Introduction to
Numerical Computing

INTRODUCTION

E5
Numerieal bnm%ﬁn indispensable role in solving real life

mathematical, physical and engineering problems. They have been in
use for centuries even before digital computers appeared on the scene.
Great mathematicians like Gauss, Newton, Lagrange, Fourier and many
others in the eighteenth and nineteenth centuries developed numerical
techniques which are still widely used. The advent of digital computers
has, however, enhanced the speed and accuracy of numerical compu-
tations,

What is numerical computing? It is important to understand the answer
to this fundamental question before we proceed further. Numerical
computing is an approach for schg‘n_gh complex mathemaﬁc%a
using only simple arithmetic ‘operations. The approach involves
formulation of mathematical models of physical situations that can be
solved with arithmetic dperatign_sﬁlt"réﬂuires development, analysis and
use of algorithms.—— —

Numerical computations invariably involve a large number of
arithmetic calculations and, therefore, require fast and efficient computing
devices. The microelectronics revolution and the subsequent development
of high power, low cost personal computers have had a profound impact
on the application of numerical computing methods to solve scientific
problems.

The traditional numerical computing methods usually deal with the
following topics;

" 1. finding roots of equations
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golving systems of linear algebraic equations

interpolation and regression analysis

numerical integration

numerical differentiation

solution of differential equations

boundary value problems ,

. solution of matrix problems .

In this book we will discuss some of the popular methods available in
each of these areas.

EREm ;W

742 NUMERIC DATA

Numerical computing may involve two types of data, namely, discrete
date and continuous data. Data that are obtained by counting are called
discrete data. Examples of discrete data are the total nu mber of items in
a hox, or the total number of people participating in a race.

Data that are obtained through measurement are called continuous
data. Examples of continuvus data are the speed of a vehicle as given by
a speedometer, or temperature of a patient as measured by a
thermometer.

W3 ANALOG COMPUTING

e

Analog refers to Lheprmuplu_uﬂmlmglpmhlﬁm%wmmsh
qi;erates ina _wﬂ(_@&gmﬂ to the problemy For example, the electronic
circuits. in an analog computer act analogously to the problem to-be
solve alog computing is based on Inputs that vary continuously,
such as vacrent, voltage or temperature. The earliest computers weve
analog and functioned on the basis ofF@ ectrical voltages. Calculations
were performed by adding, subtracting, multiplying and dividing voltages.
Analog computers are fast, but their accuracy is limited by the precision
with which the physical quantities can be read.

Many real life measurable quantities are analog in nature: time, tem-
perature, pressure, and speed, for instance. Analog methods are pre-
ferred when these quantities have to be represented in a caleulation. An
example of application of analog computers 1s a machine used in a postal
department. to convert. the weight of a package into the cost of postage
needed for mailing.

The basic requirement in the application ol analog computers is the
writing down of differential equations describing the physical system of
interest. Given the differential equations, the analog result may be
obtained either by direct method, in which equivalent electrical circuits
are directly used to simulate the time variations of the dependent
variables of the physical system, or the functional method, in which
electronic circuits perform the mathematical operations indicated by the
terms of the differential equation.
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DIGITAL COMPUTING

A digital computer is a computing device that operates on inputs which
are discrete in nature. The input data are numbers (or digits) that may
represent numerals, letters, or other special symbols. Just as a digital
clock directly counts the seconds and minutes in an hour, a digital
computer counts discrele data values to compute the results.

Today's digital computers can cope with the analog information, but
they have to convert it into digital form. They do this by measuring the
value of analog quantity at regular intervals and converting that
measurement into a number of electrical pulses corresponding to that
measurement. In an analog watch, for example, time and hands on the
watch face change continuously; a digital watch, however, converts the
passage of time into tiny intervals, marked by the numbers changing on
the dial.

Digital computers are more accurate than analog computers. Analog
computers may he accurate to within 0.1 per cent of the correct value,
whereas digital computers can obtain whatever degree of accuracy is
required by choosing the correct number of decimal places. They are
designed to read, store, manage, and output specific units like numbers,
letters, or punctuation marks. Digital computers are widely used for
many different applications and are often called generel purpose
camputers.

ROCESS OF NUMERICAL COMPUTING

/
As ‘Etrted carlier, numerical computing involves formulation of

mathematical models of physical problems that can be solved using basic
arithmetic operations. The process of numerical computing can be roughly
divided into the following four phases which are illustrated in Fig. 1.1:
" 1. formulation of a mathematical model

2. construction of an appropriate numerical methed

3. implementation of the method to obtain a selution

4. validation of the solution

The formulation of a suitable mathematical model is critical to the
solution of the problem)A mathematical model can be broadly defined as
a formulation of certain mathematical equation that expresses the
essential features of a physical system or process. Models may range
from a simple algebraic equation to a complex set of differential equations.
Figure 1.2 shows various types of mathematical equations that might
result while formulating mathematical models of physical processes.

The formulation of a mathematical model begins with a statement of
the problem and the associated factors to be considered. The factors may
concern the balance of forces and other laws of conservation in physics.
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Real life problems have many uncertainties and unknowns. It might,
therefore, be necessary to make certain assumptions for approximating
and to include only those features of the problem that are considered
critical to the final solution. An over-simplified model may have only
limited usefulness. The model may be enhanced later, if necessary. The
model refinement may make the solution procedure more difficult. We
must always maintain the balance of enhancement of the model and
accuracy of the solution required.

Once a mathematical model is available, our first step would be to try
to obtain an explicit analytical solution. In moslt cases, the mathematical
models may not be amenable to analytical solutions or they may not be
solved efficiently using analytical techniques. In such cases, we have to
construct appropriate numerical methods to solve mathematical models.
As mentioned earlier, a numerical method is a computational technique
which invelves only a finite number of basic arithmetic operations.

For a given problem, there might be several alternative mumerical
methods. We must consider different factors or trade-offs before selecting
a particular method—such as type of equation, type of computer available,
accuracy, speed of execution, and programming and maintenance efforts
required.

Modelling is the process of translating a physical problem into a
mathematical problem. The process involves

1. making a number of simplifying assumptions

2. identification of important variables

3. postulation of relationships between the variables

This book is mainly coneerned with the solution of mathematical models
using numerical techniques.

°, MB a mathematical model for predicting the population growth of
ity

Assumptions:
Birth and death rates are proportional to population and time interval.
Parameters:

P(1) —population at time ¢
AP —increase in population in time interval Af
Then,
AP = births in At — deaths in At
= C, Put) At — CoIXt) At
=(C,-Cy) Plt) At |

Growth rate =% =CP(t)
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Taking the limits Al — 0, v.fre get,

%‘3— =C P(t)
Solution of this differential equation is
P(t) = P, ®
where P, is the population at time ¢ = 0.

The population growth depends on the growth constant C=C,-C, The
population will be stable if C, = Ci.

The third phase of the numerical computing process is the
implementation of the method selected. This phase is concerned with
the following three tasks

1. design of an algorithm

2. writing of a program

3. executing it on a computer to obtain the resulis
Once we are able to obtain the results, the next step is the validation of
the process. Validation means the verification of the results to see that it
is within the desired limits of accuracy. If it is not, then we must go back
and check each of the following:

1. mathematical model itself

9. numerical method selected

3. computational algorithm used to implement the method

This may mean modification of the model, selection of an alternate
numerical methad or improving the algorithm (or a combination of them).
Once a modification is introduced, the cycle begins again. Figure 1.3
illustrates how the numerical computing cycle moves from the real world
to mathematical world and back.

Real world Mathematical world
Physical problem - mm i
. problem or'model
_— Y
Validation of model —-—L Solution -+~
T i

,ﬁ:}p—!?c—atm\ Solution techniques

Fig. 1.3 Another way of locking at the computing process «
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E\;,/;C‘HARACTERISTICS OF NUMERICAL COMPUTING
' Nur ricai'ilr\ethods exhibit certain computational characteristics during

their implementation. It is important to consider these characteristics
while choosing a particular method for implementation. The
characteristics that are critical to the success of implementation are:
accuracy, rate of convergence, numerical stability, and efficiency,

/Accuracy

Every method of numerical computing introduces errors, They may be
either due to using an approximation in place of an exact mathematical
procedure (known as truncation errors) or due to inexact representation
and manipulation of numbers in the computer (known as roundoff errors),

must be sufficiently accurate to serve the purpose for which the
mathematical model was built. Choice of a method is, therefore, very
much dependent on the particular problem. The general nature of these
errof's will be discussed in detail in Chapter 4,

ate of Convergence

Many numerical methods are based on the idea of an iterative process.
This process involves generation of a sequence of approximations with
the hope that the process will converge to the required solution. Certain
methods converge faster than others., Some methods may not converge
at all. It is, therefore, important to test for convergence before a method
is used. Rapid tonvergence takes less execution time on the computer.
There are several techniques for accelerating the rate of convergence of
certain methods. The concepts of convergence and divergence are
discussed in Chapter 4. They are also discussed in various places where
specific methods are analysed for convergence.

umerical Stability

Another problem introduced by some numerical computing methods is
that of numerical instability. Errors introduced into a computation, from
whatever source, propagate in different ways. In some cases, these errors
tend to grow exponentially, with disastrous computational results. A
computing process that exhibits such exponential error growth is said to
be numerically unstable. We must choose methods that are not only fust
but also stable,

Numerical instability may also arise due to ill-conditioned problems.
There are many problems which are inherently sensitive to round off
errors and other uncertainties, Thus, we must distinguish between sen-
sitivity of methods and sensgitivity inherent in problems.

When the problem is ill-conditioned, there is nothing we can do to
make a method to become numerically stable.
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One more consideration in choosirg a numerical method for solution of a
mathematical model is efficiency. It means the amount of effort required
by both human and computer to implement the method. A method that
requires less of computing time and less of programming effort and yet
achieves the desired accuracy is always preferred.

COMPUTATIONAL ENVIRONMENT

The last phase of the numerical computing process, namely the
implementation phase, requires resources such as computer hardware,
operating system and other systems software, language compilers, actual
application programs and other software tools %0 manipulate data and
provide output in a desired form. '

The computer hardware may range from a small personal computer
to a lurge super computer depending on the nature and size of the
problem. A program may not always produce the same results on two
different types of computers due o difference in their round off errors,

Appropriate operating systems and compilers play an important role
in developing portable programs. UNIX and MS-DOS have become
popular operating systems for scientific computing. FORTRAN language
has dominated the scientific computing field for the last four decades
and it is expected to continue its gredominant role for some more years.
It has been continuously modified and extended to support the ever
changing requirements of software engineering. The likely strong
competitor for FORTRAN in the near future will be C and C++ languages
which contain some unique features and powerful control stractures.
Portability is another strong point of these languages.

NEW TRENDS IN NUMERICAL COMPUTING

In recent years, the increasing power of computer hardware has affected
the approach of numerical computing in several ways. It has forced
scientists and engineers to search for algorithms that are computationally
fast and efficient. An important new trend is the construction of
algorithms to take advantage of specialised computer hardware such as
vector computers and parallel computers. Another trend is the use of
sophisticated interactive graphics, in which the user can view the results
graphically and advise the computer, graphically, on how 1o proceed
further.

One important development which jg likely to have an increasing
impact on scientific computing is symbolic computation. Symbolic
computation systems would enable us to add, multiply and divide
polynomials or rational expressions the same way we would do using
pencil and paper. They can also solve certain mathematical problems
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without rounding off errors. Symbolic computation is expected to play an
increasing role in scientific computation.

Object-oriented numerical computing is gaining importance due to
the popularity of languages like C++ and Java. They incorporate concepts
such as encapsulation, inheritance, polymorphism and operator
overloading. They support the idea that program units should interact
with une another only through clearly defined interfaces. They also enable
the extension (or reuse) of the existing code without maodifying it.

9| MATHEMATICAL BACKGROUND

This book assumes that the readers have some mathematical background.
They require basic knowledge of algebra, functions, matrices, and integral
and differential caleulus.

SUMMARY

In this chapler, we have introduced the concepl of numerical compuling
and discussed the steps involved in solving a physical problem using
numerical methods, We also discussed the characteristics of numerical
computing and computing resources required for implementing a
numerical methad.

Key Terms

Acguracy lieraiive process
Algorithm Mathematical mods/
Analog computer Numerical computing

Numerical method
C++ Numerical stability
Continuous data Paralle! computers
Digital computer Rate of convergence
Discrate data Round off error
Efficiency Symbolic computation
FORTRAN Truncation error
General purpose computers Validation
Hl-conditioned problems Vector computer,

1. What is Numerical Computing?
2. Distinguish between analog computing and digital computing.
\3. Describe, with the help of a block diagram, the process of numeri-
cal computing.
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4. Newlon’s second law of motion states that the time rate of change
of momentum of a body is equal to the resultant force acting on it.
Using this law, formulate a mathematical model to determine the
terminal velocity of a free falling body near the earth’s surface.

5. The Newton's law of cooling states that the rate of heat from a
liquid is proportional to the difference in temperatures between the
liquid and the surroundings. Formulate a mathematical model to
govern this law,

6. When a boat moves through water, the retardi ng force is proportional
to the square of the velocity. Formulate a differential equation in
terms of velocity given the mass m and the drag coefficient k.

7. State the four characteristics of numerical computing,

8. What is accuracy? How is it affected during the process of numerical

:omputing?
. What is convergence? How is it important in numerieal computing?
{\%at do you mean by numerical instability?
11. Distinguish between sensitivity of methods and sensitivity of
problems,
12. Describe resources required for implementing a numerical computing
process.



Introduction to
Computers and
Computing Concepts

INTRODUCTION

"An Chapter 1, we discussed that numerical computing requires 1wo
important tools, namely, mathematical methods and computers. Most
numerical methods cannot be solved without the help of computers.
Therefore, a background knowledge of computers and com puting concepts
will enhance the understanding of implementation of pumerical
computing solutions. This chapter provides some basic information on
computing en ironment and problem solving approach using computers.

The spate of innovations and inventions in computer technology during
the last two decades has led to the development of a variety of personal
computers. They are so versatile that they have become indispensable to
engineers, scientists, business executives, managers, administrators,
accountants, teachers and students. They have strengthened humankind’s
powers in numerical computations and information processing.

Modern computers possess certain characteristics and abilities pecu-
liar to them. They can

1. perform complex and repetitive caleulations rapidly and accurately

9. gtore large amounts of data and information for subsequent
manipulations

_ hold a program of a model which can be explored in many different
Ways

4, make decisions

5. provide information to the user

e
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5. automatically correct or modify certain parameters of a system

under control '

7. draw and print graphs

8. converse with users interactively

Lngineers and scientists make use of the high-speed computing
capability of computers to solve complex mathematical models and design
problems. Many calculations that were previously beyond contemplation
have now become possible. But for computers, many of the technological
achievements, such as landing on the moon, would not have been possible.

Computers have helped automation of many industrial and business
gystems. They are used extensively in manufacturing and processing
industries, power distribution systems, airline reservation systems,
transportation systems, banking systems, and so on. Computer-aided
design (CAD) and computer-aided manufacture (CAM) are among the
most popular industrial applications teday.

Modelling and simulation is another area where computers are
increasingly used. This has greatly accelerated research in such arecas as
physical and social sciences, medicine, astronomy and meteorology.

Business and commercial organisations need to store and maintain
voluminous records and use them for various purpuses such as inventory
control, sales analysis, payroll accounting, resources scheduling and
generation of management reporis. Computers can store and maintain
files and can sort, merge or update them as and when necessary.

The ability of computers to store large amounts of data has led to
their application in libraries, documentation centres, employment
exchanges, police departments, hospitals and other similar establishments.
Computers are used in international games such as the Olympics to
keep irack of events and provide timely and reliable information and
documentation to all concerned.

Since computers can bank a variety of information and converse with
the users, they are being used as resources in teaching and learning at
all levels of education and training, This process is known as cormputer-
assisted learning (CAL). Here, learners can communicate directly with a
computer in a conversational mode. Using this mode, a learner can learn
a topic in his own time and pace.

Computers are also used to manage the learning processes. This is
called computer-managed learning (CML). Computers can store students’
responses, evaluate their performance and then direct them to the next
appropriate learning unit.

The areas of computer applications are too numerous to mention.
Computers have become an integral part of our everyday life. They
continue to grow and open new horizons of discovery and application
such as the electronic office, electronic commerce, and the home computer
centre.

The microelectronics revolution has placed enormous computational
power within the reach of every acientist and engineer. However, it
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must be remembered that computers are machines created and managed
by humans. A computer has no brain of its own. Anything it does is the
result of human instructions. It is an obedient slave which carries out
the master’s orders as long as it can understand them, no matter whether
they are right or wrong. In short, computers lack common sense. These
instructions constitute the program or software.

_'- EVOLUTION OF NUMERICAL COMPUTING AND
COMPUTERS

The use of computing techniques is over 5000 years old. The Bahylonians,
Chinese, and Egyptians used numerical methods for the survey of lands
and the collection of taxes as early as 3000 BC. Computing history starts
with the development of a device called the ubacus by the Chinese around
this period. This was used for the systematic calculation of arithmetic
aperations. Since then the number system has undergone various changes
and has been used in different forms in computing. The most significant
development in computing was the formulation of the decimal number
gystem in India around 800 AI). Another significant developmenti was
the invention of logarithm by John Napier in 1614, which made computing
simple.

The modern age of mathematics emerged during the 17th century
when Johannes Kepler and Galileo Galilee deduced the laws for planetary
motion and Sir Isaac Newton formulated the law of gravity. The
subsequent developments in mathematics and other sciences increased
the need for new computing techniques and devices.

The principle of logarithm was later applied to a calculating device
known as the slide rule, which was exlensively used till recently. The
first accounting machine was built in France by Blaise Pascal in 1642.
Then came the Leibnitz calculator in 1671 designed by Gottfried Wilhelm
von Leibnitz. These machines progressed in technology and variety and
became the standard calculating machines of the business community.
During the beginning of the 19th century, Joseph Marie Jacquard
invented an automated loom operated by a mechanism controlled by
punched cards.

The origin of the modern computer can be traced back to 1834 AD,
when an English mathematician, Charles Babbage, designed an analytical
engine. This is considered to be the first programmable digital mechanical
computer. However, this kind of machine was not built until 1944, when
Mark I, an electromechanical automatic computer, was develaped by
IBM. Subsequently, a series of technological improvements and
innovations took place and the design of computets underwent continuous
and dramatic changes. Some of the important developments since the
slide rule are given in Table 2.1.
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Table 2.1 Some developments in computing technology

Year ‘ Deuvice

1622 Slide rule

1642 Pascal caleulator, an accounting machine by Blaise Pageal

1671 Leibnitz calculator

1801 Punched card loom by Jacquard

1822 Difference engine by Charles Babbage

1834 Analytical engine by Chartles Babbage

1890 Punched card machine by Herman Hollerith

1930 Differential analyser by Vannevar Bush

1936 Paper on computational numbers by Alan Turing
Link between symbolic logic and electric circuit by Claude Shanon

1937 Binary adder built by George Stibitz Lo

1941 First general-purpose computer designed by Konrad Zuse

1943 Colossus machine built to crack German secret codes, by the British

1944 First automatic computer, MARK I, designed by Howard Aiken

1945 Critical elements of a computer system outlined by John Von
Neumann ;

1946 First electronic digital computer, ENIAC, put to operation by
Presper Eckert and John Mauchly

1947 Transistor invented by John Bardeen, William Shocklay and
Walter Brattain

1951 First business computer, UNIVAC, became operational

1956 Second generation computer (using transistors) introduced by
Bell Laboratory

1959 Integrated circuits (ICs) demonstrated by Clair Kilby

1964 Firet third generation computer using 1Cs developed

1965 First commercial minicomputer, PDP-8, introduced by Digital
Equipment Corporation :

1971 Intel 4004 micraprocessor designed by Ted Hoff

1974 First fourth generation computer (using mieroprocessors) built by
Ed Roberts ; - '

1975 First personal computer software created by Bill Gates and Paul
Allen :

1977 Apple introduced its famous personal computer

1981 IBM PC introduced in the market '

1082  Cray supercomputet marketed by Cray Research Company

' 1989 Optical computer demonstrated " !

Meoderm Computers

The era of modern computers began in 1951 when the UNIVAC (Universal
Automatic Compiter) became operational at the Bureau of Census in
USA. Since then, computers started appearing in quick succession, each
claiming an improvement over the dther. They represented improvements
in speed, memory (storage) systems, input and output devices and
programming techniques. They also showed a continuous reduction in
physical size and cost. The developments in computers are closely
agsociated with the developments in material technology, particularly
the semiconducter technology.
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Computers devgloped after ENIAC have been classified into the fol-
lowing four generations:

First generation 1946 - 1955
Second generation 1956 — 1965
Third generation 1966 - 1975
Fourth generation 1976 - present

You may notice that from 1946, each decade has contributed one
generation of computers.

In the first generation computers vacuum tubes were used. Magnetic
tape drives and magnetic core memories were developed during this
period. The first generation computers possessed the following drawbacks
as compared to the later models: ;
. large in size
slow operating speeds
restricted computing capacity
limited programming capabilities
. short life span
complex maintenance schedules

The second generation computers were marked by the use of a solid-
state device, called the transistor, in the place of vacuum tubes. These
machines were much faster and more reliable than their earlier
counterparts. Further, they occupied less space, required less power,
and produced much less heat.

Research in the field of electronics led to the innovation of the
integrated circuits, now popularly known as IC chips. The use of IC
chips in the place of transistors gave birth to the third generation
computers. They were still more compact, faster and less expensive than
the previous generation,

Along with the third generation computers, newer and faster
equipments were introduced for handling storage and input-output.

Continued efforts towards miniaturisation led to the development of
large-scale integration (LSI) technology. Intel Corporation introduced
LSI chips called microprocessors for building computers. The latest child
of the computer family that uses VLSI chips has been named the fourth
generation computer. The fourth generation computers are marked with
an increased user-computer interaction and speed. Table 2.2 gives an
idea of the main features of each generation.

mmemmmManmmm

Japan and many other countries are working on systems that are known
as knowledge-based or expert systems which will considerably improve
the man-machine interaction. Such systems would integrate the
advancements in both hardware and software technologies and would
facilitate computer-aided problem-golving with the help of organised
information in many specialised areas. |

B~

SR
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Table 2.2 Computer generations

' Generation
Features 2 EE
First Second Third Fourth
Main component Vacuum tube Transistor Integrated LST and VLSI
circuit circuit
(IC Chips).
Internal storage  Electrostatic Magnetic Magnetic Semiconductor
(Memory) tubes core core memory
Magnetic
drum
External Paper tape  Magnetic disk Magnetic disk Magnetic disk
storage Punched eard Magnetic Magnetic tape Magnelic tape
(Auxiliary Magnetie tape drum Magnetic drum Magnetic dram
memory) Magnetic tape Punched card Floppy disk
Paper tape Paper tape CD rom
Punrhed card 30,000 to 3,00,000 to
Speed of operation 40 to 300 3,000 to 30,000 3,00,000 30,00,000
{Additions/second) thousands thousands thousands thousands

This generation of computers is called the fifth generation computers.
Although knpwledge-based systems are expensive and time-consuming
to build, they are likely to become more popular in the coming years.

TYPES OF COMPUTERS

Computers may be classified based on operating principles, size and
capability, and applications.

Principles of Operation

Based on the operating principles, computers can be classified into any
one of the following types: digital computers, analog computers, and
hybrid computers. -

Digital computers operate essentially by counting. All quantities are
expressed as discrete digits or numbers. Digital computers are useful for
evaluating arithmetic expressions and for manipulations of data (such
as preparation of hills, ledgers, solution of simultaneous equations, etc.).

Analog computers operate by measuring rather than by counting. The
name, which is derived from the Greek word analog, denotes that the
computer functions by establishing similarities between two quantities
that arc usually expressed as voltages or currents. Analog computers
are powerful tools to solve differential equations. Computers which
combine features of both analog and digital types are called hybrid com-
puters.
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A majority of the computers used today are digital. As their name
suggests, digital computers were originally designed to perform certain
numerical calculations. They gradually replaced almost all mechanical
calculating devices. Later, the concept of stored programs enabled them
to ‘Blore data and instructions and perform certain sequences and
combinations of arithmetic operations automatically, This has led to the
use of digital computers in a variety of applications.

Applications

Modern computers, depending upon their applications, are classified as
special purpose computers or general purpose computers.

Special purpose computers are tailor-made to cater solely to the
requirements of a particular task or application. They incorporate the
instructions needed into the design of internal storage so that they can
perform the given task on a simple command. They, therefore, do not
possess unnecessary options and eost less.

On the other hand, general purpose computers are designed to meet
the needs of many different applications. In a general purpose computer,
the instructions needed to perform a particular task are not wired
permanently into the internal memory. When one job is over, instructions
for another job can be loaded into the internal memory for processing,
Thus, a general-purpose machine can be used to prepare pay-bills, manage
inventories, print sales reports, and =o on.

Size and Capability
Computers are also available in different sizes and with different
capabilities. Broadly, they may be categorised as mierecomputers,

minicomputers, mainframes and supercomputers. The selection of &
particular system primarily depends on the volume of data to be handled
and the speed of the processor.

Microcompuiers A microcomputer is the smallest general-purpose
processing system. Functionally, it is similar to any other large system.
Microcomputers are self-contained units and are usually designed for
use by one person at a time. Since microcomputers can be easily linked
to large computers, they form a very important segment of the integrated
information systems.

Minicompufers A minicomputer is a medium-sized computer that is
maore costly and powerful than o microcomputer. An importani distinction
hetween a microcomputer and a minicomputer is that the latter is usually
designed to serve multiple users simultaneously. A system that supparts
multiple usgers is called multiterminal, time-sharing system. Mini-
computers are the popular computing systems amoip research and
business organisations today.
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Mainframe computers Computers with large storage capacities and
very high speed of processing (compared to micro or minicomputers) are
known as mainframe computers. They support a large number of termi-
nals for use by a variety of users simultaneously. They are also used 2 as
the central host computer in distributed data processing systems.

Supercomputers Supercomputers have extremely large storage capaci-
ties and compuling speeds that are many times faster than other com-
puters. While the speed of traditional computers is measured in terms of
millions of instructions per second (mips), a supercomputer is rated in
tens of millions of operations per second (mops) (an eperntion is made up
of numerous inatructions), Typically, the supercomputer is used for large-
scale numerical problems in scientific and engineering disciplines. These
include applications in electronics, petroleum engineering, weather fore-
casting, structural analysis, chemistry, medicine and physics,

Personal compulers Personal computers are nothing but micro- com-
puters that are specially designed for personal use of individuals. The
name “personal computer” was coined by IBM when it marketed its first
microcomputer in 1981. Since then, many companies have produced IBM
compatible PCs. During the last fifteen years, the processor chips used
in IBM compatible PCs have undergone dramatic improvements in their
performance characteristics. Table 2.3 shows the characteristies of vari-
ous PC processor chips. Note that today's PCs are far more powerful
than the mainframes of just a few years ago.

Table 2.3 Characteristics of microprocessor chips

8088 286 Peatiurm  Pentium
PCXT PCAT 388 486 Fentium  Pro i1
Clack speed 4.7 6-12 16-33 16-50 66-200 120-200 200+
(megahertz)
Data path B 16 a2 32 fid 64 ' 64
(bits) 16 (SX)
Computation 16 16 3z 32 32 32 32
size (hits)
Memory-size 640K 2 megs 4-16 4-64 4-64 16-64  16-64
(bytes) megs  megs megs megs megs
Floating point Copro- Copro- Copro- On On On On
cessor cessor  cessor  chip chip chip chip
Speed 0.33 1.2 2.6-6 20-40 112 250 500
(MIPS)
Number of 29,000 130,000 275,000 1.2 33 52 10+
transistors million million million million
per chip

Worksfafions There is a class of computers, known as workstations,
which lie in between minicomputers and microcomputers in terms of



20 Numerical Methods

processing power. A workstation looks like a personal computer but is
specially designed for engineering and graphics applications.

Paraillel computers Parallel computer is a relatively new type of com-
puter that uses a large number of processors. The processors perform
different tasks independently and simultaneously, thus, improving the
speed of execution of complex programs dramatically. Parallel computers
match the speed of supercomputers at a fraction of the cost.

COMPUTING CONCEPTS

A computer, small or big, is basically a device used for processing of data
(mumbers) and text (words). It performs essentially the following three
operations in a sequence:

1. receives data (and instructions)
2. processes data (as per the instructions)
3. outputs result (information)

This cycle of operation of a computer is known as the input-—process—
oulpul cycle and is shown in Fig. 2.1.

T _ Process

Chair :
Output | Mr. Brown bought a

Brown input b cntiese o) :
= S e s ——=>chair from the market
ik A for his office
Office _bea e vl ar his o !

. Market INFORMATION

DATA™ Instructions L// i

Fig. 2.1  Inpuf-procass-output cycle

Raw facts, known as daia, are provided to the computer in bits and
piecas. They are encoded in such a way that the computer can understand
them. The computer then processes the data with the help of certain
instructions provided to it, and produces a meaningful and desired out-
put known as information. For example, if the data consists of two
numbers, say, 10 and 15 and the instruction is Lo add them and print
out the result, then the output information would be the sum of the two
numbers, ie. 25. A set of instructions designed to perform a particular
sequence of functions is called a computer program.

Processing is nothing but manipulation of data in accordance with
certain procedures to suit the need of the user (or application). The same
basic data can provide several kinds of information depending upon the
type of instructions.

Input is usually through a keyhoard (like a typewriter) and output
may be obtained either on a display screen or on a printer. While the
printer produces typed copy on paper (usually known as hard copy), the
screen display (soff copy) allows the user to verify the output before it is
printed.
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A computer often includes an external storage system to store (and
retrieve) data and programme. The popular storage medium is a floppy
disk. Other media, such as hard disks, magnetic tapes and CD ROMs
are also used. All these physical components are known as hardware.

COMPUTER ORGANISATION

Although computers differ widely in their details, all of them follow a
basic organisational structure as shown in Fig. 2.2. In order to carry ouk
the three basic operations, namely, input, process and output, a eemputer
includes the following hardware components: imput devices, processing
units, output devices and external storage devices.

Magnetic Magnetic
Tape Disc
:é EXTERNAL STORAGE UNITS

Input [iput | | | Memery
Media unit | 2 O A
A T}
Arithmatio

.' Uni’l .,:_._'_

Data and results flow
Control Instructions to units
————— Instructions to control unit

Fig. 2.2 Structure of o computer

Input Devices

An input device presents data to the processing unit in machine-read-
able form: Although the keyboard is a common input device for a small
computer, a system may also support one or more of the input devices
given in Table 2.4.
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Table 2.4 Input devices

S.No. Device Medium of data storage Remarks
3 Optical character Special paper document Only input
reader (OCR)
2. Magnetic ink character Special paper document Only input
recogniser (MICR)
3.  Mark sense reader Special paper or card Only input
4. Graphics tablet Document Only input
5. Mouse Document Only input
6. Floppy drive Floppy disk Input, output,
storage
7. Hard disk Magnetic disk Input, output,
(Winchester) drive storage
8.  Tape drive Magnetic tape Input, output,
storage
9. CD ROM drive CD ROM Input, storage

ocessing Units

Processing units receive data and instructions, store them temporarily
and then process the data as per the instructions. The processing units
include: memory unit, arithmetic logic unit, and control unit. All three
units together are known as the central processing unit (CPU),

Memory unit The memory unit holds (stores) all data, instructions and
results temporarily. The memory consists of hundreds of thousands of
cells called ‘storage locations’, each capable of storing one word of informa-
tion. The memory unit is called by differeni names, such as storage,
internal storage, primary storage, main memory or simply memory,

Arithmefic logic unit This unit is used to perform all the arithmetic
and logic operations, such as addition, multiplication, comparison, ete.
For example, consider the addition of two numbers A and B. The control
unit will select the number A from its location in the memory and load it
into the arithmetic logic unit. Then 1t will select the number B and add
it to A in the arithmetic unit. The result will then be stored in the
memory or retained in the arithmetic unit for further calculations.

Control unit This unit coordinates the activities of all the other units in
the system. Its main functions are:

1. to control the transfer of data and information between various

units

2. to initiate appropriate actions by the arithmetic unit

The program provides the bagic control instructions. Conceptually,
the control unit fetches instructions from the memory, decodes them,
“nd directs various units to perform the specified tasks.

Dutput Devices

Jutput devices receive information from the CPU and present it to the
'ser in the desired form. Although a printer is the most commonly used
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output device, devices such as plotters are also becoming pepular. Some
common output devices are given in Table 2.5.

Table 2.5 Oufput devices

Device Medium of presentation Remarks

Printer Paper Only output

Plotter Paper Only output

Visual display unit (VDU)  Display screen Only output

Floppy drive Floppy disk Input, output, slorage
Disk drive Magnetic disk Tuput, output, stunge’
Tape drive Magnetic disk Input, output, stopage

A O 7

External Storage Devices

The purpose of external storage is to retain data and programs for future
use. For example, a program may be required at regular intervals. If
such information is stored in an cxternal storage media, then one can
retrieve it as and when necessary, thus avoiding the need to type it
again, Any number of files containing information can be stored on
external media. Since they are permanent (they are not erased when the
equipment is turned off), one can store long files on external media, and
later on work on them in sections, keeping all the sections in storage
except the one currently in use.

The popular external storage media used with micro and mini
computers are {loppy disks, hard disks and CD ROMs.

Floppy disks The most common storage medium used on small com-
puters today is a floppy disk. It is a flexible plastic disk coated with
magnetic material and looks like a phonograph record. Information can
be recorded or read by inserting it into a disk drive connected to the
computer. The disks are permanently encased in stiff paper jackets for
protection and easy handling. An opening is provided in the jacket to
facilitate reading and writing of information (Fig. 2.3).

Label for identlfication

—w—— Write protect
notch

Drive spindle
hole (={——— Index hole

=t |

Fig. 2.3 Floppy disk (5.25 inch)
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Floppy disks are available in two standard sizes—5.25 inch and 3.5
inch. The 3.5 inch floppy disk, which was introduced later, can store
more information than the Previous one.

Hard disks Another magnetic media suitable for storing large volumes
of information is the hard disk, popularly known as the Winchester dish
A bard disk pack consists of two or more magnetic plates fixed to a
spindle, one below the other, with a set of read/write heads. The disk
pack is permanently sealed inside & casing to protect 1t from dust and
other contaminations, thus increasing its operational reliability and datg
integrity, .

Winchester disks possess a number of advantages compared to floppy
disks:

1. They can hold much larger volumes of information than floppies,

2. They are very fast in reading and writing.

Standard sizes are 5.25 inch, 8 inch, 10.5 inch and 14 inch Storage
capacities of 260, 540, 680, 1000, 1200, 2000 megahytes are typical on a
personal computer.

CD ROMs Compact disk read-only memory (CD ROM) disks are used
to distribute large volumes of data and text. Cumputer programs and
user manuals are often distri buted on CD ROMs,

DRIVING THE COMPUTER: THE SOFTWARE
— T ETTWAKE

Computers need clear-cut instructions to tell them what to do, how to
do, and when to do. A set of instructions to carry out these funetions is
called a program. A group of such programs that are put into a computer
to operate and contro] its activities is called the software. These brograms
must reside in the internal storage (memory) to exccute their {nstryc-
tiong, For example, if we want to delete Some data stored in memery, the
system uses one set of Program instructions. Similarly, if we want to
sort a list of names, it yses another set of instructions designed o per-
form this tasic

Software is an essential requirement of computer systems. Just g 5
Car cannot run without fuel, a computer cannot work without software,
There are four major kinds of software that are implemented as shown
in Fig. 2.4. operating system, utili Ly programs, language processors and
application programs.

Software is intangible but resides on or 1s stored in something tangible,
such as floppy disks and magnetic tapes,

Operating System

The software that manages the resources of a computer system and
schedules its vperation is ealled the operating system. The operating
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Application packages

L5 e

[T Language processors/utility
programs

Operaling system l
' !

N =

Hardware

=

Fig. 24 Layers of softwars

system acts as an interface between the hardware and the user programs
and facilitates the execuiion ol the programs (Fig. 2.4). The principal
functions of operating system include: -
1. to control and coordinate peripheral devices such as printers, display
screen and disk drives
to monitor the use of the machine’s resources
to help the application programs execule its instructions
to help the user develop programs
. to deal with any faults that may occur in the computer and inform
the operator
The operating system is usually available with hardware
manufacturers and is rarely developed in-house owing to its technical
complexity. Small computers are built from a wide variety of micro-
processor chips and use different operating systems. Hence, an operating
system that runs on one computer may not run on the other, The popular
operating systems include, among others, MS DOS and UNIX.

o g 10

Utility Programs

There are many lasks common Lo a variety of applications. Examples of
such tasks are:

1. sorting a list in a desired sequence

2, merging of two programs

3. copying a program from one place to another

4. report writing
One need not write programs for these tasks. They are standard, and
normally handled by utility programs.

Like operating systems, utility programs are pre-written by the
manufacturers and supplied with the hardware. They may also be
obtained from standard software vendors. A good range of utility programs
can make life much easier for the user.
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Language Processors

Computers can understand instructions only when they are written in
their own language called the machine language. Therefore, a program
written in any other language should be translated into machine lan-
guage. Special programs called language processors are available to do
this job.

These special Programs accept the user programs and check each
statement and, if it ig grammatically correct, produce g corresponding
set of machine code‘instructions. Language processors are also known as
translators.

There are two forms of translators: compilers and interpreters.

A compiler checks the entire user-written program (known as the
source program) and, if error-free, produces a complete program in ma-
chine language (known as object program). The source program is re-
tained for possible modifications and corrections and the object program
is loaded into the computer for execution,

An interpreter does a similar Jjob but in a different style. The inter-
preter (as the name implies) translates one statement at a time and, if
error-free, executes the instruction. This continues till the last state-
ment. Thus an interpreter translates and executes the first instruction
before it goes (o the second, while a compiler translates the entire pro-
gram before execution,

The major differences between a compiler and an interpreter are:

L. Error correction (called debugging) is much simpler in the case of
the interpreter because it is done in stages, The compiler produces
an error list for the entire program at the end.

2. Interpreters take more time for the execution of a program compared
to “empilers because a statement has to be translated every time jt
is read.

Compilers and interpreters are usually written and supplied by the
hardware vendors. Sj nce a compiler (or an interpreter) can translate
only a particular language for which it Is designed, one will need to use
A separate translator for each language.

Application Programs

While an operating system makes the hardware run properly, application
pbrograms make the hardware do useful work. Application Programs are
specially prepared to do certain specifie tasks, They can be classified into
two categories: standard applications, and unique applications,

Some applications are common for many organisations. Ready-to-use
software packages for such applications are availahle from hardwarm
and/or software vendors. Standard packages include, among others, Sales
Ledger, Purchase Ledger, Statigticul Analysis, Pay Roll, PERT/CPM,
Production Planning and Control, Inventory Managemenl:, and Linear
Programming,
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In some situations one may have to develop one's own programs to

suit one's unique requirements. Once developed, they come info the
category of unique application packages.

PROGRAMMING LANGUAGES

The functioning of a computer is controlled by a set of instructions
(called a computer program). These instructions are written 1o tell the
computer:

1. what operation to perform

2. where to locate data

3. how o present results

4. when to make certain decisions

The communication between two parties, whether they are machines
or human beings, always needs a common language or terminology. The
language used in the communication of computer instructions is known
a8 the programming language. The computer has its own langnage and
any communication with the computer must be in its language or
translated into this language.

Three levels of programming languages are available, They are:

1. machine languages (low level languages)

2. assembly (or symbolic) languages

3. procedure-oriented languages (high level languages)

Machine Language

Computers are made of two-state electronic components which can
understand only pulse and no-pulse (or ‘1’ and ‘0") conditions. Therefore,
all instructions and data should be written using binary codes 1 and 0.
The binary code is called the machine code or machine language.

Computers do not understand English, Hindi or Tamil. They respond
only to machine language. Added to this, computers are not identical in
design. Therefore, each computer has its own machine language.
(However, the script 1 and 0, is the same for all computers). This poses
two problems for the user,

First, it is difficult to understand and remember the various
combinations of 1’s and 0's representing numerous data and instructions.
Also, writing error-free instructions is a slow process,

Secondly, since every machine has its own machine language, the
user cannot communicate with other computers (if he does not know its
language). Imagine a Tamilian making his first trip to Delhi, He would
face enormous obstacles as the language barrier would prevent him from
communicating.

Assembly Language

An assernbly language uses mnemonic codes rather than numeric codes
(as used in machine language). For example, ADD or A is used as a
symbolic operation code to represent addition and SUB or S is used for
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subtraction. Memory locations containing data are given names such as
TOTAL, MARKS, TIME, MONTH, etc.

As the computer understands only machine code instructions, a
program written in assembly language must be translated into machine
language before the program is executed. This translation is done by a
computer program referred to as an assembler.

The assembly language is again a machine-oriented language and
hence, the program has to be different for different machines. The
programmer should remember machine characteristics when he prepares
a program. Writing a program in assembly language is still a slow and
tedious task.

Procedure-Qriented Language (POL)

These languages consist of a set of words and symbols and one can write
programs using these in conjunction with certain rules. These languages
are oriented toward the problem to be solved or procedures for solution
rather than mere computer instructions. These are more user-centered
than the machine-centered languages. They are better known as high-
level languages.

The most important characteristic of a high-level language is that it is
machine-independent and a program written in a high-level language
¢an he run on computers of different makes with little or no modification,
The programmer need not know the characteristics of that machine.
However, such programs need to be translated into equivalent machine-
code instructions before actual implementation.

A program written in a high-level language is known as the source
program and can he run an different machines using different translators,
The translated program is called the object program. The wmajor
disadvantage of high-level languages is that they take extra time for
conversion and thus, are less efficient compared to the machine-code
languages. Figure 2.5 shows the system of implementing the three levels

of languages.
High-level Cumpile,r/ (rranslatcr'

Assembly

language language

s ’, Source
prograi program
Ouject
program /
{ &

r T
Machine b = Computer ——--!—I lesults
language _—

i

Fig. 26 Implementation of a program
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Common High-level Languages

Many high-level languages have been developed during the last three
decades. The most common high-level languages are FORTRAN, BASIC,
COROL, C, PL/1, C++ and Java. Although, ithey are less efficient than
the machine or assembly languages, they relieve the programmers of the
tedious task of remembering numeric codes for storape locations,
operations, ete, In addition, these languages are easier to learn and use.

The choice of a language depends upon many factors such as the
knowledge of the programmer, the computer, the problem to be solved,
ete. The languages that are used more papularly are given in Table 2.6.

fable 2.6 Summary of common high-level languages

Year Language Name derved Developed by Application
from
1957 FORTRAN FORmula 1BM Science,
TRANslation engineering
1958 ALGOL ALGOrithmie Laternational Seience,
Language group engineering
1959 LISP LISt Processing - MIT, USA Artificial
engineering
1960 APL A Programming IBM Science,
Language engineering

1961 COBOL COmmon Business Defence Dept., Business
Oriented Language USA

1964 BASIC Reginner's All Dartmouth Engineering,
purpose Symbolic  College, USA science, business,
Instruction Code education
1965 PL/1 Programming IBM General
Language 1
1970 Pascal Blaise Pascal Federal Institute General
of Technology,
Switzerland
1972 PROLOG PROgramming in  University of Artificial
LOGic Marseille inielligence
1973 C farlier language  Bell Laboratory General
called B
1975 Ada Augusta Ada Byron U.S. Defence Dept. General
1983 C++ Language C Bell Laboratory ~ General,
object-oriented
Programming
1991 Java None Sun Microsystems General, internet,
object-oriented

pmgrammng
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@88 terACTIVE cOMPUTING

A major breakthrough in programming took place in the early 1960s
when interactive languages like BASIC were developed. With an
interactive language, we can converse (interact) with a computer. Most
of the modern languages including FORTRAN have incorporated
interactive features. With the help of an interactive language, we may
engage in a conversation with our computer like this:

I am computing sum of two values

Please input value of ¥

2\?(‘ < 15-

Please input value of ¥

120.50

Sum of X any ¥ is 376.25

Do you want me to do one more sum?

No Thanks

Bye then, See you again!
The lower-case words are of the computer and the words underlined are
ours. Such interactive computing would be useful in determining certain
intermediate results and taking actions depending upon the values,

PROBLEM SOLVING AND ALGORITHMS

Mathematical problems that can be solved through the computer may

range in size and complexity. Since the computer does not possess any

common sense and cannot make any unplanned decisions, the problem,

whether it is simplc or camplex, has to be broken into a well-defined set

of solution steps. It should be remembered that computers do not “solve”

problems; rather, they are used to implement the solutions to problems,
In every instance of problem solving, the computer cannot be used to

solve the problem until a method of solution has been evolved and a

detailed procedure has been prepared by the user. It is assumed that the

user has a certain amount of background knowledge, knows certain facts

about the problem and possesses sufficient deductive and reasoning skills.
Problem solving involves the following steps:

- sludying the problem in detail

- redefining or restating the problem

3. identifying output requirements, input data available and eonditions

and constraints to be used

comparing alternative methods of solution

selecting the method which is considered to be the hesi,

preparing a logical and concise list of procedures or steps necessary

for determining the solution

computing the results

examining the results for correciness

@ oo [y

®
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The computer’s help may be necessary only in the seventh step. AR
the remaining steps are Lo be performed by the user. It is this fact that a
beginner finds difficult to appreciate.

The logical and concise list of procedure for solving a problem is called
an algorithm. Tt describes the steps that lead to unambiguous results in

te number of operations. Figure 2.6 illustrates an algorithm for
finding the square root of a set of N numbers.

Step 1: Find out the number of values for which square rools are to be
evaluated.
Step 2: Take a value.
| Step 3. See whether the value is posilive or negalive. If positive, go to
' Step 4, otherwise go to Step 6.
Step 4: Evaluate the square root.
i Step 5: Record the value and its square root.
E

Slep 6: Repeat Steps 2 to 5 until all the values are completed.

Fig. 2.6 Algorithm for finding the square root of a given set of volues

An algorithm prepared for the first time might need review to:

1. determine the correctness of various steps

2. reduce the number of steps, if necessary

3. increase the speed of solving the problem

An algorithm should also include steps to identify any abnormal data
or results and take corrective measures, if possible. In case of large
problems, we can break them into parts representing small tasks, prepare
several algorithms and later combine them into one large algorithm.
This 1s known as the modular approach.

Developing computer programs using the modular approach is known
as modular programming. A module is a program unit or entity that is
responsible for a single task. Modules (known as subprograms) are
arranged in a hierarchical structure (similar to an organisation chart) as
shown in Fig. 2.7, This is essentially top-down design in which bigger
modules are broken into smaller ones such that they are small enough
to be understood and easily coded using simple logic.

—

Main program \
] I

I Y r

Subprogram 1 Subprogram 2 Subprogram 3

&

A

l Subprogram 21 Subprogram 22

Fig. 27 Top-down modular design of a program
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FLOW CHARTING

When organising a problem for computer solution, it is desirable to
present the algorithm piclorially. A flow chart is a diagram that outlines
the sequences of operations to be performed. The operating steps are
placed in boxes that are connected by arrows to indicate the order of
execution of steps. Figure 2.8 illustrates the flow chart for the algorithm
shown in Fig. 2.6. It is perhaps the best available method for expressing
what the computer must do. Some symbols commonly used in flow charts
are shown in Fig, 2.9,

Find the square
root

Write the value and
its square root

Fig. 2.8 Flow chart for finding the square root of a given set of numbers

The important functions of a flow chart are as follows:

1. It provides a graphic representation of the problem so that it is
easier to understand the plan of solution.

2. It provides a convenient aid to writing computer instructions
(program).
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3. It assists in reviewing and correcting the program.

4. It helps in discussion of the solution logic with others.

While drawing a flowchart, one must remember the following:

1. First list the logical steps.

2. Complete the main path of the logic first and then complete all
branches and loops.

3. Use descriptive terms or mathematical equations in the boxes.

4. Each box should represent a step that is meaningful.

5. Use unambiguous terms in the flow chart so that others can easily
understand it.

Start or end of the program
Computational steps

Input or outpul instructions

Decision-making and branching

Preparation

Connector or joining of two parts of program

(el

Flow of control
Fig. 2.9 Fiow chart symbols

STRUCTURING THE LOGIC

Solution steps of all problems can be organised into one or combination
of the following three control structures:

1. sequence structure

2. branching structure

3. looping structure

Sequence structure is used when the solution does not involve any
repetitive operations or options. This is known as straight-line logic and
ig illustrated in Fig, 2.10.

Branching refers to the process of following one of two or more alternate
paths of computations. This happens at a point where a test is performed
to identify the conditions of certain variables in the process. The basis
for selecting a particular path is stated within the decision box. The
decision can be based on a comparison, on the value of a variable, on the
sign of a variable, ete. The basic flow charts associated with branching
are shewn in Fig. 2.11.
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o3

\

Hea_d
A B

Y

Caa>

Fig. 2.10 Sequence structure

N Yes
2 ast ==

Action2 _J Actionsj

(a) (b)
Fig. 2.11 Branching structure (IF THEN ELSE)

In Fig. 2.11(a), a few steps are bypassed and the program is rejoined
at a later stage. This is known as forward jump. In Fig. 2.11(b), each
branch contains one or more computational steps. The two branches
may join up again in the main path or may contain completely different
steps and only join up at the end.

Looping refers to the repeated use of one or more steps. There are two
types of loops. One is the fixed loop where the operations are repeated a
fixed number of times. In this case, the values of the variables inside the
loop have no effect on the number of times that the looping operation is
performed. The other is the variable loop where the operations are re-
peated until a specified condition is met. Here, the number of times that
the loop is repeated may vary. Searching for a particular item in a list of
items is an example of variable loop.
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Loops are also referred to as back
either after meeting a specified con
certain computation. These Jumps (

ward jumps. These jumps may occur
dition in the process or after doing a
loops) are illustrated in Fig. 2.12.

(2} De and Test (DO UNTIL)
(b) Test and Do (DQ WHILE)

(¢) A mixad loop
Fig. 212 {lustration of loops

232 USING THE COMPUTER

Computers can be used to solve specific problems that may be scientific
or commercial in nature. In either case, there are some basic steps
involved in using the computers, These are as follows:
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1:

Qe

Problem analysis Identify the known and unknown parameters
and state the constraints under which the problem is to be solved.
Select a method of solution.

Collecting information  Collect data, information and the documents
necessary for solving the problem and also plan the layout of eutput
results. ..

. Preparing the computer logic Identify the sequence of operations

to be performed in the process of solving the problem and plan the
program logic, preferably using a prograin flow chart.

Writing the compuler prograrm Write the program of instructions
for the computer in a suitable language.

. Testing the program There may be errors (hugs) in the program.

Remove all these errors which may be either in using the language
or in the logic.

Preparing the data Prepare input data in the required form.
Running the program This may be done either in batch mode or
inieractive mode. The computations are perform ed by the computer
and the results are given out.

The selection of a particular input/output device depends upon the
nature of the problem, type of input data and the form of output required.

SUMMARY

We have discussed in this chapter the following aspects of computers
and computing technology:

-

evolution of computing devices

generations of modern computers

different types of computers

input-process-output cycle of computing

orgamgation and structure of a computer

funclions of various input, output and storage devices

need for various types of computer programs

importance of programming languages and their applications
gteps involved in solving mathematical problems

use of flow charts for representing problem-solving algorithms
application of modular and structured programming techniques for
implementing eomputer-hased solutions

Key Terms
Abacus Low level language
Algorithm Machine code
Analog computer Machine language
Application programs 3 Mainframe computer
Assembler Maric |
Assembly language Microcomputer

(Contd.)
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Binary code

Branching structure
Compiter

Computer program
Computer-aided design
Computer-aided learning
Compuler-aided manufacturc
Computer-managed learming
Data

Debugging

[ugital computer

ENIAC

Expert systems

Fifth generation

First generation

Floppy disk

Flow chart

Fourth generation

Hard disk

Hardware

High-level language
Hybrid computer

IC chips

information

Interaciive computing
Interpreter
Knowledge-based systems
Language processors
Large-scale integration (LSl)
Logarithm

Looping structure

Micrcelectronics
Microprocessor
Minicomputer
Modelfing

Modular programming
Object program
Qperation system
FParalle! computer
FPCAT

PCXT

Pentium

Personal computer
Second generation
Sequence structure
Simulation

Slide rule

Software

Source program
Siraight-line logic
Structured programming
Supercomputer
Third generation
Top-down design
Transistor
Translalors
UNIVAC

Utitity programs
Vacuum tube
Winchester disk
Workslation

1. Describe the abilities of modern computers that are directly relevant
to numerical computing.
2. List at least two applications of computers in each of the following
areas:
(a) Industry
(b) Business
(¢) Education
(d) Engineering
3. Match the items 1n the following lists:
(a} China (i) Punched Cards
(b} John Napier (ii) Accounting Machine
(¢} Blaise Pascal (11i) Abacus
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14.
16.

16.

I
18.
19.
20.

21.

22
23.
24,
25,

26.

(d) IBM (iv) Logarithm

(e) Jacquard (v) Mark I
Describe briefly the developments in computing technology during
the three decades from 1945 to 1975.
Describe the technology of fourth generation computers. How are
they belter than the earlier computer models?
What are fifth generation computers? How are they different from
fourth generation systems?
Distinguish between analog and digital computers.
Distinguish between special purpose and general purpose computers,
A majority of computers used in the world teday are digital. Why?
Whal are personal computers? How are they different from
microcomputers?
Describe the relevance of supercomputers to engineers and seientists.
Define each of the following terms in one sentence:

ta) Computer Program

(b} Hardware

(c) Information

(d) Data

(el Software

- Describe the functions of the following units in a computer:

(a) Memory Unit

(b) Arithmetic Logic Unit

{c) Storage Unit
Describe how an application program is implemented in a computer.
Why do we need language processors? Describe the two forms of
language processors available.
Compare the functions of application programs with that of operating
systems.
What is machine language? What are its limitations?
How is assembly language better that machine language?
What are the features of high-level languages?
How is a program written in a high-level language implemented on
a computer?
State the contributions of the following organisations to the
development of high-level languages:

(a) IBM

(b) Bell Laboratory

(¢} US Defence Department
What are the advantages of interactive computing?
State the main steps involved in solving a mathematical problem.
What is an algorithm? How is it useful for a programmer?
What is modular programming? How does it help in solving a
problem?
Why do we often use flow charts for developing computer pro-
grama?
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29,

30.
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Describe the three basic control structures used in executing the
solution steps.

- Critically compare the Do-and-Test and Test-and-Dg looping struc-

tures.
Compare the following:

(a) Forward jump versus backward jump

(b) Fixed loop versus variable loop
Describe the basic tasks involved in solving a problem using a
computer.



Computer Codes and
Arithmetic

M

INTRODUCTION

Computers store and process numbers, letters and words that are often
veferred to as data. How do we communicate these numbers and words
to computers? How do compuiers store this data and process them?
Since computers cannot understand the Arabie numeral or English
alphabet, we should use some “codes” that can eazily be understood by
them.

In all modern computers, storage and processing units are made of a
set of silicon chips, each containing a large number of transistors, A
transistor is a two-state device that can be put “off” and “on” by passing
an electric currenl through it. Since the transistors are sensitive to
currents and act like switches, we can communicate with the computers
using electric signals, which are represented as a series of “pulse” and
“no-pulse” conditions. For the sake of convenience and ease of use, a
pulse is represented by the code “1” and a no-pulse by the code “0”. They
are called hits, an abbreviation of “binary digits™. A geries of 1's and 0's
are used to represent a number or a character and thus, they provide a
way for humans and computers to communicate with one another. This
idea was suggested by John Von Neumann in 1946, The numbers
represented by binary digits are known as binary numbers. Computers
not only store numbers hut also perform operations on them in binary
form. Although information is skored in the computer memory in
combinationg of 0's and 1's, binary numbers become cumbersome when
expressing large numbers. For this reason, internal contents of a computer
are not displayed in binary form. Instead, they are displayed as
hevadecimal or octal systems. Number systems that are popularly used
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In computing are the decimal system, binary system, hexadecimal system
and octal system.

In this chapter, we will discuss the various number systems and their
conversion from one System to another. We shall also discuss the internal
representation of numbers ang their arithmetijc operations,

position. The actual number of symbols used in g Ppositional system
depends on jtg base.

The decima] System uses a base of 10 and thus it uges 10 symbols, 0 to
9. Any number n he represented by arranging symboly in various
positions. In the decima] system, each position represents a specific power
of 10. Each Slccessive position to the [ofy of the decima] point represents

shown beloy -
Position = 6 5 4 3 2 1 0
Place Valye — 10° 10° jor 0 102 10! g0
For exam ple, the decimal number 5704 reprasents:

3 2 1 0 ~——— Position
104 102 gpt 0 e Wi
5 7 0 4 == Decimal point

f L — 1 .,

—————= 0x 1¢t
[ [__. e e Wy 102 - 700

1
(=]

—— = 5x10° = 5009
Sum 5704~

We can expresg this in genera] form as

dp (10™ 4+ d,, . (10m- = +dy= ¥d, 107
=0

where d; are the decimal svmbols, 0 to 9 and s, — 1 are the number of

symhols. This ig called the expanded notation for the integer,
Similarly, a fractional part of a decimal number can he represented as

¥d; 10
=1

where » is the number of symbols in the fractional part.
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BINARY SYSTEM

The binary system is the positional number system to the base 2. IL uses
two symbols 0 and 1. Again, each position in a binary number represents
a power of the base as shown below.

Position =il 5 4 3 2 1 0
Plass Valig ~——= 2 9 2 g8 92 9t 2
(64) (82) (16) (8) 4) @ Q)
Note that each successive position in the integer part of the binary
number has a value two times grealer than the position to its right.
For example, the binary number 1101 represents Lhe decimal values
as shown below:

3 2 1 0 ~——— Pasition
g~ gE e 20  «—— Value
1 1 0 1 —-<——— Binary point
| | ] L mara
Lo e Q@ = 0
e - Ixd = 4
= 138 = 8
Sum 13 -

That is, 11014 = 13,4
The subscript 2 denotes a number in binary system and 10 denotes a
number in the decimal system. In general form, it can be written as

d, (@) +d, 1@ Y+ tdy= > d; 2
=0

where d; are the binary symbols, 0 or 1. We can further generalise the
notation to any base b as Y.d; 6

fgm
Note that the base b is usnally an integer greater than one, and digits d,
are between 0 and & — 1. The base is sometimes called radix and the
fractional point is called radix point.

HEXADECIMAL SYSTEM

The hexadecimal sysiem is a number system that uses 16 as its base.
This system requires 16 one digit symbols. The first ten symbols are
represented by digits 0 through 9 and the remaining six by the letters A
through F. The letter A denotes 10, B denctes 11 and so on. Table 3.1
shows equivalents of decimal, binary, and hexadecimal values.
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Table 3.1 Equivalent values of different systems

Decimal Binary System Hexadecimal
System Weight — 8 4 F System
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 2
3 0 0 1 1 3
4 0 1 0 0 4
& 0 1 0 1 5
6 0 1 1 0 6
7 0 1 1 1 7
8 1 0 0 0 8
9 1 1] 0 1 9
10 1 0 1 0 A
11 1 0 1 1 B
12 1 i 0 0 C
13 1 1 0 1 b]
14 1 1 1 0 E
15 i 1 1 1 F

In the hexadecimal system, each position represents a value 16 times
greater than the position to its immediate right. The place values of
hexadecimal system are shown below:

Position =i © 3 2 i 0

Place Value —— 16* 16° 162 18! 1g°

The following example illustrates the decimal value represented by a
hexadecimal number,

3 2 1 0 Position
167 16 16! 16° Value
1 2 A F ~<——— Hexadecimal point
] j s - 15x1 = 15
= 10x16 = 160
] - 2x256 = 512
> 1x4096 = 4096
Sum 4783

Thus, 12AF,, = 4783,,

To convert a binary number to hexadecimal, we need only to group
the binary digits in sets of four and convert each group to its equivalent
hexadecimal digit. Thus, the binary number 0111 1010 0001 0010 0001
becomes 7TA121 in hexadecimal. This is illustrated below:

Binary quadruplets 0111 1010 0001 0010 0001

A S T

Hexadeecimal point 7 A 1 2 Ik
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This example clearly illustrates the advantage of hexadecimal system
over binary system. For all large binary numbers, the hexadecimal rep-
resentation is much more compact and, therefore, casier to write and
manipulate than its binary equivalent.

OCTAL SYSTEM

The octal number system is a system having base b as 8, The eight octal
symbols are 0 through 7. The place values in the octal system are pow-
ers of 8 as shown below:

Position —= 4 3 2 1 0

Place Value —= 8! 8% 8% 8t gv
The position values increase by a factor of 8 from right to left. The
example below shows an octal number and its equivalent decimal value:

3 2 1 U ~——— Position
87 8* 8! 8" =—— Value
2 0 5 6 ~t-———  (ctal point
e Byl = 6
— —» Hx8 = 40
= x64 = {]
= 2xH12 = 1024

Thus, 2056, = 1070,
Since 8 = 27, each octal digit has a unique 3 bit binary representation.
This is shown in Table 3.2.

Table 3.2 Binary represantation of o¢tal digits

Octal Binary Representation

0 000
001
010
011
100
101
110
111

B = = B e

Just as in the hexadecimal system, to convert a binary number to octal,
it is only necessary to group the binary digits in sets of three and con-
vert each set to its octal equivalent. For example, the binary number
1011010 can be represented in octal as follows:
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Binary triplets 001 011 010
QOctal equivalent 1 3 2

CONVERSION OF NUMBERS

We discuss here the following systems of conversion:
non-decimal to decimal system

2. decimal to non-decimal system

3. octal to hexadecimal system

4. hexadecimal ta octal system

—

Non-decimal System to Decimal System

We can convert a number in base 2, base 8 or base 16 to a decimal
number using the expanded notation discussed so far. Thie conversion
can also be accomplished using the following algorithms.

Integral Part

1. Multiply the lefimost digit by the base b

2. Add the next digit to the right to the product

3. Multiply the sum by the base & and add the next digit

4. Continue the process until the last (rightmost) digit 1s added
The sum is the decimal equivalent of the given integer number

Fractional Part

1. Multiply the rnghimost digil by 1/

2. Add the next digit to the left to the product

3. Multiply the sum by 1/b and add the next digit

4. Continue this process until the last (leftmost) digit in the fractional

part is added

5. Multiply the last sum by 1/b
The product is the decimal equivalent of the given fractional number,

Note that, in the integral part algorithm, the process ends when the
rightmost digit is added, but, in the case of fractional part algorithm, the
process ends when the leftmost digit is added and the final sum is
multiplied by 1/b.

We can convert the given binary number to the decimal equivalent using
the above algorithm as follows:
Integral Pari Decimal Part
1 0 1 1 1 0 1

=t REER B Bae

_ % 2_ .. | t ] | x 0.6
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Integral Part Decimal Part
1 1 0 1 1 1 0 1

+ ? _.‘____,._.,.‘J | | L 0‘5

Conversion is done as follows:
Integral Part

: 2 A F

]~ |

% 16

288
10
298
% 16 |
4768 t
+ 15 ==
4783
Thuﬁ, leFI.G = 478310

|
x 16 Il
|

Decimal System to Non-decimal System

It is easy to convert a decimal number to a number of any other system.
To do this, we must consider the integer and fractional parts separately
as we did earlier. Algorithms to accomplish this are given below:
Integral Puart
1. Divide the integer part of the decimal number by the base b of the
new syatem. The remainder will constitute the rightmost digit of
the integer part of the new number.
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2. Divide the guotient again by the base . The remainder is the
second digit from right.

3. Continue this process until a zero quotient is obtained. The last
remainder is the leftmost digit of the new number.

Fractional Part

1. Multiply the fractional part of the decimal number by the base b of
the new system. The integral part of the product constitutes the
leftmost digit of the fractional part of the new number,

2. Multiply the fractional part of the product by the base b. The inte-
gral part of the resultant product is the second digit from left.

3. Continue the process until a zero fractional part or a duplicate
fractional part occurs, The integer part of the last product will be
the rightmost digit of the fractiona] part of the new number.

Note that a duplicate fractional part indicates that the sequence will be

an infinite one. The particular black of digits will be repeated over and
over again,

________._._._...____,______.______.._.__

Integral Part

Division Remainder

2| 43

2 Ji_z_ st S U
2110 —= 1! - |
2|5 e ey '
e SEI—

2 (1 —

= —i— |
(o Ti o1y

Integral part of binary number
The digits in the remainder form the binary number when they are
dropped to the right,

Fractional Pare

Fractional pari of binary number
Multiplication  Product Integral part f 0 t’ 1 __’ 1 ’
0375 = 2 0.75 0 \—* ’
1 ——

0.750 x 2 1.50
0.500 = 2 1.00 | [

The digits in the integral part form the binary number when they are
read from the top down (or lifted up to the right as shown).
Thus, 43.375,, = 101011.011,
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8 | 163

8] 20 e g

pla - = f———
¥ ==

[2 T+ ]3]
Octal number
Thus, 163,, = 2434

— . —— — e L — et A — —— —— {— i S

Multiplication Product Integral part
0.65 x 2 1.8 1
0.3 x 2 0.6 0
0.6 x2 12 1
D2 x2 0.4 4]
0.4 %2 0.R 0
0.8 x 2 1.6 1
0.6 x2 1.2 1
D.2%2 0.4 0
0.4 =2 0.2 0
0.8 x2 1.6 1

Thus, 0.65;, = 1010011001 ...

Note that a terminating decimal fraction need not have a terminating
binary equivalent. This happens when a fractional part is repeated and
therefore the process is terminated.

Octal and Hexadecimal Conversion

Using the hinary system as an intermediate stage, we can eagily convert
octal numbers to hexadecimal numbers and vice-versa. The steps are as
follows:
Octal to Hexadecimal

1. Write the octal number.

2. Place the binary equivalent of each digit below the number.

3. Regroup them as binary quadruplets from the binary point, with

zeros added, if necessary.

4. Convert each group into its equivalent hexadecimal digit.
Hexadecimal to Octal

1. Write the hexadecimal number.

2. Place the binary equivalent of each digit below the number.
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3. Regroup them as binary triplets from the binary point, with zeres
added if necessary.
4. Convert each group into its equivalent octal digit.

‘Binary equivalent 016 100 011 =——— DBinary pomnt
Regrouped as '
binary quadruplets 0000 1010 0011
Y
Hexadecimal 0 A 3
Thus, 243 = A3y

Hexadecimal 3 E; 1 B ?

Binary equivalent 0011 1001 : 1011 1000

Regrouped as

binary triplets 000 111 001 q 101 1;0 0(;0
Hexadecimal 0 7 1 ’ 5 6 0

Thus, 39.B8,,; = 71.564

The grouping of binary digits into triplets or quadruplets plays an im-
portant role in the internal organisation of information in computers.
They are often used to represent long binary strings with lesser number
of symbols.

REPRESENTATION OF NUMBERS

As mentioned earlier, all modern computers are designed to use binary
digits to represent numbers and other information. The memory i8 usu-
ally organised into strings of bits called words. Each such string has the
same length in a particular computer, although different computers may
use different word lengths. For example, IBM PC and AT systems use a
word length of 16 bits, while VAX 11 systems use a word length of 32 bits.

The largest number a computer can store depends on its word length.
For example, the largest binary number a 16 bit word can hold is 16 bits
of 1. This binary number is equivalent to a decimal value of 65535. The
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largest decimal number that can be stored in a computer is given by the
following relation;

Largest number = 2" - 1

where n is the word length in bits. Thus, we see that the greater the
number of bits, the larger the number that may be stored.

Although the computer works well with the binary numbers, humans
do not. Firstly, it takes too many bits to represent a number. Secondly,
writing such long series of bits can he exhausting and may cause errors.
This is why we have other systems such as octal, hexadecimal and deci-
mal systems, Computers read decimal numbers supplied by humans but
convert them automatically into binary numbers for internal use. These
binary numbers may also be expressed in the octal or hexadeeimal form
for print-out or display. For output, the numbers are reconverted to
decimal form for human use.

Integer Representation

Decimal numbers are first converted into the binary equivalent and
then represented in either integer or fleating point form. Let us first
consider the integer representation.

For integers, the decimal or binary point is always fixed to the right
of the least significant digit and therefore, fractions are not included. As
mentioned earlier, the magnitude of the number is restricted to 2" — 1,
where n is the word length in bits,

How do we represent negative numbers? N egative numbers are stored
by using the 2's complement. This is achieved by taking the 1's comple-
ment of the binary representation of the positive number and then add-
ing 1 to it.

-—_-——-—-——_—-—u-—.-_._—.-._.._._.._—.-.._—__._.____—..__—..._

]
f=]
=t
—t
L=
[t

+ 00001

———————

] 2’'s complement = 10011
Thus, 13 = 10011

Note that we have used an extra 0 to the left of the binary number
representing 13. This is to indicate that the number is Ppositive.

Then, if the leftmost bit is 1, the number is negative. The leftmost (or
the most significant) bit of a binary number which is used to indicate the
sign is called the sign bit.

Now we see that if we reserve one bit to represeni the sign of the
number, we have only z - 1 bits to represent the number. Thus, a 16 bit
word can contain numbers - 2' to 2'5 _ 1 (i.e. 32768 to 32767).
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Show that the number ~32768 is representeéd in a 16 bit word as faliows:

(i[olo[ o]0 0]0]0]0 0 a]0]u [0 a]s]

T S ——— ——— . i e et e o — — — — i o e e

-32768 = (-32767) + (-1)

32767 0111 1113 1111 1111

1's complement 1000 0000 0000 0000

+ 0000 0000 0000 0001
1000 0000 0000 0001 = la)

0000 0000 0001 0001

1111 1111 1111 1110

-+ 0000 0000 0000 0001
-1 - 11111171 1111 1111 - {b)

-32768 = 1000 0000 0000 0000 - (@ +{)

ionon

-32767
1
1’s complement

wonn

Floating Point Representation

We have just seen how integer numbers are represented. We have alse
seen that a 16 bit computer cannot store a positive number larger than
32767, What if we want to handle a fractional number like 35.7812 or &
large number like 9876543217 Such numbers are stored and processed
in what is known as exponential form. These numbers have an embed-
ded decimal point and are called floating point numbers or real auwmbers.
For example, 35.7812 can be expressed 0.357812 x 107 Similarly, the
number 987654321 can be expressed as 0.987654 x 10°. By writing =
large number in exponential form, we lose some digits. If x is a real
number, its floating point form representation is '
=% 10%

The number f is called mantissa and E is the exponent.

Floating point numbers are stored differently. The entire memory
location is divided into three fields or parts as shown in Fig. 3.1. The
first part (1 bit) is reserved for the sign, the second part (7 bits) for the
exponent of the number, and the third (24 bits) for the mantissa of the
number. Typically, floating numbers use a field width of 32 bits where
24 bits are used for the mantissa and 7 bits for the exponent.

31 30 24 23 0

EXPONENT MANTISSA

ZO—-Ww

1 bit —’ f— 7 bits ——=te—r 24 bhs —
Fig. 3.1 Floating point representation

A-20496
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Thus, we can represent very small fractions or very large numbers with-
in the computer using the floating point representation.

Convert the following numbers to floating point notation.

0.00596, 65.7452, - 486.8
0.00596 is expressed as 0.696 x 1072
65.7452 is expressed as 0.657452 x 10
-486.8 is expressed as - 0.4868 = 10°

The shifting of the decimal point to the left of the most significant digit
is called normalisation and the numbers represented in normalised form
are known as normalised floating point numbers. You may note that the
mantissa should satisfy the following conditions.

For positive numbers:  less than 1.0 but greater than or equal to 0.1

For negative numbers: greater than —1.0 but less than or equal t0 0.1
That is, 0.1 < |f] <1
The normalised floating point numbers are written using the following
notation:

0.596 x 102 written as 596 E - 2
_0.4868 x 10°  written as - 4868 E3

COMPUTER ARITHMETIC

Different. systems of computer arithmetic are currently available. They
include integer arithmetic, fixed point arithmetic, floating point arith-
metic, interval arithmetic and karlsruhe accurate arithmetic.

They are either supported by hardware or software or some software/
hardware combinations. Each system uses its own scheme for represent-
ing numbers in binary form within the machine. The most commen and
popular arithmetic systems are integer arithmetic and floating point
arithmetic. These systems are discussed briefly in this section.

integer Arithmetic

Yirtually all computers offer integer arithmetic. The main property of
integer arithmetic is that the result of any arithmetic opevation with
integers is an integer. The other property is that the result is always
exact with the following two exceptions:
1. The range of integers that can be represented is not infinite but is
bounded above and below.
9. The result of an integer division 1s usually given as a quotient and
a remainder (since fractions cannot be represented in the integer
scheme) which is truncated.
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Addition: 25 +12= 37
Subtraction: 25=12= 13
12-256=-13

Multiplication: 25 x 12 = 300
Division: 25+12= 2
' 12+25= 0

Note that as only a finite range of integers can be repreunted, the
product of two numbers may exceed the range.

Show that the followmg rule does not generally hold good in integer
arithmetic.

Then,

The results are not identical, This is because the remainder of an inte-
ger division is always truncated.

Floating Point Arithmetic

Although integer arithmetic is adequate in many computing applica-
tions, it does not meet the requirements of many numerical computing
methods as they often involve manipulation of fractional numbers. Hence,
floating point arithmetic is the preferred choice for a majority of numer-
ical computing applications.

In the floating point system, all the numbers are stored and processed
in normalised exponential form. The most difficult operations in the
floating point arithmetic are addition and subtraction.

Addition TLet the two numbers to be added be x and y, and let 2 be the
result. Let the fractional parts and exponents be f,, f, and f,, and E, E
and E,, respectively. Then, the addition algorithm is as follows:
1. Set E, = the larger of E, and E,. (Assume here E, >= E,. Then
E =E).
2. S}nﬁ R:ghz Shift £, to the right by E, — E, places. (This makes the
exponent of /, and f the same).
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3. Add. Setf.=F.

4. Normalise, If the absolute value of f, is greater than one, shift the
decimal point of £, to the left of the most significant digit and then
increase E, by one.

Then z=f,x 10%

In all the manipulations, the result of any operation is normalised
and the mantissa is rounded or truncated to p digits, where p is the
precision of the computer used. In the examples discussed here, we
assume a precision of 6 and the mantissa is truncated to 6 digits.

Add the numbers 0.964572 E2 and 0.586351 E5.

T e e e — — — — — — — — — — — — —— — — —

Let x = 0.586361 and y = 0.964572 E2
E. =5
7. = 0.000964 + 0.586351 = 0.587315
Then, z = 0,587315 E5
Note that both the mantissa and exponent of the number with the small-
er exponent are modified and the modified mantissa is truncated to six

;‘ = 0.7356816 + 0.685742 = 1.371558
z = 1371558 E4 = 0.137155 E5

Note that the mantissa of the result is truncated.

Sublraction Subtraction is nothing but addition of numbers with dif-
ferent signs. However, the subtraction of mantissas may result in a
number less than 0.1. In such cases, the decimal point should be shifted
to the left of the most significant digit and the exponent of the result
should then be decreased accordingly.

Let x = 0.999658 E-3 and y = 0.994576 E-3
E, =-3
f, = 0.999658 — 0.994576
= 0.005082

z=x-Yy
=0.005082 E - 3
= 0.508200 E - 5 (normalised)
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Multiplication Multiplication of two floating point numbers is relative-
ly simple.

1. Multiply the fractional parts: f, = £, » 3

2. Add the exponents: E, = E, + E,

3. Then,z =, x 10%

4. Normalise, if necessary.

f, = 0.200000 x 0.400000
= 0.080000
E,=4-2=2
z = 0.080000 E2 = 0.800000 E1 (normalised) = 0.800000

Division Division is done as follows:
1. Divide the fractional parts: [, = /. /f,
2. Subtract the exponents: E, = E, - E),
. 2=Ff % 105

4. Normalise, if necessary.

Divide Lhe number 0.876543 E — 5 by 0.200000 E - 3

T e e e e — — — — — . . . s — — — — —— s

f. = 0.876543 + 0.200000
= 4.382715
E =-5-(-3)=-2
z=4382716 E - 2
= 0.438271 E - 1 (normalised)
Note that the mantissa of the result is truncated,

ERRORS IN ARITHMETIC

In integer arithmetic, while all arithmetic operations are exact, we might
come across the following two situations:
1. An operation may result in a large number that is beyond the
range of the numbers that the computer can handle.
2. An integer division may result in truneation of the remainder.
When the result is larger than the maximum limit, it is referred to as
an overflow end when it is less than the lower limit, it is referred to as
underflow. Unfortunately, most computers do not issue any warnings or
messages on integer overflow or underflow. Therefore, we should use
integer arithmetic with utmost care,
The floating point arithmetic system is prone to the following errors:
1. Error due to inexact representation of a decimal number in binary
form. For example, consider the decimal number 0.1. The binary
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equivalent of this number is 0.0001100110011.... The binary equiv-
alent has a repeating fraction and therefore must be terminated at
some point.

9. Error due to rounding method used by the computer, in order to
limit the number of significant digits. This was illustrated in the
examples discussed in Section 3.8. In fact, if the numbers added
are too different in magnitude, the smaller may be treated as if it
were zero (see Example 3.18).

3. Floating point subtraction may induce a special phenomenon. It is
possible that some mantissa positions in the result are unspecified.
This happens when two nearly equal numbers are subtracted. This
is known as subtractive cancellation. If the operands themselves
represent approximate values, the loss of significance is serious
gince it greatly reduces the number of significant digits. The error
can be arbitrarily large (see Example 3.21).

4. Overflow or underflow can occur in floating point operations when
the result is outside the limits of floating point number system of
the computer,

The following examples illustrate these errors

x = 0.5600000 E1 and y = 0.100000 E - 7
Bo=1

}‘), = (0.000000001

£, = 0.500000001 = 0.500000

z = 0.600000 E1

Note that the value of z is the same as that of x.

f 0.175000
z = 0.175000 E110

If we assume that the exponent can have a maximum value of 99, then
the result overflows.

E,= —18 95 = —113
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f; = 0.875000 + 0.200000 = 4.375000
2=4.375000 E - 113
= 0.4376500 E - 114

If we assume that the exponent can have a minimum value of - 99, then
the result underflows.

f,
f. - £, = 0.000002
E,=0
Thus, z = 0.000002 % 10° = 0.200000 x 105

= 0.499998

The result contains only one significant digit, If the values of x and y are
not exact, then the result may not reflect the true difference between
them. In many systems, these unspecified digits are filled by arbitrary
digits thus causing a further increase in the error.

LAWS OF ARITHMETIC

Due to errors introduced in floating point arithmetic, the associative and
distributive laws of arithmetic are not always satisfied. That is,
x+(y+z)2(x+y)+z
Ax xRk xyyng
xxy+2)zlxxyl+xxz)
Although failure of these laws to be satisfied affects relatively few com-
putations, it can be very critical on some occasions. The examples that
follow illustrate the discrepancies.

Asgociative law for addition

e — e e e e . —— — — — —— — — — — — — e s e i e

Let x = 0.456732 x 1072, y = 0.243451, z = — 0.248000
(x + ¥) = 0.004567 + 0.243451 = 0.248018
(x +¥) + 2z = 0.248018 — 0.248000 = 0.000018"
= (.180000 x 10°*
{y + 2) = 0.243451 - 0.248000 = — 0,004549 = 04549 x 1072
x + {y + 2) = (0.466732 ~ 0.454900) 102
= (.183200 = 1072
Thus, E+y)+zzx+(y+2)
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Let x = 0.400000 x 10*°, y = 0.500000 x 10*", z = 0.300000 x 107"
(x x y) x z = (0.200000 x 10*11%) (0.300000 = 10°%)
Note that (x x y) causes overflow and so the result will be erroneous.
x % (y x 2) = (0.400000 x 10%% x (0.1500000 x 10%)
= 0.060000 = 10" = 0.600000 x 107

This gives the correct result assuming that the exponent can take a
value up to + 99.

Let x =0.400000 x 10’, y = 0.200001 = 10°, z = 0.200000 = 10°
x x (v — z) = (0400000 x 10") x (0,100000 x 1075
= 0.400000 x 1077
(x x y) — (x x z) = 0.800000 = 10° — 0.800000 = 10" = 0

SUMMARY

In this chapter, we have discussed a very important aspect of numerical
computing, namely, the internal representation of numbers in a compui-
er. We considered the following in detail:

number systems that are popularly used in compuling

conversion of numbers from one system to another

storage of numbers in the memory of a compuler

different systems of arithmetic operations that are commonly used
in numerical computing

errors introduced by arithmetic operations

e associative and distributive laws of arithmetic

. 9 8 ®

Key Terms

Associaliva faw Interval arithmetic
Base Mantissa
Binary digits Normalisation
Binary numbers Normalised numbera
Bits Octal numbers
Computer memory Overilaw.
Data Processing

\  Decimal numbers Quadruplets
Distributive law Radix point

T (Contd.)
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(Contd.)

Exponent: : ; Real numbers

Fixed point arithmetic .. Sign bit

Floating point form ' Storage

Floating point arithmetic Sublractive cancellation
Hexadecimal numbers Transistor

Integer arithmetic Triplets

integer form Undarfiow

L

o

10.
11,

12.

14,

15.

- How many binary digits are there? Which symbols are used for

them? What are they usually called?

- Binary digits are used to store and manipulate data in computers.

Why? Why do then we use other number systems?
What is the complement of & number? Obtain the cormplement of
the decimal number 57497
How do we obtain one's complement and two's complement of a
binary number? 3
What are the uses of complements of binary numberg?
What is sign bit? How does the computer store a negative number?
An 8-bit regisler stores numbers in Lwa’s complement form.
(a) What is the largesl positive decimal number that can be
stored?
(b) What is the smallest negative decimal number that can be
stored?
Why do we need to represent numbers in exponential form? Ex-
plain how a decimal number is represented inside the computer
using the exponential form?

. Explain the following:

(a) Overflow
(b) Underflow
Discuss the errors that may oceur during the floating point arith-
metic aperations.
The hexadecimal equivalent of the binary number 10011101 is
(a) HA (b) FF (c) 9D (d) 9E
The decimal equivalent of the binary number 10011101 is
(a) 27 (b) 157 (e} 13 (d) 144

. The binary equivalent of the octal number 42 is

{a) 101110 (b) 111010  (c) 100010 (d) 101011
The octal equivalent of the hexadecimal number CD5 is

(a) 3625 (b) 6325 (c) 3652 (d) 6352
The hexadecimal equivalent of the decimal number 163 is

(a) B3 (b) A2 () A3 (d) 93
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_ Convert the decimal numbers (i) 29, (ii) 123, and (iii) 432 to

(a) binary system
(h) octal system
(¢) hexadecimal system
Convert the octal numbers (i) 25, (ii) 52, and (iii) 563 to
(a) decimal system
(b) binary system
(c) hexadecimal system
Convert the hexadecimal numbers (i) 8F, (ii) BC4, and (iii) AF3D to
(a) decimal system
{b) octal system
(¢) binary system

. Convert the binary numbers (i) 0101, (ii) 0111.0111, and (iii) 1011.11

to
(a) decimal system
(b) octal gystem
(c) hexadecimal system

. Assuming that the computer stores each number in a 16-bit memo-

ry location, find the internal representations of the following num-
bers:

{a) 498

(b) -498
Write the following numbers in normalised exporential form and
E-form.

(a) 12.34 (d) -0.009876
(b) -654.321 (e) 0.0
(c) 0.001234 (f) 12345

. Assuming that the mantissas are truncated to 4 decimal digits,

show how the computer performs the following floating peint oper-
ations:

(a) 0.5678 x 10* + 0.6666 » 10*

(b) 0.1234 x 10* + 0.4455 x 1072

(c) 0.3366 x 1072 -0.2244 x 107

(d) 0.6789 x 10% x 0.2233 x 10!

(e) 0:6789 x 10 + 0.2233 x 107"
Assuming that the mantissas are truncated to 4 decimal digits,
compute the error in the following computations:

(a) 5.8789 —1.2345

(b) '5.6789 + 9.2345

. Tllustrate with examples the concept of overflow and underflow.
. Discuss an example to show that the distributive law of arithmetic

is not always satisfied in numerical computing.



Approximations and
Errors in Computing

INTRODUCTION

Approximations and errors are an integral part of human life. They are
everywhereand unavaidable. This is more so4n.the life of a computational
scientist.

We cannot use numenr:al methods and ignore the existence of errors.
Errors come in a variety of forms and sizes; some are avoidable, some
are not. For example, data conversion and roundoff errors cannot be
avoided, but a human error can be eliminated. Although certain errors
cannot be eliminated completely, we must at least know the bounds of
these errors to make use of our final solution. It is therefore essential to
know how errors arise, how they grow during the numerical process,
and how they affect the accuraey of a solution.

By careful analysis and proper design and implementation of
algorithms, we can restrict their effect quite significantly.

As mentioned earlier, a number of different types of errors arise during
the process of numerical computing. All these errors contribute to the
total error in the final result. A taxonomy of errors encountered in a
numerical process is given in Fig. 4.1 which shows that every stage of
the numerical computing cycle contributes to the total error.

Although perfection is what we strive for, it is rarely achieved in
practice due to a variety of factors. But that must not deter our attempts
to achieve near perfection. Again the question is: How much near?

In this chapter we discuss the various forms of approximations and
errors, their sources, how they propagate during the numerical process,
and how they affect the result as well as the solution process.
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Total
B eror
Modelling Inherent Numerical Blunders
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F 3 ~ Fig. 4.1 Taxonomy of errors

7 - SIGNIFICANT DIGITS

76 kriow that all computers operate with a fixed length of numbers. In
particular, we have seen that the floating point representation requires
the mantissa to be of a specified number of digits. Some numbers cannot
be represented exactly in a given number of decimal digits. For example,
the quantity 7 is equal to_ :

" 3.1415926535897932384626...

Such numbers can never be represented accurately. We may write it
as 3.14, 3.14159, or 3.141592653. In all cases we have omitted some
digits.

Note that transcendental and irrational numbers do not have a
terminating representation. Some rational numbers also have a
repeating decimal pattern, For instance, the rational number 2/7 =
0.285714285T14.... Suppose we write 2/7 as 0.285714 and r as 3.14159,
Then we say the numbers contain six significant digits. )

The concept of significant digits has been introduced primarily to
indicate the accuracy of a numerical value. For example, if, in the number
y = 23.40657, only the digits 23406 are correct, then we may say that y
has five significant digits and is correct ta only three decimal places.

In general, when a number is said to be “good to four digits”, it means
that the number has four significant digits. The omission of certain
digits from a number results in what is called roundoff error. The following
statements describe the nnt% s v
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_\/{' All non-zero digits are significant.
32 All zeros occurring between non-zero digits are significant digits.
\3 Trailing zeros following a decimal point are significant. For example,
50, 65.0 and 0.230 have three significant digits each.

/ Zeros between the decimal point and preceding a non-zero digit are
not significant. For example, the following numbers have four
significant digits. 5

0.0001234 (1234 x 1077
0.001234 (1234 % 1079
0.01234 (1234 x 1079

. When the decimal point is not written, trailing zeros are mot
considered to be significant. For example, 4500 may be written as
45 « 10% and contains only two significant digits. However, 4500.0
contains four significant digits. Further examples are: '

7.56 « 10% has three significant digits.
7.560 x 10" has four significant digits.
7.5600 x 10* has five significant digits.
Integer numbers with trailing zeros may be written in scientific notation
to specify the significant digits.
The concept of accuracy and precision are closely related to signifieant

digits. They are related as follows: : ‘

A Accuracy refers to the number of significant digits in a value. For
example, the number 57.396 is accurate to five significant digits

“ 9 Precision refers to the number of decimal positions, i.c. the order of

magnitude of thé last digit in a value. ‘The number 57.396 has a
precision pf0.001 or 107,

fich of the following numbers has the greatest precision
(a) 4.3201 (b) 4.32 (c) 4.320106

_—.—.—-.—-...-——-..-.--.—-—_—.——-..—-...-..—_...._._-_._—__..-.._——-.

(a) 4,3201  has a precision of 107

(b) 4.32 has a precision of 107*

(c) 4.320106~has a precision of 107
The last numhbér has the greatest precision

(a) This has five sd.

(b) This has four sd. The leading or higher order zeros are only place
holders.

(¢) This has six sd.
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__A8) Thishas two sd.
_+e} Accuracy is not specified.
(f) This has ;i‘;?d: Note that the zeros were made significant by writing
.00 after 3600.

INHERENT ERRORS

lerent errors are those that are present in the data supplied to the
model. Inherent errors (also known as input errors) contain two
components, namely, data errors and conversion errors.

[rors

-Déla error (also known as empirical error) arises when data for a problem
are obiained by some experimental means and are, therefore, of limited
accuracy and precision. This may be due to some limitations in
instrumentation and reading, and therefore may be unavoidable) A
physical measurement, such as a distance, a voltage, or a time period,
cannot be exact. It is, therefore, important to remember that there iz no
use in performing arithmetic operations to, say, four decimal places
whep-the original data themselves are only correct to two decimal places.
Kor instance, the scale reading in a weighing machine may be accurate

only sne decimal place.

ok Pcsfwersion Errors

7 Conversion errors (also known as representation errors) arise due to the
limitations of the computer to store the data exactly, We know that the
floating point representation retains only a specified number of digits.
The digits that are not retained constitute the roundoff errog)

As we have already seen, many numbers cannot be represented exactly
in a given number of decimal digits. In some cases a decimal numhber
cannot be represented exactly in binary form. For example, the decimal
number 0.1 has a non-terminating hinary form like
0.00011001100110011.... but the computer retains only a specified number
of bits. Thus, if we add 10 such numbers in a computer, the result will
not be exactly 1.0 because of roundoff error during the conversion of 0.1

to binary ]T},-"'/

epresent the decimal numbers 0.1 and 04 in binary form with an
‘aceuracy of 8 binary digits. Add them and then convert the result back
to the decimal form

04, =0.0110 0110
Sum = 0.0111 1111
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=0.25 + 0.125 + 0.0625 + 0.03125 + 0.015625
+ 0.0078125 + 0.00390825
= 0.49609375

Note that the answer should be 0.5, but it is not. This is due to the error
in conversion from decimal to binary form: Remember, both the numbers
have non-terminating binary representation. '

Error is equal to 2 = 0.00390625. It is clear that the error can be

reduced by increasing the- inary digite that represent the number. For
example, if we use its, then the error will be equal to 2% = 0.15258739

r

| NUMERICAL ERRORS

S ¥umerical errors (also known as procedural errors) are introduced during
the process of implementation of a numerical method. They come in two
forms; Toundoff errors and Funcation errors ) The totat mumerical error
is The summation of these two errors, ‘The total error can be reduced by

devising suitable techniques for implementing the solution. We shall see
“in this section the magnitude of these errors,

doff Errors . .

oundoff errors occur when a fixed number of digits are used to represent
exact numbersy Since the nmumbers are stored at_every stage of

computation, rolindof! error is introduced at the end of every arithmetic

operation.\Consequetitly, eventhough an individual roundoff error could
be very sthall, the cumulative effect of & series of computations can be
very significant.

Rounding a number can be d ne in two ways. One is known as chopping

and the (jrl.n};y‘,is" known as symmetric rounding. Some systems use the
e

choppin thod while others use symmetric rounding.
,ﬂ’:/ pping

In chopping, the extra digits are dropped. This ig called truncating the
number. Suppose. we are using a computer with a fixed word length of
four digits. Then a number lilcé_é&%_tuiﬂ be stored as 42,78, and the
digits®93 will be dropped. We can express the number 42.7893 in floating
point form as ; S

x = 0427893 » 10*
= (0,4278 + 0.000093) x 10
= [0.4278 + (0.93 x 10™)] x 102
This can be expressed in general form as
True x = (f, + g, x 10 910"
=fx10% 4+ g, x 10F-4
= approximate x + error.
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-’

where f, is the mantissa, d is the length of the mantissa permitted and £
is the exponent. In chopping, g, is ignored entirely and therefore,

Error =g, x 10° %, 0sg,<1

The absolute error introduced depends on the following:
1. the size of the digits dropped
2. number of digits in mantissa
3. the size of the number

Since the maximum value of g, i8 less than 1.0,

[ Abgolute error < 10° —dJ

Symma!rlc Roundoff

\ In'{he symmetric roundoff method, the last retained significant digit is
““younded up” by 1 if the first discarded digit is larger or equal to 5:
otherwise, the last retained digit is unchanged. For example, the number
427893 would become 42.79 and the number 765432 would become
76.54.
As hefore, the value of unrounded number ean be expressed as

Truex = [, x 10F + g, x 1054
When g, < 0.5, entire g, is truncated and therefore,
Approximate x = £, x 107
and '
Error =g, x 10°79, g, <05

When g, = 0.5, the last digit in the mantissa is increased by 1 and
therefore

Approximate z = (f, + 107%) x 108 =, x 105 + 108 -4
Error = [f, x 10° + g, = 10%~9] - [/ x 10F + 108 - 4]

(g.-x10%-4) g 205
In either case, 10~ 7 is multiplied by factor whose absolute value is no

greater than 0.5. Therefore, the vglue of the absolute error is
Dbsolut.e error < 0.5 x 1054 !

Note that the symmetric rounding error is, at worst, one-half the chopping
erTor.

Sometimes a slightly more refined rule is used when the g, is exactly
equal to 0.5. Here f, is unchanged if its last digit is even and is increased
by 1 if its last digit is odd.

& ‘Find-the roundoff error in storing the number ;@gg."g.ga_s uging a four
digit mantissa. B

o —— i —— —— . —— — — A — ——— T — e et A el S S S

S "
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Chopping method
Approximate x = 0.7526 x 10’
Error = 0.0835

Symmetric rounding 2o
Errer—:’fj’;’ﬂﬁ?ﬂ“
~ =-0.165 x 107! =~ 0.0165
prﬁim x = 0.76527 x 10°

cation Errors AL

runcation errors arise from using an approximation in place of an exact

mathematical procedure) Typically, it is the error resulting from the
truncation of the numerfcal process. We often use some finite number of
terms to estimate the sum of an infinite series. For example,

- n 5
S=Ya,x is replaced by the finite sum 3 a; x'
i-n i=0
The series has been truncated.

Another example is the use of a number of discrele steps in the solution
of a differential equation. The error introduced by such discrete
approximations is also called discretisation error. Consider the following
infinite series:

8 b gl

i Y

When we calculate the sine of an angle using this series, we cannot
use all the terms in the series for computation. We usually terminate
the process after a certain term is caleulated. The terms “truncated”
introduce an error which is called truncation error.

Many of the iterative procedures used in numerical computing are
infinite and, therefore, a knowledge of this error is important. Trunca-
tion error can be reduced by using a better numerical model which
usually increases the number of arithmetic operations. For example, in
numerical integration, the truncation error can be reduced by increasing
the number of points at which the function is integrated. But care should
be exercised to see that the roundoff error which is bound to increase
due to increase in arithmetic operations does not off-set the reduction in
truncation error.

We often use library functions to compute logarithms, exponentials,
trigonometric functions, hyperbolic functions, and so on. In all these
cases, a series is used to evaluate these functions. It is important to
know the truncation errors introduced by these library functions.
Truncation errors are discussed in detail in many places in this book.

Einx=x-—
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I"F‘\]-sdzthv truncation error in the result of the following function for

= 1/5 when we use (a) first Lhree terms, (b) first four terms, and
fc) first five terms. it

K] 4 5 6
x
e‘=l+x+-x--—+—1't +-J'— T a

(a) Truneation error when first three terms are added

3 4 5 8
i X x & X

e e e

Truncation error 31 + 1 5l 6!

f:+0,23 \.L(}.2‘it +025 _'_02“
6 24 120 7120
= 0.1402755 IO'
(b) Truncation error when first Tour terms are added
Truncation error.= 0.694222 « 10° ¥
(¢) Truncation errér when ﬁrst five terms are added
Truncation error = 0.275555 » 10°°

)
" — — —— — — e . . e e —— —— . — — — — —
gt E° =%
41" 5! 8

022 (2% 08¢ 028 oo

B D e el N e

¢ Y2776 ‘T2 120 Y720
(a) Truncation error (three terms) = - 0,1279255 x 1072
(b) Truncation error (four terms) = + 0.6665556 x 10~

(c) Truncation error (five terms) = —0.257777 x 10°%
Note that

x
|T.E.;| < T

X
|TE.,| < T

xfl
|TEs| <%r
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ODELLING ERRORS

dathefaatical models are the basis for numerical solutions. They are
formulated to represent physical processes using certain parameters
involved in the situations. In many situations, it is impractical or
impossible to include all of the real problem and, therefore, certain
simplifying assumptions are made. For example, while developing a model
for calculating the force acting on a falling body, we may not be able to
estimate the air resistance coefficient (drag coefficient) properly or
determine the direction and magnitude of wind force acting on the body,
and so on. To simplify the model, we may assume that the force due to
air resistance is linearly proportional to the velocity of the falling body
or we may assume that there is no wind force acting on the bodv. All
such simplifications certainly result in errors in the output from such
models.

Since a model is a basic input to the numerical process, no numerical
method will provide adequate results if the model is erroneously conceived
and formulated. It is obvious that we can reduce these type of errors by
refining or enlarging the models by incorporating more features. But the
enhancement may make the model more difficull Lo solve or may take
more time to implement the solution process. It is also not always true
that an enhanced model will provide better results. We must note that
modelling, data quality and computation go hand in hand. An overly
refined model with inaccurate data or an inadequate computer may not
be meaningful. On the other hand, an oversimplified model may produce
a result that is unacccpta/ble’.‘ft i, therefore, necessary to strike‘a balance
between the level of aecuracy and the complexity of the model, A model
must incorporate efily those features that are essential to reduce the

Flunders are errors that are caused due to human imperfection. As the
name indicates, such errors may causc a very serious disaster in the
result. Since these exrors are due to human mistakes, it should be possible
to avoid them to a large extent by acquiring a sound knowledge of all
aspects of the problem as well as the numerical process.

Human errors can occur at any stage of the numerical processing
cycle. Some common types of errors are:
lack of understanding of the problem
wrong assumptions
overlooking of some basic assumptions required for formulating the
model
errors in deriving the mathematical equation or using a model that
does not describe adequately the physical system under study

o~/
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5. selecting a wrong numerical method for solving the mathematical
model
6. selecting a wrong algorithm for implementing the numerical method
7. making mistakes in the computer program, such as testing a real
number for zero and using < symbol in place of > symbol
8. mistakes in data input, such as misprints, giving values eolumn-
wise instead of row-wise to a matrix, forgetting a negative sign, ete.
9. wrong guessing of initial values
As mentioned earlier, all these mistakes ean be avoided through a
reasonable understanding of the problem and the numerical solution
methods, and use of g programming techniques and tools.

. LUTE AND RELATIVE ERRORS A~

% = o
" Let us-how consider some fundamental definitions of error analysis,

‘Regtirdless of its source, an error is usually quantified in two differe
but related ways. One is Known as absolute error and the other i3 called
ae et WELYE. i et 055
relative error. o

~hetussuppose that the true value of a data item is denoted by x, and
its approximate value is denoted by x,. Then, they are related as follows:

True value x, = Approximate value x, + Error.
The error is then given by
Error = x, - x,
The error may be negative or positive depending on the values of x, and
%, In error analysis, what is important is the magnitude of the error

and not the sign and, therefore, we normally consider what is known as
absolute errur which is denoted by

In many cases, absg error may not retlect its influence correctly as it

does not take into account the order of magnitude of the value under
study. For example, an error of 1 gram is much more significant in the
weight of a 10 gram gold chain than in the weight of a bag of rice. In
view of this, we introduce the concept of relative error which is nothing
but the “normalised” absolute error. The relative error is defined as
follows:

absolute error
=

r

[true value|
\-/'/

N 2l el 3

N X
More often, the quantity thattskwown to us is x, and, therefore, we can

modify the above relation as follows:

al




Approximations ond Errors in Computing 71

The fractional form of e, can also be expressed as the per cent relative
error as

Pef cent e, = e, x 100

erigineer has measured the height of a 10 floor bu:ld.mg as 2950
cm and the working height of each beam as 35 em while the true values
are 2945 ecm and 30 cm, respectively. Compare their absolute and rela-
tive errors.

Absolute error in measuring the height of the building is
ey = 2950 - 2945 = § em '
The relative error is’
. e, 1= 5/2945 = 0.0017 = 0.17% &
Absolute error il measuring the height of the beam is
_ gy = 35 30 =5 cm /
The relative error is
@30 = 0.17 = 17%

Although the abschite grrm's are the same, the relative errors differ by
100 times. It ahow Lat there is qnmethmg wrong in the measurement

Recall that the round off error introduced in a number when it is repre-
sented in floating point form is given by

Chopping error =g x 105 ¢, 0sg<1

where g represents the truncated part of the number in normalised
form, d is the number of digits permitted in the mantissa, and E is the
exponent. The absolute relative error due to chopping is then given by

g::l(]ﬁ d
fxlOE

r

The relative error is maximum when g is maximum and f is minimum.
We know that the maximum possible value of g is less than 1.0 and
minimum possible value of /" is 0.1. The absolute value of the relative
error therefore satisfies.
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LOx10E-4d

§l— =10 d-1
0.1x10%

-

The maximum relative error given above is known as machine epsilon.
The name “machine” indicates that this value is machine dependent.
This is true because the length of mantissa d is machine dependent. For
a decimal machine that uses chopping,

Machine epsilon s = 107 * !
Similarly, for a machine which uses symmetric roundoff,

ommﬂ-di B e
- D.IXLUE =§K10

Machine epsilon £ - _21; x 10-¢+!

€

and therefore

It is important to note that the machine epsilon represents upper bound
for the roundoff error due to floating point representation. 1t also sug-
gests that data can ba represented in the machine with d significant
decimal digits and the relative error does not depend in any way on the
size of the number.

More generally, for a number x represented in a computer,

]—Abso]ube error bound = |x| x # |

For a computer system with binary representation, the machine epsi-
lon is given by

Chopping
Machine epsilon &=
Symmetric rounding
Machine epsilon £= 29

2-d+1

Note that we have simply replaced the base 10 by base 2. Here d
indicates the length of binary mantissa in bits.
We may generalise the expreasion for machine epsilon for a machine
which uses base b with d-digit mantissa as follows:
" e=bxb" for chopping
P £= b/2 x b7 for symrhetric rounding

—— s — — — — ———— — — — — —— — — — — — — — — —

Assume that the binary computer has p-bit mantissa. Then the error
bound is 27, This computer will have ¢ significant digits with symmetric

rounding, if, =
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. 27 =1/2 x109*!

Taking logarithms to the base 10, we get
g=1+(p-1)log,2

If we assume p = 24, then
g=1+23log;;2=17.9

We may say that the computer can store numbers with seven significant
decimal digits.

-~

:-'_‘ " ERROR PROPAGATION

Numerical computing involves a series of computations consisting of
basic arithmetic operations. Therefore, it is not the individual roundoff
errors that are important but the final error on the result. Our major
concern is how an error at one point in the process propegaetes and how
it, effects the final total error. In this section, we will discuss the arith-
metic of error propagation and its effects.

Addition and Subtraction

Consider addition of two numbers, say, x and y.
Lty =X, te +y, e
=(x, +¥,) + (e, + eyi
Therefore,

Total error =e,.,,=e, +e¢, l

Similarly, for subtraction

Total error = ¢, ,=e.—~¢, }

Note that the addition e, + e, does not mean that error will increase in
all cases. It depends on the sign of individual errors. Similar is the case
with subtractions.

Since we do not normally know the sign of errors, we can only esti-
mate error bounds. That is, we can say that

|€cayl % leg] + |5
Therefore, the rule for addition and subtraction is: the magnitude of
the absolute error of a sum (or difference) is equal to or less than the sum
of the magnitudes of the absolute errors of the operands.
This inequality is called the triangle inequality. The equality applies
when the operands have the same signs, and the inequality applies if
the signs are different,

Multiplication
Here, we have

X% ¥ = (X, + B % (0, + ) = XV + Vo€ + X8y + B8y
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Errors are normally small and their products will be much smaller.
Therefore, if we neglect the product of the errors, we get
X XY = Xg¥, + 2.8, + Yo
=XaYa * X3, (e ix, + eyjya)

Then,
Total error = e, = x,y, (e, /x, + e_\,fya_)l
Division
We have
Xy ol x, + Ey
Y Y te,

Multiplying both numerator and denominator by y, — e, and rearranging
the terms, we get

x, _xuya tTYalr —X €,y —€ey€y

Y J’f‘*eg

¥

Dropping all terms that involve only product of errors, we have

X, __-rnya TVa €y T X, €y
Y J’E
X Xa €y E?]
yc yl'l xﬂ -yﬂ

Thus,

X, € e
Total error =e,,, = —‘-’-[—’-‘—« _,,_]
Ya

e gloetf 1% | _GL]
Ya Xa Yau i
e ¥
&y Slx S —
X |ayu[{xn! yﬂ]

Note 1
The initial errors e, and e, may be of any type. They may be
1. empirical errors introduced in the measuring process
2. roundoff errors introduced in conversion
3. roundoff errors introduced due to arithmetic operations in the pre-
vious step, if x, and y, represent some intermediate results
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4. truncation errors, if x, and y, represent the result of evaluation of
infinite series

5. any combination of the above
Note 2
The final errors (after arithmetic operations)e, , ,, e, -y &, and e, are
expressed in terms of only e, and e, and do not contain the roundoff
errors introduced by the operations themselves. This results from the
need to store the result in floating point representation. Therefore, we
must add the roundoff error introduced in doing the operation in each
case. For example,

Eriy T+ +e,
Now, we can have relative errors for all the four operations as follows:
Addition and Subfraction

|3x|+|eyi

F ——
1xn tyﬂl

rxzty

Ya

X, t Y, '}er,y]

']er.:rl_'l‘

Multiplication and Division
er, xy - |er,x1+ ier,y f

€, x ;'Té-r.x |+]e,.,i

s e s S e E— — — — — — —— — —— — — — p—— — i — — — — —

le l+]e,|
lx - ¥

Since the numbers x and y are stored in a four-digit mantissa system,
they are properly rounded off and therefore,

¥l

le, .| s—é- x 10 = 0.05%

le, , | S%x 102 = 0.05%

Then
e, =0.1234 x 10" x 0.5 x 107 = 0.617
e,=01232 v 104« 05« 1073 = 0.618
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Therefore
le.| < |e |+ |e,| =1.233
1:233 x 10 4

i) - 0.6165=61.66%
ley,s| i0.1234 - 0.1232] -0*8 p—

Although the relative errors in x and y are very small, the relative error
in z is very large. If we use this result as an input to further calcula-
tions, the final result will be disastrous. The error due to subtraction of
two nearly equal numbers is known as subtructive cancellation.

Rules for error propagation discussed above can also be derived using
the concepts of differential calculus. We will find this approach more
convenient when we deal with complex functions. For example, consider
a power function

w=x"
BError Aw =nx" "' Ax
Relative error,
Cu=nxAxix=nxe.

The relativé error in w is n times the relative error in x.

Sequénce of Computations

have seen how errors in the operands propagate to the result of an
““uperation. As we know, the computer can do only one operation at a
time. It performs a sequence of operations in order Lo evaluate éven a
simple expression; such as '
w=x+ yiz

In such cases, the result of one operation is stored in the machine in the
floating point form before il is used as an input for the next operation.
At each stage of computation, a roundoff error is therefore introduced in
the result hefore it is used again. Thus, each stage becomes a source of
new errors. This is illustrated in Fig, 4.2, for evaluating the above ex-
pression. The intermediate valne u contains the propagated error due to
error in x and its own roundoff error »,. Similarly, v contains the propa-
gated error due to errors in y and z and also the roundoff error r,.
Finally, w contains the propagated error due to errors in u and v and the
roundoff error ry.

Roundoff error

o l—o

v
y |
22— @ ;
r=
Roundoff error

Fig. 4.2 Block diagram for evaluation of x? + y/z
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Find theébsolute error inw =xy + zifx = 2.35,y = 6.74 and z = 3.45
=X Sim e, oosizael -oouts -
y, = 6.74, e, = 0.005|6.74| = 0.03370
z, = 345, e, = 0.005 |3.45| = 0.01725
&, = |z, ey + |yale,
= 2.35 x 0.03370 + 6.74 % 0.01175 = 0.15839

e, = ley| + le,| = 0.15839 + 0.01725 = 0.17564

Addition of a Chain of Numbers

As we pointed out earlier, many standard mathematical ideas do not
hold good in computer arithmetic. One such case is the floating point
addition. In computer arithmetic, the floating point addition is not al-
ways associative. That 1s,

xX+y+zrz+y+x

The examp]es/4.11 and 4.12 illustrate this rule,

Evaluate w = x + y + 2, where x = 9678,y = 678 and z = 78. Remember,
the computer performs arithmetic operations one at a time and from left
to right. We assume that there is no inherent error (for the sake of
simplicity) in x, y and z and the length of mantissa is four.

_......_.._____..__-..___.____..—_...—_._.—......___,.—__

u = 0.9678 x 10* + 0.0678 x 10* = 1.0356 x 10*
w=u+2=01035x10° + 78
= 0.1035 x 10° + 0.00078 x 10°
= 0.1042 » 10° = 10420
True w = 10444
ey = 24
€rp =23 % 107

w=u-+x
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= 0.0756 x 10* + 0.9678 x 10* = 1.0434 x 10*
= 0.1043 x 10° = 10430

True w = 10444
e, =14
e, ,=13x 10

Examples 4.11 and 4.12 show that the errors are not the same in both
the cases. It also shows that the error is less when the numbers are
arranged in the increasing order of their magnitude. See Example 4,13
for a more general proof.

Prove that the procedure w, = (y + 2) + x is better than the procedure
wy = (x+y)+zwhen |x|> |y| > |z].

— e — e — — — — — — . i, o, i S it i e ey e e

{a) Procedure w, = (x +y) + 2
Let u=x+y

€p 5 485

= +——ep
x+y xty ¥

where r, is the relative roundoff error introduced at this stage.

i z
By BBy P
LA u+z hu TR 2
e 4 ¥ z
= e, .+ Erp Ty | =B, #T
S [x‘f:!f W Ty 7 BRI

:é[x.em Y Ryt 28 +{x+y)ry +(x+y+z)r2]

where S=x +y+z
Now, let us use

Ry=max (le, ,|le, | le,.]) Ro=max (|r||ry)
Then, we get

Cring .—_-é[{x+y+z)R1 +(2x + 2y + Z)Rﬁ]
ey =lx +y +2)R +(2x + 2y + 2)R,
If we further assume that R, and R, are only due to conversion, then

R=R,=Rye,,=(3x+3y+2)R



Appraximations and Emors in Computing 79

(b) Procedure wy = (y + z) + x

Similarly we can show that e,, =32+ 3y + x)R

Comparison
e,,2=(3.:+3y+z}R=(3:a:+3y+3z—2le=(38~2z}R
ew1=(3x+3y+32—21}R=(3.5'-2x)R

Since x > 2, €y < €y,

Therefore, the procedure w, = (y + z) + « gives better results than the

procedure wy = (v + ¥) + z.

Polynomial Functions

Suppose we wish to evaluate a function flx) where [ is differentiable and

the approximate value x, of x is given. In such cases, we can estimate

the error bound in flx) using the mean-value theorem of calculus.
According to this theorem,

f&) - flag) = (x - x,)f"(6)
where ¢ is some value between x and x, and f’ is the first derivative of
the function f. Then the error in fix) is

er= |flx) - fix,)| = |e, F(6)]

Since the value of 8is unknown, we take the maximum of f'(¢) in the
interval for estimating the bound for ¢;. Then,

erse, max |f(é)|
This means that we have to evaluate the function f'(6 at various
values of # and find the upper bound. This is sometimes a difficult task.

Normally, the exrror €, is small and, therefore, we can make a reason-
able approximation as follows

€r=e, f '{Ia)

Note that this e, does not include the errors that oceur during the evalu-
ation of the function itself due to conversion at various stages.

Estimate the absolute and relative errors for the function
€, = 0.0005 = 5 x 10~

flx,) =—;- L | -—-%\E +1
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frixy) % +1=125
Then
e;=5x 107 x 1.25 = 6.25 x 107

e S BRI
= mm— — = L. »
" fxy) 6

The mean-value theorem approach can be readily extended to functions
with more than one variable, using partial derivatives, For functions
with two variables, x and y, we have

iy =t Gasdo )|t Ryl Farda)

wherefl'_ andf':; denote partial derivatives with respect to x and y.

We assume that
e, =e, = 0.005

f;{x, v) = 2x and f}:(x, y) =2y

Therelore,
er=2xel+ 2y e,
512 x 3.00 + 2 < 4.00) x 5 x 10 ° = 0.07
73

ONDITIONING AND STABILITY

*\What uncertainties exist in all stages of numerical processing.
ve discussed in detail how these uncertainties, particularly roundoff
errors, are introduced at various stages and how they are propagated
during the evaluation of an expression or implementation of a numerical
method. Induced errors such as roundoff errors accumulate with the
increasing number of computations in a process. There are situations
where even a single operation may magnify the roundoff errors to a level
that completely ruins the result. A computation process in which the
cumulative effect of all input errors is grossly magnified is said to be
numerically unstable. It is, therefore, important to understand the con-
ditions under which the process is likely to be “sensitive” to input errors
and becomes unstable. Investigations to see how small changes (or per-
turbations) in input parameters influence the output are termed as sen-
sitivity analysis.
Numerical instability may arise due to sensitivity inherent in the
problem or sensitivity of the numerical method (or algorithm). This is
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illustrated in Fig, 4.3. As we know, a mathematical model can be solved
either by analytical methods or by numerical methods. In either case,
when a small disturbance in an input parameter (known as inherent
error) causes unacceptable amount of errer in the output, we say that
the problem is inkerently unstable. Such problems are said to be -
conditioned. When a problem itself is sensitive to small changes in its
parameters, it is almost impossible to make a numerically steble methed
for its solution.

Analylical
solution

Numencal
instability

Changes in

Input data

\ "I Numerical
solution

- [

- Sensitivity of
\w numerical method ..

Fig. 4.3 Instabllity of numerical process

The term “condition” is used to describe the sensitivity of problems or
methods to uncertainty. Let us suppose we are evaluating a function flx)
and a small change in x produces a change in flx). We can quantify the
condition of this function by a number called condition number which i8
defined as follows:

relative error in f(x)
relative error inx

Condition number =

The relative error in flx) is
Af  ['(x)Ax

T J VNP SRR S o M
P fix)
The relative error in x is

e

r.x

s
x
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Then
xf'(x)
flx)

The condition number provides a measure of extent to which an error in
x is magnified in flx). If the condition number is large, then the function
flx) is said to be ill-conditioned and its computation will be numerically
unstable. There are different situations when a problem can have a
large condition number,
1. small flx) compared to x and f“(x)
2. large f'(x) compared to x and flx)
3. large x compared to flx) and f(x).
When several parameters are involved, we may have instability with
respect to some parameters and stability with respect to others. In such
cases, we should use the partial derivatives to estimate the total change.
*That is,

Condition number =

¥

Af=’d—a£ Ax|+ %ay + %k—ﬁz +

Showg,tﬁat the following system of equations is ill-conditioned for com-
. ting the point of intersection when m, and m, are nearly equal.
y=mux +C,
y=mox + Cy

Solving the equations for x and y we get
Q; -,
X = _J‘__J._

Mg —M,
c,-C
— x[l_i]+ ¢
m2 =m,
Let us assume that C, = 7.00, C; = 3,00, m,; = 2,00 and my = 2.01. Then
7-3
| = —————— =400
* T 201-2.00

y = 2.00 x 400 + 7= 807
Now, let us change the value of m, from 2,01 to 2.005. Then
7—3
X= e
2.005-2.00
y=2.00x 800+ 7= 1607
It shows that a small change (0.25 per cent) in the parameter m, results

in almost 100 per cent change in the values of x and y. Therefore, the
problem is absolutely ill-conditioned.

=800
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Compute and interpret the condition number for

flx) = J(x-1)

fo) =ix-n1

zf'(x) _xlx -1-v2
flx) 2 (x-DV2
_ X
T 2x-1)
The function is numerically unstable for the values of x cloge to 1.

Note that the term “ill-conditioned” is ill-definad. If we are to take float-
ing point seriously then we should say “relatively small changes” and
“relatively large changes”.

Condition number =

If the ill-conditioned effect is present in the original physical system
itself, then there is nothing that we can do to achicve numerical stabili-
ty. In many instances, the ill-conditioning arises from mathematical
formulation of the problem. In such cases, the instability may be re-
moved by reformulating the mathematical models. For example, consid-
er the quadratic equation

a* +bx +e=0.

We know that the two roots are

~b++b% - 4dac b — /b3 —4ac

Xy =——— Xy =
4 ’ 2a

When b >> 4ac,b? — 4ac will be very close to b and therefore, when &

is positive, the expression for x, may have the effect of subtractive can-
cellation. Here, we can reformulate the formula for x, as follows:

b+ Jb% —dac —-b-b? —dac
X
2a -b- Fb2—4cu:

Xy =

-2¢

i b+-,f69 —4ac

If b is negative, we must perform the same operation for x,.
Another approach to the same problem is to change the algorithm of
calculating x, and x,. First find the larger root from the formula

~-b+ /b2 ~4ac
2a
and then find the smaller Toot from the relation
1%y =cla

Xy =
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- Compute the difference of square roots of two numbers x = 497.0 and
y = 496.0.
Assume v and y are exact. Assuming a mantissa length of 4,
Jr =/497.0 =0.2229 x 10°
Jy =J496.0 = 0.2227 x 10°
z =Jx —Jy =0.0002 x 10% = 0.02
Let us try another approach by rearranging the terms as foliows;

-

_ 1

- 0.4456 x 10*
The correct answer is 0.02244. This shows that by rearranging the terms
we improve the result.

= (.2244 % 10! = 0.02244

A simple algorithm to calculate 8 is to find the factorials n!, (n — r)! and
r! and combine them to get B. That is,

— i'.‘l
B F2 x F:i
where 'y =n!, Fo = (n —r)l and Fy = 7!
The problem with this algorithm is that when » is large, the factorial n!
may be too large for the computer to store and thus, may result in
overflow crror, This problem can be overcome by modifying the algo-
rithm as follows:

Bznfor r=1

This can be expressed recursively as

L
B=n]]
i=3 1

This algorithm will compute B without causing an overflow error unless
the final answer itself is too large.
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Reformulate the following expressions to avoid loss of accuracy due to
subtractive cancellation.

(a) x — 22 — 1 for large x

l1-cosx
(b) T for small x
x2 —(x2 -
a) flx) =x—yx? - 1= 1 1

x+yx? -1 x+y'r.;5 1

l-cosx (l—cosxj{l+cosx]

(b) flx) =~ —— =
fle sin x sinx(l+cosx) -
sin? x sin x

Tsinx(l+cosx) 1+cosx

Even when the problem is formulated in a reasonable way and the input
data is accurate, the method of solution may make the process unstable.
For example, in a step-by-step algorithm where we use an interval A to
increment a variable, the error may increase if & is decreased (or in-
creased beyond some limit). If such induced errors are large, then our
method of solution may exhibit what is known as induced instability.
Another example is the “pivoting” technique used in solving simulta-
neous linear equations (see Chapter 7). Here, pivoting can make a well-
conditioned system into an ill-conditivned one, if proper care is not tak-
en in the design of algorithm.

3
Show that the series —1+x+§+L+

becomes unstable when x = -10,

The series can be represented as

Six) = _Z{:)Ta 1 Tg
i=
where

X
T, 2'_1
1

'z 18 the truncation error.
For -1 <x < 1, T; decreases as i increases, but for large values of |x|, T}
will grow in magnitude until the factorial in the denominator dominates,
when once again T, will decrease in size. When x = -10, we have:
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Ty 3

; -10

T 50

Ty -166.66767
;R 416.66767
T —833.33333
; 1388.8888...

Assuming a six-digit mantissa machine, the roundoff errors in repre-
sentine 1 lnrge values of T, will be of greater magnitude than t'.o final

vatee et 45 x 1071 itself. Therefore, the roundoff error 4oty ™ i
~~trgthe ceated zolution. The method breomos unstak!s, S
: ey be overecias by veing g onims?

known as the range reduction scheme for x. We know that

& = wJ_Q'}‘:'.

Thus,

e-m = (e-'l)ll.‘ = ((2—0.5)2)10

CONVERGENCE OF ITER\TIVE PROCESSES

As pointed out earlier, most of the numerical computing processes are
iterative in nature. We start with an approximate value of the solution
and compute iteratively the next approximate value till the difference
between two consecutive values is negligible or within a specified limit.
The number of iterations required to reach the given limil depends on
the rate at which the iterates converge to the result,

Suppose that x, i = 0, 1, 2,... is a sequence of iterates and x is the
expected value of x. Let e, be the error in the iterate x;. Then

¢,=x,—x foreachi

We would like the iterates to converge to x and this would happen if
the numerical process is stable. The process is said to converge if there
exists pogitive constants p and ¢ such that

. ler-tlf
lim =i

n—tes (|€; ”P

The constant p is known as the order of convergence and e is known as
asymptotic convergence factor. This shows that if the error in x,,, is
proportional to the pth power of the error in x, (i.e. the previcus iterate),
then the iterative method is said to be of order of p. It is ciear that the
higher the order of iteration, more rapid is the rate of convergenre.,

The rate of convergence is a measure of how fast the truncation error
goes to zero. This measure is used for comparing various ilerative
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methods. The rate of convergence is expressed in different ways. For
example, if the method converges like 4% the order of convergence is N2,
and so on. It means the value of p is 2. We shall consider the rate of
" convergence in detail when we discuss the iterative methods later,

ERROR ESTIMATION

It is now clear that it is almost impossible to know the exact error in a
computed result. Nevertheless, it is possible at least o have some esti-
mate of the error in the final result. There are three approaches that are
popularly used in error estimation:

1. forward error analysis

2. backward error analysis

3. experimental error analysis ;

In forward error analysis, we try to estimate error bounds in the
computed result using information such as uncertainties in the input
data and the nature and number of arithmetic operations involved in
the computing process. We can estimate the contribution due to

1. errors in the input data -

2. roundoff errors in arithmetic operations

3. truncation of the iterative process

4, errors in formulation of the model

For example, we have seen in section 4.9 that the total error of a sum
of three values is given by

e, Slx+y+zIR +(2x+ 2y + 21y
where
Ry = max (|e.|; lesl; le.])
Ry =max (|r], [rg])
This can be easily generalised for addition of n values:
e, S (% + x5 + ... + 2 )R 4 [(n=1)xy +(n - 1lxp
+(n=2xy+ .+ 25, +x,]R;

n [ n-1
:H] EI£+R2 \-{fl'I]JCl'F Ei-z,‘_,”}
i=1

i=1

Similarly, we can estimate bounds for product of n numbers.

Error estimated through forward analysis is always pessimistic and is
often much higher than the actual error.

In backward error analysis, we try to show that the computed results
satisfy the problem within the given bounds. For example, we can put
back the roots computed in the equation and see to what extent they
satisfy the original equation. By comparison, we can then decide on how
much confidence we can place in the computed results. Backward analy-
gis is usually easier to perform than forward error analysis.
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Experimental error analysis involves a series of experiments by using
different methods and step sizes and then comparing the results. We
may also perform sensitivity analysis to see how any change in parame-
ters affects the result.

When the application is very eritical in nature (such as space and
defence applications) the problem may be solved by more than two inde-
pendent specialists groups and the results can be compared.

MINIMISING THE TOTAL ERROR

Assuming that the mathematical model has been properly formulated

id the input data are accurate, the total numerical error primarily
consists of two components, namely, truncation and roundoff errors. Any
effort to minimise the total error should, therefore, be concentrated on
the ways to reduce these two types of errors. The steps may include:

1. increasing the significant figures of the computer

2. minimising the number of arithmetic operations

3. avoiding subtractive cancellations

4. choosing proper initial parameters

In many iterative processes such as numerical integration, it is possi-
ble to minimise the truncation error by decreasing the step size. But this
would necessarily increase the number of iterations and thereby, arith-
metic operations. This would certainly increase the roundoff error. This
phenomenon is illustrated in Fig. -4.4. We must, therefore, Judiciously
choose a step size that would minimise the sum of these errors.

! Total error

\\\ / Truncation arror

Eror

e —— ‘--._‘__‘_______ E
e
Roundolf error

_——
Step size

Fig. 4.4 Dependence of eror on step size

PITFALLS AND PRECAUTIONS

We have seen that the floating point arithmetic system is full of pitfalls
such as conversion, roundoff, overflow and underflow errors. In many
cases, we may have to consider some precaution techniques to get the
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most accurate results. The type of precaution techniques that might be
used depends both on the computer hardware and the nature of the
mathematical models. Here are some hints that might help improve the
accuracy of the results. -

1.

8.
9.

Rearrange the formula so that you can avoid subtraction of twoe
nearly equal numbers. For example,

xZ —y?
x=y
can be replaced by
xX+y

when x and y are nearly equal.

If necessary, use double precision for floating point calculations.
This would improve the accuracy considerably but would take more
execution time and computer memory space.

. Rearrange your formula to reduce the number of arithmetic opera-

tions. An example is evaluation of a polynomial. The polynomial
G X" + G, X+ L+ 0
may be rearranged as
G lax + apq)x + @, )¢ ... + ap)

This requires much less arithmetic operations.

When finding the sum of set of numbers, arrange the set so that
they are in the ascending order of absolute value. That is, when
la| > |B8] > |c]|, then (c - b) + a is better than (a — b) +c.
Wherever possible, rearrange your formula so that you use the
original data rather than derived data.

. Do not test a floating point number for zero in your algorithm.

Wherever possible, use integer arithmetic to avoid conversion and
roundoff errors.

Avoid multiplication of large numbers that may lead to overflow.
Use alternative arithmetic such as interval arithmetic, if necessary.

- SUMMARY

In this chapter, we studied various types of errors and how they can
affect numerical calculations. We considered, in particular, the following:

concept of significant digits and its relation to accuracy and preci-
sion of numbers

inherent errors that are present in input data

procedural errors introduced during the process of computing
modelling errors that arise due to certain simplifying assumptions
in the formulation of mathematical models

importance of absolute and relative errors and their relation to the
machine epsilon
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* propagation of errors during computing and how it affects the result

 causes of numerical instability and how to overcome instability
problems

+ convergence of iterative processes

* estimation of errors and some steps that might help to reduce the

final error
Key Terms

Absolute error Input error
Accuracy Machine epsilon
Algorithm Mean-value theorem
Asymptotic cenvargence factor Modelling error
Backward error analysis Numerical error
Blunder Numerical instability
Chopping Numerically unstable
Condition number Order of convergence
Conditicning Perturbations
Convergence Pracision
Conversion error Procedural error
Data error Rale of convergence
Discretisation error Relative error
Drag coefficient Representation error
Empirical error Rounding
Error propagation ; Reundoff error
Experimental error analysis Sensitivity analysis
Forward error analysis Significant digits
Human error Stakility
li-conditioned problem Sublractive cancellation
[nduced errors Symmelric rounding
Induced instability Triangle inaquality
Inherent error Truncating
Inherently unstable Truncation error

1. Why is the study of errors important to a computational scientist?
2. Explain the concept of significant digits.
d. Describe the relationship between significant digifs and the follow-
ing:

(a) round-off errors

(b) accuracy

(¢) precision
' What are inherent errors? How do they arise?
_9 Distinguish between roundoff errors and truncation errors.

. What is chopping? When does it occur?
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What is symmetric round-off? Show that the symmetric error is, at
worst, one-half the chopping error.

ow does a truncation error occur? Give two examples.
How do mathematical models contribute to errors in numerical
computing?
What are blunders? How can we minimize them?
What do you mean by relative error? How is it important in error
analysis?
What is machine epsilon? How is it related to significant digits?
State and explain triangular inequality as applied to error propa-
gation.
What is subtractive cancellation? How does its presence affect the
result of a computation?
Define condition number. What is its significance to numerical com-
puting?
What is range reduction technique? Give an example of ils applica-
Lion.
How will you decide the convergence of an iterative process?
Explain briefly the three approaches used in error analysis.
In an iterative process, how does step size affect the total error?
Enumerate a few precautionary steps that might help improve the
aceuracy of numerical computing.

Find the accuracy and precision of the following numbers:

(a) 12.345 (d) 750
{b) 0,0002932 (e) 750.5
(c) 0.0029320 (f) -68.3705

Add the decimal numbers 0.4 and 0.65 in binary form using 6
binary digits and then estimate the error in the sum. Show that the
error can be reduced by using more binary digits to represent the
numbers.

_ Find the round-off error in the results of the following arithmetic

operations, using four digit mantissa.

(2)L27.65 + 22.20

(b) 87.26 + 31.42

(e) 1250.0 x 40.0

(d) 3543.0 = 16.78

(e) 25.68 + 6.567

(f) 456.7 — 1.531

(g) 456.7 — 4.566
Calculate absolute and relative errors in the arithmetic operations
in Exercise 8.
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b.

10.

Estimate the relalive error of the final result in evaluation of
(a) w, =(x+y)}z and
(b) wy =2*+ y/z
Giventhatr = 1.2 y =266 and 2 = 4.5,
Find the absolute and relative errors in evaluating the following
expressions:

(a) x? +y2
(b) x &'
Assume x = 1.25 and y = 2.16.

- Find out which procedure (p, or P2) produces better results:

(a) py = x(x + 2), po =x” + 2x

(b) py =(x + 1) (x + 2), Py =x(x+3)+2
Determine the condition of the following functions:

(a) fx) = sin(x)

(b) fix)=1/1-x)

(e) fix) = x®

(d) flx) =
Rearrange the following expression to avoid loss of accuracy due to
subtractive cancellation:

(&) cos x - gin x for x close to 45°

(b) J1+x - 1-x for small x

(¢) 1- cos x for small x

(d) Jx? +1- x for large x .

(e} Inx + 1) - In(x) for large x
Estimate the maximum error in evaluating the expression
2 -252+31x- 15atx = 1.25



NEED AND SCOPE

After a sound algorithm and a detailed flow chart comes the develop-
ment of computer program, known as coding. Codes are written in a
high-level computer language. Hundreds of high-level languages have
been developed during the last four decades. Among these, a few have
direct relevance to numerical computing. They include, among others,
BASIC, FORTRAN, C, and C++.

FORTRAN, which stands for FORmula TRANslation, was the earliest
scientific language developed in the 1950s. Since it was specially designed
for mathematical computations, it has been the most widely used language
for scientific and engineering applications, It is well suited for
implementing the numerical methods discussed in this book. In spite of
development of numerous other languages, FORTRAN continues to play
a dominant role in engineering applications. Consequently, we are going
to use FORTRAN for developing programs for implementing our
algorithms. Our programs and algorithms are concise and general enough
to be used as the basics for developing programs in other languages, if
necessary.

A complete description of FORTRAN 77 is beyond the scape of this
book. We only give here an overview of the language. However, enough
material has been included so that the reader can easily understand the
programs given in the book and also modify and implement them
effectively. Wherever necessary, FORTRAN 90 features are also included.

e g

%aﬂ% A SAMPLE PROGRAM

For solving any problem in FORTRAN, we have to write a sequence of
instructions using certain statements known as FORTRAN statements.
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These instructions are required by the computer to perform the follow-

ing tasks:;
1. get data into the computer memory
2. perform arithmetic and logical operations on data
3. provide results on an output media

Program 5.1

PROGRAM SAMPLE

* e o et o B o o e e o o i o e -

* Main program

. A program to evaluate a function at different

points

* FMunctiens invaoked
- AT

N

* Subroulines used
% NI1L

* Variables used

* ¥ — Independent variable
* F' — Punction value
* COUNT — Counter to store number of evaluations
* e T T M e e e e e e e
* Constantse used
* N - Number of function wvalues
b i e e e e i i e i e
REAL X, F
INTEGER COUNT, N
PARRMETER( N = 5 |
WRITE(*, #*)] 'Input wvalue of X'
READ(*, *) X
WRITE(*, *) ' QUTPUT OF SAMPLE PROGRAM'‘
WRITE(*, ¥} * X F
COUNT = 0
100 FeuX*X
WRITE{Y,. *) X, F
X=X+ X

COUNT "= COUNT + 1

IF( COUNT .LT. N ) GO TO 100
STOP

END

T = o R e 2 T T e St = A N
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A sample FORTRAN 77 program to evaluate the function fx)=x22forn
values of x is shown in Program 5.1. When we run this program, it
displays first the following message:
Input Value of X

and then waits for the input from the keyboard. Let us enter a real
value, say 1.0 and then press the reTURN key. Execulion now continues
and produces the following output on the screen:
Input value of X
1.0

QUTPUT OF SAMPLE PROCBAM

£ I
1.,0000000 1.0000000
2.0000000 4.0000000
4

.00o0oo0 16.0000000
§.000o000 64.,0000000
16.0000000 256.0000000
Stop — Program terminated.

Program 5.1 illustrates some of the FORTRAN statements and the overall
format of a FORTRAN 77 program. This program is intended to give
only an overview of a FORTRAN program. The details of FORTRAN
features will be discussed in the seetions to follow.

The first line of Program 5.1 is a FORTRAN statement known as
program unii header or pragram statement. This statement. is not essential
in all systems, You must consult the system manual before using it.

| This is a recommended style in FORTRAN 90. |

The lines starting with * or C in the first column are known as comment
lines (only C in the FORTRAN IV version). These lines are used to insert
explanatory remarks to help readers to understand the program. They
are not instructions to the computer and, therefore, they are ignored by
the compiler. Comment lines should be used liberally to explain various
aspects within the program.

| FORTRAN 90 permits the use of the character " in
the first column to mark a comment line. This can
| also be used as an in-line comment.

The next two lines
REAL X, F
INTEGER COUNT, N

declare the types of storage associated with the variables. That is, the
variables x and F are declared as type real and COUNT and N as type
integer. These statements are called type declaration statements.

In FORTRAN 90, they are written 8s REAL:: X, F
and INTEGER:: COUNT, N.
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The identifier N represents the number of points at which the function
is evaluated. The value of N is going to be constant throughout the
program execution. Such identifiers are known as symbolic constants or
named constants. Symbolic constants may be given values using a PA-
RAMETER statement. (Some version of FORTRAN 77 may not include
the feature of PARAMETER statement). The value of a symbolic con-
stant cannot be changed during execution.

Some variables need to be given initial values like

countT = 0
before they are used in any expression. The process of setting variables
to initial values is known as initialisation.

The set of statements

PRINT *, ‘Input Value of X’

IF (COUNT .LT. N) GUTC 100
is known as processing block. It includes all executable statements such
as input/output statements (READ, WRITE), assignment statements and
control statements (such as IF). Note that the value of x* is evaluated
and assigned to the variable F in this block. Similarly, the variables
COUNT and X are incremented in this block, The statement

IF (COUNT .LT. N) GOTO 100
is known as a control statement,

This statement is responsible for creating a loop of operations and
thereby making the function evaluated exactly N times. This is done
with the help of the variable COUNT, usually known as a counter, which
keeps counting the number of times the function has been evaluated.

Note that the statement

@oTO 100
directs the control to the statement

1080 B = & ® X
The number 100 is known as statement number or statement label. We
need to use labels only to those statements to which the control is
transferred from another part of the same program.

The last statement in our sample program is the END statement. This
statement (which is a must in every FORTRAN program) serves two
purposes:

1. it marks the end of source code during compilation

9. it terminates the execution of the program

In earlier versions of FORTRAN, we need to use two
statements:

aroP — to stop the execution of the program

END — to mark the physical end of the program.
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; = STt
FORTRAN 90 implements the same as follows: |
END PROGRAM SAMPLE l

Note the structure of the sample program. A FORTRAN program
generally consists of a series of blocks of code in the following order:
Program name
Program description
Variable declaration
Initialisation of symbolic constants
Initialisation of variables
Executable statements
The END statement
FORTRAN requires certain coding formats to be followed. Table 5.1 lists
them.

Table 5.1 FORTRAN 77 line format

Columns Use
1 For Lyping the comment character.
1-5 For typing statement number.
6 For typing a non-zero FORTRAN character to indicate
that the previous statement is continued.
7-72 For typing FORTRAN statement. The statement can
begin anywhere in the region.
73 - 80 Not used (or used for typing line number).

FORTRAN supports the following major programming elements that
have direet relevance to numerical computing discussed in this book.
constants
variables
input-output instructions
computational instructions
control instructions
documentation remarks
. subprograms
The sample program has illustrated the use of all the first six elements.
We shall discuss further details about them as well as the last element
in this chapter.

el

FORTRAN CONSTANTS

Constants are the means by which numbers and characters are
represented in a program. They are quantities that do not change.
FORTRAN supports the following five built-in data types:

1. Integer type

2. Real type

8. Complex type
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4. Logical type

5. Character type

Integer constants are numbers that do not contain decimal points (i.e.
whole numbers), They can be positive, negative or zero. For examples

25 =10 0 +123

Real constants are numbers containing decimal points. They may be

expressed in positional form or exponential form. Examples:
12.5 -1.756 0.0 5. (Positional form)
.23 E+09 1583 -2.3E -5 (Exponential form)

The exponential form (also known as scientific form or floating point
form) is used where very large or very small numbers are to be written
but not all digits need to be represented. (Number of significant digits
depends on the computer.)

Complex constants are ordered pairs of real numbers, separated by
commas and enclosed in parentheses, like (a, h). Examples;

(30, «4.0) {=1.0, 0. 9283) (1.2 E-2, 4.1 EL)

The first number is called the real part and the second is called the
taginary part of the complex number. (Complex numbers are usually
written in a + jb notation in mathematics.)

Logical constants are data that are used to represent the two truth
values “true” and “false”. Therefore, there are only two logical constants
which are written as

.TRUE.
.FALSE.

Character constants represent a string of characters enclosed in apos-
trophes (single-quotes). Examples:

*John'’ ‘January 26° ‘NEW DELHI 20° 123

I In FORTRAN 90, we may also use double quotes,

-

_n FORTRAN VARIABLES

Variables represent quantities that can change in value. In FORTRAN,
they indicate storage locations where the values are stored. These values
can be changed whenever required.

A variable name may consist of one to gix characters, chosen from the
letters A through Z and 0 through 9, the first of which must be a letter.

Examples:

ALPHA X1 S NAME

FORTRAN 90 permits names with a length of 31
characters and also allows the use of underscore character,
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We can have longer names in FORTRAN 90. Examples:
DISTANCE_TRAVELLED AVERAGE_HEIGHT
This facilitates to create more meaningful names.

All variables must be declared for their storage types corresponding
to the five data types discussed in section 5.3, namely, integer, real,
complex, logical and character. Examples:

REAL NUMBER, SUM, X1
INTEGER TOTAL, COQUNT, Y
COMPLEX ROOTL, Z

LOGICAL PACKED, L
CHARACTER * 20 NAME, CLTY

The variables NAME and C1TY can hold up to 20 characters. We can also
increase the number of significant digits held in a real type variable by
declaring it a “double precision” variable as follows:

DOUBLE PRECISION 5UM, X1

ll Declaring a variable creates a storage location of
| appropriate type but it does not store any initial value. It
‘ contains some unknown bit pattern stored previously, i.e.
i the variable contains garbage.

Any variable that is not declared explicitly for its type assumes default
(implicit) type as follows;

Names beginning with Type
Any letter 1 th:o@ N Integer
Any other letter Real

SUBSCRIPTED VARIABLES

FORTRAN variables can have subscripts to store a set of related values
in one-dimensional vector or multidimensional matrices. A subscripted
variable is called an array.

An array can be used to represent a collection of data of the same type
and the subscripts can be used to access the individual data items. For
instance, the third element of a one-dimensional array X is given by
X(3). Examples of array variables are:

NaME(2, 10) CITY (5) GRADE (I)

We can use integer variables to represent subscripts and by assigning a
suitable value to the subscript variables, we can access the desired
element of the array.

All array variables must be declared for their type and size. Example:
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REAL X (10}
or
REAL ¥(1:10)

Both these statements declare X as a one-dimensional array with elements
numbered 1 to 10, which are of type real. The second form specifies the
lower and upper bound of the subscript. In this form, the value of either
bound may be positive, ncgative, or zero. The value of the upper bound
should be greater than the value of the lower bound. Examples:
INTEGER X{0:5), M({-10:20), N{(-5:0)
REAL P(5.,5}, VALUE{-3:3,5)
The second line declares P and VALUE as real type, two-dimensional
arrays.
We may also declare type and size in separale statements like
REAL X, M
DIMENSION X(10), M™M(D: 10,10, 0:20)
Character arrays are declared as follows:
CHARACTER * 30 NAME(40)
or
CHARACTER * 30 NAME(1:40)
where the number 30 specifies the maximum number of characters to be
stored in an array element.

In FORTRAN 90 arrays may be declared as follows:

REAL, DIMENSICN(L:9) :: X, ¥

CHARACTER(LEN = 230), DIMENSION(l1:4C) :: NAME
LOGICAL. (=5:5] :: FOUND

CHARACTER, DIMENSION(10}) :: QITY * 20

INPUT/QUTPUT STATEMENTS

Input/output statements are data transfer statements that are required
in every program. FORTRAN supports two kinds of I/O statements

1. list-directed I/O statements

2. format directed 1/O statements
We have already seen (in sample program 5.1) the use of list directed I/O
statements. They are

READ *, X
PRINT *, F
The general form of these statements are:
READ *, Vi o ¥Ma o e ¢ ¥y
BRI s o W v wee e

where vy, Vs, ..., v, are data items, READ * reads input data from the
standard input device, usually the keyboard, and assigns them to the
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variables in the list. PRTNT # outputs the values of data items in the list
on the standard output device, usually the screen. The data items Vi, V3,
» Y, should be valid variables in case of READ and may be variables or
constants in case of prRINT . Examples;
READ *, A, B, COUNT
PRINT *, X, ‘TOTAL‘ « SUM, 40.75
READ > is usually used to provide input data interactively through the
keyboard. The data should be entered with either a comma or one or
more spaces between the items,
Format directed /O statements are used when the data should be
read or written using a specified format. The general form of format
directed 1/O statements are

READ(n;, n,) Mig, Mae sy W
WRITE(n,, n,) v, Y ey M
where n, is the number assigned to the device giving input or receiving
output and 1, is the number of the FORMAT statement which specifies

the format of input data or output values. The FORMAT statement (a
non-executable statement) takes the following form:

n2 FORMAT (list of specifications separated by commas)
Examples:

READ(5, 100) X%, ¥ (Reads values from unit 5)
WRITE(6, 200) X, ¥, suM (Writes values to unit 6)

The unit may refer to keyboard, screen, printer, disk drive, and so on. If
We are using only the standard devices as specified by the computer
system, then we can use the following forms:

READ(~ , . 100 1 ks ¥
WRITE (* , 200) X, v, suM
The FORMAT statements may look like

100 romMaT (15, F&. 2}
200 FORMAT (110, F7+2y F10.23)

The letter 1 indicates that the number to be handled is integer and F
indicates that the number is floating point type. For more details about
format specifications, You must consult the manual.

We may also give initial values to variables using the DATA state-
ment as follows:

DATA X, ¥ / 285 WEh
This statement assigns 25 to X and 7.25 to v.

- BB cowmputations

FORTRAN was specially designed to evaluate complex mathematical
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expressions. We can write 2 FORTRAN expression for a given
mathematical expression and assign it to a variable using an assignment
statement as follows:

E v = expression
This statement directs the computer to replace the previous value of the
variable on the left-hand side of the equals sign with the result of the
expression on the right. The expressions are written using variables,
constants and arithmetic operators (see examples shown in Table 5.2).

Table 5.2 FORTRAN expressions

Algebraic expression FORTRAN expression

PR (W A s £ow WZ R
Z

X -

|+

y B

-+t Ot s ¥ % B* I

=

™

- -

c={xy) iz +2) C = (%" ¥ = (2 + 2.0}

The following are the accepted arithmetic operators in FORTRAN:
+ Addition
—  Subtraction or Unary minus
! Division
*  Multiplication
#* Kxponentation
According to the precedence rule
1. all exponents are performed first, all multiplications and divisions
next, and all additions and subtractions last,
2. for the same precedence, the operations are performed from left to
right, and
3. when parentheses are used, the expressions are evaluated from
" innermost to outermost parentheses (using the same precedence
rule each time)
In numerical computations, we often come across an assignment
statement of the type
SUM = SUM + N

This means, replace the “old value” of SUM by the “new value”,

Mixed-Mode Expressions

It is possible to combine integer, rTeal and double precision quantities
using these arithmetic operations. Expressions involving different types
of numeric operands are called mixed-mode expressions and are evaluated
as shown in Table 5.3,
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Table §.3 Mixed-Mode Evaluation

Mixed-mode expression Evaluation Result type
integer op real Convert the integer to the corre- Real
sponding real value and evaluate the
expresgion.
integer op double  Convert the integer o the corre- Double precision
precision sponding double precision value and

evaluate the expression,
real op double  Extend the real to a double precision
precision value (hy adding zeros) and evaluate
the expression,

Double precision

CONTROL OF EXECUTION

Control of execution means the transfer of execution from one point to
another in the same program, depending on the conditions of certain
variables. This may involve a forward Jump thus skipping a block of
statements, or a backward jump thus repeating the execution of a block
of statements. This is known as conditional execution of statements.
IExamples of such conditional execution are:

1. If the value is negative, skip the following four statements.

2. If the item is the last one, go to the end,

3. Execute the following ten lines 100 times.

4. Evaluate the following statement until a given condition is satis-

fied.

FORTRAN contains two central structures which could be used to
implement such conditional 2xecution of statements. Thev are

1. IF-ELSE structure

2. DO-WHILE structure

Block IF-ELSE Structure

The block IF-ELSE structure (also known as selection structure) consists
of a logical expression that tests for a condition or a relation followed by
two alternative paths for the execution to follow. Depending on the test
results, one of the paths is executed and the other is skipped. This is

Enter Enter
True . False True False
[ Tkl S Test 1

. P _d
{Block 1 | [ Block 2| [Biock 1

T T

e — - -
Continue Continue
() Statements in both paths (b) Statement in only one path

Fig. 5.1 Flow chart of IF-ELSE structure
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illustrated in Fig. 5.1.
The FORTRAN statement to code a block IF-ELSE structure takes the

form:

] 17 (logical expression) THEN-&—

statement-block 1 IF block
ELSE M
statement-block 2 ELSE block
IF

The statement blocks may contain zero or more statements. If the logical
expression is true, the program executes statement-block 1 and then
goes to the statement next to the END 17 statement; if the logical
expression is false, the program executes statement-block 2 (skipping
statement-block 1) and then goes to the statement next to the END IF.

Relational Expressions

Relational expressions are meant for comparing the values of Lwo
arithmetic expressions and have logical values .TRUE. or .FALSE. as
results. Arithmetic expressions may contain single variable, simple
constant, intrinsic function, or a complex expression. In numerical
computing, we often wasz. our programs to test for certain relationships
and make decisions based on the outcomes. We may use the relational
operators given in Table 5.4 for comparing the expressions.

Table 5.4 Relational operafors

Operator Meaning
6 3 2 Less than
LE. Less than or equal to
EQ. Equal to
NE. Not equal to
GT. Greater than
.GE. Greater than or equal to

Examples of rational operators are
1. IF(X .LT. Y) THEN
PRINT * ‘Small is’, X
ELSE
PRINT * ‘'Small is’, ¥
END IF
2. IF(TOTAL .GT. 1000) THEN
TAYX = 0.15 * TOTAL
ELSE
TAX = 0.10 * TOTAL
END IF
PRINT * ‘GRAND_TOTAL = ‘, TOTAL + TAX
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3. IF(C - D .GE. A - B) THEN

X=C-0D
ELSE

X =2 -B
END IF

When arithmetic expressions are used nféhérwfik
the relational operators, arithmetic expressions are
I evaluated first and then the results are compared.

Logical Expressions

In some cases, we may need to make more than one comparison. It is
possible to combine two relational expressions using the following logical
operators:

.AND. Both relations are true
.OR. One or both of the relations are true
.NOT. Opposite is true

Such expressions are known as logical expressions.
Examples of logical expressions are:

1. IF(suM .GT. 100 .OR. N .GT. 20) THEN
ELSE

END IF
2, IF(AGE .LT. 30 ,AND. DEGREE .EQ. ‘'ME’) THEN

ELSE

END IF
FORTRAN permits nesting of IF-ELSE blocks. That is, we can place
an IF-THEN-ELSE code within an IF black or ELSE block.

Warning!
Be careful when comparing real values. They are never
exact!

We may also use the following relational operators in
FORTRAN 90.
< Less than
<= Less than or equal to
! Equal to
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/= Not equal to
>= Greater than or equal to |
> Greater than J

DO-WHILE Structure

The DO-WHILE structure (also known as looping structure) performs a
set of operations repeatedly while a certain condition is true. When the
condition is not true, the repetition ceases. This kind of structure is
implemented in FORTRAN by the DO statement. The general format of
DO gtatement is:

DO n i = &, e, € ]
e 1. Body of the loop
n CONTINUE
where
n number of the last statement in the loop

i loop control variable

@, initial value of the control variable
e, final value of the control variable
&, increment value.

The control variable i may be a real or integer vartable. The parame-
ters e,, e,, and e, may be real or integer variables (or expressions or
constants).

The default value of ¢, is 1. The logic of DO loop is as follows:

1. initialise the loop control variable to the initial value e,

9 test to see if the value of loop control variable is less than or equal
to the final value e,. If it is true, continue the loop; otherwise exit
the loop
execute the body of the loop
increment the loop control variable by e,

. go back to step 2 (beginning of the loop)
This can be written in pseudocode form as follows:

S

i o= 24
DO WHILE i <= ez
execute statements
e 1 o+ @y
END DO
Figure 5.2 shows a flow chart showing the execution of the DO strue-
ture. The number of times the loop is executed (unless terminated by an
EXIT statement) is given by the formula

ey -8, 1+
i 2 1 3
€3

fx] denotes the greatest integer less than or equal to =.
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Examples of DO loop are
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it DY LD P = R, 5. 2r0.0
10 CONTINUE

2 DO 20 T =4, 14, 25
20 CONTINUE

3 Dg 30 N = 2, 20
3D CONTINUE

4, BG 40 3 = 1, 100

1B i GO 5§ (Exit from the leoop)

40 CONTINUE
50

i Warning T

| Avoid the use of real variables for DO loop parameters. They
| cause roundofl errors and, there fore, cannot always guarantee

the correct number of loop executions,

A DO IDI-J[_) can contain DO loops within its range. This is known as
nesting. When nesting DO loops, the inner loop must be entirely contained

within the range of the outer loap.
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Examples of nesting DO loops are
i DO 200 I 1 10

O 100 3 = 1, 5
T
1,

PRINT *,
J =

100 CONTINUE
200 CONTINUE

B PG sED I =
Lo 200

T
|

e e

200 CONTINUE -

Do 300 K

Lol =

- rra

outer logp

inner loop

outer loop

inner loops

300 CONTINUE
500 CONTINUE =

Leave the loop

Go to the beginning

The general form of DO structure in FORTRAN 90 is:
" Do loop control
block of statements
END DO |
This is implemented in two forms:
Form 1
DO i = e, &, @,
END DO
Form 2
) 13 DO
IF (...) EXIT ——-—
END DO
2. DO sl i
IF (v+s) CYCLE
END DO
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SUBPROGRAMS

One of the features of any modern programming language is the provision
for subprograms. A subprogram is a separate program unit that can be
called into operation by other programs. Subprograms are heavily used
in numerical computing for tasks such as evaluation of a function, matrix
multiplication, sorting, reading a table of values, printing a report, etc.

The concept of subprograms allows us to break a complex problem
into eubtasks so that we may develop subprograms and later integrate
them into a single program known as driver or main program. These
subprograms can be independently designed, coded, and tested.
Subprograms are usually called modules and the programming approach
nsing modules is called modular programining.

IFORTRAN supports twe kinds. of subprograms, namely, functions and
subroutines. A function subprogram returns a single value to the calling
program while a subroutine subprogram can compute and return several
values.

Function Subprograms

A function subprogram (or simply a function) is an independent program
unit written to compute and return a single value. It takes the following
form:

Cyvpe FUNCLION name |argumen .':a'll
Declaration of argument types

Execution statements

- EETURN
L END i

where +ype specifies the Lype of the function value that is being returned
and arguments are dummy variables that must be declared for their
type inside the function. They may vary in number from zero to many.
There should be at least one statement of the form

J name = expression ‘

name = expressioci
which assigns a value of appropriate type to the function name, which is
in turn returned to the calling program.
A function can be called as follows:

variable name {arquments)

When the function is catled, the values of the arguments in the calling
statement are assigned to the corresponding arguments in the funclion
header. The arguments, therefore, must agree in order, number and
type. An argument may be a variable name, an array name, or a
subprogram name. Example:
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PROGRAM MAIN

REAL A, B, R, MUL -+—— MUL declared in main
READ * A, B

R = MUL(A, B) —<—— Calling MUL

PRINT * , R

END

REAL FUNCTION MUL (X, Y)+— MUL defined
BEAL ¥, X

MUL = X * Y

RETURN

END

When an array is passed as an argument, then its corresponding dummy
argument should be an array variable and its size must be declared
properly. Note that a function may be called and used in an expression,
like any other variable. Example:

R = A * MUL (&, B)

Subroutine Subprogram

A subroutine, unlike a function which always returns only one value,
can return many values (or no values). Therefore, we use a subroutine
when either several values are to be computed and returned or no values
are to be returned (such as printing the values of some variables). The
general structure of a gubroutine is:

SUBROUTINE name (argument =)
Declaration of arguments

. Execution statements

RETURN

END
where name is the subroutine name and arguments are dummy variables
that must be declared for their type. When subroutine has no arguments,
the parentheses are omitted (note that in case of function, parentheses
are necessary even if there are no arguments). The outputs of subroutine
are returned to the calling program by means of the arguments.

A subroutine can be invoked using the CALL statement as follows:

CALL name (arguments)
ar
CALL name
The actual arguments in the calling statement must agree in a one-to-
one manner with the arder and type of the arguments in the subroutine.
Example:
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PROGRAM MAIN
REAL A, B, R
READ * , A, B
CALL MUL (A, B, R)

PRINT *, R

END

Y
SUBROUTINE MUL (X, Y, XY)
REAL X, Y, XY

XY = X * v

RETURN

END

The calling program assigns the values of A and B to the variables X
and Y in the subroutine which in turn assigns the value of xv (computed
in the subroutine) to the variable R. Compare this with the function
subprogram. ,

Note that the variables that are not passed as arguments may be
passed to the subroutine using a COMMON statement,

FORTRAN 90 greatly extends the power of function subprograms
by allowing the result to be an array or structure. Funetion
subprograms are designed as follows:

FUNCTION name{arguments) RESULT (resulc -
variable)
Declaration of arguments and result-variable

result-variable = expression
END FUNCTION name

Instead of function name, the result-variable is assigned the value
that is to be returned to the calling function. The result-variable is
| a variable name that has been placed like a function argument
with the RESULT keyword, immediately after the function name.
Both the arguments and the result-variable are declared for their
types.

Note that, in FORTRAN 90, all programs and subprograms use
the name of the program or subprogram in the END statement as
follows:

END FUNCTION F

END SUBROUTINE SWAP

END PROGRAM SORT
FORTRAN 90 also includes features such as optional arguments,
keyword-identified arguments and array sizes which are very
powerful compared to FORTRAN 77. These features must be used
wherever possible.
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FORTRAN allows us to write out a formula for a function and define it
using the assignment statement inside the program itself (instead of
using an “external” function subprogram). Since such functions are “one-
line” functions, they are called statement functions. A statement function
is defined as follows:

[ Function-name (arguments) = expressinnl

where expression is the FORTRAN expression of the formula (or function)
to be evaluated and arguments is a list of variables used in the expression,
The arguments are simple integer or real variables. Examples:

AREA (R) = 3.3416 * R * R
VALUE (P, R] = P * (1.0 « B} ** N
BOLY 1. ¥ M, W) = X M+ ¥ BTN

A variable which appears in the expression but is not defined as an
argument is called the parameter of the function. Valunes of such variables
should be defined before using the function.

The function can be used in any subsequent lines of the program by
writing the name of the function with actual arguments, like

CIRCLE = AREA(¥)

FVALUE = VALUE (AMOUNT, INTEREST)
POLY1 -« POLY (A, 2. B, 2)

RING = AREA(X1) - AREA(XZ)

Note that the functions can be used on the right side like any other
variables. The actual arguments may be variables or constants {or even
expressions). However, they must agree in number order and type with
the dummy arguments in the function definition statement.

A statement function may use other statement functions if they are
defined before it. Like function subprograms, the statement functions
must be declared for their type in the program and defined after all
declarations, but before the first executable statement.

INTRINSIC FUNCTIONS

In numerical computing, we use mathematical functions like logarithm,
square root, absolute value, sine, etc,, very frequently. FORTRAN supports
a library of such functions which can be invoked in our programs. Since
these functions are part of FORTRAN, they are also called intrinsic or
built-in functions. An intrinsic function can be invoked by simply typing
the name of the function followed by the arguments enclosed in
parentheses. Example:
ABS (X} COS (THETA) SORT(X * X » ¥ * ¥)
The most commonly used intrinsic mathematical functions are
summarised in Table 5.5. When using any of these functions, it is a good
practice to declare them using the INTRINSIC statement in the
" declaration section. '
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Table 5.5 Commonly used mathematical functions

Function Description
i ARS (%) - _:QBEIEtLH:'!EJe
ACOS [x) _ Arceosine
(result in radians)
ASIN () Arcsine
(result in radians)
ATAN {x) Arctangent
{result in radians)
ATANZ (%y, Xy Arctangent of x,/x,
(result in radians)
UOSs (%) Cosine
(x in radians)
COSH %) Hyperbolie cosine
DBLE (%} Conversion to donble precision real
EXP {3} Power of ¢
INT (%] Truneation to integer
LOG (3] Natural logarithm
thase e)
LOGI0 (x) Common logarithm
(hase 10)
ML =y oun) Maximum value
MIN{%, % oal) Minimum value
MOD(x,, x,) Remainder of division x,, x,
(e.2. MOD(5,3) is 2)
NINT { x| Conversion to nearest integer
REAL (2} Conversion to single-precision real
SIN(x) Sine
{x in radiansg)
SINH (%) Hyperbolie sine
SQUT (x) Square ryot
v =00
DA () Tangent
{¥ in radians)
TAlH U Hyperbolic tangent

(511 | DEBUGGING, TESTING AND DOCUMENTATION

Errars iy g S SN ad'e coinmen. The soiare, g progran must i
for iy civers befme it is used. Errors incomputer code are called bugs
and he pracess of coryecting thew is called deb,. Soing,

THe precram maer he grammaticullyv crror free bu! may produ - wreng
resulis. Sococtimes, a program may produce eorveet vesults for vi.0 set of
dats and wrong results for another get, Such errors are due t fiproper
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program logic and are therefore known as logic errors or run-time errors.
It is a good practice to test the program for all possible range and
combination of data.

Documentation is a most important but often neglected activity by the
programmers. Documentation provides all details about the program
intent, its variables and other requirements that allow the users to
immediately understand and implement the program more easily.

Documentation includes two parte — internal documentation and ex-
ternal documentation. Internal documentation means the use of explan-
atory remarks throughout the program, which describe how various parts
of the program work. This is very jmportant from the maintenance point
of view,

External documentation includes instructions to the users on how to
implement the program and what actions should be taken in certain
special circumstances. Such a document is called user manual.

SUMMARY

We presented an overview of FORTRAN 77 in this Chapter. We discussed
briefly the following features that are frequently used in developing
numerical computing software:
e various categories of data types used to represent pumbers and
characters
e rules of defining variable names and creating storage space for
them
o creation and use of subseripted variables to represent tables of data
o input/output statements required to read data values and print
results
s operators used for evaluating mathematical and logical expresgions
« control structures supported by FORTRAN 77
s design and use of subprograme in building a large application
program
We have also highlighted the FORTRAN 90 features wherever applicable.

Key Terms
Algebraic exprassion Lagic erors
Arguments . Logical consiants
Arithmelic operators Logieal expression
Array Logical operators
Assignment statement Logical type
Backward jump Looping structure
Bugs Main program
Built-in functions [ixed-mode ex; ression
Calling program Modular programming
Calling statermsnt Modules

(Contd. l
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(Contd.)
Character constants Multidimensional array
Character type Named constant
Comment line Nesting
Compiex constanis Non-executable siatement
Complex type One-dimensional array
Cenditional execution Operators
Constants Outer loop
Control statement Oulput statement
Contral variable Parameter statement
Counter Positional form
Debugging Precedence rule
Dimension Frocessing block
DO logp Program statement
DO..WHILE structure Program.unit header
Documentation Real constants
Double precision Aeal type
Driver program Relational cperators

Dumimy variables
Executable statement
Exponential form
Expressions

Flow charnt

Hun-time errors
Size

Statement functions
Slalement label
Statement number

Format-directed /O statement Subprogram
FORTRAN expression Subroutine
Forward jump Subscripted variable
Functions Subscripts
IF..ELSE siructure Symbolic constant
Initialisation Testing
Inner loop Two-dimensional array
Input statement Type declaration
Integer constants User manual
Integer type Variable declaration
Intrinsic funclions Variables
List-directed /O staternent
1. What are FORTRAN constants?
2. What are logical constants? Where are they used?
3. When do we use the exponential form to represent real numbers?
4. What ave variables? State the rules of naming variables?
5. What is an array? When do we use arrays in computing?
6. What is meant by declaration of variables? How are array variables

declared in FORTRAN?

=3

(a) READ *
(b) PRINT *

. Describe the actions of the following statements:



10.

11.

12

13.

14,

15.
16.

17.

18,

19.
20,
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(c) READ (*, 100)

(d) WRITE (¥, 200)

{e) WRITE (6, 200)

(f) WRITE (*,*)
What is the function of a FORMAT statement? Give an example.
How are DATA statements used to provide values to variables?
State the hierarchy of operations followed by FORTRAN in
evaluating expressions.
List FORTRAN statements that are used to implement conditional
execution statements. How are they different in terms of
implementation?
(Give two examples of each of the following expressions:

(a), Relational expression

(b} Logical expression

(¢} Mixed made expression
Is there any special caution to be exercised in writing these
expressions? Explain.
Why should we avoid the use of real variables as DO loop
parameters?
What is nesting? When do we need to use nesting in numerical
computing?
What are subprograms? How are they used in program development?
Distinguish between the function subpregram and subroutine
subprogram.
What is a statement function? How is il different from lunclion
subprogram?
Give at least two examples of using statement functions in numer-
ical computing?
What is testing? How is it different from debugging?
Describe the importance of dacumentation for programmers and
program users.

. Which of the following are illegal FORTRAN names? Why?

(a) TOTAL : (b) PART -1

(¢} % MARK (d] REAL -

(e) A+ (f) aM

(g) X23 thy X AXIS
Classify each af the ‘yil woing conztunts as an integer constent or a
real u;mut.mt. i thov sve pnetther, state thie ressons.

(a) 123 tha 123 fe) 128’

(d) 12+ 3 N, I () +12

(g) 12/2 IR i 1) FOUR

(i) $64 thy 01283 h -1.5E02

m) K5 PRI S SN (o) 85.3-
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. Which of the following are legal character constants?

(a) ‘A (h) TOTAL’
(c) '1.23 (d) “TOTA MARKS'
(e) ‘NEWTON'S LAW’ (f) ‘A.BRAM’

. Write the FORTRAN expressions for the following:

(@) Cfdx}% X AP
(h) ax2y+bxy2+r' (d) (c4-£]n—1
Y

. Find the values of M and A when each of the following arithmetic
statements is executed,
{a) A=25+30**2/30
(b) A=20%2+3.0%2_4.0*3.020
(c) A=16/2%%3 4+ 5/2* (2 * (6 - 4))
(d) M = (9/4)/(3/2)
(e) M=4#*32*(2/3)
- Identify errors in the following assignment statements:
(a) X=SUM/N
(b) A = COS(X) + FLOAT(N)
(e) N =@Y) *(X/Z)
(d) M-1=(A +B + C)/D
(e) W=X**-2 4+ SQRT(N)
(fi D=P* ALOG (-3.5)
. Following statements contain mixed mode expressions, Correct them
using
(a) the type declaration statements
(b) the type conversion functions
(e) none of the above
(1) AREA = LENGTH * WIDTH
(2) FORCE = MASS * ACCEL
(3) DIST = SQRT(N ** 2) '
- Using library functions construct FORTRAN statements for the
following:

(a) A=s(s~a)(s-b)(s-¢c)
(b) e=ya? +b%—2abcos (x)

{c) z=sinx_y
I+_}‘
(x+y)?
d) F=lsg.
(d) £ zxxe 5

. Given below are three sets of expressions. The two expressions in
each set, though appear to be identical, do not produce the same
results for certain values of integer variables I, J and K and the
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10.

L.

12.

13.

14.

15.

real variable X Identify those values for which the two expressions
are not equal.
(a) (I +J)/ K and /K + JIK
(b) I *(J/K) and I *JIK
(c) X* I and X * (I)
Write a program to read two values from the keyboard and to
display their sum along with their values on the screen as follows:
(a) All the three values in one line
(h) Values one below the other in separate lines
Given the lengths of the two sides of a right triangle, write a
pragram to do the following:
{a) To read the values of two sides from the keyboard
(b) 'To calculate the area of the triangle (one-half the product of
two sides)
(¢) To calculate the length of hypotenuse (square root of the
sums of squares of the sides) and
(d) To print the results with labels like
Area =
Hypolenuse =
Write a program to evaluate the expression
(x+y)2 - 2xy - y2

W= ——

£
and print the results for the following values of x and y:

la) x = 0,05 and y = 900

(b) x = 0.005 and ¥ = 900

(¢) x = 0.002 and y = 800
Are the results different?
Note that the above expression, on simplification, reduces to w = i
If the results are different, why?
Declare the variables to be double precision in the above program
and see the results. Is there a difference? If so, why?
Write a program whieh requests the user to type in a number, If
the number is four digit long or longer. then the computer should
provide a message that the number is oo large. If it is two digit
long or shorter, then the message should be that the number is oo
small. Otherwise, print a message

WELL DONE, WE THINK ALIKE
Write a program to solve the guadratie equation
ax> + bx+c=0
by using the formula

roots = =
2a

The program should display the real roots or message indicating
. 2 - "
that therc are no real roots (if ™ — 4ac is negative).
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18

19

20
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. Write a program to read the marks obtained by 25 students in a
class and count the number of students with marks in the following

(a) 0to39 (Fail)
(b) 40 to 59 (Pass)
(c) 60 and above (Pass with I class)
. Write programs to evaluate the following functions to 0.0001 per
cent accuracy.

e

(a) sinx =x—2—3+2%__

TR T T
. #2 g8 P
(b) cos x —1-?4--;!——-671,

. Write a program to read a set of numbers, count them, and find
and print the largest and smallest numbers in the list and their
positions in the list.

. Write a program to calculate and print the mean, variance, and
standard deviation of a set of IV numbers.

M L
9311:'5}'%1[

Vari i LA 5o & #
ariance -"—‘Flz_ixi —F(Ext]

Standard Deviation = {/Variance

. Write a program to find the largest element of a given matrix and
print out the value with location details.

. Wrile a subprogram to evaluate the factorial of a number which is
given by

n!'l=nn-DNHn-2)..1

Using this subprogram write a main program to calculate the bino-
mial coefficient

. n!
b_(n-r)lr!

This gives the number of combinations of n objects take r at a time.

22. Write a subroutine subprogram that will interchange the values of

two variables when called.

93. Write a menu-driven program that allows the user to use one of the

following options:

(a) To convert miles to kilometres

(b) To convert feet to metres

(¢c) To convert degrees Fahrenheit to degree Celsius
Note: 1 mile = 1.60935 kilometres

1 foot = 0.3048 metres
C =59 (F-32)
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24. Rewrite the following program so that it will take minimum time
for execution.
READ (5, 111) W, €1; €2, G; R, .V
CRTL = W * C1 * (1,0 + G * R) * V
CRT2 ='W * (€2 % €1 * {1.0 =G * Ry} * ¥
CAP = €2 + C1 ™ (1.0 # G ®= R)
WRITE (6, 222) CRT1, CRTZ2, CAP
111 FORMAT (6r10.2)
222 FORMAYT (1Hb, 2F10.2, 5X, F10.5)

STOP
END
25. Improve the following program segments:
i 2 READ {5, 11] X, ¥

DO 50 I = 1, 100

ALl = (W * X = ¥ * ¥]/f&1
50 WRITR (6, 22) A
11 FORMAT (2F5.2)
22 TFORMAT (1Hb, F10.5)

STOP

END

b

DE 50 I = 1, 50

X1 = X + ¥Y/B * T
¥2 = % o4 YB R Q

CONTINUE



