Powfr ratios and decibels

In system calculations and measurements involving the use of power ratios it is customary practice to use a unit called the decibel. The decibel, commonly abbreviated as dB , is one tenth of a larger unit, the bel. ' In practice, however we find that for most applications the bel is too large a unit; hence, the wide use of $d B$ as the unit for expressing power ratios. The $d B$ is particularly appropriate for sound measurements because the ear responds to sound in an approximately logarithmic fashion. Thus, equal dB increments are perceived by the ear as equal increments in sound.

Let P denote the power at some point of interest in a system. Let F_{0} denote the reference power level with which the power P is to be compared. The number of decibels in the power ratio P / P_{0} is defined as $10 \log _{10}\left(P / P_{0}\right)$. For example, a power ratio of 2 corresponds to 3 dB , an 1 a power ratio of 10 corresponds to 10 dB .

We may also express the signal power P itself in dB if we divide P by one watt or one milliwatt. In the first case, we express the signal power, in dBW as $10 \log _{10}(P / 1 \mathrm{~W})$, where W is the abbreviation for watt. In the second case, we express the signal power P in dBm as $10 \log _{10}(P / 1 \mathrm{~mW}$, where mW is the abbreviation for milliwatt.
'The unit, bel, is named in honor of Alexander Graham Bell. In addition to inventi ig the telephone. Bell was the first to use logarithmic power measurements in sounc and hearing research.

APPENDIX B

Bessel function

A
Bessel function of the first kind of order n and argument x, commonly denoted by $J_{n}(x)$, is defined by

$$
\begin{equation*}
J_{n}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (j x \sin \theta-j n \theta) d \theta \tag{B.1}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta-n \theta) d \theta \tag{B.2}
\end{equation*}
$$

Just as the trigonometric functions can be expanded in power series, so can the Bessel function $J_{n}(x)$ be expanded in a power series:

$$
\begin{equation*}
J_{n}(x)=\sum_{m=0}^{\infty} \frac{(-1)^{m}\left(\frac{1}{2} x\right)^{n+2 m}}{m!(n+m)!} \tag{B.3}
\end{equation*}
$$

Evaluating Eq. B. 3 for $n=0,1,2$, for example, we thus have

$$
\begin{gather*}
J_{0}(x)=1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots \tag{B.4}\\
J_{1}(x)=\frac{x}{2}-\frac{x^{3}}{2^{2} \cdot 4}+\frac{x^{5}}{2^{2} \cdot 4^{2} \cdot 6}-\cdots \tag{B.5}\\
j_{2}(x)=\frac{x^{2}}{2 \cdot 4}-\frac{x^{4}}{2^{2} \cdot 4 \cdot 6}+\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6 \cdot 8}-\cdots \tag{B.6}
\end{gather*}
$$

B. 1 PROPERTIES OF BESSEL FUNCTION

The Bessel function $J_{n}(x)$ has the following properties ${ }^{1}$:
1.

$$
\begin{equation*}
J_{n}(x)=(-1)^{n} J_{-n}(x) \tag{B.7}
\end{equation*}
$$

To prove this relation, we replace θ by $(\pi-\theta)$ in Eq. B.2. Then, noting that $\sin (\pi-\theta)=\sin \theta$, we get

$$
\begin{aligned}
J_{n}(x)= & \frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta+n \theta-n \pi) d \theta \\
= & \frac{1}{\pi} \int_{0}^{x}[\cos (n \pi) \cos (x \sin \theta+n \theta) \\
& \quad+\sin (n \pi) \sin (x \sin \theta+n \theta)] d \theta
\end{aligned}
$$

For integer values of n, we have

$$
\begin{aligned}
\cos (n \pi) & =(-1)^{n} \\
\sin (n \pi) & =0
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
J_{n}(x)=\frac{(-1)^{n}}{\pi} \int_{0}^{\pi} \cos (x \sin \theta+n \theta) d \theta \tag{B.8}
\end{equation*}
$$

From Eq. B. 2 we also find that by replacing n with $-n$:

$$
\begin{equation*}
J_{-n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta-n \theta) d \theta \tag{B.9}
\end{equation*}
$$

The desired result follows immediately from Eqs. B. 8 and B.9.
2.

$$
\begin{equation*}
J_{n}(x)=(-1)^{n} J_{n}(-x) \tag{B.10}
\end{equation*}
$$

This relation is obtained by replacing x with $-x$ in Eq. B.2, and then using Eq. B. 8 .
3.

$$
\begin{equation*}
J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_{n}(x) \tag{B.11}
\end{equation*}
$$

This recurrence formula is useful in constructing tables of Bessel coefficients. For example, the use of Eq. B. 11 for $n=1$ yields a value for $J_{1}(x)$ that is in exact agreement with that of Eq. B.5.
4. For small values of x, we have

$$
\begin{equation*}
J_{n}(x)=\frac{x^{n}}{2^{n} n!} \tag{B.12}
\end{equation*}
$$

This relation is obtained simply by retaining the first term in the power series of Eq. B. 3 and ignoring the higher-order terms. Thus, when x is small, we have '

$$
\begin{align*}
& J_{0}(x)=1 \\
& J_{1}(x)=\frac{x}{2} \tag{B.13}
\end{align*}
$$

5. For large values of x, we have

$$
\begin{equation*}
J_{n}(x) \approx \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\pi}{4}-\frac{n \pi}{2}\right) \tag{B.14}
\end{equation*}
$$

This shows that for large values of x, the Bessel function $J_{n}(x)$ behaves like a sine wave with progressively decreasing amplitude.
6. With x real and fixed, $J_{n}(x)$ approaches zero as the order n goes to infinity.
7.

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} J_{n}(x) \exp (j n \phi)=\exp (j x \sin \phi) \tag{B.15}
\end{equation*}
$$

To prove this property, consider the sum $\sum_{n=-\infty}^{\infty} J_{n}(x) \exp (j n \phi)$ and use the formula of Eq. B. 1 for $J_{n}(x)$ to obtain

$$
\sum_{n=-\infty}^{\infty} J_{n}(x) \exp (j n \phi)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \exp (j n \phi) \int_{-\pi}^{\dot{\pi}} \exp (j x \sin \theta-j n \theta) d \theta
$$

Interchanging the order of integration and summation:

$$
\begin{align*}
& \sum_{n=-\infty}^{\infty} J_{n}(x) \exp (j n \phi) \\
& \quad=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \theta \exp (j x \sin \theta) \sum_{n=-\infty}^{\infty} \exp [j n(\phi-\theta)] \tag{B.16}
\end{align*}
$$

From Example 14 of Chapter 2, we deduce that

$$
\begin{equation*}
\delta(\phi-\theta)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \exp [j n(\phi-\theta)], \quad-\pi \leqslant \phi-\theta \leqslant \pi \tag{B.17}
\end{equation*}
$$

Therefore, substituting Eq. B. 17 in B.16, and using the sifting property of a delta function, we get

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} J_{n}(x) \exp (j n \phi) & =\int_{-\pi}^{\pi} \exp (j x \sin \theta) \delta(\phi-\theta) d \theta \\
& =\exp (j x \sin \phi)
\end{aligned}
$$

which is the desired result.
8.

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} J_{n}^{2}(x)=1, \quad \text { for all } x \tag{B.18}
\end{equation*}
$$

To prove this property, we may proceed as follows. We observe that $J_{n}(x)$ is real. Hence, multiplying Eq. B. 1 by its complex conjugate, and summing over all possible values of n, we get $\sum_{n=-\infty}^{\infty} J_{n}^{2}(x)=\frac{1}{(2 \pi)^{2}} \sum_{n=-\infty}^{\infty} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \exp (j x \sin \theta$

$$
-j n \theta-j x \sin \phi+j n \phi) d \theta d \phi
$$

Interchanging the order of double integration and summation:

$$
\begin{align*}
& \sum_{n=-\infty}^{\infty} J_{n}^{2}(x)=\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} d \theta d \phi \exp [j x(\sin \theta-\sin \phi)] \\
& \times \sum_{n=-\infty}^{\infty} \exp [j n(\phi-\theta)] \tag{B.19}
\end{align*}
$$

Substituting Eq. B. 17 in B.19, and using the sifting property of a delta function, we finally get

$$
\sum_{n=-\infty}^{\infty} J_{n}^{2}(x)=\frac{1}{2 \pi} \int_{-\pi}^{x} d \theta=1
$$

which is the desired result.

B. 2 TABLE OF VALUES

Table B. 1 gives values of the Bessel function $J_{n}(x)$ for values of the order n from 0 up to 14 , and for values of the argument x in the interval (0.5 , 12).

This table may be used to illustrate properties 3 through 8 listed in Section B.1. The reader is invited to do this as an exercise.
TABLE B. 1 Bessel Functions

n^{x}	$J_{n}(x)$								
	0.5	1	2	3	4	6	8	10	12
0	0.9385	0.7652	0.2239	-0.2601	-0.3971	0.1506	0.1717	-0.2459	0.0477
1	0.2423	0.4401	0.5767	0.3391	-0.0660	-0.2767	0.2346	0.0435	-0.2234
2	0.0306	0.1149	0.3528	0.4861	0.3641	-0.2429	-0.1130	0.2546	-0.0849
3	0.0026	0.0196	0.1289	0.3091	0.4302	0.1148	-0.2911	0.0584	0.1951
4	0.0002	0.0025	0.0340	0.1320	0.2811	0.3576	-0.1054	-0.2196	0.1825
5	-	0.0002	0.0070	0.0430	0.1321	0.3621	0.1858	-0.2341	-0.0735
6		-	0.0012	0.0114	0.0491	0.2458	0.3376	-0.0145	-0.2437
7			0.0002	0.0025	0.0152	0.1296	0.3206	0.2167	-0.1703
8			-	0.0005	0.0040	0.0565	0.2235	0.3179	0.0451
9				0.0001	0.0009	0.0212	0.1263	0.2919	0.2304
10				-	0.0002	0.0070	0.0608	0.2075	0.3005
11					-	0.0020	0.0256	0.1231	0.2704
12						0.0005	0.0096	0.0634	0.1953
13		.				0.0001	0.0033	0.0290	0.1201
14						-	0.0010	0.0120	0.0650

APPENDIX C

System nolse_and calculations

The inevitable presence of noise in a communication system causes the reliable transmission of electrical signals through the system to be undermined. It is therefore important to know how noise arises in the system. There are many potential sources of noise. The sources of noise may be external to the system (e.g., atmospheric noise, galactic noise, man-made noise) or internal to the system. The second category includes an important type of noise that arises owing to spontaneous fluctuations of current or voltage in electrical circuits. This type of noise, in one way or another, is present in every communication system and represents a fundamental limitation on the transmission or detection of signals.

In this appendix we briefly discuss the physical sources of noise in electrical circuits and develop quantitative measures for assessing the presence of noise in a system. We finish the discussion by presenting link calculations for line-of-sight propagation through free space.

C. 1 ELECTRICAL NOISE

In an electrical circuit, noise is generated owing to various physical phenomena. ${ }^{1}$ We have thermal noise produced by the random motion of electrons in conducting media, and shot noise produced by random fluctuations of current flow in electronic devices. These two are the most common examples of spontaneous fluctuation noise encountered in electrical circuits.

Besides thermal noise and shot noise, transistors exhibit a low-frequency noise phenomenon known as flicker noise. The mean-square value of flicker noise is inversely proportional to frequency; hence, it is also referred to as "one-over-f" noise. Yet another type of noise encountered in semiconductor devices is burst noise, whose mean-square value falls off as $1 / f^{2}$.

Flicker noise and burst noise are both nonwhite, with their degrading effects being observed at low frequencies. Ordinarily, they can be ignored above a few kilohertz. On the other hand, thermal noise and shot noise are both white for all practical purposes; hence, their degrading influence on the operation of a communication system extends right across the com-
plete frequency band of interest. A brief discussion of thermal noise and shot noise is therefore in order.

thermal noise

Thermal noise ${ }^{2}$ is an ubiquitous source of noise that arises from thermally induced motion of electrons in conducting media. In a conductor there is a large number of "free" electrons and an equally large number of ions bound by strong molecular forces. The ions vibrate randomly about their normal positions. The free electrons move along randomly oriented paths, owing to continuous collisions with the vibrating ions. The net effect of this random motion is an electric current that is likewise random. However, the mean value of the current is zero since, on the average, there are as many electrons moving in one direction as there are in another.

A thorough analysis of thermal noise requires the use of thermodynamic and quantum mechanical considerations that are beyond the scope of this book. For the purpose of the discussion presented here, it suffices to say that the power spectral density of thermal noise produced by a resistor is given by ${ }^{3}$

$$
\begin{equation*}
S_{T N}(f)=\frac{2 h|f|}{\exp (h|f| / k T)-1} \tag{C.1}
\end{equation*}
$$

where T is the absolute temperature in degrees Kelvin, k is Boltzmann's constant, and h is Planck's constant. Note that the power spectral density $S_{T \mathrm{~N}}(f)$ is measured in watts per hertz. For "low" frequencies defined by

$$
f \ll \frac{k T}{h}
$$

we may use the approximation

$$
\exp \left(\frac{h|f|}{k T}\right)=1+\frac{h|f|}{k T}
$$

Correspondingly, we may approximate the formula of Eq. C. 1 as follows

$$
\begin{equation*}
S_{T N}(f)=2 k T \tag{C.2}
\end{equation*}
$$

[^0]To develop a feeling for the frequencies for which the use of this approximate formula is justified, we assume operation at a room temperature of $17^{\circ} \mathrm{C}$, for which we have $T=290^{\circ} \mathrm{K}$. Then, using the values of Boltzmann's constant and Planck's constant:

$$
k=1.38 \times 10^{-23} \text { joules } /{ }^{\circ} \mathrm{K}
$$

and

$$
h=6.63 \times 10^{-34} \text { joule } \cdot \text { second }
$$

we find that

$$
\frac{k T}{h}=6 \times 10^{12} \mathrm{~Hz}
$$

This upper frequency limit lies in the infrared region that is well above the spectrum of frequencies encountered in conventional electrical communication systems. Therefore, for all practical purposes the use of the approximate formula of Eq. C. 2 is perfectly justified.

Thus, given a resistor of R ohms, we find from Eq. C. 2 that the meansquare value of the thermal noise voltage measured across the terminals of the resistor equals

$$
\begin{align*}
E\left[V_{T N}^{2}\right] & =2 R B_{N} S_{T N}(f) \\
& =4 k T R B_{N} \text { volts }^{2} \tag{C.3}
\end{align*}
$$

where B_{N} is the bandwidth (in hertz) over which the noise voltage is measured. We may thus model a noisy resistor by the Thévenin equivalent circuit consisting of a noise voltage generator with a mean-square value of $E\left[V_{T N}^{2}\right]$ in series with a noiseless resistor, as in Fig. C.1a. Alternatively,

Figure C. 1
Models of a noisy resistor. (a) Thévenin equivalent circuit. (b) Norton equivalent circuit.
we may use the Norton equivalent circuit consisting of a noise current generator in parallel with a noiseless conductance, as in Fig. C.1b. The mean-square value of the noise current generator is

$$
\begin{align*}
E\left[I_{T N}^{2}\right] & =\frac{1}{R^{2}} E\left[V_{T N}^{2}\right] \\
& =4 k T G B_{N} \mathrm{amps}^{2} \tag{C.4}
\end{align*}
$$

where $G=1 / R$ is the conductance.
It is also of interest to note that because the number of electrons in a resistor is very large and their random motions inside the resistor are statistically independent of each other, the central limit theorem indicates that thermal noise is Gaussian-distributed with zero mean. Accordingly, for the band of frequencies encountered in electrical communication systems, we may model thermal noise as white Gaussian noise of zero mean.

EXAMPLE 1

Consider a system for which the noise bandwidth $B_{N}=10 \mathrm{kHz}$, the absolute temperature $T=290^{\circ} \mathrm{K}$ (i.e., room temperature), and the resistance $R=$ $5 \mathrm{~K} \Omega$. Then, the use of Eq. C. 3 yields the mean-square value of the thermal noise voltage to be 0.8×10^{-12} volts squared. That is, the thermal noise voltage produced by the resistor has a root mean-square (rms) value equal to $0.89 \mu \mathrm{~V}$.

AVAILABLE NOISE POWER

Noise calculations involve the transfer of power, so we find that the use of the maximum-power transfer theorem is applicable. This theorem states that the maximum possible power is transferred from a source of internal resistance R to a load of resistance R_{l} when $R_{l}=R$. Under this matched condition, the power produced by the source is divided equally between the internal resistance of the source and the load resistance, and the power delivered to the load is referred to as the available power. Applying the maximum-power transfer theorem to the Thévenin equivalent circuit of Fig. C. $1 a$ or the Norton equivalent circuit of Fig. C.1b, we find that a noisy resistor produces an available noise power equal to $k T B_{N}$ watts.

SHOT NOISE

Shot noise arises in electronic devices because of the discrete nature of current flow in the device. The process assumes the existance of an average current flow that manifests itself in the form of electrons flowing from the cathode to the plate in vacuum tubes, holes and electrons flowing in semiconductor devices, and photons emitted in photodiodes. Although the av-
erage number of particles moving across the device per unit time is assumed to be constant, the process of current flow through the device exhibits fluctuations about the average value. The manner in which these fluctuations arise varies from one device to another. In a vacuum-tube device, the fluctuations are produced by the random emission of electrons from the cathode. In a semiconductor device, the cause is the random diffusion of electrons or the random recombination of electrons with holes. In a photodiode, it is the random emission of photons. In all these devices, the physical mechanism that controls current flow through the device has builtin statistical fluctuations about some average value. The shot noise produced by these fluctuations is thus dependent on the average value of the current.

Consider for example, a temperature-limited vacuum diode, shown in Fig. C.2. It consists of two electrodes enclosed in a vacuum: a cathode, which is heated so that it emits electrons; and an anode or plate, which is maintained at a positive potential with respect to the cathode so that it gathers the electrons. We assume that the cathode-plate potential difference is large enough to cause the electrons emitted thermionically by the heated cathode to be pulled to the plate with such high velocities that space-charge effects are negligible. The plate current is then determined effectively by the rate at which electrons are emitted from the cathode. By considering the plate current as the sum of a succession of current pulses, with each pulse caused by the transit of one electron through the cathode-plate space, we find that the mean-square value of the randomly fluctuating component of the current is given by

$$
\begin{equation*}
E\left[I_{S N}^{2}\right]=2 q I B_{N} \mathrm{amps}^{2} \tag{C.5}
\end{equation*}
$$

where q is the electron charge equal to 1.60×10^{-19} coulombs, I is the mean value of the current in amperes, and B_{N} is the bandwidth of the measuring instrument in hertz. Equation C .5 is called the Schottky formula. The typical transit time of an electron from cathode to plate is on the order of $10^{-9} \mathrm{sec}$. The Schottky formula holds provided that the operating frequency is small compared with the reciprocal of the transit time, so that we may neglect transit time effects.

Figure C. 2

Another important characteristic of shot noise is that it is Gaussiandistributed with zero mean. This follows from the fact that the number of electrons contributing to the shot noise current is very large, and their random emissions from the cathode are, for practical purposes, statistically independent of each other. Hence, the central limit theorem predicts a Gaussian distribution for shot noise.

The Schottky formula (C.5) also holds for a semiconductor junction diode. In this case the mean value I of the current is given by the diode equation:

$$
\begin{equation*}
I=I_{s} \exp \left(\frac{q V}{k T}\right)-I_{s} \tag{C.6}
\end{equation*}
$$

where V is the voltage applied across the diode and I_{s} is the saturation current; the other constants are as defined previously. Thus, the current I consists of two components that produce statistically independent shotnoise contributions of their own, as shown by

$$
\begin{align*}
E\left[I_{S N}^{2}\right] & =2 q I_{s} \exp \left(\frac{q V}{k T}\right) B_{N}+2 q I_{s} B_{N} \\
& =2 q\left(I+2 I_{s}\right) B_{N} \tag{C.7}
\end{align*}
$$

Figure C .3 shows the noise model of a junction diode. ${ }^{4}$ The model includes the dynamic resistance of the diode, defined by

$$
\begin{align*}
r & =\frac{\delta V}{\delta I} \\
& =\frac{k T}{q\left(I+I_{s}\right)} \tag{C.8}
\end{align*}
$$

Figure C. 3
(a) Junction diode. (b) Shot-noise model.

[^1]Note, however, that the dynamic resistance r is noiseless since it does not involve power dissipation.

In a bipolar junction transistor, shot noise is generated at both the emitter and collector junctions. On the other hand, in a junction field-effect transistor the use of an insulated gate structure avoids junction shot noise; nevertheless, shot noise is produced by the flow of gate current. Of course, in both devices thermal noise arises from internal ohmic resistance: base resistance in a bipolar transistor and channel resistance in a field effect transistor.

C. 2 NOISE FIGURE

A convenient measure of the noise performance of a linear two-port device is furnished by the noise figure, ${ }^{5}$ which lends itself to both circuit analysis and measurement. Consider a linear two-port device connected to a signal source of internal impedance $Z(f)=R(f)+j X(f)$ at the input, as in Fig. C.4. The noise voltage $v(t)$ represents the thermal noise associated with the internal resistance $R(f)$ of the source. The output noise of the device is made up of two contributions, one due to the source and the other due to the device itself. We define the available output noise power in a band of width B_{N} centered at frequency f as the maximum average noise power in this band obtainable at the output of the device. The maximum noise power that the two-port device can deliver to an external load is obtained when the load impedance is the complex conjugate of the output impedance of the device, that is, when the resistance is matched and the reactance is tuned out. We define the poise figure of the two-port device as the ratio of the total available output noise power (due to the device and the source) per unit bandwidth to the portion thereof due solely to the source.

Figure C. 4
Linear two-port device.

Let the spectral density of the total available noise power at the device output be $S_{N O}(f)$, and the spectral density of the available noise power due to the source at the device input be $S_{N S}(f)$. Also let $G(f)$ denote the availabe power gain of the two-port device, defined as the ratio of the available signal power at the output of the device to the available signal power of the source when the signal is a sinusoidal wave of frequency f. Then we may express the noise figure $F(f)$ of the device as

$$
\begin{equation*}
F(f)=\frac{S_{N O}(f)}{G(f) S_{N S}(f)} \tag{C.9}
\end{equation*}
$$

If the device were noise free, $S_{N O}(f)=G(f) S_{N S}(f)$, and the noise figure would then be unity. In a physical device, however, $S_{N O}(f)$ is larger than $G(f) S_{N S}(f)$, so that the noise figure is always larger than unity. The noise figure is commonly expressed in decibels, that is, as $10 \log _{10} F(f)$.

The noise figure may also be expressed in an alternative form. Let $P_{s}(f)$ denote the available signal power from the source, which is the maximum average signal power that can be obtained. For the case of a source providing a single-frequency signal component with open-circuit voltage $V_{0} \cos (2 \pi f t)$, the available signal power is obtained when the load connected to the source is $Z^{*}(f)=R(f)-j X(f)$, yielding the value

$$
\begin{align*}
P_{S}(f) & =\left[\frac{V_{0}}{2 R(f)}\right]^{2} R(f) \\
& =\frac{V_{0}^{2}}{4 R(f)} \tag{C.10}
\end{align*}
$$

The available signal power at the output of the device is therefore,

$$
\begin{equation*}
P_{o}(f)=G(f) P_{s}(f) \tag{C.11}
\end{equation*}
$$

Then, mulitplying both the numerator and denominator of the right side of Eq. C. 9 by $P_{s}(f) B_{N}$, we have

$$
\begin{align*}
F(f) & =\frac{P_{S}(f) S_{N O}(f) B_{N}}{G(f) P_{s}(f) S_{N S}(f) B_{N}} \\
& =\frac{P_{S}(f) S_{N O}(f) B_{N}}{P_{O}(f) S_{N S}(f) B_{N}} \\
& =\frac{\rho_{S}(f)}{\rho_{O}(f)} \tag{C.12}
\end{align*}
$$

where

$$
\begin{align*}
& \rho_{S}(f)=\frac{P_{S}(f)}{S_{N S}(f) B_{N}} \tag{C.13}\\
& \rho_{O}(f)=\frac{P_{O}(f)}{S_{N O}(f) B_{N}} \tag{C.14}
\end{align*}
$$

We refer to $\rho_{s}(f)$ as the available signal-to-noise ratio of the source and to $\rho_{O}(f)$ as the available signal-to-noise ratio at the device output, both measured in a narrow band of width B_{N} centered at f. Since the noise figure is always greater than unity, it follows from Eq. C. 12 that the signal-tonoise ratio always decreases with amplification, which is a significant result.

The noise figure $F(f)$, as defined herein, is a function of the operating frequency and hence is referred to as the spot noise figure. In contrast, we define an average noise figure F of a two-port device as the ratio of the total noise power at the device output to the output noise power due solely to the source. That is,

$$
\begin{equation*}
F=\frac{\int_{-\infty}^{\infty} S_{N O}(f) d f}{\int_{-\infty}^{\infty} G(f) S_{N s}(f) d f} \tag{C.15}
\end{equation*}
$$

It is apparent that in the case of thermal noise in the input circuit with $R(f)$ constant, and constant gain throughout a fixed band with zero gain at other frequencies, the spot noise figure $F(f)$ and the average noise figure F are identical.

C. 3 EQUIVALENT NOISE TEMPERATURE

A disadvantage of the noise figure F is that when it is used to compare low-noise devices, the values obtained are all close to unity. This makes the comparison rather difficult. In such cases, it is preferable to use the equivalent noise temperature. Consider a linear two-port device with its input resistance matched to the internal resistance of the source as shown in Fig. C.5. In this diagram, we have also included the noise voltage generator associated with the internal resistance R_{s} of the source. The meansquare value of this noise voltage is $4 k T R_{s} B_{N}$. Hence, the available noise power at the device input is

$$
\begin{equation*}
\mathscr{N}_{s}=k T B_{N} \tag{C.16}
\end{equation*}
$$

Figure C. 5
Linear two-port device matched to the internal resistance of a source connected to the input.

Let. 1_{d} denote the noise power contributed by the two-port device to the total available output noise power \mathscr{N}_{0}. We define \mathscr{V}_{d} as

$$
\begin{equation*}
\mathcal{V}_{d}=G k T_{e} B_{N} \tag{C.17}
\end{equation*}
$$

where G is the available power gain of the device and T_{e} is its equivalent noise temperature. Then it follows that the total output noise power is

$$
\begin{align*}
\mathscr{N}_{o} & =G \mathscr{N}_{s}+\mathscr{N}_{d} \\
& =G k\left(T+T_{e}\right) B_{N} \tag{C.18}
\end{align*}
$$

The noise figure of the device is therefore

$$
\begin{aligned}
F & =\frac{\mathscr{N}_{o}}{G \mathscr{N}_{s}} \\
& =\frac{T+T_{e}}{T}
\end{aligned}
$$

Solving for the equivalent noise temperature:

$$
\begin{equation*}
T_{e}=T(F-1) \tag{C.19}
\end{equation*}
$$

where F is the noise figure of the device measured under matched input conditions, and with the noise source at temperature T. Equation C. 19 is the desired relation between the equivalent noise temperature and noise figure of a two-port network.

NOISE SPECTRAL DENSITY

A composite two-port network with equivalent noise temperature T_{e} (referred to the input) produces the available noise power

$$
\begin{equation*}
1_{a v}=k T_{e} B_{N} \tag{C.20}
\end{equation*}
$$

Hence, recognizing that $\hat{Y}_{a v}=N_{0} B_{N}$, we find that the noise may be modeled as white Gaussian noise with zero mean and power spectral density $N_{0} / 2$, where

$$
\begin{equation*}
N_{0}=k T \text { e } \tag{C.21}
\end{equation*}
$$

Note that the power spectral density of the noise so modeled depends only on Boltzmann's constant and the equivalent noise temperature T_{e}. It is the simplicity of this model that makes the equivalent noise temperature of a composite network such a useful concept.

C. 4 CASCADE CONNECTION OF NOISY NETWORKS

Consider next a pair of noisy two-port networks with available power gains G_{1} and G_{2} that are connected in cascade, as depicted in Fig. C.6. It is assumed that the equivalent noise temperatures of the individual networks are T_{1} and T_{2}, respectively. The total noise power $\mathcal{1}_{0}$ at the system output is made up of three contributions:

1. The source noise power 1; generated at the input of network 1 and amplified by both networks: The contribution of. V_{s} to the total noise power . V_{0} is

$$
G_{1} G_{2} \cdot 1_{s}=G_{1} G_{2}\left(k T B_{N}\right)
$$

where we have made use of the expression for . $1 ;$ given in Eq. C.16. This contribution is represented by the top paths in Fig. C.6.

Network 1
Network 2
Figure C. 6
A cascade of two noisy networks.
2. The noise power $\mathscr{N}_{d 1}$ introduced in network 1 and amplified by network 2. The contribution to \mathscr{N}_{o} produced by $\mathscr{N}_{d 1}$ is

$$
G_{2} \mathscr{N}_{d 1}=G_{2}\left(G_{1} k T_{1} B_{N}\right)
$$

where we have made use of Eq. C.17, adapted to the situation at hand. This contribution is represented by the middle paths in Fig. C.6.
3. The noise power $\mathscr{N}_{d 2}$ introduced in network 2: This final contribution to the total noise power \mathcal{V}_{o} is

$$
\mathscr{N}_{\alpha 2}=G_{2} k T_{2} B_{N}
$$

where again we have made use of Eq. C.17. This contribution is represented by the bottom path in Fig. C.6.

Adding these three contributions, we therefore get

$$
\begin{aligned}
\mathscr{N}_{0} & =G_{1} G_{2} \cdot V_{s}+G_{2} \mathfrak{V}_{d 1}+\mathscr{N}_{d 2} \\
& =G_{1} G_{2}\left(k T B_{N}\right)+G_{2}\left(G_{1} k T_{1} B_{N}\right)+G_{2} k T_{2} B_{N} \\
& =G_{1} G_{2} k\left(T+T_{1}+\frac{T_{2}}{G_{1}}\right) B_{N}
\end{aligned}
$$

Here we recognize the product $G_{1} G_{2}$ as the overall value of the available power gain of the cascaded pair of networks shown in Fig. C.6. Accordingly, by analogy with Eq. C.18, we may define an equivalent noise temperature T_{e} for this network as

$$
\begin{equation*}
T_{e}=T_{1}+\frac{T_{2}}{G_{1}} \tag{C.22}
\end{equation*}
$$

The result of Eq. C. 22 may be readily generalized to the cascade connection of any number of noisy two-port networks, as shown by

$$
\begin{equation*}
T_{e}=T_{1}+\frac{T_{2}}{G_{1}}+\frac{T_{3}}{G_{1} G_{2}}+\ldots \tag{C.23}
\end{equation*}
$$

where $T_{1}, T_{2}, T_{3}, \ldots$ are the equivalent noise temperatures of the individual networks, and $G_{1}, G_{2}, G_{3}, \ldots$ are their available power gains, respectively. Equation C. 23 is known as the Friis formula.

Correspondingly, we may express the overall noise figure F of the cascade connection of any number of two-port networks as

$$
\begin{equation*}
F=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} G_{2}}+\ldots \tag{C.24}
\end{equation*}
$$

where $F_{1}, F_{2}, F_{3}, \ldots$ are the noise figures of the individual networks.

From Eq. C. 23 we see that if the first stage of a cascade connection of noisy two-port networks has a high available power gain, then the overall value of the equivalent noise temperture T_{e} is practically the same as that of the first stage; Eq. C. 24 reveals a similar result formulated in terms of the noise figure. It is for this reason that we find in a low-noise receiver. extra care is taken in the design of the pre-amplifier at the front end of the receiver.

C. 5 TELECOMMUNICATION LINK CALCULATIONS

In this section we present signal and noise power calculations for telecommunication links that rely on line-of-sight propagation through space. Such calculations are encountered in a satellite communication system, ${ }^{6}$ for example. In this system, a message signal is transmitted from a ground station via the uplink to a synchronous satellite, amplified in a transponder therein. and then retransmitted from the satellite via the downlink to another ground station. The satellite is positioned in a geostationary orbit (around the earth) so that it is always visible to different ground stations located inside the satellite antenna's coverage zones on the earth's surface. In effect, the satellite acts as a powerful repeater in the sky. Another important application is that of a deep-space telecommunication system ${ }^{7}$ used for the transmission of information between a spacecraft and a ground station. In this application the system is provided with a tracking capability such that the spacecraft is always visible to the ground station. For the analysis presented here, we will consider a telecommunication link that is illustrative of space applications. Nevertheless, the results of the analysis are equally applicable to a line-of-sight radio microwave link between a transmitting source and a receiver located a known distance apart.

CALCULATION OF RECEIVED SIGNAL POWER

Figure C. 7 illustrates a link between a spacecraft and a ground station. The link includes a transmitting source (on the spacecraft) with its output radiated through the spacecraft's antenna. At the ground station, a receiving antenna is used to collect signal power from the incoming electromagnetic wave and feed it to the low-noise receiver through a piece of waveguide.

Let the transmitting source radiate a total power P_{T}. If this power were radiated isotropically (i.e., uniformly in all directions), then the power flux density at a distance r from the source is $P_{T} / 4 \pi r^{2}$, where $4 \pi r^{2}$ is the surface area of a sphere of radius r. In practice, we use a highly directional antenna

[^2]

Figure C. 7
Space communication link.
so that the transmitted power is radiated primarily along a particular direction of interest. The antenna has a gain that is defined as the ratio of power radiated per unit solid angle in a given direction to the average power radiated per unit solid angle. Let G_{T} denote the gain of the transmitting antenna in the direction in which maximum power is radiated; this direction is called the boresight of the antenna. The gain G_{T} is a measure of the increase in power radiated by the antenna over that radiated from an isotropic source. Thus, for a transmitter of total power P_{T} driving a lossless antenna with gain G_{T}, the power flux density at distance r in the direction of the antenna boresight is given by

$$
\begin{equation*}
\mathcal{F}=\frac{P_{T} G_{T}}{4 \pi r^{2}} \tag{C.25}
\end{equation*}
$$

Let $A_{\text {eff }}$ denote the effective aperture area of the receiving antenna. This area is related to the physical aperture area A of the antenna by

$$
\begin{equation*}
A_{e f f}=\eta A \tag{C.26}
\end{equation*}
$$

where η is the aperture efficiency. Typically, η is in the range of 40 to 90%, depending on the type of antenna used. The gain of the receiving antenna G_{R} is defined in terms of the effective aperture area $A_{\text {eff }}$ by

$$
\begin{equation*}
G_{R}=\frac{4 \pi A_{e f}}{\lambda^{2}} \tag{C.27}
\end{equation*}
$$

where λ is the wavelength of the transmitted electromagnetic wave; λ is equal to c / f where c is the speed of propagation (which is the same as the speed of light), and f is the transmitting frequency. Equivalently, we have

$$
\begin{equation*}
A_{e f f}=\frac{\lambda^{2} G_{R}}{4 \pi} \tag{C.28}
\end{equation*}
$$

Hence, given the power flux density \mathcal{F} at the receiving antenna with effective aperture area $A_{\text {eff }}$, the received power is

$$
\begin{equation*}
P_{R}=A_{e f f} \mathcal{F} \tag{C.29}
\end{equation*}
$$

Thus, substituting Eqs. C. 25 and C. 28 in C.29, we get the desired result:

$$
\begin{equation*}
P_{R}=P_{T} G_{T} G_{R}\left(\frac{\lambda}{4 \pi r}\right)^{2} \tag{C.30}
\end{equation*}
$$

Equation C. 30 is known as the Friis transmission formula.
The product $P_{T} G_{T}$ in this equation is called the effective isotropic radiated power (EIRP). It describes the combination of the transmitting source and antenna in terms of an effective isotropic source with power $P_{T} G_{T}$ radiated uniformly in all directions. The term $(4 \pi r / \lambda)^{2}$ is called the path loss or space loss; it may be viewed as the ratio of received power to transmitted power between two antennas that are separated by a distance r.

From Eq. C. 30 we see that for given values of wavelength λ and distance r, the received signal power P_{R} can be increased by three methods:

1. The spacecraft-transmitted power P_{T} is increased. Typically, P_{T} is 20 W or less. Even though this transmitted power may appear low, the input power required for its generation represents a substantial fraction of the total power available on the spacecraft. Hence, there is a physical limit on how large a value we can assign to the transmitted power P_{T}.
2. The gain G_{T} of the transmitting antenna is increased. This will help concentrate the transmitted power more intensely in the direction of the receiving antenna. However, a large value of G_{T} requires the use of a large antenna. The choice of G_{T} is therefore limited by size and weight constraints permissible on the spacecraft.
3. The gain G_{R} of the receiving antenna is increased. This will enable the receiver to collect as much of the radiated signal power as possible. Here again, size and weight constraints place a physical limit on the size of the ground-station antenna, although these constraints are far less demanding than those on the spacecraft antenna; we typically have $G_{R} \gg G_{T}$.

Let the receiving antenna gain and the space loss be expressed in decibels (dB). Likewise, let the effective radiated power and the received power
be expressed in decibels relative to 1 watt (dBW). Then, we may restate the Friis transmission formula in the form:

$$
\begin{equation*}
P_{R}=\operatorname{EIRP}+G_{R}-L_{S} \tag{C.31}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{EIRP} & =10 \log _{10}\left(P_{T} G_{T}\right) \\
G_{R} & =10 \log _{10}\left(\frac{4 \pi A_{\text {eff }}}{\lambda^{2}}\right) \\
L_{S} & =20 \log _{10}\left(\frac{4 \pi r}{\lambda}\right)
\end{aligned}
$$

In Eq. C.30, G_{R} appears as a power ratio, whereas in Eq. C. 31 it is expressed in decibels.

Equation C. 31 is idealized in that it does not account for losses in the link. To correct for this, it is customary to include a term that represents the combined effect of losses in the atmosphere due to rain attenuation, losses in the transmitting and receiving antennas, and possible loss of gain due to mispointing of the antennas. Let L_{0} denote the overall value of this loss expressed in decibels; this term is sometimes called the system margin. Then we may modify the expression for the received signal power as

$$
\begin{equation*}
P_{R}=\mathrm{EIRP}+G_{R}-L_{S}-L_{0} \tag{C.32}
\end{equation*}
$$

Equation C. 32 represents a link power budget in that it allows the system designer of a telecommunication link to adjust controllable parameters such as the EIRP or the receiving antenna gain G_{R} and make quick calculations of the received power.

The received power P_{R} is commonly called the carrier power. This is because in a space communication link the method of modulation commonly used for transmitting message signals maintains the envelope of the sinusoidal carrier wave constant; hence, the carrier power is typically equal to the received power.

EXAMPLE 2

A spacecraft is located at a distance of $40,000 \mathrm{~km}$ from a ground station on the earth's surface. A transmitting source of frequency 4 GHz radiates a power of 10 W through an antenna with a gain of 20 dB . Assume that the effective aperture area of the receiving antenna is $10 \mathrm{~m}^{2}$. We want to calculate the received signal power, ignoring losses in the links.

The effective radiated power equals

$$
\begin{aligned}
\mathrm{EIRP} & =10 \log _{10}\left(P_{T} G_{T}\right) \\
& =10 \log _{10} P_{T}+10 \log _{10} G_{T} \\
& =10 \log _{10} 10+20 \\
& =30 \mathrm{dBW}
\end{aligned}
$$

The speed of propagation equals the speed of light: $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The wavelength of the transmitted electromagnetic wave is therefore

$$
\begin{aligned}
\lambda & =\frac{c}{f} \\
& =\frac{3 \times 10^{8}}{4 \times 10^{9}} \\
& =0.075 \mathrm{~m}
\end{aligned}
$$

Hence, the space loss equals

$$
\begin{aligned}
L_{S} & =20 \log _{10}\left(\frac{4 \pi r}{\lambda}\right) \\
& =20 \log _{10}\left(\frac{4 \pi \times 4 \times 10^{7}}{0.075}\right) \\
& =196.5 \mathrm{~dB}
\end{aligned}
$$

The gain of the receiving antenna equals

$$
\begin{aligned}
G_{R} & =10 \log _{10}\left(\frac{4 \pi A_{\text {eff }}}{\lambda^{2}}\right) \\
& =10 \log _{10}\left(\frac{4 \pi \times 10}{0.075^{2}}\right) \\
& =43.5 \mathrm{~dB}
\end{aligned}
$$

Thus, using Eq. C. 32 and ignoring the system margin L_{0}, we find that the received signal power equals

$$
\begin{aligned}
P_{R} & =30+43.5-196.5 \\
& =-123 \mathrm{dBW}
\end{aligned}
$$

Equivalently, we have

$$
P_{R}=5 \times 10^{-13} \text { watts }
$$

The low value of power P_{R} indicates that the received signal at the ground station is extremely weak. The inclusion of system margin L_{0} (to account for losses in the link) will make the received signal even weaker.

CALCULATION OF SYSTEM NOISE TEMPERATURE

In a space communication link the receiver has to cope with extremely weak signals, as illustrated in Example 2; the weakness results from transmission over long distances. It is therefore imperative that we keep the available noise power low so as to permit a high quality of communication. From Eq. C. 20 we see that the available noise power at the receiver input is $k T_{e} B_{N}$, where k is Boltzmann's constant, T_{e} is the equivalent noise temperature of the receiver, and B_{N} is the noise bandwidth. Accordingly, the effect of noise is minimized by adopting a combination of two independent strategies:

1. The equivalent noise temperature of the receiver is maintained as low as possible. An effective way of accomplishing this requirement is to employ cryogenically cooled parametric amplifiers. An ordinary amplifier converts power from a dc source (e.g., power supply or battery) into power at some signal frequency of interest. A parametric amplifier, on the other hand, converts power at one frequency (from a source generally known as the pump) into power at another frequency, the signal frequency. ${ }^{8}$ With liquid helium cooling at $4^{\circ} \mathrm{K}$ above absolute zero, parametric amplifiers are able to achieve a noise temperature of 20° to $40^{\circ} \mathrm{K}$ at 4 GHz . Another way of providing low-noise amplification at microwave frequencies is to use cryogenically cooled maser amplifiers. A maser (microwave a mplification by the stimulated emission of radiation) performs amplification by a quantum-mechanical process, adding almost no noise to the signal it amplifies. Cryogenically cooled parametric and maser amplifiers, however, are expensive to install and maintain; their use can therefore be justified only in large ground stations. Without physical cooling, a noise temperature from 70 to $200^{\circ} \mathrm{K}$ can be achieved by using gallium arsenide field effect transistors (GaAsFET) or uncooled parametric amplifiers.
2. The noise bandwidth is minimized, while still permitting the informationcarrying (modulated) signals to pass through unaltered. The value used for the noise bandwidth B_{N} should be the band-pass version of the equivalent noise bandwidth. For a rough calculation, we may use instead the overall $3-\mathrm{dB}$ bandwidth of the amplifier in the receiver; the error introduced by so doing is usually small.
[^3]To calculate the system noise temperature, we have to include, in addition to the noise generated in the receiver, two other sources of noise:

1. Antenna noise due to random radiation picked up by the ground-station antenna. This random radiation includes that from the atmosphere, hot bodies in the field of view of the antenna, the omnipresent $2.7^{\circ} \mathrm{K}$ thermal background of the universe, and that portion of the ground seen by the sidelobes of the antenna. Let T_{a} denote the antenna noise temperature. Let L_{w} denote the loss factor in the antenna feed and waveguide, where $L_{w} \geqslant 1$. Accordingly, the input noise is attenuated by the factor L_{w}. That is, the antenna noise temperature referred to the amplifier input equals T_{a} / L_{w}.
2. Noise generated due to resistance in the antenna feed and waveguide: Let $T_{a m b}$ denote the ambient temperature. Then the equivalent noise generator that represents resistance in the antenna feed and waveguide has the noise temperature

$$
\begin{equation*}
T_{l}=\left(1-\frac{1}{L_{w}}\right) T_{a m b} \tag{C.33}
\end{equation*}
$$

Note that when there is no loss, L_{w} is unity and T_{l} is zero.
Figure C. 8 shows the components responsible for noise in the receiving system. Let T_{s} denote the system noise temperature referred to the receiver input. From Fig. C.8, we see that T_{s} is given by

$$
\begin{equation*}
T_{s}=\frac{T_{a}}{L_{w}}+\left(1-\frac{1}{L_{w}}\right) T_{a m b}+T_{e} \tag{C.34}
\end{equation*}
$$

where, as defined previously,
$T_{a}=$ antenna noise temperature
$L_{w}=$ loss factor in the antenna feed and waveguide
$T_{a n b}=$ ambient temperature of the antenna feed and waveguide
$T_{e}=$ equivalent noise temperature of the receiver

Figure C. 8
Components responsible for receiving system noise in a space communication link.

CARRIER-TO-NOISE RATIO

The carrier-to-noise ratio (CNR) is defined as the ratio of the carrier power to the available noise power, with both measured at the receiver input. As mentioned previously, the carrier power is the same as the received signal power P_{R}. The formula for P_{R} is described by the Friis transmission equation (C.30). To calculate the available noise power at the receiver input, we use the expression $k T_{s} B_{N}$, where k is Boltzmann's constant, T_{s} is the system noise temperature, and B_{N} is the noise bandwidth. We therefore have.

$$
\begin{equation*}
\mathrm{CNR}=\frac{P_{R}}{k T_{s} B_{N}} \tag{C.35}
\end{equation*}
$$

Here again, the simplicity of this formula stems from the use of noise temperature as the measure of how noisy the system is.

EXAMPLE 3

Consider a receiver with a cryogenically cooled amplifier. The equivalent noise temperature of the receiver is $20^{\circ} \mathrm{K}$. The ground station uses a large antenna operating at a frequency of 4 GHz and an elevation of 5°; the antenna noise temperature is estimated to be $50^{\circ} \mathrm{K}$. Calculate the system noise temperature, assuming no loss in the antenna feed and waveguide. Hence, calculate the carrier-to-noise ratio, assuming a carrier power of - 123 dBW (as in Example 2) and a noise bandwidth of 36 MHz .

From Eq. C. 34 we see that with $L_{w}=1$ the system noise temperature equals

$$
\begin{aligned}
T_{s} & =T_{a}+T_{e} \\
& =50+20 \\
& =70^{\circ} \mathrm{K}
\end{aligned}
$$

Hence, the available noise power equals

$$
\begin{aligned}
k T_{s} B_{N} & =1.38 \times 10^{-23} \times 70 \times 36 \times 10^{6} \\
& =3.48 \times 10^{-14} \mathrm{~W} \\
& =-134.6 \mathrm{dBW}
\end{aligned}
$$

Thus, the use of Eq. C. 35 yields the following value for the carrier-tonoise ratio expressed in decibels:

$$
\begin{aligned}
10 \log _{10}(\mathrm{CNR}) & =-123+134.6 \\
& =11.6 \mathrm{~dB}
\end{aligned}
$$

In Tables 1 through 8 of Appendix D, we present the following material:

1. Summary of properties of the Fourier transform.
2. Short table of Fourier transform pairs.
3. Table of trigonometric identities.
4. Short table of series expansions and summations.
5. Short table of integrals.
6. Values of the error function $\operatorname{erf}(u)$ for u in the range 0 to 3.30 .
7. List of useful constants.
8. List of recommended unit prefixes.

TABLE 1 Properties of the Fourier Transform

Property

1. Linearity
2. Time scaling
3. Dúality
4. Time shifting
5. Frequency shifting
6. Area under $g(t)$
7. Area under $G(f)$
8. Differentiation in the time domain
9. Integration in the time domain
10. Conjugate functions
11. Multiplication in the time domain
12. Convolution in the time domain

Mathematical Description

$$
a g_{1}(t)+b g_{2}(t) \rightleftharpoons a G_{1}(f)+b G_{2}(f)
$$

where a and b are constants

$$
g(a t) \rightleftharpoons \frac{1}{|a|} G\left(\frac{f}{a}\right)
$$

where a is a constant

$$
\text { If } \quad g(t) \rightleftharpoons G(f)
$$

$$
\text { then } \quad G(t) \rightleftharpoons g(-f)
$$

$$
g\left(t-t_{0}\right) \rightleftharpoons G(f) \exp \left(-j 2 \pi f t_{0}\right)
$$

$$
\exp \left(j 2 \pi f_{c} t\right) g(\dot{t}) \rightleftharpoons G\left(f-f_{c}\right)
$$

$$
\int_{-\infty}^{\infty} g(t) d t=G(0)
$$

$$
g(0)=\int_{-\infty}^{x} G(f) d f
$$

$$
\frac{d}{d t} g(t) \rightleftharpoons j 2 \pi f G(f)
$$

$$
\int_{-\infty}^{t} g(\tau) d \tau \rightleftharpoons \frac{1}{j 2 \pi f} G(f)+\frac{G(0)}{2} \delta(f)
$$

$$
\text { If } \quad g(t) \rightleftharpoons G(f)
$$

$$
\text { then } \quad g^{*}(t) \rightleftharpoons G^{*}(-f)
$$

$$
g_{1}(t) g_{2}(t) \rightleftharpoons \int_{-x}^{x} G_{1}(\lambda) G_{2}(f-\lambda) d \lambda
$$

$$
\int_{-x}^{x} g_{1}(\tau) g_{2}(t-\tau) d \tau \rightleftharpoons G_{1}(f) G_{2}(f)
$$

TABLE 2 Fourier Transform Pairs

Time Function

$\operatorname{rect}\left(\frac{t}{T}\right)$
$\operatorname{sinc}(2 W t)$
$\exp (-a t) u(t), \quad a>0$
$\exp (-a|t|), \quad a>0$
$\exp \left(-\pi t^{2}\right)$
$\begin{cases}1-\frac{|t|}{T}, & |t|<T \\ 0, & |t| \geqslant T\end{cases}$
$\delta(t)$
1
$\delta\left(t-t_{0}\right)$
$\exp \left(j 2 \pi f_{c} t\right)$
$\cos \left(2 \pi f_{c} t\right)$
$\sin \left(2 \pi f_{c} t\right)$
$\operatorname{sgn}(t)$
$\frac{1}{\pi t}$
$u(t)$
$\sum_{i=-\infty}^{\infty} \delta\left(t-i T_{0}\right)$

Fourier Transform

$T \operatorname{sinc}(f T)$
$\frac{1}{2 W} \operatorname{rect}\left(\frac{f}{2 W}\right)$
$\frac{1}{a+j 2 \pi f}$
$\frac{2 a}{a^{2}+(2 \pi f)^{2}}$
$\exp \left(-\pi f^{2}\right)$
$T \operatorname{sinc}^{2}(f T)$

1
$\delta(f)$
$\exp \left(-j 2 \pi f t_{0}\right)$
$\delta\left(f-f_{c}\right)$
$\frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]$
$\frac{1}{2 j}\left[\delta\left(f-f_{c}\right)-\delta\left(f+f_{c}\right)\right]$
$\frac{1}{j \pi f}$
$-j \operatorname{sgn}(f)$
$\frac{1}{2} \delta(f)+\frac{1}{j 2 \pi f}$
$\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \delta\left(f-\frac{n}{T_{0}}\right)$

TABLE 3 Trigonometric Identities

$$
\begin{aligned}
& \exp (\pm j \theta)=\cos \theta \pm j \sin \theta \\
& \cos \theta=\frac{1}{2}[\exp (j \theta)+\exp (-j \theta)] \\
& \sin \theta=\frac{1}{2 j}[\exp (j \theta)-\exp (-j \theta)] \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \cos ^{2} \theta-\sin ^{2} \theta=\cos (2 \theta) \\
& \cos ^{2} \theta=\frac{1}{2}[1+\cos (2 \theta)] \\
& \sin ^{2} \theta=\frac{1}{2}[1-\cos (2 \theta)] \\
& 2 \sin \theta \cos \theta=\sin (2 \theta) \\
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
& \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
& \tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \\
& \sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] \\
& \cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)] \\
& \sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha-\beta)+\sin (\alpha+\beta)]
\end{aligned}
$$

TABLE 4 Series Expansions and Summations

1. Expansions

Taylor series
$f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots$
where

$$
f^{(n)}(a)=\left.\frac{d^{n} f(x)}{d x^{n}}\right|_{x=a}
$$

MacLaurin series

$$
f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots
$$

where

$$
f^{(n)}(0)=\left.\frac{d^{n} f(x)}{d x^{n}}\right|_{x=0}
$$

Binomial series

$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots, \quad|n x|<1$

Exponential series

$$
\exp x=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots
$$

Logarithmic series

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots
$$

Trigonometric series

$$
\begin{aligned}
\sin x & =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots \\
\cos x & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\cdots \\
\tan x & =x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\cdots \\
\sin ^{-1} x & =x+\frac{1}{6} x^{3}+\frac{3}{50} x^{5}+\cdots \\
\tan ^{-1} x & =x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\cdots, \quad|x|<1 \\
\operatorname{sinc} x & =1-\frac{1}{3!}(\pi x)^{2}+\frac{1}{5!}(\pi x)^{4}-\cdots
\end{aligned}
$$

2. Summations

Arithmetic series

$$
\sum_{n=1}^{N} n=\frac{N(N+1)}{2}
$$

Geometric series

$$
\sum_{n=0}^{N} r^{n}=\frac{1-r^{N+1}}{1-r}
$$

TABLE 5 Integrals

Indefinite integrals

$$
\begin{aligned}
\int x \sin (a x) d x & =\frac{1}{a^{2}}[\sin (a x)-a x \cos (a x)] \\
\int x \cos (a x) d x & =\frac{1}{a^{2}}[\cos (a x)+a x \sin (a x)] \\
\int x \exp (a x) d x & =\frac{1}{a^{2}} \exp (a x)(a x-1) \\
\int x \exp \left(a x^{2}\right) d x & =\frac{1}{2 a} \exp \left(a x^{2}\right) \\
\int \exp (a x) \sin (b x) d x & =\frac{1}{a^{2}+b^{2}} \exp (a x)[a \sin (b x)-b \cos (b x)] \\
\int \exp (a x) \cos (b x) d x & =\frac{1}{a^{2}+b^{2}} \exp (a x)[a \cos (b x)+b \sin (b x)] \\
\int \frac{d x}{a^{2}+b^{2} x^{2}} & =\frac{1}{a b} \tan ^{-1}\left(\frac{b x}{a}\right) \\
\int \frac{x^{2} d x}{a^{2}+b^{2} x^{2}} & =\frac{x}{b^{2}}-\frac{a}{b^{3}} \tan ^{-1}\left(\frac{b x}{a}\right)
\end{aligned}
$$

Definite integrals

$$
\begin{aligned}
\int_{0}^{x} \frac{x \sin (a x)}{b^{2}+x^{2}} d x & =\frac{\pi}{2} \exp (-a b), \quad a>0, b>0 \\
\int_{0}^{x} \frac{\cos (a x)}{b^{2}+x^{2}} d x & =\frac{\pi}{2 b} \exp (-a b), \quad a>0, b>0 \\
\int_{0}^{x} \frac{\cos (a x)}{\left(b^{2}-x^{2}\right)^{2}} d x & =\frac{\pi}{4 b^{3}}[\sin (a b)-a b \cos (a b)], \quad a>0, b>0 \\
\int_{0}^{x} \operatorname{sinc} x d x & =\int_{0}^{x} \operatorname{sinc}^{2} x d x=\frac{1}{2} \\
\int_{0}^{x} \exp \left(-a x^{2}\right) d x & =\frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad a>0 \\
\int_{0}^{x} x^{2} \exp \left(-a x^{2}\right) d x & =\frac{1}{4 a} \sqrt{\frac{\pi}{a}}, \quad a>0
\end{aligned}
$$

Integration by parts

where

$$
\int f(t) g^{\prime}(t) d t=f(t) g(t)-\int f^{\prime}(t) g(t) d t
$$

$$
f^{\prime}(t)=\frac{d f(t)}{d t}
$$

and

$$
g^{\prime}(t)=\frac{d g(t)}{d t}
$$

TABLE 6 Error Function

\boldsymbol{u}	erf (\boldsymbol{u})	\boldsymbol{u}	erf (\boldsymbol{u})
0.00	0.00000	1.10	0.88021
0.05	0.05637	1.15	0.89612
0.10	0.11246	1.20	0.91031
0.15	0.16800	1.25	0.92290
0.20	0.22270	1.30	0.93401
0.25	0.27633	1.35	0.94376
0.30	0.32863	1.40	0.95229
0.35	0.37938	1.45	0.95970
0.40	0.42839	1.50	0.96611
0.45	0.47548	1.55	0.97162
0.50	0.52050	1.60	0.97635
0.55	0.56332	1.65	0.98038
0.60	0.60386	1.70	0.98379
0.65	0.64203	1.75	0.98667
0.70	0.67780	1.80	0.98909
0.75	0.71116	1.85	0.99111
0.80	0.74210	1.90	0.99279
0.85	0.77067	1.95	0.99418
0.90	0.79691	2.00	0.99532
0.95	0.82089	2.50	0.99959
1.00	0.84270	3.00	0.99998
1.05	0.86244	3.30	0.999998

The error function $\operatorname{erf}(u)$ is defined by

$$
\operatorname{erf}(u)=\frac{2}{\sqrt{\pi}} \int_{0}^{u} \exp \left(-z^{2}\right) d z
$$

Note that

$$
\begin{aligned}
\operatorname{erf}(0) & =0 \\
\operatorname{erf}(\infty) & =1 \\
\operatorname{erf}(-u) & =-\operatorname{erf}(u)
\end{aligned}
$$

The complementary error function $\operatorname{erfc}(u)$ is defined by

$$
\operatorname{erfc}(u)=\frac{2}{\sqrt{\pi}} \int_{u}^{\infty} \exp \left(-z^{2}\right) d z
$$

These two functions are related by

$$
\operatorname{erfc}(u)=1-\operatorname{erf}(u)
$$

TABLE 7 Useful Constants

Physical Constants	
Boltzmann's constant	$k=1.38 \times 10^{-23}$ joule/degree Kelvin
Planck's constant	$h=6.626 \times 10^{-34}$ joule second
Electron (fundamental) charge	$q=1.602 \times 10^{-19}$ coulomb
Speed of light in vacuum	$c=2.998 \times 10^{8}$ meters/second
Standard (absolute) temperature	$T_{0}=273$ degree Kelvin
Thermal voltage	$V_{T}=0.026$ volt at room temperature
Thermal energy $k T$ at standard	$k T_{0}=3.77 \times 10^{-21}$ joule
temperature	
One hertz $(\mathrm{Hz})=1$ cycle/second One watt $(\mathrm{W})=1$ joule/second	
Mathematical Constants	$e=2.7182818$
Base of natural logarithm	$\log _{2} e=1.442695$
Logarithm of e to base 2	$\ln 2=0.693147$
Logarithm of 2 to base e	$\log _{10} 2=0.30103$
Logarithm of 2 to base 10	$\pi=3.1415927$
Pi	

TABLE 8 Recommended Unit Prefixes

Multiples and Submultiples	Prefixes	Symbols
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

GLOSSARY

CONVENTIONS AND NOTATIONS

1. The symbol \| | means the magnitude of the complex quantity contained within.
2. The symbol $\arg ()$ means the phase angle of the complex quantity contained within.
3. The symbol $\operatorname{Re}[$] means the "real part of," and $\operatorname{Im}[$] means the "imaginary part of."
4. The symbol $\ln (\cdot)$ denotes the natural logarithm of the quantity contained within, whereas the logarithm to the base a is denoted by $\log _{a}(\quad)$. The symbol $\exp (\quad)$ denotes the exponential function; for example, $\exp (x)$ denotes e^{x}, where e is the base of the natural logarithm.
5. The use of an asterisk as superscript denotes complex conjugate; for example, x^{*} is the complex conjugate of x.
6. The symbol \rightleftharpoons indicates a Fourier transform pair. For example, let $g(t)$ denote a time function and $G(f)$ denote its Fourier transform; we then write $g(t) \rightleftharpoons G(f)$.
7. The symbol $\mathrm{F}[\mathrm{]}$ indicates the Fourier transform operation; for example $\mathrm{F}[g(t)]=G(f)$. The symbol $\mathrm{F}^{-1}[\quad]$ indicates the inverse Fourier transform operation; for example $\mathrm{F}^{-1}[G(f)]=g(t)$
8. The symbol is denotes convolution; for example

$$
x(t) \hat{\psi} h(t)=\int_{-x}^{x} x(\tau) h(t-\tau) d \tau
$$

9. The symbol \oplus denotes modulo-two addition.
10. The use of subscript p indicates that the pertinent function is periodic; for example, the function $g_{p}(t)$ is a periodic function of time t.
11. The use of a caret (hat) over a function indicates one of two things:
(a) The Hilbert transform of a function. For example, the function $\hat{g}(t)$ is the Hilbert transform of $g(t)$.
(b) The estimate of an unknown parameter. For example, the quantity $\hat{\alpha}(\mathbf{x})$ is an estimate of the unknown parameter α, based on the observation vector \mathbf{x}.
12. The use of a tilde over a function indicates the complex envelope of a narrow-band signal. For example, the function $\bar{g}(t)$ is the complex envelope of the narrow-band signal $g(t)$.
13. The use of subscript + indicates the pre-envelope of a signal. For example, the function $g_{+}(t)$ is the pre-envelope of the signal $g(t)$. We may thus write $g_{+}(t)=g(t)+j \hat{g}(t)$, where $\hat{g}(t)$ is the Hilbert transform of $g(t)$.
14. The use of subscripts I and Q denotes the in-phase and quadrature components of a narrow-band signal or a narrow-band random process with respect to the carrier $\cos \left(2 \pi f_{c} t\right)$.
15. The term "baseband" refers to the band of frequencies representing the original signal delivered by a source of information.
16. In the context of a probability system, \mathcal{S} denotes a sample space of elementary events, and EG denotes a class of events that is a subset of the sample space \mathfrak{S}.
17. Random variables are uppercase (e.g., X or \mathbf{X}), whereas sample values of random variables are lowercase (e.g., x or \mathbf{x}).
18. The symbol $E[$ means the expected value of the random variable enclosed within.
19. The symbol Var[] means the variance of the random variable enclosed within.
20. The symbol Cov [] means the covariance of the two random variables enclosed within.
21. The average probability of symbol error is denoted by P_{e}. In the case of binary signaling techniques, $P_{e 0}$ denotes the conditional probability of error given that symbol 0 was transmitted, and $P_{e 1}$ denotes the conditional probability of error given that symbol 1 was transmitted. The a priori probabilities of symbols 0 and 1 are denoted by p and q, respectively.
22. The symbol \rangle denotes the time average of the sample function enclosed within.
23. A boldface lowercase letter denotes a vector, and a boldface uppercase letter denotes a matrix.

FUNCTIONS

1. Rectangular function

$$
\operatorname{rect}(t)=\left\{\begin{array}{lr}
1, & -\frac{1}{2}<t<\frac{1}{2} \\
0, & |t|>\frac{1}{2}
\end{array}\right.
$$

2. Unit step function

$$
u(t)= \begin{cases}1, & t>0 \\ 0, & t<0\end{cases}
$$

3. Signum function

$$
\operatorname{sgn}(t)= \begin{cases}1, & t>0 \\ -1, & t<0\end{cases}
$$

4. Dirac delta function

$$
\delta(t)=0, \quad t \neq 0
$$

$$
\int_{-\infty}^{\infty} \delta(t) d t=1
$$

or equivalently

$$
\int_{-\infty}^{\infty} g(t) \delta\left(t-t_{0}\right) d t=g\left(t_{0}\right)
$$

5. Sinc function
6. Sine integral
7. Error function

Complementary error function
8. Bessel function of the first kind of order n

$$
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
$$

$$
\operatorname{Si}(u)=\int_{0}^{u} \frac{\sin x}{x} d x
$$

$$
\operatorname{erf}(u)=\frac{2}{\sqrt{\pi}} \int_{0}^{u} \exp \left(-z^{2}\right) d z
$$

$$
\operatorname{erfc}(u)=1-\operatorname{erf}(u)
$$

$J_{n}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (j x \sin \theta-j n \theta) d \theta$

ABBREVIATIONS

ac: alternating current
ADM: adaptive delta modulation
APK: amplitude-phase keying
AWGN: additive white Gaussian noise
AM: amplitude modulation
ASK: amplitude-shift keying
BPF: band-pass filter
CDMA: code-division multiple access
CNR: carrier-to-noise ratio
CPFSK: continuous-phase frequency-shift keying
CW: continuous wave
dB: decibel
dBm: decibel milliwatt
dBW: decibel watt
dc: direct current
DM: delta modulation
DPCM: differential pulse-code modulation
DPSK: differential phase-shift keying
DSBSC: double-sideband suppressed-carrier
EIRP: effective isotropic radiated power
FDM: frequency-division multiplexing
FDMA: frequency-division multiple access
FET: field-effect transistor
FFT: fast Fourier transform
FIR: finite-duration impulse response
FM: frequency modulation
FMFB: frequency modulator with feedback

FSK: frequency-shift keying

HDTV: high-definition television
Hz: hertz
IF: intermediate frequency
iid: independent and identically distributed
ISI: intersymbol interference
LMS: least mean-square
LPF: low-pass filter
modem: modulator-demodulator
MSK: minimum shift keying
NRZ: nonreturn-to-zero
NTSC: National Television System Committee
PAM: pulse-amplitude modulation
PCM: pulse-code modulation
PDM: pulse-duration modulation
PLL: phase-locked loop
PM: phase modulation
PN: pseudonoise
PPM: pulse-position modulation
PSK: phase-shift keying
QAM: quadrature-amplitude modulation
QPSK: quadriphase-shift keying
rad: radian
RF: radio frequency
rms: root mean-square
$\mathbf{R Z}$: return-to-zero
s: second
SLSC: split-luminance and split-chrominance
SNR: signal-to-noise ratio
$(\mathbf{S N R})_{\mathrm{C}}: \quad$ channel signal-to-noise ratio
(SNR) $)_{o}$ output signal-to-noise ratio
SSB: single sideband
TDM: time-division multiplexing
TDMA: time-division multiple access
TV: television
V: volt
VCO: voltage-controlled oscillator
VLSI: very large-scale integration
VSB: vestigial sideband
WSS: wide-sense stationary
W: watt

REFERENCES AND BIBLIOGRAPHY

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
D. J. Angelakos and T. E. Everhart, Microwave Communications, McGraw-Hill New York, 1968.
E. H. Armstrong, "A Method of Reducing Disturbances in Radio Signaling by a System of Frequency Modulation," Proc. IRE, vol. 24, pp. 689-740, May 1936.
Bell Telephone Laboratories, Transmission Systems for Communications, Western Electric, Winston-Salem, North Carolina, 1970.
D. A. Bell, Noise and the Solid State, Pentech Press, Plymouth, England, 1985.
W. R. Bennett, "Spectra of Quantized Signals," Bell Syst. Tech. J., vol. 27, pp. 446-472, July 1948.
W. R. Bennett, Introduction to Signal Transmission, McGraw-Hill, New York, 1970.
L. V. Berkner, "Communications" in C. F. J. Overhage (ed.), The Age of Electronics, McGraw-Hill, New York, 1962, pp. 35-50.
T. G. Birdsall, "On Understanding the Matched Filter in the Frequency Domain," IEEE Trans. Educ., vol. E.19, pp. 168-169, November 1976.
H. S. Black, Modulation Theory, Van Nostrand, Princeton, N.J., 1953.
R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra, Dover, New York, 1958.
I. F. Blake, An Introduction to Applied Probability, Wiley, New York, 1979.
R. Bracewell. The Fourier Transform and its Applications, 2nd ed., McGrawHill, New York, 1978.
J. Brown and E. V. D. Glazer, Telecommunications, 2nd ed., Wiley, New York, 1974.
G. A. Campbell and R. M. Foster, Fourier Integrals for Practical Applications, Van Nostrand, Princeton, N.J., 1948.
A. B. Carlson, Communication Systems, 3rd ed., McGraw-Hill, New York, 1986.
C. R. Carson and T. C. Fry, "Variable Frequency Electric Circuit Theory with Application to the Theory of Frequency Modulation," Beli Syst. Tech. J., vol. 16, pp. 513-540, October 1937.
R. V. Churchill, Fourier Series and Boundary Value Problems, 2nd ed., McGraw-Hill, New York, 1963.
J. P. Costas, "Synchronous Communications," Proc. IRE, vol. 44, pp. 17131718, December 1956.
W. B. Davenport and W. L. Root, Random Signals and Noise, McGraw-Hill, New York, 1958.
P. A. M. Dirac, The Principles of Quantum Mechanics, 3rd ed., Oxford University Press, London, 1947.
J. J. Downing, Modulation Systems and Noise, Prentice-Hall, Englewood Cliffs, N.J., 1964.
A. Einstein, "Method for the Determination of the Statistical Values of Observations Concerning Quantities Subject to Irregular Fluctuations," Archives des Sciences Physiques et Naturalles, vol. 37, pp. 254-256, 1914.
I. H. Enole, "Decreasing the Threshold in FM by Frequency Feedback," Proc. IRE, vol. 50, pp. 18-30, January 1962.
W. Feller, An Introduction to Probability Theory and Its Applications, 3rd ed., Wiley, New York, 1968.
T. L. Fines, Theories of Probability, Academic Press, New York, 1973.
J. B. J. Fourier, The Analytical Theory of Heat (trans. A. Freeman), Cambridge University Press, London, 1878.
H. T. Friis, "Noise Figures in Radio Receivers," Proc. IRE, vol. 32, pp. 419422, July 1944.
T. C. Fry, Probability and Its Engineering Uses, Van Nostrand-Reinhold, Princeton, N.J., 1965.
D. Gabor, "Theory of Communication," J. IEE (London), vol. 93, Part 3, pp. 429-441, November 1946.
R. M. Gagliardi, Introduction to Communications Engineering, Wiley, New York, 1978.
F. M. Gardner, Phaselock Techniques, 2nd ed., Wiley, New York, 1979.
W. A. Gardner, Statistical Spectral Analysis: A Non-Probabilistic Theory, Prentice-Hall, Englewood, N.J., 1987.
S. Goldman, Frequency Analysis, Modulation, and Noise, McGraw-Hill, New York, 1948.
G. W. Golomb (ed.), Digital Communications with Space Applications, PrenticeHall, Englewood Cliffs, N.J., 1964.
S. Haykin, Communication Systems, 2nd ed., Wiley, New York, 1983.
S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, N.J., 1986.
S. Haykin, Digital Communications, Wiley, New York, 1988.
C. W. Helstrom, Statistical Theory of Signal Detection, Pergamon, Elmsford, N.Y., 1968.
F. S. Hill, Jr., "On Time Domain Representations for Vestigial Sideband Signals," Proc. IEEE, vol. 62, pp. 1032-1033, July 1974.
N. S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice-Hall, Englewood Cliffs, N.J., 1984.
A. J. Jerri, "The Shannon Sampling Theorem-Its Various Extensions and Applications: A Tutorial Review," Proc. IEEE, vol. 65. pp. 1565-1596, 1977.
J. B. Johnson, "Thermal Agitation of Electricity in Conductors," Physical Review, vol. 32, pp. 97-109, July 1928.

> A. I. Khintchine, "Correlation Theory of Stochastic Processes," Math. Ann., vol. 109, pp. $604-615,1934$.
B. P. Lathi, Modern Digital and Analog Communication Systems, Holt, Rinehart \& Winston, New York, 1983.
A. Lender, "The Duobinary Technique for High Speed Data Transmission," IEEE Trans. Commun. Elec., vol. 82, pp. 214-218, 1963.
M. J. Lighthill, An Introduction to Fourier Analysis and Generalized Functions, Cambridge University Press, London, 1959.
W. C. Lindsey and M. K. Simon, Telecommunication Systems Engineering, Prentice-Hall, Englewood Cliffs, N.J., 1973.
J. M. Manley, "The Concept of Frequency in Linear System Analysis," IEEE Communications Magazine, vol. 20, pp. 26-35, January 1982.
S. J. Mason and H. J. Żimmerman, Electronic Circuits, Signals, and Systems, Wiley, New York, 1960.
D. Mennie, "AM Stereo: Five Competing Options," IEEE Spectrum, vol. 15, pp. 56-58, 1978.
D. Middleton, An Introduction to Statistical Communication Theory, McGrawHill, New York, 1960.
D. O. North, "An Analysis of the Factors which Determine Signal/Noise Discrimination in Pulsed-carrier Systems," Proc. IEEE, vol. 51, pp. 1016-1027, July 1963.
H. Nyquist, "Certain Topics in Telegraph Transmission Theory," Trans. AIEE, vol. 47, pp. 617-644, 1928.
H. Nyquist, "Thermal Agitation of Electric Charge in Conductors," Physical Review, vol. 32, pp. 110-113, July 1928.
B. M. Oliver, J. R. Pierce, and C. E. Shannon, "The Philosophy of PCM," Proc. IRE, vol. 36, pp. 1324-1332, 1948.
A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, N.J., 1975.
P. F. Panter. Modulation, Noise, and Spectral Analysis, McGraw-Hill, New York, 1965.
A. Papoulis. The Fourier Integral and Its Applications, McGraw-Hill, New York, 1962.
A. Papoulis. Probability, Random Variables, and Stochastic Processes, 2nd ed., McGraw-Hill, New York, 1984.
S. Pasupathy, "Correlative Coding: A Bandwidth-efficient Signaling Scheme," IEEE Communications Magazine, vol. 15, pp. 4-11. July 1977.
J. R. Pierce. Symbols, Signals and Noise, Harpẹ, New York, 1961.
J. R. Pierce and E. C. Posner, Introduction to Communication Science and Systems, Plenum, New York, 1980.
T. Pratt and C. W. Bostian, Satellite Communications, Wiley, New York, 1986.
A. H. Reeves, "The Past, Present, and Future of PCM," IEEE Spectrum, vol. 12, pp. 58-63, May 1975.
S. O. Rice, "Mathematical Analysis of Random Noise," Bell Syst. Tech. J., vol. 23, pp. 282-333, July 1944; vol. 24, pp. 96-157, January 1945.
S. O. Rice, "Statistical Properties of a Sine-Wave Plus Random Noise," Bell Syst. Tech. J., vol. 27, pp. 109-157, 1948.
S. O. Rice, "Noise in FM Receivers," in M. Rosenblatt (ed.), Symposium Proceedings of Time Series Analysis, (Wiley, New York, 1963), pp. 395-422.
S. O. Rice, "Envelopes of Narrow-band Signals," Proc. IEEE, vol. 70, pp. 692699, July 1982.
J. H. Roberts, Arigle Modulation: The Theory of System Assessment, IEE Communication Series 5, Institution of Electrical Engineers, London, 1977.
R. A. Roberts and C. P. Mullis, Digital Signal Processing, Addison-Wesley, Reading, Mass., 1987.
F. N. Robinson, Noise and Fluctuations in Electronic Devices and Circuits, Clarendon Press, Oxford, 1974.
H. E. Rowe, Signals and Noise in Communication Systems, Van Nostrand, Princeton, N.J., 1965.
T. S. Rzeszewski, "A compatible high-definition television system," Bell Syst. Tech. J., vol. 62, pp. 2091-2111, Sept. 1983.
T. S. Rzeszewski, (ed.). Television Technology Today, IEEE Press, New York, 1985.
D. J. Sakrison, Communication Theory: Transmission of Waveforms and Digital Information, Wiley, New York, 1968.
D. V. Sarwate and M. B. Pursley. "Crosscorrelation Properties of Pseudo Random and Related Sequences," Proc. IEEE, vol. 68, pp. 593-619, May 1980.
M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and Techniques, McGraw-Hill. New York, 1966.
M. Schwartz, Information Transmission, Modulation, and Noise, 3rd ed.,
McGraw-Hill New York, 1980. McGraw-Hill, New York, 1980.
K. S. Shanmugam, Digital and Analog Communication Systems, Wiley, New York, 1979.
C. E. Shannon, "A Mathematical Theory of Communication," Bell Syst. Tech. J., vol. 27, (Part J), pp. 379-423, (Part II), pp. 623-656, 1948.
C. E. Shannon, "Communication in the Presence of Noise," Proc. IRE, vol. 37, pp. 10-21, January 1949.
D. Slepian, "On Bandwidth," Proc. IEEE, vol. 64, pp. 292-300, March 1976.
H. Stark and F. B. Tuteur, Modern Electrical Communications: Theory and Systems, Prentice-Hall, Englewood Cliffs, N.J., 1979.
F. G. Stremler, Introduction to Communication Systems, 2nd ed., AddisonWesley, Reading, Mass., 1982.
F. L. Stumpers, "Theory of Frequency-Modulation Noise," Proc. I.R.E., vol. 36, pp. 1081-1902, September 1948.
H. Taub and D. L. Schilling, Principles of Communication Systems, 2nd ed., McGraw-Hill, New York, 1986.

[^4]J. B. Thomas, Introduction to Probability, Springer-Verlag, New York. 1986.
G. L. Turin, "An Introduction to Matched Filters," IRE Trans. Information Theory, vol. IT-6, pp. 311-329, June 1960.
A. Van Der Ziel, Noise: Sources, Characterization, Measurement, Prentice-Hall, Englewood Cliffs, N.J., 1970.
H. L. van Trees, Detection, Estimation, and Modulaticn Theory, Part I. Wiley, New York, 1968.
A. D. Whalen, Detection of Signals in Noise, Academic Prt is, New York, 1971.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge University Press, London, 1927.
B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs, N.J., 1985.
N. Wiener, "Generalized Harmonic Analysis," Ann. Math., vol. 55, pp. 117258, 1930.
R. A. Williams, Communication Systems Analysis and Design, Prentice-Hall, Englewood Cliffs, N.J., 1987.
P. M. Woodward, Probability and Information Theory, with Applications to Radar, 2nd ed., Pergamon, Elmsford, N.Y., 1964.
J. M. Wozencroft and I. M. Jacobs, Principles of Communication Engineering, Wiley, New York, 1965.
J. H. Yuen (ed.), Deep Space Telecommunications Systems Engineering, Plenum, New York, 1983.

ANSWERS TO EXERCISES

Many of the exercises have their answers integrated into them. The answers to the remaining exercises are presented below on a chapter-by-chapter basis.

CHAPTER 2

Exercise 1: The amplitude spectra have a form similar to the amplitude of a sinc function. In case (a), the main lobe will be one-quarter the height and 2.5 times the width of that in case (b).
Exercise 4: $g(t)=1 /(1-j 2 \pi t)=1 /\left[1+(2 \pi t)^{2}\right]+j 2 \pi t /\left[1+(2 \pi t)^{2}\right]$
Exercise 5: $G(f)=(1 / 2 j)\left[1 /\left(1+j 2 \pi\left(f-f_{c}\right)\right)-1 /\left(1+j 2 \pi\left(f+f_{c}\right)\right)\right]$
Exercise 9: On the left side of the relation, $g_{2}(t)$ is replaced by $g_{2}^{*}(t)$.
Exercise 10: On the right side of the relation, $G_{2}(f)$ is replaced by $G_{2}^{*}(f)$. The result of changes in Exercise 10 will be the same as those in Exercise 9, as shown by $\int_{-x}^{x} g_{1}(t) g_{2}^{*}(t) d t=\int_{-x}^{x} G_{1}(f) G_{2}^{*}(f) d f$
Exercise 11: Bandwidth $=1 / T$.
Exercise 12: Bandwidth $=a / 2 \pi$.
Exercise 15: $\cos \left(2 \pi f_{c} t\right) u(t) \rightleftharpoons f^{\prime}\left[j 2 \pi\left(f^{2}-f_{c}^{2}\right)\right]+\frac{1}{4}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]$

CHAPTER 3

Exercise 1: The system is noncausal because $h(t)$ is nonzero for negative time. The system, however, is stable because $\int_{-x}^{x}|h(t)| d t=\int_{-x}^{0} \exp (a t) d t=1 / a$.
Exercise 4: The modification may arise through the use of a phase-inverting amplifier or transformer.
Exercise 5: $\left[1 / H_{c}(f)\right]=\sum_{m=-M}^{M} C_{m} \exp (-j 2 \pi f m \Delta \tau)$ where M is some finite integer.
Exercise 6: In theory, the delay τ_{0} would have to be i finitely large for the ideal low-pass filter to be causal.
Exercise 8: In-phase component is $m(t)$, and quadrature con oonent is zero.
Exercise 9: $y(0)=\int_{-x}^{x} H(f) X(f) d^{f}=\int_{-x}^{x} \operatorname{Re}[H(, \mid X(f)] d f ; \dot{y}(0)=$ $\int_{-x}^{x} \dot{H}(f) \dot{X}(f) d f ; y(0)=\operatorname{Re}[\tilde{y}(0)]$. He .e, $\operatorname{Re}[H(f) X(f=\operatorname{Re}[\dot{H}(f) \bar{X}(f)]$. The product $H(f) X(f)$ occupies the band $f_{c}-W \leqslant f \quad f_{c}+W$ for positive frequencies, and its image for negative frequencies. On th other hand, the product $\dot{H}(f) \dot{X}(f)$ occupies the band $-W \leqslant f \leqslant W$. With $\bar{X}(0)=2 X\left(f_{c}\right)$, it follows that we must have $\dot{H}(0)=H\left(f_{c}\right)$.
Exercise 10: Phase delay $\tau_{p}=\beta(f) / f$, where $\beta(f)$ is the phase. If $\beta(f)$ is constant for all f, the phase delay becomes inversely propon nal to frequency, and phase distortion results.

CHAPTER 4

Exercise 4: $R_{g}(0)=\int_{-x}^{x} \Psi_{g}(f) d f ; \Psi_{g}(0)=\int_{{ }_{x}} R_{g}(\tau) d \tau$
Exercise 10: Direct procedure: Use the formula for the autocorrelation function of the energy signal $g(t)$. Indirect procedure: 1. Compute the Fourier transform $G(f)$
of the signal $g(t)$. 2. Compute the energy spectral density $\Psi_{g}(f)=|G(f)|^{2}$. 3. Compute the inverse Fourier transform of $\Psi_{g}(f)$.

Exercise 11: Direct procedure: Use the formula for the autocorrelation function of the power signal $g(t)$. Indirect procedure: 1 . Compute the Fourier transform $G_{T}(f)$ of the truncated signal $g_{T}(t)$ for large T. 2. Compute $\left|G_{T}(f)\right|^{2}$. 3. Compute the inverse Fourier transform of $\left|G_{T}(f)\right|^{2}$.

Exercise 15:

$$
\begin{aligned}
& R_{g_{p}}(\tau)=\left\{\begin{array}{lc}
\frac{A^{2}}{2}\left(1+\frac{2 \tau}{T_{0}}\right) & -\frac{T_{0}}{4} \leqslant \tau \leqslant 0 \\
\frac{A^{2}}{2}\left(1-\frac{2 \tau}{T_{0}}\right) & 0 \leqslant \tau \leqslant \frac{T_{0}}{4} \\
0, & \text { for the remainder of the period }
\end{array}\right. \\
& S_{8_{p}}(f)=\frac{A^{2}}{16} \sum_{n=-\infty}^{x} \operatorname{sinc}^{2}\left(\frac{n}{4}\right) \delta\left(f-\frac{n}{T_{0}}\right)
\end{aligned}
$$

Exercise 16: $R_{N}(0)=N_{0} / 4 R C$
Exercise 17: $R_{N}(0)=\left(N_{0} / 2\right) \int_{-x}^{x} d f /\left[1+(2 \pi f R C)^{2}\right]=N_{0} / 4 R C$
Exercise 18: $B_{N}=1 /(4 R C)=\pi B / 2$

CHAPTER 5

Exercise 1: Constant 1
Exercise 2: Number of representation levels $=512$
Exercise 3: Code word length $=9$; Bit rate $=75.6 \mathrm{Mb} / \mathrm{s}$; Bandwidth $=75.6 \mathrm{MHz}$ Exercise 4: $768 \mathrm{~kb} / \mathrm{s}$.
Exercise 5: 1. Four-level Gray coding. 2. On-off signaling, polar signaling, and bipolar signaling. 3. Return-to-zero signaling, and Manchester coding.
Exercise 6: $\delta^{2} / 3$.
Exercise 7:

System Level	Number of Voice Channels	Number of Picturephon Channels	Number of Television Channels
T2	24		
T3	96	1	
T4	672	7	1

CHAPTER 6

Exercise 2: 6.312 MHz .
Exercise 3:

b_{k}		0	0	1	0	1	1	0
a_{k}	0	0	0	1	1	0	1	1

Polar representation of a_{k}, volts	-1	-1	-1	+1	+1	-1	+1	+1
c_{k}, volts		-2	-2	0	+2	0	0	+2
$\left\|c_{c}\right\|$	2	2	0	2	0	0	2	
b_{k}		0	0	1	0	1	1	0

Exercise 4: The duobinary technique has correlated digits, while the other two methods have independent digits.

Exercise 5:									
b_{k}.			0	0	1	0 1	1	1	0
a_{k}	1	1	1	1	0	1 +1	+1	-1	+1
Polar representation of a_{k}, volts	+1	+1	+1	+1	-1	+1	+1	-1	+1
c_{k}, volts			0	0	-2	0	+2	-2	0
$\left\|c_{k}\right\|$, volts			0	0	2	0	2	2	0
\hat{b}_{k}			0	0	1	0	1	1	0
Exercise 6:									
b_{k}			0	0	1	0	0	1	0
a_{k}	0		0	0	1	0	-	1 +1	-1
Polar representation of a_{k}, volts	-1	-1	-1	-1	+1	-1	-1	$+1$	-1
c_{k}, volts			0	0	+2	0	-2	+2	0
$\left\|c_{k}\right\|$, volts			0	0	2	0	2	2	0
\hat{b}_{k}			0	0	1	0	1	1	0

C-CHAPTER 7

Exercise 11: The low- and high-frequency ends of the amplitude response of the sideband shaping filter are the opposite of those in Fig. 7.24.
Exercise 13: The wide band 90° phase shifter (Hilbert transformer) of Fig. 7.20 is replaced by a filter whose transfer function is defined by Eq. 7.64.
Exercise 14: $f_{l}=f_{o}-f_{c}$
Exercise 15: $f_{i}(t)=5+2 \cos (4 \pi t)$, hertz
Exercise 16: The input of the phase modulator has a triangular waveform. The output is the same as the FM wave shown in Fig. 7.37b.
Exercise 17: $\Delta f=0.2 \mathrm{kHz} ; \beta=0.2$. The carrier frequency f_{c} plays no role in these two calculations.
Exercise 18: The lower side-frequency component of a narrow-band FM wave is shifted in phase by 180° compared to that of a standard amplitude-modulated wave.
Exercise 19: A standard AM contains a carrier of fixed amplitude and two sidefrequencies. A wideband FM contains a carrier of varying amplitude and an infinite number of side-frequencies.
Exercise 20: For $\beta=0.2$, the amplitude spectrum of the FM wave consists essentially of a carrier at f_{c} and a pair of side-frequencies at $f_{c} \pm f_{m}$.
Exercise 21: $B=130 \mathrm{kHz}$
Exercise 22: Mid-band frequency of the filter is $2 f_{1}$; Bandwidth of the filter is $2 B_{1}$; where f_{1} is the carrier frequency of $s_{1}(t)$ and B_{1} is its bandwidth.
Exercise 23: $1 f=60 \mathrm{kHz}: \beta=12$. Separation of adjacent side-frequencies is 5 1.H,

CHAPTER 8

Exercise 1: The probability of getting one head and one tail is $1 / 2$ if no distinction is made as to which coin turns up head.
Exercise 2: The probability that the two dice add up to 6 is $5 / 36$.
Exercise 3: $P\left(A_{0} \mid B_{1}\right)=p p_{0} /\left[p p_{0}+(1-p) p_{1}\right]$;
$P\left(A_{1} \mid B_{0}\right)=p p_{1} /\left[(1-p) p_{0}+p p_{1}\right]$.
Exercise 4: (a) $P\left(B_{0}\right)=\frac{1}{2}$; (b) $P\left(B_{1}\right)=\frac{1}{2}$; (c) $P\left(A_{0} \mid B_{0}\right)=1-10^{-4}$;
(d) $P\left(A_{1} \mid B_{1}\right)=1-10^{-4}$

Exercise 5: $P\left(\left|X-m_{X}\right|<\varepsilon\right)=1-\left(\sigma_{\hat{2}}^{2} \varepsilon^{2}\right)$
Exercise 7: $P(-3<X \leqslant 13)=\operatorname{erf}(1 / \sqrt{2})$
Exercise 8: Mean-square value $=A^{2}$
Exercise 9: First, $\sigma(f)$ is nonnegative for all f. Second, the total area under the curve of $\sigma(f)$ is one.
Exercise 11: As N becomes large, the power spectral density of the $P N$ sequence assumes the same form as that of the corresponding random binary wave.
Exercise 12: $S_{Y}(f)=4 \sin ^{2}(\pi f T) S_{X}(f)=4 \pi^{2} f^{2} T^{2} S_{X}(f)$. That is, for low-frequency inputs, the comb filter acts as a differentiator.
Exercise 14: $f_{X}(x)=1 /\left(2 \sqrt{\pi N_{0} W}\right) \exp \left(-x^{2} / 4 N_{0} W\right)$
Exercise 15: (a) For the narrow-band random process $X(t), R_{X}(\tau)=$ $2 N_{0} W \operatorname{sinc}\left(2 W_{\tau}\right) \cos \left(2 \pi f_{i} \tau\right)$. (b) For the in-phase component $X_{l}(t)$ and quadrature component $X_{2}(t): R_{X_{i}}(\tau)=R_{X_{2}}(\tau)=2 N_{0} W \operatorname{sinc}\left(2 W^{\prime} \tau\right)$.

CHAPTER 9

Exercise 1: (d) When using DSBSC modulation and coherent detection, the translated signal sidebands add coherently, whereas the translated noise sidebands add incoherently.
Exercise 4: $(S . V R)_{O+M}=2 p k_{j}^{\vdots} P$.
Exercise 5: 11.4 dB
Exercise 7: The values of threshold channel signal-to-noise ratio are (a) $(S N R)_{C} \geqslant$ 17.8 dB ; (b) $(\text { SNR })_{C} \geqslant 20.8 \mathrm{~dB}$. The corresponding values of average transmitted
power P are (a) $P \geqslant 4.5 \mathrm{~mW}$; (b) $P \geqslant 9 \mathrm{~mW}$ power P_{c} are (a) $P_{c} \geqslant 4.5 \mathrm{~mW}$; (b) $P_{c} \geqslant 9 \mathrm{~mW}$.
Exercise 8: The power spectral density of de-emphasized noise varies with frequency as $f^{2} /\left[1+\left(f^{2} / f_{\overline{0}}^{2}\right)\right]$, where f_{0} is the cutoff frequency of the de-emphasis filter. Thus, starting at the initial value of zero at zero frequency, the de-emphasized noise power spectral density increases with frequency, reaches a peak, and then decreases with frequency.

CHAPTER 10

Exercise 2: (a) The matched filter output reaches its peak at time $t=t_{0}+T$. (b) The maximum value of the output is proportional to signal energy.

Exercise 6: (a) $\lambda=\frac{1}{2} E$; (b) $\lambda=\left(N_{0} / 2\right) \ln (2)+\frac{1}{2} E$;
(c) $\lambda=-\left(N_{0} / 2\right) \ln (2)+\frac{1}{2} E$

Exercise 8: (b) 1.5 dB ; (c) 0.68 dB .

INDEX

```
Absolute temperature, 630
Adaptive equalization, 250
    adaptation constant, 253
    decision-directed mode, 254
    least mean-square algorithm, 253
    training mode, 253 .
Adaptive prediction, 212
Adaptive quantization, 212
Aliasing, 181
Amplitude distortion, 99
Amplitude modulation (AM), 260
    envelope detector, 272
    envelope distortion, 263
    frequency-domain description, 263
    percentage modulation, 261
    sidebands, 264
    single-tone modulation, 265
    square-law detector, 271
    square-law modulator, 268
    switching modulator, 269
    time-domain description, 261
    transmission bandwidth, 264
Amplitude-shift keying:
    binary, 369
    detection, 370, 574, 576
    generation, 370
    noncoherent detection, 372
    probability of error, 577
AM radio, 311
    image signal, 312
    intermediate frequency, 311
    superheterodyne operation, 312
AM receiver, noise in, 503
    channel signal-to-noise ratio, 503
    figure of merit, 504
    model, 496
    output signal-to-noise ratio, 504
    threshold effect, 506
AM stereo, \(392^{\prime}\)
Analog communications, 8
Analog pulse modulation, 182
Analog signals, 4
Angle modulation, 322
angular argument, 322
instantaneous frequency, 323
sinusoidal modulation, 325
square modulating wave, 326
types, 323
zero crossings, 324
```

Angular argument, see Phase
Angular frequency, 23
Antenna gain, 616
Antenna noise temperature, 621
Aperiodic signals, 3
Aperture effect, 186
Arithmetic series, 627
Audio signals:
studio quality, 196
telephone quality, 5
Autocorrelation function:
energy signals, 138
periodic signals, 153
power signals, 147
random processes, 439
Available noise power, 606
Balanced frequency modulator, 347
Balanced modulator, 276
Band-limited signal, strictly, 51, 70
Band-pass transmission, 106
Bandwidth, signal:
band-pass, 51
low-pass, 51
message, 9, 263
null-to-null bandwidth, 52
3-dB bandwidth, 52
Bandwidth, system, 3-dB bandwidth, 96
Bandwidth-signal-to-noise ratio tradeoff, 10, 196
Baseband, 111, 228
Baseband data transmission, 228
channel bandwidth, 235
ideal solution, 231
practical considerations, 232
timing error, 232
Baud, 247
Bayes' rule, 410
Bel, 597
Bessel function of first kind, 598
Binary symmetric channel, 410
transition probability diagram, 411
Binomial series, 627
Bipolar signaling, 197
Bit, 10, 195
Bit duration, 228
Bit rate, 232
Bit stuffing, 219
Bolzmann's constant, 604, 630

Burst noise, 603
Butterworth low-pass filter, 174

Carrier, 8, 260
Carrier delay, see Phase delay
Carrier-to-noise ratio, 505, 622
Carrier power, 505, 618
Carson's rule, 336
Causality:
signals, 73
systems, 90
Central limit theorem, 428
Channel capacity theorem, 10,588
Channels, 7, 84
band-limited, 9
broadcast, 7
point-to-point, 7
power-limited, 9
Chi-squared distribution, 434
Comb filter, 463
Coding. 194
binary code, 195
Coherent detection, see Detection
Communication, 2
Communication system:
elements, 6
limitations, 9
resources, 9
Companding. 192
A-law, 193
μ-law. 192
Complementary error function, 428, 570, 629
Complex envelope, 108
Complex exponential function, 57
Compressor, 192
Conjugate function, 43
Convolution:
in frequency domain, 46
notation, 46
properties, 79
in time domain, 49
Convolution integral, 46, 84
derivative, 49
graphical interpretation, 86
Convolution sum, 89
Correlation, see Cross-correlation functions
Correlation coefficient, 579
Correlation receiver, 373, 563
generalized two-path, 578
Correlation theorem, 141
Correlative coding, 237
decision feedback, 240
duobinary signaling, 237
modified duobinary signaling, 243
precoding, 241, 245
Costas loop, 281
Cross-correlation functions:
energy siguals, 140
power signals, 149
random signals, 463
Cross-spectral densities, 465
dc signal, 56
Decibel, 52, 94, 597
Decoding, 200
Delay distortion, 99
Delta function, 53
applications, 56
Fourier transform, 56
properties, 54, 79
replication property, 56
sifting property, 56
Delta modulation, 206
adaptive, 213
comparison with PCM, 211
granular noise, 209
linear, 210
slope-overload distortion, 209
Demodulation, 8, 260
AM waves, 271
DSBSC waves, 279
FM waves. 346
SSB waves. 293
VSB waves, 303
Detection, 370, 539. See also Demodulation
coherent detection, 370, 574
noncoherent detection, 372, 574
Deterministic signals, 3
Dibit, 198, 374
Differential encoding, 372
Differential phase-shift keying. 372
detection, 372, 574
probability of error, 583
Differential pulse-code modulation, 202
adaptive, 212
comparison with PCM, 211
prediction gain, 205
Differentiation in time domain, 38
Digital communications, 7, 177
Digital formats, 197
Digital modulation techniques, 368
comparison, 586
Digital pulse modulation, 178
Digital satellite communications, 382
Digital signals, 5
Digital telephony, 215
Dirac delta function, see Delta function

Discrete Fourier transform, 71
inverse, 72
Discrete-time Fourier transform, 68
Distortionless transmission, conditions for, 97
Double-exponential distribution, 481
Double-sideband suppressed-carrier modulation, 274
channel signal-to-noise ratio, 498
demodulation, 279
figure of merit, 500
frequency-domain description, 274
generation, 276
output signal-to-noise ratio, 500
quadrature null effect, 280
single-tone modulation, 280
time-domain description, 274
transmission bandwidth, 274
Duality property of Fourier transform, 33
Duty cycle, 20
Einstein-Wiener-Khintchine relations, 148 , 453
Electron charge. 607. 630
Energy, 4
Energy density spectrum, see Energy spectral density
Energy signals, 4
Energy spectral density, 128
interpretation. 135
measurement. 137
properties, 130
Envelope, 176, 261
Envelope delay, see Group delay
Envelope detection, 272
Equalization, 100, 186
adaptive, 250
Equivalent noise temperature, 611
Ergodicity, 446
in autocorrelation function, 448
in mean, 447
Error function, 426, 570, 629
Even part, 77
Expander, 194
Expectation operator, 159, 419
Exponential pulse, 26
damped sinusoid, 38
decaying, 27
double, 30,80
rising, 27
Exponential series, 627
Eye pattern, 248
Fast Fourier transform algorithm, 73
Feedback shift register, 458

Figure of merit, 495
Filters, 84
finite-duration impulse response, 90
frequency response, 94
ideal band-pass, 110
ideal low-pass, 102, 104, 123, 132
time response, 84
Flat-top samples, 182
Flicker noise, 603
FM radio, 364
FM receiver, noise in, 509
capture effect, 517
channel signal-to-noise ratio, 514
compared to PCM, 517
de-emphasis, 524
Dolby, 529
figure of merit, 514
model, 508
output signal-to-noise ratio, 514
pre-emphasis, 524
threshold carrier-to-noise ratio, 521
threshold effect, 517
threshold extension (reduction), 522
FM stereo, 366
Fold-over, see Aliasing
Fourier analysis, 5, 13
Fourier series, 14
basis functions, 14
complex exponential form, 15
Dirichlet's conditions, 15
properties. 75
real form, 14
Fourier transform, 20
Dirichlet's conditions, 22
frequency shifting, 36
inverse, 22
notations, 23
numerical computation, 71
properties, 29, 78
relation to Laplace transform, 73
Frequency, 5
Frequency changing (translation), see Mixing
Frequency modulation (FM), 323
Carson's rule, 336
demodulation, 346
direct method of generation, 344
frequency deviation, 327
frequency sensitivity, 323
harmonic distortion, 340
indirect method of generation, 339
limiting, 363
modulation index, 328
narrow-band, 330
ninety percent bandwidth, 336

Frequency modulation (FM) (Continued)
relation to phase modulation, 324
single-tone modulation, 327
transmission bandwidth, 335
wideband, 332
Frequency multiplication, 340
Frequency-shifting property of Fourier transform, 36
Frequency-shift keying, binary, 369
coherent detection, 370, 574, 580
generation, 370
noncoherent detection, 574, 580
probability of error, 580
Frequency-shift keying, M-ary, 589
Frequency synthesizer, 391
Friis formula for noisy networks, 614
Friis transmission formula, 617

Gain, 94

Gaussian distribution, 425
Gaussian process, 468
properties, 469
Gaussian pulse, 39, 54, 78
Generalized distributions, 53
Geometric series, 627
Gibbs phenomenon, 49
Gray code, 198
Group delay, 114
Hartley modulator, 292
Hartley oscillator, 344
Hertz, 630
Heterodyning, see Mixing
Hilbert transform, 95
inverse, 96

Ideal sampling function, 65
Imaginary part, 44
Impulse response, 7
Integration:
by parts, 628
in time domain, 41, 62, 80
Intersymbol interference, 230
correlative coding, 237
ideal solution for, 231
raised cosine spectrum, 233
Inverse relation between time and frequency, 33, 50

Kell effect, 315
Kell factor, 315

Limiting, hard, 363

Linearity, 5, 30, 84
Linear maximal sequences, see Pseudonoise sequences
Linear modulation, 230, 250, 304, 374
Line codes, see Digital formats
Link calculations, 615
Link power budget, 618
Logarithmic series, 627
Log-likelihood ratio, 563 ,

MacLaurin series, 627
Manchester code, 197, 594
M-ary data transmission, baseband, 247
frequency-shift keying, 589
phase-shift keying, 589
Maser, 620
Matched filter, 543
design approximations, 553
pair, 549
properties, 545
spectral amplitude matching, 553
spectral phase matching, 553
Maximum power transfer theorem, 606
Minimum probability of error criterion, 562
Minimum shift keying, 378
comparison with quadriphase-shift keying, 381
probability of error, 585
Mixing, 308
Modulation, 8, 260
amplitude, 260
angle, 322
digital, 368
linear, 230, 250, 304, 374
Modulo-2 addition, 458
M12 multiplexer, 219
Multipath, 123
Multiple access, 382
code-division, 382
frequency-division, 382
time-division, 382
Multiplexing, 8
frequency division, 309, 390
time division, 213
Multiplication in time domain, 45
₹
Narrow-band filters, 109
baseband (low-pass) equivalent, 110
complex low-pass transfer function, 109
Narrow-band random processes, 471
envelope and phase components, 478
in-phase and quadrature components, 471
properties, 472

Narrow-band signals, 106
complex envelope, 108
in-phase and quadrature components, 109
pre-envelope, 106
National Television System Committee
Standards for TV, 316
Natural (binary) code, 198
Neper, 94
Noise, 160, 493, 603
Noise-equivalent bandwidth:
band-pass filter, 167
low-pass filter, 166
Noise figure, 609
Noise spectral density, 613
Noncoherent detection, see Detection
Nonlinear distortion, 116
harmonic distortion, 117
intermodulation distortion, 119
Nonlinearity, 116
memoryless, 116, 340
strong, 341
weak, 341, 395
Nonperiodic signals, see Aperiodic signals
Nyquist bandwidth, 232
Nyquist interval, 71, 180
Nyquist rate, 71, 180
Odd part, 77
Optimum receiver, 540
hypothesis testing, 559
likelihood ratio, 562
receiver, 563
log-likelihood ratio, 563
minimum probability of error criterion, 562
probabilistic approach, 558
signal-to-noise ratio maximization, 541
Orthogonal signals, 14, 150, 580
Parametric amplifier, 620
Parseval's power theorem, 152
Partial response signaling, see Correlative coding
Path loss, 617
Periodic pulse train, 18, 155
Periodic signals, 3,14
ac power, 152
average power, 152
dc power, 152
generating function, 64
Fourier series representation, 14
Fourier transform representation, 63
root mean-square value, 153
Periodogram, 143

Phase, 322, 478
Phase delay, 114
Phase distortion, 99
Phase-locked loop, 353
closed-loop transfer function, 358
first-order, 358
FM threshold reduction, 524
frequency demodulation, 358
hold-in frequency range, 361
linearized model, 355
loop parameter, 355
nonlinear model, 355
open-loop transfer function, 357
phase demodulation, 594
phase-plane plot, 361
practical considerations, 362
second-order, 362
Phase modulation, 323
relation to frequency modulation, 324
Phase-shift keying:
binary, 369
detection, 370, 574, 579
generation, 370
phase error, 595
probability of error, 580
M-ary, 589
Planck's constant, 604, 630
Poisson's sum formula, 65
Power, average, 4
Power ratio, 597
Power signals, 4
Power spectral density, 141, 452
interpretation, 145
measurement, 146
modulated wave (process), 143, 461
power signals, 143
random signals, 453
Power spectrum, see Power spectral density
Prediction filter, 202
adaptive, 212
Pre-envelope, 106
Principle of superposition, 5, 84
Probability of correct reception:
average, 585
conditional, 560
Probability of error:
average, 561
conditional, 560
Probability theory, 404
a posteriori probability, 411
a priori probability, 410
axioms of probability, 406
conditional probability, 408
event, 404
impossible, 405

Probability theory, event (Continued) joint, 408
probability, 405
joint probability, 408
relative frequency approach, 404
sample point, 405
sample space, 405
statistically independent events, 410
statistical regularity, 404
sure event, 405
Product modulator, 276
Pseudonoise sequences, 460
autocorrelation function, 459
power spectral density, 460
Pulse-amplitude modulation, 182
Pulse-code modulation, 8, 179
compared:
with delta modulation, 211
with differential pulse code modulation, 211
with frequency modulation, 310
error threshold, 572
M-ary, 247
probability of error, 567
sub-optimum receiver, 573
Pulse-duration modulation, 182
Pulse-position modulation, 182
Quadrature-amplitude modulation, 283, 381, 575
Quadrature-carrier multiplexing, see Quadrature-amplitude modulation
Quadrature-modulated process, 464
Quadriphase-shift keying, 374 compared with minimum shift keying, 381
detection, 378, 575, 583
generation, 376
phase error, 596
probability of error, 585
Quantizing (quantizer), 187
dynamic range, 189
midriser type, 222
midtread type, 189, 222
overload distortion, 189
representation levels, 189
step size, 189
Quantizing noise (error), 189
average power, 190, 422

Radar, 36
frequency-modulated, 392
Radio frequency pulse, 36, 548
Raised cosine pulse, 74
Raised cosine spectrum, 233

Random binary wave, 444
autocorrelation function, 445
power spectral density, 456
Random processes, 3, 158, 403, 434
autocorrelation function, 439
autocovariance function. 439
filtering, 450, 462
mean, 439
partial description, 440
power spectral density, 452
strict stationarity, 437
wide-sense stationarity, 440
Random variables, 414
conditional probability density function, 418
cumulative distribution function, 415
joint distribution function, 417
joint probability density function, 418
probability density function, 416
square-law transformation, 432
transformation, one-to-one, 430
Random vectors, 435
joint distribution function, 436
Rayleigh distribution, 480. 481, 507
Rayleigh's energy theorem. 128
Real part, 44
Received power, 617
Receiver, 7
Reconstruction circuit, 186
Rectangular function, 25
Rectangular pulse, 24, 31. 35, 54, 546, 548
doublet, 41
Regenerative repeaters, 201
overall probability of error for chain of, 413

Sample-and-hold circuit, 182
Sampling period, 67
Sampling process, 66, 180
aperture effect, 186
instantaneous, 67
Sampling rate, 67
Sampling theorem, 70, 180
Schottky formula, 607
Schwarz's inequality, 542
Scrambler, 390
Semiconductor junction diode, noise model, 608
z Shannon limit, 589

- Shot noise, 606

Signal, 2
distortion, 96
amplitude, 99
delay, 99
linear, 96

Signal energy per bit-to-average noise power per unit bandwidth, 586
Signal-to-noise ratios, 494
channel, 495
output, 494
Signal-to-quantizing noise ratio, 191, 195
Signum function, 59
Sinc function, 18
Sinc pulse, 33, 34, 80, 129, 231
truncated, 46
Sine integral, 48, 104
Single sideband modulation, 284
channel signal-to-noise ratio, 501
compared with PCM, 310
demodulation. 293
figure of merit, 502
frequency description, 285
generation, 286, 292
output signal-to-noise ratio, 502
phase distortion, 294
single-tone modulation, 291
time-domain description, 288
transmission bandwidth, 286
Sinusoidal functions, 58
Sinusoidal process, $442,448,455$
Slope circuit, 347
Space loss, see Path loss
Spectral characteristics:
bandwidth, 51
main lobe, 25
sidelobes, 26
Spectrum, 13, 17, 23
amplitude, 17, 24
phase, 17, 24
Spectrum analyzer, 391, 400
Speed of light, 617, 630
Spread spectrum modulation, 550
Square-law detector, 271
Square-law modulator, 268
Statistical averages, 419
characteristic function, 421
correlation coefficient, 424
covariance, 424
mean, 419
mean-square value, 420
standard deviation, 420
variance, 420
Stochastic processes, see Random processes
Synchronization in digital communications:
bit timing, 372
phase synchronization, 372
Synchronous detection, see Detection
System, 84
amplitude distortion, 99
amplitude response, 93
bandwidth, 96
causality, 90
conjugate symmetry, 93
delay distortion. 99
frequency response, 91
impulse response, 84
linearity, 5, 84
noise temperature, 621
phase response, 93
signal distortion, 96
stability, 91
time-invariance, 5

Tapped-delay-line filter, 89, 100, 205, 251
Taylor series, 627
Television, 312
aspect ratio, 315
bandwidth, 314
black-and-white, 312
blanking pulses, 313
chrominance signals, 318
chrominance subcarrier. 320
color, 318
encoding, 196
high definition, 320
line-scanning frequency, 313,320
luminance signal, 318
modulation format, 316
pixel, 315
raster scan, 312
resolution, 314
Temperature-limited vacuum diode, 607
Thermal energy, 630
Thermal noise, 604
Thermal voltage, 385, 630
Time-bandwidth product, 52
Time scaling, 31
Time shifting property of Fourier
transform, 34
T1 system, 217, 236
Transfer function, 92
Transmission codes, see Digital formats
Transmitted power, 9
Transmitter, 6
Transversal filter, see Tapped-delay-line filter
Triangular pulse, 41
Trigonometric identities, 626
Trigonometric series, 627
Unbiased estimate, 447
Uniform distribution, 416
mean, 422
mean-square value, 422
variance, 422

	BRARY
Unit impulse, see D持 NORTHERNUNTV	
Unit step function, 2* ${ }^{\circ}$ ¢	$r_{\top} \mathrm{T}$ - oscillato
Unvoiced sounds, 212	
	Watt, 630
Varactor, 344	Wavelength, 617
Vestigial sideband modulation, 295	White noise, 160, 476
demodulation, 303	ideal low-pass filtered, 162
generation, 296	RC low-pass filtered, 163
side-band shaping filter, 296	Sinusoidal wave plus, 164
time-domain description, 299	
transmission bandwidth, 295	Zero crossing detector, 353
Video signal, 312	Zero crossings, see Angle modulation

[^0]: "Thermal noise was first studied experimentally by Johnson in 1928, and for this
 reason it is sometimes referred to as "Johnson noise". reason it is sometimes referred to as "Johnson noise"; see Johnson (1928). ${ }^{3}$ For a discussion of the physical issues involved in the formulation of Eq. C.1, and
 for a historical for a historical account of the pertinent literature, see Bell (1985) of Eq. C.1, and pertinent literature, see Bell (1985).

[^1]: ${ }^{4}$ For details of noise models for semiconductor diodes and transistors, see Robinson (1974), pp. 93-116.

[^2]: ${ }^{6}$ For a detailed treatment of link calculations in satellite communications, see Pratt and Bostian (1986), Chapter 4.
 'For a detailed treatment of link calculations in deep-space communications, see Yuen (1983), Section 1.2.

[^3]: ${ }^{8}$ For a discussion of parametric amplifiers, see Angelakos and Everhart (1968), pp. 8293. This reference also presents a description of masers (pp. 93-98).

[^4]: F. E. Terman, Electronic and Radio Engineering, 4th ed., McGraw-Hill, New York, 1955.

