Chapter VIII

Linear Dependence of Vectors

§8.01. Two dimensional vector.

We know that the ordered pair of real numbers $\left(x_{1}, x_{2}\right)$ is used to denote a point P in a plane where $O x_{1}$ and $O x_{2}$ are the coordinate-axes.

A two dimensional vector or 2-vector $O P$ is denoted by the same pair of numbers written as $\left[x_{1}, x_{2}\right]$.

If $\mathbf{A}_{1}=\left[x_{11}, x_{12}\right] \quad$ and $\mathbf{A}_{2}=\left[x_{21}, x_{22}\right]$ are two distinct two-dimensional vectors, then their sum by parallelogram law of addition is given by

$$
\begin{aligned}
& \mathbf{A}_{3}=\mathbf{A}_{1}+\mathbf{A}_{2} \\
& =\left[x_{11}+x_{21}, x_{12}+x_{22}\right]
\end{aligned}
$$

[Here $O M=O L+L M$
$=O L+Q N=x_{11}+x_{21}$ etc. $]$
If we treat \mathbf{A}_{1} and \mathbf{A}_{2} as 1×2 matrices, we find that the above is the rule for adding matrices as given in chapter I.

Also we observe that $k \cdot \mathbf{A}_{1}=\left[k x_{11}, k x_{12}\right]$, where k is any scalar.

(Fig. 1)

(Fig. 2)

§ 8.02. \mathbf{n}-dimensional vector or \mathbf{n}-vector.

Definition. An ordered set of n elements x_{i} of a field F, whitten as

$$
\begin{equation*}
\mathbf{A}=\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right] \tag{i}
\end{equation*}
$$

is called an \mathbf{n}-dimensional vector or n -vector \mathbf{A} over F and the elements $x_{1}, x_{2}, \ldots, x_{n}$ are called the first, second, $\ldots ., n$th components of A .

We find it more convenient to write the components of a vector in a column

$$
\mathbf{A}^{\prime}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\prime}=\left[\begin{array}{c}
x_{1} \tag{ii}\\
x_{2} \\
\ldots \\
\ldots \\
x_{n}
\end{array}\right]
$$

(i) is called a row-vector and (ii) is called a column-vector.

Thus we consider the $p \times q$ matrix as defining q column vectors or p row vectors.

Note 1. The sum or difference of two rwo (or column) vectors is formed by the rule governing matrices as given in chapter I.

Note 2. The product of a scalar and a vector is formed by the rule governing matrices as given in chapter I.

Note 3. The vector whose all the components are zero is known as the null vector or zero vector and is written as 0 .

Solved Examples on § 8.01-§8.02

Ex. 1. Given the 3-vectors

$A_{1}=[1,2,1], A_{2}=[2,1,4], A_{3}=[2,3,6]$, evaluate $2 A_{1}+A_{2}, 5 A_{1}-2 A_{3}$
Solution. $2 \mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{2}}=2[1,2,1]+[2,1,4]$

$$
\begin{aligned}
& =[2,4,2]+[2,1 ; 4] \\
& =[2+2,4+1,2+4]=[4,5,6] . \\
5 \mathrm{~A}_{1}-2 \mathrm{~A}_{3} & =5[1,2,1]-2[2,3,6] \\
& =[5,10,5]-[4,6,12] \\
& =[5-4,10-6,5-12]=[1,4,-7] .
\end{aligned}
$$

Ans.

Ans.
Ex. 2. Given the four-dimensional column-vectors
$A_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 3\end{array}\right]$ and $A_{2}=\left[\begin{array}{l}2 \\ 5 \\ 7 \\ 9\end{array}\right]$, evaluate $3 A_{1}+2 A_{2}$.
Solution. $3 \mathbf{A}_{1}+2 \mathbf{A}_{\mathbf{2}}=3\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 3\end{array}\right]+2\left[\begin{array}{l}2 \\ 5 \\ 7 \\ 9\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 6 \\ 9\end{array}\right]+\left[\begin{array}{r}4 \\ 10 \\ 14 \\ 18\end{array}\right]=\left[\begin{array}{r}3+4 \\ 0+10 \\ 6+14 \\ 9+18\end{array}\right]=\left[\begin{array}{r}7 \\ 10 \\ 20 \\ 27\end{array}\right]$ Ans.
Ex. 3. Given the three-dimensional row vectors
$A_{1}=[3,1,-4], A_{2}=[0,-4,1] ; A_{3}=[2,2,-3]$, evaluate $2 A_{1}-A_{2}-3 A_{3}$.
Solution. $2 \mathbf{A}_{1}-\mathbf{A}_{2}-3 \mathbf{A}_{3}=2[3,1,-4]-[0,-4,1]-3[2,2,-3]$

$$
\begin{aligned}
& =[6,2,-8]-[0,-4,1]-[6,6,-9] \\
& =[0,0,0]=0
\end{aligned}
$$

Ans.
*§ 8.03. Linear dependence and independence of vectors.
(Agra 94; Purvanchal 97)
The $n m$-vectors over the field F,

$$
\begin{aligned}
& \mathbf{A}_{1}=\left[x_{11}, x_{12}, \ldots, x_{1 m}\right], \mathbf{A}_{2}=\left[x_{21}, x_{22}, \ldots, x_{2 m}\right], \ldots \\
& \mathbf{A}_{n}=\left[x_{n 1}, x_{n 2}, \ldots, x_{n m}\right]
\end{aligned}
$$

are called linearly dependent over F if there exists a set of n elements $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of F, λ 's being not all zero, such that

$$
\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\ldots+\lambda_{n} \mathbf{A}_{n}=\mathbf{O}
$$

Otherwise the n-vectors are called linearly independent over F.
For example the 3-vectors given in Ex. 3 above are linearly dependent.
Note : ${ }^{4} A$ vector A_{n+1} can be expressed as a linear combination of the vectors $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$ if there exist elements $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of F such that

$$
\mathbf{A}_{n+1}=\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\ldots+\lambda_{n} \mathbf{A}_{n}
$$

Solved Examples on §8.03.

Ex. 1. Examine whether the set of vector $V_{1}=\{1,2,3\}, V_{2}=\{1,0,1\}$ and $\mathbf{V}_{\mathbf{3}}=\{0,1,0\}$ are linearly dependent or not. (Purvanchal 94)

Solution. Let the given set of vectors be linearly dependent, so that

$$
\lambda_{1} \mathbf{V}_{1}+\lambda_{2} \mathbf{V}_{2}+\lambda_{3} \mathbf{V}_{3}=\mathbf{0}
$$

or

$$
\begin{array}{ll}
\text { or } & \lambda_{1}\{1,2,3\}+\lambda_{2}\{1,0,1\}+\lambda_{3}\{0,1,0\}=\mathbf{O}=\{0,0,0\} \\
\text { or } & \left\{\lambda_{1}+\lambda_{2}, 2 \lambda_{1}+\lambda_{3}, 3 \lambda_{1}+\lambda_{2}\right\}=\{0,0,0\} \tag{Note}\\
\therefore & \lambda_{1}+\lambda_{2}=0,2 \lambda_{1}+\lambda_{3}=0,3 \lambda_{1}+\lambda_{2}=0
\end{array}
$$

$\Rightarrow \quad \lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=0$ i.e. λ 's are all zero.
Hence the given set of vectors are not linearly dependent i.e. these are linearly independent.

Ex. 2. Examine the following set of vectors of the real field for linear dependence or independence:-
$A_{1}=[2,-1,3,2] ; A_{2}=[1,3,4,2] ; A_{3}=[3,-5,2,2]$
Also express A_{3} as a linear combination of A_{1}, A_{2}.
Solution. Suppose the given set of vectors is linearly dependent, so that

$$
\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\lambda_{3} \mathbf{A}_{3}=\mathbf{0}
$$

or

$$
\begin{equation*}
\lambda_{1}[2,-1,3,2]+\lambda_{2}[1,3,4,2]+\lambda_{3}[3,-5,2,2]=\mathbf{O}=[0,0,0,0] \tag{i}
\end{equation*}
$$

or

$$
\left[2 \lambda_{1}+\lambda_{2}+3 \lambda_{3},-\lambda_{1}+3 \lambda_{2}-5 \lambda_{3}, 3 \lambda_{1}+4 \lambda_{2}+2 \lambda_{3}, 2 \lambda_{1}+2 \lambda_{2}+2 \lambda_{3}\right] \text { (Note) }
$$

$$
\begin{array}{llll}
\therefore & 2 \lambda_{1}+\lambda_{2}+3 \lambda_{3}=0 & \ldots \text { (i); } & -\lambda_{1}+3 \lambda_{2}-5 \lambda_{3}=0 \\
& 3 \lambda_{1}+4 \lambda_{2}+2 \lambda_{3}=0 & \ldots \text { (iii); } & \text { and } \tag{v}\\
& \text { From (i) and (iv) we get, } \lambda_{1}+2 \lambda_{3}=0 & \text { or } \left.\lambda_{1}=-\lambda_{1}+\lambda_{2}+\lambda_{3}\right)=0
\end{array}
$$

$$
=[0,0,0,0]
$$

From (i) and (iv) we get, $\lambda_{1}+2 \lambda_{3}=0$ or $\lambda_{1}=-2 \lambda_{3}$
\therefore From (iv) we get $\lambda_{2}=-\lambda_{1}-\lambda_{3}=2 \lambda_{3}-\lambda_{3}=\lambda_{3}$
\therefore From (ii), (v) and (vi) we get
$-\lambda_{1}+3 \lambda_{2}-5 \lambda_{3}=-\left(-2 \lambda_{3}\right)+3 \lambda_{3}-5 \lambda_{3}=0$. Hence (ii) is satisfied.
Again from (iii) we get $3 \lambda_{1}+4 \lambda_{2}+2 \lambda_{3}$

$$
\begin{aligned}
& =3\left(-2 \lambda_{3}\right)+4\left(\lambda_{3}\right)+2 \lambda_{3}, \text { from }(\mathrm{v}),(\mathrm{vi}) \\
& =0 . \text { Hence (iii) is also satisfied. }
\end{aligned}
$$

Thus for $\lambda_{1}=-2 \lambda_{3}$ and $\lambda_{2}=\lambda_{3}$ all the equations (i), (ii), (iii) and (iv) are satisfied and therefore the given set of vectors are linearly dependent.
\therefore From (i) we get $-2 \lambda_{3} \mathbf{A}_{1}+\lambda_{3} \mathbf{A}_{2}+\lambda_{3} \mathbf{A}_{3}=\mathbf{O}$ or $\mathbf{A}_{3}=2 \mathbf{A}_{1}-\mathbf{A}_{2}$, which expresses \mathbf{A}_{3} as a linear combination of \mathbf{A}_{1} and \mathbf{A}_{2}.

Ex. 3. Show, using a matrix, that the set of vectors
$X_{1}=[2,3,1,-1], X_{2}=[2,3,1,-2], X_{3}=[4,6,2,-3]$ is linearly
(Agra 96)
dependent.
Solution. Let the given set of vectors be linearly dependent, so that

$$
\begin{equation*}
\lambda_{1} \mathbf{x}_{1}+\lambda_{2} \mathbf{x}_{2}+\lambda_{3} \mathbf{x}_{3}=\mathbf{O} \tag{i}
\end{equation*}
$$

or

$$
\lambda_{1}[2,3,1,-1]+\lambda_{2}[2,3,1,-2]+\lambda_{3}[4,6,2,-3]=\mathbf{O}=[0,0,0,0]
$$

or $\quad\left[2 \lambda_{1}+2 \lambda_{2}+4 \lambda_{3}, 3 \lambda_{1}+3 \lambda_{2}+6 \lambda_{3}, \lambda_{1}+\lambda_{2}+2 \lambda_{3},-\lambda_{1}-2 \lambda_{2}-3 \lambda_{3}\right]$ $=[0,0,0,0]$

$$
\begin{aligned}
\therefore & 2 \lambda_{1}+2 \lambda_{2}+4 \lambda_{3} & =0 ; & 3 \lambda_{1}+3 \lambda_{2}+6 \lambda_{3}
\end{aligned}=0
$$

which reduce to $\lambda_{1}+\lambda_{2}+2 \lambda_{3}=0, \quad \lambda_{1}+2 \lambda_{2}+3 \lambda_{3}=0$
whence solving we get $\lambda_{1}+\lambda_{3}=0, \lambda_{2}+\lambda_{3}=0$
which give $\quad \frac{\lambda_{1}}{1}=\frac{\lambda_{2}}{1}=\frac{\lambda_{3}}{-1}$
\therefore From (i) we get $\mathbf{X}_{1}+\mathbf{X}_{2}-\mathbf{X}_{3}=\mathbf{O}$, where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are not all zero. Hence given set of vectors is linearly dependent.

Ex. 4. Examine the following set of vectors over the real field for linear dependence or independence :-

$$
A_{1}=[1,2,1] ; A_{2}=[2,1,4] ; A_{3}=[4,5,6] ; A_{4}=[1,8,-3]
$$

Solution. Suppose that the given set of vectors is linearly dependent, so that

$$
\begin{equation*}
\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\lambda_{3} \mathbf{A}_{3}+\lambda_{4} \mathbf{A}_{4}=\mathbf{O} \tag{i}
\end{equation*}
$$

or $\lambda_{1}[1,2,1]+\lambda_{2}[2,1,4]+\lambda_{3}[4,5,6]+\lambda_{4}[1,8,-3]=\mathbf{O}=[0,0,0]$
or $\left[\lambda_{1}+2 \lambda_{2}+4 \lambda_{3}+\lambda_{4}, 2 \lambda_{1}+\lambda_{2}+5 \lambda_{3}+8 \lambda_{4}, \lambda_{1}+4 \lambda_{2}+6 \lambda_{3}-3 \lambda_{4}\right]=[0,0,0]$
$\therefore \lambda_{1}+2 \lambda_{2}+4 \lambda_{3}+\lambda_{4}=0 \quad \ldots$ (ii); $\quad 2 \lambda_{1}+\lambda_{2}+5 \lambda_{3}+8 \lambda_{4}=0$
and

$$
\begin{equation*}
\lambda_{1}+4 \lambda_{2}+6 \lambda_{3}-3 \lambda_{4}=0 \tag{iii}
\end{equation*}
$$

From (ii) and (iv) we have $2 \lambda_{2}+2 \lambda_{3}-4 \lambda_{4}=0$
or

$$
\begin{equation*}
\lambda_{2}+\lambda_{3}-2 \lambda_{4}=0 \tag{v}
\end{equation*}
$$

From (iii) and (v) we have $2 \lambda_{1}+\lambda_{2}+5 \lambda_{3}+4\left(\lambda_{2}+\lambda_{3}\right)=0$
or

$$
2 \lambda_{1}+5 \lambda_{2}+9 \lambda_{3}=0
$$

From (v) and (vi) we have $2 \lambda_{1}+5 \lambda_{2}+9\left(2 \lambda_{4}-\lambda_{2}\right)=0$
or . $18 \lambda_{4}-4 \lambda_{2}+2 \lambda_{1}=0$ or $9 \lambda_{4}=2 \lambda_{2}-\lambda_{1}$
(v), (vi) and (vii) are satisfied by $\lambda_{1}=0=\lambda_{2}=\lambda_{3}=\lambda_{4}$

Hence the given set of vectors are linearly independent.

8 8.04. Basic Theorems on Linear dependence of vectors.

Theorem I. If there be n linearly dependent vectors, then some one of them can always be expressed as a linear combination of the remaining ones.

Proof. Let $\mathbf{A}_{1}=\left[x_{11}, x_{12}, \ldots, x_{1 m}\right], \mathbf{A}_{2}=\left[x_{21}, x_{22}, \ldots, x_{2 m}\right], \ldots \mathbf{A}_{n}=\left[x_{n 1}, x_{n 2}\right.$, $\left.\ldots, x_{n m}\right]$ be $n m$-vectors over the field F, such that

$$
\begin{equation*}
\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\lambda_{3} \mathbf{A}_{3}+\ldots+\lambda_{n} \mathbf{A}_{n}=\mathbf{O} \tag{i}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are elements of F and not all zero.
Let $\lambda_{r} \neq 0$ then solving (i) we get

$$
\begin{equation*}
\mathbf{A}_{r}=-\frac{1}{\lambda_{r}}\left[\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+. .+\lambda_{r-1} \mathbf{A}_{r-1}+\lambda_{r+1} \mathbf{A}_{r+1}+\ldots+\lambda_{n} \mathbf{A}_{n}\right] \tag{ii}
\end{equation*}
$$

or $\mathbf{A}_{r}=\mu_{1} \mathbf{A}_{1}+\mu_{2} \mathbf{A}_{2}+\ldots+\mu_{r-1} \mathbf{A}_{r-1}+\mu_{r+1} \mathbf{A}_{r+1}+\ldots+\mu_{n} \mathbf{A}_{n}$
Hence proved.
Theorem II. If there be n linearly independent vectors $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$, whereas the set obtained by adding another vector \mathbf{A}_{n+1} is linearly dependent, then \mathbf{A}_{n+1} can be expressed as linear combination of $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots \mathbf{A}_{n}$.

Proof. Given $\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\ldots+\lambda_{n} \mathbf{A}_{n} \neq \mathbf{O}$,. where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are elements of the field F.

And $\left(\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\ldots+\lambda_{n} \mathbf{A}_{n}\right)+\mathbf{A}_{n+1}=\mathbf{0}$

$$
\begin{equation*}
\mathbf{A}_{n+1}=-\left[\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\ldots+\lambda_{n} \mathbf{A}_{n}\right] \tag{Note}
\end{equation*}
$$

Hence proved.
Example. Consider three 3 -vectors

$$
\mathbf{A}_{1}=[4,5,6], \mathbf{A}_{2}=[2,1,4], \mathbf{A}_{3}=[1,2,1]
$$

Let \mathbf{A}_{1} and \mathbf{A}_{3} be linearly dependent then we must have

$$
\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{3}=\mathbf{O} \text {, where } \lambda_{1} \text { and } \lambda_{2} \text { are to be determined. }
$$

$$
\begin{array}{ll}
\text { or } & \lambda_{1}[4,5,6]+\lambda_{2}[1,2,1]=\mathbf{O}=[0,0,0] \\
\therefore & 4 \lambda_{1}+\lambda_{2}=0 ; 5 \lambda_{1}+2 \lambda_{2}=0 \text { and } 6 \lambda_{1}+\lambda_{2}=0
\end{array}
$$

or

Solving first and third of these we get $\lambda_{1}=0=\lambda_{2}$ which satisfies the second also. But as a!! λ 's are zero, so $\mathbf{A}_{\mathbf{2}}$ and \mathbf{A}_{3} are not linearly dependent [See § 8.03 Page 211 of this chapter]

But we find that if we take $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$ to be linearly dependent

> then

$$
\begin{equation*}
\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\lambda_{3} \mathbf{A}_{3}=\mathbf{O} \tag{i}
\end{equation*}
$$

From (ii) and (iv) on subtracting we get $\lambda_{1}+\lambda_{2}=0$ or

$$
\begin{equation*}
\lambda_{2}=-\lambda_{1} . \tag{iv}
\end{equation*}
$$

From (ii) and (v) we get

$$
\begin{equation*}
4 \lambda_{1}+2\left(-\lambda_{1}\right)+\lambda_{3}=0 \text { or } \lambda_{3}=-2 \lambda_{1} \tag{vi}
\end{equation*}
$$

Substituting values from (v) and (vi) in (i) we get

$$
\begin{gather*}
\lambda_{1} \mathbf{A}_{1}-\lambda_{1} \mathbf{A}_{2}-2 \lambda_{1} \mathbf{A}_{3}=\mathbf{O} \text { or } \mathbf{A}_{1}-\mathbf{A}_{2}-2 \mathbf{A}_{3}=\mathbf{O} \\
\mathbf{A}_{2}=\mathbf{A}_{1}-2 \mathbf{A}_{3} \tag{viii}
\end{gather*}
$$

Thus we find that though \mathbf{A}_{1} and \mathbf{A}_{3} are not linearly dependent yet \mathbf{A}_{1} $\mathbf{A}_{2}, \mathbf{A}_{3}$ satisfy the relation (vii) and from (viii) we find that \mathbf{A}_{2} can be expressed as a linear combination of \mathbf{A}_{1} and \mathbf{A}_{3}.
*Theorem III. If there be a subset of r linearly dependent vectors among the n vectors $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$ such that $r<n$, then the vectors of the whole set are linearly dependent.

Proof. Let the subsets $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$ of the given n vectors $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$ be linearly dependent, then we have
$\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\ldots+\lambda_{r} \mathbf{A}_{r}=\mathbf{O}$, where all λ^{\prime} 's are not zero
We can rewrite this as

$$
\begin{equation*}
\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\ldots+\lambda_{r} \mathbf{A}_{r}+0 \cdot \mathbf{A}_{r+1}+0 \cdot \mathbf{A}_{r+2}+\ldots+0 \cdot \mathbf{A}_{n}=\mathbf{O} \tag{Note}
\end{equation*}
$$

where all λ 's are not zero.
Hence the set of vectors $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{r}, \mathbf{A}_{r+1}, \ldots, \mathbf{A}_{n}$ by definition are linearly dependent.

Hence proved.
**Theorem IV. If the rank of the matrix associated with a set of $n \mathrm{~m}$-vector, is r where $r<n$, then there are exactly r vectors which are linearly independent while each of remaining $n-r$ vectos can be expressed as a linear combination of these r vectors.
**Theorem V. A necessary and sufficient condition that the vectors $\mathbf{A}_{1}=\left[x_{11}, x_{12}, \ldots, x_{1 m}\right], \mathbf{A}_{2}=\left[x_{21}, x_{22}, \ldots, x_{2 m}\right] \ldots, \mathbf{A}_{n}=\left[x_{n 1}, x_{n 2}, \ldots, x_{n m}\right]$ be linearly dependent is that the matrix $\mathbf{A}=\left[\begin{array}{lllll}x_{11} & x_{12} & \ldots & \ldots & x_{1 m} \\ x_{21} & x_{22} & \ldots & x_{1 m}\end{array}\right]$ the
$\left[\begin{array}{lllll}x_{11} & x_{12} & \ldots & \ldots & x_{1 m} \\ x_{21} & x_{22} & \ldots & \ldots & x_{2 m} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ x_{n 1} & x_{n 2} & \ldots & \ldots & x_{n m}\end{array}\right]$
vectors is of rank $r<n$. If the rank is n, the vectors are linearly independent.
Proofs of Theorem IV and V above are beyond the scope of this book.
§ 8.05. Linear Form.
Definition. A linear form over F in m variables $x_{1}, x_{2}, \ldots, x_{m}$ is a polynomial of the type

$$
\sum_{i=1}^{m} a_{i} x_{i}=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{m} x_{m},
$$

where the coefficients are in F.

Consider a system of n linear forms in m variables

$$
\left[\begin{array}{l}
f_{1}=a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 m} x_{m} \tag{i}\\
f_{2}=a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 m} x_{m} \\
\ldots \\
\ldots \quad \ldots \quad \ldots \\
f_{n}=a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n m} x_{m}
\end{array}\right]
$$

and the associated matrix formed by their coefficients is

$$
\mathbf{A}=\left[\begin{array}{llll}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right]
$$

If there exist elements $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ in F, λ 's being not all zero such that

$$
\lambda_{1} f_{1}+\lambda_{2} f_{2}+\ldots+\lambda_{n} f_{n}=0
$$

then the forms (i) are said to be linearly dependent, otherwise they are said to be linearly independent.

Thus, the linear dependence or independence of the forms (i) is equivalent to the linear dependence or independence of the row vectors of the matrix \mathbf{A}.

More Solved Examples :
Ex. 1. Show that the set of vectors $A_{1}=(1,1,1), A_{2}=(1,2,3)$, $\mathbf{A}_{\mathbf{3}}=(2,3,8)$ is linearly independent.

Solution. Suppose that the given set of vectors is linearly dependent, so that

$$
\begin{equation*}
\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\lambda_{3} \mathbf{A}_{3}=\mathbf{O} \tag{i}
\end{equation*}
$$

where λ 's are to be determined.
or

$$
\lambda_{1}(1,1,1)+\lambda_{2}(1,2,3)+\lambda_{3}(2,3,8)=(0,0,0)
$$

or $\quad\left(\lambda_{1}+\lambda_{2}+2 \lambda_{3}, \lambda_{1}+2 \lambda_{2}+3 \lambda_{3}, \lambda_{1}+3 \lambda_{2}+8 \lambda_{3}\right)=(0,0,0)$
$\therefore \quad \lambda_{1}+\lambda_{2}+2 \lambda_{3}=0 \quad$ (ii); $\quad \lambda_{1}+2 \lambda_{2}+3 \lambda_{3}=0$
and

$$
\begin{equation*}
\lambda_{1}+3 \lambda_{2}+8 \lambda_{3}=0 \tag{iii}
\end{equation*}
$$

From (ii) and (iii) we get $\lambda_{2}+\lambda_{3}=0$.
From (ii) and (iv) we get $2 \lambda_{2}+6 \lambda_{3}=0$ or $\lambda_{2}+3 \lambda_{3}=0$
From (v) and (vi) we get $\lambda_{3}=0$.
\therefore From (v) we get $\lambda_{2}=0$ and from (ii) we get $\lambda_{1}=0$, when $\lambda_{2}=0=\lambda_{3}$.
Thus all the λ 's are zero and hence the given set of vectors is linearly independent.

Ex. 2 (a). Show that set of vectors $A_{1}=[1,2,3], A_{2}=[3,2,1]$, $A_{3}=[1,1,1]$ is linearly dependent.
(Agra 93)
Solution : Suppose that the given set of vectors is linearly dependent, so

$$
\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\lambda_{3} \mathbf{A}_{3}=\mathbf{0}
$$

or

$$
\lambda_{1}[1,2,3]+\lambda_{2}[3,2,1]+\lambda_{3}[1,1,1]=\mathbf{O}=[0,0,0]
$$

or

$$
\begin{equation*}
\left[\lambda_{1}+3 \lambda_{2}+\lambda_{3}, 2 \lambda_{1}+2 \lambda_{2}+\lambda_{3}, 3 \lambda_{1}+\lambda_{2}+\lambda_{3}\right]=[0,0,0] \tag{ii}
\end{equation*}
$$

$\therefore \quad \lambda_{1}+3 \lambda_{2}+\lambda_{3}=0 \quad \ldots$ (i); $\quad 2 \lambda_{1}+2 \lambda_{2}+\lambda_{3}=0$
and

$$
\begin{equation*}
3 \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \tag{iii}
\end{equation*}
$$

From (i) and (ii) we get $\lambda_{1}-\lambda_{2}=0$ or $\lambda_{1}=\lambda_{2}$
From (iv) and (iii) we get $4 \lambda_{1}+\lambda_{3}=0$ or $\lambda_{3}=-4 \lambda_{1}$
Then we have $\frac{\lambda_{1}}{1}=\frac{\lambda_{2}}{1}=\frac{\lambda_{3}}{-4}$ and from here we do not get all the values of λ as zero.

Hence the given set of vectors is linearly dependent.
Hence proved.
Ex. 2 (b). Show that the set of vectors $[1,2,3],[3,-2,1],[1,-6,-5]$ is linearly dependent.
(Agra 92)
Solution : Let $\mathbf{A}_{1}=[1,2,3], \mathbf{A}_{2}=[3,-2,1]$ and $\mathbf{A}_{3}=[1,-6,-5]$ be a set of linearly dependent vectors.

Then $\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\lambda_{3} \mathbf{A}_{3}=\mathbf{O}$, where all λ 's are not zero.
or $\quad \lambda_{1}[1,2,3]+\lambda_{2}[3,-2,1]+\lambda_{3}[1,-6,-5]=\mathbf{O}=[0,0,0]$
or

$$
\left[\lambda_{1}+3 \lambda_{2}+\lambda_{3}, 2 \lambda_{1}-2 \lambda_{2}-6 \lambda_{3}, 3 \lambda_{1}+\lambda_{2}-5 \lambda_{3}\right]=[0,0,0]
$$

$$
\therefore \quad \lambda_{1}+3 \lambda_{2}+\lambda_{3}=0 \quad \ldots \text { (i), } \quad 2 \lambda_{1}-2 \lambda_{2}-6 \lambda_{3}=0
$$

and

$$
\begin{equation*}
3 \lambda_{1}+\lambda_{2}-5 \lambda_{3}=0 \tag{iii}
\end{equation*}
$$

From (i) and (ii), we get $8 \lambda_{2}+8 \lambda_{3}=0$ or $\lambda_{2}+\lambda_{3}=0$
From (ii) and (iii), we get $8 \lambda_{1}-16 \lambda_{3}=0$ or $\lambda_{1}=2 \lambda_{3}$
\therefore From (iv) and (v) we get $\frac{\lambda_{1}}{2}=\frac{\lambda_{2}}{-1}=\frac{\lambda_{3}}{1}$ and this does not give all the valu of λ as zero.

Hence the given set of vectors is linearly dependent.
Hence proves
Ex. 3. Find a linear relation, if any, between the linear forms of the following system $\quad f_{1}=x+y+z, f_{2}=y-2 z, f_{3}=2 x+3 y$:

Sollution : Let $\quad \lambda_{1} f_{1}+\lambda_{2} f_{2}+\lambda_{3} f_{3}=0$.
Then $\lambda_{1}\left(x+y+z^{\prime}\right)+\lambda_{2}(y-2 z)+\lambda_{3}(2 x+3 y)=0$
or $\quad\left(\lambda_{1}+2 \lambda_{3}\right) x+\left(\lambda_{1}+\lambda_{2}+3 \lambda_{3}\right) y+\left(\lambda_{1}-2 \lambda_{2}\right) z=0$
$\Leftrightarrow \lambda_{1}+2 \lambda_{3}=0, \lambda_{1}+\lambda_{2}+3 \lambda_{3}=0, \lambda_{1}-2 \lambda_{2}=0$
whence we get $\lambda_{3}=-\frac{1}{2} \lambda_{1}, \lambda_{2}=\frac{1}{2} \lambda_{1}$, which satisfy $\lambda_{1}+\lambda_{2}+3 \lambda_{3}=0$
Hence from (i) we get $\lambda_{1} f_{1}+\frac{1}{2} \lambda_{1} f_{2}-\frac{1}{2} \lambda_{1} f_{3}=0$
or $\quad 2 f_{1}+f_{2}-f_{3}=0$, which is the required relation.
Ex. 4. Find a linear relation, if any, between the polynomials $f_{1}=2 x^{3}-3 x^{2}+4 x-2 ; f_{2}=3 x^{3}+2 x^{2}-2 x+5 ; f_{3}=5 x^{3}-x^{2}+2 x+1$.

Solution. Let $\lambda_{1} f_{1}+\lambda_{2} f_{2}+\lambda_{3} f_{3}=0$
Then $\quad \lambda_{1}\left(2 x^{3}-3 x^{2}+4 x-2\right)+\lambda_{2}\left(3 x^{3}+2 x^{2}-2 x+5\right)$

$$
+\lambda_{3}\left(5 x^{3}-x^{2}+2 x+1\right)=0
$$

or

$$
\begin{array}{rlrl}
\begin{aligned}
\left(2 \lambda_{3}+3 \lambda_{2}+5 \lambda_{3}\right) x^{3}+\left(-3 \lambda_{1}+2 \lambda_{2}-\lambda_{3}\right) x^{2} & +\left(4 \lambda_{1}-2 \lambda_{2}+2 \lambda_{3}\right) x \\
& +\left(-2 \lambda_{1}+5 \lambda_{2}+\lambda_{3}\right)=0 \\
2 \lambda_{1}+3 \lambda_{2}+5 \lambda_{3}=0 & \ldots \text { (ii); }
\end{aligned} \quad 3 \lambda_{1}-2 \lambda_{2}+\lambda_{3}=0 & \ldots(\text { iii }) \\
2 \lambda_{1}-\lambda_{2}+\lambda_{3}=0 & \ldots \text { (iv); } & \text { and } & 2 \lambda_{1}-5 \lambda_{2}-\lambda_{3}=0
\end{array}
$$

\Rightarrow

$$
\lambda_{2}-\lambda_{3}=0
$$

From (iii) and (iv) we get

$$
\begin{equation*}
3 \lambda_{1}+3 \lambda_{3}=0 \text { or } \lambda_{1}+\lambda_{3}=0 \tag{vii}
\end{equation*}
$$

From (v), (vi) and (vii) we get

$$
2\left(-\lambda_{3}\right)-5\left(-\lambda_{3}\right)-\lambda_{3}=0 \text { or } 2 \lambda_{3}=0 \text { or } \lambda_{3}=0
$$

which gives

$$
\lambda_{1}=0=\lambda_{2} .
$$

Hence from (i) no linear relation exists between f_{1}, f_{2} and f_{3}.
Ex. 5. If the vectors $(0,1, a),(1, a, 1),(a, 1,0)$ are linearly dependent, ben find the value of a.
(Agra 94)
Solution : Let $\mathbf{A}_{1}=(0,1, a), \mathbf{A}_{2}=(1, a, 1), \mathbf{A}_{3}=(a, 1,0)$ be a set of inearly dependent vectors.

Then $\lambda_{1} \mathbf{A}_{1}+\lambda_{2} \mathbf{A}_{2}+\lambda_{3} \mathbf{A}_{3}=\mathbf{O}$, where λ 's are not all zero.
or $\quad \lambda_{1}(0,1, a)+\lambda_{2}(1, a, 1)+\lambda_{3}(a, 1,0)=\mathbf{O}=(0,0,0)$
ir $\quad\left(\lambda_{2}+a \lambda_{3}, \lambda_{1}+a \lambda_{2}+\lambda_{3}, a \lambda_{1}+\lambda_{2}\right)=(0,0,0)$
$\therefore \quad \lambda_{2}+a \lambda_{3}=0 \quad \ldots$ (i), $\quad \lambda_{1}+a \lambda_{2}+\lambda_{3}=0$
and

$$
\begin{equation*}
a \lambda_{1}+\lambda_{2}=0 \tag{ii}
\end{equation*}
$$

From (i), $\quad \lambda_{3}=-(1 / a) \lambda_{2}$
From (iii), $\quad \lambda_{1}=-(1 / a) \lambda_{2}$
\therefore From (ii), $-(1 / a) \lambda_{2}+a \lambda_{2}-(1 / a) \lambda_{2}=0$
or

$$
[a-(2 / a)] \lambda_{2}=0 \text { or }\left(a^{2}-2\right) \lambda_{2}=0
$$

\therefore Either $a^{2}-2=0$ or $\lambda_{2}=0$.
But $\lambda_{2}=0$ gives $\lambda_{1}=0, \lambda_{3}=0$, from (i), (iii)
Then $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$ are not linearly dependent.
Hence $a^{2}-2=0$ or $a= \pm \sqrt{2}$.
Ans.

Exercises on Chapter VIII

Ex. 1. Show that the vectors $(1,0,0),(0,1,0)$ and $(0,0,1)$ are linearly independent.

Ex. 2. Show that the vectors $[1,2,0],[8,13,0]$ and $[2,3,0]$ are linearly lependent.

Ex. 3. Prove that the set of three vectors

$$
[1,2,-1,3],[0,-2,1,-1] \text { and }[2,2,-1,5]
$$

is linearly dependent and obtain a relation connecting these vectors.

- Ex. 4. Find a linear relation, if any, between the linear forms of the system :-

$$
f_{1}=2 x_{1}-2 x_{2}-x_{3}+x_{4} ; f_{2}=x_{1}-x_{2}+x_{3}+x_{4} ; f_{3}=5 x_{2}+3 x_{3}+x_{4}
$$

Ex. 5. Prove that any non-empty subset of a linearly independent set is linearly independent.
(Agra 94)

