwidth ap-



336 MODULATION TECHNIQUES

proaches, and is only slightly greater than the total frequency excursion

2 A f. On the other hand, for small values of the modulation index fl, the

spectrum of the FM wave is effectively limited to the carrier frequency f,

and one pair of side-frequencies at f, --t f,, so that the bandwidth ap-

proaches 2f,. We may thus define an approximate rule for the transmission

bandwidth of an FM wave generated by a single-tone modulating wave of

frequency f, as

B = 2 Af + 2f^ = 2 Jf 1 +	 (7.126)

This relation is known as Carson's rule.

For a more accurate assessment of the bandwidth requirement of an

FM wave, we may use a definition based on retaining the maximum number

-of significant side-frequencies with amplitudes all greater than some se-

lected value. A convenient choice for this value is 1% 
of the unmodulated

carrier amplitude. We may thus define the 99 percent bandwidth of an FM

wave as the separation between the two frequencies beyond which none of

the side-frequencies is greater than 1% of the carrier amplitude obtained

when the modulation is removed. That is, we define the transmission band-

width as 2n._f_ where f. is the modulation frequency and n... is the

maximum value of the integer n that satisfies the requirement IJ,(fl)l > 0.01.

The value of n.. varies with the modulation index fl and can be determined

readily from tabulated values of the Bessel function J,(fl). Table 7.2 shows

the total number of significant side-frequencies (including both the upper

and lower side-frequencies) for different values of fl, calculated on the 1%

basis just explained. The transmission bandwidth B calculated using this

procedure can be presented in the form of a universal curve by normalizing

it with respect to the frequency deviation Af, and then plotting it versus

TABLE 7.2

Modulation index

	 Number of significant side-frequencies

fl

	 2n_

0.1

	
2

0.3
	

4

0.5
	

4

1.0
	

6

2.0
	

8

5.0
	

16

10.0
	

28

20.0
	

50

30.0
	

70
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X This curve is shown in Fig, 7.41, which is drawn as a best fit through

the set of points obtained by using Table 7.2. In Fig. 7.41 we note that as
the modulation index # is increased. the bandwidth occupied b y the sig-
nificant side-frequencies drops toward that over which the carrier f'requenc^

actuall .\ deviates. This means that small values of the modulation index 
#'

are rclati%ely more extravagant in transmission bandwidth than are the

larger values of #.

Consider next an arbitrary modulating %N ,,i\e ?n(t) with its highest fre-
quenc\ component denoted by 14'. The bandwidth required to transmit an
FM wave generated by this modulating wave is estimated by using a worst-

case tone-modulation analysis. Specifically, Ile first determine the so-called

deviation ratio D, defined as the ratio of the frequency deviation.if, Ihich

corresponds to the maximum possible amplitude of the modulating wave
tri(t), to the highest modulation frequency W: these conditions represent
the extreme cases possible. The deviation ratto D plaYs the same role for
nonsirmsoidal modulation dibt the modulation index # pla ys for the case of
sinusoidal modulation. Then. replacing # bN D and replacing f, by 11'. we
use Carson's rule gi\en bN Eq. 7.126 or the universal curve of Fiv. 7.41 to

obtain a value for the transmission bandAidth of the FNI kNa%e. Front a

practical viewpoint, Carson's rule sorneIliat underestimates the bandwidth

requirement of an FNI system. whereas using the uni%ersal cur%e of Fig.

7.41 yields a somewhat conservative result. Thus the choice of a trans-

Figure 7.41

Universal curve for evaluating the 99% bandwidth of an FM wave.
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mission bandwidth that lies between the bounds provided by these two

rules of thumb is acceptable for most practical purposes.

..........................................................................................................................

EXAMPLE 9

In 4orth America, the maximum value of frequency deviation Af is fixed

at 75 kHz for commercial FM broadcasting by radio. If we take the mod-

ulation frequency W = 15 kHz. which is typically the maximum audio

frequehcy of interest in FM transmission, we find that the corresponding

value of the deviation ratio is

75
D	 5

15

Using Carson's rule of Eq. 7.126. replacing # by D and replacing bv W,

the approximate value of the transmission bandwidth of the FM wave i's

obtained as

B = 2(75 + 15) = 180 kHz

On the other hand, use of the curve of Fig. 7.41 gives the transmission

bandwidth of the FNI wave to be

B = 3.2 if = 3.2 x 75 = 240 kHz

Thus Carson's rule underestimates the transmission bandwidth by 251/6

compared with the result of using the curve of Fig. 7.41.

............................................................................................................................

EXERCISE 21 Repeat the calculations of Example 9, assuming that the

frequency deviation is decreased to 50 kHz.

GENERATION OF FM WAVES

There are essentially two basic methods of generating frequency-modulated

waves, namely, indirect FM and direct FM. In the indirect method of

producing frequenc^ modulation,' the modulating wave is first used to

produce a narrow-band FNI wave, ancljrequenc^ trudaplication is next used

sThe indirect method of generating a wideband FM wave was first proposed by
Armstrong. A frequency modulator so designed is sometimes referred to as the

Armstrong moclulator; see Armstrong (1936). Armstrong was also the first to
recognize the noise-cleaning properties of frequency modulation.
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to increase the frequency deviation to the desired level. On the other hand.

in the direct method of producing frequency modulation the carrier fre-

quency is directly varied in accordance with the incoming message signal.

In this subsection, we describe the important features of both methods.

Indirect FM Consider first the generation of a narrow-band FIVI A aNc. To

do this, we begin with the expression for an FNI wave sjt) for the general

case of a modulating wave m(t), which is %&ritten in the form

sjt) = A, cos[21zf,t , q5,(t)j	 (7.127)

where f, is the carrier frequency and A, is the carrier amplitude. The

angular argument Oji) of s,(t) is related to m(i) by

0,(t) = 27zk, 
f " 

M (t) dt	 (7.128)

,Ahere k, is the frequency sensitivity of the modulator. ProNicled that the

angle 0,(t) is small compared to one radian for all t. we may use the

following approximations:

cos[(P(t)] ^ 1	 (7.129)

sin[O(t)] ^ (p(t)	 (7.130)

Correspondingly. we may approximate Eq. 7.127 as follo\Ns

s l (t) — A, cos(27zf i t) — A, sin^27zf:t)01(t)

= .4 1 cos(27r ,f,t) — 27Tk j A j sin(2,7f,t) [' M (t) dt	 (7.131)

Equation 7.131 defines a narrowi -band FM wave. Indeed, %N e may use this

equation to set up the scheme shown in Fig. 7.42a for the generation of a

narro ,A-band FNI %Aave: the scaling factor 27rk, is taken care of +)v the

product mocicilator. Moreover. bearing in mind the relationship that exists

between frequency modulation and phase modulation (see Fig. 7.35), we

see that the part of the frequency modulator that lies inside the dashed

rectangle in Fig- 7.42a repre
s
ents a narroit -band phase modulator.

The modulated wave produced by the narrow-band modulator of Fig.

7.42a ('iffers from an ideal FM wave in two respects:

1. The envelope contains a residual amplitude modulation and, therefore,

varies with time.
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s'gnal _^	 H rnodi,;ato,	 inult,plier	 FM s,gnal

C'Yual
controlled
oscillator

R

Figure 7.42
Block diagrams for (a) narrow-band frequency modulator, (b) frequency multiplier,

and (c) wideband frequency modulator.

2. For a sinusoidal modulating wave, the phase of the FM wave contains

harmonic distortion in the form of third- and higher-order harmonics

of the modulation frequency f..

However, by restricting the modulation index to ft -_ 0.3 rad, the effects

of residual AM and harmonic PM are limited to negligible levels,

The next step in the indirect FM method is that of frequency multipli-

cation. Basically, a frequency multiplier consists of a nonlinear device (e.g.,

diode or transistor) followed by a band-pass filter, as in Fig. 7.42b. The

nonlinear device is assumed to be memoryless, which means that there is
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no energy storage. In general, a memoryless nonlinear device is represented
by the input—output relation'

s,(t) = a,s,(t) + a.s2(t) +	 + a,s,(I)1	 (7.132)

where a,, a .. . . . . a,, are constant coefficients. Substituting Eq. 7.131 in
7.132, expanding and then collecting terms, we find that the output s.(t)
has a dc component and it frequency-modulated waves with carrier fre-
quencies f 1 . 2f,, - - - , nf 1 and frequency deviations Af, . 2Jf, , . .
nAf I , respectively. The value of if I is determined b y the frequency sen-
sitivity k, of the narrow-band frequency modulator' and the maximum

amplitude of the modulating wave m(t). We now see the motivation for

using the band-pass filter in Fig. 7.42b. Specifically. the filter is designed
with two aims in mind:

L To pass the FNI wave centered at the carrier frequency tif, and with
frequency deviation it if,.

2. To suppress all other FM spectra.

Thus, connecting the narrow-band frequency modulator and the fre-

quency multiplier as depicted in Fig. 7.42c. we may generate a "ideband

FM wave s(t) with carrie, frequenc^ f , = nf, and frequency de%iation
if = 

it 
Af,. as desired. Specifically, %ke maN write

S(t) = .4, Cos I 2:7f,t - -'7:k, 
f, " 

m(t) dt 

1	
(7.133)

where

kf = nk,	 (7.134)

In other words, the wideband frequenc) modulator of Fig. 7.42c has a

frequency sensiti% ity n times that of the narrow-band frequency modulator

of Fig. 7.42a. where n is the frequenc^ multiplication ratio. In Fig. 7.42c

we show a crystal-controlled oscillator as the source of carrier: this is done

for frequency st,ability.

'Nonlinearities, in one form or another, are present in all electrical networks. There
are two basic forms of nonlinearity to consider:

1. The nonlinearity is said to be strong when it is introduced intentionally and in a
controlled manner for some specific application. Examples of strong nonlinearity

include frequency multipliers, amplitude limiters, and square-law modulators.

2. The nonfinearity is said to be weak when a linear performance is desired, and
any nonlinearities are viewed as parasitic in nature. The effect of such weak

nonlinearities is to limit the useful signal levels in a system. Thus, weak

nonlinearities become an important design consideration; see Problem 40.
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EX
I 
ERCISE 22 . Consider a frequency multiplier that uses a square-law

device defined by

s,(t) ^ a ls t (t) + a.,s2l(t)

Specify the midband frequency and bandwidth of the band-pass filter used

in the frequency multiplier for the resulting frequency deviation to be twice

that zit the input of the nonlinear device.

EXERCISE 23 An FM wave with a frequency deviation of 10 kHz at a

modulation frequency of 5 kHz is applied to two frequency multipliers

connected in cascade. The first multiplier doubles the frequency and the

second multiplier triples the frequency. Determine the frequency deviation

and the modulation index ofthe FMwave obtained atthe second multiplier

output. What is the frequency separation of the adjacent side-frequencies

of this FM wave?

............................................................................................................................

EXAMPLE 10

mplificFwurc 7.4 , ^ho^k^ the si d block diaeram of a t^pical FNI transmitter

(based on the indirect method) used to transmit audio signals containing

freqUencio in the range 100 Hz to 15 kHz. The narroA-band phase mod-

ulator i ,, upplied k%ith 
a carrier ^%a^c of frequenc^ 0.1 NlHz by a

cr^^takcontrollcd o^cillator. The desired FNI ^ka^cat the transmitter output

hll^dcarricrtrequency 1, ^ IOOM[Iz^indfrequetic^
r de^iation.l .f = 75 kHz.

In order to limit the harmonic distortion produced b^ the narrow-band

phase modulator, ^^ c restrict the modulation index /;, to a maximum % alue

of 0.3 rad. Suppose then # I = 0.2 rad.

. ^rom Eq. 7.102. Ac 
see that for ^inusoidal modulation. the frequenc^

dc^iation equals the modulation index multiplied 
by 

the modulation fre-

qucnc^. Hence. for a fixed modulation index. the lo'Ae ,,,t modulation fre-

qUuncie, ^kill limit the frequency deviation at the narro%kband phase mod-

Ulator output. Thus, %Aith /)' I = 0.2. the 100-11z modulation frequencies

^k ill limit the trcqucnc^ de\ iation . 	 to 20 Hz.

I o producc 
a 
frcqucnc^ dc% iation 

of 
.1	 75 ki lz at the FNI transmitter

output, the u^c of trequenc^ Multiplication is required. Specifically, 'Aith

21) Hzand I t — 75 kHz. Ae rcquircatotal frequency multiplication

ratio of 37 ' 50. Ilo^%e%er. usin a straight frequency multiplication equal to

this %alue %kOUld produce a much higher carrier frequency at the transmitter

output than the dc,ired %alue of 100 NIHz. To generate an FNI wa^e hwmg



message

5 g-I
FM signal

4`-

Doth Me desired frequency deviation and carrier frequency, we therefore

need to use a [wo-stage trequelic - %- multiplier with an intermediate stage of
frequency translation, as illustrated in N2. 7.43.

Let n, and n, denote the respective frequenc^ multiplication ratios. so
that

Figure 7.43

Block diagram of the wideband frequency modulator for Example 10.
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-1 f	 75,0(H)
= — — 3750	 (7.135)

Af 1	 -1 ()

The carrier frequency at the first frequenc\ multiplier output is translattj

downward in frequency to	 nifl) by mixing it with a sinusoidal wave
Of frequency 9.5 MHz, which is supp'lied by a second crNstal-controlled

Oscillator. However. the carrier frequencv at the input of 'the second fre-
quency multiplier is equal to f, In- Equating these two frequencies, we
get

Hence, with f i = () I MHz, f2 ^ 9.5 MHz, and f, ^ I(K) MHz, we have

9.5. — 0. 1 it, = 

100
'12

Solving Eqs. 7,135 and 7.136 for n, and n.,. we obtain

n, = 75

n2 = 50

Using these frequency multiplication ratios, we get the set of values in-

dicated in Table 7.3.

(7.136)



344 MODULATION TECHNIQUES

TABLE 7.3 Values of Carrier Frequency and Frequency Deviation at the Various
Points in the Frequency Modulator of Fig. 7.43.

At the first

At the phase	 frequency

modulator	 multiplier

output	 output

Carrier	 0.1 MHz	 7.5 MHz

frequency

Frequency	 20 Hz	 1.5 kHz

deviation

..........................................................................

Direct FM In the direct method of FM generation, the instantaneous fre-

quency of the carrier wave is varied directly in accordance with the message

signal by means of a device known as a voltage-controlled oscillator. One

way of implementing such a device is to use a sinusoidal oscillator having

a relatively high-Q frequency-determining network and to control the os-

cillator by incremental variation of the reactive components. An example

of this scheme is shown in Fig. 7.44, showing a Hartlely oscillator. We

assume that the capacitive component of the frequency-determining net-

work consists of a fixed capacitor shunted by a voltage-variable capacitor.

The resultant capacitance is represented by C(t) in Fig. 7.44. A voltage-

variable capacitor, commonly called a varactor or varicap, is one whose

capacitance depends on the voltage applied across its electrodes. The vari-

able-voltage capacitance may be obtained, for example, by using a p-n

junction diode that is biased in the reverse direction; the larger the reverse

voltage applied to such a diode, the smaller the transition capacitance of

the diode. The frequency of oscillation of the Hartley oscillator of Fig

7.44 is given by

MI) =	 (7.137)

27rV'(-L.+ L,)C(l)	 117

where C(t) is the total capacitance of the fixed capacitor and the variable-

voltage capacitor, and L, and L2 are the two inductances in the frequency-

determining network. Assume that for a modulating wave m(t) the ca-

pacitance C(t) is expressed as follows

C(t) = C^ — k,m(t)	 (7.138)

where Co is the total capacitance in the absence of modulation, and 
k, is

the variable capacitor's sensitivity to voltage change. Substituting Eq. 7.138

At the second

At the	 frequency

mixer	 multiplier

output	 output

2.0 MHz	 100 MHz

1.5 kHz	 75 kHz

.............................................



3

FREQUENCY MODULATION 345

C(t)

Figure 7.44

Hartley oscillator.

in 7.137, we get

	

f,(t) = fo I — k, M (t)	 (7.139)

1	 G I

where f 0 is the uninodulated frequency of oscillation:

fo __ 
__	

1	 -	 (7.140)
27r\/C,,(L, + Lj

Provided that the maximum change in capacitance produced by the mod-

ulating wave is small compared with the unmodulated capacitance CO3 we

may approximate Eq. 7.139 as follows

k,
Mt) = fo I + — 'I (t)	 (7.141)

1	 2Co	 I

Define

k, = L^^	 (7.142)
2 C,

We then obtain the following relation for the instantaneous frequency of

the oscillator:

	

f,(t) ^ f, + k f -(t)	 (7.143)

-where k f is the resultant frequency sensitivit
y
 of the modulator, defined

by Eq. 7.142.

An FNI transmitter using the direct method as described herein. how-

ever, has the disadvantage that the carrier frequency is not obtained from
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^Ozfllato,	 FM wave
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0 f, e,	
"a or	 scdlato,H ---Ha-

Figure 7.45

A feedback scheme for the frequency stabilization of a frequency modulator.

a highly 
stable oscillator. It is therefore necessary, in practice, to provide

some auxiliary means b^ which a very stable fre(ILICI`)C^ generated by a
crystal A il] be able tocontrol the carrier frequency. One method of effecting
thi' s control is illustrated in Fig. 7.45. The output of the IFNI generator is
applied to a mixerto gether with the outputof it crystal-controlled oscillator,

and the difference frequencv term is extracted. The mixer output is next
applied to a frequencv di scriminator and then lo^N-pass filtered. A fre-
quency discriminator is a dekice whose output ^oltage has an instantaneou"

amplitude that is proportional to the instantaneous frequency of the 
FNI

%%ave applied to its input ' this de%ice is described later in the section. When
the I'M transmitter has exactl% the correct carrier frequency, the loA-pass

filter output is zero. Ho%^e\e 'r. cle%jations of the trarimilitter carrier fre-
qucnc^ fr . om its a ssi

g
ned \alue 

w
ill cause the frequency discriminator—filter

combination to dc%elop a dc output 
% oltage with it poliirit\ determined bv

the sense of the transmitter frcquenc^ drift. ] -his dc ^oltagc, after suitable
a mplification. is applied to the V01tage-controlled oscillator of the FNI
transmitter in such a "a^ a^ to moclik the frequcnc^ of the oscillator in it
direction that tend^ to ro^tore the caf-'rier frcqucnc^ to its required %aluc.

DEMODULATION OF FM WAVEs

The process offrequen(^ d(wifniulatioll k the inkcrsc of frequency mod-
ulation in the sense that it enables the ori inal modulating ", it%	 o

-Modulitted	 In particular. to perform
rcco%crcd from it frequcnc^ 

& C t he

frcqucnc^ demodulation we rc(ILlire it t%%O-port ( l c % icc that produces an
oulpill S^l; p ltll wilh ampiltiltIC dlr('( 1A proportional to 

the 1-funtancous fre-
()J 

of 

I-11-ti llem ^ -moduluted ,
to such 

it 
dc% ice its a Irequen(y

	

	
"e'l I ' % file Itli-I sl9 liul. We reter

(/(- I ()(Ili lator.
There are various methods of designing a frequency 

demodulator. Theycan he categorized into two broadiv d0incd classes: ( 1 ) direct and (2)indirect. The direct methods distinguish the mselves b y the fact that theirde velopment is inspired by it direct 
a
pplication of the 'definition of instan-

taneous frequency. This class of frcquenc^ de modulators includes, its cx-
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amples, frequency-discriminators and zero crossing detectors. On the other

hand, indirect methods of frequency demodulation rely on the use of feed-

back to track variations in the instantaneous frequency of the input signal.

The phase-locked loop is an example of this second class. In the remainder

of this section, we describe the balanced frequency discriminator and zero-

cross detector. The phase-locked loop is described in Section 7.12.

Balanced Frequency Discriminator To pave the wa y for the development

of the balanced frequency discriminator, we begin by considering an ideal-

ized form of the circuit. In this context, we introduce the notion of an

ideal slope circuit that is characterized 
by 

a purely imaginary transfer func-

tion, varying linearly with frequency inside a prescribed interval. Such a

circuit includes the differentiator as a special case. To be specific, consider

the transfer function depicted in Fig. 7.46a. which is defined bN

I 

j27ra f - f, + 
B2)

H I
(f) = j27ra f + f, - 

B)

2,

0,

B 
f ^^- f , + 

B

2	 2

L - 
B 

__ i	 + 

B

2	 2

elsewhere
	

(7.144)

where a is a constant. We wish to evaluate the response of this slope circuit,

denoted by s,(t). for an input FM signal s(t) of carrier frequenc^ f, and

transmission bandwidth B. It is assumed that the spectrum of s(t) 
is 

es-

sentially zero outside the frequency band 1, — B12 ^: Jf^ -- f, + B 2. For

evaluation of the response s,(t), it is convenient to use the procedure

described in Section 3.5, Ahich involves replacing the slope circuit with an

equivalent low-pass filter and driving this filter with the complex envelope

of the input FNI wave s(t).

Let H,(f) denote the complex transfer function of the slope circuit

defined 
by Fig. 7.46a. This complex transfer function is related to 11,

by

Hi(f - f,) ^ Ht(f)

Hence, using Eqs. 7.144 and 7.145, we get

j27ra f + —
2HIM = ^

0,

which is shown in Fig. 7.46b.

f > U	 (7. 14i)

B	 H
- _- f ^_:-
2	 2

elsewhere	 (7.146)
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M

^Iope ^ 

2-A
H 0 P	 f

W,

Figure 7.46
(a) Frequency response of ideal slope circuit. (b) Frequency response of complex
low-pass filter equivalent to the slope circuit response of part a. (c) Frequency
response of ideal slope circuit complementary to that olpart a.

The incoming FM wave s(t) is defined by Eq. 7.97, which is reproduced

here for convenience:

S(t) = A, cos 
I 

227f,t + 21zk f	m (t) dt 

1	

(7.147)

The complex envelope of this FM wave is

S(t) = A, exp 

I 

j27Tkf 
f -1 

Q) dt 

1	

(7.148)
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Let ^ 1 (t) denote the complex envelope of the response of the slope

circuit defined by Fig. 7.46a. Then we may express the Fourier transform

of S I (t) as

1'2;7a(f 
+ B) S(f),	

B , f , B
2	

2	 2

0 ,

	

elsewhere	 (7.149)

where 9(f) is the Fourier transform of 9(t). Now, from Section 2.3 we

recall that the multiplication of the Fourier transform of a signal by the

factorj27if is equivalent to differentiating the signal in the time domain.

We thus deduce from Eq. 7.149 that

9 1 (t) = a ^^ , prBs(t)	 (7.150)

1 dt	 I

Substituting Eq. 7.148 in 7.150, we get

2k
&,(t) = jnBaA, I 

+ ___j m (t) 
exp j27rk f	 m(t) dt	 (7.151)

1	 B	 I	 f

The response of the slope circuit is therefore

s l (t) = Re(9 1 (t) exp(j27rf,t)]

2k,
= 7rB aA, I +	 M(t) cos(27zf,t + 27rk f fo' m(t) dt + 7r

B	 2)

(7.152)

The signal sjt) is a hybrid-modulated wave in which both the amplitude

and frequency of the carrier wave vary Aith the message signal m(t).

However, provided that we choose

2k, m(t) 
<

B	 I

for all r, -6 -n we may use an envelope detector to recover the amplitude

variations and  , except for a bias term, obtain the original message

signal. The resulting " ^lope detector output is therefore -

js,(t)j = nBaA	 1	 (7.153)
1	 13	 1
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The bias term 7rBaA, in the right side of Eq. 7.153 is proportional to
the slope a of the transfer function of the slope circuit. This suggests that
the bias may be removed by subtracting from the envelope detector output

sjt)l the output of a second envelope detector preceded by the comple-
mentary slope circuit with a transfer function H,(f) as described in Fig.

7.46c, That is, the respective complex transfer functions of the two slope

circuits are related by

	

r"(f) = R ,( — f)	 (7.154)

Let s,(t) denote the response of the complementary slope circuit produced

by the incoming FM wave s(t). Then, following a procedure similar to that

described herein, we find that the envelope of S2(t) is

Lk

	

7rBaA, 
I 

I _ 

B	

I in 
( t )	 (7.155)

where 94t) is the complex envelope of the signal s,(t). The difference

between the two envelopes in Eqs. 7.153 and 7.155 is'

19,(O^ - Swl

	

47zkfaA,m(t)	 (7.156)

which is free from bias.

We maN thus model the ideal frequency discriminator as a pair of slope
circuits with their complex transfer functions related by Eq. 7.154, followed
by envelope detectors and a summer, as in Fig. 7.47 'This scheme is called

a balanced frequency discriminator or back-to-back frequency detector.
The idealized scheme of Fig. 7.47 can be closely realized using the circuit

shown in Fig. 7.48a. The upper and lower resonant filter sections of this

circuit are tuned to frequencies above and below the unmodulated carrier
frequency f_ respectively. In Fig. 7.48b we have plotted the amplitude

responses of these two tuned filters, together with their total response,

Hd^,-,ec, I o-

SI.P,

111-It

lf2 

^j

Figure 7.47

Idealized model of balanr^ rrequency discriminator.
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(a)

Normahzed

output
voltage

10

	

0 707 
^k2 B	

Amplitude response of

upper tuned filter

Total response

of both filters

I

4B, f, - 2 130	+ 2 B0 f, + 4 B,	 6 B
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lower tuned filter	

_0 707

-1 0

Figure 7.48
Balanced frequency discriminator (a) Circuit diagram. (b^ Frequency response.

assuming that both filters have a high-C) factor. The linearity of the useful

portion of this total response, centered at f, , is determined by the sepa-

ration of the two resonant frequencies. As illustrated in Fig. 7.48b, a

frequency separation of 3B, gives satisfactory results, where 2B,, is the

3-dB bandwidth of either filter. However, there ^vill be distortion in the

output of this frequency discriminator due to the following factorsi

1. The spectrum 
of 

the input F%I Aave s(t) is not exactl y zero for fre-

quencies outside the ra-e_ P. f , - B 2 !c- If! z^^ f, , B12.

2. The tuned filter outputs are n- str i ctiv hand-limitcd, and so some dis-

tortion is introduced by the lo—pa- PC filtcrs foilo%%ing the diodes in

the envelope detector,,
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3. The tuned filter characteristics are not linear over the whole frequency

band of the input FM wave s(t).

Nevertheless, by proper design, it is possible to maintain the distortion

produced bv these factors within tolerable limits.

Zero-crossing Detector This detector exploits the property that the in-

stantaneous frequency of an F,%l waNe is approximatcl^ given by

(7.157)
2it

where Jt is the time difference between adjacent zero crossings of the FM

w'ave. as illustrated in Fig. 7.49. Consider an interval T chosen in accord-

ance with the following two conditions:

1. The iniert al T is small compared to the reciprocal bf the message band-
i,t idth W

2. The interi al T is large compared to the re( iprocal of the carrier lrequenc^v
f. of the FV wave.

Condition I means that the message signal m(t) is essentialk constant

inside the interval T. Condition 2 ensures that a reasonable number of zero
crossin2s of the FNJ wave occurs inside the interval T. The FNI %%aveforrin
shown in Fig. 7.49 illustrates these two conditions. Let it , denote the num-

ber of zero crossings inside the inter, i:i , We may then express the time
J1 between adjacent zero crossings as

T
(7.158)

T

Figure 7.49

Illustrating Eq. 7.158.
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Baseband
I'M	 Pulse	

Integrator	
a

Limiter	 generator
signall	

sign I

Figure 7.50

Block diag 

"Im 

0 f zero-crossing detector.

Hence, we may rewrite Eq. 7.157 as

no	
(7.159)

2T

Since, by definition, the instantaneous frequency is linearly related to the

message signal m(t). we see from Eq. 7.159 that m(l) can be recovered

from a knowledge of n, Figure 7.50 is the block diagram of a simplified

form of the zero-crossing detector based on this principle. The limiter

produces a square-wave version of the input FM wave. the limiting of FM

waves is discussed later in Section 7.13. The pulse generator produces short

pulses at the positive-going as well as negative-going edges of the limiter

output. Finally, the integrator performs the a
v
eraging over the interval T

as indicated in Eq. 7.159, thereby reproducing the original message signal

m(t) at its output

Exmcm 24 Consider an FM wave s(t) that uses a linear modulating

wave m(t) = at, where a is a constant. Show that the time difference

between adjacent zero crossings of s(t) varies inversely with time.

7.12 PHASE-LOCKED LOOP

The phased-locked loop (I'LL) is a negative feedback system that consists

of three major components: a multiplier, a loop filter, and a voltage-

controlled oscillator (VCO) connected together in the form of a feedback

loop, as in Fig. 7.51. The VCO is a sine-wave generator whose frequency

is determined by a voltage applied to it from an external source. In effect,

any frequency modulator may serve as a VCO.

We assume that initially we have adjusted the VCO so that when the

control voltage is zero, two conditions are satisfied: (1) the frequency of

the VCO is precisely set at the unmodulated carrier frequency 
f_ and (2)

the VCO output has a 90' phase-shift with respect to the unmodulated

carrier wave. Suppose that the input signal applied to the phase-locked

loop is an FM wave defined by

s(t) = A, sin[27z .f,1 ^ 0 1 (t)]	 (7.160)
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Figure 7.51

Phase-locked loop.

where A, is the carrier amplitude. With a modulating wave m(t), we have

	

6,(t) ^ 27rk,	
-1 

(t) dt	 (7,161)

where k f is the frequenc y sensitiNitv of the frequency modulator. Let the
VCO output he defined by

r(t) = A, cos[27rf,t + 0,(t)]	 (7.162)

%%here A, is the amplitude. With a control voltage u(t) applied to the VC0
input. we have

	

0-4t) ^ 27rk, 
fl, 

u(t) dt	 (7.163)

where k, is the frequency sensitivity of the VCO. measured in hertz per
volt. The incoming FM wave s(t) and the VCO output r(t) are applied to
the multiplier, producing two components:

I. A high-frequency component represented bv

	

k, A, A, si n[47rf, i	 +	 t
2. A !ow-frequency component represented by k,,A, A, sin[o,(t) — 6401.where k,, is the multiplier gain. measured in volt - 1.

The high-firequency component is eliminated 
bv the low-pass action of !he

filter and the VCO. Therefore. discarding the 'high-frequency component,
the input to the loop filter is given by

e (1) = k , A, A, si n [ 0, (t) 1	 (7,164)



PHASE-LOCKED Loop 355

where 0,(t) is the phase error defined by

(MI)	 0'(0 – 02(t)

(p,(t) – 27zk, 
f " 

u(t) dt	 (7.165)

The loop filter operates on its input e(t) to produce the output

V(t) = 
V 

e(r)h(t – T) dT	 (7.166)

where h(t) is the impulse response of the filter.

Using Eqs 7,164 through 7.166 
to relate (P,(t) and 0,(t), and differ-

entiating with respect to time, we obtain

dojt)	 d0jt) - 
",K	 sinj0j0jh(t - T ) dr	 (7.167)

_dt	 dt - " E

where K0 is a loop parameter defined by

=	 A, A,	 (7,168)

Equation 7.167 suggests the repre
sentation or model of Fi ,, . 7.^_I a. In this

model we have also included the relationship hemeen c(t) and e(t) as

represented by Eqs. 7-164 and 7.166. 
We see that the block, diaLrarn of

the model resembles Fiv^ 7.51. 
The Multiplier is replaced by a subtractor

and a sinusoidal nonlinearity, and the VCO by 
an integrator.

The loop parameter & plays an important role in the operation of a

phase-locked loop . It has the dimensions of frequency^ th
is fOIIO^Ns front

Eq. 7.167. where we observe that the amplitudes 
A , and A.. are both

measured in volts and the multiplier pin k., is measured in voIt

LINEARIZED MODEL

Wh— Me phase error (b,(t) is zero. the phase-locked loop i
s 

s aid to be in

phase-lock. When 
Ojt) is at all times swall comparcd with 

one 
radi,in- we

may use the approximation

sin[O,([)] ^ (h,(t)	
(7.169)

r

which is accurate to within 4 1,'( for (p , (t) less than 0.5 rad. in this case the

loop is said to be near phase-lock and the sinusoidal nonlinearity of Fig.

7.52a may be disregarded. Thus we 
ma^ represent the phase-locked loop

bv the linearized model shown in Fi g . T^21). According to this model, the
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2^K.

In

2xK,

(b)

d
0 1 (1) 4d,	 r)

Figure 7.52

(a) Nonlinear model of a phase-locked loop. (b) Linearized model. (c) Simplified
model when the loop gain is very large compared to unity.

phase error 0,(t) is related to the input phase 0,(t) by the integro-differ-
ential equation:

	

do,(t) 
+ 27rKo ,
	

r) dT = ^^	 (7.170)dt	 f	 dt

Transforming Eq. 7.170 into the frequency domain and solving for (P,(f),
the Fourier transform of 0,(t), in terms of 0 1 (f), the Fourier transform
of 0 1 (t), we get

01(f) =	
I

I + L(f) 
0 1(f)	 (7.171)
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The function L(f) in Eq. 7.171 is defined by

	

L(f) = Ko 
H(f)	

(7.172)

if

where H(f) is the transfer function of the loop filter. The quantity L(f)

is called the open-loop transfer function of the phase-locked loop. Suppose

that for all values of f inside the baseband we make the magnitude of L(f)

very large compared with unity. Then from Eq. 7.171 we find that 0,(f)

approaches zero. That is, the phase of the VCO becomes asymptotically

equal to the phase of the incoming wave, and phase-lock is thereby estab-

lished.

From Fig. 7.52b we see that V(f), the Fourier transform of the phase-

locked loop output u(t), is related to 0,(f) by

V(f) = ^^' H(f) ,P,(f)	 (7.173)
k,

or. equivalently,

V(f) = if L(f)O,(f)	 (7.174)
k,

Therefore, substituting Eq. 7.171 in 7.174, we may write

V(f) = (jf1kjL(f) 01(f) 	
(7.175)

1 + L(f)

Again, when we make L(f)j > 1, we may approximate Eq. 7.175 as

	

V(f) = if 01(f)	
(7.176)

k,

The corresponding time-domain relation is

1	 dO,(t)	
(7.177)

21rk,	 dt

Thus, provided the magnitude of L(f) is very large for all frequencies of

interest, the phase-locked loop may be modeled as a differentiator with its

output scaled by the factor 1/27zk,, as in Fig. 7.52c.

The simplified model of Fig. 7.52c provides the basis of using the phase-

locked loop as a frequency demodulator. When the input signal is an FM

wave as in Eq. 7.160, the phase 0,(t) is related to the modulating wave
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in([) as in Eq. 7.161. Therefore, substituting Eq. 7.161 in 7.177. we find

that the resulting output signal of the phase-locked loop is

I'M	 tn(o	 (7.178)
k,

That i s, ' Ile output u(t) ofthephase-locked loop is approxiniatelv thesame,

except for the scale factor k, ,'k, as the original messagc signal m(t), and

the _frequency demodulation is accomplished.

A significant feature of the phase-locked loop demodulator is that the

bandwidth of the incoming FNI wave can be much Aider than that of the
loop filter characterized b - v 11(f). The transfer function H(f) can and

should be restricted to the baseband. Then the control signal of the VCO

has the bandwidth of the message signal in(t), whereas the VCO output

is a ^%icleband frequencv modulated wa%e whose instantaneous frequenc^

tracks that of the incoming FNI k^ zi^ e.

The complexity of the phase-locked loop is determined b^ the transfer
function H(f) of the loop filter. The simplest form of a phaw' docked loop
is obtained when H(f) = 1: that is, there is no loop filter, and the resulting

phase-locked loop is referred to a's a firw-order phase-locked loop (I'LL).

For higher-order loops. the transfer function 11(f) assumes a more complex
form. The order of the PLL is determined bv the order of the denominator
polynomial of the closed-loop transfer function, " hich defines the output
transform V(f) in terms of the input transform (P,(f), as shown in Eq.
7.17 5 . In the next sub-section %^e stud^ the properties of a first-order phase-
locked loop &nnodulator using the linear model of Fig. 7.^_'a."

FIRST-ORDER PHASE-LOCKED LOOP

If the PLL has no loop filter, H(f) = 1. the linearized model of the loop
simplifies as in Fig. 7.53, and Eq. 7.171 becomes

0,.(f) =

	

	 010 1	 (7.179)
1 — K, jf

We wish to investigate the loop behavior in the presence of a frequency-
modulated input. In particular, we assume a SillgIC-t0ne modulating wave

in(f) = A, cos(27zf f)	 (7.180)

"When a phase-locked loop is used to demodulate an FM wave, the loop must first

lock 
onto the incoming FM wave and then follow the variations in its phase. During

'he lock-up operation, the phase error 0.(t) between the incoming FM wave and the
VCO output will be large, which therefore requires the use of the nonlinear model of
Fig. 7.52a.
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Figure 7.53
Linearized model of first-order phase-locked loop

with the corresponding FM wave given bN

s(t) = A, sin[27rf,t - fl sin(27zf,t)]	 (7.181)

where # is the modulation index. Thus.

0 1 (t) ^ /I sin(27j,t)	 (7.182)

Therefore, using Eq. 7.182, we find that the phase error 0,(t) of the loop

produced b-,. the phase input 0,(t) of Eq. 7.179 %aries sinusoidall^ 'Aith

time. as shoAn by

0,(t) = 0, co,,(2,-.f,,,t - v )	 (7.183)

The amplitude 0, and phase V of the phase error 0, M 
are defined b^

. I f K,	
(7.184)

+ (f,, K,^)'J' -'

and

v ^ -tan l (f I K,,)	 (7.185)

where Af is the frequenc^ deviatiom that is. J t = flt,

In Fig. 7.54 we ha,,jo 
plotted the phase-error amplitude 0, . normalized

with respect to _fflK, versus the dimensionless parameter 
f,,, I K,,. It is

apparent that for a fixed frequency deviation if. the phase-error amplitude

has its largest value of Aj / K,, at	 0, and it decreases %k ith increasing

modulation frequen cy f,	 -

For the loop to track the frequency modulation sufficientl% closely, the

phase error 0,(t) should remain within the lincar region of operation of

the loop for all t. This means that the larLcst phase-error amplitude should

not exceed 0.5 rad. so that 0
, (t) sati qies the reklUirement of Eq. 7.169 for
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Figure 7.54
Phase-error amplitude characteristic of first-order phase-locked loop.

all t. That is, the frequency deviation of the incoming FM wave s(t) should
be bounded by

Af _- 0.5KO

The output signal v(t) of the PLL is related to the phase error 0,(t) bv
(see Fig. 7.53)

V(t) =	 0, W	 (7.186)k ,

Therefore, substituting Eq. 7.183 in 7.186, we get

u(I) = A o cos(27rf,t + V)

where the amplitude A,, is defined bv

A,	
Jf1k,

+ (f_1&) : j 1 2	
(7.187)

and the phase Y/ is given by Eq. 7.185. From Eq. 7.186 we see that at a
modulation frequency f. = K0 , the amplitude of the loop output v(t) will
have fallen by 3 dB below its value at f, = 0. The loop bandwidth of a
first-order PLL is therefore K0 . We also see from Eq. 7.187 that a first-
order PLL demodulator introduces distortion between the original mod-
ulating wave m(t) and the signal v(t) obtained at the PLL output. This
distortion is the same as the frequency distortion produced by passing the
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modulating wave m(t) throuLh a low-pass RC filter of time constant

1127K".

'Ale have thus far assumed that the phase error is sufficiend small to

allow the loop to he considered linear in its operation. We next wish to

e%aluate the input frcqucnc^ range o%er which the I'LL will hold lock,

Assume a constant input frequenc^, for which

d 0 , ( t	
ti f

tit

With this input applied to a first-order phase-locked loop. Eq. 7 167 be-

comes

tl(^)' (t) 

+ 27r K., sin[0jt)j - 21r i f	 (7.188)
dt

The phase error c) ,.(t) will haNe reached its steadv-state %alue %%hen the

cicmati%c do, tit k zero. Therefore, putti.) ,-, do, (it = 0 in Eq. 7.188 we

ohtain

sm0,	 (7.189)
K,

The sine of an angle cannot exceed unit% 
in 

niaenitude. Hence, Eq. 7.189

has no solution for (if > K_ Instead. the loop talls out of lock and the

phase error becomes a beat-note rather than a dc lc^cl. The hold-itz ' fre-

quenc^ rangeofafirst-ordcr PLL is therefore equal to --K,.. Inotherwords,

it first-order PLL will lock, to any constant input frequcnc^, pro%ided that

it lies %% ithin the range -_ K, of the WO's fice-runnin g frequcnc^ f, -

EXERCISE 2s Let ^, = do,ldt. Hence, we may rewrite Eq. 7.188 as

^, = 27r(6f — Ko sinO,)

A plot of the derivative ^, versus the phase error 0, for prescribed values

of bf and Ko is called a phase-plane plot.

(a) Sketch such a plot for & = 26f -

(b) Show that for initial values Of Oe inside the range 0 and 90', the

stable point of the PLL lies at 0, = 30*.

(c) Show that, in general, the stable points of the PLL lie at

0, = 30' t n 360",

where n is an integer.
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PRACTICAL CONSIDERATIONS

Front the foregoing analysis of a first-order PILL, N^e conclude that the loop
parameter K, defined b y Eq. 7. 1 (,s, uniquel y cleterrinirics the loop hand-
\\idth as ^\ell as the holi-in frequency range 'cif the I'LL. This Is a In dj. or
limitation of first-order I'Ll-s. In order to track \ariation^ in the instan-

taneous frequency of 
an 

FNI A a\ e. namelv.

JJ0 = ^t, — k,ni(t)

the locip parameter K, must lie large compared to the frequency de\iation
[ i.e - t he maximum departure of the instantaneous frcquenc^ ' f, (t) from
the carrier frequcnc^ fj In the ca,e of a first-order PLI_- such a choice

for K , also results in a larL!e loop hand\N idth. This is undesirable becau^e

a large loop bandkkidth lets in niore noise po^Ner at the demodulator output
than "ould normall\ he desired. Accorclin ,_, k, ooe find that in practice a
phase-locked loop used for frcqucnc^ demodulation includes a loop filtet.

Fi,-, ure 7.^s sho%%s a filter'' often used in I se(ond-oider PLL. The filter
consists of an inte2rator and a direct connection. its tran4er function is
"iven b),

\&here G is a constant. The inclusion of such a filter in the loop pro\ides

the designer with an additional cle g ree of freedom, narrick, It is no"
possible to exercise control o\er both the loop parameter K, and the loop
band\%idth.` A second-order PLL is therefOTe capable of providing a good

performance, and its use is adequate for rinost practical ipplicdtio-ns.-

I

2^foil?

Figure 7.55

Loop filter for second-order phase-locked loop.

"in the theory of feedback systems, the filter of Fig. 7.55 is referred to as a lead-lagfilter.

"For a detailed analysis of second-order phase-locked loops. see Gardner (1979).
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................... 7.13 UMMNG OF FM 10VES

When an FM wave is transmitted through a communication channel, in

general, the output will not have a constant amplitude because of channel

imperfections. At the receiver, it is essential to remove the amplitude

fluctuations in the channel output prior to frequency demodulation. This

is customarily done by means of an amplitude limiter. Figure 7.56 shows

the input-output characteristic of an idealized form of amplitude limiter

known as a hard limiter. The resulting output is essentially an FM square

wave.
To analyze the FM output of a hard limiter, we assume that the limiter

is in the form of a memoryless device. Accordingly, we may express the

limiter output, in response to a frequency-modulated input z(t), as

v(t) = sgn[z(t)]

=
 f

+ 1,	 if Z(t) > 0

—1,	 if Z(t) < 0	
(7.190)

We also assume that the amplitude fluctuations are sloA compared to the

zero-crossing rate of the frequency-modulated input z(t). We may then

take the sign changes of z(t) as being proportional to the carrier phase

shifts, as shown by

v(t) = sgnjcosj0(t)]j	 (7.191)

where 0(t) is the angular argument of the FM Aave. The function sgn^cos[0]1.

viewed as a function of 0, is a periodic square wave when the modulation

is zero. Hence, using the Fourier series representation of sgnjcos[0j), we

may write

sgnjcosj0jj	
4	 cos[(2k — 1)1]	

(7.192)
7r	 (2k — 1)

Output

Figure 7.56
input-output characateristic of a hard limiter.
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This expansion holds for all 0. Thus, using 0(t) in place of 0 in Eq. 7.192,
we may express the hard limiter output as

4	 cosf (2k — 1)[27rf,t + 0(t)jjV(t) = — Z	 (7.193)
2Z k	 (2k

where f, is the carrier frequency, and the phase 0(t) is related to the
message signal of interest.

Equation 7.193 shows that the hard limiting operation produces image
FM sidebands at odd harmonics of the carrier frequency f,. When the
carrier frequency f, is sufficiently large, we may use a band-pass filter
(centered on f,) to select the desired FM wave:

V(t) = 4 cos[27zf,t + 0(t)]7r

In practice. the combination of hard limiter and band-pass filter is imple-
mented as a single circuit commonly referred to as a band-pass limiter.

EXERCISE 26 Consider the periodic signum function sgnfcos[0jj that is
a real-valued, odd function of 0 with period 2n. Show that this function
may be expanded into a Fourier series as in Eq. 7.192.

........ 7.14 APPILICATION It: FM RA610

In Section 7.9 we described the standard AM radio format for audio signals
and the television for video signals. In this section, we describe FM radio13
that pertains to the remaining type of radio broadcasting.

As with standard AM radio, most FM radio receivers are of the super-
hetrodyne type. The block diagram of such an FM receiver is s6wn in Fig.
7.57. The RF section and the local oscillator are mechanically coupled to
provide for a common tuning. A frequency-modulated wave with a fixed
carrier frequency is thereby produced at the output of the IF section.

Typical frequency parameters of commercial FM radio are

RF carrier range = 88-108 MHz
Midband frequency of IF section = 10.7 MHz
IF bandwidth = 200 kHz

"For some historical notes on frequency modulation and its use in radio
broadcasting, see Lathi (1983, pp. 301-302).
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In an FM radio, the message information is transmitted by variations

of the instantaneous frequency of a sinusoidal carrier wave, and its am-

plitude is maintained constant. Therefore, any variations of the carrier

amplitude at the receiver input must result from noise or interference. The

amplitude limiter, following the IF section in Fig. 7.57 is used to remove

amplitude variations by hard-limiting the modulated ^Na^e at the IF section

output. The resulting rectangular wave is rounded off by a band-pass filter

that suppresses harmonics of the carrier frequenc^. Thus the filter output

is again sinusoidal. with an amplitude that is practically independent of the

carrier amplitude at the rece i ver input. The amplitude lirtuter and filter

usualiy form an integral unit.

The discriminator performs the required frequenc^ demodulation. If

there were no noise at the receiver input. the message si g nal would be

recovered with no contamination at the discriminator output. However,

the inevitable presence of receiver noise precludes the possibility of such

an occurrence. To minimize the degrading effects of noise. t%^o modifica-

tions are therefore made in the receiver:

1.A de-empliasis tieiwork is added to the audio po^kcr amplifier so as to

compensate for the use of a pre-empha^ls neti%ork at the transmitter,

The reason for employing pre-emphasis is to) shape the spectrum of the

message signal at the discriminator output so that it more approximatel^

matches the corresponding noise spectrum.

2. A post-detecoon filter. labeled  baseband loA-pass filter," is added at

the output end of the receiver. This filter has a bandAidth that is just

larve enough to accommodate the highest frequenc^ component of the

message signal. Hence. 
by including it, the out-of-hand component ,., of

noise at the discriminator Output are suppressed.

Both these issues are explained in full in Chapter 9.

FM STEREO MULTIPLEXING

Stereo multiplexing is a form of frcquency-division multiplexing (FDNI)

designed to transmit two separate signals via the same carrier. It is widelN

used in FM broadcasting to send t%No different element ,., of a program (e.g..

two different sections of an orchestra. a vocalist and an accompanist) so

as to give a spatial dimension to its perception by a listener at the receiving

end.

The specification of standards for FM stereo transmission is influenced

by two factors:

1. Tht2 transmission has to operate within the allocated FM broadcast

channels.

2. It has to be compatible with monophonic receivers.
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The first requirement scu; the permissible frequency parameters, including

frequency deviation. The second requirement constrains the way in which

the transmitted signal is configured.

Figure 7.58a shows the block diagram of the multiplexing system used
in 

an FM stereo transmitter. Let m i (t) and in,(t) denote the signals picked

up by left-hand and right-hand microphones at the transmitting end of the

system. They are applied to a simple matrixer that generates the sum signal,

tn j (t) ^ mjt). and the difference signal, in l (t) — mjt). The sum sii!nal is

left unprocessed in its baseband form: it is available for monophonic re-

ception. The difference signal and a 38-kHz subcarrier (deri\ed from a 19-

kliz crystal oscillator 
by 

frequency doubling) are applied to a product

Baseband	
M1 (N + m, (N	 +

LPF	
P 2 m I (t)

f	 ^+,V

^^J^
BPF

centered at	 x	 Baseband	
2m,ro

2f, = 38 kHz	 LPF [m
o(,_)_ -, ^(, +_

Frequency
doubler

1

r

L^,I^

^a,=row- ba n,,d
a

r

tuned 

I.9 k _

9 kHz

(b)

Figufe 7.58

(a) Multiplexer in transmitter of FM stereo. (b) Demultiplexer in receiver of FM

stereo.
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modulator, thereby producing a DSBSC modulated wave. In addition to
the sum signal and this DSBSC modulated wave, the multiplexed signal

m(t) also includes a 19-kHz pilot to provide a reference for the coherent
detection of the difference signal at the stereo receiver. Thus the multi-

plexed signal is described by

m ( t ) = [m,( t ) + m , (t)] + [m l (t) — m,(t)] cos(41tfc t) + K cos(27rf,t)

(7. M)

where f, = 19 kHz. The multiplexed signal m(t) then frequency modulates
the main carrier to produce the traUsmitted signal. The pilot is allotted
between 8 and 10% of the peak frequency deviation; the amplitude K in

Eq. 7.194 is chosen to satisfy this requirement.
At a stereo receiver, the multiplexed signal m(t) is recovered from the

incoming FM wave. Then m(t) is applied to the demultiplexing system

shown in Fig. 7.58b. The individual components of the multiplexed signal
m(t) are separated by the use of three appropriate filters. The recovered
pilot is frequency-doubled to produce the desired 38 kHz subcarrier. The
availabilitv of this subcarrier enables the coherent detection of the DSBSC
modulated wave, thereby recovering the difference signal, m,(t) — m,(t).
The baseband low-pass filter in the top path of Fig. 7.58b is designed to
pass the sum signal, m l ( t) + m,(t). Finally, the simple matrixer recon-

structs the left-hand signal, m i (t), and right-hand signal, m,(t), and applies

them to their respective speakers.

.............. 7.15 DIGITAL MODULATION TECHNIQUES

In this section we shift the focus of our attention from analog signals to
digital signals as the modulating wave. In particular, we describe digital

modulation techniques that may be used to transmit binary data over a
band-pass communication channel with fixed frequency limits set by the
channel. The notions involved in the generation of digital -modulated waves
are basically the same as those described for analog-modulated waves. The
differences that do exist between them are manifestations of the intrinsic
differences between digital signals and analog signals as the source of mod-
ulation.

BINARY MODULATION TECHNIQUES

With a binary modulation technique, the modulation process corresponds
to switching or keying the amplitude, frequency, or phase of the carrier
between either of two possible values corresponding to binary symbols 0
and 1. This results in three basic signaling techniques, namely, amplitude-
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shift ke 

* 

ving (ASK), frcquen(v-.%hifl keung (FSK). and phase-shift keYing

(PSK). as described herein:

1. In an ASK sy
s
tem, binary ^ynibol I i s represented by transmitting a

sinusoidal carrier kkit^e of fixed amplitude A, and fixed frequency f , for
the bit duration T^ 

s
econds. %Nhereas binary symbol 0 is represented by

s ,Aitching off the carrier for 1 '. seconds, as illustrated in Fig. 7.59a. 111'

mathematical ternv, Ae nia^ express the binary ASK wave s(t) as:

-1, cos(27rf,l).	
symbol 

1	
(7.195)

symbol 0

2. In a PSK system. a sinusoidal carrier %Nave of fixed amplitude A, and

fixed frequency 1 , is used to represent both s^mbols I and 0. except
that the carrier phase for cach symbol differs by 180'. as illustrated in

Fip. 7. ,̂ 9b. In this case, wc may express the binary PSK as:

cos(27rft),	 symbol 1	
(7 ^ 196)

co^(27rft + 70.	 s\mbol 0

3. In an FSK s^stern. t\ko ^inusoidal "a\es of the same amplitude A, but

different frequencies I ^ and f ., are used to represent binary symbols I

Binary

	

data	 0	 1	 1	 0	 1	 0	 0

	

0	
^ A A A (' 	 ^'^ A (:'	 i^	 i	 t
v v v	 v v	 v v

O AMAM"'AMA AAM18-L
I v W v v W v W W v v v ^`v v

(b^

0 ^ AAAM MA n MA ,
v vvvv v vv v v vv

1r)
Figure 7.59
The three basic forms of signaling binary information. (a) Amplitude-shift keying.

(b) Phase-shift keying. (c) Frequency-shift keying with continuous phase.
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and 0, respectively, as in Fig. 7.59c. That is, we may express the binary

FSK wave s(t) as:

	

S(1) = A, 
cos(Drf,t),	 symbol 1	

(7.197)

	

1A, cos(2nf,t),	 symbol 0

It is apparent, therefore, that ASK, PSK, and FSK signals are special cases

of amplitude-modulated, phase-modulated, and frequency-modulated.

waves, respectively.

EXERCISE 27 Show that the binary FSK waveform of Fig. 7.59c may be

viewed as the superposition of two binary ASK waveforms.

GENERATION AND DETECTION OF BINARY MODULATED WAVES

To generate an ASK wave. we may simply apply the incoming binary data

(represented in unipolar form) and the sinusoidal carrier to a product

modulator. as in Fig. 7.60a. The resulting output provides the desired ASK

wave.

To venerate a PSK %have. we may use the same scheme, except that the

incoming binary data are represented in polar form, as in Fig. 7.60b. From

this arrangement. we deduce that a binary PSK wave may also be viewed

as a double-sideband suppressed-carrier modulated wave. This remark also

applies to a binary ASK wave.

To Lenerate an FSK wave. we may apply the incoming binary data

(represented in polar form) to a frequenc^ modulator, as in Fig. 7.60c. As

the modulator input changes from one voltage level to another (both non-

zero), the transmitted frequency changes in a corresponding fashion.

For the demodulation of a binary ASK or PSK wave, we may use a

coherent detector depicted as in Fig. 7.61a. The detector consists of three

basic components:

1. A multiplier (i.e., product modulator), supplied with a locally generated

version of the sinusoidal carrier.

2. An integrator that operates on the multiplier output for successive bit

interNals ' this integrator performs a low-pass filtering action (see Prob-

lem 13 of Chapter 3).

3. A decision device that compares the integrator output with a preset

threshold, it makes a decision in favor of symbol 1 if the threshold is

exceeded. and in favor of symbol 0 otherwise.

The basic difference between the demodulation of a binary ASK wave and

that of a binary PSK wave lies in the choice of the threshold level.

For the demodulation of a binary FSK wave, we may use a coherent

detector as shown in Fig. 7.61b. This dectector consists of two correlators
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Product	
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Binary ASK wave
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(a)

Binary wave
in	 Product	 Binary PSK wave

polar form	 modulator	 s (t)

M (t)

Carrier wave
A, cos(27rf, t)

(b)

Binary wave
in	 Frequency	 Binary FSK wave

polar form	 modulator	 s (t)
M (t)

Carrier wave
A, cos(2rrf, t)

(c)

Figure 7.60
Generation schemes for (6) binary ASK, (b) binary PSK, and (c) binary FSK.

Binary ASK wave	 h

or	 Say 0, otherwiseBinary PSK 

wave	 ^Say 1, it thres old is exceeded

cos(2 ^/, 0	
Threshold

(a)

cos(2 fff2 1)	 (b)

Figure 7.61
Coherent detectors for (a) binary ASK or binary PSK, and (b) binary FSK.
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that are individually tuned to the two different carrier frequencies chosen

to represent symbols I and 0. The decision device compares the two cor-

relator outputs. If the output 1 1 produced in the upper path (associated

with frequency f l ) is greater than the output 12 produced in the lower path

(associated with frequency f2 ), the detector makes a decision in favor of

symbol 1; otherwise, it decides in favor of symbol 0.

The detectors (receivers) described in Fig. 7.61a and b are both coherent

in the sense that they require two forms of synchronization for their op-

eration^

1. Phase synchronization, which ensures that the carrier wave generated

locally in the receiver is locked in phase with respect to that employed

in the modulator (transmitter).

2. Timing synchronization, which ensures proper timing of the decision-

making operation in the receiver with respect to the switching instants

(i.e., switching between symbols 1 ind 0) in the original binary data

stream applied to the modulator input.

For certain digital modulation formats, the receiver design may be sim-

plified by ignoring phase synchronization. Specifically, binary ASK waves

may be demodulated noncoherently using an envelope detector. Likewise,

binary FSK waves may be demodulated noncoherently by applying the

received signal to a bank of two filters, one tuned to frequency f^ and the

other tuned to frequencyf2 . Each filter is followed by an envelope detector.

The resulting outputs of the two envelope detectors are sampled and then

compared to each other. A decision is made in favor of symbol I if the

envelope-detected output derived from the filter tuned to frequency f, is

larger than that derived from the second filter. Otherwise, a decision is

made in favor of symbol 0.

As for PSK, it cannot be detected noncoherently because the envelope

of a PSK wave is the same for both symbols I and 0 and a single carrier

frequency is used for the modulation process. To eliminate the need for

phase synchronization of the receiver with PSK, we may incorporate dif-

ferential encoding. In differential encoding, we encode the digital infor-

mation content of a binary data in terms of signal transitions. For example,

we may use symbol 0 to represent transition in a given binary sequence

(with respect to the previous encoded bit) and symbol 1 to represent no

transition. A signaling technique that combines differential encoding with

phase-shift keying is known as differential phase-shift keying (DPSK). Fig-

ure 7.62 illustrates the two steps involved in the generation of a DPSK

signal, ' assuming the input binary data 10010011. Note that the differential

encoded sequence (and therefore the DPSK signal) has an extra initial bit.

In Fig. 7.62, the initial bit is assumed to be a 1. For the differentially

coherent detection of a DPSK signal, we may use the receiver shown in

Fig. 7.63. At any particular instant of time, we have the received DPSK

signal as one input into the multiplier in Fig. 7.63 and a delayed version
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	Binary	
1	 0	 0	 1	 0	 0

data

Differentially

	

encoded	 1	 1	 0	 1	 1	 0
binary
data

Initial
bit

Phase of

	

DPSK signal 0	 0	 7r	 0	 0	 17'	 0	 0	 0

(radians)

Figure 7.62
The relationship betrween a binary sequence and its differentially encoded and
DPSK versions.

of this signal. delayed by the bit duration Tb . as the other input. The

inte p rator output is proportional to cos(^, where 0 is the difference between

the carrier phase angles in the recei% ed DPSK signal and its delaved version,

measured in the same bit interval. Therefore, when 0 = 0 (corresponding

to svmbol 1). the integrator output is positive^ on the other hand, when

`15 ^ 7r (corresponding to symbol 0), the integrator output is negative. Thus,

by comparing the integrator output with a decision level of zero volts, the

receiver of Fig. 7.63 can reconstruct the binary sequence, which, in the

absence of noise, is exactly the same as the original binary data at the

transmitter input.

DISCUSSION

The detectors shown in Fig. 7.61 are based on the use of a correlator that

consists of a multiplier followed 
by 

an integrator. Digital communication

receivers designed in this way are called correlation receivers. The corre-

lator may be replaced by the combination of a multiplier, low-pass filter,

and sampler; except for the sampler, such a combination parallels the

scheme used - for the coherent detection of amplitude-modulated waves.

Choose 1

	

Tb	
it 1> 0

	DPSK signall	 X	 dt	 Otherwise,
choose 0

Delay
rThreshvoldof to olts

	

Tb	 of zero volts

Figure 7.63
Receiver for the detection of DPSK signals.
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However, in Chapter 10 it is shown that the correlation receiver is optimum
for the detection of a pulse in a common type of channel noise called
additive white Gaussian noise. Moreover, the combination of a multiplier
and low-pass filter is suboptimurn in comparison with the correlation re-
ceiver; hence, the preference for the use of a correlator in the detectors
of Fig. 7.61.

The coherent detection of ASK, PSK, and FSK signals involves the use
of linear operations and assumes the availability of local carriers (reference
signals) that are in perfect synchronism with the carriers in the transmitter.
On the other hand, the noncoherent detection of ASK and FSK signals
involves nonlinear operations; the detection of DPSK signals involves the
use of linear operations but the supply of a noisy reference signal. Ac-
cordingly, we find that the mathematical analysis of noise in the class of
noncoherent receivers is much more complicated than the class of coherent
receivers; more will be said on this issue in Chapter 10.

Another point that will emerge from the discussion presented in Chapter
10 is that receiver design simplification resulting from the use of nonco-
herent detection is achieved at the cost of some degradation in receiver
performance in the presence of noise, compared to a coherent receiver.

It is also noteworthy that none of the digital modulation techniques
described thus far is spectrally efficient, meaning that the available channel
bandwidth is not fully used. To provide for spectral efficiency we may use
baseband signal shaping combined with a bandwidth-conserving linear
modulation scheme such as vestigial sideband modulation; we studied base-
band shaping in Chapter 6 and vestigial sideband modulation in Section
7.5. In the next two sections we describe two other spectrally efficient
modulation techniques known as quadri phase -shift keying and minimum
shift keying, which are well suited for the transmission of digital data.

QUADRIPHASE-SHIFT KEYING

In binary data transmission, we send only one of two possible signals during
each bit interval Tb . On the other hand, in an M-ary data transmission
system we send any one of M possible signals, during each signaling interval
T. For almost all applications, the number of possible signals M = 2',
where n is an integer, and the signaling interval T = nT, It is apparent
that a binary data transmission system is a special case of an M-ary data
transmission system. Each of the M signals is called a symbol. The rate at
which these symbols are transmitted through the communication channel
is expressed in units of bauds. A baud stands for one symbol per second;
for M-ary data transmission, it equals log,,M bits per second.
- In this subsection, we consider quadriphase-shift keying (QPSK), which
is an example of M-ary data transmission with M = 4. In quadriphase-
shift keying, one of four possible signals is transmitted during each signaling
interval, with each signal uniquely related to a dibit (pairs of bits are termed
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dibits). For example, we may represent the four possible dibits 00, 10. 11,
and 01 (in Gray-encoded form) by transmitting a sinusoidal carrier with
one of four possible values. as follows:	 .

A, cos 27rf,t — 
37z)

4

.4, Cos 27,f,l -

S(t) =	
4)'

A c. cos 21rf,t + 7T
4),

A, cos 27rf' I

 + 37r)

4

dibit 00

dibit 10

(7.198)

dibit 11

dibit 01

where 0 -- t -_ T; we refer to T as the s ymbol duration. Figure 7.64 de-

picts the QPSK waveform (based on Eq. 7.198) for the binary sequence
01101000.

Clearly, QPSK represents a special form of phase modulation. This is
done by expressing s(t) succinctly as

s(t) = A, cos[27zf,t + 0(t)]	 (7.199)

where the phase 0(t) assumes a constant value for each dibit of the in-
coming data stream, Specifically, we have (see Fig. 7.65)

	

3 7r	
dibit 00

4

	

7z	
dibit 10

	

4	
(7.200)

	

7r	
dibit 11

4

	

37r	
dibit 01

4

Binary sequence	 0	 1	 1	 0	 1	 0	 0	 0

QPSK wave n n N n n 0 n n n ,
/ V V V V V V U V

Figure 7.64
OPSK wave for the binary sequence 01101000, assuming the coding arrangement of
Eq. 7.198.



376 MODULATION TECHNIQUES

0

Dibit 00

37r/4

Tb	 2Tb

Dibit 10	 0

— ir/4

45 (t)

Dibit 11	 7r/4

	

0	 t
Tb	 2Tb

37r/4

Dibit 01

	

0	 t
Tb	 2 Tb

Figure 7.65
The coding of carrier phase of OPSK; the dibits, are shown in Gray-coded form.

We may develop further insight into the representation of QPSK by ex-
panding the cosine term in Eq. 7.199 and rewriting the expression for s(t)

as

s(t) = A, cos[o(t)] cos(2nft) — A, sin[o(t)] sin(2nfc t) (7.201)

According to this representation, the QPSK wave s(t) has an in-phase

component equal to A c cos[o(t)] and a quadrature component equal to

A c sin(o(t)]-
Tle representation of Eq. 7.201 provides the basis for the block diagram

of the OPSK transmitter shown in Fig. 7.66a. It consists of a serial-to-

parallel converter, a pair of product modulators, a supply of the two carrier
waves in phase quadrature, and a summer. The function of the serial-to-
parallel converter is to represent each successive pair of bits of the incoming
binary data stream m(t) as two separate bits, with one bit applied to the
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Figure 7.66
Block diagrams of (a) OPSK transmitter, and (b) coherent OPSK receiver.
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in-phase channel of the transmitter and the other bit applied to the quad-

rature channel. It is apparent that the signaling interval Tin a QPSK system

is twice as long as the bit duration Tb of the input binary data stream m(t).

That is, for a given bit rate IlT h . a QPSK system requires half the trans-

mission bandwidth of the corresponding binary PSK system. Equivalently,

for a given transmission bandwidth, a QPSK system carries twice as many

bits of information as the corresponding binary PSK system.

The QPSK receiver consists of two correlators connected. in parallel as

in Fig. 7.66b. One correlator computes the cosine of the carrier phase,

whereas the other correlator computes the sine of the carrier phase. By

comparing the signs of the two correlator outputs through the use of a pair

of decision devices, a unique resolution of one of the four transmitted

phase angles is made. In particular. the parallel-to-serial converter inter-

leaves the decisions made by the in-phase and quadrature channels of the

receiver and thereby reconstructs a binary data stream which, in the ab-

sence of receiver noise, is identical to the original one at the transmitter

input.

We may thus view a QPSK scheme as two binary PSK schemes that

operate in parallel and employ two carrier waves that are in phase quad-

rature. In other words. QPSK is a quadrature-carrier multiplexing scheme

that offers bandwidth conservation, compared to binary PSK.

MINIMUM SHIFT KEYING

In the binary FSK wave shown in Fig. 7.59c, phase continuit ' v is maintained

at the transition points as the incoming binary data stream switches back

and forth between symbols I and 0. Accordingly. such a modulated wave

is referred to as a continuoi4s-phasefreqiiency-shift keying (CPFSK) wave.

A special form of binary CPFSK known as minimum shift ke ' ving (MSK)

arises when the change in carrier frequency from symbol 0 to symbol 1, or

vice versa, is equal to one half the bit rate of the incoming data. To be

specific, let 6f denote the frequency change so defined and T, denote the

bit duration. We may then define MSK as that form of CPFSK that satisfies

the condition:

6f = 1	
(7.202)

2 Tb

More specifically, let the frequencies f i and f2 represent the transmission

of symbols I and 0, respectively. Clearly, frequency f i may be expressed

as

f 
L±_L , f, - f^

2	 2

+	 (7.203)
2
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where

+	 (7.204)
2

and

6f = f, — f2	 (7.205)

Similarly. we may express the second carrier frequenc) f, as

f, +
f2 - 
^_

2

f,	

of	
(7.206)

2

The "unmodulated" carrier frequency f, represents the arithmetic mean

of the two transmitted frequencies f 1 and f, as in Eq. 7.204.

Define the NISK siLmal as

s(t) ^ A, cos[27r ,f,I I 0M]

where

0(t) = _-'r(ift

Hence, under the condition specified by Eq. 7.202. the transmission of

symbol I (i.e., frequcnc^ f l ) chan pes the phase of the MSK si2nal s(t) bv

an amount defined bN

0(1)^ 716ft

71. t
—,
	 symbol 

1	 (7.207)
2 T,

From this relation we see that at the termination of the interval representing

the transmission of sNmbol I at time t = T, the phase of an MSK wave

increases by -an amount equal to v2 radians. On the other hand, the

transmission of sN
I mbol 0 (i.e.. frequency f, ) changes the phase of the MSK

wave s(t) by an amount defined by

7r t
symbol 0	 (7.208)

2 T,

This means that at the termination of the interval representing the trans-

mission of symbol 0 a t time t = Th the phase of an NISK wave decreases

by an amount equal to n/2 radians.
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We are now ready to demonstrate that MSK may be viewed as another
example of quadrature multiplexing. First, we express the MSK wave s(t)
as a frequency-modulated wave as follows:

s(t) = A, cos[27rf,t + 0(t)]

= A, cos(27tf,t) cos[o(t)] — A, sin(27rf,t) sin[o(t)] 	 (7.209)

This shows that s(t) has an in-phase component equal to A, cos[O(t)] and
a quadrature component equal to A, sin[o(t)]. As with QPSK, there are
four distinct dibits to be considered; they are 00, 10, 11, and 01. Consider
first the transmission of dibit 00. In this case, the phase of the MSK wave

0(t)

0	 Tb	 2T,

Dibit 00
7r/2

-- -------------

(a)

0

Tr/2

Dibit 10

0	 2 T,

(b)

7r - - - - - - - - - -

Tr/2 ------

Dibit 11	 t
0	 Tb	 2 Tb

0(t)	 (C)

0	 T,	 2Tb

Dibit 01

—Ir/2

(d)

Figure 7.67
Coding of the carrier phase (b(t) for MSK; the dibits are shown in Gray-coded form.
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TABLE 7.4

Dibit

(Gray coded)	 sinjo(T,)l	 cosj(P(2T.)j

00

10

I I

W

experiencing a decrease (representin g the first svmbol 0) is followed by

another decrease (representin g the second s^nibol 0). Hence, the ,)base

histor,, of the %lSK wave trâ ces the path shown in Fig. 7.67u. Similarly.

we find that the transmission of dibits 10. 11, and 01 traces the respective

paths shown in parts b, c, and d of Fig. 7.67 for the phase history of the

NISK wave. In Fia. 7.67 it is assumed that the initial condition is defined

by o(0)	 0. Note that at time t = T, the phase of the NISK wave equals

- 71 2 or	 ; 2 radians. whereas at time r — 2L it equals 0 or z radians.

modulo 2:7.

In Table 7.4 we show ' thc^.pair of values, sin[^)( T,)] and cos[(P(2 Tb)].

corresponding to each of the four possible dibits. This table shows that the

identity of each dibit in NISK is uniquely defined 
by 

specifying the doublei

^sinjo(T,fl. cos[(p(2Tj,)j).

We thus see that OPSK and NISK are examples of quadrature multi-

plexing. TheN differ from each other in the scri^e that OPSK is a phase-

modulated ^%a%e whereas MSK is a frequency-modulated wa^e. This basic

difference manifests itself in the AaN in which the phase shift (P(t) of the

sinusoidal carrier varies with time. In QPSK, the phase shift 0(r) assumes

a distinct value that is constant for the entire duration of a symbol, de-

pending on the dibit being transmitted, as in Fig. 7,65. In NISK, on the

other hand, for each dibit the phase shift 0(t) varies Aith time along a

distinct path made up of straight lines, depending 
on 

the dibit being trans-

mitted, as in Fig. 7.67.

To generate an MSK Aave, we may use a frequency modulator that

fulfills the condition of Eq. 7.202. The coherent detection of MSk. how-

ever, involves a mathematical treatment that is beyond the scope of this

introductorv, book." Nevertheless, it suffices to say that the coherent de-

tector consists of a pair of correlators with built-in qieniory and decisions

made oversuccessive pairsof bit inter%als. Fhe detector is designed in such

a way that it can track the past history of the phase 0(t) as it evolves in

time on a bit-by-bit basis, and thereby reconstruct a binary wave that (in

the absence of receiver noise) is the same as that at the transmitter input.

"For a detailed treatment of minimum shift keying, see Haykm (1988, pp. 291-300).
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........... 7.16 APPLICATION III: DIGITAL COMMUNICATIONS BY SATELLITE

In this section we briefly descrilp the application of digital modulation for

the transmission of binary data over a satellite channel. The satellite channel

consists of an uplink, a transponder, and a downlink, as in Fig. 7.68. The

uplink connects a transmitting station on the ground to the transponder

on board a satellite positioned in geostationary orbit around the earth. The

downlink connects the transponder to a receiving ground station (usually

placed at a remote distance away from the transmitting ground station).

The transponder is designed to provide adequate amplification 
to 

overcome

the effects of channel noise. We may therefore view the satellite tran-

sponder as a repeater in the sky.

A satellite channel has a built-in broadcast capability. To exploit it,

however, we require the use of a technique known as multiple access. A
particular type of this technique, known as time-division multiple access

(TDMA), is well suited for digital communications." In TDNIA, a number

of ground stations are able to access a satellite by having their individual

transmissions reach the satellite in nonoverlapping time slots. Hence, the

radio frequency (RF) power amplifier at the output of the satellite tran-

sponder may be permitted to operate at or near saturation without having

to introduce crosstalk between individual transmissions. Such a feature,

which is essentially unique to TDMA. helps to optimize the noise per-

formance of the receiver. Moreover, since only one modulated carrier is

present in the nonlinear transponder at any one time. the generation of

intermodulation products is avoided.

Satellite transponder

A

Upl,/

Transmitting station	 R. ng
station

Figure 7.68,
Satellite link.

"There are two other types of multiple access, namely, frequency-division multiple
access (FDMA) and code-division multiple access (CDMA). The former is used for
analog communications and the latter is us^d for secure communications. For

discussions of the TDMA network, see Pratt and Bostian (1986, pp. 235-251).
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Figure 7.69

Structure of a TDMA , rame.

Figure 7.69 illustrates the idea of a TDMA network, in which trans-

missions ire organized into frarnes. A frame contains N hursts. To com-
pensat ,^ for variations in satellite range, a guard ritne is inserted between

Succf^ssive bursts as in Fig. 7.69 to protect the system against overlap. One
b^.jrst per frame is used as a reference. The re'maining V — I bursts are

allocated to ground stations on the basis of one burst per station. Thus.

each station transmits once per frame. T ypicall y . a Nurst consists of an
initial portion called the preamble, which is followed by a message portion ^
in some systems a postamble is also included. The preamble con-ists of a

part for carrier recovery, a part for symbol-timing reco^ery. a unique word

for burst synchronization, a station identification code, and some house-

keeping symbols. Two functionally different components may therefore he

identified in each frame: a revenue-producing component represented by

message portions of the bursts, and system overhead represented bN guard

times, the reference burst, preambles, and postarribles (if included).

Two important points emerge from this brief discussion of the TDNIA
network:

I - Power efficiency in a satellite transponder is maximized by permitting
the t rave li .ng-wa ve tube (responsible for power amplification) to 6perate

at or near saturation.

2. The transmissions contain independent provisions for carrier synchro-

nization and bit timing synchronization to occur simultaneously. thereby

keeping overhead due to recovery time in the ^cceivcr to a minimum.

Therefore, only a limited set of digital modulation techniques is suitable

for satellite communications. In particular, point I constrains the modu-

lation format to have a constant envelope, thereby excluding ASK. Point

2 makes it feasible to employ coherent detection. We therefore find that

in digi tal communications by satellite, primary interest is in the use of

coherent binary PSK, coherent QPSK, and coherent MSK.



384 MODULATION TECHNIQUES

......................................................................................................................
PROBLEMS

P7.1 Amplitude Modulation

Problem I Consider the message signal

m(t) = 20 cos(27tt) volts

and tht carrier wave

c(t) = 50 cos(100nt) volts

(a) Sketch (to scale) the resulting AM wave for 75% modulation.
(b) Find the power developed across a load of 100 ohms due to this
AM wave.

Problem 2 A carrier wave of frequency I MHz is modulated 50 91c by a
sinusoidal wave of frequency 5 kHz. The resulting AM wave is transmittt"t
through the resonant circuit of Fig. P7.1, which is tuned to the carrier

frequency and has a Q factor of 175. Determine the modulated wave after
transmission through this circuit. What is the percentage modulation of
this modulated wave?

Problem 3 Using the message signal

rn (t) =	 21 + t

determine and sketch the modulated wave for amplitude modulation whose
percentage modulation equals the following values:

(a) 50%
(b) 100%
(c) 125%

Current source	 L	 R	 Output signalof 
AM wave	 C 

T
Figure P7.1
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Problem 4 For a p-n junction diode, the current i through the diode and

the voltage v across it are related by

i — 10 exp	
— I

I ( — V)	 I

where 10 is the reverse saturation current and VT 
is 

the thermal voltage

defined by.

kT

VT = —
e

where k is Boltzmann ' s constant in joules per degree Kelvin, T is the

absolute temperature in degrees Kelvin, and e is the charge of an electron.

At room temperature V, = 0.026 V.

(a) Expand i as a power series in v, retaining terms up 
to V3.

(b) Let

v = 0.01 cos(27rf,t) + 0.01 cos(27rf,t) volts

where f^ ^ I kHz and f, = 100 
kHz. Determine the spectrum of the

resulting diode current i.

(c) Specify the band-pass filter required to extract from the diode cur-

rent an AM wave with carrier frequency f, -

(d) What is the percentage modulation of this AM wave'

Problem 5 
Suppose nonlinear devices are available for which the output

i. and input voltage u, are related by

i, = a,u, + a3V'

S W
(^Olts)

+3

0

—3

LO

Figure P7.2
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where a, and a3 are constants. Explain how these devices could be used

to provide an amplitude modulator.

Problem 6 Consider the amph t ude -modulated wave of Fig. P7.2 with a

periodic triangular envelope. This modulated wave is applied 
to 

an en-

velope detector with zero source resistance and a load resistance of 250
ohms. The carrier frequencN, f, = 40 kHz. Suggest a suitable value for the
capacitor C so that the distortion (at the envelope detector output) is

negligible for frequencies up to and including the eleventh harmonic of the

modulating wave.

P7.2 Double-Sideband Suppressed-Carrier Modulation

Problem 7 Consider the DSBSC modulated wave obtained by using the
sinusoidal modulating wave

m(t) = A, cos(27rf,t)

and the carrier wave

c(t) = A, cos(27rft + 0)

The phase angle 0, denoting the phase difference between c(r) and m(t)
at time t = 0, is variable. Sketch this modulated wave for the following
values of 0:

(a) 0	 0

(b) 6 ^ 45o

W = 90'
(d)	 = 135'

Comment on your results.

Problem 8 A sinusoidal wave of frequenc^ 5 kHz is applied to a product
modulator, together with a carrier wave of frequency I MHz. The mod-
ulator output is next applied to the resonant circuit of Fig. P7. 1. . Determine
the modulated wave after transmission through this circuit.

Problem 9 Using the message signal ?n(i) described in Problem 3 deter-
mine and sketch the modulated wave for DSBSC modulation.

Problem 10 Given the nonlinear deviccs described in Problem 5, explain
how they could be used to provide a product modulator.

Problem 11 A message signal m(t) is applied to a ring modulator. The
amplitude spectrum of rn(t) has the value AY(0) at zero frequency. Find
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the ring modulator output at f = _-L, --3f,, ±5f,, . . . where f, is the

fundamental frequency of the square carrier wave c(l).

Problem 12 Consider a message signal m(t) with the spectrum shown in

Fig. P7.3. The message bandwidth W = I kHz. This signal is applied to

aproduct modulator, togetherwith acarrierwaveA, cos(27if,t). producing

the DSBSC modulated wave s(t). This modulated wave is next applied to

a coherent. detector. Assuming perfect synchronism between the carrier

waves in the modulator and detector. determine the spectrum of the de-

tector output when: (a) the carrier frequency f, = 1.25 kHz and (b) the

carrier frequency f, ^ 0.75 kHz. What is the lowest carrier frequency for

which each component of the modulated wave S(O is uniquel y determined

by m(t)?

Problem 13 A DSBSC wa ,,e is demodulated by applying it to a coherent

detector.

(a) Evaluate the effect of a frequenc^ error Af in the local carrier

frequency of the detector, measured Aith respect to the carrier frequency

of the incoming DSBSC wave.

(b) For the case of a sinusoidal modulating wave. shoA that because of

this frequency error, the demodulated Aa%e exhibits beats at the error

frequency. Illustrate your answer with a sketch of this demodulated

,A a ve.

Problem 14 Consider a composite wave obtained b^ addin g a nonco-

herent carrier A, cos(27rf,t + 0) to a DSBSC wave cos(27zf,t)m(t). 
This

composite wave is applied to an ideal en^elope detector. Find the resulting

detector output. E%aluate this output for

(a)0 = 0 -
(b) 0 ?^ 0 and -(01 < A,/2.

M(f)

0	 W

Figure P7.3
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P7.3 Quad ratu re-Carri or Multiplexing

Problem 15 Consider the quadrature-carrier multiplex system of Fig.
7.16. The multiplexed signal s(t) produced at the transmitter output in part
a of this figure is applied to a communication channel of transfer function
11(f). The output of this channel is in turn applied to the receiver input
in part b of Fig. 7.16. Prove that the condition

H(f, + f) = H*(fc — f) ,	 0 __ f __ V^,

is necessary for recovery of the message signals iii^(t) arid niji) at the
rcceiver outputs: f, is the carrier frequency, and W is the message band-
width.

Hint: Evaluate the spectra of the two receiver outputs.

P7.4 Single-Sideband Modulation

Problem 16 Usiniz the messave si gnal m(t) described in Problem 1, de-
termine and sketch the modulated waves for single-sideband modulation

with (a) orilv the upper sideband transmitted. and (b) on1v the lower side-
band transmitted.

Problem 17 Consider a pulse of amplitude A and duration T. This pulse
is applied to an SSB modulator, producing the modulated wave s(t). De-
termine the envelope of s(t). and show that this envelope exhibits peaks

at the beginning and end of the pulse.

Problem 18 Consider the t%ko-stage SSB modulator of Fig. 7.18b. The
input signal consists of a voice signal occupying the frequency band 0.3 —
3.4 kHz. The two oscillator frequencies have the values f 100 kHz and
f2 = 1 0 N111z. Specify the following:

(a) The sidebands of the DSBSC modulated waves appearing at the
two product modulator outputs.

(b) The sidebands of the SSB modulated waves appearing at the two
band-pass filter outputs.

(c) The passbands and guardbands of the two band-pass filters.

Problem 19

(a) Let s,(t) denote the SSB wave obtained bv transmitting only the
upper sideband, and §,(t) its Hilbert transform.' Show that

in (t)	 [s^(i) cos(2;Tf,t) + S.(t) sin(21rjf,i)j
A,

and

[Sjt) cos(27if,t) — s,Q) sin(21zf,t)j
A,
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where m(t) is the message signal, rh(t) is its Hilbert transform, f, the

carrier frequency, and A, is the carrier amplitude.

(b) Show that the corresponding equations in terms of the SSB wave

s l (t) obtained by transmitting only the lower sideband are

m (t) = 
2 

[s l (t) cos(27zf c t) + j j (t) sin(27rf,t)]

Ac

and

ph (t) = 2 (s,(t) sin(27if,t) — 91(t) cos(27j,t)]
A c

(c) Using the results of (a) and (b), set up the block diagram of a receiver

for demodulating an SSB wave.

Problem 20

(a) Consider a message signal in(t) containing frequency components

at 100, 200, and 400 Hz. This signal is applied to an 
SSB modulator

together with a carrier at 100 kHz, with only the upper sideband re-

tained. In the coherent detector used to reco^er m(t), the local oscillator

supplies a sine wave of frequency 100.02 kHz. Determine the frequency

components of the detector output.

(b) Repeat your analysis, assuming that only the lower sideband is

transmitted.

P7.5 Vestigial Sideband Modulation

Problem 21 The single-tone modulating ^Na%e m(t) = A, cos(2nf,t) is

used to generate the VSB modulated Aave

s(t) = aA,A, cos[27r(f, + f^) t j + A,A,(l — a) cos[27r(f,

where a is a constant, less than unity.

(a) Find the in-phase and quadrature components of the VSB modu-

lated wave s(t).

(b) What is the value of constant a for which s(t) reduces to a DSBSC

modulated wave?

(c)
What are the values of constant a for which it reduces to a n SSB

modulated wave'

(d) The VSB wave s(tj, plus the carrier A, 
cos(27rf,t). is passed through

an envelope detector. Determine the distortion produced by the quad-

rature component.

(e) What is the value of constant a for which this distortion reaches its

worst possible value'
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P7.7 Frequency Translation

Problem 22 Figure P7.4 shows the amplitude spectrum of an SSB-mod-

ulated signal s(t). The signal s(t) is applied to a mixer. Specify the param-

eters of the filter and local oscillator components of the mixer to do the

following:

(a) Upconversion from 10 to 100 NlHz.

(b) Downconversion from 10 to I NIHz.

Problem 23 The spectrum of a voice signal m(t) is zero outside the

interval f, -- fj -- f,. To ensure communication privacy, this signal is

applied to a scrambler that consists of the following cascade of components:

a product modulator, a high-pass filter, a second product modulator, and

a low-pass filter. The carrier wave applied to the first product modulator

has a frequency equal to f_ whereas that applied to the second product

modulator has a frequenc^ equal to f6 + f,; both of them have unity

amplitude. The high-pass and low-pass filters have the same cutoff fre-

quency at f, Assume that f, > fb.

(a) Denve an expression for the scrambler output s(t), and sketch its

spectrum.

(b) Show that the original voice signal m(t) may be recovered from s(t)
by using a descrarnbler that is identical to the scrambler.

P7.8 Frequency-Division Multiplexing

Problem 24 The practical implementation of an FDM system usually

involves many steps of modulation and demodulation. The first multiplex-

ing step combines 12 voice inputs into a basic group, which is formed by

having the nth input modulate a carrier at frequency f, = 112 kHz — 4n,
where n = 1, 2, . . . , 12. The lower sidebands are then selected by

band-pass filtering and are combined to form a group of 12 lower side-

bands (one for each voice input). The next step in the FDNI hierarchy

involves the combination of 5 basic groups into a supergroup. This is

—11 —10	 0	 10 11 f, MHz

Figure P7.4
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accomplished by using the nth group to modulate a carrier at frequency

f, = 372 + 48n kHz, where n = 1, 2, . . ^ , 5. Here again the lower

sidebands are selected by filtering and are then combined to form a

supergroup. In a similar mariner, supergroups are combined into master-

groups, and mastergroups are combined into ver ly large groups.

(a) Find the frequency band occupied 
by 

a basic group.

(b) Find the frequency band occupied by a supergroup.

(c) How many independent voice inputs does a supergroup accom-

modate?

P7.9 Application I

Problem 25 Figure P7.5 shows the block diagram -of a lieterodi, nc spcc-

trum analyzer. It consists of a variable-frequency oscillator, multiplier.

band-pass filter, and root mean-square (rms) meter, The oscillator has an

amplitude A and operates over the range f,, to f, - W, where f, is the

midband frequency of the filter and IV is the signal bandwidth. Assume

that fn = 2W, the filter bandwidth Af is small compared A ith f_ and the

passband amplitude response of the filter is one. Determine the %alue of

the rms meter output for a low-pass input signal g(t).

Problem 26 Figure P7.6 shows the block dia g ram of a frequenct- s^n-

thesizer, which enables the generation of many frequencies. each ^kith the

same high accuracy as the master oscillator. The master oscillator of fre-

quency I MHz feeds two spectrum generators, one directly and the other

through a frequency divider. Spectrum venerator I produces a signal rich

in the following harmonics: 1. 2, 3. 4, 5. 6, 7, 8, and 9 MHz. The frequency

divider provides a 100-kHz output, in response to w hich spectrum generator

2 produces a second signal rich in the followin g harmonics: 100. 2(K), 3oo,

400, 500. 600, 700, 800, and 900 kHz. The harnionic selectors are designed

to feed two signals into the mixer, one from spectrum generator I and the

other from spectrum generator 2. Find the range of possible frequency

outputs of this synthesizer and its resolution.

0 tPUT
F

input s;gnal	 13,nd P—]

__(^ 

t'jt^'

g

,equency

Figure P7.5
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Figure P7.6

Problem 27 The use of quadrature-carrier multiplexing provides the basis
for the generation of AM stereo signals. One particular form of such a
signal is described by

s(t) = A,[cos(27zf,t) + m i (t) cos(2;7f,t - 00)

+ rn.(t) cos(2,7f,t + 0,)]

where A,cos(27zf,t) is the unmodulated carrier, the phase difference
00 = 15'. and in l (t) and m,(t) are the outputs of the left- and right-hand
loudspeakers respectively. With rn,(t) and rn,(t) as inputs, do the follow-
ing:

(a) Set up the block diagram of a system for generating th.; multiplexed
signal s(t).
(b) With s(t) as input. set up the block diagram of a system for re-
covering m,(t) and mjt).
(c) Suppose s(i) is applied to an envelope detector. What is the resulting
output?

Problem 28 Figure 7.33a shows the simplified block diagram of a color
television transmitter that generates the composite video signal m(t) de-
scribed by Eq. 7.89. The block diagram of the corresponding demulti-
plexing system, used in the receiver to recover the original primary color
signals, is shown in Fig. 7.33b. Starting with the input rn(t), analyze the
operation of the demultiplexing system shown in Fig. 7.33b.

P7.10 Angle Modulation: Basic Concepts

Problem 29 Sketch the I'M and FM waves produced by the sawtooth
wave shown in Fig. P7.7.

Problem 30 In a frequency-modulated radar the instantaneous frequency
of the transmitted carrier is varied as in Fig. P7.8. Such a signal is generated
by frequency modulation with a periodic triangular modulating wave. The
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Figure P7.7

instantaneous frequency of the received echo signal is shown dashed in

Fig. P7.8 where r is the round-trip delay time. The transmitted and received

echo signals are applied to a mixer, and the difference frequency component

is retained. Assuming that for < 1. determine the number of beat c^cles

at the mixer output, averaged over I s, in terms of the peak deviation Af

of the carrier frequency, the delay r, and the repetition frequency f, of

the transmitted signal.

Problem 31 The instantaneous frequency of a sine wave is equal to

fc + Af for tj -,< T12, and f, for tj > T12. Determine the spectrum of

this frequency-modulated wave.

Hint: Divide up the time interval of interest into three nonoverlapping

regions: — oc < t < — T12, — T12 _- t _- T12, and T12 < t < -.

Problem 32 Consider an interval At of an FM wave s(t) = A, cos[O(t)]

such that 0(t) satisfies the condition

0(t + At) — 0(t) = n

1, W

Af

/I

-Af

Figure P7.8
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Hence, show that if.11 
is 

SUtficicntl% small, the instantancous freqUcnc^ of

the FM Aave inside this interval is approximateIN given bN

.f, - 
-1

2.1t

Problem 33 Consider the signal

A(t) = A cos(2,7f , t) + A, cos(27.0',t)

where A, cos(2T,- ,f , r) represents an unmodulated carrier. and A, cos(-,7,f,t)

represents an intcrfering si,-nal. Assume that the amplitude ratio A, A, is

small compared to unity. Calculate the instantaneous frequency of x(t)
under this assumption.

Problem34 Consider a narrow -band FNI wave approximately defined by

s ( t ) ^ A , cos( 2 -fA - 11A, .;in(27z . f,t) sin(277-f,,t)

(a) Determine the envelope of this modulated wme. What is the ratio

of the maximum to the minimum value of this en%eiope Plot this ratio

versus #. assuming that /)' is restricted to the interval 0 	# -_ 0.3.

(b) Determine the average power of the narrow-band FM %ka%e, ex-

pressed as a percentage of the a%eraee power of the unmodulated carrier

wave. Plotthisresult versus /1, assuming that # is restricted to the interval
0 -_ 13 !r 0. 3.

(c) BN expanding the angular argument O(t) of the narrow-band FM

wa%e A(t) in the form of a power series. and restricting the modulation

index /I to a maximum % alue of 0.3 rad, show that

() ( 1 ) ^ 2 7if, r + # sin(27zf,,t) - ^^ sin'(2nf,j)
3

What is the value of the harmonic distortion for P = 0.3?

Problem 35 The sinusoidal modulating wave

m(l) = A cos(2;Tf t )

is applied to a phase modulator with phase sensitivity k, The unmodulated
carrier wave has frequency f, and amplitude A, Determine the spectrum

of the resulting phase-modulated wave. assuming that the maximum phase

deviation flp = k,A,, does not exceed 0.3 rad.

Problem 36 Suppose that the phase-modulated wave of Problem 35 has
an arbitrary value for the maximum phase deviation #p . This modulated
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%it% e is applied to an ideal band-pass filter A ith inidband frequency f, and

a passband extending from f, — 1.5f,, to f, + 1.5f,_ Determine the

en%clope. phase, and instantaneous frequency ofthe modulated %ka%e at

the filter output its function ,, of time.

Problem 37 A carrier Aave is frequenc y-modulated using it sinusoidal

signal of freqUenc^ J,, and amplitude A_

(a) Determine the %alucs of the modulation index fltor %Oich the carrier

component of I fle f_Nl %kra^,C is reduced to zero. For this calculation WU
mayr Use the N alues of J,,(Jl) given in Appendix B.

(b) In it certain experiment conducted %%ith f,, = I kHz and increasing

A,, (starting front 0 V)^ it is found that the carrier component of the

FM AaNe is reduced to zero for the first time %%hen A, = 2 V. What is

the frequency sensitivit\ of the modulator'.) %^ hat is the % alue of A, for

%%hich the carrier component is reduced to zero for the second time9

Problem 38 A carrier 'AlaNre of frequency 1(10 Nlllz i^ trCqucncN-modU-
lated b^ it sine ^ka%e of amplitude 20 V and frequency 100 kHz. The

frcqucnc^ sensiti% it^ of the modulator is 25 kHz V.

(a) Determine the approximate bandAidth of the FNI 'Ait\C. U^ing Car-

son ' s rule.

(b) Determine the band\N idth by transmitting onl^ those ide-frequcn-

cies ^kith amplitudes that exceed I'(' of the unmodulated carrier arn-

plitude. Use the uni\ersal cur\e of Fig. 7.41 for thi, calculation.

(0 Repeat your Ca1CUJJtiOnS, assumin g that the amplitude ot the n1od-

ulatinv ^^a\e is doubled.

(d) Repeat \our calculations, assuming that the modulation frequcnc^

is doubled,

Problem 39 Consider a k%idehand II NI \%a\e produced b^ 
a 

sinusoidal

modulating kka^e A,, cos(2,—, f,f), U^iutZ it modulatorAith it phase sensitl%itN

equal to k, radians per volt.

(a) Sho^^ that if the maximum phase cle^iatiori of the I'M Aa^e is large

compared %%ith I rad, the hand^kidth of the P%l %%akc %aric, lincarlN k\ith

the modulation frequency J,_

(b) Compare this characteristic of it wideband PNI Aa%c %kith that of a

\%ideband FNI kka\c.

Problem 40 In this problem \Ae imestigate the effect of it iteak notilin-

eaw^ on frequency modulation. Spccificail^. consider 
it 
mcnior^ less chan-

ncl the transfer characteristic of %khich is described b^ the nonlinear re-

lation

v"(1) = aj . jt) , u ' u- (t) - aj,"(1)
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where v,(t) and v,(t) are the input and output signals. respectively, and

al, a 2 , and a, are constant coefficients. Let

ujt) = A, cos(27rf,t + 4p(tfl

where 0(t) is related to the message signal m(t) by

0(t) = 27rkf 
L 

m (t) dt

(a) Show that the channel output vjt) contains a dc component and

three frequency-modulated waves with carrier frequencies f_ 2f, and

3f,

(b) To extract an FM A ave the same as that at the channel input, except

for a change in carrier amplitude, show that b y using Carson's rule the

carrier frequency f, must satisfy the following ' condi tion:

f, > 3Af + 2W

where W is the highest frequency component of the message signal m(t)

and Jf is the frequency deviation of the FM wave vjr).

(c) Specify the band-pass filter required to do the extraction of the FM

wave as specified in part (b).

Problem 41 Figure P7.9 shows the frequency-determining network of a

voltage-controlled oscillator. Frequency modulation is produced by apply-

ing the modulating wave A, sin(27rf,t) plus a bias Vb to a pair of varactor

diodes connected across the parallel combination of a 200 pH inductor and

100 pF capacitor. The capacitance of each varactor diode is related to the

voltage V (in volts) applied across its electrodes by

C = l00V -1 '- PF

The unmodulated frequency of oscillation is I MHz. The VCO output is

applied to a frequency multiplier to produce an FM wave with a carrier

frequency of 64 MHz and a modulation index of 5.

100 —L 200	 Output

pF T juH 
^

Input

Figure P7.9
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FM wave	
R	

Envelope	 Output

S (t)	 detector	 signal

Figure P7.10

Determine: (a) the magnitude of the bias vojt^j,,C V_ and (hI the am-

plitude A, of the modulating wave. given that f,	 10 kfiz.

Problem 42 The FM wave

	

s(t) ^ A, cos 
I 

27zf,t + 2;Tk f	 In(t) (it 

I

is applied to the system shown in Fig. PT 10 consisting of a high-pass RC

filter and an envelope detector. Assume that: (a) the resistance R is small

compared with the reactance of the capacitor Cfor all si g nificant frequency

components of s(t). and (b) the envelope detector does not load the filter.

Determine the resulting signal at the envelope detector output. assuming

that k, rn(r) < f, for all t.

Problem 43 Consider the freque:icy demodulation scherne shown in Fig.

P7. 11 in %% hich the incoming FM wa% e s(t) is passed throu g h a delaN line

that produces a phase shift of — 7r/2 radians at the carrier frequenc^ f, .

The delay-line output is subtracted from the incoming FNI wave. 
and 

the

resulting composite wave is then e nve lope -detected. This demodulator finds

wide application in demodulating FM waves at microwa\e frequencies.

Assuming that

s(t) ^ A,. cos[27rf,t + If sin(27zf,,t)]

analyze the operation of this demodulator when the modulation index # is

less than unity and the Aelay T produced by the delay line is sufficiently

FM wa,e OutPut

Figure P7.11
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-	 small to justify making the approximations:

cos(27rf.T) ^ 1

and

sin(27rf,T) = 27rf,T

P7.12 Phase-Locked Loop

Problem 44 A first-order PLL is used to demodulate a single-tone FM
wave that has the following characteristics:

	

Modulation index	 5

Modulation frequency f,	 15 kHz

(a) Suggest a suitable % alue for the loop parameter K O of the PLL.

(b) For the value chosen in part (a), what is the corresponding value

of the loop bandwidth?

(c) Suggest a method for reducing the loop bandwidth.

Problem 45 Show that a second-order I'LL using the loop filter shown

in Fi2. 7.55 has the following closed-loop transfer function:

01(f)	
(jflf^)2

0, ( f )	 I + 2,(ifIfJ 
+ (jflf^)2

where f, is the natural frequency of the loop and ^ is the damping factor;

they are defined by

f	 V_f ^K_,,

K,

—4f,

How does this PILL differ from a first-OTder PLL?

Problem 46 Figure P7.12 shows the cascade connection of a phase-locked

loop and a linear filter. A phase-modulated wave is applied to the input

Phase-
modulated	 Message

-locked	 ,Unea,filtet,	 signalPhase	 ^f^ I

loop	 ans er unc ion

1_^	

H(f)

Figure P7.12
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of the phase-locked loop. The requirement is to reproduce the message

signal at the output of the filter. Find the transfer function H(f) of the

filter that satisfies this requirement, assuming that the phase-locked loop

has a large loop gain.

P7.13 Limiting of FIVI Waves

Problem 47 Consider the modulated signal

s,(i) = a(t) cos[21zf,t + 27Tk,	 m(t) dt]

where a(t) 
is 
a slowly varying envelope function. f, is the carrier frequency,

k f is a frequenc^ sensitivity. and m(t) is a message signal. The modulated

signal s(t) is processed by a band-pass limiter (consisting of a hard limiter

followed b% a band-pass filter) to remove amplitude fluctuations due to

a(t). Specify the parameters of the band-pass filter component so as to

produce the FM wave

s,(r) = A cos[27zf,r + 27rk f	 m(t) dt]

where A is a constant amplitude.

P7.14 Application 11

Problem 48 Consider the analysis of FM stereo transmission. assuming
that the left-hand and right-hand signals consist of two tones of different

frequencies but the same amplitude, as shown by

m l(t) = A, cos(27rft)

and

mJt) = A, cos(27rft)

(a) Show that the amplitude of a composite sigr^il consisting of the sum

signal and the DSBSC modulated version of the difference signal is

bounded bv 2A,. that is:

mJt) + rn,(t) + (rri l (t) — m,(t)] cos(41rf,t)l ^, 2A,

where f, is the subcarrier frequency.

(b) Let A, = 0.45, and let the pilot (of frequency f,.,) injected into

the multiplexed FM stereo signal have amplitude A_. = 0.1. Let the

FNI wa%e produced by this multiplexed signal have frequency deviation
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W = 75 kHz. Find the effecti\e frequency deviation that results from

the reception of the FM wave by a monophonic receiver that responds

only to the sum signal.

Problem 49 Figure P7.13 shows the block diagram of a real-time spectrum

anal ' Nzer working on the principle of frequency modulation. The gi%en

sie,nal g(t) and a frequency-modulated si g nal s(t) are applied to a multiplier

and the output g(t)s(t) is fed into a filter of impulse response h(t). The

s(t) and h(t) are linear FV signals whose instantaneous frequencies Nary

at opposite rates. as shown by

s(t) = cos(27zf,t — nkt , )

and

h(t) = cos(27r .f.t + 7rkt2)

%N here k is a constant. Show that the en% elope of the filter output is pro-

portional to the amplitude spectrum of the input signal g(t) with kt pla^ Ing

the role of frequenc^ f.

Hint: Use the complex notations described in Section 3.5 for band-pass

transmission.

P7.15 Digital Modulation Techniques

Problem 50 Sketch the binary ASK w a% eform for the sequence 1011010011

Assume that the carrier frequency f, equals the bit rate IlTb.

Problem 51 Repeat Problem 50 using binary PSK.

Problem 52 Sketch the binary FSK wa% eform for the sequence 1011010011 -

Assume that the two frequencies used to represent symbols I and 0 are

given by, respectively,

2

T^

... ......

Figure P7.13
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and

f2 ^ I

T^

where Tb is the bit duration.

Problem 53 Both binary FSK and binary PSK signals have a constant

envelope: Yet binary FSK signals can be noncoherently detected. whereas

binary PSK signals cannot *be. What are the reasons for this difference?

Problem 54 The binary sequence 1011010011 is transmitted over a com-
munication channel using DPSK. The channel introduces a 180'-phase

reversal.

(a) Sketch the transmitted DPSK waveform, assuming an initial bit of

1. What is the effect of changing the initial bit to a 0?

(b) Assuming that the channel is noise-free, show that the DPSK de-

tector in the receiver reproduces the original binary sequence. despite

the 180'-phase reversal in the channel.

Problem 55 Set up a circuit for generating a differentially encoded se-

quence (that includes the initial bit) in response to an incoming binary

sequence. Is the structure of this circuit affected b y the identity of the initial

b i t?

Problem 56 Sketch the QPSK waveform for the sequence 1011010011.

You may assume the following:

(a) The carrier frequency equals the bit rate.

(b) The dibits 00, 10, 11, and 01 are represented by phase shifts equal

to 0. 7r/2, 7t, 37r/2 radians.

Problem 57 Sketch the waveform of the MSK signal for the sequence

1011010011. Assume that the carrier frequency equals the bit rate.





................... CHAPTER EIGHT

PROBABILITY THEORY
AA1

The term "random " is used to describe erratic and apparently

unpredictable variations of an obser
v
ed signal. Indeed, random signals

(in one form or another) ,are encountered in every practical

communication system. Consider, for example, a radio communication

s y stern- The received signal in such a s^stem is random in nature.

6rdinarily, the received signal consists 'of an information-bearing signal

component, a random-interference component, and receiver noise. The

information -bearing signal component may represent, for example, a

voice signal that, typically, consists of randomly spaced bursts of energy

of random duration. The interference component represents the extraneous

403
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electromagnetic waves prod uced by other communication systems and at-

mospheric electricity. A major type of noise is thermal noise, which is

caused by the random motion of the electrons in conductors and devices

at the front end of the receiver.

The important point is that, regardless of the underlying causes of ran-

domness, %^ e cannot predict the exact N alue of the received signal. Never-

theless, the received signal 
can 

be described in terms of its statistical prop-

erties such as the average power, or the spectral distribution of the average

power. The mathematical discipline that deals with the statistical charac-

terization of random signals is probability theory. I We begin our discussion

of random signals %kith a review of probability theory in the next section.

8.1 PROBABIL17-Y THEORY

Probabilio iheor^ is rooted in situaticis that in%olNe performing an ex-

periment with an outcome that is subject to chance. Nloreo%er, if the

experiment is repeated, the outcome can differ because of the influence of

an underlying random phenomenon or chance mechanism. Such an ex-

periment is referred to as a randoin experiment. For example. the exper-

iment ma^ be the observation of the result of the tossing of a fair coin. In

this experiment, the possible outcomes of a trial are heads" or "tails."

To be more precise in the description of a random experiment, we ask

for three features:

1. The experiment is repeatable under identical conditions.

2. On anN trial of the experiment, the outcome is unpredictable.

3. For a large number of trials of the experiment, the outcomes exhibit

statistical regularit ' i l . That is. a definite average pattern of outcomes is

observed if the experiment is repeated a large number of times.

RELATIVE-FREQUENCY APPROACH

Let event A denote one of the possible outcomes of a random experiment.

For example, in the coin-tossing experiment, event A maN represent

"heads." Suppose that in 
it 

trials of the experiment, event A occurs n,

times. We may then assign the ratio n A ln to the event A. This ratio is

called the relativefrequency of the eventA. Clearly, the relati%e frequency

'For a detailed treatment of probability theory and the related subject of
random processes, see Davenport and Root (19581, Fry (1965). Thomas 0986),
Wozencraft and Jacobs (1965), Feller (1968), Fines (1973), Blake (1979), and
PaPOulis (1984).
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is a nonnegative real number less than or equal to one. That is to say,

0 , L' '_ 1	 (8.1)
n

If event A occurs in none of the trials, (nAln) = 0. If, on the other hand,

event A occurs in all the n trials, (n,ln) = I.

We say that the experiment exhibits statistical regularit ' y if for any se-

quence of n trials the relative frequency nAln converges to the same limit

as n becomes large. Accordingly, it seems natural for us to define the

probability of event A as

P(A	 lim ( 
LA	 (8.2)

— 11

Thus, in the coin-tossing qxperiment, we may expect that out of a million
tosses of a fair coin, about one half of them will show up heads.

The probability of an event is intended to represent the likelihood that

a trial of the experiment will result in the occurrence of that event. For
many engineering applications and games of chance, the use of Eq. 8.2 to
define the probability of an event is acceptable. However, for many other
applications this definition is inadequate. Consider, for example, the sta-
tistical analysis of the stock market: How are we to achieve repeatability
of such an experiment? A more satisfying approach is to state the properties
that any measure of probability is expected to have, postulating them as

axioms, and then use relative -frequency interpretations to justify them.

AXIOMS OF PROBABILITY

When we perform a random experiment, it is natural for us to be.aware
of the various outcomes that are likely to arise. In this context, it is con-
venient to think of an experiment and its possible outcomes as defining a
space and its points. With each possible outcome of the experiment, we
associate a point called the sample point, which we denote by s, The

totality of sample points corresponding to the aggregate of all possible

outcomes of the experiment, is called the sample space, which we denote

by c$. An event corresponds to either a single sample point or a set of
sample points. In particular, the entire sample space $ is called the sure

event; the null set 0 is called the null or impossible event; and a single

sample point is called an elementary event.
Consider, for example, an experiment that involves the throw of a die.

In this experiment there are six possible outcomes: the showing of one,
two, three, four, five and six dots on the upper face of the die. By assigning
a sample point to each of these possible outcomes, we have a one-dimen-
sional sample space that consists of six sample points, as shown in Fig. 8. 1.



406 PROBABILITY THEORY AND RANDOM PROCESSES

Sample point

1	 2	 3	 4	 5	 6

y
One-dimensional sample space

Figure 8.1

Sample space for the experiment of throwing a die.

The elementary event describing the statement "a six shows" corresponds

to the sample point (61. On the other hand, the event describing the state-

ment "an even number of dots shows" corresponds to the subset 12,4,6)

of the sample space. Note that the term "event" is used interchangeably

to describe the subset or the statement.

We are now ready to make a formal definition of probabil4y. A prob-

ability system consists of the triple:

I. A sample space ^^ of elementary events (outcomes).

2. A class & of events that are subsets of cS. '

3. A probability measure P(-) assigned to each event A in the class

which has the following properties:

(i)P(6) = 
1	

(8.3)

(ii) 0 _- P(A) -_ 1	 (8.4)

(iii)If A + B is the union of two mutually exclusive events in the class

6, then

P(A + B) = P(A) + P(B)	 (8.5)

Properties (j), (ii), and (iii) are known as the axioms of probability. Axiom

(i) states that the probability of the sure event is unity. Axiom (ii) states

that the probability of an event is a nonnegative real number that is less

than or equal to unity. Axiom (iii) states that the probability of the union

of two mutually exclusive events is the sum of the probabilities of the

individual events.

Although the axiomatic approach to probability theory is abstract in

nature, all three axioms have relative-frequency interpretations of their

own. Axiom (ii) corresponds to Eq. 8.1. Axiom (i) corresponds to the

limiting case of Eq. 8.1 when the event A occurs in all the n trials. To

interpret axiom (iii), we note that if event A occurs n, times in n trials

and event B occurs na times, then the union event "A or B" occurs in

nA + n B trials (since A and B can never occur on the same trial). Hence,

nA,B ^ nA + n B , and so we have

nA111	 nA + n,,

n	 n	 n

which has a mathematical form similar to that of axiom (iii).
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ELEMENTARY PROPERTIES OF PROBABILrrY

Axioms (i), (ii), and (iii) constitute an implicit definition of probability.

We may use these axioms to develop some other basic properties of prob-

ability.

PROPERTY 1: fl^) = 1 P(A)	 (8.6)

where 7% (denoting "not A is the complement of event A.

The use of this property helps us investigate the nonoccurrence of an event.

To prove it, we express the sample space 5 as the union of two mutually

exclusive events A and A:

S = A + A

Then, the use of axioms (i) and (iii) yields

I = P(A) + P(q)

from which Eq. 8.6 follows directly

PROPERTY 2

If M mutually exclusive events A,, A 2 ,	 A. have the exhaustive property

A, + A2 + ... + A. = cS	(8.7)

then

P(Aj + P( A2) + --- + P(A^) = 1	 (8.8)

To prove this property, we generalize axiom (iii) by writing

P(A, +	 + ... + Am) = P(A l ) + P(A,) + ... + P(Am)

The use of axiom (i) in Eq. 8.7 yields

P(A, + A, + ... + Am) = I

Hence, the result of Eq. 8.8 follows.

When the M events are equally likely (i.e., they have equal probabili-

ties), then Eq. 8.8 simplifies as

I
P(A,) = — ,
	

i = 1, 2,	 M	 (8.9)
M
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PROPERTY 3

When events A and B are not mutually exclusive, then the probability of the

union event "A or B" equals

P(A + B) = P(A) + P(B) — P(AB)	 (8.10)

where P(AB) is the probability of the joint event "A and B ".

Thq probabi lit y P(AB) is called the joint probability. It has the following

relative-frequency interpretation

1`013) = lim 
^AB

. ( 11 )

where Fi .,,7 denotes the number of times the events A and B occur simul-

taneouslN in n trials of the experiment. Axiom (iii) is a special case of Eq.

8. R %%h'en A and B are mutually exclusive, P(AB) is zero, and Eq. 8. 10

reduces to the same form as Eq. 8.5.

EXERCISE I Consider an experiment in which two coins are thrown.

What is the probability of getting one head and one tail?

EXERCISE 2 Consider an experiment in which two dice are thrown. What

is the probability that the number of dots showing on the upper faces of

the two dice add up to 6?

CONDITIONAL PROBABILITY

Suppose %ke perform an experiment that involves a pair of events A and

B. Let P(B A) denote the probability of event B, given that event 
A has

occurred. The probability P(BIA) is called the conditional probability of

B gii en A. Assuming that A has nonzero probability, the conditional prob-

ability P(B I A) is defined by

P(BIA) ^ 
P(AB)	

(8.11)
P(A )

where P(AB) is the joint probability of A and B.

We justify the definition of conditional probability given in Eq. 8.11 by

presenting a relative-frequency interpretation of it. Suppose that we per-

form an experiment and examine the occurrence of a pair of events A . 
and

B. Let n,s denote the number of times the joint event AB occurs in n
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trials. Suppose that in the same n trials the event A occurs nA times. Since

the joint event A B corresponds to both A and B occurring, it follows that

nA must include n AB . In other words, we have

nA.

nA

The ratio ?'1B/nA represents the relative frequency of B given that A 
has

occurred. For large n, the ratio tIA1111.1 equals the conditional probability

P(BIA). That is,

P(BJA) ^ lim
— (^rn'4

or equivalently,

P(BIA) = lim 
I B

— (rn

Recognizing that

P(AB)	 lim	
q)nN

and

P(A) = lint
_. n

the result of Eq. 8.11 follows.

We may rewrite Eq. 8.11 as

P(AB) = P(BIA)P(A)	 (8.12)

It is apparent that we may also write

P(AB) = P(AIB)P(B)	 (8.13)

Equations 8.12 and 8. 13 state that the joint probability of two events may

be expressed as the product of the conditional probability of one event, given

the other, and the elernentar ' v probability of the other. Note that the con-

ditional probabilities P(BIA) and P(AIB) have essentially the same prop-

erties as the various probabilities previously defined.

Situations may exist where the conclitiona^l probability P(AJB) and the

probabilities P(A) and P(B) are easily determined directly, but the con-

ditional probability P(BIA) is desired. From Eqs- 8.12 and 8.13, it follows
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that, provided P(A) 34 0, we may determine P(BIA) by using the relation

P(AIB)P(B)

	

P(BIA) = -p(A )	 (8.14)

This relation is a special form of Bayes' rule.

Suppose that the conditional probability P(BIA) is simply equal to the

elementary probability of occurrence of event 8, that is,

	

P(BIA) = P(B)	 (8.15)

Under this condition, the probability of occurrence of the joint event AB

is equal to the product of the elementary probabilities of the events A

and B:

P(AB) = P(A)P(B)

so that

P(AIB) = P(A)

That is, the conditional probability of the event A, assuming the occurrence

of the event B, is simply equal to the elementary probability of the event

A. We thus see that in this case a knowledge of the occurrence of one

event tells us no more about the probability of occurrence of the other

event than we knew without that knowledge. Events A and B that satisfy

this condition are said to be statistically independent.

.........................................................................................................................

EXAMPLE I BINARY SYMMETRIC 
CHANNEL

Consider a discrete memoryless channel 
used to transmit binary data. The

channel is said to be discrete in that it is designed to handle discrete mes-

sages. it is memoryless in the sense that the channel output at any time
to the unavoidabledepends only on the channel input at that time. Owing

presence of noise in the channel, errors 
are made in the received binary

data stream. Specifically, when symbol I is sent, occasionally an error is

made and symbol 0 is received, and vice versa. The channel is assumed to

be symmetric, which means that the probability of receiving symbol I when

symbol 0 is sent is the same as the probability of re-.eiving symbol 
0 when

symbol I is sent.
ature of this channel fully, we need two

To describe the probabilistic n

sets of probabilities:

1. The a priori probabilities of sending binary symbols 
0 and 1: They are

(8.16)P(Au) ^ po
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and

P(A p, (8.17)

where A 0 and A I denote the events of transmitting symbols 0 and 1,

respectively. Note that p (, -+^ P,

2. The conditional probabilities of error: They are

P(13 1 1A,^) = P(BoIA,) = p	 (8.18)

where B0 and B, denote the events of receiving symbols 0 and 1, re-

spectively. The conditional probabilit y P(B j jA,,) is the probabilit^ of

receiving symbol 1, given that symbol 0 is sent. The second conditional

probability P(B O IA,) is the probability of receiving symbol 0, given that

symbol I is sent.

The requirement is to determine the a posteriori probabilities P(A,! B,,)
and P(A I JB I ). The conditional probabilit y P(A^JB,,) is the probability that

symbol 0 was sent, given that symbol 0 is received. The second conditional

probability P(A I Bj is the probability that symbol I was sent, given that

symbol I is received. Both these conditional probabilities refer to events

that are observed "after the fact"; hence, the name "a posteriori" prob-

abilities,

Since the events B,, and B, are mutuall y exclusive. and the probability

of receiving symbol 0 or symbol I is unity'. we have from axiom (iii):

P(BoIA,,) + P(B I JAJ = I

That is to say,

P(BojAo) = I — p	 (8.19)

Similarly, we may write

P(B, I A,) = I — p	 (8.20)

Accordingly, we may use the transition probability diagram shown in Fig.
8.2 to represent the binary communication channel specified in this ex-

-p
A,	 B,

P

p

A,	 p	 00	 B,

1—p

Figure 8.2

Transition probability diagram of binary symmetric channel.
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ample^ the term "transition probability" refers to the conditional proba-

bility of error. Figure 8.2 clearly depicts the (assumed) symmetric nature

of the channek hcncc, the name "binary symmetric channel."

From Fig. 8.2, we deduce the following results:

1. The probabilit y of rcceMng symbol () is given by

P(BJ	 P(B,,j/AJP(A,,) + P(B,,jAj)P(Aj)

(8.21)
( I — Op " + pl?,

2. The probability of rccei%ing symbol I is given by

P(B j ) ^ P(Bj^,A,,)P(A.) + P(B,^AI)P(Al)

(8.22)
^ PP 1 1 +	 Op,

Therefore, applying Bayes * rule. we obtain

P(B,,^ A,)P(AJ

P(B,

U — P)P,^
(8.23)

P)P^ , + PP,

P(B I IA,)P(A I
P(A, B,)

P(BJ

P)P, (8.24)

PP +	 P)P,

These are the desired results.

..........................................................................................................................

EXERCISE 3 Continuing with Example 1, find the following conditional

probabilities: P(A,^B j ) and P(Al1k).

EXERCISE 4 Consider a binary symmetric channel for which the condi-

tional probability of error p = 10 ', and symbols 0 and I occur with equal

probabilit y . Calculate the following probabilities:

(a) The probability of receiving symbol 0.

(b) The probability of receiving symbol I -

(c) The probability that symbol 0 was sent, given that symbol 0 
is re-

ceived.

(d) The probability that symbol I was sent, given that symbol 0 is

received.
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........................................................................................................................

EXAMPLE 2 CHAIN OF PCM REGENERATIVE REPEATERS

In Section 5.6 we described the use of regenerative repeaters in a pulse-

code modulation (PCNI) system as a means of combatting the effects of

channel noise. Specifically, the function of a regenerative repeater is two-

fold: (1) to detect the presence of symbol 0 or I before the pulses repre-

senting these symbols become too weak and therefore lost in channel noise,

and (2) to retransmit new clean pulses (representing the sN mbols detected)

on to the next regenerative repeater. Consider a binary PCM system that

uses a chain of (k — 1) regenerative repeaters, followed b y one last re-

generation at the receiver input, as illustrated in Fig. 8.3. Given that the

average probability of error incurred in each regeneration process is P_

we wish to calculate the average probability of error P, for the entire

system.

The system may be viewed as the casc.ade connection of k identical links.

with each link responsible for an average probability of error P, A binary

symbol I or 0 sent over such a system is detected correctly at the receiver

if either the svmbol in question is detected correctly over each link in the

system or it experiences errors over an even number of links. We mav thus

express the probabilit y of correct reception Pc at the receiver output as

P1 = 1 - PE
= P(correct detection over all links in the system)

• P(error over any two links in the system)

• P(error over any four links in the system)

• P(error over I links in the system)	 (8.25)

where, in the last term, we have

f

k, if k is even

k — 1, if k is odd

Given that the probability of error over each link is P_ we may write

P(correct detection over all links in the system) = (1 — P,)*

	P(error over any j links in the system) = .	
k !	

P110 — P')1_1
j! (k — j)!

	Link 2	 Link k

I	 RegenerativeRegenerative Rege;Fa^bv8
a' 
te,e,

repeater	 re at
	 ...	 repeater

k2

Figure 8.3
Chain of PCM regenerative repeaters.
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Using these results in Eq. 8.25, we get

k!	
P,

	

Pi 
(I	 )k-i	 (8.26)I — P,	 p), +	

j)!j! (k

In practice, we usually find that P, is very small compared to unity, so that

we may make the following two approximations:

1. We may approximate the first term in Eq. 8.26 as

k (k — 1)
(I — p,)k	 'k P,	 p 2+	 (8.27)

2

2. We may approximate the second term in Eq. U6 by retaining only that

	

term in the summation that corresponds to j	 2, and also writing

( I — PX -, ^ I.

Accordingly, we may approximate Eq. 8.26 as:

I	 PE	 kP, + k(k — 1) P,1

or equivalently

PE kP, — k(k — I)P 2,	 (8.28)

If the number of links k in the system is such that kP, is small compared

to unity, we may further approximate Eq. 8.28 as

P, = kP,	 (8.29)

That is, the average probability of error in the entire PCM system of Fig.

8.3 is equal to the average probability of error in a single link of the system

times the total number of links in the system.

............ I .....................................................................................................

............ 8.2 RANDOM VARiABLES

In conducting an experiment it is convenient to assign a variable to the

experiment whose outcome determines the value of the variable. We do

so because we may have no a priori knowledge of the outcome of the

experiment other than it may take on a value within a certain range. A

function whose domain is a sample space and whose range is some set of

real numbers is called a random variable of the experiment.' Thus when the

'The - term "random variable" is somewhat confusing: First, because the word
"random" is not used in the sense of equal probability of occurrence, for
which it should be reserved. Second, the word "variable" does not imply

dependence on the experimental outcome, which is an essential part of the

meaning. Nevertheless, the term is so deeply imbedded in the literature of

probability that its usage has persisted.
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outcome of the experiment is s. the random variable is denoted as X(s)

or simply X_ For example, the sample space representing the outcomes of

the throw of a die is a set of six sample points that may be taken to be th6

integers 1, 2, . . . , 6. Then if we identify the sample point k with the even'

that k dots show when the die is thrown, the function X(k) = k is a random

variable such that X(k) equals the number of dot., that show A hen the die

is thrown. In this example. the random 
v
ariable akes on only a discrete

set of values, In such 
a 

case we say that we are dealing with a discrete

random i ariable. More precisely, the randoin variable X is a discrete ran-

doin variable if X can take on onli , a finite nuniber of values 
in 

an ' ^ finite

observation interval. If, however, the random variable X can take 
on 

any

value in a finite observation interval. X is called a continuous randorn vari-

able. For example, the random variable that represents the amplitude of

a noise %olta2e at a particular instant of time is a continuous random

variable because, in theorN, it may take on an% %alue between plus and

minus infinit^.

To proceed further. we need a probabilistic description of random vari-

ables that works equallN %%ell for both discrete and continuous random

variables. Let us consider the random variable X and the probability of

the event X -_ x, when x is given. We denote the probabilit) of this event

by P(X -_ x). It is apparent that this probabilit^ is a function of the dunirn,v

variable x. To simplif^ our notation. we write.

F,(x) = P(X -- x)	 (8.30)

The function F k (x) is called the cumulative distribution function or simply

the distribution function of the random variable X. Note that F,k (x) is a

function of x. not of the random \ariable X. Hovc\er, it depends on the

assignment of the random variable X, which accounts for the use of X as

subscript. For any point x, the distribution function F .X (.v) expresses a

probabilitv.

The distribution function FA (x) has the foilo\%ing properties. which fol-

low directiv from Eq. 8.30:

1. The distribu' tion function FA (x) is bounded bet%%cen zero and on^.

2. The distribution function Fx(x) is a monotone nonclecreasing function

of x; that is,

FA(x,) ^ F,(x,),	 it''I I < V,	 (8.31)

An altcrnati\e description of the probability distribution of the random

variable X is often useful. This is the derivative of the distribution function,

as shown by

fA(x) = 
d 

F. (x)	 (8.32)

dx



EXAMPLE 3 UNIFORM DisrRiBUrION

Consider a random variable X defined by (assuming b > a)

1

fx(x) = b — a

10,

a ^— x -- b

elsewhere
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which is called the probability density function. Note that the differenti-

ation in Eq. 8.32 is with respect to the dummy variable x. The name,

density function, arises from the fact that the probability of the event

x, < X ^ x 2 equals

P (X I < X _— X2) = P (X ^— X ') — P (X —_ XJ

= FX(X2) - FAXI)

= f^" : f x(x) dx
	

(8.33)

Since Fx(x) = 1, corresponding to the probability of the certain event,

and Fx( — oc) = 0, corresponding to the probability of the impossible event,

it follows immediately from Eq. 8.33 that

L
fx(x) dx =
	

(8.34)

Also, as mentioned earlier, a distribution function must alwa ys be mono-

tone nondecreasing. Hence, its derivative, the probability density function,

must always be nonnegative. A probability density function must alwa ' vs be

a nonnegative function with the total area tinder its curve equal to one.

.........................

(8.35)

This function, shoAn in Fig. 8.4a, satisfies the requirements of a probability

density because f, (x) -_ 0, and the area under the curve is unity. A random

variable having the probability density function of Eq. 8.35 is said to be

uniformly distributed.

The corresponding distribution function of the uniformly distributed

random variable X is continuous everywhere, as shown by

0,	 x < a

x — 
a,	

a ^— x _- b
b — a

1,	 x > b

This distribution function is plotted in Fig. 8.4h.

(8.36)
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(X)

b — a

X
0	 a	 b

(a)

Fx W

1.0

X

0	 b

(b)

Figure 8.4

The uniform distribution. (a) Probability density function. (b) Distribution function.

............................................................................................................................

SEVERAL RANDOM VARIABLES

Thus far we have focused attention on situations involving a single random

variable. However, we find frequently that the outcome of an experiment

requires several random variables to describe the experiment. In the sequel

we consider situations involving two random variables. The probabilistic

description developed in this way may be readily extended to any number

of random variables.

Consider two random variables X and Y. We define the joint distribution

function Fx . y(x, y) as the probability that the random variable X is less than

or equal to a specified value x and that the random variable Y is less than

or equal to a , specified value y. The variables X and Y may be two'distinct

one-dimensional random variables or the components of a single two-

dimensional random variable. The joint distribution function Fx . y(x, y) is

the probability that the outcome of an experiment will result in a sample

point lying inside the quadrant < X 15^ X, < Y -- y) of the joint-

sample space. That is,

Fx , y(x, y) = P(X X, Y '— Y)	 (8.37)

Suppose that the joint distribution function Fx . y(x, y) is continuous
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everywhere, and that the partial derivative

Y) = 
d'Fx , y(x, y)	

(8.38)
dX dy

exists and is continuous everywhere. We call the function f .k- , y(x, y) the

joint probabilit) , densiry fu nction of the random variables X and Y. The

joint distribution function Fx , y(x, y) is a monotone nonclecreasing function

of both x and y. Therefore, from Eq. 8.38 it follows that the joint prob-

ability clensity function f, y(x, y) is always nonnegative. Also, the total

volume under the graph of a joint probability density function must be

unity, as shown by

LL 
fx . y(^, q) &-' dq = 1	 (8.39)

The probabilit y density function for a single random variable (X, say)

can be obtained from its joint probability density function Aith a second

random variable ( Y, say) in the following way. We first note that

F,( ,, ) =	 f f.,,Y(,- , 1) d l̂  dq	 (8.40)

Therefore, differentiating both sides of Eq. 8.40 with respect to x, we get

the desired relation:

f"(x ) = f f ,%, , y(x, q) dq	 (8.41)

Thus the probability density function fx(x) may be obtained from the joint

probability density function fx . y(x, y) by simply integrating over all pos-

sible values of the undesired random variable, Y. The use of similar ar-

guments in the context of the other random variable Y yields f, (y). The

probability density functions fx(x) and f,( v) are called marginal densities.

Hence, the joint probability density function fx . ,(x, y) contains all the

possible information about the joint random variables X and Y.

Suppose that X and Y are two continuous random variables with joint

probability density function fx . y(x, y). The conditional probability density

function of Y given that X = x is defined by

f y ( y l x = X ) = 
f X" ( X , Y)	

(8.42)
f V(X)

provided that fx(x) > 0, where fx(x) is the marginal density of X. The



function fy(YIX 
= x) may be thought of as a function of the variable 

y,

with the variable x arbitrary, but fixed. Accordingly, it satisfies all the

requirements of an ordinary probability density function, as shown 
by

f y ( y lx = X ) -- 0	
(8.43)

and

f-' 

f i,(y^X = x) dy = 1	
(8.44)

If the random variables X and Y 
are statisticallY independent, then knowl-

edge of the outcome of X can in no way affect the distribution of 
1'. The

result is that the condition probabilitv density function f,()' X ^ X)

reduces to the marginal density 
f y( y), as shown by

f, ( Y^ x = X ) = f, 01

In such a case, we may
 express the joint probability density . function of

the random variables X and Y as the product of their respecti\e marginal

densities, as shown by

f . ,(X, Y)	 f X(x ) f Y)	
(8.45)

This relation holds only when the random variables X and Yare statisticallY

independent.

STA17S77CAL AVERAGES 	
arnifications, we now seek

Having discussed probability and some 
of its r

ways for determining the average behavior of the outcomes arising in ran-

dom experiments.	
. ble X is commonly defined

The mean or expected value 
of a random varia

by

rnx = E[XJ = 
f '.' 

x f x (x) dx	
(8.46)

where* E denotes the expectation operator. 
That is, the mean m, IPcates

the center of gravity of the area under the probability density curve 
of the

random variable X. Similarly, the mean of a function of X, denoted 
by

g(X), is defined 
by

E[g(X	
g(x)fx(x) dx	

(8.47)
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For the special case of g(X) = X' we obtain the nth moment of the
probability distribution of the random variable X; that is,

E[X 11 J = 
f. 

x'f x (x) dx	 (8.48)

By far the most important moments of X are the first two moments. Thus
putting n = I in Eq. 8.48 gives the mean of the random variable as discussed
herein, whereas putting n = 2 gives the mean-square value of X:

E[X2]	 X2fX(X) dX	
(8.49)

We may also define central moments, which are simply the moments of
the difference between a random variable X and its mean mx. Thus the
nth central moment is

E[(X — mx) , j = 
f. 

(x — mx)"fx(x) dx	 (8.50)

For n = 1, the central moment is, of course, zero, whereas for n = 2 the
second central moment is referred to as the variance of the random variable:

Var[Xj = E[(X — M, )21 

= f--. 
( x - mx)2f.,(x ) dx	 (8.51)

The variance of a random variable X is commonly denoted as a^. The
square root of the variance, namely. ux, is called the standard dextiation
of the random variable X.

The variance U2 of a random variable X is in some sense a measure ofX
the variable's "dispersion." By specifying the variance 

UX2 , we essentially
constrain the effective width of the probability density function f.x(x) ofthe ran 

i 
dom variable X about the mean "'A - A precise statement of this

constraint was developed by Chebyshev. The Chebyshev inequalitl̂  states
that for any positive number e, we have

P(IX — M,j	 6i (8.52)

From this inequality we see that the mean and variance of a random variable

give a partial description of its probability distribution.

The expectation operator is linear in that the expectation of the slim of
two random variables is equal to the sum of their individual expectations.



lience. expanding Elf X n? , ) 2 1 and 111C iincarit ,̂  of 
tile 

expectation

operator, NNe find that I tie variance r '^ and the nicim-NqUiii
- e ^ it I uc E[ A:

are related b^

A	 ' IE[ A	 A'

El A" i	 tit , El XI	 ln^
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of the probabifit \ distril' t-111011 of 
tile randoill ^,iriahk^ X. %%hich 

is 
Jetillc^i

its the expectation of	 V). its ho%%ri t,\

(^,(v) = Eje\p(juA")j

	

J

(.v ) cxp( 1 t I ) 'b	
(8 5 4

" here u is real. ill othcr %\ ord s , the haracte r Nic functioll :, , ( L ) 11 ( C\CcPt

for it sii,,n change in ti l e c\ponent) the FOLIFIel' trallstOFT11 Of the proh^ibiht\

n
densit\-function f \ ( x ). In this relation — 11 - t\e u"cd c\ N It	

lathe. tha

exp( - 
I 
jt v )^ so is to conform \%ith the con% Ltntion Lidoptcd in prollLib illt N

theorv. RceoLnizin g that 
l. and x pla\ anal--Ous roics 

to the \Ltriable,

in\er,.;e
Lind i of Fourier transform s . respecti\e 

I \ , \%e deduCe tile k l llkM IT11-

relation frorn anido p \Nith the imerse Fourier 
tran't'OFT11:

21,r	
(u) C \P ( — it, V) (it'

Thisrelation niavbe used toevaluatc the probabilitN dcn^ it ^ lUllctiolif 'W

of the random variable X from its characteristic function 
o0u)

EXERCISE s' Given the Chebyshev inequality of 
Eq. 8- 5 2- ^khat is the

probability P(jX - 171 ,1 < 0"

.............................................................................................................

EXAMPLE 4 UNIFORM DISTRIBUTION (CONTINUED)

Consider again the uniformlV distributed random Nariabic X, d eNcl - bcd in

Example 3. We Aish to cNaluate the nican and %ariance ot X
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Ile probability density function of the random variable X is given in
Eq. 8.35. Therefore, substituting Eq. 8.35 in Eq. 8.46, we get the mean
of X as

MX = fb 
X dxa

b 2	 a2

2(b	 a)

I 
(b + a)

2

Thus the mean of a uniformly distributed random variable is the arithmetic

mean of its limits a and b, which is intuitively satisfying. The mean-square
value of the random variable X is obtained by substituting Eq. 8.35 in 8.49;
we thus get

E(X^j =	
b 
x d,

	

b 3	 a 3

	

3(b	 a)

I 

(b I + ab + a')	 (8.57)
3

Hence, the use of Eq. 8.53 yields the variance of the random variable X
as

or X1	 — (b I + ab + a2)	 — (b + a )2
3	 4

	

(b — a) 1	 (8.58)
12

As an application of these results, we may consider the quantizing error

in pulse-code modulation. Assuming that the quantizing error is uniformly

distributed inside the interval (—iJ, 0), we find from Eq. 8.56 that it
has zero mean. Moreover, from Eqs. 8.57 and 8.58, we find that the mean-
square value and The variance of the quantizing error are both equal to

J'/12. These results are the same as those we used in discussing quantizing

error in Section 5.4.

..........................................................................................................................

(8.56)
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EXAMPLE 5 SUM OF INDEPENDENT RANDOM VARIABLES

As an application of the characteristic function, consider the problem of

evaluating the probability density function of a random variable Z defined

as the sum of two statistically independent random variables X and Y, that

is , Z	 X + Y. The characteristic function of Z is

(pz(u) ^ E[exp(ju(X + YM

	

= E[exp(juX) - exp(juY)l	 (8.59)

as
Since X and Y are statistically independent, we may express Oz(u

(pz(t,, )	 E[exp(iuX)1 E[exp(ivY)1
(8.60)

By analogy with the result in Fourier analysis, that the comolution of two

functions of time corresponds to the multiplication of their Fourier trans-

forms. we dee.uce that the probability densitN function of the random

variable Z = X — Y is viven bN the convolution of the probability densit"

functions of X and Y, as shown by

f k.(z	 d,7f z (z) =

	

	 (9.61)

f

............................................................................. ............................................

JOINT MOMENTS

Consider next a pair of random variables X and Y. A 
set of statistical

averages of importance in this case are the joint moments, 
namely, the

expected value of X'Y'. where j and k 
may assume any positive integer

values. We may thus write

EJX'Y'1 = 
Y. f' 

x,y l fx -(x, y) dx dY	
(8.62)

A joint moment of particular importance is the 
correlation defined by

EIXY], which corresponds to j = k = I in Eq. 8.62.

The correlation of the two centered random variables X — EJX1 
and

Y — El Y1, that is, the joint moment

Cov[XY] = E[(X — E[X1)( Y — El Y]))	
(8.63)

iscalled thecovarianceofXand Y. Lettingmx = 
EIXI andrn, = E[Y],
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we may expand Eq. 8.63 to obtain

Cov[XY] = E[XY] — mxm,	 (8.64)

Let a' and a 2 denote the variances of X and Y, respectively. Then the
x	 ycovariance of X and Y normalized with respect to uxor y is called the cor-

relation coefficient of X and Y:

	

Px y
 = COVIXY]	

(8.65)
UXUY

We sav that the two random variables X and Y are uncorrelated if and
only if their covariance is zero, that is, if and only if

Cov[X y j = 0

We say that they are orthogonal if and only if their correlation is zero, that
is, if and only if

E[XY] = 0

From Eq. 8.64 we observe that if one or both of the random variables X
and Y have zero means, and if they are orthogonal random variables, then
they are uncorrelated, and vice versa. Note also that if X and Y are sta-
tistically independent, then they are uncorrelated. However, the converse
of this statement is not necessarily true, as illustrated by the following
example.

.............................................................................................................

EXAMPLE 6

Let Z be a uniformly distributed random variable, defined by

z2

	

fZ(z)	 0,	 otherwise

	

Let the random variable X	 Z and the random variable Y	 Z2. It is
apparent that X and Y are not statistically independent because Y X2.
We wish to show. however, that X and Y are uncorrelated.

Since X	 Z, ' the mean of X is

I
E[X] = EIZI	 — z dz	 0

2



Also, since Y Z1, Ile mean of Y is 
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E[YJ	
E[Z21	 - z'dz

2	 3

The covariance of X and Y is therefore

Cov[XY) = E[X(Y -

= E[XYJ - JEJXJ

EJXYJ

E Z31

fil
- z' dz
2

0

Hence, the random variables X and Y are uncorrelated despite the fact

that they are statistically dependent.

.........................................................................................................................

................. 8.3 GAUSSIAN DISTRIBUTION

The Gaussian randonz variable' is by far the most widely encountered

random variable in the statistical analysis of communication systems. A

Gaussian random variable X of mean rn )v and variance ax' has the prob-

ability density function:

I	 I	 -	 (8.66)

	

fx(x ) =	 exp	
2 

(x - -x

V-2)TGX	 1- 2 x

The fact that Eq. 8.66 is a probability density function is easily shown.

	

First, note that fx(,r)	 0. Second, form the integral

	

f 
f Ax ) dx	 exp	

(X - n,)2 dx (8.67)

V2^ax L I- 2u 2x	 1

'The Gaussian distribution is named after the great mathematician C. G. Gauss.

At age 18, Gauss invented the method of least squares for finding the best

e stimate - of a quantity based on a sequence of measurements. Gauss later
used the, method of least squares in estimating orbits of planets with noisy
measurements, a procedure that was published in 1809 in his book Theory of

Motion of the Heavenly Bodies. In connection with the error of observation, he

developed the Gaussian distribution. This distri bution is also known as the

normal distribution. Partly for historical reasons, mathematicians commonly use
normal, whereas engineers and physicists commonly use Gaussian.
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We now make the change of variable t = (x - rnx)/V2;Tarx, so Eq. 8.67

becomes

f x(x) dx	
L 

exp( - ir t) dt = 1	 (8.68)

For the last step in Eq. 8.68, see Exercise 6 of Chapter 2.

The distribution function of a Gaussian random variable X of mean rnx

and variance a X2 is defined by

Fx(x) =	
I	

exp	
I 

G̀  - -X) 2 dl;	 (8.69)
V-2na, L I 2c'x	 1

Unfortunately, this distribution function is not expressible in terms of

elementary functions. Nevertheless, it may be evaluated for a specified

value of x by making use of tables of the error function,' which is defined
as	

I

erf(u) = 
2	

exp( - Z2 ) dz	 (8.70)
^^; f."

Note that erf(0) = 0 and erf(-) = 1. In Table 6 of Appendix D. we present

a short set of values for the error function erf(u) for u in the range 0 to

3.3.

By using the symmetry of fx(x) and by a simple change of variables,

we may express the distribution function of Eq. 8.69 in terms of the error

function as follows:

I	 X	
(8.71)F, (x) = - I + erf	

N]2 [	 ( r2c,

The functions f x(x) and Fx(x) are plotted in Fig. 8.5 for the standardized

case when the mean mx is 0 and the variance a-x' is 1. Note that (1) the

probability density function is symmetric about the mean, (2) values of x

near the mean are most frequently encountered, and (3) the width of the

probability density curve is proportional to the standard deviation orx.

'The error function is tabulated extensively in several references; see, for
example, Abramowitz and Stegun 0965).
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Figure 8.5
Probability functions of a normalized Gaussian random variable of zero mean and

unit variance. (a) Probability density function, (b) Distribution function.

.........................................................................................................................

EXAMPLE 7

Suppose Ae Aish to determine the probabilil\ tjj^jt tbe Oau^sian random

variable X lies in the interxal In, -- ko- , ^, A: k(7,. ^khere k is a

constant. In terms of the PrObabilit\ LlCnsil^ function of A' . \NC M^ Use

to express this prohabilit% asthe second line of Eq. 8.33 and Eq. 8.71

P(mx	 ka^^ < X nix + k(jx) — F, (m	 c ,

k	 k
erf	 erf

V2 )	 2

Noting that the error function erf(u) has the propert^ that

erf( — u)	 crt(u
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we get the desired result

k
erf	 (8 72)

	

P(m,	 kr, - k ^- p n,	 kr,
2

	

For e\anlple. tor k	 3. ^ke find that

	

PI m	 in , — 3(T,	 0.997

That is, the proh,thilit% thata Gau—ian raridom % ariable X lies ^%ithin --."r"

f its nican in , i^ ^er\ clo,e to oric.

.........................................................................................................................

EXERCISE 6 The complimentary errorfanction is defined by

erfc(u) = 
2 —
	 exp( — z) dz

V7t f.,

It is related to the error function erf(u) as

erfc(u) = 1 — erf(u)

Show that for a specified value of u, the complementary error function

erfc(u) equals twice the area under the tail of the curve of the probability

density function of a Gaussian random variable whose mean is zero and

variance is 1/2.

EXERCISE 7 A random variable X is Gaussian distributed with mean

MX = 5 and variance a2 = 64. What is the probability of the eventX
— 3 < X -- 13?

CENTRAL LIMIT THEOREM

An important result in probability theory that is closely related to the

Gau^sian distribution is the central hinit Meorem.' Let X 1 . X:, - - ^ X^

be a set of random variables that satisfies the folloAing requirements:

1. The X, with k ^ 1, 2. . . . ^ it, are statistically independent.

2. The X, all haNe the same probability density function.

3. Both the mean and variance exist for each X1.

lur a proof of the central limit theorem, see the references listed in footnote I
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Define a new random variable Y as

y = i Xk	 (8.73)
k-1

Then, according to the central limit theorem, the standardized random

variable:

	

Z = 
Y — E[Y]	

(8.74)
Gy

approaches a Gaussian random variable with zero mean and unit variance

as the number of the random variables X, X2, - . . , X, increases without

limit. Note that from the definitions of expectation and variance of a ran-

dom variable, we may relate the mean and variance of Y to the corre-

sponding moments of the Xk as follows:

E[Y]	 E[X^j	 (8.75)

and

Var[Y] = i Var[Xk ]	 (8.76)

k^l

It is important to realize that the central limit theorem gives only the

"limiting" form of the distribution function of the standardized sum Z as

n tends to infinity. When n is finite. it is sometimes found that the Gaussian

limit gives a relatively poor approximation for the actual distribution func-

tion of Z, even though n may be large. The accuracy of this approximation

depends on the nature of the distribution of the Xk.

.......................................................................................................................

EXAMPLE a SUM OF n UNIFORMLY DISTRIBUTED RANDOM VARIABLES

Consider the random variable

y	 X,
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fxh(xk) I

a

	

a	 0	 a

	

2	 2

Figure 8.6
Uniform distribution.

where the Xk are uniformly distributed random variables defined by (see

Fig. 8.6)

	

a	 a

— ^' Xk —

	

fXjX k)	 2	 2	 (8.77)

	

0.	 elsewhere

From Example 4. we find that the mean and variance of the X, are given

bv

	

A,	 0

a -

	

k.	 (8.78)

Therefore, according to the central limit theorem, we may use a Gaussian

random variable of zero mean and variance na 2 /12 to approximate the sum

of n independent and identicall y distributed (iid) random variables. assuming

a uniform distribution and large n.

...................................... I ........................................... I ........................................

8.4 TRANSFORMATION OF RANDOM VARIABLES

Consider the problem of determining the probability density function of a

random variable Y, which is ohtained by a one-to-one transformation of

a given random variable X. The simplest possible case is when the new

random variable Y is a monotone increasing differentiable function g of

the random variable X (see Fig. 8.7):

y = g(X)

In this case we have

Fy(y) = P(Y y)

= P(X /?(Y))

	

= Fx (h (y))	 (8.79)
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Figure 8.7
A one-to-one transformation of a random variable X.

where h is the inverse transformation

h(y) = g -1 (y)	 (8.80)

This inverse transformation exists for all y, because x and y are related
one-to-one. Assuming that the given random variable X has a probability
density function fx(x), we may write

Fy(y) =	
0 

fx(x) dx

Differentiating both sides of this relation with respect to the variable y,
we get

fy(y) = fx(h(y)) 
dh	

(8-81)
dy

Consider next the case when g is a differentiable monotone decreasing
function with an inverse h. We may then write

Fy(y) = E. fx(x) dx

which, on differentiation, yields

fy(y) = —fx(h(y)) 
dh	

(8.82)
dY

Since the derivative dilldly is negative in Eq. 8.82, whereas it is positi%e



X
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in Eq. 8.81, we may express both results by the single formula

f,(y) = f.(h(y)) 
Idl	

(8.83)
dy

This is the desired formula for finding the probability density function of
a one-to-one differentiable function of a given random variable.

...........................................................................................

EXAMPLE 9 SQUARE-LAWTRANSFORMA77ON

Consider a Gaussian random variable X of zero mean and variance (7

which is transformed by a square-law device defined by

y = X2 (8.84)

as illustrated in Fig. 8.8. We wish to find the probability density function
of the new random variable Y.

First, we see from Fig. 8.8 that Y can never be negative. Therefore,

P(Y -_ Y) = 0,	 y < 0

and so

Fy(y) = 0,	 y < 0

Furthermore, we note that the inverse transformation is not single-valued,
as shown by

x = h(y) = ± Vy—	 (8.85)

Figure 8.8
Square-law transformation.
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Consequently, both positive and negative values of x contribute to y. Sup-

pose that we are interested in the probability that Y _- y, where y _- 0.

We may then write

P(Y _- Y ) = P(- %/Y- _- x _- %^Y)

= P(X -_ "'Y) - P (x ^ - VY-)

V
'Y f., (x ) dxf f , (x ) dx

Differentiating both sides of this relation with respect to y, we obtain

fy( y ) = S7y= [fx(%Iy) +

Noting that

fx(x) =	
I	 exp	

x2V_2n,x	 ^Z

we obtain

MY) =

	

	 exp	
Y	 Y _- 0

72Ty , x ( — 2 a X2

0.1

Y
—2	 0	 2	 4	 6

Figure 8.9
lawProbability density function of random variable Y at the output of a square-

device with a Gaussian random variable as input. I
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We thus find that the complete probability density function of the trans-

formed random variable Y is given by

exp(_	 0
(8.86)

fy(y)	 27r y (TV

y < 0^0,

hich is plotted in Fig. 8.9. The probability density function of 
Eq. 8.86

function of
is called a chi-squared density functio

n when it is written as a

the variable ;e'

..........................................................................................................................

............ 8.5 RANDOM PROCESSES

A basic concern in the statistical analvsiS 
of communication s^stems is the

characterization of random signals such as voice signals, television signals,

digital computer data, and electrical noise. These random signals have two

properties. First, the signals are functions of time, defined on some ob-

ser,.ation inter
v al. Second, the sipnals are random in the sense that before

conductin p an experiment, it is not possible to describe exactl
y
 the wave-

forms that will be observed. Accordingly. in describing random signals we

find that each sample point in our sample space is a function of time. For

example, in stud^inv
the fluctuations in the output of a transistor, we may

nitely large number of identical
assume the simultaneous testing of an indefi 	 asured
transistors as a conceptual model of our problem. The output (me

as a function of time) of a particular transistor in the collection is then one

sample point in our sample space. The sample space ensemble comprised

of functions of time is called a random or stochastic' process. 
As an integral

part of this notion. we assume the existence of a probability distribution

defined over an appropriate class of sets in the sample space, so that we

may speak with confidence of the probability of various events. 
We may

thus define a randorn process as an ensemble of time functions together with

a probability rule that assigns a probability to anY meaningful event asso-

ciated with an observation of one of these functions.

Consider a random process X(t) represented by 
the set of sample func-

tions (x,(t)j, i = 1. 2, . . . , n, as illustrated in Fig. 
8. 10. Sample function

or waveform x j (t), with probability of occurrence 
P(S I ), Corresponds to

sample point s, of the sample space S, 
and so on for the other sample

functions x,, (t), -	 x,(t). 
Now suppose we observe the set of waveforms

^xjt)), j = 1, 2, , n. simultaneously at some time instant, t 
= t, as

shown in the figure. Since each sample point s, of the sample space 
S has

associated with it a number x,(t,) and a probability P(s
) ), we find that the

6The word "stochastic" comes from Greek for "to aim (guess) at".



RANDOM PROCESSF-s 435

Figure 8.10

An ensemble of sample functions.

on,	 Oulcom. of

-per—ent

Outcome of

outc^ of

nth

exp—ment

resulting collection of numbers lx,(t,)I, i = 1, 2, . . . , n, forms a random

variable. We denote this random variable by X(t j ). By observing the given

set of waveforms simultaneously at a second time instant. say t- we obtain

a different collection of numbers, hence a different random variable X(t').

Indeed, the set of waveforms fx,(t)l defines a different random variable

for each choice of observation instant. The difference between a random

variable and a random process is that for a random variable the outcome

of an experiment is mapped into a number, whereas for a random process

the outcome is mapped into a waveform that is a function of time.

RANDOM VECTORS OBTAINED FROM RANDOM PROCESSES

By definition, a random process X(t) implies the existence of an infinite

number of random variables, one for each value of time t in the range

— oo < t < oc. Thus we may speak of the distribution function Fy,, ) (x,) of

the random variable X(t,) obtained by observing the random process X(t)

at time tj . In general, for k time instants t i , [2, . . . , t. we define the k
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random variables X(t,), X(t,,),	 X(ij. respectively. We may then

define the joint event

X(11) ^, X, X(t,) ^ X, .... X(14) ^ X,

The probability of this joint event defines the joint distribution function:

A(,,I(X I, X 2 ..... Xk)
= p(X( tl ) ^ X1. X(I,)	 . . . . X(tj ^ x^) (8.87)

For convenience of ,iotation, vve write thisjoint distribution function sinlp^v

as Fx. ,, ) (x) where the randonz vector X(I) equals

X( t,

X(t) = 
X( t -)

X( 01

and the dummy vector x equals

X,

X^X,J
For a particular sample point s, the components of the random vector

X(t) represent the ^alues of the sample function x,(t) obserxed at times

t i , t:, . . . , t, Note also that the joint distribution function Fx,,,(X) depends

on the random process X(t) and the set of times (1,1. i = 1, 2. - - - , k

The joint probability density function of the random %ector X(I) equals

fx([)( Y ) ^ 
dx I dx, 

d

. - . 
dx^ FXIII(X)	

(8.88)

This function is always nonnegative. with a total volume underneath its

cur
v
e in k-dimensional space that is equal to one.

..........................................................................................................................

EXAMPLE 10

Consider the probability of obtaining a sample function or waveform x(t)

of the random process X(t) that passes through a set of k "winclow's," as
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b,

b3

a 3 	 ,A poss,ble

—ple

funcl,on

Lit

b,

Figure 8.11

The probability of a joint event.

illustrated in Fig. 8. 11 for the case of k = 3. That is, we wish to find the

probability of the joint event

A = Ja, < X(tJ _- b,),	 i = 1, 2,	 k

Given the joint probability density function fx,,,(x), this probability equals

f^b^, f^l: ... f^b,

P(A)	 fx,,)(x) dx, dx,	 dx,

......................................................................................................................

.............. 8.6 STATIONARITY

Consider a set of times t i , t .. . . . . tk in the interval in which a random

process X(t) is defined. A complete characterization of the random process

X(t) enables us to specify the joint probability density function f^^,(x).

The random process X(t) is said to be strictl ' i stationary if the joint prob-

ability density function fx ( ,,(x) is invariant under shifts of the time origin.

In other words, the process X(t) is strictly stationarN if the equality

fX(.)( X ) ^ fX(..T)(X)
	

(8.89)

holds for every finite,set of time instants Jt,J, i = 1, 2, . . . , k, and for

every time-shift T. The components of the random vector X(1) are obtained

by observing the random process X(l) at times t i , t .. . . . . t k . Correspond-

ingly, the components of the random vector X(t + T) are obtained by

observing the random process X(t) at times t j + T, t, + T, + T,

where T is a time shift.
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b,	
b3

W
tj	 b,	 113

t "

1b,
1b,

(b)	
It2 + T I .' — 

I
r, , T	 b2	 T

I,,
Figure 8.12
The concept of stationarity.

Stationary processes are of .2reat importance for at least two reasons:

1. The y are frequently encountered in practice or approximated to a high
deg;ee of accuracy. It is not necessary that a random process be sta-
tionary for all time, but only for some observation interval that is long
enough for the particular situation of interest.

2. Many of the important properties of commonly encountered stationary
processes are described bv first and second moments. Consequently, it
is relatively easy to develop a simple but useful theory to describe these
processes.

Random processes that are not stationary are called nonstationary.

...................................................... I ..................................................................

EXAMPLE I I

Suppose we have a random process X(t) that is known to be strictly sta-
tionary. An implication of stationarity is that the probability that a set of
sample functions of this process pass through the windows of Fig. 8.12a is
equal to the probability that a set of the same number of sample functions
pass through the corresponding time-shifted windows of Fig. 8.12b. Note,
however, that it is not necessary that these two sets consist of the same
sample functions.

...........................................................................................................................
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........... 8.7 MEAN, CORREIA770N, AND COVARIANCE FUNC77ONS

In many practical situations we find that it is not possible to determine (by

means of suitable measurements, say) the probability distribution of a

random process. Then we must content outselves with a partial description

of the distribution of the process. Ordinarily, the mean, autocorrelation

function, and autocovariance function of the random process are tak-Pri to

give a crude but, nevertheless, useful description of the distribution: these

terms are defined in the following paragraphs.

Consider a random process X(t) assumed to be strictly stationarv. Let

X(tj denote the random variable obtained by observing the proces 's X(t)
at time tA . The mean of the process X(t) is a constant, defined by

rn, = E[X(t,)]	 for any t,

where E denotes the expectation operator. We may simplify the notation

by writing

-x = E[X(t)]	 (8.90)

where X(t) is treated as a random variable for a fixed value of t.

The autocorrelation function of a stationary process X(t) is defined as

RA(4	 E[X(tk)X(t,)]	 for any t, and t,

where X(i.) and X(t,) are the random variables obtained 
by 

obser%ing the

process X(t) at times tk and t, respecti^el% . Note that the autocorrelation

function depends only on the time difference i k — t,. We may simplify the

notation by using the variable r to denote the time difference t, — t, and

redefining the autocorrelation function of the process X(t) as

R .k (r) = E[X(t)A'(t - r)]	 (8.91)

where insofar as the expectation is concerned. X(t) and X(t — r) are

treated as random variables. The variable r is commonly referred to as a

time lag or time delay; the terms are used interchangeably. Equation 8.91

shows that for a stationary process, the autocorrelation function Rx(r)

is independent of a shift of the time origin. Note also that the argu-

ment of R ., (r) is obtained by subtracting the argument of the second factor

X(t — r) from that of the first factor X(t).

Yet another characteristic of a stationary process X(t) is the auto-

covariance function defined by

K,v(tk — tj = E[(X(t,) — m,)(X(t,) — m %,)]	 for any t, and t,
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As with the autocorrelation function, we may simplify the notation by

redefining the autocovariance function of the process X(t) as

	

KA (') = E[(X(t) — -, ) (X(t — 	 T) — -A -	 (8.92)

It is a straightforward matter to show that the autocovariance function

Kx(r), the autocorrelation function Rx(T).andthe meanni .,of astationary

process X(r) are related as follows

	

K,, (r) = R,, (T) — 11, 2k	 (8.93)

Clearly. if the process X(t) has zero mean (i . e., ??ix is zero), then the

autocovariance and autocorrelation functions of the process are the same.

From here on we will use the mean and autocorrelation function as a

partial description of a random process. Moreover, we assume that

1. The mean of the process is constant.

2. The autocorrelation function of the process is independent of a shift of

the time origin.

3. The autocorrelation function at a tag of zero is finite.

These three conditions, however, are not sufficient to guarantee that the

random process in question is strictly stationary. A random process that

is not strictIN , stationar y but for which these conditions hold is said to be

ivide-sense slationar) (WSS). Naturally. all strictly stationary processes are

wide-sense stationar^ , but the converse is not necessarily true.

PROPERTIES OF THE AUTOCORRELATION FUNCTION

The autocorrelation function Rx(T) of a wide-sense stationary process X(t)

has several important properties that follow from the definition given in

Eq. 8.91. In particular, we may state:

PROPERTY 1

The autocorrelation function of a wide-sense stationary process is an even

function of the time tag.

'Mat is to say, the autocorrelation function R .,(r) satisfies the sYrnmetry

condition:

	

R.(r) = R.(—r)	
(8.94)

For Rx(r), we write (see Eq. 8.91):

R,,(T) = EIX(I)X(i — 01
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Clearly, the product X(t)X(t — r) is unaffected by an interchange of the
two terms X(t) and X(t — r); hence,

Rx(r)	 EJX(t — r)X(t)]
Rx(—r)

which is the desired result.

PROPERTY 2

The mean-square value of a wide-sense stationary process equals the
autocorrelation function of the process for zero time lag.

In mathematical terms, we may write

	

Rx(0) = E[X 2 (t)]	 (8.95)

This result follows directly from Eq. 8.91 by putting the time lag r = 0.

PROPERTY 3

The autocorrelation function ofa wide-sense stationary process has its max-
imum magnitude at zero time lag.

In mathematical terms, Property 3 states that

	

Rx(r)j -_ Rx(0)	 (8.96)

To prove this result, we first note that the mean-square value of the dif-
ference between X(t) and X(t — r) is always nonnegative, as shown by

E[(X(t) — X(t — r))] _- 0

Since we have

(X( t) - X( t - T ))1 = X2(t) — 2X(t)X(t - T) + X2(t - T),

and the expectation is a linear operator, we may write

E( X2(t)) — 2E[X(t)X(t — r)] + EjX 1 (t — r)] _- 0	 (8.97)

We next note that for a wide-sense stationary process X(t):

E[X I (t)] = E[X(t	 R,(0)

E[X(t)X(t - T)l = Rx(r)
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Figure 8.13
The autocorrelation functions of slowly and rapidly fluctuating random processes.

Substituting these Nalues in Eq. 8.97 and simplifying, we get the result

given in Eq. 8.96.

PHYSICAL SIGNIFICANCE OF THE AUTOCORRELArION FUNCrION

The physical si gnificance of the autocorrelation function R .v( r) is that it

provides a means of describing the interdependence of two random vari-

ables obtained bv observing a random process X(t) at times r seconds

apart. It is thereiore apparent that the more rapidly the random process

X(t) changes with time. the more rapidly will the autocorrelation function

R,(T) decrease from its maximum Rx(0) as r increases, as illustrated in

Fig. 8.13. This decrease may be characterized by a decorrelation time C,,,

such that for -, > r, the magnitude of the autocorrelation function Rx(T)

remains below some prescribed ^alue. We may thus define the decorre-

lation time 7, of a xide-sense stationary process X(t) of zero mean as the

time taken for the magnitude of the autocorrelation function Rx(r) to

decrease to 1% of its maximum value R .% (0); the choice of 1% is arbitrary.

.........................................................................................................................

EXAMPLE 12 SINUSOIDAL WAVE MTH RANDOM PHASE

Consider a sinusoidal process with random phase. The process is denoted

by

X(t)	 A cos(27rf,t + (9)	 (8.98)

where A and f, are constants, and the random variable e denotes the

phase. We assume that e is uniformly distributed over a range of 0 to 21r,

that is,

0	 0	 271
(8.99)

0,	 elsewhere
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Figure 8.14
Autocorrelation function of a sinusoidal wave with random phase.

This means that the random variable 0 is equally likely to have any value

in the range 0 to 2n. A sample function of the random process X(1) is

given by

x(t) = A cos(27rf,t + 0)

where 0 lies inside the interval [0, 2,71. Note that for each sample function

0 remains constant.

The autocorrelation function of X(t) is

Rx(r) = E[X(t + r)X(t)]

= E[A 2 cos(21rf,t + 2)zf,z

= 
A2 

E[cos(41zfj + 27rf,r
2

* 0) cos(2nf' t + 0)]

* 20)] ^ 
A2 

E[cos(27rf, r)]
2

Since the expectation is with respect to the random variable 0, Ae get

	

2	
A 2

	

A	 I
dO — cos(21r f, 0Rx(r)	 —	 — cos(4,-rf,t + 27zl,

	2 	 2 7r	 2

The first term integrates to 0, so we get

RA(r) — — cos(2 71 f, T)	 (8.100)
2

which is plotted in Fig. 8.14. We see, therefore, that the autocorrelation

function of a sinusoidal process with random phase is another sinusoid at

the same frequency in the "time-lag domain" rather than the time domain.

..........................................................................................................................



444 PROBABILITY ]HEORY AND RANDO'A PROCESSES

EXAMPLE 13 RANDOM BINARY WAVE

Figure 8.15 shows the sample function x(t) of a process X(t) consisting of

a random sequence of binary syrnbots 1 and 0. It is assumed that:

I . The symbols I and 0 are represented by pulses of amplitude +A and

— A volts, respectively, and duration T seconds.

2. The pulse sequence is not s y nchronized so that the starting time of the

first P ulse , ld, is equally likefN to lie anywhere between 0 and T seconds.

That is. Id is the sample value of a uniformly distributed random variable

T j , with its probability densit y function defined by

0	 T

	

T	 (8.101)

	

10.	 else%% here

3. During an y time interval (n — 1) T < t — t, < n T, where n is an integer,

we have P(0) = P(l). That is, the two sNmbols 0 and I are equalb,

likely, and the presence of a I or 0 in any one inter% al is independent

of all other intervals.

Since the amplitude levels —A and +A occur with equal probabilitN.

it follows immediately that E[X(r)] = 0, for all t, and the mean of the

process is therefore zero.

To find the autocorrelation function R X( t
k - t;), we have to evaluate

EjX(tjX(tjJ, where X(tk ) and X(tj are random variables obtained bN

observing the random process X(t) at times t^ and t,, respecti%ely.

Consider the first case when : t, — tj > T. Then the random variables

X(tj and X(tj occur in different pulse intervals and are therefore inde-

pendent. We thus have

EjX(tjX(t)j = ':IXN,)jE[X((,)] = 0,	 ^t, — tj > T

Figure 8.15
Sample function of random binary wave.



MEAN, CORRELATION, 
AND COVARIANCE FUNcTioNs 445

T

Figure 8.16
Autocorrelation function of random binary wave.

Consider next the case when it, — tj < 
T. In such a situation we observe

from Fig. S. 15 that the random variables X(tk) 
and X(tj occur in the same

and onl
y
 if the delay td 

is 
less than T — It, — t, ! . We thus

pulse interval if

obtain the corditional expectation:

	

A 2,	 t, < T	 tk	 t'
E[X(t,)X(tYt'j =	to,	 elsewhere

all possible values Of td, we getAveraging this result over

JT^

	

A	 (td) dt,E[X(t,)X(01

T-1'_": A2
dtd

fo	 T

T
A2

T

We therefore conclude that the autocorrelation function of a random binary
in Fig. 8.15 is only a

wave, represented by the sample function shown
t, as shown byfuncti n of the time difference z

	

A 2 I	
< T	 (8.102)

TR,(r)
JTJ -_ T

This result is plotted in Fig. 8.16. ................................................................... ......................................................

EXENCOE a what is the mean-square val
ue Of 

the random binary wave

described in Example 137 Use physical arguments to 
Justify your answer.
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TIAVE AVERAGES AND ERGODICffY

If the theory of random processes is to be useful as a method for describing

communication systems, we have to be able to estimate from observations
of a random process X(t) such probabilistic quantities as the mean and

autocorrelation function of the process. For a stationary process, the mean
is defined by

mx = E[X(t)]

f
xfx(,)(X ) d-r	 (8.103)

and the autocorrelation function is defined by

Rx(r) = E[X(t)X(t — r))

= L f^ 
xYfx(,).x(,-,)(x, y) dx dy	 (8.104)

To compute mx and R,(r) by ensemble averaging, as defined in Eqs. 8.103
and 8.104, we have to average across all the sample functions of the process.

In particular, this computation requires complete knowledge of the first-

order and second-order joint probability density functions of the process.

In many practical situations. however, these probability density functions

are simply not available. Indeed, the only thing that we may usuall y find
available is the recording of one sample 'function of the random pro'cess.
It seems natural then to consider also time averages of individual sample
functions of the process.

We define the time-averaged mean of the sample function x(t) of a
random process X(t) as

(x ( t)) = lim	 x (t) dt	 (8.105)
T 2 T f-T,

where the symbol (-) denotes time-averaging and 2T is the total observation
interval. In a similar way, we may define the time-averaged autocorrelation
function of the sample function x(t) as

(x(t)x(t — r)) = lim 
I	

x(t)x(t — r) dt	 (8.106)
T 2 T f-T,

The two time averages (x(t)) and (x(t)x(t — T)) are random variables
in that their values depend on which sample function of the random process
X(t) is used in the time-averaging evaluations. On the other hand, mx is
a constant, and Rx( r) is an ordinary function of the variable T.



In general. en
semble avera gges and time

 averages are not equal except

for a ^ery special class of random process known as 
ergodic processes. ' A

randorm process X(t) is said to he ergodic in the most general forni if all of

its stam-itical properties car, be determined from a sample function repre-

senting one possible realization 
()f the process. We note here that it is

necessary for a random process to be strictly stationary for it to be ergodic.

Howe%er, the converse is not always truei that is. not all stationary pro-

cesses are erpodic.

Usually. ^A e are not interested in ^
tlmat l ng all the ensemble a^erages

	

of a random p rocess but rather onlN certain
	 such as the mcan and

ccordin g lN, we 1113.^ define
the autocorrel ation function of the proces^. A	 Y

ergodicity in z , more limited sense, as next described

,- -
	

, v(t) di is a random
Ergodicity in t a Mean The time 3 % c Fl 9 c (11" ) P

v
ariable w&	

mean and \ariance of it.; 0\^n. For a stationary process. 
\Ae

find that ` mean is equal to

E^ —I -,

	

	 (t)	 2 
1 
T	

Ejx (t )I dt

	

2TJ "
	

—

	T 	
171, (it

	

M	
(8.107)

Therefore. this time a%erage provicle^, an 
unbia^ed e^tiiinate of nix. An

estimator is said to be unbiased if the expected \alue of the estimate is

exactl^ the sime as the true value of the pertinent parameter. We 
say 

that

the random process X(l) is ergodic 
ill the fnean it

	

lim	
f	

dt	 (8-1()8)

T- 2T

with probability one. That is, for a random process to 
be ergodic in the

mean. itstime-a\eragedand ensemble -averaged meart values must be equal

with probability one. The necessary and sufficient condition for the ergo-

clicity of the mean is that the variance of the estimator 
( I 2T) f l 7 r(t) dt

approach zero as 7' approaches infinity.

'The problem of determining conditions under which time averages computed from
i nnately identified with

a sample function of a random process can be ult ,,S,,C, 
I mechanics. Physical

corresponding ensemble averages first arose in st

system possessing properties of this kind were called 
ergodic by L Boltzmann in

s	

it comes from the Greek for "work
1987. The term "ergodic" is of Greek origin.

path," which relates to 
the path of an energetic particle in a gas in the context of

statistical mechanics (Gardner , 1987).
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Equation 8.108 suggests that we may estimate the mean Of an ergodic
process by passing a finite record of the sample function of the process

through an integrator. An estimate of the mean of the process is praduced
at the integrator output.

ErgodicitY in the Autocorreletion Function 
Consider next the time-, average

( 1 12 T) P- T X ( t )X ( t - r) di, which is also a random variable. lt.^i mean is
equal to

IE [
2

1
T 
f

, 
x (t)x (t — r) dt]	

T f - T T 
E(x(t)x

.
(t — r"j] dt

[T 

R (r) di
2Tj-,

Rx(r)	 (8.109)

Accordingi " V, 
this time average provides an unbiased estimate of th-e en-

semble-averaged autocorrelation function R .I (r) of the random pro(,ess
X(1) - We say that the random process X(t) is ergodic in the autocorrelation
function if

lim I ^ X (t)X(t — r) dt	 (8.110)F 2 T

with probabilitv one. The necessar y and sufficient condition for a stochastic
process to be ergodic in the a utocorrelation function is that the variance
of the estimator ( 112 T) fT_ T X ( t )X ( t _ 

r) dt approach zero a s, T approaches
infinity.

To test a sample function of a stochastic process for ergodicity in the
mean, it suffices to know the mean nix and autocorrelation function R
of the process, However, to test it for ergodicity ,

 in the autocorrel x(r)
-no ,A fourth-order moments of the process. Therefore,

function, A e have to k 
ation

except for certain simple cases, it is usually very difficult to establish if a

random process meets the conditions for the ergodicity in both the mean

and the autocorrelation function. Thus. in practice, we are usually forced

to consider the phvsical origin of the rando m process, and thereby make

a somewhat intuitive judgment as to whether it is reasonable to interchange
time and ensemble averages.

................................................................................................................

EXAMPLE 14 SINUSOIDAL bV4VE WiTH RANDOM PHASE (CONTINUED)
Consider again the sinusoidal process X(1) defined by

X(t) = A cos(217ft + 0)
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where A and f, are constants and 
0 is a uniformly distributed random

variable:

0 ic 0 z:-: 271

0,	 elsewhere

The mean of this random process is

f
A cos(27,f,t + 0)f^(U) dO

A 
cos(),zf, t + 0) dO

27r

0

The autocorrelation function of the process was determined in Example

12i the result is reproduced here for conNenience

A 2

— cos(27tf,T)

2

Let x(t) denote a sample function of the process^ thus

.r(t) = A C()S(27-,-f,f + 0)

rhe time-averaged mean of the process is

(X (0) = li- 

I fT 

A cos(-' 7'f, t + 0) dt

T 2T -T

0

The time-averaged autocorrelation function of the process is

(X(t)x(t	 lim	

f T 

cos(27tf,t + 27if,r 
+ ()) cos(27rf,t ^ 0) dt

T . 2T -T

Using the trigonometric relation

I
cos(27tf,t + 21rf,r + O)cos(277f,t + 0 ) ^ 2 cos(2n .f, 0

+ 
I 
cos(4nf,t + 2YTf,T + 0)

2
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and then integrating, the expression for the time-averaged autocorrelation
function simplifies as

A2
(X(t)X(I	 T))	 — cos(2yrfz)

2

Hence, the time-averaged mean and time-averaged autocorrelation func-
tion of the process are exactly the same as the corresponding ensemble
averages. This random process is therefore ergodic in both the mean and
the a6tocorrelation function.

...........................................................................................................................

........ 8.8 RANDOM PROCESS TIMNSMISSION 7WROUGHUNFAR FILTERS

Suppose that a random process X(t) is applied as input to a linear time-
invariant filter of impulse response h(i), producing a random process Y(t)
at the filter output, as in Fig. 8.17. In general, it is difficult to describe the
probability distribution of the output random process Y(t), even when the
probability distribution of the input random process X(t) is completely
specified for – - < t < -.

In this section, we determine the mean and autocorrelation functions
of the output random process Y(1) in terms of those of the input X(t),
assuming that X(t) is a wide-sense stationary process.

Consider first the mean of the output random process Y(t). By defi-
nition, we have

my (t) = EIY(t)] = E [f--. h(T)X(t - r) dr 
1	 (8.111)

Provided that the expectation E[X(t)) is finite for all t, and the system is
stable, we may interchange the order of the expectation and the integration
with respect to r in Eq. 8. 111, and so write

my(t)	 f h ( T )LIX(t – r)] dr

h(r)mx(I – r) dr	 (8.112)

When the input random process X(t) is wide-sense stationary, the mean
mx(f) is a constant mx, so that we may simplify Eq ' 8.112 as

my = m.,	 h (,) d,

= mxH(0)	 (8.113)
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Input	 Irnpulm	
Output	

Y (t)responu
=h(t)

Figure 8.17
Transmission of a random process through a linear filter.

where H(0) is the zero-frequency , response of the system. Equation 8.113
states that the mean of the output process of a stable linear time-invariant

-system is equal to the mean of the input process multiplied by the zero-

frequency response of the system.

Consider next the autocorrelation function of the output random process

Y(t). By definition, we have

R, (t, u) = Ej Y(t) Y (101

where t and u denote two ),alues of time at which the output process is

observed. We may therefore use the convoluti on integral to write

Ry(t, u) = E	 h(r^)X(t — r,) dr,	 h(t2)X(U — T2) dT2

(8.114)

Here again, provided that E[X 2 (t)] is finite for all t and the system is stable,
we may interchange the order of the expectation and the integrations with

respect to r, and T2 in Eq. 8.114, obtaining

Ry(t, u) = 
L 

dr,h(r^) 
L 

drh(r 2 )E[X(t — T ,) X ( u — 17^,)]

dr,h(r,)

	

	 dT2h(r2)RA:(t — T, It — T2)	
(8.115)

L

When the input X(t) is a wide-sense stationary process, the autocorrelation

function of X(t) is only a function of the difference between the observation

times t — r, and u — T2- Thus, putting T u in 
Eq. 8.115, we may

write

Ry(T) = T
'. f _. 

h(r l )h(T 2 )Rx(r — 17, + T2) dr, dr 2	 (8-116)

On combining-this result with that involving the mean my, we see that if

the input to a stable linear time-invarian t filter is a wide-sense stationary

process, then the output of the filter is also a wide-sense stationary process.
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Since Ry(0) = EJY 2 (t)], it follows that the mean-square value of the

output random process Y(t) is obtained by putting r = 0 in Eq. 8.116.

We thus get the result:

E[y2( t )] = 

L L 
h(rl)h(T2)Rx(T2 — T I ) dr, dt 2 	 (8.117)

which is a constant.

............ 8.9 POWER SPECTRAL DESSITY

Thus far we have considered the characterization of wide-sense stationary

processes in linear systems in the time domain. We turn next to the char-

acterization of random processes in linear systems by using frequency-

domain ideas. In particular, we wish to derive the frequency-domain equiv-

alent to the result of Eq. 8.117 defining the mean-square value of the filter

output.

By definition, the impulse response of a linear time-inNariant filter is

equal to the inverse Fourier transform of the transfer function of the system.

We may thus write

	

h(r,)	 H(f) exp(j27rfr,) df	 (8.118)

Substituting this expression for h(r i ) in Eq. 8.117, and rearranging the

resultant triple integration, we get

	

E[Y-'(t)] = 
L 

df H(f)	 dr^,h(r2) 
f 

Rx(r 2 — r,) exp(j27rf r,) dr,

(8.119)

Define a new variable

T ^ T2 — 71

Then we may rewrite Eq. 8.119 in the form

EIY 2 (t)] = 
L 

df H(f) 
E 

dT 2 h(r 2 ) exp(j27rfT2)

fR,(,) exp( —j27rfr) dr (8.120)

The middle integral on the right side in Eq. 8.120 is simply H * (f), the

complex conjugate of the transfer function H(f) of the filter; hence, we
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may simplify this equation as

E[Y I (t)]	 df H(f)1'	 Rx(T) exp( — j27zfr) dr (8.121)

We may further simplify Eq. 8.121 by recognizing that the last integral is

simply the Fourier transform of the autocorrelation function Rx(r) of th^

input random process X(t). Let this transform be denoted by Sx(f), written

in expanded form as

SX(f) = 
L 

Rx(r) exp( — j27rfT) dr	 (8.122)

The function SA (f) is called the power spectral density or power spectrum

of the wide-sense stationary process X(t). Thus substituting Eq. 8.122 in

8.121, we obtain the desired relation

E[Y-'(t)] = 
L 

IH(f )^2 Sx(f) df	 (8.123)

Equation 8.123 states that the mean-square value of the output of a stable

linear time- in varian tfilter 
in responseioa wide-sense stationary input process

i^ equal to the integral over all frequencies of the power spectral density of

the input random process multiplied by the squared magnitude of tile transfer

function of the filter. This is the desired frequency-domain equivalent to

the time-domain relation of Eq. 8.117.

PROPERTIES OF THE POWER SPECTRAL DENSITY

The power spectral density Sx(f) and the autocorrelation function Rx(r)

of a wide-sense stationary process X(t) form a Fourier transform pair, as

shown by the pair of relations:

SX(f) = f R,(r) exp(—j27rfr) dr	 ( 8.124)

Rx(r) = 
f. 

Sx(f) exp(j2nfT) df	 (8.125)

This pair of equations constitutes the Einstein— Wiener— Khintchine relations

for wide-sense stationary processes

The power spectral density of a wide-sense stationary process has a

number of important properties that follow directly from Eqs. 8.124 and

8.125, as next described.
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PROPERTY I

The zero-frequency value of the power spectral density of a wide-sense sta-
tionary process equals the total area under the graph of the autocorrelation
function; that is,

SAO) = f. Rx(z) dr	 (8.126)

This property follows directly from Eq. 8,124 by putting f	 0.

PROPERTY 2

The mean-square value of a wide-sense stationary process equals the total
area under the graph of the power spectral density; that is,

E[X'(()]	 Sx(f) df	 (8.127)

This property follows directly from Eq. 8.125 by putting r = 0, and noting
that Rx(0) = E[X(t)].

PROPERTY 3

The power spectral density of a wide-sense stationary process is always
nonnegative; that is,

Sx(f) _- 0,	 for all f	 (8.128)

This is a necessary and sufficient condition for the mean-square value of
a random process (which equals the total area under the curve of the power
spectral density of the process) to be nonnegative.

PROPERTY 4

The power spectral density of a wide-sense stationary process is an even
function of the frequency; that is

Sx( — f) = SX(f)	 (8.129)

T'his property is readily obtained by substituting — f for f in Eq. 8.124.

SX(—f)	 f Rx(r) exp(j27rfr) dr

0



1 , 0\\LR SPE(-IRAL I)LNsii^ ,	455

Next. substituting —, for T. and recognizing that R^(--,) 
^ R ,k (r)- "c

get

SOP

which is the desired result

These properties par^' Bel 
those for periodic signal s . which %Ne described

in Chapter 4. indeed. \\e 
ma\ use ideas similar to those dc^cribcd therein

to measure the autocorrelation function and po%ker pectral den

s ity of a

wide-serise stationar% , Process.

EXERCISE 9 Consider the function or(f) defined by

SM
R(0)

where S(f) 
is the power spectral density of a random process and R(0) is

the value of its autocorrelation function for a lag of zero (i.e.. T = 0).

Explain why a(f) 
has the properties usually associated with a probability

density function.

..............................................................

...........

EXAMPLE 15 SINE WAVE WITH RANDOM 
PHASE (CONTINUED)

t - 0), k^ here the phase
Consider 

the 
^ 111U ^01d ^il Pr The

1^ a unitornih. distributed randon, 
\ , j rj,jbjc o^cr the rangl e () to

Li^cn h\ Eq. 8 W0. ^\hich is
autocorrelation function of this 

PTOCCI^ is

reproduced here for comenience:

A^	 f f"

f
0

Figure 8.18
Power spectral density of a sinusoidal process
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Taking the Fourier transform of both sides of this relation, we find that

the power spectral density of the sinusoidal process X(t) is given by

Sx(f)	 A 2 [, , (f f') + ^ (f + f^)j	 (8.130)

4

The power spectral density S A (f) consists of a pair of delta functions

weighted 
by 

the factor A 2 14 and located at --f,. as in Fig. 8.18. We note

that the total area under a delta function is 1. Hence, the total area under

the Sx^f) of Eq. 8,130 is equal to A 2 /2, as expected.

..........................................................................................................................
........................................

EXAMPLE 16 RANDOM BINARY WAVE (CONTINUED)

Consider again a random binary wave consisting of a sequence of I's and

O's represented by the values +A and —A. respectivel y
. In Example 13

we showed that the autocorrelation function of this random process (see,

Eq. 8.102) is

A: I	 T
Rx(T)	 T

T10,

The power spectral densit^ of the process is therefore

S A M	 A` (I —	 exp( —j27r f r) dT
T

Figure 8,19
Power spectral density of random binary wave.
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Usine the I ouricr tran^forni of a t, iarwular function c% aluated in Example

10 of Chapter 2, Ae obtain

	

S, ( r) = A -T i nc ' ( 1 t T)	 (S 131 1

^%hich is plotted 
in 

Fi g . 8.19. Here ai-, ain. ^%c see that the po^^cr pc^:tl.11

densit% is nonncLatj%L for all f and that 11 11 All e%Crl fLlnCtJOu Of t ' \Nc

note front exercise 7 of Chapter 2. that

sinc ' ( t' T) dt	

T

Therefore. the total arc^i under S, ^ f ). Or the i^	 po%k,, r 4 the I

binar^ Aa%c is A:.

The result of Eq, 8.1', 1 rna% tic generalized as tolio%%s. ^\ e note that the

ener ,-y spectral densjt% of a rectin ,'Ular Pulse 'jZ(1) of arnplItUdC A and

duration T is Lj^cn lb^

	

F' inc - 0 I	 133

We may thereforc reA rite Eq^ 8.1 3, 1 in terms of 'P,( f) as

'PS
	

T

	 (8 134)

Equation 8.134 states that. for a random hinary Aa%e in ^^hich binary

symbols I and 0 are represented lb^ pulse ,, q(t) and - ^(t). respecti%civ,

the power spectral density S .k (f) is equal to the energy ^pectral density

Pg (f) of the symbol shaping pulse g(t) di% ided bv the sPnhol durution T

..........................................................................................................................

EXERCISE 10 Sketch the autocorrelation function and power spectral

density of a random binary wave alternating between - I and + I.V for

the following values of pulse duration T:

(a) T	 is

(b) T	 I s

(c) T	 2s

Comment on your results.

.........................................................................................................................

EXAMPLE 17 LINEAR MAXIMAL SEQUENCES

'nere exists a class of deterministic sequences known as nitLviinurn length

sequences with many of the properties of a random binary sequence and
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Memory	 Memory X2 Memory
Outputst	 stage	 stagre

2	 3	 sequ-ce

Modulo-two

adder

Figure 8.20
Linear-maximal-sequence generator.

yet requiring simple instrumentation. A rna-Virnurn-length sequence is a

periodic binary sequence generated by a feedback shift register that has the

lon g est possible period for this particular method of generation. A shift

register of length rn is a cic^ ice consisting of 
in 

consecutive 2-state memory

sta!zes (flip-flops) regulated by a single timing clock. At each clock pulse,

the state (represented by binary symbol I 
or 

0) of each memory stage is

sh
i
fted to the next stage down the line. To prevent the shift revister from

emptying b% the end of m clock pulses. we use a logical (i.e. ' Boolean)

function of the states of the in memory stages to compute a feedback term,

and apply it to the first memor y stage of the shift register. The most

important special form of this feedback shift register is the linear case in

which the feedback function is obtained by using modulo-t^to adders to

combine the outputs of the various memory stages. This operation is il-

lustrated in Fig. 8.20 for rn = 3. Representing the states of the three

memory stages as x, x_ and x, we see that in Fig. 8.20 the feedback

function is equal to the modulo-two sum of x, and x,.' A maximum length

sequence generated by a feedback shift register using a linear feedback

function is called a linear maximal sequence. This sequence is always

periodic with a period defined by

N = 2- — 1	 (8.135)

where m is the length of the shift register. Assuming, for example, that

the three memory stages of the shift register shown in Fig. 8.20 are in the

initial states 0, 0, and 1, respectively, we find that the resulting output

sequence is 1001110, repeating with period 7.

Representing the symbols 1 and 0 by the values +A and —A, respec-

tively, we find that the autocorrelation function of a linear maximal se-

81n modulo-two addition, the sum of x, and x. takes the value 1 only when x, or x3,

but not both, takes the value 1. In other words, the carry is ignored. This operation

is equivalent to the logical EXCLUSIVE OR.
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cluence is periodic with period NT, and that for values of time lag r lying

in the interval — NT12 ^— r ^— NT12, it is defined by

A' ( I — 
N + I

NT

Rx(r)	 —A 2

N

R .. 1,1

Irl -- T

for the remainder of the period

(8.136)

I

I

M

T	 T

0 ^ ^ ,	 i

ib)

Rgure 8.21

Characteristics of linear maximal sequence. (a) Autocorrelation function. (b) 
Power

spectral density.
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where T is the duration for which the symbol 1 or 0 is defined. This result

is plotted in Fig. 8.21 a for the case of in = 3 or N = 7.

The autocorrelation function depicted in Fig. 8.21a exhibits two char-

acteristics: a distinct peak value and a periodic nature. These two char-

acteristics make linear maximal sequences well-suited for use in synchro-

nous digital communications. For example, we may use a linear maximal

sequence as the training sequence for adaptive equalization in a data trans-

mission system operating over an unknown channel. Specifically, we use

a feedback shift register in the transmitter to generate a linear maximal

sequerice for probing the channel during the training mode of the system,

and use a second feedback shift register in the receiver that is identical to

that in the transmitter and synchronized to it. The second feedback shift

register generates a replica of the training sequence, which is used as the

desired response for the adaptive equalizer in the recei%er^ adaptive equal-

ization "as described in Section 6.8.

Linear maximal sequences are also referred to as pseudorandom or

pseudonoise (PN) sequences. The term random  comes from the fact that

they have many of the properties of a random binary sequence, specifically,

the following:'

1. The number of I's per period is alha ys one more than the number of

O's.

2. In every period, half the runs (consecutive outputs of the same kind)

are of length one, one fourth. are of length two, one eighth are of length

three, and so on, as long as the number of runs so indicated exceeds

one.

3. The autocorrelation function is two-valued.

From Fig. 8.21a, we note that the autocorrelation function of the se

quence consists of a constant term equal to —A'IN plus a periodic train

of triangular pulses of amplitude A' + A',W, pulse width 2T and period

NT in the 7-domain. Therefore, taking the Fourier transform of Eq. S. 136,

we find that the power spectral density of a linear maximal sequence is

given by

A2	 A2	
sinc-'

	

N	 N	 NT)SX(f)	 N 6 (f) + N	 + 1 )	 (11)

	

A 
6(f) + A2 I
	 N	 SinC2(n)

	

N	 NT
_  0

	

-	
(8.137)

For further details of linear maximal sequences, see Golomb (1964). pp. 1-32. S!ee

also the review paper by Sarwate and Pursley (1980).
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which is plotted in Fig. 8.211) for in = 3 or N = 7. Comparing this po'Aer

spectral - density characteristic with that of Fig. 8.19 for a random binarN

sequen(x, we see that they both have an emelope of the same form.

riameh: sinc'(fT). which depends onk on the duration 1'. The funda-

mental difference, of cour
s
e, is that ^^ hereas the random binar\ seqticrice

has a continuous spectral dcnsit\ characteri,tic. the correspondiriL, char-

acteristic of a linear maximal sccluence consists of delta functions spaccd

I INT hertz apart.

..........................................................................................................................

EXERCISE I I Find the limiting value of the power spectral density of

the linear maximal sequence considered in Example 17 as the period of

the sequence becomes large. Compare your result with the power spectral

density of a random binary wave of similar characteristics.

............... I .................	 ..................................................................................

EXAMPLE 18 MODULATED RANDOM PROCESS

A sit uation that often arises in praci ice is that of 72ning (i.e., multiplication)

of a \vide-sense stationar^ process X(t) with a sinusoidal ^kaNe dcnotcd b\

cos(27T .f,t - 0), where the phase 0 is a random \ariable that i^ uniforrnk

distributed over the inter\al 0 to 27, . The addition of the random phase 0

in this manner merel y recognizes the fact that the time orizin is arbitrarik

chosen when X(t) and cos(2,-f,t + 0) come from ph\sicalk indepL^ndem

sources. as is usualk. the case. We are interested in detcrminin g, the power

spectral densit\ of the random process Y(i) defined b\

Y(t) ^ X(1) cos(277 ,f,t + 0)	 (8. 138)

We note that the autocorrelation of Y(t) is gi\en h\

Ry(r) = E[Y(t + r)Y(t)]

= E[X(t ^ 7) cos(-1 .7 , f,t	 27,f,r	 0)X(1) cos(-'r .f,t	 0)1

= E[,'Qt + T)X(t)]

x E[cos(2,7f,t + 27zf,r ^ 0) cos(27-f,t + 0)]

= JR .,(T)E[cos(277f,T) + cos(47, ,f,t ^ 277fr -- 20)]

= I R ,v (r) cos(2rf,

Because the power spectral density is the Fourier transform of the auto-
correlation function, we find that the power spectral dcnsiiies( , f the random

process X(t) and Y(t) are related as follows:

SY (f)	 I S X (f - fl) + SA (f + f ) 1	 (8^ 139)
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That is, to obtain the power spectral density 

of 
the random process Y(t),

we shift the given power spectral density SAM 
of random process X(I)

to the right by	 shift it to the left 
by f, , add the two shifted power spectra,

and divide the result by 4.

..........................................................................................................................

RELATION AMONG THE POWER SPECTRAL 
DENSITIES OF THE INPUT

AND OUTPUT RANDOM PROCESSES

Let 5, (f) 
denote the power spectral dcn^ity of the output random process

Y(t) obtained by 
passing the random process X(t) through a linear filter

of transfer funct ion H(f). Then, recognizing b^ 
definition that the power

spectral density of a random process is equal to the Fourier transform of

its autocorrelation function and substituting Eq. 8.116for 
Ry(T), we obtain

SY(f) = 
f'  

R, (T) exp( —j27rf r) dr

h(,,)h(T2)R,v(r — T, + r,) exp( — j27rf r) dT, dT, dT

(8.140)

Let r — T, — r, ^ T, or, equivalently, I ^ 
r, + r, — T.. Then, by making

this substitution in Eq. 8.140, we find that S,, (f) may be expressed as the

product of three terms: the transfer function H(f) 
oft . he filter, the complex

conjugate of H(f), and the power spectral density Sx(f) of the input

process X(t), as shown bN

S,(f) = H(f)W(f)Sx(f)	
(8.141)

However, IH( 
f)12 = H(f)H * (f). We thus find that the relationship among

the power spectral densities of the input and output random processes is

simply expressed in the frequency domain by writing

S,(f) = IH 
(f) 12S X ( f)	 (8.142)

That is, the output power spectral densav equals the input power spectral

density, multiplied b-i
. the squared magnitude of the transfer function of the

filter. By 
using this relation, we can determine the effect of passing a wide-

sense stationary process through a linear time-invariant filter.

It is of interest to note that -Eq. 8.142 may also be deduced from 
Eq.

8.123 simply by 
recognizing that the mean-square value of a wide-sense

stationary process equals the total area under the curve of power spectral

density of the process in accordance with Property 2 (i.e., 
Eq. 8.127).
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EXERCISE 12 Consider the comb filter" ) of Fig. 8.22 consisting of a delay

line and a summing device. Evaluate the po%ker spectral density S, (J) of

the filter output Y(l), given that the power spectral density of the filter

input X(t) is S ,j (f)-What is the approximate value of S, (f) for small values

of frequency f?

M

.2	 1	 - I	 I	 u	 I	 I	 1-	 2
T	 IT	 T	 IT	 IT	 T	 IT	 T

(61

Figure 8.22

Comb filter

8.10 CROSS-CORRELATION FUNCTIONS

Let XW and YM he 1^ko joinik %^ ILJC-^CT11(2 StAtIOnar% PrOCCSSCS WC dCt111C

the (r,?.Ns-t oirchilioll funi'lion R, (-,) of these 1%%o procc ,,ses a,:

	

R,,(-,) = EjX(t)Y(i - -,)]	 (S. 14 3 )

"The filter of Fig. 8.22 is referred to as a "comb" filter because a graph of its

frequency response is somewhat comb-like in appearance.

f
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Similarly, we define the second cross-correlation function Ry .v(r) of the

processes X(t) and Y(t) as

R jt (r) = E[) ' (I)X(t — 01	 (8.144)

A cross-correlation function is not generally an even function of T, a.", is

true for an autocorrelation function, nor does it have a maximum at the

origin. Howc%er, it does obey a certain s.^tnlnctry relationship:

RA I ( T) = R IA ( - r)	
(8^ 14^)

EXAMPLE 19 OUADRATURE-MODULATED PROCESSES

Consider a pair of quadrature-modulated processes X,(t) and A'-(t) that are

related to a Aide-sense stationar y process X(t) as follo%%s

X j (t) ^ X(r) cos(277f,t + 0)	 (8.146)

X,(t) = X(t) sin(27,f,t -4- 0)	 (8.147)

here 0 is a uniformIN distributed random variable. The cross-correlation

function of X,(t) and X,(t) is given bs

E[A'I(t)X,(t	 T)l

E[X(t)X(r - r) cos('-7,f,t + 0) sin(27zf,t - 27if,r	 0)]

E[X(t)X(t - r)] E[cos(27rf, r + 0) sin(2;zf,t - 2rf,r + 0)]

'R,(T)Ejsin(47rf,t - 2nf,r 	 1-0)	 sin(27r_f,r)]

2'Rx(-) sin(27zfT)

Note 111,1t M 7	 0, we have

R,,(0)	 E[Xj(0Xj0j

(8.149)

This shows that the random variables X,(r) and X,(t) obtained by observing

the quadrature-modulated processes XJO and A',(t) at some fixed value

of time t are orthoaonal to each other.

.........................................................................................................................
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EXERCISE 13

(a) Prove the property of cross-correlation functions of a wide-sense
stationary process described in Eq. 8.145.
(b) Demonstrate the validity of this property for the quadrature-mod-
ulated processes of Example 19.

8.11 CROSS-SPECTRAL DENSMES

Just as the power spectral density provides a measure of the frequency
distribution of a single random process, cross-spectral densities provide a
measure of the frequency interrelationship between two random processes.

We define the cross-spectral densities Sxy(f) and Sx(f) of the pair of
random processes X(t) and Y(t) to be the Fourier transforms of the re-
spective cross-correlation functions, as shown by

SXYM = L Rxy(r) exp( — j27zfr) dr	 (8.150)

and

SYX(f) = f. Ryx(r) exp( - j27rfT) dr	 (8.151)

The cross-correlation functions and cross-spectral densities thus form Four-
ier transform pairs. Accordingly, we may write

R"(r) = f Sxy(f) exp(j27rfr) df 	 (8.152)

and

Ryx(r) = f Syx(f) exp(j27rfr) df 	 (8.153)

The cross-spectral densities Sxy(f) and Syx(f) are not necessarily real

functions of the frequency f. However, substituting the relationship

Rxy(T) = Ryx(—r)

in Eq. 8.150, we find that Sxy(f) and S jw(f) are related by

SXY(f) = Syx( — f) = S*YX(f)	 (8.154)
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That is to say, the cross-spectral densities of a pair of jointly wide-sense
stationary processes are the complex conjugate of each other. Because of
this property, the sum of Sxy(f) and Syx(f) is real.

......................................................................................................................

EXAMPLE 20

Suppose that the random processes X(t) and Y(t) have zero mean, and
they are individually stationary in the wide sense. Consider the sum random
process

Z(t) = X(t) + Y(t)	 (8.155)

The problem is to determine the power spectral density of Z(t).
The autocorrelation function of Z(t) is given by

Rz(r, u) - E[Z(t)Z(u)]
= E[(X(t) + Y(i))(X(u) + Y(u))]
= EIX(t)X(u)] + EJX(t)Y(u)J + E[Y(I)X(u)] + E[Y(t)Y(u)]
= Rx(t, u) + R,,(t, u) + Ryx(t, u) + Ry(t, u)

(8.156)

Defining r = t — u, we may therefore write

Rz(r) = Rx(r) + RXy(T) + Ryx(r) + Ry(r) 	 (8.157)

when the random processes X(t) and Y(t) are also jointly stationary in the
wide sense. Accordingly, taking the Fourier transform of both sides of Eq.
8.157, we get

SZ(f) = SX(f) + Sxy(f) + Syx(f) + SY(f)	 (8.158)

We thus see that the cross-spectral densities Sxy(f) and SyX (f) represent
the spectral components that must be added to the individual power spectral
densities of a pair of correlated random processes in order to obtain the
power spectral density of their sum.

When the wide-sense stationary processes X(t) and Y(t) are uncorre-
lated, the cross-spectral densities Sxy(f) and Syx(f) are zero, so Eq. 8.158
reduces to

SZ(f) = SX(f) + SY(f)	 (8.159)
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We may generalize this result by stating that when there is a multiplicity

of zero-mean wide-sense stationary processes that are uncorrelated with

each other, the power spectral density of their sum is equal to the sum of

their individual power spectral densities.

......................................................................................................................
........................................................ I ......................................................

14_4V I'll ^i INW41

Consider next the problem of passing two jointly wide-sense stationary

random processes through a pair of separate, stable, linear, time-invariant

filters, as shown in Fig. 8.23. In particular, suppose that the random process

X(t) is the input to the filter of impulse response h I (t) and that the random

process Y(t) is the input to the filter of impulse response hJt). Let V(t)

and Z(t) denote the random processes at the respective filter outputs. The

cross-correlation function of V(t) and Z(t) is therefore,

Rvz(t, u) = E[V(t)Z(u)]

E
	

h i (r,)X(t — r l ) dr^ 
f 

h,(r,)Y(u — r,) dr,

hl(r.)hA .1 2) E[X ( t — r i )Y(u — r 2 )] dr, dT,

f '. L 
h .( r ^) h&ORAI( t — T 1- U - r,) dT 1 dr,	 (8.160)

where Rxy(t, u) is the cross-correlation function of X(t) and Y(t). Because

the input random processes are jointly wide-sense stationary (by hypoth-

esis), we may put r = t — u and so rewrite Eq. 8.160 as

R,z(r) 
= L L 

h 1 (r,)h 2(r 2)Rxy(-r — r, + r 2) dr, dr, (8.161)

XM-EE1-V(0

Y(0--EE1-zW
Figure 823

A pair of separate filters.
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Taking the Fourier transform of both sides of Eq. 8.161 and using a
procedure similar to that which led to the development of Eq. 8.141, we
finally get

Svz(f) = HI(f)H2*(f)Sxy(f) (8.162)

where H^(f) and H2(f) are the transfer functions of the respective filters
in Fig. 8.23 and H2* (f) is the complex conjugate of H2(f). This is the
desired relationship between the cross-spectral density of the output proc-

esses and that of the input processes. Equation 8.162 includes the relation
of Eq. 8.142 as a special case.

.........................................................................................................................

............ 8.12 GAUSSIAIV PROCESS

Up to this point in our discussion, we have presented the theory of random

processes in general terms. In the remainder of the chapter, we consider

this theory in the context of some important random processes that are

commonly encountered in the study of communication systems.
Let us suppose that we observe a random process X(t) for an interval

that starts at time t = 0 and lasts until t = T Suppose also that we weight
the random process X(t) by some function g(t) and then integrate the
product g(t)X(t) over this observation interval, thereby obtaining a random
variable Y defined by

y = f' g(t)X(t) dt	 (8.163)

We refer to Y as a linear functional of X(t). The distinction between a
function and a functional should be carefully noted. For example, the sum
Y = Y,= ^ a,X,, where the a, are constants and the X, are random variables,
is a linear function of the X,; for each observed set of values for the random
variables X,, we have a corresponding value for the random variable Y.

On the other hand, in Eq. 8.163 the value of the random variable Y depends
on the course of the argument function g(t)X(t) over the observation in-
terval 0 to T. Thus a functional is a quantity that depends on the entire

course of one or more functions rather than on a number of discrete

variables. In other words, the domain of a functional is a set or space of

admissible functions rather than a region of a coordinate space.
If in Eq. 8.163 the weighting function g(t) is such that the mean-square

value of the random variable Y is finite, and if the random variable Y is

a Gaussian -distributed random variable for every g(t) in this class of func-
tions, then the process X(t) is said to be a Gaussian process. In other
words, the process X(t) is a Gaussian process if every linear functional of
X(t) is a Gaussian random variable.

Naturally, when a Guassian process X(t) is sampled at time't, for ex-
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ample, the result is a Gaussian random variable X(t,). Let m(t,) denote

the mean of X(t), and a l(t) denote its variance. We may then express the

probability density function of the sample X(ti) as

(Xi — m	
(8.164)

fx(")(X,) 
= V2	

exp

A Gaussian process has two main virtues. First, the Gaussian process

has many properties that make analytic results possible. Second, the ran-

dom processes produced by physical phenomena are often such that a

Gaussian model is appropriate. 'ne central limit theorem provides the

mathematical justification for using a Gaussian process as a model of a

large number of different physical phenomena in which the observed ran-

dom variable, at a particular instant of time, is the result of a large number

of individual random events. Furthermore, the use of a Gaussian model

to describe such physical phenomena is usually confirmed by experiments.

Thus the widespread occurrence of physical phenomena for which a Gaus-

sian model is appropriate, together with the ease with which a Gaussian

process is handled mathematically, make the Gaussian process very im-

portant in the study of communication systems.

Some of the important properties of a Gaussian process are as follows:

PROPERTY I

If a Gaussian process X(t) is applied to a stable linear filter, then the random
process Y(t) developed at the output of the filter is also Gaussian.

This property is readily derived by using the definition of a Gaussian process

based 
on 

Eq. 8.163. Consider the situation depicted in Fig. 8.17, where

we have a linear time-invariant filter of impulse response h(t), with the

random process X(t) as input and the random process Y(t) as output. We

assume that X(t) is a Gaussian process. The random processes Y(t) and

X(t) are related by the convolution integral

Y(t) 
= LT 

h(t — r)X(r) dr,	 0 ^— I < -	 (8.165)

where 0 -- t -- T is the observation interval of the input X(t). We assume

that the impulse response h(I) is such that the mean-square value of

the output random process Y(t) is finite for all t in the time interval

0 -_ t < - for which Y(t) is defined. To demonstrate that the output process

Y(t) is Gaussian, we must show that any linear functional of it is a Gaussian

random variable. That is, if we define the random variable

Z =	 g,(t) Y(t) dt
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or, equivalently,

Z = f g,(t) f h(t — )X(T) dr dt	 (8.166)

then Z must be a Gaussian random variable for every function gy(t), such

that the mean-square value of Z is finite. Interchanging the order of in-

tegration in Eq. 8.166, we get

z =	 g(T)X(r) dT	 (8.167)

where

g(T) = 
E 

gy(t)h(t - T) dt	 (8.168)

Since X(t) is a Gaussian process by hypothesis, it follows from Eq. 8.167

that Z must be a Gaussian random variable. We have thus shown that if

the input X(t) to a linear filter is a Gaussian process, then the output Y(t)

is also a Gaussian process. Note, however, that although our proof was

carried out assuming a time-invariant linear filter, this property is true for

any arbitrary stable linear system.

PROPEP"Y 2

Consider the set of random variables or samples X(tJ, X(t2 ), . . . , X(t.), ob-
tained by observing a random process X(t) at times t,, t, . . , t_ If the process
X(t) is Gaussian, then this set of random variables are jointly Gaussian for

any n, with their n-fold joint probability density function" being completely
determined by specifying the set of means

mAtJ = E[X(t,)],	 i^ 1,2,...,n

and the set of autocorrelation functions

R.U, - 0 = E[X(t,)X(t,)],	 k, i = 1, 2, ... , n

Property 2 is frequently used as the definition of a Gaussian process. How-

ever, this definition is more difficult to use than that based on Eq. 8.163

for evaluating the effects of filtering on a Gaussian process.

"For a detailed discussion of Property 2, see Davenport and Root (1958), pp. 147-
154; Sakrison (1968) pp. 97-97.
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PROPERTY 3

If a Gaussian process is wide-sense stationary, then the process is also sta-
tionary in the strict sense.

This follows directly from Property 2.

PROPERTY 4

If the set of random variables X(tJ, X(t,), . . . , X(t,), obtained by sampling a
Gaussian process X(t) at times t, t, . . . , t, are uncorrelated, that is,

E[Wt.) — m,,,,)(X(t,) — m,,,M = 0, 	 i ?^ k

then this set of random variables are statistically independent.

The implication of this property is that the joint probability density function

of the set of random variables M0, X(t2), - - - , X(t,) can be expressed

as the product of the probability density functions of the individual random

variables in the set.

............... 8.13 IWARROW-SAND RANDOM PROCESS

The receiver of a communication system usually includes some provision

for preprocessing the received signal. The preprocessing may take the form

of a narrow-band filter designed to restrict noise at the receiver input to

a band of frequencies just wide enough to accommodate the detection of

the modulated wave in the received signal. The signal appearing at the

output of the narrow-band filter represents the sample function of a narrow-

band random process. In this section, we present a canonical representation

of such a process and its statistical characteristics.

By analogy with the canonical representation of a narrow-band signal

(See Section 3.5), we may likewise represent a narrow-band random proc-

ess X(t), centered at some frequency f_ in the canonical form:

X(t) = X1(t) cos(27rf,t) — XQ (t) sin(27zfc t)	 (8.169)

where XI(t) is the in-phase component of X(t), and X Q(t) is its quadrature

component. Given the random process X(t), we may extract the in-phase

component X1(t) and the quadrature components XQ(t), except for scaling

factors, using the arrangement depicted in Fig. 8.24a.

Suppose the narrow-band random process X(t) is known to have the

following characteristics:

The power spectral density Sx(f) of the process X(t) satisfies the con-

dition:

Sx(f)=O for JfJ-_f,— W and lfl--f,+ W (8.170)

This condition is illustrated in Fig. 8.25.
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X, (t)	 Low-pabs
filter	 2 

X, (t)

X(t)	 I
--jo— ^	 cos(27rft)

Low;tpass	
I XX (t) 

_T –2 Q(t)

sin(27rfc t)

(a)

X, (t)

cos(2,rfc	
X(t)

XQ (t)

sin(27rfc t)

(b)

Figure 8.24
(a) Extraction of in-phase and quactrature components of a narrow-band process. (b)
Generation of a narrow-band process from its in-phase and quadrature components.

2. The process X(t) is Gaussian with zero mean and variance or' ; the zero-

xmean characteristic is a direct consequence of the fact that X(t) is

narrow-band.

We then find that the random processes X I (t) and X,,(t) have the following

properties:

PROPERTY I

The in-phase component X,(t) and the quadrature component X01t) ofa nar-

row-band random process X(t) are both low-pass random processes.

This property follows directly from the scheme of Fig. 8.24a. Both the in-

phase component XI(t) and the quadrature component X,2(t) appear in

Fig. 8.24a as the outputs of low-pass filters.

PROPERTY 2

The in-phase component X,(t) and the quadrature component X,,(t) of a ner-
row-band random process X(t) have identical power spectral densities related
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Rqure 8.25
Power spectrum of a narrow-band random process.

to that of X(t) as follows:

S,(f) = Sm = SAf — 0 + S
X(f + 0,	 —W< f< W

10,	 otherwise
(8.171)

The proof of this property also follows from Fig. 8.24a. We first recognize
that XI(t) and XQ(t) may be extracted from X(r) as follows:

The narrow-band random process X(t) is multiplied alternately by the
sinusoidal carriers cos(2trf,t) and sin(2nft) to generate the pair of
quadrature-modulated processes:

XI (t) = X(t) cos(2nft)	 (8.172)

X2(t) = X(t) sin(2nf,t) (8.173)

where we have set the phase of the two sinusoidal carriers to be zero
for convenience of presentation.

2. The modulated process X I (t) is passed through a low-pass filter of band-
width W, yielding JXI(t).

3. The modulated process X2(t) is passed through a second low-pass filter
of bandwidth W, yielding — iXQ(t).

Next we recognize that the power spectral density of the modulated process
X,(t) is related to that of the narrow-band random process X(t) as follows
(see Example 18)

- SXY) = I[SX ( f — M + Sx(f + MI	 (8.174)

'Me part of S.,,(f) that lies inside the passband of the low-pass filter in
the upper path of Fig. 8.24a defines the power spectral density of iX(t).
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Accordingly, we may express the power spectral density of the in-phase
component XI(t) as in Eq. 8.171. Note that the passbands of the low-pass
filters in Fig. 8.24a are defined by the frequency interval — W < f < W,
We may use similar arguments to show that the power spectral density
Sx,(f) of the quadrature component XQ(t) is also given by Eq. 8.171.

The use of Eq. 8.171 suggess the following procedure for finding
Sx,(f) and Sx,ffl:

1 . Shift the negative-frequency portion of the power spectral density SX(f)
of the narrow-band random process X(t) to the right by an amount
equal to fc , yielding Sx(f — fc).

2. Shift the positive-frequency portion of the power spectral density Sx(f)
of the narrow-band random process X(r) to the left by an amount equal
to f_ yielding Sx(f + f,).

3. Add the shifted power spectra found in (1) and (2), thereby obtaining
the desired Sxff) or Sx,(f).

PROPERTY 3

The in-phase component XP) and the quadrature component X.(t) have the
same mean and variance as the narrow-band random process X(t).

Since the narrow-band random process X(t) has zero mean, the modulated
processes XI (t) and X2 (t) (defined in Eqs. 8.172 and 8.173) must also have
zero mean. Moreover, Fig. 8.24a reveals that XI (t) and Xcjt), low-pass
filtered versions of XI (t) and X2 (t), also have zero mean.

To prove the remaining part of Property 3, we first observe that when
a random process has zero mean, its variance and mean-square value as-
sume a common value. Since both X,(t) and XQ (t) have zero mean, their
mean-square value and therefore variance equals the total area under the
curves of their respective power spectra, as shown by

' 2 ' =	
— M + Sx(f — fj] dfX	 or.,,	 f WW 

ISW

L

'.W 

Sx(f) dj' + 
f,+W 

Sx(f) df
_1,_w	 ff, - W

2
X	 (8.175)

where a 2 
is the variance of the zero-mean narrow-band process X(t).X

PROPERTY 4

The in-phase component X,(t) and the quadrature component X,(t) of the
narrow-band random process X(t) are uncorrelated with each other.

To prove this property, we first observe from Eqs. 8.172 and 8.173 that
the modulated processes X I (t) and X2 (t) are obtained from X(t) by the
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use of a pair of carriers, cos(2nft) and sin(21rfl), that are in-phase-

quadrature. Hence, X 1 (t) and X2(t) are orthogonal to each other (see

Example 19). Since they both have zero mean, they are also uncorrelated

with each other. Accordingly, the in-phase component X I(t) and the quad-

rature component XQ(t), low-pass filtered versions of X1 (t) and X,(r), are

also uncorrelated with each other.

PROPERTY 5

If a narrow-band random process X(t) is Gaussian, then the in-phase com-
ponent X,(t) and the quadrature component XJt) are also Gaussian.

This property follows directly from the definition of a Gaussian process.

Specifically, we observe from Fig. 8.24a that both the in-phase component

X1(t) and the quadrature component X,,(t) are derived by performing linear

operations on the narrow-band random process X(t). If therefore X(t) is

Gaussian, then so are X1(t) and XQ(t).

These properties have an important implication. Specifically, if the nar-

row-band random process X(t) is Gaussian, then the in-phase component

X,(t) and the quadrature component XQ(t) are uncorrelated with each other

(Property 4) and they are both Gaussian (Property 5). Consequently, XI(t)

and XQ(t) are statistically independent of each other. Let Y and Z denote

the Gaussian random variables obtained by observing the Gaussian proc-

esses X j (t) and XQ (t) at some fixed value of time t. The probability density

functions of these two random variables with zero mean and variance a 2X

(Property 3) are

My) =	

I	
exp	

Y,	 (8.176)
2 a `X

Z2
fz(z) = 72==	 (8.177)"^ exp^ 

2c A2,

With Y and Z representing statistically independent random variables, the

joint probability density function of Y and Z is equal to the product of

their individual probability density functions. as shown by

fy 'A y ' Z)	 fy(y).fZ(Z)

exp — 

v 2 

+ - 

Z2)	

(8.178)x	
2c'

Another important implication of these properties is that we may con-

struct a narrow-band Gaussian process X(t) of prescribed statistical char-

acteristics by means of the scheme shown in Fig. 8.24b. Specifically, we

start with low-pass Gaussian processes Xl (t) and X,2 (t) derived from two

independent sources. These two processes have zero mean and the same

variance as the process X(t). The processes X I (t) and Xc) (t) are modulated
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V.

individually by a pair of sinusoidal carriers that are in phase quadrature.
The resulting modulated processes are then added to produce the narrow-
band Gaussian process X(t).

......................................................................................................................

EXAMPLE 22

Consider a noise process that is both Gaussian and white; the process is
said to be white in the sense that it has a constant power spectral density
(see Section 4.7). A white Gaussian noise process represents the ultimate
in "randomness" in the sense that any two of its samples are statistically
independent. Suppose then a white Gaussian noise process of zero mean
and power spectral density No/2 is passed through an ideal narrow-band
filter, resulting in a narrowband Gaussian process X(t) with zero mean and
power spectral density as shown in Fig. 8.26a. The requirement is to find

(b)
Figure 8.26
(a) Power spectral density of a narrow-band Gaussian process. (b) Power spectral
density of in-phase and quadrature components.
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the statistical characteristics of the in-phase and quadrature components

of the process X(t).

Following the procedure described previously (see Property 2), we find

that the power spectra of the in-phase component XI (t) and the quadrature

component XQ(t) are as shown in Fig. 8.26b.

From Fig. 8.26 we deduce that the processes X(t), Xjt), and X,(t)

have a common variance:

a'v = 2 No WI

Moreover, they all have zero mean. Hence, the probability density func-

tions of the random variables Y and Z, obtained by observing Xm) and

X,) (t) at some fixed time, are:

Y
f Y( V ) exp

	

2 V n ̂V, W	 4N,W

I
exp

	

fZ( Z ) = 
2,/ 

1 
nNOW	 4N,W

...........................................................................................................................

ExEmw 14 Find the probability density function of a random variable

obtained by observing the narrow-band random process X(r) of Example

22 at some fixed time.

ExmcwE is Continuing with Example 22, do the following:

(a) Find the autocorrelation function of the narrow-band random proc-

ess X(t).

(b) Find the autocorrelation functions of the in-phase component Xj(t)

and quadrature component XQ(t).

EXERcjsE is Consider a narrow-band random process XQ) whose power

spectral density Sx(f) is symmetric with respect to the midband frequency

f,. Show that, for this special case, the power spectral densities of the in-

phase component XI(t) and quadrature con. ponent XQ(t) are:

	

2Sx(f	 — f,)	 —W < f< W (8.179)
S."(f) = SX'(f) = to,	 otherwise

where 2W is the bandwidth of X(t).
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.......... 8.14 ENVELOPE AND PHASE OF NARROW-BAND RANDOM PROCESS

As with narrow-hand signals. we may also represent a narrow-band random
proce^ ,, X(t) in terms of its envelope and phase components. Specifically,

we mav write

X(t) = A(t) cos[2,7f,t + 0(t)]	 (8. 10)

where A(r) is the envelope and 45 (t) is the phase of X(t). These two

components are related to the in-phase component X 1 (t) and quadrature

component Xv(t) of the process X(t) as follows

A (I) = [ .X" ( t ) + X' ( t ) ] 1 2
1	 Q	 (8.181)

(1)(1) = tan-' ( 
XJtQ) )	

(8.182)

Let R and T denote the random variables obtained by obser
v
ing the

random processes A (t) and 00). respectively, at some fixed time. Let Y
and Z denote the random ^ariables obtained by observing the related
processes X1 (t) and Xv(t). re^pectively, at the same time. The probability

densitN functions of R and T ma^ be related to those of Y and Z as follows.

The joint-probabilit% densit^ function of Y and Z is given by Eq. 8.178.

Accordingly. the joint probability that the random variable Y lies between

TY,	 0)

Figure 8.27
Illustrating the coordinate system for representation of a narrowband random
process: (a) In terms of in-phase and quadrature components, and (W in terms of
envelope and phase.
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y and y + dy and that the random variable Z lies between z and z 
+ dz

(i.e., the pair of random variables Y and Z lies inside the shaded area of

Fig. 8.27a) is given by

fy,z(y, z) dy dz = ;;-'-2 exp 

(_ y^ + 

2 

Z2) 
dy dz	 (8.183)

27rarx	 2arX

However, from Fig. 8.27 we observe that

y = r cosv	 (8.184)

and

	

z = r sinv	 (8.185)

where r and V are sample values of the random variables R and V1, re-

spectively. Also, in a limiting sense, we may equate the two areas shown

shaded in parts a and b of Fig. 8.27, and so write

dy dz = r dr dv	
(8.186)

Therefore, substituting Eqs. 8.184 through 8.186 in 8.183, 
we find that the

probability that the random variables R and VJ lie inside the shaded area

of Fig. 8.27b is equal to

r	
r2,,)

-2 exp	 dr dv

2ncx	 X

That is, the joint probability density function of R and P is

fR, p(r, y,) =
	 r 

exp 
(_ r' )	

(8.187)

27t 0,2
	

2a2X	 X

This probability density function is independent of the angle V, which

means that the random variables R and P are statistically independent.

We may thus express f x (r, V/) as the product Of Mr) and f y4v). In

particular, the random variable P is uniformly distributed inside the range

0 to 27r, as shown by

	

1

2 

1

7r	

0 -- V -_ 27r	
(8.188)

	

0,	 elsewhere
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1.

Figure 8.28

Rayleigh distribution.

This leaves the probability density function of R as

-p( — 
2

mo = 110,

r > 0

elsewhere	
(8.189)

where C7 2 
is the variance of the original narrow-band process X(t). Ax

random variable having the probability density function of Eq. 8.189 is
said to be RaYleigh-distributed."

For convenience of graphical presentation, let

rV	
(8.190)

and

f,(U) = o,.%,fR(r)
	

(8.191)

Then we may rewrite the Rayleigh distribution of Eq. 8.189 in the start-
dardized form

exp

MU) =	 (__2

0 1

V > 0

elsewhere	
(8 ^ 192)

" 
The Rayleigh distribution is named after the English physicist J. W. Strutt, Lord

Rayleigh.
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Equation 8.192 is plotted in Fig. 8.28. The peak value of the distribution

fy(v) occurs at v = I and is equal to 0.607. Note also that, unlike the
Gaussian distribution, the Rayleigh distribution is zero for negative values

of v. This is because an envelope function can only assume positive values.

....................................................................................

PROBLEMS

P8.1 Probability Theory

Problem 1 Consider a deck of 52 cards, divided into 4 different suits,

with 13 cards in each suit ranging from the two up through the ace. Assume

that all cards are eqiially likely to be drawn.

(a) Suppose that a single card is drawn from a full deck. What is the

probability that this card is the ace of diamonds? What is the probability

that the single card drawn is an ace of any one of the four suits?

(b) Suppose next that two cards are drawn from a full deck. What is

the probability that the cards drawn are an ace and a king, not necessarily

of the same suit?

P8.2 Random Variables

Problem 2 Consider a random variable X that is uniformly distributed

between the values 0 and I with probability 1/4, takes on the value 
1 with

probability 1/4, and is uniformly distributed between the values 1 and 2

with probability 1/2. Determine the distribution function of the random

variable X.

Problem 3 Consider a random variable X defined by the double-expo-

nential density:

	

fx(x) = a exp(— bIxI)	 -- < x < -

where a and b are positive constants.

(a) Determine the relationship between a and b so that fx(x) is a prob-

ability density function.

(b) Determine the corresponding distribution function Fx(x).

(c) Find the probability that the random variable X lies between 1

and 2.

Problem 4 A 
random variable R is Rayleigh distributed with its proba-

bility density function given by

—	
_ r') ,	 0 , r <

f^'(,.) = I " e.p(
b	 2b
o '	otherwise
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(a) Determine the corresponding distribution function &(r).
(b) Show that the mean of R is equal to V—b7r/2.
(c) What is the mean-square value of R?
(d) What is the variance of R?

Problem 5 Consider a uniformly distributed random variable Z defined
by

	

fz(z) = 2 7r	
0 -- z -_ 2 7r

	

10,	 otherwise

The two random variables X and Y are related to Z by

X = sin(Z)

and

Y = cos(z)

(a) Determine the probability density functions of X and Y.
(b) Show that X and Y are uncorrelated random variables.
(c) Are X and Y statistically independent? Why?

Problem 6 A random variable Z is defined by

Z = X + y

where X and Y are statistically independent. Given that

fx(x) = 
exp( –x),	 0 -- x -- -

to,	 otherwise

and

My) = 
2 exp( – 2y),	 0 -- y -- x

10,	 otherwise

determine the probability density function of Z.

P8.3 Gaussian Distribuldon

Problem 7

(a) The characteristic function of a random variable X is denoted by
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.k,(v). Show that the nth moment of X is related to Ox(v) by

	

EIX']	 —j)' 
d^ 

OX(V)
dv'	 1_^

(b) Show that the characteristic function of a Gaussian random variable

X of mean rnx and variance or lx is

0AU) = exp( jv-x — WC 2)X

(c) Show that the nth central moment of this Gaussian random variable

is

	

1 X 3 x 5 ... (n — I)or l,	 for n even

	

EJ(X — mx)'] = 
tO,	 for n odd

Problem 8 A Gaussian random variable has zero mean and a standard

deviation of 10 V. A constant voltage of 5 V is added to this random

variable.

(a) Determine the probability that a measurement of this composite

signal yields a positive value.

(b) Determine the probability that the arithmetic mean of two inde-

pendent measurements of this signal is positive.

Problem 9 A random variable Z is defined by

Z	

X,

where the X, are identically distributed and statistically independent ran-

dom variables. It is given that the probability density function of each X,

is

I ,	 - i -- X, -- I
fX (X) = 10,	 otherwise

(a) Determine the probability density function fz(z).

(b) Show that fl(z) is closeiv approximated by a Gaussian probability

density function with zero mean and variance 1/3. as predicted by the

central limit theorem.

PSA Transformation of Random Variables

Problem 10 A Gaussian random variable X of zero mean and variance

oriv is transformed by a piecewise-linear rectifier characterized by the input-



484 PROBABILITY THEORY AND RANDOM PROCESSES

Y=X

0 /-X

Figure P8.1

output relation (see Fig. P8.1):

y = I

X, X > 0
0,	 X -- 0

The probability density function of the new random variable Y is described
by

0,	 y < 0

fyO,)	
U(f),	 y = 0

exp	 y > 0V27rcrx

(a) Explain the reasons for this result.
(b) Determine the value of the constant k by which the delta function
6(f) is weighted.

P8.5 Stationarity

Problem 11 Consider a random process X(t) defined by

X(t) = sin(27zFt)

in which the frequency F is a random variable with the probability density
function

= I I ,
	 0 -- V -- W

M v) W
0,	 otherwise

Show that X(t) is nonstationary. (To avoid confusion, we have used v to
denote frequency in place of the standard symbol f.)

Hint: Examine specific sample functions of the random process X(t) for
the frequency v = W/4, W12, and W, say.
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Problem 112 Consider the sinusoidal process

X(t) = A cos(2nft)

where the frequency f, is constant and the amplitude A is uniformly dis-
tributed:

	

fA (a) ^ 
1,	 0 -- a -- I

	

10,	 otherwise

Determine whether or not this process is stationary in the strict sense.

Problem 13 A random process X(t) is defined by

X(t) = A cos(21rf,t)

where A is a Gaussian random variable of zero mean and variance a2A
This random process is applied to an ideal integrator, producing an output

Y(t) defined by

Y(t) = 
f 

X(r) dT

(a) Determine the probability density function of the output Y(t) at a

particular time tk.

(b) Determine whether or not Y(t) is stationary.

P8.7 Mean, Correlation, and Covariance Functions

Problem 14 Prove the following two properties of the autocorrelation

function Rx(T) of a random process X(i):

(a) If X(t) contains a dc component equal to A, then Rx(T) will contain

a constant component equal to A'.

(b) If X(t) contains a sinusoidal component, then Rx(r) will also contain

a sinusoidal component of the same frequency.

Problem 15 The square wave x(i) of Fig. P8.2 of constant amplitude A,
period To, and delay td, represents the sample function of a random process

X(t). The delay is random, described by the probability density function

	

fT,(td) 

= ` I	 — 

i TO -- td	 TO

	

10—T	 otherwise
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Figure P8.2

(a) Determine the probability density function of the random variable

X(tj obtained by observing the random process X(t) at time 1k.

(b) Determine the mean and autocorrelation function of X(t) using

e nse mble-ave raging.

(c) Determine the mean and autocorrelation function of X(t) using

time-averaging.

(d) Establish whether or not X(t) is wide-sense stationary. In what sense

is it ergodic?

Problem 16 A binary wave consists of a random sequence of symbols 1

and 0, similar to that described in Example 13, with one basic difference:

symbol 1 is now represented by a pulse of amplitude A volts and symbol

0 is represented by zero volt. All other parameters are the same as before.

Show that for this new random binary wave X(t), the autocorrelation

R^(r)

NOW,

----- -------

	 - - - - — - - - - - - - ---'

-ST	 -4T	 -3T	 -2T	 0
	

r	 2T	 3T	 4T	 ST

Figure P8.3
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function is

	

A 2	 A'	 T) ,
+	

L	
ITI < T

	Rx(r) = 4	 4	 T

	

A	
ITI -_ T

4

Problem 17 A random process Y(t) consists of a dc component of

V-312 V, a periodic component g,(t), and a random component X(t). The

autocorrelation function of Y(t) is shown in Fig. P8.3

(a) What is the average power of the periodic component gp(l)?

(b) What is the average power of the random component X(t)?

P8.8 Random Process Transmission Through Linear Filters

Problem 18 A random telegraph signal X(t), characterized by the au-

tocorrelation function

Rx(r) = exp(-2vlrl)

where v is a constant, is applied to the low-pass RC filter of Fig. P8.4.
Determine the autocorrelation function of the random process at the filter

output.

Problem 19 Let X(t) be a stationary process with zero mean and auto-

correlation function R .,(T). We are required to find a linear filter with

impulse response h(t), such that the filter output is X(t) when the input is

white noise of zero mean and autocorrelation function (NO 12) 6(T). De-

termine the condition that the impulse response h(t) must satisfy in order

to achieve this requirement.

R

	

Input	 C	 Output

0

Figure PGA
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P8.9 Power Spectral Density

Problem 20 The output of an oscillator is described by

X(t) = A cos(2nFt + 19),

where A is a constant, and F and 0 are independent random variables.
The probability density function of F is denoted by MV), and that of e is

defined by

	

fe(o) 

= 1
2 1 7r	

0 -_ 0 -- 27t

	

0,	 otherwise

Determine the power spectral density of X(t). What happens to this power
spectrum when the frequency v assumes a constant value? (To avoid
confusion, we have used v to denote frequency in place , of the standard

symbol f.)

Problem 21 Continuing with the random binary wave considered in Prob-
lem 16, show that the power spectral density of the wave equals

Sx(f) = A 2 6(f) + A'T 
sinC2(f T)

4	 4

What is the percentage power contained in the dc component of the binary
wave?

Problem 22 Given that a stationary random process X(t) has an auto-
correlation function Rx(r) and a power spectral density Sx(f). show that:

(a) The autocorreliition function of dX(t)ldt, the first derivative of X(t),
is equal to minus the second derivative of Rx(r).

Figure P8.5
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Figure P8.6

(b) The power spectral density of dX(t)ldt is equal to 4,2f2SX(f).

Problem 23 Consider a wide-sense stationary process X(t) having the

power spectral density Sx(f) shown in Fig. P8.5. Find the autocorrelation
function Rx(r) of the process X(t).

Problem24 The power spectral density of a random process X(t) is shown
in Fig. P8.6.

(a) Determine and sketch the autocorrelation function Rx(r) of X(t).
(b) What is the dc power contained in X(t)?

(c) What is the ac power contained in X(t)?

(d) What sampling rates will give uncorrelated samples of X(I)? Are
the samples statistically independent?

PS-10 Cross-Correlation Functions

Problem 25 Consider two linear filters connected in cascade as in Fig.

P8.7. Let X(t) be a wide-sense stationary process with autocorrelation

function Rx(r), ne random process appearing at the first filter output is
V(t) and that at the second filter output is Y(t).

(a) Find the autocorrelation function of Y(t).

(b) Find the cross-correlation function Rvy(r) of V(r) and Y(t).

xfr)_4:^D	^IYII)
Figure P11.7
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Problem 26 A wide-sense Stationary process X(1) is applied to a linear

time-invariant filter of impulse response h(t), producing an output Y(t).

(a) Show that the cross-correlation function Ryx(r) of the output Y(t)

and input X(t) is equal to the impulse response h(r) convolved with the

autocorrelation function Rx(T) of the input, as shown by

Ryx(r) = f h(u)Rx( ,r — u) du

(b) Show that the second cross-correlation function Rx,.(r) is

Rxy(r) = L h(—u)Rx(r — u) du

(c) Assuming that X(t) is a white noise process with zero mean and

power spectral density No/2, show that

RyX(T) = No h(T)
2

Comment on the practical significance of this result.

P8.11 Cross-Spectral Densities

Problem 27 Let Sxy(f) and Syx(f) denote the cross-spectral densities of

two wide-sense stationary processes X(t) and Y(t). Show that Sxy(f) and

Syx(f) are related to each other as in Eq. 8.154.

P8.12 Gaussian Processes

Problem 28 A stationary, Gaussian process X(t) with zero mean and

power Spectral density SX) is applied to a linear filter whose impulse

response h(t) is shown in Fig . P8.8. A sample Y is taken of the random

process at the filter output at time T.

(a) Determine the mean and variance of Y.

(b) What is the probability density function of Y?

0

Figure P8.8
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Figure P8.9

Problem 29 Continuing with the situation described in Problem 28, de-

teranne the autocorrelation function and power spectral density of the

Gaussian process produced at the filter output.

P8.13 Narrow-band Random Process

Problem 30 The powe-r spectral density of a narrow-band random process

X(t) is as shown in Fig. P8.9. Find the power spectral densities of the in-

phase and quadrature components of X(t), assuming that f, = 5 kHz.

Problem 31 Assume that the narrow-band random process X(t) de-

scribed in Problem 30 is Gaussian with zero mean and variance u2x.

(a) Calculate ori.

(b) Determine the joint probability density . function of the random vari-

ables Y and Z obtained by observing the in-phase and quadrature com-

ponents of X(t) at some fixed time.

P8.14 Envelope and Phase of Narrow-band Random Process

Problem 32 Consider a narrow-band Gaussian process X(t) with-zero

mean and pow^r spectral density Sx(f) as shown in Fig. 8.26a.

(a)- Find the probability density function of the envelope of X(t).

(b) What are the mean and variance of this envelope?

Problem 33 Continuing with Problem 32, find the probability of the event

R -- A_ where R is the random variable obtained by observing the envelope

of the narrow-band process X(t) at some fixed time, and A, is a prescribed

positive constant. Plot this probability as a function of the ratio

A,2

4 WNO

where W and N^ are defined in Fig. 8.26a.





............ CHAPTER 9

I

Te term "noise" is shorthand for random fluctuations of power in
electrical systems. As such. noise is the limiting factor on the power re-
quired to transport information-bearing signals practically over all com-
munication channels. To develop an understanding of this basic issue,
we need to examine how noise affects the demodulation process in-
tended to recover some message signal in a receiver. Another matter of
related interest is the comparison of the noise performances of different
modulation—de modulation schemes. In this chapter, we study the noise
performance of analog (continuous-wave) modulation schemes. We de-
fer discussion of the noise performance of digital modulation schemes until

493
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Chapter 10, 
since its theoretical development follows a different approach.

To undertake an introductory treatment of the noise performance of

analog communication receivers, we may assume that the channel noise or

front-end receiver noise is white. 
This simplifying assumption not only is

justified on physical grounds, but it also enables us to obtain a basic un-

derstanding of the way in which noise affects the performance of different

receivers. We begin the study by describing signal-to-noise ratios that pro-

vide the basis for evaluating the noise performance of an analog commun-

ication receiver.

.......... 9.1 MPJAL-TO-NOISE JM770S

To carry out the noise analysis of analog modulation systems, we obviously

need a criterion that describes in a meaningful way the noise performance

of the system under study. In the case of analog modulation systems, the

customary practice is to use the output signal-to-noise ratio 
as an intuitive

measure for describing the fidelity with which the demodulation process

in the receiver recovers the original message from the received modulated

signal in the presence of noise. output signal-to-noise ratio is defined as

the ratio of the average power of the message signal to the average power

of the noise, both measured at the receiver output. Let (SNR)o denote the

output signal-to-noise ratio, expressed as

average power of message signal at the receiver ouTut
(SNR)o 

=	
average power of noise at the receiver output (9.1)

The output signal-to-noise ratio is unambiguous as long as the recovered

message and noise at the demodulator output are additive. This require-

ment is satisfied exactly in the case of li.near receivers using coherent de-

tection, and approximately in the case of nonlinear receivers (e.g., using

envelope detection or frequency discrimination) provided that the average

input noise power is small compared with the average carrier power.

The calculation of the output signal-to-noise ratio (SNR)o involves the

use of an ideaUzed receiver model, 
the details of which naturally depend

on the channel noise and the type of demodulation used in the receiver.

We will have more to say on these issues in subsequent sections of the

Chapter. For the present, we wish to point out that knowledge of (SNR)o

by itself may he insufficient, particularly when we have to compare the

output signal-to-noise ratios of different analog modulation-demodulation

systems. In order to make such a comparison meaningful, we introduce

the idea of a baseband transmission model, 
as depicted in Fig. 9.1. In this

model, two assumptions are^made:

1. The transmitted or modulated message signal power is fixed.

2. The baseband low-pass filter passes the message signal, and rejects out-

of-band noise.
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Message signal with	
Low-pass filter
of bandwidth

the sa,,ne power as the

	

	 equal to	 Output

bandwidth

modulated wave	 the ^essage

Channel noise

Figure 9.1

The baseband transmission of a message signal for calculating the channel signal-
to-noise ratio..

Accordingly, we may define the channel signal-to-noise ratio, referred to
the receiver input as

(SNR)c	 average power of the modulated message signal

average power of noise measured in the message bandwidth

(9.2)

This ratio is independent of the type of modulation or demodulation used.

The channel signal-to-noise ratio of Eq. 9.2 may be viewed as a frame
of reference for comparing different modulation systems. Specifically, we
may normalize the noise performance of a specific modulation-demodu-
lation system by dividing the output signal-to-noise ratio of the system by
the channel signal-to-noise ratio. We may thus define a figure of merit for
the system as

	

Figure of merit = 
(SNR)O	

(9.3)
(SNR),

Clearly, the higher the value that the figure of merit has, the better the
noise performance of the receiver.

.............. 9.2 AM RECEIVER MODEL

It is customary to model channel noise as a sample function of a' while
noise process' whose mean is zero and whose power spectral density is
constant. We will denote the channel noise by w(t), and denote its power
spectral density by Nol^ defined for both positive and negative frequencies.
In other words, No is the average noisepowerper unit bandwidth measured
at the front end of the receiver.

'To be complete, the channel noise process is usually modeled as white and
Gaussian. The Gaussian assumption relates to the probability distribution of a
sample (random variable) drawn from the process. The Gaussian assumption does
not enter the calculation of average noise power; hence, we do not need to involve
it in this chapter, except for a situation described in Section 9.4 dealing with the so-
called threshold phenomenon in amplitude modulation.
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The received signal consists of an amplitude modulated signal component
s(t) corrupted by the channel noise w(t). In order to limit the degrading
effect of the noise component w(t) on the signal component s(t), we may
pass the received signal through a band-pass filter whose bandwidth is just
large enough to accommodate s(t). In an AM receiver of the superhetro-
dyne type, this filtering is performed in two sections of the receiver: a radio
frequency (RF) section and an intermediate frequency (IF) section; for a
description of an AM receiver, see Section 7.9. Figure 9.2a depicts an
idealized receiver model for amplitude modulation. The IFfilter shown in
this model accounts for the combination of two effects: (1) the filtering
effect of the actual IF section in the superhetrodyne AM receiver, and (2)
the filtering effect of the actual RF section in the receiver translated down
to the IF band. Typically, however, the IF section provides most of the
amplification and selectivity in the receiver.

The IF filter has a bandwidth that is just wide enough to accommodate
the bandwidth of the modulated signal s(t). The IF filter is usually tuned
so that its midband frequency is the same as the carrier frequency of the
modulated signal s(t). An exception to this is the single-sideband modu-
lated wave, as will be explained later. For convenience in signal-to-noise
analysis, we assume that the IF filter in the model of Fig. 9.2a has an ideal
band-pass characteristic, as shown in Fig. 9.2b, where f, is the midband
frequency of the filter, and B refers to the transmission bandwidth of the
modulated signal s(t).

The composite signal x(t), at the IF filter output, is defined by

	

x(t) = s(t) + n(t)	 (9.4)

Output

sit) +	 IF	 4111	
Demodulator	

sklow

-!aL	 H
'W

Ir-11
Roure 9.2
Modeling of an AM remiver. W Model. W Idealized characteristic of IF filter.
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where n(t) is a band-limited version of the white noise w(t). In particular,
n(t) is the sample function of a noise process N(t) with the following power

spectral density:

AN	
— 

B	 B

SN(f) ^	 2 ,
	

f,	
2 
< P < f, + 

2	
(9.5)

0,	 otherwise

The band-limited noise n(t) may be regarded as being narrow-band, be-

cause the IF filter has a bandwidth that is usually small compared with its

midband frequency.

The modulated wave s(t) consists of a band-pass signal, the exact de-

scription of which depends on the type of modulation used. To perform a

noise analysis of the receiver, we need a corresponding representation for

the narrow-band noise n(t). From the theory presented in Sections 8.13

and 8.14 on narrow-band random processes, we have two methods for the

time representation of n(t). In the first method, the narrow-band noise

n(t) is represented in terms of its in-phase and quadrature components.

This method is well-suited for the noise analysis of AM receivers using

coherent detection; it may also be used for AM receivers using envelope

detection provided that the received signal-to-noise ratio is high enough.

In the second method, the narrow-band noise n(t) is represented in terms

of its envelope and phase; this method is well-suited for the noise analysis

of FM receivers.

9.3 SIGNAL-TO-NOISE RATIOS FOR COHERENT RECEPTION

We begin the noise analysis by evaluating the output and channel signal-

to-noise ratios for an AM receiver using coherent detection, with an in-

coming DSBSC- or SSB-modulated wave. The use of coherent detection

requires multiplication of the IF filter output x(t) by a locally generated

sinusoidal wave cos(21rft) and then low-pass filtering the product, as in

Fig. 9.3. For convenience, we assume that the amplitude of the locally

generated sinusoidal wave is unity. For this demodulation scheme tb op-

erate satisfactohly, however, it is necessary that the local oscillator be

synchronized both in phase and frequency with the oscillator generating

the carrier wave in the transmitter. We assume that this synchronization

has been achieved.

We show presently that coherent detection has the unique feature that

for any input signal-to-noise ratio, an output strictly proportional to the

original message signal is always present. It is this property of coherent

detection, namely, that the output message component is unmutilated and

the noise component always appears additively with the message irrespec-

tive of the input signal-to-noise ratio, that distinguishes coherent detection

from all other demodulation techniques.
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Product	 Lo. 
p-,oz., P 'c'

c.s (2r,1, 1)

L,1
o-11alor

Figure 9.3
Model of DSBSC receiver using coherent detection.

DSBSC RECEIVER

Consider a DSBSC wave defined by

s(l) = A, cos(2nf,t)m(t)	 (9.6)

where Ac cos(27rf,t) is the carrier wave and m(t) is the message signal.

Typically, the carrier frequency f, is greater than the message bandwidth
W. Accordingly, we find that the average power of the DSBSC modulated

wave s(t) equals A c2 P12, where A, is the carrier amplitude and P is the
average power of the message signal m(t). This result follows directly from
the description of a modulated process as in Eq. 9.6. We also note that
the transmission bandwidth B of the DSBSC modulated wave s(t) equals

twice the message bandwidth W.
With a noise power spectral density of No/2, defined for both positive

and negative frequencies, the average noise power in the message band-

width W is equal to WNo. The channel signal-to-noise ratio of the system

is therefore

A,-'p
(SNR)(,f)sB = -
	 ( 9.7)

2WN,)

Next, we determine the output signal-to-noise ratio of the system. Using
the narrow-band representation of the filtered noise n(t), the total signal
at the coherent detector input may be expressed as:

x(t) = s(t) + n(t)

= A, cos(27rf,t)m(t) + n 1 (t) cos(21rf,t) — n t,,(t) sin(27Tf,t)	 (9.8)

where n 1 (t) and n Q (t) are the in-phase and quadrature components of
n(t), with respect to the carrier cos(27 rf,t), respecti v ely. The output of the
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product-modulator component of the coherent detector is therclore

VM = x(t) cos(2;z.f,t)

' A M(t) +	 + !,[A , m(i) + lI,(I)J cos(47-J,t)

'A,n(,(f) sin(47rf ,.t)	 ().9)2

The low-pass filter in the coherent detector rerno^es the high- fre(l LIC nC^
components of u(t), yielding it receiver output

y ( f ) = 2' A , 171 (t ) + 2'11,(o	 (9. io)

Equation 9. 10 indicates that

L The message m(t) and in-phase noise component n l (t) of the narrow-

band noise n(t) appear additnely at the recei%er output.

2. The quadrature component n,(t) of the noise n(t) i s, completely rejected
h^ the coherent detector.

M

^i	 0 ^1

(1, 1

Figure 9.4.
Noise analysis of DSBSC modulation system using coherent detection. (a) Power
spectral density of narrow-band noise n(t) at IF filter output - Jb) Power spectral
density of in-phase com, ponents, n,(t) and quadiature component %n) of no;se n(t).
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The message signal component at the receiver output equals A,m(t)12.

Hence, the average power of message signal Lit the receiver output is equal

to A21`14, where P is the average power of the original message signal

rn (t) 

*The noise component at the receiver output equals n j (t)/2. Hence, the

power spectral density of the output noise equals one quarter that of ?1,0)

To calculate the average power of the noise at the receiver output. we first

determine the power spectral density of the in-phase noise component nj(t).

In order to accommodate the upper and lower sidebands ot the modulated

wave s(t), the IF filter has a bandwidth B equal to 2W, tw ice the message

bandwidth. The power spectral densit^ S, ( j ) of the narrow -band noise

n(t) thus takes on the ideal form shown in Fig. 9.4a. Hence, the power

spectral density of n 1 (t) is as shown in FiL. 9.4b (see Example 22 of Chapter

8). Evaluating the area under the cur^e of power spctral density of Fig.

9.4b and multiplying the result by 1 . we find that the average noise power

at the receiver output equals WN,12.

Thus dividing the average power of the message signal by the average

power of the noise at the receiver output, we find that the output signal-

to-noise ratio for DSBSC modulation is gi^en by

A" 
P

(SNR)0.DS8 
= -
	 (9.11)

2"A,,

Next, using Eqs. 9.7 and 9.11, we obtain the figure of merit

(SNR),,	 (9.12)
(SNR),

EXERCISE I Consider Eq. 9.8 that defines the signal x(t) at the detector

input of a coherent DSBSC receiver. Show that:

(a) The average power of the DSBSC modulated signal component s(l)

is A,2P/2.

(b) The average power of the filtered noise component n(t) is 2WNo.

(c) The signal-to-noise ratio at the detector input is

A C2 P
(SNR)1.DSJ9 

= ^

4WN,

(d) The input and output signal-to-noise ratios of the.-detector are re-

lated by

(SNR)I.Dsa	 (SNR)O. L)sB
2

Give physical reasons for this result.
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SSB RECEIVER

Consider next the case of a coherent -receiver with an incoming SSB wave.
We assume that only the lower sideband is transmitted, so that we may
express the modulated wave as

s ( t ) = As cos(27zf,i)m(t) + ^-' sin(27rf,t)tij(j)	 (9.13)2	 2

where rh(l) is the Hilbert transform of the message signal in(t). We may

make the following observations concerning the in-phase and quadrature
components of s(t) in Eq. 9.13:

1. The two components m(t) and th(t) are uncorrelated with each other.
Therefore, their power spectral densities are additive,

2. The Hilbert transform th(t) is obtained by passing in(t) through a linear
filter with transfer function —j sgn(f). The squared magnitude of this
transfer function is equal to one for all f. Accordingly, m(r) and ?h(t)
have the same average power.

Thus, proceeding in a manner similar to that for the DSBSC receiver, we
find that the in-phase and quadrature components of the SSB modulated
wave s(t) contribute an average power of A'P18 each. The average power
of s(t) is therefore A '2 P14. This result is half 'that in the DSBSC case, A hich
is intuitively satisfying.

The average noise power in the message bandwidth 
W is Thus the

channel signal-to-noise ratio of a coherent-receiver with SSB modulation
is

	

(SNR)c.ss,, = A'_'P	
(9.14)4WN,,

The transmission bandwidth B = W. The midband frequency of the
power spectral density SN(f) of the narrow-band noise n(t) differs from
the carrier freqhency f, by W/2. Therefore, wc may express n(t) as

n(t) = n,(t) cos 27r(f, — E) tj — n,(t) sin 21r f,	 IV
1	 2	 1 (	 I ) 

t 

1	
(9.15)

The output of the coherent detector, due to the combined influence of the

modulated signal s(t) and noise n(t), is thus briven by

Y( t ) = ^-' M(O + Jn,(t) cos(7rWI) + 3n,(I) sin(7rWi)	 (9.16)4
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As expected, we see that the quadrature component rh(t) of the modulated

message signal s(t) has been eliminated from the detector output, but

unlike the case of DSBSC modulation, the quadrature component of the

narrow-band noise n(t) now appears at the output.

The message component in the receiver output is A,m(t)14 so that the

average power of the recovered message is A 2 P/ 16. The noise component

in the receiver output is [n i (t) cos(7rW0 + nv(t) sin(7rWt)1/2. Evaluating

the average power of the output noise so defined, we find that it is equal

to WN,,14 (see Exercise 2). Accordingly, the output signal-to-noise ratio

of a ^ystem using SSB modulation in the transmitter and coherent detection

in the receiver is given by

A2P
(SNR),, ss H =	 '	 (9.17)

4 WN,,

Hence, from Eqs. 9.14 and 9.17, the figure of merit of such a system is

(SNR)"	 (9.18)
^SNR),

Comparing Eqs. 9.12 and 9.18, we conclude that insofar as noi . se per-

formance is concerned, DSBSC and SSB modulation systems using co-

herent detection in the receiver ha\e the same performance as baseband

transmission. The only effect of the modulation process is to translate the

message signal to a different frequenc^ band.

EXERCISE 2 Consider the two elements of the noise component in the

SSB receiver output of Eq^ 9.16.

(a) Sketch the power spectral density of the in-phase noise component

n i (t) and quadrature noise component nQ(t).

(b) Show that the average power of the modulated noise n'(t) cos(71wt)

or nQ (1) sin(nWt) is WNo/2.

(c) Hence, show that the average power of the output noise is WNo14-

EXERCISE 3 The signal x(t) at the detector input of a coherent SSB

receiver is defined by

X(t) = SW + n(t)

where the signal component s(t) and noise component n(t) are themselves

defined by Eqs. 9.13 and 9.15, respectively. Show that:

(a) The average power of the signal component s(I) is A,P/4.

(b) The average power of the noise component n(t) is WNo.
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(0 The signal-to-noise ratio at the detector input is

-	

A2p
SNR

	

	
C

4WN,,

(d) The input and output signal-to-noise ratios are related by

(SNR) j ssn = (SNR)0'SS1?

............... 9.4 NOISE IN AM RECEIVERS USING ENVELOPE DETECTION

In a standard amplitude modulated (AM) wave both sidebands and the

carrier are transmitted. The AM wave may be written as

s(t) = A c[I + k^m(tfl cos(27rfct)	 (9.19)

where A, cos(27,f,t) is the carrier wave, m(t) is the message signal, and k.

is a constant that determines the percentage modulation. In this section,

we evaluate the noise performance of an AM receiver using an envelope

detector. As explained in Section 7. 1, an envelope detector consists simply

of a nonlinear device (usually a diode) followed by a low-pass RC filter.
From Eq. 9.19, the average power in the modulated message signal s(t)

is equal to A2(1 + k,2P)12, where P is the average power of the message

signal. With an average noise power of WN 0 in the message bandwidth,

W, the channel signal-to-noise ratio is therefore

	

( SNR )C.AM = 
A,2 (l + k2P)	

(9.20)
2WN,

The received signal x(t) at the envelope detector input consists of the

modulated message signal s(t) and narrow-band noise n(t). Representing

n(t) in terms of its in-phase and quadrature components, namely, nl(t)
and nQ (t), we may express x(t) as

x(t) = s(t) + n(t)

^ [A, + A,k,m(t) + ni (t)] cos(27rf,t) — nQ (t) sin(27ift)	 (9.21)

It is informative to represent the components that comprise the signal x(t)

by means of phasors, as in Fig. 9.5. From this phasor diagram, the receiver

output is obtained as

y(t) = envelope of x(t)

= ([A c + Ack,m(t) + ri l (t)J I + n'(t)1"2	 (9.22)Q

The signal y(t) defines the output of an ideal envelope detector. The phase

of x(t) is of no interest to us, because an ideal envelope detector is totally

insensitive to variations in the phase of x(t).
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Resultant	
nQ(t)

A , - A,k^.W	 Tn,(t)

Figure 9.5
Phasor diagram for AM wave plus narrow-band noise for the case of high

carrier-to-noise ratio.

The expression defining y(t) is somewhat complex a^d needs to be

simplified in some manner. Specifically, we would like to approximate the

output y(t) as the sum of a message term plus a term due to noise. . In

general, this is difficult to achieve. However, when the average carrier

power is large compared with the average noise power, so that the receiver

is operating satisfactorily, then the signal term AJ1 .+ k.m(t)] will be large

compared with the noise terms n l (t) and nQ (t), most of the time. Then we

may approximate the output y(t) as

y(t) = A, + Ack.m(t) + n1(t)	 (9.23)

The presence of the dc or constant term A c in the envelope detector

output Y(t) of Eq. 9.23 is due to demodulation of the transmitted carrier
wave. We may ignore this term, however, because it bears no relation

whatsoever to the message signal m(t). In any case, it may be removed

simply by means of a blocking capacitor. Thus, if we neglect the term Ac

in Eq. 9.23, we find that the remainder has, except for scaling factors, the

same form as the output of a DSBSC receiver using coherent detection.
Accordingly, the output signal-to-noise ratio of an AM receiver using an

envelope detector is approximately

(SNR )O,AM ^ 
A,2 k.2 P	

(9.24)
2WN,

This expression is, however, valid only if:

1. The noise, at the receiver input, is small compared to the signal.

2. The amplitude sensitivity k. is adjusted for a percentage modulation

less than or equal to 100%.

Using Eqs. 9.20 and 9.24, we obtain the figure of merit

(SNR)O I	 _ k.^ P	

(9.25)
(SNR)c Jm I + k.2P

Thus, whereas the figure of merit of a DSBSC or SSB receiver using
coherent detection is always unity, the corresponding figure of merit of an
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AM receiver using envelope detection is always less than unity. In other

words, the noise perfortnanct of an AM receiver is always inferior to that

of a DSBSC or SSB receiver. This is owing to the wasteage of transmitted

power that results from transmitting the carrier as a component of the AM

wave.

...........................................................................................................................

EXAMPLE 1 SINGLE-TONE MODULATION

Consider the special case of.a sinusoidal wave of frcqi1ency 	 and ampli-

tude A, as the modulating Aa%e, as shown I)v

nz(t) = A, cos(27rf,t)

The corresponding 
AM 

%ka^e is

s(t) = A,jI	 u cos(2,7f,t)j cos(27rf,t)

%%here p = k^A, is the modulation factor. The a^erage po%%cr of the

modulating wa%e in(t) is

P — 21A

Therefore, using Eq. 9.25. Ae get

(SNR),,	 -A-

(S.%R), k'A

(9. 26)
P:

"'hen p	 1. "hich corresponds to 100' modulation, %%e g et a figure of

m	 serit equal to 13. This means that. other factors heing equal. thi AM

' e PO ^Ner i's a suppressed-system rilust transmit three times 1^ inuch aNcra^

carrier sNstem it order to achic%c the S^Iole LJULIIit^ of noise performance.

.......................................................................................................................

EXERCISE 4 The carrier-to-noise ratio of a communication receiver is

defined by

P	
Average carrier pbwer	

(9.27)

(

Average noise power in bandwidth of the

modulated wave at the receiver input )
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Show that for a standard AM receiver,

P = - A,2
	

(9.28)

4WN,

Express the output signal-to-noise ratio of Eq. 9.24 in terms of the carrier-

to-noise ratio p.

THRESHOLD EFFECT

When the carrier-to-noise ratio at the receiver input of a standard AM

system is small compared with unity, the noise term dominates and the

performance of the envelope detector changes completely from that just

described. In this case it is more convenient to represent the narrow-band

noise n(r) in terms of its envelope r(t) and phase VI(t), as shown by

n(t) = r(t) cos[27rfct + v(t)]	 (9.29)

The phasor diagram for the detector input x(t) = s(t) + n(t)

is shown in Fig. 9.6 where we have used the noise as reference, because

it is now the dominant term. To the noise phasor r(t) we have added a

phasor representingthe signal termAJ1 + k,m(t)], with the angle between

them equal to vl(t), the phase of the noise n(t). In Fig. 9.6 it is assumed

that the carrier-to-noise ratio is so low that the carrier amplitude A, is

small compared with the noise envelope r(t), most of the time. Then we

may neglect the quadrature component of the signal with respect to the

noise, and thus find directly from Fig. 9.6 that the envelope detector output

is approximately

y(t) ^ r(t) + A, cos[V(t)] + A,k,m(t) cos[q/(t)l	 (9.30)

This relation reveals that when the ca rrie r-to- noise ratio is low, the detector

output has no component strictly proportional to the message signal m(t).

The last term of the expression defining y(t) contains the message signal

m(t) multiplied by noise in the form of cos[v(t)]. The phase V(t) of a

narrow-band noise n(t) is uniformly distributed over 27r radians; that is, it

can assume a value anywhere between 0 and 21r with equal probability. It

follows therefore that we have a complete loss of information in that the

Resultant	
A,

Figure 9.6

Phasor diagram for AM wave plus narrow-band noise for the case of low
carrier-to-noise ratio.
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detector output does not contain the message signal m(t) at all. The loss

of a message in an envelope detector that operates at a low carrier-to-noise

ratio is referred to as the threshold effect. By threshold we mean a value

of the carrier- to -noise ratio below which the noise performance of a detector

deteriorates much more rapidl - v than that predicted by Eq. 9.24 assuming a

high carrier-lo-noise ratio. It is important to recognize that every nonlinear

detector (e.g., envelope detector) exhibits a threshold effect. On the other

hand, such an effect does not occur in a coherent detector.

A detailed analysis of the threshold effect in envelope detectors is com-

plicated. 2 We may develop some insight into the threshold effect. however,

by using the following qualitative approach.' Let R denote the random

variable obtained by observing the envelope process, with sample function

r(t), at some fixed time. Intuitively, an envelope detector is expected to

be operating well into the threshold region if the probability that the ran-

dom variable R exceeds the carrier amplitude A, is, say, 0.5. On the other

hand, if this same probability is only 0.01, the envelope detector is expected

to be relatively free of loss of message and threshold effects. The evaluation

of the carrier-to-noise ratios, corresponding to these probabilities. is best

illustrated by way of an example.

EXAMPLE 2

From Section 8.14 we recall that the envelope r(t) of a narrow-band Gaus-

sian noise n(t) is Rayleigh-distributed. Specifil the probability density

function of the random variable R obtained by observing the envelope r(t)

at some fixed time. is given by

r
(r)	 exp	 (9.31)

2,,^j

where c" is the variance of the noise n(t). For an AM system, we have

he event R A, is defined by2WN,. Therefore the probability of t

) —P	 f f,(r) dr(R A,
A,

r
ext	

r	
dr

	

2 WN,	 04 W^N.

A^
e x-p

	

	 (9.32)
4WN,,

'See Middleton (1960), pp. 563-574^

'See Down,ng (1964). p. 71.
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Using Eq. 9.28 for the carrier-to-noise ratio of an AM receiver, we may
rewrite Eq. 9.32 in the compact form

P(R _- A,	 exp( — p)	 (9.33)

Sok ing for P(R	 0.5, we get

ln2 = 0.69	 1.6 dB

Similarly, for P( R	 4,	 0 1, we get

p	 InI00 = 4.6	 6.0 c1B

Thus with a carrier-to-noise ratio of — 1.6 dB the envelope detector is
expected to be ^%ell into the threshold region. %%hereas with a carrier-to-

noise ratio of 6.6 dB the detector is expected to he operating satisfactorily.

We ordinaril^ need a signal-to-noise ratio considerabIN greater than 6.6 dB

for satisfactor^. fidelitN . which means therefore that threshold effects are

seldom of L'i-eat importance in AM recekers using en\clope detection.
................. I .........................................................................................................

EXERCISE 5 Given a carrier-to-noise ratio of 6.6 dB for which the en-

velope detector of arr AM receiver operates satisfactorily, what is the

corresponding value of channel signal-to-noise ratio for the case of sinu-

soidal modulation with 100% modulation?

............ 9.5 FM RECEIVER MODEL

We turn next to stud^ the effects of noise on the perform,ince of FNI

recmer^. Here aLain Ae require it receiver model to carr^ out the anak^is.

Figure 9.7a ,ho%ks the details ofan idealized I'M receiver model that satisfics

our requirement. As before, the noise it(t) is modeled it ,, while noise of

zero mean and pokker spectral density V,,'2. The rccei%ed FNI signal s(t),

translated in frcquem^ and amplitude, hits a carrier frequcnc^ f and trans-
mission handAidth B, o that onl^ it negligible amount of powerlies out^idc

the frcqucnc^ hand _f -- 11 _2 ^^ f -_ f, — B12. Thc F.1,1 transmission

hand ,Aidth B is in excess of twice the mes
s
age bandwidth "' h.N an amount

that depends on the deviation ratio of the incoming frequcnc^ modulated

Nka%e: see Section 7.11.

As in the 
AM 

case, the IF filter in the model of Fig. 9.7a represents

the combined filtering effects of the RF and IF sections of an FM receiver

of the superheterodyne type. This filter hits a midband freqLlcnc^ f and
bandwidth B. and therefore passes the I'M signal essentially %%tthout dis-

tortion. We assume that the IF filter in Fig. 9.7a has an ideal bandpass

characteristic. with the bandwidth B small compared with the midband
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1(t) 8.wba^d k Output

L—te,	 Diwriminator --* lowpass	 S.9^al
Mw

00

n

0

B

^b)
Figure 9.7

Modeling of an FM receiver. (a) Model. (b) Idealized IF filter characteristic.

frequency f, as in Fig. 9.7b. We may thus use the usual narrow-band

representation for the filtered noise n(t) in terms of its in-phase and quad-

rature components.

The limiter is included in Fig. 9.7a to remove any amplitude variations

at the IF output. The discriminator is assumed to be ideal in the sense that

its output is proportional to the deviation in the instantaneous frequency

of the carrier away from f, Also. the postdetection filter is assumed to

be an ideal low-pass filter with a bandwidth equal to the message band-

width W.

......... 9.6 A101SE UV FM SECEP77ON

For the noise analysis of FM receivers, we find it convenient to express

the narrow-band noise n(t) at the IF filter output in terms of its envelope

and phase as in Eq. 9.29. This relation is reproduced here for convenience:

n(t) = r(t) cost21rf,t + y/(t)]	 (9.34)

The envelope r(t) and phase y/(t) are themselves defined in terms of the

in-phase component n 1(t) and quadrature component n i(t) as follows:

r(t) = [n1(t) + n2(I)j" 2	 (9.35)
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and

w(t) = tan-' n,(,)

( 
it (

1 ) )	
(9.36)

We assume that the FNI signal at the IF filter output is given b%

	

s(t) = A, cos 

I 
2;7f,i + 27tki 

f 
m(t) dt 

1	
(9.37)

where A, is the carrier amplitude, f, is the carrier frequency. kf is the

frequency sensitivity, and m(t) is the message or modulating wave. For

convenience of presentation. we define

27zk, f .(1) d,	 (9.38)

We may then express s(t) in the simple form

s(t) = A, cos[277f,t + 0(t)]	 (9.39)

The total signal (i.e., signai plus noise) at the IF section output is therefore

x(i) = s(t) + n(r)

= A, cos[27rf,t	 + r(t) cos[27rf,t -^ V(t)]	 (9.40)

It is informative to represent x(t) by means of a phasor diagram, 
as 

in Fig.

9.8. In this diagram we have used the signal term as reference. The relative

phase fl(r) of the resultant phasor representing x(t) is obtained directly

from Fig. 9.8 as

0(t) = 0(t) + tan-' 
I	 r(t)sin[Y1(1)	 0(01	

(9.41)
A, + r(t) cos[V(t) — 0(tj

The envelope ofx(t) is of no interest to us. because any envelope varnitions

at the IF section output are removed by the limiter.

R-11-1

CH 0 (1

M 00)

Figure 9.8

Phasor diagram for FM wave plus narrow-baf?d noise for the case of high
carrier-to-noise ratio.
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our motivation is to determine the error in the instantaneous frequency

of the carrier wave caused by the presence of the narrow-band noise n(t).

With IF discriminator assumed ideal, its output is proportional to 0(t),

whe:,^ 0(t) is the derivative of 0(t) with respect to time. In view of the

complexity of the expression defining 0(t), however, we need to make

certain simplifying approximations so that our analysis may yield useful

results.
We assume that the carrie r-to- noise ratio measured at the discriminator

input is large compared with unity. Then, most of the time, the expression

for the relative phase 0(t) simplifies as

0(j) ^ 0(t) + ^—(t) sin[v(t) – C01	 (9.42)

A

no— telm

The signal term 0(t) is proportional to the integral of the message signal

m(t), as in Eq. 9.38. Hence, using Eqs. 9.38 and 9.42, we find that the

discriminator output is

V(t) = 
I dO(t)

27z dt

	

= k fm(l) + nd(t)	 (9.43)

where the noise term nd(l) is defined by

nd (t) =	
I	 d 

fr(t) sin[q/(t)	 (9.44)

27iA, dt

We thus see that provided the carrier-to-noise ratio is high, the discrimi-

nator output u(t) consists of a scaled version of the original message signal

m(t). plus an additive noise component n d (t). Accordingly, we may use

the output signal-to-noise ratio as previously defined to assess the quality

of performance of the FM , receiver.

The output signal-to-noise ratio is defined as the ratio of the average

output signal power to the average output noise power. From Eq. 9.43,

the signal component at the discriminator output, and therefore the post-

detection filter output, is k fm(t). Hence, the average output signal power

is k2P, where P is the average power of the message signal m(t).

Unfortunately, the calculation of the average output noise power is

complicated by the presence of the factor sinlv(t) – 0(t)] in 
Eq. 9.44.

Since the phase V(t) is uniformly distributed over 27r radians, the mean-

square value of the noise n d (t) in Eq. 9.4-4 will be biased by the message-

dependent phase 0(t). The presence of (P(t) produces components in the

power spectrum of the noise n d (t) at frequencies that lie outside the message

band. However, such frequency components do not appear at the receiver
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output as they are rejected by the post-detection filter.' Hence, insofar as

the calculation of inband noise power at the receiver output due to n
d(t)

is concerned, we may simplify our task by setting the message-dependent
phase 0(t) equal to zero. Under this condition, Eq. 9.44 simplifies as

I	

d (r(t) sin[V(t)JJ	 (9.45)
2.,A, dt

From the definitions of the noise envelope r(t) and phase v(t) given by
Eqs. 9.35 and 9.36, we note that the quadrature component of the narrow-
band noise n(t) is

nQ(t) = r(t) sin[V(t)]	 (9.46)

Correspondingly, Eq. 9.45 may be rewritten as

nd( t ) = 
1 4^	

(9.47)
27rA, dt

We may thus state that. under the condition of high carrier- to -noise ratio,

the calculation of the average output noise-power in an FM receiver depends

only on the carrier amplitude A, and the quadrature noise component nQ(t).
Stated in another way, we may use an unmodulated carrier to calculate the

output signal-to-noise ratio of an FM receiver, provided that the carrier-

to-noise ratio is high.

From Section 2.3, we recall that differentiation of a function with respect

to time corresponds to multiplication of its Fourier transform by j27rf. It
follows therefore that we may obtain the noise process 

nd(t) by passing
nQ(t) through a linear filter with a transfer function equal to

J27tf	 jf

27rA,	 A,	
(9.48)

This means that the power special density S,, , (f) of the noise n,(t) is related
to the power spectral density SsY) of the quadrature noise component
nQ (t) as follows:

SN,M = f, S"'(f)	 (9.49)
Ac2

With the IF filter in Fig. 9.7a assumed to have an ideal band-pass

characteristic of bandwidth B and midband frequency f_ it follows that the

'See Downing (1964), pp. 96-98.
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narrow-band noise n(t) will have a power spectral density characteristic
that is similarly shaped. This means that the quadrature component nQ(l)

of the narrow-band noise n(t) will have the ideal low-pass characteristic
shown in Fig. 9.9a. The corresponding power spectral den

sity of the noise

nd(l) is shown in Fig. 9.9b. That is,

N&- '	 B

S,(f)	 A2	 2	 (9.50)0,	
other%k ise

The discriminator output is followed by a low-pass filter with a band-
width equal to the message bandwidth W. For wideband FM, by definition,

B	 0	 - -L
2	 2

M

4	 0

d

Figure 9.9
Noise analysis of FM receiver. (a) Power spectral density of quadrature component
%(t) of narrow-band noise n(t). W Power spectral density of noise n,(t) at
discriminator output (c) Power spectral density of noise n,(1) at receiver output.
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W is much smaller than B12 % here B is the transmission bandwidth of the
FM signal. This means that the out-of-band components of noise nd( t ) wIll

be rejected. Therefore, the power spectral density S .,(f) of the noise n,,(t)
appearing at the receiver output is defined by

J^f'	
fi !E^ W

S"'(f)	 A c2^1.	

otherwise	
(9.51)

.as shown in Fig. 9.9c. The average output noise power is determined by

integrating the power spectral density S, , (f) from – W to W. We thus get

AN, erage pow er of output noise = —"" f f 2 df
A l2

 -11

N, V

3A"

Note that the average output noise povier is inverselY proportional to the

average carrier power A,`12. Accordingly, in an FM system, increasing the

carrier power has a noise-quieting effect.

Earlier we determined the average output signal power as k 2 P. There-
f

fore, provided the carrier-to-noise ratio is high, we may divide this average

output signal power by the a%erage output noise power of Eq. 9.52 to

obtain the output signal-to-noise ratio

(SNR)o^, = 
3A " k -I P	

(9.53)
2 N, 14

The average power 
in 

the modulated signal s(t) is A'12, and the average

noise power in the message bandwidth is WN, Thus the channel signal-

to-noise ratio is

(SNR)c j ,

	

	 (9.54)
2 WN,

Dividing the output signal-to-noise ratio bv the channel signal-to-noise

ratio, we get the figure of merit

(SNR),	
3^	 (9.55)

(SNR)c 
I F,	

W 2

The frequency deviation Af is proportional to the frequency sensitivity

kf of the modulator. Also. by definition, the deviation ratio D is equal to
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the frequency deviation Af divided by the message bandwidth W. There-

fore, it follows from Eq. 9.55 that the figure of merit of a wideband FM

system is a quadratic function of the deviation ratio. Now, in wideband

FM, the transmission bandwidth B is approximately proportional to the

deviation ratio D. Accordingly, we may state 
that when the carrier-to-noise

ratio is high, an increase in the transmission bandwidth B provides a cor-

responding quadratic increase in the output signal-to-noise ratio or figure of

merit of the FM system.

	

.......................................	 .................................................

EXAMPLE 3 SINGLE-TONE MODULATION

Consider the case of a sinusoidal wave of frequency f^ as the modulating

wave, and assume a frequenc y deviation Af. 
The modulated wave is thus

defined by

	

s(t)	 A. cos 27zf,t +	 sin(27rf,t)

where we have made the substitution:

27tkf	(t) dt	 sin(27rf,t)

Differentiating both sides with respect to time:

m(t)	 Lf cos(27zf,t)
kf

Hence, the average power of the message signal m(t) is

P
2kf

Substituting this result into the formula for the output signal-to-noise ratio

given by Eq. 9.53, we get-

3,4,2 (A f
(SNR)o,Fm

	

	 W3
4N,

3A,2fl2	 (9.56)

4NuW

where fl	 jf I W is the modulation index. Using 
Eq. 9.55 to evaluate the
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corresponding figure of merit, we get

(SNR),	 3 (jf)^

^SNR—)j,M 2 W

3 
fl 2

2

It is important to note thatthe modulation indexfl = 4f/Wisdeter ined
by the bandwidth W of the postcletection low-pass filter and is not remlated
to the sinusoidal message frequency f_ except insofar as this filter is chosen
so as to pass the spectrum of the desired message. For a specified bandwidth

W the sinusoidal message frequency f. may lie anywhere between 0 and
W and would yield the same output signal-to-noise ratio.

It is of particular interest to compare the performance of AM and FM

systems. One way of making this comparison is to consider the figures of

merit of the two systems based on a sinusoidal modulating signal. For-an

AM system operating with a sinusoidal modulating signal and 100% mod-
ulation, we have (from Example 1):

(SN'R)o	 I
(9.58)

	

AM	 3(SNR)C

Comparing this figure of merit with the corresponding result obtained for

an FM system, we see that the use of frequency modulation offers the
possibility of improved signal-to-noise ratio over amplitude modulation
when

1,81 >

that is,

fl > 0.5

We may therefore considerfl 0. 5 as defining roughly the transition from
narrow-band F.,Vf to wideband FM. This statement, based on noise consid-
erations, further confirms a similar observation that was made in Chapter
7 when considering the bandwidth of FM waves.

..........................................................................................................................

EXERCISE 6 Consider an FM receiver with an IF filter of bandwidth B.
The incoming I'M wave is produced by a sinusoidal modulation that pro-
duces a frequency deviation Af equal to B12, so that the carrier swings

back and forth across the entire passband of the IF filter. Using the defi-
nition of the cat rier-to -noise ratio

P 
A

	

^BNa	
(9.59)

(9.57)
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show that for the situation described herein the output signal-to-noise ratio
of the FM receiver is -

(SA'!?),, = 31) ( 

B Y	
(9.60)

W,

where W is the message bandwidth and B is the IF filter bandwidth.

COMPARISON OF FM WITH PCM

In this subsection, we compare the capabilities of wideband FM and PUM
for exchanging an increase in transmission bandwidth for an improvervent
in noise performance. With wideband FM, the improvement in signal to-
noise ratio produced by increased transmission bandwidth effectively fol-
lows a square law (see Eq. 9.55). That is, by doubling the bandwidth in
an FM system that operates above threshold, the signal-to-noise ratio is
improved by 6 dB. With binary PCM limited by quantizing noise, on the
other hand, doubling the transmission bandwidth permits twice the number
of binary digits n in a code word, and therefore increases the signal-to-
noise ratio by 6n dB (see Eq. 5.24). It follows therefore that FM is less
efficient than PCM in exchanging increased bandwidth for improved signal-
to-noise ratio.

CAPTURE EFFECT

The inherent ability of an FM system to minimize the effects of unwanted
signals (e.g., noise, as discussed earlier) also applies to interference pro-

duced by another frequency- mod ul ated signal with a frequency content
close to the carrier frequency of the desired FM wave. However, inter-
ference suppression in an FM receiver works well only when the interfer-
ence is weaker than the desired FM input. When the interference is the
stronger one of the two, the receiver locks on to the stronger signal and
thereby suppresses the desired FM input. When they are of nearly equal
strength, the receiver fluctuates back and forth between them. This phe-
nomenon is known as the capture effect.

............... 9.7 FM THRESHOLD EFFECT

The formula of Eq. 9.53, defining the output signal-to-noise ratio of an
FM receiver, is valid only if the carrier-to-noise raCio, measured at the
discriminator input, is high compared with unity. It is found experimentally
that as the input noise is increased so that the carrier-to-noise ratio is
decreased, the FM receiver breaks. At first, individual clicks are heard in
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the receiver output, and as the carrier-to-noise ratio decreases still further,

the clicks rapidly merge into a crackling or sputtering sound. Near the
breaking point, Eq. 9.^3 begins to fail by predicting values of output signal-

to-noise ratio larger than the actual ones. This phenomenon is known as

the threshold effect. The threshold is defined as the ininintion carrier-lo-

noise ratio yielding 
an 

FM improvement that is not significanr^v deteriorated
from the value predicted b y the signal-to-noiseformula of Eq. 9.53 assuming
a small noise power.

For a qualitative discussion of the FM threshold effect, consider first the

case when there is no signal present, so that the carrier Aa%e is unmodu-

lated. Then the composite signal at the frequency discriminator input is

x(t) = [A, + n,(t)l cos(27zf,t) — n Q (t) sin(2;z .f,t)	 (9.61)

where n 1 (t) and nc,(1) are the in-phase and quadrature components of the

narrow-band noise n(t) with respect to the carrier wave cos(2;-,f,r). The

phasordiagram of Fig. 9.10 shows the phase relations between the various

components of.r(t) in Eq. 9.61. As the amplitudes and phases of n,(t) and
n Q (t) change with time in a random manner, the point P w anders around
the point Q. When the carrier-to-noise ratio is large, n l (t) and n (jt) are
usually much smaller than the carrier amplitude A_ so the wandering point
P in Fig. 9.10 spends most of its time near point Q. Thus the angle 0(t)
is approximately n,(t)IA,. to within a multiple of 27r. The wandering point

P occasionally sweeps around the origin and 0(i) increases or decreases

by 2,-, radians. Figure 9. 11 illustrates how. in a rough %kay, these excursions

in 0(t) produce impulse-like components in 0(t) = dOldt. The discrimi-
nator output v(t) is equal to 0(t)12 yt. These impulse-like components have

different heights depending on how close the wandering point P comes to

the origin 0, but all have areas nearly equal to --27r radians. When the

signal shown in Fig. 9. 11 b is passed through the postcletection low-pass

filter, corresponding but wider impulse-like components are excited in the

receiver output and are heard as clicks. The clicks are produced only 'A hen
0(t) changes by -27r.

From the phasor diagram of Fig. 9.10, we may deduce the conditions
required for clicks to occur. A positive-going click occurs when the en-

P

A,	 Q

Figure 9.10

A phasor diagram interpretation of Eq. 9.61.
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M

M

Figure 9.11
Impulse-like components in 0(t) = de(t) / dt produced by changes of 2n in 0(t).

velope r(t) and phase V(i) of the narrow-band noise n(t) satisfy the fol-

lowing conditions:

r(t) > A,
V(t) < 7z < V(t) + dv(t)

dw(t) > 0
dt

These conditions ensure that the phase 0(t) of the resultant phasor x(l)

changes by 27z radians in the time increment dt. during which the phase
of the narrow-band noise increases bv the incremental amount dv(t).
Similarlv, the conditions for a negative-going click to occur are

r(l) > A,
V(I) > — 7r > V(t) + dv(t)

dv(t)
dt
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These conditions ensure that 0(1) changes by — 27r radians during the time
increment dt.

As the carrier-to-noise ratio is decreased, the average number of clicks
per unit time increases. When this number becomes appreciabl y large, the
threshold is said to occur. ConsequentIN, the output signal-to 'noise ratio
deviates appreciably from a linear function of the carrier-to-noise ratio
when the latter falls below the threshold.

This effect is well illustrated in Fig. 9.12, which is calculated from theory.'
The calculation is based on the following two assumptions:

1. The output signal is taken as the receiver output measured in the absence
of noise. The average output signal power is calculated for a sinusoidal
modulation that produces a frequency deviation if equal to one half

	

10 1	 1	 1	 1	 1	 . 	 I	 I	 I	 I	 I

	

0	 10	 20
Input carrier-to-noise ratio 10 log,, p, c1B

Figure 9.12
Variation of output signal-to-noise ratio with input carrier-to-noise ratio,
demonstrating the FM threshold effect.

'For a detailed theoretical account of noise in FM receivers, see the classic papers
by Rice (1901) and Stumpers (1948). Figure 9.12 is adapted from another paper by
Rice (1963).
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of the IF filter bandwidth B; the carrier is thus enabled to s"ing back

and forth across the entire IF band.	 10

2. The average output noise power is calculated when there is no signal

present ' that is, the carrier is unmodulatcd, Aith no restriction placed
on the value of the carricr-to-noise ratio.

The curve plotted in Fig. 9.12 is for the ratio (13 1 24') = 5. The lincar

part of the curve corresponds to the limiting value of 3/)(H'2W)1^ see

Exercise 6. Figure 9.12 shows that. owing to the threshold phenomenon.

the output signal-to-noise ratio deviates appreciabl\ from a linear function

of the carrier-to-noise ratio p when p become ,., less than a threshold of 10

dB.

The threshold carrier-to-noise ratio, p,,, depends on the ratio of It- filter

bandwidth-to-message bandwidth, B I W. Also, the \alue ofpo, 
is 
influenced

by the presence of modulation. Nevertheless. these \ariations are usuallN

small enough to justifN . taking p, h as about 10 dB for most practical cases

of interest. We ma\ thus state that the loss of message at Lin I'M recei\er

output is negligible if the carner-to-noise ratio satisfies the condition

A,-
(9.62)

2 BA'.

Since the channel sign 
a 1-to-noise ratio (SNR), = -1 ': 2kV.\	 ma.\ re-

formulate this condition as

(SAW), ^^ 
1013	

(9 bl)
W

The IF filter bandwidth B is ordinaril\ clesi g ned to equal th,: FNI trans-

mission bandwidth. Hence. we nia^ use Carson ' ^ rule to relate B it) the

message bandwidth VV its 
follows (see Section 7.11 )

B = 2WO , D)

where D is the deviation ratio. for sinusoidal modulation. the modulation

index # is used in place of D. Accordingl\ . A e mLi^ restate the condition

for ensuring no significant loss of message at an FNI recei%er output as

(SNR), ^^t 20(l + D)	 (9.64)

or, in terms of decibels.

it) log,(SNR), ^^ 1 3, - 1 0 lo_k!;A I - D). dB	 (9^65)
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EXERCISE 7 Calculate the condition on the channel signal-to-noise ratio

"to avoid the FM threshold effect for the following values of deviation ratio:

(a) D 2

M D 5

Suppose that the FM receiver operates with the following parameters:

W = 15 kHz

N, = 
0.5 x 10 -1 W/Hz

2

Find the corresponding condition on the average transmitted power for

case (a) and case (b).

FM THRESHOLD REDUCTION

In certain applications such as space communications, there is a particular

interest in reducina the noise threshold in an FNI receiver so as to satis-

factoril^ operate the receiver with the minimum si g nal power possible.

Thre.Olold reduction in FM receivers maN be achieved b y using an FM

demodulator with negative feedback (commonly referred io as an FMFB

demodulator), or 
by 

using a phase-locked loop demodulator.

Figure 9.11 is a block diaLram of an F%IFB demodulator. We see that

the local oscillator of the conventional FM receiNer has been replaced by

a ^ oltage-cont rolled oscillator (%ICO) with an instantaneous output fre-

quency that is controlled b^ the demodulated signal. To understand the

operation of this receiver. suppose for the moment that the VCO is re-

moved from the circuit and the feedback loop is left open.' Assume that

a wideband FNI wave is applied to the receiver input, and a second FM

wave. from the same source but with 
a 
modulation index a fraction smaller,

is applied to the VC0 terminal of the product modulator. The output of

the product modulator consists of two components: a sum-frequency com-

ponent and a difference-frequency component. The IF filter (following the

product modulator) is designed to pass only the difference-frequency com-

ponent. (The combination of the product modulator and the IF filter in

Fig. 9.13 constitutes a mixer.) The frequency deviation of the IF filter
(mixer) output would be small, although the frequency deviation of both

input FM waves is large. since the difference between their instantaneous

deviations is small. Hence, the modulation indices would subtract, and the

re
s
ulting PNI wa^e at the IF filter (mixer) output would have a smaller

'Our treatment of the FMFB demodulator is based on Enole (1962). See also Roberls
(1977), pp. 166-181.
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Figure 9.13

FMFB demodulator.

modulation index than the input FM waves. This means that the IF filter

bandwidth in Fig. 9.13 need only be a fraction of that required for either

wideband FM wave. The FM wave with reduced modulation index passed

by the IF filter is then frequency-demodulated by the combination of lim-

iter/discriminator and finally processed by the baseband filter. It is now

apparent that the second wideband FM wave applied to the product mod-

ulator may be obtained by feeding the output of the baseband low-pass

filter back to the VCO, as in Fig. 9.13.

It will now be shown that the signal-to-noise ratio of an FMFB receiver

is the same as that of a conventional FM receiver with the same input

signal and noise power if the carrier-to-noise ratio is sufficiently large.

Assume for the moment that there is no feedback around the demodulator.

In the combined presence of an unmodulated carrier A, cos(27rft) and a

narrow-band noise

n(t) = n 1 (t) cos(21zf,t) — n Q (t) sin(27rf,l),

the phase of the composite signal x(t) at the limiter—discriminator input is

approximately equal to n Q(t)1A,. This assumes that the carrie r-to- noise

ratio is high. The envelope of x(t) is of no interest to us, because the

limiter removes all variations in the envelope. Thus the composite signal

at the frequency discriminator input consists of a small index phase-mod-

ulated wave with the modulation derived from the component n Q (t) of

noise that is in phase quadrature with the carrier. When feedback is applied,

the VCO generates a wave that reduces the phase -modulation index of the

wave at the IF filter output, that is, the quadrature component nQ(t) of

noise. Thus we see that as long as the carrie r-to- noise ratio is sufficiently

large, the FMFB receiver does not respond to the in-phase noise component

n 1 (t), but that it would demodulate the quadrature noise component nQ(t)

in exactly the same fashion as it would demodulate the signal. Signal and

quadrature noise are reduced in the same proportion by the applied feed-

back, with the result that the baseband signal-to-noise ratio is independent
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of feedback. For large carrier-to-noise ratios the baseband signal-to-noise

ratio of an FMFB receiver is then the same as that of a conventional FM

receiver.

T'he reason why an FMFB receiver is able to extend the threshold is

that, unlike a conventional FM receiver, it uses a very important piece of

a priori information, namely, that even though the carrier frequency of

the incoming FM wave will usually have large frequency deviations, its

rate of change will be at the baseband rate. An FMFB demodulator is

essentially a trucking filter that can track only the slowly varying frequency

of %;ideband FM waves. Consequently it responds only to a narrow band

of noise centered about the instantaneous carrier frequency. The bandwidth

of noise to which the FMFB receiver responds is precisely the band of

noise that the VCO tracks. The net result is that an FMFB receiver is

capable of realizing a threshold reduction on the order of 5-7 dB, which

represents a significant improvement in the design of minimum-power FM

systems.

The phase-locked loop demodulator, which was described in Section

7.12, exhibits threshold reduction properties that are similar to those of

the FMFB demodulator. Thus, like the FMFB demodulator, a phase-locked

loop is a tracking filter and, as such, the bandwidth of noise to which it

responds is precisely the band of noise that the VCO tracks. However,

although the thresholds of the phase-locked loop and FMFB demodulators

occur because of the same basic mechanism, the details by which they

occur are, of course, different.' Practical experience with the phase-locked

loop, however. confirms the conclusion ' that very comparable performance

with the FMFB demodulator is obtained in many situations, so that the

choice between these two types . of threshold-extension devices is often

made in favor of the phase-locked loop because of its simpler construction.

.......... 9.8 PRE-EMPHASIS AND DE-EMPHASIS IN FM

In Section 9.6 we showed that the power spectral density of the noise at

the receiver output has a square-law dependence on the operating fre-

quency: this is illustrated in Fig. 9.14a. In part b of this figure we have

included the power spectral density of a typical message source, audio and

video signals typically have spectra of this form. We see that the power

spectral density of the message usually falls off appreciably at higher fre-

quencies. On the other hand, the power spectral density of the output noise

increases rapidly with frequency. Thus, at f = ± W, the relative spectral
density of the message is quite low, whereas that of the output noise is

high in comparison. Clearly, the message is not using the frequency band

allowed to it in an efficient manner. It may appear that one way of improving

the noise performance of the system is to slightly reduce the bandwidth of

'See Roberts (1977^, pp. 200-202.
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Figure 9.14
(a) Power spectral density of noise at FM receiver output, tb) Power spectral density
of a typical message source.

the postcletection low-pass filter so as to reject a large amount of noise

power while losing only a small amount of message power. Such an ap-,

proach, however, is usually not satisfactory because the distortion of the

message caused by the reduced filter bandwidth, even though slight, may

not be tolerable. For example, in the case of music we find that although

the high-frequency notes contribute only a very small fraction of the total

power, nonetheless, they contribute a great deal from an aesthetic vieAk-

point.

A more satisfactory approach to the efficient use of the allowed fre-

quency band is based on the use of pre-emphasis in the transmitter and

de-emphasis in the receiver, as illustrated in Fig. 9.15. In this method, we

artificially emphasize the high-frequency components of the message signal

prior to modulation in the transmitter, and therefore before the noise is

introduced in the receiver. In effect, the low-frequency and high-frequency

portions of the power spectral density of the message are equalized in such

a way that the message fully occupies the frequency band allotted to it.

Then, at the discriminator output in the receiver, we perform the inverse

operation by cle-emphasizing the high-frequency components, so as to re-

Pre empha$,s	
FM	

De ^	 -'s,^,,ph.-

filter	 —I-	 I Ter	
Mess^qe plus

e ......	 rolse

"M

Figure 9.15

Use of pre-emphasis and de-emphasis in an FM system.
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store the original signal-power distribution of the message. In such a process

the high-frequency components of the noise at the discriminator output

are also reduced, thereby effectively increasing the output signal-to-noise

ratio of the system. Such a pre-emphasis and de-emphasis process is widely

used in FM transmission and reception.

To produce an undistorted version of the original message at the receiver

output, the pre-emphasis filter in the transmitter and the de-emphasis filter

in the receiver would ideally have transfer functions that are the inverse

of each other. That is, if H,,(f) designates the transfer function of the pre-

emphasis filter, then the transfer function Hd,(f) of the de ' emphasis filter

would ideally be

	

Hd, (f) = H,'
(f ) 

I	 — W < f < W	 (9.66)

This choice of transfer functions makes the average message power at the

receiver output independent of the pre-emphasis and cle-emphasis proce-

dure.

The pre-emphasis filter is selected so that the average power of the

emphasized message signal rnjt) in Fig. 9.15 has the same average power

as the original message m(t). Thus, given the power spectral density SM(f)

of the message signal m(t), we may write

	

f. 
IH,(f)j 2Sm(f) df = 

f 
Sm(f) df	 (9.67)

This constraint on the transfer function HP,(f) of the pre-emphasis filter

ensures that the bandwidth of the transmitted FM signal remains the same,

with or without pre-emphasis.

From our previous noise analysis in FM systems, assuming a high carrier-

to-noise ratio, the power spectral density of the noise n,,(t) at the discrim-

inator output is

^^'f -, ,	 If I -_ -B	
(9.68)

S'(f)	 A	 2

	

10,	 otherwise

Therefore, the modified power spectral density of the noise at the de-

emphasis filter output is equal to IH,(f)I'S,,(f). Recognizing, as before,

that the postcletection low-pass filter has a bandwidth W, which is, in

general, less than B12, we find that the average power of the modified

noise at the receiver output is

(

Average output noise ) 	 N,	
f7lHj,(f)12 df	 (9.69)

power with dc-emphasis) ^ ^T`
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Because the average message power at the receiver output is ideally un-

affected by the pre-emphasis and de-emphasis procedure, it follows that

the improvement in output signal-to-noise ratio produced by the use of

pre-emphasis in the transmitter and de-emphasis in the receiver is defined

by

average output noise power without pre-emphasis and de-emphasis

average output noise power with pre-emphasis and cle-emphasis

Earlier we showed that the average output noise power without pre-em-

phasis and de-emphasis is equal to 2N,, W3 /3A l2 ; see Eq. 9.52. Therefore,

after cancellation of common terms, we may write

I =	
2 IV'	

(9.70)
3 f 4 w f 'I Hd,(f)l' df

Note that this improvement factor assumes a high carrier-to-noise ratio at

the discriminator input.

.........................................................................................................................

EXAMPLE 4

A simple pre-emphasis filter that emphasizes high frequencies and that is

commonly used in practice is defined bv the transfer function

H,(f) k I + Lf)

fo	

(9.71)

This transfer function is closely realized by the RC-amplifier network shown

in Fig. 9.16a, provided that R <^ r and 27rfCR < I inside the frequency

band of interest. The amplifier in Fig. 9.16a is intended to make up for

the attenuation introduced by the RC network at low frequencies. The

frequency parameter fo is 11(277 Cr). The corresponding de-emphasis tilter

in the receiver is defined by the transfer function

k
Hd, (f) =	 I I	 k9.72)

I + jflfo

which can be realized using the RC-amplifier network of Fig. 9.16b.

The constant k in Eqs. 9.71 and 9.72 is chosen to satisfy the constraint

of Eq. 9.67, which requires that the average power of the pre-emphasized

message signal be the same as the average power of the original message

signal. Assume that the power spectral density of the original message
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Figure 9.16

(a) Pre-emphasis filter. (b) De-emphasis filter.

signal m(t) is

SM(f) = I + flfo)2	 P W
10	 elsewhere

Then, the use of Eqs. 9.71 and 9.73 in 9.67 yields

f

w	 df	
k2 df

- " i—+ —(fl T f71l

or

k 2 — 
fo 
tan` —

W	 (fW0)

Equation 9.70 defines the improvement in output signal-to-noise ratio

of the FM receiver, resulting from the combined use of pre-emphasis and

de-emphasis. For the pre-emphasis and cle-emphasis filters of Fig. 9.16,

the use of this equation yields the improvement

2 W3

3
 f
	 dfT+ —(fl T Y
(W/fo) 2 tan-'(W/fo)

(9.75)
3[(W/fo) — tan`(W/f,^]

(9.73)

(9.74)
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Ty
pical values for commercial FM broadcasting are

2.1 kHz

W 15 kHz

The use of this set of values in 
Eq. 9.75 yields the result

I = 4.7

Expressing the improvement in decibels, we have

I = 6.7 c1B

The output signal-to-noise ratio of an FM receiver without pre-em phasis
and cle-emphasis is typically 40-50 dB. We thus see that by using the simple
pre-emphasis and de-emphasis filters shown in Fig. 9.16, we can obtain a
significant improvement in the noise performance of the receiver.

.......... .................................................................................................................

EKERCISE a Sketch the power spectral density of the de-emphasized
noise, assuming that the shape of the power spectral density of the noise
at the de-emphasis filter input is as shown in Fig, 9.14a and the cle-emphasis
filter is as shown in Fig. 9.16b.

NONLINEAR TECHNIQUES

The use of the simple linear pre-emphasis and cle-emphasis filters described
herein is an example of how the performance of an FM system may be
improved by using the differences between characteristics of signals and
noise in the system. These simple filters also find application in audio tape-
recording. In recent years nonlinear pre-emphasis and de-emphasis tech-
niques have been applied successfully to tape-recording. These techniques
(known as Dolhv , -A, Dolby-B, Dolb)-C, and DBX systems) use a com-
bination of filteiing and dynamic range compression to reduce the effects
of noise, particularly when the signal level is low.'

.............. 9.9 DISCUSSION

We conclude the noise analysis of analog modulation systems by presenting
a comparison of the relative merits of the different modulation techniques.
For the purpose of this comparison, we assume that the modulation is

'For a detailed description of Dolby systems, see Stremler (1982), pp. 671-673.
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produced by 
a single sine wave. For the comparison to be meaningful, we

also assume that all the different modulation systems operate with exactly

the same channel signal-to-noise ratio. in making the comparison, it is

informative to keep in mind the transmission bandwidth requirement of

the modulation system in question In this regard, we use a 
normalized

transmission bandwidth defined by

B^ = 
B	 (9.76)

W

where B is the transmission bandwidth of the modulated wave and W is

the message bandwidth. We may thus make the following observations:

1.
in a standard AM system using envelope detection, the output signal-

to-noise ratio, assuming sinusoidal modulation, is given 
by (see Eq.

	

9.26)	

(SNR),, = -" 2 (SNR),-
2 + p2

This relation is plotted as curve I in Fig. 9.17, assuming p = 
1. In this

curve we have also included the AM threshold effect, based on the

result of 
Exercise 4. Since in a standard AM system both sidebands are

transmitted, the normalized transmission bandwidth B, equals 2.

2. In the case of a DSBSC or SSB 
modulation system using coherent

detection, the output signal-to-noise ratio is given by (see Eqs. 
9.12 and

9.18):

(SNR), = (SNR)c

This relation is plotted as curve II in Fig. 9.17. 
We see, therefore, that

the noise performance of a DSBSC or SSB 
system, using coherent

detection, is superior to that of a standard AM system using envelope

detection by 
4.8 clB. it should also be noted that neither the DSBSC

nor the SSB 
system exhibits a threshold effect. With regard to trans-

mission bandwidth requirement, we have B, ^ 2 for the 
DSBSC system

and B, = I for the SSB 
system. Thus, among the family of AM systems,

SSB 
modulation is optimum with regard to noise performance as well

as bandwidth conservation.

3.
In an FM system using a conventional discriminator, the output signal-

to-noise ratio, assuming sinusoidal modulation, is given 
by (see Eq.

	

9.57)	

(SNR),) = 12#(SNR)c

where # 
is the modulation index. This relation is shown as curves III

and IV in Fig. 9.17, corresponding to 9 = 
2 and fi = 5, respcctive ly-

In each case, we have included a 6.7-dB 
improvement that is -typically

obtained by 
using pre-emphasis in the transmitter and de-emphasis in

the receiver. To determine the transmission bandwidth requirement,
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Figure 9.17
Comparison of the noise performance of various analog modulation systems. Curve
1: Full AM, ^L = 1. Curve I/: OSBSC, SSB. Curve /I/: FM. 0 = 2. Curve IV: FM. 5.
(Curves /I/ and IV include 13-dB pre-emphasis, de-emphasis improvement.)

we use Carson's rule and thus write

	

B, = 6	 for	 2

	

B, = 12	 for	 5

We therefore see that. compared with the SSB system. which is the

optimum form of linear modulation, by using wideband FM we ojhtain

an improvement in output signal-to-noise ratio equal to 14.5 dB for a

normalized bandwidth B, = 6, and an improvement of 22.6 dB for

B, = 12. This clearly illustrates the improvement in noise performance
that is achie\ able by using wideband FM. However. the price that we

have to pay for this improvement is increased transmission bandwidth.

It is, of course. assumed that the FM system operates above threshold

for the noise improvement to be realizable as described herein. The

curves III and IV of Fig. 9.17 include the FM threshold effect, based

on the results of Exercise 7. Note that the threshold effect in FM man-

ifests itself at a channel signal-to-noise ratio much greater than that in

standard AM.
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................................................................................................................................
PROBLEMS

P9.1 Signal-to-Nolse Ratios

Problem 1 Consider the sample function of a random process

x(t) = A + w(t)

where A is a constant and w(t) is a white noise of zero mean and power

spectral density N012. The sample function x(t) is passed through the low-
pass,RC filter shown in Fig. P9. 1. Find an expression for tlie output signal-
to-noise ratio, with the dc component A regarded as the signal of interest.

Problem 2 The sample function

x(t) = A c cos(2rft) + w(t)

is applied to the low-pass RC filter of Fig. P9.1. The amplitude A, and

frequency f, of the sinusoidal compinents are constants, and w(t) is a
white noise of zero mean and power spectral density N012. Find an expres-

sion for the output signal-to-noise ratio with the sinusoidal component of
x(t) regarded as the signal of interest.

Problem3 Suppose next the sample function x(r) of Problem 2 is applied

to the band-pass LCR filter of Fig. P9.2, which is tuned to the frequency

f, of the sinusoidal component. Assume that the Q factor of the filter is
high compared with unity. Find an expression for the output signal-to-noise
ratio, by treating the sinusoidal component of x(t) as the signal of interest.

Problem 4 The input to the low-pass RC filter of Fig. P9.1 consists of a
white noise of zero mean and power spectral density N012, plus a signal
that is a sequence of constant-amplitude rectangular pulses. The pulse
amplitude is A, the pulse duration is T, and the period of the sequence is

To, where T < To. Derive an expression for the output signal-to-noise ratio
of the filter, defined as the ratio of the square of the maximum amplitude
of the output signal with no noise at the input to the average power of the

output noise.

R
---AVVV-	 0

input	 Output
signal	 C ==	 signal

0_. 0

Figure P9.1
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Input	 put
signal,	 TRO,,gtn a 

I

Figure P9.2

P9.3 Signal-to-Noise Ratios for Coherent Reception

Problem 5 Calculate the output signal-to-noise ratio of the coherent re-
ceiver of Fig. 9.3, assuming that the modulated signal s(t) is produced by
the sinusoidal modulating wave

m ( t ) = A,cos(27rft)

Perform your calculation for the following two receiver types:

(a) Coherent DSBSC receiver

(b) Coherent SSB receiver.

Problem 6 Let a message signal in(t) be t ransmitted using SSB modu-
lation. The power spectral density of ni(j) is

SvO 
1 ) —	 ^.f I	

If
W,

0,	 otherwise^ 11

where a and W are constants. White noise of zero mean and power spectral
density N1 ,12 is added to the SSB-inodulated 'A'a , e at the rccei% er input.
Find an expre,̂ sion for the output si g nal-lo-noi ,,e ratio of the reeckur.

Fiqure,P9.3
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Problem 7 
An sSI3-modulated wave is transmitted over a noisy channel,

with the power spectral density of the noise being as shown in Fig. 
P9_3.

The message bandwid th is 4 kHz and the carrier frequency is 200 kHz.

Assuming that only the upper-sideband is transmitted, and that the average

power of the modulated wave is 10 
watts, determine the output signal-to-

noise ratio of the receiver for the case when the predetection filter char-

acteristic is ideal.

P9.4. Noise in AM Receive" Using Envelope Detectibn

Problem 8 
The average noise power per unit bandwidth measured at the

front end of an AM receiver is 
10-3 watts per hertz. The modulating wave

is sinusoidal, with a carrier power of 80 
kilowatts and a sideband power

of 10 kilowatts per sideband
. The message bandwidth is 4 kHz. Assuming

the use of an envelope detector in the receiver, determine the output signal-

to-noise ratio of the system. By 
how many decibels is this system inferior

to a DSBSC modulation system?

Problem 9 
An unmodulated carrier of amplitude A, and frequency 

f,

and band-limited white noise are summed and then passed through an ideal

envelope detector . Assume the noise spectral density to be of height

Ng/2 
and bandwidth 2W, centered about the carrier frequenc

y 
f,. Deter-

mine the output signal-to-noise ratio for the case %Nhen the carrier-to-noise

ratio is high.

Problem 10 
An AM receiver, operating with a sinusoidal modulating

wave and 8V`c modulation. has an output signal-to-noise ratio of 
30 dB.

What is the corresponding carrier-to- noise ratio"

Problem It 
Consider an AM receiver using a square-law detector with

output proportional to the square of the input, as indicated in Fig. P9.4.

The AM wave is defined by

s(t) = Aj I + p cos(27rf^tfl cos(27zf,t)

Assume that tht-
. additive noise at the detector input is Gaussian %%ith zero

mean and variance c'N; it is defined by

n(t) = ni(t) cos(27if,t) — 
nc,(I) sin(21tf,t)

(a) 
show that the output signal-to-noise ratio of the receiver is given -

by

2p P
i(SNR),) —

1 + PQ

where p is the carrier-to-noise ratio.
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'M

Figure P9.4

(b) Evaluate the asymptotic behavior of (SVR)o with respect to P.
(c) Plot the dependence of (SNR)o on p for the case of 100% modu-
lation.

P9.5 FM Receiver Model

Problem 12 Assume that the FM receiver model of Fig. 9.7a and the

AM receiver model of Fig. 9.2a have the same additive white noise w(t)

of zero mean and power spectral densit y N0121 . Compare the average noise

power at the output of the IF filter in ^ig. 9.7a with that in Fig. 9.2a.

P9.6 Noise in FM Reception

Problem 13 Suppose that the spectrum of a modulating signal occupies
the frequency band f, -- If I -- f2 . To accommodate this signal, the receiver

of an FM system (without pre-emphasis) uses an ideal band-pass filter

connected to the output of the frequency discriminator; the filter passes

frequencies in the interval f, -- IfI -- f2. Determine the output signal-to-

noise ratio and figure of merit of the system in the presence of additive

white noise at the receiver input.

Problem 14 An FDM system uses single-sideband modulation to combine

12 independent voice signals and then uses frequency modulation to trans-

mit the composite baseband signal. Each voice signal has a power P and

occupies the frequency band 0.3-3.4 kHz; the system allocates it a band-

width of 4 kHz. For each voice signal, only the lower sideband is trans-

mitted. The subcarrier waves used for the first stage of modulation are

defined by

ck(t) = A, cos(27rkf^t), 	 0 -_ k _- I I

The received signal consists of the transmitted FM signal plus white noise

of zero mean and power spectral density N012.

(a) Sketch the power spectral density of the signal produced at the

frequency discriminator output, showing both the signal and noise com-

ponents.
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(b) Find the relationship between the subcarrier amplitudes Ak SO 
that

the modulated voice signals have equal signal-to-noise ratios.

Problem 15 Consider a phase modulation (PM) system, with the mod-

ulated wave defined by

s(t) = A, cos[27rf, t + kpm(t)]

where kp is a constant and m(t) is the message signal. The
I 
additive noise

n(t) at the phase detector input is

n(t) = n 1 (t) cos(21tf,t) — nc,(t) sin(21rf,t)

Assuming that the carrier-to-noise ratio at the detector input is high com-

pared with unity, determine: (a) the output signal-to-noise ratio, and (b)

the figure of merit of the system - Compare your results with the FM system

for the case of sinusoidal modulation.

P9.7 FM Threshold Effect

Problem 16 The results reported in Section 9.7 indicate that the threshold

point is defined by the carrier-to-noise ratio.

P'h = 10

(a) Show that the output signal-to-noise ratio at the threshold point is

given by

(SNR)o,^ = 30 # 2 (# + 1)

where # is the modulation index (assuming sinusoidal modulation).

(b) Find the modulation index # that produces an output signal-to-noise

ratio equal to 34.6 dB at the threshold point. Hence, find the corre-

sponding value of the channel signal-to-noise ratio.

p9.8 Pro-emphasis and Do-emphasis in FM

Problem 17 By using the pre-emphasis filter shown in Fig. 9.16a and

with a %oice signal as the modulating wave, an FM transmitter produces

a signal that is essentially frequency-modulated by the lower audio fre-

quencies and phase-modulated by the higher audio frequencies. Explain

the reasons for this phenomenon.

Problem 18 A phase modulation (PM) system uses a pair of pre-emphasis

and cle-emphasis filters defined by the transfer functions

H,jf) = k I 
+ if)
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and

H,ff)	 Ilk-

+ (if 40)

The constant k is chosen to make the average power of the pre-emphasized
message equal to that of the original message signal.

(a) Determine the improvement in output signal-to-noise ratio pro-
duced by the use of this pair of filters.
(b) Compare this improvement with that produced in the corresponding
FM system.
(c) Given that the message bandwidth W = 15 kHz and the cutoff
frequency fo = 2.1 kHz, how do the improvements in SNR for the PM
and FM systems compare with each other"





................ CHAPTER 10

OPTIMUM RECEIVERS FOR

A basic issue' in the design of receivers is that of detecting a wea . k
signal embedded in a background of additive noise. Broadly speaking,
the purpose of detection is -to establish the presence or absence of a signal
in noise. In order to enhance the strength of the signal relative to that of
the noise, and thereby facilitate the detection process, a detection
system usually consists of a predetection filter followed by a decision
device. When the additive noise is white, that is, the power spectral
density of the noise is constant, it turns out that the optimum solution to
the predetection filter is a matchedfilter, which is so-called because its
characterization is matched to that of the signal component in the

539
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received signal. A matched filter is optimum in the sense that it
maximizes the output signal-to-noise ratio defined in a special way. It is
thus apparent that a matched filter is useful in the design of digital
communication systems where the concern is to enhance the received
pulses so as to maximize the signal-to-noise ratio. In these applications
we are primarily interested in improving our ability to recognize a pulse
signal in the presence of additive noise and not in preserving the fidelity

of the pulse shape.
In Ibis chapter we study the theory and applications of matched

filters. We begin the study by formulating the optimum receiver problem.

10.1 FORMULATION OF THE OPTIMUM RECEIVER PROBLEM

Consider the situation depicted in Fig. 10. 1. Suppose that we have received

a signal x(t) that consists of either white Gaussian noise w(t) or the noise

w(t) plus a signal s(t) of known form. The implication of the noise being

"white" is that its power spectral density has a constant value N0 12, say.

The implication of the noise being "Gaussian" is that a sample drawn from
such a process has a Gaussian probability distribution for its amplitude.
We further assume that the noise has zero mean. We wish to estimate
which of the two hypotheses, noise alone or noise plus signal, is true. We
do this by operating on the received signal x(t) with a linear time-in variant

receiver in such a way that if the signal s(t) is present, the receiver output

at some arbitrary time t = T will be considerably greater than if s(t) is

absent.
For example, in a pulse-code modulation system using on—off signaling,

a pulse s(t) may represent symbol 1, whereas its absence may represent
symbol 0. We thus have the problem of specifying the input—output relation
of the receiver according to some criterion, so as to enhance the detection

process as much as possible.
We present two approaches to the solution of this basic optimization

problem. One approach is based on maximization of the signal-to-noise

ratio at the receiver output. The other approach is based on a probabilistic

criterion directly related to performance ratings of digital communication
systems in which we are interested. We will show that: (1) maximization
of the output signal-to-noise ratio yields the so-called matchedfilter receiver,

which involves a filter matched to the signal component of the received

s(t) or	 Output
zero volt	

X111

Figure 10.1
Processing of noisy signal.
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signal, and (2) the probabilistic approach yields the so-called correlation

receiver, which involves a correlation of the received signal with a stored

replica of the transmitted signal. Furthermore, we will show that these two

receiver structures are indeed equivalent for the case of additive white

Gaussian noise.

........... 10.2 MAXIMiZATIOIIJ OF OUTPUT SIGAIAL-TO-NOISE RATIO

Consider a linear time-invariant filter of impuse response h(t) or, equiv-

alently, transfer function H(f), with x(t) as input and y(t) as output. Let

s,(t) and n,(t) denote the signal and noise components of the filter output

y(t) produced by tfie signal component s(t) and white noise component

K, (t) of the input, respectively. Since the filter is linear, and the signal s(t)

and noise w(t) appear additively at the filter input, we may invoke the

principle of superposition and thus evaluate their effects at the filter output

by considering them separately.

Let S(f) denote the Fourier transform of the input signal component

s(t). Then, the Fourier transform of the corresponding output signal s,(t)

is equal to H(f)S(f), and s,(t) is itself given by the inverse Fourier trans-

form:

SJO = 
L 

H(f)S(f) exp(j27rft) df	 (10.1)

Consider next the effect of the noise w(t) alone on the filter output. The

power spectral density SN,(f) of the output noise n,(t) is equal to the

power spectral density of the input noise K , (t) times the squared magnitude

of the transfer function H(f) (see Section 8.9). Since w(t) is white with

constant power spectral density N0 12, it follows that

S"'(f) = 
N, H(f)j-'	 (10.2)
2

The average po ' wer..t of the output noise nji) equals the total area cinder

the curve of S, I (f)- We may therefore write

t 

L 
SSP) df

N.	
JH(f)j^ df	 (10.3)

2

A simple way of describing the requirement that the filter output be

considerably greater when the input signal s(t) is present than when s(t)

is absent, is to ask that, at time I = T, the filter make the instantaneous
power in the output signal s,(t) as large as possible compared with the
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average power in output noise n,(t). This is equivalent to maximizing the

output signal-to-noise ratio, defined as

	

(SNR)o = 
Is.(T)I'	 (10.4)

_IV

Using Eqs. 10.2 and 10.3 in 10.4, we get

H(f)S(f) exp(j27rf T) df

(SNR)o	
N.	

IH(f)l^ df
2

Our problem is to find, while holding the Fourier transform S(f) of the

input signal fixed, the form of the transfer function H(f) of the filter that

makes (SNR)o a maximum '. To find the solution to this constrained optimi-

zation problem, we may apply a mathematical result known as Schwarzs

inequality to the numerator of Eq. 10.5.

We will digress from our task briefly to introduce this important in-

equality, using a notation consistent with that used herein.

SCHWARZ'S INEOUALrrY

Consider the complex-valued frequency function H(f)S(f) exp(j27tf T).

This function may be viewed as the product of two functions, namely, H(f)

and S(f)exp(j2nf T). Schwarz's inequality for integrals of complex func-

tions states that the squared magnitude of the total area under the product

of two such functions is less than or equal to the product of the total area

under the squared magnitude of each of the two functions. In mathematical

terms, Schwarz's inequality states that'

H(f)S(f) exp(j27rfT) dfl '	JH(f)J1 df	 IS(f)12 df

(10.6)

, 

Schwarz's inequality, stated in Eq. 10.6 is just an extension of an inequality for real
functions described by

	

[ ^. '(f) b(t) dt] 
2 

5 f-'. 
al (t) dt	 b1(t) at

where a(t) and b(t) denote a pair of real-time functions of finite energy. As such, it
may be viewed as a generalization of the well-known "distance" relation among
vectors, which states that the magnitude of the sum of two vectors is less than or
equal to the sum of the magnitudes of the two vectors. For a formal proof of
Schwarz's inequality, see Haykin (1988), pp. 574-76.
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Here we have used the fact that the exponential term cxp(j2rf T) has a

magnitude of unity; therefore

IS(f) exp(j27rf T)J = IS(f)l

Schwarz's inequality also states that Eq. 10.6 is satisfied with equality if,

and only if, the first function H( .f) is the complex conjugate of the second

function S(f)exp(j21rf T). This statement is valid to within a scaling factor.

Let H.,(f) denote the special value of H(f) that satisfies this condition.

We may then write

H,Jf) = S * (f) exp( —j27rf T)	 (10.7)

where S * (f) is the complex conjugate of S(f).

Having equipped ourselves with this new mathematical tool, we are

ready to resume our task of finding a solution to the optimum receiver

problem.

MATCHED FILTER

Using Schwarz's inequality of Eq. 10.6 in the formula for the output signal-

to-noise ratio given in Eq. 10.5, we get

2 f,	 -(SNR),, _- N,
	

S(f)1' df	 (10.8)

The right side of this relation does not depend on the transfer function

H(f) of the filter but only on the signal energy and the noise spectral

density. Consequently, the output signal-to-noise ratio will be a maximum

when H(f) is chosen so that the equality holds. that is,

(SNR)0.,,P, ^ 
2 f 

IS (f ) 1 2 df	 (10.9)
No	 .

This condition is fulfilled when the transfer function H(f) assumes its

optimum value , H,,(f), defined by Eq. 10.7.

According to Eq. 10.7, except for the exponential factor exp( —j2,,f1')

representing a constant time delay T, the transfer function of the optinuan

filfe,f is thesameas thecomplex conjugate ofthespecirum ofthe input^ignal.

Such a filter is called a matched filter.

Equation 10.7 specifies the matched filter in the frequency domain. To

characterize it in the time domain, we take the inverse Fourier transform

of H.P,(f) in Eq. 10.7 to obtain the impulse response of the matched filter

as

h,,(t) = 
L 

S * (f ) exp( — j 2n f (T — t) I df
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Sample	
If y(T) > X known

at t	 T	

S 

ignal s(f) is' present

(1)	
Matchedfilter

Otherwise, signal
s(t) is absent

Threshold X

Figure 10.2
Matched filter receiver.

Since for a real-valued signal s(t), we have S * (f) ^ S( — f), it follows that

h,,(t) = 
L 

S( — f) exp[ —j27rf (T — t)) df

= s(T — t)	 (10.10)

Equation 10. 10 shows that the impulse response of the matched filter' is a

time-reversed and delaYed version of the input signal s(f). Note that in

deriving this result the only assumption we have made about the statistics

of the input noise vv(t) is that it is white with zero mean and a power

spectral density N,,12.

The optimum receiver for detecting the presence of the signal s(t) in

the received waveforna is thus as shown in Fig. 10.2. It consists of a filter

matched to s(t), a sarnpler, and a decision-device. At time f = T, the

matched filter output is sampled and the amplitude of this sample is com-

pared with a preset threshold ;.. If the threshold is exceeded, the receiver

decides that the known signal s(t) is present; otherwise, it will decide that

it is absent. The receiver of Fig. 10.2 is called a matched-filter receiver.

Thus far we have ignored the problem of the physical realizability of a

matched filter. For a matched filter operating in real time to be physically

realizable, it must be causal. That is, its impulse response must be zero

for negative time, as shown by

li^p,(t) = 0,	 t < 0

In terms of Eq. 10-10, the causality condition becomes

0,	 1 < 0	
(10.11)

s(T	 r ^^ 0

'The characterization of a matched filter in terms of its transfer function was first

cle , ived by North in a classified report (RCA Laboratories Report PTR-6C, June
1943), which was published 20 years later (Norih, 1963). For a review of the

matched filter and its properties, see Turin (1960).
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If all the input signal s(t) is to contribute to the output signal component

s,(t), it is apparent from Eq. 10.11 that we must have

s(t) = 0,	 t > T	 (10.12)

This relation simply states that all the input signal s(t) must have entered

the filter by the time t = Tat which it is desired to obtain a sample with the

maximum output signal-to-noise ratio.

For Eq..10.11 to be dimensionally correct, the term s(T — t) should be

multiplied by a scaling factor k that makes the impulse response h,,(t) of

the matched filter assume a dimension that is the inverse of time. This has

the effect of making the transfer function H,,(f) of the matched filter in

Eq. 10.7 dimensionless. We have chosen to ignore the use of such a scaling

factor merely for convenience of mathematical presentation.

Ev=.ICISE ' l Show that multiplication of the optimum transfer function

H.,(f) of Eq. 10.7 by a scaling factor k leaves the maximum signal-to-

noise ratio unchanged.

.............. 10.3 PROPERTIES OF MATCHED FILTERS

From the results of the preceding section, we may state that a filter, which

is matched to an input signal s(t), is characterized in the time domain b^

the impulse response

h,,,(t) = s(T — t)

which is a time-reversed and delayed version of the input s(t), as illustrated

in Fig. 10.3. In the frequency domain, it is characterized by the transfer

function

H,,(f) ^ S * (f) exp( —j27rf T)

which is. except for a delay factor, the complex conjugate of the spectrum

of the input s(t). Based on this fundamental pair of relations, we may

derive soTe important properties of matched filters, which should help

you develop an intuitive grasp of how a matched filter operates.

PROPERTY I

The spectrum of the output signal of a matched filter with the matched signal

as input is, except for a time delay factor, proportional to the energy spectral

density of the input signal.
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(a)

(b)

Figure 10.3

(a) Input signal. (b) Impulse response of matched filter.

Let S,,(f) denote the Fourier transform of the filter output sjt). Then,

S,(f)	 H,,(f)S(f)

S * (f)S(f) exp( —j27zf T)

	

S(f)1' exp( — j27rf T)	 (10.13)

This is the desired result, since IS(f)1 2 is the energy spectral density of the

input signal s(t).

..........................................................................................................................

EXAMPLE I MATCHED FILTER FOR A RECTANGULAR PULSE

Consider a rectangular pulse s(t) of duration T and amplitude A, as in Fig.
10.4a:

	

fA,	 0	 T
S(t)	 (10.14)

	

0,	 otherwise

For convenience of presentation, we assume that the pulse s(t) has unit

area; that is AT = 1. Then, the Fourier transform of s(t) is

S(f) = sinc(f T) exp(—jnf T)



I A
h,"(0 — 

0,

0 -- t -- T

otherwise
(10.15)

PROPERTIES OF MATCHED FILTERS 547

0	 T

(a)

S^(t)

A----------

t

0	 T	 2T

(b)

Figure 10.4
ja) Rectangular pulse input. (b) Matched filter output, assuming AT = 1

The impulse response of a filter matched to the rectangular pulse s(t)

is also a rectangular pulse, as shown bN

The transfer function of this matched filter is (assuming AT ^ 1)

Hv,(f) = sinc(f T) exp( —j7rf T)
	

(10.16)

which, in this example, is the same as S(f). The Fourier transform of the

matched filter output is therefore

S.(f) = H,,(f)S(,f)

= sinc(f T) exp( —j27rf T)

The factor sinc2(f T) is recognized as the energy spectral density of the

rectangular pulse s(t), assumed to be of unit area. Thus, S.(f) is in accord

with Property 1.

.......................................................................................................................

PROPERTY 2

The output signal of a matched filter is proportional to a shifted version of

the autocorrelation function of the input signal to which the filter is matched.
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This property follows directly from Propertv I, recognizing that the au-
tocorrelat ion function and energy spectra I den sit y of a signal forma Fourier
tran s

form pair (see Section 4.2). Thus, taking the inverse Fourier transform
of Eq. 10.13. we may express the matched-filter output as

sjt) = R,(t — T)	 (10.17)

where R,(7) is the autocorrelation function of the input s(t) for time lag
T. Equation 10.17 is the desired result.

EXERCISE 2 Consider a filter matched to an energy signal s(t) of duration
T seconds. The filter is excited by an input that consists of a delayed version
of the signal s(t); the delay equals to seconds.

(a) What is the time at which the filter output attains its maximum
value?
(b) What is the maximum value of the filter output?

............................................................................................................

EXAMPLE 2 MATCHED FILTER FOR A
RECTANGULAR PULSE (CONTINUED)

Consider again the matched filter for the rectangular pulse s(t) of amplitude
A and duration T. as shown in Fig. 10.4a. The rectangular pulse s(t) is
defined in Eq. 10. 14. and the impulse response h,,,,,(t) of the corresponding
matched filter is defined in Eq. 10.15. ConvoMng.s(t) withh,jt),Nke find
that the matched filter output s,,(t) has a triangular waveform. Specifically,
for AT	 I we have

At
0 < t T

T

Sjt) A 2	 T _- t < 2T
T

0, otherwise

This waveform is plotted in Fig. 10.4b, which is recognized as the auto-
correlation function of the rectangular pulse s(t), shifted bv T seconds.
Note that the matched filter output sjt) attains its maximum ' alue at time
t = T, and that its duration is twice that of the input signal.

............................................................................................................. I .............

9NEwaff s Consider an RF pulse s(t) of amplitude A, duration T, and
frequency f, as shown in Fig. 10.5a. Ile frequency f, is an integer multiple
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Is

(b)

Figure 10.5
(a) RF puLse input. (b) Matched filter output, assuming AT = 2.

of I / T, and large enough for the RF pulse s(t) to be treated as a narrow-

band signal.

(a) Show that the matched filter output s,(t) is defined by

At 
cos(27tf,t),	 0 < I —< T.

T

SJO = 
A 2	 cos(27rf,t),	 T-- t < 2T

10,	 otherwise

where, for convenience, it is assumed that AT = 2.

(b) Verify that the matched filter output s,(t) has the waveform shown
in Fig. 10.5b.

...............

EXAMPLE 3 MATCHED FILTER PAIR

A possible exploitation of property 2 of a matched filter is illustrated in
Fig. 10.0. Let us suppose that we have a signal s(t), lasting from t = 0 to
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F, I, e , 0 t
, pulse	 match"	 output

Short	 response	 Mle,	 Y (1)

input	 +
pul"

Figure 10.6
Viewing the matched filtering operation as an encoding- decoding process.

t = T, which has the appearance and character of a sample function of a
random process with a broad power spectral density, so that its autocor-
relation function approximates a delta function. This signal may be gen-
erated by applying, at t = 0. a short pulse (short enough to approximate
a delta function) to a linear filter with impulse response s(t). The impulse-
like input signal has components occupying a very wide frequency band.
but their amplitudes and phases are such that they add constructively only
at and near t = 0 and cancel each other out elsewhere. We may therefore
view the signal-generating filter as an encoder, whereby the amplitudes
and phases of the frequency components of the impulse-like input signal
are coded in such a way that the filter output becomes noise-like in char-
acter, lasting from t = 0 to t = T, as in Fig. 10.7a. The signal s(t) generated
in this way is to be transmitted to a receiver via a distortionless but noisy
channel. The requirement is to reconstruct at the receiver output a signal
that closely approximates the original impulse-like signal.

The optimum solution to such a requirement, in the presence of additive
white Gaussian noise, is to employ a matched filter in the receiver, as in
Fig. 10.6. We may view this matched filter as a decoder, whereby the useful
signal component s(t) of the receiver input is decoded in such a way that
all frequency components at the filter output have zero phase at r = T,
and add constructively to produce a large pulse of nonzero width, as in
Fig. 10.7b. Thus, in coding the impulse-like signal at the transmitter input
we have spread the signal energy out over a duration T, and in decoding
the noise-like signal at the receiver input we are able to concentrate this
energy into a relatively narrow pulse. The extent to which the receiver
output s,(t) approximates the original impulse-like signal is simply a re-
flection of the extent to which the autocorrelation function of the trans-
mitted signal s(t) approximates a delta function. The signal generating and
reconstruction filters in Fig. 10.6 are said to constitute a matched-filter pair.

The idea of a matched filter pair is basic to a secure communication
technique known as spread spectrum modulation.' In this method of mod-
ulation, the noise-like character of the transmitted signal is produced b ' Y
having an information -bearing binary sequence modulate a bandwidth-

3For an introductory discussion of spread spectrum modulation, see Heykin 0 988),
pp. 445-73.
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^W

0

W

0	 T

W

Figure 10.7
(a) Noise-like input signal. (b) Matched fitter output.

spreading sequence that acts as a carrier, and the informarion-bearing se-

quence is recovered at the receiver by means of' a filier matched to the

spreading scquence employed in the transmitter. In a popular t^pe of spread

spectrum modulation. apseudorzoise (PN) sequence is used as the spreading

sequence, and each block of pulses constituting a period of the PN sequence

is multiplied in the transmitter bN + I or — L depending on ^k hether the

particular binary symbol of the information-bearin g sequence is a I or a

ver0. The recei uses a filter matched to the PN sequence employed in the

transmitter. From Chapter 8 we recall that the autocorrelation function of

a PN sequence (also known as a maximal length sequence) consists of a

periodic train of short triangular pulses that have the appearance of an

impulse: see Fig. 8.21a. Hence, the matched filter output due to the in-

formation-bearing sequence consists of a periodic train of short triangular

pulses, with the polarity of each pulse being determined bN the identify of

the corresponding binar y s^mlbol of the information-bearing sequence. On

the other hand, an interfering (jumming) signal, unmatched to the PN

sequence, is rejected by the matched filter receiver. 'Ihe le%cl 
of 

this re-

jection is determined bv the ratio T,^'T . where 7' is the bit duration of

the information-bearing sequence. and T, is the duration of a basic pulse

of the PN sequence, the ratio T^ T_ expressed in decibels, is called the

processi
I 
ng gain of the system. Hence. h^ assigning a larve %alue (on the

order of 1000) to this ratio, a secure communication link is established

between the transmitter and the receiver. Moreover, the I's and O's of the

original information-bearing sequence are detected by sampling the matched

filter output every T^ seconds: If the polarity of a sample under test is

positive, a decision is made in favor of s y mbol I^ otherwise, a decision is

: ma e n avor o sym o

..........................................................................................................................
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PROPERTY 3

The output signal-to-noise ratio of a matched filter depends only on the ratio

of the signal energy to the power spectral density of the white noise at the
filter input.

This property follows directiv from Eq. 10.9, reproduced here for con-
venience

(SNR)(,,,,, = —' f ' S(f)1' df
No 

_ ,

where S(f) is the Fourier transform of the signal s(t) to which the filter

of interest is matched. From Rayleigh's energy theorem, the signal energy
E is given by

E	 s-(t) dt	 S(flj` df

Accordingly, we may rewrite the expression for the output signal-to-noise

ratio of the matched filter as

(SNR),)^,,	
2E

N,

which is the desired result.

Equation 10.18 is perhaps the most important result in the evaluation

of the performance of signal processing systems using matched filters. From

Eq. 10,18 we see that- dependence on the waveform, of the input s(t) has
been completely remo ,.ed by the matched filter. Accordingl y , in evaluating
the abilit ' il of a matched-filter receiver to combat white Gaus'st. an not. se, we
find that all signals that have the sarne energy are equally , effective. Note
that the signal energy E is in joules and the noise spectral density N(,12 is
in watts per hertz. so that the ratio 2EIN, is dimensionless; however, the
two quantities ha^e different physical meaning.

EXERCISE 4 Consider a rectangular pulse of amplitude A and duration
T. Show that the output signal-to-noise ratio of a filter matched to this

pulse is

(SNR)o = 
2A2 T	

(10.19)
No
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PROPERTY 4

The matched-filtering operation may be separated into two matching con-
ditions; namely, spectral phase matching that produces the desired output
peak at time T and spectral amplitude matching that maximizes the output
signal-to-noise ratio at time t = T.

In polar form, the spectrum of the signal s(t) being matched may be

expressed as

S(f) = IS(f)l exp[jO(f)]

where IS(f)l is the amplitude spectrum and 0(f) is the phase spectrum of

the signal. The filter is said to be spectral phase matched to the signal s(t)

if the transfer function of the filter is defined by'

H(f) = JH(f)j exp[ — jO(f) — j2nf Tj

where H(f)j is real and nonnegative. The output of such a filter is

s (t)	 H(f)S(f) exp(j27rft) df

H(f)JIS(ft exp[j27rf(t — T)j df

where the product H(f)j S(f)j is real and nonnegative. The spectral phase

matching ensures that all the spectral components of the output s,(t) add

constructively at time t = T, thereby causing the output to attain its max-

imum value, as shown by

s.	 _- s,(T)	
L 

JS(f)j JH(f)j df

For spectral amplitude matching, we choose the amplitude response H(f)j

of the filter to maximize the output signal-to-noise ratio at t ^ T by using

H(f)j = IS(f)l

and the standard matched filter is the result.

.......... 10.4 APPROXIMA77ONS IN MATCHED FILTER DESIGIV

In considering the design of a matched filter, we have to take account of

two aspects of the problem—physical realizability and practical feasibility.

'Birdsall (1976).
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For a matched filter operating in real time to be physically realizable, its

impulse response must be zero for negative time. In Section 10.2 we showed

that if the signal s(t) to which the filter is to be matched lasts from t = 0

to t = T, then the physical realizability requirement is satisfied by intro-

ducing a finite delay, equal to T. in the impulse response of the filter.

Then, of course, we must wait until time t ^ T for the output signal

component sJt) of the matched filter to reach its peak value sJT). In

other words, we cannot expect the output signal component s,,(t) to contain

the full information about the input signal s(t) until the signal has been

fully received by the filter. Suppose, however, that the signal duration T

is too large and we cannot afford to wait until time t = T before extracting

information about the signal s(t). Then. in order to maximize the output

signal-to-noise ratio at some instant t = T', where T' < T, we should use

the part of the optimum impulse response h,,(t) that extends from t = 0,

to t = T'. and delete the remainder. The resulting output signal-to-noise

ratio. measured at time t = T', is still of the form of Eq. 10.18 except

that now E must be interpreted not as the total signal energy, but rather

as that part of the signal energy having been received by the filter at time
t = T'. Obviously. in such a case. we are no longer dealing with a true

matched filter, but rather an approximation to it. with the nature of the

approximation determined by what fraction of the signal energy is received

by time t = T'.

Another problem encountered in the construction of a matched filter is

that it is often difficult to realize a filter with a transfer function exactly

equal to the complex conjugate of the spectrum of the input signal s(t).

We may, then, have to apply some form of approximation to the optimum

transfer function H,,,,(f ) in order to arrive at a practical realization. Such

an approximation results in some loss in performance compared with a

true matched filter. This procedure is best illustrated by examples.

.......................................... . ..................................................

EXAMPLE 4 APPROXIMATIONS FOR A MATCHED
FILTER FOR A RECTANGULAR PULSE

Consider again the rectangular pulse s(t) of Fig. 10.4a. The pulse has
amplitude A and duration T; let AT = I for convenience of presentation.

In this example, we examine two different low-pass structures for approx-

imating the matched filter for this rectangular pulse. The two structures

are an ideal low-pass filter and an RC low-pass filter, which are considered
in turn.

1. Ideal low-pass filter with variable bandwidth: The transfer function
H^,(f) of the matched filter of interest is given in Eq. 10.16, which is
reproduced here for convenience:

H.,(f) = sinc(f T) exp(—jnf T)
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The amplitude response IH,,(f)l of the matched filter is plotted in Fig.

10.8a. We wish to approximate this amplitude response with an ideal low-

pass filter of bandwidth B. The amplitude response of this approximating

filter is shown in Fig. 10.8b. The requirement is to determine the particular

value of bandwidth B that will provide the best approximation to the

matched filter.

From Example 4 of Chapter 3, we recall that the maximum value of the

output signal, produced by an ideal low-pass filter in response to the rec-

tangular pulse of Fig. 10.4a, occurs at t = T12 for BT -_ 1. This maximum

value, expressed in terms of the sine integral, is equal to (2A /71)Si(7ZBT).

The average noise power at the output of the ideal low-pass filter is equal

to BN,. The maximum output signal-to-noise ratio of the ideal low-pass

filter is therefore

(2A / 7r )2 Si
2 (7r B T)

(SNR)^ =	 (10.20)
BNo

Thus, using Eqs. 10.19 and 10.20. and assuming that AT = 1, we get

(SNR)^
— — SI'(7tHl

(SNR)o	
712 
BT

3	 2	 1	 0	
1	 2	 3

T	 T	 T	
(a)	

T	 T	 T

H(hj

1.0

	

F I	 f
—B 0 B

(b)

Figure 10.8
(a^ Amplitude response of a filter matched to a rectangular pulse. (b) Amplitude
response of an ideal low-pass filter approximating the matched filter.

FA
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Figure 10.9

The effect of varying the time-bandwidth product BT on the output signal-to-noise
ra 

tio 
of an ideal low-pass filter and that of RC low-pass filter.

This ratio is plotted in Fig. 10.9 as a function of the time -band width product

BT. The peak- value on this curse occurs for BT = 0.685, for which we

find that the maximum signal-to-noise ratio of the ideal low-pass filter is

0.84 clB below that of the true matched filter Therefore, the "best" value

for the bancl^kidth of the ideal low-pass filter characteristic of Fig. 10.8b

is B = 0.685/T.

2. RC Low-pass filter of variable bandK idth: Consider next the simple

RC loit-Passfilter shown in Fig. 10.10a, Ahich is required to provide the

best approximation to the matched filter for a rectangular pulse s(t) of

amplitude A and duration T. In this case, it is easiest to do the analysis in

the time domain. To proceed, the pulse s(t) is reproduced in Fig. 10. 10b.

The response (output) of the filter to the input pulse s(t) is plotted in Fig.

10. 10c. Comparing the RC low-pass filter output s,'Ji) in Fig. 10. 10c with

the matched filter output sjt) shown in Fig. 10.4b, we see that they have

somewhat similar waveforms.

The response s,(t) of the RC low-pass filter reaches its peak value at

time t = T, which is given by

	

s,',( T) = A I — exp ( 
_	 ]	

(10.21)
1	 RC)

where RC is the time constant of the filter. The 3-dB bandwidth B of the
filter is related to the time constant RC by

B = 
I

27rRC

I

I

I
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R
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Input	 Output
s (t)	 C	

s'G (t)
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(a)

	

0	 T

	

.	
(b)

	

0	 T
(c)

Figure 10.10
(a) RC low-pass filter. (b) Rectangular pulse input. (c) Response of the filter.

We may therefore rewrite Eq. 10.21 in terms of the bandwidth B as

s '(T) = A[I — exp(-2rBT)]	 (10.22)

Our next task is to calculate the average power at the RC low-pass filter
output produced in response to a white noise input of zero mean and power
spectral density N0 12. The transfer function of the - filter is

I

	

H(f)	
I + j27tfRC

I + (jf 1B)

U

t
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Hence, the average noise power at the low-pass filter output is

_V""	
Hffil' df

2

No f.	 df

2 — I + (flB )2

7z A'^, B	
(10.23)

2

We may now use Eqs. 10.22 and 10.23 to calculate the output signal-

to-noise ratio of the RC lo"-pass filter in Fig. 10.10a at time t = T; the

result is

(SNR)^ 
= 2A2 

[1 — exp(-27zBT) 12	 (10.24)
7rN0B

Thus, using Eqs. 10.19 and 10.24. we get

(SNR)^	 I
= — [I — exp(-2;TBT)II

(SNR)o 7rBT

This dimensionless ratio is plotted versus the time-bandwidth product BT

in Fig. 10.9. The curve reaches a peak value of 0.816 at BT ^ 0.2. There-

fore, the maximum output signal-to-noise ratio of the RC low-pass filter

is only 0.9 dB below.that of the actual matched filter.

It is noteworthy to compare the ideal and RC low-pass filters as ap-

proximate realizations of the matched filter for a rectangular pulse. Despite

its simplicity, the RC low-pass filter is worse than the ideal low-pass filter

by only 0.06 dB; this degradation in performance is small enough to be

ignored in practice. Accordingly, the RC low-pass filter is the preferred

solution.

...........................................................................................................................

10.5 PROBABJLISTIC APPROACH

The filter optimization criterion based on maximization of the output signal-

to-noise ratio, described in Section 10.2, has the advantage of requiring

knowledge of only the power spectral density of the noise w(t) at the

receiver input. Although such a criterion has a strong intuitive justification,

nevertheless, we should prefer to use criteria directly related to probabi-

listic performance ratings of the system under study. For example, in a

pulse-code modulation system with on—off signaling, symbol 1 is repre-

sented by the presence of a pulse s(t), whereas symbol 0 is represented by
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the absence of the pulse. The presence of noise at the front end of the

receiver causes two kinds of error to arise:

1. An error that occurs when symbol 0 is transmitted and the receiver

decides in favor of symbol 1.

2. An error that occurs when symbol I is transmitted and the receiver

decides in favor of symbol 0.

For a choice of criterion to optimize the performance of this system, we

may wish to minimize the average probability of error involving both kinds

of error. This brings us into the realm of classic statistical hypothesis - testing

procedures.

UKEUHOOD RA770

In the simplest hypothesis-testing problem, the observed signal x(t) is either

due solely to white Gaussian noise K , (t) of zero mean and power spectral

density N0 12, which constitutes the null hYpothesis, or due to both an

exactly known signal s(t) and noise vv(t), A hich constitutes the alternatit e

hypothesis. Denoting the null hypothesis as Ho and the alternative h^-

pothesis as H, we may write:

	

H^: x(t) = w(t)	
(10.25)

H I : x(t) = s(t) + w(t)

The problem is to observe the received signal x(t) over an interval from

zero to T seconds and then decide whether H, or H 1 is true, according to

some criterion.

To get a probabilistic description of the continuous received signal x(t),

we first assume that m amplitude samples of x(t) are available, and then

take the limit as m approaches infinity. At time tk, we thus have

	

Ho: xk ^ Wk	 (10.26)
H,: X k ^ S k + "I

where xk, S k, and w^ refer to sample values of x(t), s(t), and w(t) at time

	

tk, respectively; the time index k ^ 1, 2,	 rn. We may then define an

m-by-I observation vector x that consists of the sample values x j , x,
x., as shown by

X2

X
X'1
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The vector x represents a single realization of the signal observed (mea-

sured) at the receiver input. Let the random vector X denote the ensemble

of all such realizations; naturally, the randomness arises because of the

additive white Gaussian noise at the receiver input.

Let fo(x) denote the conditional probability density function of the

random vector X given that Ho is true, and let f, (x) denote the conditional

probability density function of X given that H, is true.' These two con-

ditional probability density functions are basic to the probabilistic approach

to receiver design.

In the binary hypothesis-testing problem, we know that either H', or H,

is true. Thus, assuming that a choice has to be made each time the ex-

periment is conducted, one of four things can happen:

1. Ho is true: choose H,

2. Ho is true: choose H,.

3 H, is true: choose H,.

4. H, is true: choose Ho.

It is apparent that alternatives (1) and (3) correspond to correct choices,

whereas alternatives (2) and (4) correspond to errors. The purpose of a

decision rule is to attach some relative importance to the four possible

courses of action. To implement the decision rule, we divide the total

observation space Z into two parts, Z, and Z,. In particular, when an

observation falls in Z, we choose hypothesis H,,, and when an observation

falls in Z, we choose hypotheses H,. Accordingly, we may identif) two

important probabilities:

1. The conditional probability of correct reception, defined as the m-fold

integral

f,(x) dx,	 i = 0, 1.

where the m-dimensional decision region Z, corresponds to hypothesis

H,.

2. The conditional probability of error, defined as the m -fold integralI

f,(x) dx,	 i = 0, 1.

'According to the notation described in Chapter 8, the conditional probability
density function of the random vector X, given that hypothesis H. is true, is written

as f.(xjHj. In the material presented herein, the notation is simplified by denoting
this conditional probability density function as f^(x). Similar remarks hold for f,W.
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where 2 i denotes "the not Z," decision region; that is,

t

 Z, i 0

z"	 i	 I

In a digital communication system, we are specifically interested in min-

imizing the average probability of error. Let p and q denote the a priori

probabilities of hypotheses Ho and H, respectively. These probabilities

represent the observer's information about the source that generates the

observation vector x before the experiment is conducted. Then, we may

express the average probability of error as

P^ = p	 A + q f, f ^ (x) A	 (10.27)

o

On the right side of Eq. 10.27, the first integral represents the conditional

probability of an error of the first kind, and the second integral represents

the conditional probability of an error of the second kind. Since the total

observation space Z = Zo + Z 1 , we may rewrite Eq. 10.27 as

P, 
= p f^^ - 4 

fo(x) A + q f4 f,(z) A	 (10.28)

We note, however, that the probability of an observation falling in the

total observation space Z is equal to 1, because it is a certain event; that

is,

f, fo(x) A = 1

Hence, we may simplify Eq. 10.28 as

P, = p +	 [qf.(x) — pfo(x)] A	 (10.29)

On the right side of Eq. 10.29 the first term is fixed whereas the integral

represents the error probability controlled by those points x that we assign

to Zo. Therefore, all values of x for which pfo(x) is greater than qf,(x)

should be assigned to Zo because they contribute a negative amount to the

integral. Similarly, all values of x for which the reverse is true should be

assigned to Z, (i.e., excluded from Z O ) because they would contribute a

positive amount to the integral. Values of x where the two terms are equal
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have no effect on the average probability of error P, and may be assigned

arbitrarily. We will assume that such points are assigned to Z^. We may

thus define the decision regions as

If qf,(x) is greater than pf,,(x),

assign x to Z, and accordingly choose hypothesis H1.

Otherwise, assign x to Zo and choose hypothesis Ho.	 (10.30)

Equivalently, we may write

f, ( X ) H, p
- Z	 (10.31)
fo( X ) H^ q

The quantity on the left side of Eq. 10.31 is called the likelihood ratio.
Denoting this ratio by A(x), we have

	

A(x)	
f,(x)	

(10.32)
fo(x)

Note that since the likelihood ratio A(x) is a ratio of two functions of a

random variable, it is itself a random variable. However, regardless of the

dimensionality of x, the likelihood ratio A (x) is a one-dimensional random
variable. In terms of A(x), we may thus rewrite Eq. 10.31 simply as

A (x)	
p

(10.33)
H, q

This test is called the minimum probability of error criterion .6

Since the natural logarithm is a monotonic function, and both sides of

Eq. 10.33 are positive, it follows that an equivalent test is

H,

	

IrL4 (X)	
In 

q	
(10.34)

I (e)

'Equation 10.33 is a special case of the Bayes'test:

A (x) Z

"owhere P7 is called the threshold of the test. According to the Baves' test, the
threshold #7 is determined by two sets of factors: (a) the a priori probabilities p and
q, and (b) the individual costs assigned to the four possible outcomes of the binary
hypothesis testing problem. For a detailed treatment of Bayes' test and related
issues, see the following references: van Trees (1968), Helstrom (1968), and Whalen
(1971).
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x ___0.	 ratio	 device

computer	

I	

Otherwise, choose Ho

Threshold

In(P )

Figure 10.11
Likelihood ratio receiver.

We refer to InA(x) as the log-likelihood ratio. When the two hypotheses

H(, and H, are equally likely (i.e., p = q), the decision level against which

the log-likelihood ratio is compared is zero. This assumption is usually true

in digital communications.

The optimum receiver based on Eq. 10.34 is known as the likelihood

ratio receiver, shown in Fig. 10. 11. We see that all the data processing

required for the test is involved in computing the log-likelihood ratio IrLA(x),

based on the observation vector x, and it is not affected 
by 

the a priori

probabilities p and q. This invariance property of the likelihood ratio test

is of considerable practical importance. The values of the a priori proba-

bilities affect only the decision level. This means that we can construct a

processor based only on the log-likelihood ratio and accommodate any

subsequent changes in our estimates of the a priori probabilities. if ever

required, by simply varying the decision level.

EKExcaE 5 Justify the statement that the likelihood ratio A(x) and the

ratio p1q are both positive.

CORRELATION RECEIVER

Let us momentarily assume that the noise is band-limited white Gaussian

noise with power spectral densitN-

	

S -IM = 
I ^^' 1-1 .	 if ii < B	

(10.35)

0.	 If > B

If the signal x(t) containing such a noise (as an additive component) is

sampled with sampling interval T, = 1 /2 B, the samples are uncorrelated.

and being Gaussian, they are statistically independent. In the observation
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interval from zero to T, we collect a total of m = TIT, = 2BT statistically

independent samples. The joint-probability density functions fo(x) and

f,(x) are therefore the products of probability density functions of the

individual components of the random vector X, assuming that H O and H,

are true, respectively.

To explicitly write fo(x) or f I (x), we must have the mean and variance

of the random variables X k , k = 1, . . . , rn, which constitute the random

vector X. Since the noise w(t) has zero mean, we have

H,: mean of Xk = 0

H I : mean Of X k = S k 	 (10.36)

where Sk is the value of the signal s(t) at time t,. The variance of Xk is the

same under both Ho and H 1 , as shown by

0,2(Wk ) = C2	
(10.37)

where Wk is the random variable obtained by observing the band-limited
white noise process w(t) at time t, The variance c 2 is simply that of the
noise component:

NOB —_ 
N,	

(10.38)
2 T,

The equality a' = N,B follows from the fact that the average noise power
(represented by C2) 

equals the total area under its power spectral density

curve. We may therefore express the conditional probability density func-

tion fo(x) as

fo(x)	 H fo(x,)
k=1

where

Mx')	 exp
— _^LV-2w	 ( 2,71

Hence, we have

exp(_ i -i)
(10.39)

Similarly, we may write

f1(X) =	
I	

exp	
(Xk - SO

(27ral).12	 2al	 1	
(10.40)
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Substituting Eqs. 10.39 and 10.40 in 10.34, and simplifying, we get

H,S2) -

(2s,x^	 , , In 
q

k^l 2o- 2	 H,	 (e)

or, equivalently,

I^X' H,	

(10.41)
(P)	 S2

In
H,,	 q	 k=1 G2

FromEq. 10.38, the variance a' of the noise is equal to N,,j2T,. Therefore,

substituting this value for or ' in Eq. 10.41, we get

it,

SkX,T, Z- In	
T,	 (10.42)

q	 NoNo k - I	 H"	 (e)

The decision rule in Eq. 10.42 is expressed in terms of "i uniformlv

spaced samples of the receiNed signal x(t) and of the knoAn signal s(t).

To obtain the corresponding decision rule in terms of the continuous func-

tions x(i) and s(t), we allow the sampling interN al T, to approach zero and

m (and therefore B) to approach infinit y in such a wa y that the observation

interval mT, remains a constant, T. In the limit. the summations in Eq.

10.42 become integrals, yielding

T
f7	

f	 d,	 (10.43)
s(t)x(t) dt	 In P , —

No )	 H, (q	 No

Equivalently, we may write

L

s(t)x(t) dt	
(10.44)

'	 If,

where ;. is a new threshold defined by

;. = - 
1 
No In(P) , I f"

	

d,	 (10.45)

2	 q	 2 ,

We also note that

E = f s-'M 11
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is the energy of the known signal s(t). That is, the threshold ). in the test
described by Eq. 10.44 depends on the a priori probabilities p and q, the
noise spectral density N,,, and the signal energy E; see Eq. 10.45.

EXERCISE 0 Discuss the ways in which the threshold A is affected by the
following values of a 

priori probabilities:

(a) Symbols 0 and 1 occur with equal probability.
(by Symbol 0 occurs twice as frequently as symbol 1.
(c) Symbol I occurs twice as frequently as symbol 0.

IMPLEMENTATION CONSIDERATIONS

The decision rule described by Eq. 10.44 may be implemented as shown
in Fig. 10. 12. This receiver is called a correlation receiver.' It correlates the
received signal x(t) with a stored replica of the known signal s(l). If the
correlator output is larger than the predetermined threshold ;., we choose
II I ; otherwise, we choose H,

Consider the integral term on the left side of Eq. 10.43. Substituting

	

the time difference T — r for t in this integral. we have 	 .

f
T 

s(t)x(t) dt	 s(T — r)x(T — t) dr

= f (T — )x(T — ) d,

However, from Eq. 10.10. we note that s(T — t) is simply the impulse
response h,jt) of a linear time-in%ariant filter matched to the known signal
s(r). Therefore,

	

f ,T 

s(t)x(t) dt = f I T h,,(r)x(T — r) dT	 (10.46)

The term on the right side of Eq. 10.46 is the output of a matched filter
of impulse response h,,,,(t) due to an input x(t), evaluated at time T. This
means that the matched-filter receiver of Fig. 10. 2 and the correlation receiver
of Fi 10 12 are equi

I 
valent. That a criterion based on maximization of the

output signal-to-noise ratio and a probabilistic criterion should lead to
exactly the same result in the case of additive white Gaussian noise is no
coincidence; indeed, it is testimony to the intimate connection between

'The derivation of the correlation receiver using a probabilistic criterion is
historically credited to Woodward (1964)
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Choose H, it
X is exceeded

X (0	 X	 d,0	 Otherwise,

_T_E^J_	
choose Ho

S (t)	 X

Figure 10.12
Correlation receiver.

the two types of criteria in this special case. Note, however, that the

correlator output in Fig. 10.12 and the matched-filter output in Fig. 10.2

are equivalent only at time T.

............... 10.6 PROSASILi7y OF ERROR FOR BINARY PCM

As an application of the binary hypothesis-testing procedure described by

Eq. 10.4-4, we consider the performance of a binary PCM system in the

presence of channel noise; the receiver is depicted in Fig. 10.12. We do

so by evaluating the average probability of error for such a system under

the following assumptions:

1. The PCM system uses an on—off format, in which symbol I is represented

by A volts and symbol 0 by zero volt.

2. The symbols I and 0 occur with equal probability.

3. The channel noise w(t) is white and Gaussian with zero mean and power

spectral density No/2.

To determine the average probability of error, we consider the two

possible kinds of error separately. We begin by considering the first kind

of error that occurs when symbol 0 is sent and the receiver chooses symbol

1. In this case, the probability of error is just the probability that the

correlator output in Fig. 10.12 will exceed the threshold ^ owing to the

presence of noise, so the transmitted symbol 0 is mistaken for symbol 
1.

Since the a pi^iori probabilities of symbols I and 0 
are equal, we have

p = q. Correspondingly, the expression for the threshold 
A given in Eq.

10.45 simplifies as follows

	

A 2 
Tt'	 (10.47)
2

where Tb is the bit duration, and A
2Tb is the signal energy consumed in

the transmission of symbol 1. Let y denote the correlator output:

y =	 dt	 (10.48)

0
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Under hypothesis H0 , corresponding to the transmission of symbol 0, the

received signal x(t) equals the channel noise w(t). Under this hypothesis

we may therefore describe the correlator output as

HO : y = A 
f^ 

T^ 

w(t) dt	 (10.49)

Since the white noise w(t) has zero mean, the correlator output under

hypothesis Ho also has zero mean. In such a situation, - we speak of a
conditional mean, which (for the situation at hand) we describe by writing

	

MO ^ E[YIH,] = 
E[fT^ 

W(t) dt	 0	 (10.50)
0	 1 =

where the random variable Y represents the correlator output with y as its

sample value and W(t) is a white-noise process with w(t) as its sample

function. The subscript 0 in the conditional mean mo refers to the condition

that hypothesis Ho is true. Correspondingly, let col denote the conditional
variance of the correlator output, given that hypothesis Ho is true. We may
therefore write

co' = E[YIIHO I

	

= 

E[ f ' f ' W(t,) W(t,) dt, dt,	 (10.51)

The double integration in Eq. 10.51 accounts for the squaring of the cor-

relator output. Interchanging the order of integration and expectation in

Eq. 10.51, we may write

,2 =	
" E[W(t,)W(t,)] dt. dt2

0 f' f

0

	

Rw(t^ — 
t2) 

dt, di,	 (10.52)

The parameter Rw(t, — t2) is the ensemble-averaged autocorrelation func-
tion of the white-noise process W(t). From random process theory, it is

recognized that the autocorrelation function and power spectral density of

a random process form a Fourier transform pair. Since the white-noise

process W(t) is assumed to have a constant power spectral density of

N012, it follows that the autocorrelation function of such a process consists

of a delta function weighted by No12 Specifically, we may write

2
0 6(rRw(t, — t2) = ^L	- ti + t2)	

(10.53)
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Substituting Eq. 10.53 in 10-52, and using the property that the total area
under the Dirac delta function 6(r — t j + t 2 ) is unity, we get

I	 NoT6A'
	ab = —	 (10.54)

2

The statistical characterization of the correlator output is completed by
noting that it is Gaussian distributed, since the white ncise at the correlator
input is itself Gaussian (by assumption). In summary, we may state that
under hypothesis Ho the correlator output is a Gaussian random variable
with zero mean and variance NoTbA 1 12, as shown by

MY)	 exp( —	 Y,	 (10.55)
N 71NO TbA 	NoTbA'

where the subscript in f,(y) signifies the condition that symbol 0 was sent.
Figure 10.13a shows the bell-shaped curve for the probability density

function of the correlator output, given that symbol 0 was transmitted. The
probability of the receiver deciding in favor of symbol I is given by the

sl,own shaded in Fig. 10.13a. The part of the Y-axis covered by this

-j —b

(b)

Figure 10.13
Conditional probability of error calculations. (a) Conditional probability of error,
given that symbol was sent. W Conditiona l probability O f LfrOr, given that svmbol I
was sent.
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area corresponds to the condition that the correlator output y is in excess

of the threshold A defined by Eq. 10.47. Pet P,0 denote the first conditional

probability of error, given that symbol 0 was sent. Hence, we may write

P.	 fjy) dy

	

1 —

	
exp( -	 Y' ) dy	 (10.56)

—.VN b	 A'T.12	 No Tb A'r7 Ô T A f

Define

	

Z =	 y	 (10.57)
V-N—,T, A

We may then rewrite Eq. 10.56 in terms of the new variable z as

P'^D = - 1	
exp( - z') dz	 (10.58)

^77=r t, ^,..

Equation 10.58 can only be solved using numerical methods. A similar

integral has been tabulated and is known as the complementan . errorfiinction'

erfc(u) = 
2	

exp( —Z2 ) dz	 (10.59)
^^ f

Accordingly, we may redefine the conditional probability of error PeG in

terms of the complementary error function as

	

1	 2TA T^
P,0	 erfc	 (10.60)
2 V^4 ^N,

Consider next the second kind of error that occurs when symbol I is

sent and the receiver chooses symbol 0. Under this condition, correspond-

'The complementary error function is related to the error function as

erfc(u) = 1 — erf(u)

where erf(u) is the error function defined by (see Section 8.3)

erf(u)	 e.p(— e) d,

For large values of u, the error function approaches unity, in which case it is
numerically more convenient to work with the complementary error function. A
short table of values of the error function erf(u) for u in the range 0 to 3.3 is given
in Ta.ble 6 of Appendix D.
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ing to hypothesis H,, the correlator input consists of a rectangular pulse

of amplitude A and duration T, plus the channel noise w(t) . We may thus

apply Eq. 10.48 to write

H,: Iv = A f
o 

T, 
[A + w(t)] at	 (10.61)

The fixed quantity A in the integrand of 
Eq. 10.61 serves to shift the

correlator output from a mean value of zero volt under hypothesis H,, to
the conditional

' Tba mean value of A	 under hypothesis H 1 . However,

variance of the correlator output under hypothesis H, has the same value

as that under hypothesis Hu. Moreover. the correlator output is Gaussian

distributed as before. In surnmary^ the correlator output under hypothesis

H, is a Gaussian random variable with mean AT, and variance 
N,,Th2l? '

as depicted in Fitz. 10. 13b. Let P, denote the 
second conditionalprobabilitY

of error, gii en that s ' vinbol I was sent. 
This probability equals the area

shown shaded in Fig. 10.13b, 
which corresponds to those values of the

correlator output less than the threshold ;. set at A-Tb l2. From the sym-

metric nature of the Gaussian density function, it is clear that

P'J = PA,	
(10.62)

Note that this statement is only true when the a priori probabilities p 
and

q are equal: this assumption was made in calculating the threshold ; -

AVERAGE PROBABILMY OF ERROR

To determine the average probability of error of the PC%1 
receiver, we

note that the two possible kinds of error just considered are mutually

exclusive e^ents. Thus. with the a priori probability of transmitting a 0

equal to p, and the a priori probability of transmitting a 
I equal to q. \ve

find that the average probability of error, P_ 
is given by

P, = pP, + qP,,	
.
(10,63)

Since P, 1 = P,. and p + q = 1, Eq. 10.63 
simplifies as

P, = P", = P',

or

( I V KA' T:,	
(10.64)

P,	 erfc
2	 2	 Nf,

The term A 2 Tb equals the signal energy 
when symbol I is sent. Let the

dimensionless parameter ?1, denote the 
signal energy-to-noise powerspectral
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Figure 10.14
Probability of error in a PCM receiver.

5^gral energy-to-noise power spectral density ratio
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density ratio under this condition, as defined by

A 2 Tb	

(10.65)
No

We may interpret the parameter r1 l in another way. We observe that A'
denotes the peak signal power. The ratio N.1 Tb denotes the average noise

power measured in a bandwidth equal to the bit rate I/ Tb . The parameter
?1, is therefore the ratio of the peak signal power to the average noise power

so defined.

We may thus express the average probability of error of the optimum

binary PCM system using on—off signaling in terms of r1 l as

P, = e rfc 
1 

V^	 (10.66)
2	 (2

This formula shows that the average probability of error P, depends solely

on the signal energy-to-noise power spectral density ratio 17 j . Figure 10. 14
shows P, plotted versus ?7, in decibels. We see that the average probability

of error P, decreases very rapidly as the signal energy-to-noise power

spectral density ratio ?1, is increased, so that eventually a very small increase

in the signal energy will make the reception of binary data over a white

Gaussian noise channel almost error free. Clearly, there is an error thresh-
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old (at about 17 dB) below which the receiver performance may involve

significant numbers of errors and above which the effect of channel noise

is practically negligible. In other words, pro
v
ided that the signal energ^-

to-noise power spectral density ratio q, exceeds the error threshold. channel

noise has virtually no effect on the receiver performance. which is preciselN

the goal of PCM. When. however, P1, drops below the error threshold,

there is a sharp increase in the rate at Ahich errors occur in the receiver.

Because decision errors result in the construction of incorrect code words.

we find that when the errors are frequent, the reconstructed message at

the recei%er output bears little resemblance to the original message. In

such a situation. we say the message has become mutilated by decoding

noise.

EXERCISE 7 Using a procedure similar to that described for deriving PeG,

show that the conditional probability of error of the second kind, P,,, has

the same value as that given by Eq. 10.60.

EXERCISE 8 Consider the suboptimurn binary PCM receiver shown in

Fig. 10.15. It involves the use of an ideal low-pass filter, followed by a

sampler. The output of the sampler is compared to a threshold, and then

a decision is made in favor of binary symbol 1 or 0. The transmitted PCM

signal uses an on—off format with symbol I represented by A volts, and

symbol 0 represented by zero volt. The symbols I and 0 occur with equal

probability, thereby justifying the use of a threshold of A /2 volts.

(a) Show that the average probability of error of this receiver is given

by

P, = 
I 
erfc ( 

A )

2	 2V2—a

PCM

Choose 1 if 
Yk > !2'

Otherwise, choose 0

White noise	 Threshold

A
I

Figure 10.15
Suboptimurn ractiver for binary-encoded PCM wave.
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where a2 = NOB, with B equal to the low-pass filter bandwidth and

Ni,12 equal to the power spectral density of the channel noise (assumed

to be white and Gaussian with zero mean).

(b) Set the bandwidth B equal to the bit rate IIT,,. By how many

decibels is the receiver of Fig. 10. 15 inferior to the matched filter receiver

of Fig. 10.2?

(c) Repeat your calculation in part b for the bandwidth B set at the

optimum value 0.685/Tb , where Tb is the bit duration (see Fig. 10.9)..

........... 10.7 IVOISE iN DIGMAL MODULArION SCHEMES

The binary hypothesis-testing procedure described by Eq. 10.44 may also

be applied to evaluate the noise performance of the various digital mod-

ulation schemes described in Section 7.15. In this context, we may identify

the following detection scenarios in the presence of additive white Gaussian

noise at the receiver input:

1. Coherent detection of binar ' i. arnplitude-shift key-ing (ASK), phase-shift

keying (PSK), and frequency -shift keying (FSK) 5ignals, assuming that

the receiver has perfect knowledge of the phase of the received signal:

In other words, there is phase synchronization between the receiver and

transmitter. The phase may be estimated from the received signal. For

example. in the case of binar y PSK we mav achieve phase s y nchroniz-

ation 
by 

using a Costas loop (See Section 7 '2). Alternatively ' provision

for phase synchronization may be made by sending a pilot carrier at the

cost of some wastage in transmitted power. The coherent detection of

binary ASK, PSK. and FSK signals is considered in Section 10.8. The

treatment of binary ASK signals follows directly from Eq. 10.44. For

the treatment of binary PSK and FSK signals. we consider them as

special cases of a generalized binar^ hypothesis-testing procedure that

involves a pair of arbitrary signals ^kith equal energy. which represent

binary symbols I and 0.

2. Noncoherent detection of binary ASK and FSK signals, ignoring the

phase information contained in the recei%ed signal: The motivation for

doing this is to simplify the receiver design. However, the pr ice paid

for this simplification i^ an inferior noise performance, compa;ed to a

corresponding receiver that is coherent. A mathematical treatment of

the noncoherent detection of binary ASK and FSK signals is complicated

and beyond the scope of this introductory book. We therefore content

ourselves by presenting highlights of the noncoherent detection of ASK

and FSK signals in Section 10.9.

3. Differential phase-shift keying (DPSK). which mav be viewed as the

noncoherent version of binar y phase-shift keving (PSK). As remarked

in Section 7.15, PSK signals cannot be detected noncoherently because

the% use a single carrier frequency and have a constant envelope. Thus,
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DPSK may be used as an alternative to PSK. This form of digital mod-
ulation is considered in Section 10.9.

4. Coherent detection of quadriphase-shift keying (QPSK) and minimum

shift keying (MSK) signals. This issue is considered in Section 10. 10-

In all these schemes, it is assumed that the receiver is properly bit-timed,

so that the receiver may perform its decisions on received symbols in
synchronism with the interbit transition points in the original binary data
stream. Bit-timing information may be extracted from the received signal

by the use of appropriate circuitry.'
The generation and coherent detection of M-ary ASK and M-ary PSK

signals (for all M) involve only the use of linear operations. These digital
modulation schemes are therefore said to be linear. Also, it is of interest

to note that M-ary ASK and M-ary PSK signals are sometimes combined

to produce hybrid amplitude-phase keying (APK); this is done in order to

provide a more efficient use of channel bandwidth. A popular form of APK

is M-ary q uadratu re- amplitude modulation (QAM). which consists of the

quadrature multiplexing of two M-ary ASK signals. However, unlike M-

ary PSK and M-ary FSK signals, we find that APK signals do not have a

constant envelope and therefore require the use of a linear channel for

their transmission.10

................ 10.8 COHERENT DETECTION OF BINARY MODULATED WAVES

Let so(t) and s l (t) denote the signals used to represent binary symbols 0

and 1, respectively. We may then distinguish between binary , ASK, binary

FSK, and binary PSK signals, as follows:

1. Binary ASK signals

s l (t) = A, cos(27if,t),

S O(t) = 0,

2. Binary PSK signals

5,([) = A, cos(27zf,t),

s,(t) = A, cos(27if,t +

3. Binary FSK signals

s,(t) = A, cos(27zflt),

s,(t) = A, cos(27zf2t),

symbol 1	
(10.67)

symbol 0

symbol 1	
(10.68)

7z)	 symbol 0

symbol 1	
(10.69)

symbol 0

'For a discussion of the synchronization problem in digital communications, see
Lindsey and Simon (1973, Chapters 2 and 911.
"For a discussion of M-ary PSK and M-ary FSK, and M-arY GA M schemes, see

Haykin (1988. pp. 313-38).
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In both parts of Eqs. 10.67 through 10.69, we have 0 ^ t ^ Tt,, where T^
is the bit duration. We usually find that in the case of FSK signals, the

frequencies f, and f2 are both large compared with the bit rate IlTb,
whereas in the case of ASK and PSK signals, f, is large compared with
I / Tb . Moreover, in both PSK and FSK signals, the same signal energy per
bit is transmitted, as shown by

= f I S ^^ (t) dt = fT, S2
Eb	

(t) dt

A,Tb	
(10.70)

2

In ASK signals, on the other hand, the transmitted signal energy alternates
between 0 (when symbol 0 is sent) and the value A,' Tb12 (when symbol I
is sent). In this case, we define the average signal energy per bit as

' T^E_ = A '	 (10.71)
4

Throughout the discussion, we assume that symbols 0 and I are sent with
equal probability; that is,

p ^ q ^ 
2	

(10.72)

COHERENT DETECTION OF BINARY ASK SIGNALS

The receiver for coherent detection of binary ASK signals is shown in Fig.
10.16, which follows directly from the single-path correlation receiver of
Fig. 10. 12. Assuming that symbols I and 0 are equally likely, the threshold
). is calculated from Eq. 10.45 as

—1 (-1 A ^Tb)
2 2

A 2 Tb	
(10.73)

4 '

where we have made use of Eq. 10.70. To calculate the average probability
of error for the coherent binary ASK receiver of Fig. 10.16, we may follow
a procedure similar to that used for the binary (unipolar) PCM receiver

in Section 10.6. A more expedient approach, however, is to recognize that
the operation of a matched filter (correlation) receiver in additive white

Gaussian noise depends only on the ratio of signal energy-to-noise power
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rCloo,es bolIJtth'esh.gms
X (0	 X	

f.'T 
b dt	 ---	

, 
exceeded.

-r[E-	

Otherwise, choose symbol 0.

s (t)	 Threshold
A = A2 Tb14c

Figure 10.16
Coherent receiver for the detection of binary ASK signals,

spectral density and not on the signal waveform. (See Property 3 of matched
filters in Section 10.3.) Accordingly, we may calculate the average prob-
ability of error for coherent binary ASK by substituting A 2 Tb 12 (signal
energy for symbol I in binary ASK) for A 2 Tb (signal energy for symbol 1
in binary PCM) in Eq. 10.64. We may thus express the average probability
of error in coherent binary ASK as

	

loe	 erfc 
(1	

(10.74)
2	 2	 2N,

Using the definition of average signal energy per bit given in Eq. 10.71,
we may rewrite the formula of Eq. 10.74 as

I ( FE

	

P,	 — erfc	 (10.75)
2

GENERALLZED COHERENT RECEIVER FOR BINARY DECISION-MAKING

The optimum receiver for the coherent detection of binary FSK and PSK
signals may be viewed as special cases of the two-path coherent correlation
receiver shown it) Fig. 10.17. This receiver represents a generalization of
the single-path correlation receiver of Fig. 10.12. We assume that the
receiver of Fig. 10. 17 is synchronized to the transmitter, which is equivalent
to saying that (1) the receiver is equipped with replicas of the transmitted
signals so(t) and s i ( t), and (2) the timing of the decision-making process
performed by the receiver is coincident with the bit timing of the trans-
mitted signal.

The receiver output 1 in Fig. 10. 17 is given by

d,	 (10.76)
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f.
T, 

de	

Choose I

0

+	 d I > 0
1	 Deci!iondc

x	 (0	 Mce	 Otherwise.

1>

4^ t choose 0
T

x

^0(0

Figure 10.17
Generalized two-path correlation receiver.

where x(t) is the noise -contaminated received signal. The output I is com-

pared with a threshold of zero volt; this threshold is chosen assuming that

symbols I and 0 occur with equal probability. If I is greater than zero, the

receiver chooses symbol 1; otherwise, it chooses symbol 0. Since the chan-

nel noise w(t) is Gaussian, it foll 

* 

ows that the receiver output is likewise

Gaussian distributed. The mean value of the receiver output is conditional

on whether symbol 0 or 1 was actually sent. However, the variance of the

correlator output is the same, regaraless of whether symbol 0 or 1 was

sent.

Following a procedure similar to that described in Section 10.6, we may

show that the conditional mean of the correlator output, given that symbol

0 was sent, is defined by

MO
	 f

" jt)[,^(t) — s-,(t)] dt
0

—Eb( I — P)	 (10.77)

wbere Eb is the signal energy per bit. The parameter p is the correlation

coefficient of the signals so(t) and s,(t), defined by

[P

f

T^ 

so(t)s,(t) dt
0

f

T^ 

s lo(t) dt 

]112 
[fT^ 

s 2l (t) dt ] 

V2

0	 0

fT, S.(t)S ^ (J) dt	
(10.78)

Eb o

The correlation coefficient p has an absolute value less than or equal to

unity. The conditional mean of the correlator output, given that symbol I
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was sent, is defined by

E,(1 - p)	 (10.79)

We ma*y also show that the conditional variance c. of the correlator

output given that symbol 0 was sent, and its conditional variance of given

that symbol I was sent, have a common value defined by

U 0,	 Gi

" f" ' [,,(t) -	 dt
2

N,,E,(l - p)	 (10.80)

An error of the first kind occurs when we send symbol 0, but the cor-

relator output I is greater than zero ^olt, and the recei
v
er therefore chooses

symbol 1. An error of the second kind occurs w hen we send symbol 1. but

the correlator output I is less than zero volt, and the recei
v
er therefore

chooses symbol 0. From the sy minctry of the recei^ er of Fig. 1() . 17 . it is

apparent that the (conditional) probabilities of both kinds of error are

equal. Thus, recognizing that the correlator output is Gaussian distributed

with conditional means --E,(l - p) and variance V,,E,,(l - p), and as-

suming that symbols 0 and I occur with equal probability (which justifies

the use of a threshold equal to zero volt), we find that the average prob-

ability of error in the receiver of Fig. 10. 17 is LiN en by

P, = 
I 

erfc	
iEb (I -_ P))	

(10.81)
2	 ( ^	 2,V^

We may now consider the following two special cases:

1. Coherent detection of binary PSK signals. In the case of binary PSK

signals, the coherent receiver reduces to a single path as in Fig. 10. 18a.

This follows from the fact that so(t) is the negative Of 5,(t). Moreover.

the correlation coefficient p = - 1. A pair Of equienergy signils for

which the c^rrelation coefficient equals - I are called antipodal signals.

Thus, putting p = - I in Eq. 10.81 gives the average probability of

symbol error in a coherent binary PSK receiver as

P, = 
I 

erfc	
^E,	

(10.82)
2	 ( ^ N,)

2. Coherent detection of binary FSK signals. The coherent receiver for

binary FSK signals is shown in Fig. 10. l8b. The frequencies f 2 and f,

of the FSK signal are usually spaced far enough apart to justify treating

the signals so(r) and s l (t) as orthogonal with each other. This condition
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Figure 10.18
(a) Coherent receiver for PSK signals (b) Coherent receiver for FSK signals

corre,ponds to ha^ing the correlation parameter 1) — 0. Therefore.

puttim-, /) = () in Eq. 10.81 ^ ,%e find that the a^erage probaNInN of error

in a :oherent hinar% FSK rccei%er is gi%cn h^

P, = I CrfC	
E,	

10. 1^3)
2	 1.%

Cornp,tring Eq, 1(i.7i and 10.81. i%e see 
that the cohercnt recci%ers for

binar ,, ASK and hinar% FSK signak exhill it the arne aicra^_c prohabiht^

of error %%hcn the akera g e smial enerv^ 
I per hit. 1— . in hinar .\ ASK i

s
 the

^anic a, the i ,_, nal cnerg^ per hit. L . 
in 

hinar^ FSK.

EXERCISE 9 For the generalized correlation binary receiver shown in

Fig. 10. 17, show that the conditional means m, and m l , and the common

value of the conditional variances ej,2, and a , are given by Eqs. 10.77, 10-79,

and 10.80, respectively.

EXERCISE 10 Using the formula for the Gaussian probability density

function, derive Eq. 10.81 for the average probability of error in the gen-

eralized receiver of Fig. 10. 17.
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10.9 NCWCOHERENT DETECTION OF BINARY MODULATED WAVES

Up to this point in our discussion, we have assumed that the information-

bearing- signal is completely known at the receiver. In practice, however,

it is often found that in addition to the uncertainty due to the channel

noise, there is an additional uncertainty due to the randomness of signal

parameters. The usual cause of this uncertainty is distortion in the trans-

mission medium. Perhaps the most common random signal parameter is

the phase, which is especially true for narrow-band signals. For example,

transmission over a multiplicity of paths of different and variable lengths,

or rapidly varying delays in the propagating medium from transmitter

to receiver, r-nay cause the phase of the received signal to change in a

way that the receiver cannot follow. Synchronization with the phase of

the transmitted carrier may then be too costly, and the designer may

simply choose to disregard the phase information in the received signal

at the expense of some degradation in the noise performance of the

system.

In this section, we first consider the noncoherent detection of binary

FSK signals and then address differential phase-shift ke^inv (DPSK),

NONCOHERENT DETECTION OF BINARY FSK SIGNALS

In this case, the receiver is composed of a pair of matched filters followed

by envelope detectors. as in Fig. 10.19. One of the two filters is matched

to the signal s,(t) ^ A, cos(27zf2 t) corresponding to the transmission of

symbol 0, and the other filter is matched to the signal s,(t) = A, cos(27Zf,t)

corresponding to the transmission of symbol 1. The emelope detectors

serve the purpose of destroying the dependence of the matched filter

outputs on the unknown phase of the received signal. The resulting en-

velopes are sampled once every Th seconds. Let 1, and 1 1 denote the en-

velope samples of the lower and upper paths of the receiver, respectively.

Then, if 1 1 > 1, the receiver chooses symbol 1; otherwise, it chooses sym-

bol 0.

The receiver commits an error of the first kind %%hen symbol 0 is trans-

mitted but the presence of channel noise makes 1, greater than 10 a^d the

receiver therefore chooses symbol 1. it commits an error of the second

kind when symbol I is transmitted but owing to channel noise 10 is greater

than 1 1 and the receiver therefore chooses symbol 0. The inclusion of

envelope detectors in the receiver of Fig. 10.19 makes the evaluation of

these two conditional probabilities of error rather complicated. The reason

for the complication is that envelope detection is a nonlinear operation.

with the result that the random variables obtained by sampling the envelope

detector outputs are no longer Gaussian distributed. For the present dis-

cussion, we simply state the formula for the average probability of error

P, in the noncoherent FSK receiver of Fig. 10. 19, assuming that symbols
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Figure 10.19

Noncoherent receiver for the detection of FSK signals.

I and 0 occur with equal probability. The formula for P, is"

P, = exp
2 ( — 2NJ

(10.84)

where E. is the transmitted FSK signal energy per bit and Nol 2 is the power

spectral density of the channel noise (assumed to be white and zero-mean

Gaussian).

We also note that when the signal-to-noise ratio is high. the average

probability of error for the noncoherent detection of binary
. 
ASK signals

is the same as that for the noncoherent detection of binar^ FSK signals,

provided that the average signal energy per bit in binary ASK is the same

as the signal energy per bit in binary FSK.

DIFFERENTIAL PHASE-SHIFT KEYING

The method of differential phase-shift keying (DPSK) may be viewed as

the "noncoherent" version of phase-shift keying. It operates on the as-

sumption that the unknown phase 0 of the received signal remains essen-

tially constant over two-bit intervals. In the context of noise performance,

the major difference between a DPSK system and a coherent binary PSK

system is not in the differential encoding, which can be used in any case,

but rather it lies in the way in which the reference signal is derived for the

phase detection of the received signal. Specifically, in a DPSK receiver the

"For a derivation of Eq. 10.84, see Haykin (19a8, pp. 300-207)-
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reference is contaminated by additive noise to the same extent as the

information pulse; that is, they have the same signal-to-noise ratio. This

makes the determination of the overall probability of error in DPSK re-

ceivers somewhat complicated. Therefore, it will not be given here. How-

ever, the result iS12

j D
, - 

exp ( 
_ E)	

(10.85)
2	 N(j

It is of interest to note that, since in a DPSK receiver decisions are made

on the basis of the-signal received in two successive bit intervals, there is

a tendency for bit errors to occur in pairs.

............ 10.10 COHERENT DETECTION OF QUATERNARY MODULATED MVES

A limitation of binary modulated waves is that they do not make the most

efficient use of channel bandwidth, which represents a precious commun-

ication resource. One way Of improving bandwidth utilization is to use

quadrature multiplexing. Two important examples of such an approach are

quadriphase-shift keying (QPSK) and minitnum shift ke^ ,ing, (NISK). which

were considered in Section 7.15. In QPSK, a special form of phase modu-

lation. the carrier assumes one of four equispaced phase shifts (e.g.,

±7z/4, ±3.T/4) in response to one of the four possible (Gray encoded)

dibitsOO, 10, 11, and0l. In MSK, aspecial form of frequency modulation,

phase continuity is maintained at the interbit transition points of the in-

coming binary data stream, and the change in carrier frequency from sym-

bol 1 to symbol 0 is chosen to be equal to one half the bit rate of the binary

data.

Although QPSK and MSK have different waveforms and employ dif-

ferent methods for their generation and detection, they exhibit the same

performance Ahen they are coherently detected in the presence of additive

white Gaussian noise at the receiver input. In the sequel, we present a

derivation for the average probability of symbol error for QPSK,. which

represents an extension of the result obtained pre% iously for the coherent

detection of bi nary PSK signals.

In Fig. 10.20 Ae show a coherent recei^er for the detection of QPSK.

We assume that the receiver (channel) noise is zero-mean white Gaussian

with power spectral density N,12. We also assume that all four Gray-

encoded dibits 00, 10, 11, and 01 occur A ith equal probability. We note

that this receiver may be viewed as a quadrature-multiplexed version of

two coherent binary PSK receivers; one receiver operates with the carrier

cos(277f,t), and the other receiver operates with the carrier sin(271f,f). We

may therefore equate the probability of error P, for the in-phase channel

"For a derivation of Eq. 10.85, see Haykin (1988). pp. 307-309.
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and the probability of error P Q for the quadrature channel in Fig. 10.20
to that for the coherent detection of binary PSK signals. In particular, we
may write

	

P,j = P Q = 
1 
erfc 

FE	 (10.86)
2	 V 2—N,

where E is the transmitted signal energy per symbol. The probability that
the QPSK receiver will correctly identify the transmitted data sequence is
equal to the probabilities that both correlators in the in-phase and quad-
rature paths of the receiver yield correct results. Let P, denote the average

probability of correct reception. We may then write

P, = ( I — P'1)( 1 — PQ)	 (10.87)

We may simplify Eq. 10.87 by noting that Pet = P Q and that they both
usually have a small value compared to unity. Accordingly, we may ap-
proximate Eq. 10.87 as

P, = I — 2 Pet	 (10.88)
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The average probability of symbol error in the OPSK receiver of Fig. 10.20

is therefore given by

P,	 I - P,

2 Pj

Q_
erfc

	

	
EE	

(10.89)
N 2N,,

In a QPSK system, there are two bits per symbol. so that the signal

energy per symbol is twice the signal energy per bit^ that is,

E = 2E b 	 (10.90)

Thus, expressing the average probability of symbol error in terms of the

ratio Eh INO , we may write

P, ^ erfc

	

	 (10.91)
(N^N,

As mentioned previously, MSK has the same noise performance as

QPSK when thev are both detected coherently in the presence of additive

white Gaussian noise. Accordingly, we may also use Eq. 10.91 to calculate

the a%erage probability of symbol error in a coherent NISK recei^er.

EXERCISE 11 Explain the reason for the use of 2NO (for the effect of

noise) in the formula for the average probability of error in the in-phase

or quadrature channel given in Eq. 10.86.

.............. 10. 1 1 DISCUSSION

Throughout thischapter we have used the o^erall probabilityof committing

a symbol error as the figure of merit for evaluating the noise performance

of a digital communication s ,,stem. It should be realized, however, that

even if two systems yield the same s\mbol error probability, their per-

formances, from the users' viewpoint, ma% be quite different. In particular,

the greater the number of bits per s)mbol. the more the bit errors will

cluster together. For examoe. if the symbol error probability is 10-3, the

expected numberof symbols occurring between any t\%oerroneous symbols

is 1000. If each symbol represents I bit of information (as in a binary PSK

or binary FSK system), the expected number of bits separating two erro-
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neous bits is 1000. If, on the other hand, there are 2 bits per symbol (as

in a QPSK system), the expected separation is 2000 bits. Of course, a

symbol error generally creates more bit errors in the second case, so that

the percentage of bit errors tends to be the same. Nevertheless, this clus-

tering effect may make one system more attractive than another, even at

the same symbol error rate. In the final analysis, which system is preferable

will depend on the particular situation.

Two systems ha
v
ing an unequal number of s ymbols may be compared

in a meaningful way only if they use the same amount of energy to transmit

each bit of information. It is the total amount of energy needed to transmit

the complete message that represents the cost of the transmission, not the

amount of energy needed to transmit a particular symbol satisfactorily.

Accordingly. in comparing the different data transmission systems consid-

ered in this chapter, we will use, as the basis of our comparison, the

probability of symbol error expressed as a function of the signal energy per

bit-to-average not. se power per unit bandwidth ratio; that is E,IN,,.

In Table 10.1, we have summarized the expressions for the symbol error

probability P, for coherent binary PSK, coherent binary FSK, noncoherent

binary FSK. DPSK, and coherent QPSK and MSK. In Fig. 10.21 we have

used these expressions to plot P, as a function of EbIN, In practice, we

generally design a digital communication system for an average probability

of symbol error P, equal to 10' or less. On the basis of the curves in Fig.

10.21, we may state the following:

1. The error rates for all the systems decrease monotonically with increas-

ing values of Eb/.Vo.

TABLE 10.1 Summary of Formulas for the Symbol Error Probability P. for
Different Digital Modulation Techniques

P,

fc
Coherent binary PSK 	 —1 er

2	 No

fe FE
Coherent binary FSK	 —1 er

2

Coherent QPSK	 ( CE^
e rfc

Coherent MSK	 N.

2N,
Noncoherent binary FSK	 exp

DPSK	 ex	
No)2 P( — ^-
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Figure 10.21

Comparison of the noise performances of different PSK and FSK systems.

I For any value of E^IN, coherent PSK produces a smaller error rate

than any of the other systems.

3. The phase modulation systems, coherent binary PSK and DPSK, require

an Eb 'N,, that is 3 c1B less than their frequency modulation system

counte rparts— coherent binary FSK and noncoherent binary FSK, re-

spectively—to realize the same error rate.

4. At high values of EbIN,, the noncoherent receivers, DPSK and non-

coherent binary FSK, perform almost as well (to within about I dB) as

their coherent counterparts, PSK and coherent binary FSK, respec-

tively, for the same bit rate and signal energy per bit.
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5. The QPSK system transmits, in a given bandwidth, twice as many bits

-of information as a coherent binary PSK system. Also, for high values

of E,IN^, the error rates of both systems are approximatel y the same.

The improvement in capacity resulting from the use of QPSk, however,

is attained at the cost of increased complexity.

From Fig. 10.21. we also see that at high ^alues of E b/No we have

approximately a 4-dB difference between the best signaling method (co-

herent binary PSK) and the worst signaling method (noncoherent binary

FSK). It may appear that this represents a small impro^ement in signal-

to-noise ratio in return for the increased receiver complexity. However,

in some applications where power isat a premium (e.g., as in di gital satellite

communications) even a l-dB saving in signal-to-noise ratio is well worth

the effort.

......... 10.12 TRADEOFFS IN WARY DATA TRANSMISSION

We complete our discussion of noise in digital modulation schemes by

looking at the tradeoffs involved in V-arN PSK and .11-ary FSK in the light

of Shannon's channel capacity theorem. " As mentioned in Chapter 1. Shan-

non's channel capacity theorem states that in a band-limited communication

channel that is perturbed by additive white Gaussian noise and that is

subject to a power constraint. the channel capacity C (in bits per second)

is defined by

C = B log.(1 + SNR)	 (10.92)

%k here B is the channel bandividth (in hertz), and SNR denotes the received

signal-to-noise ratio. The channel capacity C sets an upper limit on the rate

at which information may be transmitted through the channel without

error.

Let P denote the average power of the received signal, and N,/2 denote

the power spectral density of the channel noise. We may express the average

signal power P in terms of the signal energy per bit as follows

P Eb

Tb

E, R,	 (10.93)

where Tb is the bit duration in seconds and R h (defined as I / Tb) is the bit

rate in bits per second. In a bandwidth 8, the average noise power (mea-

sured over both negative and positive frequencies) equals N,,B. Hence, we

"The discussion presented herein is summarized from Haykin (1988). pp. 334-336.
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may express the received signal-to-noise ratio as

EbRb
SNR 

NB

	

EbINO	
(10.94)

BIR,

The ratio EbINO is the signal energy per bit-to-average noise power per unit

bandwidth ratio, and RbIB is the bandwidth efficienc ' Y. The bandwidth

efficiency, in units of bits per second per hertz, provides a measure of the

extent to which channel bandwidth is being used.

Since the channel capacity C sets an upper limit on the bit rate Rb, we

have

Rb _— C	
(10.95)

Thus, we may combine Eqs. 10.92, 10.94, and 10.95 to recast Shannon's

channel capacity theorem in the form:

^b —_ 1092 1 + 
E,1N)	

(10.96)
B	 BIRb

Equivalently, we may write

E,	 2	 1	

(10.97)
No	 61 B

This relation states that for a specified bandwidth efficiency RbIB, the

received signal energy per bit-to-noise power spectral density ratio EblNo

must satisfy Eq. 10.97 if transmission over the channel is to be error-free.

In the limiting case Ahen the channel bandwidth B is infinitely large

(i.e., R bIB approaches zero), we find from Eq. 10.97 that the corresponding

limit on E6 1NO is log,2 = 0.693 (i.e., — 1.6 dB). This special value is

referred to as the Shannon limit.

In Fig. 10.22a, we show a plot of the bandwidth efficiency R b IB versus

the signal energy per bit-to-average noise power per unit bandwidth ratio

EbINO for coherent Al-ary PSK signaling for different numbers of phase

levels defined by M = 2', where K ^ 1, 2, 3, 4, 5, 6. Each point corre-

sponds to an average probability of symbol error Pe = 10'.

In Fig. 10.22b we show a plot of RbIB versus EbINO for coherent M-

ary FSK signaling for different numbers of frequency levels M = 2', where

K = 1, 2, 3, 4, 5, 6. Each point corresponds to an average probability of

svmbol error P, = 10 - 1 . It is assumed that the frequency separation of the

Al transmitted sinusoids is the minimum so that they are orthogonal to

each other over a signaling interval.



590 OPTIMUM RECEIVERS FOR DATA COMMUNICATION

U
C

1.6

L
—6

C
M
cc

30 r20	
Capacity boundary

10

5

4	
M.= 64

3	 M= 32

2	 Af 

>rM
= 4Af

ki I 
_ r^

0	 6	 12 18 24	 30	 36

— 0.5 
6 M= 2	 —Eb , d B

NO

Shannon
limit

(a)

30

20	 Capacity boundary

10

-1	
5 —

4

3

2

1.6	 M-4 4L1=2
—6	 0	 6	 12 18 24	 30	 36

5	
M — 8	 Eb—0.	 —	 —
M= 16

Af = 32	
No

4 M= 64

Shannon
limit 

I L0.1

(b)

Figure 10.22
(a) Comparison of M -ary PSK with the ideal system. (b) Comparison of M -ary FSK
with the ideal system.
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In both parts of Fig. 10.22, we also show the capacity curve obtained
by plotting Eq. 10.97 when it is satisfied with equality.

Figure 10.22 clearly depicts the tradeoffs involved in the use of M-ary
signaling. In particular, we may make the following observations:

1. In the case of M-ary PSK, as the number of phase levels M is increased,
the bandwidth efficiency is improved but at the expense of an increase
in the required signal energy per bit (for M > 4).

2. In the case of M-ary FSK, as the number of frequency levels M is
increased, the required signal energy per bit is decreased but at the
expense of reduced bandwidth efficiency (for M > 4).

..........................................................................................................................
PROBLEMS

P10.2 Maximization of Output Signal-to-Noise Ratio

Problem 1 Consider the signal s(t) shown in Fig. P10.1.

(a) Determine the impulse response of a filter matched to this signal
and sketch it as a function of time.
(b) Plot the matched filter output as a function of time.
(c) What is the peak value of the output?

Problem 2 The amplitude of the pulse in Fig. P10.1 is doubled. What is
the factor by which the pulse duration has to be reduced, so that a filter
matched to this new pulse has the same performance as the matched filter
in Problem 1, when both filters operate in the same additive white Gaussian
noise?

P10.3 Properties of Matched Filters

Problem 3 Consider a filter that is matched to an energy signal s l (t) of

duration T seconds. The filter is excited by another energy signal SAO,

111E

Figure P10.1
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also of duration T seconds. Both signals are of equal energy E. Find the
filter output sampled at time t = T, given the following alternatives:

(a) The signals s,(r) and sjt) are orthogonal to each other oker the
interval 0 -- t -- T.
(b) The two signals are correlated with each other, and their correlation
coefficient is equal to 0.5. (For the definition of correlation coefficient,
use may be made of the formula given by the first line of Eq. 10.78).

Problem 4

(a) Let the signal s,(t) have the waveform shown in Fig. P10.2a. Plot
the following waveforms:

(i) The impulse response of the corresponding matched filter.
(ii) The filter ouput in response to s,(t) as input.

(b) Plot the waveform of the output of a filter matched to s l (t) but
excited with an input having the waveformofs,(t) shown in Fig. P10.2b.
What is the value of the output at time t = 2?

(a)

(b)

Figure P10.2
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11U	

^ B

Figure P10.3

P10.4 Approximations in Matched Filter Design

Problem 5 Consider a matched filter for the RF pulse:

	

A cos(27rf,t),	 0 _ t ^_ T

S (t) = 
to,	 otherwise

where A is the amplitude, T is the duration, and 
f, is the frequency. The

frequency f, >- 11T, so that the pulse s(t) may be regarded as a narrow-

band signal. The requirement is to approximate the matched filter with an

ideal band-pass filter of bandwidth B; the amplitude response of the filter

is shown in Fig. P10.3. The bandwidth B is chosen to maximize the output

signal-to-noise ratio of the filter.

(a) Find the bandwidth B of the filter.

(b) By how .many decibels is the maximum output signal-to-noise ratio

of the approximating band-pass filter less than that of the matched filter?

Problem 6 Repeat Problem 5 using the LCR 
filter shown in Fig. P10.4,

which is tuned to the frequency f, 
of the RF pulse s(t). The requirement

is to choose the 3-dB 
bandwidth of the filter so as to maximize the output

signal-to-noise ratio of the filter.

(a) Find the 3-dB 
bandwidth of the filter. What is the Q-factor of the

filter?

L	 R

out̂tput

	

Input	 C

	

8(t)	
8^0)

	

(>—	 L

Figure P10.4
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(b) By how many decibels is the maximum output signal-to-noise ratio
of the LCR filter of Fig. P10.4 less than that of the matched filter.)

P10.6 Probability of Error for Binary PCM

Problem 7 A binary PCM system is calculated to have an average prob-
ability of error equal to 10 -5 . The sNstern is used to transmit binary data
at the rate of 5 megabits per second'.

(a) How many bits, on the average, are likely to be in error during a

transmission period that lasts 2 sec?

(b) Repeat the calculation for a transmission period of I min.

Problem 8 A binary PCM wave uses the Manchester code to describe
symbols I and 0, as illustrated in Fig. P10.5. The additive noise at the
receiver input is white and Gaussian with zero mean and power spectral
density N012. Assuming that symbols I and 0 occur with equal probability,
find an e , xpression for the average probability of error at the receiver

output, using matched filters.

P10.8 Coherent Detection of Binary Modulated Waves

Problem 9 Consider a phase-locked loop consisting of a multiplier, loop
filter, and voltage -control I ed oscillator (VCO), as in Fig. P10.6. Let the
signal applied to the multiplier input be a binary PSK signal defined by

s(t) = A, cos[27rft + kpm(t)]

Sy.bol I	
Sy^bol 0

Figure-P10.5
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Loop
filter

r(t)

VC0

Figure P10.6

where kP is the phase sensitivity, and the data signal m(t) takes on the
value + 1 V for binary cymbol 1 and — 1 V for binary symbol 0. The VCO

outputis

r(t) = A, sin[27if,t + 0(t)]

(a) Evaluate the loop filter output, assuming that this filter removes the
modulated components with carrier frequency 2f,.

(b) Show that this output is proportional to the data signal m(t) when

the loop is phase-locked, that is, 0(1) = 0.

Problem 10 A binary PSK signal is applied to a correlation receiver that

lacks perfect phase synchronization with the transmitter. Specifically, it is
supplied with a local carrier whose phase differs from that of the carrier

used in the transmitter by 0 radians.

(a) Determine the effect of the phase error 0 on the average probability

of error of this receiver.
(b) As a check on the formula derived in part (a), show that when the
phase error is zero the formula reduces to the same form as in Eq. 10.82.

Problem 11 A binary FSK system transmits binary data at the rate of

2.5 X 101 bits per second. During the course of transmission, white Gaus-
sian noise of zero mean and power spectral density 10 -10 watts per hertz

is added to the signal. In the absence of noise, the amplitude of the received
signal is 1 pV. Determine the average probability of error assuming co-
herent detection of the binary FSK signal. For this calculation, you may
use Table 6 of Appendix D for the error function.

P10.9 NoncohOrent Detect ion of Binary Modulated Waves

Problem 12 An MSK signal is applied to a noncoherent FSK receiver.

What is the average probability of error for this system?
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Problem 13 Rank DPSK with the coherent versions of binary PSK and

binary FSK and noncoherent binary FSK, assuming that the issue of interest
is the following:

(a) Simplicity of receiver implementation.

(b) Minimum transmitted power for an average probability of error
equal to 10'.

Problem 14 Using the approximation

erfc(x) ^ exp(—x2)

V7-t X

calculate the ratio 
( P1 )PSK / (P,)DPSK, where (PI)PIK and (P,)DPSK refer to the

average probability of error for PSK and DPSK, respectively. What is the
value of this ratio for a signal energy per bit-to-average noise power per
unit bandwidth ratio EbINO = 10 dB?

Problem 15 The binary sequence 101011000 is transmitted over a noisy
channel using DPSK, assuming an initial bit of 1. Owing to noise in the
channel, an error is made in the fourth bit of the reconstructed binary

sequence at the receiver output. Show that the next bit of this sequenc,
will also be in error; that is, errors in a DPSK receiver tend to occur in -
pairs.

P10.10 Coherent Detection of Quaternary Modulated Waves

Problem 16 A QPSK signal is applied to a receiver that is improperly
phase-synchronized with respect to the receiver. In particular, the local

carrier applied to the correlator in the upper path of the receiver in Fig.
10.20 is cos(27rft + 0) and that applied to the correlator in the lower
path is sin(27rft + 0), where 0 is the phase error.

(a)
Calculate the average probability of symbol error for this receiver.

(b) As a check on the formula derived in part (a), show that when

is zero it reduces to the same form as in Eq. 10.89.


