Chapter III

Equivalence

§ 3 01. Elementary Row operations.

Consider the matrices

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \mathbf{B}=\left[\begin{array}{lll}
4 & 5 & 6 \\
1 & 2 & 3 \\
7 & 8 & 9
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
3 & 6 & 9 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad \mathbf{D}=\left[\begin{array}{rrr}
1 & 2 & 3 \\
6 & 9 & 12 \\
7 & 8 & 9
\end{array}\right]
$$

Here we observe that the matrices $\mathbf{B}, \mathbf{C}, \mathbf{D}$ are related to the matrix \mathbf{A} in as much as :
(a) \mathbf{B} can be obtinity from \mathbf{A} by interchanging first and second rows of \mathbf{A};
(b) \mathbf{C} can be ob ained from \mathbf{A} by multiplying the first row of \mathbf{A} by 3 and
(c) \mathbf{D} can be obtained from \mathbf{A} by adding two times the first row to the second row of \mathbf{A}.

Such operations on the rows of a matrix are known as elementary row operations. Formal definition is given below :

Definition. Let \mathbf{A}_{i} denote the i th row of the matrix $\mathbf{A}=\left[a_{i j}\right]$. then the elementary row operations on the marix \mathbf{A} are defined as :
(i) the interchanging of any two rows \mathbf{A}_{i} and \mathbf{A}_{j} (i.e. ith and j th rows). The symbols $R_{i j}$ or $R_{i} \longleftrightarrow R_{j}$ are generally employed for this operation.
(ii) the multiplication of every element of \mathbf{A}_{i} by a non-zero scalar c i.e. replacing the i th row \mathbf{A}_{i} by $c \mathbf{A}_{i}$. The symbols $R_{i}(c)$ or $R_{i} \rightarrow c R_{i}$ are employed for this operation.
(iii) the addition to the elements of row \mathbf{A}_{i} of ε (a scalar) times the corresponding elements of the row A_{k} i.e. replacing the row \mathbf{A}_{i} by $\mathbf{A}_{i}+c \mathbf{A}_{k}$.
The symbols $R_{i k}(c)$ or $R_{i} \rightarrow R_{i}+c R_{k}$ are used for this operation.
Note : The above operation do not change the order of the matrix.
Example : Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7\end{array}\right]$
The effect of the elementary row operation $R_{2}-R_{1}$ or $R_{21}(-1)$ is to produce the matrix

$$
\mathbf{B}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3-1 & 4-2 & 5-3 \\
1 & 6 & 7
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 2 \\
5 & 6 & 7
\end{array}\right]
$$

Again the effect of elementary row operation $R_{2}+R_{1}$ or R_{21} (1) is to produce the matrix

$$
\mathbf{B}=\left[\begin{array}{ccc}
1 & 3 & 3 \\
2+1 & 2+2 & 2+3 \\
5 & 6 & 7
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
5 & 6 & 7
\end{array}\right] \text { i.e. the matrix } \mathbf{A} \text {. }
$$

Thus the above two operations are the inverse elementary row operations.
\& 302. Row equivalent Matrices.
Definition. If an $m \times n$ matrix \mathbf{B} can be obtained from an $m \times n$ matrix \mathbf{A} by a finite number of elementary row operations, then \mathbf{B} is called the row equivalent to A and is written as

$$
\begin{gathered}
\text { row } \\
\mathbf{B} \sim \mathbf{A}
\end{gathered}
$$

Note : Equivalent matrices have the same order.
Example : $\left[\begin{array}{rrrr}1 & 3 & 4 & 7 \\ 2 & -3 & 5 & 6 \\ 1 & 0 & 3 & 2\end{array}\right] \stackrel{\text { row }}{\sim}\left[\begin{array}{rrrr}2 & -3 & 5 & 6 \\ 1 & 3 & 4 & 7 \\ 1 & 0 & 3 & 2\end{array}\right]$
(interchanging first and second rows).

8 3.03. Elementary Row Matrix.

Definition. The matrix obtained by the application of one elementary row operation to the identity matrix I_{n} is called an elementary row matrix.

Example. Examples of elementary matrices obtained from \mathbf{I}_{3}, where

$$
\mathbf{I}_{\mathbf{3}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{I}_{3} \sim\left[\begin{array}{lll}
0 & 1 & 0 \tag{i}\\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{E}_{a} \text { (say) }
$$

sbtained by interchanging first two rows.
(ii)

$$
\mathbf{I}_{3} \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & c & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{E}_{b} \text { (say) }
$$

obtained by multiplying the elements of second row by c.
(iii)

$$
\mathbf{I}_{3}-\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{E}_{c} \text { (say), }
$$

obtained by adding two times the elements of second row to the corresponding elements of first row i.e. replacing R_{1} by $R_{i}+2 R_{2}$ i.e. R_{12} (2).

§ 3.04. Types of Elementary Row Matrices and their symbols.

(i) $\mathbf{E}_{i j}$ denotes the elementary matrix obtained by interchanging the i th and j th rows (or columns) of an identity (or unit) matrix.
(ii) $\mathbf{E}_{i}(c)$ denotes the elementary matrix obtained by multiplying the i th row (or column) of the identity matrix by c.
(iii) $\mathbf{E}_{i k}$ (c) denotes the elementary matrix obtained by adding to the elements of the i th row of the identity matrix c times the corresponding elements of the k th row.
(iv) $\mathbf{E}_{i k}^{\prime}(c)$ denotes the transpose of $\mathbf{E}_{i k}(c)$ and can be obtained by adding to the elements of the i th column of the identity matrix c times the corresponding elements of the k th column.
§ 3.05. Theorem. Each elementary row operation on $m \times n$ matrix can be effected by premultiplying it by the corresponding elemntary matrix.

Example : Let $\mathbf{A}=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]$
(i) Interchanging the first and third rows, we have

$$
\mathbf{A} \sim\left[\begin{array}{llll}
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{11} & a_{12} & a_{13} & a_{14}
\end{array}\right]=\mathbf{B} \text { (say) }
$$

The corresponding elementary matrix (obtained by interchanging first and third row of \mathbf{I}_{2}) is given by

$$
\mathbf{E}_{13}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

[Here students should note that as we are to premultiply Astherefore the number of columns of \mathbf{E}_{13} should be 3, the number of rows of \mathbf{A}].

Now $\mathbf{E}_{13} \cdot \mathbf{A}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \times\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]$

$$
=\left[\begin{array}{llll}
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{11} & a_{12} & a_{13} & a_{14}
\end{array}\right]=\mathrm{B}
$$

This shows that \mathbf{B} can be obtained from \mathbf{A} by pre-multiplying it by \mathbf{E}_{13}, the corresponding elementary matrix.
(ii) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$

Multiplying the elements of second row by 2 , we get

$$
\mathbf{A} \sim\left[\begin{array}{rrr}
1 & 2 & 3 \\
8 & 10 & 12 \\
7 & 8 & 9
\end{array}\right]=\mathbf{B} \text { (say) }
$$

The corresponding elementary matrix (obtained by multilying the elements of second row of I_{3} by 2) is given by

$$
\mathbf{E}_{2}(2)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then $\mathbf{E}_{3}(2) \times \mathbf{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
$=\left[\begin{array}{lll}1 \cdot 1+0.4+0.7 & 1 \cdot 2+0.5+0.8 & 1 \cdot 3+0.6+0.9 \\ 0 \cdot 1+2 \cdot 4+0.7 & 0 \cdot 2+2 \cdot 5+0.8 & 0.3+2 \cdot 6+0.9 \\ 0 \cdot 1+0.4+1 \cdot 7 & 0 \cdot 2+0.5+1 \cdot 8 & 0 \cdot 3+0.6+1 \cdot 9\end{array}\right]$
$=\left[\begin{array}{rrr}1 & 2 & 3 \\ 8 & 10 & 12 \\ 7 & 8 & 9\end{array}\right]=\mathbf{B}$
i.e. $\quad \mathbf{B}$ can be obtained from \mathbf{A} by pre multiplying it by \mathbf{E}_{2} (2). .
(iii) Let $\mathbf{A}=\left[\begin{array}{rrr}1 & -2 & 3 \\ -3 & 4 & 5 \\ 5 & 6 & -7\end{array}\right]$

Replacing R_{1} by $R_{1}+2 R_{2}$ i.e. adding two times the elements of second row to the corresponding elements of first row, we get

$$
\mathbf{A}-\left[\begin{array}{rrr}
-5 & 6 & 13 \\
-3 & 4 & 5 \\
5 & 6 & -7
\end{array}\right]=\mathbf{B} \text { (say) }
$$

The corresponding elementary matrix (obtained by adding two times the elements of second row of \mathbf{I}_{3} to the corresponding elements of the first row) is given by

$$
\mathbf{E}_{12}(2)=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then $\mathbf{E}_{12}(2) \times \mathbf{A}=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{rrr}1 & -2 & 3 \\ -3 & 4 & 5 \\ 5 & 6 & -7\end{array}\right]$

$$
=\left[\begin{array}{lll}
1 \cdot 1+2(-3)+0 \cdot 5 & 1 \cdot(-2)+2 \cdot 4+0 \cdot 6 & 1 \cdot 3+2 \cdot 5+0 \cdot(-7) \\
0 \cdot 1+1(-3)+0 \cdot 5 & 0 \cdot(-2)+1 \cdot 4+0.6 & 0 \cdot 3+1 \cdot 5+0 \cdot(-7) \\
0 \cdot 1+0(-3)+1 \cdot 5 & 0 \cdot(-2)+0 \cdot 4+1 \cdot 6 & 0 \cdot 3+0 \cdot 5+1 \cdot(-7)
\end{array}\right]
$$

$$
=\left[\begin{array}{rrr}
-5 & 6 & 13 \\
-3 & 4 & 5 \\
5 & 6 & -7
\end{array}\right]=\mathbf{B}
$$

i.e. $\quad \mathbf{B}$ can be obtained from \mathbf{A} by pre-multiplying it by \mathbf{E}_{12} (2).

COROLLARY of Theorem given in 3.05 Page 105.
If the matrix B is row equivalent to the matrix A, then $B=S \bullet A$, where S is a product of the elementary matrices.
§ 3.06. Theorem. The elementary matrices $\mathbf{E}_{i j}, \mathbf{E}_{i}(c), \mathbf{E}_{j k}(1)$ are non-singular.
(See \& 2.18 Page 91)
Proof: (i) The elementary matrix $\mathrm{E}_{i j}$ is obtained by interchanging the i th and j th rows of \mathbf{I}. We shall get back \mathbf{I} if we now apply the same row operation upon $\mathbf{E}_{i j}$ which can also be effected by pre-multiplying $\mathbf{E}_{i j}$ by $\mathbf{E}_{i j}$
(See § 3.05 Page 105).

$$
\therefore \mathbf{E}_{i j} \bullet \mathbf{E}_{i j}=\mathbf{I} .
$$

i.e. $\quad \mathbf{E}_{i j}$ its own inverse i.e. $\mathbf{E}_{i j}$ is non-singular.
(ii) The eiementary matrix $\mathbf{E}_{i}(c)$ is obtained by multiplying the i th row of the identity matrix by c (where $c \neq 0$). We shall get back I if we now. multiply the elements of i th row of $\mathbf{E}_{i}(c)$ by $1 / c$ which can also be effected by pre-multiplying $\mathbf{E}_{i}(c)$ with the corresponding elementary matrix 'which is obtained from I by multiplying its i th row by $1 / c$, which is therefore the inverse of $\mathbf{E}_{i}(c)$.

For example, let $\mathbf{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $\mathbf{E}_{3}(c)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & c\end{array}\right]$
Then $\left\{\mathbf{E}_{\mathbf{3}}(c)\right\}^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 / c\end{array}\right]$, where $\left\{\mathbf{E}_{\mathbf{3}}(c)\right\}^{-1}$ is the inverse of $\mathbf{E}_{\mathbf{3}}(c)$
(iii) The elementary matrix $\mathbf{E}_{i k}$ (1) obtained from I by replacing its j th row by (jth row $+k$ th row).

We shall get back I if we not replace the j th row of $\mathbf{E}_{i j}$ (1) by (jth row $-k$ th row). (Note)
Hence the inverse of $\mathrm{E}_{j k}$ (1) is the elementary matrix obtained from \mathbf{I} by replacing its jth row by (jth row $-k$ th row).

For example, let $\mathbf{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $\mathbf{E}_{13}(1)=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
obtained from I by replacing its 1 st row by (1st row +3 rd row).

Then $\left\{\mathbf{E}_{13}(1)\right\}^{-1}=\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$, obtained from \mathbf{I} by replacing its first row
§ 3.07. Theorem : If the matrix \mathbf{B} is row equivalent to the matrix \mathbf{A}, then $\mathbf{B}=\mathrm{SA}$ where \mathbf{S} is non-singular:

From Cor. of § 3.05 Page 107 we know that
row
if $\mathbf{B} \sim \mathbf{A}$, then $\mathbf{B}=\mathbf{S A}$, where \mathbf{S} is the product of the elementary matrices and in $\S 3.06$ above we have proved that elementary matrices are non-singular and hence their product is also non-singular.

This proves the above theorem,
§ 3.08. Theorem : If a square matrix \mathbf{A} of order n is row equivalent to the identity matrix \mathbf{I}_{n}, then \mathbf{A} is non-singular.

Proof : From § 3.07 above we know that

> row
$\mathbf{A} \sim \mathbf{I}_{n}$, then $\mathbf{A}=\mathbf{S} . \mathbf{I}_{n}$ wherre \mathbf{S} is non-singular.
Now $\mathbf{S} \bullet \mathbf{I}_{n}$ being the product of two non-singular matrices is non-singular. Therefore \mathbf{A} is non-singular.

Note. The converse of this theorem is also true.
§ 3.09. Theorem : If a sequence of now operations applied to a square matrix A reduces it to the identity matrix \mathbf{I}, then the same sequence of row operations applied to the identity matrix gives the inverse of $\mathbf{A}\left(\right.$ i.e. $\left.\mathbf{A}^{-1}\right)$.

Proof: From Cor. of § 3.05 Page 107 we know that $\mathbf{S A}=\mathbf{I}$, where \mathbf{S} is the product of the elementary matrices.
i.e.
$\left(\mathbf{E}_{\mathbf{k}} \ldots \mathbf{E}_{3} \mathbf{E}_{2} \mathbf{E}_{1}\right) \mathbf{A}=\mathbf{I}$, where \mathbf{E}_{i} denotes the elementary matrices
or

$$
\left(E_{k}^{\prime} \ldots E_{3} E_{2} \cdot E_{1}\right) A A^{-1}=I A^{-1}
$$

or
$\left(E_{k} \ldots E_{3} . E_{2}, E_{1}\right) I=A^{-1}$, since $A A^{-1}=I$ and $I A^{-1}=A^{-1}$
(See § 2.18 Page 91 and Ex. 1 Page 64)
Hence the theorem
Note. With the help of the above theorem we shall find the inverse of the given non-singular matrix A.

In the following examples we shall show the successive matrices row equivalent to \mathbf{A} and \mathbf{I} in the left hand and right hand columns respectively. When uttimately \mathbf{A} is reduced to \mathbf{I} in the left hand column, \mathbf{I} is reduced to A^{-1} in the right hand column.

Also $R_{1}, R_{2}, R_{3}, \ldots$ etc. stand for first row, second row, third ròw, etc.
Solved Examples on § 3.09.
*Ex. 1 Find the inverse of the matrix $A=\left[\begin{array}{rrr}1 & -3 & 2 \\ 2 & 0 & 0 \\ 1 & 4 & 1\end{array}\right]$

Sol.

\[

\]

(Replacing R_{2} by $\frac{1}{2} R_{2}$)

$$
-\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & -3 & 2 \\
1 & 4 & 1
\end{array}\right] \left\lvert\,-\left[\begin{array}{lll}
0 & \frac{1}{2} & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
$$

(Interchanging R_{1} and R_{2})

$$
-\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -3 & 2 \\
0 & 4 & 1
\end{array}\right] \left\lvert\,-\left[\begin{array}{rrr}
0 & (1 / 2) & 0 \\
1 & -(1 / 2) & 0 \\
0 & -(1 / 2) & 1
\end{array}\right]\right.
$$

(Replacing R_{2} by $R_{2}-R_{1}$ and R_{3} by $R_{3}-R_{1}$)

$$
-\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -11 & 0 \\
0 & 4 & 1
\end{array}\right]\left[-\left[\begin{array}{rrr}
0 & \frac{1}{2} & 0 \\
1 & \frac{1}{2} & -2 \\
0 & -\frac{1}{2} & 1
\end{array}\right]\right.
$$

(Replacing R_{2} by $R_{2}-2 R_{3}$)

$$
\sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right] \left\lvert\, \sim\left[\begin{array}{rrr}
0 & \frac{1}{2} & 0 \\
-\frac{1}{11} & -\frac{1}{22} & \frac{2}{11} \\
0 & -\frac{1}{2} & 1
\end{array}\right]\right.
$$

(Replacing R_{2} by $-\frac{1}{11} R_{2}$)

$$
-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[-\left[\begin{array}{rrr}
0 & \frac{1}{2} & 0 \\
-\frac{1}{11} & -\frac{1}{22} & \frac{2}{11} \\
\frac{4}{11} & -\frac{9}{22} & \frac{3}{11}
\end{array}\right]\right.
$$

(Replacing R_{3} by $R_{3}-4 R_{2}$)

$$
\begin{array}{ll}
& =\mathbf{I} \\
\therefore & \mathbf{A}^{-1}
\end{array}=\left[\begin{array}{rrr}
0 & \frac{1}{2} & 0 \\
-\frac{1}{11} & -\frac{1}{22} & \frac{2}{11} \\
\frac{4}{11} & -\frac{7}{22} & \frac{3}{11}
\end{array}\right] .=\mathbf{A}^{\mathbf{- 1}}
$$

*Ex. 2. $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$, evaulate A^{-1},
Sol. $\left.\quad\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right] \right\rvert\, \sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\left.\sim\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & -4 & 0 \\
0 & -1 & 1
\end{array}\right] \right\rvert\, \sim\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

(Replacing R_{2} by $R_{2}-3 R_{1}$ and R_{3} by $R_{3}-R_{1}$)

$$
\sim\left[\begin{array}{rrr}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \left\lvert\,-\left[\begin{array}{rrr}
2 & 0 & -1 \\
\frac{3}{4} & -\frac{1}{4} & 0 \\
-1 & c & 1
\end{array}\right]\right.
$$

(Replacing R_{1} by $R_{1}-R_{3}$ and R_{2} by $-\frac{1}{4} R_{2}$)

$$
\sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \left\lvert\, \sim\left[\begin{array}{rrr}
-\frac{1}{4} & \frac{3}{4} & -1 \\
\frac{3}{4} & -\frac{1}{4} & 0 \\
-\frac{1}{4} & -\frac{1}{4} & 1
\end{array}\right]\right.
$$

(Replacing R_{1} by $R_{1}-3 R_{2}$ and R_{3} by $R_{3}+R_{2}$)

$$
\begin{array}{rlrl}
& =\mathbf{I} & 1 \\
\therefore & \mathbf{A}^{-1} & =\left[\begin{array}{rrr}
-\frac{1}{4} & \frac{3}{4} & -1 \\
\frac{3}{4} & -\frac{1}{4} & 0 \\
-\frac{1}{4} & -\frac{1}{4} & 1
\end{array}\right]
\end{array}
$$

Ex.3. Find the inverxe of the matrix $\mathbf{A}=\left[\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & -0 \\ 0 & -2 & 1\end{array}\right]$
Sol.

$$
\begin{aligned}
& \quad \mathbf{A} \\
& {\left[\begin{array}{rrr}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \left.\sim\left[\begin{array}{rrr}
1 & -2 & 0 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right] \right\rvert\, \sim\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(Replacing R_{1} by $R_{1}+2 R_{2}$)

$$
\left.\sim\left[\begin{array}{rrr}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right] \right\rvert\, \sim\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

(Replacing R_{2} by $R_{2}+R_{1}$)

$$
\left.\sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \right\rvert\, \sim\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]
$$

(Replacing R_{1} by $R_{1}+2 R_{2}$ and R_{3} by $R_{3}+2 R_{2}$)

$$
\begin{array}{rlrl}
& =\mathbf{I} & 1 \\
& \therefore & \mathbf{A}^{-1} & =\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]
\end{array}
$$

Ans.
Exercises on § 3.09
Ex. 1. Find \mathbf{A}^{-1} if $\mathbf{A}=\left[\begin{array}{rrr}2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1\end{array}\right] \quad$ Ans. $\frac{1}{4}\left[\begin{array}{rrr}3 & -10 & -1 \\ -2 & 8 & 2 \\ 2 & -4 & -2\end{array}\right]$
Ex. 2. Find the reciprocal matrix of $\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 4 & 9\end{array}\right]$
Ans. $\frac{1}{3}\left[\begin{array}{rrr}-6 & 5 & -1 \\ 15 & -8 & 1 \\ -6 & 3 & 0\end{array}\right]$
Ex. 3. Find \mathbf{A}^{-1}, if $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & \text { i } & 2 \\ 0 & 0 & 2\end{array}\right]$
Ans. $\frac{1}{9}\left[\begin{array}{rrr}0 & 3 & -3 \\ 6 & -2 & -1 \\ -3 & 1 & 5\end{array}\right]$
§ 3.10. Elementary Column Operation and Column Equivalent Matrices.

In § 3.01 Page 103, if the word row is replaced by the word column we get the definition of the elementary column operation.

Similarly in § 3.02 Page 104 repacing the word row by the word column we get definition of column equivalent matrices.
col
$\mathbf{B} \sim \mathbf{A}$ means the matrix \mathbf{B} is column equivalent to the matrix \mathbf{A}.
Symbols for column operations are similar to those given for row operations in § 3.01 Page ${ }^{\prime} 103$. Here the letter R in the symbols are to be replaced by C e.g. $C_{i j}, C_{i j}(c), C_{i k}(c)$, where $C_{i j}$ stands for the interchange of i th and jth columns etc or $C_{i} \leftrightarrow C_{j} ; C_{i} \rightarrow c C_{i}, C_{i} \rightarrow c C_{k}$.
§ 3.11. Theorem. Each elemntary column operation on an $m \times n$ matrix A can be effected by post multiplying A by the $n \times n$ matrix obtained from the $n \times n$ identity matrix \mathbf{I}_{n} by the same elementary column operation.

col
 Proof: If $\mathbf{B} \sim \mathbf{A}$

row
then $\mathbf{B}^{\prime}-\mathbf{A}^{\prime} \quad$ where \mathbf{B}^{\prime} and \mathbf{A}^{\prime} are the transposed matrices of \mathbf{B} and \mathbf{A}.
(See § 2.08 Page 69)
Since if B is obtained from A by elementary column operation, then \mathbf{B}^{\prime} can be obtained from \mathbf{A}^{\prime} by an elementary row operation.

Hence $\mathbf{B}^{\prime}=\mathbf{E} \mathbf{A}^{\prime}$, where \mathbf{E} is the elementary matrix obtained from \mathbf{I}_{n} by an elementary row operation.
(See \& 3.05 Page 105)
Therefore $\mathbf{B}=\mathbf{A E}^{\prime}$,
(Note)
where \mathbf{E}^{\prime}, the transposed matrix of \mathbf{E}, can be obtained from \mathbf{I}_{n} by the same elementary column operation.

Hence the theorem.
8 3.12. Theorem. If there be two $m \times n$ matrices A and B, then col
$\mathbf{B} \sim \mathbf{A} \quad$ if $\mathbf{B}=\mathbf{A T}$, where \mathbf{T} is an $\boldsymbol{n} \times \boldsymbol{n}$ non-singular matrix
col col
Proof: If $\mathbf{B} \sim \mathbf{A}$, then $\mathbf{B}^{\prime}-\mathbf{A}^{\prime}$, where \mathbf{B}^{\prime} and \mathbf{A}^{\prime} are the transposed matrices of \mathbf{B} and \mathbf{A} respectively.

Therefore $\mathbf{B}^{\prime}=\mathbf{S} \mathbf{A}^{\prime}$, where \mathbf{S} is an $n \times n$ non-singular matrix.
(See § 3.07 Page 108)
Consequently $\mathbf{B}=\mathbf{A S}$, where \mathbf{S}^{\prime} is the transposed matrix of \mathbf{S} $=\mathbf{A T}$, where $\mathbf{T}=\mathbf{S}^{\prime}$, an $n \times n$ singular matrix.
Hence the theorem.
8 3.13. Equivélent Matrices (General Definition).
(Avadh 95)
Definition. Two $m \times n$ matrices \mathbf{A} and \mathbf{B} are called equivalent if one can be obtained from the other by a finite number of row and column operations (or elementary operations) and written as $\mathbf{B}-\mathbf{A}$.
8.3.14. Triantular Matrix.

Definition. A matrix $\left[a_{i j}\right]$ is called a triangular matrix if

$$
a_{i j}=0 \text { for } i>j \text {. }
$$

For Example $\left[\begin{array}{llll}2 & 3 & 1 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 5 & 7\end{array}\right]$ or $\left[\begin{array}{llll}2 & 3 & 4 & 5 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 7\end{array}\right]$
Note 1. Triangular matrix need not be square. If it is square, then it is called upper triangular matrix. (See § 2.01 (a) Page 61)

Note 2. The elements $a_{i j}$ for which $i \leq j$ are mot necessarily zero.
*§ 3.15. Theorem. Every matrix can be reduced to triangular form by elementary row operations.

Proof : We shatl prove this theorem by Mathematical intduction.

Assume that this theorem holds for all matrices containing $n-1$ rows and let $\mathbf{A}=\left[a_{i j}\right]$ be an $n \times m$ matrix given below -

$$
\mathbf{A}=\left[\begin{array}{ccccccc}
a_{11} & a_{12} & a_{13} & \ldots & \ldots & \ldots & a_{1 m} \\
a_{21} & a_{22} & a_{23} & \ldots & \ldots & \ldots & a_{2 m} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & \ldots & \ldots & a_{n m}
\end{array}\right]
$$

Now the following cases arise :-
Case I. If $a_{11} \neq 0$, then replacing R_{1} by $\left(1 / a_{11}\right) R_{1}$ (i.e. by applying elementary row operation) the matrix A reduces to an $n \times m$ matrix

$$
\mathbf{B}=\left[b_{i j}\right]=\left[\begin{array}{ccccc}
b_{11} & b_{12} & \ldots & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & \ldots & b_{2 m} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
b_{n 1} & b_{n 2} & \ldots & \ldots & b_{n m}
\end{array}\right],
$$

where $b_{11}=1$.
Now applying elementary row-operation $R_{k}-b_{k} R_{1}$ to R_{k} where $k=1,2$, \ldots, n i.e. subtract b_{k} times R_{1} from R_{k}, where k takes values from 1 to n. This reduces the matrix \mathbf{B} to matrix $\mathbf{C}=\left[c_{i j}\right]$ where $c_{k 1}=0$ whenever $k>1$ and we have

$$
\mathbf{C}=\left[\begin{array}{ccccc}
1 & c_{12} & c_{13} & \ldots & c_{1 m} \\
0 & c_{22} & c_{23} & \ldots & c_{2 m} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & c_{n 2} & c_{n 3} & \ldots & c_{n m}
\end{array}\right]
$$

Now by our assumption that the theorem which we are going to prove holds for matrices containing $(n-1)$ rows we find that $(n-1)$ rowed matrix

$$
\left[\begin{array}{ccccc}
0 & c_{22} & c_{23} & \ldots & c_{2 m} \\
0 & c 32 & c 33 & \ldots & c_{3 m} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & c_{n 2} & c_{n 3} & \ldots & c_{n m}
\end{array}\right]
$$

can always be reduced to triangular form by elementary row operations and hence from (i) the matrix \mathbf{C} will reduce to triangular form when the same elementary row operations are applied to \mathbf{C}.

Case II. If $a_{11}=0$ but $a_{k 1} \neq 0$ for some value of k then interchanging k_{1} and R_{k} the matrix A reduces to the matrix $\mathbf{D}=\left[d_{i j}\right]$ where $d_{11} \neq 0$.

Then the matrix \mathbf{D} can always be reduced to the triangular form as in case I above.

Case III. If $a_{k l}=0$ for all ${ }^{\circ}$ values of k then we have

$$
\mathbf{A}=\left[\begin{array}{ccccc}
0 & a_{12} & a_{13} & \ldots & a_{1 m} \\
0 & a_{22} & a_{23} & \ldots & a_{2 m} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & a_{n 2} & a_{n 3} & \ldots & a_{n m}
\end{array}\right]
$$

By hypothesis (inductive) the $(n-1)$ rowed matrix

$$
\left[\begin{array}{ccccc}
0 & a_{22} & a_{23} & \ldots & a_{2 m} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & a_{n 2} & a_{n 3} & \ldots & a_{n m}
\end{array}\right]
$$

as in case I above can be reduced to triangular form by elementary row operations and the same elementary operations when applied on A will reduce A to triangular form.

Hence the matrix A can always be reduced to triangular form and the proof is complete by mathematical induction.

Solved Examples on § 3.15 .

Ex. 1. Reduce the matrix $\left[\begin{array}{rrr}3 & 1 & 4 \\ 1 & 2 & -5 \\ 0 & 1 & 2\end{array}\right]$ to triangular form.

$$
\text { Sol. Let } \begin{aligned}
\mathbf{A} & =\left[\begin{array}{rrr}
3 & 1 & 4 \\
1 & 2 & -5 \\
0 & 1 & 2
\end{array}\right] \\
& \sim\left[\begin{array}{rrr}
1 & \frac{1}{3} & \frac{4}{3} \\
1 & 2 & -5 \\
0 & 1 & 2
\end{array}\right] \text {, replacing } R_{1} \text { by } \frac{1}{4} R_{1} \\
& \sim\left[\begin{array}{rrr}
1 & \frac{1}{3} & \frac{4}{3} \\
0 & \frac{5}{3} & -\frac{19}{3} \\
0 & 1 & 2
\end{array}\right] \text { replacing } R_{3} \text { by } R_{2}-R_{1} \\
& \sim\left[\begin{array}{rrr}
1 & \frac{1}{3} & \frac{4}{3} \\
0 & \frac{5}{3} & -\frac{19}{3} \\
0 & 0 & \frac{29}{5}
\end{array}\right]
\end{aligned}
$$

This is the required triangular form.
Aliter $\quad \mathbf{A}=\left[\begin{array}{rrr}3 & 1 & 4 \\ 1 & 2 & -5 \\ 0 & 1 & 2\end{array}\right]$
$-\left[\begin{array}{rrr}1 & 2 & -5 \\ 3 & 1 & 4 \\ 0 & 1 & 2\end{array}\right]$, interchanging R_{1} and R_{2}

$$
\sim\left[\begin{array}{rrr}
1 & 2 & -5 \\
0 & -5 & 19 \\
0 & 1 & 2
\end{array}\right] \text {, replacing } R_{2} \text { by } R_{2}-3 R_{1}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{rrr}
1 & 2 & -5 \\
0 & -5 & 19 \\
0 & 5 & 10
\end{array}\right] \text {, replacing } R_{3} \text { by } \dot{5} R_{3} \\
& -\left[\begin{array}{rrr}
1 & 2 & -5 \\
0 & -5 & 19 \\
0 & 0 & 29
\end{array}\right], \text { replacing } R_{3} \text { by } R_{3}+R_{2}
\end{aligned}
$$

This is also a triangular matrix.
Note. The above shows that reduction of a matrix to triangular form is not unique.

Ex. 2. Reduce $A=\left[\begin{array}{rrrr}5 & 3 & 14 & 4 \\ 0 & 1 & 3 & 1 \\ -1 & 1 & 2 & 0\end{array}\right]$ to triangular form.
(Agra 95)
Sol. Let $\mathbf{A}=\left[\begin{array}{rrrr}5 & 3 & 14 & 4 \\ 0 & 1 & 3 & 1 \\ -1 & 1 & 2 & 0\end{array}\right]$

$$
-\left[\begin{array}{rrrr}
-1 & 1 & 2 & 0 \\
0 & 1 & 3 & 1 \\
5 & 3 & 14 & 4
\end{array}\right] \text {, interchanging } R_{1} \text { and } R_{3}
$$

$$
-\left[\begin{array}{rrrr}
1 & -1 & -2 & 0 \\
0 & 1 & 3 & 1 \\
5 & 3 & 14 & 4
\end{array}\right] \text {, replacing } R_{1} \text { by }-R_{1}
$$

$$
\sim\left[\begin{array}{rrrr}
1 & -1 & -2 & 0 \\
0 & 1 & 3 & 1 \\
0 & 8 & 24 & 4
\end{array}\right] \text {, replacing } R_{3} \text { by } R_{3}-5 R_{1}
$$

$$
\sim\left[\begin{array}{rrrr}
1 & -1 & -2 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & 0 & -4
\end{array}\right] \text {, replacing } R_{3} \text { by } R_{3}-8 R_{2}
$$

This is a triangular matrix as here $a_{i j}=0$ for $i>j$. [See definition § $3 \cdot 14$ Page 112]

Exercises on § 3.15

Ex. 1. Reduce the matrix $\left[\begin{array}{rrr}1 & -1 & 1 \\ 2 & 3 & 4 \\ 3 & -1 & 4\end{array}\right]$ to the triangular form.
Ans. $\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Ex. 2. Reduce the matrix $\left[\begin{array}{rrrr}-1 & 2 & 1 & 8 \\ 2 & 1 & -1 & 0 \\ 3 & 2 & 1 & 7\end{array}\right]$ to the triangular form.

$$
\text { Ans. }\left[\begin{array}{rrrr}
1 & -2 & -1 & -8 \\
0 & 5 & 1 & 16 \\
0 & 0 & 12 & 27
\end{array}\right]
$$

MISCELLANEOUS SOLVED EXAMPLES

Ex. 1. Apply successively the row transfermations (or operation) \mathbf{R}_{23}, $\mathbf{R}_{3}(-2)$ and \mathbf{R}_{12} (4) to the matrix
$\left[\begin{array}{llll}3 & 1 & 2 & 1 \\ 2 & 0 & 3 & 2 \\ 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 1\end{array}\right]$

Sol (i). Applying R_{23} opertion to the given matrix we have
$\left[\begin{array}{llll}3 & 1 & 2 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 0 & 3 & 2 \\ 3 & 1 & 4 & 1\end{array}\right]$ [Here we have interchanged second and third rows].
(i) Applying $R_{3}(-2)$ operation to the given matrix we have
$\left[\begin{array}{rrrr}3 & 1 & 2 & 1 \\ 2 & 0 & 3 & 2 \\ -2 & -4 & -6 & -8 \\ 3 & 1 & 4 & 1\end{array}\right]$ [Here we have replaced third row R_{3} by $-2 R_{3}$]
(iii) Applying R_{12} (4) operation to the given matrix we have
$\left[\begin{array}{rrrr}7 & 9 & 14 & 17 \\ 2 & 0 & 3 & 2 \\ 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 1\end{array}\right]$ [Here we have replaced the first row R_{1} by $R_{1}+4 R_{3}$]
Ex. 2. Apply successively the column operation $C_{13} ; C_{2}(-4)$ and $C_{23}(-2)$ to the mátrix $\left[\begin{array}{rrrrr}1 & -1 & 2 & 3 & 4 \\ 2 & 1 & -2 & 1 & 3 \\ 3 & 2 & 1 & -2 & 5 \\ 4 & 5 & 6 & 7 & 8\end{array}\right]$

Sol. (i) Applying C_{13} operation to the given matrix, we have

$$
\left[\begin{array}{rrrrr}
2 & -1 & 1 & 2 & 4 \\
-2 & 1 & 2 & 1 & 3 \\
1 & 2 & 3 & -2 & 5 \\
6 & 5 & 4 & 7 & 8
\end{array}\right] \text { [Here we have interchanged } C_{1} \text { and } C_{3}
$$

(ii) Applying $C_{2}(-4)$ operation to the given matrix, we have

$$
\left[\begin{array}{rrrrr}
1 & 4 & 2 & 3 & 4 \\
2 & -4 & -2 & 1 & 3 \\
3 & -8 & 1 . & -2 & 5 \\
4 & -20 & 6 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
\text { Here we have replaced second } \\
\text { column } C_{2} \text { by }-4 C_{2} \text {]. }
\end{array}\right.
$$

(iii) Applying $C_{23}(-2)$ operation to the given matrix, we have

$$
\left[\begin{array}{rrrrr}
1 & -5 & 2 & 3 & 4 \\
2 & 5 & -2 & 1 & 3 \\
3 & 0 & 1 & -2 & 5 \\
4 & -7 & 6 & 7 & 8
\end{array}\right] \text { [Here we have replaced second } \text { column } C_{2} \text { by } C_{2}-2 C_{3} \text {]. }
$$

Ex. 3. Compute the following elementary matrices of order 4 $E_{23}, E_{2}(4), E_{34}(-2), E_{34}^{\prime}(-2)$.
(Refer § 3.04 Page 105)
Sol. The identity (or unit) matrix of order four is given by
(i)

$$
\begin{align*}
\mathbf{I}_{4} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{Note}\\
\mathbf{E}_{23} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{align*}
$$

(ii) $\quad \mathbf{E}_{2}(4)=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ [Replacing R_{2} by $4 R_{2}$ or C_{2} by $\left.4 C_{2}\right]$.
(iii) $\mathbf{E}_{34}(-2)=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1\end{array}\right]$. .
(iv) $\mathbf{E}_{34}^{\prime}(-2)=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 1\end{array}\right]$ [Replacing C_{3} by $\left.C_{3}-2 C_{4}\right]$.
[Here students should note that $\mathbf{E}^{\prime} 34(-2)$ is nothing but the transpose matrix of $E_{34}(-2)$].

Ex. 4. Evaluate the inverse of the following elementary matrices of order four: $\mathrm{E}_{3}(-2), \mathrm{E}_{23}$ (4)
(Refer \$ 3.06 Page 107-106)
Sol. The identity matrix of order four is given by

$$
\mathbf{L}_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(i) Then $\mathbf{E}_{3}(-2)=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$, replacing R_{3} by $-2 R_{3}$
\therefore Inverse of $\mathbf{E}_{\mathbf{3}}(-2)$ i.e. $\left\{\mathbf{E}_{3}(-2)\right\}^{-1}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(obtained by replacing R_{3} of \mathbf{I}_{4} by $-\frac{1}{2} R_{3}$).
Ans.
(ii) $\mathbf{E}_{23}(4)=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$, replacing R_{2} of \mathbf{I}_{4} by $R_{2}+4 R_{3}$.

Then the inverse of \mathbf{E}_{23} (4) i.e. $\left\{\mathbf{E}_{23} \text { (4) }\right\}^{-1}$ is given by

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & -4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {, replacing } R_{2} \text { of } \mathbf{I}_{4} \text { by } R_{2}-4 R_{3}
$$

(Note)
**Ex. 5. Find the inverse of the matrix $A=\left[\begin{array}{rrr}1 & -1 & 2 i \\ 2 & 0 & 2 \\ -1 & 0 & 1\end{array}\right]$
Sol.

$$
\begin{aligned}
& {\left.\left[\begin{array}{rrr}
\mathbf{A} & -1 & 2 i \\
2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right] \right\rvert\, \sim\left[\begin{array}{lll}
1 & \mathbf{I} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \left.\sim\left[\begin{array}{rrr}
i & -1 & 2 i \\
1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right] \right\rvert\,-\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(Replacing R_{2} by $\frac{1}{2} R_{2}$)

$$
\sim\left[\begin{array}{rrr}
i & -1 & 2 i \\
1 & 0 & 1 \\
0 & 0 & 2
\end{array}\right] \left\lvert\, \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]\right.
$$

(Replacing R_{3} by $R_{3}+R_{2}$)
$\sim\left[\begin{array}{ccc}i & -1 & 2 i \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right] \left\lvert\, \sim\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 1 / 4 & 1 / 2\end{array}\right]\right.$
(Replacing R_{3} by $\frac{1}{2} R_{3}$)
$\sim\left[\begin{array}{rrr}i & -1 & 2 i \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \left\lvert\, \sim\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 4 & -1 / 2 \\ 0 & 1 / 4 & 1 / 2\end{array}\right]\right.$
(Replacing R_{2} by $R_{2}-R_{3}$)
$\sim\left[\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \left\lvert\, \sim\left[\begin{array}{rrr}1 & -\frac{3}{4} i & -\frac{1}{2} i \\ 0 & 1 / 4 & -1 / 2 \\ 0 & 1 / 4 & 1 / 2\end{array}\right]\right.$
(Replacing R_{1} by $R_{1}-i R_{2}-2 i R_{3}$)
$\sim\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \left\lvert\,-\left[\begin{array}{rrr}-1 & \frac{3}{4} i & \frac{1}{2} i \\ 0 & 1 / 4 & -1 / 2 \\ 0 & 1 / 4 & 1 / 2\end{array}\right]\right.$
(Replacing R_{1} by $-R_{1}$)
$\sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\mathbf{I} \left\lvert\, \sim\left[\begin{array}{rcr}0 & 1 / 4 & -1 / 2 \\ -1 & \frac{3}{4} i & \frac{1}{2} i \\ 0 & 1 / 4 & 1 / 2\end{array}\right]=\mathbf{A}^{-1}\right.$
(Interchanging R_{1} and R_{2})
Therefore $\mathbf{A}^{-1}=\left[\begin{array}{rcc}0 & 1 / 4 & -1 / 2 \\ -1 & \frac{3}{4} i & \frac{1}{2} i \\ 0 & 1 / 4 & 1 / 2\end{array}\right]$
Ans.
EXERCISES ON CHAPTER III
Ex. 1. Apply the row operation $R_{4}(-3)$ and $R_{21}(4)$ to the matrix

$$
\left[\begin{array}{rrrr}
4 & -1 & 2 & 3 \\
-1 & 8 & -3 & -4 \\
2 & 3 & 4 & -1 \\
-3 & -4 & -1 & 8
\end{array}\right]
$$

(Hint ; See Ex. 1 Page 116)

$$
\text { Ans. }\left[\begin{array}{rrrr}
4 & -1 & 2 & 3 \\
-1 & 8 & -3 & -4 \\
2 & 3 & 4 & -1 \\
9 & 12 & 3 & -24
\end{array}\right] \text { and }\left[\begin{array}{rrrr}
4 & -1 & 2 & 3 \\
15 & 7 & 5 & 8 \\
2 & 3 & 4 & -1 \\
-3 & -4 & -1 & 8
\end{array}\right]
$$

Ex. 2. Apply the column operation $C_{3}(4)$ and $C_{12}(-3)$ to the matrix

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 0 \\
3 & 4 & 0 & 1 & 2 \\
2 & 0 & 1 & 3 & 4
\end{array}\right]
$$

[Hint : See Ex. 2 Page 116]

$$
\text { Ans. }\left[\begin{array}{rrrrr}
0 & 1 & 8 & 3 & 4 \\
1 & 2 & 12 & 4 & 0 \\
3 & 4 & 0 & 1 & 2 \\
2 & 0 & 4 & 3 & 4
\end{array}\right] \text { and }\left[\begin{array}{rrrrr}
-3 & 1 & 2 & 3 & 4 \\
-5 & 2 & 3 & 4 & 0 \\
-9 & 4 & 0 & 1 & 2 \\
2 & 0 & 1 & 3 & 4
\end{array}\right]
$$

Ex. 3. Compute $\mathbf{E}_{23}, \mathbf{E}_{2}(-2)$ and $\mathbf{E}_{34}(-1)$ for the identity matrix of order 4. (Hint. See Ex. 3 Page 117)

$$
\text { Ans. }\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ;\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ;\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Ex. 4. Evaluate the inverse of the following elementary matrices of order 4 :

$$
E_{14}, E_{4}(3), E_{22}(2)
$$

(Hint : See Ex. 4 Page 117).

$$
\text { Ans. } \mathrm{E}_{14},\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{3}
\end{array}\right] \text { and }\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Ex. 5. Find the inverse of the matrix

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & -4 \\
2 & 3 & 5 & -5 \\
3 & -4 & -5 & -8
\end{array}\right] \quad \text { Ans. } \frac{1}{18}\left[\begin{array}{rrrr}
2 & 16 & 6 & 4 \\
22 & 41 & -30 & -1 \\
-10 & -44 & 30 & -2 \\
4 & -13 & 6 & -1
\end{array}\right]
$$

(Hint : See Ex. 5 Page 118).
*Ex. 6. Find the inverse of the matrix $\left[\begin{array}{rrr}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$
(Hint : See Ex. 5 Page 118).

$$
\text { Ans. } \frac{1}{14}\left[\begin{array}{rrr}
3 & -1 & 5 \\
5 & 3 & -1 \\
-1 & 5 & 3
\end{array}\right]
$$

Ex. 7. Find the inverse of the matrix $\left[\begin{array}{rrrrr}1 & 3 & 3 & 2 & 1 \\ 1 & 4 & 3 & 3 & -1 \\ 1 & 3 & 4 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 \\ 1 & -2 & -1 & 2 & 2\end{array}\right]$
(Hint : See Ex. 5 Page 118).

Miscellaneous Solved Examples

$$
\text { Ans. } \frac{1}{15}\left[\begin{array}{rrrrr}
30 & -20 & -15 & 25 & -5 \\
30 & -11 & -18 & 7 & -8 \\
-30 & 12 & 21 & -9 & 6 \\
-15 & 2 & 6 & -9 & 6 \\
15 & -7 & -6 & -1 & -1
\end{array}\right]
$$

Ex. 8. Has the following matrix an inverse ?

$$
\left[\begin{array}{rrrr}
2 & 1 & 3 & 1 \\
1 & 2 & -1 & 4 \\
3 & 3 & 2 & 5 \\
1 & -1 & 4 & -1
\end{array}\right]
$$

(Hint : It can not be reduced to $\mathbf{I}_{\mathbf{4}}$).
Ans. No.

