Chapter II

Some Types of Matrices

§ 2.01. Triangular Matrices.
(Bundelkhand 94)
(a) Upper Triangular Matrix. A square matrix A whose elements $a_{i j}=0$ for $i>j$ is called an upper triangular matrix.

$$
\text { For example }\left[\begin{array}{rrrrrr}
a_{11} & a_{12} & a_{13} & \ldots \ldots & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots & a_{2 n} \\
0 & 0 & a_{33} & \ldots . . & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & \ldots & a_{n n}
\end{array}\right]
$$

(b) Lower Triangular Matrix. A square matrix A whose elements $a_{i j}=0$ for $i<j$ is called a lower triangular matrix.

$$
\text { For example }\left[\begin{array}{lllll}
a_{11} & 0 & 0 \ldots \ldots & 0 \\
a_{21} & a_{22} & 0 \ldots \ldots & 0 \\
a_{31} & a_{32} & a_{33} \ldots \ldots & 0 \\
\ldots & \ldots & \ldots \ldots . & 0 \\
a_{n 1} & a_{n 2} & a_{n 3} \ldots \ldots & a_{n n}
\end{array}\right]
$$

§ 2.02. Diagonal Matrix.

Definition. A square matrix which is both upper and lower triangular is called a diagonal matrix.
(Bundelkhand 94)
For example $\left[\begin{array}{llrr}a_{11} & 0 & 0 \ldots \ldots . & 0 \\ 0 & a_{22} & 0 \ldots \ldots . & 0 \\ 0 & 0 & a_{33} \ldots \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots\end{array}\right]$ (See § 1.03 Page 4 also)
Theorem I. Any two diagonal matrices of the same order commute under multiplication.
(Bundelkhand 95, 94)
Proof. Let any two diagonal matrices be

$$
\mathbf{A}=\left[\begin{array}{ccccc}
a_{1} & 0 & 0 & \ldots & 0 \\
0 & a_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n}
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{ccccc}
b_{1} & 0 & 0 & & 0 \\
0 & b_{2} & 0 & 0 & \ldots \\
0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & b_{n}
\end{array}\right]
$$

Then we have

$$
\mathbf{A B}=\left[\begin{array}{ccccc}
a_{1} & 0 & 0 & \ldots & 0 \\
0 & a_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n}
\end{array}\right] \times\left[\begin{array}{ccccc}
b_{1} & 0 & 0 & \ldots & 0 \\
0 & b_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & b_{n}
\end{array}\right]
$$

or

$$
\mathbf{A B}=\left[\begin{array}{ccccc}
a_{1} b_{1} & 0 & 0 & \ldots & 0 \tag{i}\\
0 & a_{2} b_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n} b_{n}
\end{array}\right]
$$

and

$$
\begin{align*}
\mathbf{B A} & =\left[\begin{array}{ccccc}
b_{1} & 0 & 0 & \ldots & 0 \\
0 & b_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & b_{n}
\end{array}\right] \times\left[\begin{array}{ccccc}
a_{1} & 0 & 0 & \ldots & 0 \\
0 & a_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n}
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
b_{1} a_{1} & 0 & 0 & \ldots & 0 \\
0 & b_{2} a_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & b_{n} a_{n}
\end{array}\right] \tag{ii}
\end{align*}
$$

\therefore From (i) and (ii), we find that $\mathbf{A B}=\mathbf{B A}$ and each one of them is a diagonal matrix of order n.
(Note)
Hence proved.
Theorem II. Product of any two diagonal matrices of order n is a diagonal matrix of order n.

Proof. The same as of Theorem I above.
Theorem III. Sum of any two diagonal matrices of order n is a diagonal matrix of order n and commute under addition.

Proof. Let any two diagonal matrices be

$$
\begin{align*}
& \mathbf{A}=\left[\begin{array}{ccccc}
a_{1} & 0 & 0 & \ldots & 0 \\
0 & a_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n}
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{ccccc}
b_{1} & 0 & 0 & \ldots & 0 \\
0 & b_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & b_{n}
\end{array}\right] \\
& \therefore \quad \mathbf{A}+\mathbf{B}=\left[\begin{array}{ccccc}
a_{1}+b_{1} & 0 & 0 & \ldots & 0 \\
0 & a_{2}+b_{2} & 0 & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & a_{n}+b_{n}
\end{array}\right] \tag{i}
\end{align*}
$$

and

$$
\mathbf{B}+\mathbf{A}=\left[\begin{array}{ccccc}
b_{1}+a_{1} & 0 & 0 & \ldots & 0 \tag{ii}\\
0 & b_{2}+a_{2} & 0 & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & b_{n}+a_{n}
\end{array}\right]
$$

\therefore From (i) and (ii), we get $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$ and each one of them is a diagonal matrix of order n.

§ 2.03. Scalar matrix.

Definition. If in a square matrix \mathbf{A} all the diagonal elements are equal to a (where $a \neq 0$) and all the remaining elements are equal to zero then it is called a scalar matrix.

For example $\left[\begin{array}{llll}a & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a\end{array}\right]$ is a scalar matrix of order 4×4.

Commutative Matrices

Definition. If \mathbf{A} and \mathbf{B} are two square matrices such that $\mathbf{A B}=\mathbf{B A}$, then \mathbf{A} and \mathbf{B} are called commutative matrices or are said to commute.

If $\mathbf{A B}=-\mathbf{B A}$, the matrices \mathbf{A} and \mathbf{B} are said to anti-commute.
Solved Examples on § 2.03.
Ex. 1. If $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$ and $B=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
Then prove that $\mathrm{AB}=\mathrm{BA}=\mathbf{a B}$.
Sol. $\mathbf{A B}=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right] \times\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
a a_{11} & a a_{12} & a a_{13} \\
a a_{21} & a a_{22} & a a_{23} \\
a a_{31} & a a_{32} & a a_{33}
\end{array}\right]=a\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& =a \mathbf{B} .
\end{aligned}
$$

Similarly BA $=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \times\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$

$$
=\left[\begin{array}{lll}
a a_{11} & a a_{12} & a a_{13} \\
a a_{21} & a a_{22} & a a_{23} \\
a a_{31} & a a_{33} & a a_{33}
\end{array}\right]=a\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=a \mathbf{B}
$$

Hence $\mathbf{A B}=\mathbf{B A}=a \mathbf{B}$.
Ex. 2. Show that the matrices A and B anti-commute, where

$$
A=\left[\begin{array}{rr}
1 & -1 \\
2 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
1 & 1 \\
4 & -1
\end{array}\right]
$$

Sol. Here $\mathbf{A B}=\left[\begin{array}{rr}1 & -1 \\ 2 & -1\end{array}\right] \times\left[\begin{array}{rr}1 & 1 \\ 4 & -1\end{array}\right]$

$$
=\left[\begin{array}{ll}
1 \cdot 1-1 \cdot 4 & 1 \cdot 1+(-1) \cdot(-1) \tag{i}\\
2 \cdot 1-1 \cdot 4 & 2 \cdot 1+(-1) \cdot(-1)
\end{array}\right]=\left[\begin{array}{ll}
-3 & 2 \\
-2 & 3
\end{array}\right]
$$

, And

$$
\begin{aligned}
\mathbf{B A} & =\left[\begin{array}{rr}
1 & 1 \\
4 & -1
\end{array}\right] \times\left[\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 \cdot 1+1 \cdot 2 & 1 \cdot(-1)+1 \cdot(-1) \\
4 \cdot 1+(-1) \cdot 2 & 4 \cdot(-1)+(-1)(-1)
\end{array}\right]=\left[\begin{array}{ll}
3 & -2 \\
2 & -3
\end{array}\right]
\end{aligned}
$$

$$
=-\left[\begin{array}{ll}
-3 & 2 \tag{ii}\\
-2 & 3
\end{array}\right]
$$

\therefore From (i) and (ii) we find that $\mathbf{A B}=-\mathbf{B A}$.
Hence \mathbf{A} and \mathbf{B} anti-commute.

Exercise on § 2.03

Ex. 1. Show that the matrices $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ anti-commute.
Ex. 2. Show that the matrices $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $\left[\begin{array}{ll}5 & 7 \\ 7 & 5\end{array}\right]$ commute.

§ 2.04. Unit Matrix or Identity Matrix.

Definition. If in a scalar matrit the diagonal element $a=1$, then the matrix is called the unit matrix or identity matrix and is denoted by $\mathbf{I}_{\mathbf{n}}$ in the case of $n \times n$ matrix.

For example $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Solved Examples on $\S 2.04$.
*Ex. 1. If A be any $n \times n$ matrix and I_{n} is the identity matrix of order $\boldsymbol{n} \times \boldsymbol{n}$, then prove that $A I_{n}=I_{n} A=A$

Sol. Let us suppose that

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ddots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \text { and } \mathbf{I}_{\mathbf{n}}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & 0 \\
0 & 0 & \ldots & 1
\end{array}\right] \\
& \therefore \quad \mathbf{A} \cdot \mathbf{I}_{\mathbf{n}}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \times\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{lll}
& \ldots & a_{11} .0+a_{12} \cdot 0+\ldots+a_{1 n} \cdot 1 \\
\ldots & \ldots & a_{21} .0+a_{22} .0+\ldots+a_{2 n} \cdot 1 \\
\ldots & \ldots & \\
\ldots & \ldots & a_{n 1} .0+a_{n 2} \cdot 0+\ldots+a_{n n} \cdot 1
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \therefore & \ldots & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]=\mathbf{A}
$$

Similarly we can show that $\mathbf{I}_{\mathrm{n}} \bullet \mathbf{A}=\mathbf{A}$.
Hence we have $\mathbf{A} \bullet \mathbf{I}_{\mathrm{n}}=\mathbf{I}_{\mathrm{n}} \bullet \mathbf{A}=\mathbf{A}$.
*Ex. 2. Prove that $I^{m}=I^{m-1}=\ldots=I^{2}=I$, where m is any positive integer and I_{n} is the unit matrix of order $\boldsymbol{n} \times \boldsymbol{n}$.

Sol. Let \mathbf{A} be any $n \times n$ matrix and I be the unit matrix of order $n \times n$ i.e. $\mathbf{I}=\mathrm{I}_{\mathrm{n}}$.

Now we know that $\mathbf{A I}_{\mathbf{n}}=\mathbf{I}_{\mathbf{n}} \mathbf{A}=\mathbf{A}$
(See Ex. 1 above)
But $\mathbf{I}_{\mathbf{n}}=\mathbf{I}$.
$\therefore \mathbf{A I}=\mathbf{I A}=\mathbf{A}$
Taking $\mathbf{A}=\mathbf{I}$, we have $\mathbf{I} \mathbf{I}=\mathbf{I}$ or $\mathbf{I}^{\mathbf{2}}=\mathbf{I}$
Again from (i), taking $\mathbf{A}=\mathbf{I}^{\mathbf{2}}$, where $\mathbf{I}^{\mathbf{2}}=\mathbf{I}$ (proved), we get
$I^{2} \cdot I=I^{\mathbf{2}}$ or $\mathbf{I}^{\mathbf{3}}=\mathbf{I}^{\mathbf{2}}=\mathrm{I}$, from (ii).
Proceeding in this way, we can prove that
$\mathbf{I}^{\mathrm{m}}=\mathbf{I}^{\mathrm{m}-\mathbf{1}}=\ldots=\mathbf{I}^{\mathbf{2}}=\mathbf{I}$, where \boldsymbol{m} is any positive integer.

Exercise on \$ $\mathbf{2 . 0 4}$

Ex. If $\mathbf{A}=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -3 & 3 & 1\end{array}\right]$, show that $\mathbf{A}^{\mathbf{2}}=\mathbf{I}$, where \mathbf{I} is the unit matrix.

§ 2.05. Periodic Matrix.

Definition. A square matrix \mathbf{A} is called periodic, if $\mathbf{A}^{\mathbf{k + 1}}=\mathbf{A}$, where \boldsymbol{k} is a positive integer.

If k is the least positive integer for which $\mathbf{A}^{\mathbf{k}+1}=\mathbf{A}$, then \mathbf{A} is said to be of period k.

Idempotent matrix.
Definition. A square matrix \mathbf{A} is called idempotent provided it satisfies the relation $\mathbf{A}^{2}=\mathbf{A}$.

Symmetric Idempotent Matrix.
Definition. A square matrix. \mathbf{A} is called symmetric idempotent if $\mathbf{A}=\mathbf{A}^{\prime}$ and $\mathbf{A}^{2}=\mathbf{A}$, where \mathbf{A}^{\prime} is the transposed matrix of \mathbf{A}, (See § 2.08 Page 69).

Solved Examples on § 2.05 .
Ex. 1 (a) Show that the matrix $A=\left[\begin{array}{rrr}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ is idempotent.
(Rohilkhand 96)

Sol. $\mathbf{A}^{\mathbf{2}}=\mathbf{A} \cdot \mathbf{A}=\left[\begin{array}{rrr}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right] \times\left[\begin{array}{rrr}2 & -2 & -4 \\ \cdots 1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$
$=\left[\begin{array}{rrr}2 \cdot 2-2(-1)-4 \cdot 1 & 2(-2)-2 \cdot 3-4(-2) & 2(-4)-2 \cdot 4 \cdot-4(-3) \\ -1 \cdot 2+3(-1)+4 \cdot 1 & -1(-2)+3 \cdot 3+4(-2) & -1(-4)+3 \cdot 4+4(-3) \\ 1 \cdot 2-2(-1)-3 \cdot 1 & 1(-2)-2 \cdot 3-3(-2) & 1(-4)-2 \cdot 4-3(-3)\end{array}\right]$
$=\left[\begin{array}{rrr}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]=\mathbf{A}$
Hence the matrix \mathbf{A} is idempotent.
Ex. 1 (b) Show that the matrix $A=\left[\begin{array}{rrr}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$ is idempotent.
(Avadh 91)
Sol $\mathbf{A}^{\mathbf{2}}=\mathbf{A} \cdot \mathbf{A}=\left[\begin{array}{rrr}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right] \times\left[\begin{array}{rrr}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$
$=\left[\begin{array}{rrr}4+3-5 & -6-12+15 & -10-15+20 \\ -2-4+5 & 3+16-15 & 5+20-20 \\ 2+3-4 & -3-12+12 & -5-15+16\end{array}\right]$
$=\left[\begin{array}{rrr}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]=\mathbf{A}$
Hence the matrix \mathbf{A} is idempotent.
*Ex. 2. If A and B are idempotent matrices, then show that $A B$ is idempotent if A and B commute.

Sol. If \mathbf{A} is the idempotent, then $\mathbf{A}^{\mathbf{2}}=\mathbf{A}$ and if \mathbf{B} is iciempotent then

$$
\begin{equation*}
\mathbf{B}^{2}=\mathbf{B} . \tag{i}
\end{equation*}
$$

And if \mathbf{A} and \mathbf{B} commute, then $\mathbf{A B}=\mathbf{B A}$
Now $(\mathbf{A B})^{2}=(\mathbf{A B}) \cdot(\mathbf{A B})$

$$
\begin{aligned}
& =\mathbf{A}(\mathbf{B A}) \mathbf{B}, \text { by associative law } \\
& =\mathbf{A}(\mathbf{A B}) \mathbf{B}, \text { from (ii) } \\
& =(\mathbf{A A})(\mathbf{B B}) \text {, by associative law } \\
& =\mathbf{A}^{2} \mathbf{B}^{2} \\
& =\mathbf{A B} \text { by (i) }
\end{aligned}
$$

Hence $\mathbf{A B}$ is idempetent
Ex. 3. If A is an idempotent matrix, then the matrix $B=I-A$ is idempotent and $\mathbf{A R}=\mathbf{O}=\mathbf{B A}$.

Sol. We know $\mathbf{I A}=\mathbf{A I}=\mathbf{A}$

Also \mathbf{A} being an idempotent matrix. we have $\mathbf{A}^{\mathbf{2}}=\mathbf{A}$.
Since \mathbf{I} and \mathbf{A} are square matrices. so $\mathbf{I}-\mathbf{A}$ is also a square matrix and therefure we have

$$
\begin{aligned}
(\mathbf{I}-\mathbf{A})^{\mathbf{2}} & =(\mathbf{I}-\mathbf{A})(\mathbf{I}-\mathbf{A}) \\
& =(\mathbf{I}-\mathbf{A}) \mathbf{I}-(\mathbf{I}-\mathbf{A}) \mathbf{A}, \text { by distributive law } \\
& =\mathbf{I}^{\mathbf{2}}-\mathbf{A} \mathbf{I}-\mathbf{I} \mathbf{A}+\mathbf{A}^{\mathbf{2}} \\
& =\mathbf{I}-\mathbf{A}-\mathbf{A}+\mathbf{A}, \text { from (i). (ii) and } \mathbf{I}^{\mathbf{2}}=\mathbf{I}
\end{aligned}
$$

or $\quad(\mathbf{I}-\mathbf{A})^{2}=\mathbf{I}-\mathbf{A}$, i.e. $\mathbf{I}-\mathbf{A}$ or \mathbf{B} is an idempotent matrix by definition.
Again $\mathbf{A B}=\mathbf{A}(\mathbf{I}-\mathbf{A})=\mathbf{A I}-\mathbf{A}^{\mathbf{2}}$, by distributive law

$$
=\mathbf{A}-\mathbf{A}, \text { from (i) and (ii) }
$$

i.e $\quad \mathrm{AB}=\mathbf{0}$.

And $\quad \mathbf{B A}=(\mathbf{I}-\mathbf{A}) \mathbf{A}=\mathbf{I} \mathbf{A}-\mathbf{A}^{2}$, by distributive law

$$
=\mathbf{A}-\mathbf{A}=\mathbf{O}
$$

Ex. 4. Show that if A and B are matrices of order $n \times n$ and such that $A B=A$ and $B A=B$, then A and B are idempotent matrices.

Sol. We have $\mathbf{A B A}=(\mathbf{A B}) \mathbf{A}=(\mathbf{A}) \mathbf{A}, \quad \because \quad \mathbf{A B}=\mathbf{A}$ (given)
or

$$
\begin{equation*}
\mathrm{ABA}=\mathrm{A}^{2} \tag{i}
\end{equation*}
$$

Also $\quad \mathbf{A B A}=\mathbf{A}(\mathrm{PA})=\mathbf{A}(\mathbf{B}), \quad \because \mathbf{B A}=\mathbf{B}$ (given)

$$
=\mathbf{A B}=\mathbf{A} \quad \because \mathbf{A B}=\mathbf{A} \text { (given) }
$$

or

$$
\begin{equation*}
\mathbf{A B} \mathbf{A}=\mathbf{A} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have $\mathbf{A}^{\mathbf{2}}=\mathbf{A}$ i.e. \mathbf{A} is idempotent.
In a similar manner, we can prove that

$$
\begin{align*}
\mathbf{B A B} & =\mathbf{B}(\mathbf{A B})=\mathbf{B}(\mathbf{A}), & & \because \mathbf{A B}=\mathbf{A} \text { (given) } \\
& =\mathbf{B} \mathbf{A}=\mathbf{B}, & & \because \mathbf{B A}=\mathbf{B} \text { (given) } \tag{iii}
\end{align*}
$$

or $\quad \mathbf{R A B}=\mathbf{B}$
Also $\quad \mathbf{B A B}=(\mathbf{B A}) \mathbf{B}=(\mathbf{B}) \mathbf{B}, \quad \because \mathbf{B A}=\mathbf{B}$ (given)

$$
\begin{equation*}
\mathrm{BAB}=\mathrm{B}^{2} \tag{iv}
\end{equation*}
$$

From (iii) and (iv), we have $\mathbf{B}^{\mathbf{2}}=\mathbf{B}$ i.e. \mathbf{B} is idempotent. Hence proved.

Exercises on § 2.05

Ex. If in and \mathbf{B} are idempotent, then $\mathbf{A}+\mathbf{B}$ will be idempotent if $A B=B A=O$, where O is the nult matrix.
[Hint: $\left.(A+B)^{2}=A^{2}+A B+B A+B^{2}:=A \div O+O+B\right]$
§ 206. Involutory Matrix.
Defirtion. A square matrix A is called Involutory provided it satisfies the relation $A^{2}=i$ where I is tie identite mataix.

For example, the matrix $A=\left[\begin{array}{rr}1 & 0 \\ 1, & -1\end{array}\right]$ is involutory matrix,
since $\mathbf{A}^{\mathbf{2}}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right] \times\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$

$$
=\left[\begin{array}{ll}
1 \cdot 1+0 \cdot 0 & 1 \cdot 0+0 \cdot(-1) \\
0 \cdot 1+(-1) \cdot 0 & 0 \cdot 0+(-1) \cdot(-1)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathbf{I} .
$$

Solved Examples on \& 2.06.
Ex. 1. Show that the matrix $A=\left[\begin{array}{rrr}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right] \quad$ is involutory.
(Rohilkhand 91)
Sol. $\mathbf{A}^{2}=\left[\begin{array}{rrr}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right] \times\left[\begin{array}{rrr}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right]$

$$
=\left[\begin{array}{ll}
(-5)(-5)+(-8) \cdot 3+0 \cdot 1 & (-5) \cdot(-8)+(-8) \cdot 5+0 \cdot 2 \\
3 \cdot(-5)+5 \cdot 3+0 \cdot 1 & 3 \cdot(-8)+5 \cdot 5+0 \cdot 2 \\
1 \cdot(-5)+2 \cdot 3+(-1) \cdot 1 & 1 \cdot(-8)+2 \cdot 5+(-1) \cdot 2 \\
& (-5) \cdot 0+(-8) \cdot 0+0 \cdot(-1) \\
& 3 \cdot \rho+5 \cdot 0+0 \cdot(-1) \\
& 1 \cdot 0+2 \cdot 0+(-1)(-1)
\end{array}\right.
$$

$$
=\left[\begin{array}{rrr}
25-24+0 & 40-40+0 & 0+0+0 \\
-15+15+0 & -24+25+0 & 0+0+0 \\
-5+6-1 & -8+10-2 & 0+0+1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{I}
$$

Hence the given matrix \mathbf{A} is involutory.
Ex. 2. If A is any square matrix of order n and I_{n} is the identity matrix of order n, such that $\left(I_{n}-A\right)\left(I_{n}+A\right)=O$, then show that A is involutory matrix.

Sol. Given that $\left(\mathbf{I}_{\mathbf{n}}-\mathbf{A}\right)\left(\mathbf{I}_{\mathbf{n}}+\mathbf{A}\right)=\mathbf{O}$
or
$\mathbf{I}_{\mathrm{a}}^{\mathbf{2}}+\mathbf{I}_{\mathrm{n}} \bullet \mathbf{A}-\mathbf{A} \cdot \mathbf{I}_{\mathrm{a}}-\mathrm{A}^{\mathbf{2}}=\mathbf{O}$
or $\quad \mathbf{I}_{n}+A-A-A^{\mathbf{2}}=\mathbf{O}, \quad \because \mathbf{I}_{n}^{2}=I_{n}, I_{n} \bullet A=A=A \bullet I_{n}$.
(See Ex. 1. Page 64)
or $\quad \mathbf{I}_{\mathbf{n}}-\mathbf{A}^{\mathbf{2}}=\mathbf{O}$ or $\mathbf{A}^{\mathbf{2}}=\mathbf{I}_{\mathbf{n}}$ i.e. \mathbf{A} is involutory by definition.
§ 2.07. Nilpotent Matrix.
(Avadh 93)
Definition. A square matrix \mathbf{A} is called Nilpotent matrix of order m, provided it satisfies the relation $\mathbf{A}^{\mathbf{m}}=\mathbf{O}$ and $\mathbf{A}^{\boldsymbol{m - 1}} \neq \mathbf{O}$, where \boldsymbol{m} is a positive integer and \mathbf{O} is the null matrix.

For example, the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is a nilpotent matrix,
since

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \neq 0, \\
\mathbf{A}^{2} & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \times\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0-0+1 \cdot 0 & 0 \cdot 1+1 \cdot 0 \\
0 \cdot 0+0 \cdot 0 & 0 \cdot 1+0.0
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\mathbf{O},
$$

$$
A^{3}=A^{2} \cdot A=0 \cdot A=0 .
$$

i.e. $\quad \mathbf{A}$ is a matrix which is not itself a zero matrix though its powers are zero matrices and so it is a nilpotent matrix, (Another definition of nilpotent matrix).

Solved Examples on § 207.
Ex. Show that $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3\end{array}\right]$ is a nilpotent matrix of order 2.
Sol. Given $\mathbf{A}=\left[\begin{array}{rrr}1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3\end{array}\right] \neq \mathbf{O}$
$\therefore \quad \mathbf{A}^{2}=\left[\begin{array}{rrr}1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3\end{array}\right] \times\left[\begin{array}{rrr}1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3\end{array}\right]$
$=\left[\begin{array}{rrr}1 \cdot 1+2 \cdot 1+3(-1) & 1 \cdot 2+2 \cdot 2+3(-2) & 1 \cdot 3+2 \cdot 3+3(-3) \\ 1 \cdot 1+2 \cdot 1+3(-1) & 1 \cdot 2+2 \cdot 2+3(-2) & 1 \cdot 3+2 \cdot 3+3(-3) \\ -1 \cdot 1-2 \cdot 1-3(-1) & -1 \cdot 2-2 \cdot 2-3(-2) & -1 \cdot 3-2 \cdot 3-3(-3)\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & \mathbf{0} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\mathbf{O}$, where \mathbf{O} is the null matrix of order 3 .
i.e. $\quad \mathbf{A}^{2}=\mathbf{O}$ but $\mathbf{A} \neq \mathbf{O}$. Hence \mathbf{A} is a nilpotent matrix of order 2 .

Exercises on § 2.07
Ex. 1. Show that the matrix $\left[\begin{array}{rr}a ; & b^{2} \\ -a^{2} & -a b\end{array}\right]$ is nilpotent.
Ex. 2. Show that $\left[\begin{array}{lll}1 & 1 & 3 \\ 5 & 2 & \text { is a mlpotent matrix of order } 3 .\end{array}\right.$
(Avadh 93, 90)
[Hint : Prove that $A^{3}=0, A^{2} \neq 0$]:
**§ 2.08 . Transposed Matrix.
(Agra 94)
Definition. The matrix of order $n \times m$ obtained by interchanging the rows and columns of a matrix \mathbf{A} of order $m \times n$ is called the transposed matrix of \mathbf{A} or transpose of the matrix \mathbf{A} and is denoted by \mathbf{A}^{\prime} or $\mathbf{A}^{\mathbf{t}}$ (read as \mathbf{A} transpose).

Another Definition. If $\mathbf{A}=\left[a_{i j}\right]$ be a matrix of order $m \times n$, then the matrix $\mathbf{B}=\left[b_{i j}\right]$ of order $n \times m$, such that $b_{i j}=a_{j i}$ is knewn as transposed matrix of \mathbf{A} or the transpose of the matrix \mathbf{A} and is denoted by \mathbf{A}^{\prime} or $\mathbf{A}^{\mathbf{t}}$.

For example : If $\mathbf{A}=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$ then $\mathbf{A}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
Note 1. The element $a_{l j}$ in the th row and j th column of A stands in j th row and i th column of \mathbf{A}^{\prime}.

Note 2. The transpose of an $m \times n$ matrix is an $n \times m$ matrix.
*\& 2.09. Some Important Theorems on Transposed Matrices.
Theorem I. The transpose of the sum of two matrices is the sum of their transpose i.e. $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$.

Proof. Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left\{h_{i}\right]$.
Then $\mathbf{A}+\mathbf{B}=\left\{a_{i j}+b_{i j}\right\},=\left\{c_{i j}\right\}$, say
then

$$
c_{: j}=a_{i j}+b_{t j}
$$

$\therefore(\mathbf{A}+\mathbf{B})^{\prime}=\left[d_{i j}\right]$, where $d_{i j}=c_{i j}$ for all $1 \leq i \leq m, 1 \leq j \leq n$
i.e. $d_{i j}=a_{i j}+b_{i j}$. for all $1 \leq i \varsigma m, 1 \leq j \leq n$
or $\quad(\mathbf{A}+\mathbf{B})^{\prime}=\left[c_{i j}\right]=\left\{a_{i j}+b_{i j}\right]$
Also $\mathbf{A}^{\prime}=\left[f_{j i}\right]$, where $f_{j i}=a_{i j}$, for all $1 \leq i \leq m,!\leq j \leq n$
and
$\mathbf{B}^{\prime}=\left[g_{j i}\right]$, where $g_{j i}=h_{i j}$ for all $1 \leq i \leq m, 1 \leq j \leq n$

$$
\therefore \quad \mathbf{A}^{\prime}+\mathbf{B}^{\prime}=\left[\int_{j i}\right]+\left[g_{j i}\right]=\left[f_{j i}+g_{j j}\right]
$$

$$
\begin{equation*}
=\left[a_{i j}+b_{i j}\right] \tag{ii}
\end{equation*}
$$

\therefore From (i) and (ii) we get $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$
*Theorem II. The transpose of the transpose of a matrix is the matrix itself i.e. $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$.
(Meerut 95, 94)
Proof. Let $\mathbf{A}=\left[a_{i j}\right]$ the an $m \times n$ matrix. Then \mathbf{A}^{\prime} i.e. the tranpose of \mathbf{A} is $n \times m$ matrix and $\left(\mathbf{A}^{\prime}\right)^{\prime}$ i.e. the transpuse of \mathbf{A}^{\prime} (or the transpose of \mathbf{A}) is an $m \times n$ matrix.

Therefore the matrices \mathbf{A} and (\mathbf{A}^{\prime}) are both $m \times n$ matrices and bence comparable.

Also, the element in the ith row and jth columis of $\left(A^{\prime}\right)^{\prime}$.
$=$ the element in the jth row and $i t h$ column of \mathbf{A}^{\prime}
$=$ the element in the i th row and jth column of \mathbf{A}
i.e. the corresponding elements of $\left(\mathbf{A}^{\prime}\right)^{\prime}$ and \mathbf{A} are equal
\therefore From (i) and (ii), we conciude that $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$.
Hence proved.
Theorem III. If \mathbf{A} is any $m \times n$ matrix, tien $(k \mathbf{A})^{\prime}=k \mathbf{A}^{\prime}$, where k is any number.

Proof. Let $\mathbf{A}=\left[a_{i j}\right]$ be any $m \times n$ matrix. Then $k \mathbf{A}$ is also $m \times n$ inatrix and therefore $(k \mathbf{A})^{\prime}$ i.e. the transpose of the matrix $k \mathbf{A}$ is an $n \times m$ matrix.

Also \mathbf{A}^{\prime}, the transpose of the matrix \mathbf{A}, is $n \times m$ matrix and $k A^{\prime}$ is also an $n \times m$ matrix.

Thus we find that the matrices $(k \mathbf{A})^{\prime}$ and $k \mathbf{A}^{\prime}$ are both $n \times m$ matrices and hence comparable.

Again the element in ith row and jth column of ($k \mathbf{A})^{\prime}$
$=$ the element in j th row and i th column of $k \mathbf{A}$
$=k$ times the clement in j th row and i th column of \mathbf{A}
$=k$ times the element in i th row and j th column of \mathbf{A}^{\prime}
$=k a_{i j}$
$=$ the element in i th tow and j th column of $k A^{\prime}$
i.e. the corresponding elements of $(k \mathbf{A})^{\prime}$ and $k \mathbf{A}^{\prime}$ are equal

From (i) and (ii), we conclude that $(k \mathbf{A})^{\prime}=k \mathbf{A}^{\prime}$.
Hence proved.
**Theorem IV. The transpose of the product of two matrices is the product in reverse order of their transpose i.e. $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$.
(Garhwal 95, 93; Gorakhpur 96, Rohilkhand 94)
Proof. Let $\mathbf{A}=\left[a_{i k}\right]$ and $\mathbf{B}=\left[b_{k j}\right]$ be the two matrices of orders $m \times n$ and $n \times p$ respectively.

Let $\mathbf{C}=\mathbf{A B}=\left[g_{i k}\right] \times\left[b_{k}\right]=\left[c_{i j}\right]$, say
where \mathbf{C} is a matrix of order $m \times p$.
\therefore The element in the ith row and j th column of $\mathbf{A B}$ is $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. This is also the element in the i th row and jith column of $(A B)^{\prime}$.

The elements in the jth row of \mathbf{B}^{\prime} are $b_{1 j}, b_{2 j}, b_{3 j} \ldots, b_{n j}$ and elements in the i th column of \mathbf{A}^{\prime} are $a_{i 1}, a_{i 2}, a_{i 3}, \ldots, a_{i n}$. Then the element in the j th row and i th column of $\mathbf{B}^{\prime} \mathbf{A}^{\prime}$ is

$$
\begin{equation*}
\sum_{k=1}^{n} b_{k j} a_{i k}=\sum_{k=1}^{n} a_{i k} b_{k j}=c_{i j} \tag{ii}
\end{equation*}
$$

Hence from (i) and (ii) we conclude that ($\mathbf{A B})^{\prime}=\mathbf{b}^{\prime} \mathbf{A}^{\prime}$.
Note. The statement of theorem IV is called the reversal rule for the transpose of a product.

Solved Examples on § 2.08 to \& 2.09.
Ex. 1. Write down the transpose of the matrix $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 6 & 8 & 1\end{array}\right]$
Sol. Let \mathbf{A}^{\prime} be the required transpose of the matrix \mathbf{A}. Then $\mathbf{A}^{\prime}=$ matrix obtained by interchanging the rows and columns of
(a) $\quad A=\left[\begin{array}{ll}2 & 1\end{array}\right], \quad B=\left[\begin{array}{rrr}1 & -2 & 0 \\ 4 & 5 & -3\end{array}\right]$
(Budenkhand 91)
(b) $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 3 & -2 & 1\end{array}\right], B=\left[\begin{array}{rr}1 & 2 \\ 2 & 0 \\ -1 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{rrr}2 & 4 & -1 \\ -1 & 0 & 2\end{array}\right], B=\left[\begin{array}{rrr}3 & 4 & 5 \\ -1 & 2 & 7 \\ 2 & 1 & 0\end{array}\right]$

Sol. (a) Here $\mathbf{A}^{\mathbf{t}}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{B}^{\mathbf{t}}=\left[\begin{array}{rr}1 & 4 \\ -2 & 5 \\ 0 & -3\end{array}\right]$
$\therefore \quad \mathbf{B}^{\mathbf{t}} \mathbf{A}^{\mathbf{t}}=\left[\begin{array}{rr}1 & 4 \\ -2 & 5 \\ 0 & -3\end{array}\right] \times\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{r}1 \cdot 2+4 \cdot 1 \\ -2 \cdot 2+5 \cdot 1 \\ 0 \cdot 2-3 \cdot 1\end{array}\right]=\left[\begin{array}{r}6 \\ 1 \\ -3\end{array}\right]$
Also $\mathbf{A B}=\left[\begin{array}{ll}2 & 1\end{array}\right] \times\left[\begin{array}{rrr}1 & -2 & 0 \\ 4 & 5 & -3\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
2 \cdot 1+1 \cdot 4 & 2(-2)+1 \cdot 5 & 2 \cdot 0+1(-3)
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & 1 & -3
\end{array}\right] .
\end{aligned}
$$

$\therefore(\mathbf{A B})^{t}=$ transposed matrix of $\mathbf{A B}$

$$
=\left[\begin{array}{r}
6 \\
1 \\
-3
\end{array}\right]=B^{t} A^{t}, \text { from }(i)
$$

Hence proved.
(b) Here $\mathbf{A}^{\mathbf{t}}=\left[\begin{array}{rr}1 & 3 \\ 2 & -2 \\ 3 & 1\end{array}\right], \mathbf{B}^{\mathbf{t}}=\left[\begin{array}{rrr}1 & 2 & -1 \\ 2 & 0 & 1\end{array}\right]$

$$
\therefore \quad \mathbf{B}^{\mathbf{t}} \mathbf{A}^{\mathbf{t}}=\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 0 & 1
\end{array}\right] \times\left[\begin{array}{rr}
1 & 3 \\
2 & -2 \\
3 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
1 \cdot 1+2 \cdot 2-1 \cdot 3 & 1 \cdot 3+2(-2)-1 \cdot 1 \\
2 \cdot 1+0 \cdot 2+1 \cdot 3 & 2 \cdot 3+0(-2)+1 \cdot 1
\end{array}\right]
$$

$$
=\left[\begin{array}{rr}
2 & -2 \tag{ii}\\
5 & 7
\end{array}\right]
$$

Also $\mathbf{A B}=\left[\begin{array}{rrr}1 & 2 & 3 \\ 3 & -2 & 1\end{array}\right] \times\left[\begin{array}{rr}1 & 2 \\ 2 & 0 \\ -1 & 1\end{array}\right]$

$$
=\left[\begin{array}{ll}
1 \cdot 1+2 \cdot 2+3(-1) & 1 \cdot 2+2 \cdot 0+3 \cdot 1 \\
3 \cdot 1-2 \cdot 2+1(-1) & 3 \cdot 2-2 \cdot 0+1 \cdot 1
\end{array}\right]=\left[\begin{array}{rr}
2 & 5 \\
-2 & 7
\end{array}\right]
$$

$\therefore \quad(\mathbf{A B})^{\mathbf{t}}=$ transposed matrix of $\mathbf{A B}$

$$
=\left[\begin{array}{rr}
2 & -2 \\
5 & 7
\end{array}\right]=\mathbf{B}^{t} \mathbf{A}^{t} \text {, from (ii), }
$$

(c) Here $\mathbf{A}^{\mathbf{t}}=\left[\begin{array}{rr}2 & -1 \\ 4 & 0 \\ -1 & 2\end{array}\right]$ and $\mathbf{B}^{\mathbf{t}}=\left[\begin{array}{rrr}3 & -1 & 2 \\ 4 & 2 & 1 \\ 5 & 7 & 0\end{array}\right]$
$\therefore \quad \mathbf{B}^{\mathbf{t}} \mathbf{A}^{\mathbf{t}}=\left[\begin{array}{rrr}3 & -1 & 2 \\ 4 & 2 & 1 \\ 5 & 7 & 0\end{array}\right] \times\left[\begin{array}{rr}2 & -1 \\ 4 & 0 \\ -1 & 2\end{array}\right]$

$$
=\left[\begin{array}{ll}
3 \cdot 2-1 \cdot 4+2(-1) & 3(-1)-1 \cdot 0+2 \cdot 2 \tag{iii}\\
4 \cdot 2+2 \cdot 4+1(-1) & 4(-1)+2 \cdot 0+1 \cdot 2 \\
5 \cdot 2+7 \cdot 4+0(-1) & 5(-1)+7 \cdot 0+0 \cdot 2
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
15 & -2 \\
38 & -5
\end{array}\right]
$$

Also $\mathbf{A B}=\left[\begin{array}{rrr}2 & 4 & -1 \\ -1 & 0 & 2\end{array}\right] \times\left[\begin{array}{rrr}3 & 4 & 5 \\ -1 & 2 & 7 \\ 2 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{rrr}
2 \cdot 3+4(-1)-1 \cdot 2 & 2 \cdot 4+4 \cdot 2-1 \cdot 1 & 2 \cdot 5+4 \cdot 7-1 \cdot 0 \\
-1 \cdot 3+0(-1)+2 \cdot 2 & -1 \cdot 4+0 \cdot 2+2 \cdot 1 & -1 \cdot 5+0 \cdot 7+2 \cdot 0
\end{array}\right] \\
& =\left[\begin{array}{rrr}
0 & 15 & 38 \\
1 & -2 & -5
\end{array}\right]
\end{aligned}
$$

$\therefore \quad(\mathbf{A B})^{t}=$ transposed matrix of $\mathbf{A B}$

$$
=\left[\begin{array}{rr}
0 & 1 \\
15 & -2 \\
38 & -5
\end{array}\right]=\mathbf{B}^{\mathbf{t}} \mathbf{A}^{\mathbf{t}} \text {, from (iii). }
$$

Hence proved.
\&*Ex. 3. If $A=\left[\begin{array}{rrr}1 & -1 & 0 \\ 2 & 1 & 3 \\ 4 & 1 & 8\end{array}\right]$ and $B=\left[\begin{array}{rrr}4 & 1 & 0 \\ 2 & -3 & 1 \\ 1 & 1 & -1\end{array}\right]$
then verify $(A B)^{t}=B^{t} A^{t}$.
(Meerut 93, 91)
Sol. $\mathbf{A B}=\left[\begin{array}{rrr}1 & -1 & 0 \\ 2 & 1 & 3 \\ 4 & 1 & 8\end{array}\right] \times\left[\begin{array}{rrr}4 & 1 & 0 \\ 2 & -3 & 1 \\ 1 & 1 & -1\end{array}\right]$

$$
=\left[\begin{array}{lll}
1 \cdot 4-1 \cdot 2+0 \cdot 1 & 1 \cdot 1+1 \cdot 3+0 \cdot 1 & 1 \cdot 0-1 \cdot 1-0 \cdot 1 \\
2 \cdot 4+1 \cdot 2+3 \cdot 1 & 2 \cdot 1-1 \cdot 3+3 \cdot 1 & 2 \cdot 0+1 \cdot 1-3 \cdot 1 \\
4 \cdot 4+1 \cdot 2+8 \cdot 1 & 4 \cdot 1-1 \cdot 3+8 \cdot 1 & 4 \cdot 0+1 \cdot 1-8 \cdot 1
\end{array}\right]
$$

or

$$
\mathbf{A B}=\left[\begin{array}{cll}
2 & 4 & -1 \tag{i}\\
13 & 2 & -2 \\
26 & 9 & -7
\end{array}\right] \text { and so }(\mathbf{A B})^{\mathbf{t}}=\left[\begin{array}{rrr}
2 & 13 & 26 \\
4 & 2 & 9 \\
-1 & -2 & -7
\end{array}\right]
$$

Again $\mathbf{\Lambda}^{t}=\left[\begin{array}{rrr}1 & 2 & 4 \\ -1 & 1 & 1 \\ 0 & 3 & 8\end{array}\right]$ and $\mathbf{B}^{\mathbf{t}}=\left[\begin{array}{rrr}4 & 2 & -1 \\ 1 & -3 & 1 \\ 0 & 1 & -1\end{array}\right]$

$$
\begin{aligned}
\therefore \quad \mathbf{B}^{t} \mathbf{A}^{t} & =\left[\begin{array}{rrr}
4 & 2 & 1 \\
1 & -3 & 1 \\
0 & 1 & -1
\end{array}\right] \times\left[\begin{array}{rrr}
1 & 2 & 4 \\
-1 & 1 & 1 \\
0 & 3 & 8
\end{array}\right] \\
& =\left[\begin{array}{rrr}
4 \cdot 1-2 \cdot 1+1 \cdot 0 & 4 \cdot 2+2 \cdot 1+1 \cdot 3 & 4 \cdot 4+2 \cdot 1+1 \cdot 8 \\
1 \cdot 1+3 \cdot 1+1 \cdot 0 & 1 \cdot 2-3 \cdot 1+1 \cdot 3 & 1 \cdot 4-3 \cdot 1+1 \cdot 8 \\
0 \cdot 1-1 \cdot 1-1 \cdot 0 & 0 \cdot 2+1 \cdot 1-1 \cdot 3 & 0 \cdot 4+1 \cdot 1-1 \cdot 8
\end{array}\right] \\
& =\left[\begin{array}{rrr}
2 & 13 & 26 \\
4 & 2 & 9 \\
-1 & -2 & -7
\end{array}\right]=(\mathbf{A B})^{t}, \text { from (i) }
\end{aligned}
$$

Ex. 4. If $A=\left[\begin{array}{rr}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, verify that ${A A^{\prime}=}^{\prime}=I_{2} A$.
Sol. Here $A^{\prime}=\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$\therefore \quad \mathbf{A A}=\left[\begin{array}{rr}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right] \times\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\cos ^{2} \alpha+\sin ^{2} \alpha & -\cos \alpha \sin \alpha+\sin \alpha \cos \alpha \\
-\sin \alpha \cos \alpha+\cos \alpha \sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sinuilarlly we can prove that } \\
& \begin{aligned}
\mathbf{A}^{\prime} \mathbf{A} & =\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \times\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \alpha+\sin ^{2} \alpha & \cos \alpha \sin \alpha-\sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha-\cos \alpha \sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{I}_{2} .
\end{aligned}
\end{aligned}
$$

Hence $\mathbf{A A}^{\prime}=\mathbf{I}_{2}=\mathbf{A}^{\prime} \mathbf{A}$.

Exercises on § 2.08-2.09

Ex. 1. If $\mathbf{A}=\left[\begin{array}{ll}2 & 3 \\ i & 2\end{array}\right], \mathbf{B}=\left[\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right]$, verify that $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$, where
$\mathbf{A}^{\prime}, \mathbf{B}^{\prime}$ are transposes of \mathbf{A} and \mathbf{B}.

$$
\text { Ex. 2. If } \mathbf{A}=\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & 3 \\
4 & 1 & 8
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{rrr}
4 & 1 & 0 \\
2 & -3 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

then verify that $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$.

Ex. 3. If $\mathbf{A}=\left[\begin{array}{rrr}2 & 4 & -1 \\ -1 & 0 & 2\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{rrr}3 & 4 & 5 \\ -1 & 2 & 7 \\ 2 & 1 & 0\end{array}\right]$
prove that ($\mathbf{A B})^{\prime}$ and $\mathbf{B}^{\prime} \mathbf{A}^{\prime}$ are equal.
Ex. 4. If $\mathbf{A}=\left[\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right] . \mathbf{B}=\left[\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right]$, then verify that $[\mathbf{A B}]^{t}=\mathbf{B}^{\mathbf{t}} \mathbf{A}^{\mathbf{t}}$
Fx. 5. If $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 4 & 9\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{rrr}0 & 1 & -1 \\ \cdots 3 & 2 & 4 \\ 1 & 1 & 0\end{array}\right]$
then verify that $(\mathrm{AB})^{t}=\mathrm{B}^{\mathrm{t}} \mathrm{A}^{\mathrm{t}}$.
*§ 2.10. Complex conjugate (or conjugate) of a Matrix.
Definition. The mutrix obtained from any given matrix $\mathbf{\Lambda}$ of order $m \times n$ with complex elernents $a_{i j}$ by replacing its elements by the corresponding conjugate complex numbers is called the complex conjugate or conjugate of \mathbf{A} denoted by $\overline{\mathbf{A}}$ and is read as ' \mathbf{A} conjugate.'
or if $\mathbf{A}=\left[a_{i j}\right]$ and $\overline{a_{i j}}$ is the complex conjugate of the element $a_{i j}$ then $\overline{\mathbf{A}}=\left[\widehat{a_{1}}\right]$, for all $1 \leq i \leq m, 1 \leq j \leq n$.

For example: If $\mathrm{A}=\left[\begin{array}{cc}1+i & 2+3 i \\ 2 & 3 i\end{array}\right]$.
then

$$
\bar{A}=\left[\begin{array}{cc}
1-i & 2-3 i \\
2 & -3 i
\end{array}\right]
$$

Real Matrix.
(Avadh 93)
Definition. A matrix \mathbf{A} is called real provided it satisfies the relation

$$
\mathbf{A}=\overline{\mathbf{A}}
$$

Imaginary Matrix.
(Avadh 93)
Definition. A matrix \mathbf{A} is called imaginary provided it satisfies the relation $\mathbf{A}=-\mathbf{A}$

**§ 2.11. Theorems on complex conjugate of a matrix.

Theorem I. If $\mathbf{A}=\left\{a_{i j}\right]$ be any $m \times n$ matrix with complex elements $a_{i j}$. then the complex conjugate of $\overline{\mathbf{A}}$ is the matrix \mathbf{A} itself.

Proof : By definition (given in § $2 \cdot 10$ above) we know that $\overline{\mathbf{A}}=\left[\overline{a_{i j}}\right]$, for all $1 \leq i \leq m, 1 \leq j \leq n$ and $\overline{a_{i j}}$ is the complex conjugate of $a_{i j}$.
i.e. the element in the ith row and jth column of complex conjugate of \mathbf{A} i.e. $\overline{\mathbf{A}}$.
$=$ the complex conjugate of element in i th row and j th column of \mathbf{A}.
\therefore The ciement in the i th row and j th column of the complex conjugate of $\overline{\mathbf{A}}$ i.e. $\overline{\overline{\mathbf{A}}}$
$=$ the complex conjugate of the element in ith row and jth column of $\overline{\boldsymbol{A}}$ $=$ the complex conjugate of $\overline{a_{i j}}$
$=a_{i j}$ i.e. the element in the i th row and j th column of \mathbf{A}.
i.e. the corresponding elements of \mathbf{A} and the complex conjugate of $\overline{\mathbf{A}}$ are equal.

Also it is evident that $\mathbf{A}, \overline{\mathbf{A}}$ and its conmplex conjugate are $m \times n$ matrices and hence comparable.
\therefore From (i) and (ii), we conclude that the complex conjugate of $\overline{\mathbf{A}}$ is equal to \mathbf{A} or $\mathbf{A}=\mathbf{A}$.

Theorem II. If $\mathbf{A}=\left[a_{i j}\right]$ be any $m \times n$ matrix with complex elements $a_{i j}$, then $\overline{\lambda A}=\bar{\lambda} \overline{\mathbf{A}}$.

Proof: By definition, we know
$\overline{\mathbf{A}}=\left[\bar{a}_{i j}\right]$, for all $1 \leq i \leq m, 1 \leq j \leq n$ and $\bar{a}_{i j}$ is the complex conjugate of $a_{i j}$.

Also $\lambda \mathrm{A}=\left[\lambda a_{i j}\right]$, for all $1 \leq i \leq m, 1 \leq j \leq n$.
$\therefore \overline{\lambda \mathbf{A}}=\left[\overline{\lambda a_{i j}}\right]=\left[\bar{\lambda} \bar{a}_{i j}\right]$, for all $1 \leq i \leq m, 1 \leq i \leq n$ and we know that $\overline{z_{1}} \overline{z 2}=\overline{z_{1}} \cdot \overline{z_{2}}$, where $z_{1}, z 2$ are any two complex numbers,
Again $\bar{\lambda} \overline{\mathbf{A}}=\left[b_{i j}\right]$, where $b_{i j}=\overline{\lambda a_{i j}}$ for all $1 \leq i \leq m, 1 \leq j \leq n$

$$
\begin{equation*}
=\left[\bar{\lambda} \overline{a_{i j}}\right] \text {, for all, } 1 \leq i \leq m, 1 \leq j \leq n . \tag{ii}
\end{equation*}
$$

\therefore From (i) and (ii) we conclude that the corresponding eleme.ts of $\overline{\lambda \boldsymbol{A}}$. and $\bar{\lambda} \overline{\mathbf{A}}$ are equal. Also it is evident that $\bar{\lambda} \mathbf{A}$ and $\bar{\lambda} \overline{\mathbf{A}}$ are matrices of the same order. Hence we conclude that $\overline{\lambda \mathbf{A}}=\bar{\lambda} \overline{\mathbf{A}}$.

Theorem III. If \mathbf{A} and \mathbf{B} are two matrices conformable to addition, then

$$
\overline{\mathbf{A}+\mathbf{B}}=\overline{\mathbf{A}}+\overline{\mathbf{B}} .
$$

Proof: Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$ be any (wo matrices of order $m \times n$. Then as these matrices are given as conformable to addition, so we have $\mathbf{A}+\mathbf{B}=\left[a_{i j}+b_{i j}\right]$, for all $1 \leq i \leq m, 1 \leq j \leq n$.

Also $\overline{\mathbf{A}}=\left[\bar{a}_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$, by definition.
$\therefore \quad \overline{\mathbf{A}}+\mathbf{B}=\left[\bar{a}_{i j}+b_{i j}\right]=\left[\overline{a_{i j}+b_{i j}}\right]$,
for all $1 \leq i \leq m, 1 \leq j \leq n$ and aiso as $\overline{z_{1}}+\overline{z_{2}}=\overline{z_{1}+z_{2}}$, where z_{1}, z_{2} are any two complex numbers.
Again from (i), we have

$$
\begin{align*}
\overline{\mathbf{A}+\mathbf{B}} & =\text { complex conjugate of }\left[a_{i j}+b_{i j}\right] \\
& =\text { complex conjugate of }\left[c_{i j}\right] \text {, where } c_{i j}=a_{i j}+b_{i j} \\
& =\left[\bar{c}_{i j}\right]=\left[\overline{\left.a_{i j}+b_{i j}\right], \text { for all } 1 \leq i \leq m, 1 \leq j \leq n}\right. \tag{iii}
\end{align*}
$$

i.e. $\quad \overline{\mathbf{A}+\mathbf{B}}=\left[a_{i j}+b_{i j}\right]$, for all $1 \leq i \leq m, 1 \leq j \leq n$
\therefore from (ii) and (iii) we conclude that the corresponding elements of $\overline{\mathbf{A}}+\overline{\mathbf{B}}$ and $\overline{\mathbf{A}+\mathbf{B}}$ are equal. Also it is evident that both $\overline{\mathbf{A}}+\mathbf{B}$ and $\overline{\mathbf{A}+\mathbf{B}}$ are matrices of order $m \times n$ as \mathbf{A} and \mathbf{B} are given as conformable to addition. Hence we conclude that $\overline{\mathbf{A}+\mathbf{B}}=\overline{\mathbf{A}}+\overline{\mathbf{B}}$

Theorem IV. If $\mathbf{A}=\left[a_{i j}\right]$ be any $m \times n$ matrix and $\mathbf{B}=\left[b_{j k}\right]$ be any $n \times p$ matrix i.e. if A and B are conformable to the product AB then $\overline{\mathrm{AB}}=\overline{\mathrm{A}} \mathbf{B}$.

Proof : Since \mathbf{A} and \mathbf{B} are conformable to the product $\mathbf{A B}$, so $\mathrm{AB}=\left[a_{i j}\right] \times\left[b_{j k}\right]=\left[c_{i k}\right]$, where $c_{i \mathbf{k}}=a_{i j} b_{j k}$, for all $1 \leq i \leq m, 1 \leq k \leq p$ and there is summation on j, where $j=1,2,3$, \qquad n.
Also $\bar{A}=\left[\bar{a}_{i j}\right]$, for all $1 \leq i \leq m, 1 \leq j \leq n$
and

$$
\begin{equation*}
\overline{\mathbf{B}}=\left[\bar{b}_{j k}\right], \text { for } 1 \leq j \leq n, 1 \leq k \leq p \tag{i}
\end{equation*}
$$

$\overline{\mathbf{A}} \overline{\mathbf{B}}$ is defined and we have $\overline{\mathbf{A}} \mathbf{B}=\left[\bar{a}_{i j}\right] \times\left[\bar{b}_{j k}\right]=\left[\bar{a}_{i k}\right]$,
where $a_{i k}=\bar{a}_{i j} b_{j k}$ for all $1 \leq i \leq m, 1 \leq k \leq p$ and $j=1,2, \ldots \ldots, n$.
Again $\overline{\mathrm{AB}}=$ complex conjugate of $\mathbf{A B}$ i.e. $\left[c_{i k}\right]$
or

$$
\begin{aligned}
& \overline{\mathrm{AB}}=[\bar{c} i k], \text { where } c_{i k}=a_{i j} b_{j k} \\
& =\left[\bar{a}_{i j} b_{j k}\right]=\left[\bar{a}_{i j} b_{j k}\right], \quad \because \overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}, \\
& \quad \text { for any complex numbers } z_{1} \text { and } z_{2} \\
& =\left[a_{i k}\right] \text {, since } \bar{d}_{i k}=\bar{a}_{i j} b_{j k} \text { for all } \begin{aligned}
& 1 \leq i \leq m, \\
& 1 \leq k \leq p \text { and } j=1,2, \ldots, n \quad \text {...(ii) }
\end{aligned}
\end{aligned}
$$

From (i) and (ii), we conclude the $\overline{\mathrm{AB}}=\overline{\mathrm{A}} \mathrm{B}$.

§ 2.12. Transposed Conjugate of a Matrix.

Definition. The transpose of conjugage of a matrix \mathbf{A} i.e. $(\bar{A})^{\prime}$ is defined as transposed conjugage or tranjugate \mathbf{A} and is denoted by \mathbf{A}^{Θ}.i.e. $\mathbf{A}^{\Theta}=(\overline{\mathbf{A}})$.

$$
\text { For example : If } \begin{aligned}
\mathbf{A} & =\left[\begin{array}{cc}
1+i & 2+3 i \\
2 & 3 i
\end{array}\right], \\
\mathbf{A} & =\left[\begin{array}{cc}
1-i & 2-3 i \\
2 & -3 i
\end{array}\right]
\end{aligned}
$$

then

$$
\begin{array}{rlr}
\therefore \quad \mathbf{A}^{\Theta} & =\text { transpose of } \bar{A}=(\mathbb{A})^{\prime} \\
& =\left[\begin{array}{cc}
1-i & 2 \\
2-3 i & -3 i
\end{array}\right]
\end{array}
$$

*§ 2.13. Theorems on Transposed conjugate of a matrix.
Theorem I. For any matrix A, ($\bar{A})^{\prime}=\left(\bar{A}^{\prime}\right)$
i.e. the transposed conjugate of a matrix is equal to conjugate of its transpose.

Proof: Let $\mathrm{A}=\left[a_{i j}\right]$ be any $m \times n$ matrix.
Then by definition, $\boldsymbol{K}=\left[\bar{a}_{i j}\right]$, for all $1 \leq i \leq m$ and $1 \leq j \leq n$.
$\therefore(\bar{A})^{\prime}=$ transpose of \bar{A},
i.e. $\quad(A)^{\prime}=\left[b_{j i}\right]$, where $\left[b_{j i}\right]$ is $n \times m$ matrix and $b_{j i}=\bar{a}_{i j}$
for all $1 \leq i \leq m, 1 \leq j \leq n$
Again $\mathbf{A}^{\prime}=$ transpose of \mathbf{A} i.e. $\left[a_{i j}\right]$
$=\left\{c_{j i}\right\}$, where $c_{j i}=a_{i j}$ and $\left.\mid c_{j 1}\right\}^{i} n \times m$ matrix for all $1 \leq i \leq m, 1 \leq j \leq n$.
$\therefore \quad(A)^{\prime}=$ complex conjugate of A^{\prime}.
$=c_{\text {gll }} l$ by definition.
$=\left[\bar{a}_{i j}\right]$. since $c_{\mu}=a_{i j}$
or
$(\mathrm{A})^{\prime}=\left\lfloor b_{j i}\right\rfloor$, since $b_{j i}=\overline{a_{i j}}$. where $\left[b_{j i}\right]$ is $n \times m$ matrix for all $1 \leq i \leq m, 1 \leq j \leq n$
\therefore From (i) and (ii), we conclude that $(\bar{A})^{\prime}=(\bar{A})$.
Theorem II. For any matrix $\mathbf{A},\left(\mathbf{\Lambda}^{\Theta}\right)^{\Theta}=\mathbf{A}$.
Proof : Let $\mathrm{A}^{\Theta}=\mathrm{B}$ i.e. $\mathrm{B}=(\mathrm{A})$
Then $\mathbf{B}^{\prime}=$ transpose of \mathbf{B}
$=$ transpose of $(\bar{A})^{\prime}$
$=\overline{\mathbf{A}}$, since we know $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
...Sec Th. II Page 70
$\therefore \quad(\mathbf{B})^{\prime}=$ complex conjugate of $\mathbf{B}^{\prime} \quad$...Sce Th. I above
$=$ complex conjugate of \bar{A}
$=\mathbf{A}$, since we know $\overline{\bar{A}}=\mathbf{A}$
(Note)
i.e.
$\mathbf{B}^{\Theta}=\mathbf{A}$, since $\mathbf{B}^{\Theta}=\left(\overline{\mathbf{B}^{\prime}}\right)=(\overline{\mathbf{B}})^{\prime}$
..See Th. I Page 75
i.e. $\quad\left(\mathbf{A}^{\theta}\right)^{\Theta}=\mathbf{A}$, since $\mathbf{A}^{\Theta}=\mathbf{B}$.
...See Th. I abopve
Hence proved.
Theorem III. (a). For any matrix $\mathbf{A},(k \mathbf{A})^{\Theta}=k \mathrm{~A}^{\Theta}$, where k is a scalar:
Proof: By definition, we know that

$$
\begin{aligned}
(k \mathbf{A})^{\Theta} & =(k \boldsymbol{\Lambda})^{\prime} \\
& =(k \mathbb{A})^{\prime} \text {, by Th. II Page } 76 \\
& =k(\mathbf{A})^{\prime} \text {, by Th. III Page } 70 \\
& =k \mathbf{A}^{\Theta}, \text { since } k \text { is a scalar. }
\end{aligned}
$$

Hence proved.
Theorem III (b). For any matrix $\mathrm{A},(\mathrm{k} \mathbf{A})^{\ominus}=\hbar \mathrm{A}^{\Theta}$, where k is ariy complex number.

Proof: By definition, we know that

$$
\begin{aligned}
(k \mathbf{A})^{\Theta} & =(\overline{k \mathbf{A}})^{\prime} \\
& =(\bar{k} \overline{\mathbf{A}})^{\prime}, \text { by Th. II Page } 76 \\
& =(\bar{k} \overline{\mathbf{A}})^{\prime}, \text { by Th. Ill Page } 70 \\
& =\bar{k} \mathbf{A}^{\Theta}, \because(\overline{\mathbf{A}})^{\prime}=\mathbf{A}^{\Theta} \text {, by definition. }
\end{aligned}
$$

Hence proved.
Theorem IV. If A and B are two matnces conformable to addition, then

$$
(A+B)^{\Theta}=A^{\theta}+B^{\Theta} .
$$

(Mesrut 90)
Proof: By definition, we have

$$
\begin{aligned}
&(\mathbf{A}+\mathrm{B})^{\Theta}=(\overline{\mathrm{A}+\mathrm{B}})^{\prime}=(\overline{\mathrm{A}}+\overline{\mathrm{B}})^{\prime}, \quad \because \quad \overline{\mathrm{A}+\bar{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}} \\
&=(\overline{\mathrm{A}})^{\prime}+(\overline{\mathrm{B}})^{\prime} \text { by Th. I Page } 70 \\
&=\mathrm{A}^{\Theta}+\mathrm{B}^{\Theta}, \text { by defintion. II Page } 76 \\
& \text {. Hence proud. }
\end{aligned}
$$

**'Theorem V. If \mathbf{A} and \mathbf{B} are two matrices conformabie to the product AB , then $(\mathrm{AB})^{\Theta}=\mathbf{B}^{\Theta} \mathbf{A}^{\Theta}$

Proof: $(A B)^{\oplus}=(\Lambda B)^{\prime}$, by definition

$$
\begin{align*}
& =(\mathbb{B} \mathbf{B})^{\prime} \text {, by Th. IV Page } 77 \\
& =(\mathbb{I})^{\prime}(\boldsymbol{A})^{\prime} \text {, by Th. IV Page } 7! \tag{Note}\\
& =\mathbf{B}^{\Theta \rightarrow} \mathbf{A}^{\Theta} \text {, by definition. }
\end{align*}
$$

Exampie: Find $\left\{\dot{\Lambda}^{\rho}\right\}^{\ominus}, \bar{A}$ and ($\left.\bar{A}\right)^{\prime}$ for the matrix

$$
A=\left[\begin{array}{cc}
1+i & 3-5 i \\
2 i & 5
\end{array}\right]
$$

Solution. $\quad \mathbf{A}=\left[\begin{array}{cc}1-i & 3+5 i \\ -2 i & 5\end{array}\right]$
... See § 210 Page 75

$$
\begin{aligned}
& (\mathbf{A})^{\prime}=\text { Transpose of } \mathbf{A}=\left[\begin{array}{ll}
1-i & -2 i \\
3+5 i & 5
\end{array}\right] \quad \text {... Sce § } 2.08 \text { Page } 69 \\
& \mathbf{A}^{\prime}=\text { Transpose of } \mathbf{A}=\left[\begin{array}{ll}
1+i & 2 i \\
3-5 i & 5
\end{array}\right] \quad \text {...Sce § } 2.08 \text { Page } 69 \\
& \mathbf{A}^{\prime}=\text { conjugate of } \mathbf{A}^{\prime}=\left[\begin{array}{ll}
1-i & -2 i \\
3+5 i & 5
\end{array}\right]=(\mathbf{A})^{\prime} \\
& \mathbf{A}^{\Theta}=\text { conjugate transpose of } \mathbf{A}=\left[\begin{array}{ll}
1-1 & -2 i \\
3+5 i & 5
\end{array}\right]=\mathbf{A}^{\prime}
\end{aligned}
$$

and $\quad\left\{\mathbf{A}^{\Theta \rightarrow \theta}=\right.$ conjugate ranspose of \mathbf{A}^{Θ}

$$
=\left[\begin{array}{cc}
1+i & 3-5 i \\
2 i & 5
\end{array}\right]=\mathbf{A}
$$

**§ 2.14. Symmetric and skew-symmetric matrices.
(a) Symmetric Matrix.
(Agra 94; Avadh 92)
Befinition. A square matrix $\mathrm{A}=\left[a_{i j}\right]$ is called symmetric provided $a_{i j}=i_{j i}$, for all values of i and j.

For example : $\mathbf{A}=\left[\begin{array}{rrr}1 & -3 & 5 \\ -3 & 2 & 7 \\ 5 & 7 & 3\end{array}\right]$
Note. $k A$ is also symmetric, if k is scalar.
(b) Skew-symmetric Matrix.

Definstion. A square matrix $\mathbf{A}=\left\{a_{i j}\right\}$ is called skew symmetric provided $a_{i j}=-a_{j i}$. for all values of i and j.
¿or exariple : $\mathbf{A}:=\left[\begin{array}{rrr}0 & 1 & -3 \\ -1 & 0 & 5 \\ 3 & -5 & 0\end{array}\right]$

Note. $k \mathbf{A}$ is also skew-symmetric, if k is scalar.

§ 2.15. Theorems on Symmetric and Skew-symmetric matrices.

Theorem I. A square matrix \mathbf{A} is symmetric iff $\mathbf{A}=\mathbf{A}^{\prime}$. (Kanpur 90)
Proof : Let \mathbf{A} be an $n \times n$ square matrix i.e. $\mathbf{A}=\left[a_{i j}\right]$, for all $1 \leq i \leq n$ and $1 \leq j \leq n$.

If \mathbf{A} is symmetric matrix, then by definition, we have

$$
\begin{equation*}
\left[a_{i j}\right]=\left[a_{j i}\right], \text { for all } 1 \leq i \leq n \text { and } 1 \leq j \leq n \tag{i}
\end{equation*}
$$

Also, by definition,
$\mathbf{A}^{\prime}=\left[b_{i j}\right]$ such that $b_{i j}=a_{j i}$ for all $1 \leq i \leq n, i \leq j \leq n^{\prime} \ldots$ See § 2.08 Page 69
or $\quad \mathbf{A}^{\prime}=\left[a_{j i}\right]$, for all $1 \leq i \leq n, 1 \leq j \leq n$
$=\left[a_{i j}\right]$, from (i).
Hence $\mathbf{A}^{\prime}=\mathbf{A}$.
Conversely if $\mathbf{A}=\mathbf{A}^{\prime}$. Then \mathbf{A} must be a square matrix
Also $\mathbf{A}=\mathbf{A}^{\prime} \Rightarrow\left[a_{i j}\right]=\left[a_{j i}\right]$, for all $1 \leq i \leq n, 1 \leq j \leq n$
$\Rightarrow a_{i j}=a_{j i}$, for all $1 \leq i \leq n, 1 \leq j \leq n$
$\Rightarrow \mathbf{A}$ is a symmetric matrix. Herce proved.
Theorem II. A square matrix \mathbf{A} is skew-symmetric iff $\mathbf{A}^{\prime}=-\mathbf{A}$.
Proof : Let \mathbf{A} be an $n \times n$ square matrix i.e $\mathbf{A}=\left[a_{i j}\right]$ for all $1 \leq i \leq n$ and $1 \leq j \leq n$.

If \mathbf{A} is a skew-symmetric matrix, then by definition, we have

$$
\begin{equation*}
\left[a_{i j}\right]=\left[-a_{j i}\right], \text { for all } 1 \leq i \leq n, 1 \leq j \leq n \tag{i}
\end{equation*}
$$

Also, by definition, $\mathbf{A}^{\prime}=\left[b_{i j}\right]$, such that $b_{i j}=a_{j i}$.
for ail $1 \leq i \leq n, 1 \leq j \leq n . \quad$...See § 2.08 Page 69
or $\quad \mathbf{A}^{\prime}=\left[a_{j i}\right]$ for all $1 \leq i \leq n, 1 \leq j \leq n$
$=-\left[-a_{j i}\right]=-\left[a_{i j}\right]$, from (i).
Hence $\mathbf{A}^{\prime}=-\mathbf{A}$.
Conversely if $\mathbf{A}^{\prime}=-\mathbf{A}$, then \mathbf{A} must be a square matrix.
Als̀̀o $\mathbf{A}^{\prime}=-\mathbf{A} \Rightarrow\left[a_{j i}\right]=-\left[a_{i j}\right]$, for all $1 \leq i \leq n, 1 \leq j \leq n$
$\Rightarrow a_{j i}=-a_{i j}$
$\Rightarrow a_{i j}=-a_{j i}$, for all $1 \leq i \leq n, 1 \leq j \leq n$
$\Rightarrow \mathrm{A}$ is a skew-symmetric matrix.
Hence proved.
***Theorem III. Every square matrix can be uniquely expressed as the sum of a symmetric and a skew-symmetric matrices.
(Avadh 94, 92, 90; Bundelkhand 95; Meerut 93)
Proof: Let A be a square matrix, then we can write

$$
\begin{equation*}
\mathbf{A}=\frac{1}{2} \mathbf{A}+\frac{1}{2} \mathbf{A}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)+\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right) \tag{i}
\end{equation*}
$$

since $\frac{1}{2} \mathbf{A}, \frac{1}{2} \mathbf{A}^{\prime}$ are conformable to addition, \mathbf{A} being a square matrix. (Note)

$$
\text { Now } \begin{array}{rlrl}
\left\{\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)\right\}^{\prime} & =\text { transpose of } \frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \\
& =\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)^{\prime} & & \\
& =\frac{1}{2}\left\{\mathbf{A}^{\prime}+\left(\mathbf{A}^{\prime}\right)^{\prime}\right\} & & \ldots \text { by } \S 2.09 \mathrm{Th} . \text { III Page } 70 \\
& & \text {...09 Th. I Page } 70
\end{array}
$$

$$
=\frac{1}{2}\left(\mathbf{A}^{\prime}+\mathbf{A}\right) \quad \text {...by } \S 2.09 \text { Th. II Page } 70
$$

or

$$
\begin{equation*}
\left\{\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)\right\}^{\prime}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right), \tag{ii}
\end{equation*}
$$ as matrix addition is commutative.

Therefore, by definition, $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)$ is a symmetric matrix

$$
\begin{array}{rlr}
\text { Again }\left\{\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)\right\}^{\prime} & =\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)^{\prime} & \ldots \text { by } \S 2.09 \mathrm{Th} \text {. III Page } 70 \\
& =\frac{1}{2}\left\{\mathbf{A}+(-\mathbf{1}) \mathbf{A}^{\prime}\right\}^{\prime} & \\
& =\frac{1}{2}\left\{\mathbf{A}^{\prime}+\left\{(-\mathbf{1})\left(\mathbf{A}^{\prime}\right)^{\prime}\right\}\right. & \ldots \text { by } \S 2.09 \mathrm{Th} \text {. I Page } 70 \\
& =\frac{1}{2}\left\{\mathbf{A}^{\prime}+(-\mathbf{1})\left(\mathbf{A}^{\prime}\right)^{\prime}\right\} & \ldots \text { by } \S 2.09 \text { Th. III Page } 70 \\
& =\frac{1}{2}\left\{\mathbf{A}^{\prime}+(-\mathbf{1}) \mathbf{A}\right\} & \ldots \text { by } \S 2.09 \mathrm{Th} \text {. II Page } 70 \\
& =\frac{1}{2}\left(\mathbf{A}^{\prime}-\mathbf{A}\right)=\frac{1}{2}\left\{(-\mathbf{1})^{\mathbf{2}} \mathbf{A}^{\prime}+(-\mathbf{1}) \mathbf{A}\right\} & \text { (Note) } \tag{Note}\\
& =(-1) \cdot \frac{1}{2}\left(-\mathbf{A}^{\prime}+\mathbf{A}\right) &
\end{array}
$$

or

$$
\begin{equation*}
\left\{\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)\right\}^{\prime}=-\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right), \quad \text { as matric addition is commutative. } \tag{iii}
\end{equation*}
$$

Therefore, by definition, $\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)$ is a skew-symmetric matric.
Hence from (i), (ii) and (iii), we find that the matrix A can be expressed as the sum of a symmetric and a skew symmetric matrices.

To prove that the representation (i) is unique, let

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}_{1}+\mathbf{A}_{2} . \tag{iv}
\end{equation*}
$$

where \mathbf{A}_{1} is symmetric and $\mathbf{A}_{\mathbf{2}}$ is skew-symmetric.
Then

$$
\mathbf{A}_{1}=\mathbf{A}_{1}^{\prime}
$$

and

$$
\mathbf{A}_{\mathbf{2}}=-\mathbf{A}_{\mathbf{2}}^{\prime}
$$

From (iv), we have

$$
\mathbf{A}^{\prime}=\left(\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{2}}\right)^{\prime}
$$

$$
=\mathbf{A}_{1}^{\prime}+\mathbf{A}_{2}^{\prime} \quad \ldots \text { by Th. I § } 2.09 \text { Page } 70
$$

or

$$
\mathbf{A}^{\prime}=\mathbf{A}_{\mathbf{1}}-\mathbf{A}_{\mathbf{2}}, \text { from (v), (vi) }
$$

Adding and subtracting (iv) and (vii), we get

$$
\mathbf{A}+\mathbf{A}^{\prime}=2 \mathrm{~A}_{1} \text { and } \mathbf{A}-\mathbf{A}^{\prime}=2 \mathrm{~A}_{2}
$$

$$
\mathbf{A}_{1}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \text { and } \mathbf{A}_{\mathbf{2}}=\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)
$$

\therefore From (iv), we get $\mathbf{A}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)+\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)$, which is the same as (i). Hence the representation (i) is unique.

Hence proved.
Solved Examples on § 2.14 and $\S 2.15$
Ex. 1. Show that the matric $A=\left[\begin{array}{rrr}9 & 6 & 7 \\ -6 & 0 & 8 \\ -7 & -8 & 0\end{array}\right]$ is skew-symmetric.
Soi. In uio given matrix, we find that
$a_{11}=0, a_{12}=6=-a_{21}, a_{13}=7=-a_{31}, a_{22}=0, a_{23}=8=-a_{32}, a_{33}=0$
i.e. $\quad a_{i j}=-a_{j i}$ for all $1 \leq i \leq 3,1 \leq j \leq 3$.

Hence by definition [See § 2.14 (b) Page 79] the given matrix \mathbf{A} is skew-symmetric.

Ex. 2. If $A=\left[\begin{array}{rrr}3 & 1 & -1 \\ 0 & 1 & 2\end{array}\right]$, then show that $A A^{\prime}$ and $A^{\prime} A$ are both symmetric matrices.

Sol. Here $\mathbf{A}^{\prime}=\left[\begin{array}{rr}3 & 0 \\ 1 & 1 \\ -1 & 2\end{array}\right]$
$\begin{aligned} \therefore \quad \mathbf{A A}^{\prime} & =\left[\begin{array}{rrr}3 & 1 & -1 \\ 0 & 1 & 2\end{array}\right] \times\left[\begin{array}{rr}3 & 0 \\ 1 & 1 \\ -1 & 2\end{array}\right] \\ & =\left[\begin{array}{ll}3 \cdot 3+1 \cdot 1-1(-1) & 3 \cdot 0+1 \cdot 1-1 \cdot 2 \\ 0 \cdot 3+1 \cdot 1+2(-1) & 0 \cdot 0+1 \cdot 1+2 \cdot 2\end{array}\right]\end{aligned}$
$=\left[\begin{array}{rr}11 & -1 \\ -1 & 5\end{array}\right]$, which is a symmetric matrix.
[See § $2 \cdot 14$ (a) Page 79]
Similarly $\mathbf{A}^{\prime} \mathbf{A}=\left[\begin{array}{rr}3 & 0 \\ 1 & 1 \\ -1 & 2\end{array}\right] \times\left[\begin{array}{rrr}3 & 1 & -1 \\ 0 & 1 & .2\end{array}\right]$

$$
=\left[\begin{array}{rrr}
3 \cdot 3+0 \cdot 0 & 3 \cdot 1+0 \cdot 1 & 3(-1)+0 \cdot 2 \\
1 \cdot 3+1 \cdot 0 & 1 \cdot 1+1 \cdot 1 & 1(-1)+1 \cdot 2 \\
-1 \cdot 3+2 \cdot 0 & -1 \cdot 1+2 \cdot 1 & -1(-1)+2 \cdot 2
\end{array}\right]
$$

*Ex. 3. (a). If A and B are both skew-symmetric matrices of same order such that $A B=B A$, then show that $A B$ is symmetric.

Sol. If \mathbf{A} and \mathbf{B} are both skew-symmetric matrices, then

$$
\begin{equation*}
\mathbf{A}=-\mathbf{A}^{\prime} \text { and } \mathbf{B}=-\mathbf{B}^{\prime} \tag{i}
\end{equation*}
$$

Also given that $\mathbf{A B}=\mathbf{B A}$

$$
\begin{aligned}
& =\left(-\mathbf{B}^{\prime}\right)\left(-\mathbf{A}^{\prime}\right), \text { from }(\mathrm{i}) \\
& =\mathbf{B}^{\prime} \mathbf{A}^{\prime}=(\mathbf{A B})^{\prime}
\end{aligned}
$$

...See Th. IV § 2.09 Page 71
or $\mathbf{A B}=(\mathbf{A B})^{\prime}$ i.e. $\mathbf{A B}$ is a symmetric matrix. Hence proved.
Ex. 3 (b). If A is a symmetric matrix, then show that kA is also symmetric for any scalar k .

Sol. Here $(k \mathbf{A})^{\prime}=k \mathbf{A}^{\prime}$, Sec. § 2.09 Th. III Page 70

$$
=k \mathbf{A}, \quad \because \quad \mathbf{A}^{\prime}=\mathbf{A}, \mathbf{A} \text { being symmetric }
$$

Hence $k \mathbf{A}$ is symmetric, if \mathbf{A} is so.
**Ex. 4 (a). Find the symmetric and skew-symmetric parts of the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7
\end{array}\right]
$$

Sol. (Refer Theorem III § $2 \cdot 15$ Pages $80-81$)
Here $\mathbf{A}^{\prime}=$ transpose of \mathbf{A}

$$
=\left[\begin{array}{lll}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7
\end{array}\right]
$$

The symmetric part of $\mathbf{A}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\left[\begin{array}{lll}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7
\end{array}\right]+\left[\begin{array}{lll}
1 & 6 & 3 \\
2 & 8 & 5 \\
4 & 1 & 7
\end{array}\right]\right. \\
& =\frac{1}{2}\left[\begin{array}{lll}
1+1 & 2+6 & 4+3 \\
6+2 & 8+8 & 1+5 \\
3+4 & 5+1 & 7+7
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rrr}
2 & 8 & 7 \\
8 & 16 & 6 \\
7 & 6 & 14
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 4 & \frac{7}{2} \\
4 & 8 & 3 \\
\frac{7}{2} & 3 & 7
\end{array}\right]
\end{aligned}
$$

And the skew-symmetr: , st of $\mathbf{A}=\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\left[\begin{array}{lll}
1 & 2 & 4 \\
6 & 8 & 1 \\
3 & 5 & 7
\end{array}\right]-\left[\begin{array}{lll}
1 & & \\
2 & 8 & 5 \\
4 & 1 & 7
\end{array}\right]\right. \\
& =\frac{1}{2}\left[\begin{array}{lll}
1-1 & 2-6 & 4-3 \\
6-2 & 8-8 & 1-5 \\
3-4 & 5-1 & 7-7
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rrr}
0 & -4 & 1 \\
4 & 0 & -4 \\
-1 & 4 & 0
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{rrr}
0 & -2 & \frac{1}{2} \\
2 & 0 & -2 \\
-\frac{1}{2} & 2 & 0
\end{array}\right]
$$

*Ex. 4 (b) Express given matrix A as sum of a symmetric and skew-symmetric matrices. $A=\left[\begin{array}{lll}6 & 8 & 5 \\ 4 & 2 & 3 \\ 1 & 7 & 1\end{array}\right]$

Sol. From Theorem III § $2 \cdot 15$ Pages $80-81$ we find that the symmetric and skew-symmetric parts of a matrix \mathbf{A} are $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)$ and $\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)$ respectively whose sum is eveidently A.
i.e. $A=\frac{1}{2}\left(A+A^{\prime}\right)+\frac{1}{2}\left(A-A^{\prime}\right)$

Now $\mathbf{A}^{\prime}=$ tuanspose of $\mathbf{A}=\left[\begin{array}{lll}6 & 4 & 1 \\ 8 & 2 & 7 \\ 5 & 3 & 1\end{array}\right]$

$$
\begin{aligned}
& \therefore \quad \mathbf{A}+\mathbf{A}^{\prime}=\left[\begin{array}{lll}
6 & 8 & 5 \\
4 & 2 & 3 \\
1 & 7 & 1
\end{array}\right]+\left[\begin{array}{lll}
6 & 4 & 1 \\
8 & 2 & 7 \\
5 & 3 & 1
\end{array}\right] \\
&=\left[\begin{array}{llr}
6+6 & 8+4 & 5+1 \\
4+8 & 2+2 & 3+7 \\
1+5 & 7+3 & 1+1
\end{array}\right]=\left[\begin{array}{rrr}
12 & 12 & 6 \\
12 & 4 & 10 \\
6 & 10 & 2
\end{array}\right] \\
& \therefore \quad \frac{1}{2}(\mathbf{A}+\mathbf{A})^{\prime}=\frac{1}{2}\left[\begin{array}{rrr}
12 & 12 & 6 \\
12 & 4 & 10 \\
6 & 10 & 2
\end{array}\right]=\left[\begin{array}{lll}
6 & 6 & 3 \\
6 & 2 & 5 \\
3 & 5 & 1
\end{array}\right],
\end{aligned}
$$

which is evidently a symmetric matrix as $a_{i j}=a_{j i}$ for all values of i and j.

$$
\begin{aligned}
\text { And } \mathbf{A}-\mathbf{A}^{\prime} & =\left[\begin{array}{lll}
6 & 8 & 5 \\
4 & 2 & 3 \\
1 & 7 & 1
\end{array}\right]-\left[\begin{array}{lll}
6 & 4 & 1 \\
8 & 2 & 7 \\
5 & 3 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
6-6 & 8-4 & 5-1 \\
4-8 & 2-2 & 3-7 \\
1-5 & 7-3 & 1-1
\end{array}\right]=\left[\begin{array}{rrr}
0 & 4 & 4 \\
-4 & 0 & -4 \\
-4 & 4 & 0
\end{array}\right] \\
\therefore \frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right) & =\frac{1}{2}\left[\begin{array}{rrr}
0 & 4 & 4 \\
-4 & 0 & -4 \\
-4 & 4 & 0
\end{array}\right]=\left[\begin{array}{rrr}
0 & 2 & 2 \\
-2 & 0 & -2 \\
-2 & 2 & 0
\end{array}\right],
\end{aligned}
$$

which is evidently a skew-symmetric matrix as $a_{i j}=-a_{j i}$ for all values of i, j
\therefore From (i), we get

$$
\mathbf{A}=\left[\begin{array}{lll}
6 & 6 & 3 \\
6 & 2 & 5 \\
3 & 5 & 1
\end{array}\right]+\left[\begin{array}{rrr}
0 & 2 & 2 \\
-2 & 0 & -2 \\
-2 & 2 & 0
\end{array}\right]
$$

$=$ sum of a symmetric and skew-symmetric matrices, as proved above.
${ }^{* *}$ Ex. 5. If A is any square matrix, show that AA^{\prime} is a symmetris matrix.

Sol. $\left(\mathbf{A A}^{\prime}\right)^{\prime}=$ transpose oi $\mathbf{A A}^{\prime}$

$$
\begin{aligned}
& =\left(\mathbf{A}^{\prime}\right)^{\prime} \mathbf{A}^{\prime} \\
& =\mathbf{A A}^{\prime}
\end{aligned}
$$

...See Th. IV § 2.09 Page 71
... See Th. II § 2.09 Page 7
i.e. $\quad \mathbf{A A}^{\prime}=\left(\mathbf{A A}^{\prime}\right)^{\prime}$. Hence $\mathbf{A A}^{\prime}$ is a symmetric matrix by definition.
*Ex. 6. If A be a square matrix, show that $A+A^{\prime}$ is symmetric anc $A-A^{\prime}$ is a skew-symmetric matrix.
(Meerut 99
Sol. If \mathbf{A} is a square matrix, then

$$
\begin{array}{rlrl}
\left(\mathbf{A}+\mathbf{A}^{\prime}\right)^{\prime} & =\mathbf{A}^{\prime}+\left(\mathbf{A}^{\prime}\right)^{\prime} & \ldots \text { See } \& 2.09 \mathrm{Th} . \text { I } \\
& =\mathbf{A}^{\prime}+\mathbf{A} \quad \ldots \text { See } \S 2.09 \mathrm{Th} . \text { II } \\
& =\mathbf{A}+\mathbf{A}^{\prime}, \text { by commutative law of addition }
\end{array}
$$

Hence by definition $\mathbf{A}+\mathbf{A}^{\prime}$ is symmetric.

$$
\begin{array}{rlrl}
\text { Again }\left(\mathbf{A}-\mathbf{A}^{\prime}\right)^{\prime} & =\mathbf{A}^{\prime}-\left(\mathbf{A}^{\prime}\right)^{\prime}, & & \text {...See § } 2.09 \mathrm{Th} . \text { I Page } 70 \\
& =\mathbf{A}^{\prime}-\mathbf{A} & & \text {..See § } 2.09 \mathrm{Th} \text {. II Page } 70 \\
& =-\left(\mathbf{A}-\mathbf{A}^{\prime}\right) &
\end{array}
$$

Hence by definition $\mathbf{A}-\mathbf{A}^{\prime}$ is skew-symmetric.
*Ex. 7. If A is skew-symmetric matrix, then show that $A A^{\prime}=A^{\prime} A$ and A^{2} is symmetric.

Sol. If \mathbf{A} is a skew-symmetric matrix, then we know that

$$
\begin{equation*}
\mathbf{A}^{\prime}=-\mathbf{A} \tag{i}
\end{equation*}
$$

Pre-multiplying both sides of (i) by \mathbf{A}, we get

$$
\begin{equation*}
\mathbf{A} \mathbf{A}^{\prime}=-\mathbf{A} \mathbf{A}=-\mathbf{A}^{2} \tag{ii}
\end{equation*}
$$

Post-multiplying both sides of (i) by \mathbf{A}, we get

$$
\begin{equation*}
\mathbf{A}^{\prime} \mathbf{A}=-\mathbf{A} \mathbf{A}=-\mathbf{A}^{\mathbf{2}} \tag{iii}
\end{equation*}
$$

From (ii) and (iii) we conclude that $\mathbf{A A}^{\prime}=\mathbf{A}^{\prime} \mathbf{A}$
Further we can prove (as in Ex. 5 Page 84) that $\mathbf{A A}^{\prime}$ and $\mathbf{A}^{\prime} \mathbf{A}$ are symmetric matrices. Hence from (ii) and (iii) we find that $-\mathrm{A}^{\mathbf{2}}$ is a symmetric matrix or A^{2} is a symmetric matrix, as we know that $k \mathbf{A}$ is also symmetric if k is scalar and \mathbf{A} is symmetric.

Hence proved.

Exercises on § 2.14 - § 2.15

*Ex. 1. If \mathbf{A} and \mathbf{B} are symmetric (or skew-symmetric) matrices, then so is $\mathbf{A}+\mathbf{B}$.

Ex. 2. If \mathbf{A} and \mathbf{B} are symmetric matrices, then prove that $\mathbf{A B}+\mathbf{B A}$ is symmetric and $\mathbf{A B}-\mathbf{B A}$ is skew-symmetric.

Ex. 3. Show that all pqsitive integral powers of a symmetric matrix are symmetric.

Ex. 4. If \mathbf{A} is any matrix, then show that $\mathbf{A}^{\prime} \mathbf{A}$ is a symmetric matrix.
(Hint : See Ex. 5 Page 84)
Ex. 5. If \mathbf{A} is a symmetric matrix, then show that $\mathbf{A A}^{\prime}=\mathbf{A}^{\prime} \mathbf{A}$ and $\mathbf{A}^{\mathbf{2}}$ is symmetric.
(Hint : See Ex. 7 above)
Ex. 6. What is the main diagonal of a skew symmetric matrix ?
(Kanpur 90)
[Hint : See § 2.14 (b) Page 79. Each element is zero].
Ex. 7. What is the transpose of a symmetric matrix ?
(Kanpur 90)
[Hint : See Th. I \& 2.15 Page 80]. Ans. The matrix itself.
Ex. 8. A is a skew symmetric matrix. How will be $\mathbf{A}^{\mathrm{n}} ? \boldsymbol{n}$ is any positive integer.
*Ex. 9. Prove that every diagonal element of a skew-symmetric matrix is necessarily zero.
(Garhwal 91; Kanpur 94)
[Hint : In the case of skew-symmetric matrix, we know
$a_{i j}=-a_{j i}$ for all values of i and j
\therefore If $i=j$, then $a_{i i}=-a_{i i}$ for all i
i.e. $a_{i i}+a_{i i}=0$ or $2 a_{i i}=0$ or $a_{i i}=0$
i.e. all diagonal element of a skew symmetric matrix are necessarily zero.]

**82.16. Hermitian and Skew-Hermitian Matrices.

(a) Hermitian Matrix.
(Avadh 95, 91, 90)
Definition. A square matrix \mathbf{A} such that $\overline{\mathbf{A}}^{\prime}=\mathbf{A}$ is called Hermitian i.e. the matrix $\left[a_{i j}\right]$ is Hermitian provided $a_{i j}=\bar{a}_{j i}$, for all values of i and j.

For example : $\mathbf{A}=\left[\begin{array}{ccc}l & \alpha+i \beta & \gamma+i \delta \\ \alpha-i \beta & m & x+i y \\ \gamma-i \delta & x-i y & n\end{array}\right]$
(b) Skew-Hermitian Matrix.
(Avadh 91, 90)
Definition. A square matrix \mathbf{A} such that $\overline{\mathbf{A}}^{\prime}=-\mathbf{A}$ is called skew-Hermitian i.e. the matrix $\left[a_{i j}\right]$ is skew-Hermitian provided $a_{i j}=-\bar{a}_{j i}$ for all values of i and j.

For example : $\mathbf{A}=\left[\begin{array}{ccc}2 i & -\alpha-i \beta & -3+i \\ \alpha-i \beta & -i & -\gamma+i \delta \\ 3+i & \gamma+i \delta & 0\end{array}\right]$

8 2.17. Theorems on Hermitian and Skew-Hermitian Matrices.

*Theorem I. The diagonal elements of a Hermitian matrix are necessarily real.
(Avadh 95)
Proof : Let $\left[a_{i j}\right]$ be a $n \times n$ Hermitian matrix, then according to definition [as given in \& 2.16 (a) above], we have

$$
\begin{equation*}
a_{i j}=\bar{a}_{j i}, \text { for all } 1 \leq i \leq n, 1 \leq j \leq n \tag{i}
\end{equation*}
$$

Now the diagonal elements are $a_{i i}$, where $1 \leq i \leq n$.
\therefore From (i), we have $a_{i i}=\bar{a}_{i i}$, for all $1 \leq i \leq n$
If $a_{i i}=\alpha+i \beta$ where α and β are real,
then $\quad \bar{a}_{i i}=\alpha-i \beta$
\therefore Fröm (ii), we get $\alpha+i \beta=\alpha-i \beta$
or

$$
2 i \beta=0 \text { or } \beta=0
$$

$\therefore a_{i i}=\alpha+i(0)=\alpha$, which is purely real.
Hence the diagonal elements of a Hermitian matrix are necessarily real.
Hence proved.
*Theorem II. The diagonal elements of a skew-Hermitian matrix are either purely imaginary or zero. (Avadh 90)
Proof: Let [$a_{i j}$] be an $n \times n$ skew-Hermitian matrix, then according to definition [as given in § 2.16 (b) above] we have

$$
\begin{equation*}
a_{i j}=-\bar{a}_{j i}, \text { for all } 1 \leq i \leq n, 1 \leq j \leq n . \tag{i}
\end{equation*}
$$

Now the diagonal elements are $a_{i i}$, where $1 \leq i \leq n$.
\therefore From (i), we have $a_{i i}=-\bar{a}_{i i}$, for all $1 \leq i \leq n$.

If $a_{i i}=\alpha+i \beta$, where α and β are real,
hen $\quad \bar{a}_{i i}=\alpha-i \beta$.
\therefore From (ii), we get $\alpha+i \beta=-(\alpha-i \beta)$
or

$$
\alpha+i \beta=-\alpha+i \beta \quad \text { or } \quad 2 \alpha=0 \quad \text { or } \quad \alpha=0
$$

$\therefore a_{i i}=0+i \beta=i \beta$, which ir purely imaginary and can be rero if $\beta=0$.
Hence the diagonal elements of a skew-Hermitian matrix are either purely imaginary or zero.
**Theorem III. Every square matrix (with complex elements) can be uniquely expressed as the sum of a Hermitian and a skew-Hermitian matrices.
(Garhwal 92)
Proof. Let \mathbf{A} be a square matrix. Then we can write

$$
\begin{equation*}
\mathbf{A}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\Theta}\right)+\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\Theta}\right) \tag{i}
\end{equation*}
$$

Now $\left(\overline{\mathbf{A}+\mathbf{A}^{\Theta}}\right)=\overline{\mathbf{A}}+\overline{\mathbf{A}^{\Theta}} \quad$...See § 2.11 Th . III Page 76
$\therefore\left\{\left(\overline{\mathbf{A}+\mathbf{A}^{\Theta}}\right\}\right\}^{\prime}=\left\{\overline{\mathbf{A}}+\overline{\mathbf{A}^{\boldsymbol{\theta}}}\right\}=(\overline{\mathbf{A}})^{\prime}+\left(\overline{\mathbf{A}^{\Theta}}\right)^{\prime}$, ...See § 2.09 Th. I Page 70

$$
\begin{equation*}
=\mathbf{A}^{\Theta}+\left(\overline{\mathbf{A}}^{\boldsymbol{\Theta}}\right)^{\prime}, \text { by def. }(\overline{\mathbf{A}})^{\prime}=\mathbf{A}^{\Theta}, \tag{ii}
\end{equation*}
$$ See § 2.12 Page 77

$=\mathbf{A}^{\Theta}+\left(\overline{\mathbf{A}}^{\Theta}\right)^{\prime}$.
Now $\left(\overline{\mathbf{A}}^{\boldsymbol{\Theta}}\right)^{\prime}=$ transposed conjugate of $\mathbf{A}^{\boldsymbol{\Theta}}$

$$
=\text { transposed conjugate of }(\overline{\mathbf{A}})^{\prime} \text {, }
$$

...See § 2.12 P. 77

$$
=\text { transposed matrix of }(\mathbf{A})^{\prime},
$$ since conjugate of $\overline{\mathbf{A}}$ is \mathbf{A}

.See Th. I Page 75

$$
=\mathbf{A}, \quad \because\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}
$$

\therefore From (i) we conclude that the square matrix \mathbf{A} is the sum of a Hermitian and a skew-Hermitian matrices.

Solved Examples on § 2.16-8 2.17.

$$
\text { Ex. } 1 \text { (a). Is } A=\left[\begin{array}{ccc}
3 & 7-4 i & -2+5 i \\
7+4 i & -2 & 3-i \\
-2-5 i & 3+i & 5
\end{array}\right]
$$

a hermitian matrix ?

$$
\begin{aligned}
& \text { Sol. } \mathbf{A}^{\prime}=\left[\begin{array}{ccc}
3 & 7+4 i & -2-5 i \\
7-4 i & -2 & 3+i \\
-2+5 i & 3-t & 5
\end{array}\right] \\
& \therefore \quad \\
& \therefore \mathbf{A}^{\prime}
\end{aligned}=\left[\begin{array}{ccc}
3 & 7-4 i & -2+5 i \\
7+4 i & -2 & 3-i \\
-2-5 i & 3+i & 5
\end{array}\right]=\mathbf{A} .
$$

Hence by definition [See § 2.16 (a) Page 86], the given matrix \mathbf{A} is hermitian,

Ex. 1 (b). Prove that the matrix $A=\left[\begin{array}{ccc}1 & 1-i & 2 \\ 1+i & 3 & 1 \\ 2 & -i & 0\end{array}\right]$
is Hermitian.
(Avadh 91; Rohilkhand 97)
Sol. $\mathbf{A}^{\prime}=\left[\begin{array}{ccc}1 & 1+i & 2 \\ 1-i & 3 & -i \\ 2 & i & 0\end{array}\right]$
$\therefore \quad \overline{\mathbf{A}}^{\prime}=\left[\begin{array}{ccc}1 & 1-i & 2 \\ 1+i & 3 & i \\ 2 & -i & 0\end{array}\right]=\mathbf{A}$
$\therefore \quad \mathbf{A}$ is Hermitian.
...See § 2.16 (\$) Page 86
Ex. 2. If $A=\left[\begin{array}{ccc}3 & 2-3 i & 3+5 i \\ 2+3 i & 5 & i \\ 3-5 i & -i & 7\end{array}\right]$,
then prove that $\overline{\mathbf{A}}$ is Hermitian.
(Meerut 90)
Sol. $\overline{\mathbf{A}}=\left[\begin{array}{ccc}3 & 2+3 i & 3-5 i \\ 2-3 i & 5 & -i \\ 3+5 i & i & 7\end{array}\right]=\mathbf{B}$ (say)
Then $\mathbf{B}^{\prime}=\left[\begin{array}{ccc}3 & 2-3 i & 3+5 i \\ 2+3 i & 5 & i \\ 3-5 i & -i & 7\end{array}\right]$
$\therefore \quad \overline{\mathbf{B}}^{\prime}=\left[\begin{array}{ccc}3 & 2+3 i & 3-5 i \\ 2-3 i & 5 & -i \\ 3+5 i & i & 7\end{array}\right]=\mathbf{B}$
\therefore B i.e. $\overline{\mathbf{A}}$ is Hermitian. ..See § 2.16 (a) Page 86
Ex. 3. Show that $A=\left[\begin{array}{ccc}i & 3+2 i & -2-i \\ -3+2 i & 0 & 3-4 i \\ 2-i & -3-4 i & -2 i\end{array}\right]$,
is skew-Hermitian Matrix.
(Rohilkhand 95)
Sol. Here $\mathbf{A}^{\prime}=\left[\begin{array}{ccc}i & -3+2 i & 2-i \\ 3+2 i & 0 & -3-4 i \\ -2-i & 3-4 i & -2 i\end{array}\right]$

$$
\therefore \quad \begin{align*}
\overline{\mathbf{A}}^{\prime} & =\left[\begin{array}{ccc}
-i & -3-2 i & 2+i \\
3-2 i & 0 & -3+4 i \\
-2+i & 3+4 i & 2 i
\end{array}\right] \tag{Note}\\
& =-\left[\begin{array}{ccc}
i & 3+2 i & -2-i \\
-3+2 i & 0 & 3-4 i \\
2-i & -3-4 i & -2 i
\end{array}\right]=-\mathbf{A}
\end{align*}
$$

Hence by definition [See § 2.16 (b) Page 86], the given matrix \mathbf{A} is skew-Hermition.

Ex. 4. If A and B are Hermitian, then show that $A B$ is Hermitian if and only if A and B commute.

Sol. If \mathbf{A} and \mathbf{B} are Hermitian matrices, then we have

$$
\begin{equation*}
\mathbf{A}=(\overline{\mathbf{A}})^{\prime}=\mathbf{A}^{\boldsymbol{\Theta}} \text { and } \mathbf{B}=(\overline{\mathbf{B}})^{\prime}=\mathbf{B}^{\boldsymbol{\Theta}} \tag{i}
\end{equation*}
$$

Then $(\mathbf{A B})^{\boldsymbol{\Theta}}=\mathbf{B}^{\boldsymbol{\Theta}} \mathbf{A}^{\boldsymbol{\Theta}}$, by § 2.13 Th. V Page 79

$$
=\mathbf{B A}, \text { by (i) above }
$$

$$
=\mathbf{A B} \text {, if } \mathbf{A} \text { and } \mathbf{B} \text { commute }
$$

i.e. $\quad(\mathbf{A B})^{\Theta}=\mathbf{A B}$ or $(\overline{\mathbf{A B}})^{\prime}=\mathbf{A B}, \because \mathbf{A}^{\Theta}=(\overline{\mathbf{A}})^{\prime}$

Hence by definition $\mathbf{A B}$ is Hermitian.
Converse of this can be proved to be true by reversing the above calculations.

Ex. 5 (a). If A is a Hermitian matrix, then show that iA is skew-Hermitian.
(Kanpur 90)
Sol. If \mathbf{A} is a Hermitian matrix, then
we have
Also

$$
\mathbf{A}=\ddot{\mathbf{A}^{\prime}}
$$

...See § 2.16 (a) Page 86
$\overline{\mathbf{A}^{\prime}}=\mathbf{A}^{\Theta}$
...See § 2.12 Page 77
\therefore Here

$$
\begin{equation*}
A=\overline{A^{\prime}}=A^{\Theta} \tag{i}
\end{equation*}
$$

Now

$$
(i \mathrm{~A})^{\Theta}=-i \mathrm{~A}^{\Theta}, \quad \because \quad i=-i
$$

..See § 2.13 Th. III (a) Page 78

$$
=-\left(i \mathbf{A}^{\Theta}\right)
$$

$$
\begin{equation*}
(i \mathbf{A})^{\Theta}=-(i \mathrm{~A}) \text {, from (i) } \tag{ii}
\end{equation*}
$$

Also from § 2.16 (b) Page 86 we know that if \mathbf{A} is a skew-Hermitian matrix, then $\overline{\mathbf{A}}^{\prime}=-\mathbf{A}=\mathbf{A}^{\Theta}$, from (i)

And from (ii), we find that $-(i \mathbf{A})=(i \mathbf{A})^{\Theta}$, hence $(i \mathbf{A})$ is a skew-Hermitian-matrix.

Ex, 5 (b). If A is a skew-Hermitian matrix, then show that iA is Hermitian.

Sol. If \mathbf{A} is a skew-Hermitian matrix, then we have

Also from § 2.16 (a) Page 86 we know that if \mathbf{A} is a Hermitian matrix, then $\overline{\mathbf{A}}^{\prime}=\mathbf{A}=\mathbf{A}^{\Theta}$, from (i).

And from (ii) we find that $(i \mathbf{A})=(i \mathbf{A})^{\Theta}$, hence $i \mathbf{A}$ is a Hermitian matrix.
Ex. 6. If A is any square matrix, show that $A A^{\Theta}$ and $A^{\Theta} A$ are Hermitian.

Sol. $\quad\left(A A^{\Theta}\right)^{\Theta}=\left(\mathbf{A}^{\Theta}\right)^{\Theta} \mathbf{A}^{\Theta}$...by § 2.13 Th. V Page 79
$=A A^{\Theta}$
...by § 2.13 Th. II Page 78
\therefore By definition (See § 2.16 (a) Page 86), AA^{Θ} is Hermitian.
Similarly $\left(\mathbf{A}^{\Theta} \mathbf{A}\right)^{\Theta}=\mathbf{A}^{\Theta}\left(\mathbf{A}^{\Theta}\right)^{\boldsymbol{\Theta}} \quad$...by § 2.13 Th. V Page 79

$$
=\mathbf{A}^{\Theta} \mathbf{A} \quad \ldots \text { by } \S 2.13 \mathrm{Th} \text {. II Page } 78
$$

\therefore By definition (See § 2.16 (a) Page 86), $\mathbf{A}^{\Theta} \mathbf{A}$ is Hermitian.
Ex. 7. Show that A is Hermitian iff \bar{A} is Hermitian.
Sol. Let \mathbf{A} be Hermitian; then $\mathbf{A}=\mathbf{A}^{\boldsymbol{\Theta}}$
Now $(\overline{\mathbf{A}})^{\Theta}=$ transposed conjugate of $\overline{\mathbf{A}}$

$$
=\text { transposed matrix of } \mathbf{A}, \text { since }(\mathbf{A})=\mathbf{A}
$$

$=\mathbf{A}^{\prime}=\left(\mathbf{A}^{\Theta}\right)^{\prime}$, by (i)
$=$ transpose of transposed conguate of \mathbf{A}
$=$ conguate of $\mathbf{A}, \because\left(\mathbf{B}^{\prime}\right)^{\prime}=\mathbf{B}$
i.e., $(\overline{\mathbf{A}})^{\Theta}=\overline{\mathbf{A}}$

Hence by definition, $\overline{\mathbf{A}}$ is a Hermitian matrix
Again if $\overline{\mathbf{A}}$ is Hermitian, then we have

$$
\begin{aligned}
\overline{\mathbf{A}} & =(\overline{\mathbf{A}})^{\Theta} \\
& =\text { transposed conjuage of } \overline{\mathbf{A}} \\
& =\text { transponse of } \mathbf{A}
\end{aligned}
$$

or

$$
\begin{equation*}
\overline{\mathbf{A}}=\mathbf{A}^{\prime} \tag{ii}
\end{equation*}
$$

Now $\mathbf{A}^{\Theta}=(\overline{\mathbf{A}})^{\prime}$, by definition

$$
=\left(\mathbf{A}^{\prime}\right)^{\prime} \text {, by (ii) }
$$

i.e., $\quad \mathbf{A}^{\Theta}=\mathbf{A}$,

Hence by definition \mathbf{A} is Hermitian.
... by § 2.09 Th. II Page 70 Hence proved

Exercises on § 2.16 - § 2.17

Ex.1. If $\mathbf{A}=\left[\begin{array}{ccc}i & 1+i & 2-3 i \\ -1+i & 2 i & 1 \\ -2-3 i & -1 & 0\end{array}\right]$, then slow that $\overline{\mathbf{A}}$ is skew-Hermitian
Ex.2. Show that $\mathbf{A}=\left[\begin{array}{ccc}0 & 2-3 i & -2-i \\ -2-3 i & 0 & -3+4 i \\ 2-i & 3+4 i & 0\end{array}\right]$ is skew-Hermitian.
Ex. 3. Show that \mathbf{A} is skew-Hermitian iff $\overline{\mathbf{A}}$ is skew-Hermitian.
[Hint : See Ex. 7. Page 90]
Ex. 4. Give an example of matrix which is skew symmetric but not skew-Hermitian.

Ex. 5. If \mathbf{A} and \mathbf{B} are Hermitian matrices, show that $\mathbf{A B}+\mathbf{B A}$ is Hermitian and $\mathbf{A B}-\mathbf{B A}$ is skew-Hermitian.

Ex. 6. Show that every square matrix can be uniquely expressed as $\mathrm{P}+i \mathrm{Q}$. where P, Q are Hermitian.
(Garhwal 95; Rohilkhand 91)
[Hint : See Th. III Page 87, Ex 5(a) Page 89].
*§ 2.18. The inverse of a matrix.
(Avadh 91; Bundelkhand 93; Garhwal 91)
If for a given square matrix \mathbf{A}, there exists a matrix \mathbf{B} such that $\mathbf{A B}=\mathbf{B A}=\mathbf{I}$ where I is an unit matrix, then \mathbf{A} is called non-singular or Invertible and \mathbf{B} is called inverse of \mathbf{A} and we write $\mathbf{B}=\mathbf{A}^{-1}$ (read as \mathbf{B} equals A inverse).

Here \mathbf{A} is the inverse of \mathbf{B} and we can write $\mathbf{A}=\mathbf{B}^{-1}$

If \mathbf{B} i.e., \mathbf{A}^{-1} does not exist, then \mathbf{A} is called singular.
Note 1. If $\mathbf{A B}$ and $\mathbf{B A}$ are both defined and equal then the matrices \mathbf{A} and \mathbf{B} should both be square matrices of the same order.

Note 2. Non-square matrix has no inverse.
For example : $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{rr}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\mathrm{J}$
Each matrix in the product is the inverse of the other.

8 2.19. Theorems on Inverse of a matrix.

**Theorem I. If a given square matrix \mathbf{A} has an inverse, then it is unique or there exists one and only one inverse matrix to a given matrix.
(Bundelkhand 93, 91)
Proof. Let us suppse that B and C are two possible inverses of A. Then we must have (See § 2.18 above).

$$
\begin{equation*}
\mathbf{A B}=\mathbf{B A}=\mathbf{I} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{AC}=\mathbf{C A}=\mathbf{I} \tag{ii}
\end{equation*}
$$

\therefore From (i) and (ii), we get $\mathbf{A B}=\mathbf{A C}$, each being equal to \mathbf{I}
or
$B(A B)=B(A C)$
or
$(\mathrm{BA}) \mathrm{B}=(\mathrm{BA}) \mathrm{C}$
... See § 1.09 Prop. I Page 26
or

$$
\mathbf{I B}=\mathbf{I C}, \text { from }(\mathrm{i})
$$

$B=\mathbf{C}$
...See Ex. : Page 64
Hence there cannot be two inverses of \mathbf{A}.
**Theorem II. If A and B be two non-singluar or invertible matrices of the same order then AB is also non-singular and

$$
(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}
$$

(Avadh 91; Bundelhkand 95; Garhwal 92; Gorakhpur 97; Purvanchal 97, 94) Or
The inverse of a product is the product of the inverse taken in the reverse order.

This is also known as the Reciprocal Law for the inverse of a product.
Proof. \mathbf{A}^{-1} and \mathbf{B}^{-1} exist since \mathbf{A} and \mathbf{B} are non-singluar.
$\therefore(\mathbf{A B})\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)=\mathbf{A}\left(\mathbf{B B}^{-1}\right) \mathbf{A}^{-1}$, by associative law

$$
\begin{aligned}
& =\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}, \\
& =\mathrm{I}
\end{aligned}
$$

..See Ex. 1. Page 64
...See § 2.18 Page 91
And $\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B$, by associative law

$$
=B^{-1}(\mathrm{I}) \mathrm{B}, \because \mathrm{~A}^{-1} \mathrm{~A}=\mathrm{I}
$$

$$
=\mathbf{B}^{-1}(\mathbf{I B})=\mathbf{B}^{-1} \mathbf{B}, \quad \text {...See Ex. 1. Page } 64
$$

$$
=\mathbf{I} . \quad \text {...See § 2•18.Page } 91
$$

$\therefore\left(B^{-1} A^{-1}\right)(A B)=(A B)\left(B^{-1} A^{-1}\right)=I$
i.e., $\mathbf{B}^{-1} \mathbf{A}^{-1}$ is the inverse of $\mathbf{A B}$ or $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$ and as such $\mathbf{A B}$ is also non-singluar.

Note : For more details on inverse of matrices see chapter V of this book.

**§ 2.20. Orthogonal Matrix.

Definition. A square matrix \mathbf{A} is called an orthogonal matrix if $\mathbf{A A}^{\prime}=\mathbf{I}$, where \mathbf{I} is an identity matrix and \mathbf{A}^{\prime} is the transposed matrix of \mathbf{A}. (Kanpur 97)

Theorems on Orthogonal Matrices.
Theorem I. For any square matrix \mathbf{A}, if $\mathbf{A A}^{\prime}=\mathbf{I}$, then $\mathbf{A}^{\prime} \mathbf{A}=\mathbf{I}$.
Proof : Since $\mathbf{A A}^{\prime}=\mathbf{I}$, so \mathbf{A} is invertible (i.e. A possesses an inverses) and there exists another matrix \mathbf{B} such that

$$
\begin{equation*}
\mathbf{A B}=\mathbf{B A}=\mathbf{I} \tag{i}
\end{equation*}
$$

(See § 2.18 Page 91)

$$
\begin{aligned}
\text { Now } \mathbf{B} & =\mathbf{B I}=\mathbf{B}\left(\mathbf{A} \mathbf{A}^{\prime}\right), \because \mathbf{A A ^ { \prime }}=\mathbf{I} \text { (given) } \\
& =(\mathbf{B A}) \mathbf{A}^{\prime}=\mathbf{I A ^ { \prime }}, \text { from }(\mathrm{i})
\end{aligned}
$$

i.e.

$$
\mathbf{B}=\mathbf{A}^{\prime}
$$

\therefore From (i), we get $\mathbf{A A}^{\prime}=\mathbf{A}^{\prime} \mathbf{A}=\mathrm{r}$. Hence proved.
Theorem II. If \mathbf{A} is an orthogonal matrix, then \mathbf{A}^{\prime} is also orthogonal.
Proof: By definition if \mathbf{A} is an orthogonal matrix, then

$$
\mathbf{A A}^{\prime}=\mathbf{A}^{\prime} \mathbf{A}=\mathbf{I}
$$

or
or
or $\left(\mathbf{A A}^{\prime}\right)^{\prime}=\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{\prime}=\mathbf{I}$, transposing and remembering $\mathbf{I}^{\prime}=\mathbf{I}$

$$
\left(\mathbf{A}^{\prime}\right)^{\prime} \mathbf{A}^{\prime}=\mathbf{A}^{\prime}\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{I} . \quad \text { by Th. IV } \S 2.09 \text { Page } 71
$$

\mathbf{A}^{\prime} is orthogonal by definition.
i.e. Transpose of an orthogonal matrix is also orthogonal.

Theorem III. If \mathbf{A} is an orthogonal matrix, then \mathbf{A}^{-1} is also orthogonal.
Proof: By definition if \mathbf{A} is orthogonal, then
or

$$
\mathbf{A A}^{\prime}=\mathbf{A}^{\prime} \mathbf{A}=\mathbf{I}
$$

$$
\left(\mathbf{A A}^{\prime}\right)^{-1}=\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1}=\mathbf{I}
$$ taking inverse and remembering $\mathrm{I}^{-1}=\mathrm{I}$

or

$$
\left(A^{\prime}\right)^{-1} A^{-1}=A^{-1}\left(A^{\prime}\right)^{-1}=I
$$ by Th. II § 2.19 Page 92

or
O
\mathbf{A}^{-1} is orthogonal by definition.
(Note)
i.e. Inverse of an orthogonal matrix is also orthogonal.

Theorem IV. For any orthogonal matrices, A and B , show that AB is an orthogonal matrix.

Proof: If \mathbf{A} and \mathbf{B} are orthogonal matrices, then by definition we have

$$
\begin{equation*}
\mathbf{A A}^{\prime}=\mathbf{A}^{\prime} \mathbf{A}=\mathbf{I} \tag{i}
\end{equation*}
$$

and

$$
\mathrm{BB}^{\prime}=\mathrm{B}^{\prime} \mathrm{B}=\mathrm{I}
$$

$\therefore(\mathbf{A B})(\mathbf{A B})^{\prime}=(\mathbf{A B})\left(\mathbf{B}^{\prime} \mathbf{A}^{\prime}\right)$ by Th. IV § 2.09 Page 71

$$
\begin{align*}
& =\mathbf{A B} \mathbf{B}^{\prime} \mathbf{A}^{\prime}=\mathbf{A}\left(\mathbf{B B}^{\prime}\right) \mathbf{A}^{\prime} \tag{Note}\\
& =\mathbf{A I A}^{\prime} \text {, from (ii). } \\
& =\mathbf{A A}^{\prime}=\mathbf{I}, \text { from (i). }
\end{align*}
$$

Similarly, we can prove that

$$
\begin{aligned}
(\mathbf{A B})^{\prime}(\mathbf{A B}) & =\mathbf{B}^{\prime} \mathbf{A}^{\prime} \mathbf{A B}, \text { by Th, IV } \S 2.09 \text { Page } 71 \\
& =\mathbf{B}^{\prime} \text { IB, from (i). } \\
& =\mathbf{B}^{\prime} \mathbf{B}=\mathrm{I}, \text { from }(\mathrm{ii}) .
\end{aligned}
$$

Hence $\mathbf{A B}$ is an orthogonal matrix by definition.

§ 2.21. Unitary Matrix.

Definition. A square matrix A is called an unitary matrix if $A^{\Theta}=I$, where \mathbf{I} is an identity matrix and $\mathbf{A}^{\boldsymbol{\theta}}$ is the transposed conjuage of \mathbf{A}.

Theorems on Unitary matrices.
Theorem I. For any square matrix, if $\mathrm{AA}^{\Theta}=\mathbf{I}$, then $\mathrm{A}^{\boldsymbol{\theta}} \mathrm{A}=\mathbf{I}$.
Proof : Since $. \mathbf{A A}^{\ominus}=\mathbf{I}$, where \mathbf{I} is the unit matrix, so we find that \mathbf{A} is invertible and there exists another matrix \mathbf{B} such that

$$
\begin{equation*}
\mathrm{AB}=\mathrm{BA}=\mathbf{I} \tag{i}
\end{equation*}
$$

Now $\mathbf{B}=\mathbf{B I}=\mathbf{B}\left(\mathbf{A A}^{\Theta}\right), \because \mathbf{A A ^ { \theta }}=\mathbf{I}$ (given)

$$
=(\mathbf{B A}) \mathbf{A}^{\Theta}=I A^{\Theta}, \text { from (i). }
$$

i.e.

$$
\mathbf{B}=\mathbf{A}^{\boldsymbol{\theta}}
$$

\therefore From (i), we get $A^{\theta}=A^{\theta} A=I$
Hence proved.
Theorem II. If \mathbf{A} is an unitary matrix, then \mathbf{A}^{\prime} is also unitary.
Proof : By definition if \mathbf{A} is an unitary matrix, then

$$
\mathbf{A A}^{\Theta}=\mathbf{A}^{\Theta} \mathbf{A}=\mathbf{I}
$$

$\left(\mathbf{A} \mathbf{A}^{\Theta}\right)^{\Theta}=\left(\mathbf{A}^{\Theta} \mathbf{A}\right)^{\Theta}=\mathbf{I}$, taking transposed conguate and remembering that $I^{\Theta}=\mathbf{I}$
$\left(\mathbf{A}^{\Theta}\right)^{\boldsymbol{\theta}} \mathbf{A}^{\Theta}=\mathbf{A}^{\Theta}\left(\mathbf{A}^{\Theta}\right)^{\Theta}=\mathbf{I}$, using § 2.09 Th . IV Page 71

$$
\mathbf{A} \mathbf{A}^{\Theta}=\mathbf{A}^{\Theta} \mathbf{A}=\mathbf{I}, \operatorname{since}\left(\mathbf{A}^{\Theta}\right)^{\Theta}=\mathbf{A}
$$

$\left(\mathbf{A A}^{\theta}\right)^{\prime}=\left(\mathbf{A}^{\theta} \mathbf{A}\right)^{\prime}=\mathbf{1}$, taking transpose of each side

$$
\left(\mathbf{A}^{\Theta}\right)^{\prime} \mathbf{A}^{\prime}=\mathbf{A}^{\prime}\left(\mathbf{A}^{\boldsymbol{\theta}}\right)^{\prime}=\mathbf{I} \text {, using § 2.09 Th. IV Page } 71
$$

$$
\begin{equation*}
\left(\mathbf{A}^{\prime}\right)^{\Theta} \mathbf{A}^{\prime}=\mathbf{A}^{\prime}\left(\mathbf{A}^{\prime}\right)^{\Theta}=\mathbf{I} \tag{Note}
\end{equation*}
$$

Theorem III. If \mathbf{A} is an unitary matrix then \mathbf{A}^{-1} is also unitary.
Proof : By definition if \mathbf{A} is an unitary matrix, then

$$
\mathbf{A A}^{\Theta}=\mathbf{A}^{\Theta} \mathbf{A}=\mathbf{I}
$$

$$
\left(\mathbf{A A}^{\Theta}\right)^{-1}=\left(\mathrm{A}^{\Theta} \mathbf{A}\right)^{-1}=\mathbf{I} \text {, taking inverse }
$$

$$
\left(\mathbf{A}^{\ominus}\right)^{-\mathbf{1}} \mathbf{A}^{-1}=\mathbf{A}^{-1}\left(\mathbf{A}^{\Theta}\right)^{-1}=\mathbf{I}, \quad \text { by Th. II } \S 2.19 \text { Page } 92
$$

or $\quad \mathbf{A}^{-1}$ is an unitary matrix by definition.
Hence proved.
Theorem IV. For any two unitary matrices \mathbf{A} and \mathbf{B} show that $\mathbf{A B}$ is an unitary matrix.
(Bundelkhand 91)
Proof : If \mathbf{A} an \mathbf{B} are unitary matrices then by definition we have
and

$$
\begin{align*}
& \mathbf{A A}^{\Theta}=A^{\ominus} A=I \tag{i}\\
& {B B^{\Theta}}=B^{\Theta} B=I \tag{ii}
\end{align*}
$$

Hence $\mathbf{A B}$ is an unitary matrix.
Hence proved.
Solved Examples on \&.2-20 and \& 2.21.

Sol. Let $\mathbf{A}=\frac{1}{3}\left[\begin{array}{rrr}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$

$$
\text { Then } \mathbf{A}^{\prime}=\frac{1}{3}\left[\begin{array}{rrr}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right]
$$

$\therefore \quad \mathbf{A}^{\prime} \mathbf{A}=\frac{1}{3}\left[\begin{array}{rrr}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right] \times \frac{1}{3}\left[\begin{array}{rrr}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$

$$
=\frac{1}{9}\left[\begin{array}{ll}
(-1) \cdot(-1)+2 \cdot 2+2 \cdot 2 & (-1) \cdot 2+2 \cdot(-1)+2 \cdot 2 \\
2 \cdot(-1)+(-1) \cdot 2+2 \cdot 2 & 2 \cdot 2+(-1) \cdot(-1)+2 \cdot 2 \\
2 \cdot(-1)+2 \cdot 2+(-1) \cdot 2 & 2 \cdot 2+2 \cdot(-1)+(-1) \cdot 2
\end{array}\right.
$$

$$
\left.\begin{array}{l}
(-1) \cdot 2+2 \cdot 2+2(-1) \\
2.2+(-1) 2+2 .(-1) \\
2.2+2.2+(-1)(-1)
\end{array}\right]
$$

$$
=\frac{1}{9}\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{I}
$$

Hence the given matrix \mathbf{A} is orthogonal.

$$
\begin{aligned}
& \therefore(\mathbf{A B})(\mathbf{A B})^{\ominus}=(\mathbf{A B})\left(\mathbf{B}^{\Theta} \mathbf{A}^{\ominus}\right) ; \text { by Th. V § } 2.13 \text { Page } 79 \\
& =\mathbf{A}\left(\mathbf{B B}^{\boldsymbol{\theta}}\right) \mathbf{A}^{\boldsymbol{\theta}}=\mathbf{A I A}^{\boldsymbol{\theta}} \text {, from (ii) } \\
& =A A^{\theta}=\mathbf{I} \text {, from (i) } \\
& \text { Similarly }(\mathbf{A B})^{\boldsymbol{\Theta}}(\mathbf{A B})=\mathbf{B}^{\boldsymbol{\Theta}} \mathbf{A}^{\boldsymbol{\theta}} \mathbf{A B} \text {, by Th. V. § 2.13 Page } 79 \\
& =\mathbf{B}^{\boldsymbol{\theta}} \text { IB, from (i) } \\
& =\mathbf{B}^{\boldsymbol{\theta}} \mathbf{B} \boldsymbol{z} \mathbf{I} \text {, from' (ii) }
\end{aligned}
$$

Ex. 2. Verify that the matrix

$$
A=\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{2} \\
1 / \sqrt{3} & -2 / \sqrt{6} & 0 \\
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2}
\end{array}\right] \text { is orthogonal. }
$$

Sol. Here $\mathbf{A}^{\prime}=\left[\begin{array}{rcc}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\ 1 / \sqrt{6} & -2 / \sqrt{6} & 1 / \sqrt{6} \\ -1 / \sqrt{2} & 0 & 1 / \sqrt{2}\end{array}\right]$
$\therefore \quad \mathbf{A}^{\prime} \mathbf{A}=\left[\begin{array}{rrr}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\ 1 / \sqrt{6} & -2 / \sqrt{6} & 1 / \sqrt{6} \\ -1 / \sqrt{2} & 0 & 1 / \sqrt{2}\end{array}\right] \times\left[\begin{array}{rrr}1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{2} \\ 1 / \sqrt{3} & -2 / \sqrt{6} & 0 \\ 1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2}\end{array}\right]$
$=\left[\frac{1}{3}+\frac{1}{3}+\frac{1}{3} \quad \frac{1}{3 \sqrt{2}}-\frac{2}{3 \sqrt{2}}+\frac{1}{3 \sqrt{2}} \quad \frac{-1}{\sqrt{6}}+0+\frac{1}{\sqrt{6}}\right.$
$\frac{1}{3 \sqrt{2}}-\frac{2}{3 \sqrt{2}}+\frac{1}{3 \sqrt{2}} \quad \frac{1}{6}+\frac{4}{6}+\frac{1}{6}, \quad \frac{-1}{2 \sqrt{3}}+0+\frac{1}{2 \sqrt{3}}$.
$\left[\frac{-1}{\sqrt{6}}+0+\frac{1}{\sqrt{6}} \quad \frac{-1}{2 \sqrt{3}}+0+\frac{1}{2 \sqrt{3}} \quad \frac{1}{2}+0+\frac{1}{2}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\mathbf{I}$.

$*$ *Ex. 3. Show that the matrix $\mathbf{A}=\left[\begin{array}{rr}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ is orthogonal.
(Bundelkhand 91; Kanpur 97)
Sol. $\quad \mathbf{A}^{\prime}=\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$\begin{aligned} \therefore \quad \mathbf{A}^{\prime} \mathbf{A} & =\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{rr}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right] . \\ & =\left[\begin{array}{cc}\cos ^{2} \alpha+\sin ^{2} \alpha & \cos \alpha \sin \alpha-\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha-\cos \alpha \sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha\end{array}\right]\end{aligned}$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathbf{I}
$$

Hence \mathbf{A} is orthogonal.
Ex. 4. Prove that the matrix $\frac{1}{\sqrt{3}}\left[\begin{array}{rr}1 & 1+\mathrm{i} \\ 1-\mathrm{i} & -1\end{array}\right]$ is unitary.
(Meerut 96)
Sol. Let $\mathbf{A}=\frac{1}{\sqrt{3}}\left[\begin{array}{rr}1 & 1+i \\ 1-i & -1\end{array}\right]$
Then $\mathbf{A}^{\Theta}=\frac{1}{\sqrt{3}}\left[\begin{array}{rr}1 & 1+i \\ 1-i & -1\end{array}\right]$

$$
\begin{aligned}
& \therefore \quad \mathbf{A}^{\Theta} \mathbf{A}=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1+i \\
1-i & -1
\end{array}\right] \times \frac{1}{\sqrt{3}}\left[\begin{array}{rr}
1 & 1+i \\
1-i & -1
\end{array}\right] \\
& =\frac{\vdots}{3}\left[\begin{array}{cc}
1.1+(1+i) \cdot(1-i) & 1(1+i)+(1+i)(-1) \\
(1-i) \cdot 1+(-1)(1-i) & (1-i)(1+i)+(-1)(-1)
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
1+1-i^{2} & 0 \\
0 & 1-i^{2}+1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathbf{I}
\end{aligned}
$$

Hence \mathbf{A} is an unitary matrix.
Exercises on § 2.20-§ $\mathbf{2} \cdot \mathbf{2 1}$
Ex. 1. Show that the matrix $A=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & i \\ -i & -1\end{array}\right]$ is unitary.
Ex. 2. Show that the matrix $\left[\begin{array}{rrr}\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3}\end{array}\right]$ is orthogonal.
Ex. 3. For any two orthogonal matrices \mathbf{A} and \mathbf{B}, show that $\mathbf{B A}$ is an orthogonal matrix.

Ex. 4. For any two unitary matrices A and B, show that BA is an unitary matrix.

Ex. 5. Prove that the following matrix is unitary :-

$$
\left[\begin{array}{ll}
\frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \\
\frac{1}{2}(1+i) & \frac{1}{2}(1-i)
\end{array}\right]
$$

Ex. 6. Prove that a real matrix is unitary if it is orthogonal.
(Rohilkhand 93)
8 2-22. Partitioning of Matrices.
Submatrix.
Definition. A matrix obtained by striking off some of the rows and columns of another matrix \mathbf{A} is defined as a sub-matrix of \mathbf{A}.

For example if $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 5 & 7\end{array}\right]$, then
[2], [3], [5] etc.
$\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right],\left[\begin{array}{ll}3 & 1 \\ 5 & 7\end{array}\right]$ etc. are all sub-matrices of \mathbf{A}
It is sometimes found useful to subdivide a matrix into sub-matrices by drawing lines parallel to its rows and columns and to consider these sub-matrices as the elements of the otiginal matrix.

Consider the matrix
$\mathbf{A}=\left[\begin{array}{ccc:l}x_{1} & y_{1} & z_{1}: \alpha_{1} & \beta_{1} \\ x_{2} & y_{2} & z_{2}: \alpha_{2} & \beta_{2} \\ x_{3} & y_{3} & z_{3}: \alpha_{3} & \beta_{3} \\ \ldots \\ p_{1} & q_{1} & r_{1}: a_{1} b_{1} \\ p_{2} & q_{2} & r_{2}: a_{2} & b_{2}\end{array}\right]$

Let $\mathbf{A}_{11}=\left[\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3}\end{array}\right] ; \mathbf{A}_{12}=\left[\begin{array}{ll}\alpha_{1} & \beta_{1} \\ \alpha_{2} & \beta_{2} \\ \alpha_{3} & \beta_{3}\end{array}\right]$;
$\mathbf{A}_{\mathbf{2 1}}=\left[\begin{array}{lll}p_{1} & q_{1} & r_{1} \\ p_{2} & q_{2} & r_{2}\end{array}\right] ; \mathbf{A}_{22}=\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$
Then we may write $\mathbf{A}=\left[\begin{array}{ll}\mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & A_{22}\end{array}\right]$
The matrix \mathbf{A} is then said to have been partitioned and the dotted lines indicate the partitions. Here it is obvious that a matrix can be partitioned in several ways. The elements $\dot{A}_{11}, \mathbf{A}_{12}, \mathbf{A}_{21}$ and \mathbf{A}_{22} are themselves matrices and are the sub-matrices of A.

Identically partitioned matrices.
Two matrices of the same size are known as identically partitioned matrices if when expressed as matrices of matrices (i.e. when partitioned) they are of the same order and the corresponding submatrices (or elements) are also of the same size. Such matrices are said to be additively coherent.

For example :

123:75	and	124:30
$456: 98$		205:46
234:23		102:12
567:45		254:34
458:67		262:56

Two matrices \mathbf{A} and \mathbf{B}, which are conformable to the product $\mathbf{A B}$, are called multiplicative coherent if \mathbf{A} and \mathbf{B} are partioned in such a way that columns of \mathbf{A} are partitioned in the same way as the rows of \mathbf{B} are partitioned. Here the rows of \mathbf{A} and columns of \mathbf{B} can be partitioned in any way.

For example :
Let $\mathbf{A}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 2 & 3 & 1 & 1\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{lll}2 & 3 & 5 \\ 3 & 7 & 1 \\ 4 & 0 & 2 \\ 2 & 5 & 1\end{array}\right]$

Here \mathbf{A} is a 3×4 matrix and \mathbf{B} is a 4×3 matrix, so these are conformable to the product $\mathbf{A B}$ (i.e. the product $\mathbf{A B}$ exits). Now if write

$$
\mathbf{A}=\left[\begin{array}{ccc:c}
1 & 0 & 0: 0 \\
2 & 1 & 0: 0 \\
\ldots & 3 & \ldots: .
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{c:cc}
2: 3 & 5 \\
3: 7 & 1 \\
4: 0 & 2 \\
\ldots \ldots \ldots \ldots . . \\
2: 5 & 1
\end{array}\right]
$$

then the partitioning of the columns of \mathbf{A} is in the same way as the partitioning of the rows of \mathbf{B}. (Here we note that after third column in \mathbf{A} the partitioning has been done and in B the partitioning has been done after third row). Thus according to definition given above the matrices A and B are called multiplicative coherent.

Exercise on § 2.22

Ex. Compute $\mathbf{A B}$ using partitioning

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right] ; \mathbf{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
3 & 1 & 2
\end{array}\right] .
$$

MISCELLANEOUS SOLVED EXAMPLES

Ex. 1. Show that $\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5\end{array}\right]$ is the inverse of $\left[\begin{array}{rrr}3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1\end{array}\right]$
Sol. $\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5\end{array}\right] \times\left[\begin{array}{rrr}3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{rrr}1.3+2(-4)+3.2 & 1(-2)+2.1+3.0 & 1(-1)+2(-1)+3.1 \\ 2.3+5(-4)+7.2 & 2(-2)+5.1+7.0 & 2(-1)+5(-1)+7.1 \\ -2.3-4(-4)-5.2 & -2(-2)-4.1-5.0 & -2(-1)-4(-1)-5.1\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\mathbf{I}$, where \mathbf{I} is an unit matrix.
Hence $\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5\end{array}\right]$ is the inverse of $\left[\begin{array}{rrr}3 & -2 & 1 \\ -4 & 1 & -1 \\ 2 & 0 & 1\end{array}\right]$
*Ex. 2. If A is a non-singular matrix, then prove that $\mathrm{AB}=\mathrm{AC} \Rightarrow \mathrm{B}=\mathrm{C}$, where B and C are square matrices of the same erder.
(Kanpur 96)
Sol. Since \mathbf{A} is non-singular matrix, so \mathbf{A}^{-1} exists.

$$
\text { Now } \mathbf{A B}=\mathbf{A C} \Rightarrow A^{-1}(\mathbf{A B})=A^{-1}(\mathbf{A C}) \text {, }
$$

premultiplying both sides by A^{-1}

$$
\Rightarrow\left(A^{-1} A\right) B=\left(A^{-1} A\right) C,
$$

by associative law of multiplication
$\Rightarrow \mathbf{I B}=\mathbf{I C}, \because \mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$
$\Rightarrow B=C, \quad \because I B=B$ etc.
Hence proved.
**Ex. 3. If product of two non-zero square matrices is a zero matrix, then prove that both of them are singular matrices.

Sol. Let \mathbf{A} and \mathbf{B} be two non-zero $n \times n$ matrices.
Given that $\mathbf{A B}=\mathbf{O}$, where \mathbf{O} is the $n \times n$ null matrix.
Let us suppose that \mathbf{B} is non-singluar matrix then \mathbf{B}^{-1} exists.
Then $\mathrm{AB}=\mathbf{O} \Rightarrow(\mathrm{AB}) \mathbf{B}^{-1}=\mathbf{O B}^{-1}$ post multiplying both sides by \mathbf{B}^{-1},

$$
\Rightarrow \mathbf{A}\left(\mathbf{B B}^{-1}\right)=\mathbf{O}, \quad \text { by associative law of multiplication. }
$$

(Note)

$$
\begin{aligned}
& \Rightarrow \mathbf{A I}=\mathbf{0}, \because \mathbf{B B}^{-1}=\mathbf{I} \\
& \Rightarrow \mathbf{A}=\mathbf{0},
\end{aligned}
$$

which is against hypothesis as \mathbf{A} is a non-zero matrix.
Hence \mathbf{B} is not a non-singular matrix i.e. \mathbf{B} is a singluar matrix.
Similarly we can prove that \mathbf{A} is also a singluar matrix.
**Ex. 4. Express the following matrix as the sum of a hermitian and a skew hermitian matrix :

$$
A=\left[\begin{array}{ccc}
2+3 i & 1-i & 2+i \tag{Kumaun92}\\
3 & 4+3 i & 5 \\
1 & 1+i & 2 i
\end{array}\right]
$$

Sol. From § 2.17 Theorem III Page 87 we know that

$$
\begin{equation*}
\mathbf{A}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\boldsymbol{\theta}}\right)+\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\boldsymbol{\theta}}\right) \tag{i}
\end{equation*}
$$

i.e. the hermitian and skew-hermitian parts of the matrix A are $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\boldsymbol{\theta}}\right)$ and $\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\boldsymbol{\theta}}\right)$ respectively.

Now we know that $\mathbf{A}^{\boldsymbol{\theta}}=(\overline{\mathbf{A}})^{\prime}$,
where $\mathbf{A}=\left[\begin{array}{clc}2-3 i & 1+i & 2-i \\ 3 & 4-3 i & 5 \\ 1 & 1-i & -2 i\end{array}\right]$
\therefore From (ii) we have $\mathbf{A}^{\boldsymbol{\theta}}=(\overline{\mathbf{A}})^{\boldsymbol{\theta}}=$ transpose of $\overline{\mathbf{A}}$

$$
=\left[\begin{array}{ccc}
2-3 i & 3 & 1 \\
1+i & 4-3 i & 1-i \\
2-i & 5 & -2 i
\end{array}\right]
$$

$$
\begin{aligned}
\therefore \quad \mathbf{A}+\mathbf{A}^{\Theta} & =\left[\begin{array}{ccc}
2+3 i & 1-i & 2+i \\
3 & 4+3 i & 5 \\
1 & 1+i & 2 i
\end{array}\right]+\left[\begin{array}{ccc}
2-3 i & 3 & 1 \\
1+i & 4-3 i & 1-i \\
2-i & 5 & -2 i
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2+3 i+2-3 i & 1-i+3 & 2+i+1 \\
3+1+i & 4+3 i+4-3 i & 5+1-i \\
1+2-i & 1+i+5 & 2 i-2 i
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & 4-i & 3+i \\
4+i & 8 & 6-i \\
3-i & 6+i & 0
\end{array}\right]
\end{aligned}
$$

\therefore Hermitian part of the given matrix \mathbf{A}

$$
=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\Theta}\right)=\frac{1}{2}\left[\begin{array}{ccc}
4 & 4-i & 3+1 \\
4+i & 8 & 6-i \\
3-i & 6+i & 0
\end{array}\right]
$$

$$
\text { Again } \mathbf{A}-\mathbf{A}^{\boldsymbol{\Theta}}=\left[\begin{array}{ccc}
2+3 i & 1-i & 2+i \\
3 & 4+3 i & 5 \\
1 & 1+i & 2 i
\end{array}\right]-\left[\begin{array}{ccc}
2-3 i & 3 & 1 \\
1+i & 4-3 i & 1-i \\
2-i & 5 & -2 i
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
2+3 i-2+3 i & 1-i-3 & 2+i-1 \\
3-1-i & 4+3 i-4+3 i & 5-1+i \\
1-2+i & 1+i-5 & 2 i+2 i
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
6 i & -2-i & 1+i \\
2-i & 6 i & 4+i \\
-1+i & -4+i & 4 i
\end{array}\right]
$$

\therefore Skew-hermitian part of the given matrix \mathbf{A}

$$
=\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\theta}\right)=\frac{1}{2}\left[\begin{array}{ccc}
6 i & -2-i & 1+i \\
2-i & 6 i & 4+i \\
-1+i & -4+i & 4 i
\end{array}\right]
$$

Hence from (i), we have the given matrix A

$$
=\frac{1}{2}\left[\begin{array}{ccc}
4 & 4-i & 3+i \\
4+i & 8 & 6-i \\
3-i & 6+i & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ccc}
6 i & -2-i & 1+i \\
2-i & 6 i & 4+i \\
-1+i & -4+i & 4 i
\end{array}\right],
$$

which is the sum of a hermitian and a shew-hermitian matrix (as proved above).

EXERCISES ON CHAPTER II

Ex. 1. Show that
$\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 4 & 2 & 1 & 0 \\ -2 & 3 & 1 & 1\end{array}\right]$ is the inverse of $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 8 & -1 & -1 & 1\end{array}\right]$
(Hint. See Ex. 1 Page 99)

Ex. 2. If \mathbf{A} be any square matrix, then show that $\mathbf{A}+\mathbf{A}^{\boldsymbol{\theta}}$ is Hermitian.
Ex. 3. If \mathbf{A} and \mathbf{B} are symmetric and they commute, then $\mathbf{A}^{-1} \mathbf{B}$ and $\mathrm{A}^{-1} \mathrm{~B}^{-1}$ are- symmetric.

Ex. 4. Show that every square matrix can be expressed in one and only one way as $P+i Q$, where P and Q are Hermitian.

Ex. 5. If \mathbf{B} is any square matrix, show that $\mathbf{B}^{\prime} \mathbf{A B}$ is symmetric or skew-symmetric according as \mathbf{A} is symmetric or skew-symmetric provided $\mathbf{B}^{\prime} \mathbf{A B}$ is defined.

Ex. 6. If \mathbf{A} and B are two non-singular square matrices of the same order, which of the following-statements is true :-
(i) $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$;
(ii) $(\mathbf{A B})^{\prime}=\mathbf{A}^{\prime} \mathbf{B}^{\prime}$;
(iii) $(\mathbf{A B})^{-1}=\mathbf{A}^{-1} \mathbf{B}^{-1}$;
(iv) A. $\mathbf{A}^{\prime}=\mathbf{I} \Rightarrow A^{\prime}=A^{-1}$
(v) $\mathbf{A}+\mathbf{A}^{\prime}$ is a symmetric matrix,

Ex. 7. If \mathbf{A} is Hermitian, such that $\mathbf{A}^{\mathbf{2}}=\mathbf{O}$, show that $\mathbf{A}=\mathbf{O}$, where \mathbf{O} is the zero matrix.

Ex. 8. Show that every skew-symmetric matrix of odd order is singular.
Ex. 9. When is a matrix said to be invertible?
[Hint : See \&8 2.18 Page 91].
Ex. 10. If $\mathbf{D}=\operatorname{diag}\left[d_{1}, d_{2}, \ldots, d_{n}\right]$,
$d_{1} d_{2} \ldots d_{n} \neq 0$, what will be D^{-1} ?
Ex. 11. If non-singular matrices \mathbf{A} and \mathbf{B} commute, then
(i) \mathbf{A}^{-1} and \mathbf{B} and (ii) \mathbf{A}^{-1} and \mathbf{B}^{-1}
also commute.

