Numerical

Differentiation
et S

1] NEED AND SCOPE

Need for differentiation of a function arises guite often in engineering
and scientific problems. If the function has a clused form representation
in terms of standard calculus, then its derivatives can be found exactly,
However, in many situations, we may not know the exacet function. What
we know is only the values of the function at a discrete set of points. For
instance, we are given the distance travelled by a moving ohject at some
regular time intervals and asked (o determine its velocity at a particular
time. Tn some other instances, the function is known but it is 80 compli-
cated that an analytic differentiation is difficult {if not impossible). In
both these situations, we seek the help of numerical techniques to obtain
the estimates of function derivatives. The method of obtaining the de-
rivative of a function using a numerical technique is known as Zameri-
cal differentiation. Thore are essentially two situations where numerical
differentiation is required. They are :
//], The function values are knawn but the function is unknown. Such
functions are called tabulated funetion.
2. The function to be differentiated is complicated and, therefore, it is
/7 difficult to differentiate,
dn this chapter, we discuss various numerical differentiation methods
that could be applied to both tabulated and continuous functions.
Remember that while analytical methods give exact answers, the nu-
merical techniques provide only approximations to derivatives, Numeri-
cal differentiation methods are very sensitive to roundoff errors, in
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addition to the truncation error introduced by the methods themselves.
Therefore, we also discuss the errors and ways to minimise them.

DIFFERENTIATING CONTINUOUS FUNCTIONS

We discuss here the numerical process of approximating the derivative
f'(x) of a function f(x), when the function itself is available.
Forward Difference Quotient

Consider a small increment Ax = h in x. According to Taylor’s theorem,
we have

2 4
Fla+ )= Fla)+ hf )+ 2 fr(0) (1L1)
for x < # < x + h. By rearranging the terms, we get
fix)= feth) -f5) .h_'f (8) (11.2)
h 2
Thus, if & is chosen to be sufficiently small, £'(x) can be approximated by
f,{_xj__f(“h;—ffxl l (11.3)
with a truncation error of
E,(hy=-Lfro) l (11.4)
s A

BEquation (11.3) is called the first order forward difference quotient. This
is also known as two-point formula. The truncation error is in the order
of h and can be decreased by decreasing h.

Similarly, we can show that the first-order backward difference quo-
tient is

| fii__if_w‘ (11.5)

Estimate approximate derivative of f(x) = Zatx =1, forh =02 01,
0.05 and 0.01 using the first-order forward difference formula.

__.__.._.-____...._______._._..___...__...._.______,__‘_.

f;{x'}:zt_.xj—_h}% _ﬂl‘_:] - I

Therefore,

f(1+ k) - f(1)

frp=——
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Derivative approximations are tabulated below:

x| Fr ] Ermr‘il
0.2 2.2 | 02
01 21 | fL |
0.05 2.05 005 ’
0.01 2.01 0.01 |

Note that the correct answer is 2. The derivative approximation ap-
proaches the exact valuc as /i decreases. The truncation error decreases
proportionally with decrease in . There is no roundoff error.

v-yOénfral Difference Quotient 1N IH..

Note that Eq. (11.3) was obtained using the linear approximation to f(x).
This would give large truncation errors if the functions were of higher
order. In such cases, we can reduce truncation errors for a given h by
using a quadratic approximation, rather than a linear one. This can be
achieved by taking another term in Taylor's expansion, i.e..

fle+h)=f(x)+ hf (x) + hz—z' frizx) + };_'T fm(e,) (11.6)
Similarly,
flx—h)=f(x) - hf (x)+ 22 ey 2O

2
2! 3!
Subtracting Eq. (11.7) from Eq. (11.6), we obtain

fmié,) (11.7)

flx+h)— f(x—h)=2hf '(1)+%ff"'(61 Y+ fm(8,)]  (11.8)

[7’(1: Jerhi- ,'Jz;zf f*‘.i—j (11.9)

with the truncation error of

Thus, we have

2 2
E, {M:—il-z-[fmw, )+ f"'{ﬂ-;}]:—%f‘"(ﬁl

which is of order A%. Equation (11.9) is called the second-order central
difference quotient. Note that this is the average of the forward differ-
ence quotient and the backward difference quotient. This is also known
as three-point formula. The distinetion between the two-point and three-
point formulae is illustrated in Fig. 11.1(a) and Fig. 11.1(b). Note that
the approximation is better in the case of three-point formula.
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Fig. 11.1  Nusfration of (a) Two-point formula and (b) Three-point formuia

in Example 11.1 for the three-paint formula.
————e = = e

o fath =TG-k

Fllz)ye=—o 5

Therefore,

1= F(1+h)—f(1-h)
3 2h
The derivative approximations are tabulated below:

h I FAL Errar
0.2 ""'_é."ﬁ o 0
0.1 2.0 0
0.05 2.0 0

The derivative is exact for all values of /. This is because we have used
quadratic approximation for a quadratic function. We can also derive
further higher-order derivatives by using more points in the formula.
For example, the five-point central difference formule is given by
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C“l‘ﬂ B j&?h) +_8[{‘(:r + ﬁ)—é-;l‘:(‘;-- R+ flx - Z_Fr
i o 12h

(11.10)

This is a fourth-erder approximation and the truncation error is of
order A%, In this case, the truncation error will approach zero much
faster compared to the three-point approximation. The derivation of
Eq. (11.10) is left to the reader as an exercise. (Hint: use step size 2h
instead of h in Eq. (11.8) and use up to fifth derivative of Taylor's expan-
gion).

Error Analysis

As mentioned earlier, numerical differentiation is very sensitive to round-
off errors. If E (k) is the roundoff error introduced in an approximate
derivative, then the total error is given by

Eh) = E (k) + Efh)
Let us consider the two-point formula for the purpose of analysis. That is,

f'(x];f{x*hg;ﬁx) f1 _fn

h

If we assume the roundoff errors inf; and f; as e; and e,, respectively,
then

(fy +e )—=(f, +e

_h -fo €1 —¢
=% B

If the errors e; and e, are of the magnitude ¢ and of opposite sign (e,
the worst case) then we get the bound for roundoff error as

|E, (h)] < 2¢
h
We know that the truncation error for two-point formula is

iz
B, ()=~ 270)

or
Mz)‘l
2

|E, (h)] €

where M, is the bound given by
M, =max |f"(D|
/xs gsx+h :

-



352 Numerlcal Methods

Thus, the bound for total error in the derivative is

Myh 92,
TR

Note that when the step size A is increased, the truncation error in-
creases while the roundoff error decreases, This is illustrated in Fig.
11.2, For small values of h, roundoff error has an overriding influence on
the total error. Therefore, while reducing the step size, we should exer-
cise proper judgement in choosing the size. This argument applies to all
the formulae discussed here,

|ECh)| < (11.11)

Total error o

Error Truncation error

/ Round off error
‘-___'_‘————_

'l:w R

Fig. 11.2 Error in derivatives as a function of A

We can obtain a rough estimate of A that gives the minimum error. By
differentiating Eq. (11.11) with respect to &, we obtain

M.
E’(II'IJ:__J;‘r_',_z_@_

2 h?
We know that E(h) is minimum when E“(h) = 0. That is,

M, 2
L

e 5
ot =2JE- (11.12)

Substituting this in Eq. (11.11), we get

Solving for /, we obtain

Ethgy )=2eM; (11.13)
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Compute the approximate derivatives of f (x) = sinx, atx = 0. 45 radians,
at increasing values of A fmm 0.01 to G 04, with a st.ep size of 0.005.

flx)=sinx

Using two-point formula

fiay < fEHR- @) b
h
Given
x = (.45 radians

So, f(x) = sin (0.46) = 0.4350 (rounded to four digits). Exact /'(x) = cos x
= c0s(0.45) = 0.9004, -

Table helow gives the approximate derivatives of sin x at x = 0.45
using various values of h. e

h flx +h) frix) Error
0.010 0.4439 0.8900 0.0104
0.015 0.4484 0.8933 0.0071
.020 0.4529 ().8950 0.0054
0.025 | 0.4573 0.8935 0.0069
0.030 0.4618 | 0.8933 0.0071
0.035 04662 | 0.8914 0.0090 |
0.040 | 04706 | 08900 | 0.0104 |

The table shows that the total error decreases from 0.0104 tat & = 0.01)
till 2 = 0.02 and again increases when h is increased as illustrated in
Fig. 11.2.

Since we have used four significant digits, the bound for roundoff
error ¢ 15 0.5 x 10 %, For the two-point formula, the bound M, is given by

M, =max [f"(&|
{).4]5$ 4= 049,
= |sin (0.49)| = 0.4706

Therefore, the optimum step size is
0.5x 10~ [0.5x10-%
h _2 | E J
= 0.4706

= 0.0206
This agrees very closely with our results.
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Higher-order Derivatives

We can also obtain approximations to higher-order derivatives using
Taylor’s expansion. To illustrate this, we derive here the formula for
f"(x). We know that

hi

h? -
'E!Pf “(x)+ R,

f{x-!-h):f(xj-i—hf‘(x:] .|__2Tfnfx}+

and

: h? h3 .
Flx-h)=flx)- hf'(x}—r—éTf"Lx}- —fm(x)+ Ry

31
Adding these two expansions gives
fle+h)+ flax—h)=2f(x)+ ") + Ry + Ry
Therefore
fx+h)-2fx)+flx-h) (R;+ Ry
fié - h?
Thus, the approximation to second derivative 1s

f(x+h) 2f(x)+ flx—h)
=

frix) =

(11.14)

f‘u[ ==

The truncation error is
R, +R,
h 2

Efh) =~
==L B ipw, )+ f0(8, )
e 4'
_izi'\d.)
-1

The error is of order A%,
Similarly, we can obtain other higher-order derivatives with the er-
rors of order A? and h*.

i b

Find approximation to secund derivative of cos (x) at x = 0.75_with
h = 0.01. Compare with the true value.

gy o 01 W) =20+ fle =)
Fre) = /S
(0.76) - 2£(0.75) + £(0.74
g gy = OB QTN FOT L o 000D

0.0001
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_ 0.7248360 — 2(0.7316888) + 0.7384685
- 0.0001

1.4633046 - 1.4633776
S
-~ 0.73006G00
Exact value of f7(0.75) = — cost0.75)
= - 0.7316888
Error = - 0.0016888
This error includes roundoff error as well.

—

DIFFERENTIATING TABULATED FUNCTIONS

Supposc that we are given a set of data points (x,, f;),1 =0, 1, .. n which
correspond tn the values of an unknown function [ {x) and we wish to
estimate the derivatives at these points. Assume that the points are
equally spaced with a step size of h.

When function values are available in tabulated form, we may
approximate this function by an interpolation polynomial p(x) discussed
in Chapter ® and then differentiate p(x). We will use here Newton's
divided difference interpolation polynormial.

Let us first consider the linear equation

piix) = ay + oy (8 —xy) + R,

where R, is the remainder term used for estimation. Upon differentia-
tion of this formula. we obtain

dR,
dx

Then the approximate derivalive of the function f(x) is given by

pir,&‘-:‘ =a;

flx)=p/x)=a,
We know that

a; = flxy k)

ey - flxg)
R X3~ %
On gubstituling
h=x~2g
x=x+h
Xp=x

RSN

we getl

'! fr(x) = flx M.‘i‘_j (11.15)

h
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This is the familiar two-point forward difference formula.
Now, let us consider the quadratic approximation. Here, we need to
use three points. Thus,

Pa(x) = ag + @yfx - %g) + a3(x — xy) (x - x;) + R,

Then
dR
Py'(x) = a; + agllx — xp) + (x — x,)] + — 2
Thus, we obtain
F'x)=a; +ag[(x - xy + (x - x,)] (11.16)

L-et:u:o-—*x,xlzx+h,xz=a:+2h, Then
= f{x+hl«_@

- h

fley xa1- flxg, 2, ]
Xy =Xy

aﬂzf[IODxli 12.] =

[®g) - flx)) flx)-flay)
e Xy — Xy
X2 — Xy

Cflx+20)-2f(x + h) + flx)
- 2h°
Substituting for ¢, and @, in Eq. (11.16) and after simplification, we get

(:(ﬂ:~3f[x)+d{{x2-;[h)-—f(:c_f__2fﬂ (11.17)

This is a three-point forward difference formula. We can obtain a three-
point backward difference formula by replacing & by - in Eq. (11.17).
Therefore, the three-point backward difference formula ig given by

jﬁ(ﬂjf‘—m_mx"m_ - (11.18)

2h
Similarly, we can obtain the three-point central difference formula by
letting xy = x, x, =x - h,xy=x + h in Eq. (11.16). Thus,
fla) = flx—h)
dl = ’_—}'l___

flx+h)-2f(x)+ f(x- h)
. 2h?
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Substituting these values in Eq. (11.16) we get

mx)=f(x+h)£hf{"hj (11.19)
|

Error Analysis
Let us first take the linear case.
R, = flxg, 2y, x] (x - xp) (x — %)

where
)(' H(S}
f[xup Xy» x]= ——2-!—
for some point ¢ in the interval containing x, 1, and x. Then
dR f(8)
Péf g (e = ) + (x — x,)]
Letting xy =x andx, =x +
dR
- %;‘"*LS‘), <0<z +h

Therefore, the truncation error is of order h. This conforms with
Eq. (11.4). Now, let us consider the quadratic approximation.

Ry = flxg, %y, X9, X] (€ = xg) (x — %) (x = xp)

f!n[ﬁ')

Flag, 2, 25 x] = a1

for some point g in the interval containing xq, Xy, %5 and x.

dR' rr g
# = -fT([-]- [Lxﬂxn}{x-xlﬂtx-x,)(x—xg}dr(x—xg)[x—x.,)]
By setting zo=x,x; =x +h and xy =x + 2h,
2
%:%f”’(&], x<8@<x+h

This error equation holds good for both forward and backward three-
point formulae.

For central difference formula, we must set xp = x, £; =% =k and
Ty =% + h. The»rgfore,

dI_Q.E hZ
7 —*—B—f (@), x-hsfsx+h

Note that the error is of order Wt
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el .

The table below gives the values of distance travelled by « car at various
time intervals during the initial running

i S v
[ Time, ts) 5 6 _[ i | 8 [ 9
I Distance 10.0 14.5 195 | 2556 | 320

travelled, s(#)

(km) | I
ik = |

We know that velocity is given by the first derivative of sit). At =5, we
use the three-point forward difference formula (11.17). '

_ 38t + 4s(t + h) —s(t_ _+_2th

vit) o7
Then
— j|'101{1_£4.5}— 19.5
o 21)
=425 km/s
At ¢t = 7, we use the central difference formulae {(11.19). Therefore,
_ s(8) - 5(6)

2h

_25.5-145
= 2
At £ =9, we use the backward-difference formulae (11.18)

75
= 5.5 km/s

_ 3s(9) - 4s(8) +.s(7)
HISJ - _"_'_"3'};_‘ T
_ 3(32) - 4(25.5) + 19.5
= 5 :

= 6,75 kin/s

Higher-order Derivatives

Formulae for approximating the second and higher derivatives can also
be obtained from the Newton divided difference formula, The second-
order derivatives are as follows:

Central

) = flx+h)-2f(2)+ flx-h)

e (11.20)
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._ &
__ Ak rw o
Brror = 12 fee
Forward
Friz) = Mﬁk_—wigﬂw (11.21)
Error = Dl%i i )
Backward
— Eflg— = -
i) = ?ﬂﬂﬂi_i”_’—:{:..{}_z_’”_ﬂi_?’_’ﬂ (11.22)
i 1182 o)
Error - 12 fFeE

G et

Use the table of data given in Example 11.5 to estimaie acceleration
Acceleration is given by the second derivative of s(¢). Therefore

sl + h) - 2slt) + &t - h)

alt) =s"(t)= 5
Therefore.
95.6 - 2(19.5)+ 14.5
alT) =——13
= 1.0 kmss®

The equation for deflection of a beam is given by
_v"i.ﬂ~e’g =0 }'(0):0.}*(1}20

Estimate, uging a second-order derivative, the approximate deflectivns
at r = 0.25, 0.5, and 0.75. Note that y(x) is the deflection at x.

._.__._.__._.._._..____-.___-...—_.—_.—_._-._._.-_-__-_-.—-—

Y ek ~h i
) =_y}£+_h_ Zf.:ﬂ*-y(x___l_ex

h =025
Then,

¥z +0.25) - 291 + yx =029

T
—ee =

0.0625

-
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Consequently,

¥ylx + 0.25) - Zylx) + y(x - 0.25) = 0.0625 ¢**
Substituting x = 0.25, 0.5 and 0.75 in the above equation in turn, we get

y(0.5) — 2y(0.25) + y(0) = 0.0665
¥(0.75) - 2y(0.5) + ¥(0.25) = 0.0803
y(1) = 2¥(0.75) + (0.5)  =0.1097
Given y(0) = y(1) = 0. Denoting
¥, = »(0.25), ¥g = y(0.5) and
We have
0+ y, -2y, =0.0665
¥i =2y, +y, =0.0803
~2ys + y5 + 0 = 0.1097
Solving these three equations for ¥, ¥, and
¥ =y00.25) =-0.1175
yo = ¥(0.5) =-0.1684
¥y =¥(0.75) =—0.1391

g = ¥(0.75)

Y3, we get

DIFFERENCE TABLES

Tables 11.1 to 11.3 list difference derivatives [“(x) and £''(x) and associ-
ated errors for forward, backward and central difference formulae, Ful-

lowing notations are used:
[, denotes f(x + 2h)
.5 denotes f(x ~ 2h)

Table 11.1 Forward difference derivatives

:Fe_rit.ratz'tm Formude | Err;r_ o —|
I fo +f1 o
B oo GO
(2e/h )
3y + 4f1 =y K e |
Flixy) A7 futg
0 3 £ 3 f (&)
(4e/h)
—11fy +18F, - 9f3 + 2f5 | S araiaias
S et 1 0 )
bA 7 fi4 (@)
S S A e |

{Contd.)
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Table 11.1(Conéd.) i

Derivative Formula E*-mr
~95F, + 48, — 36f, + 16f3 - 3/ h4
[ixg) fo f1 12}{2 fa 4 P _s_fm{gj
(32e/h)
fo-20tf2
n; ~BfO)
f*ixg) (4efh?)
Ty T e R S
fo f:; fa-fa J__lllfé FO (@)
(12e/h?)
#Roundofl error
Table 11.2 Central difference derivatives
[Den’uatiue ' " Farmula Error
.’.{%}:’f‘_ i _% 73 ()
{elh)*
f-z—ﬁfllz;zf‘h—fz -r%%—f“’”(ﬁ)
f iy . | (3ef2h)
[o3 +9f o —45f | +45f, - 9fn+ /3 _§® P
- 6h ' o 140
I (11e/6h)
f-l_i{:ﬂ*{‘l ‘ __I_;_:_fui({n
[y | (de/h?)
_.2f_2 i-lef_i ;:Dfﬂ. +15f1 —_£?_ +.’_llf‘[3}(g]
[
| (16e/3h")
#Roundoff error
Table 11.3 Backward difference derivatives
i Derivative Formula Error
-fa+h h
= Ef (&)
(201h)*

(Contd.)
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Table 11.3(Contd.)

Dertvative Pormula ] Error
B I - SO . B
fa-4f1+3fy b i)
2h 3
| [(xg) L (delh)
[ S ) et
f-3+9f-5 -18f P, J LARPTIP
Bh 4
’|_ {20e/3h)
/.4~ 16f 3+ 36f_y - 48f_, + 954, LN
12h h
(3Zeihr)
foe=3F | +F, I
| 52 o AP
F e (de/h?)
B B e
= & +2
[ T el T e A AZ ri4 (g
h2 12
L__ = B o azemy J
#Roundoff error

RICHARDSON EXTRAPOLATION

Richardson extrapolation is based on a model for the error in a numeri-
cal process. This is used to improve the estimates of numerical solutions.
Let us assume

n=x +MA" (11.23)
X, 1s the kth estimate of solution »* and M A" is the error term. Let usg
now replace & by rh and obtain another estimate for x'.
Ly =2% +M7R” (11.24)
Multiplying Eq. (11.23) by r” and solving for x*, we get

4 .\:k}]--r ‘Tk I

X =xp =__I—~r'-‘ [ (11.25)

This is known as Richardson extrapolation estimate. Note that the error
term has been eliminated.

This concept can be extended to the estimation of derivatives dis-
cussed so far, Using this, we can obtain a higher-order formula from a
lower-order formula, thus improving the aceu racy of the estimates. This
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process is known as extrapolation. Let us consider the three-point
central difference formula with its error term.

Jlx+h)-[lx—h) p
pigy = L8 )2hﬂr ‘ —%f"‘{&)

- Dk —%f"’(ﬂ) (11.26)

where D(h) is the estimale obtained using A as step size. Note that f'(x)
is the exact solution which is usually approximated by D(h). If we re-
move the error term, then we can obtain a better approximation. Now,
let us obhtain another approximation for f'(x) by replacing k& by rk. Thus,

flx+rh)—flx—rh) p2p2

FR = 2hr 6

f n( 6}

2.2
= Dirh) ’lﬁf---p-tm (11.27)

We can eliminate the error term by multiplying Eq. (11.26) by r* and
subtracting it from Eq. (11.27). The result would be

D(rh) - r? D(h)
P gt (11.28)

This would give a better estimate of f'(x) as we have eliminated the
error term A% For r = 2, Bq. (11.28) becomes

flx-2h)-8f(x—h)+8f(x+h)- flx+2h)
PRl 12

Note that this is a five-point central difference formula which contains
error only in the order of A*. We can repeatl this process further to
eliminate the error term containing A* and so on.

One of the most common choices of r is 0.5. Letting r = 1/2, Eq. (11.28)
becomes

(11.29)

g 12) - fls +
Fiix) f.r k) - Blx - hf21;:ffx +hi2)- flx+ h) (11.30)

Note that the use of this formula depends on the availability of function
values at x + A/2 points. This will be a restriction when Richardson’s
extrapolation technique is applied to tabulated functions.

Show that, using the data gmiven below, Richardson's extrapolation tech-
nique ecan provide better estimates for derivatives.
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: _ T T
| « 05 [-025| 0 | 025 | (}_57:}75 | 10 | 195 | 15 |
0.60605 |0.7788 l’ﬁtﬁ? |! 1.2840 | L6487 |2.1170 | 27183 Fs,wu;f.«;m?’

= iy L S ad =,

[:x}:e‘

Lel us estimate f'(x) at x = 0.5 and assume k = 0.5 and r = 1/2. Then.,
using three-point central formula, we have

(1.0Y=F(0)
Bis) = o gy = TR T ppr
2x0.5
(0.75) - .25
Dirk) = Di0.25) = f‘_QE_‘__J_F‘E = = 1.666
0.5
. Dirh)-r*D(h)
W )
flx e
Therefore,
16660 - 0.25(1.718:
F10.5) - 16660 - 0.26(17183)

0.75
= 1.6486

Note that the correct answer is 1.6487. The result is much better than
the results ohtained using three-point formula with /i = 0.5 and h = 0.95.

Now, let us take » = 2. Again using the same three-point central
[ormula.

f(LB) - £(-0.5)

: = 1.9376
(2H0.512) : ¢

Dirh) = D(1.0) =

9376 - 4(1.718:
iy - L9376 _;{1 B s

This shows that the estimate with r = 1/2 is better than the estimate
with r = 2.

SUMMARY

In this chapter, we have seen how numerical differentiation techniques
may be used to obtain the derivative of continuous as well as tabulated
functions. We have used forward, backward and central difference quo-
tients to obtain derivative equations. We have also seen how Richardson
extrapolation is used to improve the estimates of numerical solutions.
The discussions in this chapter bring out the following points:
 If we are given n + 1 data points equally spaced, the interpolating
polynomial will be of order n, and the nth derivative will be the
highest that can be obtained.
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¢ Better approximation of derivatives can be achieved by using more

points in the formula.

For a given number of data points, the central difference formula is
more accurate than their forward or backward counter parts.
Roundoff error grows when 2 gets small. We will always face the
step-size dilemma. One way to overcome this problem is to use a
formula of higher order so that a large value of & will produce the
desired aceuracy.

The problem becomes more pronounced when working with experi-
mental data which cootain not only roundoff errors but also mea-
surement errorg. In such cases, we should first fit a curve to the
data by using least-squares technigue and compute derivatives for
the curve,

Key Terms
Backward difference derivative Five-point formula
 Backward difference quotient Forward difference derivative
Central difference derivative Forward difference quotient
Cantral difference quotient Richardson extrapolation
Difference tables Two-point formula
Extrapolation Three-point formula

. What is numerical differentiation?

Why do we need to use numerical techniques to obtain the esti-
mates of funclion derivatives?

. What arc the three primitive numerical differentiation formulae?

Compare their truncation errors.

What 1s three-point formula? How is it different from the two-point
formula? [llustrate the difference using geometric interpretations.
Derive the five-point central difference formula

_ =flx+2h)+8f(x+ h)-8f(x-h)+[lx-2h)
- 12h

Also estimate the order of truncation error.
Describe the effect of step size A on

(a) truncation error,

(b) roundoff error, and

{c) total error.
Using Taylor's expansion, derive a formula for computing second
derivative of a function.
Derive a three-point difference formula for estimating the first de-
rivative of a tabulated function,

[ {x)
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.

10.

Derive a formula to estimate the second derivative of a tabulated
function. ;

What is Richardson extrapolation? How does it improve the esti-
mates of derivatives? ;

Sl |

Estimate the first derivative of f(x) = In x at x = 1 using the first
order.

(a) first-order forward difference formula,

(b) first-order backward differemce formula, and

(c) second-order central differencs formula.
Compare the results with the exact valme 1.
Estimate the first derivative of f(x) = In 2 using the five-point
central difference formula. How does the result compare with the
results obtained in Exercise 1.
Corapude the approximate first derivatives of f(x) = cos « at x = 0.75
radians at increaging values of i from 0.01 to 0.05 with & step size
of 0.005 (using four decimal digits). Analyze the variations «f error
in each step.

4. Apply the three-point central difference formula to obtain estimates

of the first derivatives of the following functions at x = 1 with
h = 0.01. Compare the results with true values.

(a) cosh x
(b) exp(x) sin x
(¢) In(1+2x%
(d) 2%+ 2x + 1
1
() 1+x2
For each of the following functions
(a) cos x =18
(b} exp(x/2) x = 2

1
x=1
(@ 14+x2

estimate the size of 4 that will minimize total error when using the
three-point central difference formula.

. Estimate the first derivatives of the functions given in Exercise 5

at the indicated points using the optimum size h obtained.

Use the three-point formula to estimate the second derivatives of
the functions given in Exercise 4 at x = 0.5 with & = 0.01.

Given below the table of function values of f (x) = sin h(x). Estimate
the second derivatives of f (x) at x = 1.2, 1.3 and 1.4 using a suitable
formula.
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x 1.1 1.2 1.3 1.4 } 1.5
flx) 13356 | 1.5095 | 1.6983 | 1.9043 | 2.1293
- il

Current through a capacitor is given by
dv s
It) = G dt = Cv'(t)

where v(t) is the voltage across the capacitor at time ¢ and C is the
capacitance value of the capacitor. Estimate the current through
the capacitor at ¢ = 0.5 using the two-point forward formula with a
step size h = 0,2. Assume the following:

ull) = (¢ + 0.1) e volts
C=2F

Using the function in Exercise 8, estimate the first derivative at
% = 1.3 with & = 0.1 using the three-point centre formula. Compute
an improved estimate using Richardson extrapolation. Exact value
of f'(x) = cosh(1.3) = 1.9709.

Evaluate the first derivative at x = — 3 and x = 0 of the following
table function:

x 3 | -2 [ 1 0 | 1 2 3 |
| =93 | <12 J(*-s To [ 3 12 33 |
.._.;V_._i___-‘—_--_-— 1_... l i == g
Compute the first derivative for the following table of data at
x = (.75, 1.00 and 1.25, Use & = 0.05 and 0.1.
x 0.5 0.7 0.9 1.1 13 1.5
v 1.48 1.64 1.78 1.89 | 1.96 1.00

Compare the results with 2 = 0.05 and & = 0.1. Comment on the
differences, if any.

The following table gives the velocity of an object at various points
in time

1
9.0

— -
Time (seconds)

i i
l Velocity (m/sec)

24 | 2.8
14.7 | 187

3.0

2.2 ]
22.0

13.2

16 | 18
102] 11.0

1.2
{ 9.6
!

.

=

Find the acceleration of the object at T = 2.0 seconds. Assume a
suitable value for h.

The distances travelled by a vehicle at intervals of 2 minutes are
given as follows:

16
13

12
8.5

14
11

2
025 1

10
6.5

Time (seconds)

Distance (km)

2.2
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Evaluate the velocity and acceleration of the vehicle at 7' = 5, 10
and 13 seconds.

1. Write a program that will read on the values of ¥ and f(x), compute
approximations to f'(x) and f"'(x), and output x, /(x), ["(x) and f"(x)
in four columns.

2. Write a program that will compute the total error at increasing
values of & at regular steps and then estimate that value of A for
which the total error is minimum, Assume a formula of your choice,

d. Write a program to evaluate a given [unclion at various points of
interest and estimate its first and second derivatives at any speci-
ficd point.



Numerical Integration

| NEED AND SCOPE

Like numerical differentiation, we n'eed to seek the help of numerical
integration techniques in the following situations:
1. Functions do not possess closed form solutions. Example:

flx)=C fe-tde
0

2. Closed form solutions exist but these solutions are complex and
difficult to use for calculations.

3. Data for variables are available in the form of a table, but no
mathematical relationship between them is known, as is often the
case with experimental data.

We know that a definite integral of the form

b
I=]f(x)dx (12.1)

can be treated as the area under the curve y = [(x), enclosed between
the limits x = @ and x = b. This is graphically illustrated in Fig. 12.1. The
problem of integration is then simply reduced to the problem of finding
the shaded area.

One simple approach is to plot the function on a graph paper contain-
ing grids and find the area under the curve using the number grids
covered under the desired boundaries. The accuracy of this rough esti-
mate can be improved by using finer grids.
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x—.“

Fig. 12.1 Graphical representation of integral of a function

Although the grid method and other such graphical approaches can pro-
vide us rough estimates, they are cumbersome and time-consuming and
the final results are far from satisfactory limits. A better alternative
approach could be to use a technique that uses simple arithmetic opera-
tions to compute the area. Such an approach, if necessary, can be easily
implemented on a computer. This approach is called numerical integra-
tion or numerical quadrature. Numerical integration techniques are simi-
lar in spirit to the graphical methods. Both of them use the concept of
“summation” to find the area.

Numerical integration methods use an interpolating polynomial p,(x)
in the place of f(x). Thus

b b
I=[flx)de=| pn(x)dx (12.2)
We know that the polynomial p,(x) can be easily integrated analytically.
Equation (12.2) can be expressed in summation form as follows:

] n
| Pa (x)dx= Y, p, (x;) (12.3)
G i=0
wherea =xy<x, < ... <%, =b
Since p,(x) coincides with f(x) al all the pointsx,,1 =0, 1, ... n, we can
say that,

b
I=[f(x)dx= }n:w.-(x,] (124)
i (=0

The values 2, are called sampling points or integration nodes and the

coustants w, are called wetghting coefficients or simply weights.
Equation (12.4) provides the basic integration formula that will be

extensively vused in this chapter. Note that the interpolation polynomial
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Palx) was used only to derive the formula (12.4) and will not be used in
the computation directly. Only the actual function values at sample
pointe are used in numerical computation.

There are various methods of selecting the location and number of
sampling points. There is a set of methods known as Newton-Cotes rules
in which the sampling points are equally spaced. Another set of methods
called Gauss-Legendre rules, uses sampling points that are not equally
spaced, but are designed Lo provide improved accuracy. In this chapter,
we discuss these two sets of methods in detail. We also discuss a method
known as Romberg integration that is designed to improve the estimates
of Newton-Cotes formulae.

In general, numerical integration methods yield much better resulis
compared to the numerical differentiation methods discussed in the pre-
vious chapter. This is due to the fact that the errors introduced in sepa-
rate subintervals tend to cancel each other. However, the estimates are
still approximate and, therefore, we also consider the magnitude of er-
rors in each of the methods discussed hare,

~ E#E NEWTON-COTES METHODS

Newton-Cotes formula is the most popular and widely used numerical
integration formula. It forms the basis for a number of numerical inte-
gration methods known as Newton-Cotes methods.

The derivation of Newton-Cotes formula is based on polynomial in-
terpolation. As pointed our earlier, an nth degree polynomial p,(x) that
interpolates the values of f(x) at n + 1 evenly spaced points can be used
to replace the integrand f(x) of the integral

b
1=[f(x)dx

[

and the resultant formula is called (rn + 1) point Newton-Cotes formula.
If the limits of integration @ and & are in the set of interpolating points
x, i =0,1, .. n, then the formula is referred to as closed form. If the
points a and b lie beyond the set of interpolating poeints, then the formula
is termed open form. Since open form formula is not used for definite
integration, we consider here only the closed form methods. They in-
clude:

1. Trapezoidal rule (two-point formula)
2. Simpson’s 1/3 rule (three-point formula)
3. Simpson’s 3/8 rule (four-point formula)
4. Boole’s rule (five-point formula)

All these rules can be formulated using either Newton or Lagrange
interpolation polynomial for approximating the function f(x). We use
here the Newton-Gregory forward formula (Eq. (9.20)) which is given
below:
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2 3
pls) =1Fh + Afgs + 42’:{'0 sfs - 1) + 03{0 ss—D(s-2)+ ...
=T+ T +Ty+ .. +T, (12.5)
where
s =(x - xgWh
and

hle‘_]—"xi

) [ ]y
TRAPEZOIDAL RULE v(/ INU fjv_ |

The trapezoidal rule is the first and the simplest of the Newton-Cotes
formulae. Since it is a two-point formula, it uses the first order interpo-
lation polynomial p,(x) for approximating the funetion f(x) and assumes
xg=a and x, = b. This is illustrated in Fig. 12.2. Aceording to Eq. (12.5),
p,(x) consists of the first two terms T, and T',. Therefore, the integral for
trapezaidal rule is given by

L

f{b)
b Y/!’1(“3

__,..f"_'._-_’ _/ ___'_""“—-——_.‘f
r/ (x)
f(a) ~ :
“-/ ' - (b) + f(a)
i “ Area = Lt i (b -a)
f : =
X, = a x=>b 4

Fig. 12.2 Representation of frapezcidal rule
b
I, = [(To+Ty)dx
a

b f
< [Ty de+ [T di =Dy + L
(] (43

Since 7, are expressed in terms of s, we need to use the following trans-
formation;

dx=h x ds
Xp=a, x3=b and lh=b-a
At x=a, s={a—xVh =10

At =l s=(b=x4¥h =1
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Then,
b 1
1, = | Ty dx=[hfy dx=hfo
" i}
/] 1 3
I, =T de=[Af; shds=h !“—;"—
x 1)
Therefore,
A AN
L=hlfor g =k
Since f, = fta) and f; = f(b), we have
|
b e
rr,=h ROCIB) i -y L0000 ‘ (12.6)

2 2

Note that the area is the product of width of the segment (b —a)and
average height of the points flae) and ftb).

Error Analysis

Since only the first two terms of eq. (12.5) are used for I, the term T,
becomes Lhe remainder and, therefore, the Lruncation error in trapezoi-
dal rule is given by

b " 1
E,=[Tydx= f {_)0‘5) [s(s = DA ds
i = 0
N fr8h s? <8 ]! B f»(gs)h
T2 8 24, 12
Since dx/ds = A,
£7(00,) = h* f(8,),
we obtain
h"; N
By =~45 "8,) (12.7)

wherea < €, < b

Evaluate the integral

b
I=[(x%+Ddx
a
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for the intervals (a) (1, 2) and (b) (1, 1.5)
Also estimate truncation error in each case and compare the results

with the exact answer.

Case a = 1,bs2
h=1
5 =208 (Pl o i
=li2+9=55
A3
E,l £ =— "
18215 S mar g0
[7(x) = 6x
malxlf”gx)i =f"2)=12
Therefore,

3
|E,| < ’;—2 (@) =1

L orect =9.75
Trueerror-=1, -1 .. =075 //
Note that the error bound is an overestimate of the true error.
Case b =l b=slb
h=05

I, _%i [£(1) + f(1.5)] = 1.59375

3
|E,| = (0'1?; £7(1.5) = 0.00875

1, ue = 1.515625
True error = 0.078125

Composite Trapezoidal Rule

If the range to be integrated is large, the trapezoidal rule can be im-
proved by dividing the interval (¢, #) into a number of small intervals
and applying the rule discussed above to each of these subintervals. The
sum of areas of all the subintervals is the integral of the interval (a, b).
This is known as composite or multisegment approach. This is illustrated
in Fig, 12.3.
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i */%.._.__._
s =

4

i1~ X =y i=0,1,..n=1
Fig. 12.3 Multisegment trapezoidal rule

As seen in Fig. 12.3, there are n + 1 equally spaced sampling points
that create n segments of equal width & given by

c

-
h=—
n
x,=a+ith, i=01.,n

From Eq. (12.6), area of the subinterval with the nodes x, , and x,, is
given by

1= -_{Ipl(r) dx = f—; [Flx,_ )+ (x )]

-

The total area of all the n segments is

I

I
EMs
wlb—

[flx,_ )+ flx

Mt::-

[flxq) + f(-t]l] [ﬂxﬂ +f(—"~'2-]]

bk % [flx,_y) +Flxy]

Denoting f; = f(x,) and regrouping the terms, we get

for, =%[fﬂ +2n§lﬁ +f,,} (12.8)

Equation (12.8) is the general form of trapezoidal rule and is known

as compostte trapezotdal rule. Equation (12.8) can also be expressed as
follows:
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Iﬂ =

=

n-1
[fla)+fB) +h ¥ fla+ih)
i=1

Similarly, we can estimate the error in the composite trapezoidal rule
by adding the errors of individual segments. Thus

RS 3
By =—35 776 (12.9)
12 i=1
We know that f¢¢(g;) is the second derivative at g, x,_; < q, < x,. If the

maximum absolute value of the second derivative in the interval (a, b) is
F, then we can say that the truncation error is

a . {(b-a)?
L O e (12.10)

I L
i 12" 12n 2

Theoretically, we can say that it is always possible to increase accuracy
by taking more and more segments. Unfo; ately, this does net happen
always. When the number of segmentsAncreases, error due to rounding

off increases. \/‘

Compute the integral

1
| exdx
-1
using composite trapezoidal rule for (a)n = 2 and (b} n = 4.

-1
To=" 7@+ pion + b Sha+ib
i=1

=-;— lexp (-1) + exp({1)] + exp(0)

= 2.54308
Case b n=4
- b-a ~05

1
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:%—5- + lexp(=1) + exp(1)] + [exp(—0.5] + expl0) + exp(0.5)] 0.5

= 2,39917
Note that {,,,.. = 2.35040 and n = 4 gives better results.

Program TRAPE1

Trapezoidal rule is a simple algorithm and can be implemented by a few
FORTRAN statements as shown in the program TRAPEL. Note that the
major computation is done by just one statement in a DO loop. This
statement calls a function subprogram to evaluate the given function at
a specified value of x. We can use this program Lo integrate any function
by simply changing the function definition statement

F =1 BXP(-X/2.0)

PROGRAM TERAPEL

T TGP S S S NS T T *

* Main program *
¥ This program integrates a given function
¥ using the trapezoidal rule L
T e erecamecsmemane G ia o e -
* Functions invoked *
* F‘ *
- e e o i el i o e i o i -, i S paa i i i, N
* Subroutines used %
L NIL 2
* Variables used *
% A - Lower limit of integration *
* B - Upper limit of integration *
A H - Segment width *
¥ N - Number of segments *
* ICT - Value of integral *
e T e i e e A e e e *
* Constants used %
x NIL *
T e s e SRS R SIS e &

INTEGER N

REAL A, B, H, SUM, ICT

EXTERNAL F

WRITE(*, *) ‘Give initial value ot 3
READ(*, *) A

WRITE(*, *) ‘Give final wvalue of X*
READ(*, *) B
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WRITE(*, *)] ‘What is the segment width?’
READ(*, *) H
N = (B-A)/H

SUM = (F(A) + F(B))/2.0
DO 10 T = 1, N-1
SUM = SUM + F({A+I*H}
10 CONTINUE

ICT = SUM * H

WRITE(*, *)

WRITE(*, *) ‘INTEGRATION BETWEEN’, A, AND’, B
WRITE(*, *)

WRITE(*, *) ‘WHEN H =", H, * IS’, ICT
WRITE(*, ™)

STOP

END
¥ e e Brifd of main TRRARE]L s———=iseasemmte—mmne L
W o e e i i S i S . e *
* Function subprogram (X} -

*

REAL FUNCTION F (X)
REAL X
F o= 1-EXP(-X%/2.0)

RETURN
END
# eee—ee———---—— End of function F(X) ———--=-mcmo=anan .

Test Run Resulfs Test run results shown below give the value of inte-
gration of the equation

f@)=1-e"
from 0.0 to 10.0.

Give initial wvalue of X

0.0

Give final wvalue of X
10.0

what is the segment width?
0.5

TNTEGRATION BETWEEN .0000000 AND 10.0000000
WHEN H = 5.000000E-001 IS 8.0031400

Stop - Program terminated.
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SIMPSON'’S 1/3 RULE

Another popular method is Simpson’s 1/3 rule. Here, the function f (x}is
approximated by a second-order polynomial py(x) which passes through
three sampling points as shown in Fig. 12.4. The three points include
the end points @ and b and a midpoint between them, ie., xy = a,x, =5
and x, = (@ + 6)/2. The width of the segments 4 is given by

h= g

2

X =4 Xy X=b X

Fig. 12.4 Representation of Simpson’s Three-point rule

The integral for Simpson’s 1/3 rule is obtained by integrating the first
three terms of equation (12.5), i.e.,

b b
I, =]pa(x)de=[(To+Ty+T5)dx
a a

b b b
=I?‘0dx+jT1dI+JT2dJJ
a a a

=Ly +1gp + 13
where
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We know that dx = & x ds and s varies from 0 to 2 (when x varies from a
to b). Thus,

2
L= [fohds = 24f,
0

2
Ly = [&fyshds = 2haf,
0

25_21;“ . h ;
Islu = 1{-—2 : s(s=1hds= E,{; 2 fy
Therefore,
A2
L h{% o 3}(0} (12.11)

Since Afy = f; - f, and A? f; = f, - 2f; + f,, equation (12.11) becomes

P’l : g lfy + 4f, + £i) =% [F(a) + 4f () + f(b.'J—’ (12.12)

This equation is called Simpson’s 1/3 rule. Equation (12.12) can also be
expressed as

fla)+4f(x;)+ fib)
a)——-——ﬁ-- —

This shows that the area is given by the product of total width of the
segments and weighted average of heights fla), fixy) and fib).

Isl =(b-

Error Analysis

Since we have used only ihe first three terms of Eq. (12.5), the trunca-
tion error is given by

b
E:‘EI = J.Tg dx
a

™83

- ._——E_.—-—Js(s— L(s-2)hds
0
hhf”(ﬂ,)[ﬂ_sa sin]
6 4 0

Since the third-order error term turns out to be zero, we have to con-
sider the next higher term for the error. Therefore,

b
E,, =JT4 dx
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@ 2
=f—4{16—’)- [s(s=1)(s—2)(s-3)hds
0

CRxfW@[s5 6st | 1157 652
T 24 5 4 3 IR
_ hfi,)
B 90

Since £48,) = h* f98,), we obtain

) 5
B =~%~O—f’”(9,> } (12.13)

pson's 1/3 rule is exact

Evaluate the following integrals using Simpson’s 1/3 rule

1 "
(a) [ex dx (b) fysin x dx
0

— — e e s e — ——— — ——— —— ot i,

Case (a)
1
I= Je‘ dx
-1
Ly= 3 [f(a)+f(b +4f(x)]
b-
h= T =
f{xl) f(a
Therefore,

el +4el+e*!

s = = 2.36205

(Note that I,; gives better estimate than /, when n = 2. This is because
I, uses quadratic equation while I, uses a linear one)
Case (b)

12
7= |Jein(o de=r/4
0

Iy= 5 [F© +4f () + f(u/2)]
= 0.2617993(0 + 3.3635857 + 1)
= 1.1423841
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Composite Simpson’s 1/3 rule

Similar to the composite trapezoidal rule, we can construct a composite
Simpson’s 1/3 rule to improve the accuracy of the estimate of the area.
Here again, the integration interval is divided into n number of seg-
ments of equal width, where n is an even number. Then the step size 15
h= b-a
n
Asusual, x; =a +ih,i =0, 1, ... n. Now, we can apply Eq.,(12.12) to each
of the nf2 pairs of qegmepts or ﬂubmterva_ls (Xg; _ oy Xoy 1) Xy _ g0 Xgg)s
This gives

= Z[f(-f:; 2)+4f(xg;_ 1)+ Flay))]

rtl'
3:1

:% [fla)+4f, + 2f, + 4fs + .. 2f, o+ 4f,_1 + [(B)]

On regrouping terms, we get

h .“;a"z o (n/2}-1 _‘ S -
“;[ﬂfﬂﬂZ flag 211+ 2 3 flag )+ f(b) (12.14)
k =1 =1

An analysis similar to the error analysis of composite trapezoidal rule
can be performed to obtain the error due to truncation in composite
Simpson’s 1/3 rule.

(b~ a)¥ E
“Em‘i_lgﬂ e (12.15)

where F i the maximum absolute value of the fourth derivative of [ (x)
in the interval (a, b).

Compute the integral

w2 £
[fsin(x) dx
0
applying Simpson’s 1/3 rule for r = 4 and n = 6 with an accuracy to five
decimal places.

e e e E——— e e e — —— — — — — — — — — —

The composite Simpson’s 1/3 rule is given by

ald ni2
fc“:% l’f‘\,o}lf\'ra])i 4Elffx2“1)+ 2 ffx}ljl
i

Forn=4d,h=nl8
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There are five sampling points given by x, = kn/8, k& = 0, 1, ..., 4. Substi
tuting the values of x; in the composite rule, we get,

Ly =.‘3£% (F0) + f(w2) + 4f (W/8) + 4f(31/8) + 2f (/d)]

- 2—"4 [0+ 1.0 + 4(0.61861 + 0.96119) + 2 (0.84090)]

=1.17823
Foru=6 h=nl12
There are seven sampling points given by x, = kn/12, k = g, 1 .., 8
Substituting these values in the above equation, we get

Loy = % [0+ 1.0 + 4(0.50874 + 0.84090 + 0.98282) + 2(0.70711 + 0.93060)

= 1.18728

Program SIMS1

Program SIMST1 integrates a given function using the composite Simpson’s
1/3 rule. Note that, unlike TRAPE1 which requests for segment width A,
SIMS1 requests for number of segments n. Remember, n should be even.
This program also uses a function subprogram which can be easily
replaced for any other function without modifying the main program.

- e et S e e P *
* Main program *
* This program integrates a given function ¥
* using the Simpson’s 1/3 rule ¥
M e e e e e e e e S s e S t 3
* Functions invoked *
* F *
B T *
* Subroutines used =
" NIL ]
T ot e e o gt e RS B B R L s L L R e e e £ 3
* Variables used el
” A - Lower limit of integration o
* B - Upper limit of integration x
¥ H - Segment width %

N - Number of segments *
* 1ICs - value of the integral ¥
* Constants used =

Z NIL x
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INTEGER N, M
REAL A,B,H, SuM, ICS,X,F1,F2,F3

EXTERNAL F

WRITE (*,*) 'Initial wvalue of ¥
READ (*,*) A

WRITE(*,*) ‘Final wvalue af A
READ(*,*) B

WRITE(*,*}) ‘Number of segments (EVEN number)’

READ(*,*) N

H = (B-a)/N
M = N/2

DO 10 1 = 1.M
F2 = F(X+H)
F3 = F(X+2*H)
SUM = SUM + F1 + 4*F3 4+ F3
F1 = F3
X =X + 2*y4
10 CONTINUE

ICS = SUM * H/3.0

WRITE[*,*}

WRITE(*,*) INTEGRAL FROM*; &, -
WHITE{#, &)

WRITE(*,*) "WHEN H = Yily Is
WRTTE (*, #)

STOP
END

T e e e e e e e S e e —— e ————

REAL FUNCTION F (X}
REAL X

F = 1-BXP(~-X/2.0)
RETURN

—————————————— End of function F(x)
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Test Run Resulfs Output of'the program for integrating the function
fi®) =1 ~g*?
from 0.0 to 10.0 is given below:

Initial value of X

0.0

Final wvalue of X

10.0

Number of segments (EVEN number)

20

TNTEGRAL FROM .000000n To  10.0000000
WHEN H = 5,.000000E-001 Is 8.0134330
Stop - Program terminaced.

SIMPSON’S 3/8 RULE

Simpson's 1/3 rule was derived using three sampling points that fit a
quadratic equation. We can extend this approach to incorporate four
sampling points so that the rule can be exact for f(x) of degree 3.
Remember, even Simpson’s 1/3 rule, although it is based on three points,
18 third-order accurate. However, a formula based on four points can be
used even when the number of segments is odd.

By using the first four terms of Eq. (12.5) and applying the same
procedure followed in the previous case, we can show that

b 8h e : «
“Lzz = [fia)j-ﬂ(xj)a- 3ftxy) + (b)) (12.16)

where % = (b - a)/3. This equation is known as Simpson’s 318 rule. This
is also known as Newton's three-eighths rule.

Similarly, we can show that, using the fifth term of Eq. (12.5), the
Lruncation error of Simpson’s 3/8 rule is

s daadd 2 (12.17)

(b—a)s __]
6480 |

r
| 345
L‘sts u_____Sf)_fW{a’E):*

vhere e < 8, < b,

Tor a given interval (a, §), the truncation error of Simpson's 1/3 rule is

(b—a)f
2880

'his shows that the 3/8 rule is slightly more accurate than the 1/3 rule.

E :_.{lifuife J= = f('ﬂfg i
sl 90 x z
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m A

Use Simpson’s 3/8 rule to evaluate

2 LI -
(a) [(x3+Dde (b) [ysin(x)dx
1 0

Case (a)
Basic Simpson’s 3/8 rule is based on four sampling points and, therefore,
n=3,

Ly = 3R fla) + 3(y) + 3 (xy) + 116

b-u

a 3
¥j=a+h=1+13=43

Xpo=a0+2h=1+28=573
on substitution of these values, we obtain

Lo :31- LF(L) + £(2) + 3F(4/3) + 37(5/3)]

=4.75

Note that the answer is exact. This is expected because Simpson's 3/8
rule is supposed to be exact for cubic polynomials.
Case (b)

"/2

1= [ sin(x) dx
1]
Here again, n = 3 and the integral is given by

Lo= 32 () + 37ey) + 3F(xy) + /)

xi=a+h=%

5. X
ra=a+2h= 3

on substitution of these values, we obtain

Iis % [F(0) + 3f(/B) + f(n/3) + F(/2))

-1% [0 + 2.12132 + 2.79181 + 1.0]
= 1.16104
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_- HIGHER ORDER RULES

There is no limit to the number of sampling points that could be incorpo-
rated in the derivation of Newton-Cotes rule. For instance, we can use a
five-point rule to fit exactly the funetion f(x) of degree 9 and so on. Since
the repeated use of lower-order rules provide sufficient accuracy of the
estimates, higher-order methods are rarely used,

One more rule which is sometimes used is Boole’s rule based on five
sampling points. This is given by

B _?4_’5‘ (Tf, + 82f, + 12f, + 32f, + 1) (12.18)

where h = (b — a)/4
The truncation error of Boole’s rule is

8& {8 {12.193
= —— 1) [,9 \ 4

Use Boole's five-point formula to compute
Kl‘lz B " e
_[‘u Sin(x) dx
n

and compare the results with those obtained in p}giﬂls_egrﬂ)l les.
T

fo=0

fi=F(x/8) =061861

fo=Flx/4) =0.84080

fi = f(37/8) = 0.96119

fo=fni2) =10
I, = T 10 + 320.61861 + 0.96119) + 12(0.84090) + 7(L0)]

= 1.18062
The table below shows the results of

al2

_[ Jfsin{x) dx
0

obtained by various Newton-Cotes rules.
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Rule n Result |
Trapezoidal  (simple) 1 0.78540
Trapezoidal  (composite) 2 1.05314
Simpson’s 1/3 (simple) 2 1.14238
Simpson’s 3/8 3 1.16104
Simpson's 1/3  (composite) 4 1.17823
Boole's rule 4 1.18062
Simpson's 1/3 (composite) 6 1.18728
Simpson’s 1/3 (composite) 12 1.19429

The estimate can be further improved by using still more intervals.
Table 12.1 lists the basic Newton-Cotes rules.

Table 12,1 Basic Newton-Cotfes nules

Name Intervals (n) Formula Error
; A 2
Trapezoidal 1 = (fa+fi) ——f"(8)
= 12
i ; : A h® run
Simpson's 1/ 2 T (fo+4f 1 ‘Tﬁf (@)
5

Simpson's 38 3 B (f4 31,4344y 3R po o)

) 2h : ; & 8h7
Boole’s rule 4 T (7fy + 32f, + 12f, + 32f; + Tfy —mﬂsi (8)

ROMBERG INTEGRATION

It is clear from the discussions we had so far that the accuracy of a
numerical integration process can be improved in two ways:

1. By increasing the number of subintervals (i.e. by decreasing h)}—this
decreases the magnitude of error terms. Here, the order of the
method is fixed.

2. By using higher-order methods—this eliminates the lower-order
error terms. Here, the order of the method is varied and, therefore,
this method is known as variable-order approach.

The variable-order method can be implemented using Richardson’s
extrapolation technique discussed in the previous chapter. As we know,
this technique involves combining two estimates of a given order to
obtain a third estimate of higher order. The method that incorporates
this process (i.e. Richardson’s extrapolation) to the trapezoidal rule is
called Romberg tntegration.

According to the Euler-Maclaurin formula, the error expansion for
trapezoidal rule approximation to a definite integral is of the form

b
JFlx)dx - T(h) = ash® + ah* +agh® + ... (12.20)

a
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T(h) is the trapezoidal approximation with step size = (b — a)/n = A.
Let us define

T(h, 0) = T(h)
to indicate that T(k) is the trapezoidal rule with no Richardson's
extrapolation being applied (zero level extrapolation). Thus, Eq. (12.20)
can be written as _
1= T(h, 0) + ash® + ah* + agh® + ... (12.21)

Let us have another estimate with step size = (b — a)/2n = A/2 (at zero
level extrapolation) as

}:T(h.!2,m+%2-h3 +%h4 +-§%h‘3 s (12.22)

By multiplying Eq. (12.22) by 4 and then subtracting Eq. (12.21) from
the resultant equation, we obtain (after rearranging terms),

_4T(h/2,0)-T(h,0)
1= 4-1
=T2, 1)+ bh* + bhb + .. (12.23)

+b,h% +bgh® +...

where
4T(h/2,0)- T(h,0)
3

1s the corrected trapezoidal formula using Richardson’s extrapolation
technique “once” (level 1). Note that its truncation error is of the order
h', instead of h”? which is the order in the “uncorrected” trapezoidal
formula,

Now, we can apply Richardson’s extrapolation technique once more to
Eq. (12.23) to eliminate the error term containing h* The result would
be

T(h/2,1) =

_167'(h/4,1) - T(h/2,1)

&
. 16~-1 +Cgh® +...
= T(h/4, 2) + Ceh® + ... (12.24)
where
T(hia, 9) - 18T R/4, D -T(h/2, 1)

16-1

is the estimate, refined again by applying Richardson’s extrapolation a
second time (level 2). Similarly, we can obtain an estimate with third-
level correction as

64T(h/8,2)  T(h!4,2)

h/B, 3) =
T(h/8, 3) -
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The entire process of repeated use of Richardson’s extrapolation tech-
nique can be represented in general form as

i’?_(i{?_‘.j— 1)-T(h/20-1, j-1)
4/ -1
where 1 = 0, 1, 2 ... denotes the depth of division and j < i denotes the

level of improvement.
We can further simplify the notation of Eq. (12.25) by defining

R, = T2, j)

T(hI2}, j) = (12.25)

Thus, we have

4/ R, -R ;
= ,J-1 t—1,7-1
R, = P (12.26)

Equation (12.26) is known as Romberg integration formula. Note that
this equation, when expanded, will form a lower-diagonal matrix. The
elements of the matrix R are computed row by row in the order indi-
cated in Fig. 12.5. The circled numbers indicate the order of computa-
tions and the arrows indicate the dependencies of elements. An element
at the head end depends on the element at the tail end,

(0.0)
®
R(1.0) @ Hi1.1)
R(2.0) A(2.1) < R2:2)
\ \
3,0) @ A(3,1) = (3.2) = A(3,3)

Fig. 125 Order of calculations for Romberg integration

Elements in the first column represent trapezoidal rule at A, h/2, h/4,
etc. They can be evaluated recursively as follows:

h=b-a

RO, 0)= 2 (f(@) + F®)

== ey
RG, 0) =—R-“—2-1*ﬂ+h, S Piss o for£=1,2,_..—l (12.27)
k=1
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]

~vhere
h" = (b - a):’z“
Ik =a+ kh‘

Equation (12.27) is known as recursive trapezoidal ruie.

Compute Romberg estimate Ry, for

e e —— . e — ———— ———— —— ——— ——

First we apply the basic trapezoidal rule to obtain R(0,0)
R(O,0) = & If(e) + )

=2_;__1(,1 +1/2)=0.75

Now, we obtain R(1, 0) and R(2, 0) using equation (12.27)
R(0,0)
2

R(1,0) = +hy flxy)

_0.75

: .
2 X{E= 0.7083333

B | et

R(1LO .
R(2,0) = (121 ) + hylflxy) + flxa)l

_ 07083333
2

=0.6970237
Now, Romberg approximations can be obtained using Eqg. (12.26).

4R(1, 0} - R(0,0)
3

_ 4(0.7083333) - 0.75
N 3

4R(2,0)- R(1,0)
3

= 4(’[@70237;—- 0.7083333 =0.6032538

16R(2,1)- R(1, 1
15

+—%if(l_25) £ FOLTEN

R, 1=

=0.6944444

R(2, 1) =

Ri2, 2)=
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E _16{0.693253?: —0.6944444 —0.6931744
b3

Correct answer = 7, (2) = 0.6931471
Error = 0.0000273

Program ROMBRG

Computer algorithm for implementing Romberg integration is simple
and straight-forward, Starting from the element R(Q, @), all the other
elements are calculated row by row. The elements in the first column
are calculate using the recursive trapezoidal rule (Eq. (12.27)) and the
remaining clements are calculated using the Rorubery integration for-
mula (Eq. (12.26)). The process is terminated when two diagonal ele-
ments R(; - 1,7 — 1) and R(;, ;) agree to the required level of accuracy.

Program ROMBRG implements the steps involved in Romberg inte-
gration.

£

PROGRAM ROMBRG
w® o o e i . s T e o W e e e e
* Main program

* This program performs Romberg integrarion
¥ by bisecting the intervals N times *
* Functions invoked
* F,ABS *

o T e e e e e SR e

* Bubroutines used
L NIL +

* Variables used

* A - Starlting peint of the interval *
* B - End point of the interval #
* H - width of the interval *
A N - Number of times bisection is done o
* M - Number of trapezoids ‘
® R - Matrix of Romberg integral values *
e S &
* Constants used *
» EPS - Error bound *
e e S U S = e e S *

REAL A,B,EPS,H,R,SUM,F,X,ABS
INTEGER N,M

INTRINSIC ABS

EXTERNAL F

PARAMETER ( EPS = 0.00001 )
DIMENSION R(10,10)
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WRITE(*,*) ‘Input endpoints of the interval’
READ(*,*) A,B
WRITE(*,*) 'Input maximum number of times’
WRITE(#,*) ‘the subintervals are bisected’
READ(*,*) N

* Compute using entire interval as one Lrapezoid
H = B-A
R({1,1) = H = (F(A) + F(B))/2.0
WRITE(*, *)
WRITE(*,*) R(1,1)

DO 30 I = 2, N+l

* Determine number of trapezoids for I_th refinement
M = 2%%(I-2)

* Reduce step size for I_th refinement
H = H/2

s Use recursive trapezoidal mule for M strips
siM = 0.0
DO 10 K = 1.M
X = A+(2*K-1)*H
SUM = SUM + F({X)
R(I,1) = H(I-1,1)/2.0+H*SUM
10 CONTINUE

* compute Richardson’s improvements
g 20 L= 2,1
R(T,L)= R(I,L-1)+(R(I,L-T) —R(I-1,L-1))/(4**(L-1}-1)
20 CONTINUE

* Write the results of improvements for I_th refinement
WRITE(*,*) (R(I,L),L = 1,I)

* Test for desired accuracy
IF{ABS(R(T-1,I-1) - R(T,I)} .LE. EPS) THEN
- Stop further refinement
WRITE(*, *)
WRITE(*,*) ‘ROMBERG INTEGRATION =", R(I,I)
WRITE(*, *)
GO TO 40
ENDIF

* (Continue with the refinement process
30 CONTINUE
* write the final result
WRITE(*, *)
WRITE(*,*) ‘ROMBERG INTEGRATION = ‘', R(N+1,N+1)

WRITE(*,*) '(Exit from loop)’
WRITEL(*, *)
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40 STOP

REAL FUNCTION F(X)
REAL X

F = 1.0/X

RETURN
END

¥ s--m——o———e-——- BEnd of function F(X) -——-—-—-m-mm- x

Test Run Resulfs

First run
Input endpoints of the interval
1l 2
Input maximum number of times
the subintervals are bisected.

7.500000E-001
7.083334E-001 6.944445E-001

ROMBERG INTEGRATION - &6.944445E-001
{Exit from loop)
Second run
Input endpoints of the interval
12
Input maximum number of times
the subintervals are bisected
9
7.500000E -001
7.083334E -001 6.944445E -001
6.970239E -001 §.932541E -001 6.931747E-001

ROMBERG INTEGRATION = 6,931747E-001

(Exit from loop)

—_ GAUSSIAN INTEGRATION

Wa have discussed so far a set of rules based on the Newton-Cotes
formula, Recall that the Newton-Cotes formula was derived by integrat-




Numerical Integration 395
ing the Newton-Gregory forward difference interpolating polynomial.
Consequently, all the rules were based on evenly faced sampling points
(function values) within the range of integral.

Gauss integration is based on the concept that the accuracy of nu-
merical integration can be improved by choosing the sampling points
wisely, rather than on the basis of equal spacing, For example, consider
a simple trapezoidal rule as shown in Fig, 12.6(a). Here, the end points
of the integral lie on the function curve. Now, consider Fig. 12.6(b).
Here, the straight line has been moved up such that area B = A + C.
Notice that the sampling points are moved away from the end points.
The function values at the end points are not used in computation.
Rather, function values f(x;) and f(x,) are used to compute the shaded
area. It is clear that the area obtained from Fig. 12.6(b) would be much
closer to the actual area compared to the shaded area in Fig. 12.6(a),
The problem is to compute the values of x; and x, given the values a and
b and to choose appropriate “weights” w, and w,. The method of imple-
menting the strategy of finding appropriate values of x; and w, and
obtaining the integral of f'(x) is called the Gaussian integretion or guadra-
tire.

f{b)

f{x}

f(x)

X, b
fb) Gaussian rule

Fig. 12.6 Gaussian integration



396 Numerical Methads

(rauss integration assumes an approximation of the form

1 n
I, = [fx)dx= T wflx;) (12.28)
= 1=1
Equation (12.28) contains 2n unknowns to be determined. These un-
knowns can he determined using the condition given in the integration
formula (12.28). This should give the exact value of the integral for
polynomials of as high a degree as possible.

Let us find the Gaussian guadrature formula for n = 2. Tn this case,
we need to find the values of w,, w,, x, and x,. Let us assume that the
integral will be exact up to cubie polynemiuls. This implies that the
functions 1, x, ¥? and % can be numerically integrated to obtain exact
results.

1
Wy + Wy = [dx=2
-1

1
Wix) + Wy = fr dr=10

|

u:l.r:f + ngg = j_.c;; dx =
1

wleo

w !

1
D+ wgx] = jx¥ dx=0
1

Solving these simultaneous equations, we obtain

wy=wy=1
x =—:1r§ = —0.5113502

1 ’
%y = = 05773502
V¥3

Thus, we have the Gaussian quadrature formula for n = 2 as

1

[flx)dx = f(-14B)+ F(VV3) (12.29)

£
This formula will give correct value for integral of f(x) in the range (-1,
1) for any function up to third-order. Equation (12.29) is also known as
Gauss-Legendre formula. Two-point Gauss quadrature 1s illustrated in
Fig. 12.7.
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i f
f(x) ILE]

1
Compute [e*dxusing two-point Gauss-Legendre formula

'
I= | explx)dx
1

= fe,) + flxp)
where x; and x, are Gaussian quadrature points and are given by

1
) =——= = -0.5773502
1 JS

xp =+ = 0.5773502

J3
Therefore,
I = exp(—0.5773502) + exp(0.5773502)
= 0.5613839 + 1.7813122
= 2.3426961

Changing Limits of Integration

Note that the Gaussian formula imposes a restriction on the limits of
integration to be from —1 to 1. This restriction can be overcome by using
the technique of “interval transformation” used in calculus, Let

b 1
[fx)dx = C [gz) dz
a -1
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Assume the following transformation between x and the new variable 2.

x=Az+B
This must satisfy the following conditions:
At
x=a, z=-1 and x = b, z2=1
That is
B-A=a
A+B-=b
Then
b e a+ b
A= 5 and B = 3
Therefore
_b-a il +b
T2 2
b-a
dx = 2 d
This implies that
b-ua
L= g
Then the integral becomes
Bt B
__2_-5 Ilg'(z} dz
The Gaussian formula for this integration is
b-al b-a)
_2—‘1‘ Ilgfz}dz = ( 2:1) %w,-g(z,-}
frie =

where w, and 2, are the weights and quadrature points for the integra-
tion domain (-1, 1)

Compute the integral

2
I= Je“"zd:c
-2

using Gaussian two-point formula,

——— e ——— — i — — . it s e — — — — T — —— — — —— ot ot st

n= 2 and therefore
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.
I =257 w,gly) + wgy)]

b-a _  b+a |
3 z+ ) = 22

x =

Therefore,
J g™zt

For a two-point formula
w L=

=
]

1

—

zjz_.

I"' :31‘*"

gg =

J3
Upon substitution of these values, we get
I = 2 [exp(-1/4/3) + exp(1///3)]
= 4.6853922

Higher-Order Gaussian Formulae

By using a procedure similar to the one applied in deriving two-point
formula, we can obtain the parameters w, and z; for higher-order ver-
sions of Gaussian quadrature. These parameters for formulae up to an
order of six are tabulated in Table 12.2.

Table 12.2 Parameters for Gaussian integration

n [ Ly Z;
2 1 1.00000 - 0.567736

2 1.00000 0.57735 i
3 1 0.55556 ~0.774860

2 (.88889 0.00000

3 0.55656 _0.77460 |
4 1 0.34785 —0.86114

2 0.65215 —-0.38998

3 0.66215 +0.33998

4 0.34785 0.86114
5 1 0.23683 -0.90618

2 0.47863 ~0.53847

3 0.56889 0.00000

4 0.47863 0.53847

5 023693  0.90618

(Contd.)
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Table 12.2 (Contd.)

n i w; Z

6 1 0.17132 - 0.93247
2 0.36076 —-0.66121
3 0.46791 —0.23862
4 146791 0.23862
b 0.36076 0.66121
6 0.17132 0.93247

Use Gauss-Legendre three-point formula to evaluate

4
ff:c“Jrl)dx

>

€

Given n=3, ¢ = 2, and b = 2. Hence

b-a 3
L= 5 z_lwig{zij
= wiglz)) + waglzy) + waglzy)
Hu’"‘“)z_'_b*“ —
o 5 F

Therefore,
8R)=(z+3)+1

For n = 3, we have
w, = 0.55556 z, = —0.77460
wy = 0.88889 2= 0.0
wy = 0.555586 zq = 0.77460
Then
I, = 0.55556 [(-0.77460 + 3)* + 1]
+0.88889 [(0+8)" + 1]
+0.55556[(0.77460 + 3)* + 1]
= 14.18140 + 72.88898 + 113.33105
= 200.40143

We can verify the answer with analytieal solution which is 200.4. Note
that three-point Gauss formula should give exact answer for a second
order polynomial. The difference in the answer is due to roundoff errors.
Roundoff error can be minimised by increasing the precision of Gaussian
parameters.
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Algorithm 12.1 gives a simple procedure for implementing Gauss-
Legendre formula.

Gaussian Integration

1. Define the function, fix)
2. Obtain integration limits (&, b)
3. Decide number of interpolating points (n)
4. Read the Gaussian parameters (w;, 2)
5. Compute x, using
b- b -
gl R
2 2
6. Compute /,
b-al®
lg= 3 2owif(x;)
i=1

7. Write result

Algorithm 12.1

SUMMARY

In this chapter, we discussed the integration of definite integrals using
numerical integration techniques. The following Newton-Cotes methods
were considered in detail:

s Trapezoidal rule

+ Simpson's 1/3 rule

s Simpson’s 3/8 rule

« Boole's rule

We also presented a method known as Romberg integration to im-
prove the accuracy of the results of the trapezoidal method.

We finally discussed another approach known' as Gauss integration
which is based on the concept that the accuracy can be improved by
choosing the sampling points wisely, rather than equally.

FORTRAN programs were presented for the following methods:

» Trapezoidal rule

s Simpson's 1/3 rule

» Romberg integration

Key Terms

Boole's rule Newton's three-sighths rule
Closed form Newton-Coles formula

(Contd.)
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(Contd.)
Composite approach Newion-Cotes rules
Composite Simpson’s 1/3 rule Nurnerical integration
Composite trapezoidal rule Numerical quadrature
Extrapolation Open form
Gaussian integration Recursive trapezoidal rule
Gaussian quadralure Richardson’s extrapolation
Gauss-Legendre formula Hombaerg inlegration
Gauss-Legendre rules Romberg integration formula
Integration nodes Simpson's 1/3 rule
Lagrange interpolation polynomial Simpson's 3/8 ruje
Multisegment approach Trapezoidal rule
Newton interpolation polynomial Variable-order approach

What is numerical integration?

2. When do we need to use a numerical method instead of analytical
| _method for integration?
Numerical integration is similar in spirit to the graphical method
of finding area under the enrve. Explain,

4. Explain the basic principle used in Newton-Cotes methods.
@ Describe the trapezoidal method of computing integrals.

[}

./ What is composite trapezoidal rule? When do we vse it?

7. In compesite trapezoidal rule, the error is estimated to be inversely
proportional to the square of number of segments. That is. we can
decrease the error by taking more and more segments, But this
does not happen always. Why? Explain.

8. Describe Simpson’s method of computing integrals,

9. Prepare a flow chart for implementing the trapezoidal rule.

10. Prepare a flow chart for implementing Simpson’s one-third rule.

11. Show that Simpson’s one-third rule is exact up to degree 3.

12. Derive Simpson’s three-eighth’s rule using the first four terms of
Newton-Gregory forward formula.

13. State formulae and errcr terms for the four basic Newton-Cotes
rules,

14, How could we improve the accuracy of a numerical integration
process?

15. What is Romberg integration? How does it improve the accuracy of
integration?

16. Explain the concept used in Gaussian quadrature.



Numerical integration 403

\yéaiuate analytically the following integrals:

(@) [(3x2+2x-5)dy
0

2
(b) [(3x% 422~ 1) de
0

"
(e) [(3cosx+5)dx
AN
ﬁva]uate the integrals in Exercise 1 using the basic single segment
trapezoidal rule,
3. Evaluate the integrals in Execrcise 1 using the basic Simpson’s 1/3
rule,
4. Evaluate the integrals in Exercise 1 using the basic Simpson’s 3/8
rule.
37 Evaluate the integrals in Exercise 1 using multiple application of
the following rules with n = 4.
(a) Trapezoidal rule
(b) Simpson’s 1/3 rule

(¢} Simpson’s 3/8 rule
@ Use the trapezoidal rule with n = 4 to estimate
t dx
0 1+ 1"2

correct to five decimal places.
7.} Use Simpson’s method with n = 4 to estimate

Jl dx
0 1 AT S 2
correct to five decimal places. Compare this with the result ob-
tained in Exercise 6. How do they compare with the correct answer
7~ 0.785398.
- 8./ Estimate the following integrals by (a) trapezoidal method and (b)
" Simpson’s 1/3 method using the given n;

3 .
(a]Jg‘i, n=2 48
1 X

®) T e‘dx, i mid

1 4
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5
o) Je*'dx; n=8
1

(3 [cos? x dx, n==6
0

(e) }!,hw-Scnszxdx, n==6

0
-

2
) (e - Ddx, n=8
0

(q'l‘he table below shows the temperature f(¢) as a function of time,

= |Tiwe, ¢ 1 g | @ 4 5 6 7
I

Temperature, [{t) | 81 75

80 83 78 70 60 |

(a) Use Simpson’s 1/3 method to estimate
7
[ Fie)de
1
{b} Use the result in (a) tg estimate the average temperature,

10. Use Romberg integration to evaluate

M eosx
{a) j——dx

Q ,.']Tsiux

Inld
(b) |ersinzdx

~

0
tyInx i

X

(c)

o S—

(@ [ (5+2sinx) de
]

(e) I te*’ -1 dx
0
11, Prove that if f/ (x) » 0 and a < x < 6, the value of the integral

b

J (fxt)dx
a
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by the trapezoidal rule will always be greater than the exact value
of the integral. Verify your conclusion for the following functions:
(a) flx) =2
(b) flz) =1 +x+2°
A The table below shows the speed of a car at various intervals of
time. Find the distance travelled by the car at the end of 2 hours

Time, hr 0o | 05 | 10 | 15 | 20 | 25 |
Speed, kmhr | 0 | 40 60 | 50 45 65 \

0
13. The velocity of a p\z?rticie is governed by the law

sin({)
t) = —————— o
v (¢t + 1% explt)

If the initial position of the particle is x(0) = 0, then estimate the
position x(2) using the integral

i
x(t) = [ult)dt
u .
by applying a suitable Newton-Cotes formula.
14. Estimate the integral

by Gauss qudrature, with n = 2, 3, and 4.
15. Evaluate the integral
"2
I={(1-025sin’x)"dx
i}
using Gaussian quadrature, Assume a suitable value of n.
16. In an electric circuit, the voltage across the capacitor is given by

T =

T
%gi(!‘] di volts

T
= -1(?- | sin? (;r;] volts
0

Assuming C = 5F, compute the value of voltage v(T) for 7' = 1, 2,
and 3 seconds,
17. The circumference of an cllipse is given by

E_+b)(a—b]
8

"
3
Circumference = 4q | JlﬁF }sinz pde
L]
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18.

where 2a is the length of major axis and 2b is the length of minor
axis. Find the circumference if ¢ = 30 metres and b = 20 metres,
The viscous resistance of an object moving through a fluid with
velocity v is given by

R=—,"

The velocity is decreasing with time ¢. The time taken for the veloc-
ity to decrease from v, to v, is given by

¥y By
= { 2 duseconds =- [ L4y seconds
R oy B2

%

where m is the mass of the object. Estimate the time T required for
an object with m = 30 kg to reach a velocity of 10 m/sec from an
initial velocity of 20 m/sec,

. Write a modular program TRAPE?2 that uses the following subpro-

grams as modules to evaluate integrals using the composite trap-
ezuidal rules,

(a) Input module (Modulel)

(b) Evaluation module (Module2)

e} Output module (Moduled)
Use a function subprogram to evaluate the given function,

- Develop a modular program SIMS2 (similar to TRAPE?2) to evalu-

ate integrals using multiple application (i.e. composite) of Simp-
son’s 3/8 rule,

Modify the program SIMPS1 to include a test to determine whether
n is even and stop the execution if n is odd,

Write a program that uses two-point Gaussian quadrature to esti-
mate the integral

b
[f(x)dx

Split the interval into n equal subintervals and apply the quadra-
ture rule to each subinterval.

. Show that the integral

1
I,=][2? & 4, T N L
0

can be evaluated recursively by
IL,=1-nl,_, n=923,..,



Numerical Integration  40;

Write a program to evaluate I, using this recursive formula anc
compare the results by Simpson’s rule.

. Write a program to evaluate the integral of a table of points using
Newton's three-eighth’s rule.

. Write a program to cxperiment with the integration problem

I= T cos(r)dx
0

to see if you can determine an optimum value for &k using Simpson’s
rule, '

Note: The trapejoidal rule and the Simpson’s 1/3 rule can be used to
evaluate the integral of a table of points. Development of
FORTRAN programs is left as an exercise to the readers. (C pro-
grams for evaluating the integral of tabulated data are given in the
Appendix D).



Numerical Solution of
Ordinary Differential
Equations
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1374 NEED AND SCOPE

Many of the laws in physies, chemistry, engineering, biology and eco-
nomics are based on empirical observations that describe changes in the
states of systems. Mathematical models that describe the state of such
systems are often expressed in terms of not only certain system param-
eters but also their derivatives. Such mathematical models, which use
differential calculus to express relationship between variables, are known
as differential equations,

Examples of differential equalions are many. A few of them are listed
below to illustrate the nature of differential equations that occur in
science and engineering, :

1. Law of cooling

The Newton’s law of cooling states that the rate of loss of heat from &
liquid is propertional to the difference of temperatures between the lig-
uid and the surroundings. This can be stated in mathematical form as

d7T'(¢
_E_}zh’r‘:_’nm (13.1)
arl

where T, is the temperature of surroundings, 71¢) is the temperature of
liquid at time ¢ and % is the constant of proportionality.

2. Law of motion
The law governing the velocity v(¢) of a moving body is given by
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dott)
- (13.2)

where m is the mass of the body and F is the force acting on it.

3. Kirchhoffs law for an electrie circuit
The voltage across an electric circuit containing an inductance I and a
resistance R is given by

di

L —— -FR = V § b

df (13.3)
4. Radioactive decay '
The radicactive decay of an element is given by

—_— —km =0 13.
T m (13.4)

where m is the mass, ¢ is time and £ is the constanl rate of decay.

5. Simple harmonic motion
The equation to describe a simple harmonic motion js given by

d?; dy
mEEE—'FQ-CE*ky:U (13.5)

where y denotes displacement and m is the mass. Note that d%y/de?
represents acceleration and dy/dt represents velocity of the moving weight.

6. Force on a moving boat
When a boat moves through water, the retarding force is proportional to
the square of the velocity, The acceleration is given hy

dv k

— =—-—p? 13.6)
d¢f m i ERR

where m is the mass and # is the drag coefficient.

7. Heat flow in a rectangular plate
The model for heat flow in a rectangle plate that is heated is given by

i I i I -

EE#—-(E?:)‘{I,}'} (13.7)
where u(x, y) denotes the temperature at point (x, y) and flx, y) is the
heat source,

Note that all these examples contain the rate of change of 2 variable
expressed as a function of variables and parameters. Although most of
the differential equations may be solved analytically in their simplest
form, analytical techniques fail when the models are modified to take
into account the effect of other conditions of real-life situations. In all
such cases, numerical approximation of the solution may be considered
as a possible approach.
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The main concern of this chapter is to present various methods of
numerical solution of a class of differential equations known as ordinary
differential equations. This implies that the differential equations may
appear in different forms. This is evident from the ex- mples. We, there-
fore, define some important classes of differewual equations before con-
sidering the numerical solution of ordinary differential equations.

Number of Independent Variables

The quantity being differentiated is called the dependent variable and
the quantity with respect to which the dependent variable is differenti-
ated is called independent variable. If there is only one independent
variable, the equation is called an ordinary differential equation. If it
contains two or more independent variables, the derivatives will be par-
tial and, therefore, the equation is called a partial differential equatior.
Egs. (13.1) to (13.6) belong to the class of ordinary differential equations
while Eq. (13.7) is a partial differential equation. In this chapter we
shall consider only the ordinary differential equations.

Order of Equations \/f/t\[ v

-
Differential equations are also clﬁSﬁﬁe—d/mL{ Lo their order. The

order of a differential equation is the highest derivative that appears in
the equation. When the equation contains only a first derivative, it is
called a first-order differential equation. For example, Eqs (13.1) to (13.4)
are first-order equations. On the other hand, if the highest derivative is
a second derivative, the equation is called a second-order differential
equation. For example, Eq. (13.5) is a second-order equation.

A first-order equation can be expressed in the form

d
- (13.8)
dx
A second-order equation can be expressed in the form
= e v (13.9)

where y "' denotes the second derivative and ¥ is the first derivative.
Higher-order equations can be reduced to a set of first-order equations
by suitable transformations. For example, the equation

¥ =y 90
can be equivalently represented by
' =flx v uw
Y=
De i \/ﬂ UB
e B> S

Sometimos, the equations are reforred to by their degree. The degree of
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a differential equation is the power of the highest-order derivative. For
example,
' + ¥y =2y +3
is a first-degree, second-order equation while,
()% + 5y =0

18 a second-degree, third-order equation,

Linear and Nonlinear Equations4 £~ N J

A differential equation is known as a linear equation when it does not
contain terms involving the products of the dependent variable or ita
derivatives, For example,

¥+ 3y =2y 422
15 a second-order, linear equation. The equations
Y (=1
Y =-ay’

are nonlinear because the first one contains a product of ¥ and the
second contains a product of y.

General and Particular Solutions

A solution to a differential equation is a relationship between the de-
pendent and independent variables that satisfy the differential equa-
tion. For example,

y= 3_1’2 + X
is the solution of
¥ =6x+1
Similarly, :
o
1s the solution of
y!f o y

Note that each of the solutions given above is only one of an infinite
number of solutions. For example,

y=3 +x+2

y =82 4m~ 10
are also solutions of ¥ = 6x + 1. In general, ¥’ = 62 + 1 has a solution of
the form

y=%+x+c¢
where ¢ is known as the constant of integration. Similarly, y' = y has a

golution of the form y = ae* The solution that contains arbitrary con-
stants is not unique and is therefore known as the general solution.
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If the values of the constants are known, then, on substitution o.
these values in the general solution, a unique solution known as partici-
lar solution can be obtained.

1)
Initicl Value Problems |/ w;i Y-

\-Tn_nrder to obtain the values of the integration constants, we need addi-
tional information. For example, consider the salution ¥ = ae® to the
equation y’ = y. If we are given a value of y for some x, the constant a
can be determined. Suppose ¥ = 1 at x = 0, then,

y0)=ae’ = 1

Therefore,
=

. .
and the particular solution is

L FEE

If the order of the equation is 1, we will have to obtain » constants and,
therefore, we need n conditions in order to abtain a unique solution.
When all the conditions are specified at a particular value of the inde-
pendent variable x, then the problem is called an initial value problem.
It 15 alse possible to specify the conditions at different values of the
independent variable, Such prohlems are called the bou ndary-value prob-
lems. For example, if, instead of specifying only y(0) = 1, we also specify
¥0} + ¥(1) = 2, then the problem will be a boundary-value prub_l_e_rg_._ In
this case,

Y+ =all +e) =2

—

giving
a=211+e)

One-step and Muliistep Methods

All numerical techniques for solving differential equations involve a se-
ries of estimates of y(x| starting from the given conditions. There are two
basic approaches that could be used to estimale the values of y(x). They
are known as one-step methods and multistep methods.

In one-step methods, we use information from anly one preceding
point, ie. to estimate the value ¥, we need the conditions at the previ-
ous point y,_; only. Multistep methods use information at two or more
wrevious steps to estimate a value.

Scope

In this chapter, we mainly concentrate on the solution of ordinary differ-
ential equatlions and discuss the following methods:

1. Taylor series method

2, Euler’'s method

3. Heun's method
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Polygon method
Runge-Kutta method
Milne-Simpson method
7. Adams-Bashforth-Moulton method
The initial-value problem of an ordinary first-order differential equation
has the form

0 %

¥y (x) = flx, y(x)), ¥(xg) = ¥ (13.10)

In this chapter, we determine the solution of this equation on a finite
interval (xy, ), starting with the initial point x;. For the sake of simplic-

ity, in a number of places, we use ffor f (x, y),\_)\-/Zy/(x) and y*' for y*(x).
" BB TAYLOR SERIES METHOD

We can expand a function y(z) about a point x = x4 using Taylor’s theo-
rem ol expansion

_ ) o ¥ (xg)

Yy =ylxg) + (x —xg) y " (xg) + (x — x,)? Tﬂ

RS AT Zi?@l (13.11)
n:

where y (x,) is the ith derivative of y(x), evaluated at x = x;. The value of
y(x) can be obtained if we know the values of its derivatives. This im-
plies that if we are given the equation

y'=fly (13.12)

we must then repeatedly differentiate [ (x, y) implicitly with respect to x
and evaluate them at x;.
For example, if y " = f(x, y) then

” —...d— E‘i —i
Y T 4dx [_d::}_ dz [z, ¥

s F 3 dy
= [f(x, y)] + % [fix, ) o

ot af s
_§;+9yf _f'q.fxfy £13.13)

where [ denotes the function f(x, y) and f, and f, denote the partial
derivatives of the function f(x, y) with respect to x and y, respectively.
Similarly, we can obtain

Yo # Uy ¥ P bl v Il (13.14)
Let us illustrate this through an example.
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Consider the equation

y=2"+y*

under the condition y(x) = 1 when x = 0,
y=z+y
y'= 2+ 2y

Y= 2+ 2y + 2Ay' )
atx = 0, y(0) = 1 and, therefore,
¥(0)=1
¥'(0) =2
yU0) =2+ (2X1)2) + (2)1)* =8
Substituting these values, the Taylor series becomes

yr)=1+x4+2x%+ % 24 (13.15)

The number of terms to be used depends on the accuracy of the solution
needed.

Use the Taylor method to solve the cquation

e Y
for x = 0.25 and x = 0.5 given y(0) = 1

The solution of this equation is given by Eq. (13.15). That is,

3

ya)=1+x +x2+8%—1 + o
Therefore,
y(0.25) = 1 + 0.25 + (0.25)% + g- (0.25) + ...
- 1.33833
Similarly,

w05)=14+05+ 0.5 + -g (05 + ...

= 1.81667

Improving Accuracy

The error in Taylor method is in the order of (x - x,)" * ', If |x - x| is
large, the error can also become large. Therefore, the result of this
method in the interval (v, &) when (b — x) is large, is often found
unsatisfactory.
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The accuracy can be improved by dividing the entire interval into
subintervals (x,, x,), (x|, x3), (x5, x3), ... of equal length and comput.mg
yx),i=1,2, .., n successively, using tho Taylor series expansion. Here,
¥(x;) is used as an initial condition for computing ¥(x;,,). Thus,

(x;) e 5
}«'{A',-_| )= ,?('1[} =+ li-r_ (x.'+.'| = x|] i y_é"r_ !xH—l xin i

yim (o, )
oy — {xj ~ %)™ (13.16)

If we denote the size of each subinterval as h, then,
X,y =-x=h foxri=0, 1, .,n=1
and Eq. (13.16) becomes

¥ B 3™ __\
Yiaa =X+ l:!h'}2_!!hz+‘ : m! e DA

o

The derivatives yf"“ are determined using Eq. (13.12), (13.13) and (13.14)

at x = x; and y = y,. This formula can be used recursively to obtain y,
values.

Use the Taylor method recursively to solve the equation
y=x2+y:,  y0)=0

for the interval (0, 0.4) using two subintervals of size 0.2.

The derivatives of y are given by ﬁ_?/""' ' oA
y':r"a+y2 ~ X ‘{}v’ \O‘j)"
A - g r}‘ L B ‘
¥ =2+ 2yy e A e” |
uy 2 ' /) /\ﬁ X ‘O
Y= 2 4 20005 + Zyy" _,\/'}1 P q:fj
¥ = 6y 97 + 2yyn F
lteration 1 v% A

= yU Yy - X0 34 yiﬂ 4
Y1 =Yo + = h+21h 3|h 1 —ht s .

h=02y,=y0)=0
¥ =y0=0+y02%=0
yﬁ" ':.y"(ﬂ} =2x0+2 X}’(O) X}"«” =0
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Similarly,
=2
¥ =0
Therefore,
¥, =040 +n+%r_o.z)-’*+n
=0.002667 (atx=0.2)
Iteration 2
= 0.2
¥; = 0.002667
cyp=x2+32 = (0.2 + (0.002667)% = 0.04
¥i = 2%) + 2y, 54
= 200.2) + 2(0.002667) (0.04)
= 0.400213
Y =2+ 2y P + 2, ¥y
= 2 + 2(0.04)% + 2(0,002667) (0.400213)
= 2.005335
tp —by v +23’13m :
= 8(0.04) (0.400213) + 20.002667) (2.005335)
= 0. 106748
iy T 1 yi
Yo=y,+y1h 1'--5-,‘;.‘- +—él—h.3 4 —24—‘?14
= 0.002667 + 0.04(0.2) + 2 ““20213 (0.2)2
; 2.006835 55, 0.106748 0.106748
6 24
=0.021352
That is

3(0.4) = 0.021352
If we use h = (b - xy) = 04 (without subdividing), we obtain

$(0.4) :% (0.4 = 0.021333

The correct answer to the accuracy shown is v(0.4) = 0.021359. It shows
that the accuracy has been improved by using subintervals. The accu-
racy can be further improved by reducing h further, say, h = 0.1,
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One major problem with the Taylor series method is the evaluation of
higher-order derivatives. They become very complicated. All these de-
rivatives must be evaluated at (x;, y,), ¢ = 0, 1, 2, .... This method is,
therefore, generally impractical from a computational point of view, How-
ever, it illustrates the basic approach to numerical solution of differen-
tial equations.

Picard's Method

Consider the differential equation
dy
a = f!_.., }-‘}

We can integrate this to obtain the solution in the interval (x;, x)

j dy = T f(x, y)dx

xn *a

ar

x
yx) = yxg) + | flx, y)dx
g
Since y appears under the integral sign on the right, the integration

cannot be formed. The dependent variable y should be replaced by either
a constant or a function of x. Since we know the initial value of y(at x =
xg), we may use this as a first appropriation to the solution and the
result can be used on the right-hand side o obtain the next appropria-
tion. The iterative equation is written as

y! rlzyo + J'f(x’y‘”) dx (13.18)

e

Equation (13.18) is known as Picard’s method. Since this method in-
volves actual integration, sometimes it may not be possible to carry out
the integration. Example 13.3 illustrates the application of Picard’s meth-
od,

It can be seen that Picard’s method is not convenient for computer-
based solutions. Like Taylor’s series method, this is also a semi-numeric
method.

Solve the following equations by Picard’s method
(i) y(x) = =4 _"V.",, 0 =0
(i) y(x) = xe”, y0)=0

and estimate y(0.1), y(0.2) and ¥(1)

— e e e e e e e o ——— —— —— — —— ——
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(i) yx)=2*+y*
Yo= 01 Xg = 0

y =y, + I(xz +{y")?)dx

Zp

i TP
0+fa2dx 3

x
¥y* =0+ [(x?+(y)?)dx

<o

This process can be continued further although it may be a difficult task.
If we stop at y'?', then

3 T
Yo B
ylx 3 +63

¥(0.1) = 000003333
¥(0.2) = 0.0026667
y{1) = 0.3492063
{ii) y '(x) = xe¥
¥o =0, =0

W _psf i T
¥ ix =

I
Y =0+ [ xes /@ dy =t _ 3
0

Note that further integrations will become more difficult and even im-
possible, Now, let us assume

ylx) = y{ﬂl =plx?/2) _§
¥(0.1) = 0.0050125
y(0.2) = 0.0202013
y(1) = 0.6487213
We know that the exact solution of ¥(x) = xe” is

2
() =—In[1-%_
y(z) n( 5 )



Numerical Solution of Ordinary Differential Equations 419

Therefore
Y01 )00 = 0.0050125

Y(0.2),,, = 0.0202027
Y1),y = 0.6933147

Note that the error increases when {x — x) increases. Better accuracy
can be achieved by using the new initial value- 1e. y (0.1) can be used
as the initial value for computing y(0.2), instead of y(0).

EULER'S ME. OD

Euler’s method 1s the gimplest one-step method and has a limited appli-
cation because of its low accuracy. However, it is discussed here as il
serves as a starting point for all other advanced methods,

Consider the first two terms of the expansion (13.11)

yx) = yixg) + 3 (x,) (2 — xp)
Given the diflerential equation
¥'(x) = flx, y) with y(x,) = v,
we have '
_v’i_x;,] = f(xn_- yuj
and therefore
¥lx) = ylxg) + (x — x) flxy, yo)
Then, the value of y(x) at x = x, is given by
) = ylxg) + (xy = xg) flxg, yp)
Letting A = x, - x,, we obtain
Y1 =Yo+h [lxg yo)
Similarly, y(x) at x = x, is given by
Y2=x1+h [flx, 3)
In general, we obtain a recursive relation as

10 Gl < B h f[If! J’fﬁ (13‘19}

This formula is known as Euler’s method and can be used recursively
to evaluate y,, y,, ... of y{x), ¥(x,),..., starting from the initial condition
¥p = ¥(xp). Note that this does not involve any derivatives.

A new value of y is estimated using the previous value of y as the
initial condition. Note that the term A f(x;, y;,) represents the incremen-
tal value of y and f(x;, v,) is the slope of y(x} at (x,, ¥,), i.e. the new value
1s obtained by extrapolating linearly vver the step size £ using the slope
at its previous value. That is

New value = ald value + slape x step size
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This is illustrated in Fig. 13.1. Remember that y, approximates v(x,) and
y, approximates y(xp). The difference between them is the crror intro-
duced by the method.

ol

Exact value

Actual solution
of uxy) — = A

«Ermorin y,
/ _-=—Tangent line

1 at (xy, )
(X Ya)

. R

! Error in W

-

Exact value

Tangent line |
at (X, ¥o)

]
| i
] | [}
I [l
L 1

X Xy Xz X

e

Fig. 13.1 [llushration of Euler's method for twa steps

(riven the equation

dy .2 i
e = +1  withyl) =2

estimate y(2) by Euler's method using (i) A = 0.5 and (ii) A = 0.25.

(iYh=0.5
y(1) =2
Y(1.5) =2+ 0.5[3(1.0)* + 1] = 4.0
y(2.0) = 4.0 + 0.5[3(1.5)% + 1] = 7.875
(i) h = 0.25
y(l1=2
¥(1.25) =2+ 0.25(3(1° + 1] = 3.0
¥(1.5) = 3 + 0.25(3(1.25)° + 11 =/§.42188 (2595
¥(1.75) = 5.42188 + 0.25[3(1.5)° + 1] = 7.35938 =&’ '
(2.0) = 7.35938 + 0.25(3(1.75)" + 1] = 9.90626 2 § -
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Notice the difference in answers of y(2) in these two cases. The accuracy
is improved considerably when # is reduced t00.25 (true answer is 10.0).

Accuracy of Euler's Method

Ag usual, the accuracy is affected by two sources of ervor, namely, round-
off error and truncation error, Roundoff . ror 15 always present in a
computation and this ean be minimised by increasing the precision of
calculations.

The major cause i - loss of accuracy is Lruncation error. This arises
because of the use of a truncated Taylor series. Since Euler's method
uses Taylor series iteratively, the truncation error introduced n an it-
eration is propagated to the following iterations. This means the total
truncation error in any iteration step will consist of two cormponents— the
propagated fruncation error and the truncation error introduced by the
step itself.

The truncation introduced by the step itself is known as the local
truncation error end the sum of the propagated error and the local error
is called the global truncation error. Recall the Taylor series expansion
used in Euler'’s method for estimating the values of y,.

de p L S
Yie1 =¥ ¥ f]-'r—-2—‘- h_i F'3—§~J‘l3+..,

Since only the first two terms are used in Euler's formula, the local
truncation error is given hy

W B HS
Byoy =2l n2 s e, 2
W TR 31 4!
If the step size h is very small, the higher-order terms may be neglected
and therefore

Al

The above analysis assumes that the function ¥ = flx, ) has continu-
ous derivatives. The local truncation error of Euler's method is of the
order A%, If the final estimation requires n steps, the total (global) trun-
cation error at the target point b will be

n
3

Bl = Eeph? = (e +ea + ... + ¢, )h* = nch?

where
C=leg + Ca+ ... + e, Mn
Since
n=1{b -~ x,Mh,
:E”? = |:lf| - I;J,il'.’.'f'l
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Step 1
xy =1, Yo=2
¥y =y1.5)1 =40 (from example (13.4))
" i
E,, =%’ h? 4-%",&3
6(1) g, 6B
= — o )" -“‘ . }R = .g”t
5 (0.5)% 4 6 (0.5 0.875
Step 2

xy =15,  y, =40
y(2.0) = 7.875 {from example (13.4))

Yg

p BILE) ... i 3
By, :1;i)t(l.bl-" i ﬁ,to.m"‘ = 1.25
2 6
Exact solution 1s
ylx) =x" +x

and therefore
True y(1.5) = 4.875
True y(2.0) = 10.000

The estimated and true values of y and corresponding errors are tabu-
lated below.

; x Estimated y True y E, ._ Global error
[ Ak 4.0 4 BTH 0.875 { 0.875

1
' 2.0 7875 | 10.000 1.250 , 2.126

Note that the local and global errors are equal at the first step and
they are different in the second step. The difference between them ig the
propagated truncation error that results from the first step.

Observe that

(0.5 = 0875  sincee, = 3.5
£4(0.5)° = 1.250  since ¢, = 5.0
c=(ey +epl2 =425
E,=cb-xgh =425 x1x05=2.125
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This confirms the error equations for local and global truncation errors
discussed in this section,

Program EULER

The program EULER estimates the s~ ation of the first order differen-
tial equation y' = [z, y) at a given point using Euler's method (Eq.
13.19). The program is simple and self-explanatory. Note the use of an
intrinsic function in the line

N = INT(XP - X}/(H + 0.5)

Given initial value of x and the point of solution Xp, this statement
computes the number of steps required for evaluation using the speci-
fied step-size 4. The function INT returns the nearest integer of the real
value

H
k4 hesmmmar e e’ s e e e - - ®
PROCRAM FULER
M it et e e e = S s e e AT S e e e e L
* Main program *
* Thisz prougram astimates the solutien of the first *
b order differential equation y' = f(x, y) at a *
% giver point using Euler's merhod L
B o msderary e e e R e e g e L e SEET *
¥ Functions inwvaoked b
* F, INT *
B i b i e s e T S S T i S e T A A e e e i e -
* Subroutines used "
* NIL *
T e Seras e e i e Aali e R A Py e - - - e *
* Variables used ¥
¥ X nitial walue ot independent wariable %
¥ Yy - dal wvalue of dependent variable &
* XP of solutlon "
X H = Incromental atep-size e
* N Number of computational steps regulred '*
* i Incremental ¥ in each sten ?
N e e e el e e - U . - v
* Constant SE >
" NIL +
* -

REAL X,Y,%P,H,DY,¥
INTEGER N, LNT
EXTEENAL F

INTRIMSIC INT
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WRITE(*, ")
WRITE(*,*)  SOLUTION BY EULERS METHOD'
WRITE(*, *)

* Read wvalues

WRITE(*,*) ‘*Input initial values of x and ¥~
READ(*,*) X,Y

WRITE(*,*) ‘Input x at which Y is reguired-
READ(*,*) XP

WRITE(*,*) “Input step-size h*

READ (*,#*) Y

* Compute number of steps required
N = TINT({( {XP=-X) fH+0.5)
* Compute Y recursively at each step

15, & Q5 o M G |
DY = H'YF(X,V)
X = X+H
Y = ¥+DY
WHITE{*, ¥ I.%.¥
10 CONTINUE
* write the final result
WRITE(=*, *}
WRITE(*,*) ‘Value of ¥ at X =1, X:% 8. ¥
WRITE(*, *)

STGP

* Function subprogram

T e e i A Al . - gl . e e e im g e e e e e e o L e e

REAL FUNCTION F(X,Y)
REAT, X,Y

F= 2.0% %)%
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Test Run Results

SOLUTION BEY EULERS METHOD
Inpur initial values of x and y

1:8 &0

Input x at which v is required

2.0

Input. step-size h

6.25
£ 1.2500000 3.0000000
2 1.5G00000 4.2000000
3 1.7500000 5.6000000
4 2.0000000 7.2000000

Value of ¥ at % = 2.0000000 is 7.2000000

Stop - Program terminated.
HEUN’S METHOD

Euler's method is the simplest of all one-step methods. It does 1ol re-
quire any differentiation and is easy Lo implemenl on computers. How-
ever, its major weakness is large truncation errors. This is due to its
lincar characteristic. Recall that Euler's method uses only the first two
terms of the Taylor series. In this section, we shall consider an improve-
ment to Euler's method.

In Euler’s method, the slope at the beginning of the interval is used to
extrapolate y; to v, , | over the entire interval. Thus,

Yig1 =Y+ gk

where s/, is the slope at (v, y,). As illustrated in Fig. 13.2, 3, , , is clearly
an underestimate of y(x, , ;).

o
r X}
1 ,
» ¥, 1 (Estimated using m;)
slope m ——, o jﬁngent at y(x;, ) (stope m,)
, 5 i
| slope my — N o
N\ ¥ Ir ’r
‘ slope m L% |

{ ® S X*\ -~ YX, )
Fl ‘o -
_\-;‘ 7™y, , (Estimated using n1)

’ 1 :
M) .' i (‘Heun s mfathod}
‘ ; ! ¥.: (Estimated using m,)
! 1
X x! +1 ¥ i

Fig. 13.2 tiustration of Heun's method
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An alternative is to use the line which is parallel to the tangent at the
point (x, , ,, ¥(x, , |)) to extrapolate from y, to y, , , as shown in Fig. 13.2,
That is

Vi1 =¥ + moh
where m, is the slope at (x, , ;, ¥(x, ;). Note that the estimate appears
to be overestimated.

A third approach is to use a line whose slope is the average of the
slopes at the end points of the interval. Then

gty
2

As shown in Fig, 13.2, this gives a better approximation to y; , ;. This
approach is known as Heun’s method.

The formula for implementing Heun's method can be constructed easily.
Given the equation

¥ix) = flx, y)

Yis1 =t (1320)

we can obtain
mlzy'{.r‘) =f(xn -}'L)

me=y'(x; )=l Yy
and therefore
Ly M ¥i)
- 2

m

Equation (13.20) becomes

Vi1 =V ¥ fz,i [Flx, v+ fla oy 1}}_} (13.21)

Note that the term y;, | appears on both sides of Eq. (13.21) and, there-
fore, y, , , cannot be evaluated until the value of y, , ; inside the function
f(x; 1, ¥ . 1) is available. This value can be predicted using the Euler’s
formula as

Yir1=x+hxflx, y.-lj (13.22)

Then, Heun's formula becomes

Yoo =yt B e 30+ Fl5ia ¥ (13.29)

Equation (13.23) is an improved version of Euler's method. Since it
attempts to correct the values of y; , , using the predicted value of y, , ,
(by Euler's method), it is classified as a one-step predictor-corrector
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method. Eq. (13.22) is known as the predictor and Eq. (13.23) is known
as the corrector. Substituting 18q. (13.22) into Eq. (13.23), we obtain

Yis1=%+ -’;1 [ftx;, ¥) + flx; Y+ AR fle, yoN (13.24)
Erampie 134
Given the equation
y'(x) = 2yix with y(1) = 2

-._.__.____...._.—.--______.-.-.._—.._._—..._—_.__..-__...._,_..___..___..

¥ =flx,¥) = 2yix
=il Yo=2, h =025
(1) Evler's method
¥(1.25)

Y =yo +h flxg, yo)
9% 2
-2 4+025 ﬂ’;— = 5.00

¥(1.5)= 3.0 + 0.25 2:23'0 - 49

5
]
WL75) =42 +0.25 2 ’; ‘;: —5.6

2x5.6
(2.00= 5.6 .20 — =T
b1 5.6+ 0.25 175 7.2
(i1) Heun’s method
Tteration 1
2x2
-’RI = _:_"' = 40
Ye(1.25) = 2 + 0.25(4.0) = 3.0
2%3.0
Mo " 48

1.25)=2 ¢ fo’- (4.0 + 4.8) = 3.1
Iteration 2

Ei:%l 4.06
L25 ~ 7

¥(15) = 3.1 + 0.25(4.96) = 4.34

my =
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2x4.34

L 15 _—

L 25
y(1.5)=31+ e (4.96 + 5.79) = 4.44
Iterution 3

2x4.44

my = —'-']—5“"" — 5‘92

y.1.756) = 4.44 + 0.25(5.92) = 5.92

2x5.92 -

my 2—1'—75 =0T

Y1.75) = 4.44 + 0-55 (5.92 + 6.77) = 6.03

lteration 4

246.03
157178
6.03 + 0.25(6.89) = 7.75

=6.89

y.[2.0)

iy = ——a—— =115

¥(2.0) = 6.03 + 9-555 (6.89 + 7.75) = 7.86

Exact solution of the equation

¥'x) = 2v/xr with y(11= 2
is obtained as

i) = Bt

The exact values of y(x) and the estimated values by both the methods
are tabulated below.

[ | — ] p— |
| g ; B ¥0x) =
' | Iuler's method Heun's method Analytical
I:JE’“ | 200 200 200
15 3.00 3.10 896 |
150 | 430 4.44 450
R 5.60 603 | 6125
2.00 7.20 | T 800 |

All estimated values are accurate to two decimal places. It is clear that
Heun's method provides better results compared to Euler’s method.

Error Analysis
It can be easily shown that Heun's method is a second-order method
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and, therefore, its local truncation is of the order #°. Let us consider
Eq. (13.24). Letting ¢ = 0, for simplicity, we obtain

yl:yﬂ+—%[rnl+f(x0+h, Yo + my h)l (13.25)

Let us expand the term f(x, , .. ¥; + m,h) in a Taylor series form,

Axg+ b, yo + muh) = flxg, vy) + h? +m, g
=my + hf, + mhf,
On substituting this into Eq. (13.25) we get
h2
Y1=Y¥n + hm, + 5 {f, + m,_f;] (13.26)

We know that
=y 3
(f. 4 m“ﬁ— " (see equation (13.13))
and therefore Eq. (13.26) can be written as

: y

2' = h?

This proves that Heun’s method is of order #* and the local truncation
error is of the order 4°. If the final estimate is obtained after n itera-
tions, then the global truncation error is given hy

J"'
Mg =g e

fi
|E,| = % c;h® =nch®
i

We know that

_ g —xy b- x
h h
Therelore,
| B} = (b—xpkh?

That is, the global truneation error is of the order A%

Program HEUN

The algorithm of Heun’s method is implemented by the program HEUN.
Note that the algorithm is very similar to that of the Euler's method,
except for the slope used in extrapolating the initial value.

* Main program %
* This program solves the first order differential x
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* equation y' = f(x, y) uging the Heun's maethod

*

Furictions invoked
F, INT

S e T U = ——

* ¥

»

Subroutines used
NIL

-

* Variables uged
: A - Initial wvalue of independent. variable

* ¥ - Initial value of dependent wvariable
* AP - Point of solution
= H - Step-size

n N - Number ¢f steps

* Constants used
* NIL

REAL X,Y, XP,H, Ml ,M2,F

INTEGER N, INT

INTRINSIC TINT

EXTERNAL F

WRITE(*,*)

WRITE (™, %) SOLUTION BY HEUNS METHOD'
WRITE(*, *)

* Tnput values
WRITE(*,*) ‘Input initial values of x and y
READ(*,*) X.¥
WRITE(*,*) ‘Input x at which Y is regquired:
READ(*,*) XPp
WRITE(*,*) ‘Input step-size hv
READ(*,*) H

* Compute number of steps required
N = INT((XP-X)/H+0.5)

* Compute Y recursively at each step

Do 20 I = 1,N

MI = F(X.Y)
M2 = F(X+H,Y+ML+H)
¥ = XFH

Y = ¥+0.5*H* (M1+M2)
WRITE(*; *) I, X, ¥

L S

*
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20 CONTINUE '

* Write the final resulr

WRITE(*, *)

WRITE(*,*) ‘Value of ¥ at X ST is’, Y

WRITE(*, =)

STOP

END
e End of main HEUN ==—-m-eeeoooo oo *
® e e e T R e *
* Function subprogram o

REAL FUNCTION F(X,Y)
REAL X,Y
B o= 240 % ¥fX

RETURN
END

L End of fopetisn P8 e o
Test Run Results

First run
SOLUTION BY HEUNS METHOD

Input initial values of x and '

1.0 2:D

Input = at which y is reguired

2.0 '

Input step-size h

0.25
2 1.2500000 3.1000000
2 1.5000000 4.4433330
3 1.7500000 6.0302380
4 2.0000000 7.8608460

Value of ¥ at X = 2.0000000 is 7.8608460

Stop - Prougram terminated.

Second run
SOLUTION BY HEUNS METHOD
Input initial values of x and y
1.0 2.0
Input x at which y is reguired
2.0
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Input step-size h

0. 125

1 1.1250000
2 1.2500000
3 1.3750000
4 1.5000000
5 1.6250000
& 1.7500000
s 1.8750000
B 2.0000000

vValue of ¥ at X = 2.0000000

Stop - Program terminated.

Third run

SOLUTION BY HEUNS

h N W o B

-1 >

1s7.95953%00

.5277780
~1175920
. 7694530
.4833640
.2593310
.0973560
.9974420
. 9595200

METHODR

Input initial wvalues of x and y

LB 20

Input x at which ¥y is reguired

2.0

Input step-size h

0.1 '
] 1.1000000 2.4181820
2 1.2000000 2.8761710
3 1.3000000 3.3738700
4 1.4000000 3.9115800
5 1.5000000 4.48%80040
] 1.60000040 5.1062420
T 1.7000000 5.7632930
B 1.8000000 6.4601640
2 1.5000000 7.19684390
140 2.0000000 7.9%33510

Value of ¥ at X = 2.0000000 is 7.9733510

Stop - Program terminated,

POLYGON METHOD

Another modification of Euler's method is to use the slope of the func-
tion at the estimated midpoints of (x,, y;) and (x,,;, ¥,.,) to approximate

¥:is1- Thus,

X, vx1 YitYiar

yn1=ye+f[ 2 ' 9

=y, +flx; + W2, 5, + Ay/2h

N

Jh

(13.27)
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Ay is the estimated incremental value of y from y, and can be obtained
' using Euler’s formula as

Ay =h [, v
Then, equation (13.27) can be written as

=X s !
Vi =W T hf {I! o+ ;L"’Ea ¥i + h”flz J(‘{x{'- _'i"ijlll jl

; =y; +hf(x, + B/2, y;, + mh/2) :i (13.28)
: =y, + msh |
i — —
where
2 h myh
my = flx;,¥,) and my=f x,-+§,yj-.———2——

Equation (13.28) is known as the modified Euler's method or improved
polygon method, The method, also called the midpoint method, is illus-
trated in Fig. 13.3.

”’“T YXon)

& Errorin y, .

tans 1|

47— Slope m
: 2

|
|
5
|
|

Fig. 13.3 Midpoint method

1
i
i
i 1 ——
X; x; + hi2 X4 X

Like Heun's method, this method is also of the order k% and therefore,
the local truncation error is of the order A* and the global truncation
error is of the order A%

Estimate »(1.5) waith & = 0.25 for the equation in Example 13.6 using
P-_olygon method.

i — — — — — o i i i, i, e, . e e S

’ 2y
M
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¥1l) =20
y(125)=20+0.257(1 +0.125, 2 + 0.1251(1, 21
= 2.0 + 0.25 f(1.125, 2.5) = 3.11
¥(1.5) = 3.11 + 0.25 f(1.26 + 0.125, 3.11 + 0.725 f(1.26, 3.11)
= 3.11 + 0.25 f(1.375, 3.732) = 4.47

Estimated values of ¥(1.5) by various methods for the equation
y'(x)=2y/x with y(1) = 2.0
are given below:

Euler's methed : 4,20
Heun’s method : 4.44
Polygon method : 4.47
Exact answer ! 4.50

Note that the polygon method yields better results compared to the
Heun's method.

Program POLYGN

Program POLYGN implements the polygon algorithm to solve a differ-
ential equation of type v ' = f(x, ¥)

B oo sk s e S e e P T e B
PROGRAM POLYCN

PR G S Rl o, o e e e e s e T i

¥ Main program A
* This program solves the differemtial eguation e
* of type 3’ fix, y) by polygon method *
W i o o b i e i e L s i o i o e i L m Pt e =L *
* Funclions invoked i
* "F, INT *
W e g e 18 A= e S e L e i R R ————— P #
* Bubroutines used ¥
- NIL *
W T e e et 2y e St o -
* Variables used *
i X - Initial wvalue of the independent variable *
¥ Y - Initial walue of the dependent variable *
* XP - Point of solution *
* E - Incremental step-size ¥
* N - Mumber of computational steps required *
[ S S N S S R S SN RS S e g o o . S & e L R = L L P e oSV
* Constants used "
* NIL ®
* 2
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REAL X,Y,XP,H, M1, M2,F
INTEGER N, INT
INTRINSIC INT
EXTERNAL F

WRITE(*, *)
WRITE(*, >} SOLUTION BY POLYGON METHOD
WRITE(*, *)

* Input wvalues

WRITE(*,*) ‘TInput initial values of x and y’
READ(*,*) X,Y

WRITE(*,*) ‘'Input x at which Y is regquired’
READ(*,*) Xp

WRITE(*,*) ‘Input step-gize h’

READ(*,*) H

* Compute pumber of steps required
N = INT( (XP-X) /H+0.5)
* Compute Y at each step

B 30 F = 1.8
ML = B(X.Y)
M2 F(X+0.5*H,Y40.5%H*M1)
X = X+H
Y = Y+M2*H
WHITE{*, *) T.X. ¥
30 CONTINUE

* Write the final value of Vv

WRITE(*, *)

WRITE(*,*) ‘Value of ¥ at X =, X, is*, Y

WRITE(*, *)

STOP

END
B T End of main POLYGN —ww-——oommooo o .
i L *
* Function subprogram %
e e s A S 4 o *

REAL, FUNCTION F(X,Y)
REAL X,Y

F o= 2.0 % ¥i¥%
RETURN
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Test Run Resulfs

SOLUTION BY POLYGON METHOD
Input initial values of x and y

10 2.0

Input x at which y is regquired

2.0

Input step-size h

0.25
1 1.2500000 3.1111110
2 1.5000000 4.4686870
3 A1.7500000 6.0728310
B -2.0006000 7.9235990

valug of Y at X =  2.0000000 is  7.9235990

AStop - Program terminated.

7

£13.6| RUNGE-KUTTA 1'STHODS

(]
I~

Runge-Kutta methods refer to a family of one-step methods used for
numerical solution of initial value problems. They are all based on the
general form of the extrapolation equation,

Yeor = ¥; + slope % interval size
=y, +mh

where m represents the slope that is weighted averages of the slopes at
various points in the interval 4. If we estimate m using slopes at r points
in the interval (x,, x,,,}, then m can be written as

m o= warty + WeMg + ... + W, m, (13.29)
where wy, w,,..., w, are weights of the slopes at various points. The
slopes my, ma, ..., m, are computed as follows:

my = flx, y)
mg =[x, + a,h, y, + by, mh)
mg = flx; + ash, y, + byymph + bgy moh)

m, = f('ri + II:‘"r‘-lh': yi+ bn—l. 1 mlh + ..+ br-l, r-y My h)

That is
my=flx,y) r=1

r-1
m,:f[xlwa,_lh,yﬁh Zb,_l__,-mJ rzg {13.30)
J=1
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Nota that the computation ‘(ﬁ. slope at :l::;}.' Pt invoives the slopee at all
nrevicus points. Slopes car Lie computad recur., v qadner mtian 10
é_t_ﬂrg;in_;: '{;'um o }‘:_;J. ) 1 by using equation 13,104

Runge-Kuita (RK) mcthods are known by thair usiap | ,
an RK methaod is called the rarder Runpe-Kigin mathod . en slopes at

rorrints are used to oot ’ SRR 0N 4

or msktapra

tnerelore, Culer's method is a first-order Renge-Kutta mewoa, Sim-
larly, Heun’s method is a sccond order Runge Kutta method because it
employs slopes at two end points of the interval,

As it was demonstrated by the Euler and Heun methods, higher the
order, better would be the accuracy of estimates. Therefore, selection of
order for vsing RK meihods depends on the problem under consider-
ation.

Determination of weigius

For using a Runge-Kutta method, the first requirement is the determi-
nation of weights of slopes at various pointe. The number of points is
equal to the order of the method chosen. For the purpose of demonstra-
tien, we consider here the second-order Runge Kutta method and show

how to evaluate varions constants and weights.
The second-order RK methad has the form

T = i+ (ullnl‘l - u‘,‘j'r'll;,';‘jl k_‘_.».;}]._:
where
my =[x ;)
Mg = r(xi +agh, y; + bl] ) (13.32)

The weights w; and w, and the constants a, and b,, are to be deter-
mined. The centre principle of the Runge-Kutta approach is that these
parameters are chosen such that a power series expansion of the right
side of Kg. (13.31) agrees with the Taylor series of expansion of y;,; in
terms of y, and f(x,, y,).

The second-order Taylor series expansion of ¥, about y; is

ye

Yo =V YR+ h? (13.33)
Given
yi=fl,y)=r

}-!rr -_—%i_ :)“;- i _f‘,‘f

Therefore, Eq. (13.33) becomes

Ym=vi+fh+f+f, ) R (13.34)

2



438 MNumerical Methods

Now, consider the right side of Eq. (13.31). Since m, is already a func-
tion of x; and ¥, we need to expand only m, as a power series in terms of
f(x;, ;). From Eq. (13.32)

my = flx; + ah, y; + byymyh)
Expanding the funection on the right-hana side using the Taylor series
expansion, we get
my = [(x, y) + ah f, + byymh f, + OGRY)
Substituting this in Eq. (13.31) and replacing m, = f(x, y,) by f, we get
Yin =Y+l f+ wof + woa hf, + wbyh ffIh + O(h®)
=y, + g + wohkf + (woa, fy + weby fF)B* + OR*)  (13.35)

If Egs (13.34) and (13.35) are to be equivaleni, then they should agree
term by term. This is possible only if

wy + wy =1
wea, = 1/2
wy by =1/2

Note that we have four unknowns and only three equations. Therefore,
there is no unique solution. However, we can assume a value for one of
the constants and determine the others. This implies that there is an
infinite family of second-order RK methods. For example, if we choose
w, = 1/2, then we gel

=18 =82 d=Lk el

With these values, Eq. (13.31) becomes

LAEUTY (13.36)
- J

L=t
L

where,
my = e, ¥)
my =[x, + h, ¥ + mh)
Note that this equation is the Heun's formula.
Similarly, if we choose w, = 0, then we get
-r{ w, =0, wy=1, &y =y by =12

and Eq. (13.31) becomes

[ Yz =y, + mah (13.37)

where

Jn] = f[xn }’1}
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h mqh
S ASPILY

This results in the midpoint or polygon method,

Another strategy is to choose the parameters such that the bound on
the truncation error is minimum, It has been shown by Ralston that
wy = 1/3 and wy = 2/3 produces minimum truncation error. With these
weights,

Yiel1 = ¥i+ (13.38)

m1+2m2 h J

where,
my =[x, )

3 3
my :f(xE +—4~}z,y‘ - Emih)

Fourth-Order Runge-Kutta Methods

It is clear from Eq. (13.29) and the discussions above that it is possible to
construct RK methods of different orders. However, the commonly used
ones are the fourth-order methods. Although there are different versions
of fourth-order RK methods, the most popular method is the classical
fourth-order Runge-Kutta method given below:

m1=f(x,,y,-)
mh
m2=f(x,+%,}', ;o 21 J
} moh
mg=f(x,+§‘,y,-+ 22 ) (13.39)

my=fx, + 0,y +mgh)

Yisr =¥ +(m, il ;2m3 i }h

Use the classical RK method to estimate y(0.4) when
Y@ =x*+y2  with y0)=0
Assume h = 0.2

« T =2 ¢ 52 v 0
m1=f(xu,yu)=0 ¢
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h
My =f(xo+‘g:.)’n+m2! ]zﬂﬁl, 0)=0.01

h mah f~2 0.01x0.2
m3=f(xa“§;?n+"2“)=fl g g

my =[x, +h, y, + mgh) = £(0.2,0.01 x 0.2) = 0.04
, 042x0.01+2x0.01+0.04

J=0.01

¥(0.2)=0 = 0.2 = 0.002667
lteration 2
J.'l = 0.2
1 = 0.002667
my = £(0.2, 0.002667) = 0.04
my = f[ 0.3,0.002667 + 30—42"—-0'5} = 0.090044

0.090044 x 0.2
2

my =£10.4, 0.002667 + (0.090136X0.2)) = 0.160428

7054} = bonasaT » 204+ 20 000044) 26&990391' 0.160428 5

= 0.021380 (correct to six decimals)

The exact answer is 0.021359. If we use h = 0.1, then y(0.4) will be
0.021359. T'ry and check.

Program RUNGE4

RUNGEA ig a program designed to compute the solution of a first order
differential equation of type ¥’ = f(x, y) using the fourth-order Runge-
Kutta method.

mg = f‘[o. 3,0.002667 + J =0.090136

e e R ey e = i e e e b b el e B e *
PROGRAM RUNGE4

B i e e e e i e e g, S i i e *

* Main program »

* This program computes the solution of first order %

* differential equation of type y' = f(x,y} using #

* the 4th order Runge-Kutta method .

* Functions invoked
F,INT 7
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* Subroutines used *
¥ NIL *
B e o - —— . A ot o e i o o e e *
* Variables used %
¥ X - Initial wvalue of independent variable #
* ¥ - Initial value of dependent variable ¥
2 XP - Point of solution L
* H - Step-size i
» N - Number of steps *
* e e e e e e e S e e e L T ®
* Constants used ¥
¥ NIL *

REAL, X,Y,XP,H,M1,M2 M3 M4, F
INTEGER N, INT

INTRINSIC INT

EXTERNAL F

WRITE(*,*)

WRITE (* *)" SOLUTION BY 4_TH ORDER R-K METHOD'/
WRITE(*,*)

* Input Values

WRITE(*,*) ‘Input initial walues of x and y’
READ(*,*) X.,Y

WRITE(*,*) ‘Tnput x at which y is reguired’
READ(*,*) Xb

WRITE(*,*) 'lnput step-size h’

READ(*,*) H

* Compute number of steps required
N = INT(({XP-X)/H+0.5)
* Compute Y at each step

WRITE(*, %)’ momemem e oo e ;
WRITE(* *}* STEP b- ¢ ¥ %
WRITE(*, %)’ oo '

DO 40 I = 1,N
M1 = F(X,Y)
M2 = F(X+0.5*H,Y+0.5*M1*H)
M3 = P(X+0.5*H,Y+0.5*M2*H)
Md = F(X+H,Y+M3I*H)
X = X+H
Y = Y+(M1+2.0*M2+2.0*M3+M4)*H/6.0
WRITE(*,*) I,.X,Y



442 Numerical Methods

40 CONTINUE
WRTTEI®#)Y  ssccceos s s e SRR e

* Write the final wvalue of Y

WRITE(*,*)

WRHITE(*,*) ‘valua of ¥ at X =, %, 18,

WRITE(*, *)

STOP

END
e ——= End of main RUNGE4 —-------mommmmmee *
B e R o a0 s s a4 i o 4 s i e e S *
* Function subprogram 4
* e A et s ek o o — — - "

REAI, FUNCTION F(X,Y)
REAL X,Y

Fe=2.0*¥Ym

RETURN
END
R S S End of function F{X,¥) -—-—=-ceenmo-_ e
Test Run Resulfs

SOLUTION BY d_TH ORDER R-K METHOD
Input initial values of x and v

1.0 2.0

Input x at which y is rogquired

2.0

. Input step-size h
0.25
S5TEP X X

& 1.2500000 3.1246910
2 1.5000000 4.4993830
3 1.7500000 £.1240550
4 2.0000000 7.99R6960

Value of ¥ at X = 2.000000 is 7.9986960

Stop - Program terminated.

[ ACCURACY OF ONE-STEP METHODS

How do we achieve the desired level of accuracy in one-step methods?
One approach is to repeat the computations at decreasing values of A
until the required accuracy is obtained. Thi- =ay involve a large
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number of repetitions if the initial value of A is far away from the
optimal value. Another approach is to estimate the value of & that is
likely to give the desired level of accuracy.

It is very difficult to have a formula in terms A for the global error.
However, we know that the order of global truncation error is A7 if the
order of local truncation error is 4" * !, We can use this information to
study the sensitivity of the solution to the value of & and thereby esti-
mate the size of . Obtain estimates of y(4) at two different values of h,
say fi; and hy. Then

Yexact -'_}’(b, hlJ = "h{

-yemut == }'{b, fl-z] — r‘h;

where ¢ is the constant of proportionality. The above equations can be
solved for ¢ as :

¥(b, hy) = y(b, ky)

hlr — h;

=

(13.40)

t

If we need the answer to an accuracy of d decimal places, then the error
must not be greater than 0.5 x 10 and, therefore,

ch"<0.5 %10
Thus

(A7 - )10

2Ay

AT, =

opt

(13.41)

where Ay = y(b, hy) — y(b, h,). For example, for a second-order method,
the global error is proportional to % and therefore hope is given by

If we choose hy = 2h,, then

3x10¢
S T
Any value of & < kg, will give the desired accuracy.

- BeriEng]

Two estimates of y(0.8) of the equation
Y) =2 + y* with  y(0)=1
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are obtained using fourth-order RK method at 2 = 0.05 and h = 0.025.
(0.8, 0.05) = 5.8410870
(0.8, 0.025) = 5 479627
Estimate the value of A required to obtain the solution accurate to
(i) four decimal places and (ii) six decimal places

— — — i — —— — e B— o — o — —— ———— — —

i) d=4
(0.05% — 0.0254) 104 4
M= "Z0.00es76T - 428%10
k= 001437
Gi) d=6
(0.054 - 0,025%) 10-6
oL Lo MRS WEUSRRD A =10
W = G 0068767) A
h = 0.00454

We may use i = 0.01 to obtain a figure accurate to four decimal places
and & = (.004 to oblain a figure accurate to six decimal places.

MULTISTEP METHODS

So far we have discussed many methods for obtaining numerical solu-
tion of first-order initial-value problems. All of them use information
only from the last computed point (x,, ¥,) to compute the next point (x; _ ,,
¥; 4 1)- Therefore, all these methods are called single-step methods. They
do not make use of the information available at the earlier steps, ¥, _ |,
¥i_ 2 ete, even when they are available. It is possible to improve the
efficiency of estimation by wsing the information at several previous
points. Methads that use information from more than ene previous points
to compute the next point are called multistep methods. Sometimes, a
pair of multistep methods are used in conjunction with each other, one
for predicting the value of y; _, and the other for correcting the predicted
value of v, , ;. Such methods are termed predictor-corrector methods.
One major problem with multistep methods is that they are not self-
starting. They need more informaltion than the initial value condition. If
a method uses four previous points, say ¥y, ¥, ¥, and y,, then all these
values must be obtained before the method is actually used. These val-
ues, known as starting values, can be obtained using any of the single-
step methods discussed earlier. It is important to note that the degree of
accuracy of the single-step method must mateh that ~f the multistep
method to be used. For instance, a fourth-order RK me hod is normally
used to generate starting values for implementing a fourth-order multi-
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step method. In this section, we consider the following popular multistep
methods:

1. Milne-Simpson method

2. Adams-Bashforth-Moulton method 3
Both of them are fourth-order methods and use a pair of multistep
methods in conjunction with each other. L
Milne-Simpson Method c
The Milne-Simpson method is a predictor-corrector method. It uses a Milne
formula as a predictor and the popular Simpson’s formula as a corrector.
These formulae are based on the fundamental theorem of calculus.

il
Y Pp=y) + [ fix, y)dx (13.42)

%

When j =i -3, the Eq. becomes an open integration formula and produc-
es the Milne's formula

| ,

Yz SNy ¥ %ﬁ E-'zf; -2 fi—l + 2f:) (13.43)
Similarly, when j = i — 1, Eq. (13.42) becomes a closed form integration
and produces the two-segment Simpson’s formula

Yier=Yis1+ B4+ finn) (13.44)
Milne’s formula is used to *predict’ the Starting points
value of y, , ; which is then used to cal- Yica Vi1 Y
culate £, , | (in Eq. (13.44)) from the dif-
ferential equation.

ﬂ+1=f{-xl+1.!yl+l) F'nedicﬁmofy}”
Then, Eq. (13.44) is used to correct the
predicted value of y, , ;. The process is
then repeated for the next value of i,

¥

Each stage involves four basie calcula- Evaluation of £, —
tions, namely,

1. predietion of y, | , r

2. evaluation of £, , ; 3

3. correction of y, | , Correction of y;, 1

4. improved value of f; , , (for use in

next stage) l

It is also possible to use the corrector Next stage
formula repeatedly to refine the esti- (if necessary)
mate of y, , ; before moving on to the Fig.13.4 Implementation of pre-
next stage (see Fig. 13.4). dictor-comector meth-

ods
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Given the equation

¥(x) -—--2% with y(1) = 2

estimate y(2) using the Milne-Simpson predictor-corrector method.
Assume h = 0.25.

T ——— — —— — T . et e S — — — e o S o . o

Milne’s formula at i = 3 is

vi =yo+ 2 af - fy 4 26,)
Simpson's formula at i = 3 is

i =y + B(fa+4fs 4 £F)

where f; = f(x;, ;)

To use these formulae, we require the estimates of ¥ Y2 and y; in
addition to the initial condition y,. These can be obtained using any of
the single-step fourth-order methods.

Let us assume that they have been estimated using the fourth-order
RK method as follows:

¥ =%(1.25) = 3.13
Yp=¥(15)=4.50
yq = y(1.75) = 6.13

Then
2x3.13
fi sl
2% 4.5
fg ‘—__1‘5_——'600
2%6.13
fa =375 =101
Substituting these in Milne’s formula we predict the value of ¥(2) as
y! =200+ -“-’%351 (2% 5.01 - 6.00 + 2 x 7.01) = 8.01
2x8.
£ = ",‘3 0 _s.01

Now we obtain the corrected value of y(2) using Simpson formula as
Yi =450+ 9-32—5 (6.00 + 4 x 7.01 + 8.01)

=8.00
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We can again use the corrector formula o refine the estimate

fi= E’i.iﬂ}. -~ 8.00

¥S = 4.50 + ‘?—,ffl (6.00 + 4 x T01 + 8.01)

= 5.00
Note that the exact solution is y(2) = 8.

Program MILSIM

An algorithm for evaluating the equation ) = f(x, ) using Milne-Simpson
method is illustrated in Fig. 13.4. Program MILSIM shows the imple-
mentation of the algorithm in details. The program does the following:
1. Computes the starting points using fourth-order RK method

2 Predicts the function value by Milne’s formula

9 Corrects the value obtained using Simpson’s method

4. Writes the results

PROGRAM MILSIM

* - e e T L S e AR p————— i b
* Main program : L
# This program solves the first order differential *
% equation y' = f (X, ¥) using Milne-Simpson method *
L =g - e e I By et DU,
* sunctions invoked e
* ., INT *
* == = i & s e e e e B L . e 8 e i O S e ———
* gybroutines used *
*' NIL *
e e L —— - i T i e e *
* yariables used #*
* (1) - Initial value of independent variable %
* Yil) inirial wvalue of dependent variable *
* ¥P - Point of solution H
# N Number of steps %
* H - Scep-size "
* ¥ - Array of independent wvariable %
* Y array of dependent variable #
W i sl e i1 = R L L SEICTE W P g o o 8 _______._*
* Constants used ®
A NIL .
* *
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REAL X.Y,H,XP,MI,M2,H3.Md,SUHl,SUH2,F
INTEGER N, INT

INTRINSIC INT

EXTERNAL F

DIMENSION X(10), Y(10)

Read values

WRITE(*,*) ‘Input initial values of x and vy’
READ(*,*) X{(1),Y(1)
WRITE(*, *) ‘Input x at which v is required-
READ (*,*) Xp
WRITE(*,*) ‘Tnput step-size hL°'
READ(*,*) H

Compute number of computations involved

N = INT((XP-X(1))}/H + 0.5)

* We need four starting points for Milne-Simpson method.
* Initial values form the first point. Remaining three

10

*

points are obtained using 4th order RK method
WRITE(*, %)
WRITE(*,*) ‘INITIAL VALUES', X(1}, ¥(1)
WRITE(*, *)

Computing three points by RX method
WRITE(*,K6 *}) ‘THREE VALUES BY RK METHOD'

10, UG 0 T S
Ml = F(X(I).,Y(I))
M2 = F{X(I)+0.5*H, Y{I)+0.5*M1*H)
M3 = F(X(I)+0.5%H, Y{(I)+0.5*M2%H)
M4 = F(X(I)+H, Y(I)+M3*H)
X(I+l) = X(I)+H

Y(I+1) = Y(I}+[M1+2AD*M2+2.U*M3+M4}'H/6¢O
WRITE(*,*) I, X(I+1), Y{I+1)

CONTINUE

WRITE(*, *}

WRITE(*,*) ‘VALUES OBTAINED BY MILNE-SIMPSON METHOD'
DO 20 I =4, n

F2 = F(X(1-2), Y{I-2))
3 = FlX(r-1), ¥(I-1))
o= P@(LY, YD)

Predicted value of y by Milne's formula)

TLT#1y = Y(I-3i+4.0‘H!3.u'|¢.D‘FZ-F3+2.D*F4]
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X(I+1) = X(I) + H
F5 = F(X(I+1), Y(I+1))
* Corrected value of Vv (by Simrson's formula)

¥Y(I+1) = Y(T-1) + H/3.0 *{F3+4.0*F4+F5)
WRITE(*, *) 1, X(I+1), ¥{I.1)
20 CONTINU.

WRITE(*, *)
WRITE(*,*) ‘Value of ¥ at ¥ =', X(N+1),’ oy - T
Y(N+1)

WRITE(*, *)

STOP

END
B End of main MILSIM -=-—————___. = 4
o e e b e A B o e *
* Function subprogram "

REAL FUNCTION F(X,Y)
REAL X,Y

B = 2.0 * ¥R

RETURN

END
S RS ~===-- End of function F(X,¥) -——=r=mc-—ee—uv ¥
Test Run Results

Input initial values of x and Y

1.0 2.0

Input x at which y is required

i)

Input step-size h

0.125

INITIAL VALUES 1.0000000 2.0000000

THREE VALUES BY RK METHOD

1 1.1250000 2.5312380
2 1.2500000 3.1249770
3 1.3750000 3,7812150
VALUES OBTAINED BY MILNE-SIMPSON METHOD
4 1.5000000 4.4598660
<] 1.6250000 5.2812040

B 1.7500000 6.1249520
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L. 4750000 7. 0311890

2 2.0000000 7.99993860

value of ¥ at X 2. 000G000 1s T.YH99936D
Srop - Program terminated.

Adams-Bashforth-Moulton Method

Another popular fourth-order predictor-corrector method is the Adams-
Bashforth-Moulton multistep method. The predictor formula is known
as Adams-Bashforth predictor and is given by

| == .
| Vier =it -2’,*-1 (55, — 59y + 37f,_ 3= % )| (13.45)

| ' = P e e L |

The corrector formula is known as Adums-Mowiton corrector and is giv-
en by

: .
B,”:yﬁ%tﬁ_i-m;_lugmgﬁ_g]f (13.46)

et |

—

This pair of equations can be implemented using the procedure described
for Milne-Simpson method.

By Adams predictor formula

yP =yt % (55f, — 59f, + 377, - )

_ 0.25 , = .
=613 + & 1 (55 % 7.01 - 59 x 6.00 + 37 x 5.01 - § »x 4)

= 8.0146

2 % 8,0146
(=== 20~~ 8.0146

By Adams corrector formula
¥5 =3+ o (= 5y + 19, + )

—6.13 + 9:2%5- (5.01 ~ 5 % 6.00 + 19 x 7.01 + 9 x 8.0146)

= 8.0086
¥a (refined) = 8.0079
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~ BEF| ACCURACY OF MULTISTEP METHODS

We know that for each differential equation, there is an optimum step
size h. If h is too large, accuracy dimi=ishes and if it is too small, round-
off errors would dominate and reduce the accuracy.

By computing the predicted and corrected values of y, , ,, we can
estimate the sizc and sign of the error. Let us denote the predicted value

by ¥7, ,- Similarly, denote the truncation error in predicted value by E,,
and corrected value by E,.. Then, we have,

Erp =¥- -yip+1

Ep=y=-%a

where y denotes the exact value of y(x; , ,). The difference between the
eITor is

E,-E,=y{y-3i (13.47)

A large difference indicates that the step size is too large. In such cases,
we must reduce the size of A.

Milne-Simpson Method

Both the Milne and Simpson formulae are of order 4* and their error
terms are of order A5,
The truncation error in Milne's formula is

_28 5 &
E, =28 y& (g h

The truncation error in Simpson's formula is

1

B =5y (0,)h°
If we assume that y*'(¢,) = ¥"(6,) then
Zo __g
E,
or,
E:p =-28E,

Substituting this in Eq. (13.47) we obtain,

c - p
Yia yiq-l

29

E, =
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[f the answer is required to a precision of d decimal digits then

Y =9l i
|E,| =~ 59| < 05 x 107
]
or
e, - y;’“] <292 % 10 = 15 % 10¢ Ji (13.48)
Adams Method
The truncation error in Adams-Bashforth predictor is
- 251 s &
By =730 7" (B0 b
and the truncation error in Adams-Moulton corrector is
=19 5 g 18
E,r = 720 y [BQJ}!
Then, assuming y°18,) = y'9(8,), we get
251
E:p T E.

Substituting in Eq. (13.47) results in

& _uP

. 19 1 =
ﬁf{':_ﬁa{yf-'l ytAl)

For achieving an accuracy of d decimal digits,

’i ]y,".l ".vﬂll <270/19x 0.5 x 109 = 7 x 104 (13.49)

According to Eqs (13.48) and (13.49), 4 should be reduced until the
difference between the corrected and predicted values is within the speci-
fied limit. It should be noted, however, that if the step length is changed
during the calculation, it will be necessary to recalculate the starting
points at the new step value.

Modifiers

Using the error estimates, we can modify the estimates of Y{.1 before
proceeding to the next stage. That is

Yisi =y|':+I+Et:
For Milne's method

Yis =J’fﬂ‘%’[3‘fu _3’{'«1)
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For Adams mett d

y1+1:yfrl 31790( l+l_ylf\)

Solve the differential equation

y @ ==y
for y(2.0) using the Milne-Simpson method with the application of modi-
fier to the corrector. The first four points are given under

i X »= J’(’-';)
0 1.0 1.0000000
1 = 1.2 0.8333333
2 | 1.4 0.7142857
] = y
3 * 1.6 il 0.6250000

— — —— . — — —— ————— —— O W, . T W — — —

fy =—0.6944444

f = -0.56102040

[ =~ 0.3906250
Iteration !

Y18) = y? = yo+ AL @f = f, + 2fy

1.0 + 1"30 “ (_1.13888889 + 0.5102040 — 0.7812500)

"

= 0.5573506

(y#)" =-0.3106396

3
i

s %(fz +4fg+f] )

e
o
11

= 0.7142857 + %2 3 ~0.5102040 — 1.56250 — 0.3106396)

= 0.5553961

yi-y? ‘
“2_" 4 = 0.0000874

Modifier E,. =—
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Modified ¥§ =y{ + E,, = 0.5554635
Iteration 2

2
fi=-(¥5)" = -0.3085397

¥20) =yf =y, +-4§’l (o, ~ fo + 2f,)
= 0.5008366

fd =—-0.2508373

Y5 =¥3 ‘*"g‘(fs +4fy +f°p]
= 0.4999585
Modifier E,, = 0.0000303
Modified y; = 0.4999888

Exact answer = 0.5
Error = 0.0000112

SYSTEMS OF DIFFERENTIAL EQUATIONS

Mathematical models of many applications involve a system of several
first-order differential equations. They may be represented as follows:

dy
d}: =f1(x,y1,.}’2s --~-}’m}: yl{xﬂ) =Yio

dy,

e =f2{I‘J’p ¥Yas -orn Ynds ¥olxy) =Y
(13.50)

dy _
__d:rl = f""{x’ Y1 Yas ey }"m,, ym(xﬂ) = ¥Ymo

These equations should be solved for yi(x), yolx), ..., ¥,.(x) over interval
(a, b).

These equations can be solved by any of the methods discussed in this
chapter. At each stage, all the equations are solved before proceeding to
the next stage. For example, if h = 0.5 and a = Xy = 0, then we must
evaluate y,(Q.5), y,(0.5),..., y, (0.5) before preceding to the stage & = 1.0.
Let us consider a system of two equations for the purpose of illustration.
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yi(’ fzfl(x:ylv .y2.]: yl(xq}=ylg

Yh(x) = folx, y1, ¥4), Yolxg) = yau
Assume that we want to use the Heun's method. The first stage would
involve e following calculations.

my(1) = filxg, ¥19, ¥20)

my(2) = folxp, Y100 ¥20)

my(1) = filxg+ A, yyp + Amy(L), a9 + hm(2))
my(2) = flxy + by yio + hmy(1),  yap + hmy(2))
my(W+my (D

m(1) 3

m(@) = my (2) +m, (2)
_v;(x]} =y1('i} =yl(x.;.} Fm{Lh = Yig + m(Lh
yol1) = ¥5(1) = yolxg) + m(2)h = yyp + m(2)h

The next stage uses y,(1) and y,(1) as initial values and, by following
similar procedure, y,(2) and y,(2) are obtained.

dy,
H S ltnhtr »O=-l

estimate the values of y,(0.1) and y,(0.1) using Heun’s method.

Givenx4=0, yp=1  yp=-1

my(1) = filxo, Y10, ¥20) =0+ 1 -1=0

my(2) = folotg, Yigp Yol =1 +1~1=1

mq(1) = filxg + hy ¥19 + Amy(1), y9 + Amy(2))
=£1(01,1+0.1x0,-1+0.1x1)
=f1(0.1,1, - 0.9)
=01+1-09=0.2

my(2) = fifxg + k, yip + my(1), oo + hmy(2))
= f£0.1, 1, - 0.9)
=1+1-09=11
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my(D+my (1)

- 0.1
m(1) )

2
¥(0.1) = 3,(0) + Am(1) = 1 + (0.1) (0.1) = 1.01
¥9(0.1) = y5(0) + 2 m(2) = -1 + (0.1) (1.05) = -0.895

~ BBl HIGHER-ORDER EQUATIONS

We have seen in the introductory section of this chapter that many
problems involve the solution of higher-order differential equations. A
higher-order differential equation is in the form

dmy f dy d?y dm-1y)
d”‘x = f x!.}'rald_x"z'_--")w {13.51)

with m initial conditions given as
¥xg) = w5, ¥lxg) =ws, .y ¥ 1(10} =

We can replace Eq. (13.61) by a system of first-order equations as follows:
Let us denote

dy diy dm-1y
y—_y.ll E=y21 -ch—z-:"ys_...., dxﬂl—l =¥m
Then,

dﬂ s {_r}— = It

1= =¥ Y1\l = Yy = Gy
dy, _ L P S
¥ =Y Yoxg) = yag = a9

(13.52)

dym—.'l

" =¥m J’m-l(xn)=3“m—1.n=ﬂm 1
Ay,
dx S E Y0 Y Ym) ¥mFo) = Yo = Gy

This system is similar to the system of first-order Eq. (13.50) with the
conditions
f|_=3"i+lr i=lp2’---;m_1

Fon =2, Y0 Yoy coos ¥i)
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and, therefore, can be soltfed using_ the procedure discussed in the previ-
ous section.

Sol~ **e following equation for y(0.2)

4%y .dy
dz? F E—Sy-ﬁx

given ¥(0) = 0, ¥'(0) = 1. Usc Heun’s method

— — — — —— — — — — — . o S— o — — — . . i, e e

d?y dy
o iy 6x +3y -2 e
dy

Let =0 3, =N
Then,

dy

Txi_ =Ya Y10=0

d-"'i

gy = 6x + 3y, = 2y, Yoo =1
Leth =02

ml{].\ :J’zu = 1
my(2) = 6xg + Jygq — 2ygp =~ 2
myll) =y, + Amy(2) =1+ (0.2) (- 2) = 0.6
my(2) = 6(0.2) + 3(0 + 0.2(1)) - 2(06)=12+06-12=06
1+0.6
(1) =————=10.
m 3 0.8

mi2) = ié—(—)—g =-=0.7
¥1(0.2) = 3,(0) + 0.2m{1) = 0 + 0.2 x 0.8 = 0.16
¥o(0.2) = ,(0) + 0.2m(2) = 1 - (0.2)0.7) = 0.86
yx)atx=02=0.16
yix)ata =02 =086

F| SUMMARY

We encounter differential equations in many different forms while at-
tempting to solve real life problems in science and engineering. The most
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commoan form of différential equations is known as ordinary differential
equation. In this chapter, we considered various methods of numerical
solution of ordinary differential equations. They include

s Taylor series method

¢ Euler's method

« Heun's method

¢ Polygon methad

¢ Runge-Kutta method

¢ Milne-Simpson method

= Adams-Bashforth-Moulton method

We also discussed the accuracy (and techniques of improving the ae-
curacy) of these methods. Finally, we discussed the solution of a system
of differential equations as well as higher-order equations.

We presented FORTRAN programs and their test resulis for the fol-
lowing methods:

= Buler's method

e Heun'’s method

¢ Polygon method

* Runge-Kutta method

e Milne-Simpson method

Key Terms
Adams-Bashforth predictor Multistep methods
Adams-Moulton corrector One-step methods
Boundary-vaiue problerm Ordinary differential equations
Correctar Fartial differential equation
Differential equations Ficard's method
Euler's method Polygon method
Global truncation error Predictor
Heun's method Predictor-corrector method
Initial-value problem Radioactive decay
Kirchhoff's law Runge-Kutta method
Law of cooling Semi-numeric method
Law of mation Simple harmonic motion
Local truncation error Simpson’s formula
Midpoint method Slarting values
Milne's formula Taylor series method
Milne-Simpson method

1. What is a differential equation? Give two real-life examples of ap-
plication of differential equations.
2. Distinguish between ordinary and partial differential equations.



11.

12

13.
14.

16.
i

18.
19.

Numerical Selutlon of Ordinary Differential Equations 459

. State the degree and order of the following differential equations:

fa) WP +Ty =0
(b) ¥y + 50 =1
(c) ' -y=0
(A 4y’ =0
(e) , "+ 3y -2y =x*
) W)’ -2y +y=0
(@ xy'—x+1y=0
h) Yo P +xyy -2=0
i) P +y*=0
What is a nonlinear differential equation? State which of the equa-
tions given in Question 3 are nonlinear.
What is an initial-value problem? How is it different from a bound-
ary-value problem?
Why do we need to use numerical computing techniques to solve
differential equalions?
Slate the basic two approaches used in estimating the solution of
differential equations. How are they different?
Describe how Taylor's theorem of expansion can be used to solve a
differential equa ion.
What arc the limitations of Taylor's series method?
State the formula of Picard’s method to solve the differential equa-
tion of Lype
dy ..
dx ~ &3
What are its limitations?
State the formula of Euler’s method. Illustrate its concept graphi-
cally. ’
Comment on the accuracy of Euler's method.
[ustrate Heun's method of solution graphically.
How does the accuracy of Heun's method compare with that of
Euler's method?

. Heun's method is an improved version of Euler's method. Com-

ment.

Why is Ileun's method classilied as one-step predictor-corrector
method?

Why is the polygon method called the midpoint method? Illustrate
graphically.

Describe the basic concept employed in Runge-Kutta methods.
What is meant by an r-order Runge-Kutta method? What is the
order of the following methods?

{a) Euler’s method

{b) Heun's method

(¢} Polygon method
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L0 £ cuitistep nigtlods?

ot merits and demerits of multistep methe 17
22. State e formulae used in Milne-Simpson method, Describe ths
impleriontaiion scheme of these formulae,

20 L Telor and corrector formulos usad in Ada

.'::Ll.‘p Loa ilds!

= Aebbies &

Jurazy o pulti-

25. A high-order differential equation can be solved by replacing ic by a
system of first-order equations. Discuss.

L. Use Taylor’s expansion (with terms up to %) to =olve 7o

differential equations:

4 =X +y +xy,

dx

for x =825 and 0.5.
/

/{b/g-xfavfx*— 1),

forx=1.0, 1.5 and 2.0

for x = 0.25 and 0.5

d 2
{91 ‘d_i' = x.},2’

for x = 2.0 and 3.0

¥0) =1

"\"[\I'_l T |

¥ =1

y) =1

¥(1) =0

dy ‘ 7
) | == =2y YO =1and 370)=1

dx
for x = 0.2 vad 0.4

d?y [(dx

de? | de

2
(g) 10—+[—J +6x =0, x0) =1 and x(0) = 0

fort = 2 and 5.

vy
slowing



h
%
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2. Solve the following equations by Picards method and estimate y at
x = 0.25 and 0.5:
dy
{a)d—x=:r.+(x+lbr, y0) =1
dy 2 5
(b) e SHEY U ¥0) =1
() g—%zx-ry, ¥0) =1
dy 59
(d) o ¥l)=0
dy x
e -
(&) ic " y' y=1
3. Use the simple Euler's method to salve the following equations for
¥(1) using b= 0.5, 0.26 and 0.1.
P8}y = 2xy, ¥(0) = 1
() y =524y, ¥(0) =2
i 0
o AC) y “Brel’ y0)=1
Yy =2, ¥0) =1
(@) ¥ =x+7y+ xy, y0) =1

. %he differential equation

g% =x+y, ¥o)=1

by the simple Euler'’s method to estimate y(1) using A = 0.5 and
h = 0.25. Compute errors in both the cases. How do they compare?
Also, compare your results with the exact answer given the analyti-
cal solution as

¥x) =2 -x -1

- Use Heun’s method with 2 = 0.5 and k = 0.25 to solve the equations

in Exercise 3 for y(1). How do the results compare with these ob-
tained using simple Euler's method.

Repeat Exercise 4 using the Polygon method instead of simple
Euler’s method. Analyse the results critically.

Use the polygon method to solve some of the equation in Exercise 3.
Use the classical RK method to estimate y(0.5) of the following
equations with & = 0.25.

d
(a) é =x+y, y0)=1



462 Numerical Methods

10.
11.

12.

13.

14,

(b) E‘;’}{' ¥0) =1
(c) g% =¥ Co5 x, y(0) =1
(d) cdl—i =y + sin x, ¥(0) =2
(e) %i =y + J; y0=1

Solve the following initial value problems for x = 1 using the fourth-
order Milne’s method.

dy 2
(a)a—;—,;_x, »0) =1

Use a step size of 0.25 and fourth-order Runge-Kutta method to
predict the starting values,

Repeat Exercise 9 using Adam’s method instead of Milne’s method.
Compare the results.

Repeat Exercise 10 and 11 with the application of modifier to the
corrector. Compare the results,

Solve the pair of simultaneous equations

d
*dyTl =¥ »1{0) =0

dys P 3
—&JL;;_ =y1y2 + Iz + 1 y?_[OJ = 0

to estimate y,(0.2) and y,(0.2) using any method of your choice.
Solve the following equation for ¥(0.2):

d?y (dy)® :
IUE‘ITF[H?) + 6x = 0, y0) =1, ¥(0)=0

Use Heun's method.

The general equation relating to current i, voltage V, resistance R,

and inductance L of a serial electric circuit is given by

di
L
Find the value of current after 2 seconds, if resistance R = 20 ohms,

inductance L = 50 H and voltage V = 240 volis. Current I = 0 when
=0.

+iR=V
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16. A tank contains a solution which is made dissolving 50 kg of salt in
100 gallons of wter. A more concentrated solution of 3 kg of salt
per gallon of water is pumped into the tank at a rate of 4 gallons
per minute, The solution (which is stirred continuously to keep it
uniform) ie pumped out at a rate of 3 gallons per minute.

Find the amount of salt in the tank ati ¢ = 15 minutes. Note that
initially at t = 0, the amount of salt x = 50 kg.

d
Hint;: If x represents the amount of salt in the tank at time ¢, d_::

will represent =~ : change in the amount of salt.
16. An object with a ma.  of 10 kg is falling under the influence of
earth gravity. Find its velocity after 5 seconds if it starts from the
rest. The ohject experiences a retarding force equal to 0.25 of its

velocity.
Hint: The relationship between the various forces is given by
dv
mass x 7 = Mass x gravity - retarding force

where v is veloeity at time £.

17. A body of mass 2 kg is attached to a spring with a spring constant
of 10. The differential equation governing the displacement of the
body y and time ¢ is given by

dzy _dy

—_— 42 =4 Bhy=

FPe +2 T +b6y=0
Find the displacement y at time # = 1.5 given that y(0) = 2 and
¥(0)=-4.

1. Rewrite the program RUNGE4 such that a subprogram implements
the fourth order Runge-Kuita method and a main program receives
input information, drives the subprogram to compute the solution,
and prints the required output information.
2. Modify the program MILSIM to incorporate the following changes:
(a) Computing the starting points by Runge-Kutta method using a
subprogram

(b) Implementing Milne-Simpson algorithm by a subprogram

(¢) Applying the modifier to the corrector with the help of a sub-
program.

3. Develop a user-friendly modular program as suggested in Project 2
for the fourth-order Adams method with modifiers.

4. Develop a user-friendly program for solving systems of differential
equations using Buler's method or Heun's method.

5. Repeat Project 4, but use the fourth-order Runge-Kutta method



Boundary Value and
Eigenvalue Problems

NEED AND SCOPE

We have seen that we require m conditions to be specified in order to
solve an m-order differential equation. In the previous chapter, all the m
conditions were specified at one point, x = xg, and, therefore, we call this
problem as an initial-value problem. It is not always necessary to specify
the conditions at one point of the independent variable. They can be
specified at different points in the interval (a, ) and, therefore, such
problems are called the boundary value problems. A large number of
problems fall into this category.

In solving initial value problems, we move in steps from the given
initial value of x to the point where the solution is required. In case of
boundary value problems, we seek solutions at specified points within
the domain of given boundaries, for instance, given

2
E___v = fx, y,%) ye)=y,, y(b) =¥ (14.1)
dx 2
we are interested in finding the values of y in the range a < x < b.

There are two popular methods available for solving the boundary
value problems. The first one is known as the shooting method. This
method makes use of the techniques of solving initial value problems.
The second one is called the finite difference method which makes use of
the finite difference equivalents of derivatives.

Some boundary value problems, such as study of vibrating systems,
structure analysis, and electric circuit system analysis, reduce to a system
of equations of the form

Ax = ix (14.2)
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Such problems are called the eigenvalue problems. We need to determine
the values of A and vector x which satisfy the Eq. (14.2). We have two
simple methods available to solye this type of problems,

1. Polynomial method

2. Power method
In this chapter, we consider these two special categories of problems and
discuss the following methods to selve them:

1. Shooting method

2. Finite difference method

3. Polynomial melhod

4. Power method

~ [ svoonNG METHOD

This method is called the shooting method because it resembles an
artillery problem. In this method, the given boundary value problem is
first converted into an equivalent initial value problem and then solved
using any of the methods discussed in the previous chapter. The approach
is simple. Consider the equation

=l y.y7) yla) = A, yb)=B

By letting y” = z, we obtain the following sct of two equations:
Y22
2= flx. y.2)

In order Lo solve this set as an initial value problem, we need two
conditions at x = ¢. We have one condition y(a) = A and, therefore,
require another condition for z at x = a. Let us assume that 2(a) = M,
where M, is a “guess”. Note that M, represents the slope y'(x) at x = a.
Thus, the problem is reduced to a system two first-order equations with
the initial conditions

=z yia)= A
2 =flx,y.2) zla)= M, (=¥ (a) (14.3)

Equation (14.3) can be solved for y and 2 using any one-step method
using steps of k, until the solution at x = b is reached. Let the estimated
value of y(x) at x = b be B,. If B, = B, then we have obtained the required
solution. In practice, it is very unlikely that our initial guess z(a) = M 118
correct.

If B, # B, then we obtain the solution with another guess, say z(a) =
M. Let the new estimate of y(x) at x = b be B, (see Fig. 14.1). If B, is
not equal to B, then the process may be continued until we obtain the
correct estimate of y(b). However, the procedure can be accelerated by
using an improved guess for z(a) after the estimates of B, and B, are
obtained.
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y
yx

Direction of

shooting (y'(e) = M) /

T a T i
(%) (xa)
Fig. 14.1 lllustrafion of shooting method

Let us assume that z(a) = M, leads {0 the value y(b) = B. If we assume
that the values of M and B are linearly related, then

B-B, Bzﬁm

Then
M,=M Be s
g * R —Bl x( 9
51“2 - LIB— x [Mg )H]’ [1441
g Ty

Now with z(a) = M, we can again obtain the solution of y(x}).

Using shooting method, solve the equation

2
< =B 1) =2, y(2) =

By transformation we obtain the following:

=2z y)=2

1]

6

Rl& &|&

Let us asswme that 2(1) = y'(1) = 2(M,). Applying Hel n's method, we
obtain the solution as follows:



Boundary Value and Eigenvalue Problems 487

Iteration 1
h=05
=1, yll=y4=2 D =z;=2
my(l)=z2=2
my(2) = 6x, =6
my(l) =z, + hm(2) = 2 + 0.5(6) = 5
my(2) = 6(x, + A) = 6(1.5)=9

my(l+my(l) 2+5

= 3.5
m(1) B) 3
@) = m(2) ; mg(2) 2 6;—9 75

) =y18)=1D+mlh=2+35x05=38.75
) =2(15)=2(1) 4+ m(2h =2 + T5x 0.5 =5.75
tteration 2
h=05
=185, =87 z=576
my(l) =2, =575
my(2)=6x;=9
mo(l) =2y + km(2) =575 + 0.5 x 9 = 10.25
rrL2(2} = B(I; 5 h) =192
5.75+10.25
2

9+12

m(l) = 8

m(2) = =105

ylxg)=(2)=5(1) + m{1)h =3.75 +8x 06 =775
This gives B, = 7.75 which is less than B =9
Now, let us assume 2(1) = ¥ (1} = 4(M;) and again estimate y(2).
Iteration 1
h=05
xg=1, =2 =4
my(l)=z,=4¢
my(2) = 6xy =6
moll)=2zo+ hmy(2)=4+05x6="17
mo(2) = 6(xy + h) = 6(1.5) = 9

447 P

m(l) = 5.5
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6+9 .
m(2) = - 7.5
Me)=y(15)=2+55x%x 0.5=4.75
2x)=2(15)=4+75%x05=7
Iteration 2

h=05

xy =1.5; ¥y =4.75, 2, =775
m(l)=2z, =778
my(2) = 6x; =9
myl)=2z, 4+ hm(2) =775 + 0.5x 9 = 12.25
my(2) = 6(x, + h) = 12

7.75+12.25
m(l)=n—+2 Z

m(2) = q;]g =10.5
2
This gives B, = 9.75 which is greater than B = 9.
Now, let us have the third estimate of z(1) = M, using the relationship
(14.4)
B, -8B .

e (M s
7,5 % (M M)

My=M, -
(9.75-9) _
©75-7.15)
=4 - 0.7 =395
The new estimate for z(1) = y(1)=3.25
Iteration 1
h=0.5
=1 Yo =2, zp = 3.25
my(1) =z, = 3.95
m4(2) = bx, = 6
my(1) = 2g + hmy(2) = 3.25 + 0.5 « 6 = 6.95
myl2)=6lxy + h) = 9

3.95 + 6.95
G| Db TR

6+9

mi2) ;—-2—-'—'7.5
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¥1.6)=2+ 475 x 0.5 = 4.375
2(16)=326 +95x 05 =17
Iteration 2

h=05

x3 =15 »=378 =7
mi(ly=2, =7
myf2)=6x,=6x15=9
mol)=2z, + hmy(2) =7+ 05%x9=115
my(2) = 6(z, + h) = 12

L 7T+11925

m[]J=t—1—:-:925
9

m2) = *212 -105

¥(2)=43875+9.25x05=9

The solution is y(1) = 2, y(1.5) = 4.375, ¥(2) = 9 The exact solution s
¥(x) = x® + 1 and therefore y(1.5) = 4.375.

The sequence of procedures for implementir the shooting method is
given in Algorithm 14.1.

Shooting Method

1. Convert the problem into an initial-value problem.

Initialise the variables including two guesses at the initial siope.

Solve the equations with these guesses using either a one-step or a

multistep method.

4. interpolate from these results to find an improved value of the slopes
obtalned. ! .

5. Repeat the process until a specified accuracy in the final function
value is obtained (or until a limit to the number of iterations is reached).

e

Algorithm 14.1

FINITE DIFFERENCE METHOD

In this method, the derivatives are replaced by their finite difference
equivalents, thus converting the differential equation into a system of
algebraic equations. For example, we can use the following “central
difference” approximations:
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Yiv1~Yi-1
= —— (14.5)
Yi 2h
41~ 2Yi ~Yi-
nyy”‘l i 1 (14.6)

B2
These are second-order equations and the accuracy of estimates can be
improved by using higher-order equations.
The given interval (a, b) is divided into n subintervals, cach of width

h. Then

x,=xy+ih =a+ih

¥, = y(x) = via + k)

¥y =yla)

¥, =yla + nh) = yb)
This is illustrated in Fig. 14.2. The difference equation is written for
each of the internal points = 1, 2, ..., n — L. If the DE is linear, this will
result with (n — 1) unknowns y;, ¥, -y ¥y - 1- We can solve for these
unknowns using any of the elimination methods.

A
wx)
P e st ey i S s e
I
| 1
L e [ i : :
i i 1 it "
1 | 1 ] ¥
| I i i '
\ i ! | i
i I ) I 1
i I i [} ]
Xp=a X X X5 3] o

Fig. 14.2 Soluticn of DE by finite difference method

Note that smaller the size of A, more the subintervals and, therefore,
more are the equations to be solved. However, a smaller A yields better
estimates.

Given the equation
d2y
e
estimate the values of y(x) at x = 0.25, 0.5 and 0.75.

e e e e e — — — —— — — — — ——— — e —

= px? with y0)=0, y1)=0
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Yo=30)=0
¥y, = ¥(0.25)
Yo = y(0.5)
yg =y(0.75)

ya=y1)=0
h =0.25

i

el w= 025

vy =

=g weef)

"

Y3 =

g”i+i_23’:+yr-1 s

¥2—2¥1 + Yo

Y3 —2ya +y)

Ye—2y3+y2

2
ex
h

= (0.28)2 - 5
5,069 o 1.0645

Yo — 2y, + ¥ = 0.0665

= _[D.."),’z = 1.2840
0.0625 ‘

u-’* ~ 9y, +y, =0.0803

5 OG5 =¢076)? = 17551

¥y — 2y4 + ¥, =0.1097

(1)

(2)

(3)

Letting v, = 0 and y, = 0, we have the following system of three equations.

~2yy + ¥y = 0.0665

¥y — 2yy + ¥4 = 0.0803

¥o — 2y5 = 0.1097

Solution of these equations results in

Y1

=(0.25) =-0.1175

¥y = ¥(0.50) =-0.1684
ys = y(0.75) = - 0.1391

The major steps of finite difference method are given in Algorithm 14.2,
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Finite Difference Method

1. Divide the given intervai into m subinterval”

2. At each point of x, obtain difference equaiion using a suitable
difference formula. This will rasult in (1 - 1) equations with {m — 1)
unknowns, ¥, Yo, .. ¥p— 1.

3. Solve for y, i=1,2, ..., n—1 using any of the standard elimination
methods.

Algorithm 14.2

SOLVING EIGENVALUE PROBLEMS

As mentioned earlier, some boundary value problems, when simplified,
may result in a set of homogencous equation of the type

{ayy — Ay +apxy + ... +anx, =0

(3-311'14'{093—11]12 + ...+ﬂgn.rﬂ:0 fldrf}

U1 Xy tUpXy + .+ (a, —A)x, =0

where A is a scalar constant. Equation (14.7) may be expressed as
[A-AI) (X] =0 (14.8)

where I is the identtty matrix and [A - All is cailed the characteristic
matrix of the coefficient mairix A.

The homogeneous Eq. (14.8) will have a non-Lrivial solution if, and
only if, the characteristic matrix is singular. That is, the matrix [A - 11|
is not invertible. Then, we haye

[A- A1 (14.9)

Expansion of the determinant will result in a polynomial of degree 2 in
.
A= gt D, _A=-p, =0 (14.10)

Equation (14.10) will have n roots 4, Ag, .oy 4. The equation is known
as the characteristic polynomial (or characteristic eguation) and the roots
are known as the eigenvalues or characteristic values of the matrix A,
The solution vectors i Ky iz &, corresponding to the eigenvalues Ay
Az ooy Ay ave called the eigenvectors,

The roots representing the eigenvalues may be real distinet, real re-
peated, or complex, depending on the nature of the coefficient matrix A.
The coefficients p, of the characteristic polynomial are functions of the
matrix elements @, and must be determined before the pelynomial can
be used.

Example 14.3 illustrates the proceduic  evaluation of eigenvalues
and eigenvectors of a simple system.
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Find the eigenvectors of the following system:
Bx; ~ x, = ?\Il
2x + 2x5 = Axy

The characteristic equation of the given system is

|8—A -4
| 2 2-2 J uds
That is
(8- 2i2-4)+8=0
or
- 103%+8=0
The roots are
k=8
Ap=4
For =1, = 6, we get
2v) —4x; =0
2x; - 41y, =10
Therefore x, = 2x, and the correspunding eigenvector is
0]
x=[3]

Similarly, for A = 4, = 4, we get x, = x, and the eigenvector is

%sls)

The process of finding the eigenvalues and eigenvectors of large matri-
ces is complex and involves a multistep procedure. There are several
methods available and a discussion on all these methods will be beyond
the scope of this book. We consider, in the next two sections, the follow-
ing two methods:

1. Polynomial method

2. Power method

- [@88] POLYNOMIAL METHOD

The polynomial method consists of the following three steps:
1. Determine the coefficients p; of the characteristic polynomial using
the Fadeev-Leverrier method
2. Evaluate the roots (eigenvalues) of the characteristic polynomial
using any of the root-finding technigues
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3. Calculate the eigenvectors using any of the reduction techniques
such as Gauss elimination

The Fadeev-Leverrier Method

The Fadeev-Leverrier method evaluale the coefficients Pui=12 .qn,
of the characteristic polynomial

A" —plln_l_p‘zﬂ'ﬂ i e TP = 0

The method consists of generating a sequence of matrices A, that can bhe
employed to determine the p; values. The process is as follows:

A=A (14.11)
P = trAl

Remaining values (i = 2, 3, .., n) are evaluated from the recursive
equations:

A=A -p, D

_ Ay
T

P (14.12)

where t, A, is the frace of the matrix A.. Remember, the trace is the sum
of the diagonal elements of the matrix.

Determine the coefficients of the characteristic polynomial of the system
(-1 = A, =0
v+ (2- Ay +3x,=0
2%y + (-3~ A, =0
using the Fadeev-Leverrier method.

T T T M S T o e S W i e e, i i S i, . e s ey s s

The given gystem is a third-order one and, therefore, the characteristic
polynomial takes the form

A —P112 = Pgh ~py=0
The matrix A is given by

=1 O B
A=l1 -2 3
0 8 =§
By using the Fq. (14.11),
A=A
Py '_"t!'A'I =—6

By using the Eq. (14,12),
Ay = AlA| —p.1)



Boundary Value and Eigenvalue Pioblems 475

-1 0 o]ff-1 o o) [~ 0 o
=i1 -2 3jflz 2 sfi-lo &
[0 2 -3]jl0 2 -3)] Lo o0 -8
(-1 0 0][5 0 0]
=T & $lil1 ¢ @
L0 2 -3jl0o 2 3]
-5 0 0]
=-3 -2 38
2 2 -3
i Ay
—— =-h

2y D)

Similarly,

Ay =AlA, - p,D
-1 o0 G”JJ{—s 0 o -5 0 0
=1 -2 8/34-8 -2 3[}-|0 -5 0
RUN —3j“2 2 -3 0 0 -5
<1 0 0770 0 0
=/1 -2 3{|-3 3 3
10 2 -3H2 2 2
0 0 0]
={6 0 0
0 0 0
t A

Dy = 33:_-.[}

Therefore, the characteristic polynomial is
A+ 6%+ 5L=0

or
AAZ+61+5)=0

Evaluating the Eigenvalues
Let us consider the characteristic polynomial obtained in Example 14.4.
AL  +6A+5)=0

One of the roots is 4, = 0. The other two roots can be obtained using the
familiar quadratic formula as
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Since it is a quadratic equation, we can snlve it using the quadratic
formula. However, if the polynemial is of h',.e. order, the roots may be
evaluated using the techniques discussed in Chapter 6. We may use
either the Newton-Raphson method with synthetic division or the
Bairstow method.

Remember that the sum of the eigenvalues of a matrix is equal to the
trace of that matrix. In the problem discussed above,

traceof A=-1-2-3=-6
Sum of eigenvalues=0- 1 -5 =-6

Determining the Eigenvectors

Once eigenvalues are evaluated, eigenvectors corresponding to these
eigenvalues may be obtained by applying Gauss elimination method to
the homogeneous equations. Example 14.5 illustrates this.

The eigenvalues are:
Ay =10, /lz‘—-—l, Ay==5

Eigenvector 1 (A, = 0)
The system of equations for 4, = 0 is

~x; =10
X = 2%+ 3x4=0
2x, —8x3=0
This is equivalent to the system of two equations
=0
22y - 3x,=0
Chaooging xg=1,

xy = 2/3 = 0.6667

Eigenvector 2 (1, = -1)

X —%y+323=0

19— 2x9=0

Choosing x, =1, weget r;=1 and x =-2

Eigenvector 3 (A, = - 5)

4x,=0

X +3x+3253=0

2x, + 2x3=0
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x,=0 and choosing x,=1, weget x;=-1
The three eigenvectors are:

0
X, J 1 }
0.6667
-2
Xy=i 1
3
[0
wol o]
-1]
Computing Algorithm

The computing algorithm for polynomial method combines three differ-
ent algorithms discussed so far. Algorithm 14.3 lists the major steps
involved in implementing the polynomial method of finding eigenvalues
and associated eigenvectors,

Polynomial Method

—a

Input order of the matrix and the elements of the matrix.

2. Determine the coefficients of the characteristic polynomial by using
ihe Fadeev-Leverrier method.

3. Evaluate the roots of the polynomial using the Bairstow method (use
Algorithm 6.10).

4. For each eigenvalue, construct the system of equations and then
solve for the eigenvector using the Gauss elimination method (use
Algorithm 7.2).

5. Print eigenvalues and the associated eigenvectors,

Algorithm 14.3

POWER METHOD

Power method is a ‘single value’ method used for determining the ‘domi-
nant’ eigenvalue of a matrix. It is an iterative method implemented
using an initial starting vector X. The starting vector can be arbitrary if
no suitable approximation is available. Power method is implemented as

follows:
Y AX ) (14.13)
x = ly (14.14)
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The new value of X obtained from Eq. (14.14) is used in Eq. (14.13) to
compute a new value of ¥ and the process is repeated until the desired
level of accuracy is obtained. The parameter k, known as the scaling
factor, is the element of ¥ with the largest magr . ude.

Let us assume that the eigenvalues are ja,| > |A4;| 2 ... 2[4,| and
the corresponding eigenvectors are X, X, ..., X,. After repeated applica-
tions of Eqs (14.13) and (14.14), the vector X converges to X, and %
converges to A,.

Find the largest eigenvalue A, and the corresponding eigenvector V| of
the matrix

Let us assume the starting vector as

-
0

Equations (14.13) and (14.14) are repeatedly used as follows
fteration 1

lteration 2
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The process is continued and the results are tabulated below:

Iteration 1 2 3 4 5 G 7
2.0 2.0 2.8 286 298 298 3.0
Y 1.0 2.5 2.6 293 296 299 3.0

00 00 00 00 00 00 00

0 10 08 10 09 10 10 1.0

b4 1 05 10 093 L0 099 1.0 1.0
0 00 00 00 00 00 00 0.0

The final entry in the table shows that A, = 3.0 (element of ¥ with
largest magnitude) and the corresponding eigenvector is the last X, That
15

]

1
x,=|1
0

Algorithm 14.4 gives an implementation of the power method. Note that
the stopping criterion is based on the successive values of the vector X,
There might be circumstances where the process will not converge at all
{or where it will converge very slowly). Therefore, it is necessary to put a
limitation on the number of iterations.

Power Method

—_

. Input matrix A, initial vector X, error tolerance (EPS) and maximum
iterations permitted (MAXIT).
Compute ¥ = AX
Find the element k of ¥ that is largest in magnitude.
Compute X = Yik
If | X = X4l < EPS or Herations > MAXIT
write k and X ‘
else

go to step 2

el ol

Algorithm 14.4

Engineers often come across cases where they are interested in the
smallest eigenvalue of the system. The smallest eigenvalue can be deter-
mined by applying the power method to the matrix inverse of [Al.

_ SUMMARY

We considered two classes of problems in this chapter:
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* boundary value problems

+ eigenvalue problems
We presented two methods for solving boundary-value problems:

= shooting method

* finite difference method

We also discussed in detail the nature and solution of eigenvalue
problems and presented two methods for evaluating eigenvalues and
eigenvectors:

* power method

e polynomial method

Key Terms
Bounagary value problem Finite difference method
Characteristic equation Identity matrix
Characteristic matrix Initial-value problem
Characteristic polynomial Polynomial method
Characleristic values Power method
Eigenvalue problem Scaling factor
Eigenvalues Shooting method
Eigenvector Trace of the matrix
Fadeev-Leverriar method

e Bl

10.

3

§

- What is a boundary-value problem? How is it different from an

initial-value problem?
State the two popular methods used [y solving houndary-value
problems.
What are eigenvalue problems? How are they different from bound-
ary-value problems?
State at least two methods used for solving eigenvalue problems.
Describe the shooting method with graphical illustration.
Explain the concept employed in the finite difforence method
Define the following:

(a) Identity matrix

(b) Characteristic malrix

(¢} Characteristic polynomial or equation

(d) Eigenvalues

fe) Eigenveetors

(0) Trace of a matrix
What is Fadeev-Leverrier method used for? Explain.
Describe the algorithm of polynomial method used for solving eigen-
value problems. .
Describe the implementation ol power method with the help of a
flow chart.



»

6.

~1

8.

Boundary Value and Eigenvalue Problems 481

. Solve the following equations using the shooting method.

y0) =2 and y(1)=5

(b) > =120 D=2 and y2)=17
dx?

Use the finite difference approach to solve the equations in Exer-
cise 1 with Ax = 0.2,

. Use the shooting method te solve the following differential equa-

tion:

d%y .dy ¥
S
dx ? dx 2

given the boundary conditions y(0) = 10 and $(10) =
Solve Excrcise 3 using the finite difference method wtth Az =2,
Given the boundary-value problem
2
-d—;z =3x+4y, y0)=1 and (1) =
dx 2
oblain its solution in the range 0 < x € 1 with Ax = 0.25 using
(a) shooting method
(b) finite difference method
Given the equation
de? d
x? dx—f—z d—z—2y-r:c25mx 0
and boundary conditions y(1) = 1 and y(2) = 2, estimate 3(1.25),

y(1.5) and y(1.75) using the shooting method.

Solve the following boundary-value problems using a suitable meth-
od.

(a) %}_‘_5}.3 =0, w1)=1 and 3(2)=0.25
2

) 24020 pen  wd  ERed
d}."‘ £ e » }’ - y
j2

(c) ‘dxj’—a%}fzy =2, y0=1 and D=4
d2y dy

d R i = — () = - 1 =1

(d) i fdx y=-x* 0O 2 and 1)

Find the characteristic polynomials of the following systems using
Fadeev-Leverrier method.

£ 1M -
(a) 2xy + 8y + 10x3= Ay,
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8x; +3x,+4x =Ax,
10x) + 45 + Txs= A xy
(b) 162 — 24x, + 182, = Ax,
3x; - 219 =Axy
-9x; + 182y~ 172y =) xy
(@ 2x; +2x, + 2x,= Ax,
2%, + 6%y + Bay=hx,
2x; + by + lxg= Axy
9. Evaluate the eigenvectors of the systems given in Exercise 8.
10. Find the largest eigenvalue and the corresponding eigenveetnr of
the following matrices using the power method.

2 <& B
fa) A={-1 2 -1
0 -1 2
(—1 0 0]
) B=|1 -2 3
g 2 -3
18 3 5
(c) C=| 0 -4 0
15 =8 7

1. Develop a program to implement the shooting method algorithm
for a linear, second-order ordinary differential equation.
2. Develop a program to implement the finite difference method of
solving a linear, second-order ordinary differential equation.
3. Develop a modular program which uses the following subprograms
to implement the polynomial method.
(a) Subprogam to obtain the coefficients of the characteristic
polynomial using Fadeev-Leverrier method.
(b) Subprogram to evaluate the roots of the characteristic poly-
nomial (use Bairstow method).
(e) Subprogram to determine the eigenvectors (use Gauss elimi-
nation method).
You may also use subprograms to receive input information and
print output information.
4. Develop a user-friendly program to evaluate the largest eigenvalue
and the corresponding eigenvector using the power method.
5. Develop a program to compute the smallest eigenvalue using the
power method.



Solution of Partial
Differential Equations

1- | NEED AND SCOPE

St B

Many physical phenomera in applied scicnce and engineering when
formulated into mathematical models fall into a category of systems
known as partial differential equations. A partial differential equation is
a differential equation involving more than one independent variable.
These variables determine the behaviour of the dependent variable as
deseribed by their partial derivatives contained in the equation. Some of
the problems which lend themsclves to partial differential equations
include:

1. Study of displacement of a vibrating string,
Heat flow problems,
Fluid flow analysis, .
Flectrical potential distribution,
Analysis of torsion in a bar subject to twisting,

6. Study of diffusion of matter, and so on.
Most of these problems can be formulated as second-order partial
differential equations (with the highest order of derivative being the
second). If we represent the dependent variable as f and the two
independent variables as x and v, then we will have three possible second-

> O 16 I

: - 72 d2 a2f ..
order partial derivatives {—_{— 4 and —{ in addition to the two
dx?’ grady dy?
first-order partial derivatives t;}f and ﬂ
ax dy

We can write a second-order equation invoiving two independent vari-
ables in general form as
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32f+b L' -f;i:{_p[_-,” 3 f. o"{ i{] (15.1)

l:‘:9:1:3 t?xdy+L3y2 N dx’ dy

where the coefficients a, b, and ¢ may be constants or functions of x and
y. Depending on the values of these coefficients, Eq. (15.1) may be classi-
fied into one of the three types of equations, namely, elliptic, parabolic,
and hyperbolic.

Elliptic, ifb? — dae < 0

Parabolic, ifb% - dac =0

Hyperbolic, if 6% — dac > 0

If a, b, and ¢ are functions of x and y, then depending on the values of
these coefficients at various peints in the domain under consideration,
an equation may change from one classification to another.,

Solution of partial differential equations is too important to ignore
but too difficult to cover in depth in an introductory book. Since the
application of analytical methods becomes more complex, we seek the
help of numerical techniques to solve partial differential equations.
There are basically two numerical techniques, namely, finite-difference
method and finite-element method that can be used to solve partial
differential eguations (PDEs). Although the finite-element method is
very important for solving cquations where regions are wrregular,
discussion on this technique is beyond the scope of this book. We will
discuss here the application of finite-difference methods only, which are
based on formulae for approximating the first and second derivatives of
a function. We will also consider problems, only those where the
coefficients a, b, and ¢ are constants.

158! DERIVING DIFFERENCE EQUATIONS

In this section, we will discuss two-dimensional problems only. Consider
a two-dimensional solution domain as shown in Fig. 15.1. The domain is
split into regular rectangular grids of width k and height . The pivotal
values at the points of intersection (known as grid points or nodes) are
denoted by £, which is a function of the two space variables x and y.

¥ A h

-"11?
t k
Viea - - !
x1+1 "“'..'"".I
¥ Y12 +h
(i f)
Yioa
Yi-2
i'
*j=2
X X Xzt Xa2

Fig. 15.1 Two-dimensional finite difference grid
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In the finite difference method, we replace derivatives that occur in
the PDE by their finite difference equivalents. We then write the
difference equation corresponding ‘  each “grid point” (where derivative
i8 required) using function values at the surrounding grid points. Solving
these equations simultaneously gives values for the function at each
grid point,

We have a. ssed in Chapter 11 that, if the function f{z) has a
continuous fourua derivative, then its first and second derivatives are
given by the following central difference approximations,

flai +h) - flx; = h)

Fled = 2h
or
f“-'l_fl-l
- 15.2)
f 2h :
P Flx, +h)=2f(x;)+ flx; = h)
‘”f_xl) =il A
h2
or
¥ =Pl & L=
f”:fl 1 fl f 1 (15.3)

i h 9
The subseript on f indicates the x-value at which the function is evaluat-
ed.
When [ is a function of two variables x and y, the partial derivatives of
f with respect x (or y) are the ordinary derivatives of f with respect to
x (or ¥) when y (or x) does not change. We can use Egs (15.2) and (15.3)
in the x-direction to determine derivatives with respect to x and in the
y-direction to determine derivatives with respect to y. Thus, we have

affxi.yJ) Z,“;_[I{-,}'} =£(-xnl-_}r__'§_}__f(xl—i'_&1
ax 4 2h
ﬂrf-'fu}j} '—f(_t ) “{_(firyj+1}_f(xi:yj—l]
g ely F ok
9% f(xsy,) _ ) G, ¥ -2y 30 + [ 15 9))
T‘ —fH(xIIyJ- ot hz
azf{xi'y.!) _f(I ) _f(xl’y;-pk)_zf(xi:yj)+f(xnyj—1}
oy 7 Sly\Fed;) = 2

(;Effx“i_:}. _f(xnhy;u)'f(xniry_r lj_f(xx—l,.)‘; ;1)"'1“11—113'1—1)
dxdy 4hk
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It is convenient to use double subscripts i, j on f to indicate x and ¥
values. Then, the above equations become

&U:fu;;;hﬁ-u (15.4)
&w:fl-,;“;kﬁ‘j_l (15.5)
rnuzful,;—z;c;‘”ft-l-z (15.6)
gy’u_:f‘,-,”n—ii’: it (15.7)
fmu.:f“w”—ﬁ+1,J_1-f,_1,” 1 ¥ =141 (15.8)

4hh

We will use these finite difference equivalents of the partial derivatives
to construct various types of differential equations.

~ B ewenc eQuanions

Elliptic equations are governed by conditions on the boundary of closed
domain. We consider here the two most commonly encountered elliptic
equations, namely,

Laplace’s equation, and Poisson’s equation,
q

Laplace’s Equation
Equation (15.1), whena = 1,5 =0,c = 1, and Flx, y, f, f.. f,) = 0, becomes

%  a2f
'é;?+w=vzf:0 (15.9)
The operator
o o N
dx? gyt

is called the Laplacian operator and Eq, (15.9) is called Laplace’s equa-
tion. (Many authors use u in place of )

To solve the Laplace equation on a region in the xy-plane, we subdi-
vide the region as shown in Fig. 15.1. Consider the portion of the region
near (x;, y,). We have to approximate

_33.-"+0_2f_0
x? gy
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Replacing the second-order derivalives by their finite difference equiva-
lents (from Eqs (15.6) and (15.7)) at the point (x,, y,), we obtain,

Fivr,j—2f5+fi-1; fije1=2fy +Fi -1
R E 7
If we assume, .  implicity, A = &, then we get

V*f.;=hi2(ﬁ+,d+ i =it o) =0 (1510)

Note that Eqg. (15.10) contains four neighbouring points around the central
point (x;, v,) (on all the four sides) as shown in Fig, 15.2, Equation (15.10)
is known as the five-point difference formula for Laplace’s equation.

vif, =

ij+1
M 1 i
h
M &%) TN s 4
1"CI D
- h
%
)

Li=1
Fig. 15.2 Grid for Laplace's equation

We can also represent the relationship of pivotal values pictorially as
in Eq. (15.11),

1
Vify=-={1 ~4 1}f,; =0 (1511
1

.l_.
h2

From Eq, (15.10) we can show that the function value at the grid point
(x;, ¥;) is the average of the values at the four adjoining points. That is,

o 1 ' :
ft'_r'th:+1,;+.l‘ri—1,j+ﬁ',_r+‘l+ﬂ,; 1’\ (15.12)

To evaluate numerically the solution of Laplace's equation al the grid
puints, we can apply Eqg. (15.12) at the grid pvints where fu is required
(or unknown}, thus obtaining a system of linear equations in the pivotal
values f;. The system of linear equations may be solved using either
direct methods or iterative methods,
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Consider a steel plate of size 15 ¢cm x 15 cm. If two of the sides are held
at 100°C and the other two sides are held at 0°C, what are the steady-
state temperature at interior points assuming a grid size of 5 cm x 5 em,

———— e e e — — e — s e . — — — — — — — —— — —

A prablem with the values known on each boundary is said to have
Dirichlet boundary conditions. The problem is illustrated below.

100 100

100

100 . l : 0
i

100 + F el lé 0

The system of equations is as follows:
At point 1: f, +f, — 1f, + 100 + 100 =0
At point 2: £ +f,-4f,+100+ 0 =0
Atpoint3: fi+/,-4f,+100+ 0 =0
Al point 4: fo+f3-4f,+ 0+ 0 =0
That is,

—4fy+ fy + f3+ 0=-200
fit+=4f40+fi=-100
fi+t0=4dfs+f,=-100
0+fo+f3-4f4= 0
Solution of this system are
fi=15 fo = 50
fy=50 fi=25

Note that there is a symmetry in the temperature distribution, i.e. it can
be stated that
fa=/fs

and therefore the number of equations in Example 15.1 may be reduced
to three with three unknowns as shown below.

—4f, + 2f, =200
fi—4fs+ fy=-100 (15.13)
fz = 2f{ =0
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Liesbmann’s lterative Method

We know that a diagonally domina-t system of linear equations can be
solved by iteration methods such 2. Gauss-Seidel method. When such an
iteration is applied to Laplace’s equation, the iterative method is called
Liebmann's iterative method,

To obtain .  dvotal values of f by Liebmann's iterative method, we
solve for f,, the « ,uations obtained from Eq. (15.10). That is,

fy = %("“H e/ ML AT +fii-1) (1510

The value f;, at the point ij is the average of the values of f at the four
adjoining points. If we know the “initial values” of the functions at the
right-hand side of Eq. (15.13), we can estimate the value f at the point ij
We can substitute the values thus obtained into the right-hand side to
achieve improved approximations. This process may continue till the
values f; converge to constant values.

Initial values may be obtained by either taking diegonal average or
cross average of the adjoining four points.

Solve the problem in Examole 15.1 using Liebmann’s iterative method
correct to one decimal place.

4
g fi+ f.; +100
fa =£L1%:£q (15.15)
poale By

4

Appropriate initial values for the iterative solution are obtained by tak-
ing diagonal average at 1 and cross average at other points, assuming
first f—i = {,

f = -it,'ll}('} + 100 + 100 + 0) = 75.00 (average)

|t

fa=7(15+ 100 + 0 + 0) = 43.75
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fu= 7000 4+ 75 +.0 + 0) = 43.75

fu= 34375 + 4375 + 0 + 0) = 21.88

Note that f;, f3, and f; are computed using the latest values on the right-
hand side.

Using these initial values in Eq. (15.15) and performing iterations
gives the values as shown in Table 15,1,

Table 15.1
f; Initial Iterations et
Values 1 2 3 o
i 75.00 71.88 74.22 7481 7495
# 43.75 48.44 49.61 40.90 49,98
fi 43.75 48.44 49.61 49.90 4998
fi 21.88 2492 24.81 24.95 24.99

The process may be continued till we get identieal values in the last two
columns. Note thai the values are approaching to correct answers ob-
tained in Example 15.1.

Poisson’s Equation

Equation (15.1), whena = 1, b = 0, ¢ = 1 and Fx, y, [, fo ) = g8lx, y),
becomes

ALf  9rf _ '
2 +§;-§' =glz, y) (15.16)
ar
Vi =glx, y)

Equation (15.16) is called Potsson’s equation. Using the notation g, =
g(x, y)), Eq. 15.10 used for Laplace’s equation may be modified to sofve
Eq. 15.16. The finite difference formula for solving Poisson’s equation
then takes the form

g ey £,J4,+ﬁ|j__,—4,ﬁ}=h*gvj (15.17)
By applying the replacement formula to each grid point in the domain of
consideration, we will get a system of linear equations in terms of L

These equations may be solved either by any of the elimination methods
or by any iteration techniqucs as done in solving Laplace’s equation.

Solve the Poisson equation

Vif=2x%*
over the square domain 0 £x < 3 and 0 <y < 3 with f= 0 on the boundary
and h = 1.
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The Gomain is divided into squares of one unit size as illustrated below:

0 0 0 0
f1
y=2—
f:
-1 -
0 z=1  z=2 0

By applying Eq. (15.17) at each grid point, we get the following set of

equations:
Point 1: 0+ 0+f3+fi—4fi = 2AD%2)

1e. fo+fs—4hH =8
Point2: O+0+ /[, +fi—4f =227
ie. fi—dfy+f, =32
Point 3: 0+ 0+f +f,— 4fy = 20%Q)
le. H-4f+f =2
Point4: 0+0+f;+f;—4f, = 22%1)°
ie. fo-f—4fy =8
Rearranging the equations (a) to (d), we get
-dfi+fo+fs =8
fi-Af +f, =92
fi —4fs+fa=2
fo+fs-4f. = 8
Solving these equations by climination method, we get the answers.
- 22 |
h i fa 1
s -
f'.l = 4 1 4 4

{a)

(b)

(e)

(d)

_.__-—__.-.-—_._.___..__.-_..—..——————-——————

fi=j}(fz+f3‘83

Solve the problem in Example 15.3 by Gauss-Scidel iteration method.
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1 i
h= 1 h+fi-32
) [
f3=-4—if1 +f.| - 2]

= '»%"‘G +f,-8)

Note that f; = f,
Therefore,

1
fi =“I(fz*f:1—81
1 .
fo= zf2f, - 32)

fi= %rzfl -2

Assume starting values asf, = 0 = f,
lteration 1

flz‘.—2, f2="9: fa'—"‘l
Iteration 2

; 18 41
=~ h=-%, f=-L
lteration 3
22 43 13

Iteration 4

PARABOLIC EQUATIONS

Elliptic equations studied previously describe problems that are time-
independent. Such problems are known as steady-state problems. But
we come across problems that are not steady-state. This means that the
function is dependent on both space and time. Parabolic equations, for

which
b* —4dac =0

describe the problems that depend on space and time variables.
A popular case for parabolic type of equation is the study of heat flow
in one-dimensional direction in an insulated rod. Such problems are

governed by both boundary and initial conditions.
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Ingulation

-

(L, t)

fix, 1)

Rod

f0. 1)

L}
]
]
1
]
L
x=0 !

Fig. 163 Heat flow in a rod

Let / represent the temperature at any point in rod (Fig. 15.3) whose
distance from the left end is x. Heat is flowing from left to right under
the influence of temperature gradient. The temperature [(x, t) in the rod
at the position x and time ¢, is governed by the heat equation

9% f ar
kl m_k2k35‘_ f15.18J
where %, = Coefficient of thermal conductivity; &, = Specific heat; and
kg = Density of the material,
Equation (15.18) may be simplified as

kf(x, t)=filx, 1) (15.19)

where
ky
kaky
The initial condition will be the initial temperatures at all points along
the rod.

k=

flx, 0) = fx), D<xsL

The boundary conditions £(0, t) and f(L, t) describe the temperature at
each end of the rod as functions of time. If they are held constant, then

}r'(O,E]:Cl, US:‘:C’G
fllyt)=cy, OD<t<e

Solution of Heat Equation

We can solve the heat equation given by Eq. (15.19) using the finite
difference formulae given below:

_fx.t+ 1) fix,2)
- T

filx, t)

1 ‘
=~ hp (15.20)

f‘ (1_ ”_f(I'-fl,f}"-zf(x,I}+f(x+h,t)
= = 2
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1
_h_g(f;']u)hgfd-* 1*5.1} (15.21)
Substituting (15.20) and (15.21) in (15.19), we obtain
k ; . 0y
1 (Fijer=hd=glfion, -2, + 2+,  (15.22)
Solving for £, , .

2tk k
ﬁ_J.i:{ : qu PR W

=[1“2’)ﬁ;+-’{fr'-1,,.+-ﬂ-‘.-;) (15.23)
Th
where r -
hi
Bender-Schmidt Method

The recurrence Eq, (15.23) allows us to evaluate f at each point x and at
any time ¢, If we choose step sizes Af and Ax such that

1-2r -l—ﬁ—ﬂ (15.24)
Kt
Equation 15.23 simplifies to
7 ]
ﬂ.”1=§[}"‘1_3+ﬁ_1.j) (15.25)

Equation 15.25 is known as the Bender-Schmidt recurrence equation.
This equation determines the value of fat x = x,, at time ¢ = t,+ 1, as the
average of the values right and left of x, at time ¢;.

Note that the step size in time At ohtdmed from Eqg. (15.24)

-
2k
gives the Eq. (15.25). Equation (15.23) is stable, if and only if the step

size 1 satisfies the condition r < —ET:—

Solve the equation
2f.(x, t) = filx, D), D<t<15 and O<x<4
given the initial condition
f(x, 0) = 50(4 - x), O<x<4
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and the boundary conditiops
flo, t) =0, 0<t<15
fl4,t) =0, 0<stsld

_._—..—-_..._.__.-_._-_..-.—‘_._..-_-—_.__.—_-.—_-__.————__-

Taking 7= 0.25, v bave

foer= gfirstfian)

Using this formula, we can generate suceessfully f(x, ¢}, The estimates
are recorded in Table 15.2. At each interior point, the temperature at
any single point is just average of the values at the adjacent points of
the previous time value.

Table 15.2
e 0.0 1.0 2.0 3.0 4.0
f{};;\ 00 1500 1000 50.0 T R
: 2 S ) . = 50{4 - x)
0.25 0.0 500 1000 50.0 0.0
0.50 0.0 50.0 50,0 50.0 0.0
0.75 0.0 95.0 925.0 25.0 0.0
1.00 0.0 12.5 25.0 125 0.0
1.25 0.0 12.5 12.5 125 0.0
1.50 0.0 825 125 6.25 0.0

The Crank-Nicholson Method

Solution of the parabolic equation given in Eq. (15.19) was solved using
a forward difference formula in Eq. (15.20) for the time derivative and a
central difference formula in Eq. (15.21) for the space derivative. This is
called explicit method because all starting values are directly available
from initial and boundary conditions and each new value is obtained
from the values that are already known.

Accuracy of the explicit method may be improved if we use central
difference formulae for both time and space derivatives. The forward
difference quotient used for the time derivative (Eq. (15.20))

f T f (]
T
may be treated as central difference if we consider it to represent the
midpoint of the time interval (j, j + 1). We can also use the central
difference quotient for the second derivative with distance, correspond-
ing to the midpoint in time. Then,
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r 1
flnteZ)=Lin, - fip (15.26)
The central difference quotient for the second-order space derivative is
obtained by taking the average of difference quotients at the beginning
and end of the time step, i.c.

0O | =t

Central difference at i v 12 = = (Central difforence at ¢, + Central

difference at iy g
Then,
. .k .fl'-l‘.f+fh—l._f_2frhj f‘i—l,_i"iJ+ft'l_}+|_2fl.Ji'l\
kfdz t+ 1/2) = 5 0 e _'T:—'—_—J
(15.27)
Then equating Eqs (15.26) and (15.27) and substituting
Tk
= =
We get
‘“'rf; ST (2 + 2r)f;.;f1"r:.}1 1 ::rfl_ | +(2 -~ 2?‘}}':') +rﬁ+1,_,- |
. _ - -_“_(15.28)

Equation (15.28) is called the Crank-Nicholson formula. If we let r =1,
then Eq (15.28) simplifies to

| Ficri o1 " 8igr=Forsershongthiors | (830}

The terms on the right-hand side are all known. Hence Eq. (15.29) forms
a system of linear equations, The points used in the Crank-Nicholson
formula are shown in Fig. 15.4. The boundary conditions are used in the
first and last equations, i.e.

II“I.J':!‘;,J'& 1 =€

fn.j =fn.; +1=Ca
The Crank-Nicholson formula is called an implicit method because the
values to be computed are not Jjust a function of values at the previous
time step, but also involve the values at the same time step which are
not readily available. This requires us to solve a set of simultaneous
equations at each time step.

Referring to Fig, 154,
~fa+4fp—fo =fp+fe

f-1.j+1 e it f+1
TA B -
Oeij+1/2
D £ F
=1, ¥ i+1,f

Fig. 15.4 The Crank-Nicholson grid
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a e -_..AJ e 3 ‘é&& X
Solve the problem in Example 15.5 by the Crank-Nicholson implicit
method.

Let us use a table as shown in Table 15.3 for recording the function
values at various time steps. The values for the first time step (¢ = 0) are
obtained from the initial condition

flx, 0) = 50(4 - x)
and the values for f; and f; are obtained from the boundacy conditions.

Table 15.3
¢ x=10 x=] =g x =3 x=4
i fo i h fi
£y = 0.00 0.0 1a30.00 100.00 50.00 0.0
b, = 0256 0.0 56.25 75.00 43.75 0.0
t; = 0.50 0.0 0.0
t, = 0.75 0.0 0.0
t, = 1.00 0.0 0.0

Now, for the second time step {t = 0.25), we write equations at each point
using Eq. (16.29) and solve for unknowns, Thus, for the second row in
the table, we have

—00+4f;-f;= 0.0+ 150
—fo + 4f3—fy =150 + 150
~f3+4f,-00=100 +0.0

Solving these three equations for three unknowns, we obtain

fo=56.25
fs= 75.00
f,=43.75

This process may be continued for each time step. Students may com-
plete the table.

HYPERBOLIC EQUATIONS

Hyperbolic equations model the vibration of structures such as build-
ings, beams and machines. We consider here the case of a vibrating
string that is fixed at both the ends as shown in Fig. 15.5.

The lateral displacement of string f varies with time f and distance x
along the string. The displacement f(z, t) is governed by the wave equation
92f  d2f
923 P ges
where T is the tension in the string and p is the mass per unit length.
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x=0 x X=q1 T
Fig. 15.5 Displacement of a vibrating string

Hyperbolic problems are also governed by both boundary and initial
conditions, if time is one of the independent variables. Two boundary
conditions for the vibrating string problem under consideration are

f0,6=0 0stsb

fIL,)=0 0stsh
Two initial conditions are

fix, 0) = flx) 0<xsa

fi(x, 0) = g(x) 0<x<a

Solution of Hyperbolic Equations

The domain of interest, 0 < x <a and 0 £t £ b, is partitioned as shown in
Fig. 15.6. The rectangles of size Ax = /i and At =7

b < x-]
b1 g — )
At
' D 8 X
G
o
Y X X Ml a

Fig. 15.6 Grid for solving hyperbolic equation

The difference equations for f (x, t) and f,(x, t) are:

fle=h,t)=-2f(x, )+ flx+h,t)
h2

flx,t~0)=-2f(x, )+ flx,t +7)
72

falx, ) =

fulx, t) =
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This implies that,
fr—llJ_Qf{,;"‘fu],j rl,,f-i_zfi.;"'fl'.j+1
T % =p :
hi T

Solving this for 7, ;. |, we obtain

fuisr==Ti - *2{1—%:—:?-]&. *{;}:; Fuvny+Fiz1,;)
If we can make
Tr2
_;on
then, we have _
Gpet =T ey By +ﬂ_1_; (15.30)

The value of fat x = x, and ¢ = t; + tis equal to the sum of the values of
[at the point x =x, — % and x = x, + A at the time ¢ = t, (previous time)
minus the value of fat x = x, at time ¢ = t;~ 7. From Fig. 15.6, we can say
that,

fa=fa+fo—rfo

Starting Values

We need two rows of starting values, corresponding toj =1 andj=2in
order to compute the values at the third row. First row is obtained using
the condition

flx, 0) = f(x)
The sccond row can be obtained using the second initial condition as
follows:

filx, 0) = glx)
We know that

=&

fio+1=fio-1
filx, 0} = i

fioi=fii-21g, fort = 0 only
Substituting this in Kq. (15.30), we get for ¢ = t,

fi =%U‘;+1,o+f}—1,u}+"’g.' (15.31)

In many cases, g(x,) = 0. Then, we have

f:,l:-% i+1,0%fi_1,0
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Solve numerically the wave equation
fulx, ) = 4falx, 1), MR
with the boundary conditions
fl0)=0 and f(6,¢t)=0
and initial values
flx, 0) = flx) = x(5 - x]
fi(x,0) = glx) =0

— e — . —— — — — — — — —— — ——— — — i e

Leth =
Given
-
p
and assuming
T2
1- 4—1-2— =)
We get,
o
=3

The values estimated using Eqs (15.30) and (15.31) are tabulated in
Table 15.4.

Table 15.4
<X 0 i 2 3 4 5
00 00 4 6 6 4 0.0 | x(5-%)
0.5 0.0 3 b 5 3 0.0 Equation (15.31)
1.0 0.0 1 2 2 1 0.0 Equation (15.30)
L5 0.0 -1 =) -2 -1 0.0
2.0 0.0 -3 ~ 5 -5 -3 0.0
25 0.0 -4 - -8 —4 0.0

In this chapter, we discussed the solution of an important class of differ-
ential equations called partial differential equations. Due to complexity
and limited scope of this book, we considered only the finite-difference
method of solving the PDE problems where the coefficients «, b, and ¢
are constants, We presented the following in this chapter:

» Definition and classification of partial differential equations.

» Derivation of difference equations for PDEs.

» Solution of Laplace’s equation by *'-- =~thod of elimination.



-]

—

Solution of Particl Diferential Equations 501

Liehmann’s iterative method for solving Laplace’s equation.
Solution of Poisson's equation by both dircct and iterative methods.
Solution of parabolic type heat equation using the explicit Bender-
Schunidt recurrence equation and the implicit Crank-Nicholson for-
mula.

Solution of hyperbolic type wave equaiion by iterative procedure.

Key Terms
Gender-Schmidt equation Hyperboliz equalion
Crank-Nicholson formuwia Implicit method
Cross average Laplace's equation
Diagonal average Laplacian opeiator
Dirichlet boundary condition Liebmann’s mathod
Elliptic equation ) Parabolic equalion
Explicit method Partial derivaiives
Finite-difference method Partial differential equation
Finite-alerment miathod Poisson's equation
Gauss-Seide! iteration Wave equation
Heat equation

&

Qe

Ll
1%

13.
14,

15

What is a partial differential equation? Give two examples.
State two real-life problems where partial differential equations
are required to construct mathematical models.

. How are the partial differential equations classified? Give an ex-

ample from real-life situations for each type.

. What are the various methods available to solve differential equa-

tions?

Explain how difference quotients are applied to solve partial differ-
ential equations,

What is Poisson’s equation? How does it differ from Laplace's equa-
tion?

What is Liebmann'’s iteration method? What are its advantages?
What is meant by Dirichlet boundary conditions?

What is diagonal-averaging? When do we use it?

Derive a difference equation Lo represent a Poisson’s equation.
Derive the five-point formula for Laplace’s equation.

What is Crank-Nicholson method? Why is it known as implicit
method?

What is Bender-Schmidt recurrence equation? Derive the formula.
Discuss the impact of size of the incremental width AT for the time
variable ¢ on the solution of a heat-flow equation.

Outline the argument that demonstrates the stability of the finite-
difference procedure for solving a hyperbolic equation.
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. Determine which of the following equations are elliptic, parabolic,
and hyperbolic.

(a) 3f, +4f,=0

(b) fou—f, =0

(© fa-2f, + 2fy = 2x + By

(d) fx+2f,+4f,=0

(&) fu—-Ff,=0

) fo+6f,+9,=0
- The steady-state two-dimensional heat-flow in a metal plate is by

92T . 22T 5
ax?  gy?

Given the boundary conditions as shown in the figure below, find
the temperatures T, T, T, and 7.

100 100 100
T
200
. T
--—7—— 200
o
0 50 100 100

. Solve for the steady-state temperatures in a rectangular plate 8 ¢m
% 10 cm, if one 10 cm side is held at 50°C, and the other 10 em side
15 held at 30°C and the other two sides are held at 10°C. Assume
square grids of size 2 em x 2 em.

. Repeat Exercise 3 by Leibmann’s method.

. Evaluate f(x, ¥) at the internal grid points of the given domain
governed by Laplace’s equation. Use Liebmann’s iteration method.

i (1) Q 0 100 " 20 59 20 0

0 e 150 20 ——+t+—+—20

0f— 4—f—+——1l200 50 50

0pF—— ]» - 150 20 | 20
1

0 0 0 0 1}10 0 2u 50 20 0

(a) (h)
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10.

11
12.
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Torsion on a rectangular bar subject to twisting is governed hy
VAT = —4
Given the condition T = 0 on houndary, find T over a cross section
of a bar of size & em % 12 em. Use a grid size of 3 em x 3 cm.
Solve the equation
vif=Fx,y)
with F(x, y) = xv and f = 0 on boundary. The domain is a square

with corners at (0, 0) and (4, 4). Use A = 1.

. Estimate the values at grid points of the following equations using

Bender-Schmidt recurrence equation, Assume A = 1
(a) fu—0.5f=0 '
Given,
f0,e=0,f(6,6)=0
flx, 0) = x(5 - x)
(b) 9 =f,
Given,
fl0, 81 =~5, f(5,t) =15

o _i—5rnrnsx~_:z.5'
f& 0= 5ra5<x<5

Initial temperatures within an insulated eylindrical metal rod of 5
cm long are given by

T=20xfor0sx=<5H
where x is the distance from one face. Both the ends are main-
tained at 0°C. Find the temperatures as a function of x and ¢ if the
heat flow is governed by

4T, -T,=0

Solve the following equation using Crank-Nicholson methed.

L L
dxt
Given,
flo, 8 =0, f{20,t) =10
flx, 0)=2.0
Assume Ax =h =5andr=1
Solve Exercise 9 with the Crank-Nicholson method with r = 1.
Solve the following hyperbolic equations using finite difference meth-
od.
@) fu=4fa
Given,
f(0,8)=0and f(5,¢) =0
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flx, 0) = 100+* (5 - x)
filx, ) =0
(h) ffl = 4 f.u'
Given,
f(0,t)=0and f(1,£)=0
flx, 0) = f(x) =sin (nx) + sin (2nx)
fix,0) =0

1. Develop a program to solve Laplace’s equation with Dirichlet condi-
tions.

Write a program to solve Poisson’s equation,

Develop a program using forward-difference method to solve the
heat equation.

4. Write a program to solve the heat equation using Crank-Nicholson
method.

Write a program for finite-difference solution of the wave equation,

Al

o



