.............. CHAPTER SEVEN

e QRUALIQN, TECHNIQUES

Ordinarily. the transmission of a message signal (be it in analog or
digital form) over a band-pass communication channel (e.g., telephone
line, satellite channel) requires a shift of the range of frequencies
contained in the signal into other frequency ranges suitable for
transmission, and a corresponding shift back to the original frequency
range after reception. For example, a radio system must operate with
frequencies of 30 kHz and upward, whereas the message signal usually
contains frequencies in the audio frequency range, so some form of
frequency-band shifting must be used for the system to operate
satisfactorily. A shift of the range of frequencies in a signal is
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260 MODULATION TECHNIQUES

accomplished by using modulation, defined as the process by which some
characteristic of a carrier is varied in accordance with a modulating wave.'
The message signal is referred to as the modulating wave, and the result
of the modulation process is referred to as the modulated wave. At the
receiving end of the communication system, we usually require the message
signal to be recovered. This is accomplished by using a process known as
demodulation, or detection, which is the inverse of the modulation process.

In this chapter we study modulation techniques for both analog and
digital .forms of message (information-bearing) signals. The chapter is a
long one, which is the result of integrating a variety of modulation tech-
niques, side-by-side. The chapter is organized as follows:

1. In Sections 7.1 through 7.8, we study the various types of amplitude
modulation that constitute the first family of analog modulation tech-
niques. In amplitude modulation the amplitude of a sinusoidal carrier
wave is varied in accordance with the information-bearing signal. The
applications of amplitude modulation in broadcasting are considered in
Section 7.9.

2. In Sections 7.10 through 7.13, we study the second family of analog
modulation techniques known collectively as angle modulation. In this

method of modulation the phase or frequency of a sinusoidal carrier
wave is varied in accordance with the information-bearing signal. The
application of frequency modulation, an important type of angle mod-
ulation, in broadcasting is considered in Section 7.14.

3. Finally, in Section 7.15 we describe digital modulation techniques. The
discussion is completed in Section 7.16 with a description of digital
satellite communications.

7.1 AMPLITUDE MODULATION

Consider a sinusoidal carrier wave c(t) defined by
c(t) = A cos(2nf.t) (7.1)

where the peak value A, is called the carrier amplitude and f. is called the
carrier frequency. For convenience, we have assumed that the phase of the
carrier wave is zero in Eq. 7.1. We are justified in making this assumption
since the carrier source is always independent of the message source. Let
m(t) denote the baseband signal that carries specification of the message.
From here on, we refer to m(r) as the message signal. Amplitude modulation
is defined as a process in which the amplitude of the carrier wave c(t) is
varied linearly with the message signal m(t). This definition is general enough

\|EEE Standard Dictionary of Electrical and Electronics Terms, p. 351 (Wiley-
Interscience, 1972).
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to permit different interpretations of the linearity. Correspondingly, am-
plitude modulation may take on different forms, depending on the fre-
quency content of the modulated wave. In the following section we consider
the standard form of amplitude modulation.

TIME-DOMAIN DESCRIPTION
The standard form of an amplitude-modulated (AM) wave is defined by

s(r) = A [l + k,m(1)] cos(2nf,r) (7.2)

where k, is a constant called the amplitude sensitivity of the modulator.
The modulated wave so defined is said to be a “‘standard” AM wave,
because (as we will see presently) its frequency content is fully represen-
tative of amplitude modulation.

The amplitude of the time function multiplying cos(2zf t) in Eq. 7.2 1s
called the envelope of the AM wave s(r). Using a(t) to denote this envelope.
we may thus write

a(t) = Al + k.m(1)| (7.3)

Two cases of particular interest arise, depending on the magnitude of
k,m(t), compared to unity. For case I, we have

lk,m(r)l < 1. for all « (7.4)

Under this condition, the term 1 + &, m(r) is always nonnegative. We may
therefore simplify the expression for the envelope of the AM wave by
writing

a(t) = A [l + k,m(n)]. for all « (739
For case 2, on the other hand, we have
lk,m(1)| > 1, for some 1 ©(7.6)

Under this condition, we must use Eq. 7.3 for evaluating the envelope of
the AM wave.

The maximum absolute value of k m(r) multiplied by 100 is referred to
as the percentage modulation. Accordingly. case 1 corresponds to a or-
centage modulation less than or equal to 1009 , whereas case 2 corresponds
to a percentage modulation in excess of 100%.

The waveforms of Fig. 7.1 illustrate the amplitude modulation process.
Part a of the figure depicts the waveform of a message signal m(t). Part b
of the figure depicts an AM wave produced by this message signal for a
value of k, for which the percentage modulation is 60.7% (i.e., case 1).
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(a) Message signal mit). (b) AM wave sit) for [k,m(t)| < 1 for ail t. (c) AM wave s(t)
for [k,m(t)] > 1 some of the time. _

On the other hand, the AM wave shown in part ¢ of the figure corresponds
to a value of k, for which the percentage modulation is 166.7% (i.e., case
2). Comparing the waveforms of these two AM waves with that of the
message signal, we draw an important conclusion. Specifically, the envelope
of the AM wave has a waveform that bears a one-to-one correspondence
with that of the message signal if and only if the percentage modulation is
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less than or equal to 100%. This correspondence is destroyed if the per-
centage modulation exceeds 100%. In the latter case, the modulated wave
is said to suffer from envelope distortion, and the wave itself is said to be
overmodulated.

The complexity of the detector (i.e., the demodulation circuit used to
recover the message signal from the incoming AM wave at the receiver)
is greatly simplified if the transmitter is designed to produce an envelope
a(r) that has the same shape as the message signal m(r). For this require-
ment to be realized, we must satisfy two conditions:

1. The percentage modulation is less than 100%, so as to avoid envelope
distortion.

2. The message bandwidth, W is small compared to the carrier frequency
fe, so that the envelope a(r) may be visualized satisfactorily. Here, it
is assumed that the spectral content of the message signal is negligible
for frequencies outside the interval —-W < f < W.

EXERCISE 1 Demonstrate that the percentage modulation for the AM
wave shown in Fig. 7.1b equals 66.7%, whereas for the AM wave shown
in Fig. 7.1c it equals 166.7%.

FREQUENCY-DOMAIN DESCRIPTION

Equation 7.2 defines the standard AM wave s(r) as a function of time. To
develop the frequency description of this AM wave, we take the Fourier
transform of both sides of Eq. 7.2. Let S(f) denote the Fourier transform
of 5(r), and M(f) denote the Fourier transform of the message signal m(t);
we refer to M(f) as the message spectrum. Accordingly, using the Fourier
transform of the cosine function A, cos(2zf.r) and the frequency-shifting
property of the Fourier transform (see Sections 2.3 and 2.5), we may write

| >

S(f) = 57 [o(f = f) + o(f + £)]
k,A,
2

+ N

(M(f = fo) + M(f + f)] (7.7

Let the message signal m(r) be band-limited to the interval — W < f=sw,
as in Fig. 7.2a. The shape of the spectrum shown in this figure is intended
for the purpose of illustration only. We find from Eq. 7.7 that the spectrum
S(f) of the AM wave is as shown in Fig. 7.2b for the case when fe>w.
This spectrum consists of two delta functions weighted by the factor A./2
and occurring at = f_and two versions of the baseband spectrum translated
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(a) Spectrum of messages signal. (b) Spectrum of AM wave.

in frequency by *f, and scaled in amplitude-by k,A /2. The spectrum of
Fig. 7.2b. may be described as follows:

1. For positive frequencies. the portion of the spectrum of the modulated
wave lving above the carrier frequency f, is called the upper sideband,
whereas the symmetric portion below f, is called the lower sideband.
For negative frequencies. the image of the upper sideband is represented
by the portion of the spectrum below — f_and the image of the lower
sideband by the portion above — f.. The condition f. > W ensures that
the sidebands do not overlap. Otherwise. the modulated wave exhibits
spectral everlap and. therefore, frequency distortion.

2" For positive frequéncies. thé highest frequency component of the: AM
wave is f, + W. and the lowest frequency component is f — W. The
difference between these two frequencies defines the transmission band-
width B for an AM wave, which is exactly twice the message bandwidth
W: that is,

B = 2W 3 (7.8)

The spectrum of the AM wave as depicted in Fig. 7.2b is full in that the
carrier. the upper sideband. and the lower sideband are all completely
represented. It is for this reason that we treat this form of amplitude
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modulation as the “standard” against which other forms of amplitude mod-
ulation are compared. :

R e

EXAMPLE 1 SINGLE-TONE MODULATION

Consider a modulating wave m(t) that consists of a single tone or frequency i
component, that is, :

m(t) = A, cos(2nf,.t) (7.9)

where A, is the amplitude of the modulating wave and f,, is its frequency

(see Fig. 7.3a). The sinusoidal earrier wave c(t) has amplitude A, and :

frequency f. (see Fig. 7.3b). The requirement is to evaluate the time- ;

domain and frequency-domain characteristics of the resulting AM wave.
The AM wave is described by

s(t) = A[1 + pcos(2nf,t)] cos(2nf.r) (7.10)
where
H = kA, (7.11)

The dimensionless constant u is the modulation factor, or the percentage
modulation when it is expressed numerically as a percentage. To avoid
envelope distortion due to overmodulation, the modulation factor x must
be kept below unity.

Figure 7.3c is a sketch of s(¢) for u less than unity. Let A, and A,,,
denote the maximum and minimum values of the envelope of the modu-
lated wave. Then, from Eq. 7.10 we get

Amu = Ac(l it .u)
Amm Ac(l = .u)

That is,

Amn — Amm

7.12
Amil + AI‘I‘III\ ( )

n =

Expressing the product of the two cosines in Eq. 7.10 as the sum of two
sinusoidal waves, one having frequency f, + f, and the other having
frequency f. — f,., we get

s(t) = A.cos(2nf.t) + buA, cos2n(f. + fm)t]
+ buA, cos[2n(f, — f.)1] (7.13)
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The time-domain and frequency-domain characteristics of different modulated
waves produced by a single tone.

The Fourier transform of s(r) is therefore

S(f) = 3AJ[o(f = f) + o(f + fI]
i }ouAclé(f - fc - fm) + J(f 4 fr <+ fm)l
+ AL = fe + fa) ¥ (f + fo - f)] (714)
Thus the spectrum of an AM wave, for the special case of sinusoidal

modulation, consists of delta functions at +f_, f. * f,, and —f. = f,, as
in Fig. 7.3c.
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Figure 7.4
Variations of carrier power and total sideband power with percentage modulation.

In practice, the AM wave s(f) is a voltage or current wave. In either
case, the average power delivered to a 1-ohm load resistor by s(¢) is com-
prised of three components:

Carrier power = $A!
Upper side-frequency power = }u’A!

Lower side-frequency power = §u’A?

The ratio of the total sideband power to the total power in the modulated
wave is therefore equal to 4*/(2 + 4*), which depends only on the mod-
ulation factor u. If 4 = 1, that is, 100% modulation is used, the total
power in the two side-frequencies of the resulting AM wave is only one
third of the total power in the modulated wave.

Figure 7.4 shows the percentage of total power in both side-frequencies
and in the carrier plotted versus the percentage modulation. Note that
when the percentage modulation is less than 20%, the power in one side-
frequency is less than 1% of the total power in the AM wave.

GENERATION OF AM WAVES

Having familiarized ourselves with the characteristics of a standard AM
wave, we may go on to describe devices for its generation. Specifically, we
describe the square-law modulator and the switching modulator, both of
which require the use of a nonlinear element for their implementation.
These two devices are well-suited for low-power modulation purposes.
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Square-Law Modulator A square-law modulator. requires three features:
a means of summing the carrier and modulating waves, a nonlinear ele-
ment, and a band-pass filter for extracting the desired modulation products.
These features of the modulator are illustrated in Fig. 7.5. Semiconductor
diodes and transistors are the most common nonlinear devices used for
implementing square-law modulators. The filtering requirement is usually
satisfied by using a single- or double-tuned filter.

When a nonlinear element such as a diode is suitably biased and operated
in a restricted portion of its characteristic curve, that is, the signal applied
to the diode is relatively weak, we find that the transfer characteristic of
the diode-load resistor combination can be represented closely by a square
law:

L) = aw(r) + ai() (7.15)

where a, and g, are constants. The input voltage v,(r) consists of the carrier
wave plus the modulating wave, that is,

vi(r) = A cos(nf.t) + m(r) (7.16)

Therefore, substituting Eq. 7.16 in 7.15, the resulting voltage developed
across the primary winding of the output transformer is given by

v(1) = a,A, [I + —Zaiz m(t)] cos(2nf.t)

>

——

AM wave

+ aim(t) + aym’(t) + a,A? cos’(2nf.t) (7.17)

Unwanted terms

Nonlinear
device

m(t)

vt vlt) L ” R,
A, cos (2mf t) (~

Tunedto f,

Figure 7.5
Square-law modulator.
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The first term in Eq. 7.17 is the desired AM wave with amplitude sensitivity
k, = 2a,/a,. The remaining three terms are unwanted terms; they are
removed by appropriate filtering. :

EXERCISE 2 Show that the unwanted terms in Eq. 7.17 are removed by
the tuned (band-pass) filter at the modulator output of Fig. 7.5 provided
that it satisfies the following specifications: :

Midband frequency = f,
Bandwidth = 2W
fe>3W

Switching Modulator A switching modulator is shown in Fig. 7.6a, where
it is assumed that the carrier wave c(¢) applied to the diode is large in
amplitude, so that it swings right across the characteristic curve of the
diode. We assume that the diode acts as an ideal switch; that is, it presents
zero impedance when it is forward-biased [corresponding to ¢(t) > 0] and
infinite impedance when it is reverse-biased [corresponding to c(t) < 0].

cft) = A cos (2mf.t)

- T " T
mit) vy(t) R,g Uyft)
(a)

L]
Slope = 1
b v,
- 0

(b)

Figure 7.6
Switching modulator. (a) Circuit diagram. (b) Idealized input-output relation.
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We may thus approximate the transfer characteristic of the diode-load
resistor combination by a piecewise-linear characteristic, as shown in Fig.
7.6b. Accordingly, for an input voltage v,(r) given by

v(t) = A, cos(2nft) + m(t) (7.18)

where |m(1)| < A, the resulting load voltage v,(¢) is

ufeh =200 ERED (1.19)

"That is. the load voltage v.(r) varies periodically between the values v,(t)
and zero at a rate equal to the carrier frequency f.. In this way, by assuming
a modulating wave that is weak compared with the carrier wave, we have
effectively replaced the nonlinear behavior of the diode by an approxi-
mately equivalent linear time-varying operation.

We may express Eq. 7.19 mathematically as

vi(t) = [A, cos(2nf.t) + m(0)]g,(1) - (7.20)
where g,(t) is a periodic pulse train of duty cycle equal to one half and

period T, = 1/f . as in Fig. 7.7. Representing this g,(r) by its Fourier
series. we have

P I ]

< (=1

T cos[2rf 1(2n = 1)]

g,(1) =

n=|

Q= 9| —

}
|

cos(2nf.t) + odd harmonic components  (7.21)
7

Therefore substituting Eq. 7.21 in 7.20. we find that the load voltage v.(r)
is as follows:

A, 4 '
uilr) = — {1 - ::‘—m(!)J cos(2nf 1) + unwanted terms  (7.22)

Re'M

Figure 7.7
Periodic pulse train.
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The first term of Eq. 7.22 is the desired AM wave with amplitude sensitivity
k, = 4/nA.. The unwanted terms are removed from the load voltage v,(1)
by means of a band-pass filter.

EXERCISE 3 Show that removal of the unwanted terms in Eq. 7.22 is
accomplished if the band-pass filter satisfies the following specifications:

Midband frequency = f,

Bandwidth = 2W
fe>2W

DETECTION OF AM WAVES

The process of detection or demodulation provides a means of recovering
the message signal from an incoming modulated wave. In effect, detection
is the inverse of modulation. In the sequel, we describe two devices for
the detection of AM waves, namely, the square-law detector and the en-
velope detector.

Square-Law Detector A square-law detector is essentially obtained by us-
ing a square-law modulator for the purpose of detection. Consider Eq.
7.15 defining the transfer characteristic of a nonlinear device, which is
reproduced here for convenience:

(1) = aui(t) + awi(r) (7.23)

where v,(r) and v,(r) are the input and output voltages, respectively. and
a, and a, are constants. When such a device is used for the demodulation
of-an AM wave, we have for the input

v(t) = A1 + k,m(1)] cos(2rf.t) (7.29)
Therefore, substituting Eq. 7.24 in 7.23. we get

v (1) = a,A [l + k,m(t)] cos(2nf.r)
+ 4, A1 + 2k,m(t) + Kim*(D)][L + cos(dnf.r)] (7.25)

The desired signal, namely, a, A2k, m(t). is due to the a,vi(r) term—hence,
the description “square-law detector.” This component can be extracted
by means of a low-pass filter. This is not the only contribution within the
baseband spectrum, however, because the term la, A2k2m?*(r) will give rise
to a plurality of similar frequency components. The ratio of wanted signal
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to distortion is equal to 2/k,m(t). To make this ratio large we limit the
percentage modulation, that is, we choose |k,m(t)| small compared with
unity for all 1. We conclude therefore that distortionless recovery of the
baseband signal m(t) is possible only if the applied AM wave is weak (so
as to justify the use of a square-law input-output relation as in Eq. 7.23)
and if the percentage modulation is very small.

Envelope Detector An envelope detector is a simple and yet highly effec-
tive device that is well-suited for the demodulation of a narrow-band AM
wave (i.e., the carrier frequency is large compared with the message band-
width), for which the percentage modulation is less than 100%. Ideally,
an envelope detector produces an output signal that follows the envelope
of the input signal waveform exactly; hence, the name. Some version of
this circuit is used in almost all commercial AM radio receivers.

Figure 7.8a shows the circuit diagram of an envelope detector that
consists of a diode and a resistor-capacitor filter. The operation of this
envelope detector is as follows. On the positive half-cycle of the input
signal, the diode is forward-biased and the capacitor C charges up rapidly
to the peak value of the input signal. When the input signal falls below
this value, the diode becomes reverse-biased and the capacitor C discharges
slowly through the load resistor R,. The discharging process continues until
the next positive half-cycle. When the input signal becomes greater than
the voltage across the capacitor, the diode conducts again and the process
is repeated. We assume that the diode is ideal, presenting zero impedance
to current flow in the forward-biased region, and infinite impedance in the
reverse-biased region. We further assume that the AM wave applied to
the envelope detector is supplied by a voltage source of internal impedance
R,. The charging time constant R,C must be short compared with the carrier
period 1/f,, that is,

R.C < fl (7.26)

<

Hence, the capacitor C charges rapidly and thereby follows the applied
voltage up to the positive peak when the diode is conducting. On the other
hand, the discharging time constant R,C must be long enough to ensure
that the capacitor discharges slowly through the load resistor R, between
positive peaks of the carrier wave, but not so long that the capacitor voltage
will not discharge at the maximum rate of change of the modulating wave,
that is,

1 1
i RC < (7.27)
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Envelope detector. (a) Circuit diagram. (b) AM wave input. (c) Envelope detector
output.

where W is the message bandwidth. The result is that the capacitor voltage
or detector output is very nearly the same as the envelope of the AM wave,
as illustrated in Figs. 7.8b and ¢. The detector output usually has a small
ripple (not shown in Fig. 7.8¢) at the carrier frequency: this ripple is easily
removed by low-pass filtering.
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.............. 7.2 DOUBLE-SIDEBAND SUPPRESSED-CARRIER MODULATION

In the standard form of amplitude modulation, the carrier wave c(t) is
completely independent of the message signal m(t), which means that the
transmission of the carrier wave represents a waste of power. This points
to a shortcoming of amplitude modulation: namely, that only a fraction of
the total transmitted power is affected by m(r). To overcome this short-
coming, we may suppress the carrier component from the modulated wave,,
resulting in double-sideband suppressed carrier modulation. Thus, by sup-
pressing the carrier, we obtain a modulated wave that is proportional to
the product of the carrier wave and the message signal.

TIME-DOMAIN DESCRIPTION

To describe a double-sideband suppressed-carrier (DSBSC) modulated wave
as a function of time, we write

s(r) = c(r)m(r)
A cos(2af.t)m(t) (7.28)

This modulated wave undergoes a phase reversal whenever the message
signal m(t) crosses zero. as illustrated in Fig. 7.9; part a of the figure depicts
the waveform of a message signal. and part b depicts the corresponding
DSBSC-modulated wave. Accordingly, unlike amplitude modulation, the
envelope of a DSBSC modulated wave is different from the message signal.

EXERCISE 4 Sketch the envelope of the DSBSC modulated wave shown
in Fig. 7.9b and compare it to the message signal depicted in Fig. 7.9a.

FREQUENCY-DOMAIN DESCRIPTION

The suppression of the carrier from the modulated wave of Eq. 7.28 is
well-appreciated by examining its spectrum. Specifically, by taking the
Fourier transform of both sides of Eq. 7.28, we get '

SU) = 1AM = ) + M(f + f)] (7.29)

where, as before, S(f) is the Fourier transform of the modulated wave
s(1), and M(f) is the Fourier transform of the message signal m(r). When
the message signal m(r) is limited to the interval — W < f=Ww,
as in Fig. 7.10a, we find that the spectrum S(f) is as illustrated in part b
of the figure. Except for a change in scale factor, the modulation process
simply translates the spectrum of the baseband signal by *f,. Of course,
the transmission bandwidth required by DSBSC modulation i§ the same
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Figure 7.9
(a) Message signal. (b) DSBSC-modulated wave s(t).
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Figure 7.10

(a) Spectrum of message signal. (b) Spectrum of DSBSC modulated wave.
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as that for standard amplitude modulation. namely, 2W. However, com-
paring the spectrum of Fig. 7.10b for DSBSC modulation with that of Fig.
7.2¢ for standard amplitude modulation, we clearly see that the carrier is
suppressed in the former case. whereas it is present in the latter case. as
exemplified by the existence of the pair of delta functions at ki

GENERATION OF DSBSC WAVES

A double-sideband suppressed-carrier modulated wave consists simply of
the product of the message signal and the carrier wave, as shown by Eq.
7.28. A device for achieving this requirement is called a product modulator.
In this section, we describe two forms of a product modulator—the bal-
anced modulator and the ring modulator.

Balanced Modulator A balanced modulator consists of two standard am-
plitude modulators arranged in a balanced configuration so as to suppress
the carrier wave, as shown in the block diagram of Fig. 7.11. We assume
that the two modulators are identical, except for the sign reversal of the
modulating wave applied to the input of one of them. Thus, the outputs
of the two modulators may be expressed as follows:

Al + k,m(1)] cos(2nf.1)

5)(1)
and

Al = k,m(r)] cos(2nf.1)

$5(1)

Subtracting s5.(1) from s,(¢), we obtain

51(1) = s:(1)
2k, A, cos(2nf 1) m(r) (7.30)

s(1)

Il

Hence, except for the scaling factor 2k,. the balanced modulator output
is equal to the product of the modulating wave and the carrier, as required.

Ring Modulator One of the most useful product modulators that is well-
suited for generating a DSBSC modulated wave is the ring modulator shown
in Fig. 7.12a; it is also known as a lattice or double-balanced modulator.
The four diodes in Fig. 7.12a form a ring in which they all point in the
same way. The diodes are controlled by a square-wave carrier c(t) of
frequency f.. which is applied by means of two center-tapped transformers.
We assume that the diodes are ideal and the transformers are perfectly
balanced. When the carrier supply is positive, the outer diodes are switched
on, presenting zero impedance, whereas the inner diodes are switched off,
presenting infinite impedance, as in Fig. 7.12b, so that the modulator
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Figure 7.12 B :
Ring modulator. (a) Circuit diagram. (b) The condition when the outer diodes are

switched on and the inner diodes are switched off. (c) The condition when the outer
diodes are switched off and the inner diodes are switched on.
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multiplies the message signal m(r) by +1. When the carrier supply is
negative, the situation becomes reversed as in Fig. 7.12c, and the modulator
multiplies the message signal by — 1. Thus the ring modulator, in its ideal
form, is a product modulator for a square-wave carrier and the message
signal, as illustrated in Fig. 7.13 for the case of a sinusoidal modulating
wave.

The square-wave carrier ¢() can be represented by a Fourier series as

ct) = g i % cos[2nf.t(2n — 1)] (7.31)

The ring modulator output is therefore

c(tym(r)

- % z] (2;_11»1» cos[2nft(2n — 1)]m() (7.32)

s(1)

We see that there is no output from the modulator at the carrier frequency;
that is, the modulator output consists entirely of modulation products.

mit)

clt)

(b)

sit)

—=time
()
Figure 7.13
Waveforms illustrating the operation of the ring modulator for a sinusoidal

modulating wave. (a) Modulating wave. (b) Square-wave carrier. (c) Modulated
wave.
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EXERCISE 8§ The spectrum of the ring modulator output s(t), defined by
Eq. 7.32, consists of sidebands around the fundamental frequency of the
square wave c(¢) and its odd harmonics. Suppose that the message signal
m(t) is band-limited to the interval — W =< f < W. Hence, show that the
DSBSC modulated wave 4 cos(2nf.f)m(t)/n may be selected by using a
band-pass filter with the following specifications:

Midband frequency = f,

Bandwidth = 2W
f.>W

COHERENT DETECTION OF DSBSC MODULATED WAVES

The message signal m(t) is recovered from a DSBSC wave s(¢) by first
multiplying s(¢) with a locally generated sinusoidal wave and then low-pass
filtering the product, as in Fig. 7.14. It is assumed that the local oscillator
-output is exactly coherent or synchronized, in both frequency and phase;
with the carrier wave c¢(r) used in the product modulator to generate s(r).
This method of demodulation is known as coherent detection or synchron-
ous detection.

It is instructive to derive coherent detection as a special case of the
more general demodulation process using a local oscillator signal of the
same frequency but arbitrary phase difference ¢, measured with respect
to the carrier wave c(¢). Thus. denoting the local oscillator signal by
cos(2nf.t + ¢), assumed to be of unit amplitude for convenience, and
using Eq. 7.28 for the DSBSC modulated wave s(t). we find that the product
modulator output in Fig. 7.14 is given by

v(t) = cos(2nft + ¢)s(r)
= A, cos(2nf.t) cos(2nf.t — ¢)m(r)
= JA, cospm(t) + 3A, cos(dnf.r + ¢)m(r) (7.33)
Scaled version Unwanted term
of message
signal

The low-pass filter in Fig. 7.14 removes the unwanted term in the product
modulator output of Eq: 7.33. The overall output v,(¢) is therefore given
by

v,(t) = 3A, cosp m(r) (7.34)

The demodulated signal v,(¢) is therefore proportional to m(t) when the
phase error ¢ is a constant. The amplitude of this demodulated signal is
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Product vir) Low pass

modulator > filter 2, 1th

(1) —p

T cos(2xf .t +¢)

Local
oscillator

Figure 7.14
Coherent detection of DSBSC modulated wave.

maximum when ¢ = 0, and is minimum (zero) when ¢ = =z/2. The zero
demodulated signal, which occurs for ¢ = +7/2. represents the quadrarure
null effect of the coherent detector. Thus the phase error ¢ in the local
oscillator causes the detector output to be attenuated by a factor equal to
cos¢. Aslong as the phase error ¢ is constant, the detector output provides
an undistorted version of the original message signal m(r). In practice,
however, we usually find that the phase error ¢ varies randomly with time,
owing to random variations in the communication channel. The result is
that at the detector output. the multiplying factor cos¢ also varies randomly
with time, which is obviously undesirable. Therefore, circuitry must be
provided in the receiver to maintain the local oscillator in perfect syn-
chronism, in both frequency and phase. with the carrier wave used to
generate the DSBSC modulated wave in the transmitter. The resulting
increase in receiver complexity is the price that must be paid for suppressing
the carrier wave to save transmitter power. '

EXERCISE 6 Suppose that the message signal m(r) is band-limited to the
interval =W < f < W. Hence, show that the low-pass filter in Fig. 7.14
removes the unwanted term in the product modulator output of Eq. 7.33,
provided that it satisfies the following specifications:

Midband frequency = f,

Bandwidth = 2w

fe>w

EXAMPLE 2 SINGLE-TONE MODULATION (CONTINUED)

Consider again the sinusoidal modulating signal

m(t) = A, cos(2nf,.t)
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The corresponding DSBSC modulated wave is given by

s(t) = A A, cos(2nf.t) cos(2nf 1)

VA A, cos[2n(f. + fu)t] + A A, cos2r(f. — f.)] (7.35)

Figure 7.3d is a sketch of this modulated wave.
The Fourier transform of s(¢) is therefore

'S(fi = A A(f — f. = f) +0(f + ..+ fa)
£ 3Ff = [ + f)F 8+ f— In) (7.36)

Thus the spectrum of the DSBSC modulated wave, for the case of a si-
nusoidal modulating wave, consists of delta functions located at f. = f,
and —f. * f,., as in Fig. 7.3d.

Assuming perfect synchronism between the local oscillator in Fig. 7.14
and the carrier wave. we find that the product modulator output 1

cos(2nf.t){}A A, cos[2n(f. — fa)]

+ $A.A,, cos[2n(f. + f)r]}

1A, A, cos[2rn(2f. — fat] + YA Ancos(2nfn1) :
+ 1A.A, cos[2rn(2f, + fa)t] + LA A, cos(2nf..1) (7.37) " §

il

v(t)

where the first two terms are produced by the lower side-frequency. and
the last two terms are produced by the upper side-frequency. The first and
third terms, of frequencies 2f. — fn. and 2f. + f.. respectively. are re-
moved by the low-pass filter in Fig. 7.14. The coherent detector output
thus reproduces the original modulating wave. Note. however. that this
detector output appears as two equal terms, one derived from the upper
side-frequency and the other from the lower side-frequency. We conclude,
therefore, that for the transmission of information, only one side-frequency
is necessary. We will have more to say about this issue in Section 7.4.

...........................................................................................................................

COSTAS LOOP

One method of obtaining a practical synchronous receiving system, suitable
for use with DSBSC modulated waves. is to use the Costas loop® shown
in Fig. 7.15. This receiver consists of two coherent detectors supplied with
the same input signal, namely, the incoming DSBSC modulated wave
A. cos(2nf.tym(r), but with individual local oscillator signals that are in
phase quadrature to each other. The frequency of the local oscillator is

The Costas loop is named in honor of its inventor; see Costas (1956).
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= modulator [~ filter

% A, singmit)

Q channel

Figure 7.15
Costas loop.

adjusted to be the same as the carrier frequency f., which is assumed
known a priori. The detector in the upper path is referred to as the in-
phase coherent detector or I-channel, and that in the lower path is referred
to as the quadrature-phase coherent detector or Q-channel. These two de-
tectors are coupled to form a negative feedback system designed in such
a way as to maintain the local oscillator synchronous with the carrier wave.
To understand the operation of this receiver, suppose that the local oscil-
lator signal is of the same phase as the carrier wave A.cos(2nf.t) used to
generate the incoming DSBSC wave. Under these conditions, we find that
the I-channel output contains the desired demodulated signal m(t), whereas
the Q-channel output is zero owing to the quadrature null effect of the Q-
channel. Suppose next the local oscillator phase drifts from its proper value
by a small amount ¢ radians. The /-channel output will remain essentially
unchanged, but there will now be some signal appearing at the Q-channel
output, which is proportional to sin¢ = ¢. This Q-channel output will have
the same polarity as the /-channel output for one direction of local oscillator
phase drift and opposite polarity for the opposite direction of local oscillator
phase drift. The /- and Q-channel outputs are combined in a phase dis-
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criminator (which consists of a multiplier followed by a low-pass filter). A
dc control signal proportional to the phase error ¢ is obtained at the
discriminator output. Hence, the receiver automatically corrects for local
oscillator phase errors.

It is apparent that phase control in the Costas loop ceases with modu-
lation, and that phase-lock has to be re-established with the reappearance
of modulation. This is not a serious problem when receiving voice trans-
mission, because the lock-up process normally occurs so rapidly that no
perceptible distortion is observed.

EXERCISE 7 Show that the phase discriminator output in the receiver of
Fig. 7.15 is proportional to a@, where « is the average value of m’(r) and
¢ is the phase error (assumed small).

7.3 QUADRATURE-CARRIER MULTIPLEXING

A quadrature-carrier multiplexing or quadrature-amp[imde modulation
(QAM) scheme enables two DSBSC modulated waves (resulting from the
application of two independent message signals) to occupy the same trans-
mission bandwidth, and yet it allows for the separation of the two message
signals at the receiver output. It is therefore a bandwidth-conservation
scheme.

Figure 7.16 is a block diagram of the quadrature-carrier multiplexing
system. The transmitter of the system, shown in parta of the figure. involves
the use of two separate product modulators that are supplied with two
carrier waves of the same frequency but differing in phase by —90°. The
multiplexed signal s(r) consists of the sum of these two product modulator
outputs, as shown by

s(t) = Acmy(1) cos(2nf.t) + Amyt) sin(2af.1) (7.38)

where m,(t) and my(t) denote the two different message signals applied to
the product modulators. Thus, the multiplexed signal s(t) occupies a trans-
mission bandwidth of 2W, centered at the carrier frequency f.. where W
is the message bandwidth of my(r) or my(r), whichever is largest.

The receiver of the system is shown in Fig. 7.16b. The multiplexed signal
s(r) is applied simultaneously to two separate coherent detectors that are
supplied with two local carriers of the same frequency, but differing in
phase by —90°. The output of the top detector is 3A.my (1), whereas the
output of the bottom detector is 3A.m(1). h

For the quadrature—carrier multiplexing system to operate satisfactorily.
it is important to maintain the correct phase and frequency relationships
between the local oscillators used in the transmitter and receiver parts of
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Message Prodier + Multiplexed
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Product Low-pass '
modulator filter 24.ma1)
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Figure 7.16

Quadrature-carrier multiplexing system. (a) Transmitter. (b) Receiver.

the system. This requirement may be satisfied, for example, by using a
Costas loop; see Section 1.2.

7.4 SINGLE-SIDEBAND MODULATION

Standard amplitude modulation and double-sideband suppressed-carrier
modulation are wasteful of bandwidth because they both require a
transmission bandwidth equal to twice the message bandwidth. In either
case, one half the transmission bandwidth is occupied by the upper side-
band of the modulated wave, whereas the other half is occupied by the
lower sideband. However, the upper and lower sidebands are uniquely

*
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related to each other by virtue of their symmetry about the carrier fre-
quency; that is, given the amplitude and phase spectra of either sideband,
we can uniquely determine the other. This means that insofar as the trans-
mission of information is concerned, only one sideband is necessary, and
if both the carrier and the other sideband are suppressed at the transmitter,
no information is lost. Thus the channel needs to provide only the same
bandwidth as the message signal, a conclusion that is intuitively satisfying.
When only one sideband is transmitted, the modulation is referred to as
single-sideband modulation.

In the study of standard amplitude modulation and double sideband-
suppressed carrier modulation, pursued in Sections 7.1 and 7.2, we first
formulated a time-domain description of the modulated wave and then
moved on to its frequency-domain description. In the study of single-
sideband modulation, we find it easier in conceptual terms to reverse the
order in which these two descriptions are presented.

FREQUENCY-DOMAIN DESCRIPTION

The precise frequency-domain description of a single-sideband (SSB) mod-
ulated wave depends on which sideband is transmitted. Consider a message
signal m(r) with a spectrum M(f) limited to the band — W < f<sW, as
in Fig. 7.17a. The spectrum of the DSBSC modulated wave, obtained by
multiplying m(z) by the carrier wave A, cos(2nf 1), is as shown in Fig.
7.17b. The upper sideband is represented in duplicate by the frequencies
above f. and those below —f.. and when only the upper sideband is
transmitted, the resulting SSB modulated wave has the spectrum shown
in Fig. 7.17c. Likewise, the lower sideband is represented in duplicate by
the frequencies below f, (for positive frequencies) and those above — f,
(for negative frequencies); and when only the lower sideband is transmit-
ted, the spectrum of the corresponding SSB modulated wave is as shown
in Fig. 7.17d. Thus the essential function of SSB modulation is to translate
the spectrum of the modulating wave, either with or without inversion, to

Message spectrum
Y Mi(f)

M(0)

-Ww 0 w f
(a)

Figure 7.17 :
(a) Spectrum of message signal. (b) Spectrum of DSBSC modulated wave. (c)

Spectrum of SSB modulated wave with the upper sideband transmitted. (d)
Spectrum of SSB modulated wave with the lower sideband transmitted.
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Figure 7.17 (continued)

a new location in the frequency domain. Moreover, the transmission band-
width requirement of an SSB modulation system is one half that of a
standard AM or DSBSC modulation system. The benefit of using SSB
modulation is therefore derived principally from the reduced bandwidth
requirement and the elimination of the high-power carrier wave. The prin-
cipal disadvantage of SSB modulation, however, is the cost and complexity
of its implementation.

FRECUENCY DISCRIMINATION METHOD FOR GENERATING AN SSB
MODULATED WAVE

The frequency-domain description presented for SSB modulation leads us

naturally to the frequency discrimination method for generating an SSB

modulated wave. Application of the method, however, requires that the

message signal satisfy two conditions:

1. The message signal m(r) has little or no low-frequency content; that is,
the message spectrum M(f) has “holes™ at zero frequency. An impor-
tant type of message signal with such a property is an audio signal
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(speech or music). In telephony, for example, the useful frequency
content of a speech signal is restricted to the band 0.3-3.4kHz, thereby
creating an energy gap from zero to 300 Hz. <

2. The highest frequency component W of the message signal m(r) is much
less than the carrier frequency f..

Then. under these conditions, the desired sideband will appear in a non-
overlapping interval in the spectrum in such a way that it may be selected
by an appropriate filter. Thus an SSB modulator based on frequency dis-
crimination consists basically of a product modulator and a filter designed
to pass the desired sideband of the DSBSC modulated wave at the product
modulator output and reject the other sideband. A block diagram of this
modulator is shown in Fig. 7.18a. The most severe requirement of this
method of SSB generation usually arises from the unwanted sideband. the
nearest frequency component of which is separated from the desired side-
band by twice the lowest frequency component of the message signal.

In designing the band-pass filter in the SSB modulation scheme of Fig.
7.18a, we must therefore satisfy two basic requirements:

1. The passband of the filter occupies the same frequency range as the
spectrum of the desired SSB modulated wave.

2. The width of the guardband of the filter, separating the passband from
the stopband where the unwanted sideband of the filter input lies, is
twice the lowest frequency component of the message signal.

We usually find that this kind of frequency discrimination can be satisfied
only by using highly selective filters, which can be realized using crystal
resonators with a Q factor per resonator in the range of 1000 to 2000.

Product Band-pass ) SSB
mic) modulator = filter modulated wave
A cos (2xf 1) (a)
Product Band pass Product Band pass SSB
M= modulator = filter “| modulator = filter > modulated wave
A, cos (2xf,1) A, cos (2rf 1)
(&)
Figure 7.18

(a) Block diagram of the frequency discrimination method (single stage) for
generating SSB modulated waves. (b) Block diagram of a two-stage SSB modulator.
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When it is necessary to generate an SSB modulated wave occupying a
frequency band that is much higher than that of the message signal (e.g.,
translating a voice signal to the high-frequency region of the radio spec-
trum), it becomes very difficult to design an appropriate filter that will pass
the desired sideband and reject the other using the simple arrangement of
Fig. 7.18a. In such a situation it is necessary to resort to a multiple-mod-
ulation process so as to ease the filtering requirement. This approach is
illustrated in Fig. 7.18b involving two stages of modulation. The SSB mod-
ulated wave at the first filter output is used as the modulating wave for the
second product modulator, which produces a DSBSC modulated wave with
a spectrum that is symmetrically spaced about the second carrier frequency
f. The frequency separation between the sidebands of this DSBSC mod-
ulated wave is effectively twice the first carrier frequency f,, thereby per-
mitting the second filter to remove the unwanted sideband.

TIME-DOMAIN DESCRIPTION

The spectra shown in Fig. 7.17 clearly display the frequency-domain de-
scription of SSB modulated waves; also, they highlight the relation between
this frequency-domain description and that of the message signal. It is
interesting to observe that we were able to relate the spectral content of
SSB modulated waves to that of the message signal without having to resort
to the use of mathematics. But how do we define an SSB modulated wave
in the time domain? The answer to this question is desired not only because
it completes the description of SSB modulated waves but also it provides
the mathematical basis of another method for their generation. Unfortu-
nately, the task of developing the time-domain description of SSB mod-
ulated waves is mathematically more difficult than that of standard AM or
DSBSC modulated waves. To solve the problem, we use the idea of a
complex envelope, which was discussed in Section 3.5.

Consider first the mathematical representation of an SSB modulated
wave 5,(¢), in which only the upper sideband is retained. The spectrum of
this modulated wave is depicted in Fig. 7.17c. We recognize that s,(t) may
be generated by passing a DSBSC modulated wave through a band-pass
filter of transfer function H,(f). The DSBSC spectrum is illustrated in Fig.
7.17b, which corresponds to the message spectrum M(f) of Fig. 7.17a. As
for the transfer function H,(f), ideally, it has the frequency dependence
shown in Fig. 7.19a.

The DSBSC modulated wave is defined by

Spsesc(f) = A.m(r) cos(2nf.1) (7.39)

where m(t) is the message signal and A, cos(2nf.t) is the carrier wave.
Naturally, it is a band-pass signal with an in-phase component only. The
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Figure 7.19

(a) Frequency response of ideal band-pass filter for selecting the upper sideband of
a DSBC modulated wave. (b) Frequency response of equivalent low-pass filter. (c}
Spectrum of complex envelope of DSBSC modulated wave.

low-pass complex envelope of the DSBSC modulated wave is given by
Spspsc (i) = A.m(1) (7.40)

The SSB modulated wave s,(1) is also a band-pass signal. However, unlike
the DSBSC modulated wave, it has a quadrature as well as an in-phase
component. Let the low-pass signal §,(1) denote the complex envelope of
5.(1). We may then write

s.(t) = Re[s,(1) exp(j2rf.1)] (7.41)

To determine §,(1), we proceed as follows (see Section 3.5):

1. The band-pass filter of transfer function H,(f) is replaced by an equiv-
alent low-pass filter of transfer function H,(f), which is as shown in Fig.
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7.19b. From this figure, we see that H,(f) may be expressed as

- _ J3[1 + sgn(f)], 0<f<W
H(f) = {0, otherwise (7.42)

where sgn(f) is the signum function.

2. The DSBSC modulated wave is replaced by its complex envelope. The
spectrum of this envelope is as shown in Fig. 7.19¢, which follows from
Eq. 7.40. That is to say,

Snsasc(f) = AM(f) (7.43)

3. The desired complex envelope §,(f) is determined by evaluating the
inverse Fourier transform of the product H,(f)Spsssc(f). Since, by defi-
nition, the message spectrum M(f) is zero outside the frequency interval
-W < f < W, we find from Eqgs. 7.42 and 7.43 that

AL Sosasc(f) = 5511 + sen(NIM(F) (7.4

Given that m(t) = M(f), we find (from Example 3 of Chapter 3) that
the corresponding Fourier transform pair for (t), the Hilbert transform
of m(t), is

(1) == —j sgn(f)M(f) (7.45)

Accordingly, the inverse Fourier transformation of Eq. 7.44 yields
P A, Y
50) = 5 [m(0) + jm()] (7.46)

which is the desired result.

Having determined 5,(¢), we are now ready to formulate the mathe-
matical description of the SSB modulated wave s,(r). Specifically, placing
Eq. 7.46 in Eq. 7.41, we get

s.(t) = % [m(r) cos(2rf.t) — m(t) sin(2nf.1)] (7.47)

This equation reveals that, except for a scaling factor, a modulated wave
containing only an upper sideband has an in-phase component equal to
the message signal m(r) and a quadrature component equal to ra(t), the
Hilbert transform of m(t).

ULk,
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- EXERCISE 8 Let 5,(t) denote an SSB modulated wave in which only the
lower sideband is retained. To determine s,(r), proceed as follows:

1. Identify the transfer function H,(f) of a band-pass filter the output of
which equals 5,(f) in response to a DSBSC modulated wave.

2. Determine the transfer function H,(f) of the equivalent low-pass filter
corresponding to H(f).

3. Hence, using the results in parts (1) and (2), show that s,(1) is given by

s(1) = fz-—‘ [m(t) cos(2nf.t) + rm(r) sin(2rf.r)] (7.48)

What are the in-phase and quadrature components of s,(¢)?

DISCUSSION

Equations 7.47 and 7.48 are canonical representations of upper and lower
sidebands modulated on a carrier of frequency f . These two equations
clearly demonstrate how the upper and lower sidebands can be isolated
from each other by subtracting or adding the outputs of two product mod-
ulators. The modulators differ from cach other by the insertion of —90°
phase shifts between the modulating waves as well as between the carrier
waves at their inputs: we will have more to say on this issue when we
revisit the generation of SSB modulated waves. The mathematical com-
plexity of Egs. 7.47 and 7.48. involving not only the message signal m(1)
but also its Hilhert transform (7). makes it difficult for us to sketch the
waveforms of SSB modulated waves. in general. We therefore have to
resort to the use of single-tone modulation in order to infer time-domain
properties of SSB modulation.

EXAMPLE 3 SINGLE-TONE MODYLATION (CONTINUED)

Consider again,the sinusoidal modulating wave
mir) = A, cos(2nf.1) (7.49)

The Hilbert transform of this signal is obtained by passing it through a
- 90° phase shifter, which yields

mi(r) = A, sin(2af,1) (7.50)

‘Therefore. substituting Egs. 7.49 and 7.50 in 7.47. we find that the S5B
! wave. obtained by transmitting only the upper side-frequency. is defined



292 MODULATION TECHNIQUES

by

s(t) = YA A, [cos(2nft) cos(2nf.t) — sin(2nf,t) sin(2nf.r)]

= 4A.A, cos[2n(f. + fa)1]
(7.51)

This is exactly the same as the result obtained by suppressing the lower
side-frequency f. — [, of the corresponding DSBSC wave of Eq. 7.35.
The §SB wave of Eq. 7.51 and its spectrum are illustrated in Fig. 7.3e.
Next, using Eq. 7.48, we find that the SSB wave, obtained by trans- :
mitting only the lower side-frequency, is defined by

s(t) = 3A A, [cos(2nf,.1) cos(2nf.t) + sin(2nf.t) sin(2nf,t)]
= $A. A, cos[2n(f. — fn)t) T (7.52)

which is exactly the same as the result obtained by suppressing the upper
side-frequency f. + f, of the DSBSC wave of Eq. 7.35. The SSB wave
of Eq. 7.52 and its spectrum are illustrated in Fig. 7.3f.

............................................................................................................................

PHASE DISCRIMINATION METHOD FOR
GENERATING AN SSB MODULATED WAVE

The phase discrimination method of generating an SSB modulated wave

involves two separate simultaneous modulation processes and subsequent

combination of the resulting modulation products, as shown in Fig. 7.20.

The derivation of this system follows directly from Eq. 7.47 or 7.48. which

defines the canonical representation of SSB modulated waves in the time-

domain. The system uses two product modulators, / and Q. supplied with

carrier waves in phase quadrature to each other. The incoming baseband

signal m(t) is applied to product modulator /, producing a modulated

DSBSC wave that contains reference phase sidebands symmetrically spaced

about carrier frequency f.. The Hilbert transform ri(r) of m(r) is applied

to product modulator O, producing a DSBSC modulated wave that contains

sidebands having identical amplitude spectra to those of modulator /, but

with phase spectra such that vector addition or subtraction of the two

modulator outputs results in cancellation of one set of sidebands and re-
inforcement of the other set. The use of a plus sign at the summing junctior
yields an SSB wave with only the lower sideband, whereas the use of a-
minus sign yields an SSB wave with only the upper sideband. In this way

the desired SSB modulated wave is produced. The SSB miodulator of Fig. .
7.20 is also known as the Hartlev modulator.
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Block diagram of the phase discrimination method for generating SS8 modulated
waves.

DEMODULATION OF SSB WAVES

To recover the baseband signal m(r) from the SSB wave s(r). equal to
s5.(t) or 5,(f), we have to shift the spectrum in Fig. 7.17¢ or d by the amounts
* f.so asto convert the transmitted sideband back into the baseband signal,
This can be accomplished using coherent detection, which involves applying
the SSB wave s(t), together with a locally generated carrier cos(2nf ).
assumed to be of unit amplitude for convenience, to a product modulator
and then low-pass filtering the modulator output, as in Fig. 7.2k Thus.
using Eq. 7.47 or 7.48, we find that the product modulator output is given
by

v(t) = cos(2nf.t)s(r)
$A, cos2af.r)[m(t) cos(2nf.t) = raa(r) sin(2nf.1)]
{Am(1) + YA [m(1) cos(dnf.t) = rm(t) sin(dnf.1)]

~~ ~—

Scaled Unwanted component

message
signal (7.53)

Il
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Figure 7.21
Coherent detection of an SSB modulated wave.

The first term in Eq. 7.53 is the desired message signal. The combination
of the remaining terms represents an SSB modulated wave with a carrier
frequency of 2f,; as such, it represents an unwanted component in the
product modulator output that is removed by low-pass filtering.

The detection of SSB modulated waves, just presented, assumes ideal
conditions, namely, perfect synchronization between the local carrier and
that in the transmitter both in frequency and phase. The effect of a phase
error ¢ in the locally generated carrier wave is to modify the detector
output as follows®

v, (1) = $A. m(t) cos¢p * 1A m(r) sing (7.54)

where the plus sign applies to an incoming SSB modulated wave containing
only the upper sideband (i.e.. the modulated wave of Eq. 7.47). and the
minus sign applies to one containing only the lower sideband (1.e.. the
modulated wave of Eq. 7.48). Owing to the phase error ¢. the detector
output v,(f) contains not only the message signal m(t) but also its Hilbert
transform #1(t). Consequently, the detector output suffers from phase dis-
tortion. This phase distortion is usually not serious with voice communi-
cations because the human ear is relatively insensitive to phase distortion.
The presence of phase distortion gives rise to what is called the Donald
Duck voice effect. In the transmission of music and video signals. on the
other hand, phase ddistortion in the form of a constant phase difference in
all components can be intolerable.

EXERCISE 9 Show that the low-pass filter in the coherent detector of
Fig. 7.21 only passes the message signal component of the product mod-
ulator output, provided it satisfies the following conditions:

(a) Bandwidth = W
(b) Width of guardband < 2f. — aW, where a = 1 for an SSB mod-

A

For a more complete discussion of the effects of carrier phase and frequency errors
in single-sideband modulation, see Haykin (1983, pp. 146-149).
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ulated wave containing only the upper sideband, and @ = 2 for an SSB
modulated wave containing only the lower sideband.

EXERCISE 10 Letcos(2nf.t + ¢) denote the local carrier applied to the
product modulator in Fig. 7.21. Show that the effect of the phase error ¢
is to modify the detector output v,(r) as in Eq. 7.54.

7.5 VESTIGIAL SIDEBAND MODULATION

Single-sideband modulation is well-suited for the transmission of voice
because of the energy gap that exists in the spectrum of voice signals
between zero and a few hundred hertz. When the message signal contains
significant components at extremely low frequencies (as in the case of
television signals and wideband data). the upper and lower sidebands meet
at the carrier frequency. This means that the use of SSB modulation iy
inappropriate for the transmission of such message signals owing to the
difficulty of isolating one sideband. This difficulty suggests another scheme
Known as vestigial sideband modulation (VSB). which is a compromise
between SSB and DSBSC modulation. In this modulation scheme. one
sideband is passed almost completely whereas just a trace, or vestige, of
the other sideband is retained.

FREQUENCY-DOMAIN DESCRIPTION

Figure 7.22 illustrates the spectrum of a vestigial sideband (VSB) modulated
g p !

wave s(1) 1n relation to that of the message signal m(r). assuming that the
lower sidebund is modified into the vesugial sideband. Specitically. the
transmitted vestige of the lower sideband compensates for the amount
removed from the upper sideband. The transmission bandwidth required
by the VSB modulated wave is therefore given by

; B=W=+f (7.55)

where Wois the message bandwidth and f, is the width of the vestigial
sideband.

Vestigial sideband modulation has the virtue of conserving bandwidth
almost as cthiciently as single-sideband modulation, while retaining the
excellent low-frequency baseband characteristics of double-sideband mod-
ulation. Thus VSB modulation has become standard for the transmission
of television and similar signals where good phase characteristics and trans-
mission of low-frequency components are important, but the bandwidth
required for double-sideband transmission is unavailable or uneconomical,



296 MODULATION TECHNIQUES

M(f)

N

AN

; I\
f, £
w w
(b)
Figure 7.22 A

(a) Spectrum of message signal. (b) Spectrum of VSB modulated wave containing a
vestige of the lower sideband.

GENERATION OF VSB MODULATED WAVE

To generate a VSB modulated wave, we pass a DSBSC modulated wave
through a sideband shaping filter, as in Fig. 7.23a. The exact design of this
filter depends on the desired spectrum of the VSB modulated wave. The
relation between the transfer function H(f) of the filter and the spectrum
S(f) of the VSB modulated wave s(¢) is defined by

S = SHMU = £ + MO+ SOIHU) (7.56)

where M(f) is the message spectrum. We wish to determine the specifi-
cation of the filter transfer function H(f). so that S(f) defines the spectrum
of the desired VSB wave s(t). This can be established by passing s(t)
through a coherent detector and then determining the necessary condition
for the detector output to provide an undistorted version of the original
message signal m(r). Thus, multiplying s(r) by a locally generated sine-
wave cos(27f.t). which is synchronous with the carrier wave A, cos(2nf.f)
in both frequency and phase, as in Fig. 7.23b, we get

T u(r) = cos(2nuf.t)s(e) (7.57)

Transtorming this relation into the frequency domain gives the Fourier
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mit) Product | psgsc |- Stdeband VSB wave
modulator shaping s(t)
- filter
A, cos(2mf 1)
(a)
'VSB wave Product vie) Low-pass v (0}
s(e) » modulator filter
A cos(2xf_ 1)
(&)
Vif)
=
e AN f
-2f, -Ww 0 W 2/
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V,(f)

A(‘
== M) [H(-f.)+ H(f.)]

-W 0 W

(d)

Figure 7.23

Scheme for the generation and demodulation of a VSB modulated wave. (a) Block
diagram of VSB modulator. (b) Block diagram of VSB demodulator. (c) Spectrum of
the product modulator output v(t) in the demodulation scheme. (d) Spectrum of the
demodulated signal v,(t).
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transform of v(t) as
V(f) = 5184 = £ + SUF + £)] (1.59)

Therefore, substitution of Eq. 7.56 in 7.58 yields

V() = 5 MUDLH( = £+ H + ]

¢ AU = 20H( - £ + M(S + 200H(S + £0)
| (7.59)

The spectrum V(f) is illustrated in Fig. 7.23c. The second term in Eq.
7.59 represents a VSB wave corresponding to carrier frequency 2f.. This
term is removed by the low-pass filter in Fig. 7.23b to produce an output
v,(1), the spectrum of which is given by

Vi) = EMOIHG - 1) + HE + £ (.60

The spectrum V,(f) is illustrated in Fig. 7.23d. For a distortionless repro-
duction of the original baseband signal m(t) at the coherent detector out-
put, we require V,(f) to be a scaled version of M(f). This means, there-
fore, that the transfer function H(f) must satisfy the condition

H(f - fo) + H(f + f) = 2H(f.) (7.61)

where H(f,) is a constant. With the message spectrum M(f) assumed to
be essentially zero outside the interval —W < f < W, we need to satisfy
Eq. 7.61 only for values of f in this interval.

The requirement of Eq. 7.61 is satisfied by using a filter with a frequency
response H(f) such as“that shown in Fig. 7.24 for positive frequencies.
This response is normalized so that H(f) falls to one half at the carrier
frequency f.. The cutoff portion of this response around f. exhibits odd
symmetry in the sense that inside the transition interval defined by
f. = fo <f <f. + f,, the sumof the values of H( f) at any two frequencies
equally displaced above and below f, is unity. Such a filter is much less
elaborate than that required if one sideband is to be completely suppressed.

In general, to preserve the baseband spectrum, the phase response of
the sideband shaping filter in Fig. 7.23a must exhibit odd symmetry about
the carrier frequency f.. Specifically, it must be linear over the frequency
intervals f. — f, < |f| = f. + W, and its value at the frequency f. has to
equal zero or an integer multiple of 2z radians. The effect of this linear
phase characteristic is merely to introduce a constant delay in the recovery
of the message signal m(r) at the receiver output.
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Figure 7.24

Frequency response of sideband shaping filter for a VSB modulated wave
containing a vestige of lower sideband; only the positive-frequency portion is
shown.

The frequency response of Fig. 7.24 pertains to a VSB modulated wave
containing a vestige of the lower sideband. In the situation depicted here.
control over the frequency response of the sideband shaping filter need
only be exercised over the band f, — f, < |f| < f, + W. This s the reason
for showing the frequency response of the sideband shaping filter in Fig.
7.24 for f > f, + W as a dashed line.

EXERCISE 11 Construct the positive-frequency portion of the frequency
response of a sideband shaping filter for a VSB modulated wave that
contains a vestige of the upper sideband.

TIME-DOMAIN DESCRIPTION

Our next task is to determine the time-domain description of a VSB mod-
ulated wave. To do this, we follow a procedure similar to that used for
SSB modulated waves in Section 7.4.

Let s(r) denote a VSB modulated wave containing a vestige of the lower
sideband. This modulated wave may be viewed as the output of a sideband
shaping filter produced in response to a DSBSC modulated wave defined
in Eq. 7.39. The filter has a transfer function H(f) as illustrated in Fig.
7.24. Using the band-pass to low-pass transformation technique of Section
3.5, we may replace the sideband shaping filter by an equivalent complex
low-pass filter of transfer function H(f), which is depicted in Fig. 7.25a.
(For convenience of presentation, we have ignored the dashed portion of
H(f) in Fig. 7.24 as it is not pertinent to our present discussion.) Clearly,
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Hip

(a)

(b)

(d)

Figure 7.25

(a) Idealized frequency response H(f) of a low-pass filter equivalent to the sideband
shaping filter that passes a vestige of the lower sideband. (b) First component of
H(f). (c) Second component of Hif). (d) Frequency response of a filter with transfer
function jHq(f).

we may express H(f) as the difference between two components H,(f)
and H,(f) as shown by

H(f) = Hf) = H(f) (7.62)
These two components are described individually as follows:
1. The transfer function A,(f), shown in Fig. 7.25b, pertains to a complex

low-pass filter equivalent to a band-pass filter designed to reject the
lower sideband completely: it is defined in Eq. 7.42.
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2. The transfer function H!(f), shown in Fig. 7.25¢, accounts for both the
generation of a vestige of the lower sideband and the removal of a
corresponding portion from the upper sideband.

Thus, substituting Eq. 7.42 in 7.62, we may redefine the transfer function
H(f) as
L1 + sl ¥ <f<W
H(f) = 2[ Sgn f) - I(f);' —f:' d - (7(73)
0, otherwise
The signum function sgn(f) and the transfer function H, (f) are both
odd functions of the frequency f. Hence, thev both have purely imaginary

inverse Fourier transforms. Accordingly, we may introduce a new transfer
function

Ho(f) = }[sgn(f) 2R (7.64)

that has a purely real inverse Fourier transform. Let hy(¢) denote the
inverse Fourier transform of H,(f): that is.

h‘)({) P— HQ(f) (765)

Figure 7.25d shows a plot of jH,(f) as a function of frequency in accord-
ance with both Eq. 7.64 and Fig. 7.25¢. To go on with our task, we rewrite
Eq. 7.63 in terms of Hy(f) as

1 .
‘L'{(f) = 5“ oF: .’Hu(f)]~ _fr < f < W (766)

0, elsewhere

We are now ready to determine the VSB modulated wave s(t). First,
we write '

s(r) = Re[s(¢) exp(j2nf.1)] (7.67)
where 5(¢) is the complex envelope of s(r). Since $(¢) is the output of the
complex low-pass filter of transfer function H(f), which is produced in

response to the complex envelope of the DSBSC modulated wave, we may
express the spectrum of §(r) as

S(f) = H(f)SI)SBS('(f) (7.68)

where Spspsc(f) is defined in Eq. 7.43. Hence, substituting Eqs. 7.43 and
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7.66 in 7.68, we get
i A. .
5(f) = F (1 + jHo(HIM(f) (7.69)

Taking the inverse Fourier transform of S(f), we thus obtain

§(t) = %[m(r) + jmy(1)] (7.70)

where my(1) is the response produced by passing the message signal m(¢)
through a low-pass filter of impulse response hy(t). Finally, substituting
Eq. 7.70 in 7.67, we get

s(t) = — m(r) cos(2nf.t) — % my(t) sin(2nf.t) (7.71)

This is the desired representation for a VSB modulated wave containing
a vestige of the lower sideband.* The component $4 m(t) constitutes the
in-phase component of this VSB modulated wave, and A .m(t) consti-
tutes the quadrature component.

The DSBSC and SSB waves may be regarded as special cases of the
VSB modulated wave defined by Eq. 7.71. If the vestigial sideband is
increased to the width of a full sideband, the resulting wave becomes a
DSBSC wave with the result that my(t) vanishes. If, on the other hand,
the width of the vestigial sideband is reduced to zero, the resulting wave
becomes an SSB wave containing the upper sideband, with the result that
mgy(r) = r(t), where rm(t) is the Hilbert transform of m(r).

EXERCISE 12 Show that a VSB modulated wave s(1), contammg a vestlge
of the upper sideband, is defined by

s(t) = = Atm(t) cos(2nf.t) + = 3 A:mq(t) sin(2nf.t) (1.712)

where m(r) is the message signal, and my(f) is defined bg Eqs. 7.64 and
7.65. )

‘Another time-domain representation of a VSB modulated signal consists of the
product of a narrow-band "“envelope” function and an SSB modulated signal. For
details of this representation, see Hill (1974).
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EXERCISE 13 . How would you modify the block diagram of Fig. 7.20 so
that it may be used to generate VSB modulated waves?

ENVELOPE DETECTION OF A VSB WAVE PLUS CARRIER

In commercial television broadcasting, a sizable carrier is transmitted to-
gether with the modulated wave. This makes it possible to demodulate the
incoming modulated wave by an envelope detector in the receiver. It is,
therefore, of interest to determine the distortion introduced by the enve-
lope detector. Adding the carrier component A, cos(27f.t) to Eq. 7.71,
scaled by a factor k,, modifies the modulated wave applied to the envelope
detector input as

s(t) = A1 + $km(1)] cos(2nf.t) — tk,Acmg(t) sin(2nf 1)
(1.73)

where the constant k, determines the percentage modulation. The envelope
detector output, denoted by a(r). is therefore

Il

AL + Ham()F + [Bhamo(OF)
Al + thom(1)] {1 + [M‘)(’—)]_}” (7.74)

1 + sk,m(1)

a(r)

Equation 7.74 indicates that the distortion is contributed by the quadrature
component m(r) of the incoming VSB wave. This distortion can be re-
duced using two methods: (1) reducing the percentage modulation to re-
duce k, and (2) increasing the width of the vestigial sideband to reduce
my(t). Both methods are used in practice. In commercial television broad-
casting, the vestigial sideband occupies a width of about 1.25 MHz, or
about one-quarter of a full sideband. This has been determined empirically
as the width of vestigial sideband required to keep the distortion due to
my(t) within tolerable limits when the percentage modulation is rearly
100. :

seseeiens 7.6 COMPARISON OF AMPLITUDE
MODULATION TECHNIQUES

Having studied the characteristics of the different forms of amplitude mod-
ulation, we are now in a position to compare their practical merits:

1. In standard AM systems the sidebands are transmitted in full, accom-
panied by the carrier. Accordingly, demodulation is accomplished sim-
ply by using an envelope detector or square-law detector. On the other
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hand, in suppressed-carrier systems the receiver is more complex be-
cause additional circuitry must be provided for the purpose of carrier
recovery. It is for this reason we find that in commercial AM radio
broadcast systems, which involve one transmitter and numerous receiv-
ers, standard AM is used in preference to DSBSC or SSB modulation.

2. Suppressed-carrier modulation systems have an advantage over stan-
dard AM systems in that they require much less power to transmit the
same amount of information. which makes the transmitters for such
systems less expensive than those required for standard AM. Sup-
pressed-carrier systems are therefore well-suited for point-to-point com-
munication involving one transmitter and one receiver. which would
justify the use of increased receiver complexity.

3. Single-sideband modulation requires the minimum transmitter power
and minimum transmission bandwidth possible for conveying a message
signal from one point to another. We thus find that single-sideband
modulation is the preferred method of modulation for long-distance
transmission of voice-signals over metallic circuits, because it permits
longer spacing between the repeaters, which is a more important con-
sideration here than simple terminal equipment. A repeater is simply
a wideband amplifier that is used at intermediate points along the trans-
mission path so as to make up for the attenuation incurred during the
course of transmission.

4. Vestigial-sideband modulation requires a transmission bandwidth that
is intermediate between that required for SSB or DSBSC modulation,
and the saving can be significant if modulating waves with large band-
widths are being handled, as in the case of television signals and wide-
band data.

5. Double-sideband suppressed-carrier modulation, single-sideband mod-
ulation, and vestigial-sideband modulation are all examples of linear
modulation. The output of a linear modulator can be expressed in the
canonical form

S(I) = 5,(1) COS(znfr{) = SQ(“ Sin(ZTEfJ) (7.75)

The in-phase component s,(t) 1s a scaled version of the incoming mes-
sage signal mi(r). The quadrature component so(0) is derived from m(r)
by some linear filtering operation. Accordingly, the principle of super-
position can be used to calculate the modulator output s(r) as the sum
of responses of the modulator to individual components of m(t). In
Table 7.1 we have summarized the definitions for s,(r) and sy(1) in
terms of m(t) for DSBSC, SSB, and VSB modulated waves, assuming
a carrier of unit amplitude. In a strict sense. ordinary amplitude mod-
ulation fails to meet the definition of a linear modulator with respect
to the message signal. If 5,(r) is the AM wave produced by a message
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Table 7.1  Different Forms of Linear Modulation

In-phase Quadrature

Type of component component

Modulation 5,(1) sq(0) Comments

DSBSC m(t) 0 m(t) = message signal

SSB

1. Upper ym(t) dra(t) ri(t) = Hilbert
sideband transform of
transmitted m(t)

2. Lower im(r) —m(t)
sideband
transmitted

VSB

1. Vestige of km(r) Imy(1) mgy(t) = output of filter
lower of transfer
sideband ‘ function Hy(f),
transmitted produced by

m(r)

2. Vestige of im(r) —imy(t) For the definition of
upper ' Hy(f), see Eq. 7.69
sideband

transmitted

signal m,(¢) and s,(r) is the AM wave produced by a second message
signal m,(r), then the AM wave produced by m(t) plus m,(t) is not
equal to s,(f) plus s,(r). However, the departure from linearity in AM
is of a mild sort, such that many of the mathematical procedures ap-
plicable to linear modulation may be retained. For example, the band-
pass representation is still applicable to an AM wave, with the in-phase
and quadrature components defined by, respectively,

si(0) =1 + k,m(1)
and

se() =0

where k, is the amplitude sensitivity of the modulator.
In both SSB and VSB modulation schemes, the role of the quadrature
component is merely to interfere with the in-phase component, so as
to eliminate power in one of the sidebands. Herein lies the reason for
the fact that SSB- and VSB-modulated waves have favorable spectral
properties. Note, however, that regardless of the nature of the quad-
rature component, the message signal m(t) may be recovered from thc
modulated signal s(r) with the use of coherent detection. S

. The band-pass representation may also be used to describe quadrature

amplitude modulation. In this case, we have (assuming a carrier of unit
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amplitude)
si(t) = my(¢)
and
so(t) = —my(1)

where m,(r) and m,(t) are the two independent message signals at the
quadrature-modulator input (see Eq. 7.38).
8. The complex envelope of the linearly modulated wave s(r) equals

$(0) = si(1) + jso(r)
This compact notation retains complete information about the modu-
lation process.

7.7 FREQUENCY TRANSLATION

In the processing of signals in communication systems, it is often convenient
Or necessary to translate the modulated wave upward or downward in
frequency, so that it occupies a new frequency band. This frequency trans-
lation is accomplished by multiplication of the signal by a locally generated
sine wave, and subsequent filtering. For example, consider the DSBSC
wave

s() = m(t) cos(2nf.1) (7.76)

The modulating wave m(t) is limited to the frequency band -W < f < W.
The spectrum of s(t) therefore occupies the bands f, - W<f<f + W
and —-f. —Wsf<—f +W,asin Fig. 7.26a. Suppose that it is required
to translate this modulated wave downward in frequency, so that its carrier
frequency is changed from f, to a new value fo, where f, < f.. To accom-
plish this requirement, we first multiply the incoming modulated wave s(r)
by a sinusoidal wave of frequency f, supplied by a local oscillator to obtain

s(r) cos(2nft)
m(t) cos(2nf.t) cos(2nf,r)

bm(t) cos[2n(f. ~ f)r) + m(r) cos[2n(f. + f))
(7.77)

vy(1)

Il

The multiplier output v,(¢) consists of two DSBSC waves, one with a carrier
frequency of f. — f, and the other with a carrier frequency of f, + f,. The
spectrum of v,(r) is therefore as shown in Fig. 7.26b. Let the frequency f,
of the local oscillator be chosen so that

fe=fi=1, (7.78)
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Figure 7.26

The frequency translation process: (a) Spectrum of DSBSC wave. (b} Spectrum of
signal obtained by multiplying DSBSC wave with a local carrier. (c) Spectrum of
desired DSBSC wave, translated downward in frequency.

Then from Fig. 7.26b we see that the modulated wave with the desired
carrier frequency f, may be extracted by passing the multiplier output vi(1)
through a band-pass filter of midband frequency f, and bandwidth 2W.
provided

fe+r fi-W>f - fi+ W
or
Sre W | (7.79)
The filter output is therefore

; vy(r) = dm(r) cos[2n(f. — f)i)
= dm(t) cos(2nf,t) (7.80)

This output is the desired modulated wave, translated downward in fre-
quency. as shown in Fig. 7.26c.
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s(r) v, (1) Bandpass |¥;(1)
‘ filter

cos(2nfy)

Figure 7.27
Block diagram of mixer.

A device that carries out the frequency translation of a modulated wave
is called a mixer. The operation itself is called mixing or heterodyning. For
the implementation of a mixer, we may use a multiplier and band-pass
filter, as shown in Fig. 7.27. The multiplier is usually constructed by using
nonlinear or switching devices, similar to modulators. Note that mixing is
a linear operation in that it completely preserves the relation of the side-
bands of the incoming modulated wave to the carrier.

EXERCISE 14 How would you’choose the local oscillator frequency f,,
so that the spectrum of the mixer input is translated upward in frequency?

...........................................................................................................................:

» Consider an incoming narrow-band signal of bandwidth 10 kHz, and mid-
band frequency that may lie in the range 0.535-1.605 MHz. It is required
to translate this signal to a fixed frequency band centered at 0.455 MHz.

i The problem is to determine the range of tuning that must be provided in

i the local oscillator. (The frequencies used in this example pertain to the

i AM broadcast band of frequencies, on which more will be said in Section

i 7.9)

Let f. denote the midband frequency of the incoming signal, and fi
denote the local oscillator frequency. Then-we may write

csnses

0.535 < f, < 1.605

and

sesssesssene

_[c = ‘f} = ().“ S 5
where both f, and f, are expressed in MHz. That is.
fi = f. - 0.455

When f, = 0.535 MHz, we get f, = 0.08 MHz; and when fo = 1.605 MHz,
we get f, = 1.15 MHz. Thus the required range of tuning of the local
oscillator is 0.08-1.15 MHz.

...........................................................................................................................
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..... +.....7.8 FREQUENCY-DIVISION MULTIPLEXING

Multiplexing is a technique whereby a number of independent signals can
be combined into a composite signal suitable for transmission over a com-
mon channel. This operation requires that the signals be kept apart so that
they do not interfere with each other, and thus they can be separated at
the receiving end. This is accomplished by separating the signals either in
frequency or in time. The technique of separating the signals in frequency
is referred to as frequency-division multiplexing (FDM), whereas the tech-
nique of separating the signals in time is called time-division multiplexing
(TDM). In this section, we discuss FDM systems, whereas TDM systems
were discussed in Section 5.10.

A block diagram of an FDM system is shown in Fig. 7.28. The incoming
message signals are assumed to be of the low-pass type, but their spectra
do not necessarily have nonzero values all the way down to zero frequency.
Following each signal input, we have shown a low-pass filter, which is
designed to remove high-frequency components that do not contribute
significantly to signal representation but are capable of disturbing other
message signals that share the common channel. These low-pass filters may
be omitted only if the input signals are sufficiently band-limited initially.
The filtered signals are applied to modulators that shift the frequency ranges
of the signals so as to occupy mutually exclusive frequency intervals. The
necessary carrier frequencies, to perform these frequency translations, are
obtained from a carrier supply. For the modulation, we may use any one
of the processes described in previous sections of this chapter. However,

Message Low-pass Modulators Band pass Band-pass Demodulators Low-pass Metsage

inputs  filters filters filters filters  outputs

10— LP MOD BP —T BP |—>{ DEM —>{ LP 1

2 Le =>4 \MOD BP b9 p—3= BP =4 DIM —P{ LP — 2
b Channel

N L L MOD p—p{ BI’ 1 ‘LD BP neEM b LP N
1 |
|
: \ | |
g : ¥ : | i
1 ! ! |
= ] | ! ! |
s ! Carrier : : Carnier 1
: supply | [ e :
| | | I
'l..__—— Transmitter -———"I : Receiver ;
Figure 7.28

Block diagram of FDM system.
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the most widely used method of modulation in frequency-division multi-
plexing is single-sideband modulation, which requires a bandwidth that is
approximately equal to that of the original message signal. The band-pass
filters following the modulators are used to restrict the band of each mod-
ulated wave to its prescribed range. The resulting band-pass filter outputs
are next combined in parallel to form the input to the common channel.
At the receiving terminal, a bank of band-pass filters, with their inputs
connected in parallel, is used to separate the message signals on a fre-
quency-occupancy basis. Finally, the original message signals are recovered
by individual demodulators.

EXAMPLE 5 COMPARISON OF SSB/FDM WITH PCM/TDM

Consider an FDM system using SSB modulation to transmit 24 independent
voice inputs. Assume a bandwidth of 4 kHz for each voice input. Thus, in
order to accommodate an FDM system using SSB modulation to transmit
the 24 voice inputs, the communication channel must provide the trans-
mission bandwidth:

B =24 x 4 = 96 kHz

In Example 1, Chapter 6, we showed that for the T1 system (based on
the combined use of PCM and TDM), the minimum channel bandwidth
required to transmit 24 voice inputs is equal to 772 kHz. This is an order
of magnitude larger than the bandwidth requirement of the corresponding
SSB/FDM system. However, in spite of the excessive transmission band-
width requirement of a PCM system, we find that in practice it is preferred
over an SSB system. This is because PCM offers system flexibility, increased
ruggedness in the presence of noise, and integration of a wide range of
services into a common digital format (see Chapter 5).

sresscsns
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7.9 APPLICATION I: RADIO BROADCASTING

In radio broadcasting, a central transmitter is used to radiate message
signals for reception at a large number of remote points. The message
signals transmitted are usually intended for entertainment purposes. There
are three general types of radio broadcasting, AM broadcasting, which uses
standard amplitude modulation; FM broadcasting, which uses frequency
modulation; and relevision broadcasting, which uses amplitude modulation
of one carrier for picture transmission and frequency modulation of a
second carrier for sound transmission. Standard AM radio and television
(for picture transmission) are considered in this section. Frequency mod-
ulation is considered in Section 7.11.
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AM RADIO

The usual AM radio receiver is of the superheterodyne type, which is
represented schematically in Fig. 7.29. Basically, the receiver consists of
a radio frequency (RF) section, a mixer and local oscillator, an intermediate
frequency (IF) section, and a demodulator. Typical frequency parameters

of commercial AM radio are:

RF carrier range = 0.535-1.605 MHz
Midband frequency of IF section = 455 kHz
IF bandwidth = 10 kHz

The incoming amplitude modulated wave is picked up by the receiving
antenna and amplified in the RF section, which is tuned to the carrier
frequency of the incoming wave. The combination of mixer and local os-
cillator (of adjustable frequency) provides a frequency conversion ot het-
erodyning function, whereby the incoming signal is converted to a pre-
determined fixed intermediate frequency, usually lower than the signal
frequency. This frequency conversion is achieved without disturbing the
relation of the sidebands to the carrier. The result of this conversion is to
produce an intermediate-frequency carrier defined by

le = frr — fio

where fi o is the frequency of the local oscillator and fgr 18 the carrier
frequency of the incoming RF signal. We refer to fie as the intermediate
frequency (IF). because the signal is neither at the original input frequency
nor at the final baseband frequency. The mixer-local oscillator combination
is sometimes referred to as the first detector, in which case the demodulator
is called the second detector.

The IF section consists of one or more stages of tuned amplification.
with a bandwidth corresponding to that required for the particular type of
signal that the receiver is intended to handle. This section provides most

Antenna
E
’
/ Loudspeaker
RF IF Envelope Audio
section Mixer section detector [ 7] amplifier
/ «
’ ’
/ 4 -
/’ Common )
/ ; Local
[ _Wmng 7 oscillator
Figure 7.29

Basic elements of an AM receiver of the superheterodyne type.
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of the amplification and selectivity in the receiver. The output of the IF
section is applied to an envelope detector, the purpose of which is to recover
the baseband signal. The final operation in the receiver is the power am-
plification of the recovered message. The loudspeaker constitutes the load
of the power amplifier. ‘

The superheterodyne operation refers to the frequency conversion from
the variable carrier frequency of the incoming RF signal to the fixed 1F
signal.

In a superheterodyne receiver the mixer will develop an intermediate
frequency output when the input signal frequency is greater or less than
the local oscillator frequency by an amount equal to the intermediate
frequency. That is, there are two input frequencies, namely, [f, o, + fiel,
which will result in f, at the mixer output. This introduces the possibility
of simultaneous reception of two signals differing in frequency by twice
the intermediate frequency. Accordingly. itis necessary to employ selective
stages in the RF section (i.e., between the antenna and the mixer) in order
to favor the desired signal and discriminate against the undesired or image
signal. The effectiveness of suppressing unwanted image signals increases
as the number of selective stages in the radio frequency section increases,
and as the ratio of intermediate-to-signal frequency increases.

TELEVISION

Television (TV) refers to the transmission of pictures in motion by means
of electrical signals. To accomplish this transmission, each complete picture
has to be sequentially scanned. The scanning process is carried out in a TV
camera.® In a black-and-white TV, the camera contains optics designed to
focus an image on a photocathode that consists of a large number of pho-

of the original picture varies spatially from one point to another. The
resulting output current is called the video signal.

The type of scanning used in television is called a raster scan; it is
somewhat analogous to the manner in which we read a printed paper in
that the scanning is performed from left to right on a line-by-line basis. In
particular, a picture is divided into 525 lines that constitute a frame. Each
frame is decomposed into two interlaced fields, each one of which consists
of 262.5 lines. For convenience of presentation, we will refer to the two
fields as I and II. The scanning procedure is illustrated in Fig. 7.30. The

*For a detailed discussion of TV camera imaging devices, black and white, and color
TV, see Williams (1987, pp. 231-259).
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Figure 7.30
Interlaced raster scan.

lines of field 1 are depicted as solid lines, and those of field 11 are depicted
as dashed lines. The start and end of each field are also included in the
figure. Field I is scanned first. The scanning spot of the TV camera moves
with constant velocity across each line of the field from left to right. When
the end of a particular line is reached. the scanning spot quickly flies back
(in a horizontal direction) to the start of the next line down in the field.
This fivback is called the horizontal retrace. The scanning process described
here is continued until the whole field has been accounted for. When this
condition is reached. the scanning spot moves quickly (in a vertical direc-
tion) from the end of field I to the start of field I1. This second flyback is
called the vertical retrace. Field 11 is treated in the same fashion as field I.
The time taken for each field to be scanned is 1/60 second. Correspond-
ingly. the time taken for a frame or a complete picture to be scanned is
1/30 second. With 325 lines in a frame. the line scanning frequency equals
15.75 kHz. :

Thus, by flashing 30 still pictures per second on the display tube of the
TV receiver. the human eye perceives them to be moving pictures. This
effect is due to a phenomenon known as the persistence of vision.

During the horizontal- and vertical-retrace intervals, the picture tube is
made inoperative by means of blanking pulses that are generated at the
transmitter. Moreover, synchronization between the various scanning op-
erations at both the transmitter and receiver is accomplished by means of
special pulses that are transmitted during the blanking periods: as such.
the synchronizing pulses do not show on the reproduced picture. Figure
7.31 illustrates the use of blanking periods and synchronizing pulses for
one full line of a video waveform.
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Video waveform for one full line of TV picture.

Video Bandwidth The reproduction quality of a TV picture is limited by
two basic factors:

L. The number of lines available in a raster scan. which limits resolution
of the picture in the vertical direction.

The channel bandwidth available for transmitting the video signal. which
limits resolution of the picture in the horizontal direction.

(3]

For each direction, resolution is expressed in terms of the maximum number
of lines alternating between black and white that can be resolved in the
TV image along the pertinent direction by a human observer.

Consider first the image resolution in the vertical direction. denoted by
R,. It is tempting to equate the vertical resolution R, to the tofal number
of scan lines per frame minus those lines in the vertical interval that are
not used for display. In practice. however, this is not so, because the
scanning process that changes the image into a video signal in the camera
(at the transmitter) and then reconstructs the image on the display (at the
receiver) is in reality a sampling process. From our discussion of the sam-
pling process in Section 5.3. we know that a message signal must be strictly
band-limited or else distortion due to aliasing will occur. Consequently,
we find that the vertical resolution in a TV picture is reduced not only by
the vertical retrace, but also by aliasing, as shown by

R, = k(N - 2N.)) (7.81)
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where N is the fotal number of raster scan lines, and N,, is the number of
lines per field that are lost during the vertical retrace. The fact that the
vertical resolution R, in Eq. 7.81 is a fraction of (N — 2N,,) is called the
Kell effect; correspondingly, k is called the Kell factor. Normally, the Kell
factor ranges between 0.6 and 0.7.

Let a denote the raster height, as in Fig. 7.30. Then, we may express
the vertical resolution in a TV picture in terms of vertical lines per unit
distance as

R 3 N
-;" = %(N — 2N,,) lines/unit distance (7.82)

Consider next the horizontal resolution, denoted as R,; this resolution
is expressed in terms of the maximum number of lines that can be resolved
ina TV picture along the horizontal direction. To determine R, . we assume
that the picture elements or pixels are arranged as alternate black and
white squares along the scanning line. The corresponding video signal is
a square wave with a fundamental frequency equal to the video bandwidth.
Since there are two pixels per cycle of the square wave. we may express
the horizontal resolution of a TV picture as

Rh = ZB(T - T‘xr) (783)
where B is the video bandwidth, T is the total duration of one scanning
line. and T,, is the duration of a horizontal retrace.

Let b denote the raster width, as in Fig. 7.30. We may then express the
horizontal resolution of a TV picture in terms of horizontal lines per unit

distance as

5
% = % (T — T,,) lines/unit distance (7.84)

A natural choice for the video bandwidth B is to make the vertical
resolution equal the horizontal resolution. as shown by

Se o o (7.85)

Hence. using Eqs. 7.82. 7.84 and 7.85 to solve for the bandwidth B. we

get the desired result
k (b\(N - 2N.,)
- o B 7.8
f 2 (ﬂ)( T~ T . o

The ratio of raster width b to raster height a is called the aspect ratio.
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In the NTSC® system, we have the following parameter values:

A t t'_b_i
specra:o—a—3

Total lines per frame = N = 525
Vertical retrace = N,, = 21 lines/field
Kell factor = k = 0.7

Total line time = T = 63.5 us
Horizontal retrace time = Ty = 10 us

Substituting these values in Eq. 7.86, we get the video bandwidth:
B =421 MHz

This result is very close to the actual maximum frequency in the standard
video signal, which is 4.2 MHz.

Choice of Modulation The type of modulation chosen to transmit the
video signal is influenced by two factors:

1. The video signal exhibits a large bandwidth and significant low-fre-
quency content. This suggests the use of vestigial sideband modulation.

. The circuitry used for demodulation in the receiver should be simple
and therefore cheap. This suggests the use of envelope detection. which
requires the addition of a carrier to the VSB modulated wave.

[89]

With regard to point 1, although there is a basic desire 1o conserve
bandwidth, nevertheless in commercial TV broadcasting the transmitted
signal is not quite VSB-modulated. The reason is that at the transmitter
the power levels are high, with the result that it would be expensive to
rigidly control the transition region. Instead, a VSB filter is inserted in
each receiver where the power levels are low. The overall performance is
the same as conventional vestigial-sideband modulation except for some
wasted power and bandwidth. These remarks are illustrated in Fig. 7.32.
In particular, part @ of the figure shows the idealized specturm’of a trans-
mitted TV signal. The upper sideband, 25% of the lower sideband, and
the picture carrier are transmitted. The frequency response of the VSB
filter used to do the required spectrum shaping in the receiver is shown in
part b of the figure.

With regard to point 2, the use of envelope detection (applied to a VSB-
modulated wave plus carrier) produces waveform distortion in the message
signal recovered at the detector output. The distortion is contributed by

*NTSC is the abbreviation for National Television System Committee.
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(a) Idealized amplitude spectrum of transmitted TV signal. (b) Amplitude response
of VSB shaping filter in the receiver.

the quadrature component of the VSB wave. This issue was discussed in
Section 7.5.

The channel bandwidth used for NTSC TV broadcast is 6 MHz; see
Fig. 7.32b. This channel bandwidth not only accommodates the bandwidth
requirement of the VSB-modulated video signal but also provides for the
accompanying sound signal that modulates a carrier of its own.

The values presented on the frequency axis in parts (a) and (b) of Fig.
7.32 pertain to a specific TV channel. According to this figure, the picture
carrier frequency is at 55.75 MHz, and the sound carrier frequency is at
59.75 MHz. Note, however, that the information content of the TV signal
lies in a baseband spectrum extending from 1.25 MHz below the picture
carrier to 4.5 MHz above it.
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COLOR TELEVISION

The transmission of color in commercial TV broadcasting is based on the
premise that all colors found in nature can be approximated by mixing
three additive primary colors: red, green, and blue. These three primary
colors are represented by the video signals mg (1), mg (1), and my(1), re-
spectively. To conserve bandwidth and also produce a picture that can be
viewed on a conventional black-and-white (monochrome) television re-
ceiver, the transmission of these three primary colors is accomplished by
observing that they can be uniquely represented by any three signals that
are independent linear combinations of mg(t), mg(t), and my(t). In the
standard color-television system, the three signals that are transmitted have
the form

my(t) = 0.30mg(r) + 0.59m (1) + 0.11mg(r)
m(t) = 0.60mg(1) — 0.28m (1) — 0.32m(1)
my(r) = 0.21my(r) - 0.532m (1) + 0.31my(1) (7.87)

d \
The signal m,(¢) is called the luminance signal; when received on a con-
ventional monochrome television receiver, it produces a black-and-white
version of the color picture. The signals m,(r) and m(r) are called the
chrominance signals; they indicate the way the color of the picture departs
from shades of gray. With m,(t), m(t). and m (1) defined as before. we
have by simultaneous solution:

me(t) = m; (1) — 0.96m,(1) + 0.62m (1)
meg(t) = m (1) - 0.28m,(1) — 0.64m (1)
mg(t) = my (1) — 1.10m,(1) + 1.70m (1) (7.88)

The luminance signal m, (1) is assigned the entire 4.2 MHz bandwidth.
Owing to certain properties of human vision. tests show that if the nominal
bandwidths of the chrominance signals m(1) and m,(t) are 1.6 MHz and
0.6 MHz, respectively, then satisfactory color reproduction is possible.

Figure 7.33a shows a simplified block diagram of the color-television
transmitter. The chrominance signals m,(r) and m,(r) are combined using
a variation of quadrature-multiplexing with a subcarrier having a frequency
denoted by f.. The output resulting from the quadrature-multiplexing
operation is next superimposed on the luminance signal m, (1) to give a
combined video signal m(r). The composite video signal m(t) is thus de-
scribed by

m(t) = m (t) + m(1) cos(2rf, 1) + m(t) sin(2nf,, 1)
+ () sin(2nf, 1) (7.89)
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where rit;(t) is the quadrature component, consisting of the Hilbert trans-
form of the high-frequency portion of m,(t). The presence of r,,(t) ac-
counts for the presence of asymmetric sidebands. Naturally, s, () arises
because of the built-in asymmetric nature of the band-pass filter that passes
frequencies in the band 2.0-4.2 MHz; see Fig. 7.33a.

The standard blanking and synchronizing pulses are added to the video
signal m(t). In addition, a “burst” of 8 cycles of the subcarrier is super-
imposed on the trailing portion or **back porch™ of the horizontal blanking
pulses for color subcarrier synchronization at the receiver.'

The chrominance subcarrier frequency f,. is equal to 455/2 times the
horizontal-sweep frequency or line-scanning frequency f,. In color TV, f,
is 4.5 MHz/286. Hence,

455
fa = _z—fh

3.579545 MHz

I

For brevity, the value of f. in Fig. 7.33 (and hereafter) is approximated
as 3.58 MHz. The frequency f. serves as the frame of reference in color
TV in the sense that the reference signals for the color demodulators in
the receiver are obtained from a crystal-controlled oscillator of frequency
fe- This oscillator is synchronized to the burst of the subcarrier in the
transmitted TV signal by means of a phase-locked loop; the phase-locked
loop is described in Section 7.12.

At the receiver, demultiplexing of the video signal m(t) into the three
primary color signals is performed after envelope detection. Figure 7.33b
is a block diagram of the demultiplexing system. Since the luminance signal
m(t) constitutes a baseband component of the video signal m(¢), it re-
quires no further processing (except for the use of a 3.58 MHz rejection
filter needed to suppress a flicker component at the subcarrier frequency).
Moreover, assuming perfect synchronization, we can recover the remaining
baseband components m,(r) and m (1) by means of the coherent detectors
whose local carriers are in phase quadrature. Thus, given m,(t), m,(t),
and my(r), we can generate the original primary color signals mg(t), mg(t)
and mg(r) by using the matrixer shown at the output of Fig. 7.33b. The
operation of the matrixer is described by Eq. 7.88.

HIGH-DEFINITION TELEVISION

In a high-definition television (HDTV) system,” the image quality is im-
proved by a quantum leap as compared to the NTSC system. In particular,

’From a historical perspective, research into high-definition wide-screen television
started in Japan in 1968; the outstanding contributor here is Takashi Fugio. The
material presented herein is based on Rzeszewski (1983). This paper and several
others on HDTV are reproduced in Rzeszewski (1985).
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HDTYV offers the following improvements:

. Improved vertical resolution.
. Improved horizontal resolution.

W N -

. Less crosstalk between the components of the signal.

The improved image quality together with a large screen size provides the
viewer with a feeling of realism and involvement that is unattainable oth-

erwise.

However. for HDTV to be widely acceptable, two requirements are
critical. First, there should be receiver compatibility, which means that the
signal must be able to feed an HDTV and NTSC TV simultaneously and
be received on the NTSC receiver with substantially the same picture
quality as that achievable by conventional means. Meanwhile, the HDTV
receiver realizes the full benefits, including increased resolution. Second,
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Figure 7.34
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a bandwidth of no more than twice the 6 MHz per channel for NTSC TV
broadcast should be required. z

Figure 7.34a shows the baseband format of a split-luminance and split-
chrominance (SLSC) type of transmission system that satisfies both of these
requirements. It uses a 10-MHz baseband composite signal that can be
transmitted as a vestigial sideband modulated wave in a channel bandwidth
of 12 MHz. Also, an NTSC receiver (tuned to the lower 6 MHz portion
of the 12 MHz spectrum) will operate with the same quality achieved ina
conventional system. Figure 7.34b shows the baseband version of the am-
plitude response of an idealized broadcast picture transmission system,
measured with respect to the picture carrier frequency.

The composite signal of Fig. 7.34a is obtained by starting with a 1050-
line scan source of high-bandwidth red, green, blue (R, G, B) signals.
These signals are filtered and converted to a 525-line signal by a scan
conversion technique that deletes every second line to obtain a 525-line
signal suitable for transmission. Improved horizontal resolution is provided
for by the use of the second 525-line signal that occupies a frequency range
of approximately 5 to 10 MHz in the baseband. The baseband spectrum
of Fig. 7.34a also includes provision for an additional signal for improved
chrominance resolution.

Improved vertical resolution is catered to by using twice as many scan
lines as in NTSC. Moreover, the method of vertical resolution improvement
permits the Kell factor to approach unity.

7.10 ANGLE MODULATION: BASIC CONCEPTS

In the previous sections of this chapter we investigated the effect of slowly
varying the amplitude of a sinusoidal carrier wave in accordance with the
baseband information-bearing signal. There is another method of modu-
lating a sinusoidal carrier wave, namely, angle modulation in which either
the phase or frequency of the carrier wave is varied according to the message
signal. In this method of modulation the amplitude of the carrier wave is
maintained constant.

We begin our study of angle modulation by writing the modulated wave
in the general form '

s(r) = A, cos[i(r)] (7.90)

where the carrier amplitude A, is maintained constant, and the angular
argument /(1) s varied by a message signal m(r). The mathematical form
of this variation is determined by the type of angle modulation of interest.
In any event, a complete oscillation occurs whenever ((1) changes by 27
radians. If 0(r) increases monotonically with time, the average frequency
in hertz, over an interval from rto ¢t + A1, is given by

fuln = 2240 00

2n At (1.9
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We define the instantaneous frequency of the angle-modulated wave s(r)
by

fir) = ETO fa(0)
= i [6(1 + A1) - 0(!)]
1—0 2n At
1w 3
T 2n dt (72}

Thus, according to Eq. 7.90, we may interpret the angle-modulated
wave s(f) as a rotating phasor of length A, and angle 0(r). The angular
velocity of such a phasor is d0(r)/dt, in accordance with Eq. 7.92. In the
simple case of an unmodulated carrier, the angle 0(1) is

o(t) = 2nfa + &,

and-the corresponding phasor rotates with a constant angular velocity equal
. to 2nf.. The constant ¢, is the value of 0(r) at r = 0.

There are an infinite number of ways in which the angle 0(r) may be
varied in some manner with the message signal. However. we will consider
only two commonly used methods. phase modulation and frequency mod-
ulation, as next defined:

1. Phase modulation (PM) is that form of angle modulation in which the
angular argument 0(1) is varied linearly with the message signal m(t). as
shown by

0(t) = 2nfa + k,m(r) (7.93)
The term 27f f represents the angular argument of the unmodulated
carrier, and the constant k, represents the phase sensitivity of the mod-
ulator, expressed in radians per volt. This assumes that m(r) is a voltage
waveform. For convenience, we have assumed in Eq. 7.93 that the
angular argument of the unmodulated carrier is zero at t = 0. The
phase-modulated wave s(t) is thus described in the time domain by
s(t) = A, cos[2nft + k,m(1)] (7.94)

2. Frequency modulation (FM) is that form of angle modulation in which
the instantaneous frequency f (1) is varied linearly with the message signal
m(t), as shown by

f(n)y=f + km() (7.95)
The term f. represents the frequency of the unmodulated carrier, and
the constant k, represents the frequency sensitivity of the modulator,
expressed in hertz per volt. This assumes that m(r) is a voltage wave-
form. Integrating Eq. 7.95 with respect to time and multiplying the
result by 2n, we get

0(r) = 2nft + 2=k, J[ m(r) de (7.96)
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where, for convenience, we have assumed that the angular argument
of the unmodulated carrier wave s zero at t = 0. The frequency-mod-
ulated wave is therefore described in the time domain by

5(t) = A cos[Z;rf,t + 2nk, f'm(r) dz] (7.97)
0

A consequence of allowing the angular argument 0(t) to become de-
pendent on the message signal m(t) as in Eq. 7.93 or on its integral as in
Eq. 7.96 is that the zero crossings of a PM wave or FM wave no longer
have a perfect regularity in their spacing; zero crossings refer to the instants
of time at which a waveform changes from a negative to a positive value
or vice versa. This is one important feature that distinguishes both PM and
FM waves from an AM wave. Another important difference is that the
envelope of a PM or FM wave is constant (equal to the carrier amplitude).
whereas the envelope of an AM wave is dependent on the message signal.

Comparing Eq. 7.94 with 7.97 reveals that an FM wave may be regarded
as a PM wave in which the modulating wave is Jym(t) drin place of m(r).
This means that an FM wave can be generated by first integrating m(r)
and then using the result as the input to a phase modulator. as in Fig.
7.35a. Conversely, a PM wave can be generated by first differentiating
m(t) and then using the result as the input to a frequency modulator. as
in Fig. 7.35b. We may thus deduce all the properties of PM waves from
those of FM waves, and vice versa.
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FM wave
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Figure 7.35

The relationship between frequency modulation and phase modulation. (a) Scheme
for generating an FM wave by using a phase modulator. ( b) Scheme for generating
a PM wave by using a frequency modulator.
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EXAMPLE 6 SINUSOIDAL MODULATION

Consider a sinusoidal modulating wave m(t), two full cycles of which are
plotted in Fig. 7.36a. The FM wave produced by this modulating wave is
plotted in Fig. 7.36b.

To determine the PM wave for m(r), we note that it is the same as the
FM wave produced by dm(r)/dt. the derivative of m(r) with respect to time
(see Fig. 7.35b). In Fig. 7.36¢. we plot the derivative dm(t)/dt. which
consists of the original sinusoidal modulating wave shifted in phase by 90°.
The desired PM wave is plotted in Fig. 7.36d.

Figure 7.36 o
(a) Sinusoidal modulating wave m(t). (b) Frequency-modulated wave. (c) Derivative

of mit) with respect to time. (d) Phase-modulated wave.
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: From the waveforms of Fig. 7.36, we see that for sinusoidal modulation
i a distinction between FM and PM waves can be made only by comparing
i with the actual modulating waves. i

EXAMPLE 7 SQUARE MODULATION

Consider next a square modulating wave m(t), two full cycles of which are
shown plotted in Fig. 7.37a. The FM wave produced by this modulating
wave is plotted in Fig. 7.37b.

To plot the PM wave produced by the square modulating wave m(r),
we follow a procedure similar to that in Example 6. Specifically, the de-
rivative dm(t)/dt is plotted in Fig. 7.37¢; it consists of a periodic sequence
of alternating delta functions. The desired PM wave is plotted in Fig. 7.37d.

Unlike the case of sinusoidal modulation, we see that for square mod- i
ulation the FM and PM waves are distinctly different from each other.

fa) (c)

—»-time — time

ssssssssssene

Figure 7.37
(a) Square modulating wave m(t). (b) Frequency-modulated wave. (c) Derivative of
mit) with respect to time. (d) Phase-modulated wave.

EXERCISE 15 An FM wave is defined by
s(r) = A, cos[10nt + sin(4nt)]

Find the instantaneous frequency of s(t).
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EXERCISE 16 The square wave of Fig. 7.37a is applied to the scheme
shown in Fig. 7.35a. Plot the waveforms at the input and output of the
phase modulator in Fig. 7.35a.

7.11 FREQUENCY MODULATION

The FM wave s(t) defined by Eq. 7.97 is a nonlinear function of the
modulating wave m(t). Hence, frequency modulation is a nonlinear mod-
ulation process. Consequently, unlike amplitude modulation, the spectrum
of an FM wave is not related in a simple manner to that of the modulating
wave. Thus, in order to study the spectral properties of an FM wave, the
traditional approach is to start with single-tone modulation and build on
the knowledge thus gained.

SINGLE-TONE FREQUENCY MODULATION

Consider then a sinusoidal modulating wave defined by
m(t) = A, cos(2nfnt) (7.98)
The instantaneous frequency of the resulting FM wave equals

f(t) = fo + kA, cos(2nfnt)
=1, + A coulBaf, i} (7.99)

where

Af = kA, (7.100)

The quantity 4 f is called the frequency deviation, representing the maxi-
mum departure of the instantaneous frequency of the FM wave from the
carrier frequency f.. A fundamental characteristic of an FM wave is that
the frequency deviation 4 f is proportional to the amplitude of the med-
ulating wave and is independent of the modulation frequency.

Using Eq. 7.99, the regular argument 0(t) of the FM wave is obtained
as

o(r)

2 f £.(0) dr
0

2nfit + A sin@rf.0 (7.101)
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The ratio of the frequency deviation 4 f to the modulation frequency f,,
is commonly called the modulation index of the FM wave. We denote it
by B, so that we may write

(7.102)

“&.lb
g (e

and
0(t) = 2nft + Bsin(2afnat) (7.103)

From Eq. 7.103 we see that, in a physical sense, the parameter f§ represents
‘the phase deviation of the FM wave; that is, the maximum departure of
the angular argument (1) from the angle 2z f £ of the unmodulated carrier.

EXERCISE 17 A sinusoidal modulating wave of amplitude 5 V and fre-
quency 1 kHz is applied to a frequency modulator. The frequency sensitivity
of the modulator is 40 Hz/V. The carrier frequency is 100 kHz. Calculate
(a) the frequency deviation, and (b) the modulation index.

SPECTRUM ANALYSIS OF SINUSOIDAL FM WAVE
The FM wave for sinusoidal modulation is given by

s(t) = A, cos[2nf.t + Bsin(2af,.t)] (7.104)

Using a well-known trigonometric identity, we may expand this relation
as

s(t) = A, cos(2nf.t) cos[ff sin(2nf.t)]
— A, sin(2nf.t) sin[f sin(2zf,.1)] (7.105)

From this expanded form, we see that the in-phase and quadrature com-
ponents of the FM wave s(t) for the case of sinusoidal modulation are as
follows:

s;(t) = A, cos[f sin(2rf,,1)] (7.106)
so(t) = A, sin[f sin(2nf 1)) (7.107)
Hence, the complex envelope of the FM wave equals

s(1)

s,(t) + Jso(r)
A expljp sin(2nf 1)) (7.108)



FREQUENCY MODULATION 329

The complex envelope §(¢) retains complete information about the mod-
ulation process. Indeed, we may readily express the FM wave s(¢) in terms
of the complex envelope §(t) by writing

s(t) = Re[A.exp(j2nf.t + jpsin2naf.t))]
Re[s(t) exp(j2nf.1)] (7.109)

From Eq. 7.108 we see that the complex envelope is a periodic function
of time, with a fundamental frequency equal to the modulation frequency
... We may therefore expand §(¢) in the form of a complex Fourier series
as follows

(1) = 2 ¢, exp(j2anf.t) (7.110)

n=-x

where the complex Fourier coefficient ¢, equals

¢ = fn f””‘ §(t) expl( - j2nrifnt) di

-2,

= f.4 J'”” expljf sinafat) — j2unfatlde  (7.111)

~12f,
For convenience, we define the variable
X = 2Rf.t (7.112)

in terms of which we may rewrite Eq. 7.111 as
A [ —
€y = —Z—;Z—J exp[j(f sinx — nx)] dx (7:£13)

The integral on the right side of Eq. 7.113 is recognized as the nth order
Bessel function of the first kind and argument f (see Appendix B). This
function is commonly denoted by the symbol J,(f). that is,

1(B) = ij explj(8sinx — nx)] dx (7.114)

Hence, we may rewrite Eq. 7.113 as

c. = AJ(B) (7.115)
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Substituting Eq. 7.115 in 7.110, we get, in terms of the Bessel function
J.(B), the following expansion for the complex envelope of the FM wave:

s(r) = A. i J1.(f) exp(jZnnf,,,r)v (7.116)

Next, substituting Eq. 7.116 in 7.109, we get

s(1) = A, Re[ S 1.(8) expli2n(f + nfmm] (7.117)

n=-=

Interchanging the order of summation and evaluating the real part of the
right side of Eq. 7.117, we get

s(6)) = A, i Ja(B) cos[2n(f. + nf,)i] (7.118)

n=-x

This is the desired form for the Fourier series representation of the single-
tone FM wave s5(¢) for an arbitrary value of 8. The discrete spectrum of
s(r) is obtained by taking the Fourier transforms of both sides of Eq.7.118;
thus

%

SU) =5 S LB = o= nfa) + 8(F + . + nf)] (119

n=-%

In Fig. 7.38 we have plotted the Bessel function J.(f) versus the mod-
ulation index f for n = 0, 1, 2, 3, 4. These plots show that for fixed n,
J.(f3) alternates between positive and negative values for increasing f and
that |J,(B)| approaches zero as approaches infinity. Note also that for
fixed 5, we have

_ J.(p), n even
J_a(B) = {—Jn(ﬁ), n odd - (7.120)

Accordingly, we need only plot or tabulate J.(B) for positive values of
order n.

From Egs. 7.97 and 7.118, we deduce the following properties of FM
waves:

PROPERTY 1: NARROW-BAND FM

For small values of the modulation index B compared to one radian, the FM
wave assumes a narrow-band form consisting essentially of a carrier, an
upper side-frequency component, and a lower side-frequency component.
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0.4
I.48)

0.2

Figure 7.38
Plots of Bessel functions of the first kind.

This property follows from the fact that for small values of /i, we have
Jo(B) =1

19 ="

Ju(B)=0, n>1 (7.121)

The approximations indicated in Eqs. 7.121 are closely justified for values
of the modulation index defined by # < 0.3 rad. Thus, substituting Egs.
7.121 in 7.118, we get

s(r) = A cos(2nf.t) + % cos[2r(f. + fa)i]
- ﬁ;‘cos[Zn(j’( — full] (7.122).

This equation shows that for small §, the FM wave s(r) may be closely
approximated by the sum of a carrier of amplitude A,, an upper side-
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frequency component of amplitude fA /2, and a lower side-frequency
component of amplitude BA /2 and phase-shift equal to 180° (represented
by the minus sign in Eq. 7.122). An FM wave so characterized is said to
be narrow-band.

EXERCISE 18 In what ways do a standard AM wave and a nar r'ow; L
FM wave differ from each other? o JR band

PROPERTY 2: WIDEBAND FM

For large values of the modulation index § compared to one radian, the FM
wave (in theory) contains a carrier and an infinite number of side-frequency
components located symmetrically around the carrier.

This second property is a restatement of Eq. 7.118 with no approximations
made. An FM-wave thus defined is said to be wideband. Note that the
amplitude of the carrier component contained in a wideband FM wave
varies with the modulation index f in accordance with J,(f).

EXERCISE 19 In what ways do a standard AM wave and a wideband FM
wave differ from each other? e

PROPERTY 3: CONSTANT AVERAGE POWER

The envelope of an FM wave is constant, so that the average power of such
a wave dissipated in a 1-ohm resistor is also constant.

This property follows directly from the definition given in Eq. 7.97 for an
FM wave. Specifically, the FM wave s(t) defined in Eq. 7.97 has a constant
envelope equal to A.. Accordingly, the average power dissipated by s()
in a 1-ohm resistor is given by

P = - A? (7.123)

(SRR

This result may also be derived from Eq. 7.118. In particular, we note
from the series expansion of Eq. 7.118 that the average power of asingle-
tone FM wave s(¢) may be expressed in the form of a corresponding series
as:

P=zA D JUp) (7.129)

T | =



FREQUENCY MODULATION 333

Next, we note that (see Appendix B)

i J2(p) = 1 (7.125)

HE =

Thus, substituting Eq. 7.125in 7.124, we get the result givenin Eq. 7.123.

............................................................................................................................
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EXAMPLE 8

We wish to investigate the ways in which variations in the amplitude and
frequency of a sinusoidal modulating wave affect the spectrum of the FM
wave. Consider first the case when the frequency of the modulating wave
is fixed, but its amplitude is varied, producing a corresponding variation
in the frequency deviation 4f. Thus, keeping the modulation frequency
fn fixed, we find that the amplitude spectrum of the resulting FM wave is
as plotted in Fig. 7.39 for B = 1,2, and 5. In this diagram we have

[—10

e A Tl

O, t,

—2Af —
(b)

Figure 7.39
Discrete amplitude spectra of an FM signal, normalized with respect to the carrier
amplitude, for the case of sinusoidal modulation of fixed frequency and varying

amplitude. Only the spectra for positive frequencies are shown.
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Figure 7.39 (continued)
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Figure 7.40
Discrete amplitude spectra of an FM signal, normalized with respect to the carrier

amplitude, for the case of sinusoidal modulation of varying frequency and fixed
amplitude. Only the spectra for positive frequencies are shown.
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e 24f — J

(c)

Figure 7.40 (continued)

normalized the spectrum with respect to the unmodulated carrier ampli-
tude.

Consider next the case when the amplitude of the modulating wave is
fixed: that is. the frequency deviation 4f is maintained constant and the
modulation frequency f,, is varied. In this case we find that the amplitude
spectrum of the resulting FM wave is as plotted in Fig. 7.40 for g = 1, 2,
and 5. We see that when 4 f is fixed and fis increased, we have an increasing
number of spectral lines crowding into a fixed frequency interval defined
by f -~ df s f = f + 4f. That is, when § approaches infinity, the
bandwidth of the FM wave approaches the limiting value of 2 4f.

EXERCISE 20 Expand the discrete amplitude spectra shown in Figs. 7.39
- and 7.40 by including the spectrum of an FM wave with § = 0.2.

TRANSMISSION BANDWIDTH OF FM WAVES

In theory, an FM wave contains an infinite number of side-frequencies so
that the bandwidth required to transmit such a signal is similarly infinite
in extent. In practice, however, we find that the FM wave is effectively
limited to a finite number of significant side-frequencies compatible with
a specified amount of distortion. We may therefore specify an effective
bandwidth required for the transmission of an FM wave. Consider first the
case of an FM wave generated by a single-tone modulating wave of fre-
quency f,. In such an FM wave, the side-frequencies that are separated
from the carrier frequency f. by an amount greater than the frequency
deviation 4 f decrease rapidly toward zero, so that the bandwidth always
exceeds the total frequency excursion, but nevertheless is limited. Specif-
ically, for large values of the modulation index B, the bandwidth ap-
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proaches, and is only slightly greater than the total frequency excursion
2 Af. On the other hand, for small values of the modulation index £, the
spectrum of the FM wave is effectively limited to the carrier frequency f.
and one pair of side-frequencies at f, = f,,, so that the bandwidth ap-
proaches 2 f,,. We may thus define an approximate rule for the transmission
bandwidth of an FM wave generated by a single-tone modulating wave of
frequency f, as

B=2Af+2fm=24f(1+%) ' (7.126)

This relation is known as Carson’s rule.

For a more accurate assessment of the bandwidth requirement of an
FM wave, we may use a definition based on retaining the maximum number
of significant side-frequencies with amplitudes all greater than some se-
lected value. A convenient choice for this value is 1% of the unmodulated
carrier amplitude. We may thus define the 99 percent bandwidth of an FM
wave as the separation between the two frequencies beyond which none of
the side-frequencies is greater than 1% of the carrier amplitude obtained
when the modulation is removed. That is, we define the transmission band-
width as 2n,..f., where f,, is the modulation frequency and n,, is the
maximum value of the integer n that satisfies the requirement [7.(8)| > 0.01.
The value of n,,, varies with the modulation index and can be determined
readily from tabulated values of the Bessel function J,(fB). Table 7.2 shows
the total number of significant side-frequencies (including both the upper
and lower side-frequencies) for different values of B, calculated on the 1%
basis just explained. The transmission bandwidth B calculated using this
procedure can be presented in the form of a universal curve by normalizing
it with respect to the frequency deviation 4 f, and then plotting it versus

TABLE 7.2
Modulation index Nznmber of significant side-frequencies
Rmax

o1 2
0.3 4
0.5 4
1.0 6
2.0 E 8
5.0 = 16

10.0 28

20.0 50

30.0 70
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B- This curve is shown in Fig. 7.41, which is drawn as a best fit through
the set of points obtained by using Table 7.2. In Fig. 7.41 we note that as
the modulation index £ is increased, the bandwidth occupied by the sig-
nificant side-frequencies drops toward that over which the carrier frequency
actually deviates. This means that small values of the modulation index f
are relatively more extravagant in transmission bandwidth than are the
larger values of /.

Consider next an arbitrary modulating wave m(r) with its highest fre-
quency component denoted by W. The bandwidth required to transmit an
FM wave generated by this modulating wave is estimated by using a worst-
case tone-modulation analysis. Specifically. we first determine the so-called
deviation ratio D, defined as the ratio of the frequency deviation A1 f, which
corresponds to the maximum possible amplitude of the modulating wave
m(r), to the highest modulation frequency W: these conditions represent
the extreme cases possible. The deviation ratio D plays the same role for
nonsinusoidal modulation that the modulation index f plays for the case of
sinusoidal modulation. Then, replacing ff by D and replacing f,, by W. we
use Carson’s rule given by Eq. 7.126 or the universal curve of Fig. 7.41 to
obtain a value for the transmission bandwidth of the FM wave. From a
practical viewpoint, Carson’s rule somewhat underestimates the bandwidth
requirement of an FM system, whereas using the universal curve of Fig.
7.41 yields a somewhat conservative result. Thus the choice of a trans-

40—

Figure 7.41
Universal curve for evaluating the 99% bandwidth of an FM wave.
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mission bandwidth that lies between the bounds provided by these two
rules of thumb is acceptable for most practical purposes.

EXAMPLE 9

In Morth America, the maximum value of frequency deviation 4 f is fixed
at 75 kHz for commercial FM broadcasting by radio. If we take the mod-
ulation frequency W = 15 kHz. which is typically the maximum audio
frequehcy of interest in FM transmission, we find that the corresponding
value of the deviation ratio is

Using Carson’s rule of Eq. 7.126. replacing # by D and replacing f,, by W,
the approximate value of the transmission bandwidth of the FM wave is
obtained as

= 2(75 + 15) = 180 kHz

On the other hand. use of the curve of Fig. 7.41 gives the transmission
bandwidth of the FM wave to be

B =324f =32 x75=240kHz

Thus Carson’s rule underestimates the transmission bandwidth by 25%
compared with the result of using the curve of Fig. 7.41.

........................................................................................................ sesesssssssssnnasnnnr

EXERCISE 21 Repeat the calculations of Example 9, assummg that the
frequency deviation is decreased to 50 kHz.

GENERATION OF FM WAVES

There are essentially two basic methods of generating frequency-modulated
waves, namely. indirect FM and direct FM. In the indirect method of
producing frequency modulation." the modulating wave is first used to
produce a narrow-band FM wave. and frequency multiplication is next used

*The indirect method of generating a wideband FM wave was first proposed by
Armstrong. A frequency modulator so designed is sometimes referred to as the
Armstrong modulator; see Armstrong (1936). Armstrong was also the first to
recognize the noise-cleaning properties of frequency modulation.
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to increase the frequency deviation to the desired level. On the other hand,
in the direct method of producing frequency modulation the carrier fre-
quency is directly varied in accordance with the incoming message signal.
In this subsection, we describe the important features of both methods.

Indirect FM  Consider first the generation of a narrow-band FM wave. To
do this, we begin with the expression for an FM wave s,(1) for the general
case of a modulating wave m(r), which is written in the form

si(1) = Ay cos[2rfit + ¢,(1)] (7.127)

where f, is the carrier frequency and A, is the carrier amplitude. The
angular argument ¢,(t) of 5,(¢) is related to m(r) by

b.(t) = 27k, | m(t) dr (7.128)

0

where k, is the frequency sensitivity of the modulator. Provided that the
angle ¢,(r) is small compared to one radian for all 1, we may use the
following approximations:

cos[p(r)] = 1 (7.129)
sin[@(1)] = ¢(1) (7.130)

Correspondingly, we may approximate Eq. 7.127 as follows

51(1) = A, cos(Qnf1) — A, sin(2nf,1)¢p (1)

= A, sostZafol): = Dk, S2Rfil) f m) di (7.131)

Equation 7.131 defines a narrow-band FM wave. Indeed. we may use this
equation to set up the scheme shown in Fig. 7.42a for the generation of a
narrow-band FM wave: the scaling factor 2nk, is taken care of by the
product modulator. Moreover. bearing in mind the relationship that exists
between frequency modulation and phase modulation (see Fig. 7.35), we
see that the part of the frequency modulator that lies inside the dashed
rectangle in Fig. 7.42a represents a narrow-band phase modulator.

The modulated wave produced by the narrow-band modulator of Fig.
7.42a differs from an ideal FM wave in two respects:

1. The envelope contains a residual amplitude modulation and, therefore,
varies with time.
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Figure 7.42

Block diagrams for (a) narrow-band frequency modulator, (b) frequency multiplier,
and (c) wideband frequency modulator.

2. For a sinusoidal modulating wave, the phase of the FM wave contains
harmonic distortion in the form of third- and higher-order harmonics
of the modulation frequency f,.

However, by restricting the modulation index to f# < 0.3 rad, the effects
of residual AM and harmonic PM are limited to negligible levels.

The next step in the indirect FM method is that of frequency multipli-
cation. Basically, a frequency multiplier consists of a nonlinear device (e.g.,
diode or transistor) followed by a band-pass filter, as in Fig. 7.42b. The
nonlinear device is assumed to be memoryless, which means that there is
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no energy storage. In general, a memoryless nonlinear device is represented
by the input-output relation®

$2:00) = ais,(1) + assi(t) + - - + a,si(t) (7.132)

where a,, a., . . . | a, are constant coefficients. Substituting Eq. 7.131 in
7.132, expanding and then collecting terms, we find that the output s,(r)
has a dc component and n frequency-modulated waves with carrier fre-
quencies f,. 2f,, ..., nf, and frequency deviations Af,. 24f,. . . . .
ndf,. respectively. The value of 4f, is determined by the frequency sen-
sitivity &, of the narrow-band frequency modulator and the maximum
amplitude of the modulating wave m(t). We now see the motivation for
using the band-pass filter in Fig. 7.42b. Specifically, the filter is designed
with two aims in mind:

1. To pass the FM wave centered at the carrier frequency nf, and with
frequency deviation n Af,.
2. To suppress all other FM spectra.

Thus, connecting the narrow-band frequency modulator and the fre-
quency multiplier as depicted in Fig. 7.42¢. we may generate a wideband
FM wave s(r) with carrier frequency f. = nf, and frequency deviation
df = n Af,, as desired. Specifically, we may write

(

s(1) = A, cos[2nf(l + 2nk, f m(r) dr] (7.133)

where
k; = nk, (7.134)

In other words, the wideband frequency modulator of Fig. 7.42¢ has a
frequency sensitivity n times that of the narrow-band frequency modulator
of Fig. 7.42a, where n is the frequency multiplication ratio. In Fig. 7.42¢
we show a crystal-controlled oscillator as the source of carrier: this is done
for frequency stability. '

*Nonlinearities, in one form or another, are present in all electrical networks. There
are two basic forms of nonlinearity to consider:

1. The nonlinearity is said to be strong when it is introduced intentionally and in a
controlled manner for some specific application. Examples of strong nonlinearity
include frequency multipliers, amplitude limiters, and square-law modulators.

2. The nontinearity is said to be weak when a linear performance is desired, and
any nonlinearities are viewed as parasitic in nature. The effect of such weak
nonlinearities is to limit the useful signal levels in a system. Thus, weak
nonlinearities become an important design consideration: see Problem 40.
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é)&-‘kél&é 22 " Consider a freqﬁf’eﬁcy' hultipiief that uses a square-law
device defined by :

s:(1) = ays,(1) + axsi(t)

Specify the midband frequency and bandwidth of the band—pass filter used
in the frequency multiplier for the resulting frequency deviation to be twice
that at the input of the nonlinear device. !

EXERCISE 23 An FM wave with a frequency deviation of 10 kHz at a
modulation frequency of 5 kHz is applied to two frequency multipliers
connected in cascade. The first multiplier doubles the frequency and the
sccond multiplier triples the frequency. Determine the frequency deviation
and the modulation index of the FM wave obtained at the second multiplier
output. What is the frequency separation of the adjacent side-frequencies
of this FM wave?

.........................................................................................................................

EXAMPLE 10

Figure 7.43 shows the simplified block diagram of a typical FM transmitter
(based on the indirect method) used to transmit audio signals containing
frequencies in the range 100 Hz to 15 kHz. The narrow-band phase mod-
ulator is supplied with a carrier wave of frequency f; = 0.1 MHz by a
erystal-controlled oscillator. The desired FM wave at the transmitter output
has acarrier frequency f, = 100MHzand frequency deviationd f = 75 kHz.

In order to limit the harmonic distortion produced by the narrow-band
phase modulator. we restrict the modulation index ff, to a maximum value
of 0.3 rad. Suppose then f#; = 0.2 rad.

From Eq. 7.102. we sce that for sinusoidal modulation, the frequency
deviation equals the modulation index multiplied by the modulation fre-
quency. Hence. for a fixed modulation index. the lowest modulation fre-
quencies will limit the frequency deviation at the narrowband phase mod-
ulator output. Thus, with f#; = 0.2, the 100-Hz modulation frequencies
will limit the frequency deviation A4 f, to 20 Hz.

To produce a frequency deviation of 4f = 75 kHz at the FM trunsmutter
output. the use of frequency multiplication is required. Specifically, with
1f, = 20Hzand 1f = 73 kHz. we require a total frequency multiplication
ratio of 3730, However. using a straight frequency multiplication equal to
this value would produce a much higher carrier frequency at the transmitter
output than the desired value of 100 MHz. To generate an FM wave having
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Figure 7.43
Block diagram of the wideband frequency modulator for Example 10.

both the desired frequency deviation and carrier frequency. we therefore
need to use a rwo-stage frequency multiplier with an intermediate stage of
frequency translation. as illustrated in Fig. 7.43.

Let n, and n, denote the respective frequency multiplication ratios. so
that

5.000
af B s (7.135)
YR

nn, =

The carrier frequency at the first frequency multiplier output is translated
downward in frequency to (f, — n,f,) by mixing it with a sinusoidal wave
offrequency f, = 9.5 MHz, which is supplied by a second crystal-controlled
oscillator. However, the carrier frequency at the input of the second fre-
quency multiplier is equal to f./n,. Equating these two frequencies. we
get

fs - nf, = %’

Hence, with f, = 0.1 MHz, f, = 9.5 MHz. and fo = 100 MHz, we have

' 00
9.5 = 0ilmg = l

(7.136)

n,
Solving Egs. 7.135 and 7.136 for n, and n.. we obtain

n, =75
ny, = 50

Using these frequency multiplication ratios, we get the set of values in-
dicated in Table 7.3.



sessnes

344 MODULATION TECHNIQUES

TABLE 7.3  Values of Carrier Frequency and Frequency Deviation at the Various
Points in the Frequency Modulator of Fig. 7.43.

At the first At the second
At the phase frequency At the frequency
modulator multiplier mixer multiplier
output output output output
Carrier 0.1 MHz 7.5 MHz 2.0 MHz 100 MHz
frequency
Frequency 20 Hz 1.5 kHz 1.5 kHz 75 kHz
deviation

Direct FM In the direct method of FM generation, the instantaneous fre-
quency of the carrier wave is varied directly in accordance with the message
signal by means of a device known as a voltage-controlled oscillator. One
way of implementing such a device is to use a sinusoidal oscillator having
a relatively high-Q frequency-determining network and to control the os-
cillator by incremental variation of the reactive components. An example
of this scheme is shown in Fig. 7.44, showing a Hartley oscillator. We
assume that the capacitive component of the frequency-determining net-
work consists of a fixed capacitor shunted by a voltage-variable capacitor.
The resultant capacitance is represented by C(¢) in Fig. 7.44. A voltage-
variable capacitor, commonly called a varactor or varicap, is one whose
capacitance depends on the voltage applied across its electrodes. The vari-
able-voltage capacitance may be obtained, for example, by using a p-n
junction diode that is biased in the reverse direction; the larger the reverse
voltage applied to such a diode, the smaller the transition capacitance of
the diode. The frequency of oscillation of the Hartley oscillator of Fig.
7.44 is given by

’

1
£y = VAL, + L)C0)

(7.137)

where C(1) is the total capacitance of the fixed capacitor and the variable-
voltage capacitor, and L, and L, are the two inductances in the frequency-
determining network. Assume that for a modulating wave m(r) the ca-
pacitance C(r) is expressed as follows o

C@t) = Ci— kom(1) (7.138)

where C, is the total capacitance in the absence of modulation, and k_ is
the variable capacitor’s sensitivity to voltage change. Substituting Eq. 7.138

aesssssassss
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Figure 7.44
Hartley oscillator.
in 7.137, we get

k =112
fi(0) = fo [1 = E m(t)] (7.139)
0

where f, is the unmodulated frequency of oscillation:

1
= 7.140
fo SOyl Ly + L2) (7140

Provided that the maximum change in capacitance produced by the mod-
ulating wave is small compared with the unmodulated capacitance Cy, we
may approximate Eq. 7.139 as follows

5.0 = fo [1 - m(r)] (7.141)
Define
ok
ky = );? (7.142)

We then obtain the following relation for the instantaneous frequency of
the oscillator:

f.(t) = fo + kgm(1) (7.143)

~where k is the resultant frequency sensitivity of the modulator, defined
by Eq. 7.142.

An FM transmitter using the direct method as described herein, how-

ever. has the disadvantage that the carrier frequency is not obtained from
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Figure 7.45
A feedback scheme for the frequency stabilization of a frequency modulator.

a highly stable oscillator. It is therefore necessary, in practice, to provide
some auxiliary means by which a very stable frequency generated by a
crystal will be able to control the carrier frequency. One method of effecting
this control is illustrated in Fig. 7.45. The output of the FM generator is
applied to a mixer together with the output of a crystal-controlled oscillator.
and the difference frequency term is extracted. The mixer output is next
applied to a frequency discriminator and then low-pass filtered. A fre-
quency discriminator is a device whose output voltage has an instantaneous
amplitude that is proportional to the instantaneous frequency of the FM
wave applied to its input; this device is described later in the section. When
the FM transmitter has exactly the correct carrier frequency. the low-pass
filter output is zero. However. deviations of the transmitter carrier fre-
quency from its assigned value will cause the frequency discriminator-filter
combination to develop a dc output voltage with a polarity determined by
the sense of the transmitter frequency drift. This de voltage, after suitable
amplification, is applied to the voltage-controlled oscillator of the FM
transmitter in such a way as to modify the frequency of the oscillator in a
direction that tends to restore the carrier frequency 1o its required value.

DEMODULATION OF FM WAVES

The process of frequency demodulation is the inverse of frequency mod-
ulation in the sense that it ¢nables the origmal modulating wave to be
recovered from a frequency-modulated wave. In particular, to perform
frequency demodulation we require a two-port device that produces an
output signal with amplitude directly proportional to the instantaneous fre-
quency of a frequency-modulated wave used as the input signal. We refer
1o such a device as a frequency demodulator,

There are various methods of designing a frequency demodulator. They
can be categorized into two broadly defined classes: (1) direct and (2)
indirect. The direct methods distinguish themselves by the fact that their
development is inspired by a direct application of the definition of instan-
taneous frequency. This class of frequency demodulators includes, as ex-
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amples, frequency-discriminators and zero crossing detectors. On the other
hand, indirect methods of frequency demodulatjon rely on the use of feed-
back to track variations in the instantaneous frequency of the input signal.
The phase-locked loop is an example of this second class. In the remainder
of this section, we describe the balanced frequency discriminator and zero-
cross detector. The phase-locked loop is described in Section 7.12.

Balanced Frequency Discriminator To pave the way for the development
of the balanced frequency discriminator, we begin by considering an ideal-
ized form of the circuit. In this context, we introduce the notion of an
ideal slope circuit that is characterized by a purely imaginary transfer func-
tion, varying linearly with frequency inside a prescribed interval. Such a
circuit includes the differentiator as a special case. To be specific, consider
the transfer function depicted in Fig. 7.46a. which is defined by

) B g B B
ona(f—fL-+5), h~gsfsfiey
H = B
(f) j2na(f+f‘~;)‘ —f‘—gsfs_f‘+g
0, elsewhere (7.144)

where a is a constant. We wish to evaluate the response of this slope circuit,
denoted by s,(¢), for an input FM signal s(r) of carrier frequency f. and
transmission bandwidth B. It is assumed that the spectrum of s(r) is es-
sentially zero outside the frequency band f, — B/2 < |[f[ = f. + B/2. For
evaluation of the response s(r), it is convenient to use the procedure
described in Section 3.5, which involves replacing the slope circuit with.an
equivalent low-pass filter and driving this filter with the complex envelope
of the input FM wave s(r).

Let H,(f) denote the complex transfer function of the slope circuit
defined by Fig. 7.46a. This complex transfer function is related to H,(f)

by
H(f - f)=H(f), [f=>0 (7.145)

Hence, using Eqs. 7.144 and 7.145, we get

B -
- jZnu(f v —). _ B B
H(f) = 2 3 <f =3
0, elsewhere (7.146)

which is shown in Fig. 7.46b.
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Figure 7.46

(a) Frequency response of ideal slope circuit. (b) Frequency response of complex
low-pass filter equivalent to the slope circuit response of part a. (c) Frequency
response of ideal slope circuit complementary to that of part a.

The incoming FM wave s(¢) is defined by Eq. 7.97, which is reproduced
here for convenience:

s(t) = A, cos[an,l + 2nky f'm(!) d!] (7.147)
0
The complex envelope of this FM wave is

(0 = A, exp[janf J m() d:] (7.148)
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Let §,(t) denote the complex envelope of the response of the slope
circuit defined by Fig. 7.46a. Then we may express the Fourier transform
of §,(r) as

Si(f) = H(H)S(f)
B\ =
_ j2na(f+—2-)5(f), —gsfsg
0, elsewhere (7.149)

where S(f) is the Fourier transform of §(7). Now, from Section 2.3 we
recall that the multiplication of the Fourier transform of a signal by the
factor j2nf is equivalent to differentiating the signal in the time domain.
We thus deduce from Eq. 7.149 that

5() = a [51% +jnB f(l)] (7.150)

Substituting Eq. 7.148 in 7.150, we get
- . 2k g ‘
§,(t) = jnrBaA |1 + B m(t) | exp ]27zkfj m(t) dr) (7.151)
0

The response of the slope circuit is therefore

si(f) = Re[5,(1) exp(j2nf.0)]

= nBaA([l + 2—glm(t)] cos(an{r + 2nky er(t) dr + g)
0

(7.152)

The signal s,(z) is a hybrid-modulated wave in which both the amplitude
and frequency of the carrier wave vary with the message signal m(t).
However, provided that we choose '

'%ﬁ m()| <1

fOf_au_ I. wap we may use an envelope detector to recover the amplitude
variations and v.._except for a bias term, obtain the original message
signal. The resulting c.-.e]ope detector output is therefore

I5,(0)] = nBaArrL'- 4 2—;1 m(t)] (7.153)
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The bias term nBaA, in the right side of Eq. 7.153 is proportional to
the slope a of the transfer function of the slope circuit. This suggests that
the bias may be removed by subtracting from the envelope detector output
[$,(r)] the output of a second envelope detector preceded by the comple-
mentary slope circuit with a transfer function H,(f) as described in Fig.
7.46c. That is, the respective complex transfer functions of the two slope
circuits are related by

H:(f) = Hl(_f) (7-154)

Let s,(¢) denote the response of the complementary slope circuit produced
by the incoming FM wave s(r). Then, following a procedure similar to that
described herein, we find that the envelope of s,(¢) is

|$,(t)] = nBaA, [1 B %m(l)j] (7.155)

where §,(1) is the complex envelope of the signal s,(r). The difference
between the two envelopes in Eqs. 7.153 and 7.155 is

so(1) = [5:(1)] = [5:(r)]
dnk;aA m(r) (7.156)

Il

which is free from bias.

We may thus model the ideal frequency discriminator as a pair of slope
circuits with their complex transfer functions related by Eq. 7.154, followed
by envelope detectors and a summer, as in Fig. 7.47. This scheme is called
a balanced frequency discriminator or back-to-back frequency detector.

The idealized scheme of Fig. 7.47 can be closely realized using the circuit
shown in Fig. 7.484. The upper and lower resonant filter sections of this
circuit are tuned to frequencies above and below the unmodulated carrier
frequency f,. respectively. In Fig. 7.48b we have plotted the amplitude
responses of these two tuned filters, together with their total response,

Slope Envelope
e L B detector
HL ()
sunid
FM wave — ¢ Bgi‘gpnal
" Slope Enveloe
= circuit d’-‘;lol
Ho(f) =
Figure 7.47

Idealized model of balanc~— ""€quency discriminator.
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Figure 7.48
Balanced frequency discriminator. (a) Circuit diagram. (b) Frequency response.

assuming that both filters have a high-Q factor. The linearity of the useful
portion of this total response, centered at f,, is determined by the sepa-
ration of the two resonant frequencies. As illustrated in Fig. 7.48b, a
frequency separation of 38, gives satisfactory results, where 28, is the
3.dB bandwidth of either filter. However, there will be distortion in the
output of this frequency discriminator due to the following factors:

1. The spectrum of <he input FM wave s(7) is not exactly zero for fre-
quencies outside the raige f — B 2 <|f| < f + B/2.

2 The tuned filter outputs are nus strictly band-limited. and so some dis-
tortion is introduced by the low-pass R( filters following the diodes in
the envelope detectors.
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3. The tuned filter characteristics are not linear over the whole frequency
band of the input FM wave s(r).

Nevertheless, by proper design, it is possible to maintain the distortion
produced by these factors within tolerable limits.

Zero-crossing Detector This detector exploits the property that the in-
stantaneous frequency of an FM wave is approximately given by

fi=7— (7.157)

where 4t 1s the time difference between adjacent zero crossings of the FM
wave. as illustrated in Fig. 7.49. Consider an interval T chosen in accord-
ance with the following two conditions:

1. The interval T is small compared to the reciprocal of the message band-
width W.

2. The interval T is large compared to the reciprocal of the carrier frequency
f. of the FM wave.

Condition 1 means that the message signal m(r) is essentially constant
inside the interval T. Condition 2 ensures that a reasonable number of zero
crossings of the FM wave occurs inside the interval T. The FM waveform
shown in Fig. 7.49 illustrates these two'conditions. Let n., denote the num-
ber of zero crossings inside the intervii ¢, We may then express the time
4t between adjacent zero crossings as ’

Froms | (7.158)

ng,

AN AN
U\/\/\/,

— |1y

[P’

Figure 7.49
llustrating Eq. 7.158.
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Block diagram of zero-crossing detector.

Hence, we may rewrite Eq. 7.157 as
ng
= 7.159
2T S

Since, by definition, the instantaneous frequency is linearly related to the
message signal m(r), we see from Eq. 7.159 that m(r) can be recovered
from a knowledge of n,. Figure 7.50 is the block diagram of a simplified
form of the zero-crossing detector based on this principle. The limiter
produces a square-wave version of the input FM wave: the limiting of FM
waves is discussed later in Section 7.13. The pulse generator produces short
pulses at the positive-going as well as negative-going edges of the limiter
output. Finally, the integrator performs the averaging over the interval T
as indicated in Eq. 7.159, thereby reproducing the original message signal
m(r) at its output.

EXERCISE 24 Consider an FM wave s(t) that uses a linear modulating
wave m(t) = at, where a is a constant. Show that the time difference
between adjacent zero crossings of s(t) varies inversely with time.

7.12 PHASE-LOCKED LOOP

The phased-locked loop (PLL) is a negative feedback system that consists
of three major components: a multiplier, a loop filter, and a voltage-
controlled oscillator (VCO) connected together in the form of a feedback
loop. as in Fig. 7.51. The VCO is a sine-wave generator whose frequency
is determined by a voltage applied to it from an external source. In effect,
any frequency modulator may serve as a VCO.

We assume that initially we have adjusted the VCO so that when the
control voltage is zero, two conditions are satisfied: (1) the frequency of
the VCO is precisely set at the unmodulated carrier frequency f., and (2)
the VCO output has a 90° phase-shift with respect to the unmodulated
carrier wave. Suppose that the input signal applied to the phase-locked
loop is an FM wave defined by

s(t) = Acsin[2rfir + ¢i(1)] (7.160)
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Phase-locked loop.

where A_is the carrier amplitude. With a modulating wave m(r), we have
b.(1) = 2nk, f'm(z) di (7.161)
0

where & is the frequency sensitivity of the frequency modulator. Let the
VCO output be defined by

r(t) = A, cos[2nf.t + b.(1)] (7.162)

where A, is the amplitude. With a control voltage v(r) applied to the VCO
input. we have

6:(1) = 2nk, f v(t) dt (7.163)

where k, is the frequency sensitivity of the VCO, measured in hertz per
volt. The incoming FM wave 5(1) and the VCO output r(t) are applied to
the multiplier, producing two components:

1. A high-frequency component represented by
knA A sin[dnf o + ¢,(1) + ¢-(0)]

2. A low-frequency component represented by k,, A, A, sin[¢,(1) — ()],
where k,, is the muliiplier gain, measured in volt~!,

The high-frequency component is eliminated by the low-pass action of the
filter and the VCO. Therefore, discarding the high-frequency component,
the input to the loop filter is given by '

e(1) = k, A, A, sin[4,(1)] (7.164)
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where ¢.(f) is the phase error defined by

d.(t) = di(1) — (1)
6.(1) — 21k, J o(e) di (7.165)

{

The loop filter operates on its input e(t) to produce the output

v(t) = jj e(t)h(t — 1) dt (7.166)

where h(t) is the impulse response of the filter.
Using Egs. 7.164 through 7.166 to relate ¢.(1) and ¢,(r). and differ-
entiating with respect to time, we obtain

d____d)(;’(l) = d——-—¢d'r(t) - 2nK, : sin[¢.(0)]a(r = ) dr (7.167)

where K, is a loop parameter defined by
K, = knk A A, (7.168)

Equation 7.167 suggests the representation or model of Fig. 7.52a. In this
model we have also included the relationship between v(r) and e(r) as
represented by Eqs. 7 164 and 7.166. We see that the block diagram of
the model resembles Fig. 7.51. The multiplier is replaced by a subtractor
and a sinusoidal nonlinearity, and the VCO by an integrator.

The loop parameter K plays an important role in the operation of a
phase-locked loop. It has the dimensions of frequency; this follows from
Eq. 7.167, where we observe that the amplitudes A, and A, are both
measured in volts and the multiplier gain &, is measured in volt™".

LINEARIZED MODEL

When the phase error ¢.(f) is zero. the phase-locked loop is said to be in
phase-lock. When ¢,(1) is at all times small compared with one radian. we
may use the approximation

sin[¢.(0)] = ¢.(0) (7.169)

which is accurate to within 4% far ¢.(1) less than 0.5 rad. In this case the
loop is said to be near phase-lock and the sinusoidal nonlinearity of Fig.
7.52a may be disregarded. Thus we may represent the phasc-locked loop
by the linearized model shown in Fig. 7.52b. According to this model. the
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Figure 7.52
(a) Nonlinear model of a phase-locked loop. (b) Linearized model. (c) Simplified
model when the loop gain is very large compared to unity.

phase error ¢.(7) is related to the input phase ¢,(r) by the integro-differ-
ential equation:

20 | 2n, [ edome - oy ae = 280 g 199

Transforming Eq. 7.170 into the frequency domain and solving for @,(f),
the Fourier transform of ¢,(¢), in terms of @,(f), the Fourier transform

of ¢,(1), we get
1

P.(f) = ¥ L) @.(f) (7.171)
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The function L(f) in Eq. 7.171 is defined by

LAT) = KUM (1am2)

if

where H(f) is the transfer function of the loop filter. The quantity L(f)
is called the open-loop transfer function of the phase-locked loop. Suppose
that for all values of f inside the baseband we make the magnitude of L(f)
very large compared with unity. Then from Eq. 7.171 we find that @,(f)
approaches zero. That is, the phase of the VCO becomes asymptotically
equal to the phase of the incoming wave, and phase-lock is thereby estab-
lished. :

From Fig. 7.52b we see that V(f), the Fourier transform of the phase-
locked loop output v(r), is related to @,(f) by

L
V(f) = 1 H(HDLf) (7.173)
or, equivalently,
_If
V(f) =3 LHPLS) (7.174)

Therefore, substituting Eq. 7.171 in 7.174, we may write

(ifk)L(f)

Vi) =5 L

@,(f) (7.175)

Again, when we make |L(f)| > 1, we may approximate Eq. 7.175 as

vin =L e (7.176)

v
The corresponding time-domain relation is

_ 1 de()
W) S @

(7.177)
Thus, provided the magnitude of L(f) is very large for all frequencies of
interest, the phase-locked loop may be modeled as a differentiator with its
output scaled by the factor 1/2nk,, as in Fig. 7.52c.

The simplified model of Fig. 7.52¢ provides the basis of using the phase-
locked loop as a frequency demodulator. When the input signal is an FM
wave as in Eq. 7.160, the phase ¢,(¢) is related to the modulating wave
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m(t) as in Eq. 7.161. Therefore, substituting Eq. 7.161 in 7.177. we find
that the resulting output signal of the phase-locked loop is

v(r) = %Im(t) (7.17%)

That is, the output v(1t) of the phase-locked loop is approximately the same,
except for the scale factor k;/k,, as the original message signal m(r), and
the frequency demodulation is accomplished.

A significant feature of the phase-locked loop demodulator is that the
bandwidth of the incoming FM wave can be much wider than that of the
loop filter characterized by H(f). The transfer function H(f) can and
should be restricted to the baseband. Then the control signal of the VCO
has the bandwidth of the message signal m(r), whereas the VCO output
is a wideband frequency modulated wave whose instantaneous frequency
tracks that of the incoming FM wave.

The complexity of the phase-locked loop is determined by the transfer
function H(f) of the loop filter. The simplest form of a phase-locked loop
is obtained when H(f) = 1: thatis. there is no loop filter, and the resulting
phase-locked loop is referred to as a firsr-order phase-locked loop (PLL).
For higher-order loops. the transfer function H( f) assumes a more complex
form. The order of the PLL is determined by the order of the denominator
polynomial of the closed-loop transfer function, which defines the output
transform V(f) in terms of the input transform @,(f), as shown in Eq.
7.175. In the next sub-section we study the properties of a first-order phase-
locked loop demodulator using the linear model of Fig. 7.524."

FIRST-ORDER PHASE-LOCKED LOOP

If the PLL has no loop filter, H(f) = 1. the linearized model of the loop
simplifies as in Fig. 7.53, and Eq. 7.171 becomes

1

P.f) = mﬁbn(f) (7.179)

We wish 1o investigate the loop behavior in the presence of a frequency-
modulated input. In particular, we assume a single-tone modulating wave

m(t) = A, cos(2nf,.1) (7.180)

“When a phase-locked loop is used to demodulate an FM wave, the loop must first
lock onto the incoming FM wave and then follow the variations in its phase. During
the lock-up operation, the phase error ¢,(t) between the incoming FM wave and the
VCO output will be large, which therefore requires the use of the nonlinear model of
Fig. 7.52a.
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Figure 7.53
Linearized model of first-order phase-locked loop.

with the corresponding FM wave given by
s(t) = A, sin[2nft + B sin(2nfn1)] (7.181)
where f is the modulation index. Thus.
(1) = psin(2nf,1) (7.182)
Therefore, using Eq. 7.182, we find that the phase error ¢,(¢) of the loop
produced by the phase input ¢,(f) of Eq. 7.179 varies sinusoidally with
time. as shown by

d.(1) = P cos2rf,t + w) (7.183)

The amplitude ¢., and phase y of the phase error ¢.(1) are defined by

3 AfIK, ,
d}eu - [l + (fmeu):]l: (7“"4)
and
v = —tan '(f,./K,) g (7.185)

where 4f is the frequency deviation; that is, Af = ff,.

In Fig. 7.54 we have plotted the phase-error amplitude ¢... normalized
with respect to .1f/K,, versus the dimensionless parameter f, /K. Ttis
apparent that for a fixed frequency deviation .1 f. the phase-error amplitude
has its largest value of 4f/K, at f, = 0.and it decreases with increasing
modulation frequency f,. :

For the loop to track the frequency modulation sufficiently closely, the
phase error ¢.(1) should remain within the linear region of operation of
the loop for all 1. This means that the largest phase-error amplhitude should
not exceed 0.5 rad. so that ¢,(1) satisties the requirement of Eq. 7.16Y for
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Phase-error amplitude characteristic of first-order phase-locked loop.

all 1. That is, the frequency deviation of the incoming FM wave s(t) should
be bounded by

4f = 0.5K,

The output signal v(r) of the PLL is related to the phase error ¢,(r) by
(see Fig. 7.53)

v(r) = %’dn(t) (7.186)

Therefore, substituting Eq. 7.183 in 7.186, we get
v(t) = Agcos(2rft + y)
where the amplitude A, is defined by

Aflk,
A T Ko S
and the phase y is given by Eq. 7.185. From Eq. 7.186 we see that at a
modulation frequency f,, = K,, the amplitude of the loop output v(t) will
have fallen by 3 dB below its value at fm = 0. The loop bandwidth of a
first-order PLL is therefore K,. We also see from Eq. 7.187 that a first-
order PLL demodulator introduces distortion between the original mod-
ulating wave m(r) and the signal v(r) obtained at the PLL output. This
distortion is the same as the frequency distortion produced by passing the

D COTRRRT
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modulating wave m(r) through a low-pass RC filter of time constant
112nK,.

We have thus far assumed that the phase error is sufficiently small to
allow the loop to be considered linear in its operation. We next wish to
evaluate the input frequency range over which the PLL will hold lock.
Assume a constant input frequency, for which

With this input applicd to a first-order phase-locked loop. Eq” 7.167 be-
comes

‘—"fi;l(’) + 2K, sin[¢.(1)] = 2nof (-158)

The phase error ¢,(r) will have reached its steady-state value when the
derivative dé, di is zero. Therefore, putting d¢,/dr = 0 in Eq. 7.188 we
obtain

Sing _ 7.189
sing, = (7.189)

The sine of an angle cannot exceed unity in magnitude. Hence. Eq. 7.189
has no solution for f > K,. Instead. the loop falls out of lock and the
phase error becomes a beat-note rather than a dc level. The hold-in fre-
quency range of a first-order PLL is therefore equal to = K. In other words,
a first-order PLL will lock to any constant input frequency. provided that
it lies within the range =K, of the VCO's free-running frequency f.

EXERCISE 25 Let ¢, = d¢,/dr. Hence, we may rewrite Eq. 7.188 as
&e = 27[(6f - Kﬂ Siﬂ¢,)

A plot of the derivative . versus the phase error ¢, for prescribed values
of &f and K, is called a phase-plane plot.

(a) Sketch such a plot for K, = 20f.
(b) Show that for initial values of ¢, inside the range 0 and 90°, the
stable point of the PLL lies at ¢, = 30°.
(¢) Show that, in general, the stable points of the PLL lie at
¢. = 30° = n 360°,
where n is an integer. :
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PRACTICAL CONSIDERATIONS

From the foregoing analysis of a first-order PLL, we concludé that the loop
parameter Ky, defined by Eq. 7.168. uniquely determines the loop band-
width as well as the hold-in frequency range of the PLL. This is a major
limitation of first-order PLLs. In order to track variations in the instan-
taneous frequency of an FM wave. namely.

f.(8) = fo+ km(r)

the Joop parameter K, must be large compared to the frequency deviation
[i.e.. the maximum departure of the instantancous frequency f,(r) from
the carrier frequency f ]. In the case of a first-order PLL. such a choice
for K also results in a large loop bandwidth. This is undesirable because
a large loop bandwidth lets in more noise power at the demodulator output
than would normally be desired. Accordingly, we find that in practice a
phase-locked loop used for frequency demodulation includes a loop filter.

Figure 7.55 shows a filter'" often used in a second-order PLL. The filter
consists of an integrator and a direct connection: its transfer function is
given by

fll
Bif) =1 i
where fy is a constant. The inclusion of such a filter in the loop provides
the designer with an additional degree of freedom. namely. f,. It is now
possible to exercise control over both the loop parameter K, and the loop
bandwidth.”” A second-order PLL is therefore capable of providing a good
performance, and its use is adequate for most practical applications.

?.ﬂ'foR
1l
e |
Input £ Operational >3 Output
signal VW amplifier i signal
+
Figure 7.55

Loop filter for second-order phase-locked loop.

"In the theory of feedback systems, the filter of Fig. 7.55 is referred to as a lead-lag
filter.

"’For a detailed analysis of second-order phase-locked loops, see Gardner (1979).
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7.13 LIMITING OF FM WAVES

When an FM wave is transmitted through a communication channel, in
general, the output will not have a constant amplitude because of channel
imperfections. At the receiver, it is essential to remove the amplitude
fluctuations in the channel output prior to frequency demodulation. This
is customarily done by means of an amplitude limiter. Figure 7.56 shows
the input-output characteristic of an idealized form of amplitude limiter
known as a hard limiter. The resulting output is essentially an FM square
wave.

To analyze the FM output of a hard limiter, we assume that the limiter
is in the form of a memoryless device. Accordingly, we may express the
limiter output, in response to a frequency-modulated input z(f). as

v(r) = sgn(z(1)]

41, ifz() >0
“1-1, ifz(r)<0

(7.190)

We also assume that the amplitude fluctuations are slow compared to the
zero-crossing rate of the frequency-modulated input z(r). We may then
take the sign changes of z(¢) as being proportional to the carrier phase
shifts, as shown by

v(t) = sgn{cos[8(1)]} (7.191)

where (1) is the angular argument of the FM wave. The function sgnf{cos|0]}.
viewed as a function of 6, is a periodic square wave when the modulation
is zero. Hence, using the Fourier series representation of sgn{cos[0]}, we
may write

sgn{cos[0]} = —% Z (-1 E)%i—k:—l]))@ (7.192)

Output

-

Input

Figure 7.56 ) o
Input-output characateristic of a hard limiter.
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This expansion holds for all §. Thus, using 6(r) in place of §in Eq. 7.192,
we may express the hard limiter output as

v(t) = -

% E ( 1y OS2k = D[2nfur + 0(0) 1983

& 2k - 1)

where f, is the carrier frequency, and the phase 0(r) is related to the
message signal of interest.

Equation 7.193 shows that the hard limiting operation produces image
FM sidebands at odd harmonics of the carrier frequency f.. When the
carrier frequency f, is sufficiently large, we may use a band-pass filter
(centered on f.) to select the desired FM wave:

v(r) = %cos[anft + 0(1)]

In practice, the combination of hard limiter and band-pass filter is imple-
mented as a single circuit commonly referred to as a band-pass limiter.

EXERCISE 26 Consider the periodic signum function sgn{cos[#]} that 1s
a real-valued, odd function of ¢ with period 2n. Show that this function
may be expanded into a Fourier series as in Eq. 7.192.

........ 7.14 APPLICATION II: FM RADIO

[n Section 7.9 we described the standard AM radio format for audio signals
and the television for video signals. In this section, we describe FM radio’
that pertains to the remaining type of radio broadcasting.

As with standard AM radio, most FM radio receivers are of the super-
hetrodyne type. The block diagram of such an FM receiver is shown in Fig.
7.57. The RF section and the local oscillator are mechanically coupled to
provide for a common tuning. A frequency-modulated wave with a fixed
carrier frequency is thereby produced at the output of the IF section.

Typical frequency parameters of commercial FM radio are

RF carrier range = 88-108 MHz
Midband frequency of IF section = 10.7 MHz
IF bandwidth = 200 kHz

"*For some historical notes on frequency modulation and its use in radio
broadcasting, see Lathi (1983, pp. 301-302).
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In an FM radio, the message information is transmitted by variations
of the instantaneous frequency of a sinusoidal carrier wave, and its am-
plitude is maintained constant. Therefore, any variations of the carrier
amplitude at the receiver input must result from noise or interference. The
amplitude limiter, following the IF section in Fig. 7.57 is used to remove
amplitude variations by hard-limiting the modulated wave at the IF section
output. The resulting rectangular wave is rounded off by a band-pass filter
that suppresses harmonics of the carrier frequency. Thus the filter output
is again sinusoidal, with an amplitude that is practically independent of the
carrier amplitude at the receiver input. The amplitude lirhiter and filter
usually form an integral unit.

The discriminator performs the required frequency demodulation. If
there were no noise at the receiver input. the message signal would be
recovered with no contamination at the discriminator output. However.
the inevitable presence of receiver noise precludes the possibility of such
an occurrence. To minimize the degrading effects of noise. two modifica-
tions are thercfore made in the receiver:

1. A de-emphasis network is added to the audio power amplifier so as to
compensate for the use of a pre-emphasis network at the transmitter.
The reason for employing pre-emphasis is to shape the spectrum of the
message signal at the discriminator output so that it more approximately
matches the corresponding noise spectrum.

A post-detection filter, labeled “baseband low-pass filter.” is added at
the output end of the receiver. This filter has a bandwidth that is just
large enough to accommodate the highest frequency component of the
message signal. Hence, by including it. the out-of-band components of
noise at the discriminator output are suppressed.

(3]

Both these issues are explained in full in Chapter 9.

FM STEREO MULTIPLEXING

Stereo multiplexing is a form of frequency-division multiplexing (FDM)
designed to transmit two separate signals via the same carrier. It is widely
used in FM broadcasting to send two different elements of a program (e.g..
two different sections of an orchestra, a vocalist and an accompanist) so
as to give a spatial dimension to its perception by a listener at the receiving
end.

The specification of standards for FM stereo transmission is influenced
by two factors:

1. The transmission has to operate within the allocated FM broadcast
channels.
2. It has to be compatible with monophonic receivers.
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The first requirement sets the permissible frequency parameters, including
frequency deviation. The second requirement constrains the way in which
the transmitted signal is configured.

Figure 7.58a shows the block diagram of the multiplexing system used
in an FM stereo transmitter. Let m,(r) and m,(r) denote the signals picked
up by left-hand and right-hand microphones at the transmitting end of the
system. They are applied to a simple matrixer that generates the sum signal,
my(t) + m,(t). and the difference signal, m/(t) — m,(r). The sum signal is
left unprocessed in its baseband form; it is available for monophonic re-
ception. The difference signal and a 38-kHz subcarrier (derived from a 19-
kHz crystal oscillator by frequency doubling) are applied to a product

Frequency
doubler

O
fa) cos (2mf.t)
my(t)+ m.(t) +
’ BasLeF?Fand —» 2my(t)
m(t) BPF * =
o—»s »{ centered at BasePbFand — 2m (1)
2f. = 38 kHz k my(t) = m,(t)
Frequency
doubler
Narrow-band
filter tuned to
[C = 19 kHz
(b)

Figure 7.58 ) ) )
(a) Multiplexer in transmitter of FM stereo. (b) Demultiplexer in receiver of FM

stereo.
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modulator, thereby producing a DSBSC modulated wave. In addition to
the sum signal and this DSBSC modulated wave, the multiplexed signal
m(t) also includes a 19-kHz pilot to provide a reference for the coherent
detection of the difference signal at the stereo receiver. Thus the multi-
plexed signal is described by

m(t) = [m/(1) + m(1)] + [m(t) = m,(t)] cos(dnf.r) + K cos(2nf.t)
(7.194)

where f. = 19 kHz. The multiplexed signal m(t) then frequency modulates
the main carrier to produce the tragsmitted signal. The pilot is allotted
between 8 and 10% of the peak frequency deviation; the amplitude K in
Eq. 7.194 is chosen to satisfy this requirement.

At a stereo receiver, the multiplexed signal m(t) is recovered from the
incoming FM wave. Then m(r) is applied to the demultiplexing system
shown in Fig. 7.58b. The individual components of the multiplexed signal
m(r) are separated by the use of three appropriate filters. The recovered
pilot is frequency-doubled to produce the desired 38 kHz subcarrier. The
availability of this subcarrier enables the coherent detection of the DSBSC
modulated wave, thereby recovering the difference signal, m,(r) — m,(1).
The baseband low-pass filter in the top path of Fig. 7.58b is designed to
pass the sum signal, m,(r) + m,/(t). Finally, the simple matrixer recon-
structs the left-hand signal, m,(t), and right-hand signal, m,(t), and applies
them to their respective speakers.

7.15 DIGITAL MODULATION TECHNIQUES

In this section we shift the focus of our attention from analog signals to
digital signals as the modulating wave. In particular, we describe digital
modulation techniques that may be used to transmit binary data over a
band-pass communication channel with fixed frequency limits set by the
channel. The notions involved in the generation of digital-modulated waves
are basically the same as those described for analog-modulated waves. The
differences that do exist between them are manifestations of the intrinsic
differences between digital signals and analog signals as the source of mod-
ulation.

BINARY MODULATION TECHNIQUES

With a binary modulation technique, the modulation process corresponds
to switching or keying the amplitude, frequency, or phase of the carrier
between either of two possible values corresponding to binary symbols 0
and 1. This results in three basic signaling techniques, namely, amplitude-
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hift keving (ASK). frequency-shift keying (FSK), and phase-shift keying
PSK). as described herein:

In an ASK system, binary symbol 1 is represented by transmitting a
sinusoidal carrier wave of fixed amplitude A, and fixed frequency f, for
the bit duration T, scconds. whereas binary symbol 0 is represented by
switching off the carrier for T, seconds. as illustrated in Fig. 7.59a. I
mathematical terms, we may express the binary ASK wave s(1) as:

i ~ 7 .
s(1) = {11. cos(2nf.1). symbol 1

0. symbol 0 s a2

2. In a PSK system. a sinusoidal carrier wave of fixed amplitude A, and

fixed frequency f, is used to represent both symbols 1 and 0. except
that the carrier phase for cach symbol differs by 180°. as illustrated in
Fig. 7.59b. In this case. we may express the binary PSK as:

(0} = {A‘ cos(2nf.t). symbol 1 (7.196)

A, cos(2nf.e + m). svmbol 0

. In an FSK system. two sinusoidal waves of the same amplitude A, but
different frequencies f, and f, are used to represent binary symbols 1

Binary

data 0 1 1 0 1 0 0

VAL
VAVAVERR VA VA

' (b)

ITAWAWATIVIN
J\U/\V[\\I/\VI\V[\\J/\V V/\\/ (VAR

Figure 7.59
The three basic forms of signaling binary information. (a) Amplitude-shift keying.
(b) Phase-shift keying. (c) Frequency-shift keying with continuous phase.
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and 0, respectively, as in Fig. 7.59c. That is, we may express the binary
FSK wave s(r) as:

_ A cos(2nfyr),  symbol |
s(t) = {A‘ cos(2r f1), symbol 0 (7.197)

It is apparent. therefore. that ASK, PSK, and FSK signals are special cases
of amplitude-modulated, phase-modulated, and frequency-modulated
waves. respectively.

EXERCISE 27 Show that the binary FSK waveform of Fig. 7.59¢ may be
viewed as the superposition of two binary ASK waveforms.

GENERATION AND DETECTION OF BINARY MODULATED WAVES

To generate an ASK wave, we may simply apply the incoming binary data
(represented in unipolar form) and the sinusoidal carrier to a product
modulator. as in Fig. 7.60a. The resulting output provides the desired ASK
wave.

To generate a PSK wave. we may use the same scheme, except that the
incoming binary data are represented in polar form, as in Fig. 7.60b. From
this arrangement, we deduce that a binary PSK wave may also be viewed
as a double-sideband suppressed-carrier modulated wave. This remark also
applies to a binary ASK wave.

To generate an FSK wave, we may apply the incoming binary data
(represented in polar form) to a frequency modulator, as in Fig. 7.60c. As
the modulator input changes from one voltage level to another (both non-
zero), the transmitted frequency changes in a corresponding fashion.

For the demodulation of a binary ASK or PSK wave, we may use a
coherent detector depicted as in Fig. 7.61a. The detector consists of three

basic components:

1. A mulriplier (i.e.. product modulator), supplied with a locally generated
version of the sinusoidal carrier.

2. An integrator that operates on the multiplier output for successive bit
intervals: this integrator performs a low-pass filtering action (see Prob-
lem 13 of Chapter 3).

3. A decision device that compares the integrator output with a preset
threshold: it makes a decision in favor of symbol 1 if the threshold is
exceeded, and in favor of symbol 0 otherwise.

The basic difference between the demodulation of a binary ASK wave and
that of a binary PSK wave lies in the choice of the threshold level.

For the demodulation of a binary FSK wave, we may use a coherent
detector as shown in Fig. 7.61b. This dectector consists of two correlators
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Generation schemes for (a) binary ASK, (b) binary PSK, and (c) binary FSK.
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Figure 7.61
Coherent detectors for (a) binary ASK or binary PSK, and (b) binary FSK.
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that are individually tuned to the two different carrier frequencies chosen
to represent symbols 1 and 0. The decision device compares the two cor-
relator outputs. If the output /; produced in the upper path (associated
with frequency f,) is greater than the output /; produced in the lower path
(associated with frequency f,), the detector makes a decision in favor of
symbol 1; otherwise, it decides in favor of symbol 0.

The detectors (receivers) described in Fig. 7.61a and b are both coherent
in the sense that they require two forms of synchronization for their op-
eration:

1. Phase synchronization, which ensures that the carrier wave generated
locally in the receiver is locked in phase with respect to that employed
in the modulator (transmitter).

2. Timing synchronization, which ensures proper timing of the decision-
making operation in the receiver with respect to the switching instants
(i.e., switching between symbols 1 and 0) in the original binary data
stream applied to the modulator input.

For certain digital modulation formats, the receiver design may be sim-
plified by ignoring phase synchronization. Specifically, binary ASK waves
may be demodulated noncoherently using an envelope detector. Likewise,
binary FSK waves may be demodulated noncoherently by applying the
received signal to a bank of two filters, one tuned to frequency f; and the
other tuned to frequency f,. Each filter is followed by an envelope detector.
The resulting outputs of the two envelope detectors are sampled and then
compared to each other. A decision is made in favor of symbol 1 if the
envelope-detected output derived from the filter tuned to frequency f, is
larger than that derived from the second filter. Otherwise, a decision is
made in favor of symbol 0.

As for PSK, it cannot be detected noncoherently because the envelope
of a PSK wave is the same for both symbols 1 and 0 and a single carrier
frequency is used for the modulation process. To eliminate the need for
phase synchronization of the receiver with PSK, we may incorporate dif-
ferential encoding. In differential encoding, we encode the digital infor-
mation content of a binary data in terms of signal transitions. For example,
we may use symbol 0 to represent transition in a given binary sequence
(with respect to the previous encoded bit) and symbol 1 to represent no
transition. A signaling technique that combines differential encoding with
phase-shift keying is known as differential phase-shift keying (DPSK). Fig-
ure 7.62 illustrates the two steps involved in the generation of a DPSK
signal,“assuming the input binary data 10010011. Note that the differential
encoded sequence (and therefore the DPSK signal) has an extra initial bit.
In Fig. 7.62, the initial bit is assumed to be a 1. For the differentially
coherent detection of a DPSK signal, we may use the receiver shown in
Fig. 7.63. At any particular instant of time, we have the received DPSK
signal as one input into the multiplier in Fig. 7.63 and a delayed version
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Binary
Hata 1 0 0 1 0 0 1 1
Differentially
encoded 1 0 1 1 0 1 1 1
binary ’
data f
Initial
bit
Phase of
DPSK signal 0 0 T 0 0 m 0 0 0
(radians)
Figure 7.62

The relationship betrween a binary sequence and its differentially encoded and
DPSK versions.

of this signal. delayed by the bit duration T}, as the other input. The
integrator output is proportional to cos¢. where ¢ is the difference between
the carrier phase angles in the received DPSK signal and its delayed version,
measured. in the same bit interval. Therefore, when ¢ = 0 (corresponding
to symbol 1), the integrator output is positive; on the other hand, when
¢ = n(corresponding to symbol 0), the integrator output is negative. Thus,
by comparing the integrator output with a decision level of zero volts, the
receiver of Fig. 7.63 can reconstruct the binary sequence, which, in the
absence of noise, is exactly the same as the original binary data at the
transmitter input.

DISCUSSION

The detectors shown in Fig. 7.61 are based on the use of a correlator that
consists of a multiplier followed by an integrator. Digital communication
receivers designed in this way are called correlation receivers. The corre-
lator may be replaced by the combination of a multiplier, low-pass filter,
and sampler; except for the sampler, such a combination parallels the
scheme used' for the coherent detection of amplitude-modulated waves.

Choose 1
T, " if1>0
. ) I | Decision
DPSK signal J; dt device [~ Otherwise,
choose 0
Delay 1
T, Threshold

of zero volts

Figure 7.63
Receiver for the detection of DPSK signals.
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However, in Chapter 10 it is shown that the correlation receiver is optimum
for the detection of a pulse in a common type of channel noise called
additive white Gaussian noise. Moreover, the:combination of a multiplier
and low-pass filter is suboptimum in comparison with the correlation re-
ceiver; hence, the preference for the use of a correlator in the detectors
of Fig. 7.61.

The coherent detection of ASK, PSK, and FSK signals involves the use
of linear operations and assumes the availability of local carriers (reference
signals) that are in perfect synchronism with the carriers in the transmitter.
On the other hand, the noncoherent detection of ASK and FSK signals
involves nonlinear operations; the detection of DPSK signals involves the
use of linear operations but the supply of a noisy reference signal. Ac-
cordingly, we find that the mathematical analysis of noise in the class of
noncoherent receivers is much more complicated than the class of coherent
receivers; more will be said on this issue in Chapter 10.

Another point that will emerge from the discussion presented in Chapter
10 is that receiver design simplification resulting from the use of nonco-
herent detection is achieved at the cost of some degradation in receiver
performance in the presence of noise, compared to a coherent receiver.

It is also noteworthy that none of the digital modulation techniques
described thus far is spectrally efficient, meaning that the available channel
bandwidth is not fully used. To provide for spectral efficiency we may use
baseband signal shaping combined with a bandwidth-conserving linear
modulation scheme such as vestigial sideband modulation; we studied base-
band shaping in Chapter 6 and vestigial sideband modulation in Section
7.5. In the next two sections we describe two other spectrally efficient
modulation techniques known as quadriphase-shift keying and minimum
shift keying, which are well suited for the transmission of digital data.

QUADRIPHASE-SHIFT KEYING

In binary data transmission, we send only one of two possible signals during
each bit interval T,. On the other hand, in an M-ary data transmission
system we send any one of M possible signals, during each signaling interval
T. For almost all applications, the number of possible signals M = 27,
where n is an integer, and the signaling interval T = nT,. It is apparent
that a binary data transmission system is a special case of an M-ary data
transmission system. Each of the M signals is called a symbol. The rate at
which these symbols are transmitted through the communication channel
is expressed in units of bauds. A baud stands for one symbol per second,
for M-ary data transmission, it equals log, M bits per second.

= In this subsection, we consider quadriphase-shift keying (QPSK), which
is an example of M-ary data transmission with M = 4. In quadriphase-
shift keying, one of four possible signals is transmitted during each signaling
interval, with each signal uniquely related to a dibit.(pairs of bits are termed
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dibits). For example, we may represent the four possible dibits 00, 10, 11,
and 01 (in Gray-encoded form) by transmitting a sinusoidal carrier with
one of four possible values, as follows:

&
A, cos(an(r - 37‘:1) dibit 00
n .
A, COS(Z?!f! - Z) dibit 10
s(t) = ¢ B (7.198)
A, cos(an,t + 3)’ dibit 11
3n o
A cos(l T) dibit 01

where 0 < 1 < T; we refer to T as the symbol duration. Figure 7.64 de-
picts the QPSK waveform (based on Eq. 7.198) for the binary sequence
01101000.

Clearly, QPSK represents a special form of phase modulation. This is
done by expressing s(f) succinctly as

s(t) = A cos[2nft + ¢(1)] (7.199)

where the phase ¢(1) assumes a constant value for each dibit of the in-
coming data stream. Specifically, we have (see Fig. 7.65)

'.

3 .

ﬂf. dibit 00

—g, dibit 10

o) = : (7.200)

e dibit 11
3n e

\ R dibit 01

Binary sequence 0 0 0

/\/\ /\/\/\ﬂ

QPSK wave /\/\
/\/\JU\/\/\/U\/\

Figure 7.64
QPSK wave for the binary sequence 01101000, assuming the coding arrangement of
Eq. 7.198.
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@)
0 ! i ¢
Dibit 00 E
E
—3m/4 H
é(t) 3
' T
. P 2T,
Dibit 10 v 4
—-m/4 )
d(t)
Dibit 11 /4 ,
0 1 i t
T, 2T,
@(t)
3m/4 "
]
Dibit 01 H
i
0 : L t
T, 27,

Figure 7.65
The coding of carrier phase of QPSK; the dibits are shown in Gray-coded form.

We may develop further insight into the representation of QPSK by ex-
panding the cosine term in Eq. 7.199 and rewriting the expression for s(t)
as

s(1) = A, cos[¢(r)] cos(2nft) — A, sin[¢p(r)] sin(2nf.t) (7.261)

According to this representation, the QPSK wave s(1) has an in-phase
component equal to A, cos[¢(?)] and a quadrature component equal to
A, sin[(1)].

The representation of Eq. 7.201 provides the basis for the block diagram
of the QPSK transmitter shown in Fig. 7.66a. It consists of a serial-to-
parallel converter, a pair of product modulators, a supply of the two carrier
waves in phase quadrature, and a summer. The function of the serial-to-
parallel converter is to represent each successive pair of bits of the incoming
binary data stream m(t) as two separate bits, with one bit applied to the
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in-phase channel of the transmitter and the other bit applied to the quad-
rature channel. It is apparent that the signaling interval T'in a QPSK system
is twice as long as the bit duration T, of the input binary data stream m(t).
That is, for a given bit rate 1/T,, a QPSK system requires half the trans-
mission bandwidth of the corresponding binary PSK system. Equivalently,
for a given transmission bandwidth, a QPSK system carries twice as many
bits of information as the corresponding binary PSK system.

The QPSK receiver consists of two correlators connected in parallel as
in Fig. 7.66b. One correlator computes the cosine of the carrier phase,
whereas the other correlator computes the sine of the carrier phase. By
comparing the signs of the two correlator outputs through the use of a pair
of decision devices, a unique resolution of one of the four transmitted
phase angles is made. In particular, the parallel-to-serial converter inter-
leaves the decisions made by the in-phase and quadrature channels of the
receiver and thereby reconstructs a binary data stream which, in the ab-
sence of receiver noise, is identical to the original one at the transmitter
input. ’

We may thus view a QPSK scheme as two binary PSK schemes that
operate in parallel and employ two carrier waves that are in phase quad-
rature. In other words, QPSK is a quadrature-carrier multiplexing scheme
that offers bandwidth conservation, compared to binary PSK.

MINIMUM SHIFT KEYING

In the binary FSK wave shown in Fig. 7.59¢, phase continuity is maintained
at the transition points as the incoming binary data stream switches back
and forth between symbols 1 and 0. Accordingly, such a modulated wave
is referred to as a continuous-phase frequency-shift keying (CPFSK) wave.
A special form of binary CPFSK known as minimum shift keying (MSK)
arises when the change in carrier frequency from symbol 0 to symbol 1, or
vice versa, is equal to one half the bit rate of the incoming data. To be
specific, let §f denote the frequency change so defined and T, denote the
bit duration. We may then define MSK as that form of CPFSK that satisfies
the condition: ‘

of = — (7.202)

More specifically, let the frequencies f, and f, represent the transmission
of symbols 1 and 0, respectively. Clearly, frequency f, may be expressed
as

h+fHi H-h
2 T2
=. i +# (7.203)

fi=
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where
iy m ALt (7.204)

and
of = fi - fu (7.205)

Similarly. we may express the second carrier frequency f as

:f|+f:_f1_f:
2 2

:fc_

1

(7.206)

ol

The “unmodulated” carrier frequency f, represents the arithmetic mean
of the two transmitted frequencies f, and f, as in Eq. 7.204.
Define the MSK signal as

s(t) = A cos[2nft + ¢(1)]
where
o(r) = £ndft

Hence, under the condition specified by Eq. 7.202. the transmission of
symbol 1 (i.e., frequency f,) changes the phase of the MSK signal s(z) by
an amount defined by

o(1)= ndft
nt
= -ZTh symbol 1 (7.207)

From this relation we see that at the termination of the interval representing
the transmission of symbol 1 at time ¢ = T, the phasc of an MSK wave
increases by:an amount equal to /2 radians. On the other hand, the
transmission of symbol 0 (i.e., frequency f) changes the phase of the MSK
wave s(1) by an amount defined by

¢(1) = —ndfi

_ ot

= —i'ﬁ, symbol 0 (7208)

This means that at the termination of the interval representing the trans-
mission of symbol 0 at time = T, the phase of an MSK wave decreases

by an amount equal to n/2 radians.
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We are now ready to demonstrate that MSK may be viewed as another
example of quadrature multiplexing. First, we express the MSK wave s(t)
as a frequency-modulated wave as follows:

A cos[2rf.t + ¢(1)]
A, cos(2nf.t) cos[¢(r)] — A, sin(2xnf.t) sin[p(2)] (7.209)

s(1)

This shows that s(¢) has an in-phase component equal to A, cos[¢(¢)] and
a quadrature component equal to A, sin[¢(f)]. As with QPSK, there are
four distinct dibits to be considered; they are 00, 10, 11, and 01. Consider
first the transmission of dibit 00. In this case, the phase of the MSK wave

()
0 Ty 2T,
. t
’ i )
Dibit 00 1 |
/2 F--=-== :
|
)
— " r ————————————
(a)
@)
mw/2F=-====
]
Dibit 10 i :
0 Ty 2T,
bt (b)
I ST e ——
I
]
1
w/2F====< :
1
* 1 ]
Dibit 11 ! 1 ;
0 T, 27,
¢n) fc)
0 Tb 2Tb
T t
Dibit 01 : /
1
—m/2f--==2
(d)

Figure 7.67
Coding of the carrier phase &(t) for MSK; the dibits are shown in Gray-coded form.
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TABLE74 ———
Dibit
(Gray coded) sin[o(T,)] cos[¢(2T,)]
00 =] =]
10 +1 +1
11 +1 -1
01 -1 +1

experiencing a decrease (representing the first symbol 0) is followed by
another decrease (representing the second symbol 0). Hence, the phase
history of the MSK wave trices the path shown in Fig. 7.67a. Similarly.
we find that the transmission of dibits 10, 11, and 01 traces the respective
paths shown in parts b, ¢, and d of Fig. 7.67 for the phase history of the
MSK wave. In Fig. 7.67 it is assumed that the initial condition is defined
by @(0) = 0. Note that at time t = T, the phase of the MSK wave equals
+n/2 or —n'2 radians, whereas at time ¢ = 2T, it equals 0 or 7 radians,
modulo 2.

In Table 7.4 we show the.pair of values, sin[¢(7T})] and cos[¢(2T;)].
corresponding to each of the four possible dibits. This table shows that the
identity of each dibit in MSK is uniquely defined by specifying the doublei
{sin[@¢(T.)]. cos[d(2TW)]}.

We thus see that QPSK and MSK are examples of quadrature multi-
plexing. Thev differ from each other in the sense that QPSK is a phase-
modulated wave whereas MSK is a frequency-modulated wave. This basic
difference manifests itself in the way in which the phase shift ¢(r) of the
sinusoidal carrier varies with time. In QPSK, the phase shift ¢(r) assumes
a distinct value that is constant for the entire duration of a symbol, de-
pending on the dibit being transmitted, as in Fig. 7.65. In MSK, on the
other hand. for each dibit the phase shift ¢(¢) varies with time along a
distinct path made up of straight lines, depending on the dibit being trans-
mitted, as in Fig. 7.67.

To generate an MSK wave, we may use a frequency modulator that
fulfills the condition of Eq. 7.202. The coherent detection of MSK, how-
ever, involves a mathematical treatment that is beyond the scope of this
introductory book.™ Nevertheless, it suffices to say that the coherent de-
tector consists of a pair of correlators with built-in memory and decisions
made over successive pairs of bit intervals. The detector is designed in such
a way that it can track the past history of the phase ¢(r) as it evolves in
time on a bit-by-bit basis, and thereby reconstruct a binary wave that (in
the absence of receiver noise) is the same as that at the transmitter input.

“For a detailed treatment of minimum shift keying, see Haykin (1988, pp. 291-300).
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7.16 APPLICATION Ili: DIGITAL COMMUNICATIONS BY SATELLITE

In this section we briefly descrife the application of digital modulation for
the transmission of binary data over a satellite channel. The satellite channel
consists of an uplink, a transponder, and a downlink, as in Fig. 7.68. The
uplink connects a transmitting station on the ground to the transponder
on board a satellite positioned in geostationary orbit around the earth. The
downlink connects the transponder to a receiving ground station (usually
placed at a remote distance away from the transmitting ground station).
The transponder is designed to provide adequate amplification to overcome
the effects of channel noise. We may therefore view the satellite tran-
sponder as a repeater in the sky.

A satellite channel has a built-in broadcast capability. To exploit it,
however, we require the use of a technique known as multiple access. A
particular type of this technique, known as time-division multiple access
(TDMA), is well suited for digital communications." In TDMA, a number
of ground stations are able to access a satellite by having their individual
transmissions reach the satellite in nonoverlapping time slots. Hence, the
radio frequency (RF) power amplifier at the output of the satellite tran-
sponder may be permitted to operate at or near saturation without having
to introduce crosstalk between individual transmissions. Such a feature,
which is essentially unique to TDMA, helps to optimize the noise per-
formance of the receiver. Moreover, since only one modulated carrier is
present in the nonlinear transponder at any one time. the generation of
intermodulation products is avoided.

Satellite transponder

A

Downlink
Uplink

Transmitting station Receiving
station

Figure 7.68,
Satellite link.

“There are two other types of multiple access, namely, frequency-division multiple
access (FDMA) and code-division multiple access (CDMA). The former is used for
analog communications and the latter is used for secure communications. For
discussions of the TDMA network, see Pratt and Bostian (1986, pp. 235-251).
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Burst Burst Burst
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burst,

from control
station

Figure 7.69
Structure of 8 TDMA .rame.

Figure 7.69 illustrates the idea of a TDMA network, in which trans-
missions ure organized into frames. A frame contains N bursts. To com-
pensat-. for variations in satellite range, a guard time is inserted between
successive bursts as in Fig. 7.69 to protect the system against overlap. One
birst per frame is used as a reference. The remaining N — 1 bursts are
allocated to ground stations on the basis of one burst per station. Thus,
each station transmits once per frame. Typically, a burst consists of an
initial portion called the preamble, which is followed by a message portion;
in some systems a postamble is also included. The preamble consists of a
part for carrier recovery, a part for symbol-timing recovery. a unique word
for burst synchronization, a station identification code, and some house-
keeping symbols. Two functionally different components may therefore be
identified in each frame: a revenue-producing component represented by
message portions of the bursts, and system overhead represented by guard
times, the reference burst, preambles, and postambles (if included).

Two important points emerge from this brief discussion of the TDMA
network:

1. Power efficiency in a satellite transponder is maximized by permitting
the traveling-wave tube (responsible for power amplification) to dperate
at or near saturation.

2. The transmissions contain independent provisions for carrier synchro-
nization and bit timing synchronization to occur simultancously, thereby
keeping overhead due to recovery time in the receiver to a minimum.

Therefore, only a limited set of digital modulation techniques is suitable
for satellite communications. In particular, point 1 constrains the modu-
lation format to have a constant envelope, thereby excluding ASK. Point
2 makes it feasible to employ coherent detection. We therefore find that
in digital communications by satellite, primary interest is in the use of
coherent binary PSK, coherent QPSK, and coherent MSK.
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...........................................................................................

PROBLEMS

P7.1 Amplitude Modulation

Problem 1 Consider the message signal
m(t) = 20 cos(2nt) volts
and the carrier wave

c(t) = 50 cos(1007t) volts

(a) Sketch (to scale) the resulting AM wave for 75% modulation.
(b) Find the power developed across a load of 100 ohms due to this
AM wave. 5

Problem 2 A carrier wave of frequency 1 MHz is modulated 50% by a
sinusoidal wave of frequency 5 kHz. The resulting AM wave is transmittcd
through the resonant circuit of Fig. P7.1, which is tuned to the carrier
frequency and has a Q factor of 175. Determine the modulated wave after
transmission through this circuit. What is the percentage modulation of
this modulated wave?

Problem 3 Using the message signal

determine and sketch the modulated wave for amplitude modulation whose
percentage modulation equals the following values:

(a) 50%

(b) 100%
(c) 125%

t

> +
L R 3 Output signal

4

Current source
of AM wave c

I —

Figure P7.1
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Problem 4 For a p-n junction diode, the current i through the diode and
the voltage v across it are related by

where I, is the reverse saturation current and V7 is the thermal voltage
defined by

where k is Boltzmann's constant in joules per degree Kelvin, T is the
absolute temperature in degrees Kelvin, and e is the charge of an electron,
At room temperature V; = 0.026 V.

(a) Expand i as a power series in v, retaining terms up to v’.
(b) Let
v = 0.01 cos(2nf,t) + 0.01 cos(2nf 1) volts

where f, = 1 kHz and f. = 100 kHz. Determine the spectrum of the

resulting diode current i.
(¢) Specify the band-pass filter required to extract from the diode cur-

rent an AM wave with carrier frequency f..
(d) What is the percentage modulation of this AM wave?

Problem 5 Suppose nonlinear devices are available for which the output
i, and input voltage v, are related by

= a,v; + a;v}

i,

s(e)
(volts)

+3

+1

bet—— 10 mulliseconds

Figure P7.2
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where a, and a; are constants. Explain how these devices could be used
to provide an amplitude modulator.

Problem 6 Consider the amplitude-modulated wave of Fig. P7.2 with a
periodic triangular envelope. This modulated wave is applied to an en-
velope detector with zero source resistance and a load resistance of 250
ohms. The carrier frequency f. = 40 kHz. Suggest a suitable value for the
capacitor C so that the distortion (at the envelope detector output) is
negligible for frequencies up to and including the eleventh harmonic of the
modulating wave.

P7.2 Double-Sideband Suppressed-Carrier Modulation

Problem 7  Consider the DSBSC modulated wave obtained by using the
sinusoidal modulating wave

m(r) = A, cos(Qaf 1)
and the carrier wave
c(t)y = A cos(2nft + ¢)
The phase angle ¢, denoting the phase difference between c(r) and m(r)

at time ¢ = 0, is variable. Sketch this modulated wave for the following
values of ¢:

@ ¢ =20

(b) ¢ = 45°
(c) ¢ = 90°
(d) ¢ = 135°

Comment on your results.

Problem 8 A sinusoidal wave of frequency 5 kHz is applied to a product
modulator, together with a carrier wave of frequency 1 MHz. The mod-
ulator output is next applied to the resonant circuit of Fig. P7.1. Determine
the modulated wave after transmission through this circuit.

Problem 9  Using the message signal m(t) described in Problem 3 deter-
mine and sketch the modulated wave for DSBSC modulation.

Problem 10  Given the nonlinear devices described in Problem 5, explain
how they could be used to provide a product modulator.

Problem 11 A message signal m(r) is applied to a ring modulator. The
amplitude spectrum of m(r) has the value M(0) at zero frequency. Find
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the ring modulator output at f = =f, *£3F., 25F ., . . w5 'where f.is the
fundamental frequency of the square carrier wave c(r).

Problem 12 Consider a message signal m(t) with the spectrum shown in
Fig. P7.3. The message bandwidth W = 1 kHz. This signal is applied to
a product modulator, together with a carrier wave A.cos(2nf 1), producing
the DSBSC modulated wave s(¢). This modulated wave is next applied to
a coherent detector. Assuming perfect synchronism between the carrier
waves in the modulator and detector, determine the spectrum of the de-
tector output when: (a) the carrier frequency f, = 1.25 kHz and (b) the
carrier frequency f, = 0.75 kHz. What is the lowest carrier frequency for
which each component of the modulated wave s(¢) is uniquely determined

by m(r)?

Problem 13 A DSBSC wave is demodulated by applying it to a coherent
detector. ’

(a) Evaluate the effect of a frequency error Af in the local carrier
frequency of the detector, measured with respect to the carrier frequency
of the incoming DSBSC wave.

(b) For the case of a sinusoidal modulating wave, show that because of
this frequency error, the demodulated wave exhibits beats at the error
frequency. Illustrate your answer with a sketch of this demodulated
wave.

Problem 14 Consider a composite wave obtained by adding a nonco-
herent carrier A, cos(2nf.t + ¢) to a DSBSC wave cos(2nf.r)m(t). This
composite wave is applied to an ideal envelope detector. Find the resulting
detector output. Evaluate this output for

(a) ¢ = 0.
(b) ¢ # 0 and |m(r)| < A /2.

MUf)

Figure P7.3
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P7.3 Quadrature-Carrier Multiplexing

Problem 15 Consider the quadrature-carrier multiplex system of Fig.
7.16. The multiplexed signal s(r) produced at the transmitter output in part
a of this figure is applied to a communication channel of transfer function
H(f). The output of this channel is in turn applied to the receiver input
in part b of Fig. 7.16. Prove that the condition

H(f("'f):H*(fc_'f)- 05f$“'

is necessary for recovery of the message signals m,(t) and m,(r) at the
receiver outputs; f, is the carrier frequency, and W is the message band-
width.

Hint: Evaluate the spectra of the two receiver outputs.

P7.4 Single-Sideband Modulation

Problem 16  Using the message signal m(r) described in Problem 1. de-
termine and sketch the modulated waves for single-sideband modulation
with (a) only the upper sideband transmitted. and (b) only the lower side-
band transmitted.

Problem 17 Consider a pulse of amplitude 4 and duration T. This pulse
is applied to an SSB modulator, producing the modulated wave s(¢). De-
termine the envelope of s(¢), and show that this envelope exhibits peaks
at the beginning and end of the pulse.

Problem 18  Consider the two-stage SSB modulator of Fig. 7.18b. The
input signal consists of a voice signal occupying the frequency band 0.3 —
3.4 kHz. The two oscillator frequencies have the values f1 = 100 kHz and
f» = 10 MHz. Specify the following:

(a) The sidebands of the DSBSC modulated waves appearing at the
two product modulator outputs.

(b) The sidebands of the SSB modulated waves appearing at the two
band-pass filter outputs.

(c) The passbands and guardbands of the two band-pass filters.

Problem 19

(a) Let 5,(r) denote the SSB wave obtained by transmitting only the
upper sideband, and $,(r) its Hilbert transform. Show that

m(t) = Ai[s,,(r) cos(2nf.t) + §,(1) sin(2nf.1)]
and
() = 2 [6.0) cos@rf.r) — 5.r) sin(nf.0)]

RS

€
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where m(t) is the message signal, ria(t) is its Hilbert transform, f. the
carrier frequency, and A, is the carrier amplitude.

(b) Show that the corresponding equations in terms of the SSB wave
5,(t) obtained by transmitting only the lower sideband are

m(r) Ai [s/(t) cos(2nf.t) + §,(¢) sin(2nf )]

and

2 .
mt) = -~ [s:(1) sin(2nf.t) — $,(t) cos(2nf.1)]
(¢) Using the results of (a) and (b), set up the block diagram of a receiver
for demodulating an SSB wave.

Problem 20
(a) Consider a message signal m(r) containing frequency components
at 100, 200, and 400 Hz. This signal is applied to an SSB modulator
together with a carrier at 100 kHz, with only the upper sideband re-
tained. In the coherent detector used to recover m(t), the local oscillator
supplies a sine wave of frequency 100.02 kHz. Determine the frequency

components of the detector output.
(b) Repeat your analysis, assuming that only the lower sideband 1s

transmitted.

P7.5 Vestigial Sideband Modulation

Problem 21 The single-tone modulating wave m(t) = An cos(2nf,t) is
used to generate the VSB modulated wave

s(t) = aA, A, cos[2n(f. + fa)t] + ARA(l — a) cos[2n( f. — fn)t]

where a is a constant, less than unity.

(a) Find the in-phase and quadrature components of the VSB modu-

lated wave s(f).
(b) What is the value of constant a for which s(t) reduces to a DSBSC

modulated wave?
(c) What are the values of constant a for which it reduces to an SSB

modulated wave? . =
(d) The VSB wave s(1), plus the carrier A, cos(2nf.r). is passed through
an envelope detector. Determine the distortion produced by the quad-

rature component.
(e) What is the value of constant a for which this distortion reaches its

worst possible value?
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P7.7 Frequency Translation

Problem 22  Figure P7.4 shows the amplitude spectrum of an SSB-mod-
ulated signal s(r). The signal s(r) is applied to'a mixer. Specify the param-
eters of the filter and local oscillator components of the mixer to do the
following:

(a) Upconversion from 10 to 100 MHz.
(b) Downconversion from 10 to 1 MHz.

Problem 23 The spectrum of a voice signal m(r) is zero outside the
interval f, < |f| < f,. To ensure communication privacy, this signal is
applied to a scrambler that consists of the following cascade of components:
a product modulator, a high-pass filter, a second product modulator, and
a low-pass filter. The carrier wave applied to the first product modulator
has a frequency equal to f., whereas that applied to the second product
modulator has a frequency equal to f, + f.; both of them have unity
amplitude. The high-pass and low-pass filters have the same cutoff fre-
quency at f.. Assume that f. > f,.

(a) Derive an expression for the scrambler output s(r), and sketch its
spectrum.

(b) Show that the original voice signal m(t) may be recovered from s(t)
by using a descrambler that is identical to the scrambler.

P7.8 Frequency-Division Multiplexing

Problem 24 The practical implementation of an FDM system usually
involves many steps of modulation and demodulation. The first multiplex-
ing step combines 12 voice inputs into a basic group, which is formed by
having the nth input modulate a carrier at frequency f, = 112 kHz - 4n,
where n = 1, 2, ..., 12. The lower sidebands are then selected by
band-pass filtering and are combined to form a group of 12 lower side-
bands (one for each voice input). The next step in the FDM hierarchy
involves the combination of 5 basic groups into a supergroup. This is

-11 -10 0 10 11 f, MHz
Figure P7.4
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accomplished by using the nth group to modulate a carrier at frequency
f. = 372 + 48n kHz, where n = 1,2, .. ., 5. Here again the lower
sidebands are selected by filtering and are then combined to form a
supergroup. In a similar manner. supergroups are combined into master-
groups, and mastergroups are combined into very large groups.

(a) Find the frequency band occupied by a basic group.

(b) Find the frequency band occupied by a supergroup.

(¢) How many independent voice inputs does a supergroup accom-
modate?

P7.9 Application |

Problem 25 Figure P7.5 shows the block diagram of a heterodyne spec-
trum analyzer. It consists of a variable-frequency oscillator, multiplier,
band-pass filter, and root mean-square (rms) meter. The oscillator has an
amplitude A and operates over the range f, to fo = W, where f, is the
midband frequency of the filter and W is the signal bandwidth. Assume
that f, = 2W. the filter bandwidth 4 f is small compared with fo. and the
passband amplitude response of the filter is one. Determine the value of
the rms meter output for a low-pass input signal g(r).

Problem 26 Figure P7.6 shows the block diagram of a frequency syn-
thesizer, which enables the generation of many frequencies. each with the
same high accuracy as the master oscillator. The master oscillator of fre-
quency 1 MHz feeds two spectrum generators, one directly and the other
through a frequency divider. Spectrum generator 1 produces a signal rich
in the following harmonics: 1,2,3.4,5.6, 7.8, and 9 MHz. The frequency
divider provides a 100-kHz output, in response to which spectrum generator
2 produces a second signal rich in the following harmonics: 100. 200, 300,
400, 500, 600, 700, 800, and 900 kHz. The harmonic selectors are designed
to feed two signals into the mixer, one from spectrum generator 1 and the
other from spectrum generator 2. Find the range of possible frequency
outputs of this synthesizer and its resolution.

RMS QOutput
filter I meter signal

Band-pass
_

Input signal
gl

Variable
| trequency |
| oscillator

Figure P7.5
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Master Spectrum Harmonic <
oscillator generator selector
1 MHz 1 1 4

Mixer ——s Output
S ——
10 Spectrum —[ Harmonic
frequency generator selector
divider 2 2
Figure P7.6

Problem 27  The use of quadrature-carrier multiplexing provides the basis
for the generation of AM stereo signals. One particular form of such a
signal is described by

s(t) = A [cos(2rf.r) + my(t) cosQrf .t — o)
+ m,(t) cosQnf.t + ¢g)]

where A cos(2nf.t) is the unmodulated carrier, the phase difference

o = 15°, and m(t) and m,(t) are the outputs of the left- and right-hand
loudspeakers respectively. With m,(t) and m, (1) as inputs, do the follow-
ing:

(a) Set up the block diagram of a system for generating th.: multiplexed
signal s(r).

(b) With s(r) as input. set up the block diagram of a system for re-
covering m(t) and m,(1).

(¢) Suppose s(z) is applied to an envelope detector. What is the resulting
output?

Problem 28  Figure 7.33a shows the simplified block diagram of a color
television transmitter that generates the composite video signal m(r) de-
scribed by Eq. 7.89. The block diagram of the corresponding demulti-
plexing system, used in the receiver to recover the original primary color
signals, is shown in Fig. 7.33b. Starting with the input m(r), analyze the
operation of the demultiplexing system shown in Fig. 7.33b.

P7.10 Angle Modulation: Basic Concepts

Problem 29  Sketch the PM and FM waves produced by the sawtooth
wave shown in Fig. P7.7.

Problem 30 In a frequency-modulated radar the instantaneous frequency
of the transmitted carrier is varied as in Fig. P7.8. Such a signal is generated
by frequency modulation with a periodic triangular modulating wave. The
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mit)

L

Bl

Figure P7.7

instantaneous frequency of the received echo signal is shown dashed in
Fig. P7.8 where 7 is the round-trip delay time. The transmitted and received
echo signals are applied to a mixer, and the difference frequency component
is retained. Assuming that for < 1, determine the number of beat cycles
at the mixer output, averaged over 1 s, in terms of the peak deviation 4 f
of the carrier frequency, the delay t, and the repetition frequency f, of
the transmitted signal.

Problem 31 The instantaneous frequency of a sine wave is equal to
f. + Af for |t| < T/2, and f. for [f| > T/2. Determine the spectrum of
this frequency-modulated wave.

Hint: Divide up the time interval of interest into three nonoverlapping
regions: —2 <t < —=T/2, -T/l2<1=< T/2, and TI2 <t <=,

Problem 32 Consider an interval 4t of an FM wave s(t) = A, cos[6(1)]
such that 0(t) satisfies the condition

0t + 4t) = 0(t) ==

f(0)

Transmitted
f.taff \\ signal IA\E;:ho I\\
b | / \ /7 \
. e r] A
7/

=8l ¥

T

Figure P7.8
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Hence, show that if A7 is sufficiently small, the instantaneous frequency of
the FM wave inside this interval is approximately given by

iy

f: - “”

to

Problem 33  Consider the signal
x(t) = A cos(2nf.t) + A, cos(2nf.1)

where A_cos(2rf 1) represents an unmodulated carrier, and A, cos(2nf,t)
represents an interfering signal. Assume that the amplitude ratio A,'4, is
small compared to unity. Calculate the instantaneous frequency of x(r)
under this assumption.

Problem 34 Consider a narrow-band FM wave approximately defined by

s(1) = A cos(2af 1) — BA, sin(2nf 1) sin(2nf 1)

(a) Determine the envelope of this modulated wave. What is the ratio
of the maximum to the minimum value of this envelope? Plot this ratio
versus ff, assuming that /i is restricted to the interval 0 < f < 0.3.

(b) Determine the average power of the narrow-band FM wave, ex-
pressed as a percentage of the average power of the unmodulated carrier
wave. Plot this result versus ff, assuming that ffis restricted to the interval
0=p=<0.3.

(c) By expanding the angular argument )(¢) of the narrow-band FM
wave s(f) in the form of a power serics. and restricting the modulation
index /i to a maximum value of 0.3 rad. show that

0(t) = 2nf.1 + BsinQrf,1) — %sin’(hf,,,t)

What is the value of the harmonic distortion for g = 0.3?
Problem 35 The sinusoidal modulating wave
m(t) = A, cos(2nf,,r)
is applied to a phase modulator with phase sensitivity k,. The unmodulated
carrier wave has frequency f_and amplitude A,. Determine the spectrum
of the resulting phase-modulated wave. assuming that the maximum phase

deviation f§, = k,A,, does not exceed 0.3 rad.

Problem 36  Suppose that the phase-modulated wave of Problem 35 has
an arbitrary value for the maximum phase deviation B,- This modulated
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wave is applied to an ideal band-pass filter with midband frequency f. and
a passband extending from f, — 1.5f, to f, + 1.5f,. Determine the
envelope, phase. and instantancous frequency of the modulated wave at
the filter output as functions of time.

Problem 37 A carrier wave is frequency-modulated using a sinusoidal
signal of frequency f,, and amplitude A4,

(a) Determine the values of the modulation index /i for which the carrier
component of the FM wave is reduced to zero. For this calculation vou
may use the values of J,(f) given in Appendix B.

(b) In a certain experiment conducted with f, = 1 kHz and increasing
A, (starting from 0 V). it is found that the carrier component of the
FM wave is reduced to zero for the first time when A,, = 2 V. What is
the frequency sensitivity of the modulator? What is the value of A, for
which the carrier component is reduced to zero for the second time?

Problem 38 A carrier wave of frequency 100 MHz is frequency-modu-
lated by a sine wave of amplitude 20 V and frequency 100 kHz. The
frequency sensitivity of the modulator is 25 kHz/V.

(a) Determine the approximate bandwidth of the FM wave. using Car-
son’'s rule.

(b) Determine the bandwidth by transmitting only those side-frequen-
cies with amplitudes that exceed 1% of the unmodulated carrier am-
plitude. Use the universal curve of Fig. 7.41 for this calculation.

(¢) Repeat vour calculations, assuming that the amplitude of the mod-
ulating wave is doubled.

(d) Repeat vour calculations, assuming that the modulation frequency
is doubled.

Problem 39 Consider a wideband PM wave produced by a sinusoidal
modulating wave A, cos(2xf ,.t). using a modulator with a phase sensitivity
equal to k, radians per volt.
(a) Show that if the maximum phase deviation of the PM wave is large
compared with 1 rad. the bandwidth of the PM wave varies linearly with
the modulation frequency f,,.
(b) Compare this characteristic of a wideband PM wave with that of a
wideband FM wave.
Problem 40 In this problem we investigate the effect of a weak nonlin-
earity on frequency modulation. Specificaily . consider a memoryless chan-
nel the transfer characteristic of which 1s described by the nonlinear re-
lation:

v, (1) = a,u,(t) + av=(1) + aw(r)
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where v,(r) and v,(r) are the input and output signals. respectively, and
ay, a,, and a, are constant coefficients. Let

v(t) = A, cos[2nf.t + ¢(1)]

where ¢(r) is related to the message signal m(r) by

o) = 2k, J,m(l) dt
0

(a) Show that the channel output v,(r) contains a dc component and
three frequency-modulated waves with carrier frequencies f., 2f. and
3f..

(b) To extract an FM wave the same as that at the channel input, except
for a change in carrier amplitude, show that by using Carson’s rule the
carrier frequency f. must satisfy the following condition:

fe>34f + 2W

where W is the highest frequency component of the message signal m(t)
and A4f is the frequency deviation of the FM wave v, ().

(c) Specify the band-pass filter required to do the extraction of the FM
wave as specified in part (b).

Problem 41  Figure P7.9 shows the frequency-determining network of a
voltage-controlled oscillator. Frequency modulation is produced by apply-
ing the modulating wave A, sin(2zf,.f) plus a bias V, to a pair of varactor
diodes connected across the parallel combination of a 200 #H inductor and
100 pF capacitor. The capacitance of each varactor diode is related to the
voltage V (in volts) applied across its electrodes by

C = 100V -2 pF
The unmodulated frequency of oscillation is 1 MHz. The VCO output is

applied to a frequency multiplier to produce an FM wave with a carrier
frequency of 64 MHz and a modulation index of 5. '

O
100L 200 Output
pF uH
Input
o- & —0

Figure P7.9
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C
] L5
FM wave R Envelope Output
sft) detector signal

Figure P7.10 -

Determine: (a) the magnitude of the bias voltage V. and (b) the am-
plitude A, of the modulating wave, given that f, = 10 kHz.

Problem 42 The FM wave
s(t) = A, cos[:z:zf(r + 2nk; f' m(t) d:]

is applied to the system shown in Fig. P7.10 consisting of a high-pass RC
filter and an envelope detector. Assume that: (a) the resistance R is small
compared with the reactance of the capacitor C for all significant frequency
components of s(r). and (b) the envelope detector does not load the filter.
Determine the resulting signal at the envelope detector output. assuming
that k;m(t) < f.for all r.

Problem 43  Consider the freque:icy demodulation scheme shown in Fig.
P7.11 in which the incoming FM wave s(¢) is passed through a delay line
that produces a phase shift of —n/2 radians at the carrier frequency f,.
The delay-line output is subtracted from the incoming FM wave. and the
resulting composite wave is then envelope-detected. This demodulator finds
wide application in demodulating FM waves at microwave frequencies.
Assuming that

s(t) = A cos[2rf.t + fsin(2nf,.1)]

analyze the operation of this demodulator when the modulation index [ is
less than unity and the -delay T produced by the delay line is sufficiently

FM wave Delay = Envelope Qutput
sity L hine detector ? signal

Figure P7.11
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small to justify making the approximations:

cosQnf,T) =1
and

sin2nf,T) = 2nf,T

P7.12 Phase-Locked Loop

Problem 44 A first-order PLL is used to demodulate a single-tone FM
wave that has the following characteristics:

5
15 kHz

Modulation index
Modulation frequency f .

(a) Suggest a suitable value for the loop parameter K, of the PLL.
(b) For the value chosen in part (a), what is the corresponding value
of the loop bandwidth?

(c) Suggest a method for reducing the loop bandwidth.

Problem 45 Show that a second-order PLL using the loop filter shown
in Fig. 7.55 has the following closed-loop transfer function:

¢.(f) (fifa)?

@,(f) 1+ 200f/f.) + (if/f.)

where f, is the natural frequency of the loop and ( is the damping factor;
they are defined by

VfuKo

fn
>~ Vaf,

How does this PLL differ from a first-order PLL?

I

Problem 46 Figure P7.12 shows the cascade connection of a phase-locked
loop and a linear filter. A phase-modulated wave is applied to the input

Phase-
modulated = Message
wave . inear filter, signal
—_— Phns'teo;ocked e transfer function
P Hif)

Figure P7.12
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of the phase-locked loop. The requirement is to reproduce the message
signal at the output of the filter. Find the transfer function H(f) of the
filter that satisfies this requirement, assuming that the phase-locked loop
has a large loop gain.

P7.13 Limiting of FM Waves

Problem 47 Consider the modulated signal

si(t) = a(t) cos[2nfr + 2nk, f' m(r) di]

(

where a(1) is a slowly varying envelope function, f, is the carrier frequency,
k; is a frequency sensitivity, and m(r) is a message signal. The modulated
signal s(r) is processed by a band-pass limiter (consisting of a hard limiter
followed by a band-pass filter) to remove amplitude fluctuations due to
a(tr). Specify the parameters of the band-pass filter componént so as to
produce the FM wave

s:(t) = A cos[2nf. + 2nk; j' m(t) di]
0
where A is a constant amplitude.

P7.14 Application |l

Problem 48 Consider the analysis of FM stereo transmission, assuming
that the left-hand and right-hand signals consist of two tones of different
frequencies but the same amplitude. as shown by

m(t) = A, cos(2nrfit)
and
m.(t) = A, cos(2nf,t)

(a) Show that the amplitude of a composite sigral consisting of the sum
signal and the DSBSC modulated version of the difference signal is
bounded by 2A,,: that is:

Im(t) + m,(r) + [m(t) = m,(t)] cos(dnf. 1) < 24,

where f . is the subcarrier frequency.

(b) Let A, = 0.45, and let the pilot (of frequency f.) injected into
the multiplexed FM stereo signal have amplitude A, = 0.1. Let the
FM wave produced by this multiplexed signal have frequency deviation
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Af = 75 kHz. Find the effective frequency deviation that results from
the reception of the FM wave by a monophonic receiver that responds
only to the sum signal.

Problem49  Figure P7.13 shows the block diagram of a real-time spectrum
analyzer working on the principle of frequency modulation. The given
signal g(r) and a frequency-modulated signal s(¢) are applied to a multiplier
and the output g(r)s(¢) is fed into a filter of impulse response h(t). The
s(r) and h(t) are linear FM signals whose instantaneous frequencies vary
at opposite rates, as shown by

s(t) = cos2nf.t — nkt?)
and

h(r)

cos(2nf.t + mkt?)

where k is a constant. Show that the envelope of the filter output is pro-
portional to the amplitude spectrum of the input signal g(r) with kr playing
the role of frequency f.

Hint: Use the complex notations described in Section 3.5 for band-pass
transmission.

P7.15 Digital Modulation Techniques
Problem 50  Sketch the binary ASK waveform for the sequence 101 1010011.
Assume that the carrier frequency f, equals the bit rate 1/T,.

Problem 51 Repeat Problem 50 using binary PSK.

Problem 52 Sketch the binary FSK waveform for the sequence 1011010011.
Assume that the two frequencies used to represent symbols 1 and 0 are
given by, respectively,

glr) Filter  p—3 Output

s{r)

Figure P7.13
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and

e

where T, is the bit duration.

Problem 53 Both binary FSK and binary PSK signals have a constant
envelope: Yet binary FSK signals can be noncoherently detected, whereas
binary PSK signals cannot be. What are the reasons for this difference?

Problem 54 The binary sequence 1011010011 is transmitted over a com-
munication channel using DPSK. The channel introduces a 180°-phase
reversal.

(a) Sketch the transmitted DPSK waveform, assuming an initial bit of
1. What is the effect of changing the initial bit to a 07 )

(b) Assuming that the channel is noise-free, show that the DPSK de-
tector in the receiver reproduces the original binary sequence, despite
the 180°-phase reversal in the channel.

Problem 55 Set up a circuit for generating a differentially encoded se-
quence (that includes the initial bit) in response to an incoming binary
sequence. Is the structure of this circuit affected by the identity of the initial
bit?

Problem 56 Sketch the QPSK waveform for the sequence 1011010011.
You may assume the following:

(a) The carrier frequency equals the bit rate.
(b) The dibits 00, 10, 11, and 01 are represented by phase shifts equal
to 0, n/2. =, 3n/2 radians.

Problem 57 Sketch the waveform of the MSK signal for the sequence
1011010011, Assume that the carrier frequency equals the bit rate.
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PROBABILITY THEORY

W

The term “random” is used to describe erratic and apparently
unpredictable variations of an observed signal. Indeed, random signals
(in one form or another) are encountered in every practical
communication system. Consider, for example, a radio communication
system. The received signal in such a system is random in nature.
Ordinarily, the received signal consists of an information-bearing signal
component, a_random-interference component, and receiver noise. The
information-bearing signal component may represent, for example, a
voice signal that, typically, consists of randomly spaced bursts of energy
of random duration. The interference component represents the extraneous

403
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electromagnetic waves produced by other communication systems and at-
mospheric electricity. A major type of noise is thermal noise, which is
caused by the random motion of the electrons in conductors and devices
at the front end of the receiver.

The important point is that, regardless of the underlying causes of ran-
domness, we cannot predict the exact value of the received signal. Never-
theless, the received signal can be described in terms of its statistical prop-
erties such as the average power, or the spectral distribution of the average
power. The mathematical discipline that deals with the statistical charac-
terization of random signals is probability theory.! We begin our discussion
of random signals with a review of probability theory in the next section.

8.1 PROBABILITY THEORY

Probability theory is rooted in situaticns that involve performing an ex-
periment with an outcome that is subject to chance. Moreover, if the
experiment is repeated, the outcome can differ because of the influence of
an underlying random phenomenon or chance mechanism. Such an ex-
periment is referred to as a random experiment. For example. the exper-
iment may be the observation of the result of the tossing of a fair coin. In
this experiment, the possible outcomes of a trial are “*heads™ or “tails.”

To be more precise in the description of a random experiment, we ask
for three features:

The experiment is repeatable under identical conditions.

On any trial of the experiment, the outcome is unpredictable.

For a large number of trials of the experiment, the outcomes exhibit
statistical regularity. That is, a definite average pattern of outcomes is
observed if the experiment is repeated a large number of times.

W N —

RELATIVE-FREQUENCY APPROACH

Let evenr A denote one of the possible outcomes of a random experiment.
For example, in the coin-tossing experiment, event A may represent
“heads.” Suppose that in n trials of the experiment, event A occurs n,
times. We may then assign the ratio n,/n to the event A. This ratio is
called the relative frequency of the event A. Clearly, the relative frequency

'For a detailed treatment of probability theory and the related subject of
random processes, see Davenport and Root (1958), Fry (1965), Thomas (1986),
Wozencraft and Jacobs (1965), Feller (1968), Fines (1973), Blake (1979), and
Papoulis (1984).
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is a nonnegative real number less than or equal to one. That is to say,

0™ < . (8.1)

= |3

If event A occurs in none of the trials, (n,/n) = 0. If, on the other hand,
event A occurs in all the » trials, (n,/n) = L.

We say that the experiment exhibits statistical regularity if for any se-
quence of n trials the relative frequency n,/n converges to the same limit
as n becomes large. Accordingly, it seems natural for us to define the
probability of event A as

P(A) = lim (ﬁnﬂ) (8.2)

n—sx

Thus, in the coin-tossing experiment, we may expect that out of a million
tosses of a fair coin, about one half of them will show up heads.

The probability of an event is intended to represent the likelihood that
a trial of the experiment will result in the occurrence of that event. For
many engineering applications and games of chance, the use of Eq. 8.2 to
define the probability of an event is acceptable. However, for many other
applications this definition is inadequate. Consider, for example, the sta-
tistical analysis of the stock market: How are we to achieve repeatability
of such an experiment? A more satisfying approach is to state the properties
that any measure of probability is expected to have, postulating them as
axioms, and then use relative-frequency interpretations to justify them.

AXIOMS OF PROBABILITY

When we perform a random experiment, it is natural for us to be aware
of the various outcomes that are likely to arise. In this context, it is con-
venient to think of an experiment and its possible outcomes as defining a
space and its points. With each possible outcome of the experiment, we
associate a point called the sample point, which we denote by s,. The
totality of sample points corresponding to the aggregate of all possible
outcomes of the experiment, is called the sample space, which we denote
by &. An event corresponds to either a single sample point or a set of
sample points. In particular, the entire sample space O is called the sure
event; the null set @ is called the nuil or impossible event; and a single
sample point is called an elementary event.

Consider, for example, an experiment that involves the throw of a die.
In this experiment there are six possible outcomes: the showing of one,
two, three, four, five and six dots on the upper face of the die. By assigning
a sample point to each of these possible outcomes, we have a one-dimen-
sional sample space that consists of six sample points, as shown in Fig. 8.1.



406 PROBABILITY THEORY AND RANDOM PROCESSES

Sample point
/

P

2 3 4 5

" — @
.o 9

: ¥
One-dimensional sample space

Figure 8.1
Sample space for the experiment of throwing a die.

The elementary event describing the statement “a six shows’’ corresponds
to the sample point {6}. On the other hand, the event describing the state-
ment “an even number of dots shows” corresponds to the subset {2,4,6}
of the sample space. Note that the term “event” is used interchangeably
to describe the subset or the statement.

We are now ready to make a formal definition of probability. A prob-
ability system consists of the triple:

1. A sample space S of elementary events (outcomes).

2. A class & of events that are subsets of &.

3. A probability measure P(-) assigned to each event A in the class &,
which has the following properties:

(i) P(S) = 1 (8.3}
(i) 0< P(A) = 1 (8.4)
(iii) If A + B is the union of two mutually exclusive events in the class
&, then
P(A + B) = P(A) + P(B) (8.5)

Properties (i), (ii), and (iii) are known as the axioms of probability. Axiom
(1) states that the probability of the sure event is unity. Axiom (ii) states
that the probability of an event is a nonnegative real number that is less
than or equal to unity. Axiom (iii) states that the probability of the union
of two mutually exclusive events is the sum of the probabilities of the
individual events.

Although the axiomatic approach to probability theory is abstract in
nature, all three axioms have relative-frequency interpretations of their
own. Axiom (ii) corresponds to Eq. 8.1. Axiom (i) corresponds to the
limiting case of Eq. 8.1 when the event A occurs in all the n trials. To
interpret axiom (iii), we note that if event A occurs n, times in n trials
and event B occurs ny times, then the union event “A4 or B occurs in
n4 + ngtrials (since A and B can never occur on the same trial). Hence,
ng.p = ny + ng, and so we have

Narp _ Na ng
n

which has a mathematical form similar to that of axiom (iii).
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ELEMENTARY PROPERTIES OF PROBABILITY

Axioms (i), (ii), and (iii) constitute an implicit definition of probability.
We may use these axioms to develop some other basic properties of prob-
ability.

PROPERTY 1: P(A) = 1 - P(A) (8.6)
where A (denoting “not A”) is the complement of event A.
The use of this property helps us investigate the nonoccurrence of an event.
To prove it, we express the sample space & as the union of two mutually
exclusive events A and A

S=A+A
Then, the use of axioms (i) and (iii) yields

1 = P(A) + P(A)

from which Eq. 8.6 follows directly.

PROPERTY 2 4
If M mutually exclusive events A,, A,, ..., A, have the exhaustive property
A+ A+ o+ A= (8.7)

then
P(A\) + P(A;) + -+ + P(Ay) =1 (8.8)

To prove this property, we generalize axiom (iii) by writing
P(A, + Ay + « + Ay) = P(A)) + P(4)) + ~ + P(Ay)
The use of axiom (i) in Eq. 8.7 yields
PA + A+ -+ Ay) =1
Hence, the result of Eq. 8.8 follows.

When the M events are equally likely (i.e., they have equal probabili-
ties), then Eq. 8.8 simplifies as

T e A | (8.9)

P(A;) = Al{’
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PROPERTY 3

When events A and B are not mutually exclusive, then the probability of the
union event “A or B” equals

P(A + B) = P(A) + P(B) — P(AB) (8.10)

where P(AB) is the probability of the joint event “A and B".

The probability P(AB) is called the joint probability. 1t has the following
relative-frequency interpretation

P(AB) = lim (ﬂ‘—")
i
where n,, denotes the number of times the events A and B occur simul-
taneously in n trials of the experiment. Axiom (iii) is a special case of Eq.
8.10: when A and B are mutually exclusive, P(AB) is zero. and Eq. 8.10
reduces to the same form as Eq. 8.5.

EXERCISE 1 Consider an experiment in which two coins are thrown.
What is the probability of getting one head and one tail?

EXERCISE 2 Consider an experiment in which two dice are thrown. What
is the probability that the number of dots showing on the upper faces of
the two dice add up to 6?

CONDITIONAL PROBABILITY

Suppose we perform an experiment that involves a pair of events A and
B. Let P(B/A) denote the probability of event B, given that event A has
occurred. The probability P(B|A) is called the conditional probability of
B given A. Assuming that A has nonzero probability, the conditional prob-
ability P(B|A) is defined by

P(B|A) = PT((AZI;—) ) (8.11)

where P(AB) is the joint probability of A and B.

We justify the definition of conditional probability given in Eq. 8.11 by
presenting a relative-frequency interpretation of it. Suppose that we per-
form an experiment and examine the occurrence of a pair of events A and
B. Let n,, denote the number of times the joint event AB occurs in n
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trials. Suppose that in the same n trials the event A occurs n, times. Since
the joint event AB corresponds to both A and B occurring, it follows that
n, must include n,5. In other words, we have

"AB<1

=

Ny
The ratio n,5/n, represents the relative frequency of B given that A has

occurred. For large n, the ratio n,5/n, equals the conditional probability
P(B|A). That is,

P(B|A) = lim (ﬂ)
s\ Fa
or equivalently,
/
P(B|A) = lim ("—“’;ﬁ)

n.,/n

Recognizing that

. Nag
P(AB) = lim (T)

n—x

and
P(A) = lim ('ﬂ)
m—x \ N
the result of Eq. 8.11 follows.
We may rewrite Eq. 8.11 as

P(AB) = P(B|A)P(A) (8.12)
It is apparent that we may also write

P(AB) = P(A|B)P(B) (8.13)

Equations 8.12 and 8.13 state that the joint probability of two events may
be expressed as the product of the conditional probability of one event, given
the other, and the elementary probability of the other. Note that the con-
ditional probabilities P(B|A) and P(A|B) have essentially the same prop-
erties as the various probabilities previously defined.

Situations may exist where the conditional probability P(A|B) and the
probabilities P(A) and P(B) are easily determined directly, but the con-
ditional probability P(B|A) is desired. From Eqs. 8.12 and 8.13, it follows
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that, provided P(A) # 0, we may determine P(B|A) by using the relation

P(A|B)P(B)

P(B|A) = P(A)

(8.14)

This relation is a special form of Bayes’ rule.
Suppose that the conditional probability P(B|A) is simply equal to the
elementary probability of occurrence of event B, that is,

P(B|A) = P(B) ; (8.15)

Under this condition, the probability of occurrence of the joint event AB
is equal to the product of the elementary probabilities of the events A
and B:

P(AB) = P(A)P(B)
so that
P(A|B) = P(A)

That is, the conditional probability of the event A, assuming the occurrence
of the event B, is simply equal to the elementary probability of the event
A. We thus see that in this case a knowledge of the occurrence of one
event tells us no more about the probability of occurrence of the other
event than we knew without that knowledge. Events A and B that satisfy
this condition are said to be statistically independent.

-------------....-..................................--.-----uu-----u------..--..................-..............--u-----.

EXAMPLE 1 BINARY SYMMETRIC CHANNEL

Consider a discrete memoryless channel used to transmit binary data. The
channel is said to be discrete in that it is designed to handle discrete mes-
sages. It is memoryless in the sense that the channel output at any time
depends only on the channel input at that time. Owing to the unavoidable
presence of noise in the channeél, errors are made in the received binary
data stream. Specifically, when symbol 1 is sent, occasionally an error is
made and symbol 0 is received, and vice versa. The channel is assumed to
be symmetric, which means that the probability of receiving symbol 1 when
symbol 0 is sent is the same as the probability of receiving symbol 0 when
symbol 1 is sent. .

To describe the probabilistic nature of this channel fully, we need two

sets of probabilities: <

1. The a priori probabilities of sending binary symbols 0 and 1: They are
P(Ag) = Po (8.16)
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and
P(A)) = p, (8.17)
where A, and A, denote the events of transmitting symbols 0 and 1,
respectively. Note that p, +p; = L
2. The conditional probabilities of error: They are :
P(B\|A,) = P(Bo|A)) = p (8.18) i
where B, and B, denote the events of receiving symbols 0 and 1, re- i
spectively. The conditional probability P(B,|A,) is the probability of
receiving symbol 1, given that symbol 0 is sent. The second conditional
probability P(Bg|A,) is the probability of receiving symbol 0, given that
symbol 1 is sent.

The requirement is to determine the a posteriori probabilities P(A,|B,)
and P(A,|B,). The conditional probability P(A,|B,) is the probability that
symbol 0 was sent, given that symbol 0 is received. The second conditional
probability P(A,|B,) is the probability that symbol 1 was sent, given that
symbol 1 is received. Both these conditional probabilities refer to events
that are observed “after the fact”; hence, the name “a posteriori” prob-
abilities.

Since the events B, and B, are mutually exclusive. and the probability
of receiving symbol 0 or symbol 1 is unity, we have from axiom (iii):

P(By|Ay) + P(B,|A,) = 1
That is to say,
P(BylAy) =1-p . (8.19)
Similarly, we may write
P(B,|A)=1-p (8.20)

Accordingly, we may use the transition probability diagram shown in Fig. i
8.2 to represent the binary communication channel specified in this ex-

Figure 8.2 '
Transition probability diagram of binary symmetric channel.
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ample; the term “transition probability” refers to the conditional proba-
bility of error. Figure 8.2 clearly depicts the (assumed) symmetric nature
of the channel; hence, the name “binary symmetric channel.”

From Fig. 8.2, we deduce the following results:

I. The probability of receiving symbol () is given by
P(B,) = P(B,|JA)P(A) + P(B,|A,)P(A))
= (1 = p)pu + pp) (8:21)
2. The probability of receiving symbol 1 is given by ,
P(B,) = P(B,|A,))P(A,) + P(B\|A)P(A))
=pps + (1 = p)p (8.22)

Therefore, applying Bayes’ rule, we obtain

= P(BH|A|))P(AH)

P(A|||Bu) = P(Bu)
__d=-pps (8.23)
(1 = plps + pp,
_ P(B|A)P(A)
P(A\|B)) = ~ pB)
= Aol (8.24)
pps + (1 = p)p

These are the desired results.

.............
..............................................................................................................

EXERCISE 3 Continuing with Example 1, find the following conditional
probabilities: P(A,|B,) and P(A|By).

EXERCISE 4 Consider a binary symmetric channel for which the condi-
tional probability of error p = 104, and symbols 0 and 1 occur with equal
probability. Calculate the following probabilities:

(a) The probability of receiving symbol 0.

(b) The probability of receiving symbol 1.
= (c) The probability that symbol 0 was sent, given that symbol 0 is re-
= ceived.
(d) The probability that symbol 1 was sent, given that symbol 0 is
received.
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EXAMPLE 2 CHAIN OF PCM REGENERATIVE REPEATERS

In Section 5.6 we described the use of regenerative repeaters in a pulse-
code modulation (PCM) system as a means of combatting the effects of
channel noise. Specifically, the function of a regenerative repeater is two- i
: fold: (1) to detect the presence of symbol 0 or 1 before the pulses repre- i
i senting these symbols become too weak and therefore lost in channel noise,
and (2) to retransmit new clean pulses (representing the symbols detected)
on to the next regenerative repeater. Consider a binary PCM system that i
uses a chain of (k — 1) regenerative repeaters, followed by one last re- i
: generation at the receiver input, as illustrated in Fig. 8.3. Given that the
average probability of error incurred in each regeneration process is P,,
we wish to calculate the average probability of error P for the entire
system.

The system may be viewed as the cascade connection of k identical links,
with each link responsible for an average probability of error P,. A binary
symbol 1 or 0 sent over such a system is detected correctly at the receiver
if either the symbol in question is detected correctly over each link in the
i system or it experiences errors over an even number of links. We may thus
i express the probability of correct reception P at the receiver output as

sessssss

Pc=1- P
P(correct detection over all links in the system)
+ P(error over any two links in the system)

]

+ P(error over any four links in the system)
+ P(error:over ! links in the system) . (8.25)
where, in the last term, we have
/| = {k, if k is even

k=1 if k is odd :

Given that the probability of error over each link is P,, we may write

P(correct detection over all links in the system) = (1 - Po)*
: k!
P(error over any j links in the system) = Tk =) Pl = Pt

Link 1 Link 2 Link &
Regenerative l Regenerative Regenerative ‘
i | Transmitter repeater repeater | —¥ reEeatler Receiver
: 1 2 = ,

: Figure 8.3
! Chain of PCM regenerative repeaters.
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Using these results in Eq. 8.25, we get

‘ k! . .
1-Pe=(1-P)+ 22: mpﬁ (1 - P)i (8.26)
2. ! !

In practice, we usually find that P, is very small compared to unity, so that
we may make the following two approximations:

1. We may approximate the first term in Eq. 8.26 as

k(k =1 '

(T) P? (8.27)

2. We may approximate the second term in Eq. 8.26 by retaining only that
term in the summation that corresponds to j = 2, and also writing
(1 = P)-1=1.

(1 - P)=1-kP, +

Accordingly, we may approximate Eq. 8.26 as:

I

1 — Pg=1- kP, + k(k — 1) P?

or equivalently

Pe=kP, — k(k — 1)P? (8.28)

If the number of links & in the system is such that k P, is small compared
to unity, we may further approximate Eq. 8.28 as

Py = kP, (8.29)

That is, the average probability of error in the entire PCM system of Fig.
8.3 is equal to the average probability of error in a single link of the system
times the total number of links in the system.

8.2 RANDOM VARIABLES

In conducting an experiment it is convenient to assign a variable to the
experiment whose outcome determines the value of the variable. We do
so because we may have no a priori knowledge of the outcome of the
experiment other than it may take on a value within a certain range. A
function whose domain is a sample space and whose range is some set of
real numbers is called a random variable of the experiment.? Thus when the

The term “random variable” is somewhat confusing: First, because the word
“random’ is not used in the sense of equal probability of occurrence, for
which it should be reserved. Second, the word “variable’” does not imply
dependence on the experimental outcome, which is an essential part of the
meaning. Nevertheless, the term is so deeply imbedded in the literature of
probability that its usage has persisted.

Sssssccsssscssssnnssnssnnss
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outcome of the experiment is s. the random variable is denoted as X(s)
or simply X. For example, the sample space representing the outcomes of
the throw of a die is a set of six sample points that may be taken to be the
integers 1,2, . . . , 6. Then if we identify the sample point kK with the event
that k dots show when the die is thrown. the function X(k) = k is a random
variable such that X(k) equals the number of dots that show when the die
is thrown. In this example, the random variable (akes on only a discrete
set of values. In such a case we say that we are dealing with a discreie
random variable. More precisely. the random variable X is a discrete ran-
dom variable if X can take on only a finite number of values in any finite
observation interval. If, however, the random variable X can take on any
value in a finite observation interval, X s called a continuous random vari-
able. For example, the random variable that represents the amplitude of
a noise voltage at a particular instant of time is a continuous random
variable because, in theory, it may take on any value between plus and
minus infinity.

To proceed further, we need a probabilistic description of random vari-
ables that works equally well for both discrete and continuous random
variables. Let us consider the random variable X and the probability of
the event X =< x, when x is given. We denote the probability of this event
by P(X = x). Itis apparent that this probability is a function of the dummy
variable x. To simplify our notation, we write.

Fy(x) = P(X = x) (8.30)

The function Fy(x) is called the cumulative distribution function or simply
the distribution function of the random variable X. Note that Fy(x) is a
function of x, not of the random variable X. However. it depends on the
assignment of the random variable X, which accounts for the use of X as
subscript. For any point x, the distribution function Fy(x) expresses a
probability.

The distribution function Fy(x) has the following propertics. which fol-
low directly from Eq. 8.30:

1. The distribution function Fy(x) is bounded between zero and one.
2. The distribution function Fy(x) is a monotone nondecreasing function
of x; that is.
Fy(x,) = Fx(xy), if v, <ux, (8.31)

An alternative description of the probability distribution of the random
variable X is often useful. This is the derivative of the distribution function,
as shown by

d
fx(x) = T Fx(x) (8.32)
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which is called the probability density function. Note that the differenti-
ation in Eq. 8.32 is with respect to the dummy variable x. The name,
density function, arises from the fact that the probability of the event
x; < X < x, equals

P(X|<X~<~XZ) = P(Xs.XQ) = P(XS.x,)
= Fy(x;) — Fx(x))

& f i) & (8.33)

x '

Since Fy(=) = 1, corresponding to the probability of the certain event,
and Fy(—=) = 0, corresponding to the probability of the impossible event,
it follows immediately from Eq. 8.33 that

r fle) de = 1 (8.34)

Also, as mentioned earlier, a distribution function must always be mono-
tone nondecreasing. Hence, its derivative, the probability density function,
must always be nonnegative. A probability density function must always be
a nonnegative function with the total area under its curve equal to one.

T T e L L L LA bbb

EXAMPLE 3 UNIFORM DISTRIBUTION

Consider a random variable X defined by (assuming b > a)

1
fx(x) =9b —a’
0

a<x<b

(8.35)
elsewhere

This function, shown in Fig. 8.4a, satisfies the requirements of a probability
density because fy(x) = 0, and the area under the curve is unity. A random
variable having the probability density function of Eq. 8.35 is said to be.
uniformly distributed. ‘

The corresponding distribution function of the uniformly distributed
random variable X is continuous everywhere, as shown by

0, x<a
Fy(x) = Z:Z a<x<b (8.36)
1, x>b

This distribution function is plotted in Fig. 8.4b.



RANDOM VARIABLES 417

fx(—:)
1
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b-a 1 1
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] 1
] 1
1 L x
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Fx(x)
10—
L x
0 a b
(b)

Figure 8.4
The uniform distribution. (a) Probability density function. (b) Distribution function.

SEVERAL RANDOM VARIABLES

Thus far we have focused attention on situations involving a single random
variable. However, we find frequently that the outcome of an experiment
requires several random variables to describe the experiment. In the sequel
we consider situations involving two random variables. The probabilistic
description developed in this way may be readily extended to any number
of random variables.

Consider two random variables X and Y. We define the joint distribution
function Fy y(x, y) as the probability that the random variable X is less than
or equal to a specified value x and that the random variable Y is less than
or equal to a specified value y. The variables X and Y may be two distinct
one-dimensional random variables or the components of a single two-
dimensional random variable. The joint distribution function Fx y(x,y)is
the probability that the outcome of an experiment will result in a sample
point lying inside the quadrant (- < X <x, —® < Y =< y) of the joint-
sample space. That is,

Fyy(x,y) = P(X<=x, Y= y) (8.37)

Suppose that the joint distribution function Fxy(x, y) is continuous

cssssnsgeecanene
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everywhere, and that the partial derivative

aZFX.Y(xv )’)

ox3y (8.38)

frv(x,y) =

exists and is continuous everywhere. We call the function fy y(x, y) the
* joint probability density function of the random variables X and Y. The
joint distribution function Fy y(x, y) is a monotone nondecreasing function
of both x and y. Therefore, from Eq. 8.38 it follows that the joint prob-
ability density function fy y(x, y) is always nonnegative. Also, the total
volume under the graph of a joint probability density function must be
unity, as shown by

[ fertemazan = (839)

The probability density function for a single random variable (X, say)
can be obtained from its joint probability density function with a second
random variable (Y, say) in the following way. We first note that

Fylx) = ff ff Ferlé, n) d& dy (8.40)

Therefore, differentiating both sides of Eq. 8.40 with respect to x, we get
the desired relation:

fxlx) = f fxx(x,n)dn (8.41)

Thus the probability density function f x(x) may be obtained from the joint
probability density function fy y(x, y) by simply integrating over all pos-
sible values of the undesired random variable, Y. The use of similar ar-
guments in the context of the other random variable Y yields fy(y). The
probability density functions fx(x) and fy(y) are called marginal densities.
Hence, the joint probability density function fy ,(x, y) contains all the
possible information about the joint random variables X and Y.

Suppose that X and Y are two continuous random variables with joint
probability density function fx v(x, y). The conditional probability density
function of Y given that X = x is defined by

frx(x,y)

FApE === e (8.42)

provided that fy(x) > 0, where fy(x) is the marginal density of X. The
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function fy(y|X = x) may be thought of as a function of the variable y,
with the variable x arbitrary, but fixed. Accordingly, it satisfies all the
requirements of an ordinary probability density function. as shown by

friylX =x)=0 (8.43)

and

j’ Foylx = x)dy = 1 (8.44)

-x

If the random variables X and Y are statistically independent, then knowl-
edge of the outcome of X can in no way affect the distribution of Y. The
result is that the condition probability density function frly | X = %)
reduces to the marginal density fy(y), as shown by

friylX = x) = fr(y)

In such a case, we may €Xpress the joint probability density function of
the random variables X and Y as the product of their respective marginal
densities, as shown by

Fro(x,y) = Fx()fr(y) (8.45)

This relation holds only when the random variables X and Y are statistically
independent.

STATISTICAL AVERAGES

Having discussed probability and some of its ramifications, We now seek
ways for determining the average behavior of the outcomes arising in ran-
dom experiments.

The mean or expected value of a random variable X is commonly defined

by

it S L] = J xfy(x) dx ' (8.46)

where E denotes the expectation operator. That is, the mean my lpcates
the center of gravity of the area under the probability density curve of the
random variable X. Similarly, the mean of a function of X, denoted by
g(X), is defined by

Elg(x)] = [ s fx(0) dx (8.47)



420 PROBABILITY THEORY AND RANDOM PROCESSES

For the special case of 8(X) = X" we obtain the nth moment of the
probability distribution of the random variable X: that is,

Ex) = |7 x () e (8.48)

By far the most important moments of X are the first two moments. Thus
puttingn = 1in Eq. 8.48 gives the mean of the random variable as discussed
herein, whereas putting n = 2 gives the mean-square value of X:

fx) = [

X2 fy(x) dx (8.49)

We may also define central moments, which are simply the moments of
the difference between a random variable X and its mean my. Thus the
nth central moment is

X = mo) = [ (= mayfaa) e (8.50)

For n = 1, the central moment i1s, of course, zero, whereas for n = 2 the
second central moment is referred to as the variance of the random variable:

Var[X] = E[(X - my)] = [ T (- mfndx (851)

The variance of a random variable X is commonly denoted as g%. The
square root of the variance, namely, oy, is called the standard deviation
of the random variable X.

* The variance ok of a random variable X is in some sense a measure of
the variable’s “dispersion.” By specifying the variance 0%, we essentially
constrain the effective width of the probability density function fx(x) of
the random variable X about the mean m,. A precise statement of this
constraint was developed by Chebyshev. The Chebyshev inequality states
that for any positive number ¢, we have

P(X — my|=¢) < (8.52)

i3

From this inequality we see that the mean and variance of arandom variable
give a partial description of its probability distribution.

The expectation operator is linear in that the expectation of the sum of
two random variables is equal to the sum of their individual expectations.



Hence. expanding E[(X — m,) | and using the lincarity of the expectation
operator, we find that the variance @5 and the mean-square value E[ X7
are related by

o} = E[X* = 2myX - mi]
= B X4 ~ ipElX] + ny
= E[X:] — mx (8.

A
)

Therefore. if the mean my is zero. then the variance @+ and the mean-
square value E[.X7] of the random variable X are cqual.

Another important statistical average 1s the characteristic function ¢ (U)
of the probability distribution ot the random variable X which is defined
as the expectation of exp(ju.X). as shown by

dy(v) = Elexp(juX)]

) fy(x) expljux) dy (8.34)

where ¢ is real. In other words. the characteristic function o, (v) 1s (except
for a sign change in the exponent) the Fourier transform of the probability
density function f(x). In this relation we have used exp( jex) rather than
exp( = jux). so as to conform with the convention adopted in probability
theory. Recognizing that ¢ and v play analogous roles to the variables 2r f
and 1 of Fourier transforms. respectively. we deduce the following inverse
relation from analogy with the inverse Fourier transform:

iy

1 , _
folx) = ;;J b v(v) exp(—jux) dv (8.55)

This relation may be used to evaluate the probability density function fy(x)
of the random variable X from its characteristic function ¢ (v).

EXERCISE s Given the Chebyshev inequality of Eq. 8.52. what is the
probability P(|X — my| < ¢)?

EXAMPLE 4 UNIFORM DISTRIBUTION (CONTINUED)

i Consider again the uniformly distributed random variable X, descr.bedin
Example 3. We wish to evaluate the mean and variance of X
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The probability density function of the random variable X is given in
Eq. 8.35. Therefore, substituting Eq. 8.35 in Eq. 8.46, we get the mean
of X as -

(b + a) (8.56)

Thus the mean of a uniformly distributed random variable is the arithmetic
mean of its limits a and b, which is intuitively satisfying. The mean-square
value of the random variable X is obtained by substituting Eq. 8.35 in 8.49;
we thus get

b 2
E[Xf]=fb’_adx
b]_a3

T30 - a)

(b2 + ab + a?) (8.57)

W —

Hence, the use of Eq. 8.53 yields the variance of the random variable X
as

&l -ap (8.58)

As an application of these results, we may consider the quantizing error
in pulse-code modulation. Assuming that the quantizing error is uniformly
distributed inside the interval (-4, 44), we find from Eq. 8.56 that it
has zero mean. Moreover, from Egs. 8.57 and 8.58, we find that the mean-
square value and the variance of the quantizing error are both equal to
4?%/12. These results are the same as those we used in discussing quantizing
error in Section 5.4.

.
..........................................................................................................................

.
:
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...........................................................................................................................

EXAMPLE 5 SUM OF INDEPENDENT RANDOM VARIABLES

As an application of the characteristic function, consider the problem of
evaluating the probability density function of a random variable Z defined
as the sum of two statistically independent random variables X and Y, that
is, Z = X + Y. The characteristic function of Z is

Il

¢2(v) = E[exp(ju(X + Y))]

Elexp(jvX) - exp(jvY)] (8.59)

I

Since X and Y are statistically independent, we may express d,(v) as

Il

Elexp(juX)) - E[exp(jvY)]
dx(v)dy(v) (8.60)

¢ 2(v)

Il

By analogy with the result in Fourier analysis, that the convolution of two
functions of time corresponds to the multiplication of their Fourier trans-
forms. we decuce that the probability density function of the random
variable Z = X = Y is given by the convolution of the probability density
functions of X and Y, as shown by

fa(z) = f fr(z = m)fu(n) dn (8.61)
JCOINT MOMENTS

Consider next a pair of random variables X and Y. A set of statistical
averages of importance in this case are the joint moments, namely, the
expected value of X'Y* where j and k may assume any positive integer
values. We may thus write

E[X'Y'] = J'I Jx xiy fyy(x, y) dx dy (8.62)

A joint moment of particular importance is the correlation defined by
E[X Y], which corresponds to j = k =1 in Eq. 8.62.

The correlation of the two centered random variables X — E[X] and
Y — E[Y], that is, the joint moment

Cov[XY] = E[(X — E[X])(Y — E[Y])] (8.63)

is called the covariance of X and Y. Letting my = E[X]and my = E[Y];
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we may expand Eq. 8.63 to obtain
COV{XY] = E[XY] &= mxmy (864)

Let 6% and o} denote the variances of X and Y, respectively. Then the
covariance of X and Y normalized with respect to o0y is called the cor-
relation coefficient of X and Y:

Cov[XY
Pxy = # ; (8.65)

x0Ty

We say that the two random variables X and Y are uncorrelated if and
only if their covariance is zero, that is, if and only if

Cov[XY] =0

We say that they are orthogonal if and only if their correlation is zero, that
is, if and only if

E[XY] =0

From Eq. 8.64 we observe that if one or both of the random variables X
and Y have zero means, and if they are orthogonal random variables, then
they are uncorrelated, and vice versa. Note also that if X and Y are sta-
tistically independent, then they are uncorrelated. However, the converse
of this statement is not necessarily true, as illustrated by the following
example.

...........................................................................................................................

EXAMPLE 6

Let Z be a uniformly distributed random variable, defined by

4 -l=sz=1

fa(z) = {O otherwise

£l

Let the random variable X = Z and the random variable ¥ = Z2 It is
apparent that X and Y are not statistically independent because Y = X°.
We wish to show, however, that X and Y are uncorrelated.

Since X = Z,the mean of X is

E[X] = E[Z] = f' %zdz=0

== |



S

sssssssesans

GAUSSIAN DISTRIBUTION 4286

Also, since Y = Z2, the mean of Y'is

E[Y] = E]2] = [' Sad: =2

The covariance of X and Y is therefore

Cov[XY] = E[X(Y - })]
= E[XY] - AE[X]
- E[XY]

= £2°

1]
1
= -7 dz
f-lzz
0

Hence, the random variables X and Y are uncorrelated despite the fact
that they are statistically dependent.

8.3 GAUSSIAN DISTRIBUTION

The Gaussian random variable® is by far the most widely encountered
random variable in the statistical analysis of communication systems. A
Gaussian random variable X of mean my and variance ¢ % has the prob-
ability density function:

1 1 5
fal) = Tz—r;xexp[” m(l — my) ] (8.66)

The fact that Eq. 8.66 is a probability density function is easily shown.
First, note that f,(x) = 0. Second, form the integral

= 1 x 1
J_, frlx) dx = —\/z—n'—ax J_’ CXP[— EU—}(X = mx)l] dx (8.67)

The Gaussian distribution is named after the great mathematician C. G. Gauss.
At age 18, Gauss invented the method of least squares for finding the best
estimate “of a quantity based on a sequence of measurements. Gauss later
used the method of least squares in estimating orbits of planets with noisy
measurements, a procedure that was published in 1809 in his book Theory of
Motion of the Heavenly Bodies. In connection with the error of observation, he
developed the Gaussian distribution. This distribution is also known as the
normal distribution. Partly for historical reasons, mathematicians commonly use
normal, whereas engineers and physicists commonly use Gaussian.
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We now make the change of variable t = (x — my)/V2noy, so Eq. 8.67
becomes s

fu fx(x) dx = JE exp(—nt?) dr = 1 (8.68)

For the last step in Eq. 8.68, see Exercise 6 of Chapter 2.
The distribution function of a Gaussian random variable X of mean m,
and variance ¢} is defined by

1 [ 1
F - - E - 2| dé .
x(x) \/on [-, exp[ 201 (& my) ] /3 (8.69)

Unfortunately, this distribution function is not expressible in terms of

elementary functions. Nevertheless, it may be evaluated for a specified

value of x by making use of tables of the error function,* which is defined
i

as

erf(u) = exp(—2?) dz (8.70)

2 I .
Vr Jo
Note that erf(0) = 0 and erf(x) = 1. In Table 6 of Appendix D, we present
a short set of values for the error function erf(u) for u in the range 0 to
3.3.

By using the symmetry of fy(x) and by a simple change of variables,

we may express the distribution function of Eq. 8.69 in terms of the error
function as follows:

F(x) = % [1 + erf(x\;i:x)] @B

The functions f x(x) and Fx(x) are plotted in Fig. 8.5 for the standardized
case when the mean my is 0 and the variance % is 1. Note that (1) the
probability density function is symmetric about the mean, (2) values of x
near the mean are most frequently encountered, and (3) the width of the
probability density curve is proportional to the standard deviation oy.

“The error function is tabulated extensively in several references; see, for
example, Abramowitz and Stegun (1965).
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f,\'(x/

0.6

0.4

Figure 8.5
Probability functions of a normalized Gaussian random variable of zero mean and
unit variance. (a) Probability density function. (b) Distribution function.

EXAMPLE 7

Suppose we wish to determine the probability that the Gaussian random
variable X lies in the interval my — ko < X = my + koy. where kis a
constant. In terms of the probability density function of A we may use
the second line of Eq. 8.33 and Eq. 8.71 to express this probability as

P(my — koy < X <= my + kay) = Falmy 1 kay) — Folimy — kay)

el &) - el - )]

Noting that the error function erf(«) has the property that

erf(—u) = —erf(u),
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we get the desired result

/
\

k
Pimy — kay < X s my + kay) = Crf(—;) (8.72)
\

For example. for & = 3. we find that
Pl gy, < XN =my + 3ay) = 0.997

That is. the probability that & Gaussian random variable X lies within =34,
of its mean nry is very close to one.

EXERCISE 6 The complimentary error function is defined by
few) = == [ exp(~2) d
erfc(u) = — | exp(—2z7) dz
v R

It is related to the error function erf(u) as
erfc(u) = 1 — erf(u)

Show that for a specified value of u, the complementary error function
erfc(u) equals twice the area under the tail of the curve of the probability
density function of a Gaussian random variable whose mean is zero and
variance is 1/2.

EXERCISE 7 A random variable X is Gaussian distributed with mean
myx = 5 and variance 0% = 64. What is the probability of the event
-3< X =<13?

CENTRAL LIMIT THEOREM

An important result in probability theory that is closely related to the
Gaussian distribution is the central limit theorem.* Let X,, X., . . . . X,
be a set of random variables that satisfies the following requirements:

I. The X, .withk =1,2...., n, are statistically independent.
2. The X, all have the same probability density function.
3. Both the mean and variance exist for each X;.

*tur a proof of the central limit theorem, see the references listed in footnote 1.

.
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Define a new random variable Y as

Y = 2 X (8.73)

k=1

Then, according to the central limit theorem, the standardized random
variable:

_ Y - EY]

Ty

4 (8.74)

approaches a Gaussian random variable with zero mean and unit variance
as the number of the random variables X, X,, . . . , X, increases without
limit. Note that from the definitions of expectation and variance of a ran-
dom variable, we may relate the mean and variance of Y to the corre-
sponding moments of the X, as follows:

n

> E[X4] (8.75)

E[Y]

k=1

and

i Var[X,] (8.76)

k=1

Var(Y]

Il

It is important to realize that the central limit theorem gives only the
“limiting” form of the distribution function of the standardized sum Z as
n tends to infinity. When n is finite, it is sometimes found that the Gaussian
limit gives a relatively poor approximation for the actual distribution func-
tion of Z, even though n may be large. The accuracy of this approximation
depends on the nature of the distribution of the X.

....... nu-----------c---uuoun-unnn......u....-.u--......--‘;

EXAMPLE 8 SUM OF n UNIFORMLY DISTRIBUTED RANDOM VARIABLES ‘.

Consider the random variable

Y= X,

k=1 :
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ka(xh)

Xk

O ————
RO ————

Figure 8.6
Uniform distribution.

where the X, are uniformly distributed random variables defined by (see
Fig. 8.6)

1 _a
fx(xe) =4 o 2 (8.77)
0

elsewhere

From Example 4, we find that the mean and variance of the X are given
by

my, =0
R a:
o, = (8.78)

Therefore, according to the central limit theorem, we may use a Gaussian
random variable of zero mean and variance na’/12 to approximate the sum
of n independent and identically distributed (iid) random variables, assuming
a uniform distribution and large n.

8.4 TRANSFORMATION GF RANDOM VARIABLES

Consider the problem of determining the probability density function of a
random variable ¥, which is obtained by a one-to-one transformation of
a given random variable X. The simplest possible case is when the new
random variable Y is a monotone increasing differentiable function g of
the random variable X (see Fig. 8.7):

Y= g(X)

In this case we have

)
(»))

Fi(y) = P(Y
P(X =

Fx(h()’)

I
A
g

A
3

S’

(8.79)
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Y
y = glxlfp--~
i
]
L X
o/ =x=ay
/ e,

Figure 8.7
A one-to-one transformation of a random variable X.

where A is the inverse transformation

h(y) = g7 '(y) (8.80)

This inverse transformation exists for all y, because x and y are related
one-to-one. Assuming that the given random variable X has a probability
density function fy(x), we may write

h(y)

Fe(y) = f " fate) d

Differentiating both sides of this relation with respect to the variable y,
we get

fr(y) = fx(h(}’))‘:;_z (8.81)

Consider next the case when g is a differentiable monotone decreasing
function with an inverse . We may then write

Fo(y) = | falx)dx

h(y)

which, on differentiation, yields
dh
fr(y) = = fx(h(»)) I (8.82)

Since the derivative dh/dy is negative in Eq. 8.82, whereas it is positive
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in Eq. 8.81, we may express both results by the single formula

Fr(y) = fx(h(y) I%’ (8.83)

This is the desired formula for finding the probability density function of
a one-to-one differentiable function of a given random variable.

.........................................................................................................................

EXAMPLE 9 SQUARE-LAW TRANSFORMATION

Consider a Gaussian random variable X of zero mean and variance o%,
which is transformed by a square-law device defined by

Y = X? (8.84)
as illustrated in Fig. 8.8. We wish to find the probability density function
of the new random variable Y.

First, we see from Fig. 8.8 that Y can never be negative. Therefore,
PlYsy)=0, y<0
and so

Fy(y) =0, y<0

Furthermore, we note that the inverse transformation is not single-valued,
as shown by '

x = h(y) = =Vy (8.85)
Y
Y= X%
—dre

|

| |

| |

| |

| |

| |

1 1 X
-y 0 +Jy

Figure 8.8
Square-law transformation.
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Consequently, both positive and negative values of x contribute to y. Sup-
pose that we are interested in the probability that Y < y, where y = 0.
We may then write

P(Ys<y) = P(-Vy<sX=<Vy)

P(X < Vy) - P(X < -Vy)

j“ fu e = [ feo) de

-

Differentiating both sides of this relation with respect to y, we obtain

frl(y) = ﬁ; [Fx(V9) + fx(=VP))

Noting that

1 X2
fx(x) = CXP(- )
V2noy 20%
we obtain
1 y
frly) = p(——;). y=0
V2nyoy 20%
f}_'(.‘/)
0.2 -
0.) =
= 1 1 1 y
-2 0 2 4 6
Figure 8.9
Probability density function of random variable Y at the output of a square-law

i device with a Gaussian random variable as input.



434 PROBABILITY THEORY AND RANDOM PROCESSES

We thus find that the complete probability density function of the trans-
formed random variable Y is given by

l -——}—— exp(—~—y—) y= 0
fy(y) = { V2nyox 203/’ (8.86)
0, y<0

which is plotted in Fig. 8.9. The probability density function of Eq. 8.86
is called a chi-squared density function when it is written as a function of
the variable y* = y.

............................................... ............-.........................,............................-.-

8.5 RANDOM PROCESSES

A basic concern in the statistical analysis of communication systems is the
characterization of random signals such as voice signals, television signals,
digital computer data, and electrical noise. These random signals have two
properties. First, the signals are functions of time, defined on some ob-
servation interval. Second, the signals are random in the sense that before
conducting an experiment, it is not possible to describe exactly the wave-
forms that will be observed. Accordingly, in describing random signals we
find that each sample point in our sample space is a function of time. For
example. in studying the fluctuations in the output of a transistor, we may
assume the simultaneous testing of an indefinitely large number of identical
transistors as a conceptual model of our problem. The output (measured
as a function of time) of a particular transistor in the collection is then one
sample point in our sample space. The sample space ensemble comprised
of functions of time is called a random or stochastic® process. As an integral
part of this notion, we assume the existence of a probability distribution
defined over an appropriate class of sets in the sample space, so that we
may speak with confidence of the probability of various events. We may
thus define a random process as an ensemble of time functions together with
a probability rule that assigns a probability to any meaningful event asso-
ciated with an observation of one of these functions.

Consider a random process X (1) represented by the set of sumple func-
tions {x,(t)},j = 1.2,...,n,as illustrated in Fig. 8.10. Sample function
or waveform x,(r), with probability of occurrence P(s,), corresponds to
sample point s, of the sample space S. and so on for the other sample
functions x(1), . . . , X,(t). Now suppose we observe the set of waveforms
{xn}j=12,....m simultaneously at some time instant, t = £, as
shown in the figure. Since each sample point s, of the sample space S has
associated with it a number x,(#,) and a probability P(s), we find that the

sThe word "’stochastic” comes from Greek for “to aim (guess) at”.

eesans
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Outcome of
o hirst
experniment

Outcome of
second
experiment

Outcome of
1 nth
experniment

r —>

Figure 8.10
An ensemble of sample functions.

resulting collection of numbers {x,(,)},j = 1,2, ..., n, forms a random
variable. We denote this random variable by X(t,). By observing the given
set of waveforms simultaneously at a second time instant, say ,, we obtain
a different collection of numbers, hence a different random variable X(1,).
Indeed, the set of waveforms {x,(s)} defines a different random variable
for each choice of observation instant. The difference between a random
variable and a random process is that for a random variable the outcome
of an experiment is mapped into a number, whereas for a random process
the outcome is mapped into a waveform that is a function of time.

RANDOM VECTORS OBTAINED FROM RANDOM PROCESSES

By definition, a random process X (¢) implies the existence of an infinite
number of random variables, one for each value of time ¢ in the range
—® < t < ®. Thus we may speak of the distribution function Fx(,(xy) of
the random variable X (t,) obtained by observing the random process X(1)
at time t,. In general, for k time instants 1,, t, . . ., Lk W€ define the k
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random variables X(r;). X(r;), . ... . X(1,). respectively. We may then
define the joint event

X(n)=sx, X() sx - - oo X(1) s x4
The probability of this joint event defines the joint distribution function:

Fx. ). X(13). .Xu.l(xl- Xae o vy Xi)

= P(X(t) sx,. X() s x2 ..., X() =x) (887)

For convenience of notation, we write this joint distribution function simply
as Fx(x) where the random vector X(t) equals

X(n)

X(r)

and the dummy vector x equals

For a particular sample point s,, the components of the random vector
X(t) represent the values of the sample function x,(r) observed at times
ti,fs, . . ., . Note also that the joint distribution function Fy,(X) depends
on the random process X(¢) and the set of times {t}. 7 = 1.2, ..., k.
The joint probability density function of the random vector X(t) equals

19*
. = —— F 8.88
f\ll)(x) (5’.1'](9).'3 D ﬁX‘ ['x«n(") ) ( )

This function is always nonnegative, with a total volume underneath its
curve in k-dimensional space that is equal to one.

........................................................................................................................

EXAMPLE 10

Consider the probability of obtaining a sample function or waveform x(1)
i of the random process X(¢) that passes through a set of k& ““windows,™ as
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Figure 8.11
The probability of a joint event.

illustrated in Fig. 8.11 for the case of k = 3. That is, we wish to find the
probability of the joint event

A = {a, < X(t) < b}, i
Given the joint probability density function fx(,(x), this probability equals

b, (b: b,
P(A) = f J j Frn(%) dx, dxs . . . dx,

8.6 STATIONARITY

Consider a set of times #;, I, . . . , & in the interval in which a random
process X () is defined. A complete characterization of the random process
X(t) enables us to specify the joint probability density function fx(x).
The random process X(¢) is said to be strictly stationary if the joint prob-
ability density function fx,(x) is invariant under shifts of the time origin.
In other words, the process X(r) is strictly stationary if the equality

Fxw(®) = fxusn(x) (8.89)

holds for every finite set of time instants {t,}, i = 1.2, ..., k, and for
every time-shift 7. The components of the random vector X(t) are obtained
by observing the random process X(r) at times ¢,, f3, . . . , I,. Correspond-
ingly, the components of the random vector X(t + T) are obtained by
observing the random process X(t) attimest, + T.0. + T,... . & + T,
where T is a time shift.

H

L]



ssssssssessteanssnssstcccrssssrasnsnnnne

sssesscssecnsansaarresastrsssnansasts secsssesssssssssssscsssssssssnnsanns

438 PROBABILITY THEORY AND RANDOM PROCESSES

. 1
b
a, 3
L
(a) fa t

Il-| 1b2 It;

[U—

(b)

Figure 8.12
The concept of stationarity.

Stationary processes are of great importance for at least two reasons:

1. They are frequently encountered in practice or approximated to a high
degree of accuracy. It is not necessary that a random process be sta-
tionary for all time, but only for some observation interval that is long
enough for the particular situation of interest.

2. Many of the important properties of commonly encountered stationary
processes are described by first and second moments. Consequently, it
is relatively easy to develop a simple but useful theory to describe these
processes. '

Random processes that are not stationary are called nonstationary.

EXAMPLE 11

Suppose we have a random process X () that is known to be strictly sta-
tionary. An implication of stationarity is that the probability that a set of
sample functions of this process pass through the windows of Fig. 8.12a is
equal to the probability that a set of the same number of sample functions
pass through the corresponding time-shifted windows of Fig. 8.12b. Note,
however, that it is not necessary that these two sets consist of the same
sample functions.

sessssssssasaa

sessssssssnsstanneens

seesne
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8.7 MEAN, CORRELATION, AND COVARIANCE FUNCTIONS

In many practical situations we find that it is not possible to determine (by
means of suitable measurements, say) the probability distribution of a
random process. Then we must content outselves with a partial description
of the distribution of the process. Ordinarily, the mean, autocorrelation
function, and autocovariance function of the random process are taken to
give a crude but, nevertheless, useful description of the distribution; these
terms are defined in the following paragraphs.

Consider a random process X(r) assumed to be strictly stationary. Let
X(t,) denote the random variable obtained by observing the process X(r)
at time t,. The mean of the process X(t) is a constant, defined by

my = E[X(t)] for any ¢,

where £ denotes the expectation operator. We may simplify the notation
by writing

my = E[X(1)] (8.90)

where X(r) is treated as a random variable for a fixed value of .
The autocorrelation function of a stationary process X (1) is defined as

Ry(te — 1) = E[X (1) X (1)) for any 1, and 1,

where X (1,) and X(¢,) are the random variables obtained by observing the
process X(t) at times t, and ¢, respectively. Note that the autocorrelation
function depends only on the time difference 1, — ;. We may simplify the
notation by using the variable 7 to denote the time difference £, — r, and
redefining the autocorrelation function of the process X(r) as

Ry(r) = E[X()X(t - 1)) (8.91)

where insofar as the expectation is concerned. X(¢) and X(t — 1) are
treated as random variables. The variable t is commonly referred to as a
time lag or time delay; the terms are used interchangeably. Equation 8.91
shows that for a stationary process, the autocorrelation function Rx(7)
is independent of a shift of the time origin. Note also that the argu-
ment of Ry () is obtained by subtracting the argument of the second factor
X(t — 1) from that of the first factor X(¢).

Yet another characteristic of a stationary process X(¢) is the auto-
covariance function defined by

Kx(t — 1) = E[(X(t) — mx)(X(t) — my)]  for anyt, and ¢,
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As with the autocorrelation function, we may simplify the notation by
redefining the autocovariance function of the process X(1) as

Ky(r) = E[(X() - m)(X(t = 1) = m)]5 (89

It is a straightforward matter to show that the autocovariance function
K (1), the autocorrelation function Ry (1), and the mean myofa stationary
process X (1) are related as follows

Kx(t) = Rx(r) — mk (8.93)

Clearly, if the process X(r) has zero mean (i.e., my is zero), then the

autocovariance and autocorrelation functions of the process are the same.
From here on we will use the mean and autocorrelation function as a

partial description of a random process. Moreover, we assume that

1. The mean of the process is constant.

2. The autocorrelation function of the process is independent of a shift of
the time origin.
3. The autocorrelation function at a lag of zero is finite.

These three conditions, however, are not sufficient to guarantee that the
random process in question is strictly stationary. A random process that
is not strictly stationary but for which these conditions hold is said to be
wide-sense stationary (WSS). Naturally, all strictly stationary processes are
wide-sense stationary, but the converse is not necessarily true.

PROPERTIES OF THE AUTOCORRELATION FUNCTION

The autocorrelation function Ry(7) of a wide-sense stationary process X(1)
has several important properties that follow from the definition given in
Eq. 8.91. In particular, we may state:

PROPERTY 1

The autocorrelation function of a wide-sense stationary process is an even
function of the time lag.

That is to say, the autocorrelation function R (1) satisfies the symmetry
condition:

Rx(1) = Ry(-1) (8.94)
For Rx(7), we write (see Eq. 8.91):

Ry(1) = E[X()X(t = )]
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Clearly, the product X(¢)X(¢r — t) is unaffected by an interchange of the
two terms X (¢) and X(r — t); hence,

Ry(7) = E[X(t = 1)X(1)]
= Ry(-71)

which is the desired result.

PROPERTY 2

The mean-square value of a wide-sense stationary process equals the
autocorrelation function of the process for zero time lag.

In mathematical terms, we may write
Rx(0) = E[X*(1)) (8.95)

This result follows directly from Eq. 8.91 by putting the time lag t = 0.

PROPERTY 3

The autocorrelation function of a wide-sense stationary process has its max-
imum magnitude at zero time lag.

In mathematical terms, Property 3 states that
[Rx(7)] < Rx(0) (8.96)

To prove this result, we first note that the mean-square value of the dif-
ference between X(¢) and X(¢+ — 7) is always nonnegative, as shown by

E[(X(r) - X(t = 1))'] =0
Since we have
(X(0) — X(t — 1)) = X*3(1) — 2X()X(t - 1) + X*(t — 1),
and the expectation is a lir;ear operator, we may write
E[ X)) — 2E[X()X(t — 7)] + E[X*(t — )] =0  (8.97)
We next note that for a wide-sense stationary process X(¢):

E[X*(] = E[X*(r = 7)] = Rx(0)
E[X()X(t = 1)] = Rx(7)



Ry(7)

Slowly fluctuating
random process

Rapidly fluctuating
random process

Figure 8.13
The autocorrelation functions of slowly and rapidly fluctuating random processes.

Substituting these values in Eq. 8.97 and simplifying, we get the result
given in Eq. 8.96.

PHYSICAL SIGNIFICANCE OF THE AUTOCORRELATION FUNCTION

The physical significance of the autocorrelation function Ry(7) is that it
provides a means of describing the interdependence of two random vari-
ables obtained by observing a random process X(r) at times 1 seconds
apart. It is therefore apparent that the more rapidly the random process
X(r) changes with time, the more rapidly will the autocorrelation function
Ry (1) decrease from its maximum R (0) as t increases, as illustrated in
Fig. 8.13. This decrease may be characterized by a decorrelation time T,
such that for t > 7,. the magnitude of the autocorrelation function Rx(1)
remains below some prescribed value. We may thus define the decorre-
lation time 1, of a wide-sense stationary process X (¢) of zero mean as the
time taken for the magnitude of the autocorrelation function Rx(7) to

decrease to 1% of its maximum value R, (0); the choice of 1% is arbitrary. -

EXAMPLE 12 SINUSOIDAL WAVE WITH RANDOM PHASE

Consider a sinusoidal process with random phase. The process is denoted
by

X(t) = Acos2nft + O) ' (8.98)

where A and f, are constants, and the random variable @ denotes the
phase. We assume that 8 is uniformly distributed over a range of 0 to 2m,
that is,

1
— <sg=<?2
L=y =0== (8.99)

0, elsewhere
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Figure 8.14
Autocorrelation function of a sinusoidal wave with random phase.

This means that the random variable © is equally likely to have any value
in the range 0 to 2z. A sample function of the random process X () is
given by

x(t) = Acos(2nft + 0)

where 0 lies inside the interval [0, 27]. Note that for each sample function,
0 remains constant.
The autocorrelation function of X (r) is

Ry(1) = E[X(t + 1)X(1)]

= E[A?cos(2nf.t + 2nf.r + O) cos(2nf + O)]

A? A?
5 E[cos(dnf.t + 2nf.r + 20)] + 3 E[cos(2nf.1)]

Since the expectation is with respect to the random variable @, we get

5

2 (2
e [EL /;cos(bzf(r)

Ry(7) = T I Z{cos(ﬂlnfrr + 2mt.. N di +

The first term integrates to 0, so we get

Ry(1) = 512— cos(2nf.1) (8.100)

which is plotted in Fig. 8.14. We see, therefore, that the autocorrelation
function of a sinusoidal process with random phase is another sinusoid at
the same frequency in the *“time-lag domain’ rather than the time domain.

.......................................................................................................................
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EXAMPLE 13 RANDOM BINARY WAVE

Figure\8.15 shows the sample function x(r) of a process X(¢) consisting of
a random sequence of binary symbols 1 and 0. It is assumed that:

1. The symbols 1 and 0 are represented by pulses of amplitude +A and
— A volts, respectively, and duration T seconds.

2. The pulse sequence is not synchronized so that the starting time of the
first pulse, 14, is equally likely to lie anywhere between 0 and T seconds.
That is, 1,is the sample value of a uniformly distributed random variable
T,, with its probability density function defined by

Osu=s<T

1
)= 1 (8.101)

0., elsewhere

3. During any time interval (n — 1)T <1t — t; < nT, where nis an integer,
we have P(0) = P(1). That is, the two symbols 0 and 1 are equally
likely, and the presence of a 1 or 0 in any one interval is independent
of all other intervals.

Since the amplitude levels — A and +A occur with equal probability.
it follows immediately that E[X(¢)] = 0, for all r, and the mean of the
process is therefore zero.

To find the autocorrelation function Ry(f, — 1), we have to evaluate
E[X(t,)X(t,)]. where X(t;) and X(r,) are random variables obtained by
observing the random process X (r) at times 1, and t,, respectively.

Consider the first case when |7, — ¢,/ > T. Then the random variables
X(z,) and X(1,) occur in different pulse intervals and are therefore inde-
pendent. We thus have

E[X(r)X(1)] = FIX()]E[X(1)] = 0, [ —a|>T

x(tf)
+A
|— _|4. ——
t
_I ]-0
H e
—A
——dew— — T |

i Figure 8.15
Sample function of random binary wave.
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Ry (1)

A?

T 0 T

Figure 8.16
Autocorrelation function of random binary wave.

Consider next the case when |1, — | <T.In such a situation we observe
from Fig. 8.15 that the random variables X () and X(t;) occur in the same

pulse interval if and only if the delay ¢t is less than T — |t — t]. We thus
: obtain the conditional expectation:

A2, g% T = |t — t|
0, elsewhere

E[X(rk)X(r,)m] = {

Averaging this result over all possible values of 1, we get

T~y

E(X (1) X ()] = j AL () di
0
T=li=t) A2
= Lo
L T

!rh - tl|< F

Il
xa
P Y
—
-~
=

We therefore conclude that the autocorrelation function of a random binary
wave, represented by the sample function shown in Fig. 8.15 is only a
function of the time difference © = i — 4, 3$ shown by

g ||
B i) = (‘ i 7)' el < T (8.102)
0, le|=T

{ This result is plotted in Fig. 8.16.

..........................................................................................................................

& What is the mean-square value of the random binary wave
described in Example 13? Use physical arguments to justify your answer.
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TIME AVERAGES AND ERGODICITY

If the theory of random processes is to be useful as a method for describing
communication systems, we have to be able to estimate from observations
of a random process X(t) such probabilistic quantities as the mean and
autocorrelation function of the process. For a stationary process, the mean
is defined by

my = E[X(1)] ;

- j T Xfrolx) dx (8.103)

and the autocorrelation function is defined by
E[X(nX(t - 1)]

fﬁ f, Xyfxw.xu-n(x, y) dx dy (8.104)

Il

Ry(1)

To compute my and Ry (1) by ensemble averaging, as defined in Eqs. 8.103
and 8.104, we have to average across all the sample functions of the process.
In particular, this computation requires complete knowledge of the first-
order and second-order joint probability density functions of the process.
In many practical situations, however, these probability density functions
are simply not available. Indeed, the only thing that we may usually find
available is the recording of one sample function cf the random process.
It seems natural then to consider also time averages of individual sample
functions of the process.

We define the time-averaged mean of the sample function x() of a
random process X(t) as

.k FT

(x(1)) = lim — f x(2) de (8.105)
T—x 2T =i

where the symbol (-) denotes time-averaging and 2T is the total observation

interval. In a similar way, we may define the time-averaged autocorrelation

function of the sample function x(?) as

(x()x(t = 7)) = lim 2i ) x()x(t — 1) drt (8.106)
T—= 2T -T

The two time averages {x(t)) and (x(t)x(t = 7)) are random variables
in that their values depend on which sample function of the random process
X(1) is used in the time-averaging evaluations. On the other hand, my is
a constant, and Ry(t) is an ordinary function of the variable .



In general, ensemble averages and time averages are not equal except
for a very special class of random process known as ergodic processes.” A
randorn process X (1) is said to be ergodic in the most general form if all of
its statisitical properties can be determined from a sample function repre-
senting one possible realization of the process. We note here that it is
necessary’ for a random process to be strictly stationary for it to be ergodic.
However, the converse is not always truc: that is. not all stationary pro-
cesses are ergodic.

Usually. we are not interested in estimating all the ensemble averages
of a random p rocess but rather only certain averages such as the mean and
the autocorrel ation function of the process. Accordingly, we may define
ergodicity in & more limited sense, as next described.

Ergodicity int @ Mean The time average (172T) [T, x(1)dris a random
variable wit*  mean and variance of its own. For a stationary process. we
find that ©* mean is equal to

I T (T '
E[’_TJ_TI(” dr} = ' ,E{_x(r)]dl

T,
= — 1 my dt
Jf

= My (8.107)

31— 13-

Therefore, this time average provides an unbiased estimate of my. An
estimator is said to be unbiased if the expected value of the estimate is
exactly the same as the true value of the pertinent parameter. We say that
the random process X (r) is ergodic in the mean if

T
lim %, J Tx(r) dt = my (8.108)

T—= &

with probability one. That is. for a random process to be ergodic in the
mean, its time-averaged and ensemble-averaged mean values must be equal
with probability one. The necessary and sufficient condition for the ergo-
dicity of the mean is that the variance of the estimator (1/2T) [Ty x(2) dt
approach zero as T approaches infinity.

"The problem of determining conditions under which time averages computed from
a sample function of a random process can be ultimately identified with
corresponding ensemble averages first arose in statistical mechanics. Physical
systems possessing properties of this kind were called ergodic by L. Boltzmann in
1887. The term “ergodic” is of Greek origin. It comes from the Greek for “work
path,” which relates 1o the path of an energetic particle in a gas in the context of
statistical mechanics (Gardner, 1987).
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Equation 8.108 suggests that we may estimate the mean of an ergodic
process by passing a finite record of the sample function of the process
through an integrator. An estimate of the mean of the process is produced
at the integrator output.

Ergodicity in the Autocorrelation Function Consider next the time: average

(1/27) J7 7 x(1)x(t = t) dt, which is also a random variable. Its mean is
equal to )

f[zirf_rrx(:)x(: = ¢ dz]

2—17—‘[1 E[_r(t).t.(t — 1)) dr

1 T
ﬁf_rm(r) di
Ry(1) : (8.109)

I

Accordingly, this time average provides an unbiased estimate of the en-
semble-averaged autocorrelation function Ry(7) of the random process
X(t). We say that the random process X(t) is ergodic in the autocorrelation
function if

1 T
lim ﬁfﬁrx({)x(t ~ 1) dr = Ry(7) (8.110)

T—x

with probability one. The necessary and sufficient condition for a stochastic
process to be ergodic in the autocorrelation function is that the variance
of the estimator (1/2 T) [T rx(O)x(t - 1)dr approach zero as T approaches
infinity.

To test a sample function of a stochastic process for ergodicity in the
mean, it suffices to know the mean my and autocorrelation function Ry (1)
of the process. However, to test it for ergodicity in the autocorrelation
function, we have to know fourth-order moments of the process. Therefore,
except for certain simple cases, it is usually very difficult to establish if a
random process meets the conditions for the ergodicity in both the mean
and the autocorrelation function. Thus. in practice, we are usually forced
to consider the physical origin of the random process, and thereby make
a somewhat intuitive judgment as to whether it is reasonable to interchange
time and ensemble averages.

...........................................................................................................................

! EXAMPLE 14 SINUSOIDAL WAVE WITH RANDOM PHASE (CONTINUED)

Consider again the sinusoidal process X(r) defined by 3

X(t) = A cosQ2nf.t + o)
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where A and f. are constants and © is a uniformly distributed random
variable:

1
fa(0) = E;z
0, elsewhere

0<60<2n

The mean of this random process is

I

my

j " A cos(2nfit + 0)fe(0) d0

dn A
j Z cos2aft + 0) d0
0 2T!
=0

The autocorrelation function of the process was determined in Example
12; the result is reproduced here for convenience

Rx(1) = % cos(2nf. 1)

Let x(¢) denote a sample function of the process: thus
x(1) = A cos(2nfr + 0)
The time-averaged mean of the process 18

lim ;I—T fr A cos(2af.r + 0) dt

T—x &

Il

(x(0)
0

The time-averaged autocorrelation function of the process is
LAY (T
(x(Ox(t = ) = lim o= J cos(2nf.t + 2nfr + 0) cos(2af.t + 0) dt
T—= ZT -T
Using the trigonometric relation

cos(2nf.1)

H 1
i cos(2nfu + 2nfr + O)cos(2nft + 0) = 5

- %cos(4nf(r + 2nf.t + 0)
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and then integrating, the expression for the time-averaged autocorrelation
function simplifies as

Az
Cx(x(t - 1)) = T cos(2nf, 1)

Hence, the time-averaged mean and time-averaged autocorrelation func-
tion of the process are exactly the same as the corresponding ensemble
averages. This random process is therefore ergodic in both the mean and
the autocorrelation function.

........................................................................................

8.8 RANDOM PROCESS TRANSMISSION THROUGH
LINEAR FILTERS

Suppose that a random process X (r) is applied as input to a linear time-
invariant filter of impulse response 4(t), producing a random process Y(2)
at the filter output, as in Fig. 8.17. In general, it is difficult to describe the
probability distribution of the output random process Y (), even when the
probability distribution of the input random process X(t) is completely
specified for —> <1 < «,

In this section, we determine the mean and autocorrelation functions
of the output random process Y (¢) in terms of those of the input X(r),
assuming that X(¢) is a wide-sense stationary process.

Consider first the mean of the output random process Y (). By defi-
nition, we have

my(t) = E[Y(1)] = EU h(D)X(t - 1) dr] (8.111)

Provided that the expectation E[X (1] is finite for all ¢, and the system is
stable, we may interchange the order of the expectation and the integration
with respect to 7 in Eq. 8.111, and so write

my(f) = f h(t)ELX(¢ - 1)] de

= f h(t)my(t - 1) dr (8.112)

When the input random process X (1) is wide-sense stationary, the mean
mx(1) is a constant my, so that we may simplify Eq. 8.112 as

my =my | h(z) dt

myH(0) (8.113)
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- Input Impulse Output
!fﬂ—-——" response P ¥ (1)

hir)

Figure 8.17
Transmission of a random process through a linear filter.

where H(0) is the zero-frequency response of the system. Equation 8.113
states that the mean of the output process of a stable linear time-invariant
system is equal to the mean of the input process multiplied by the zero-
frequency response of the system.

Consider next the autocorrelation function of the output random process
Y (1). By definition, we have

R,(r,u) = E[Y()Y (u)]

where  and u denote two values of time at which the output process is
observed. We may therefore use the convolution integral to write

h(1)X(u — 1) dfz:l
(8.114)

Rol, u) = E[J;h(r,)X(r o g i j

Here again, provided that E[X*()] is finite for all r and the system is stable,
we may interchange the order of the expectation and the integrations with
respect to r, and 1, in Eq. 8.114, obtaining

Ry(t,u) = [ drih(x) [ ahExe - Xt - o)

I" de il J drRla R — T = ) (8.115)

When the input X(1) is a wide-sense stationary process, the autocorrelation
function of X () is only a function of the difference between the observation
times t — 7, and u — t,. Thus, putting r =  — u in Eq. 8.115, we may
write

Ry(z) =J° r R Rx(r — T + ©) dry dr, (8.116)

On combining-this result with that involving the mean my, we see that if
the input to a stable linear time-invariant filter is a wide-sense stationary
process, then the output of the filter is also a wide-sense stationary process.
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Since Ry(0) = E[Y?(r)], it follows that the mean-square value of the
output random process Y (t) is obtained by putting ¢ = 0 in Eq. 8.116.
We thus get the result:

E[Y(1)] = j f R(t)R()Ry(t: - 1) drdr,  (8.117)

which is a constant.

8.9 POWER SPECTRAL DENSITY

Thus far we have considered the characterization of wide-sense stationary
processes in linear systems in the time domain. We turn next to the char-
acterization of random processes in linear systems by using frequency-
domain ideas. In particular, we wish to derive the frequency-domain equiv-
alent to the result of Eq. 8.117 defining the mean-square value of the filter
output.

By definition, the impulse response of a linear time-invariant filter is
equal to the inverse Fourier transform of the transfer function of the system.
We may thus write

h(ry) = j " H() explj2nf7) df (8.118)

Substituting this expression for h(r;) in Eq. 8.117, and rearranging the
resultant triple integration, we get

€@l = [ arH) [ duh(e) [T Relr = ) expizafe) dr,
(8.119)

Define a new variable

Then we may rewrite Eq. 8.119 in the form
eyl = [ afup) [ dni(e) exptionfe)

x f Ry(t) exp(—j2aft) dr (8.120)

The middle integral on the right side in Eq. 8.120 is simply H*(f), the
complex conjugate of the transfer function H(f) of the filter; hence, we
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may simplify this equation as

B = [T alHOE [ R expl=i2af0) de @121

We may further simplify Eq. 8.121 by recognizing that the last integral is
simply the Fourier transform of the autocorrelation function Ry(7) of the
input random process X (¢). Let this transform be denoted by Sy (f), written
in expanded form as

Sx(f) = ff Ry(t) exp(—j2nf7) dt (8.122)

The function Sy(f) is called the power spectral density or power spectrum
of the wide-sense stationary process X(r). Thus substituting Eq. 8.122 in
8.121, we obtain the desired relation

B = [ IHP Sx(f) df (8.123)

Equation 8.123 states that the mean-square value of the output of a stable
linear time-invariant filter in response to a wide-sense stationary input process
is equal to the integral over all frequencies of the power spectral density of
the input random process multiplied by the squared magnitude of the transfer
function of the filter. This is the desired frequency-domain equivalent to
the time-domain relation of Eq. 8.117.

PROPERTIES OF THE POWER SPECTRAL DENSITY

The power spectral density Sy(f) and the autocorrelation function Rx(r)
of a wide-sense stationary process X(¢) form a Fourier transform pair, as
shown by the pair of relations:

o Slf) = f Ry(c) exp(—j2nfr) de (8.124)
Ry(1) = j Sx(f) exp(j2nfz) df (8.125)

This pair of equations constitutes the Einstein—Wiener-Khintchine relations
- for wide-sense stationary processes
The power spectral density of a wide-sense stationary process has a
number of important properties that follow directly from Egs. 8.124 and
8.125, as next described.
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PROPERTY 1

The zero-frequency value of the power spectral density of a wide-sense sta-
tionary process equals the total area under the graph of the autocorrelation
function; that is,

5,(0) = f " Ra(r) dr (8.126)

This property follows directly from Eq. 8.124 by putting f = 0.

PROPERTY 2

The mean-square value of a wide-sense stationary process equals the total
area under the graph of the power spectral density; that is,

Exe) = [ si(h) df (8.127)

This property follows directly from Eq. 8.125 by putting r = 0, and noting
that Rx(0) = E[X%(1)).

PROPERTY 3
The power spectral density of a wide-sense stationary process is always
nonnegative; that is,

Sx(f) =0, for all f (8.128)

This is a necessary and sufficient condition for the mean-square value of
a random process (which equals the total area under the curve of the power
spectral density of the process) to be nonnegative.

PROPERTY 4
The power spectral density of a wide-sense stationary process is an even
function of the frequency; that is

Sx(—f) = Sx(f) (8.129)

- This property is readily obtained by substituting — f for f in Eq. 8.124.

Sx (=) = [ Ru() exp(j2nfr) do
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Next. substituting —t for 1, and recognizing that Ry(—1) = Ry(1). we
get 5

Sy(—f) = j R, (1) expl - j2af7) de = Sy(f)

which is the desired result.

These properties parallel those for periodic signals. which we described
in Chapter 4. Indeed. we may usc ideas similar to those described therein
to measure the autocorrelation function and power spectral density of a
wide-sense stationary process.

exeRcISE 9 Consider the function o(f) defined by

S
o = 3

where S(f) is the power spectral density of a random process and R(0) is
the value of its autocorrelation function for a lag of zero (i.e.. T = 0).
Explain why o (f) has the properties usually associated with a probability
density function.

EXAMPLE 15 SINE WAVE WITH RANDOM PHASE (CONTINUED)

Consider the sinusoidal process Xiny=A4 cos(2af.t ~ @)W here the phase -
@ is a uniformly distributed random variabie over the range 0 to 27. The
autocorrelation function of this process is given by Eq. 8.100. % hich is
reproduced here for convenience:

cos(2nf. 1)

o) 3

R\(T) =

Sy

> | . 2
sy s A=

-fe 0 fe

: Figure 8.18
*  Power spectral density of a sinusoidal process
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Taking the Fourier transform of both sides of this relation. we find that
the power spectral density of the sinusoidal process X(t) is given by

Sx() = 2 (U = £+ 8 + 1) (8.130)

The power spectral density Sx(f) consists of a pair of delta functions
weighted by the factor A*/4 and located at +f. as in Fig. 8.18. We note
that the total area under a delta function is 1. Hence, the total area under
the Sx(f) of Eq. 8.130 is equal to A*/2, as expected.

...........................................................................................................................

............................................................................................................................

EXAMPLE 16 RANDOM BINARY WAVE (CONTINUED)

Consider again a random binary wave consisting of a sequence of 1's and
0's represented by the values +A and — A, respectively. In Example 13
we showed that the autocorrelation function of this random process (see.
Eq. 8.102) is

Rx(T): A’ (l _7)- 'Tl<T
0. 71| =T

The power spectral density of the process is therefore

| Iz] )
Sx(f) = I_ITA* (l = -f) exp(—j2nfr) dr

syif)

~ln
=

o
-l=
i~

Figure 8.19
Power spectral density of random binary wave.
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Using the Fourier transform of a triangular function evaluated in Example

10 of Chapter 2. we obtain .
Su(f) = AT sine’(fT) o (R13D

which is plotted in"Fig. 8.19. Here again. we see that the power spectral
density is nonnegative for all f and that 1t 1s an even function of f. We
note from exercise 7 of Chapter 2. that

% R A
Jslmr )(_—T o 1ol

Therefore. the total ares under $,( f). or the average power of the rundom
binary wave is A-.

The result of Eq. 8.131 mayv be gencralized as follows. We note that the
energy spectral density of a rectangular pulse g(¢) of amplitude A and
duration T is given by

¥(f) = AT sine (fT) (8.133)
We may therefore rewrite Eq. 8.131 in terms of #.(f) as

wif
Sxlf) = —F ) (8.134)

Equation 8.134 states that, for a random binary wave in which binary
symbols 1 and 0 are represented by pulses g(r) and — g(1). respectively, i
i the power spectral density S, (f) is equal to the energy spectral density i
¥,(f) of the symbol shaping pulse g(1) divided by the symbol duration T.

EXERCISE 10 Sketch the autocorrelation function and power spectral
density of a random binary wave alternating between —1 and +1 V for
the following values of pulse duration T:

(@) T =14s
(b) T =1s
() T=2s

Comment on your results.

...........................................................................................................................

EXAMPLE 17 LINEAR MAXIMAL SEQUENCES

i There exists a class of deterministic sequences known as maximum length
i sequences with many of the properties of a random binary sequence and
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Memory X, Memory | x, | Memory x5 Berais
—pd St »{ stage p—P{ st p Uutpu
:ge ;9 gqe sequence
N Modulo-two
adder

Figure 8.20
Linear-maximal-sequence generator.

yet requiring simple instrumentation. A maximum-length sequence is a
periodic binary sequence generated by a feedback shift register that has the
longest possible period for this particular method of generation. A shift
register of length m is a device consisting of m consecutive 2-state memory
stages (flip-flops) regulated by a single timing clock. At each clock pulse,
the state (represented by binary symbol 1 of 0) of each memory stage is
shifted to the next stage down the line. To prevent the shift register from
emptying by the end of m clock pulses. we use a logical (i.e.. Boolean)
function of the states of the m memory stages to compute a feedback term,
and apply it to the first memory stage of the shift register. The most
important special form of this feedback shift register is the linear case in
which the feedback function is obtained by using modulo-wo adders to
combine the outputs of the various memory stages. This operation is il-
lustrated in Fig. 8.20 for m = 3. Representing the states of the three
memory stages as x,, x,, and x;, we see that in Fig. 8.20 the feedback
function is equal to the modulo-two sum of x; and x;."* A maximum length
sequence generated by a feedback shift register using a linear feedback
function is called a linear maximal sequence. This sequence is always
periodic with a period defined by

N=2"-1 (8.135)

where m is the length of the shift register. Assuming, for example, that
the three memory stages of the shift register shown in Fig. 8.20 are in the
initial states 0, 0, and 1, respectively, we find that the resulting output
sequence is 1001110, repeating with period 7.

Representing the symbols 1 and 0 by the values + A and — A, respec-
tively, we find that the autocorrelation function of a linear maximal se-

*In modulo-two addition, the sum of x, and x, takes the value 1 only when x, or x;,
but not both, takes the value 1. In other words, the carry is ignored. This operation
is equivalent to the logical EXCLUSIVE OR.
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and that for values of time lag 7 lying

in the interval — NT/2 < t < NT/2, it is defined by

N+1
NT

wli-

Ry(z) = _ﬂf

).

lt|=T

for the remainder of the period

N
(8.136)
Ry (T)
A?
! ]
5 |
! I
! 1
! |
| I
| |
| |
! |
H =T T !

_] —NT \

B, ] e

ia)

Sx(n

rfrrl’x_({‘
1

T

SN

Figure 8.21

Characteristics of linear maximal sequence. (a) Autocorrelation function. (b) Power

spectral density.
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where T is the duration for which the symbol 1 or 0 is defined. This result
is plotted in Fig. 8.21a for the case of m = 3or N = 7.

The autocorrelation function depicted in Fig. 8.21a exhibits two char-
acteristics: a distinct peak value and a periodic nature. These two char-
acteristics make linear maximal sequences well-suited for use in synchro-
nous digital communications. For example, we may use a linear maximal
sequence as the training sequence for adaptive equalization in a data trans-
mission system operating over an unknown channel. Specifically, we use
a feedback shift register in the transmitter to generate a linear maximal
sequence for probing the channel during the training mode of the system,
and use a second feedback shift register in the receiver that is identical to
that in the transmitter and synchronized to it. The second feedback shift
register generates a replica of the training sequence, which is used as the
desired response for the adaptive equalizer in the receiver; adaptive equal-
ization was described in Section 6.8.

Linear maximal sequences are also referred to as pseudorandom or
pseudonoise (PN) sequences. The term ““random™ comes from the fact that
they have many of the properties of a random binary sequence, specifically,
the following:*

1. The number of 1's per period is always one more than the number of
0’s.

2. In every period, half the runs (consecutive outputs of the same kind)
are of length one, one fourth are of length two, one eighth are of length
three, and so on, as long as the number of runs so indicated exceeds
one.

3. The autocorrelation function is two-valued.

From Fig. 8.21a, we note that the autocorrelation function of the se-
Guence consists of a constant term equal to —A*/N plus a periodic train
of triangular pulses of amplitude A* + A*/N, pulse width 2T and period
NT in the r-domain. Therefore, taking the Fourier transform of Eq. 8.136,
we find that the power spectral density of a linear maximal sequence is

given by
A? A = AN S BN n
NNy (1 # N) o e (N) "( - NT)

n=

A? 1+ Ny & . L fn
ﬁgé(f)+A'( T )%;xsmr(i—l) 5( _X’;Tr)

: (8.137)

[

Sx(f)

sFor further details of linear maximal sequences, see Golomb (1964), pp. 1-32. See
also the review paper by Sarwate and Pursley (1980).

ecscsssssnsas
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which is plotted in Fig. 8.216 form = 3or N = 7. Comparing this power
spectral_density characteristic with that of Fig. 8.19 for a random binary
sequen(fe we see that they both have an envelope of the same form.
namely sinc?(fT), which depends only on the duration 7. The funda-

: mental difference. of course. is that whereas the random binary sequence

i has a continuous spectral density characteristic. the corresponding char-
acteristic of a linear maximal sequence consists of delta functions spaced
1/NT hertz apart.

EXERCISE 11 Find the limiting value of the power spectral density of
the linear maximal sequence considered in Example 17 as the period of
the sequence becomes large. Compare your result with the power spectral
density of a random binary wave of similar characteristics.

EXAMPLE 18 MODULATED RANDOM PROCESS

A situation that often arises in practice is that of mixing (i.e.. multiplication)
of a wide-sense stationary process .Y () with a sinusoidal wave denoted by
cos(2rnf.t = @), where the phase @ is a random variable that is uniformly
distributed over the interval 0 to 2x. The addition of the random phase &
in this manner merely recognizes the fact that the time origin is arbitrarily
chosen when X(r) and cos(2zf.t + &) come from physically independent
sources, as is usually the case. We are interested in determining the power
spectral density of the random process Y (t) defined by

Y(r) = X(t) cosQnf.t + @) (8.138)
We note that the autocorrelation of Y (r) is given by

Rylz} = E[F(F + 3 ¥ ()]
= E[X(t + 1) cos2nf.t + 2nf.t + O)X(1) cos(2rnf + @)]
: = E[X(r + 1) X(1)]
X E[cos(2af. + 2nf.t + @) cos(2nft + O)]
: = 4Ry (1) E[cos(2nf.7) + cos(4nf.t + 2nf.r + 20)]
= 4R (1) cos(2nf.1)

Because the power spectral density is the Fourier transform of the auto-
correlation function, we find that the power spectral densities of the random
process X (1) and Y (r) are related as follows:

Sy(f) = ASx(f = f) + Sx(f + £)] (8.139)
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That is. to obtain the power spectral density of the random process Y (1),
we shift the given power spectral density Sy(f) of random process X(r)
to the right by f., shift it to the left by f.. add the two shifted power spectra,
and divide the result by 4.

..........................................................................................................................

RELATION AMONG THE POWER SPECTRAL DENSITIES OF THE INPUT
AND OUTPUT RANDOM PROCESSES

Let Sy (f) denote the power spectral density of the output random process
Y (¢) obtained by passing the random process X(¢) through a linear filter
of transfer function H(f). Then, recognizing by definition that the power
spectral density of a random process is equal to the Fourier transform of
its autocorrelation function and substituting Eq. 8.116 for Ry (1), we obtain
$:) = |7 Ry() exp(=j2nf) de

x

= J'= J" J'x h(t)h(t)Rx(t — 7, + 1,) exp(—j2nf1) dr, dr, dt
(8.140)

Lett — 1, + T, = T, OI, equivalently, 7 = 7o + 7, = T2, Then, by making
this substitution in Eq. 8.140, we find that Sy(f) may be expressed as the
product of three terms: the transfer function H(f) of the filter, the complex
conjugate of H(f), and the power spectral density Sy(f) of the input
process X(f), as shown by

Sy(f) = H(f)H (f)Sx(f) (8.141)

However. |H(f)[? = H(f)H*(f). We thus find that the relationship among
the power spectral densities of the input and output random processes s
simply expressed in the frequency domain by writing

Sy(f) = IH(HPSx(f) (8.142)

That is, the output power spectral density equals the input power spectral
density multiplied by the squared magnitude of the transfer function of the
filter. By using this relation, we can determine the effect of passing a wide-
sense stationary process through a linear time-invariant filter.

It is of interest to note that Eq. 8.142 may also be deduced from Eq.
8.123 simply by recognizing that the mean-square value of a wide-sense
stationary process equals the total area under the curve of power spectral
density of the process in accordance with Property 2 (i.e., Eq. 8.127).
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EXERCISE 12 Consider the comb filter' of Fig. 8.22 consisting of a delay
line and a summing device. Evaluate the power spectral density Sy(f) of
the filter output Y (1), given that the power spectral density of the filter
input X (1) is Sx(f).What is the approximate value of S, (f) for small values
of frequency f?

X(t) = > ¥ Yie)

Delay

Y

(a)

[H(f);?

4+

-
St
~ -
-1
-1
=l-

st
5w o

(b)

Figure 8.22
Comb filter.

..8.10 CROSS-CORRELATION FUNCTIONS

Let X(r) and Y(1) be two jointly wide-sense stationary processes. We define
the cross-correlation funciion Ry, (1) of these two processes as:

Ru(1) = E[X()YU - 1) (8.143)

"“The filter of Fig. 8.22 is referred to as a “‘comb” filter because a graph of its
frequency response is somewhat comb-like in appearance.
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Similarly, we define the second cross-correlation function Ry (1) of the
processes X (1) and Y(t) as

Ryx(1) = E[Y()X(t = 7)] (8.144)

A cross-correlation function is not generally an even function of t. as is
true for an autocorrelation function, nor does it have a maximum at the
origin. However, it does obey a certain symmetry relationship:

Ryy(1) = Ryx(—1) (8.145)

EXAMPLE 19 QUADRATURE-MODULATED PROCESSES

Consider a pair of quadrature-modulated processes X, () and X,(r) that are
related to a wide-sense stationary process X(r) as follows

X,(t) = X(1) cosQnf .t + O) (8.146)
X,(t) = X(¢t) sinQnfr + ©) (8.147)

where @ is a uniformly distributed random variable. The cross-correlation
function of X,(¢) and X(r) is given by

Ri(t) = E[X (X1 = 7))
= E[X()X(r — 1) cos2nf,t + @) sinQnfr - 2nfr + Q)]
= E[X(1)X(t — 1)) E[cos(2nf.t + O) sin@nft — 2nfr + o))
= 4R (7)E[sin(4nft — 2nfr + 20) — sin(2xf.1)]
= —iR(7) sin(2nf.1)
(8.148)

Note that at = = 0. we have

R.»(0)

E[X\(0)X:(0)]
=0 (8.149)

This shows that the random variables X (1) and X.(r) obtained by observing
the quadrature-modulated processes X(7) and X (r) at some fixed value
of time r are orthogonal to each other.
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EXERCISE 13 A SR

(a) Prove the property of cross-correlation functions of a wide-sense
stationary process described in Eq. 8.145.

(b) Demonstrate the validity of this property for the quadrature-mod-
ulated processes of Example 19.

8.11 CROSS-SPECTRAL DENSITIES

Just as the power spectral density provides a measure of the frequency
distribution of a single random process, cross-spectral densities provide a
measure of the frequency interrelationship between two random processes.

We define the cross-spectral densities Sxy(f) and Syx(f) of the pair of
random processes X(f) and Y(r) to be the Fourier transforms of the re-
spective cross-correlation functions, as shown by

Silfy = f " Ran(s) exp(~j2xf1) ds (8.150)

and

Si() = [ Rux(@) exp(j2rf) de (8.151)

The cross-correlation functions and cross-spectral densities thus form Four-
ier transform pairs. Accordingly, we may write

Ryy(7) = [ " Sulf) explj2nf) df (8.152)

and

Rux() = [ Sualf) explj2nfo) df (8.153)

The cross-spectral densities Syy(f) and Syx(f) are not necessarily real
functions of the frequency f. However, substituting the relationship

Ryy(7) = Ryx(—1)
in Eq. 8.150, we find that Sxy(f) and Syx(f) are related by

Sxv(f) = Sex(=f) = Six(f) (8.154)
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That is to say, the cross-spectral densities of a pair of jointly wide-sense
stationary processes are the complex conjugate of each other. Because of
this property, the sum of Syy(f) and Syx(f) is real.

.......................

Suppose that the random processes X(r) and Y(¢) have zero mean, and
i they are individually stationary in the wide sense. Consider the sum random
i process

Z(t) = X(t) + Y(0) (8.155)

The problem is to determine the power spectral density of Z(r).
The autocorrelation function of Z(r) is given by

LR 0) = E(Z(0)Z0)]

: — E[(X() + YO)X) + Y(w)]

= EX()X()] + EX()Y(W)] + E[Y()XwW)] + EY()Y ()]
Ry(t, u) + Ryy(t, u) + Ryx(r, u) + Ry(2, u)

(8.156)
Defining 7 = ¢ — u, we may therefore write
Rz(t) = Rx(r) + Rxy(7) + Ryx(z) + Ry(7) (8.157)

when the random processes X(t) and Y(¢) are also jointly stationary in the
wide sense. Accordingly, taking the Fourier transform of both sides of Eq.
8.157, we get

S2(f) = Sx(f) + Sxv(f) + Syx(f) + Sy(f) (8.158)

We thus see that the cross-spectral densities Syy(f) and Syx(f) represent
the spectral components that must be added to the individual power spectral
densities of a pair of correlated random processes in order to obtain the
i power spectral density of their sum.

When the wide-sense stationary processes X(f) and Y(t) are uncorre-
lated, the cross-spectral densities Syy(f) and Sy, (f) are zero, so Eq. 8.158
reduces to

52(f) = Sx(f) + Sv(f) (8.159)
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We may generalize this result by stating that when there is a multiplicity
of zero-mean wide-sense stationary processes that are uncorrelated with
each other, the power spectral density of their sum is equal to the sum of
their individual power spectral densities.

...........................................................................................................................

...........................................................................................................................

Consider next the problem of passing two jointly wide-sense stationary

i random processes through a pair of separate, stable, linear, time-invariant
filters, as shown in Fig. 8.23. In particular, suppose that the random process
X(t) is the input to the filter of impulse response h,(r) and that the random
process Y(¢) is the input to the filter of impulse response h,(r). Let V()
and Z(t) denote the random processes at the respective filter outputs. The
cross-correlation function of V/(t) and Z(t) is therefore,

Ryz(t, u) = E[V(1)Z(u)]
EU’ hi(r) X( — 1) drlfx hilsi ¥l = 1) dr{l
[ [ memeexe - oy - o) dn o

- ff fz h(t)h(t3) Ryy(t — 7, u — 1.) dt, d1> (8.160)

where Ryy(t, u) is the cross-correlation function of X(¢) and Y(¢). Because
the input random processes are jointly wide-sense stationary (by hypoth-
esis), we may put r = ¢ — u and so rewrite Eq. 8.160 as

RVZ(t) = J’f J’jm hl(rl)hz(fg)ny(t = Ty Tz) dT] d?.'g (8161)

X (1)——> h,(t) —V (1)

Y (t) =D hylr) p—Z (1)

Figure 8.23
A pair of separate filters.
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Taking the Fourier transform of both sides of Eq. 8.161 and using a ;
procedure similar to that which led to the development of Eq. 8.141, we
finally get

sz(f) = Hl(f)H{(f)SXY(f) (8-162)

where H,(f) and H,(f) are the transfer functions of the respective filters
in Fig. 8.23 and H}(f) is the complex conjugate of H,(f). This is the
desired relationship between the cross-spectral density of the output proc-
i esses and that of the input processes. Equation 8.162 includes the relation
i of Eq. 8.142 as a special case.

...........................................................................................................................

............ 8.12 GAUSSIAN PROCESS

Up to this point in our discussion, we have presented the theory of random
processes in general terms. In the remainder of the chapter, we consider
this theory in the context of some important random processes that are
commonly encountered in the study of communication systems.

Let us suppose that we observe a random process X(¢) for an interval
that starts at time ¢ = 0 and lasts until t = T Suppose also that we weight
the random process X(r) by some function g(r) and then integrate the
product g(r).X(¢) over this observation interval, thereby obtaining a random
variable Y defined by

Y = f Te(0)X(0) dt (8.163)

We refer to Y as a linear functional of X (). The distinction between a
function and a functional should be carefully noted. For example, the sum
Y = 2, a,X,, where the a, are constants and the X, are random variables,
is a linear function of the X,; for each observed set of values for the random
variables X,, we have a corresponding value for the random variable Y.
On the other hand, in Eq. 8.163 the value of the random variable Y depends
on the course of the argument function 8(1)X(r) over the observation in-
terval 0 to T. Thus a functional is a quantity that depends on the entire
course of one or more functions rather than on a number of discrete
variables. In other words, the domain of a functional is a set or space of
admissible functions rather than a region of a coordinate space.

If in Eq. 8.163 the weighting function g(7) is such that the mean-square
value of the random variable Y is finite, and if the random variable Y is
a Gaussian-distributed random variable for every g(z) in this class of func-
tions, then the process X(t) is said to be a Gaussian process. In other
words, the process X(¢) is a Gaussian process if every linear functional of
X(t) is a Gaussian random variable.

Naturally, when a Guassian process X(r) is sampled at time ', for ex-
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ample, the result is a Gaussian random variable X(t,). Let m(t,) denote
the mean of X(t), and o%(t;) denote its variance. We may then express the
probability density function of the sample X(r) as

N _ i = m@)y
Froy(e) = Vara(t) exp[ 20%(1) ] (8.164)

A Gaussian process has two main virtues. First, the Gaussian process
has many properties that make analytic results possible. Second, the ran-
dom processes produced by physical phenomena are often such that a
Gaussian model is appropriate. The central limit theorem provides the
mathematical justification for using a Gaussian process as a model of a
large number of different physical phenomena in which the observed ran-
dom variable, at a particular instant of time, is the result of a large number
of individual random events. Furthermore, the use of a Gaussian model -
to describe such physical phenomena is usually confirmed by experiments.
Thus the widespread occurrence of physical phenomena for which a Gaus-
sian model is appropriate, together with the ease with which a Gaussian
process is handled mathematically, make the Gaussian process very im-
portant in the study of communication systems.

Some of the important properties of a Gaussian process are as follows:

PROPERTY 1

If a Gaussian process X(t) is applied to a stable linear filter, then the random
process Y(t) developed at the output of the filter is also Gaussian.

This property is readily derived by using the definition of a Gaussian process
based oni Eq. 8.163. Consider the situation depicted in Fig. 8.17, where
we have a linear time-invariant filter of impulse response h(¢), with the
random process X(f) as input and the random process Y(r) as output. We
assume that X(¢) is a Gaussian process. The random processes Y(t) and
X(¢) are related by the convolution integral

Y() = L "ht - DX(r) dr, O<t<w (8.165)

where 0 < ¢ < T is the observation interval of the input X(r). We assume
that the impulse response h(f) is such that the mean-square value of
the output random process Y(¢) is finite for all ¢ in the time interval
0 < t < o for which Y(¢) is defined. To demonstrate that the output process
Y(r) is Gaussian, we must show that any linear functional of it is a Gaussian
random variable. That is, if we define the random variable

z- j gr(1)Y(0) dt
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or, equivalently,
g= f’g,(:) ] "t - 9X(x) dr dt (8.166)
0 1]

then Z must be a Gaussian random variable for every function gy(t), such
that the mean-square value of Z is finite. Interchanging the order of in-
tegration in Eq. 8.166, we get

z = f " e()X(x) dt (8.167)

where

%(8) = fo T ev(Oh(t - 1) dt (8.168)

Since X(t) is a Gaussian process by hypothesis, it follows from Eq. 8.167
that Z must be a Gaussian random variable. We have thus shown that if
the input X(¢) to a linear filter is a Gaussian process, then the output Y(r)
is also a Gaussian process. Note, however, that although our proof was
carried out assuming a time-invariant linear filter, this property is true for
any arbitrary stable linear system.

PROPERTY 2

Consider the set of random variables or samples X| t), Xit), ..., Xlt,), ob-
tained by observing a random process X(t) at times t, 4, ..., t,. Ifthe process
X(t) is Gaussian, then this set of random variables are jointly Gaussian for
any n, with their n-fold joint probability density function™ being completely
determined by specifying the set of means

mx(t) = E(X(t)], i=12...,n
and the set of autocorrelation functions
Rt — 1) = E[X(t)X(t)), ki=1,2,...,n
Property 2 is frequently used as the definition of a Gaussian process. How-

ever, this definition is more difficult to use than that based on Eq. 8.163
for evaluating the effects of filtering on a Gaussian process.

"'For a detailed discussion of Property 2, see Davenport and Root (1858), pp. 147-
154; Sakrison (1968) pp. 87-97.
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PROPERTY 3

If a Gaussian process is wide-sense stationary, then the process is also sta-
tionary in the strict sense.

This follows directly from Property 2.

PROPERTY 4

If the set of random variables X(t,), X(t,), ..., X(t,), obtained by sampling a
Gaussian process X(t) at times t,, t,, ..., t, are uncorrelated, that is,

E[(X(t) = my ) X(t) = my,ll =0, i # k
then this set of random variables are statistically independent.

The implication of this property is that the joint probability density function
of the set of random variables X(1,), X(t,), . . ., X(t,) can be expressed
as the product of the probability density functions of the individual random
variables in the set.

8.13 NARROW-BAND RANDOM PROCESS

The receiver of a communication system usually includes some provision
for preprocessing the received signal. The preprocessing may take the form
of a narrow-band filter designed to restrict noise at the receiver input to
a band of frequencies just wide enough to accommodate the detection of
the modulated wave in the received signal. The signal appearing at the
output of the narrow-band filter represents the sample function of a narrow-
band random process. In this section, we present a canonical representation
of such a process and its statistical characteristics.

By analogy with the canonical representation of a narrow-band signal
(See Section 3.5), we may likewise represent a narrow-band random proc-
ess X(t), centered at some frequency f., in the canonical form:

X(1) = X,(1) cos(2nf.t) — Xo(t) sin(nf.r) (8.169)

where X,(t) is the in-phase component of X(t), and Xy(t) is its quadrature
component. Given the random process X(t), we may extract the in-phase
component X,(r) and the quadrature components Xy(t), except for scaling
factors, using the arrangement depicted in Fig. 8.24a.

Suppose the narrow-band random process X(¢) is known to have the
following characteristics:

1. The power spectral density Sx(f) of the process X(t) satisfies the con-
dition:
S(f)y =0 for |f|<f.— W and |fl]=f. + W (8.170)
This condition is illustrated in Fig. 8.25.
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X, (t) Low-pass 1
I ( ‘) ’ filter | » 2 X0
X

——4 cos(2mf.t)

X,t) 1
Low-pass > ——
filter 2 Xoft)
sin(2mf,t)
(a)
Xt
+
cos(2mf . t) X(t)
sin(27f, t)
(b)

Figure 8.24
(a) Extraction of in-phase and quadrature components of a narrow-band process. (b)
Generation of a narrow-band process from its in-phase and quadrature components.

2. The process X () is Gaussian with zero mean and variance ¢%; the zero-
mean characteristic is a direct consequence of the fact that X(¢) is
narrow-band.

We then find that the random processes X,(t) and X(¢) have the following
properties:

PROPERTY 1
The in-phase component X(t) and the quadrature component X,(t) of a nar-
row-band random process X(t) are both low-pass random processes.

This property follows directly from the scheme of Fig. 8.24a. Both the in-
phase component X,(¢) and the quadrature component X,(r) appear in
Fig. 8.24a as the outputs of low-pass filters.

PROPERTY 2

The in-phase component X(t) and the quadrature component Xq(t) of a nar-
row-band random process X(t) have identical power spectral densities related
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Sx(f)

'?s e cccmcae=-

¥
. ‘J 0 "l
- 2W - 2W
Figure 8.25
Power spectrum of a narrow-band random process.
to that of X(t) as follows:
Si(f = f) + Sylf + ), -W<f< W
Silf) = Sx(f) = {O,X ) otherwise

(8.171)

The proof of this property also follows from Fig. 8.24a. We first recognize
that X,(f) and X,(r) may be extracted from X(r) as follows:

L.

The narrow-band random process X(¢) is multiplied alternately by the
sinusoidal carriers cos(2zf.t) and sin(2nf.t) to generate the pair of
quadrature-modulated processes:
X,() = X(r) cos(2nf.t) (8.172)
X,(t) = X(r) sin2nf.t) (8.173)
where we have set the phase of the two sinusoidal carriers to be zero
for convenience of presentation.

. The modulated process X,(¢) is passed through a low-pass filter of band-

width W, yielding $X,(1).

. The modulated process X;(t) is passed through a second low-pass filter

of bandwidth W, yielding —$X,(t).

Next we recognize that the power spectral density of the modulated process
X,(1) is related to that of the narrow-band random process X(r) as follows
(see Example 18)

“Sx,(f) = ASx(f — f) + Sx(f + £ (8.174)

The part of Sx,(f) that lies inside the passband of the low-pass filter in
the upper path of Fig. 8.24a defines the power spectral density of $X(1).
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Accordingly, we may express the power spectral density of the in-phase
component X(r) as in Eq. 8.171. Note that the passbands of the low-pass
filters in Fig. 8.24a are defined by the frequency interval — W < f<W.
We may use similar arguments to show that the power spectral density
Sx,(f) of the quadrature component Xo(?) is also given by Eq. 8.171.
The use of Eq. 8.171 suggess the following procedure for finding

Sx,(f) and Sy, (f):

1. Shift the negative-frequency portion of the power spectral density Sy(f)
of the narrow-band random process X(t) to the right by an amount
equal to f., yielding Sy(f — f.).

2. Shift the positive-frequency portion of the power spectral density Sx(f)
of the narrow-band random process X(r) to the left by an amount equal
to f., yielding Sx(f + f.).

3. Add the shifted power spectra found in (1) and (2), thereby obtaining
the desired Sy (f) or Sx,(f).

PROPERTY 3

The in-phase component X|(t) and the quadrature component X,(t) have the
same mean and variance as the narrow-band random process X(t).

Since the narrow-band random process X(r) has zero mean, the modulated
processes X,(¢) and X,(¢) (defined in Egs. 8.172 and 8.173) must also have
zero mean. Moreover, Fig. 8.24a reveals that X,(r) and Xo(t), low-pass
filtered versions of X,(¢) and X,(1), also have zero mean.

To prove the remaining part of Property 3, we first observe that when
a random process has zero mean, its variance and mean-square value as-
sume a common value. Since both X,(r) and X,(r) have zero mean, their
mean-square value and therefore variance equals the total area under the
curves of their respective power spectra, as shown by

a3, = o}, = ] ww [Sf = £) + Sx = £ df

[ supras+ | " s df

~f-W ¢

=o% (8.175)
where o% is the variance of the zero-mean narrow-band process X(t).

PROPERTY 4
The in-phase component X|(t) and the quadrature component X,lt) of the
narrow-band random process X(t) are uncorrelated with each other.

To prove this property, we first observe from Eqs. 8.172 and 8.173 that
the modulated processes X,() and X;,(r) are obtained from X(r) by the
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use of a pair of carriers, cos(2nf ) and sin(2zf.f), that are in-phase-
quadrature. Hence, X,(¢) and X;(f) are orthogonal to each other (see
Example 19). Since they both have zero mean, they are also uncorrelated
with each other. Accordingly, the in-phase component X,(t) and the quad-
rature component Xy(r), low-pass filtered versions of X,(t) and X;(r), are
also uncorrelated with each other.

PROPERTY 5§

If a narrow-band random process X(t) is Gaussian, then the in-phase com-
ponent X(t) and the quadrature component Xq(t) are also Gaussian.

This property follows directly from the definition of a Gaussian process.
Specifically, we observe from Fig. 8.24a that both the in-phase component
X,(1) and the quadrature component X,(t) are derived by performing linear
operations on the narrow-band random process X (1). If therefore X(t) is
Gaussian, then so are X,(¢) and X,(1). .

These properties have an important implication. Specifically, if the nar-
row-band random process X(¢) is Gaussian, then the in-phase component
X,(1) and the quadrature component X,(r) are uncorrelated with each other
(Property 4) and they are both Gaussian (Property 5). Consequently, X, (1)
and X,(r) are statistically independent of each other. Let Y and Z denote
the Gaussian random variables obtained by observing the Gaussian proc-
esses X,(1) and X,(¢) at some fixed value of time . The probability density
functions of these two random variables with zero mean and variance ¢ %
(Property 3) are

__ 1 ¥

fili) = exp( 203(‘) (8.176)
1 22

fz(2) = __\/ﬂox exP(_—Za}\-) (8.177)

With Y and Z representing statistically independent random variables, the
joint probability density function of Y and Z is equal to the product of
their individual probability density functions. as shown by

fr(y)fa(2)

2 4 2
exp| -2 Za:\‘z) (8.178)

Il

frz(y, 2)

2
2no%

Another important implication of these properties is that we:may con-
struct a narrow-band Gaussian process X(r) of prescribed statistical char-
acteristics by means of the scheme shown in Fig. 8.24b. Specifically, we
start with low-pass Gaussian processes X,() and Xo(¢) derived from two
independent sources. These two processes have zero mean and the same
variance as the process X(r). The processes X,(¢) and X, (r) are modulated
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individually by a pair of sinusoidal carriers that are in phase quadrature.
The resulting modulated processes are then added to produce the narrow-
band Gaussian process X(t).

EXAMPLE 22

Consider a noise process that is both Gaussian and white; the process is
said to be white in the sense that it has a constant power spectral density
i (see Section 4.7). A white Gaussian noise process represents the ultimate
i "in “randomness” in the sense that any two of its samples are statistically
independent. Suppose then a white Gaussian noise process of zero mean
and power spectral density N,/2 is passed through an ideal narrow-band
filter, resulting in a narrowband Gaussian process X(t) with zero mean and
power spectral density as shown in Fig. 8.26a. The requirement is to find

Sx(f)
N,/2
1 |
T
_fc 0 fc
2w | 2w
(a)
'Sx,(f) = Sxo(f)
NO
r
-Wow
(b)

Figure 8.26
(8] Power spectral density of a narrow-band Gaussian process. (b) Power spectral
density of in-phase and qQuadrature components.

sssensane



NARROW-BAND RANDOM PROCESS 477

the statistical characteristics of the in-phase and quadrature components
of the process X(r).

Following the procedure described previously (see Property 2), we find
that the power spectra of the in-phase component X() and the quadrature
component Xy(r) are as shown in Fig. 8.26b.

From Fig. 8.26 we deduce that the processes X(t), X,(1), and Xy(1)
have a common variance:

oy = 2N W
Moreover, they all have zero mean. Hence, the probability density func-

i tions of the random variables Y and Z, obtained by observing X;(t) and
i Xy(t) at some fixed time, are:

f(v)-—-ﬂl—ex(* )
v = ovanw P\ T anw

1 ‘ z
fz(2) = NANW exp("4N0W)

...........................................................................................................................

EXERCISE 14 Find the probability density function of a random variable
obtained by observing the narrow-band random process X(f) of Example
22 at some fixed time.

EXERCISE 18 Continuing with Example 22, do the following:

(a) Find the autocorrelation function of the narrow-band random proc-
ess X(t).

(b) Find the autocorrelation functions of the in-phase component X 1(2)
and quadrature component X ().

EXERCISE 16 Consider a narrow-band random process X(f) whose power
spectral density Sx(f) is Symmetric with respect to the midband frequency
f.. Show that, for this special case, the power spectral densities of the in-
phase component X(r) and quadrature component Xo(t) are:

Sx,(f) = Sx(f) = {g:gx(f - £) o—mv: m<’£< ¥ e1m)

where 2W is the bandwidth of X(r).
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8.14 ENVELOPE AND PHASE OF NARROW-BAND RANDOM PROCESS

As with narrow-band signals. we may also represent a narrow-band random
process X() in terms of its envelope and phase components. Specifically.
we may write '

X(t) = A(1) cos[2nf.t + &(1)] (8.180)

where A(r) is the envelope and @(r) is the phase of X(¢). These two
components are related to the in-phase component X,(t) and quadrature
component X(r) of the process X (t) as follows

A =[X30) + X3(0)]2 (8.181)

b(1) = tan"('j;g((:))) (8.182)
1 /

Let R and ¥ denote the random variables obtained by observing the
random processes A(t) and @(r). respectively, at some fixed time. Let Y
and Z denote the random variables obtained by observing the related
processes X,(r) and X, (), respectively, at the same time. The probability
density functions of R and ¥ may be related to those of Y and Z as follows.
The joint-probability density function of Y and Z is given by Eq. 8.178.
Accordingly. the joint probability that the random variable Y lies between

]
N

‘jq
N
~

----- N
3

|
|

dy

|
|
[
|
|
y

W —_—— ———

(@) (b)

Figure 8.27

Illustrating the coordinate system for representation of a narrowband random
process: (a) In terms of in-phase and quadrature components, and (b) in terms of
envelope and phase.
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yand y + dy and that the random variable Z lies between z and z + dz
(i.e., the pair of random variables Y and Z lies inside the shaded area of
Fig. 8.27a) is given by

frz(y,2)dydz = 5;1&—;, exp( —yzz-;;z) dy dz (8.183)
However, from Fig. 8.27 we observe that
y = rcosy (8.184)
and
z = rsiny (8.189)

where r and y are sample values of the random variables R and ¥, re-
spectively. Also, in a limiting sense, we may equate the two areas shown
shaded in parts a and b of Fig. 8.27, and so write

dydz = rdrdy (8.186)

Therefore, substituting Eqs. 8.184 through 8.186 in 8.183, we find that the
probability that the random variables R and ¥ lie inside the shaded area
of Fig. 8.27b is equal to

r P
— exp(— 5;3-’) dr dy

2
2no%

That is, the joint probability density function of Rand ¥ is

r 7
frelr, ) = ) CXP(—F) (8.187)

X

This probability density function is independent of the angle y, which
means that the random variables R and ¥ are statistically independent.
We may thus express fge(r, y) as the product of fg(r) and fe(y). In
particular, the random variable ¥ is uniformly distributed inside the range

0 to 2n, as shown by

Al
fe(y) = 20’

0, elsewhere

A (8.188)
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Figure 8.28
Rayleigh distribution.

This leaves the probability density function of R as

r 2
= exp(- 2) ) rx )

Jalr) = 1%k w (8.189)
0, elsewhere

where o is the variance of the original narrow-band process X(1). A
random variable having the probability density function of Eq. 8.189 is
said to be Rayleigh-distributed.™

For convenience of graphical presentation, let

v = — (8.190)

and
fv(v) = oxfr(r) (8.191)

Then we may rewrite the Rayleigh distribution of Eq. 8.189 in the stan-
dardized form

v exp(— E) v>0
fuw) =] 2/’ (8.192)

elsewhere

)

"*The Rayleigh distribution is named after the English physicist J. W. Strutt, Lord
Rayleigh.
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Equation 8.192 is plotted in Fig. 8.28. The peak value of the distribution
fy(v) occurs at v = 1 and is equal to 0.607. Note also that, unlike the
Gaussian distribution, the Rayleigh distribution is zero for negative values
of v. This is because an envelope function can only assume positive values.

............................................................................

P8.1 Probability Theory

Problem 1 Cor_lsider a deck of 52 cards, divided into 4 different suits,
with 13 cards in each suit ranging from the two up through the ace. Assume
that all cards are equally likely to be drawn.

(a) Suppose that a single card is drawn from a full deck. What is the
probability that this card is the ace of diamonds? What is the probability
that the single card drawn is an ace of any one of the four suits?

(b) Suppose next that two cards are drawn from a full deck. What is
the probability that the cards drawn are an ace and a king, not necessarily
of the same suit?

P8.2 Random Variables

Problem 2 Consider a random variable X that is uniformly distributed
between the values 0 and 1 with probability 1/4, takes on the value 1 with
probability 1/4, and is uniformly distributed between the values 1 and 2
with probability 1/2. Determine the distribution function of the random
variable X.

Problem 3 Consider a random variable X defined by the double-expo-
nential density:

fx(x) = a exp(—b|x|) —m < x < ®

where a and b are positive constants.

(a) Determine the relationship between a and b so that fy(x) is a prob-

ability density function.
(b) Determine the corresponding distribution function Fy(x).
(¢) Find the probability that the random variable X lies between 1

and 2.

Problem 4 A random variable R is Rayleigh distributed with its proba-
bility density function given by

hin = {3 5P\ "2} =
0. otherwise
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(a) Determine the corresponding distribution function Fg(r).
(b) Show that the mean of R is equal to Vbn/2.

(c) What is the mean-square value of R?

(d) What is the variance of R?

Problem 5 Consider a uniformly distributed random variable Z defined

by
: i Osz=<2n
fz(z) = {2n
0, otherwise

The two random variables X and Y are related to Z by
X = sin(Z)
and
Y = cos(Z)
(a) Determine the probability density functions of X and Y.
(b) Show that X and Y are uncorrelated random variables.
(c) Are X and Y statistically independent? Why?
Problem 6 A random variable Z is defined by
Z=X+Y

where X and Y are statistically independent. Given that

_ Jexp(—x), Osx=sw
fx(x) {0, otherwise
and

_[2exp(-2y), O<y<=
fely) = {0, otherwise

determine the probability density function of Z.

P8.3 Gaussian Distribution
Problem 7

(a) The characteristic function of a random variable X is denoted by
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¢ x(v). Show that the nth moment of X is related to ¢x(v) by

dn
Xn = T
ELX"] = (=) g5 20|
(b) Show that the characteristic function of a Gaussian random variable
X of mean my and variance g% is

¢x(v) = exp(jumy - tvlok)

(c) Show that the nth central moment of this Gaussian random variable
1S

B oo LS X '5 «o(n = 1ok, for n even
E(X = mx)] = {0, for n odd

Problem 8 A Gaussian random variable has zero mean and a standard
deviation of 10 V. A constant voltage of 5 V is added to this random
variable.

(a) Determine the probability that a measurement of this composite
signal yields a positive value.

(b) Determine the probability that the arithmetic mean of two inde-
pendent measurements of this signal is positive.

Problem 9 A random variable Z is defined by

where the X, are identically distributed and statistically independent ran-
dom variables. It is given that the probability density function of each X,
is

—{SXJS%

_ju
frlx) = {0. otherwise

(a) Determine the probability density function fz(z).

(b) Show that f,(z) is closely approximated by a Gaussian probability
density function with zero mean and variance 1/3, as predicted by the
central limit theorem.

P8.4 Transformation of Random Variables

Problem 10 A Gaussian random variable X of zero mean and variance
o+ is transformed by a piecewise-linear rectifier characterized by the input-
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Figure P8.1

output relation (see Fig. P8.1):
Y = X, X>0
S X=<0

The probability density function of the new random variable Y is described
by

0, y<0
ka(f), y=20

fr(y)

2

1
o) o

(a) Explain the reasons for this result.
(b) Determine the value of the constant k by which the delta function
d(f) is weighted.

P8.5 Stationarity
Problem 11  Consider a random process X() defined by

X(t) = sin(2nFr)

in which the frequency Fis a random variable with the probability density
function

fr) =qw’

0, otherwise
Show that X(r) is nonstationary. (To avoid confusion, we have used v to
denote frequency in place of the standard symbol f.)

Hint: Examine specific sample functions of the random process X(¢) for
the frequency v = W/4, W/2, and W, say.
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Problem 12 Consider the sinusoidal process
X(t) = A cos(2nf, 1)

where the frequency f. is constant and the amplitude A is uniformly dis-
tributed:

O=<asl
otherwise

e = g

Determine whether or not this process is stationary in the strict sense.

Problem 13 A random process X(¢) is defined by
X(t) = A cos(2nf.r)

where A is a Gaussian random variable of zero mean and variance ¢3.
This random process is applied to an ideal integrator, producing an output
Y(¢) defined by

Y() = L X(x) dr

(a) Determine the probability density function of the output Y(r) at a
particular time .
(b) Determine whether or not Y(¢) is stationary.

P8.7 Mean, Correlation, and Covariance Functions

Problem 14 Prove the following two properties of the autocorrelation
function Rx(7) of a random process X(t):
(a) If X(r) contains a dc component equal to A, then R (1) will contain
a constant component equal to A2

(b) If X(r) contains a sinusoidal component, then R x(t) will also contain
a sinusoidal component of the same frequency.

Problem 15 The square wave x(¢) of Fig. P8.2 of constant amplitude A,
period Ty, and delay t,, represents the sample function of a random process
X(t). The delay is random, described by the probability density function

1
fr(ta) = 4Ty’
0, otherwise

<t < 1T
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x(t)

—] 1 fe——— Ty ———

Figure P8.2

(a) Determine the probability density function of the random variable
X(t,) obtained by observing the random process X(¢) at time .

(b) Determine the mean and autocorrelation function of X(r) using
ensemble-averaging.

(¢) Determine the mean and autocorrelation function of X(r) using
time-averaging.

(d) Establish whether or not X(t) is wide-sense stationary. In what sense
is it ergodic?

Problem 16 A binary wave consists of a random sequence of symbols 1
and 0, similar to that described in Example 13, with one basic difference:
symbol 1 is now represented by a pulse of amplitude A volts and symbol
0 is represented by zero volt. All other parameters are the same as before.
Show that for this new random binary wave X(r), the autocorrelation

Ky(7)

(volts)*

Figure P8.3
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function is

A? Al

—4'+—(1—'|ll), |r|<T
Rx(1) = A 4 T

C |t} =T

Problem 17 A random process Y(f) consists of a dc component of
V/3/2 V, a periodic component g,(t), and a random component X(t). The
autocorrelation function of Y(¢) is shown in Fig. P8.3

(8) What is the average power of the periodic component g,(1)?
(b) What is the average power of the random component X(1)?

P8.8 Random Process Transmission Through Linear Filters

Problem 18 A random telegraph signal X(r), characterized by the au-
tocorrelation function

Rx(x) = exp(—2vlt))

where v is a constant, is applied to the low-pass-RC filter of Fig. P8.4.
Determine the autocorrelation function of the random process at the filter

output.

Problem 19 Let X(¢) be a stationary process with zero mean and auto-
correlation function Ry(t). We are required to find a linear filter with
impulse response A(t), such that the filter output is X (1) when the input is
white noise of zero mean and autocorrelation function (No/2) 6(1). De-
termine the condition that the impulse response h(r) must satisfy in order
to achieve this requirement.

R
Input (5 -[-I Output
O { —

Figure P8.4
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P8.9 Power Spectral Density
Problem 20 The output of an oscillator is described by

X(t) = A cos(2nFt + 6),
where A is a constant, and F and @ are independent random variables.

The probability density function of F is denoted by ff(v), and that of € is
defined by ,

1
fol0) = {za> 002"
0, otherwise

Determine the power spectral density of X(t). What happens to this power
spectrum when the frequency v assumes a constant value? (To avoid
confusion, we have used v to denote frequency in place of the standard
symbol f.)

Problem21 Continuing with the random binary wave considered in Prob-
lem 16, show that the power spectral density of the wave equals

2

2
Sx(f) = 5 6(0) + 2L sinctsT)

What is the percentage power contained in the dc component of the binary
wave?

Problem 22 Given that a stationary random process X(¢) has an auto-
correlation function Ry(7) and a power spectral density Sy(f), show that:

(a) The autocorrelation function of d X (¢)/dt, the first derivative of X(¢),
is equal to minus the second derivative of Ry(7).

Sx(f)

20

~5fo =3/ ~fo 0 fo 3fo 5/o
Figure P8.5

IS S-S N
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Sxin

“Mf)

Figure P8.6

(b) The power spectral density of dX(¢)/dt is equal to 42 f25x(f).

Problem 23  Consider a wide-sense stationary process X(¢) having the
power spectral density Sy(f) shown in Fig. P8.5. Find the autocorrelation
function Rx(7) of the process X(r).

Problem24  The power spectral density of a random process X(t) is shown
in Fig. P8.6.

(a) Determine and sketch the autocorrelation function Ry(t) of X(1).
(b) What is the dc power contained in X(¢)?

(c) What is the ac power contained in X(1)?

(d) What sampling rates will give uncorrelated samples of X(1)? Are
the samples statistically independent?

P8.10 Cross-Correlation Functions

Problem 25 Consider two linear filters connected in cascade as in Fig.
P8.7. Let X(¢) be a wide-sense stationary process with autocorrelation
function Ry(7). The random process appearing at the first filter output is
V(r) and that at the second filter output is Y(r).

() Find the autocorrelation function of Y(r).
(b) Find the cross-correlation function Ryy(z) of V(¢) and Y(1).

xo—a a0 A A0 f—eri
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Problem 26 A wide-sense stationary process X(¢) is applied to a linear
time-invariant filter of impulse response h(¢), producing an output Y (7).

(a) Show that the cross-correlation function Ryx(r) of the output Y(t)
and input X(t) is equal to the impulse response h(r) convolved with the
autocorrelation function Rx(z) of the input, as shown by

Rirlt) = J h(w)Rx(x — u) du

(b) Show that the second cross-correlation function Ryy(7) is
Riepl) = f " h(-u)Ry(x — u) du

(c) Assuming that X (1) is a white noise process with zero mean and
power spectral density N,/2, show that

Ree(®) = S hC2)

Comment on the practical significance of this result.

P8.11 Cross-Spectral Densities

Problem 27 Let Sxy(f) and Syx(f) denote the cross-spectral densities of
two wide-sense stationary processes X(r) and Y(t). Show that Sxr(f) and
Syx(f) are related to each other as in Eq. 8.154.

P8.12 Gaussian Processes

Problem 28 A stationary, Gaussian process X(r) with zero mean and
power spectral density Sx(f) is applied to a linear filter whose impulse
response h(t) is shown in Fig. P8.8. A sample Y is taken of the random
process at the filter output at time T.

(a) Determine the mean and variance of Y.
(b) What is the probability density function of Y?

Alr)

Figure P8.8
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Figure P8.9

Problem 29 Continuing with the situation described in Problem 28, de-
termine the autocorrelation function and power spectral density of the
Gaussian process produced at the filter output.

P8.13 Narrow-band Random Process

Problem 30  The power spectral density of a narrow-band random process
X(t) is as shown in Fig. P8.9. Find the power spectral densities of the in-
phase and quadrature components of X (), assuming that f. = 5 kHz.

Problem 31 Assume that the narrow-band random process X(r) de-
scribed in Problem 30 is Gaussian with zero mean and variance o%.

(a) Calculate o%.

(b) Determine the joint probability density function of the random vari-
ables Y and Z obtained by observing the in-phase and quadrature com-
ponents of X(¢) at some fixed time.

P8.14 Envelope and Phase of Narrow-band Random Process

Problem 32 Consider a narrow-band Gaussian process X(f) with'zero
mean and power spectral density Sy(f) as shown in Fig. 8.26a.

(a) -Find the probability density function of the envelope of X(r).
(b) What are the mean and variance of this envelope?

Problem 33  Continuing with Problem 32, find the probability of the event
R = A, where R is the random variable obtained by observing the envelope
of the narrow-band process X(r) at some fixed time, and A, is a prescribed
positive constant. Plot this probability as a function of the ratio
Al
P = 4WN,
where W and N, are defined in Fig. 8.26a.
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—— CHAPTER 9

1-he term “noise™ is shorthand for random fluctuations of power in
electrical systems. As such, noise is the limiting factor on the power re-
quired to transport information-bearing signals practically over all com-
munication channels. To develop an understanding of this basic issue,
we need to examine how noise affects the demodulation process in-
tended to recover some message signal in a receiver. Another matter of
related interest is the comparison of the noise performances of different
modulation-demodulation schemes. In this chapter, we study the noise
performance of analog (continuous-wave) modulation schemes. We de-
fer discussion of the noise performance of digital modulation schemes until

493
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Chapter 10, since its theoretical development follows a different approach.

To undertake an introductory treatment of the noise performance of
analog communication receivers, we may assume that the channel noise or
front-end receiver noise is white. This simplifying assumption not only is
justified on physical grounds, but it also enables us to obtain a basic un-
derstanding of the way in which noise affects the performance of different
receivers. We begin the study by describing signal-to-noise ratios that pro-
vide the basis for evaluating the noise performance of an analog commun-
ication receiver.

8.1 SIGNAL-TO-NOISE RATIOS

To carry out the noise analysis of analog modulation systems, we obviously
need a criterion that describes in a meaningful way the noise performance
of the system under study. In the case of analog modulation systems, the
customary practice is to use the output signal-to-noise ratio as an intuitive
measure for describing the fidelity with which the demodulation process
in the receiver recovers the original message from the received modulated
signal in the presence of noise. Output signal-to-noise ratio is defined as
the ratio of the average power of the message signal to the average power
of the noise, both measured at the receiver output. Let (SNR)o denote the
output signal-to-noise ratio, expressed as

(SNR)o = average power of message signal at the receiver output
@ average power of noise at the receiver output

(9.1)

The output signal-to-noise ratio is unambiguous as long as the recovered
message and noise at the demodulator output are additive. This require-
ment is satisfied exactly in the case of linear receivers using coherent de-
tection, and approximately in the case of nonlinear receivers (e.g., using
envelope detection or frequency discrimination) provided that the average
input noise power is small compared with the average carrier power.

The calculation of the output signal-to-noise ratio (SNR),, involves the
use of an idealized receiver model, the details of which naturally depend
on the channel noise and the type of demodulation used in the receiver.
We will have more to say on these issues in subsequent sections of the
Chapter. For the present, we wish to point out that knowledge of (SNR)o
by itself may be insufficient, particularly when we have to compare the
output signal-to-noise ratios of different analog modulation-demodulation
systems. In order to make such a comparison meaningful, we introduce
the idea of a baseband transmission model, as depicted in Fig. 9.1. In this
model, two assumptions are made:

1. The transmitted or modulated message signal power is fixed.
2. The baseband low-pass filter passes the message signal, and rejects out-
of-band noise.



AM RECEIVER MODEL 498

Low-pass filter

Message signal with of bandwidth
the same power as the equal to ——3> Qutput
modulated wave * the message

+ bandwidth

Channel noise

Figure 9.1
The baseband transmission of a message signal for calculating the channel signal-
to-noise ratio..

Accordingly, we nray define the channel signal-to-noise ratio, referred to
the receiver input as

average power of the modulated message signal

average power of noise measured in the message bandwidth
9.2)

(SNR)c =

This ratio is independent of the type of modulation or demodulation used.

The channel signal-to-noise ratio of Eq. 9.2 may be viewed as a frame
of reference for comparing different modulation systems. Specifically, we
may normalize the noise performance of a specific modulation-demodu-
lation system by dividing the output signal-to-noise ratio of the system by
the channel signal-to-noise ratio. We may thus define a figure of merit for
the system as

: . (SNR)o
Figure of merit = h(SNR)C 9.3)

Clearly, the higher the value that the figure of merit has, the better the
noise performance of the receiver.

9.2 AM RECEIVER MODEL

It is customary to model channel noise as a sample function of a white
noise process' whose mean is zero and whose power spectral density is
constant. We will denote the channel noise by w(t), and denote its power
spectral density by Ny/2 defined for both positive and negative frequencies.
In other words, N, is the average noise power per unit bandwidth measured
at the front end of the receiver.

'To be complete, the channel noise process is usually modeled as white and
Gaussian. The Gaussian assumption relates to the probability distribution of a
sample (random variable) drawn from the process. The Gaussian assumption does
not enter the calculation of average noise power; hence, we do not need to involve
it in this chapter, except for a situation described in Section 9.4 dealing with the so-
called threshold phenomenon in amplitude modulation.
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The received signal consists of an amplitude modulated signal component
s(f) corrupted by the channel noise w(t). In order to limit the degrading
effect of the noise component w(r) on the signal component s(t), we may
pass the received signal through a band-pass filter whose bandwidth is just
large enough to accommodate s(¢). In an AM receiver of the superhetro-
dyne type, this filtering is performed in two sections of the receiver: a radio
frequency (RF) section and an intermediate frequency (IF) section; for a
description of an AM receiver, see Section 7.9. Figure 9.2a depicts an
idealized receiver model for amplitude modulation. The IF filter shown in
this model accounts for the combination of two effects: (1) the filtering
effect of the actual IF section in the superhetrodyne AM receiver, and (2)
the filtering effect of the actual RF section in the receiver translated down
to the IF band. Typically, however, the IF section provides most of the
amplification and selectivity in the receiver.

The IF filter has a bandwidth that is just wide enough to accommodate
the bandwidth of the modulated signal s(f). The IF filter is usually tuned
so that its midband frequency is the same as the carrier frequency of the
modulated signal s(t). An exception to this is the single-sideband modu-
lated wave, as will be explained later. For convenience in signal-to-noise
analysis, we assume that the IF filter in the model of Fig. 9.2a has an ideal
band-pass characteristic, as shown in Fig. 9.2b, where f, is the midband
frequency of the filter, and B refers to the transmission bandwidth of the
modulated signal s(f). 7

The composite signal x(¢), at the IF filter output, is defined by

x(f) = s(6) + n(r) (9.4)
| e
s(e) + lill::‘.r x(t) > Demodul :
+
wlt) )
Hie(N
B
10~ -.1 r—-
1 1
e L] fe f

»

Figure 9.2
Modeling of an AM recsiver. (a) Model. (b) Idealized characteristic of IF filter.
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where n(t) is a band-limited version of the white noise w(t). In particular,
n(t) is the sample function of a noise process N(r) with the following power
spectral density:

N, B B
PR fc'—_<|ff<fc+_

Sw(f) =4 2 2 2 (9.5)
0, otherwise

The band-limited noise n(r) may be regarded as being narrow-band, be-
cause the IF filter has a bandwidth that is usually small compared with its
midband frequency.

The modulated wave s() consists of a band-pass signal, the exact de-
scription of which depends on the type of modulation used. To perform a
noise analysis of the receiver, we need a corresponding representation for
the narrow-band noise n(r). From the theory presented in Sections 8.13
and 8.14 on narrow-band random processes, we have two methods for the
time representation of n(r). In the first method, the narrow-band noise
n(r) is represented in terms of its in-phase and quadrature components.
This method is well-suited for the noise analysis of AM receivers using
coherent detection; it may also be used for AM receivers using envelope
detection provided that the received signal-to-noise ratio is high enough.
In the second method, the narrow-band noise n(¢) is represented in terms
of its envelope and phase; this method is well-suited for the noise analysis
of FM receivers.

9.3 - SIGNAL-TO-NOISE RATIOS FOR COHERENT RECEPTION

We begin the noise analysis by evaluating the output and channel signal-
to-noise ratios for an AM receiver using coherent detection, with an in-
coming DSBSC- or SSB-modulated wave. The use of coherent detection
requires multiplication of the IF filter output x(¢) by a locally generated
sinusoidal wave cos(2zf.t) and then low-pass filtering the product, as in
Fig. 9.3. For convenience, we assume that the amplitude of the locally
generated sinusoidal wave is unity. For this demodulation scheme to op-
erate satisfactorily, however, it is necessary that the local oscillator be
synchronized both in phase and frequency with the oscillator generating
the carrier wave in the transmitter. We assume that this synchronization
has been achieved.

We show presently that coherent detection has the unique feature that
for any input signal-to-noise ratio, an output strictly proportional to the
original message signal is always present. It is this property of coherent
detection, namely, that the output message component is unmutilated and
the noise component always appears additively with the message irrespec-
tive of the input signal-to-noise ratio, that distinguishes coherent detection
from all other demodulation techniques.
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vl(r)

+ IF V(1] product Low-pass
s fiter [~ modulator —>1 filter [ vin)
'
Tcos (2mf.1)

w(r)

Local
oscillator

Figure 9.3 !
Model of DSBSC receiver using coherent detection.

DSBSC RECEIVER
Consider a DSBSC wave defined by

s(t) = A, cos(2nf.rym(r) (9.6)

where A, cos(2nf.t) is the carrier wave and m(r) is the message signal.
Typically, the carrier frequency f is greater than the message bandwidth
W. Accordingly, we find that the average power of the DSBSC modulated
wave s(r) equals A2P/2, where A, is the carrier amplitude and P is the
average power of the message signal m(t). This result follows directly from
the description of a modulated process as in Eq. 9.6. We also note that
the transmission bandwidth B of the DSBSC modulated wave s(r) equals
twice the message bandwidth W.

With a noise power spectral density of N,/2, defined for both positive
and negative frequencies, the average noise power in the message band-
width W is equal to WN,. The channel signal-to-noise ratio of the system
is therefore

AP

(SNR)c.oss = Sy N, 9.7)

Next. we determine the output signal-to-noise ratio of the system. Using
the narrow-band representation of the filtered noise (), the total signal
at the coherent detector input may be expressed as:

x(t) = s(r) + n(t)
= A, cos(2rf.t)ym(t) + n/(t) cos(2nf.t) — no(t) sinQnrft) (9.8)

where n,(r) and ny(r) are the in-phasc and quadrature components of
n(t), with respect to the carrier cos(2nf.t), respectively. The output of the
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product-modulator component of the coherent detector is therefore

Il

x(1) cos(an(t)j
PAm(t) + dny(1) + Y A.m(1) + n(1)] cos(4nf 1)
- iA(HQ(f) Sin(-‘ﬂf\.[) (9.9)

v(r)

The low-pass filter in the coherent detector removes the high-frequency
components of v(¢), yielding a receiver output

y() = 3Amt) + in(r) (9.10)
Equation 9.10 indicates that
1. The message m(t) and in-phase noise component n,(t) of the narrow-
band noise n(1) appear additively at the receiver output.

2. The quadrature component ny(r) of the noise n(r) is completely rejected
by the coherent detector.

()

SN’(f) = S‘VQ“‘)

Wwoow /
(k)

Figure 9.4.

Noise analysis of DSBSC modulation system using coherent detection. (a) Power
spectral density of narrow-band noise nlt) at IF filter output. (b) Power spectral
density of in-phase components n|(t) and quadrature component ng(t) of noise nt).
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The message signal component at the receiver output equals Am(r)/2.
Hence, the average power of message signal at the receiver output is equal
to AP/4, where P is the average power of the original message signal
m(1).

The noise component at the receiver output equals n,(r)/2. Hence, the
power spectral density of the output noise equals one quarter that of n(r).
To calculate the average power of the noise at the receiver output, we first
determine the power spectral density of the in-phase noise component n(t).
In order to accommodate the upper and lower sidebands of the modulated
wave s(t), the IF filter has a bandwidth B equal to 2W, twice the message
bandwidth. The power spectral density S\(f) of the narrow-band noise
n(t) thus takes on the ideal form shown in Fig. 9.4a. Hence, the. power
spectral density of n,(t) is as shown in Fig. 9.4b (see Example 22 of Chapter
8). Evaluating the area under the curve of power spctral density of Fig.
9.4b and multiplying the result by i, we find that the average noise power
at the receiver output equals WN,/2.

Thus dividing the average power of the message signal by the average
power of the noise at the receiver output, we find that the output signal-
to-noise ratio for DSBSC modulation is given by

AP

e L8 9.11
2WN, @11

(SNR)().n,sn =

Next, using Egs. 9.7 and 9.11, we obtain the figure of merit

(SNR), = 1 (9.12)

(SNR e |oss

EXERCISE 1 Consider Eq. 9.8 that defines the signal x(¢) at the detector
input of a coherent DSBSC receiver. Show that:

(8) The average power of the DSBSC modulated signal component s(2)
is AZP/2. .

(b) The average power of the filtered noise component n(t) is 2ZWN,.

(c) The signal-to-noise ratio at the detector input is

AP
| (SNR)I.DSB = m
(d) The input and output signal-to-noise ratios of the:detector are re-

lated by E

1
(SNR )ipss = E(SNR )o.pss

Give physical reasons for this result.

Fondhie

il ves «lee

oy
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SSB RECEIVER

Consider next the case of a coherent receiver with an incoming SSB wave.
We assume that only the lower sideband is transmitted, so that we may
express the modulated wave as

s(t) = %“-COS(Zﬂf\!)m(!) - %‘sin(an(l)nﬁ(f) (9.13)

where (1) is the Hilbert transform of the message signal m(r). We may
make the following observations concerning the in-phase and quadrature
components of s(¢) in Eq. 9.13:

1. The two components m(t) and ra(t) are uncorrelated with each other.
Therefore, their power spectral densities are additive.

2. The Hilbert transform (1) is obtained by passing m(r) through a linear
filter with transfer function —J sgn(f). The squared magnitude of this
transfer function is equal to one for all f. Accordingly, m(r) and m(t)
have the same average power.

Thus, proceeding in a manner similar to that for the DSBSC receiver, we
find that the in-phase and quadrature components of the SSB modulated
wave s(r) contribute an average power of A;P/8 each. The average power
of 5(1) is therefore A2P/4. This result is half that in the DSBSC case, which
is intuitively satisfying.

The average noise power in the message bandwidth W is WA,. Thus the
channel signal-to-noise ratio of a coherent-receiver with'SSB modulation
is

AP
4WN,

(SNR)cssp = (9.14)

The transmission bandwidth B = W. The midband frequency of the
power spectral density Sy(f) of the narrow-band noise n(r) differs from
the carrier frequency f, by W/2. Therefore. we may express n(r) as

n(t) = n,(r) cos[2n(f( = -‘2!) :] — ny(r) sin[Zn(f, — —l';y) l] (9.15)

The output of the coherent detector. due to the combined influence of the
modulated signal s(¢) and noise n(1), is thus given by

y(1) = %’m(:) + 4n,(1) cos(xWr) + Ing(r) sin(zWr)  (9.16)
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As expected, we see that the quadrature component r1(t) of the modulated
message signal s(¢) has been eliminated from the detector output, but
unlike the case of DSBSC modulation, the quadrature component of the
narrow-band noise n(t) now appears at the output.

The message component in the receiver output is A m(1)/4 so that the
average power of the recovered message is A2P/16. The noise component
in the receiver output is [n,() cos(rWr) + ny(1) sin(aWi)]/2. Evaluating
the average power of the output noise so defined, we find that it is equal
to WN,/4 (see Exercise 2). Accordingly, the output signal-to-noise ratio
of a system using SSB modulation in the transmitter and coherent detection
in the receiver is given by

AP

o 9.17
4WN, il

(SNR Josss =

Hence, from Eqs. 9.14 and 9.17, the figure of merit of such a system is

(SNR)o

(SNR)c |ssn (9:18)

Comparing Egs. 9.12 and 9.18, we conclude that insofar as noise per-
formance is concerned, DSBSC and SSB modulation systems using co-
herent detection in the receiver have the same performance as baseband
transmission. The only effect of the modulation process is to translate the
message signal to a different frequency band.

EXERCISE 2 Consider the two elements of the noise component in the
SSB receiver output of Eq. 9.16.

(a) Sketch the power spectral density of the in-phase noise component
n,(1) and quadrature noise component ng(f).

(b) Show that the average power of the modulated noise n,(t) cos(zWt)
or ny(t) sin(zWt) is WN,/2. : _

(¢) Hence, show that the average power of the output noise is WN,/4.

EXERCISE 3 The signal x(r) at the detector input of a coherent SSB
receiver is defined by

: x(1) = 5(n) * n(1)
where the signal component s(f) and noise component n(r) are themselves
defined by Egs. 9.13 and 9.15, respectively. Show that:

“(a) The average power of the signalrrcomponent s(t) is AZP/4.
(b) The average power of the noise component n(r) is WN,.
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(¢) The signal-to-noise ratio at the detector input is

AZP

4WN,

(d) The input and output signal-to-noise ratios are related by

(SNR )/;m =

(SNR)LSSB = (SNR)o.ssa

............... 9.4 NOISE IN AM RECEIVERS USING ENVELOPE DETECTION

In a standard amplitude modulated (AM) wave both sidebands and the
carrier are transmitted. The AM wave may be written as

s(t) = AJ[l + k,m(t)] cos(2af 1) (9.19)

where A, cos(2nf.t) is the carrier wave, m(r) is the message signal, and k,
is a constant that determines the percentage modulation. In this section,
we evaluate the noise performance of an AM receiver using an envelope
detector. As explained in Section 7.1, an envelope detector consists simply
“ of a nonlinear device (usually a diode) followed by a low-pass RC filter.

From Eq. 9.19, the average power in the modulated message signal s(t)
is equal to AI(1 + k2P)/2, where P is the average power of the message
signal. With an average noise power of WA, in the message bandwidth,
W, the channel signal-to-noise ratio is therefore

A1 + k2P)

2WN, s

(SNR)c.an =

The received signal x(r) at the envelope detector input consists of the
modulated message signal s(¢) and narrow-band noise n(r). Representing
n(t) in terms of its in-phase and quadrature components, namely, n,(t)
and ny(¢), we may express x(r) as

I

x(1) = s(t) + n(r)

[Ac + Ackm(1) + ny(1)] cos(2nf.t) — ny(r) sin(2af.1) (9.21)

]

It is informative to represent the components that comprise the signal x ()
by means of phasors, as in Fig. 9.5. From this phasor diagram, the receiver
output is obtained as

envelope of x(t)
{{Ac + Ackam(t) + ni(DF + np(0}*? 9-22)

y(1)

Il

The signal y(¢) defines the output of an ideal envelope detector. The phase
of x(z) is of no interest to us, because an ideal envelope detector is totally
insensitive to variations in the phase of x(1).
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Figure 9.5
Phasor diagram for AM wave plus narrow-band noise for the case of high
carrier-to-noise ratio.

The expression defining y(t) is somewhat complex and needs to be
simplified in some manner. Specifically, we would like to approximate the
output y() as the sum of a message term plus a term due to noise. In
general, this is difficult to achieve. However, when the average carrier
power is large compared with the average noise power, so that the receiver
is operating satisfactorily, then the signal term A1 + k,m(t)] will be large
compared with the noise terms n,(¢) and ny(t), most of the time. Then we
may approximate the output y(r) as

y(t)=A. + Ackm(t) + n,(t) (9.23)

The presence of the dc or constant term A, in the envelope detector
output y(t) of Eq. 9.23 is due to demodulation of the transmitted carrier
wave. We may ignore this term, however, because it bears no relation
whatsoever to the message signal m(r). In any case, it may be removed
simply by means of a blocking capacitor. Thus, if we neglect the term A,
in Eq. 9.23, we find that the remainder has, except for scaling factors, the
same form as the output of a DSBSC receiver using coherent detection.
Accordingly, the output signal-to-noise ratio of an AM receiver using an
envelope detector is approximately

ALKZP

(SNR)o am = 2WN,

(9.24)

This expression is, however, valid only if:

1. The noise, at the receiver input, is small compared to the signal.

2. The amplitude sensitivity k, is adjusted for a percentage modulation
less than or equal to 100%.

Using Eqs. 9.20 and 9.24, we obtain the figure of merit

(SNR)o | _ k2P

(SNR)c |anw 1 + k2P (=)

Thus, whereas the figure of merit of a DSBSC or SSB receiver using
coherent detection is always unity, the corresponding figure of merit of an
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AM receiver using envelope detection is always less than unity. In other
words, the noise performancté of an AM receiver is always inferior to that
of a DSBSC or SSB receiver. This is owing to the wasteage of transmitted
power that results from transmitting the carrier as a component of the AM
wave.

/
EXAMPLE 1 SINGLE-TONE MODULATION

~ Consider the special case of.a sinusoidal wave of frequency f,, and ampli-
tude A, as the modulating wave. as shown by

m(r) = A, cos(2nf,.r)
The corresponding AM wave is
s(r) = AJl + wcos(2afnt)] cos(2nf 1)

where i = k,A, is the modulation factor. The average power of the
modulating wave mi (1) is

Therefore, using Eq. 9.25. we get

(SNR)o | _ _1kiAs

(SNR)¢ | aw L+ %/\',‘L
: = (9.26)
: D

When g = 1, which corresponds to 100 modulation, we get a figure of
merit equal to 1/3. This means that. other factors being equal, this AM
system must transmit three times as much average power as a suppressed-
carrier system in order to achieve the'same quality of noise performance.

EXERCISE 4 The carrier-to-noise ratio of a communication receiver is
defined by

=

Average carrier power
p= : " - %9.27)
(Average noise power in bandwidth of the)

modulated wave at the receiver input
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Show that for a standard AM receiver,

A

= 9.28
P = awN, Q.25

Express the output signal-to-noise ratio of Eq. 9.24 in terms of the carrier-
to-noise ratio p.

THRESHOLD EFFECT

When the carrier-to-noise ratio at the receiver input of a standard AM
system is small compared with unity, the noise term dominates and the
performance of the envelope detector changes completely from that just
described. In this case it is more convenient to represent the narrow-band
noise n(r) in terms of its envelope r(7) and phase y(r), as shown by

n(t) = r(t) cos2nfit + w(1)] (9.29)

The phasor diagram for the detector input x(r) = s(r) + n(r)
is shown in Fig. 9.6 where we have used the noise as-reference, because
it is now the dominant term. To the noise phasor r(¢) we have added a
phasor representing the signal term A.[1 + k,m(¢)], with the angle between
them equal to (1), the phase of the noise n(r). In Fig. 9.6 it is assumed
that the carrier-to-noise ratio is so low that the carrier amplitude A, is
small compared with the noise envelope r(r), most of the time. Then we
may neglect the quadrature component of the signal with respect to the
noise, and thus find directly from Fig. 9.6 that the envelope detector output
is approximately

y(£) = r(r) + A cos[y(r)] + Ak,m(t) cos[y(1)] (9.30)

This relation reveals that when the carrier-to-noise ratio is low, the detector
output has no component strictly proportional to the message signal m(r).
The last term of the expression defining y(¢) contains the message signal
m(t) multiplied by noise in the form of cos[w(¢)]. The phase y (1) of a
narrow-band noise n(r) is uniformly distributed over 2x radians; that is, it
can assume a value anywhere between 0 and 2z with equal probability. It
follows therefore that we have a complete loss of information in that the

Resultant
esultan ?Ar + Ak mlt)
e N
) rir) o F
¥ )

Figure 9.6
Phasor diagram for AM wave plus narrow-band noise for the case of low
carrier-to-noise ratio.
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detector output does not contain the message signal m(t) at all. The loss
of a message in an envelope detector that operates at a low carrier-to-noise
ratio is referred to as the threshold effect. By threshold we mean a value
of the carrier-to-noise ratio below which the noise performance of a detector
deteriorates much more rapidly than that predicted by Eq. 9.24 assuming a
high carrier-to-noise ratio. It is important to recognize that every nonlinear
detector (e.g., envelope detector) exhibits a threshold effect. On the other
hand. such an effect does not occur in a coherent detector.

A detailed analysis of the threshold effect in envelope detectors is com-
plicated.” We may develop some insight into the threshold effect, however,
by using the following qualitative approach.’ Let R denote the random
variable obtained by observing the envelope process, with sample function
r(1), at some fixed time. Intuitively, an envelope detector is expected to
be operating well into the threshold region if the probability that the ran-
dom variable R exceeds the carrier amplitude A, is, say, 0.5. On the other
hand, if this same probability is only 0.01, the envelope detector is expected
to be relatively free of loss of message and threshold effects. The evaluation
of the carrier-to-noise ratios, corresponding to these probabilities. is best
illustrated by way of an example.

EXAMPLE 2

From Section 8.14 we recall that the envelope r(r) of a narrow-band Gaus-
sian noise n() is Rayleigh-distributed. Specifically, the probability density :
function of the random variable R obtained by observing the envelope r(r)
at some fixed time, is given by :

falr) = = exp(— ZF) ©9.31)

ax N

where ¢ is the variance of the noise n(z). For an AM system, we have
o} = 2WN,. Therefore the probability of the event R = A_is defined by

P(R=A))

f Falr) dr

s . Ay
: = X = r
L 2WN, P\ T AWN,

Al
- ex—p(— 4WNU) (9.32)

|

:See Middleton (1960), pp. 563-574.
3See Downing (1964, p. 71.
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Using Eq. 9.28 for the carrier-to-noise ratio of an AM receiver, we may
rewrite Eq. 9.32 in the compact form _

P(R = A,) =iexp(-p) (9.33)
Solving for P(R = A) = 0.5, we get
p=1In2 =06 = -16dB
Similarly, for P(R = A) = 0.01, we get
p =1nl00 = 46 = 6.6 dB

Thus with a carrier-to-noise ratio of —1.6 dB the envelope detector is
expected to be well into the threshold region. whereas with a carrier-to-
noise ratio of 6.6 dB the detector is expected to be operating satisfactorily.
We ordinarily need a signal-to-noise ratio considerably greater than 6.6 dB
for satisfactory.fidelity, which means therefore that threshold effects are
seldom of great importance in AM receivers using envelope detection.

EXERCISE 5 Given a carrier-to-noise ratio of 6.6 dB for which the en-
velope detector of an AM receiver operates satisfactorily, what is the
corresponding value of channel signal-to-noise ratio for the case of sinu-
soidal modulation with 100% modulation?

...9.5 FM RECEIVER MODEL

We turn next to study the effects of noise on the performance of FM
receivers. Here again we require a receiver model to carry out the analysis.
Figure 9.7a shows the details of an idealized FM receiver model that satisfies
our requirement. As before. the noise w(r) is modeled as white noise of
zero mean and power spectral density N,/2. The received FM signal s(r),
translated in frequency and amplitude. has a carrier frequency f, and trans-
mission bandwidth B. so that only a negligible amount of power lies outside
the frequency band f ~ B/2 < |fl < f + B/2. The FM transmission
bandwidth B is in excess of twice the message bandwidth W by an amount
that depends on the deviation ratio of the incoming frequency modulated
wave: see Section 7.11.

As in the AM case. the IF filter in the model of Fig. 9.7a represents
the combined filtering effects of the RF and IF sections of an FM receiver
of the superheterodyne type. This filter has a midband frequency f and
bandwidth B. and therefore passes the FM signal essentially without dis-
tortion. We assume that the IF filter in Fig. 9.7a has an ideal bandpass
characteristic, with the bandwidth B small compared with the midband
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i x(1) vir)| Baseband Output
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Figure 9.7
Modeling of an FM receiver. (a) Model. (b) Idealized IF filter characteristic.

frequency f,, as in Fig. 9.7b. We may thus use the usual narrow-band
representation for the filtered noise n(¢) in terms of its in-phase and quad-
rature components.

The limiter is included in Fig. 9.7a to remove any amplitude variations
at the IF output. The discriminator is assumed to be ideal in the sense that
its output is proportional to the deviation in the instantaneous frequency
of the carrier away from f.. Also, the postdetection filter is assumed to
be an ideal low-pass filter with a bandwidth equal to the message band-
width W.

9.6 NOISE IN FM RECEPTION

For the noise analysis of FM receivers, we find it convenient to express
the narrow-band noise n(r) at the IF filter output in terms of its envelope
and phase as in Eq. 9.29. This relation is reproduced here for convenience:

n(r) = r(1) cos[2nft + w(1)) (9.34)

The envelope r(f) and phase () are themselves defined in terms of the
in-phase component n,(r) and quadrature component ny(t) as follows:

r(r) = [ni(t) + np(0]"? (9.35)
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and

w(r) = tan“'(%_) (9.36)

We assume that the FM signal at the IF filter output is given by
s(1) = A, cos[Zrzfct + 2nk; J m(r) dr] (9.37)
0

where A is the carrier amplitude, f. is the carrier frequency, &; is the
frequency sensitivity, and m(t) is the message or modulating wave. For
convenience of presentation. we define

o(1) = 22k, | m(e) de (9.38)
0

We may then express s(r) in the simple form
s(t) = A, cos[2nft + ¢(1)] (9.39)
The total signal (i.e.. signal plus noise) at the IF section output is therefore

x(t) = s(t) + n(r)
= A cos[2nfr + ¢(D)] + r(¢) cos[2nft + w(r)]  (9.40)

Itis informative to represent x(t) by means of a phasor diagram, as in Fig.
9.8. In this diagram we have used the signal term as reference. The relative
phase 6(r) of the resultant phasor representing x(7) is obtained directly
from Fig. 9.8 as

r{1) sin[w (1) — ¢(0)] }

0(t) = ¢(t) + tan™! 9.41

(1) = (1) {A. + r(t) cos{w (1) — ¢(1)] il

The envelope of x(r) is of no interest to us, because any envelopé variations
at the IF section output are removed by the limiter.

Resultant

(r)
T - o) '

A,

>

P11}

Figure 9.8
Phasor diagram for FM wave plus narrow-band noise for the case of high
carrier-to-noise ratio.
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Our motivation is to determine the error in the instantaneous frequency
of the carrier wave caused by the presence of the narrow-band noise n(t).
With tF discriminator assumed ideal, its output is proportional to 0(r),
whe:e 0(¢) is the derivative of 6(r) with respect to time. In view of the
complexity of the expression defining 6(t), however, we need to make
certain simplifying approximations so that our analysis may yield useful
results.

We assume that the carrier-to-noise ratio measured at the discriminator
input is large compared with unity. Then, most of the time, the expression
for the relative phase 0(¢) simplifies as

r(t)

o(t) zﬁ(f_), + A sin[w (1) — ¢(1)] (9.42)
signal — T~ =4

The signal term ¢(r) is proportional to the integral of the message signal
m(r), as in Eq. 9.38. Hence, using Egs. 9.38 and 9.42, we find that the
discriminator output is

1 db
us) = o5 7(?')
kym(t) + ng(1) (9.43)

It

where the noise term n,(t) is defined by

14,

A @'Y sin[y (1) = &)} (9.44)

ny(t) =

We thus see that provided the carrier-to-noise ratio is high, the discrimi-
nator output v(r) consists of a scaled version of the original message signal
m(t), plus an additive noise component ny(t). Accordingly, we may use
the output signal-to-noise ratio as previously defined to assess the quality
of performance of the FM receiver.

The output signal-to-noise ratio is defined as the ratio of the average
output signal power to the average output noise power. From Eq. 9.43,
the signal component at the discriminator output, and therefore the post-
detection filter output, is k;m(r). Hence, the average output signal power
is k}P, where P is the average power of the message signal m(f).

Unfortunately, the calculation of the average output noise power is
complicated by the presence of the factor sin[w (1) — ¢(r)] in Eq. 9.44.
Since the phase y(¢) is uniformly distributed over 27 radians, the mean-
square value of the noise ny(1) in Eq. 9.44 will be biased by the message-
dependent phase ¢(¢). The presence of ¢(f) produces components in the
power spectrum of the noise n4(t) at frequencies that lie outside the message
band. However, such frequency components do not appear at the receiver
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output as they are rejected by the post-detection filter.* Hence, insofar as
. the calculation of inband noise power at the receiver output due to n,(t)
is concerned, we may simplify our task by setting the message-dependent
* phase ¢(7) equal to zero. Under this condition, Eq. 9.44 simplifies as

1
2nA, dt

1

ny(r) = {r(z) sin[w(1)]} (9.45)

From the definitions of the noise envelope () and phase w(t) given by
Egs. 9.35 and 9.36, we note that the quadrature component of the narrow-
band noise n(r) is

no(t) = r(e) sin[p(1))] (9.46)

Correspondingly, Eq. 9.45 may be rewritten as

1 dny(t)
= i, RGLE)
ny(1) mA. di (9.47)

We may thus state that, under the condition of high carrier-to-noise ratio,
the calculation of the average output noisespower in an FM receiver depends
only on the carrier amplitude A, and the quadrature noise component ny(t).
Stated in another way, we may use an unmodulated carrier to calculate the
output signal-to-noise ratio of an FM receiver, provided that the carrier-
to-noise ratio is high.

From Section 2.3, we recall that differentiation of a function with respect
to time corresponds to multiplication of its Fourier transform by j2xnf. It
follows therefore that we may obtain the noise process ny(t) by passing
no(t) through a linear filter with a transfer function equal to

21 ]
é?f - A—f (9.48)

This means that the power special density Sy, (f) of the noise n,(1) is related
to the power spectral density Sno(f) of the quadrature noise component
ny(t) as follows:

i<

Sn(f) = =5 Su,(f) (9.49)

A

With the IF filter in Fig. 9.7a assumed to have an ideal band-pass
characteristic of bandwidth B and midband frequency f., it follows that the

‘See Downing (1964), pp. 96-98.
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narrow-band noise n() will have a power spectral density characteristic
that is similarly shaped. This means that the quadrature component ny(r)
of the narrow-band noise n(t) will have the ideal low-pass characteristic
shown in Fig. 9.9a. The corresponding power spectral density of the noise
ny(t) is shown in Fig. 9.9b. That is,

Nof? B
off <2
Sv.(f) = A: 2 (9.50)
otherwise

’

The discriminator output is followed by a low-pass filter with a band-
width equal to the message bandwidth W. For wideband FM, by definition,

Sp (f)
No
v\'o
B 0 _B 4
2 (a) 2
Sn, )
_B 0 __B .
2 2
(h)
: f

Figure 9.9
Noise analysis of FM receiver. (a) Power spectral density of quadrature component

nolt) of narrow-band noise nit). (b} Power spectral density of noise n4(t) at
diseriminator output. (c) Power spectral density of noise n,(t) at receiver output.
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W is much smaller than B/2 where B is the transmission bandwidth of the
FM signal. This means that the out-of-band components of noise n,(¢) will
be rejected. Therefore, the power spectral density Sy, (f) of the noise n, ()
appearing at the receiver output is defined by

ME few

Svo(f) = ¢ Al’ _ (9.51)
0, otherwise

as shown in Fig. 9.9c. The average output noise power is determined by
integrating the power spectral density Sy, (f) from — W to W. We thus get

. Vl w 3
Average power of output noise = :711’ fdf
2 ) w

s

g 2 (9.52)
3A:

Note that the average output noise power is inversely proportional to the
average carrier power A;/2. Accordingly, in an FM system, increasing the
carrier power has a noise-quieting effect.

Earlier we determined the average output signal power as k3P. There-
fore. provided the carrier-to-noise ratio is high, we may divide this average
output signal power by the average output noise power of Eq. 9.52 to
obtain the output signal-to-noise ratio

34tk P
(SNR) o py = !

9.53
2N W3 ( )

The average power in the modulated signal s(r) is A2/2, and the average
noise power in the message bandwidth is WA,. Thus the channel signal-
to-noise ratio is

AZ

2WN, (8-54)

(SNR)( ™M=

Dividing the output signal-to-noise ratio by the channel signal-to-noise
ratio, we get the figure of merit

(SNR), K3 P
LGt - 55
(SNR)c |~ W2 (9-33)

The frequency deviation 4f is proportional to the frequency sensitivity
k; of the modulator. Also. by definition, the deviation ratio D is equal to
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the frequency deviation 4f divided by the message bandwidth W. There-
fore, it follows from Eq. 9.55 that the figure of merit of a wideband FM
system is a quadratic function of the deviation ratio. Now, in wideband
FM, the transmission bandwidth B is approximately proportional to the
deviation ratio D. Accordingly, we may state that when the carrier-to-noise
ratio is high, an increase in the transmission bandwidth B provides a cor-
responding quadratic increase in the output signal-to-noise ratio or figure of
merit of the FM system.

............................................................................................................................

EXAMPLE 3 SINGLE-TONE MODULATION

Consider the case of a sinusoidal wave of frequency fn as the modulating
wave, and assume a frequency deviation 4 f. The modulated wave is thus

defined by

s(t) = A, cos[lnfct + ﬁ;i sin(2nf,,,t)}

m

where we have made the substitution:
Ink, j sl e = f'f—f sin(27f.1)
0 m

Differentiating both sides with respect to time:

m(r) = % cos(2nf.t)

Hence, the average power of the message signal m(1) is

_fy
i 2k}

Substituting this result into the formula for the output signal-to-noise ratio
given by Eq. 9.53, we get:

3AH(AS)

(SNR)o.rm = INWS

_34Aip

= 9.56
AN,W Py

where § = Af/Wis the modulation index. Using Eq. 9.55 to evaluate the
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corresponding figure of merit, we get

5 A (SNR)o| g(d_f)z
2 mo 2\W
3
¥

(SNR),
(9.57)

It is important to note that the modulation index f# = 4f/W is determined
by the bandwidth W of the postdetection low-pass filter and is not related
to the sinusoidal message frequency f,,, except insofar as this filter is chosen
SO as to pass the spectrum of the desired message. For a specified bandwidth
W the sinusoidal message frequency f,, may lie anywhere between 0 and
W and would yield the same output signal-to-noise ratio.

It is of particular interest to compare the performance of AM and FM
systems. One way of making this comparison is to consider the figures of
merit of the two systems based on a sinusoidal modulating signal. Forsan
AM system operating with a sinusoidal modulating signal and 100% mod-
ulation, we have (from Example 1):

(SNR)o| 1
(SNR)c|am 3 &35

Comparing this figure of merit with the corresponding result obtained for
an FM system, we see that the use of frequency modulation offers the
possibility of improved signal-to-noise ratio over amplitude modulation
when

>4

that is,

£>0.5

We may therefore consider § = 0.5 as defining roughly the transition from
narrow-band FM to wideband FM. This statement, based on noise consid-
erations, further confirms a similar observation that was made in Chapter
7 when considering the bandwidth of FM waves. '

............................................................................................................................

EXERCISE 6 Consider an FM receiver with an IF filter of bandwidth B.
The incoming FM wave is produced by a sinusoidal modulation that pro-
duces a frequency deviation 4 f equal to B/2, so that the carrier swings
back and forth across the entire passband of the IF filter. Using the defi-
nition of the carrier-to-noise ratio

LAY
ol

i (9.59)
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FM THRESHOLD EFFECT §17

show (hat for the situation described herem the output signal-to-noise ratio
of the FM receiver is ;

(SNR), = 3,;;(%)' (9.60)

where W is the message bandwidth and B is the IF filter bandwidth.

COMPARISON OF FM WITH PCM

In this subsection, we compare the capabilities of wideband FM and PCM
for exchanging an increase in transmission bandwidth for an improvement
in noise performance. With wideband FM, the improvement in signal-to-
noise ratio produced by increased transmission bandwidth effectively fol-
lows a square law (see Eq. 9.55). That is, by doubling the bandwidth in
an FM system that operates above threshold, the signal-to-noise ratio is
improved by 6 dB. With binary PCM limited by quantizing noise, on the
other hand, doubling the transmission bandwidth permits twice the number
of binary digits n in a code word, and therefore increases the signal-to-
noise ratio by 6n dB (see Eq. 5.24). It follows therefore that FM is less
efficient than PCM in exchanging increased bandwidth for improved signal-
to-noise ratio.

CAPTURE EFFECT

The inherent ability of an FM system to minimize the effects of unwanted
signals (e.g., noise, as discussed earlier) also applies to interference pro-
duced by another frequency-modulated signal with a frequency content
close to the carrier frequency of the desired FM wave. However, inter-
ference suppression in an FM receiver works well only when the interfer-
ence is weaker than the desired FM input. When the interference is the
stronger one of the two, the receiver locks on to the stronger signal and
thereby suppresses the desired FM input. When they are of nearly equal
strength, the receiver fluctuates back and forth between them. This phe-
nomenon is known as the capture effect.

9.7 FM THRESHOLD EFFECT

The formula of Eq. 9.53, defining the output signal-to-noise ratio of an
FM receiver, is valid only if the carrier-to-noise rafio, measured at the
discriminator input, is high compared with unity. It is found experimentally
that as the input noise is increased so that the carrier-to-noise ratio is
decreased, the FM receiver breaks. At first, individual clicks are heard in
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the receiver output, and as the carrier-to-noise ratio decreases still further,
the clicks rapidly merge into a crackling or sputtering sound. Near the
breaking point, Eq. 9.53 begins to fail by predicting values of output signal-
to-noise ratio larger than the actual ones. This phenomenon is known as
the threshold effect. The threshold is defined as the minimum carrier-to-
noise ratio yielding an FM improvement that is not significantly deteriorated
from the value predicted by the signal-to-noise formula of Eq. 9.53 assuming
a small noise power.

For a qualitative discussion of the FM threshold effect, consider first the
case when there is no signal present, so that the carrier wave is unmodu-
lated. Then the composite signal at the frequency discriminator input is

x(1) = [A. + ny(1)] cos(2nf.t) — no(t) sin(2rf.r) (9.61)

where n,(1) and ny(¢) are the in-phase and quadrature components of the
narrow-band noise n(r) with respect to the carrier wave cos(2nf.r). The
phasor diagram of Fig. 9.10 shows the phase relations between the various
components of x(r) in Eq. 9.61. As the amplitudes and phases of n,(¢) and
ng(t) change with time in a random manner, the point P wanders around
the point Q. When the carrier-to-noise ratio is large, n,(¢) and ny(1) are
usually much smaller than the carrier amplitude A, so the wandering point
P in Fig. 9.10 spends most of its time near point Q. Thus the angle 0(r)
is approximately ny(1)/A, to within a multiple of 2z. The wandering point
P occasionally sweeps around the origin and 6(r) increases or decreases
by 27 radians. Figure 9.11 illustrates how. in a rough way, these excursions
in () produce impulse-like components in (1) = df/dr. The discrimi-
nator output v(r) is equal to §(r)/2n. These impulse-like components have
different heights depending on how close the wandering point P comes to
the origin O, but all have areas nearly equal to +2x radians. When the
signal shown in Fig. 9.11b is passed through the postdetection low-pass
filter, corresponding but wider impulse-like components are excited in the
receiver output and are heard as clicks. The clicks are produced only when
0(t) changes by =2n.

From the phasor diagram of Fig. 9.10. we may deduce the conditions
required for clicks to occur. A positive-going click occurs when the en-

Figure 9.10
A phasor diagram interpretation of Eq. 9.61.
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Impulse-like components in 8(t) = d6(t)/dt produced by changes of 2w in 6(t).

velope r(t) and phase y(t) of the narrow-band noise n(t) satisfy the fol-
lowing conditions:

r(t) > A.
w(r) <n<wy(r) + dy(r)

dy (1)
4 >0

These conditions ensure that the phase 6(r) of the resultant phasor x()
changes by 27 radians in the time increment dr. during which the phase
of the narrow-band noise increases by the incremental amount dy(t).
Similarly, the conditions for a negative-going click to occur are

r(t) > A,
w(t) > —n > yp(r) + dy(r)
dy(r)

—— <0

dt
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These conditions ensure that (1) changes by — 2 radians during the time
increment dt. 2

As the carrier-to-noise ratio is decreased, the average number of clicks
per unit time increases. When this number becomes appreciably large, the
threshold is said to occur. Consequently, the output signal-to-noise ratio
deviates appreciably from a linear function of the carrier-to-noise ratio
when the latter falls below the threshold.

This effect is well illustrated in Fig. 9.12, which is calculated from theory.’

The calculation is based on the following two assumptions:

1. The output signal is taken as the receiver output measured in the absence
of noise. The average output signal power is calculated for a sinusoidal
modulation that produces a frequency deviation 4f equal to one half

Output signal-to-noise ratio 10 log,, (SNR),, dB

Toee—Jlt o S ) f e i
0 10 20

Input carrier-to-noise ratio 10 log)p p. dB

Figure 9.12
Variation of output signal-to-noise ratio with input carrier-to-noise ratio,
demonstrating the FM threshold effect.

*For a detailed theoretical account of noise in FM receivers, see the classic papers
- by Rice (1948) and Stumpers (1948). Figure 9.12 is adapted from another paper by
Rice (1963).
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of the IF filter bandwidth B; the carrier is thus enabled to swing back
and forth across the entire IF band. %

2. The average output noise power is calculated when there is no signal
present; that is, the carrier is unmodulated, with no restriction placed
on the value of the carrier-to-noise ratio.

The curve plotted in Fig. 9.12 is for the ratio (B/2W) = S. The linear
part of the curve corresponds to the limiting value of 3p(B/2W)': sce
Exercise 6. Figure 9.12 shows that, owing to the threshold phenomenon.
the output signal-to-noise ratio deviates appreciably from a lincar function
of the carrier-to-noise ratio p when p becomes less than a threshold of 10
dB.

The threshold carrier-to-noise ratio, p,,. depends on the ratio of IF filter
bandwidth-to-message bandwidth, B/W. Also. the value of p;, is influenced
by the presence of modulation. Nevertheless. these variations are usually
small enough to justify taking py, as about 10 dB for most practical cases
of interest. We may thus state that the loss of message at an FM receiver
output is negligible if the carrier-to-noise ratio satisfies the condition

AI

¢

2BN,

= 10 (9.62)

Since the channel signal-to-noise ratio (SNR), = A2WN,. we may re-
formulate this condition as

s

SN =
(SNR) = W

(9.63)

The IF filter bandwidth B is ordinarily designed to equal the FM trans-
mission bandwidth. Hence. we may use Carson’s rule to relate B to the
message bandwidth W as follows (see Section 7.11)
B=2W( + D)

where D is the deviation ratio; for sinusoidal modulation, the modulation
index /3 is used in place of D. Accordingly. we may restate the condition
for ensuring no significant loss of message at an FM receiver output as

(SNR)¢ = 20(1 + D) (9.64)

or. in terms of decibels,

10 log(SNR)¢ = 13 = 10 log,.(1 + D). dB (9.63)
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EXERCISE 7 Calculate the condition on the channel signal-to-noise ratio
to avoid the FM threshold effect for the following values of deviation ratio:

>

(@ D=2 3
(b) D=5

Suppose that the FM receiver operates with the following parameters:

W = 15 kHz
N, '
g = 0.5 x 108 W/Hz

Find the corresponding condition on the average transmitted power for
case (a) and case (b).

FM THRESHOLD REDUCTION

In certain applications such as space communications, there is a particular
interest in reducing the noise threshold in an FM receiver so as to satis-
factorily operate the receiver with the minimum signal power possible.
Threshold reduction in FM receivers may be achieved by using an FM
demodulator with negative feedback (commonly referred to as an FMFB
demodulator). or by using a phase-locked loop demodulator.

Figure 9.13 is a block diagram of an FMFB demodulator. We see that
the local oscillator of the conventional FM receiver has been replaced by
a voltage-controlled oscillator (VCO) with an instantaneous output fre-
quency that is controlled by the demodulated signal. To understand the
operation of this receiver, suppose for the moment that the VCO is re-
moved from the circuit and the feedback loop is left open.® Assume that
a wideband FM wave is applied to the receiver input. and a second FM
wave, from the same source but with a modulation index a fraction smaller,
is applied to the VCO terminal of the product modulator. The output of
the product modulator consists of two components: a sum-frequency com-
ponent and a difference-frequency component. The IF filter (following the
product modulator) is designed to pass only the difference-frequency com-
ponent. (The combination of the product modulator and the IF filter in
Fig. 9.13 constitutes a mixer.) The frequency deviation of the IF filter
(mixer) output would be small, although the frequency deviation of both
input FM waves is large. since the difference between their instantaneous
deviations is small. Hence. the modulation indices would subtract, and the
resulting FM wave at the IF filter (mixer) output would have a smaller

*Our treatment of the FMFB demodulator is based on Enole (1962). See also Roberts
(1977), pp. 166-181.
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FMFB demodulator.

modulation index than the input FM waves. This means that the IF filter
bandwidth in Fig. 9.13 need only be a fraction of that required for either
wideband FM wave. The FM wave with reduced modulation index passed
by the IF filter is then frequency-demodulated by the combination of lim-
iter/discriminator and finally processed by the baseband filter. It is now
apparent that the second wideband FM wave applied to the product mod-
ulator may be obtained by feeding the output of the ‘baseband low-pass
filter back to the VCO, as in Fig. 9.13.

It will now be shown that the signal-to-noise ratio of an FMFB receiver
is the same as that of a conventional FM receiver with the same input
signal and noise power if the carrier-to-noise ratio is sufficiently large.
Assume for the moment that there is no feedback around the demodulator.
In the combined presence of an unmodulated carrier A, cos(2nf.t) and a

- narrow-band noise

n(t) = n,(t) cos(2nf.t) — ng(t) sin(2nf.t),

the phase of the composite signal x(r) at the limiter—discriminator input is
approximately equal to ng(t)/A.. This assumes that the carrier-to-noise
ratio is high. The envelope of x(¢) is of no interest to us, because the
limiter removes all variations in the envelope. Thus the composite signal
at the frequency discriminator input consists of a small index phase-mod-
ulated wave with the modulation derived from the component np(t) of
noise that is in phase quadrature with the carrier. When feedback is applied,
the VCO generates a wave that reduces the phase-modulation index of the
wave at the IF filter output, that is, the quadrature component no(t) of
noise. Thus we see that as long as the carrier-to-noise ratio is sufficiently
large, the FMFB receiver does not respond to the in-phase noise component
n,(1), but that it would demodulate the quadrature noise component ny(t)
in exactly the same fashion as it would demodulate the signal. Signal and
quadrature noise are reduced in the same proportion by the applied feed-
back, with the result that the baseband signal-to-noise ratio is independent
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of feedback. For large carrier-to-noise ratios the baseband signal-to-noise
ratio of an FMFB receiver is then the same as that of a conventional FM
receiver.

The reason why an FMFB receiver is able to extend the threshold is
that, unlike a conventional FM receiver, it uses a very important piece of
a priori information, namely, that even though the carrier frequency of
the incoming FM wave will usually have large frequency deviations, its
rate of change will be at the baseband rate. An FMFB demodulator is
essentially a tracking filter that can track only the slowly varying frequency
of wideband FM waves. Consequently it responds only to a narrow band
of noise centered about the instantaneous carrier frequency. The bandwidth
of noise to which the FMFB receiver responds is precisely the band of
noise that the VCO tracks. The net result is that an FMFB receiver is
capable of realizing a threshold reduction on the order of 5-7 dB, which
represents a significant improvement in the design of minimum-power FM
systems.

The phase-locked loop demodulator, which was described in Section
7.12, exhibits threshold reduction properties that are similar to those of
the FMFB demodulator. Thus, like the FMFB demodulator, a phase-locked
loop is a tracking filter and, as such, the bandwidth of noise to which it
responds is precisely the band of noise that the VCO tracks. However,
although the thresholds of the phase-locked loop and FMFB demodulators
occur because of the same basic mechanism, the details by which they
occur are, of course, different.” Practical experience with the phase-locked
loop, however, confirms the conclusion that very comparable performance
with the FMFB demodulator is obtained in many situations, so that the
choice between these two types of threshold-extension devices is often
made in favor of the phase-locked loop because of its simpler construction.

9.8 PRE-EMPHASIS AND DE-EMPHASIS IN FM

In Section 9.6 we showed that the power spectral density of the noise at
the receiver output has a square-law dependence on the operating fre-
quency; this is illustrated in Fig. 9.14a. In part b of this figure we have
included the power spectral density of a typical message source; audio and
video signals typically have spectra of this form. We see that the power
spectral density of the message usually falls off appreciably at higher fre-
quencies. On the other hand, the power spectral density of the output noise
increases rapidly with frequency. Thus, at f = +W, the relative spectral
density of the message is quite low, whereas that of the output noise is
high in comparison. Clearly, the message is not using the frequency band
allowed to it in an efficient manner. It may appear that one way of improving
the noise performance of the system is to slightly reduce the bandwidth of

’See Roberts (1977), pp. 200-202.
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Figure 9.14
(a) Power spectral density of noise at FM receiver output. (b) Power spectral density
of a typical message source.

the postdetection low-pass filter so as to reject a large amount of noise
power while losing only a small amount of message power. Such an ap-.
proach, however, is usually not satisfactory because the distortion of the
message caused by the reduced filter bandwidth, even though slight, may
not be tolerable. For example, in the case of music we find that although
the high-frequency notes contribute only a very small fraction of the total
power, nonetheless, they contribute a great deal from an aesthetic view-
point.

A more satisfactory approach to the efficient use of the allowed fre-
quency band is based on the use of pre-emphasis in the transmitter and
de-emphasis in the receiver, as illustrated in Fig. 9.15. In this method, we
artificially emphasize the high-frequency components of the message signal
prior to modulation in the transmitter, and therefore before the noise is
introduced in the receiver. In effect, the low-frequency and high-frequency
portions of the power spectral density of the message are equalized in such
a way that the message fully occupies the frequency band allotted .to it.
Then, at the discriminator output in the receiver, we perform the inverse
operation by de-emphasizing the high-frequency components, so as to re-

Pre.emphasis + De emphasis
(1) =34 tilter = "an:::“e’ rec‘:eM , L > filter L3 Message plus
Hoelf) L ¢ e Hy (f) noise
m,(t)

w(t)

Figure 9.15
Use of pre-emphasis and de-emphasis in an FM system.
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store the original signal-power distribution of the message. In such a process
the high-frequency components of the noise at the discriminator output
are also reduced, thereby effectively increasing the output signal-to-noise
ratio of the system. Such a pre-emphasis and de-emphasis process is widely
used in FM transmission and reception.

To produce an undistorted version of the original message at the receiver
output, the pre-empbhasis filter in the transmitter and the de-empbhasis filter
in the receiver would ideally have transfer functions that are the inverse
of each other. That is, if H,(f) designates the transfer function of the pre-
emphasis filter, then the transfer function H,(f) of the de’empbhasis filter
would ideally be

1

m, —W<f<W (9.66)

Hdr(f) =

This choice of transfer functions makes the average message power at the
receiver output independent of the pre-emphasis and de-emphasis proce-
dure.

The pre-emphasis filter is selected so that the average power of the
emphasized message signal m,(r) in Fig. 9.15 has the same average power
as the original message m(t). Thus, given the power spectral density Sy(f)
of the message signal m(r), we may write

[ 1HnEsath df = [ st af (9.67)

This constraint on the transfer function H,.(f) of the pre-emphasis filter
ensures that the bandwidth of the transmitted FM signal remains the same,
with or without pre-emphasis.

From our previous noise analysis in FM systems, assuming a high carrier-
to-noise ratio, the power spectral density of the noise n,(t) at the discrim-
inator output is

Noff B (9:68)
Sm,(f) = Ade? )
0, otherwise

Therefore, the modified power spectral density of the noise at the de-
empbhasis filter output is equal to |H,(f)[*Sy,(f). Recognizing, as before,
that the postdetection low-pass filter has a bandwidth W, which is, in
general, less than B/2, we find that the average power of the modified
noise at the receiver output is

Average output noise | _ No (W, 5
(power with dc—emphasis) B A! j wf |Hu(f)I* df (9.69)
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Because the average message power at the receiver output is ideally un-
affected by the pre-emphasis and de-emphasis procedure, it follows that
the improvement in output signal-to-noise ratio produced by the use of
pre-empbhasis in the transmitter and de-empbhasis in the receiver is defined

by

average output noise power without pre-emphasis and de-emphasis
average output noise power with pre-emphasis and de-emphasis

Earlier we showed that the average output noise power without pre-em-
phasis and de-emphasis is equal to 2N, W*/3AZ; see Eq. 9.52. Therefore,
after cancellation of common terms, we may write

2W3

= 9.70
3 [ ¥ f )

(I df

Note that this improvement factor assumes a high carrier-to-noise ratio at
the discriminator input.

..-.-...........u...-.4.................-.....-.--......u.u..-n.-u.-.........-.......................................:

EXAMPLE 4

A simple pre-emphasis filter that emphasizes high frequencies and that is
commonly used in practice is defined by the transfer function

H,(f) = k (1 + ’fi) (9.71)

This transfer function is closely realized by the RC-amplifier network shown
in Fig. 9.16a, provided that R < r and 2zfCR < 1 inside the frequency
band of interest. The amplifier in Fig. 9.16a is intended to make up for
the attenuation introduced by the RC network at low frequencies. The
frequency parameter f,is 1/(2n Cr). The corresponding de-emphasis filter
in the receiver is defined by the transfer function

1/k
Hy(f) = 1+ it 9.72)

which can be realized using the RC-amplifier network of Fig. 9.16b.

The constant k in Egs. 9.71 and 9.72 is chosen to satisfy the constraint :
of Eq. 9.67, which requires that the average power of the pre-emphasized
message signal be the same as the average power of the original message
signal. Assume that the power spectral density of the original message
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Figure 9.16
(a) Pre-emphasis filter. (b) De-emphasis filter.

signal m(t) is

1

e <W
suf) = {Tv e M 9.73)
0 elsewhere
Then. the use of Eqgs. 9.71 and 9.73 in 9.67 yields
w df w
—_—— krd
|\ T |, as
or
fo (W)
k= o 9.74
W a3 | 9.74)

Equation 9.70 defines the improvement in output signal-to-noise ratio
of the FM receiver, resulting from the combined use of pre-emphasis and
de-emphasis. For the pre-emphasis and de-emphasis filters of Fig. 9.16,
the use of this equation yields the improvement

I = 2w3 \
’ w k*f? Z
[ o

_ _ (WI/fo)* tan”'(W/fy)
T 3[(Wif,) — tan~'(W/f,)]

(9.75)
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Typical values for commercial FM broadcasting are

2.1 kHz
15 kHz

fo
W

1]

I

The use of this set of values in Eq. 9.75 yields the result
1 =47
Expressing the improvement in decibels, we have
I =6.7dB

The output signal-to-noise ratio of an FM receiver without pre-emphasis
and de-emphasis is typically 40-50 dB. We thus see that by using the simple
pre-emphasis and de-emphasis filters shown in Fig. 9.16, we can obtain a
significant improvement in the noise performance of the receiver.

EXERCISE 8 Sketch the power spectral density of the de-emphasized
noise, assuming that the shape of the power spectral density of the noise
at the de-emphasis filter input is as shown in Fig. 9.14a and the de-emphasis
filter is as shown in Fig. 9.16b.

NONLINEAR TECHNIQUES

The use of the simple linear pre-emphasis and de-emphasis filters described
herein is an example of how the performance of an FM system may be
improved by using the differences between characteristics of signals and
noise in the system. These simple filters also find application in audio tape-
recording. In recent years nonlinear pre-emphasis and de-emphasis tech-
niques have been applied successfully to tape-recording. These techniques
(known as Dolby-A, Dolby-B, Dolby-C, and DBX systems) use a com-
bination of filtering and dynamic range compression to reduce the effects
of noise, particularly when the signal level is low.*

9.9 DISCUSSION

We conclude the noise analysis of analog modulation systems by presenting
a comparison of the relative merits of the different modulation techniques.
For the purpose of this comparison, we assume that the modulation is

*For a detailed description of Dolby systems, see Stremler (1982), pp. 671-673.
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produced by a single sine wave. For the comparison to be meaningful, we
also assume that all the different modulation systems operate with exactly
the same channel signal-to-noise ratio. In making the comparison, it is
informative to keep in mind the transmission bandwidth requirement of
the modulation system in question. In this regard, we use a normalized
transmission bandwidth defined by

(9.76)

where B is the transmission bandwidth of the modulated wave and W is
the message bandwidth. We may thus make the following observations:

1. In a standard AM system using envelope detection, the output signal-
to-noise ratio, assuming sinusoidal modulation, is given by (see Eq.

9.26)
w .
(SNR)o = 57 (SNR)¢

This relation is plotted as curve I in Fig. 9.17, assuming x4 = 1. In this
curve we have also included the AM threshold effect, based on the
result of Exercise 4. Since in a standard AM system both sidebands are
transmitted, the normalized transmission bandwidth B, equals 2.

2. In the case of a DSBSC or SSB modulation system using coherent
detection, the output signal-to-noise ratio is given by (see Eqs. 9.12 and
9.18):

(SNR)o = (SNR)c

This relation is plotted as curve Il in Fig. 9.17. We see, therefore, that
the noise performance of a DSBSC or SSB system, using coherent
detection, is superior to that of a standard AM system using envelope
detection by 4.8 dB. It should also be noted that neither the DSBSC
nor the SSB system exhibits a threshold effect. With regard to trans-
mission bandwidth requirement. we have B, = 2 for the DSBSC system
and B, = 1 for the SSB system. Thus, among the family of AM systems,
SSB modulation is optimum with regard to noise performance as well
as bandwidth conservation. '

3. In an FM system using a conventional discriminator, the output signal-
to-noise ratio, assuming sinusoidal modulation, is given by (see Eq.
9.57)

(SNR)o = #B*(SNR)c
where f is the modulation index. This relation is shown as curves III
and IV in Fig. 9.17, corresponding to p=2and f =5, respectively.
In each case, we have included a 6.7-dB improvement that is typically
obtained by using pre-emphasis in the transmitter and de-emphasis in
the receiver. To determine the transmission bandwidth requirement,
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Comparison of the noise performance of various analog modulation systems. Curve
1: Full AM, p = 1. Curve li: DSBSC, SSB. Curve lll: FM. B = 2. Curve IV: FM. 3 = 5.
(Curves Ill and IV include 13-dB pre-emphasis, de-emphasis improvement.)

we use Carson's rule and thus write

B,= 6 forf=2

B, =12 forf =5
We therefore see that, compared with the SSB system, which is the
optimum form of linear modulation, by using wideband FM we optain
an improvement in output signal-to-noise ratio equal to 14.5 dB for a
normalized bandwidth B, = 6, and an improvement of 22.6 dB for
B, = 12. This clearly illustrates the improvement in noise performance
that is achievable by using wideband FM. However. the price that we
have to pay for this improvement is increased transmission bandwidth.
It is, of course, assumed that the FM system operates above threshold
for the noise improvement to be realizable as described herein. The
curves Il and 1V of Fig. 9.17 include the FM threshold effect, based
on the results of Exercise 7. Note that the threshold effect in FM man-
ifests itself at a channel signal-to-noise ratio much greater than that in
standard AM.
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....................................................................................................................................

PROBLEMS
P9.1 Signal-to-Noise Ratios

Problem 1 Consider the sample function of a random process
x(t) = A+ w(t)

where A is a constant and w(¢) is a white noise of zero mean and power
spectral density No/2. The sample function x(¢) is passed through the low-
pass RC filter shown in Fig. P9.1. Find an expression for the output signal-
to-noise ratio, with the dc component A regarded as the signal of interest.

Problem 2 The sample function
x(t) = A cos(2rnf.t) + w(r)

is applied to the low-pass RC filter of Fig. P9.1. The amplitude A, and
" frequency f. of the sinusoidal components are constants, and w(t) is a
white noise of zero mean and power spectral density Ny/2. Find an expres-
sion for the output signal-to-noise ratio with the sinusoidal component of
x(t) regarded as the signal of interest.

Problem 3 Suppose next the sample function x(r) of Problem 2 is applied
to the band-pass LCR filter of Fig. P9.2, which is tuned to the frequency
f. of the sinusoidal component. Assume that the Q factor of the filter is
high compared with unity. Find an expression for the output signal-to-noise
ratio, by treating the sinusoidal component of x(t) as the signal of interest.

Problem 4 The input to the low-pass RC filter of Fig. P9.1 consists of a
white noise of zero mean and power spectral density Ny/2, plus a signal
that is a sequence of constant-amplitude rectangular pulses. The pulse
amplitude is A, the pulse duration is T, and the period of the sequence is
T,, where T < T,. Derive an expression for the output signal-to-noise ratio
of the filter, defined as the ratio of the square of the maximum amplitude
of the output signal with no noise at the input to the average power of the
output noise.

R

: Input ’ Output
_ signal c -J: signal
o . o

Figure P9.1
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P9.3 Signal-to-Noise Ratios for Coherent Reception

Problem 5 Calculate the output signal-to-noise ratio of the coherent re-
ceiver of Fig. 9.3, assuming that the modulated signal 5(1) is produced by
the sinusoidal modulating wave

m(t) = A,cos(2nf,t)
Perform your calculation for the following two receiver types:
(a) Coherent DSBSC receiver

(b) Coherent SSB receiver.

Problem 6 Let a message signal m(r) be transmitted using SSB modu-
lation. The power spectral density of m(r) is

Su(f) ={ a r‘_il

0. otherwise

fl<w

where @ and W are constants. White noise of zero mean and power spectral
density N,/2 is added to the SSB-modulated wave at the receiver input.
Find an expression for the output signal-to-noise ratio of the receiver.

Sy if)

watts/Hz

~400 0 400 flkHz)

Figure P9.3
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Problem7 An SSB-modulated wave is transmitted over a noisy channel,
with the power spectral density of the noise being as shown in Fig. P9.3.
The message bandwidth is 4 KkHz and the carrier frequency is 200 kHz.
Assuming that only the upper-sideband is transmitted, and that the average
power of the modulated wave is 10 watts, determine the output signal-to-
noise ratio of the receiver for the case when the predetection filter char-

acteristic is ideal.

P9.4. Noise in AM Receivers Using Envelope Detection

Problem8 The average noise power per unit bandwidth measured at the
front end of an AM receiver is 10-3 watts per hertz. The modulating wave
is sinusoidal, with a carrier power of 80 kilowatts and a sideband power
of 10 kilowatts per sideband. The message bandwidth is 4 kHz. Assuming
the use of an envelope detector in the receiver, determine the output signal-
to-noise ratio of the system. By how many decibels is this system inferior
to a DSBSC modulation system?

Problem 9 An unmodulated carrier of amplitude A, and frequency fe
and band-limited white noise are summed and then passed through an ideal
envelope detector. Assume the noise spectral density to be of height
N,/2 and bandwidth 2W, centered about the carrier frequency f.. Deter-
mine the output signal-to-noise ratio for the case when the carrier-to-noise

ratio is high.

Problem 10 An AM receiver, operating with a sinusoidal modulating
wave and-80% modulation, has an output signal-to-noise ratio of 30 dB.
What is the corresponding carrier-to-noise ratio?

Problem 11 Consider an AM receiver using a square-law detector with
output proportional to the square of the input, as indicated in Fig. P9.4.
The AM wave is defined by

s(t) = A [l + u cos(2nf 1)) cos(2nf.t)

Assume that the additive noise at the detector input is Gaussian with zero
mean and variance o3 it is defined by

n(t) = n,(1) cos(2nf.r) — nyl(t) sinnf.1)
(a) Show that the output signal-to-noise ratio of the receiver is given -
by -

2up?

SNR)p = ————
( )o 1+ o2 + e

where p is the carrier-to-noise ratio.
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(b) Evaluate the asymptotic behavior of (SNR), with respect to p.
(c) Plot the dependence of (SNR), on p for the case of 100% modu-
lation.

P9.5 FM Receiver Model

Problem 12 Assume that the FM receiver model of Fig. 9.7a and the
AM receiver model of Fig. 9.2a have the same additive white noise w(r)
of zero mean and power spectral density N,/2. Compare the average noise
power at the output of the IF filter in Fig. 9.7a with that in Fig. 9.2a.

P9.6 Noise in FM Reception

Problem 13  Suppose that the spectrum of a modulating signal occupies
the frequency band f, < [f| < f,. To accommodate this signal, the receiver
of an FM system (without pre-emphasis) uses an ideal band-pass filter
connected to the output of the frequency discriminator; the filter passes
frequencies in the interval f, < |f| < f,. Determine the output signal-to-
noise ratio and figure of merit of the system in the presence of additive
white noise at the receiver input.

Problem 14 An FDM system uses single-sideband modulation to combine
12 independent voice signals and then uses frequency modulation to trans-
mit the composite baseband signal. Each voice signal has a power P and
occupies the frequency band 0.3-3.4 kHz; the system allocates it a band-
width of 4 kHz. For each voice signal, only the lower sideband is trans-
mitted. The subcarrier waves used for the first stage of modulation are
defined by

cx(r) = A, cos(2nk fot), O0<k=1ll
The received signal consists of the transmitted FM signal plus white noise

of zero mean and power spectral density N,y/2.

(a) Sketch the power spectral density of the signal produced at the
frequency discriminator output, showing both the signal and noise com-

ponents.
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(b) Find the relationship between the subcarrier amplitudes A, so that
the modulated voice signals have equal signal-to-noise ratios.

Problem 15 Consider a phase modulation (PM) system, with the mod-
ulated wave defined by

s(t) = A cos2nf.t + k,m(1)]

where &, is a constant and m() is the message signal. The additive noise
n(r) at the phase detector input is '

n(r) = ny(t) cos2nft) — ng(t) sin(2nf.r)

Assuming that the carrier-to-noise ratio at the detector input is high com-
pared with unity, determine: (a) the output signal-to-noise ratio, and (b)
the figure of merit of the system. Compare your results with the FM system
for the case of sinusoidal modulation.

P9.7 FM Threshold Effect

Problem 16 The results reported in Section 9.7 indicate that the threshold
point is defined by the carrier-to-noise ratio.

P = 10

(a) Show that the output signal-to-noise ratio at the threshold point is
given by
(SNR)oum = 30 B*(B + 1)

where f is the modulation index (assuming sinusoidal modulation).
(b) Find the modulation index f that produces an output signal-to-noise
ratio equal to 34.6 dB at the threshold point. Hence, find the corre-
sponding value of the channel signal-to-noise ratio.

P9.8 Pre-emphasis and De-emphasis in FM

Problem 17 By using the pre-emphasis filter shown in Fig. 9.16a and
with a voice signal as the modulating wave, an FM transmitter produces
a signal that is essentially frequency-modulated by the lower audio fre-
quencies and phase-modulated by the higher audio frequencies. Explain
the reasons for this phenomenon.

Problem 18 A phase modulation (PM) system uses a pair of pre-emphasis
and de-emphasis filters defined by the transfer functions

Ho(f) = k ’i)
Sl (1 T

e—— R
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and

Uk
1+ (jf/fo)

Ha(f)

The constant k is chosen to make the average power of the pre-emphasized
message equal to that of the original message signal.

(a) Determine the improvement in output signal-to-noise ratio pro-
duced by the use of this pair of filters.

(b) Compare this improvement with that produced in the corresponding
FM system.

(c) Given that the message bandwidth W = 15 kHz and the cutoff
frequency f, = 2.1 kHz, how do the improvements in SNR for the PM
and FM systems compare with each other?






CHAPTER 10

................

OPTIMUM RECEIVERS FOR

——rRAL CQNMUNICATION

A basic issue in the design of receivers is that of detecting a weak
signal embedded in a background of additive noise. Broadly speaking,
the purpose of detection is -to establish the presence or absence of a signal
in noise. In order to enhance the strength of the signal relative to that of
the noise, and thereby facilitate the detection process, a detection
system usually consists of a predetection filter followed by a decision
device. When the additive noise is white, that is, the power spectral
density of the noise is constant, it turns out that the optimum solution to
the predetection filter is a matched filter, which is so-called because its
characterization is matched to that of the signal component in the

539
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received signal. A matched filter is optimum in the sense that it
maximizes the output signal-to-noise ratio defined in a special way. It is
thus apparent that a matched filter is useful in the design of digital ;
communication systems where the concern is to enhance the received §
pulses so as to maximize the signal-to-noise ratio. In these applications
we are primarily interested in improving our ability to recognize a pulse
signal in the presence of additive noise and not in preserving the fidelity
of the pulse shape.

In this chapter we study the theory and applications of matched
filters. We begin the study by formulating the optimum receiver problem.

10.1 FORMULATION OF THE OPTIMUM RECEIVER PROBLEM

Consider the situation depicted in Fig. 10.1. Suppose that we have received

a signal x(r) that consists of either white Gaussian noise w(t) or the noise

w(t) plus a signal s(t) of known form. The implication of the noise being

“white” is that its power spectral density has a constant value N,/2, say.

The implication of the noise being “Gaussian™ is that a sample drawn from

such a process has a Gaussian probability distribution for its amplitude.

We further assume that the noise has zero mean. We wish to .estimate !
which of the two hypotheses, noise alone or noise plus signal, is true. We ’
do this by operating on the received signal x(t) with a linear time-invariant
receiver in such a way that if the signal s(¢) is present, the receiver output
at some arbitrary time ¢ = T will be considerably greater than if s(¢) is
absent.

For example, in a pulse-code modulation system using on-off signaling,
a pulse s(f) may represent symbol 1, whereas its absence may represent
symbol 0. We thus have the problem of specifying the input—output relation
of the receiver according to some criterion, so as to enhance the detection
process as much as possible.

We present two approaches to the solution of this basic optimization
problem. One approach is based on maximization of the signal-to-noise
ratio at the receiver output. The other approach is based on a probabilistic
¢riterion directly related to performance ratings of digital communication
systems in which we are interested. We will show that: (1) maximization
of the output signal-to-noise ratio yields the so-called matched filter receiver,
which involves a filter matched to the signal component of the received

+ x(t) ) Lilnear
z:,(f,)fo',t time-invariant p—— Output
+ receiver
wi(t)
Figure 10.1

Processing of noisy signal.
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signal, and (2) the probabilistic approach yields the so-called correlation
receiver, which involves a correlation of the received signal with a stored -
replica of the transmitted signal. Furthermore, we will show that these two -
receiver structures are indeed equivalent for the case of additive white
Gaussian noise.

10.2 MAXIMIZATION OF OUTPUT SIGNAL-TO-NOISE RATIO

Consider a linear time-invariant filter of impuse response /(t) or, equiv-
alently, transfer function H(f), with x(¢) as input and y(r) as output. Let
s5,(t) and n,(¢) denote the signal and noise components of the filter output
y(t) produced by the signal component s(¢) and white noise component
w(t) of the input, respectively. Since the filter is linear, and the signal s()
and noise w(t) appear additively at the filter input, we may invoke the
principle of superposition and thus evaluate their effects at the filter output
by considering them separately.

Let S(f) denote the Fourier transform of the input signal component
s(t). Then, the Fourier transform of the corresponding output signal s,(r)
is equal to H(f)S(f), and s,(z) is itself given by the inverse Fourier trans-
form: :

5,(t) = j " H(H)S(F) exp(j2nft) df (10.1)

Consider next the effect of the noise w(r) alone on the filter output. The
power spectral density Sy (f) of the output noise n,(¢) is equal to the
power spectral density of the input noise w(¢) times the squared magnitude
of the transfer function H(f) (see Section 8.9). Since w(t) is white with
constant power spectral density N,/2, it follows that

S.(f) = S H(P (10.2)

The average power .4, of the output noise n,(f) equals the total area ander
the curve of S, (f). We may therefore write

A= J Sx,(f) df

=2 (" ap (10.3)

A simple way of describing the requirement that the filter output be
considerably greater when the input signal s(r) is present than when s5(f)
is absent, is to ask that, at time ¢+ = T, the filter make the instantaneous
power in the output signal s,(r) as large as possible compared with the
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average power in output noise n,(f). This is equivalent to maximizing the
output signal-to-noise ratio, defined as

_ lso(DP -
(SNR)o 5 (10.4)

Using Egs. 10.2 and 10.3 in 10.4, we get

| [ HDst exptjznsT) af

Mj =
2 -=

(SNR)o = (10.5)

|H(f)F df

Our problem is to find, while holding the Fourier transform S(f) of the
input signal fixed, the form of the transfer function H(f) of the filter that
makes (SNR), a maximum. To find the solution to this constrained optimi-
zation problem, we may apply a mathematical result known as Schwarz’s
inequality to the numerator of Eq. 10.5.

We will digress from our task briefly to introduce this important in-
equality, using a notation consistent with that used herein.

SCHWARZ’'S INEQUALITY

Consider the complex-valued frequency function H(f)S(f) exp(j2zfT).
This function may be viewed as the product of two functions, namely, H(f)
and S(f)exp(j2nfT). Schwarz's inequality for integrals of complex func-
tions states that the squared magnitude of the total area under the product
of two such functions is less than or equal to the product of the total area
under the squared magnitude of each of the two functions. In mathematical
terms, Schwarz’s inequality states that'

2 - @
< [ wHrdf [ 1SR af
(10.6)

|" H(S() expianfT) df

'Schwarz's inequality, stated in Eq. 10.6 is just an extension of an inequality for real
functions described by 5

“ altiblt) d:]' < j a'(t) mj bA(t) dt

where a(t) and b(t) denote a pair of real-time functions of finite energy. As such, it
may be viewed as a generalization of the well-known "distance’ relation among
vectors, which states that the magnitude of the sum of two vectors is less than or
equal to the sum of the magnitudes of the two vectors. For a formal proof of
Schwarz's inequality, see Haykin (1988), pp. 574-76.
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Here we have used the fact that the exponential term exp(j2zf7T) has a
magnitude of unity; therefore

IS(f) exp(j22fT)| = |S(f)l

Schwarz’s inequality also states that Eq. 10.6 is satisfied with equality if,
and only if, the first function H(f) is the complex conjugate of the second
function S(f)exp(j2nf T). This statement is valid to within a scaling factor.
Let H,,(f) denote the special value of H(f) that satisfies this condition.
We may then write

Hop(f) = S*(f) exp(=j2nfT) (10.7)

where S$*(f) is the complex conjugate of S(f).

Having equipped ourselves with this new mathematical tool, we are
ready to resume our task of finding a solution to the optimum receiver
problem.

MATCHED FILTER

Using Schwarz's inequality of Eq. 10.6in the formula for the output signal-
to-noise ratio given in Eq. 10.5, we get

2 f= 5
(SNR), < + f () df (10.8)

The right side of this relation does not depend on the transfer function
H(f) of the filter but only on the signal energy and the noise spectral
density. Consequently, the output signal-to-noise ratio will be a maximum
when H(f) is chosen so that the equality holds, that is,

2 x
(SNR)oum = 5 [ ISU)E df (109)

This condition is fulfilled when the transfer function H(f) assumes its
optimum value H,,(f), defined by Eq. 10.7.

According to Eq. 10.7, except for the exponential factor exp( —j2nfT)
representing a constant time delay T, the transfer function of the optimum
filter is the same as the complex conjugate of the specirum of the input signal.
Such a filter is called a matched filter.

Equation 10.7 specifies the matched filter in the frequency domain. To
characterize it in the time domain, we take the inverse Fourier transform
of H,,(f) in Eq. 10.7 to obtain the impulse response of the matched filter

as

hon@) = |7 S* () expl=j2(T = 0] df
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gta;n-plg If y(T) > A, known
x(t) | Matched N DEgii signal s(t) is present
atched | ™| Decision
filter P device =%
i Otherwise, signal
T s(t) is absent
Threshold A

Figure 10.2
Matched filter receiver. ,

Since for a real-valued signal s(r), we have $*(f) = S(—f). it follows that

Il

" S(—f) exp[—j2rf(T - 1)] df

—-=

=s(T - 1) (10.10)

hop(t)

Equation 10.10 shows that the impulse response of the matched filter* is a
time-reversed and delayed version of the input signal s(t). Note that in
deriving this result the only assumption we have made about the statistics
of the input noise w(r) is that it is white with zero mean and a power
spectral density Ny/2.

The optimum receiver for detecting the presence of the signal s(f) in
the received waveform is thus as shown in Fig. 10.2. It consists of a filter
matched to s(t), a sampler, and a decision-device. At time ( = T, the
matched filter output is sampled and the amplitude of this sample is com-
pared with a preset threshold ;.. If the threshold is exceeded. the receiver
decides that the known signal s(r) is present; otherwise, it will decide that
it is absent. The receiver of Fig. 10.2 is called a matched-filter receiver.

Thus far we have ignored the problem of the physical realizability of a
matched filter. For a matched filter operating in real time to be physically
realizable, it must be causal. That is, its impulse response must be zero
for negative time, as shown by

hop(t) = 0, <0
In terms of Eq. 10-10, the causality condition becomes

_J0, t<0
hopl(’) - {S(T _ f), = 0 (1011)

The characterization of a matched filter in terms of its transfer function was first
derived by North in a classified report (RCA Laboratories Report PTR-6C, June
1943), which was published 20 years later (North, 1963). For a review of the
matched filter and its properties, see Turin (1960).
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If all the input signal s(¢) is to contribute to the output signal component
5,(), it is apparent from Eq. 10.11 that we must have

s()=0, ¢>T (10.12)

This relation simply states that all the input signal s(t) must have entered
the filter by the time t = T at which it is desired to obtain a sample with the
maximum output signal-to-noise ratic.

For Eq..10.11 to be dimensionally correct, the term s(T — ¢) should be
multiplied by a scaling factor k that makes the impulse response h,,(r) of
the matched filter assume a dimension that is the inverse of time. This has
the effect of making the transfer function H,,(f) of the matched filter in
Eq. 10.7 dimensionless. We have chosen to ignore the use of such a scaling
factor merely for convenience of mathematical presentation.

evzaciSe 1 Show that multiplication of the optimum transfer function
H,.(f) of Eq. 10.7 by a scaling factor k leaves the maximum signal-to-
noise ratio unchanged. '

-

10.3 PROPERTIES OF MATCHED FILTERS

e SLLLLE LI

= From the results of the preceding section, we may state that a filter, which
is matched to an input signal s(r), is characterized in the time domain by
the impulse response

hopt) = s(T = 1)

which is a time-reversed and delayed version of the input s(¢), as illustrated
in Fig. 10.3. In the frequency domain, it is characterized by the transfer
function

Ho(f) = S*(f) exp(—j27fT)

which is, except for a delay factor, the complex conjugate of the spectrum
i of the input s(r). Based on this fundamental pair of relations, we may
J derive some important properties of matched filters, which should help
you develop an intuitive grasp of how a matched filter operates.

PROPERTY 1 =

The spectrum of the output signal of a matched filter with the matched signal
as input is, except for a time delay factor, proportional to the energy spectral
density of the input signal.
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s(t)
. t
0 N~ I
{a)
Rope V)
t
o] ™~ T
(b)

Figure 10.3
(a) Input sigral. (b) Impulse response of matched filter.

Let S,(f) denote the Fourier transform of the filter output s,(t). Then,

So(f) = Hop(f)S(f)
= S*(f)S(f) exp(-j2=fT) ,
= [SU)F exp(—j2fT) (10.13)

This is the desired result, since |S(f)]? is the energy spectral density of the
input signal s(r).

........---...........-.n-..--....."..-...-......-.........-.................-..-u-..-.....----u-.......".no..."..n-_

EXAMPLE 1 MATCHED FILTER FOR A RECTANGULAR PULSE

Consider a rectangular pulse s(r) of duration T and amplitude A, as in Fig.
10.4a:

s(:):{A' O0<st<T (10.14)

0, otherwise

For convenience of presentation, we assume that the pulse s(r) has unit
area; that is AT = 1. Then, the Fourier transform of s(r) is

S(f) = sinc(fT) exp(—jnfT)
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s(t)
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: 0 T

(a)

8,0t
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: 1
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: 0 T 27
: (b)

Figure 10.4
(a) Rectangular pulse input. (b)

is also a rectangular pulse,

S,(f)

I

Matched filter output, assuming AT = 1.

The impulse response of a filter matched to the rectangular pulse s(1)

as shown by

A, 0<rsT

: Rop(l) = { (10.15)

0, otherwise

The transfer function of this matched filter is (assuming AT = 1)
H,,(f) = sinc(fT) exp(—jnfT) (10.16)

which, in this example, is the same as S(f). The Fourier transform of the
matched filter output is therefore

= H,(f)S(f)

sinc*(fT) exp(—j2nfT)

The factor sinc3(fT) is recognized as the energy spectral density of the

i rectangular pulse s(¢), assumed to be of unit area. Thus, S,(f) is in accord

i with Property 1.

PROPERTY 2

The output signal of a matched filter is proportional to a shifted version of

the autocorrelation function

of the input signal to which the filter is matched.

essssanss

seses
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This property follows directly from Property 1, recognizing that the au-
tocorrelation function and energy spectral density of a signal form a Fourier
transform pair (see Section 4.2). Thus, taking the inverse Fourier transform
of Eq. 10.13, we may express the matched-filter output as

s.(t) = R(t = T) (10.17)

where R,(7) is the autocorrelation function of the input s(¢) for time lag
t. Equation 10.17 is the desired result.

EXERCISE 2 Consider a filter matched to an energy signal s(r) of duration
T'seconds. The filter is excited by an input that consists of a delayed version
of the signal s(¢); the delay equals #, seconds.

(a) What is the time at which the filter output attains its maximum
value?
(b) What is the maximum value of the filter output?

............................................................................................................................
.

i EXAMPLE 2 MATCHED FILTER FOR A
RECTANGULAR PULSE (CONTINUED)

Consider again the matched filter for the rectangular pulse s(r) of amplitude
A and duration T, as shown in Fig. 10.4a. The rectangular pulse s(r) is
defined in Eq. 10.14, and the impulse response A,,,(t) of the corresponding
matched filter is defined in Eq. 10.15. Convolving s(¢) with h,,.(t). we find
that the matched filter output s,(r) has a triangular waveform. Specifically,
for AT = 1 we have

O<t=<T

5.(1) = A(g_i) Tsr<ar
T/’
otherwise

This waveform is plotted in Fig. 10.4b, which is recognized as the auto-
correlation function of the rectangular pulse s(¢). shifted by T seconds.
Note that the matched filter output s,,(¢) attains its maximum value at time
t = T, and that its duration is twice that of the input signal.

............................................................................................................................

EXERciSE 3 Consider an RF pulse s(¢f) of amplitude A, duration T, and
frequency f., as shown in Fig. 10.5a. The frequency f. is an integer multiple
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Figure 10.5
(8) RF pulse input. (b) Matched filter output, assuming AT = 2.

of 1/T, and large enough for the RF pulse s(r) to be treated as a narrow-
band signal.

(a) Show that the matched filter output s,(r) is defined by

iT{ cos(2nf. 1), 0<t=T

SO(!) = t
Al2 = 7 cos(2mf 1), Tst<2T
0, otherwise

where, for convenience, it is assumed that AT = 2.
(b) Verify that the matched filter output s5,(¢) has the waveform shown

in Fig. 10.5b.

................................................................................................................ ssesssssanas

EXAMPLE 3 MATCHED FILTER PAIR

A possible exploitation of property 2 of a matched filter is illustrated in
Fig. 10.6. Let us suppose that we have a signal s(¢). lasting from r = 0 to
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— fr:;,e\:l:e' -l x(r) Matched Output
Short response + filter ylo)
input st) +
pulse

wit)

Figure 10.6
Viewing the matched filtering operation as an encoding-decoding process.

t = T, which has the appearance and character of a sample function of a
random process with a broad power spectral density, so that its autocor-
relation function approximates a delta function. This signal may be gen-
erated by applying, at ¢t = 0, a short pulse (short enough to approximate
a delta function) to a linear filter with impulse response s(r). The impulse-
like input signal has components occupying a very wide frequency band,
but their amplitudes and phases are such that they add constructively only
at and near ¢ = 0 and cancel each other out elsewhere. We may therefore
view the signal-generating filter as an encoder, whereby the amplitudes
and phases of the frequency components of the impulse-like input signal
are coded in such a way that the filter output becomes noise-like in char-
acter, lasting from ¢ = Otot = T, asin Fig. 10.7a. The signal s(r) generated
in this way is to be transmitted to a receiver via a distortionless but noisy
channel. The requirement is to reconstruct at the receiver output a signal
that closely approximates the original impulse-like signal.

The optimum solution to such a requirement, in the presence of additive
white Gaussian noise, is to employ a matched filter in the receiver, as in
Fig. 10.6. We may view this matched filter as a decoder, whereby the useful
signal component s(7) of the receiver input is decoded in such a way that
all frequency components at the filter output have zero phase at t = T,
and add constructively to produce a large pulse of nonzero width, as in
Fig. 10.7b. Thus, in coding the impulse-like signal at the transmitter input
we have spread the signal energy out over a duration 7, and in decoding
the noise-like signal at the receiver input we are able to concentrate this
energy into a relatively narrow pulse. The extent to which the receiver
output s5,(t) approximates the original impulse-like signal is simply a re-
flection of the extent to which the autocorrelation function of the trans-
mitted signal s(¢) approximates a delta function. The signal generating and
reconstruction filters in Fig. 10.6 are said to constitute a matched-filter pair.

The idea of a matched filter pair is basic to a secure communication
technique known as spread spectrum modulation.? In this method of mod-
ulation, the noise-like character of the transmitted signal is produced by
having an information-bearing binary sequence modulate a bandwidth-

*For an introductory discussion of spread spectrum modulation, see Haykin (1988),
pp. 445-73.
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Figure 10.7
(a) Noise-like input signal. (b) Matched filter output.

spreading sequence that acts as a carrier, and the information-bearing se-
quence is recovered at the receiver by means of a filter maiched to the
spreading sequence employed in the transmitter. In a popular type of spread
spectrumn modulation. a pseudonoise (PN) sequence is used as the spreading
sequence, and each block of pulses constituting a period of the PN sequence
is multiplied in the transmitter by +1 or — 1. depending on whether the
particular binary symbol of the information-bearing sequence is a 1 or a
0. The receiver uses a filter matched to the PN sequence employed in the
transmitter. From Chapter 8 we recall that the autocorrelation function of
a PN sequence (also known as a maximal length sequence) consists of a
periodic train of short triangular pulses that have the appearance of an
impulse; see Fig. 8.21a. Hence, the matched filter output due to the in-
formation-bearing sequence consists of a periodic train of short triangular
pulses, with the polarity of each pulse being determined by the identity of
the corresponding binary symbol of the information-bearing sequence. On
the other hand, an interfering (jamming) signal, unmatched to the PN
sequence, is rejected by the matched filter receiver. The level of this re-
jection is determined by the ratio 7,/T . where T, is the bit duration of
the information-bearing sequence. and T, is the duration of a basic pulse
of the PN sequence; the ratio T,/T,. expressed in decibels, is called the
processing gain of the system. Hence, by assigning a large value (on the
order of 1000) to.this ratio, a secure communication link is established
between the transmitter and the receiver. Moreover, the 1's and 0's of the
ariginal information-bearing sequence are detected by sampling the matched
filter output every T, seconds: If the polarity of a sample under test 1S
positive. a decision is made in favor of symbol 1; otherwise. a decision is
made in favor of symbol 0.

sesstesinsens
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PROPERTY 3

The output signal-to-noise ratio of a matched filter depends only on the ratio
of the signal energy to the power spectral density. of the white noise at the
filter input.

This property follows directly from Eq. 10.9, reproduced here for con-
venience

2 x
(SNR)o. = 3 f IS(OF df

where S(f) is the Fourier transform of the signal 5(r) to which the filter
of interest is matched. From Rayleigh’s energy theorem, the signal energy
E is given by

E= [ swa= [ Isra

Accordingly, we may rewrite the expression for the output signal-to-noise
ratio of the matched filter as

(SNR)¢.op = N (10.18)
Ny

which is the desired result.

Equation 10.18 is perhaps the most important result in the evaliation
of the performance of signal processing systems using matched filters. From
Eq. 10.18 we see that.dependence on the waveform of the input s(r) has
been completely removed by the matched filter. Accordingly, in evaluating
the ability of a matched-filter receiver to combat white Gaussian noise, we
find that all signals that have the same energy are equally effective. Note
that the signal energy E is in joules and the noise spectral density N,/2 is
in watts per hertz, so that the ratio 2E/N, is dimensionless; however, the
two quantities have different physical meaning. '

EXERCISE 4 Consider a rectangular pulse of amplitude A and duration
T. Show that the output signal-to-noise ratio of a filter matched to this
pulse is

2AT

0

(SNR), =

(10.19)
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PROPERTY 4
The matched-filtering operation may be separated into two matching con-
ditions; namely, spectral phase matching that produces the desired output

peak at time T, and spectral amplitude matching that maximizes the output
signal-to-noise ratio at time t = T.

In polar form, the spectrum of the signal s(r) being matched may be
expressed as

S(f) = |S(f)l expl j6(f)]

where |S(f)| is the amplitude spectrum and 0(f) is the phase spectrum of
the signal. The filter is said to be spectral phase matched to the signal s(1)
if the transfer function of the filter is defined by*

H(f) = |H(f)| exp[-jO(f) - j2rfT]

where |H(f)| is real and nonnegative. The output of such a filter is

) = [ HES() expljznft) df

[ 1@l explanf = Dl af

where the product | H(f)||S(f)| is real and nonnegative. The spectral phase
matching ensures that all the spectral components of the output 5,(7) add
constructively at time ¢ = T, thereby causing the output to attain its max-
imum value, as shown by

i) =531 = [ IS 4

For spectral amplitude matching, we choose the amplitude response |H(f)|
of the filter to maximize the output signal-to-noise ratio at t = T by using

|H(f)l = [S(f)l
and the standard matched filter is the result.
10.4 AfPROXIMATlONS IN MATCHED FILTER DESIGN

In considering the design of a matched filter, we have to take account of
two aspects of the problem—physical realizability and practical feasibility.

“Birdsall (1976).
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For a matched filter operating in real time to be physically realizable, its
impulse response must be zero for negative time. In Section 10.2 we showed
that if the signal s(t) to which the filter is to be matched lasts from ¢ = 0
tor = T, then the physical realizability requirement is satisfied by intro-
ducing a finite delay, equal to T, in the impulse response of the filter.
Then, of course, we must wait until time r = T for the output signal
component s,(¢) of the matched filter to reach its peak value 5,(T). In
other words, we cannot expect the output signal component s, (t) to contain
the full information about the input signal s(¢) until the signal has been
fully received by the filter. Suppose, however, that the signal duration T
is too large and we cannot afford to wait until time ¢t = T before extracting
information about the signal s(¢). Then. in order to maximize the output
signal-to-noise ratio at some instant ¢ = T', where T’ < T, we should use

- the part of the optimum impulse response h,,,(1) that extends from ¢ = 0,

tor = T'. and delete the remainder. The resulting output signal-to-noise
ratio. measured at time ¢t = T, is still of the form of Eq. 10.18 except
that now E must be interpreted not as the total signal energy, but rather
as that part of the signal energy having been received by the filter at time
t = T'. Obviously, in such a case. we are no longer dealing with a true
matched filter, but rather an approximation to it, with the nature of the

approximation determined by what fraction of the signal energy is received

by timer = T'.

Another problem encountered in the construction of a matched filter is
that it is often difficult to realize a filter with a transfer function exactly
equal to the complex conjugate of the spectrum of the input signal s(r).
We may, then. have to apply some form of approximation to the optimum
transfer function H,,( f) in order to arrive at a practical realization. Such
an approximation results in some loss in performance compared with a
true matched filter. This procedure is best illustrated by examples.

EXAMPLE 4 APPROXIMATIONS FOR A MATCHED
FILTER FOR A RECTANGULAR PULSE

Consider again the rectangular pulse s(t) of Fig. 10.4a. The pulse has
amplitude A and duration T; let AT = 1 for convenience of presentation.
In this example, we examine two different low-pass structures for approx-
imating the matched filter for this rectangular pulse. The two structures
are an ideal low-pass filter and an RC low-pass filter, which are considered
in turn.

1. Ideal low-pass filter with variable bandwidth: The transfer function
Hop( f) of the matched filter of interest is given in Eq. 10.16, which is
reproduced here for convenience:

Hop(f) = sinc(fT) exp(—jnfT)

.................................................................

essesasssnces
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The amplitude response |H,,(f)| of the matched filter is plotted in Fig.
10.8a. We wish to approximate this amplitude response with an ideal low-
pass filter of bandwidth B. The amplitude response of this approximating
filter is shown in Fig. 10.8b. The requirement is to determine the particular
value of bandwidth B that will provide the best approximation to the
matched filter.

From Example 4 of Chapter 3, we recall that the maximum value of the
output signal, produced by an ideal low-pass filter in response to the rec-
tangular pulse of Fig. 10.4a, occurs at ¢t = T/2 for BT < 1. This maximum
value, expressed in terms of the sine integral, is equal to (24 /n)Si(nBT).
The average noise power at the output of the ideal low-pass filter is equal
to BN,. The maximum output signal-to-noise ratio of the ideal low-pass
filter is therefore

(2A /7)* SiX(n BT)
BN,

(SNR), = (10.20)

Thus, using Egs. 10.19 and 10.20, and assuming that AT = 1, we get

(SNRY, 2 ..
WA o = SiYaBT
(SNR)y ~ BT )
| Hopy (1)
1.0
e S, . | I kB2 2 .
T T T (a) T T T
|Hf)
1.0
-B 0 B f
(b)

Figure 10.8
(a) Amplitude response of a filter matched to a rectangular pulse. (b) Amplitude
response of an ideal low-pass filter approximating the matched filter.
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Matched filter

0.825 ] Ideal low-pass
B filter

|

| RC
| low-pass
: filter
|

|

Figure 10.9
The effect of varying the time-bandwidth product BT on the output signal-to-noise

ratio of an ideal low-pass filter and that of RC low-pass filter.

This ratio is plotted in Fig. 10.9 as a function. of the time-bandwidth product

BT. The peak value on this curve occurs for BT = 0.685, for which we

find that the maximum signal-to-noise ratio of the ideal low-pass filter is
0.84 dB below that of the true matched filter. Therefore, the “‘best” value
for the bandwidth of the ideal low-pass filter characteristic of Fig. 10.8b
is B = 0.685/T.

2. RC Low-pass filter of variable bandwidth: Consider next the simple
RC low-pass filter shown in Fig. 10.10a, which is required to provide the
best approximation to the matched filter for a rectangular pulse s(r) of
amplitude A and duration 7. In this case, it is easiest to do the analysis in
the time domain. To proceed, the pulse s(t) is reproduced in Fig. 10.10b.
The response (output) of the filter to the input pulse s(¢) is plotted in Fig.
10.10¢. Comparing the RC low-pass filter output s,(¢) in Fig. 10.10c with
the matched filter output s,(r) shown in Fig. 10.4b, we see that they have
somewhat similar waveforms.

The response s5,(t) of the RC low-pass filter reaches its peak value at
time + = T, which is given by

si(T) = [1 - exp( RZ)] (10.21)

where RC is the time constant of the filter. The 3-dB bandwidth B of the
filter is related to the time constant RC by

1
" 2nRC

ssssssssss
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Figure 10.10

R
o= WA ' 0O
Input _I_ Output
s(t) ¢ -l— 5, (1)
(o0 -0
(a)
s(t)
A
0 T ‘
(b)
solt)
sy (T)-———~
|
|
|
|
0 T ;
(c)

(a) RC low-pass filter. (b) Rectangular pulse input. (c) Response of the filter.

We may therefore rewrite Eq. 10.21 in terms of the bandwidth B as

s.(T) = A[l — exp(—2nBT)]

557

(10.22)

Our next task is to calculate the average power at the RC low-pass filter
output produced in response to a white noise input of zero mean and power
spectral density N,/2. The transfer function of the filter is

1 -
H(f) = T 2zfRC
1
1+ (jf/B)
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Hence, the average noise power at the low-pass filter output is

: [~ M
M= [T FHHR df

_Nofe __df

- Ll + (f/B)?

- 202 (10.23) |

We may now use Eqs. 10.22 and 10.23 to calculate the output signal-
to-noise ratio of the RC low-pass filter in Fig. 10.10a at time t = T, the
result is

2A° "
'R), = —— - - 10.24
(SNR), "N.B [1 — exp(—2rBT)] ( )

Thus, using Egs. 10.19 and 10.24. we get

(SNR)o _ 1 ., _ - 2
(SNR)o ~ nBT[l exp(—2nBT)]

i This dimensionless ratio is plotted versus the time-bandwidth product BT

i in Fig. 10.9. The curve reaches a peak value of 0.816 at BT = 0.2. There-
i fore, the maximum output signal-to-noise ratio of the RC low-pass filter
i is only 0.9 dB below that of the actual matched filter.

: It is noteworthy to compare the ideal and RC low-pass filters as ap-
proximate realizations of the matched filter for a rectangular pulse. Despite
its simplicity, the RC low-pass filter is worse than the ideal low-pass filter
¢ by only 0.06 dB; this degradation in performance is small enough to be
i ignored in practice. Accordingly, the RC low-pass filter is the preferred

solution.

.
.............................................................................................................. sessssssesenee

........ 10.5 PROBABILISTIC APPROACH

The filter optimization criterion based on maximization of the output signal-
to-noise ratio, described in Section 10.2, has the advantage of requiring
knowledge of only the power spectral density of the noise w(r) at the
receiver input. Although such a criterion has a strong intuitive justification,
nevertheless, we should prefer to use criteria directly related to probabi-
listic performance ratings of the system under study. For example, in a
pulse-code modulation system with on-off signaling, symbol 1 is repre-
sented by the presence of a pulse 5(t), whereas symbol 0 is represented by
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the absence of the pulse. The presence of noise at the front end of the
receiver causes two kinds of error to arise:

1. An error that occurs when symbol 0 is transmitted and the receiver
decides in favor of symbol 1.

2. An error that occurs when symbol 1 is transmitted and the receiver
decides in favor of symbol 0.

For a choice of criterion to optimize the performance of this system, we
may wish to minimize the average probability of error involving both kinds
of error. This brings us into the realm of classic statistical hypothesis-testing
procedures.

LIKELIHOOD RATIO

In the simplest hypothesis-testing problem, the observed signal x(¢) is either
due solely to white Gaussian noise w(t) of zero mean and power spectral
density N,/2, which constitutes the null hypothesis, or due to both an
exactly known signal s(r) and noise w(r), which constitutes the alternative
hypothesis. Denoting the null hypothesis as H, and the alternative hy-
pothesis as H,, we may write:

Hy: x(t) = w(t)

Hy:x(1) = s(t) + w(t) (10.25)

The problem is to observe the received signal x(¢) over an interval from
zero to T seconds and then decide whether H, or H, is true, according to
some criterion.

To get a probabilistic description of the continuous received signal x(r),
we first assume that m amplitude samples of x(¢) are available, and then
take the limit as m approaches infinity. At time f,, we thus have

Ho'. Xy = Wy

10.26
Hi: x; ( )

]

Sk + w,

where x,, 5., and w, refer to sample values of x(r), s(¢), and w(t) at time
t,, respectively; the time index k = 1,2, . . . , m. We may then define an
m-by-1 observation vector x that consists of the sample values x,, x5, . . .,
X, as shown by
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The vector x represents a single realization of the signal observed (mea-
sured) at the receiver input. Let the random vector X denote the ensemble
of all such realizations; naturally, the randomness arises because of the
additive white Gaussian noise at the receiver input.

Let fo(x) denote the conditional probability density function of the
random vector X given that H, is true, and let f,(x) denote the conditional
probability density function of X given that H, is true.®* These two con-
ditional probability density functions are basic to the probabilistic approach
to receiver design.

In the binary hypothesis-testing problem, we know that either H, or H,
is true. Thus, assuming that a choice has to be made each time the ex-
periment is conducted, one of four things can happen:

1. H, is true: choose H,.
2. Hyis true: choose H,.
3. H, is true: choose H,.
4. H, is true: choose H,.

It is apparent that alternatives (1) and (3) correspond to correct choices,
whereas alternatives (2) and (4) correspond to errors. The purpose of a
decision rule is to attach some relative importance to the four possible
courses of-action. To implement the decision rule, we divide the total
observation space Z into two parts, Z, and Z,. In particular, when an
observation falls in Z, we choose hypothesis H,, and when an observation
falls in Z; we choose hypotheses H,. Accordingly, we may identify two
important probabilities:

1. The conditional probability of correct reception, defined as the m-fold
integral

[LQML §=L 1,
Z,

where the m-dimensional decision region Z, corresponds to hypothesis
H,. ;
2. The condjtional probability of error, defined as the m-fold integral

ﬁﬁuum i=0,1.
Z,

*According to the notation described in Chapter 8, the conditional probability

density function of the random vector X, given that hypothesis H, is true, is written
as fx(x|H,). In the material presented herein, the notation is simplified by denoting
this conditional probability density function as f,(x). Similar remarks hold for f,(x).
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where Z, denotes “the not Z;”” decision region; that is,

5 _ Zl! i=0
Z"{zo, T

Il

In a digital communication system, we are specifically interested in min-
imizing the average probability of error. Let p and q denote the a priori
probabilities of hypotheses H, and H,, respectively. These probabilities
represent the observer's information about the source that generates the
observation vector x before the experiment is conducted. Then, we may
express the average probability of error as

P.=p | fox)dx + g L £,(x) dx (10.27)

Z

On the right side of Eq. 10.27, the first integral represents the conditional
probability of an error of the first kind, and the second integral represents
the conditional probability of an error of the second kind. Since the total
observation space Z = Z, + Z,, we may rewrite Eq. 10.27 as

| e pf £,(x) dx + qJ' f1(z) dx (10.28)
z-2, z,

We note, however, that the probability of an observation falling in the
total observation space Z is equal to 1, because it is a certain event; that
is,

[ fotx ax 8 i
Z

Hence, we may simplify Eq. 10.28 as
P.=p+ [ (afi0) = pato)] dx (10.29)
Zy

On the right side of Eq. 10.29 the first term is fixed whereas the integral
represents the error probability controlled by those points x that we assign
to Z,. Therefore, all values of x for which pfo(x) is greater than gf,(x)
should be assigned to Z, because they contribute a negative amount to the
integral. Similarly, all values of x for which the reverse is true should be
assigned to Z, (i.e., excluded from Z,) because they would contribute a
positive amount to the integral. Values of x where the two terms are equal
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have no effect on the average probability of error P, and may be assigned
arbitrarily. We will assume that such points are assigned to Z,. We may
thus define the decision regions as

If gf \(x) is greater than pfy(x),
assign x to Z, and accordingly choose hypothesis H,.
Otherwise, assign x to Z, and choose hypothesis H,. (10.30)

Equivalently, we may write

e~

(x

fa(x)

The quantity on the left side of Eq. 10.31 is called the likelihood ratio.
Denoting this ratio by 4(x), we have

(10.31)

x

N =
Sl S|

(]

A(x) = f—‘(~:—) (10.32)

Note that since the likelihood ratio /4(x) is a ratio of two functions of a
random variable, it is itself a random variable. However, regardless of the
dimensionality of x, the likelihood ratio A(x) is a one-dimensional random
variable. In terms of A(x), we may thus rewrite Eq. 10.31 simply as

A(x) (10.33)

INEZ
0 I

This test is called the minimum probability of error criterion.®
Since the natural logarithm is a monotonic function, and both sides of
Eq. 10.33 are positive, it follows that an equivalent test is

InA(x) % ln(g) (10.34)

*Equation 10.33 is a special case of the Bayes’ test:
]
Alx) Z2 n
"o

where 7 is called the threshold of the test. According to the Bayes’ test, the
threshold 7 is determined by two sets of factors: (a) the a priori probabilities p and
q, and (b) the individual costs assigned to the four possible outcomes of the binary
hypothesis testing problem. For a detailed treatment of Bayes’ test and related
:ssuef, see the following references: van Trees (1968), Helstrom (1968), and Whalen
1971).
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= Choose H| if
iketinood | "A® | pecision In A0 >n(2)
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Threshold
In( g—)
Figure 10.11

Likelihood ratio receiver.

We refer to InA(x) as the log-likelihood ratio. When the two hypotheses
H, and H, are equally likely (i.e., p = g), the decision level against which
the log-likelihood ratio is compared is zero. This assumption is usually true
in digital communications.

The optimum receiver based on Eq. 10.34 is known as the likelihood
ratio receiver, shown in Fig. 10.11. We see that all the data processing
required for the test is involved in computing the log-likelihood ratio InA(x),
based on the observation vector x, and it is not affected by the a priori
probabilities p and g. This invariance property of the likelihood ratio test
is of considerable practical importance. The values of the a priori proba-
bilities affect only the decision level. This means that we can construct a
processor based only on the log-likelihood ratio and accommodate any
subsequent changes in our estimates of the a priori probabilities, if ever
required, by simply varying the decision level.

EXERCISE 5 Justify the statement that the likelihood ratio 4(x) and the
ratio p/q are both positive.

CORRELATION RECEIVER

Let us momentarily assume that the noise is band-limited white Gaussian
noise with power spectral density:

Nn 1
Sdf)=42" ifl= B (10.35)

0. |fl > B

If the signal x(¢) containing such a noise (as an additive component) is
sampled with sampling interval T, = 1/2B, the samples are uncorrelated,
and being Gaussian, they are statistically independent. In the observation
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interval from zero to T, we collect a total of m = T/T, = 2BT statistically
independent samples. The joint-probability density functions f(x) and
fi(x) are therefore the products of probability density functions of the
individual components of the random vector X, assuming that H, and H,
are true, respectively. :

To explicitly write fy(x) or f,(x), we must have the mean and variance
of the random variables X,, k = 1, ..., m, which constitute the random
vector X. Since the noise w(f) has zero mean, we have

Hy: meanof X, = 0
Sk (10.36)

H,: mean of X,

where s, is the value of the signal s(r) at time t,. The variance of X, is the
same under both H, and H,, as shown by

ol(Xy) = 6}(W,) = ¢? (10.37)

where W, is the random variable obtained by observing the band-limited
white noise process w(r) at time r,. The variance o2 is simply that of the
noise component:

o} = NyB = =2 (10.38)

The equality o> = N,B follows from the fact that the average noise power
(represented by ¢?) equals the total area under its power spectral density
curve. We may therefore express the conditional probability density func-
tion fy(x) as :

folx) = H folx)

where
1 x3 )
X)) = e - —
folxi) V2no xp( 20?
Hence, we have
S S E"’ xi
f('(‘) - (27[02)"”2 Cxp( o 203) (1039)

Similarly, ‘we may write

1 i — 5;)?
filx) = oty CXP[— ¥ ﬂ%] (10.40)
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Substituting Egs. 10.39 and 10.40 in 10.34, and simplifying, we get

m 1 HI
E 2 (2540 — 5i) 2 ln(e)
k=1

20’ Hy q

or, equivalently,
. Sy X i 14 1 4 Si
SEtrzmlt)+5 25 (10.41)

From Eq. 10.38, the variance ¢° of the noise is equal to N./2T,. Therefore,
substituting this value for ¢° in Eq. 10.41, we get

2 m H,
= E SkaT, Z In
0 k=1 Hy

p 1« .
S+ — st T (10.42)
(‘I) Ny 2:1 ‘

The decision rule in Eq. 10.42 is expressed in terms of m uniformly -
spaced samples of the received signal x(t) and of the known signal s(r).
To obtain the corresponding decision rule in terms of the continuous func-
tions x(¢) and s(r). we allow the sampling interval T, to approach zero and
m (and therefore B) to approach infinity in such a way that the observation
interval mT, remains a constant, T. In the limit, the summations in Eq.

5

10.42 become integrals, yielding

H, T
2 " e e 2 ln(%) soun | aftpyd (10.43)
My

0Jo Yo Jo

Equivalemly. we may write
H,

Jr s()x(r) dt 2 (10.44)
0 H,

where 4 is a new threshold defined by

i 1
A= 5 AVU ln(g') +

r s*(1) dr (10.45)

\]

[SS NN

We also note that

r
E = I s3(r) dt
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is the energy of the known signal s(¢). That is, the threshold 4 in the test
described by Eq. 10.44 depends on the a priori probabilitics p and q, the
noise spectral density N, and the signal energy £; see Eq. 10.45.

EXERCISE 6 Discuss the ways in which the threshold A is affected by the
following values of a priori probabilities:

(a) Symbols 0 and 1 occur with equal probability. '
(b) Symbol 0 occurs twice as frequently as symbol 1.
(c) Symbol 1 occurs twice as frequently as symbol 0.

IMPLEMENTATION CONSIDERATIONS

The decision rule described by Eq. 10.44 may be implemented as shown
in Fig. 10.12. This receiver is called a correlation receiver.” It correlates the
received signal x(t) with a stored replica of the known signal s(t). If the
correlator output is larger than the predetermined threshold 4, we choose
H,; otherwise, we choose H,.

Consider the integral term on the left side of Eq. 10.43. Substituting
the time difference T — 1 for ¢ in this integral. we have

T 0
f s(t)x(t) dt = — J (T — o)x(T — 1)dr
0 T

fTs(T - 1)x(T - t)dr
0

However, from Eq. 10.10, we note that s(7 — ¢) is simply the impulse
response h,,,(1) of a linear time-invariant filter matched to the known signal
s(t). Therefore,

i &
f s(0)x(1) dt = f hot)X(T = ) dt (10.46)

The term on the right side of Eq. 10.46 is the output of a matched filter
of impulse response h,,(t) due to an input x(¢), evaluated at time 7. This
means that the matched-filter receiver of Fig. 10.2 and the correlation receiver
of Fig. 10.12 are equivalent. That a criterion based on maximization of the
Oulpg signal-to-noise ratio and a probabilistic criterion should lead to
exactly the same result in the case of additive white Gaussian noise is no
coincidence; indeed, it is testimony to the intimate connection between

"The derivation of the correlation receiver using a probabilistic criterion is
historically credited to Woodward (1964).
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Choose H, if
T Dot A is exceeded
) Jo ae = Cience”
Otherwise,
T choose H
s(t) A
Figure 10.12

Correlation receiver.

the two types of criteria in this special case. Note, however, that the
correlator output in Fig. 10.12 and the matched-filter output in Fig. 10.2
are equivalent only at time T.

10.6 PROBABILITY OF ERROR FOR BINARY PCM

As an application of the binary hypothesis-testing procedure described by
Eq. 10.44, we consider the performance of a binary PCM system in the
presence of channel noise; the receiver is depicted in Fig. 10.12. We do
so by evaluating the average probability of error for such a system under
the following assumptions:

1. The PCM system uses an on-off format, in which symbol 1 is represented
by A volts and symbol 0 by zero volt.

2. The symbols 1 and 0 occur with equal probability.

3. The channel noise w(r) is white and Gaussian with zero mean and power
spectral density Ny/2.

To determine the average probability of error, we consider the two
possible kinds of error separately. We begin by considering the first kind
of error that occurs when symbol 0 is sent and the receiver chooses symbol
1. In this case, the probability of error is just the probability that the
correlator output in Fig. 10.12 will exceed the threshold A owing to the
presence of noise, so the transmitted symbol 0 is mistaken for symbol 1.
Since the a priori probabilities of symbols 1 and 0 are equal, we have

p = q. Correspondingly, the expression for the threshold 4 given in Eq.

10.45 simplifies as follows

AT,

: (10.47)

,{:

where T, is the bit duration, and A’T, is the signal energy consumed in
the transmission of symbol 1. Let y denote the correlator output:

y - f " s()x(e) dt (10.48)

0
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Under hypothesis H,, corresponding to the transmission of symbol 0, the
received signal x(¢) equals the channel noise w(r). Under this hypothesis
we may therefore describe the correlator output as

Hyy= A f " w(t) de (10.49)
0

Since the white noise w(r) has zero mean, the correlator output under
hypothesis H, also has zero mean. In such a situation,: we speak of a
conditional mean, which (for the situation at hand) we describe by writing

my = E[Y|H,)] = E“"’ W) dr] =0 (10.50)

where the random variable Y represents the correlator output with y as its
sample value and W(r) is a white-noise process with w(r) as its sample
function. The subscript 0 in the conditional mean m; refers to the condition
that hypothesis H, is true. Correspondingly, let o} denote the conditional
variance of the correlator output, given that hypothesis H, is true. We may
therefore write

E[Y?|H,]
T [T,
EU f W) W(n) dt, d:z] (10.51)

Q
(=]
I

The double integration in Eq. 10.51 accounts for the squaring of the cor-
relator output. Interchanging the order of integration and expectation in
Eq. 10.51, we may write

o= j " [ " E[W(t) W) dr, di

B f’” f”Rw(r, - n)dyd, (10.52)
0 0

The parameter Ry(t; — t,) is the ensemble-averaged autocorrelation func-
tion of the white-noise process W(t). From random process theory, it is
recognized that the autocorrelation function and power spectral density of
a random process form a Fourier transform pair. Since the white-noise
process W(t) is assumed to have a constant power spectral density of
Ny/2, it follows that the autocorrelation function of such a process consists
of a delta function weighted by Ny/2 Specifically, we may write

Ruw(ty — 1) = %)5(1 -4 + t) (10.53)

e o e gy 4 -

"
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Substituting Eq. 10.53 in 10.52, and using the property that the total area
under the Dirac delta function 6(z — t; + 1) is unity, we get

5 2
' o} = Noludd] (10.54)
2

The statistical characterization of the correlator output is completed by
noting that it is Gaussian distributed, since the white ncise at the correlator
input is itself Gaussian (by assumption). In summary, we may state that
under hypothesis H, the correlator output is a Gaussian random variable
with zero mean and variance NyT,A?/2, as shown by

S Tl ) 10
fﬂ(y) \/m.;A exp( NUTbAZ ( 55)
where the subscript in fo(y) signifies the condition that symbol 0 was sent.
Figure 10.13a shows the bell-shaped curve for the probability density
function of the correlator output, given that symbol 0 was transmitted. The
probability of the receiver deciding in favor of symbol 1 is given by the
»=-- siown shaded in Fig. 10.13a. The part of the y-axis covered by this

frgie fo

(a)

f‘k‘ f-ﬂ)’)

)]

Figure 10.13 ) -
Conditional probability of error calculations. (a) Conditional probapmty of error,
given that symbol was sent. (b) Conditional probability of error, given that symbol 1

was sent.
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area corresponds to the condition that the correlator output y is in excess
of the threshold A defined by Eq. 10.47. Pet P, denote the first conditional
probability of error, given that symbol 0 was sent. Hence, we may write

Po = j fuly) dy

1 = y? )
S T expl — ~==—mr1 4 (10.56)
N T, A L’RIZ P( Ny T,A? y

Define

: .
7= —2— (10.57)
VN, T, A

We may then rewrite Eq. 10.56 in terms of the new variable z as

1 o

Po=—
Vr VAT, 4N,

exp(—2z?) dz (10.58)

Equation 10.58 can only be solved using numerical methods. A similar
integral has been tabulated and is known as the complementary error function®

erfc(u) = % r exp(—2z%) dz (10.59)
nJa

Accordingly, we may redefine the conditional probability of error P in
terms of the complementary error function as

1 2
Po== erfc( e T") (10.60)

Consider next the second kind of error that occurs when symbol 1 is
sent and the receiver chooses symbol 0. Under this condition, correspond-

*The complementary error function is related to the error function as

erfc(u) = 1 - erf(u) )
where erf(u) is the error function defined by (see Section 8.3) =

2 (u -
erflu) = — | exp(-2) dz =
nto

For large values of u, the error function approaches unity, in which case it is
numerically more convenient to work with the complementary error function. A
short table of values of the error function erf(u) for u in the range 0 to 3.3 is given
in Table 6 of Appendix D.
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ing to hypothesis H;, the correlator input consists of a rectangular pulse
of amplitude A and duration T, plus the channel noise w(t). We may thus
apply Eq. 10.48 to write -

Hey=A4 J“ (A + w()]dt (10.61)

0

The fixed quantity A in the integrand of Eg. 10.61 serves to shift the
correlator output from a mean value of zero volt under hypothesis H; to
a mean value of A>T, under hypothesis H,. However, the conditional
variance of the correlator output under hypothesis H, has the same value
as that under hypothesis H,. Moreover, the correlator output is Gaussian
distributed as before. In summary, the correlator output under hypothesis
H, is a Gaussian random variable with mean A°T, and variance N, T2,
as depicted in Fig. 10. 13b. Let P,, denote the second conditional probability
of error, given that symbol 1 was sent. This probability equals the area
shown shaded in Fig. 10.13b. which corresponds to those values of the
correlator output less than the threshold 4 set at A°T,/2. From the sym-
metric nature of the Gaussian density function, it is clear that

P, = Pg (10.62)

Note that this statement is only true when the a priori probabilities p and
g are equal: this assumption was made in calculating the threshold 2.

AVERAGE PROBABILITY OF ERROR

To determine the average probability of error of the PCM receiver, we
note that the two possible kinds of error just considered are mutually
exclusive events. Thus. with the a priori probability of transmitting a 0
equal to p, and the a priori probability of transmitting a 1 equal to g. we
find that the average probability of error, P,. is given by

P, = pPa + qPa (10.63)
Since P, = Po.andp + g = 1, Eq. 10.63 simplifies as

Pr: P((]:Prl

1 1 |A, '
P, = - erfc(= 0.64
= (2 T ) (10.64)

The term A>T, equals the signal energy when symbol 1 is sent. Let the
dimensionless parameter i, denote the signal energy-to-noise power spectral

or
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density ratio under this condition, as defined by

A'T,

0.
= (10.65)

h =

We may interpret the parameter », in another way. We observe that A2
denotes the peak signal power. The ratio N,/ T, denotes the average noise
power measured in a bandwidth equal to the bit rate 1/T,. The parameter
1 is therefore the ratio of the peak signal power to the average noise power
so defined.

We may thus express the average probability of error of the optimum
binary PCM system using on—off signaling in terms of n as

P. = %erfc(% \/,I) (10.66)

This formula shows that the average probability of error P, depends solely
on the signal energy-to-noise power spectral density ratio #,. Figure 10.14
shows P, plotted versus #, in decibels. We see that the average probability
of error P, decreases very rapidly as the signal energy-to-noise power
spectral density ratio , is increased, so that eventually a very small increase
in the signal energy will make the reception of binary data over a white
Gaussian noise channel almost error free. Clearly, there is an error thresh-
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Figure 10.14
Probability of error in a PCM receiver.
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old (at about 17 dB) below which the receiver performance may involve
significant numbers of errors and above which the effect of channel noise
is practically negligible. In other words, provided that the signal energy-
to-noise power spectral density ratio , exceeds the error threshold. channel
noise has virtually no effect on the receiver performance. which is precisely
the goal of PCM. When, however, », drops below the error threshold,
there is a sharp increase in the rate at which errors occur in the receiver.
Because decision errors result in the construction of incorrect code words,
we find that when the errors are frequent. the reconstructed message at
the receiver output bears little resemblance to the original message. In
such a situation. we say the message has become mutilated by decoding
noise.

EXERCISE 7 Using a procedure similar to that described for deriving P,q.
show that the conditional probability of error of the second kind, P,,, has
the same value as that given by Eq. 10.60.

EXERCISE 8 Consider the suboptimum binary PCM receiver shown in
Fig. 10.15. It involves the use of an ideal low-pass filter, followed by a
sampler. The output of the sampler is compared to a threshold, and then
a decision is made in favor of binary symbol 1 or 0. The transmitted PCM
signal uses an on—off format with symbol 1 represented by A volts, and
symbol O represented by zero volt. The symbols 1 and 0 occur with equal
probability, thereby justifying the use of a threshold of A/2 volts.

(a) Show that the average probability of error of this receiver is given
by

1 A
P, = - erfc
2 (2\/50)

PCM ’
wave : A
Choose lif y, > &
s(t Ideal t . k=3
O )2 o pass 1522y Oeciion |,
+ filter Sample .| Otherwise, choose 0
at time T
‘ t= ‘k
White noise Threshold
w(t) . A
z
Figure 10.15

Suboptimum receiver for binary-encoded PCM wave.
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where 02 = NoB, with B equal to the low-pass filter bandwidth and
N,y/2 equal to the power spectral density of the channel noise (assumed
to be white and Gaussian with zero mean).

(b) Set the bandwidth B equal-to the bit rate 1/T,. By how many
decibels is the receiver of Fig. 10.15 inferior to the matched filter receiver
of Fig. 10.2?

(c) Repeat your calculation in part b for the bandwidth B set at the
optimum value 0.685/T,, where T, is the bit duration (see Fig. 10.9). .

10.7 NOISE IN DIGITAL MODULATION SCHEMES

The binary hypothesis-testing procedure described by Eq. 10.44 may also
be applied to evaluate the noise performance of the various digital mod-
ulation schemes described in Section 7.15. In this context, we may identify
the following detection scenarios in the presence of additive white Gaussian
noise at the receiver input:

1. Coherent detection of binary amplitude-shift keving (ASK). phase-shift

keying (PSK). and frequency-shift keving (FSK) signals, assuming that
the receiver has perfect knowledge of the phase of the received signal:
In other words, there is phase synchronization between the receiver and
transmitter. The phase may be estimated from the received signal. For
example, in the case of binary PSK we may achieve phase synchroniz-
ation by using a Costas loop (see Section 7.2). Alternatively. provision
for phase synchronization may be made by sending a pilot carrier at the
cost of some wastage in transmitted power. The coherent detection of
binary ASK, PSK. and FSK signals is considered in Section 10.8. The
treatment of binary ASK signals follows directly from Eq. 10.44. For
the treatment of binary PSK and FSK signals. we consider them as
special cases of a generalized binary hypothesis-testing procedure that
involves a pair of arbitrary signals with equal energy. which represent
binary symbols 1 and 0.

. Noncoherent detection of binary ASK and FSK signals, ignoring the

phase information contained in the received signal: The motivation for
doing this is to simplify the receiver design. However, the price paid
for this simplification is an inferior noise performance, compared to a
corresponding receiver that is coherent. A mathematical treatment of
the noncoherent detection of binary ASK and FSK signals is complicated
and beyond the scope of this introductory book. We therefore content
ourselves by presenting highlights of the noncohegem detection of ASK
and FSK signals in Section 10.9.

. Differential phase-shift keying (DPSK), which may be viewed as the

noncoherent version of binary phase-shift keying (PSK). As remarked
in Section 7.15, PSK signals cannot be detected noncoherently because
they use a single carrier frequency and have a constant envelope. Thus,
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DPSK may be used as an alternative to PSK. This form of digital mod-
ulation is considered in Section 10.9.

4. Coherent detection of quadriphase-shift keying (QPSK) and minimum
shift keying (MSK) signals. This issue is considered in Section 10.10.

In all these schemes, it is assumed that the receiver is properly bit-timed,
so that the receiver may perform its decisions on received symbols in
synchronism with the interbit transition points in the original binary data
stream. Bit-timing information may be extracted from the received signal
by the use of appropriate circuitry.”

The generation and coherent detection of M-ary ASK and M-ary PSK
signals (for all M) involve only the use of linear operations. These digital
modulation schemes are therefore said to be linear. Also, it is of interest
to note that M-ary ASK and M-ary PSK signals are sometimes combined
to produce hybrid amplitude-phase keying (APK); this is done in order to
provide a more efficient use of channel bandwidth. A popular form of APK
is M-ary quadrature-amplitude modulation (QAM), which consists of the
quadrature multiplexing of two M-ary ASK signals. However, unlike M-
ary PSK and M-ary FSK signals, we find that APK signals do not have a
constant envelope and therefore require the use of a linear channel for
their transmission.'’

10.8 COHERENT DETECTION OF BINARY MODULATED WAVES

Let s,(¢) and s,(r) denote the signals used to represent binary symbols 0
and 1, respectively. We may then distinguish between binary ASK, binary
FSK, and binary PSK signals, as follows:

1. Binary ASK signals

5.(f) = A cos(2rf.1), symbol 1 (10.67)
so(t) = 0, symbol 0

2. Binary PSK signals
s, (r) = A cos(2nf.r), symbol 1 (10.68)
so(f) = A cosQQnf.t + n) symbol 0

3. Binary FSK signals
5,(f) = A, cos(2nfyt), symbol 1 (10.69)
so(t) = A, cos(2nf,t), symbol 0

SFor a discussion of the synchronization problem in digital communications, see
Lindsey and Simon (1973, Chapters 2 and 9).

wEor a discussion of M-ary PSK and M-ary FSK, and M-ary QAM schemes, see
Haykin (1988, pp. 313-38).
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In both parts of Eqs. 10.67 through 10.69, we have 0 < ¢ < T,, where T,
is the bit duration. We usually find that in the case of FSK signals, the
frequencies f, and f, are both large compared with the bit rate 1/ T,
whereas in the case of ASK and PSK signals, f. is large compared with
1/T,. Moreover, in both PSK and FSK signals, the same signal energy per
bit is transmitted, as shown by

T‘ TB
g e f s3(r) dt = f sH(r) dt
0 0

- A (10.70)

In ASK signals, on the other hand, the transmitted signal energy alternates
between 0 (when symbol 0 is sent) and the value A2 T,/2 (when symbol 1
is sent). In this case, we define the average signal energy per bit as

AT,

Eﬂl’ 4

(10.71)

Throughout the discussion, we assume that symbols 0 and 1 are sent with
equal probability; that is,

p=gq-= % (10.72)

COHERENT DETECTION OF BINARY ASK SIGNALS

The receiver for coherent detection of binary ASK signals is shown in Fig.
10.16, which follows directly from the single-path correlation receiver of
Fig. 10.12. Assuming that symbols 1 and 0 are equally likely, the threshold
4 is calculated from Eq. 10.45 as
1
(345)
A:

T, (10.73)

.
]
Bl N =

where we have made use of Eq. 10.70. To calculate the average probability
of error for the coherent binary ASK receiver of Fig. 10.16, we may follow
a procedure similar to that used for the binary (unipolar) PCM receiver
in Section 10.6. A more expedient approach, however, is to recognize that
the operation of a matched filter (correlation) receiver in additive white
Gaussian noise depends only on the ratio of signal energy-to-noise power
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Figure 10.16

Coherent receiver for the detection of binary ASK signals.

spectral density and not on the signal waveform. (See Property 3 of matched
filters in Section 10.3.) Accordingly, we may calculate the average prob-
ability of error for coherent binary ASK by substituting A27,/2 (signal
energy for symbol 1 in binary ASK) for AT, (signal energy for symbol 1
in binary PCM) in Eq. 10.64. We may thus express the average probability
of error in coherent binary ASK as

1 L AT,
. = g [E2ESE 10.74
P, > erfc(2 2N, ) ( )

Using the definition of average signal energy per bit given in Eq. 10.71,
we may rewrite the formula of Eq. 10.74 as

1 E
== - 10.75
P, 3 erfc(\(ZNo) ( )

GENERALIZED COHERENT RECEIVER FOR BINARY DECISION-MAKING

The optimum receiver for the coherent detection of binary FSK and PSK
signals may be viewed as special cases of the two-path coherent correlation
receiver shown in Fig. 10.17. This receiver represents a generalization of
the single-path correlation receiver of Fig. 10.12. We assume that the
receiver of Fig. 10.17 is synchronized to the transmitter, which is equivalent
to saying that (1) the receiver is equipped with replicas of the transmitted
signals so() and s,(¢), and (2) the timing of the decision-making process
performed by the receiver is coincident with the bit timing of the trans-
mitted signal.
The receiver ouitput / in Fig. 10.17 is given by

e j“x(z)[s.(x) — so(1)] dr (10.76)
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Generalized two-path correlation receiver.

where x(t) is the noise-contaminated received signal. The output [ is com-
pared with a threshold of zero volt; this threshold is chosen assuming that
symbols 1 and 0 occur with equal probability. If / is greater than zero, the
receiver chooses symbol 1; otherwise, it chooses symbol 0. Since the chan-
nel noise w(r) is Gaussian, it follows that the receiver output is likewise
Gaussian distributed. The mean value of the receiver output is conditional
on whether symbol 0 or 1 was actually sent. However, the variance of the
correlator output is the same, regardless of whether symbol 0 or 1 was
sent. :

Following a procedure similar to that described in Section 10.6, we may
show that the conditional mean of the correlator output, given that symbol
0 was sent, is defined by

= f * so(Olsi(t) = so(0)] de
~ B~ (10.77)

E
[

Il

where E, is the signal energy per bit. The parameter p is the correlation
coefficient of the signals so(f) and s5,(¢), defined by

Ty
j so(t)sy (1) dt
0

Uﬂ” si(1) dt]m UOT 0 d:]m

1 (T
= — so(£)s,(t) dt (10.78)
Eb 0

p=

The correlation coefficient p has an absolute value less than or equal to
unity. The conditional mean of the correlator output, given that symbol 1
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was sent, is defined by

) m, = E,(1 - p) (10.79)

We mady also show that the conditional variance ¢ of the correlator
output given that symbol 0 was sent, and its conditional variance o given
that symbol 1 was sent, have a common value defined by

i ’
0§ = a;}

Il

No [T .
_29 [51(’) - Su([)]' dt
0
= ME(1 = p) (10.80)

An error of the first kind occurs when we send symbol 0, but the cor-
relator output / is greater than zero volt, and the receiver therefore chooses
symbol 1. An error of the second kind occurs when we send symbol 1. but
the correlator output / is less than zero volt, and the receiver therefore
chooses symbol 0. From the symmetry of the receiver of Fig. 10.17. it is
apparent that the (conditional) probabilities of both kinds of error are
equal. Thus, recognizing that the correlator output is Gaussian distributed
with conditional means *E,(1 — p) and variance N,E,(1 — p). and as-
suming that symbols 0 and 1 occur with equal probabulity (which justifies
the use of a threshold equal to zero volt). we find that the average prob-
ability of error in the receiver of Fig. 10.17 is given by

cp 1 JE( - p)
P, = > erfc( \j-——ZNU ) (10.81)

We may now consider the following two special cases:

1. Coherent detection of binary PSK signals. In the case of binary PSK
signals, the coherent receiver reduces to a single path as in Fig. 10.18a.
This follows from the fact that sy(r) is the negative of 5,(r). Moreover,
the correlation coefficient p = —1. A pair of equienergy signals for
which the correlation coefficient equals — 1 are called antipodal signals.
Thus, putting p = —1 in Eq. 10.81 gives the average probability of
symbol error in a coherent binary PSK receiver as

L oof B
P, = ~erf — 10.82
ey oz
2. Coherent detection of binary FSK signals. The coherent receiver for
binary FSK signals is shown in Fig. 10.18b. The frequencies f, and f,
of the FSK signal are usually spaced far enough apart to justify treating
the signals so(r) and s,(r) as orthogonal with each other. This condition
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Figure 10.18 .
(a) Coherent receiver for PSK signals. (b) Coherent receiver for FSK signals.

corresponds to having the correlation parameter p = (). Therefore,
putting p = () in Eq. 10.81. we find that the average probability of error
in a coherent binary FSK receiver is given by

(10.83)

Comparing Eqgs. 10.75 and 10.83. we see that the coherent receivers for
binary ASK and binary FSK signals exhibit the same average probability
of error when the average signal energy per bit. £, . in binary ASK 1s the
same as the signal energy per bit. E,.in binary FSK.

EXERCISE 9 For the generalized correlation binary receiver shown in
Fig. 10.17, show that the conditional means m, and m,, and the common
value of the conditional variances a3 and o7 are given by Eqgs. 10.77, 10.79,
and 10.80, respectively.

=

EXERCISE 10 Using the formula for the Gaussian probability density
function, derive Eq. 10.81 for the average probability of error in the gen-
eralized receiver of Fig. 10.17. 3
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........ 10.9 NONCOHERENT DETECTION OF BINARY MODULATED WAVES

Up to this point in our discussion, we have assumed that the information-
bearing signal is completely known at the receiver. In practice, however,
it is often found that in addition to the uncertainty due to the channel
noise, there is an additional uncertainty due to the randomness of signal
parameters. The usual cause of this uncertainty is distortion in the trans-
mission medium. Perhaps the most common random signal parameter is
the phase, which is especially true for narrow-band signals. For example,
transmission over a multiplicity of paths of different and variable lengths,
or rapidly varying delays in the propagating medium from transmitter
to receiver, may cause the phase of the received signal to change in a
way that the receiver cannot follow. Synchronization with the phase of
the transmitted carrier may then be too costly, and the designer may
simply choose to disregard the phase information in the received signal
at the expense of some degradation in the noise performance of the
system.

In this section, we first consider the noncoherent detection of binary
FSK signals and then address differential phase-shift keying (DPSK).

NONCOHERENT DETECTION OF BINARY FSK SIGNALS

In this case. the receiver is composed of a pair of matched filters followed
by envelope detectors, as in Fig. 10.19. One of the two filters is matched
to the signal s,(r) = A, cos(2nf-t) corresponding to the transmission of
symbol 0, and the other filter is matched to the signal 5,(1) = A, cos(2af1)
corresponding to the transmission of symbol 1. The envelope detectors
serve the purpose of destroying the dependence of the matched filter
outputs on the unknown phase of the received signal. The resulting en-
velopes are sampled once every T, seconds. Let [, and {, denote the en-
velope samples of the lower and upper paths of the receiver, respectively.
Then. if [, > [,, the receiver chooses symbol 1; otherwise, it chooses sym-
bol 0.

The receiver commits an error of the first kind when symbol 0 is trans-
mitted but the presence of channel noise makes /, greater than /, and the
receiver therefore chooses symbol 1. It commits an error of the second
kind when symbol 1 is transmitted but owing to channel noise is greater
than /, and the receiver therefore chooses symbol 0. The inclusion of
envelope detectors in the receiver of Fig. 10.19 makes the evaluation of
these two conditional probabilities of error rather complicated. The reason
for the complication is that envelope detection is a nonlinear operation,
with the result that the random variables obtained by sampling the envelope
detector outputs are no longer Gaussian distributed. For the present dis-
cussion, we simply state the formula for the average probability of error -
P, in the noncoherent FSK receiver of Fig. 10.19, assuming that symbols
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Noncoherent receiver for the detection of FSK signals.
1 and 0 occur with equal probability. The formula for P, is"
1 E,
P, = zexp| —— (10.84)
«= 2%\ "3N,

where E, is the transmitted FSK signal energy per bit and N,/2 is the power
spectral density of the channel noise (assumed to be white and zero-mean
Gaussian).

We also note that when the signal-to-noise ratio is high. the average
probability of error for the noncoherent detection of binary ASK signals
is the same as that for the noncoherent detection of binary FSK signals,
provided that the average signal energy per bit in binary ASK is the same
as the signal energy per bit in binary FSK.

DIFFERENTIAL PHASE-SHIFT kEYlNG

The method of differential phase-shift keying (DPSK) may be viewed as
the “noncoherent” version of phase-shift keying. It operates on the as-
sumption that the unknown phase @ of the received signal remains essen-
tially constant over two-bit intervals. In the context of noise performance,
the major difference between a DPSK system and a coherent binary PSK
system is not in the differential encoding, which can be used in any case,
but rather it lies in the way in which the reference signal is derived for the
phase detection of the received signal. Specifically, in a DPSK receiver the

"For a derivation of Eq. 10.84, see Haykin (1988, pp. 300-207).
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reference is contaminated by additive noise to the same extent as the
information pulse; that is, they have the same signal-to-noise ratio. This
makes the determination of the overall probability of error in DPSK re-
ceivers somewhat complicated. Therefore, it will not be given here. How-
ever, the result is'?

P, = lexp(—é’) (10.85)

It is of interest to note that, since in a DPSK receiver decisions are made
on the basis of the-signal received in two successive bit intervals, there is
a tendency for bit errors to occur in pairs.

............ 10.10 COHERENT DETECTION OF QUATERNARY MODULATED WAVES

A limitation of binary modulated waves is that they do not make the most
efficient use of channel bandwidth, which represents a precious commun-
ication resource. One way of improving bandwidth utilization is to use
quadrature multiplexing. Two important examples of such an approach are
quadriphase-shift keying (QPSK) and minimum shift keying, (MSK), which
were considered in Section 7.15. In QPSK, a special form of phase modu-
lation, the carrier assumes one of four equispaced phase shifts (e.g.,
=n/4, *37n/4) in response to one of the four possible (Gray encoded)
dibits 00, 10, 11, and 01. In MSK, a special form of frequency modulation,
phase continuity is maintained at the interbit transition points of the in-
coming binary data stream, and the change in carrier frequency from sym-
bol I to symbol 0 is chosen to be equal to one half the bit rate of the binary
data.

Although QPSK and MSK have different waveforms and employ dif-
ferent methods for their generation and detection, they exhibit the same
performance when they are coherently detected in the presence of additive
white Gaussian noise at the receiver input. In the sequel, we present a
derivation for the average probability of symbol error for QPSK, which
represents an extension of the result obtained previously for the coherent
detection of blﬂdl'y PSK signals.

In Fig. 10.20 we show a coherent receiver for the detection of QPSK.
We assume that the receiver (channel) noise is zero-mean white Gaussian
with power spectral density N,/2. We also assume that all four Gray-
encoded dibits 00, 10, 11, and 01 occur with equal probability. We note
that this receiver may be viewed as a quadrature-multiplexed version of
two coherent binary PSK receivers; one receiver operates with the carrier
cos(2nf,t), and the other receiver operates with the carrier sin(2zf ). We
may therefore equate the probability of error P,, for the in-phase channel

"For a derivation of Eq. 10.85, see Haykin (1988), pp. 307-309.
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and the probability of error P,q for the quadrature channel in Fig. 10.20
to that for the coherent detection of binary PSK signals. In particular, we

may write
1 [ E
P, =Py = Eerfc( Z_NO) (10.86)

where E is the transmitted signal energy per symbol. The probability that
the QPSK receiver will correctly identify the transmitted data sequence is
equal to the probabilities that both correlators in the in-phase and quad-
rature paths of the receiver yield correct results. Let P, denote the average
probability of correct reception. We may then write

P.= (1 = P,y)(1 = Py) - (10.87)
We may simplify Eq. 10.87 by noting that P,; = P,, and that they both

usually have a small value compared to unity. Accordingly, we may ap-
proximate Eq. 10.87 as

P.=1-2P, (10.88)
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The average probability of symbol error in the QPSK receiver of Fig. 10.20
is therefore given by

P,

(10.89)

In a QPSK system, there are two bits per symbol, so that the signal
energy per symbol is twice the signal energy per bit: that is,
E = 2E, (10.90)

Thus, expressing the average probability of symbol error in terms of the
ratio E,/N,, we may write

=
[Ey
!__..

3

P, = erfc(\‘ N
0

As mentioned previously, MSK has the same noise performance as
QPSK when they are both detected coherently in the presence of additive
white Gaussian noise. Accordingly, we may also use Eq. 10.91 to calculate
the average probability of symbol error in a coherent MSK receiver.

(10.91)

EXERCISE 11 Explain the reason for the use of 2N, (for the effect of
noise) in the formula for the average probability of error in the in-phase
or quadrature channel given in Eq. 10.86.

10.11 DISCUSSION

Throughout this chapter we have used the overall probability of committing
a symbol error as the figure of merit for evaluating the noise performance
of a digital communication system. It should be realized, however, that
even if two systems yield the same symbol error probability, their per-
formances, from the users’ viewpoint, may be quite different. In particular,
the greater the number of bits per symbol. the more the bit errors will
cluster together. For example. if the symbol error probability is 1077, the
expected number of symbols occurring between any two erroneous symbols
is 1000. If each symbol represents 1 bit of information (as in a binary PSK
or binary FSK system), the expected number of bits separating two erro-
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neous bits is 1000. If, on the other hand, there are 2 bits per symbol (as
in a QPSK system), the expected separation is 2000 bits. Of course, a
symbol error generally creates more bit errors in the second case, so that
the percentage of bit errors tends to be the same. Nevertheless, this clus-
tering effect may make one system more attractive than another, even at
the same symbol error rate. In the final analysis, which system is preferable
will depend on the particular situation.

Two systems having an unequal number of symbols may be compared
in a meaningful way only if they use the same amount of energy to transmit
each bit of information. It is the total amount of energy needed to transmit
the complete message that represents the cost of the transmission, not the
amount of energy needed to transmit a particular symbol satisfactorily.
Accordingly, in comparing the different data transmission systems consid-
ered in this chapter, we will use, as the basis of our comparison, the
probability of symbol error expressed as a function of the signal energy per
bit-to-average noise power per unit bandwidth ratio; that is E,/N,.

In Table 10.1, we have summarized the expressions for the symbol error
probability P, for coherent binary PSK, coherent binary FSK, noncoherent
binary FSK, DPSK. and coherent QPSK and MSK. In Fig. 10.21 we have
used these expressions to plot P, as a function of E,/N;. In practice, we
generally design a digital communication system for an average probability
of symbol error P, equal to 10~* or less. On the basis of the curves in Fig.
10.21, we may state the following:

1. The error rates for all the systems decrease monotonically with increas-
ing values of E,/N,.

TABLE 10.1  Summary of Formulas for the Symbol Error Probability P, for
Different Digital Modulation Techniques

Coherent binary PSK

Coherent binary FSK

Coherent QPSK
Coherent MSK erfc

Noncoherent binary ESK

3o
» 2
DPSK % exp( - Et)
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Figure 10.21
Comparison of the noise performances of different PSK and FSK systems.

2. For any value of E,/N,, coherent PSK produces a smaller error rate
than any of the other systems.

3. The phase modulation systems, coherent binary PSK and DPSK, require
an E,/N, that is 3 dB less than their frequency modulation system
counterparts—coherent binary FSK and noncoherent binary FSK, re-
spectively—to realize the same error rate.

4. At high values of E,/N,, the noncoherent receivers, DPSK and non-
coherent binary FSK, perform almost as well (to within about 1 dB) as
their coherent counterparts, PSK and coherent binary FSK, respec-
tively, for the same bit rate and signal energy per bit.
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5. The QPSK system transmits, in a given bandwidth, twice as many bits
-of information as a coherent binary PSK system. Also, for high values
of E,/N,, the error rates of both systems are approximately the same.
“The improvement in capacity resulting from the use of QPSK, however,

is attained at the cost of increased complexity.

From Fig. 10.21, we also see that at high values of E,/N, we have
approximately a 4-dB difference between the best signaling method (co-
herent binary PSK) and the worst signaling method (noncoherent binary
FSK). It may appear that this represents a small improvement in signal-
to-noise ratio in return for the increased receiver complexity. However,
in some applications where power is at a premium (e.g., as in digital satellite
communications) even a 1-dB saving in signal-to-noise ratio is well worth
the effort.

.......... 10.12 TRADEOFFS IN M-ARY DATA TRANSMISSION

We complete our discussion of noise in digital modulation schemes by
looking at the tradeoffs involved in M-ary PSK and M-ary FSK in the light
of Shannon’s channel capacity theorem."* As mentioned in Chapter 1. Shan-
non’s channel capacity theorem states that in a band-limited communication
channel that is perturbed by additive white Gaussian noise and that is
subject to a power constraint, the channel capacity C (in bits per second)
is defined by

C = Blogl + SNR) (10.92)

where B is the channel bandwidth (in hertz), and SNR denotes the received
signal-to-noise ratio. The channel capacity C sets an upper limit on the rate
at which information may be transmitted through the channel without
error.

Let P denote the average power of the received signal, and N,/2 denote
the power spectral density of the channel noise. We may express the average
signal power P in terms of the signal energy per bit as follows

p=22
= EyR, (10.93)
where T, is the bit duration in seconds and R, (defined as 1/T,) is the bit

rate in bits per second. In a bandwidth B, the average noise power (mea-
sured over both negative and positive frequencies) equals N,B. Hence, we

“The discussion presented herein is summarized from Haykin (1988), pp. 334-336.
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may express the received signal-to-noise ratio as

E,R,
N,B

_ /N,
" BIR,

SNR =

(10.94)

The ratio E,/N, is the signal energy per bit-to-average noise power per unit
bandwidth ratio, and R,/B is the bandwidth efficiency. The bandwidth
efficiency, in units of bits per second per hertz, provides a measure of the
extent to which channel bandwidth is being used.

Since the channel capacity C sets an upper limit on the bit rate R,, we
have

R,<C (10.95)

Thus, we may combine Eqgs. 10.92, 10.94, and 10.95 to recast Shannon’s
channel capacity theorem in the form:

Ry E,/Ny
B < Iogz(l + BIR, (10.96)
Equivalently, we may write
E, 2RB — ]
N, < R./B (10.97)

This relation states that for a specified bandwidth efficiency R,/B, the
received signal energy per bit-to-noise power spectral density ratio £,/ N,
must satisfy Eq. 10.97 if transmission over the channel is to be error-free.

In the limiting case when the channel bandwidth B is infinitely large
(i.e., R,/ B approaches zero), we find from Eq. 10.97 that the corresponding
limit on E,/N, is log.2 = 0.693 (i.e., —1.6 dB). This special value is
referred to as the Shannon limit.

In Fig. 10.22a, we show a plot of the bandwidth efficiency R,/B versus
the signal energy per bit-to-average noise power per unit bandwidth ratio
E,/N, for coherent M-ary PSK signaling for different numbers of phase
levels defined by M = 2%, where K = 1, 2, 3, 4,5, 6. Each point corre-
sponds to an average probability of symbol error P, = 1073

In Fig. 10.22b we show a plot of R,/B versus Ey/N, for coherent M-
ary FSK signaling for different numbers of frequency levels M = 2%, where
K = 1,2,3.4,5, 6. Each point corresponds to an average probability of
symbol error P, = 107°. Itis assumed that the frequency separation of the
M transmitted sinusoids is the minimum so that they are orthogonal to
each other over a signaling interval.
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Figure 10.22 .
(a) Comparison of M-ary PSK with the ideal system. (b) Comparison of M-ary FSK
with the ideal system.
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In both parts of Fig. 10.22, we also show the capacity curve obtained
by plotting Eq. 10.97 when it is satisfied with equality.

Figure 10.22 clearly depicts the tradeoffs involved in the use of M-ary
signaling. In particular, we may make the following observations:

1. In the case of M-ary PSK, as the number of phase levels M is increased,
the bandwidth efficiency is improved but at the expense of an increase
in the required signal energy per bit (for M > 4).

2. In the case of M-ary FSK, as the number of frequency levels M is
increased, the required signal energy per bit is decreased but at the
expense of reduced bandwidth efficiency (for M > 4).

...........................................................................

PROBLEMS
P10.2 Maximization of Output Signal-to-Noise Ratio
Problem 1 Consider the signal s(r) shown in Fig. P10.1.

(a) Determine the impulse response of a filter matched to this signal
and sketch it as a function of time.

(b) Plot the matched filter output as a function of time.

(c) What is the peak value of the output?

Problem 2 The amplitude of the pulse in Fig. P10.1 is doubled. What is
the factor by which the pulse duration has to be reduced, so that a filter
matched to this new pulse has the same performance as the matched filter
in Problem 1, when both filters operate in the same additive white Gaussian
noise?

P10.3 Properties of Matched Filters

Problem 3 Consider a filter that is matched to an energy signal s,(r) of
duration T seconds. The filter is excited by another energy signal s,(¢),

s(t)

[X1RS

]
NN

|
N

T

|

|

Figure P10.1
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also of duration T seconds. Both signals are of equal energy E. Find the
filter output sampled at time r = T, given the following alternatives:

(a) The signals s,(r) and s,(r) are orthogonal to each other over the
interval 0 =t < T.

(b) The two signals are correlated with each other, and their correlation
coefficient is equal to 0.5. (For the definition of correlation coefficient,
use may be made of the formula given by the first line of Eq. 10.78).

Problem 4

(a) Let the signal s,(¢) have the waveform shown in Fig. P10.2a. Plot
the following waveforms:

(i) The impulse response of the corresponding matched filter.
(i) The filter ouput in response to s,(t) as input.

(b) Plot the waveform of the output of a filter matched to s,(¢) but
excited with an input having the waveform of 5,(t) shown in Fig. P10.2b.
What is the value of the output at time ¢ = 2?

s 1t)
2
0 2 .
(a)
LF) (t)
2
1 2 ¢
0
= -
(b)

Figure P10.2



PROBLEMS 593

|H(f)|

—f 0 fe

Figure P10.3

P10.4 Approximations in Matched Filter Design
Problem 5 Consider a matched filter for the RF pulse:

_ [A cos2nft), O=<t= T
s() = {0, otherwise

where A is the amplitude, T is the duration, and f. is the frequency. The
frequency f. > 1/T, so that the pulse s(r) may be regarded as a narrow-
band signal. The requirement is to approximate the matched filter with an
ideal band-pass filter of bandwidth B; the amplitude response of the filter
is shown in Fig. P10.3. The bandwidth B is chosen to maximize the output
signal-to-noise ratio of the filter.

(a) Find the bandwidth B of the filter.
(b) By how many decibels is the maximum output signal-to-noise ratio
of the approximating band-pass filter less than that of the matched filter?

Problem 6 Repeat Problem 5 using the LCR filter shown in Fig. P10.4,
which is tuned to the frequency f. of the RF pulse s(t). The requirement
is to choose the 3-dB bandwidth of the filter so as to maximize the output
signal-to-noise ratio of the filter.

(a) Find the 3-dB bandwidth of the filter. What is the Q-factor of the
filter?

Input CJ' Ot:ilpu!
s(t) '[ 8,(t)
—O

Figure P10.4



594 OPTIMUM RECEIVERS FOR DATA COMMUNICATION

(b) By how many decibels is the maximum output signal-to-noise ratio
of the LCR filter of Fig. P10.4 less than that of the matched filter?

P10.6 Probability of Error for Binary PCM

Problem 7 A binary PCM system is calculated to have an average prob-
ability of error equal to 10~°. The system is used to transmit binary data
at the rate of 5 megabits per second.

(a) How many bits, on the average, are likely to be in error during a
transmission period that lasts 2 sec?
(b) Repeat the calculation for a transmission period of 1 min.

Problem 8 A binary PCM wave uses the Manchester code to describe
symbols 1 and 0, as illustrated in Fig. P10.5. The additive noise at the
receiver input is white and Gaussian with zero mean and power spectral
density Ny/2. Assuming that symbols 1 and 0 occur with equal probability,
find an expression for the average probability of error at the receiver
output, using matched filters.

P10.8 Coherent Detection of Binary Modulated Waves

Problem 9  Consider a phase-locked loop consisting of a multiplier, loop
filter, and voltage-controlled oscillator (VCO), as in Fig. P10.6. Let the
signal applied to the multiplier input be a binary PSK signal defined by

s(t) = A cos[2nf.t + k,m(r))

5,00 solt)

Nl
Niw
‘

o

wl~y
=]
1B
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|
1HS

.

T

Symbol 1 Symbol 0
Figure-P10.5
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filter

r(t)

vCOo <

Figure P10.6

where k, is the phase sensitivity, and the data signal m(r) takes on the
value +1 V for binary symbol 1 and —1 V for binary symbol 0. The VCO
output is

r(t) = A,sin[2nf.t + 6(1)]

(a) Evaluate the loop filter output, assuming that this filter removes the
modulated components with carrier frequency 2 fe-

(b) Show that this output is proportional to the data signal m(r) when
the loop is phase-locked, that is, 6(r) =0.

Problem 10 A binary PSK signal is applied to a correlation receiver that
lacks perfect phase synchronization with the transmitter. Specifically, it is
supplied with a local carrier whose phase differs from that of the carrier
used in the transmitter by ¢ radians.

(a) Determine the effect of the phase error ¢ on the average probability
of error of this receiver.

(b) As a check on the formula derived in part (a), show that when the
phase error is zero the formula reduces to the same form as in Eq. 10.82.

Problem 11 A binary FSK system transmits binary data at the rate of
2.5 x 10¢ bits per second. During the course of transmission, white Gaus-
sian noise of zero mean and power spectral density 10~ watts per hertz
is added to the signal. In the absence of noise, the amplitude of the received
signal is 1 xV. Deterrnine the average probability of error assuming co-
herent detection of the binary FSK signal. For this calculation, you may
use Table 6 of Appendix D for the error function.

P10.9 Noncoherent Detection of Binary Modulated Waves

Problem 12 An MSK signal is applied to a noncoherent FSK receiver.
What is the average probability of error for this system?
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Problem 13 Rank DPSK with the coherent versions of binary PSK and
binary FSK and noncoherent binary FSK, assuming that the issue of interest
is the following:

(a) Simplicity of receiver implementation.
(b) Minimum transmitted power for an average probability of error
equal to 107*.

Problem 14  Using the approximation
exp(—x?)
mx

erfc(x) =

calculate the ratio (P.)psk/(P.)ppsk, where (P.)psk and (P,)ppsk refer to the
average probability of error for PSK and DPSK, respectively. What is the
value of this ratio for a signal energy per bit-to-average noise power per
unit bandwidth ratio E,/N; = 10 dB?

Problem 15 The binary sequence 101011000 is transmitted over a noisy
channel using DPSK, assuming an initial bit of 1. Owing to noise in the
channel, an error is made in the fourth bit of the reconstructed binary
sequence at the receiver output. Show that the next bit of this sequenc.
will also be in error; that is, errors in a DPSK receiver tend to occur in -
pairs.

P10.10 Coherent Detection of Quaternary Modulated Waves

Problem 16 A QPSK signal is applied to a receiver that is improperly
phase-synchronized with respect to the receiver. In particular, the local
carrier applied to the correlator in the upper path of the receiver in Fig.
10.20 is cos(2nf.t + ¢) and that applied to the correlator in the lower
pathis sin(2zf.t + ¢), where ¢ is the phase error.
(a) Calculate the average probability of symbol error for this receiver.
(b) As a check on the formula derived in part (a), show that when ¢
is zero it reduces to the same form as in Eq. 10.89.



