Chapter 11
Some Types of Matrices

§ 2-01. Triangular Matrices. (Bundelkhand 94)
(a) Upper Triangular Matrix. A square matrix A whose clements a;; =0
for i > j is called an upper triangular matrix.

Forexample|all ai12 ai3 ... ain
0 an azy .. i
0 0 azy ... aipy
0 0 0 ... Ann

(b) Lower Triangular Matrix. A squar¢ matrix A whose elements aij=0
for i < j is called a lower triangu'ar matrix.

For example |a11 0 (P 0
az an 0.... 0
a3l azz aiy.... 0
- 0
dnl dap2) Aap3 ... dnn

§ 2-02. Diagonal Matrix.
Definition. A square matrix which is both upper and lower triangular is

called a diagonal matrix. (Bundelkhand 94)
For example | a1l 0 [ — 0 |(See§1-03 Page 4 also)
0 a e 0
0 0 did ... 0
0 0 0 [T
Theorem 1. Any two diagonal matrices of the same order commute under
multiplication. (Bundelkhand 95, 94)
Proof. Let any two diagonal matrices be
A=lar 0 0 ... 0land B=|b 0 0 0
0 a2 0 ... 0 @ b0 o B
0 0 0 B 0 0 1 J—— bn
Then we have
AB=fa; 0 0 ... Ofx[br 0 0o .. 0
0 a 0 0 0 b2 0 0
0
() () O ay 0 0 0 bn
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oo AB=[apky 0 0 ... 0O
0 abr 0 0
0 0 0 anby (1)
and BA=[mh 0 0 0 |x[ar 0 O 0
0O b O 0 0 a2 O 0
LO 0 0 bn 0 0 0 ... dn
=[b1a) 0 0 ... 0
0 baz 0 ... 0
l. 0 0 0 ... bnan ..(n)

... From (1) and (11), we find that AB=BA and each one of them is a
diagonal matrix of order n. (Note)
: Hence proved.
Theorem II. Product of any two diagonal matrices of order n is a
diagonal matrix of order n.
Proof. The same as of Theorem I above.
Theorem I1L. Sum of any two diagonal matrices of order n is a diagonal
matrix of order n and commute under addition.
Proof. Let any two diagonal matrices be

A=[an 0 0 .. Oland B=|b 0o 0 ... 0
0 a2 0 .. O o b 0 ... 0
0O 0 0 ... an 0 0 0 .. bp
A+B=[ay+br 0 0 0 |
0 ar+bx 0
L 0 0 0 ... an+bn 1),
and B+A=|b+a 0 B e - -]
0 br+az 0
i 0 0 0 ... batan ..(1)

. From (i) and (i), we get A+B=B+A and cach one of them is a
diagonal matrix of order n.

§ 2.03. Scalar matrix.

Definition. If in a square matrix A all the diagonal elements are equal to
a (where a#0) and all the remaining elements are equal to zero then 1t is
called a scalar matrix.
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Forexample[a O 0 0]is a scalar matrix of order 4 x 4.
0 a 00
0 0 a 0
0 0 0 a

Commutative Matrices
Definition. If A and B are two square matrices such that AB = BA, then
A and B are called commutative matrices or are said to commute.
If AB = - BA, the matrices A and B are said to anti-commute.
Solved Examples on § 2-03.
Ex.1. fA=5a 0 0|and B=|an aj2 ap
0 a 0 az1 a2 an
0 0 a a3] a3z a3

Then prove that AB= BA =aB.

Sol. AB=[a 0 0]x[an a2 ans
0 a 0 a1 a2 ax
0 0 a a3l aiy2 am
=|aall aal2 aai3|=alai a2 ail
aal aa2 aaz axl a2 a3
aai| aas? aax ail as2 asz
=aB.

Similarly BA=|a1l a2 aiz|x|a 0
al a2 a3| [0 a
a3l a3z a| |0 0O

Qo0

aaz| aaz2 aaj3 a2 azj
aai| aailz aai3 a2  as

=[-aall aal2 aayiz|=a|4ail a2 aipi|=abB
azl
aij

Hence AB = BA_= aB.
Ex. 2. Show that the matrices A and B anti-commute, where

A=[1 -1]and B=[1 1

2 -1 § =1

Sol. Here AB=[1 —l}x{l 1]
2. =1} |4 =]

ol

=[11-14 L1+C=DE=Dl=l-3 2 .

21-14 21+(-1D(=1)] |-2 3 (1)

» And BA=[1 1]x[1 -1]
4 -1 |2 -1]

1-1+1:2 L=1)+1.(=1) =13 -2
2-.{—3

414(=1)2 4(=D+(=1)(=1)
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. From (i) and (ii) we find thatAB = - BA.

182/1/4

(1)

Hence A and B anti-commute.

Exercise on § 2-03

Ex. 1. Show that the matrices [0 I] and [I 0] anti-commute.
1 0 0 -1

Ex. 2. Show lha&ithc matrices [l 2] and [5 7:| commute.
2 1 75

§ 2-04. Unit Matrix or Identity Matrix.

Definition. If in a scalar matrit the diagonal clement a=1, then the

For example 0
0
1
0

-0 00

1 0
0 1
0 0
0 0

Solvéd Examples on § 2.04.

matrix is called the unit matrix or identity matrix and is denoted by In in the
case of n X n matrix. :

*Ex. 1. If A be any n X n matrix and Iy is the identity matrix of order

n X n, then prove that Aln=I, A=A

Sol. Let us suppose that

A=lan a2 ... awn|andIn=[1 0 .. 0

ay axp ... am| - 0 1 _ ...i0

e v wad B e .0

dnl Qap2 ... dnn 0 0 e
A-ln=_a|1 a2 ... an|x|l 0o ... 0
) a aip ... am 0 I o D
dnl dn2 - ‘tnn 0 0o ... 1

L

=_a||.]+a12.0+._.+al,,.0 anO+apnl+...+au0
an.l +an0+.. +an0 anl+anl+... +anl

Lan].l + a0+ ... +am0 ainO+an2.l+.. + ann.)

an.0+ a0+ ... +ainl
a21.04+a22.0+ ... + a2,

any. 0+ an2.0 + ... + app. 1
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=|lay a2 ... dam|=A
a2y ax . Qa2n
4.

Gnl @n2 ... Gnn

Similarly we can show that IpeA = A. .

Hence we have Ael, = IneA = A,

*Ex. 2. Prove that I"=I""= . =1?=1I, where m is any positive
integer and Iy is the unit matrix of order n X n.

Sol. Let A be any n X n matrix and I be the unit matrix of order n X n i.e.
1=In

Now we know that Al =I,A=A (See Ex. 1 above)
Butl,=L (1)
~ Al=1A=A _

Taking A=1I, we have el =1 or =1 (i)

Again from (i), taking A = Iz, where I> =1 (proved), we get

Pel=1" o P=r=I, from (ii).

Proceeding in this way, we can prove that

I"=1™1= . =12 =1, where m is any positive integer.
Exercise on § 2-04

Ex. IfA=|1 0 0 O0],show that A?=1, where I is the unit matrix.
1 -1 0 0
1 -2 1 0
1 -3 3 .1

§ 2-05. Periodic Matrix.

Definition. A square matrix A is called periodic, if A¥*! = A, where k is
a positive integer. ;

If k is the least positive integer for which A**! = A, then A is said to be
of perod £.

Idempotent matrix.

Definition. A square matrix A is called idempotent provided it satisfies

the relation A% = A.
Symmetric Idempotent Matrix.
Definition. A square matrix-A is called symmetric idempotent if A=A’
and A2 = A, where A’ is the transposed matrix of A, (See § 2-08 Page 69).
Solved Examples on § 2-05. :
Ex. 1 (a) Show that the matrix A=| 2 -2 -4/|isidempotent.
-1 3 4
1 -2 -3
(Rohilkhand 96)
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Sol. AZ=AeA=| 2 -2 -4 xl' % i <
-1 3 4 1--‘1 4
] -2 =3 1 -2 -3J'

L7

L
[ 22-2(-1)-41 2(-2)-23-4(-2) 2(—4;—24--4(--3)1

1243 (=D 4d1 —1(=D+233+3(-2) ~ 1 (-4 +34+4(-3)
12=2(=1)=31 1(-2)-23-3(-2) 1(-4)-24-3(-3)

L J
=[ 2 -2 -4]=A

-1 3 4

| 1 -2 -3

Hence the matrix A is idempotent.
Ex. 1 (b) Show that the matrix A=| 2 -3 - 5|is klempotent.
‘ -1 4 5
1 -3 -4 (Avadh 91)

Soi A’=AsA=[ 2 -3 —5|%x] 2 -3 =5
-1 4 5f|-1 4 5
1 =3 =d { =3 -4

=[ 4+43-5 —-6-12+15 —-10-15+20
-2—-4+5 3+16-15 54+20-20
l. 24+3-4 —-3-12+12 -5-15+16

=[ 2 -3 -5]=A

-1 4 5
1 =3 =4

Hence the matrix A is idempotent.
sEx. 2. If A and B are idempotent matrices, then show that AB is
idempotent if A and B commute.

Sol If A is the idempotent, then A=A and if B is idempotent then
‘ B*=B. ()
And if A and B commute, then AB =BA 1)
Now (AB)? = (ABL.(AB)
= A (BA) B, by associative law
= A (AB) B, from (i)
=(AA) (BB), by associative law
= A’R?
= AB by (1
Hence AB is idempetent
Ex. 3. If A is an iderapotent matrix, then the matrix B=1-A is
idempotent and AB = O = BA.
Sol. We know IA = Al = A. (See Bx. 1 Page 64) 1)
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Also A being an idempotent matrix. we have A=A, (1)
Since I and A are square matnces. so I'- A is 2lso a square matrix and
therefure we have
(1- A= (- A) (1~ A)
=(J—A)I-(I- A} A, by distributive law
=P~ Al-1A + A%
= l-A-A+A,from (). Gi)and P =1
or  (T-AP=1-a, ie T=A or Bisan idempotent matrix by definition.
Again AB = A (- A) = Al — A%, by distributive law
=A - A, from (1) and (i)

ie AB =0,
And BA =(I-A) A = IA - A%, by distributive law
=A-A=0.

Ex. 4. Show that if A and B are matrices of order n x n and suc: that
AB = A and BA =B, then A and B are idempotent matrices.

Sol. We have ABA = (AB) A = (A) A, ~ AB=A (given)

or ABA = A’ o will}
Also ABA=A (EA)=A(B), © BA =B (given)
—AB=A :+ AB=A (given)

or ABA=A ()

From (1) and (1i). we have A=Aie Ais idempotent.
In a similar manner, we can prove that

EAB =B (AB) =B (A), ~- AB=A (given)

= BA =B, . BA= B (given)

or RAB=B (111)
: Also BAE =(BA) B =(B) B, . BA =B (given)

or BAB = B? i)

From (iii) and (iv), we have B* =B ie. B is idempotent. Hence proved.
Exercises on § 2-05

Ex. If A and B are idempotent, then A+ B will be idempotent if
AB =BA =0, where O is the pull matrix.

[Hint: (A~ B’ A2~AB+BA +B*=A+ 0+ 0+R]

§ 2.06. Involutory Matrix.

Defintion. A square matrix A is cailed Involutory provided it satisfies the
relaton A” = I where ©1s the identity manix,

For evemple, the matnix A —-: ! s involutory matnix,

['.'- -1
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dnce APml1l Ox[1 0
0o -1] |0 ~1

=[11400 10+0(-1) - 1=[1 0]=L
01+(=1).0 00+(-1).(-1)] [0 1

Solved Examples on § 2-06.
Ex. 1. Show that the matrix A=|—-5 -8  0]isinvolutory.
3 5 0
1 2 -1 (Rohilkhand 91)

Sol. A=[-5 -8 o0|x[-5 -8 0
3 5 0 3 5 0

1 2 -1 1 2 -1
= (-5 (5+(-83+01 (-5)(-8)+(-8)5+02
3(-5+53+01 3(-8)+55+02

1.-5+23+(- 1)1 1(-8)+25+(-1)2
(-50+(-8)0+0(-1)
3p+50+0(-1)
10+20+(=1) (= 1)
25-24+0 40-40+0 0+0+0|=|1 O 0O|=I
-15+15+0 -24+25+0 0+0+0 010
-5+6-1 -—-8+10-2 0+0+1 0 0 1

Hence the given matrix A is involutory.

Ex. 2. If A is any square matrix of order n and I is the identity
matrix of order n, such that (In— A) (In+A) =0, then show that A is
" involutory matrix.

Sol. Given that (In—-A) (In+A)=0
or E+IgeA-Ael,-A%=0

or Ila+A-A-A%=0, " Ta=In IneA =A = Asly,
: (See Ex. 1. Page 64)
or In-A’=0 or AZ=1Iaie. A is involutory by definition.
§ 2-07. Nilpotent Matrix. (Avadh 93)
Definition. A square matrix A is called Nilpotent matrix of order m,
provided it satisfies the relation A™ =0 and A™! # 0, where m is a positive
integer and O is the null matrix.
For examaple, the matrix A ={0 l] is a nilpotent matrix,

00
since A=|0 1| =0,
00

A2=[0 1]x[0 1]=[00+10 0O1+10
0 ol |0 0| |00+00 01+00
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=[g 3]:0.

AS=AZeA=0eA=0. .
ie. A isamatrix which is not itself a zero matrix though its powers are zero
matrices and s0 it is a nilpotent matrix (Another definition of nilpotent
matrix). ‘

Solved Examples on § 2 07.
Ex. Showthat A=[ 1 2 3]is a nilpotent matrix of order 2.
1 2 3 :
-1 -2 -3
Sol. Given A=| 1 2 3(20
1 2 3 '
= = =3
a2 1 2 31 2 3
1 2 3 [1 2 3
-1 =2 -3 !_—l -2 -3

L1+21+43(=1) 12+22+3(=2) 13+23+43(-3)
J1+2143(=1) 12+422+3(-2) 13+23+3(-3)
{1=24 =3[ 1) —12-32-3(-2) =13I=23-3(3)

I

o0 S

0 §|=0, where O is the null matrix of order 3.
) 0
0

a
o

—_—

ie. A%*=0 but A=#O. Hence A is a nilpotent matrix of order 2.
Exercises on § 2-07

Ex. 1. Show that the matrix| ¢ p?|is nilpotent.
= ﬂz - Ob

Ex.2. Showthat] 1 1 3]isamlpotent matrix of order 3.
5 2 6
-2 -1 =3 (Avadh 93, 90)
(Hint : Prove that A> = 0, A?# O]
**& 2.08. Transposed Matrix. (Agra 94)

Definition. The matrix of order n X m obtained by interchanging the rows
and columns of a matrix A of order m x rt is called the transposed matria of A

or transpose of the matrix A end is denoted by A’ or A' (read as A transpose).
Another Definition. If A =[a;j] be a matrix of order mXn, then the
matrix B = [b;] of order n x m, such that bjj = a;; is kncwn as transposed matrix

of A or the transpose of the matrix A and is denoted by A'or Al
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Ferexample : IfA={1 3 5|thenA’=]1 21
2 4 6 3 4
LU 5

Note 1. The element ay; in the ith row and jth column of A stards in jth
row and ith column of A”.
Note 2. The transpose of an 71 X n mawix is an 7 X m mairix.
*§ 2.09. Some Important Theorems on Transposed Matrices.
Theorem L. The transpose of the sum of two matrices is the sum of their
transpose i.e. (A+B) = A’ + B,
Proof. Let A = [gy;] and B = |b,)].
Then A +B={aj+byl. =[cyi, say
then Cy = aij + byj
~ (A +B) =[d)], wheredy=c,forall 1<i<m 1<j5n
ie. di=ay+by. forall 15iem, 1<j<n

or  (A+B) =[cyl=(ay+bj) (1
Also A"=([f], wherefji=ay, forall1Si1<m. 1<j<n
" and B’ =[gji]. where zi=hj forall [Si<m, 1<j<n
A’ B =l + (gl = [fii + 2]
= [aij + by) (i)

. From (i) and (ii) we get (A +B) = A"+ B’

*Theorem Il. The transpose of the tranipose of u matrix is the matrix
itself i.e. (A") = A. (Meerur 95, 94)

Proof. Let A =[aij] be an mm < n matrix. Ther A i.e. the tranpose of A is
nxm matrix and (A")" i.e. the transpuse of A’ (or the transpose of A) is an
m X n matrix.,

Therefore the matrices A and (A") are both m xn matrices and hence
comparable. ' i)

Also, the element in tne ith row and jth columan of (A")'.

= the element in the jth row and ith column of A’
= the element in the ith row and jth column of A

ie. the comresponding elements of (A’)" and A are equal )

. From (i) and (ii), we conciude that (A") = A. Hence proved.

Theorem 1. If A is any m x n matrix, then (kA)' =kA’, where k is any
number. ,

Proof. Let A =[ajj] be any m X n matrix. Then kA is also m X n natrix
and therefore (kA)’ i.e. the transpose of the matrix kA is an n X m matrix.

Also A’, the transpose of the matrix A, is n x m matrix and kA’ is also an
n X m matrix.

Thus we find that the matrices (kA)’ and kA" are both n X m matrices arnd
hence comparable. (0

Again the element in ith row and jth column of (kA)



Transposed Matrices 71

= the element in jth row and ith column of kA

=k times the clement in jth Tow and ith column of A (Note)
= k times the element in fth row and jth column of A’ (Note)
= kajj (Note)
= the element in ith tow and jth column of kA’

i.e. the corresponding elements of (kA) and kA" are equal (1)
From (i) and (ii), we conclude that (kA) = kA" Hence proved.

*sTheorem IV. The transpose of the product of two matrices is the
product in reverse order of their transpose i.e. (AB) = B'A".
(Garhwal 95, 93; Gorakhpur 96, Rohilkhand 94)
Proof. Let A = [ai] and B = [biy) be the two matrices of orders m X n and
n x p respectively.
Let C = AB = (gik] % [byj] = [cif], say
where C is a matrix of order m X p.

n
- The element in the ith row and jth column of AB is cj= L aixbi.
! k=1

This is also the element in the ith row and jth column of (AB)". wln)

The elements in the jth row of B’ are‘bl,-, bj, by ..., bnj and clements in
the ith column of A’ are a;, @j2. i3, ..., Qin- Then the element in the jth row and
ith column of B'A” is

n n
L hjair= L aikby=ci ..(1)
k=1 k=1

Hence from (i) and (ii) we conclude that (ABY =B'A".

Note. The statement of theorem IV is called the reversal rule for the
transpose of a product.

Solved Examples on § 2-08 to § 2-09.

Ex. 1. Write down the transpose of the matrix A :[1 2 4]
6 8 1

Sol. Let A’ be the required transpose of the matrix A. Then A’ = matrix
obtained by interchanging the rows and columns of the matrix A=|1 6].

2 8
4 1| Ans.
Ex. 2. Verify that (B)t (.‘\)I = (AB)I. when’
(@ A=[2 1], B=(1 -2
4 5 (Budenkhand 91)

0
-3

) A=[1 2 3],B=[ 1 2
3 =3 1 2 0
=4 1
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(cc A=| 2 4 -1|,B=] 3 4 5§
-1 0 2 - 2z 7
¢ 10

Sol. (a) Here A‘:[z], Bt=[ 1 4
1

(Avadh 92)

B'A'=| 1 4|x[2]=] 12+41]=[ 6
-2 5 1 -22+51 1
0 -3 02-31} }-3 D)

Also AB=[2 1]x[1 -2 0
4 5 -3

=[21+14 2(-2)+15 20+1(=3)]
=[6 1 -3].
~ (ABY = transposed matrix of AB
= [ 6]=BA" from @)
1
& 3_! Hence proved.
3], Bt=[1 2 -1
-2 20 1

1

2

3 1
2

0

I

(b) Here A'=

B'At=[1
2
- 3 1
=[11422-13 13+2(-2)-11
21402413 23+0(-2)+11
=2 -2] '
E 7J : ..(ii)
Also AB=|1 2 3ix|] 1 2

2 0

-1 1

3 =21

=[1142243(-1) 12+420+31]=[ 2 5]

31-22+1(=1) 32-20+11] [-2 7]

(AB)‘ = transposed matrix of AB '

=[2 —2]=B'A', from (i),
7

5 Hence proved.
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(c) Here A'=| 2 —1landB'=|3 -1 2
4 0 4 2. 1
=4 2 ¥ T
BiAt=[3 -1 2]x[ 2 -1
4 21 4 0
s 7 0] |-t 2
=[32~1442(-1) 3(-1)-10+22]=[0 1
42+24+1(=1) 4(-1)+20+12] [15 -2
5247440(=1) 5(-)+70+02] |38 -5 (i)
Also AB=[ 2 4 —1]x[ 3 4 5]
-1 0 2| |-1 27
) 210
=[ 23+4(-1D-12 24+42-11 25+47-10
-1340(=1)+22 -14+02+21 -15+07+20
=[o 15 38]
1 -2 -5
(AB)' = transposed matrix of AB
=[0  1]=B"A", from (ii).
15 <@
38 ~3 Hence proved.
)ég*ﬂx.s.lfzs:l -1 0land B=[4 1 0
2 1 & 5 =%
: 4 1 8 i . L =1
then verify (AB)I_= B' A" (Meerut 93, 91)
Sol. AB=[1<-1 0O|x[4; 1 0
2 13 2|—3 1
4 1 8 [ 1 -1
=14-12401 11+13+01 1.0-11-01
24412431 21-13+31 20+11-3]
44412481 41-13+81 40+ll—8-|
or AB={2 4 -1]andso(AB)'=| 2 13
‘ 13 2 =2 4 .
26 9 =7 =1 az Ay
Again A'=[ 1 2 4]and B'=[4 2
l-; | § =3
0 3 8 0 1

=1
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B'A'=|4 2 flxf 12 4
1 -3 | -1 1 1
0 1 -1 0 3 8
=[41-21+10 42+21+13 44+2:1+18
1'1+31+10 1.2-31+13 1-4-31+18
LO—l—l-l—l-O 02+1-1-13 04+11-18
=[ 2 13 26|=(AB)", from (i)
4 2 9
=3 =g =ik Hence proved.
Ex.4. IfA=| cosa sin« , verify that AA" = [2=AA.
—-sind cos@
Sol. Here A’ =lcosa —sina
sin @ cos o
AA = cosa sina|x|cosa —sina
—-sinQ cosa sin @ cos o

cos

2

[— sin O Cos (L + cos oL sin &

o+ sin2 a

— cos O sin O+ sin cLcos O
w e
sin” a4+ cosza

=1« 0)=1x
0 1

Similarlly we can prove that

A'A=|cosu
sin o

C052

0l=1Ia.
0 1

o+ sin” o
sin 0L cCs O — COs O sin U

LI
—sina|x| cosa sino
cos —-sin@ cos O

2

2 2

cos @ sin oL —sin @ cos O
sin“ o+ cos”

Hence AA =T2= A’A.
Exercises on § 2.08 - 209

Ex1 IfA=[2 3],
i 2

1 2

|

3 0], verify that (AB)' = B’A’, where

A’, B’ are transposes of A and B.

Ex.2. ITA=]]
2

4

-1
1
1

1| and B=(4 1 0
3 2 -3 1
8| - N il =il

then verify that (AB) =B’A".
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Ex.) IfA=] 2 4 -i]and B=[ 2 4 5
I =1 0 2 =l 2 7
' 210
prove that (AB)" and B'A" are equal.
Ex.4. IfA =[2 3] - B =[3 4], then verify that [AB]' = B'A"
2 il

01 2
Fx.5. 1fA=[1 1 ]]and B=[ 0 1 -1
2 2 3 -3 3§
2 4 9J I 1
then venfy that (AB)' = B'A",

*§ 2:10. Complex conjugate (or conjugate) of a Matrix.

Definition. The matrix obtained from any given matrix A of order m x n
with compiex elements a; by replacing its elements by the corresponding
conjugate complex numbers is called the complex conjugate or conjugate of A
denoted by A and is read as ‘A conjugate.’
or If A=[ay] and a4, is the complex conjugate of the element aj; then
A=[agl forall 1<ism, 1<j<n.

Forexample: FA=[1+i 2+3]

L 2 3
-~ (1=-1 2=-3
then A —I: 2 _ 3:‘]

Real Matrix. (Avadh 93)
Definition. A matrix A is called real provided it satisfics the relation
A=A

Imaginary Matrix. (Avadh 93)

Definition. A matrix A is called 1magmary provided 1t satisfies the
relation A = - A

**§ 2-11. Theorems on complex conjugate of a matrix.

Theorem L. If A ={a;] be anv m x n mairix with complex elements ajj.
then the complex conjugate of A is the matrix A irself.

Proof : By definition (given in § 2-10 above) we know that A = Lajj], for
all 1Sism, 1 <j<nand aj is the complex conjugate of ay.
i.e. the element in the ith row and jth column of complex conjugate of A ie. A.

= the compiex conjugate of element in ith row aud jth zolumn of A.

*. The ciement in the ith row and jth column of the complex conjugate
of Aie A

= the complex corjugate of the element in ith row and jth column of A

= the complex conjugate of a;; (Note)
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=aj; i.e. the element in the ith row and jth column of A. (Note)

i.e. the corresponding elements of A and the complex conjugate of A are equal.
i)

Also it is evident that A, A and its conmplex conjugate are mXn
matrices and hence comparable. .(11)
~. From (i) and (ii), we conclude that the complex conjugate of A is

"equalto A or A=A.
Theorem II. If A = [ajj] be any m X n matrix with complex elements ajj,
then AA = A A. '
Proof : By definition, we know
A =[gy), for all 1<i<m, 1<j<n and @ is the complex conjugate of
ajj.
Also AA =[Agj], forall 1 Sism, 1<jsn.
o AA=[Agj)=(Aayl, forall 1Sism, 1<i<n i)
and we know that 7] 22 = Z1. 22, where 24, 22
are any two complex numbers,
Again A A = [bj), where bj=Aajjforall 1Si<m, 1<j<n
=[hayl, forall 1Sism, 1<)<n (i)
. From (i) and (ii) we conclude that the corresponding eleme..ts of AA
and A A are equal. Also it is evident that AA and A A are matrices of the same

order. Hence we conclude that  AA = A A.
Theorem I1I. If A and B are two matrices conformable to addition, then
A+B=A+B.
Proof : Let A= [a,j} and B =[bj] be any (wo matrices of order m xn.
Then as these matrices are given as conformable to addition, so we have

A+B=[aj+bj) forall1si<m 15j<n. A1)
Also A = [ajj] and B = [B;j], by definition. .
A + B =[a; + bj) = [a;j + byjl, )

forall1<ism, 1<j<n
and also as 7j + 72 =21 + 22, where z1, 22
are any two complex numbers.
Again from (i), we have
A + B = complex conjugate of [ajj + bjj]
= complex conjugate of [¢y;], where cjj = ajj + bjj
=[E.|_'J:]=[ﬂ;j+5;j|. forall1€i<sm, 1<j<sn
ie. A+B=[ag;+b, foralll1<i<m1sjsn ...(ii)



Transposed Conjugate of a Matrices wi|

- from (ii) and (iii) we conclude that the corresponding elements of

A +B and A+ B are equal. Also it is evident that both A+ B and A +B are
matrices of order mxn as A and B are given as conformable to addition.

Hence we conclude that A+ B=A +B
Theorem IV. If A = [ajj] be any m x n matrix and B = [bjx] be any nXp
matrix i.e. if A and B are conformable to the product AB then AB = A B.
Proof : Since A and B are conformable to the product AB, so
AB = [a;] X [bjx] = [cik], where cik=aij bjk, forall 1sism, 1< k < p and there

1s sumumnation on j, where j=1,2,3, ..., n.

Also A=[ay], forall 1<is<m, 1<j<n
and fi=[5}ﬂ.f0r15j5n. 1<k<p

A B is defined and we have AB= [aij) > [Bj) = [dix), i)
where dy=ajjbj forall 1 Si<m, 1 €k<pandj=12,...,n

Again AB = complex conjugate of AB i.e. [cix]
or AB = [cik], where cik = aj) bjk

=la;bil=laijbjr, = Tnz2=11.22,

for any complex numbers z1 and 22
= [dik], since dig =ajj bjx forall 1 €i<m,
1<k<p and j=1,2,..,n ..(i)
From (1) and (ii), we conclude the AB=A B.
§ 2-12. Transposed Conjugate of a Matrix.
Definition. The transpose of conjugage of a matrix A i.e. (A) is defined
as transposed conjugage or tranjugate A and is denoted by Aie A®= (R).
Forexample : If A=|1+i 2+3i|
[ 2 3i }

fh=2 B=7%
then Kﬁ-{ 5 —3:’]

A®= transpose of A =(A)
=(1-i 2
2-% -3
*§ 2-13. Theorems on Transposed conjugate of a matrix.
- Theorem 1. For any matrix A, (A) = (A")

i.e. the transposed conjugate of a matrix is equal to conjugate of its transpose.
Proof : Let A = [ay] be any m X n matrix.

Then by definition, A =[ay], forall 1 <i<mand | <j<n.
= (A) =transpose of A,
ie. (&) =[bji} , where [bji] is n X m matrix and bji = a,)
forall1€ism, 1sjsn | ..(i)

JAgain A’ =ranspose of A i.e. [ajj]

-6
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=[], where ¢ = ajjand {c;] % nxmmatnx for all
-t ' ‘ lsi<sm, 1£j<n.
(A)" = complex conjugate of A’
=[], by definiton.
=Tay] since o) =ay
or (A)" = 1bul, since bji = aij. where [byi] is n % m matrix for
Al 1<€i<m, 1<j<n (i)
- From (1) and (ii), we conclude that {A)" = (X7).
Theorem IL. For any niatrix A, (Ae)e = A.
Proof : Let A% =B ie. B={A)
Then B’ =1transpose of B
= transpose of (A)’

=A, since we know (A") = A ..See Th. 11 Page 70

(B)" = complex conjugate of B’ ...See Th. I above

= complex conjugate of A (Note)

= A, since we know A = A ..See Th. I Page 75

ie. B® = A, since B® - (B')=(B) ) ...Sec Th. I ahove
ie. (Ag)e = A, since A°=B. Hence proved.

Theorem I11L. (a). For any matrix A, (J"cA)9 = .('Ae, where k is a scalar.
Proof : By definition, we know that
(kA)? = (kXY
=(k A), by Th. Il Page 76
=k (), by Th. Il Page 70
= kA, since k is a scalar. Hence proved.
Theorem 11 (b). For any matriv A,k A)G =k Ae‘ where k is any
complex number '
Proof : By definition, we know that
(kA)? = (kRy
= (kAY, by Th. )l Page 76
= (k A", by Th. 111 Page 70

]

=kA® - (XY =A® by definition. Hence proved.
Theorem IV. If A and B are nvo matnices conformable 1o addition, then
(A+B)°=A%: B®, (Mexrut 9U)

Proof : By definition. we have

A+R)2=A+B)=(A+BY, *© A+rB=A+]
JSee Th U Page 76
=(A) 4+ (B) bw Th. 1Page 70

€ - g
=A94+ R, by defintuen. Henee proved
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#*¥ heorein V. If A and B are two matrices conformabic 10 the product
AB. then  (AB)? =B®A°
Proof : (AB)" = (ABY', by definition
= (A By, by Th. IV Page 77
=(R) (XY, by Th. IV Page 7!
=B AS, by definition.

(Note)

Hence proved

¢ ] ;
Fxampie : Find {f\g} ,A” and (A) for the matrix

A=[1+i 3-5i]
2i < j

Solution. A=[1~i 3+5i
-2 5 ... See § 210 Page 75

- -2i]

5 )

(A)Y = Transpose of A =
... See § 2-08 Page 69

A’ =Transpose of A=| 1+
I-5i

..Sce § 2-08 Page 69

2
5

A =conjugatcof A"={1-i =2i|=(A)
3+5 5
AG = conjugate transpose of A = t=1 =2il=A
34515
and JIAH:;H = conjugate transpnse of AB

3I-5i|=A
| 2 5 }
**§ 2.14. Symmetric and skew-symmetric matrices.
(a) Symmetric Matrix, (Agra 94; Avadh 92)
Prefinition, A square matrix A =[ay] is called symmetric provided
ay =, for ‘all values of i and J. -
For example : A :ir 1
-3

L 5

Nowe. kA 15 also symmetric, if & is scalar.

(b} Skew-symmetric Matrix. {Agra 94; Avadh 92)

Defintion. A couare matrix A = [ay] is called skew symmetric provitied
ayj = — ay. for all values of ¢ and J.

=3 3
2 7
73

ot example @ A -f 0 I -3
[—1 0 5

3 -5 0]
L J
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Note. kA is also skew-symmetric, if k is scalar.
§ 2-15. Theorems on Symmetric and Skew-symmetric matrices.

Theorem 1. A square matrix A is symmetric iff A = A’ (Kanpur 90)
Proof : Let A be an n x n square matrix i.e. A =[a;], forall | <i<n and
15j<n.
If A is symmetric matrix, then by definition, we have
laijl =(aji], forall 1<i<nand 1 <j<n (1)

Also, by definition,
A’ = [by] such that bij=aji forall 1 <i<n, iSj<n . .Sce § 2-08 Page 69
or A'=[ag], forall1€isn 1<j<n
= [ay], from (i).
Hence A= A.
Conversely if A =A’. Then A must be & square matrix
Also A=A" = [ajl=[ay], forall1<isn, 1<j<n
= aj=aj, forall 1<i{<n, 1<j<n
=> A IS a symmetric matrix. Herce proved.
Theorem II. A square matrix A is skew-symmetric iff A’ = — A.
i Proof : Let A be an n X n square matrix i.e A =[ay] for all 1 <i<n and
1SS n.

If A is a skew-symmetric matrix, then by definition, we have
[aj]=[=aj;]), forall1<i<n, 1<j5n ..(1)
Also, by definition, A" = [bjj], such that bjj = a;;.
forall 1<i<n, 1<€j<n. ...5ee § 2-08 Page 69

or A'=[ajlforall 1£i<n, [<j<n
=~ [-aji] =—[a;], from (i).
Hence A’=-A.
Conversely if A"=— A, then A must be a square matrix.
Aldo A'=- A = [aji]=~[aj), forall 1<i<n, 1<j<n

= @i = — ajj
= aij==aji, forall 1 <i<n, 1<j<n
= A is a skew-symmetric matrix. Hence proved.

***Theorem lII. Every square matrix can be uniquely expressed as the
sum of a symmetric and a skew-symmetric matrices.
(Avadh 94, 92, 90; Bundelkhand 95, Mecrut 93)
Proof : Let A be a square matrix, then we can write

A=%A+%A=§(A+A')+§(A_—A') .(1)

since %A. %A’ are conformable to addition, A being a square matrix. (Note)
Now (3 (A +A")})" = transpose of 1 (A+A)

=—; (A+A"Y ...by § 2:09 Th. IlI Page 70

=1(A"+(A"Y)) ...by § 209 Th. I Page 70
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=1(A"+A) ...by § 2:09 Th. II Page 70
or (1(A+A)Y = HA+AY, as matrix addition is commutative.
Therefore, by definition, ; (A + A”) is a symmetric matrix .(i1)
Again {% (A=A =;(A-AY ...by § 2:09 Th. Il Page 70
=1{A+(DAY}’ : (Note)
=LA +{(-1) (A} ...by § 2:09 Th. I Page 70
=1 {A"+(-1)(AY} ..by § 2:09 Th. III Page 70
=1 {A"+(-1) A} ..by § 2:09 Th. I Page 70
=LA -A)= DA+ (=D A} (Note)

=(-1).3(-A'+A)
or L(A-A)=-1(A-A),  asmatric addition is commutative.
Therefore, by definition, % (A - A") is a skew-symmetric matric. (1)

Hence from (i), (ii) and (iii), we find that the matnix A can be expressed
as the sum of a symmetric and a skew symmetric matrices.
To prove that the representation (i) is unique, let

A=A1+ A2 i)
where A1 is symmetric and Az is skew-symmetric.
Then A1=Ar (V)
and ' A2=-A7 ~(vi)
From (iv), we have A =(A1+A2)"
' =Ay+A7 .. by Th. 1§ 2:09 Page 70

or A’ = A1 - Az, from (v), (vi) .(vil)
Adding and subtracting (iv) and (vii), we get '
) A+A'=2A1and A-A'=2A;
or A1=1(A+A’) and A2=1(A-A)

. From (iv), we get A= (A + A"+ (A - A"), which is the same as (.
g 2 2

Hence the representation (i) is unique. Hence proved.
Solved Examples on § 2:14 and § 2:15
Ex. 1. Show that the matricA =| 9 6 7|is skew-symmetric.
-6 0 8
-7 -8 OJ (Meerut 94)

Soi. ip tho given matrix, we find that

an=0an=6=—a, a3=T=-a1,a2=0a3=8=-a3,a3=0
ie. aj=—ajiforall1<i<3,15j<3.

Hence by definition [See § 2-14 (b) Page 79] the given matrix A is
skew-symmelric.
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Ex.2. If A 1:3 1 - IJ , then show that AA’ and A’A are both
01 2

symmetric matrices.

Sol. Here A’=| 3 0
'
-1 2

AA’: xf 3 0

1 | S |

-1 2

[33+11-1(=1) 30+11-12
03+1-142(=1) 00+1-1+22

=1 - l}, which is a symmetric matrix,

_-—1 5 [See § 2:14 (a) Page 79]
Similarly A’A=[ 3 0]x[3 1 -1
'k 1.2

-1 2

33400  31+01 3(=1)+02
113+ 10 1+ 11 1-D+12
-13+20 -11+21 -1(-1+22

1l

=[ 9 3 =3/, which is a symmetric matrix
3 2 1
-3 1 5 [See § 2:14 (a) Page 79]

*Ex. 3. (a). If A and B are both skew-symmetric matrices of same
order such that AB = BA, then show that AB is symmetric.

Sol. If A and B are both skew-symmetric matrices,
then A=-A"and B=-B’ (1)

Also given that AB = BA

‘ =(-B") (- A"), from (i)

=B'A"=(AB) ..Seec Th. IV § 2-09 Page 71

or AB=(AB)" ie. ABisasymmetric matrix. Hence proved.

Ex. 3 (b). If A is a symmetric matrix, then show that kA is also
symmetric for any scalar k.

Sol. Here (kA) =kA’, See. § 2:09 Th. TIT Page 70

=kA, " A’=A, A being symmetric
Hence kA is symmetric, if A is so.
**Ex. 4 (a). Find the symmetric and skew-symmetric parts of the matrix
A=(1 2 4
6 8 1
3 5 7
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Sol. (Refer Theorem III § 215 Pages 80 - 81)
Here A’ = transpose of A

=t 6 3
2 85
4 17

The symmetric part of A = ‘ (A+A")

=§124-‘+163)
& 8 1|12 8 5
357J4:7

344 5+1 T+7

oo
LS I )

=1f1+1 2+6 4+3]=3[2
6+2 8+8 1+5 8 16 ©
7
1
4
T
2

=if1-1 2-6 4-3 =§{ 0 -4 1
6-2 8-8 1-5 4 0 -4
3-4 5-1 -1 L—l 4 0
:[ B 3 4
P 0 7Y
-_I_ 5]
™3 2 0 Ans.
*fy. 4 (b) Express given matrix A as sum of a symmetric and
skew-symmetric matrices. A=[6 8§ §
4 2 3
Ll 71 (Agra 93)

' Sol. From Theorem 111 § 2-15 Pages 80 — 81 we find that the symmetric
and skew-symmetric parts of a matnx A are 1(A+A") and 1(A-A)

respectively whose sum is eveidently A. (Note)
1.2; A= (A + Ah’) + llz (A= {\r) (l)

Now A’ =uansposcof A=|6
8

<

EPS I O |
— ) -
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A+A'=[6 8 S|+[6 4 1
4 2 3| |8 2 7
1.7 1] 15 3 1
=[6+6 B8+4 S5+1]=[12 12 6
4+8 2+2 3+7| |12 4 10
l+5 7+3 1+1 6 10 2
1 112 12 6]=[6 6 3],
yA+AY =312 4 10| |6 2 5
6 10 2| [3 5 1

which is evidently a symmetric matrix as aj; = ;i for all values of i and j -
And A-A'=[6 8 5|-[6 4 1
14 2 3 8 2 7
5 3 1

I 7 1
=[6-6 8-4 5-1]=[ 0 4 4
4-8 2-2 3-7| [-4 0 -4
1-5 7-3 1-1| {-4 4 o
3A-A)=1 0 4 4]=[ 0 2 2],
-4 0 -4 < L =
-4 4 0| |-22 o

which is evidently a skew-symmetric matrix as ajj = — a;i for all values of i, j
. From (i), we get
A=|l6 6 3|+ 0 2 2
g8 2 5 -2 0 =2
3 5 1 -2 2 0
= sum of a symmetric and skew-symmetric matrices, as proved above.
**Ex. 5. If A is any square matrix, show that AA’ is a symmetric
matrix.
Sol. (AA")" = transpose of AA’
=(A") A’ ..See Th. IV § 2:09 Page 71
= AA’ .. See Th. IT § 2.09 Page 7(
ie. - AA"=(AA’). Hence AA’ is a symmetric matrix by definition. .
*Ex. 6. If A be a square matrix, show that A + A’ is symmetric anc

A - A’ is a skew-symmetric matrix. (Meerur 99
Sol. If A is a square matrix, then

(A+A") ' =A"+(A)’ ..See § 2.09 Th. T Page 7(

=A"+A ..Sec § 2.09 Th. II Page 7

=A+A’, by commutative law of addition
Hence by definition A + A’ is symmetric.
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Again (A-A") =A"-(A")", ..See § 2.09 Th. I Page 70
=A'-A ..See § 2.09 Th. II Page 70
=-(A-A)

Hence by definition A — A’ is skew-symmetric.

*Ex. 7. If A is skew-symmetric matrix, then show that AA” = A’A and A’
1s symmetric. ‘

Sol. If A is a skew-symmetric matrix, then we know that

A'=-A wkD)
Pre-multiplying both sides of (i) by A, we get
AA'=-AA =-A? i)
Post-multiplying botn sides of (i) by A, we get
A'A=-AA=-A2 ...(ii)

From (ii) and (iii) we conclude that AA" = A'A

Further we can prove (as in Ex. 5 Page 84) that AA" and A'A are
symmetric matrices. Hence from (ii) and (iii) we find that — A? is a symmetric
matrix or AZ is a symmetric matrix, as we know that kA is also symmetric if k
is scalar and A is symmetric. Hence proved.

Exercises on § 2.14 - § 2.15

*Ex. 1. If A and B are symmetric (or skew-symmetric) matrices, then so
is A+B.

Ex. 2. If A and B are symmetric matrices, then prove that AB + BA is
symmetric and AB - BA is skew-symmetric.

Ex. 3. Show that all pasitive integral powers of a symmetric matrix are
symmetric.

Ex. 4. If A is any matrix, then show that A’A is a symmetric matrix.

(Hint : See Ex. 5 Page 84)

Ex. 5. If A is a symmetric matrix, then show that AA"=A’A and Alis
symmetric. ' '

(Hint : See Ex. 7 above)

Ex. 6. What is the main diagonal of a skew symmetric matrix ?

(Kanpur 90)

[Hint : See § 2.14 (b) Page 79. Each element is zero].

Ex. 7. What is the transpose of a symmetric matrix ? (Kanpur 90)

[Hint : See Th. I § 2.15 Page 80]. Aps. The matrix itself.

Ex. 8. A is a skew symmetric matrix. How will be A" ? n is any positive
integer.

*Ex. 9. Prove that every diagonal element bf a skew-symmetric matrix is
necessarily zero. (Garhwal 91; Kanpur 94)

[Hint : In the case of skew-symmetric matrix, we know

ajj = - aji for all values of i and j

= If i =}, then ajj=— ay; for all i
ie. aii+ai=0 or 2a;=0 or ai=0
ie. all diagonal element of a skew symmetric matrix are necessarily zero.]
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*#§2 16. Hermitian and Skew-Hermitian Matrices.
(a) Hermitian Matrix. (Avadh 95, 91, 90)
Definition. A square matrix A such that A’ =A is called Hermitian i.e.
the matrix [ajj] is Hermitian provided aj;; = aj;, for all values of i and j.
For example : A = { a+ip y+id
a-iB m  x+iy
Y-id x-iy n
(b) Skew-Hermitian Matrix. (Avadh 91, 90)
Definition. A square matrix A such that A=- is called
skew-Hermitian i.e. the matrix [aj) is skew-Hermitian provided ajj=-aji for
all values of i and j.
Forexample : A=| 2i -o-i -3+i
a-ip —i = y+id
3+i  y+id 0
§ 2.17. Theorems on Hermitian and Skew-Hermitian Matrices.
*Theorem I The diagonal elements of a Hermitian matrix are
necessarily real. (Avadh 95)
Proof : Let [ajj] be a n x n Hermitian matrix, then according to definition
[as given in § 2.16 (a) above], we have
: aj=aji, foralll € isn 1 Sj<n (1)
Now the diagonal elements are aji , where 1 < i < n.
-, From (i), we have agji=a;ii, forall1 S i <n (1)
If aii =0 + if where a and P are real,
then ai=o—if
. From (ii), we get a+if=a-ip
or 2ip=0 or B=0
s aji=o+ i (0) = a, which is purely real. ;
Hence the diagonal elements of a Hermitian matrix are necessarily real.

Hence proved.
*Theorem II. The diagonal elements of a skew-Hermitian matrix are
either purely imaginary or zero. ' (Avadh 90)

. Proof : Let [a.i,'] be an nxn skew-Hemﬂﬁm matrix, then according to
definition [as given in § 2.16 (b) above] we have
aj=-gji, foralll Si<n 1<j<n i)
Now the diagonal elements are aj; , where | £ i < n.
.. From (i), we have g;j=-aj;, forall 1 <i < n. .. (i)
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If ajj=o+if, where ot and P are real,
hen -« aiji=o—ip. 5
. From (ii), we get o+ iff = — (0t —iP3)
or o+ip=-a+if or 200=0 or a=0
<. aii=0+ if = iP, which i purely imaginary and can be rero if f=0.
Hence the diagonal elements of a skew-Hermitian matrix are either
purely imaginary or zero.
**Theorem IIl. Every square matrix (with complex elements) can be
uniquely expressed as the sum of a Hermitian and a skew-Hermitian matrices.

(Garhwal 92)
Proof. Let A be a square matrix. Then we can write
Koel (A +49) 4+ % (A-A9) (D)
Now (A ’5) A+ K‘E" ..See § 2.11 Th. I Page 76
— R ’ —_e‘ ’
{A+A 9 { } =(A)Y+(A")", ..Sec §2.09 Th.I Page 70
=A% (ﬁf’_) ", by def. (AY =A®, See § 2.12 Page 77
ST T S )
B _ . (S]

Now (A™)" = transposed conjugate of A
= transposed conjugate of (AY, .See §2.12P.77

= transposed matrix of (A)",
since conjugate of A is A ..See Th. I Page 75
=A, v (A=A ...See § 2.09 Th. II Page 70

. From (ii) we geL{Am@)} =A%4a=A+A9,

as addition of matrices obey commutative law.

. By definition (See § 2.16 (a) Page 86) we find that A+A® is a

Hermitian matrix.

sgin(A-29) ~&-r-r-(®)

9

=A" —A,asabove

=~ (A~

-. By definition (See § 2.16 (b) Page 86) we find that A —-Ae' is a skew-
Hermitian matrix.
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~. From (i) we conclude that the square matrix A is the sum of a
Hermitian and a skew-Hermitian matrices.

Solved Examples on § 2.16 - § 2.17.
Ex.1(a).. IsA=] 3 7-4i -2+5i
T8k =2 - Y=i
~2=81 3+4i 5
a hermitian matrix ?
Sol A’=[ 3 T+4i -2-5i
T-di =2 . 3%i
-2%5f -1 5
A=l 3 9-8i -245i]=A
T+4i -2 3-i
D SF Baed 5

Hence by definition [Sée § 2.16 (a) Page 86], the given matrix A is
herqnitian.

Ex. 1 (b). Prove that the matrix A=| 1 1-i 2
: 1+i 3 i
2 -i -0
is Hermitian, (Avadh 91; Rohilkhand 97)
SoL A’=[ 1 1+i 2
! 1-i 3 =i
2 i 0

A'=[ 1 1-i 2]=A
14§ ¥ @
2 =i @

A is Hermitian.

..See § 2.16 (£) Page 86
Ex.2. fA=| 3 2-3i 3+5i

]

2+3i 5 i
3-5 -i 7
then prove that A is Hermitian. (Meerut 96)
Sol. A=[ 3 2+3i 3-5i]=B(say) '
2-3i 5 -1
3+ 5i i 7

ThenB'=| 3 2-3i 3+5i
2+31 5 i
3-5i -i 74
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B'=[ 3 2+3i 3-5i |{=B

2-3i 5 —i

I+S50 § 7
- B ie. A is Hermitian. ~ ..See § 2.16 (a) Page 86
Ex.3. Show that A=[ i 342 -2-il,

-3+2 0 3-4i
2-i- =3-4i -2

is skew-Hermitian Matnix. (Rohilkhand 95)
Sol. Here A’=[ i -3+2i 2-i
342 0 -3-4i
—2-i 3-4i -2
A=l —i -3-2i 2+i
3-2i 0 -3+4
-2+i 3+4i 2i (Note)

- i 3+ -2-i|=-A
-3+2 0 3-44
2—-i -3-4 -2
- Hence by definition [See § 2.16 (b) Page 86], the given matrix A is
skew-Hermition. :
Ex. 4. If A and B are Hermitian, then show that AB is Hermitian if
and only if A and B commute.
Sol. If A and B are Hermitian matrices, then we have
A=) =A% and B=(By=B° i)
Then (AB)® =BOA®, by § 2.13 Th. V Page 79
= BA, by (i) above
= AB, if A and B commute
18 (AB)®=AB or (ABY=AB, - A®-@y
Hence by definition AB is Hermitian.
Converse of this can be proved to be true by reversing the above

calculations.
Ex. 5 (a). If A is a Hermitian matrix, then show that iA is

skew-Hermitian. . (Kanpur 90)
Sol. If A is a Hermitian matrix, then

we have A=A’ ..See § 2.16 (a) Page 86
Also X’ = Ae ...See § 2.12 Page 77

. Here AnAl=AD (i)
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Now - (ia)2=-ia®, i T=-i
' ...See § 2.13 Th. 11 (a) Page 78
- (u°)
or (:‘A) O __(ia), from () ..(ii)

Also from § 2.16 (b) Page 86 we know lhat if A is a skew-Hermitian

matrix, then A’ == A = A , from (1)

And from (i), we find that —(iA)=(GA)®, hence (iA) is a skew-
Hermitian-matrix.

Ex, 5 (b). If A is a skew-Hermman matrix, then show that iA is
Hermitian.

Sol. If A is a skew-Hermitian matrix, then we have

-A=A’ ..Sce § 2.16 (b) Pagc 86
" Also A'=a® .See § 2.12 Page 77
~A=A"=A® (i)

Now - P = i®, s ey

..See § 2.13 Th. IlI (a) Page 78
== i(-=A), from (i)
or (iA)® = iA (i)
Also from § 2.16 (a) Page 86 we know that if A is a Hermitian matrix,
then A’=A = Ae, from (i).
And from (ii) we find that (iA) = (iA)e, hence (A is a Hermitian matrix.

Ex. 6. If A is any square matrix, show that AAG anﬂ AGA are
Hermitian.
Sol. (AAD)2=(A9)@A® by § 2.13 Th. V Page 79
= AA® by §2.13 Th. I Page 78
. By definition (See § 2.16 (a) Page 86), AA9 is Hermitian.
Similarly (A© 4)2 =A% (49)® by § 2.13 Th. V Page 79
=A®A ‘ ..by § 2.13 Th. Il Page 78

. By definition (See § 2.16 (a) Page 86), Ae A i¢ Hermitian.
Ex. 7. Show that A is Hermitian iff A is Hermitian.
Sol. Let\A be Hermitian; then A = A® ' (i)

Now (K)e = transposed conjugate of A

= transposed matrix of A, since (A)= A
..Sec § 2.11 Th. I Page 75
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= A" = (A9, by (i)
= transpose of transposed conguate of A
=conguate of A, " (B’)’ =B
ie, (A)°%=A
Hence by definition, A is a Hermitian matrix

Again if A is Hermitian, then we have

A=A
= transposed conjuage of A
= transponse of A ...by § 2.11 Th. I Page 75
or A=A (i)
Now A® = (AY. by definition )
= (A"), by (ii)
ie. A®=a, .. by § 2:09 Th. I Page 70
Hence by definition A is Hermitian. Hence proved
Exercises on § 2.16 - § 2.17
Ex.L.If A= i L+i 2-3i], then slow that A is skew—Hermitian
-1+ 2; 1
-2-3 -1 0
Ex.2. Show that A = 0 2-3i -2-=i |is skew—Hermitian.
‘ -2=3; 0 —3+4i

2—1 3+4i 0

Ex. 3. Show that A is skew-Hermitian iff A is skew-Hermitian.

[Hint : See Ex. 7. Page 90]

Ex. 4. Give an example of matrix which is skew symmetric but not
skew-Hermitian. '

Ex. 5. If A and B are Hermitian matrices, show that AB+ BA is
Hermitian and AB — BA is skew-Hermitian.

Ex. 6. Show that every square matrix can be uniquely expressed as
P+ iQ. where P, Q are Hermitian. (Garhwal 95; Rohilkhand 91)

[Hint : See Th. Il Page 87, Ex 5(a) Page 89].

*§ 2.18. The inverse of a matrix.

(Avadh 91; Bundelkhand 93; Garhwal 91)

If for a given square matrix A, there exists a matrix B such that

AB=BA =1 where I 1s an unit matrix, then A is called non-singular or

Invertible and B is called inverse of A and we write B=A" (read as B equals
A inverse).

Here A is the inverse of B and we can write A = B!
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IfBie, A” I does not exist, then A is called singular.

Note 1. If AB and BA are both defined and equal then the matrices A
and B should both be square matrices of the same order.

Note 2. Non-square matrix has no inverse.

Forexample :[1 2]|—-2 li=[1 0|=1
3 4| 2 -3] |o 1}

Each rhatrix in the product is the inverse of the other.
§ 2.19. Theorems on Inverse of a matrix.
**Theorem L If a given square matrix A has an inverse, then it is
unique or there exists one and only one inverse matrix to a given matrix.
(Bundelkhand 93, 91)
Proof. Let us suppse that B and C are two possible inverses of A. Then
we must have (See § 2-18 above).

) AB=BA=1I (i)
and AC=CA=1 .i1)
-~ From (i) and (ii), we get AB = AC, each being equal to I
or B (AB) =B (AC)
or (BA)B=(BA)C ... See § 1:09 Prop. I Page 26
or IB =IC, from (i)
or - : B=C ...See Ex. i Page 64

Hence there cannot be two inverses of A.
*+Theorem IL If A and B be two non-singluar or invertible matrices of
the same order then AB :s also non-singular and

(AB) '=B? A
(Avadh 91; Bundelhkand 95; Garhwal 92; Gorakhpur 97; Purvanchal 97, 94)
Or

The inverse of a product is the product of the inverse taken in the reverse
order. :
This is also known as the Reciprocal Law for the inverse of a product.

Proof. A~! and B™! exist since A and B are non-singluar.
- (AB) B A™Y = A BB™") A7, by associative law
=AIAT =AA7), ..See Ex. 1. Page 64
=1 . ..See § 2-18 Page 91
And (871 A™Y) (AB)=B~! (A™! A) B, by associative law
=B (DB, * ATA=I |
=B'aB)=B'B, ..See Ex. 1. Page 64
=L ..See § 2:18 Page 91
- B8 1A™ (AB)=(AB) B AN =1 .
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ie., B A is the inverse of AB or (AB)"1 =B A7! and as such AB is
also non-singluar.
Note : For more details on inverse of matrices see chapter V of this
book.
**§ 2.20. Orthogonal Matrix.
Definition. A square matrix A is called an orthogonal matrix if AA"=1,
where I is an identity matrix and A’ is the transposed matrix of A. (Kanpur 97)
Theorems on Orthogonal Matrices.
Theorem L. For any square matrix A, if AA" =1, then A’'A = 1.
Proof : Since AA"=1, so A is invertible (i.e. A possesses an inverses)
and there exists another matrix b such that
AB=BA =1 ' : (i)
(See § 2-18 Page 91)

Now B =BI=B (AA"), .- AA" =1 (given)
=(BA) A" =1A", from (i)
ie. B=A'
- From (i), we get AA"=A'A =T, Hence proved.
Theorem IL If A is an orthogonal matrix, then A’ is also orthogonal.
Proof : By definition if A is an orthogonal matrix, then

AA'=A'A=1
or (AA"' =(A’A) =, transposing and remembering I' =1 _
or (AY A =A"(AY =L by Th. IV § 2:09 Page 71
or A’ is orthogonal by definition. Hence proved.

i.e. Transpose of an orthogonal matrix is also orthogonal.

Theorem IIl. If A is an orthogonal matrix, then A7V is also orthogonal.
Proof : By dcufinition if A is orthogonal, then

AA'=A'A=1
or (AAY 1= (A Ay =g,
taking inverse and remembering I~ b=
or @Aytatl=a1ay =1 by Th. I § 2:19 Page 92
or AlyaAl=a1Aly=1 (Note)
O Alis orthogonal by definition. Hence proved.

i.e. Inverse of an orthogonal matrix is also orthogenal.:

Thecrem IV. For any orthogonal matrices, A and B, show that AB is an
orthogonal matrix.

Proof : If A and B are orthogonal matrices, then by definition we have

v AR'eMkwl )
and BB’ =BB=1 ()
- (AB) (AB)' = (AB) (B’A") by Th. IV § 2:09 Page 71 e
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=ABB'A’=A (BB A’ (Note)
= AIA’, from (i1).
=AA’ =1, from (i).
Similarly, we can prove that
(AB) (AB)=B’A’” AB, by Th, IV § 2:09 Page 71
= B’IB, from (i).
=B’'B =1, from (ii).
Hence AB is an orthogonal matrix by definition.
§ 2-:21. Unitary Matrix.

Definition. A square matrix A is called an unitary matrix if A® =1,

where I is an identity matrix and A® is the transposed conjuage ofA.

Theorems on Unitary matrices.
Theorem 1. For any square matrix, if AA® =1, then A®A=1
Proof : Since _AA9=I, where I is the unit matrix, so we find that A is

invertible and there exists another matrix B such that

or

or
or
or
or

or
or

or

or

AB=BA =1 W)
Now B = BI=B (AA®), - AA® =1 (given)
= (BA) A® =1A®, from (i).
B=A°
.. From (i), we get AAe = Ae A=1 Hence proved.
Theorem IL If A is an unitary matrix, then A’ is also unitary.
Proof : By definition if A is an unitary matrix, then
AA®=APA =T

(AAe)e = (Ae A)e =1, taking transposed conguate and

. remernibering ‘that °=1 (Note)
(A9)° A = A2 (A®)° = 1, using § 2.09 Th. IV Page 71
AA® =A® A =1, since (A%°=A
(AAB)’ = (Ae A)’ =, taking transpose of each side
(A®Y A’ = A’ (A9 =1, using § 2:09 Th. IV Page 71
(A% A=A (A’)? =1 (Note)
A’ is an unitary matrix. Hence proved.
Theorem IIL If A is an unitary matrix then A7 is also unitary.
Proof : By definition if ‘A is an unitary matrix, then
AA®=A°A=1
(AA®)™ =(A® A)! =1, taking inverse
A1 & 1=41Aa9"1=], by Th. 11 § 2-19 Page 92
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or AhHPAa =A@ g (Note)

or  Alisan unitary matrix by definition. Hence proved.

Theorem IV. For any two unitary matrices A and B show that AB is an

unitary matrix. (Bundelkhand 91)
Proof : If A an B are unitary matrices then by definition we have

» AA®=A®A=1 . 6

and BB®=B°B=1 i)

-, (AB) (AB)® = (AB) (B® A®); by Th. V § 213 Page 79
=A (BBe) A® = A1A®, from (ii)

=AA®= I, from (i)
Similarly (AB) (AB) = B® A® AB, by Th. V. § 213 Page 79
= B9 IB, from (i)
=B°B & I, from (ii)
Hence AB is an unitary matrix. . _ Hence proved.

Solved Examples on § 2-20 and § 2-21.
Ex. 1. Show that the matrix1[_1 2  2]is orthogonal.

2 -1 2
2 2 -1 (Bundelkhand 95)
Sol. LetA=%_1 2 2
2 -1
3 2 -]
ThenA'=1[_1 2 2]
2, =i
2 2 =1
AA=i[-1 2 2]xif-1 2 2
2 ~%. 2 2 -1 2
2 2 -1 1 2 =i

F(=1). (- 1D)+22422 (~D242.(-1)+22
2(-1)+(=1)2422 224+(-D.(-1)+22
2(-1D+22+(-1)2 22+2.(-1)+(-1).2
i (-1).2422+2(-1)
22+(-1)2+2(-1)
224224(-1) (-1

o l—

=:[9 0 o]=[1 0 o|=I
0 90/ |010
0 0 9 [0 01
Hence the given matrix A is orthogonal.
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Ex. 2. Verify that the matrix
A=[1/43 16 -1/V2]is orthogonal.
1¥3 -2/16 0

143 16 142

Sol. Here A’=[ 143 143 1/43]
1/N6 —2/96 1/46
-1/\2 0 . 1A2

AA=[ 143 1A B3 Ix[1N3 e - 142
N6 —2/v6 16| |13 =276 0
-1/\2 0o 12| [N e 12

=[1.1.1 '1_2+1 =1 ;]
373 3 32 32732 V6 V6
3 B et cloded =1 B
3V2 32 342 6 6 6. 2V3 7T 2V3
-1 1 -1 3 1 1
_"JE’LO‘L?E m+0+m ‘2+0+5
=[1., 0:0 =L Hence A is orthogonal.
O 1 0 '
0 0 1

—-sinx cos
(Bundelkhand 91; Kanpur 97)

**Ex. 3. Show that the matrix A =[ cos o sin a] is orthogonal.

Sol. A'=|cosa -—sino
sin O cos O
A'A=|cosa —-sina|| cosa sinQ
sin & cosO||—sina cosa|.

2 2

= cos? a + sin” CcOs O sin O — sin 0L cos O
| sin ot cos 0t — cos @ sin & sin” o + cos™
-

=1 ol=1 Hence A is orthogonal.
LO 1

Ex. 4. Prove that the matrix 313 1:1 A

1 1 + i | is unitary.
i -1

(Meerut 96)
Sol. mA=;f§[l o lfl']

o__1 1 1+
i “75[14 —1]
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o L[ 1 t+u1[ 1 A+
AA"‘B[I—:‘ —I]XIE[I-i =

=:[ L1+ +0.(1-0) LA+ DD
(= #f- D= [l—ii] #0410~ D13

=f1¢1-2 0 |=i[3 0]=[1 0]=1
0 =8 0 3] |0t

Hence A is an unilary matrix.

Exercises on § 2.20 — § 2.21

Ex. 1. Show that the matrix A = le[ 1
-

1] is unitary.
-1/

Ex. 2. Show that the matrix is orthogonal.

P R LR [

L L e
e ) — s

Ex. 3. For any two orthogonal matrices A and B, show that BA is an

orthogonal matrix. _
Ex. 4. For any two unitary matrices A and B, show that BA is an unitary
matrix.

Ex. 5. Prove that the following matrix is unitary :—
1(1+0) 11+
%(l+‘f) %(l—i)
Ex. 6. Prove that a real matrix is unitary if it is orthogonal. ‘
' (Rohilkhand 93)
§ 2-22. Partitioning of Matrices.
Submatrix.
Definition. A matrix obtained by striking off some of the rows and
columns of another matrix A is defined as a sub-matrix of A.
For example if A=|2 3 .1}, then
3 87
[2]. [3), [5] etc.

2 31,13 1]ectc. are all sub— matrices of A
¥ §1-1§ 7

It is sometimes found useful to subdivide a matrix into sub-matrices by
drawing lines parallel to its rows and columns and to consider these
sub-matrices as the elements of the original matrix.
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Consider the matrix
A=lxyrzi:oufi] -

x2y222:02 P2
xy3zz:a3fa

prqin:aib
P2 al,

LetAn=(x1 y1 z1|:Anz=|a1 Bi|;
2 2 2 ar Pa|
3y n oz B3

Aan=[p @ nl; An=|a1 b
P2 @ n a b
Then we may writc A=| A1 Ag2
Az1 Axn

The matrix A is then said to have been partitioned and the dotted lines
indicate the partitions. Here it is obvious that a matrix can be partitioned in
several ways. The elements Au, A12, A21 and Az arc themselves matrices and
are the sub-matrices of A. ‘

* Identically partitioned matrices.

Two matrices of the same size are known as identically partitioned
matrices if when expressed as matrices of matrices (i.e. when partitioned) they
are of the same order and the corresponding submatrices (or elements) are also
of the same size. Such matrices are said to be additively coherent.

For example : '

123:75|. and [ 124:30

456:98 205:46
234:23 102:12
567:45 254:34
458:67 262:56

Two matrices A and B, which are conformable to- the product AB, are
called multiplicative coherent if A and B arc partioned in such a way that
columns of A are partitioned in the same way as the rcws of B are partitioned.

' Here the rows of A and columns of B cari be partitioned in any way.
For example :
LetA=[1

0 0 oland B=
2 000
223 1

N AW
th © 3w
— D e LA
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Here A is a 3x4 matrix and B is a 4x3 matrix, so these are
conformable to the product AB (i.e. the product AB exits). Now if write

A=[100:0]and B=|2:35
210:0 271
................ 4:02
2 FT31] 00 |

2251

then the partitioning of the columns of A is in the same way as the partitioning
of the rows of B. (Here we note that after third column in A the partitioning
has been done and in B the partitioning has been done after third row). Thus °
according to definition given above the matrices A and B are called
multiplicative coherent.

Exercise on § 2-:22
Ex. Compute AB using partitioning

A=[1 0 0 1] B=[{1 0 0O
010 2 010
001 3 000

31 2

MISCELLANEOUS SOLVED EXAMPLES

Ex. 1. Show that| 1 2 3| is the inverseof| 3 -2 -1
2 5 7 =& 1 =1
-2 —4 -5 .0 1
Sol.[ 1 2 3|¥[ 3 -2 -1
2. % Tll{=4& 1 =1
=2 -4 =5 2 0 1
= 13+2(-4)+32 1(-2)+21430 1(-1+2(-1)+3.1
23+5(-4)+172 2(-2)+51+70 - 2(-D+5(-=1+171
|-23-4(-4)-52 -2(-2)-41-50 -2(-1)-4(-1)-5.

=[1 0 o]=L wherelis an unit matrix.

0 10
|.0 0 1
Hence[ 5 3] isthe inverse of [ 3 —2 1
2 5 F -4 1.-1
-2 -4 -5 2 O 1

#*Ex. 2. If A is a non-singular matrix, then prove that
AB = AC = B =C, where B and C are square matrices of the same crder.
’ (Kanpur 96)

Sol. Since A is non-singular matrix, so A" exists.
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‘Now AB=AC = A™! (AB)=A"" (AC),
premultiplying both sides by A~
=>@AA)B=A"A)C,
by associative law of multiplication
=IB=IC, = ATA=]
=B=C, ' IB=Betc. Hence proved.
**Ex. 3. If product of two non-zero square matrices is a zero matrix,
then prove ‘hat both of them are singular matrices.
Sol. Let A and B be two non-zero n X n matrices.
Given that AB = O, where O is the n X n null matrix.
Let us suppose that B is non-singluar matrix then B! exists.
Then AB=0 = (AB) B =OB™!  post multiplying both sides by Bl
= ABB)=0, by associative law of multiplication.
; (Note)
= Al=0, - BB =1
= A=0,
which is against hypothesis as A is a non-zero matrix.
Hence B is not a non-singular matrix i.e. B is a singluar matrix.
Similarly we can prove that A is also a singluar matrix.
ssEx. 4. Express the following matrix as the sum of & hermitian and
a skew hermitian matrix :
A=12+31 1-i 2+i

3 4+3i § (Kumaun 92)
1 1+i 2
Sol. From § 2-17 Theorem III Page 87 we know that
A=1(A+A®)+1(A-A%) (i)

i.e. the hermitian and skew-hermitian parts of the matrix A are
1 (A+A®) and 1 (A - A®) respectively. '

Now we know that A® =AY, : (i)
wvhere A=[2-3i 1+i 2-i
3 =3 8
1 1-i =2 (Note)

. From (ii) we have A% = (A)’ = transpose of A
=|2-3 3 1
I+i 4-3i 1-i
2-i 5 -2 v el
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A+Ae=-2 +3i 1= .2+I +12-3i 3 1
3 4+3; 5 1+i 4-3i 1-i

1 1+i 2 955 5 =2
=[243i+2-3i il
3+ 144 44+ 3i+4-3i 5+1—-1
Ll+2,—-i 1+i+5 2i—2i
=[ 4 4-i 3+i

4+i 88 6-1i|
L3—£ 6+i O

. Hermitian part of the given matrix A
=1A+AH=i[ 4 4-i 341
4+i 8 6-i
3-i 6+i O

AgainA-A®=[2+43i 1-i 2+i]-[2-3i 3 1
3 443i 5 1+i 4-3i 1-i
1 1+i 2i 2=i 5 =2
=[243i-243i 1-i-3 2+4i-1
3-1-i 4+3i-4+3i S5-1+i
1-2+1i 1+i-5 2i+2i
=[ 6 -2-i 1+i
2-i 6i 4+
L-l+x’ ~4+i  4i

. Skew-hermitian part of the given matrix A

=LA-A9=i[ 6 -2-i 1+i

i 221 61 4+
—1+i -4+ 4

Hence from (i), we have the given matrix A

=i 4 4-i 34il+if 6 —2-i 14
4+i 8B 6-i 2—i 6i 4+if,
[3-i 6+i 0 —1+i —4+i 4i

which is the sum of a hermitian and a shew-hermitian matrix (as proved above).
EXERCISES ON CHAPTER 11
Ex. 1. Show that

1 0 0 0listheinverseof| 1 0 00

2 1 00 -2 1 00

4 2 10 0 -2 1 0

u 2 3 1 1 g -1 =1 1
(Hint. See Ex. 1 Page 99)
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Ex. 2. If A be any square matrix, then show that A + A® is Hermitian.

Ex. 3. If A and B are symmetric and they commute, then A™' B and
Ay? are symmetric.

Ex. 4. Show that every square matrix can be expressed in one and only
one way as P+ i, where P and Q are Hermitian.

Ex. 5. If B is any square matrix, show that B AB is symmetric or
skew-symmetric according as A is symmetric or skew-symmetric provided
B’AB is defined.

Ex. 6. If A and B are two non-singular square matrices of the same order,
which of the following-statements is true :—

()A+B=B+A;

(ii) (AB) = A'B’;

(i) (AB) ' = ATB1;

(iVVA.A'=I=A=A"!

(v) A+ A’ is a symmetric matrix,

Ex. 7. If A is Hermitian,” such that A2 =0, show that A =0, where O is
the zero matrix. s

Ex. 8. Show that every skcw—symmemc matrix of odd order is singular.

Ex. 9. When is a matrix said to be invertible ?

. [Hint : See § 218 Page 91].

Ex. 10. If D = diag [d), d2...., da],

di dy ... dp# 0, what will be D! 7

Ex. 11. If non-singular matrices A and B commute, then

(i)A  and Band (i) A™" and B

also commute.



