CHAPTER IV.

Determinants

§ 4.01. Permutations.

Def. The operation of rearranging n distinct elements of a set among themselves is called permutation.

Let S be a set defined by

$$
S=\left\{i_{1}, i_{2}, i_{3}, \ldots, i_{n}\right\} ; i_{m} \neq i_{k} \text { for } m \neq k .
$$

Let P be the transformation on S, such that $P\left(i_{1}\right)=a_{1}, P\left(i_{2}\right)=a_{2}$, $P\left(i_{3}\right)=a_{3}, \ldots, P\left(i_{n}\right)=a_{n}$, where $a_{1}, a_{2}, \ldots, a_{n}$ is some arrangement of the elements $i_{1}, i_{2} \ldots, i_{n}$ of S.

Then a two line notation for the permutation is

$$
P=\left(\begin{array}{ccc}
i_{1} & i_{2} & i_{3} \ldots i_{n} \\
a_{1} & a_{2} & a_{3} \ldots
\end{array}\right)
$$

(Note : The order of columns in this notation is immaterial).
If in a given permutation a larger integer precedes a smaller one then there is an inversion. For example in 452 we see that 5 precedes 2.

If in a given permutation the number of inversions is odd, the permutation is known as odd. For example the permutation 5312 is odd as in this permutation we observe that 5 precedes 3,5 precedes 1,5 precedes 2,3 precedes 1 and 3 precedes 2 i.e., there are five (i.e. odd) inversion in 5312

Similarly if in a given permutation the number of inversions is even the permutation is known as even. For example the permutation 5314 is even as in this permutation we observe that 5 precedes 3,5 precedes 1,5 precedes 4 and 3 precedes 1 .

Note: If there is no inversion the permutation is even, for example 345.
84.02. Determinant of a square matrix.

Let us consider a square matrix \mathbf{A} of order $n \times n$ given by

$$
\mathbf{A}=\left[\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & \ldots & a_{n n}
\end{array}\right]
$$

The product of the elements in the principal diagonal is

$$
a_{11} a_{22} a_{33} \ldots a_{n n} .
$$

This is also called the trace of the matrix.
Now obtain n ! terms of the above type by operating on the row-subscripts of the elements of the above expression by n ! permutations $p=\left(\begin{array}{ccc}1 & 2 & 3 \ldots, n \\ i_{1} & i_{2} & i_{3} \ldots \\ i_{n}\end{array}\right)$, where $i_{1}, i_{2} \ldots, i_{n}$ are one of the $n!$ permutations of the integers $1,2,3, \ldots, n$.

The sum of $n!$ signed terms thus obtained is defined as the determinants of the matrix \mathbf{A} and is denoted by $|\mathbf{A}|$ or $\left|a_{i j}\right|$.

Therefore the determinant of the square matrix $\mathbf{A}=\left[a_{i j}\right]$ of order $n \times n$ is given by

$$
\left|a_{i j}\right|=\Sigma \pm a_{\alpha_{1}} a_{\beta_{2}} a_{\gamma_{3}} a_{\delta_{4}} \ldots a_{k_{n}}
$$ where +or -sign is taken when $\alpha, \beta, \gamma, \delta, \ldots, k$ is an even or odd permutation of $1,2,3, \ldots, n$, and the summation extends over n ! permutations of the row subscripts $1,2,3, \ldots$

Note : The determinant of a square matrix of order n is known as a determinant of order n.

§ 4.03. Determinant of order two.

Let us consider asquare matrix $\mathbf{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ of order 2×2.
Then 2 ! permutation on two symbols 1 and 2 are

$$
I=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right), p=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

The product of the elements of the principal diagonal are $a_{11} a_{22}$.
Operating on the row subscripts of $a_{11} a_{22}$ by the permutation I we get $+a_{11} a_{22}$, prefixing $+\operatorname{sign}$ as the permutation I is even (See §4.01 Note) and by the permutation p we get $-a_{21} a_{12}$, prefixing - sign as the purmutation is odd.

Hence $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$

§ 4.04. Determinant of order three.

Let us consider a sqaure matrix $\mathbf{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ of order 3×3.
Then 3 ! permutations on three symbols 1,2 and 3 are

$$
\begin{aligned}
& i=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) ; p_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) ; p_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) ; \\
& p_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) ; p_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \text { and } p 5=\left(\begin{array}{llr}
1 & 2 & -3 \\
3 & 2 & 1
\end{array}\right)
\end{aligned}
$$

Operating on the row subscripts of $a_{11} a_{22} a_{33}$ by the permutation $I, p_{1}, p_{2}, \ldots p 5$ we have successively
(a) $+a_{11} a_{22} a_{33}$, prefixing + as permutation I is everi.
(b) - $a_{11} a_{32} a_{23}$, prefixing - as permutation p_{1} is odd
(c) $+a_{21} a_{32} a_{13}$, prefixing $+\operatorname{sign}$ as permutation p_{2} is even.
(d) $-a_{21} a_{12} a_{33}$, prefixing - sign as permutation p_{3} is odd.
(e) $+a_{31} a_{12} a_{23}$, prefixing + sign as permutation p_{4} is even.
(f) $-a_{31} a_{22} a_{13}$, prefixing - sign as permutation p_{5} is odd.

Hence we have

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\begin{array}{c}
a_{11} a_{22} \\
-a_{33}-a_{11}
\end{array} a_{32} a_{23}+a_{21} a_{32} a_{13} . \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

Solved Examples on § 4.02 to $\$ 4.04$.
Ex. 1. Evaluate $\left|\begin{array}{rr}-5 & 0 \\ 7 & -2\end{array}\right|$
Sol. $\left|\begin{array}{rr}-5 & 0 \\ 7 & -2\end{array}\right|=(-5)(-2)-0 \times 7=10-0=10$.
Ans.
Ex. 2. Evaluate $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|$
Sol. $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|=1\{5.9-6.8\}-2(4.9-6.7)+3\{4.8-5.7\}$,

$$
\begin{aligned}
& =1\{45-48\}-2(36-42\}+3\{32-35) \\
& =-3+12-9=0
\end{aligned}
$$

Ans.
Exercise
Ex. Show that $\left|\begin{array}{rr}2 & 5 \\ -3 & 7\end{array}\right|=29$

8 4.05. Cofactor of an element.

Definition. If in the expansion of a determinant $\left|a_{i j}\right|$, all the terms containing $a_{i j}$ as a factor are collected and their sum be denoted by $a_{i j} C_{i j}$, then the factor $C_{i j}$ is defined as the cofactor of the element $a_{i j}$.

From the above definition we find that if $\left[a_{i j}\right]$ be the $n \times n$ matrix whose determinant is $\left|a_{i j}\right|$ then if from [$a_{i j}$] the element of its i th row and j th column are removed, the terms of $C_{i j}$ are then composed of elements from the remaining $(n-1) \times(n-1)$ sub-matrix $M_{i j}$ of [$a_{i j}$].

Hence the determinant $\left|a_{i j}\right|$ can be expressed as a function of the elements of i th row, by collecting all the terms containing $a_{i 1}, a_{i 2}, a_{i 3}, \ldots, a_{i j}$ and finding their sum i.e.

$$
\begin{aligned}
\left|a_{i j}\right| & =a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n} \\
& =\sum_{j=1}^{n} a_{i j} C_{i j}
\end{aligned}
$$

which is the expansion of the determinant $\left|a_{i j}\right|$ by the elements of the i th row and their cofactors.

In a similar manner we can expand the determinant $\left|a_{i j}\right|$ by the elements of the k th column and their cofactors and write as

$$
\left|a_{i j}\right|=\sum_{k=1}^{n} a_{i k} C_{i k}
$$

Example : Expand the determinant $\left|\begin{array}{lll}\text { a } & \text { h } & \text { g } \\ \text { h } & \text { b } & \text { f } \\ \text { g } & \text { f } & \text { c }\end{array}\right|$

by the elements of 1st row.

Sol. Elements of first row are a, h, g.
Let A, H and G denote the cofactors of a, h, g.
Then $A=\left|\begin{array}{ll}b & f \\ f & c\end{array}\right| ; H=-\left|\begin{array}{ll}h & f \\ g & c\end{array}\right|$ and $G=\left|\begin{array}{ll}h & b \\ g & f\end{array}\right|$
Hence $\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|=a A+h H+g G$
See. § 4.04 above

$$
\begin{aligned}
& =a\left|\begin{array}{ll}
b & f \\
f & c
\end{array}\right|-h\left|\begin{array}{ll}
h & f \\
g & c
\end{array}\right|+g\left|\begin{array}{ll}
h & b \\
g & f
\end{array}\right| \\
& =a\left(b c-f^{2}\right)-h(c h-f g)+g(h f-b g) \\
& =a b c+2 f g h-a f^{2}-b g^{2}-c h^{2} .
\end{aligned}
$$

Ans.
*§ 4.C6. Properties of Determinants.
Prop I. If the elements of ith row (or ith column) of the determinant $\left|a_{i j}\right|$ are multiplitd by a scalar c then the resulting determinant is $c\left|a_{i j}\right|$.
(Gorakhpur 93)
Proof : We can write $\left|a_{i j}\right|=\sum_{j=1}^{n} a_{i j} C_{i j} \quad$... See $\S 4.05$ above.
In this case, the resulting determinant (when the elements of i th row are multiplied by c)

$$
=\sum_{j=1}^{n} c a_{i j} C_{i j}=c \sum_{j=1}^{n} a_{i j} C_{i j}=c\left|a_{i j}\right| .
$$

Similarly we can prove that statement when elements of k th column are multiplied by c.

Prop II. If $\mathbf{A}=\left[a_{i j}\right]$ is an $n \times n$ matrix then $\left|\mathbf{A}^{\prime}\right|=|\mathbf{A}|$, where \mathbf{A}^{\prime} is the transpose of the matrix \mathbf{A}. (Sce § 2.08 Page 69)
Proof : If $\mathbf{A}=\left[a_{i j}\right]$, then $\mathbf{A}^{\prime}=\left[a^{\prime}{ }_{i j}\right]$, where $a^{\prime}{ }_{i j}=a_{j i}$. .
Now the product of elements of the principal diagonal of A^{\prime}

$$
=a^{\prime} 11 a^{\prime} 22 a^{\prime} 33 \ldots a_{n n}^{\prime} .
$$

Operating on the row subscripts of the elements of this product by the permutation $p=\left(\begin{array}{ccc}1 & 2 & 3 \ldots n \\ i_{1} & i_{2} & i_{3} \ldots i_{n}\end{array}\right)$, where $i_{1}, i_{2}, i_{3}, \ldots$ are $1,2,3, \ldots$ in some order, we have $\pm a_{i 11}^{\prime} a_{i 22}^{\prime} a_{i 33 \ldots}^{\prime} \ldots a_{i n n}^{\prime}$ as a term of $\left|\mathrm{A}^{\prime}\right|$ plus or minus sign to be taken according as p is even or odd.

Now as $a_{i j}=a_{j i}$, so we have
$a_{i 11}^{\prime} a_{i 22}^{\prime} a_{i 33 \ldots}^{\prime} \ldots a_{i n n}^{\prime}=a_{1 i 1} a_{2 i 2} a_{3 i 3} \ldots a_{\text {nin }}$
The term $a_{1 i 1} a_{2 i 2} \ldots a_{n i n}$ can be obtained from the term $a_{i 1 i 1} a_{i 2 i 2} a_{i 3 i 3 \ldots} a_{\text {inin }}$ by opperating on its row subscripts the permutation

$$
p^{\prime}=\left(\begin{array}{ccc}
i_{1} & i_{2} & i_{3} \ldots i_{n} \\
1 & 2 & 3 \ldots n
\end{array}\right)=p^{-1}
$$

Hence p^{\prime} is even or odd according as p is even or odd. Therefore the term $\pm a_{i 11}^{\prime} a^{\prime}{ }_{i 22} a^{\prime}{ }_{i 33} \ldots a_{i n n}^{\prime}$ of $\left|\mathbf{A}^{\prime}\right|$ is also a term of $|\mathbf{A}|$.

We can thus prove that every one of the $n!$ terms of $\left|\mathbf{A}^{\prime}\right|$ is a term of | A I. Hence the property.

For example, if $|\mathbf{A}|=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|-\left(\left.\begin{array}{ll}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\left|-a_{2}\right| \begin{array}{ll}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\left|+a_{3}\right| \begin{array}{ll}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array} \right\rvert\,, ~ l\right.$ $=a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}$.
Then $\left|\mathbf{A}^{\prime}\right|=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$

$$
\begin{aligned}
& =a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right| \\
& =a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}+a_{3} b_{1} c_{2}+a_{2} b_{3} c_{1}-a_{3} b_{2} c_{1}
\end{aligned}
$$

$\therefore\left|A^{\prime}\right|=|\mathbf{A}|$.
(Gorakhpur 95)
Prop. III. If B is obtained from \mathbf{A} by interchanging two rows (or columns) then $|\mathbf{B}|=-|\mathbf{A}|$.

Proof : Let us suppose that s th and th columns of the determinant \mathbf{A} are interchanged where $s<t$.

Let $\mathbf{A}=\left[\begin{array}{cccccccc}a_{11} & a_{12} & \ldots & a_{1 s} & \ldots & a_{1 t} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 s} & \ldots & a_{2 t} & \ldots & a_{2 n} \\ \ldots & \ldots \\ a_{i 1} & a_{i 1} & \ldots & a_{i s} & \ldots & a_{i t} & \ldots & a_{i n} \\ \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n s} & \ldots & a_{n t} & \ldots & a_{n n}\end{array}\right]$
Then the trace of A i.e. the product of the elements of the principal

If the s th and t th columns are interchanged the product of the elements of the principal diagonal of \mathbf{B}

$$
=a_{11} a_{22} \ldots a_{s s} \ldots a_{t t} \ldots a_{n n}
$$

(Note)
In order to have a term of $|\mathbf{A}|$, let us operate on the row subscripts of the trace of.A by the permutation

$$
p=\left(\begin{array}{cccccccc}
1 & 2 & \ldots & s & \ldots & t & \ldots & n \\
i_{1} & i_{2} & \ldots & i_{s} & \ldots & i_{t} & \ldots & i_{n}
\end{array}\right)
$$

Then we have $a_{i 11} a_{i 22} \ldots a_{i s s} \ldots a_{i t t} \ldots a_{i n n}$.
This terms can also be obtained from the trace of \mathbf{B} by operating on its row subscripts by the permutation

$$
p^{\prime}=\left(\begin{array}{cccccccc}
1 & 2 & \ldots & s & \ldots & t & \ldots & n \\
i_{1} & i_{2} & \ldots & i_{t} & \ldots & i_{s} & \ldots & i_{n}
\end{array}\right)
$$

Here we observe that $p^{\prime}=p\left(i_{s} i_{t}\right)$, since $\left(i_{s} i_{t}\right)$ is a transposition. Therefore p^{\prime} is odd or even according as p is even or odd. Hence the term $\pm a_{i 11} a_{i 22} \ldots a_{i s s} \ldots a_{i t t} \ldots a_{i n n}$ is also a term of | $\mathbf{B} \mid$ but with its sign changed. Thus every one of the $n!$ terms of $|\mathbf{A}|$ is a term of $|\mathbf{B}|$ but with sign changed.

Hence $|\mathbf{B}|=-|\mathbf{A}|$.
Example : Let $|\mathbf{A}|=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
Let the determinant $|\mathbf{B}|$ be formed by interchanging second and third columns.

Then $|\mathbf{B}|=\left|\begin{array}{lll}a_{1} & a_{3} & a_{2} \\ b_{1} & b_{3} & b_{2} \\ c_{1} & c_{3} & c_{2}\end{array}\right|$
Exapanding | $\mathrm{B} \mid$ by the elements of its first row, we get

$$
\begin{aligned}
& |\mathbf{B}|=a_{1}\left|\begin{array}{ll}
b_{3} & b_{2} \\
c_{3} & c_{2}
\end{array}\right|-a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|+a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right| \\
& =a_{1}\left(b_{3} c_{2}-b_{2} c_{3}\right)-a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)+a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right) \\
& =-\left[a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)\right] \\
& =-\left[a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|\right] \\
& =-\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=-|\mathbf{A}| .
\end{aligned}
$$

Prop. IV. If two rows or two columns of a determinant $|\mathbf{A}|$ are identical then $|\mathrm{A}|=0$.

Proof : In Prop. III above we have proved that if any two rows or columns of a determinart are interchanged then the value of the determinant changes in sign only.

Thus if the two identical columns (or rows) of a determinant are interchanged, then the cisterminant does not change but its sign only changes.

Hence $|\mathbf{A}|=-|\mathbf{A}|$ i.e. $|\mathbf{A}|+|\mathbf{A}|=0$ i.e. $|\mathbf{A}|=0$.
Example : Evaluate $\left|\begin{array}{lll}a_{1} & a_{2} & a_{1} \\ b_{1} & b_{2} & b_{1} \\ c_{1} & c_{2} & c_{1}\end{array}\right|$
Expanding the determinant with respect to the first row we have the given determinant

$$
\begin{aligned}
& =a_{1}\left|\begin{array}{ll}
b_{2} & b_{1} \\
c_{2} & c_{1}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{1} \\
c_{1} & c_{1}
\end{array}\right|+a_{1}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
& =a_{1}\left(b_{2} c_{1}-b_{1} c_{2}\right)-a_{2}\left(b_{1} c_{1}-b_{1} c_{1}\right)+\dot{a}_{1}\left(b_{1} c_{2}-b_{2} c_{1}\right) \\
& =a_{1} b_{2} c_{1}-a_{1} b_{1} c_{2}-a_{2}(0)+a_{1} b_{1} c_{2}-a_{1} b_{2} c_{1}=0 .
\end{aligned}
$$

*§ 4.07. Minor of an element.

Definition : If $\mathbf{M}_{i j}$ be the $(n-1) \times(n-1)$ sub-matrix of the matrix $\mathbf{A}=\left[a_{i j}\right]$ obtained by removing the i th row and j th column, then the determinant $\left|\mathbf{M}_{i j}\right|$ is defined as the minor of the element $a_{i j}$ in the determinant $\left|a_{i j}\right|$ of order n.

8 4.08. Theorem. The cofactor $C_{i j}$ of the element $a_{i j}$ in the determinant $\left|a_{i j}\right|$ is given by $C_{i j}=(-1)^{i+j}\left|\mathbf{M}_{i j}\right|$.

Proof : Let us first of all prove the case $C_{11}=(-1)^{2}\left|\mathbf{M}_{11}\right|$. i.e. $C_{11}=\left|\mathrm{M}_{11}\right|$.

The tems in C_{11} are composed of elements taken from the $(n-1) \times(n-1)$ sub-matrix \mathbf{M}_{11} of \mathbf{A}.

The general term of $a_{11} C_{11}= \pm a_{11} a_{i 22} a_{i 33} \ldots a_{i n n}$, where $i_{2}, i_{3}, \ldots, i_{n}$ are $2,3, \ldots, n$ in some order.

This term can also be obtained from the trace of matrix A i.e. the product of the elements of the diagonal of the matrix \mathbf{A} i.e. $a_{11} a_{22} a_{33} \ldots a_{n n}$, by operating on its row subscripts by the permutation $p=\left(\begin{array}{lll}1 & 2 & 3 \ldots n \\ i_{1} & i_{2} & i_{3} \ldots i_{n}\end{array}\right)$, where $i_{2}, i_{3}, \ldots, i_{n}$ are defined as above.

Thus the permutation p may be regarded as a permutation on the symbols $2,3, \ldots, n$. Hence all the terms of $a_{11} C_{11}$ can be obtained by running p through the $(n-1)$! permutations of the symbols $2,3, \ldots, n$ keeping 1 fixed.

Thus the terms of C_{11} can be obtained by operating on the row subscripts of the elements of the product $a_{22} a_{33} \ldots a_{n n}$, which is the product of the elements of the diagonal of \mathbf{M}_{11} i.e. the trace of \mathbf{M}_{11}.

Hence $C_{11}=\left|\mathrm{M}_{11}\right|$.
Now let us prove $C_{i j}=(-1)^{i+j}\left|\mathbf{M}_{i j}\right|$.
Move the j th column of the matrix A to the first column by performing $(j-1)$ successive interchanges of adjacent columns and move the ith row of the matrix A to the first row by performing ($i-1$) successive interchanges of adjacent rows. Then the element $a_{i j}$ is in the first row and first column of the resulting matrix \mathbf{B}, say. The sub-matrix of \mathbf{B} obtained by removing the first row and first column is the sub-matrix $\mathbf{M}_{i j}$ of the matrix \mathbf{A}. Hence $a_{i j}\left|\mathbf{M}_{i j}\right|$ is the term of | B | containing $a_{i j}$.

Also we know that if two rows or two columns of determinant $|A|$ are interchanged, the new determinant $=-|A|$.
\therefore We have $|\mathbf{B}|=(-1)^{i-1+j-1}|\mathbf{A}|$ $=(-1)^{i+j}(-1)^{-2}|\mathbf{A}|$

$$
=(-1)^{i+j}|\mathbf{A}|, \because(-1)^{-2}=1
$$

$$
|\mathbf{A}|=(-1)^{i+j}|\mathbf{B}|
$$

Equating the coefficients of $a_{i j}$ from both sides, we have

$$
C_{i j}=(-1)^{i+j}\left|\mathbf{M}_{i j}\right| .
$$

*§ $\mathbf{4 0 9}$. Theorem. If $C_{i j}$ is the cofactor of $a_{i j}$ in the determinant $|\mathbf{A}|=\left|a_{i j}\right|$ of order n, then (i) the sum of the products of the elements of the i ith row with the cofactors of the corresponding elements of the k th row is zero provided $i \neq k$.
(ii) Also the sum of the products of the elements of the j th column with the cofactors of the corresponding elements of the k th column is zero provided $j \neq k$.
i.e.
(i) $\sum_{j=1}^{n} a_{i j} C_{k}=0$, if $i \neq k$.
(ii) $\sum_{j=1}^{n} a_{i j} C_{i k}=0$, if $j \neq k$.

Proof: (i) The given determinant $|\mathbf{A}|=\sum_{j=1}^{n} a_{k j} C_{k j}$.
Now eplace the kth row by ith row, then we have the new determinant

$$
=\sum_{j=1}^{n} a_{i j} c_{k j} .
$$

But the kth and ith rows of the new determinant are identical, hence its value is zero.

$$
\therefore \quad \sum_{i=1}^{n} a_{i j} C_{k j}=0 .
$$

(ii) The given determinant $|\mathbf{A}|=\sum_{i=1}^{n} a_{i k} C_{i k}$.

Now replace the kth column by jth column, then we have the new determinant

$$
=\sum_{i=1}^{n} a_{i k} C_{i j .} .
$$

But the k th and j th columns of the new determinant are identical, hence its value is zero.

$$
\therefore \sum_{i=1}^{n} a_{i j} C_{i k}=0
$$

** Example. In the determinant $|A|=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ 23 & b_{3} & c_{3}\end{array}\right|$ prove that
$a_{1} A_{2}+b_{1} B_{2}+c_{1} C_{2}=0, b_{1} C_{3}+b_{2} C_{2}+b_{3} C_{3}=0$ and $c_{1} B_{1}+c_{2} B_{2}+c_{3} B_{3}=0$, where capital letters dentoe the cofactors of the corresponding small letters.

Also prove that
$a_{1} A_{1}+b_{1} B_{1}+c_{1} C_{1}=|A|=a_{2} A_{2}+b_{2} B_{2}+c_{2} C_{2}=a_{3} A_{3}+b_{3} B_{3}+c_{3} C_{3}$.
Sol. In the det. $|\mathbf{A}|=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ we have
$A_{1}=\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right| ; A_{2}=-\left|\begin{array}{ll}b_{1} & c_{1} \\ b_{3} & c_{3}\end{array}\right| ; B_{1}=-\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right| ; B_{2}=\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{3} & c_{3}\end{array}\right| ;$
$B_{3}=-\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right| ; C_{1}=\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right| ; C_{2}=-\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{3} & b_{3}\end{array}\right| ; A_{3}=\left|\begin{array}{ll}b_{1} & c_{1} \\ b_{2} & c_{2}\end{array}\right|$
$C_{3}=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
$\therefore a_{1} A_{2}+b_{1} B_{2}+c_{1} C_{2}$
$=-a_{1}\left|\begin{array}{ll}b_{1} & c_{1} \\ b_{3} & c_{3}\end{array}\right|+b_{1}\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{3} & c_{3}\end{array}\right|-c_{1}\left|\begin{array}{ll}a_{0} & b_{1} \\ a_{3} & b_{3}\end{array}\right|$
$=-a_{1}\left(b_{1} c_{3}-b_{3} c_{1}\right)+b_{1}\left(a_{1} c_{3}-a_{3} c_{1}\right)-c_{1}\left(a_{1} b_{3}-a_{3} b_{1}\right)$.
$=0$, on simplifying.
$b_{1} c_{1}+b_{2} C_{2}+b_{3} c_{3}=b_{1}\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|-b_{2}\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{3} & b_{3}\end{array}\right|+b_{3}\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
$=b_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)-b_{2}\left(a_{1} b_{3}-a_{3} b_{1}\right)+b_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)$
$=0$, on simplifying.
In a similar way the remaining part can also be proved.

$$
\begin{align*}
\text { Also }|A| & =\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \\
& =a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|, \tag{i}
\end{align*}
$$

expanding with respect to first row.

$$
\left.\begin{array}{l}
\text { Again } a_{1} A_{1}+b_{1} B_{1}+c_{1} c_{1} \\
=a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|+b_{1}\left\{\left.\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array} \right\rvert\,\right\}+c_{1}\left|\begin{array}{ll}
a_{2} & b^{1} \\
a_{3} & b_{3}
\end{array}\right| \\
=a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right| \\
=|A|, \text { from (i) }
\end{array}\right] \begin{aligned}
& \text { Similary } a_{2} A_{2}+b_{2} B_{2}+c_{2} c_{2} \\
& =a_{2}\left\{-\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|\right\}+b_{2}\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{3} & c_{3}
\end{array}\right|+c_{2}\left\{-\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right|\right\} \\
& =-a_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+b_{2}\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{3} & c_{3}
\end{array}\right|-c_{2}\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right| \\
& \text { Also }|A|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \\
& =-a_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+b_{2}\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{3} & c_{3}
\end{array}\right|-c_{2}\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right|,
\end{aligned}
$$

expanding with respect to second row.
\therefore From (ii) and (iii), we get $a_{2} A_{2}+b_{2} B_{2}+c_{2} C_{2}=|A|$.
In a similar way we can prove that $a_{3} A_{3}+b_{3} B_{3}+c_{3} C_{3}=|A|$, by expanding |A| with respect to third row.
84.10. An Important Property of the Determinant.
(a) If A_{i}, the ith row of a determinant $|\mathbf{A}| x\left|a_{i j}\right|$ of order n, be replaced by $A_{i}+c A_{k}$. where c is a scalar and A_{k} denotes the kth row of the determinant $|\mathrm{A}|$, then the value of the determinant remains unaltered.
(Gorakhpur 94)
Proof : The determinant $|\mathbf{A}|=\sum_{j=1}^{n} a_{i j} C_{i j}$,
Replacing A_{i} by $A_{i}+c A_{k}$ we get the new determinant $|\mathrm{B}|$, say.

$$
\text { Ther } \begin{aligned}
|B| & =\sum_{j=1}^{n}\left(a_{i j}+c a_{k j}\right) C_{i j} \\
& =\sum_{j=1}^{n} a_{i j} c_{i j}+c \sum_{j=1}^{n} a_{k j} c_{i j}
\end{aligned}
$$

$$
=|\mathbf{A}|+c .0
$$

i.e. $|\mathbf{B}|=|\mathbf{A}|$.
(b) If C_{i}, the ith column of determinant $|\mathrm{A}|=\left|a_{i j}\right|$ of order n be replace.l by $C_{i}+\lambda C_{k}$, where λ is a scalar and C_{k} dentoes the k th column of $|\mathrm{A}|$, then the value of the determinant remains unaltered

Proof is similar to part (a) above.
Solved Examples on the Evaluation of Determinants :
In the following examples $R_{1}, R_{2}, R_{3}, \ldots$ stand for first, second, third, \ldots rows and $C_{1}, C_{2}, C_{3}, \ldots$ stand for first, second, third... columns.

Ex. 1. Without expanding the determinants, prove that

$$
\left|\begin{array}{lll}
a & b & c \\
x & y & z \\
p & q & r
\end{array}\right|=\left|\begin{array}{lll}
y & b & q \\
x & a & p \\
z & c & r
\end{array}\right|=\left|\begin{array}{lll}
x & y & z \\
p & q & r \\
a & b & c
\end{array}\right|
$$

Sol. $\left|\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right|=-\left|\begin{array}{lll}x & y & z \\ a & b & c \\ p & q & r\end{array}\right|$, interchanging R_{1} and R_{2}

$$
=\left|\begin{array}{lll}
x & y & z \\
p & q & r \\
a & b & c
\end{array}\right| \text {, interchanging } R_{2} \text { and } R_{3}
$$

Hence proved.
Again $\left|\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right|=\left|\begin{array}{lll}a & x & p \\ b & y & q \\ c & z & r\end{array}\right|$, interchanging rows and columns

$$
=-\left|\begin{array}{lll}
x & a & p \\
y & b & q \\
z & c & r
\end{array}\right| \text { interchanging } C_{1} \text { and } C_{2}
$$

$$
=\left|\begin{array}{lll}
y & b & q \\
x & a & p \\
z & c & r
\end{array}\right| \text { interchanging } R_{1} \text { and } R_{2}
$$

Hence proved.
Ex. 2 (a). Evaluate $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$
Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{lll}
1 & a & a+b+c \\
1 & b & a+b+c \\
1 & c & a+b+c
\end{array}\right| \text {, replacing } C_{3} \text { by } C_{3}+C_{2} \\
& =(a \div b+c)\left|\begin{array}{ccc}
1 & a & 1 \\
1 & b & 1 \\
1 & c & 1
\end{array}\right| \text {, taking out }(a+b+c) \text { common from } C_{3}
\end{aligned}
$$

$=0$, since two columas are identucal.
Ans.
Ex. 2. (b). Evaluate $\left|\begin{array}{lll}13 & 16 & 19 \\ 14 & 17 & 20 \\ 15 & 18 & 21\end{array}\right|$

Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{lll}
13 & 16 & 3 \\
14 & 17 & 3 \\
15 & 18 & 3
\end{array}\right| \text {, replacing } C_{3} \text { by } C_{3}-C_{2} \\
& =\left|\begin{array}{lll}
13 & 3 & 3 \\
14 & 3 & 3 \\
15 & 3 & 3
\end{array}\right| \text {, replacing } C_{2} \text { by } C_{2}-C_{1} \\
& =0 \text {, since two columns are identical. } \\
& \text { Ex. 3. Evaluate }\left|\begin{array}{lll}
265 & 240 & 219 \\
240 & 225 & 198 \\
219 & 198 & 181
\end{array}\right|
\end{aligned}
$$

Ans.
(Kanpur 90)
Sol. Given determinant

$$
=4 \times 0=0
$$

Ex. 4. Evaluate $\left|\begin{array}{llll}\mathbf{a} & -\mathbf{a} & -\mathbf{a} & -\mathbf{a} \\ \mathrm{b} & -\mathbf{b} & -\mathrm{b} & -\mathrm{b} \\ \mathrm{c} & -\mathrm{c} & -\mathrm{c} & -\mathrm{c} \\ \mathrm{d} & -\mathrm{d} & -\mathrm{d} & -\mathrm{d}\end{array}\right|$
Sol. Since three columns of the given determinant are identical, so the value of the determinant is zero.

Ans.
Ex. 5. (a) Evaluate $\left|\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3\end{array}\right|$.
Sol. The given determinant
$=\left|\begin{array}{llll}10 & 2 & 3 & 4 \\ 10 & 3 & 4 & 1 \\ 10 & 4 & 1 & 2 \\ 10 & 1 & 2 & 3\end{array}\right|$, replacing C_{1} by $C_{1}+C_{2}+C_{3}+C_{4}$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
25 & 21 & 219 \\
15 & 27 & 198 \\
21 & 17 & 181
\end{array}\right| \text {, replacing } C_{1}, C_{2} \text { by } C_{1}-C_{2}, C_{2}-C_{3} \text { respectively } \\
& =\left|\begin{array}{rrr}
4 & 21 & 9 \\
-12 & 27 & -72 \\
4 & 17 & 11
\end{array}\right|, \begin{array}{r}
\text { replacing } C_{1}, C_{3} \text { by } C_{1}-C_{2}, \\
C_{3}-10 C_{2} \text { respectively }
\end{array} \\
& =\left|\begin{array}{rrr}
0 & 4 & -2 \\
0 & 78 & -39 \\
4 & 17 & 11
\end{array}\right| \text {, replacing } R_{1}, R_{2} \text { by } R_{1}-R_{3}, R_{2}+3 R_{3} \text { respectively } \\
& =4\left|\begin{array}{rr}
4 & -2 \\
78 & -39
\end{array}\right| \text {. expanding with respect to } C_{1} \\
& =4\left|\begin{array}{cc}
0 & -2 \\
0 & -39
\end{array}\right| \text {, replacing } C_{1} \text { by } C_{1}+2 C_{2} \text {. }
\end{aligned}
$$

Ans.

Sol. The given determinant
$=\left|\begin{array}{rrrrr}0 & 1 & 1 & 1 & 1 \\ 0 & -4 & 1 & 1 & 1 \\ 0 & 1 & -4 & 1 & 1 \\ 0 & 1 & 1 & -4 & 1 \\ 0 & 1 & 1 & 1 & -4\end{array}\right|$, replacing C_{1} by $C_{1}+C_{2}+C_{3}+C_{4}+C_{5}$
$=0$, expanding with respect to elements of first column.
*Ex. 6. Evaluate $\left|\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right|$
Sol. The given detesminant
$=-\left|\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ \sin \theta & 0 & \cos \theta \\ 0 & 1 & 0\end{array}\right|$, interchanging C_{2} and C_{3}

$$
\begin{aligned}
& =10\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 1 \\
1 & 4 & 1 & 2 \\
1 & \mathrm{r} & 2 & 3
\end{array}\right| \text {, taking out } 10 \text { common from } C_{1} \\
& =10\left|\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & -3 \\
0 & 2 & -2 & -2 \\
0 & -1 & -1 & -1
\end{array}\right| \begin{array}{l}
\text { replacing } R_{2}, R_{3}, R_{4} \text { by } R_{2}-R_{1}, \\
R_{3}-R_{1} \text { and } R_{4}-R_{1} \\
\text { respectively }
\end{array} . \\
& =10\left|\begin{array}{rrr}
1 & 1 & -3 \\
2 & -2 & -2 \\
-1 & -1 & -1
\end{array}\right| \text {, expanding with respect to } C_{1} \\
& =-20\left|\begin{array}{rrr}
1 & 1 & -3 \\
1 & -1 & -1 \\
1 & 1 & 1
\end{array}\right| \text {, taking out } 2 \text { common from } R_{2} \text { and }-1 \text { from } R_{3} \\
& =-20\left|\begin{array}{rrr}
1 & 1 & -3 \\
0 & -2 & 2 \\
0 & 0 & 4
\end{array}\right| \text {, replacing } R_{2} \text { and } R_{3} \text { by } R_{2}-R_{1} \text { and } \\
& =-20\left|\begin{array}{rr}
-2 & 2 \\
0 & 4
\end{array}\right| \text {, expanding with respect to } C_{1} \\
& =-20[(-2) \cdot 4-0 \cdot 2]=-20[-8]=160 \text {. } \\
& \text { Ex. } 5 \text { (b) Evaluate }\left|\begin{array}{rrrrr}
-4 & 1 & 1 & 1 & 1 \\
1 & -4 & 1 & 1 & 1 \\
1 & 1 & -4 & 1 & 1 \\
1 & 1 & 1 & -4 & 1 \\
1 & 1 & 1 & 1 & -4
\end{array}\right|
\end{aligned}
$$

$=\left|\begin{array}{ccc}0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \\ 1 & 0 & 0\end{array}\right|$, interchanging C_{1} and C_{2}
$=\left|\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$, expanding with respect to C_{1}
$=\cos \theta \cdot \cos \theta-(-\sin \theta) \sin \theta=\cos ^{2} \theta+\sin ^{2} \theta=$
Ex. 7. Evaluate $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|$
Ans.

Sol. The given determinant
$=\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & x & 0 \\ 0 & 0 & y\end{array}\right|$, replacing R_{2} by $R_{2}-R_{1}$ and R_{3} by $R_{3}-R_{1}$
$=1 \times\left|\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right|$, expanding with respect to the first column,
$=x y$.
**Ex. 8. Evaluate $\left|\begin{array}{llll}\mathbf{1}^{2} & \mathbf{2}^{\mathbf{2}} & \mathbf{3}^{\mathbf{2}} & \mathbf{4}^{2} \\ \mathbf{2}^{\mathbf{2}} & \mathbf{3}^{\mathbf{2}} & \mathbf{4}^{\mathbf{2}} & \mathbf{5}^{\mathbf{2}} \\ \mathbf{3}^{\mathbf{2}} & \mathbf{4}^{\mathbf{2}} & \mathbf{5}^{\mathbf{2}} & \mathbf{6}^{\mathbf{2}} \\ \mathbf{4}^{\mathbf{2}} & \mathbf{5}^{\mathbf{2}} & \mathbf{6}^{\mathbf{2}} & \mathbf{7}^{\mathbf{2}}\end{array}\right| \quad$ (Meerut 97; Purvanchal 97)
Sol. The given determinant
$\left.=\left|\begin{array}{rrrr}1 & 4 & 9^{\prime} & 16 \\ 4 & 9 & 16 & 25 \\ 9 & 16 & 25 & 36 \\ 16 & 25 & 36 & 49\end{array}\right| . \quad 0 \right\rvert\,, ~$ replacing C_{2}, C_{3}, C_{4} by $C_{2}-4 C_{1}$,
$=(-1)^{3}\left|\begin{array}{rrr}7 & 20 & 39 \\ 20 & 56 & 108 \\ 39 & 108 & 207\end{array}\right|$, expanding with respect to first row
$=-\left|\begin{array}{rrr}7 & -1 & -1 \\ 20 & -4 & -4\end{array}\right|, \begin{gathered}\text { replacing } C_{2} \text { and } C_{3} \text { by } C_{2}-3 C_{1} \text { and } \\ C_{3}-2 C_{2} \text { repsectively. }\end{gathered}$
$=0$, as two columns are identical.
Ans.
Ex. 9. Evaluate $\left|\begin{array}{rrrr}5 & 7 & 10 & 14 \\ 2 & 3 & 7 & 6 \\ 3 & 3 & 6 & 9 \\ 5 & 6 & 11 & 20\end{array}\right|$

Sol. The given determinant

Now expand with respect to 1 st row and proceed as in Ex. 8 Page 135

$$
\text { Ex. 10. Show that }\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\alpha & \beta & \gamma & \delta \\
\beta+\gamma & \gamma+\delta & \delta+\alpha & \alpha+\beta \\
\delta & \alpha & \beta & \gamma
\end{array}\right|=0
$$

Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\alpha & \beta & \gamma & \delta \\
\beta+\gamma & \gamma+\delta & \delta+\alpha & \alpha+\beta \\
\alpha+\beta+\gamma+\delta & \alpha+\beta+\gamma+\delta & \alpha+\beta+\gamma+\delta & \alpha+\beta+\gamma+\delta
\end{array}\right| \\
& =(\alpha+\beta+\gamma+\delta) \left\lvert\, \begin{array}{cccc}
\text { replacing } R_{4} \text { by } R_{2}
\end{array}\right. \\
& \left.\begin{array}{cccc}
\alpha & 1 & 1 & 1 \\
\alpha & \beta & \gamma & \delta \\
\beta+\gamma & \gamma+\delta & \delta+\alpha & \alpha+\beta \\
1, & 1 & 1 & 1
\end{array} \right\rvert\,,
\end{aligned}
$$

taking out $(\alpha+\beta+\gamma+\delta)$ common from R_{4}.
$=0$, since two rows are identical.
Ex. 11. Evaluate $\left|\begin{array}{rrrrr}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 69\end{array}\right|$
Hence proved.

Sol. The given determinant

$=\left|\begin{array}{rrrrr}1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 3 & 4 \\ 1 & 2 & 5 & 9 & 14 \\ 1 & 3 & 9 & 19 & 34 \\ 1 & 4 & 14 & 34 & 68\end{array}\right|$, replacing C_{2}, C_{3}, C_{4} and C_{5} by $C_{2}-C_{1}$,
$=\left|\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 5 & 9 & 14 \\ 3 & 9 & 19 & 34 \\ 4 & 14 & 34 & 68\end{array}\right|$, expanding with respect to first row.
$=\left|\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 2 & 1 & 3 & 6 \\ 3 & 3 & 10 & 22 \\ 4 & 6 & 22 & 52\end{array}\right|, \begin{gathered}\text { replacing } C_{2}, C_{3} \text { and } C_{4} \text { by } C_{2}-2 C_{1}, C_{3}-3 C_{1} \\ \text { and } C_{4}-4 C_{1} \text { repsectively. }\end{gathered}$
$=\left|\begin{array}{rrr}1 & 3 & 6 \\ 3 & 10 & 22 \\ 6 & 22 & 52\end{array}\right|$, expanding with respect to first row
$=\left|\begin{array}{rrr}1 & 0 & 0 \\ 3 & 1 & 4 \\ 6 & 4 & 16\end{array}\right|$, replacing C_{2} and C_{3} by $C_{2}-3 C_{1}$
$=\left|\begin{array}{rr}1 & 4 \\ 4 & 16\end{array}\right|$, expanding with respect to first row.
$=1 .(16)-4 \cdot 4=0$.
Ans.
Ex. 12. Show that $\left|\begin{array}{ccc}a+b+2 c & \mathbf{a} & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$
(Garhwal 90; Meerut 92)
Sol. The given determinant

Sol. I..H.S. $=\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|$
$=\left|\begin{array}{lll}b & c+a & a+b \\ q & r+p & p+q \\ y & z+x & x+y\end{array}\right|+\left|\begin{array}{lll}c & c+a & a+b \\ r & r+p & p+q \\ z & z+x & x+y\end{array}\right|$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
b & c+a & a \\
q & r+p & p \\
y & z+x & x \\
b & c & a \\
q & r & p \\
y & z & x
\end{array}\right|+\left|\begin{array}{lll}
b & c+a & b \\
q & r+p & q \\
y & z+x & y
\end{array}\right|+\left|\begin{array}{ccc}
c & c & a+b \\
r & r & p+q \\
z & z & x+y
\end{array}\right|+\left|\begin{array}{ccc}
c & a & a+b \\
r & p & p+q \\
z & a & a \\
q & p & p \\
y & x & x
\end{array}\right|+\left|\begin{array}{ccc}
c & a & a \\
r & p & p \\
z & x & x
\end{array}\right|+\left|\begin{array}{ccc}
c & a & b \\
r & p & q \\
z & x & y
\end{array}\right|,
\end{aligned}
$$

second and third determinants vanish as two columns in each are identical.
$=\left|\begin{array}{lll}b & c & a \\ q & r & p \\ y & z & x\end{array}\right|+\left|\begin{array}{lll}c & a & b \\ r & p & q \\ z & x & y\end{array}\right|$, second and third determinants vanish
$=-\left|\begin{array}{lll}b & a & c \\ q & p & r \\ y & x & z\end{array}\right|-\left|\begin{array}{lll}a & c & b \\ p & r & q \\ x & z & y\end{array}\right|$, interchanging C_{2} and C_{3} in first and C_{2} in second determinant
$=\left|\begin{array}{ccc}a & b^{-} & c \\ p & q & r \\ x & y & z\end{array}\right|+\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|, \quad$ interchanging C_{1} and C_{2} in first and
$=2\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|=$ R.H.S.
Hence proved.
Ex. 14. Evaluate $\left|\begin{array}{lll}\mathbf{y}+\mathbf{z} & \mathbf{x} & \mathbf{y} \\ \mathbf{z}+\mathbf{x} & \mathbf{z} & \mathbf{x} \\ \mathbf{x}+\mathbf{y} & \mathbf{y} & \mathbf{z}\end{array}\right|$
Hint : Add all the rows to first, take out $(x+y+z)$ common from first row and then subtract sum of second and third columns from first. Then expand.

Ans. $(x+y+z)(x-z)^{2}$
Ex. 15. Evaluate $\left|\begin{array}{lll}\mathbf{b}+\mathbf{c} & \mathbf{a}+\mathbf{b} & \mathbf{a} \\ \mathbf{c}+\mathbf{a} & \mathbf{b}+\mathbf{c} & \mathbf{b} \\ \mathbf{a}+\mathbf{b} & \mathbf{c}+\mathbf{a} & \mathbf{c}\end{array}\right|$
Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
2 a+2 b+2 c & 2 a+2 b+2 c & a+b+c \\
c+a & b+c & b \\
a+b & c+a & =
\end{array}\right|, \begin{array}{c}
\text { replacing } R_{1} \text { by } \\
R_{1}+R_{2}+R_{3}
\end{array} \\
& =(a+b+c)\left|\begin{array}{ccc}
2 & 2 & 1 \\
c+a & b+c & b \\
a+b & c+a & c \\
0 & 2 & 1 \\
a-b & b+c & b \\
b-c & c+a & c \\
0 & 0 & 1 \\
a-b & c-b & b \\
b-b & a-c & c
\end{array}\right| \text {, replaking out }(a+b+c) \text { common }
\end{aligned}
$$

$=(a+b+c)[(a-b)(a-c)-(b-c)(c-b)]$
$=(a+b+c)\left[a^{2}-a c-b a+b c+b^{2}+c^{2}-2 b c\right]$
$=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=a^{3}+b^{3}+c^{3}-3 a b c$.
Ans.
*Ex. 16. Evaluate $\left|\begin{array}{ccc}\mathbf{a}-\mathbf{b}-\mathbf{c} & \mathbf{2 a} & 2 \mathbf{a} \\ \mathbf{2 b} & \mathbf{b}-\mathbf{c}-\mathbf{a} & 2 \mathbf{b} \\ \mathbf{2 c} & \mathbf{2 c} & \mathbf{c}-\mathbf{a}-\mathbf{b}\end{array}\right|$
(Kanpur 96; Kumaun 93; Meerut 95)
Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
a+b+c & b+c+a & a+b+c \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right| \text {, replacing } R_{1} \text { by } R_{1}+R_{2}+R_{3} \\
& =(a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right| \text {, taking out }(a+b+c) \\
& =(a+b+c) \left\lvert\, \begin{array}{ccc|l}
1 & 0 & 0 & \text { replacing } C_{2} \text { and } C_{3} \\
2 b & -a-b-c & 0 & \text { by } C_{2}-C_{1} \text { and } \\
2 c & 0 & -a-b-c & C_{3}-C_{1} \text { respectively. }
\end{array}\right. \\
& =(a+b+c)\left|\begin{array}{cc}
-a-b-c & 0 \\
0 & -a-b-c
\end{array}\right| \begin{array}{l}
\text {, expanding with respect } \\
\text { to first row. }
\end{array} \\
& =(a+b+c)(-a-b-c)(-a-b-c)=(a+b+c)^{3} \text {. }
\end{aligned}
$$

Ex. 17. Evaluate

$$
\left|\begin{array}{llll}
\mathrm{a} & 1 & 1 & 1 \\
1 & \mathrm{a} & 1 & 1 \\
1 & 1 & \mathrm{a} & 1 \\
1 & 1 & 1 & \mathrm{a}
\end{array}\right|
$$

Sol. The given determinant

$$
=\left|\begin{array}{cccc}
a+3 & 1 & 1 & 1 \\
a+3 & a & 1 & 1 \\
a+3 & 1 & a & 1 \\
a+3 & 1 & 1 & a
\end{array}\right| \text {, replacing } C_{1} \text { by } C_{1}+C_{2}+C_{3}+C_{4}
$$

Now proceed as in Ex. 5 (a) Page 133.
Ans. $(a-1)^{3}(a+3)$
*Ex. 18. Evaluate $\left|\begin{array}{cccc}1+\mathbf{a} & 1 & 1 & 1 \\ 1 & 1+\mathbf{a} & 1 & 1 \\ 1 & 1 & 1+\mathbf{a} & 1 \\ 1 & 1 & 1 & 1+\mathbf{a}\end{array}\right|$
Sol. The given determinant

$$
=\left|\begin{array}{cccc}
4+a & 1 & 1 & 1 \\
4+a & 1+a & 1 & 1 \\
4+a & 1 & 1+a & 1 \\
4+a & 1 & 1 & 1+a
\end{array}\right| \text {, replacing } C_{1} \text { by } C_{1}+C_{2}+C_{3}+C_{4}
$$

$$
\begin{aligned}
& =(4+a)\left|\begin{array}{cccc}
1 & \text { v } & 1 & 1 \\
1 & 1+a & 1 & 1 \\
1 & 1 & 1+a & 1 \\
1 & 1 & 1 & 1+a
\end{array}\right| \text {, taking out }(4+a) \text { common } \\
& =(4+a)\left|\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & a & 0 & 0 \\
1 & 0 & a & 0 \\
1 & 0 & 0 & a
\end{array}\right|, \begin{array}{l}
\text { replacing } C_{2}, C_{3} \text { and } C_{4} \text { by } C_{2}-C_{1}, \\
C_{3}-C_{1} \text { and } C_{4}-C_{1}
\end{array} \\
& =(4+a)\left|\begin{array}{ccc}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right| \text {, expanding with respect to } R_{1} \\
& =(4+a) a\left|\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right| \text {, expanding with respect to } R_{1} \\
& =(4+a) a\left(a^{2}\right)=(4+a) a^{3} \text {. }
\end{aligned}
$$

Ex. 19. Prove that

$$
\left|\begin{array}{cccc}
1+a_{1} & a_{2} & a_{3} & a_{4} \\
a_{1} & 1+a_{2} & a_{3} & a_{4} \\
a_{1} & a_{2} & 1+a_{3} & a_{4} \\
a_{1} & a_{2} & a_{3} & 1+a_{4}
\end{array}\right|=1+a_{1}+a_{2}+a_{3}+a_{4}
$$

Sol. The given determinant
$=\left|\begin{array}{cccc}1+a_{1}+a_{2}+a_{3}+a_{4} & a_{2} & a_{3} & a_{4} \\ 1+a_{1}+a_{2}+a_{3}+a_{4} & 1+a_{2} & a_{3} & a_{4} \\ 1+a_{1}+a_{2}+a_{3}+a_{4} & a_{2} & 1+a_{3} & a_{4} \\ 1+a_{1}+a_{2}+a_{3}+a_{4} & a_{2} & a_{3} & 1+a_{4}\end{array}\right|$, replacing C_{1} by
Nuw proceed further as in Ex. 18 above.
*Ex. 20. Evaluate $\left|\begin{array}{llll}\mathbf{x} & \mathbf{a} & \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{x} & \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} & \mathbf{x} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{x}\end{array}\right|$
Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{cccc}
x+3 a & a & a & a \\
x+3 a & x & a & a \\
x+3 a & a & x & a \\
x+3 a & a & a & x
\end{array}\right|, \text { replacing } C_{1} \text { by } C_{1}+C_{2}+C_{3}+C_{4} \\
& =(x+3 a)\left|\begin{array}{llll}
1 & a & a & a \\
1 & x & a & a \\
1 & a & x & a \\
1 & a & a & x
\end{array}\right|, \text { taking out }(x+3 a) \text { common fromr } C_{1}
\end{aligned}
$$

Sol. The given determinant
$=\left|\begin{array}{cccc}x+a+b+c+d & b & c & d \\ x+a+b+c+d & x+b & c & d \\ x+a+b+c+d & b & x+c & d \\ x+a+b+c+d & b & c & x+d\end{array}\right|, \begin{aligned} & \text { replacing } C_{1} \text { by } \\ & C_{1}+C_{2}+C_{3}+C_{4}\end{aligned}$
$=(x+a+b+c+d)\left|\begin{array}{cccc}1 & b & c & d \\ 1 & x+b & c & d \\ 1 & b & x+c & d \\ 1 & b & c & x+d\end{array}\right| \begin{aligned} & \text { taking out } \\ & (x+a+b+c+d) \\ & \text { common from } C_{1}\end{aligned}$
$=(x+a+b+c+d)\left|\begin{array}{llll}1 & b & c & d \\ 0 & x & 0 & 0 \\ 0 & 0 & x & 0 \\ 0 & 0 & 0 & x\end{array}\right|, R_{3}-R_{1}$ and $R_{4}-R_{1}$ replacing R_{2}, R_{3}, R_{4} by $R_{2}-R_{1}$,
$=(x+a+b+c+d)\left|\begin{array}{lll}x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x\end{array}\right|$, expanding with respect to C_{1}
$=x(x+a+b+c+d)\left|\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right|$, expanding with respect to C_{1}
$=x(x+a+b+c+d) x^{2}=x^{3}(x+a+b+c+d)$.
Ans.
Ex. 22. Evaluate

$$
\left|\begin{array}{ccc}
b+c & a & a \\
b & c+a & b \\
c & c & a+b
\end{array}\right|
$$

Sol. The given determimant
$=\left|\begin{array}{ccc}b+c & 0 & a \\ b & c+a-b & b \\ c & c-a-b & a+b\end{array}\right|$. replacing C_{2} by $C_{2}-C_{3}$
$=(b+c)\left|\begin{array}{cc}c+a-b & b \\ c-a-b & a+b\end{array}\right|+a\left|\begin{array}{ll}b & c+a-b \\ c & c-a-b\end{array}\right|$,
expanding with respect to R_{1}
$=(b+c)\left|\begin{array}{cc}c+a-b & b \\ -2 a & a\end{array}\right|+a\left|\begin{array}{cc}b & c+a-b \\ c-b & -2 a\end{array}\right|$,
replacing R_{2} by $R_{2}-a 1$ in each determinant.
$=(b+c)[a(c+a-b)-b(-2 a)]+a[b(-2 a)-(c-b)(c+a-b)]$
$=(b+c)\left(a c+a^{2}+a b\right)+a\left(-2 a b-c^{2}-c a+b c+b c+a b-b^{2}\right)$
$=a b c+a^{2} b+a b^{2}+a c^{2}+a^{2} c+a b c-2 a^{2} b-a c^{2}-c a^{2}+2 a b c+a^{2} b-a b^{2}$
$=4 a b c$.
Ans.
Ex. 23. Evaluate $\left|\begin{array}{lll}\mathbf{b}+\mathbf{c} & \mathbf{a}-\mathbf{c} & \mathbf{a}-\mathbf{b} \\ \mathbf{b}-\mathbf{c} & \mathbf{c}+\mathbf{a} & \mathbf{b}-\mathbf{a} \\ \mathbf{c}-\mathbf{b} & \mathbf{c - a} & \mathbf{a}+\mathbf{b}\end{array}\right|$
Sol. The given determinant
$=\left|\begin{array}{ccc}2 b & 2 a^{1} & 0 \\ b-c & c+a & b-a \\ 0 & 2 c & 2 b\end{array}\right|, \begin{aligned} & \text { replacing } R_{1} \text { and } R_{3} \text { by } R_{1}+R_{2} \text { and } \\ & R_{3}+R_{2} \text { respectively. }\end{aligned}$
$=4\left|\begin{array}{ccc}b & a & 0 \\ b-c & c+a & b-a \\ 0 & c & b\end{array}\right|$, taking out 2 common from R_{1} and R_{3}
$=4\left|\begin{array}{ccc}b & a & 0 \\ -c & c & b-a \\ 0 & c & b\end{array}\right|$, replacing R_{2} by $R_{2}-R_{1}$
$=4\left[\left.\begin{array}{cc}b & b-a \\ c & b\end{array}|+c| \begin{array}{ll}a & 0 \\ c & b\end{array} \right\rvert\,\right.$, expanding with respect tc C_{1}
$=4\left[\begin{array}{cc}c & b-a \\ 0 & a\end{array}|+c| \begin{array}{cc}a & 0 \\ c & b\end{array}\right]$, replacing R_{2} by $R_{2}-R_{1}$
$=4[b(c a)+c(a b)]=4(2 a b c)=8 a b c$.
Ex. 2A. Evaluate

$$
\left|\begin{array}{lllll}
\mathbf{x} & \mathrm{a} & \mathbf{b} & \mathrm{c} & 1 \\
\mathbf{d} & \mathrm{x} & \mathrm{f} & \mathrm{~h} & 1 \\
\mathbf{d} & \mathrm{e} & \mathrm{x} & \mathrm{k} & 1 \\
\mathbf{d} & \mathrm{e} & \mathrm{~g} & \mathrm{x} & 1 \\
\mathbf{d} & \mathrm{e} & \mathrm{~g} & \mathrm{~m} & \mathbf{l}
\end{array}\right|
$$

Sol. The given determinart

$$
=\left|\begin{array}{ccccc}
x-d & a-x & b-f & c-h & 0 \\
0 & x-e & f-x & h-k & 0 \\
0 & 0 & x-g & k-x & 0 \\
0 & 0 & 0 & x-m & 0 \\
d & e & g & m & 1
\end{array}\right|
$$

replacing R_{1}, R_{2}, R_{3} and R_{4} by $R_{1}-R_{2}, R_{2}-R_{3}, R_{3}-R_{4}$ and $R_{4}-R_{5}$ resplactively.

$$
\begin{aligned}
& =(x-m)\left|\begin{array}{cccc}
x-d & a-x & b-f & 0 \\
0 & x-e & f-x & 0 \\
0 & 0 & x-g & 0 \\
d & e & g & 1
\end{array}\right| \text { exapanding with respect to } R \mathbf{4} \text {. } \\
& =(x-m)\left|\begin{array}{ccc}
\text { (Note) } \\
x-d & a-x & b-f \\
0 & x-e & f-x \\
0 & 0 & x-g
\end{array}\right| \text {, expanding with respect to } C_{4} \\
& =(x-m)(x-d)\left|\begin{array}{cc}
x-e & f-x \\
0 & x-g
\end{array}\right| \text {, expanding with respect to } C_{1} \\
& =(x-m)(x-d)(x-e)(x-g) . \\
& \text { Ex. 25. Evahuate }\left|\begin{array}{cccc}
1 & \mathbf{x} & 1 & y \\
\mathbf{x} & 1 & y & 1 \\
1 & y & 1 & x \\
\mathbf{y} & 1 & x & 1
\end{array}\right|
\end{aligned}
$$

Sol. The given determinant

$$
\begin{aligned}
& =\left\lvert\, \begin{array}{cccc|c}
x+y+2 & x+y+2 & x+y+2 & x+y+2 & , \text { replacing } R_{1} \text { by } \\
x & 1 & y & 1 \\
1 & y & 1 & x \\
y & 1 & x & 1 & \\
R_{1}+R_{2}+R_{3}+R_{4}
\end{array}\right. \\
& =(x+y+2)\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
x & 1 & y & 1 \\
1 & y & 1 & x \\
y & 1 & x & 1
\end{array}\right| \text {, taking out }(x+y+2) \text { common from } R_{1} \\
& =(x+y+2) \left\lvert\, \begin{array}{cccc|l}
1 & 0 & 0 & 0 & \text { replacing } C_{2}, C_{3} \text { and } C_{4} \text { by } \\
x & 1-x & y-x & 1-x \\
1 & y-1 & 0 & x-1 & C_{2}-C_{1}, C_{3}-C_{1} \text { and } \\
C_{4}-C_{1}
\end{array}\right. \\
& =(x+y+2)\left|\begin{array}{ccc}
1-x & y-x & 1-x \\
y-1 & 0 & x-1 \\
1-y & x-y & 1-y
\end{array}\right| \text {, expanding with respect to } R_{1} \\
& =(x+y+2)\left|\begin{array}{ccc}
0 & y-x & 1-x \\
y-x & 0 & x-1 \\
0 & x-y & 1-y
\end{array}\right| \text {, replacing } C_{1} \text { by } C_{1}-C_{3} \\
& =-(x+y+2)(y-x)\left|\begin{array}{ll}
y-x & 1-x \\
x-y & 1-y
\end{array}\right| \text {, expanding with respect to } C_{1} \\
& =-(x+y+2)(y-x)(y-x)\left|\begin{array}{rr}
1 & 1-x \\
-1 & 1-y
\end{array}\right| \text {, }
\end{aligned}
$$

taking out $(y-x)$ common from C_{1}

$$
\begin{aligned}
& =-(x+y+2)(y-x)^{2}[(1-y)-(-1)(1-x)] \\
& =(x+y+2)(x-y)^{2}(x+y-2) \\
& \text { Ex. 26. Evaluate }\left|\begin{array}{llll}
\mathbf{a} & \mathbf{x} & \mathbf{y} & \mathbf{a} \\
\mathbf{x} & \mathbf{0} & 0 & \mathbf{y} \\
\mathbf{y} & \mathbf{0} & 0 & \mathbf{x} \\
\mathbf{a} & \mathbf{y} & \mathbf{x} & \mathbf{a}
\end{array}\right|
\end{aligned}
$$

Sol. Then given determinant
$=\left|\begin{array}{cccc}0 & x+y & y & a \\ x-y & 0 & 0 & y \\ y-x & 0 & 0 & x \\ 0 & y+x & x & a\end{array}\right|, ~$ replacing C_{1} and C_{2} by $C_{1}-C_{3}$ and
$=(x-y)(x+y)\left|\begin{array}{rrrr}0 & 1 & y & a \\ 1 & 0 & 0 & y \\ -1 & 0 & 0 & x \\ 0 & 1 & x & a\end{array}\right| \begin{aligned} & \text { taking out } x-y \text { and } x+y \\ & \text { respectively. }\end{aligned}$
$=\left(x^{2}-y^{2}\right)\left|\begin{array}{cccc}0 & 1 & y & a \\ 1 & 0 & 0 & y \\ 0 & 0 & 0 & x+y \\ 0 & 0 & x-y & 0\end{array}\right|$, resplacing R_{3} and R_{4} by $R_{2}+R_{3}$
$=-\left(x^{2}-y^{2}\right)\left|\begin{array}{ccc}1 & y & a \\ 0 & 0 & x+y \\ 0 & x-y & 0\end{array}\right|$, expanding with respect to C_{1}
$=-\left(x^{2}-y^{2}\right)\left|\begin{array}{cc}0 & x+y \\ x-y & 0\end{array}\right|$, expanding with respect to C_{1}
$=-\left(x^{2}-y^{2}\right)[-(x+y)(x-y)]=\left(x^{2}-y^{2}\right)^{2}$.
Ans
Ex. 27 (a) Evaluate $\left|\begin{array}{lll}1 & \text { bc } & a(b+c) \\ 1 & \text { ca } & b(c+a) \\ 1 & \text { ab } & c(a+b)\end{array}\right|$

Sol. The given determinant

$=\left|\begin{array}{ccc}1 & b c & a(b+c) \\ 0 & c(a-b) & c(b-a) \\ 0 & b(a-c) & b(c-a)\end{array}\right|, \begin{gathered}\text { replacing } R_{2} \text { and } R_{3} \text { by } R_{2}-R_{1} \\ R_{3}-R_{1} \text { respectively. }\end{gathered}$
$=\left|\begin{array}{ll}c(a-b) & c(b-a) \\ b(a-c) & b(c-a)\end{array}\right|$, expanding with respect to C_{1}
$=(a-b)(a-c)\left|\begin{array}{ll}c & -c \\ b & -b\end{array}\right| \begin{aligned} & \text { taking out }(a-b) \text { and }(a-c) \\ & \text { common from } R_{1} \text { and } R_{2} \text { respectively }\end{aligned}$
$=-(a-b)(a-c)\left|\begin{array}{ll}c & c \\ b & b\end{array}\right|=0$, two columns being identical.

Ex. 27 (b) Evaluate $\left|\begin{array}{ccc}1 / a & a^{2} & b c \\ 1 / b & b^{2} & c a \\ 1 / c & c^{2} & a b\end{array}\right|$
(Kanpur 92)
Sol. The given determinant
$=\frac{1}{a b c}\left|\begin{array}{lll}1 & a^{3} & a b c \\ 1 & b^{3} & b c a \\ 1 & c^{3} & c a b\end{array}\right|$, multiplying R_{1}, R_{2} and R_{3} by a, b
$=\frac{1}{a b c} \cdot a b c\left|\begin{array}{lll}1 & a^{3} & 1 \\ 1 & b^{3} & 1 \\ 1 & c^{3} & 1\end{array}\right|$, taking out $a b c$ common from C_{3}
$=0$, since C_{1} and C_{3} are identical.
(Note)
*Ex. 28. Evaluate $\left|\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|$
Ans.

Sol. The given determinant
$=\left|\begin{array}{ccc}1 & 0 & 0 \\ a & b-a & c-a \\ a^{2} & b^{2}-a^{2} & c^{2}-a^{2}\end{array}\right|, \begin{aligned} & \text { replacing } C_{2} \text { and } C_{3} \text { by } C_{2}-C_{1} \\ & b-a \\ & b-a \\ & b^{2}-a^{2}\end{aligned} c^{2}-c_{1}^{2}-C_{1}$ respectively.
$=(b-a)(c-a)\left|\begin{array}{cc}1 & 1 \\ b+a & c+a\end{array}\right|$, taking common factors out
$=(b-a)(c-a)[(c+a)-(b+a)]=(a-b)(c-a)(b-c)$.
Ans.
*Ex. 29. Show that 1 a $b c \mid=(b-c)(c-a)(a-b)$
(Meerut 96P; Purvanchal 96)
Sol. The given determinant
$=\left|\begin{array}{ccc}1 & a & b c \\ 0 & b-a & c a-b c \\ 0 & c-a & a b-b c\end{array}\right|$, replacing R_{2} and R_{3} by $R_{2}-R_{1}$
$=\left|\begin{array}{ccc} \\ b-a & -c(b-a) \\ c-a & -b(c-a)\end{array}\right|$, expanding with respect to C_{1}
$=(b-a)(c-a)\left|\begin{array}{ll}1 & -c \\ 1 & -b\end{array}\right|$, taking common factors out
$=(b-a)(c-a)(-b+c)=(a-b)(b-c)(c-a) . \quad$ Hence proved.
Ex. 30. Show that $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|=a b c(a-b)(b-c)(c-a)$

Sol. The given determinant
$=a b c\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|, \begin{aligned} & \text { taking out } a, b \text { and } c \text { common from } C_{1}, C_{2} \\ & \text { and } C_{3} \text { respectively. }\end{aligned}$
Now proceed as in Ex. 28 Page 145.
Ex. 31. Evaluate

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|
$$

Sol. The given determinant
$=\left|\begin{array}{ccc}1 & \cdots 0 & 0 \\ a & b-a & c-a \\ a^{3} & b^{3}-a^{3} & c^{3}-a^{3}\end{array}\right|$, replacing C_{2}, C_{3} by $C_{2}-C_{1}$
$=\left|\begin{array}{cc}b-a & c-a \\ b^{3}-a^{3} & c^{3}-a^{3}\end{array}\right|$, expanding with respect to R_{1}
$=(b-a)(c-a)\left|\begin{array}{cc}1 & 1 \\ b^{2}+a b+a^{2} & c^{2}+a c+a^{2}\end{array}\right|$,
taking common factors out from C_{1} and C_{2}
$=(b-a)(c-a)\left[\left(c^{2}+a c+a^{2}\right)-\left(b^{2}+a b+a^{2}\right)\right]$
$=(b-a)(c-a)\left[\left(c^{2}-b^{2}\right)+a(c-b)\right]$
$=(b-a)(c-a)(c-b)[(c+b)+a]$.
$=(a-b)(b-c)(c-a)(a+b+c)$.
Ans.
*Ex. 32. If a, b, c are all different and

$$
\left|\begin{array}{lll}
a & a^{2} & 1+a^{3} \tag{Meerut91S}\\
b & b^{2} & 1+b^{3} \\
c & c^{2} & 1+c^{3}
\end{array}\right|=0, \text { prove that } a b c=-1
$$

Sol. The given determinant
$=\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|+\left|\begin{array}{ccc}a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3}\end{array}\right|$, breaking into two determinants.
(Note)
$=\left|\begin{array}{lll}a & b & c \\ a^{2} & b^{2} & c^{2} \\ 1 & 1 & 1\end{array}\right|+\left|\begin{array}{lll}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{2} & b^{3} & c^{3}\end{array}\right|$, interchanging rows and columns
Now proceed as in Ex. 28 Page 145 and Ex. 30 above.
The value of given determinant $=(1+a b c)[(a-b)(b-c)(c-a)]$
Ex. 33 (a). Evaluate $\left|\begin{array}{ccc}1 & 1 & 1 \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|$

Sol. The given determinant
$=\left|\begin{array}{ccc}1 & 0 & 0 \\ a^{2} & b^{2}-a^{2} & c^{2}-a^{2} \\ a^{3} & b^{3}-a^{3} & c^{3}-a^{3}\end{array}\right|$, replacing C_{2} and C_{3} by $C_{2}-C_{1}$
$=\left|\begin{array}{cc}b^{2}-a^{2} & c^{2}-a^{2} \\ b^{3}-a^{3} & c^{3}-a^{3}\end{array}\right|$, expanding with respect to R_{1}
$=(b-a)(c-a)\left|\begin{array}{cc} \\ b+a & c+a \\ b^{2}+a b+a^{2} & c^{2}+a c+a^{2}\end{array}\right|$,
taking out common factors of C_{1}, C_{2}
$=(b-a)(c-a)\left|\begin{array}{cc}b-c & c+a \\ b^{2}+a b-c^{2}-c a & c^{2}+c a+a^{2}\end{array}\right|$,
replacing C_{1} by $C_{1}-C_{2}$
$=(b-a)(c-a)\left|\begin{array}{cc}b-c & c+a \\ \left(b^{2}-c^{2}\right)+a(b-c) & c^{2}+c a+a^{2}\end{array}\right|$
$=(b-a)(c-a)(b-c)\left|\begin{array}{cc}1 & c+a \\ b+c+a & c^{2}+c a+a^{2}\end{array}\right|$
$=-(a-b)(b-c)\left(c-1\left(c^{2}+c a+a^{2}\right)-(c+a)(b+c+a)\right]$
$=-(a-b)(b-c)\left(c-\quad 2^{2}+c a+a^{2}-c b-c^{2}-a c-a b-a c-a^{2}\right]$
$=-(a-b)(b-c)(c \quad-a b-b c-c a]$
$=(a-b)(b-c)(c-a)(a b+b c+c a)$
Ans.
Ex. 33. (b) If $\left|\begin{array}{lll}a & a^{3} & a^{4}-1\end{array}\right|=0$, then prove that

$$
\begin{array}{lll}
b & b^{3} & b^{4}-1 \\
c & c^{3} & c^{4}-1
\end{array}
$$

$$
\mathbf{a b c}(\mathbf{a b}+\mathbf{b c}+\mathbf{c a})=\mathbf{a}+\mathbf{b}+\mathbf{c}
$$

Sol. The given equation is

$$
a b c\left|\begin{array}{lll}
a & a^{3} & a^{4} \\
b & b^{3} & b^{4} \\
c & c^{3} & c^{4}
\end{array}\right|-\left|\begin{array}{lll}
a & a^{3} & 1 \\
b & b^{3} & 1 \\
c & c^{3} & 1 \\
1 & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right|-\left|\begin{array}{lll}
1 & a & a^{3} \\
1 & b & b^{3} \\
1 & c & c^{3}
\end{array}\right|=0
$$

$$
(a-b)(b-c)(c-a)[a b c(a b+b c+c a)-(a+b+c)]=0
$$

$$
a b c(a b+b c+c a)-(a+b+c)=0, \because a \neq b \neq c
$$

$$
\begin{array}{r}
a b c[(a-b)(b-c)(c-a)(a b+b c+c a)] \\
-[(a-b)(b-c)(c-a)(a+b+c)]=0 \\
\text { interchaing rows and columns of the determinant and evaluating } \\
\text { determinants as in Ex. } 31 \text { Page } 146 \text { and Ex. } 33 \text { (a) above }
\end{array}
$$

$$
a b c(a b+b c+c a)=a+b+c
$$

Ex. 34. Prove that

$\left|\begin{array}{lll}1 & a^{2}+b c & a^{3} \\ 1 & b^{2}+c a & b^{3} \\ 1 & c^{2}+a b & c^{3}\end{array}\right|=-(b-c)(c-a)(a-b)\left(a^{2}+b^{2}+c^{2}\right)$
Sol. The given determinant
$=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|+\left|\begin{array}{lll}1 & b c & a^{3} \\ 1 & c a & b^{3} \\ 1 & a b & c^{3}\end{array}\right|$, breaking into two determinants (Note)
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|+\left|\begin{array}{ccc}1 & 1 & 1 \\ b c & c a & a b \\ a^{3} & b^{3} & c^{3}\end{array}\right|$, interchanging rows
The first determinant $=(a-b)(b-c)(c-a)(a b+b c+c a)$.
[See Ex. 33 (a) Page 146]
The second determinant

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & 0 & 0 \\
b c & c a-b c & a b-b c \\
a^{3} & b^{3}-a^{3} & c^{3}-a^{3}
\end{array}\right| \text {, replacing } C_{2} \text { and } C_{3} \text { by } C_{2}-C_{1}-C_{1} \\
& \\
& =\left|\begin{array}{cc}
c(a-b) & b(a-c) \\
(b-a)\left(b^{2}+a b+a^{2}\right) & (c-a)\left(c^{2}+a c+a^{2}\right)
\end{array}\right|
\end{aligned}
$$

$$
=(a-b)(a-c)\left|\begin{array}{cc}
c & b^{\text {expanding }} \\
-\left(b^{2}+a b+a^{2}\right) & -\left(c^{2}+a c+a^{2}\right)
\end{array}\right|
$$

taking out common factors from C_{1} and C_{2}
$=(a-b)(a-c)\left|\begin{array}{cc}(c-b) & b \\ -\left(b^{2}-c^{2}+a b-a c\right) & -\left(c^{2}+a c+a^{2}\right)\end{array}\right|$,
$=(a-b)(a-c)\left|\begin{array}{cc}(c-b) & b \\ (c-b)(c+b+a) & -\left(c^{2}+c a+a^{2}\right)\end{array}\right|$
$=(a-b)(a-c)(c-b)\left|\begin{array}{cc}1 & b \\ a+b+c & -\left(c^{2}+c a+a^{2}\right)\end{array}\right|$,
taking $(c-b)$ common from C_{1}.
$=(a-b)(b-c)(c-a)\left[-\left(c^{2}+c a+a^{2}\right)-b(a+b+c)\right]$
$=-(a-b)(b-c)(c-a)\left(a^{2}+b^{2}+c^{2}+a b+b c+\dot{c} a\right)$
Substituting values from (ii) and (iii) in (i), we find the given determinant
$=(a-b)(b-c)(c-a)(a b+b c+c a)$

$$
-(a-b)(b-c)(c-a)\left(a^{2}+b^{2}+c^{2}+a b+b c+c a\right)
$$

$=(a-b)(b-c)(c-a)\left[(a b+b c+c a)-\left(a^{2}+b^{2}+c^{2}+a b+b c+c a\right)\right]$
$=-(a-b)(b-c)(c-a)\left(a^{2}+b^{2}+c^{2}\right) . \quad$ Hence proved.
Ex. 35. Show that
$\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ y z & z x & x y\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 1 \\ x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3}\end{array}\right|=(y-z)(z-x)(x-y)(y z+z x+x y)$.
(Gorakhpur. 93; Kumaun 96; Meerut 94)
Sol.

$$
\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
y z & z x & x y
\end{array}\right|=\frac{1}{x y z}\left|\begin{array}{ccc}
x^{2} & y^{2} & z^{2} \\
x^{3} & y^{3} & z^{3} \\
x y z & x y z & x y z
\end{array}\right| \text {, multiplying } C_{1}, C_{2}, C_{3}
$$

$=\frac{1}{x y z} x y z\left|\begin{array}{ccc}x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3} \\ 1 & 1 & 1\end{array}\right|$, taking out $x y z$ common from R_{3}
$=\left|\begin{array}{rrr}1 & 1 & 1 \\ x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3}\end{array}\right|$, interchanging R_{2} and R_{3} and then R_{1} and R_{2}
For the 2nd part do as Ex. 33 (a) Pages 146-47.
Ex. 36. Evaluate $\left|\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1+\mathrm{x} & 1 & 1 \\ 1 & 1 & 1+\mathrm{y} & 1 \\ 1 & 1 & 1 & 1+\mathrm{z}\end{array}\right|$
Sol. The given determinant
$=\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & x & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & z\end{array}\right|$, replacing R_{2}, R_{3} and R_{4} by $R_{2}-R_{1}, R_{3}-R_{1}$
$=\left|\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right|$, expanding with respect to C_{1}
$=x\left|\begin{array}{ll}y & 0 \\ 0 & z\end{array}\right|$, expanding with respect to R_{1},
$=x y z$.
Ans.
Ex. 37. Evaluate $\left|\begin{array}{cccc}a^{3} & 3 a^{2} & 3 a & 1 \\ a^{2} & a^{2}+2 a & 2 a+1 & 1 \\ a & 2 a+1 & a+2 & 1 \\ 1 & 3 & 3 & 1\end{array}\right|$

Sol. The given determinant

$$
\begin{align*}
& =\left|\begin{array}{cccc}
a^{3}-3 a^{2}+3 a-1 & 3 a^{2} & 3 a & 1 \\
0 & a^{2}+2 a & 2 a+1 & 1 \\
0 & 2 a+1 & a+2 & 1 \\
0 & 3 & 3 & 1
\end{array}\right|, \begin{array}{l}
\text { replacing } C_{1} \text { by } \\
C_{1}-C_{2}+C_{3}-C_{4}
\end{array} \tag{Note}\\
& =\left(a^{3}-3 a^{2}+3 a-1\right)\left|\begin{array}{ccc}
a^{2}+2 a & 2 a+1 & 1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right| \text {, expanding with } \\
& =(a-1)^{3}\left|\begin{array}{ccc}
\left(a^{2}+2 a\right)-(2 a+1)+1 & 2 a+1 & 1 \\
(2 a+1)-(a+2)+1 & a+2 & 1 \\
3-3+1 & 3 & 1
\end{array}\right|, \begin{array}{c}
\text { replacing } C_{1} \text { by } \\
C_{1}-C_{2}+C_{3}
\end{array} \\
& =(a-1)^{3}\left|\begin{array}{ccc}
a^{2} & 2 a+1 & 1 \\
a & a+2 & 1 \\
1 & 3 & 1
\end{array}\right| \text {, on simplying } \\
& =(a-1)^{3}\left|\begin{array}{ccc}
a^{2}-1 & 2 a-2 & 0 \\
a-1 & a-1 & 0 \\
1 & 3 & 1
\end{array}\right| \text {, replacing } R_{1} \text { and } R_{2} \text { by } R_{1}-R_{3} \\
& =(a-1)^{3}\left|\begin{array}{cc}
a^{2}-1 & 2(a-1) \\
a-1 & a-1
\end{array}\right| \text {, expanding with respect to } C_{3} \\
& =(a-1)^{3}(a-1)(a-1)\left|\begin{array}{cc}
a+1 & 2 \\
1 & 1
\end{array}\right| \text {, taking out common factors. } \\
& =(a-1)^{5}[(a+1)-2]=(a-1)^{6} \text {. } \\
& =\left(a^{3}-3 a^{2}+3 a-1\right)\left|\begin{array}{ccc}
a^{2}+2 a & 2 a+1 & 1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right| \text {, expanding with } \\
& =(a-1)^{3}\left|\begin{array}{ccc}
\left(a^{2}+2 a\right)-(2 a+1)+1 & 2 a+1 & 1 \\
(2 a+1)-(a+2)+1 & a+2 & 1 \\
3-3+1 & 3 & 1
\end{array}\right|, \begin{array}{c}
\text { replacing } C_{1} \text { by } \\
C_{1}-C_{2}+C_{3}
\end{array} \\
& =(a-1)^{3}\left|\begin{array}{ccc}
a^{2} & 2 a+1 & 1 \\
a & a+2 & 1 \\
1 & 3 & 1
\end{array}\right| \text {, on simplying } \\
& =(a-1)^{3}\left|\begin{array}{ccc}
a^{2}-1 & 2 a-2 & 0 \\
a-1 & a-1 & 0 \\
1 & 3 & 1
\end{array}\right| \text {, replacing } R_{1} \text { and } R_{2} \text { by } R_{1}-R_{3} \\
& =(a-1)^{3}\left|\begin{array}{cc}
a^{2}-1 & 2(a-1) \\
a-1 & a-1
\end{array}\right| \text {, expanding with respect to } C_{3} \\
& =(a-1)^{3}(a-1)(a-1)\left|\begin{array}{cc}
a+1 & 2 \\
1 & 1
\end{array}\right| \text {, taking out common factors. } \\
& =(a-1)^{5}[(a+1)-2]=(a-1)^{6} \text {. } \\
& \text { Ex.38. Evaluate }\left|\begin{array}{cccc}
\mathbf{1}+\mathbf{a} & 1 & 1 & 1 \\
1 & 1+\mathbf{b} & 1 & 1 \\
1 & 1 & 1+\mathbf{c} & 1 \\
1 & 1 & 1 & 1+\mathrm{d}
\end{array}\right|
\end{align*}
$$

(Gorakhpur 90; Kanpur 97; Meerut 91; Puivanchal 93)
Sol. The given determinant
\(=a b c d\left|\begin{array}{llll}\frac{1}{a}+1 \& \frac{1}{a} \& \frac{1}{a} \& \frac{1}{a}

\frac{1}{b} \& \frac{1}{b}+1 \& \frac{1}{b} \& \frac{1}{b}

\frac{1}{c} \& \frac{1}{c} \& \frac{1}{c}+1 \& \frac{1}{c}

\frac{1}{d} \& \frac{1}{d} \& \frac{1}{d} \& \frac{1}{d}+1\end{array}\right|\)| taking out a, b, c and d |
| :--- |
| common from $R_{1} R_{2}, R_{3}$ |
| and R_{4} respectively. |

Evaluation of Determinants

$$
=a b c d\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+1\right)\left|\begin{array}{llll}
1 & 1 & 1 & 1 \\
\frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1 & \frac{1}{c} \\
\frac{1}{d} & \frac{1}{d} & \frac{1}{d} & \frac{1}{d}+1
\end{array}\right|
$$

replacing, R_{1} by $R_{1}+R_{2}+R_{3}+R_{1}$ and taking $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+1\right)$ common

$$
=a b c d\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+1\right)\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{b} & 1 & 0 & 0 \\
\frac{1}{c} & 0 & 1 & 0 \\
\frac{1}{d} & 0 & 0 & 1
\end{array}\right|
$$

replacing C_{2}, C_{3}, and C_{4} by $C_{2}-C_{1}, C_{3}-C_{1}$ and $C_{4}-C_{1}$ respectively.
$=a b c d\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+1\right)\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$, expanding with respect to \boldsymbol{R}_{1}
$=a b c d\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+1\right)\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|$, expanding with respect to R_{1}
$=a b c d\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+1\right)$
Ans.
Ex. 39. Prove that $\left|\begin{array}{llll}\mathbf{a} & \mathbf{b} & \mathbf{b} & \mathbf{b} \\ \mathbf{a} & \mathbf{b} & \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} & \mathbf{b} & \mathbf{a} \\ \mathbf{b} & \mathbf{b} & \mathbf{b} & \mathbf{a}\end{array}\right|=-(b-\mathbf{a})^{4}$.
Sol. The given determinant

$$
\begin{aligned}
& \text { Sol. The given determinant } \\
& =\left|\begin{array}{cccc}
a & b-a & b-a & b-a \\
a & b-a & 0 & 0 \\
a & 0 & b-a & 0 \\
b & 0 & 0 & a-b
\end{array}\right| \text {, replacing } C_{2}, C_{3} \text { and } C_{4} \text { by } C_{2}-C_{1} \text {, } C_{3}-C_{1} \text { and } C_{4}-C_{1} \text { respectively. } \\
& =-(b-a)\left|\begin{array}{ccc}
a & b-a & 0 \\
a & 0 & b-a \\
b & 0 & 0
\end{array}\right|+(a-b)\left|\begin{array}{ccc}
a & b-a & b-a \\
a & b-a & 0 \\
a & 0 & b-a
\end{array}\right| \\
& \text { expanding with respect to } C_{4}
\end{aligned}
$$

$$
=-(b-a) b\left|\begin{array}{cc}
b-a & 0 \\
0 & b-a
\end{array}\right|+(a-b)\left|\begin{array}{ccc}
0 & 0 & b-a \\
a & b-a & 0 \\
a & 0 & b-a
\end{array}\right|
$$

expanding first determinant with respect to R_{3} and in the second determinant replacing R_{1} by $R_{1}-R_{2}$.

$$
=-b(b-a)^{3}+(a-b)(b-a)\left|\begin{array}{cc}
a & b-a \\
a & 0
\end{array}\right|,
$$

expanding the second determinant with respect to R_{1}
$=-b(b-a)^{3}+(a-b)(b-a)[0-a(b-a)]$
$=-b(b-a)^{3}+a(b-a)^{3}=-(b-a)^{3}(b-a)$
$=-(b-a)^{4}$
Hence proved
**Ex. 40. Show that $\left|\begin{array}{ccc}(b+c)^{2} & a^{2} & a^{2} \\ b^{2} & (c+a)^{2} & b^{2} \\ c^{2} & c^{2} & (a+b)^{2}\end{array}\right|=2 a b c(a+b+c)^{3}$
(Kumaun 94; Meerut 93; Purvanchal 95)
Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
(b+c)^{2}-a^{2} & 0 & a^{2} \\
0 & (c+a)^{2}-b^{2} & b^{2} \\
c^{2}-(a+b)^{2} & c^{2}-(a+b)^{2} & (a+b)^{2}
\end{array}\right| \begin{array}{l}
\text { replacing } C_{1} \text { and } C_{2} \text { by } \\
C_{1}-C_{3} \& C_{2}-C_{3} \\
\text { respectively. }
\end{array} \\
& =\left|\begin{array}{ccc}
(b+c+a)(b+c-a) & 0 & a^{2} \\
0 & (c+a+b)(c+a-b) & b^{2} \\
(c+a+b)(c-a-b) & (c+a+b)(c-a-b) & (a+b)^{2}
\end{array}\right|
\end{aligned}
$$

$=(a+b+c)^{2}\left|\begin{array}{ccc}b+c-a & 0 & a^{2} \\ 0 & c+a-b & b^{2} \\ c-a-b & c-a-b & (a+b)^{2}\end{array}\right|$, taking out the $\begin{aligned} & \text { common factors from } \\ & C_{1}^{\prime} \text { and } C_{2} .\end{aligned}$
$=(a+b+c)^{2}\left|\begin{array}{ccc}b+c-a & 0 & a^{2} \\ 0 & c+a-b & b^{2} \\ -2 b & -2 a & 2 a b\end{array}\right|, \begin{aligned} & \text { replacing } R_{3} \text { by } \\ & R_{3}-R_{1}-R_{2} .\end{aligned}$
$=(a+b+c)^{2}\left|\begin{array}{ccc}b+c & a^{2} / b & a^{2} \\ b^{2} / a & c+a & b^{2} \\ 0 & 0 & 2 a b\end{array}\right|$, replacing C_{1} and C_{2} by $C_{1}+\frac{1}{a} C_{3}$
(Note)
$=2 a b(a+b+c)^{2}\left|\begin{array}{ll}b+c & a^{2} / b \\ b^{2} / a & c+a\end{array}\right|$, expanding with respect to R_{3}
$=2 a b(a+b+c)^{2}\left[(b+c)(c+a)-\left(b^{2} / a\right)\left(a^{2} / b\right)\right]$
$=2 a b(a+b+c)^{2}\left[b c+b a+c^{2}+c a-a b\right]$
$=2 a b(a+b+c)^{2} c[b+a+c]=2 a b c(a+b+c)^{3}$. Hence proved.
Ex. 41. Evaluate $\left|\begin{array}{ccc}\mathbf{a} & b & a x+b y \\ b & c & b x+c y \\ a x+b y & b c+c y & 0\end{array}\right|$
Sol. The given determinant
$=\left|\begin{array}{ccc}a & b & 0 \\ b & c & 0 \\ a x+b y & b x+c y & -x(a x+b y) \\ & & -y(b x+c y)\end{array}\right|$, replacing C_{3} by $C_{3}-x C_{1}-y C_{2}$.
$=-\left(a x^{2}+2 b x y+c y^{2}\right)\left|\begin{array}{ll}a & b \\ b & c\end{array}\right|$, expanding with respect to C_{3}
$=-\left(a x^{2}+2 b x y+c y^{2}\right)\left(a c-b^{2}\right)$.
Ans.
Ex. 42. Prove that

$$
\left|\begin{array}{ccccc}
1 & 0 & x & 0 & x \\
0 & 1 & 0 & x & 0 \\
\mathrm{x} & 0 & x+1 & 0 & x \\
0 & x & 0 & 1 & 0 \\
\mathrm{x} & 0 & x & 0 & 1
\end{array}\right|=(x-1)^{2}(x+1)\left(1+2 x-x^{2}\right)
$$

Sol. The given determinat
$=\left|\begin{array}{ccccr}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & x & 0 \\ x & 0 & x+1-x^{2} & 0 & -1 \\ 0 & x & 0 & 1 & 0 \\ x & 0 & x-x^{2} & 0 & 1-x\end{array}\right|$, replacing C_{3} and C_{5} by $C_{3}-x C_{1}$
$=\left|\begin{array}{cccr}1 & 0 & x & 0 \\ 0 & x+1-x^{2} & 0 & -1 \\ x & 0 & 1 & 0 \\ 0 & x-x^{2} & 0 & 1-x\end{array}\right|$, expanding with respect to R_{1}
$=\left|\begin{array}{cccr}1 & 0 & 0 & 0 \\ 0 & x+1-x^{2} & 0 & -1 \\ x & 0 & 1-x^{2} & 0 \\ 0 & x-x^{2} & 0 & 1-x\end{array}\right|$, replacing C_{3} by $C_{3}-x C_{1}$
$=\left|\begin{array}{ccr}x+1-x^{2} & 0 & -1 \\ 0 & 1-x^{2} & 0 \\ x(1-x) & 0 & 1\end{array}\right|$, expanding with respect to R_{1}

$$
\begin{aligned}
& =-(1-x)\left|\begin{array}{ccr}
0 & 1-x^{2} & 0 \\
x+1-x^{2} & 0 & -1 \\
x & 0 & 1
\end{array}\right|, \begin{array}{l}
\text { interchanging } R_{1} \text { and } R_{2} \text { ani } \\
\text { taking out }(1-x) \text { common from } R_{3}
\end{array} \\
& =(1-x)\left(1-x^{2}\right)\left|\begin{array}{cr}
x+1-x^{2} & -1 \\
x & 1
\end{array}\right| \text {, expanding with respect to } R_{1} \\
& =(1-x)^{2}(1+x)\left[\left(x+1-x^{2}\right) \cdot 1-(-1) x\right] \\
& =(x-1)^{2}(1+x)\left(2 x+1-x^{2}\right) \text {. } \\
& \text { Hence proved. } \\
& \text { Ex. 43. Show that }\left|\begin{array}{ccc}
1 & 1 & 1 \\
b c(b+c) & c a(c+a) & \mathbf{a b}(a+b) \\
b^{2} c^{2} & c^{2} \mathbf{a}^{2} & a^{2} b^{2}
\end{array}\right| \\
& =\mathbf{a b c}(\mathbf{a}-\mathbf{b})(\mathbf{b}-\mathbf{c})(\mathbf{c}-\mathbf{a})(\mathbf{a}+\mathbf{b}+\mathbf{c})
\end{aligned}
$$

Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & 1 & 1 \\
b^{2} c+b c^{2} & c^{2} a+c a^{2} & a^{2} b+a b^{2} \\
b^{2} c^{2} & c^{2} a^{2} & a^{2} b^{2}
\end{array}\right| \\
& 1 \\
& 1
\end{aligned}\left|\begin{array}{ccc}
& 0 & 0 \\
b^{2} c+b c^{2} & c(a-b)(a+b+c) & b(a-c)(a+b+c) \\
b^{2} c^{2} & c^{2}(a-b)(a+b) & b^{2}(a-c)(a+c)
\end{array}\right|, ~ l
$$

replacing C_{2}, C_{3} by $C_{2}-C_{1}, C_{3}-C_{1}$
$=\left|\begin{array}{cc}c(a-b)(a+b+c) & b(a-c)(a+b+c) \\ c^{2}(a-b)(a+b) & b^{2}(a-c)(a+c)\end{array}\right|$, , expanding with
$=c(a-b) b(a-c)\left|\begin{array}{ll}a+b+c & a+b+c \\ c(a+b) & b(a+c)\end{array}\right|$, taking out common
$=b c(a-b)(a-c)(a+b+c)\left|\begin{array}{cc}1 & 1 \\ c a+c b & b a+b c\end{array}\right|, \begin{aligned} & \text { taking out } a+b+c \\ & \text { common from } R_{1}\end{aligned}$
$=b c(a-b)(a-c)(a+b+c) \cdot\left|\begin{array}{cc}1 & 0 \\ c a+c b & b a-c a\end{array}\right|, \begin{gathered}\text {, replacing } C_{2} \text { by } \\ C_{2}-C_{1}\end{gathered}$
$=b c(a-b)(a-c)(a+b+C)(a b-c a)$
$=-a b c(a-b)(b-c)(c-a)(a+b+c)$.
*Ex. 44. Evaluate $\left|\begin{array}{ccc}1 & b c+a d & b^{2} c^{2}+a^{2} d^{2} \\ 1 & c a+b d & c^{2} \mathbf{a}^{2}+b^{2} d^{2} \\ 1 & a b+c d & a^{2} b^{2}+c^{2} d^{2}\end{array}\right|$
Sol. The given determinant

$$
=\left|\begin{array}{lll}
1 & b c+a d & b^{2} c^{2}+a^{2} d^{2} \\
0 & c a+b d-b c-a d & c^{2} a^{2}+b^{2} d^{2}-b^{2} c^{2}-a^{2} d^{2} \\
0 & a b+c d-b c-a d & a^{2} b^{2}+c^{2} d^{2}-b^{2} c^{2}-a^{2} d^{2}
\end{array}\right|
$$

replacing R_{2} and R_{3} by $R_{2}-R_{1}$ and $R_{3}-R_{1}$ respectively $=\left|\begin{array}{ll}c a-b c+b d-a d & c^{2} a^{2}-b^{2} c^{2}+b^{2} d^{2}-a^{2} d^{2} \\ a b-b c+c d-a d & a^{2} b^{2}-b^{2} c^{2}+c^{2} d^{2}-a^{2} d^{2}\end{array}\right|$,
expanding with respect to C_{1}
$=\left|\begin{array}{ll}(c-d)(a-b) & \left(c^{2}-d^{2}\right)\left(a^{2}-b^{2}\right) \\ (b-d)(a-c) & \left(b^{2}-d^{2}\right)\left(a^{2}-c^{2}\right)\end{array}\right|$, factorising the elements
$=(c-d)(a-b)(b-d)(a-c)\left|\begin{array}{ll}1 & (c+d)(a+b) \\ 1 & (b+d)(a+c)\end{array}\right|$,
taking out the common factors
$=(c-d)(a-b)(b-d)(a-c)\left|\begin{array}{ll}1 & c a+b c+d a+d b \\ 0 & b a+d c-c a-d b\end{array}\right|$,
replacing R_{2} by $R_{2}-R_{1}$
$=(c-d)(a-b)(b-d)(a-c)(b a+d c-c a-d b)$
$=(c-d)(a-b)(b-d)(a-c)(a-d)(b-c)$.
Ans.
*Ex. 45. Prove that

$$
\left|\begin{array}{cccc}
\mathbf{a}^{2}+\lambda & \mathbf{a b} & \mathbf{a c} & \mathbf{a d} \\
\mathbf{b a} & \mathbf{b}^{2}+\lambda & \mathbf{b c} & \mathbf{b d} \\
\mathbf{c a} & \mathbf{c b} & \mathbf{c}^{2}+\lambda & \mathbf{c d} \\
\mathbf{d a} & \mathrm{db} & \mathrm{dc} & \mathbf{d}^{2}+\lambda
\end{array}\right|=\lambda^{3}\left(\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{c}^{2}+\mathbf{d}^{2}+\lambda\right)
$$

(Kanpur 90)
Sol. The given determinant

$$
=a b c d\left|\begin{array}{cccc}
a+\frac{\lambda}{a} & a & a & a \\
b & b+\frac{\lambda}{b} & b & b \\
c & c & c+\frac{\lambda}{c} & c \\
d & d & d & d+\frac{\lambda}{d}
\end{array}\right|, \begin{aligned}
& \text { taking out } a, b, c, d \\
& \text { common from } C_{1}, C_{2}, C_{3} \\
& \text { and } C_{4} \text { respectively }
\end{aligned}
$$

$=a b c d\left|\begin{array}{cccc}a+\frac{\lambda}{a} & -\frac{\lambda}{a} & -\frac{\lambda}{a} & -\frac{\lambda}{a} \\ b & \frac{\lambda}{b} & 0 & 0 \\ c & 0 & \frac{\lambda}{c} & 0 \\ d & 0 & 0 & \frac{\lambda}{d}\end{array}\right|$, replacing C_{2}, C_{3} and C_{4} by $C_{2}-C_{1}$,

$$
\begin{aligned}
& =a b c d\left|\begin{array}{cccc}
a & 0 & 0 & -\frac{\lambda}{a} \\
b & \frac{\dot{\lambda}}{b} & 0 & 0 \\
c & 0 & \frac{\lambda}{c} & 0 \\
d+\frac{\lambda}{d} & -\frac{\lambda}{d} & -\frac{\lambda}{d} & \frac{\lambda}{d}
\end{array}\right| \begin{array}{l}
\text { replacing } C_{1}, C_{2} \text { and } C_{3} \text { by } \\
C_{1}+C_{4}, C_{2}-C_{4} \text { and } C_{3}-C_{4} \\
\text { respectively. }
\end{array} \\
& =a^{2} b c d\left|\begin{array}{ccc}
\frac{\lambda}{b} & 0 & 0 \\
0 & \frac{\lambda}{c} & 0 \\
-\frac{\lambda}{d} & -\frac{\lambda}{d} & \frac{\lambda}{d}
\end{array}\right|+\lambda b c d\left|\begin{array}{ccc}
b & \frac{\lambda}{b} & 0 \\
c & 0 & \frac{\lambda}{c} \\
d+\frac{\lambda}{d} & -\frac{\lambda}{d} & -\frac{\lambda}{d}
\end{array}\right| \text {, } \\
& \text { expanding with respect to } R_{1} \\
& =a^{2} b c d \frac{\lambda}{b}\left|\begin{array}{rr}
\frac{\lambda}{c} & 0 \\
-\frac{\lambda}{d} & \frac{\lambda}{d}
\end{array}\right|+\lambda b c d . b\left|\begin{array}{rr}
0 & \frac{\lambda}{c} \\
-\frac{\lambda}{d} & \frac{\lambda}{d}
\end{array}\right| \\
& -\lambda b c d \cdot \frac{\lambda}{b}\left|\begin{array}{rr}
c & \frac{\lambda}{c} \\
d+\frac{\lambda}{d} & -\frac{\lambda}{d}
\end{array}\right|,
\end{aligned}
$$

expanding each determinant with respect to R_{1}
$=\lambda a^{2} c d\left(\frac{\lambda^{2}}{c d}\right)+\lambda b^{2} c d\left(\frac{\lambda^{2}}{c d}\right)-\lambda^{2} c d\left(-\frac{\lambda c}{d}-\frac{\lambda d}{c}-\frac{\lambda^{2}}{c d}\right)$
$=\lambda^{3} a^{2}+\lambda^{3} b^{2}+\lambda^{2} c d\left(\frac{\lambda c^{2}+\lambda d^{2}+\lambda^{2}}{c d}\right)$
$=\lambda^{3} a^{2}+\lambda^{3} b^{2}+\lambda^{3}\left(c^{2}+d^{2}+\lambda\right)=\lambda^{3}\left(a^{2}+b^{2}+c^{2}+d^{2}+\lambda\right)$ Hence proved.
Ex. 46. Evaluate $\left|\begin{array}{lll}a^{2} & a^{2}-(b-c)^{2} & b c \\ b^{2} & b^{2}-(c-a)^{2} & c a \\ c^{2} & c^{2}-(a-b)^{2} & a b\end{array}\right|$
Sol. The given determinant
$=\left|\begin{array}{lll}a^{2} & -(b-c)^{2} & b c \\ b^{2} & -(c-a)^{2} & c a \\ c^{2} & -(a-b)^{2} & a b\end{array}\right|$, replacing C_{2} by $C_{2}-C_{1}$

$$
\begin{aligned}
& =-\left|\begin{array}{lll}
a^{2} & \left(b^{2}+c^{2}\right)-2 b c & b c \\
b^{2} & \left(c^{2}+a^{2}\right)-2 c a & c a \\
c^{2} & \left(a^{2}+b^{2}\right)-2 a b & a b
\end{array}\right| \\
& =-\left|\begin{array}{lll}
a^{2} & \left(b^{2}+c^{2}\right) & b c \\
b^{2} & \left(c^{2}+a^{2}\right) & c a \\
c^{2} & \left(a^{2}+b^{2}\right) & a b
\end{array}\right|, \text { replacing } C_{2} \text { by } C_{2}+2 C_{3} \\
& =-\left|\begin{array}{lll}
a^{2} & b^{2}+c^{2}+a^{2} & b c \\
b^{2} & c^{2}+a^{2}+b^{2} & c a \\
c^{2} & a^{2}+b^{2}+c^{2} & a b
\end{array}\right| \text {, replacing } C_{2} \text { by } C_{2}+C_{1} \\
& =-\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{lll}
a^{2} & 1 & b c \\
b^{2} & 1 & c a \\
c^{2} & 1 & a b
\end{array}\right| \text {, taking out the common factor from } C_{2} \\
& =-\left(a^{2}+b^{2}+c^{2}\right) \left\lvert\, \begin{array}{ccc|l}
a^{2} & 1 & b c & , \begin{array}{l}
\text { replacing } R_{2} \text { and } R_{3} \text { by } \\
b_{2}-a^{2} \\
0
\end{array} \\
c^{2}-a_{1} & & 0 & a b-b c \\
R_{2}-b c & a b-b & \text { respectively }
\end{array}\right. \\
& =\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ll}
b^{2}-a^{2} & c(a-b) \\
c^{2}-a^{2} & b(a-c)
\end{array}\right| \text {, expanding with respect to } C_{2} \\
& =(a-b)(a-c)\left(a^{2}+l^{2}+c^{2}\right)\left|\begin{array}{ll}
-(b+a) & c \\
-(c+a) & b
\end{array}\right| \text {, taking out the } \\
& =(a-b)(a-c)\left(a^{2}+b^{2}+c^{2}\right)[-b(b+a)+c(c+a)] \\
& =(a-b)(a-c)\left(a^{2}+b^{2}+c^{2}\right)\left[-b^{2}-a b+c^{2}+a c\right] \\
& =(a-b)(a-c)\left(a^{2}+b^{2}+c^{2}\right)\left[\left(c^{2}-b^{2}\right)+a(c-b)\right] \\
& =(a-b)(a-c)\left(a^{2}+b^{2}+c^{2}\right)(c-b)(a+b+c) \text {. } \\
& =(a-b)(b-c)(c-a)(a+b+c)\left(a^{2}+b^{2}+c^{2}\right) \text {. }
\end{aligned}
$$

**Ex. 47. Prove that

$$
\left|\begin{array}{rrrr}
0 & -c & b & -1 \\
\mathbf{c} & 0 & -\mathbf{a} & -\mathbf{m} \\
-\mathbf{b} & \mathbf{a} & 0 & -\mathrm{n} \\
\mathbf{x} & \mathbf{y} & \mathbf{z} & 0
\end{array}\right|=(\mathbf{a l}+\mathrm{bm}+\mathbf{c n})(\mathrm{ax}+\mathrm{by}+\mathrm{cy})
$$

Sol. The given determinant

$$
=\frac{1}{a}\left|\begin{array}{rrrr}
0 & -a c & a b & -a l \tag{Note}\\
c & 0 & -a & -m \\
-b & a & 0 & -n \\
x & y & z & 0
\end{array}\right| \text {, taking } 1 / a \text { common from } R_{1}
$$

$=\frac{1}{a} |$| 0 | 0 | 0 | $-a l-b m-c n$ | |
| ---: | ---: | ---: | ---: | ---: |
| c | 0 | $-a$ | $-m$ | replacing R_{1} by |
| $-b$ | a | 0 | $-n$ | |
| $R_{1}+b R_{2}+c R_{3}$ | | | | |

$=\frac{(a l+b m+c n)}{a}\left|\begin{array}{rrr}c & 0 & -a \\ -b & a & 0 \\ x & y & z\end{array}\right|$, expanding with respect to R_{1}
$=\frac{(a l+b m+c n)}{a^{2}}\left|\begin{array}{rrr}a c & 0 & -a \\ -a b & a & 0 \\ a x & y & z\end{array}\right|$, taking $1 / a$ common from C_{1}
$=\frac{(a l+b m+c n)}{a^{2}}\left|\begin{array}{ccr}0 & 0 & -a \\ 0 & a & 0 \\ a x+b y+c z & y & z\end{array}\right| \begin{gathered}\text { replacing } C_{1} \text { by } \\ C_{1}+b C_{2}+c C_{3}\end{gathered}$
$=\frac{(a l+b m+c n)(a x+b y+c z)}{a^{2}}\left|\begin{array}{rr}0 & -a \\ a & 0\end{array}\right|$
$=(a l+b m+c n)(a x+b y+c z)$.

Exercises on Evaluation of Determinants

Ex. 1. Evaluate $\left|\begin{array}{ccc}1^{2} & 2^{2} & 3^{2} \\ 2^{2} & 3^{2} & 4^{2} \\ 3^{2} & 4^{2} & 5^{2}\end{array}\right|$
Ex. 2. Show that $\left|\begin{array}{lll}29 & 26 & 22 \\ 25 & 31 & 27 \\ 65 & 54 & 46\end{array}\right|=132$
Ex. 3. Evaluate $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$
[Hint: Replace C_{3} by $C_{3}+C_{2}$].
Ans. 0.
Ex. 4. Show that $\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$.
[Hint : Replace C_{1} by $C_{1}+C_{2}+C_{3}$].
Ex. 5. Evaluate $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right| \begin{aligned} & \text {, where } \omega \text { is one of the } \\ & \text { imaginary cube } \\ & \text { roots of unity. }\end{aligned}$
Ans. 0
[Hint : Replace C_{1} by $C_{1}+C_{2}+C_{3}$ remembering $1+\omega+\omega^{2}=0$]

Ex. 6. Prove that $\left|\begin{array}{rrrrr}-4 & 1 & 1 & 1 & 1 \\ 1 & -4 & 1 & 1 & 1 \\ 1 & 1 & -4 & 1 & 1 \\ 1 & 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & 1 & -4\end{array}\right|=0$
[Hint : Replace C_{1} by $C_{1}+C_{2}+C_{3}+C_{4}+C_{5}$].
Ex. 7. Show that
$\left|\begin{array}{rrrr}21 & 17 & 7 & 10 \\ 24 & 22 & 6 & 10 \\ 6 & 8 & 2 & 3 \\ 5 & 7 & 1 & 2\end{array}\right|=0$

Ex. 8. Calculate the value of the determinant
$\left|\begin{array}{rrrr}7 & 13 & 10 & 6 \\ 5 & 9 & 7 & 4 \\ 8 & 12 & 11 & 7 \\ 4 & 10 & 6 & 3\end{array}\right|$

Ans. 0
Ex. 9. Evaluate $\left|\begin{array}{lll}x+a & x+2 a & x+3 a \\ x+2 a & x+3 a & x+4 a \\ x+4 a & x+5 a & x+6 a\end{array}\right|$
[Hint : Replace C_{2} and C_{3} by $C_{2}-C_{1}$ and $C_{3}-C_{2}$].
Ans. 0
Ex. 10. Prove that
$\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=2\left(3 a b c-a^{3}-b^{3}-c^{3}\right)$.
[Hint : See Ex. 13 Page 137].
*Ex. 11. Prove that $\left|\begin{array}{ccc}-2 a & a+b & c+a \\ b+a & -2 b & c+b \\ c+a & c+b & -2 c\end{array}\right|=4(a+b)(b+c)(c+a)$

Products of Determinants

§ 4.11. Theorem. If \mathbf{A} is an $n \times n$ matrix and \mathbf{E} is an elementary matrix obtained from the identity matrix \mathbf{I}_{n}, then

$$
|\mathbf{E A}|=|\mathbf{A E}|=|\mathbf{E}| \cdot|\mathbf{A}|=|\mathbf{A}| \cdot|\mathbf{E}| \quad \text { (Purvanchal 94) }
$$

Proof: $\because \mathbf{I}_{n}$ is the $n \times n$ identity matrix.

$$
\begin{equation*}
\therefore\left|\mathbf{I}_{n}\right|=1 \text {. } \tag{i}
\end{equation*}
$$

Let $\mathbf{E}_{a}, \mathbf{E}_{b}, \mathbf{E}_{c}$ be three elementary matrices as defined in § 3.03 Page 104.
Then $\quad\left|\mathbf{E}_{a}\right|=-\left|\mathbf{I}_{n}\right|$
...See § 4.06 Prop. III Page 126.
\therefore From (i) we get $\quad\left|\mathbf{E}_{a}\right|=-1$
Again $\quad\left|\mathbf{E}_{b}\right|=c\left|\mathbf{I}_{n}\right|$
...See § 4.06 Prop. II, Page 125.
\therefore From (i) we get $\left|\mathbf{E}_{b}\right|=c$
Similarly $\left|\mathbf{E}_{c}\right|=\left|\mathbf{I}_{n}\right|$
... Sée § 4.10 Page 131.
\therefore From (i) we get $\left|\mathbf{E}_{c}\right|=1$

Now as the matrix $\mathbf{E}_{a} \mathbf{A}$ can be obtained by interchanging two rows of the matrix \mathbf{A}, so we have from (ii)

$$
\begin{equation*}
\left|\mathbf{E}_{a} A\right|=-|\mathbf{A}|=\left|\mathbf{E}_{a}\right| \cdot|\mathbf{A}| \tag{v}
\end{equation*}
$$

Simitarly the product $\mathbf{E}_{b} \mathbf{A}$ can be obtained by applying second elementary row operation (as given in § 3.01 Page 103) on the matrix \mathbf{A}, so we have from (iii)

$$
\begin{equation*}
\left|\mathbf{E}_{b} \mathbf{A}\right| \dot{=} c|\mathbf{A}|=\left|\mathbf{E}_{b}\right| \bullet|\mathbf{A}| \tag{vi}
\end{equation*}
$$

Again the product $\mathbf{E}_{c} \mathbf{A}$ can be obtained by applying third elementary row operation (as given in \& 3.01 Page 103) on the matrix \mathbf{A}, so we have from (iv)

$$
\begin{equation*}
\left|\mathbf{E}_{c} \mathbf{A}\right|=|\mathbf{A}|=\left|\mathbf{E}_{c}\right||\mathbf{A}| \tag{vii}
\end{equation*}
$$

Hence from (v), (vi) and (vii) we conclude that $|E A|=|E| \bullet|A|$,
where \mathbf{E} is any one of the elementary matrices as defined in § 3.01 Page 103.
In a similar way we can prove that

$$
|\mathbf{A E}|=|\mathbf{A}| \bullet|\mathbf{E}| \text {. Hence the theorem. }
$$

§ 4.12. Canonical Form (or Normal Form) of a matrix.
Every non-zero $m \times n$ matrix \mathbf{A} can be reduced by means of elementary transformations (i.e. elementary row and column operations) to the form

$$
\left[\begin{array}{ll}
\mathbf{I}_{\mathbf{r}} & \mathbf{0} \\
\mathbf{O} & \mathbf{O}
\end{array}\right]
$$

where $\overline{\mathbf{i}}_{r}$ is the $r \times r$ identity matrix and the remaining sub-matrices are zero matrices.

The above form is called the canonical form or orthogonal form or normal form of the matrix A.

Solved Examples on § 4.12.
Ex. 1. Reduce $A=\left|\begin{array}{rrrr}1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ 1 & 2 & 3 & 4 \\ -1 & -2 & 6 & -7\end{array}\right|$ to the canonical form.
Sol. A $\sim\left[\begin{array}{rrrr}1 & 2 & -1 & 4 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 5 & -3\end{array}\right], \begin{aligned} & \text { replacing } R_{2}, R_{3} \text { and } R_{4} \text { by } R_{2}-2 R_{1}, \\ & R_{3}-R_{1} \text { and } R_{4}+R_{1} \text { respectively. }\end{aligned}$
$\sim\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 5 & -3\end{array}\right]$, replacing C_{2}, C_{3} and C_{4} by $C_{4}-4 C_{1}$ respectively. $2 C_{1}, C_{3}+C_{1}$
$\sim\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, replacing R_{3} and R_{4} by $\frac{1}{4} R_{3}$ and $R_{4}-R_{2}$
$-\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & -3 & 5 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, interchanging C_{2} and C_{4}
$\sim\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, replacing R_{2} by $R_{2}-5 R_{2}$.
$\sim\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, replacing R_{2} by $-\frac{1}{3} R_{2}$.
$\sim\left[\begin{array}{ll}\mathbf{I} 3 & \mathbf{O} \\ \mathbf{O} & \mathbf{O}\end{array}\right]$, which is the required canonical form.
Ex. 2. Reduce $A=\left[\begin{array}{lll}13 & 16 & 19 \\ 14 & 17 & 20 \\ 15 & 18 & 21\end{array}\right]$ to the canonical form.
Sol. A $\sim\left[\begin{array}{rrr}13 & 16 & 19 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$, replacing R_{2} and R_{3} by $R_{2}-R_{1}$
$\sim\left[\begin{array}{rrr}13 & 3 & 3 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$, replacing C_{2} and C_{3} by $C_{2}-C_{1}$
$\sim\left[\begin{array}{rrr}13 & 3 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$, replacing C_{3} by $C_{3}-C_{2}$
$-\left[\begin{array}{rrr}13 & 3 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, replacing R_{3} by $R_{3}-R_{2}$
$\sim\left[\begin{array}{rrr}3 & 13 & \cdot 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, interchanging C_{1} and C_{2}.
$-\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, replacing C_{2} by $C_{2}-(13 / 3) C_{1}$.
$\sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, replacing R_{1} by $\frac{1}{3} R_{1}$.
$\sim\left[\begin{array}{ll}\mathbf{I}_{2} & \mathbf{O} \\ \mathbf{O} & \mathbf{O}\end{array}\right]$, which is the required canonical form.

Exercise on § $\mathbf{4}: 12$

Ex. Reduce $\left[\begin{array}{rrrr}1 & 2 & -1 & 4 \\ 3 & 2 & 0 & 2 \\ 0 & 1, & 3 & 2 \\ 3 & 3 & 3 & 4\end{array}\right]$ to the canonical form.
*§ 4.13. Definition. If \mathbf{A} and \mathbf{B} be two $m \times n$ matrices, then $\mathbf{B} \sim \mathbf{A}$ if and only if $\mathbf{B}=\mathbf{S A T}$, where \mathbf{S} is an $m \times m$ non-singular matrix and \mathbf{T} is an $n \times n$ singular matrix.

With the help of § 3.03 Page 104 and § 3.11 Page 111 it can be proved.
The following two properties of the above relation are fundamental.

1. Symmetry. If $\mathbf{A} \sim \mathbf{B}$, then $\mathbf{B} \sim \mathbf{A}$ for if $\mathbf{A}=\mathbf{P B Q}$.
then $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A} \mathbf{Q}^{-1}$, where \mathbf{P}^{-1} and \mathbf{Q}^{-1} are non-singular matrices.
2. Reflexivity. Every matrix \mathbf{A} is equivalent to itself since we can write $\mathbf{A}=\mathbf{I} A \mathrm{I}$, so that $\mathbf{P}=\mathbf{I}=\mathbf{Q}$.
*§ 4.14. Theorem. An $n \times n$ matrix \mathbf{A} is non-singular (or invertible) if and only if the determinant $|\mathbf{A}| \neq 0$.

Proof : If \mathbf{C} be the canonical form of the matrix \mathbf{A}, then $\mathbf{C} \sim \mathbf{A}$
Therefore

$$
\mathbf{C}=\mathbf{S} \mathbf{A} \mathbf{T},
$$

where \mathbf{S} and \mathbf{T} are non singular. (See § 4.13 above)
Hence.

$$
\begin{aligned}
& A=S^{-1} C_{T^{-1}} \\
& A=E_{r} \ldots E_{2} E_{1} C D_{1} D_{2} \ldots D_{s}
\end{aligned}
$$

where \mathbf{E}_{i} and \mathbf{D}_{i} are elementary matrices. ...See § 3.09 Page 108
By the successive application of §4.11 Page 159 , we have

$$
|\mathbf{A}|=\left|\mathbf{E}_{r}\right| \ldots\left|\mathbf{E}_{2}\right|\left|\mathbf{E}_{1}\right||\mathbf{C}|\left|\mathbf{D}_{1}\right|\left|\mathbf{D}_{2}\right| \ldots\left|\mathbf{D}_{\mathbf{s}}\right|
$$

\therefore If $\quad|\mathbf{A}|=0$, then $|\mathbf{C}|=0$, as $\left|E_{i}\right| \neq 0$ and $\left|D_{i}\right| \neq 0$.
If $|\mathbf{C}|=0$, then it has at least one row of zero.
\therefore The rank of matrix \mathbf{A} is less than n (see next chapter) i.e. the matrix \mathbf{A} is singular.

If the matrix \mathbf{A} is non-singular, then

$$
\mathbf{C}=\mathbf{I}_{\mathbf{n}} \text {, where } \mathbf{I}_{\mathbf{n}} \text { is the } n \times n \text { identity matrix. }
$$

i.e.

$$
|\mathbf{C}|=\left|\mathbf{I}_{\mathbf{n}}\right|=1
$$

\therefore From (i) above, we have $|\mathrm{A}| \neq 0$.
Hence the theorem.
*\& 4.15. Theorem. $\left|A_{1} A_{2}\right|=\left|A_{1}\right| \cdot\left|A_{2}\right|$, where $\left|A_{1}\right|$ and $\left|A_{2}\right|$ are two determinants:
(Purvanchal 94)
Proof : Let $\mathbf{C}_{\mathbf{1}}$. and $\mathbf{C}_{\mathbf{2}}$ be the canonical form of the matrices $\mathbf{A}_{\mathbf{1}}$ and $\mathbf{A}_{\mathbf{2}}$ i.e. $A_{1} \sim C_{1}$ and $A_{2} \sim C_{2}$.

If $\mathbf{A}_{\mathbf{1}} \sim \mathbf{C}_{\mathbf{1}}$ then from § 4.13 above we have
$\mathbf{A}_{1}-S_{C_{1}} T$, where S and T are non-singular matrices.
or $\quad A_{1}=E_{r} \ldots E_{2} E_{1} C_{1} D_{1} D_{2} \ldots D_{s}$,
where $\mathbf{E}_{\mathbf{i}}$ and $\mathbf{D}_{\mathbf{i}}$ are elementary matrices. (See § 3.09 Page 108)
Similarly $A_{2}=F_{t} \ldots F_{2} F_{1} C_{2} K_{\mathbf{1}} K_{2} \ldots K_{s}$,
where F_{i} and $\mathrm{K}_{\mathbf{i}}$ are elementary matrices.
$\therefore A_{1} A_{2}=E_{r} \ldots E_{2} E_{1} C_{1} D_{1} D_{3} \ldots D_{s} F_{1} \ldots F_{2} F_{1} C_{2} K_{1} K_{2} \ldots K_{s}$
Hence by §4.11 Page 159, we have
$\left|A_{1} A_{2}\right|=\left|E_{r} \ldots E_{2} E_{1}\right| \bullet\left|C_{1} D_{1} D_{2} \ldots D_{s} F_{t} \ldots F_{2} F_{1} C_{2}\right|$

- $\left|K_{1} K_{2} \ldots K_{s}\right|$

Now the following cases ariese.
Case I. Let \mathbf{A}_{1} be a singular matrix.
(See § $2 \cdot 18$ Page 91)
Then C_{1} has at least one row of zero.
$\therefore\left|C_{1} D_{1} D_{2} \ldots D_{s} F_{t} \ldots F_{2} F_{1} C_{2}\right|=0$,
since the matrix $C_{1} D_{1} D_{2} \ldots D_{5} F_{t} \ldots F_{2} F_{1} C_{2}$ has a row of zero.
\therefore From (i) above we have $\left|\mathbf{A}_{1} \mathbf{A}_{2}\right|=0$.
Case II. If \mathbf{A}_{2} is a singular matrix. Then $\mathbf{C}_{\mathbf{2}}$ has at least one column of zero, hence as in Case I above

$$
\left|C_{1} D_{1} D_{2} \ldots D_{s} F_{t} \ldots F_{1} C_{2}\right|=0
$$

\therefore From (i) above we have $\left|\mathbf{A}_{1} \mathbf{A}_{2}\right|=0$.
Case III. If either \mathbf{A}_{1} or \mathbf{A}_{2} is singular, then $|\mathbf{A}| \bullet\left|\mathbf{A}_{\mathbf{2}}\right|=0$
Hence $\left|\mathbf{A}_{1} \mathbf{A}_{2}\right|=0=\left|\mathbf{A}_{1}\right| \cdot\left|\mathbf{A}_{2}\right|$.
Case IV. If \mathbf{A}_{1} and \mathbf{A}_{2} are non-singular matrices. Then $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ are identity matrices. Hence from § 4.11 Page 159 , we have

$$
\begin{aligned}
& \left|A_{1} A_{2}\right|=\left|E_{r} \ldots E_{2} E_{1} C_{1} D_{1} D_{2} \ldots D_{s}\right|\left|F_{t} \ldots F_{2} F_{1} C_{2} K_{1} \ldots K_{s}\right| \\
& \\
& \\
& =\left|A_{1}\right| \cdot\left|A_{2}\right|
\end{aligned}
$$

\therefore From all the above cases it is clear that

$$
\left|\mathbf{A}_{1} \mathbf{A}_{2}\right|=\left|\mathbf{A}_{1}\right| \cdot\left|\mathbf{A}_{2}\right|
$$

Cor. $\left|\mathbf{A}_{1} \mathbf{A}_{\mathbf{2}}^{\prime}\right|=\left|\mathbf{A}_{1}\right| \bullet\left|\mathbf{A}_{\mathbf{2}}\right|$, where $\mathbf{A}_{\mathbf{2}}^{\prime}$ is the transpose of $\mathbf{A}_{\mathbf{2}}$.
Proof : $\left|\mathbf{A}^{\prime}{ }_{2}\right|=\left|\mathbf{A}_{2}\right|, \quad \because \mathbf{A}_{2}^{\prime}$ is the transpose of \mathbf{A}_{2}
$\therefore \quad\left|\mathbf{A}_{1} \mathbf{A}_{2}^{\prime}\right|=\left|\mathbf{A}_{1}\right|\left|\mathbf{A}_{2}^{\prime}\right|$, from § $4 \cdot 14$ above.

$$
=\left|\mathbf{A}_{1}\right|\left|\mathbf{A}_{2}\right|, \because\left|\mathbf{A}_{2}^{\prime}\right|=\left|\mathbf{A}_{2}\right|
$$

The corolllary leads to the row by row rule of multiplication of the determinants as given in Examples below :

Solved Examples on Multiplication of Determinantc.
*Ex. 1. Evaluate $\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}$

Sol. $\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}=\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right| \times\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|$
$=\left|\begin{array}{ccc}0 \cdot 0+c \cdot c+b \cdot b & 0 \cdot c+c \cdot 0+b \cdot a & 0 \cdot b+c \cdot a+b \cdot 0 \\ c \cdot 0+0 \cdot c+a \cdot b & c \cdot c+0 \cdot 0+a \cdot a & c \cdot b+0 \cdot a+a \cdot 0 \\ b \cdot 0+a \cdot c+0 \cdot b & b \cdot c+a \cdot 0+0 \cdot a & b \cdot b+a \cdot a+0 \cdot 0\end{array}\right|$
$=\left|\begin{array}{ccc}c^{2}+b^{2} & b a & c a\end{array}\right|$
$=\left|\begin{array}{ccc}c^{2}+b^{2} & b a & c a \\ a b & c^{2}+a^{2} & b c \\ a c & b c & b^{2}+a^{2}\end{array}\right|$
Ans.
Ex. 2. Evaluate $\left|\begin{array}{ccr}0 & \cos x & -\sin x \\ \sin x & 0 & \cos x \\ \cos x & \sin x & 0\end{array}\right|^{2}$
Sol. The required product
$=\left|\begin{array}{ccc}0 & \cos x & -\sin x \\ \sin x & 0 & \cos x \\ \cos x & \sin x & 0\end{array}\right| \times\left|\begin{array}{ccr}0 & \cos x & -\sin x \\ \sin x & 0 & \cos x \\ \cos x & \sin x & 0\end{array}\right|$
$=\left\lvert\, \begin{array}{ll}0 \cdot 0+\cos x \cdot \cos x+\sin x \cdot \sin x & 0 \cdot \sin x+\cos x \cdot 0-\sin x \cdot \cos x \\ \sin x \cdot 0+0 \cdot \cos x-\cos x \cdot \sin x & \sin x \cdot \sin x+0 \cdot 0+\cos x \cdot \cos x \\ \cos x \cdot 0+\sin x \cdot \cos x+0 \cdot(-\sin x) & \cos x \cdot \sin x+\sin x \cdot 0+0 \cdot \cos x\end{array}\right.$
$0 \cdot \cos x+\cos x \cdot \sin x-\sin x \cdot 0$ $\sin x \cdot \cos x+0 \cdot \sin x+\cos x \cdot 0$ $\cos x \cdot \cos x+\sin x \cdot \sin x+0 \cdot 0$
$=\left|\begin{array}{ccc}\cos ^{2} x+\sin ^{2} x & -\sin x \cos x & \cos x \sin x \\ -\cos x \sin x & \sin ^{2} x+\cos ^{2} x & \sin x \cos x \\ \sin x \cos x & \cos x \sin x & \cos ^{2} x+\sin ^{2} x\end{array}\right|$
$=\left|\begin{array}{rrr}1 & -\lambda & \lambda \\ -\lambda & 1 & \lambda \\ \lambda & \lambda & 1\end{array}\right|$, where $\lambda=\sin x \cos x$
Ans.

> Ex. 3. Evaluate $\left|\begin{array}{lll}\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & b_{3} & c_{3}\end{array}\right| \times\left|\begin{array}{lll}\mathbf{x}_{1} & \mathbf{y}_{1} & z_{1} \\ \mathbf{x}_{2} & y_{2} & z_{2} \\ \mathbf{x}_{3} & y_{3} & z_{3}\end{array}\right|$
> Sol. The required product
$=\left|\begin{array}{lll}a_{1} x_{1}+b_{1} y_{1}+c_{1} z_{1} & a_{1} x_{2}+b_{1} y_{2}+c_{1} z_{2} & a_{1} x_{3}+b_{1} y_{3}+c_{1} z_{3} \\ a_{2} x_{1}+b_{2} y_{1}+c_{2} z_{1} & a_{2} x_{2}+b_{2} y_{2}+c_{2} z 2 & a_{2} x_{3}+b_{2} y_{3}+c_{2 z 3} \\ a_{3} x_{1}+b_{3} y_{1}+c_{3} z_{1} & a_{3} x_{2}+b_{3} y_{2}+c_{3 z 2} & a_{3} x_{3}+b_{3} y_{3}+c_{3 z 3}\end{array}\right|$

**Ex. 4. Prove that

$$
\left|\begin{array}{ccc}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|^{2}=\left|\begin{array}{ccc}
2 b c-a^{2} & c^{2} & b^{2} \\
c^{2} & 2 a c-b^{2} & a^{2} \\
b^{2} & a^{2} & 2 a b-c^{2}
\end{array}\right|
$$

$$
=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}
$$

(Gorakhpur 91; Kanpur 95)
Sol. $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|^{2}=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right| \times\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
$=-\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right| \times\left|\begin{array}{lll}a & c & b \\ b & a & c \\ c & b & a\end{array}\right|$, interchanging C_{2}, C_{3} of the second
(Note)
$=\left|\begin{array}{lll}-a & b & c \\ -b & c & a\end{array}\right| \times\left|\begin{array}{lll}a & c & b \\ b & a & c\end{array}\right|$, multiplying C_{1} of first determinant by
(Note)
$=\left|\begin{array}{lll}-a a+b c+c b & -a b+b a+c c & -a c+b b+c a \\ -b a+c c+a b & -b b+c a+a c & -b c+c b+a a \\ -c a+a c+b b & -c b+a a+b c & -c c+a b+b a\end{array}\right|$
$=\left|\begin{array}{ccc}2 b c-a^{2} & c^{2} & b^{2} \\ c^{2} & 2 a c-b^{2} & a^{2} \\ b^{2} & a^{2} & 2 a b-c^{2}\end{array}\right|$
Hence proved.
(See Ex. 9 Page 167 also)
Also $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=a\left|\begin{array}{ll}c & a \\ a & b\end{array}\right|-b\left|\begin{array}{ll}b & a \\ c & b\end{array}\right|+c\left|\begin{array}{ll}b & c \\ c & a\end{array}\right|$
$=a\left(c b-a^{2}\right)-b\left(b^{2}-a c\right)+c\left(a b-c^{2}\right)$
$=a b c-a^{3}-b^{3}+a b c+a b c-c^{3}$
$=-\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$
$\therefore\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|^{2}=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}$
Hence proved.
*Ex. 5. If $u=a x+b y+c z, v=a y+b z+c x, w=a z+b x+c y$,
prove that

$$
\begin{array}{lll}
\mathbf{a} & \mathbf{b} & \mathbf{c} \\
\mathbf{b} & \mathbf{c} & \mathbf{a} \\
\mathbf{c} & \mathbf{a} & \mathbf{b}
\end{array}\left|\times\left|\begin{array}{lll}
\mathbf{x} & \mathbf{y} & \mathbf{z} \\
\mathbf{y} & \mathbf{z} & \mathbf{x} \\
\mathbf{z} & \mathbf{x} & \mathbf{y}
\end{array}\right|=\mathbf{u}^{\mathbf{3}}+\mathbf{v}^{3}+\mathbf{w}^{3}-3 \mathbf{u v w}\right.
$$

Sol. By row-by-row multiplication, the product of the given determinants

$$
=\left|\begin{array}{lll}
a x+b y+c z & a y+b z+c x & a z+b x+c y \\
b x+c y+a z & b y+c z+a x & b z+c x+a y \\
c x+a y+b z & c y+a z+b x & c z+a x+b y
\end{array}\right|
$$

$=\left|\begin{array}{lll}u & v & w \\ w & u & v \\ v & w & u\end{array}\right|$, since $a x+b y+c z=u$ etc. (given)

$$
=u\left|\begin{array}{cc}
u & v \\
w & u
\end{array}\right|-v\left|\begin{array}{cc}
w & v \\
v & \cdots
\end{array}\right|+w\left|\begin{array}{cc}
w & u \\
v & w
\end{array}\right|
$$

$$
\begin{aligned}
& =u\left(u^{2}-v w\right)-v\left(u w-v^{2}\right)+w\left(w^{2}-u v\right) \\
& =u^{3}+v^{3}+w^{3}-3 u v w .
\end{aligned}
$$

Hence proved.
**Ex. 6. Express $\left|\begin{array}{ccc}(a-x)^{2} & (b-x)^{2} & (c-x)^{2} \\ (a-y)^{2} & (b-y)^{2} & (c-y)^{2} \\ (a-z)^{2} & (b-z)^{2} & (c-z)^{2}\end{array}\right|$
as the product of two determinants.
Sol. The given determinant.

$$
=\left|\begin{array}{ccc}
a^{2}-2 a x+x^{2} & b^{2}-2 b x+x^{2} & c^{2}-2 c x+x^{2} \\
a^{2}-2 a y+y^{2} & b^{2}-2 b y+y^{2} & c^{2}-2 c y+y^{2} \\
a^{2}-2 a z+z^{2} & b^{2}-2 b z+z^{2} & c^{2}-2 c z+z^{2}
\end{array}\right|
$$

The element in the first row and first column is $a^{2}-2 a x+x^{2}$, which can be written as $1\left(a^{2}\right)+(-2 x)(a)+x^{2}(1)$.

This suggests that the first row of the required determinants are $1-2 x, x^{2}$ and $a^{2}, a, 1$.

Hence proceeding in this way we may write the given determinant

$$
=\left|\begin{array}{lll}
1 & -2 x & x^{2} \\
1 & -2 y & y^{2} \\
1 & -2 z & z^{2}
\end{array}\right| \times\left|\begin{array}{lll}
a^{2} & a & 1 \\
b^{2} & b & 1 \\
c^{2} & c & 1
\end{array}\right|
$$

We can verify by multiplying with the help of row-by-row rule that' above two determinants are the required ones.
[Note: Such questions are acutally done by trial and error].

$$
\text { Ex. 7. Express }\left|\begin{array}{ccc}
(1+a x)^{2} & (1+a y)^{2} & (1+a z)^{2} \\
(1+b x)^{2} & (1+b y)^{2} & (1+b z)^{2} \\
(1+c x)^{2} & (1+c y)^{2} & (1+c z)^{2}
\end{array}\right|
$$

as the product of two determinants.
(Gorakhpur 95; Purvanchal 96)
Sol. The given determinant

$$
=\left|\begin{array}{lll}
1+2 a x+a^{2} x^{2} & 1+2 a y+a^{2} y^{2} & 1+2 a z+a^{2} z^{2} \\
1+2 b x+b^{2} x^{2} & 1+2 b y+b^{2} y^{2} & 1+2 b z+b^{2} z^{2} \\
1+2 c x+c^{2} x^{2} & 1+2 c y+c^{2} y^{2} & 1+2 c z+c^{2} z^{2}
\end{array}\right|
$$

The element in the first row and first column is $1+2 a x+a^{2} x^{2}$ which can be written as
(1) $(1)+(2 a) \cdot(x)+\left(a^{2}\right) \cdot\left(x^{2}\right)$

This suggests that the first rows of the two required determinants are $1,2 a, a^{2}$ and $1, x, x^{2}$

Hence the given determinant may be written as

$$
\left|\begin{array}{ccc}
1 & 2 a & a^{2} \\
1 & 2 b & b^{2} \\
1 & 2 c & c^{2}
\end{array}\right| \times\left|\begin{array}{ccc}
-1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|
$$

Ans.
*Ex. 8. Express $\left|\begin{array}{ccc}\mathbf{b}^{2}+\mathbf{c}^{2} & \mathbf{a b} & \mathbf{c a} \\ \mathbf{a b} & \mathbf{c}^{2}+\mathbf{a}^{2} & b c \\ \mathbf{c a} & b c & \mathbf{b}^{2}+\mathbf{b}^{2}\end{array}\right|$
as the square of a determinant.
Hence evaluate.
Sol. The element in first row and first column is $b^{2}+c^{2}$ which can be written as $0 \cdot 0+c \cdot c+b \cdot b$.

So by trial and error method, we get the given determinant

$$
\begin{aligned}
& =\left|\begin{array}{lll}
0 & c & b \\
c & 0 & a \\
b & a & 0
\end{array}\right| \times\left|\begin{array}{lll}
0 & c & b \\
c & 0 & a \\
b & a & 0
\end{array}\right| \\
& =\left|\begin{array}{lll}
0 & c & b \\
c & 0 & a \\
b & a & 0
\end{array}\right|^{2}
\end{aligned}
$$

Now $\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|$
$=-c\left|\begin{array}{ll}c & a \\ b & 0\end{array}\right|+b\left|\begin{array}{ll}c & 0 \\ b & a\end{array}\right|$, expanding with respect to R_{1}.
$=-a[c \cdot 0-a \cdot b]+b[c \cdot a-b \cdot 0]=2 a b c$.
\therefore The given determinat
$=\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}=(2 a b c)^{2}=4 a^{2} b^{2} c^{2}$.
$* *$ Ex. 9. Express $\left|\begin{array}{ccc}2 b c-a^{2} & c^{2} & b^{2} \\ c^{2} & 2 c a-b^{2} & a^{2} \\ b^{2} & a^{2} & 2 a b-c^{2}\end{array}\right|$
as the product of two determiants.
Sol. The elements in the first row and first column is $2 b c-a^{2}$ which can be written as

$$
\begin{equation*}
a(-a)+b(c)+c(b) \tag{i}
\end{equation*}
$$

The element in the first row and second column is c^{2} which can be written as

$$
\begin{equation*}
a(-b)+b(a)+c(c) \tag{ii}
\end{equation*}
$$

The element in the first row and third column is b^{2} which can be written as

$$
\begin{equation*}
a(-c)+b(b)+c(a) \tag{iii}
\end{equation*}
$$

(i), (ii) and (iii) suggest that the given determinant can be written tentatively as

$$
\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \times\left|\begin{array}{lll}
-a & c & b \\
-b & a & c \\
-c & b & a
\end{array}\right|
$$

But actually multiplying these two determinants we get the given determinant. Hence these determinants are the required ones.

Ex. 19. Show that

$$
\left|\begin{array}{ccc}
2 b c-a^{2} & c^{2} & b^{2} \\
c^{2} & 2 a c-b^{2} & a^{2} \\
b^{2} & a^{2} & 2 a c-b^{2}
\end{array}\right|=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}
$$

Sol. As in Ex. 9. above, we can show that the given determinant

$$
\begin{align*}
& =\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \times\left|\begin{array}{lll}
-a & c & b \\
-b & a & c \\
-c & b & a
\end{array}\right| \\
& =\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \times\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|, \tag{Note}
\end{align*}
$$

taking - sign common from C_{1} and interchanging C_{2}, C_{3} in 2nd determinant

$$
=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}
$$

on expanding the determinant.
Hence proved.

Ex. 11. Find the product of determinants of different orders

or

evaluate

$$
\left|\begin{array}{lll}
\alpha_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \beta_{3} & \gamma_{3}
\end{array}\right| \times\left|\begin{array}{ll}
\mathbf{a}_{1} & b_{1} \\
\mathbf{a}_{2} & b_{2}
\end{array}\right|
$$

Sol. Here the two given determinants are of different orders, so we adopt the following method :

$$
\begin{align*}
& \quad\left|\begin{array}{lll}
\alpha_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \beta_{3} & \gamma_{3}
\end{array}\right| \times\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \tag{Note}\\
& =\left|\begin{array}{lll}
\alpha_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \beta_{3} & \gamma_{3}
\end{array}\right| \times\left|\begin{array}{ccc}
a_{1} & b_{1} & 0 \\
a_{2} & b_{2} & 0 \\
0 & 0 & 1
\end{array}\right|,
\end{align*}
$$

making the two determinats of the same order

$$
\begin{aligned}
& =\left|\begin{array}{lll}
\alpha_{1} a_{1}+\beta_{1} b_{1}+\gamma_{1} \cdot 0 & \alpha_{1} a_{2}+\beta_{1} b_{2}+\gamma_{1} \cdot 0 & \alpha_{1} \cdot 0+\beta_{1} \cdot 0+\gamma_{1} \cdot 1 \\
\alpha_{2} a_{1}+\beta_{2} b_{1}+\gamma_{2} \cdot 0 & \alpha_{2} a_{2}+\beta_{2} b_{2}+\gamma_{2} \cdot 0 & \alpha_{2} \cdot 0+\beta_{2} \cdot 0+\gamma_{2} \cdot 1 \\
\alpha_{3} a_{1}+\beta_{3} b_{1}+\gamma_{3} \cdot 0 & \alpha_{3} a_{2}+\beta_{3} b_{2}+\gamma_{3} \cdot 0 & \alpha_{3} \cdot 0+\beta_{3} \cdot 0+\gamma_{3} \cdot 1
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_{1} \alpha_{1}+b_{1} \beta_{1} & a_{2} \alpha_{1}+b_{2} \beta_{1} & \gamma_{1} \\
a_{1} \alpha_{2}+b_{1} \beta_{2} & a_{2} \alpha_{2}+b_{2} \beta_{2} & \gamma_{2} \\
a_{1} \alpha_{3}+b_{1} \beta_{3} & a_{2} \alpha_{3}+b_{2} \beta_{3} & \gamma_{3}
\end{array}\right|
\end{aligned}
$$

Ans.

Exercises on Multiplication of Determinants

Ex. 1. Show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|^{2}=\left|\begin{array}{ccc}
3 & a+b+c & a^{2}+b^{2}+c^{2} \\
a+b+c & a^{2}+b^{2}+c^{2} & a^{3}+b^{3}+c^{3} \\
a^{2}+b^{2}+c^{2} & a^{3}+b^{3}+c^{3} & a^{4}+b^{4}+c^{4}
\end{array}\right|
$$

Ex. 2. Show that

$$
\left|\begin{array}{ccc}
a^{2}+\lambda^{2} & a b+c \lambda & c a-b \lambda \\
a b-c \lambda & b^{2}-\lambda^{2} & b c+a \lambda \\
a c+b \lambda & b c-a \lambda & c^{2}+\lambda^{2}
\end{array}\right| \times\left|\begin{array}{rrr}
\lambda & c & -b \\
-c & \lambda & a \\
b & -a & \lambda
\end{array}\right|
$$

$=\lambda^{3}\left(\lambda^{2}+a^{2}+b^{2}+c^{2}\right)$
Ex. 3. If ω is one of the imaginary cube roots of unity, show that

$$
\left|\begin{array}{cccc}
1 & \omega & \omega^{2} & \omega^{3} \\
\omega & \omega^{2} & \omega^{3} & 1 \\
\omega^{2} & \omega^{3} & 1 & \omega \\
\omega^{3} & 1 & \omega & \omega^{2}
\end{array}\right|^{2}=\left|\begin{array}{rrrr}
1 & 1 & -2 & 1 \\
1 & 1 & 1 & -2 \\
-2 & 1 & 1 & 1 \\
1 & -2 & 1 & 1
\end{array}\right|=-27
$$

(Gorakhpur 96, 93)
*Ex. 4. Prove that the determinant
$\left|\begin{array}{ccc}-a^{2} & a b & a c \\ a b & -b^{2} & b c \\ a c & b c & -c^{2}\end{array}\right|$ is a perfect square and find its value.
(Gorakhpur 92)
Ex. 5. Express the product of the following determinats as a single determinant

$$
\left|\begin{array}{cc}
a & b \\
c & d
\end{array}\right| \text { and }\left|\begin{array}{cc}
u & r \\
v & s
\end{array}\right|
$$

**§ 4.16. Theorem. If C_{i} be the cofactor of $a_{i j}$ in the $n \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$ then $\left|C_{i j}\right|=\left\{\left|a_{j k}\right|\right\}^{n-1}$.
[Note. $\left|C_{i j}\right|$ is known as reciprocal of the determinant $\left.\left|a_{i j}\right|\right]$,
Proof. If $\mathbf{A}=\left[a_{i j}\right]$, then $\mathbf{A}^{\prime}=\left[a^{\prime}{ }_{k}\right]$, where \mathbf{A}^{\prime} is the transpose of \mathbf{A} and

$$
a^{\prime}{ }_{k i}=a_{i} k
$$

Now $\mathbf{A}^{\prime} \cdot\left[C_{i j}\right]=\left[a^{\prime} k_{i}\right]\left[C_{i j}\right]=\left[b_{k j}\right]$, say
where

$$
\begin{equation*}
b_{k j}=\sum_{i=1}^{n} a^{\prime}{ }_{k i} C_{i j}=\sum_{i=1}^{n} a_{i k} C_{i j}, \because a^{\prime}{ }_{k i}=a_{i k} \tag{i}
\end{equation*}
$$

Also by § 4.09 Page 129 we know that

$$
\begin{aligned}
b_{k j} & =\sum_{i=1}^{n} a_{i k} C_{i j}=0, \text { if } j \neq k \\
& =|\mathbf{A}|, \text { if } j=k .
\end{aligned}
$$

\therefore From (i) we conclude that for the product \mathbf{A}^{\prime}. [$\left.C_{i j}\right]$ i.e. $\left[b_{k j}\right]$ all the diagonal terms (for which $j=k$) are $|\mathbf{A}|$, whereas the nondiagonal terms (for which $j \neq k$) are zero.
i.e.

$$
=\left[\begin{array}{cccc}
|\mathbf{A}| & 0 & \ldots & 0 \\
0 & |\mathbf{A}| & \ldots & 0 \\
\ldots & \ldots & \ldots & \cdots \\
\ddot{0} & \ldots & \ldots & \cdots \\
0 & 0 & \ldots & |\mathbf{A}|
\end{array}\right]
$$

Hence $\left|\mathbf{A}^{\prime} .\left[C_{i j}\right]\right|=\left|\begin{array}{cccc}|\mathbf{A}| & 0 & \cdots & 0 \\ 0 & |\mathbf{A}| & \cdots & 0 \\ \cdots & \ldots & \cdots & \ldots \\ \ddot{0} & \ldots & \cdots & \cdots \\ 0 & 0 & \ldots & |\mathbf{A}|\end{array}\right|$

$$
\begin{aligned}
\text { or } & \ddots & \left|\mathbf{A}^{\prime}\right| .\left|C_{i j}\right| & =\{|\mathbf{A}|\}^{n}, \because\left|\mathbf{A}_{\mathbf{1}} \cdot \mathbf{A}_{\mathbf{2}}\right|=\left|\mathbf{A}_{\mathbf{1}}\right| .\left|\mathbf{A}_{\mathbf{2}}\right| \\
\text { or } & & |\mathbf{A}| .\left|C_{i j}\right| & =\{|\mathbf{A}|\}^{n}, \because\left|\mathbf{A}^{\prime}\right|=|\mathbf{A}| \\
\mathrm{r} & & \left|C_{i j}\right| & =\{|\mathbf{A}|\}^{n-1}
\end{aligned}
$$

§ 4.17. Complementary Minor of a Determinant.
Definition. If \mathbf{B} is $r \times r$ submatrix of an $n \times n$ matrix \mathbf{A}, then the determinant \mathbf{E}^{\prime} of \mathbf{A} formed by removing the rows and columns of \mathbf{A} containing the elements of \mathbf{B} is called the completementary minor of \mathbf{B}.

For example : In the matrix $\left[\begin{array}{llll}a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{3} & b_{3} & c_{3} & d_{3} \\ a_{4} & b_{4} & c_{4} & d_{4}\end{array}\right]$
the completemtary minor.of the det $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ is $\left|\begin{array}{ll}c_{3} & d_{3} \\ c_{4} & d_{4}\end{array}\right|$;
the completementary minor of $\left|\begin{array}{lll}b_{1} & c_{1} & d_{1} \\ b_{2} & c_{2} & d_{2} \\ b_{3} & c_{3} & d_{3}\end{array}\right|$ is a_{4}
and the complementary minor of $\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|$ is $\left|\begin{array}{ll}a_{1} & d_{1} \\ a_{4} & d_{4}\end{array}\right|$
§ 4.18. Laplace's Expansion of a determinant by the minors of first \mathbf{r} columns.

If $\left|\mathbf{B}_{\mathrm{i}}\right|$ is $r \times r$ minor of an $n \times n$ matrix \mathbf{A} formed by the elements of the first r columns of \mathbf{A} and $\left|\mathbf{B}_{i}^{\prime}\right|$ is the complementary minor of $\left|\mathbf{B}_{i}\right|$, then

$$
|\mathbf{A}|=\Sigma \pm\left|\mathbf{B}_{\mathbf{i}}\right| .\left|\mathbf{B}_{i}^{\prime}\right|
$$

where the summation is extended over all the possible $r \times r$ minors of \mathbf{A} whch can be formed from the elements of the first r columns and + or - sign taken according as an even or odd number of interchanges of adjacent rows of \mathbf{A} is required to bring the submatrix \mathbf{B}_{i} into the first r rows of \mathbf{A}.

The following solved examples explain the above theorem.

Ex. 1. Expand $|$| a | x | y | a | Laplace's expansion by the minors of |
| :--- | :--- | :--- | :--- | :--- |

the first two columns. Hence evaluate it.

Sol. All the possible minors of the first two columns and their complementary minors are given by

$$
\begin{aligned}
\left|B_{1}\right| & =\left|\begin{array}{ll}
a & x \\
x & 0
\end{array}\right| ;\left|B_{1}^{\prime}\right|=\left|\begin{array}{ll}
0 & x \\
x & a
\end{array}\right| ; \\
\left|B_{2}\right| & =\left|\begin{array}{ll}
a & x \\
y & 0
\end{array}\right| ;\left|B_{2}^{\prime}\right|=\left|\begin{array}{ll}
0 & y \\
x & a
\end{array}\right| ; \\
\left|B_{3}\right| & =\left|\begin{array}{ll}
a & x \\
a & y
\end{array}\right| ;\left|B_{3}\right|=\left|\begin{array}{ll}
0 & y \\
0 & x
\end{array}\right| ; \\
\left|B_{4}\right| & =\left|\begin{array}{ll}
x & 0 \\
y & 0
\end{array}\right| ;\left|B_{4}^{\prime}\right|=\left|\begin{array}{ll}
y & a \\
x & a
\end{array}\right|, \\
\left|B_{5}\right| & =\left|\begin{array}{ll}
x & 0 \\
a & y
\end{array}\right| ;\left|B_{5}^{\prime}\right|=\left|\begin{array}{ll}
y & a \\
0 & x
\end{array}\right| ; \\
\text { and } \quad\left|B_{6}\right| & =\left|\begin{array}{ll}
y & 0 \\
a & y
\end{array}\right| ;\left|B_{6}\right|=\left|\begin{array}{ll}
y & a \\
0 & y
\end{array}\right| ;
\end{aligned}
$$

Therefore the given determinant

$$
\begin{align*}
& =\left|\begin{array}{ll}
a & x \\
x & 0
\end{array}\right| \cdot\left|\begin{array}{ll}
0 & x \\
x & a
\end{array}\right|-\left|\begin{array}{ll}
a & x \\
y & 0
\end{array}\right| \cdot\left|\begin{array}{ll}
0 & y \\
x & a
\end{array}\right|+\left|\begin{array}{ll}
a & x \\
a & y
\end{array}\right| \cdot\left|\begin{array}{ll}
0 & y \\
0 & x
\end{array}\right| \\
& \quad+\left|\begin{array}{ll}
x & 0 \\
y & 0
\end{array}\right| \cdot\left|\begin{array}{ll}
y & a \\
x & a
\end{array}\right|-\left|\begin{array}{ll}
x & 0 \\
a & y
\end{array}\right| \cdot\left|\begin{array}{ll}
y & a \\
0 & x
\end{array}\right|+\left|\begin{array}{ll}
y & 0 \\
a & y
\end{array}\right| \cdot\left|\begin{array}{ll}
y & a \\
0 & y
\end{array}\right| \tag{i}
\end{align*}
$$

The submatrix \mathbf{B}_{2} requires one interchange of rows viz. of second and third rows to bring it into the first two rows therefore - sign is put before the product $\left|\mathbf{B}_{2}\right|\left|\mathbf{B}^{\prime}{ }_{2}\right|$. Again the submatrix \mathbf{B}_{3} requires two interchanges of rows to bring fourth row to the position of second row i.e. to bring \mathbf{B}_{3} into first two rows, therefore $+\operatorname{sign}$ is put before the product $\left|\mathbf{B}_{3}\right|\left|\mathbf{B}^{\prime}{ }_{3}\right|$.

Similarly \mathbf{B}_{4} requires two interchanges, \mathbf{B}_{5} requires three interchanges and \mathbf{B}_{6} requires four interchanges, hence,+- and + sign are put before $\left|\mathbf{B}_{4}\right| .\left|\mathbf{B}_{4}^{\prime}\right|,\left|\mathbf{B}_{5}\right| .\left|\mathbf{B}_{5}^{\prime}\right|$ and $\left|\mathbf{B}_{6}\right| .\left|\mathbf{B}_{6}^{\prime}\right|$ respectively.

Hence from (i) we have (expanding the determinarts) the given determinants.

$$
\begin{align*}
&=\left(-x^{2}\right)\left(-x^{2}\right)-(-x y)(-x y)+(a y-a x)(0)+(0)(a y-a x) \\
&-(x y)(x y)+\left(y^{2}\right)\left(y^{2}\right) \tag{Ans.}
\end{align*}
$$

$=x^{4}-2 x^{2} y^{2}+y^{4}=\left(x^{2}-y^{2}\right)^{2}$

Ex. 2. Expand $|$| a | b | c | d |
| :--- | :--- | :--- | :--- | by Laplace's expansion by the minors

$\left|\begin{array}{llll}\mathbf{e} & \mathbf{f} & \mathbf{g} & \mathbf{h} \\ \mathbf{0} & \mathbf{0} & \mathbf{j} & \mathbf{k} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{m}\end{array}\right|$
of the first two columns.
Sol. All the possible minors of the first two columns and their complementary minor are given by :
$|\mathbf{B}|=\left|\begin{array}{ll}a & b \\ e & f\end{array}\right|,\left|\mathbf{B}_{1}^{\prime}\right|=\left|\begin{array}{ll}j & k \\ l & m\end{array}\right|$
$\left|\mathbf{B}_{\mathbf{2}}\right|=\left|\begin{array}{ll}a & b \\ 0 & 0\end{array}\right|=0$, hence $\left|\mathbf{B}_{2}^{\prime}\right|$ need not be calculated
Similarly $\left|\mathbf{B}_{\mathbf{3}}\right|=\left|\begin{array}{ll}a & b \\ 0 & 0\end{array}\right|=0 ;\left|\mathbf{B}_{\mathbf{4}}\right|=\left|\begin{array}{cc}e & f \\ 0 & 0\end{array}\right|=0$;
$\left|\mathbf{B}_{5}\right|=\left|\begin{array}{ll}e & f \\ 0 & 0\end{array}\right|=0$ and $\left|\mathbf{B}_{6}\right|=\left|\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right|=0$ and therefore their complementary minors need not be calculated.

Then the given determinant by Laplace's Expansion method

$$
=\left|\begin{array}{ll}
a & b \\
e & f
\end{array}\right| \cdot\left|\begin{array}{cc}
j & k \\
l & m
\end{array}\right|
$$

Ans.
Ex. 3. Expand $\left|\begin{array}{rrrr}3 & 2 & 1 & 4 \\ 15 & 29 & 2 & 14 \\ 16 & 19 & 3 & 17 \\ 33 & 39 & 8 & 38\end{array}\right|$ by Laplace's expansion by the

minors of the first two columns.

Sol. All the possible minors of the first two columns and their complementary minors are given by :

$$
\begin{aligned}
& \left|\mathbf{B}_{1}\right|=\left|\begin{array}{rr}
3 & 2 \\
15 & 29
\end{array}\right|,\left|\mathbf{B}_{1}^{\prime}\right|=\left|\begin{array}{ll}
3 & 17 \\
8 & 38 \\
3 & 2 \\
16 & 19
\end{array}\right|,\left|\mathbf{B}_{2}\right|=\left|\begin{array}{ll}
2 & 14 \\
8 & 38
\end{array}\right| \\
& \left|\mathbf{B}_{2}\right|=\left|\begin{array}{ll}
3 & 2 \\
2 & 14 \\
3 & 29
\end{array}\right|,\left|\mathbf{B}_{3}^{\prime}\right|=\left|\begin{array}{rr}
17
\end{array}\right| \\
& \left|\mathbf{B}_{3}\right|=\left|\begin{array}{rr}
1 & 4 \\
8 & 38
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \left|\mathbf{B}_{5}\right|=\left|\begin{array}{ll}
15 & 29 \\
33 & 39
\end{array}\right|,\left|\mathbf{B}_{5}^{\prime}\right|=\left|\begin{array}{rr}
1 & 4 \\
3 & 17
\end{array}\right| \\
& \left|\mathbf{B}_{6}\right|=\left|\begin{array}{rr}
16 & 19 \\
33 & 39
\end{array}\right|,\left|\mathbf{B}_{6}^{\prime}\right|=\left|\begin{array}{rr}
1 & 4 \\
2 & 14
\end{array}\right|
\end{aligned}
$$

\therefore The given determinat

$$
\begin{aligned}
& =\left|\begin{array}{rr}
3 & 2 \\
15 & 29
\end{array}\right| \bullet\left|\begin{array}{rr}
3 & 17 \\
8 & 38
\end{array}\right|-\left|\begin{array}{rr}
3 & 2 \\
16 & 19
\end{array}\right| \bullet\left|\begin{array}{ll}
2 & 14 \\
8 & 38
\end{array}\right| \\
& +\left|\begin{array}{rr}
3 & 2 \\
33 & 39
\end{array}\right| \bullet\left|\begin{array}{rr}
2 & 14 \\
3 & 17
\end{array}\right|+\left|\begin{array}{ll}
15 & 29 \\
16 & 19
\end{array}\right| \bullet\left|\begin{array}{ll}
1 & 4 \\
8 & 38
\end{array}\right| \\
& -\left|\begin{array}{rr}
15 & 29 \\
33 & 39
\end{array}\right| \bullet\left|\begin{array}{ll}
1 & 14 \\
3 & 17
\end{array}\right|+\left|\begin{array}{rr}
16 & 19 \\
33 & 39
\end{array}\right| \bullet\left|\begin{array}{rr}
1 & 4 \\
2 & 14
\end{array}\right|
\end{aligned}
$$

Ex. 4. Expand $|$| a | 1 | 0 | 0 | 0 | by Laplace's expansion by the |
| :--- | :--- | :--- | :--- | :--- | :--- | $\left|\begin{array}{lllll}b & a & 1 & 0 & 0 \\ 0 & b & a & 1 & 0 \\ 0 & 0 & b & a & 1 \\ 0 & \theta & \theta & b & a\end{array}\right|$

minors of the first two columns. Hence evaluate it.
Sol. All the possible minors of the first two columns and their complementary minors are given by :

$$
\begin{aligned}
& \left|\mathbf{B}_{1}\right|=\left|\begin{array}{ll}
a & 1 \\
b & a
\end{array}\right|,\left|\mathbf{B}_{1}^{\prime}\right|=\left|\begin{array}{lll}
a & 1 & 0 \\
b & a & 1 \\
0 & b & a \\
1 & 0 & 0 \\
b & a & 1 \\
0 & b & a
\end{array}\right| \\
& \left|\mathbf{B}_{2}\right|=\left|\begin{array}{ll}
a & 1 \\
0 & b
\end{array}\right|,\left|\mathbf{B}_{2}^{\prime}\right|= \\
& \left|\mathbf{B}_{3}\right|=\left|\begin{array}{ll}
b & a \\
0 & b
\end{array}\right|,\left|\mathbf{B}_{3}^{\prime}\right|=\left|\begin{array}{lll}
0 & 0 & 0 \\
b & a & 1 \\
0 & b & a
\end{array}\right|=0
\end{aligned}
$$

All other minors of the first two columns are equal to zero as they have at least one row of zero.

Hence the given determinant

$$
=\left|\begin{array}{ll}
a & 1 \tag{i}\\
b & a
\end{array}\right| \cdot\left|\begin{array}{lll}
a & 1 & 0 \\
b & a & 1 \\
0 & b & a
\end{array}\right|-\left|\begin{array}{ll}
a & 1 \\
1 & b
\end{array}\right| \cdot\left|\begin{array}{ccc}
1 & 0 & 0 \\
b & a & 1 \\
0 & b & a
\end{array}\right|
$$

Now $\left|\begin{array}{lll}a & 1 & 0 \\ b & a & 1 \\ 0 & b & a\end{array}\right|=\left|\begin{array}{ll}a & 1 \\ b & a\end{array}\right| a-\left|\begin{array}{ll}a & 1 \\ 0 & b\end{array}\right| \cdot 1+\left|\begin{array}{ll}b & a \\ 0 & b\end{array}\right| \cdot 0$,
expanding by the minors of first two columns.

$$
=\left(a^{2}-b\right) a-(a b)=a^{3}-2 a b .
$$

\therefore From (i), the given determinant

$$
\begin{aligned}
& =\left|\begin{array}{ll}
a & 1 \\
b & a
\end{array}\right| \cdot\left(a^{3}-2 a b\right)-\left|\begin{array}{ll}
a & 1 \\
0 & b
\end{array}\right| \cdot\left|\begin{array}{ll}
a & 1 \\
b & a
\end{array}\right|, \\
& \text { expanding the last determinant with respect to } R_{1} . \\
& =\left(a^{2}-b\right)\left(a^{3}-2 a b\right)-(a b)\left(a^{2}-b\right)=\left(a^{2}-b\right)\left[a^{3}-3 a b\right] \\
& =a\left(a^{2}-b\right)\left(a^{2}-3 b\right) .
\end{aligned}
$$

Exercises on § 4.18

Ex. 1. Expand $\left|\begin{array}{llll}a_{1} & a_{2} & a_{3} & a_{4} \\ b_{1} & b_{2} & b_{3} & b_{4} \\ c_{1} & c_{2} & c_{3} & c_{4} \\ d_{1} & d_{2} & d_{3} & d_{4}\end{array}\right|$ by Laplace's method of expansion by the minors of the first two columns.

Ex. 2. Use Laplace's method of expansion of a determinant by mears of its second minors to expand

$$
\left|\begin{array}{rrrr}
-1 & 0 & 0 & l \\
0 & -1 & 0 & m \\
0 & 0 & -1 & n \\
p & q & r & -1
\end{array}\right|
$$

**§ 4-19. Solution of Linear Equations.

(Cramer's Rule)
Let the n simultaneous equations in n unknown quantities $x_{1}, x_{2}, \ldots, x_{n}$ be

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 j} x_{j}+\ldots+a_{1 n} x_{n}=k_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 j} x_{j}+\ldots+a_{2 n} x_{n}=k_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+\ldots+a_{3 j} x_{j}+\ldots+a_{3 n} x_{n}=k_{3} \\
& a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i j} x_{j}+\ldots+a_{i n} x_{n}=k_{i} \\
& a_{n 1} x_{1}+a_{n} x_{2}+\ldots+a_{n j} x_{j}+\ldots+a_{n n} x_{n}=k_{n}
\end{aligned}
$$

These equations can be written as

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j}=k_{i}, i=1,2, \ldots, n \tag{i}
\end{equation*}
$$

Let the determinant of the coefficients, $|\mathbf{A}|=\left|a_{i j}\right| \neq 0$.
Multiplying (i) by the cofactor of $a_{i j}$ in $\left|a_{i j}\right|$ viz. $C_{i j}, i=1,2,3, \ldots, n$ and summing with respect to i, we have

$$
\sum_{j=1}^{n} a_{i j} C_{i j} x_{j}=\sum_{j=1}^{n} k_{i} C_{i j}
$$

or $\quad|\mathbf{A}| . . x_{j}=\sum_{j=1}^{n} k_{i} C_{i j}, \because|\mathbf{A}|=\sum_{j=1}^{n} a_{i j} C_{i j}$
$=$ determinant formed by replacing j th column of the det.
$|\mathbf{A}|$ by the constants $k_{1}, k_{2}, \ldots, k_{n}$.

$$
=\left\lvert\, \begin{array}{ccccc}
a_{11} & a_{12} \ldots & a_{1 j-1} & k_{1} & a_{1 j+1}
\end{array} \ldots a_{1 n} .\right.
$$

Solved Examples on § 4-19.

Ex. 1 (a). Solve the following equations by Cramer's Rule.

$$
x+y+z=1, a x+b y+c z \Rightarrow k, a^{2} x+b^{2} y+c^{2} z=k^{2}
$$

Sol. The given equations are $x+y+z=1$

$$
\begin{aligned}
a x+b y+c z & =k \\
a^{2} x+b^{2} y+c^{2} z & =k^{2}
\end{aligned}
$$

\therefore By Cramer's Rule we have

or

$$
\frac{x}{(k-b)(b-c)(c-k)}=\frac{y}{(a-k)(k+c)(c-a)}=\frac{z}{(a-b))(b-k)(k-a)}
$$

$$
=\frac{1}{(a-b)(b-c)(c-a)} \quad \text {...See Ex. } 28 \text { Page } 145
$$

$$
\therefore \quad x=\frac{(k-b)(b-c)(c-k)}{(a-b)(b-c)(c-a)}=\frac{(k-b)(c-k)}{(b-c)(c-a)}
$$

Similarly $\quad y=\frac{(a-k)(k-c)}{(a-b)(b-c)}$ and $z=\frac{(b-k)(k-a)}{(b-c)(c-a)}$
Ex. 1. (b) Solve the following equations by the method of determinants -

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} \bar{z}+d_{1}=0 \\
& a_{2} x+b_{2} y+c_{2} z+d_{2}=0 \\
& a_{3} x+b_{3} y+c_{3} z+d_{3}=0
\end{aligned}
$$

Sol. Do exacity as Ex. 1 (a) above
Ex. 2. Solve the equations :

$$
x+y+z=7 ; x+2 y+3 z=16 ; x+3 y+4 z=22
$$

Sol. Solving the equations by Cramer's Rule we get

Now $\left|\begin{array}{rrr}7 & 1 & 1 \\ 16 & 2 & 3 \\ 22 & 3 & 4\end{array}\right|=-\left|\begin{array}{rrr}1 & 7 & 1 \\ 2 & 16 & 3 \\ 3 & 22 & 4\end{array}\right|$, interchanging C_{1} and C_{2}.
$=-\left|\begin{array}{lll}1 & 7 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1\end{array}\right|$, replacing R_{2}, R_{3} by $R_{2}-2 R_{1}$ and $R_{3}-3 R_{1}$
$=-\left|\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right|$, expanding w.r to C_{1}
$=-(2-1)=-1$;

$$
=27-30=-3 ;
$$

$\begin{aligned}\left|\begin{array}{rrr}1 & 1 & 7 \\ 1 & 2 & 16 \\ 1 & 3 & 22\end{array}\right| & =\left|\begin{array}{rrr}1 & 1 & 7 \\ 0 & 1 & 9 \\ 0 & 2 & 15\end{array}\right| \text {, replacing } R_{2}, R_{3} \text { by } R_{2}-R_{1}, R_{3}-R_{1} \\ & =\left|\begin{array}{rr}1 & 9 \\ 2 & 15\end{array}\right|\end{aligned}$

$$
=15-18=-3
$$

and

$$
\begin{aligned}
\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 4
\end{array}\right| & =\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 1 & 1
\end{array}\right| \text {, replacing } R_{2}, R_{3} \text { by } R_{2}-R_{1}, R_{3}-R_{2} \\
& =\left|\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right|, \text { expanding w.r. to } C_{1} . \\
& =1-2=-1 .
\end{aligned}
$$

\therefore From (i) we have $\frac{x}{-1}=\frac{y}{-3}=\frac{z}{-3}=\frac{1}{-1}$
which gives

$$
x=1, y=3, z=3 .
$$

*Ex. 3. Solve the equations (with the help of determinants)

$$
x+y+z=1 ; x+2 y+3 z=2 ; x+4 y+9 z=4
$$

Sol. The given equations are $x+y+z=1$.-

$$
\begin{aligned}
& x+2 y+3 z=2 \\
& x+4 y+9 z=4
\end{aligned}
$$

\therefore By Cramer's Rule we have
$\frac{x}{\left|\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 3 \\ 4 & 4 & 3\end{array}\right|}\left|=\frac{y}{\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right|}=\frac{z}{\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 4 & 4\end{array}\right|}\right| \frac{1}{\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right|}$
or $\quad \frac{x}{0}=\frac{y}{D}=\frac{z}{0}=\frac{1}{D}$, where $D=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right|$
This gives $x=0 .\left(\frac{1}{D}\right)=0 ; y=D .\left(\frac{1}{D}\right)=1, z=0 .\left(\frac{1}{D}\right)=0$.
ie.

$$
x=0, y=1, z=0,
$$

Ans.
*Ex. 4. Solve the equations by determinants $3 x+5 y-7 z=13$, $4 x+y-12 z=6,2 x+9 y-3 z=20$
(Purvanchal 97)
Sol. The given equation are

$$
\begin{aligned}
& 3 x+5 y-7 z=13 \\
& 4 x+y-12 z=6 \\
& 2 x+9 y-3 z=20
\end{aligned}
$$

\therefore By Cramer's Rule, we have

| x | x |
| ---: | ---: | ---: |
| 13 5 -7
 6 1 -12
 20 9 -3$\|$ | $\frac{y}{\mid r r r}$ |
| $\left\|\begin{array}{rrr}3 & 13 & -7 \\ 4 & 6 & -12 \\ 2 & 20 & -3\end{array}\right\|$ | |\(=\left|\begin{array}{rrr}3 \& 5 \& 13

4 \& 1 \& 6

2 \& 9 \& 20\end{array}\right|=\left|$$
\begin{array}{rrr}3 & 5 & -7 \\
4 & 1 & -12 \\
2 & 9 & -3\end{array}
$$\right|\)

Now $\left|\begin{array}{rrr}13 & 5 & -7 \\ 6 & 1 & -12 \\ 20 & 9 & -3\end{array}\right|=\left|\begin{array}{rrr}-17 & 0 & 53 \\ 6 & 1 & -12 \\ -34 & 0 & 105\end{array}\right|$, adding $-5 R_{2}$ to R_{1} and

$$
\begin{aligned}
& =\left|\begin{array}{rr}
-17 & 53 \\
-34 & 105
\end{array}\right|, \text { expanding w.r. to } C_{2} \\
& =\left|\begin{array}{rr}
-17 & 53 \\
0 & -1
\end{array}\right|, \text { adding }-2 R_{1} \text { to } R_{2} \\
& =(-17)(-1)-(0)(53)=17
\end{aligned}
$$

$$
\begin{aligned}
&\left|\begin{array}{rrr}
3 & 13 & -7 \\
4 & 6 & -12 \\
2 & 20 & -3
\end{array}\right|=\left|\begin{array}{rrr}
1 & -7 & -4 \\
0 & -34 & -6 \\
2 & 20 & -3
\end{array}\right|, \text { adding }-2 R_{3} \text { to } R_{2} \\
& \text { and }-R_{3} \text { to } R_{1} \\
&=\left|\begin{array}{rrr}
1 & -7 & -4 \\
0 & -34 & -6 \\
0 & 34 & 5
\end{array}\right|, \text { adding }-2 R_{1} \text { to } R_{3} \\
&=\left|\begin{array}{rr}
-34 & -6 \\
34 & 5
\end{array}\right|, \text { expanding w.r. to } C_{1}
\end{aligned}
$$

Matrices

$$
\begin{aligned}
& =\left|\begin{array}{rr}
0 & -1 \\
34 & 5
\end{array}\right| \text {, adding } R_{2} \text { to } R_{1} \\
& =0 \cdot 5-(-1) \cdot 34=34 ; \\
\left|\begin{array}{rrr}
3 & 5 & 13 \\
4 & 1 & 6 \\
2 & 9 & 20
\end{array}\right| & =\left|\begin{array}{rrr}
-17 & 0 & -17 \\
4 & 1 & 6 \\
-34 & 0 & -34
\end{array}\right|, \text { adding }-5 R_{2} \text { to } R_{1} \\
& =\left|\begin{array}{rr}
-17 & -17 \\
-34 & -34
\end{array}\right|, \text { expanding w.r. to } C_{2} \\
& =0
\end{aligned}
$$

And $\left|\begin{array}{rrr}3 & 5 & -7 \\ 4 & 1 & -12 \\ 2 & 9 & -3\end{array}\right|=\left|\begin{array}{rrr}-17 & 0 & 53 \\ 4 & 1 & -12 \\ -34 & 0 & 105\end{array}\right|$, adding $-5 R_{2}$ to R_{1}

$$
=\left|\begin{array}{rr}
-17 & 53 \\
-34 & 105
\end{array}\right| \text {, expanding w.r. to } C_{2}
$$

$$
=\left|\begin{array}{rr}
-17 & 53 \\
0 & -1
\end{array}\right| \text {, adding }-2 R_{1} \text { to } R_{2}
$$

$$
=17
$$

\therefore From (i), we get $\frac{x}{17}=\frac{y}{34}=\frac{z}{0}=\frac{1}{17}$
which gives

$$
\begin{equation*}
x=1, y=2, z=0 \tag{Ans.}
\end{equation*}
$$

Ex. 5. Solve the eqations $x+y+z=3, x+2 y+3 z=4, x+4 y+9 z=6$.
Sol. Given equation are $x+y+z=3$

$$
\begin{aligned}
& x+2 y+3 z=4 \\
& x+4 y+9 z=6
\end{aligned}
$$

\therefore By Cramer's Rule, we get

x	1	1
4	2	3
6	4	9

1 \& 4 \& 3

1 \& 6 \& 9\end{array}\right|=\frac{z}{\left|$$
\begin{array}{lll}1 & 1 & 3 \\
1 & 2 & 4 \\
1 & 4 & 6\end{array}
$$\right|}=\frac{1}{\left\lvert\, $$
\begin{array}{ll}1 & 1 \\
1 & 1 \\
1 & 2\end{array}
$$\right.} 3\right.\)

Now $\left|\begin{array}{lll}3 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 4 & 9\end{array}\right|=\left|\begin{array}{rrr}0 & 1 & 0 \\ -2 & 2 & 1 \\ -6 & 4 & 5\end{array}\right|$, replacing C_{1}, C_{3}, by $C_{1}-3 C_{2}$,

$$
=-\left|\begin{array}{ll}
-2 & 1 \tag{ii}\\
-6 & 5
\end{array}\right|=-[-10+6 i=4,
$$

$$
\left|\begin{array}{lll}
1 & 3 & 1 \\
1 & 4 & 3 \\
1 & 6 & 9
\end{array}\right|=\left|\begin{array}{lll}
i & 3 & 1 \\
0 & 1 & 2 \\
0 & 3 & 8
\end{array}\right|, \begin{gathered}
\text { replacing } R_{2}, R_{3} \text { by } R_{2}-R_{1}, \\
R_{3}-R_{1} \text { respectively. }
\end{gathered}
$$

$$
=\left|\begin{array}{ll}
1 & 2 \tag{iii}\\
3 & 8
\end{array}\right|=8-6=2
$$

$\begin{aligned}\left|\begin{array}{lll}1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 4 & 6\end{array}\right| & =\left|\begin{array}{lll}1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 3 & 3\end{array}\right|, \begin{array}{l}\text { replacing } R_{2}, R_{3} \text { by } R_{2}-R_{1}, \\ R_{3}-R_{1} \text { respectively. } \\ 1\end{array} \\ & =\left|\begin{array}{ll}1 \\ 3 & 3\end{array}\right|=0\end{aligned}$
And $\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right|=\left|\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 8\end{array}\right|$, replacing C_{2}, C_{3} by $C_{2}-C_{1}$,
$=\left|\begin{array}{ll}1 & 2 \\ 3 & 8\end{array}\right|=8-6=2$
\therefore From (i), (ii), (iii), (iv) and (v) we have

$$
\frac{x}{4}=\frac{y}{2}=\frac{z}{0}=\frac{1}{2} \quad \text { or } \quad x=2, y=1, z=0
$$

Ans.
Ex. 6 (a). Using determinants, solve the simultaneous equations :
$x+2 y+3 z=6 ; 2 x+4 y+z=7,3 x+2 y+9 z=14$.
(Purvanchal 90)
Sol. By Cramer's Rule, we get
$\left|\begin{array}{rrr}6 & 2 & 3 \\ 7 & 4 & 1 \\ 14 & 2 & 9\end{array}\right|=\left|\begin{array}{rrr}1 & 0 & 3 \\ 2 & 7 & 1 \\ 3 & 14 & 9\end{array}\right|=\frac{z}{\left|\begin{array}{rrr}1 & 2 & 6 \\ 2 & 4 & 7 \\ 3 & 2 & 14\end{array}\right|}=\frac{1}{\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 1 \\ 3 & 2 & 9\end{array}\right|}$

$$
\text { Now } \begin{align*}
\left|\begin{array}{rrr}
6 & 2 & 3 \\
7 & 4 & 1 \\
14 & 2 & 9
\end{array}\right| & =-\left|\begin{array}{rrr}
2 & 6 & 3 \\
4 & 7 & 1 \\
2 & 14 & 9
\end{array}\right| \text {, interchanging } C_{1} \text { and } C_{2} \tag{i}\\
& =-\left|\begin{array}{rrr}
2 & 6 & 3 \\
0 & -5 & -5 \\
0 & 8 & 6
\end{array}\right| \text {, replacing } R_{2}, R_{3} \text { by } R_{2}-2 R_{1} \\
& =-2\left|\begin{array}{rr}
-5 & -5 \\
8 & 6
\end{array}\right| \text {, expanding with respect to } R_{1}-R_{1} \text { respectively. }
\end{align*}
$$

$$
=-2[-30+40]=-20
$$

$$
\begin{aligned}
\left|\begin{array}{rrr}
1 & 6 & 3 \\
2 & 7 & 1 \\
3 & 14 & 9
\end{array}\right| & =\left|\begin{array}{rrr}
1 & 6 & 3 \\
0 & -5 & -5 \\
0 & -4 & 0
\end{array}\right|, \begin{array}{rr}
\text { replacing } R_{2}, R_{3} \text { by } R_{2}-2 R_{1} \\
& =\left|\begin{array}{rr}
-5 & -5 \\
-4 & 0
\end{array}\right|, \text { expanding with respect to } C_{1}
\end{array} \\
& =-20 ; \\
\left|\begin{array}{rrr}
1 & 2 & 6 \\
2 & 7 & 7 \\
3 & 2 & 14
\end{array}\right| & =\left|\begin{array}{rrr}
1 & 2 & 6 \\
0 & 0 & -5 \\
0 & -4 & -4
\end{array}\right| \begin{array}{l}
\text { replacing } R_{2}, R_{3} \text { by } R_{2}-2 R_{1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\begin{array}{rr}
0 & -5 \\
-4 & -4
\end{array}\right| \text {, expanding with respect to } C_{1} \\
& =-20
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 1 \\
3 & 2 & 9
\end{array}\right| & =\left|\begin{array}{rrr}
1 & 0 & 0 \\
2 & 0 & -5 \\
3 . & -4 & 0
\end{array}\right|, \text { replacing } C_{2}, C_{3} \text { by } C_{2}-2 C_{1}, \\
& =\left|\begin{array}{rr}
\\
0 & -5 \\
-4 & 0
\end{array}\right|, \text { expanding with respect to } R_{1} \\
& =-20
\end{aligned}
$$

\therefore From (i) we get $\frac{x}{-20}=\frac{y}{-20}=\frac{z}{-20}=\frac{1}{-20}$
or

$$
x=1, y=1, z=1 \text {. }
$$

Ans.
Ex. 6 (b). Solve the following equation with the help of determinants $2 x+y+z=1, x-2 y-3 z=1,3 x+2 y-z=5$.
(Purvanchal 96)
Sol. By Carmer's Rule, we get
$\left|\begin{array}{|rrr}1 & 1 & 1 \\ 1 & -2 & -3 \\ 5 & 2 & -1\end{array}\right|=\frac{z}{\left|\begin{array}{rrr}2 & 1 & 1 \\ 1 & 1 & -3 \\ 3 & 5 & -1\end{array}\right|}=\frac{z}{\left|\begin{array}{rrr}2 & 1 & 1 \\ 1 & -2 & 1 \\ 3 & 2 & 5\end{array}\right|}=\frac{1}{\left|\begin{array}{rrr}2 & 1 & 1 \\ 1 & -2 & -3 \\ 3 & 2 & -1\end{array}\right|}$
Now $\left|\begin{array}{rrr}1 & 1 & 1 \\ 1 & -2 & -3 \\ 5 & 2 & -1\end{array}\right|=\left|\begin{array}{rrr}1 & 0 & 0 \\ 1 & -3 & -4 \\ 5 & -3 & -6\end{array}\right|$, replacing C_{2}, C_{3}, by $C_{2}-C_{1}$
$=\left|\begin{array}{ll}-3 & -4 \\ -3 & -6\end{array}\right|$, expanding w.r. to R_{1}
$=(-3)(-6)-(-3)(-4)=18-12=6$;

$$
\left.\begin{array}{rl}
\left|\begin{array}{rrr}
2 & 1 & 1 \\
1 & 1 & -3 \\
3 & 5 & -1
\end{array}\right| & =\left|\begin{array}{lll}
2 & 1 & 1 \\
7 & 4 & 0 \\
5 & 6 & 0
\end{array}\right| \text {, replacing } R_{2}, R_{3} \text { by } R_{2}+3 R_{1} \\
7 & 4 \\
5 & 6
\end{array} \right\rvert\,, \text { expanding w.r. to } C_{3}
$$

$$
=(7)(6)-(5)(4)=42=20=22 ;
$$

$$
\begin{aligned}
\left|\begin{array}{rrr}
2 & 1 & 1 \\
1 & -2 & 1 \\
3 & 2 & 5
\end{array}\right| & =\left|\begin{array}{rrr}
2 & 1 & 1 \\
-.1 & -3 & 0 \\
-7 & -3 & 0
\end{array}\right|, \text { replacing } R_{2}, R_{3} \text { by } R_{2}-R_{1},
\end{aligned}
$$

$$
=\left|\begin{array}{ll}
-1 & -3 \\
-7 & -3
\end{array}\right| \text {, expanding w.r. to } C_{3}
$$

$$
=(-1)(-3)-(-7)(-3)=3-21=-18
$$

Alsc $\left|\begin{array}{rrr}2 & 1 & 1 \\ 1 & -2 & -3 \\ 3 & 2 & -1\end{array}\right|=\left|\begin{array}{ccc}2 & 1 & 1 \\ 7 & 1 & 0 \\ 5 & 3 & 0\end{array}\right|, \begin{gathered}\text { replacing } R_{2}, R_{3} \text { by } R_{2}+3 R_{1} \\ \text { and } R_{3}+R_{1} \text { respectively }\end{gathered}$

$$
\begin{aligned}
& =\left|\begin{array}{ll}
7 & 1 \\
5 & 3
\end{array}\right| \text {, expanding w.r: to } C_{3} \\
& =7 \cdot 3-5 \cdot 1=21-5=16
\end{aligned}
$$

\therefore From (i), we have $\frac{x}{6}=\frac{y}{22}=\frac{z}{-18}=\frac{1}{16}$
which gives

$$
x=\frac{6}{16}=\frac{3}{8}, y=\frac{22}{16}=\frac{11}{8}, z=-\frac{18}{16}=-\frac{9}{8}
$$

Ans.
Ex. 7. Solve the equations :

$$
\begin{aligned}
& x+y+z+u=1, \quad a x+b y+c z+d u=k \text {, } \\
& a^{2} x+b^{2} y+c^{2} z+d^{2} u=k^{2} \text { and } a^{3} x+b^{3} y+c^{3} z+d^{3} u=k^{3}
\end{aligned}
$$

Sol. The given equations are

$$
\begin{aligned}
x+y+z+u & =1 \\
a x+b y+c z+d u & =k, \\
a^{2} x+b^{2} y+c^{2} z+d^{2} u & =k^{2}, \\
a^{3} x+b^{3} y+c^{3} z+d^{3} u & =k^{3}
\end{aligned}
$$

Solving these by Cramer's Rule, we get

$$
=\left|\begin{array}{llll}
1 & 1 & 1 & 1 \tag{i}\\
a & b & c & k \\
a^{2} & b^{2} & c^{2} & k^{2} \\
a^{3} & b^{3} & c^{3} & k^{3}
\end{array}\right|=\left|\begin{array}{llll}
\frac{1}{1} & 1 & 1 & 1 \\
a & b & c & d \\
a^{2} & b^{2} & c^{2} & d^{2} \\
a^{3} & b^{3} & c^{3} & d^{3}
\end{array}\right|
$$

Now $\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ a & b & c & d \\ a^{2} & b^{2} & c^{2} & d^{2} \\ a^{3} & b^{3} & c^{3} & d^{3}\end{array}\right|=\left|\begin{array}{ccll}1 & 0 & 0 & 0 \\ a & b-a & c-a & d-a \\ a^{2} & b^{2}-a^{2} & c^{2}-a^{2} & d^{2}-a^{2} \\ a^{3} & b^{3}-a^{3} & c^{3}-a^{3} & d^{3}-a^{3}\end{array}\right|$
replacing C_{2}, C_{3} and C_{4} by $C_{2}-C_{1}, C_{3}-C_{1}$ and $C_{4}-C_{1}$ respectively.

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
b-a & c-a & d-a \\
b^{2}-a^{2} & c^{2}-a^{2} & d^{2}-a^{2} \\
b^{3}-a^{3} & c^{3}-a^{3} & d^{3}-a^{3}
\end{array}\right| \text {, expanding, with respect to } R_{1} \\
& =(b-a)(c-a)(d-a)\left|\begin{array}{ccc}
1 & 1 & 1 \\
b+a & c+a & d+a \\
b^{2}+a b+a^{2} & c^{2}+a c+a^{2} & d^{2}+a d+a^{2}
\end{array}\right|
\end{aligned}
$$

$$
=(b-a)(c-a)(d-a)\left|\begin{array}{ccc}
1 & 0 & 0 \\
b+a & c-b & d-b \\
b^{2}+a b+a^{2} & c^{2}+a c-b^{2} & d^{2}+a d-b^{2} \\
& -a b & -a b
\end{array}\right|
$$

replacing C_{2} and C_{3} by $C_{2}-C_{1}$ and $C_{3}-C_{1}$ respectively.

$$
=(b-a)(c-a)(d-a)\left|\begin{array}{cc}
c-b & d-b \\
(c-b)(i+b+c) & (d-b)(a+b+d)
\end{array}\right| \text {. }
$$

expanding with respect to R_{1},
$=(a-b)(a-c)(d-a)(c-b)(d-b)\left|\begin{array}{cc}1 & 1 \\ a+b+c & a+b+d\end{array}\right|$
$=(a-b)(a-c)(a-d)(b-c)(d-b)[(a+b+d)-(a+b+c)]$
$=(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)$
Similarly we can have $\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ k & b & c & d \\ k^{2} & b^{2} & c^{2} & d^{2} \\ k^{3} & b^{3} & c^{3} & d^{3}\end{array}\right|=\begin{gathered}(k-b)(k-c)(b-d)(c-d) \\ (b-d)\end{gathered}$
\therefore From (i), $x=\frac{(k-b)(k-c)(k-d)(b-c)(b-d)(c-d)}{(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)}$.

$$
x=\frac{(k-b)(k-c)(k-d)}{(a-b)(a-c)(a-d)}
$$

Ans.
Similarly from (i) we can find the values of $y ; z$ and u.

Exercises on $\$ 4.19$

Solve the equations by Cramer's Rule :-
Ex. 1. $x-2 y+z=-1,3 x+y-2 z=4, y-z=1$. Ans. $x=1, y=1, z=0$,
Ex. 2. $2 x+3 y-4 z=2,3 x-2 y+5 z=5, x+2 y+3 z=11$.
Ans. $x=\frac{10}{19}, y=\frac{50}{19}, z=\frac{33}{19}$.
Ex. 3. $x+2 y-z=3 ; 3 x-y+z=8, x+y+z=0$.
Ans. $x=\frac{18}{7}, y=-\frac{5}{7}, z=-\frac{13}{7}$.
Ex. 4. $x+y+z=3 ; 2 x+3 y+4 z=9, x+2 y-4 z=-1$.
Ans. $x=1, y=1, z=1$
Ex. 5. $2 x-y+3 z=9, x+y+z={ }^{\prime} 6, x-y+z=2$.
Ans. $x=1, y=2, z=3$.
Ex. 6. $3 x+y+2 z=3,2 x-3 y-z=-3, x+2 y+z=4$.
Ans. $x=1, y=2, z=-1$
Ex. 7. $x_{1}+2 x_{2}+3 x_{3}+5=0,2 x_{1}+x_{2}+x_{3}+7=0 . x_{1}+x_{2}+x_{3}=0$.
Ans. $x_{1}=-7, x_{2}=19, x_{3}=-12$.
Ex. 8. $6 x+y+2 z=7,3 x-y+4 z=14,5 x+2 y-3 z=-7$.

Ans. $x=1, y=-3, z=2$
*Ex. 9. $x+y+z=9,2 x+5 y+7 z=52,2 x+y-z=0$

$$
\text { Ans. } x=1, y=3, z=5 \text {. }
$$

§ 4.20. Derivative of a determinant.

If some elements of the $n \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$ are differentiable functions of a variable x, then the derivative of $|A|$ with respect to x i.e. $\frac{d}{d x}|A|$ is the sum of n determinants formed by replacing in all possible ways the elements of one row (or column) of the det. $|\mathbf{A}|$ by their differential coefficients with respect to x.

The above procedure will be illustrated by the following examples -
Ex. 1. Find the derivative of the det. $\left|\begin{array}{cc}x^{3} & 2 x+3 \\ 3 x^{2} & x^{4}\end{array}\right|$.
Sol. $\frac{d}{d x}\left|\begin{array}{cc}x^{3} & 2 x+3 \\ 3 x^{2} & x^{4}\end{array}\right|=\left|\begin{array}{cc}3 x^{2} & 2 \\ 3 x^{2} & x^{4}\end{array}\right|+\left|\begin{array}{cc}x^{3} & 2 x+3 \\ 6 x & 4 x^{3}\end{array}\right|$,
differentiating the elements of R_{1} in the first det. whereas differentiating the elements of R_{2} in the second det.

$$
\begin{aligned}
& =\left[3 x^{6}-6 x^{2}\right]+\left[4 x^{6}-6 x(2 x+3)\right] \\
& =3 x^{6}-6 x^{2}+4 x^{6}-12 x^{2}-18 x=7 x^{6}-18 x^{2}-18 x .
\end{aligned}
$$

Ans.
*Ex. 2. Find the derivative of $\left|\begin{array}{ccc}\mathbf{x}^{2} & x^{3} & 2 \\ 2 x & 3 x+1 & x^{3} \\ 0 & 3 x-2 & x^{2}+1\end{array}\right|$
Sol. The derivative of the given determinant

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
2 x & 3 x^{2} & 0 \\
2 x & 3 x+1 & x^{3} \\
0 & 3 x-2 & x^{2}+1
\end{array}\right|+\left|\begin{array}{ccc}
x^{2} & x^{3} & 2 \\
2 & 3 & 3 x^{2} \\
0 & 3 x-2 & x^{2}+1
\end{array}\right|+\left|\begin{array}{ccc}
x^{2} & x^{3} & 2 \\
2 x & 3 x+1 & x^{3} \\
0 & 3 & 2 x
\end{array}\right| \\
& =\left|\begin{array}{ccc}
2 x & 3 x^{2} & 0 \\
0 & 3 x+1-3 x^{2} & x^{3} \\
0 & 3 x-2 & x^{2}+1
\end{array}\right|+\left|\begin{array}{ccc}
x^{2} & x^{3} & 2 \\
2 & 5-3 x & 2 x^{2}-1 \\
0 & 3 x-2 & x^{2}+1
\end{array}\right| \\
& +\left|\begin{array}{ccc}
x^{2} & x^{3} & 2 \\
2 x & 3 x+1 & x^{3} \\
0 & 3 & 2 x
\end{array}\right| \text {, replacing } R_{2} \text { of 1st det. by } R_{2}-R_{1} \\
& =2 x\left|\begin{array}{cc}
3 x+1-3 x^{2} & x^{3} \\
3 x-2 & x^{2}+1
\end{array}\right|+x^{2}\left|\begin{array}{cc}
5-3 x & 2 x^{2}-1 \\
3 x-2 & x^{2}+1
\end{array}\right| \\
& -2\left|\begin{array}{cc}
x^{3} & 2 \\
3 x-2 & x^{2}+1
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& +x^{2}\left|\begin{array}{cc}
3 x+1 & x^{3} \\
3 & 2 x
\end{array}\right|-2 x\left|\begin{array}{cc}
x^{3} & 2 \\
3 & 2 x
\end{array}\right| \text {, expanding det. w.r. to } C_{1} \\
& =2 x\left[\left(x^{2}+1\right)\left(3 x+1-3 x^{2}\right)-x^{3}(3 x-2)\right]+x^{2}\left[(5-3 x)\left(x^{2}+1\right)\right. \\
& \left.-(3 x-2)\left(2 x^{2}-1\right)\right]-2\left[x^{3}\left(x^{2}+1\right)-2(3 x-2)\right] \\
& +x^{2}\left[2 x(3 x+1)-3 x^{3}\right]-2 x\left[2 x^{4}-6\right], \\
& =-30 x^{5}+25 x^{4}-4 x^{3}+9 x^{2}+26 x-8 \text {, on similifying. } \\
& \text { Exercise on § } 4 \cdot 20
\end{aligned}
$$

Ex. Find the derivative of $\left|\begin{array}{ccc}x^{2}-1 & x-1 & 1 \\ x^{4} & x^{3} & 2 x+5 \\ x+1 & x^{2} & x\end{array}\right|$
Ans. $6 x^{5}-5 x^{4}-28 x^{3}+9 x^{2}+20 x-2$

MISCELLANEOUS SOLVED EXAMPLES

*Ex. 1. Solve $\left|\begin{array}{cccc}1+\mathrm{x} & 2 & 3 & 4 \\ 1 & 2+\mathrm{x} & 3 & 4 \\ 1 & 2 & 3+\mathrm{x} & 4 \\ 1 & 2 & 3 & 4+\mathrm{x}\end{array}\right|$

Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{cccc}
x+10 & 2 & 3 & 4 \\
x+10 & 2+x & 3 & 4 \\
x+10 & 2 & 3+x & 4 \\
x+10 & 2 & 3 & 4+x
\end{array}\right|, \text { replacing } C_{1} \text { by } \\
& C_{1}+C_{2}+C_{3}+C_{4} \\
& =(x+10)\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 2+x & 3 & 4 \\
1 & 2 & 3+x & 4 \\
1 & 2 & 3 & 4+x
\end{array}\right| \text {, taking out }(x+10) \\
& \text { common from } C_{1} \\
& =(x+10)\left|\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & x & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & x
\end{array}\right|, \text { replacing } R_{2}, R_{3} \text { and } R_{4} \text { by } R_{2}-R_{1} \text { and } R_{4}-R_{1} \text { respectively. } \\
& =(x+10)\left|\begin{array}{ccc}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & x
\end{array}\right| \text {, expanding with respect to } C_{1} \\
& =(x+10) x\left|\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right| \text {, expanding with respect to } R_{1} \\
& =(x+10) x(x x)=x^{3}(x+10) .
\end{aligned}
$$

Ex. 2. Show that $-(a+b+c)$ is a root of the equation

$$
\left|\begin{array}{ccc}
\mathbf{x}+\mathbf{a} & \mathbf{b} & \mathbf{c} \\
\mathbf{b} & \mathbf{x}+\mathbf{c} & \mathbf{a} \\
\mathbf{c} & \mathbf{a} & \mathbf{x}+\mathbf{b}
\end{array}\right|=\mathbf{0}
$$

Sol. The given equation can be written as
$\left|\begin{array}{ccc}x+a+b+c & b & c \\ b+x+c+a & x+c & a \\ c+a+x+b & a & x+b\end{array}\right|=0$, replacing C_{1} by $C_{1}+C_{2}+C_{3}$
or $\quad(x+a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 1 & x+c & a\end{array}\right|=0$, taking out the common
or $\quad(x+a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 0 & x+c-b & a-c \\ 0 & a-b & x+b-c\end{array}\right|=0$, replacing R_{2}, R_{3} by
or $\quad(x+a+b+c)\left|\begin{array}{cc}x+c-b & a-c \\ a-b & x+b-c\end{array}\right|=0$, expanding with respect
or $\quad(x+a+b+c)[(x+c-b)(x+b-c)-(\dot{a}-c)(\dot{a}-b)]=0$
or $\quad(x+a+b+c)\left(x^{2}+a b+b c+c a-a^{2}-b^{2}-c^{2}\right)=0$
This gives $x=-(a+b+c), \pm \sqrt{ }\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
Hence $-(a+b+c)$ is a root of the given equation.
Ex. 3. Show that $\left|\begin{array}{llll}\mathbf{x} & \mathbf{1} & \mathbf{m} & 1 \\ \alpha & \mathbf{x} & \mathbf{n} & 1 \\ \alpha & \beta & \mathbf{x} & 1 \\ \alpha & \beta & \gamma & 1\end{array}\right|=(\mathbf{x}-\alpha)(\mathbf{x}-\beta)(\mathbf{x}-\gamma)$
Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{cccc}
x & l & m & 1 \\
\alpha-x & x-l & n-m & 0 \\
\alpha-x & \beta-l & x-m & 0 \\
\alpha-x & \beta-l & \gamma-m & 0
\end{array}\right| \text {, replacing } R_{2}, R_{3}, R_{4} \text { by } R_{2}-R_{1}, R_{3}-R_{1}, R_{4}-R_{1} \text { respectively. } \\
& =-\left|\begin{array}{lll}
\alpha-x & x-l & n-m \\
\alpha-x & \beta-l & x-m \\
\alpha-x & \beta-l & \gamma-m
\end{array}\right| \text {, expanding with respect to } C_{4} \\
& =-(\alpha-x)\left|\begin{array}{lll}
1 & x-l & n-m \\
1 & \beta-l & x-m \\
1 & \beta-l & \gamma-m
\end{array}\right| \text {, taking out }(\alpha-x) \text { common } \\
& =(x-\alpha)\left|\begin{array}{lll}
1 & x-l & n-m \\
0 & \beta-x & x-n
\end{array}\right| \text {, replacing } R_{2} \text { and } R_{3} \text { by } R_{2}-R_{1} \\
& \left.\begin{array}{lll}
0 & \beta-x & x-n \\
0 & \beta-x & \gamma-n
\end{array} \right\rvert\, \text { and } R_{3}-R_{1} \text { respectively. } \\
& =(x-\alpha)\left|\begin{array}{ll}
\beta-x & x-n \\
\beta-x & \gamma-n
\end{array}\right| \text {, expanding with respect to } C_{1} \text {. }
\end{aligned}
$$

$$
=(x-\alpha)(\beta-x)\left|\begin{array}{ll}
1 & x-n \\
1 & \gamma-n
\end{array}\right|=(x-\alpha)(\beta-x)[(\gamma-n)-(x-n)]
$$

$$
=(x-\alpha)(\beta-x)(\gamma-x)=(x-\alpha)(x-\beta)(x-\gamma) \quad \text { Hence proved. }
$$

**Ex. 4. Evaluate $\begin{array}{llll}0 & x & y & z\end{array}$

$$
\left|\begin{array}{rrrr}
0 & x & y & z \\
-x & 0 & c & b \\
-y & -c & 0 & a \\
-z & -b & -a & 0
\end{array}\right|
$$

Sol. The given determinant
replacing R_{1} by $a R_{1}-b R_{2}+c R_{3}$ and taking out ($1 / a$) common as before
\(=\frac{(a x-b y+c z)}{a^{2}}\left|\begin{array}{crc}a x-b y+c z \& 0 \& 0

y \& 0 \& a

z \& -a \& 0

\& =\frac{(a x+b y+c z)}{a^{2}}(a x-b y+c z) \& 0

-a \& 0\end{array}\right|,\)| expanding with respect |
| :--- |
| to R_{1} |

$$
=\frac{(a x-b y+c z)^{2}}{a^{2}}[0-0-a \cdot(-a)]=\frac{(a x-b y+c z)^{2}}{a^{2}} \cdot\left[a^{2}\right]
$$

$$
F(a x-b y+c z)^{2}
$$

Ex. 5. Show that
$\left|\begin{array}{llll}\mathbf{1} & \mathbf{a} & \mathbf{a}^{2} & \mathbf{a}^{\mathbf{3}}+\mathbf{b c d} \\ 1 & \mathbf{b} & \mathbf{b}^{\mathbf{2}} & \mathbf{b}^{\mathbf{3}}+\mathbf{c d a} \\ \mathbf{1} & \mathbf{c} & \mathbf{c}^{2} & \mathbf{c}^{\mathbf{3}}+\mathbf{d a b} \\ \mathbf{1} & \mathbf{d} & \mathbf{d}^{2} & \mathbf{d}^{3}+\mathbf{a b c}\end{array}\right|=\mathbf{0}$ (Gorakhpur 92; Kumaun 9.5)

$$
\begin{aligned}
& =\frac{1}{a}\left|\begin{array}{rrrr|}
0 & a x-b y+c z & y & z \\
-x & 0-b c+c b & c & b \\
-y & -a c+0+c a & 0 & a \\
-z & -a b+b a+0 & -a & 0
\end{array}\right| \begin{array}{c}
\text { replacing } C_{2} \text { by } a C_{2}-b C_{3}+c C_{4} . \\
\text { Here }(1 / a) \text { has been taken } \\
\text { common due to } a C_{2} .
\end{array} \\
& =\frac{1}{a}\left|\begin{array}{cccc}
0 & a x-b y+c z & y & z \\
-x & 0 & c & b \\
-y & 0 & 0 & a \\
-z & 0 & -a & 0
\end{array}\right| \\
& =-(a x-b y+c z)(1 / a)\left|\begin{array}{rrr}
-x & c & b \\
-y & 0 & a \\
-z & -a & 0
\end{array}\right| \text {, expanding with respect } \\
& =(a x+b y+c z)(1 / a)\left|\begin{array}{rrr}
x & c & b \\
y & 0 & a \\
z & -a & 0
\end{array}\right| \text {, taking out }-1 \text { common from } C_{1} \\
& =\frac{(a x-b y+c z)}{a \cdot a} \cdot\left|\begin{array}{ccc}
a x-b y+c z & a c-0-c a & b a-a b+0 \\
y & 0 & a \\
z & -a & 0
\end{array}\right| \text {, }
\end{aligned}
$$

given that abcd $\neq \mathbf{0}$.

Sol. The given determinant

$$
=\left|\begin{array}{llll}
1 & a & a^{2} & a^{3} \tag{i}\\
1 & b & b^{2} & b^{3} \\
1 & c & c^{2} & c^{3} \\
1 & d & d^{2} & d^{3}
\end{array}\right|+\left|\begin{array}{llll}
1 & a & a^{2} & b c d \\
1 & b & b^{2} & c d a \\
1 & c & c^{2} & d a b \\
1 & d & d^{2} & a b c
\end{array}\right|
$$

Now $\left|\begin{array}{llll}1 & a & a^{2} & b c d \\ 1 & b & b^{2} & c d a \\ 1 & c & c^{2} & d a b \\ 1 & d & d^{2} & a b c\end{array}\right|$
$=\frac{1}{a b c d}\left|\begin{array}{llll}a & a^{2} & a^{3} & a b c d \\ b & b^{2} & b^{3} & b c d a \\ c & c^{2} & c^{3} & c d a b \\ d & d^{2} & d^{3} & d a b c\end{array}\right|, \begin{aligned} & \text { multiplying } R_{1}, R_{2}, R_{3}, R_{4} \text { by } a, b, c, d \\ & \text { respectively and dividing the result by } \\ & \text { abcd, where } a b c d \neq 0 .\end{aligned}$
(Note)
$=\frac{1}{a b c d}(a b c d)\left|\begin{array}{llll}a & a^{2} & a^{3} & 1 \\ b & b^{2} & b^{3} & 1 \\ c & c^{2} & c^{3} & 1 \\ d & d^{2} & d^{3} & 1\end{array}\right|$, taking out $a b c d$ common from C_{4}
$=-\left|\begin{array}{llll}a & a^{2} & 1 & a^{3} \\ b & b^{2} & 1 & b^{3} \\ c & c^{2} & 1 & c^{3} \\ d & d^{2} & 1 & d^{3}\end{array}\right|$, interchanging C_{3} and C_{4}
$=(-1)^{2}\left|\begin{array}{cccc}a & 1 & a^{2} & a^{3} \\ b & 1 & b^{2} & b^{3} \\ c & 1 & c^{2} & c^{3} \\ d & 1 & d^{2} & d^{3}\end{array}\right|$, interchanging C_{2} and C_{2}
$=-\left|\begin{array}{llll}1 & a & a^{2} & a^{3} \\ 1 & b & b^{2} & b^{3} \\ 1 & c & c^{2} & c^{3} \\ 1 & d & d^{2} & d^{3}\end{array}\right|$, interchanging C_{1} and C_{2}, also $(-1)^{3}=-1$.
Substituting this value in (i), the value of the given determinant is zero.
Ex. 6. Show that $\left|\begin{array}{rrrr}-1 & 0 & 0 & a \\ 0 & -1 & 0 & b \\ 0 & 0 & -1 & c \\ \mathrm{x} & \mathrm{y} & \mathrm{z} & -1\end{array}\right|=1-\mathrm{ax}-\mathrm{by}-\mathrm{cz}$

Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{rrrr}
-1 & 0 & 0 & -a+0+0+a \\
0 & -1 & 0 & 0-b+0+b \\
0 & 0 & -1 & 0+0-c+c \\
x & y & z & a x+b y+c z-1
\end{array}\right| \text {, replacing } C_{4} \text { by } a C_{1}+b C_{2}+c C_{3}+C_{4} \\
& =\left|\begin{array}{rrrc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
x & y & z & a x+b y+c z-1
\end{array}\right| \text {, expanding with respect to } C_{4} \\
& =(a x+b y+c z-1)\left|\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right| \\
& =-(a x+b y+c z-1)\left|\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right|, \text { expanding with respect to } C_{1}
\end{aligned}
$$

$$
=(1-a x-b y+c z)[(-1)(-1)-0.0]
$$

$$
=(1-a x-b y-c z)[1]=(1-a x-b y-c z) .
$$

*Ex. 7. Prove that

$$
\left|\begin{array}{ccc}
y z-x^{2} & z x-y^{3} & x y-z^{2} \\
z x-y^{2} & x y-z^{2} & y z-x^{2} \\
x y-z^{2} & y z-x^{2} & z x-y^{2}
\end{array}\right|=\left|\begin{array}{ccc}
v^{2} & u^{2} & u^{2} \\
u^{2} & v^{2} & u^{2} \\
u^{2} & u^{2} & v^{2}
\end{array}\right|=\left|\begin{array}{ccc}
x & y & z \\
y & z & x \\
z & x & y
\end{array}\right|^{2},
$$

where $\mathrm{v}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}, \mathrm{u}^{2}=\mathrm{yz}+\mathrm{zx}+\mathrm{xy}$.
(Goraknpur 90)
Sol. $\left|\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right|^{2}=\left|\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right| \times\left|\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right|$

$$
\begin{align*}
& =\left|\begin{array}{ccc}
x^{2}+y^{2}+z^{2} & x y+y z+z x & x z+y x+z y \\
y x+z y+x z & y^{2}+z^{2}+x^{2} & y z+z x+x y \\
z x+x y+y z & z y+x z+x y & z^{2}+x^{2}+y^{2}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
v^{2} & u^{2} & u^{2} \\
u^{2} & v^{2} & u^{2} \\
u^{2} & u^{2} & v^{2}
\end{array}\right|, \quad \because \tag{i}\\
& u^{2}=y z+z x+x y, \\
& v^{2}=x^{2}+y^{2}+z^{2}, \text { (given) }
\end{align*}
$$

- Again from § 4.16 Page 169 we knwo that if $C_{i j}$ be the cofactor of $a_{i j}$ in. the $n \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$, then

$$
\left|C_{i j}\right|=\{|\mathbf{A}|\}^{n-1}
$$

Here $n=3$, so $\left|C_{i j}\right|=\{|\mathbf{A}|\}^{2}$,
where

$$
A=\left|\begin{array}{lll}
x & y & z \tag{ii}\\
y & z & x \\
z & x & y
\end{array}\right|
$$

$\therefore\left|C_{i j}\right|=\left|\begin{array}{lll}z y-x^{2} & x z-y^{2} & x y-z^{2} \\ z x-y^{2} & x y-z^{2} & y z-x^{2} \\ x y-z^{2} & y z-x^{2} & z x-y^{2}\end{array}\right|, \begin{aligned} & \text { where } C_{i j} \text { is the cofactor } \\ & \text { of } a_{i j} \text { in }|\mathbf{A}|,\end{aligned}$
$\therefore \quad$ From (ii), $\left|\begin{array}{ccc}z y-x^{2} & z x-y^{2} & x y-z^{2} \\ z x-y^{2} & x y-z^{2} & y z-x^{2} \\ x y-z^{2} & y z-x^{2} & z x-y^{2}\end{array}\right|=\left|\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right|^{2}$
From (i) and this we have the required result.
Ex. 8. Write down as a determinant the product

$$
\left|\begin{array}{lll}
\mathbf{a} & \mathbf{b} & \mathbf{c} \\
\mathbf{c} & \mathbf{a} & \mathbf{b} \\
\mathbf{b} & \mathbf{c} & \mathbf{a}
\end{array}\right| \cdot\left|\begin{array}{lll}
\mathbf{x} & \mathbf{y} & \mathbf{z} \\
\mathbf{z} & \mathbf{x} & \mathbf{y} \\
\mathbf{y} & \mathbf{z} & \mathbf{x}
\end{array}\right|
$$

Sol. Multiplying by the 'row-by-row' rule we get

$$
\left|\begin{array}{lll}
a x+b y+c z & a z+b x+c y & a y+b z+c z \\
c x+a y+b z & c z+a x+b y & c y+a z+b x \\
b x+c y+a z & b z+c x+a y & b y+c z+a x
\end{array}\right|
$$

$=(a+b+c)(x+y+z)\left|\begin{array}{ccc}1 & 1 & 1 \\ c x+a y+b z & c z+a x+b y & c y+a z+b x \\ b x+c y+a z & b z+c x+a y & b y+c z+a x\end{array}\right|$
replacing R_{1} by $R_{1}+R_{2}+R_{3}$ and taking the common factor out.
Ex. 9. Expand $\left|\begin{array}{cccc}0 & 1 & \mathbf{x} & \mathbf{y} \\ 0 & 0 & \mathbf{y} & \mathbf{x} \\ \mathbf{z} & \mathbf{w} & 0 & 0 \\ \mathbf{w} & \mathrm{z} & 0 & 0\end{array}\right|$ by Laplace's Expansion's by the

minors of the fi-st two columns.

Sol. All the possible minors of the frist two columns and their complementary minors are given below :

$$
\begin{aligned}
& \left|\mathbf{B}_{1}\right|=\left|\begin{array}{cc}
0 & 1 \\
z & w \\
0 & 1 \\
w & z
\end{array}\right|,\left|\mathbf{B}_{1}^{\prime}\right|=\left|\begin{array}{ll}
y & x \\
0 & 0 \\
y & x \\
y & x \\
0 & 0
\end{array}\right|=0 \\
& \left|\mathbf{B}_{2}\right|=0 \\
& \left|\mathbf{B}_{3}\right|=\left|,\left|\mathbf{B}_{3}^{\prime}\right|=\left|\begin{array}{cc}
x & y \\
y & x
\end{array}\right|\right.
\end{aligned}
$$

\therefore The given determinat $=\left|\begin{array}{cc}z & w \\ w & z\end{array}\right| \cdot\left|\begin{array}{ll}x & y \\ y & x\end{array}\right|$,
the remaing minors or complementary minors are zero.

$$
=\left(z^{2}-w^{2}\right)\left(x^{2}-y^{2}\right) .
$$

Ans.
**Ex. 10 (a). Show that $\left|\begin{array}{lll}\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & \mathrm{~b}_{3} & \mathbf{c}_{3}\end{array}\right|^{2}=\left|\begin{array}{lll}\mathrm{A}_{1} & \mathrm{~B}_{1} & \mathrm{C}_{1} \\ \mathrm{~A}_{2} & \mathrm{~B}_{2} & \mathrm{C}_{2} \\ \mathrm{~A}_{3} & \mathrm{~B}_{3} & \mathrm{C}_{3}\end{array}\right|$
where the capital letters denote the cofactors of the corresponding small letters.
(Gorakhpur 96, 92; Kanpur 93; Purvanchal 97)
Sol. Let $|\mathbf{A}|=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ and $\Delta=\left|\begin{array}{lll}A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3}\end{array}\right|$
Then $\Delta \times|A|$

$$
=\left|\begin{array}{lll}
A_{1} & B_{1} & C_{1} \\
A_{2} & B_{2} & C_{2} \\
A_{3} & B_{3} & C_{3}
\end{array}\right| \times\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

$$
\left.=\left|\begin{array}{lll}
A_{3} & B_{3} & C_{3}
\end{array}\right| \begin{array}{lll}
a_{3} & b_{3} & c_{3}
\end{array}|\quad| \quad \right\rvert\,
$$

$$
=\left\lvert\, \begin{array}{ccc|c}
|\mathbf{A}| & 0 & 0 & \text { since } a_{1} A_{1}+b_{1} B_{1}+c_{1} C_{1}=|\mathbf{A}| \text { etc. } \\
0 & |\mathbf{A}| & 0 & \text { and } a_{1} A_{2}+b_{1} B_{2}+c_{1} C_{2} \text { etc. }
\end{array}\right.
$$

$\left|\begin{array}{ccc}0 & |A| & 0 \\ 0 & 0 & |\mathbf{A}|\end{array}\right| \begin{aligned} & \text { and } a_{1} A_{2}+b_{1} B_{2}+c_{1} C_{2} \text { etc. } \\ & \text { (See example on Page 117) }\end{aligned}$
Note. Students are to prove these in the examination.
$=|\mathbf{A}| \cdot\left|\begin{array}{cc}|\mathbf{A}| & 0 \\ 0 & |\mathbf{A}|\end{array}\right|$, expanding with respect to first row.
$=|\mathbf{A}|[|\mathbf{A}| \cdot|\mathbf{A}|-0.0]=[|\mathbf{A}|]^{3}$
or $\Delta \times|\mathbf{A}|=\{|\mathbf{A}|\}^{3}$ or $\Delta=|\mathbf{A}|^{2}$
or $\quad\left|\begin{array}{lll}A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3}\end{array}\right|=\left|\begin{array}{lll}c_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|^{2}$
Hence proved.
*Ex. 10 (b). Prove that

$$
\left|\begin{array}{lll}
\mathbf{a} & \mathbf{b} & \mathbf{c} \\
\mathbf{c} & \mathbf{a} & \mathbf{b} \\
\mathbf{b} & \mathbf{c} & \mathbf{a}
\end{array}\right|^{2}=\left|\begin{array}{lll}
\mathbf{a}^{2}-\mathbf{b} & \mathbf{b}^{2}-\mathbf{c a} & \mathbf{c}^{2}-\mathbf{a b} \\
\mathbf{c}^{2}-\mathbf{a b} & \mathbf{a}^{2}-\mathbf{b c} & \mathbf{b}^{2}-\mathbf{a c} \\
\mathbf{b}^{2}-\mathbf{c a} & \mathbf{c}^{2}-\mathbf{a b} & \mathbf{a}^{2}-\mathbf{b c}
\end{array}\right| \text { (Gorakhpur } 90 \text {) }
$$

Sol. We know [See Ex. 10 (a) above] that

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & h_{3} & c_{3}
\end{array}\right|^{2}=\left|\begin{array}{lll}
A_{1} & B_{1} & C_{1} \\
A_{2} & B_{2} & C_{2} \\
A_{3} & B_{3} & C_{3}
\end{array}\right|
$$

where capital letters denote the cofactors of the corresponding small letters.

$$
\therefore\left|\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|^{2}=\left|\begin{array}{lll}
A & B & C \\
C & A & B \\
B & C & A
\end{array}\right|
$$

where A, B, C are the cufactors of a, b, c respectively ${ }^{n}$ the doterminam on the left.
$\therefore A=\left|\begin{array}{ll}a & b \\ c & a\end{array}\right|=a^{2}-b c, B=-\left|\begin{array}{ll}c & b \\ b & a\end{array}\right|=b^{2}-a c$
and

$$
C=\left|\begin{array}{ll}
c & a \tag{Note}\\
b & c
\end{array}\right|=c^{2}-a b
$$

Hence from (i) we get

$$
\left|\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|=\left|\begin{array}{lll}
a^{2}-b c & b^{2}-c a & c^{2}-a b \\
c^{2}-a b & a^{2}-b c & b^{2}-a c \\
b^{2}-c a & c^{2}-a b & a^{2}-b c
\end{array}\right| \text { Hence proved. }
$$

Ex. 11. Solve the equation $\left|\begin{array}{ccc}3 x-8 & 3 & 3 \\ 3 & 3 x-8 & 3 \\ 3 & 3 & 3 x-8\end{array}\right|=0$.
(Meerut 97)
Sol. Given that $\left|\begin{array}{ccc}3 x-8 & 3 & 3 \\ 3 & 3 x-8 & 3 \\ 3 & 3 & 3 x-8\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}3 x-2 & 3 & 3 \\ 3 x-2 & 3 x-8 & 3 \\ 3 x-2 & 3 & 3 x-8\end{array}\right|=0$, replacing C_{1} by $C_{1}+C_{2}+C_{3}$
$\Rightarrow(3 x-2)\left|\begin{array}{ccc}1 & 3 & 3 \\ 1 & 3 x-8 & 3 \\ 1 & 3 & 3 x-8\end{array}\right|=0$, taking out $(3 x-2)$ common.
$\Rightarrow(3 x-2)\left|\begin{array}{ccc}1 & 3 & 3 \\ 0 & 3 x-11 & 0 \\ 0 & 0 & 3 x-11\end{array}\right|=\begin{aligned} & 0, \text { replacing } R_{2}, R_{3} \text { by } R_{2}-R_{1}, \\ & R_{3}-R_{1} \text { respectively. }\end{aligned}$
$\Rightarrow(3 x-2)\left|\begin{array}{cc}3 x-11 & 0 \\ 0 & 3 x-11\end{array}\right|=0$, expanding with respect to C_{1}
$\Rightarrow(3 x-2)(3 x-11)^{2}=0$
$\Rightarrow x=2 / 3$ or $11 / 3$.
Ans.
Ex. 12. Prove that the value of determinant

$$
\left|\begin{array}{lll}
x+1 & x+2 & x+x \\
x+2 & x+3 & x+h \\
x+3 & x+4 & x+c
\end{array}\right| \text { is independent of } x .
$$

Sol. The given determinant
$=\left|\begin{array}{ccc}x+1 & 1 & a-1 \\ x+2 & 1 & z-2 \\ x+3 & 1 & i-3\end{array}\right|$, replacing C_{2}, C_{3} by $C_{2}-C_{1}$ and $C_{3}-C_{1}$
$=\left|\begin{array}{ccc}x+i & 1 & a-1 \\ 1 & 0 & b-a-1 \\ 2 & 0 & c-a-2\end{array}\right| \begin{gathered}\text { replacing } R_{2}, R_{3} \text { by } R_{2} \cdot R_{1}, \\ R_{3}-R_{1} \text { respectively } .\end{gathered}$
$=-\left|\begin{array}{ccc}1 & x+1 & a-1 \\ 0 & 1 & b-a-1 \\ 0 & 2 & c-a-2\end{array}\right|$ interchanging C_{1} and C_{2}
$=-\left|\begin{array}{cc}1 & b-a-1 \\ 2 & c-a-2\end{array}\right|=-[(c-a-2)-2(b-a-1)]$
$=-[c-a-2-2 b+2 a+2]=-a+2 b-c$, which is independent of x.
Hence proved
*Ex. 13. Give correct answer to the following :
The value of the determinant $\left|\begin{array}{rrrr}-3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3\end{array}\right|$
is $(\mathrm{A})-1,(\mathrm{~B}) 1,(\mathrm{C}) 0,(\mathrm{D}) 4$.
Sol. The correct answer is (C) i.e. 0 , since replacing C_{1} by $C_{1}+C_{2}+C_{3}+C_{4}$ we find that all the elements of C_{1} are zero. Hence the value of the given determinant is zero.

Ex. 14. Show that $(a+b+c)$ and $\left(a^{2}+b^{2}+c^{2}\right)$ are factors of determinant $\left|a^{2}(b+c)^{2} \quad b c\right|$ and find the remaining factors.

$$
\left|\begin{array}{ccc}
b^{2} & (c+a)^{2} & c a \\
c^{2} & (a+b)^{2} & a b
\end{array}\right|
$$

Sol. The given determinant
$=\left|\begin{array}{ccc}a^{2} & \left(b^{2}+c^{2}+2 b c\right)+a^{2} & b c \\ b^{2} & \left(c^{2}+a^{2}+2 c a\right)+b^{2} & c a \\ c^{2} & \left(a^{2}+b^{2}+2 a b\right)+c^{2} & a b\end{array}\right|$, replacing C_{2} by $C_{2}+C_{1}$
$=\left|\begin{array}{ccc}a^{2} & b^{2}+c^{2}+a^{2} & b c \\ b^{2} & c^{2}+a^{2}+b^{2} & c a \\ c^{2} & a^{2}+b^{2}+c^{2} & a b\end{array}\right|$, replacing C_{2} by $C_{2}-2 C_{3}$
$=\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{lll}a^{2} & 1 & b c \\ b^{2} & 1 & c a \\ c^{2} & 1 & a b\end{array}\right|$, taking out $\left(a^{2}+b^{2}+c^{2}\right)$ common
$=\frac{a^{2}+b^{2}+c^{2}}{a b c}\left|\begin{array}{lll}a^{3} & a & a b c \\ b^{3} & b & b c a\end{array}\right|, \begin{aligned} & \text { taking } 1 / a 1 / b, 1 / c \text { common from } \\ & \mathrm{R}_{1}, \mathrm{R}_{2} \text { and } \mathrm{R}_{3} \text { respectively. }\end{aligned}$
$=\frac{a^{2}+b^{2}+c^{2}}{a b c} \times a b c\left|\begin{array}{lll}a^{3} & a & 1 \\ b^{3} & b & 1 \\ c^{3} & c & 1\end{array}\right|$, taking out $a b c$ common from C_{3}.
Now proceed as in Ex. 31 Page 146.

Ex. 15. Prove that $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$.
Sol. The given determinant
$=a b c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ b & b+c & c\end{array}\right| \begin{gathered}\text {, taking out } a, b, c \text { common from } \\ C_{1}, C_{2}, C_{3} \text { respectively }\end{gathered}$
$=a b c\left|\begin{array}{lcc}a+c & c & a+c \\ a+2 b & b & a \\ 2 b+c & b+c & c\end{array}\right|$, replacing C_{1} by $C_{1}+C_{2}$
$=a b c\left|\begin{array}{ccc}0 & c & a+c \\ 2 b & b & a \\ 2 b & b+c & c\end{array}\right|$, replacing C_{1} by $C_{1}-C_{3}$
$=a b c\left|\begin{array}{ccc}0 & c & a+c \\ 2 b & b & a \\ 0 & c & c-a\end{array}\right|$, replacing R_{3} by $R_{3}-R_{2}$
$=-2 a b^{2} c\left|\begin{array}{ll}c & a+c \\ c & c-a\end{array}\right|$, expanding with respect to C_{1}
$=-2 a b^{2} c\left|\begin{array}{rr}0 & 2 a \\ c & c-a\end{array}\right|$, replacing R_{1} by $R_{1}-R_{2}$
$=-2 a b^{2} c(-2 a c)$, expanding the determinant.
$=4 a^{2} b^{2} c^{2}$.
*Ex. 16. Solve $\left|\begin{array}{rcc}x+2 & 2 x+3 & 3 x+4 \\ 2 x+3 & 3 x+4 & 4 x+5 \\ 3 x+5 & 5 x+8 & 10 x+17\end{array}\right|=0$
Sol. The given equation is
\(\left|\begin{array}{ccc}x+2 \& -1 \& -2

2 x+3 \& -x-2 \& -2 x-4

3 x+5 \& -x-2 \& x+2\end{array}\right|=0,\)| replacing C_{2}, C_{3} by $C_{2}-2 C_{1}$, |
| :---: |
| $C_{3}-3 C_{1}$ respectively. |

$$
\left|\begin{array}{ccl}
x+2 & -1 & -2 \\
2 x+3 & -x-2 & -2 x-4 \\
x+2 & 0 & 3 x+6
\end{array}\right|=0 \text {, replacing } R_{3} \text { by } R_{3}-R_{2}
$$

$$
\begin{array}{ll}
\text { or } & \left|\begin{array}{ccl}
x+2 & -1 & 0 \\
2 x+3 & -x-2 & 0 \\
x+2 & 0 & 3 x+6
\end{array}\right|=0 \text {, replacing } C_{3} \text { by } C_{3}-2 C_{2} \\
\text { or } \quad(3 x+6)\left|\begin{array}{cl}
x+2 & -1 \\
2 x+3 & -x-2
\end{array}\right|=0 \text {, expanding with respect to } C_{3}
\end{array}
$$

$$
(3 x+6)\left[-(x+2)^{2}+(2 x+3)\right]=0
$$

or $\quad(3 x+6)\left(x^{2}+2 x+1\right)=0 \quad$ or $\quad(3 x+6)(x+1)^{2}=0$
or $\quad x=-1,-2$
Ans.
*Ex. 17. Prove that $\left|\begin{array}{llll}\alpha & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \beta & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \gamma & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \delta\end{array}\right|=\mathbf{f}(\mathbf{x})-\mathbf{x} \mathbf{f}(\mathbf{x})$,
where $f(x)=(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)$ and $f^{\prime}(x)$ is the first derivative of $f(x)$ with respect to x.

Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{cccc}
\alpha & x & 0 & 0 \\
x & \beta & x-\beta & x-\beta \\
x & x & \gamma-x & 0 \\
x & x & 0 & \delta-x
\end{array}\right|, \begin{array}{l}
\text { replacing } C_{3} \text { and } C_{4} \text { by } C_{3}-C_{2} \\
\text { and } C_{4}-C_{2} \text { respectively. }
\end{array} \\
& =\alpha\left|\begin{array}{ccc}
\beta & x-\beta & x-\beta \\
x & \gamma-x & 0 \\
x & 0 & \delta-x
\end{array}\right|-x\left|\begin{array}{ccc}
x & x-\beta & x-\beta \\
x & \gamma-x & 0 \\
x & 0 & \delta-x
\end{array}\right| \text {, expanding w.r. to } R_{1} \\
& =\alpha\left|\begin{array}{ccc}
\beta & x-\beta & 0 \\
x & \gamma-x & x-\gamma \\
x & 0 & \delta-x
\end{array}\right|-x^{2}\left|\begin{array}{ccc}
1 & x-\beta & 0 \\
1 & \gamma-x & x-\gamma \\
1 & 0 & \delta-x
\end{array}\right|, \begin{array}{l}
\text { replacing } C_{3} \text { by } \\
C_{3}-C_{2} \text { in each } \\
\text { determinant }
\end{array} \\
& =\alpha \beta\left|\begin{array}{cc}
\gamma-x & x-\gamma \\
0 & \delta-x
\end{array}\right|-\alpha(x-\beta)\left|\begin{array}{ll}
x & x-\gamma \\
x & \delta-x
\end{array}\right|-x^{2}\left|\begin{array}{cc}
\gamma-x & x-\gamma \\
0 & \delta-x
\end{array}\right| \\
& +x^{2}(x-\beta)\left|\begin{array}{ll}
1 & x-\gamma \\
1 & \delta-x
\end{array}\right| \text {, expanding each det. w.r. to } R_{1} \\
& =\left(\alpha \beta-x^{2}\right)(\gamma-x)(\delta-x)-(x-\beta) x(\alpha-x)[(\delta-x)-(x-\gamma)] \\
& =\left(\alpha \beta-x^{2}\right)(x-\gamma)(x-\delta)-x(x-\alpha)(x-\beta)(x-\delta) \\
& -x(x-\alpha)(x-\beta)(x-\gamma) \\
& =\left(x^{2}-\alpha x-\beta x+\alpha \beta-x^{2}+\beta x-x^{2}+\alpha x\right)(x-\gamma)(x-\delta) \\
& -x(x-\alpha)(x-\beta)(x-\delta)-x(x-\alpha)(x-\beta)(x-\gamma) \quad \text { (Note) } \\
& =[(x-\alpha)(x-\beta)-x(x-\beta)-x(x-\alpha)](x-\gamma)(x-\delta) \\
& -x(x-\alpha)(x-\beta)(x-\delta)-x(x-\alpha)(x-\beta)(x-\gamma) \quad \text { (Note) } \\
& =(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)-x[(x-\beta)(x-\gamma)(x-\delta) \\
& +(x-\alpha)(x-\gamma)(x-\delta)+(x-\alpha)(x-\beta)(x-\delta) \\
& +(x-\alpha)(x-\beta)(x-\gamma)] \\
& =f(x)-x f^{\prime}(x) \text {, where } f(x)=(x-\alpha)(x-\beta)(x-\gamma)(x-\delta) \text { Hence proved. } \\
& \text { Ex. 18. Prove that }\left|\begin{array}{ccc}
1 & \omega^{3} & \omega^{2} \\
\omega^{3} & 1 & \omega \\
\omega^{2} & \omega & 1
\end{array}\right|=3 \text {, where } \omega \text { is one of the imaginary }
\end{aligned}
$$

Sol. If ω be one of the imaginary cube roots of unity, then

$$
\begin{equation*}
\omega^{3}=1 \text { and } 1+\omega+\omega^{2}=0 \tag{i}
\end{equation*}
$$

Now the given determinant
$=\left|\begin{array}{lll}1 & 1 & \omega^{2} \\ 1 & 1 & \omega \\ \omega^{2} & \omega & 1\end{array}\right|$, from (i) using $\omega^{3}=1$
$=\left|\begin{array}{lll}0 & 1 & \omega^{2} \\ 0 & 1 & \omega \\ \omega^{2}-\omega & \omega & 1\end{array}\right|$, replacing C_{1} by $C_{1}-C_{2}$
$=\left(\omega^{2}-\omega\right)\left|\begin{array}{ll}1 & \omega^{2} \\ 1 & \omega\end{array}\right|$, expanding with respect to C_{1}
$=\left(\omega^{2}-\omega\right)\left(\omega-\omega^{2}\right)=\omega^{3}-\omega^{4}-\omega^{2}+\omega^{3}=1-\omega-\omega^{2}+1, \because \omega^{3}=1$
$=2-\left(\omega+\omega^{2}\right)=2-(-1), \because 1+\omega+\omega^{2}=0$ or $\omega+\omega^{2}=-1$
$=2+1=3$.
Hence proved

**Ex. 19. Prove that the determinant

$$
\left|\begin{array}{ccc}
1 & \cos (\beta-\alpha) & \cos (\gamma-\alpha) \\
\cos (\alpha-\beta) & 1 & \cos (\gamma-\beta) \\
\cos (\alpha-\gamma) & \cos (\beta-\gamma) & 1
\end{array}\right|
$$

is a perfect square (of a determinant) and find its value.
(Gorakhpur 94)
Sol. The given determinant

$$
\begin{aligned}
& =\left\lvert\, \begin{array}{ll}
\cos \alpha \cos \alpha+\sin \alpha \sin \alpha & \cos \alpha \cos \beta+\sin \alpha \sin \beta \\
\cos \beta \cos \alpha+\sin \beta \sin \alpha & \cos \beta \cos \beta+\sin \beta \sin \beta \\
\cos \gamma \cos \alpha+\sin \gamma \sin \alpha & \cos \gamma \cos \beta+\sin \gamma \sin \beta
\end{array}\right. \\
& \\
& \\
& \\
& \\
& \cos \alpha \cos \gamma+\sin \alpha \sin \gamma \\
& \cos \beta \cos \gamma+\sin \beta \sin \gamma \\
& \cos \gamma \cos \gamma+\sin \gamma \sin \gamma
\end{aligned}
$$

(Note)
The element in the first row and first column is $\cos \alpha \cos \alpha+\sin \alpha \sin \alpha$, which can be written as

$$
\begin{equation*}
(\cos \alpha)(\cos \alpha)+(\sin \alpha)(\sin \alpha)+0.0 \tag{Note}
\end{equation*}
$$

Similarly the elernent in the first row and second column is $\cos \alpha \cos \beta+\sin \alpha \sin \beta$, which can be writter as

$$
\begin{equation*}
(\cos \alpha)(\cos \beta)+(\sin \alpha)(\sin \beta)+0 \cdot 0, \tag{Note}
\end{equation*}
$$

Proceeding in this way we can write the given determinant
$=\left|\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ \cos \beta & \sin \beta & 0 \\ \cos \gamma & \sin \gamma & 0\end{array}\right| \times\left|\begin{array}{ccc}\cos \alpha & \sin \alpha & 0^{\prime} \\ \cos \beta & \sin \beta & 0 \\ \cos \gamma & \sin \gamma & 0\end{array}\right|$
$=\left|\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ \cos \beta & \sin \beta & 0 \\ \cos \gamma & \sin \gamma & 0\end{array}\right|^{2}$, hence a perfect square of a determinant
$=0$, since the value of this determinant is zero as all the elements of one of its columns are zero.
*Ex. 20. (a) Show that $\left|\begin{array}{rr}\mathbf{a}+\mathbf{i b} & \mathbf{c}+\mathrm{id} \\ -\mathbf{c}+\mathbf{i d} & \mathbf{a}-\mathrm{ib}\end{array}\right| \times\left|\begin{array}{rr}\alpha+i \beta & \gamma+i \delta \\ -\gamma+i \delta & \alpha-i \beta\end{array}\right|$
can be expressed as $\left|\begin{array}{rr}A+i B & C+i D \\ -C+i D & A-i B\end{array}\right|$
Hence prove the Euler's Theorem, 'the product of two sums of four squares each is equal to the sum of the four squares'.

Sol. $\left|\begin{array}{cc}c+i b & c+i d \\ -c+i d & a-i b\end{array}\right| \times\left|\begin{array}{rr}\alpha+i \beta & \gamma+i \delta \\ -\gamma+i \delta & \alpha-i \beta\end{array}\right|$

$$
\begin{align*}
& =\left|\begin{array}{cc}
(a+i b)(\alpha+i \beta) & (-c+i d)(\alpha+i \beta) \\
+(c+i d)(\gamma+i \delta) & +(a-i b)(\gamma+i \delta) \\
(a+i b)(-\gamma+i \delta) & (-c+i d)(-\gamma+i \delta) \\
+(c+i d)(\alpha-i \beta) & +(a-i b)(\alpha-i \beta)
\end{array}\right| \\
& =\left|\begin{array}{cc}
a \alpha-b \beta+c \gamma-d \delta) & (-c \alpha-d \beta+a \gamma+b \delta) \\
+i(a \beta+b \alpha+c \delta+d \gamma) & +i(-c \beta+d \alpha+a \delta-b \gamma) \\
(-\alpha \gamma-b \delta+c \alpha+d \beta) & (a \alpha-b \beta+c \gamma-d \delta) \\
+i(a \delta-b \gamma-c \beta+d \alpha) & +i(-a \beta-b \alpha-c \delta-d \gamma)
\end{array}\right| \\
& =\left|\begin{array}{cc}
A+i B & C+i D \\
-C+i D & A-i B
\end{array}\right| \tag{i}
\end{align*}
$$

where $A=a \alpha-b \beta+c \gamma-d \delta, B=a \beta+b \alpha+c \delta+d \gamma$,
$C=a \gamma+b \delta-c \alpha-d \beta, D=a \delta-b \gamma-c \beta+d \alpha$.
Now $\left|\begin{array}{rr}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right|$
$=(a+i b)(a-i b)-(c+i d)(-c+i d)$
$=\left(a^{2}-i^{2} b^{2}\right)-\left(i^{2} d^{2}-c^{2}\right)=a^{2}+b^{2}+c^{2}+d^{2}$
Similaryly $\left|\begin{array}{cc}\alpha+i \beta & \gamma+i \delta \\ -\gamma+i \delta & \alpha-i \beta\end{array}\right|=\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$
and

$$
\left|\begin{array}{rr}
A+i B & c+i D \\
-C+i D & A-i B
\end{array}\right|=A^{2}+B^{2}+C^{2}+D^{2}
$$

\therefore From (i) we have

$$
\begin{equation*}
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right)=\left(A^{2}+B^{2}+C^{2}+D^{2}\right) \tag{iii}
\end{equation*}
$$

i.e. product of two sums of four squares each is equal to the sum of four squares.

Hence proved.
Ex. 20 (b). With the help of determinants express the following as a sum of four squares

$$
\left(1^{2}+2^{2}+3^{2}+4^{2}\right)\left(5^{2}+6^{2}+7^{2}+8^{2}\right)
$$

Sol. As in Ex. 20 (a) above we can show that,

$$
\begin{equation*}
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right)=\left(A^{2}+B^{2}+C^{2}+D^{2}\right) \tag{i}
\end{equation*}
$$

where A, B, C, D are given by Ex. 20 (a) result (ii).
Now let $a=2, b=2, c=3, d=4, \alpha=5, \beta=6, \gamma=7, \delta=8$
Then $A=a \alpha-b \beta+c \gamma-d \delta=1(5)-2(6)+3(7)-4(8)$

$$
\begin{aligned}
& =5-12+21-32=-18 . \\
B & =a \beta+b \alpha+c \delta+d \gamma=1(6)+2(5)+3(8)+4(7) \\
& =6+10+24+28=68, \\
C & \equiv a \gamma+b \delta-c \alpha-d \beta=1(7)+2(8)-3(5)-4(6) \\
& =7+6-15-24=-16 \\
D & =a \delta-b \gamma-c \beta+d \alpha=1(8)-2(7)-3(6)+4(5) \\
& =8-14-18+20=-4 .
\end{aligned}
$$

From (I) above we have $\left(1^{2}+2^{2}+3^{2}+4^{2}\right)\left(5^{2}+6^{2}+7^{2}+8^{2}\right)$

$$
\begin{aligned}
& =(-18)^{2}+(68)^{2}+(-16)^{2}+(-4)^{2} \\
& =(18)^{2}+(68)^{2}+(16)^{2}+(4)^{2} . \\
& \text { Ex. 21. Evaluate }\left|\begin{array}{rrrr}
\mathbf{a} & -\mathbf{a} & -\mathbf{a} & -\mathbf{a} \\
\mathbf{b} & \mathbf{b} & -\mathbf{b} & -\mathbf{b} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & -\mathbf{c} \\
\mathbf{d} & \mathbf{d} & \mathbf{d} & \mathbf{d}
\end{array}\right|
\end{aligned}
$$

Sol. The given determinant
$=\left|\begin{array}{cccc}a & 0 & 0 & 0 \\ b & 2 b & 0 & 0\end{array}\right|$, replacing C_{2}, C_{3} and C_{4} by $\dot{C}_{2}+C_{1}, C_{3}+C_{1}$
$\left|\begin{array}{cccc}b & 2 b & 0 & 0 \\ c & 2 c & 2 c & 0 \\ d & 2 d & 2 d & 2 d\end{array}\right|$
$=a\left|\begin{array}{ccc}2 b & 0 & 0 \\ 2 c & 2 c & 0 \\ 2 d & 2 d & 2 d\end{array}\right|$, expanding with respect to R_{1}
$=2 a b\left|\begin{array}{cc}2 c & 0 \\ 2 d & 2 d\end{array}\right|$, expanding with respect to R_{1}
$=2 a b[2 c \times 2 d-(2 d) \times 0]=8 a b c d$.
Ans.
*Ex. 22. Prove that $\left|\begin{array}{llll}4 & 5 & 6 & x \\ 5 & 6 & \mathbf{7} & \mathrm{y} \\ \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathrm{z} \\ \mathrm{x} & \mathrm{y} & \mathrm{z} & 0\end{array}\right|=\left(\mathbf{x}-\mathbf{2 y + z) ^ { 2 }} \quad \begin{array}{l}\text { (Gorakhpur 94; Kanpur 94) }\end{array}\right.$
Sol. The given determinant

$$
\begin{aligned}
& =\left|\begin{array}{llll}
10 & 5 & 6 & x \\
12 & 6 & 7 & y \\
14 & 7 & 8 & z \\
x+z & y & z & 0
\end{array}\right| \text {, replacing } C_{1} \text { by } C_{1}+C_{3} \\
& =\left|\begin{array}{llll}
0 & & 5 & 6 \\
x \\
0 & 6 & 7 & y \\
0 & & 7 & 8 \\
z \\
x-2 y+z & y & z & 0
\end{array}\right| \text {, replacing } C_{1} \text { by } C_{1}-2 C_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-(x-2 y+z)\left|\begin{array}{ccc}
5 & 6 & x \\
6 & 7 & y \\
7 & 8 & z
\end{array}\right| \text {, expanding with respect to } C_{1} \\
& =-(x-2 y+z)\left|\begin{array}{rrc}
12 & 14 & x+z \\
6 & 7 & y \\
7 & 8 & z
\end{array}\right| \text {, replacing } R_{1} \text { by } R_{1}+R_{2} . \\
& =-(x-2 y+z)\left|\begin{array}{ccc}
0 & 0 & x+z-2 y \\
6 & 7 & y \\
7 & 8 & z
\end{array}\right| \text {, replacing } R_{1} \text { by } R_{1}-2 R_{2} \\
& =-(x-2 y+z)^{2}\left|\begin{array}{cc}
6 & 7 \\
7 & 8
\end{array}\right| \text {, expanding with respect to } R_{1} \\
& =-(x-2 y+z)^{2}[48-49], \text { expanding the det. } \\
& =(x-2 y+z)^{2}
\end{aligned}
$$

Hence proved.
Ex. 23. Evaluate $\left|\begin{array}{rrrr}0 & \alpha & \beta & \gamma \\ l & 0 & c & -b \\ m & -c & 0 & a \\ n & b & -a & 0\end{array}\right|$
(Gorakhpur 95; Kanpur 90)
Sol. The given determinant
$=\frac{1}{a}\left|\begin{array}{cccc}0 & \alpha & \beta & \gamma \\ a l & 0 & a c & -a b \\ m & -c & 0 & a \\ n & b & -a & 0\end{array}\right|$, taking $(1 / a)$ common from R_{2}
$=\frac{1}{a}\left|\begin{array}{crrr}0 & \alpha & \beta & \gamma \\ a l+b m+c m & 0 & 0 & 0 \\ m & -c & 0 & a \\ n & b & -a & 0\end{array}\right|$, replacing R_{2} by $R_{2}+b R_{3}+c R_{1}$
$=-\frac{1}{a}(a l+b m+c n)\left|\begin{array}{rrr}\alpha & \beta & \gamma \\ -c & 0 & a \\ b & -a & 0\end{array}\right|$, expanding with respect to R_{2}
$=-\frac{1}{a^{2}}(a l+b m+c n)\left|\begin{array}{rrr}a \alpha & \beta & \gamma \\ -a c & 0 & a \\ a b & -a & 0\end{array}\right|$, taking out $1 / a$ common from C_{1}
$=-\frac{1}{a^{2}} \cdot(a l+b m+c n)\left|\begin{array}{ccc}a \alpha+b \beta+c \gamma & \beta \cdot & \gamma \\ 0 & 0 & a \\ 0 & -a & 0\end{array}\right|$,
replacing C_{1} by $C_{1}+b C_{2}+c C_{3}$
$=-\frac{1}{a^{2}}(a l+b m+c n)(a \alpha+b \beta+c \gamma)\left|\begin{array}{rl}0 & a \\ -a & 0\end{array}\right| \begin{aligned} & \text { expanding with respect } \\ & \text { to } C_{1}\end{aligned}$
$=-\left(1 / a^{2}\right)(a l+b m+c n)(a \alpha+b \beta+c \gamma) a^{2}$.
$=-(a l+b m+c n)(a \alpha+b \beta+c \gamma)$.
Ans.
Ex. 24. Prove that

$$
\begin{aligned}
& \text { rove that }\left|\begin{array}{llll}
1 & 1 & 1 & 1 \\
\alpha & \beta & \gamma & \delta \\
\alpha^{2} & \beta^{2} & \gamma^{2} & \delta^{2} \\
\alpha^{3} & \beta^{3} & \gamma^{3} & \delta^{3}
\end{array}\right| \\
& =-(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha-\delta)(\beta-\delta)(\gamma-\delta)
\end{aligned}
$$

Hence evaluate

Sol. $\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ \alpha & \beta & \gamma & \delta \\ \alpha^{2} & \beta^{2} & \gamma^{2} & \delta^{2} \\ \alpha^{3} & \beta^{3} & \gamma^{3} & \delta^{3}\end{array}\right|$
$=\left|\begin{array}{cccc}1 & 0 & 0 & 0 \\ \alpha & \beta-\alpha & \gamma-\alpha & \delta-\alpha \\ \alpha^{2} & \beta^{2}-\alpha^{2} & \gamma^{2}-\alpha^{2} & \delta^{2}-\alpha^{2} \\ \alpha^{3} & \beta^{3}-\alpha^{3} & \gamma^{3}-\alpha^{3} & \delta^{3}-\alpha^{3}\end{array}\right|, \begin{aligned} & \text { replacing } C_{2}, C_{3}, C_{4} \text { by } C_{2}-C_{1}, \\ & C_{3}-C_{1} \text { and } C_{4}-C_{1}\end{aligned}$
$=(\beta-\alpha)(\gamma-\alpha)(\delta-\alpha)\left|\begin{array}{ccc}1 & 1 & 1 \\ \beta+\alpha & \gamma+\alpha & \delta+\alpha \\ \beta^{2}+\alpha^{2}+\alpha \beta & \gamma^{2}+\alpha^{2}+\alpha \gamma & \delta^{2}+\alpha^{2}+\alpha \delta\end{array}\right|$, expanding w.r. to R_{1} and taking out common factors.

$$
=(\alpha-\beta)(\gamma-\alpha)(\alpha-\delta)\left|\begin{array}{ccc}
& 0 & 0 \\
1 & \gamma-\beta & \delta-\beta \\
\beta+\alpha & \gamma^{2}+\alpha \gamma-\beta^{2} & \delta^{2}+\alpha \delta-\beta^{2} \\
\beta^{2}+\alpha^{2}+\alpha \beta & -\alpha \beta & -\alpha \beta
\end{array}\right|
$$

replacing C_{2}, C_{3} by $C_{2}-C_{1}, C_{3}-C_{1}$
$=(\alpha-\beta)(\alpha-\delta)(\gamma-\alpha)\left|\begin{array}{ccc}1 & 0 & 0 \\ \beta+\alpha & \gamma-\beta & \delta-\beta \\ \beta^{2}+\alpha^{2}+\alpha \beta & (\gamma-\beta) & (\delta-\beta) \\ & (\alpha+\gamma) & (\alpha+\beta+\delta)\end{array}\right|$
$=(\alpha-\beta)(\alpha-\delta)(\gamma-\alpha)(\beta-\gamma)(\beta-\delta)\left|\begin{array}{cc}-1 & 1 \\ \alpha+\beta+\gamma & \alpha+\beta+\delta\end{array}\right|$,
expanding w.r.t. to R_{1}
$=(\alpha-\beta)(\alpha-\delta)(\gamma-\alpha)(\beta-\gamma)(\beta-\delta)[(\alpha+\beta+\delta)-(\alpha+\beta+\gamma)]$

$$
=-(\alpha-\beta)(\alpha-\delta)(\gamma-\alpha)(\beta-\gamma)(\beta-\delta)(\gamma-\delta) .
$$

Squaring both sides of (i), we get

$$
\begin{align*}
& (\alpha-\beta)^{2}(\alpha-\delta)^{2}(\gamma-\alpha)^{2}(\beta-\gamma)^{2}(\beta-\delta)^{2}(\gamma-\delta)^{2} \\
& =\left|\begin{array}{llll}
1 & 1 & 1 & 1 \\
\alpha & \beta & \gamma & \delta \\
\alpha^{2} & \beta^{2} & \gamma^{2} & \delta^{2} \\
\alpha^{3} & \beta^{3} & \gamma^{3} & \delta^{3}
\end{array}\right| \times\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\alpha & \beta & \gamma & \delta \\
\alpha^{2} & \beta^{2} & \gamma^{2} & \delta^{2} \\
\alpha^{3} & \beta^{3} & \gamma^{3} & \delta^{3}
\end{array}\right| \tag{Note}\\
& =\left\lvert\, \begin{array}{cc}
1+1+1+1 & \alpha+\beta+\gamma+\delta \\
\alpha+\beta+\gamma+\delta_{-} & \alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}
\end{array}\right. \\
& \begin{array}{ll}
\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2} & \alpha^{3}+\beta^{3}+\gamma^{3}+\delta^{3} \\
\alpha^{3}+\beta^{3}+\gamma^{3}+\delta^{3} & \alpha^{4}+\beta^{4}+\gamma^{4}+\delta^{4}
\end{array} \\
& \alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2} \quad \alpha^{3}+\beta^{3}+\gamma^{3}+\delta^{3} \\
& \alpha^{3}+\beta^{3}+\gamma^{3}+\delta^{3} \quad \alpha^{4}+\beta^{4}+\gamma^{4}+\delta^{4} \\
& \alpha^{4}+\beta^{4}+\gamma^{4}+\delta^{4} \quad \alpha^{5}+\beta^{5}+\gamma^{5}+\delta^{5} \\
& \alpha^{5}+\beta^{5}+\gamma^{5}+\delta^{5} \quad \alpha^{6}+\beta^{6}+\gamma^{5}+\delta^{6} \\
& =\left|\begin{array}{llll}
s_{0} & s_{1} & s_{2} & s_{3} \\
s_{1} & s_{2} & s_{3} & s_{4} \\
s_{2} & s_{3} & s_{4} & s_{5} \\
s_{3} & s_{4} & s_{5} & s_{6}
\end{array}\right| \text {, where } s_{r}=a^{r}+\beta^{r}+\gamma+\delta^{r} \\
& \text { Hence proved. }
\end{align*}
$$

*Ex. 25. If ω is the cube root of unity, then one root of the equation

$$
\left|\begin{array}{ccc}
x+1 & \omega & \omega^{2} \\
\omega & x+\omega^{2} & 1 \\
\omega^{2} & 1 & x+\omega
\end{array}\right|=0 \text { is } 0
$$

(MNR 90)
Sol. Adding all the rows of the given determinant to first, the given equation reduces to

$$
\left|\begin{array}{ccc}
x+1+\omega+\omega^{2} & x+\omega+\omega^{2}+1 & \omega^{2}+1+x+\omega \\
\omega & x+\omega^{2} & 1 \\
\omega^{2} & 1 & x+\omega
\end{array}\right|=0
$$

or

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x & x & x \\
\omega & x+\omega^{2} & 1 \\
\omega^{2} & 1 & x+\omega
\end{array}\right|=0, \because 1+\omega+\omega^{2}=0 \\
& \left|\begin{array}{ccc}
1 & 1 & 1 \\
\omega & x+\omega^{2} & 1 \\
\omega^{2} & 1 & x+\omega
\end{array}\right|=0 \Rightarrow x=0
\end{aligned}
$$

Hence proved.
*Ex. 26. The value of θ which lies between $\theta=0$ and $\theta=\pi / 2$ and satisfy the equation

$$
\left|\begin{array}{ccc}
1+\sin ^{2} \theta & \cos ^{2} \theta & 4 \sin 4 \theta \\
\sin ^{2} \theta & 1+\cos ^{2} \theta & 4 \sin 4 \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & 1+4 \sin 4 \theta
\end{array}\right|=0 \text { is }
$$

$$
\begin{equation*}
\text { (a) } 7 \pi / 24 \text {, (b) } 5 \pi / 24, \text { (c) } 11 \pi / 24, \text { (d) } \pi / 24 \text {. } \tag{I.I.T}
\end{equation*}
$$

Sol. Given equation is

$$
\left|\begin{array}{ccc}
1+\sin ^{2} \theta+\cos ^{2} \theta & \cos ^{2} \theta & 4 \sin 4 \theta \\
\sin ^{2} \theta+1+\cos ^{2} \theta & 1+\cos ^{2} \theta & 4 \sin 4 \theta \\
\sin ^{2} \theta+\cos ^{2} \theta & \cos ^{2} \theta & 1+4 \sin 4 \theta
\end{array}\right|=0
$$

adding 2 nd col. to 1 st .
or $\quad\left|\begin{array}{ccc}2 & \cos ^{2} \theta & 4 \sin 4 \theta \\ 2 & 1+\cos ^{2} \theta & 4 \sin 4 \theta \\ 1 & \cos ^{2} \theta & 1+4 \sin 4 \theta\end{array}\right|=0, \quad \because \quad \cos ^{2} \theta+\sin ^{2} \theta=1$
or $\quad\left|\begin{array}{ccc}2 & \cos ^{2} \theta & 4 \sin 4 \theta \\ 0 & 1 & 0 \\ 1 & \cos ^{2} \theta & 1+4 \sin 4 \theta\end{array}\right|=0$, replacing R_{2} by $R_{2}-R_{1}$
or $\quad\left|\begin{array}{cc}2 & 4 \sin 4 \theta \\ 1 & 1+4 \sin 4 \theta\end{array}\right|=0$, expanding w.r. to R_{2}
or $\quad 2(1+4 \sin 4 \theta)-4 \sin 4 \theta=0 \quad$ or $\quad 4 \sin 4 \theta+2=0$
or $\quad \sin 4 \theta=-1 / 2=\sin 210^{\circ}$ or $\sin 330^{\circ}$

$$
=\sin (7 \pi / 6) \text { or } \sin (11 \pi / 6)
$$

or $4 \theta=7 \pi / 6$ or $11 \pi / 6$ or $\theta=7 \pi / 24$ or $11 \pi / 24$
Hence the required values of θ are given by (a), (c).
Ans.
Ex. 27. If $\Delta_{1}=\left|\begin{array}{lll}\mathbf{x} & \mathbf{b} & \mathbf{b} \\ \mathbf{a} & \mathbf{x} & \mathbf{b} \\ \mathbf{a} & \mathbf{a} & \mathbf{x}\end{array}\right|$ and $\Delta_{2}=\left|\begin{array}{ll}\mathbf{x} & \mathbf{b} \\ \mathbf{a} & \mathbf{x}\end{array}\right|$ are the given
determinants then show that $\frac{\mathrm{d}}{\mathrm{dx}} \Delta_{1}=3 \Delta_{\mathbf{2}}$
Sol. $\frac{d}{d x} \Delta_{1}=\left|\begin{array}{lll}1 & 0 & 0 \\ a & x & b \\ a & a & x\end{array}\right|+\left|\begin{array}{ccc}x & b & b \\ 0 & 1 & 0 \\ a & a & x\end{array}\right|+\left|\begin{array}{ccc}x & b & b \\ a & x & b \\ 0 & 0 & 1\end{array}\right|$
$=\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|+\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|+\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|$,
expanding 1st, 2nd and 3rd determinants w.r. to 1 st, 2 nd and 3 rd row respectively.

$$
=3\left|\begin{array}{ll}
x & b \\
a & x
\end{array}\right|=3 \Delta_{2}
$$

Hence proved.
**Ex. 28. The value of determinant

is zero if

$$
\left|\begin{array}{ccc}
\mathbf{a} & \mathbf{b} & \mathbf{a} \alpha+\mathbf{b} \\
\mathbf{b} & \mathbf{c} & \mathbf{b} \alpha+\mathbf{c} \\
\mathbf{a} \alpha+\mathbf{b} & \mathbf{b} \alpha+\mathbf{c} & 0
\end{array}\right|
$$

(a) a, b, care in H.P.
(b) a, b, c, are in G.P.
(c) α is a noot of the equation $a x^{2}+b x+c=0$
(d) $(x-\alpha)$ is a factor of $a x^{2}+2 b x+c$

Sol. If

$$
\left|\begin{array}{ccc}
a & b & a \alpha+b \tag{I.I.T.}\\
b & c & b \alpha+c \\
a \alpha+b & b \alpha+c & 0
\end{array}\right|=0,
$$

then

$$
\left|\begin{array}{ccc}
a & b & 0 \\
b & c & 0 \\
a \alpha+b & b \alpha+c & -\alpha(a \alpha+b)-(b \alpha+c)
\end{array}\right|=0
$$

replacing C_{3} by $C_{3}-\alpha C_{1}-C_{2}$
or $\quad-\left(a \alpha^{2}+2 b \alpha+c\right)\left|\begin{array}{ll}a & b \\ b & c\end{array}\right|=0$
or $\quad\left(a \alpha^{2}+2 b \dot{\alpha}+c\right)\left(a c-b^{2}\right)=0$
i.e. either $b^{2}=a c$ or $a \alpha^{2}+2 b \alpha+c=0$

If $b^{2}=a c$, then a, b, c are in G.P.
Hence result (b) is true.
If $a \alpha^{2}+2 b \alpha+c=0$, then α is a root of the equation $a x^{2}+2 b x+c=0$ or
$(x-\alpha)$ is a factor of $a x^{2}+2 b x+c$.
Ans. (b) and (d).

EXERCISES ON CHAPTER IV

${ }^{*}$ Ex. 1. If $2 s=a+b+c$, prove that

$$
\left|\begin{array}{ccc}
a^{2} & (s-a)^{2} & (s-a)^{2} \\
(s-b)^{2} & b^{2} & (s-b)^{2} \\
(s-c)^{2} & (s-c)^{2} & c^{2}
\end{array}\right|=2 s^{3}(s-a)(s-b)(s-c)
$$

Ex. 2. If $a+b+c=0$, solve the equation

$$
\left|\begin{array}{ccc}
a-x & c & b \\
c & b-x & a \\
b & a & c-x
\end{array}\right|=0
$$

[Hint : Add all the rows or columns]
Ex. 3. Show that $\left|\begin{array}{lll}a & a^{2} & a^{3}+b c \\ b & b^{2} & b^{3}+c a \\ c & c^{2} & c^{3}+a b\end{array}\right|=(a-b)(b-c)(c-a)$
*Ex. 4. Show that there are three values of t for which the system of equations :

$$
(a-t) x+b y+c z=0, b x+(c-t)+a z=0, c x+a y+(b-t) z=0
$$

have a common non-zero solution. If the three values of $t_{\text {a }}$ are t_{1}, t_{2}, t_{3} show that $t_{1} t_{2} t_{3}=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$

Ex. 5. Prove that $\left|\begin{array}{rrrr}0 & x & y & z \\ -x & 0 & c & -b \\ -y & -c & 0 & a \\ -z & b & -a & 0\end{array}\right|=(a x+b y+c z)^{2}$
Ex. 6. Show that $\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1+a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}$
Ex. 7. Solve $\left|\begin{array}{rrr}x & -6 & -1 \\ 2 & -3 x & x-3 \\ -3 & 3 x & x+2\end{array}\right|=0$
(Meerut 42)
Ans. $x=-3,2,1$
Ex. 8. Show that the roots of the following equations are all real :

$$
\left|\begin{array}{ccc}
a+x & h & g \\
h & b+x & f \\
g & f & c+x
\end{array}\right|=0
$$

where a, b, c, f, g, h are all real numbers.

$$
\text { Ex. 9. Solve }\left|\begin{array}{rrr}
x & -6 & -1 \\
2 & -3 x & x-3 \\
-3 & 2 x & x+3
\end{array}\right|=0
$$

*Ex. 10. By the product of determinants estabilish Eulier's theorem that the product of any two sums each of four squares is expressible as the sum of four squares. Does the theorem hold for $\left(3^{2}+4^{2}\right)\left(1^{2}+2^{2}+3^{2}\right)$?

Hence express $\left(9^{2}+2^{3}+3^{2}+4^{2}\right)\left(5^{2}+6^{2}+7^{2}+8^{2}\right)$ as sum of four squares.
(Hint. See Ex. 20 (a) and (b) Pages 196-97.
Also $\left(3^{2}+4^{2}\right)\left(1^{2}+2^{2}+3^{2}\right)=\left(3^{2}+4^{2}+0^{2}+0^{2}\right)\left(1^{2}+2^{2}+3^{2}+0^{2}\right)$
Now proceed as in Ex. 20 (b) Page 197.
and

$$
\begin{gathered}
\text { Ans. }\left(3^{2}+4^{2}\right)\left(1^{2}+2^{2}+3^{2}\right)=5^{2}+(10)^{2}+9^{2}+(12)^{2} \\
\begin{array}{c}
\left(9^{2}+2^{2}+3^{2}+4^{2}\right)\left(5^{2}+6^{2}+7^{2}+8^{2}\right) \\
=(22)^{2}+(116)^{2}+(40)^{2}+(60)^{2}
\end{array}
\end{gathered}
$$

Four possible answers for the following questions are given. Choose the correct answer :-

Ex. 11. The value of the determinant $\left|\begin{array}{rrr}1 & 2 & 3 \\ 3 & 5 & 7 \\ 8 & 15 & 20\end{array}\right|$ is
$\begin{array}{llll}\text { (a) } 20 & \text { (b) } 10 & \text { (c) } 2 & \text { (d) } 5\end{array}$
(a) 20 ,
(b) 10,
(c) 2 ,
(d) 5 .
(M.N.R. 91)

Ans. (c)
Ex. 12. The value of the determinant $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$ is
$\begin{array}{llll}\text { (a) } a+b+c, & \text { (b) } 1, & \text { (c) } 0 & \text { (d) } a b c\end{array}$
(b) 1 ,
(c) 0 ,
(d) $a b c$

Ans. (c)
Ex. 13. If $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$, then Δ is equal to
(a) $-b_{1} B_{1}-b_{2} B_{2}-b_{3} B_{3}$;
(b) $-b_{1} B_{1}+b_{2} B_{2}-b_{3} B_{3}$;
(c) $b_{1} B_{1}-b_{2} B_{2}+b_{3} B_{3}$;
(d) $b_{1} B_{1}+b_{2} B_{2}+b_{3} B_{3}$

Ex. 14. The value of the determinant $\left|\begin{array}{ccc}3 & 6 & 12 \\ 5 a & 5 b & 5 c \\ a & b & c\end{array}\right|$ is
(a) 15 ,
(b) 2 ,
(c) 0 ,
(d) 4 .
Ex. 15. The cofactor of a in the determinant $\left|\begin{array}{lll}3 & 4 & 5 \\ 7 & 8 & 9 \\ a & b & c\end{array}\right|$ is
(a) $\left|\begin{array}{ll}4 & 5 \\ 8 & 9\end{array}\right|$,
(b) $\left|\begin{array}{ll}3 & 4 \\ 7 & 8\end{array}\right|$,
(c) $\left|\begin{array}{ll}3 & 5 \\ 7 & 9\end{array}\right|$,
(d) None of These

Ans. (d)

Ans. (a)

OBJECTIVE TYPE QUESTIONS CH. I TO IV

(A) SHORT \& VERY SHORT ANSWER TYPE QUESTIONS

1. Define matrix.
(Kampur 200l) |See $\$ 1.02$ Page 2]
2. Define a rectangular and a square matrix.
|Scc $\$ 1 \cdot 0.3$ P. 4|
3. What are horizontal and vertical matrices ?
|Sec \$ 1-(0) P. 4]
4. What are row and column vectors?
|Sec ş 1:03 P. 4|
5. What is \mathbf{I}_{4} ?
[Sce $\$ 1 \cdot 03 \mathrm{P} .4 \mid$
6. Define an unit matrix.
7. Define a diagonal matrix.
|Sce $\$ 1.03 \mathrm{P} .4 \mid$
8. What do you understand by a sub-matrix ?
$\left[\begin{array}{lll}\text { Sec } \$ 1.03 & \text { P. 5] }\end{array}\right.$
9. Write down the propertics of mattix addition. |Sce $\$ 1 \cdot 07 \mathrm{P} .7{ }^{\prime}$
10. If $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be three matrices of the same order and are such that $\mathrm{A}+\mathrm{B}=\mathrm{A}+\mathrm{C}$, then show that $\mathrm{B}=\mathbf{C}$.
|See Prop. VI Page 8|
11. When are the two matrices conformable to multiplication ?
|See $\$ 1 \cdot 08$ Page 11]
12. Give an example to show that the product of two non-zero matrices can be a zero matrix.
[Sce § 1-08 Note 2 Page 13]
13. If $\mathbf{A}=\left[\begin{array}{lll}3 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 2 & 0\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}1 & 4 \\ 2 & 2 \\ 1 & 0\end{array}\right]$, then docs BA exist ?
Ans. No.
14. If $\mathbf{A}=\left[\begin{array}{rrr}1 & 1 & 3 \\ 2 & 2 & 6 \\ -1 & -1 & -3\end{array}\right]$, then show that $\mathbf{A}^{2}=0$.
15. If $\mathbf{A}=|x, y, z|, \mathbf{B}=\left[\begin{array}{lll}a & h & h \\ h & b & f \\ g & f & c\end{array}\right], \mathbf{C}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, then show that - $\mathrm{BC} \mid=a x^{2}+b y^{2}+c z^{2}+2 j x y+2 g z x+2 f y z$.
16. If $\mathbf{A}=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right]$, calculate integral powers of \mathbf{A}. (Purvanchal 97)
17. When are two matrices said to be equal? (Purvanchal 2001)
18. Define null matrix. (F. morrhal 200l) |Sce $\S 1 \cdot 03$ Page 4 ;
19. Definc transposed matrix. [5çe § 2-08 Page 69]
20. Define Nilpotent matrix.
|Sce § 2 -07 Pus 6S|
21. State reversal rule for the inverse of product of two matrices. (Purvanchal 98) [See \$ 2.19. Th. II Page 92| 22. Show that $\mathbf{A B}=\mathbf{B A}$, where

$$
\mathbf{A}=\left[\begin{array}{rr}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right], \mathbf{B}=\left[\begin{array}{rr}
\cos \theta_{2} & -\sin \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2}
\end{array}\right]
$$

(Mecrut 20101)
23. State reversal rule for the transpose of a product.
|See $\$ 2 \cdot 09$ Th. IV Page $71 \mid$
24. Describe elementary row operations on a matrix.
(Purvanchal 99) [Sce \$ 3.01 Page 10.3| 25.*Define cofactor of an clement of a determinant.
|Sce \$ 4-05 P. 124]
26. Define minor of an element of a determinant.
27. Show that $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|=0 \quad$ |Sce Ex. 2(a) P. 1.32|
|Sce § 4.07 P. 128|
28. Evaluate $\left|\begin{array}{rrr}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right|$

Ans. 0
29. Show that $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|=x y$. |Sec Ex. 7. Page $135 \mid$
30. Evaluate $\left|\begin{array}{lll}x & a & a \\ a & x & a \\ a & a & x\end{array}\right|$.
31. Show that $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.
[Sec Ex. 28. P. 145]
32. Evaluate $\left|\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1+a & 1 & 1 \\ 1 & 1 & 1+b & 1 \\ 1 & 1 & 1 & 1+c\end{array}\right|$.

Ans. $a b c$.
[Sce Ex. 36 P. 149]
33. Show that $\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}=\left|\begin{array}{ccc}c^{2}+b^{2} & b a & c a \\ a b & c^{2}+a^{2} & b c \\ a c & b c & b^{2}+a^{2}\end{array}\right|$.
[See Ex. 1. P. 163]
34. Express $\left[\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right]$ as a determinant.

(B) OBJECTIVE TYPE QUESTIONS

(I) MULTIPLE CHOICE TYPE

Select the correct answer of the following :

1. The order of the matrix $\left[\begin{array}{lll}2 & 3 & 4 \\ 5 & 6 & 7\end{array}\right]$ is
(i) 3×2;
(ii) 2×3;
(iii) 3 ;
(iv) none of these.
2. A matrix $\mathbf{A}=\mid a_{i j} \ln _{n} \times n$ is called a square matrix, if
(i) $m \leq n$;
(ii) $m \geq n$;
(iii) $m=n$;
(iv) none of these.
3. A matrix $\mathrm{A}=\left|a_{i j}\right|_{m \times n}$ is calicd a vertical matrix, if
(i) $m>n$;
(ii) $m=n$;
(iii) $m<n$;
(iv) none of these.
4. A matrix $\mathrm{A}=\mid a_{i j} l_{n \times n}$ is called a horizontal matrix, if
(i) $m>n$;
(ii) $m=n$;
(iii) $m<n$;
(iv) none of these.
5. If a is the number of elements in a row and b is the number of elements in a column of a matrix \mathbf{A}, then the order of \mathbf{A} is
(i) $a \times b$;
(ii) $b \times a$;
(iii) $a \times a$; (iv) $b \times b$.
6. A matrix $\mathbf{A}=\left\{a_{i j} l_{n \times n}\right.$ is called a row matrix, if
(i) $m<n$;
(ii) $m=n$;
(iii) $m=1$;
(iv) $n=1$.
7. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is called a
(i) column matrix;
(ii) row matrix;
(iii) null matrix;
(iv) unit matrix.
8. The matrix $\mid a_{i j} l_{m \times n}$ will be an unit matrix, if
(i) all its min elements are unity;
(ii) $m=n$ and all elements are unity;
(iii) $m=n$, diagonal elements are unity and other elements are zero;
(iv) none of these.
9. The negative of a matrix A is
(i) zero ;
(ii) -A ;
(iii) +A ;
(iv) non-existant.
(Kanpur 2001)
10. If \mathbf{A} is of order 2×2 and \mathbf{B} is of order 2×3, then BA is of order
(i) 2×3;
(ii) 3×2;
(iii) 2×2; (iv) none of these.
11. \mathbf{A} is any $m \times n$ matrix such that $\mathbf{A B}$ and $\mathbf{B A}$ are both defined, then the order of \mathbf{B} is
(i) $m \times m$;
(ii) $n \times n$;
(iii) $n \times m$; (iv) none of these.
12. If $\mathbf{A}=\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{rr}b & 0 \\ -a & 0\end{array}\right]$, then $\mathbf{A B}$ is
(i) null matrix ;
(ii) unit matrix ;
(iii) vertical matrix ;
(iv) none of these.
13. If $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 3 \\ 2 & 5 & 7\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}2 & 3 \\ 0 & 7 \\ 5 & 4\end{array}\right]$, then
(i) $\mathrm{AB}=\mathrm{BA}$;
(ii) $\mathbf{A B}$ dues not exist but BA exists
(iii) $\mathbf{A B}$ exists but BA docs not exisi ;
(iv) $\mathrm{AB} \neq \mathrm{BA}$.
14. If $\mathbf{A}=\left[\begin{array}{ll}0 & 0 \\ a & 0\end{array}\right]$. then A^{2} is a
(i) diagonal matrix ;
(ii) unit matrix ;
(iii) null matrix;
(iv) none of these.
15. If $\mathbf{A}=\left[\begin{array}{rrr}1 & 2 & .2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, the value of $\mathbf{A}^{2}-4 \mathbf{A}$ is
(i) I,
(ii) 2 I ,
(iii) 4 I,
(iv) 5 I .
16. Transpose of a column matrix is
(i) square matrix ;
(ii) column matrix ;
(iii) row matrix ;
(iv) none of these.
17. If $\mathbf{A}=\left[\begin{array}{rrr}0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0\end{array}\right]$, then $\mathbf{A}^{\prime}=$
(i) A ;
(ii) -A ;
(iii) 2 A ;
(iv) none of these.
(Kanpur 2001)
18. If $\cdot \mathbf{A}$ is a square matrix, then $\mathbf{A}+\mathbf{A}^{\prime}$ will be
(i) diagonal ;
(ii) symmetric ;
(iii) skew-symmetric ;
(iv) identity matrix. (Kanpur 2001)
19. The matrix $\left[\begin{array}{rrr}-1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is
(i) unitary;
(ii) idempotent ;
(iii) nilpotent ;
(iv) identity.
20. In an upper triangular matrix, the elements $a_{i j}=0$ for
(i) $i>j$;
(ii) $i=j$;
(iii) $i<j$;
(iv) $i \leq j$.
21. A matrix \mathbf{A} is called involutory if
(i) $\mathrm{A}^{2}=\mathrm{A}$;
(ii) $\mathrm{A}^{2}=0$;
(iii) $\mathbf{A}^{\mathbf{2}}=\mathbf{I}$; (iv) none of these.
22. Which of the following is a scalar matrix ?
(i) $\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & b\end{array}\right]$;
(iv) none of these.
23. If ω be the cube root of unity, then the value of the determinant

$$
\left|\begin{array}{ccc}
1 & \omega & \omega^{2} \\
\omega^{2} & 1 & (\prime \prime \\
\omega & \omega^{2} & 1
\end{array}\right| \text { is }
$$

(i) 1 ;
(ii) 0 ;
(iii) -1 ;
(iv) none of these.
24. If $\omega{ }^{3}=1$, then the value of the determinant

$$
\left|\begin{array}{ccc}
1 & \omega^{3} & \omega^{2} \\
\omega^{3} & 1 & \omega \\
\omega^{2} & \omega & 1
\end{array}\right| \text { is : }
$$

(i) 0 ;
(ii) 1 ;
(iii) 2 ;
(iv) 3 .
25. The determinant $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|$ is divisible by
(i) $a-b$;
(ii) $a+b$;
(iii) 'ab;
(iv) a / b.
26. If $\left|\begin{array}{ll}2 & x \\ 3 & 7\end{array}\right|=2$, the value of x is
(i) 1 ;
(ii) 2 ;
(iii) 3 ;
(iv) 4 .
27. If two rows of a determinant are proportional, the value of the determinant is
(i) infinite ;
(ii) not zero ;
(iii) negative ; (iv) zero.
28. One of the roots of $\left|\begin{array}{ccc}2-x & 3 & 3 \\ 3 & 4-x & 5 \\ 3 & 5 & 4-x\end{array}\right|=0$ is
(i) -1 ;
(ii) 0 ;
(iii) 1 ;
(iv) none of these.
29. If each element in the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is doubled, the value of the determinant of the matrix is
(i) doubled ;
(ii) unchanged :
(iii) multiplied by 4 ;
(iv) none of these.
30. $\Delta=\left|a_{i j}\right|$ is a determinant of order three and $A^{i j}$ denotes the cofactors of $a_{i j}$ in Δ, then which of the following is not correct ?
(i) $a_{i j} A^{i j}=\Delta$;
(ii) $a_{i 1} A^{i 2}=0$;
(iii) $a_{i 3} A^{i 2}=0$;
(iv) $a_{2 j} A^{2 j}=0$.
(Kanpur 2001)
31. If two rows of a determinant are interchanged, the value of the determinant
(i) remains unchanged ;
(ii) is negative of the value of original determinant ;
(iii) doubles ;
(iv) none of these.
32. The system of linear equations can be solved casily by the rule of
(i) Newton ;
(ii) Bessel ;
(iii) Cramer ; (iv) none of these.

(II) TRUE AND FALSE TYPE

Write "T" or " F " according as the statement is true or false :

1. The elements of matrix may be scalar or vector quantities.
2. Matrix denotes a number.
3. The order of the matrix $[2]$ is 2×1.
4. If in a matrix, the number of columns is more than the number of rows, then it is called a horizontal matrix.
5. In a row matrix there is only one column.
6. $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is an unit matrix.
7. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -5\end{array}\right]$ is called a diagonal matrix.
8. It is not necessary for the two matrices \mathbf{A} and \mathbf{B} to be of the same "order so.as to be conformable for addition and subtraction.
9. Commutative law holds but associative law does not for addition of matrices.
10. Addition for matrices obeys the distributive law.
11. The product of two non-zero matrices can be a zero matrix.
12. Matrices of different orders can be subtracted.
13. Matrix multiplication in general is commutative.
14. Commutative law does not hold for addition of matrices.
15. The transpose of the transpose of a matrix is the matrix itself.
16. A' square matrix $\mathbf{A}=\left|a_{i j}\right|$ is symmetric if $a_{i j}=a_{j i}$ for all values of i and j.
17. If $\mathbf{A}=\left[\begin{array}{rrr}3 & 1 & -1 \\ 0 & 1 & 2\end{array}\right]$, then show that $\mathbf{A} A^{\prime}$ is a symmetric matrix.
|Sce Ex. 2 Page 82]
18. The inverse of a matrix is not unique. |Sce $\$ 2 \cdot 19$ Th. I P. $92 \mid$
19. If \mathbf{A} is an orthogonal matrix, then \mathbf{A}^{\prime} is also orthogonal.
20. If \mathbf{A} is an unitary matrix, then \mathbf{A}^{-1} is not an unitary matrix.
21. A matrix $\left\{a_{i j}\right\}$ is called a triangular matrix if $a_{i j}=0$ for $i>j$.
22. Non-square matrix has no inverse.
23. If two rows of a determinant $|\mathbf{A}|$ are identical, then $|\mathrm{A}|=0$.
24. A square matrix A is singular if and only if $|A| \neq 0$.
25. $\left|\begin{array}{ccc}(a-x)^{2} & (b-x)^{2} & (c-x)^{2} \\ (a-y)^{2} & (b-y)^{2} & (c-y)^{2} \\ (a-z)^{2} & (b-z)^{2} & (c-z)^{2}\end{array}\right|=\left|\begin{array}{ccc}1 & -2 x & x^{2} \\ 1 & -2 y & y^{2} \\ 1 & -2 z & z^{2}\end{array}\right|\left|\begin{array}{lll}a^{2} & a & 1 \\ b^{2} & b & 1 \\ c^{2} & c & 1\end{array}\right|$
26. A determinatt can be expanded using any row or column of the determinant.
27. The value of a determinant changes if the elements of a row are added to or subtracted from the corresponding elements of another row.
28. If each element of a column of a determinant be multiplied by söme constant, then the determinant is multiplied by that constant.
29. The value of a determinant changes if its rows and columns are interchanged.
30. The value of a determinant changes in sign if two consecutive rows (or colurins) are interchanged.

(III) FILL IN THE BLANKS TYPE

Fill in the blanks in the following :

1. Each of the $m n$ numbers constituting an $m \times n$ matrix is known as an of the matrix.
2. The plural of the word 'matrix' is
3. The order of the matrix [3] is \qquad
4. A matrix which is not a square matrix is known as a matrix.
5. If $m=1$ in the matrix $\mathrm{A}=\left\lceil a_{i j} l_{m \times n}{ }^{\prime}\right.$, then it is called a \qquad matrix.
6. If $m>n$ in the matrix $\mathbf{A}=\left\{\left.a_{i j}\right|_{m \times n}\right.$, then it is called a \qquad matrix.
7. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is called matrix.
8. $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ is called a matrix.
9. Two matrices are conformable for addition and subtraction if they are of the \qquad order.
10. Matrices of different orders \qquad be added.
11. Additive identity \qquad for addition of matrices.
12. If \mathbf{B} be the additive inverse of the matrix $\mathbf{A}=\left\{\left.a_{i j}\right|_{m \times \prime}\right.$ then (i, j) th element of \mathbf{B} is
13. If \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is an $n \times k$ matrix, then $\mathbf{A B}$ is an matrix.
14. If $\mathbf{A B}=-\mathbf{B A}$, the matrices \mathbf{A} and \mathbf{B} are said to \qquad
15. Multiplication of matrices is \qquad with respect to matrix addition.
16. Negative matrix is obtained by multiplying it by
17. A matrix when added to its negative gives the
\qquad
18. A matrix when multiplied by \qquad gives the null matrix.
19. If \mathbf{A} is a skew-Hermitian matrix, then $i \mathbf{A}$ is \qquad
20. If a square matrix \mathbf{A} is idempotent then
21. The square matrix $\mathbf{A}=\left|a_{i j}\right|$ is skew-symmetric, if $a_{i j}=$ for all values of i and j.
22. If \mathbf{A} is a Hermitian matrix, then $i \mathbf{A}$ is
(Mectut 20101)
23. If \mathbf{A} is an orthogonal matrix, then \mathbf{A}^{-1} is \qquad
24. $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{-3}\end{array}\right|=\ldots \ldots \ldots \ldots \ldots(a-b)(b-c)(c-a)$.
25. $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=\ldots \ldots \ldots \ldots \ldots(a-b)(b-c)(c-a)$.
26. If any two columns of a determinant are \qquad , then value of the determinant is zero.
27. The system of linear equations can easily be solved by the rule of
28. A determinant can be expanded using \qquad row of it.

Answers to Objective Questions

(I) Multiple Choice Type :

1. (ii) ; 2. (iii) ; 3. (i) ; 4. (iii) ; 5. (ii) ; 6. (iii) ; 7. (iv) ; 8. (iii) 9. (ii) ; 10. (iv) ; 11. (iii) ; 12. (i) ; 13. (iv) ; 14. (iii) ; 15. (iv) ; 16. (iii) 17. (ii) ; 18. (ii) ; 19. (iv) ; 20. (i) ; 23. (iii) ; 22. (ii) ; 23. (ii) ; 24. (iv); 25. (i) ; 26. (iv) ; 27. (iv) ; 28. (i) ; 29. (iii) ; 30. (iv) ; 31. (ii) ; 32. (iii).
(II). True and False Type :
2. T;2. $\mathrm{F} ; 3 . \mathrm{F} ; 4 . \mathrm{T} ; 5 . \mathrm{F} ; 6 . \mathrm{F} ; 7 . \mathrm{T} ; 8 . \mathrm{F} ; 9 . \mathrm{F} ; 10 . \mathrm{T} ; 11 . \mathrm{T}$; 12. $\mathrm{F} ; 13 . \mathrm{F} ; 14 . \mathrm{F} ; 15 . \mathrm{T} ; 16 . \mathrm{T} ; 17 . \mathrm{T} ; 18 . \mathrm{F} ; 19 . \mathrm{T} ; 20 . \mathrm{F} ; 21 . \mathrm{T}$; 22. T; 23. T ; 24. F; 25. T; 26. T;27. F ; 28. T; 29. F; ; 30. T. (III) Fill in the blanks type :
3. clement ; 2. matrices ; 3.1 $\times 1 ; \mathbf{4}$. rectangular ; 5. row ; 6. vertical ; 7. an unit ; 8. diagonal ; 9. same ; 10. cannot ; 11. exists ; 12. $-a_{i j}$; 13. $m \times k$; 14. anticommute ; 15. distributive ; 16. -1 ; 17. null ; 18. zcro ; 19. Hermitian ; 20. $\mathbf{A}^{\mathbf{2}}=\mathbf{A} ; \mathbf{2 1} .-a_{j i}$; 22. skew-Hermitian ; 23. also orthogonal ; 24. $a b c ; \mathbf{2 5}(a+b+c) ; \mathbf{2 6}$. identical ; 27. Cramer ; 28. any.
