Chapter II

Some Types of Matrices

§ 2.01. Triangular Matrices.

(Bundelkhand 94)

(a) Upper Triangular Matrix. A square matrix A whose elements $a_{ij} = 0$ for i > j is called an upper triangular matrix.

For example $\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}$

(b) Lower Triangular Matrix. A square matrix A whose elements $a_{ij} = 0$ for i < j is called a lower triangular matrix.

For example	a11	0	0	0]
	a21	a22	0	0
	a31	a32	<i>a</i> 33	0
<i>II</i>				0
	anl	an2	an3	ann

§ 2.02. Diagonal Matrix.

Definition. A square matrix which is both upper and lower triangular is called a diagonal matrix. (Bundelkhand 94)

For example $\begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}$ (See § 1.03 Page 4 also)

Theorem I. Any two diagonal matrices of the same order commute under multiplication. (Bundelkhand 95, 94)

Proof. Let any two diagonal matrices be

A =	a	0	0		0	and $\mathbf{B} =$	[b]	0	0		0]
	0	<i>a</i> ₂	0	•••	0	and B =	0	<i>b</i> ₂	0		0
	0	0	0	••••	 an		0	0	0	•••	$\frac{\dots}{b_n}$
The	n we	have					-				-
AB :	= [a]	0	0		. ($\int x ^{b_1}$	0	0		0	

						-	 V
0	<i>a</i> 2	0	 0	0	b_2	0	 0
			 				 0
0	()	0	 an	0	0	0	 bn
L				1.0			

-5

or
$$\mathbf{AB} = \begin{bmatrix} a_1b_1 & 0 & 0 & \dots & 0 \\ 0 & a_2b_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_nb_n \end{bmatrix}$$
...(i)
and
$$\mathbf{BA} = \begin{bmatrix} b_1 & 0 & 0 & \dots & 0 \\ 0 & b_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & b_n \end{bmatrix} \times \begin{bmatrix} a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & b_n \end{bmatrix}$$
$$= \begin{bmatrix} b_1a_1 & 0 & 0 & \dots & 0 \\ 0 & b_2a_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & b_na_n \end{bmatrix}$$
...(ii)

From (i) and (ii), we find that AB = BA and each one of them is a diagonal matrix of order *n*. (Note)

Hence proved.

Theorem II. Product of any two diagonal matrices of order n is a diagonal matrix of order n.

Proof. The same as of Theorem I above.

Theorem III. Sum of any two diagonal matrices of order n is a diagonal matrix of order n and commute under addition.

Proof. Let any two diagonal matrices be

$$\mathbf{A} = \begin{bmatrix} a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_n \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} b_1 & 0 & 0 & \dots & 0 \\ 0 & b_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & b_n \end{bmatrix}$$

$$\therefore \quad \mathbf{A} + \mathbf{B} = \begin{bmatrix} a_1 + b_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 + b_2 & 0 & \dots & \dots \\ \dots & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & a_n + b_n \end{bmatrix} \qquad \dots (i)$$

$$\mathbf{B} + \mathbf{A} = \begin{bmatrix} b_1 + a_1 & 0 & 0 & \dots & 0 \\ 0 & b_2 + a_2 & 0 & \dots & \dots \\ \dots & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & b_n + a_n \end{bmatrix} \qquad \dots (i)$$

and

62

 \therefore From (i) and (ii), we get A + B = B + A and each one of them is a diagonal matrix of order *n*.

§ 2.03. Scalar matrix.

Definition. If in a square matrix A all the diagonal elements are equal to a (where $a \neq 0$) and all the remaining elements are equal to zero then it is called a scalar matrix.

Commutative Matrices

For example $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{bmatrix}$ is a scalar matrix of order 4×4 .

Commutative Matrices

Definition. If A and B are two square matrices such that AB = BA, then A and B are called commutative matrices or are said to commute.

If AB = -BA, the matrices A and B are said to anti-commute. Solved Examples on § 2.03.

Ex. 1. If A	= a	0	0	and	B =	a11	a12	a13
	0		0			a21	a22	a23
	0	0	a			a31	a32	a33

Then prove that AB = BA = aB.

Sol.
$$AB = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} \times \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= \begin{bmatrix} aa_{11} & aa_{12} & aa_{13} \\ aa_{21} & aa_{22} & aa_{23} \\ aa_{31} & aa_{32} & aa_{33} \end{bmatrix} = a \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= aB.$$
Similarly $BA = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \times \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$

$$= \begin{bmatrix} aa_{11} & aa_{12} & aa_{13} \\ aa_{21} & aa_{22} & aa_{23} \\ aa_{31} & aa_{33} & aa_{33} \end{bmatrix} = a \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & aa_{23} \\ a_{31} & aa_{33} & aa_{33} \end{bmatrix}$$

Hence AB = BA = aB.

Ex. 2. Show that the matrices A and B anti-commute, where $A = \begin{bmatrix} 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \end{bmatrix}$

Sol. Here
$$AB = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \cdot 1 - 1 \cdot 4 & 1 \cdot 1 + (-1) \cdot (-1) \\ 2 \cdot 1 - 1 \cdot 4 & 2 \cdot 1 + (-1) \cdot (-1) \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ -2 & 3 \end{bmatrix} \dots (i)$$

And $BA = \begin{bmatrix} 1 & 1 \\ 4 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$
$$= \begin{bmatrix} 1 \cdot 1 + 1 \cdot 2 & 1 \cdot (-1) + 1 \cdot (-1) \\ 4 \cdot 1 + (-1) \cdot 2 & 4 \cdot (-1) + (-1) (-1) \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 2 & -3 \end{bmatrix}$$

$$= -\begin{bmatrix} -3 & 2\\ -2 & 3 \end{bmatrix}$$

 \therefore From (i) and (ii) we find that AB = -BA.

Hence A and B anti-commute.

Exercise on § 2.03

Ex. 1. Show that the matrices $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ anti-commute. Ex. 2. Show that the matrices $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $\begin{bmatrix} 5 & 7 \\ 7 & 5 \end{bmatrix}$ commute.

§ 2.04. Unit Matrix or Identity Matrix.

Definition. If in a scalar matrix the diagonal element a = 1, then the matrix is called the unit matrix or identity matrix and is denoted by I_n in the case of $n \times n$ matrix.

For example $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Solved Examples on § 2.04.

*Ex. 1. If A be any $n \times n$ matrix and I_n is the identity matrix of order $n \times n$, then prove that A $I_n = I_n A = A$

Sol. Let us suppose that

 $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \text{ and } \mathbf{I_n} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & 1 \end{bmatrix}$ $\therefore \quad \mathbf{A} \bullet \mathbf{I_n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \times \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$ $= \begin{bmatrix} a_{11.1} + a_{12.0} + \dots + a_{1n.0} & a_{11.0} + a_{12.1} + \dots + a_{1n.0} \\ a_{21.1} + a_{22.0} + \dots + a_{2n.0} & a_{21.0} + a_{22.1} + \dots + a_{2n.0} \\ \dots & \dots & a_{11.0} + a_{12.0} + \dots + a_{1n.1} \\ a_{21.0} + a_{22.0} + \dots + a_{2n.0} & a_{1n.0} + a_{n2.1} + \dots + a_{nn.0} \\ \dots & \dots & a_{11.0} + a_{12.0} + \dots + a_{1n.1} \\ \dots & a_{21.0} + a_{22.0} + \dots + a_{2n.1} \end{bmatrix}$

... $a_{n1.0} + a_{n2.0} + \ldots + a_{nn.1}$

182/I/4

...(ii)

Idempotent Matrices

$$= \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \ddots & \dots & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \mathbf{A}$$

Similarly we can show that $I_n \bullet A = A$.

Hence we have $\mathbf{A} \cdot \mathbf{I}_n = \mathbf{I}_n \cdot \mathbf{A} = \mathbf{A}$.

*Ex. 2. Prove that $I^m = I^{m-1} = ... = I^2 = I$, where m is any positive integer and I_n is the unit matrix of order $n \times n$.

Sol. Let A be any $n \times n$ matrix and I be the unit matrix of order $n \times n$ i.e. $I = I_n$.

Now we know that $AI_n = I_nA = A$ (See Ex. 1 above) But $I_n = I$(i) $\therefore AI = IA = A$

Taking A = I, we have $I \cdot I = I$ or $I^2 = I$...(ii)

Again from (i), taking $\mathbf{A} = \mathbf{I}^2$, where $\mathbf{I}^2 = \mathbf{I}$ (proved), we get

 $I^2 \cdot I = I^2$ or $I^3 = I^2 = I$, from (ii).

Proceeding in this way, we can prove that

 $I^m = I^{m-1} = ... = I^2 = I$, where *m* is any positive integer.

Exercise on § 2.04

Ex. If $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -3 & 3 & 1 \end{bmatrix}$, show that $\mathbf{A}^2 = \mathbf{I}$, where \mathbf{I} is the unit matrix.

§ 2.05. Periodic Matrix.

Definition. A square matrix A is called periodic, if $A^{k+1} = A$, where k is a positive integer.

If k is the least positive integer for which $A^{k+1} = A$, then A is said to be of period k.

Idempotent matrix.

Definition. A square matrix A is called idempotent provided it satisfies the relation $A^2 = A$.

Symmetric Idempotent Matrix.

Definition. A square matrix A is called symmetric idempotent if A = A'and $A^2 = A$, where A' is the transposed matrix of A, (See § 2.08 Page 69).

Solved Examples on § 2.05.

Ex. 1 (a) Show that the matrix
$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
 is idempotent.
(Rohilkhand 96)

Sol.
$$A^2 = A \cdot A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} \times \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$

= $\begin{bmatrix} 2 \cdot 2 - 2(-1) - 4 \cdot 1 & 2(-2) - 2 \cdot 3 - 4(-2) & 2(-4) - 2 \cdot 4 - 4(-3) \\ -1 \cdot 2 + 3(-1) + 4 \cdot 1 & -1(-2) + 3 \cdot 3 + 4(-2) - 1(-4) + 3 \cdot 4 + 4(-3) \\ 1 \cdot 2 - 2(-1) - 3 \cdot 1 & 1(-2) - 2 \cdot 3 - 3(-2) & 1(-4) - 2 \cdot 4 - 3(-3) \end{bmatrix}$
= $\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} = A$

Hence the matrix A is idempotent.

Ex. 1 (b) Show that the matrix $A = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}$ is idempotent. Sol $A^2 = A \cdot A = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix} \times \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}$ $= \begin{bmatrix} 4+3-5 & -6-12+15 & -10-15+20 \\ -2-4+5 & 3+16-15 & 5+20-20 \\ 2+3-4 & -3-12+12 & -5-15+16 \end{bmatrix}$ $= \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix} = A$

Hence the matrix A is idempotent.

*Ex. 2. If A and B are idempotent matrices, then show that AB is idempotent if A and B commute.

Sol. If A is the idempotent, then $A^2 = A$ and if B is idempotent then

$$\mathbf{B}^2 = \mathbf{B}.$$
 ...(i)

And if A and B commute, then AB = BA

Now $(AB)^2 = (AB).(AB)$

= A (BA) B, by associative law

= A (AB) B, from (ii)

= (AA) (BB), by associative law

$$= A^2 B^2$$

= AB by (i)

Hence AB is idempotent

Ex. 3. If A is an idempotent matrix, then the matrix B = I - A is idempotent and AB = O = BA.

Sol. We know IA = AI = A. (See Sx. 1 Page 64)

...(i)

...(11)

Idempotent Matrices

Also A being an idempotent matrix, we have $A^2 = A$(ii)

Since I and A are square matrices, so I - A is also a square matrix and therefore we have

$$(\mathbf{I} - \mathbf{A})^{2} = (\mathbf{I} - \mathbf{A}) (\mathbf{I} - \mathbf{A})$$

= $(\mathbf{I} - \mathbf{A}) \mathbf{I} - (\mathbf{I} - \mathbf{A}) \mathbf{A}$, by distributive law
= $\mathbf{I}^{2} - \mathbf{A}\mathbf{I} - \mathbf{I}\mathbf{A} + \mathbf{A}^{2}$
= $\mathbf{I} - \mathbf{A} - \mathbf{A} + \mathbf{A}$, from (i), (ii) and $\mathbf{I}^{2} = \mathbf{I}$

 $(I - A)^2 = I - A$, *i.e.* I - A or B is an idempotent matrix by definition. OF

Again $AB = A (I - A) = AI - A^2$, by distributive law

$$= \mathbf{A} - \mathbf{A}$$
, from (i) and (ii)

AB = O.ie

And

$$BA = (I - A) A = IA - A^2$$
, by distributive law
= A - A = O.

Ex. 4. Show that if A and B are matrices of order $n \times n$ and such that AB = A and BA = B, then A and B are idempotent matrices.

	Sol. We	have $ABA = (AB) A = (A) A$,	\cdot	AB = A (given)
or		$ABA = A^2$		(i)
	Also	$\mathbf{ABA} = \mathbf{A} \ (\mathbf{BA}) = \mathbf{A} \ (\mathbf{B}),$	•••	BA = B (given)
		= AB = A		AB = A (given)
or		ABA = A		(ii)

From (i) and (ii), we have $A^2 = A$ i.e. A is idempotent. In a similar manner, we can prove that

	$\mathbf{B}\mathbf{A}\mathbf{B}=\mathbf{B}\;(\mathbf{A}\mathbf{B})=\mathbf{B}\;(\mathbf{A}),$		AB = A (given)
	= BA = B ,	· •	BA = B (given)
or	$\mathbf{B}\mathbf{A}\mathbf{B} = \mathbf{B}$		(iii)
Also	$\mathbf{B}\mathbf{A}\mathbf{B} = (\mathbf{B}\mathbf{A}) \mathbf{B} = (\mathbf{B}) \mathbf{B},$		BA = B (given)
or	$\mathbf{B}\mathbf{A}\mathbf{B}=\mathbf{B}^2$		(iv)

From (iii) and (iv), we have $\mathbf{B}^2 = \mathbf{B} i.\epsilon$. B is idempotent. Hence proved.

Exercises on § 2.05

Ex. If A and B are idempotent, then A + B will be idempotent if AB = BA = O, where O is the null matrix.

[Hint :
$$(A + B)^2 = A^2 \div AB + BA + B^2 = A \div O + O + B$$
]
§ 2.06. Involutory Matrix.

Definition. A square matrix A is called Involutory provided it satisfies the relation $A^2 = I$, where I is the identity manual.

For example, the matrix
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 is involutory matrix,

since $\mathbf{A}^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ $= \begin{bmatrix} 1 \cdot 1 + 0 \cdot 0 & 1 \cdot 0 + 0 \cdot (-1) \\ 0 \cdot 1 + (-1) \cdot 0 & 0 \cdot 0 + (-1) \cdot (-1) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}.$ Solved Examples on § 2.06. Ex. 1. Show that the matrix $A = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ is involutory. (*Rohilkhand 91*) Sol. $\mathbf{A}^2 = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix} \times \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ $= \begin{bmatrix} (-5) (-5) + (-8) \cdot 3 + 0 \cdot 1 & (-5) \cdot (-8) + (-8) \cdot 5 + 0 \cdot 2 \\ 3 \cdot (-5) + 5 \cdot 3 + 0 \cdot 1 & 3 \cdot (-8) + 5 \cdot 5 + 0 \cdot 2 \\ 1 \cdot (-5) + 2 \cdot 3 + (-1) \cdot 1 & 1 \cdot (-8) + 2 \cdot 5 + (-1) \cdot 2 \end{bmatrix}$ $\begin{bmatrix} 25 - 24 + 0 & 40 - 40 + 0 & 0 + 0 + 0 \\ -15 + 15 + 0 & -24 + 25 + 0 & 0 + 0 + 0 \\ -5 + 6 - 1 & -8 + 10 - 2 & 0 + 0 + 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ the given metric A

Hence the given matrix A is involutory.

Ex. 2. If A is any square matrix of order n and I_n is the identity matrix of order n, such that $(I_n - A)(I_n + A) = O$, then show that A is involutory matrix.

Sol. Given that $(I_n - A) (I_n + A) = O$

or
$$\mathbf{I_n^2} + \mathbf{I_n \bullet A} - \mathbf{A \bullet I_n} - \mathbf{A^2} = \mathbf{O}$$

or $\mathbf{I_n + A - A - A^2} = \mathbf{O}$, $\therefore \mathbf{I_n^2} = \mathbf{I_n}, \mathbf{I_n \bullet A} = \mathbf{A} \bullet \mathbf{I_n}$.
(See Ex. 1. Page 64)

or

 $I_n - A^2 = O$ or $A^2 = I_n$ *i.e.* A is involutory by definition. § 2.07. Nilpotent Matrix.

Definition. A square matrix A is called Nilpotent matrix of order m, provided it satisfies the relation $A^m = O$ and $A^{m-1} \neq O$, where m is a positive integer and O is the null matrix.

For example, the matrix $A = \begin{bmatrix} 0 & 1 \end{bmatrix}$ is a nilpotent matrix,

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \neq \mathbf{O},$$
$$\mathbf{A}^{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 \cdot 0 + 1 \cdot 0 & 0 \cdot 1 + 1 \cdot 0 \\ 0 \cdot 0 + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot 0 \end{bmatrix}$$

(Avadh 93)

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{O},$$

 $A^3 = A^2 \bullet A = O \bullet A = O.$

A is a matrix which is not itself a zero matrix though its powers are zero i.e. matrices and so it is a nilpotent matrix (Another definition of nilpotent matrix).

Solved Examples on § 2 07. Ex. Show that $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{bmatrix}$ is a nilpotent matrix of order 2. Sol. Given $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{bmatrix} \neq \mathbf{O}$ $\therefore \mathbf{A}^{2} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{bmatrix}$ $= \begin{bmatrix} 1 \cdot 1 + 2 \cdot 1 + 3 (-1) & 1 \cdot 2 + 2 \cdot 2 + 3 (-2) & 1 \cdot 3 + 2 \cdot 3 + 3 (-3) \\ 1 \cdot 1 + 2 \cdot 1 + 3 (-1) & 1 \cdot 2 + 2 \cdot 2 + 3 (-2) & 1 \cdot 3 + 2 \cdot 3 + 3 (-3) \\ -1 \cdot 1 - 2 \cdot 1 - 3 (-1) & -1 \cdot 2 - 2 \cdot 2 - 3 (-2) & -1 \cdot 3 - 2 \cdot 3 - 3 (-3) \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & \mathbf{G} \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} = \mathbf{O}, \text{ where } \mathbf{O} \text{ is the null matrix of order 3.}$

i.e. $A^2 = O$ but $A \neq O$. Hence A is a nilpotent matrix of order 2.

Exercises on § 2.07

Ex. 1. Show that the matrix $\begin{bmatrix} a & b^2 \\ -a^2 & -ab \end{bmatrix}$ is nilpotent. Ex. 2. Show that $\begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$ is a nulpotent matrix of order 3. (Avadh 93, 90)

[Hint : Prove that $A^3 = 0$, $A^2 \neq 0$]. **§ 2.08. Transposed Matrix.

(Agra 94)

Definition. The matrix of order $n \times m$ obtained by interchanging the rows and columns of a matrix A of order $m \times n$ is called the transposed matrix of A or transpose of the matrix A and is denoted by A' or A^t (read as A transpose).

Another Definition. If $A = [a_{ij}]$ be a matrix of order $m \times n$, then the matrix $\mathbf{B} = [b_{ij}]$ of order $n \times m$, such that $b_{ij} = a_{ji}$ is known as transposed matrix of A or the transpose of the matrix A and is denoted by A'or At.

For example : If $\mathbf{A} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ then $\mathbf{A'} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$

Note 1. The element a_{ij} in the *i*th row and *j*th column of A stands in *j*th row and *i*th column of A'.

Note 2. The transpose of an $m \times n$ matrix is an $n \times m$ matrix.

*§ 2.09. Some Important Theorems on Transposed Matrices.

Theorem 1. The transpose of the sum of two matrices is the sum of their transpose i.e. $(\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$.

Proof. Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$.

Then $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}], = [c_{ij}], \text{ say}$

then

 $c_{ij} = a_{ij} + b_{ij}$

 $\therefore (\mathbf{A} + \mathbf{B})' = [d_{ij}], \text{ where } d_{ij} = c_{ij} \text{ for all } 1 \le i \le m, \ 1 \le j \le n$ $i.e. \ d_{ij} = a_{ij} + b_{ij}, \text{ for all } 1 \le i \le m, \ 1 \le j \le n$ $: [c_{ij}] = [a_{ij} + b_{ij}] \qquad \dots (i)$

or
$$(\mathbf{A} + \mathbf{B})' = [c_{ij}] = [a_{ij} + b_{ij}]$$

Also $A' = [f_{ji}]$, where $f_{ji} = a_{ij}$, for all $1 \le i \le m$. $1 \le j \le n$

and $\mathbf{B}' = [g_{ji}]$, where $g_{ji} = h_{ij}$ for all $1 \le i \le m$, $1 \le j \le n$

$$\therefore \mathbf{A}' + \mathbf{B}' = [f_{ji}] + [g_{ji}] = [f_{ji} + g_{ji}]$$

$$= [a_{ij} + b_{ij}]$$

: From (i) and (ii) we get (A + B)' = A' + B'

*Theorem II. The transpose of the transpose of a matrix is the matrix itself i.e. (A')' = A. (Meerut 95, 94)

Proof. Let $A = [a_{ij}]$ be an $m \times n$ matrix. Then A' *i.e.* the transpose of A is $n \times m$ matrix and (A')' *i.e.* the transpose of A' (or the transpose of A) is an $m \times n$ matrix.

Therefore the matrices A and (A') are both $m \times n$ matrices and hence comparable. ...(i)

Also, the element in the ith row and jth column of (A')'.

= the element in the *j*th row and *i*th column of A'

= the element in the ith row and jth column of A

i.e. the corresponding elements of (A')' and A are equal ...(ii)

:. From (i) and (ii), we conclude that (A')' = A. Hence proved. **Theorem III.** If A is any $m \times n$ matrix, then (kA)' = kA', where k is any number.

Proof. Let $A = [a_{ij}]$ be any $m \times n$ matrix. Then kA is also $m \times n$ matrix and therefore (kA)' i.e. the transpose of the matrix kA is an $n \times m$ matrix.

Also A', the transpose of the matrix A, is $n \times m$ matrix and kA' is also an $n \times m$ matrix.

Thus we find that the matrices (kA)' and kA' are both $n \times m$ matrices and hence comparable. ...(1)

Again the element in ith row and jth column of (kA)'

70

...(ii)

= the element in <i>j</i> th row and <i>i</i> th column of kA = k times the element in <i>j</i> th row and <i>i</i> th column of A = k times the element in <i>i</i> th row and <i>j</i> th column of A'	(Note) (Note)
$= ka_{ii}$	(Note)
= the element in <i>i</i> th tow and <i>j</i> th column of kA'	•

i.e. the corresponding elements of (kA)' and kA' are equal ...(ii) Hence proved. From (i) and (ii), we conclude that (kA)' = kA'. **Theorem IV. The transpose of the product of two matrices is the product in reverse order of their transpose i.e. (AB)' = B'A'.

(Garhwal 95, 93; Gorakhpur 96, Rohilkhand 94) **Proof.** Let $A = [a_{ik}]$ and $B = [b_{kj}]$ be the two matrices of orders $m \times n$ and $n \times p$ respectively.

Let $\mathbf{C} = \mathbf{A}\mathbf{B} = [g_{ik}] \times [b_{kj}] = [c_{ij}]$, say

where C is a matrix of order $m \times p$.

:. The element in the *i*th row and *j*th column of AB is $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. This is also the element in the ith row and jth column of (AB)'. ...(i)

The elements in the *j*th row of **B'** are $b_{1j}, b_{2j}, b_{3j}, \dots, b_{nj}$ and elements in the *i*th column of A' are a_{i1} , a_{i2} , a_{i3} , ..., a_{in} . Then the element in the *j*th row and ith column of B'A' is

$$\sum_{k=1}^{n} b_{kj} a_{ik} = \sum_{k=1}^{n} a_{ik} b_{kj} = c_{ij} \qquad \dots (ii)$$

Hence from (i) and (ii) we conclude that (AB)' = B'A'.

Note. The statement of theorem IV is called the reversal rule for the transpose of a product.

Solved Examples on § 2.08 to § 2.09.

Ex. 1. Write down the transpose of the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 6 & 8 & 1 \end{bmatrix}$

Sol. Let A' be the required transpose of the matrix A. Then A' = matrixobtained by interchanging the rows and columns of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 6 \\ 2 & 8 \\ 4 & 1 \end{bmatrix}$.

Ex. 2. Verify that $(B)^{t}(A)^{t} = (AB)^{t}$, when (a) $A = \begin{bmatrix} 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -2 & 0 \\ 4 & 5 & -3 \end{bmatrix}$ (b) $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$

(Budenkhand 91)

(c)
$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -1 \\ -1 & 0 & 2 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 3 & 4 & 5 \\ -1 & 2 & 7 \\ 2 & 1 & 0 \end{bmatrix}$$
 (Avadh 92)
Sol. (a) Here $\mathbf{A}^{t} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{B}^{t} = \begin{bmatrix} 1 & 4 \\ -2 & 5 \\ 0 & -3 \end{bmatrix}$
 $\therefore \mathbf{B}^{t} \mathbf{A}^{t} = \begin{bmatrix} 1 & 4 \\ -2 & 5 \\ 0 & -3 \end{bmatrix} \times \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 + 4 \cdot 1 \\ -2 \cdot 2 + 5 \cdot 1 \\ 0 \cdot 2 - 3 \cdot 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ -3 \end{bmatrix}$...(i)
Also $\mathbf{AB} = \begin{bmatrix} 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & -2 & 0 \\ 4 & 5 & -3 \end{bmatrix}$
 $= \begin{bmatrix} 2 \cdot 1 + 1 \cdot 4 & 2(-2) + 1 \cdot 5 & 2 \cdot 0 + 1 (-3) \end{bmatrix}$
 $= \begin{bmatrix} 6 & 1 & -3 \end{bmatrix}$.
 $\therefore (\mathbf{AB})^{t} = \frac{\mathbf{t}}{\mathbf{t}}$ transposed matrix of \mathbf{AB}
 $= \begin{bmatrix} 6 \\ -1 \\ -3 \end{bmatrix}$ Hence proved.
(b) Here $\mathbf{A}^{t} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & -2 \\ 3 & 1 \end{bmatrix}$ Hence proved.
(b) Here $\mathbf{A}^{t} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & -2 \\ 3 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 1 \cdot 1 + 2 \cdot 2 + 1 \cdot 3 & 1 \cdot 3 + 2 (-2) - 1 \cdot 1 \\ 2 \cdot 1 + 0 \cdot 2 + 1 \cdot 3 & 2 \cdot 3 + 0 (-2) + 1 \cdot 1 \end{bmatrix}$
 $= \begin{bmatrix} 2 & -2 \\ 5 & 7 \end{bmatrix}$...(ii)
Also $\mathbf{AB} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$...(iii)
Also $\mathbf{AB} = \begin{bmatrix} 1 & 2 & 3 \\ 3 - 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$...(iii)
 $= \begin{bmatrix} 1 \cdot 1 + 2 \cdot 2 + 3 (-1) & 1 \cdot 2 + 2 \cdot 0 + 3 \cdot 1 \\ 3 \cdot 1 - 2 \cdot 2 \cdot 1 (-1) & 3 \cdot 2 - 2 \cdot 0 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -2 & 7 \end{bmatrix}$
 \therefore $(\mathbf{AB})^{t}$ = transposed matrix of \mathbf{AB}
 $= \begin{bmatrix} 2 & -2 \\ 5 & 7 \end{bmatrix} = \mathbf{B}^{t}\mathbf{A}^{t}$, from (ii), Hence proved.

Transposed Matrices

(c) Here
$$\mathbf{A}^{t} = \begin{bmatrix} 2 & -1 \\ 4 & 0 \\ -1 & 2 \end{bmatrix}^{a}$$
 and $\mathbf{B}^{t} = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 1 \\ 5 & 7 & 0 \end{bmatrix}^{a}$

$$= \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 1 \\ 5 & 7 & 0 \end{bmatrix}^{a} \begin{bmatrix} 2 & -1 \\ 4 & 0 \\ -1 & 2 \end{bmatrix}^{a}$$

$$= \begin{bmatrix} 3 & 2 & -1 & 4 + 2(-1) & 3(-1) - 10 + 2 \cdot 2 \\ 4 & 2 & 2 + 4 + 1(-1) & 4(-1) + 2 \cdot 0 + 1 \cdot 2 \\ 5 & 2 + 7 + 4 & 0(-1) & 5(-1) + 7 \cdot 0 + 0 \cdot 2 \end{bmatrix}^{a} \begin{bmatrix} 0 & 1 \\ 15 & -2 \\ 38 & -5 \end{bmatrix} \dots (iii)$$
Also $\mathbf{AB} = \begin{bmatrix} 2 & 4 & -1 \\ -1 & 0 & 2 \end{bmatrix}^{a} \begin{bmatrix} 3 & 4 & 5 \\ -1 & 2 & 7 \\ 2 & 1 & 0 \end{bmatrix}^{a}$

$$= \begin{bmatrix} 2 \cdot 3 + 4(-1) - 1 \cdot 2 & 2 \cdot 4 + 4 \cdot 2 - 1 \cdot 1 & 2 \cdot 5 + 4 \cdot 7 - 1 \cdot 0 \\ -1 \cdot 3 + 0(-1) + 2 \cdot 2 & -1 \cdot 4 + 0 \cdot 2 + 2 \cdot 1 & -1 \cdot 5 + 0 \cdot 7 + 2 \cdot 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 15 & 38 \\ 1 & -2 & -5 \end{bmatrix}$$

$$\therefore (\mathbf{AB}^{t} = \text{transposed matrix of } \mathbf{AB}$$

$$= \begin{bmatrix} 0 & 1 \\ 2 & 1 & 3 \\ 1 & -2 & -5 \end{bmatrix}$$
Hence proved.
$$\mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 4 & 1 & 8 \end{bmatrix}^{a} \mathbf{A}^{t} \mathbf{A}^{t} \text{ from (iii)}.$$

$$\mathbf{Sol. } \mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 4 & 1 & 8 \end{bmatrix}^{a} \begin{bmatrix} 4 & 1 & 0 \\ 2 & -3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
then verify $(\mathbf{AB})^{t} = \mathbf{B}^{t} \mathbf{A}^{t}.$

$$(Meerut 93, 91)$$
Sol. $\mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 4 & 1 & 8 \end{bmatrix}^{a} \begin{bmatrix} 4 & 1 & 0 \\ 2 & -3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$

$$= \begin{bmatrix} 1 \cdot 4 - 1 \cdot 2 + 0 \cdot 1 & 1 \cdot 1 + 1 \cdot 3 + 0 \cdot 1 & 1 \cdot 0 - 1 \cdot 1 - 0 \cdot 1 \\ 2 \cdot 4 + 1 \cdot 2 + 8 \cdot 1 & 4 \cdot 1 - 1 \cdot 3 + 8 \cdot 1 & 4 \cdot 0 + 1 \cdot 1 - 3 \cdot 1 \\ 4 \cdot 4 + 1 \cdot 2 + 8 \cdot 1 & 4 \cdot 1 - 1 \cdot 3 + 8 \cdot 1 & 4 \cdot 0 + 1 \cdot 1 - 3 \cdot 1 \\ 4 \cdot 4 + 1 \cdot 2 + 8 \cdot 1 & 4 \cdot 1 - 1 \cdot 3 + 8 \cdot 1 & 4 \cdot 0 + 1 \cdot 1 - 8 \cdot 1 \end{bmatrix}$$
or
$$\mathbf{AB} = \begin{bmatrix} 2 & 4 & -1 \\ -1 & 1 & 1 \\ 0 & 3 & 8 \end{bmatrix} \text{ and } \mathbf{B}^{t} = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

$$\therefore \mathbf{B}^{t} \mathbf{A}^{t} = \begin{bmatrix} 4 & 2 & 1 \\ 1 & -3 & 1 \\ 0 & 1 & -1 \end{bmatrix}^{\times} \begin{bmatrix} 1 & 2 & 4 \\ -1 & 1 & 1 \\ 0 & 3 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \cdot 1 - 2 \cdot 1 + 1 \cdot 0 & 4 \cdot 2 + 2 \cdot 1 + 1 \cdot 3 & 4 \cdot 4 + 2 \cdot 1 + 1 \cdot 8 \\ 1 \cdot 1 + 3 \cdot 1 + 1 \cdot 0 & 1 \cdot 2 - 3 \cdot 1 + 1 \cdot 3 & 1 \cdot 4 - 3 \cdot 1 + 1 \cdot 8 \\ 0 \cdot 1 - 1 \cdot 1 - 1 \cdot 0 & 0 \cdot 2 + 1 \cdot 1 - 1 \cdot 3 & 0 \cdot 4 + 1 \cdot 1 - 1 \cdot 8 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 13 & 26 \\ 4 & 2 & 9 \\ -1 & -2 & -7 \end{bmatrix} = (\mathbf{A}\mathbf{B})^{t}, \text{ from (i)}$$

$$= \begin{bmatrix} \cos \alpha & \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}, \text{ verify that } \mathbf{A}\mathbf{A}' = \mathbf{I}_{2} = \mathbf{A}'\mathbf{A}.$$
Sol. Here $\mathbf{A}' = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$

$$\therefore \mathbf{A}\mathbf{A}' = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}^{\times} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2} \alpha + \sin^{2} \alpha & -\cos \alpha \sin \alpha \\ -\sin \alpha & \cos \alpha + \cos \alpha \sin \alpha & \sin^{2} \alpha + \cos^{2} \alpha \end{bmatrix}$$

$$= \begin{bmatrix} 1 \cdot 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}_{2}.$$
Similarly we can prove that
$$\mathbf{A}'\mathbf{A} = \begin{bmatrix} \cos^{2} \alpha + \sin^{2} \alpha & \cos \alpha \sin \alpha - \sin \alpha \cos \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2} \alpha + \sin^{2} \alpha & \cos \alpha \sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2} \alpha + \sin^{2} \alpha & \cos \alpha \sin \alpha \\ \sin^{2} \alpha + \cos^{2} \alpha \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}_{2}.$$
Hence $\mathbf{A}\mathbf{A}' = \mathbf{I}_{2} = \mathbf{A}'\mathbf{A}.$
Exercises on § $2 \cdot \mathbf{08} - 2 \cdot \mathbf{09}$
Ex. 1. If $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}, \text{ verify that } (\mathbf{AB})' = \mathbf{B}'\mathbf{A}', \text{ where}$

$$\mathbf{A}', \mathbf{B}' \text{ are transposes of A and B.}$$

$$\mathbf{Ex. 2.} \quad \text{If } \mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 3 \\ 4 & 1 & 8 \end{bmatrix}, \text{ and } \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 2 - 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

then verify that (AB)' = B'A'.

Complex Conjugate of Matrices

Ex. 3. If
$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -1 \\ -1 & 0 & 2 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 3 & 4 & 5 \\ -1 & 2 & 7 \\ 2 & 1 & 0 \end{bmatrix}$

prove that (AB)' and B'A' are equal.

Ex. 4. If
$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$, then verify that $[\mathbf{AB}]^{\mathsf{t}} = \mathbf{B}^{\mathsf{t}}\mathbf{A}^{\mathsf{t}}$
Ex. 5. If $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 4 & 9 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 0 & 1 & -1 \\ -3 & 2 & 4 \\ 1 & 1 & 0 \end{bmatrix}$

then verify that $(AB)^{t} = B^{t}A^{t}$.

*§ 2.10. Complex conjugate (or conjugate) of a Matrix.

Definition. The matrix obtained from any given matrix A of order $m \times n$ with complex elements a_{ij} by replacing its elements by the corresponding conjugate complex numbers is called the complex conjugate or conjugate of A denoted by \overline{A} and is read as 'A conjugate.'

or If $\mathbf{A} = [a_{ij}]$ and $\overline{a_{ij}}$ is the complex conjugate of the element a_{ij} then $\overline{\mathbf{A}} = [\overline{a_{ij}}]$, for all $1 \le i \le m$, $1 \le j \le n$.

For example : If $\mathbf{A} = \begin{bmatrix} 1+i & 2+3i \\ 2 & 3i \end{bmatrix}$

 $\overline{\mathbf{A}} = \begin{bmatrix} 2 & 3i \end{bmatrix}^{\prime}$ $\overline{\mathbf{A}} = \begin{bmatrix} 1-i & 2-3i \\ 2 & -3i \end{bmatrix}$

then

Real Matrix.

Definition. A matrix A is called real provided it satisfies the relation

 $\mathbf{A} = \overline{\mathbf{A}}$

Imaginary Matrix.

Definition. A matrix A is called imaginary provided it satisfies the relation $A = -\overline{A}$

**§ 2.11. Theorems on complex conjugate of a matrix.

Theorem I. If $A = [a_{ij}]$ be any $m \times n$ matrix with complex elements a_{ij} , then the complex conjugate of \overline{A} is the matrix A itself.

Proof: By definition (given in § 2.10 above) we know that $\overline{\mathbf{A}} = [\overline{a_{ij}}]$, for all $1 \le i \le m$, $1 \le j \le n$ and $\overline{a_{ij}}$ is the complex conjugate of a_{ij} .

i.e. the element in the *i*th row and *j*th column of complex conjugate of A *i.e.* \overline{A} .

= the complex conjugate of element in ith row and jth column of A.

 \therefore The element in the *i*th row and *j*th column of the complex conjugate of \overline{A} *i.e.* $\overline{\overline{A}}$.

= the complex conjugate of the element in *i*th row and *j*th column of \overline{A} = the complex conjugate of $\overline{a_{ij}}$ (Note)

75

(Avadh 93)

(Avadh 93)

 $= a_{ij}$ *i.e.* the element in the *i*th row and *j*th column of A. (Note) *i.e.* the corresponding elements of A and the complex conjugate of \overline{A} are equal. ...(i)

Also it is evident that A, \overline{A} and its complex conjugate are $m \times n$ matrices and hence comparable. ...(ii)

... From (i) and (ii), we conclude that the complex conjugate of \overline{A} is equal to A or $\overline{A} = A$.

Theorem II. If $\mathbf{A} = [a_{ij}]$ be any $m \times n$ matrix with complex elements a_{ij} , then $\overline{\lambda \mathbf{A}} = \overline{\lambda} \, \overline{\mathbf{A}}$.

Proof : By definition, we know

 $\overline{\mathbf{A}} = [\overline{a}_{ij}]$, for all $1 \le i \le m$, $1 \le j \le n$ and \overline{a}_{ij} is the complex conjugate of a_{ij} .

Also $\lambda \mathbf{A} = [\lambda a_{ij}]$, for all $1 \le i \le m$, $1 \le j \le n$.

 $\therefore \overline{\lambda \mathbf{A}} = [\overline{\lambda a_{ii}}] = [\overline{\lambda} \overline{a_{ii}}], \text{ for all } 1 \le i \le m, 1 \le i \le n \qquad \dots (i)$

and we know that $\overline{z_1 \ z_2} = \overline{z_1} \ \overline{z_2}$, where z_1, z_2 are any two complex numbers,

Again
$$\overline{\lambda} \,\overline{\mathbf{A}} = [b_{ij}]$$
, where $b_{ij} = \overline{\lambda} \,\overline{a_{ij}}$ for all $1 \le i \le m, \ 1 \le j \le n$
= $[\overline{\lambda} \,\overline{a_{ij}}]$, for all $1 \le i \le m, \ 1 \le j \le n$(ii)

 \therefore From (i) and (ii) we conclude that the corresponding elements of $\overline{\lambda A}$ and $\overline{\lambda} \overline{A}$ are equal. Also it is evident that $\overline{\lambda A}$ and $\overline{\lambda} \overline{A}$ are matrices of the same order. Hence we conclude that $\overline{\lambda A} = \overline{\lambda} \overline{A}$.

Theorem III. If A and B are two matrices conformable to addition, then

$$\mathbf{A} + \mathbf{B} = \mathbf{A} + \mathbf{B}.$$

Proof: Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ be any two matrices of order $m \times n$. Then as these matrices are given as conformable to addition, so we have $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$, for all $1 \le i \le m$, $1 \le j \le n$. (i)

Also $\mathbf{\overline{A}} = [\overline{a}_{ij}]$ and $\mathbf{\overline{B}} = [\overline{b}_{ij}]$, by definition.

 $\therefore \mathbf{A} + \mathbf{B} = [\overline{a_{ij}} + \overline{b_{ij}}] = [\overline{a_{ij}} + \overline{b_{ij}}],$

...(ii)

for all $1 \le i \le m$, $1 \le j \le n$

and also as $\overline{z_1} + \overline{z_2} = \overline{z_1 + z_2}$, where z_1 , z_2

are any two complex numbers.

Again from (i), we have

$$A + B = \text{complex conjugate of } [a_{ij} + b_{ij}]$$

= complex conjugate of $[c_{ij}]$, where $c_{ij} = a_{ij} + b_{ij}$

$$= [\overline{c_{ij}}] = [\overline{a_{ij} + b_{ij}}], \text{ for all } 1 \le i \le m, 1 \le j \le n$$

i.e. $\overline{\mathbf{A} + \mathbf{B}} = [a_{ij} + b_{ij}]$, for all $1 \le i \le m$, $1 \le j \le n$

...(iii)

Transposed Conjugate of a Matrices

 \therefore from (ii) and (iii) we conclude that the corresponding elements of $\overline{A} + \overline{B}$ and $\overline{A} + \overline{B}$ are equal. Also it is evident that both $\overline{A} + \overline{B}$ and $\overline{A + B}$ are matrices of order $m \times n$ as A and B are given as conformable to addition. Hence we conclude that $\overline{A + B} = \overline{A} + \overline{B}$

Theorem IV. If $\mathbf{A} = [a_{ij}]$ be any $m \times n$ matrix and $\mathbf{B} = [b_{jk}]$ be any $n \times p$ matrix i.e. if \mathbf{A} and \mathbf{B} are conformable to the product \mathbf{AB} then $\overline{\mathbf{AB}} = \overline{\mathbf{AB}}$.

Proof: Since A and B are conformable to the product AB, so $AB = [a_{ij}] \times [b_{jk}] = [c_{ik}]$, where $c_{ik} = a_{ij} b_{jk}$, for all $1 \le i \le m$, $1 \le k \le p$ and there is summation on j, where j = 1, 2, 3, ..., n.

Also $\overline{\mathbf{A}} = [\overline{a}_{ij}]$, for all $1 \le i \le m$, $1 \le j \le n$

and $\overline{\mathbf{B}} = [\overline{b}_{jk}]$, for $1 \le j \le n$, $1 \le k \le p$

 $\overline{\mathbf{A}} \,\overline{\mathbf{B}}$ is defined and we have $\overline{\mathbf{A}} \,\mathbf{B} = [\overline{a}_{ij}] \times [\overline{b}_{jk}] = [\overline{d}_{ik}],$...(i) where $\overline{d}_{ik} = \overline{a}_{ij} \,\overline{b}_{ik}$ for all $1 \le i \le m$, $1 \le k \le p$ and j = 1, 2, ..., n.

Again \overline{AB} = complex conjugate of AB *i.e.* [*cik*]

or

 $\mathbf{AB} = [\overline{c}_{ik}], \text{ where } c_{ik} = a_{ij} b_{jk}$

 $= [\overline{a_{ij} \ b_{jk}}] = [\overline{a_{ij} \ b_{jk}}], \quad \because \quad \overline{z_1 \ z_2} = \overline{z_1} . \ \overline{z_2},$

for any complex numbers z1 and z2

=
$$[\overline{d}_{ik}]$$
, since $\overline{d}_{ik} = \overline{a}_{ij} \overline{b}_{jk}$ for all $1 \le i \le m$,

 $1 \le k \le p$ and j = 1, 2, ..., n ...(ii)

From (i) and (ii), we conclude the $\overline{AB} = \overline{AB}$.

§ 2.12. Transposed Conjugate of a Matrix.

Definition. The transpose of conjugage of a matrix A *i.e.* $(\overline{A})'$ is defined as transposed conjugage or tranjugate A and is denoted by A^{Θ} . *i.e.* $A^{\Theta} = (\overline{A})'$.

For example : If
$$\mathbf{A} = \begin{bmatrix} 1+i & 2+3i \\ 2 & 3i \end{bmatrix}$$
,
 $\mathbf{A} = \begin{bmatrix} 1-i & 2-3i \\ 2 & -3i \end{bmatrix}$,

then

$$A^{\Theta} = \text{transpose of } \mathbf{A} = (\mathbf{A})'$$
$$= \begin{bmatrix} 1 - i & 2 \\ 2 - 3i & -3i \end{bmatrix}$$

*§ 2-13. Theorems on Transposed conjugate of a matrix.

- Theorem I. For any matrix A, $(\overline{A})' = (\overline{A}')$

i.e. the transposed conjugate of a matrix is equal to conjugate of its transpose. **Proof**: Let $\mathbf{A} = \{a_{ij}\}$ be any $m \times n$ matrix.

Then by definition, $\mathbf{X} = [\overline{a}_{ij}]$, for all $1 \le i \le m$ and $1 \le j \le n$.

 \therefore (A)' = transpose of A,

 $(\overline{A})' = [b_{ji}]$, where $[b_{ji}]$ is $n \times m$ matrix and $b_{ji} = \overline{a_{ij}}$

for all $1 \le i \le m$, $1 \le j \le n$, ...(i)

Again $\mathbf{A}' = \text{transpose of } \mathbf{A} \ i.e. \ [a_{ij}]$

-6

i.e.

	= $[c_{ji}]$, where $c_{ji} = a_{ij}$ and $[c_{ji}]$ is $n \times m$ mat	rix for all
		$1 \le i \le m$, $1 \le j \le n$.
£ .	$\therefore (\mathbf{A})' = \text{complex conjugate of } \mathbf{A}'.$	2
	$= [c_{\mu}]$, by definition.	
	$= [\overline{a_{ij}}]$. since $c_{ji} = a_{ij}$	8.
or	$(\mathbf{A})' = [b_{ji}]$, since $b_{ji} = \overline{a_{ij}}$, where $[b_{ji}]$ is $n \times m$ r	natrix for
- 100 ·		$\leq m, 1 \leq j \leq n$ (ii)
	\therefore From (i) and (ii), we conclude that $(\overline{\mathbf{A}})' = (\overline{\mathbf{A}}')$.	
	Theorem II. For any matrix \mathbf{A} , $(\mathbf{A}^{\Theta})^{\Theta} = \mathbf{A}$.	2
	Proof : Let $A^{\Theta} = B$ <i>i.e.</i> $B = \overline{(A)}^{\circ}$	
	Then $\mathbf{B}' = \text{transpose of } \mathbf{B}$	
	= transpose of $(\overline{\mathbf{A}})'$	
	$= \overline{\mathbf{A}}$, since we know $(\mathbf{A}')' = \mathbf{A}$	See Th. II Page 70
	$\therefore (\mathbf{B})' = \text{complex conjugate of } \mathbf{B}'$	See Th. I above
	= complex conjugate of $\overline{\mathbf{A}}$	(Note)
	= A, since we know $\overline{A} = A$	See Th. I Page 75
i.e.	$\mathbf{B}^{\Theta} = \mathbf{A}$, since $\mathbf{B}^{\Theta} = (\overline{\mathbf{B}}') = (\overline{\mathbf{B}})'$	See Th. I above
i.e.	$(\mathbf{A}^{\Theta})^{\Theta} = \mathbf{A}$, since $\mathbf{A}^{\Theta} = \mathbf{B}$.	Hence proved.
	Theorem III. (a). For any matrix A, $(kA)^{\Theta} = kA^{\Theta}$,	where k is a scalar.
	Proof : By definition, we know that	N
	$(k\mathbf{A})^{\Theta} = (k\overline{\mathbf{A}})'$	2 ¹⁰ 1
	$=(\overline{k} \overline{A})'$, by Th. II Page 76	
	$= \overline{k}$ (A)', by Th. III Page 70	-
	$= k \mathbf{A}^{\Theta}$, since k is a scalar.	Hence proved.
	Theorem III (b). For any matrix A, $(\mathbf{k} \mathbf{A})^{\Theta} = \lambda$	\mathbf{A}^{Θ} , where k is any
com	plex number.	
	Proof : By definition, we know that	
de .	$(k\mathbf{A})^{\Theta} = (k\mathbf{A})'$	
	$=(\overline{k} \overline{A})'$, by Th. II Page 76	2
	$=(\overline{k} \mathbf{A})'$, by Th. III Page 70	
	$= k \mathbf{A}^{\Theta}, \therefore (\mathbf{\bar{X}})' = \mathbf{A}^{\Theta}, \text{ by definition.}$	Hence proved.
	Theorem IV. If A and B are two matrices conformation	able to addition, then
	$(\mathbf{A} + \mathbf{B})^{\Theta} = \mathbf{A}^{\Theta} + \mathbf{B}^{\Theta}$. Proof : By definition, we have	(Meerut 90)
	$(\mathbf{A} + \mathbf{B})^{\Theta} = (\overline{\mathbf{A} + \mathbf{B}})' = (\overline{\mathbf{A} + \mathbf{B}})', \because \overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} + \mathbf{B}$	
14		See Th. III Page 76
	$= (\overline{A})' + (\overline{B})'$ by Th. I Page 70	

 $= \mathbf{A}^{\Theta} + \mathbf{B}^{\Theta}$, by definition.

Hence proved.

Theorem V. If A and B are two matrices conformable to the product **AB, then $(\mathbf{AB})^{\Theta} = \mathbf{B}^{\Theta} \mathbf{A}^{\Theta}$ **Proof** : $(AB)^{\Theta} = (AB)'$, by definition = (A B)', by Th. IV Page 77 $= (\mathbf{R})'(\mathbf{A})'$, by Th. IV Page 7! (Note) $= \mathbf{B}^{\Theta} \mathbf{A}^{\Theta}$, by definition. Hence proved Example : Find $\{A^{e}\}^{\Theta}, \overline{A}'$ and $(\overline{A})'$ for the matrix $A = \begin{bmatrix} 1+i & 3-5i \\ 2i & 5 \end{bmatrix}$ Solution. $\mathbf{A} = \begin{bmatrix} 1-i & 3+5i \\ -2i & 5 \end{bmatrix}$... See § 2 10 Page 75 $(\overline{\mathbf{A}})' = \text{Transpose of } \overline{\mathbf{A}} = \begin{bmatrix} 1 - i & -2i \\ 3 + 5i & 5 \end{bmatrix}$... See § 2.08 Page 69 A' = Transpose of A = $\begin{bmatrix} 1 + i & 2i \\ 3 - 5i & 5 \end{bmatrix}$... See § 2.08 Page 69 $\overline{\mathbf{A}}' = \text{conjugate of } \mathbf{A}' = \begin{bmatrix} 1 - i & -2i \\ 3 + 5i & 5 \end{bmatrix} = (\overline{\mathbf{A}})'$ \mathbf{A}^{Θ} = conjugate transpose of $\mathbf{A} = \begin{bmatrix} 1 - i & -2i \\ 3 + 5i & 5 \end{bmatrix} = \mathbf{A}'$ $\{A^{\Theta}\}^{\Theta} = \text{conjugate transpose of } A^{\Theta}$ and

$$= \begin{bmatrix} 1+i & 3-5i\\ 2i & 5 \end{bmatrix} = \mathbf{A}$$

**§ 2.14. Symmetric and skew-symmetric matrices.

(a) Symmetric Matrix. (Agra 94; Avadh 92) Definition. A square matrix $A = [a_{ij}]$ is called symmetric provided $a_{ij} = a_{ij}$, for all values of i and j.

For example : $\mathbf{A} = \begin{bmatrix} 1 & -3 & 5 \\ -3 & 2 & 7 \\ 5 & 7 & 3 \end{bmatrix}$

Note, kA is also symmetric, if k is scalar.

(b) Skew-symmetric Matrix.

Definition. A square matrix $\mathbf{A} = [a_{ij}]$ is called skew-symmetric provided $a_{ij} = -a_{ij}$, for all values of *i* and *j*.

(Agra 94; Avadh 92)

For example :
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & -3 \\ -1 & 0 & 5 \\ 3 & -5 & 0 \end{bmatrix}$$

Note. kA is also skew-symmetric, if k is scalar. § 2.15. Theorems on Symmetric and Skew-symmetric matrices. **Theorem I.** A square matrix A is symmetric iff A = A'. (Kanpur 90) **Proof**: Let A be an $n \times n$ square matrix *i.e.* $A = [a_{ij}]$, for all $1 \le i \le n$ and $1 \leq j \leq n$. If A is symmetric matrix, then by definition, we have $[a_{ij}] = [a_{ji}]$, for all $1 \le i \le n$ and $1 \le j \le n$...(i) Also, by definition, $\mathbf{A}' = [b_{ij}]$ such that $b_{ij} = a_{ji}$ for all $1 \le i \le n$, $i \le j \le n'$...See § 2.08 Page 69 $\mathbf{A}' = [a_{ji}], \text{ for all } 1 \le i \le n, 1 \le j \le n$ $= [a_{ii}], \text{ from (i)}.$ Hence $\mathbf{A}' = \mathbf{A}$. Conversely if A = A'. Then A must be a square matrix Also $\mathbf{A} = \mathbf{A}' \implies [a_{ii}] = [a_{ji}]$, for all $1 \le i \le n$, $1 \le j \le n$ $\Rightarrow a_{ij} = a_{ji}$, for all $1 \le i \le n$, $1 \le j \le n$ \Rightarrow A is a symmetric matrix. Hence proved. **Theorem II.** A square matrix A is skew-symmetric iff A' = -A. **Proof**: Let A be an $n \times n$ square matrix *i.e* $\mathbf{A} = [a_{ij}]$ for all $1 \le i \le n$ and $1 \leq j \leq n$. If A is a skew-symmetric matrix, then by definition, we have $[a_{ij}] = [-a_{ji}], \text{ for all } 1 \le i \le n, 1 \le j \le n$...(i) Also, by definition, $\mathbf{A}' = [b_{ij}]$, such that $b_{ij} = a_{ji}$. for all $1 \le i \le n$, $1 \le j \le n$ See § 2.08 Page 69 $\mathbf{A}' = [a_{ji}]$ for all $1 \le i \le n, 1 \le j \le n$ $= -[-a_{ji}] = -[a_{ij}], \text{ from (i)}.$ Hence A' = -A. Conversely if A' = -A, then A must be a square matrix. Also $\mathbf{A}' = -\mathbf{A} \Longrightarrow [a_{ji}] = -[a_{ij}]$, for all $1 \le i \le n$, $1 \le j \le n$ $\Rightarrow a_{ji} = -a_{ij}$ $\Rightarrow a_{ij} = -a_{ji}$, for all $1 \le i \le n$, $1 \le j \le n$ \Rightarrow A is a skew-symmetric matrix. Hence proved. ***Theorem III. Every square matrix can be uniquely expressed as the sum of a symmetric and a skew-symmetric matrices. (Avadh 94, 92, 90; Bundelkhand 95; Meerut 93) Proof : Let A be a square matrix, then we can write $A = \frac{1}{2}A + \frac{1}{2}A = \frac{1}{2}(A + A') + \frac{1}{2}(A - A')$...(i) since $\frac{1}{2}$ A, $\frac{1}{2}$ A' are conformable to addition, A being a square matrix. (Note) Now $\left\{\frac{1}{2}(\mathbf{A} + \mathbf{A}')\right\}'$ = transpose of $\frac{1}{2}(\mathbf{A} + \mathbf{A}')$ $=\frac{1}{2}(\mathbf{A}+\mathbf{A'})'$...by § 2.09 Th. III Page 70 $=\frac{1}{2} \{ \mathbf{A}' + (\mathbf{A}')' \}$...by § 2.09 Th. I Page 70

OF

or

Symmetric and Skew-symmetric Matrices

 $=\frac{1}{2}\left(\mathbf{A}'+\mathbf{A}\right)$

OF

OF

182/1/6

...by § 2.09 Th. II Page 70 $\left\{\frac{1}{2}(\mathbf{A} + \mathbf{A}')\right\}' = \frac{1}{2}(\mathbf{A} + \mathbf{A}'),$ as matrix addition is commutative. Therefore, by definition, $\frac{1}{2}(\mathbf{A} + \mathbf{A}')$ is a symmetric matrix ...(ii) ...by § 2.09 Th. III Page 70 Again $\{\frac{1}{2}(A - A')\}' = \frac{1}{2}(A - A')'$ (Note) $=\frac{1}{2} \{ \mathbf{A} + (-1) \mathbf{A}' \}'$ $=\frac{1}{2} \{ \mathbf{A}' + \{ (-1) (\mathbf{A}')' \}$...by § 2.09 Th. 1 Page 70 $=\frac{1}{2} \{ \mathbf{A}' + (-1) (\mathbf{A}')' \}$...by § 2.09 Th. III Page 70 ...by § 2.09 Th. II Page 70 $=\frac{1}{2} \{A' + (-1)A\}$ $= \frac{1}{2} (\mathbf{A}' - \mathbf{A}) = \frac{1}{2} \{ (-1)^2 \mathbf{A}' + (-1) \mathbf{A} \}$ (Note) $= (-1). \frac{1}{2} (-A' + A)$ $\left\{\frac{1}{2}(\mathbf{A}-\mathbf{A}')\right\}' = -\frac{1}{2}(\mathbf{A}-\mathbf{A}'),$ as matric addition is commutative. Therefore, by definition, $\frac{1}{2}(\mathbf{A} - \mathbf{A}')$ is a skew-symmetric matric. ...(iii)

Hence from (i), (ii) and (iii), we find that the matrix A can be expressed as the sum of a symmetric and a skew symmetric matrices.

To prove that the representation (i) is unique, let

$\mathbf{A} = \mathbf{A}_1 + \mathbf{A}_2. \qquad \dots (1)$	4 =	=	= A	1	+	A	2.	(1V)
--	-----	---	-----	---	---	---	----	-----	---

where A1 is symmetric and A2 is skew-symmetric.

	Then	$\mathbf{A_1} = \mathbf{A_1}'$	(v)
and	11 A	$\mathbf{A_2} = - \mathbf{A_2}'$	(vi)
	From (iv), we have	$\mathbf{A}' = (\mathbf{A}_1 + \mathbf{A}_2)'$	•. 	x
	•	$= A_1' + A_2'$	by Th. I § 2.09 Page 70	J

 $A' = A_1 - A_2$, from (v), (vi)

or

Adding and subtracting (iv) and (vii), we get

$$\mathbf{A} + \mathbf{A}' = 2\mathbf{A}_1$$
 and $\mathbf{A} - \mathbf{A}' = 2\mathbf{A}$

OF

$$A_1 = \frac{1}{2}(A + A')$$
 and $A_2 = \frac{1}{2}(A - A')$

:. From (iv), we get $\mathbf{A} = \frac{1}{2} (\mathbf{A} + \mathbf{A}') + \frac{1}{2} (\mathbf{A} - \mathbf{A}')$, which is the same as (i). Hence proved. Hence the representation (i) is unique.

Solved Examples on § 2.14 and § 2.15

Ex. 1. Show that the matric A =	9	6	7	is skew-symmetric.
	- 6	0	8	
	- 7	0 - 8	0	(Meerut 94)

Soi. In the given matrix, we find that

 $a_{11} = 0, a_{12} = 6 = -a_{21}, a_{13} = 7 = -a_{31}, a_{22} = 0, a_{23} = 8 = -a_{32}, a_{33} = 0$ $a_{ij} = -a_{ji}$ for all $1 \le i \le 3$, $1 \le j \le 3$. i.e.

Hence by definition [See § 2.14 (b) Page 79] the given matrix A is skew-symmetric.

...(vii)

Ex. 2. If $A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$, then show that AA' and A'A are both

symmetric matrices.

Sol. Here
$$\mathbf{A}' = \begin{bmatrix} 3 & 0 \\ 1 & 1 \\ -1 & 2 \end{bmatrix}$$

 $\therefore \mathbf{A}\mathbf{A}' = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix} \times \begin{bmatrix} 3 & 0 \\ 1 & 1 \\ -1 & 2 \end{bmatrix}$
 $= \begin{bmatrix} 3 \cdot 3 + 1 \cdot 1 - 1 (-1) & 3 \cdot 0 + 1 \cdot 1 - 1 \cdot 2 \\ 0 \cdot 3 + 1 \cdot 1 + 2 (-1) & 0 \cdot 0 + 1 \cdot 1 + 2 \cdot 2 \end{bmatrix}$
 $= \begin{bmatrix} 11 & -1 \\ -1 & 5 \end{bmatrix}$, which is a symmetric matrix.
 $\begin{bmatrix} 5ee \ \$ & 2 \cdot 14 \ (a) & Page & 79 \end{bmatrix}$
Similarly $\mathbf{A'A} = \begin{bmatrix} 3 & 0 \\ 1 & 1 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 3 & 1 & -1 \\ 0 & 1 & .2 \end{bmatrix}$
 $= \begin{bmatrix} 3 \cdot 3 + 0 \cdot 0 & 3 \cdot 1 + 0 \cdot 1 & 3 (-1) + 0 \cdot 2 \\ 1 \cdot 3 + 1 \cdot 0 & 1 \cdot 1 + 1 \cdot 1 & 1 (-1) + 1 \cdot 2 \\ -1 \cdot 3 + 2 \cdot 0 & -1 \cdot 1 + 2 \cdot 1 & -1 (-1) + 2 \cdot 2 \end{bmatrix}$
 $= \begin{bmatrix} 9 & 3 & -3 \\ 3 & 2 & 1 \\ -3 & 1 & 5 \end{bmatrix}$, which is a symmetric matrix
 $\begin{bmatrix} See \ \$ & 2 \cdot 14 \ (a) & Page & 79 \end{bmatrix}$

*Ex. 3. (a). If A and B are both skew-symmetric matrices of same order such that AB = BA, then show that AB is symmetric.

Sol. If A and B are both skew-symmetric matrices,

then
$$\mathbf{A} = -\mathbf{A}'$$
 and $\mathbf{B} = -\mathbf{B}'$...(i)

Also given that AB = BA

$$= (-B') (-A'), \text{ from (i)}$$

 $= B'A' = (AB)' \qquad ...See Th. IV § 2.09 Page 71$ or AB = (AB)' *i.e.* AB is a symmetric matrix. Hence proved. Ex. 3 (b). If A is a symmetric matrix, then show that kA is also symmetric for any scalar k.

Sol. Here (kA)' = kA',

Sec. § 2.09 Th. III Page 70

= kA, \therefore A' = A, A being symmetric

Hence kA is symmetric, if A is so.

**Ex. 4 (a). Find the symmetric and skew-symmetric parts of the matrix

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 6 & 8 & 1 \\ 3 & 5 & 7 \end{bmatrix}$$

Symmetric and Skew-symmetric Matrices

Sol. (Refer Theorem III § 2.15 Pages 80 - 81) Here \mathbf{A}' = transpose of \mathbf{A}

$$\begin{bmatrix} 1 & 6 & 3 \\ 2 & 8 & 5 \\ 4 & 1 & 7 \end{bmatrix}$$

The symmetric part of $A = \frac{1}{2} (A + A')$

$$= \frac{1}{2} \left(\begin{bmatrix} 1 & 2 & 4 \\ 6 & 8 & 1 \\ 3 & 5 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 6 & 3 \\ 2 & 8 & 5 \\ 4 & 1 & 7 \end{bmatrix} \right)$$
$$= \frac{1}{2} \begin{bmatrix} 1+1 & 2+6 & 4+3 \\ 6+2 & 8+8 & 1+5 \\ 3+4 & 5+1 & 7+7 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 8 & 7 \\ 8 & 16 & 6 \\ 7 & 6 & 14 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \cdot 4 & \frac{7}{2} \\ 4 & 8 & 3 \\ \frac{7}{2} & 3 & 7 \end{bmatrix}$$

And the skew-symmetry part of $\mathbf{A} = \frac{1}{2} (\mathbf{A} - \mathbf{A}')$

$$= \frac{1}{2} \begin{pmatrix} 1 & 2 & 4 \\ 6 & 8 & 1 \\ 3 & 5 & 7 \end{pmatrix} - \begin{bmatrix} 1 & . & . \\ 2 & 8 & 5 \\ 4 & 1 & 7 \end{bmatrix}^{2}$$

$$= \frac{1}{2} \begin{bmatrix} 1 - 1 & 2 - 6 & 4 - 3 \\ 6 - 2 & 8 - 8 & 1 - 5 \\ 3 - 4 & 5 - 1 & 7 - 7 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -4 & 1 \\ 4 & 0 & -4 \\ -1 & 4 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -2 & \frac{1}{2} \\ 2 & 0 & -2 \\ -\frac{1}{2} & 2 & 0 \end{bmatrix}$$
A

*Ex. 4 (b) Express given matrix A as sum of a symmetric and skew-symmetric matrices. A = $\begin{bmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 1 & 7 & 1 \end{bmatrix}$ (Agra 93)

Sol. From Theorem III § 2.15 Pages 80 – 81 we find that the symmetric and skew-symmetric parts of a matrix A are $\frac{1}{2}(A + A')$ and $\frac{1}{2}(A - A')$ respectively whose sum is eveldently A. *i.e.* $A = \frac{1}{2}(A + A') + \frac{1}{2}(A - A')$...(i)

Now
$$\mathbf{A}' = \text{transpose of } \mathbf{A} = \begin{bmatrix} 6 & 4 & 1 \\ 8 & 2 & 7 \\ 5 & 3 & 1 \end{bmatrix}$$

83

Ans.

ns.

$$\mathbf{A} + \mathbf{A}' = \begin{bmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 1 & 7 & 1 \end{bmatrix}^{+} \begin{bmatrix} 6 & 4 & 1 \\ 8 & 2 & 7 \\ 5 & 3 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 6+6 & 8+4 & 5+1 \\ 4+8 & 2+2 & 3+7 \\ 1+5 & 7+3 & 1+1 \end{bmatrix}^{-} \begin{bmatrix} 12 & 12 & 6 \\ 12 & 4 & 10 \\ 6 & 10 & 2 \end{bmatrix}$$
$$\frac{1}{2} (\mathbf{A} + \mathbf{A})' = \frac{1}{2} \begin{bmatrix} 12 & 12 & 6 \\ 12 & 4 & 10 \\ 6 & 10 & 2 \end{bmatrix}^{-} \begin{bmatrix} 6 & 6 & 3 \\ 6 & 2 & 5 \\ 3 & 5 & 1 \end{bmatrix},$$

which is evidently a symmetric matrix as $a_{ij} = a_{ji}$ for all values of i and j \cdot

And
$$\mathbf{A} - \mathbf{A'} = \begin{bmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 1 & 7 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 6 & 4 & 1 \\ 8 & 2 & 7 \\ 5 & 3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 6 - 6 & 8 - 4 & 5 - 1 \\ 4 - 8 & 2 - 2 & 3 - 7 \\ 1 - 5 & 7 - 3 & 1 - 1 \end{bmatrix}^{=1} \begin{bmatrix} 0 & 4 & 4 \\ -4 & 0 & -4 \\ -4 & 4 & 0 \end{bmatrix}$$

$$\therefore \frac{1}{2} (\mathbf{A} - \mathbf{A'}) = \frac{1}{2} \begin{bmatrix} 0 & 4 & 4 \\ -4 & 0 & -4 \\ -4 & 0 & -4 \\ -4 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \\ -2 & 0 & -2 \\ -2 & 2 & 0 \end{bmatrix},$$

which is evidently a skew-symmetric matrix as $a_{ij} = -a_{ji}$ for all values of i, j \therefore From (i), we get

A =	6	6	3	+	0	2	$\begin{bmatrix} 2\\ -2\\ 0 \end{bmatrix}$
2	6	2	5		- 2	0	-20
	3	5	1		-2	2	0
	L	5	-		L ~	2	C.

= sum of a symmetric and skew-symmetric matrices, as proved above.

**Ex. 5. If A is any square matrix, show that AA' is a symmetric matrix.

Sol.
$$(AA')' = \text{transpose of } AA'$$

= $(A')'A'$
= AA'

...See Th. IV § 2.09 Page 71 ... See Th. II § 2.09 Page 7(

i.e. AA' = (AA')'. Hence AA' is a symmetric matrix by definition.

*Ex. 6. If A be a square matrix, show that A + A' is symmetric and A - A' is a skew-symmetric matrix. (Meerut 99)

Sol. If A is a square matrix, then

$$A + A'$$
) ' = A' + (A') ' ...See § 2.09 Th. I Page 7(
= A' + A ...See § 2.00 Th. II Page 7(

 $= \mathbf{A}' + \mathbf{A}$...See § 2.09 Th. II Page 7(= $\mathbf{A} + \mathbf{A}'$, by commutative law of addition

Hence by definition $\mathbf{A} + \mathbf{A}'$ is symmetric.

84

Symmetric and Skew-symmetric Matrices

Again (A - A')' = A' - (A')',See § 2.09 Th. I Page 70 = A' - A ...See § 2.09 Th. II Page 70 = -(A - A')

Hence by definition $\mathbf{A} - \mathbf{A}'$ is skew-symmetric.

*Ex. 7. If A is skew-symmetric matrix, then show that AA' = A'A and A^2 is symmetric.

Sol. If A is a skew-symmetric matrix, then we know that

$$\mathbf{A}' = -\mathbf{A} \qquad \dots (1)$$

Pre-multiplying both sides of (i) by A, we get

$$AA' = -AA = -A^2 \qquad \dots (ii)$$

Post-multiplying both sides of (i) by A, we get

$$A'A = -AA = -A^2 \qquad \dots (iii)$$

From (ii) and (iii) we conclude that AA' = A'A

Further we can prove (as in Ex. 5 Page 84) that AA' and A'A are symmetric matrices. Hence from (ii) and (iii) we find that $-A^2$ is a symmetric matrix or A^2 is a symmetric matrix, as we know that kA is also symmetric if kis scalar and A is symmetric. Hence proved.

Exercises on § 2.14 - § 2.15

*Ex. 1. If A and B are symmetric (or skew-symmetric) matrices, then so is A + B.

Ex. 2. If A and B are symmetric matrices, then prove that AB + BA is symmetric and AB - BA is skew-symmetric.

Ex. 3. Show that all positive integral powers of a symmetric matrix are symmetric.

Ex. 4. If A is any matrix, then show that A'A is a symmetric matrix.

(Hint : See Ex. 5 Page 84)

Ex. 5. If A is a symmetric matrix, then show that AA' = A'A and A^2 is symmetric.

(Hint : See Ex. 7 above)

Ex. 6. What is the main diagonal of a skew symmetric matrix ?

(Kanpur 90)

[Hint : See § 2.14 (b) Page 79. Each element is zero]. Ex. 7. What is the transpose of a symmetric matrix ? (Kanpur 90) [Hint : See Th. I § 2.15 Page 80]. Ans. The matrix itself.

Ex. 8. A is a skew symmetric matrix. How will be A^n ? *n* is any positive integer.

*Ex. 9. Prove that every diagonal element of a skew-symmetric matrix is necessarily zero. (Garhwal 91; Kanpur 94)

[Hint : In the case of skew-symmetric matrix, we know

 $a_{ij} = -a_{ji}$ for all values of i and j

 \therefore If i = j, then $a_{ii} = -a_{ii}$ for all i

i.e. $a_{ii} + a_{ii} = 0$ or $2a_{ii} = 0$ or $a_{ii} = 0$

i.e. all diagonal element of a skew symmetric matrix are necessarily zero.]

**§2.16. Hermitian and Skew-Hermitian Matrices.

(a) Hermitian Matrix.

(Avadh 95, 91, 90)

(Avadh 91, 90)

Definition. A square matrix A such that $\overline{A}' = A$ is called Hermitian *i.e.* the matrix $[a_{ij}]$ is Hermitian provided $a_{ij} = \overline{a}_{ji}$, for all values of *i* and *j*.

For example : $\mathbf{A} = \begin{bmatrix} l & \alpha + i\beta & \gamma + i\delta \\ \alpha - i\beta & m & x + iy \\ \gamma - i\delta & x - iy & n \end{bmatrix}$

(b) Skew-Hermitian Matrix.

Definition. A square matrix \overline{A} such that $\overline{A'} = -\overline{A}$ is called skew-Hermitian *i.e.* the matrix $[a_{ij}]$ is skew-Hermitian provided $a_{ij} = -\overline{a}_{ji}$ for all values of *i* and *j*.

For example : $\mathbf{A} = \begin{bmatrix} 2i & -\alpha - i\beta & -3 + i \\ \alpha - i\beta & -i & -\gamma + i\delta' \\ 3 + i & \gamma + i\delta & 0 \end{bmatrix}$

§ 2.17. Theorems on Hermitian and Skew-Hermitian Matrices.

*Theorem I. The diagonal elements of a Hermitian matrix are necessarily real. (Avadh 95)

Proof: Let $[a_{ij}]$ be a $n \times n$ Hermitian matrix, then according to definition [as given in § 2.16 (a) above], we have

$$a_{ij} = \overline{a_{ji}}$$
, for all $1 \le i \le n$, $1 \le j \le n$...(i)

Now the diagonal elements are a_{ii} , where $1 \le i \le n$.

:. From (i), we have $a_{ii} = \overline{a}_{ii}$, for all $1 \le i \le n$...(ii)

If $a_{ii} = \alpha + i\beta$ where α and β are real,

then $\overline{a_{ii}} = \alpha - i\beta$

or

 \therefore From (ii), we get $\alpha + i\beta = \alpha - i\beta$

$$2i\beta = 0$$
 or $\beta = 0$

 $\therefore a_{ii} = \alpha + i (0) = \alpha$, which is purely real.

Hence the diagonal elements of a Hermitian matrix are necessarily real.

Hence proved.

*Theorem II. The diagonal elements of a skew-Hermitian matrix are either purely imaginary or zero. (Avadh 90)

Proof: Let $[a_{ij}]$ be an $n \times n$ skew-Hermitian matrix, then according to definition [as given in § 2.16 (b) above] we have

$$a_{ij} = -\overline{a}_{ji}$$
, for all $1 \le i \le n, \ 1 \le j \le n$(i)

Now the diagonal elements are a_{ii} , where $1 \le i \le n$.

:. From (i), we have $a_{ii} = -\overline{a_{ii}}$, for all $1 \le i \le n$(ii)

Hermitian and Skew-symmetric Matrices

If $a_{ii} = \alpha + i\beta$, where α and β are real, hen $\cdot \quad \overline{a_{ii}} = \alpha - i\beta$.

 \therefore From (ii), we get $\alpha + i\beta = -(\alpha - i\beta)$

or

 $\therefore a_{ii} = 0 + i\beta = i\beta$, which is purely imaginary and can be zero if $\beta = 0$.

Hence the diagonal elements of a skew-Hermitian matrix are either purely imaginary or zero.

 $\alpha + i\beta = -\alpha + i\beta$ or $2\alpha = 0$ or $\alpha = 0$

**Theorem III. Every square matrix (with complex elements) can be uniquely expressed as the sum of a Hermitian and a skew-Hermitian matrices.

(Garhwal 92)

Proof. Let A be a square matrix. Then we can write

$$\mathbf{A} = \frac{1}{2} (\mathbf{A} + \mathbf{A}^{\Theta}) + \frac{1}{2} (\mathbf{A} - \mathbf{A}^{\Theta}) \qquad \dots \text{(i)}$$

Now $(\overline{\mathbf{A} + \mathbf{A}^{\Theta}}) = \overline{\mathbf{A}} + \overline{\mathbf{A}^{\Theta}} \qquad \dots \text{See § 2.11 Th. III Page 76}$

...See § 2.11 Th. III Page 76

$$\therefore \left\{ \left(\overline{\mathbf{A} + \mathbf{A}^{\Theta}} \right)^{\prime} = \left\{ \overline{\mathbf{A}} + \overline{\mathbf{A}^{\Theta}} \right\}^{\prime} = \left(\overline{\mathbf{A}} \right)^{\prime} + \left(\overline{\mathbf{A}^{\Theta}} \right)^{\prime}, \quad \dots \text{See § 2.09 Th. I Page 70}$$
$$= \mathbf{A}^{\Theta} + \left(\overline{\mathbf{A}^{\Theta}} \right)^{\prime}, \text{ by def. } \left(\overline{\mathbf{A}} \right)^{\prime} = \mathbf{A}^{\Theta}, \qquad \qquad \text{See § 2.12 Page 77}$$

$$=\mathbf{A}^{\Theta} + (\mathbf{A}^{\Theta})'$$
....(ii)

Now $(\mathbf{A}^{\Theta})'$ = transposed conjugate of \mathbf{A}^{Θ} ...See § 2.12 P. 77 = transposed conjugate of $(\overline{A})'$. = transposed matrix of (A)',

...See Th. I Page 75 since conjugate of A is A

...See § 2.09 Th. II Page 70

 $\therefore \text{ From (ii) we get, } \left\{ \left(\overline{\mathbf{A} + \mathbf{A}^{\Theta}} \right) \right\}' = \mathbf{A}^{\Theta} + \mathbf{A} = \mathbf{A} + \mathbf{A}^{\Theta},$

 $= \mathbf{A}, \quad \therefore \quad (\mathbf{A}')' = \mathbf{A}$

as addition of matrices obey commutative law.

: By definition (See § 2.16 (a) Page 86) we find that $\mathbf{A} + \mathbf{A}^{\Theta}$ is a Hermitian matrix.

Again
$$\left\{ \left(\overline{\mathbf{A}} - \overline{\mathbf{A}}^{\Theta} \right) \right\}' = (\overline{\mathbf{A}} - \overline{\mathbf{A}}^{\Theta})' = (\overline{\mathbf{A}})' - \left(\overline{\mathbf{A}}^{\Theta} \right)$$

= $\mathbf{A}^{\Theta} - \mathbf{A}$, as above
= $-(\mathbf{A} - \mathbf{A}^{\Theta})$.

: By definition (See § 2.16 (b) Page 86) we find that $\mathbf{A} - \mathbf{A}^{\Theta}$ is a skew-Hermitian matrix.

: From (i) we conclude that the square matrix A is the sum of a Hermitian and a skew-Hermitian matrices.

Solved Examples on § 2.16 - § 2.17.

Ex. 1 (a). Is A = $\begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3-i \\ -2-5i & 3+i & 5 \end{bmatrix}$

a hermitian matrix ?

Sol. A' =
$$\begin{bmatrix} 3 & 7+4i & -2-5i \\ 7-4i & -2 & 3+i \\ -2+5i & 3-i & 5 \end{bmatrix}$$

$$\therefore \quad \overline{\mathbf{A}}' = \begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3-i \\ -2-5i & 3+i & 5 \end{bmatrix} = \mathbf{A}$$

Hence by definition [See § 2.16 (a) Page 86], the given matrix A is hermitian.

Ex.	1	(b).	Prove	that	the	matrix	A = [1	1-i	2	1
								1 + i	3	ġ	1.
							· .]	2	- i	. 0	

is Hermitian.

Sol. $\mathbf{A}' = \begin{bmatrix} 1 & 1+i & 2\\ 1-i & 3 & -i\\ 2 & i & 0 \end{bmatrix}$ $\therefore \quad \overline{\mathbf{A}}' = \begin{bmatrix} 1 & 1-i & 2\\ 1+i & 3 & i'\\ 2 & -i & 0 \end{bmatrix} = \mathbf{A}$

: A is Hermitian.See § 2.16 (a) Page 86 Ex. 2. If $A = \begin{bmatrix} 3 & 2 - 3i & 3 + 5i \\ 2 + 3i & 5 & i \\ 3 - 5i & -i & 7 \end{bmatrix}$,

then prove that A is Hermitian.

Sol.
$$\overline{\mathbf{A}} = \begin{bmatrix} 3 & 2+3i & 3-5i \\ 2-3i & 5 & -i \\ 3+5i & i & 7 \end{bmatrix} = \mathbf{B} \text{ (say)}$$

Then $\mathbf{B}' = \begin{bmatrix} 3 & 2-3i & 3+5i \\ 2+3i & 5 & i \\ 3-5i & -i & 7 \end{bmatrix}$

(Meerut 96)

88

(Avadh 91; Rohilkhand 97)

Hermitian and Skew-symmetric Matrices

 $\therefore \quad \overline{\mathbf{B}}' = \begin{bmatrix} 3 & 2+3i & 3-5i \\ 2-3i & 5 & -i \\ 3+5i & i & 7 \end{bmatrix} = \mathbf{B}$

:...Se Ex. 3. Show that $A = \begin{bmatrix} i & 3+2i & -2-i \\ -3+2i & 0 & 3-4i \\ 2-i & -3-4i & -2i \end{bmatrix}$, ...See § 2.16 (a) Page 86

is skew-Hermitian Matrix.

...

(Rohilkhand 95)

Sol. Here A' =
$$\begin{bmatrix} i & -3+2i & 2-i \\ 3+2i & 0 & -3-4i \\ -2-i & 3-4i & -2i \end{bmatrix}$$

 $\therefore \quad \overline{A}' = \begin{bmatrix} -i & -3-2i & 2+i \\ 3-2i & 0 & -3+4i \\ -2+i & 3+4i & 2i \end{bmatrix}$
= $-\begin{bmatrix} i & 3+2i & -2-i \\ -3+2i & 0 & 3-4i \\ 2-i & -3-4i & -2i \end{bmatrix} = -A$

(Note)

- Hence by definition [See § 2.16 (b) Page 86], the given matrix A is skew-Hermition.

Ex. 4. If A and B are Hermitian, then show that AB is Hermitian if and only if A and B commute.

Sol. If A and B are Hermitian matrices, then we have

$$\mathbf{A} = (\overline{\mathbf{A}})' = \mathbf{A}^{\Theta}$$
 and $\mathbf{B} = (\overline{\mathbf{B}})' = \mathbf{B}^{\Theta}$...(i)

Then $(\mathbf{AB})^{\Theta} = \mathbf{B}^{\Theta} \mathbf{A}^{\Theta}$, by § 2.13 Th. V Page 79

= BA, by (i) above

= AB, if A and B commute

i.e.

 $(AB)^{\Theta} = AB$ or $(\overline{AB})' = AB$, $\therefore A^{\Theta} = (\overline{A})'$ Hence by definition AB is Hermitian.

Converse of this can be proved to be true by reversing the above calculations.

Ex. 5 (a). If A is a Hermitian matrix, then show that iA is skew-Hermitian. (Kanpur 90)

Sol. If A is a Hermitian matrix, then

we have	ч Х	$\mathbf{A} = \mathbf{A}'$	See § 2.16 (a) Page 86
Also		$\overline{\mathbf{A}}' = \mathbf{A}^{\Theta}$	See § 2.12 Page 77
:. Here		$\mathbf{A} = \overline{\mathbf{A}}' = \mathbf{A}^{\Theta}$	(i)

Now

$$(i\mathbf{A})^{\Theta} = -i\mathbf{A}^{\Theta}, \quad \because \quad \vec{i} = -$$

 $= -(i\mathbf{A}^{\Theta})$

...See § 2.13 Th. III (a) Page 78

OT

$$(iA)^{\Theta} = -(iA)$$
, from (i) ...(ii)

Also from § 2.16 (b) Page 86 we know that if A is a skew-Hermitian matrix, then $\overline{\mathbf{A}}' = -\mathbf{A} = \mathbf{A}^{\Theta}$, from (i)

And from (ii), we find that $-(i\mathbf{A}) = (i\mathbf{A})^{\Theta}$, hence (iA) is a skew-Hermitian-matrix.

Ex, 5 (b). If A is a skew-Hermitian matrix, then show that iA is Hermitian.

Sol. If A is a skew-Hermitian matrix, then we have

 $(iA)^{\Theta} = iA$

	$-\mathbf{A} = \mathbf{A}'$	Sce § 2.16 (b) Page 86	
Also	$\overline{\mathbf{A}}' = \mathbf{A}^{\Theta}$	See § 2.12 Page 77	
	$-\mathbf{A} = \mathbf{A}' = \mathbf{A}^{\Theta}$	(i)	
Now	$(i\mathbf{A})^{\Theta} = -i\mathbf{A}^{\Theta}, \because \vec{i} = -i$	N. 198	

...See § 2.13 Th. III (a) Page 78

$$= -i(-A)$$
, from (i

...(ii)

...(i)

OT

Also from § 2.16 (a) Page 86 we know that if A is a Hermitian matrix, then $\overline{\mathbf{A}}' = \mathbf{A} = \mathbf{A}^{\Theta}$, from (i).

And from (ii) we find that $(iA) = (iA)^{\Theta}$, hence iA is a Hermitian matrix.

Ex. 6. If A is any square matrix, show that AA^{Θ} and $A^{\Theta}A$ are Hermitian.

Sol.
$$(AA^{\Theta})^{\Theta} = (A^{\Theta})^{\Theta} A^{\Theta}$$
 ... by § 2.13 Th. V Page 79
= AA^{Θ} ... by § 2.13 Th. II Page 78

:. By definition (See § 2.16 (a) Page 86), AA^{Θ} is Hermitian. Similarly $(A^{\Theta}A)^{\Theta} = A^{\Theta}(A^{\Theta})^{\Theta}$...by § 2.13 Th. V Page 79 $= A^{\Theta} A$...by § 2.13 Th. II Page 78

:. By definition (See § 2.16 (a) Page 86), $A^{\Theta} A$ is Hermitian. Ex. 7. Show that A is Hermitian iff A is Hermitian.

Sol. Let A be Hermitian; then $A = A^{\Theta}$ Now $(\overline{A})^{\Theta}$ = transposed conjugate of \overline{A}

= transposed matrix of A, since (A) = A

...See § 2.11 Th. I Page 75

Inverse of Matrices

 $= \mathbf{A}' = (\mathbf{A}^{\Theta})'$, by (i) = transpose of transposed conguate of A = conguate of A, \therefore (B')' = B *i.e.*, $(\overline{\mathbf{A}})^{\Theta} = \overline{\mathbf{A}}$ Hence by definition, $\overline{\mathbf{A}}$ is a Hermitian matrix Again if $\overline{\mathbf{A}}$ is Hermitian, then we have $\overline{\mathbf{A}} = (\overline{\mathbf{A}})^{\Theta}$ = transposed conjugge of \overline{A} = transponse of A ... by § 2.11 Th. I Page 75 $\overline{\mathbf{A}} = \mathbf{A}'$ or ...(ii) Now $A^{\Theta} = (\overline{A})'$, by definition = (A')', by'(ii) $A^{\Theta} = A$... by § 2.09 Th. II Page 70 i.e., Hence by definition A is Hermitian. Hence proved Exercises on § 2.16 - § 2.17 Ex.1. If $A = \begin{bmatrix} i & 1+i & 2-3i \\ -1+i & 2i & 1 \\ -2-3i & -1 & 0 \end{bmatrix}$, then slow that \overline{A} is skew-Hermitian Ex.2. Show that $A = \begin{bmatrix} 0 & 2-3i & -2-i \\ -2-3i & 0 & -3+4i \\ 2-i & 3+4i & 0 \end{bmatrix}$ is skew-Hermitian.

Ex. 3. Show that A is skew-Hermitian iff \overline{A} is skew-Hermitian.

[Hint : See Ex. 7. Page 90]

Ex. 4. Give an example of matrix which is skew symmetric but not skew-Hermitian.

Ex. 5. If A and B are Hermitian matrices, show that AB + BA is Hermitian and AB - BA is skew-Hermitian.

Ex. 6. Show that every square matrix can be uniquely expressed as P + iQ. where P, Q are Hermitian. (Garhwal 95; Rohilkhand 91)

[Hint : See Th. III Page 87, Ex 5(a) Page 89].

*§ 2.18. The inverse of a matrix.

(Avadh 91; Bundelkhand 93; Garhwal 91)

If for a given square matrix **A**, there exists a matrix **B** such that AB = BA = I where I is an unit matrix, then A is called **non-singular** or **Invertible** and B is called **inverse of A** and we write $B = A^{-1}$ (read as B equals A inverse).

Here **A** is the inverse of **B** and we can write $\mathbf{A} = \mathbf{B}^{-1}$

If B i.e., A^{-1} does not exist, then A is called singular.

Note 1. If AB and BA are both defined and equal then the matrices A and B should both be square matrices of the same order.

Note 2. Non-square matrix has no inverse.

For example : $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{J}$

Each matrix in the product is the inverse of the other.

§ 2.19. Theorems on Inverse of a matrix.

**Theorem I. If a given square matrix A has an inverse, then it is unique or there exists one and only one inverse matrix to a given matrix.

(Bundelkhand 93, 91)

Proof. Let us suppse that B and C are two possible inverses of A. Then we must have (See § 2.18 above).

	AB = BA = I	(i)
and	AC = CA = I	(ii)
	.: From (i) and (ii), we get AB = AC, eac	h being equal to I
or	$\mathbf{B}(\mathbf{AB}) = \mathbf{B}(\mathbf{AC})$	
or	$(\mathbf{BA})\mathbf{B} = (\mathbf{BA})\mathbf{C}$	See § 1.09 Prop. I Page 26
or	IB = IC, from (i)	
or	. B = C	See Ex. Page 64

Hence there cannot be two inverses of A.

** Theorem II. If A and B be two non-singluar or invertible matrices of the same order then AB is also non-singular and

$$(AB)^{-1} = B^{-1} A^{-1}$$

(Avadh 91; Bundelhkand 95; Garhwal 92; Gorakhpur 97; Purvanchal 97, 94)

The inverse of a product is the product of the inverse taken in the reverse order.

This is also known as the Reciprocal Law for the inverse of a product. Proof. A⁻¹ and B⁻¹ exist since A and B are non-singluar.

 \therefore (AB) (B⁻¹ A⁻¹) = A (BB⁻¹) A⁻¹, by associative law $= AIA^{-1} = AA^{-1}$See Ex. 1. Page 64 ...See § 2.18 Page 91 And $(\mathbf{B}^{-1} \mathbf{A}^{-1})$ $(\mathbf{A}\mathbf{B}) = \mathbf{B}^{-1} (\mathbf{A}^{-1} \mathbf{A}) \mathbf{B}$, by associative law $= B^{-1}(I) B$, $\therefore A^{-1} A = I$ $= B^{-1} (IB) = B^{-1} B,$... See Ex. 1. Page 64See § 2.18, Page 91

:
$$(B^{-1} A^{-1}) (AB) = (AB) (B^{-1} A^{-1}) = I$$

= 1.

i.e., $\mathbf{B}^{-1} \mathbf{A}^{-1}$ is the inverse of **AB** or $(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$ and as such **AB** is also non-singluar.

Note : For more details on inverse of matrices see chapter V of this book.

**§ 2.20. Orthogonal Matrix.

Definition. A square matrix A is called an orthogonal matrix if AA' = I, where I is an identity matrix and A' is the transposed matrix of A. (Kanpur 97)

Theorems on Orthogonal Matrices.

Theorem I. For any square matrix A, if AA' = I, then A'A = I.

Proof: Since AA' = I, so A is invertible (*i.e.* A possesses an inverses) and there exists another matrix B such that

$$AB = BA = I$$

(See § 2.18 Page 91)

Now $\mathbf{B} = \mathbf{BI} = \mathbf{B} (\mathbf{AA'}), \quad \mathbf{AA'} = \mathbf{I} (given)$ = (\mathbf{BA}) $\mathbf{A'} = \mathbf{IA'}$, from (i)

i.e. $\mathbf{B} = \mathbf{A}'$

:. From (i), we get AA' = A'A = I. Theorem II. If A is an orthogonal matrix, then A' is also orthogonal. Proof: By definition if A is an orthogonal matrix, then

$$AA' = A'A = I$$

or	$(\mathbf{A}\mathbf{A}')' = (\mathbf{A}'\mathbf{A})' = \mathbf{I}$, transposing and	I remembering $\mathbf{I}' = \mathbf{I}$
or	(A')' A' = A' (A')' = I.	by Th. IV § 2.09 Page 71
or	A' is orthogonal by definition.	Hence proved.
i.e.	Transpose of an orthogonal matrix is also ortho	ogonal.

Theorem III. If A is an orthogonal matrix, then A^{-1} is also orthogonal. **Proof**: By definition if A is orthogonal, then

$$AA' = A'A = I$$

 $(AA')^{-1} = (A'A)^{-1} = I,$

taking inverse and remembering $I^{-1} = I$ or $(A')^{-1} A^{-1} = A^{-1} (A')^{-1} = I$. by Th. II § 2.19 Page 92 or $(A^{-1})' A^{-1} = A^{-1} (A^{-1})' = I$ (Note) of A^{-1} is orthogonal by definition. Hence proved. *i.e.* Inverse of an orthogonal matrix is also orthogonal.

Theorem IV. For any orthogonal matrices, A and B, show that AB is an orthogonal matrix.

Proof : If A and B are orthogonal matrices, then by definition we have

and

$$AA' = A'A = I$$
 ...(i)
 $BB' = B'B = I$...(ii)
 $\therefore (AB) (AB)' = (AB) (B'A') by Th. IV \S 2.09 Page 71$

-7

or

...(i)

= AB B'A' = A (BB') A' = AIA', from (ii). := AA' = I, from (i).

Similarly, we can prove that

(AB)'(AB) = B'A'AB, by Th, IV § 2.09 Page 71

 $= \mathbf{B'IB}, \text{ from (i)}.$

 $= \mathbf{B'B} = \mathbf{I}$, from (ii).

Hence AB is an orthogonal matrix by definition.

§ 2.21. Unitary Matrix.

Definition. A square matrix A is called an unitary matrix if $A^{\Theta} = I$, where I is an identity matrix and A^{Θ} is the transposed conjuage of A.

Theorems on Unitary matrices.

Theorem I. For any square matrix, if $AA^{\Theta} = I$, then $A^{\Theta} A = I$.

Proof: Since $AA^{\Theta} = I$, where I is the unit matrix, so we find that A is invertible and there exists another matrix B such that

$$AB = BA = I$$

Now
$$\mathbf{B} = \mathbf{BI} = \mathbf{B} (\mathbf{AA}^{\Theta}), \quad \mathbf{AA}^{\Theta} = \mathbf{I} \text{ (given)}$$

= (**BA**) $\mathbf{A}^{\Theta} = \mathbf{IA}^{\Theta}$, from (i).
 $\mathbf{B} = \mathbf{A}^{\Theta}$

or

or

OF

or

OF

OF

Or

or

 \therefore From (i), we get $AA^{\Theta} = A^{\Theta}A = I$ Hence proved. Theorem II. If A is an unitary matrix, then A' is also unitary. Proof : By definition if A is an unitary matrix, then $AA^{\Theta} = A^{\Theta}A = I$ $(\mathbf{A}\mathbf{A}^{\Theta})^{\Theta} = (\mathbf{A}^{\Theta}\mathbf{A})^{\Theta} = \mathbf{I}$, taking transposed conguate and remembering that $I^{\Theta} = I$ (Note) $(\mathbf{A}^{\Theta})^{\Theta} \mathbf{A}^{\Theta} = \mathbf{A}^{\Theta} (\mathbf{A}^{\Theta})^{\Theta} = \mathbf{I}$, using § 2.09 Th. IV Page 71 $\mathbf{A}\mathbf{A}^{\Theta} = \mathbf{A}^{\Theta}\mathbf{A} = \mathbf{I}$, since $(\mathbf{A}^{\Theta})^{\Theta} = \mathbf{A}$ $(\mathbf{A}\mathbf{A}^{\Theta})' = (\mathbf{A}^{\Theta}\mathbf{A})' = \mathbf{i}$, taking transpose of each side $(\mathbf{A}^{\Theta})' \mathbf{A}' = \mathbf{A}' (\mathbf{A}^{\Theta})' = \mathbf{I}$, using § 2.09 Th. IV Page 71 $(\mathbf{A}')^{\Theta}\mathbf{A}' = \mathbf{A}'(\mathbf{A}')^{\Theta} = \mathbf{I}$ (Note) Hence proved. A' is an unitary matrix. **Theorem III.** If A is an unitary matrix then A^{-1} is also unitary.

Proof : By definition if A is an unitary matrix, then

$$AA^{\Theta} = A^{\Theta} A = I$$

$$(AA^{\Theta})^{-1} = (A^{\Theta} A)^{-1} = I, \text{ taking inverse}$$

$$(A^{\Theta})^{-1} A^{-1} = A^{-1} (A^{\Theta})^{-1} = I, \text{ by Th. II § 2.19 Page 92}$$

(Note)

...(i)

Unitary Matrices

or
$$(A^{-1})^{\Theta} A^{-1} = A^{-1} (A^{-1})^{\Theta} = I$$
 (Note)
or A^{-1} is an unitary matrix by definition. Hence proved.
Theorem IV. For any two unitary matrices A and B show that AB is an
unitary matrix. (Bundelkhand 91)
Proof : If A an B are unitary matrices then by definition we have
 $AA^{\Theta} = A^{\Theta} A = I$...(i)
and $BB^{\Theta} = B^{\Theta} B = I$...(ii)
 \therefore (AB) (AB) ^{Θ} = (AB) (B ^{Θ} A ^{Θ}); by Th. V § 2.13 Page 79
 $= A (BB^{\Theta}) A^{\Theta} = AIA^{\Theta}$, from (ii)
 $= AA^{\Theta} = I$, from (i)
Similarly (AB) ^{Θ} (AB) = B ^{Θ} A ^{Θ} AB, by Th. V § 2.13 Page 79
 $= B^{\Theta} IB$, from (i)
 $= B^{\Theta} B \neq I$, from (ii)
 $= B^{\Theta} B \neq I$, from (ii)
Hence AB is an unitary matrix. Hence proved.
Solved Examples on § 2.20 and § 2.21.
Ex. 1. Show that the matrix $\frac{1}{3}\begin{bmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{bmatrix}$ is orthogonal.
Sol. Let $A = \frac{1}{3}\begin{bmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{bmatrix}$
Then $A' = \frac{1}{3}\begin{bmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{bmatrix}$
 $A'A = \frac{1}{3}\begin{bmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{bmatrix}$
 $= \frac{1}{9}\begin{bmatrix} (-1) & (-1) + 2.2 + 2.2 & (-1) - 2.2 & (-1) + 2.2 \\ 2 & (-1) + (-1).2 + 2.2 & 2.2 + (-1) & (-1) + 2.2 \\ 2 & (-1) + (-1).2 + 2.2 & 2.2 + (-1) & (-1) + 2.2 \\ 2 & (-1) + (-2) - 2 & (-2) + (-1) & (-2) + (-2) & (-2) + (-2) & (-2) + (-2) & (-2) + (-2) & (-2) + (-2) & (-2) + (-2) & (-2) + (-2) & (-2) + (-2) & (-$

Hence the given matrix A is orthogonal.

95-

Ex. 2. Verify that the matrix A = $\begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \end{bmatrix}$ is orthogonal. Sol. Here A' = $\begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix}$ $\therefore \mathbf{A'A} = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} \times \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \end{bmatrix}$ $= \begin{bmatrix} \frac{1}{3} + \frac{1}{3} + \frac{1}{3} & \frac{1}{3\sqrt{2}} - \frac{2}{3\sqrt{2}} + \frac{1}{3\sqrt{2}} & \frac{-1}{\sqrt{6}} + 0 + \frac{1}{\sqrt{6}} \\ \frac{1}{3\sqrt{2}} - \frac{2}{3\sqrt{2}} + \frac{1}{3\sqrt{2}} & \frac{1}{6} + \frac{4}{6} + \frac{1}{6} & \frac{-1}{2\sqrt{3}} + 0 + \frac{1}{2\sqrt{3}} \\ \frac{-1}{\sqrt{6}} + 0 + \frac{1}{\sqrt{6}} & \frac{-1}{2\sqrt{3}} + 0 + \frac{1}{2\sqrt{3}} & \frac{1}{2} + 0 + \frac{1}{2} \end{bmatrix}$ Hence A is orthogonal. $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}.$ **Ex. 3. Show that the matrix $A = \begin{bmatrix} \cos \alpha & \sin \alpha \end{bmatrix}$ is orthogonal. $-\sin\alpha \cos\alpha$ (Bundelkhand 91; Kanpur 97) **Sol.** $\mathbf{A}' = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ $\therefore \mathbf{A'A} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ $= \begin{bmatrix} \cos^{2} \alpha + \sin^{2} \alpha & \cos \alpha \sin \alpha - \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha - \cos \alpha \sin \alpha & \sin^{2} \alpha + \cos^{2} \alpha \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$ Hence A is orthogonal Hence A is orthogonal. Ex. 4. Prove that the matrix $\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$ is unitary. (Meerut 96)

Sol. Let $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$ Then $A^{\Theta} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$

Partitioning of Matrices

$$\therefore \mathbf{A}^{\Theta} \mathbf{A} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix} \times \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 1.1 + (1+i).(1-i) & 1.(1+i) + (1+i)(-1) \\ (1-i).1 + (-1)(1-i) & (1-i)(1+i) + (-1)(-1) \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 1 + 1 - i^2 & 0 \\ 0 & 1 - i^2 + 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{1}$$

Hence A is an unitary matrix.

Exercises on § 2.20 - § 2.21

Ex. 1. Show that the matrix $\mathbf{A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ -i & -1 \end{bmatrix}$ is unitary.

Ex. 2. Show that the matrix $\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$ is orthogonal.

Ex. 3. For any two orthogonal matrices A and B, show that BA is an orthogonal matrix.

Ex. 4. For any two unitary matrices A and B, show that BA is an unitary matrix.

Ex. 5. Prove that the following matrix is unitary :--

$\int \frac{1}{2} (1+i)$	$\frac{1}{2}(-1+i)$
$\frac{1}{2}(1+i)$	$\frac{1}{2}(1-i)$

Ex. 6. Prove that a real matrix is unitary if it is orthogonal.

(Rohilkhand 93)

§ 2.22. Partitioning of Matrices.

Submatrix.

Definition. A matrix obtained by striking off some of the rows and columns of another matrix A is defined as a sub-matrix of A.

For example if $\mathbf{A} = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 5 & 7 \end{bmatrix}$, then [2], [3], [5] etc. $\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 5 & 7 \end{bmatrix}$ etc. are all sub-matrices of **A**

It is sometimes found useful to subdivide a matrix into sub-matrices by drawing lines parallel to its rows and columns and to consider these sub-matrices as the elements of the original matrix.

182/1/7

Consider the matrix

$$\mathbf{A} = \begin{bmatrix} x_1 & y_1 & z_1 : \alpha_1 & \beta_1 \\ x_2 & y_2 & z_2 : \alpha_2 & \beta_2 \\ x_3 & y_3 & z_3 : \alpha_3 & \beta_3 \\ \dots & \dots & \dots & \dots \\ p_1 & q_1 & r_1 : a_1 & b_1 \\ p_2 & q_2 & r_2 : a_2 & b_2 \end{bmatrix}$$

Let $\mathbf{A}_{11} = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix}$; $\mathbf{A}_{12} = \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \\ \alpha_3 & \beta_3 \end{bmatrix}$;
 $\mathbf{A}_{21} = \begin{bmatrix} p_1 & q_1 & r_1 \\ p_2 & q_2 & r_2 \end{bmatrix}$; $\mathbf{A}_{22} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$
Then we may write $\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$

The matrix A is then said to have been **partitioned** and the dotted lines indicate the partitions. Here it is obvious that a matrix can be partitioned in several ways. The elements A_{11} , A_{12} , A_{21} and A_{22} are themselves matrices and are the sub-matrices of A.

Identically partitioned matrices.

Two matrices of the same size are known as identically partitioned matrices if when expressed as matrices of matrices (*i.e.* when partitioned) they are of the same order and the corresponding submatrices (or elements) are also of the same size. Such matrices are said to be additively coherent.

For example :

123:75	and	124:30
456:98	÷	205:46
234:23		102:12
567:45		254:34
458:67	· · · ·	262:56

Two matrices A and B, which are conformable to the product AB, are called **multiplicative coherent** if A and B are partioned in such a way that columns of A are partitioned in the same way as the rows of B are partitioned. Here the rows of A and columns of B can be partitioned in any way.

For example :

Let A =	1	0	0	0	and	B =	2	3	5	
and the second	2	0	0	0	S PAG	11 768	3	7	1	12
1 A 1	2	3	- 1	1	125	31.1	4	0	2	
Let A =	-			-	1		2	5	1	

Partitioning of Matrices

Here A is a 3×4 matrix and B is a 4×3 matrix, so these are conformable to the product AB (*i.e.* the product AB exits). Now if write

1 =	[100:0]	and $\mathbf{B} =$	2:35
	210:0		3:71
			4:02
	2 3 1 : 1		
1			2:51

then the partitioning of the columns of A is in the same way as the partitioning of the rows of B. (Here we note that after third column in A the partitioning has been done and in B the partitioning has been done after third row). Thus according to definition given above the matrices A and B are called multiplicative coherent.

Exercise on § 2.22

4 =	٢1	0	0	1	;	B =	1	0	0	
	0	1	0	2			0	1	0	
	0	0	1	3			0	0	0	
1	L			-	1		3	1	2	
							L			

MISCELLANEOUS SOLVED EXAMPLES

Ex. 1. Show that $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$ is the inverse of $\begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$ Sol. $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix} \times \begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$ = $\begin{bmatrix} 1.3 + 2(-4) + 3.2 & 1(-2) + 2.1 + 3.0 & 1(-1) + 2(-1) + 3.1 \\ 2.3 + 5(-4) + 7.2 & 2(-2) + 5.1 + 7.0 & 2(-1) + 5(-1) + 7.1 \\ -2.3 - 4(-4) - 5.2 & -2(-2) - 4.1 - 5.0 & -2(-1) - 4(-1) - 5.1 \end{bmatrix}$ = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Hence $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$ is the inverse of $\begin{bmatrix} 3 & -2 & 1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$

*Ex. 2. If A is a non-singular matrix, then prove that $AB = AC \Rightarrow B = C$, where B and C are square matrices of the same order. (Kanpur 96)

Sol. Since A is non-singular matrix, so A^{-1} exists.

Now $AB = AC \Rightarrow A^{-1}(AB) = A^{-1}(AC)$,

premultiplying both sides by A⁻¹

$$\Rightarrow (\mathbf{A}^{-1} \mathbf{A}) \mathbf{B} = (\mathbf{A}^{-1} \mathbf{A}) \mathbf{C},$$

by associative law of multiplication

$$\Rightarrow$$
 IB = IC, \therefore A⁻¹ A = I

$$\Rightarrow$$
 B = **C**, \therefore **IB** = **B** etc. Hence proved.

**Ex. 3. If product of two non-zero square matrices is a zero matrix, then prove that both of them are singular matrices.

Sol. Let A and B be two non-zero $n \times n$ matrices.

Given that AB = O, where O is the $n \times n$ null matrix.

Let us suppose that B is non-singluar matrix then B^{-1} exists.

Then $AB = O \Rightarrow (AB) B^{-1} = OB^{-1}$ post multiplying both sides by B^{-1} , $\Rightarrow A (BB^{-1}) = O$, by associative law of multiplication. (Note)

$$\Rightarrow \mathbf{AI} = \mathbf{O}, \quad : \quad \mathbf{BB}^{-1} = \mathbf{I}$$
$$\Rightarrow \mathbf{A} = \mathbf{O},$$

which is against hypothesis as A is a non-zero matrix.

Hence B is not a non-singular matrix i.e. B is a singluar matrix.

Similarly we can prove that A is also a singluar matrix.

**Ex. 4. Express the following matrix as the sum of a hermitian and a skew hermitian matrix :

A =	2+31	1-i	2+1]	
	3	1-i 4+3i 1+i	5	(Kumaun 92)
	1	1+i	21	
1.1	L		1	

Sol. From § 2.17 Theorem III Page 87 we know that

$$\mathbf{A} = \frac{1}{2} \left(\mathbf{A} + \mathbf{A}^{\Theta} \right) + \frac{1}{2} \left(\mathbf{A} - \mathbf{A}^{\Theta} \right) \qquad \dots (i)$$

i.e. the hermitian and skew-hermitian parts of the matrix A are $\frac{1}{2}(A + A^{\Theta})$ and $\frac{1}{2}(A - A^{\Theta})$ respectively.

Now we know that
$$A^{\Theta} = (\overline{A})'$$
, ...(ii)

where
$$\mathbf{A} = \begin{bmatrix} 2 - 3i & 1 + i & 2 - i \\ 3 & 4 - 3i & 5 \\ 1 & 1 - i & -2i \end{bmatrix}$$
 (Note)

 $\therefore \text{ From (ii) we have } \mathbf{A}^{\bullet} = (\overline{\mathbf{A}})^{\bullet} = \text{transpose of } \overline{\mathbf{A}}$ $= \begin{bmatrix} 2 - 3i & 3 & 1 \\ 1 + i & 4 - 3i & 1 - i \\ 2 - i & 5 & -2i \end{bmatrix}$

...(iii,

Exercises

$$A + A^{\Theta} = \begin{bmatrix} 2 + 3i & 1 - i & 2 + i \\ 3 & 4 + 3i & 5 \\ 1 & 1 + i & 2i \end{bmatrix}^{+} \begin{bmatrix} 2 - 3i & 3 & 1 \\ 1 + i & 4 - 3i & 1 - i \\ 2 - i & 5 & -2i \end{bmatrix}$$

$$= \begin{bmatrix} 2 + 3i + 2 - 3i & 1 - i + 3 & 2 + i + 1 \\ 3 + 1 + i & 4 + 3i + 4 - 3i & 5 + 1 - i \\ 1 + 2 - i & 1 + i + 5 & 2i - 2i \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 4 - i & 3 + i \\ 4 + i & 8 & 6 - i \\ 3 - i & 6 + i & 0 \end{bmatrix}$$

... Hermitian part of the given matrix A

$$= \frac{1}{2} (\mathbf{A} + \mathbf{A}^{\Theta}) = \frac{1}{2} \begin{bmatrix} 4 & 4-i & 3+1 \\ 4+i & 8 & 6-i \\ 3-i & 6+i & 0 \end{bmatrix}$$

Again $\mathbf{A} - \mathbf{A}^{\Theta} = \begin{bmatrix} 2+3i & 1-i & 2+i \\ 3 & 4+3i & 5 \\ 1 & 1+i & 2i \end{bmatrix}^{-1} \begin{bmatrix} 2-3i & 3 & 1 \\ 1+i & 4-3i & 1-i \\ 2-i & 5 & -2i \end{bmatrix}$
$$= \begin{bmatrix} 2+3i-2+3i & 1-i-3 & 2+i-1 \\ 3-1-i & 4+3i-4+3i & 5-1+i \\ 1-2+i & 1+i-5 & 2i+2i \end{bmatrix}$$

$$= \begin{bmatrix} 6i & -2-i & 1+i \\ 2-i & 6i & 4+i \\ -1+i & -4+i & 4i \end{bmatrix}$$

:. Skew-hermitian part of the given matrix A

$$= \frac{1}{2} (\mathbf{A} - \mathbf{A}^{\Theta}) = \frac{1}{2} \begin{bmatrix} 6i & -2 - i & 1 + i \\ 2 - i & 6i & 4 + i \\ -1 + i & -4 + i & 4i \end{bmatrix}$$

Hence from (i), we have the given matrix A

$=\frac{1}{2}$	4	4 - i	3+i	$+\frac{1}{2}$ 6i	-2-i	1+i	
2	4+i	8	6 i	2-i	<u>6i</u>	4+i	
	3-i	6+i	0	$ + \frac{1}{2} \begin{bmatrix} 6i\\ 2-i\\ -1+i \end{bmatrix} $	-4 + i	4i	

which is the sum of a hermitian and a shew-hermitian matrix (as proved above).

EXERCISES ON CHAPTER II

Ex. 1. Show that

			10 1110 111		•	0	~ 1
1	0	0	is the inverse of	-2	1	0	0
2	1	0	8	0	~	-	0
3	1	1		8	-1	- 1	1
	1 2 3	1 0 2 1 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

(Hint. See Ex. 1 Page 99)

Ex. 2. If A be any square matrix, then show that $A + A^{\Theta}$ is Hermitian.

Ex. 3. If A and B are symmetric and they commute, then $A^{-1}B$ and $A^{-1}B^{-1}$ are symmetric.

Ex. 4. Show that every square matrix can be expressed in one and only one way as P + iQ, where P and Q are Hermitian.

Ex. 5. If B is any square matrix, show that B'AB is symmetric or skew-symmetric according as A is symmetric or skew-symmetric provided B'AB is defined.

Ex. 6. If A and B are two non-singular square matrices of the same order, which of the following-statements is true :—

(i) A + B = B + A;

(ii) (AB)' = A'B';

(iii) $(AB)^{-1} = A^{-1}B^{-1}$;

(iv) $\mathbf{A} \cdot \mathbf{A'} = \mathbf{I} \Rightarrow \mathbf{A'} = \mathbf{A}^{-1}$

(v) A + A' is a symmetric matrix,

Ex. 7. If A is Hermitian, such that $A^2 = O$, show that A = O, where O is the zero matrix.

Ex. 8. Show that every skew-symmetric matrix of odd order is singular.

Ex. 9. When is a matrix said to be invertible ?

[Hint : See § 2.18 Page 91].

Ex. 10. If $D = \text{diag} [d_1, d_2, \dots, d_n]$,

 $d_1 d_2 \dots d_n \neq 0$, what will be \mathbf{D}^{-1} ?

Ex. 11. If non-singular matrices A and B commute, then

(i) A^{-1} and B and (ii) A^{-1} and B^{-1}

also commute.