Roots of Nonlinear
Equations
—

INTRODUCTION

Mathematical models for a wide variety of problems in science and engi-
neering can be formulated into equations of the form

flx) =0 (6.1)

where x and flx) may be real, complex, or vector quantities. The solution
process often involves finding the values of x that would satisfy the
Eq. (6.1). These values are called the roofs of the equation. Since the
function flx) becomes zero at these values, they are also known as the
zeros of the function fix).

Equation (6.1) may belong to one of the following types of equations:

1. Algebraic eé[uations/‘i,- —

2. Polynomial equations - :

d. Transcendental equations e

(Any function of one variable which does not graph as a straight line
in two dimensions, or any function of two variables which does not
graph as a plane in three dimensions, can be said to be nonlinear.)
Consider the function '

¥ = flx)
fx) is a linear function, if the dependent variable y changes in direct
proportion to the change inri_:;@gpendent ariable x. For example
| ¥=38x+5 1

is a linear function. |

On the other hand, f(x) is said to be nonlinear, if the response of the
dependent variable y is not in direct or exact proportion to the changes
in the independent variable x. For example
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y=x2+l

is a nonlinear function.
There are many situations in science and engineering where the
relationship between variables is nonlinear.

\_(Adgebraic Equations
An equation of type ¥ = flx) is said to be algebraic if it can be expressed
in the form " :
[ e+ Bcadny +unt iy 2 fo=0 (6.2)

where f; is an ith order polynomial in x. Equation (6.2) can be thought of
as having a general form
fix, y1=0 (6.3)

This implies that Eq. (6.3) portrays a dependence between the variables
x and y. Some examples are:

1. 3x+6y—21=0 (linear)

9. 2¢ + 3xy — 25 = 0 (non-linear)

3. x¥—~xy-3 =0 (non-linear)
These equations have an infinite number of pairs of values of x and y
which satisfy them.

X/ Polynomial Equations

Polynomial equations are a simple class of algebraic equations that are
represented as follows:
‘U & + 8,y iy tax+ay=0 ! (6.4)

This is called n'® degree polynomial and has n roots, The roots may be

1. real and different -

9. real and repeated

3. complex numbers
Since complex roots appear in pairs, if » is odd, then the polynomial has
at least one real root. For example, a cubic equation of the type

agx’ +ax” + a8 + @ =0
will have at least one real root and the remaining two may be real or
complex roots. Some specific examples of polynomial equations are:
1, BPoasB2¥=0
2 -4 +x+6=0
3. x'-ax+4=0

A/ Transcendental Equations

(A non-algebraic equation is called a transcendental equation.) These
include trigonometric, exponential and logarithmic functions. Examples
of transcendental equation are: ,
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-
R /
N2 T Emz- 12x2=0

3. lg_g_f_‘_,, *"1=0
4 ox-eroqg

A transfendental equation may have a finite or an infinite number of
real roots or may not have real root at all.

METHODS OF SOLUTION

There are a number of ways to find the roots of nonlinear equations such
as those described in Section 6.1, They include:

. Direct analytical methods

27 Graphical methods

97 Trial and error methods

4. Tterative methods
In certain cases, roots can be found by using direct analytical methods.
For example, consider a quadratic equation such as

ax®* +br+c=0 (6.5)
We know that the solution of this equation is

-b+yb? - dac
P T (6.6)
Za
Equation (6.6) gives the two roots of equation (6.5). However, there are
equations that cannot be solved by analytical methods. For example, the
simple transcendental equation ;

2einx-x=0

cannot be solved analytically, Direct methods for solving non-linear
equations do not exist except for certain simple cases,

Graphical methods are useful when we are satisfied with approxi-
mate solution for a problem. This method involves plotting the given
function and determining the points where it crosses the x-axis. These
points represent approximate values of the roots of the function.

Another approach to obtain approximate solution is the trial and error
technigue. This method involves a series of guesses for x, each time
evaluating the function to see whether it is close to zero. The value of x
that causes the function value closer to zero is one of the approximate
roots of the equation.

Although graphical and trial and error methods provide satisfactory
approximations for many problem situations, they become cumbersome
and time consuming. Moreover, the accuracy of the results are inadequate
for the requirements of many engineering and scientific problems. With
the advent of computers, algorithmic approaches known as iferative
methods have become popular. An iterative technique usually begins
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with an approximate value of the root, known as the initial guess, which
is then successively corrected iteration by iteration. The process af
iteration stops when the desired level of accuracy is obtained. Since
iterative methods involve a large number of iterations and arithmetic
operations to reach a solution, the use of computers has become inevitable
to make the task simple and efficient.

In this chapter, we shall discuss a few iterative methods of solution
that are commonly used. These methods are designed to determine the
value of a single real root using some initial guess values. Later in the
chapter, we shall also discuss methods to determine all the roots of a
polynomial. Finally, we shall discuss the solution of a system of non-
linear equations.

] ITERATIVE METHODS

There are a number of iterative methods that have been tried and used
successfully in various problem situations. All these methods typically
generate n sequence of estimates of the solution which is expected to
converge to the true solution. As mentioned carlier, (@ll iterative methods
begin their process of solution with one or more guesses at the solution
being sought. Iterative methods, based on the number of guesses they
use, can be grouped into two categories:

1. Bracketing methods

2, Open end methods )

Bracketing methods (also known as interpolation methods) start with
two initial guesses that ‘bracket’ the root and then systematically reduce
the width of the bracket until the solution i1s reached. Two popular
methods under this category are:

. 1 Bisection method

"2 False position method _,
These methods are based on the assumption that the function changes
gign in the vicinity of a root.

Open end methods (also known as extrapolation methods) use a single
starting value or two values that do not necessarily bracket the root.
The following iterative methods fall under this category:

! g’.ﬁamn-Raphson method
. Secant method

- 3. Muller’s method

. 4. Fixed-point method

"9 Bairstow’s method

It may be noted that the bracketing methods require to find sign changes
in the function during every iteration. Open end methods do not require
thas.
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~ | STARTING AND STOPPING AN ITERATIVE
PROCESS
Starting the Process

Before an iterative process is initiated, we have to determine either an
approximate value of root or a “search” interval that contains a root.
One simple method of guessing starting points is to plot the curve of fix)
and to identify a search interval near the root of interest. Graphical
representation of a function cannot only provide us rough estimates of
the roots, but also help us in understanding the properties of the function,
thereby identifying possible problems in numerical computing. A plot of

fa) =2 -2 -1

is shown in Fig. 6.1. Although flx) is a cubic function, it intersects the'
x-axis at only one point. This suggests that the remaining two roots are
imaginary ones,

3
MTE ' fx)
1
TR N T we e =
L
-2
-3

Fig. 6.1 Plot of f0) = x* - x~ 1

In the case of polynomials, many theoretical relationships between roots
and coefficients are available, A few relations that might be useful for
making initial guesses are described here.

,t/% st Possible Root For a polynomial represented by
fx

) =dan i da, g2 a; x +ay (6.7

g

¢ the largest possible root is given by

(6.8)

This value is taken as the initial approximation when no other value is
suggested by the knowledge of the problem at hand.
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Search Bracket Another relationship that might be useful for deter-
mining the search intervals that contain the real roots of a polynomial is

T
=] 3 J(""“J —2[““"‘] 6.9)
@, a,

where x is the root of the polynomial. Then, the maximum absolute
value of the root is /

;. (I"..l 3
1 e | =l — * (6.10)

This means that no root exceeds x_,, in absolute magnitude and thus,

- I)
* max e

There is yet ancther relationship that suggests an interval for roots.
All real roots x satisfv the inequality

1
i

all real roots lie within the interval ( o

|x¥]< 1+ L max {Jag | Jay),-...la, 1 ] (6.11)

1
la, |

where the “max” denotes the maximum of the absolute values |ag],
layls o @]

[
\Mder the polynomial equation

szr‘ 2 +12=0
Estimate the poss:blc lmFlEll ﬁueqq v‘&]ues

That is, no root can be larger than the value 4.
All roots must satisfy the relation

B T
ol Al | 42[—]: i
iy F) -2(3)=vA
Therefore, all real roots lie in the interval (- [14, in'). “ff—-m use

these two points as initial guesses for the bracketing methods and one of
them for the open end methods, o

&
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Stopping Criterion

An iterative process must be terminated at some stage. When ? We must
have un objective criterion for deciding when to stop the pracess. We
may use one (or combination) of the following tests, depending on the
behaviour of the function, to terminate the process:

1 i~ < &, {(absolute error in x)

ivl Xy ] -
9 < E, (relative error in x),x20

X +1

3. Az, )| < K (value of function at root)
4. [flxg,,) - flry)| < E (difference in function values)
5. || £ F,., (large [unction value)
6. |x| £ XL (large value of x)

Here, x; represents the estimate of the root at ith iteration and f(x,) is
the value of the function at x,.

There may be situations where these tests may fail when used alone.
Sometimes even a combination of two tests may fail. A practical conver-
gence test should use a combination. of these tests. In cases where we do
not know whether the process converges or not, we must have a limit on
the number of iterations, like

Iterations > N (limit on iterations).

EVALUATION OF POLYNOMIALS

All iterative methods require the evaluation of functions for which solu-
tion is sought. Since it is a recurring task, the design of an efficient
algorithm for evaluating the function assumes a greater importance.
While it is not possible to propose a general algorithm for evaluating
transcendental functions, it is quite simple to design an algorithm for
evaluating polynomials.

The polynomial is a sum of n+1 terms and can be expressed as

f@=Fa,x —ag +¥a, x (6.12)
i=0 Tl

This can be easily implemented using a DO loop in FORTRAN. This
would require n(n + 1)2 multiplications and n additions.
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..

Write a FORTRAN program segment to implement Eq. (6.12).

e e e e e — — — ————— i S S — — —— —

SUM = BUM 4+ A(I) * X ** I
100 CONTINUE

Let us consider the evaluation of a polynomial using Horner’s Rule as
follows:

fx) = (e, x + @, 8 + 0, o0 + .. + a4 ap) (6.13)

Here, the innermost expression a,x + a,_; is evaluated first. The result-
ing value constitutes a multiplicand for the expression at the next level.
The number of level equals n, the degree of polynomial. Note that this
approach needs a total of n additions and n multiplications.

Horner's rule, also known as nested multiplication, is implemented
using Algorithm 6.1. The quantities p,, p, . ., py are evaluated
recursively. The final quantity p, gives the value of the function fix).

Horner's Rule

Pr = @y

Pn 1 =Pk + 8y,

sz p)-ﬁ-lx i aj

py=pyx t+a)
flx) = pg = p1x + gy

Algorithm 6.1
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Evaluate the polynomial
fr)=2®—dx* + 2+ 6

using Horner’s rule at x = 2.

— — — — — —— — —— — ——— et e e  — — — i, . .

n=8a;=1ae=-40a,=1,andg;=6

Pz=az=1

py=1x2+(~4)=-2

p1=0-2)x2+1=-8

pp=3)x2+6=0
fi2)=0

Program POLY

Program POLY shows a FORTRAN program to evaluate a polynomial of
degree n using Horner’s rule. This program uses a subroutine HORNER
to implement Horner’s algorithm.

It is an interactive program and, therefore, requests input for degree
of polynomial (n), polynomial coefficients (¢;) and value of x from the
user at the time of execution, Output of a sample run of the program
POLY is given at the end of the program:

W oo v - o e g e e e i T st e i Mk i *
PROGRAM POLY
W R e ey e e e e e e e e e R A U S S . S i e -
* Maln program ¥
3 Program POLY evaluates a polynomial of degree n at x
# any point X using Horner's tule *
B o e o R e e e ———— W g = *
* Functions invoked =
¥ NIL *
| R D S T—— e e e e o e S e e e *
* Subroutines used
*  HORNER
e e T e e S o P e il . e el i o Y o e —— s — o —
* Variables used *
L N - Degree of polynomial *
¥ A - Array of polynomial coefficients "
i % - Point of evaluation *
* P - Value ot polynemial at X *
- - tmar i U S e e e B D e e o e e e N -
* Censtants used il
= NI, *
W o s Tl T ol i A = g T IR T . = T e A - I -

INTECER N

REAL A, X, P
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EXTERNAL HORNER
DIMENSION A(10)
WRITE(*,*) ‘Input degree of polynomial, N’
READ(*,*) N
WRITE(*,*} ‘Input polymomial coefficients ( A(0)
to A(N)) -
DO 100 £ = 1, N#1
READ(*,*) A(T)
100 CONTINUE

WRITE(*,*) ‘*Input wvalue of X {point of evaluation)’
READ{*,*%*) X

* BEvaluating polynomial at X using Horner's method
CALL HORNER K N,A,X.P )
* Writing the result

WRITE(*, *) _
WRITE(*,*) *‘P(X) = *, P, “ at % = *, X
WRITE{*?/
STOP
END
o End of main program POLY ---e-—o—- "
R e X T S — *
SUBRCUTINE HORNEP{ N,A X,P )
W s i s e e . . . e . g o S e e s *
* Subroutine »
% HORNER computes the value of a polynomial of order *
o 1 at any given point x. *
o R e e e o e e o T e s e e o o *
* Arguments *
* Input "
N - Degree of polynomial *
A - Polynomial coefficients (array of size N+1) *
* X - Point of interest of evaluation
* Qutput %
* P - Value of polynocmial at X *
A e e RS s e oo -
* Local Variables
* NIL »
i N *
* Functions invoked *
* NIL
e e e e o o o o o e it o e 5 e e S e i 2 -
* Subroutines called %
Ll NIL *
* _____;_'__l?,,__.,___._______'l:. ______________________________ -
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REAL. A, X, P

IMTEGER N

DIMENSION A{10)

P = A[N+1)

Do ¥ O =W 1, -1

Froe PR & B{ED

111 CONTINUE

RETURN

END

* «——=---—-—— End of Subroutine HORNER ---------—-—-- *

Test Run Resulfs

Input degree of polynomial, N

2

Input polypomial coefticients (A(0) to A(N})

12
5
&
2 N
Inpul value of X (peint of evaluation)
1.12%
P(X) = 12.7226600 at X = L<Z50000E - 001
: v
The polynomial used for evaluation is

and the coefficients
instead of 2(0),

arerepresented by A(1), A(2), 2(3), and A(4)
A1), A(2), and A(3) in the program.

eDiseclion method is une of the simplest and most reliable of iterative
miethods for the solution of nonlinear equations. This method, also known
as binarv chopping or half'interval method, relics on the fact that if fix)
is real and continuous in the interval @ < x < b, and fla) and fib) are of
opposite signs, that is,
fa) fib) <0

then there is at least one real root in the interval between a and b.
(There may be more than one raot in the interval).

Let x; = @ and x, = b. Let us also define another point x; to be the
midpeint between ¢ and b. That is,

e L B (6.14)
- 2
‘-_—-_—___‘—-_
Now, there exists the following three eonditions:
1. if flag) = 0, we have a root at z,,.
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i

2. if flxg) fix;) < 0, there is a root between x, and W )

3. if flxg)fixy) < 0, there is a root between X, and x,.
It follows that by testing the sign of the function at midpoint, we can
deduce which part of the interval contains the root. This is illustrated in
Fig. 6.2. It shows that, since fix,) and flx;) are of opposite sign, a root lies
between x, and x,. We can further divide this subinterval into two halves
to locate a new subinterval containing the root. This process can be
repeated until the interval containing the root is as small as we desire.

f P

0 :
.
Xy L] t
: y xz x
[ 1
] ]
; ]

Fig. 6.2 liustration of bisection method

i

equation -~

Frae-10=0 /| wt1-1° =~ G
ing bisection method. — —

S T S v i S i — — — ——" — — f— — — . i ‘. . ot s o s

The first step is to guess two initial values that would bracket a root.

Using Eq. (6.10), we can decide the maximum absolute of the solution.
Thus

]
-4 -10 3
xmax :J(—i-—) —2[—1 ]:6 5
Therefore, we have both the roots in the interyal (—86, 6). The table below

gives the values of f(x) between -6 and 8 and shows that there is a root
in the interval (-2, ~1) and another in (5, 6). ;

z | 6]-5[4]l-3T2[-1r[o0]1]2][3]4]5]6
fix)| 50 |35 [22 | 11 [ 2 | —g{-10[-18| 141310 -5 | 2
Let us take x; = -2 and x, = 1. o)
Then - 3 ?\\",(

-1 g (20

xo e =-15

2
/\-2) = 2 and f-1.6) = -1.75 ’)7

Since fl-2) fi-1.5) < 0; the root must Be in the interval (-2, —1.5). The
nexl step begins.

1@
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= :g, Xp = -1.5 and x, =—17’§:/ P
f(-1.75) = 0.0625 .~ e
Since f(~1.75) and f(~1.5) are of opposite sign, the root lies in the inter-
val (-1.75, —1.5). Another iteration begins.
%, = -1.75, x4 = 1.6 and x5 = ~1.625

f(-1.625)=-0.859 ' A
Now, the root lies in the interval (-1.75, -1.625)
Xo = —1.6875
f(=1.6875) = -0.40
L 687
Next % hiizlthz
f(-1.72) = -0,1616
1 L72
Next Ty _ﬂ;l_.?__ -1.735 g
f(~1.736) = - 0.05
Next xy = —1.7425
f(=1,7425) = +0,0063
The root lies between —1.735 and -1.7425. v
Approximate root is ~1.7416. <
C—

An algorithm to achieve this is given in Algorithm 6.2.

Bisection Method

-

. Decide initial values for x; and x, and stopping criterion, E.

. Compute f, = f(x;) and f, = f(x,).

. I fy x f, >0, x, and x, do not bracket any root and go to step 7;
Otherwise continue.

4. Compute X, = (x, + X,)/2 and compute f, = f(x,)

5Man

Sel X, = X

W M

else
set x; = X
set (1 = fa
B. If absolute value of (x, — x,)/x; is less than error E, then
root = (xy + X)/2
write the value of root
go to step 7
slse
go 1o step 4
7._Stop.

Algorithm 6.2
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Convergence of Bisection Method

In the bisection method, we choose a midpoint x; in the inlerval between
x; and x,. Depending on the sign of functions f(xp), fix)), and flx,), x, or
Xp 18 set equal to x; such that the new interval contains the root. In
either case, the interval containing the root is reduced by a factor of 9.
The same procedure is repeated for the new interval, If the procedure is
repeated n times, then the interval containing the root is reduced to the
size

i e Y

2n 258

After n iterations, the root must lie within + Ax/2" of our estimate. This
means that the error bound at »' iteration is

]f_\x
- Eﬂ :Iz_n
Similarly,
Ax £,
K, :f2" T 2 (6.15)

That is, the error decreases linearly with each step by a factor of 0.5,
The bisection method is, therefore, linearly convergent. Since the
convergence is slow to achieve a high degree of accuracy, a large number
of iterations may be needed. However, the bisection algorithm is
guaranteed to converge. -

Program BISEC )

This program finds a root of a nonlinear equation using the bisection
method. BISECT uses a subroutine, BIM to find a rool in a given interval
and invokes a funetion subprogram, F(x) to evaluate the function at the
estimated root.

The subroutine subprogram BIM locaies a root in the given interval
[A, B] using Algorithm 6.2. BIM applies the following criterion for
terminating the process
Tp —Xp_ g

< EPS

n

That is, the relative error in the successive approximations must be less
than a specified error limit.

The function subprogram () simply evaluates the function value at
a given value of x and returns the result to the calling module. Note that
by simply changing the function definition statement

Fzx*y+x-2
we can use the BISECT program to evaluate a root of any function.
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Also note that the program prints out a message in case the specified
interval does not bracket a root.

* Main program
* This program finds a root of a nonlinear eguation
» using the bisecticn method

T o o o e s e et e —————— e e —— *
Functions invoked *
F L 2

W e e e o R e e et L ke e e e £ *

* BIM %
B e e o i A e i e e e e Ld
* variables used *
i A - Left endpoint of interval e
W B - Right endpoint of interval *
" S - Status

* ROQT - Final Solution 3
# COUNT - Number of Iterations done ¥
. o e e L T e e e e S e e S W P &
* Constants used *
¥ EPS - Error bound *
B o e e L e S T i e e e L el 5 e gy = *

REAL A,B,ROQOT,EPS,F
INTEGER S, COUNT
EXTERNAI, BIM,F
PARAMETER (EPS-0.000001)
WRITE(*, *) \
WRITE(*,*) ' SOLUTICN BY BISECTION METHCD''
WRITE(*,*) '
WRITE(*,*) ‘Input starting wvalues’
READ(*,*) A.,B
CALL BIM(A,B,EPS,S,R0O0T, COUNT)
IF (S.EQ.0) THEN
WRITE(*,*)
WRITE(*,*) ‘Starting points do not bracket any root’
WRITE(*,*) °(Check whether they bracket EVEN roots)'’
WRITE(*, *)
ELSE
WRITE(*, *)
WRITE(*,*) ‘Root = ‘', ROOT
WRITE(*,*) ‘F(Root) = ', F(ROOT}
WRITE(*, *)
WRITE(*,*) ‘ITERATIONS = ', COUNT
WRITE(*,*)
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ENDIF

5TOp

END
Y omemmesaesmoio o RS GF madn Program —-----—-we—w___
i e e __..-_______.___.._______,__..-____...“.;L, _____

* Subroutine
5 This subroutine finds da root of nonlinear equation
in the interval [A,B] using the bisection method
Arguments
Tnput
A - Left endpoint of interval
B - Right endpoint of interval
EFS - Error bound
output
5 - Btatus
ROOT - Final Solution
COUNT - Number of Iterationg

*

Local

Variables

X1,X2.X0,F0,F1,F2

* O® o R o o5 4

*

1-!1»:0-1-$+id-41-1\l-:-

____.._...._____._____,__..____.__..___..____.._..___.,_.______ ______

Functions invoked
F, ABS

Subroutines calleg
NTL
REAL A,E,ROOT.EPS,F,XI,X2,KD,FU,FI,F?,AHS
INTEGER &, COUNT
EXTERNAL F
INTRINSIC ABS

* Function values al initial points
Xl = A
X2 = B
Fl F(A)
F2 " (B)

* Test if inikial values bracket a SINGLE root
IF(F1*F2 -GT.0Q) THEN
S =0
RETURN
ENDTF

* Bisect the interval and locate the root iteratively
COUNT = 1

* % o % o
I
|
]
|
|
|
I
I
f
I
I
|
1
(]
1
|
]
1
|
i
1
I
1
|
1
!
I
|
i
'
|
I
]
|
1
I
I
'
1
I
I
[
|
!
I
]
i
|
1}
|

-

1]

* % ¥ *

-
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111 X0 = (X1+%2)/2.0
FO F{X0)

IF (FO .EQ. D) THEN
8=l
ROOT = X0
RETURN
END1F
IF{F1*F0 .LT.D) THEN
X2 = X0
ELSE
X1l = X0
Fl = FOQ
ENDLF
* Test for accuracy and repeat the process, if necessary
TEF(ABS((X2-X1}/¥2).LT.EPS] THEN

n

8§ = 1
ROOT = (X14X2)/2.0
RETURN
ELSE
COUNT = COUNT + 1
GO TO 111
ENDIF
END
e e e End of subroutine BIM —--—-----———-—--=-- *
B el ol T e e S *
* Punction subprogram F(x)
WD, i, S - e e A T S At e, *
REAL FUNCTION F(X)
REAL X
F = X*X+¥-2
RETURN
END
e e End of fungtionm F(X) s————<om——m=nns=- ch
Test Results of BISECT
The program was used to solve the equation

2+x-2=0

using two sets of starting points:
(0.0, 2.0) and (0.5, 2.0)
First run
SOLUTION BY BISECTION METHOD
Input starting values
00 Al
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Roat = 1.0000000

F(ROOT) = .0000000

ITERATIONS = 1

Stop - Preogram terminated.
Second run

SOLUTICON BY BISECTION METHOD
Input starting wvalues

0.5 2.0

Root S 9.999999E-001
F [ROQT) : —3.576279E-007
TTERATIONS 21

- A:atnp - Program terminated.

)2 FALSE POSITION METHOD

W’ ;ei.hod, the interval between x, and x, is divided into two
eq ves, irrespective of location of the root. It may be possible that
the root is closer to one end than the other as shown in Fig. 6.3. Note
that the root is closer to x,f Let us join the points x; and x, by a straight
line. The point of intersection of this line with the x axis (x;) gives an
improved estimate of the root and is called the false position of the root.
This point then replaces one of the initial guesses that has a function
valie of the same sign as fix,). The process is repeated with the new
values of x; and x,. Since this method uses the false position of the root
repeatedly, it is called the false position method (or regula [olsi in Latin).
It is also called the linear interpolation method (because an approximate
root is determined by linear interpolation).

1

fix)

T )

A

X —

Fig. 6.3 llushration of false position method

¢ False Position Formuila
A graphical depiction of the false position method is shown in Fig. 6.3.
We know that equation of the line joining the points (x;, f(xy)) and

(x5, f(x,)) is given by
flxg)=flx,) el y-flxy)

Xg — Xy xX—x Y-"

(6.16)
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Sinee the line intersects the x-axis at x, when x = x5, ¥ = 0, we have
flxy )= flxy)  —flxy)

or

fleg ) (xg —24)

flxg ) —flxy)

LE=~Xy T

Then, we have

f(xi}{xg-xl}‘\u.- P
o R [ o T O j{(}
_ flxa)—F(xq) 2 /

This equation is known as the false position formula. Note that x, is
obtained by applying a correction to x,.

False Position Algorithm

Having calculated the first approximate to the root, the process is repeated
for the nes interval, as done in the bisection method, using Algorithm 6.3.

False Position Method
i = P s e
Let_ 0 1 i f(X2) - flx1)
It f{xp) = fx} <0
set x; = X,
otherwise
set XT = XO
Algorithm 6.3

A major difference between this algorithm and the bisection algorithm 1s
the way x is computed.

Use the false position method to find a root of the function
fy=x*—x-2=0
—

in the range 1 <x < J

Iteration 1
Givenx; =l and x, = 3
flx)y=f(1)=-2
f{IE) =ﬂ31 = —1
Xy —X4

Xy =%y - [lxy )8 -m—m————
PP, 4 flxg) - flxy)
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3-1
=1+2x = 16667
J 4+2

Iteration 2
flxg) flxy) = f(1.6667)(1) = 1.7778
Therefore, the root lies in the interval between xy and x,. Then,
x; = x5 = 1.6667
f(xy) = f(1.6667) = -0.8889
[(x) = fi3) = 4
3 - 1.6667 1.909

xg = 1.6667 + 0.8889 x— 7 _
- 4+0.8889

=
Iteration 3
f(1.909) f(1.6667) = +0.2345
Root lies between x,( = 1.909) and x,(=3)
Therefore,
X = Xy = 1.9098
xtz = = _ I,-"".
9-1909 2:9»4
2y = 1.909 + 0.2647 4-0.2647 ¢
1.091

= 18 it 1 x —— =1
1.909 + 0.2647 3.7353 986

The estimated root after third iteration is 1.986. Remember that the
interval contains a root x = 2. We can perform additional iterations to -
refine this estimate further. \/(/

Convergence of False Position Method

The false position formula is based on the lincar interpalation model. In
the false position iteration, one of the starting points is fixed while the
other moves towards the solution. Assume that the initial points brack-
eting the solution are a and b and that a maves towards the solution and
b is fixed as illustrated in Fig. 6.4.

Let x, = a and x, be the solution.

Then,
el = Ir = xl
82 = Ir e I-z
That is,
€ =x. —x,

It can be shown that
. (x, -b)f"(R) (6.18)
€L+| =e, l__—_h_f‘(ﬁ}

where R is some point in the interval x, and . This shows that the
process of iteration converges linearly.
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T b
Fx)
X Xz Xy
i i e
! I
—

Fig. 6.4 Convergence of false position method

Program FALSE

The program FALSE finds a rool of a nonlinear equation using the false
position method. The program uses a function subprogram F and a sub-
routine, FAL to implement the method.

The function evaluates the function at any given point and the sub-
routine determines a root in a given interval using Algorithm 6.3.

We can use the FALSE program to identify a root of any function by
changing the function statement in the function subprogram F.

- e e s S PR L & e R e e e S e e &
PROGEAM FALSE

WE i i i o i A e g s i gL, o . ™, B i, i e S S —— -
* Main program -
¥ This program linds a rool of a nonlinear eguation *
¥ Iy [alse position method 8
* . - Y R e e L L T vk e - - e AT -

Funeirions woked %
- *
* = o e NP e TP 7 e R R i " *
¥ oSubroutines usc 2
*  FAL .
& _ ~ T — >
4oy e 1 .
. .“ Lell endpoint of inteival "
¥ B Right endpaint of interval ¥
* L - Bta ®
2 ROUH = B Lz .
t U Takmi t ineralions comnlered *
" .
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* * % ¥ =

*

WRITE(*,*) ‘Input starting values’

READ(*,*) A,B

WRITE(*, *)

WRITE(*,*) * SOLUTION BY FALSE POSITION METHOD’
WRITE(®,*)

CALL FAL(A, B, EPS,S,ROOT, COUNT)

IF(S.EQ.0) THEN
WRITE(*,*) ‘'Starting points do not bracket any

roatc’
WRITE(*, *)
ELSE
WRITE(*,*)
WRITE(*,*} ‘Root = *, ROOT
WRITE(*,*) *F(ROOT) = ‘, F(ROOQOT)
WRITE(*,*}) ‘NO.OF ITERATIONS = ‘', COUNT
WRITE{*, *)
ENDIF
STOP
END
—————————————— End of main FALSE --~----oue____
SUBROUTINE FAL(A,B,EPS, 3, ROOT, COUNT)
Subroutine
FAL finds a zoot of a nonlinear egquation
Arguments
input
A - Left-end point of interval
B - Right-end point of interval
EPS - Error bound
Cutput
5 - Status of completion of task
ROOT - Final solution
COUNT - Number of iterations done
Local Variables
X0,X1,X%X2,F0,F1,F2
Functions invoked
F,ABS
Subroutines called

NIL

»

-+ % 4 ¥ ¥ %
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REAL A,B,EPS,X0,%1,x2,F0,F1,F2,F, ABS
INTEGER S,COUNT

INTRINSIC ABS™

EXTERNAL F

X1 = A
X2 = B
Fl F(¥1)
F2 F(X2)

* Test if A and B bracket a rcot
IF(F1*F2 .GT.0} THEN

5 = D
RETURN
ENDIF
WRITE(*,*)’ X1l #2'
COQUNT = 1
111 X0 = %1 = F1 * (X2=X1}/|F2-Fl)
FO = F (X0}
IF(F1*F0 .LT.0) THEN
®a = X0
Fa = FO
ELSE
¥l = X0
Fl = FO
ENDIF

WRITE(*,*) %1,X2

¥ Tear if desired accuracy is achieved
IF(ABS (1 H2--¥1) /X2) L71,.EPS) THEN
S =1
RODOT - (X1+X2)%0D.5
RETURN
ELSE
COUNT = COUNT#1
Go TQ 111
ENDIF

END

REAL FUNCTION F (X}
REAL X

F o= Y*K4K-2

RETURN
END



144 Numerical Methods

¥ memessic-cai--End of funmetion F{X} - —- e

Test Resulfs of FALSE
The program was used to find a root of the equation
Frx-2=0

using the initial values (1.5, 2.0) and (=3.0, 0.0). Test results are given
below;

First run
loput starting values
15 2.0 :
SOLUTION BY FALSE POSITION METHOD
Starting points do not bracket any root
Stop - Program terminaced- -

Second run

Input starting valies

-3.0 0.0
SOLUTION BY FALSE EOSIVION METHOD
il 23
3.0000000 -1.0000000
-3.0000000 -1.6666670
3.0000000 1.9090910
3.0000000 ~1.9767440
-3.0000050 -1.9941520
3.0000000 -1.9985350
3.nagoonn ~1.5993634D
-3.0000000 -1.9499080
—3.q0uouau -1.99997%70
3. 00000000 —-1.96599940
~3.0boneon 1.93%959(
-3.0hoonen 2.04900000
300005300 =2 00000
-2. 0080090 2. 0900RA
Root - -2.0050000
FIROOT) - 0000000

NC.OF TITERATIONS = 14

SLop - Program terminated.— — ——

Note that the program vuipals » message when the given set of initju
values do not bracket any voue, When g roor i~ possible. the process 4
iteration stops when the relative error satisfies the condition

L |
Yy 7 X, Ly

Xy o

[ * |

< BP&

o
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!\ =
\ NEWFEN-RAPHSON METHOD

Consider a of f(x) as shown in Fig. 6.5. Let us assume that x; is an
approximgt6foot of f(x) = 0. Draw a tangent at the curve flx)atx=x, as
j e figure. The point of intersection of this tangent with the +-
es the second approximation to the root. Let, the point of inter-
‘tion be x,. The slope of the tangent is given by

i
tanee=LE o, (6.19)
Xy —I2

where f(x,) is the slope of f(x) at x = %;. Solving for x, we obtain
flx,)
f'xy)

This is called the Newton-Raphson formula.

Xog =X

(6.20)

»

fx)

Fig. 6.5 Newton-Raphson method

The next approximation would be

5 i flx;)
L f’(xgy

~ flx,) , >
xﬂc-‘—l _‘In = )r.'(xnj’ (621}

This method of successive approximation is called the Newton-Raphson
metho € process will be terminated when the difference between
two successive values is within a prescribed limit.

The Newton-Raphson method approximates the curve of f(x) by tan-
gents. Complications will arise if the derivative f'(x;) is zero. In such
cases, a new initial value for x must be chosen to continue the procedure.

In general,
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//Derive the Newton-Raphson formula using the Taylor series expansion.
Assume that x, = an estimate of a root T the Tunction f(x). Consider a
small interval & such that
% h =21 %

We can express f(x,,;) using Taylor series expansion as follows:

2
flx,.0) = F(xa)+ frix b+ P'u")"hz—!f’“
I we neglect the terms containing the second order and higher deriva-
tives, we get
Flyy) = o) + [
If x,,,, is a root of flx), then
[G,.q)=0=Flx,) + frix)h
Then,
~flx,)
S R i L
fix,)

)
a1 =% TG A

Newton-Raphson Algorithm

Perhaps the most widely used of all methods for finding roots is the
Newton-Raphson method. Algorithm 6.4 describes the steps for imple-
menting Newton-Raphson method iteratively.

X

n

Therefore,

Newton-Raphson Method,

1. Assign an initial value to x, S8y Xo-
2. Evaluate f(x) and i)
3. Find the improved estimate of X,

fix 0 )
3 f'{xg)
_ Check for accuracy af the latest estimale.

X-\]:xO—

Compare relative error o & predefined value E. i \M SE
b g a2

op; Otherwise continue.
lace X, by X; and repeat steps 3 and 4.

Algorithm 6.4
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A

Find the root of the equation
f)=a®- 849V

-._——-_...,_.___A___...___—_-—..__...__—..__...-___..___.,,__.__,_

fix)=2x-3
Let x, = O (first approximation)
< flxy)
Xy =Xy = o
« 7ilxy)
- Jw
— —ﬁ2520.6§§%1 :17'_. ‘\12;— ‘:[_-]_t,hq'-..,\
Similarly,
5 0.4444 ;
xy = 0.6667 - Y4344, o0,
.- X3 0.6667 16667 0.9333’
a_ 0.071
=0.9338 - —="_-( 99
Xy 93 1334 9959
0.0041
x5 =0.9959 =2l _ () aggg
7 -1.0082 -
0.0001
X =0.9 - ————=1.0000 -
o -1.0002 - S

Sinee /(1.0) = 0, the root closer to the point x = 0 is 1‘000;-/
Convergence of Newton-Raphson Method &

Let x, be an estimate of a root of the function fix), If x n and x| are close
to each other, then, using Taylor's series expansion, we can state

7] R ) .
Fa) =flx) + fix,) L f__; i (X, ~x, ) (6.22)

where R lies somewhere in the interval x, to x,.; and third and higher
order have been dropped.

Let us assume that the exact root of f(x) is x,. Then x,,,, = x,. There-
fore f(x,.,) = 0 and substituting these values in equation (6.22), we get

" R
0=flx,) + f'lx, X, - x,) +f ; ) (x, - x)? (6.23)
We know that the Newton's iterative formula is given hy
~ flz.}
Xne1 T Fn f‘(xn)
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Rearranging the terms, we get
f(xu) = f,{'tn) (xn T xn+1)
Substituting this for fix,) in Eq. (6.23) yields

n R .
0 = X, = %net) +f—;-)- (x, - x, (6.24)

We know that the error in the estimate x,,., is given by
Epe1 =X~ Fanl
Similarly,
I e o
Now, equation (6.24) can be expressed in terms of these errors as
" fr(R)
0= r"-xn) P e 9

32
n

Rearranging the terms we get,

L TR 5 .
L 2f-(xﬂ)en (625}

Equation (6.25) shows that Lhe error is roughly proportional to the square
of the error in the previous ileration. Therelore, the Newlon-Raphson
method is said to have quadratic convergence.

Program NEWTON

The NEWTON shows a FORTRAN program for evaluating 2 root of non-
linear equations by Newton-Raphson method. The program uses two
external functions, F and FD and one intrinsic function, ABS. The func-
tion T evaluates the actual function at a given value of x and FD evalu-
ates the first derivative of the function at x. '

The program employs the Algorithm 6.4 and prints out the value of a
rool (when it is found) and the number of iterations required o obtain
the result. It also prints the value of the function at that point to check
its aceuracy. In case the process does not converge within a specified
number of iterations, the program outputs a message accordingly.

*

e e ————— ———— = e m—— R e e i *

PROGRAM NEWTON

G S e e R R S e e B e SR S i e T e i *
A Main program [
x thig program finds a root af a nonlinear eguation *
L py Newton-Raphson method *
- -

L 3

Functions invoked
* ARS8 ,F,FD

- % ® *

* Subroutines used
ol NI

* *
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* Variables used

* X0 - Initial value of x .
" ZN - New value of x *
= FX - Function wvalue at x .
* FDX - Value of function derivative at x *
* COUNT - Number of iterations done *
e L s s e e e Ll s S s s s e s *
' Constants used *
= EPS - Error bound

* MAXIT - Maximum number of iterations permitted o

REAL X0,XN,FX,FDX,ABS,EPS,F,FD
INTEGER COUNT, MAXIT
INTRINSIC ABS
EXTERNAL F,FD
PARAMETER (EPS = (.000001, MAXIT = 100)
WRITE(*,*) ‘Input initial wvalue of x'
READ(*,*) X0
WRITE(*, *}
WRITE(*,*) SOLUTION BY NEWTON-RAPHSON METHOD'
WRITE(*,*)
COUNT' = 1
100 FX = F(X0)
FDX = FD(X0)
¥MN = ¥0 -FX/FDX
IF(ABS((XN-X0)/XN} .LT.EPS) THEN

WRITE{*,*) “Reot = ", 3N
WRITE(*,*) ‘Function wvalue = ', F(XN)
WRITE(*,*) ‘'Number of iterations = ', CCUNT
WRITE(*,*)

ELSE
X0 = XN

COUNT = COUNT + 1

IF{COUNT.LE.MAXIT) THEN
GO TO 100

ELSE
WRITE(*, *}
WRITE(*,*) ‘SOLUTION DOES NOT CONVERGE IN’
WRITE(*,*) MAXIT, ' ITERATIONS'
WRITE(*, *)

ENDIF

ENDIF

sSTOP
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* Punction subprogram F(x)

B e e e e s e *
REAL FUNCTICN F(X)
REAL X
F = H*¥X+X-2
RETUEN
END
R End of funcbtion F(X) =m=r-——sssmce-s ¥
TR SRS I e e S e *

* Function subprogram FD(x)

B e e S s R 8y e i e e -*
REAL FUNCTION FDI(X)
REAL X
FD = 3%X4l
RETURN
END
s enEasee End of funetion FD(X) ----- ——— s *

Tost Rosults of NEWTON Given below are the outputs of the test runs of
the program NEWTON.

First run
Input initial walue of x
aQ _
SOLUTION BY NEWTON-RAPHSON METHOD

Root - 1.0000000 :

Function value = .0000000

Number of iterations - 6

Stop - Program’ terminated.

Second run
Input initial walue of x
-1.0
SOLUTION BY NEWTON- PAPHSON METHOD
Root = -2.0000000
Function value = .0000000
Number of iterations = 6
Stop - Program terminated.
Third run
Input initial wvalue of x
1.8
SCLUTION BY NEWTON-RAPHSON METHOD
Root - 1.0000000
Function wvalue = .0000000
Number of iterations = 1

Stop ~ Program terminated.
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Show, through an example, that the number of correct digits approxi-
mately doubles with each iteration in Newton-Raphson method.

.-._._—.-.__—-.——--——-..—_—_-.-.-——-_..—_-_—-__.___.._-.-._.—--_.

Given below is the output of NEWTON program for solving the equation
x% - 4x” 4 x + 6 = 0, using an initial estimate of 5.0,

Tteration Estimation _-! Correct digits
1 5000000 NIL
2 4.000000 NIL
3 3.411765 1
4 3.114462 * | 1
5 3.013215 | 2
6 3.000213 | 4
7 3.000000 | 7

This shows that the number of correct digits approximately doubles
Swith each iteration near the root.

.
&nﬁﬁons of Newion-Raphson Method W—

e Newton-Raphson method has certain limitations and pitfalls. The
method will fail in the following situations.

1. Division by zero may occur if f'(x;) is zero or very close to zero.

2. If the initial guess is too far away from the required root, the
process may converge to some other root.

3. A particular value in the iteration sequence may repeat, resulling
in an infinite loop. This occurs when the tangent to the curve f(x)
at x = x;,; cuts the r-axis again at x = x,.

SECANT METHOD

Becant method, like the false position and bisection methods, uses two
initial estimates but does not require that they must bracket the root.
For example, the secant method can use the points x; and x, in Fig. 6.6
as starting values, although they do not bracket the root. Slope of the
secant line passing through x; and x, is given by

flx)  [lzy)

X X3 Xa Xy

flxy) (xg — x3) = flx,) () ~ x5)

ar

Xy lf(.‘(g) = f(xlj] =f(-x2) X, - f(I]_‘xrz

gy = L2 = Flx)) 2y (6.26)
I r(Izl = f‘.xl,]

Then
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By adding and subtracting f(x,)x; to the numerator and rearranging the
terms we get

= flxy)(xy—xy)
A m LEANEG ) 6.27
!_:_,% *s =% " FL Y- flap) e

Equation (6.27) is known as the secant formula .[If the secant line repre-
sents the linear interpolation polynomial of the function f(x) (with the
interpolating points x; and x,) then x;, which intercepts the x-axis, rep-
resents the approximate root of f(x).

“X‘]\yé’%acam lina
A

i i

r/l’oa X, X5 [ JEa——

fix)
Fig. 6.6 Graphical depiction of secont method

The approximate value of the root can he refined by repeating this
procedure by replacing x, and x, by ¥, and x;, respectively, in Eg. (6.27).
That is, next approximate valuc is given by

Fixgliss ~%,)
_F{.-rsj = f(xg}

This procedure is continued till the desired level of accuracy is obtained.
We can express the secant formula in general form as follows:

Xy =Xg —

4

fl'xi)[:\:,- —X; I)
x.

i+1 ="4*m f6'28~3)

Note that Egs (6.17) and (6.28) are similer and both of them use two
initial estimates. However, there is a major difference in their algo-
rithms of implementation. In Eq. (6.17), the latest estimate replaces one
of the end points of the interval such that the new interval brackets the
root. But, in Eq. (6.28) the values are prefaced in strict sequence, i.e.,
x, , is replaced by x; and x, by x,,;. The points may not bracket the root.
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Secant Algorithm

Note that the value of new approximation of the root depends on the
previous two approximations and corresponding functional values, Algo-
rithm 6.5 illustrates how this procedure is implemented to estimate a
root with a given level of aceuracy.

Secant Method

- Decide two initial points x, and x,, accuracy level required, E.
2. Compute f, = f(x,) and & = f(x,)
faxy-fixg
3. Compute x; == 172
fa 1y

4. Test for accuracy of x,.

X = X
2 TR E, then

Xg i

selx; =xand f, = f,
setx, =¥ and , = f(x,)

If

go to step 3
otherwise,
set root = x,
print results
5 Stop

Algorithm 6.5

-

Usg the secant method to estimate the root of the equation
/ - 4r-10=0
Given .t,_-—: Iand:z gy,
F 55 f“{ 4
[&y) =f(4) = =10
flxy) = f(2) = -14
(Note that these points do not bracket a root)

{2 ) (s —a5)
By, o) oy =)

o f(-'cg)—f(-tﬂ
. oni. STV goaiidl
-14-(-10 & T —l4q4te
For second iteration, ng
X =%,<9 =& F::H_
2 g (- 7:) :

. z_.r'x "9
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xp=%x3=9
flx)) = f(2) =-14
flxy) = f(9) = 95
35(9-2)
=05 14 -
For third ite}at-ion.
xn=9
1, =4
flxy) = F(9) =95
flxy) = f14) = =10
s lﬂ(ﬂ

X3 = ——'1—0_35 =5.1111
For fourth iteration,
x, =4
xy = 5.1111
Slx) = f(4) = =10

flxy) = fI5.1111) = - 4.3207

-4.3207(5.1111 - 4)

Y 5 ) [ e - 5.95
s ~4.3207 - 10 o

Uor fifth iteration,
%y =511
1y = D.9H63
Flep) = Fi5.0111) = —4.8207
flxg) = f(5.95663) = 5.0331
5.0331(5.9563 - 56.1111)

=5.9563 - =3
y=G.000a 5.0331+ 4.8207 A

For sixth iteration,
,_(://'/" x, = 5.9563
x, = b.5014
flx;) = £(5.9539) = 5.0331

fix,) = F(5.5014) = ~1.7392
_ 1.7392(5.5014 - 5.9563)
g =5.5014 - — =5.6182
s R 17392 + 5.0331 o P

The value can be further refined by continuing the process, if necessary.
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Compare the secant iterative formula with the New ton formula for esti-
mating a root.

Newton formula: Ll =ik S
Iﬂ.

flg, )z, ~x, 1)
é qf(x,,]-f[:c,,_,)

This shows that the derivative of the function in the Newton formula
['x,), has been replaced by the term

Secant formula: Xo1=x

flx,)- flx,_ )
Tn —Fpa1

in the secant formula. This is a major advaniage because there is no
need for the evaluation of derivatives. There are many functions whose
derivatives may be extremely difficult to evaluate.

However, one drawback of the secant iterative formula is that the
previous two iterates are required for estimating the new one. Another
drawback of the secant method is its slower rate of convergence. It is
proved later in this section that the rate of convergence of secant meth-
od is 1.618 while that of the Newton method is 2.

Convergence of Secant Method

The secant formula of iteration is
fle ) (x, —x; )
COFED-flx )

Let x, be actual root of f(x) and ¢, the error in the estimate of X
Then,

(6.29)

L1 =X

Y= Gt X,
X=e+x,
'thl il Rt
Substituting these in Eq. (6.29) and simplifying, we get the error equa-
tion as

i flx)—e fla; o)
:e Slxy) ‘i flx; 6.30)
flx) - flx;_q)
According to the Mean Value Theorem, there exists at least one point,
say x = R,, in the interval x; and x, such that

flx;)-fix,)

i

€

FR) =

- X,
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We know that
flx,)=10
X —-x. =g
and therefore
(x;
Py L%

or
flx) = e;f"(R)
Similarly,
flei ) = ey Uy

Substituting these in the numerator of Eq. (6.30), we get
f'(R:}‘f'Lle
f(x;)_f{x,'__ 1}

€ =€j€;i 1

That is, we can say

| €1 *€e (6.31)
We know that the order of convergence ;;;t' an iteration process is p, if
e« €l (6.32)
or
€1 % ¢ (6.33)

Substituting for ¢;,, and e, in Eq. (6.31), we gel
el el e,

or

e x e P (6.34)

Comparing the relations (6.32) and (6.31), we observe that

p= (p + l)frp
That is,
pt-p-1=0
which hag the solutions

P

2
Since p is always positive, we have
p=1618

It follows that the order of convergence of the secant method is 1.618
and the convergence is referred to as superlinear convergence.
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Program SECANT

The program SECANT finds a root of a non-linear equation using two
initial values supplied. The program employs a function subprogram, F,
to evaluate the value of the function and a subroutine subprogram, SEC,
to implement the Algorithm 6.5 for estimating the root. The subroutine
uses the absolute relative error in the successive approximations for
terminating the process.

e e el e et B s -
* Main program #
*  This program finds a root of & nonlinear *
* equation by secant method *
I A S R v S T e o Bt A o R D e L]
* Functicns invcked »
* F *
- *

* Subroutines used

*  SEC *
W R e e e e s s S e S i e *
* Variables used *
¥ A - Left endpoint of interval *
* B - Right endpoint of interval ¥
* ROOT - Final solution g
% COUNT - Number of iterations completed »

e e e e ol s e R

* Constants used
* EPS - Error bound )
* MAXIT - Maximum number of iteraticn
REAL: A,B,ROOT,EPS,F
INTEGER COUNT, STATUS, MAXIT
EXTERNAL F, SEC
PARAMETER (EPS = (.,000001, MAXIT = 50)
WRITE(*, *)
WRITE(*,*) ° SOLUTION BY SECANT METHOD'
WRITE(*, *)

WRITE(*,*) ‘Input Ctwe starting points*’
READ(*,*) A,B

CALL SEC(A,B,X1,X2,EPS,ROOT, COUNT, MAXIT, STATUS)

IF( STATUS .EQ. 1 ) THEN
WRITE(*, *)
WRITE(*,*)* DIVISION BY ZERO’
WRITE(*, *)
WRITE(*,*)' Last Xl =L o |
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WRITE(*,*)" Last X2 =" X3
WRITE(*,*)' ITERATIONS =',6COUNT
WRITE(*, *)

ELSE IF( STaTUS .EQ. 2 } THEN
WRITE(*, *)

WRITE(*,*) 'NO CONVERGENCE IN °~,MAXIT,’ ITERATIONS'
WRITE(™*, ™) s

ELSE
WRITE(*, ™)
WRITE{*,*) '‘Root = "', ROOT
WRITE(*,*) ‘Function wvalue at root = ', F(ROOT)
WRITE{*,k *)
WRITE(*,*) ‘Number of iterations = *,COUNT
WRITE(*, ~)
ENDIF
STOP
END
R Frid of Main Program —=—ssssmmee———— %
* it S e e e o  a m  , fe et *
SUBROUTINE SEC{A4B,Kl.XZ,E?S,ROOT,CDUNT,MAXET,STATUS}
B i i i s e T o i e e e >
* Subroutine *
had This subroutine computes a root of an equation *
* using the secant method -
& E:guments vl
»
Ft. ond peoint : *
nd point *
* PSS ' bound d
* MAXIT - Maximum iterations allowed g
¥ Qutput +
* XL New left point %
* X2 - New right point *
* ROOT Final sclution *
COUNT - Number of iterations done x
] aPATUS - Status of completion eof the task *
A ek e e b e e W
+ Local Variables 4
*  ¥3,F1,F2,ERRCR g
e L PSSP E o LS e e e e S _ *
* Functions invoked ¥
* ¥, RABS *
* L e e A e e e L S L e S e e L
* gubroutines called *
* NIL .
&
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REAL A,B,K1.KZ,X3;bFS.ROOT,FL,FE,?,ABS,ERROR
INTEGER COUNT, STATUS, MAXIT
INTRINSIC ABS
EXTERNAT, F
* Function wvalues at initial points
¥ = A
X2 = B
FlL = BiA)
FZ = P(B)
* Compute the root iterativaly
COUNT = 1
111 IF{(ABS(F1-F2) .LE. 1.E-10) THEN
STATHS = 1
RETURN
ENDIF
X3 - X2-F2 * (RZ-X1)/(F2-F1)
ERROR = ABES ((X3-X2)/%3)
* Test for accuracy
IF (ERROR .GT. EPS) THEN
* --- Test for convergence
T¥{ COUNT .EQ. MAXIT |} THEN
S3TATUS = 2
RETURMN
ENDIF
W = P
%2 = X3
Fl = F2
F2 = P(X3)
COUNT = COUNT + 1
GO TO 111
* and compute next approximation
ENDIF

ROOT = X3
SATUS = 3
RETURN

Functien subprogram Flx)

REAL FUNCTION F{X)
REAL X
F = ®%%-3

*
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RETURN
END
L BEnd of function F(X) -—---- —— e X
Test Results of SECANT
Given below are the outputs of test runs of SECANT
Firsit run

SOLUTION BY SECANT METHOD
Input two starting points
-3.0001 O
Root = -2.0000000
Function wvalue at root = 0000000
Number of iterations = 11
Stop - Program terminated.
Second run
SOLUTION BY SECANT METHOD
Input two atarting poinks
B =3
Rook = =2.0000000
Funcbion value at root = .000CG000
Number of iterations = B

Stop - Program terminaced.

Note that the program incorporates a test for convergence and also a
test for ‘division by zero’ while evaluating the secant formula (see Eq. 6.27).

FIXED POINT METHOD

Any function in the form of
flx)=0 (6.35)

can be manipulated such that x is on the left-hand side of the equation
as shown below

r = glx) (6.36)

Equations (6.35) and (6.36) are equivalent and, therefore, a root of
Eq. (6.36) is also a root of Eq. (6.35). The root of equation (6.36) is given
the point of intersection of the curves y = x and y = glx). This interscc
tion point is known as the fived point of glx) (see Fig. 6.7).

The above transformation can be obtained either by algebraic manip-
ulation of the given equation or by simply adding x to both sides of the
equation. For example,

P+x-2=0
can be written as

r=92-x*
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S Y=g

X . X ——
Flg. 6.7 Fixed point method

or

=t +x-2+x=%" +25—-2
Adding of x to both sides is normally done in situations where the origi-
nal equation is not amenable to algebraic manipulations. For example,

tanx =0
would be put into the form of Eq. (6.36) by adding x to both sides. That is,
x=tanx +x
The equation
x = glx)

is known as the fixed point equation. It provides a convenient form for
predicting the value of x as a function of x. If x; is the initial guess to a
root, then the next approximation is given by

.r1 = g‘xn)
Further approximation is given by
Xy = glx,)
This iteration process can be expressed in general form as
E_x“, —gz) i=0,12. ] (6.37)

which is called the fixed point iteration formula. This method of solution
is also known as the method of successive approximations or method of
direct substitution.

The algorithm is simple. The iteration process would be terminated
when two successive approximations agree within some specified error.

Locate root of the equation

P2+x-2=0

Thc_g}:en_eqlmtinn ca:-'t_ b:e:}_);ss_ed as T
=2~
Let us start with an initial value of x,= 0

%,=2-0=2 e
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Xp=2-4=-2

x3=2-4=-2
Since x; - x; = 0, -2 is one of the roots of the equation.
Let us assume that x;, = -1. Then

n=2-1=1

Xy = 2-1= 1
Another root is 1.

Evaluate the square root of 5 using the equation
f)rxt-5=0
Let us reorganise the function as follows:
)k = 5
and assume x, = 1. Then,
- ‘
xn=5"
xp=1
X3=5
14 = 1
The process does not converge to the solution. This type of divergence is
known as oscillatory divergence.
Let us consider another form of g(x) as shown below:
s=xt¥x=5

x=0
x;=-5

xy =16

xy = 235
xy = 55455

Again it does not converge. Rather it diverges rapidly. This type of
divergence is known as monotone divergence.

Let us try a third form of g(x),

2 =5/x4x

x+5/x

or X =
2

Xy = 1
La = 3
x5 = 2.3333
x4 =2.2381
xp = 2.2361
g = 2.2361

This time, the process tenverges rapidly to the solution. The square root
of 5 is 2.2361.
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Convergence of Fixed Point lferation

As stated earlier, the iteration function g(x) can be formulated in differ-
ent forms. Example 6.12 shows that not all forms result in convergence
of solution. Convergence of the iteration process depends on the nature
of glx). Figure 6.8 illustrates various patterns of behaviour of the itera-
tion process of the fixed point method. Figures 6.8(a) and 6.8(b), show
that the solution converges to the fixed point x, during the iteration
process. However, it does not happen in Fig. 6.8¢ and 6.8d. Notice that
the process converges only when the absolute value of the slope of y =
g(x) curve is less than the slope of y = x curve. Since the slope of ¥ = x
curve is 1, the necessary condition for convergence is
glx) <1

We can also notice that, in the neighbourhood of the solution, if the
slope of glx) is positive, the convergence is monotone with “staircase”
behaviour, and if the slope of g(x) is negative, the convergence is oscilla-
tory in behaviour. It is also clear that the closer the slope of glx) is to
zero, the faster will be the convergence of the process.

PT Gyl

'
e

|
- |
|
|

il T . T

X, x X

&
=Y

{a) Monotone convergernce

Y*\\’ y*

8 "'_'_'_"_‘_‘I
| :\\ : |
P ! :
L ey : N |
| 7 i Yo
: i P gm S
i t Bl
| [ ] (] T
i i ! I et ey I
: | [
. g ; ry i bl
X X X X 3 XK K% Xa  x
(b) Spiral convergence {d} Spiral divergence

Fig. 6.8 Patterns of behaviour of fixed paint iteration process

We can theoretically prove this as follows:
The iteration formula is
X = 8ty (6.28)
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Let x-be a root of the equation. Then,

x = glxy) (6.39)
Subtracting equation (6.38) from equation (6.39) yields
Xp—x,, ) = glxg) - glx) (6.40)

According Lo the mean value theorem, there is at least one point, say,
x = R, in the interval x; and x; such that

2R = g(xp) —g(x,-)_
Xp—x;
This gives
8xp) - glx,)) = g'(R)x, - x,)

Substiluting this in Eq. (6.40) yields

=%, =8 (R)x, - x) (6.41)
If e, represents the error in the ith iteration, then Eq. (6.41) becomes

e .1 =g'Re, (6.42)
This shows that the error will decrease with each iteration only if
2(R) < 1

Equation (6.42) implies the following:

1. Error decreases if g(R) < 1

2. Error grows if g'(R) > 1

3. If g'(K) is positive, the convergence is monotonic as in Fig. 6.8(a)

4. If g'(R) is negatlive, the convergence will be oscillatory as in
Fig. 6.8(b)

5. The error is roughly proportional to (or less than) the error in the
previous step; the fixed point method is, therefore, said to be fin-
early convergent

Program FIXEDP

The program FIXEDP is the simplest of all programs discussed so far for
determining a root of a nonlinear cquation. The iteration process is
terminated when two successive approximations agree within some spec-
ified error. The program uses a control loop to terminate the execution
when the process does not converge within a specified number of itera-
tions,

PROGRAM FIXEDP

w

* Main program #
* This program finds a root of a funclion using %
- rhe fixedp point iteration metheod .

e e e e —————— e R AL T e e *
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* Functions invoked

* yariables used

* X0 - Initial guess 2
* % - Estimated root ¥
* FRROR - Relative error *
W e s e o e A e S oy Py R TR R i *
* Cconstants used *
e EPS - Error bound *
¥ MAXIT - Maximum Tterations allowed *
ey e e e A P P L S R S S S TR L *

REAL X0,X,ERROR,G,ABS, EFS

INTEGER MAXIT

INTRINSIC ABS

EXTERNAL G

PARAMETER (EPS = 0.00001)

WRITE (*,*)

WRITE (*,*) 'QOLUTTON BY FIXED POINT ITERATION METHOD'
WRITE(*,™*)

WRITE(*,*) ‘Input initial estimate of root’
READ (*,*} X0

WRITE(*,*) ‘Maximum iterations allowed’
READ(*,*) MAXIT

WRITE(*,*)
WRITE(*,*) "' ITERATION VALUE OF X ERROR'

Do 100 I = 1, MAXIT

A= G (XO)

ERROR = ABS|((X-X0)/X)

WRITE(*,*) I,X,ERROR

IF (ERROR .LT.EPS) THEN
WRITE (*.*)
STOP

ENDIF

X0 = X

100 CONTINUE

WRITE (*,*) ‘Process does not converge to a root'
write(*,*) ‘Exit from lcop’

STOP
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.

* Function subprogram G(x)
REAL FUNCTION G(X)
REAL X

G = 2.0-%X*X

RETURN
END
-------------- -~ End of fFunction Q) ~---—coccusen @
Test Results of FIXEDP The outputs of the program FIXEDP for various
initial values are shown below:
First Run
SOLUTION BY FIXED POINT ITERATION METHOD
Input initial estimate of root

0.0

Maximum iterations allowed

10

ITERATION VALOE QF X ERROR
il 2.0000000 1.0000000
2 20000000 2.0000000
3 -2.0000000 ® .0000000
Stop Frogram terminated.

Second Run
SOLUTION BY FIXED POINT ITERATION METHOD
Input lnitial estimate of rool
i

Maximum iterations allowed
L0
ITERATTION VALUE CF X ERROR
3 1.0200000 Sggaconn
S5Lop - Program Lerminated.

DETERMINING ALL POSSIBLE ROOTS

All the methods discussed so far estimate anly one root. What if we are
interested in locating all the roots in the given interval? One option is to
plot a graph of the function and then identify various independent inter-
vals that bracket the roots. These intervals can be used to locate the
various roots.

Another approach is to use an incremental search technique covering
the entire interval containing the roots. This means that search for a
root continues even after the first root is found. The procedure consists
of starting at one end of the interval. say, al point a, and then searching
for a root at every incremental interval till the other end, say, point b, is
reached (see Fig. 6.9). The end points of each “incremental interval” can
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Fig. 6.9 Incremental search for all possible roots

serve as the initial points for one of the bracketing techniques discussed.
Algorithm 6.6 deseribes the steps for implementing an incremental search

technique using the bisection method for locating all roots.

A major problem is to decide the increment size. A small size may
mean more iterations and more execution time. If the size is large, then

there is a possibility of missing the closely spaced roots.

Determining all roofs

.

the rools.

2. Decide the size of the lncrememal interval Ax
3. Setx;=aand = x; + x
4. Compute f, = fix,) and f, = fixy)
5. If f, % f, > 0. the interval does not brackst any root
go to step 9
Otherwise,
continue

6. Compute x, = (x, + X)/2 and fy = fx;)
7. I f, x f;< 0. then
setx; = X,
alse
setx, =xgand f, = 1
B, If {2 — %)%l < E, then
rool = (x; + x)/2
write the value of root
go to step &
olse
go lo slep €
9. If x; < b, then set a = x; and go to step 3
10. Stop

Algorithm 6.6

Choose lower limit a and upper limit b of the interval covering all




168 Numerical Methods

SYSTEMS OF NONLINEAR EQUATIONS

A system of equations is a set consisting of more than one equation. A
system of n equations in n unknown variables is given below.

flixl,xz, o A e
f:_g{II: Loy oie Xy} = 0
(6.43)

faliey; gy oe 2,) = 0

Equation (6.43) requires values for x,, x,, ..., x, such that they satisfy
all the n equations simultaneously. If these equations can be expressed
in the form

f)=ax, +ayx, + .. +a,x, - ¢c=0

then the system is said to be linear, On the other hand, if they involve
variables with powers, then Lhe system is said to be nonlinear.

For example,

P2 2x-32=2
%+ 3ay =4
is a system of nonlinear equations in two unknowns. These equations
can be expressed in the form of equation (6.43) as
fla, =a®4 %=~y _9=0 (6.44)
g, N=2+8y-4 =0 (6.45)

Solution of these equations requires values of x and ¥ that could satisfy
both of them simultaneously. We will discuss two methods in this section
for solving such equations.

Fixed Point Method

One simple approach for solving a system of nonlinear equations is to
use the fixed point iteration method. Equations (6.11) and (6.15) can be
wrilten in the form

x = Flx, y)

y=Glx, y)
We can compute x and y using some initial values of x and y on the
right-hand side. The new values of x and y can again be used to compute
the next set of x and y values. This process can be repeated till a desired

level of accuracy in the computed values is reached. This iterative process
can be represented in general form as

j:J'+‘l = F(x;l y;J
Yoy = Glx, ) (6.46)
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This can be implemented using the steps given in Algorithm 6.7.

Fixed point method for a system

1. Define iteration funclions
Fix, y) and G(x, y}
. Decide starting points %, and y, and error tolerance £
3. X = Flxo o)
Yi = G(XO! yO)
4. 0f Ix; = xl < Eand
lys — yol < E, then
solution obtained;

%3

gotostep 6
5. Olherwise, set
Xg =X
Yo =1
go to step 3
. 6. Write values of x; and y;
7. Stop
Algorithm 6.7

Solve the following system of nonlinear equations using fixed point
method.

xr-yt=3

Iteration functions of these equations are formed as

r=y+
Xty
6-x2
Y=
T

Assume xp =l and y, =1

x;=25
y1=9

xp =54
¥o==0.1
xy = 0.445
yu=13

The process does not converge, We have to solve the system by forming
another set of equations for x and y.
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Following an approach similar to the one discussed in Section 6.10, it
can be shown that the iteration process converges if the following
equations are satisfied,

2

and

|6

d| |y

The task of forming appropriate iterative functions Fix, y) and G(x, y) to
satisfy the above conditions may become very difficult and, therefore,
the fixed point iteration process is rarely used to solve systems of non-
linear equations,

- &1 (6.47)

Newton-Raphson Method

The Newton-Raphson method, which was discussed in Section 6.8 for
solving single nonlinear equations, can be extended to systems of non-
linear equations. Recall that a first order Taylor series of the form

[l = fle) + (x,, — ) &) (6.48)
was used to derive the Newton iteration formula
e S _{(IJ‘
1+1 _xf f!{x} (6-49}

for solving one equation. For the sake of simplicity, let us again consider
a two-equation nonlinear system

fa,y)=0 glx,y) =0
First order Taylor series of these equations can be written as

[0 900) = flx, v,) + (x40 = x,) —‘- ¥ -y) %‘—l (6.50a)
gl'x;-,l, y£+l) '_'g{xir J’,) + {xn-l "x:') -‘ng""tyi S (g ) TJ_;:- (6.50b)

If the root estimates are x;,, and ¥..1, then
F Y1) = 8,01, ¥,00) = 0
Substituting this in Eq. (6:50) we get the following two linear equations:
Axfi+ Ay fo+f=0 (6.51a)
Ax gy +Ay g +g=0 (6.51h))

where we denote
' Ax=x,, -x
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M=ylf1_yi.

Al
fi= ﬁ P :%1
gizl%. ggz“%‘

f= ﬂ:‘]l .}’;). 8= g{x;'. _'Y;')
Solving for x and y, we get

ppo B8y D (6.52)
fi82 - f281 D
by sloh-F & Iy (6.52b)
f182 ~Fa81 D
where
fi fa
D:lgll ¥ =f18:-81f

is called the Jacobian matrix. From Eq. (6.52a) and (6.52b), we can
establish the following recurring relations:

T —%’5 ] (6.53(a)
— g

Equations (6.53a) and (6.53b) are similar to the single-equation New-
ton formula and may be called the two-equation Newton formula. These
equations can be used iteratively and simultaneously to solve for the
roots of f(x, y) and glx, y).

Algorithm 6.8 lists the steps involved in implementing the Newton
iteration formula for a two-equation system.

Two equation Newton-Raphson method

. Define the tunctions fand g
2. Define the Jacobian elements
fi. by g, and g

3. Decide starting points X, and y, and error tolerance E.
4, Evaluate f, g, f, £, Gi, &= 8! (X, ¥o)
Compute Dx, Dy and D

xy = X — DD

Y1 =¥ — DyD

(Contd.)
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(Contd.)

6. Test for accuracy.
i |x, —x| < Eand
¥y = Yol < E, then
solution obtained:
goto step 7
6. Otherwise, sel
X=X
Yo ="
go to step 4
Write results
8. Stop

e

Algorithm 6.8

Determine the roots of equations
12 +xy = 6
-y'=3

using the Newton-Raphson method

——— — — — — — T T— —— —— i ——— — — . e . k. . . et

Glx,y)=x*-%*-3
ﬁ=§£=2r+y

JF
™=y

g1=5-=2%

¢l % &

2= =-2

Assume the initial guesses as

Iteration 1
fi=38f=1
gl = 2,g2 = —2
and therefore
D=-6-2=-8

The values of functions at x; and y,
F=1"+1x1-6=-4
G=12-1¥-3 =-3
(-4)(-2)-(-3)(D)

=1~ =8
x =1 =8 375
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(-3)(3) - (-4)(2)

¥ =1- 8 =0.875
Iteration 2

fi=2x2375 + 0.875 = 5.625

fo=0.873

g, =475

g:=-LT8

F=(2.375)% + (2.375) (0.875) - 6 = 1.71187
G = {2.375)% - (0.875)* = 4.8750
D = (5.625) (-1.75) — (4.75) (0.875)
=-9.8436 - 4.1563 = -14
(L7187) (- 1.75) - (4.875)(0.875)
- 14

(~3.0077) - 4.2656 _ 9 375 _ 0.5195
14

=2.375-

= 1.8555
(4.875) (5.625) - (1.7187) (4.75)
=14

27.4218 - 8.1638
=0.876 - 4 = 2.2506

Continue further to obtain correct answer.

y, =0.875—~

ROOTS OF POLYNOMIALS

We have seen that the methods discussed so far can also be used for
evaluation of the roots of polynomials. However, these methods run into
problems when the polynomials contain multiple or complex roots.
Polynomials are the most frequently used equations in science and
engineering and, therefore, require special attention in terms of evaluation
of their roots. In this section, we discuss methods to determine all real
(not necessarily distinct) and complex roots of polynomials. These methods
are specially designed for polynomials and, therefore, cannot be used for
transcendental equations.

We will try to use the following properties of nth degree polynomials:
There are n roots (real or complex)
A root may be repeated (multiple roots)
Complex roots oceur in conjugate pairs
If n is odd and all the coefficients are real, then there is at least one
real root
The polynomial ean be expressed as

plx) = (x — x.) qlx)

where x, is a root of p(x) and glx) is the quotient polynomial of
order n — 1

B0

o
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The number of real roots can be obtained using Descartes’ rule of sign.
This rule states that
1. The number of positive real roots is squal (or less than by an even
integer) to the number of sign changes in the coefficients of the
equation
2. The number of negative real roots is equal (or less than by an even
integer! to the number of sign changes in the coelficients, if x is
replaced by —x

Multiple Roots

A polynomial function contains a multiple root at a point when the
function is tangential to the x-axis at that point. For example, the equation
L R 15x -9 =0
has a double root at x = 3 (see Fig. 6.10(a)). The graph is tangent to the
x-axis at this point. Similarly, the equation
xt - 10x% + 3607 - 56 + 32 =0

has a triple root at ¥ = 2 (see Fig. 10(b)). Note that the curve crosses the
x-axis for odd multiple roots and turns back for the even multiple ronts
This means that the bracketing methods will have problems in locating
the even multiple roots. Another problem is that bolh /f1x) and its
derivative f'(x) become zero at the point of multiple roots. Ae a
consequence, the methods (Newton-Raphson and secant) that use
derivalives in the denominator might face the problem of division by
zern near the roots.

ol
: mulliple root
ﬂx}‘ / F\“"‘i’
1 2 3 4 X —-

@ fx) =x*=7x2+ 15x-9

* multiple root

fix) ~ (threa)

B 2\ VT 5
x —

(b) f{x) = x* — 10x3 + 36x2 — 56y + 32
Fig. 6.10 Graph of multiple root polyriomiais
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Deflation and Synthefic Division

We stated that a polynomial of degree n can be expressed as
pla) = (x - x,) glx)

where x, is a root of the polynomial p(x) and glx) is the quotient polynomial
of degree n - 1. Once a root is found, we can use this fact to obtain a
lower degree polynomial g(x) by dividing p(x) by (x — x,) using a process
known as synthetic division. The name “synthetic” is used because the
quotient polynomial glx) is obtained without actually performing the
division. The activity of reducing the degree of a polynomial is referred
to as deflation. '

The quotient polynomial g(x) can be used to determine the other roots
of p(x), because the remaining roots of plx) are the roots of g(x). When a
root of g(x) is found, a further deflation can be performed and the process
can be continued until the degree is reduced to one.

Synthetic division is performed as follows:

Let i) = Sa; a8
i-0
and

n-1 :
ql.t} = Zbixl

1=}
If pix) = (x - x,) g{x), then
a, X"+ @, ¥ 4. X+ Uy
= (=) (b 2"+ b 2"+ . + Dy x + by (6.54)

By comparing the coefficients of like powers of x on both the sides of
equation (6.54), we get the following relations between them:

a, = bu-—l
| = bn-—ﬁ =X bu-]

a; = bn == xrb'l.
aq = =x, by
That is
a=b =% b i=n,n-1,..0

where b, =b,., = 0.

Then

boy=a;+%. b, i=n..1 1 (6.56)

e e
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Equation (6.55) suggests that we can determine the coefficients of glx)
(e, b, y, b, 5, ... by from the coefficients of plx) (ie., a,, a, 4, . a;)
recursively. Thus, we have obtained the polynomial qlx) without
performing any division operation.

The polynomial equation
ple) =2 - 722 4 15x -9 =0
has a root at x = 3. Find the quotient polynomial g(x) such that

.-_————_-‘___._._..__.—..___-_____._______u__.______

From p(x), we have
ay=1,a,=-7,a,=15 and a, = -9
b:]:O
by=a3+63%x3=1+0=1
by=ayg+ b, x83=-7T+3=-4
by=a,+b, «3=154(-12) = 3
Thus the polynomial g(x) is
Codr+3=0

Evaluation of all real roots, including multiple roots, using Newton-
Raphson method and synthetic division technique for deflation is
presented in Section 6.14.

Complex Roots

Computing complex rvots is much more complex than computing real
multiple roots. Recall that complex roots of polynomials with real
coefficients occur in conjugate pairs. This suggests that we should isolate
the roots of these types by finding the appropriate quadratic factors of
the original polynomial (rather than lincar factors). Quadratic factors
can be obtained by using the process of synthetic division.

Let us assume that

h(x) = x* - uxr—v

is an “approximate” quadratic factor of p{x). Then

plx) ) rix)

= ool (6.56)
el

where g(x) is the quotient polynomial of degree (n - 2) and rlx) is the

remainder. Note that if h(x) is an exact quadratic factor of p(x), then r(x)

would be zero. Equation (6.56) can be rewritten as

plx) = qlx) hix) + rx)
= q(x) (& - ux - v) + rx) (6.57)
Since g(x) is a quolient polynomial, it would be of the form
qu) =B, x" 2+ b, x"3 4 4 b, (6.58)
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Let us assume that the remainder r(x) takes the form
el =8y (c—-u) + b, (6.59)
{The form of rix) is chosen for the convenience of manipulation),

The objective is to determine the factors u and v such that rix) becomes

zero and, therefore, /(x) becomes an exact factor of plx} given below.
pr)=a,x" +a, x4 L vra x4 ay (6.60)

Substituting Egs (6.58), (6.59) and (8.60) in Eq. (6.57) and comparing

coefficients, we obtain the following relations:
bﬂ' = a?l
bnwl = annl i ub”

bn-z Sdy gt E"Ebn—-l + U&rz

0y =a, + uby + vb,
by = ay + uby + vb,
This ean be expressed in general form as
[_ b= 0, +uby; + b, | (6.61)

wherei=n,n-1,..0
b.'u-l =0 bn-l-'d =0
Note that all the coefficients b, are functions of v and o which are

unknown.
It is clear that Alx) is a factor of plx) if and vnly if

by=ay +uby+vby =0 (6.62)

| (':;n:aﬂ+m?:1+vb.2=0r

Note that Eq. (6.62) is a system of two nonlinear equations in two
unknowns, u and v. These equations can be solved by using Newton’s
method discussed in Section 6.14.

Once the values of x and v are known, the roots of the equation

_‘Ez - Uux —-p

can be easily determined using the formula

wt q’gz + 4u
X ——
2
The process can be repeated for the quotient polynomial till it becomes
either a quadratic or linear polynomial which can be solved for their roots.

Purification of Roots

Purification, as the name indicates, is the process of refining the roots
that do not satisfy the required accuracy conditions. These roots may be
used again for testing the original problem and improving their approx-
imations.
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The Newton-Raphson method is a popular one used for purification of

roots. The values of the roots obtained through other methods are used
as “initial” input values to the Newton method.

MULTIPLE ROOTS BY NEWTON'S METHOD

As discussed earlier, we can locate all real roots of a polynomial by
repeatedly applying Newton-Raphson method and polynomial deflation
to obtain polynomials of lower and lower degrees. Algorithm 6.9 gives a
step-hy-step procedure to achieve this,

Note that the deflation process is performed (n — 1) times where n is
the degree of the given polynomial. After (n — 1) deflations, the quotient

is a linear polynomial of type

a x +ag=0
and therefore the final root is given by
Qg

J:_ -
Ly

Evaluation of Multiple Roots

1. Obtain degree and cosfficients of polynomial {n and &)
5 Decide an initial estimate for the first root (xg) and error criterion

Dowhilen>1 |
L ]

3 Find the root using Newton-Raphson algorithm:

f(xu)
flxg)

X=Xy —

4. Root {n} =X

5. Deflate the polynomial using synthetic division algorithm and make
the factor polynomial as the new polynorial of order n - 1

6. Set¥y =X, {initial value for next root)

[ End of Do

7 Root (1) = -aya,
8. Siop

Algorithm 6.9

Program MULTIR

The program MULTIR locates all real roots of a polynorial by repeated-
ly applying the Newton-Raphson method as showi in Algorithm 6.9. To
achieve this, the program employs two subroutines: first, the subroutine
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NEWTON to find a real root of the polynomial, and second, the subrou-
tine DFLAT to reduce the polynomial degree by one. This process is
continued till the degree of the polynomial is reduced to one. This is
implemented by the DO laop DO 2001 =N, 2, -1,

The subroutine NEWTON, while evaluating a root, also implements a
test for accuracy of the root obtained. In case the required accuracy is
not obtained within a specified number of iterations, the execution stops
afier giving an appropriate message.

* Main program

® The program finds all the real roots of *
* a polynomial &
I g o i S S . T T e *

* Functions Iinvoked
*  NIL »

* Subroutines used

" NEWTON N
% DFLAT N

* Variables used
* N - Degree of polynomial

. A - Polyncmial coefficients A(N+1) *
* X0 - Initial guess .
. XR - Root obtained by Newton method »
* ROOT - Root Vector *
* STATUS - Solution status #
* *

* Constants used

* EPS - Error bound

¥ MAXIT - Maximum iterations permitted
REAL A,X0,XR,RO0OT,EPS
INTEGER N MAXIT, STATUS
PARAMETER( EPS=0.000001, MAXIT=50 }
DIMENSION A(ll), ROOT(10)

WRITE(*, *)
WRITE(*,*) ‘' EVALUATION OF MULTIPLE ROOTS
WRITE(*, *)

WRITE(*,*) ‘Input N, the degree of polynomial”
READ(*,*) N

WRITE(*,*) ‘Input poly coefficients, A(l) to A(N+1)'
READ(*,*) (A{I), I=1, N+1}

WRITE(*,*) ‘Input initial guess X'
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READ(*,*) X0
WRITE(*,*)
DO 200 I = N, 2, -1
* Find I_th root
CALL NEWTON(N,A K X0,EPS3, MAXIT, STATUS, XR)
IF (STATUS .EQ. 2) THEN
DO 100 J = N, I+1, -1
100 WRITE(*,*} ‘'RCOT’,J,' =', ROOT(J)
WRITE(*,*) 'Next roolt does not converge in‘'
WRITE(*,*) MAXIT, ' iterations’
WRITE(*,*)
STOP
ENDIF
ROOT (1) = XK
* Deflate the polynomial by division (X - XR)
CALL DFLAT (N,A,XR)
20 = XR
x Freceed to find next root

200 CONTINUE

* Compute the last root
ROGT(1L) = = A(L)/A(2)

* Write results

WRITE(*, %)
WRITE{*; *)
PO 300 I =
WRITE(*, *)
CONTINUE
WRITE(*, *}
STODP
END

‘REOOTS OF POLYNOMIAL ARE:*
1, N

YROOT' ,I," =', ROGT(IL)
300

End of main

program MULTIR ------

e e e e

SUBRCUTINE NEWTON(N,2A, X0, EPS, MAXIT, STATUS, XR)

* Subroutine
* This subroutine finds a
= using the Newton-Raphson

root
method
w s B i i Rt s i i P
* Arcuments

* Input

i N - Degree of pelynomial

B B - Array of polynomial coefficients

P SO

of the polynomial
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o X0 - Initial guess for a root

* " EPS - Error bound

* MAXIT - Maximum iterations permitted

* Qutput

* ETATUS - Solution status

* XR - Root obtained by Newton method

L e e
* Local Variables

*  COUNT - Number of iterations per formed

¥ FX - Value of polynomial funection at x0

*

L R o R -

* Functions invoked

* Subroutines called
* NIL

et e e e PO — - - - e

REAL A,X0,EPS,XR,ABS
INTEGER N,MAXIT, STATUS
INTRINSIC ABS
DIMENSION A(11)

COUNT = 1
* Compute the value of function at X0

100 FX = AIN+1)
P lE T o= 8 9y =4
FX = FX * X0 + A(I)
111 CONTINUE s
* Compute the value of derivative at X0
FDX = A(N+1) * N
DO 232 I = W; 2, =1
FDX = FDX * X0 + A(T) * (I-1)
222 CONTINUE

* Compute a root XR
XR = X0 — FI/FDX

* Test for accuracy
IF (ABS( (XR-X0) /XR) .LE.EPS) THEN
STATUS = 1
RETURN
ENDIF
¥ Test f[or convergence
IF (COUNT .LT. MAXIT) THEN
W0 = XR
COUNT = COUNT + 1
GOTO 100

FDX - Value of function derivative at X0

* * % x * % % *

*
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ELSE
STATUS = 2
RETURN
ENDIF
END
L End of subroutine NEWTON--------—-——-
SUBROUTINE DFLAT (N, A, XR)
- A ——

* Subroutine

* This subroutine reduces the degree of polynomial
* by one using synthetic division

¥ mmmm=== R RS R R R RS e e e e e e e e
* Arguments

* Input

* N - Degree of polynomial
* A Array of coefficients of input polynomial
i XR - A root of the input polynomial

* Qutpukb

* A - gpoefficients of the reduced polynomial

R e e e e e e e e e e e e
* Local Variables

¥ B

e e S B A e AT e 2 e A S S
* Functions invoked

*  NIL

T e o e i s, S i i, i 2 e B e i e e e
* Bubroutines called

* NL1L

- e e e an i —— e e e A e S

RFAL A,B,XR
INTECER N
DIMENSION A{11), B(i1)

* Evaluate the coefficients of the reduced polynomial

B(N+1) = 0
DO1 1 =N, 1, -1
BII) = A(I+1) + XR * B(I+1)

1 CONTINUE
* Change coelficients from B array teo A array

Do 2 1T = 1, N+t

A{T) = B(T)

2 CONTINUE

RETURN

END
L End of subroutine DELAT s
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Test Results of MULTIR The program was tested for evaluating the roots
of the equation

£-8x+2=0
The results of a test run are given below:
EVALUATTON OF MULTTPLE ROOTS

Tnput N, the degree of pelynomial

P

Input poly coeificients, A(1) to A(H+1}
2 =3 1

Input initial guess X

]

ROOTS CF POLYNOMIAL ARE:

ROOT 1 = 2.0000000
ROOT 2 = 1.0000000

Stop - Program Lerminated.

COMPLEX ROOTS BY BAIRSTOW METHOD

We have discussed in Section 6.13 that complex roots of a polynomial
equation can be found by using its quadratic faclors. We have also seen
that if the polynomial

p)=a, & +a, 1 ™ + .apx+ ay
is divided by quadratic factor
he) =2 -ux - v
then the result is a polynomial
glxy=b, "2 4 b 0+ i+ by
with a remainder
rix) = bylx —u) + by
The values of coefficients b, are given by the following recurrence formula:

b,=a,
bﬂ ) an__l + an [6.63}
bi=a; + ub, +vb g, (fori=n-21to0)

We know that in order to make h(x) an exact factor of plx), rix) should be
zero. This implies that
l.'}'| = bﬂ = 0
We know from the above recurrence formula that
by =a; + uby +uby =0

by =ag+ uby + vby, =0
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The problem now is to find the solution of the system of equations
by(u,v)=0 (6.64)
bolu ,v)=0

Remember, these are nonlinear equations because coefficients b, are
functions of u and v. The strategy used to solve the system of Eqs. (6.64)
is known as Bairstow'’s method. The method is similar to the Newton-
Raphson approach for solving a two-equation system (discussed in Sec-
tion 8.12). Using the Taylor series expansion (recall Eq. (6.51)), it can be
gshown that

b b
"é::-'ﬁu+$l Av = by

'%0 %D
'"'Ju"'—ﬁui'EAU =—bu

To solve these equations, we need partial derivatives of b, coefficients.
Differentiating Eq. (6.63) with respect to u, we get

alx- %141 %u

(6.65)

2
—~ byt —+——,i=n-2te0 (6.66
B o ' ou )
b, 0
5 =
b,y b
=b, tu——=b
i & B "
For convenience, let us denote
“
Then, we have
CH=0 i
':J'l—l :bn
e, =b . tUCYUC,, [=n—-2t00 ! (6.67)

We need the following coefficients of ¢,

&,
Fa
Ay
T

¢, and ¢q van be evaluated recursively using Eq. (6.67). Now, differenting
Eq. (6.63) with respect to v,
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Gl
=0
v
&ﬂ-l &11
» Yl
: " 210
%-=b,,2+u c;vl+u_-_—:;\u{’ i=n-2to0 (6.68)
If we denote
d e =)
Yo
Then, we have
b, .
a'-"a_z
dn—l"__ aJ' =bﬂ
b, b,
That is,
dl=le+HdHi'.‘Ude‘.i:n“gtoO (669)
We need the following coefficients of d,
b
F
b
_{;.S_:dl

Again, d, and d, can be recursively valuated using equation (6.69).
If we compare Eqs (6.67) and (6.68), it is clear that d; values are
identical to c; values. That is

dI':ci fori=nto0
Then, dj, = ¢, and d, = ¢;. This implies that we need nct compute the
coefficients d,. .
Substituting for partial derivatives in terms of ¢ values in Eq. (6.65)
we get
L] Au “'CEAU =—b1
cpAu + ¢y Av = -by
Then,
2 b)l’,‘} ‘-buCz

C? =CqCq
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_buf‘-1 - biey

C;‘ —Cplyg

I-M! =

Now, given the initial values of ug and vy, we can estimate the values of
u and v using the following recurring relations

By “ibap

By =g e O (6.70a)
ef ~cyes
boey ~bie

Vi1 =8 _ﬂ_)l___ 2 8 (6.70h)
Ci' —{.'“I'."ﬁ

Note that the main task in Bairstow’s method is the evaluation of o, and
¢; coefficients using the Eys (6.63) and (6.67). Algorithm 6.10 lists the
steps to implement Bairstow's method.

Complex roots by Bairstow’s method

1. Get polynomial parameters (n and g; values)
2. Decide initial estimates, m, and v, and stopping criterion

| While n>2:Do |

3. Compute b; coeficients
Gompute ¢, coefficients
5. Compute
D=tyxg-gxg
Au==(by, x ¢y - by, » &)/D
W=—hy » ¢, — by = )/D
U= uy+ Au
V=4 Av
6. Test for accuracy of uand v, If accuracy is ok, then
solution obtained,
go to step 8
7. Otherwise, set
Uy =it
V=V
go to step 3 i
8. Find (complex) roots of X* - ux - v = 0
write results
9. Set the coefficients of factor polynomial as a;
n=n-2
a="58_,(fori=nto0)
10. Set next values for v, and v,
Uy= U
k=Y

.

| End of While-Do

L e ———
- — ———————— e TPt

(Contd. J

e |
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(Contd.)
11. fn=2, then
u = —ay/a,
v= -2/,

find (complex) roots
write results
else
single root = —ay/a,
write results
12. Stop

Algorithm 6.10

Obtan the quadratic factor of the polynomial
plr) =x* +x + 10

—— — — — — — — —— i — — — — — —— — — — ——— —

Given
ag=1,a,=0,a;=1,09=10
Then '
by =1
by=ay+uby=0+(+18)x1=+1.8
b, = a, + uby + vbz = 1 + (+1.8) (+1.8) + (-4)(1) = 0.24
by = ag + uby + vby
=10 + (+1.8) (0.24) + (~4)1.8) = 3.232
cy=0
eg=1
¢y = by + ucy + veg = +1.8 + (+1.8)1) + (-4 x 0) = +3.6
cyp=b, +ue, +tvey :
=0.24 + (+1.8) (+3.6) + (-4 x 1) = 3.72
D=c? cye,=(+36/-3.12x1=924
bie; ~€pcy
===
:_(0.24) (3.6)-(3.282) x1 _ 0.2563
9.24

byey —byeg
D

| (3.232)(3.6)-(0.24)(3.72) _ | Leg
9,24
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u=18+ 0.2563 = 2.0563
v=-4- 11616 = -5.1616
Note that the true values of ¥ and v are 2 and -5 respectively, There-

fore, the estimated values are close to the true values. These values can
be refined by further iterations,

Program COMPR

The program COMPR can locate all the real and complex roots of an
equation. The program COMPR uses Bairstow's method to achieve this,
The program logic is detailed in the Algorithm 6.10 and implemented as

shown in Fig. 6.11.
( Program COMPR ‘

=] |

‘ E BaTOW QUAD ‘
s ML 1

-
el £

Fig. 6.11 Implementaticn of algorithm 6.10 fo avaluate complex roots

The subprogram INPUT obtains data for polynomial and initial val-
ues of the quadratic coefficients. The subprogram BSTOW finds the
quadratic factor using multivariable Newton's method and also ohtains
the reduced polynomial. The subprogram QUAD solves the quadratic
equation, the details of which arc supplied by BSTOW through the main
program COMPR. Finally, the subroutine OUTPUT displays the roots of
the guadratic equation.

K e o i e e e e e e e ————— = w

PROGRAM COMPR

* e o S i i L 5 e o e

* Main program

2
" This program locates all the roots, both real *
* and complex, using Bairstow’s method *
W e i o =l . = — o R ——— S T S e e e N e *
* Functlons invoked "
H NIL *
T o e i i T e o i i i o o 4t S o e e e ¥
* Bubroutines used *
o INPUT, BSTOW, JUAD, QUTEUT ®
M s e e iy e oy i e . = e e = ®
* Variables used F *

i N Degree cof po.ynomial
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* A - Array of coefficients cf polynomial -
* UQ0,V0 - Initial values of coefficients of the *
* cuadratic factor &
* U , V - Computed values of coefficients of the *
* quadratic factor =
* B - Coefficients of the reduced polynomial *
» X1,X2 - Rootgs of the gquadratic factor *
* TYPE - Type of roots (real, imaginary or equal) *
e e T i e Papevoilii ]
* Constants used *
» EPS - Error bound *

INTEGER N, TYPE
REAL A,B,U0,V0,U,V,X1,X2,EPS,D0,D1,D2
PARAMETER( EPS = 1.E-6 )
DIMENSION A({11l),B{(11)
WRITE(*,*)
WRITE(*,*) *EVALUATION OF COMPLEX ROOTS’
WRITE(*,*)
CALL INPUT(N,A,U0,V0D)
100 IF(N.GT.2) THEN

* ___pobtain a quadratic factor
CALL BSTO'W(N.A.H;UO,VO,U,V,EPS)
gz = 1
Bl = =0
p0 = =V

£

find roots of the quadratic factor
CALL QUAD(DE,DI,DU,X].,KZ,TYPE)

*----print the roots
CAIL OQOUTPUT (N, TYPE, X1,X2)

+__..spt the coefficients of the factor polynomial
N = N-2
DO 200 I = 1, N+l
A(I) = B(I+2)
200 CONTINUE

*

set initial wvalues for next quadratic factor

uo = U

Vo =V

GOTO 100
ENDIF

TF(N,EQ,2) THEN

*

polynomial is a quadratic one
CALL QUAD(A(3),A{2),A(1).X1,X2,TYFE)
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CALL OUTPUT(N,TYPE,X1l,X2)
ELSE
*----last root of an odd order polynomial
ROOT = - A(1)/A(2)

WRITE(*, %)
WRITE(*,*) ‘Final root = ‘', ROOT
WRITE(™*,*)
ENDIF
sTCPR
END
* cm—msseeaee End of main program COMPR --——---—---———-

SUBROUTINE INPUT(N,A, U0,V0)

* Subroutine
= This subroutine reads pelynomial details and
* initial wvalues of the gquadratic coefficients

*

Arguments
Input
NIL
Output
N - Degree of polynomial.
A - Polynomial ceoefficients
U0, VO - Tnitial wvalues of the quadratic factor

* * % ¥

* o o+ A

L3

Local Variables
s NIL

% NIL

b NIL

INTEGER N
DIMENSION A({11)

WRITE(*,*) ‘Input degree of polynomial (M)
READ(*,*) N

WRITE(*,*) ‘'Input polynomial coefficients A(N+1)

to A(1)-
DO 11 I = N+1, 1, -1
READ(*, *) A(T)
11 CONTINUE
WRITE(*,*) ‘Give initial wvalues U0 and voO-*
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READ(*,*) UU,VO

RETURN
END
et =~ Ftid of subroutipg INPUT —s=—ssmsecasn &
____________________________ S -
SUBROUTINE BSTOW(N,A,R,U0,V0,U,V, EPS)
e e o 7 e P o o -
Qubroutine -
ThHis subroutine finds the guadratic factor using *
multivariable Newton's method and also finds the *
reduced polynomial %
_________________________________ . L 3
Arguments LS
Input %
N - Degree of polynomial *
A - Polynomial ceoefficierits *
UQ,v0 - Initial guess for the coefficients
of the guadratic iactor *
EPS - Error bound *
cugput «
U,V - Computed coefficiénts of the guadratic *
factor %
B - Coefficients of the reduced polynomial *
_____________________________________ e e L i e *
Local Variables *
D, bELU,DELV,C *
________ s A e S e g A g 2o . et e S R -
Functions invoked *
ABS *
____________________________________________________ *
Subroutines called 2
NIL
PP p——— e e i (I JE—— e e o —————— e —— E 3
INTEGER N

REAL A,B,U0,V0,U,V,EPS,D,DELU,DELV,C
INTRINSIC ABS '
DIMENSION A(11), B(1i1), C{l1l1)

COUNT - 1

100 B(N+1) = A(N+1)

B(N) = A(N) + U0 * B([N+1)
B 111 T = N-l, L, =1
B(I) = A{I) + UQ * B{i+l) + VO * B{I+2)

111 CONTINUE

CiN+1) = O
C(N) = B(N+1)
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DO 222 1 = m-1, %, -1
C(I) = B(I+l) + U0 * C(I+l) + VO * C(I+2)

222 CONTINUE

* % % % % % & oW 3

»

D = ©{2) * 0(2) - g1) * ©3)

DELU = =-(B(2) * C(2) - Bl{l) * C(3))/p
DELV -{(B(1) * C(2) - B(2) = C(1))/D
U = U0 + DELU

V = V0 + DELV

IF( ABS(DELU/U).LE.EPS .AND. ABS (DELV/V) .LE.EPS ) THEN

RETURN
ENDIF

IF (COUNT .LT. 100) THEN
uo =u
Vo = Vv
COUNT = COUNT + 1
GOTO 100

ELSE
WRITE(*, *)

WRITE(*, *) 'NO CONVERGENCE IN 100 ITERATIONS'

WRITE(*, *)
STOP
ENDIF

Subroutine
This subroutine solves a quadratic equation of
2
type AX + BX + C

Input

A,B,C - Coefficients of the quadratic equation
Output

X1,X¥2 -~ Roots of the quadratic equation

TYPE - Type of roots

Local Vvariables

.._______._____-..___.._..-_-..___.....______..,_,_‘_h________ _______

Functions invoked
SORT, ABS

% % 3
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* Subroutines called *
¥ NIL *
e D -

INTEGER TYPE, IMAGE, EQUAL, UNEQUAL,

REAL A,B,C,X1,X2,S5QRT,ARS

INTRINSTIC SQRT, ABS

PARAMETER( IMAGE = 1, EQUAL = 2, UNEQL = 3)

Q=B *B -4 +a+¢

IF(Q.LT.0) THEN
M e Roots are complex
X1 = =B/(2*p) '
X2 = SQRT(ABS(Q))/(2%A)
TYPE = IMACE
ELSE IF(Q.EQ.0Q) THEN

b S e S Roots are real and equal
X1l = -B/(2*A)
X2 = Xl
TYPE = EQUAL
ELSE
e e Roots are real and unequal
X1l = (-B + SQRT(Q))/(2*A)

X2 = (-B - SQRT(Q)}/(2*A)
TYPE = UNEQL

ENDIF

RETURN

END
L End of subroutine QUAD -------______ +
B e S S L LS G o M e i *

SUBROUTINE OUTPUT (N, TYPE, X1,X2)
Ml R R T *
* Subroutine »
* _ This subroutine displays the roots of the *
* quadratic equation i
* ._,__‘_______..__...___,____________...___.____________,_________ *
* Arguments #
* Input *
¥ N - Degree of the polynomial from which *
s the quadratic factor was obtained :
*  TYPE - Type of roats 5
* X1.X2 - Roots of Lhe quadratic factor *
* Qutput "
* NTL i
L Y T AL, o o i e A i S RS *
* local Variables &

* NIL *
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* Functions wnvoked
e NIL

* Subroutines called
» NIL

INTEGER N, TYPE, IMAGE, EQUAL, UNEQL

REAL X1,X2
PARAMETER( IMAGE = 1, EQUAL = 2, UNEQL = 3 }
WRITE(*, *)
WRITE(*,*) ‘'Roota of guadratic factor at n = *.N
WRITE (*, *)
IF (TYPE .EQ. IMAGE) THEN
WRITE(*,*) ‘Rootl = ', X1, ' + », X2,'3
WRITE(*,*) ‘Root2 = ', X1, ‘' - ', X2,'‘3°
ELSE TF(TYPF .EQ. HEQUAL) THEN
WRITE(*, *} ‘Rootl = ', X1
WRITE({*,*) ‘Rogez = v, %1
ELSE
WRITE(*, *) ‘Rootl = *, X1
WRITE(*,*) ‘Root2 = *, X2
ENDIF
RETURN
END
L e e End of subroutine OUTPUT ------===—==-~
Test Resulfs of COMPR

EVALUATION OF COMPLEX ROOTS
Input degree of polynomial (N)
3
Tnput polynomial coefficients A(N+1l) to A(1)
1

0

1

10

Give initial values U0 and V0

1.8 -4.0

Roots of quadratic factor at n = 3

Rootl = 1.0000000 + 2.0000000j
Root2 = 1.0000000 - 2.0000000j

Final root = -2.0000000
Stop - Program terminated.
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- [@@8] MULLER'S METHOD

Muller's method is an extension of the secant method. Muller's method

uses a quadratic curve passing through three points (x, f(x,)), (x, flxy))

and (xg, f(x3)) as shown in Fig. 6.12 to estimate a root of f(x). One of the

roots of the quadratic polynomial p(x) is taken as an approximate value

of the root of f(x). As illustrated in Fig. 6.12, the point x,, one of the

roots of p(x), is assumed as the next approximation for the root of flx).
We can write the quadratic polynomial p(x) in the form

plx) = ay +a, (x—c) +ay (x - ¢)° (6.71)

Equation (6.71) is known as the shifted-power form of the polynomial
and ¢ is a constant known as the centre. If we choose ¢ = x, then
Eq. (6.71) becomes

plx) = ap + aylx — xg) + aylx — x4)° (6.72)

Since x, is a root of plx), at x = x,, p(x) = 0 and, therefore, Eq. (6.72)
becomes

ay (2 - %3)° + a,(x, - x3) +a,=0
Solving the quadratic equation for {x, - x,) we get

(6.73)

This is one of the forms of quadralic formula, chosen here to minimise
error due to any subtractive cancellation. The constants ay, a, and a,
can be obtained in terms of known function values flxy), flxy), and flxy)
as follows:

1(x)

Flg. 6.12 llustration of Muller's method
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At x = x,, x, and x4, we have
ayx, — x3)* + ay(x; - x3) + ag = plx,) = flx,)
a5(xg — %)% + @,(x; — x3) + 6o = plxy) = flxy)
aglxg — x3)* + @y (x5 — xg) + a9 = plxg) = flxg)
Letting &, = x; — x4 and Ay = xy — x3, and denoting f; = f{x;), we get
a;\,.ﬁ.l2 +ahy +ay=f,
azh? +ahy +ay=1;
0+0+ay=fy
Since a, = f3, we can obtain @; and a, by solving the equations
aghy +a hy=fi-f=d;
ayh* +ay hy=fy—fy=d,

This results in
. - dzhf -dh}
l_hlhg(hl —hy)
_dyhg -dgh,
ay

" hyihy(hy —hy)
Equation (6.73) can be written as
xy=x3+hy
where

—2(10

ay t,’af -4ayay

The sign in the denominator of A, is chosen such that k, is as small in
magnitude as possible so that x4 is close to x,. That is, the magnitude

of(a 1t Ja? -daja, ) should be large.

This process is then repeated using x,, x; and x4 as the initial three
points to obtain the next approximation x;.
x5 =%y + Ry
The process is continued till f(x;) is within the specified accuracy.
Algorithm 6.11 lists the steps in detail for computing a root by Muller’s
method

hy =

Muller’s Method

1. Decide the initial three points and stopping criterion
2. Gompute fy = f(xy), b = f(x3), f5 = f(x3)
3. Compute
hy=X -2 h=x=X
d=fh-Khd=L-Ff

(Contd.)
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{Contd.)
4. Compute parameters &y, a,, a,
=1
dah? -d,h2
F: PiES il I i
g ]‘]1”2”]’1 —hz_}
_ Gyha —dzhy
hihgthy = hy)
5. Compute h
| B = ~2a

a4 iJ&T = 43250

6. Compute x; = x, + h

. Compute f, = f(x,)

8. It f(x,) satisfies the given criterion, then

root is obtained,

i go to step 10

| 9. Otherwise, set
X| = Xz, Xz = X3, XS = Xs and
=0 fa=17, =1, then

go to step 3
10. Write the value of root (x,)
11. Stop

-~

Algorithm 6.11 |
3

(choose the sign in the denominator such that its magnitude is the
largest. That Is if a, is positive use + sign, otherwise, — sign)

cab ‘}%

Salve the Leonardo equation
) ="+ 2% 4+ 100 - 2% 0
by Muller’s method

T e i i s e . i s i | .t st s P i

lteration 1
x=0x=1%=2
fi=-20
9 = 7
f3=16
hi=xy~x53=0-2
h2=.t2—13:—1
dy=fi—fs=~36
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dy=fp—f3=-23
D = h]. hz (hl - ha)
=2(-2+1)=-2
i “NE _ (- -112
o I BN
-2
(-36)(-1)- (-23)(-2) _
-2

b

ag =

-2x16

h = ==
28 + /282 - 4(5)(16)

I (choosing + sign)
49.540659 B e

= -0.645934
x, = x3 + h = 1.3540659
Iteration 2

|

Xg=2

x, = 1.3540659

hy = x, — 23 = —=0.3540659

hy = %9 — x4y = 0645934

fr==1

f2=16

f5 = f(1.3540659) = -0.3096797
di=fi-fa= -6.6903202

dgy = f; ~ f3 = 16.3096797

D = hhy (hy - hy) = 0.2287031

dyhf -dihg
al = D "

ag = d_i"_‘%iﬂﬁL = 6.3540717

=21.145459

ay = f5 = —0.3096797

=0 .
- st ~ 06193594 _ 0145813

a+ ‘ﬂf ~4a,a, 42.47622
xy =x3 +h = 13686472

This process can be continued to obtain better accuracy. The correct
answer is 1.368808107.
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Complex Roots

Note that, in Example 6.17, we obtained a real root of the polynomial. In
some cases, we may encounter complex approximations while solving
Eq. (6.73). However, in such cases, the imaginary component will nor-
mally be small in magnitude and it can be neglected.

In case we are interested in the complex roots as well, we can obtain
these by implementing the Muller algorithm using complex arithmetie
(which is supported by FORTRAN).

Multiple Roots

The algorithm can be modified to find more than one root by incorporat-
ing the deflation procedure using the following equation as discussed in
Section 6.13;

_ flx)

-2y

[Fx)

Program MULLER

Design and development of a program to implement Muller's method is
left to the reader as an exercise,

617 SUMMARY

In this chapter, we defined various forms of nonlinear equations and
stated a number of approaches to find the roots of such equations, We
discussed in detail the following iterative methods to evaluale a root:
e Bisection method (also known as interval halving method)
= False position method (also called linear interpolation method)
s Newton-Raphson method
¢ Secant method
* Fixed point method (also known as method of direct substitution)
e Muller's method
We also discussed the solution of a system of nonlinear equations using
= lixed point method
= Newlon-Raphson method
We further presented two methods to find the roots of polynomials:
* Newton-Raphson method with synthetic division
* Bairstow’s method (for real as well as complex roots)
We discussed the process of converging of iterative methods und proved
that
* Newton-Raphson method converges with order of 2
* Bisection method converges linearly
¢ False position method is linearly convergent
¢ Secant method follows superlinear convergence
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We presented FORTRAN programs and test results for the following
methods:

Bisection method
False position method

Newton Raphson method (single root)

Secant method
Fixed point method

Newton-Raphson method (multiple roots)
Bairstow's method (for complex roots)

Key Terms

Algebraic equation
Analytical method
Bairstow's method
Binary chopping method
Bisaction method
Bracketing method
Compiex number
Complex root
Convergence

Deflatian

Descartes’ rule

Direct substitution method
Extrapolation method
False position method
Fixed point equation
Fixed point method
Graphical method
Haif-interval method
Horner's rule
Incremental search
Interpolation method
Iterative function
llerative method
Jacobian matrix

Linaar

Linear interpolation
Linearly convergent
Monotone convergence

Meonotone divergence
Muller's method
Newton-Raphson formula
Newten-Raphson method
Nornfinear

Open end method
Polynomial equation
Punfication

Quadratic convergence
Quadratic equation

Aeal root

Regula falsi

Hapeated roots

Hoots

Search bracket

Secant formula

Secant method
Shifted-power form
Spiral convergence
Spiral divergence
Stopping criterion
Successive approximations
Superlinear convergence
Synthetic division

Trial and error
Transcendental equation
Zeros

. What iz a nonlinear equation? Give an example from real-life prob-

lems.

_/é,. What is an algebraic equation? Give two examples.
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Polynomial equations are a simple class of algebraic equations.
Explain.

- What is a transcendental equation? What are its characteristics?

5.

6.

T

10.

11,

What is meant by direct analytical method of solution? What are
its limitations?
When do we seck the help of graphical methed for solving a nonlin-
ear equation?
What is an iterative technique? How is it implemented on a com-
puter?
Describe the concept applied in the hracketing methods used for
solving nonlinear equations.
How do we decide initial guess values for solving a polynomial
equation using

ta) open end methods, and

(b) bracketing methods?
What is meant by stopping criterion? State some of the tests that
can be used for terminating an iterative process.
What is Horner's rule? How does it improve the accuracy of evalua-
tion of a polynomial?
Explain the principle of bisection method with tho help of an illus-
tration.
Explain the principle of false position method.
State the Nt,wtomRaphbon formula and explain how it is used tg

@ Explai ati i 2

20.
5
22.
23.
24.

25.
26.

ote thm the secant ['urmuld and the false position fﬂrmula are

similar. Then what is the difference between these two methods?

‘/lfr.
A,

19.

How does the secant method compare with the Newton-Raphson
method?

Discuss the situations where the fixed-point iteration process may
not converge to a solution.

Describe an algorithm to determine all possible roots of an equa-
tion.

State the limitations of using the fixed-point approach for solving a
system of nonlinear equations.

State the Descartes’ rule to estimate the number of real roots of a
polynomial.

What is synthetic division? How is it used to ohtain the multiple
roots of u polvnomial?

What is deflation?

What is meant by purification of roots? How is it done?

Muller’s method is an extension of secant method. Explain.
Compare, in a tabular form, the order of convergence of various
iterative methods used for solving nonlinear equations.
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(En /aluate the following polynomials using Horner's rule:
(8) fle) =2 + 46® 2 + 5 atx =3
b) fix)=x" 2% + 5x + 10 atx =5
(c) ﬂ_:c)=x4+2x2— l6x +5 atx=2
Prove that the bisection method is linearly convergent.
j How would you decide the two initial values that are required for
using the bisection method?
‘Fmd a root of each of the following equations us using the bmecuon
J’Eﬂhﬂd— =
) e —-x-2=0
(b) sinax=2x + 1 =0~
(c) logx—cosx =0x

H cu oG A

(@ x* -2 -x-8=0
,@Denve the false pumt:on formula for evaluatmg a root ol a nonlin-

£ar equation. e
Use the false position formula repeatedly and obtain roots of the
following equations :
N~ /ﬁ_-ﬂ.} x—e*=0
sm x-x+2=10
)2 -4’ +x+6=0
) 3+ 6 - 45 = 0w i
(£) 42° ~ 2v = 6 = O %~

Derive the Newton-Raphson iterative formula

_ Ty
" )

x =X

n+1

for solving f(x) =
8. Show that the Newton-Raphson method converges to solution qua-

dratieally.
/ Obtain the Newton's iterative formula for evaluating the square
root. of a number, Use this formula to find the square root of 3.
10. Derive a recursive formula for finding the nth root of a number,
say A,
11. Show that Newton's formula for finding the reciprocal of A is
X, =x,(2-Ax,)
Find the Newtun-Raphson formula for the following functions:
(a) f'(x)—-x -2x-1
b fix)=x*—x-3
(¢) flx) =x*—- 3¢ -2
(d} flx) = cos x

g~
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(e) flx) =xe™
TP fx)=xtanx -1

A_13. Apply Newton’s method to fis@he roots of the following equations:
(a) e*-x=0
(b) logx —cosx =0
¢) t-anr—x:O—-ﬂM

(d) x- 1568nx-25=0

ompute a root of each of the following equations using_l_\l_na_t_ﬁnn—ﬂ
Raphson method.

“ - Bx+6=0, X=5_

(b x®-1.2¢" +2x - 24 =0, T = 2
s P4y x+6=0, zy=6

d) £* +3° -2 -12: -8=0, x5=1

0 - 3% -100=0, Ry

&)

" tion formula.

16.

=k

18.

19,

20.

21.

Derive the secant formula. How is it different from the false posi-

Prove that the rate of convergence of secant method is better than
that of bisection method or false position method.
Use the secant method to compute a root of the following equa-
tions:
(a) 42 - 22 -6=0
(b) 2~ Bx +6=0 (@) x—e+2=0
{¢) xsinx-1=0 0 2 -32%2-100=0
Derive a condition under which the error in the fixed-point itera-
tion method will decrease with each iteration.
Use the {ixed-point iteration method to evaluate a root of the equa-
tion )

(d) €-3x=0

P-x-1=0
using the following forms of gix):
(a) x=x2-1
(b) z=1 4+ 2¢ - 2

{c}x~_é(1+3x—12)

starling with (i) x, = 1 and (ii) x, = 2. Discuss the results.
Find the square root of 0.75 by writing f(x) = x* - 0.75 and solving
the equation
x=x"+x-0.75

by the method of fixed-point iteration. Assume an initial value of
xy = —0.8. Try with an initial value of x; = 0.8. Comment on the
results,
Use a suitable method to find to three decimal places the roots of
the following equations.

(@) x* - x-6=0

(b) x* +2t-05=0

(¢) ¥*~10x logx =0

(d) *-24*~8x +10=0

i
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22

23

24

25

26

27

28

29,

. Solve the system of equations
Z+ryl=5
oy
using (a) fixed-point method and (b) two eguation Newton-Raphson
method. Assume xy =1 andy, = 1.
. Use Newton's method to solve the following systems of equations:
(a) 3% - 2y° =1
x"-2x+y2+2y=8
(Assume x5 = -1 and Yo=1)
(b) 2 <9f41=0
=248 9.
(Assume x, = 1 and y, = 1)
. The polynomial
pE) =2~ 6%+ 11x - 6 = 0
has a root at x = 2. Find the quotient polynomial g(x) such that
Plx) = (x - 2) g(x)

- A box open at the top is made from a rectangular piece of plywood
measuring 5 by 8 metres by removing square pieces from the cor-
ners. What will be the size of square pieces removed if the volume
of the box is to be 20 cubic metres?

- The supply and demand functions of a product are

Qs = p® - 500
Qd = p® - 60p + 1500
Determine the market equilibrium price which occurs when
Qs = Qd.
- Use Muller's method to find a root of the following equations:
(@) 2* - x- 2,21=1,%=12andxy=14
(b) 1+2x~tanz, x, =15, X;=14and x; =13
- Use Bairstow's method to estimate the roots of
fa)=at- 2%+ 42?4y 4 4

In the figure shown below, estimate the angle #in radians (to two

decimal places) using Newton’s method (or any other method), Area

of triangle ABC equals area shaded,

Also show that there is only one answer in the interval 0 and #/2.
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31.

32.
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The equation x tan x — I occurs in the theory of vibrations.
(a) How many roots does it have in the interval 0 and /2
(b) Estimate them to two decimal places.

The flux equation of an iron core electric cireuit is given by

fig) =10 - 2.1 - 0.01¢*
The steady state value of flux is obtained by solving the equation

f(¢) = 0. Use a suitable method to estimate the steady state ¢.
The state of an imperfect gas is given by van der Waals’ equation

(p-i-%](u—ﬁ):l??’l
u

or

po® —(Bp + RT) v* + av — @B =0

Solve the equation for v(molar volume) given the following:
p (pressure) = 1.1
T (temperature) = 250° K
R {gas constant ) = 0,082
%= 36
B8 =10.043
Use any suitable method.

. Develop a prugfa.t;i_t;} 'éom_fh'u_t;;l'l' the roots of a polynomial using

the hisection method, Use Algorithm 6.6. Test the program for
-6+ 1l -6=0

. Modify the above program to use Newton-Raphson method instead

of bisection method and test the program,

. Write a program to solve a system of nonlinear equations using

(a) fixed-point method (Algorithm 6.7)
(b) Newion-Raphson method (Algorithm 6.8)

. Write a program for computing a real root of an equation using

Muller’s method. (Algorithm 6.11).

. Modify the program in Project 4 to implement the Muller algorithm

using complex data type supported in FORTRAN to compute com-
plex roots,

Design a menu-driven program to compute a root of a given equa-
tion. The menu will provide the choices of methods that a user can
select, depending on the nature of equation.



Direct Solution of
Linear Equations

Analysis of linear equations is significant for a number of reasons, First,
mathematical models of many of the real world problems are either
linear or can be approximated reasonably well using linear relationships.
Second, the analysis of linear relationship of variables is generally easier
than that of nonlinear relationships.

A linear equation involving two variables x and y has the standard

form
ax +by=¢c (7:1)

where a, b, and ¢ are real numbers and a and b cannot both equal zero.
Notice that the exponent (power) of variables is one. The equation becomes
nonlinear if any of the variables has the exponent other than one.
Stmilarly, equations containing terms involving a product of two variables
are also considered nonlinear.

Some examples of linear equations are:

4x + Ty =16
=« —-2/3y =0
3u—2v=-1/2
Some examples of nonlinear equations are;
20 —xy+y=2
2 +y2=25

x+Jx =6



Direct Salution of Unear Equations 207

In practice, linear equations occur in more than two variables. A
year equation with n variables has the form

Bx1 + QpXq + GgXg + ... + 0¥y = bJ (7.2)

here a; (i = 1, 2, ... n) are real numbers and at least one of them is not
ro. The main concern here is to solve for x; (i = 1, 2, ... n), given the
Jlues of ¢, and b. Note that an infinite set of x; values will satisfy the
»ove equation. There is no unique solution. If we need a unique solution
" an equation with n variables (unknowns), then we need a set of n
sch independent equations. This set of equations is known as system of
multaneous equations (or simply, system of equations).
A system of n linear equations is represented generally as
@y1%) + Gyo%g + oo ¥ 0%y, = by
(g Xy + Qpgky + oo + Ggp¥y = by

(7.3)

A%y + Gy + oo F Uy X = b,
n matrix notation, Eq. (7.3) can be expressed as
Ar =b (7.4)
shere A is an n x n matrix, b is an n vector, and x is a vector of n
imknowns.
The techniques and methods for solving systems of linear algebraic
squations belong to two fundamentally different approaches:
1. Elimination approach

2. Iterative approach
Elimination approach, also known as direct method, reduces the given

system of equations to a form feom which the solution can be obtained
by simple substitution. We discuss the following elimination methods in
this chapter:
. Basic Gauss elimination method
. Gauss elimination with pivoting
. Gauss-Jordan method
. LU decomposition methods
. Matrix inverse method

The solution of direct methods do not contain any truncation errors.
However, they may contain roundoff errors due to floating point
operations. ’ -

Iterative approach, as usual, involves assumption of some initial values
which are then refined repeatedly till they reach some accepted level of
accuracy, Iterative methods are discu ssed in Chapter 8.

" ©0STENCE OF SOLUTION

In solving systems of equations, we are interested in identifying values
of the variables that satisfy all equations in the system simultaneously.

O o O BD =
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Given an arbitrary system of equations, it is difficult to say whether the
system has a solution or not. Sometimes there may be a solution but it
may not be unique. There are four possibilities: "_
/1‘41. System has a unique solution - -

. System has no solution
/3. System has a solution but not a unique one (ie, it has infinite
Z

solutions)
A System is ill-conditioned
4.5 Ax - 1.5y
= ‘1
¥ 2x - y=5
0' s2 e QT 0 : P —
(b) System with no solution
X-2y=-2
¥
0.45x-091y =1
0 X ——
(ct System with infinite solutions (d) li-condilioned systern

Fig. 7.1 Various forms of a system of two linear equations

Unique Solution

Consider the system .
Trdy=9
2x—-3y=4

The system has a solution
Tzl and y=29

Since no other pair of values of ¥ and ¥ would satisfy the equation, the
solution is said to be unigque. The system is illustrated in Fig. 7.1(a).

0 Solution
The equations
2x-y=5
dx—-3/2y=4

have no solution. These two lines are parallel as shown in Fig. 7.1(b)
and, therefore, they never meet. Such equations are called inconsistent
equations,
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Unique Solution
A\-% system
-2x+3y=6
dx - By = —-12

has many different solutions. We can see that these are two different
forme of the same equation and, therefore, they represent the same line
(Fig. 7.1(c)). Such equations are called dependent equations.
The systems represented in Figures 7.1(b) and 7.1{¢) are said to be
_singular systems.
7
-Conditioned Systems
g,fi’%cre may be a situation where the system has a solution but it is very
lose to being singular. For example, the system

x—2=-2
(0.45x - 091y = -1

has a solution but it is very difficult to identify the exact point at which
the lines intersect (Fig. 7.1(d)). Such systems are said to be ill-conditioned.
[ll-conditioned systems are very sensitive to roundoff errors and, there-
fure, may pose problems during computation of the solution.
Let us consider a general form of a systein of linear equations of size m x n.
Xy +@xy+ Lt ax, =b,

g% + AogXg + ... + Uop X, = bg_

QpiXy + QppXp + ...+ 8,,%, = b,

In order to effect a unique solution, the number of equations m should
by equal to the number of unknowns, n. If m < n, the system is said to be
under determined and a unique solution for all unknowns is not possible.
On the other hand, if the number of equations is larger than the number
of unknowns, then the set is said to be over determined, and a solution
may or may not exist.

The system is said to be homogeneous when the constants b, are all

Zero.

SOLUTION BY ELIMINATION

Elimination is a method of solving simultaneous linear equations. This
method involves elimination of a term containing one of the-unknowns
in all but one equation. One such step reduces the order of equations by
one. Repeated elimination leads finally to one equation with one unknown.
Some rules that are useful in manipulation of the equations are:

1. An equation can be multiplied or divided by a constant.
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2. One equation can be added or subtracted from another equation.
3. Equations can be written in any order.
For example, the system

2Zx+y=4
x—-2y=1
can be written in different forme as follows:
1. 4x+2y =8
Bx—-2y =1
2 -3x+3y=3
2x+y =4
8 -2y =1
2c +y =4

Consider a general form of three linear equations:
@y Xy + Gip¥g + @yg%y = by
(g% + QgpXg + Uag¥y = by (7.5)
agy%) + QgaXp + OgzXg = by
We have three unknowns and three equations. Our objective is to
modify this set to the following form:
Gy Xy + Gpa%y + G3Xy = by
apxy +ajpxy +0 =bs
a§yx; +agxy +0 =bj
This represents a new set of equations with x; eliminated in the last
two equations. The last two equations represent a set with two unknowns.
This system can be further transformed into the form
ayxy + @y + 0%y = by
afix, +afxy +0 =by
G§|x1+0+0 =b§'
Now, the last equation has only one unknown and, therefore, its value
can be obtained as
by
XY=
a3y
By substituting this in the second equation, we can obtain the value
of x,. Finally, x; can be solved using the computed values of x, and x, in
the first equation.
Remember that the three-equation system (Eg. (7.5)) can also bhe
transformed into the following form:

g% + Qp¥y + 03323 = by
0+afyxy,+0 =by
) ﬂg111+0+ﬂg313:b;
Note that a prime indicates that the co~*irients have been maodified.
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ion process basically involves the addition of multiples of
to other equations so as to set the coefficients of one of the
these (other) equations to zero. Example 7.1 illustrates this

(Sl

e following system of equations b; the process of elimination.
8x+ 2 +2=10"""
Zx+8y+ 2 =14 —
.F._xj- 2y+dz=14""

o — — — — — — — e . e e o e e e — — — — — — —

The elimination process involves the following steps:

Step 1: Elimination of x from second and third equations

Multiply first equation by 2/3 and subtract the result from the second
equation. This gives

513y + 4/3z = 22/3
or 5y + 4y = 22

Similarly, multiply first equation by 1/3 and subtract the result from
the third equation. This gives
‘ry + 8z =232

After step 1, we have the following first derived system:
3x+ 2 +2=10
by + 42 =22
y+2z= 8
Step 2: Elimination of y from the third equation in the derived system

Multiply second equation in the derived system by 1/5 and subtract the
result from the third. This results in

6z=18
The system now has been reduced to an upper triangular form:
3x+2y+2=10
By + 42,=22
6z = 13(,'?(-
The derivation of this upper triangular system of equations is called
the forward elimination process.
We can now solve these equations as follows:
2=18/8=3
Then,
By +4 X3 =22
Therefore,

y=(22-4x3)/6=2
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Finally,
Jx+2x2+3=10
o rai— {10 T 7)f'3 = ]
Computation of unknowns from the upper triangular system, as illus-
trated here, is known-as back substitution.

ﬁé GAUSS ELIMINATION METHOD

We have seen in Example 7.1 how to solve a system of three equations
using the process of elimination. This approach can be extended to sys-
tems with more equations. However, the numerous ealeulations that are
required for larger systems make the method complex and time consum-
ing for manual implementation. Therefore, we need to use computer-
based techniques for solving large systems. Gaussiar elimination i 5 one
such technique.

Gauss elimination method proposes a systematic strategy for redue-
ing the system of equations to the upper triangular form using the
forward elimination approach and then for obtaining values of unknowns
using the back substitution process. The stralegy, therefore, comprises
two phases:

1. Forward elimination phase: This phase is concerned with the ma-
nipulation of equations in order to eliminate some unknowns from
the equations and prodnee an upper triangular system.

2. Back substitution phase: This. phase is concerned with the actual
solution of the equations and uses the back substitution process on
the reduced upper triangular system,

Let us consider a general set of n equations in n unknowns:

Uy X + QX + .o +ay, t, =8

O X + A Xy + .. + 0y, X, = by
(7.6)

My Xy + 00 Xg + . + a,,x, = b o

Let us also assume that a soh:tmn exists and that it is unique. Algo-
rithm 7.1 illustrates the steps involved in implementing Gauss elimina-
tion strategy for such a general system.

Gauss elimination (basic) method

1. Amange equalions such that a,, = 0
2. Eliminate x, from all but the first equation. This is done as follows:
(i) Normalise the first equation by dividing it by a,,.
(i) Subtract from the second Eg. a,, times the normalised first
equaiion,

(Conid.)
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The result is
511] 43 by,
[321 =gy [¥y J"’zz —fp—— |Xg t..=by -dp—
aqq | |_ 241 § dyq

We can see that

a
8y =y 8 0

a4y
Thus, the resuitant equation does not contain x,. The new
second equation is
0+ ﬂézXz +‘..+a§nxn =bé

(i) Similarly, subtract from the third Eq. a5, times the normalised
first equation.
The result would be
O+agpXa+...+a3,x, =bj
If we repeat this procedure till the rnth equation is operated
on, we will get the following new system of equations:
@y Xy + 83 Xo+ ..+ 8y, X, = by

QpXy +..+ahyx, =b}

QpaXp +...t8f,Xpn= b}
The sclution of these equations is the same as that of the
original equations.
3. Eliminate x, from the third to the iast equation in the new set.
Again, we assume that a4, #0.
() Subtract from the third equationa, times the normalised sec-
ond equation.
(i) Subtract from the fourth equation,aj, times the normalised
second equation,
and so on,
This process will continue till the last equation contains only one
unknown, namely, x,. The final form of the equations wilf look like
this:
g Xy +8p X+ . rapx, =

ahpXy +..+a%y X, =

a, "V x = p, =1

This process is called triangularisation. The number of primes indi-
cate the number of times the coefficient has been modified.

(Contd.)
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(Contd.)

4. Obtain solution by back substitution.
The solution is as follows:
(n-
p -2
Xn

T aln-Y
m

This can be substituted back in the (n— 1)" equation to obtain the
solution for x,,_,. This back substitution can be continued till we get

the solution for x,.
Algorﬁhy/{ ]

Note that the relation for nbtain-isé the cocfficients of the kth derived
system has the general form

(k-1)
ﬂ{k)_alk—ll__al'k (k-1) (7.7
g T oW k-1 M
T
where
i =k+1lton
J=hk+1lton
aﬁ,-‘msagr fori=1ton, J=1ton

The kth equation, which is multiplied by the factor a,, fu;, is called the
pivot equation and a is called the pivot element. The process of dividing
the kth equation by &t /ay, is referred to as normalisation.

Similarly, the relation for obtaining the kth unknown x; has the general
form

n
1 lyt-3_ 5 gD

e ———— X
-1y |k - kj i (7.8)
@ ak H=k 3 _
where
kE=n-1tol
b{ﬂ-n
Zy =
e
ann
-

/E;olve the following 3 x 3 system using the basic Gauss elimination
method.
3z, +6xy +23=16
2x, + 42, 4 3x5=13 '
X+ 3%+ 20,= 9

e e e e e s ————— ———— W ———— =
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After the first step of elimination using multiplication factor 2/3 and 1/3,
we obtain the new system as followg;

3x) + 6xy +x3= 18
0+0+Txz= 7
0 + 3%, + 51y = 11
At this point 4,y = U and, therefore, the elimination procedire breaks
down. We need to reorder the equations as shown below:
3xy + 6xy + x5 = 16
3xy + Bxy =11
o= 7
Note that the process of elimination is complete and the solution is:

=l xy=2 andx; =1

Computational Effort

Computational effort is one of the parameters used to decide the efficiency
of a method. Here we estimate the computational effort required in
terms of arithmelic operations. The number of operations required for
eliminating x, from the equations below the kth row are:
Multiplications : (n -- &k + 1) (n — k)
Subtractions : (n — & + 1) (n — k)
Divisions: (n =k + 1)
The total operations required in Gauss elimination method is, thercfore,
n-1

Multiplications = ¥,
k Y

(i 1}(n—k)=%uln2—1}
= .

n=1

Subtractions = ¥ (n—k+ 1) (n— k).—_%u(ng =ik
k=1

Divisions = i (n—k+1)= %n(n -1
k=1
For back substitution, we are evaluating the x values from x, to x,.
For evaluating the value of x;, we require
n — k multiplications
n — % subtractions
1  division
Therefore, the total operations required for back substitution process
are

Multiplications = i (n - k}:%n(n -1
B=1

Subtractions = i (n-k)= %n(n -1
k=1
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Divisions = § 1=n
Aal
Total operations required for both the stages are given in Table 7.1,

Table 7.1 Computational effort required

Elimination process  Substitution process  Both stages
(n—1n(2n+5)
Multiplication 4 n{nt-1) 2 nin-1) e
3 2 6
) 3 2 _ i {(n--1n(2n+5)
Subtraction 38 (n*=1) 2 " (n-1) S e
3 1
Division 1 5t 1) n o et
2 2

We can thus conclude that the number of multiplications and subtractions
grows proportional to n%3 and the number of divisions proportional to n%/2.

Progrdm LEG]

The basic Gauss elimination technique enumerated in Algorithm 7.1 is
implemented by the program LEG1. The driver program LEG1 uses a
separate subprogram GAUSS1 to implement the computational part of
the algorithm.

LEG1 obtains the input data from the user and then calls the subpro-
gram GAUSSI to solve the specified system of linear equations. It final-
ly prints the results when they are received from the subprogram.

The subprogram GAUSS1 receives the details of the equation from
the driver program, determines whether the pivot is zero or not, per-
forms the elimination process (if it is not zero), computes x values (by
back substitution), and finally sends the results to the driver program,

Note that when the pivot value is near z€ro, appropriate message is
sent to the driver to inform the user accordingly.

¥ o e e i e e o T w

PROGRAEM LEG1

e e e e e s e et e S LA *
* Main program _ P
% This program solves a system of linear egquaticns *
* using slmple Gaussian elimination method *
Ll I *
* Functions ‘invoked %
¥ NIL "
W i s e i s e e i i e e S o i *

* Subroutines used
“* ' GAussl ¥



*

-
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Variables used
N - Number of equations in the system
A - Matrix of coefficients
B - Right side vector
X - Solution wvector
Constants used
STATUS - Solution status
REAL A,B,X
INTEGER STATUS,N
EXTERNAL GAUSSI1
DIMENSION A(10,10), B(10), X(10)
WRITE(*,*)
WRITE(*,*) ‘SOLUTION BY SIMPLE GAUSS METHOD'
WRITE(*, *)

WRITE(*,*} ‘What is the sizc of the systemi{n)?’

READ(*,”") N

WRITE(*,*) ‘Input coefficients a(i,3), row-wise,
+ ‘one row on each line’

Do 20 r =1, N
READ(*,*) (A(I,J),J=1,N]
CONTINUE

WRITE(*,*) ‘Input vector b’
READ(*.*) (B{(I}, I = 1, N}

CALL GAUSS1(N,A,EB, X, STATUS)

IF(STATUS .NE. 0) THEN
WRITE(*,*)
WRITE(*.*) ‘SOLUTION VECTOR X'
WRITE(*, *)
WRITE(*,*) (X(I), T = 1, N)
WRITE(*, *)

ELSE
WRITE(*,*)
WRITE(*,*) ‘SINGULAR MATRIX, NO SOLUTION’
WRITE(*,*) °REORDER EQUATIONS'
WRITE(*, *)

ENDIF
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* Subroutine
* Thie subroutine solves a set of n linear
*  pquations by Gauss elimination method
A R S A Sy S p— e ——— i . A o e
* Arguments
* Input
* N - Number of equations
* A - Matrix of coefficients
* B - Right side vector
* QOutput
X - Solution veclor
¥ STATUS - Solution status
*

* Local Variables
PIVOT, FACTOR, SUM

* Functions invocked
* NIL

* Subroutines called
* NIL

REAL A,B,X,PIVOT,FACTOR, SUM

INTEGER STATUS,N

DIMENSION A(10,10), B(10), X(10)})
————————————————— Elimination beging =--—m——m===-===

DO‘ 33 K = ]_, N‘“]
PIVOT = A(K.EK)

IF(PIVOT .LT. 0.000001) THEN
STATUS = 0
RETUEN
ENDIF
STATUS = 1

DO 22 I = K+1, N
FACTOR = A(I,K}/PIVOT
DG 11 J o= Kel; N
AlI,J) = A(I,J) - FACTOR * A(K,J)
11 CONTIRUE
B{f) = B{I] - FACTOR * B({k)
22 CONTINUE
33 CONTINUE

# cosssumassuos Back substitution beging —--=--------

X(N) = B(N)/A{N,N)
DO 55 ¥ = N=1;1,-1
S5UM 0

J

DO 44 J - RK+1,N

% % % o w # %

-

*



Ulrect Solution of Unear Equations 219

SUM = SUM + A(K,J) = X(T)

44 CONTINUE
X{(K}) = (B(K) - SUM) /A (K, K)
55 CONTINUE
RETURN
END
B - Bnd of subroutine GAUSSI —-----—__.___ ¥

Test Run Resulis
SOLUTION BY SIMPLE GAUSS METHOD
What is the size of the system(n)?
3
Input coefficients afi,jj, row-wise, one row on each line

2 1 3

4 4 7

258

Input vector b

i

SOLUTION VECTOR X

-5.000000E-001 -1.0000000 1.0000000

Stop - Program terminated.

GAUSS ELIMINATION WITH PIVOTING

In the basic Gauss elimination method, the element a; when { = j ig
known as a pivot element. Bach row is normalised by dividing the coeffi-
cients of that row by its pivot element. That is
[} &j )
Ay ‘;T J=Tm

If a, = 0, kth row cannot be normalised. Therefore, the procedure
fails. One way to overcome this problem is to interchange this row with
another row below it which does not have a zero element in that position
(see Example 7.2).

From the given set of equations, it is possible to reorder the equations
such that @, is not zero, Bui subsequently, the values of a; are contin-
uously modified during the elimination process and, therefore, it is not
possible to predict their values beforehand.

The reordering of the rows is done such that a;, of the row to be
normalised is not zero. There may be more than one non-zero values in
the kth column below the olement @y The question is: which one of
them is to be selected? It can be proved that roundoff errors would be
reduced if the absolute value of the pivot element is large. Therefore, it
is suggested that the row with zero pivot element should be interchanged
with the row having the largest (absolute value) coefficient in that
position. In general, the reordering of equations is done to tmprove accu-
racy, even if the pivot element is not zero.
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The procedure of reordering involves the following steps:
1. Search and locate the largest absolute value among the coefficients
in the first column
2. Exchange the first row with the row containing that element
3. Then eliminate the first variable in the second equation as ex-
plained earlier
4. When the second row becomes the pivet row, search for the coeffi-
cients in the second column from the second row to the nth row and
locate the largest coefficient. Exchange the second row with the
row containing the large coefficient
5. Continue this procedure till (n — 1) unknowns are eliminated.
This process is referred to as particl piveting. There is an alternative
scheme known as complete pivoting in which, at each stage, the largest
element in any of the remaining rows is used as the pivot. Figure 7.2
illustrates the partial and complete pivoting strategies. Algorithm 7.2
shows the implementation steps for partial pivoting.
Complete pivoting requires a lot of overhead and, therefore, it is not
generally used (though it may yield slightly improved numerical stabili-
ty).

[ lfouss eliminating with partial pivoting

1. Input n, a; and b; values.
2. Beginning from the first equation,
(iy chack for the pivot elernent
(i) if it is the largest among the glements below it, obtain the
derived system
(iii) otherwise, identity the largest element and make it the pivot
element
{iv) interchange the original pivol equation with the one corntain-
ing the largest element SO that
the later becomes the new pivot equation
(v) obtain the derived system
{vi) continue the process Ul the system is reduced to triangular
form
3. Compute x, values by back substitution.
4, Print resulls.

Algorithm 7.;-|

Solve the following system of equations using partial pivoting tethnique
2'[1 + ?'7‘2 + Xy = 6
dxy + 2xy + 3% = 4
2, +x, +x3=0
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By e e a,
&y dyn
8y
8y
(a) Partial pivoting
Bz TSR ———" -a,,
.ﬂu
Search area —
Kim:
{b) Complete pivoting

Fig. 7.2 Pivoting strategles

The forward elimination process using partial pivoting is shown below in
tabular form. The process involves two steps of elimination and, in both
Lhe steps, the rows are interchanged. Note that the absolute value
of -3/2 is greater than 1.

Original system 2 2 1 6 Interchange
( 2 3 4D
. __1_ -1 1 0
Modified original system 4 2 3 ] opivot
2 & 1 6
1 -1 1 0
First deri ved system 4 2 3 4
1 -1/2 4 Interchange
( 1/4 —1)
Modified first derived system 4 9 3 4

j

1 pivot

S
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Second and final derived system 4 n 3 4

-3/2 114 -1
B -1/3 10/3
The solution is o
xq =-10
X =1
- x;=9
Program LEG2

Program LEG2 is designed to solve a system of linear equations using
Gauss elimination with partial pivoting. The modular structure of the
program is shown in Fig. 7.3.

LFG2
GAUgS2
I
i i)
ELIM BB

PIVOT |

Fig. 7.3 Modular structure of LEG2

The master program LEG2, while reading data from the user and print-
ing solution vector, depends on the services of the subprogram GAURsy
for implementing the actual solution procedure given in Algorithm 72,
GAUSS2, in turn, uses the services of two other subprograms, namely,
ELIM, to perform forward eliminalion, and BSUB, to obtain the solutign
vector using the back substitulion approach.

The subprogram PIVOT undertakes the task of partial pivoting hy
identifying the pivot element and then rearranging the rows such that

the equation containing the pivot element becomes the pivot equatiofy
* = —— s = = %

i e R e e s S LI IREL
PROGRAM LEG2

DT O T —p, ap— | R R G S ST S ey e et B it *
* Main program =
: This program solves a system of linear eguations
* using Caussian elimination with partial pivoting =
;A R S W
* Punctions invoked o

*

* NIL
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* % %

*
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Subroutines used »
Gaussz *
____________________________________________________ -
Variables used *
N - Number of equatiaons ¥
A - Coefficients matrix #
B - Right side vector 2
X - Solution vector *
____________________________________________________ L)
Constants used =
NIL 4
____________________________________________________ *
REAL A,B, X
INTEGER N

EXTERNAL GAUSSZ
DIMENSION A(10,10), B(10), X(10)
WRITE(*, *)
WRITE(*,*) ' GAUSS METHOD WITH PARTIAL PIVOTING'
WRITE(*, *)
WRITE(*,*) ‘What is the size of the system(n)?’
READ(*,*) N
WRITE(*,*) ‘Input coefficients a(i,j), row-wise’
WRITE(*,*) ‘one row on each line’
DO 20 I = 1, N
READ(*,*) (A(I,J),J=1,N)}
CONTINUE
WRITE(*,*) ‘'‘Input vector b’
READ(*,*) (B(I), T = 1, N)
CALL GAUSS2 (N,A,B,X)
WRITE(*,*)
WRITE(*,*) ‘SOLUTION VECTOR X'
WRITE(*,*)
WRITE(*,*) (X(I), I = 1, N)
WRITE (*, *)
STOP

e S e ot O g e S R S SRR

Subroutine
This subroutine solves a system of linear
equations using Gauss elimination method with
partial pivoting

B L g B e e
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* Arguments

Input

¥ A - Coefficient matrix
B - Right Side vector
N - Size of the system

Output
X - Solutieon wvector

* * ¥ * *

*

* Local Variablesg
b NIL

* FuncLions invoked
* NIL

* Subroutines called
i ELIM, BSUB

REAL A,B, X
INTEGER N

EXTERNAL ELIM, BSUB
DIMENSICN A(1G,10), Btfia), X(10)

®* Forward elimination
CALL ELIM(N,A,R)
* Selution by back substitution

CALL, BSTE (N.A,B,X)

RETURN
END
i = knd of subroutine GAUSSZ ---------- -
W IR s e e o e B
SUBROUM'TNE ELTM(N,A, B)
R e R R R SR i S e s e e S St s S NE e S

* Subroutine
» This subroutine performs forward elimination

h incorporating partial pivoting technique

I e e et = e S S s e s (it e e e L e S
* Arguments

* Input

* A - Coefficient matrix

¥ B - Right side wvector

* N - System size

* Output

- A - Mpdified A

L 3

B - Moditied B

*

¥ * * %

-
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* Local Variables

*  FACTOR
B e e s e e e e T S L il x
* . ctions invoked
HAIL #
* e e e e e e e e o e o e et i i i e S e A S s *
Subroutines called *
*  PIVOT *
R L e e £ 3
REAL A, B,X,FACTOR
INTEGER N
EXTERNAL PIVGT
DIMENSION A(10,10),B(10D)
HE 3% WS 3 Bl
CALL PIVOT (N,A.B,K)
DO 22 T = K+l, W
FACTOR = A({I,K)/A(K,X)
DO 11 J = K+1, N
A(T,J) = A{I,J) - FACTOR * A(R,J)
13 CONTINUE
B(I) = B{I} - FACTOR * B{K)
22 CONTINUE
i3 CONTINUE
RETURN
END
il e ----- End of subroutirie ELIM -=--=v-e—o ¥
* e T e et i S LSS S S i e L *
SUBROUTINE PIVOT(N,A, B, K)
* e 2 e e e T i e e o e *
* Bubroutine #
* This subroutine performg Lhe task of partial L
* pivoting f:eurdernlq of equations) *
e i S T C—, e Sa e e e i a *
* Arguments *
* Input £
% N - System size »
. A - Coeflficients matrix
* B - Right side vector
Ly K - Row under consideration for piveting
* Quetput
* A - Modified A (alter pivoting) *
* B - Medified B (after pivoting) #
A e e e e e e e e e e e *
*¥ Logal Variables *
% LARGE, TEMP, B -
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+ Functions invoked

* Subroutincs called
* NIL
REAL LARGE, TFEMP,A,B
INTEGER P,N,K
INTRINSIC ABS
DIMENSION A(10,10), B(10)

* Find pivot P

P =R
LARGE = ABS(A(K,K))
DO 11 I = K+1, N
IF(ABS(A({I,K)) .GT. LARGE) THEN
LARGE - ABS(A(I.K))
P I

ENDIF
11 CONTINUE
* Exchangs rows P and K
1F(P.NE.K) THEN
Do 22 J = K,N
TEMP = A(P,J)

A(P,J) = AlK,J)
A{K,J) = TEMP
22 CONTINUE
TEMP = B(FP)
B(P) = B(K)
B(K) = TEMP
ENDIF
RETURN
END
¥ —eeee—ee--~--End of subroutine PIVOT--==-=-====--

* Subroutine
* This subroultine obtains the solution vector X
* by back substitution

* Arguments

* Input
* N - System size
* A - Coefficient matrix (after elimination)

o B - Right side vector (after elimination)

»

T T
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Output . *
X - Solution wvector *
B e e e e ey e By e e e e A e e T i &
* Local Variables *
SUM *
____________________________________________________ *
* Functlons invoked *
* NIL *
o e e e e L e e e i i e e i e *
* Subroutines called *
* NIL *
i s S =
INTEGEE N
REAL A,B,X, SuM
DIMENSION A({10,10), B(10), £{10)
EAIN) = LB(N)/A(N,N)
B 53 B = w-i; 1., =
S = {
I}O 4-" J = K-l-l, N
50M = SUOM | AlK,J) *  X(J)
449 CONTINUE
Z(K) = [B{K) - BUM) /A(K,K)
55 CONTINUE
RETURN
END
e Erd of subroutine BSUR —--we-- —a

Test Run Results

GAUSS METHOD WITH PARTIAL PIVOTING
Whal dis the size of the system(n)?

row or gach line

Input coeificients a(i,;3), row-wise
)

2 1
4 2 3
I 2 i
Input wvectar b
€ 4 0
SOLUTION VIECTOR X
5.0008000 1.0000000 -6.0000000

sStop -~ PBrogram terminaced.
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GAUSS-JORDAN METHOD

Gauss-Jordan method is another popular method used for solving a sys-
tem of linear equations. Like Gauss elimination method, Gauss-Jordan
method also uses the process of elimination of variables, but there is a
major difference between them. In Gauss elimination method, a variable
is eliminated from the rows below the pivot equation. But in Gauss-
dJordan method, it is eliminated from all other rows (both below and
above). This process thus eliminates all the off-diagonal terms producing
a diagonal matrix rather than a triangular matrix. Further, all rows are
normalised by dividing them by their pivot elements. This is illustrated
In Fig. 7.4. Consequently, we can obtain the values of unknowns directly
from the b vector, without employing back-substitution. Algorithm 7.3
enumerates the Gauss-Jordan elimination steps.
[311 aqp 313—| X1 fbﬂ
dz) a8z ax|(Xp|= b:zJ
[831 a3 Aag .ii,"a ] Lba

Pu a1z &y *1] [51 ['1 0 0][xy7 [61]

0 azm ap||x; |=bs 0 1 0|lxs |=|b2|
LO 0 ag [xy]| [b5 00 1J x:;J bg“J
Result of Gauss elimination Result of Gauss-Jordan elimination

Fig. 7.4 Comparison of Gauss and Gauss-Jordan methods of alimination

Gauss-Jordan elimination

Normalise the first equation by dividing it by its pivot element,

[

2. Eliminate x, term from all the other equalions.

3. Now, normalise the second equation by dividing it by its pivot element.

4. Eliminate x, from all the equations, above and below the normalisad
pivotal equation.

5. Repeat this process until x, is eliminated from all but the last equation.

6. The resultant b vector is the solution vector.

Algorithm 7.3

The Gauss-Jordan method requires approximately 50 per cent more arith-
metic operations compared to Gauss method. Therefore, this method is
rarely used-

oA
ijlve the system
Eri +4x2‘—‘61'3=—8
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x4+ 3+ x5 = 10
2x. — 4xy — 21:3 =-12
using Gauss-Jordan method.
The result is:
X, + 2, — 3xz=-4
xi + 8% + x3=10
%, — dxp - 23 =-12
Step 2: Eliminate x, from the second equation, subtracting 1 time the
first equation from it. Similarly, eliminate x, from the third equa-

tion by subtracting 2 times the first equation from it. The result
is:

%+ 20— Uy = A
Fxg+ 4 =14)
0= 8xy +duy=~4
Step 3: Normalise the second equation. (Note that it is already in
normalised form.)
Step 4: Following similar approach, eliminate z, from first and third
equations. This gives ~

i+ 0—1lxy=-32 »
0+x;,+4xy3= 14 |
0+ 0 + 36x, = 108 )
Step 5: Normalise the third equation
x,+ 0= 11xg = —32
0 +x +4xy =14

0+0+xy=23
Step 6: Eliminate x4 from the first and second equations, We get
n+0+0=1
O+x,+0=2
0+0+x3=1

Computational Effort

The Gauss-Jordan method requires only the elimination process. To elim-
inate x, from all but the kth equation, we need to undertake the follow-
ing tasks:
1. Divide the coefficients x;.;, X2 - X, ANd by by the coefficient of x;.
9 Subtract suitable multiples of the kth equation from the other
(n — 1) equations to eliminate x, from these equations.
These tasks require:
n-k+1) divisions
(n —1) (n — k& + 1) multiplications
(n-1)(n -k + 1) subtractions
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Therefore, the total operations required in order to complete the elimj-
nation process are:

Multiplications = i n-Dn-k+1= %n (n?2 - 1)
| 5%

Subtractions = i (n—k+l)=§1n(n2 +1)

k=]
Gy i 3 1
Divisions = ¥ (n-D(n-k+ ljzin(n— 1)
k=1

We see that the number of multiplications and subtractions is approxi-
mately equal to (1/2) n® and the number of divisions is (1/2) n?2. Compu-
tational efforts required by the Gauss and Gauss-Jordan methods are
given in Table 7.9.

Table 7.2 Comparison of computational effort

S Gauss method " Gauns Jordan method
Multiplication R 1.3
3 2
Subtraction _3! n8 % n3
Divisions 1.4 P
L 2 n 2 L _J

TRIANGULAR FACTORISATION METHODS

The coefficient matrix A of a system of linear equations can be factorised
(or decomposed) into two triangular matrices L and U such that

A=LU (7.9)
where
ln 0 .. o0
s oy 12:2 0
lny in_2 Lo
and
i uig .. omy,

0 Ugy ... Uy,
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L is known as lower triangular matrix and U is known as upper triangu-
lar matrix.
Once A is factoriseu into L and U, the system of equations

Ax =b
can be expressed as follows
LUIx=b
or
L(Ux)=5b (7.10)

Let us assume that
Ux=2 I (7.11)
where z is an unknown vector. Substituting Eq. (7.11) in equation

(7.10), we get
l Lz=b (7.12)

Now we can solve the system

Ax=0b
in two stages:
1. Solve the equation
lz=0b

for z by forward substitution
2. Solve the equation
U=z
for x using z (found in stage 1) by ba ' substitution.

The elements of L and U can be determined by comparing the ele-
ments of the product of L and U with those of A. The process produces a
system of n? equations with n? + n unknowns Iy and mU) and, therefore,
L and U are not unique. In order to produce unique factors, we should
reduce the number of unknowns by n.

This is doae by assuming the diagonal elements of L or U to be unity.
The decomposition with L having unit diagonal values is called the
Dolittle LU decomposition while the other one with U having unit diago-
nal elements is called the Crout LU decomposition.

Dolittle Algorithm
We can solve for the components of L and U, given A, as follows:
A=LU
implies that
ay=lyuy+lguy+..+ I“-, U, fori<j (7.13)

ay=lyuy +lgugy+ ..+ L uy fori =j (7.14)
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ay=lyuy +lguy+.. +1u, fori>j (7.15)
where uj; =0 for i >jand /;=0for: <y
The Dolittle algorithm assumes that all the diagonal elements of L
are unity. That is
L=1, =12 ..
Using equations (7.13), (7.14) and (7.15), we can successively deter-
mine the elements of U and L as follows:

Ifi<y

i—1
up=ty = Llpky  JelR.n
=1

where uyy = ayy, uyy =agy upg =agy
Similarly, ifi>j

[ I[' L‘-Y‘liI 1
“J'E:x[a"’_m““"’J Fel %=1

wherel, =l,,=1l;3=1 and [,=a,/u, fori=2ton.

Note that, for computing any element, we need the values of elements
in the previous columns as well as the values of elements in the column
above that element, as illustrated in Fig. 7.5, This suggests that we
should compute the elements, column by column from left to right within
each column from top to bottom.

Column

E 6 7 8
1 Ugs  [Usg| Uz Ugg
2 U Lsg
3 | Ugg Ly
4 Um Uag

Row

6 Ugg g
7 U Up
Bl i ko ks ks e by | U

Fig. 7.5 Pictoral view of Dolittle algorithm of LU decomposition
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Algorithm 7.4 lists steps involved in LU decomposition and its applica-
tion to the solution of linc ur equations. '

Note:
1.
2.
d.

It is

memory. This means ‘= corresponding {; or u;; can be stored in
the location of a.

There is no need to store 1’s on the diagonal of L matrix.
There is also no need to store 0’s of L or U, Consequently,
the values of L can be stored in the zero space of U.
Further, each element of a;; is used only once (and never
used again),

clear that we can “overwrite” A with L and U and save

-

m

. Given n, A, b

. Setu,=a forj=1ton
Set /,=1 fori=1ton
Set ly = a4/, fori=2ton

. Fereach j=2 to ndo:

. SEIZ-|=b1
. Fori=2ton

. Setx,=z,/u,,

Dolittle LU decomposition and solution

) Fori=2toj
§=1
Compute u; =a; - ¥y uy
k=1

Repeat /
(i) Fori=j+1ton
g f.. =2 ]
Compute /, =~ x|aj - E;Ih‘kuki J

Repeat i L
Repeat j

i~
Setsum= Y[z,
J=1

Sel z = b, - sum
Repeal /

Fori=n-11o1

n
Set sum= Y u;ix;
J=t+1
Set x= {z;— sum) / u;
Repeat |
Write results

Algorithm 7.4
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Solve the system
31'1 + 212 +xg= 10
2x) + 3xg + 223 = 14
X+ 2xp + 3xg= 14
by using Dolittle LU decomposition method

Factorisation

Fori=1,I;;=1and
up=a;=3
Uyg=Qqy =2
uUg=ay= 1

Fori =2
a
52;=i=% and I |
U

lgo = agy — lgy lyo _-3-%,(2;3

Uon = ayy — oty =2—-—32->< 1=;§_
Fori=3

L. i d
a1 1y 3

_agy —lgugg
lag =

gy
SHUSKE 4
5/3 5
133= 1
Ugg = Qgg — Lygy Uyg — Ly Uy
=31x1—ixi_g§_

3 5 8 15
Thus, we have

[1 0 0
L=l2/3 1 0
13 4/5 1
3 2 1
U=|0 5/3 4/3
0 0 24/15
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Forward Substitution
Solving Lz = b by forward ~ubstitution, we get
21 = bl. =10

2g=by -l 2
=14 -2/3x10=22/3
Z23=by- Iy 21—l 22
=14-13x10- 4}5x2%=%
Back Substitution
Solving U, = z by bacih bstitution, we get

_2?;‘15_3

¥s~ 24/15
_ %y ~lUog¥s

s gy
_(_%2.’3)—(4:‘3}x3_2
- 5/3 -
_Zy—UggXy —UpXy

I‘l = Y =

11
_10—2)_<_2-_—_1><3_1
Program DOLIT

The Dolittle LU decomposition method for solving a system of linear
equations may be implemented on a computer using the program DOLIT.
The DOLIT program solves a problem with the help of two subprograms,
LUD and SOLVE.

The subprogram LUD decomposes the given coefficient matrix using
the Dolittle algorithm and the resultant L and U matrices are supplied
back to the main program DOLIT, Note that when it fails to decompose
the matrix, a message to that effect is sent to the main program for
necessary action.

The subprogram SOLVE receives the right side vector B and the
decomposed matrices L and U from the main program and then obtains
the solution vector X employing both the forward and backward substi-
tution technigues.

w *

PROGRAM DOLIT

* Main program
+  This program solves a system of linear equations
* using Dolittle LU decomposition



* Subroutines used
- LUD, SOLVE

l

* Variables used

* N - System size

* A - Coefficient matrix of the system
s B - Right side wvector

* L - Lower triangular matrix

* U - Upper triangular matrix

* FACT - Factorisation status

* Constants used

*  YES,NO

il e e
INTEGER N, YES,NO,FACT
REAL A,U,L,B, X
EXTERNAL LUD, SOLVE
PARAMETER( YES = 1, NO = 0
DIMENSION A(10,10),0(10,10)
WRITE(*, *)
WRITE(*,*) ‘SOLUTION BY DOLITTLE METHOD °
WRITE(*, *)

* Read input data

WRITE(*,*) ‘What is the size of A?’
READ (*, *) N

WRITE(*,*) ‘Input coefficients al(i,j), row-wise,

+ ‘one row on each line’
DO 10 T =1, N
READ(*,*) (A(I,J), J=1,N)
10 CONTINUE
WRITE(*,*) ‘'Input vector B on one line’
READ(*,*) (B(I), I=1, N)
* LU factorisation

CALL LUD(N,A,U,L,FACT)

IF{ FACT .EQ. YES ) THEN
* Print LU matrices

* Print matrix U
WRITE(™,*) .
WRITE(*,*) 'MATRIX U’
By 20 T = .M

)
+L(10,10),B(10),X(10)

\;

"
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WRITE(",111) (U(I,d),J=1,N}
20 CONTINUE

* Print matrix L
WRITE(*,*
WRITE(*,*) *MATRIX L'
DO 30 I=1
WRITE{*,111) (L(I,J)}),J=1,V
30 CONTINUE

ELSE
WRITE(*, *)
WRITE(*,*) “FACTORISATION NOT POSSIBLE'
WRITE(*, *)
STOP

ENDIF
* Solve for X
CALL SOLVE(N,U,L,B,X)

WRITE(*.*)
WRITE(*,*) ‘'SOLUTION VECTOR X’
WRITE(*,*]
_WRITE(*,lll} (X(I), I=1,N)
WRITE(*, ")
111 FORMATI3F15.6)
STOP
END
B st End of main program DOLIT ---—-———-=-= *
e e e e e e s e L e o e e o o e e A g i e *
SUBROQUTINE LUD(N,A,U, L, FACT)
o o —— — ——— et . e e e *
Subroutine *
g This subroutine decomposes the matrix A into #
4 L and U matrices using Dolittle algorithm ¥
A L e e e s s e e e e S S L ¥*
. * Argumenis 2
* Input %
" N - System size %
* A - Coefficient matrix of the original system *
* Qutput *
* U - Decomposed upper triangular matrix »
i L - Decompes=d lower triangular matrix =
* FACT - Fact about decomposition (yes or no) i
b e ——— e e i e = PR s w*
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* Functions invoked

* NIL

* e e e e e e e e SR LS R R e s
* Subroutines called

* NIL

T e L SO, —

INTEGER N, Y¥ES,NO,FACT
REAL MA,U,L,EUM

PARAMETLER( YES = 1, NO = O )
DIMENSION A(10,10), U(10,10), L{10,10)
* Initialise U and [, matrices
Do 1 I = 1.N
0o 1 3 = L, N
u(r,J) = 0.0
LiL,J) = @.0
1 CONTINUE
* Compute the elements of U and L
ne 10 Jd = 1N
WL = AT
10 CONTINUE
D20 I = 1;M
LET:3) = 1.8
20 CONTINUE
PO 30 T = 2;N
Li{T,1) = A{T, L1} 0(1,.1)
10 CONTINULE
Do 100 J = 2.N
DO 50 1 = 2,7
SUM = A(I,J}
DO 40 K = 1,I-1
SUM = SUM - L(I,K) * OJ(R.J)
a0 CONTINUE
U(I,J) = 8UM
50 CONTI1NUE
IF( U(J,Jd) .LE. 1.BE-6 ] THEN
FACT = NO
RETURN
ENDIF
DO 70 I = J+1,N
SUM = A(I,J)
DO 60 K = 1,J0-1
SM = SUM - L(I,K} * U(R,J)
60 CONTINUE



70
10

10

20

*
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L(I,J) = SUM/U(.T,J}
CONTINUE
0 CONTINUE

FACT = YES

Subroutine
This subroutine obtains the solution vector X
using rhe coefficients of L and U matrices
Arguments
Input
N - Syaitem size
u Upper triangular matrix
L - lewer triangular matrix
B - Right side vector
Qutput
X - Solution vector

Local Variables
SIM, Z{wvector)
Functlons invoked

e s e e R S B I s e S Y e m g S RO

Subroutines called
NIL
INTEGEE N
REAL U,L,S5UM,B.X,2
DIMENSION U(10,10),L(10,10),B{10) . X(10),2{10}
Forward substitution

2{1) = B(1)
DO 20 I = 2
s5uM = 0.0
pe 10 7 = 1,1-1
SUM = SUM + L(I,J3) * Z{J)
CONTINUE
2{1) = B(I) - 8tM
CONTINUE

Back substitution
X(N] = ZI(N)/UIN,N)

*

* # % *

= % & ¥ ¥

* %
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DO 40 I = N-1,1,-1

SuM = 0.0
DO 30 J = I+1,N
BUM = -SUM + U(E,J) * X{J)
30 CONTINUE
X(I) = (Z(I) - suM)/uU(I,I)
40 CONTINUE
RETURN
END
I End of subroutine SOLVE --— - —————- *

Test Run Results

SOLUTION BY DOLITTLE METHOD
What is the size of A?

3
Input coefficients a(i,j), row-wise, one row on each line
3.2 1
2 3 2
1- 2 3
Input vector B on one line
10 14 14
MATRIX U
3.000000 2.000000 1.000000
.000000 1.666667 1.,333333
.000ean LUegQoo 1.600000
MATRIX L
1.000000 L0000a0n L000000
.666667 1.000000 . 000060
233333 LB00000 1.000000
SOLUTION VECTOR X
1.000000 2.000000 3.000000
Stop - Program terminated.
Crout Algorithm

Another approach to LU decomposition is Crout algorithm. As men-
tioned earlier, Crout decomposition algorithm assumes unit diagonal
values for U matrix and the diagonal elements of L matrix may assume
any values as shown below.

[” 0 0 l Uyg . Uy, 21y Qip ... @1,
log l9g ... O[O 1 .. Ugn | _fGm Gz ... Ggy

lnl gnz W inn 0 0 l Bpi Qpg oo Bpp
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We can use an appruach‘that is similar to the one used in Dolittle
decomposition to evaluate the elements of L and U.

Cholesky Method

In case A is symmetric, the LI decomposition can be modified so that
the upper factor is the transpose of the lower one (or vice versa). That is,
we can factorise A as

A=LLT
or
A=UTU (7.16)

Just as for Dolittle decomposition, by muttiplying the terms of Eq. (7.16)
and setting them equal to each other (see Eqe (7.13), (7.14) and (7.15)),
the following recurrence relations can be obtained.

A Yu?Z (i=1ton)
) | 1.3

>t

-~
=
Il
|
==
=]
<
|
& b
gl
- —
=
=
=
el
| P

This decomposition is called the Cholesky's factorisation or the method
of square roots. Algorithm 7.5 lists the basic steps for computing the
elements U, column by column.

Cholesky’s factorisation

1. Given n, A

2. Setuy =fay
3. Set u; = ay;! Uy fari=2ton
4, Forj=2ton
Fori =2t/
sum = ay
Fork=1toi=-1
SUM = SUM = Uy Uy

Repeat k

sel uy = sum /[ Uy iti<j

set u; = Jsu_m iti=j
Repeat |

Repeat J
5. End of factorisation

Algorithm 7.5
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Factorise the matrix

L2 3]
2 8 22
3 22 82

using Cholesky’s algorithm

Fori=1, according Eq. (7.17)

“11=\/_i =1
G122 2
B = s e
Ly
i3 3
&]3: 4 :_i':3
1
Fori=2
Uy :‘Jﬂgz —ug:1;8—4‘=2
u _323 Uty __22 2)‘(3__1__{-__;_8
23 o 5 i
Fori=3

ltgg =33 “U-fs _“is
=82-9-64=49=3

Thus, we have

3]
8
3

ROUNDOFF ERRORS AND REFINEMENT

© o b3

1
U=(0
1]

In all the direct methods, only one estimate of x; 1s produced, As we
know, methods use a large number of floating point operations and,
therefore, introduce roundoff errors in the final solution. We have no
indication how accurate the solution is,

One way to check this is to substitute the answer back into the
eriginal equations to see whether a substantial error Las occurred. In
case the error is beyond the acceptable limit, the solution can be im-
proved by a lechnigue known as iferative refinement.
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Let us suppuse 2"’ is the solution of the system
Ax=b
Substituting x'"’ back in the original equation, we get
Ax".l] =}
Since 'V is not exact, b” is not equal to b. If we define
r,,['1] = bl . b
then we have _
BT L (7.18)
where r is known as residual vector. If we can use this information to

compute the error, then we can correct the approximate solution with
this error.

If we assume that x* is the exact solution and e is the error in x, then
m_ 1)

2oy e

or
2V = a* 4 o0 (7.19)
Substituting this in Eq. (7.18), we get
PH= Al 4 eV b
= Ax* + AV _ B

Since Ax*= b, this results in

[ A= ] (7.20)

We can now obtain e by solving Eq. (7.20) and then estimate the next
improved solution as

2 54D _
If we need further improvement, we can repeat the process by caleulat-
ing e using
Ao =y
where
D2 AP _ g

We get the next estimate as

e e
This process can be repeated as many times as we wish to achieve a
desired accuracy. Algorithm 7§ lists the steps for implementing the
iterative refinement process.

lterative refinement

—

. Obtain LU factorisation of A
Compute the solution x by forward and back substitutions
Find the residual vector r using
r=Ax-b
4. Compute the error using
Ag=r
by forward and back substitutions

@ p

(Contd.)
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(contd.)

5. Setx=x—¢e
6. If eis sufficiently small
stop
otherwise
go to step 3

Algorithm 7.6

ILL-CONDITIONED SYSTEMS

As pointed out in the beginning of the chapter, arriving at a proper
solution depends on the condition of the system. Systems where small
changes in the coefficient result in large deviations in the solution are
said to be ill-conditioned systems. A wide range of answers can satisfy
such equations. This means that a completely erroneaus set of answers
may produce zero (or near zero) residuals. This is illustrated in Example
Wt

Nl-conditioned systems are very sensilive to roundoff errors. These
errors during computing process may induce small changes in the coeffi-
cients which, in turn, may result in a large error in the solution.

We can decide the condition of a system either graphically or mathe-
matically. Graphically, it two lines appear almost parallel, then we can
sy the gystem is ill-conditioned, since it is hard Lo decide just at which
point they intersect.

The problem of ill-condition can be mathemalically described as fol-
lows: consider a two equation system

g X3 + 2yp g = hi
Gy Xy + Gy Xz = by

If these two lines are almost parallel, their slopes must by nearly equal.
That is

213, 0
[ T Ha2 i
S —— |
Alternatively,
ayllgg = Uqplly
or

- 0
| @120 a = !
{ 11922 _zzﬂzi ]

Note that a,; @as — @y, @y, is the determinant of the coellicient matrix

A Jﬂ 1 ”-:fJ

tag -auw
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This shows that the determlnant of an ill-conditioned system is very
small or nearly equal to zers,

In partial pivoting technique, we try to interchange the rows so that
the largest element becomes the pivot element. This is done basically to
avoid a division hy zero or nearly zero point. Even the largest element in
that eolumn may happen to be zero (or nearly zero). Such situations
arise when the systems are ill-conditioned. Solution of these systems
may nol be meaningful.

Solve the following equations
2x, + %, =25
2.001x, + x, = 25.01
and thereby discuss the eftect of ill-conditioning,

_25%1-25.01x1 _
T 2x%x1-2.001x1

_25.01x2-25x2.001 _ 5

2= T ax1-2.001x1
Let us change the coefficient of x; in the second equation to 2.0005. Now
the values of x; and x, are

25 -25.01 _

= ~ =20
*17 920005

_25.01x2-25x2.0005
wE 2-2.0005 i
Compare the results. A small change in one of the coefficients has re-
sulted in a large change in the result.
If we substitute these values back into the equations, we get the residuals
a8

-15

ry=40-15-25 =0
ry = 40.02 - 15 - 25.01 = 0.01

The first equation is satisfied exactly and the residual of the second is
small. It appears as if the results are correct. This illustrates the effect
of roundoff errors on ill-conditioned systems.

" 8 MATRIX INVERSION METHOD

Another way to obtain the solution of an equation of type
Azx = b { 7.21]
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is by using matrix algebra. Multiply each side of Eq. (7.21) by the
inverse of A. This yields

A'Ax=Ap (7.22)
since A A = I, the identity mat. ..., -~ .tion (7.92) becomes

[ x=aTs | (7.23)

Equation (7.23) gives the solution for x.
This approach becomes useful when we need to solve Eq. (7.21) for
different sets of b values while A remains the same.

Computing Matrix Inverse

Although the Gauss-Jordan method is more complicated compared to
Gauss elimination method, this method provides a simple approach for
obtaining the inverse of a matrix.
This is done as follows:
1. Augment the coefficient matrix A with an identity matrix as shown
below:
[ 645 as:1 0 0
Gy @gy a3 10 1 0
ayn Qz az 0 0 1)
2. Apply the Gauss-Jordan method to the augmented matrix to re-
duce A to an identity matrix. The result will be as shown below:
[‘1 00 " an Qi Ay
18 1 0:apy ap ajy
ILO ] 1 : H:” {fjg aé;; !

4

The right-hand side of the augmented matrix is the inverse of A. Now,
we can obtain the solution as follows:

-‘fi _-ﬂil J’fbl +ﬂi2 )‘ubz “"fl{a Xba
¥y =afy xby +ajpy xby +as xbs

Xy =ahy Xby +ajy xby +agy xby

Condition Number
The inverse matrix can also be used to decide whether a system is ill-
conditioned. Let us define a matrix C as

C=A.A" (7.24)

If C is close to identity matrix, then the system is well-conditioned, If
not, it indicates ill-conditioning.
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Equation (7.24) can be expressed using the coneept of matrix norm as
follows:
cond (Ar= | |A]| - | |AT]] (7.25)

where cond(A) is called the condition number and [| Al isthe “norm”
of the matrix A. The norm is defined as follows

[IAll= max ¥la,|
2

This is known as rew-sum norm. In this norm, the sum of the absolute
values of the elements for each row is computed and the largest of these
is taken as the norm.

The smaller the conditian number, the betler is matrix A suited to
numerical computation,

SUMMARY

In this chapter we studied systems of linear equations. Among the two
popular approaches available for solving these equations, we considered
the elimination (also known as direet) metheds in detail They include:

- Gauss elimination method (hasic)

- Gauss elimination with pivoting

- Gauss-Jordan methad

- LU decomposition method using Dolittle algorithm

- Matrix inverse method
We also stated that other LU decomposition techniques, such as Crout
algorithm and Cholesky's factorisation, may be applied to solve the equa-
tions.

Direct methods introduce roundoff errors. We presented an iterative
refinement procedure for improving the final result.

Computer programs with test results have been given for the follow-
ing methods:

- Basic Gauss elimination method

+ Gauss elimination with partial pivoting

- Dolittle LU decomposition method

Key Terms

Back substitution

Lower triangular matrix

Basic Gauss' elimination LU decomposition
Cholesky’s algorithm Mairix inversion
Cholesky's factorisation Matrix normm

Complete pivoting Method of square roots
Condition number Modular structure
Crout algorithm Nonlinear

Crout LU decomposition Normalisation

(Contd.)
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(Contd.)
Decomposition Over-determined
Dependent equations Partial pivoling
Direct method Pivot element
Dolittle LU aecompaosition Pivot equation
Elimination approach Pivating

Forward elimination
Gauss elimination
Gauss-Jordan method
Homogeneous equations
iil-conditioned systam
Inconsistent aquations
Infinite solutions
lterative refinement
Linedr

Residual vector
How-sum norm
Simulianecus equalions
Singular systems
Trangularisation
Under-determined
Unigue salution

Upper triangular matrix
Zero residuals

‘>-’{Describc the two basic approaches that are employed for solving a
system of linear equations.
(‘\/5.- What are the four possible solution conditions of a system of linear
equations? Explain each one of them with an illustration.
3. Explain under-determined and over-determined systems.
4, What is meant by homogenous equations?
5. State some basic rules that are used in the elimination method of
golving simultaneous linear equations.
x(f./ Explain the basic concepts used in the Gauss elimination approach.
7. What is triangularisation of equations? How does it help obtain the
solution?
8. What is pivoting? Distinguish between partial pivoting and com-
plete pivating.
9. How does pivoting improve accuracy of solution?
10. Compare critically Gauss elimination and Gauss-Jordan methods
of salving simultaneous equationa,
11. Show that Gauss-Jordan takes about 50% more operations than
(Grauss elimination for the case of three equations.
12, Whal is Dolittle decomposition? How is it different from Crout de-
composition?
13. What is Cholesky's factorisation?
14. What is iterative refinement? How is it used to improve the accura-
cy of results?
\'f-{ What is meant by ill-conditioned systems?
16, Can we solve an ill-conditioned system? If yes, how?
17, What is condition number of a system? How ig it computed?
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L

&*\

&
YR
a4y olve the following tystem of equations using simple eliminatio
s¥bprogess: .
/ Lryt+tz= 6

r-y432= 4
4x + 5y — 102 = 13
Show that the lollowing system of equations has no solution,

“%+y+8z=12 sff [rqlbzc;gnc"bb?—el

X+2 +b= 4 oy TS
B — gﬁ ~ % =24 L-thﬁf_c Tk
. Show that the following system of equations has infinite number o7

solutions.

-+

X+y+z=90 > '
2t~ 3y +2= (
3x-2y+2 =15 /

Ive the following systems of equations by simple Gauss elimina-

2x1+3x2+4.ta =
WV dx) + 4, + 5, =¢
4x; 4 by + 6xq = 7
(b) 22y + 3xy + 4x;, =5
3¢, + 4.55) + 5xy = 6
Ao, +5x, + 6x; =7
I +264+3x; =8
Zey+dxy + 92, =8

\/ 4+ 85 +2x, =2
5. Solve the systems in Exercise 4 using partial pivoting.

6. Solve the systems in Exercise 4 using complete pivoting.

7. Using Gauss elimination with partial pivoting, solve the following
sets of equations.

(a) 21.[+12+x3-2x,i =
dx, trg+a, =8
8r; + 205+ 21y, =7
%1 + 81y + 2x, =3

(b) x; + x5 - 2¢, =3
dx, - 2% + x, =5
311"]121-313 =8
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“8. Solve the following systems of equations by Gauss-Jordan method
2+ 20 -329g =4
DY 2y + 4y — Gix, = 8
\b‘ x-| - 2.1!2 + &3 = 4
b) 2¢, +x,+x; =17
4-3:1 + 23:2 + 3.::3 = 4
Xy — Xy + x4 =0
9. Find the Dolittle LU decompositions of the coefficient matrices of
the systems in Exercises 7 and 8.
10. Solve the systems in Exercises 7 and 8 uaing the matrices I and U
found in exercise 9 by forward and backward substitutions.
. Find the Cholesky decomposition of the matrix

- f4 1 1
1 & 2
123

12. Find the inverse of the following matrices using Gauss-Jordan elim-
ination technique

2 3 4 1 2 —_.‘iﬂ
(@) [4 2 3 (b) [2 4 =G|
3 4 2 -1 -2 3|

13. Find the condition numbers of the coefficient matrices of systems in
Exercise 4.

14. Consider the following electrical network connecting six resistors
and {wo batteries:

Ohm's law states that the voliage across a resistor equals the cur-
rent through it multiplied by its resistance. Using this law, we can
set up the following equations;

Rel, + BT, — L) + Bfl, - 1)) = ¥,

R, + Rylly — 1) + Ry, - 1) = V,

RII;j‘I'R:![I;; "= [l} fR:;{IH - f-_;_! =0
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Assuming R, =R, =R, =2 Ry =R, =R;=3and V, =V, = 5, Solve
the system of equations for currents I, I, and I, using Gauss elim-
ination vr Gauss-Jordan method.

A company produces [our different products. They are processed
through four different departments A, B, C and D. The table below
gives the number of hours that each department spends on each
product.

Department i B Producets
| P P, Py P,
DI | 2 3 R 2
D2 1 2 2 4
D3 | 3 4 4 5
i D4 | 3 2 2 3

Total production hours available each month in each department is
as follows: B i -
| Department | ™ ; N2 ! D3 l D4 |

“Hours |' 268 ! 260 T 352 250

Formulate the appropriate system of linear equations to determine
the guantities of the four products that can be produced in each
month, so that all the hours available in all departments are fully
utilised. Determine how much time each department spends for
each product.

. Program LEG2 solves a system of linear equations using Gauss

elimination with partial pivoting. Modify the program to imple-
ment complete pivoting.

Develop a program to factorise a matrix using Cholesky’s algo-
rithm,

Design and develop a program to implement the Gauss-Jordan elim-
ination method for solving a system of linear equations.

Write a program to implement the Crout decomposition solution of
linear equations.

Construct a program to implement the iterative refinement process
as given in Algorithm 7.6.



iterative Solution of
Linear Equations

NEED AND SCOPE

Direct methods discussed in the previous chapter pose some prohlems
when the systems grow larger or when most of the coefficients are zero.
They require prohibitively large number of floating point operations
and, therefore, not only become time consuming but also severely affect
the accuracy of the solution due to roundoff errors. In such cases, itera-
tive methods provide an alternative. For instance, ill-conditioned sys
tems can be solved by iterative methods without facing the problem of
roundoff errors.

The following three iterative methods are discussed in this chapter:

-\M Jacobi iteration method

J&Gauss-Seidel iteration method

3. Successive over relaxation method
Like all other iterative processes, these methods introduce truncation
errors and, therefore, it is important to understand the magnitude of
this error as well as the rate of convergence of the iteration process.

33 _MACOB! ITERATION METHOD

Jacobi method is one of the simple iterative methods. The basic idea

behind this method is essentially the same as that for the fixed point

method disenssed in Chapter 6. Reeall that an equation of the forin
flx)=0

can be rearranged into a form

x = glx)
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The function g(x) can be evaluated iteratively using an initial approxi-
mation x as follows: .
X .1 =80) fori=0,1,2..

Jacobi method extends this idea to a System of equations. It is a direct
substitution method where the values of unknowns are improved by
substituting directly the previous values,

ﬂt us consider a system of n equations in n unknowns.

@ X Xyt vy, X, = b,

Qo Fp+apl+..+ta,x =k m
; . & (8.1)
O %) ¥ QX+ .. +a,, 1, = b, "\}/
We rewrite the original system as
L i-lenxy tapag+otay,x,)
;- 373 L2t
ST
g _bo=lagx) tayx, Foovi il ) :
2=
Qgg
(8.2)

_bn—layxy +a,x, FoH Gy 1 X,)

n

a!‘lﬂ

Now, we can compute X, *p, ... %, by using initial guesses for these
values. These new values are again used to compute the next set of x
values. The process can continue till we obtain a desired level of accu-
racy in the x values,

In general, an iteration for x, can be obtained from the ith equation as
follows

i B8 = [aux;“ tay 1xf tay,, 2 4 ...amxf:”)

o oy

, (8.3)

a;

The computational steps of Jacobi iteration process are given in
Algorithm 8.1.
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Jacobi iteration method

. Qbtain n, a; and b, valu__,

2 SeIxo, blagfori=1,.
3. Se =0

4. Fori=12, ..n
(i) Set sum = b,
(i) Forf=12.n(j#l)
Set sum = sum — a; Xy,
Hepeat |
(iii) Set x, = sum/a,
(iv) if key = O then

Xj — Xoi

if = error then

r
set key = 1
Repeat |
5. If key = 1 then
set X, = X%
go to step-3
6. Write results

’ Algorithm 8.1

?/ Ly

Obtain the sulutmn of the following system using the Jacobi iteration
method

2-‘('.]"!-.'!:2 +¢t3 - 5
3.2?.1 + 512 + 22.'3 = 1h

b—-xy- x4

s i E
l.J 3x, - 2x

gy = AT
8 - 211 Xo

Xg = 4

If we assume the initial values of x,, x, and x5 tc be zero, then we get

). D
xI]] g 2.5
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n _15
ré’-—ﬁ—-=3

w _8
X, =7 =2
4 e
(Note that these values are nothing butx! = b/a,)
For the second iteration, we have

5-3-2

x{lm——"—z——u
(3 "'"_.
(2) 16-3x25-2x2 3.5 [)/ﬁ%
12 = X2 ;O‘?
5 5

s

xéﬂj :_8_?x4.2.1) dEO

After third iteration,

5-0.7
3
X =—0——=215
1 2 2
x;BI =_15 -3::_0 —QD_B
3]
! - i o
Iég_} _8 2x0 0'?-..L825
4
After fourth iteration,
5-3-1.825
2 =TT ™ _0.0875
2
15 - 2.15-% .82f
:c(;}: 3x212 3X1825=1225

ey 8-2%x215-3

The process can be continued till the values of x reach a desired level of
accuracy.

Program JACIT

The program JACIT solves a system of n linear equations using the
Jacobi iteration method as detailed in Algorithm 8.1, The main program
reads interactively the system specifications and displays the results on
the screen. The solution algorithm is implemented through the subrou-
tine JACOBIL.
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The subprogram JACOBI, while computing the solution vector X, tests
for the accuracy as well as the convergence. The computing process
stops either when the desired accuracy is achieved or when the process
does not converge within a sp..... ! .umber of iterations.

W e e e e e e e et e *
PROGRAM JACIT .

B e e e e e e e e e e e S e . gt *

* Main program ®

This program uses the subprogram JACOBI to solve *
* a system of equations by Jacobi iteration method =+

* Functions invoked

* NIL

B et g e g e e s i L *
* Subroutines used *
*  JACOBI : *
B e e s e e Tt e e e e *
* Variables used .
¥ A - Coefficient matrix "
* B - Right side vector %
* N - System size *
* X - Solution vector o
* COUNT - Number of iterations completed *
% STATUS - Convergence status ¥
T i o e o e e A A o S o e e e e e 1 P e e e e e *
* Constants used *
ks EPFS - Error bound *
* MAXIT - Maximum iterations permitted ¥
B e o o o o o i o .y e e e e e e e &

REAL A,B,X,EPS

INTEGER N,COUNT, MAXIT, STATUS
PARAMETER (EPS=0.000001,MAXIT = 50)
DIMENSION A(10,10), B(1l0), X(10)

WRITE(*,k *)

WRITE(*, *) ‘SOLUTION BY JACOBI ITERATION'
WRITE(*, *)

WRITE(*,*) ‘what is the size of the system(n)?*
READ(*,*) N

WRITE(*,*) ‘Input coefficients a(i,j), row-wise’,
WRITE(*,*) ‘one row on each line’

DO 20 I =9, N
READ(*,*) . (A(I,J),J=1,N)
20 CONTINUE

WRITE(*,*) ‘'Input wvector b‘



*
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READ(*,*) (B(I), I = 1, N)
CALL JACOBI(N,A,B,X, EPS, COUNT, MAXTT, STATUS)

IF (STATUS .EQ.2) THEN
WRITE(*, *)
WRITE(*,*) 'NO CONVERGENCE IN’, MAXIT,

‘ITERATIONS'

WRITE(*, *)

ELSE
WRITE{*, *}
WRITE(*,*) *SOLUTION VECTOR X'
WRITE(*, *)
WRITE{*,*) (X(1). I = 1, N)
WRITE(*, *)
WRITE(*,*) ‘ITERATTONS = ‘',COUNT
WRITE(*, *)

ENDIF

STOP

e et L i p————

Subreoutine
This subroutine solves a system of n linear
equations using the Jacobi iteration method

Arguments
Input
N - Number of eguations
A - Matrix of coefficients of the equations
B - Right side vector
EPS - Error bound
MAXIT - Maximum iterations allowed
Output
X - Solution wvector

COUNT - Number of iterations done
STATUS - Convergence status

Local Variables
X0, SUM

Subroutines called
NIL

* * x * x %

* % * % O+ ¥

»
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. it e A s e I L i e e e e e R

INTEGER N,XEY,COUNT,MAXIT, S'IATUS

REAL A,B,X,X0,EP3

DOUBLE PRECISION 3UM

INTRINSIC ARS

DIMENSION A(10,10),B(10),X{10),X0(10)

* Initial walues &f X
B2 10 I=1IyN
Z0(I) = BII)/A(I.,1)
90 CONTINUE
COUNT = 1
99 KEY = 0
* Compubing values of X(IL)
BE AT L = 32N
SUM = Bi{I)
e 20 & = 1.8
TF{I.Z20.J) GOTO 20
SUM = SUM - A(I,J) * XO(J)
20 CONTINUE
X{T) = SUM/A(T,T)
IPEEEY .BGQ. ©) THEN
* Testing for accuracy
IF(ARS( (X (T} -XOLT)) rxiLyY) .. EPS] THEN
KEY = 1
ENDIF
ENDIF
38 CONTINUE
TF{KEY.EQ.1) THEN
* Testing for convergence
IF (COUNT JEQ. MAXTT) THEN

STATUS = 2

RETURN
FLSE

STATHS = 1

DO 40 T = 1,W
HXO(I) = X{I)
40 CONTINUE
ENDLF
COUNT = COUNT+1
L T O

ENDIF

RETURN
END
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Test Run Results The program was used to solve the following system of
equations:

31’.1 + IE = 5

x;— 3z, =1
The interactive computer output is given below;

SOLUTION BY JACOBI TTERATTON
wWhat is the size of the system(n)?
2
Input ceoefficienlts ali,j), row-wise
one row on each line
g3 4
1 -3
Input wvector b
5 5
SOLUTTON VECTOR X

2.0000000 -5.993998E-001
ITERATIONS - 14

Stop Program terminated.

Now, rearrange the equations as shown below and then use program
JACIT to solve the system.

X —-3r,=5

313 +x= H
The output now is as given helow:

SOLUTION BY JACOBT ITERATION
What lg the size of the system(n)?

input ceoefticients a(i, j), row-wise
one row on eacn line

1 =3

# 4

Input verctor b

R

NGO CONVERGENCE TN 50 ITERATIONS
Stop - Program terminated.

Note that the same two equations, when their positions are interchanged,
do not produce required results even after 50 iterations. Convergence is
discussed in Section 8.5,

B GAUSS-SEIDEL METHOD |

Gauss-Seidel method is an improved version of Jacohi iteration method.
[n Jacobi method, we begin with the initial values

(0 (2 ()
BBy e X

and obtain next approximation
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X, Xy ,..,,:cnj'
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I

o
1)

(n and notx,” which has just

Note that, in computing x,", we usedxim

been computed. Since, at this point, bothx!” andx” are available, we

th

can usex " which is a better approximation for computing xf,rl" Simi-

» } (1 - )
larly, for computing x ", we can usex,” andx}" along with xlln’,...,xf'm.

This idea can be extended to all subsequent computations. This ap-
proach is called the Gauss-Seidel method.

The Gauss-Seidel method uses the most recent values of x as soon as
they become available at any point of iteration process. During the (A+1}th
iteration of Gauss-Seidel method, x, takes the form

(k+1) {k+1) ()
e b' "(GI]II +u.+ﬂ.n_lx‘_l +-al.l'1-11|+]‘
x =

i bu

(%)

(8.4)

When i = 1, all superscripts in the right-hand side become (k) only.
Similarly, when i = n, all become (% + 1). Figure 8.1 illustrates pictorially
the difference between the Jacobi and Gauss-Seidel method,

X e (by — a1 X% - a3 xa)lay,
Xa = (Bp=apy X - a3 x3)/a, lteration 1
X3 = (By = 8y X, = a5, 2,)/, das
A = (b=apx-ay X3 )@y
X = (by = ay X - ay X3V, Mteration 2

X3 - (ba';331 xx‘axzxz?fasa

{a) Jacobi method
@ = (by - a,, X, - a3 x3)/a,,
[ (b - 8 x] - @y xVia,  lteration 1
(b — 2y, x) - ay, 1;}!:133

@

®

= (b -ap xn- ay x)a,
(b, - 8y X!~ 3y VA, Mevation 2
(By - &y, X1' = g x-j}!am

(b) Gauss-Seidel method
Fig. 8.1 Comparson of Jacobi and Gauss-Seidel methods

]

®
@

>
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)btain the solution of the following system using Gauss-Seidel iteration
method

2I‘+x2+x3 =D

3z, +5x, + 2x05=15

21'1+I2+413 :ﬂ
x.3=(15—3x1—213)fﬁ
I3={8—2II—13N4

Assuming initial value ag x; = 0,x, =0, and x, = 0

Iteration 1 x,=(5-0-0)2 =25
x,= (15 -8 x 25— 0)5 =15
x3- (8=-2x25-15/4 = 0.4 (rounded to one decimal}
Iteration 2 x, =(5-156-0.4)2 =16
xg={15-3x16-2x04)/5 =1.9
%g=(8~2x 1.6~ 1.9Y4 =0.7

We can continue this process until we get x; = 1.0, xp = 2.0 and x; = 1.0
(correct answers)

Algorithm
(auss-Seidel algorithm is a simple modification of the algorithm of the

Jacobi method. Note that once a new vahue of xf* * U has been calculated

and compared with the previous values of x/*'| the previous value is no

longer required and, therefore, the previous value can be replaced by the
new one. This implies that we need not use two vectors (one to store
previous values and another to store new values) for storing x values.
We need to use only ene vector x that stores always the latest values of
x. This is illustrated in Algorithm 8.2

Gauss-Seidel method
1. Obtain n, a; and b, values
2. Set x;= bya; fori=1ton
3. Setkey=0
4. Fori=1ton

(i} Setsum=b,
(i) Farj=1ton(j=1
Set sum = sum —a, x
Repeat |

{Contd.)
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(Contd.)

(i) Set dummy = sum [ a,
{iv) I key = 0 then

dummy - x;

— = arror then
dummy

setkey = 1
(v) Set x; = dummy
Repeat §
5. If key = 1 then
go to step 3
6. Write results

Algorithm 8.2

Program GASIT

Like JACIT, the program GASIT also solves a system of n linear equa-
tions but employs the Gauss-Seidel iteration method as detailed in Algo-
rithm 8.2, The iteration algorithm iz implemented with the help of a
subprogram called GASEID,

x e e i e e e S L o i i e |l e i . e i S £

PRCGRAM GASIT

N e e A e e A e e e S £ e P e x
* Main program *
# This program uses Lhe subprogram GASEID to solve a *
¥ system of equations by Gauss-Seidel iteration method *
e O e s i S g i e A e e e e - e ot PEPC SRS
* Functions invoked ¥
¥ NI *
B e e o e [ et R it i i g s i et i oo i e s S St g *
* Subroutines used K
* GASEID *
Y o r—ry P N T W P e S SIS
* Variables used ®
* A - Coeificient matrix >
* B - Right gide wvector *
* N - System size *
% X - Solution wvector *
E COUNT - Number oi iterations completed ¥
® STATUS - Convergence status *
- = *
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* Constants used x

*

EPS - Error bound "
MAXIT - Maximum iteralions permitted %

REAL, A,B,X,EPS

INTEGER N,COUNT,MAXIT,STATUS
PARAMETER (EPS5=0.000001,MAXIT=50)
DIMENSION A{10,10), B(10), X(10)

WRITE(*,*)
WRITE(*, *) 'SOLUTION BY GAUSS-SEIDEL ITERATION'
WRITE(*, *)

WRITE(*,*) 'What is the sgize of the system(n)?*
READ(*,*} N

WRITE(*, *) ‘Input coefficients al(i,j), row-wige’
WRITE (™, *) ‘one row on each line’

DO 20 1 = 1,N
READ(*,*) (A(I,J),J=1,N)
CONTINUE

WRITE({*, *) ‘Input vector b’
READ(*,*) (BIT}, T = 1, W)

CALL GASEID(N,A,B,X,EPS, COUNT, MAXIT, STATUS)

IF{STATUS .EQ. 2) THEN
WRITE{* ,*)
WRITE(*,*) 'NO CONVERGENCE TN', MAXIT,
‘ITERATIONS'
WRITE (*,*)
ELSE
WRITE(*, *)
WRITE(*,*} *SOLUTION VECTOR X'
WRITE(*, *]
WRITE(*,*) {X(I), I = 1, N)
WRITE({*, K *)
WRITE(*,*) ‘ITERATIONS = ', COUNT
WRITE(*, *)
ENDIF

5TOP
END
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* Bubroutine

*
-

-

This subroutine solves a

Bquations using Gauss-Seide

e ko . L i e e

* Arguments
* Imput

*

N - Number af equations

system of [inear
1l iteration algorithm

e e —

¥ A - Coefficient matrix

* B - Right side vector

* EPg Error bound

b MAXTT - Maximum iterations allowed
* Output

* £ - Solution vector

* COUNT - Number of iterations done
¥T STATUS - SBtatus of convargence

* —_——— e - S S it T — T = AN

* Lecal Variablesg

* DiMMyY, S0M, KEY

&

.
¥*
*
* g
-

*

Subroutines ecgl]

Functions invoked

ABS

ed
NTL

INTECER N,KEY,CDUNT,MAXIT,STATUE

REAL ALB, X, BPS, DUMMY
DOUBLE PRECTSTON SumM

DIMENSTON A{lD.lO),B(lO),

INTRINSIC ABS -

* Initial values of X

DO 10 I = 1,N

X(I) = B(1I) 4 AT, 1)
10 CONTINUE
. COUNT = 1
=i KEY = 0
* Compul ing Z{I} wvalues
DO 30 1 = 1,N
SUM - B(T)
DO 20 J = 1,N
IF(I.EQ.J) @oTD 20
S5UM = SuM AAT, T}

X{10),X0(10)

* T
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20 CONTINUE

DUMMY - SUM/A(IL,I)
IF(KEY .EQ. 0) THEN
£ Testing far accuracy

IF(ABRS ((DOMMY - X{1))/DUMMY) .CT. EPS) THEN
KEY = 1
ENDIF

ENDIF
X(I) = DUMMY
30 CONTTINUE

TF({KEY .EQ. 1) THEN

* Testing for cenvergence
IF(COUNT .EQ. MAXIT) 'THEN
STATUR = 2
RETURN
FT.2E
STATUS = 1
COUNT = COUNT + 1
GOTO 11
ENDLF
ENDIT
RETURN
END
¥ memmmmo——=-- BRd of subroutine GAGEID-—-wo- sl RS

Test Run Resulfs The program was used to solve two different sets of
equations and the results are as follows:

First set
SOLUTION BY CAUSS-SEIDEL ITERATION
What is the size of the systemi{n]?
3
Input Coefficients a(i,j), row-wise
one row on =2ach line '

(I €
DB s
=] L

Tnﬁut vector b
I I3

SOLUTION VECTOR X

-4.999992E-001 -5.9899992E-001 9.999993E-001
ITERATIONS = 38

Stop Erogram termivated,
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Second set
SOLUTION BY GAUSS-SEIDEL ITERATION
What is the size of the systemin)?
3

Input coefficients a(i,j), row-wise
one row on each line

7 63 0

3 300 @

2 28 10

Input vector b
13.3 3.9 6.9

NO CONVERGENCE IN 50 ITERATLONSG

Step - Program terminated.

METHOD OF RELAXATION

Relaxation method represents a slightly modified veirsion of the Gauss-
Seidel method. The modification is aimed at faster convergence, The
basic idea is to take the change produced in # Gauss-Seidel iteration
step and extrapolate the new value by a factor r of this change. The new
relaxation value is given by

3] (k1)

|| I +rix; g By

L
ur —II

zrx:-*'“+(1— r)x:"" (8.5)

The parameter r ig called the relaxation parameter. This step is ap-
plied “successively” to each component of vector x during iteration pro-
cess and, Ltherefore, the method is known as successive relaxation method.

The parameter r may be assigned a value between 0 and 2. We have
the following possibilities:

O<r<l under-relaxation

; (& + )
r=1 no relaxation (x’ "V = x/*' 1)
ler<? over-relaxation

For values of r between 1 and 2, an extra weight is placed on the
present value and Eq. (8.5) really represents an extrapolation. The
intention here is to push the estimate closer to the solution. This method,
when 1 < r < 2, is popularly known as suceessive over-relaxation (or
SOR) method. It is also known as simulfaneons over-relaxation method.

The SOR technique can be easily implemented by a simple modifica-
tion of the Gauss-Seidel algorithm. The relaxation value is obtained
using Eq. (8.5) at the end of evaluation of each value of x. The extrapolated
value becomes the new value of x for the next cycle. Equation (8.5) can
be simply implemented as
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Lx““ Pme* Y - xﬂ (8.6)

i i

That is, the old value of x,**" is replaced by the new value of x **1),

e implementation of this step is shown in Algorithm 8.3.

The choice of value of # depends on the problem and is often decided
empirically.

SOR method

Algorithm is the same ag Algorithm 8.2, except the statement
(i) Set dummy = sum/a;
is replaced by a pair of stalements
Set dummy = sum/a,
Set dummy = r x dummy + (1 — r) x

Algorithm 8.3

CONVERGENCE OF ITERATION METHODS

Condition for Convergence

We know that the iteration methods presented here are based on the
basi¢ idea of the fixed point method discussed in Chapter 6. We have
shown that sufficient condition for convergence for solving one non-
linear equation is

IG'x)| <1

and for two nonlinear equations, Mx, y) and G(x, y), are

| | !
L B 2.6 (8.7)

&

o
' aF |, |G
d| |y
These conditions apply to linear equations as well. Therefore, we can
use these conditions in the Jacobi and Gauss-Seidel iteration methods.
For the sake of simplicity, let us consider a two-equation linear
system. We can express the Gauss-Seidel algorithm as follows:

<1 (8.8)

1
Ty = Fly, xp) == (b, - a;yxy)
Bii

h Qin
=1 12 . (8.9)

@y ay
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xgy = Gy, %) = L b, ~anx)
a2

b
. ... T (8.10)

gy Oy
The partial derivatives of these equations are

B 5 o
311 g

and
G gy e

&Ii agg r3x2

Substituting these values in Eqs (8.7) and (8.8), we get

221 | and aﬁl <1
[ G
This means that
eyl > [ag) (8.11)
and
|age| > |ag] (8.12)

That is, the absolute value of diagonal element must be greater than
that of the off-diagonal element for each row. .

The above derivation can be extended to a general system of n equa-
tions to show that

o n
lag 1> _El layl, i#J (8.13)
e

For each row, the absolute value of the diagonal element should be
greater than the sum of absolute values of the other elements in the
cquation. Remember that this condition is sufficient, but not necessary,
for convergence. Some systems may converge even if this condition is
not satisfied.

Systems that satisfy the condition Eq. (8.13) are called diagonally
dominant systems. Convergence of such systems are guaranteed.

Rate of Convergence
Consider the iterative Eqs (8.9) and (8.10). At (k+1)th iteration, we have
x;i«l:.:b_t_f‘_lgxh (8.14)
a5, 85
Lhe0 B2 Bm hes (8.15)

2z
g Gpn
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Substituting fnrxi'” Y in Eq. (8.15), we get

; b. a b a "
b D = 2 JOall dp x} (8.16)
gy Quy |,f111 @y
Similarly, we have
; b a b e
P = 2 o B S e x:“ (8.17)
Ggp @y Q@ Oy
Subtracting Eq. (8.16) from Eq. (8.17), we get
i g, ;
x;mz; _xék n _ %128  ked _xiz_}uj
a1
If we denote the errors as
k=1 _ (k4 8) (k+1)
s =X — %Xy
ko Ch+1) k)
ef =xg — %
Then
" a oll (K
[ ekl = 2 AL oW (8.18)
ayda,

e
If we want the error to decrease with successive iterations, then we
should have the coefficients such that

2i2@a 4 (8.19)
) @az

This also conforms with Egs (8.11) and (8.12).

Solve the equations

3x, +x3=5
x,—3x,=0
by the Gauss-Seidel method
First, we rearrange the equations in the form
xy = 1/3(5 ~ xg)
xy = 1/3(x) - §)

Assuming initial values asx? = 0, andx) = 0

M =53
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Remember, the new value of x, should be used in the caleulation of new
x,. Therefure

1‘;1" =—=10/9
Similarly,

- o)

The table below shows the values of x, and x, rounded to 4 decimal
places.

lteration X, %, True error in xy | True error in x,
0 0.0000 0.0000 2.0000 10000 |
1 1.6667 [ -1.1111 0.3333 0.1111
2 20390 -0.9877 0.0370 0.0123
3 1.9959 ! -1.0014 0.0041 | 0.0014
4 2.0005 | -0.9999 0.0005 | 0.0001
5 2.0000 r ~1.0000 0.0000 0.0000
The process converges to the solution (x; =2, x, = -1) in five itera-

tions. Note that the given system is diagonally dominant. The conver-
genee is graphically illustrated in Fig. 8.2

L x

Ixy + =5 —'"""\

x\) = 5/3 (stan) N\

Diverging

7
oL

Fig. 8.2 Pictorial representation of Gauss-Seidel convergence
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Solve the equations
rn~3,=5
32:: +& = )

by the Gauss-Seidel method

-,.-.._.._-__—..._-,_-___.___..._-—__—_—__.-_..._..._.._

Note that the system contains the same two equations as in Example
8.3, except they are interchanged
The iterative equations are

=0+ Jxy
xg = 5 = 311
As before, we start withx? = 0 andx; = 0. Then,

x’ll' =8 and xé” = —10

oW=-25 and x$” = 80

xia} =245  and x¥ =730

It is clear that the process does not converge towards the solution. Rather,
it diverges (see Fig. 8.2). The result will be the same even if we start
with the initial values very close to the solution (except the solution

itself). Readers may try withx} = 2.5 andx? = -1.2,

From Examples 8.3 and 8.4 we observe the following:
1. Iteration process converges when

‘am_

Qo

2. The process does not converge for the same set of equations when
Lheir order is changed. That is, when

a
= | and it
,'ai]

<1

Qyplay
Qy1Qoy

~ % |

the process does not converge
3. When it converges, the errors in x, and x, decrease by a factor of
Inle

Ti19ay
at each iteration
4. Stronger the diagonal elements, faster the convergence.
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SUMMARY

Iterative methods provide an alternative to the direct methods for solv-
ing linear equations. These methods are particularly suitable for solving
ill-conditioned systems. We considered the following three iterative meth-
ods:

e Jacobi method

¢ (auss-Seidel method

o Successive Over Relaxation (SOR) method
We also presented FORTRAN programs along with test results for the
Jacobi and Gauss-Seidel methods.

We have shown that a sufficient condition for convergence is that, for
oach row. the absolute value of the diagonal element should be greater
than the sum of absolute values of the other elements in the equation.

Key Terms
Diagonally dominant syslern Relaxation parameter
Gauss-Seide! iteration Successive over relaxation
Jacoby iteration Successive relaxation method

linear equations.

What are the limitations and pitfalls of using direct methods for
solving a system of linear equations?

Cf‘ State the two important factors that are to be considered while

@ State the two popular approaches available for solving a system of

applying iterative methods.
\ The basic idea behind the Jacobi iterative method is essentially the
same as that of fixed point method used for solving nonlinear equa-
tions. Explain.
/5, Gauss-Seidel method is similar in prineiple to Jacobi method. Then,
what is the difference between them?
6. Show that, for a two-equation system
ayx) + 8% = by
gy + agXp = by
a sufficient condition for convergence of the iteration process is
@12921
Q110

@' Explain the basic concept used in the relaxation method.
8. What is relaxation parameter?

<]
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9. What is meant by over-relaxation and under-relaxation?
10. Give an algorithm for solving a system of linear cquations using
the successive over-relaxation (SOR) method.

olve the set of equations given below by Jacobi method.
) 3x, - 6x, + 20 15
ey —xy +2=2
x; ~ 3x, + Tz = 22
olve the system of equations

2x-y+22=6

i -
c—y+z=13
/ x+3y-z2=4

by using Jacobhi method.

ve the systems given in Exercises 1 and 2 by Gauss-Seidel itera-
#tion. Compare the rate of eonvergence in both the cases.

/(( Solve the pair equations

/ )+ 205=5
3%, +xy=5
by a}zplying Jacobi method to the equations
Vi x=65-2x
¥ x3=5-3x,

/ Observe the divergence.
/{. Solve the equations in Exercise 4 applying Gauss-Seidel method.
/ Compare the divergence with that of earlier one.
6. Interchange the order of equations given in Exercise 4 and then
solve them
Aa} using Jacobi method
(b) using Gauss-Seidel method
/ Compare the convergence.
/1. Solve the system of equations

/ 3x, - 2x3= 5
Xy + 2xp—x3= 0
—2%p + Xy = -1
by applying
(a) Jacobi method
(b) Gauss-Seidel method, and

(¢) Successive over-relaxation method with r = 1.4
Comment on the results.
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8. /éolve the following equations by Gauss-Seidel method

(o

10.

2x — 'Ty — 10z =-17
bx+y+3dz= 14
2+ 10y +5e= - T
Assume suitable initial values.
Monthly faculty salary in three departments of an institute is given
below. Assuming that the salary for a particular category is same

in all the departments, caleulate the salary of each category of
faculty.

Department Number of Faculty __ Toilal Salary,
Professor  Asst. ProfessorLeciurer (in '000)
i 2 2 e e e
B 3 1 2 a0
c 1 4 3 60

Mr. Ram has invested a sum of Rs 20,000 in three types of fixed
deposits with an interest rate of 10%, 11% and 12%. He earns an
annual inlerest of Rs 2,220 from all the three types of deposits. If
gsum of the amounts with 11% and 12% interest rates is four times
the amount carning 10% interest, what is the amount invested in
each type.

. Develop a menu-driven, user-friendly single program which pro-

vides options for using either Jacobi method or Gauss-Seidel methad.

. Modify the Gauss-Seidel iteration program to incorporate the suc-

cegsive over relaxation method to improve the speed of conver-
gence. '



Curve Fitting:
Interpolation

INTRODUCTION

Scientists and engineers are oflen faced with the task of estimating the
value of dependent variable y for an intermediate value of the indepen-
dent variable x, given a table of discrete data points (x,, y,), { = 0,1,..n.
This task ean be accomplished by constructing a function y(x) that will
pass through the given set of points and then evaluating y(x) for the
specified value of x. The process of construction of y(x) to fit a table of
data points is called curve fitting. A table of data may belong to one of
the following two categories: ~

1. Table of values of well-defined functions: Examples of such tables
are logarithmic tables, trigonometric tables, interest tables, steam
tables, ete.

9. Data tabulated from measurements made during an experiment: In
such experiments, values of the dependent variable are recorded at
various values of the independent variable. There are numerous
examples of such experiments—the relationship between stress and
strain on a metal strip, relationship between voltage applied and
speed of a fan, relationship between time and temperature raise in
heating a given volume of water, relationship between drag force
and velocity of a falling body, etc., can be tabulated by guitable
experiments.

In category 1, the table values are accurate because they are obtained
from well-behaved functions. This is not the case in category 2 where
the relationship between the variables is not well-defined. Aceordingly,
we have two approaches for fitting a curve to a given set of data points.
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In the first case, the function is constructed such that it pagses through

all the data points. This method of construc@g a function and estimat-
1 ation. The functions

ing values at_
are known as u;t_r{p_afa_twn pr'vnomials.
“In the second case, the vaiues aie not accurate and, therefore, it will
be meaningless to try to pass the curve through every point, The best
strategy would be to construct a single curve that would represent the
general trend of the data, without necessarily passing through the indi-
. v1d1{al__pq1£1_ts Such ﬁmctmns are called approximating funct@gg,._(_)_rle_
popular . appro&ch_o_r_ﬁ:hdmg an approximate functnon to fit a  fit a given sef
of experimental data is called least-squares regression. The approximat-
ing functions are e known as [east-squares polynomials.

Figure 9.1 shows an approximate linear function and an interpolation
polynomial for a set of data. Note that although the interpolation poly-

Interpolation
polynamial

~_Linear approximating
function

Fig. 9.1 Curve fitting to a set of paints

nomial passes through all the points, the curve oscillates widely at the
end and beyond the range of data. The linear approzimating curve which
does not. pass through any of the points appears to represent the trend of
data adequately. The straight line gives a much better idea of likely
values beyond the table points.

In this chapter, we discuss various methods of interpolation. They
include:

1. Lagrange interpolation

2. Newion's interpolation

3. Newton-Gregory forward interpolation

4, Spline interpolation

Before we discuss these methods, we introduce various formd ¢f poly-
nomials that are used in deriving interpolation functions. Least-gquares
regression techniques are discussed in the next chapter.
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%] %OLYNOMIAL FORMS

The most common form of an nth order polynomial ig
|

prl=agy+ayx+a,x* + .. +a, x"! (9.1)

WA as the power form, is very convenient for differentiat-
grating the polynomial funetion and, therefore, are most
@ in mathematical analysis. However, there are situations
& form has.bheen found madequate, as illustrated by Example

g -
7/ Consider the power form of p(z) for n = 1,

/

Pl =a;+a, X,
Given that e
pU100) = +3/7.
p(101) = - 4/7 _ .
obtain the linear polynomial px) using four-digit floating point arilh-
metic. Verify the polynemial by substituting back the values x = 100 and
x= 101,

p100) = d; 4 100 a = + 0.4286
p(101) =ay + 101 g, = - 0.5714

Then, we get ‘
G.l =—] -
ug = 100.4 (only four significant digits)
Therefore, 3
plx)=1004 - x
using this polynomial, we obtain
p(lo0)= 0.4
pll01)=-06

Compare these results with the original values of p(100) and p(101). We
have lost three decimal digits.

Example 9.1 shows that the polynomials obtained using the power form
may not always produce accurate results. In order to overcome such
problems, we have alternative forms of representing a polynomial. One
of them is the shified power forn as shown below:

PE) =0+ 8 (- C)bayx=CP +.. +a, (x— cy'] 9.2)
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where C is a point somewhere in the interval of interest. This form of
representation significantly improves the accuracy of the polynomial
evaluaon. This is illustrat ' by Fxample 9.2

J,"';f(iépeat Example 9.1 using the shifted power form and four-digit arith-

//_‘.‘LBE"‘_ e A A Pt e B e o K

Shifted power form of first order p(x) is

Px)=ay+ay (x-C)
Let us choose the centre C as 100. Then
plx) = a; + a, (x - 100)
This gives,
p(100) = a, = 3/T = 0.4286
P(101) = 0.4286 + a, (101 — 100) = - 0.5714
2, =-1
Thus the linear polynomial becomes
ple) = 0.4286 — (x - 100)
Using this polynomial, we obtain
p(100) = 0.4286 -
pi101) =-0.5714
Note the improvement in the results.

Note that Eq. (9.2) is the Taylor expansion of p(x) around the point C,
when the coefficients a, are replaced by appropriate function derivatives.
It can be easily verified that

)
o B ()
' i!
where p/(C) is the ith derivative of p(x) at C.

There is a third form of p(x) known as Newton form. This is a
gencralised shifted power form ps shown below:

i=0192 .5

prRl=ao+a; x-Cp+agx-Clx-Cy+a,lx-C)
X-Cx-C+ .+, - Cp)x—Cy) o (- C,)

(9.3)
Note that Eq. (9.3) reduces to shifted pawer form when Ci=Cp=0C5= ...
= (', and to simple power form when C. = 0 for all ;. The Newton form

plays an important role in the derivation of an interpolating polynomial
as seen in Section 9.5,

’
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Polynomials can also be expressed in the form
Dy (x) = by (x - zy) (x — x5)
+ by (2 - xp) (x — x)
¥ 7 4 by ) = xy)
In general form,

n T
[Pn (x)= Z b: n (x- xj] (9.4)
l i=0 J=ll i

!.

- [ UNEAR INTERPOLATION

The simplest form of interpolation is to approximate two data points by
a straight lineEppose we are given two points (x;, flx,)) and (x,, flx,)).
These two points can be connected linearly as shown in Fig. 9.2. Using
the concept of gimilar triangles, we can show that

Fx)—flxy)  [lxg)—flxy)

x—x, Xy =X,

(%)

¢ _f()r:)

(%)

f(x;)

"d ,

)f, X X -
Fig. 9.2 Grcphlccl representation of linear interpolation

Solving for flx), we get

) flxg)- flx,)

X3 — X5

R = fx) + (x -y (9.5)
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Equation (9.5) is known as linear interpolation formula. Note that the
term

Flxg) - flx))
: <1

represents the slope of the line. Further, note the similarity of equation
(9.5) with the Newton form of polynomial of first-order.

Ci=x
ag = flx,)
flag) = flx))
dy = ———
Xy =%y

The coeffjignt a, represents the first derivative of the function.

The given value of 2.5 lies between the points 2 and 3. Therefore,
=2, flx) = 14142
=8, fr)=17321
Then
- S L7821- 14142
f(2.5) = 1.4142 + (2,5 - 2,0) 3030
= 1.4142 + (0.5) (0.3179)
= 1.5732 |

The correct answer is 1.5811. The difference 1(}; due to the use of a linear
model to a nonlinear one. _ ./~ Ny ’

Now, et us repeat the procedure assuming ¥ =2and x, = 4,
flx,)=1.4142

J“{IQ) = 2‘0
Then,

. 2.0- 14142
2.5)=1.4142 2.5 - 20) = o
f(2.5 +(25-20) P
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= 1.4142 + (0.5) (0.2929)

= 1.5607

Notice that the error has increased from 0.0079 to 0.0204. In general,
the smaller the imayval between the mt,erpolul.mg data points, the bet-
ter will be the approxenation.

The results could be improved considerably by using higher-order
interpolation polynomials. We shall demonstrate this in the next section.

LAGRANGE INTERPOLATION POLYNOMIAL

In this section, we derive a formula for the polynomial of degree n which
takes-specified values at a given set of n + 1 points.

«Let xg, 1, ... x, denote n distinct real numbers and let fy, f3, .., 2 be
arbitrary real numbers. The points (Tq, foh (X1 /1)y - (X, f,) can be
imagined to be data values connected by a curve. Any function plx;
satisfying the condifions

p(Ik) fk for k= 0 1

Section 9.1,
Let us consider a second-order pol_vnnm:g] of the form

pp (x) = bifx — xp) (x — x,)
+ byl = x)(x - x3)
+ p;(:c - xq) (x —xp) (9.8)
If (xq, fo), (xy, f1) and (xy, }"3) are the three interpolating points, then we
have )
Palxg) = fo = bylag — x7) (xg — xp)
pxy)=fi= ba(x‘l = ) (1 — %)
Pal¥e) = .-fg_— 51*-‘2 ~xp) (% - - )
Substituting for by, by and by in Eq. (9.6), we get

(x —x,)(x—x5)
—x){xq—xg)

:c} fof

(x —xy) (x - x¢)
X1 - xp) (21 — Xg)

f;

(x— Iu)(x x])

R fﬂ (Iz = xo}(xa = Il)

(9.7)

Equation (9.7) may be represented as.
Do) = fo Ly(x) + f; LX) + f lg(x)
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2
=2 [ili(x)
i=0

where
2 (x~x;)

Lxy= I

g=0,ei (%, 2, 1,/

In general, for n+1 points we have nth degree polynomial as

2. = S Fili(x)
i=0
where
n (x -IJ}
x) —j=(I;:l_,-,.(.x,- ~-x;) 7

(9.8)

(2.9)

Equation (9.8} is called the Lagrange interpolation polynomial. The poly-
nomials /, (x) are known as Lagrange basis polynomials. Observe that

1 fori=j
fig) = {0 fori#j

Now, consider the casc n =1

xX—%
ig{x}= ]
Xg— X,
X=X
I} = ————
Xy =%
Therefore,
X=0 x—Xg
(x) = 4
Py fo.t.}—:rl fl-'ﬁ_xn

=fg(x-x1)—f1(x~xu}

Xp—X

fi"fﬂ
=fo+——x—xg)
fo X, — %, i

This ig'the linear interpolation formuln.
Vil
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Let us consider the following three points:

X9 =2, x, =3, and x,=4
Then
fo=14142,  f=17321, and f,=2
Forx = 2.5, we have
,_(2.5-3.0)(25-4.0) _
WD = s @040 - 3750
(2.5 -2.0)(2.5 - 4.0)
1,(2.5) = = 0.7500
4.00(3.0-2.0
(3.0-4.0) 2. }/,
(2.5-2.0)(25-3.0) .
B2 = 02,00 (403 W
Py(2.5) = (1.4142) (0.3750) + (1.7321) (0.7500) + (2.0) (- 0.125)

=0.5303 + 1.2991 - 0.250 = 1.5794

The error is 0.0017 which is much less than the error obtained in
Example9.3

%

2 [_1 o T 1 2 3
-7 0 1 2
[abiad 0 1.7183 6.3891

A ;¥

Use the polynomial to estimate the value of e' 5

Lagrange basis polynomials are

g ="

Jg{x);(x—lltx—ZJ‘(x—Q) :? -
(0-1)(0-1)(0-3) .

M
_x®-6x%+11x-§ T
SR .

) _?l'.x-O)(x—E){x—S) Ao* -
(1-0)(1-2)(1-3) K e
z-5x+6x Ay .ot'(;q

) 2 ' -\
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 TH Byt
'+\-/.‘ -
Ly < E=0G-PE-3) AP
T -0 2-1)(2-3) t
) x3 - 4x% + 3x
= -2
Js(ﬂ:(al:—ﬂ)(nc—2}t(:r-3)

(3-003-1D(3B-2)

x% ~32% + 2x

p(1.5) = 0.9375
The interpolation polynomial is
Px) = fo lox) + ¥y Ly(x) + f 1y{x) + [y Ly(x)
© 17183(2? - 52 + 6x)
-\ =0x 3

6.3891 (x% —d4x? + 3x)
At o)

/

J . 19.0856(x® - 3x? + 2x) /
\ﬁ.* 6

(1 _5_.0732:1:3 - 6.3621x2% + 11.5987x
6

= 0.8455x" - 1.0604 %% + 1.9331x
p(1.5) = 3.3677
e = p(1.5) + 1 = 4.3677

Points to be noted about Lagrange polynomial:
1. It requires 2(n+1) multiplications/divisions and 2n+1 additions and
subtractions
2. If we want to add one more data point, we have to compute the
polynomial from the beginning. It does not use the polynomial al-
ready computed. That is, p,,,(x) does nat use p(x) which is already
available :

Program LAGRAN

Program LAGRAN computes the interpolation value at a specified point,
given a set of data points, using the Lagrange interpolai.on polynomial
representation.
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B o e e R A S e e il A o e A ey *
PROGRAM LAGRAN

N e I e e B e e e e e e e *

* Main program -

* This program computes the interpolation wvalue at a *

= specified point, given a set of data points, using *

*

¥ the Lagrange interpolation representation

* FPunctions invoked =
* NIL *
A T T SR _ SR L S e W I R et It TRF = 20 = Bioer e Come et *
* SubroubLines used *
* WIL *
B s e e e e i e e s e B g A R *
* Variables used +
¥ XN - HNumber of data sets *
" X(T}- Data points ¥
% F(I)- Function values at data points *
® AP = Point at which interpolation 1is reguired =
% FP - Interpolated wvalue at XP *
* LF - Lagrangian factor. *
B PO g VRS e —— g
* Censtants uszed &
& MAY - Maximum number of dala points permitted x

R S e ——— *

INTEGER N, MAX

REAL X,F,FP,LF,5UM
PARAMETER (MAX = 10)
DIMENSLION X(MAX),F(MAX)

WRITE(*, *) ‘Input number of data points{N)’

READ(*,*) N

WRITE (™, *) ‘Input data points X(I) and Function’,
+ ‘values F(I}°

WRITE(*,*) ‘cne set in each line’

Do 10 I = 1,N
READ(*,*} X(I), F(I)
10  CONTINUE

WRITE(™*, *) ‘Input % wvalue at which’
WRITE (*,*) ‘interpolation is reguired'
READ(*,*} Xp
sSuM = 0.0
po 30 1 = 1,N

LF = 1.0

DO 20 J = 1,N
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20

30

IF (I.NE.J) THEN

LF = LF * (XF - X(J)) /7 (XiTy < X3
ENDIF
CONTINUE
SUM = SUM + LF * F(I)
CONTINUE
FP = suM
WRITE(*, *)
WRITE(*,*) ‘'LAGRANGIAN INTERPOLATION'
WRITE(*, *}
WRITE(*,*) ‘Interpolated Function value’
IPRLT 8 “at X = Yy XP, v ist. FP
WRITE(*, *)
STOP
END
——————————————— End of main LAGRAN -—-—-———-cee___*

Test Run Resulfs The program was used to compute the function value
at x = 2.5 for the following table of data points;

[ = 2 3 4 |
| i 1.4142 1.7321 2.0

The results are shown below:

Input number of data points(N)

3

Input data points X(I) and Function values F{(I)
one set in each line

2 1.4142

5 1.7321

4 2.0

Input ¥ value at which

interpolation is required

B

LAGRANGTIAN INTERPOLATION

Interpolated Function Value
at X = 2.5000000 is 1.5794000

Stop - Program terminated.

~ B NEWTON INTERPOLATION POLYNOMIAL

We have seen that, in Lagrange interpolation, we cannot use the work
that has already been done if we want to incorparate another data point
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in order to improve the accuracy of estimation. It is therefore necessary
to look for some other form of representation to overcome this drawback.

Let us now consider another form of polynomial known as Newton
form which was discussed in Section 9.2. The Newton form of polyno-
mial is

palx) = ag + alx — 2} + agle — 2p) (x - %)
+o F @yl —=xg) (X — X)X =2, 4) (9.10)
where the interpolation points xg, x,, ... x,_; act as centres.

To construct the interpolation polynomial, we need to determine the
coefficients ag, ay, ... @,. Let us assume that (x,, fo), (xy, fi), - (¥, 3, fid)
are the interpolaling puints. That is,

Palxg) = i k=0, 0=3
Now, at x = x,, we have (using Eq. (9.10)

Pl = [ag = fo] ©.11)
Similarly, at x = x,,

Palxy) = g + aylx; —xy) = f

Substituting for ¢, from Eq. (9.11), we get

fi—1o

Xy —X
l—-l 1]

(9.12)

ay =

At x = x,,
Palig) = @ + ay(xg = xg) + aglay — g} (X — X)) = f

Substituting for a, and a, from Egs. (9.11) and (9.12) and rearranging
the terms, we get

_[{fa g - x - [(f; = fo)/(x - x4)]

a, (9.13)
1'2 _IU l
Let us define a notation
flx,) = fx
flxp]=flxsl
Fln 3x0al = X1~ Xy

f{Ik.;‘]_;x*fz]-fka-xk—IJ

Tprg —*p

flag, 24 41, xp 40l =

[Xh0q ooe i s 1] = Flxg %]
f[xb XpypoAp Xy ‘l-I =z J 2 - i . (9.14)
Xiy1— X




288 Numerical Methods

These quantities are called divided differences. Now we can express the
coefficients a; in terms of these divided differences.

a =fj = [lxg]

L= fu
a, = ﬁxo: |]
£
fo-fy _hif
Xo-X Xi—X
ag = 2 1 1 0
xz —xn

_ 1%y, %91 flxg, x4 ]
N Iz =Ty

= ﬁxﬂv X, %)
Thus,
an =;’r[xl:l! xl’ s xu-] [915]

Note that a, represents the first divided difference and ay the second
divided difference and so on.
Subsmutmg for a; coefficients in equation (9.10), we get

p,,(xf] = Flxgl + flag, 2] (x - ) + leg, x4, 2,) (x - ) (x — Xy
— + .
+ ﬂxo, Xy o %,) (x - Xp) x=-x5) .. (x-x,_)
This can be written more compactly as

.

n l-]
l Pu(x)=3 flxg,...x;] H (x - x) (9.16)
i1

B i

Equation (9.16) is called Newton’s divided difference interpolation poly-
nomial.

Given below is a table of data for log x. Estimate log 2 5 usmg_second
order Newton interpolation polynomial. .

o | -1 e | s 1

% 24 a. | 4
0 3010 0.4771 0.6021
. I :

_-...—._._.__—.._.——-..—-—.—._‘.._-...—..-_.._._-.._-_.____._.__

Second. order pelynomials require only three data points. We use the
first three points
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o
ap=flxpl =0 -

.f(xl)-f(;:}i 0.3010
£’a1=f[xn, x]]= rl ~ %q = B 1 20.3010 .

ey 231~ flag, z,] |

g = flzg, 2, :r?]_ =

Xp -y : 3
‘ _fxy) - flxy) _0.4771-0.3010
I,_fl”b ¥y] = PR 3-3 —_0.126_1
Therefore,
a5 0.1761~0.3010 — . 0.06245
A 3-1

Pa(x) = ag + a,)(x - xg) + aylx — x0) (x - x)

= 0 + 0.3010(x - 1) + (- 0.06245) (x - 1) (x — 2)
0.3010 x 1.5 - (0.06245) (1.5) (0.5)
:m—_ﬁ,m— - T

= 04047 27

Note that, in Example 9.6, had we used a linear polynomial, we would
have obtained the result as follows:

Px) = ag + ay(x - x;)
P1(2.5) = 0 + 0.3010 (1.5) = 0.4515

This shows that p, (2.5) is obtained by simply adding a correction factor
due to third data point. That is

)ﬂﬂ:ﬁpﬂxi + Byx — xg) (x - x,) 1
=pylx) + 4,

Il we want to improve the results fu rther, we can apply further correc-
tion by adding another data point. That is

(@2,_5)

Palx) = po(x) + A,
where
Ay = aylx - xo¥x - 2, Mx - x,)
This shows that the Newton interpolation formula provides a very con-
venient form for interpolation at an increasing number of interpolation
points. Newton formula can be expressed recursively as follows:

e TR+ Py o D () (et (9.17)

I3
where  pi(x) =flxg,..x;14,(x)= Ya, ¢i(x)
=0}

and &;(x) =(I—Iq>{x—17}.,.(1--1‘7,’ 1)
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—lmvnmso DIFFERENCE TABLE

We have seen that the coefficients of Newton divided difference interpo-
lation polynomial are evaluated using the divided differences at the
interpolating points. We have also seen that a higher-order divided dif-
ference is obtained using the lower-order differences. Finally, the first-
order divided differences use the given interpolating points (1.e., x, and
f, values). For example, consider the sccond-order divided difference

ag = flxg, %y, Xyl

- lf.[-r],:‘:ZJ = J"[xﬁl!‘xll
= Xy — Xy

where f[x,, x,] and flx,, x,] are first-order divided differences and are
given by
f[.tl}_f(xo:'_ fl_fg

fey 1ad = Xy —Xg -Il_xn
} _ffrg)—f(x|}~f2 fl
P g) = Xp=%; Xy X

This shows that, given the interpolating points, we can obtain recur-
sively a higher-order divided difference, starting from the first-order
differences. While this can be conveniently implemented in a computer,
we can generate a divided difference tuble for manual computing. A
divided difference table for five data points is shown in Fig. 93. A
particular entry in the table is obtained as follows:

X g, X5, Xq]= x4, X2, X3]
f[x.', Xpu Xy, x-il s 2: 73 4! Tut2e g

X4~ X4
i X; flxd First Second Third Fourth

difference difference difference difference

0 X flx)
flxg, %]

X f1x,] fxg, Xy, %]
O \![x,, Ko™~ X, Xy, Xo. %)

2 % flx.] ([lxy, Xp, xaj_l f1Xgy s X
x5, Xal /jf [Xq: Xai Xg. Xa ]

5 % AT
X3, X
4 @)‘_ f[x,j/

Fig. 9.3 Divided difference table

-

Draw the two diagonals from the entry to be calculated through its
neighbouring entries to the left. If these lines terminate at f(x;) and f(x)),
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then divide the difference of the neighbouring entries by the correspond-
ing difference x; ~ x;. The result is the desired entry. This is illustrated
in Fig. 9.3. for the entry flx,, 2,, xy, x,].

When the table is completed, the entries at the top of each column
represent the divided difference coefficients,

Given the following set of data points, obtain the table of divided differ-
ences, U = the table t& estimate the value of f(1.5).

i 0 1 2 3 s |
X 1 2 3 4 5 [
1l 0 7 26 63 124 ‘

.-.._.__—_-__.___.___._.__—._.__-._._.,__—"__.___—.__,

i I %; T E’,:‘-) ll First Second ' Third [ Fourth
) difference | difference difference difference
0 L 0 | - S
() B
1 2 T 12
| = 19 6. )
2 8 —— 26 TS, S £0-)
e >31 | 6r .. -
3 4 | e[ 24
” 61
I—_4 . b 1%4 = .
The value of polynomial at x ql_.g is computed as follows:
| p(lB =0 T .

| P15 =0+ T7(15-1)=35
| P15} =354+ 12015 - 1X15-2) = 0.5
| Ps(1.5)=05+6 (1.5 - 1015 2X1.5 - 3) =225
| pe(1.5) =225 + 0=225
The Hmction value at x = 1.5 is 2.25

Note that p,(1.5) = p,(1.5). This implies that correct results can be ob-
tained using the third-order interpelation polynomial, It also illustrates
that we can compute f(1.5) in stages (recursively) using interpolation
polynomials in increasing order. Computation is terminated when two
consecutive estimates are approximately equal or their difference is within
a specified limit.
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It is clear that the computational effort required in adding one more
data point to the estimation process is very much reduced due to the
recursive nature of computation.

Let us have a close look at the divided difference table of Example 9.7.
Notice the constant values under the column “third difference” and zero
value under the column “fourth difference”. Recall that the first divided
difference ie given by

ﬂxmrl]‘:w

i~ %o
This is nothing but the finite divided difference approximation of the
first derivative of the function. Similarly, fIx,, x,, x,] is the second de-
rivative and so on. Since the third derivative is constant, the function
f(x) should be a third-degree polynomial. In facl, the function used in
Example 9.7 is

flr)=a®-1
and therefore
arf
& =°

and the fourth derivative is zero.

Program NEWINT

Program NEWINT constructs the Newton interpolation polynomial for a
given set of data points and then computes the interpolation value at a
specified value.

T oo i s el A P, e B kA i s i A e o S S e *
PROGRAM NEWINT

B e v A e Tl LTI e e it g ko Bl i s - B S W e i Rl e m— . B — -

* Main program *

4 This program constructs the Newton interpolation *

* polynomial for a given se- of data points and then *

computes interpolaticn value at a specified wvalue *
= e

R e e e e e e e e

* Functions invoked *
i NIL Lt
W oo m o o o ot e = e M ety = o &
* Subroutines used *
e WNIL ¥
B s e e e e s e s o 1 b
* Variables used %
* N - Number of data points *
" X - Array =f independent data points t
= F - Array of function wvalues *

* XP - Desired point for interpolation ¥
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i FP - Interpolation value at XP *
* D - Difference table *
* A - Array of coefficients of interpelation *
* polynomial &
W e A o S s e e e e et e *
* Constants used *
® NIL #
B e e e e i e e i e A e i i e e e *
INTEGER N

RE: . XP,FP,SUM,PI,X,F,A,D
DIMENSION X(10),F(10),A(10},D(10,10)

WRITE(*,*) ‘Input number of data points”
READ(*,*) N
WRITE(*, *) ‘Input the values of X and Fi(x], °.
* ‘one get on each line’
oo 10 T = 1.N
READ(*,*) X(I), F(I)
10 CONTINUE

* construct difference table D

DO 20 T = 1,N
D(I.1) = FI(I)
20 CONTINUE

DO 40 7 = 2,N
DG 30 T =L, MRl
D(I,J) = (D(I+1,J3-1)-D(I,J-1))/(X(I+J-1)-X(1))
30 CONTINUE
40  CONTINUE

* get the coefficients of interpolating polynomial

DO 50 J = 1,N
Ald) D{l1,J)
50 CONTINUE

* Compute interpolation wvalue

WRITE(*,*) ‘Input XP where interpolation is
required’
READ(*,%) XP

Do 60 .3 = 1, I-1
PI = PI *{XP-X(J))
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60 CONTINUE
SUM = SUM + A(I) * PI
70 CONTINUE

FP = 5UM

* Write results

WRITE(*, *)
WRITE(?*,*] ‘NEWTON INTERPOLATION'
WRITE(*,*)
WRITE(*,*) ‘Interpolated Function Value'
WRITE(*,*) *“aE X = ¥, XP, * disr'. pFp
WRITE(*, *)
STOP
END
T Socsmacsossmmes: B0d OFf main NEWINT sc=sssoosecooirnas =

Test Run Resuifs Let us use the same table values that were used for
testing the program LAGRAN. Test run results are given below:

Input number of data points

3

Imput the values of X and F(x), one set on each line
2 1.4142

3 17330

4 2.0

lnpij: XP where interpolation is required

258

NEWTON TNTERPOLATION

Interpolated Function Value
at X = 2.3000000 is 1.5794000

Stop - Program terminated.

mmnpomnou WITH EQUIDISTANT POINTS

In this section, we consider a particular case where the function values
are given at a sequence of equally spaced points. Most of the engineering
and scientific tables are available in this form. Woe often use such tables
to estimate the value at a non-tabular point. Let us assume that

x; =xq+ kh

where x; is the reference point and & is the step size. The integer 4 may
take eithet positive or negative values depending on the position of the
reference point in the table. We also assume that we are going to use
simple differences rather than divided differences. For this purpose, we
define the following:
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The first forward difference Af; is defined as

My = fir
The second forward difference is defined as
K= By =
In general,
Nfi=N"f -4}, (9.18)

We can now express the simple forward differences in terms of the di-
vided differences. We know that
flxy) - flxg) . fi-fo

f[xn’ xl} - J:l il -ro h

Therefore,

- fo=h flx,, 2,1
Then

Mo=Ff = fo=h flxs x4]
Similarly,

=4k ﬂxb xzi
Now,
A fo= of, = &,

= h flxq, 9] = & [lxg, x,]
= h {flxy, 2] - flxg, x
=h.2h . flxg %, x5
= 20 g x50
In general, by induction,
A =g B I, X, %145
Therefore,

Substituting this in the Newtun’s divided difference interpelation poly-
nomial (Eq. (9.16)) we get,

v W T A
palx)= Z Th ﬂ (x—xp) (9.19)
e
Let us et
X =%y % sh and  p,ls) = p,lx)

We know that

X, =xp+ kA
Thus we get

x-x.=(6-kHh
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Substituting this in Eq. (9.19), we get

p.s) = f‘;;o j‘f ;j' iH: (s— A
= Jg,oj;}gllsis ~ D As=j+ DI hi
Thus,
Pals) = ;):6 { j] A fy (9.20)
where

(SJ _sls-1D..(s-j+1
J J!

is the binomial coefficient. Equations (9.19) and (9.20) are known as
Gregory-Newton forward difference formula.

Forward Difference Table

The coefficients A'f, can be conveniently obtained from the forward dif
ference table shown in Fig. 9.4. According to Eq. (9.18), each entry is
merely the difference between the two diagonal entries immediately on
its left. That is

W=t 8

The differences which appear on the top of each column correspond to
the differences of equation (9.20).

X f Af A%f A3f A APF ABf
%
Al
X ¥ Al | T—
Af, A
* h A%y - 5% i
Al A%y AR
| X A A%, A%l
| &k A%,
X4 fl‘ b Aefa
1o |8 |
X, &

Fig. 9.4 Forward difference table
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As pointed out earlier, difference tables can be used not only to estimate
the value of the function at a non-tabular point but can also be used to
decide on the degree of the interpolating pelynomial that is mast appro-
priate to the given data points.

Estimate the value of sin #at 0= 25° using the Newton-Gregory forward
difference formula with the help of the following table.

[ s 10 20 | 30 40 50
Lsina 01736 | 03420 | 05000 | 0.6428 0.7660

e e e e e e S — — — — —— e .

— e — — — — — — —

In order to use the Newton-Gregory forward difference formula, we need
the values of &' ;. These coefficients can be obtained from the difference
table given below. The required coefficients are boldfaced.

7] r sin @ Af : AZf A AY Aﬁf_i
|10 | 01736 1 -
L | 0.1684

20 0.3420 | ~0.0104

~ [omsso | T 0.0048
30 _| 05000 | [-0.0152 - 0.0004
L 0.1428 | 0.0044
40 0.6428 oot [ |
T RN A D
50 0.7660 | I
Xy =8y=10
h=10
Therefare.
X-x5 25-10
3=_h = - l'b——":l,ﬁ

Using Eq. (9.20), we have
(s} = 0.1736 + (1.5) (0.1684) = 0.4262

1.5)(0.5) (~0.0104
Pols) = 0.4262 +.1 -&C.'i; L PO

5)(0.8)(-0. J
pyls) = 0.4223 4 (L8 (05)(-05)(0.0048)

6

pols) = 0.4220 +f1.5) (075?{--0%)‘_;—!.51 (=0.0004)

= 0.4220
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Thus,
sin 25 = 0.4220

which is accurate to four decimal places.

Backward Difference Table

If the table is too long and if the required point is close to the end of the
table, we can use another formula known as Newton-Gregory backward
difference formula. Here, the reference point is x,, instead of x,. There-
fore, we have

x=x, +sh
x,=x,-kh
x—x,= (s + )k
Then, the Newton-Gregory backward difference formula is given by
ps)=f, +8 Vf, +s{32? X Vi ¥
+f(i+_1)_'n(ls_+n__ 1} vnfﬂ {92:”

For a given table of data, the backward difference table will be identical
to the forward difference table. However, the reference point will be
below the point for which the estimate is required. This implies that the
value of s will be negative for backward interpolation, The coefficients
Vj f; can be obtained from the backward difference table shown in Fig. 9.5.

x | f v V2t v3f v Vof VSF |
*a fo | 'I
v, N
7 f, v | ;. ’ =
Vi | V8 |
X, f, 1 _ vieE | 1 v,
Vi | v, e e
X f i v, VA
v, | VY
X f, veg,
LV
X5 Mg 35 { |
| |

Fig. 9.5 Backward difference table
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Repeat the estimation of sin 25 in Example 9.8 using Newton’s back-
ward difference formula

s s e | . e e . e s St e s e s i i i

(x-x,) 25-50
A A

Using Eq. (9.21), we get Feemt
p4(2.5) = 0.7660 + (-2.5) (0.1232) _ /j
- (-2.6)(-1.5)(-0.0196) L‘
2

g (-2.5) (- 1.5) (- 0.5) (0.0044)
6

. (-2.5)(-1.5) (- 0.5)(0.5) (- 0.0004)
24

= 0.4200

SPLINE INTERPOLATION

So far we have discussed how an interpolation polynomial of degree n
can be constructed and used given a set of values of functions. There are
situations in which this approach is likely to face problems and produce
incorrect estimates. This is because the interpolation takes a global rather
than a local view of data. It has been proved that when n is large
compared to the order of the “true” function, the interpolation polyno-
mial of degree n does not provide accurate results at the ends of the
range. This is illustrated in Fig. 9.6. Note that the interpolation polyno-
mial contains undesirable maxima and minima between the data points.
This only shows that increasing the order of polynomials does not neces-
sarily increase the accuracy.

1 T 4 ‘7’\
fre

\
0 t" ﬁl_f

Fig. 9.6 Inferpolation polynomial of degree 11 of the function : ig
+ X

d
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One approach to overcome this problem is to divide the entire rang
of points into subintervals and use local low-order polynomials Lo inter
polate each subinterval. Such pelynomials are called precewise polynao
mials. Subintervals are usually taken as lx, x,,), i =01, .. nasillus
trated in Fig. 9.7.

Piecewise polynomials
. —_—
e e
/ R
— S
; Knot
o -_x:_ X Xt o X2

Fig. 9.7 Plecewise polynomial interpolation

Notice that the piecewise polynomials shown in Fig. 9.7 exhibit dis-
continuity at the interpolating points (which connect these polynomials),
It is possible to construct piecewise polynomials that prevent such
discontinuities at the connecting points. Such piecewise palynomials are
called spline functions (or simply splines). Spline functions, therefore,
look smooth at the connecting points as shown in Fig. 9.8. The connect-
ing points are called knots or nodes (because this is where the polynomi-
al pieces are tied together).

aix?+bax+cl' 3”1)(2 + brlﬁlx" CI-T

fix)

/\ f(x,4)
fx,_y) :
- el

Xi 1 Xi X 1 M2
Fig. 9.8 Secona degree spline poiynomials
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A spline function s{x) of degree m must satisfy the following conditions:

1. s(x) is a polynomial of degree aimost m in each of the subintervals
I‘tir xn.'g}, E = 0. 1, o

2. s(x) and its derivatives of orders 1,2 ... m — 1 are continuous in the
range [x;, x,].

According to the first condition, each interval will have a different
polynomial of degree /m or less. The set of all polynomials form a spline
interpolation polynomial, if 8(x,) = f, for i = 0, 1, ... n. The process of
constructing such polynomials for a given set of function points is known
as spline interpolation.

State whether the following piecewise polynomials are splines or not,

x+1 -12x2<0
(i) flx) =42x+1 O=xs1
(4—2x 1sx<2

x2+1 0sxs1
i) flx) =<2x% 1<x<2
Sx-2 2<x<3

(x O0<x<1
(iii}) filx) =<x®-2+1 1<x<2
3x-3 2€x=3
Case ) T
Given,
n=4, x5 =—1, =0 xy= 1 x3=2
fl(x]=r+1
folx)=2x + 1
fs(.\f:|=4—x
Then,
fl(x]}=0+1=1
fg(x1)=2}(0+l=1
folx))=2+1=3
fg(xg)=4—-1=3
Note that

fl(:::;) = fg{xﬂ and fg{-’:g} = fs['xz)
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Therefore, the piecewise polynomials are continuous and flx) is a linear
spline. Note that the first-derivative is not continuous and, therelore,
f(x) is not a second-degree spline.

Case (ii)

Given,

n= 4. Xy = 0, Xy = 1, IE = 2_ Xy = 3
filx) =x* 41, fi'lx) = 2x
filx) = 2o, fil(x) = 4z
falx) = Bx — 2, fx)=5

Then,
fl{xl) =1 4+1= 2, JFII{II j= 2
fglxl)=2x1=2. folxy) = 4
folxg) =2 x4 =8, folxp) =8

f;j_(xz}=5 b 2— 2=8| fsl(xa}zﬁ
Polynomials are conlinuous but their derivatives are not. Therefore, f(x)
is not a spline,

Case (it1)
Given,
n=4, x3=0, x;=1, 2,=2, x3=4
filx) = x, fltei=1, £'"x) =0
fl)=x*<=x+1, fx)=2x-1, folx) =2
[4lx) = 3x - 3, fillx) = 3, fx) =0
Then,
it} =1 i) =1
fg(xl} o= | ﬁ;[xl) = 1
folxy) =3 fo'lxg) = 3
falxg) =3 f3'x) =3

Sinee both the polynomials and their first derivatives are continuous in
the given interval, f(x) is a second-degree spline. Note that the second
derivatives are not continuous.

Cubic Splines

The concept of splines originated from the mechanical drafting tool called
“spline” used by designers for drawing smooth curves. It is a slender
flexible bar made of wood or some other elastic material. These curves
resemble cubie curves and hence the name “cubic spline” has been given
to the piccewise cubic interpolating polynomials. Cubic splines are popu-
lar because of their ability to interpolate data with smooth curves. It is
believed that a cubic polynomial spline always appears smooth lo the
eyes,
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We consider here the construction of a cubic spline function which
would interpolate the points (xg, fo), (xy, f3), ... (x,, £.). The cubic spline
s(x) consists of (n - 1) cubics corresponding to (n — 1) subintervals. If we
denote such cubic by s(x), then

5(x) = a(x), i=12,.n

As pointed out earlier, these cubics must satisfy the following condi-

tions:

1. s(x) must interpolate f at all the points Xy X1, . X, L€, for each i

s(x)=f; (9.22)
2. The function values must be equal at all the interior knots
8,(x,) = 5,,4(x) (9.23)
3. The first  arivatives at the interior knots must be equal
8'(x;) = 8;,,x;) (9.24)
4. The secand derivatives at the interior knots must be equal
3:/"(%;) = 8., " (x3) (9.26)

5. The second derivative at the end points are zero
§"xg) =s"x,)=0
Step 1
Let us first consider the second derivatives. Since s; (x) is a cubic
unction, its second derivative 8;/'(x) is a straight line. This straight
ine can be represented by a first-order Lagrange interpolating

volynamial, Since the line passes through the points (x;, s;"(x,))
ind (x, 4, 5,"(x;_,)), we have,

X —x; xX=X;. !
§{'(x) = 8" (x1) ———+ ap(x;) ———L (9.28)
Ti1 ~ % KX

'he unknowns s,"(x, ;) and s,"'(x,) are to be determined. For the sake of
implicity, let us denote

Si“{xi 5 1} =8 and sx) = @
X-x =
x:—‘rf—lzhi=u'{—l_'ur
hen, Eq. (9.26) becomes
u; Ui g
§'1x) =a; —+@; ———
§ i=1 i
h, 3
{I‘ui_ . il ﬂt-_,lu'.l
e — e

h;

i

(9.27)
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Step 2
Now we can obtain s,(x} by integrating Eq. (9.27) twice. Thus

1%

6h

ajui | -a; qu?
gl =——mr—--+ Cix + C, (9.28)
i v
where C, and C, are constants of integration [observe that du/d, = 1
and, therefore, differentiation and integration with respect. to x and with
respect to u; will be equivalent]. The linear part Cx + , can be ex-
pressed as
by lx-x )+ b,lx—x)

with suitable choice of b, and b,.
Therefore,

Cox+Co=b {x-x_)+by(x—x)
=h u_,+by1y

Then, Eq. (9.28) becomes,

aul  —a; jud

slx) = —= lgh. L ECG T
I

Step 3
Now, we must determine the coefficients &, and b,. We know that, by
condition 1,

sfx;) = f; and slx;_,)=f_4

At x =x,
u,=0,u;_; =k
ahl
,";: :""'g"_"'b:h;'

Similarly, at x =,
uf = Ui u; = _h'

and therefore

G‘.]h‘?
froy =g = bahy

Thus, we get
ah,
by = {'* e i (9.29a)
fl 1 a;. lhl
et g (9.29b)
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Substituting for b, and b, in Eq. (9.29) and after rearrangement of
terms, we get

a;. v 8 : ;
s‘-r{x} ;Eh—l- (hfu, - u™ +§:l (w? = bt )

+'}%' (fagg = 1) {9.30}

Note that Eq. (9.30) has only two unknowns, a@; ; and a;.

Step 4
The final step is to evaluate these constants. This can be done by invok-
ing the condition

§/(xp) =5, 44x)

Differentiating Eq. (8.30) we get

1 o
| ¢ 1 Y P
5;'{x) = T th,” - 3u)

'

5 *;}; (Bu® |~ R
7 \\-1\;\,\) 1‘ |
\ > ey
Séfting x=x, B
§/(x;) = ﬂ,_;hf . ﬂ.;:.' % fi ‘h):.r'q :HU
Similarly,
o ey B @i fia
f1l%g . - 2
Since
500 = ka8
We have

T Rk t-f
ha, y+ 2k + b, pa, + k8, :ﬁu B TR (9.31)
hH-:I h;

L}

Equation (9.31), when written for all interior knots (i = 1, ... n = 1), we
get n — 1 simultaneous equations containing n + 1 unknowns (ag, @y, -
a,). Now, applying the condition that the second derivatives at the end
points are zero, we get

ay=46, =0
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Thus, we have n — 1 equations with n -~ 1 unknowns which can be
easily solved.

o ]
The cubic splines with zero second derivatives at the end points are |
called the natural cubic splines. This is because the splines are
assumed to take their natural straight line shape outside the inter-
vals of approximations.

The system of n — 1 equations contained in Eq. (9.31) can be expressed
as

20hy +hy) hy 0o .. 0 0 0 T
hz 2(!124']13] hﬂ iy 0 0 0
0 0 g e hu—B thn—!"'hn-l) ‘hn--l
0 0 a 0 By 2k, +h,)
Hl Dl
gy D‘.{
L] Bap
a1 Dn--I
where
D, =6 fiss f‘_f‘_i{"*_‘}
hhl h; |

hi=x-%_,
i=12 ..n-1

Given the data points

I__ i 0 1 2
L x; 4 9 16
El 3 3 4

}13"-—‘Ig—x1=18—9:7
f0:2' f‘123! ﬁ2=4
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From Eq. (9.31), we have, for i = 1,

hiag + 2h, + hoa, + h,a, =6]:—’%:£—f' ~ 1y :1
te hy

We know that ag = @y = 0. Thus,

.. L

25 + Thay =8[-§; - -g}
Therefore,
(6)(-2)
oy = @5r08) - 0.0143

Since n = 3, there are two cubic splines, namely,
5{x) sxx
8qlx) Xy SX Sy

The target point x = 7 is in the domain of s,(x) and, therefore, we need to
use only 3,(x) for estimation.
From Eq. (9.30)

ay @l - hiwg)

1
5y(x) = 6k, ""*E;'{ﬂuu_fﬂu])

Ug=1x —xp and uy=x-x

Upon substitution of specific values,

0.0143 G g
= D0180 g 4y -
5,(T) 6x5 (7 ¥ =5 (7T -4)]

= +*;- [3(7 - 4) - 2(7 - 9))

= 2.6229

Algorithm

Note that Eq. (9.82) form a tridiagonal system which is relatively simple
to solve using Gauss elimination method. A detailed solution pracedure
to evaluate spline functions is given in Algorithm 9.1

Natural cubic spline

Provide input data.

Compute step lengths and form function differences.
Obtain the cosfficlents of the tridiagonal matrix.

Compute the right-hand side (D array) of the system.

. Compute the elements &, using Gauss elimination method.

SRR

(Contd.)
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(Contd.)

6. Evaluale the coefficients of natural cubic splines
7. Evaluate the spline function at the point of interest.

8. Print results.

Algorithm 9.1

Program SPLINE

Natural cubic splines interpolation uses Gauss elimination method to
implement its algorithm. Program SPLINE, therefore, calls for the help
of GAUSS subprogram to compute the array of second derivatives.

PROGRAM ESPLINE

* Main program

* This program cvomputes the Interpolation wvalue atc *
% a specified value, given a set of table points, *
* using the natural! cubic spline interpolation .
- I S e T o Al e — & g % —— e W
* Functions invoked *
% NIL ®
B s i, g W i i S i ey S = s =aa i
* Subroulines used ¥
o GAUSS ®
¥ iy e i e S T e = S *
* Variables used *
3 N - Number of data points. A
* X - N by 1 array of data points. %
* F - N by 1 array of function values ¥
% XF - Point at which interpeclation is reguired *
‘ Fp Interpolation valuc at XP *
= A array of second derivaltives (N-2 by 1) *
* D - Array representing right side of {(9.32) *
» (N-2 by 1) *
* C - Matrix (N-2 by N-2) representing the *
- coefficients of second derivatives *
* H - Array of distances between data points 5
# (tiy = (i) = xtd=1)) o
3 N Array of differences of functions *
* iy S i i o s o 2 e e T e e B e e R EIE N |
* Censtants used x
% AX - Maximum nomber oF table points permitred *
* - e ¥
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INTEGER N,MAX

REAL XP,FP,X,F,A.D,C,H,DF,U

PARAMETER (MAX=10)

DIMENSION X (MAX),F{MAX),6A(MAX),D(MAX),C(MAX, MAX),
" H({MAX) ,DF (MAX) , U(MAX)

*

Read input data

WRTTE (*,*} ‘Input number of data points n’
READ(*,*} N
WRITE(*,*) ‘Input data points X(I} and function’
WRITE(*,*) ‘values F(I), one set in each line’
po 5 1 = 1,8

READ({*,*) X(I), F(I)
CONTINUE

[¥53

WRITE(*,*) ‘Input XP'
READ(*,*} XP

« Compute distances between data points
and function differences

3

Do 10 I = 2.N
LTy & X(L) - X(I-<1)
DF(I) = F(I) - F(I-1)
10 CONTINUE

* Initialise T matrix

po 30 I = 2,N-1
Do 20 3 = 2, N-1
c{I,g) = 0.0
20 CONTINUE
30 CONTINUE

* Compute diagonal elements of C

DO 40 I = 2,N-1
EATCEY = 20 F L H(IEL))
40 CONTINUE

+ compute off_diagonal elements of C
DO 50 I = 3,N-1
C(I-1,I) = H{TI)
c(1,1-1) = H(I)
50 CONTINUE

*  Compute elements of D array

D0 60 I = 2,N-1
D(I) = (DF{I+1)/H(I+1) - DF(I)/H(TI)) * 6.0
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60 CONTINUE

* Compute elements of A using Gaussian elimination
* Change array subscripts from 2 to n-1 to 1 to n-1
* before calling GAIISS

M = N-Z
Do 80 I = 1.M
D(I) = D(I+1)
Y 70 F = 1;M
C(I,J) = C(I+1,J+1)
70 CONTINUE

80 CONTINUE
CALL GAUSS(M,C,D,32)
* Compute the coefficients of natural cubic spline

DO S0 I = N-1,2,-1
A(I) = A(X-1)
a0  CONTINUE
All) = €.0
A(N) 0.0

I

* Locate the domain of XP

£ = 2

100 IF{ XP .LE. X({I) ) GO TO 110
I = I+l
GO TC 100

* Compute interpolation wvalue at XP
* Use equation (9.30)

110 U(I-1) = XP - X(I1-1)
U(1l) = Xp - X{(I)
Q1 = H{I)**2 * O{I) - UfI}**3
02 = U{I-1)**3 - H(I)**2 » O(1-1)
03 = F(I) * U(I-1) ~ F(I-1) * U(I)
FP = (A(I-1} * Q1 + a(r) * Q2)/(6.0 * H{I))
+ Q3/H(I)

* Write results

WRITE(*, *)

WRITE(*,*) ‘'SPLINE INTERFOLATION"
WRITE("Y,*]

WRITE{(*,*) ‘Interpolation value =',FF
WRITE(*,*)
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e e e e S i s R 1~ e *
SUBRCUTINE GRUSS(N,A,B, %) &
e e R e ik e e e e S S M e e i
* Jubroutine &
i This subroutine sclves a set ol n linear *
* equations using Gauss elimination nmethod *
B e e i e — e e e e S e A T T T e e *
* Arguments *
* Tnput =
* N - Number of agualions x
" A - Matrin of coefficients *
ul B - Right side wvector *
* Qutput *
" ¥ - Splution vector *
B e e S et ey g i i e e e et
* T,ocal Variables k
% BIVOT, FACTOR, SUM *
- P g ———— - o e A i . I S - — -
* Functions invoked *
d N1L *
B o e e e T e e P e R o e e e M e W -
* Subroutines called %
. NI X
W e e ——————— FEL I e e o o T e e e x*
IMTEGER N
REAL A,E,X,PIVGT,FACTDR.SUM
DIMENSION A(10,10), B[(10), X100}
et = --- Elimination begins ----—----—-=-7""77 %
Do 3K = 1, K-1
PIVOT = A(K,K)
DO 22 I = K+¢l, N
FACTCOR = A(I,K)/PIVOT
DO 11 T = K+1, N
A({L,J) = A{I,J) - FACTOR ~ ALK, T)
it CONTINUE
B(I) = B(I} - FACITOR * B(X)
22 CONTINUE

33 CONTINUE

$# ———co-oo--- - Back substitution beging-----------=-=%

L(N) = BIN)/A(N,N)
BO 55 £ = Wi, <0
stM = 0
DO 44 J = K+1,N
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SUM = BUM + A(K,J) * X(J)

44 CONTINUE
X(K} = (B(K) - SUM)/A(K,K)
55 CONTINUE
RETURN
END
= - End of subrouting GADSS-<ssemiiosa o *

Test Run Results Program SPLINE was tested using the table of data
points given in Kxample 9.11,

Resulis are given below:

Tnpul number of data points n

3

Input data points. X(1) and function
values F(l), one set in each line

4 2

9 3

16 4

Tnput XP

-
!

SPLINE INTERPOLATION

Interpolation vValue =, 2.8428570
Step - Program Lerminalbed.
Equidistant Knots

Most often the knats are equally spaced. This would simplify the solu-
tion considerably. If the knots are equally spaced,

h] :T}az —_ e = hn - h'
Substituting this in equations (9.11) and dividing throughout by £, we get

4 I 0 ... 0 0 of & d,

1 4 1 s 3 ! g ’Vd?

B 3 4 i :

: : = (9.33)
4 1 0| ¢ ¢ 3

0 s 1 % %

0.0 0 « 00 4fjau,| |d,,

where
D.' 6‘!1- 1 _fo i f;_.l)

=it = Lo

1 h 4’]’_.‘!
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6
=—A% fiq

R —

! 4 0 | 1 2 | 3
x, il 2 3

i fix) | 05| 03333 02

estimate the value of f(2.5) using cubic spline functions

The points are equally spaced and therefore
h: —_I’LQ;h-:j =3

Since n = 4, we have three intervals and three cubics and, therefora,
only a, and a, are to be determined. From Eq. (9.33), we have

4 1)ja,|_|d,
[1 4] ‘12]__‘1'2}
dy =55 o~ 2 + )

=6(0.25 - 2 % 0.3333 + 0.5)
= 0.5004

6
dy :h_2 fy = 2fs + f)
=6(0.2 - 2 x0.25 + 0.3333)

=0.1998
Selving for a; and a,
d,x4-d,x1
a = 1___1_5_3‘__
_ 0.5004 x4 -0.1998 ~0.1201
15
& _d2x4—d,xl
- 15
0.1998 x4 - 0.
_0.1998x4- 05004 _ o

15
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|

e et g T e

| The target point x = 2.5 is in the domain of s,(x). UmngEq (939]1 ;

g,,r,t)rgcuz u,®) + ---(ul —u,)+(fau:—f1'l=)

= e - 1) - - 1)) + —3-[Lx-ux'1?)= _

—(x - xﬂ] + [fg(x .'C]] flfx e Iz)}
Upon substitution of values, we get

9,(2.5) = 9-93?91[(2‘5 -3)-(2.5~3)9

+.°.-le9§ (2.5 ~ 2)° - (2.5 — 2)]

+(0.25) (2.5 — 2) — 0.3333 (2.5 — 3)
= —0.0075 — 0.0012 + 0,125 + 0.1667
- 0.2829

~ BB CHEBYSHEV INTERPOLATION POLYNOMIAL
Recall ;hnt the truncation error in appr::ximating a function f{z) by ah
interpolating polynomial p,(x) with interpolation points x;, i = 0,1,...n is

fin +1) (@)
(n+1)!

fx) = pylx) =w,(x)

where

w,x) = (x —xp) (x —xy) ... (x—2x,)
and @ is some point in the interval of interest. One of the goals while
applying an mterpolatwn polynomial is to minimise the truncation er-
ror. Since f * '(6) is not in our control, we can try to minimise the
absolute value of w,(x). This ean be done by choosing a proper set of
mterpolatang points x, in the given interval (a, b).

Chebyshev Points

The Russian mathematician Chebyshev showed that the error bound is
minimum when the interpolation points are chosen as follows:

kD “‘bi:os[ Zk"ln] P (9.34)

A TR s D

These values are called Chebyshev nodes (or pom!s} We can evaluate
function values at these points. That is

fi=Fta) -
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Now, we can apply the Lagrange interpolation method to the Chebyshev
points and the corresponding function values Lo obtain an interpolation
polynomial known as Lagrange - Chebyshev interpolation polynomial.

Chebyshev Polynomials
Another approach to construct the interpolation polynomial p,(x) is to
use Chebyshev polynomials as basis polynomials. That is

pax) = Cetolt) + CyT4(t) + ... + C,T,()

= _ZUC.-'J} (1) (9.35)
iz
where 7t} is the Chebysheu basis polynomial of order i in ¢ and C, the
Chebyshev coefficient. Equation (9.35) is known as Chebyshev interpola-
tion polynomial. Chebyshev polynomial T'(t) is given by

Tty =1
T.t)y=t¢
T(t)y=2t T; (e} = T, _,lt) k=2, ..,n

C, are computed as follows:

1 & e 1 & :
= Ty (ty)=—"—
Cn n+1£‘0f(xki u(*. Fl+1§§1ftxkj

n

= ¥ Fle )T )
-0

I on+ly
where
_ 2R+ Dn]
Tt) = “"5[J n+D
Therefore
o B 8o 2k+ )| .
Cj—f1+]ﬁ%nf{lk)ws[Jm J—L2a----n

Evaluation of p, (x), given x:

x—(b+a)2
(b—a)l2

palx) = i C; T, ()
i=0

SUMMARY

In this chapter, we discussed various methods for constructing interpo-
lation polynomials for tables of well-defined functions. They include:
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e Lagrange interpolation

e Newton's interpolation

e Newton-Gregory forward interpolation

e Spline interpolation

To facilitate the construction of interpolation functions, we presented
different forms of polynomials that included

« power form

e shifted power form

= Newton form

We have also discussed how to build different types of difference
tables and how to use them for estimating function values at any point.
Finally, we considered how Chebyshev points and Chebyshev polynomi-
als may be used to minimise the truncation error.

We have given computer programs and test results for the following
methods:

e Lagrange interpolation

¢« Newton's interpolation

e Spline interpolation

Key Terms

Approximating functions Leat-squares polynomials

Gackward difference

Central cubic spline

Central difference
Chebyshev basis polynomial
Chebyshev interpolation
Chebyshev points
Chebyshev poalynomial
Cubic spline

Curve fitting

Divided difference table
Divided differences

Forward difference
Interpolation

Interpolation function
Interpalation polynomial
Knots

Lagrange basis poiynomial
Lagrange interpolation
Lagrange intarpolation polynomial

Leat-squares regression
Linear interpolation

Natural cubic spline

Newton form

Newton interpolation polynomial
Newlon's interpolation
Newton-Gregory formula
Newton-Gregory interpolation
Nodes

Piecewise polynomial

Power form

Shifted power form

Simple difference

Splfne function £
Spline interpolation

Spline interpolation polynomial
Splines

Taylor expansion

Tridiagonal system
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What is curve fitting? %t is the need for such an exercise?
What is interpolation? £/
What are the methods available for interpolation?
Discuss the possible sources of errors in mtelp(ﬁatmn‘?
What 1= interpolation function?
List, with examples, different forms of polynomials that could be
used for constructing interpolation functions.
. Given two points (x,, ¥,) and (x,, ¥ :-.tate the linear interpolation
- formula in terms of these pmnm/
Given a set of n + 1 points, state the general form of nth degree
Lagrange interpolation polynomial,
What is the computational effort required in using Lagrange poly-
nornial?

'hat is the major pitfall of using Lagrange polynomial?
What are divided diffefences?
, State the sccond order Newton’s divided difference interpolation
polynomial.
. How is the Newton's interpolation formula better than Lagrange
formula?

hat is a divided dlfferenue table? How is it useful?

ﬁnnsl.rua a divided difference table for four data points.

16, Entries under a particular column in a divided difference table are

constants. What does it indicate?

%'nistinguish hetween the simple difference and divided difference.

o hON b R N

("?h\ h\:a

Ve

38

What is the difference between the forward difference table and
hackward difference table?

19. Look at Examples 9.8 and 9.9. Answers are different. Why?

20. What are piecewise polynomials?

21. What are spline functions?

22. What is spline interpolation?

23. What are cubic sphnes?

24. State the conditions for a spline to be cubic.

25. Whalt are natural cubic splines?

26. What is tridiagonal system?

27. State the contribution of Russian mathematician Chebyshev in mini-
mizing the truncation error in interpolation,

;.-"t‘;mstruct the power form of the straight line p(x) which takes on
/" /L/he values
p(200) = 1/3
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p(202) = -2/3
using four-digit floating-point arithmetic.
2. Solve the problem in Exercise 1 using the shifted-power form and
compare the results. .
3. Find the linear interpolation polynomial for each of the following
pairs of points:
(a) (0, 1) and (1, 3)
(b) (-2, 3) and (T, 12)
4. Find the quadratic interpolating polynomial for each of the follow-
ing set of points:
(a) (-1, 1}, (0, 1) and (1, 3)
{(b) (0, -1), (1, 0) and (2, 9)
5).'Tﬁble below gives values of square of integers:

& [ x il o [ & [ 4 5
| =

1] 4] 9 [16] 2|

Using the linear interpolation formula estimate the square of 3.25
(a) using the points 3 and 4
(b) using the points 2 and 4

Compare and comment on the results.

_ﬁ/ﬁg;;g the data in Exercise 5, estimate the square of 3.25 using the
second-order Lagrange formula. Compare the error with the errors
obtained in Exercise 5. :

7._When the value of x at which we wish to estimate the value of [ix),
< lies outside the given range, we call it extrapolation. Use the

" Lagrange formula to find the quadratic equation that takes the
following values:

_x 1
flx) 1
Aind fx) atx = 0 and x = 4

8. Given the points below, obtain a cubic polynomial using the
Lagrange formula:

Lol 14

x | 0 1 2 3 |
AEENERE -‘
) 9 Find the Lagrange interpolation polynomial which agrees with the
following data:
x 3¢ & 11 1 1%

| cosx | 05403 | 0.4536 | 0.3624

Use it to estimale cos 1.15 -




10.

16,

17.

18.

19.
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Find the polynomial of degree three to fit the following points:

I

3

|
s | 2| 0 | 1] 38
) | 6| -2 | 2 10
| A | i

_ Show that when n = 2, Lagrangian interpolation formula reduces

to the linear interpolation formula.

. The Lagrange interpolation polynomial can be derived directly from

Newton’s interpolating polynomial. Prove this using the linear case.

_ Fit a second-order Newton's interpolating polynomial to estimate

cos 1.15 using the data from Exercise 9.

. Fit a third-order Newton’s interpolating polynomial to estimate cos

1.15 using the data from Exercise 9 along with the additional point
cos 1.3 = 0.2675.

T x J 1.2—[- 1.3 ‘ 1.4

| r@ | 1063 - Los '1 1119

5. Given the data

15 |
1‘145J'

(a) Calenlate f(1.35) using Newton's interpolating polynomial of
order 1 through 3. Choose base points Lo attain good accu-
racy.

(b) Comment on the accuracy of results on the order of polyno-
mial.

Find the divided differences flxg, %), flx;, x5 and flxo, x;, 2] for
the data given below.

i —F 0 1 2
el
[t 1 a8 ]

1.0 15 2.5
32 35 4.5

Also find the divided differences flx,, x5] and flxg, xp, x;1. Compare

the results flxg, %, x,] and flxg, x4, 2,].

Estimate the value of In (3.5) using Newton-Gregory forward dif-

ference formula given the following data:

[

| X

1.0 | 2.0 l 3.0
0.0 ' 0.6931J 1.0986

4.0
1.3863 J

In

Repeat Exercise 17 using Newton's backward difference formula.
Compare the accuracy of results.
Construct difference tables for the following data:

09 | 11
0.370 | 0518

0.5 0.7 '
0.148 | 0.248

1.3
0.697

x | 01| 03 |
f(x) o.ooa] 0.0671

Find f(0.6) using a cube that fits at x = 0.3, 0.5, 0.7 and 0.9.
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20.

21.

22.

23.

24.

25,

26.

What is the minimum degree of polynomial that will exactly fit all
seven pairs of data in Exercise 19.

Construct a divided difference table for the data in Exercise 19,
How do the values compare with those in the table obtained in
Exercise 19,

State whether the following functions are splines or not.

x 0<x<1

x2+1

(a) flx) = 1=x=3

[62-8 B5x<4

-3x+1 0sx<1
(b) flx) ={x3+x2-3 1<x<?
1 Bxr-9 2<x<3

-x+5.5 3.0<x<4.5
(¢) flor = O.Ed.t:t ~6.76x+18.46 4.5<x<7.0
-1.6x% +24.6x-91.3 7.0<x< 9.0
Find the values of o and b such that the function
_Jax? —x+1 lex<?
fle) = 3x-b 2<x<3

Is a quadratic spline.
Fit quadratic ap]ines to the data giw-:-n below:

?53}
Wj— 1 _'

Predict £12.5),
Develop cubic splines for the data given below and predict f(1.5)

x| o [ 2 T 3
TR I E
| fx) '_1 . l_l S

Given the data points

ﬁ“ﬁ_o_'_ [ 7
#-,K 1.5 T‘;s 255 i

Estimata the functmn valueatx = 1.5 using cubie splines,
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27. The velocity distribution of a fluid near a flat surface s given
below:

v 072 [ 181 [273 |347 |38

x 0.1 0.3 0.5 0.7 —[ 0.9
|

——d.

x is the distance from the surface (cm) and o i8 the velocity (em/
sec). Using a suitable interpolation formula obtain the velocity at
=02 04, 06and 0.8

28. The steady-state heat-flow equation flx,y} is solved numerically
and temperature values obtained at the pivotal points of a grid in
the domain of interest are tabulated below. (This type of problems
are discussed in Chapter 15).

Table of f(x, y)

\_y [ o5 [ 10 | 15 20 |
|x | —g
0.5 15.0 21.0 25.0 31.0
10 | 200 | 200 20.0 20.0
15 25.5 190 | 150 | 9.0
[ 20 300 | 200 | 100 0.0

Solution of heai-flow equations by numerical methods gives infor-
mation only at the nodes and not at the intermediate points. We
are interested in the temperature at the point (1.25, 1.25), Esti-
mate this value using the data available in the table.

1. Write subprograms
(a) COSPLN to compute the coefficients cubic splines, and
(b) VSPLN to evaluate the spline function at the specified point.
4. Write an interactive main program that will read the given set of
table points and the point of interest, estimate the interpolation at
the specified point using the subprograms COSPLN and VSPLN
developed in Project 1, and then print the results.
3. Write a program to evaluate forward differences and print a for-
ward difference table for a set of 1 function values,
Following is a table that lists values of cube roots of numbers from
1.0 to 2.0 in steps of 0.1.

4.

5 l T ‘ I ‘1 T : I I i 1
a 10 | 11 ( 12 1.5 1.4 1.5 1.6 L7 | 18 | 19| 20
SIS _.__-__._i_q_,?.__d. ] +_.__._ s
l'{;’,_,— i o 1.032] 1.063 | 1.091[ 1119 | 1145 1.1?9[1_193 .-12]6‘1.2:19 1.260

| | I )

A S . i
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Write a program for linear interpolation of this table of data and
produce another table of cube roots for numbers 1.25 to 1.75 in
steps of 0.05 shown as follows:

x cube root of x ‘l

1.25
1.30
1.5

i |
_1.75 J

5. Modify the program in Project 4 to produce the following table:

r -ﬁterpolated_ cube  True value of U= Error

| root of x J

| 1.25 o |

{ 1.30 .

l |

| |
1.75 - - - ‘

6, Using a table of cosines, accurate o four digits, write a program to
implement the following tasks:
(a) Read the cosine of 0°, 107, . .. 90°
(b) Compute the cosine of angle lor any value between 0° and
90° using linear interpolation.
(¢} Compare the results of (b) with the output of intrinsic cos
function.
7. Write a program to estimate a value f(x, y) from a given table of
values of x and vy by interpolation.
Test your program by solving the problem in Exercise 28.



Curve Fitting:
Regression

INTRODUCTION

In the previous chapter we discussed various methods of curve fitti ng for
data points of well-defined functions. In this chapter, we will discuss
methods of curve fitting for experimental data.

In many applications, it often becomes necessary to establish a math-
ematical relationship between experimental values. Thig relationship
may be used for either testing existing mathematical models or estab-
lishing new ones. The mathematical equation can also be used to predict
or forecast values of the dependent variable. For exa mple, we would like
to know the maintenance cost of an equipment (or a vehicle) as a func-
tion of age (or mileage) or the relationship between the literacy level and
population growth. The process of establishing such relationships in the
form of a mathematical equation is known as regression analysis or
curve fitting.

Suppose the values of y for the different values of x are given. If we
want to know the effect of x on v, then we may write a functional
relationship

¥y = flx)

The variable v is called the dependent variable and x the independent
variable. The relationship may be either linear or nonlinear as shown in
Fig. 10.1. The type of relationship to be used should be decided by the
aperiment based on the nature of scatteredness of data.
It is a standard practice to prepare a scatter diagram as shown in Fig.
10.2 and try to determine the functional relationship needed to fit the
points. The line should best fit the plotted points. This means that the
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average error introduced by the assumed line should be minimum. The
parameters a and b of the various equations shown in Fig. 10.1 should
be evaluated such that the equations best represent the data.

x —

Fig. 10.1 Varlous relationships between xand y

We shall discuss in this chapter a technique known as least-squares
regression to fit the data under the following situations:

1. Relationship is linear

2. Relationship is transcendental

3. Relationship is polynomial

4. Relationship involves two or more independent variables

: 0.2] FITTING LINEAR EQUATIONS

Fitting a straight line is the simplest approach of regression analysis.
Let us consider the mathematical equation for a straight line

y=a+ bx = flx)
to describe the data. We know that a is the intercept of the line and b its
slope. Consider a point (x,, ¥;) as shown in Fig. 10.2. The vertical distance
of this point from the line f(x) = g + bx is the error g,. Then,

gi =y~ )

=y, —a-bx, {10.1)

There are various approaches that could be tried for fitting a “best” line

through the data. They include:
1. Minimise the sum of errors, i.e., minimise

Yai =%(y; —a-bx;) (10.2)
2. Minimise the sum of absolute values of errors
Tla: =2y, —a—bx, )| (10.3)

3. Minimise the sum of squares of errors

e =3y —a-bx;)* (10.4)
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Line fix) = a + b

i

. - Error, g,
_— Pointtx, y}

t

X ——- Xy

Fig. 10.2 Scafter diagram

It can be easily verified that the first two strategies do not yield a
unique line for a given set of data. The third sirategy overcomes this
problem and guarantees a unique line. The technique of minimiging the
sum of squares of errors is known as least squares regression. In this
section we consider the least-squares fit of a straight line.

Least Squares Regression

Let the sum of squares of individual errors be expressed as

Q=30q? =3ly; - f(x; )2
i=] i=1

=3(y; —a-bx;)? (10.5)
1=]
In the method of least squares, we choose a and b such that € is mini-
mum. Since § depends on a and b, a necessary condition for  to be
minimum is

Q _ J7Q

He 0 WS el
Then

‘39 ==2 i'.}';‘ —a-=-bx;)=0

da i=1

r) n

3%2. =-28 5, —a-bx;)=0 (10.6)
Thus

Yyi=na+b¥x,

Tx¥i=alx; +bYx? (10.7)
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These are called normal equations. Solving for @ and b, we get
poNTXeYi —EXi LY.
. 2
n¥zl -(Zx)

_ LY ﬂb_zf.*_=§-.55_-'

n n

(10.8)

where ¥ and 7 are the averages of x values and y values, respectively.

'
5 AR

Fit a straight line to the following set of data

| & 1 | & . 8 4 | 5
|y 3 4 | & 6 | 8
The various summations are given as follows: o
x, ¥ e .y, |
13 1 3
2 4 1 8
3 5 .9 15
4 6 18 24 |
| 5 8 .2 40
/16 26 55 90 |

Using Eq. (10.8),
-1
b 5x90-15x% 26 -190
5x55-152

26 15
a=—-120x—=160
5 5

Therefore, the linear equation is
y=16+12x
The regression line along with the data is shown in Fig. 10.3.

1 2 § 4 5 6 mw——=
Fig. 10.3 Plot of the data and regression line of example 10.1



Curve Ftfing; Regression 327

It is relatively simpié to implement the linear reg-reasion pn.a computer.
The coefficients a and & can be evaluated using Algorithm 10.1

Linear Regression

Read data values
Compute sum of powers and products

¥ =

IX, 2y, Ex2, 2y,

Check whether the denominator of the equation for b is zero.
Compute b and a: -

Print out the equation.

Interpolata data, if required,

i

Algorithm 10.1

Program LINREG

Program LINREG implements Algorithm 10.1. The program reads a
table of data points and decides a straight line equation to fit the data
using the method of least. squares regression.

L R S e R P U L N Y S NN, L ST -
PROGRAM LINREG

b T e STt Sy IS et O, U *

* Main program *

» This program fits a line Y = A + BX to a given

* set of data points by the method of least squares il

L e R L T e e e v S PR S A L
* FPunctions invoked : *
B ABS " *
* e e e e e s ot i o i S b e 'S
* Subroutines used '
*  NIL : ' *
B o e e e i e e i e R e e s *
* Variables used *
* X, Y - Data arrays *
* N - Number of ‘data sets *
* SUMX - sum of x wvalues ¥
i SUMY - Sum of v values :
o SUMXX - Sum of squares of x values *
% SUMXY - Sum of products of x and y *
*  "XMEAN - Mean of x values *
*  YMEAN - Mean of vy values ¢
%* A - ¥ intercept of the line *
* *

B - SIspe of the line

Sy
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* Constants used
" MAX - Limit for number of data points

INTEGER MAX, N
REAL X,Y,SUMX, SUMY, SUMXX, SUMXY, XMEAN, YMEAN, DENOM, A, B

INTRINSIC ABS
PARAMETER( MAX = 10 }
DIMENSION X(MAX),Y(MAX)
WRITE(*,™)
WRITE(*,*) ‘LINEAR REGRESSION’
WRITE(¥,*)
* Reading data values

WRITE(*,#*) ‘Input number of data points N'
READ(*,*) N
WRITE(*.*) ‘Input X and Y wvalues,’,
" ‘one set on each line’
o 10 F s 1, N
READ(*,*) X(I), Y(I)
10 CONTINUE

* Computing constants A and B

suMx = 0.0
suMy = 0.0
SUMXY = 0.0
SUMXx = 0.0

Bg 20 X = 1l; N

SUMX = SUMX + X(I)

SUMY = SUMY + Y(I)

SUMXX = SUMXX + X(I) * X(I)

SUMXY = SUMXY + X(I) * ¥(I)
20 CONTINUE

XMEAN SUMX/N
YMEAN = SUMY/N
DENOM = N * SUMX - SUMX * SUMX
IF (ABS (DENOM) .GT. 0.00001) THEN
B = (N * SUMXY - SUMX * S5UMY)/DENOM
A = YMEAN - B * XMEAN
ELSE
WRITE(*,”)
WRITE(*,*) ‘NO SOLUTION'
STOP
ENDIF

i

* Printing results
WRITE(*,*)



Curve Fitting: Regression 329

WRITE(*,*) ‘'LINEAR REGRESSION LINE Y = & + BX*

WRITE(*, *) ¢
WRITE(*,*) ‘THE COEFFICIENTS ARE:’
WRLER: (> ®) © A= ", A
WRITE(*,*) * B=" B
WRITE(*, *)
STOP
END
¥ End of main LINREG ~-=--c-—--eowoo__ g

Test Run Resulls Shown below is the interactive data input and the
linear regression line parameters computed by the program LINREG,

LINEAR REGRESSION
Input number of data points N
5
Input X and Y values, one set on each line

1 7

L

th b W
Lol = NS B 5

1
LINEAR REGRESSION LINE Y = A + BX

THE COEFFICIENTS ARE:
A = 1.0000000
B = 2.0000000
Stop =- Program terminated.

FITTING TRANSCENDENTAL EQUATIONS

The relationship between the dependent and independent variables is
not always lincar. Look at Fig. 10.4. The nonlinear rel ationship between

e
Fig.10.4 Data would fit a nonlinear curve better than a linear one
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them may exist in the form of transcendental equations (or higher order
polynomials). For example, the familiar equation for population growth
is given by

P =pye (10.9)
where p, is the initial population, k is the rate of growth and ¢ is time,
Another example of nonlinear model is the gas low relating to the pres-
sure and volume, as given by

p=auv’ (10.10)
Let us consider Eq. (10.10) first. If we observe values of p for various
values of v, we can then determine the parameters a and b. Using the
method of least squares, the sum of the squares of all errors can be
written as

Q=3p; - aw?)
i=1

To minimise @, we have

i@—0 and aQ-—

2 =
da db

We can prove that
S pvd a¥wh)?
Y. pi Uf' Iny; —a z(nf’}z Inu,

These equations can be solved for @ and b. But since b appears under the
summation sign, an iterative technique must be employed to solve for a
and b,

However, this problem can be solved by using the algorithm given in
the previous section in the following way: let us rewrite the equation
using the conventional variables x and y as

N oy= ax’
If we take logarithm on both the sides, we get
Iny=lna+hlnx (10.11)

This equation is similar in form to the linear equation and, therefore,
using the same procedure we can cvaluate the parameters a and b.

i B Yinx;Iny, -YInx YIny;
ny.(Inx;)? -(Ylnx; )2

(10.12)

Ina=R -——;1{211:131; -5y In x; )

a =& (10.13)
Similarly, we can linearise the exponential model shown in Eq. (10.9)
by taking logarithm on both the sides. This would yield

InP=mInP;+ktlne
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Since, Ine=1,
we have luP=InP, +kt (10.14)
This is similar to the linear equation

v=a+bx
wherey=In P, a =In Py, b = k, and x = ¢£. We can now easily determine
¢ aud b and then P; and &.
There is a third form of nonlinear model known as saturation-growth-
rate equation, as shown below:

kit
- (10.15)
4 ko +t
This can be linearised by taking inversion of the terms. That is
1 =[-’i'*’- Ayt (10.16)
P ’H t k;
This is again similar to the linear equation
y=a+bx
where
=3 o
¥= 5 ®=y
k
a= _l.’ :—_.2_
kq ky

Once we obtain e and b, they could be transformed back into the original
form for the purpose of analysis.

x 1 2 3 4 5
y 05 2 45 8 125
fit a power-function model of the form
yme
Various quantities required in equation (10.12) are tabulated below:
R In x; In y; (Inx,)? | (Inx,) (In y,)
1|05 0 - 0.6931 0 0
2 | 2 | 06931 | 06931 [ 04805 | 0.4804
3 | 45 | 1.0986 15041 | 12069 | 16524
4 | 8 | 1.3863 20794 | 19218 | 28827
5 | 125 | 1.6094 2.5257 | 25903 | 4.0649
Sum 4.7874 6.1092 | 6.1995 | 9.0804
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Using Eq. (10.12),

- (5)(9.0804) — (4.7874)(6.1092)
T (5)(6.1995) — (4.7874) 2

. 45.402 — 29.2472
30,9975 - 22.9192
=1.9998

-

.1092 - (1.9998) (4, ;
I 6:1092 (19998 (4.7847) o

B

/

el

0.6929 :
N €

a = 0.5001 k-

Thus, we obtain the power-function equation as

v = 06001 x+798

2

Note that the data have been derived rom the equalion

e T

The temperature of a metal strip was measured at various time inter-
vals during heating and the values are given in the table below:

[ time, ¢ (min) 1 2 3 4
temp, T (°C) 70 ) 83 100 124

T

If the relationship between the temperature T' and time ¢t is of the
form
T =be"™ +a
estimate the temperature at ¢ = 6 min.
We can write the temperature equation in the form
y=bflx)+a

This is similar to the linear equation except that the variable x is re-
placed by the function f(x). Therefore, we can solve for the parameters o
and & using Eq. (10.8) by replacing

X, b'_‘f f{'.'k’,-]
ZIE hy Efl-l;) -
Txiby Tflx)?
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( b :ﬂ(if{x,}y‘-) =2 L) Y ¥y
n Sl )12 - [T fix)

_ Iy -bIflx)

n
We can cet up the following table to obtain the various terms. Note that
flx) = &%=

v y [0 y.fe)  [fa)?
1 70 1.28 89.89 1.656
2 83 165 13684 272
3 100 212 21170 448
4 14 272  837.07  17.39
Sum 377 777 1155 1624 |

Now,

_ (4X775.5) - (1.71) (377
T (4)(16.24)-(7.77)2

= 37.62

= 377 - (37.62) (1.77)
- 4

=921.16
The equation is
T =37.62 "™ 4+ 21.16

The temperature, when £ = 6, is
T = 37.62 "% 4+ 21.16

=189.76°C

FITTING A POLYNOMIAL FUNCTION

When a given set of data does not. appear to satisfy a linear equation, we
can try a suitable polynomial as a regression curve to fit the data. The
least squares technique can be readily used to fit the data to a polynomi-
al.
Consider a polynomial of degree m — 1
y=a; +ayx+agx +. +a, ! (10.17)

- f)
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If the data contains n scts of x and y values, then the sum of squares of
the errors is given by

Q= Sy - flx)1? (10.18)
=1
Since f(x) is a polynomial and contains coefficients a;, a,, ay, etc, we

have to estimate all the m coefficients. As before, we have the following
m equations that can be solved for these coefficients.

JQ
da, =8
a6
By 7
JQ
T, O
Consider a general term,
QL a fix)
3a; = ."i:)=:1i,~r'l - flx)] 3a; =0
)
c")a}- i

Thus, we have

n
ElJa“fl’Ia}]x,‘]-] =0 J=1L2, ., m
i=1

Z[ysxf'l—xf'lfﬁxj)] =0
Substituting for f(x;)

n n 3

o | =5 -1

T [a1+az:cl-+a3:rf +ota,xl ): Syix!
1=l i=1

These are m equations (j = 1, 2...m) and each summation is for i = 1 to n.

an+aYx, +agyal+.. +an Tzl =Xy

ayYx;+a; Yxl4agTad+.. +an X =Yyx; (1019

ey ¥z +ay FTx?+agY x4 by Fa =Yy e
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The set of m equations can be represented in matrix notation as follows:

CA=B
where
r : =
n e T o XET y
3 x; Ex? Ez? T
C=
el Fab e
_{11 EJ’:’
as 2. Yi%;
A=|ajg B=| XYix:
: e
am E‘yix"

The element of matrix C is

Il : q
CLRM=Yz**? j=1,2 .. m and k=12, ..m
i=1
Similarly,

n
B(p=%yix{""'  j=1,2..m

i=1
Fit a second order polynomial to the data in the table below:

x 1.0 2.0 3.0 4.0
¥ 6.0 11.0 18.0 27.0

The order of polynomial is 2 and therefore we will have $ simultaneous
equations as shown below:

a\n+ag Y ¥ +ag EI? =3y
e, Y%, +as ZI,Z +asg E’-’,ﬂ =3, ¥:ix;

a1 2x’+vay Y +a3 Xzl =Y yix?

b
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The sums of powers and products can be evaluated in a tabular form as
shown below:

x ¥ f 2 | ff z? yr | gyt
1 6 1 1 1 6 6
2 11 4 8 16 22 44
3 18 9 21 81 54 | 162
a | @ | 18 64 | 256 | 108 | 432
y[10 | 62 | 30 | 100 | 35¢ | 190 | 644

Substituting these values, we get
4a, + 10a, +30a; = 62
10a, + 30a, + 100a4 = 190
30a, + 100a, + 354a, = 644
Solving these equations gives

ﬂ.r=3
{12:2
ag=1

Therefore, the least squares quadratic polynomial is
y=3+2x+ x*  (verify using table data)

Algorithm for Polynomial Fit

The set of m equations given by Eq. (10.18) can be solved by using an
elimination method diseussed in Chapter 7. Algorithm 10.2 lists the
steps involved in computing the coefficients of the regression polynomial,

Polynomial Regression
1. Read number of data points n and order of palynomial mp
2. Read data values
3. If n< mp,
print out ‘regression is not possible” and stop,
else '
continue
4. Setm=mp+ 1
5. Compute coefficients of C matrix
6. Compute coefficients of B matrix
7. Solve for the coefficients a,, a,, ... an
8. Write the coefficients
9. Estimate the function value at the given value of independent vari-
able
10. Stop

Algorithm 10.2
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Program POLREG

This program fits a pelynomial curve to a given set of data points by the
method of least squares. POLREG uses a subprogram NORMAL to com-
pule the coefficients of normal equations and another subprogram GAUSS
to solve the normal equations obtained. Finally, the program prints the
poiynomial coefficients, e(1) Lo alm).

PROGRAM POLREG

* Main program o
‘ This program fits a polynomial curve to a given *
v gset of data points by the method of least squares *
W e i e e e e e L e s e e e *
* Functions invoked *
Lz WL -
* e e . i A e e e S T i e e e B i e T i = e *
* Subroutines used *
*  NORMAL, GAUSS X
- e Ay S AT e A e e g e § g e = el kT e Pl A ek, . ey i = -
T Variables used '
o X, Y - Arrays of data wvalues *
x N - Number of data points "
* MP - Order of the polynomial under construction *
“ ¥ - Number of polynomial ccefficients %
* C - Coefficient matrix of normal eguations ¥
* B - Right side vector of normal eguations x
¥ A rray of coefficients of the polynomial ¥
B e S T e e e e e st Ak i iy g i s i e i i i AP e e e T T S &
* Constants used *
* MAX - Maximum number of data points *
B e e e e e e e e, i i . e S . e Wt A i T -

REAL X,Y,C.A.R
INTEGER N,HP,M,MRK
PARAMETER (MAX = 10)
DIMENSION X (MAX),Y(MAX),C (MAX,MAX),A (MAX),B(MaAX)
WRITE{*,™)
WRITE(*,*) ‘POLYNOMTIAL REGRESSTION'
WRITE(*,*)
* Reading data wvalues
WRITE(*,*) ‘Input number of data points{N)’
READ(*,*) N
WRITE{*,*) ‘Input order of polynomial (MF) recuired’
READ(*,*) MP
WRITE(*,*) ‘Input data values X and Y,
+ ‘one set on each line’
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po: Il I = Xy N
READ(=®,*) X(I), ¥(I)
10 CONTINUE

* Testing the order

IF(N.LE.MP} THEN
WRITE(*,*) ‘REGRESSION IS NOT POSSIBLE'
GO TO 20

ENDIF

# Number of polynomial coefficients
M = MPs+l

* Computation of elemencs of C and B
CALL NORMAL(X,Y,C,B,N,M,MAX)

* Computatien of coefficients a(l) to alm)
CALL GARUSS(M,C,EB,A)

* putput of coefficients af(l) to a(m)

WRITE(*,™*)
WRITF(*, *) ‘POLYNOMIAI, COEFFICIENTS'

WRITE (%, *)

WRITE([*,*) {(A(I), L=1,M)

WRITE(*, *) :
240 STCP

END
R e End of main program POLREG -----------
. JE R S T B o T i -

* Subroutine
¥ This subroutine computes the ccefficients
* of normal egualions

* Argumente

Imput
N - Number of data points
X, Y - Arrays of data values
M - Number of coefficients of the polynomial
MAX - Maximum size of arrays

Oucput
C - Coefficient matrix of normal eguations
B - Right side vector of normal eguati s

*

 * » * % W

Local Variables
NIL

* + #*
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* Functions invoked
* NIL
B e e e e R e e g e e T e e e e S e S e e
* gubroutines called
* NIL
- BT A A R o S e S i S A A N A A N ik 4 S Y 5 S, A
REAL, X,¥Y,C.,B
INTEGER N, M, MAX
DIMENSION X (MAX),Y(MaX},C{MAX,MAX),B(MAX]
DO 30 J=1,M
Do 20 K=1,M
cld.K} = 0.0
Ll = KiJ-2
DO 10 I=1,N
ClT,K) = CJ,K) + X{I) ** r1
10 CONTINUE
2 CONTINU
30 CONTINDE
Do 50 J= 1, M
B(J} = 0.0
12 = J=1
DO 40 I = 1,N
BlJ) = BIJ) *+ ¥(I) * ¥(I) ** L2
40 CONTINUE
50 CONTINUE
RETURN e
END
L e End of subroutine NORMAL -----=--=-=---
B e T e e e e e e e e e e g ot
SOBROUTINE GAUSS(N,A,B,X)
R s B e e B e e S R SR T i i B
* Subroutine
*  This subrcutine seolves a set of n linear
L equations by Bauss elimination method
et e s Dy e e o e L e T e e e S P e e
* Arguments
* Input
* N - Number of ecquations
b A - Matrix of ceoefficdents
" B - Right side vector
* Qutput
X X - Solution vector
e Bl e e g . i e = e it
* Local Variables
+  PIVOT, FACTOR, SUM
B il ks o e g S A T s N e e T i S i S e O e il iy . Y i

*

* * & ¥ * * * ¥

"

"
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* Functions invoked *

L NIL =

B e e e e e e e e e e e e -

* Subroutines called o

* NIL c

Ll o= DT e 1 T — B RN IS NI e T D “*
INTEGER N

REAL A,B,X, PIVOT,FACTOR,SUM
DIMENSION A(10,10}, B(10), X{(10)
* ~—=------------- EBlimination begins ------------—=-- *

DO 33 ¥ = 1, N-1
PIVOT = A(K,K}
DO 22 I = K+1, N
FACTOR = A(I,K}/PIVOT
DO 11 J = K+1, N
A(I,J) = A(I,J) - FACTOR * A(K,J)
A1 CONTINUE
B(I) = B(I) = FACTOR * B(K)
22 CONTINUE
33 CONTINUE
W SRS ey Back substitution begins ------------- ¥

X(N) = B(N)/A(N,N}
DG 55 K = N-1l.l;-1
suM = 0
O 44 J = ExI N
SUM = SUM + A(K,J) * X{J)

44 CONTINUE
X{K}) = (B(X) - SUM}/A(K,X)
55 CONTINUE
RETURN
END
* - ----e-———---End of subroutine GAUSS -----—----=--- Ly

Tesf Run Resulfs The program was used to fit a polynomial curve to the
following data points:

% | w1 = 3.2 4.0
% | %0 | 25 3.0 40

The resulls are given below:

POLYNOMIAL REGRESSION
Input number of data poini:s (M)
4
Input order of polynomial (MP) required
2
Input data wvalues X and Y, one set on each line
1.0 2.0




Curve Fitting: Regression 341

Bk 2k
3.2 3.0
4.0 4.0

POTLYNOMIAL COEFFICIENTS
2.0740160 -2.053067E-001 1.6804415-001

STOp - Program terminated.

- BBl MULTIPLE LINEAR REGRESSION

There are a number of situations where the dependent variable is a
function of two or more variables. For example, the salary of a salesper-
son may be expressed as
Yy =500 + 5x; + 8,
where x, and x, are the number of units sold of products 1 and 2,
respectively. We shall discuss here an approach to fit the experimental
data where the variable under consideration is a linear function of two
independent variables.
Let us consider a two-variable linear funetion as follows:

Y=o, +ax +ayz (10.20)
The sum of the squares of errors is given by

R
Q=2(y; —ay -ayx, —agz;)?
=1
Differentiating with respect to a,, a; and a, we get,

= =230, - ay - azx; - agz)

day
JQ
E Sian 22{}"{ =0y —ayx; — gz x,
aQ .
S =-2¥ (- a) = azx; —azz) y,
day
Setting these partial derivatives equal to zero results in
nay +(Xx Jay +(Xz,)e; =Yy,
(ZI, ]al T (Exf ] a3 "_'(Exazl )"—'-3 =Zy=x:
(Xz:)a, +(Xxiz;)ay *(Ez,ﬁ )‘Ja =¥z
These are three simultaneous equations with three unknowns and,
therefore, can be expressed in matrix form as

N Z'Ii Ez‘. ) Eyl
Yxi Tx! Ixz||eg [=[Tyx (10.21)
2.2 2. Xiz; 22‘2 a3 2yiz
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This equation can be solved using any standard method. This is a
two-dimensional case and, therefore, we obtain a regression “plane” rather
than“line”.

We can easily extend Eq. (10.21) to the more general case

y=a, + agXq + dgXe z R o ﬂm‘l Xm

x 1] 2 3 4
z 0 1 2 3
¥ 12 18 5 24 30

Obtain a regression plane to fit the data.

— ——— ———— — N —— S S S S o . S — — — — —

The various sums of powers and products required for evaluation of
coefficients are tabulated below:

% | @ y ! x 2 1z | yx yz
T | 0 1 0 0 12 ] 0
2 1 18 4 1 2 36 18
3 2 24 o 4 6 T2 48
4 3 30 16 9 12 120 90
Y10 ] 6 | 84 | 30 | 14 | 20 | 240 | 156 |
On substitution of these values in Eq. (10.‘21) we get =

da, + 10ay + 5ay; = 84
10a, + 30a, + 20a; = 240
6a, + 200y + 14ay = 156

i

Solution of these equations results in

ay =10
Qg = 2
{13: 4

Thus, the regression plane is
Yy = 10 + 2x + 42

ILL-CONDITIONING IN LEAST SQUARES
METHODS

Che problem of ill-conditioning can arise in implementing the least
iquares regression methods. As a consequence, the computed solution
night differ substantially from its exact solution. This problem becomes
nore severe when the degree of approximating polynomial is large.
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Ill-conditioning arises basically due to very large differences in the
coefficients of the normal equations. Recall that the coefficients are sums
of powers and products of data values. Techniques such as pivoting and
iterative refinemeni can be incorporated to overcome the problem of ill-
conditioning. The problem of ill-conditioning can also be tackled by in-
creasing the precision of arithmetic operations,

Another way of overcoming the least-squares ill-conditioning problem
is to use orthogonal polynomials. This would enable us to obtain the
coefficients a, in closed form, thus avoiding numerical solution of simul-
taneous equations. Further discussions on this approach is beyond the
scope of this book.

_—f'? | w04 e
We often use experimental data for establishing a relationship between
two variables. This relationship may be used for testing soma existing
mathematical models or establishing new ones or even estimating the
values of dependent variables at some point. In this chapter, we have
used a technique known as least squares regression to establish the
Iollowing types of relationship between the variables of a table of exper-
imental data. :

* Linear relationship

« Transcendental relationship

* Polynomial relationship -

* Multivariable rclationship

Also presented are FORTRAN programs and test results for obtaining
linear and polynomial equations for experimental data.

SUMMARY

Key Terms
Curve fitting Hegression analysis
Dependent variable Regression line
Independent variable Regression plane
Least squares regression Saturation growth rate
Normal equations Scatter diagram

What is regression analysis?

What is a scatter diagram?

What is the principle of least squares regression?

- Show that the linear regression line of v on x passes through the
point that represents the mean of x and y values.

w0
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/ Derive normal equations for evaluating the parameters a and b to
fit data to
(a) power-function model of the form
y=ad
(b) population growth model of the form
y=a ehx
using the principle of least squares.
6. Draw a flow chart to illustrate the sleps involved in developing a
program for multiple regression.

1. Use leasl squares regression to fit a straight line to the data.

* 5 1 3 4 6 g8 | 9 | 1
y 1| 2 4 4 3 ?_‘___s

Along with the slope and intercept, also compute the standard er-
ror of the estimate.
/‘b‘ In an organisation, systematic efforts were introduced to reduce
/ the employee absenteeism and results for the first 10 months are
shown below:
r___hﬂonths 1 2 ! 3| 4
‘ Absentees ] 9

| )i
10 ‘ 85 \

51 6] 718 9] 10]
[ |
8 & | RE| 7 8‘7_5‘

[ 9

"
Fit a linear least squares line to the data and from this equation
estimate the average weekly reduction in absenteeism.

3. The following table shows heights () and weights (w) of 8 persons.

o) | 175 | 165 | 160 | 160 [ 150 [ 170 [ 1657 165 |
[wikg) [ 68 | 58 | 59 | 71 | 51 | 62 | 53 | 68 5
Assuming a linear relationship between the height and weight, find
the regression line and estimate the weights of the persons with
the following heights.

| (per cent) |

(a) 140 cm (b) 163 em (cy 172.6
4. Fit a geometric curve
¥y =ax
ta the following data:
T2l -1]| 8] 1il=] 8] 4]
> | 8| 6 | 0 | -5 [-41]130] 300

5. Given the table of points

: (o ]2] 4 6] 8[| t6] 2]
y |10 | 12 18+22‘20 30| 26| 30




10.

11.
12.

13.

14,
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use least squares regression to fit
(a) straight line, and
(b) parabola
to the data. Compute and compare the errors.

. Fit the saturation growth rate modal

y=
b+x

to the data given below,

[ = 2 | 4| 6 | 8

Iy | 14 | 20 | 24 | 26
Fit the power equation

y=ax

to the data given in Exercise 6.
Fit a quadratic polynomial to the data given in Exercise 6.
Use the power equation to the data

]

x | 75 [ 10 [125 | 15 | 175 | 20 |
0

y 2.4 1.6 _12“,_0._8 | 08 | 06 ]

Use the exponential model
y=ae

to fit the data

[ | 04 | 08 [ 12 | 16 | 20| 24 |

r

X
l 75 | 100 | 140 | 200 [ 270 | a7

Fit a parabola to the data given in Exercise 10.
Find the least squares line y = ax + b that fits the following data,
assuming that there are no errors in x values.

| = 1 2 3 4 5 6
|y 405 | 712 | 965 |1220 | 1520 19.00]

In Exercise 12, treat x as dependent variable on y and find the least

squares line x = ay + b, assuming that there are no errors in y but x

values contain errors. Observe that this is not the same line ob-

tained in Kxercise 12, .

Use multiple linear regression to fit
I

Xy __l l 2 3 4 | _ 5 |
x, 4 3 2 1 0
y 18 16 16 12 10

Compute coefficients and the error of estimate.
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15. Given the data points

L

5.

. Modify the progr;;J—LI-l\]_REG to calculate the sum of squares of the

errors for the linear fit and print the error output.
A set. of data, when plotted resembles an exponential curve

y = a(b)

Write a program to evaluate the parameters a and b of this regres-
sion curve using the principle of least squares.
In fitting a polynomial, its degree should be chosen such that the
error is minimum, Given a sot of data, it would be difficult to
decide the degree that would represent the data best. A good rule
of thumb is to begin with the first degree and continue fitting
higher order polynomials until
Q; Qi -1
_EE s
n—-t-1 n-—t
or until a pelynemial of degree n-11is obtained. @, is the sum of
squares of errors of polynomial of degree i
(a) Prepare a flow chart to fit a polynomial that satisfies this
condition.
(h) Modify the program POLREG to incorporate these changes.
Develop a user-friendly program for multiple regression.
Develop a user-friendly, menu-driven progran that allows us an
option to select and use one of the following models to fit a given
set. of data.
{a) Straight line model
{b) Exponential model
(¢) Power equation
(d) Saturation-growth rate model



