
PART II

DIFFERENTIAL EQUATIONS



Exact Differential Equations and
Equations of Particular Forms

11. Introduction.
Inthis chapter differential equations of order highet than, the

first and with variable coefficients will be considered. There
is, as a matter of fact, no general method to solve these differesitial
equations.. However, we consider below some particular types of
xthose equations.
1-2. Dependent variable absent.

If an equation does not contain y directly, it can be written in
the form	 -

[dayd'y	 dy \
/	 , ...,	 x0.

dy &y'dp
Let us put j=P	 —j. .... etc.

Then the equation (1) becomes
,(44p dasp	 .JJ(J..idxIs_.sPJ

which is reduced by order one and maybe solved for  to give
dyp=Fx), i.e.

so that	 F(x) dx+c is the required solution..

The following few examples will illustrate the method.
Note. If the equation is of- the form

/d"yd)y dky \
/	

x1=O,

in which lowest derivative is of order k, then substitution made is
d*y ... etc.

This would reduce the order of the equation by k.

Ex. i. Solve 24ji—(')+4=O.

Solutbu. The equation is free from y
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Putting dY	 day dp

	

dx'	 the equation becomes

2 _. p2+40 ordx	

separating the variables
or (__) dp==dx.

Integrating, ' i' ?g -=x+

or	 (p-2)=(p+2) c1eSx.

This gyp d
i
	 2(l+ce2x)	

( • 2c1e
dx

InteraI8 agarny 2x 210g(I c1'e1x)+ca,,hj! is the corn.plcte so , tion.	
= -	 -	 -

	

Solve	 d (d3
=0.	 [Agra 551

o ti 	 The equation does contain y directly.

	

Putting =p,	 the equation becomes

	

Y	 d'ydp

dP ^,	 dp.+ =0 or

or	 (_r4.j)dp.r_dx.

paor —:=cj2eIntegrating, log	 p	
-x+log C1 ,
 .

or	 p'=(1+p2) ci'e	 Or	 c1e

Integrating again, 7=—sin- (cie_9+cs.
Ex 3. Solve (1

d2y
++ 

(p)2	
(Agra 57]

SoIutlofl The equation does not contain y directly.
Putting	 day dp

	

=p,	 the equation becomes

(l+x) P+1+p2 O (variables separable)
dpI.e.	 1j*+jX1 =0; •. talr1p+tan-1x.tan-4c,

ot tan-! 	X .=tafl_1 	 p+xC1 or

	

px	 I—px



Exact Differential Equations 	 5

	

i.e. (p+x)==cx(1_-px) or	
dy cj-x 1 11+c12

i
Integrating, y=—I+c

1 - log (1+c1x)- 1 - x+c which is the gene-

ral solution.

	

d2	 d
Ex. 4. Solve (1-x2) - '-x=2.	 [Agra 521dx^

Solution. The equation does not contain y directly.
dy	 d2y c/p

Thus putting 1-=p,	 the equation becomes

	

dp	 dp x	 2

	

(l-x2) 1-xp=2 or	 Pjz
This is a linear equation in  and x.

4 log (1-x)
J.F.=e	 =e	 =r\/(t_XZ)

dx

= c ! +2 sin x.
•	 _:_	 l	

+1 cur1
V(l-x2)

Integrating, y=ci sin xf(sin' x)2+c
which is the required solution.

d2 v	 /d 2 dy
Ex. 5. Solve x ---v-x--dx2 \dx) dx
Solution. The equation does not contain y directly. So putting

'=p,	 the equation becomes.

ripIdp II
x + xp--p=O or

Putting 
1	

,	
ldpdu

- =u -------- this becomes
p	 p-dr dx,

I.dx
du 	 Jx

u= 1. Liner equatwn, I.F.-=e 	 X.

x dx or ux.=cI±x2

2xor	 - x=cj+x or	
&

P	 dx x + 2c,

Integrating, y=log (x2+2c)±c2
which is the required solution.

	

d3 v d2v	 2 Y 2

Ex. 6. Solve 2x	 •ct2 (c/v2) -a2.
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Solution. The equation does not contain y directly.
dry	 d

Also lowest differential is 	 So put ?=q Pydq

Then the equation becomes

x.fL qq2_ai	 dq 42 	 as
or 2q--.-----•

dx x x
duPutting q u, 24	 the equation becomes

-I dx
u=--. Linear equation, I F.=e' 

Xdu
7---xx	 x	 x

=1+.•. u.-.=c
X

or u=q'= c1x+a2, i.e. q= d& =(c 1x + 0t)Ia•

dy (c,+a1)312
Integrating,	 4.c1	 +c2.

x+a2)6IIntegrating again, y= (ci+C2X+Cs,

which is required general solution.
/d3y\5 d3y d1y0

Ex. 7. Solve () +X

Solution. The equation is free from y and the lowest differential
d2y. d2y d3y dqcoefficient is Rjj. So putting 7 =q,-j-a	 the equation becomes

Idq\' dq

	

	 dq (d\sor q=x.-

which is of Clairaut's form. Hence putting c1 for dqJdx,
dyq=xc1+c 1 2 or -j=ctx+ci2.

dy
Integrating,

Integrating again, y= c jx3+c 2X2 + c2x-f c,
Which is the required solution.

Ex. 8. Solve —x =i().

	Solution. Putting	 the equation bCcones

(I/I	 I(!p\	 dp	 NpI'—X-	 01 P—X
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which is of Clairaut's 'form. RencC putting c for dp/dx,

p=xc +1 (c) or Lxc+f(c).

Integrating, y=4cx1+f(c) x+c'.
dy

Ex. 9. Solve	 —co: x

Solution. Equation is free from y and lowest diflèrentiél

coefficient is Loy ;hence putting the equation

becomes 
dq 

—cot x- q-0 or 7
dq

—cot x dx=O.

Integrating log q—log sin xlog c1 or q=c1 sin x
d3y

le.	 sin x. Integrating,	 —c1 cos X+ca.

Integrating again, 	 sin x±C2X+C..

and then	 yc1 cos X4ctx2+c3x+C4.
AEx. lv Solve

Solution. Equation is free from y. Putting dsy =q, the equa-

tion becomes

dq q-1
dx

or qdq=dx or q=2x+c1

d3yd2
or q=j =±(2x+ci)hI2,	 ± (2x+c1)5I--c2,dxx

(2x+cj)12+c.x+c3.dx- 15

y ±ri (2x+c1)7II+csX2+c3X+C

EX. 11. Solve
dx2 A+01-

dy
Solution. Putt'ngTx	 the equation becomes

= %f(l+p2) Or

Integrating, sinh'p=p+c 1 or p=
dy
T=Snh (x+c1).

Integrating again. y=c2+cosh (x+ c1).
d2y	 a2	 dy	 xt

Ex. 12 Solve -- - - '/.V2x (az_x)dx a
II

0

4
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dSolution. Putting yk—P, 
d2y dp
 the equation becomes

dp	 a2
tLa(a1._ Xz) 1'a (o2—x) linear equation.

I. a+x)

=e—log x+j log (a—x)+k log (a+x) s1(a2—x2)
X

V(a—x) 
X

(a2_X2)112
a

dy	 c1x	 1
X'or P=V(aa_x2) a

Inte#rating, y= —c1 (a2_x2)112__!_ x22o + c1,

which is the required solution.

Ex. 13. Solve Ti
€1y

=a2+k8 ()2.
Solution. The equation does not contain y directly. Therefore

putting '_, d2y dp 
the equation becomes

=a2+k2p2 ordpdx	 a3+k2p2

Integrating	 tan1 ()=x+1ak
or pk=a tan {ak (x+c1)} or	 dy a 

tan {ak (x+c1)},

Integrating, y= j log sec ak (X+Ci)}+C2.

13. Equations in which x is absent
An equation which is free from x can be put-in the form

ffd"y d"'y dy
'dxI ' Th i Wx-,

	

dy	 d2y dp	 odpdyIf we put -=p, then

and dy d ( P )	 Py;
dp\ d / dp\ dy

	

r &p 14\ 2 1 	 d21, Idp\2

	

=[P — ±_) 1PP2 	 +p t;) etc.
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The equation thus takes the form

which is reduced by ge6der and may possibly be integrated for
p and then for y.-

The fol1owj1few examples will make the procedure clear.

/iolve +-'-+i3=O? dx dx1	 Agra 1955]
Solution. The equation does not contain x directly; so putting
dydty_ d -	 dy dp

the equation becomes

Or

Integrating, tan 11 p=c1-y or p==tan (c1'-y)dx
or cot (c1 —y) dy=dx (separating the variables).

Integrating, -log sin (c1 —y)+log c2=x.
sin (c1—y)	 sinor Log	 X Dr Sm c1 -y) ce

C2

or c1 —ys1ir1 (c3e) or yc1 —sin 4 (cse).
d5y(fy2El. 2. Solve y j	 Y3 log Y.	 [Delhi Hons. 19583

Solution. The equation does not contain x directly; hence

putting- d'ydp =p f , the equation becomes
dp	 dpi-- 

5

	 log or p	 -p'=y logy.

Putting p1-y, 2p dp
-=dvT the above equation becomes

dv2 logy.

Linear equation, I.F.=e
Y2.

I
v=c+J 2y logy. d=ci+J 1 logy dy

Or p3J=ci+(log y)2 or P= 
dy

=±y [c1 +(log y)2]312

or	 dy
ci + (log y)tj

=dx [Put log y=u, ! di=th].yv'E 
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du _dx
4.l(c+u')	

or log k+s/(ct+u'] los ci+x

or u+ V(ci +u)=c,ex or log y+v'tcz-l-(log y)*14eX
or c1(1ogy)2=(c1ez—lOgy)
or c1=0e212c,e* logy
or log y=kieX f.k,e_x is the solution.

	

*Ex. 3 Solve (!)*-,	 rfl 
{l 4 a' (daY)})12

(Agra 1951)

Solution. The equation does not contain x directly. So
dyputting =p=	 _—p , the equation becomes

	

•	 dp	 F	 Idp't'V12

dyp2 pyfl [P'+a'P'-) 
J

dp dpahl*
or p=y T-in [1 +a'() ]

which is of Oairaut's form. Putting c for dp/dy,
dy

	

p=cy+n (l+a2c2] 1' . or	 y+n (l+a'c')T"

	or	 dy	 —dx

Now integrating ! log cy+n (1 +O2c*)11)X+c'
or cy+n (1 +a)1l'=c2e.

*Ex. 4. Solve  (1—logy)

(Delhi ions. 1969 ; Bombay 61 ; Agra 5$; Raj. 63, 55;
rat 611

Solution. The equation does not coniain x directly. So

putting, the equation becomes

1py(1 —log y)p+(i+logy)p2=O
dy

	or	 4- i -I-logy dv=O (variable separated)
P y¼1--logy)

Now put log yi so that  dy—di.

or

Integrating, log pt-I2 log (I--- 1) i-const.

U
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	 it

or p=c1e' (t— 1)' or 
dy
-Ciy (logy - l) as ye'

or	 dy	 cl dx. Integrating (tog — I C3X+Csy(log y—I)1

or 1—log	 is the required solution.

S. (a) Solve Y
d'yIdy\'

y'.

Sohstloa. Equation is free from x. Putting
dy =p and
dx

=p , the equation becomes yp

Of p+P'P.dp du

Put p2=u, 2p	 then the equation becomes
du 2 u=2y, Linear, 1.F.=y'.

:. uy2 c1 '+f 2y.y dy, i.e. UYC1'+Y4
2)or 2p1y=)4+ci2 or	 dy V(y'+c 

I

Integrating, V2 sifllrt

or y2=c1 sinh (V2x+c2) is the solution.

Ex. 5 (b)
Solve y j2y(jy)l 

[riatak 601
Hint. Just like above Ex.

L2Ex. 6. Solve y	 +()

Solution.  The equation is fre from
dyd27 dp
—=p, 2=p -, the equation becomesdy

dp	 dp 1	 1
•	 yp+p'=p or

x; hence putting

This is a linear equation, its I 	 =y.

:. P .Y .=ci+J3 . Y dy=ci+ Or

oror
Ci+Y	 r,l-yJ

Integrating, Y—a log (c, +y)=x+e
or y—x—c2 =c 1 log (c1 fy) is the solution.

a
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Er. 7. Solve tI—y') =2(I+y dy
 ).

Solution. Equation is free from x; hence putting
dy	 d2y dp
ax —i' ?''

the equation becomes

(l_y2)p=2p (l +yp) or

which is a linear equation, LF.=e	 J'

p.(1_yt)=c1+Jj2(1_y3)dy.ci+2y,

	

dyc1 +2y	 l—y2
so that	 or

or	 dydx.
Integrating,	 y'+cy— 1c 12 log (c1 +2y)x+c.

- 2y' + 2c1y—c11 log (ci+2y)==8x+cs.

Ex. 8. Solve d2Y+(dY)$O
dxA

Solution. The eauation does not contain  directly.
• 	 dy	 da
putting j=P. y dp the equation becomes

P _ap2=0 or	 dy=O
Integrating, log p—ay= log ei or p=c1e",

l e.	 =c1ea1l or e' dy—c1 dr.dx

Integrating, —=cjx+c2 or e'—c1'x+k'
which is the required solution.

Er. 9. Solve	 +2 +4 ()t=o.

Solution. The equation is free from x; so putting
sy dp

the equation becomes

dp
P +2p+4p==0 &

Integrating,	 z.	 %12p=-2y+k
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or tan V2p=c1 -2v12Y or V2 !=tan (ci-2V2),)dx
or V2cot (c1_-2v12y)dydX.

Integrating, log sin (c1_22y)-2x+e2'
or sin (ci_2V2y)=eCs'.e_= c3e,
which is the required solution.
14 Exact Equation.

The differential equation
,(d d' 1y	 dy. .,

iscalled an exact differential equation if it can be obtained by
differentiating once and without any further process from an
equation of the next lower order

d 1 'd"y	 dy Q(xdx+c.

For example,
d3y 	 dyd2y	 dy	 d'd2v

3y5_+14,--+ 4(T) .f12J.._r2Xdxs
is an exact equation since it may be obtained merely by differentia-
ting once the equation

	

3y2+4y (Y)'	 (.)2=X2+C.

15. Condition of exactness for a linear equation of order n.
[Nagpur 1962 ; Bombay 61 ; Delhi Hens. 62, 61, 60]

Let the linear differential equation of order n be	 -
d"-'

where P0 . F1 ,..., Pa,. Q are all functions of X.

Since P1 Lly is obtained by dif!ereniiating once P0 .—i hence

let the equation (1) be obtained by differen t iating once the equation
d1 r	 d2

Po cai +Qi dXa_++QM_1Y J Qx) d.v+c:
Differentiating (2) once w.r.t. x, we obtain

d"y	 d"2y	 d3yP
Oj,+(N +	 dx +(Qi' -4- Q) dx" -F(Q2' Q) (lX3

dy

	

+...+(Q'-+Q-	 +Q'a-iy=Q (x)

(1) and (3) are just the same equations; hence equatLig coefficients
of various terms, we get

Pa=P0, Pi—Po'+Q1, P1 =Q1 ' + Qs, P3rQ' .4- Q
... Pa_iQ'a- i +Qa-i and Pa=Q',_i
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These relations give

QvPa -P'1+P.,

These give coefficients of various terms in (2).
Also from the relation P,=Q',., we get

+(- l) 1 P.CiO
or P1-P i+Pa 3 p",_ ..-f(-ly'

(4) is the Condition of exactness for the equation' (I).
Thus if condition (4) jq satisfied for (1), the first Integral

is (2) which takes the form

' ji +Q 1 F.!).1 +(Fs-P1'+P.') dx'

.(4)

of (I)

•	 +fP._a_P',...i+P.+...+(_lyI-1 Pu'}y
'fQ(x)dx+c.	 .

Note. How to write condition (4):
(1) Write P,, ?, F,... ... the various coefficients starting

from the highest.
(2) Put, as many dashes as the number which is subtracted from

is in the suffix. Thus Ps whose suffix is 2 lower than is should
be written with two dashes and Po whose*suffix is is lower than fl

should be written with is dashes.
(3) Put +xe and -ye before these coefficients alternately.

Ex - 1. Solve (l+x+x')	 +(3+6x)	 +6=o.

Agra 1972. 56, 56; Raj. 64, 50]
Solution. The equation is of order 3. Here

P.=I+x+x', Pj3+6x,P5, Ps-sO.
Therefore the equation will be exact if

PS- Ps+Pi_•pH.-sO
Le. O-O+O-OaO, which is true.

Hence the equation is exact.
The first integral of the given equation is

F. +(Pi-P*,)j+(Pa_Pj'+P,') y-c2

or (I+x+x3)+(3+6x_(1+2x))Z4(6....6+2)y,4 ...(1)

• Now considering (I) as an equation to be tested for exactness,
we have for (1). .. P.-J+x+x, P1=2 (1+2x), Ps-2
and here	 Pa-Pi'+P.'=2-4+2=0
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	 b.

i.e. for (1) also the condition of exactness is satisfied therefore
the first integral of (1) is

P0

	

	—P'0)	 dx+c
dx

or	 (1+x+x5)[2+4X—(1+2x)]Y=Cix+Cdx

or	 (1+x+x') +(1+2x)y=cix+c2.dx
Here again P0=l+x+x',Pi=(1+2X)

and 	 P1_P0'==(1+2x)—(i+2x)==0.
Therefore (2) is also exact. Its solution is

Poy=f(cxx+c2) dx+ca

I.e.	 (1+x+x5) y4C1LX+C2X+C2,
which is the required solution of the given equation.

•
Ex. 2. Solve x j+(x2+x+3) d2v +(4x+2) —

d
1-2Y=O

[Delhi ions. 1970, 611
Solution. The eanat ion is of order three. Also herepx,p1=x2±x+3,P2 4x+2. P3=2.
The condition of exactness is
" D IA$11 TA	

fl	 '

i.e. 2-4+2-0=0, which is satisfied.
Hence the equation is exact. The first integral is

P0 +(P1 —P0') +(Pz—P1 ' +P') y= coast.
dxz

or x j+(x2+x+2) +(2 x+1) y=ci.

In(I),Po=X,P=x'+X+2, P2=2x+l.
The condition of exactness. i.e. P2 —P1'+P0 =O is satisfied

for (1).
:. the integral of (1) is

P0+(P1 —P0) y = fci dx±c2
dx

i.e. x !+(xt+x+1) y=ciX+4.

This is not exact and can be written as
dy I 	 c,
a+1 x+1+yCj+
 X11	 X

f(x+1+)dx
Linear equation, I.F.=e
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Hence the complete solution is
Y.Xe(+2).f{(J +?} XeX(Z 12)dx±z.

I:z. 3. Solve x +(x2-3) 
d2y

+0 +2y=O.

(Bombay 1958; Aflababad 521
Solution. The equation is . of third order. Here P,—.1r,P =x-3, Pa-4x, F3=2, and condition of exactness,

is satisfied.
Hence the eqation is exact. The first integral is

dxxd
P0
	 TX 	 y=c

or x+(x2_4)Z+2xy_c	 ...(i)
For (I) Pe=x, P, —X2-4, P2=2x and P2— P1+p0'=o issatisfied for (I). Hence 0) is also exact. The intergral 01(1) i

dx+c5

or x YC1X+4 or	 yc,dx
This is a linear equation.

LF.	 / ,e x'_5 log x =e*xt X1
Hence the solution is

e1"	
dx+te"Y --=c1 Jjj-c2J_dx+c,

*Ex. 4 Solve x5 4-3x 
+y (l—x)"

[Agra 1966, 57, 55, 51; Raj. 521
Solution. The equation is of second order.

• Here
The condition of exactness, i.e., P5—P1'+p, O gives

1-3+2---0 which is satisfied.
Hence the equation is exact. The first integral is

or

* The cequa'tigq can be solved by the mctbod of hOnWICMUs equations.See Ex. 11(a) pagi OO Part L
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which is linear. Its I.F. 	 X dx
X.

Hence Yj{2 (I _X)i}
X X2

or	 yx=log j— +c1 log X+c,,

which is the required solution.

Ex. S. Solve (l+x') j1
d2p

+3x 
d 

+.v=O.	 [Agra 69, 53]
Solution. The equation is of second order. Here

Po— I +xs, F1-3x, P2=1.
The condition of exactness P1—F11+p,11=O,

i.e. 1-3+2=0 is satisfied.
Hence the equation is exact. The first integral of the given

dyequation is P. +(P1 —P,) y+ci,
dyi.e. (l+x1) +xy=ca or dy	 x

dx
Linear equation, I.F. =e	 x'II+ =e 	 (1+x')./(1 +x').

.. Solution is Y.s/( l +X1)=ci+f(1 	 1) '(1 5) 4X

C2+C1 log [x+/(l+.x')]..

Ex. 6. Solve (x'-.x)	 .I-(8i'-3),+14x +4y4.

Solution. Equation is of third order. Here 
(Agra 46; Raj. 51

Po —x8 —x, P=80-3, P,-14x, P=4.
The condltioj of exactness Ps—P,1+P11'—P.1"=O,

I.e. 4-14+16-6-0 is satisfied
The equation is exact. The first integral is

P.+(P1—P.') +(P2—Pi'+Po")Y=f j 1x+c1

os (xa_x)Ly+(5x,_2)dy+4xy__ ji+Ci.

For this equation Pux—x, P1 =50-2, P,=4x
The condition of exactness P—P' p."=O is satisfied again.
:. The integral of (1) is

'5 +(Pi—Ps')Y.J(_+ci ) dx+c,Xx

17
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or (x5—x)
dy

 +(2Xl) Y.+CiX+4

dy 2x — 1	 I	 4 _______
or j+x (Xs_l) ='xa _I)+x1_1+ x(x'—i)

	

f2x$—i . 	I' 2x-1
Linear equation, l.F.=e i x(x*F)dx	 i Z (X'.-l) x dx

i f/I 4 I
e	 t_l)',,,e Jos ((_1)

where t=x5
=xV(x'— 1)

Hence the solution is
yX-

V(x'— I) %/
-WC-2 X+Cii,/(X'...I)+Ce log [r+/(x—fl1+c5.

Ex. 7. Solve Sin x çcos x	 sin x=O.tT

(Agra 78, 68,61: Delhi floss. 57]
Solution. Equation is of second order. Here

P.sin x, P1 =—cos x, P8 =2 sin x.
Condition of exactness P—P' +F—O.

I.e. 2 sin x—Sin x—sin x=O is satisfied.
Hence the equation is exact. The first integral is

a,,	a
P d+('1_P.')y=c1 or sin x —(2 cos x)y=c1

or	 cos x) y=ci cosec x, linear (not exact).

I.F.e f' 2COt X dx e 2 log sin x,
sins 

Hence the solution is

y cosec x=c1 
5 cosec x.cosec' x dx*+c,

—c5 cosec XcOt x +3c1 log tan jX+4
or y—jcj cos x+4c1 Sflt x log tan ix-I-c2 sin3 X.

Ex. S. Solve+cos x	 sin x	 cOsxsIfl 2x.

[Agra 57; AlIahahad 53; Pb. 62; DelhI Hone. 59)
SOIstIO. P.=I, PI—cos x,F=-2 sin X. P=—cos X.
Condition of exactness Ps— ' pal +?1"—P.''.'.C',

je.	 --cos x-4-2 cs x — cos x—Oi..O is satisfied,
*I cosetIx_._ cotxcorx2f
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• Therefore the equation is exact. Thcfirst integral is

P. f+(P1 —P.') +(P._Pi'+F.')y.J sin 2x dx+c1

dy	 41,or 	 +co, x —sin x.y=— cos 2x+c1,

which is again exact. Hence its solution is
dy

+cos x.y=-4 sin 2x+c,x+c..

• which is linear, I.F —ellm X. Hence the solution is

yesR	 sin 2x.e' r dx+ I (c1x+c.) ed dx+cs.

Now J sin 2xe11I Lr=2f sin x cos xesurdx

_2J te5 dt=2e (1-1), where g=sin x

JUX (sin x_j).
Hence the solution is

ye'' r=_Iels (sin x_ i)+5 (4x+c5) ediu X tL+c..

Ex. 9. Solve (axe-bx') dly
+2a+2by=x.	 [Raj. 19541

Solution. Here F.ax—bx', PI-2a, F,=2b and condition
of exactness, PiP5,+P. O is satisfiód.

Hence the equation is exact. First integral is

P. -I-(Pi—P.') =f x dx+ci

or (ax—bx1) +(a+2bx)y=4x+c

	Or (J)+X(a bx)	 (a—bx) +abx) linear equation

fa-4-2bx
<i 	 ri

J x ta—bx) = j x +m Q dx

x-$	 X

(a —bx)'
Hence the solution is

X	 f x'	 r	 1
' (a—bx)5 "J(a—bx)'	 dx+cs

rat	 2a— sin1 6 — sin 6 cos 6 dO

	

b	 Ci

C0s 9	 +1b (0_ )S CI

putting bx '=a sin2 0 in first Integral
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bx
I?
srn 0tan0—
cosi B
hx/a

(l —bx/a)
bx

Cltan8 gec'O d6-j- 3b (a_bX)*

1•1tai' 0+ 3b (a__bx)a+4'l

I I bx Is 	 c1
6ab1 (a—bi) +3b (o_bx)$+4

or YX+Jj+cs (a—bx)5 is the solution.

Ex. 10. (x5—x) jj2 (x—]) —4

Solution. Exact equation. Proceed as usual.
Y=.,1 (4x3-2x'—x—k)+x' (x- .-1) [c1 -4ci log x—log (x—I)]

dvEx. 11, Solve +2 sin xdT+2y cos x=O.
A2 

Solution. P0=1, P1 =2 sin x, P1 2 cos x,
P2 —P2'+F0'=2 cos x-2 cos x+O=O.

Therefore the equation is exact. The first integral is

	

P0 +&Pi—P'o)y=ci, i.e.	 sin x.y=c1,

which is linear. l.F.=et2dr=E_2 COSX

	Soiuti.n is ye' x.._ J c1e	 x dx+ca

or y=e2 COB X 

J c1e2 Cos X 
dx+c,e2 

CCI

d'	 dEx. 12. Solve x+(I_x)_y=ex.

Fr-Pi'+Po" —1 -(- 1)+O=O, therefore the equation is
exact.

First differential is P* +(Pi—P.' =j ex d.+c3dX 

or x —xy=e'+ci or

which is a linear equation. l.F.=e1 dx.....e.x

,•Hence solution isyeX.=.eI dx+D! e dx+c5

or ye log x4.ci#Jf_- dx+c2e.

Ex-13. (2x'+3x)+(6x+3) +2 =(x-l.l)r'.

(Vikram 621
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SOIUtIOL Pe2x1+3x, Pi =6x+3, P12
and F,—P '+Pe"2-6+4=O; V the equation is exact.

First integral is (2x2+3x) +2XYJ(x+1) ez+ci

dy	 2	 e	 c1or	 +(3+)Y 3-j-2x +x(3+2X)
f2

xLinear equation. LF.=e 3+2=eerCs+2z,3+2x

Solution is y (3	 ex thc+f 1 dx+cs

ex+ci log x=c,.

Ex. 14. Solve L'Y+2ex dy +2#.v=x2.

Solution. Po=i, Pi =2er, Pi .=2ex. P,—Pi'+P."o is satis-
fied. Therefore the equation is exact.

First integral is P0+(P—P0') =f x2 dx+ci

cr	 +2ecy=1x$+ci. Linear, LF.=e5 dx_

Solution is yeze'...J xe2 	cie' dx+cs.

Ex. 15. Solve (x2 —x)	 (2x+1) +2y=O.
Solution. P0=x2—x. P1=2 (2x+1). P2=2.

Ps—Pi'+P0'=2-4+2=0 is satisfied.
The equation is exact. First integral is

(x2—x) +(2x+3)y=cidx

or Ay- 2x+3	 Linear equation.
r 2x+3 -

I.F.=e .J xx-1) =e (-i) dx(x_l)$

xs
Hence the solution is

(x — 1)5	IC1	 (x—t5
y	 x3 A

	(X — 1)5	 ____or y	 =c+c1 (x—I)4 A

._cs+ ciJ( i_4+^) dx

	+(x 41
	 6 2	 1- og x--.f—_

.x 3?)
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or y (x-1)5=csx+ci (x4-4X log x_6x'+2x-1).

Er. 16. Solve

S01011108. p1 i, PS-01 F1_F1'+Fs=O is satisfied.
Therefore the equation is exact. First integral is

dy Linear, L.F.ex.

Hence the solution is yex.=J (ex +ca) ex dx+ci

CX.

Er. 17. Solve(x 5 +4x) y"±(9X2— 12) y' + l$xy' +6y—O.
LDelld Hans. 56]

Solution. Third order equation. Po—x$-4x, , p1=90-12,

P1=18x, P-6 and the condition of exactness Ps—N +P"—N"
6-18+18-6-0 is satisfied.
Hence the equation is exact. The first integral is

•LYP. ji+(Pa—Pe) dy +(P.—P1'+Poll) y—ca
dx

dlyor x3-4x)	 +6x'_8)+6xyci.dx

which again satisfies the condit ion of exactness.
Hence next integral is

(x'-4X) +(6xl2X) ycix+ci,
dx

dy	 6	 c1x+c, rn... ix2_4X1_4X' I ear.

	

r 6r.	 6	 f/3/2	 3/2\.

I.F.=eJe _1(ij:i:+2jdX.,,e

Ix±2\sr

Hence Y() 3 I-J	
(± )315 

dx = etc.

Ex. 18. Find the first integral of

x5 +x4 +x +y— log X.

Solution. Exact. First integral is
x'ys-4X4yi+ 16x3y3-48x2Ys +96xy2— 9(.y=x log x—x+c.

16. integrating factor.
It may be noticed that sometimes an equation .bomes exact

after it has been multiplied by a suitable factor called the inte-
grating factor.
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In case coefficients P., Pi, ., P. etc. are of the type (4,x'+A1x1-f ... ) etc, the integrating factor is of the form x. To deter-
mine the integrating factor in such case we multiply the equation.
by xO and apply the condition of exactness. This condition will
be satisfied for a particular 'value of m and corresponding to this
value of in, x1' is an integrating factor.

Again if coefficients Psi, Pi, ..., Pa etc. are trigonometrical
functions, integrating factor is also a trigonometrical function,
which can be determined by trial and error method.

The following examples will make the procedure clear.
d& dEx. 1. Solve %/x+2xT+3yx.dxs

[A 1965 ; RsJ. 51; Delhi Ron. 62; Bombay 61]
Solutloa. The equation in its present form does not satisfy

condition of exactness. Let it become exact after multiplying by
x1 . So multiplying by xO it becomes

Xm+I +2x &+xm,a*idx*	 dx
for which P.=x"+I, P1=2x" 1, p. 3x"
and condition of exactness is P1—F11+P,"0,
i.e. 3x_2(m.(l)x+(m+)(,n-1)xm_$13,.O
or
which is clearly satisfied by m='(from factor 1-2m=O).

Hence the I F. x111=.V'x. Therefore multiplying by ,/x, the

	

d1y	 dyexact equation is x .a+2Xl' j+3x11' YX812.

Its first integral is Fo
dx +(Fi — Po) i_-f xI2 dx+ci

or
dx

or ^(2xrn—) y=xrn+,

which is linear, LF.=e1 (t12_I1x)_1 ex31.

Hence the solution is

Y.1I 'isia

	

	 2	 e1
x dX+C1.fe--F— dx+4

Ax31* feAxals
+Ci 

J -
	 d.,,+ c..

	

d&	 dyEx. 2. Solve x ii-2 +0(X—I) +xy=x3-4.
dx

Solution The equation in its present ferrn.* not exact as it

p
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does not satisfy condition of exactness; suppose it becomes exact
after it has been multiplied by x-. So multiplying by x M, it
bccomes.

dy y.—x (x3-4).

The condition of exactness, i.e P5 —F1'+Po =O gives
x1—[(m+3) x—(m+2) x1+(rn+4) (m+3) x=O

or x' (m+3)2 lxm+l (m+3)=O
or (rn+3) [(rn+3) x_xm-lJO.
which is satisfied when m+3=0, or m=-3.

Hence x 3 is an integrating factor.
Multiplying by x' the equation becomes

d2y I	 l\dy 1	 4
Xj—j 	 l—)+Y=l—(nowexact).

First integral is Po	 + (PI —P0')y= J( i_) dx+c

	

•	 di.e. x—y --1 y X±-22+c

	or	 Linear, I.F.=e1 I/xdx =e11.

Hence the solution is
( I 2	 ,

ycr	 I ±-_-) ellX dx+c

=I( 1+)eh1rdx_2Je11(_ j dx )+
-J( i+) ehZt dx-2e1fr (_

Ex. 3. Solve 2x2 (x+l) j+X ( x+3) _3y=.X2.

Solution. Equation is not exact. Let x" be its integrating
factor; then multiplying by xm, it becomes

2x"' (x+ 1)	 +xm-l" (7x-l- 3 d7!_ 3xy=x.

Now P0=7x 2 (x+ 1), P1 = 	 (7x4-3), P=-3x".
Condition of exactness, Fe. P2—P1'+P."=0 gives

-3x'-.-(7 (m4-2) x 1 +3 rn+ 1) X1]

+2 {(rn-4-3) (,;z+2) x'+(rn+2) (m+l) x"}=O,
i.e. (fti+2) (2m-1) (xm+l+xm)=O
which gives m+ 2=0 or 2m—i=0, i.e. m=-2, J.

Thus when m-2, the integiating factor is x and multi-
plying by x' the equation (exact flow) is



Exact DLffi,rmdal EquaIk,,	
25

2(x+I)	 7+)i.

The first integral is 2 (x+ 1) +( 5+)=x+2.
which is linear and May be integrated further.

Again when m=4, ihe LF;=x lls and multiplying by x111, theoriginal equation becomes (exact now)
• Will (x+ I)	 (7x+3) —3X'I2Y=X1#

whose first integral is

2x5(x+1)_2xs/zy4x7Js+c,,

which is again linear and may be integrated further.

However, the solution may also be obtained by eliminating
between (1) and (2). For this, multiply (I) by x5is and subtractfrom (2). The Solution so obtained is

5(x+l).=x3+cx_c,x5J .	-

Ex. 4. Solve 2x8	 lSx	 _7y.3xZ.
Solution. Proceeding as in the above Ex., m= -_I, 6.

x$ cAss.
Ex. 5. Solve x5 +3x.+(3-6x -XYx4+2x_5.

Agra 70; DelhI Hons. 60J
Solution. Here the equation is not exact as the coefficients

of the equation do not satisfy the condition of exactness.
So suppose the equation becomes exact after it has been

multiplied by xm
Multiplying by Xm, the equation becomes

m+5	
x"y=x (x4+2x-5)

For this P,=xp+4,	 Pi=(36)
Since the equation is exact, P.—P114..p0"0

£ e. (3-6k) x"-3 t1?l+3) X +(rn+5) (m+.4) xI*se,i.e. (m+2) (ns+7) x'-3 (m+2) x"=O
This is satisfied clearly 

k "en .m---2. Therefore	 ' is anintegrating factor.
On multiolying by x, the equation becomes

x' +3x +(3-6X)yxix 
X32

which is an exact equauon now.



4

26	 De,mt1aIEqvaslon 11

Its first integral is

-

	

	 dx+ci,
dyi.e. x3 +3x.(I_x)y=3x-+2 Jog X+-5 +cD

3(1-x)	 3
•	 .	 .	 •	 dx •-3Iogx

which is a linear equation i.F.e	 -e
—1=e x

Hence the solution is

y.e.log x++ f) esIx..

Ex. 6. Find first integral of

x2+4x$+(x1+2)+3Xy=2.

Solution. Proceed as in above. I.F. x,
•dydyFirst integral is x'1+x2 j-+X5YX'±C.dX 

if'
Ex. 7. Solve sin' xj=2Y.	 [Agta 62,56; Raj. 521

Solution. The equation can be written as

cosec' x.y-.O.
dx'

lyMultiplying by cot x, cot x	 cot, x cosec' x.yO indx-

which P0 cot x, p1= (coelt of ), P,--2 cot xcosec' x.dx
P2-F,'+P0'=-2 cot x cosec' x-042 cosec' xôotxO.

Thus the equation is exät now.
dyIts first integral being P	 +(P-Po') y=c,

dy	 dy cosec'xor. • cot x	 +cosec2 x.v=c1 or	 Y=Cl tan X.

• Linear equation, I.F.=e	 c0l x.e12	 x..
- Hence the solution is

y tan x=J cz tan' xdx+c:=Ji(sec2x_l)dx+ci
Cj (tan x-x)+c2

Ex. S. Solve	 +2 tan	 +3y=tan'x sec x.As	 X

.Solution. The equation is not exact. However, if we multi-
ply by cos x it becbaues 	 -
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'
cos 

d	 sin x
dy +3 cos x.y= tan' x,

for which F,-P1'+F0 =3 cos x-2 cos x—COB x=O,
i.e. condition of exactness is satisfied. Therefore by inspection
cog X is an integrating factor.

Flit integral of (1) is

F4-4-(?,-Pa') wJ tan' X

i.e. cos x

	

	 sin x.y=J (sec' x— 1) dX+Ci
dx 

tau  X—X+C1

or

	

	 tan x.y=sec x tan x—x sec x+ c 3 sec X.
dx

Linear, I.F.=e 1 3 tan x dx.e 3 log stc x _secS x.

Hence the solution is

y scc3 x ci+J (sec x tan x-x Sec x-fc1 sec x) 5cc' x dx.

Now	 sec4 x tan x dx=J (1 .4- tan' x) tan x.sec' x dx

=4 tan2 x+} tan" X.

J xsec4xdx

=J x (1 .4-tan' x) sec' x dx

x (tan x+i tan' x)—f (tan x+ j tans x) dx

x(tan x-f i tan' x) ._J tan x dx

-	
(tan x sect x—tan x) dx

=x (tan x+tafl'X)— J tan xdx— J tan x se c" x dx

=x (tan x+ j tan 3 x)—log see x—• I tan 2 x

and Jsecl xdx= J41+tarI2x) see' xdx1anX+*tafl3x.

Hence the complete solution is
ysec3 x-c2	 tan2x+±tan4x-x (tan X+ j tan' x)

+ 13 log sec x± tan 2 x+c1 (tan x+j tan3 x).
dey

Ex. 9. Solve ----cot x d v
	 x.

Solution. Multiplying by sin x, the equation becomes
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• d'y	 dy- sin x --cos x	 2y Sift X.'JSIn X cos X.
Here P,=,n x, P...i—cos X. F,.2 sin x.
Also P,-1''+p,'2 81fl X —s x—sin x=O.
Therefore the equation is exact. First integral is

P4+(Pa+P.') YJ sin x cos x dx+c1
i.e. sin x	 cos x.y_j sin' x-fc}dx

dx sin 	 sin 
Linear. I.F. e' lot d r	 cOSec' X.

sins x
The solution is

Y cosec' x=ca+f( j sin	 COSCCS x dx

(4 cosec x+c1 cosec' x) dx
=c,+4 log tan 4x—c1 0 cosec x cot x+1 log tan jx).

17. Non•llnear Equations
Exactness. So far we have been discussing exactness of linear

equations. The equations which are not linear may also be exact,
in such a but thereis no simple test for their, exactness. We
group terms way that they become perfect differential and their.
integrals may be written direetly. Much depends on success of
trial for such arragements.

The method will be fully illustrated in the following examples.

Ex. 1. Solve 27 !!1.2(Y+3 )+2()'=2.

Solution. The given equation may be written as

2Y+2Y+6+2(!)'2

The first term may be obtained by differentiating the term
2yd'y

±( d'y\	 day dyd'yBut i 2Y 7?r 2Y a'?+2 ;ri.	 •
leaving apart from (1) the terms on the right of (2) we are

left with 2 y ?+4-'+242ik

	

'	 dxd.x'	 d.x
and the first term of it is obtained by differentiating 2y!.

d I dy\	 d'y	 jdy\'
dABut	 2Y)2Y-,+2)	

(3)

2$
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(The remaining term 4 dj' d'y d	
dx
dyV

Thus combining terms on the right of (2), (3) and (4), we get
left hand side of (1). Thus (1) can be written as

df d'y\1 d ( dY)d2(J\12dx-

	

dx

Integrating. 2Y	 +2y dY +2 IdY)l?.:c	 ..45)A
In (5) the. first term is obtainezl by the differentiation of

2) ! but (2Y)=2y+2 fdytt

The remaining term 2y	 (y2)dxd.x
Therefore (5) may be written as

d( dv1d

	

2y 1 -I	 (y')2x+c.

Integrating, 2y +y'=x+cix+c,.	 (6)
Now putting yt =u, 2y dy du

A.. the equation (6) becomes —+u=x'-f-c1x+c5dx
This is linear equation, I.F.

The solution is ue=cs+f (xs+clx+e2N e dx
or ylez—ca+ex (xS_2x +2)+cie r '(x _l..)+c,ex
or	 y'=sXS+ki+kz+ks-a is required solution.

Note. The following scheme may be noted :-
2YY"+2Yv" +6y'.Y'+2 (y'3.2

(2yy")=2yy'"	 +2y'y"
2yy" +4y'y"+2 ly')'

	

(2yy')=.	 2yy"	 +2(Y)'
4y,y,,

	

aj (2.0).	 4y'y"

x
Therefore, the equation i

j (2y/')+ (2yY)+ (2y")2.
lnlg,**Iig, 2yy"+ 2W+2y" 2x+c,
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For	 2yy"+2py'+2y"-2x+c5

(yy")— 2y/'	 +2 (y')$

W)	 2yje
2yy'

•	 .. (A) can be written as Z (2,')4 (y')=2x+c1.
Integrating, 2W+ytmXI+C1X+cs

which is just (6) and may be integrated as above.
*Ex. 2. Solve x'y	 x f_y )1_3y1_O.

(Agra 71, 67,63,58; Raj. 65, 63, 581
Solution. The equation may be written as

x1yy"+x2 (y!)2_2xy'-2y*=O, -
(x2yy')= x2yy"+X2y' +2xyy'

—4xyy'-2y'
—4ryy'--2y'

Thus the equation may be written as

- (x'yy')+ (-2xy')O.
dX

Integrating, X2YY'2XY1C1
dy2	 c1•	 or

Put y'u, 2y	 the equation thus becomes

•	 u=, linear, I.E e I(s)
2cHence the solution is u.	 1 . 

X12 
gix

•	 •	 1	 2c11or
X.4	

X9

or	 or xykjx'+k3.

• d-p d2y 	 IEL 3. Solve 2y a+6 jI . di	 i•
Soktion. The equation may be written as

0
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2yy"+6y"y''—(1/x').	 ...0)

jxr (2yy')=2yv ... f2y"y'

4y"y'
d	 is

. d	 dThus equation is (2Y)J+T (2y• 5)ji.
Integrating, 2yy"-f-2y'1_!c1

Now	 2jy'+2y'

: (2) may be, written as _ (2yy1)=+cj.

Integrating.	 2yy'=lug x+c1x+ci
dyor 2yWX-

Integrating it. ys..,J log xdx Hc1x!+cx+c5.

Now fIozdx=f1.Iogxdx_logx.x_fx.dx
=x log x—x.

•• 'yX log x+1c1x2 +(c, — I) x+c,.
or	 yt_—x log x+klx*+ksx+ks is the solution.

dy d	 d)Ex. 4. Show that x++(2xy._I)_+y2.O Is exact

and first Integral Is xt dj— 
y dy—x +xyi=c.

Solution. The given equation may be written as
X'v"+ xf+4vv'—y'+y2=O

(xy")= X1y"-f2xy"

—Xy'+2Xyy'—y'+y*
(—xV)=	 —xy"

2xyy	 ..

dx 2xW +y*

•	 x



Differential Equation ii

Thus the given equation is

TX 
(xy")+ ( —xy')+ (x)')=0.

dX

Integrating directly (form shows that equation is exact), the1rst integral is x'y"—xy'+xy'c.
This proves the result.
Ex. 5. Show that the equation

(+' )+2 (x+Y)()'±x+y_O
Solution The equation may be written as

y'y" + 2xy'y" + 2x (y')2+2y (y')2+xy'+yO

(YY) -= .v'y"	 +2y (y
2x2y'/+2r (y'?	 +xy'+y

(x2y')=u	 2x'y'y'4-2x (y')

xy,+y.
(xy)	 xy'+y

X
Therefore the equation may he written as

d	 a d
a- 1'4-a- (xty'2)±7 (xy)O (exact form).

integrating, yly'+x2y"+xy=c or Y. +x' ()1+x—.
dxdx

dyEi.6. Solve (2Y+x)±2(1+)_O.

	

d,2	 dx

Solution. The equation may be Written as
2yf+xy"+2y' +2y'=O.

(2yy')=2yy"

(xy').	 y"+ 3"

3',dx

The equation becomes	 (2)')+()^.O,

Integrating,	 2yy'+xy'+y=c1.
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/1 (Y2)-2YY'

dx (xy)=	 xy'•+y
X

(2) can be written as - (y2)+L (xy)=c1.
Integrating, y2+xy'cix+c2 is the complete Solution.
Ex. 7. Solve	 xy -+x ()'+	 =o.
Solutlea. The equation may be writtn as

-

	

	 Xyy"+xp"+yy'.O.	 ...(1) *
- (xyy')xyy"+xy11+yy

.. the given equation is

	

	 (xyy')=O.dx

Integrating, xy=c or y dy—c1
Integrating. Y'= z log x+c1 or y'=k1 log x+Ic,.
Ex. S. Show that the equation

dg Yy+3x +2y ()'+(x2+2Y2)O

Ic exact and find Its first integral.	 [Delhi How. 63; Pb. 601
Seluiku. The equation may be written as

x1y"4 2y'y'y + 2yy'+3xy' +y=O

(xy')=x'y"	 +2xy'
2y1yy2yj, 	 xy'+y

d	 ,T(yiyl)	 2i'2yy+2yy	 -.

xy.+y
(xy)=	 Xy'+y

X
The equation may be written as

- (xy')+- (Yy2)+j (xy)=O (exact form).

Integrating, x' +y! 
()t +xY=c t is the arst integral.
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Er. 9. Solve cosy-sin y (j! )'+cosy LX+i.

Solution. The equation may be written as
cos y.y'-sIn Y.Y"+cos y4'=x+l,

(Cos y.y")a.cosy.y"gjny . y,1

cog y.y
(sin y)	 cog y p

Hence the equation is - (C
OS y.y')+_ (sin y)rx+3.

	Integrating, cosy-+sin'	 +c1

dyduPutting sin y= u, cogy _d- the equation becomes
du

Linear; 1.F.=ex.

U9f4(x+I)serdx+fc1exdx+c

=ex11)*_(x+1)+1+cI}+cl

or sin

or 2 sin y=x'+kk2e-r is the complete solution.

Ex. 10. Solve 2x,coy	 sin y ()

	

+X CO3y	 sin y=lOg A.

Solution. The uaequation maybe written as	
[Raj. 56

2x' Cos yy'-2x sin y.y"+x cos y.y'-sin vIog x
(20 cos y.y') 2x3cos y .y"_2x1 sjnyv 4 +4.v cosy.y'

	

--	
-3x cos i' /- sin p

(-3x sin
Wx-

 y)

	

	 — 3x cog y .y' .-.	 y3 sin= 

2 sin y
Equation is not exact.
So dividing by x' the equation becomes

S	 1	 l	 .	 Icos y.y' -2 siny .y2+- cos y.y,
 - sin y=- log x.

	

V	 X2
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(2 cos y.y')=2 cos y.y"-2 sin y;y'5dx
V	 a	 ,i.—cos y.y- 1 sin y

d (sin y	 1, I
jCOSY.Y j SW Y

X

Therefore (2) is exact and can be written as

log 	 V

Integrating, 2 oos y 	 (log x+1)+ci.

Putting sin v=u, cos y 
dy dii
dx dx'

dui	 I
?+ u=— (log x+1)+ci.

Linear, LF.=/x. Hence the solution is

usix=5{_ m (log x+.l)+jciVx

(z+1) etl	 where xe'

als=—e ((z+I)-21+%+ci

• 	

V

or sin y.'x=—/x [log x.—I]+---+4

C •	 V

or sin y=_logx+I+ 1X
± 

C1.

Ex. 11. Soke x'y	 x	 [Raj. 531
Solution. The equation may be written as

•

-	 —4yy'+ y2

—4xyy'+2y5

3y1
Therefore the equation in its present form is not exact. Now

dividing by x5, it becomes

d
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a (yy')Yy"+y"

x x5
_2yy' y

	

Trx/	 x+ii

XTherefare (2) is exact. it-can be written as

Integrating, Ydyj-
yt 

Ci. Put y1.0	
dydu

-	 t2
- - dxdu_ 	 jx	 II.e. --- u_-2c3 . Linear; LF.edxx	 x

	

i	 r	 IU. .- J 2c jjdx+cs
	I 	 2c1or y2—X. - —j— + Ci Or .r—x (c,x-2c1).

Ex. 12. Solve x' d2y+(4x23x)d+(2x_s)yo
without using the condition of exactness.

Soltlon. The condition of exactness, i.e. P2-P1'+P0 =O S
satisfied but we would solve the equation without using this
condition.

The equation may be written as
x3y'+4x2y_3xY+2xy_3y=O

(x'y')=x3y'+3X2y'

x'y'-3xy'+2xy_3y

	

WY) =	 .'2y	 +2xy

d	
—3y

	

aj (-3xy).	 —3xy

Hence the equation can be written as

fj (xsy')+IL (XY)+j(-3xy).O.

Integrating,
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or	 Linear, LF.=xeaIx.

yxe'I jf.xe3ix 'ix+c,=—icielx+cs
or xy__ 1 cz+c,e 31x which is the required solution.

Note. It is always possible to apply the above method of trial
to all linear equations which satisfy the condition of exactness of
§ 18 p. 15.

Ex. 13. Solve

	

2 sin Xç!+2 CO x +2.sln X

	

	 .—dx+2ycosxcosx.
Solution. The equation may be put as

d	
-f2 sin x.y"+2 cos x.y2 sin x.y'+2y cos x=cos x

a (251y )2 sin x.y '+2 cos x.y

2 sin X.)'+2, cos x
(2 sin x.y)	 2 sin x.y'+2y cos x

Thus the equation can be Written as

(2 sin x.y)+i (2 sin x.y)=cos X.

dyIntegrating 2 sin x +2 sin x.y=sin x+c1

or	 cosec x. Linear, IF.=cx.

(+c1 cosec x) cx dx.

dpEx. 14. Solve x -,---x d2y_dy 0

Solution. The equation, is free from y. So putting

the equation becomes

dp dp
X TI_X T O.

This satisfies C3fldjtjofl of exactness, I.e.
Hence ihe first integral is F,

dx
dp

Of x +(_x_I) p=e or	
-( 

i+!)=.
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Linear equation, 1.F.—e'( +) 
dx

= -e-x

Hence ,.! e--=A fdx+c,.

or P==C'xe+cfedx

which on integration further gives the solution.
Ex. 15. Find the first intergal of

2_i
.dxdx'	 3'dx

Solution. The equation is
(dY)2	 (x'y2)=O.

ntegrating  ()2=c+x;Y2. This is first integral.
dx

18. Equation of the form J=f(x)

The equation ca", be integrated successively to give the required
solution.

19. Equations of the form

To integrate such equations, the equation is multiplied by

2 . The equation thus becomes

ixdx'	 21x
which on integration gives

dx

i.e. ()'=2Jf(y)dy+cr	 S

which can be integrated further.
Ex. 1. Solve d'

Solution. Integrating the equation dircctly,
dyx' k

dy ________tting agaifl,
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- ____________________ L c '- c X'-'-'	 '-I

(m+n)
where constants are suitably adjusted.

Ex 2. Solve d4yit.=x+e_x_co$x.

Solution. Integratirg the equation once,
d xt1—e—sin.x+c1.dx3 

Integratin g again, d2y
= 

x3
2i  t-4- e'+cos x+c1x +c.

dyAgain integrating, 	 x4 _e_r+sin X+c1

Integrating once again, the solution is
X6	•x3	 xly+e—coS x+c1 -+c -+cx+.

da
Es. 3. Solve -i._—x' sin x.

dx

Solution. integrating,	 (—cos x)J-J2x cos x dx+c1

Of	 cos x+2x sin x+2 cos x+cz.

Integrating again, the solution is

(_xt cos x+2x sin x-.2 cos x) dx+cjx+,
=—xiin x-4x cos x+6 sin x+cix+c2.

dsyEx. 4. Solve —,-=sin2 x=j (1— cos 2x).

dy
Solution integrating,	 sin 2x+c1.

cos 2x+czx+c,ax
and finally y 1ix*+ 6 sin 21+c1x*+c*x+c3.

dyEs. 5. Solve $= log X.dx

Solution. Integrating successively, 	 log.x dx+k1

Or	 =x log x .-x+k1 etc.

Finally, 36y6x3 log
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Z. 6. Solve	 xeX.

Solution. Integrating successively, 
d*y

(x— l) +c1,

dy
—=e (x-2)+czx+c,

and y=9 (x-3)+jcjx2+c,.x+ca.

Er. 7. Solve ç_=seci .i' tan v.	 (Typediy

[Delhi Hons. 631
.Solution. Multiplying by 2 dy and integrating,

()'=f 2 sac' y tan y dx+ci

=tan'

	

	 COSY
cos'y

or	 cos ydy
%/(Cl— 	 1) Si& yJ

Integrating, 
V(c1— I) "'!l )sin Y]

sin—'	
) 

Sfl Y}=/kiX+k,.
if	 cj-1=.k1, cS%1k1=k,

or sin (v'kix+ks)=j(Lsin

d'y

y.

Ex. 8. Solve sins  —,co:y or -=2 coscc2 y cot y.

Solution. Multiplying by 2 	 and integrating,

C31 sin2pcosIy=c1—cot'y— 
Sin.

or	 sin y dy
V{c,—(l+ca) cos2 y

Integrating, 
%/(l±C1)n{(_C)cosy }=x+c2

or sin (Vk1x+ki)+ J(k k1 ,) Cos y=.o,

where I +c1=k1, Iktc,=k2.

Ex. 0.	
I

-.dx' ./(ay)	 (Cal. Hons. 62)

40
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Solution. Multiplying by 2 dy and integrating, we get

Idy\ 2 _j y11'+ci etc.I—Idx j 4/0

E	
dy a

Ex. 10.	 • (Karnatak 0. Sc. (Sub.) 691 YX
Solution. Multiplying by 2	 and integrating, we get

idy)' 2at	 i.e.y	
II2a$.Ic.\ 

etc.—=c, .e.
.

d2yEx. Al. y3.	 p beIng a constant.

[Gujrat B. Sc. (Prin.) M)
d'ygiSolution.

Multiplying by 2	 and integrating, we getdx

YZ
Idy\'

dy I etc.

Ex. 12. In the case of a stretched elastic string, which has one
end fixed and a particle of mass in attached to the other end, the

distng
equation of motion Is m	 e (s—l), where I is the natural

I.
length, of the siring and e Its elongation due to a weight mg. Finds
and v, determining the constants, so that	 at the time t o and
v=0 when 1=0.	 .	 -	 {Delhi iloa's SL, 591

Solution. The equation is
d2s	 g_(,_1)	 I	 d5yform
dt	 e	

J12=f(Y)}.

- Multiplying by 2 Lis and integrating, we get -dt
(d)2	

(s—I)2+c.
dt	 e

ds
But when s—s,, 1=0, dt

or c=(so—l)

; 
(jg)2g 

[so_I)2(5_/)9.
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/fg\	 'isor j
lIgIntegrating, j (- j tcor'—s-i,+c.e1

When sO,s=a.; •, O=cos-' 1-i- c or c-O.
Hence	 t = cog-'

or S=l+(so-1)cos [J(-)tJ.

Lx. 13 Aparticle whose mass m is acted upon by a force
,np (x +) towards the origin ; if it  starts from rest at a distance

a, show that It will arrive at the origin in time 	 -.	 [Raj. 61]
Solution. The differential equation of the motion is

dx	 I a4\	 dix 	 4
m -=-mp X+-i). I.e.	 x+1

Multiplying by 2	 and integrating,dt
Mx\'	 I

i) =—v
dxWhen x=a,	 .. c=O.dt

1dx\	 dx
... 

1a) =-x-a') or

or	 VI(x a4)	 dt. Putting =z, 2x dx.=dz,

dz
V'(ZO') =+2v'pdi.

Integrating, cos- 1 =2%/:+c.as
When tO, z=xo8: .. c=O

or cos'	 2 /a.as
If t is the time of reaching the origin when z=O, then

cog-'	 =
Lx 14. Determine the curve whoe radius of curvature varies at

the cube of the length of the normal intercepted between the curve
and the x-axis.	 [Delhi Hong. 19571

i1+id /dx2
y/	

$lt	 dy "ii'Solution.	 d..' , Nurmah.y I i+()
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p=)i (Normal)' given,

f 1 idY\'1'
i.e. I	 J

d'y	 l 'dxJJ
dx'
 '

I.e. [i+(d) III"[, _y'(_)}
d	 °.

If i+()'.=o. then	 is imaginary.

Hence the differential equation of the curve is given by

or

Multiplying by 2	 and integrating, we getdx

	

Idy\	 dy %/(,6+ay')
_____-

	

dxj	 y'	 dx	 y

ydy__dx.e. V(p +ay) -
or
So the curve is p+ay'(ax+b)',
110. Equation In which y OCCUrS in only two derivatives of the

form

Such equations can be written as
(d& 41-1 --i L -.

Put	 so that d"y d'q

Heflce the equation can be written as

• q, x)=O.
dx

This can be solved for q giving

q= dx''
It can then be solved in a suitable way.

	

Ex. 1. Solve	 "°

Solution. Putting	 =q,	 the equation becomes

_a2q.=O or (D'—a') qO.
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A.E. is D2—at=(). D= ±a.
Solutionjs q=cze+ce-x

or

	

	 iCIe4t+c,e.
d2y

Integrating twice successively, we get

6+Caas	 as
111. Equations in which order of differentiation differs by one

Such an equation can be written as
(d"y d" 4y )

d'y
	 day dqPut	 so that

dqThe equation thus	
(FX 

q, x)

which can be solved for q, giving

which after being integrated successively n- 1 times gives the
solution.

Ex I. Solve 
dxsdxll

Solution. Putting	 =q,	 the equation becomes-dxx
dq

q=2 or qdq2 4x.
Integrating, q2 r4xc1 or q=/(4x4c,J

or d2

Integrating,

Integrating again, y=

Or	 (4x+c)5I11±c,x+c.

I-
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Linear Equations of Second Degree

21. Linear Equation of Second Degree	 -
An equation of the typo

PYLDdJLfl —x
W2 dx

where P, Q, Xare functions of x atone, s called the linear equation
of second degree.

If the coefficients P and Q are constants, the eqution can be
solved by the methods of chapter V Pt. I, otherwise there is no
general method for solving such equations. We give below certain
procedures which at times yield a solution.

dy
*2 2. Complete solution 

ofd2y
d2 +P - j +Qy=X, when oat

integral of the complementary function is known.
To solve completely the above equation when one integral belonging

to the complementary function is known.
[Agra 67, 62 ; ' Punjab 60 ; Bombay 5*, 61; Ganhatl 67, 64;

Poona 61; Karnatak 61 ; Gujrat B. Sc 65, 61;
Cal. lIoQs. 62; Nag. 631

. &y
The equation isj-+i

dv
+QyX.

•	 dly	 dy
The equation is	 +P +Qy=X.

Let Y=YI be a known part of the complementary function, i.e.
it is a solution of

... d;t+pdYI+QY_o

Now putting y=vy, we get 
dy	 dy1	dv

d2 v	 dty 1 	 dy 1 dv	 d2v
and	 —v -.-+2 1- i"

With this substitution the equation (1) becomes

	

(4+2 .+.'i	 +r(v '+y,)+Q.vYiX dx

or v{ 1 +41±Qyi]+yi [+P]-2=x.
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But by (2).	 +P+Qyi—O.

Therefore the equation after dividing by Yt becomes
!!+fp+ 2 dy1dyX

dx' L ,'1€7iJi Y-1

Now putting	 it becomesdx
dP+Ip 2 dy1l _X

	

dx L ±-jjP—j-.	 ...(4)
which is a linear differential equation of order I in p and x.

Its	 I.F.=ef('+Y1g1x) dX=eJ(Pdx+;aYl)
yaleIFdx

Hence solution of (4) is

py12e1 dx=J[ y'e1 P dx] dx+c,

dv
which gives p—T and on direct integration gives the solution of

the equation (3).

After integrating	 we get value of v containing two cótistants.

Having found v, we find y with the help of the relalion y=vy1

This is the complete primitive of (1) since it contains two
arbitrary constants,

Cor. If y==yj(x) and y=y,(x) are two solutions of the

equation d2y
	 dy+P(x) + Qx) y=O, where P(x) and Q(x) are conhi-

nuousfunctionsofx, prove that
dy1 	dy 1 	—jPdx
dx Yl	 —CC	 [Calcutta Hons. 62]

When X=O in above article, we have from (5)
py1'e1 P dc =c or py12ceJ P dx

!te. 	 Y12 ce

or yi2 =ce1 I'	 asysvy1
dy2	dy1	 —JPdx

or Yi j —ys- =ce	 -

23. Search for a particular integral of

R2 dx
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The article discussed above gives us a method of finding the
complete solution if integral belonging to the C.F. is known.
Therefore the main prob'em is that of finding an integral of the
given differential equation. If this is given, then the question can
be solved straight away. If however a solution is not known, one
of the following rules may help us in determining an integral of the
complementary function.

Rule I. y=e Is to be a solution if m+Pm+Q=O.

y—e, then d—me,=m2e.

Hence if y=eW is a solution then
m2e' +Pme+ Qe=O

or m'+Pm+Q'=O.
Deductions (i) Thus y=e will be solution if

1+P+Q=O (sum of the coefficients is zero).
[Karnatak 61; Bombay 61]

(ii) yt will be a solution of
1—P+Q'O.

Roll II, y-xm to be a solution.
d	 d5

If y=-x", then -Z=mx " ' -=rn (m— 1) X".

Hence if y—x'!' is a solution, then
m (M— 1) fPmx' +Qxm=O

or n (m—fl±P,nx+Qx=O.
Deductions. (;) y—x will be solution if P+QxO

IKarnatak 61: Bombay 61]
(ii) y=x2 will be solution if (taking in=2),

2+2P+Qx'O
2 4. Summary. Thus for

TO dx+ P + Qy=O

(I) Y---ex is a particular integral if 	 I P+Q0.
(d) y=e x 	 ,,	 ,.	 if	 i—P+Q=O.
(iii)y=e'   	 if	 m2+mP+Q0.
(iv)y=x	 ,,	 ,,	 ,,	 if	 P+Qx=O,
(v) Y=Jcl	 if	 2+2Px+QX20,
(vi) y—X'	 ,,	 ,.	 ,	 if	 m (m_l)-l-PmX+QX20

2'5. Procedure (Important). Adopt the following steps in solving
problems of this type:

(I) Put the equation in the standard form

-x
dx	 dx'

El
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d2y
in which coefficient of ? is unity.

(ii) Test for a particular Solution of the C.E. and remember
that if

I +F+Q—u, y=e-' is a solution
.etc.P-f xQ=O, y=X is a solution.
(see summary § 24)

(iii) Put Y— YYi and simplify; the reduced equation will be
d', 1P+ - !! \1! =!. (equation (3) P. 461.

y 1 dx /dx y

(iv) Pu( 
dv
T=p and solve the resulting linear equation hip

and x.
The following examples will fully illustrate the method.

Ex. 1. Solvei_3dy+3 y2x-1.dx2 xix ?

Since P+Qx=O, thereforeSolution. Here P=-- Q=-1x.• 	x
y=xisa part of C. F.

dy. dv	 d'y d2v APutting y—=x7=x T+V and =x j+2 -, 	*
the equation becomes

d2v dv 3(
x +v)+vx=2x_1.dx x dx	 is

d2v dv	 ^_I 	 Ii.e. X dys__x=2x_ l ord
dv	 d2r_dp

J.eNow putting -=p,	 the equation becomes

dpi
ii

This is linear in p and x.

dx
Its l.F.=e	 x
Therefore the solution of this equation is

)kx+J(2_!).!dxki+2 log

dv
or p==2x log x+l+k1x.

.ntegratin	 v=f(2x log x+I-Fkx) Ar

=x' log x+x+czx*+c,.
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The complete solution is y = v

or y=rx3 log x+1 2 t c1x3H-C2X,

'Lx. 2. Solve d2y2—x- çdy +xYX.

[Karnatak 69; Sagar 52; Agra 49; Delhi lions. 591

Solution. Here p=—X2, Q=x, since P±Qx= O, therefore

v=x is a part of C.F.

d)'	 dv	 d2y	 d 2 v	 dv
Putting y= tx, d.^=X w- ^ - -=x -4-2 -,	 the	 equation

XA

	/ d 2 v	 dv"	 I dv	 \
becomes x--•2 1 J_x x-+V)+X.VX=X

	

d2 v	 dvdv
	or x-	 2--x)-=x. Now putting=p,

xf+(2_x3)prrx or	 (I)

i--x dx
This is linear. Its I. F.= ) \x	 /	 =xe

Hence solution of (I) is

p .x2e_L3_f -2X dx4 c

the integration on the right has been done by taking 1x=1
x2 dx=dt.

.	 .	 dv	 1	 cieX*
T hi s gives

	

V:= --	 c1e1.x2 dx+c.

r
Hence y=vx=lt_xc 1 je .x' dx±c2X

is the complete solution.

Ex. 3. Solve x---2x (1±x) +2 (1+x)yx!.

[Agra 67. 66; Delhi 63: Rai 4;
Karnatak 63. 61; Bombay 58]

Solution. Dividing by x2 , the equation in standard torm is

d 2y2(I+x)dy 2(1+x)

	

- +-	 j--x

	

dx2	x	 dx	 x

so that P=	 Q=	 Since P+Qx=O. therefore
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yx is a part of C.F. Putting yvx, the equation becomes
(x+2 dv)2(l+ x)( dv+)+ (J+x)

or x-2x =x. Ptting=Øthis becomes

	

dp .	 dp
xT_2XpX or —2p=1.

This is a linear equation. ItsI.F.=e2x.

.. pe'=cz+J e2Jc dx—cjje2x

or	 p= dvT=C(e2*_.

Integrating again, v= e'—x+ct.

H',nce	 =VX	 2 — x2+c2x is the complete solution.

Ex. 4. (a) (1—x) d5
+x dy—y=x (J--x2)3l2.

[Lii. 1961; Delhi lions. 69, 571
Solution. The equation in the standard form is

	

d2x+	 -xdy .1
— -___j2 l—x' dx L- 2 '

.. y=x is part of C. F.

Putting y— vx, the equation becomes
•	 I dv	 dy	x I dv	 \	 •1

x+2)+1	 Xj-+v)_-j-jivX=x(t—x'2

or dxJ

or	 where

____-.
Linear equation, I.F.=e ' 	 1X'f

Hence P. 
%/0 x1) =4-I-f (1 X2J" /(Lxz) dx

dv
====, "or	 +XV(I—X).

Integrating
v=cif'dx+Ixsr(l_x2)dxics

50



	

Linear Equations of Second Degree 	 51

=Ci[ A/o- (-)-f (1x2)-ta (-2x) (_)dx]

	

(1-x 'I'	
integrating first lntegtal by parts

•=-c1	thc-I (1—x')I'+c2

"-ci	 x— (1-x)3!'+c2.

Hence complete solution is y=vx,
I.e. y. -aV( 1 -x')-ctx shr 1 x-x (1-.x')31'+c,x.

Ex.. 4. (b) Verify that one solution of the equation
d'i'	 4v

''dx'' dx -0'
Is y=x, and find another solution valid in the Interval -1 <x < 1.

PuaJsb 19671
Proceed as above. The solution is valid only in -1 <x < 1.

Ex. 5. Solve x' -(x'+2x) +(x+2) y=x'e.

[AgFa 1971, 68, 58; Gujrat 61)
Solution. Dividing by x2, the equation in standard form is

-..(i +++) y=xex.

Here P=-(1+). Q=I+I and P+xQO.

Therefore y=x is a part of C F. Putting yvx
d'y d'v2dv

dx dx4 V 1X a' ?
the equation becomes

(x+2 £j)_(i+)(x+v)+U+j) vx=xex
d2v I	 x'+2x ) dvor x— 2-

or

	

	 - =e. Putting	 the equation becomes

_p=er. This is a linear equation, its I.F.=e.

Hence pe=f eT.e dx+ci=x+ci,

i.e. p===xe8+cje2, i.e. v=ex(x_1)+ctex+c,
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The complete solution is y vx
Or ye (xI._x)+cixex+rx.

Ex. 6. Solve	 yx—I) (—±i).
[Punjab 61; Agra 51]

Solution. The equation, in the standard form, is
day xdy I
ai	 —j )PX— 1.

Q	 1,F+XQO. .. yx is a pariof C. F.
Putting y=vx,-the equation becomes

I

	

d2v	dv\	 x I dv 't	 Ix+2 j)	 VX—x—t.

d'v 12 x dv x-1	 dvOr jj	 Put

dp12 x	 x—i•.	 —-"---I p=— . This is linear.ax x x—Ij	 x

Its I. F. =e3 AMS n-a--MI (z-1). e.x—I

...

or	 (_-i)ec

	

dx	 X2

I	 exIntegrating, v= X --Fe1 x+4.

The complete solution is y=v
or Y=—XI+cle+c2x_cIen+c5x_(l+(s).

EL 7. Solve x d'y —(2x—I) dyj+(x— 1)y=0.

Agra 55; MId. 58; Delhi now. 60, 581
S.l'itlo.. The equation in standard form is

dx (2- xJdx	 xj.

Here F__2+!,Q=1-..andI+P+Q=o;

therefore yeX is,a solution. Puffing y=ve.,
dy

ex +vec==tr	 +2e+veTX	 X.

Hence the equation becomes

•
C.

(±2+v)_(2_) (+v)+(i_)
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devoroi

A2 xdx

	

dv	 dpi	 d

	

Putting =p,	 P=O or
P xIntegrating, log p+log Xlog c1 or px=c1.

dv c1

	

.•. p=1 —.	 V=4 log X+4.

The complete solution is y vex
or y=eX (c1 log x+c*).

Ex. S. Solve—cot x —(1—cot x)	 In x.

[Earnatak 64; Raj. 571
Solution. Here P= —cot x, Q_— — (I — Cot x).
1+P+Qr=O.

	

Therefore,	 is a part of C. F. Putting yvex,
ex (+v), 

d*y 9 (d'v	 dv

The equation becomes

ex[(	

dv
j+2 j+v)_cot x (+v)--(1_ lot x) v}_er sin x

..(2	 dv.	 dvor

	

—cot x)	 sin x. Put

thencot x) psin x, a linear equation.

Its I. F.e(°'	 etkt at.
sin 

•	 et* r.	 e
"sinxJ Sfl X;;. dx+ci=jetr+ci

Of P=
^^=i sin xfc1 sin xe.

Integrating, v=—i cps x— 
2-1 e (cos x+2 sin x)°+c.

The complete solution is y=vex,
	or y=—ex cos	 er (cos x+2 sin x)+4eX

	Ex. 9. x. 
d2	 d—_2(X+))+(x+2)y_(X._2) e.

Solution. Equation in standard form is

	

P sin z'x dx—	 (a s:n hx—b cos bx)



Diffirent ía! Equation! II

—2( ++(i+=e.zi
P= -2 (1+1). Q=1+. 14P+Q=O.

.•. y=ea is a part of C.F. Putting yN!c, the equation becomes

ex[(J+2 ±2 )_2 ( i+)(+v )+( l)v]=x

d'v 2dv j-2	 2
or - --=----- 1--•dx' xdx x	 x

Putting	 the equation becomes

f—dx
Linear, I.F.=eJ X

J(iji) dx+Ci-+j+C1

dv
or	 1+cjX3.

Integrating, V=—•*X'±X+Ct

The complete solution is y=vex.

i.e. v _4x1+XPx±jrCiXex+C,x.
d'y

F.x. 10. Solve x j+(1—x) dy
(Agra 1950; Lucknow 51]

Solution. The equation in the standard form is
^(!\_!Z72 xjdxx x

X Q=_i l*P+Q=O. Hence y—ew is a part. p1

C.F.
Putting y=vX, the equation becomes

ex [(L2 " + 2 +v )+i.!(+ )_v]
d2vl+xdvi	 dv

or	 r... Put

then	 (:fl. I.F.

,.. pxe 11=J ex dx+c	 c1
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or dx x x

Integrating, v=log x+c1	 c2.

The complete solution is y= vet,
I.e. y=ex log x+cie'f x'e dX+csex.

Ex. U. Solve (3—x) —(9-4x) +(6-3x)y--0.

[Maradiwada 1964 : AIld 53 ; Karutak 60, 631
Solution. The equation in standaid form is

aPy_9 4xdy +6_ax
a?	 a: —Y

P. 9-4x Q= l+P+Q=O°.

Hence y=er isa part of C.F.
Putting y=vex, the equation becomes

9[(++v ) 9-3x(dv^ 
)+v}=.-o

dp3-2xor	 -v.0;	 dv_
dx 3—x	 put putting b—p.

dx 3—x
p=O or !—( 2+-2. ) Sr=O.

Integrating, log p- . 2x-3 log (X-3)—log c1,

(x-3)3 e2'.
dx

Integrating, r=4+fle (4x3-42x+15Ox-183),
The complete solution is y= vex

or y=Aex+Beax (4x-42x5+150x-183).
12. Solve x2J+x—y=O, given that x+ i3oneIi#egral.

(Rajastbaa 59)

S.Iutio. The equation is

Putting y=v (x+ -). the equation becomes

• is not always necessary to put the eqt*tio in standard form to find
a part of C.F.

Sum of the coeffici*ft in given form .3—x—(9-4x)+6-3x-0. This
also shows that ye' is.* solution.

$$
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where

or	
2+

or dtv 3x2—i dv	 dp 3x2-1	 dv
dO 3(X

or i+x(x2f)dX=O or

integrating, log P- log x±2 log (±1)= log c1

orv=_

I PtThe complete solution isy=v x+)v
(x' ±l)

+2 (x.+!si=+BX.
x	 \ X/X

Miter. The equation is homogeneous with variable coefficients.
So putting x=e', Dd/dz, the equation becomes

[D(D—i)+D—l]y=O or (P—i) (D+I)y=O.
to that	 yCifz±C2ClX+.

Ex. 13. (+l)_2(xf3)+(x+5)y=ex.

[Nagpur 53]
• Solution. The sum of the coefficients is zero. Hence yer is a
part of C. F. The equation in standard form is

d5y. 2 (x+3) dy x+ 5	 ex
•	

-. .	
j	 j1Y	 r

Putting y=veç the equation becomes

+(+2 dyll dP r=	 wherey1=cz

or	 +I_+3)+2er1±/(X+1)
dx2 L x-i-i ;J4	 eX
tPw4dr 1	 dv

or ^'ii• -:1:-i	 next put

A	 A	 f----dv

IF=e Xt i	 Idv x-4-. 1'	 x-f- I'	
• 	 (x+l)'.

-4.
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or dv
 x	 (x+1)4—.

Integrating,	 -
Hence y= vex=oiciex(x+ I)	 y fc2e is the complete soluijun.

dZE. 14. Solve	 dv

[Gujiat 65; Bombay 61; Ksrn,wak 61]
Solution. FIere I +P+Q—O. Hence y_ex is a part of C F.
The equation after putting ypex becomes

j+( 4 .'). d2v
	 2_	 dv

dxz	 ex	 e-
d2v	 dv	 dp	 opor ji+(l —x) —xe °j+(I—x)p.*-.

Linear; l.F.=eI(l—x) =eX1x2

xe 1' dic +c1 = —e 41*.f

i.e.

Integrating, v=_e_r+c,f 	 re_x4+c

Hence	 ve.= —1 +c1 e' fe_ i's"	

)is the complete solution.

Ex. 15. Solve	
H.

S
o

lution. Here P= I--cc,t x Q-_o x;
I—P+9=0.

Therefore y=e is a par of l' F. putt;-_ y=ve r,tie caak
/	 .2 dv\ d' sizbecomes -•-	 ..r..

U	 \	 yjdxjdx y

Or	 fj(1 -cot x)+!.	 n2x

-	
-	 .:	 -	 --	 -
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c121p	 dv	 dvor	 — O+cot x) T= ex Sin2 x; putting
dp

-_() _cot x)pet sin' X: 110t dXe_x...L
sin x

.. pe.— =cj-f I cx sins xe— dx	sin 	 j	 sin 
sin x dx=c 1 —COS X.

d.vP	 c,cx Sin x.eX sin x cos x=c,e' sin x—jcx sin 2x.
Integrating,

	

vc2 -4-ccx (sin x—cos x)— .	 '(sin 2x-2 cos 2x.
The complete solution is y=ve

or y—c,e+c, (sin x — cos x)—.j' (sin 2x-2 cos 2x).
Ex. 16. (x+2) 1jd2y	 dy

—(2x+5) +2y=(x+l) ex.

(Delhi Hens. 64: Agra 52 Raj. 59; Pb. 61; Meerat 761
Solution. The equation in standard form is

	

d'y_2x+Sdy	 (x+1)
dxII	

± 2 y=Xex
	Here mZ+m14.Q__m__,..2x4-5	 2_

	

x+2	 x4.
m-2

[mx+(2m-1)O gives m=2.
Therefore by § 23 P 48, yi =eix is a part ofC.F.
Putting y=ve", is the equation reduces to

:+( 
+2 dy,\1	

,4).
dj, 2x+3 x+1o -+------ p=—•X Linear.dx x+2 x+2	 x+2

e	 (x+1 -r
P=-rj 	 •+2

	

el	dx+cl

-- I

	

	 ___________ex+feX'dr_fex 1
; (x+2)3

integrating first integral by parts.
cx

x+2+c,
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or	 p=j=e±cie (x+2).
.. v=—e -1c,e (2x+5)+c.

Hence	 [--e—cie (2x+5)+c.1
=94c1 (2x+5)+c2e

is the complete solution.
Ex. 17. Solve.

.1
	 59

(x sin x+cO5 x)	 cos x	 cos

of which y—x is a soIulion
[Agr* 70; Delhi Honi., 53; Punjab 621

	P=---x cosx	 cosxSolution. Here	
X±COS X,	 x sin .+eos

Clearly P+Qx=O, so that yx is a solution, putting y=vx. the
equation becomes

hew.

dvjx cas x	 21 dv —
m.- 7ri-.	 –i --0.; t. x sin x-..cos x+ xj dx

'r !+ I_-x 
COS X - -* p 0, where p—dx L X in x+cos x	 dx

41--i-.-	 cosxOr Mi.P Lx sin x-+Cos x xj
Integrating, log p—icg (x sin x-j cc's x)+2 log x—log

•	 dv	 [sin x cs xi.e.	 .	 — Cj or p= —=c 1 i	 .—x s,nx+ cosx 	 dx	 . —X	 X

((sin x Co.'Vc

= 2 [_ Cos x_J_ 2(_ x) dx+f co x}

integrating first integral by parts.
Cl

=--- cos x±c2x
y=vx--c 1 cos x+t,x is the solution.

dy
Ex. IS. (x sin x+cos x) —.,--x cos x,dv

-+;' cos xdx x
=sin x (x a ii x4-cos x*

[Delhi Hons. 70; liobay 611
Solution. Here P-4-xQ=O.
Hence ) vis a part of C.?.
Putting j-- ... the equation becomes

d2	 2 1' dv X+[ 1 : j j',
 
where yi =x
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le	 +1_—_c°.x

	

dx [ x sin x+cos x xJ	 x
X2

This is linear. I.F..= sui 
X +COS X

.•. P jjx sin xdx+c

cos x+sln X)+c1.dv (x sin x+cos x) f(—x cos x+sjfl x)+ci1Tx 1-I	 COS2 X— Sjfl X2 Sifl X COS X1—Sinxcosx--L	 X

Fsinx cosx+.ci I—+__j--.
	Lx 	 xIntegrating,

v=c2+J'[_	 cos 2x cos 2x 
+C, (sWx+COSX)j

cos 2x-1 sin 2x_,,
 cos r

•• yvx=c,X ..f. 1x cos 2x-x sin 2x—ex cos X;

L.	
dy.Ex. 19. x	 cos x-2 sin x) + x2+2 —sinxdx

given that y—xt is a solution.	
—.2y (x sin x+ cos

Solutio..
X2+2	

Q= 2(X sin x+cosx)
x (x COS x-2 sin x) '	 (x cos x-2 sin x)

Putting y=vy 1 =vx2 the equation becomes

	

7xs	 y1dxjdx
•	 dp	 (X5+2)sjnx	 2	 1	 dvi.e.	 I p=O,wherep-_ --

	

dx x (x cos x-2 sin x) x2	 j	 dx-
or di+f (x2+2)	

+} dx—O.	P	 x COSX-2X sin X) xj
Integrating, log p— log (x 2 cos x-2x sin x)+4 log x=log c1dv	 (x2 cos x-2x sin x	 fcos x 2 sin xor pt= = c - = C

Integrating, v=c1	

—i--
sinx_

Hence  the complete solution is y=vy 1 etc.
20	 o!ve ,sn4	 -=2y, given that y=co( x is  soluiwn

[Agra 62, 56; Raj. 521
-
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lySolution. We have	 cosec2 x=O, P=O.

Putting y==vy= v cot x, the equation becomes
d'v 

++ 2 where Yi=COtx

dn	 2	 Ai.e.	 p=O, wherep—dx sinxcosx	 dx

or	 cosec 2x
P

Integrating, log p=log tan X4-log c1
dv

or p==c1tan2.dx
dv

or	 (sec2 x-1); .. V=c1 tan x—c1x-f-c2.

Hence the complete solution is y=vy1
Fe. y=cot x (c1 tan X— C ix+c2) = C, — c 1 x cot x +c5 cot X.

	

d2y	 dyEx. 21. Solve (I—XI)	 —x 
T—°2=°'	 given that

y=cea	 is in egral.

	

d2y	 x dy	 a2Solution.	 .v=0.

Putting y-vy1=vce4 5i1X, the equation becomes	 -
2a - x \4v0

?	 /(I_) i')dx—

	

dp I 2a	 x	 dv	 "i)or	 +L/(l x2) r)"=° 
where p-

or 
dpi 2a	 x\

Integrating, log p+2a sin x+j log (l—x)=log c

or p.J(I—x1=cje - I	 or p= dv = e-2a sin—ax
c1	 1(2

v=—- e" SPflX +4.2a
Hence the complete solution is y=vy1 , etc.

d2y dy
Ex. 22. Solve x' —+---Yy=O, given that y=x3 is a

solution.
Proceeding as above, y=eix3+c2x' is a solution.
Ex. 23. Given that the equation

x(l—x)+(}-2x) —y=0.
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has a particular integral of the form x, prove that n=-4, and
that the primitive of the equation Is y=xUZ [if+ B sin-' (x3l2)}.
where A a'd B are arbitrary constants. 	 [Poona M. A 1961]

d2dSolution Let y=x', than	 x".

Putting these values in the given differential equation,
x (l-x) n (n-I) x 2 +(-2x) nx"'-x"=O

ie. x [-n (n-I)-2n-U+x' [ii (n-1)-Iz.]='0
y-x will be a solution if
n(n-.l)+2n--1=0, i.e. 4?0+4n+1 =0 i.e. (2n+l)=O

i.e. n=-
and it (n-1)--}n=O which is also satisfied by n=-.

Hence y=x=r 3 12 is a solution of the given differential
equation,

Now put y=vx l2 and proceed as above to find the complete
primitive.

Ex. 24. Solve (xz+x)y"_(x2+3x+1)r
.+(x++) y'_(1+±)Y=3x2(x+1)2

of which y=x 15 a particular integral. 	 [Delhi Noun. 19611
Solution.  Putting y=vx. the equation reduces to

(x2 ±x) v"(xt..2) v-(x-+-2) v'3x (x-j-l)1.
Now putting v'=p, it becomes

(x2+x)J?_(x2-2)p'-(x+2)p.3x (x+ 1)2.
Sum of the coefficients is zero; :. p=e is  part of C.F.
Putting P=ew, p'=er (w'+w), pex (w+2w"+co).

the equation becomes
(x2 +x )w+(X2 4x+2) wr3xe(x+I)2

Putting w'=q, this becomes
.()0+x' q'+(x.+2x+2) q=3xe 11 (x±l)2	.

or	 +(I1_._4_)q=3ex(x+I). LF.=4.
x39	 dw X+lq--=x3 +k1 or	 .

or _=w=_x2e3xe_X_3e_x+ci —+ci

or p==_x2_3_.3+f.!±c2ex
or .v_x3_xz.....3X+.ci log x+csex+ca.

The complete solution is y_-vx
y=- x4 -*x--3x2 +c1 x log x+ C5x9+Czx...

*2 6. Removal of the First Derivative. (Reduction to Normal
form).	 [Gujrat 1961; Agra 53 ; Nagpur 62, 61; Poona 59 60;

Jlwaji 66; Delhi 64, 56; Nag. 61: Karna(ak 611
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When we fail to obtain a part of C.F. we cannot apply § 22
p. 45. In such cases the equation may be solved after remvrng
the first derivative. This is done as fo!lows:

dyPut y==vvi , which gives T =v - 
dy,

+y 
dv

and 2y=,
 d2y1 	dv dy

.
 day

d2	 dThe equation +P+Qy=X then kecomes

dv
v c+2f1+Y1!} + P[ v +y ] +Qvy1'X

d2	 2or	 11d1v1 fdY1 
+Qyi
	

X.

Now, let us chosej' 1 such thtt first derivative is removed
2 dv,	 dv!I.e. P+-	 =0 or	 = - P dxv, dx

i.e. iogY i = .-4J Pdx or	 e-1, f ^d-.
!	 I./'

Thus the above equation becomes

From (1), 4Y1 _e_4 IP dx) 
(—P)=—Ph,

dPdP

P2y1 —y1 '.

Putting these values in (2), it becomes
day	 dP	 X	 -

—2+v [P24 
TX

 —P.P.I-O]= e—iJPdx	 SUj

or 
*12	 dP

or	 .!2_QI,XI

where	 Q1=Q_1P_!u,d X.=Xe Pdx

The reduced equation (3) (which is called of normal form)can
b easil y integrated.

Here unlike § 2' i-p. 45 the etpsss on in the last bracket ,s not zero since
here '1 is not a pix( of C.
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Nte. Students should remember the ctemcieus Q, A'1 of (3)and should apply in the examples directly. The equation should,
however, first be reduced to standard form to get values F, Q andX etc.

Ex. 1. Solve d2 
-2x d

SoJuti0 . Here F=-2x, Q.=x2+2, X=e (x'+2x)
To lemove the first derivative we choose

yi —e--Jl P
Now putting y=vy the above equation becomes

+Qiv=X1,

dP	 A' e4{x+2x)	Where QQ.4pz	 -==3, X1=_i=x
Hence after removing the first term, the equation reduces to

d2v
or (.D2+3) v=9.

Its A.E. is D2+3=0, D±3i, C.F=c 1 cos (V3x+ca),
ex

D2+3 4

The complete solution is y=vy1 

ex

i.e. .Y'=ex' c1 cos ( V 3x+c3)+keI% el-v'
C1 cos (13x-f c2)+e (x'+2.x)

Ex 2. Solve	 —4x +(4x2_ 3) Y=e.

[Delhi Hons. 72; Gujrat 65; Nagpur 63, 611
Solution. Here P=--4x, Q=4x2-3 X—e.

To remove the first derivative choose
)/ re I Pdxel 2x dX=ex'

Putting Y-vyj the equation after removing the first derivative
d2v

's' Ti+Q1v=J(L

	

where QiQpz__j	 =(4x2__3)_4X2+2,.._i,
I

d2v
odx	 r

A.E. is D2-10,

-.	 a..,

.,...

0 11 — 1) v=1,

D±i, C.F.=c1er+crr
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1P.	 —1. Hence v—cleX+ce_z_ 1.
The complete solution is y=vy1

or y=9' (c,er+c.e_l).

Ex. 3. Solve	 tan x +5ysec xe.	
[Agra 511

Sohitloa. To remove first derivative, we choose
Itanx -d	 log sec xy'=e — IS P dx	

sec X.
Now, putting y - vp, the above equation becomes

+ Qiv=11,

where Qi = Q— i	 ==5—tan' x +sec2 x=6.
X ex/sec x=ex.

Hence afler removing first term, the equation becomes

A.E. is D'+6=0, D .=±/6I, C.F.=c1 cos (V6x+c)P.1.r=ex1(D1+6),ex17
Hence —c1 cos (s/6x+c2)+ex.
The complete solution is, y—vyj	 -- iAl

i.e. y=Ci Sec x cos (N/6x + c2) + 	 X e.

Ex4. Solve —5 -2tan x-+5y=O.dx
[Karnatak 62; Agra 58, 76; Delhi Hoes. 68, 63; Nagpir 61(S))

Solution. Just the above example with X=O. Here removing
the first term, we get 'D'+6) Y=O.

Hence
or y— vvj=c1 cos (V6x+ c2) Sec X.

A l	 dy\
dx

Ex. 5. Solve	 x	 x.y=O.	
[Delhi Hoes. 56) dx

Solution. The equation is
dty 	 dyC0s5x3-j-2sjnx csx+cos*x.vO,

I.e. tan x

	

d,2	 dx
-i JPdx	Choose	 sec x,

QlQ—P2_I1_tan*x+secsx=2.
dP
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dvNormal form IS dxa+ 2tO, (D2 +2) v=O,
v—c1 cos (V2x+e.

Therefore Y = VYj =.rCi cos (V2x+c1) sec x is the solution.

*Ex 6. Solve d5y _4x 1dy
+(4xl_ !)y=_3erI Sin 2x.dX2 

[Nag 62; Agra 77, 72, 55, 50; Luck. 56, 51)
Solatlon. Here P=-4x, Q=(4x 2 —l), X=-3e" sin2x.
To remove the first derivative, choose

—jJPdx 12x dtc
y1 e	 =e

And putting y=vy1 , the reduced equation becomes

Qv=X1,

	where Q1 =Q—P5 — j	 4x3 -l— (16x t)— (-2x)=1dx

	

X	 3e' sin 2x= .-=--- = —3 sin 2x.
Yi

Therefore, the equation reduces to
dtv

sin 2x or (L'5 +J) v=-3 sin 2r.

A E i D'+lO, D= ±i, CF =c1 cos (x+c5),	 çi
—3 sin 2x —3 Sin 2xP 1	 1	 —4+1 —Slfl 2x

Hence v=c1 cos (x+c2)+ sin 2x.	 -
Therefore the complete solution is y vy,

or y=e 1 c1 cos (x+c2)+e' sin 2x.
2d

Ex. 7. Solve _z+2x d+(xS+5)y==xe-lxt. 	 [Luck. 54,49J
Solution. Here P=2x, Q_—x2 -4-5, X=xe W.

To remove the first derivative, choose yi=e	 dx	 X.

if Qa rr Q_*PS_ jdPJdx(xl+5)—A2_ 1=4, X1 =X/y 1 - X.

d2v
The . transfonnation y=vy 1 gives -72-l-Q1v=X1

i.e. +4v =-x or (D2+4) v=x
dxs

A.E. is D2 +4=0, D=±2i, C.F.=c 1 cos (2x4 c,).

	

X	 D2
___

... v=c1 cos (2x+c1 i-tx.
The complete solution isy=iy2, i.e.

-f
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y—'e 1" [ci cos (2x-I-c2)+x).

Ex. 8. Solve d2 	 4e -+4x j+4x1yO by removing the first deriva-
dxz	x-

five.	 (Karnatak 61; Meerut 71; Agra 53]
Solution. Here P r.4X, Q=4x5, X.O.
To remove the first derivative, chpose yi=e41Pdx =e-.
Let Q j=Q_+P!_ dP/dx=4x-4X-2 —2, X1=X1y1=O.
The transformation y = vy1 r$es the given equation to

+Qiv='Xj or	 or (D-2) v=O.

v=cleV+c2e_*1tc.
Therefore the complete solution is y=vyl, i.e.

y= e r2 (cje%hix +CtV).
d2v	 dv

Ex. 9. So! e --4x —+4x2y=edx 2 	 dx	 (Indore 661

Solution. P=-4x, Q02, 1=9', y1.re4J P dx.,.-

The equation after removing the first derivative becomes

+2v=l or (D2+2)v=l.

CF. =c1 cos
- I	 i3b 3ft -T

v=c1 cos (V2x+cs)+.	 S.1.
The complete solution is

y=vy1 =e c1 cos (V2x+cs)+4e'

Ex. 10. Solve 
12-?2_2bx d b2xty=O. 

[Agra 56; Gujrat 611
Solution. Here P=-2bx, Q=b2x', 1=0.
To remove the first derivative, choose

y=e 41 Pdx=eIbx dxeibx'.
If Qj=Q_&P 2_ Idp/dxb2x3 __b 2x2 ±b=h, X1=A7y1=0,.

the transformation yvy1 reduces the given equation to
d1v	 d2v—ytQivXi or	 +bv=0 or ( D1 -j-h) ,=.0.

v=c 1 cos (/bx+c3) as D=±/bi.
Therefore the complete solution is y=vy1

4bx2	 -t	 .i.e. y=e	 c1 cos (,/ bx+c) .	.
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Er. 11. Solve	 +2x+(1-8) yx'e4 [Gujrat 61]

Solution. Choose y1=e51 1' dX__e_Xl
01=Q-4P2-. 4 dPIdx=(x2_.g)_xs_i_.9,x X/y2

Hence equation in normal form is
dtv

I.e. (D2 9) vx

(1—D')-' X'=_(t+,DI+...)Xi
(x'+).

Hence vcze c+cie_sx ., i, -.

Complete solution is yvy1, Ic y—e—'xh

*x. 12. Solve x'	 (x'+x) +(x'+2x+2) yO.
lAva $7; Nag. 61; Pooa (Gea.) 60; Delhi Hong. 62: Meerut 731

SOIUIIOII. Dividing by x', the equation in standard form is

Z-2 i+!)N I++;)YO.

Here? 2(1+1 Q_(I+2+2xo
To remove first derivative, choose

y=e''	
)(J+Lvx+g 

X=xe*.
Putting y=vy1 the transformed equation becomes

whe,. L? -Q---i'_	 =i +4_(t+!)'-.!=O.

d'v.. Reduced equation is-1.=0.

dvIntegrating,	 =c1, and then vcjx+c1.
The complete Solution is yvyi =xex (cix-fc).
Ex. 13. Solve x ( x L_ )_2x +2y+ 2yO. (Raj. 571

Soletlo. The equation after simplification becomes
day	 €j

X2 
Fs
-2x -+(x2+2) yO

d'yor in standard form, 	
dx
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To remove the first derivative choose YiC	 X =x.Then transformation yvy 1 reduces the given equation to
d'v
aTS QivX,

where Q=Q—&P5—e ax	 X2(i+i_=i, zw.fo.
Thus the reduceequatjon is

dIIv
or (D'+l)vo

v=c1 cos (x+c,) as D=±j
Hence the complete Solution is yvy1	.,

or y=xc1 cos; (x+4)	 =
d'y 2dy I 2Ex. 14. Solve	 j+fl5+jj)YO.	 [Karaintak 1963]

Hint, Proceed as in the above example, 
y1—x.

Reduced equation is d'v

Complete solution is y=xc1 COs(nX+c,).
E	 Si	 '	

.' -, 0X. z. 0 ye	
[Lucknow 1951 ; !sgra49]

Solution. To remove first derivative choose y1-e— JPIX,

—ifdx	 _J!tr	
ii.e. yi=e	 X	 X

X
dP	 II
dxxs+xa,XiO.

d2vHence the reduced equation

(D'—n') v=O, D±
... v=clenxfCseax

The complete solution is yVyl=(cletPx+cie_nr)/x	
.:dy2dyEx. 16. Soipe ;jji++ty=o.	

[Karnatak 1960)Hint. As in the above example, choose YZ= 1/x.•.• Q2=n', X10.

Reduced equation is d2v+n2V
v=c1 cos (nx+ca).

Complete solutio5 is y vYi = ci cos (nx+c )/x.. tq i-	 ISIIW



70	 D4fferenliaI Equations II

d1 2d	 ____six 2x
Ex. 17. Solve jji++Y-' x -	 [Delbi Hons. *959]

x
dX

Just like above example.
Lly I d +( 3 	 .1 6\

YEx. 18. Solve	 +_6i)

(R.jasthai 1951; Punjab 601

1Solution. Here P=-	 3	 1 _ 6 .	 ,.X4X218 W/O x2'

To remove the first derivative, choose

Putting yvy1 the given equation becomes

+Qiv=O as x=:,	 ..".

dPwhere Qi = Q-1P2- dx
/1	 1	 6....l	 1	 '	 I\	 6

-- ii- - q-. iiiIJiars
:. The equation becomes
dv6	 d'v-r-.-- v=O or x' -j-6v-O

This is a homogeneous equation. To solve it put x=e',
DEd/dz, then the equation becomes

D()-1)v-6v-O or (D-D-6]v=O.
A.E. is D'-D-60 or (D+2) (D-3)-O, D=-2,3.
.. Solution is v = c1e	 ce'c1x-1 + c1x'.
Hence the complete solution is y=vy i.e.

EL 19. Solve	 tan x -(a' i I) y O.dxJX2

Sol.tleu. Here F=.-2 tan x,Q--(a'+I), X1.
To remove xirst derivative, we choose

- f P dx I tan •x dx 
e log see xy1=e	 =sccx.	 ....

Putting y py,, the equation becomes	 . .d!v	 .	 .
+Q1v=OX=O.

where Q* =-Q-Pa-è

	

	 1)-tan' X+SCC 2 xdx
...40(l±tan' x)+sec x.=-a'.
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d'vHence the reduced equation .

or tD 3 —a') v=O or (D—a) (D+a) v=O.
... V=c19+c2eX.

The complete solution is y=vy1,

Le. y=(c1e+4e—') SCC X.

Ex. 20. Solve	 d
cot nx +(a'—n) yO.	 :.

Solutloa. P=2 cot PIX, Qai_n, X=O.
To remove first dci ivative choose

— IJ Pdx —fn cot nxdx —log sin nx• yze	 =e	 e	 =J /sin nx.
Putting y=vyj the reduced equation is

where Q1 QP'4	 cot' ni+n'cosec' nxCOX

=a2 —n' 1+cot3 nx)-fn5 Cosec' nxgz'
Hence the reduced equation becomes

A.
+a'v=O or (D'+a') v=O, Dai.

•.• v=c1 cos (axfc,).
The complete solution is y=vy1,

I.e. y— c1 cos (ax+cs) Sin UX

Lx. 21. Solve	 (-8+x'1+x)=O,
[Pun jab 1960; DelhI Hons. 531

Solution. Choose Yi such that yj=e-1 IPdx, i.e.
J x' 21' dx,1

Ii

(_8+x1I2+x)_+

x2
Hence after removing the first drivativc, the equation k

d'v 2	 d'v---vO, or x2 --2v=1.dx' .z 2 	 dx'
Homogeneous. Put x=ez. DEdfdz; then equation becomes

LD (D-1)-2J vO,
le. (D2 —D-2J v=O, (D-2) (D+ l)v=O.

•'. v=c1e +c2e=(cx'+c,x) as x=e.
Hence complete solution isy=vy1,

i.e. y.-(cix+cix) e' as
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Ex. 22. Solve 4x' —+4x' d 
+(x'+6x+4) y—O.dx

[Viltram 19621
Solution. P=.', Q=k (+6x'-f 4/x2).

Choosey, such that y=e _4JXS dx =e

(X+6X'+41x')-Jx'.--i.3x2dx
=l/x'.

Hence the equation after removing first derivative is
d'y I	

d'v+v=O.Rio X2	
or x1-j 

Homogeneous; put x=e; equation is [D (D-1)+1 .1 v=O.
A.E. is	 (D2-D+1)=O, D=1±h/31.

Hence v . ..c,e" cos (4V3z + c,) .	 .
The complete solution isy=vy1 ,	 .

-1x4.I.e. y =czV x cos (4v'3 log x+ci)Xe	 . as x=e.

Ex. 23. Solve x' d5y1y-2x (3x-2) dyj-+3x (3x-4) ye'.

[Poona 19591
Solution. The equation is

2_g3_\
dx' \ xJdx+	 x/ x'

-*J Pdx (3x-2 log x)Choose y,,— e-	I/x,

	

dP 2	 Xe'/x'
Q1=Q-*P'-IT=---j. X yl

-=l.

Hence after removing first derivative, the equation becomes
d'v2	 dv—_--v=i or x'	 _2v=xa.dx' x2 .	 dx2

Homogeneous ; put x=e', Dd/dz.	 . . ..
:. [D(D-l)--2Jv-e", A.E. (D-2)(D+1).O.
C. F. = c1e"+c,e'= CjXC2Xl.

case of_DIel;l=

log x, as

Hence t'CiXt+CsX1 i-4x' log x
Therefore the cow plt solution is y— ty,,	 ..,

Ic. Yji e" (c,xt+c,x'+x2 log x)
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Ex. 24. Solve. d'dy+2x +(x'+ l),x (x2+3).

Solution. Choosey,—e—  Pdx —ix'.

dX	 Y1
(x'+3) e

Normal form equation is
d5v

=x (x'-f 3) edx

Integrating	 .=. ci+ Jx (x+3) e	 dx, put *:t=t

*(X2+ I).

Integrating again VCIX+C+XC
The complete solution is

y=vy1 e	 (cix+c,+xe'
JXt
 ).

Ex.' 25 (a) Solve

[Calcutta Hess. 62
dx(1

jSolution Choose y =e—jPdx 
e x

Q1=Q_P2_=(

Hence after removing first derivative, the equation is

+a'vO or (D+c) v=.O,
V.

v=c1 cos (ax-i-c,).
The complete solution is yvy1 ,	 -•

i.e. y—xc1 cos (ax+c,

Ex. 25. (b) Solve	 yyx

lGntu Nanak 73]
d2yEx. 26. Solve x_j+(x_4x2) —+(1-2+4X)O.dx

M U2
Solution. Choose V.P

.Hence normal form i ai
	 5 v=O.

I
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Differential Equation,!!

Putting x=ex, [4D(D-. 1)+5].v=O, where Dd/dz.
A.E. is 4D2-4D+50, D=.j±I,

v ec1 cos (z+c) etc.

}z. 27. Solve (ç+) cot x+2 (!+, ton x)=sec X.

Solution Equation is
dly	 dy
dxs +2 tan x+y(l+2tgnS x).scx tan x

Choose ye-J4 Pdx 
=co x, Qi rO, Xi =X1yi =sec2 x tan x.

Normal form is=
dx sec x tan x.

dvIntegrating	 .r4 tan1 x-I-c1 =4 (sec2x_l)4c1.

Integrating again,
V- 1 (tan x—x)+cjx+c1.

Complete solution is yvy1etc.

Ex. 28. Solve x' (log x)' 1
dy

-1--2x log x dy
dx

-l-[2+1ug x-2 (1ogx)1]y=x1(logx)l

	

Solution. P=_-_------	 2+I09x-2 (log x) X=Ioax.

	

X log x	 ' Iog x)'
— 4J Pdx log (log x)Cioose tie	 =e	 log X.

	

dP 2	 X
• QiQ—&P-4==---, X'jl.

; After removing first derivative, the equation becomes
d'v 2 d2vv= or---1	 x2	 2v=x'.dx2 x2	 dxi

This is differentiat equation of Ex. 23 P. 7.
2:7. Method of changing the independent variable.

[Karnatak 61; Gujrat 58; Delhi lIons. 64; Meerut 76;
Sagar 6$; Poona 64, 621

Sometimes by the change of independent variable the equation
may become easily integrable

Let the equation of second order be
dty dy	

-x'o+ d'IE
If we change independent variable from x to z with the help of

the relation z=fx), then
dydydz !2ydiy(dz*dy Oz
dx dz dx' dx dz dx) dz dx
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d'yPutting these values of dy and	 in (1), we get

dy(dz\t^dy d'z rdY dzl	 —xi*iJ dx dx' jdz	 j+QY_
d' dz2 dyd'z dz

or	
(i-) 

--(-j+Pd_)+QY=x

or 
d'ydx' dx dy+ Qy.X
dis	1dz\' •dz Idz\ jdz\'

dx)	 dx/ l,dxJ
d'y	 dy ,

Or	 1+Pj +elY41,	 -

where 1=(-1+.	 )I()" 
QQ/(!)1 an x=x/()'

dX

Here F1, Q. X1 are functions of x and can be expressed a
functions of z with the help of the relation z=f(x).

How to choose z? After obtaining equation (2) we would like.
to choose z in such a way that (2) can be easily integrated.

Case I. P1 =0.	 [Bombay 61J
If we choose z such that

d'z	 dz	 dIdz\	 dzi.e. jji±F j=O, i.e.

dz	 rr	 Pdx1
then —=e

—jPdx 
or z= e—
	

dx.

The equation (2) consequently becomes ,+Q,y=Xi.
dz

This equation can be solved, if
(i) Q1 is a constant (then Jt being ia linear equation with

constant coefficients),
or (ii) Q2 is of the form k/z' (then it being a linear homogeneous

equation with variable coefficients).
Case II. Qia2. We can choose z such that Q1—a',

I.e. QI()_±d1 or

or az= fv'(±Q) dx.

With this choice the equation (') becomes

3+P1 +a'y=Xi.

+ivc or —lye sign is taken to form the expression under the radicalsign +Ive.
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ThiS can be readily integrated if P1 comes out to be a constant
in which case this equation is a linear equation with constant
coefficients.

NOte (1). The student should remember the values of P2. Qiand R1 for immediate use.
Note (2). Only two choices, Pi mO'or Qi=a1, should be made

Sometimes it is possible to make both the choices to get the solu-
tion of the given equation.

The following few examples will fully illustrate the method.

Ex. 1. Solve	 _(1+4ex)+3e y-e2'	
[Meerut 75]

Solution., Here P. —(1+4e), Q3e2X. Changing the
iMependent variable x to ; the equation becomes

d--y	 d
ji±Pi +Qiy=X1,

where P (+ 2)I()' Q1 
= Q/(dZ) x

Let us Choose z such that Q1=a0+ 3 (say); then
dzor _e. and z=ex.

	

dxj	 dx
Putting z=e, Pi1ex_(l+4e) eiI(ex)2_4

e2 (x±t)and	 =e2=05.
Hence the equation (when z=e') reduces to

—4 +3y=e'

or (D2-4D+3) y=e', Dd/dz.
A.E. isD'-4D+3.O. ie. (D-3)(D-1)=0,
C.F. is y=c1e+ce3s.

	

els_______ -	 ez
P.Ln4i_2i,_4.2+3_ i.

Hence y=c2e2+cle'— e".

Putting z—ex, is the required solution.
Nate. We have taken a3=3 for convcnence only; any other
positive value of all would lead to the same result.

Ex. 2. Solve (1+x2)5	 +2x (l+;) +4y-0.

[Agri 1961, 73]
Solution. The equati3n in the standard form is

dy+ 2x dY+40.
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Here	 r=o.

Changing the independent variable from x to z, the eustion
becomes

d'y	 dy,
?ji+Fl j+iYO	 .

where	
(dz	 dz\.IIdz\	 I/dz\'	 -

Let us choose z, such that Qi=const. I (say).
• Idz'	 .	 4	 ci:	 2

i Ji)	 (l+x)1' di(ll xa)' z=2 tan' x.

(l+x')2 l+x' l+x1Then P,=	 {2f(1 +x2 }'
Hence the r duced equation is

TO or (D5+l)y=O.D=±1.
.. y=c1 cos z+ca sin z	 f Let tair' x=O, i.e. x=tan. 0.

=c1 cos (2 tair'z)	 cos (2 tan-' x)-cos 20
+c, sin (2 tan'.x) .	 _l-tan'_0 l-x

2x	 l+taL1 g.t+ietc.
l+x' .'l+x'	 I

or . y (l+x')=c, (l-x3)+2c1x is required solution.
Miter. If we choose .z such that P1=0, i.e.

ci': dz 2x	 ci:I.e.	 where

i.e.

	

	 or log p-log(l+x').	 .

== 1 ,=tair1 x.

Then Q1 	)'(-i +x')/(fFi'j"' a constant.

Hence the transformed equation is
'dy•	 +4y=.O or .(D5+4)y-O.

- .. y-c, cos 2z+c, sin 2z
—C1 cos (2 tan-1 x)+c, sin (2 tan x)

which is same as obtained when we supposed Q,-constant.
Noti. Almost all the examples can be solved by taking

Q,.-constant and P1 =0 like the above examples. We
shall solve one more example by both the considerations.
Students should adopt one method- for practice. The
cue Q,-constant is usually easier.
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*Ex. 3. Solve cos
d dx sin x-2y cos5 x=2 cos5 x.

[Delhi Roos . 1967; Raj. 64; Agra 77, 72, 60; Gujrat 58;

So1utio. The equation in standard form is Gauhatj 
Hons. 64]

2+ tan x	 cog' x. y=2cos'dx
Changing the independent variables from x to z, the equation

becomes d2 +P
i d +Qiy=X1,

1dz dfllfdz\a	 Q	 Xwhere PI=1-+P_-J/)
Let us choose z such that Qiconstant=-2 (say)*

i.e. 2(dz!dx)—Q=_2.cos x i.e. dz/dx=cos x.
Integrating, zsin x.
Now P,=— sin X+tan X COS

cosz x
and X1 2 cos4 xfcos' xcos5 X.

Hence the reduced equation is
d2y — 2y=2 ces2 x, (D2 -2) y2 (I _Z2).

A.E. S D2-2=0, D= ±t/2, C.F.Je/s+c2eV28
pj Z. 	 =-1  

2
i_V'q_zs
k 
r D

— l +-_ — ..... .
J 
(1_z!)=_(j_z2)+122.

(Using Binomial Theorem)
Hence y=cieV+c2eV2Z+ z2

= Cie /X+cie_V2 siii X+SjflS x, as z=sin x.
Aliter. We may choose z such that P1 -

• 1dz	 dz	 dp	 dz
i.e. 1+P-O, +ptanx=O,p=T;

then	 =—tan x dx, ie. log p=iog cos x,

dzOr p=-=cos x. z=sinx

and now proceed as in the above case to get the same solution.
-	 d2v	 dvEx. 4. Solve —i —cot x —'--sine x.y = Cos x — Coss X.dx	 dx

[Rajasthan 54 lCarnatak 621
A negative value of 01 is taken to make (z/dx)*+ve.



Linear Equations of Second Degree
	

79

Solution Here P= —cot x, Q= —sine x,
X=cos x—cos3 x

Changing the independent variable from x to z, the equation
d

becom 3+Pi T+QiYXl

dtz	 dz dz 2	 dz	 dz
WXwhere Pi ( jj+P2j)f() QiQ/() ,

Let us choose z such that Q & =±a2 =1 (say); then
Idz\ 2	/dz\t

i.e	 —Q=siii' x
WX_

dzor —sinx z= —cosx.
dx

Then P1 =(cos x—cot x. sin x)/' xO,
and	 X1 =(cos x—cos2 x)/sin x=cos x (1 —cos t x)/sin2 x

=cosx —z.
Hence the reduced equation is

-4—y=—z or(D2_I)y=_z,Dj

AM is D2 —l=O, D=±l, C F.=c 1e' fc,e.

=z..

Hence yCje2+c1e+z
x as z--cos x.

Ex.. 5. Solve dt
	

sin x—cot x)d'T+?y .si X

sins X.	 Raj. 57 ; Bombay 611
Solution. Here
P=(3 sin x—cot x), Q2 sin

s
ir, Xr' sin2 x.

Changing independent variable from x to z, the equation

becomes —+P1 +Q1y=X;

choose z such that Q1 —_Q/(dz/dx)=a 2 =2 (say)
i.e. dz/dx=sin x, z—cos x,

/d2z	 dz\1(dz) 2 _cosx+(3 sin x—cot x) sin x3

11 —_X/(dz/dx ,$_ec0x sin 2x/sin 2x =e' X=eZ

Hence the transformed equation is
d2	d

+3 +2y=ez. i.e. (D2+3D+2)y=e.
dz" di
A.E. is (D2 +3D+2)=uO; (D+2) (D+ 1)=O, D=-2, —I.
C.F.=c te t+ce, P.E.=e/,D u + 3D +2) =
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• Hence y Cje'+4e'a+ s
cieco z+c,flzcos X..f e0

is thc complete solution.
dy	 d*Ex. 6. Solve jç+COt x £+4y cosec' x=O.

[Vlkrani 63; Agra 74 63, 55; Raj. 56;
Delhi 72, 68, 59; Karnatak 63Jd"	 dor sin' x ?i+ :in x cot x £+4y.	 [Rajasthan 631

So)utj,. Here Pcot x, Q4 cosec' x, XO.
Changing the independent variable from x to z, the equation

because d' j+F d +Q y=O, as X==O.

where i'	 and

Let us choose z such Q,:=a*1 (say) ; then
Idz\'	 dz(j) = Q=4 cosec',	 cosec x,

Z-2 log tan 1x.
. (-2 cosec x cot x4-2 cot x. cosec x)IIICflr1=

	

(4 cosec' x)	
-

Hence the transf rmed equation d'y/dz'+y_—O
or (D'+ I) y=O. D ±1. y=c, cos (z+c,)
or	 y=c, cos (4 log tan x+c)
is the required solution.

*Ex. 7. Salve

[Aera56;Krnk61;pna6o)
a'Solution. Hete P= 2

—, Q=—, X=O

Changing the independent variable from x to z, the equationd'y	 dybecomes

Id'z	 dz\!(d\a	 Qwhere 
rliaii+rd_..)I&d.)

Now choose z such that Q1 =const.4' (say),
a'	 •dz 1	 1I.e. a i) =Q, I.e.

22-1
x2+x2.x,Then	 O.
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.•. The transformed equation is d2y/dx2+02y0
or (D2+a2)y0. A.E. is (D*+a2)=0, D=±aj.

y=c1 cos (az-f c)=c1 cos (c2—a/x) as z=-1/x.

	

Ex. 8. Solve	
[Agra 19601

Solution. The equation in the standard form is
d2y+ I	 dv n2x2

x X2-1

	

________	 flex2
Here P=x(x—I)' Q=-1

Changing the independent variable from x to z, the equation
becomes +P +Qiy=0.

	

(dez	 \ ( zd\1	 Qwhere Pi=+P1/_1 'Qi=.
Choose z such that Qi .const....ne (say), then

flqdz) Q fiX2 	 dz	 x
dx	 j;j-•-j ord/(Sl).
z=/(x2_ I).

[ X2-1_x3

	

_ 	 x 1 I 'efr'Also PA=1_J) +;_(_fj• 
V(x'_I)J/() =0.

Hence the reduced equation is d2y/dze+n2y_O.
... Y=c1 Cos (rz+c,)

or	 y=c1 cos En/x2-I)+c81.

Ex. 9. Solve (a2—x')dy a2 dy x2
+—.y=o.x	 a	 [Agra 571

SolUtion. The equation in the standard form is
d2y	 a2 dy	 x2

x (a*_x2)dxJx5Y°*

	

as	 X2
F— -_ _(at_x2)'Q. a (_a2—)

Changing the independent variable from x to z, the equation
becomes L +Pi +Qiy=O,dz

I dtz dz\qdzwhere P=__2 +P)j 
di)

2
 ' Q1.(dZ,)2•

Let us choose z, such that Q 1=const.= I/a (say): then
I(dz12	 x8	 dz	 x

aadxj Q(a*_x)j/(az_x2)

81
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	Then p1=U	 1
I ( ../(a'—x) (a'—x2)'I

X
x (a!x9 V(a*_x)J/ ki) —°•

Hence the transformed equation is

dzy ±.Y=O(D'+L)YrrrO. D—±-i

yccos (+s)=cz.co{cs±j(i)}

SEX. 10. Solve x' --I- 30-. + a2y =

-	 [Vikram 64; Agra 53; Delhi lions. 60, 571
d2y 3 d as 	 ISolution. Equation Is_+r+yr=:_,. -

	

•	 3	 a'	 I
=? ?' =.i•

Changing the independent variable from x to z the equation is
d'y	 dyj+Pi +Q1y=X1,

	

'd's	 dz\!fdz\'	 Q	 Xwhere P (a? +Pd-i)I)	 (dz/dx)'
Let us eoO$c z such that Qt=constant=a' (say; then

Idz'	 a	 dz	 1	 1Q2j)	 s.e.—=+-1,z=---.

•"[()
3	 3 I	 '	 IIxB 1

±. J/(dz) 0, Xi1 ,,r_j 2Z .	 - -

Hence the transtórmed equation is
d'y1dz'+a'y_..2z or (I$+a') y= —2z.
C.F.—c, cos (az+c,). P.!. —22/(D'+a')= —2z/a'. -

y=c, cos (az4-c,)-2zfa'	 -
=c3 cos (c_.,)	 -.	

dr	 -Ex. 11. Solve	 +(tan x-3 cos x	 +2y cos' x+cos'.x.
• (Rajasthan 57]
Solution. With usual notations putting-	

cos' X. z s

	

. fdzV	 .	 -	 - -•	 -Q1 =2,	 --2	 = sit-. x,

	

•	 —sin x+(tan x-3 cos x) cos x
-----------------

	

	 --3cosx
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and X C0S1X— tOs x=(l—Z-).

Hence after changirg variable from x to 2, the equation
d'ybecomes	 —3 dy+2y(1—z2).

A.E. is (D2-3D+2)=0, i.e. (D-2) (D—I)=O.
C.F. c1e"+ c,e.

(i-z')= (1}D+ID2r1 (1 —z')
=j.(1+ID-4D'+D+..,) (1—z2)

Iz_.
-

=c1e' winx +cje_1 sun' X— I sin x-4.
	• 	 dyEx. 12. Solve the equation	 +tan x	 cos' x=O,

by putting zsin x.	 [Calcutta Hons. 63)
Solution. Putting z=.sjn x,

..Q ._COS'X
X

	d'z	 dz dz'
ax•	 =o. x=o.

.. The transformed equation is d'y/dz'-4-y-_0.
The solution is y—c1 cos (z+c,) -

=c cos (sin x+c,).
Ex. 13. Solve L2y,_cot x	 sin' x=O.	 [RAJ. 551

Solution. Putting Q ._ i() =sin'x, 2=—coax.
P1=cos x_cot x s in x

	 x1=o.sInzx
Hence after changing variables from x to .z, the equation

becomes (d'j'/dz')—r=O, (D'—l) y=O,
V C1e2 + cc-
=cleDSX+c,eroI

Ex. 14. Solve 2—+4x1y=x4.
[Vikram .62 Raj. 49; Delhi Hoes. 58 Poona 621

	dv di,	 ,Or xt,_t+4xv=xI.	 •.	 (Poona 641
dzSolution. Putting Q 1=l, (=4x! zx'.
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PI — O, Xi	 x2.	

d'The transformed equation is 

Y•=c1 COS (z+c,)+z
— ci cos (..+c2)+1x1.

ti' dEx. 15. Solve X_d_X_4.ay8 i sin •	
[Raj. 55]

d2vSolution. Standard form is - - ldv- - —4xv8 1 sin x2.dx2 xdx
Putting Q,--I, (fr)!	 z=x3.

2_!.2x
r=	 X, = !	 sin x2=2 Sin Z.UJI

The equation in z is (dSy/d22)_y2 sin z,
(Da_ 1) y-2 sin z, y=ciex +c*e__sn z

or y=c1e +c —Xe 	 —sin x2.
L2	 d• Ex. 16. Solve	

[Açra 521
Solution. Standard form 

dsy 2dy ti2 
yO.

•	 Q	 dz.....IPutting	
(dz/dx)5	 ' dx' Z.-

221

dz/dx)2 —01X1=0.

Equation in z is (diy/dzi)+niyo, y—c1 cos (nz+c2)
I

01 ,=Ci cos	
n

Ex. 17. Solve ç2 ^ (i -!) + 4xie—$x y-4 (I +x) e
Solution. Putting Q=4, z=_ex (x+I), p, '-o,

equation in z is diy 
+4y-4z.

C.F.=c cos (2z +c2)=c1 cos [c_2ex (x+ 1)].
d2y.	 dEx 18. Solve xf..+(4xz_I)_

y
+4xsy_2x3

	Solution. St. iorm is	 1 dy

-3
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4x'	 dzPutting 
'(a:/dx)'1'	 ZX

2t(4X---l/x)2x

	

F1 = 	---	 =2, == - - = 4 .4XX	 4x2
dzy d yEquation in z is	 7+Y=4. (D+ 1)2
dz2

y(cj+c,z) C + =(C1 +c2x2) t_x!+.
*2 .8 Method of Variation is Parameters

[Meerut 70 ; Raj. 66; Nag. 63; Delhi Hons. 66, 63]
We shall nw explain a somewhat artificial but elegant method

for finding the complete primitive of a linear equation whose com-plementary function is known.
d2The equation is — +F 

d
T+QyX,

Let C.F. be y—c1u+c2v,

where c1 and co are constant ; then u and .v are two integral
solutions of d2y +Pdy+Qy=O,

i.e. u2+ Pui±Qu=O and vs+Pvj+Qv0*
Clearly (2) will not be solution of (I) as there X is not zero:
Now let us replace the constants c1 and c2 by A and B(parameters) which are functions of x and let

Y=AU+BV
be a solution of (1).

Differeati*ing (5), —Aiu+Bjv+Auj+Bvj.

Let A and B satisfy the additional equation
A1u+Ajv=0,

Then -=Auz+ By1

and -=Au2 +Bv+Aiuj+Bjvi.

Substituting these values in (1), we get
[Aus+ Bv2 +Ajui+B1v1 } +p (Aui+Bvij+ Q (Au+ Bv)=X

or A 1u2+Pui+ QuJ + B [v3+ Pv1 + Qu]+(Aiui+Bjv1)=X.
The expressions within the first two brackets are zero by (4).

A1u1+B1v1-=X.
Equations (6) ind (7) can be solved for A 1 . B1 which Ott ill,

'Here suffixes denote differentiation with respect to x thus
dig	 dA

	

" -.-, A1 -
	

. etc.
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gration give A and B. Then the complete solution of (I) is written
as y=Au+Bv.

*Working Role.
d	 y2y

Given the equation d—j±P d+QY=X
d2y dy

find the solution ofij±Pd_+QYO,
i.e. complementary function of given equation. -.

Take the CE. as y—Au-l-Av,
treating A and B as functions of x.

To determine A and B, use the following two equations
(I) y=Au+Bv is a solution of given equation which gives.a

condition	 A1u1-fBivj=X.
(ii) Aiu+Biv=O.
From these two relations between A1, B1 , find A 1 and B1 and

integrate to get A and B.
The complete solution is then y—Au+Bv.
SEX. I (a) Apply the method of variation of parameters to

Ltsolve	 +n2y—sec flX•	 [Meerut 70; Sager 63;
Agra 69, 64, Raj. 65, 52, Yikram 64;

Nagpur 61; Ranaras 59]

Solution. The equation is 
d2y +n

2y=sec nx.d,I

C.F. or solution of dsy	 is

• y=c1 cos nx+ c5 sin nx
where c1 and c2 are constants.

Let us suppose that
y—A cos nx+B sin nx	 ...2)

be a solution of (1) where A and B are functions of x.
From (2),
dy 

—An sin nx+Bn cos rx+A1 cos nx+B1 sin nx.dX
Choose A and B such that

As cos nx+Bi sin nx—O;

then =i—An sin nx+Bn cos ,zx.dx
d2y

--n (A cos nx±B sin nx)—A 1n sin nx+BLn cos nx

=—n2y—An sin nx-B1n cos lix.

Putting values	
, '7 etc. in	 we get

JV2
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( —n2y --Ain sin nx+ Bin cos nxJ+nysec ax
or , —A 1n sin nx+B1n cos nx=sec flX.	 (4)

Multiplying (3) by n sin 'ix, (4) by cos nx and adding, we get
Bin=] or Bi=l/n.

Then A 1 --'In tan nx;
so A_— f A1dx=!jlogcosnxc1

afld B1=f B1 dx=+(.

Therefore the complete solution is
y=A cos nx+B sin nx

log cos nx+ ci) cos nx+(+ c8) sin ax

=ci cOs nx+c1 sin nx+CO'i log cos	 sin ax.

Ex. 1. (b) Using the method of variation of parameters solve

the differential equation	 +9y=sec 3x.	
[Nagpur 611dxz

Put n=3 in the above example.
Ex. 2. Apply. the method of variation of parameters to solve

d2y
tan 2x.	 [Sugar 64: Agra 71, 541

Solution. First let us find out C.F. i.e. solution of
d5

i.e. (D5+4) y=O.

D= ±21, ?. y=c1cos2x+c2sin2x.
So let y—A cos 2x+B sin 2x be a solution of the given equa-

tion, where A and B are functions of x.

Then

	

	 sin 2x-l-2B cos 2x+Ai cos 2x+B1 sin 2x.dx
Choose A, B such that A 1 cos 2x+B1 sin 2x0	 ...(1)

dy/dx=-2A sin 2x+28cos 2x
and d y/i,=-4 (A cos 2x+B sin 2x)-2A1 sin 2x+2B1 cos 2x

=-4y-2A 1 sin 2x+2B1 cos 2x.

Putting values of ',	 in given equation, it becomes

—4y-4A 1 sin 2x+2B1 cos 2x=4 tan 2x

Equation (3) and (4) can be directly written from § 28 which are
A,M-1- BY=O

and Aju+&p1X
where aIcos nx, v=sin IIX, X.. Sec nx.
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I.e. ,-2A 1 sin 2x+2B& cos 2x4 tan 2x.
or	 4 sin 2x—B1 cos 2x-2 tan 2x.	 ...(2)

Solving (1) and (2) for A1 and B1, we get
2 sin5 2x . 2 (1--cos5 2x)

cOs 2x	 cos 2x	 =2 Cos 2x-2 sec 2x.
A=sin 2x—log (Sec 2x+ tan 2x)+c1and	 B1=2 sin 2x;	 B=—COS.2x+c5.

Hence the complete solution is 	 -
y—A cos 2x+.B sin 2x
• =c1 cos 2x+ca sin 2x—kg (sec 2x+tan 2x).cos 2x.

*Ex. 3 (a). Apply the method of variation of parameters to solve
d2y • 	 2

(Nagpur 63; Agra 50; Vlkram 621
Solution. The C. F., i.e. solution of dy/dx2 —y=O is

y=CjeX+cse_X.
Now let v=Aex+Bex,

where A and B are functions of x, be a solution of the given
equation.	 .

Then dj'/dx __AeX_B3x+Alex+Bzex.
Choose A, B, such that Ajex+Bie_x_O.	 . ...(I)
Then dy/dx=A9,-Be-x

and dsyldxs __Aez+ Be SX +A ]LeX_ B1e
•	 =y±Aiex_Bie.

Putting these values in given equation, we get
y+A9_B,e5x)_y2I(1+ex)

or A19_Bie_x1/(1*e.).
From (l),Be-x_.Ae; .	 (2)gives

2A-1e=_ 2or

Also B1= - ex so
 t 

B— _J

e-' 

	 _!z_.. - log (1 +9)+c,

and	 A=jA1
Jr$-i+Z) 

di, where z=.ex

J(''+') dz=_!_log z+Iog

=log-----j-c1=log
Hence the complete solution is

l+ex=9 log .-_—lc 9—e' log (1 +9)+cse-x.

Lx. 3. (b) Apply the method of variation 2 of parameters to solve
X2 '!i_.y.,2ex.	 .

dx	 .	 •	 jNagpur 61 ()J
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Divide by x' and then proceed as in the above example with
I-2e/x'.

E. 4. Apply the method of variation of parameter: to solve
1 ç+x

[Meerut  70 ; Raj. 64 ; Agra 66, 60. 53]
Solution. We find the C.F. i.e., sotuon of

x*	 d
—yO (Homogeneous equation).dx,

Put x=9, f)d/dz, then it becomes
[D(D—l)+L—l]yO or (D—.l)yO.
.. y—c1e3+c,ç'c1xc2 (lix) as ex.

Let us suppose that YAx±B/x
be a solution of the given equation, where A. B (parameters) are
the functions of x.

Choose A and B, such that	 L.,

X

Then 
dx

and =A14

Putting these values of V d
ly in given equation, we get-

r.	 •	 .	 dtv.Jdyy15 equa'l)n in standard form is

Or 11_2 =.eX

Solving (I) i.n (2) for A 1 and Na. we have
A,' le and Bj—tx.ex.

Thus A_J A dxIez+c2

and	 BJ Dj dx__f (x'e) dx....4r tX2 2x+21+c
fleece the complete solution isy.'Ax+B/x

or y_(Iex+.ci) x+t-lex (x2—.2Z+2)+../
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Ex. 5. (a) Apply the method of variation of parameters to solve

the equation (1— x) 	 x	 (I -x)'.

[Delhi bus. 66; Agra 55; Raj. 66]
Solution The equation in standard form is

day +x dy_I
a 

Here P+xQ j-j—x.

Hence yx is a part of C.F.
Now we find C.F., i.e. solution of

l—xdx 1—x
Putting v vx, the reduced equation is
dvI	 2dy1\dv where yz=X

dzvjx 2\do

dpI	 1	 2	 dv
or	 +_1—j-j-+)POi wberep-

dx
Integrating, log p—x—log (—i)±2 log x=tog Ci

	

du c (x-1)e	 [I — 1
I.e. p=1'

v=C1 ex/X+Cs, y=vx =clex+4X.

Let us now suppose that y=Ae+Bx be a solution of (1),
where A and B are functions of x. Then proceeding as usual,
A; B must satisfy the conditions

A iu+B2VO, I.e., AiexJBzXO

and A1u1+83V1X, I.e., A l '+Bi. I=l—x.

Solving these fok A 1 and B1 , we get Bs= 1, A1=—xe.

B—ID,dx=x--Ic,,A=jAsdx—e--(X+))+C,.

Hence the complete solution is y=Aex+Bx

or

Ex 5. ib). Apply the method of variation of pa)anzeters to solve
d2 v	 dt'	 ,.

*	 (Agra 701
Solution,This is just the qbeve example.
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• Ex. 6. Apply the method of variation of parameters to solve
dy"fd'y

the equation x ---y=(x— 1)	 I
dX

dxs

[Sagsr 62; Raj. 63; Agra 72,51 ; Delhi Hons. 631
Solution. The equation is

d'.d.(x_l)_x+y=(x_I)2.

Now proceed as in the above example.
yciex+c,x±(xs+x+ 1).

Es. 7. Solve by the method of variation of parameters
d'y	 d

x' p-2x(l+x'+2 (l+c)yx'.

[Delhi Hons. 65, 63; Agra 67, 63; Raj. 64, 55)
Solution The equation in standard form is

dty_2(1+x)fr+2(l±x)
dx'	 x	 TXx'	 ...(l)

Here P+Qx=-2 (2+x)+2 (14-x)0

Hence y—x is part of C.F.
So we find C.F., i.e. Solution of
.d$y_2(l+x)d.^2(l+x) oii	 x. a	 .

Put y vx ; then this equation becomes
d'v I	 2dydv

where yj=x

or	 —2.=O oi (D2-2D) v=.O, D=O, 2.
VC1+Ci,.x.

.. C.F. is y—vx=cix+cx
Now let y_—Ax + Bxelx be a solution of (I), where A and B arc

functions of x. Then proceeding as usual, A and B satisfy the
conditions

Aiu+B1v= .O, i.e.A1x .,B,xe!r=O.
and A 1ut +Bra—X i.e. A,+B1e (2x+1)=x.

Solving these for A 1 and B,, we have
B1=e2X and A=_

i.e. B=1e_ z+c and A= --jx+c
Therefore the complete solution is  —Ax + Bxe"'.

i.e. y=(—x+c,) xxe - *e+c1,
= —IX—IX'+ c2X +cIXe 2X .

- Ex. 8. Apply, the method of Eariaiion of parameters to soIe
(x+2).(2xl.S)+2y--(x+l)c.".

[JIwaii 66; Vikram 64 ,..Agra 59: Raj. 59]
Example 7 has been solved othe, wise also. Sec Ex. 3 P. 49•
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Solution. The equation in the standard form is
dy_2x+ 5dY	 ±.L
dx' iTi x+2	 +2e.

We find C.F.. i.e. solution of
dY_2x+5.y	 2 -o
dx' x+2dx

We note that e' will be solution if

m5+P.m -fQ =O, i.e.

i.e. (m-2) [mx+(2m-1)]=O, i.e. m=2.
Hence y 1 =e is a solution (2)
Putting y=vy 3 = ve the equation (2) becomes

(See Ex. 16 P.58) when

or
•	 p
or log p-2x+ log (x±2)=log c or p=c1 (x+2) e
or dv/dx—_c t (x+2) e.

v=f c1 (x+2) e+c,= —ci. 3e (2x+5)+c,,

.. the solution of (2) is y=vex.
i.e.	 YC1 (2x+5)+c1e.

Let us take yA 2ii5)+Be2x.
to be solution of (I) where A aud B (parameters) are functions
of X.

Then A and B satisfy the conditions
Aiu + B1v=O, i.e. A 1 (2x+5)+Bje=O,

and Aiuz+Bivi=X, i.e.,	 e.

Solving these, A1= -

Integrating.

d B (2x+5)(x-4- L) eX_e{ 
2- -L- .1an	 =	 4(x+2,	 T1 (x+2)'

...

Therefore the complete solution is y=A (2x+)+Be2r.

or	 {_ç+i] 2x+5^ [(_._2 )+c21 e2r

=c 1 (2x±5)+c2e_ér.
Ex. 9. by the method of variation of parameters, solve the

equat1on j2+(1 ---cot X)	 2Cot x=sin . [Rajasthan 58, 56]

o)ution. Here 1 _P+Q .r=O ; .. y—e' is a solution of A.E.

.(2)
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putting yve, the equation which gives C.F. (X=-O) reduces
I	 2dyildV

to !LIV 	 j=O, where j'1=e
WXd,1 	Y3

d2v r	 ldv	 dv
or	 1—cot x—e j =O. Put dxWX-

dp/dx=(I+cotX')p or dp/p=(l+cOtX)dX.
log p—log c1-I-x+Iog sin x=bg (C1 sin xe

or p=dv1dxcasinX9.
Integrating v_c1#. (sin x—cos x)+cs.

• :. y—_vyi --jcz (sin x—cos x)+c1e'
which is the C.F. of the given equation

Now let y—_A (sin x—cos x-4-Be
be a solution of the given equation, where A and B are functions
of X.

Then A and B satisfy the relations
A 1 (sin x—cos x)+BieO

and A 1 ('os x+sin x)—B1e=sin 1 x.
Solving these, A 1 sin x, i.e. A = —j cos x+c1

and B1=9 (sin x cos x—sin2x)=j9 [Sin 2x—(1—cos 2x)].
9

B=4(5) 
(2 cos 2x—sin 2r)-9-

(-2 sin 2x—cos 2x)+cs.
Hence the solution is

y=(—j cos x+ c ) (cos x—sin x)+e [t(-cos 2x_3 sin 2x)

4-+cI]

—ce (cos x+Si fl x)— (sin 2x-2 cog 2x)+c,e.
Ex. 10. Solve dzy/dxs+y__cosec x.

[Indore 66; Nagpur 63; Agra 65, 491

Solution. C.F. is y=cl COS X+C1 SIfl x.
Lety'A cos x+B sin x be solution of the given equation,

where A and B are functions of x. Then proceeding as in Ex. 9
above

A 1 cos x+Bi sin x=O,
and —A 1 sin x+Ba cos x=cosec x,
so that A 1 =—l. B1 =rcot x.

A--x+C1. B=log sin x+c,.
Hence the complete-solution is

y=(—x+Ci) cos x+(log sin x+ cs) sin x
=c1 cos x+c, Sin x—x cos x+ sin x log sin x.

Ex. 11. Solve d2)'/A2 -fr =x.



94	 .	 .	 .	 Di/fe.'enzial Equations 11

Solution. As above let the solution be )'4 cos x+B sin x,A and B here satisfy the conditions
A 1 cos x+B	 =0,

	

Ai sin x+Bi cos x—x.	 ..	 .	 .
These give A 1 —x sin x. Bi=x cos x.....

A -J x sin xdx=—[—x cos x+f x4x)

	

X Cos X—SIflX+4,	 ,-. ..
B5 X COS X dxX Sfl X+cOix+c*.

	

Hence the complete solution is	 - ........
y(xcosx—s.in x+c1) cos x+(x sin -x+Iosx+4) sinx

—X+( COS X+Cs Sifl X.'	 .	 . .	 .	 -

Ex. 12. By the method of variation of ;paràmeter,s, olve the
dty

equation (I —x')	 —4x dy
'(I+) ;Y.	 -	 .

(Sagar 66: Vlkram 63 ; Raj. $3)
Solution. The equation in standard form' is -

	

diy 4x dy (l+x5 )	 . -
dxIx'	 l—x2 

To remove the first derivative, wC choose (see § 2 6P.62)
f.	 f4x_jPdx	 lJfs..-Io(j—x$).	 1.y1 —e	 =e .	 —e

Putting yvyI, the equation becomes
dtv

•	 p	 .	 ......... 4x2 .	 A f . 1	 . 

• I;xi==x.	 •	 . .

The equation reduces to.'d!v/dx+v..x.
:-	 js	 .. v=4cos+Bsjn V.	 -•-

Consider A and B as functions of x and lc(3) be a solution
f (2) • then 4 and B satisfy the relations

A1 COS i+Bi sin =O,

	

—Ai sin x+Bi cos	 -
	These give 4--x sin x,	 B1 =xcos x,

A=—xCos x—sin x+ ci, B=x sin X+COS X+C:.
Complete solution of (2) is

	

,=A Cos X+B sin X	 •. .:	 .

	

=c1 cos r+c1 Sin X+X..	 -

And the complete solution (1) Is

i.e. )'[c1 cs x+c1 sin
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Ex. 13 By the method of variation of parameters, solve the
e0ation (I —x2) Ŷ-

dxs	
(l.	 [Raj; 541

Solution. The equation can be written as
d'y •x dy1 .v=x (I —x2)112.

HereP+Qx='O;.. y=xis part ofC.F

To find C.F., I.e. solution of d'y	 xdv	 1 y=O,

put y=vx; me equation then becomes
d*vf2	

=°, y,=X

	

• di L y1 dxjdA	 -
dvd'v I x	 2 \ dv	 dp ( x 2')

	 Oor	 or —+ -s+;P	 P

	

x	 dx lx

	

dp(2	 x \
dx=O.

integrating, log p+2 log x—j log (l—x 2)log c
dv c1./(l —x5)or -=- '

•	 [vu —xe)

(l—x')'I' (-2x). 
(-f) dx

1V(' —x')

	

= —C1 I	 + 5jfl 1 X--C2 
J

	

L	 •

Hence C.F. iSyvX'—c1 W(l—x')+x Sin-' Xj+CsX.
Let y=A[.,/(t—x')+xsin1x1+Bx

be a solution of the given equation. wbere A and B are functions
of x. Then A and B satisfy the relitions

A (s/(l—x5)+x sin-" x)+BsxO

and A 1	 + I x) + 
B.,l x (I —xt)"

or As [sin	 )+Bl —x (1—x I'	 .(2)

Multip ly ing (2) by x and subtracting from (1), we get
A1/(l.-x5)=—x' (L —x')'11 or A 1 =—x1. A=—X3+Ci,

B1 =	 h/(i —x)+x sin-1 x) x/ (l—x)+x1 sin -

B_J(xV(l_xs)+xlsL.nx)dv+ea

	

=J[v(I_x2) jx+siir 1 x4x3_Jx5	 f1) (1x+c2

For an altrenalive solution, c .c Es. 41'.).
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i"" .-	 " + if dx+c,

xi/(1 —x')dx—i J7rxsj dx+1x sin-3L x+c
21 x5)'12
—------+ (l—x')"+ xs sin 1 X+c,.

Hence the complete Solution is
y =4 [%/(I —0)+x sin—' x]+Bx

(— x3+ci) (V(r—x')+x sin-' x]
+I	 (1—x)5I2+ ( 1 —x5)1I1 +1x sin-2 x +c51 xc1 [/(l — x2)+X sin-' xj+c,x+ ix (1 —x'),/(l —x2)

_tX(1.-.x2)hl*
=Ci(t/(1—x2)+x Sin xJ+csx_jx(I._.xz)3m

Ex. 14. Apply the method of variation of parameters to solve
the equation

d2y	 dv2+(fan x-3 cos x) +2y co:2 x=cos' x.	 [Raj. 371
-Solution. As found in Ex. ii P. 82, the C. F. is

y—cje2 "
Let	 y=Ae2 sin X+ Be gin X
be the solution of the equation, where A, B (parameters) are func-tions of x.

Then A and B satisfy the following conditions:
- Aell Isa X+BieI4n X(), i e. AielSR X_Bj

and	 2A,e2 .15 z.cos x+B19' r .COS x=cos' x,
i.e.	 2A1e' 2( Z +BieSin XCOSB x, le. A1e' all r_..cc,53 x,

4ac051 x•e'3 ibi X, B1 —A,e	 —cos5 x .e" r.

coso x. e-2 'J dx=f ( Isin' x e5 On cos x dx

e2' di, where —sin xt, —cos x dx=d:

-=—e 2 alA X [4-4 sin2 x-4 sin x—&]±Ci.

B -f cos3 xe	 4x_J (I—sin' x) cos x. e" x dx

e1 di, where z—sin x, dz— — cos x dx
=e' [tz'+2z2]ea [2z—z2__I1

(-2 sin x—sin 2 X-21+ell.
Putting these values of A and B in (1), we have

v=c1e2	 +i sin' x+ I sin r_l+eta '-2 $111 X — Sifl2 -.-1rc,eIa	 sins	 sin x—,
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which is the complete solution.
29. Method of operational factors.

Let the equation of second order be
dy	 dy0+F1 3j+P*Y=X.

Write s-ED; then (1) is

P0D&+PjDy+P1y=X or f(D)y=X.
If f(D) can be resolved- into two factors F1(D) and Pi(D) such

that when F, D) operates on y an 'F,(D) operates upon the
result.[F1(D) .yj, then the equation may be written as

1(D) y=F,(D) {F1(D) y}
or 1(D) y=F,(D) F1(D) y.

[Here we cannot write fD) yF,(D) F,(D) y].
The order in which the factors are written must be verified to

as to form the same equation.
The following few examples will full y illustrate the method:

*Ex. l. Solve xd5y+(l_x)dy_y=ex.

[AEra 50; Luck. 511
Solution. Writing D for d/dx, the equation is

[xD'+(l—x) D—I)y—_9
or (xD+l) (D_l)y__ex.

[This cannot be written as (D-1) (xL)+ I) y==9 as this does
not give equation on expansion.)

Now let (D—l)y=v; then (xD+l) v=ex
or v__cxi+erx-l.

Then equation (I) becomes (D— I) y=cx'+Fx'
or y=c1F+cex J' ex' dx+ex+ Jog x.

Ex. 2. Solve [(x+3) Dt —(2x+7) D+21 y=(x-3)2 9
Solution The equation may be written as

[(x±3) D— 11 (D-2) y=(x-4-3)2 e.
Put (D-2)y=v; .. [(x+3) D—l]v=(x+3) F

Or (D.-._L) 
v=(x+3) er; I.F.=e	

dx

•.• v._J9+ker+k

or (D-2) y=v=(x+3) er+k (x+3).
Linear, l.F.e-2% thus the solution is

an alterna*tvc solution, we have I +P+QO .. y— es is a partOf C.F.(See. Lx. top. 54).
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yeiiif ((x+3) e+k (x+3)J e dz
_xe_x_4e+k [_4xe5X_e_txJ+cs

or	 y_xex_4ex_ca(2x+7)+cx.
$z. 3. Solve [xD'+(l —X) 0-2 (1+i)Jy..e_x(1_6x).
Solution. The equation may be written as

[xD+(l+x)] (D-2J ye (I —6x).
Putting (D-2) y=v, v(1-3x) eZ+ke_xx_l.

•. (D-2) y=(I —3x) X+ke_Xx_1
-or y_xe_Z+cie 

J - 
dx+c,elx

Ex. 4. Solve [xD'—(x+2) D+2] 7x3.
Solution. The equation is (xD-2) (D-1) yx1.
If (D-1) y=v, v=x5+kx'

Or	 (D—I) yx+kx'.
y —x+ c1 (x2+2x+ 2)+c1#.

dEx. S. Solve Us jd&y+(2-6x') --4y=Odx
Solutlofl. The equation is (3x'D+2) (D-2) y=O.

Proced1jg as usual, i=czetJ e('/'X)-2r dx.

Lx. 6. Solve 3x' +(2+6x—.6x') —4y-0.

Solution. The equation Is (D-2) (3x 2D+2) yiO.
If (3xD2)y=0, v=k.e'.

(3x2D-1-2) y=ke,

y=cie'zx+c*eslsr fi., e('-2l') dx.
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Simultaneous Differential Equations

3' 1. So far we have discussed differential equations involving
two variables, viz one dep.ndent (usually y) and the other mdc-
pendent (usually x). In the present chapter. we shall discuss diff-
erential equatlon3 in which there is one independent variable and
two or more than two dependent variables. To completely solve
such equations we shall require as many simultaneous equations
as is the number of dependent variables.

32. Methods of solving giumitaneous linear differential
equations with constant coefficients.

Let x and  be the two dependent variables and tthe indepen-
dent variable. Thus, in simultaneous equations there occur
differential coefficients with regard to t,..

First Method. Use of operator D. Write D for didi and put
equations in the form

fi(D)x-l-f.(.D)y=Ti. .	 ...(l)

	

i(D)x+(D)y=T2	.	 ...(2)
where T1 and 7'2 are functions of independent variables:. Now
to eliminate y operate (l) by W) and (2) byf,(D) then these
equations become

fiI (D) x+f2(D) 141 	 42(D) Ti
and	 #tD)f1(D) x+f(D) #,(.D) yf2(D) T2

Subtracting,
[f1(D) s(D)—(D)f(D)] x=(D) Ti —f2(D) 7

i.e.	 F1(D) x_—T,
which is- linear equation in x and : and can be solved to give X.

Putting this value of x in (1) or (2), we get value of y.
Note. We can also eliminate x to get a linear equation in Y

and t which when solved, gives y. And x can be obtained from (I)
and (2) after putting the value ofy thcrC

Second Method. Method of Differentiation. Sometimes x Or y
can be conveniently eliminated if we differentiate (1) o'(2) or-both.
The resulting equations after . eliminating one aependent variable
(x or y) are solved to give the value ot another dependent variable.
And then the value of the other variable can be found.

31. (important) Number of Arbitrary . Constants
The number of arbitrary t constants in the general solutions of

(1) and (2) of § 31 is equal to the degree of D in
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4= f1(D)	 J(1?) I if 4960.
#z(D)	 (D)

In case 4=0, the system is dependent; such cases will not be
considered.	 -.

Ex. I. Solve +2x-3y--i, 5_3x+2y_ett.

Ixarnatak B.Sc. (Sub.) 611
Solution. Writing Dior d/di, the equations are

•

	

	 (D-f-2)x-3y=g.	 •••(!)
—3x(D+2)y=e.

Multiplying (1) by (D+2), (2) by 3 and adding, we get
.(D+2)2-9J x=(D+2) 1+3e2'

or	 (D2+4D-5) x=21+1+309.
• A.E. is (D+5) (D-1)=0, D=1, —5.

... C.P.—c1e'+c2e'.

• 02+4D-5 +D2+4D_5
•	

=- (t—tD—D')-' (2t+l)+-(---

(l+D--...)(2t+J)+.e"
• =-* (21+1 +)+eu=e__fl.
x=c1e+c3e'+e2'—g—.

• •	 dx
This gives

Now from (1), 3y=+2x—tdt
= 3c,e' — 3c,et+.%e2t_.g

y=czet_cae51+eV.4:_il.

Ex. 2. Solve +5x+y=e,	 x+3y=e21

(Delhi lions. 681
Solution. The equations are

(D+5) x+y=e', —x+(D+3) y=et'.
Multiplying first by (D+3) and subtracting second from it,

we get	 (D+5) (D+3)x±x=(D-J-3) e'—e*
or	 (D2+8.D+15) x=4e'—e3.

From this A.E is (D+5) (D+3)=O.
4e'—e"•'. X=c1e5'+c2e	 _+ 816-T-1 5

Also y=e'(D±5)x etc.
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Ex 3. (a) Solve the simultaneous equation:
dx	 dy-- 7x+y=O ; --2x—iy=O.dt

(Delhi ions. 72, 70, 67; Karnalak 62; Agra 71, 58;

Solution. Writing 1) for d/dt, the equations are	
Bombay 65]

(D-7) x+y=O
—2x+(D-5)yO.	 ...(2)

Eliminating y frQm these, we get 	 -
(D-7) (D-5) x+2x=O, i.e. (D2-12D+37) x=O
Auxiliary equation is D'-12D+370, D=6±1.

x=e' (c2 cos t+c1 sin 5),
dx

so that	 =6e' (Ct COS t+c1 sin t)±e" (—c1 sin t+c2 cost)

•	 —6x+e (--c1 sin r+c1 cos I).
From (I),	 dx

7x [6x+eet {_c1 Sin t+Ci COS tJJ
=x—e'4 (—c1 sin t+c1 cost)
=e" [(e1 cos t+c2 sin t)—(—e1 sin t+c3 cos t)]
=e'•[(c1cs)cos t+(C:+cz) sin .

Hence the solution is
x=e' [C1 cos t+ci sin tJ
Y=ell [(cj—c5) cos t+(c2+c1) sin 51.

Ex. 3. (b) Solve	 +7x—yO, 5+2x+5y=O.	 [Raj. 61]

Hint. Proceed as above.
*Ex 4. Solve the simultaneous equations

d1x	 d'y—3x-4y=O, j +x+y=O.dt
[Delhi Hens. 68; Agra 69, 62, 56J

Solution. Writing D'for (d/di), the equations are
(D3-3) x-4y=0

and	 X+(D1+l)y=.O.
Eliminating y, we get (D 2 4-1) (D2 -3) x+4x=O

or	 (D'-2D2-I-1) x=O or (D-1)5xO,

x—(cj+L 2t) e +(ca.j-c4t) et.	 .. (3)
Now Dx=(dx/dt) = —(c1 + cat) e t+cae_t+(cs+ cit) e'+cse

and D3x=(c1+c2t) e'-2c!e-9+(c+c4,) e'+2cie.
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From (1), y=j (D1-3)	 (DX-3x)
'4 [(cj-f.c1t) e'+(c,-f-c4t) e1-24e—'+2c4e

—3 (cj+ cat) e'-3 (Cs+c41) e']
=4 [e' (c4—c,—c4i)—e: (c1+cil+c,)]

Hence the solution is
X=(ci+c1f) e'+(c3+c4,) e,

•	 y=4 [e' (c4c5c4f)_e'' (Ci±Cst+C,)].
dydrEx. S. Solve j-2z—y,-4z-2y.	

IBombay 61)
Sulutlon. Equations are

(D+Uy+3z=o, (D-4) z+2y=O.
Eliminating y, [(D+1) (1)-4)-6) z=O.

• Auxiliary equation is
D2-3D-10=0, (D-5)(D+2)=O.

Thus z__CIeIr+c2e_1

	

	 =5cie5X_2c2e_2x.dx
From second equation, 2y=4z—(dz/dx),

I.e.	 2y=4 (cle+c2e_(5ctx_2c-2x),
or	 y__4c*e5r+3c2eix.

Ex. 6 Solve =y, = 2y+z.	 [Bombay 61 (New Course)]

Solution. First equation is (D-1) y O, giving y=c1cr.
.. 2nd equation gives dz/dx__z=2ciex, linear, iF;eX.
.. ze=c4	

f exe dx=c2+2cix.
Hence y=c1ex, 2= cseZ+2cixex -
Ex. 7. Solve=3x+2y, +5x+3y=o	 tXsrnatak 61]
Solution. Equations are

(D-3) x-2y.O, Sx+(I.+2).y=3.
EIminatingy, [D-3) (D+3)+1.O]xO (D2±1) xO

dxX= (.i COS t+C2 Sin t,	 Sin t+ C2 Cost.

2y= -3x( ..c sin r+c1 cosr)_3 (c 1 cos t+c2 sin 1)
Pr y=j (cr--3c 1 ) cos t- (c I +3r2) sin t,

Ex 8. Solve, =3x-y, =x+y	 [POOII* 611
•Solution. Equations are

(D-3) x-I•y=O, x—(D.---1)y0.
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Eliminating y, (D-3)(D—I)+11 X-0
or (.D'-4D+4) xO, (D-2) x=0

x(c1 +cst) eV, =et (2c1+2cst+c2).

dx
Now y=3x—=(c1+cst— c2) es'.

Ex. 9. Solve	 +5x13Y=O.'of dr	 dt	 It

[Delbi Hans. 69 ; Gujrat 611
Solution. Equations are

0+2) x+(D+1) yO, (D+3) y+Sx'=O.
Eliminating y, [(.D+3) (D+2)-5 (D+1)] x=O.
Auxiliary equation is (D'+ l)=O, D= ±1.

:. x=c1 os t+c2 sin	 sin t+c.

dxNow subtracting first equation from second, 2y=+2x,

i.e. y= ((— C1 sin t+ca cos t)+2 (C1 cos t+cz sin t)]
= (c,+2c1) cot t+ (2c,—ci) sin L.

Ex. 10. Solve J4-3x—y=et,—.2x=O: 	 (Poona 591

Solution. (D2-3) x—y=et Dy2x0.
Eliminating X, we get D (W-3) y-2y-20.
A.E. is (D3-3D72)=O, i.e. '(D+l)1 (D-2)=O.

2e'
••. y—(ci+czt) e +cse.t+D3_3D_2

—(c1+csI) e'+cse2'=e

and now	 etc.dy
dt

Ex. 11. (a) Solve the simulianeour equations

dx +4x+3yt, +2x+5y-e.
[Agra 68, 54; Bombay 54

Solution. Writing D for dlii, the equations are
(D+4) x+3y—f

and	 2X+(D+5)Ye.
Multiplying (I) by (D+5), (2) by 3 and then subtracting (2)

from (L), we get
(D+5) (D-I-4) x-6x=(D+5) t-3e'

or (D5 -9D+14)X1+9-30.
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Auxiliary equation is
D5+9fl+140. i.e (D+7)(D+2)=O.
.• C.F.=..cje_7s+cje21.

= [1+,D+D')-t (lI)3e1

=1( [1—O ... ] (1
.=,1 [l+S1—j—'=frth_:.

Hence X— c2e 79+ cse+,_.z, _:

Now from (1),

It—(D+4) x)k
di1
—4 (c1e 72 + cue— 21 it—	-or	 [3cie-7:_2c,e_29_.g+1t1+a1

Ex. 11. (b) Solve +4x+3y_l2,+2X+5yett.
di

Proceed as in the above example 	
[Karnatak 63]

Ex. 11.(c) Solve the simultaneous equations
(5D+4) y—(2Lj- i) Z__eX

	

(D+8)y_3z5ex f Dmdx	 [Meerut 77,7o]
Solution..Multiplying first by 3 and second by (2D+ 1) andsubtracting, we get

[3 (5D+4-.-(D+8) (2D-f-I)]y3e_(2D+l) 5e.
D=1,-2 etc.

*Ex. 12. Solve the equations
dx	 dyand	 X.	

[Agra 57, 52]Solution. Differentiating the first equation w.r.t. I, we haved1x	 dv
dis
=—w
 it	

'14

(D2-I-cu!) xO. Di±j.
X—C' cOs "ii+c, Sin WI

Now

	

	 [—cjw sin -t+czw cos wt]

^Cj Sin .it—c, Cos wt.

A Deduction. Show that point (.z, y) lies on a circle.
We have	 x=c1 cos wI+c, sin Wi
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and	 y=cl sin wt— C2 COS oil.

Squaring and adding x2+y2=c12 +c11, a circle.
Hence point (x, y) lies on a circle.
Ex. 13. Solve the equations

—wt=2x+2t4+43y.	
[RaJ. 56]

Solution. The equations are
(D$-2)x—Dy=2t, 	 ...(l)
(Dx+(4D-3)y=O.

Multiplvhig (I) by (4D .-3), (2) by D and adding, we get
[(D5-2) (4D-3)+D5] x=(4D-3) 21

or	 (4D'-2D3---8D+6) x-8-6t,
or	 (2—D5-4D+3) x=4-31.

Auxiliary equation is
2D3—D'-4.D+3=0, (D— I) (21)'+D-3)=O

or (D-1) (2D+3) (D-1)=3, D'1, I, -L	 *
... C F.+(c1+ct) et_c3e34*.

P,1.1 (l_D_*D2+ID*)-1 (4-31)
—j (1+D...) (4-31)= (4-31-4)
=—t.

Hence, x—(ci+ c3t) e'—c2e31I2:.

(dxld:)=(c1+ c2t+c) e'-I- Icse" — 1.
(2) gives

4 (dy/dx) -3y..(c1+c,J+c,) e .fc,r StI*_ I).
Linear,

ye-= ce,— iJ e'14 ((c1 + cat+cs) e'-I- few-UP _ 1) di.

Ex. 14. Solve the simultaneous equationsildxx	 d2
j +m&=O,	 P	 64;

Solution. Writing D for d/di, the equations are
D'x+m'yO, D2y_mx=O.

Eliminating y from these, we get
W+m4x=O.

Auxiliary equation is D4+m4 0, (D+m_2,n2D2=O
or (D5—',/2mD+&) (D2+s/2mD+m2)=O

_m Jm —m±im
- V2

Hence
x.rce(mIu/2) I cos

k 72-
t-- 	 c5e (m/V2) 'cos (
	

I+c)
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Now
dx =cie(m1u/2) S	 )_sin(-t+ca)]coo M +C2

mr_c3e(mIV2) , 	 (-t+ c )+sin(3jt+c)]

and

	

	 =,,,(./.v2) t [cos (f- :+ci)-2 sin (5!.i+ci)
_coS(l+cs)]

&
	 (%/2

iii+c3e(mII'2)t -
	 ) +

2 sin (s+c4)

—Cos(5!s+c4)J
=m2 [cse_ mIV2 t Sin(-t+c4 )_cie m/V2)' sin( . t+ci)].

	From given equation, 	 Id2x
111242

y=c1e(iV2) 1 sin (	 +ca) ..c,e.mIV2)tsin(.i+cg)1.
x 2dEx. 15, Solve —+—(x—Y)=l.di 1

(x+SY)'=t.	 [Raj. 64; Agra 631
Solution. (1) is t(dx/dt)±2x-2y=t.
Differentiating it w.r.t. 1, we get

d2x dx dxdyt++2-2=1.
dyNow puffing in it value oft,from (2),

d2x X+ 5y

	

3'	 2

	

d,+ di	 1'
Now putting in it value of 	 from (2dt

-+3'	 2tx-t--Sy]_1

or
Putting value of y from (I), we get

, dIX+3, _7t 2+2x+5 [t+2x_1 ]=:
d1 2	 dt
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d2x	 dx
or t 1 j-+8t +12x2t+61.di 	 Tt

This is homogeneous, so putting 1=9, D=f (d/di), we get
[D (D_1)+8D+12] x=2e2f9•

A.E. isDI+7D+12] =O, i.e. (D-j--3)(D+4)0.

:.	 CI C2

P 1	
2e+ 6e	 2e2l	 69

r2+7D+12_4TI4+12+1+7+12
_e2T 39t2 31

as 9=1

Cl + ! ++ LHence X—j 1' 15 10'
dx	 3c 1 4c 21 3

so that

From (1),
dx

2y =t +2x—t

=_ — '+±+ 2 (++ç5+)_t

c1 2c2 Q2 I
T. 	 10

Ex. 16. () Solve ±-2y=2 cos $ —7 sin t,

WT WTcos 
t-3 SU? 1.	 [Raj. 601

Solution. The equations can be written as
Dx+(D-2) y=2 cos 1-7 sin t,
(D+ 2) x-4y= 4 cos t--3 sin l

Multiplying (1) by D, (2) by (D-2) and adding, we get
[D2 ±(D+2) (D-2)] x

=D [2 cos t-7 sin IJ+(D-2) (4 cos 1--3 sin tj
or (21)2_ 4) x=-18 cos I or (D2 -2) x=-9 cos t.

C.F. =eV2' ± c2e'12'.
----9 cos 1 —9 cos I

____ = 1' = 3 cos t.

( L C "2' + e3e' + cos r.
d.v/dt= /2cjeV 2 ' - 2c2e' 2 —3 sin 1.
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From (2), ' !dLyt cos t+3.sin t

=(2+V2) czeV21+(2_f2) c1e"'+2 cos t.
dx dy

• From (1), 2y +-2.cos t-7sjn t

=(2+2V2) cesltt+(2_2V2) 4e'/"— lo gin I
or	 - y=( 1 +V2) cieV21 +(1 t/2) c,ei"-5 sin t.

•Ei. 16 (b) $olpe +2 -'-2x+2y-3e'.dt	 at
-	 dxdy3++2x+y=4e2t

(Agra 64; Poona 641
Solutloa. Multiplying (2) by 2 and subtrecting from it (1),

we get	 5 (dx1dt)+6x=8e'-3e'
or	 dx/dt+ x= e —t C'.

xeUI5=f (Ie54—e') c'!' dt+c1

or
and then	 y=c3e'-8c1e"l5+e.	 -

Ex. 16. (c) Find a general solution of the system of the equations
D-1)x±y=t', (D±1) x-Dyt,

where	 Ddfdl.	 [Rajasthan 67]
Proceed-as above.

fxEx. 17. Solve 4 +9 f+2x+31y=edt

3 +7 +x+24Y=3.di	 dt
Solution. The equations are

(4D+2) x±(9D+ 31) .y=e'.
(3D+ I) x+(7D+24) y=3.

Eliminating x, we get
(D2+8D+17) y=o-4e', D-4±1,
y=e' [Cj sin t+c5 cos tj— e'+ ,.

Again eliminating dx/dt from the given equations, we get
dy

3y-2x= 12-3e',

i.e 2x .. +3y— 12+3e'.de
[—cc, +t2 sin t+(c1 — c2) cos fl e' +Het_ H.
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Ex. 18 Solve t dx=(t-2x) di,	 (1)
tdy=(tx+:y+ 2x- t) di.

[Agra 72, 70; Bombay 61]

Solution. From (I), -
dx + 2

—I
 x=1, I.F.12,

.. xt2= . J P dt-4-c=(3+c

or	 x=t+cr2.	 (3)

Now (2) can be written as
t dy=t (x +y) dt-(t-2x) di,

i.e. tdy=t(x+y)dl-ldX from (1)
i.e. (dx+dy)=(x-l-y) di

dX+dY
x+y 

=dI ;	 log (xl-y) = t + logci .or -

x+y=c1e'.

(3) and (4) from the solu'ion of equations.
d2y dz

Ex. 19. Solve 2

2 +4 -3z-O.
dx	 dx	 [Raj. 55, 521

Solution. Putting D for df dx, the equation is
(2D2 -4) y-Dz==2x,
2Dy+(4D-3) z=O.

Multiplying (2) by D, (I) by (4D-3) and adding, we get
[(2D2 -4) (4D-3)+2D2]y=(4D--3) 2x,

i.e. (8D3 -4D2 -16D+12) y=8-fx
or (2D3 -D2 --4D+3) y= (4-3x).

A.E. is 2D-D2-4D+3=0, (D- . I) (2D2+D-3)=O.
i.e. (D-l) (2D+ 3) (D- I)=O, D= I, ,1 —'

C.F.=(c+c2x) e+c3e312.
(4-3x = (I -D- D2 + D3)' (-3x)

- 10 (1+D+...)(4---3x)—
1 (4-3x-4)=-x/2.—b

Hence y=(ci+ctx) 9+c3e312x,
dy-=e- (c+c2x+c2)-C3e"2-,

d2 Y=-
2 e5 Lc1+c2x+2czI-l-e3 C_312.
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Now from (I), =2 7 — .,y—

.ex (_2ci-2csx+4c,1+jcae-IzrI2

Now putting values ofT4y	 dz
and

3z 2

	

	

in (2),

dy+4 dz

.eX [-6cz+6csx+18cs]se-1.
..	 - 2ex (c1 +c1x— 3c1).— ide 4x2_

Ex. 20. Salve the simultaneous equations
dx	 -d'

±4X4-y=te*,	 +y2XS1flht:	
[Pb. 58]

Solution. The equation can be written as
(D2+4)xyte$,

• —2x-f- D54 1) ysin' t.	 ...(2)
Multiplying (1) by (D2+ 1) and subtraCting (2) from it, we get

(D'+l) (D'+4) x+2x=(D'+l) te—sin' t
or (D4+5D1+6) x-e (14-1)—sin' 1.

A.E. is	 D4+50+6,0, (D'+3) (D'+2)=O,
ie.	 D= ± V31, ± f2i..

C.F.=c1 cos (./3t+c,)+c, COS (4./2t+c).
.p	 2e'(t+l)	 3(1. cos 2r)

9+5D2+6 D'+5D"+6
•	 1	 cos 2t
(D4-I)4 .f5 (D+1)2-f-6

•	 1cos2t
D4+4D+IlD*+14D+)+*j6_2O

.reI6 (l+D+jDl4-...)-1(t+1)..af 	 cos 2t

=e(t+1—)--'j+é cos 2t
=e ( — )—i+cos 21.

xc1 cos (V31-f.c,)±c, cos (%i2:+ca)+*e (t—)

dx/dt=—,./3c1 sin (V31 +c2) — V2c, sin (V2t+4)
(t — +I)—i sin 2t,

d2x/dt'=-3c, cos ( V3t—c2)- 2c, cos (V2t+ca
-	 +e (t- 1,1)—cos 21,

From (I), yte' —d'x/dt' —4x etc.
Ex. 21. Sol e-'d'x/dt'-f4x+y=te$'

d2y/dt'+y-2x=cosl t.
Solution. Eliminating y from these, we get
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(D4 +5C+6) x == lOteIt+6e*t_cosI 1.
CF. =c1 cos V3' I-c2 sin v'3t)+(cs cos s12t+c. sin v'2t).

I0teU I6e	 4(l+cos2t
P.I. 4+Sj+6_ D+5D1+6

cos 2r.
•'. X=(C1 cos 13t+c, sin V3t)4-(c2 cos /2t4 c4 sin /2()

-.'.fell 	cos 2t.
Now from the first equation,

y=te-4x—d1x1dt1
=.-3c1 cos V3t—cs sin v'3t-2cs cos ./2t

—2c4 sin /2t+te'+.—jflie".

Ex. 22. Solve 4+9 +44x+49y=t,di	 dt

3+7 +34x+38y=e

Solution. The equations can be written as
(4D+44) x+(9D +9) y= t,
(3D+34) x+(7D+38) y=.et.

Eliminating y as usual, we get on simplification
(D'+7D+6) x=7-5e+38t, D= —1, —6.

y=c1e'+4c2e
dx	 dy

+t+ % +'ie'.

Ex. 23. Solve -=ny—mz, jj__lznX 
dz =mx—ly.

[Raj 62.531
Solution. Multiplying these by x,.y, z respectively and adding,

we get
dx dy dz
3j+Y di+z i=O.

	

Integrating,	 x2+y2+Z5=Ci.
Next multiplying by 1, m, n respectively and adding, we get

dx dy dz
l+m+nqO.Wt	 dt

Integrating,	 lx+my+nz=Ct.	 ...(2)
Again multiplying by lx, my, nz respectively, we get

dx	 dy, dz_0
x+mY -i- flZ jj— .

	Integrating.	 lxIImy!+nz!__O.
(I), (2) and (3) from the complete solution.
Ex. 24. Solve the simultaneous equations

wt-='ax+by, =a'x+b'y.	 (Agra 611
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Solution. The given equations are
(D—a) x—b7...O, (D—b')ydx..O

Eliminating,, we get
(D—a) (D—ji) x—à' bx.=O.

A E. is	 D'—(a+b') D+(ab'—alb)O.
If rn1 and m, are its two roots, then

Xc1ensit+c,em,j
so that	 dx1d:=cjmiem,,+4z,m,

•'4[_ax]'

'"[(rn, —a) cseatit+(m5_a) c,#"J/b
Ex. 25' 	 +42x+y=O,-+5x3,=.O.

[Hint. Eliminate y. (D!+1) xO, x=cl cos 1+cs Sin t.
Y— — i (c,+2c,) sin	 (c5-3c1) cos I.
x. 26. Solve 2L-

Lx2 i+3 -+5x-3y2.	
[Nagpur 53)

Hint. Eliminating y,(8D+ 11) x=33t+2,
x=Ae-I1 0$+3t._. 2, yAe'+5t+3.

Ex. 27. Solve: -+y=o, t+x=O.	
[Luck. 54

Ans. x=cit+c1t-, y=—cit+c,1-'.
Lx. 28. Solve ,IL.ft +2y=O.t' d1, _2x=0.

[Meerut 68 ; Poona 601
Ans. x=At cos ()og r- -i-Br 1 cos (log t—)

y='A: sin (log t—)—B1-1 sin (log t—ft).
Ex. 29 Solve 4---2.-x=e' cost,	 +2—y=e' sInt.
Hint. Eliminate y.

cos :+c3+c41) sin t-I-ge' (4 sin t-3 cos t),
Y(ci±c3t) 5jfl t+(C2+ C4t) cot	 (3 sin t+4 cos t).

Ex. 30. Solve
(1) dx/dt+x—y—e:, dy/ds+y—x4).	 . [Mysore 701
(ii) dx/dt+xy±ei, dx/dt+y=x+ e.	 [Mysore 681
Proceed yourself.

Exercise	 -
Solve the following simultaneous dlffere . ,slal equations:
1.	 +2x1-3y=o,+3x+2y..2ss.

[Poona 631.dt

•

la
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Ans. XC1e'+c1e 4' e29, y=- c1e'+c1e ' +te".
2. 5_2 +4y_z=.eX, *8y_3z=5e-r.

[Calcutta Hens. 63; Poona 621
Hint. Eliminating z.

	

(D*+D_2),=_4ex;	 yX+AieX+Bie4t1
then (-2D-.2D+4) z=12e. z3e+AseX+Bie
where A,=34 1 and B1-281.

dx dy
3. [Pooia63]
Am. x=—t--1, Y=It"+tt+c1.
4. +yZ+ex,.+Z..=y+e.	

[Nagpur 631
Ant y9+A+Be lx, z=9+ABe'.

d'x	 d5. --+x-2	 =2t, 2	 —x--2y...7.	 FSaa,r 631dt
6. 2 -+f--4x—y=et -+3x+yO.dt
ADS. xAel+Be-# 4et, y--(D+3) x.

d1y	 d&	 -Z7 -4 —a +b rj2+c.v=0.

dz dy d'z
dx4+o+b+cz=O.

8. (.D+1)x+(D_I),=e*
(D1+D+l) x+(D'—D+1)y=1.

.34. Simultaneous equations of the form
P1 dx+Q1 dy+Rj dz=O,
P1 dx+Q5 dy +R, dz=O,

where P1 . P1. ... are all functions of x, y, z.
Solving these equations simultaneously, we get

dx	 dy	 dz
01R1 .-. Q5RT R 1P, - R2P1 F1Q1 -

which is of the form

[Poona 63]

[Sagar 60]

[Mysore 691

P	 R
Thus simultaneous equations (1) and (2) can always be put in

the form (3).

35 Method of Solvingdx dy, dz

First method. We have



114	 Differential Equations Ii

dx dy dz I dx+'n dy+ n dz
IP+mQ+nR

Ill, m, n are such that 1P+,nQ+nR=O,
then we get	 I dx4-m dy+n dzO.

If it is an exact differential equation du. (say), then u —a is one
part of the complete solution;

Similarly, if we can choose I', m', n such that
I' P-fm' Q+n' R=O,

we get I' dx-3-m'dy+n'dz=O.
This gives another equation on integration.
The two equations so obtained form the complete solution.

Second Method. The equations are

dxdyTake any two members 	 (say) and integrate this equation

to obtain an integral.
dx diNext choose other two members 	 (say).

This on integration gives an another integral.
The two integrals so obtained form the complete solution.
Note. Sometimes one solution can be used to simplify the other

differential equatjon.in the integrable form.
36. Geometrical Interpretation.

dxdy_dz
[Bombay 611

From solid geometr y , we know that direction cosines of the
tangent to a curve are proportional to dx, dy, dz. Hence the
above differential equations represent curves, inedirection ratios of
the tangent at (x, y. z) being proportional to P. Q and R. If u =a
and v=b are two simultaneous solutions of the above equation,
then the curves are obtained by intersection of the surfaces ua,
v=b. Since a and I, both can have any values in infinite number
of ways, the curves are doubly infinite in number.

Ex. 1. Solve the simultaneous equations
OdX	 bdv - cdi

(h—c)	 (c—a) ix (a—h) Ky
[Agra 66; Raj, 51; Nag. 611

Solution. Choosing ax, by, ci as multiplier, we get
adx -	 a2xdx+b2y dy+c'zdz

(h—c)yz"	 ryz'Za(b—c)=O
a 2 x (Ix±bzy dy -t-cz dz.=O.

Integrating, a20+b2y2+c225.c1
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Again choosing x, y, z as multipliers, we get
adx	 axdx4.byd+czdz

(b—C)yZ	 xyz £ (b—c)=O
Hence ax dx+by dy+cz dz=o.
Integrating, ax1+by2-4-cz'=c1,
(1) and (2) together form the complete solution of the given

simultaneous equations.
dxdy	 dz

Ex. 2. Solve	 =	 =mz—ny r nx—lz lj—mx
[Vlkrsm 63; Raj. 581

Solution. We have
dx	 dy	 dz

mz—nynX— lzly—mx
ldx+mdy+ndz

l(mz—ny)+m (nx—lz)+n(ly—mx)
=	 xdx4-ydy-l-zdz

x (mz—ny)+y (nx—!z)+z(ly—mx)
or 2l (mz—nY) =0 and Zx (mz—ny)--0.

We get I dx+m dv+n dz=0 and x dx+y dy+z dz-0.
Integrating these, we get

lx+my+n; =- c1 and x2+y2+z5=c,.
These give the required solution.

Lx. 3. Solve )P — Z Z—X X—y
Ans. x+y+z=cl, x2y*+z=c2.

Lx. 4. Solve dx — dy = dz
X (Y— Z) y(z—x) z(x —y)

dx	 dz.
Solution. We have dx+dy+dz=0 and

•	 :. x+y+z=c1, xyz=c,1 form solution.

Lx. 5. Solve
ldx = mdy	 ndz

• mn (y—z) itl (z—x) Im (x—y)

Solution We have Is dx+m2 dy+n2 dz=O
and l'x dx+rn5y dy+nz dzO.

lzx+my+n2z__ci , 12x5+nI2y'+fl2Z5Cs.
Lx, 6. Integrate the equation

dx	 dy- dz
x—yzy—%xZ'--XY	 [Raj. 561

Solution. We have
dx—dy-	 dy—dz -	 dz—d.

(x-Pj(x+y+Z) (y—Z)(x+y+Z) (z-x) (x-j-y+Z)
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i.e. 
x.—, y—	 Z—X

The first two give log (x—y)—log (y—z)+log C
X—y

t.e. —.—_c1.
y—z

Similarly from the last two,
z—x

These form the complete solution.

EL 7. solve	 dx	 dy
x+y_xy* X52-X-y Z y2- xt)	 (Raj. 57]

Solution.	 _ix	 dy	 = dz
X+y-xy' xy'-X--y Z iy -x)

_4+dy 	 zxdx+zvdy)-dz
0

	

	 x[(x+yxy)+yz(xy'-x..-y+z(yS_,.)J
_zxdx+yzdy+dz

Thus dx+dy=O and zx dx-fyzdy+dz=O
or	 dx+dy=U and x dx+y dy+ dz=O.

Integrating, X+y-4
and X1+y2+2 log z=c1.

These form the solution.

Ex8	 dx	 dy	 dZ
x (2y4 -. z4) -Y-(e-2x4) z (x'-y')

Ans. xyz=c1 , x4+y4+z=c,.

	

y	 dzEx. 9.	 dxdSolve -----=______xy y' zxv-2x

Solution. From f=f, we get

Integrating, log x=logy+Iog C, i.e. x—_cy.
____dzNow tak,ng 

dyzxy-2xc'' we get
dydz	 dz
y
- z=	 , i.e. dv-
5 cy' - 2cy	 z (c- 2c3)

Integrating. (c-2c*) ylog z+c2

i.e. x-2x ()=tog Z+ Cs or x—-=log z—c5.

These form the complete solution.

	

-,	 _,..axEx. 10. Solve --=---.

[Agra 59,
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Solution From	 ywe get

i.e. YX=C1xy.
Again from given equations

dxIx—dy/y+c1 dz/n0	 dxdy+ dz0
x—y+c1 (xy)	 7 1

Integrating, log x—log y+ zc1.n

' log 
(y)	

nx'or z=—	 - +Cs- logY—x ()+cs.	
...(2)

(1) and (2) together form the solution.
dx dy dzLx. 11. Solve y2x1j92

dxdySolution. -- give x' dx=y dy, :. x'—y5=,.yl XZ)

Again x2 dx+y dy-2 dz/z'

Hence x' dx-I-y2 dy-- dzO.

Integrating, 1x +iy3+ ,. ca or

Ex. 12. Solve the simultaneous equations
dx	 dy dz

x1 —y1—z 2xy	 [Mysore 701
Solution. From	 dx dy dxvs _=_.

2xy ii'y z
Integrating, y=cz.	 ...(I)
Now i sing x, y, z as multipliers, we get

dx	 dydzxdx+ydy+zdz
i	 x(x'+y'+z)

so when dx xdx+ydy+zdz
2xz	 x (xl.ly*z*)

we have dx-= 2xdx+2ydy+2zdz

Integrating, log c+ log z=log (x2+y5+z')Of x2+y2+z=c1z.
(I) and (2) together form the complete solution.

Lx. 13. Solve - dx dy dx-----.
I+y l+x z
di dx+dy _dx—dySolution. Here - ______
z 2+-fx y y—x

II?

...(L)
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	log zlog (2 + x +y)+Jog C1	 Ans.and log z - log (x—y)+ log c c

Lx. 14. Solve -dx	 dy	 dz
yx-2x42y'—xy 9z (X3—y3)'	 [Raj. 551

Solution. The equations can be written as
dx/xdy/y	 dz/3z

y5-2x5 2y3—x'3 (x-j5
dx/x+dyly+dz13Z

Hence +$+* dz
=o.

Integrating, log x+log y+1 log z.. lag Cj
i.e. xyz1J'.=c.

Also from the first two terms, we have
(2y'—x3y) dx—(yx-2x4) dy=O

or y3 (2y dx—x dy)—x (' dx-2x dy)=O.

By trial the
xsy3

Hence multiplying by jp' equation becomes

12y 1\ 	 (L— 2x
dx — i dv=O. exact now.

2v1
Integrating j.--Y2 with respect to x treating y as constant,

we get

In coefficients of dy there is no term free from x.

Hence the solution is Lx—;-=c2.
(F) and (2) together form the complete solution of the given

simultaneous equations.

...(')

Lx. 15. Solve dx dy dz--=---
.-.v+z z +:*: x--y

Solution. We have
dx—. dydy— dz_ dx+ dy +dz
y—x z—y 2(x+y+z)

From first two members, we have
log (y—x)=log (z—y)+log c1

[Gujrat 61]

or (y—x)=c1 (z—y). ...(l)

'I-or a rule of finding I. F. in such a case sec § 39 page 52 of Part I of
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Again last two members give
-log (y-z)=3 log (x+)+z)- i log c,

or (y-r)1(x+y+z)=c2.	 ...(2)
(1) and (2) together give the complete integral.

Ex. 16. Solve	 dx	 dy
y (z*--x") = dzZ (x.-y1)

[Raj. 54; Karnatak 60]
Lolutlo.. We have

	

dx = dy	 dxC
X (y1 -z1) y (z1-x8) z (x1-y

x dx+y dy+z dzdx/x+dy/y+dz/z
Zx (y1- z5)=O	 Z_z1)=O

Hence x dx+)' dy+z dz=O and +dy dx—+—=o.
X y z

Integrating these, we get
x2-fy'-3-z'=c1, log xyz= log C1, I.e. XyZC1.

These constitute the complete integral.

Ex. 17. Solve	 dx	 = dy dz
z'-2yz-y' y--z y-z	 (VIkrasn 621

Solutlo.. Using 1, y, z as multipliers, we get
dx+y dy+z dx

zl_2y;_y*+y(y+z)+z(y_j)°)
i.e. dr+ydy+zdy=.O.

Integrating, 2x+y'+z'-ci.
dy dx

Also - - can be written as
y+z y—z

y dy-(z o!y-fy dz)-z dz=O
Integrating, y2-2yz-z1=c1.
(1) and (2) constitute the complete integral.

	

dx	 dy	 dzLx. IS. Solve 
X y'--Z '1)i (z1+x) -z(x2+y')

Hint. Multipliers are x, -y, -z 4nd I-, -1 , -1.xy z
Integrals are x2-y'- z2=c2, xyz=c1.

dxdy	 dxEx. 19. Solve
y- xx x +yz x2+y2•	 [Kariiatak 61]

Solution. Using y, x, -I as multipliers, we get
y x+x dy-dz=O, d (yx)-dz=O.

Integrating, xy-z=cl.
Again using x, -y, z as multipliers, we get

x dx-v dy+zdz=O.
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Integrating, X2_y11z2c,•

(1) and (2) together form the complete integral.

	

Ex. 20 Solve dx	 dy	 dx 
z(x+y) z(x—y) X'±y

[Agra 72; Poona 60; Delhi ions. 72]
Solution. Using x, —y, — z as multipliers, we get

xdx—ydy—zdz( ... x2—yt—z2c1.
Again using y, x, —z as multipliers, we get

y dx+x dy—z dz=O, i.e. xy—izlci.
(1) and (2) form the completintegraj.
Note. We can also use the first two members of the given

equation to give one integral.

Ex. 21. Solve	 dx	 dy	 dx
+y'+yz xs+ys j z

[Bombay 61]
Solution. We have

dx—dy	 dz
• z(x-.y)	 (+)' 

i.e. dx—dy—dz.Ij.
.... X—Y--.Zc1.

Again	 xdx+ydy	 dxg
x5+y'+xy (x+j) z (x--y)'

ie	 xdx+yd.v 
=! or xdx+ydy dx

• x1—xy+ys+, z xa y =7•
Integrating,

	

log (x'+y')2 10gZ+Iogc1 Or	 yCs
(I) and (2) together form the complete integral.

Er.

	

	 dx	 .y	 dx. 22. Sol,e --------.
x —y'—yz x—y2 —zx z (x—y)

fliombay 61)

EBombay 611

Solutlol. As above X —y — Z==c1 is an integral.
xdx—y dy dx .Again -. --7 - -	 -. i.e. -- Cl.

dyEx. 23 Solve 7dx
T	

dz
z+sony—

Solution. when	 4,
'Y-3x—c.

Now

	

	 dx
T'itan (y— 3x)

Sdx	 5dz

i.e. dy-3 dx=.O,. we have

becomes

as y-3x=c.
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Integrating, log (5z+tan c)—log c,+5x,
I.e. 5z+tan cce", i.e. 5z+tan (y5x)=ceU.

(1) and (2) form the complete integral.
dxdy	 dzEx. -=---=______1 —2 3x2 sin (y+2x)

Ans. 2x+yci, x5 sin (y+2x)—z=c,.

Ex. 25. Solve dx dy	 dz
.1' x XYZI, (X3 —Y')	 [Bombay. 61]

xdSolution. - dy
- gives x dx—y dy=O, I.e. x—yc.....(1)Y• x

Now dx	 dz	 dx dz
Y XYZ (X —yt) gives -r--ic-

or c1xdx= d2—1- or c1x5=_2

or (X_2)XI...+c*

(1) and (2) form the complete integral.
dx dy	 dzEx. 26. 
Y —z z+(y+x)

Ans. x+y=c1, log [z+(y+x)]-2x=c1.
dx	 dy	 dzLx. 27.	 _____

xz (z+xp)	 (z'+xy) ,1
Ans. xy=c1, (z3+xy)—x1..,.

dxdy_dzLx. 28.

	

Y —x 2x-.3/	 [Mysore 691

'ii
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Total Differential Equations

41. Total Dillereutlal Equation
An equation of the form

Pdx+QdY+RdZO,
where P. Q, R are functions of x, y, z is called the total differen-
tial equation.

Thus equations
(3x2y*_.exz) dx+(2Xy+ S i fl z) dy+(y coo z—e) dz=O, ..;(l)
(3xz+2y)dx+XdY±X*dZ0,
dx+dy+xdzO,

are all total differential equations.
Integrable equations. It can be seen that (I) is exactdifferen-

tial of	 x*y$_exz+y sin z=c.
Thus (I) is an exact equation.
On the other hand (2) Is not exact; but on multiplying by x

(integrating factot) it gives
(3x5z±2XY) dx+xt dy-f x3 dz=O,

which is exact whose integral is x8z+x1y=C.
• Thus (1) and (2) are integrable equations.*	 -

Note. it can be seen that (3) is not integrable and its primitive
cannot be found.
*4.2. Condition of Jntegrability.

[Agra 63, 51 ; Delhi 67; Gujrat 61, 59 58 ; Bombay 58, 61;
Meerut 70; Raj. 60, 58 ; Poona 62;

Sagar 63 ; Karnatak 62,611

The equation is P dx+Q dy+ R dz=O.
Let UO be a solution of (I) or of p (P dx+Q dy+R dz), where

p Is a function of x,y, z. In gneral,Iet
du=p(P dx+Q dy+R dz).

au	 au
JIut du	 dx+dy±øudi,

ax	 ay	 TZ
Bu	 au.	 3u

so that -P,	 -pR.pQ, 

'It can be veritied that equations (I) and (2) both satisfy the condition
of integrability given in § .2 below.
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Also since	 *p	 82iL

ax DY— By ex
(&Q)	 (1P)

By

MY 
8Q' 8u 8u

or.

	

02u	 03u	 e,u	 a'u
Similarly, since	 and —+—b--, we get

	

øx &z zx .	 8	 øyDz z
fRx5.'j.	 az	 øx	 .	 ...(3?

and p(ØQ OR\R ±_Q !.
zyJ	 By	 øz

Multiplying (2), (3), (4) by R, Q, P respectively and adding
(to eliminate ), we get

(
OQ OR 	 IØR aP)+R(aP 8Q\_0-_J+Q ëiT

This is the required condition of integrability.
Note. We can show that if (5) .s satisfied, the equation (1)

has an integral. Thus the condition (I) is necessary and sufficient
for the integrability of (1).
43. Exact Equation. Condition of exactness.

incase Pdx+Qdy+Rdz
is exact differential of	 u=a.
then du=P dx+Q dy+R di.

øu	 au	 audAlso du=— dx+—dy+— Z,
ax	 aaz

øu aUso that P—,	
r'	 a

But 
a2u	 øu

øxay 5-0 —X

aPaQ

	

aQaR	 aRap
Similarly	 and

	

az By	 axaz
These are the conditions of exactness.
Note. Thçse can be obtained by putting j =1 in above arti.lc.

*4.4. Method of solving

	

P dx+Q dy +R dz=O.	 .	 [Saugar 62]
First check up that the condition of integrability,

i.e.	 (2	 ?)

	

-- +Q Lx .& / 	 (bp—'	axj	 '
is satisfied.
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Case I. Exact Equation. If the equation is exact, i.e. if
8Q aRoRaPØP aQ
azøy 'axz'ayST,

i.e. coefficients of P, Q, R in (2) are zero, then the equation can
be integrated after properly regrouping the terms.

Case IL Homogeneous Equation. If F, Q . R are homogeneous
functions of x, y, z, then one variable say z can be
separated from the other by the substitution xzti, yzv, so that
dxz du+u dz and dy=z dv+v dz.

Case III. One variable constant. If any two terms say
P dx-f Q dy=O can be readily solved, then we take the third
variable z=constant, so that dz=O.

Thus let solution of P dx+Q dy=O be	 ...(3)

where 0(z) is function of z only and is as such constant with
respect to x and y.

Then to completely find the solution, differentiate (3) with
respect to x, y and z and compare this with the given equation (1).
We thus get the value of 41dz which on integration gives value of
# and the complete solution (3).

Case IV. Method of auxiliary equations. If none of the above
methods is found convenient, then comparing (1) and (2), we get
simultaneous equations

dx	 dy	 dz
Q OR ai. ØP aP OQ1

Fz Fy &x - az Ti
 are called auxiliary equations and can be solved like simul-

taneous equations. If v=b be the two integrals of auxiliary
equations, then by comparing A du+Bdv=O with (1), we get the
va1us of A •and B and then the complete primitive.*

We shall illustrate these methods by some of the solved
examples.

Ex. 1. Solve x—y)dx-_xdy+zzo.
Solution. We have P=x—y, Q=—x, R=z.
The condition of integrability is

(_\=osz	 ox,	 t,jx oz /	 5 y	 X /'
• (x-y) [O.—O]+(—x) [0-0]+z(—I+I)0.

The condition is satisfied Hence the equion is integrable.
Hence we see that in the above condition coefficients of P, Q, R
are separately zero. Hence the equation is exact.

'Fourth method of auxiliary equations will fail in case the equation is
exact.

Second method cannot he applied in case P. 0. R are not homogeneous.
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I. Method. Exact Equation.
The equation can be written as

X dx—(y dx+x d.v)+z dz=.
Integrating, x—xy+4z=constant

or x-2xy+z=c is the solution.
II. Method. Homogeneous Equations	 [Vlkram 69
Here we find that P. Q, R are homogeneous functions. Hence

putting xuz. y=vz, we get
dx'udz. +z du, dy=vdz+zdv

and then the equation becomes
(uz.—vz) (ii dz+z du)—uz (v dz+z dv)+z dz..O

or	 z (u—v) du—zu dv+[(u—v) u—uv4-l] dz=O
(u—v)du—udv dz

Of	 [u-2uv+lJ
Integrating, log (u2 -2uv+ I)+2 log z=log c

or	 z2 (u-2uv+ 1)—c
or	 utz2-2uz. vz±z2=c.
or	 x2-2xy4z=c	 asuz=xvzy.

III Method. Regarding one variable constant.
If we put z=constant. then dz=O and then the equation

becomes (x—y) dx—x dy=O, i.e., x dx—(v dx+x dy)=O.
Integrating	 4x2—xy=02).	 (2)
Differentiating it, we get (x—y) dx—x dy—#' (z) dz=O.
Comparing this with the given equation, we get

• z--j&'(z), so that (z)—z+c.
Putting this 'value of #(z) in (2), me solution is

ix" xyz*=k

or x2-2xy+z52k=c,	 is the solution
IV Method. Method of auxiliary equations
Since the equation is exact, the auxiliary equations are

dxdydz

which fails to give any solution. 	 [Se footnote on P. 124]
45. Example which can be solved by inspection

No* *c solve certain examples which can be solved as exact
equations or whiéh can be solved by inspection. All these
examples can be.solved . by other methods also, but it is easiest if
it is possible to solve a particular equation by inspection.

	

Exi. So1ve2yzdx-3zxdy--4xydz—O. 	 [Bombay 611
Solution. Here P=-.2yz, Q--3zx, )...-4xy.
:. Condition of exactness, i.e.
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faQ aR ,,I	 \+Ri	 L0Th5/' ax02 J 	 k8z8x/
gives 2yz (-3x+4x)-3zx (-4y+2y)-4xy (2z-l-3z)=O
i.e.	 2xyz+ 18xyz-2Oyz=O.

Thus the condition of exactness is satisfied.
Dividing by xyz, the equation become.

x	 )'	 z
Integrating, 2 log x-3 logy-4 log zlog c..

i.e. -,--z4 =c is the solution.y
Note. All the equations, that we will be solving, satisfy the

condition of integrability. Therefore, we shall not show in every
example that this condition is satisfied. Students should verfy

• this for themselves and in examination they should inevitably'
show it.

Ex. 2. Solve (y+z)• dx+dy+dz=O.	 [Agra 54]
Solution. Write the equation as

Integrating, x+lg (y+z)log c
or	 y+z_— ce X is the solution.

Ex. 3. Show that
(y:+2x) d.+(zx-2z) dy+(xy-2y) dz=O

is integrable and solve the equation. 	 Moons 601
Solution. Show for yourself that the condition of integrability

is satisfied for equation.
To solve it, write it as

(yz dx -f zx dy+xy dz)±2x dx .-2 (z dy-f y dz).=O.
Integrating,	 xyz+xZ ..27z =c.
Ex. A. Solve

(yz+2x) dx+(zx+2y) dy +(xy-f2z) dzO.
[Delhi Hoes. 68]

oiwwn inc equation can be written as
(yzdx-4-zx dy -F xydz)-f 2 (x dx+y dy+z dz)0

or d (xyz) + d (.' +3" -)z' 0.
Integrating, the aolutioà is

Jryz+(x'+y'+ z')=c.
Ex. S. Solve

yr (l+x) di+zx (f +Y) dy +xy (l+z) dz=O
[Gujrat 611

+xyz) dz=O.(yz+xyz) dx+(zx+xy') y±(xy 
[Agra 69, 64, 58; Raj. 551

or
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Solution. Dividing by xyz, the equation becomes

(1+I)dx+(t+1) dy+(+l) az—o.

Integrating. log xyz+x+y+Z=C is the solution.

Lx. 6. Solve (a—z) (y dx+x dy)+xy dz—O.
ERaJ 61; Poona 69; Bombay 611

Solution. We can write the equation as

x y a—Z
Integrating, log x+logy—log (a—z)=log c

	

I.e.	 xy.—c(a—z).
Lx. 7. Solve yz log z dz—zx log z dy-f xy dyO.

[Meerut 68; Agra f8l

Solution. Dividing by xyz log z, the equation becomes

X	 y	 z log z
•	 Integrating, log x—iog y+log (log z)=log c,

	

I.e.	 x log z=cY.
Lx. 8. Solve (y+ z) dx+(z+x) dx+(x+y) dz=O.

[Raj. 59; Karuatak 61, 62)
Solution. Write the equation as

(y dx+x dy)+(ZdX+X dz)+(z dy+y dz)=O,

	

i.e.	 d(xy)+d(zX+d(Yz)—O.
Integrating, xy+yz+ZXC is the solution.

Ex. 9. Solve (y+z2—x2) dx-2xy dy-2xz dz==O.
(Delhi lions. 68; Karnatak 611

Solution.. The equation can be written as
(x2+y5+22) dx=2x (x da-I-y dy+z dz),

2 (x dx +y dy + z dz) dx

	

e.	 ..	 -

Integrating, log ( r +y' -F z2).log 'x± log c-
:. x$+y+Z'—_CX is the solution.
Ex. 10. Solve x dx .1-y dy— ,J(a—x—y2) dzO.

[Gujrat 581

Solution. The equations can be written as
xdx+ydy_—d

V(oh_X_y2) 
Z

i.e.,	
d(x2+y2)	 dz.

Integrating, sin—' X+Y =2z+c,

or' x'+. —a iin (2z+c) is the solution.
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Er. 11. Solve

	Solution The equation can be written as	
[Agra 4

zdz+(x—a)dx

1 _dFz'+(x.._a)9or 
1* %f(h1 _{za + ix_ tjjf_ )'.

Integrating, /[h -	 =	 c.
•• Mz x—a4y_a s is the solution.
Ex. 12. Integrate (2x-I-y+2xz) dx+2:cy dy+x5 dz=du.

[Agra 55]
Solution Write the equation as

• 2x dx4- (y' dx4- 2xy 4Y)+ (x2 dz-F2xz.dx)=du,
i.e. 2x dx+d (y'x)4d (xtz)_du

Integrating,. x2+y2x+xzu+c is the solution.
Ex.' 13. Sole

yz2 (x—yi) dx±zx' (y2— xz) dy4-xy 5 (0—xy) dz=O.
• Solution. Dividing by xsyszs, the equation becomes

	

(!._!) dx+(_) dy+	 dz=Oy X2

or ydx—x ay y dz—z dy zdx_x dz —
x2	 o-

Integrating, ++ !_c is the Solution.

Er. 14. Solve WY—y—y'z) dX +(xy2—x2z —x) dy
+xy5+x5y)dz0.

[Agra 63, 57; Raj. 54, 52; Sagar 63]
Solution. Dividing by x*ys, the equation becàmcs

	

(:—i—) 
dx+(!_ _ 	

+(+) —o.:
ydx—xdy xdy—ydx xdz--zdx ydz—zdy_ 0i.e.	 +	 -

Integrating, x y z•z

I.e. x2 +y3+z (x+y)=cxy.
Note. For an alternate solution of this example as a homo-

geneous equation, see Ex. 2 P. 134.
yr	 xz	 -Er IS. Solvc ç—s 	 ay—tax - dzO..

Solution. Write the equation as

128
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ydx—xdy	 dz
(x'+yt) tan s (y/x)z

Hence the equation becomes— du—,,.dz
U z

Integrating, —log ulog z+log c
or 	 or	 i.e. tan—' (^).!_ or	 =tan (1.).
*6. Examples by taking one variable constant.

If by taking a variable constant (i.e. by omitting any one
of the terms) the equation can be easily integrated, then this
method is preferred.

It will not be 4ifficuie to decide as to which variable should
be taken constant, since equation free from it should be integra-
ble. The following examples will make the method clear.

Ex I. Sohe 3x5 dx+3 y' dy_(x3y3e2) d=O.
[Agra 70; Karnatak 61]

Solution. Taking z const.*, dI=O, the equation becomes
Us dx+3y' dy=O.

Integrating, x3 +y3= (z),
where q (z) is a function of z (regarded const.).

Now differentiating (I), we get
3x' dx-I-3y' dy-4i' (z) dz—O. 	 ...(2)

Comparing (2) with the given equation, we get

I.e. —4e-', linear, I.F.=e.
dz

4e=c+J e' .e dz=c-j- eT.
Hence #_c+e
•;. (I) be omes x3+y3 ce r +e21 .	 -

which is the required irolutian.
Note. This example haR been solved by another method also..

See €x. 3 P. 134.
Ex. 2. (2xz—yz) dx+(2yz—zx) 4y__(x_xz+y2) dz=O.

[Agta 59,53]
Solution. Taking z=const f, dz=O.
The equation becomes

(lxz—yz) dx+(2yz—zx) dy—O
*We cannot take xconst. or yconst. because In that case the

remaining equations are not integrable. This suggests that only z be taken
Constant.

tHere also if we take x or y constant, the resulting equations cannot beintegrated. Hence Is taken constant.
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i.e.	 (2x—y) dx+(2y—x) dy.=O
or2xdx—dx+xdy)+2ydy.O.,

Integrating, x5-_xy+y2=(z),	 ...(l)
where 4 (z) is a function of z, which is regarded constant.

Now differentiating (I), we get
(2x—y) dx+(2y—x) dy—#'(z) dz=O.

Multiplying it by z, it becomes
(2xz—yz) dx+(2yz—:x) dy—$' (z) dz=O.	 ...)

Comparing it with the given eqtaation, we get
z4' (z)x,—xy+y'=*# (z).
zLor =!

#=cz.
Putting this value in (I), the solution is

x2—xy+y5cz.
Ex. 3. Verify that the condition of integrability is satisfied by the

following equation and solve it.
(2x2+2xy+2xz1+ 1) dx+d;'+2dzP.

[DelhI Hon.. 67; Bombay 62; Raj. 57; Nagpur 61;
Punjab 67; Agra 71, 65; Sugar 62; Vlkrsm 64)

Solution. Verify for yourself that the condition of integrability
is satisfied.

Taking x=constant, dx=0, the equation becomes
dy+2z dz=0 Integrating, y+z	 (x),

where ' (x) is a function of x, which is taken constant.
Differentiating it, we get 	 -

dj'+2z d—' (x) dx =0.
Comparing it with the given equati n, we get

-IS' (x)-2x2+2xy+2xz+1
2x'+2x(y+z5)+1=2x5+2x(x)+1=0

or ±+2x# .fi2xs+l . U. Linear, l.F.=eX'.

..	 =c_J (2x5 +1) 	dx=c_J 2xeX1dx_Je*'dx

=c-J x&1*2xdx_J ex*dx

=c-xe'-'	 e' dx_J.e'dx..c._xeTt

.•. #,=Ce—zI _x.
Putting this value in (1), the general solution is

(y+z')—ce —x or (x4-y-f0) e	 c.
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Lx. 4. solve
( ' y -f e) A-' ±(e'z+	 dy i (el--('y	V) /: H.

Sutn	 Faking z cone.. dz
Uhe equati , n becomes

(t '.' d k -f r l dY) + e": dj +	 (IX --- 0.
integratiLg, ey 4- Z -f eX--ç6 (fl.
I)iffr.ntiating it with respect to all variables, we get

(et c') dx+(ez4-e') dy +(e + e ) dz—' (z) J: 0.
(mparing this with the given equation, we cet

ey 4e	 (-	 '_
01 '-e'z±el'

• Jz urdz
Pa t ting this 'alue in(I), the genural integral is

evv }
!x. 5.	 F	 'r1
Soiu(ioo.	 Fake .v - ( 'oust d.	 0.

-'d:	 i),e;F.:--c)uc.
ns	 c't	 s;n x e.

L. 6, Soli e v dr—v dx- 2x J: H.	 rPaj. 601
Shion. Taktn. -- oiisi. d' 0.

x d  -- v d- .... -.	 ,' .	 =
x

fltegrating.	 X---- Rg y ---

DifTer"ntiating, ! dx	 dy-'(z) if:,

i.e.	 v d 	 di, - xj' '(z) dz.
Fampariig it with given equation, we get

2xz:=xy	 i.e 2

i e 2_-e4or 2z dz - c

or z2 c — e	 or e.c--:;	 . —log (-:
Putting this in I), the complete soluHon is

log x--log	 —log (C.2 2) or y - x (e—:.
E. 7. Solve 3y dx -3 dv+r2 d

clv
ydx—xdv-0 or	 •-- (l.Y.0

X y

AIntegtatig	 log -)=- (z)	 or	 ---c '-.
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DifFerentiatingagain dx-i dy=#'(z) dz

or ydx-xdy--xyf(z)dz.
The given equation is

y dx-x dy=- dz.

Comparing, xy01(z)-Jls

or zj'(z).J.e-(') -	 -

or z=e- where çz)dz
or e+ dç6 dz/z)
I e. e+=Iog -Az, where A is a const.

Putting this in (I), the complete solution is
(X/Y)—jog Az or x-y log Az.

Ex. 8. Solve
(Z+Z) cos x dx -(z-l-z) dy-+(l.-z2) ( p- sn x) dz=O.

Solution. Taking z=const., dz=O
the equation becomes

cos xdxdy_O : or sin x-y(z).
Differentiating, cos x dx-dy=ç6'(z) dz

or (z+z) cos x dx-(z+z2) dy= (z+z2) #'(z) dz.
Comparing it with given equation, we get

(I .— z2) (y-sin x)= -(z+z2) ,' ( z)
i.e.	 -(l--z2) (z) =-2z (l+ z) 41(z.

z	 z	 j•
Integrating, log ,-Jog z= -z+ogc, ç6=cze.
Hence frbm (1), the general solution is

sin .r—y=cze	 or y sin .v-cze.
Ex. 9. Show that the differential equation

z (1-z2) dz+z dy=(x+y+z) dz
a:isfies .I,e condition of iItegrthiITh', and hence solve it..

[Delhi Hons. 11172]
Ex. HI. (2.x-.z) z dx±2v2yz dy-}-x (z+v) d=-O.

[Guru Nanak 73].
4 •7 Examples on Homogeneous Equations and by the Method of

Auxiliary }quatious
We now give some examples which can be solved as homo-

geneous equations or by forming auxiliary equations.
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The method of forming auxiliary equation is sometimes
convenient.

CEX. 1. Solve (yZ +yz) dx — (xz+z) dy+(y5—xy) dz—O.
[Delhi Hons 70; Agra 72, 60; Vikram 62; Karnatak 60;

Sagar 65; Bombay 58; Mysore 70; Raj 56, 53, S1J
Solution. The equation satisfies the condition of integrability.
First Method. The equation is homogeneous; hence put

x=zu, y=zv,	 (Refer § 44 Case II P. 123)
dx=z du+u di, dy==z dv +v dz.

Hence the equation becomes
z2 (V2+v) Lx du+udz]+z' (u+ 1) (zdv+vdz+z(v—uv) dz=0
or z(vllv)du+z(u+l)arv+[u (v+v)+v(u.f.1)+v1—uv]dzO

v2 1v.	 u+1	 dzor	 au-f------	 dv+— =0UVt+UV+V+V2	 UV'+UV-} V+V	 z
du	 dv dzor —- -j- -j- - —0 as uv2+uv.fv+v5(u+1) (u2+0
du /1	 1 \	 dior	 +1;- -ri) dv+—=O.U+l

(u+1)vz	 (u+l)vzIntegrating, log	 =log C, i.e. v+l

i.e.

V+I
x/z+1)(y/z)z	 -.e. 	 casx=zu,yzv

or (x+z)y=c(y+z).
Second Method. The auxiliary equations are

dx	 dy	 dz
8Q OR R 8PJQ	 (Refer Case IV P. 124)

• az ay	 -TX
• •	 dx	 dy di	 dx - dy dz

2 (x—y+z)-2y 2y or x—y+z—y
Last two members give dy+ dz =0, i.e. y +z=u (say).
Also

x+z •—y
Integrating, Jog (x+z)4-log y=log c,

i.e.	 y (x-fz)_— v (say).
Then Adv.—_Bthj

gives	 A (dy+dz)+B(y dxf-x dy-J-y dz +z dy)=0,
ie.

Comparing this with the given equation, we get
By=y5 ±yz, I.e., B=y+zu.
A +B (x ±Z) =xz+z2=z (x±z); •. A=(x+z) (i—B)

or



du dv
Hence (2) is — v du+u dv=O, I.e.

Integrating, log (u/v)log c, i.e. *4v.=C

oror y(x+Z)(Y+Z).

which is the required solution.
Note. We can do this example by taking any one of the

variables constant also.
*Ex. 2. Solve the differential equation

(x2y—y3—y2z) dx .j-(xy'—x'z —x3J dy+(xy5+x5Y) dz=O.
fAgra 63, 57; Raj. 521

Solution. The equation satisfies the condition of integrability
(verify yourself) and is homogeneous.

• Put x=uz,y—vz,
Jx—u dz+z du, dy—v dz+ z dv.

Then the equation becomes
(u'vz' -	 —V5Z5) (u dz -- z du) + (uv 2z2 + uz3utz5)

•	 .	 (v dx+z dv)+(UV 5Z*+UVZ3) dz.=O
i.e. v (uLv'— v) du+u (v5— u5— U) dv=O
or (u'—v5) (v du—u dv)—v2 du—u' dv=O.

Dividing by u'v', it becomes
11	 . 1•	 .	 1	 I

vdu—udt'- udv—vdu I . II.e.	 +-	 _ du—dv=O.

Integrating,

x y z z	 ••x	 y
i.e.	 as	 and v=-.

Ex. 3. Solve 3x2 dx+3y2 dy_(x*+ys+et ) dz=O.
fKaruatak 61]

Solution. The equation satisfies the condition of integrability.
Here auxiliary equations are

dx ••	 dy	 -	 dz
OQ aR

—j
A dy.dZ
• 3y-3xO+O
dx dy d

i.e. ------=-

First two give x2 dx+y2 d. O, i.e. x3+y=U (say).

	

Last gives J: O, i.e.	 (say).
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So	 4 du+B dv=O
gives	 A(3x'dx+3)5dy)+RdZ-O
or	 3Ax'dx+3Aytdy+Bdz=O.

Comparing this with given equation, we get
3x"=3Ax', B= -(x+,'+e").

Hence (I) becomes du-(u+e') dv=0.
dui.e. --u=e. Linear, 1F=e'.dv

lv=ca+e'
or	 u=c1e'+e2'
or	 x+y=c2e+e is the solution.

Note. This example has been solved by taking z=corist. also.
See Ex. I P. 129.

Ex. 4. Show that the condition of integrability is satisfied by
the equation z (z-y) dx+(z+x) z dy+x (x+y) dz-O.and solve it.

{Bombay 611
Solution. We have

(8— ØR\	 18R øF\ R10 aQ
Oz 8y j+Q %øx azJ+ (LP 8x

=z (z—)i) [2z+x—x]+z (Z+x) [2x+2y2z]+x (x+y) [—z—z]
=0.
Hence the condition of integrability is satisfied.
Now the auxiliary eqt.ations are

dx	 dy	 dz	 dx	 dy	 dz-, i.e. -=Zr 2x + 2y- 2z - -2z	 z x+y-z -z
First and third give dxfdz-O, I.e. x+zu (say)

Also	 Ic. log (x+y)+ log z.log v.

Ic.	 x+yz=v.	 ...(2)
Now Adu+Bdv=O .

gives	 A (ux+dz)+B [z dx+z dy4-(x+ y) dj.O
i.e.	 (A+Bz) dx + Bz dy+(A+x+y) dzO.

Comparing it with the given equation, we get
A+Bz=z (z-r), 8z(z+x), A+x+j-x (x-fy).

B=(z+x)=.u, A=: (z_y)Bz=t-z (x+y)=-v,
(3) becomes	 —t' du4-u dv=O,

Integrating,	 r/u=c or t'=cu
i.e.	 (x-f-v) z=c (x+z) is the solution.

Lx. S. So/se x:lx-z dv+2rd:=O.	 [Gujrat 611
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Solution. The condition of integrability is satisfied, since
xz(-1.-2)—z(O-3xz)-I-2y(O—O)=O.

The auxiliary equations are
dx	 dy dz	 I dx dy dz.e.

From dz=O,	 z=u (say).
From xz2 dx.dy,	 x'z2-2y=v.
Hence A du+B dv=O becomes

A du+B (2xz dx+2x 2z dz-2 dy)O
i.e.	 2Bxz2 dx-2B dy+(A+Bjx!z) d,-=O

Comparing this with the given equation, we get
2BXz2 =xz, —2B==—z, A+2xZzB__2y.

B=z=4u, A=2y—x5z=—v.
Hence (1) becomes

—v du+ ju dv=O, i.e. v=cu2
or x2z2_ 2y.=cz2 is the solution.

Ex. 6. Solve (y2 +y+z2) dx+(z2 +xz +x2) dy
±(x2 +xy+y2) dz=O.

[Delhi Hans. 69; Xarnatak 62; Agra 61. 52; Rajputana 63, 58, 54]
Solution, Method oj'auxlliary equations. The auxiliary equa-

tions are
dxdy	 dz

ØQ ØR8R PP ÔQ
az ay yz øy øx

i.e. 	 dx	 dy	 dz
.e. (2z+x)_(x±(2x+y)_(y+2x)(2y+z)(zj

dx dy dzi.e. y—z z—x x—y
This gives	 dx+dy+d=O.
Integrating,	 x±y+z—u (say).
Also	 (y+z) dx+(z+) dy+(x+ y dz=O

i.e. (x, div+y dx)4-(y dz+z dy)+(z dx4x dz)=O.
Integrating,	 xy+yz-f-zx=v.
Then A du+B dv=O gives

[A+D(y+z)] dx +[A +B (z+x)] dy +[4 + B (x+y)] dz=O.
Comparing this with given equation, we get

A+B(y+z)=y2+yz+z2.
A +B (z+x)=z2+xZ+x2,
A +B (x+y ) =x2+xy -l-y2.

Subtracting first two of these,
B(y—x)=y--x5+z (y--x);
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... Bx+y+u.
Then 4—.—(xy+yz+zx)=--t'.
fntegrating, u/v=constant or x+y+ z=c (xy+yz-l--zx) is the

solution.
Allter. Homogeneous equation. This is clearly a homogeneous

equation.
So putting xuz, y=vz, dxudz4-zdu dy=vdz+zdv, the

given equation becomes,
z2 (v2+v+l) (u d'z+zdu)+zt (u+u+l) (s dz+ dv)

+2 u'+uv--v2) dzO,
(v'+v+J)du+(ut-4-u+l)dt, dz.e.	

tt±v+l)(uv+v+u)
This cn be written as

d [ u -f- v + 1 (uv+u+0)1-2((u+v+uv)] "-!!

	

(u+V+l)(UV+Ø+)	 -

or	
(u+v+1)(uv+v+u)	 U+V+1	 Z

ut,Integrating, u±v+
u--v--L

xz+,z+xJ, 	zor

or xp+yz+zx=c (x+y+z) is the Soitjon.
Ex. 7. Solve equation In Ex. 2 P. 129 by the method of homo-

geneous Equation.
Proceed yourself.

AN Integrating factai of bomewseem eqsatjo,
If Px+Qy+Rz :p60, then

Px--Qp-j-Rz
is an integrating factor of the homogeneous equation.

Ex. 1. Solve Ex. 6 P. 136.
Solution. Here Px+Qy+Rz_—(x+y+z) . (;ç' fyz-f z).

Hence multiplying by

the equation becomes
(jA+yz+z*)

'x+y+z (Xy+yz +zx)	 -
dL 2(dx+dy+dz)0
r-

where L= (X+y+) (xy+,z+zx).
Integrating,	 L=c(x+y+z)2

or	 (vi-l-zx+xy)=c (x+y-fz).

M
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E. 2. z1 dx+(z'-2yz) dy+(2y'—yZ—x2) dz=O. 	 [Agra 40]
Solution. Here Px+Qy+Rz=O; hence there cannot bean

integrating factor of the equation. So proceed as usual by putting
X=UZ, )'-VZ.

Miter. Taking z=constant, dzO, the equation becomes
Z2 dX+(z 2 -2y2) dy=O.

Integrating,	 zIx+(z8y_ytz)0(Z). .	 ... ( 1)
• Differentiating,

Z9 dx+(z-2yz) dy+(2zx+2zy—;.7) dy4' (z).
Comparing, 2y2 —yz —xz=r22x +2zy—y'—#'

or	 =3 ( y +yz+zx)	 .

d0_3 dz or ç6=cz3.

Hence from (1), the solution is
z2x + (z2y—y2z)

I e. zx+yz—y2=cz'.
49. Geometrical, interpretation of

P dx±Q dy-ER dz=0.
Let (Xi, yi, z1) b a general point in space for which all

P1 =P (XI. y, z). QQ (xi, y1, z1). R 1 R (xi, yi. z) are nt
zero.

• If P, Q, R are single-valued, then set F,, Q,, R, may be consid-
ered numbers of .* unique line through the point. Hence the
given differential..: equation may be considered to define at

/	 .	 i V—y; Z—Z1each poin;(x11, z1), a line -.------------.--. and a plane
P1	 I

P1 ('T) 4 1 (y—y L )+Rl (z—zi)=O, which is normal to the
above line/.

• If f(x4. z)=c is the solution of the differential equation
then it y€presents a family of surfaces such that through a gern.ral
point (xi, y, z1) of space there passes a single surface S, of the
'family, the tangent plane to this surface at (xi, y1, Zj), being

(x—x,) —af f(y—y,) Of---+(z--z17 -O
'X1	.	 o3'j

and	 x—xI y—yi ;—z,
aflaxi

normal uIflg	
f/&n

410. Orthogonality of integral surfaces of
P dx+Q dy +R dz=0

and
•	 dx dy dz

[Karnatak 63; Gujrat 591

*
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This follows from the fact that at any point (Xi, yi, z) the
direction F1, Q, R1 is

(I) normal to the integral surface (I) through the point
(xe. Yi. z1) and

(ii) the direction of the integral curve of (2) through the
point (xi, yi, z1).

Hence these cut orthogonally.
Note. (2) is also cut orthogonally by

dx	 dy	 dz
TQ 8RR a'aP .aQ
z a' 8x az ay ax

since the condition of their orthogonality is

° (_\+ (OR _a?-\	 (_\=	 ...(4)z	 y/	 øx z /	 'y 8x
which is the condition of integrability of (1), see § 42 P. 12 )

Geometrical interpretation of the condition of Integrability of
P dx+Q dy+R dz=O

tMeerut 681
As outlined earlier the geometrical interpretation of the

condition of integrability of (1) is that the two surfaces given by
dx dy dzTtA

d	 dx	 dy	 dz
OQan	 aR\,R
tôz øy/ øx azJ ay &

	cut orthogonally.	 -
Ex. 1. VerIfy that (2) and (3) cut orthogonally, when

P=ny—mz, Q=Iz—nx, R=mx—Iy.	 (Gujrat 59)
Hint	 Show that (4) is satisfied. Hence the result.

411. Non-integrable Single Equation.
lfequatio Fd+Qdy+Rdz=O, ...(l)

does not satisfy the condition of integrability of § 42, then l) in
general cannot be integrated.

However, if an arbitrary relation
fx,y,z)=c	 .	 .

is given in x, y, z, then solution of ) can be dCtei mined subject
t.the relation (2) as follows:

From (2), we get

When form of the relation (2) is known, then one variable and
its dffer.mitial can bz determined in terms of other variables

I
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and their differentials. Therefore from (1), (2) and (3) one
variable and its differential can be eliminated. If this variable
is z, then we get a differential equation of the form

Fjdx+Qidy....O,

where P, and Q1 are functions of x and y only. The forms ofP1 and Q depend upon (2) containing c.of (2).
Solution of (4) may now be determined. This solution together

with (2) constitutes a solution. For different values off, different
solutions can be obtained.

Ex I. Solve	 dz-0, when
(I) za,
(ii) x+y±2z=O,
Solution. The equation does not satisfy the condition ofintegrability; so it cannot be integrated in general
(i) However if za, dz=O, and then the .equatioo becomes

ydx+xdyo, i.e., xy—c.
Hence XYC, Z'C constitute the solution of the differentialequation, when Z=Q.	 -
(II) When x±y±2z.O the solution is given by

xy=c, x+y+2z0.
Ex. 2. Fl-" the 'stem of curves safifying the d(f.erentia.

equation xd+Ydy+cJ(l_..L) dz—O ...(l)

which lie on the surface xs1a2 +y3162+z21c1 I.
Solution. From (2), l x 2 v2 zS

-____
a b c2

(1) becomes x dx±y dy+z dzO.
Integrating, .xS+yS+z2c2. .43)
Therefore the curves are given by the intersection of (2) and (3).
Ex. .3. Find the most general solution of the equation

ydx-b(z_y)dv±xdz0	 .which is coisistent with the relation
2x—y—ri	

....(2)Solution. From (2)., z.2xy-1
dz=2 .X-dy.

Putting values of z and dz in (I), we get
YdX±(2x+2j—l)dy+x(2dx_dy).,o

or (y+2X)dx+(x-2v_I)4yo
CPC d (•xy+x'_y1_y)O.

!ntegracing,	
Xy+X2ys._.y

S the solution of (1) consistent with (2).
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Integration in Series

51. Introduction
In this chapter we shall consider the solutions of the linear

differential equations of second order, expressed in the form of
series.

A linear differential equatkn of second order in the standard
form is put as

dly—+P(x) d.v+Q(x).,o

where P(x) and Q(x) are functions of X.
A point x=a may have special character with resDect to the

differential equation (I). To determine the nature of a point a
with respect to (I), it is convenient to shift origin to the point a
and suitably change the differential equation also, the form of the
differential equation remains essentially urchanged by such a shift
of origin. And now the nature of origin is determined with
respect to the transformed equation. Therefore without loss of
generality, we can testrict our study to nature of origin wiZh
respect to (I).

Now x=O or origin is called an ordinary point of the differential
equation ifP(x) and Q(x) do not become infinite in a reighbcur-
hood of origin and these can be expanded in the form of power
series given by

P(x) = £ pnv"

and Q(.)= £ QnX".
n-O

It' origin is not an ordinary point of the differential equation,
then it is called a singular point of the differential equation. There
are two types of singular points	 -

(I) regular singular pointy,
and (II) irregular singular points,:

These are defined as follows
If x Px) and xt Q(x) can be expanded as power series in x in a

neighbourhood of origin, then origin is a regular singularity.
A singularity which is not regular is called an irregular

singularity.
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The nature of the series solution in a neighbourhood of irregular
singularity is quite complex and will not be considered here. We
shall find the series Solutions when

(I) origin is an ordinary point;
(ii) when origin is a regular singularity.

52. Solution near an ordinary point
We begin by looking for a formal solution of

dy	 dy
WX j+ (x) j4Q(x)y0	

...(l)
in the form ofthc series

y=ZCX'.

If P(x) and Q(x) are not polynomials of x, then certainly these
can be expressed as

P(x)Lpx' and Q(x)=L'qx'.

From (2),
d	 d2

Putting values from (2), (3), (4) in (I), we get -
Zn (11— 1) CnX"+(Zppj.') (Znc x)+(Zqax") (Zcx")O.

Now equating to zero coefficients of various powers of x we get
the values of various coefficients of (2).

This solution will in general consist of two arbitrary constants
and is therefore the general solution of (1). Following example
would make the procedure clear.

Ex. 1. Solve d'-'Y-X5 dy
--yO in powers of x.

Solution. Here x=O is an ordinary point. Therefore assume
that the series solution be

yCOC1X+C,.Xl+CsXZ+.+CjiXl+...
so that	 ci+2cjx+3csx+...+ncxi+

and

Putting these values in equation, we get
(2C5 — co) — (6c3 — ci) X+(I2c4—c1__c,) x'+(20c5-2c.-c3) x3+...

+[(n -l- 2) (n+l) c.. 1—(n—I) c,_1 —c,J Xa+...=O.
Equating to zero the coefficients of various powers of x,

2c,—c,=0 I.e. c,..jc,,
6C;-. c1m0 i.e. C34,

I2cs—cz-c5 .0 i.e. c&=C.+11.ci,...
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(n+2) (n+l) c1—(n — l) cR_I —c,=O
CO,i.e. c.+2 = 

(n 4- 1) fl) (n+l) (n+2)' "
Hence the solution in the form of the series is

ZCo+CiX + CrX'+ CiX2±( C.+fCi) x'...
or yc. (I+Ix'+,.'x4+...)+c1 (x+x'+''jx'+ .,.).

Ex. 2.. Solve (p
€lty

_2x*
dy
;+4xYx'+2x+2 in powers of x.

Solution. Let the solution in series be
y Cc+C1X+4X5 +c3X2+CSXI+4X1 + ... + Cj,x".f...

	

d5v 	 dy
-y-,-2x1 - +4xy—x1-2x-2=O gives

4X

(2c2-2)+(6c.+4c0 -2) x .f (12c4 -l-2c1 --l) x' -20c5x5+...
+[(n + 2) (n+l) c..+,-2(n—l) c_1+4c_2) X'+...

Equating to zero the coefficients of various powers of x,
2c2-20 I.e. c,=I

6cs+4co-2..0 I.e. c3=- 3-c0 , cg= —ci, c5=O,
- 2(n-3)Cn+s_-)) (n+2) c. 1. ft —

Therefore the complete solution is

+X5 + 1x1 f-iiX4+t'iX5+...
5•3. When x=O is a singular (regular) point

In this case we shall assume a trial solution,

where a l l c's are constants,

	

d	 d2
Find	 and 

y 
and put their values in the given differential

equation.
The index k will be determined by the quadratic equation which

will be obtained by equating to zero the coefficient. of the lowest
power of x.

This equation in k is called the indicial equation.
The values of Cp, C1, Cs, ... CIC. are all determined in terms of c•

by equating to zero coefficients of ither various powers of x.
Now there arise following cases depending upon the nature of

the roots of indicial equation
(I) The roots of Indicial equation unequal and not differing by

an . Integer.
(ii) The roots of indicial equation equal.
(iii) The roots of indiciat equation unequel and differing by an

Integer.



Differential Equations ii

We shall discuss these ca:es one by one by taking examples of
each case. A general theory as developed later in § 5 •9 p. 152.
5-4. Can I. Roots of the adIclaI eqaatioa unequal and not

differing by an integer.
Let a and P be the roots of the judicial equation. If a and

do not differ by integer, then in general two independent solutions
are Obtained by putting k	 and /3, in the series. Let u and v bethese two solutions : then the genr soI!tion is y'=cu+c'v wherec and C' are arbitrary constants.

Ex. 1. Solve completely ii's series the equation
x2!dx2 dx

+(x! _n*) y=O

taking 2n as non7n1igraI.	 (Vikram 1964)
Solution Let v—x (cs-f CiX+4x+4x*--...]

so that	 J(k_1fC.k+cj (k+1) X+c5 (k+2) xt+..Jdx

and	 cok (k—l)-1-cl(k+I)kx+c1(k+2)(k+1)xa+...)

Putting thete value', in the given equation, We get
c, 1k (k_I)+k—fl2] XL-+C, ((k+ 1)+J rk+1

+[c$ ((k+2)_n2)+co] x+ ... + .,.= 0.
Equating to zero coefficients of various powers of x, we ge'

k2 n2 O, fe. k= +a, —n,	 -
difference of the roots=2n=not integral as given.

Also c1 [(k -F I)— n9=O. i.e. c1O.
I-	 IC2=	 (1, +2  Co.C$1 (k+	 c1 = O.

Cj C3 =c5=c7= ...
ir

"0 etc.
Hence

1 p 	I	 Iz_c.x .11+	
! 

.2+	 x4+I n(k+2,
Putting k—a and - a and taking c.=c and c' the two indepen-dent solutions are

{ l_ i-ij Xt+4j 8 (n+2) (n:j.:ij x1 —... }=cu (say)

and cx_a[l_4(1+l) X2+4g(_+),IX4_... I
—c'v (say).

Hence y=cu+c'p is the complete solution.

145
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Note. Zfc=	 then cu is called the Bessel's functionMr
of order n and is denoted by ),(x) (see chapter VIII).

Ex. 2. Solve completely in series the equation
(2X+X) dy dy —6xy=O.

Solution. Let y=xk (Co+CIX+C2X2+...).
Putting the values of y,	 and	 in the equation and equating

to zero the coefficients of various powers of x, we get
Indicial equation k (2k-3)0, i.e. k=O, i

ci (2 (k+l).._(k+l)}0, i.e. C1r0,
c3 12 (k+2) (k+ l)—(k 4-2)}—c. {k (k— l)-6}=O

i.e. c, (2k+1)+c0 (k—.3)0.
Similarly c 3 (2k+5)-f-c 1 (k-2)=O,

C4 (2k+5)..fc (k —]) .O and sa on.
Clearly

	

k-3	 k—i k-3and c2=_._1 co, 
c4= 2E_.5	 --- c0 etc.

	

I	 k-3	 (k—I)(k-3)Hence z__cjk	
I) (2k+5) -"

Putting kO and iand putting c0 =c andc', the twoindependentSolutions are
C [I+3x2+Ix4__.x*+...]ct (say)

and c'*i{ l+xz .._ L!
 

X4+ 
C1

	
Jc'v(sa.

the the complete solution is y=cu+c'v.
Ex. 3. S-lve in series the equations

	

d2	 dI)

	

d,2	 dx
(/2 .

(ii) 2x(l_x)24(1_x)+3yo
d'y	 (el'(iii)

(hi) 2x d2va.+(x+1) 
d2y dy(v) 2v2

2j'v(vi) 3x 2+2t+x2yO.
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55. Can U. ROOfS of the ludidal equation, equal
We shall later illustrate the following principle in this regard
jf k= & be the repeated (equal) root of the Indiclal equation, then

obtain the solution in terms of k and call is y: the two independent
solutions are obtained by putting k=cc In y and In ay/øk.

It will be seen that the second solution always consists of the
product or a numerical multipleof the first solution and log x plus
a series (c.f. 1 5-9 case II p. 154).

Er. 1. Obtain a general solution in ser es of powers  of the
d5ydy L —oequation X dxt 	 [Raj. 1964]

Solution. Let the solution in series be
yX) [c0±c1x+c1x2+c3x5+...1.

•	 d2Putting values of y, ±Y-, d2' 
in the given differential equation,

we 
get
c, [k k — l)-l-kl x111 +ciJ k (k+l)+(k+))] Xk

+fc, {(k+2) (k+1)+(k±2)}+c,] x
+Ecs ((k-4-3) (k+2)+(k+3)}+c1]

The incidial equation is k (k—l)+kO as
i.e. k'=0.

Other coefficients are given b y c1 (k+ 1)2-0, i.e. c=0,

• c1(k-1-2)'+c,0, i.e.

c5 (k+3)+cs=O, i.e. c3 =() as c, =0,

c4 (k+4)2+c2==0, i.e. c5= 
(k+4)'(k+2) 

Co,

...and soon.
Hence one solution for k=O may be obtained by putting k=O in

yo! [ 
1_tk+2)	 +(k+4)5(k±2)Z XIF

*Differentiating it w.r.t. k without putting	 we get
Because if we put the series in y in the left hand side of the given

differential equation, we get the single term cekxk_i. As this involves the
square of k, its partial differential coefficient with respect to k, i.e.
2c.kxa_2+c.klxk_l log Xkl log x will also vinish at k.O.

in other words

x	 + ;+XJY.=:!cokxL_I fc,kIxI._I log x

CIX	 [j+x]==7.cs*x -1 +c.k'x -1iogx
as operators are commutative.

Therefore 
a,
j.i..a second solution of the differential equation, irk is

put equal to zero after differentiation. (Ref. Case lip. l) 1).
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ay	 2_____
ik

=ylogx+coxk[(2x2

2
(k+2)$(k44)2+(k+2j* (kiT4)1} X4...].

Now putting kO and c,—c and c' in (1) and (2) respectively,
the two independent solutions are

yc{ 
I_x'± 1! xs_- 2 261x5+...} . cu (say),

V	 ,'culogx+cak

-	 +254562 Ci+*+1}x—...}
=c'v say.

And then the complete solution is
y=cu+c,v.

Ex. 2 Integrate In series the equation

(x—x)ç_+(l....5x) —4yO.	 (Roorkee 701
Solution Let a solution in series be

y=x CO+CiX+C,X2+C3+....

Putting values ofy, and in the equation and collecting

coefficients of various powers of x, and equating to zero these
coefficients, we get

co {k (k—l)+k}=3, i.e.kO
c1 {(k—I) k+k+1)—c.{k(k_l)+5k+4}.-O,

ik+Lee c1 (k+ 1)l_cø(k+2)I 0, le.	 2'

(k+3\'	 Ik+4\aSimilarly	 Ci= .1 ) c0 ,	 Co,..
Hence

1k + 3\'
x'+-)'x+...] ....(I)

is a solution if k=O.
Differentiating it w.r.t. k, without putting k=O, we get

ay
[21k+2' —1

=ylogx±c0xk	
cr)(k+1)"

k+4\ —3

Putting k=O and c.c and c' jn(l) and (2), the two indepen
dent sOlucions of the equations are

I
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y=c (l+2x±3*xS+ 4$xa + . ..Jcu, say,
8y/8k=c'U log x-2c' [ l.2x+2.3x2+3.4x'+...)c1v say.

Hence the complete primitive is
y.,.cu+C,v.

Ex. 3. Solve completely In series x 	 ++xyO.dx
Solutiofl. Let yx [co+cix+cix2-l-..].

Putting for y,	 and LAY in the given equation, we get
kScox1+(k+1)1 c1x 5+(k+2)2 csx2+[(k+ 3 , 2 c3+co] Xk

+...+L(k+n)2 cn+cn_sJ X1+...O.

Equating to zero coefficients of various powers of x, we get
c0k=0, i.e. k=O.

(k+l) c1 O, i.e. c1=O, (k+2) c2 =O, ie. c2=0.
___ co'1

C3 (k+3) 	 c1=.O, c5".
•	 xc._—_________._ C C C•	 (k+6)'	 (k+3) (k+6) °'

Hence y_csx*[1_(k_ 3)2X+ (k_	 _jsX'

•	 (k+3)7(kf-6)2(2X+.]

log x+2cxk [yja x((',C_

	

+ kjk6)3) X+!.	
...(2

• Putting k=O and c,=O and c' in (L) and (2), the two solutions
are

=c[ I-1x3+34 (2
	 +... ]=cu (say).

'.
5-1c	 33	 35-4

••+37(3 !)2 (l++	 V'+...}C't, (say)
The complete solution is ycu+c'w.
Ex. 4. Solve completely in series:

d	 (lV(I) (x—x5) a+(1x) d '=0•	 [Meerut 681

— o(i, Xjyr —y— .	 -
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(ill) x+(1±x) +2y=O.

(iv)4

(v) j+(x—l) dx +Y=O in.00wers of x-2.	
fAgra 72]

Proceed as in the above solved examples.
5'6. A. Case III. Roots of the judicial

integer.	 equatoin differing by an

This case can further be sub-divided into two sub-cases.
I. If one of the roots makes z infinite.2. If one of the roots makes z indeterminate.
We shall discuss these two possibilities separately.
51. Case Jfl. (a) The indiclal equation has two roots a ónd

fi (a > fi) differing by an integer and some of the coefficients of xbecome infinite for k==p.
In this case put c (k—fl) for .c0.
This would lead to two independent solutions for k=ft, namelythe modified y and 8y/Bk as in case II.
We thus find the three solutions
(I) the solution by putting ka in y,
(ii) the solution by .putting k=p in modified y,
(iii) putting k_—p in the differential of modified z namely øy/ak.
But only two of these are independent as solution (i) Is anumerical multiple of (ii).
The following examples shall fully illustrate the mdiod.
Lx. 1. Obtain a general solution In series of powers of x ofthe equation Bessel's equation of order one)

.j2y	 dy
x'+xj. +(x —l)yO.	

. [RajIsfkan63f
Solution. Let y__Xk (Co+czx+4x5+...J
Then putting values ofy,	 and Lty in the given equation and

then equating to zero coefficients of various powers of x, we get
c0 [k(k+l)+k—lJo, i.e. k1—I=0,

i.e. k=l, —I,	 *	 (I)c1{k+1)2_ 1)O, i.e. c1=0,
c2 ((k+2)2_l)...C90...
c, ((k+n)—J}+c,,_o

This gives
I	 .i	 .ycoxk I(I). 

(k-	 XZ+-_._-.k 13l (k+5)
I	 -

(k+l)(k+3)2(k+5)s(k+7)z	
1	 (1)
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where k may have values 1 or —1.
But if we take k=-1 in the above series, the coefficients

become infinite because of the factor (k+ I .) in the denominator.
SOwe put c(k+1) for co in (I).

Thus y_cxk{(k+1)—(k.3) X2+(k3ji(k±5)

1	 x'.4-	 (2)
(k+3) (k+)2 (k+7)

fYlOX+CXk[ I+(k+3)2X

x4+... ].
	

...(3)

Putting k= —1 in (2) and (3), we get

cx_i { _1x2+j.!-4 x4+2, 6 xs...J—cu (say),

azd culogx+cx_1[1+jx5_j(i+ix4

22.42.6+4+) x2+...	 (say).

Hence thà general solution is
y=cu+cv.

58. Cause H! B. Roots of Indicial Equation differing by an
integer making a coefficient of x indeterminate.

Let a and p be the two roots of the indicial equation (a> fl),
differing by an integer.. If one of the coefficients of y becomes
indeterminate when k= A, the complete primitive is given by
putting in y which then contains two arbitrary constants.
The result on putting k=m in y simply gives a numerical multiple
of the series contained in the first solution.

The following examples will make the procedure clear.
Ex. I. Integrate in series Legendre's differential equation,

d2 v	 dy
(1—x2)

dx
when n is a positive Integer. 	 [Agra 70; ViLrarn 631'

Solution. Let v .jk (co + c1x + c2x2+...)
be a solution.

dv• Then putting the values of y, 
d 

and d'
p

y in the given differen-

hal equation, we get
(lx5)x[k(k—I)c.+(k+l)kc 1x+(k+2) (k+l)c5x5

+(k±3)(ic+2) c3x5+...1
—2x...x- [kc0 +(k+l) cix+(k+2) cx5-l-...)

-)-n(n-f1) xk (co+cix+c.x2+..)=O.
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Equating the coefilcients of xk 2, x 1, x, x 1 ...etc. to zero,we get
c0k (k—.l)O (Indicial equation),

which gives kO or 1 as co-AO.	 f	 ...(i)c2k (k+ 1)=0 which when k=O, gives indeterminate value of
c1. However, c1 =O when k-.i.

c2 (k+2) (k+l)—c0 (k (k+ 1)—n (n-1)JO,
c (k+3) (k+2)—c1 1(k+ 1) (k+2)—n(n+1)0,
...and soon.

Thus the solution containing two arbitrary constants Cs andCi will be obtained by taking k=O. 	 -

When k=O, c,-- n (n+1)

a (n+I)-2	 (n+2) 'n—i).ca=	 C------	 4.

Similarly c_1 (n-2) n+1)n.1-3)

Therefore the solution is

[yJ*,=c,+cix--I±JJ_ c.x'_'!±. (n—i)

+n (n-2)(J's+1)(fl+3)4

;1) a n(n-2)(n+l)(n+ 3)
1

	}
-i-c, [x__("- I) (n+2) 	 1)(n-3) in+2) (±.) ._ }

Ex. 2. Integrate In series (1 —x2)	 —2x+2y-O.

'Hint. Put n=1 in the above series.
Ex. 3. Integrate in series the differential equation

(l —x2)
d2
j+2x Ay- +y—o.

Solution. Let y=x (c,+CiX+czX+...)
be a solution of the differential equation.

Then proceeding in the usual way, we get
k(k—l)= . Oasc. 1&O,kO, I
C1 (k+1) k=O,

Jiwe put k—I in(1), we get

then obviously w..4u if c.-c
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which makes c1 indeterminate when k=O,
c5(k+2)(k-f-1)--co(k (k—l)-2k—l)=0,
4 (k+3) (k+2)—C1 (k (k+I)-2 (k+1)—l)=O,
...and so on.

The solution containing two arbitrary constants c0 and c1 by
taking k=O is given by

IY1ko ( 9 	 [X—X3+-x'+...]

Ex. 4. Integrate in series the equations

(i) +xy=O.

(ii) (2±x2) d2y •+xdy+(1+x) Y=O.

Ans. (i) y=cof 2 L4
 

X4
	 g

	

+C1 [ x!5 x	 x'—...

(ii) y=c0 [l--x5—x3+'sx3...]+ci [X_x3_i.x1+..J.
59. General theory of the series solution near a e regular singular

point: (Forbentus Method).
We have already defined above the regular singular point of

differential equation. We now come to a generai theory of solution
in series.

Equivalently a point x=o is called a regular singular point of
a linear differential cquatioà of second order, if the differential
equation when written in the form

..(1).
is such that P(x) and Q(x) have Taylor's expansions in a neigh.
buurbood of xa, z e.,.

a
• P(x)=JJ p, (x—a)', Q (x)=Zqa (x—ai".

•	 nO
If I P(x) f. M and I Q(x)	 M in a neighboulho3d of a

given by I x—a I < r, then

We shall derive the series solution of (I) near the regurar
singular point x=a and would discuss its convergence.

Assume that a series soluti o of (I) be

	

y (x, p)=(c—a)E c,, (x—a)",	 .

where co--AO is arbitrary.

352
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On Substituting (2) in (1), We get

L(y)Z [(p-i-n) (p+n—J)-i-p, (p+i)+qoJ c'0

+Z(pr (P+k)-f q_} Ca]. (x—a/

Putting [(p+n) (p +n— 14p. (e+n)+qo) c,,

— '(p, (p+k) 4 q_) c.

L (y (x, P))—co {P(P1)+pop+q.} (x—g)P.
The indiclaj equation on equatingcfficj of (x—a P tozero is(: coo),

P (P—l)+p,p+q,o.
If p, Ps be the roots of this equation, then

P+Pa= I—p.
and L (y (x, p))=, P- p,) (P--p.) (x—ay.

Case I. pi—p5 =A, where k is not an Integer (positive, negativeor zero).
Since L (y (x, p.))() ;L (y (x, P2))—O, therefore

and Y(x,pa)c.(x_a)P+J

are two linearly independent solutions of (1), provided the seriesin (5) and (6) are convergen t in some neighbour,j of the pointxa.
Now (P+n) (P+n-1)i-p. (P+',)+qo

P (p— l)+pvp+q,+a$,, (po-f2p — 1)

Jn2+nA	 for P =pi
ln —flA	 for p=p,

Thus, we have from (3)

't (n-f-A) c.,_ 1'	 (Pi +k)+q..4 cL0

a-iand n (n — A) c,=-- Z (p. (Pz-f.k)-f-} ca.

Let when Pp1 , b=I c, j, for 0 ç n < I 
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(fl+ 1) b1MZ	
ii	 for ii	 IA

It can be easily seen that when pp1 , b,	 C. j for. all values

of n, This series Z b0 (x .-a)" dominates the series

(x-a)".

Again for sufficiently large values of it,

it n+A) tn_1)(a_l+A)b =ML!i
r	

,i±-!'b1_1.b 

whence we obtain
b,, _tn-1)(n-1#A)._ IpiI±n

fl(fl+A)r	 n(W+A)r
and hence

Urn bMl
n-..ao' b,_1 r

Therefore the series Zb, (x-a)' is convergent in x-ai

and hence the. series Zc,, (x-a' is also convergent in x-a I <r,

when p=p.
On the same lines, we can show that

is convergent in I x-a I < r, when t=i.
Case H. When the two roots of Indicial equation are equal.
Let PiFa a (say).
In this case

L(y(x, p))—ca (p-o) (x—a)P.
The recurrence relation (3) [compare from (7)] becomes

- Z {PL-k (c+ k) +q -k} C*.
k-O

It can now be shown by the method similar to the one used

in Case I, that the series, .V c (x-a)4 is convergent in I x-a
r.-O

Where p0=p1.

Also	 L(y(x, e))=O,

i'-O
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is one solution cf The differential equation (1).
Further,

L(y(x. p)). 2c. (p— a) (x—a)1+C. (p - a)' (x-a)P log (x— a).

OP 	 OP
L (,tx1 ))= L(y(x, p)).-O when pa.

	

Hence	 yix, p)]
	

also satisfies the differential equation

(I)'and is therefore a solution.

Z
=

Now y(*, p)..  ca' (x-c)+ £ c (x-a)'' log (x—a).
a

The coefficients c. are to be considered as functions of p.
Hence

[
y(x 1s)]=108 (x —a)y(X, c)+ Zc' (x—a

	

OP	 Ir-O

where #(x, o)=Zc,' (x-a) can be shown to be convergent in

ix-aI<r
rhos in this case the two linearly independent, solutions of the

differential equations are
y(x,c) and y(x,c) log (x-a)+#(x,a.

Can M. When pi and p, deffer by an integer.

Let p, - p m (a positive integer).
Let f(e+n)=(n+P) n-l-p—l)+p,(p+n)+qo,

vJtnce f(p)=P (p-l)+p.p+q.
=.(p-pi)(p-p,'L

Hence ftp1 O,fjp,)f(ps+m)O.
The recurrence relation (3) gives

•f pi4 n) Cn (Pi)=— E {p- (oi+k)4 q....&} c1 ()
k.-O

and I p,+ n) en Ps',	 £Jn.s (+k)+ q,_5) c5 (ft)

where nl, 2, and c, (ps) -, ad c, (p,) are values of c, when
p=p, and p, respectively.

The coefficients c,(p,) can be easily determined, but the
coefficients c,,(pi), c,..1(p5) ....... all become infinite because
f(p1 +m)—O, To overcome this difficulty we replace c by
K, (p—psi., where K, (9 :̂O) is a constant. Then

L(yx, p))..c. (p-p5) (p—p,) (x_.a)P
-K. (p-pi) (f-pd)' (x—a)'.
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Thereby we obtain

L(y(x, p)) ... 1 and L [y(x p)
OP

.. y(x, p,) 2 C. (PS) (X—P.+"

and [y(x. p)]	 —y(x, p,J log (x—a)+#(x,ap

where	 p)	 (ps) (x_a)P$±fl

are two linearly independent solutio of (1).
The two series 2cr, (Pi) (x—a)"	 -

and Z.ca' (Pi) (x_a)*
iu-0

can again be shown to be convergent in x—a f< r.

n
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Numerical Solutions

6i. Introduction

So far we obtained analytical -expressionsfor the solutions of
a differential equation. Sometimes analytical solutions cannot be
evaluated and sometimes these are not required. In the present
chapter we shall consider the problem of obtaining numerical
values for the Solutions of first order differential equations.
62 Picard's method of successive approxithatlons.

Given a differential equation
dy

...(l)
and the initial condition y(x0) =y,	 ...(2)
to determine values of  for values of x other than x0.

From (1), we have

[dy ]=ff(x.y)dx
we

or
JaO

Now the integral on the right hand side can be evaluated if
we only know the expression of y in terms of x. This is not
knwn. Therefore we cannot proceed. What we kr.ow is the
value of y at xo As an approximation, we replace y by in the
integral on the right and call the value of y on left as first ippro
ximation y, so that

fix, Yo) dx..

Now that this . better approximation 

.
of y is obtained (yl is

better anpioximation than yo for value of y at any point x) we
replace y by Yi in right hand side of (3). and get the second
approximation y, given by

fix. ) dx.L
Continuing this procedure, successive approximations

y,, yi, y,, ps......
can be obtained, each giving a better approximation than the
preceding one.
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Ex. I Apply Picard's method upto third approximation to solve
dy

•	 =X+y'

where Y=O, when x=O.	 (Agra 19691
• SoluUoo. We have Ax, y)'. 'x+y', j'o=O, xo—O.

The first approximation y. is given by

_7o+f. f(x, ye) dx	 wheref(x, y)x+Ox

Now the second approximation y, is given by

• iyo+f f(x, y ) dx,	 fix, yi)'X+yj'

(x+(4x')] dx

The third approximation ys is given by

Ys=Yo+ç f(x. y) dx	 f(x, y1)-x+y'

=o+L[x+(1xs+x;1dx

fX+&x'+x'+jx'°] dx
jX+ X+ T8+'o1FX11.

Ex. 2. Apply Pica ,d', method upto third approximation to
solve

given that	 y-2, when x=O.	 .[Agra 19701
Solution. We have

y=2, x0=O,.	 f(x, y)2y2x5-3.
Now the first approximation, Yi is given by

Y, —ys+f. Ax, yo)dx,f(x,y,)u22-2x'-3

.2+ç (4_2x53)dx=2+J: (1-2x2)dx

=2+x—tx.

Now for second approximation, y, we have

f(x, yi) dr,f(x, y,)-2yt-2x'-3
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12 (2 +x-1x3)-2X' —3] dx

2+j (1+x—x2—tx51 s
=.2+x+x*_IX3-1X4.

The third approximation y,, is given by

Ax, y) dx,f(x, y1)=2y5-2X13

—2+f (2 (2+x+X2—--)2X'3) d

=24 (1+2.v_tx'—!X}d*
0

=2+x+xt-4X'—i'&X0.
Ex. 3. Apply Pkard's method uplo third approximation to solve

TX
dy-3ew+IY

where Y=O, when x=O.
Solution. We have Yo = °i x=.O,	 fix, y)=3#+2y.
The first approximation, Yt is en by

f(x, yo) dx,	 Ax. y.)-3e

3cr dx3(ea_1).

Again the recond approximation, y, is given by

y5 	 Rx,yi) dx	 f(x, y)=3e*+2ys

=o+J [3et+2.3(9_i)1dXJ (9#ö)dX
0

=9e-6x-9.
Now the third appróximation y, is given by

f(x. v..,  y,)=3cx+2yi
1U Zw

(3ex+2 (9er_6X_9)] dx

2i9-12x-18)dx

=21ex6xz_18x21.
Ex. 4. Apply Picard's method to solve

y(0)=O.jx-

Solution. ,=o+ 9 dx=(#—D,
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[er+(er_J)1J dxwe2x—er+x+j,

ys.o+f [ex4(jeIx.._9+x+1)2] dx

1 e"— i+Xet11+je1x_2xex+r

Ex. S. Apply p!c,,d's method to solve:
dy

•	 [Agra 71]
Solution. 7i2+f (2_) dx	 asf(x,

2+[,2x_2 log x...2 log x,

Ys=2+Jf 2_!] dx=2+T log x dx
2+ (log x),

— 2x-2 log x-1 (log x)'
Er 6. Solve the differential equation dy/dx+x—v with the initial

conditions y=1 when x=O ; and show that the sequence of appro-ximations given by Picord's method tend to the exact solution as alimit.	
.

	

[Agra 721Er. 7. Solve the following equations b y Picard's method:

dx
(I)

(ii) ! Xs+ya v(0)=l.

Proceed as above.,	 -
Ans. (I) y= I +x+4x2, y, I +x+x+ x3,-

ysI+X+X2+Ixa+1x',
(Ii) y=1 +x+1x3, )12- 1+X+XI+JXS+ISIX4

Higher approximation can be similarly determined.
Ex. S. Find the third approximation of the solution of the

equation dy =z, dz
dx -x' (y+z)

byPicard', method, where y= I, z	 when =0.	 (Meerut 19701
Solution.. Lcth (x, y, z) z, J (x, y, z)=x3 (y+z).
Nw first- approximations are given by
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z.) dx_,.+J z, dx

Idx=1+ix

f (x, y., 4) dx=zo+ x' (y.+z.) dx

And the second approximations are

fi (x, y1,,	 dx	 -.

i+f (+tx') dx=1+x+*x5

A (x, y,	 0 (y1+zi) dx

x(1+jx+4+1x4)dx

.4+J (fx +jx +Ix') dx

Apia the third approximations are

Ys"ys+ fi (x. j', z i+Jx ; dx

(I++i1óX5+x1)

4 (x, Yb

Mj+^- Xa('+IX+P-xg+i+fx'+hx&+&X#)dx

= 4+5 (Ix'+ 1x4+ x'-3x&f %4X) dx

4+4x'+'x'+ ,'jX'+thx'+ihXls.
Ez, 9. Use Pjra,d', method to approximate y and correl.ponding to x—O I for that particular solution of

dy	 a
sati.,fylag y-.2, za. 1/when x—O.

Solados. Let x+zfz(x,y,z) and s—y2f,(,y,t); thenfirst approximations of y and x are given by
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x	 x
fi (x,, Yo z,) dx=2+f (x+ I) dx2+r

xt
+X,

zz.+J
11 (xy,, z0) dx .=1+J (x-2$) dx=l+X-4x,

0
The second approximations are now given by

rz

YiYe+I
Jo 1' (x, Yi	

Jo
z1)=2+I [x+(l+Ix'-4x ] dx

(l-3x+4x2)dx2+x—fx1+x8

and	 f, (x, yi, z,) dx

(x—(2+Ix'+x)9 dx

= 1 +1 (-4--3x-3x'—x'—+x4) dx
=1 —4x—fx'—x2-1x4—r'.

Again the third approximations are obtained as

fi (x,y,, z,)dx

2- J	 dx
0

.2+x—x2 — 3 —jx 4 - 1'0-x5 — ñ;x

[x—( +x- x'+x')'} dx

=1 + J (_ 4_ 3x 5x1jx5_ 1'.4x5_ jx) dx
I

=7
Further approximations may similarly be calculated;
When x"—O- I, Yz2 105,	 z1-'0605,

y,=208517, z,=058397,
y3 2O844?, ;'=058672.

6-3. Taylor Series Method
Given the difierential equation

Cv.
 v)

ilk
with ilsitial conditions y (Xø) Yo,
to find solution of the above equation using Taylors series.

Let y=y x) bc the solution of the dilletential equation (I), at
the point x. If x=x, is not a singular paint of the function. then
by Taylor's series

() •v (x,)+(x—xe) y' (X9+ (x - x0)' y" (Xo
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(Xxo) 5 y" (x0)-4-...

This converges over some range containing x0.

Now we determine

Y , (x0), y" (Xo), y"' (xo),
From the given initial condition

y (xo)=y0,
Again from (I), we get

Y , (x)=f(x, y).
y'(xo) :f(xo, yo).	 (4)

Differentiating (1), we get
øffdy6f	 ?f

Y" (x)	 +--=1+f(x, ä—•

'a' ) 
+f(x )V" (.vo)(	 , Yo

Again
d 13f

v" (xo) =- - +f (x, y) BY

+f(x,8 \!fV
= -

	 ax	 OY
af

Putting x0 for x and ya for y in the righ hand side of this
equation, we get

fl 2f \Y'(xo)=U_j)+(i) (V)±2f0 ()+i ():
+.r0 

()°
Putting these values in (2), we get the value of y (x); the first

few terms give an approximation for the solution y(x) at X.

As is evident, the evaluation of additional terms becomes
ncreasirigly difficult.

Ex 1. If dy/dx 3x --y2 and y I when x = 0, find the Ty1or
o1ution and approximate y when x=01.

Solution. Hence (xo, ;'o) is (0 I) and y (x0) I.

Now	 y' (x)=(3x+y2) ;	 y' (xo)3xq+j'= I.

v" (x)=- (3x--v2,=3+2y

=3+2y(x)),' (x)	 j" (v3+2i.1S

y"(x) =2 { y' (x))2-f-2y(.v) i"(X)	 y"(.v=2+2.l.S= 12

y"(x) 6y'y'+2yy"
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Y"(x)-6 (y")'+8Yy"+2yj"	 •. y' (x)=354,Thus the Taylor series expansion is
Y (x)=y (X,)+(x—X.)y' (x,)+h (x—x.)'y" (xo)+...

1+x+fx*+2x$+*x4+Wxs+...
Putting x..i.01

Y (01) 1+0. 1 +O025+0002 +O00022+000003
112725.

Ex. 2. Use the Toylor series method to obtain a power seriessolution of the initial palue problem,:
dy(I) 2y+3ex, y(0)=0

(Ii) =r+y,	 y (0) 1;

(iIi4=x$+y2 y(0)1;

(lv) dy.. x-fco, y, p (I)—*;

(v) .mSh?x+,1, p (0)J.jxr
Proceed yourself.
Amwe" .
(1) y=3x+fi7s

(II) y-1±x+2 [f14+...}
(iii) y I +x+x'-i-x' j fr +...
(iv) y-w+1 (x-1)'+ (x.1)!+...
(v) y=1+x+Jx'+Ixa+4+



7
Legendre's Equation

71. Introduction
The Legendre's differential equation is

dv
(I-x2)-2xj+n ('+l)y=O.

Sometimes this equation is also written as

'Wfo —x Z;t+n(nl- 1) y=o.
72. Integration In series of Legeadre's Equafto..

The Legend re's equation is	
i*b 19573

dy(I—xe). —2x jfn (n+1) yO.	
()

x=O is a regular singularity of this differential equation.
Let the series solution of (1) in decending powers ofxbe

yZa,x

d"so that	 :f Z a, (—r) X?t
UA.

d1 -and	 =Z a, (a—r) (a—r— 1)

Substituting these in (I), we get

(1—x1)a, (a—,) (9—r-1) '_2xa, (a—r)x'--'

+1'

or

+{n (n+1)—(a—r) (a—r+1)} x' •"] a,=O.
Equating to zero coefficient of lowest degree term, i.e. of x'

from the above, we get
a (it (n+I)—a (a+ 1))-0.
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But ao960 as it is the coefficient of the very first Lterm in the
series, hence the judicial equation '

n (n+ 1)—a (a+l)'O,
which gives a=n,—n--1.

Next equating to zero the coefficient of x', We get
a2 [n--1)—(a--1) aJ=O

or a1 1( z+n) (a—n--l)]=O,
which gives
since'	 (a+n) (a—n-1)0 by (3).

Again to find a recurrence relation in successive coefficients
a,, equating the coefficient of x'' to zero, we get

(pt—r) (a--r-1) a,+(n (n+1)—(a—r-2) (a—r-1)1

or ar+2—
	 (a—r)(a—r—!)

_r+n1) a—r—n-2)	 (4)

Now since a,=O, as=a,=ai= ...=O.
There arise following two cases:
1. When a=n, we get from (4)

•	 (n—r)(n—r-1)
(2n—r-1)(r+2) a,

•	 n(n-1)
This gives a,— (2n-1).2 '

n(n—fl(n-2)(n-3) a. and so on

and since a1 =0, a1=a,=as...=O.
Hence the series (2) in this can becomes

u—a. F1_. 
_a (n—i) 

X-2I	 (2n-1).2
n-11 (n-2) (n-3)	 1

(2n-1)(2n-3.2.4	 (5)

which for an arbitrary a, is a solution of (1).

0. When a=—(n±1), (4) gives
,(n+r+I)(n+r+2i

'+2 (r+2)(2it+r+3) a,
.1..	 _(n+l)(n+2)

50 that a,—.--- (2n+3) a,,

(a-I-I) (n 1-2) (a + 3)(4)
=. 2.4(2n+3).(2n+5) a,andsoOn.

Hence the series (2) now becomes
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y_ao[ X x

(n+1) (n+2) ("+3) (n+4)	 1.	+	 2.4(2n-l-3)2n-I-5)	 ...(6)
This is another solution of (1) in a series of decending powers

of X.
Legeadre's Polynomials P. (x) and Q. (i) Definitions..

(Agra 66, 55, 53, 521
The Legendre's equation is

(l—x').-2x+n(n+1)y=O.	
...(1)

The two solutions of the above equation in series of descen-
ding powers of x are given by (5) and (6) above, whore a is an
arbitrary constant,

Now, if n is a positive integer and
_I.3.5 ... (2n-1)

the solution (5) is called Legendre's polynomial P. (x), so that

1' .	
l.3.5...(2n-1)f	 n (n—i)

	

I x,—.	 - 1X_(_1)2X +...

Instead, if we take

a•-13 
5(2n+J)' in (6)

the solution is called Q, (x), so that
Q,(s)=.135R+1)[ I

The series for Q. (x) is a non-terminating series and converges
when I x I > I.

Note. Obviously the series for P1(x) terminates.
When it is even it has n+ I terms, and the last term is

I	 n(n-1)(n-2)1	 a
(2n-1)(2n-3)...(n+1).2.4.6...n '.

Again when it is odd it has 4 (n+ 1) terms and in this case the
last term is

(— 1tØ2)(a-i) a (s—i ...3.2.a,	 s
(2n-1) (2n-3) ... (it+2).24 ... n(n—l)

P,,(x) is called the Legendre'sfwwiion of tile first kind	 Q1(x)
of the second kind. 	 (Agra 66]

Since P(x) and Q,(x) are two independent solutions of
Legendre's equation, therefore the most general solution of
Legendre's equation can be written as

y=CjP4x)+CiQ,.(x)
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Where C1 and Cs are two arbitrary constants.
Ex. 1. Show that

Pawi.j(0)=.O and F,.4O)=4-

(ns !)	 [Agra 671
-Solutlo.. If n is a positive integer.

P (X)=l.3.5.;(2_I)	 n(n-l)

is a terminating series.
When n is odd, the last term in the series within the brakcls is

(- 1)(111) (a-i)	 n (n-1) ... 3 2

thus when n=2,n+I, no term is free from x.
So putting x=O, P,., (0)-O.
Again when n is even, the last term of the series within the

brackets is
n(n-1)(n-2) ... l

' ' (2fl1)(2n-3) ... (n+1).2.4.6.n
This is the only term free from x. Putting x=O, we get

l.3.5 ... (2n-1)	 ______________ _
ni_

a4_ly" 1•3:5:•(2rn_1)as n=2m.

73. A Generating Function !f Lgendre's Polynomial
To show that P(x) Is the coefficient of ha In the expansion of
(1-112 In ascending powers-oils. [RaJ. 60; Agra 72, S4]We have
(1 -2xh+h2)12[l-h(2x-h)3-'Ia

l+.k (2x_h) 4-	 h' (2x_h)2+...

We now find voefficients of hi in various terms of the above
expansioá and nose that

-coeff. of h"in,

1.3.5...(2n.-I)
2'(I.2.3...n) (2x)-.'

and coefficient of ha in l.3.i:.(2-3) ha-i (2x__h)r-1 is
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I.3.5 ... (2n—J) n(n-1)
• 2(2n-1)

Thus coefficient of M in the expansion (1)
. 1.3.5...(2n_1)1 JL('!r l)
-nI

	 Xr-Z
L	 n(2n—J)

(n— 1) (n-2) (n-3)
TT 2n—I) (2n-3)

=PM(x).
Thus in the expansion (L), coefficients of h, h', h3, are

P (x), P3(x), Ps(x).
Therefore,

(1 —2xh +h')"=.1 +hP 1(x) +h5F1(x) + .. +hP4x ±

or (1 —2xh.+ h2)-hI='7hP,,(x).

Coy. 1. Ii can be shown that P, (I) =1.
We have

(1 —2xh + h')-,12= ZhPjx.

Putting x1, we have

(12h+hitI=ZhuP,,(1).

or L h'P.(1)=(l —h)-'=Z h'

Equating the coefficients of A" from both the sides, we get
P(t)=1.

Car. 2. It can be proved that
P,(—x)=(—I' F,,(x) and P(— I)=(— I)".

We have

(t —2xh±ht=Lh'P1/x).

Putting -x for x, this gives

(I+2xh+h2)'=2hiP,(_x).

Next putting —h kr h in (1), we have

(I +'2xh+ ht)-"2 —Z (—h)" P,,(x)
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=(_1)a !SPa(X).

Now equating coefficients of M from (2) and (3), we get
P.(—x)(—] Y F1x).	 -

Taking x=I, P,(-1)=(-1y' P (I)
Ie. PN(1)=(1)a asP,,(l)=1.

Nate. From above P.(—x)=±P,(x) according as n is even
or odd. This shows F(x) is an odd function of x if n is odd.

74. Rodr4gus's formula

To show that P.'z).=_ 
I) 

[Vlkraa.64, 63; Agra 70, 63, 60; RiiJ. 67, 611
Let	 ,(x_1)a;

then	 =n(x2_1)u1i.2x.
dx

I'his gives (x'—l) =2nxy.

Now differentiating it (n+ 1) times, we have
da+2(xt-1) dc''	 'c1 (2x) j	+11Ca.2.

• j+1u
=2n 1 _1a4t'

or (x3-1)

	

	 '±2x	 '—n (n+1) =O.dx'
d'y

Let us now put V— L. Then (2) reduces todxa•

(l_x2)ç_2x +n (n+ 1) V=o.

Thus V=3 is a solution of the Legendre's equation.

0 C

	

	 -dxx
where C is some constant and we would cvahnc it.

To evalute C. we have
y=(x'—Iy'=(x+ly'(x=ly', so that,
doy	 4'	 d'-'dx.=x+1)a(X—j)lI+aCj..fl(x+j)lr-1 d1-')'

+....(x—l)'(x+I)'.
de

d"y

.(2)
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This give3( )_2h1.n I.

other terms vanish as (x-1) s a factor in all the terms except the
first. Putting x= I in (3) we get

C.2.(n!)P(l)'1
1

giving

Thus from (3),
I d"y I d"
n I)Jx; = F (n!)dx"

Shèw that f
I 

Fix) dx=U except when n=O in which

case the value of the Integral Is 2.
Sobedso. From Rodrigues formula

P(x)= I—1(X'—l)".

da

.. 
J P,,(x)	 T!	

(x'-. 1vLx

1 d1

2'.n	
{(x_I)M (x+

2"	
0-03=0,	 if n I

d"as 1 ((x—±I for x=±lifnl.

When x'0, P,(x)= 1, and therefore
r 

j	 1' r-1-2
P0(x)dx=IJ- dx=I 

L 
x 

75 Ortbogo*aIlty of Lege.dre PO1yIO.ia
To prove that

f
1Px) P,,(x) dx=O If a--A.

[liois 6 ; Vikraa 63; Agra 66; k4 671

First Method. The Legendre's squa'ion can be written as
d j

.(I_x2)}n(fl+I)Y9.

Since P is a solution of the equation, we have

	

d j (I_.x2)!}1-fl(fl-l-l)P.0.	 ...(Jdx
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Similarly

Wx-
((I_xs)ç_m}+m(m+i)PliI=O.	 ...(2)

Multiplying (1) by P,, (2) by P. and then subtracting, we get
when

P_{(l_x2)E}_P{(l_x2) }

+PJm[fl(n+I)m(m+1)]O.

Now JPp {1(f_xI) n}

integiating byparts
d,

(I —x2)
J_1 dxdc'	 /

and f i' .{(1_xi dP} 
- f1	 '(lX) dx

Integrating now (3) .w.r.t. x, we get

JP f {(l_XZ) !'jl dx—fP,± { (l—.x') ^d+x

+(n—m)(m+n+1)fPitPmdx=O

of .._J'fçJu.. (1.x2) dx±f1f.(1_x1)dx

+(n—m)(n±in-l-) 	 P.P. dx'O,
and this gives

(n-m)(n+m±i)JPmPndx=O

or	 L P,P, dx=O.

Second Method. From Rodrigup's formula, we have

(x2— 1)•	 2(a)ldx

and P(X)=L_PL
Without any loss of generality, we can suppose that m > n.
Consider now

ij,,	 Pm(X) P-(x) dx

*
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I('d"	 d

	

(m) ! (n) J	
(x2—IY' dx

I.dw
(x 2

	

2aI+. Cm) I (n)j[	
(xl_IyN.	 _1)n j

j	 rldau-1

	

'	 /
—

	

(x2—' l'	 (x2 /—P'dx

	

(m) ! (n) ! J dr"-'	 'dxa 

dal	
integrating by parts.

Now	 in its every term contains factors (x-1)

and (x+ I) both. Hence in the limits —I to I, its every term
vanishes.

1	 f d" 1	. d1
2 * (m) -I

Integrating	
d1D dx.

Integrating now (n— 1) times, we get
H	 (—I)#	 P d*-n 	 ON

dxtn—1) -(x —I) dx

But

-	 )(2n) I	 2

_l)"(2n) I I d"'--' .
2rn)fi1dxma1(x_lrJ...i

=0.	 This proves the result.

76. To show thatf (P1(i)	
2n+I

(Indore 1967; Vlkram 63, 62; Agra 66, 55; Raj 67, 591
First Method.. We have

(I-2xh+h2)-"= E h"Pa(X).
a-S

Squaring, (1 —2xh+ht1= .1' hYP (PJI(x)il

+2 Z h' P(x) F,(x).

Now integrating both the. sides with respect to x between the
limits —.1 to +1, we get

'I
[P,,(x)]2 dx+2 E hrn+n Pm(X) P&) dx

0.1_I

(I —2xh+h3)' dx.
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(1
Since I P,0(x) P,(x) dx=0 when nom, this gives

J-i

pdxJ' h2 j_1 (P.(x)]2 4x+O= J_1(1_2X11+M)

	

or Z kbI	 [P,(x)]' dx=_ .[ log (1 —2xh +112)]

	

1	 It-2h+h'log

(log (1+11)—log (1-11)1

=2[1+"+h'+...+
Equating coefficients of hIn from both the sides, wehave

J
Secoad Method Proceeding as in the second method of pre-

vious article, we have when m=n.

J'[P,)]'	 21I41I(n)!(n)! J1_ 1 ;; (x-1)" dx

	

(2n)!P	 I

2	 cot'

2N (n!)l j (1—x ," dr

putting X=Sifl 0
- (2,,)!	 r(n+1)r()

k 2

2n+ 1 which proves the mutt.

Note. The above two results can be combined to give

whcrç 8,,, A is the Kronecker delta which takes the value 0 if mn
and the value I if m=n.	 (Agra 1972, 77]

	

(I	 I
Car. I (P(x)]3 dx=

	

Je	 +1
71. Laplace's Deftaite Integrals for P,(x).
1. To show that

PJX)rJf[x±V(X 2 1)
 cos #I1d

	

wlicrc n isa positive integer. 	 (Agra 72; 66; Vlkram 62; Raj. 651
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Ifa>b,wc have the result

	

F
d,S 	 _______

	

Jo	 V(a2—b2) 	 ()
Put a1—xh and b=h'(x'-1).
This gives a'—b'_—(1—xh)2—h1 (x2—I)=1-2xh+M.
putting these values of a b and a'—b5 in (1), we get

	

J:	
d. _

l—xh)±hs/(x'.— I)	
(1— 2xh+ ht'2,

or w(1_2xh+M) h11=f -1 h[xf.J(x2—l)cos.]

or nZh" PN(x)	 [1—h (x:FV(x2_ 1)cos #}] d#,

as (1_2xh+h') 12=Z h"PN(x),

or w Eh"	 Z h' {x V('- 1 ) cos } d#.

	

S	 I

because if I h (xRV(x5l ) cos #) I < I and h is a small quanti y,
[1_h(x/(x_l)COS#)_11+1±t2+t$+...Z t

where i—h (xFV(x'— t) cos

Equating coefficient of h' from both sidesj we get

	

r	 {x:fv'(xI_l) cos #}N d#

or P(x)=!f{x±s/(X5—l)COS fr dS,

which is the Laplace's first definite integral for P,(x)
11. Lâplqce': second definite integral is

.itX—;j• ±'/(x2—I) ens #)UfI -.
wcere is is a positive integer,

This is obtained by putting
axh-1 and b=h.J(x'—l); in (1) so that
a'—b2=(xh— 1)=I.' (x2 — 1)= I —2x1,±ht

1

71—h

and

MJ

	

Z	 P(x) where n is an integer

	

=WNO	 1-P,(x).
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With this substitution,
1	 ___

where u=h 1x±i/(x_. 1) cos #}

.o	 h'1 {x±V(x 7 1 ) cos fr 1	 (3)

The definite integral (1) now gives

IT	 P(x)=fj 
(x±/(-1) COS

Equating coefficients of prl_ 	 both the sides, we get.

(x±V(x'-i) co8 ,H1

or	
. {X±/('c-I) cos

•wgich is the second definite integral for P,(x).

Important. Comparing two Laplace's Integrals for F,(x), we
'get

Ex. 1. Show that	 1-h'
(I _2xh+h')si =z (2n+ 1) h' Iw.

0

[Rajasthia 66, Agra 59]
Solution. Generating function formula is

Z h" Fr=(I_2xhh2)-IIs.

Differentiating it with respect to h, we get

Zha-lP
(12xh+h')3V.

2xb-2h'or L' 2nh	
(1 -2xh+h*)V*

Adding (I) and (2), wàget

Z(2n+1)hvP1= 
(l-2xh+n')3'

This proves the result.

..(I)

(2)
multiplying by 2k.

a
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Ex. 2. Prove that 
N1 _2h	 a+Pi+i} h

[Agra 631

-	 W. — P-

as E /11lPa =(l2Xh4-h2) 3!$ and P0=t

l+h
hV( 1 -2xh+4) h

This proves the result..
E*i3. Show (Jiag jfm <n,

JxmPi1(x)dx0

and
 5

I,	 f)2
x"P11(x) dx= 

211+I(
-.

Solution. Rodrigue's formula is

	

Pfl(X)= I	 d'
 2'(n) !	 (x5— 1)"

	

211(n) ft	 d,ca-2	 ) ]

(x,_ 
I)x dx

integrating by parts

02J1( 1 I X" .j (x'— L)a d

Solution. We have

(P11+r,} h'

00	 Do
£ W. .E h4P 1 = Z h"P,,+— Z i' p+,

,Z h"P11+
1
 ( —J,,+ Z h"?,,

fl\
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2(")!ja(x5_l)dxSincem<PE	 ... (1)
dxm 	

integiating by parts m times

=(—l?
Again in the second part, m=n; therefore proceeding as above

integrating by parts a times, we get

	

L
xUP(x) dx=	 f	 ',, (x'— 1)2 dx

thc4J1(t_x3)*dx

cossm
2.jo
21'(n+l)T(
2'	 _

______________	 (ii D. (n !)
-(2n— 1) (233. 1 .n.(n—l) (n-2)...2.1

\expanding r 12n +32 ) and multiplying numerator

and denominator by it!
2"'(n!)2

(2n+1) (2si-1) (2n-3) ... 3. I .2n (2n-2) (2n-4)...4.2
7j'+l(nfl5

7(2n+l)!.
9x. 4. Deduce from Rodrigue's formula

f  P,() ix =J x2_ 1)"f)(x) dx	 [Raj. 671
Hint. Proceed os above integrating by parts a times.
Ex. S. Evaluate P3(x) using the i.,zplace's Integral formula

P.('0=1 [x+s/(X2_l) eos]5 dç6

Solution. Laplace's integral formula gives
P2(x)=!f[x+4/(x2._1) cos #f d*

IT

I f' [x±2x%f(X2 -1)CoS #+(X'i) c0s2 41 d#
Ir

tx' r+(xt— 1) li'] = 4 
(3.4_ 1).

Ir

'After this step we can *pply the duplication formula of gamma function

vi:.,	 r(l) 1(2n)2e1_I V(n) 'In -l- 1)

to get the result.

U

1!8
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7 S. Recurrence formulae.
" nP-=(2n-1) sP,,.j—(n—l) P.-t,

[Vlkrain 69; Raj 67 ; Agra 71, 531
Generating function formula is

(I —2x/i f.h11)h12_Ehh1P(X)

Differentiating it w.r.t. h, we get

(I —2xh +h2) 41 (x—h)=Znh" 1 P(x)

or (x—h) (I _ 2xh +h*)-412= ( l — 2xh+h2) Z nh"' P(x)

or (x—h) Z hP(x)=(l-2xh+h2) Znh"' PN(x).

Now equating coefficients of h from both sides, we get
xP,._, —P,_ =nP-2x (n—I) PN_l ±(n—Z) P,,_,

	or nP(2n-1) xP. t—(n-1) P_,	 (n	 2).
This proves the above formula.
Note. If from (1), we equate coefficients of h. we get

	

(n+I)P,,.,.i(2ii+1) xP—nPh_l.	 [Vlkram 63; Rajasthan 621

which is a form of above formula when ,,+1 IS taken for n.

- 1 , xP' (x)-P',_t (x)=nPn(x
where dashes den me dffferenliation w r.t. X.

IVikram 62; Agra 71, 541
We have

(12xh+h2112 = .EI,NP(x).

Differentiating with respect to x, we get

h (I —2xh-'-li2311 = Z' h"P',,(x),

Also (ljflerefltiatiflg (I) w.r.t. I:, we get

(x—h) (I —2xh+I,) 312 = 2 tth" P,/x).

Frcm (2) and (3),
(.v—h)	 P.1 x)

Now on equating coefficients of h from both the sides, we get
xP,,'(x—P' ,,..j(x)=nP,,(x)

which is the above formula.
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this formula can be obtained formula I and II.
Recurrence formula I IS

nP,=(2n—I) xP,,_1—(n—I)P,,...
On differentiating with respect to x, it gives.

nP'.1=('2n_j) P,+(2n—I) XP'.,—(n—l) P',_2
or n fP',,—xP',_,]-_(n._. I) [xP ._ —P',....z]=(2'z— I) P,_1
or n [P',, -xP',_11—(n—I) [(fl—I) P 11_1]=(2n— I) F.,...1

using formula If
i.e. n fP'•_XP'i_i1=[(fl—I)14•(2?)]?i=fl*pa*
or P'.,—xP'_l=p.,_1

,IV. P'n+iP',,..tu.(2fl+1) P.,.
tVlkram 62, 63: Agra 66, 61; Raj. 64, 601

Recurrence formula I on taking n+ I for n is
• (fl+1)F.,+,.(2+l) xP,,—nP.,_1.

Differentiating it with respect to x, we get
(n+ 1) P'.i=(2n+ 1) P+(2n+ l)xP' —nP'_1.

Again recurrence formula It gives

...(2)• Putting this in (I).
(n+ 1) P',+z=(2n±1) P#+(2fl+J)

or (n+J)P',,+1—(fl+l) P'._i'2n+1)(J.fn)p
01 F'.i+iF'1_i(2n4-1)p.,

Note. Putting n—I for n, the above formula becomes
di', dP,,...2
ã	 dx	 (2n-1)	

[Agra 55, 52]V. (x2-1) P',=n (xPfl—P._l).
[Vlkram 69, 64, 63; Raj. 641; Agra 59]

Recurrence formula III is
•	 ..,(1)and recurrence formula is

Multiplying (2) by x and subtracting from (I), we get
(I _X2) P'n(P,,,—xP,,)

Second Method. Laplace's 1st integral is

[x+S/(x2—l) eQs #'[i+	 ...(2)
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So xi'1— PA=
I X f[x+ V(— 1) cos #' 4It

lrw--I [x+V(x2—l) cos #r1 dOITJo	 -
1w
_I [x+/(x— l) cos#r' [+v'(xI ) Cos 4-11 47v 0	

x Cos # ]= —j [x+/(x2-1)
E •

— (x2-
 .P 0(x) from (2). Hence the formula.

	

VI. (x'—l) P',, = (i+l) (PN+l—xPJ,). 	 (Agra 57)
Formula 118

nP.(2n—I) xP,...i—(n—J) P,_5.
Putting (n+ 1) for n, it becomes

(n-I- I) P,.1.v'(2n +1) XP—nP,1.
This can also be written as

(n+I) (P.4.1—xF,)n (xP,,—P,...1)
W— 1) F',, from formula V

or	 (x-1) F' — (n+1) (Fz—xPfl).
Second method. The Laplace's second integral is

ir'	 d
F,,(x)=- I

"Jo {x+V(xl ) Cos #}l1+1
Hence

P',,(X)
[1+_

x cos cci:

	

= rJa x+ /(x-. 1) cos	 V(x-TTJ
(2)

4[x/(x2-1) cos ]+If'	 4
•	 _X_j o (x+/(x1_1)cos.]irf1
-J:

4-- [x+ y'(x -1) cos 01
4

--J. I I+ ____

	

[xjT1x.l) cos cSJ'L	 s/(x'—l)(x'- 1)=F',(x) from (2). Hence the formula.
WT—L

79 Christoffel's expansion.
di',,
-dx =(2n— 1) P,,..1+(2n-5) P,,.,.3+(2n-9) P.,_5+.

where last term is 3P1 or P. according as ii is even or odd.
[Raj. 66: 62; Poona 601
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Substituting n—i for a in recurrence formula iv, we have
...()

Repacng a by n-2, n-4 .... in (1), we get
P.(29 $) P1...3+P'a-1,
P',,...4—(2n-9)

If n is even, the last term is
P'.=3P1+P'.

—3P1 as P.-1 and P's-0.
Adding all the above results when a is even, we obtain

P',,=(2n-1) Pa....j+(2115) Pa...j+(2fl9) P+...+3Pa.
But if a odd, the last term is

P1s.5P.+P 1a3Ps+Ps as Pi(x)—x, P',=l=P,.
Hence in case a is odd, the result is

P',— (2n—l) Pa..4+(2n-5) Pa 5+(2fl9) P,,..1+...+5P2+P6.
Ex. I. Prove that

1 dP I
dx=n(n+I).

dx
[Agra 65; Raj. 66, 64, 56j

Solution. The Christoffel's expansion formula is

Pa_s-K2n-9) P ......

where the Last term is 3P1. or P. according as a is even Or odd.

:. f ( dP.
)2dx f 1 ((2ni) Pa_i f (2n-5) Pa_ss...i' dx

-f (2,s—l)P',,-, dx+f (2n—S)'P'a_.sdx+...
J-3 

other integrals vanish being the integrals of product of different P'

2(i-i)+ 1+Qn-5)5.2 (n-3)+ 1 +......

as 	 P.'dx2,-1
..21(2n-1)+(2n-3)+..J.

ilie last term is

9P' 4-9.I 2x 3 or P.'(x) dx=J' d=2
iccording a n is even or odd ; therefore when ais even

i2(a)	 ..2((20—I).4(2n-5)+...+3]
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	 1$)

_2{2x3-4 (_a )}.n (n+I)

summing the A. P., the number of terms being.
And when g is odd,

dP

2.±!{2+4 (!.!_i)}..s (,s+l),

summing the A.P. of j ("+1) terms. now.
2. Prove that

(I —xe)
Solution. Recurrence formula V is

(I —x1) F',(x).n(P,..z+XP,J	 .
We have tj retain P.-I on the right oi (I) but ' have to replace

xP. in terms of P,.., and	 such * relation is given by recur-
fence formula I from which 	 .

((n+l) P,++nP...1)•
Putting this in (I), we get

(•1 —x') P.(x)_{P_i_j t(n+ I)

3 Prove that
(2n+ 1) (i'-1) P1"n (n+l) (XP-44—P-)

S.l.*M.. Recurrence farinula VI is
(XI— 1) P,,'=(n+l) (P,..1—P._1). .

Also recurrence formula V is
(x*— 1) Pn (xP.—P)

Eliminating P. from (I) and (2), we get

[P-+1
_=.-#P.'

0-1
(;CS-1) P"n 

or (2n+ 1) (x'— I) Pa'A (A .j-I)

ILK. 4 Show
p+F'.=P.+3Pi+...(211-I-))P.. 	 (Agval%33
Solutiss. Recurrence formula IV is

P'..—P'....—(2i+ I) P.
Replacing n by n—I, n-2, ..., l. we got

(2s,—I)
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Pf 
Wl P'ii...r(2pi... 3)

F'a—P'z-5P',

Adding thee, we get

P.or P'+P'=P.+3PI+5P$+...+(2fl+l) D

as P'oO and P 11 I ==jpe.
This proves the result.
Ex. S. Show that

P'i(2n+1) Pm+2nxP8+(2n_.I)

Solution. Recurrence formula Ill is
! nP...i+xp',1.

Replacing n by 2n+1 and 2n, we gàt
P',.,+z=(2n+)) P211+xp'2

and	 Fi112nP21...1+xp'1,
so that P',+i=(2n+1) P +x (2nP1_1+xp1)
or	 P'i(2+ 1)

Next putting 2n-,l for n in (1), we get
1) P,1+P',,_2,

Putting this value of	 in (2), we get
P's 1 (2,i + I) P, +2nx P.,...i + (2,i - I)

(2n + 1) P,,, + 2nxP,11.1 ± (2t, —1) xsp ._11+ .x"-' F',,

Lastly from (1)	
proceeding step by step.

P',2p1+xp'1
as Fj==x and P'= 1.

With this value, (3) becomes
P',j1.i(2fl±I) P,,1+2nxP,+.., +X1 (2P1fx)=(2n+1) Pi+	 P,+X211.

This is the result.
Ex. 6. Prove that

I +4P (cos O)+Ip, (cos 0)+ p, (cÔs--+...=1og
S 71n -jiolution The generating function formula is

CD
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Integrating it w.r.t. h between the limits 0 to 1, we get

z f hP(x) dx_J' 7(1_2xIi::i:/)
L' Nos 0) ha	 10	 dh

 /(1_2h cos 6+h2)
P,,(cos 8 ( 1 dh

T	 Jo -v'[(h—cos o)iöj

log {(h—cos 6)}+/{(h—co 0)±sin28}]

— 10a—COSt1)+\J[fl—c0)2+fl09— g	
1—cos0

— V(1—cos 0) [/(l — cos _0)4-V2]g	
V(1 — cos OJV(I—cos 6)

—lo -,/ (2- sin2 *°)+v'2	I+sin 16g
v'(2 sin' *0)	 g sin U

log	
,

l +4Pi(:os 0)4 P(cot -F

or

or

or
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LX. I. .)IIOW that
P(— *) r Fu ( — D P (*)+ P1( — ) P _1 (4) +.

Solution. The generaling function formula i

OD hP,(x).

Putting x=—j and + j we ge

+)

and (1_1,+h)_1It=E k"P(4).

Again putting 1:2 for h in (t), e get

(1+ht+)"1/2J

But (1+h 2 +h 4)_ t(J/j1/19_.j. (1-

4)X/mPm(j).
Equating coefficients of h 2 ', we get

n(*) P0(-4) P2()+P1(—) P2..1()+

*) .P(4).
[Poona 691

.(2)

a) Show that
XP'-(X) = nP,,(x) + (2s —3) P_2(x) + (2n —7) P,_4(x)-l-...

[Agra 1959]
Solution. Recurrence formula II is
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...(l)

and formula IV is
P',..1(x)=(2n+ I) P,,(x)+ P'_1(X).

Replacing n by n-2,n-4, ..., we get
P',_ (X) .=(2n —3) P,_(x) +P',_3(x)	 ...(3)
P',.s'x,(2n-7). P,_(x)+P',_(x)

...and so on.
Adding (1), (3), (4) ..., we get

xP'.(X) nP.(x) + (2n-3) P,(x) + (2n— 7) P,_4(x)
+(2n-1I) P,,...(x)+...

x. 8. (b) Prove that

\JxPI'dx ---	 j

Solution. From Ex. 8 (a) above, .we have
xPx) nP(x) + (2n —3) P,_5(x)+...

Multiplying this by P. and integrating Detween —1 to 4-1,
we get

I

	

•	
xP1,(x) P

1	

,(x) dx=A 
J 

P1,'(x) dx

htegrals va
-1

other inish as
ti

•	
PP,1dx=O,nq6m

-2

	

•	 22n- -.
2n±I 2n+l

Ex. 9. Show that, ifm and n are integers, the va!ue of

J

1	 dP,,	 ..	 2nxP, ---- dx :se,therO,2ordx
Solution. Froni Ex. 8 (a), we have

x 9.m=mP,,(x)+(2,n-3)Pm_iX)+(2,fl_7) Prn...a(X)+...

—naP.,(x)+i(2m -4r+  1)P,,._51(x).

Now let nm, m-2, m-4, ... or n > n, then

• JxP4dxdx

m 
J 

P(x) Pm(x) dx+(2m-3)	 F,,(x) Fm_s(x) dx-t-...

=0 by 7-5 page 171.
And ifn=,n. •'

JxPii	 - dx=.J xP,P', dx. 	 •
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2n
as in Ex. 8(b).

Again if n-m-2r, r-1, 2,

J' dF1 -dx=(2m -4r+ 1) J	 dx,dx
as other integrals vanish

=(2m_4r+1).2(m2r)+f2.
10. Prove Ihaf

JX*Pa(X) dx=—+	 +—I
 8 t2n+3'

Solution. We have the recurrence formula 1,
(2n+ I) xP,,(x)(n+ I) P+(x) +nP,_(x).

Squaring it and then integrating between the limits -1 to +1,
we get

(2n+ i)2 IL xP,(x) dx JL(n + 1) P+x)+nP,,_i(x)12 dx

P +jt(x) dx+n' JP-'(x) dx
— 1 	 —i

other integral vanishes

'.(n+D	
2	

n2 (using § Do)

x'P x d - 2 1( + '+ _!!_L.( , X_(+t)L2fl+3 2n-1
-.	 J	 3	 1

S(2n-1) +4(2n+l ) + sVfl+3y
.Ex. 11. Prove that

1'	 2n _(!+I)xap +1P_1 dx=	
ii) (2n+T)

Solution. We have the recurrence formula 1,
(2n±l) xP,,=(n+1) P++nP.1.

Putting (n+ 1) and (n - I) torn, we have
(2n+3) XP.+1 (n+2) P,,+(n- I) P

and (2n-1)xP,,_1=nP+(n-1) P,,..g.
Multiplying ihese and then integrating within the limits -Ito

+1, we get

(2n±3)(2n_1)f x 2P,,1 P_1 dx=nn+l)fFtdx

other integrals vanish
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=n (n+1).	 2	 2fl(n+l)
(2n+1) (2n+1)	 (using § 76)

This gives the result.
Ex. 12.. Solve that

' 2P(n)	 —n) (;2n)
Solution. Rodrigues formula gives

X(2p-2n)(2p_2fl— ... (p_2fl+1)XP-2
'p

— £(lY(2p2n)(2p_2n_1):..(p_2t1)

x(Ph1)!._P! x-s
.(p-2n)! n!(p—n)!

= j7jn) 
I 
(2p-2n) !(p) !.Xp—M

(ii (p—n) ! (p-2n
__.._

!
I'	 (2p.-2n)P (X)_2() 

I a. T	 )1	 :nyT(...:2,z)T x"
ip

(— Ip	 (2p-2n)
- 	 21 (n)! (p—n) I (p-2n)!

This proves the result.
-iEx. 13. Solve that

I—x
d)	 2iz +1	 (Agra 67J

Solution. We have

5 (1X) P'n2 dx_J (1—x2) p, p', dx

F'•P j-J a- E(Z—x') P'j. P. dx

integrating by parts

-f' P,	 [(l—x2) P's] dx

P. [—n (n+1)P,,] dx

as 
dd [(l—x)p',,1+n (n+l)P=O

n(n+I) jPa2dx=n(n+I)

0
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Show bat r (1—x5) P',P'jx=O If mn,
i-I

(Agra 67, 59]
Solution. Integrating by parts, we have

ri
(IX)P'1P'mdxn(n+l)J P1PmdX

J-1	 J-.1
=n(n+l)xO,asmg6n
=0.

Ex. 15. Show that

	

1X — ,	
- 2n (n+1)

'	 ) 4•	 X 
(2n+I)(2n+3)	 (Raj. 65)

Solution. We have the recurrence formulae I and IV,
(2n+1) XP1(fl+l) P,1--nP,._1

and (0-1) P',—(n+1) [P,+1—xP1J.
Multiplying (2) by P,,..1 and integrating between —1 10+1, weget

I (x'—l)P,,+jp',,dx
i-I

Cl
—(n+ 1) 	 P*fj [P,,41 —xP] dx

-1
•1

=(n+ 1)	 (P 1+1)' dxL-1
r1

—(n+l)j 
p.,+1 [(t-1) 1+1—nP,,-11dx

-1	 ir- j 
from (I)

	

2	 (n+1)' 2=(n+l)--1— 2n+l

n+1)
(2n+ I)(?a+3)-

Ex 16. To show that

-(n
P. (cos O)= 21-1	 [cos n6+ 

1.n	
cos (n-2) 0.

1. 3n (n+ 1)
+12(2fl_1)(2fl_3)CO5(fl4)O+...].

Solution. We know that

E hIP1 (x)=(l _2xh+h2)_1!.

When x=cos 0, this gives
a
Z hIPa (Cos 	 (i_2 cos 9+h)-1P
0
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l i—h (e"+ e ) +h'J'!.
=[(I—he") (t— he- ')]1I2.

Now (I —x)-114= l+4x+}x2+...+_15(2,1)

Using this we can write expan3ions c4
(1 —he')-1I2 and (I ..he_)1t.

In the product of their expansions, coeff. of h

=	 I)[ 
	 (e' (2)+e'("")

(2,,— —I) (2n---3)
I.3 ... (2n—I) r

2.4...2n 12cosnO+—jcos(n-2)O

•	 n(n—l)	 13

But coeff. of h' is P (cos 8); therefore equating coefficients of
h' from born the sides, we get the result.

Ex. 17. Show that

P. (cos O) Cos n94 L3.5 ... 2n-1)O= 2.4.6..2n	 (Rai. 651
Solution. We know that

P. (Cos O)-	
{
2 cos nä'-i-2.-1 (l) cos (n-2)8

1.3.ñ(n-1)	 I+2 12__1)(2fl_3) Cos n_4)U+... 
.1

Multiplying by cos no and integrating between the limits 0 to
we get

P. (cos 8) cos nOdO=1	 2'J" 2cos2 
no 

do

all other terms vanish as

cos mU cos no do=0. if mn
0

_ 1.3.5 ... (2n— I f'
2.4 6 ... 2,r j0 

(I +COS 2130) do

l.3,5. ... (2n—I)

Ex. 18. If n is a positive integer, show that

J0 
PR(cosÔ)cosn8dOB(t+,)

Solution. As in Ex. 16, we have

P (Cos 8)=.!_'2 cos'nO+ i *'1 cos (n_2) 8... ]
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Multiplying both the sides by cosnG and integrating between
Oton,weget

fP cot ) cos nOdO
P .A

-

	

	 I	 2 cos8 no dO, other integral vanishes
2.(l.2...n) Jo

'2n-1 2n-3 3
T Th2'J

J (I+ cos 2nO)d8

2n-1 2n-1 3 I	 -

-	 F(n+1)
f! .!j2..4r*.ri r(2J)r(D

r(n+l)	 F(n+1)
___ ______	 1\

= 1'(n+t)	 (n+  
1(m) 1(n)

since B(m,n)= 1(m+n)

79. Christoffel's Summation formula
To find the sum of first (n + I) terms of the series

2 (2m+ 1) Pm (xi Pm(y).	 [Agra 581
Recurrence formula I gives

(2m+ 1) xP,(x)=(m+l) P,u+2(x)+mPm_i(x)
and (2rn+ I) yP..(y)-(n+l) P..,+i(y)+mP,a,.i(y).

Multiplying these by Pm(y) and Pm(X) respectively and sub-
tracting, we get

(2m f I) (x-y) Pm(x)P,,,(y)(m+ I) tPm+a(x) P,,(y)
- Pa(x) Pm i(y)} - m {P,(x) Pm-(y) - Pm_(X) Pin(Y)}.

Putting m= I, 2, 3. ... it in succession, we get
3 (x -y) P1(x) PI(y) = 2 (P2(x) P1(y) - Pi(x) P,(y)}

- I {P1(x) P0(y) -P,(x)PL( ll
5 (x-y) P1(y) Pa(y)=3 (P5(x) Ptv)-P2(x) P3(y)}

-2 {P11(x) Pj( y)-PAX) P(Y)}

(2n+ 1) (x-y) P,1(x) P.(y)=(n+I) {P, 1(x) P(y)
- P(x) P+,(Y)} -n (PAX) P_1(y) - p,,_ (.v) P(Y)}.

Adding these, we get
(x-y) 3P1(x) Pi(),)+ SP,(x) P1(y) + ...(2n + I) P(x) P4y)1

(it +1) [P.,(x) P4/I -P4x) P1,t(j•))
_[P1(x)P,1(y)-Po(X) P(y)J
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But	 Pi(x) Po(y) -i.- Po(x) P(y) x—y
(X —Y) P0(X) Po(y).

as Pj(x)x and P0(x) 1(x—y) [Po(x) Ps(y)+3P1(x) Fi(y)+5P1(x) P,(y)
+...+(2n+J)P,(x) P.(y)J

(n+ 1) 1?,,i(x) P,(y)—P1(x) P,,.j(y)Jor	 '(2m+z)P,(x)p(y)

=(n4 j) +i(x) P(y)—P,(x) P,,1(

Ex. 1. Prove that
Po+ 3P'+ 5F,'+ ...(2n -El) '-Q+ 1) (Pp',2Solution. The christoffel's summation formula is7 (2m4. I) Pm(X) Pm(J')(+ I) P, 1-i(x) P,,(y)—F1 (y)

x_yNow let y=x+a, where & is .a small quantity.

ms

i'/
 P,, 

or	 (2m+1)Pm(x) (Pm(X)+8P'm(x)+J

= (it -f-I) [P,,(x) {F(x) 4 aP',,(x) + 2P"'x)...}
—P4x) {P,,,(x)	

...}J.Using Taylor's series expansions, dividing by—a and proceed-ing to limits as a-o, we get

M—

 (2,n+ 1) P,,(x) (n + 1) [P(x) P',,^i(x) —P^i(x) P',,(x)j.
or P2+3Pl2+5p$2+(2fl+I)p2

=(n + 1) (P,,(x) P.i(x) —P,,..1(x) Pn(X)].This is the required result.
Ex. 2. Prove that

p02+3p1 2 + 5P2'-f- . ..+(2n + 1) P.—(n+ 1)2 [P.2—(X2- 1) (P',,2)J.
Solution A. in the above example, we get	

(Agra 581

FUS+3P1$+5P1t+•••+(2fl+1)Pal
(n +1) (P.(x) P'i.(X)—p,i(X) P',(x)J.
(n+ I) IP,(x) P'Is+a(x)_xP'(x)J+(n+ I) Fl(x)

x [XFu(X) —P.,+i(x)Jadding and subtracting ("+1) xP,(x) P'(x)=(n + I) Pa(X)
from recurrence formuia Ill and VI p. 180-('1+ 1 ), P.2 .-(xa -.... I) (p',)2

This is the required result.
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81;. Solution of Bessel's Equation
[Raj. 66; Delhi M.A. (Pre.) 581.

The Bc3sel's equation of order it is

	

d'	 dx2 ji+x+(x5_n2)y=O.

Evidently x=-.O is a regular singularity of this equation.

Let y=91L Z a,X' be a solution of this equation in series, Con-
r-O

vergent in a neighbourhood of x=O.

Then 
dv
aX

and .-=Za, (+r) (at +r—l)

Substituting these values in the equation, we have

Z a, (+ r) (a+r-1) Xu+•.S+X Z a, (+r) X+'-1
p-0

+(xt_n2)Z it,
r'.O

i.e. Z a, ((a+r)5—n') 	 ' ,

	

r-)	 r-O

Equating t., zero the coefficient of x 2, we have

Since a0:e-O, the indicial equation is
2 —n2=O giving =±n.

Also equating to zero coefficient of next highest term, i.e.
coefficient of x', we get

at ((l+)n)=O.
This gives a1 =0 as
Equating to zero the coefficient of X r 	 the recurrence rela-

tion in coefficients a, is given by
a,s ((a+r+2)ir}+a,=O,

1 a.
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Therefore a5='a1=...=O, since a1=O.
When r=n, (3) gives
	1 	 1

(2a+r+2) °'•
Setting r=U, 2, .., we have

as22(+l)ao

a442 (n+)°''2.4..2' (n+1) (n4-2) a0 ..... .and so on.

With these values of ass, the soiution in the form of the series is

	

I	 x5	 x2POoX'1 
'2 n+1 4 2.4.2 (n+D(n+i

xs,
"(n+I) (n+2

whore a0 is an arbitrary constant.
Putting–.n for n in the Ebove, so'Ution coiresponding to

a=—fliS

I
x4 ____

'22 (l...n)+2.4.25.(l_n)(2_n)

81. - Definition of Bessel's function, J W.
[Agra 55, 54, 52, Final 67]

The Bessel's differential equation of order n is

X4x+(x2_n2)y=O.

A solution of this in the form of a series of ascending powers
ofxjs

	

•J.	 xs	 x4

	

y=a0x1 l_ 2T	 fl+2422(+1)(+2) +...
XV

+(T1)')!2r(fl+I) (±2)...(fl+r)+	 ]
where a0 is an arbitrary constant.

If Oo-2I	 the anove solution is denoted by . J(x), so

that
I CO

Jtx	 - -- x'2'' _ 2" F(n-3-l) 0 2'.(r) ! 2' (n+1)(n+2)..(ii+r)
(-1)'	 x "+2'

or Jl(x)=Z0(rjj-,-+i)t)

T,,(x) is usually called the Bessel'x function of 4heJir.ct kind and
of order n.

Ex. 1 Prove that
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So!utlon. We have by definition

J(x)=(— 1) 
(v)2r

Differentiating it w.r.t. x, we get
d
-Jo(x)

2	
/ (r) ! (r—l) ! k2

I,.\2J+1
= E	 -(_. I)J_ -- _-_

J . o	 (J+I)(JJ!k2
where j=r- 1

I	 2j1

j±o(J) (JiT! ()
x	

=—Jj(x).

83. When n is positive integer,

J_(x)=(-1)" J,,(x).

Proof. We have

j ) E(	 (Tr(r'Jf) (x) 

—nf2

In this set ies F of a negative number occurs in denominator,
for terms when r=O, 1,2, ...,  (ii+l) and I' of a negative number
being infinite, all these terms are zero.

Thus terms are obtained from r=n onwards

or L(x)=2(— 1),
(I-)! r (r_nTjT)()

n2r

Now tak r=n4-j, so that when rr-=n,j=O and
1	 xI' —,,+2,I+2J

Jx	 (--1)J'-------	 --------- -_ fl ( /— Ej_o	
(n+j) ! F(n+j—n--l)2

X n+21
= (- 1)i

	

	 I -
(n+j) ! r(j-f-1)'\2

i-O

1
/ (n±j+ !).(j)! 2

as (n4-j) ! — T(n+j+)) and r/-j-l)==(j)

Note. Because 01 this relation in J(x) and J,,(x), the two
functions are not independent when n is an integer. Therefore in
this case a second solution of Bessel's equation is to be found.

Ex. State the Bessel's dffereetial equation and pro'c that its
most general solution is y=AJ(x)-f-BJ_,, (x) where A and B are
arbitrary constants.	 [Agra 1973
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84. Recurrence formulae
1.
By definition,

J,,(x)== z(—zy	
1

	

0	 (r)' F(n+r+l))
Differentiating it with respect to x, we get

, (-1)' (n4-2r) (x) "'-'
4'r_o(Yfl'(n+r-i-iJ 

(— IxJ'a=n Zo(r)!F(n±r-fi7I.)
Ix"'1+X2)Tr(fl+,+I) W

=nJ,,+x E

'—I)
(r-!J'(n+Ti)

In the second summation r takes values from I to cc
00	 (.)J#1	

(xr+5J+12/
taking j=r— 1

	

(— I)i	 lx\P*12J
flJnX'0(J)

Thus xl',, —nJ,,—xJ+1.
H. XJ n — UJA +XJ,,_I.	 [Vikram 63; Agra 54]
As above, we have

00 ( 111 (n + 2r) Ix' "i"
,o (r)!r(n+r+1) 12)
oo (

	

=	 —. ty t(2n+26—n}Ix\"+2'

	

,	 (r).:i+	
_

I)	 2)
asn+2r=(2n+2r)—n

	

(-1)'	 (x\"-'
r-.O

'	 (-11'	 IX+tr I

00	 (_flr	 ("-H-2r
=—n.1+x2 (r)!F{(Ti)+r+ifk)

or XJ',,=—nJ,,+XJ_2.'
III. 2J',,.J,,_1—J,1.

(Vikrarn 63 ; Agra 63 ; SS, 56, 52-, Final 661
This is obtained directly by adding the recurrence relations I

and U. We give an alternative proof as follows
00	

(-1)' -
'"	

! f(n+r+i) U/
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Differentiating w.r.t. x, we get

2J'-' '_ 1" (n+2r) /x\2r-1L'
r-0 j:l Ftn+r+l)

=

= '	 1)' {(n+r)-4-r} Ix\+Zr-1

r_o (r) I
taking n+2r=(a+r)+r

(-1)'	 x'-l+2r.
r-J (r) I fn+r) ()

+ z	 (-1)'
r—O (r-1) 1f\n+r+1)t)

	

(- l)J+1	 X\N+1-2J=J,,- 1 + .^:'
r.-O

takingjr—1
=J._-J1, This proves the result.

Iv. 2nJ.1—x(J,,_1+Jj).
(Agra 72, 56; Final 66; Raj. 59]

This result is also directly obtained by subtracting formula Iand II. A direct proof is given below.
We can write

(-1)'
2nJ,,= 1 !f(fl+,+l)c2	 )

(_'),
,°ruiirjT) (2n+2r._2r)()'

taking 2n=2n+2,-2,

(r) I

	

-	 (-1)' -

XJa_1X2	
(1)11	

n+r+1))

,_o U)! F(n+1±f+1) )
taking J=e-1

• —xJN_L+XJN+I.

Thus 2nJ,.x JN-1+JI+2I.

V.	 (x J)=—x--'J1.

Recuuence formula I as obtained above is
xJ.'=n.T,—xJ,,.1, Or XJ'flJaXJ4i.

Multiplying it by x 1, we get
xJ'i —nxJ,= —x'J1,

This can be written as
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Tx
which is the required result.

AlterrnUirely, we have

df	 (-1)'	 2_jU)x\'
[iFtn+rFi3 

(-1)'
=	 ().!pfl+,+l)2r(2)

__	
(—I)'

- ,_0(r— 1)1 ln+r+

-I'	 (-1)J'	 I
=x j_oU)1rn+1+f+IYU)

•	 taking j=r-1

_x Z(j) f{(n+l)-ji)t)

VJ. ai (x"J)=x"J_j.
[Vlkrain 62; Agra 72, 66, 57; Raj. 59]

Recurrence formula Ills Xr,.=—nJ,j+xJ,,_1
or xJ,/nJ—_xJ,1.

Multiplying it by-x 1, we get
x"J' +nx'JxJ_i.

This can be written as
d
Tx (x"J,,)=x"J,,_1

which is the required result.
Alternatively, we have

d	 r
- rAJ	 _L.	 I -
dx	 I.	 (r)!r(n+r4-i)2

i f 	 (—i" _2flh\'
dxl e (r)!f)n+r-i-1)	 2J

— 2 Z	
-1

(-1)'
- o(r)!F(n-r+1) k2)

/x\'r
'	 I---

(rI ! i(n+r)2
=xnJ,,'-.t.
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84. A generating function
To show that when n is a poiltive Integer J,(x) is the coefficient

of i n an the expansion of e10 " in ascending powers oft.
[Vkram62; Raj. 61; Agra 72, 70, 66; 63, 62)

	We have fXI	 l ( xt

and	 e1'	
I (_x).

	

Therefore e4x(t	
(r) 	 ( -
(-1" IXH1

2:	 ' ' I—I

We want to collect coefficient of to from the right, for that
suppose that nr—s, i.e., r=n+s. NO give values to a from 0
to infinity, while r takes values such that r==n+s.

Thus the coefficient of in on the right of (I) is
( —I )s	 IY2'

_oi+s)! t!2/
_	 (—ly	 x\

as (n+s))=f(n+s+1)

Again to collect the, coefficient of t- from the right of (1),
•	 give values to r from 0 to infinity white a take value:, such that

sn+r.
In this way coefficient of r' on the right of (1)

1)+	 x\"2'
ro(fiTZ+?) !J

J..,(x) as J_(x)=(— 1)" Ja(x).

	

çIX .th I1)	 t"/,/x).

85. Trigonometric expansions
To show that
cos (x sin 4=)J0(x)<2 (cos 24 12(x)+cos 44 J4(x)+...],

sin (x sin #)-2 [Sin 4 .!i(x)+sifl 3 1' J3(x)1- ...L
cos (x cos 4)=Jo x)-2 (cos 20 J2(x)—cos 44 14(x)+...],
sin (x cos S)=2 (cos 4 Jj(x)—cos 3. J:,(x)+ ...1.
Proof. We have

so

Purling t = e+, so that A(t - Ift) = i sin 4, we get
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ext uN •=z edno J()

Jo(x)+Ji(x) e'+J_1(x).e'++.4(x) e21++J_2(x)
Js(x) e'+-f .Ls(x) e-31th + .. +J(x) e'

+J_a(X)
'Jo(X)+J3(x) [e'$ —e'+] +13(x) [e" + e'+]

+Ja(x) [e+ - e+J+Jg(x) [e44++ e")+...
as .L,,(x)=(— 1)" J,(x)

i.e. e IX * N 4=Jo(x)+Ji(x).21 sin 4+J(x).2 cos 2#

	

+Js(X).21 sin 30+J4(x).2 cos 4#+...	 ...(1)
Equating real and imaginary parts, we get
cos (x sin 0)—Jo(x)+2 cos 2#,Ji(x)+ 2 cos 40 Js(x)+ ......(2)

and	 sin (x sin .c) '.2 sin #Ji(x)±2 sin 30J3(x)+...	 ...(3)
Next putting 4,t-4for ç' in (1), (2) and (3), we get

XCOa + Jx) +21 os 0 11(x) —2 cos 2#.Js(x) —21 cos 30.Jz(x)

	

+ 2 cos 4# Jg(x)+ 21 z Os 5#.15(x)+...	 ..
cos (x con =Jo(x)-2 cos 20 J(x)-{-2 cos4qSJg(x).

and in (x cos #) =2 cos Ji(x)-2 cos 3 J'x)

Lx. 1. Show that	
+2 cos 50 ix)...	 (6)

COi
and sin x 2J(x) 2J5(x)4 . 2J) - ...	 [Agra 36]

Solution. As in above article,

	

Cos (x sin 0)Jo'x)+2 cOs 20 .6(x)+2 cos 40 J4(x) f ...	 ... (I)
and Sin (X sin 4.)=2 sin 4. J1( x)+2 sin34. J(x)

+2 sin 54. J6(x)+.... (2)
Putting	 these give

Cos-x=Jo(x)_ 2J(x) + 2J4(x)
and sin x=2.Jj(x)_2J3(x)+2J5(x)_...

Ex. 2. Prove that
[Jo(x)]2 +2 [Ji(x,2+2 [J2(x)]2+... I.	 [Agra 571

Solution. We have as in above article
Jo(X)+2J2(x) cos 24.+2J4'x)Cos 4 + .—cos (x sin 4.)and	 2J,(x) sin 0+2J3(x) sin 30+...—sin (x sin 4.). 	 ..(2)

It would be noted that

4	 d4.	 (I ±.cos 2$) d4.=

and	 cos 4 cs m4. d4.=J" Sin no m4. dqS=O, 'flg6n.
Now squaring (I) and integrating w.r.t. 

4. between the limits0 to i,, we get by the use of above integrals

sin $)+iSIn (xsin +).
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[J.(x)J'w+2.[JAx)J ,r+2 [J(x)l'

Again squaring (2) and integrating w.r.t.
0 to ', we similarly get

s ins (x sin #)d#.

between the limits

[J,(x)]' +2 [J,(x)]+...	 sin (x sin #) d#.
Adding these,

a, ((J.(x))'+2 {Ji(x)}'-4-2 (.J,(x)}'+...]

cos' (x sin #)+sin' (x sj J s

or	 {Js(X)}2+2 {J,(x)}2 +2 {J,(x)} + ... I.
Ex. 3. From Ex. 2 deduce that

I Ju(x) I ç 1, 1 Ja(X) I	 2" (n	 1).
Solution. As in the previous example, we have -

J,2(x)+2 [J,(x)12+2 (J,(x)J'+...=1,
I.e. J." (x)= 1-2 [Jz' (x)4 Js'(x)+...).

I as I,' (x), J'(x) ... are all positive.
or IJo(x) Il.

Also from (I), when a, 	 1,
2 (.1, x)12 +2 [.1, (x)12+...2 [i (x)['=. I +J'(x)

or [Ja(X'1)' 3 - [Po' (x) +Jz' x+J,'x)...]

[Agra 67)

...(I)

This gives I J. (x) I

that 1 (xi-j"+-) x (J'—J'+)dx
and deduce lhsx=241,+(,f11,+...+2 (211+1)11

Solution. We directly have

(JJ',++J'J.,+,)

—J414 +(xJ )z +J. %'xJ' .+I). 	...(l)
Also recurrence formulae I and IL are

.. (2)
and xJ—nj4 Xi..,.

Putting 's-I-I for N.	 —(11+1) J.+5+xJ.
Eliminating xJ',, and	 from (2),(3) and (I), we get

L. ()rJJ,+,) JJ +i + (nJ, —xJ,) J+i +J-[—(n + I) 41., 4-4J
x
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DeJ.ctks. In the above result put aO. I, 2 ... respectively
and than multiply by 1, 3, 5 ... etc. This gives

Wx- t (JJ1 +3J1J5+5J1J5+ ...)J

x (J.' J1t)+3x (J"—Js')+5x (Js'—J.')+...

x. 1. from example 2.
Now integrating both the .ids, we get

constant vanishes as both sides become zero when x=O.
Thus x2JJi+6JiJ5+lOJ5l3+...
Ex. S. Show that

(J.+J'.)-2 ( p,_! ja )
	 [Agra 47]

Selutis. Recurrence formula I is
;l'.=nJa—xja+l

and formula 11 is xl— flJa+XJ,_i.	 ...(2)
Putting n-fl for nin(2), we get

xJ'.,=—(W+l) J111--xJ,.

Now	 (Js+P,p+i)2JJ'.+2Ja+iJ'p+idz
I2J. (flJa'X1,,+i)+2J..+i. 1 [—(n . j-I) J,.+i+xJ.,J

from (l)a,pd (3)

=2[J,_'!-'

$6. Bessel's I.tegrals.
To show that

Idi
cos (x ala #) 4.-'S

[VIkra 69; Raj. 62 ; Agra 55 ;Final 67; Delhi 571

Ja(Z)f ens (1 1-1 sin #) 4.
[Vlkra 69,63; kaJ. 66, 62; Agra 60,58,56,52; Delhi 57]

We have
cos (x sin #)=J.+2J3 cos 2j1+21i cos 4#+...
sin (x sin #)-2J1 sin 4+2J sin 34±...	 ...(2)
To obtain the first result, we integrate (1) between 0 and i,

and pt	 -

f
cos(x sin iI)dit=J.f
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I'
i.e. .lo=-I cos (x sin .) d94.

7Th
This proves the first result.
Next multiply (1) by cos no and integrate between 0 and 7c.

This gives

Jcos (x sin 94) cos no d=0,	 if n is odd

and JO cos (x sin 94) cos no d9477J (x)	 if n is even.	 ...(ii)

Again multiply (2) by sin no and inte grate between 0 and ,v
This gives

Jsin (x sin 94)	 (x) if n is odd

and J sin (x sin 94) sin no d==0 if .i is even.	 .(h)

Now whether a is even or odd, additig (i) and () or (ii) and
(b), we get

I: [cos (x sin nç&) cos n94+ sin (	 94) sin n) d=r17J(X)

I '
or J(x)—

J 
cos (r94—x sin 94; d94.

-	 1

Ex. 1, Prove that

0) J (x)=!)sin X	
[Agra 1971; Raj 66)

(i) L1 1 (X) = ;	 cos x.

Sowf ion. We have
.x	 Ij	

21- (n-t-l)1	 212 (n-

(1) I'uttir, n=4, we
x 2	 x4

J (x)	
J

	

x 112	 II X, 	 X,-

I x_ (3yT ±

/12 \
= /	 sin x as I (A)t.

(ii) Again putting it = - . we gt

I	 F1•	
) L	 2	 2.i-*

	

/12	 r	 2	 1	 2

1JL!	 jJH - ) co	 .

Isin ?i1r
j

Cos '14	
[	

n	 i-r.



204	 Dercnt1aI Eq,M,ns U
,ix. 2. Show that
(1) \/UITx) 1si (X)..!!!!_?'. CO.? X•	

(Agra 71; Raj. 651
(ii) v'(iwx) L,,, (x) —sin
Solution. We know that

XX X2 	 X4

JN(2rn+ i, L 1_22(n+l) +422(n+I))_m

	

(I) Putting n=4, we get	 .

	

x'2 f	 x	 x'

	

x—RI!	 r
2.5'2.4.5.7 . 2.4.6.5.7.9

	_J(2	 x* x' x	 x
•	 /k;)•

	

12	 1	 x'	 .X5	 I I	 x'	 x'

• Hence . /(4rx) J,,(x) = sinx-_---cos X.

(ii) We can write

,,	 X"(n.f) 1	 x'	 x'
22 (n+1) +24 22 n+1)(+2) ... .1

inuliplying numerator and denominator by (n-fl).
Putting n=-f,

x'	 x4I 92.4.l.1"

	

/(2 \ If	 x' x
4J' 71X ) x224"

J

— !l—xII— 
X— 

Cosx—sinx
L

Ex, 3. Show that

	

41',, J,,.., - 2/, + J+,.	 [Vjkram 63]
Sulation. Formula III is 21'R=J,_I_JR+l.
Di2erentiating it. we get

I e.	 4/",-2T',...1-2J',,1.1

	

Ja_, 24+4+2.	
applying (I) for 2)',,.... and 2J',,.
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This proves the result.
*Ex 4. Show that

2' J(') (x)=J11_, — rJ_,^,+t ((ç_, ) 
J,-r+.+ ...+( I)'

[Agra 63]
Solution. Recurrence formula Ill is 2J'1J_1—J,1.
Differentiating it and multiplying by 2, we get

L J a&J p_1LJ -

=(Js—J%)—(J.,—J1) from 111

Differentiating again and multiplying by 2, we get
2'J "i. = 1_,—.4J, + 2J1'.4

=J _s3h—i+3Ju,.i J. from HI
4R_$C,JiS_lCt4 i CI1u+).	 ...( I)

Differentiating Up times in this manner, we get
— ... + (- I )?/,,	 ...(2)

Lt us prove that the above result is true for next .diflrentia-
tion also.

Differentiating (2) again and multiplying by 2, we get
2''J(')= 2j' p — 2 .'CiJ'u_p+i + 2 1'C$J'n_P+I••; . ( - 

I )'J',+;
(JR...p_i J -p1) _. C1 (Jp.* -.,,_p+$)

+C,	 + ...( - I ' (J-+P-1
+'C1) .I,-p+ + (PC1+'C5) J,,_,..

=Jn...(p+1 ) - 'C1J._.1 + ''C5J11_,.44+... +( —1 )I+1 L14(p+i)
which is of the form (2). Hence the result is true for ( p + I)
differentiations also if it is true for p differentiations but in (1) the
result is true for 3. Hence it is true for all numerical values of P.

Thus

J_144+ ...(- I)' .4,.

This proves the result.
Ex. S. Prove that

xJ,=(n+ i ) J,.,.1—(n+3) J+5f(n+5) Ja+S...
[Rajasthan 64; Agra 56]

Sole". We know from recurrence formula IV that
2nJ=x (J,. -i+J,+1)

i.e.	 2(n+1)J,+1'x(J.+J,.,.$) putting a+l for 

and sin
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i.e.	 4xJ(ft+l)J, 1-xJ 5	...(1)

Now IXJ*4.,(n+3) J. 4-4xJ +i pulling n+2 for si in (1).
.. (1)becomes

ixJ.(n + I) J - (a +3) 14, + jxJ.,...
Now puti4, g n+4 for a In (I), we get

4xJ 4=(n+ 5) Jl+I"&XJN+S.
Putting this value in (2), we get

xJ,=(si+ 1) J ,.'-(n+3) J,.,+(n+5) .40-4xJ,.
Proefeding o on, we get

4xJe(1I+l)J i_(n+3) J +s+(a+5) .F,-...
which proves the required result.

Ex. 6 Prove that
J, 1 =2/x (n4-(n+2) J,+s+(n+4) J11+4-...)

(Vlkram 62; *pa 66,611
Solution Proceed as above or put si-i for a in the result of

the above example.
Ex. 7. Prove thai

11n111-Qs+2) J.+(n+4) J +4-...ad. hill

206

Soiot110. The recurrence formula is

so that	 .F,. -(,,x) J*+JN_2.
But as found In thti test example.

1,_,=2/x [nJ, -(n-$-) .I,,+s+(a+4)
Putting this value of J.-I ifl (1), we get

.i+! [NJ.-(n+2) %+(n+4) J, —...]

E. 8. Show that

.x 1J,(x) dx.xJ*I 1, fl> - I.

[Agra ssl

...(l),

(Raj. 64]

Solution We know from recurrence formula IV. that
a
1 (XhJ.x)Jx*Jp,_i(x).

Putting "+1 tor, a, we get

ax- tX " Ji(x)}..xii+IJ.(x)

Integrating both the sidei w.r.t. x between 0 to x, we get
X— J,.1(x) 

-r 
xR+lJ,,(x),

which proves the result.
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Ex 9 Show that

f" xJ,(x) ''2' FQs+l)1"
. being greater than I.

Selutlee. We -know from recurrence formula V. that
(xJ.,(x)J —x'J111.i(x).

Integrating both the sides w.rt. x between 0 to Jr. we get
[x_h;a(X)]X =f —x1(x) d

or 	 dx— —xJ.'x) +lim_. [?4). }

27YFn+ 1)
•	 x	 f	 x'

S1DC	 2F(,,+I)jI_22(n+I)+

and lim	 J,.(x) _.
Ex. 10. Show that

xe
2"- P (i) (n+ f (I - j!)l cü (xt)

Solutlea.

1=1 (1_t1y'-ee'dt

-f: (1-0)" 1 1+(/X)	 1+3 11+...

— 2 _J f (I _,ay—& t'ft for ddd integers a, the inte-
s-0	 ! - i

grals vanish

—

	

	 Jo_uv'-e ur du taking s'2r and ur1

(-1)!.x"r(n+I) F(r+j)
..o	 (2,)!	 I'(n+r+l)

I f(n+r+1).2'
as F()(2r) !21 (r) ! F(r+O

the duplication formula

=F(4) F(n+I) UI _. (r I	 /
J(x).

I
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.. JN(x)r F(n+1)J...1 (I —t)"--i ex1 di

	

ft.	 p
27j7(nfl)tJ (l—:*)'-4 e'' di+1 (l_:0Y'—e4sdtj

XN

2T((nj Tfl [LJ.
11 (I..-tt)u'-1 ed dt+J (1_to P4Etx0 di]

Xm	
putting —1 for t in, the first integral

7•____ (l_,oy ie±'" a__ 1
(l—t°y'-i cog (xi) di,

which proves the result. In particular when n=O,
J,(x)=r Cos (xt)

•	 o V(I—t°
*Ex. I  Show that

Vn F(n+4) (Y- J cos (x sin 4) cos" d6.S

	

Solnt(on. We know that	 [Agra 65]
0	 ir

Cos l_+_T_.,.+(_l), r-.-+
Putting ft ..ix sin 4, we get

COS (x Sin'#)Z(_J) !— sin'' .o	 (2r)!
Now (.._iY_x2'y , f sinlr#.cOst.d#

2 (-1)' (-5-i f 8iO' cOgt5

•	
.2(—ly, r(J_I)r(211)

	

•	 2r(?l+r+l)
/nfwHence	 x\

V (+1) 2 Jo 
cog (x sin #) Cog'# d#

I	 Or

	

j 	 sin'' cost" # ó0

a•	 (xs
'-0	 2(-1)

*This 	 can beObjsjngj by putting f_sin, in Es. 10.
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(_l), _Jx\U+Ir
, (r)!F(n+r+1)/
=J.(x).

This proves the result.
Er. 12. Prove that

JOW	 coi x cos #) (gin )' 4

[Raj. 611
Proceed as in the above example or put tcoa # in Ex. 10.

13. 'Prove that

J.=(2)I.zA 
{dx1)} (Jo).

[Raj. 64,62 ; Agra 581
Solution. Recurrence formula V is

a	 a
dx

When n=01

Id
or

Differentiating again w.r t. x, we get

(.1.)	 (xJ1)

I)'

so that (j)' (Jo)(l)° xJ,.

Proceeding similarly n times, we get
14

(•) (.1)= (- 1)1xJ

dI.e.,	 J=(-1y' x"	 )a (j)G
=(-1)"x" (2dfj))a(;,)

=(-2y 
xN (1?-) (Jo)

This proves the result.
El. 14. Prove that

(I) (!)

where 'm < n and in is an Integer.'
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II)
(Id {x"Jix))=(-1rxJ.+is.

;olutk.. (i) From recurrence formula Vt, we have

,Tx

i.e.,
Id (x"J1(x))=xJ1_1(x).

Also (!) fx.T(x)}— (	
){xl'-vN_t(x

Thus if in ilt positive integer less than n, we have

( )"
(Ii) It can be obtained as (I) from recurrence formula V.

$1. To prove that
ixi ,	 2 sin n,r

4 i,	 -.rx .[Agra 591
d f& \ 2 do ow
J 't j • J	

(Agra 721
We know that J. and J_,, are both solutions of Bessel's equa-

tion,	 -
d'y I dy. 1

or

...(1)

and J_"+ ;...'+(i+) j_.—O....(2 )X.
Mukipiying (I) by J.4, and (2) by .T and subtracting, we get

(J_J."—JJ_P)+(l/x) (J_wJR'JJ-i,')O
Now let

V. =J-NJII +J_II J 11"M .hlPLIP.

Hence (3) becomes
..	 I	 v'	 I

or

Integrating, log v—log 	 I.e. V!,
where c is an arbitrary constant,
I.e.	 Ja'J_aJ.t_.,'CIX,	 (4)

Now comparing coefficient Of , lowest degree'term from both
the sides of), we gel

210
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2Tf2-'r(!—n) [n—(—n)Jc
or

2	 2 sin nit*or —.
i/sIn?m	 1v

Thus (4) gives
sin ,t.

or JJ_,'J.'J.'=2 
sin no
nx

This proves the required result.
Note. Because of the relation L.(x)=(-1y' J,(x) when n i

an integer, the functions J(x) and L(x) are Dot independent
Therefore in this case a second solution of Bessel's equation ca
be found.

F(i) F(I—fl)—-; we Authors Integral Caclulus for post.grø.
atudsnts,t21 P. 67.


