
Roots of Nonlinear
Equations

INTRODUCTION

Mathematical models for a wide variety of problems in science and engi-
neering can be formulated into equations of the form

fix) 0
where x and fix) may be real, complex, or vector quantities. The solution
process often involves finding the values of x that would satisfy the
Eq. (6.1). These values are called the roots of the equation. Since the
function fix) becomes zero at these values, they are also known as the
zeros of the function fix).

Equation (6.1) may belong to one of the following types of equations:
1. Algebraic equations- /
2. Polynomial equations-,
3. Transcendental equations
cAny function of one variable which does not graph as a straight line

in two dimensions, or any function of two variables which does not
graph as a plane in three dimensions, can be said to be nonlinear.)
Consider the function

Y =fix)
Ax) is a linear function, if the dependent variable y changes in direct
proportion to the change in indpendent)y 3x^5 ariable x. For example

=
is a linear function.	 -

On the other hand, f(x) is said to be nonlinear, if the response of the
dependent variable y is not in direct or exact proportion to the changes
in the independent variable x. For example

122 Numerical Methods

Y -X2 + 1

is a nonlinear function.
There are many situations in science and engineering where the

relationship between variables is nonlinear.

j, debraiC Equations
An equation of type y = fx) is said to be algebraic if it can be expressed

in the form
fy,1+f1y,1+...+fiYi+fo=O	 (6.2)

where fi is an ith order polynomial in x. Equation (6.2) can be thought of
as having a general form

AX, y) = 0	 (6.3)

This implies that Eq. (6.3) portrays a dependence between the variables
x and y. Some examples are:

1. 3x +	 - 21 = 0 (linear)

2. 2x + 3xy - 25 = 0 (non-linear)

3. x3 - xy - 3y.	 0 (non-linear)
These equations have an infinite number of pairs of values of x and y

which satisfy them.

'4oiynomIaI Equations
Polynomial equations are a simple class of algebraic equations that are
represented as follows: 	 -

ax?	a_1 x 	 b... Fa 1 x+a0 0	 (6.4)

This is called ri. degree polynomial and has a roots. The roots may he

1. real and different
2. real and repeated
3. complex numbers

Since complex roots appear in pairs, if ii 15 odd, then the polynomial has
at least one real root. For example, a cubic equation of the type

a3x	 U.	 F 0 1X * a0 = 0

will have at least one real root and the remaining two may be real or
complex roots. Some specific examples of polynomial equations are.

1. 5x.. XI j.3x2r0

2. x3 --	 * 6 = 0

3. x 2 - 4x + 4 = 0

/TranscendentaI Equations
A non-algebraic equation is called a transcendental equation. i These
include trigonometric, exponential and logarithmic functions. Examples
of transcendental equation are:

1. 2 sin x—x=O	

Roots of Nonlinear liquations J
/

2.7i7_1/2 x 0
. logx —1=0

4. x - e = 0
A trans€bnta] equation may have a finite or an infinite number of
real roots or may not have real root at all.

METHODS OF SOLUTION

There are a number of ways to find the roots of nonlinear equations mrh
as those described in Section 6.1. They include:
' Direct analytical methods

Graphical methods
Y Trial and error methods
4. Jterative methods

In certain cases, roots caii be found by using direct analytical methods.
For example consider a quadratic equation such as

ax 2 + bx + c = 0	 (6.5)
We know that the solution of this equation is

- S ±

2a	 (6.6)

Equation 6.6) gives the two roots of equation (6.5. However, there are
equations that cannot be solved by analytical methods. For example, the
simple transcendental equation

2 sin .s - x = 0

cannot be solved analytically. Direct methods for solving non-linear
equations do not exist except for certain simple cases,

Graphical methods are useful when we are satisfied with approxi-
mate solution for a problem. This method involves plotting the given
function and determining the points where it crosses the x-axis. These
points represent approximate values of the roots of the function.

Another approach to obtain approximate solution is the trial and error
technique. This method involves a series of guesses for x, each time
evaluating the function to see whether it is close to zero. The value of x
that Causes the function value closer to zero is one of the approximate
roots of the equation.

Although graphical and trial and error methods provide satisfactory'
approximations for many problem situations, they become cumbersome
and time consuming. Moreover, the accuracy of the results are inadequate
for the requirements of many engineering and scientific problems. With
the advent of computers, algorithmic approaches known as iterativemethods have become popular. An iterative technique usually begins

124 Numerical Methods

with an approximate value of the root, known as the initial guess, which
is then successively corrected iteration by iteration. The process of
iteration stops when the desired level of accuracy is obtained. Since
iterative methods involve a large number of iterations and arithmetic
operations to reach a solution, the use of computers has become inevitable
to make the task simple and efficient.

In this chapter, we shall discuss a few iterative methods of solution
that are commonly used. These methods are designed to determine the
value of a single real root using some initial guess values. Later in the
chapter, we shall also discuss methods to determine all the roots of a
polynomial. Finally, we shall discuss the solution of a system of non-
linear equations.

ITERATIVEMETHODS

There are a number of iterative methods that have been tried and used
successfully in various problem situations. All these methods typically
generate a sequence of estimates of the solution which is expected to
converge to the true solution. As mentioned earlier,(all iterative methods
begin their process of solution with one or more guesses at the solution
being sought. Iterative methods, based on the number of guesses they
use, can he grouped into two categories:

1. Bracketing methods
2. Open end methods
Bracketing methods (also known as interpolation m(,thods) start with

two initial guesses that 'bracket' the root and then systematically reduce
the width of the bracket until the solution is reached. Two popular
methods under this category are:

'1--Bisection method
'2--False position method,.

These methods are based on the assumption that the function changes
sign in the vicinity of a root.

Open end methods (aim known as extrapolation methods) use a single
starting value or two values that do not necessarily bracket the root.
The following iterative methods fall under this category:

4NWwton-Raphson method
'2 Secant method
3. Muller's method
4. Fixed-point. method '
' Bairstow's method

It may be noted that the bracketing methods require to find sign changes
in 4-he function during every iteration. Open end methods do not require
this.

-.3 3
x ----

Roots of Nonlinear ;quofions J

_STARTING AND STOPPING AN ITERATIVE
PROCESS

Starting the Process
Before an iterative process is initiated, we have to determine either an
approximate value of root or a "search" interval that Contains a root.
One simple method of guessing starting points is to plot the curve of ftx)
and to identify a search interval near the root of interest. Graphical
representation of a function cannot only provide us rough estimates of
the roots, but also help us in understanding the properties of the function,
thereby identifying possible problems in numerical computing. A plot of

/tx) = x 3 - x - 1
is shown in Fig 6.1. Although /tx) is a cubic function, it intersects the-
x-axis at only one point. This suggests that the remaining two roots are
imaginary ones.

Fig, 6.l Plot ofix)=x3 -x- 1

In the case of polynomials, many theoretical relationships between roots
and coefficients are available. A few relations that might be useful for
making initial guesses are described here.

,Lrgest Possible Root For a polynomial represented by

7
/tx) = a x' + a 1 x" + ... a 1 x +	 (6.7)

the largest possible root is given by

(6.8)

This value is taken as the initial approximation when no other value is
suggested by the knowledge of the problem at hand.

j.	 Numerical Methods

Search Bracket Another relationship that might be useful for deter-
mining the search intervals that contain the real roots of a polynomial is

r	 2I a,,	 (a _z

	

-2	 (6.9)
yan))

where x is the root of the polynomial Then, the maximum absolute
value of the root is

	

Xaxl	

]2	

a.

This means that no root exceeds Xax in absolute magnitude and thus,

all real roots lie within the interval (_jx max ' max

There is yet another relationship that suggests an interval for roots.
All real roots .v satisfy the inequality

x	 I + 	max (l a o I a 1 ic r 	 1 1'f (6.1fl
la,,

where the "max" denotes the maximum of the absolute values I a0

(Cl	 ..	 ti,

-

the polyitonual equation

2x3- 2 ± 2x + 12 = 0

Estimate the possible htal biess vMues.

The largest possible root is

-8
x l	 .4

That is, no root can be larger than the value 4.
All roots must satisfy the relation

x ' l !^——) -2)14

Therefore, all real roots lie in the interval (_fii, vrifl. We 	use

these two points as initial guesses for the bracketing methods and one of
them for the open end method s—

Roots at Nonlinear Equations J,

Stopping Criterion
An iterative process must be terminated at some stage. When ? We must
have an objective criterion for deciding when to stop the process. We
mar use one (or combination) of the following tests, depending on the
behaviour of the function, to terminate the process:

1. !^ E (abo1ute error in x)

X 1 . 1 -xt
2. ---------__	 E, (relative error in x), x 0

fT

3. I/x)I	 !^ E (value of function at root)
4. flx11) - fx1) ^5 E (difference in function values)
5. j flx) I	 F	 (large function value)
6. JXi j	 XL (large value of x)

Here, ; represents the estimate of the root at ith iteration and f(x1) is
the value of the function at x,

There may be situations where these tests may fail when used alone.
Sometimes even a combination of two tests may fail. A practical conver-
gence test should use a combination, of these tests. In cases where we do
not know whether the process converges or not, we must have a limit on
the number of iterations, like

Iterations _> N (limit on iterations).

EVALUATION OF POLYNOMIALS

All iterative methods require the evaluation of functions for which solu-
tion is sought, Since it is a recurring task, the design of an efficient
algorithm for evaluating the function assumes a greater importance.
While it is not possible to propose a general algorithm for evaluating
transcendental functions, it is quite simple to design an algorithm for
evaluating polynomials.

The polynomial is a sum of n+1 terms and can he expressed as

f(x)=ax'	 f>'a1xL	 (6.12)

This can be easily implemented using a DO loop in FORTRAN. This
would require ri(n + 1)/2 multiplications and n additions.

12 NumecaI Methods

Write a FORTRAN program segment to implement Eq. (6i2).

SUM = AG

	

nO 100 I	 L N

	

SUM	 SUM 4 A(I) * X **

100 CONTINUE

Let us consider the evaluation of a polynomial using !-forner's Rule as

follows:

	

/x) = (C..((a x	 + a 1)x + a,-2)X +	 + a 1)x - a0)	 (6.13)

Here, the innermost expression ax + a_ 1 is evaluated first. The result-
ing value constitutes a multiplicand for the expression at the next level.
The number of level equals n, the degree of polynomial. Note that this
approach needs a total of n additions and n multiplications.

Urn-ncr's rule, also known as nested multiplication, is implemented
using Algorithm 6.1. The quantities p,, p, , - ,, ..., p are evaluated
recursively. The (Thai quantity Po gives the value of the function flx.

Homer's Rule

p an

Pa-i = P? + a,,1

= P,-,i x + a,

Pi =	 + a1

t(x) = p	 x + a0

Algorithm 6.1

Roots of Nonlinear Equations 122

Evaluate the polynomial

fix) = x - 4x2 + x + 6

using Florrier's rule at x 2.

n=3,a 3 1,a 2 -4,a 1 1, and a06
p3 = a 3 = 1

P2 = 1 x 2 + (-4) = -2

Pi = (-2) x 2 + I = -3

p0 = (-3) x 2 + 6 = 0

fi2) = 0

Program POLY
Program POLY shows a FORTRAN program to evaluate a polynomial of
degree n using Homer's rule. This program uses a subroutine HORN ER
to implement Homer's algorithm.

It is an interactive program and, therefore, requests input for degree
of pulyiioiniai (n), polynomial coefficients (a) and value of x from the
user at the time of execution. Output of a sample run of the program
POLY	 of the program-

PPOGPAM POLY
* ----------- ---- ---------------------*

Main program	
*

*	 Program POLY evaluates a polynomial a: degree 	
*

*	 any point X using Flarner's rule	
*

*	 - - ----- - - - - - - - - - - - 	 -- - -- - -- - - - - - - - - - - - - 	 - - 	 - - 	 .- - 	 *

* Functions Invoked	
*

NIL	 *

4	 *

" Subroutincr used
IIORNER	 *

* ------------------------------- --- -------------------- *

* jariab1e s ised	 -k

*	 N - De q cc of polynomial	 *
*	 A - Array of polynomial coefficients 	 *
*	 X - Point of evaluation	

*

*	 P - Value of pol ynomial at X	 *

4	 *

* Constants used	 *

NIT.	 *
* --- --..- -------------------------------	 *

IN1ECJLR N

RVAL A,X, P

JQ Numerical Methods

EXTERNAL HORNER
DIMENSION A(10)

WRITE(*,*) 'Input: degree of polynomial, N'
READ(**) N

WRITE(*,*) 'input: polynomial coefficients (A(0)

to A(N))'
DO 100 I - 1, N-i-i
READ(*,*) A(T)

100 CONTINUE

WRITE(*	 'Input value of X (point: ofovaluation)'
READ*,*) X

• Evaluating polynomial at X using Homer's method

CALL HORNER N,A,X,P

• WriLing the result

WRITE(.**)

WRITE(A ,*) 'F(X) = ', P. ' at X = ', X
WRITE(*, *)

so	 /
END
----------- End ot main program POLY	 *

* ---

	

	 --------------*
SUBRCTJTTNE HORNER (N, A, X, p

*
* Subroutine
*	

HORT-JER computes the value of a polynomial of order *
A	 n at any given point x.
* -- 	 *
Arguments	 *

* Input	 *
N - Degree of polynomial

*

	

	
A - Polynoma1 coefficients (array of size Ni-i) *
X - Point: of interest ot evaluation

*
Output	 *

*	
P - Value of polynomial at X

* --	 -- *

* Local Variables	 *
*	 NIL	 *
A -- *

* Functions invoked	 *
*	 NIL	 *
**
* Subroutines called	 *
*	 NIL	 *
*	 -----------	 ------------------------------
-

Roots of Nonlinear Equations 11

S'. EA 	 A, X, A

INTEGER N
DIMENSION A(lO)

P = A(N•ii)
•DO Ill I = N, 1,

P -	 + A(T)

11 1	 CONTINUE

2 PTU RN

END
-	 Cod of SuroutIrie 20RNER	 *

Test Run Results

I nH 1 t cogree of poIyricmi1, N

Input po.[nomai coefficients (A(0) to A(N})
12
5

h
2

Input vaLue of X (point of evaluation)
0125

F(X) = 1 226000 at X =).0000E - 001

The polynomial used for evatuatisri

+ 5x + 12

and the cuefficienL Vpresentedby i ,, (i), AI2), A(3), andA(4)
instead of:cl	 1), A(2,andA(3)inthcprogram.

^^_^6 BISECTION METHOD

Tl-'Lsec/wn Joel hod is one of the simplest and most reliable of iterative
ethods for the solution of nonhnear equations. This method, also known

as binary chopping or half interval method, relies on the fact that if fix)
is real and continuous in the interval a <x <b, and a) and fb) are of
opposite signs, that is.

then there is at least one real root in the interval between a and b.
(There may be more than one root in the interval).

Let x = a and x, = b. Let us also delinc another point x0 to he the
midpoint between a and h. That is.

X1	 .- 	
UJ4)

/	 2
Now, there exists the following three conditions:

1 if fix) = 0, we have a root at x0.

IN Numericot Methods
/

2. if fix0) fix 1) < 0, there is a root between x0 and x1.
3 if fix0)fix2) < 0, there is a root between x0 and x.

It follows that by testing the sign of the function at midpoint, we can
deduce which part of the interval contains the root. This is illustrated in
Fig. 6.2. It shows that, since tlx& and fix2) are of opposite sign, a root lies
between x0 and x2 . We can further divide this subinterval into two halves
to locate a new subinterval containing the root. This process can be
repeated until the interval containing the root is as small as we desire.

Fig. 6.2 liustration of bisection method

Find a roo/the equation

7	 x4x- i=o
1iI1bisection method.

The first step is to guess two initial values that would bracket a root.
Using Eq. (6.10), we can decide the maximum absolute of the solution.
Thus

(-4)	 -10•
Xmax	 f) -21.J6

Therefore, we have both the roots in the interval (-6, 6). The table below
gives the values of f(x) between -6 and 6 and shows that there is a root
in the interval (-2, 1) and another in (5, 6).

xi -6	 Tia I 4
[[Js 22 11 Z. L'' -141421-10 5[]

Let us take x j r_2 and	 _1.
Then

-2-1

/2)=2 and fi-1.5)1.75

Since fi-2) /(-1.5) < Oj the root must be in the interval (-2, -1.5). The
next step begins.

Roots or Nonlinear Equations

X2 = - 1.5 and x 0 =-i.7--

[(-1.75) 4.06.
Since [(-1.75) and [(-1.5) are of opposite sign, the root lies in the inter-
val (-1.75, 1.5). Another iteration begins.

= -1.75, x2 = - 1.5 and x0 --1.625

[(-1.625) = -0.859	 1	 -

Now, the root lies in the interval (-1.75, -1,625)
-1.6875

[(-16875) = -0.40

1.75 ± 1,6875
Next	

2	
=-L72

[(-1.72) =

1.75 + 1. 72
Next	 Xç1 - --'-	 - 1.735

[(-1.735) = -0.05
Next	 - 1.7425

A-1.7425) = +0.0063
The root lies between -1.735 and -1.7425.
Approximate root is --1.7416. .,.c2

An algorithm to achieve this is given in Algorithm 6.2.

Bisection Method

1. Decide initial values for x 1 and x2 and stopping criterion, E.

2. Compute f1 = 1(x1) and f2 = f(x).
3. if f x f2 > 0, x1 and x2 do not bracket any root and go to step 7;

Otherwise continue.
4. Compute x0 = (x + x2)12 and compute fo = f()
5en

set x2 =
else

set x 1 = x0

set f	 10
6. If absolute value of (x7 - x1)/x2 is less than error E, then

root = (x1 +
write the value of root
go to step 7

else
go to step 4

7. Sf op.

Agorithm 6.2

U4 Numerical Methods

Convergence of Bisection Method
In the bisection method, we choose a midpoint x in the interval between
x 1 and x 2 . Depending on the sign of functions 1(x0), f(x 1), arid 1(x0), x 1 or
X 2 is set equal to x5 such that the new interval contains the root. In
either case, the interval containing the root is reduced by a factor-acto of 2.
The same procedure is repeated fdr the new interval. If the procedure is
repeated a times, then the interval containing the root is reduced to the
size

X2 X1 - At
	2 n 	2

After a iterations, the root must lie within ± AxI2' of our estimate. This
means that the error bound at nth iteration is

E=LAx'

Similarly,

-- Ax

	

I -.__ -	 (615)

That hi, the error, decreases linearly with each step by a factor of 0.5.
The bisection method is, therefore, linearly coiwergent. Since the
convergence is slow to achieve a high degree of accurac y, a large number
of iterations may be needed. However, the bisection algorithm is
guaranteed to converge.

Program SISECT
This program finds a root of a nonlinear equation using the bisection
method. BISECT uses a subroutine, BIM to find a root in a given interval
and invokes a function subprogram, F(x) to evaluate the function at the
estimated root.

The subroutine subprogram DIM locales a root in the given interval
IA, 13] using Algorithm 62. BIM applies the following criterion forterminating the process

x n -xni
<EPS

That is, the relative error in the Successive appromatjons must be lessthan a specified error limit.
The function subprogram F(x) simply evaluates the function value at

a given value of x and returns the result to the calling module, Now that
by simply changing the function definition statement

F = x * x + x -2

we can use the BISECT program to evaluate a root of any function.

Roots of Nonlinear Equations iM

Also note that the program prints out a message in case the specified
interval does not bracket a root.
* -- 	 *

PROGRAM BISECT--------*

*	 jfl program
*	 This program finds a root of a nonlinear equation *

* using the bisection method	
*

* -------------------------- ------------------*

* Functions invoked	
*

*	 F	
*

*--------------------------- ---------------------------

* Subroutines used	
*

*	 BIM	
*

* --------------------------------------- ----------*

* Variables used	
*

*	 A	 Left endpoint of interval 	
*

*	 B - Right endpoint of interval	
*

S - Status	
*

*	 ROOT - inal Solution	
*

*	 COUNT - Number of Iterations done	
*

* --*

* Constants used	 *
* FPS - Error bound 	

*

* -------------- --------- 	 -----*

REAL A, B, ROOT, EPS, F
INTEGER 5, COUNT
EXTERNAL BIM, F
PARAMETER(EPS : D .000001)
WRITE(* ,*) -
TITE(*) ' SOLUTION BY BISECTION METHOD''

WRITE(*,)

WR I TE(*, *) 'Input starting values'

READ(*,*) A,3
CALL BTM(A,B,EPSS, ROOT, COUNT)
IF (S.E9.0) TEEN

WRITE (*, *)
WRITE(*) 'Starting points do not bracket any root'
WRITE(*) '(Check whether they bracket. E\TE"1 roots)'

WRITE * *
ELSE

WRITE.) * *)

WRITE (*.*) 'Root = '	 ROOT

WRITE(*,*) 'L"(Root	 -. '	 F(ROOT)

WRITE (,)
WHITE(*,*) 'ITERATIONS = ', COUNT

WRITE(*,*)

-tz Numerical MOff)OdS

END IF
STOP
END

*	 -	 -------End of mai p program

STJBPOUTTNE BIM(A, B, EPS, S, ROOT, COUNT)
*-- ---
* Subroutine

This sbroutjne ftncls a root of non Anear eJation

	

*	
in the interval [AD] using the

bisectlo method

	

*	
--------------	 -----.-----

Arguments
* Input

	

*	
A - Left endpoint 01 -L 1-1

B - Right endpoint of interval

	

*	
EPS - Error bound

* Output
	*	

S - Status

	

*	
ROOT - Final SolutIon

	

*	 COUNT - Number of I Lerat ons* --------------

-------------------------------*
Local. Variables

	

*	
XI,X2,xo,1.o, Fl, F?

*
Functions invoked

	

*	 F,ABS
* ---

*
Subroutines called

	

*	 NIL
* ----- --

REAL A, B, ROOT EPS , F 1x2 XO,FO, F1,F2ABS
INTEGER 5, COUNT
EXTERNAL F

INTRINSIC ABS
*
Function values at initial points
Xl = A

X2 = B
Fl	 F(A)
F2 = F(B)

-- *
Test if initial values bracket a SINGLE root
IF(Fl*F2 •F.0) TBEN
s=o

RETURN
ENDI F

N

*
*
*

*
*
*
*
*
*
*
*
*
k

*

*

*

*

*

*

*

*

* Bisect the interval and locate the root iteratively
COUNT = 1

Roots of Nonlinear Equations J.

111 XO = (X1+X2)/2.0

FO = F(X0)

IF (FO .EQ. 0) THEN
S 1

ROOT = XO
RETURN

ENDIF

IF(F1*FO .L'l.0) THEN

X2	 X0

l USE
X1 = xo

El = FO
END IF

* Test for accuracy and repeat the process, if necessary
TF(ABS((X2-X1.) /x2) . LT. EPS) THEN

S-i
ROOF = (X11-X2)/2J

RETURN
ELSE

COUNT	 COUNT + 1
CO TO 111

ENDIF

END

* --------------End of subroutine DiM
	 I

* Function suhprogran F(x)
----------------- --- -- - --------- ---------------

REAL FUNCTION F(X)
REAL X

F - XX+X-2

RETURN

END
*	 --------- End of function F(X)	 - *

Test Results of BISECT
The program was used to solve the equation

+ x - 2 = 0
using two sets of starting points:

(0.0, 2.0) and (0.5, 2.0)
First run

SOLUTION BY BISECTION METHOD
Input starting values
0.0 2.0

im Nurrierical Methods

Root = i.0000000

F(ROOT) = .0000000

ITERATIONS =
Stop	 Ploy-ram, terminad.

Second run
SOLUTION BY BISECTION METHOD

Input starting values
0.5 2.0
I30I.	 =	 9.999999E-001
F ROOT)	 -3. 76279E-007

TTERATTONfl 	 -	 21
/tC)D - Proora.m terminated.

FALSE POSITION METHOD

bisectio 'method, the interval between x 1 and x 2 is divided into two
eq yes, irrespective of locution of the root. It may be possible that
the root is closer to one end than the other as shown in Fig. 6.3. Note
that the root is closer to xt Let us join the points x 1 and x2 by a straight
line. The point of intersedion of this line with the x axis (x 0) gives an
improved estimate of the root and is called the false position of the root.
This point then replaces one of the initial guesses that has a function
value of the same sign as f(x5). The process is repeaTted with the new
values of x 1 and x2. Since this method uses the false position of the root
repeatedly, it is called the false position method (or regula falsz in Latin).
It is also called the linEar interpolation method (because an approximate
root is determined by linear interpolation).

(X2'IX2))

X

	

v7

flx1 ,))
Fig. 6.3 Illustration of false position method

False Position Formula
A graphical depiction of the false position method is shown in Fig. 6.3.
We know that equation of the line joining the points (x 1 , f(x 1)) and
(x 2, fx2)) is given by

f(x 2)-f(x 1) y-f(x1)	
(6.16)

X2 -x 1	x-x1

Roots of Nonlinear Equations U2

Since the line intersects the x-axis at x 0 , when x = X, y = 0, we have

f(x 2)-f(x 1)	 - f(x1)

x -x i	 xij -XI

or
flx1(x.-x

X0 -	
=	 f.r2)-f(XI)

Then, we have

f(XL)(x2 - Xj.t

f(x2—f(x1)

This equation is known as the false position tbrmula. Note that x0 is
obtained by applying a correction to x1.

False Position Algorithm
Having calculated the first approximate to the root, the process is repeated
for the new interval, as done in the bisection method, using Algorithm 6.3.

False Position Method

Let X 0	 -f(x1)x	
x 2 - x

f(x 2) - f(x1)

If f(x0)	 f(x ; l 'r- 9

set x2

otherwise
set x 1 =

Algorithm 6.3

A niaor difference between this algorithm and the bisection algorithm is
the way X(is computed.

Use the false position method to find a root of the function
f(x) = x2 —x-2= 0

in the range I <x <3

Iteration I
Given x 1 = I and x 9 = 3

= f(l) = —2
f(1x 2) fl3) = 4

X., -x
t 0 _ x 1	 /'i1)

TR x 2 - f(x1)

14 Numericci Methods

3- 11-4-2 X	 = 1.6667
4+2

Iteration 2
fcx,) f(x) =	 6667)f(1) = 1.7778

Therefore, the root lies i n the interval between .t0 and 1 2 . Then,x i = xn = 1.6667
f(1) = [(1.6667) -0.8889
NO fl3) = 4

x0	-= 1.6667 0,8889 x
3-1.6667

= 1.909
4^1)8889

Iteration. 3
[(1.909) [(1.6667) = +0.2345

Root lies between X(= 1.909) and x2(=3)
Therefore,

= x0 = 1.909
x2=3

)--L909
1.909 .4- 0.2647

6-4 7 ;

= 1.909 + 0.2647	 = 1.986

The estimated root after third iteration is 1.986. Remember that the
interval contains a root x 2. We can perform additional iterations to
refine this estimate further.

Convergence of False Position Method
The false position formula is based on the linear interpolation model. In
the false position iteration, one of the starting points is fixed while the
other moves towards the solution. Assume that the initial points brack-
eting the solution are a and b and that a moves towards the solution and
b is fixed as illustrated in Fig. 6.4.

Lettx 1 = a and x, be the solution.
Then,

ci = x, -
e2 = Xr -

That is,
ej = X, -

It can be shown that

r)f"(1t)c,, 1 --c	 '	 (6.18)
f'(R)

where I? is some point in the interval x and b. This shows that the
process of iteration converges linearly.

Roots of Nonlinear Equations 141.

Fig. 6.4 Convergonce of falso position method

Program FALSE

The program FALSE finds a root of a nonlinear equation using the false
position method. The program uses a function subprogram F and a sub-
routine. FAL to implement the method.

The function evaluates the function at any given point and the sub-
routine determines a root in a given interval using Algorithm 6.3.

We can use the FALSE program to identify a root of any function by
changing the function statement in the function subprogram F.

PR(GPJ'1 I ALSE
* ------------------------------------.-- ---------------------

* Main progor
Ph'--- ------r iTh I ires d rc,oL of a	 on ineti '.catiti	 *

*	 b- faie	 osiL.Lc-r. mernocl	 *
*	 -	 --- ----------------------- ---------------

	

. i Ol:	 i Ilvoked

-	 --	 - ------	 --------------------------------*

:j

*A LA

1 L	 r-ir	 r	 ei-

P	 enth:'t	 t 2fltEJ
+-

*	 -
*	 1TCI'fll	 t-:u-!	 icl,zli.:-	 ---

=	 0.O1- -

142 Numerical Methods

WRITE(*,*)	 lriput starting values'
READ(* , *) A,B

WRITE(*,
WRITE(*,*)	 SOLUTION BY FALSE POSITION METHOD'
WRITE (, *)

cAcr, FAL(A,B, FPS, S, ROOT, COUNT)

IF(S EQ. O) THEN
WRITE	 'Starting'Starting poinLs do not bracket any

root'
WRITE(*, *)

ELSE
WRITE(*,
WRITE(*,*	 'Root = ', ROOT
WRTTE(* , *) 'F(ROOT)	 ', F(ROOT)
WRITE(*,*) 'NO.OF ITERATIONS = ', COUNT
WRITE * *)

J-NDIF

STOP
END

* ---------------End of main FALSE ------------------*

SUBROUTINE PAL (A,B,EPS, S, ROOT, COUNT)
-k --*

Subroutine	 *
FAL finds a root of a noxilin&ar equation	 *

*	 *
* ------------ ------- *

"Arguments*
* input	 *
*	 A - Left-end point ot interval	 *
*	 B - Right-end point of interval	 *
*	 EPS - Error bound	 *
* Output	 *

S - Status of completion of task 	 *
*	 ROOT - Final solution	 *
*	 COUNT - Number of iterations done	 *
* ---*

* Local Variables	 *
*	 XO,Xl,x2,FO,F1,F2	 *
* --------------------------------	 ------------- --------*

* Functions invoked	 *
*	 FABS	 *
* -------------------------- ----------------------------- *

* Subroutines called 	 *
*	 NIL	 *
* - - --- 	 - --- A

Roots of Nonlinear Equations J.4

REAL A,B EPS,XO, X1,X2,F0, Fl, F2,F,AI3S

INTEGER S,CO'JNT
INTRINSIC ABS
EXTERNAL F

Xl	 A

X2 = B
Fl = F(Xl)

F2	 F(X2)

* Test if A and B brac:ket a root

IF(Fl*F2 .GT.0) THEN

s=o

RETURN

END IF
WRITE(*,*)	 Xl	 X2'

COUNT	 I

Ill XO	 Xl - El	 (X2-Xl)/(F2-Fl

FO	 F(XO)
IE(FlFO .LTG) THEN

X2	 XC

= FO

ELSE
Xi = XO

Fl	 PC)

NDI F
IiRT. TE(**) X1X2

* Test if desired accuracy is achieved
IF(ABS()X2 X3) /X 2) ,LT.EPS) THEN

5=1
ROOT - (x1X2)*0.5

RETURN

ELSE
COUNT w COUNTi

GO TO 1l

ENDIF

END
* ------ -------- End oC subroutine FAt-- ---- --

*-------- ----

Functi.>n	 ibprograrn F(X)
* ----------------------- ------------*

REAL FUNCTION F(X)

FEAt X

F -

RETURN

END

L44 NumerIcal Methods

	End c[funct	 F(X	 -- - -	 -

test Results of FALSE
The program was used to find a root of the equation

+ x - 2 0

using the initial values (1.5, 20) and (-3.0, 0.0). Test results are given

1npu0. StorL±nj value
1.	 2.0

SOLUTION BY FALSE POSITION NErfl,2

SLai L ing poin:p 00 not- brackeLany root

	

S'-op - Program)i1m0Led

.50(000 run

Input sLar tli fig valuer
-3.0 0,0

SOLUTION BY FALSE POOl LION METHOI)

X2

	

• 3 . 302030	 - I . 000IwOo
-3. 000000	 : .

	

3.000030p	 -1 , 90009' 0

	

-3. 0000000	 -1. 967110

	

- j . 0000000	 -.
3.00U0oo

	

-3 , 0000c'so	 - I..

	

-3.0000333	 -i . 99080

	

- . OJ00P0u	 - L.

	

- 3 . 0020D0U	 -! . 9995 ft

	

0)00000	 1. 9 9.

	

-3 . 000000	 -2.

	

- 3. 00r:pp	 ••.

-
E(HOQT) = .0000003
N(-.. 30' T'FFHAT:ONS . II

--	 rogr1rr	 C1iTtr3.	 -. - - -

	Ns thu th p '- rnT!l	 :o	 nsp	 whop	 v-r -t injOo

	

'aIucs do not b'kt fl:.	 OL.	 hn a rue	 -)osbi, the pI-oce... ..
iteration stops when the re]atve error satisfies the condition

EPS

f(x)

V
Roots ot Nonlinea, Equafj5 14

ON-RAPHSON METHOD ''

Consider a g 4l'of f(s) as shown in Fig. 6,5. Let us assume that x 1 j anapprox-im.Yot of f(x) = 0. Draw a tangent at the curve f(x) at x = x1 asshown)e figure. The point of intersection of this tangent with the x-ses the second approximation to the root. Let the point of inter-
setion be x2. The slope of the tangent is given hy

tan	
x1 -x2

=f'(X)	 (6.19)

where 1(x 1) is the slope of f(x) at x = x 1 . Solving for x2 we obtain

f(x)
X2 =X1 (6.20)

This is called the Newton .RapJi .on formula,

Fig. 6.5 Newton-Raphson method

The next approximation would be

f(9)
X 3 =x2

f'(x2)
In general,

r	 f(x)
x.+1	

(6.2L

This method of successive approximation is called the Newton-RaphsonrnethocJhe process will be terminated when the difference between
two successive values is within a prescribed limit.

The Newton-Raphson method approximates the curve of f(x) by tan-gents. Complications will arise if the derivative f'(x) is zero. In such
cases, a new initial value for x must be chosen to continue the procedure.

14 NumenCal Methods

the Newton-RaPhS0n formula using the Taylor series expansion.

pKsir	
xCora

small interval h such that

-

We can express f(x +) using Taylor series expansion as follows:

= f(x) + f'(x)h +	 2!

If we neglect the terms containing the second order and higher deriva-

tives, we get
f(x 1) = f(x) + f'(x)h

If x ,14.1 is a root offx), then

f(x 7 , 1) = 0 = f(x) + f'(x)h

Then,
f(x

h _-_----=1i x7,

f' (x)

Therefore,	 ,, -

Newton-RaPhS0fl Algorithm
Perhaps the most widely used of all methods for finding roots is the
Newton-RaPhS0fl method. Algorithm 6.4 describes the steps fbr imple-
menting Newton-RaPhS0n method iteratively.

Newton-ROPhS0fl Method

i. Assign an initial value to x, say x0.

2. Evaluate 1(x0) and f(x0)

' 3. Find theimproved estimate of x0

f(x0)
x 1 =-

•	 f'(x0)

4. Check for accuracy of the latest estimate.

Compare relative error to a predefined value E. f	

< E

op; Otherwise continue.
). Rlace x0 by x1 and repeat steps 3 and 4.

T Algorithm 6.4

Root-s of Nonlinear Equu lions 147

liii
EXOMPW 6.7

 Ii' ruut uf tl	 uuuLtxofl

[(x)	 - r + 2-
in the vicinity ofx = 0 using NcwtonRaphaon method,

Let; x = Q (first approximation)

f(x1)
X X1	

rf(x)

2 2
2	 -ç

Similarly,

9.6667 -0.9333

X 4 09333	 = 0.9959

X. -99959 0.004199999
-1.0082	 -

X6 =0.9999 - - -0.0001- = 1.0001)-1.0002	 /
Since f(l-0) = 0, the root closer to the point = 0 is 1.000

Convergence of Newton-Raphson Method
Let x be an estimate of a root of the function fIx). If x,, and x 1 are close
to each other, then, using Taylor's series expansion, we can state

f(x) = f(x) + f'tx,, (x 41 - x)	 (x,, - x.,)"	 (6.22)

where R lies somewhere in the interval x, to x,, and third and higher
order have been dropped.

Let us assume that the exact root of f(x) is
xr.

rillen x,,. 1 X,.. There-
fore f(x,, 1) = 0 and substituting these values in equation (6.22), we get

0 f(x) + f'(XXXr - x)	 (x, -	 (€23)

We know that the Newton's iterative formula is given by

f(x)
X,11	X,

f'(x,1)

JAB Numerical Methods

Rearranging the terms, we get
f(x) = f'(x) (x -

Substituting this for Ax,,) in Eq. (6.23) yields

0 = f'(XnXXr - x 1)	 (X - x)2	 (6.24)

We know that the error in the estimate x, is given by
= X,. - Xnil

Similarly,
en	 - xn

Now, equation (6.24) can be expressed in terms of these errors as

f "(R)o	 ,c	 2
- ,r
	

+

Rearranging the terms we get,

LI f	 - ^e 	 (6.25)^T(x Id
Equation (6.25) shows that the error is roughly proportional to the square
of the error in the previous iteration. Therefore, the Newton-Raphsofl
method is said to have quadratic convergence.

Program NEWTON

The NEWTON shows a FORTRAN program for evaluating a root of non-
linear equations by Newton-Raphsofl method. The program uses two
external functions, F and FD and one intrinsic function, ABS. The func-
tion F evaluates the actual function at a given value of x and VD evalu-
ates the first derivative of the function at x.

The program employs the Algorithm 6.4 and prints out the value of a
root (when it is found) and the number of iterations required to obtain
the result. It also prints the value of the function at that point to check
its accuracy. In case the process does not converge within a specified
number of iterations, the program outputs a message accordingly,

PRCGFSAM NEWTON
* ---.-- ------------- -------------------..-----

Main proqralt	
*

*	 IIiij pxogratP finds a root of o nonlinear equation	 *

*	 oy Newton-RaPhSOrl method

* Functions invoked	
*

/BS,FFD	
*

* --------------------------------
	 *

k Subroutines u@d
*	 NIL
* ---------------------------

Roots of Nonlinear Equations 3.42

* Variables used	 *
*	 X0 - Initial value of x	 *

XN*	 - New value of x	 *
FX - Fiirict ion value at x	 *
PDX - Valoe of function derivative at x 	 *

*	 COUNT - Number of iterattons done	 *
* ----- -------------- 	 -----*
* Constants used	 *
*	 EPS - Error bound	 *
*	 MAXIT - Maximum number of iteoations permitted 	 .
*------	 --	 -----------------	 *

REATj X0, XN, F'X, FOX, ARS, CPS, F, FD
INTEGER COUNT, I4AXIT
INTRINSIC ABS
EXTERNAL F,FD
PARAME'l'ERHPS = 0.000001, MAXIT	 100',

WRITE*,*) 'Input initial value of x'
READ(* , *) XO

WRITEV,k)
WRITE(*,*) '	 SOLUTION BY NEWTON-RAPHSON METHOD'
WRITE(*

COUNT	 1
100 FX = F(X0)

FDX	 FD (X0)
XN	 X0 -FX/FDX
IF(ABS((XN-XQ)/xN) .LT,EPS) THEN
WRITE(*,*) 'Root = ', XN
WRITE(* , *) 'Function value = ', F(XN)
WRITE(*,*) 'Number of iterations = ', CCUNT
WRITE(*,*)

ELSE
x0
COUNT = COUNT + 1
IF (COUNT .LE.MAXIT) THEN

GO TO 100
ELSE

WRITE(*,*)

WRITE(*.) 'SOLUTION DOES NOT CONVERGE IN'
WRITE(* , *) MAXIT, ' ITERATIONS'
WRITE(* *)

ENDIF

ENDIF

STOP
END

* ----------- ----- End of main progani ----------------*

LW Numerical Methods

* FuflcLJofl subprogram F(x)
----	 -	 ------- ------.------	 -	 *

REAl FUNCTION F (X)

REAL X

P	 xX+X-2

RETURN

END
* -------------End of function F(X)

* Function subprogram FD(x)

REAL FUNCTION P0(X)

REAL X

FD - 2*X1

RETURN

HN U
* ---------------	 of function P0(X) --*

Test Results of NEWTON Given below are the outputs of the test runs of
the program NEWTON.

First run
input initial vLuu of x

0
SOLUTION 13Y NEWTON -itPNSC1 METHOD

Pool- - I.0U0000D

F'nction value - 0000000

rrJ:er ol itara:ion	 6

- ?roUJ:aTn tormnated.

Second run
fnuu.	 i:.a1 value of x

U
SOLUTION HY NEWTON RAPI-ISON METHOD

Root .---2. 0000000

Function vilue -.0000000

Number of iterations	 6

Utop - Prourw tcrmioaed.

Third run
1npu; iutiu) v-due of x

1.0
SOLUTION EY NENTON-RAPUSON METHOD

Root - 1.0000000

Function value = .0000000

Number of iteratono	 1

Stop	 Program terminated.

Roofs of Nonlinear Tquations JJ

Show, through an example, that the number of correct digits appro-
mately doubles with each iteration in Newton .Raphson method.
Given below is the output of NEWTON program for solving the equation

- 4x2 + x+ 6 0, using an initial estimate of 5.0.
Iteration	 Estimation	 Correct digits

1	 5.000000	 NIL
2	 4.000000	 NIL
3	 3.411765	 1
4	 3.114462	 1
5	 3.013215	 2
6	 3.000213	 4

	

-7	 3.000000	 7
This shows that the number of correct digits approximately doubles
Lh each iteration near the root.

	

r
ationsof	 n	 hs	 ethod

Newton-Rap n mdtho as certain limitations and pitfalls. ThE
method will fail in the following situations.

1. Division by zero may occur iff'(x) is zero or very close to zero.
2. If the initial guess is too far away from the required root, the

process may converge to some other root.
3. A particular value in the iteration sequence may repeat, resulting

in an infinite loop. This occurs when the tangent to the curve f(z)
at x = x. cuts the x-axis again at x = x.

SECANT	 ODO like the false position and bisection methods, uses two
initial estimates but does not require that they must bracket the root.
For example, the secant method can use the points x 1 and x 9 in Fig, 6.6
as starting values, although they do not bracket the root. Slope of the
secant line passing through x 1 and x2 is given by

f(.c 1)	 f(x2)

X i X 3	 X2

f(x) (x 2 - X3.) =1(x2) (x 1 - x3)

X3 lf(x2) - fx1)} =1(x2) x 1 - f(x)x2

f(x 2)x 1 —f(x1)x2	
(6.26)X3=_

or

Then

f(x)

line

152 Numerical Methods

By adding and subtracting f(x 9.)x 2 to the numerator and rearranging the

terms we get

(6.27

Equation (6.27) is known as the secant formula. If the secant hue repre-
sents the linear interpolation polynomial of the function f(x) (with the
interpolating points x 1 and x9) then x3 , which intercepts the x-axis, rep-
resents the approximate root of f(x).

flg. 6.6 Giuphical depiclion of secant method

The approximate value of the root can be refined by repeating this
procedure by replacing .i 1 and x 2 by x and x, respectively, in Eq. (6,27).
That is, next approximate value is given by

f(x)(x)..xi =.	 f(x3)f(x2)

This procedure is continued till the desired level of accuracy is obtained.
We can express the secant formula in general form as follows:

f(x)(x-- x.

	

[X 1 f()	 (6.28

Note that Eqs (6.17) and (6.28) are 9imi1r and both of them use two
initial estimates. However, there is a mjer difference in their algo-
rithms of implementation. In Eq. (6.17), the latest estimate replaces one
of the end points of the interval such that the new interval brackets the
root. But, in Eq. (6.28) the values are prefaced in strict sequence, i.e.,
x 1 is replaced by x and x, by ;,. The points may not bracket the root.

Roots of Nonlinear quaflons j
Secant Algorithm
Note that the value of new approximation of the root depends on the
previous two approximations and corresponding functional values. Algo-
rithm 6.5 illustrates how this procedure is implemented to estimate a
root with a given level of accuracy.

Secant Method

1. Decide two initial points x 1 and x2 , accuracy level required, E.
2. Compute 11 = f(x1) and 4 1(x2)

.	 -3. Compute x3
= f

2	 f1x

4. Test for accuracy of x.
1x 3 - x2

If	 > E, then
X3

set x = x and f., = 4
set x2 -- x- and 4 = f(x3)
go to step 3

otherwise,
set root = x3

print results
5. Stop

Algorithm 6.5

Usu the secanz ne.hcl to estimate the root of the equation

x2--1O=O
with the initial estimates of x 1 4. and x2 2
Given x = 4 and x. = 22

= [(2) = -14
(Note that these points do not bracket a root)

f(x9)'x2.x1')
=X 2 f(x9)-1c1)

2 -14(2 -4)
-	

-
For second iteration,

X ' = X2 = 2

-2--% -
-

-- L-

C-7)
2-'

IM Numerical Methods

xz =	 9

f(x1)=f(2)=-l4
f(x2) = f(9) = 95

35(9 2)x=9- - -------- -.4
35+14

For third iteration,
= 9
= 4

f(x) = f(9) = 95

f(x) [(4) = -10

-10(4-9)
X3 4_...-----=5

10-35

For fourth iteration,
= 4

X2 = 5.1111

[(x i) [(4) = -10

f(x)=f(.i111)= --4.3207

-4.3207(5.1111-4)
59563

-4.1207-10

'or fifth iteration,
= 5.1111

X2 = 5.9563
fix = f'5. 1 .111) = -4.3207

f(x 2) [(5.9563) = 5.0331

5.0331 (5.9563-5.1111) =- 5.5014
x 3 59563-- o.0331+4.207

For sixth iteration,
5.9563

= 5.5014

f(x 1) = f,9539) - 5.0331

f(x.,) = [(5.5014) -1.7392

-1.7392(5.5014 5.9563)
X3 5.5014 ----- 	 ---- 5.6182

-1.i392+.5.033l
The value can be further refined by continuing the process, if necessary.

Roots of Nonlinear [quatlons

Compare the secant iterative formula with the Newton formula for esti-
mating a root.

Newton formula:	 -
t IX)

XSecant formula: 	 x, =x -
f(x,)—f(x .)

This shows that the derivative of the function in the Newton formula
has been replaced by the term

f(x	 . f (X,:.
_t, I - Xfl_l

in the secant formula. This is a major advantage because there is no
need for the evaluation of derivatives. There are many functions whose
derivatives may be extremely difficult to evaluate.

However, one drawback of the secant iterative formula is that the
Previous two iterates are required for estimating the new one. Another
drawback of the secant method is its slower rate of convergence. It is
proved later in this section that the rate of convergence of secant meth-
odis 1.618 while that of the Newton method is 2.

Convergence of Secant Method
The secant formula of iteration is

f(xlL — x)
+1 =X	 (6.29)f(x-f(x)

Let Xr be actual root of 1(x) and ej the error in the estimate of x.
Then.

+ X.

ci +

= e, + Xr

Substituting these in Eq. (6.29) and simplifying, we get the error equa-
tion as

(6.30)e1+1	 f(x)—fx11)

According to the Mean Value Theorem, there exists at least one point,
say x = R. in the interval; and x, such that

f(Xi)_f(Xr)

X r•: Xg.

Numerical Methods

We know that
f(Xr) = 0

=

and therefore

x)
f(R) f(e

or
f(x) e j f'(R)

Similarly,

f(x 1) = e 1 f(R-)

Substituting these in the numerator of Eq. (6.30), we get

f'(R)-f'(R)
C 1	 - -

	

f(x) - t(x)

That is, we can say
(6.31)

We know that the order of convergence of an iteration process is p, if

±1ei	 (6.32)

or
(6.33)

Substituting for C;, and e, in Eq . (6.31), we get

' ore	 1

or	
[1	 (6.34)

Comparing the relations (6.32) and (6.31J, we observe that

p = (p + il)/p

That is,
1) 2 - p - 1 = 0

which has the solutions

p

Since p is always positive, we have
P = 1.618

It follows that the order of convergence of the secant method is 1.618
and the convergence is referred to as superiincar ciwerjJcnce.

Roots of Nonlinear Equations

Program SECANT
The program SECANT finds a root of a non-linear equation using two
initial values supplied. The program employs a function subprogram, F,
to evaluate the value of the function and a subroutine subprogram, SEC,
to implement the Algorithm 6 .5 for estimating the root. The subroutine
uses the absolute relative error in the successive approximations for
terminating the process.
* ------------	 -------------------	 -----------*

PROGRAM SECANT
* --*

* Main program	 *
*	 This program finds a root of a nonlinear 	 *
*	 equation by secant method
* --*
* Functions invoked	 *
*	 F	 *
**
* Subroutines used

SEC	 *
-	 -----------------
* Variables used	 *
*	 A - Left endpoint of interval	 *
*	 B - Right endpoint of interval	 *
*	 ROOT - Final solution	 *
*	 COUNT - Number of iterations completed	 *
* ---
* Constants used
* EPS - Error bound

:
REAL A, B, ROOT, EPS, F
INTEGER COUNT, STATUS, MAXIT
EXTERNAL F,SEC
PARAMETER(EPS = 0.000001, MXXIT - 50)

WRITE(* , *)
WRITE(* , *)	 SOLUTION BY SECANT METI-iOU'
WRITE(*,*)

WRITE(* , *) 'Input two starting points'
READ(* , *) A,B

CALL SEC (A, B, X1, X2, EPS, ROOT, COUNT, MAXIT, STATUS)

IF(STATUS .EQ. 1) THEN
WRITE(*,*)
WRITE(*,*) ' DIVISION BY ZERO'
WRITE(*,*)
WRITE (*, 	 Last Xl	 ' , xl

Numerical Methods

WRITE*, A) 	 Last X2	 ,X2

WRITE (,)' ITERATIONS =' ,COUNT

WRITE (

ELSE IF) STATUS .EQ. 2) THEN

WRITE(" ,*)
WRITE(A ,*) 'NO CONVERGENCE IN ',MAXIT,' ITERATIONS'

WRITE(*,*)

ELSE

WRITE) *
WRITE(*,*) 'Root	 ', ROOT

WRITE(*,*) 'Function value at root	 ', F(ROOT)

WRITE(*,
WRITE(*,*) 'Number of iterations	 'COUNT

WRITE(* ,')

ENPIF

STOP

END
* ---------------End of main program -----------------

SUBROUTINE SEC (A, B, X1,X2, EPS, ROOT, COUNT,MAXIrP,STATUS)

* Subroutine	
*

*	 This subroutine computes a root. of an equation
*	 using the secant method

----	 ---*

*	 'j'-t-;	 *

- i	 nod point	
*

-	 *'rid point
.--- .-' 	bound	

*

- Saximum .LterCt:ons allowed

* Output	
*

*	 Xl - New left point	
*

X2 - New right point	 *

*	 ROOT -. iinal solution

* COUNT - Number of teratons done
*	 STATUS - Status of completion of the task

* L:al Vaxjdl)lOS	 A

*	 X3,F1,F2,ERR0R	
A

* -- - - - - --- - - - - - -- -- - - - - - 	 -- . - --- -
	 *

* Functions invoked
*	 ABS

- --A

* Subroutines called
*	 NIL	

A

Roots of Nonlinear Equations j

REAL A, B, XI, X2,X, EEC, ROOT, LI, F2, f",ABS, EPP.L
INTECER OOrJNT,STATf;2,XIr
INTRINSIC ABS
EXTERNAL F

* Ficti.i Va nas a p	r jai Lrlts
Xl = A

X2 -, B

Li - F(A)
P2	 F(B)

* Compu;:e	 In:cot iravO]V
COUNT = 1

111 TF(ABS(FI-P2 .1	 L[. i.E-ID) THEN
STATUS

RETURN
END.I. F

X3	 X2-P2 * fX2-\ij/(F2-Ffl
ERROR = AI3E(X3-X2) /X J)

* Tar In- <.=cnracy
IF (E.POn U] - EPS) TUSH

*	 Tns: for converUcr:ce
COUNT .EQ. t4AXIT)'loiE:N

STATUS = 2
RETURN

ENDIF

X1	 X2
X2 r
Fl	 = 1'.
P2	 FX3)
COUNT	 COUNT + 1
GO TO 111

*	 and compute next approximation

ENLU F

ROOT = X3

SATUE - S

RETURN
END

* --------------	
ot 3ubroutine SEC -------	 --•-- *

Function subprogram F(x)
* ---- 	 ---

REAL. FUNCTION F]X)
REAL S

F = XXX-

JQ Numerical Methods

RETURN
END

-.	 -	 Ed of timcior. F(X)	 -	 - *

Test Results of SECANT
Given below are the outputs of test runs of SECANT

First run
OltiTION BY SETkNT FTFTTL

Ir1p'i1 twO stot.tig po1rLS

-3.0001 0

Root - --2.0000000

FuncLl.on value at root -. 0000000

Number of iteratioru3 = H

Stop - PFogrom Lr.iiinaLed,

Second run
SOLUTION BY SECANT METiOU

Input: two sLrLing points

0 -3

Root - -2.0000000
Func:LioO value at root = .0000000

Number of iterat1oru = B

Stop - Proqrlit. termired.

Note that. the program incorporates a test for convergence and also a
test for 'division by zero' while evaluating the secant formula (see Eq. 6.27).

FIXED POINT METHOD

Any function in the form of

f(x) = 0	 (6,35)

can he manipulated such that .x is on the left-hand side of the equation
as shown below

X g(X)	 (6.36)

Equations (6.35) and (6.36) are equivalent and, therefore, a root of
Eq. (6.36) is also a root of Eq. (6.35). The root of equation (6.36) is given
the point of intersection of the curves y = x and v = ox). This intersec
tion point is known as the fixed point ofg(x) (see Fig. 67).

The above transformation can he obtained either by algebraic Inanp-
u]ation of the given equation or by simply adding x to both sides of the
equation. For example,

+ x —2 = 0

can be written as
x = 2 - x2

t X

g(x)

Roots of Nonlinear Equations i1

FIg. 6.7 Fixed point method

or
xx2+x-2 +x =x2 +2x2

Adding of x to both sides is normally done in situations where the origi-
nal equation is not amenable to algebraic manipulations. For example.,

tan x = 0
would he put into the form of Eq. (6.36) by adding x to both sides. That is,

x = tan x + x
The equation

X = g(x)
is known as the fixed point equation. It provides a convenient form for
predicting the value of as a function of x. If x 0 is the initial guess to a
root, then the next approximation is given by

x i = g(x0)

Further approximation is given by
= g(x1)

This iteration process can he expressed in general form as

g(x)	 i = 0,1,2.I	 (6.37)

which is called the fixed point iteration formula. This method of solution
is also known as the method of successive approximations or method of
direct substitution.

The algorithm is simple. The iteration process would be terminated
when two successive approximations agree within some specified error.

Locate root of the equation
+ x 2 = 0

using the fixed point method,

The given equation can be expressed as
x = 2 - x2

Let us start with an initial value of x = 0
x =2--C =2

12 NumicaI Methods

= 2 - 4 -2
2 - 4 = -2

Since x3 -	 = 0. -2 is one of the roots of the equation.
Lot, us assume thattx0 = - 1. Then

= 2 - I = 1
2- 1 = I

Another root is t.

Evaluato the square root of 5 using the equation
- 5 0

by applying the fixed point iteration algorithm.

Let us reorganise the function as follows:
= 5Ix.

and assume = 1. Then.

:i

= 5
-

The process does not converge to the solution. This type of divergence is
known as oscillatory divergence.

Let us ctinsir another form of 9(x) as shown below:
X = x 2 + x - 5
xo 0
x 1 = -5
X,) = 15

= 235
55455

Again it does not converge. Bather it diverges rapidly. This type of
divergence is known as monotone divergence.

Let na try a third form of g(x).
2x = 51x +X

x ± Sixor
2

Xe =

-

= 2.3333
2.2381

x = 2.2361
= 2,2361

This time, the process converges rapidly to the solution. The square root
of 5 is 2.2361.

(d) Spiral divergence(b) Spiral convergence

Y

Roots of Nonlinear Equations].

Convergence of Fixed Point Iteration
As stated earlier, the iteration function g(x) can be formulated in differ-
ent forms. Example 6.12 shows that not all forms result in convergence
of solution. Convergence of the iteration process depends on the nature
of g(x). Figure 6.8 illustrates various patterns of behaviour of the itera-
tion process of the fixed point method. Figures 6.8(a) and 6.8(b), show
that the solution converges to the fixed point x1 during the iteration
process. However, it does not happen in Fig. 6.8c and 6.8d. Notice that
the process converges only when the absolute value of the slope of y =
g(x) curve is less than the slope of y x curve. Since the slope of y = x
curve is 1, the necessary condition for convergence is

g'(x) < 1
We can also notice that, in the neighbourhood of the solution, if the

slope of g(x) is positive, the convergence is monotone with "staircase"
behaviour, and if the slope of g(x) is negative, the convergence is oscilla-
tory in behaviour, it is also clear that the closer the slope of g(x) is to
zero, the faster will he the convergence of the process.

Y	 (x) y

I/H
(a) Monotone convergence(c) Monotone divergence

Fig. 6.8 Poerns of behavour of fixed point iteration process

We can theoretically prove this as follows:
The iteration formula is

(6.38)

144 Numericol Methods

Let x1 be a root of the equation. Then,

x1 =g(x,)	 (6.39
Subtracting equation (6.38) from equation (6.3) yields

Xf - = g(x1) - g(x) (6.40)
According to the mean value theorem, there is at least one point, say,
x R, in the interval x1 and x1 such that

OR)
= g(x1)--g(x)

xf-xi

This gives

gfx1- g(x) =g'()(x1 - x,)

Substituting this in Eq. (6.40) yields

x1- ;	 =g'(R)x1 •- x)	 (6.41)
If e, represents the error in the ith iteration, then Eq. (6.41) becomes

= g'(R',	 (6.42)
This shows that the error will decrease with each iteration only if

g'(R) < I

Equation (6.42) implies the following:
1. Error decreases if g'(R) < 1
2. Error grows if g'(R)> I
3. If OR) is positive, the convergence is monotonic as in Fig. 6.8(a)
4. If g'(R) is negative, the convergence will he oscillatory as in

Fig. 6.8(b)
5. The error is roughly proportional to (or less than) the error in the

previous step; the fixed point method is, therefore, said to be lin-
early convergent

Program FIXED P

The program FD(EDP is the simplest of all programs discussed so far for
determining a root of a nonlinear equation. The iteration process is
terminated when two successive approximations agree within some spec-
ified error. The program uses a control loop to terminate the execution
when the process does not converge within a specified number of itera-
tions.
* -----------------. ---------- .*

PROGRAM PIXEOP

* Main program	 *
*	 Thi:; program finds a root: of a LanCLIOO using	 *
*	 the fixerip point iteration method	 *
* --

Roots of Nonlinear Equations 1
* FuflCtiOflS invoked
*	 G, ABS
* -----------------------

* subroutines used

NIL
* --------------------

* Variables used
*	 XC - Initial guess
*	 - Estimated root
*	 ERROR - Relative error
* --------------- ------------

* Constants used
*	 EPS - Error bound

MAXIT - Maximum Iterations allowed
* -----------------------

REAL X0,X,ERR0R,G,AB5,E

INTEGER MAXIT
INTRINSIC ABS
EXTERNAL C
PARAMETER (EPS = 0.00001)

WRITE (**)
WRITE (*,*) 'SOLUTION BY FIXED POINT ITERATION METHOD'

WRITE(*,)

WRITE(*,) 'Input initial estimate of root'

READ (**) XC
WRITE(* , *) 'Maximum iterations allowed'

READ(*,*) MAXIT

WRITE(*, *)
WRITE(*,*)	 ITERATION	 VALUE OF X	 ERROR'

DO 100 1 = 1, MAXIT
X = C (XC)
ERROR = ABSUX-X0)/Xl
WRITE(**) :,X,ERROR
IF (ERROR .LT.EPS) TEEN
WRITE (*,*)
STOP

ENDIF
XC = X

100 CONTINUE

WRITE (*,*('Process does not converge to a root'

wrlte(r *) 'Exit from loop'

STOP
END

* ------------End of main program FIXEDP ------------*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

166 Numerlcal MeThods

*	 -	 - -	 -	 - --	 *
* Func:±on subpiogram (0x)

REAL FUNCTION 2(X)
REAL X

C = 2.0_X*x

RETURN
END

	

--	 ----------- -	 ci	 LJncLjon OIX) -----------------*

Test Results of FIXEDP The outputs of the program F1XEDP for various
initial values are shown below:
First Run

SO[tJTION BY FIXED PO2NT I1F:RAFION (IE1'N
:riDUt iniLJ,aI estiniate of r000
0.0

Ma>:lrnum j te rdtoro: a11oqej
1 0

ITERATION	 VAI,iTr. OP X	 ERROR
1	 2.0000000	 1 0000000
2	 --2.0000000	 0.0000000
3	 2. o2oouo	 .0000000

	

SLop	 Program terminated.
Second Run

SOLUTION BY FIXED P31 ,1- T ITERATION PTflQfl
Input hilL ial et iiudt	 of rrjoL

mum lLiiatior1s aihowd
JO

TF•:RATTON	 VALUE OF" X
1	 l.0000000	 - 0000000

S Lo1.i - Pr ogrun term nat'e:i

A11JJDETERMINING ALL POSSIBLE ROOTS

Al] the methods discussed so far estimate only one root. What if we are
interested in locating all the roots in the given interval? One option is to
plot a graph of the function and then identify various independent inter-
vals that bracket the roots. These intervals can be used to locate the
various roots.

Another approach is to use an incremental search technique covering
the entire interval containing the roots. This means that. search for a
root continues even after the first root is found. The procedure consists
of starting at one end of the interval, say, at point a, and then searching
for a root at every incremental interval till the other end, sa y , point h, is
reached (see Fig. 6.9). The end points of each "incremental interval" can

J
f(x)

Roots of Nonlinear Equations 1.67

Fig. 6.9 Incremental search for all possible roots

serve as the initial points for one of the bracketing techniques discussed.
Algorithm 6.6 describes the steps for implementing an incremental search
technique using the bisection method for locating all roots.

A major problem is to decide the increment size. A small size may
mean more iterations and more execution time. If the size is large, then

there is a possibility of missing the closely spaced roots.

Determining all roots

1. Choose lower limit a and upper limit h of the interval covering all
the root,.;.

2. Decide the size of the incremental interval x
3. Set x 1 a and x2 = x, + X

4. Compute f, = f(x1) and '2 1(x2)
5. x 1> 0, the interval does not bracket any root

go to step 9
Otherwise,

continue
6. Compute x0 =	 + x2)!2 and f	 1(x0)
7. If f, x f0 < 0, then

set x2 =

else
set x = x0 and f =

8. It I(x2 - x 1)fx2 I < E, then
root = (x 1 + x2)/2
write the value of root
go to step 9

else
go to step 6

9. U Y2 < h, then set a = x2 and go to step 3
10. Stop

Algorithm 6.6

10 NurncricaI Methods

6.12 SYSTEMS OF NONLINEAR EQUATIONS

A system of equations is a set consisting of more than one equation. A
system of a equations in n unknown variables is given below.

f1(x1,x2,...x)=O

f,(x1. x2, ... x,) = 0

(6.43)

f(x 1 , • 2	 Xr) = 0
Equation (6.43) requires values for x 1 , x2 ,..., x, such that they satisfy

all the n equations simultaneously . If these equations can he expressed
in the form

fix.) = a 1 x + a2 x2 + ... + a x,	 C	 C)

then the system is said to be linear. On the other hand, if they involve
variables with powers, then the system is said to be nonlinear.

For example,

X
2 s- 2x -y 2 = 2

s 3xy = 4

is a system of nonlinear equations in two unknowns. These equations
can be expressed in the form of equation (6.43) as

f(x,y)=x 2 + 2x— y2 — 2 = 0	 (6.44)
g(x, y) = x2 + 3xv 4	 = 0	 (6.45)

Solution of these equations requires values of x and .v that could satisfy
both of them simultaneously. We will discuss two methods in this section
for solving such equations.

Fixed Point Method
One simple approach for solving a system of nonlinear equations is to
use the fixed point iteration method. Equations (6.11) and (6.15) can he
written in the form

x = I"x, y)

y = G(x, y)

We can compute x and y using some initial values of x and y on the
right-hand side. The new values of x and can again be used to compute
the next set of x and y values. This process can be repeated till a desired
level of accuracy in the computed values is reached. This Iterative process
can be represented in general form as

x1+i = F(x1 , y)

yi+i '- G(x, y)	 (6.46)

Roots of Nonlinear Equations]

This can be implemented using the steps given in Algonihm 6.7.

Fixed point method for a system

1. Define iteration functions
F(x, y) and G(x, y)

2. Decide starting points x0 and y0 and error tolerance E
3. x 1 = F(x0, y0)

= G(x0 , y0)

4. If Ix,—x31<Eand
- Ye' < E. then
solution obtained;
go to step 6

5. Otherwise, set
xo=x1
Yo Yi
go to step 3

6. Write values of x 1 and y
7. Stop

Algorithm 6.7

Exoró

Sel'e the lolluwing ovotem of nonlinear equations using fixed point
method.

X2
	 2
- = 3
4- Xy = 6

Iteration functions of these equations are formed as

X = y
+ X i y

6—x2
Y -.

Assume x0 1 and Yo = 1
= 2.5

yi 5
5.4

= 0.445
= 13

The process does not converge. We have to solve the system by forming
another set of equations for x and..),.

.I7.Q Numerical Methods

Following an approach similar to the one discussed in Section 6. 10, it
can be shown that the iteration process converges if the following
equations are satisfied.

-
c& + 111̂ 1

<1

and

?FI I
i+ 	 < 1	E?y	 k?	 (6.47)

The task of forming appropriate iterative functions F(x, y) and G(x, y) to
satisfy the above conditions may become very difficult and, therefore,
the fixed point iteration process is rarely used to solve systems of non-
linear equations.

Newton-Raphson Method
The Newton-Raphn method, which was discussed iii Section 6.8 for
solving single nonlinear equations, can be extended to systems of non-
linear equations. Recall that a first order Taylor series of the form

	

Ax. 1) = f(x,) + 0C , 1 x,) P(X)	 (6.48)
was used to derive the Newton iteration formula

[(I)11	
['Ct-)	 (6.49)

for solving one equation. For the sake of simplicity, let us again consider
a two-equation nonlinear system

	

f(x,y)=0	 g(x,y)=0

First order Taylor series of these equations can be written as

	

f(x,1,y,+1) f(x,,y,) + (x, 1 —x,)	 +(y,	 Y,	 (6.60a)

9(x,f1,y11)9(x.,y.)+(1	
(6.50b)

If the root estimates are x 1 and y , 1 , then
[(x 1 , y, 1) = 9(x. 1 , y , 1) = 0

Substituting this in Eq. (6:50) we get the following two linear equations:

	

AX fl + Ay f2 -i-f= 0	 (651a)
Lix9 1 + Ay92 +g = 0	 (6.51b))

where we denote
Ax = x 1 --

Roots of Nonlinear Equations ILl

AY = yitl - y

f,
 d'

df1 -
f2—

9 1 =--, g 2

1=	 y1), g = 9(x, y1)

Solving for x and y, we get

	

f2	 DX	 (6.52a)

	

f192 _f291	 D

Ay	
g f1 fg 1 	Dy	 (6.52b)

	

fl 92 — f291	 D

where

Dt f21=f192_9j2
g 1 92

is called the Jacobian matrix. From Eq. (6.52a) and (6.52b), we can
establish the following recurring relations:

=x -	 (6.53(a)

L±1J
Equations (6.53a) and (6.53b) are similar to the single-equation New-

ton formula and may be called the two-equation Newton formula. These
equations can be used iteratively and simultaneously to solve for the
roots off(x,y) and g(x,y).

Algorithm 6.8 lists the steps involved in implementing the Newton
iteration formula for a two-equation system.

Two equation Newton-RaphsOfl method

1 Define the functions 1' and 9
2. Define the Jacobian elements

f, f2 , g1 and g2

3. Decide starting points x and y0 and error tolerance E.

4. Evaluate I g, f, f, g, 92 at (, y)
Compute Ox, Dy and D

K4 = x. - DxJD

= y -. Dy/D

(Contd.)

172 Numerical Methods

(Contd.)
5. Test for accuracy.

If Ix, -x < Eand
IYi - J1Q 1 < E, then

Solution obtained;
go to step 7

6. Otherwise, set
xo -'-xi

Yo =
go to step 4

I. Write results
8. Stop

Algorithm 6.8

Determine the roots of equations
+ xy 6

y2 = 3
using the Newton-Raphson method

Let	 F(x,y)=x2+x-y-6
G(x, y)= x 2 -y -3

=2x+y

dF
f2—=Y

=	 = 2xdG

-2y

Assume the initial guesses as
x0 =1	 and	 y0rl

Iteration 1

fl = 12 1
= 2,g2 = - 2

and therefore
D = -6 -2 =. -8

The values of functions at x 0 and Yo
F=12 +lxl-6 _4
G= 12123	 _3

(-4)(-- 2)- (-3) (1)
x1 =1-(-8) —=2.375

Roots of Nonlinear Equations 1L3

-- 1------	 -0.875
(-8)

Iteration 2
f = 2 x 2.375 + 0.875 = 5.625

12 = 0.875
gj 4.75

92 = -1.75
F = (2 . 375)2 + (2.375) (0.875) - 6 1.71187

G (2.375)2 - (0 . 875)2 = 4.8750

D (5.625) (-1.75) - (4.75) (0.875)
- 9.8436 - 4.1563 = -14

(L7187)(- 1.75)- (4.875)(O.875)
x2 =2,37S---------------j

-	 (-3.0077)-4.2656 2.375 - 0.5195

	

2.375	 -14

= 1.8555
(4.875) (5.625) - (1.7187) (4.75)

	

Y2=0875	 --________________

0.875-
27.4218-8. 1638

=-------- = 2.2506

Continue further to obtain correct answer.

ROOTS OF POLYNOMIALS

We have seen that the methods discussed so far can also be used for
evaluation of the roots of polynomials. However, these methods run into
problems when the polynomials contain multiple or complex roots.
Pol ynomials are the most frequently used equations in science and
engineering and, therefore, require special attention in terms of evaluation
of their roots. In this section, we discuss methods to determine all real
(not necessarily distinct) and complex roots of polynomials. These methods
are specially designed for polynomials and, therefore, cannot be used for
transcendental equations.

We will try to use the following properties of nth degree polynomials:

1. There are a roots (real or complex)
2. A root ma y be repeated (multiple roots)
3. Complex roots occur in conjugate pairs
4. If n is odd and all the coefficients are real, then there is at least one

real root
5. The polynomial can he expressed as

p(x) = (x Xr) q(x)

where Xr is a root of p(x) and q(x) is the quotient polynomial of

order a - 1

124 Nurner(ccJ Methods

The number of real roots can he obtained using Descar(c's rule of sign.
This rule states that

1. The number of positive real roots is equa] (or less than by an even
integer) to the number of sign changes in the coefficients of the
equation

2. The number of negative real roots is equal (or less than by an even
integert to the number of sign changes in tire coefficients, if. is
replaced by x

Multiple Roots

A polynomial function contains a multiple root at n peril when the
function is tangential to the x-axis at that point. For example, the equation

x3 - 7x2+1fix-90
has a double root at x = 3 (see Fig. (3.10(a)). The graph is tangent to the
x-axis at this point.. Similarly, the equation

x4.l Ox r +36x2. %r — 32
has a triple root at x 2 (See Fig. 10(b)). Note that the curve crosses the
.t-axis for odd multiple roots and turns bach for the even multiple roots
'['his means that the bracketing methods Mll have problem.s in locating
the even multiple roots. Another problem xis that both f and itsderivative P(x) become zero at the point of multiple roots. As a
consequence, the methods (Newtun-Rap} isun and secant) that use
derivatives in the denominator might face the problem of division by
zero near the roots.

(a) t(x)	 - 7x 2 + 15x 9

\\ multiple roo
kx) (three)

5
X

(b) t(x) = x 4 - lOxr t 36x2 - 56x + 32
Fig. 6.10 Graph of multiple roof polynomials

Roofs of Nonlinear Equations 11

Deflation and Synthetic Division
We stated that a polynomial of degree n can be expressed as

P(X) = (x - x1) q(x)

where Xr is a root of the polynomial p(x) and q(x) is the quotient polynomial

of degree n - 1. Once a root is found, we can use this fact to obtain a

lower degree polynomial q(x) by dividing p(x) by (x - x) using a process

known as synthetic division. The name "synthetic" is used because the

quotient polynomial q(x) is obtained without actually performing the
division. The activity of reducing the degree of a polynomial is referred

to as deflation.
The quotient polynomial q(x) can be used to determine the other roots

of p(x, because the remaining roots of p(x) are the roots of q(x). When a
root of q(x) is found, a further deflation can be performed and the process
can be continued until the degree is reduced to one.

Synthetic division is performed as follows:

Let	
rz

and
--	 pt-I

	

q(x)	 >b1x1

lfp(x) = (x - x,) q(x), then

axn + a, I Y I + ... + a 1 x + a0

= (x -xl (b,_ x`1+ h 02 x 2 + ... + b, x + b 0)	 (6.54

By comparing the coefficients of like powers of x on both the sides of

equation 6.54l, we get the following relations between them:

a,, = b,_ 1	-

b 2 - Xr b,1

a 1 = bo - Xrbi

a0	 Xr b0

That is
a=bj-xrb,,	 i=n,n-L...O

where h,	 0.

Then

	

6 i_ai+xrbi,	 1	
(6.55)

-

fl Nurner(cai Methods

Equation (6.55) suggests that we can determine the coefficients of q(x)
(i.e., b , b,, 21 ... b 0) from the coefficients of' p(x)(i.e., a,,, a_ 1 , ... a)
recursively. Thus, we have obtained the polynomial q(x) without
performing any division operation.

The polynomial equation
p(x)	 - 7x 2 15x - 9 = 0

has a root at x = 3. Find the quotient polynomial q(x) such that
-31q(x)

From p(x), we have
= 1, a 9 = - 7, a 1 = 15, and a 0 = - 9
= 0

h 2 =a 3 +bx3 1+0=1
b 1 =a2 + b, x 3=-7 + 3 -4
b0 =a 1 +b 1 x3= 154•L12)=3

Thus the polynomial q(x) is
9
- + 3 = 0

Evaluation of all real roots, including multiple roots, using Newton-
Raphson method and s ynthetic division technique for deflation is
presented in Section 6.14.

Complex Roots
Computing complex roots is much more complex than computing real
multiple roots. Recall that complex roots of polynomials with real
coefficients occur in conjugate pairs. This suggests that we should isolate
the roots of these types by finding the appropriate quadratic factors of
the original polynomial (rather than linear factors). Quadratic factors
can be obtained by using the process of synthetic division.

Let us assume that

h(r) = x 2 - IIIIC -

is an "approximate" quadratic factor of p(x). Then

P(X)
=q(x)	 (6.56)

where q(x) is the quotient polynomial of degree (n - 2) and r(x) is the
remainder. Note that if h(x) is an exact quadratic factor of p(x), then r(x)
would he zero. Equation (6.56) can be rewritten as

p(x) = q(x) Ii(x) + (x)

= q(x) (x 2 - ux - v) + r(x)	 (6.57)
Since q'x) is a quotient polynomial, it would be of the form

q(x) = b,, x 2 + h,, x' + ... + b 2 	(6.58)

Roots of Nonlinear Equations 172
Let us assume that the remainder r(x) takes the form

h 1 (x - a) + b0	 (659)
(The form of r(x) is chosen for the convenience of manipulation)

The objective is to determine the factors a and v such that r(x) becomes
zero and, therefore, h(s) becomes an exact factor of p(x) given below.

P(X) = a,, x + a,	 + ... + ci x + a 0	(6.60)
Substituting Eqs (6.58, (6.59) and (6.60) in Eq. (6.57) and comparing
coefficients, we obtain the following relations:

= a,,

= a,, 1 + ub,

6n-2 = C, 2 + ub,, 1 +

= + uh2 ± VI) 3

 a,, ± ub 4

This can he expressed in general farm as

[b=ai +abj* 1 	 (6.61)
where i=n,n_.1,...O

b +1 = b,,,. 2 = 0
Note that all the coefficients h are Smctions of a and v which are

unknown.
It is clear that h(s) is a factor ofp(x) if and only if

F
b, a, + ub2 +vb3 =0	 (6.62)

L±0 +_uh 1 + yb2 = 9j
Note that Eq. (6.62) is a system of two nonlinear equations in two

unknowns, u and u. These equations can be solved by using Newton's
method discussed in Section 6.14.

Once the values of a and u are known, the roots of the equation
X 2 - u -

can be easily determined using the formula

The process can be repeated for the quotient polynomial till it becomes
either a quadratic or linear polynomial which can he solved for their roots.

Purification of Roots
Purification, as the name indicates, is the process of refining the roots
that do not satis1 ' the required accuracy conditions. These roots may be
used again for testing the original problem and improving their approx-
imations.

LTh Numerical Methods

The Newtori-RaPhS0fl method is a popular one used for purification of
roots. The values of the roots obtained through other methods are used
as 'Initial" input values to the Newton method.

MULTIPLE ROOTS BY NEWTON'S METHOD

As discussed earlier, we can locate all real roots of a polynomial by
repeatedly applying Newton-RaphSOfl method and polynomial deflation
to obtain polynomials of lower and lower degrees. Algorithm 6.9 gives a
step-by-step procedure to achieve this.

Note that the deflation process is performed (n - 1) times where a is
the degree of the given polynomial. After (a - 1) deflations, the quotient
is a linear polynomial of type

a 1 x + a, =

and therefore the final root is given by

a
Xr a'

Evaluation of Multiple Roots

. Obtain degree and coefficients of polynomial (n and a)

2 Decide an initial estimate for the first root (x0) and error criterion

rDo wh ile n>1J

3. Find the root using Newton-RaphsOfl algorithm:

fx)
xr = o-

4. Root (n) -. X1

5. Deflate the polynomial using synthetic division algorithm and make
the factor polynomial as the new polynomial of order n - 1

6. Set x0 = x, (initial value for next root)

L
7.-Root (1)=-a0lat

8. Stop

Algorithm 8.9

Program MULTIR
The program MULTIR locates all real roots of a olynon nl by repeated-
ly applying the Newton-RaphsOfl method as liowT. in Algorithm 6.9. To

utineachieve this, the program employs two subroutines: .rst, the subro

Roots of Nonlinear Equations 171

NEWTON to find a real root of the polynomial, and second, the subrou-

tine DFLAT to reduce the polynomial degree by one. This process is
continued till the degree of the polynomial is reduced to one. This is
implemented by the DO loop DO 200 1 = N, 2, -1.

The subroutine NEWTON, while evaluating a root, also implements a
test for accuracy of the root obtained. In case the required accuracy is
not obtained within a specified number of iterations, the execution stops

after giving an appropriate message.
----------------------------------- ----.*

PROGRAM MULTIR

* Main program

The program finds all Lhe real roots of 	
*

*	 a polynomial	 *

* --*

* Functions invoked	 k

*	 NIL	
*

* --- ----------

* Subroutines used

* NEWTON	 *

*	 DFLAT	 *

* Vriahes used
*	 N - Degree of polynomial
*	 A - Polynomial coefficients A(N'+l)	 *

*	 XO - Initial g-UeSS
*	 XE -- Root obtained by Newton method
*	 ROOT - Root Vector	 *

*	 STATUS - Soluton status
*---

* Constants used	
*

*	 EPS - Error bound	
*

*	 MX1T - Maximum iterations permitted 	 *

*-- -------------

REAL A,XO,XP, ROOT, EPS
INTEGER N, MAXI-- , STATUS
PARAMETER(EPS=0.e00001, MkXIT=50 I
DIMENSION A(ll), ROOT(10)

WRITE(*,
WRITE(* , *)	 EVALUATION OF MULTIPLE ROOTS
WRITE(*,

WRITE(* , *) 'InpuL N. the degree of polynomial"

READ(*, *) N
WRITE(*,) 'Input poly coefficients, A(l) to A(N+l)

READ(*,*) (A(I), 1=1, N+l)
WRITE(*,*l 'Input initial guess X'

IN Numerical Methods
READ(* , *) X0

WRITE(',

DO 200 I	 N, 2, -1
*	 Find I_th root.

CALL NEWTON(N,A,X0,EPS,MAxTT, STATUS,XR)

IF (STATUS EQ. 2) THEN
DO 100 J - N, 1+1, -1

100	 WRITE(*,) 'ROOT',J,' =', ROOT(J)
WRITE(* , *) 'Next root does not converge in'
1,TP1TE(*,*) MAXIT, ' iterations'

WRITE (,

STOP

ENDIF

ROOT (1)	 XR

*	 Deflate the polynomial by division (X - XE)
CALL DFL,A'1'(N,A,XR)

X0 = XE
*	 Proceed to find next root

200 CONTINUE

* Compute the last mat
OOT(i) = - A(JiA2;

* Write rsu1ts

'VRITE(' *	 'EOOTE	 Pa:yN04jAL ARE:

WRITE(,)

DO 300 I = 1, N

ROOT(I)
300 CONTINUE

WRITE(, 'j

STOP
END

* ----------	 - End of main program NULTIR------.

SUBROLFTjNE NEWTON (N, A, X0, EPS, MAX IT, STATUS, XR)

* Subroutine
*	 This subroutine finds a root of the polynqni	 *
*	 using the Newlori--Raphoon method 	 *
*	 ---__------ 	 *

Arguments	 *
* Input	 *
*	 N - Degree of polynom-i al.	 *
*	 A - Arrrv of ç:ui.vnmt.i.dl cocffirLoni

Roots of Nonlinear Equations J.J.
*	 XO - Tnitia	 Je;:	 or jj root	 *
*	 EPS - Error hound	 *
*	 MAXIT - Maximum L(u at joro peruIi r ed	 *
* Output
* STATUS - Solution status	 *
*	

XR - Root obtained by Newton method.	 ** --- ------------

	

Local Variables	 *
COUNT - Number of ieoa:ions performed	 *

*	 FX - Value of polyocinlal function at XO 	 *
*	

- Value of function derivative at XO 	 *
* -.--	 ---	 --------	 --	 --- - ---
	 ----------	 *

* unction invoked	 *
*	 ABS	 *

-	 -----------*
Subroutines called

*	 NJL	 *
* - ----------------- 	 -	 *

REAL A,X0,EPS,XR,ABS
INTEGER N,NAXI T , STATUS
INTRINSIC ABS

DIMENSION A(1l)

COUNT

* Compute the value of function at X0

100 FX = A(N+l)

LX) t 1 1 - N,	 1 ,	 -1
FX	 FX * Xfl + A(I)

ill c-ONTI-NUF

* Compute the value of derIvative at X0

FOX = A(N+l) * N

00 222 1 = N, 2, -J
PDX	 FOX * XO	 A)T)	 (1-1)

222 CONTINUE

* Compute a root XR

XR	 X0 - FX/FDx

* Test for accuracy

IF(ABS((XP.-X0)/XR)LFFPS) THEN
STATUS = 1
RETURN

ENDIF

* Test for convergence
IF(COUNT .LT. MAXIT) THEN

= XE
COUNT = COUNT + 1
GOTO 100

M Numerical Methods

ROSE

STATUS = 2

RETURN

ENDIF

END
* ------ 	 ---- End of subroutine NEWTON -- ----------- *
* -----------. ---

SUBROUTINE UFLAT N, A, XR)

* Subroutine	 *
*	 'ftuj5-i subroutine reduces the degree of polynomial*
*	 by one using yrLhetic division
* --
* Argo uen.t.	 *
A iflpUL	 A

*	 N - Degree of polynomial	 *
*	 A	 Array of coefficients of :npjt polynomial
*	 XR -- A root ot the input poiyrinrnu1	 *
* Output	 *
*	 A - cofficienL of the reduced poIyrioc. al
* - -	 ------------------------- --------------------
* Local Variables
*	 B	 *
* ----	 - ---------------------------------------*
* Func:cns invoked	 A

*	 N'L	 *
* - -----------------.------ ----------------------------*
* Suhrocrin	 called	 *
*	 NIL	 *
* ---*

RF,ATI A.8,XR

INTEGER N

DIMENSION A(ll), 3(11)

* 2vOL.ate the c:oetficients of the reduced nolynomia

B(NA1) S 0

DO I -L - N, 1, -1

3(1) = A(l - l)	 XC * 3(11)
CONTINUE

* Uharige coefficients from 3 array to A array

30	 2 I = 1, Nsi
AI) = 3(1)

2 CONTINUE

RETURN

END

* --------------End of rubroutine DFtAT	 - -- -- --	 *

Roots of Nonlinear Equations I

Test Results of MULTIR The program was tested for evaluating the roots
of the equation

- aT + 2 0
The results of a test run are given below:

	

EVA!JATTON O'	 HTT?E 200S

TpP N, hc degree of po1yno;na I

2

InOut poly roe icienLs, A()
2 -3 1

TnpuL].ritial guess X
U

ROOTS OF POLYNOMIAl AP2:

ROOT 1	 2.0000000
ROOT 2 = 1.0000000

Stop - Pr oq corn Lemma Led.

COMPLEX ROOTS BY BAIRSTOW METHOD

We have discussed in Section 6.13 that complex roots of a polynomial
equation can he found by using its quadratic factors. We have also seen
that if the polynomial

P(X) = a x + u	 + ... ax + a0

is divided by quadratic factor

h(x)	 -	 - v

then the result is a polynomial

q(x) = b x 2 + h, I x 3 + ..: +

with a remainder

r(x) = b 1 x - u) + b0

The values of coefficients b, are given by the following recurrence formula:

= an
= a, 1 + ub,	 (6.63)

b1 = a + ub + vb12 , (for i = n - 2 to 0)

We know that in order to make h(x) an exact factor of p(x), r(r) should be
zero. This implies that

= 0
We know from the above recurrence formula that

= a 1 + ub., + Vb:t 0

h0 =a 0 + oh 1 +vb2=0

I" NumecaI Methods

The problem now is to find the solution of the system of equations

h 1 (u , v) = ()	 (664)

v) = 0

Remember, these are nonlinear equations because coefficients b L are
functions of u and v. The strategy used to solve the system of Eqs. (664)
is known as Bairstow's method. The method is similar to the Newton-
Raphson approach for solving a two-equation system (discussed in Sec-
tion 6.12). Using the Taylor series expansion (recall Eq. (6.51)), it can be
shown that

b1
dii	 du

(6.65)

du	 du
L11 + --- 1st) = -b0

To solve these equations, we need partial derivatives of b L coefficients.
Differentiating Eq. (6.63) with respect to a, we get

66 L 1	 2
= b,. 1 +	 , i=7l-2to0	 (6.66)

du	 du	 chi

dbll
= 0

a,

- -b +u---=b,,
du	 du

For convenience, let us denote

C,
clu

Then, we have

I
c,=b 1 +uc, 1 1c, 2, in-2to0

We need the following coefficients of c,

= Cl

Ju	
CC,

(114

c 1 and c0 can be evaluated recursively using Eq. (6.67). Now, differenting
Eq. (6.63) with respect to i.,

Roots of Nonlinear Equations 1

dv

n--1 db
= U.1 =0

dv	 Ot?

dv,	 dv,.,.1	 dv,f2

do

=
t2	 i=n-2toO

If we denote

=

Then, wewe have

dv
=0

dv =b

dv,
d, =	 =	 + u	 + v

al

That is,
d,b,1+ud1+vd,.,2,i=n-2to0	 (6.69)

We need the following coefficients of d,

du

dbo

=

= d i

Again, d2 and d 1 can be recursively valuated using equation (6.69).
If we compare Eqs (6.67) and (6.68), it is clear that d, values are

identical to c, values. That is

d=c,	 for i=nto0

Then, d2 = 02 and d 1 = c 1 . This implies that we need net compute the
coefficients d.

Substituting for partial derivatives in terms of c values in Eq. (6.65)
we get

c1 Au + c2 Au = -b1

C O Au + C, Au =

Then,

2
Au =-

b1c1 -b0c

C2 -c0c2

Jj Numerical Methods

At'
i

Now, given the initial values of u and v 0 , we can estimate the values of
a and v using the following recurring relations

UI
be1 -P2

	

U I11	 _	
(6.70a)

-

b 0 c 1 - b1c0
(6.70b)

C 1 -C1C2

Note that the main task in Bairstow's method is the evaluation of i5, and
c1 coefficients using the Fqs 6.6:3i and (6.67). Algorithm 6.10 lists the
steps to implement I3airstow's method.

Complex roots by Bairstow's method

1 Get polynomial parameters (n and a i values)
2. Decide initial estimates, m0 and v0 and stopping criterion

Whi leL:Do
3. Compute b1 coefficients
4. Compute c coefficients
5. Compute

0 = C1 C1

Au —(b, Cl - b1) (9)10
=	 C. -	 .'.

U = UO + Au
V = V0 'I AV

6. Test for accuracy of u arid V. if accuracy is ok, then
solution obtained,
go to step 8

7 Otherwise, set
Co = U

V0 = V

qv to stop 3
8. Find (complex) roots of x - ux - v = 0

write results
0. Set the coefficients of factor polynomial as a,

n= n-2

	

a, =- b, 2 (for I	 n to 0)
10 Set next values for u, and v0

110 = U

VI) = V

End of While-Do

(Contd.)

Roots of Nor*iear Equations IM

(Caid.)

ii. If n=2, then
U
v = -a4Ja2,
find (complex) roots
write results

else
single root = -a0la1
write results

12. Stop

AlgorIthm 6. 10

-	 pie. 41
Ohahi the quadratic factor of the polynomial

P(Y) = X3 + x + 10
using Bairstuw's method with starting values u = +1.8 and v - 1

Given
a3 = 1,a 2 =0,a 1 1,a0 = 10

Then

b 2 = a 2 + ub3 = 0 + (+1.8) 1 +1.8

= a 1 -s- ub 2 + vb 2 = 1 + (+1.8) (+1.8) + (-4)(1) = 0.24

b0 = ao + ub, + ub2

= 10 + (+1.8) (0.24) + (-4)(1.8) = 3.232

C3 = 0

C2 1
+ uc2 + vc = +1.8 + (+1.8)(1) + (-4 x 0) +3.6

c0 _-b 1 +uc1 + L? C2

= 0.24 + (+1.8) (+3.6) + (-4 x 1) 3.72

D =c - co c2= (+3 , 6)2 - 3.72 x 1 = 9.24

Au - b
1 c 1 --c0c2

D

(0.24) (3.6) - (3.232)x1 = 0.2563

9.24

b 0 c 1 --b1c0
Ac = -

(3.232) (3.6) -(0.24) (3.72) - -1.1616
-	 9.24

IR Numerical Methods

u 1.8 + 0.2563 2.0563

U = — 4-- 1.1616 = —5.1616

Note that the true values of u and v are 2 and —5 respectively. There-
fore, the estimated values are close to the true values. These values can
be refined by further iterations.

Program COMPR
The program COMPR can locate all the real and complex roots of an
equation. The program COMPR uses Bairstows method to achieve this.
The program logic is detailed in the Algorithm 6.10 and implemented as
shown in Fig. 6.11.

Program COMPP

F BSTOVV.1 LQUAD

L4Tj OUTPUT
Fig. 6.11 lmpleme'taticn of algorithm 6.10 to evaluate complex rooTs

The subprogram INPUT obtains data fur polynomial and initial val-
ues of the quadratic coefficients, The subprogram BSTOW finds the
quadratic factor using muItiariahle Newtons method and also obtains
the reduced polynomial. The subprogram QUAD solves the quadratje
equation, the details of which are supplied b y BSTOW through the main
program COMPR. Finall y, the subroutine OUTPUT displays the roots of
the quadratic equation.
*	 . --------------.-	 -	 -	 -	 -	 -----------	 --------*

C;•-
* ------------------------- -------.-
* Main progrorn

thr prc)oi-arn i.ocatcs all the roots, hcrth rca1
*	 snc	 nnp cx, isi ':g Da rs ow's rho(1	 ** ------------------	 ---	 -	 *
* Feiiç- loris i rvc.ko
*	 NIL
* ---

* Subroutines .ucd 	 **	 INPUT BSTC'w, :UAU, flTPiJ I* ------- ------------------------------ ---
* Variables uae
*	 N - Decree F

Foots of NonIor Equations I
*	 A - Array of coefficients of polynoi4l 	 *
*	 uO,vO - Initial values of coefficients of the	 *

* quadratic factor
*	 U , V - Computed values of coefficients of the	 *
*	 quadratic factor
*	 B - Coefficients of the reduced polynomial	 *

*	 X1.X2 - Roots of the quadratic factor	 *
*	 TYPE - Type of roots (real, imaginary or equal) *
* -- *

* Constants used	
*

* FPS - Error bound	
*

* -------------------	 -------*

INTEGER N, TYPE
REAL A, B,UO,VO,U,V, Xl ,X2, EPS, DO Dl, D2

PARAMETER(EPS	 l.E-6
DIMENSION A(ll),B(ll)

rIT,.(* *)
WRITE(*,) 'EVALUATION OF COMPLEX ROOTS'

WRITE(*,*)

CALL INPUT(N,A,UO,VO)
100 IF(N.(3T.2) THEN
* ---obtain a quadratic factor

CALL BSTOVQ(N,A,B,UO,VO,U,V,EPS)

D2 = 1
Dl = -U
DO = -V

*_find roots of the quadratic factor
CALL QUAD (D2, D1, DO, Xl, X2, TYPE)

*--- -print the roots
CALL OUTPUT (N, TYPE, Xl,X2)

 --set the coefficients of the factor polynonial
N = N-2
DO 200 I = 1, N+1

A(I) = B(T+2)

200 CONTINUE

*_set initial values for next quadratic factor

DO = U
Vo = V
GOTO 100

END IF

IF(I'T.EQ.2) THEN

*__polynomjal is a quadratic one
CALL QUAD(A(3) ,A(2) A(l) ,xl,X2,TYPE)

HQ Numerical Methods

CALL OUTPUT (N, TYPE, X1,X2)

ELSE

*----last root of an odd order polynomial

ROOT = - A(1)/A(2)
WRITE(-, *)

WRITE(,*) 'Final root = '. ROOT
WRITE *

ENDIF

STOP

END

* ------------End of main program COMPR --------------*
* ---------------------------------.-- ----- - ----------- *

SUBROUTINE INPUT(N, A, UO , VO)
* ---*

* Subroutine	 *
*	 This subroutine reads polynomial details and 	 *

initial values of the quadratic coefficients 	 *
* ---*

* Arguments	 *

* Inpu t	 *
*	 NIL	 *
* Output	 *
*	 N - Degree of polynomial
*	 A - Polynomial coefficients

UO,VO - Initial values of the quadratic factor
* -- --

 Local Variables	 *
*	 NIL
* ---*

* Functions invoked	 *
*	 NIL	 *
* ----- --	 ---------------------------*

* Subroutines called	 *

NIL
* ---*

REAL A,UO,VO
INTEGER N

DIMENSION A(ii)

JRrrE ,) 'Input degree of polynomial (N)
READ(* , *) N

WRITE(*, *) 'Input polynonini coefficients A(N+l)
to A(1)'

DO 11 I - N+l, 1,	 1
READ(*,*) A(T)

11 CONTINUE

WRITE(*,*) 'Give initial values UO and VO'

Roots of NonIneQrJQ1	 ...

P. EAD(*,*) U'UVO

RETURN

END

End of suhrcu ne INPUT - --- 	 *

* -- - - - -- - - - - -- - 	 -	 I

SUBROUTINE BETOW (', A, B, lIt ,VO ,IJ, V. LIPS)
*

StAbroutin0	
&

*	 This subroutine finds cho q-a ruLic factor using
*	 multivariable NeiEon's meLnod auu also finds the
*	 reduced polynomial
* --------------------------- --------------- 	 *

* Arguments	
*

* input	
*

N	 Degree of polynomial
*	 - Polynomial coeffi eeLs	

*

*	 UO,VO - lniti&ii gucee 	 or	 ccrincnIS

*	 f the quadratic facuc 	
*

EPS - Error bound	
*

* OupuL
J, V - Computed cue iccnLr of Leo qacraLic 	 *

factor	
*

*	 B - Coeffiuicnts of the reduced polynomial	 *

k- ------------- - --	 --------*

* Local rarjab1es	 *

D,DEIU,DEUV,C	
*

* ---- - ---------------------	 *

* Funut LonE; lnvoke6	
*

*	 ABS	
*

*	 --------------------------

* Subroutines called	
*

*	 NIL
* -----------	 -- -- -	 -	 ---*

INTEGER N

REAL A,B,UC,VO,U,V,EPS,D,DELU,DELV,C

INTRINSIC ABS

DIMENSION A(11), B(li), C)ll)

COUNT -

100 B(N+l) = A(N±l)

3(N) = A(N) + CO * B(N+l)

DO 111 I - N-i, 1, -1

3(I) = MI) i Ut * 3(11) + Vt * 3(1=2)

Ill CONTINUE

C(N+l) = 0

C(N) = B(N+l)

192 Numerical Methods

DO 222 I = N-i,	 , -1
C(I) = B(I+1) + U0	 C(i+1)	 VU * C(I-i-2)

222 CONTINUE

D = C(2) * C(2) - C(1) * C(3)
DELU = -(B(2) * C(2) - B(l) 	 C(3))/D
DELV = -(B(l) * C(2) - B(2) * C(l))/D
U	 U0 + DELU
V = VU	 DELV

IF(ABS(DEZAJ/U) .LE.EPS .AND. ABS(DLv/v) LE.EPS) THEN
RETURN

ENDIF

IF(COUNT .LT. 100) TEEN
U0 = U
vO = V
COUNT COUNT + 1
GOTO 100

ELSE
WRITE(*, A)

	

WRITE(*,*)	 NO CONVERGENCE IN 100 ITERATIONS'
WRITE(* , *)

STOP
ENDI F

* --------------End of Subroutine STOW --------------*
*

	

	
-*

SUBROUTINE QUAD(A,B,C,X1,xTYPE)
* ---------- --

*
* Subroutine	 **	 This subroutine solves a quadratic equation o f*	 2	 ** type AX+BX+C	 ** ---*

* Arguments	 *
* Input
*	

A,EC - Coefficients of the quddrativ equation 	 ** Output	 **	
X1,x2 - Roots of the quadratic equation	 **	 TYPE - Typo of roots 	 ** -- --- - - - - - - - - - -- -- -

*

	

Local Variables	 **	
Q	 ** ---*

* Functions invoked	 **	 SQRT,ABs	 ** --*

Roots of Nonlinear Equations J.2

* Subroutines called
*	 NIL	 **	 -	 -	 --	

--- .- *
INTEGER TYPE, IMAGE, EQUAL, UNEQUAL
REAL A.B,C,Xl,X2,SQpTg
INTRINSTC SORT, ABS
PARAMETER (IMAGE = 1, EQUAL	 2, UNEQL = 3)

Q - B	 B- 4 * A A C

IF(Q.LT.o) THEN
- Ro ots are CO1Cx

Xl = _B/(2*A)
X2 = SQRT(ABS(Q))/(2*A)
TYPE = IMAGE

ELSE IF(Q.EQO) THEN
* ---------------- -

---- Roots are real and equal
XI = I3/(2*A)
X2	 Xl
TYPE	 EQUAL

ELSE

* --------------- ----- Rootn are real and Unequal
Xl = (-	 + SQRT(Q))/(2*A
X2	 (-B - SQRT(Q))/(2*A)
TYPE	 UNEQL

END IF

RETURN
END

*
End of subroutine QUAD 	 ** -- - - - - - - - - - - - - - - - --- - - - - - - - - - - - --- - - - ----- - - - - - - - - - - - -

 --*
SUBROUTINE OUTPUT (N, TYPE, X! X2)* ------------------------------- - -- -- --------------------** Subroutine*

* - This subroutine displays the roots of the 	 *
quadrat c equation	 ** ---------------- ---------------------------- ----------- -.--	 *

Argurnen:s	 *
* fnput	

*
N - Degree of the polynorn j j from which	 *

the quadratic factor was obtained 	 *
TYIt	 Type of roots	 **	
X1,X2 - Roots of Lbe quadtat j u factor	 *

* Output	
**	 NIL	
*

-	 - - -- - - - - -.*
* 'ocal Variables	 ** NIL.*

M Numerical Methods

*	 -	 -----	 -	 *

Functions invoked

*	 NIL	
*

*	 -- *

* Subroutines called 	 *

NIL	 *
* -- -----------*

INTEGER N, TYPE, IMAGE, EQUAL, T.JNEQL
REAL Xl,X2
PARAMETER(IMAGE	 1, EQUAL = 2, UNEQL = 3

WRITE) * *)
WRITE(* , *) 'Roots of quadratic factor at n =
WRITE(* ,*)

IF(TYPE .EQ. IMAGE) THEN

WRITE(*,*) 'Rootl = ', Xl, '	 ', X2,'j
WRITE(**) 'Root2 = ', Xl, ' - ', X2, 1j,

ELSE TF)TYPF. .EQ. EQUAL) THEN

WRITE) k ,)	 'Rooti = ', Xl
WRITEt*,)	 'Rcot2 = ', Xl

ELSE

WRITE(*,*)	 'Root.	 ', Xl
WRITE)*,*)	 'Root2 = ', X2

ENDIF

RETURN

END

---- End of subroutine OUTPUT-----

Test Results of COMPR
EVALUATION OF COMPLEX ROOTS

Input degree of polynomial (N)
3
Tnput polynomial coefficients A(N+l) to A(1)

1
0
1
10
Give initial values 00 and VU
1.8 -4.0

Roots of quadratic factor at n =	 3

Rooti = 1.0000000 - 2,0000000j
Root2 = 1.0000000 - 2.0000300j

Final root = -2.0000000

Stop - Program terminated.

1(x)

Roots of Nonlinear Equations 12

MULLER'S METHOD

Muller's method is an extension of the secant method. Muller's method
uses a quadratic curve passing through three points (x, f(x 1)), (x 2 , f(x2)
and (x, f(x3)) as shown in Fig. 6.12 to estimate a root of 1(x). One of the
roots of the quadratic polynomial p(x) is taken as an approximate value
of the root of f(x). As illustrated in Fig. 6.12, the point x 4 , one of the
roots of p(x), id assumed as the next approximation for the root off (x).

We can write the quadratic polynomial p(x) in the form
p(x) = a0 + a 1 (x - c) + a 2 (x - 0)2	 (6,71)

Equation (6.71) is known as the shifted-power form of the polynomial
and c is a constant known as the centre. If we choose c x3 then
Eq. (6.71) becomes

p(x) a0 + a 1 (x - x3) + a9(x - x)2	 (6.72)
Since x 1 is a root of p(x), at x = x 1 , p(x) = 0 and, therefore, Eq. (6.72)
becomes

(12 (x4 - x 3) 2 + a 1 (x4 - x3) + a0 = -O
Solving the quadratic equation for (x 1 - x:j) we get

X4 X 3- =___I 	 (6.73
ai±aaJ

This is one of the horns of' quadratic formula, chosen here to minimise
error due to any subtractive cancellation. The constants a 0, a 1 and a2
can be obtained iii terms of known function values f(r 1), f(x2), and f(x1)
as follows:

Fig. 6.12 Illustration of Mrillr's meThod

12fi Nurnecical Methods

At x = x 1 , x2 and x3, we have
a2(x1 - x3)2 + a 1(x1 - x3) + a 0 = p(x 1) = f(x1)

a2(x2 - x3)2 +	 - x3) + a0 P(X2) f(x2)

a2(x3 - x3)2 + a 1 (x3 - x) + a0 = p(x1) = f(x3)

Letting h 1 = x1 - x3 and h2 = X2 - x, and denoting f = f(x 1), we get

a2h 2 + a 1h1 + a0 =

a2h 2 +a1h2+a0=f2

C) -- 0 + a0 =
Since a0 13 we can obtain a 1 and a2 by solving the equations

a2 h 1 2 + a 1 h 1 = f -13 =

It 	 . _.i. 	:	
fL

_ja 2	 +a 1 , 2 - , 2 - j 3 -2
This results in

- d 2 h -d1h
°i —

h 1 h 2 (h 1 -h2)

- d1h2-d2h1
a2_hh(h -h2)

Equation (6.73) can be written as
4- h4

where

h4 =
a 1 ± 	 - 4a20

The sign in the denominator of h.1 is chosen such that /1 4 15 as small in
magnitude as possible so that x 3 is close to;. That is, the magnitude

of(a j ± Ja - 4a 2 a 0) should be large.

This process is then repeated using x21 x3 and x4 as the initial three
points to obtain the next approximation x.

= x4 + h6

The process is continued till f(x i) is within the specified accuracy.
Algorithm 6,11 lists the steps in detail for computing a root by Muller's
method

Muller's Method

1. Decide the initial three points and stopping criterion
2. Compute f1 = f(x1), f2 = 1(x2), f = f(x)
3. Compute

h1 =x,,-x3,h2=x2-x3
d1 = - f, d2 = f2 - 13

(Contd.)

(Contd.)

4. Compute parameters a0 , a1 , a2
aC f3

	

2	 2

	

21	 12a1_
11 1 /12 'I - h2)

a - d 1 11 2 d2h1
2

T1 02 (h , -- h2)

5 Compute h

a 1 ±Va l 74a2a0

Roofs of Nonlinear Equations J7

(choose the sign in the denominator such that its magnitude is the
largest. That Is, if a, is positive use + sign, otherwise, - sign)

6. Compute x4 = x3 + 11
7. Compute 14 = 1(x4)
8. If 1(x4) satisfies the given criterion then

root is obtained,
go to step 10

9. Otherwise, set
X2 . x2 = x3 , x3 = x4 and

1i=121f,f3=f4,then
go to step 3

10, Write the value of root (x4)
11. Stop

Jrith6Th1 __

Solve the Leonardo equation

f(x) = .r3 +	 + I 0 - 2f z ()
b y Muller's method

Let us assume the three starting points as
Iterajnn I
x=O.x9=1,x2

/1 = - 20

t	 7
- 16

h i = x i - = -2
h 2 = X2.- x2 = - 1
d1 -f f36

M Numerical Methods

d2 = 12 - 13 = -23

D = h 1 h2 (h 1 - h2)

= 2(-2 + 1) -2

(_23)(2) 2 - (_.36)(_1)2
a 1 	=28

(-36)(--1)-- (-23)(-2)
-2

-2x 16

h = 28±T4(5)46)

-	 32	 (choosing + sign)
49.540659

= -0.645934

=X3 + h = 1.3540659

Iteration 2

= 1

x2 = 2
= 1.3540659

h 1 = x, -	 -0.3540659

h2 =X2 - = 0.645934

12 16

= f(1,3540659) -0.3096797

d 1 = 11 - 13 -6.6903202

d2 f2 -f3 = 16.3096797

D = h 1h2 (h - h 2) = 0.2287031

d2h 2 -d1h
a1 =	 D	

21.145459

a2 = d1h2-d2h1 -6.3540717-
D

a0 = f = - 0.3096797

-2a 0	 0.6193F94
h =-	 =-=0.0145813

a 1 ±-4a2a0

= X3 + ii = 1.3686472
This process can be continued to obtain better accuracy. The correct
answer ial.3688O81O7. 	 -

Roots of Nonlinear Eguof ions i

Complex Roots
Note that, in Example 6.17, we obtained a real root of the polynomial. In
some cases, we may encounter complex approximations while solving
Eq. (6.73 1 . However, in such cases, the imaginary component will nor-
mally be small in magnitude and it can ho neglected.

In case we are interested in the complex roots as well, we can obtain
these by implementing the Muller algorithm using complex arithmetic
(which is supported by FORTRAN).

Multiple Roots
The algorithm can be modified to find more than one root by incorporat-
ing the deflation procedure using the following equation as discussed in
Section 6.13:

ft.Ji±
x — zt

Program MULLER
Design and development of a program to implement Muller's method is
left to the reader as an exercise,

SUMMARY

In this chapter, we defined various forms of nonlinear equations and
stated a number of approaches to find the roots of such equations. We
discussed in detail the following iterative methods to evaluate a root:

• Bisection method (also known as interval halving method)
• False position method (also called linear interpolation method)
• Newton-Raphsoii method
• Secant method

• Fixed point method (also known as method of direct substitution)
• Muller's method

We also discussed the solution of a system of nonlinear equations using
• Fixed point method
• Newton-Raphson method

We further presented two methods to find the roots of polynomials:
• Newton-Raphson method with synthetic division
• Rairstow's method for real as well as complex roots)

\Ve discussed the process of converging of iterative methods and proved
that

• NewtonRaphson method converges with order of 2
• Bisection method converges linearly
• False position method is linearly convergent
• Secant method follow superlinear convergence

Ntimericnl Methods

We presented FORTRAN programs and test results for the following
methods:

• Bisection method
• False position method
• Newton Raphson method (single root)
• Secant method
• Fixed point method
• Newton-Raphson method (multiple roots)
• Bairstow's method (for complex roots)

Algebraic equation
Analytical method
Bairstows method
Binary chopping method
Bisection method
Bracketing method
Complex number
Complex root
Convergence
Deflation
Descaites' rule
Direct substitution method
Extrapolation method
False position method
Fixed point equation
Fixed point method
Graphical method
Half-interval method
Homer's rule
Incremental search
Interpolation method
Iterative function
Iterative method
Jacobian matrix
Linear
Linear interpolation
Linearly convergent
Monotone convergence

Monotone divergence
Muller's method
Newton-Raphson formula
Newton-Raphson method
Nonlinear
Open end method
Polynomial equation
Purification
Quadratic convergence
Quadratic equation
Real ioot
Regula falsi
Repeated roots
Roots
Search bracket
Secant formula
Secant method
Shifted-power form
Spiral convergence
Spiral divergence
Stopping criterion
Successive approximations
Superllriear convergence
Synthetic division
Trial and error
Transcendental equation
Zeros

Wbat is a nonlinear equation? Give an example from real-life prob-
lems.
What is an algebraic equation? Give two examples.

Roots of Nonlinear Equations 201

3. Polynomial equations are a simple class of algebraic equations.
Explain.
What is a transcendental equation? What are its characteristics?

5. What is meant by direct analytical method of solution? What are
its limitations?

6. When do we seek the help of graphical method for solving a nonlin-
ear equation?

7. What is an iterative technique? How is it implemented on a corn-
__ puter?

Describe the concept applied in the bracketing methods used for

VP
solving nonlinear equations.
How do we decide initial guess values for solving a polynomial
equation using

a) open end methods, and
(b) bracketing methods?

10. What is meant by stopping criterion? State some of the tests that
can be used for terminating an iterative process.

11. What is Homer's rule? How does it improve the accuracy of evalua-
tion of a polynomial?
Explain the principle of bisection method with the help elan illus-
tration.
Explain the principle of false position method.
State the Newton-Raphson formula and explain how it isj

^

_na
g)n using Nwtnri-phnn method.
cant formula and the false position formula are

similar. Then what is the difference between these two methods?
How does the secant method compare with the Newton-Raphson
method?

)'. Discuss the situations where the fixed-point iteration process may
not converge to a solution.

19. Describe an algorithm to determine all possible roots of an equa-
tion.

20. State the limitations of using the fixed-point approach for solving a
system of nonlinear equations.

21. State the Descartes' rule to estimate the number of real roots of a
polynomial.al.

22. What is synthetic division? How is it used to obtain the multiple
roots of a polynomial?

23. What is deflation?
24. What is meant by purification of roots? How is it done?
25. Muller's method is an extension of secant method. Explain.
26. Compare, in a tabular form, the order of convergence of various

iterative methods used for solving nonlinear equations.

.92 Ntjmer(-cif Methods

v4'TEvaluate the following polynomials using Horners rule:
(a)f(x)=2x 3 +4x 2 -2x+5 atx3
(b)f(x)=x3 -2x2 +5x+1() atx5

7	 (c)f=x4 +2 2 -1Gx+5 atx=2
/. Prove that the bisection method is linearly convergent..
,,. How would you decide the two initial values that are required for

using the bisection method?
4. Find a root of each of the folkw	 uations using the bisection

methnd—

sinx-+1=O
(c) Iogx - cosx=O
.xtanx-1=O

Derive the false position formula for evaluating a root of a nonlin-

l)LJse the false position formula repeatedly and obtain roots of the
following equations

'-
sin x - x + 2 = 0

(c) x - 41-2 + x + 6 = 0
d) 3x2 + 6x -45 =

'(e) 4x' - 2x 6 =
, Derive the Newton-Raphsori iterative formula

X ,,- I - x 4 -
/ (x4)

for solving fx) = 0
8. Show that the Newton-Raphson method converges to solution qua-
,- dratically.

A. Obtain the Newton's iterative formula for evaluating the square
root of a number. Use this formula to find the square root of 3.

10. Derive a recursive formula for finding the 71th root of a number,
say A.

Ii. Show that Newton's formula for finding the reciprocal of A is
Xr1 = x4 (2 - Ax,,)

Find the Newton-Raphson formula for the following functions:
(a)f(x)=x2-2x-1
(bf(x)=x3-x-3
(c)f() =	 - 3x - 2
(d) f(x) = cos x

Roots of Nonlinear Equations 20

(e) f(x)=xe
(I) Ax) =x tan x-1

_41 Apply Newton's method to fi.e roots of the following equations:
(a) er_x=0
(b) log x- cos x=0

A	 (c) tan x - x = 0- VA.
(d) x - 1.5 sin x - 2.5 0

ompute a root of each of the following equations using 	 tto -
Ra onm

(b) x3 1.2x2 +2x- 2.4 =0,
4 x + 6 = 0,	 XO = 5

d)x4 +3x-2?-12x-8=0,	 x0=1
- 3x2 - 100 . 0,

Derive the secant formula. How is it different from the false posi-
tion formula,

16. Prove that the rate of convergence of secant method is better than
that of bisection method or false position method.

17. Use the secant method to compute a root of the following equa-
tions:

(a)4x-2--6=0	 (d) c-3x=0
(b)x2 -Sx+6=0	 (e)x_ex+2r0
(C) x sinx - 1 = 0	 (U x5 - 3x- 100 = 0

18. Derive a condition under which the error in the fixed-point itera-
tion method will decrease with each iteration.

19. Use the fixed-point iteration method to evaluate a root of the equa-
tion

- x - 1 0
using the following forms of g(x):

(a) x = x 2. - 1
(b) x = 1 + 2x x2

(c) x =	 (1 + 3x - x2)
2

starLing with U) x 0 1 and (ii) x0 = 2. Discuss the results.
20. Find the square root of 0.75 by writing f(x) = x - 0.75 and solving

the equation
x = x 2 + x - 0.75

by the method of fixed-point iteration. Assume an initial value of
= -08. Try with an initial value of x 5 = 0.8. Comment on the

results.
21. Use a suitable method to find to three decimal places the roots of

the following equations.
(a)x2-x-6=O
(b) x2 + 2x - 0.5 = 0
c) x2-10logx=0

(d) XI-a2-at1o_o

4 NUMedcal Methods

22, Solve the system of equations

+ y2 = 5

- y2 = 1

using (a) fixed-point method and (b) two equation Newton-Raphson
method, Assume x0 I ancj-.v0 1.

23. Use Newton's method to solve the following systems of equations:
(a) 3x2 - 2y 2 = 1

2x +y + = 8
(Assume x0 -1 and Yo 1)

(b) x3 - y2 + 1 = 0
at + - 2 = 0

(Assume x0 = 1 and y = 1)
24. The polynomial

p(x)=x-	 lix - 6 0
has a root at x 2. Find the quotient polynomial q(x) such that

p(x) (x - 2) q(x)
25. A box open at the top is made from a rectangular piece of plywood

measuring 5 by 8 metres by removing square pieces from the cor-
ners. What will be the size of square pieces removed if the volume
of the box is to be 20 cubic metres?

26. The supply and demand functions of a product are

Qs =p2 - 500

Qd p2 - 60p + 1500

Determine the market equilibrium price which occurs when
Q. = Qd.

27. Use Muller's method to find a root of the following equations:
(a) x3 - x - 2, x 1 = 1, x2 = 1.2 and x = 1.4
(h) 1 + 2x- tan x,x 1 = 1.5,x2 l.4 and x3 = 1.3

28. Use Bairstow's method to estimate the roots of
f(x)=x4 -

29. In the figure shown below, estimate the angle Gin radians (to two
decimal places) using Newton's method (or any other method). Area
of triangle ABC equals area shaded.

Also show that there is only one answer in the interval 0 and d2,

Roots of Nonlinear Equations

30. The equation x tan x - l occurs in the theory of vibrations.
(a) How many roots does it have in the interval 0 and ,t'2
(b) Estimate them to two decimal places.

31. The flux equation of an iron core electric circuit is given by

P,) = 10— 2.14 - 0.01

The steady state value of flux is obtained by solving the equation
f() = 0. Use a suitable method to estimate the steady state 0.

32. The state of an imperfect gas is given by van der Waals' equation

P +
Ct

)(v-P)=RT

or
pt—(/3p +RT) u2 + au— a13=0

Solve the equation for v(molar volume) given the following:
p (pressure) = 1.1

T (temperature) 2500 K
1? (gas constant) 0.082

a = 3.6
/3 = 0.043

Use any suitable method.I
1. Develop a program to compute all the roots of a polynomial using

the bisection method, Use Algorithm 6.6. Test the program for

- + I 1 - 6 = 0
2. Modify the above program to use Newton-Raphson method instead

of bisection method and test the program.
3. Write a program to solve a system of nonlinear equations using

(a) fixed-point method (Algorithm 67)
b) Newton-Raphson method (Algorithm 6.8)

4. Write a program for computing a real root of an equation using
Muller's method. (Algorithm 6.11).

5. Modify the program in Project 4 to implement the Muller algorithm
using complex data type supported in FORTRAN to compute com-
plex roots.

6. Design a menu-driven program to compute a root of a given equa-
tion. The menu will provide the choices of methods that a user can
select., depending on the nature of equation.

Direct Solution of
Linear Equations

NEED AND SCOPE

Analysis of linear equations is significant for a number of reasons. First,
mathematical models of many of the real world problems are either
linear or can he approximated reasonably well using linear relationships.
Second, the analysis of linear relationship of variables is generally easier
than that of nonlinear relationships.

A linear equation involving two variables x and y has the standard
form

[+by=c	 (7.1)

where a, b, and c are real numbers and a and b cannot both equal zero.
Notice that the exponent (power) of variables is one, The equation becomes
nonlinear if any of the variables has the exponent other than one.
Similarly, equations containing terms involving a product of two variables
are also considered nonlinear.

Some examples of linear equations are:

4x + 7y = 15

- 213y = 0

3u - 2o = —112

Some examples of nonlinear equations are:

2x - xy + y = 2
2

X

x +	 6

Direct Solution of Uneor Equations 207

In practice, linear equations occur in more than two variables. A

war equation with n variables has the form

ajxj[+a2x2+a3x3+ ... +Xn1	 (7.2)
here a, (i = 1, 2, ... n) are real numbers and at least one of them is not
ro. The main concern here is to solve for x, (i = 1, 2, ... n), given the

lues of a and b. Note that an infinite set of; values will satisfy the
Dove equation. There is no unique solution. If we need a unique solution

an equation with n variables (unknowns), then we need a set of n
.ich independent equations- This set of equations is known as system of

:,nultaneous equations (or simply, system of equations).
A system of a linear equations is represented genera],ly as

a 11x 1 + a 12x2 + ... + a1 x,, = b1

(7.3)

+	 + .. + a rn,x,	 5,,

n matrix notation, Eq. (7.3) can be expressed as
Ax 5	 (7.4)

vhere A is an n x n matrix, S is an n vector, and x is a vector of n

iLl.kflOW flS.
The techniques and methods for solving systems of linear algebraic

quations belong to two fundamentally different approaches:

1. Elimination approach
2. Iterative approach
Elimination approach ; also known as direct method, reduces the given

system of equations to a form fom which the solution can be obtained
by simple substitution. We discuss the following elimination methods in

this chapter:
1. Basic Gauss elimination method
2. Gauss elimination with pivoting
3. Gauss-Jordan method
4. LU decomposition methods
5. Matrix inverse method

	

The solution of direct methods do not contain 	 tr iitivri
However, they may contain roundoff errors due to floating point

operations.
Iterative approach, as usual, involves assumption of some initial values

which are then refined repeatedly till they reach some accepted level of
accuracy. Iterative methods are discussed in Chapter 8.

J	 STENCEQFSOLUTION
ONNE

In solving systems of equations, we are interested in identifying values
of the variables that satisfy all equations in the system simultaneously.

ZW Numerical Methods

Given an arbitrary system of equations, it is difficult to say whether the
system has a solution or not Sometimes there may be a Solution but it
may not be unique. There are fourpossibilities:

I. System has a unique solution
. System has no solution

'. System has a solution but not a unique one (i.e., it has infinite
solutions)

/4. System is ill-conditioned

3X7i	
5

	

(a) System with unque solution 	 (b) System with no solution

	

3y =	'2y	

1

4x- 6y= -12	

K^110-.

--

	

(c) System with infinit y solutions	 (d) Ill -conditioned System
Fig. 7.1 Vilous f0 T M3 of a vstem of vo inea ecuation

Unique Solution
Consider the system

x+2y=9

	

Zr	 4
The system has a solution

x5	 and	 y=2
Since no other pair of values of x and y would satisfy the equation, the
solution is said to be unique. The system is illustrated in Fig. 7.1(a).

J, o Solution
The equations

Zr —y = 5
3/2y = 4

have no solution. These two lines are parallel as shown in Fig. 7.1(b)
and, therefofe, the y never meet. Such equations are called inconsistent
equations.

Direct Solution 01 linear Equations

)Unique Solution
system

2x + = 6

4x - = —12

has many different solutions. We can see that these are two different
forms of the same equation and, therefore, they represent the same line
(Fig. 7.1(c)). Such equations are called dependent equations -

The systems represented in Figures 7.1(b) and 7.1(c) are said to be
, singulcLr systems.

J-tIt-Conditioned Systems
'here may be a situation where the system has a solution but it is very

/close to being singular. For example, the system

x-2y= 2

0.45x - 0.91y = —1
has a solution but it is very difficult to identify the exact point at which
the lines intersect (Fig. 7.1(d)). Such systems are said to be ill-conditioned.
Ill- conditioned systems are very sensitive to roundoff errors and, there-
fore, may pose problems during computation of the solution.

Let us consider a general form of a system of linear equations of size m x a.
a 11x 1 + a 12 x2 + ... + ajx,,

a 21x 1 + (l99 X ± ... + (1 2n Xr = b2

CZ,, 1X +	 + ... +	 =

In order to effect a unique solution, the number of equations in should
by equal to the number of unknowns, n. If m <a, the system is said to be
under determined and a unique solution for all unknowns is not possible.
On the other hand, if the number of equations is larger than the number
of unknowns, then the set is said to be over determined, and a solution
may or may not exist.

The system is said to be homogeneous when the constants b i are all
zero.

SOLUTION BY ELIMINATION

Elimination is a method of solving simultaneous linear equations. This
method involves elimination of a term containing one of the' unknowns
in all but one equation. One such step reduces the order of equations by
one. Repeated elimination leads finally to one equation with one unknown.
Some rules that are useful in manipulation of the equations are:

1. An equation can be multiplied or divided by a constant.

ZIQ Numerical Methods

2. One equation can be added or subtracted from another equation.
3. Equations can be written in any order.

For example, the system
2x +y =4

5x - 2y = 1
can be written in different forms as follows:

1 4x-l-2y =8
5x-2y =1

2. -3x + 3y = 3
2x+y =4

3. 5x-2y =1
2x +y =4

Consider a general form of three linear equations:
cix1 + a 12 X2 + a 13 x3 =

+ a22x2 + ax3 =b2	 (7.5)

+	 + ax b 3,IxI

We have three unknowns and three equations. Our objective is to
modify this set to the following form:

a 11x1 + a 12 x2 + a 1 x = b1

a 1 x +a 2 x 2 +0=h

(i j X 1 -ra 2 x 2 +0 =b

This. represents a new set of equations with x 3 eliminated in the last
two equations. The last two equations represent a set with two unknowns.

This system can be further transformed into the form
a 11x 1 + a 12x2 + a13x3 =

a'1 x1 +ax2 +0 =b

ag1 x 1 +O+O =b

Now, the last equation has only one unknown and, therefore, its value
can be obtained as

134'
x1

a
By substituting this in the second equation we can obtain the value

of x2. Finally, x3 can be solved using the computed values of x 1 and x2 in

the first equation.
Remember that the three-equation system (Eq. (7.5)) can also be

transformed into the following form:
+ a 12x2 + a 13x3 =

O+ax 2 +O =b22

af3'1 x 1 +O+ax 3 b'
Note that a prime indicates that the c-'ic'nts have been modified.

Direct Solution of Linear Equations 2.11

The eliminati,ó'n process basically involves the addition of multiples of
one equatioth other equations so as to set the coefficients of one of the
variablesii these (other) equations to zero. Example 7.1 illustrates this
process. /

-
_.Ss)1bhe following system of equations b(Y the process of elimination.

3x + 2y + z = 10
2i ± 3y + 2z = 14 -

X 4. 2y + 3z 14

The elimination process involves the following steps:

Step 1: Elimination of x from second and third equations

Multiply first equation by 2/3 and subtract the result from the second
equation. This gives

513y + 4/3z = 22/3

or	 5yi-4y=2z

Similarly, multiply first equation by 1/3 and subtract the result from
the third equation. This gives

Y + 8z = 32

After step 1, we have the following first derived system:

3x + 2y + z = 10

5y + 4z = 22

y+2z= 8

Step 2: Elimination of y from the third equation in the derived system

Multiply second equation in the derived system by 115 and subtract the
result from the third. This results in

6z=18
The system now has been reduced to an upper triangular form:

3x + Zy + z 10

+ 4z= 22

The derivation of this upper triangular system of equations is called
the forward elimination process.

We can now solve these equations as follows:
z = 18/6 3

Then,
+ 4 x 3 = 22

Therefore,
Y = (22 - 4 x 3)/5 = 2

M NumerIcal Methods

Finally,
3x's-2x2+3=10
x (10 - 70 1

Computation of unknoiis from the upper triangular system, as ilus-
trated here, is 1nowp/s back substitution.

B IC GAUSS ELIMINATION METHOD

We have seen in Example 7.1 how to solve a system of three equations
using the process of elimination. This approach can he extended to sys-
tems with more equations. However, the numerous calculations that are
required for larger systems make the method complex and time consum-
ing for manual Implementation. Therefore, we need to use computer-
based techniques for solving large systems. Gaus'sian elimination is one
such technique,

Gauss elimination method proposes a systematic strategy for reduc-
ing the system of equations to the upper triangular form using the
forward elimination approach and then for obtaining values of unknowns
using the back substrlrtion process. The strategy, therefore, comprises
two phases;

1. Forward elnunation phase: This phase is concerned with the ma-
nipulation of equations in order to eliminate some unknowns from
the equations and produce an upper triangular system.

2. Back xuhsiitution phase: This, phase is concerned with the actual
solution of the equations and uses the back substitution process on
the reduced upper triangular system.

Let us consider a general set of n equations in a unknowns:
(I I j V 1 + 012 2	 + a 1 ,, •	 =

a 11 x 1 + a29 x2 -i- .. + (1 2,, X, = b2

(7.6)

a,, 1 x 1 + a,, X2 + ... + a,,,, i,, = b,,	 --'
Let us also assume that a solution exists and that it is unique. Algo-

rithm 7.1 illustrates the steps involved in implementing Gauss elimina-
tion strategy for such a general system.

Gauss elimination (basic) method

1. Arrange equations such that a, 0
2. Eliminate x, from all but the first equation. This is done as follows;

(i) Normaliso the first equation by dividing it by a,1,
(i) Subtract from the second Eq. a 1 times the normalised first

equation.

Direct Solution of linear Equations 213

(Contd.)

The result is

	

a111	 rI821 8 21	 xl +a	 -a21--x2 +...=b2
 all I 	 L	 811 J	 all

We can see that

821 821	 0
al l

Thus, the resultant equation does not contain x 1 . The new
second equation is

(iii) Similarly, subtract from the third Eq. 831 times the normalised
first equation.
The result would be

0-af3px2+ --- +ax=b

If we repeat this procedure till the nth equation is operated
on, we will get the following new system of equations:

	

311 X1 + a	 + + a x = b1

a 2 x 2 +...±ax= b

The solution of these equations is the same as that of the
original equations.

3. Eliminate x2 from the third to the last equation in the new set.
Again, we assume that a * 0.
(i) Subtract from the third equationaj2 times the normalised sec-

ond equation.
(ii) Subtract from the fourth equation,a 2 times the normalised

second equation,
and so on.

This process will continue till the last equation contains only one
unknown, namely, x,. The final form of the equations will look like
this:

	

a11x1#a12x2+ ... +a1 x	 b1

	

ax 2 +.., +a, x	 =b2

-" x4, = b0 In- 1)

This process is called triangularisation. The number of primes indi-
cate the number of times the coefficient has been modified.

214 Numerical Methods

4. Obtain solution by back substitution.
The solution is as follows:

b

nn

This can be substituted back in the (n - 1)th equation to obtain the
solution for x_ 1 . This back substitution can be continued tifl we get
the solution for x1.

.1

Note that the relation for obtaiM(g the coefficients of the kth derived
system has the general form

a=a) a1)	 (7.7)

where
k + 1 to n

j = k + 1 to
a-(0) U jj	 for i 1 to a,	 j I to n

The ktb equation, which is multiplied by the factor a /a, is called the
pivot equation and akh is called the pivot element. The process of dividing
the Ath equation by a ,k /a is referred to as normalisation.

Similarly, the relation for obtaining the kth unknown x k has the general

form

(7.8)

where
k = n - Ito 1

b (n - 1)
n

xfl
= (1)

a an

-solve the following 3 x 3 system using the basic Gauss elimination
method.

3x1 + 6x2 + . = 16
2x 1 + 4x 2 + 3x 3 = 13
x 1 +3x 2 +2	 9

Diract Solution of Unoor Eqoouons 21

After the first step of elimination using multiplication factor 2/3	 1/3,
we obtain the new system as follo

3x 1 + 6x2 ± X3 =

0+0 -1-7x3 = 7
0+3x9+5x3=11

At this point a	 U and, therefore, the elimination pro	 re breaks
down. We need to reorder the equations as shown below:

3x 1 + 6x 4- X 3 = UI

3x., + 5x 9 = 11

7x3 = 7
Note that the process of elimination is complete and the solution is:

= 1 1 x2 2, and x 1 = 1

Computational Effort
Computational effort is one of the parameters used to decide the efficiency
of a method. Here we estimate the computational effort required in
terms of arithmetic operations. The number of operations required for
eliminating Xk from the equations below the kth row are:

Multiplications : (ii h + 1) (n k)

Subtractions : (n - k + 1) (n - k)

Divisions :(ri - k + 1)
The total operations required in Gauss elimination method is, therefore,

Multiplications =	 (n k + 1) (n - k) = -n(n 2 - 1)
k-I	 3

ii - 1

Subtractions =	 (ii - k + 1) (a - k) =	 - 1)
3

Divisions =	 (n - k + 1) = n(n. - 1)

For back substitution, we are evaluating the x values from x,, to x1.

For evaluating the value of Xk, we require
n -• k multiplications
n k subtractions

1	 division
Therefore, the total operations required for back substitution process

are

Multiplications	 ,(n—k)-n(n— 1)

Subtractions	 (n - k) = -n(n - 1)

M Numerical Methods

Divisions
k-i

=

Total Operations required for both the stages are given in Table 71.

Table 7.1 Computational effort required

Multiplication

Subtraction

Division

Elimination proct-qs Substitution process

	

n (2 — 1)	 n (a - 1)

	

(2 — 1)	 a (a — 1)

±(fl2.])

Both stages

(a — l)ri (2n -+-

6

(a 1)n (2n + 5)
6

n (a + 1)
2

we can thus conclude that the number of multiplications and subtractions
grows proportional to n/3 and the number of divisions proportional to 02/2.

Program LEG1

The basic Gauss elimination technique enumerated in Algorithm 7.1 is
implemented by the program LEG1. The driver program LEGI uses a
separate subprogram GAUSS 1 to implement the computational part of
the algorithm

LEG1 obtains the input data from the user and then calls the subpro-
gram GAUSS 1 to solve the specified system of linear equations. It final-
ly prints the results when they are received from the subprogram.

The subprogram GAUSS1 receives the details of the equation from
the driver program, determines whether the pivot is Zero or not, per-
fox-ms the elimination process (if it is not zero), computes x values (by
back substitution), and finally sends the results to the driver program.

Note that when the pivot value is near zero, appropriate message is
sent to the driver to inform the user accordingly.
* --

PROGRAJ4 LEG1

-------------------- --------

* Main program
* This program SOLves a system of linear equations*	 using simple Gaussian elimination method

---*
* Functions invoked
*	 NIL
* --*
* Subroutne3 used
*	 GAUSS 1	 *

*

Direct Solution of Unear Equations 211

* Variables used	 *
*	 N	 Number of equations in the system.
*	 A - Matrix of coefficients	 *

B - Right. side vector	 *
*	 X - Solution vector
*	 --

* Constants used	 *
*	 STATUS - Solution status	 *
*

REAL A,13,X
INTEGER STATUS,N
EXTERNAL GAUSS1
DIMENSION A(10,10), B(10), X(lO)

WRITE (*
WRITE(*,') 'SOLUTION BY SIMPLE GAUSS METHOD'
WRTTE(* &)

WRITE(* , *) 'What is the size of the system(n)?'
N

WRTTE(* , *) 'Input coefficients a(i,j), row-wise,
+

	

	 'one row on each line'
00 20 I = 1, N
READ(*,*) (A(IJ),Jl,N)

20 CONTINUE

WRITE(* , *) 'Input vector b'
READ(*,*) (B(I), I = 1, N)

CALL GAUSS1(N,A,B,X,STA'1'US)

IF(STATUS .NE. 0) THEN
WRITE(*,*)
WRITE(*,*)	 'SOLUTION VECTOR A'
WRITE(*,*)
WRITE(* , *)	 (X(T), I	 1, N)
WRITE(*,*)

ELSE
WRITE(*,')
WRITE(*,*)	 'SINGULAR MATRIX, NO SOLUTION'
WRITE(*,*)	 'REORDER EQUATIONS'
WRITE(*,*)

ENDI F

STOP
END

* -------------End of main program LEGI.	 *
* --- 	 *

SUBROUTINE GAUSS1 (N,A, B,X, STATUS)
* ---	 F.'

2i1 Numerical Methods

* Subroutine	
*

*	 This subroutine solves a set of n linear	 *

*	 equations by Gauss elimination method 	 *
*

* Arguments	 *

* Input	
*

*	 N - Number of equations 	 *

A - Matrix of coefficients 	 *

*	 B - Right side vector	 *

* Output	 *

X - Solution vector
*	 STATUS - Solution status 	 *

* --*

* Local Variables	 *

*	 PIVOT FACTOR SUM	 *

* ------------	 ---------------*

* Functions invoked	
*

*	 NIL	 *

* ---*

* Subroutines called
*	 NIL	

*

* --*

REAL AB,XP1VOlFACTOR,SUM

INTEGER STATUS, N
DIMENFtON A(l0,lf)), B(l0), xl10)

* ------------------- Elimination beams •-- ----------- ---- 	 *

DO 33 K = I, N-

PIVOT = A(E,K)
IF (TVOT.Li'	 0.000001) rIURN

STATUS = V

RETURN

END IF
STATUS = 1
DO 22 1	 K+1, N

FACTOR = A(I,K) /PIVOT
DO ii j = K-fl, N

A(I,J) = A(I,t) - FACTOR * A(K,J)

11	 CONTINUE
B(I) = 5(1) -- FACTOR	 0(K)

22	 CONTINUE

33 CONTINUE

-------Back nubsLitution begins --------- --- *

X(N)	 R(N)/A(N,N)

DO 55 K = N-1,1,-1

SUN	 0
DO 44 J = K-i,N

Direct Solution of U near Equations 21.2

	

SUM = SUN +	 * X(J)
44	 CONTINUE

(BR)	 -
55 CONTINUE

RETURN
END

------End ot Subrourino GAUSS1 --------------*

Test Run Results

SOLUTION BY SIMPLE GAUSS METHOD
What is the size of the Systex(n)?
3

Input coefficients a(i,j), row-wise, one row on each line213
447
259

Input vector b
113

SOLUTION VECTOR X

-1.000000,0	 1.0000000
Stop - Program terminated

GAUSS ELIMINATION WITH PIVOTING

In the basic Gauss elimination method, the element a,, when i = j is
known as a pivot element Each row is norrnaljsed by dividing the coeffi-
cients of that row by its pivot element. That is

af

J	 I,..,fl
If a = 0, kth row cannot be normalised. Therefore, the procedure

fails. One way to overcome this problem is to interchange this row with
another row below it which does not have a zero element in that position
(see Example 7.2).

From the given set of equations, it is possible to reorder the equations
such that a 11 is not zero. But subsequently, the values of akk are contin-
uously modified during the elimination process and, therefore, it is not
possible to predict their values beforehand.

The reordering of the rows is done such that akk of the row to benormalised is not zero. There may be more than one lion-zero values in
the kth column below the element a. The question is: which one of
them is to be selected? It can be proved that roundoff errors would be
reduced if the absolute value of the pivot element is large. Therefore, it
is suggested that the row with zero pivot element should be interchanged
with the row having the largest (absolute value) coefficient in that
position. In general, the reordering of equations is done to improve accu-racy, even if the pivot element is not zero.

22Q Numerical MoThodS

The procedure of reordering involves the following steps:

1. Search and locate the largest absolute value among the coefficients

in the first column
2. Exchange the first row with the row containing that element

3. Then eliminate the first variable in the second equation as cx-

plaind earlier
4.

When the second row becomes the pivot row, search for the coeffi-
cients in the second column from the second row to the nth row and
locate the largest coefficient. Exchange the second row with the
row containing the large coefficient

5. Continue this procedure till (n - 1) unknowns are eliminated.

This process is referred to as partial pivoting. There is an alternative

scheme known as complete pivoti ng in which at each stage, the largest
element in any of the remaining rows is used as the pivot. Figure 7.2

illustrates the partial and complete pivoting strategies. Algorithm 7.2

shows the implementation steps for partial pivoting.
Complete pivoting requires a lot of overhead and, therefore, it is not

generally used (though it may yield slightly improved numerical stabili-

ty).

Gauss eliminating with partial pivoting

Input n, al, and b, values.
Beginning from the first equation,
(i) check for the pivot element
(i) if it is the largest among the elements below it, obtain the

derived system
(iii) otherwise, identity the largest element and make it the pivot

element
(iv) interchange the original pivot equation with the one cofltSin-

log the largest element so that
the later becomes the new pivot equation

(v) obtain the derived system
(vi) continue the process till the system is reduced to triangular

form
3. Compute x, values by back substitution.
4. Print results.

Algorithm 7.2

iho fiiiwing system of equations using partial pivoting teihnique

2x i + 2x +	 6
4x 1 t 2x2 + 3x3 = 4

X1+X+X3O

Direct Solution of Unear Equations W

all

Search area	

a

(a)Partial ptvotlng
all-------------------------------

1/1

a22 -

Search area - -

afl,,a,,,,

(b)Complete pivoting

Fig. 7.2 Pivoting strategies

The forward elimination process using partial pivoting is shown below in
tabular form. The process involves two steps of elimination and, in both
the steps, the rows are interchanged. Note that the absolute value
of-3/2 is greater than 1.

Original system

Modified original system

First derived system

Modified first derived system

2	 2	 1	 6	 Interchange
3	 4

1	 -1	 1	 0Liiiiii!iiii1 pivot
2	 2	 1	 6
1	 -1	 1	 0
4	 2	 3	 4

'^^
1 -112 4	 Interchange
/2 1/4

4	 2	 3	 4

114	
]	

pivot

1 -112 4

Numerical Methods

Second and final derived system 4 	 2	 3	 4
—312 1/4 —1

—113 10/3
The solution is

X3 —10
=
= 9

Program IEG2
Program LEG2 is designed to solve a system of linear equations using
Gauss elimination with partial pivoting. The modular structure of the
program is shown in Fig. 7.3.

Fig. 7.3 Mociular struchiro of L[G2

The master program LEG2, while reading data from the user and i1,t_
ing solution vector, depends on the services of the subprogram GAU2
for implementing the actual solution procedure given in Algorithm 72.
CAUSS2, in turn, uses the services of two other subprograms, namely,
ELIM, to perform forward elimination, and BSUB. to obtain the solutii
vector using the back substitution approach.

The subprogram PR,-OT undertakes the task of partial pivoting by
identifying the pivot element and then rearranging the rows such that
the equation containing the pivot element becomes the pivot equatiok
*	 - .----	 -----------	 -	 ----.------ ---.----------

PROGRJ'1 LE2
* -	 ---*

* Najrj proqram
This pi-cgraRi SOives 0 syst-em nL iinrsar ci-:r1
using Gaensmn einiu ritori with uajLii pvoL1r1Q

* ---------- --------------------------------------

	

--V.	 *

* i-'unCtiiofls jn.rkec	 *
*	 NIL	 *
*	 -- -----------------------------	 ---------------	 ---- .-

Direct Solution of Unear Equations 22

* Subroutines used	
*

*	 Gauss2	
*

* --

* Variables used
* N - Number of equations
*	 A - Coefficients matrix

B - Right side vector
*	 X - Solution vector
* ---------------- -------------

* Constants used	
I

*	 NIL
* --

REAL A, B,
INTEGER N
EXTERNAL GAUSS2
DIMENSION A(10.10), B(10), X(lO)

WRITE(*,
WRITE(*,*) ' GAUSS METHOD WITH PARTIAL PIVOTING'

WRITE (*

WRITE(*,*) 'What is the size of the system(n)?'
READ(*,*) N

WRITE(*,*) 'Input coefficients a(i,j), row-wise'
WRITE(*,*) 'one row on each line'

DO 20 I = 1, N
READ(*,*) (A(IJ) ,1=l,N)

20 CONTINUE
WRITE(* , *) 'Input vector b'
READ(**) (13 (1) 	 I = 1, N)

CALL GAUSS2(N,A,B,X)

WRITE(*, *)
WRITE(*,*) 'SOLUTION VECTOR X'
WRITE(*, *)

WRITE (*,*) (X(I), I	 1, N)
WRITE(*, *)

STOP
END

* -------------End of main program LEG1
* --

*	 SUBROUTINE GAUSS2(N,A,B,X)
* --

* Subroutine
* This subroutine solves a system of linear
* equations using Gauss elimination method with

* partial pivoting
* ---

24 Numeilcol Methods

* Arguments
* Input
*	 A - Coefficert matrix
*	 B - Right Side vector 	 *
*	 N - Size of the system	 *
* Output	 *
*	 X - Solution vector	 *
* ------------- 	 *
Local Variables	 *

*	 NIL	 *
* ------------------------------------- 	 *

Funct-ions invoked	 *
*	 NIL	 *
* ------ -- ----	 ----------------------------- 	 *
* Subroutines called
*	 SLIM, BSIJB	 *
* ------- ----- ---------------- -- -------------------------	 *

REAL 1.,3,X

INTEGER N

EXTRNAt SLIM, BSIJD

DIMENSION A(lO,iD) , BIL) , >(iO)

A Forward elimination

CALL ELIM(N,A,B)

* So]uLon by bock subs tut i un

CALL SL[(N,A, t, X

END

* --- --------- End of uubroutna GIG1G52 ----------- --
* --- -..

SUBROUTINE ELTM(N,,B)	 -
* -	 --- -

* SuhrouLir-e

This subroutine performs forward elimination	 *
Lnrorporat:fnq partial pivoting technique	 *

* ---------------------	 --- -- 	 *
Arguments	 A

* Input	 *

*	
A - Coefficient. matrix	 *

*	
B - Riaht side vector	 *

N - Sys!em cize	 *

* Output	 A

A - Modified A
	

*

B - Mod died R	 -
* --------------------.-.----- 	 *

Direct Solution of Linear Equations 22

* Local VarLjbies	 *
*	 FACTOR	 *
* ---*

*	 ctions invoked	 *
*	 IL	 *

**
Euhroutines called	 *

*	 PIVOT
* --

REAL A, B, X, FACTOR

TNTFCER N

EXTERNAL PIVOT

DIMENSLQN A(0,10),B(10)

DO 33 1< = 1,
CALL PIVOT (N,AB,K)

DO 22 I = F+I, N

FACTOR

DO) 1,Ii 7 = KL, N
A(I,J) = A(1,J) - FACTOR *

CONTINUE

R(I)	 E(Ii - FACTOR * B(K
22	 CONTINUE

33 CONTINUE

F ETU?

END
* -------- - S_S	

End of subroitine FLIM --------------*
* 5--- ------------ - - -	 S -------- 	 *

SUBROUTINE LIVOTN,A,1,
* ---- --.	 ------------------------------------ -S.--- ------*

* $uhr(.-IIltSfle
*	 This subro - Te per oms Le isk f
*	 pIvoIrjr	 (r'e-derzjc	 f eior	 *
* -------------- ---------------5- 5-	 5- -	 ----*

Arqumc-rp	 A

* Inpu -	 -
*	 N - System size	 A
*	 A - Coeffj(;jj1Ls matrjx
*	 - RLUbL side vacor	 *
*	 K - Row iinder con j deration for pivnt(
* O -:pu	 *

A - Moofed A (after p ntrnO)	 *
*	 P - Mocli trc-d B (after pvoL:c)	 *

*
* T._j3 Vaj,l-	 *
4	 LARCETEEp,p	 *
*	 --- -	 S	 --'

W Numerical Methods

* Functions jnvokd
*	 ABS
* ----------------------------------

* Subroutines called
*	 NIL

REAL LARGE, TEMP,AB

INTEGER P,N,K

INTR'NSIC ABS

DIMENSION A(lO,iO), 5(10)

* Find pivot P

P = K

•	 LAROP = ABS(A(E,K))

DO 11 I	 K+1, N
IF(ABS(A(,X)) .OT. LARGE) THEN

lARGE - ABS(A(I,K))

P - I

•	 ENDIF

1 (XDNTIN1JE

* Exchang' rows P and K
IF(P.NE.K) THEN

DO 22 J = K,N

TEMP = A(P.J)

A(P,J) - A(K,J)

A(K,J) = TEMP

22	 CONTTNIJE

TEMP = B(P)

5(P) = B(E)

5(K) = TEMP

END IF

RETURN

END
* •-----End of subrouLine PIVOT -------------
* ------------ --

SIJBROUTINE I3SUB(N,A,B,X)
* -------------------- ------------- .- ------------

* Subroutine
This subroutine obtains the solution vector X

*	 by hack substitution
*--

 Arguments
* Input
*	 N - SysLem size

A - Coefficient matrix (afL(.. elimination)
*	 B - Right side vector (after elimination)

Direct Solution of Linear Equations 227

* OLpuL	 -	 *
*	 X - Solurion vector	 *
*

* Local Variables	 *
SUM

-- ------------
 -

 --	 -----------*
* Funct .o1s invoked	 *
*	 NIL	 *

*
:-broutines ca led	 *

*	 NIL	 *
* --	 --------

*

INTEGER N
REAL A, 9, 	 SUM
DIMENSION A1C0),	 B(10),	 (10)

X(N)	 -	 li(N)/AN,N)
DO 55 E	 N-.,

SUM = 0

DO 4'	 0 = F.

	

SUM	 SUM	 A(LCJ) * xij
4-1	 CONTINUE

3) /A(K,R)
05 CCNTLUE

EN;_
- ----------------	 BEND - ----

Test Run Results

	

-N Zrrs 	 MNIUOL' MITE? PARTIAL P1VUI INC
-Ile	 s	 e of	 t	 iysern(rj) 2

Input coo 0fcien	 (row-w's
0:10	 00';	 01.	 eaCj-1	 Ilie

?	 2
425
- I 	 1	 1

iIlpuLvccrcr b
6 4 0

SOLUEIOc-'c,c-OT

5. 000OOCO	 0000000	 -6.0000000
U: -:	 -	 rujiam	 t crrnn.:tr5.

2I Numerical Methods

GAUSS-JORDAN METHOD

Gauss-Jordan method is another popular method used for solving a sys-
tem of linear equations. Like Gauss elimination method, Gauss-Jordan
method also uses the process of elimination of variables, but there is a
major difference between them. In Gauss elimination method a variable
is eliminated from the rows below the pivot equation. But in Gauss-
Jordan method, it is eliminated from all other rows both below and
above). This process thus eliminates all the off-diagonal terms producing
a diagonal matrix rather than a triangular matrix. Further, all rows are
normalised by dividing them by their pivot elements. This is illustrated
in Fig. 7.4. Consequently, we can obtain the values of unknowns directly
from the b vector, without employing back-substitution. Algorithm 7.3
enumerates the Gauss-Jordan elimination steps.

	

8 12	 8 13 lixi 1	 1 i
a 21 8 22 823

8 31 8 32 833 , x 3 	 b3

/
8 11	 8 12	 8 13	 X1 1 [hi 	 01 x i 1	 b{0 a	 a3 K2 H b	 0 i oJ X 2 	 b'

L 0	 0	 a	 x3	 bg]	 0 0 iJ x 3 j bf'
	Result of Gauss elimination	 Result of Gauss-Jordan elimination

Fig. 7.4 Comparison of Gauss and Gauss-Jordan methods of elimination

Gauss-Jordan elimination

1. Normaliso the first equation by dividing it by its pivot element.
2. Eliminate xl term from all the other equations.
3. Now, normalise the second equation by dividing it by its pivot element.
4. Eliminate x2 from all the equations, above and below the normalised

pivotal equation.
5. Repeat this process until x,, is eliminated from all but the last equation.
6. The resultant b vector is the solution vector.

Algorithm 7.3

The Gauss-Jordan method requires approximately 50 per cent more arith -
metic operations compared to Gauss method. Therefore, this method is
rarely tise	 .,.-

cjlve the system

//	 2x1+4x26x3=8

Direct Solution of Linear Equations 229

+ 3x2 + X3 = 10

2x —4x22X3'l2

using Gauss-Jordao method.

Step 1: Normalise the first equation by dividing it by 2 (pivot element),
The result is:

+ 2x2 - = — 4

X1 +3x2 -t X 3 =•10

1_.2_ 3 12 I
Step 2: Eliminate x 1 from the second equation, subtracting 1 time the

first equation from it. Similarly, eliminate x 1 from the third equa-
tion by subtracting 2 times the first equation from it. The result
is:

XI + 2x2 --x= - 4

+ 4xi
0 - 8x + 4x3 —4

Step 3: Normalise the second equation. (Note that it is already in
normalised form.)

Step 4' Following similar approach, eliminate x2 from first and third

equations. This gives
i+0_1:_32
0+x2+4xl4
0+0+36x 3 =108	 ')

Step 5: Normalise the thud equation '•

Xi + 0 11x = —32

o + x2 + 4x3 = 14

o + 0 + x3 = 3

Step 6: Eliminate x from the first and second equations. We get
x 3 + 0 1- 0 = 1

o + x + 0 2
o + 0 +

Computational Effort

The Gauss-Jordan method requires only the elimination process. To elim-

inate x from all but the kth equation, we need to undertake the follow-

ing tasks:
1. Divide the coefficients x1, X, f9 1 ... x, and hk by the coefficient ofxk.

2. Subtract suitable multiples of the kth equation from the other
(n - 1) equations to eliminate xk from these equations.

Thesetasks require:
(n - h + 1)	 divisions

(n - 1) (n - h + 1) multiplications

(a - 1) (a - k + 1) subtractions

230 Numeficcd Methods

Therefore, the total operations required in order to complete the elimi-
nation process are:

	

Multiplications =	 - 1) (rz - k + 1) = n (n 2 - 1)

	

Subtractions	 (n-k+ 1)r=J.(2 +1)

	Divisions	 (a - 1) (n - + 1) =	 (n - 1)

We see that the number of multiplications and subtractions is approxi-
mately equal to (1f2) n 3 and the number of divisions is (1/2) 11 2 . Compu-tational efforts required by the Gauss and G auss-Jordan methods aregiven in Table 7.2.

Table 7.2 Comparison of COrnputaf joç effort
Oauss rnctliod	 met hoo

Multiplication

	

3	 2
ISubtraction	 13

	3 	 2
Divisions	 .12	

-.1t

	

2	 2

It shows that the Gauss method requires only two-third of the num -
ber of multiplications or subtractions that the Gauss-Jordan method
requires: i.e., the Gauss-Jordan method requires 50 per cent more multi-
plications and subtractions as pointed out earlier,

TRIANGULAR FACTORISATION METHODS

The coefficient matrix A of a system of linear equations can be factorised
(or decomposed) into two triangular matrices L and U such that

A= LIT
where

111	 0

L= 1 21 122

1,11	 'n2

and

U J 0
1112

0	 0

(7.9)

0
0

111n

U 2rz

11J;n

Direct Solution of Unear Equations .?J

L is known as lower triangular matrix and U is known as upper triangu-
lar matrix.

Once A is factorise into L and U, the system of equations
Ax b

can be expressed as follows
(LU)x= b

or
L (Ux) h
	

(7.10)

Let us assume that

	

Ux=z j	 (7.11)

where z is an unknown vector. Substituting Eq. (7.11) in equation
(7.10), we get

	

Lz=b
J	

(7.12)

Now we can solve the system
Ax = b

in two stages:
1. Solve the equation

Lz=b

for z by forward substitution
2. Solve the equation

Ux = Z

	for x using z (found in stage 1) by b	 substitution.
The elements of L and U can be determined by comparing the ele-

ments of the product of L and U with those of A. The process produces a
system of ,2 equations with n 2 + n unknowns (1 and mid and, therefore,
L and U are not unique. In order to produce unique factors, we should
reduce the number of unknowns by n.

This is doac by assuming the diagonal elements of L or U to be unity.
The decomposition with L having unit diagonal values is called the
Dolittle LU decomposition while the other one with U having unit diago-
nal elements is called the Grout LU decomposition.

Dolilile Algorithm
We can solve for the components of L and U, given A, as follows:

A = LU

implies that

	

1,j U 1j + 42 u 21 + ... + 1 u,	 for i < .1	 (7.13)

	

aij = l u t, + 1,2 u 2j + ... + l u11	 for i	 (7.14)

22 Numerical Methods

	

alLl u lJ +ll2 4...+ 10 u 	 for i>j	 (7.15)
where u = 0 for i >j and l = 0 for i <j

The Dolittle algorithm assumes that all the diagonal elements of L
are unity. That is

1,	 i = 1, 2, ... it.

Using equations (7.13), (7.14) and (7.15), we can successively deter-
mine the elements of U and L as follows:

If i <j

1--i

= U n -	 'nk u	 j	 1,2,... a
LU k1

where O h = a 11 , 012 a 12 , Ui = a13

Similarly, if i >j

P	 [1ç_ . — x[a 0 —lthUkJj	 j= 1,2...i– 1

where 1 11 = 192 = 1 33 = 1	 and	 1 = a 11Iu 1 for i 2 to a.

Note that, for computing any element, we need the values of elements
in the previous columns as well as the values of elements in the column
above that element, as illustrated in Fig. 7,5. This suggests that we
should compute the elements, column by column from left to right within

each column from top to bottom.

Column
1	 2	 3	 4	 5	 6	 7	 6

1 L.oil ., 	 12	 012	 U14	 U15	 LI 1 6	 017	 U

2	 121	 H
'31	 rL

Row	 1

L1)iI	 u

6	 U66	 U66

7	 171	 L'77	 U76

8	 181	 6	 '83	 '84	 185	 186	 187

Fig. 7.5 Pictorial view of Dolitfie algorithm of LU decomposition

Direct Sold on of Linear Equations

Algorithm 7.4 lists steps involved in LU decomposition and its applica-
tion to the solution of linir equations.

Note:
1. There is no need to store l's on the diagonal of L matrix.
2. There is also no need to store 0's of L or U. Consequently,

the values of L can be stored in the zero space of U
3. Further, each element of a U is used only once (and never

used again).
It is clear that we can "overwrite" A with L and U and save
memory. This means fl- '" corresponding or u.0 can be stored in
the location of a.

Dolittle LU decomposition and solution

1. Given n,A,b
2. Set u1 = a 1 ,	 for j=1 ton

Set 1" 1	 for 1=1 ton
Set l	 a11 1u11	 for 1=2 to n

3. For each j= 2 ton do:
(i) Fori=2toj

I -1
Compute u, =a -	 ' ik UAJ

Repeat/
(ii) For / = j -.- 1 to p

Compute 1,7 =	 x a, -	 1,kUkj

Repeat i	 L	 k-i

Repeat I
4. Set z=b
5. For i=2t,ip

- 1

Set sum =
j-1

Set z, = - sum
Repeat /

6. Set x	 z
7. For jn-10

Setsurn=

Set x= (z - sum) / U,,

Repeat
8. Write results

Algorithm 7.4

24 Numerical Methods

Solve the system
3x 1 + 2X2 + X 3 = 10

+	 + 2x3 = 14
4- 2x2 + 3r3 = 14

by using Dolittle LU decomposition method

Factorisation

	For i 1, I	 1 and
u ll = 0 11 = 3

U 12 = a 12 = 2

i113 = a 13 = I

	

For	 2

'2i=7	 and	 192=1
u 11	 3

1) = '7 27 - 21 11 12 	 3 - - > 2 =

u 23 =a93 -I9 1 u 13 =2----x1=-

For i = 3

0.31	 1
131_ u 11	 3

-

(7 32	 1311J13

2-1i3-x24
-	 5/3	 5

1 33	 1
U 33	 a 33	 1 33 11 13	 132 1123

=3 1 x 1-x--=
3	 5 3 15

Thus, we have

1	 00
L 213 1 0

[i1.	 4/5 1

32	 1
U = 0 5/3 4/3

0 0 24/15j

Direct Solution of Linear Equations 29

Forward Substitution
Solving Lz = b by forward jbstitution, we get

Z I = b = 10
= b 2 -- 121 Z1

=14-2/3x10=22/3
= b 3 -	 Z1 - 132 Z2

Back Substitution

	Solving	 U1 z by bacK hstitution, we get

27/15

Z2 —u28;3
X2 = -

1122

(22I3)—(4I3)Y32
5/3

z 1 -u 12 x 2 -u13X3

XI

10 - 2 x 2 - 1 x 3 - 1
3

Program DOLIT
The Dolittle LU decomposition method for solving a system of linear
equations may be implemented on a computer using the program DOLIT.
The DOLIT program solves a problem with the help of two subprograms,
LUD and SOLVE.

The subprogram LUD decomposes the given coefficient matrix using
the Dolittle algorithm and the resultant L and U matrices are supplied
back to the main program DOLIT. Note that when it fails to decompose
the matrix, a message to that eflèct is sent to the main program for
necessary action.

The subprogram SOLVE receives the right side vector B and the
decomposed matrices L and U from the main program and then obtains
the solution vector X employing both the forward and backward substi-
tution techniques.
*	 -	 -	 *

PROGRAM DOLIT

* --	 -	 -	
-	 *

*	 j fl program	
*

*	 This program solves a system of linear equations *
using DlitLle LU decompnsLC	

*

Numercof Methods

*	 - ---	 -	 *
* Functions invoked 	 *
*	 NIL	 *
* ---*

* Subroutines used 	 *
*	 lAiD SOLVE	 *
*	 ---*

* Variables used	 *
*	 N - System size	 *
*	 A - Coefficient matrix of the system	 *
*	 B - Right side vector	 *
*	 L - Lower triangular matrix	 *
*	 U - Upper triangular matrix	 *

FACT - Factori ga:jon status	 *
* ---*

* Constants used	 *
*	 YESNO	 *
* -- - ------------------------ ------------------------- *

INTEGER M YES, NO, FACT
REAL A,U,L,B,X
EXTERNAL LUD, SOLVE
PARAMETER(YES = 1, NO = 0)
DIMENSION A(10,l0),tJ(JO,l0),L(10,10),B(1O),x(i0)

WRTTE (*,
WRITE (*) 'SOLUTION BY DOLITTLE METHOD
WRITE(*,*)

* Read input data

WRITE(* , *) 'What is the size of A?'
READ(*,*)	 N	 -
WRITE(* , *) 'Input coefficients a(,j), row-wise,

+	 'one row on each line'
DO 10 I - 1, N

READ(* , *) (A(I,J), J=1,N)
10 CONTINUE

WRITE(*,*) 'input vector B on one line'
READ(* , *) (BI), 1=1, N

* LU factorisation

CALL LUD (N, A, U, L, FACT)

TF(FACT EQ. YES) THEN
*	 Print LU matrices

* Print matrix U
WRITE(*,*)
WRITE(* , *) 'MATRIX U'
DO 20 1	 l,N

Direct Solution of Linear Equations 2Z

WRITE '.11l)	 (U(I,J)J=l,N)

20	 CONTTNUE

* Print matrix L

WRTTE(, *) 'MATRIX L

DO 30 I=1,N
WRITE (*,li1) (L(IJ),J=1,r

30	 CONTINUE

ELSE

WRITE *,)
WRITE(* *) 'FACTORISATION NOT POSSIBLE'

WRITE(*, *)

STOP

ENDIF

* Solve for X

CALL SOLVE (%7 , U, L, B, Xi

WRITE(* .. *)

WRITE(* , *) 'SOLUTION VECTOR X'
WRITE(*, *)

WR1TE(* , 111) (X (T)

WRITE (* *)

Ill FOR

STOP

END

End of main prog ram DOLIT	
*

* ---------------------------------- ----------------------- *

SUBROUTINE LUD(N,A,U,L,FACT)
------------ ------------

Subroutine	
*

This subroutine decomposes the matrix A into

L and U matrices using flotittle algorithm
* ------------ --------- - -----	 ---*

* A quueu

Input
*	 N - ycrcmcize	

*

*	 A	 Cootficzont uctrix of :he original system
* Output	

*

U - Decomposed upper tranguiar matrix 	
*

*	 L - Decomposed lower triangular matriX 	
*

FACT - Fact tbuuL decomposition (yes or no) 	 +

*--

* Local Variables

SUM
* ----- --------- ---- --------------------*

Numerical Methods

* Functions invoked	 *

A	 NIL	 *

*---	
*

* SubrouLines called	 *

*	 NIL
*	 -	 -----.------	 -	 *

INTEGER N, YES, NO, FACT

REAL A,U,L,SUM

PAHAME'IER(YES	 1, NO =

DIMENSION A(10,10), U(10,I0), L(10,10)

* Initialise U and I inaLrice

DO 1 I = 1.,

DO 1 J = 1..N

U(I,J) = 0.0

L(T,J) = 0.0

1	 CONTINUE

* Compute the elements ot U and L

DO 10 J	 l,N

IJ(1	 A(I ,J)

10 CONTINUE

DO 20 I = 1,N

L(I, I)	 1.0

20 CONTINUE

DO 30 1 = 2,N

= A(I,1)/U1,i)

UI CONTINUE

DO 100 J = 2N

DO 50 1 = 2,1

SUM = A(IJ)

DO 40 K	 1,1-1

SLIM = SUM - L(I,K) * 11 (K,

40	 CONTINUE

U(I,d) - SLIM

50 CONTJJ'IUE

IF(U(J,J) .L,E. J.E-6
	

THEN

FACT = NO

RETURN

END IF

DO 70 1 -= J+1.N

SUM = A(I,J)

DO 60 K = 1,J-1

SUM = SUM - L(I,K) * U(K,J)

60 CONTINUE

Direct Solution of Linear Equations 22

L(I..J)	 STJM/U(FJ)
70	 CONTINUE

100 CONTINUE

FACT = YES

RETURN

ENS
* --. -------End of subroutine DUD ------------*
* ---------- -- --------- - - -- - -- - -- - - - - -

SUBROUTINE SO'P(N,1J,L!LX)
* ---- - -------------- - --- ----- 	

*

* S.;broutifle	
*

+	 This subroutine obtains the solution vector X	
*

*	 e coefficients of S and U matrices
*	 ------- --------------------------- --------------- *

Arguments	
*

* Inpuc	
*

*	 N - System size	
*

*	 U	 Upper criangutaI matrix	
*

*	 S - Tower triangular matrix
*	 B - Right side vecLoi	

*

* Output	
*

*	 X --- Solution vector 	
*

-- -
*

* Local -ar ables	
*

* SUM, Z(vector
* --

*

* FnctIofl5 in/oked	
*

*	 NIL	
*

* ------	 ---.-------*

* Subroutines called	
*

*	 NIL	
*

* ------------------------------------

INTEGER N

REAL U,L, SUM, U,XZ

-	 DIMENSION U(10,i0) ,L(i0l0),Bl0),X(10)Z(i0

* Forward ubstitutiOr

Eli) = 5(1)

DO 20 1 = 2,N

SUM = CL

DO 10 J = 111-1

SUM = SUM + L(I,J)	 Z(J)

10	 CONTINUE

5(I) = 6(1) - SUM

20 CONTINUE

* Back substitution

X(N) = Z(N).-'UftJ,N)

240 Numerical Methods

DO 40 I = N-1,l,-!
SUM - 0.0
DO 30 3 =

SUM = SUM - U(I,J) * X(J)
30	 CONTINUE

X(I) = (Z(I) - SUN)/U(r,I)
40 CONTINUE

RETURN
END

* -------------- End of subroutine SOLVE -----

Test Run Results

SOLUTION BY DOLI'CrLE METHOD
What is the size of A?
3
Input coefficients a(-, ,j), row-wise, one row on each line
321

232
1 2 3

Jnput vector B on erie line
10 14 14

MATRIX U

	3.000000	 2.000000	 1000000

	

.000000	 1.666667	 1.333333

	

.000000	 .000000	 1.600000
MATRIX I

	

1.000000	 .000000	 .000000

	

.666667	 1.000000	 .000000

	

.333333	 .800000	 1.000000
SOLUTION VECTOR X

	1.000000	 2.000000	 3.000000
Stop - Proqram te!minated.

Crout Algorithm
Another approach to LU decomposition is Crout algorithm. As men-
tioned earlier, Grout decomposition algorithm assumes unit diagonal
values for U matrix and the diagonal elements of L matrix may assume
any values as shown below.

	

0	 ...	 0	 [1	 u 12	 ...	 u L,	 all	 a 12	 ...	 a1,,
1	 l	 ...	 0	 10	 1	 ...	 u.	 a21	 a 22 	...	 a2,,

	

l,, 1	 1,	 ... 1flfl	 L0	 ... a,,,,

Direct Solution of Linear equations 4j.

We can use an aproacli that is similar to the one used in Dolittle
decomposition to evaluto the elements of L and U.

Cholesky Method
In case A is symmetric, the UJ decomposition can be modified so that
the upper factor is the transpose of the lower one (or vice versa). That is,
we can factorise A as

A . LL

or
A=UTU (7.16)

Just as for Dolittle decomposition, by multipl y ing the terms of Eq. (7.16)
and setting them equal to each other (see Eq (7.13), (7.14) and (715)),
the following recurrence relations can be obtained.

Ui.l

1

	

= Fa,,	 ZI ki(i = I to n)
(7,17)

1r
IlLi U>

This decomposition is called the Cholesky's factorisation or the method

of square roofs. Algorithm 7.5 lists the basic steps for computing the
elements U, column by column.

Cholesky's factorisation

1. Given n,A

2. Set u1-1

3. Set u0 =a11 Iu 1	 for i=2ton

4. For j=2fon

For r2tOj

sum = a,,

For k= 1 t i— 1

SUM = sum - UAi 0kj

Repeat k
set u = sum I U'j	 If I < j

if i'-j

Repeat I
Repeat I

5. End of factorisation

Atorlthm 7.5

42 Nume,lcaI Methods

Factorise the matrix

[1 2	 3
2 8 22
3 22 82]

using Cholcsky's algorithm

For i = 1, according Eq. (7.17)

11	 1

	

12	 2
u 1 -----=-- =2

	

- U i	 I

	

a 13	 3
11 13 =	 = - = 3

	

U 11	 1

For i = 2

= 'J12 -
	 = 2

11 93 -	 ----- - - = 8
2	 2

For L = 3

IL:33	 jas3 U 13 -U23

=	 3

Thus, we hay'-,

F l 2 3
U=O 2

Lo 0 3]

ROUNDOFF ERRORS AND REFINEMENT

In all the direct methods, only one estimate of xi is produced. As we

know, methods use a large number of floating point operations and,
therefore, introduce roundoff errors in the final solution. We iave no
indication how accurate the solution is.

One way to check this is to substitute the answer back into the
oginal equations to sec whether a substantial error has occurred. In
case the error is beyond the acceptable limit, the solution can be im-
proved by a technique known as iterative refinement.

Direct Solution of Linear Equations 24

Let us Suppose X(" is the solution of the system
Ax = b

Substituting xtt back in the original equation, we get
Ax(1) =

Since	 is not exact, b' is not equal to b. If we define
r(l)	 5

then we have
r(l) =Axm_b (7.18)

where r is known as residual vector. If we can use this information to
compute the error, then we can correct the approximate solution with
this error.

If we assume that x i5 the exact solution and e is the error in x, then
X* X01 — e(i)

or

+e1	 (7.19)
Substituting this in Eq. (7.18), we get

r' 1 = A (x* + e') S
= Ax* -1- AeU — S

Since Ax'4'= 5, this results in

(7.20)

We can now obtain e by solving Eq. (7.20) and then estimate the next
improved solution as

X 2 = X —

If we need fijj-t}ier improvement, we caii repeat the process by calculat-
ing	 using

Ae2 = f(2)

where
= Ax(2) - b

We get the next estimate as

This process can be repeated as many times as we wish to achieve a
desired accuracy. Algorithm 7 9 lists the steps for implementing the
iterative refinement process.

Iterative refinement

1. Obtain LU factorisation of A
2. Compute the solution x by forward and back substitutions
3. Find the residual vector r using

r=Ax—b
4. Compute the error using

Ae r
by forward and back substitutions

44 NumerCaI Methods

(contd.)
& Setx=x - e
6. If e is sufficiently small

stop
otherwise

go to step 3

Algorithm 7.6

ILL-CONDITIONED SYSTEMS

As pointed out in the beginning of the chapter, arriving at a proper
solution depends on the condition of the system. Systems where small
changes in the coefficient result in large deviations in the solution are
said to be ill-conditioned s stein-s .A wide range of answers can satisfy
such equations. This means that a completely erroneous set of answers
may produce zero (or near zero) residuals. This is illustrated in Example
7.7,

I'll-conditioned systems are very sensitive to rouridoff errors. These
errors during computing process may induce small changes in the coeffi-
cients which, in turn, may result in a large error in the solution.

We can d1'cide the condition of a system either graphically 0]' mathe-

matically. Graphically , if two lines appear almost parallel, then we can
say the system is ill-conditioned, since it is hard to decide just at, which
point they intersect.

The problem of ill-condition can be mathematically described as fbi-

lows: consider a two equation system

11 X + (212 x2 =

a21x1+a.nx252

If these two lines are almost parallel, then' slopes must by nearly equal.
That is

(711	 C1 21

L22

Alternatively.
011099 012091

or	
01

Note that a 11 a25 .- a1 2 4121 is the determinant of the cellici(-nt matrix

	

ro 11	 a 1 .)1-

	

a21	 ci.9

Direct Solution of Linear Equations

This shows that the determnant of an ill-conditioned system is very
small or nearly equal to zero,

In partial pivoting technique, we try to interchange the rows so that
the largest element becomes the pivot element. This is done basically to
avoid a division by zero or nei-wly zero point. Even the largest element in
that column may happen to be zero (or nearly zero). Such situations
arise when the systems are ill-conditioned. Solution of these systems
may not be meaningful.

Solve the following equations

2x i + 12 = 25

2MOlx 1 + x2 = 25.01

and thereby discuss the effect of ill-conditioning.

25 x I -- 25. 01 x 1
1 1 =	 -r 10

2x 1-2.00lx 1

25.01 x 2— 25 x 2.001
I, =	 = 5

2x1--2.001xl

Let us change the coefficient of x 1 in the second equation to 2.0005. Now
the values of x 1 and x2 are

- 25 - 25.0120
- 2-2.0005

25.01<2- 25x2.0005
—-=-15

2-2.0005
Compare the results. A small change in one of the coefficients has re-
sulted in a large change in the result,

If we substitute these values back into the equations, we get the residuals
as

r1=40-15-25	 =0

r2 40.02 - 15 —25.01 0.01
The first equation is satisfied exactly and the residual of the second is

small It appears as if the results are correct. This illustrates the effect
of roundoff errors on ill-conditioned systems.

____ MATRIX INVERSION METHOD

Another way to obtain the solution of an equation of type

Ax = b	 (7.21)

44 Nurnedcal Methods

is by using matrix algebra. Multiply each side of Eq. (7.21) by the
inverse of A. This yields

A' Ax = A' b	 (7.22)
since A-' A = 1, the identity	 tion (7.22) becomes

(7.23)
Equation (7.23) gives the solution for x.

This approach becomes useful when we need to solve Eq. (7.21) for
different sets of b values while A remains the same.

Computing Matrix Inverse
Although the Gauss-Jordan method is more complicated compared to
Gauss elimination method, this method provides a simple approach for
obtaining the inverse of a matrix.

This is clone as follows:
1. Augment the coefficient matrix A with an identity matrix as shown

below:

Ufl	 lj	 (113	 1 0 0
0 21 0 22 o 93	 0 1 0
a	 12	 a ., , 10 0	 1

2. Apply the Gauss-Jordan method to the augmented matrix to re-
duce A to an identity matrix. The result will be as shown below:

H0 0 a ll a 12 a
01	 0 (1 21 	 (L7	 a:1

H0 1a l CZ 32 a:

The right-hand side of the augmented matrix is th inverse of A. Now,
we can obtain the suluton as follows:

x -a ll xb 3 +a 9 xb 2 +aE 3 xb3

X2 —a xb 1 +a xb 2 +02 :1 Xb

x3 =at x j (0 2 Xi)., I a 33 xh

Condition Number
The inverse matrix can also he used to decide whiher a system is ill-
conditioned. Let us define a matrix C as

C = A . A	 (7.24)
If is close to identity matrix, then the system iwe1l_condjtjoned . Ifnot, it indicates ill-conditioning

Lrec: Solution 01 Unear Equahons 247

Equation (7.24) can be expressed using the concept of matrix norm as
follows:

cond (A) =)AJ I	 I jA1 II	 (7.25)

	

where condA) is called the condition number and	 A	 is the "norm"
of the matrix A. The norm is defined as follows

HAII=

This is known as row-sup? norm. In this norm, the sum of the absolute
values of the elements for each row is computed and the largest of these
is taken as the norm.

The smaller the condition number, the better is matrix A suited to
numerical computation.

SUMMARY

Iii this chapter we studied systems of linear equations. Among the two
popular approaches available for solving these equations, we considered
the elimination (also known as direct) methods in detail. They include:

• Gauss elimination method (basic)
• Gauss elimination with pivoting
- Gauss-Jordan method

LU decomposition method using Dolittlo algorithm
• Matrix inverse method

We also stated that other LU decomposition techniques, such as Crout,
algorithm and Cholesky's factorisation, may be applied to solve the equa-
tions.

Direct methods introduce roundoff errors. We presented an iterative
refinement procedure for improving the final result-

Computer programs with test results have been given for the follow-
ing methods:

- Basic Gauss elimination method
• Gauss elimination with partial pivoting

Dolittle LU decomposition method

Key Terms

Back substitution	 Lower triangular matrix
Basic Gauss' elimination 	 LU decomposition
Cholesky's algorithm	 Matrix inversion
Cholesky's factorisation	 Matrix norm
Complete pivoting	 Method of square roots
Condition number	 Modular structure
Grout algorithm	 Nonlinear
Grout LU decomposition 	 Normalisatior,

(Contd.)

248 Numerical Methods

(Contd.)

Decomposition	 Over-determined
Dependent equations
	

Partial pivoting
Direct method
	

Pivot element
Do/i (tie LU decomposition
	

Pivot equation
Elimination approach
	

Pivoting
Forward climination	 Residual vector
Gauss elimination	 Row-sum norm
Gauss-Jordan method
	

Simultaneous equations
Homogeneous equations	 Singular systems
III-conditioned system	 Triangulansation
Inconsistent equations 	 Under-determined
Infinite Solutions	 Unique solution
Iterative refinement
	

Upper triangular matrix
Linear	 Zero residuals

REVIEWOMSPOIVS
	

I
1. Describe the two basic approachee that are employed for solving a

system of linear equations.
What are the four possible solution conditions of a system of linear
equations? Explain each one of them with an illustration.

3. Explain under-determined and over-determined systems.
4. What is meant by homogenous equations?

State some basic rules that are used in the elimination method of
solving simultaneous linear equations.
Explain the basic concepts used in the Gauss elimination approach,

7. What is triangularisation of equations? How does it help obtain the
solution?

8. What is pivoting? Distinguish between partial pivoting and com-
plete pivoting.

9. How does pivoting improve accuracy of solution?
10. Compare critically Gauss elimination and Gauss-Jordan methods

of solving simultaneous equations.
11. Show that Gauss-Jordan takes about 50%, more operations than

Gauss elimination for the case of three equations.
12. What is Dolittie decomposition? How is it different from Crout de-

composition?
13. What is Cholesk y's factorisation?
14. What is iterative refinement? How is it used to improve the cciir-

cy of results?
What s meant by ill-conditioned systems?

1€. Can we solve an ill-conditioned system? If yes, how?
17, What is condition number of a system? How is it computed?

Direct Solution of Linear Equations

olve thep ess: foflnwing vstern of equations using simple elimjnatjo

2x- +3z_ 4
/	 4x+513
Show that the following system of equaLions has no solution,

/	 Y+3=12

X
Show

	

	

x++_

 that the fnhlowiflE system of equations has infinite number ofolutjo5

X+y+2O
/	 2X-3y+5 (

3x-2y+215 (

/	 1ve the following vIStImI of eqatjons by simple Gauss elirnination

2x +3x7 +4x	 5
+ -2 + 5X.9 = 6

+ 6X3	 7
(b) 2x1 + 3x2 +4x3 = 5

3x 1 + 4.5x2 + 5x2 = 6
14x1+5x2+6x3 =7

=8
/17 2X + 4X2 + 9x3 = 8

\/5.	

4x1-4-3x2+2x3 =2

Solve the systems in Exercise 4 using partial pivoting

6. Solve the systems in Exercise 4 using complete pivoting.
7. Using Gauss elimination with partial pivoting, solve the followingsets of equations.

(a) 21 1+x2+X3 2x =0
4xi	+2x3+x48
3x1+22+3	 -7

=3
(b) X14x2-2x3	 =3

3X1._x2+3x3	 =8

2Q Numerical Methods

Solve the following systems of equations by Gauss-Jordan method
x 1 +2x2 -3x3 =4
2x1+4x9-6x3-8

-	 + 5x3 = 4
(b) Zt 1 +x2 +x3 =7

4x 1 + 2x2 + 3x 4
x 1 — x2 +x3	 =0

9. Find the Dolittle LU decompositions of the coefficient matrices of
the systems in Exercises 7 and 8.

10. Solve the systems in Exercises 7 and 8 naing th p matrices L kind U
/ fbund in exercise 9 by forward and backward substitutions.

Find the Cholesky decomposition of the matrix

/

12. Find the inverse of the following matrices using Gauss-Jordan dim-
inatior technique

	

2 3 4	 i 2	 3

	

(a) 4 2 3
	

(b)2	 4
	[3 4 2	 —1 —2 3j

13. Find the condition numbers ofthe coefficient matrices of systems in
Exercise 4.

14. Consider the tollownig electrical network connecting six resisters
and two batteries:

A,	 V2

1

fr	 /3	
-------3	 13

R2

LI-
Ohms law itates that the voltage across a resistor equals the cur-
rent through it, multiplied by its resistance. Using this law, we can
set up the following Cqultions

R61 1 RjTj - 12) +	 - 1 3) V1

- R 3(L - 13) F R5if9 Il =
RL + Ri(I:r -	 F	

-. 12) = 0

14 1 1
1 5 2

[i 2 3

D;rct Sohton c l Unar EguaIons

Assuming R 1 = 112 = 2, 114 = R. = R6 = 3 and V, = V2 = 5, Solve
the system of equations for currents '' 12 and I, j using Gauss elim-
ination w Gauss-Jordan method.

15. A company produces four different products. They are processed
through four different departments A, B, C and D. The table below
gives the number of hours that each department spends on each
product..............................

Depart rne.nt	 Products

Total production hours available each month in each department is
as follows:

Department	 Dl 1	 D2	 D3	 D4
Hourh11 7IL -

Formulate the appropriate system of linear equations to determine
the quantities of the four products that can be produced in each
month, so that all the hours available in all departments are fully
utilised. Determine how much time each department spends for
each product.

1. Program LEG2 solves a system of linear equations using Gauss
elimination with partial pivoting. Modify the program to imple-
ment complete pivoting.

2. Develop a program to factorise a matrix using Cholesky's algo-
rithm

3. Design and develop a program to implement the Gauss-Jordan elim-
ination method for solving a system of linear equations.

4. Write a program to implement the Crout decomposition solution of
linear equations.

5. Construct a program to implement the iterative refinement process
as given in Algorithm 7.6.

t VC

Iterative Solution of
Linear Equations

EA SCOPE

Direct methods discussed in the previous chapter pose some problems
when the systems grow larger or when most of the coefficients are zero.
They require prohibitively large number of floating point operations
and, therefore, not only become time consuming but also severely affect
the accuracy of the solution due to roundoff errors. In such cases, itera-
tive methods provide ait alternative. For instance, ill-conditioned sys
tems can be solved by iterative methods without facing the problem of
roundoff errors.

The following three iterative methods are discussed in this chapter:
Jacobi iteration method
Gauss-Seidel iteration method

3. Successive over relaxation method
Like all other iterative processes, these methods introduce truncation
errors and, therefore, it is important to understand the magnitude of
this error as well as the rate of convergence of the iteration process.

OBI ITERATION METHOD

Jacobi method is Uric of the simple iterative methods. The basic idea
behind this method is essentially the same as that for the fixed point
method discussed in Chapter 6. Recall that an equation) f the form

= 0

can he rearranged into a form

Iterative Solution of Linear Equations

The funct joü g(x) can be evaluated iteratively using an initial approd-
fliation x as follows:

x1=g(x)	 for i=O, 1,2...
Jacobi method extends this idea to a system of equations. It is a direct
substitution method where the values of UIthWWS are improved bysubstituting directly the previous values.

\/ t US consider a system of a equations in a UflkOWS.

a ll x 1 +a 1 .x2 + 	 + a1x=b1
(1 2 1 x 1 + 022 X, + ... 4- a2n X = h2

•	 .	 .	 .

•	 .	
(8.1)

•	 .	 .	 .

a 1 x 1 + 0 n2 -2 +	 + a., .,, -
We rewrite the original s ystem as

xl	
b 1 (a 12 x 9 +a13x3 +...+ainxn)

all

X2 =
b 2 —(a 21 x 1 ax 3 +...-+-a2x)

022

(8.2)

b —(a 1 x 1 + 0 fl 2X2 + ... + a1t)
-

ann

Now, we can compute x 1 , X,, ... Xby using initial guesses for these
values. These new values are again used to compute the next set of x
values. The process can continue till we obtain a desired level of accu-
racy in the x values.

In general, an iteration for Xf can be obtained from the ith equation as
follows

b	 (a i x	 + a -	 + a 1 1 x
)
1 + ... ax)

-	 (8.3)

The computational steps of Jacobi iteration process are given in
Algorithm 8.1.

24 Numerical Methods

Jacobi iteration method

1. Obtain a, a 1 and bvalu.
2. SeY.'0=b,/; for J=1,...fl
3. Se4e, = 0
4. For i1,2...n

(I) Set sum =
(ii) For j = 1,2.. .n (f vL I)

Set sum = sum - a, X01

Repeat j
(iii) Set x = sum/a,1
(iv) if key = 0 then

X i - xo,
if --------- > error then

xl

set key = 1
Repeat I

5. If key = 1 then
set
go to step-3

6. Write results

3	 Algorithm 8.1

Obtain the solution of the following system using the Jacobi iteration
method

= 5

ax + 5x2 + 2x, = 15
2x 1 +x2 +4 3 = A

First, solve the equations for unknowns on the diagonal. That is

5 .- x2 -
x1

15- 3x 1 - 2x3
x2

= -----

8 - 2x 1 -

	 4

If we assume the initial values of x 1 , x 2 and x.3 to be zero, then we get

x'	 = 2.5

Iterative Solution of Linear Equations

_15
z

= =

(Note that these values are nothing butx = 61/a1)

For the second iteration, we have

20

x2) 153x5-2x2:=•

	

3	 4
After third iteration,

5-0.7

	

X1	 2215

15-jxO-2x0
2

3) 8-2x0-ft7

	

X3	
.-

	 -1.825

After fourth iteration,

5-3-1.825
=	 2	

=0.0875

(4)	 15-3x2.15-2x1,825
=L22o

The process can be continued till the values of x reach a desired level of
accuracy.

Program JACIT
The program JACIT solves a system of n linear equations using the
Jacobi iteration method as detailed in Algorithm 8,1. The main program
reads interactively the system specifications and displays the results on
the screen. The solution algorithm is implemented through the subrou-
tine JACOBI.

Numerical Methods

The subprogram JACOBI, while computing the solution vector X tests
for the accuracy as well as the convergence The computing process
stops either when the desired atcuracy is achieved or when the process
does not converge	 umber iterations.

*
PROGRAM JACIT

* --------------------------------------- --- -----------------*

* Main program	 *

* This program uses the subprogram JACOBI to solve *
* a system of equations by Jacobi iteration method *
* --*

* Functions invoked	 *
*	 NIL	 *
* ---*

* Subroutines used	 *
*	 JACOBI	 *
* ------------ --------------------------------------

* Variables used	 *
*	 A - Coefficient matrix	 *
*	 B - Right side vector	 *
*	 N - System size	 *
*	 X - Solution vector	 *
*	 COUNT - Number of iterations completed 	 *

STATUS - Convergence status	 *

---------------------------------*

* Constants used	 *
*	 EPS - Error bound	 *
*	 MAXIT - Maximum iterations permitted
* -- *

REAL AJ3,X,EPS
INTEGER N, COUNT, MAXIT, STATUS
PARA!1ETER(EPS=0.000001,IT = 50
DIMENSION A(lO,lO), B(10), X(lO)

WRITE(*,
WRITE(*,*)	 'SOLUTION BY JACOBi ITERATION'
WRITE(*,)
WRITE(* , *) 'What is the size of the system(n)?'
READ(* , *) N

WRITE(*, k> 'Input coefficients a(iJ), row-wise',
WRITE(*,*) 'one row on each line'

DO 20 I = 9, N
RF,AD(*,*) (A(I,J),J=i,N)

20 CONTINUE

WRITE(* , *) 'Input vector b'

iterative Solution of Unear Equations 	 Z

p(**) (5(I), I = 1, N)

CALL JACOBI (N, A, B, X, EPS, COUNT, MAXTT, STATUS)

IF(STATUS .EQ.2) THEN
WRITE (* *)
WRITE(*,*) 'NO CONVERGENCE IN', MAXIT,

'ITERATIONS'
WRITE (*

ELSE
WRITE(*,*
WRTTE(* , *) 'SOLUTION VECTOR X'
WRITE(* , *)

WRITE(*,*) (X(I). I = 1, N)
WRITE ,*)
WRITE(,*) 'ITERATTONS	 ',COUNT
WRITE(* , *)

FNDIP

STOP
END

* ----------- End of main program JACIT --- ------------- *
* ---*

SUBROUTINE JACOBI(N,A,B,X,EPS, COUNT, MAXIT,STATUS)
* ---*

* Subroutine	 *
*	 This subroutine solves a system of n linear
*	 equations using the Jacobi iteration method
*	 *

* Arguments	 *

* Input	 *
*	 N - Number of equations	 *
*	 A	 Matrix of coefficients of the equations 	 *
*	 B	 Right side vector	 *
*	 EPS - Error bound	 *
*	 MAXIT - Maxirnunt iterations allowed	 *

* Output	 *
*	 X - Solution vector	 *

COUNT - Number of iterations done	 *
*	 STATUS - Convergence status	 *
* --*

* Local Variables	 *
*	 XO,StJM	 *
*	 *

* Functions invoked	 *

ABS	 *
* --*

* Subroutines called	 *
*	 NIL	 *

21 NumorcaI Methods

	

*	 -	 -----	 --------
INTEGER N, (EY, SOUNT, MAXIT, STAi'tJ5

REAL A,B,X,XO,EPS

DOUBLE PRECISION SUM

INTRINSIC ABS

DIMENSION A(i0,l	 ,R)1O),XC1O),XO(1. 0)

* Initial values of X

DO LO I- : -!,N
X0(j)

	

90	 CCN'I I NO E

COtINT -

	

99	 KEY = 0
Computing values of X(i)

DO 30 I	 l,N

SUM	 MIII

DO 20 J - l,N

	

T P 1	 J) (IOTO 20

	

SUN	 SUM - A(I,j) * X0(j)

	

20	 CONTINUE

X() - SUM/A)T,T)

-E (KEY EQ. 0) THEN
* Testing for accuracy

TF(ABSNX(I) XO)I))/X(i)) .CT, EPS) THEN

	

KEY	 L

EN) IF

END1F

23 CONTINUE

TFI KEY. RQ.0) IHEN

* Tes'Lng for convergence

IF (COUNT 5Q. MAXIT) THEN
STATUS = 2

RETURN
H SE

STATUS -. 1

DO 40 I = 1,N

XO)I) = X(i)

	

40	 CONTINUE

ENDI F

000NI = COUN1'+1

GO TO

END F

RETURN

END

* -------------End of suUrouLirji JACOBI -----------------*

Iterative Solution of Linear Equations

Test Run Results The program was used to solve the following system of
equations:

3x1 + x 2 = 5
- 3x2

The interactive computer output is given below;

JOtUTION BY JACOBI TTERATTON
what is the size cf the system(n)?

Tanot coeffic..ents a(i,j , row-wise
rifle row on each line
31
1	 3
nput vecor b

55
,C)j FJTTQN VECTOR X

2. 000U000	 9

JEU.Ai.LONS - 14

SLOP	 Program rermina.ed.

Now, rearrange the equations as shown below and then use program
jjr to solve the system.

-
3X 1 + = 5

The output now is as given below:

SOLU110 111 BY JAC01i 1 CtEFATfON
is t:r:e size of the system(n)?

input coerticencs a(i	 j)	 row-wise
one :co; on cocb
I -•

3 	 .1
1I1jI. II	 U

NO CO1)VERGENCE IN	 50 iTERATTONS

Uroq:ar; :ermiraed.

Note that the same two equations, when their positions are interchanged,
do not produce required results even after 50 iterations. Convergence is
discussed in Section 8.5.

GAUSS-SEIDEL METHOD

Gauss-Seidel method is an improved version of Jacobi iteration method.
In Jacobi method, we begin with the initial values

(C)(2)	 (0)X 1 ,x2........

anci obtain next approximation

2i0, Numerical Methods

Note that, in computing	 we usedx 0 and notx 1> which has just

been computed. Since, at this point, bothx° andx are available, we

can usex° which is a better approximation for computing	 Simi-

larly, for computing x, we can usex andx' along with X°,..., X°.
This idea can be extended to all subsequent computations. This ap-
proach is called the Gauss-Seidel method.

The Gauss-Seidel method uses the most recent values of x as soon as
they become available at any point of iteration process. During the (k+l)th
iteration of Gauss-Seidel method, x, takes the form

[Xi	
(8.4)bzt

When £ = 1, all superscripts in the right-hand side become (k) only.
Similarly, when i n, all become (k + 1). Figure 8.1 illustrates pictorially
the difference between the Jacobi and Gauss-Seidel method.

[5 J	 =	 (bi-a12x2--a13x3)/a11
x2	 =	 (421 X1	23x3)/a72

LJ	 =	 (I	 a2l x-a.-12 2)/33

=	 (b1 -"I, 2 - a12 x3)/a11

X2	 -	 (-a21x1-ax3.)Ja

X3	 =
ça .JacoLI method

=	 (b1 - a12)(3 - a13 x3)1a11

=	 {b-a23x3)Ia

C=KK^^WaM

Iteration 1

Iteration 2
"Apr

Iteration

r1 1.1	 -	 (b - a12 x2 - a x3)1a11

Iteration 2

-	 (t - a31 X1 a32 x91a

1°) uauss-seIoej method
Fig. 8.1 Comparison of Jacobi and Gauss-Seidel methods

Iterativo Sufion of Linear Equations	 i

e ^' J, '̂o ^'-

-
)Itiiin the &(utin of the following system using Gauss-Seidel iteration

method
2x1+x2+x3 =5

31 1 + 5x2 -t 2x5 = 15
2x 1 +x 9 +4x 3 —S

XI = (5 -	 -
= (15— 3x 1 — 23)/5
= (8 - 2x 1 - x2)/4

Assuming initial value as x, = 0, x2 = 0. and x3 = 0

Iteration I x 1 = (5 - 0 - 0)/2	 = 2.5

	

x 2.5— 0)/5	 = 1.5

	

xq: (8 - 2 x 2.5 - I .5)/4	 = 0.4 (rounded to one decimal)

Iteration 2 x 1	 (5 — 1.5-0.4)12	 = 1.6
1.6-2 x 0.4)/5 = 1.9

	

x=(8-21.6—l.9)l4	 =0.7
We can continue this process until we get x 1 1.0, x2 = 2.0 and x3 = 1.0
(correct answers)

Algorithm
Gauss-Seidel algorithm is a simple modification of the algorithm of the

Jacobi method. Note that, once a new value ofx 	 has been calculated

and compared with the previous values of xv', the previous value is no
longer required and, therefore, the previous value can be replaced by the
new one. This implies that we need not use two vectors (one to store
previous values and another to store new values) for storing x values.
We need to use only one vector .r that stores always the latest values of
x. This is illustrated in Algorithm 8.2

Gauss-Seidel method

1. Obtain n.	 and b, values
2. Set x=b/a	 tori=lton
3. Set key rO
4. For e=1 to ri

(i) Set skim = b,
(ii) For j=1tonj+il

Set sum sum - a
Repeat

(Contd.)

Numoo Math

(Contd.)

(iii) Set dummy sum (a,
(iv) If key 0 then

dummy- x,
if -------dummy -- > error then

set key = 1
(v) Set x dummy

Repeat i
5. If key = I then

90 to step 3
6. Write results

Algorithm 8.2

Program GASh
Like JACIT, the program GASIT also solves a system of o linear equa-
tions but employs the Gauss-Scidel iteration method as detailed in Algo-
rithm 8,2. The iteration algorithm is implemented with the help of a
subprogram called GASEID.

- *
PRCGPAN CJAsIT

* ---------------------. ----------------------------.	 *
* Maiu pociram

This program ueez Lh-i zubprovram GASEIS 1.0 solve a *
*	 sysrerii of equations by Geu.zs-Seiciel lteratiuii meLhod *

Functions invoked	 -	 *

*	 NiL	 *

----.----. ---------------

* Subroutines used
*	 GSEID	 A

Vdriabies used	 *
*	 A - Coefficient mar--x
*	 B - Right oi.de vector
*	 N - System size	 A

*	 X -- Solution voctor	 *
*	 TOUNi - Number oL iterations completed	 *
*	 STATUS - Converoenre Status	 *

*	 -	 *

iterative Solution of Linear Equations 2

	

* Constants used	 *
*	 EPS - Error bound	 *

MAXIT - Maximum ieraL jons Permitted	 *
* ------------------------- --------------------------------- *

REAL A,B,X,EPS
INTEGER N, COUNT, MAX IT, STATUS
PARANETER(Ep O .000001 .NAX1T=50)
DIMENSION A(10,I0), 6(10), X(L0)

WRITE(*,*)
WRITE(*,*)	 'SOLUTION BY GAUSS-SEIDEL ITERATION'
WRITE(* , *)

WRITE (A ,) ' 'tinat is he size of the systenh(n)?'
READ(*,*) N

WRTTR(,)	 'Inut. coefficients e(i,j), row-wise'
WRITE(.-,-)	 'one row on each line'

DO 20 1 = 1,N

	

READ(A,*)	 (A(I,J) ,Jrl,N)
20 CONTINUE

WRTTE, ')	 'Input vector b'
READ(*,*)	 (6(1), I = 1, N)

CALL GASEID(N,A,B,X,EPS,CO1JN1AXITSTI,TUS)

IF (STATUS E(D. 2) THEN
WRITE (* , *

WRITE)', ') 'NO CONVERGENCE TN', r1AXIT,
'ITERATIONS'

WRITE (
ELSE

WRITE),
WRITE), k) 'SOLUTION VECTOR X'
WR1TE	 *

WRTTEr*))X(I), I - 1, N)
WRITE (A, A)

WRLTE(*,) 'ITERATIONS = ', COUNT
'/IRITE (, *

ENDT F

STOP
END

* -------------Ed of main proqrm GASIT -------------*

*
SUBROUTINE GAS EID(N, A, B, A, ENS courr, MAXIT, STATUS)

* --

24 Numcrira! MeThods

* Subroutine
*	

Thj ssubroutine solves a rystea of I 1nar*	 quaor usrq
Gauss-Seidel iteroton	 jLjjm

* Arguments
* Input

	

*	
N - Number of DQlJOt]Ons

	

*	 A	 Coefficient matrix

	

*	
- Right side \rCOtor	*	 EL'S	 Error bound

	

*	
M(1T - Max irnum iterations 51led* Output

	

*	
A - Solutjr vector

	

*	
COUNT - Number of i torations done
ST1prj	 Status of COnvergence*-- ---	 ------ -	

.-	 ---------
Local Varab]es

	

*	
DUMMY S[Th1, KEY

A

* F'urictjons invoked

	

*	 ABS
*	

- A* SIIbi-oijtjnes called	
**	 NTL	
**	

------ *
INTEGER N , KEY, COUNT, MAX TT, STATUS
REAL
DOUBLE PR ECTSION SUM
DIMENSTON
INTRINSIC ABS

* Irijia	 values of X

	DC 11D 	 = i,N
X([)	 B(1)	 /

10 CONtijE

COUNT = 1
Ii.	 KEY = 0

* COI'IPOLIUg X(I) values
DO 30 1 - l,N

SUN -- 13(I)
130 20 J - iN

IF(I.EQJ) COTO 20

SUN = SUM	 A(I,J) * X(J)

Iterative Solution of Linear Equations 2
20	 CONTINUE

DUMMY	 SUM/A(I,I)

IF(KEY .F7). 0) THEN

'l'escir:q tar accuracy

IF(ARS((DUI4NY - X(I))/DuMiw) .GT. lPS) THEN
EEY = 1

ENDIF

ENDIP

X (11 - DUMMY

30 CONTINUE

(F(KEY EQ. 1) THEN
*	 Testinq for (200verqence

IP')CONN'l' .EQ. ?J.XIT) 1HEN

- 2

Rr,TUP,N
FLOE

STATUS

COUNT	 COUNT
GCTO 11

ENL)IF

END

RETURI'1
END

k	 of sohro'fnn CoEIu----- -

Test Run Results The program was used to solve two different sets of
equations and the results are as follows:

SOLUTION OT	 U-oL	 T:J: ION
Wha: ic ihc si z€of thes ,,	 entr 7
3

input Cue Iticleritia d(L 	 row-wise
one row on earl-i 1-One
213

447

2 5 9

TnpuL VCCLOL I
113

SOLUTION VECTOR X

-4.99 14 992E-00"I	 -9.999992P:-00!- 9.999993E-001

ITERATIONS	 38

S-i	 Prcçrcui orrni:u7c.

Numerical Method3

.5ocond set

SOLJTION BY GAUSS--SJiLL ITERATON
What is the size of the systiem(n):'
3

input c:oefticientg a(i,j), row-wisu
one row on esch line
7 63 0

3 30 0

2 28 10

Input vector b

i.s 6.9

NO CONVERGENCE IN	 O iTER,'Tc:

Proqram terminated.

41METHOD OF RELAXATION

Relaxation method represents a slightly modified v&o'sion of t
he Gauss-

Seidel method, The modification is aimed at faster convergence. The
basic idea is to take the change produced in a Gauss-Seidel iteration
step and extrapolate the new value by a factor r of this change. The new
relaxation value is given by

The parameter r is called the relaxation pw-wneter. This step is ap-
plied "successively" to each component of vector x during iteration pro-
cess and, therefore, the method is known as successive relaxation method.

The parameter r may be assigned a value between 0 and 2. We have
the following possibilities:

0 <r < I	 under-relaxation

r	 I	 no relaxation x	 1:)

I <r <2	 over-relaxation
For values of' r between 1 and 2, an extra weight is placed on the

present value and Eq. (8.5) really represents an extrapolation. The
intention here is to push the estimate closer to the solution. This method,
when 1 < r < 2, is popularly known as successive over-relaxation (or
SOR) method. It is also known as simultaneous over-relaxation method,

The SOR technique can be easily implemented by a simple modifica-
tion of the Gauss-Seidel algorithm, The relaxation value is obtained
using Eq. (8.5) at the end of evaluation of each value of x. The extrapolated
value becomes the new value of x for the next cycle. Equation (8.5) can
he simply implemented as

Iterative Solution of linear Equations 27

(8.6

	

That is, the old value of x°	 is replaced by the new value ofx111.
.e implementation of this step is shown in Algorithm 8.3.
The choice of value of r depends on the problem and is often decided

empirically.

SOR method

Algorithm is the same as Algorithm 8.2, except the statement
(iii) Set dummy -= sum/a1,

is replaced by a pair of statements
Set dummy = sum/a,
Set dummy = r dummy + (1 - r) x,

Algorithm 8.3

kjLCONVERGENCE OF ITERATION METHODS
Condition for Convergence
We know that the iteration methods presented here are based on the
basic idea of the fixed point method discussed in Chapter 6. We have
shown that sufficient condition for convergence for solving one non-
linear equation is

Gx)I <1
and for two nonlinear equations, F(, y) and G(x, y), are

	

10".IX' I -1 - ^ 1&11^1 < 1
	

(8.7)

	

dF
+ .<1	 (8.8)

These conditions apply to linear equations as well. Therefore, we can
use these conditions in the Jacobi and Gauss-Seidel iteration methods.

For the sake of simplicity, let us consider a two-equation linear
system. We can express the Gauss-Seidel algorithm as follows:

= F(x 1
, .r2) =;--;--

(b 1 - a12x2)

012
(8.9)

2& Numerical Methods

= G(x 1 , x2) –J--(b 2 –a2x1)
a

b2	 a 21 X (8.10)
a 29 a

The partial derivatives of these equations are

)F	 a]2

- all

and

?'	 -_=o

	

dx 1	 022 '	 dx2

Substituting these values in Eqs (8.7) and (8.8), we get

	

a2 1 1 	 a121
1	 and	 I—l< 1

	

a 2.,	 a11

This means that
JaIll > a 2 I	 (8.11)

and
> 1a 21 1 	 (8.12)

That is, the absolute value of diagonal element must be greater than
that of the off-diagonal element for each row.

The above derivation can be extended to a general system of n equa-
tions to show that

	

a11 >Iai,	 '1	 (8.13)

For each row, the absolute value of the diagonal element should be
greater than the sum of absolute values of the other elements in the
equation. Remember that this condition is sufficient, but not necessary,
for convergence. Some systems may converge even if this condition is
not satisfied.

Systems that satisfy the condition Eq. (8.13) are called diagonally
dominant systems. Convergence of such systems are guaranteed.

Rate of Convergence
Consider the iterative Eqs (8.9) and (8.10). At (k+1)th iteration, we have

	

+ 1	 a 12 k	 (8.14)xl=-----x2
a 11	 all

	

(k - i)	 b2	 ..ai	 k+ 1	 (8.15)

	

X2
	 x

	

2	 a22 a22

Iterative Solution of Lincor Equations 2

(k+ 1)Substituting iorx 1	in Eq. (8.15), we get

2	 [h i -	 (8.16)
a	 a11	 a ll2	

0n	 -

Similarly, we have

Xk2)	
b 2	 021 FP	 a1	 (8.17)

°-22	 09 [a 11	 u u]

Subtracting Eq. (8.16) from Eq. (8.17) we get

2	 xk + 1)	 012021	 it 1)	 (kj
- X,

	

	 - -- (- x 2)
a11ci

If we denote the errors as

k-i/.+2)	 (ki=x 2	 X2

k	 --:	 ti
C, 	 2=x	 X2

Then

/ = - ----- e	 (8.18)
-	 T u 022

If we want the error to decrease with successive iterations, then we
should have the coefliciens such that

0 021 <1	 (8.Iifl
11 22

This also conforms with Eqs (8.11) and (8.12).

Solve the equations

3x + x9 = 5

-

by the Gauss-Seidel method

First, we rearrange the equations in the form

113(5 - x9)

= 1/3(x 1 - 5)

Assuming initial values as.x = 0. iindx? = 0

xii_•

Diverging

27 Numerical Methods

Remember, the new value of x, should be used in the calculation of new
X 2 . Therefore

- 10/9

Similarly,

= .1(5 + 1. =

	

3.	 9J 27

The table below shows the values of x 1 and x rounded to 4 decimal
places.

Iteration xx	 True error in x True error in

	

0	 0.0000	 0.0000	 2.0000 	 1.0000____^

	

1	 1.6657	 1	 -1.1111	 0.3333	 0.1111

	

2	 2.0370	 -0.9877	 0.0370	 0.0123

	

13
	 1.9959	 -1.0014	 0.0041	 0.0014

	

4	 i	 2.0005	 -0.9999	 0.0005	 0.0001

	

5	 2.0000	 -1.0000	 0.0000	 0.0000

The process converges to the solution (x 1 = 2, x = -1) in five ikra-
tions. Note that the given system is diagonally dominant. The conver-
gence is graphically illustrated in Fig. 8.2

Fig. 8.2 Pictorial representation of Gauss-Seidel convergence

J!orative Solution of Linear Equations 221

Solvc die equations

Xi -	 -

3x 1 + x2 5

by the Gauss-Seidel method

Note that the system contains the same two equations as in Example
8.3, except they are interchanged
The iterative equations are

x 1 = 5 + 3x2

= 5 - 3x

As before, we start wiLhx = 0 andx = 0. Then,

= 5	 and	 x = —10

—25	 and	 x = 80

245	 and	 X3 —730

It is clear that the process does net converge towards the solution Rather,
it diverges (see Fig. 8.2). The result will be the same even if' we start
with the initial values very close to the solution (except the solution

	

itse1fi,Reathrs may try withx = 2.5 andx	 —1,2.	 -
From Examples 83 and 8.4 we observe the fo1lowing

1. Iteration process converges when

and
U92	 a11

2. The process does not converge for the same set of equations when
their order is changed. That is, when

a12a21
1a 11 a22

the process does not Converge
3. When it Converges, the errors in x 1 and x2 decrease by a factor of

=9
Q 1202]

at each iteration
4. Stronger the diagonal elements, faster the convergence

2_L2 Numencal Methods

SUMMARY

Iterative methods provide an alternative to the direct methods for solv-
ing linear equations. These methods are particularly suitable for solving
ill-conditioned systems. We considered the following three iterative meth-

ods:
• Jacobi method
• Gauss-Seidel method
• Successive Over Relaxation SOR) method

We also presented FORTRAN programs along with test results for the
Jacobi and Gauss Seidel methods.

We have shown that a sufficient condition for convergence is that, for
each row, the absolute value of the diagonal element should he greater

than the sum of absolute values of the other elements in the equation.

Key Terms

Diagonally dominant system 	 Relaxation paramete!
Gauss-Seidel iteration	 Successive over relaxation
Jacobi iteration	 Successive relaxation method

State the two popular approaches available ta sov1n a system of

linear equations.

(J
What are the limitations and pitfalls of using direct. methods for

/ solving a system of linear equations?
State the two important factors that are to he considered while
applying iterative methods.
The basic idea behind the Jacobi iterative method is essentially the
same as that of fixed point method used for solving nonlinear equa-
tions. Explain.

/ 5. Gauss-Seidel method is similar in principle to Jacobi method. Then,
what is the difference between them?

6. Show that, for a two-equation system

a11x 1 + a 12x2 =

a21x 1 + a22x2 =

a sufficient condition for convergence of the iteration process is

a12a21
ci11a22

^

Explain the basic concept used in the relaxation method.
8. What is relaxation parameter?

ltioive Solution of Uneor Equotion

9. What is meant by over-relaxajon and under-relaxation?
10. Give an algorithm fr solving a system of linear equations using

the successive over-relaxation (S()R method.

PEVIEWEXERc•ISE$	 TI/	 I

'olve the set of cquioii iven below b y Jacobi method.

/	 3,-6x2i-2	 15
4

xj-3x9-7z=22

/So1\e the system of equations

2X_Y+2Z:6
Zr - + z -3

by using Jacobi method.
Sóilve the systems given in Exercises I and 2 by Gauss-Seidel itera-

e_^

Compare the rate of convergence in both the cases.
i4. Solve the pair equations

= 5
by applying Jacobi method to the equations

x1=-2x2

/	 x2=5-3x1
Observe the divergence.

,. Solve the equations in Exercise 4 applying Gauss-Seidel method.
Compare the divergence with that of earlier one.

/ 6. Interchange the order of equations given in Exercise 4 and then
solve them

(a) using Jacobi method
(b) using Gauss-Seidel method

Compare the convergence.
. Solve the system of equations

a1-2x= 5

-x 1 +2x2 -x3	0

-2x2 + x3 -1
by applying

(a) Jacobi method
(b) Gauss-Seidel method, and
(c) Successive over-relaxation method with r = 1.4

Comment on the results.

VA NumerlcaI Methods

8./Solve the following equations by Gauss-Seidel method

—7y—l=-17

5x+y+3z= 14

x+1€+,= 7

Assume suitable initial values
9. Monthly faculty salary in three departments of an institute is given

below. Assuming that the salary for a particular category is same
in all the departments, calculate the salary of each category of
faculty.

Department	 urn er 0 0 u Y	 Total Salary
Professor Asst. Pro fessorLectarer 	 (in '000)

A	 2	 2	 4	 6T
B	 3	 1	 2	 50
C	 1	 4	 3	 60

10. Mr. Ram has invested a sum of Rs 20,000 in three types of fixed
deposits with an interest rate of 10%, 11% and 12 17,.. He earns an
annual interest of Rs 2,220 from all the three types of deposits. If
sum of the amounts with 11% and 12% interest rates is four times
the amount earning 10 interest, what is the amount invested in
each type.

Develop a menu-driven, user-friendly single program which pro-
vides options for using either Jacobi method or Gauss-Seide! method.
Modify the Gauss-Seidel iteration program to incorporate the suc-
cessive over relaxation method to improve the speed of conver-
gence.

H APT

Curve Fitting:
Interpolation

INTRODUCTION

Scientists and engineers are often faced with the task of estimating the
value of dependent variable y for an intermediate value of the indepen-
dent variable x, given a table of discrete data points (x,, y e), i - 0,4..11.
This task can be accomplished by constructing a function y(x) that will
pass through the given set of points and then evaluating y (x) for the
specified value of x. The process of construction of y(x) to fit a table of
data points is called curie fitting. A table of data may belong to one of
the following two categories:

1. Table of values of well-defined functions: Examples of such tables
are logarithmic tables, trigonometric tables, interest tables, steam
tables, etc.

2. Data tabulated from meusurements made during an experiment: In
such experiments, values of the dependent variable are recorded at
various values of the independent variable. There are numerous
examples of such experiments—the relationship between stress and
strain on a metal strip, relationship between voltage applied and
speed of a fan, relationship between time and temperature raise in
heating a given volume of water, relationship between drag force
and velocity of a falling body, etc., can be tabulated by suitable
experiments.

In category 1, the table values are accurate because they are obtained
from well-behaved functions. This is not the case in category 2 where

the relationship between the variables is not well-defined. Accordingly,
we have two approaches for fitting a curve to a given set of data points.

2Z. Numerical Methods

In the first case, the function is constructed such that it passes through -
all the data pointsTThis method of constructing a function_and -

ig values- at pn-tabu1ar poin.tJa called interpola tion. The functions
are known as interpolation pvtojrials.

In the second case, the vaiue. ae not accurate and, therefore, it will
be meaningless to try to pass the curve through every point. The best
strategy would be to construct a single curve that would represert1Te

era! treithof the data, wiit necessarily passing through the {idf
',fd ual points. Such functions are called approximating functiqn s. 	-
Popular appro'ich for finding an pproxirnate function to fit a g yp seL
of cx erimt	 ailed least-squares regression. The pproJmat.
ngfu nct nsiire knpwn

Figure 9.1 shows an approximate linear function and an interpolation
polynomial for a set of data. Note that although the interpolation poly-

- Interpolation
polynomial

7. Linear approximating
function

Fig. 9.1 Curve fitting to a set of points

nomial passes through all the points, the curve oscillates widely at the
end and beyond the range of data. The linear approximating curve which
does not pass through any of the points appears to represent the trend of
data adequately. The straight line gives a much better idea of likely
values beyond the table points

In this chapter, we discuss various methods of interpolation. They
include:

1. Lagrange interpolation
2. Newton's interpolation
3. Newton-Gregory forward interpolation
4. Spline interpolation
Before we discuss these methods, we introduce various forms Mpoly-

nomials that are used in deriving interpolation functions. Least-squares
regression techniques are discussed in the next chapter.

/	 Curie Ftng: Inteipolatiorl 2Z2

.(POLYNOMIA1. FORMS

The most common form of an nth order polyotnial i.9

(9.1)

This form, knoas the power term, is very convenient for diftèrenat-
ing and integting the pol ynomial function and, therefore, are most
widely usein mathematical analysis. However, there are situations
whcre /̂ is form has .heen found inadequate, as illustrated by Example
9.1.

Coiisidi the t)vO! IuJlfl of p(x) for a	 1,
pft)=

Given that	 -
p(J0(fl

p(lO1)=-4!7,

obtain the linear polynomial p(xusing four-digit floating point arith-
metic. Verify the polv-uomial by substituting back the valuesx = 100 and
x = 101.

plOO)=dH- 1000 1 = +0.4286
01 ol) = + 101 a 1 = - 0.5714

Then, we gel.
a1 = —1

100.4 (only four significant digits)
Therefore,

p(x) = 100.4 - x
using this polynomial, we obtain

p(I00)= 0.4

P(101) —0.6

Compare these results with the original values of p(100) and p(101). We
have lost three decimal digits.

Example 9.1 shows that the polynomials obtained using the power form
may not always produce accurate results. In order to overcome such
problems, we have alternative forms of representing a polynomial. One
of them is the shifted power form as shown below:

p(x)=ao+a1(x_C)+a2(C)2+ ... +cz(x—Cr	 (9.2)

2Z Numerical Methods

where C is a point somewhere in the interval of interest. This form of
representation significantly improves the accuracy of the polynomial
eva1uaion. This is illustraf 1 b y .Vxample 9.2.

,,'Repeat Example 9.1 using the shifted power form and four-digit arith-
/rnetic.

/1________________________
/

Shifted power form of first order p(x) is

p(x) = a0 + a (x - C)

Let us choose the centre C as 100. Then

p(x) = a0 + a 1 (x - 100)
This gives,

p(lOO) = a0 = 3/7 = 0.4286

p(101)= 0,4286+a 1 (101— 100)=-0.5714
a 1 = — 1

Thus the linear polynomial becomes

= 0.4286 - (x - tOO)

Using this polynomial, we obtain

P(100) 0.4286

p(101) = - 0.5714

Note the improvement in the results.

Note that Eq. 9.2) is the Taylor CXpaLsiOn of p (x) around the point C,
when the coefficients a 1 are replaced by appropriate function derivatives.
It can be easily verified that

P (C)a j	0, 1, 2, ... n

where p'(C) is the ith derivative of p(x) at C.
There is a third form of p(x) known as Newton form. This is a

generalised shifted power form as shown below:

p(x) = a,, + a 1 (x - C) + 02 - C 1) (x - C9) + 0 1 (x - C1)

(9.3)
Note that Eq. (9.3) reduces to shifted Power form when C 1 = C2 C3 =
= C, and to simple power form when 0 for all j. Th Npwt.or form
plays an important role in the derivation of an interpolating polynomial
as seen in Section 9.5.

f(x1

t
f(x

((x

Curve Fitting: Interpolation

Polynomials can also be expressed in the form

P2 (x) b 0 (x - x 1) (x - x2)

+ b (x - x0) (x - x2)

/	 +b2(x-x0)(x-x1)

In general form,

P, (x) =

	

	 (94)
.o

____ LINEAR INTERPOLATION

The simplest fqnn of interpolation is to approximate two data points by
a straight 1ine. Suppose we are given two points (x 1 , fix 1)) and (x2 , /(X2))-
Those two points can be connected linearly as shown in Fig. 9.2. Using
the concept of similar triangles, we can show that

f(x)fx 1) f(2)-f(x1)

x-x i	X2-xi

"I

Fig. 9.2 Graphical representation of linear interpolation

Solving for fix), we get

fiX)=fiX1)+(X_X1)2)1)	 (95)
--	 x2 -x1

2N Nurnedca Methods

Equation (9.5) is known as linear interpolation /irrnula. Note that the
term

f(x2)1(x1)

represents the slope of the line. Further, note the similarity of equation
(9.5) with the Newton firrn of polynomial of first-order.

Ci. =

a,) = Ax I)

= f(x2)--f(x)

/	
x2--x1

The coeffiiiit 0 1 represents the first derivative of the function.

The Lable below gves scivare roots for integers.

.41 ,12	 1. 7321	 2
	

f21

Determine the square root(2.5.

The given value of 2.5 lies between the points 2 and 3. Therefore.

	

= 2,	 fx) = 1.4142

	3,	 f(x9)	 1.7321
Then

f(2.5) = 1.4142 + (2.5 2.0) L7321-1.4I 42
3.0 -2.0

= 1.4142 + (0.5) (0.3179)

= 1.5732

The correct answer is 1.5811. The difference i due to the use of a linear
model to a nonlinear one.

Now, let us repeat the procedure assuming x - 2 and x 9 - 4.
1.4142

[Cr2) 2.0
Then,

fi2.5 - 1.4142 + (2.5 . 2.0) 2.0-

4.0 2.0

Curve Fithrig: Interpolation 2E

= 1.4142 + (0.5 1 (0.2929)

= 1.5607
Notice that tb error has increased from 0.0079 to 0.0204. In general,

the smaller the iffLrva1 between the interpolliting data points, the bet-
tor will be the appronatjon.

The results could be improved considerably by using higher-order
interpolation polynomials. e shall demonstrate this in the next section.

LAGRANGEINtERfOLAT1ON POLYNOMIAL

In this section, we derive a formula for tbe polynomial of degree it which
takes-ecified values at a given set of it + i points.

tet x0 , x, ... x denote it distinct real numbers and let f0, f1, ,.., /, be
arbitrary real numbers. The points 7k), ... (x, f) can be
imagined to be data values connected by a curve. Any function p(x)

satisfying the conditions

P(Xk) = fk	 for	 k = 0, 1, ...

is called an interpolation fuiwtion. An interpolation function is, there-
TOre, a curve that passes through the data points as pointed out in
Section 9.1.

Let us consider a second-order polynomial of the form

	

P 2 (x) =	 - x0 j (x -

• b 2(- x 1)(x - x2)

• b 3(x - x 2) (x - x0)	 (9.6)

If (x0 , fe), (x 1 , f) and (x2 , f) are the three interpolating points, then we
have

P2(o) f = b(x0 - x 1) (x0 - x2)

p2(x 1) = - x) (x1-x0)

P2(2) = 4 = b 1 (x2 - x 0) (x 2 - x1)

Substituting for b 1 , b2 an 3 in Eq. (9,6), we get

(x - x 1)(x - x2)

	

(x)	
(x0 — X I) (x0 —xi)

(x - x2) (x — x0)

(XI — x 2)(X1 —x0)

1
(x-x5)(x-XI)

(x 2 - x 0)(x 2 -x1)

Equation (9,7) may be represented as

p2(x)-_ f0 1 0(x) f1 1 1(x) +f212(x)

28_2 Numerical Methods

2

= Zf111(x)
i=0

where
2	 (x - x)

11(x)fl
	 (X, — x

In general, for n+1 points we have nth degree polynomial as

(9.8)

where

n	 (x -)
l(x)	 I-I	 (9,9)

)•=o,ji	 J	 -

Equation (9.8) is called the Lagrange in terpolationpolynomw.1. The poly-
nomials l (x) are known as Lagraige basis polynomials. Observe that

11 fori=j

O forz*j

Now, consider the case n = 1

x—xl
1 0(x) =

xo -

x -
1 1(x) =

-

Therefore,
x—x1	 _____

p 1 (x) fo	 I f1xo—x 1	X1 —X0

= fo(xxi)fi(ro)
xo —xi

fl—f0
=f0 ^	 (x-x0)

X] — X 0	-

linear n1t r ? rJ1at1on formulaThis i

Q11

Consider the prblem in Example 9,-Firid the square root of 2. using
L"séoi Orui	 ierpolion polynomial, -

Curve Fitting: Interpolation

Let us consider the following three points:

2.	 x 1 = 3 1	and	 x2 = 4
Then

f1.4142.	 f1 =1.7321,	 and	 f2=2
For = 2.5, we have

(2.53.02.5_4.0)	 , -
(2.0-3.0)(2.0 --4.0) = 0.37o0

r= (2.5 --2.0) (2.5 . 4.0)
 (3.0 -- 4.0 (3.	 0.7500)

	

1(2	
(2.5- 20) (2.5-3.0) = -0.125

	

2-	
(4.0-2.0) (4.0-3.0)

= (1,4142) (0.3750) + (1.7321) (0.7500) + (2.0) (- 0.125)
= 0.5303 + 1.2991 - 0.250 = 1.5794

The error is 0.0017 which is much less than the error obtained in
Examplez9.3

Lagrange interpolation polynomial to fit the following data.

/	 b-----
(X, 0 	 1

--	 836.3891±	 I

Use the polynomial W estimate the value of e l 51

,

Lagrange basis polynomials are

(x - 1) (x - 2),(x_-
	 A

- X 3 -- 6x 2 r iix -

-

1-0)(1 -2)(1 -3)	 \;

- x 3 -5x 2 +flx
2

6.3891(x 3 -4x 2 1 3x)

2

19.0856(x-3x2'2x)
6

/

/

.i	 •:-
.1/

+	 4

-

•	 1

264 Nume rical Methods

(x-O)(x-j)(x-3)
2(x) -- -O'2- 1)(2-3)

-4X2 + 3X

-2

(x-O)(x-2)(x-3)
13(x)	

(3 0) (3- 1) (3- 2)

X 8 - 3x + 2x

L
p (L 5) 0. ^ 3 L7]'5^

The interpolation polynomial is

P (X) = f 10(x) + f11 (x) + f2 1 2(x) + f 13(x)

L7183(t 3 -5x 2 +6x)
2

,.,. 5.0732x 3 -6.3621x 2 + 11.5987x
6

O.8455x3 1_0604 X2 + 1,9331x
p(1.5)r- 3377

1.5 p(1.5) + 1	 4.3677

Points to be noted about Lagrange polynomial:
1. It requires 21,n+1) multiplications/divisions and 2n+1 additions and

subtractions
2. If we want to add one more data point, we have to compute the

polynomial from the beginning. It does not use the polynomial al-
ready computed. That is, ph, (x) doem not use pk(x) which is already
available

Program LAGRAN
Program LAGRAN computes the interpolation value at a specified point,
given a set of data points, using the Lagrange interpolai,on polynomial
representation.

Curie Fi1ting interpolation 2M

* -- *

PROGRAM EAGRAN
*	 --*

* Main program	 *
*	 This program computes the interpo1aton value at a *
*	 specified point, given a set of data points, using	 *
*	 the Lagrange interpolation representation	 *

*	 -- . --*

* Functions invoked

*	 NIL	 *

--------------- --- ------------------------------- *

SubtouLnes used	 *

*	 NIL	 *

* --	 -------------------------------------- -----------------

 Variables used	 *

*	 XN - Number of data sets 	 *

*	 X(T)- Dafla points	 *

*	 F(l)- Puncf.ion values at data points	 *

XP - Point at which interpolation is required
PP - Inteipolated value at X['

*	 - Lagrangian factor.	 *

* -- ---------------------------*

* rontonts used
*	 MAX - MaximiLm number of daLe points penitted	 *

INTEGER N,MAI(

REAL X,F, FP, LF,SUM

PARANETER)MAX = 10)

DIMENSION x(MAX) ,FMAX)

WRITE(*,*)	 Input number of data points (N)'
READ(,*) N

wR:TE(*,)	 'Input data points X(I) and Function',

+	 'values FT)'

WRITE(*) 'one se-, in each line'

DO 10 1 = iN
READ(*,*) X(I), F(I)

10	 CONTINIJE

WRITE(*,*)	 'Input X value at which'

WRITE (*,*)	 'interpolation is required'
READ(*,*) XP

SUM = 0.0

DO 30 j = 1,N

LF = 1.0

DO 20 J	 l,N

M Numerical Methods

IF (I.NE.J) THEN

	

LF = LF * (XP - X(J)) / (X(I)	 X(J))
ENDI F

20	 CONTINUE
SUM = SUM + LF * F(I)

30 CONTINUE
FP = SUN

WRITE(*, *)

WRITE(*,*) 'LAGRANGIAN INTERPOLATION'
WRITE(*,,)
WRITE(*,*) 'Interpolated Function Value'
WRITE(*,*) 'at X	 ', XP, ' is', FP
WRITE(, *)

STOP
END

End of main LAGR	 --------------------*

Test Run Results The program was used to compute the function value
at x = 2,5 for the following table of data points:

f	 1.4142	 1.7321	 2.0

The results are shown below:

Input number of data points (N)
3

Input data points X(i) and Function values F(I)
one sot in each line
2 1.4142
3 1.7321
4 2.0
Input X value at which
Interpolation is required
2.5

LAURANG IAN INTERPOLATION

Interpolated Function Value
at X	 2.5000000 is 15794000
Stop - Program terminated.

NEWTON INTERPOLATION POLYNOMIAL

We have seen that, in Lagrange interpolation, we cannot use the work
that has already been done if we want to incorperate another data point

Curve Flthng: Interpolation 27

in order to improve the accuracy of estimation. It is therefore necessary
to look for some other form of representation to overcome this drawback.

Let us now consider another rm of polynomial known as Newton
form which was discussed in Section 9.2. The Newton form of polyno-
mial is

p,(z) = (1 0 +	 x1) 09(x - x0) (x - x1)

+ ... + a(x - x) (x - x 1) ...	 -	 (9.10)

where the interpolation points z0 , x 1 , ... x_ 1 act as centres.
To construct the interpolation polynomial, we need to determine the

coefficients a, a 1 , ... a r,. Let us assume that (x 0 , f0), (x 1 , f1), ... (Xri, f.1)

are the interpolating points. That is,

k =0.1,... n - i

Now, at x = x, we have (using Eq. (9.10))

p(x0) = [iiE
	

(9.11)

Similarly, at =

p(x 1) = a0 + a 1 (x 1 - x) = 11

Substituting for a from Eq. (9.11), we get

fl - f0 I
	

(9.12)
X 1 --x

At =

p(x) = a0 + a1(x2 -	 + 0 2(x 2 - x 0) (x2 - x 1) = f2

Substituting for a 0 and a 1 from Eqs. (9.11) and (9.12) and rearranging

the terms, we get

f1)/(x2xj)j [(f1 f)/(x—x)1	
(9.13)

X2 -

Let us define a notation

flxkl=fk

Xk 11 = flXk
I I - f[xk]

x k * 1 Xk

flxk,l, Xk 2 1- f[xk , Xk I
ftxk , Xk 1	 * 21	 --

k+2

I1	
f[xk.1 ...x, J	f[xk ... xll

/ lX, Xk + 1	 z +	 =	
(9.14)

Xi + 1 -

Numerical Methods

These quantities are called divided differences. Now we can express thecoefficients a 1 in terms of these divided differences
a0 fo = f[x0]

11-10a 1 =-	 - =
X l -XO	

f[x0 , x1]

12-fl	 f1-10

a2
X 2 X 1 X1-X

X2 - X0

- fIx 1 ,x 2 3- fix 0 ,x 1]

X2

Thus,	
fx0, x 1 x21

on = fix0 , x 1 , ... x,j	
(9.15)

Note that a 1 represents the first divided diftrence and a 2 the seconddivided difference and so on.
Substituting for a, coefIicjente in equation (9.J O), we get

p(x =f[x 0 1 + fix0 , x 1 J (x - x0) + fix0 , x 1 , x2 1 (x x0) (x - x1)

+ f[x () , X 1 , ... x,,] (x °- x(,) (x - x) .. . (x -
This can be written more compactly as

I(9.16)

Equation (9.16) is culled Newtons divided difference interpolation polv-
twin üzl.

IN

Given below is a table of data for log x. Estimate log 2.5 using second
order Newton interpolation polynomial. 	 - --

o

log 0 	 o.O10	 0.4 77 1 J_oi--

Second order polynomials require only three data points. We use the
first three points

Cue Fifing: interpolation

aof[xl=Q

0.3010

- . .	 fix1,x21_f[x0,x1J
/ a2 -- fix0, x1 , x) =	 I

x 2 -x 0 __J

f(x.)-.f(1) 0.4771-03010
I' 2	 X2 -X	 3-2

Therefore,

0.1761 -0.3010
/ a2 =	 - -0.06245

P2(X) = IJ O + a 1(x - x0) + a2(x - x0) (x.-- x1)

0 + 0.3010(x- 1) + (- 0.06245) (x -) (x - 2)
Po x 1,5 - (0.06245) (1.5) (0.5)

-	 -

= 0,4047 /2

Note that, in Example 9.6, had we used a linear polynomial, we would
have obtained the result as follows;

p 1(x) a0 + a 1(x - x0)

p 1 (2.5) 0 + 0.3010 (1.5) -r 0.4515
This shows that P2 (2.5) is obtained by simply adding a correction factordue to third data point. That is

p(x) + axx0)(XI)

= p 1 (x) + A2

If we want to improve the results further, we can apply further correc-
tion by adding another data point. That is

p3 (x) =p2(x) + A3
where

Au = ax -- x 0 Xx - x 1)(x x2)
This shows that the Newton i nterpolation formula provides a very con-
venierit form for interpolation at an increasing number of interpolation
points. Newton formula can be expressed recursively as follows:

pk 	 (9.17)

where	 P k (X) =fixo,...x JØ(x) = La, Ø(x)
i=0

and	 ¶)

22Q Numerical Methods

DIVIDED DIFFERENCE TABLE

We have seen that the coefficients of Newton divided difference interpo-
lation polynomial are evaluated using the divided differences at the
interpolating points We have also seen that a higher-order divided dif-
ference is obtained using the lower-order differences. Finally, the first-
order divided differences use the given interpolating points (i.e., x. and

fk values). For example, consider the second-order divided difference

rz2=fEx0,x1x21

- f[x1,x21- f[x0,11]

x2-xo

where f[x, x2 1 and f[x0 , x 1] are first-order divided differences and are
given by

f(x1)-f(x0)	 li-f0

X 1 -10	 xi -o

P-1, X'21	
f(x.2)-f(x1)	 12 11

=
X .) •- .t 1	 x2 -x1

This shows that, given the interpolating points, we can obtain recur-
sively a higher-order divided difference, starting from the first-order
differences. While this can be conveniently implemented in a computer,
we can generate a divid&d difference table for manual computing. A
divided difference table for five data points is shown in Fig. 9.3. A
particular entry in the table is obtained as follows:

t[x2. x-3 , x 4 1- f[x 1 , X 2 , x31
flr, x2 , x3 . x41

x4 - x1

f {xl	 First	 Second	 Third
difference	 difference	 difference

f[x0]
f[x0, x]

f1x0, x 1 , x21

f[x1, x2]-.	 f[, x 1 , 4 x31

	 X2 1 X3,

f[x31

f[x2, xJ	 _______

, __. (ffx2 . xa. X4]j

...f[x3 , x41

/	 x1

0	 X

2	 x2

3 x

Fourth
difference

K4]

Fig. 9.3 Divided difference table

Draw the two diagonals from the entry to be calculated through its
neighbouring entries to the left. If these lines terminate at f(x 1) and f(x),

Curve Fitting: Interpolation 221

then divide the difference of the neighbouring entries by the correspond-
ing difference xj - x. The result is the desired entry. This is illustrated
in Fig. 9.3. for the entry fjIx 1 , x2 , x, x}.

When the table is completed, the entries at the top of each column
represent the divided difference coefficients.

Given th u fd1ownig aet of data points, obtain the table of divided diflèr-.
ences. U the table to estimate the value of f(1.5).

	

X i	 1	 235

	

f(xj)	
0	

7	
3	

124

-The divided difference table is given below:

t	 Xi	 f(xJ FI Second F - Third	 Fourth
1

_+_L _	 ffreLdifferenc thfference

(T,
7.

18 .-- 	 4	 o
37 _j	 6.Et4 63iaEi ---
31

4.	 1	 5	 1	 124

The value of polynomial at x	 is computed as follows:

p 1(1 .5) = 0 + 7(1.5 - 1) = 3.5

P2 1 - 5) = 3.5 + 12(1.5 -- 1)(1.5 - 2)	 0.5
p3(1-5) 0.5 + € (1.5 - 1)(1.5 - 2)(1.5 - 3) = 2.25

P4(1.5) = 2.25 + 0= 2.25
The njon value at x = 1.5 is 2.25

Note that p 3 (1.5) = p4(1,5). This implies that correct results can be ob-
tained using the third-order interpolation polynomial. It also illustrates
that we can compute f(1.5) in stages (recursively) using interpolation
polynomials in increasing order. Computation is terminated when two
consecutive estimates are approximately equal or their difference is within
a specified limit.

2

fl Numerical Methods

It is clear that the computational effort required in adding one more
data point to the estimation process is very much reduced due to the
recursive nature of computation.

Let us have a close look at the divided difference table of Example 9.7.
Notice the constant values under the column "third difference' and zero
value under the column "fourth difference". Recall that the first divided
difference is given by

f{x 0 ,x 1] =
f(x 1 - f(x0)

This is nothing but the finite divided difference approximation of the
first derivative of the function, Similarly, f[x0, x 1 , x2] is the second de-
rivative and so on. Since the third derivative is constant, the function
f(x) should be a third-degree polynomial. In fact, the function used in
Example 9. 7 is

f(x) = X ,3 - 1
and therefore

c1r	
6

and the fourth derivative is zero

Program NEWINT
Program NEWINT constructs the Newton interpolation polynomial for a
given set of data points and then computes the interpolation value at a
specified value.
*--------------- --------------------------------------- 	 ---	 -	 .-	 *

PROGNAM NM1NT
* --	 *

* 45jfl program	 *

This program constructs the Newton interuolation
*	 polynomial for a cpiven Sc: of data poInts and then *

computes r:tcrpolt ion value at -i s pecified value *
* - ---

Functions invoked	 *
*	 NIL	 *

* --.-. --- 	 *

Salarout roes used	 *

*	 NIL

* Variables used
*	 NI - Number of data points	 *

*	 X - Array of indcoendent data points	 *

F - Array of function values 	 *

*	 XP - Desired point- for ir.Lerpolation 	 *

Curve Atting: Interpolation 22

*	 FP - Interpolation value at XP 	
*

*	 D - Difference table	
*

*	 A - Array of coefficients of interpolation	 *
*	 polynomial	

*

* ---*

Constants used
*	 NIL
* ------------- -- ----------------

INTEGER N
RE	 XP,FP,STJN,PI,X,F,A,D
DIMENSION X(10)F(l0),A(l0),D(l0l0)

WRITE(*,*) 'Input number of data points
READ(*,*) N
WRITE(*...)	 'Input the values of X and F(x)

+

	

	 one set on each line'

DC 10 1 = l,N
READ(*,*) X(I), F(I)

10 CONTINUE

* ConsLruct difference table D

DC 20 I = l,N
D(Il) = F(T)

20 CONTINUE

DO 40 J = 2,N
DC 30 I = 3, N-J+1
D(I,J) = (D(I+l,Jl)_D(I,Jl))/(X(I+J)X(I))

30	 CONTNUE
40 CONTINUE

* Set the coefficients of interpolating polynomial

DO 50 J = lN
A(J)	 D(J)

50 CONTINUE

* Compute 4nerpoIat1on value

WRITE(*,*) 'Input XP where interpolation is

required.'
READ (*,) XP

SUM	 A(l)
DO 70 I = 2,N

P1 = 1.0
DO 60 3 = 1, I-i
P1 = P1 *(XPX(j))

VA Numerical Methods

60 CONTINUE
ST.TN = SUM + A(J) ' P1

70 CONTINUE

FP = SUM

Write results

WRITE(*,
WRITE(*,*) 'NEWTON INTERPOLATION'
WRITE(*,')
WRITE(,) 'Interpolated Function Value
WRITE(, *) 'at X = ', XP, ' is,
WRITE(*, *)

STOP
END

* -- -End of main NIINT ------------------

Test Run Results Let us use the same table values that were used for
testing the program LAGRAN. Test run results are given below:

Input nur0je: of data points
3

input the values of X and F(x) , one set on each line
2 1.4142
3	 1 .7321
4 2,0

Input XP where interpolation is recii.red
2.5

NEWTON INTERPOLATION

Interpolated Function Value
at X	 2.5000000 is 1.5794000

Stop -- Prograx'i terminated.

INTERPOLATION WITH EQUIDISTANT POINTS

In this section, we consider a particular case where the function values
are given at a sequence of equally spaced points. Most of the engineering
and scientific tables are available in this form. We often use such tables
to estimate the value at a non-tabular point: Let us assume that

Xk x0 + kh

where x0 is the reference point and h is the step size. The integer k may
take either positive or negative values depending on the position of the
reference point in the table. We also assume that we are going to use
simple differences rather than divided differences. For this purpose, we
define the following:

Curve Fitting: Interpolation

The first forward difference Af is defined as

The second forward difference is defined as

A2 f = f

In general,

= s' - '	 -N-'7l	 (918)

We can now express the simple forward differences in terms of the di-
vided diftreçYJe know that

f(x1'(x(,)f1-f0

	

,	 - h

Therefore,
I'i -f0=hf[x0.x1]

Then
'fo fi f = h f[x0 , xjl

Similarly,
Af1 h fix 1 , x2J

Now,

A2 fo

= h f[x 1 , x 2 1 - it fix, XLI

h (f [x 1 , x2] f{x 0 , x1]}

h . 2/i . fix 0 , x 1 , x2]

2 h 2 ftx5 , x, x21

In general, by induction,

=j! h' f{x, x, -..
Therefore,

t[x	 .0 x1.....]= A1f0
j.nJ

Substituting this in the Newton's divided difference interpolation poiy-
noinial (Eq. (9.16)) we get,

nfiI1
p • (x) =	 0

fT (x - Xk)	 (9.19)J.h'

Let us set.
X = x0 + sit	 and	 p,,(s) - p(x)

We know that
X k -	 -f k/i

Thus we get
x -	 (S -

M Numerical Methods

Substituting this in Eq. (9.19), we get

	

i	 £\Jfj-1

	

p,(s) =	 ___J fi (s— k)h
J=O j! h i k-O

n
=	 _° Es(s-1) ... (s—j+1)lhf

j-O j! hi

Thus,

p(s)=(js A(9.20)

I
where

(ss(s_1)...(s—j+1)
j!

is the binomial coefficient. Equations (9.19) and (9.20) are known as
Gregory-Newton forward difference formula -

Forward Difference Table
The coefficients Nf can be conveniently obtained from the forward dif-
ference table shown in Fig. 9.4. According to Eq. (9.18), each entry is
merely the difference between the two diagonal entries immediately on
its left. That is

	

Jf	 J.-lfill

The differences which appear on the top of each column correspond to

the differences of equation (9.20).

Fig. 9.4 Forward difference table

Curve Fitting: Interpolation 	 Z

As pointed out earlier, difference tables can be used not only to estimate
the value of the function at a non-tabular point but can also be used to
decide on the degree of the interpolating polynomial that is most appro-
priate to the tiven data points.

Estimate the value of sin Oat f = 250 using the Newton-Gregory forward
difference formula with the help of the following table.

72-0 	 40-
sin 	

O.l736j 0420
	 0.5000	 0M4281 0.7660

In order to use the Newton-Gregory (hi-ward difference formula, we need
the values of N f. These coefficients can be obtained from the difference
table given below. The required coefficients are boldfaced.

e	 sin 	 L
10	 0.1736

20	 0.3420	 —0.0104

_1____0.1580 I
30	 0.5000	

E2.0152
0.1428

06128
t0i232

50	 1 0.7660

xo = 0,= 10

= 10
Therefore

x—x0 25-10
S	

-- iö=
1.5

Using Eq. (9.20, we have

0.0048

0.0004
0.0044T

PI (s) 0.1736 + (1.5) (0.1684) = 0.4262

= 0.1262	 1.±	 = 0.4223

jis = 0.1222 (1-5W.5-0.5)(0 0048)
= 0.4220

04220 J)(ft50.5)—t5—o.0004	
0.422024

M Numerical MeThods

Thus,
sin 25 = 0.4220

which is accurate to four decimal places.

Backward Difference Table
If the table is too long and if the required point is close to the end of the
table, we can use another formula known as Newton-Gregory backward
difference formula. Here, the reference point is x,,, instead of x0 . There-
fore, we have

x = + sh

Xk = x, - kh

x - = (s +

Then, the Newton-Gregory backward difference formula is given by

s(s 4- 1)
P, u) = fn +SVfr +	 v2f+

£	 2!

s(s+1)...(s+n-j)
Vf n	 (9.21)

For a given table of data, the backward difference table will he identical
to the forward difference table. However, the reference point will be
below the point tbr which the estimate is required. This implies that the
value of r will be negative for backward interpolation. The coefficients
Vj / can be obtained from the backward difference table shown in Fig. 9.5.

Fig. 9.5 Backward difference table

Curve Fitting: Interpolation M

Repeat the estimation of sin 25 in Example 9.8 using Newton's back-
ward difference formula

(x - x) 25-50
s=--= ____=95

h	 10	 -

Using Eq. (921), we get
P4(2.5) 0.7660 + (-2.5) (0.1232)

+ (2.5)(-•1.5)(0.0196)

(-2.5)(1.5)(-0.5)(10044)
6

+ (-2.5) (-- 1. 5) (-0.5) (0.5) (- 0.0004)
24

= 0.4200

SPLINE INTERPOLATION

So far we have discussed how an interpolation polynomial of degree n
can be constructed and used given a set of values of functions. There are
situations in which this approach is likely to face problems and produce
incorrect estimates. This is because the interpolation takes a global rather
than a local view of data. It has been proved that when a is large
compared to the order of the "true" function, the interpolation polyno-
mial of degree n does not provide accurate results at the ends of the
range. This is illustrated in Fig. 9.6. Note that the interpolation polyno-
mial contains undesirable maxima and minima between the data points.
This only shows that increasing the order of polynomials does not neces-
sarily increase the accuracy.

Fig. 9.6 Interpola t ion polynomial of degree 11 of the function
1+ X-

QQ Numerical Methods

One approach to overcome this problem i L, to divide the entire rang
of'points into subintervals and use local low-order polynomials to inter
polate each subinterval. Such polynomials are called piecewise polyno
ivas. Subintervals are usually taken as Fr,, x J. I = 0, L

. ... n as thus
trated in Fig. 9.7.

Piecewise polynomials

Knot

x,1 X, 	x,I	 x52

Fig. 9.7 PiecewIse polynomial interpolation

oticr' that the piecewise polynomials shown in Fig. 9.7 exhibit dis-
continuity at the interpolating points (which connect these polynomials).
It is possible to construct piecewise pol ynomials that prevent such
discontinuities at the connecting points. Such Piecewise polynomials are
called spiic functions I or simply 'iplini.'.s 1. Spline functions, therefore,
look smooth at the connecting points as shown in Fig. 9.8. The connect-
ing points ore called /mots or iwdes (because this is where the polynomi-
al pieces are tied together).

a1 x 2 + b,x + C1	 a1	 + b, + 1x C,

f(x,)

-)

f(x,2)

Xi 1	 Xi	 Xi , i

Fig, 9.8 Secona degree spine polynomials

Curve Fitting; interpolation 301

A spline function s(x) of degree m must satisfy the following conditions:

1. s(x) is a polynomial of degree atrnost m in each of the subintervals
1x1, ;+1, i = 0 1 1, ... a.

2. s(x) and its derivatives of orders 1,2 .. in - 1 are continuous in the
range [x0 , x].

According to the first condition, each interval will have a different
polynomial of degree in or less. The set of all polynomials form a spline
interpolation polynomial, if s(x,) = f, for i = 0, 1, ... a. The process of
constructing such polynomials for a given set of function points is known
as spline interpolation.,

101

State whether the Illowing piecewise polynomials are splines or not.

x+1
(i) f(x) - 2x+1

+ 1
(ii) f(x) = 2x2

5x-2

- 1:^x:5O
0:5x< 1
lxS2

0!^x 1
1!^x<2
2!^x53

x	 0!^x<l
(iii) f(x)= x 2 -x-fl 15x!^2

3x-3	 2!^x:^3

Case (i)

Given,
o =	 x1 = 0,	 x2 1,	 x = 2

f1 (x) = x + 1

f2(x) = 2x + 1
[3(X) = 4 - x

Then,
11(x1) = 0 + 1 = 1

f2(x 1) = 2 x 0 + 1 = 1
f2(x2) = 2 + 1 3

f3(x9) = 4 - 1 3

Note that

f1 (x 1) = f2(x 1)	 and	 f2(x2) = f8(x2)

Q2 Numerlcai Methods

rTherefore the piecewise polynomials are continuous and fUr) is a linear
spline. Note that the first-derivative is not continuous arid, therefore,
f(x) is not a second-degree spline.

(a..c (ii)
Given
ri=4. -17 o — 0,	 x 1 =1,	 x2 =2,	 x1=.3

f1 (x) = x2 + 1,	 1'1'(x) = Zr

f2 x) = Zr2 	 f2'(x =

f(x) = 5x - 2,	 f'() = 5
Then,

f1(x1) = I + I = 2,	 f1'(x1) = 2

f2 (7) = 2 x 4 = 8,	 f2'(2) 8

1':I(x2)=5x2	 2=3,	 f3(r2)=5

Polynomials are continuous hut their derivatives are not. Therefore, f(x)

is not a spline.

Case (iii)
Given,
,i=4, x 11 =O, x 1 =1, x 2 =2, xj=3

Ii) = x,	 f1":x> = 1,	 f1"(x) - 0

f2(x=x2 —x+I.	 t'U)=2—1,	 f9"=2

f(x) = 3x - 3,	 f'(x = 3,	 f30x) 0
Then.

fx 1 = 1	 f1 x 1 = I

f2(x) = I	 f;x1) = 1

= 3	 f.1'(x2) = 3

= 3	 = 3

Since both the polynomials and their fist derivatives are continuous in
the given interval, f(x) is a second-degree spline. Note that the second
derivatives are not continuous.

Cubic Splines
The concept of splines originated from the mechanical drafting tool called
"spline" used by designers for drawing smooth curves. It is a slender
flexible bar made of wood or some other elastic material. These curves
resemble cubic curves and hence the name "cubic spline" has been given
to the piecewise cubic interpolating polynomials. Cubic splines are popu-
lar because of their ability to interpolate data with smooth curves. It is
believed that a cubic polynomial spline always appears smooth to the
eyes.

Curve Fitting: interpolation 303

We consider here the construction of a cubic spline function which
would interpolate the points (x 3 , f0), (x i , ft), ... (x,,, f,,). The cubic spline
S(X) consists of (11 - 1) cubics corresponding to (n - 1) subintervals. If we
denote such cubic by s i(x), then

s(x) = s i(x), i	 l,2 n

As pointed out earlier, these cubics must satisfy the following condi-
tions:

1, s(x) must interpolate f at all the points x0, x 1 , ... x, ix, for each i
S(X i) =	 (9.22)

2. The function values must be equal at all the interior knots

s1(x) = S i, I (X i)	 (9.23)
3. The first rivatives at the interior knots must be equal

s(x,) =	 (9.24)
4. The second derivatives at the interior knots must be equal

= s1"(x1)	 (9.25)
5. The second derivative at the end points are zero

s(x) = s'(x,,) = 0
step I

Let us first consider the second derivatives. Since s 1 (x) is a cubic
unction, its second derivative s 1 "(x) is a straight line. This straight
inc can be represented by a first-order Lagrange interpolating
olynomial. Since the line passes through the points (x 1 , s"(x))

md (x,.. s,'(x 	 .1), we have,

x-x .	x -x.
s 1 "(x) = .s"(x11) —.__L_ + s"(x1)	 (9.26)

X , - Xi I

['he unknowns s 1 "(x 1) and s,"(x,) are to be determined. For the sake of
implicity. let us denote

- = a, .	 and	 s"(x1) = a1

I - I, =

x,-x1 1=h1=u1_1_u,

'hen, Eq. (9.26) becomes

Its1"(x) =a , 1 --+a1 ._L

a 1 u 1-a1u
= ---_--__.-------	 (9.27)

0 Numerical Methods

Step 2
Now we can obtain s(x) by integrating Eq. (9.27) twice. Thus

-=	 + C 1 x + C,	 (9.28)

where C 1 and C2 are constants of integration Iohserve that dud = 1
and, therefore, differentiation and integration with respect, to x and with
respect to iL i will he equivalentl. The linear part C 1 x + C, can he ex-
pressed as

b1 Ix - x 1) + 1+, (x -- xi

with suitable choice of b 1 and b2.
Therefre,

C1.t4C2=b1(x—x1)+b2(x—x)

-	 . + b2 u

Then. Eq. (9.28) becomes,

co	 -	
hi	

i bu

Step 3

Now, we moat determine the coefficients b and 1+,. We know that, by
condition 1,

	

S(X) I,	 and	 s(x
1)	1

At x =
U, = 0, u 1 	 = Ii,

f;

Similarly, at x
	0,	 u, = —h

and therefore

ci,

.1	 -. h2h1

Thus, we get

f	 ah,
b1	 -------	 (9.29a)

f. 1	 a1h1
b2 =6
	

(9.29b)hi

Curve Fitting: Inlerpolaliori

Substituting for b 1 and b2 in lq. (9.29) and after rearrangement of
terms, we get

.c 1 (x)	 (J2	 (i.)	 (u3. -	 -

(9.30)

Note that Eq. (9.30) has only two unknowns, aj I and a.

Step 4
The final step is to evaluate these constants. rçj.j5 cari he done by invok-
ing the condition

	

s'(x) -	 1(x)

Differentiating Eq. (9.30 . 1 we get

0
= .-	 (h,v	 3u2)

- .	 ±,f-	 2	
- /n2)

\	 1\\	 f/HI;

Setting x =

j	 -

6	 3	 InL

Similarly,

f

	

s; 1 (x) =
	 3 -. _6 +- h1

Since

s ' (x 1) - s; I (xi)

We have

1	 L	 -	 1
ha - + 2(h	 h 1)a1 t h 1a	 = 6 - -h------ -	 (9.31)

H-i	 C

Equation (9.31), when written for all interior knots (i = 1, ... n - i) we
get n - 1 simultaneous equations containing ii 1 unknowns (a 0. a1,

as). Now, applying the condition that the second derivatives at the end
points are zero, we get

a0 = a = 0

NO Numedcal Methods

Thus, we have n - 1 equations with it - 1 unknowns which can be
easily solved.

Note

The cubic splines with zero second derivatives at the end points are
called the natural cubic splines. This is because the splines are
assumed to take their natural straight line shape outside the inter-
vals of approximations.

The system of n - II equations contained in Eq. (9.31) can be expressed
as

2(h 1 +h 2)	 h9	 0	 0	 0	 0	 1

	

2(h, h 3)h3	 0

o	 0	 0	 h	 2(h,2 +h_ 1)	 h..1

o	 0	 0	 0	 h,I	 2(h	 +h)

[a 1	D11

a2 =	 2	

(9.32)

Dj

where

	

f+1 fi	 f-fi_11
D, 	 k

(j+ I

= xi --

Given the data points

-1

estimate the function value fat x = 7 using cubic splines.

= x, - = 9 - 4 = 5
h9=x2 - x1 = 16-9=7

	

1o2,	 f3.	 12-4

Curve Fifing: Interpolation	 Z

From Eq. (9.31), we have, for = 1,

[1 1
h 1a0 + 2(h 1 + 11 2)0 1 + h1.0-22

il	 fl — f0

We know that a 0 = a9 = 0. Thus,

2(5+7)u1	
1	 11

Therefore,
(6) (-2)
(35)(24) =-0.0143

Since rr = 3, there are two cubic splines, namely,

s 1 (x)	 xxx1

S2(X)	
x1xx)

The target point x 7 is in the domain of s,(x) and, therefore, we need to
use only s 1(x) for estimation.

From Eq. (9.30)

51(X)	

u0) +(f1 u 0 —Iou1)

u 0 =x—x0	 and	 II I =x—x1

Upon substitution of specific values,

= - 00143 [(7 - 4)3 - 52 (7 - 4)]
6x

+1 13(7 — 4) — 2(7 — 9)]

= 2,6229

Algorithm

Note that Eq. (9,32) form a tridiagonal system which is relatively simple
to solve using Gauss elimination method. A detailed solution procedure
to evaluate spline functions is given in Algorithm 9.1

Natural cubic spline

1. Provide input data.
2. Compute step lengths and form function differences.
3. Obtain the coefficients of the tridiagonal matrix.
4. Compute the right-hand side (D array) of the system.
5. Compute the elements a i using Gauss elimination method

(Contd.)

Numerical Methods

(Con(d.)

6. Evaluate the coefficients of natural cubic splines
7. Evaluate the spline function at the point of interest.
B. Print results.

Algorithm 9.1

Program SPLINE
Natural cubic splines interpolation uses Gauss elimination method to
implement its algorithm. Program SPLrNE, therefore, calls for the help
of GAUSS subprogram to compute the array of second derivatives.
* - --------------- - - - - - - - - - . ------. 	 ---	 --.- *

PROGRAM NPL. J NE
*	 -- *
* Main program	 *
*	 This program :omputes the ierpolation value L A

*	 a spec-i fied value, given a sot of table points,
*	 using the natural cubic: spline interpolation 	 *
*	 ------------------------- -----------------	 -----	 ---- *
* Funct I cnn nvked
*	 NIT,	 *

*

* Rubru, j	 *
A	 GAUSS	 *

-----	 --------------
A Vani.at.l.es used	 *
*	 N - Number ot data pornt.s.
*	 X - N by 1 array of data points. 	 *

P - N by 1 array of functicr. values
*	 XP - Point. at which interpolation is required 	 *

- InL'erpolaLion value at XP
A	 -- Array of secrorcd ocnivat i'ics (N-I by -1

*	 D -- Array representing richt 	 ido of (9.321	 *
*	 (N-2 by 1)	 *
*	 C -. Matrix (N-2 by N-I) representing the 	 *
*	 c ,.)efficierit:s of second deriv.tives 	 *

11*	- Au ray ot distances between data points 	 *
*	 (h(i)	 (j)	 >/	 fl)	 *
*	 DI" -- Array of dif renc-os Of functions	 *
*	 -----.--*

* Centafl.	

'

used	 -

MAX - Maximum number of table poirt g permitreci *
* ------ ----------------- -- *

Curve Fitting: Interpolation 309

INTEGER N, MAX
REAL XP, PP, F,AD,C,H,DF,tJ

PARAMETER (MAX=10)
DIMENSION X(MAX),F(NAX),A(MAX),D(MAX),C(MAX,MAX),

+	 H(MAX),DF(MAX) ,U(NAX)

Read input data

WRTTE(*,*) 'Input number of data points n'
READ(*,*) J

WRIT---(",*) 'Input data points X(I) and function'
WRITE(*,*) '].ws F(I), one set in each line'

1)0 5 I = 1,N
READ(*) X(I), F(i)

5	 CONTINUE

WRITE(*,*) 'Input XP'
READ(* , *) XP

Compute dstoces between data points

* and function differences

DO 10 I = 2,N
11(1) = X(I) - X(I -lf
DF(T)	 F(I) - F(l-1)

10 CONTINUE

* Initialise C matrix

00 30 1 = 2,N-1
DO 20 J = 2, IN-1
C(I,J)	 0.0

20	 CONTINUE
30 CONTINUE

* Compute diagonal elements of C

DO 40 I = 2,N-1
C(T,I)	 2.0 * (H(I)+H(I+l))

40 CONTINUE

* Compute off_diagonal elements of C
DO 50 I = 3,N-1-

0(1-1,1)	 1-1(1)
C(I,I-1) = H(I)

50 CONTINUE

A. Compute elements of 0 array

DO 60 I = 2,N-1
0(I)	 (DF(I+l)/H(I+l) - DP(I)/H(1)) * 6.0

]Q Numerical Methods

60 CONTINUE

• Compute elements of A using Gaussian elimination
• Change array subscripts from 2 to n-i to 1 to n-i
• before calling GAUSS

M = N-2
DC 80 I	 I'M

0(I)	 D(1-1-l)
DO 70 J = l,N
C(T,J) = C(i+1,J+l)

70	 CONTINUE
80 CONTINUE

CALL GAUSS(4,CDA)

* Compute the coefficients of natural cubic spline

DO 90 1 =
A(I)	 A(I-l)

90 CONTINUE
A(l) = 0.0
A(N) = 0.0

* Locate the domain of XP

1=7.
100 IF(XP .LE. X(I)) GO TO 110

I = I-*1
GO TO 100

* Compute interpolation value at XP
* Use equation (9.30)

110 0(1-1) = XP - X(1-1)
U(I) = XP - X(1)
Qi = H(I)**2	 0(1) -
02 = U(I_1) k *3 - H(I)**2	 U(I-1)
03 = F(I) * 0(1-1) - F(I-1) * 0(I)
FP = (A(I-•1) * 01 + A 	 * Q2)/(6.0 * H(I))

+ Q3/H(I)

* Write results

WRITE(*,*)
WRITE(,) 'SPLINE INTERPOLATION'
WRITE(* ,')
WRITE(*,*) 'interpolation value =' ,FP
WRITE(*,*)

STOP
END

*	 ------- ------- End of main SPLTNE ------------------*

Curve Fitting: Interpolation JU

*	 - -- -- ------ ----- -	 - ----	 -	 -	 *
SUBROUTINE CAUSS(N,A,BX)	

*

*	 -- --*

* Subroutine	
*

* Th i s subrOUL:flC solves a eL of	 lrier	
*

equat LOflS iisjrq Gauss 1j5.jflOCjOfl neLhod	
*

* -- - - - - - - -
	-k

Arguments
* jnpu	

*

*	 N - Number of qUL[oi	
*

*	 A - Matrix of coeffic1etDS	
*

*	 B - Right side vector	
*

Outout	
*

X - Solution veCor	
*

* ----------------------------------
	 *

* T ,ccai variables
*	 PIVOT, FACTOR, SU1' 	

*

* Fimot iOnS lflVOkCQ	
*

N11,*
* ------------ -

Subroutines called	
*

*	 Nil	
*

* ------------------------------------- *

INTEGER N
REAL A,B,X, pIvO'r,FACTOR..StiM

DIMENSION A(10,10), RHO), XWJI

*	 --. Elimination begins -------------- ---- *

DO 33 K = 1, N-i

PIVOT = A(K,K)

DO 22 I	 K-fl, N
FACTOR = A(I,K)/PTVOT

DO ii J --- Kl, N

A{IJ)	 -

CONTINUE
B(I) = R(1) - FACTOR

22	 CONTINUE

33 CONTINUE

FACTOR *

* B(K)

* ------ ----- - Back suhtituLLOfl begins - --	 -- --- - *

X(N) = B(N)/A(N,Nl

DO 55 K	 N- Li -i

SUN - 0

DO 44 J	 K+l,N

Numerical Methods

= SUM + A(K,J) * X(J)
44	 CON'PfNlJg

XK) = (B(x) - SUM)/A(T,K)
55	 CONTINUE

RETURN

END

*	
End of subrcjjtr	 G!U5	 - -

Test Run Results Program SPLINE was tested using the table of datapoints giver) in Example 9.11.

Results are given below:

Input JiLuaber of data points n
3

Iripu t data poinL, X(i) and f runt ion
vale F(I; , one set in each line
42
9 3
16 4
Trinut xp
7

:PrINE TNTERPOLJvI'ION

Iritorpc]at->j	 -. l,E2iiit 0
- Ccc j - an I. !nInor ed.

Equidistant Knots

Most often the knots are equally spaced. This would simplify the solu-
tion considerably. If the knots are equall y spaced,

It 9 = ,..	 = ii.
Substituting this in equations (9.11) and dividing throughout by I?, we get

4	 1	 0	 • - - 0 0 0	 (11	 d1
1	 4	 1	 •..	 ::
o 1 4 1

10
o	14j
o ü	 o .-- o 0 4 a 1i]	 d

where.

dD 6(/-2/+f)
h -

Curve Fitting: lnterpoation

h2

= 121k 1 1' x, xi	1,2. n - 1

Given the table of values

	 3RJ_-k4
L0.0.20

estimate the value of f(2.5) using cubic spline functions

The points are equally spaced and therefore

- I

Since o	 4, we have three intervals and three cubics and, therefore,
only a 1 and a2 are to be determined. From Eq. (9.33), we have

[4 11[ai1[di
LI 4][a2j[d2

d1 =- (f2 2f1 f)
= 6 (0.25 - 2 x 0.3333 + 0.5)

= 0.5004

d2 =- ([3-212+11)

6(0.2 - 2 x 0.25 + 0.3333)

= 0.1998

Solving for a 1 and a2

d1x4-d2xl
1

-
0.5004x4-. 0.1998 =0.1201
 15

d2x4-d1xl

0.1998x4-_'. = 0.0199
-	 15

Numeticol Methods

The target point x = 25 is in the domain of s2(x). Using Eq. (9.30),

al
32(x) = -(u2 - u23) + - (u 1 - u 1) + (f2u1 - f1u.)

a 1 a 2 	 'V

= -- [(x - x2) - (x - X2)J +	 [(x

—(x —x)] + [f(x— X I) —fj(x—x2)1
Upon substitution of values, we get

S2(2.5) = 0.12011(25 —3)— (25 3)8]

+0099[(25_2)a_(25_2)J

p	
+(025)(25-2)-03333(25-3)

0.0075 - 0.0012 + 0.125 + 0.1667
=0.2829

_____ CHEBVSHEV I NTERPOLATION POLYNOMIAL

Recall that the truncation error in approximating a function f(x) by ai
interpolating polynomial p(x) with interpolation points x4 , i= 0,1,..jz is

f(flFl)(0)
AX) - p,1(x) = w (x)

(n+1).
where

w(x) = (x - x0) (x - x 1) ... (x - x,)

and 0 is some point in the interval of interest. One of the goals while
applying an interpolation polynomial is to minimise the truncation er-
ror. Since f + (6) is not in our control, we can try to minimise the
absolute yams of w(x). This can be done by choosing a proper set of
interpolating points x1 in the given interval (a, b).

Chebyshev Points
The Russian mathematician Chebyshev showed that the error bound is
minimum when the interpolation points are chosen as follows:

a+b a—b r2k+1 1= —b---- + --- COS[
2(n+1) 1) r

j	 k = 0, 1, ..., n	 (9.34)

These values are called Chebysh.eu nodes (or points). We can evaluate
function values at these points. That is

fhfxk)	 ,• :'	 .

Is

C:urve Fitting: Interpolation ai

Now, we can apply the Lagrange interpolation method to the Chebyshev
points and the corresponding function values to obtain an interpolation
polynomial known as Lagrange - Chcbyshev interpolation polynomial.

Chebyshev Polynomials
Another approach to construct the interpolation polynomial p(x) is to
use Chebysliev polynomials as basis polynomials. That is

p,(x) = Coto(t) + C 1 T 1 (t) + ... +

= CT1 (t)	 (9.35)

where T(t) is the Ch.ebyshev basis polynomial of order i. in t and C the
Chebyshev coefficient. Equation (9.35) is known as Chehyshev interpola-
tion polynomial. Chebyshev polynomial T(t) is given by

T0(t) = 1
=

Tt) = 2t T 1 (t)	 k = 2,..., n

C1 are computed as follows:

CO	f(xk)To(tk)=---- I f(x)
k-U	 fl+

Ci --f:f (Xk)TJ (tk)0

where

(2k + 1)r!
=	 2(n + 1) J

Therefore

n±1

	

	 [.(2k+1)
>, f(x)cos
k0	 2(n+l)

jJ=l2.fl

Evaluation of p,, (x), given x:

(b—a)/2

p(x) =.C1 '1'(t)

___ SUMMARY

In this chapter, we discussed various methods for constructing interpo-
lation polynomials for tables of well-defined functions. They include:

J4 Numerical Methods

• Lagrange interpolation
• Newton's interpolation
• Newton-Gregory forward interpolation
• Spline interpolation
To facilitate the construction of interpolation functions, we presented

different forms of polynomials that included
• power form
• shifted power form
• Newton form
We have also discussed how to build different types of difference

tables and how to use them for estimating function values at any point.
Finally, we considered how Chebyshev points and Chebyshev polynomi-
als may be used to minimise the truncation error.

We have given computer programs and test results for the following
methods:

• Lagrange interpolation
• Newton's interpolation
• Spline interpolation

Approximating functions
Backward difference
Central cubic spline

Central difference
Chebyshev basis polynomial
Chebyshev interpolation
Chebyshev points

Chebyshev polynomial
Cubic spline
Curve fitting

Divided difference table
Divided differences
Forward difference
Interpolation
Interpolation function
Interpolation polynomial

Knots
Lagrange basis polynomial
Lagrange interpolation

Lagrange interpolation polynomial

Leaf-squares polynomials
Leaf-squares regression
linear interpolation
Natural cubic spline
Newton form
Newton intereolation polynomial
Newtons interpolation
Newton-Gregory formula
Newton-Gregory interpolation
Wades

Piecewise polynomial
Power form
Shifted power form
Simple difference
Spline function
Spline interpolation
Spline interpolation polynomial
Spline
Taylor expansion

Tridiagorial system

Curve Fitting. Intnrpolation fl
-

/r. What is curve fitting? W at is the need fbr such an exercise?
,'. What is interpolation?
)31 What are the methods available for interpolation?
,A. Discuss the possible sources of errors in interpolation?

What is interpolation function?
,6. List., with examples, different forms of polynomials that could he

used for constructing interpolation functions,
/7. Given two points (x 1 , y 1) and (x2. y2) state the linear interpolation
•	 formula in terms of these pointsr

Given a set of it + I points, state the general form of nth degree
Lagrange interpolation polynomial.

9. What is the computational effort required in using Lagrange poly-
nomial?
What is the major pitH of using Lagrange poly?
What are divided dilTefences?
State the second order Newton's divided difference interpolation

/polynomial.
. How is the Newtons interpolation formula better than Lagrange

/1/ formula?
14 What is a divided difference table? How is it useful?

Construct a divided difference table for four data points.
16. Entries under a particular column in a divided difference table are

constants. What does it indicate?
17/Distinguish between the simple difference and divided difference.

What is the difference between the forward difference table and
backward difference table?

19. Look at Examples 9.8 and 9.9. Answers are different. Why?
20. What are piecewise polynomials?
21. What are spline functions?
22. What is spline interpolation?
23. What are cubic splines?
24 State the conditions for a spline to he cubic.
25. What are natural cubic splines?
26. What is tridiagonal system?
27. State the contribution of Russian mathematician Chebyshev in mini-

mizing the truncation error in interpolation.

1. otItruct the power form of the straight line p(x) which takes on
/the values

_?	 p(200) = 113

Numerical Methods

p(202)r -2/3
using four-digit floating-point arithmetic.

2. Solve the problem in Exercise 1 using the shifted-power form and
compare the results,

3. Find the linear interpolation polynomial for each of the following
pairs of points:

(a) (0, U and (1, 3)
(b) (-2, 3) and (7, 12)

4. Find the quadratic interpolating polynomial for each of the follow-
ing set of points:

(a) (-1, 1), (0, 1) and (1, 3)
(b) (0, -1), (1, 0) and (2, 9)

5.	 below gives values of square of integers:

4	 9	 16	 2J

Using the linear interpolation formula estimate the square of 3.25
(a) using the points 3 and 4
(b) using the points 2 and 4

çpare and comment on the results.
•..6'1Jsing the data in Exercise 5, estimate the square of 325 using the

second-order Lagrange formula. Compare the error with the errors
obtained in Exercise 5.

7. When the value of .v at which we wish to estimate the value of /'(x),
lies outside the given range, we call it extrapolation. Use the
Lagrange formula to find the quadratic equation that takes the
following values:

WT-1, 12

4nd f(x) at x 0 and x 4
8. Given the points below, obtain a cubic polynomial using the

Lagrange formula:

r	 ri r.TII
..9 Find the Lagrange. interpolation polynomial which agrees with the

following data:

1.2

Ls x	 0.5403	 0.4536	 0.3624]

Use it to estimate cos 1.15

Curve Fitting: Interpolation I2

10. Find the polynomial of degree three to fit the following points:

-	 - F-1

	

f()	 -6	 -2	 2	 10

11. Show that when a 2. Lagrangian interpolation formula reduces
to the linear inr.erpoiatmu formula.

12. The Lagrange interpolation polynomial can be derived directly from
Newton's interpolating pol ynomial. Prove this using the linear case.

13. Fit a second-order Newton's interpolating polynomial to estimate

cos 1.15 using the data from Exercise 9.
14. Fit a third-order Newton's interpolating polynomial to estimate cos

1.15 using the data from Exercise 9 along with the additional point
cos 1.3 = 0.2075.

15. Given the data

	

L111 1 . 2 IL IIi	 j
L ftxj 1.0G31.091 j_i19 LJ

(a) Calculate f1.35) using Newton's interpolating polynomial of
order 1 through 3. Choose base points to attain good accu-
racy.

(h) Comment on the accuracy of results on the order of polyno-

mial.
16. Find the divided differences fix(,,, x 1], fEy 1 , x 9) and fix0 , x 1 , x2 1 for

the data given below,

	

X i 	 1.01.5	 j2.5

I 3.2j151j4.5

Also find the divided differences fix 0 , X21 and fx0 , x2, x 1 1. Compare

the results fix0 , x, x] and f[x0 , x2 , x11.

17. Estimate the value of in (3.5) using Newton-Gregory forward dif-
ference formula given the following data:

In J0.0	 093i	 98.3863j

18. Repeat Exercise 17 using Newton's backward difference formula.
Compare the accuracy of results.

19. Construct difference tables for the following data:

07	 09	 1.1	 1.3

AX) 0.003 0.067 0.148 0.248 0.370 0.518 0.697

Find f(0.6) using a cube that fits at x = 0.3, 0.5, 0.7 and 0.9.

Numenco Methods

20. What is the minimum degree of polynomial that will exactly fit all
seven pairs of data in Exercise 19.

21. Construct a divided difference table for the data in Exercise 19.
How do the values compare with those in the table obtained in
Exercise 19.

22. State whether the following functions are splines or not.

X
1(a)f(x)	 +_._._. 1!^x-<3

5x-8 37^x4

Ix2.3x+1 Ocx^i
(h)fJx3+x2.3 l^x2

x+5x-9 2x3

	

-x+5.5	 3.0x4.5
(c)f(x)1064X2	

^
 -G.?6x+18.46 4.5:^x!^70

•-l.6x 2 +24.6x-913	 7.0!^x<9.0
23. Find the values of a and b such that the function

UXi2_x+i lx2
3xh	 25:J

is a quadratic spline.
24. Fit quadrol ir splines to the data given below:rrrj

Predict 1(2.5).

25, Develop cubic splines for the data given below and predict f(1.5)

LLL± -lizLLI.
26. Given the data points

i	 0	 1	 2	 3
Xi	 1.0	 3.0	 4.0	 7.0

1.	 9.0

Estimate the function value at x = 1.5 using cubic splines.

Curve Fitting: Interpolatfon	 2J.

27. The velocity distribution of a fluid near a flat surface is given
below:

	

x	 (1.1	 O-J.5	 0.7 I 0.9

x is the distance from the surface (cm) and v is the velocity (cmj
see). Using a suitable interpolation formula obtain the velocity at
x	 0.2, 0.4, 0.6 and 0.8.

28. The steady-state heat -flow equation f(x,y) is solved numerically
and temperature values obtained at the pivotal points of a grid in
the domain of interest are tabulated below. (This type of problems
are discussed in Chapter 15).

Table of f(x, y)

0.5	 1.0	 1.5	 2.0

	

0.5	 15.0	 21.0	 I	 25.0	 31.0

	

L 1M	 20r20.0 1 2€t01 20.0^t
Solution of heat-flow equations by numerical methods gives infor-
nlaI.ion onl y at the nodes and not at the intermediate points. We
are interested in the temperature at the point (1.25, 1 25). Esti-
mate this value using the data available in the table.

1. Write subprograms

(a) COSPLN to compute the coefficients cubic splines, and
(h) VSPLN to evaluate the spline function at the specified point.

2. Write an interactive main program that will read the given set of
table points and the point of interest, estimate the interpolation at
the specified point using the subprograms COSPLN and VSPLN
developed in Project 1, and then print the results.

3. Write a program to evaluate ferward differences and print a for-
ward difference table for a set of n function values,

4. Following is a table that lists values of cube roots of numbers from
1.0 to 2.0 in steps of 0.1.1. 2 	 1.3 	 16

J.032_1.06 LL0OJ 1
1

1.145
1.17 i131216] 1239 1 1.260

M Numerical Methods

Write a program for linear interpolation of this table of data and
produce another table of cube roots for numbers 125 to 1.75 in
steps of 0.05 shown as follows:

^ x

	 cube root oft

1.30
1.35

L175
5. Modify the program in Project 4 to produce the following table:

X	 Interpolated cube	 True value of iJI	 Error

root of x .-----.----.

1.25
1.30

6. Using a table of cosines, accurate to four digits, write a program to
implementt, the following tasks:

(a) Read the cosine of 0°, 10°, . . . 90
(b) Compute the cosine of angle for any value between 0 1 and

90° using linear interpolation.
(c) Compare the results of (b) with the output of intrinsic cos

function.
7. Write a program to estimate a value f(x, y) from a given table of

values of x and y by interpolation.
Test your program by solving the problem in Exercise 28.

Curve Fitting:
Regression

INTRODUCTION

In the previous chapter we discussed various methods of curve fitting for
data points of well-defined functions. In this chapter, we will discuss
methods of curve fitting for experimental data.

In many applications, it often becomes necessary to establish a math-
ematical relationship between experimental values. This relationship
may he used for either testing existing mathematical models or estab-
lishing new ones. The mathematical equation can also be used to predict
or forecast values of the dependent variable. For example, we would like
to know the maintenance cost of an equipment (or a vehicle) as a func-
tion of' age (or mileagei or the relationship between the literacy level and
population growth. The process of establishing such relationships in the
form of a mathematical equation is known as regression analysis or
curve fitting.

Suppose the values of y for the different values of are given. If we
want to know the effect of x on y, then we may write a functional
relationship

y = f(x)

The variable y is called the dependent variable and x the independent
variable. The relationship may be either linear or nonlinear as shown in
Fig. 10.1. The type of relationship to he used should be decided by the

periment based on the nature of scatteredness of data.
It is a standard practice to prepare a scatter diagram as shown in Fig.

10.2 and try to determine the functional relationship needed to fit the
ooints. The line should best fit the plotted points. This means that the

+ bx

324 Numerical Methods

average error introduced b y the assumed line should he minimum. The
parameters a and b of the various equations shown in Fig. 10.1 should
he evaluated such that the equations best represent the data.

X

Fig. 10.1 Various relationships between x and y

We shall discuss in this chapter a technique known as ist.sqwres

rPglvSsLOfl to fit the data under the following situations:
1. Relationship is linear
2. Relationship is transcendental
3. Relationship is polynomial
4. Relationship involves two or more independent variables

FITTING LINEAR EQUATIONS

Fitting a straight line is the simplest approach of regression analysis.
Let us consider the mathematical equation for a straight line

Y = a + bx f(x)
to describe the data. We know that a is the intercept of the line and b its
slope. Consider a point (x e , Y,) as shown in Fig. 10.2. The vertical distance
of this point from the line f(x) = a + hr is the error q 1 . Then,

q = y, - f(XL)

(10.1)

There are various approaches that could he tried for fitting a "best" line
through the data. They include:

1. Minimise the sum of errors, i.e., minimise

q 1 = (y j — a — br,)	 (10.2)

2. Minimise the sum of absolute values of errors

q,I=I(y,	 a -- bx, I	 (10.3)

3. Minimise the sum of squares of errors

q 2 =(y, — a- bx)'	 (10.4)

Yi

q,

yi. y

7

Curve Fitting: Regression 325

X ----ø

Fig. 10,2 Scoffer diagram

It can be easily verified that the first two strategies do not yield a
unique line for a given set of data. The third strategy overcomes this
problem and guarantees a unique line. The technique of minimising the
sum of squares of errors is known as least squares regression. In this
section we consider the least-squares fit of a straight line.

Least Squares Regression
Let the sum of squares of individual errors be expressed as

Q=q	 t 1 1 -f(x)]2

=	 (y , -a- ly)2	 (10.5)

In the method of least squares, we choose a and b such that Q is mini-
mum. Since Q depends on ci and b, a necessary condition for Q to be
minimum is

--=0	 and	 ----=0
da

dQ	 a
--	 -2(y -a-bx)=O
9a	 i=1

a

=-2 Y x , (yL -a-bx 1)=0 	 (10.6)
(U	 i1

Then

Thus

yi

Yx j y j	 x, +b)x 2 	(107)

A8

5
4
3
2

16

Numerical Methods

(10.8)

These are called normal equations. Solving for a and 5, we get

	

b =	
x E

	nx2	 x)

it	 n

where i and are the averages of x values and values, respectively.

Fit a straight line to the following set of data

	

1	 2	 3	 I	 4	 5 I

	

iiL 3 4	 L± 8

The various suations are given as follows: 	 -

	

4	 6 -	 .16	 24

	

5	 8	 .25	 40

15	 2655	 90

Using Eq. (10.8),

b
5x90-15x26190

5x55— 152

a =--_1.20x*1.60

Therefore, the linear equation is
y = 1.6 + 1.2x

The regression line along with the data is shown in Fig. 10.3.

1	 2 3 4 5	 6	 x

Fig. 10.3 Plot of the data and regression line of example 10.]

Curve Filling Regression 2Z

Algorithm
it is relatively simple to implement the linear regression on a computer.
The coefficients a and b can be evaluated using Algorithm 10.1

Linear Regression

1 Read data values
2. Compute sum of powers and products

3. Check whether the denominator of the equation for b is zero.
4. Compute b and a.
5. Print out the equation.
6. Interpolate data, if required.

Algorithm 10.1

Program LINREG
Program LINREG implements Algorithm 10.1. The program reads a
table of data points and decides a straight line equation to fit the data
using

PROGRAM LINREG
* --*

* Main program	 *
*	 This program fits a line Y = A + BX to a- given *
*	 set 01 data points by the method of least squares 	 * -- -............. *
* Functions invoked.	 *

* ABS
* --*

* Subroutines used	 *
*	 NIL	 -	 *
* ---
* Variables used	 *
*	 X, V - Data arrays -- - 	 -	 -	 -	 *
*	 N - Number of data sets 	 --.	 *
*	 SUMx	 Sum of x values	 -	 - - --	 *
*	 STh1Y - Sum of y values	 :	 *
*	 SU4XX - Sum of squares of x values

SUCY - Sum of products of x and Y
: - -	 -

* XMEAN - Mean of x values
* YMEAN - Nean of y values
*	 A - y intercept of the line
*	 B - Sloof the line	 *
* -------..z-----------------.-..	 ---------------------* -

NumericalMeThods

* Constants used
*	 MAX	 Limit for number of data points
*	 -

INTEGER MAX,N
REAL X, Y SUMX, SUNY StJI4XX, SUNXY, XEAN YNEAN, DENOM, A, B

INTRINSIC ABS
PARANETEP(MAX = 10)
DIMENSION X(MAX) ,Y(MAX)

WRTTE(*, *)

WRITE(*,*)	 'LINEAR REGRESSION'

WRITE(*,*)

* Reading data values

WRITE(*,*) 'Input number of data points N'
READ(*,*) N
WRITE(*,*)	 'Input X and Y values,',

'one set on each line'
DO 10 I	 1, N

READ(*,*) X(I), Y(I)

10 CONTINUE

* Computing constants A and B

StJNX = 0.0
S!JMY - 0.0
StJMX1 = 0.0
SUMXX = 0U

DO 20 I = 1, N

StJMX	 STJMX + X(I)
SUMY = SUNY V Y
SUNXX = SUMXX f X (T)	 X (:)
SUNXY	 SUI4XY + X(I) * Y

20 CONTINUE

XMEAN = SUNX/N
YMEAN = SU1'W/N
DENOM	 N * SUMXX - SUNX *

IF (ABS (DENOM) .GT. 0.00001) THEN
B = (N * SUMXY - SUMX * SUN?) / DENOM

A = YNEAN - B XMEAN
ELSE

ALRITE(*, *)

WRITE(*,) 'NO SOLUTION'

STOP
ENDI F

* Printing results

WRITE(*,*)

Curve Fitting: Regression

WRITE(*, *)
WRITE(* , *)

WRITE(*)
WRITE(*)
WRITE(* , *)

WRITE (*, *)

LINEAR REGRESSION iINE I' = A + EX'

'THE COEFFICIENTS ARE:'

STOP
END

* ----- -----------
- End of main LINREG	 *

Test Run Results Shown below is the interactive data input and the
linear regression line parameters computed by the program LINREG.

LINEAR REGRESSION
Input number of data points N
5
Input X and Y values, one sot on each line
13
25
37
49
5 11

LINEAR REGRESSION LINE Y	 A + BX

THE COEFFICIENTS ARE:
A = 1.0000009
B = 2.0000000

Stop - Prograin terminated.

10 3 FITtiNG TRANSCENDENTAL EQUATIONS

The relationship between the dependent and independent variables is
not always linear. Look at Fig. 10.4. The nonlinear relationship between

X

Fig. 10.4 Data would fit a nonlinear curve better than a linear one

330 Numerical Meltiods

them may exist in the form of transcendental equations (or higher order
polynomials). For example, the familiar equation for population growth
is given by

P	 (10,9)

where Po is the initial population, h is the rate of growth and t is time.
Another example of nonlinear model is the gas low relating to the pres-
sure and volume, as given by

P a	 (10,10)

Let us consider Eq. (10.10) first. If we observe values of' p for various

values of v, we can then determine the parameters a and h. Using the
method of least squares, the sum of the squares of all errors can be
written as

To minimise Q, we have

and	
dQ0

We can prove that

- a (v P.

pv	 ra(v1')2lne.

These equations can be solved for a and b. But since h appears under the
summation sign, an iterative technique must be employed to solve for a
and h.

However, this problem can be solved by using the algorithm given in
the previous section in the following way: let us rewrite the equation
using the conventional variables x. and y as

yaxb

If we take logarithm on both the sides, we get
in In a +b lax (10.11)

This equation is similar in form to the linear equation and, therefore,
using the same procedure we can evaluate the parameters a and b.

______	 (10.12)
n(lnx,) 2 -(lnxL)2

Ina =R =(lny, - blnx)

a	 (10.13)
Similarly, we can linearise the exponential model shown in Eq. (10.9)

by taking logarithm on both the sides. This would yield

In P = laP0 + kt In e

Curve Fitting: Regression 331

Since,	 In e = 1,

we have	 luP—lnP0+kt	 (10.14)
This is similar to the linear equation

y = a + bx
where y = in P, a = in P0 , b k, and x t. We can now easily determine
a and and then P0 and k.

There is a third form of nonlinear model known as soturatioa-gruwth-
rate equation, as shown below:

	

= k1t	
(10.15)

k 2 +t

This can be linearised by taking inversion of the terms. That is

	

-- =(') + .t	 (10.16)
P	 k)t k1

This is again similar to the linear equation
y - a +

where

	

y= 1-,	 x= —P

	

a=—,	
=i-

Once we obtain a and b, they could be transformed back into the original
form for the purpose of analysis.

k*	 !!4L_________________________
Given the data table

	

L_' I	 2j	 3 J	 45

	

0,5	 2]4.5 j	 8	 12.5

fit a power-function model of the form
=

Various quantities required in equation (10.12) are tabulated below:

yi	In;	 in y1.	
(In X,)2 (In;) (in y)

1	 0,5	 0	 -0.6931	 0	 0
2	 2	 0.6931	 0.6931	 0.4805	 0.4804
3	 4.5	 1.0986	 1.5041	 1.2069	 1.6524
4	 8	 1.3863	 2.0794	 1.9218	 2.8827
5	 15 L6094	 2.5257	 2.5903	 4.0649

	

4.7874	 6.1092	 6.1995	 9.0804
/f

332 Numerical Methods

Using Eq. (10.12),

(9.0804) - (4.7874)(6. 1092)
-	 (.h(.199i)(4.7874)2

45 402-29.247
30.9975 -22-9192

= 1 9498

6.1092 -(1.9998h4.7847)
in.a=	

5

=-0.6929

a=0.5001

we obtain the power-function equation as
-Y = 0.ot)01 x j p (q

Note that the data have been derived from the equaLioll

Y

The discrepancy in the computed coefficients is due to roundoff errors.

The temperature of a metal strip woo rneaoured at various time inter-
yak (luring heating and the values are given in the table below:

t (mm)	 -	 2 T	 r 4i
temp, T(C)	 70	 83	 100	 1241

If the relationship between the temperature T and time i' is of the
Cut-III

T	 + a
estimate the temperature at=6 min.

We can write the temperature equation in the form

y = b f(x) + a

This is similar to the linear equation except that the variable x is re-
placed by the function f(x). Therefore, we can solve for the parameters o
and S using Eq. (10.8) by replacing

X, by f(x)

x 1 by	 , f(x)

>x by

Curve Fitling: Regression

Thus,

r-

n(5j(x)y 1) --

 n [f(x L)] 2 -[f(x1)]2

a =
Y-Y , -byf(x)

We can et up the following table to obtain the various terms. Note that
f (x) =

	

Lx	 y	 f(x)

	70	 1,28

	

2	 83	 1.65

	

3	 100	 2.12

	

4	 124	 2.72

Sum	 377
Now,

Y. f(x)
	 [f(x)12

89.89
	

1.65
136.84
	

2.72
211.70
	

4.48
337.07
	

7.39

775.5
	

16.24

h -
- (4)(16.24)_(7.77)2

= 37.62

377- (37.62) (7.77)
0=

4

= 21.16

The equation is

T = 37,62 e02 +21.16

The temperature, when t = 6, is

T = 37.62 e° 2	 +21.16

= 189.76CC

FITTING A POLYNOMIAL FUNCTION

When a given set of data does not appear to satisfy a linear equation, we
can try a suitable polynomial as a regression curve to fit the data. The
least squares technique can be readily used to fit the data to a polynomi-
al.

Consider a polynomial of degree ni - 1

(10.17)

=f(x)

34 Numerical Methods

If the data contains n sets of x and values, then the sum of squares of
the errors is given by

Q = >fy 1 —f(x,)12	 (10.18)

Since f(x) is a polynomial and contains coefficients o, a 2 , a., etc., we
have to estimate all the rn coefficients. As before, we have the following
rn equations that can be solved for these coefficients.

dQ
do3

dQ
do2

Consider a general term.

2ty,

df(x)
da3

Thus, we have

Ely, -f(x)lx	 =0	 j=1,2, ...,m

Y[Yixij .- x ' I f (x i)] =0

Substituting for f(x)

These are m equations (j 1, 2...m) and each summation is for i = 1 to a.

a J n+a2X g -l-a3X+...	 +UmX	 '>Y

0) >2; + a2 >2x + 03	 + ... + a >2x[" = >2yx	 (10.19)

ç' x ' +a2 >2x+a>2x	 +.,. +a>x2	 yx

Curve Fining: Regression

The set of m equations can be represented in matrix notation as follows:
CA=E

where

n	 ...	 x:71
Jx1

Cr::

xnl— 1

a2

A = a3

The element of matrix C is

C(j, k) =x k-2

Similarly,

B(j) =yx

lyixi

B

lyi

 Y•Xz

-Iy-yixirn

j=1,2,...,m and k= 1,2,...,m

Fit a second order polynomial to the data in the table below:

to 1	 2.0	 &0	 4.0

Ŷx

	

J u.o_J_is.o	 27.0

The order of polynomial is2and therefore we will have 3 simultaneous
equations as shown below:

a1n+a2x1+a3x =y

aix+cj2x 2 +a 3 x 3 =yx

a1	 + a2 +a3	 =

U6 Numerical Methods

The sums of powers and products can be evaluated in a tabular form as
shown below:

	

'2	 1	 1	 4x	 y	 S	 S	 S	 YX	 yx

1	 6	 1	 1	 1	 6	 6
2	 ii	 4	 8	 16	 22	 44
3	 18	 9	 27	 81	 54	 162
4	 27	 - 16	 64	 256 1 108	 432

10	 62	 30	 100	 354	 190	 644

Substituting these values, we get
4a 1 +10a2 +30a. = 62

10a + 30a2 + 100u 3 = 190
30a 1 + 100e -I- 3540 3 = 644

Solving these equations gives
0 1 = 3
02 =

= 1
Therefore, the least squares quadratic polynomial is

	

Y = 3 + 2x + x'2	(verify using table data)

Algorithm for Polynomial Fit
The set of in equations given by Eq. (10.19) can be solved by using an
elimination method discussed in Chapter 7. Algorithm 10.2 lists the
steps involved in computing the coefficients of the regression polynomial.

Polynomial Regression

1. Read number of data points n and order of polynomial mp

2. Read data values
3 ltncmp,

print out regression is not possible' and stop,
else

continue
4. Set m=mp+1
5. Compute coefficients of C matrix
6. Compute coefficients of B matrix
7. Solve for the coefficients a, a,....a,
8. Write the coefficients
9. Estimate the function value at the given value of independent vari-

able
10. Stop

Algorithm 10.2

Curve Fitting: Regression 337

Program PQLREG
This program fits a polynomial curve to a given set of data points by the
method of least Squares. POLREC uses a subprogram NORMAL to com-
pute the coefficients of normal equations and another subprogram GAUSS
to solve the normal equations obtained. Finally, the program prints the
polynomial coefficients, a(1) to u(m).

PROGRAM POLEEG
--- --------*

* Main program	 *

This pruprani f.J.s a polynomial curve to a given *
set of data points by the method of least squares 	 *

*	 ---

* Function invoked	 *
*	 NIL	 *

Sbruutines used	 A

A	 :ORNAL, GAUSS	 *
*	 --- *

* Vaiabies used	 *

X, Y - Arrays of data values 	 A

*	 N - Number of data points	 *

NP - Order of the polynomial under construction *
A 11 - Number of polynomial coefficients 	 *

C - Coefficient matrix of normal equations	 *

B - Right side vector of normal equations	 A

*	 A	 Array of coefficients of the polynomial 	 *

-- ---.- -------------*

Constants used	 *
A	 MAX - Maximum number of data points 	 *
* --*

REAL X,Y,C,A,B
:Nm'GER N, NP, N, MAX
PARAMETER (MAX = 10)
DIMENSION X(MAX) A Y MAX) ,C MAX, MAX) ,A(MAX),B(IVLAX)

WRITE(*,*)
WRITE(* ,*)	 'POLYNOMIAL REGRESSION
WRITE (A , *)

* Reading data values

WRITE(*,*) 'Input number of data points-(N)
READ(*,*) N

WRITE(*,*) 'Input order of polynomial(MP' required'
READ(*,) MP
WRITE (*,A) 'Input data values X and Y,',

+	 'one set on each line'

Numerical Methods

JO 10 1	 1, N
READ (,*	 X(J), '((fl

10 CONTINUE

Testing the order

rF(NLE.MP) THEN
WRITE(*,*) 'REGRESSION IS NOT POSSIBLE'

0,0 TO 20

ENDIF

* Number of polynomial coefticieflcs

= MP+1

* Computation of elements of C and B

CALL NORMAL(X,Y,C, B,N,M,MAX)

* CornputatOfl at c'neffic.rrOs a(i) to a(m)

CALL GAUSS(M,C,E,A)

* Output of coefficients au) to a(m)

WRITE (* *

OR [TF	 POLYN0M1TA1 COEFFICIFNTS'

WRITE (A *)

,,;RITE (* '	 (A(I	 j_-:.	 i)

WRiTE) ,

20 STOi

END
* --------------ri r ' i nain program POIREG ------- ---

	 *

*	 - ------ ------- -	 *

SUBROUTINE NORMAL(X,Y,C,B,N,M,MAX)
*	 *

* Subroutine
*	 This smibroutire computes the coefficients

*	 of riorrm-1 equaLonS
* --------------- 	----*

Arguments	
*

Input	
*

*	 N - Number ci rata poicts	
*

*	 X,Y - Arrays of data values	
*

*	 M - Number of coefficients of the polynonu a
*	 MAX - Maximum sie of arrays 	

*

* O:nput
C - Coefficient matrix of normal equations

*	 13 - Right side vector of normal equatins 	 *

* ------------------ - 	 ---------------*

* Local Variables	 *
*	 NIL	

*

* - -- ------------------------*

Curve Flfflng: fegression M
* Functions invoked	 *
*	 NIL	 *
*	 -	 --	 *
* Sbxoutines caied	 *

*	 NIL	 *

	

-	 *

REAL X,YC,B
INTEGER N, Y, MAX
DIMENSION X (MAX) , Y MAX) , C (MAX, MAY), B (NAX)

DO 30 J=1, N
DO 20 K=i,M

C(J,K)	 0.0
LI = K1J-2

DO 10 i1,N

C(J,K) - CLI,K)	 X(1) ** Li
10	 CONTINUE
20	 CUN7C1NTE

30 CON]NB

DO 50 1= i,M
B(J)	 0.0
L2 = J-1
DO 40 I -

B(IJ) = I?fJi + Y(l)	 X(I) *-k L2
40	 CONTINTE
50 CONTINUE

RL1'JRN
END

* --------------End of subroutine NORMAL ---------- *
* ---*

S8ROUTINE GAtJSS(N,A,B,X)
* ----------- --- 	 *

* Suhrou tine
	 *

*	 This subroutine solves a set of n linear 	 *

equations by Gauss elimination method
-- - - - -- - - - - - - - - - - - - - - - ------ - --- - - - - - - - - - - - - - 	 *

* Arguments	 -	 *

* input	 *
* N - Number of equations	 *

*	 A - Matrix of coeffic4nts	 *

*	 B - Right side vector
* Output	 *

*	 X	 Solution vector	 *

* --- 	 *

* Local Variables	 *

*	 PIVOT, FACTOR, SUM 	 *

* --

34O Numercat Methods

* Functions invoked
*	 NIL	 *

* -- ---*

Subroutines called	 *
*	 NIL

INTEGER N

REAL A,B,X, PIVOT, FACTORSOM

DIMENSION A(10,10), B(10), X(10)
*	 -- ------------ - - Elimination begins

DO 33 K	 1, N-i

PIVOT = A(K,K)

DO 22 1 = K-i-i, N

FACTOR = A(I,K)/PIVOT

DO 11 J = Kl, N

A(I,J) - A(I,J) - FACTOR * A(K,J)
ii	 CONTINUE

E(I)	 B(I) - FACTOR * 5(K)

22	 CONTINUE

33 CONTINUE

* --------------- Sack substitution begins --- -*

X(N) = B(N)/A(N,N)
DO 55 K	 N-il-i	 -

SUX = 0

DO 44 J K4 L,N

SUM	 SU1 + A(K,J)	 XJ)
CONTINUE

X(K)	 (3(K) - SUM)/A(K,K)
55 CONTINUE

RETURN

END

--------End of subroutine GAUSS -------- --- ---

Test Run Results The program was used to fit a polynomial curve to the
following data points:

LO	 2,1	 3.2	 f	 4.0[P°'IIi!1
The results are given below:

POt.NONIAL REGRESSION

Input number of data points(N)
il

Input order of poiyriomiai(MP required
2

Input data values X and Y, one Set on each line
1.0 2.0

Curve flthng Regression 341

2.1 2.5
3.2 3.0
4.0 4.0

POLYNOMIAr. COEFFICIENTS

., .0740160	 -2.053QC7LOQj	 1.68O441-00i

Szop - Program terminated.
-	

MULTIPLE LINEAR REGRESSION

There are a number of situations where the dependent variable is a
Function of two or more variables. For example, the salary of a salesper-
son may be expressed as

y = 300 + 3X +

where x 1 and x are the number of units sold of products 1 and 2,
respectively. We shall discuss here an approach to fit the experimental
data where the variable under consideration is a linear Function of two
independent variables.

Let us consider a two-variable linear function as follows:
(1 1 + a 2x + (13Z	 (10.20)

The sum of the squares of errors is given by

Q = (y —(L 1 —a 2 x, —a3z)2

Differentiating with respect to a, a 2 and a 3 , we get,
dQ

= - 2 > (YL - a 1 - a 2 x - a3z,)da

dQ
= - 2 (y - - a 2 x1 -

dQ
= —2(y —a 1 —a2xi—a3zL)y

Setting these partial derivatives equal to zero results in

na 1 +(x)02 +(zja3 =),IY
()x,)a 1 	x,2)a2 +(xz 4)a 3 =y1x

()a 1 +(xz)a 2 +(z2)a3	 y1 z,

These are three simultaneous equations with three unknowns and,
therefore, can he expressed in matrix form as

1
n	 [a 1 [YL 1

> X 	x2	 [a2 =i	 I	 (10.21)
>z	 Yxz	 1 CL3 j [Yi2ij

Numerical Methods

This equation can be solved using any standard method. This is a
two-dimensional case and, therefore, we obtain a regression "plane" rather
than"line".

We can easily extend Eq. (10.21) to the more general case

y = a, + a 2x 1 + a3 x7 + ... + cz m1. l Xm

Given the table of data

X	 1	 2	 3
z	 0	 1	 2	 3

Y	 12	 18	 1	 24	 30

Obtain a regression plane to fit the data.

The various sums of powers and products required for evaluation of
coefficients are tabulated below:

	

X	 z	 y	 x2
	

z 2 1 xz	 yx	 yx
	1	 0	 12	 U	 0	 12	 0

	

2	 1	 18 1 4	 1	 2	 36	 18

	

3	 2	 24	 9	 4	 6	 72	 48

	

4	 3	 30	 16	 9	 12	 120	 90

	

. 10	 C	 84	 30	 14	 20	 240	 156

On substitution of these values in Eq. (10.21) we get
4a 1 +10a 2 +5a= 84

10a 30a2 + 20a = 240
6a 1 + 20a- 14n = 156

Solution of these equations results in - - -
a 1 = 10
a,= 2

0 3 = 4
Thus, the regression plane is

= 10 + 2x + 4z

ILL-CONDITIONING IN LEAST SQUARES

METHODS

Uhe problem of ill-conditioning can arise in implementing the least
;quares regression methods. As a consequence, the computed solution
night duller substantially from its exact solution. This problem becomes
nore severe when the degree of approximating polynomial is large.

Curve Fitting: Regression

Ill-conditioning arises basically due to very large differences in the
coefficients of the normal equations. Recall that the coefficients are sums
of powers and products of data values. Techniques such as pivoting and
iterative refinement can be incorporated to overcome the problem of ill-
conditioning. The problem of ill-conditioning can also be tackled by in-
creasing the precision of arithmetic operations.

Another way of overcoming the least-squares ill-conditioning problem
is to use orthogonal polynomials. This would enable us to obtain the
coefficients a in closed form, thus avoiding numerical solution of simul-
taneous equations. Further discussions on this approach is beyond the
scope of this book.

I!1 SUMMARY

We often use experimental data for establishing a relationship between
two variables. This relationship may be used for testing some existing
mathematical models or establishing new ones or even estimating the
values of dependent, variables at some point. In this chapter, we have
used a technique known as least squares regression to establish the
following types of relationship between the variables of a table of exper-
imental data.

• Linear relationship
• Transcendental relationship
• Polynomial relationship
• Multivariable relationship
Also presented are FORTRAN programs and test results for obtaining

linear and polynomial equations for experimental data.

Key Terms

Curve fitting
Dependent variable
Independent variable
Least squares regression
Normal equations

Regression analysis
Regression line
Regression plane
Saturation growth rate
Scatter diagram

I. What is regression analysis?
2. What is a scatter diagram?
3. What is the principle of least squares regression?
4. Show that the linear regression line of y on x passes through the

point that represents the mean of x and y values.

344 Nurnencal Methods

Derive normal equations for evaluating the parameters a and b to

fit data to
() power-function model of the form

•	 yzax"

(b) population growth model of the form

y = a

using the principle of least squares.
6. Draw a flaw chart to illustrate the steps involved in developing a

program for multiple regression.

^777^^IEW'EX

1. Use least squares regression to fit a straight line to the data.

I ij 3	 4	 68LLLTfILII±	 1
Along with the slope and intercept, also compute the standard er-
ror of the estimate.

) in an organisation, systematic efforts wore introduced to reduce
the employee absenteeism and results for the first 10 months are
shown below:

_tJ	 4 _• 5	 7T89 101
8.5

I

Months

91
89 8

cent-	
10

Fit a linear least, squares line to the data and from this equation
estimate the average weekly reduction in absenteeism.

3. The following table shows heights (h) arid weights I,rv) of 8 persons.

/ h(cmEl r 1 160 1801 150 1 170 ^1551685

kJ	 7itifi2

Assuming a linear relationship between the height and weight, find
the regression line and estimate the weights of the persons with
the following heights.

(a) 140 ern	 (b) 163 cm 172.5

4. Fit a geometric curve
Y = axb

to the following data:

5. Given the table of points

Curve Fitting: Regression

use least squares regression to fit
(a) straight line, and
(h) parabola

to the data. Compute and compare. the errors.
6. Fit the saturation growth rate model

ax
y=

to the data given below.

r1iiI64-i-iI1L_L2.0_L:LJ
Fit the power equation

y axt

to the data given in Exercise 6.
8. la a quadratic polynomial to the data given in Exercise 6.
9. Use the power equation to the data

X	 7.5	 10	 12.5 1 15	 17.520

	

J L4	 1.61 1.2
10 Use the exponential model

y = a e

to fit the data

y	 75	 100 j 140 1 200	 27 375

11. Fit a parabola to the data given in Exercise 10.
12, Find the least squares line y = ax + S that fits the following data.

assuming that there are no errors in x values,

j2	 965	 2.20 Th.2J19.09J
13. In Exercise 12, treat x as dependent variable on y and find the least

squares line x = cry + b , assuming that there are no errors in y but x
values contain errors. Observe that this is not the same line oh-
tamed in Exercise 12.

14. Use multiple linear regression to fit

X̂2 m 4J	 2 111
1611€	 12	 10

Compute coefficients and the error of estimate.

NurnedcOl MethOdS

15 Given the data points

321

obtain a regression plane to fit the data.

1.
Modify the program L1NI{EG to calculate the sum of squares of the

errors for the linear fit and print the error output.

2.
A set of data, when plotted resembles an exponential curve

y = (t(bX)

Write a program to evaluate the parameters a and b of this regres-

sion curve using the principle of least squares.

3. In fitting a polynomial, its degree should be chosen such that the
error is minimum. Given a set of data, it would be difficult to
decide the degree that would represent the data best. A good rule
of thumb is to begin with the first degree and continue fitting

higher order polynomials until

Q	 Qi
n—I-i fl1

or until a polynomial of degree n—i is obtained. Qj is the
squares of errors of polynomial of degree i-

(a) Prepare a flow chart to fit a polynomial that satisfies this

condition.
(h) Modify the program POLREG to incorporate these changes.

4. Develop a user-frietidlY program for multiple regression.

5.
Develop a user-friendly, menu-driven program that allows us an
option to select and use one of the following models to fit a given

set of data.
(a) Straight line model
(b) Exponential model
(c) Power equation
(d) rate model

