§ 301. Elementary Row operations.

Consider the matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \\ 7 & 8 & 9 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 3 & 6 & 9 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \ \mathbf{D} = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 9 & 12 \\ 7 & 8 & 9 \end{bmatrix}.$$

Here we observe that the matrices B, C, D are related to the matrix A in as much as:

(a) B can be obtained from A by interchanging first and second rows of A;

(b) C can be obtained from A by multiplying the first row of A by 3 and

(c) D can be obtained from A by adding two times the first row to the second row of A.

Such operations on the rows of a matrix are known as elementary row operations. Formal definition is given below:

Definition. Let A_i denote the *i*th row of the matrix $A = [a_{ij}]$, then the elementary row operations on the marix A are defined as:

(i) the interchanging of any two rows A_i and A_j (i.e. ith and jth rows). The symbols R_{ij} or $R_i \longleftrightarrow R_j$ are generally employed for this operation.

(ii) the multiplication of every element of A_i by a non-zero scalar c i.e. replacing the *i*th row A_i by cA_i . The symbols R_i (c) or $R_i \rightarrow cR_i$ are

employed for this operation.

(iii) the addition to the elements of row A_i of ϵ (a scalar) times the corresponding elements of the row A_i i.e. replacing the row A_i by $A_i + \epsilon A_k$.

The symbols $R_{ik}(c)$ or $R_i \rightarrow R_i + cR_k$ are used for this operation.

Note: The above operation do not change the order of the matrix.

Example : Let A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{bmatrix}$$

The effect of the elementary row operation $R_2 - R_1$ or R_{21} (-1) is to produce the matrix

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 3-1 & 4-2 & 5-3 \\ 1 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 5 & 6 & 7 \end{bmatrix}$$

Again the effect of elementary row operation $R_2 + R_1$ or $R_{21}(1)$ is to produce the matrix

$$\mathbf{B} = \begin{bmatrix} 1 & 3 & 3 \\ 2+1 & 2+2 & 2+3 \\ 5 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{bmatrix} i.e. \text{ the matrix A.}$$

Thus the above two operations are the inverse elementary row operations.

§ 3.02. Row equivalent Matrices.

Definition. If an $m \times n$ matrix **B** can be obtained from an $m \times n$ matrix **A** by a finite number of elementary row operations, then **B** is called the row equivalent to **A** and is written as

Note: Equivalent matrices have the same order.

Example:
$$\begin{bmatrix} 1 & 3 & 4 & 7 \\ 2 & -3 & 5 & 6 \\ 1 & 0 & 3 & 2 \end{bmatrix} \begin{array}{c} row \\ \sim \\ 1 & 3 & 4 & 7 \\ 1 & 0 & 3 & 2 \end{array}$$

(interchanging first and second rows).

§ 3.03. Elementary Row Matrix.

Definition. The matrix obtained by the application of one elementary row operation to the identity matrix I_n is called an elementary row matrix.

Example. Examples of elementary matrices obtained from I3, where

(i)
$$\mathbf{I_3} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{E}_a \text{ (say)},$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{E}_a \text{ (say)},$$

obtained by interchanging first two rows.

(ii)
$$\mathbf{I_3} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{E}_b \text{ (say),}$$

obtained by multiplying the elements of second row by c.

(iii)
$$\mathbf{I}_3 \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{E}_c \text{ (say)},$$

obtained by adding two times the elements of second row to the corresponding elements of first row i.e. replacing R_1 by $R_i + 2R_2$ i.e. R_{12} (2).

§ 3.04. Types of Elementary Row Matrices and their symbols.

(i) \mathbf{E}_{ij} denotes the elementary matrix obtained by interchanging the *i*th and *j*th rows (or columns) of an identity (or unit) matrix.

(ii) $E_i(c)$ denotes the elementary matrix obtained by multiplying the *i*th

row (or column) of the identity matrix by c.

- (iii) $\mathbf{E}_{ik}(c)$ denotes the elementary matrix obtained by adding to the elements of the *i*th row of the identity matrix c times the corresponding elements of the *k*th row.
- (iv) $\mathbf{E}'_{ik}(c)$ denotes the transpose of $\mathbf{E}_{ik}(c)$ and can be obtained by adding to the elements of the *i*th column of the identity matrix c times the corresponding elements of the *k*th column.

§ 3.05. Theorem. Each elementary row operation on $m \times n$ matrix can be effected by premultiplying it by the corresponding elementary matrix.

Example: Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

(i) Interchanging the first and third rows, we have

A -
$$\begin{bmatrix} a_{31} & a_{32} & a_{33} & a_{34} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{11} & a_{12} & a_{13} & a_{14} \end{bmatrix} = \mathbf{B} \text{ (say)}$$

The corresponding elementary matrix (obtained by interchanging first and third row of I2) is given by

$$\mathbf{E}_{13} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

[Here students should note that as we are to premultiply Astherefore the number of columns of E₁₃ should be 3, the number of rows of A].

Now E₁₃.
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \mathbf{B}$$

$$= \begin{bmatrix} a_{31} & a_{32} & a_{23} & a_{24} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{11} & a_{12} & a_{13} & a_{14} \end{bmatrix} = \mathbf{B}$$

This shows that **B** can be obtained from **A** by pre-multiplying it by \mathbb{E}_{13} , the corresponding elementary matrix.

(ii) Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Multiplying the elements of second row by 2, we get

$$A \sim \begin{bmatrix} 1 & 2 & 3 \\ 8 & 10 & 12 \\ 7 & 8 & 9 \end{bmatrix} = B \text{ (say)}$$

The corresponding elementary matrix (obtained by multilying the elements of second row of I₃ by 2) is given by

$$\mathbf{E}_{2}(2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Then
$$\mathbf{E}_{3}(2) \times \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \cdot 1 + 0 \cdot 4 + 0 \cdot 7 & 1 \cdot 2 + 0 \cdot 5 + 0 \cdot 8 & 1 \cdot 3 + 0 \cdot 6 + 0 \cdot 9 \\ 0 \cdot 1 + 2 \cdot 4 + 0 \cdot 7 & 0 \cdot 2 + 2 \cdot 5 + 0 \cdot 8 & 0 \cdot 3 + 2 \cdot 6 + 0 \cdot 9 \\ 0 \cdot 1 + 0 \cdot 4 + 1 \cdot 7 & 0 \cdot 2 + 0 \cdot 5 + 1 \cdot 8 & 0 \cdot 3 + 0 \cdot 6 + 1 \cdot 9 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 \\ 8 & 10 & 12 \\ 7 & 8 & 9 \end{bmatrix} = \mathbf{B}$$

i.e. B can be obtained from A by pre multiplying it by E2 (2).

(iii) Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -3 & 4 & 5 \\ 5 & 6 & -7 \end{bmatrix}$$

Replacing R_1 by $R_1 + 2R_2$ *i.e.* adding two times the elements of second row to the corresponding elements of first row, we get

$$\mathbf{A} - \begin{bmatrix} -5 & 6 & 13 \\ -3 & 4 & 5 \\ 5 & 6 & -7 \end{bmatrix} = \mathbf{B} \text{ (say)}$$

The corresponding elementary matrix (obtained by adding two times the elements of second row of I₃ to the corresponding elements of the first row) is given by

$$\mathbf{E}_{12}(2) = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Then
$$\mathbf{E_{12}}(2) \times \mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & -2 & 3 \\ -3 & 4 & 5 \\ 5 & 6 & -7 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \cdot 1 + 2 \cdot (-3) + 0 \cdot 5 & 1 \cdot (-2) + 2 \cdot 4 + 0 \cdot 6 & 1 \cdot 3 + 2 \cdot 5 + 0 \cdot (-7) \\ 0 \cdot 1 + 1 \cdot (-3) + 0 \cdot 5 & 0 \cdot (-2) + 1 \cdot 4 + 0 \cdot 6 & 0 \cdot 3 + 1 \cdot 5 + 0 \cdot (-7) \\ 0 \cdot 1 + 0 \cdot (-3) + 1 \cdot 5 & 0 \cdot (-2) + 0 \cdot 4 + 1 \cdot 6 & 0 \cdot 3 + 0 \cdot 5 + 1 \cdot (-7) \end{bmatrix}$$

$$= \begin{bmatrix} -5 & 6 & 13 \\ -3 & 4 & 5 \\ 5 & 6 & -7 \end{bmatrix} = \mathbf{B}$$

i.e. B can be obtained from A by pre-multiplying it by E12 (2).

COROLLARY of Theorem given in 3.05 Page 105.

If the matrix **B** is row equivalent to the matrix **A**, then $\mathbf{B} = \mathbf{S} \bullet \mathbf{A}$, where **S** is a product of the elementary matrices.

§ 3.06. Theorem. The elementary matrices E_{ij} , $E_i(c)$, $E_{jk}(1)$ are non-singular. (See § 2.18 Page 91)

Proof: (i) The elementary matrix \mathbf{E}_{ij} is obtained by interchanging the *i*th and *j*th rows of \mathbf{I} . We shall get back \mathbf{I} if we now apply the same row operation upon \mathbf{E}_{ij} which can also be effected by pre-multiplying \mathbf{E}_{ij} by \mathbf{E}_{ij}

(See § 3.05 Page 105).

$$\therefore \mathbf{E}_{ij} \bullet \mathbf{E}_{ij} = \mathbf{I}.$$

i.e. Eij its own inverse i.e. Eij is non-singular.

(ii) The elementary matrix $\mathbf{E}_i(c)$ is obtained by multiplying the *i*th row of the identity matrix by c (where $c \neq 0$). We shall get back I if we now multiply the elements of *i*th row of $\mathbf{E}_i(c)$ by 1/c which can also be effected by pre-multiplying $\mathbf{E}_i(c)$ with the corresponding elementary matrix which is obtained from I by multiplying its *i*th row by 1/c, which is therefore the inverse of $\mathbf{E}_i(c)$.

For example, let
$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $\mathbf{E}_3(c) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & c \end{bmatrix}$
Then $\{\mathbf{E}_3(c)\}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/c \end{bmatrix}$, where $\{\mathbf{E}_3(c)\}^{-1}$ is the inverse of $\mathbf{E}_3(c)$

(iii) The elementary matrix $\mathbf{E}_{ik}(1)$ obtained from I by replacing its jth row by (jth row + kth row).

We shall get back I if we not replace the jth row of E_{ij} (1) by (jth row - kth row). (Note)

Hence the inverse of E_{jk} (1) is the elementary matrix obtained from I by replacing its jth row by (jth row – kth row).

For example, let
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $E_{13}(1) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

obtained from I by replacing its 1st row by (1st row + 3rd row).

Then
$$\{\mathbf{E}_{13}(1)\}^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, obtained from I by replacing its first row by $(1 \text{st row} - 3 \text{rd row})$

§ 3.07. Theorem: If the matrix B is row equivalent to the matrix A, then B = SA where S is non-singular.

From Cor. of § 3.05 Page 107 we know that

row

if B - A, then B = SA, where S is the

product of the elementary matrices and in § 3.06 above we have proved that elementary matrices are non-singular and hence their product is also non-singular.

This proves the above theorem,

§ 3.08. Theorem: If a square matrix A of order n is row equivalent to the identity matrix In, then A is non-singular.

Proof: From § 3.07 above we know that

row

 $A - I_n$, then $A = S.I_n$ where S is non-singular.

Now $S \bullet I_n$ being the product of two non-singular matrices is non-singular. Therefore A is non-singular.

Note. The converse of this theorem is also true.

§ 3.09. Theorem: If a sequence of row operations applied to a square matrix A reduces it to the identity matrix I, then the same sequence of row operations applied to the identity matrix gives the inverse of A (i.e. A^{-1}).

Proof: From Cor. of § 3.05 Page 107 we know that SA = I, where S is the product of the elementary matrices.

i.e. $(E_k ... E_3 E_2 E_1) A = I$, where E_i denotes the elementary matrices

or $(E_k ... E_3 E_2. E_1) AA^{-1} = IA^{-1}$

or $(E_k ... E_3. E_2. E_1) I = A^{-1}$, since $AA^{-1} = I$ and $IA^{-1} = A^{-1}$

(See § 2-18 Page 91 and Ex. 1 Page 64)

Hence the theorem

Note. With the help of the above theorem we shall find the inverse of the given non-singular matrix A.

In the following examples we shall show the successive matrices row equivalent to A and I in the left hand and right hand columns respectively. When ultimately A is reduced to I in the left hand column, I is reduced to A⁻¹ in the right hand column.

Also R1, R2, R3, ... etc. stand for first row, second row, third row, etc.

Solved Examples on § 3-09.

*Ex. 1 Find the inverse of the matrix $A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 0 & 0 \\ 1 & 4 & 1 \end{bmatrix}$

Sol.

$$\begin{bmatrix} 1 & -3 & 2 \\ 2 & 0 & 0 \\ 1 & 4 & 1 \end{bmatrix} \sim \begin{bmatrix} \mathbf{I} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -3 & 2 \\ 1 & 0 & 0 \\ 1 & 4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(Replacing R_2 by $\frac{1}{2}R_2$)

$$\begin{bmatrix}
1 & 0 & 0 \\
1 & -3 & 2 \\
1 & 4 & 1
\end{bmatrix}
\begin{bmatrix}
0 & \frac{1}{2} & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

(Interchanging R1 and R2)

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & -3 & 2 \\
0 & 4 & 1
\end{bmatrix}
\begin{bmatrix}
0 & (1/2) & 0 \\
1 & -(1/2) & 0 \\
0 & -(1/2) & 1
\end{bmatrix}$$

(Replacing R_2 by $R_2 - R_1$ and R_3 by $R_3 - R_1$)

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & -11 & 0 \\
0 & 4 & 1
\end{bmatrix}
\begin{bmatrix}
0 & \frac{1}{2} & 0 \\
1 & \frac{1}{2} & -2 \\
0 & -\frac{1}{2} & 1
\end{bmatrix}$$

(Replacing R_2 by $R_2 - 2R_3$)

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{bmatrix}
\begin{bmatrix}
0 & \frac{1}{2} & 0 \\
-\frac{1}{11} & -\frac{1}{22} & \frac{2}{11} \\
0 & -\frac{1}{2} & 1
\end{bmatrix}$$

(Replacing R_2 by $-\frac{1}{11}R_2$)

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & \frac{1}{2} & 0 \\
-\frac{1}{11} & -\frac{1}{22} & \frac{2}{11} \\
\frac{4}{11} & -\frac{7}{22} & \frac{3}{11}
\end{bmatrix}$$

(Replacing R_3 by $R_3 - 4R_2$)

$$= \mathbf{I} \qquad \qquad = \mathbf{A}^{-1}$$

$$\therefore \quad \mathbf{A}^{-1} = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ -\frac{1}{11} & -\frac{1}{22} & \frac{2}{11} \\ \frac{4}{11} & -\frac{7}{22} & \frac{3}{11} \end{bmatrix}$$

Ans.

*Ex. 2.
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$
, evaluate A^{-1} ,

Sol.
$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

(Replacing R_2 by $R_2 - 3R_1$ and R_3 by $R_3 - R_1$)

$$\begin{bmatrix}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 0 & -1 \\
\frac{3}{4} & -\frac{1}{4} & 0 \\
-1 & 0 & 1
\end{bmatrix}$$

(Replacing R_1 by $R_1 - R_3$ and R_2 by $-\frac{1}{4}R_2$)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} \sim \begin{bmatrix} -\frac{1}{4} & \frac{3}{4} & -1 \\ \frac{3}{4} & -\frac{1}{4} & 0 \\ -\frac{1}{4} & -\frac{1}{4} & 1 \end{bmatrix}$$

(Replacing R_1 by $R_1 - 3$ R_2 and R_3 by $R_3 + R_2$)

$$= I \qquad = A^{-1}$$

$$\therefore A^{-1} = \begin{bmatrix} -\frac{1}{4} & \frac{3}{4} & -1 \\ \frac{3}{4} & -\frac{1}{4} & 0 \\ -\frac{1}{4} & -\frac{1}{4} & 1 \end{bmatrix}$$

Ex.3. Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$

Sol.
$$\begin{bmatrix}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 0 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

(Replacing R_1 by $R_1 + 2R_2$)

Ans.

$$\begin{bmatrix}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 2 \\
1 & 1 & 2 \\
0 & 0 & 1
\end{bmatrix}$$

(Replacing R_2 by $R_2 + R_1$)

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
7 & 3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{bmatrix}$$

(Replacing R_1 by $R_1 + 2R_2$ and R_3 by $R_3 + 2R_2$)

$$= I \qquad | = A^{-1}$$

$$\therefore A^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$

Ans.

Exercises on § 3.09

Ex. 1. Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$ Ans. $\frac{1}{4} \begin{bmatrix} 3 & -10 & -1 \\ -2 & 8 & 2 \\ 2 & -4 & -2 \end{bmatrix}$

Ex. 2. Find the reciprocal matrix of
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 4 & 9 \end{bmatrix}$$
 Ans. $\frac{1}{3} \begin{bmatrix} -6 & 5 & -1 \\ 15 & -8 & 1 \\ -6 & 3 & 0 \end{bmatrix}$

Ex. 3. Find
$$A^{-1}$$
, if $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & i & 2 \\ 0 & 0 & 2 \end{bmatrix}$
Ans. $\frac{1}{9} \begin{bmatrix} 0 & 3 & -3 \\ 6 & -2 & -1 \\ -3 & 1 & 5 \end{bmatrix}$

§ 3-10. Elementary Column Operation and Column Equivalent Matrices.

In § 3.01 Page 103, if the word row is replaced by the word column we get the definition of the elementary column operation.

Similarly in § 3.02 Page 104 repacing the word *row* by the word *column* we get definition of column equivalent matrices.

col

 $\mathbf{B} - \mathbf{A}$ means the matrix \mathbf{B} is column equivalent to the matrix \mathbf{A} .

Symbols for column operations are similar to those given for row operations in § 3.01 Page 103. Here the letter R in the symbols are to be replaced by C e.g. C_{ij} , C_{ij} (c), C_{ik} (c), where C_{ij} stands for the interchange of ith and jth columns etc or $C_i \leftarrow C_i$; $C_i \rightarrow C_i$, $C_i \rightarrow C_i$.

§ 3-11. Theorem. Each elemntary column operation on an $m \times n$ matrix A can be effected by post multiplying A by the $n \times n$ matrix obtained from the $n \times n$ identity matrix I_n by the same elementary column operation.

col

Proof: If B ~ A

then B' - A' where B' and A' are the transposed matrices of B and A.

(See § 2.08 Page 69)

Since if B is obtained from A by elementary column operation, then B' can be obtained from A' by an elementary row operation.

Hence B' = EA', where E is the elementary matrix obtained from I_n by (See § 3.05 Page 105) an elementary row operation.

Therefore B = AE'.

(Note)

where E', the transposed matrix of E, can be obtained from In by the same elementary column operation.

Hence the theorem.

§ 3.12. Theorem. If there be two $m \times n$ matrices A and B, then col

B ~ A if B = AT, where T is an $n \times n$ non-singular matrix

Proof: If B-A, then B'-A', where B' and A' are the transposed matrices of B and A respectively.

Therefore B' = SA', where S is an $n \times n$ non-singular matrix.

(See § 3.07 Page 108)

Consequently B = AS', where S' is the transposed matrix of S = AT, where T = S', an $n \times n$ singular matrix.

Hence the theorem.

§ 3-13. Equivalent Matrices (General Definition).

(Avadh 95)

Definition. Two $m \times n$ matrices A and B are called equivalent if one can be obtained from the other by a finite number of row and column operations (or elementary operations) and written as B - A.

§ 3-14. Triangular Matrix.

Definition. A matrix [aii] is called a triangular matrix if

$$a_{ij} = 0$$
 for $i > j$.

For Example
$$\begin{bmatrix} 2 & 3 & 1 & 4 \\ \mathbf{0} & 1 & 2 & 3 \\ \mathbf{0} & 0 & 5 & 7 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 7 \end{bmatrix}$$

Note 1. Triangular matrix need not be square. If it is square, then it is called upper triangular matrix. (See § 2.01 (a) Page 61)

Note 2. The elements a_{ij} for which $i \le j$ are not necessarily zero.

*§ 3.15. Theorem. Every matrix can be reduced to triangular form by elementary row operations.

· Proof: We shall prove this theorem by Mathematical intduction.

Assume that this theorem holds for all matrices containing n-1 rows and let $A = [a_{ij}]$ be an $n \times m$ matrix given below —

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \dots & \dots & a_{2m} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & \dots & a_{nm} \end{bmatrix}$$

Now the following cases arise :-

Case I. If $a_{11} \neq 0$, then replacing R_1 by $(1/a_{11})$ R_1 (i.e. by applying elementary row operation) the matrix A reduces to an $n \times m$ matrix

$$\mathbf{B} = [b_{ij}] = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix},$$

where $b_{11} = 1$.

Now applying elementary row-operation $R_k - b_{ki}R_1$ to R_k where k = 1, 2, ..., n i.e. subtract b_{ki} times R_1 from R_k , where k takes values from 1 to n. This reduces the matrix **B** to matrix $C = [c_{ij}]$ where $c_{k1} = 0$ whenever k > 1 and we have

$$\mathbf{C} = \begin{bmatrix} 1 & c_{12} & c_{13} & \dots & c_{1m} \\ 0 & c_{22} & c_{23} & \dots & c_{2m} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & c_{n2} & c_{n3} & \dots & c_{nm} \end{bmatrix}$$

Now by our assumption that the theorem which we are going to prove holds for matrices containing (n-1) rows we find that (n-1) rowed matrix

$$\begin{bmatrix} 0 & c_{22} & c_{23} & \dots & c_{2m} \\ 0 & c_{32} & c_{33} & \dots & c_{3m} \\ \dots & \dots & \dots & \dots \\ 0 & c_{n2} & c_{n3} & \dots & c_{nm} \end{bmatrix}$$

can always be reduced to triangular form by elementary row operations and hence from (i) the matrix C will reduce to triangular form when the same elementary row operations are applied to C.

Case II. If $a_{11} = 0$ but $a_{k1} \neq 0$ for some value of k then interchanging k_1 and R_k the matrix A reduces to the matrix $\mathbf{D} = [d_{ij}]$ where $d_{11} \neq 0$.

Then the matrix D can always be reduced to the triangular form as in case I above.

Case III. If $a_{k1} = 0$ for all values of k then we have

$$\mathbf{A} = \begin{bmatrix} 0 & a_{12} & a_{13} & \dots & a_{1m} \\ 0 & a_{22} & a_{23} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ 0 & a_{n2} & a_{n3} & \dots & a_{nm} \end{bmatrix}$$

By hypothesis (inductive) the (n-1) rowed matrix

$$\begin{bmatrix} 0 & a_{22} & a_{23} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & a_{n2} & a_{n3} & \dots & a_{nm} \end{bmatrix}$$

as in case I above can be reduced to triangular form by elementary row operations and the same elementary operations when applied on A will reduce A to triangular form.

Hence the matrix A can always be reduced to triangular form and the proof is complete by mathematical induction.

Solved Examples on § 3-15.

 $\begin{bmatrix}
1 & \frac{1}{3} & \frac{4}{3} \\
0 & \frac{5}{3} & -\frac{19}{3} \\
0 & 0 & \frac{29}{3}
\end{bmatrix}$, replacing R_3 by $R_3 - \frac{3}{5}R_2$

This is the required triangular form.

Solved Examples on Triangular Matrices

This is also a triangular matrix.

Note. The above shows that reduction of a matrix to triangular form is not unique.

Ex. 2. Reduce
$$A = \begin{bmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 3 & 1 \\ -1 & 1 & 2 & 0 \end{bmatrix}$$
 to triangular form.

(Agra 95)

Sol. Let
$$A = \begin{bmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 3 & 1 \\ -1 & 1 & 2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1 & 2 & 0 \\ 0 & 1 & 3 & 1 \\ 5 & 3 & 14 & 4 \end{bmatrix}, \text{ interchanging } R_1 \text{ and } R_3$$

$$\begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & 1 & 3 & 1 \\ 5 & 3 & 14 & 4 \end{bmatrix}, \text{ replacing } R_1 \text{ by } -R_1$$

$$\begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 8 & 24 & 4 \end{bmatrix}, \text{ replacing } R_3 \text{ by } R_3 - 5R_1$$

$$\begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 8 & 24 & 4 \end{bmatrix}, \text{ replacing } R_3 \text{ by } R_3 - 8R_2$$

$$\begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & -4 \end{bmatrix}, \text{ replacing } R_3 \text{ by } R_3 - 8R_2$$

This is a triangular matrix as here $a_{ij} = 0$ for i > j. [See definition § 3.14 Page 112]

Exercises on § 3-15

Ex. 1. Reduce the matrix
$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & 3 & 4 \\ 3 & -1 & 4 \end{bmatrix}$$
 to the triangular form.

Ans. $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Ex. 2. Reduce the matrix
$$\begin{bmatrix} -1 & 2 & 1 & 8 \\ 2 & 1 & -1 & 0 \\ 3 & 2 & 1 & 7 \end{bmatrix}$$
 to the triangular form.

Ans.
$$\begin{bmatrix} 1 & -2 & -1 & -8 \\ 0 & 5 & 1 & 16 \\ 0 & 0 & 12 & 27 \end{bmatrix}$$

MISCELLANEOUS SOLVED EXAMPLES

Ex. 1. Apply successively the row transfermations (or operation) R₂₃,

$$R_3$$
 (- 2) and R_{12} (4) to the matrix $\begin{bmatrix} 3 & 1 & 2 & 1 \\ 2 & 0 & 3 & 2 \\ 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 1 \end{bmatrix}$

Sol. (i). Applying R23 opertion to the given matrix we have

2 0 3 2 3 1 4 1

(ii) Applying R₃ (-2) operation to the given matrix we have

$$\begin{bmatrix} 3 & 1 & 2 & 1 \\ 2 & 0 & 3 & 2 \\ -2 & -4 & -6 & -8 \\ 3 & 1 & 4 & 1 \end{bmatrix}$$
 [Here we have replaced third row R_3 by $-2R_3$]

(iii) Applying R₁₂ (4) operation to the given matrix we have

[7 9 14 17] [Here we have replaced the first row
$$R_1$$
 by $R_1 + 4R_3$]
[1 2 3 4
[3 1 4 1]

Ex. 2. Apply successively the column operation C₁₃; C₂ (-4) and

C₂₃ (-2) to the matrix
$$\begin{bmatrix} 1 & -1 & 2 & 3 & 4 \\ 2 & 1 & -2 & 1 & 3 \\ 3 & 2 & 1 & -2 & 5 \\ 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$

Sol. (i) Applying C_{13} operation to the given matrix, we have

$$\begin{bmatrix} 2 & -1 & 1 & 2 & 4 \\ -2 & 1 & 2 & 1 & 3 \\ 1 & 2 & 3 & -2 & 5 \\ 6 & 5 & 4 & 7 & 8 \end{bmatrix}$$
 [Here we have interchanged C_1 and C_3

(ii) Applying C_2 (-4) operation to the given matrix, we have

$$\begin{bmatrix} 1 & 4 & 2 & 3 & 4 \\ 2 & -4 & -2 & 1 & 3 \\ 3 & -8 & 1 & -2 & 5 \\ 4 & -20 & 6 & 7 & 8 \end{bmatrix}$$
 [Here we have replaced second column C_2 by $-4C_2$].

(iii) Applying C_{23} (-2) operation to the given matrix, we have

$$\begin{bmatrix} 1 & -5 & 2 & 3 & 4 \\ 2 & 5 & -2 & 1 & 3 \\ 3 & 0 & 1 & -2 & 5 \\ 4 & -7 & 6 & 7 & 8 \end{bmatrix}$$
 [Here we have replaced second column C_2 by $C_2 - 2C_3$].

Ex. 3. Compute the following elementary matrices of order 4 (Refer § 3.04 Page 105) E_{23} , E_{2} (4), E_{34} (-2), E'_{34} (-2).

Sol. The identity (or unit) matrix of order four is given by

(i)
$$\mathbf{E_{23}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
[Interchanging R_2 and C_3]
$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(Note

(ii)
$$\mathbf{E_2}(4) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 [Replacing R_2 by $4R_2$ or C_2 by $4C_2$].

(iii) E₃₄ (-2) =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 [Replacing R_3 by $R_3 - 2R_4$].

(ii)
$$\mathbf{E}_{2}(4) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 [Replacing R_{2} by $4R_{2}$ or C_{2} by $4C_{2}$].
(iii) $\mathbf{E}_{34}(-2) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ [Replacing R_{3} by $R_{3} - 2R_{4}$].
(iv) $\mathbf{E}'_{34}(-2) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix}$ [Replacing C_{3} by $C_{3} - 2C_{4}$].

[Here students should note that $E'_{34}(-2)$ is nothing but the transpose matrix of E_{34} (-2)].

Ex. 4. Evaluate the inverse of the following elementary matrices of (Refer § 3.06 Page 167-168) order four : E₃ (-2), E₂₃ (4)

Sol. The identity matrix of order four is given by

$$\mathbf{L_4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(i) Then E₃ (-2) =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, replacing R_3 by $-2R_3$

:. Inverse of E₃ (-2) i.e.
$$\{E_3(-2)\}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ans.

(obtained by replacing R_3 of I_4 by $-\frac{1}{2}R_3$).

(Note)

(ii)
$$\mathbf{E}_{23}(4) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, replacing R_2 of \mathbf{I}_4 by $R_2 + 4R_3$.

Then the inverse of \mathbf{E}_{23} (4) i.e. $\{\mathbf{E}_{23}$ (4) $\}^{-1}$ is given by

inverse of E₂₃ (4) *i.e.* {E₂₃ (4)}⁻¹ is given by
$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & -4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$
, replacing R_2 of I₄ by $R_2 - 4R_3$.

(Note)

**Ex. 5. Find the inverse of the matrix
$$A = \begin{bmatrix} i & -1 & 2i \\ 2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} i & -1 & 2i \\ 2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} i & -1 & 2i \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(Replacing R_2 by $\frac{1}{2}R_2$)

$$\begin{bmatrix}
i & -1 & 2i \\
1 & 0 & 1 \\
0 & 0 & 2
\end{bmatrix}
\begin{bmatrix}
-\begin{bmatrix}
1 & 0 & 0 \\
0 & 1/2 & 0 \\
0 & 1/2 & 1
\end{bmatrix}$$

(Replacing R_3 by $R_3 + R_2$)

$$\begin{bmatrix}
i & -1 & 2i \\
1 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
-1 & 0 & 0 \\
0 & 1/2 & 0 \\
0 & 1/4 & 1/2
\end{bmatrix}$$

(Replacing R_3 by $\frac{1}{2}R_3$)

$$\begin{bmatrix}
i & -1 & 2i \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
-1 & 0 & 0 \\
0 & 1/4 & -1/2 \\
0 & 1/4 & 1/2
\end{bmatrix}$$

(Replacing R_2 by $R_2 - R_3$)

$$\begin{bmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
-\begin{bmatrix}
1 & -\frac{3}{4}i & -\frac{1}{2}i \\
0 & 1/4 & -1/2 \\
0 & 1/4 & 1/2
\end{bmatrix}$$

(Replacing R_1 by $R_1 - iR_2 - 2iR_3$)

$$\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
-1 & \frac{3}{4}i & \frac{1}{2}i \\
0 & 1/4 & -1/2 \\
0 & 1/4 & 1/2
\end{bmatrix}$$

(Replacing R_1 by $-R_1$)

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} = \mathbf{I} \begin{bmatrix}
0 & 1/4 & -1/2 \\
-1 & \frac{3}{4}i & \frac{1}{2}i \\
0 & 1/4 & 1/2
\end{bmatrix} = \mathbf{A}^{-1}$$

(Interchanging R1 and R2)

Therefore
$$A^{-1} = \begin{bmatrix} 0 & 1/4 & -1/2 \\ -1 & \frac{3}{4}i & \frac{1}{2}i \\ 0 & 1/4 & 1/2 \end{bmatrix}$$

Ans.

EXERCISES ON CHAPTER III

Ex. 1. Apply the row operation R_4 (-3) and R_{21} (4) to the matrix

$$\begin{bmatrix} 4 & -1 & 2 & 3 \\ -1 & 8 & -3 & -4 \\ 2 & 3 & 4 & -1 \\ -3 & -4 & -1 & 8 \end{bmatrix}$$

(Hint; See Ex. 1 Page 116)

Ans.
$$\begin{bmatrix} 4 & -1 & 2 & 3 \\ -1 & 8 & -3 & -4 \\ 2 & 3 & 4 & -1 \\ 9 & 12 & 3 & -24 \end{bmatrix}$$
 and
$$\begin{bmatrix} 4 & -1 & 2 & 3 \\ 15 & 4 & 5 & 8 \\ 2 & 3 & 4 & -1 \\ -3 & -4 & -1 & 8 \end{bmatrix}$$

Ex. 2. Apply the column operation C_3 (4) and C_{12} (-3) to the matrix

[Hint: See Ex. 2 Page 116]

Ans.
$$\begin{bmatrix} 0 & 1 & 8 & 3 & 4 \\ 1 & 2 & 12 & 4 & 0 \\ 3 & 4 & 0 & 1 & 2 \\ 2 & 0 & 4 & 3 & 4 \end{bmatrix} \text{ and } \begin{bmatrix} -3 & 1 & 2 & 3 & 4 \\ -5 & 2 & 3 & 4 & 0 \\ -9 & 4 & 0 & 1 & 2 \\ 2 & 0 & 1 & 3 & 4 \end{bmatrix}$$

Ex. 3. Compute E23, E2 (-2) and E34 (-1) for the identity matrix of order 4. (Hint. See Ex. 3 Page 117)

Ans.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ex. 4. Evaluate the inverse of the following elementary matrices of order 4: E14, E4 (3), E22 (2).

(Hint: See Ex. 4 Page 117).

Ans. E₁₄,
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ex. 5. Find the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & -4 \\
2 & 3 & 5 & -5 \\
3 & -4 & -5 & 8
\end{bmatrix}
\quad
\mathbf{Ans.} \ \frac{1}{18} \begin{bmatrix}
2 & 16 & 6 & 4 \\
22 & 41 & -30 & -1 \\
-10 & -44 & 30 & -2 \\
4 & -13 & 6 & -1
\end{bmatrix}$$

(Hint : See Ex. 5 Page 118).

*Ex. 6. Find the inverse of the matrix $\begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$

(Hint : See Ex. 5 Page 118).

Ans.
$$\frac{1}{14} \begin{bmatrix} 3 & -1 & 5 \\ 5 & 3 & -1 \\ -1 & 5 & 3 \end{bmatrix}$$

Ex. 7. Find the inverse of the matrix
$$\begin{bmatrix} 1 & 3 & 3 & 2 & 1 \\ 1 & 4 & 3 & 3 & -1 \\ 1 & 3 & 4 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 \\ 1 & -2 & -1 & 2 & 2 \end{bmatrix}$$

(Hint : See Ex. 5 Page 118).

Miscellaneous Solved Examples

121

Ans.
$$\frac{1}{15}$$

$$\begin{bmatrix}
30 & -20 & -15 & 25 & -5 \\
30 & -11 & -18 & 7 & -8 \\
-30 & 12 & 21 & -9 & 6 \\
-15 & 2 & 6 & -9 & 6 \\
15 & -7 & -6 & -1 & -1
\end{bmatrix}$$

Ex. 8. Has the following matrix an inverse?

$$\begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 2 & -1 & 4 \\ 3 & 3 & 2 & 5 \\ 1 & -1 & 4 & -1 \end{bmatrix}$$

(Hint: It can not be reduced to I4).

Ans. No