
1

C H A P T E R 1
Introduction

During the past several decades the field of digital signal processing (DSP)
has grown to be important, both theoretically and technologically. A ma-
jor reason for its success in industry is the development and use of low-cost
software and hardware. New technologies and applications in various fields
are now taking advantage of DSP algorithms. This will lead to a greater
demand for electrical and computer engineers with background in DSP.
Therefore, it is necessary to make DSP an integral part of any electrical
engineering curriculum.

Two decades ago an introductory course on DSP was given mainly at
the graduate level. It was supplemented by computer exercises on filter
design, spectrum estimation, and related topics using mainframe (or mini)
computers. However, considerable advances in personal computers and
software during the past two decades have made it necessary to introduce
a DSP course to undergraduates. Since DSP applications are primarily
algorithms that are implemented either on a DSP processor [11] or in
software, a fair amount of programming is required. Using interactive
software, such as MATLAB, it is now possible to place more emphasis
on learning new and difficult concepts than on programming algorithms.
Interesting practical examples can be discussed, and useful problems can
be explored.

With this philosophy in mind, we have developed this book as a com-
panion book (to traditional textbooks like [18, 23]) in which MATLAB is
an integral part in the discussion of topics and concepts. We have chosen
MATLAB as the programming tool primarily because of its wide avail-
ability on computing platforms in many universities across the world.
Furthermore, a low-cost student version of MATLAB has been available
for several years, placing it among the least expensive software products

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2 Chapter 1 INTRODUCTION

for educational purposes. We have treated MATLAB as a computational
and programming toolbox containing several tools (sort of a super calcu-
lator with several keys) that can be used to explore and solve problems
and, thereby, enhance the learning process.

This book is written at an introductory level in order to introduce
undergraduate students to an exciting and practical field of DSP. We
emphasize that this is not a textbook in the traditional sense but a com-
panion book in which more attention is given to problem solving and
hands-on experience with MATLAB. Similarly, it is not a tutorial book in
MATLAB. We assume that the student is familiar with MATLAB and is
currently taking a course in DSP. The book provides basic analytical tools
needed to process real-world signals (a.k.a. analog signals) using digital
techniques. We deal mostly with discrete-time signals and systems, which
are analyzed in both the time and the frequency domains. The analysis
and design of processing structures called filters and spectrum analyzers
are among of the most important aspects of DSP and are treated in great
detail in this book. Two important topics on finite word-length effects and
sampling-rate conversion are also discussed in this book. More advanced
topics in modern signal processing like statistical and adaptive signal pro-
cessing are generally covered in a graduate course. These are not treated
in this book, but it is hoped that the experience gained in using this book
will allow students to tackle advanced topics with greater ease and un-
derstanding. In this chapter we provide a brief overview of both DSP and
MATLAB.

1.1 OVERVIEW OF DIGITAL SIGNAL PROCESSING

In this modern world we are surrounded by all kinds of signals in vari-
ous forms. Some of the signals are natural, but most of the signals are
manmade. Some signals are necessary (speech), some are pleasant (mu-
sic), while many are unwanted or unnecessary in a given situation. In an
engineering context, signals are carriers of information, both useful and
unwanted. Therefore extracting or enhancing the useful information from
a mix of conflicting information is the simplest form of signal processing.
More generally, signal processing is an operation designed for extracting,
enhancing, storing, and transmitting useful information. The distinction
between useful and unwanted information is often subjective as well as
objective. Hence signal processing tends to be application dependent.

1.1.1 HOW ARE SIGNALS PROCESSED?
The signals that we encounter in practice are mostly analog signals. These
signals, which vary continuously in time and amplitude, are processed

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Overview of Digital Signal Processing 3

using electrical networks containing active and passive circuit elements.
This approach is known as analog signal processing (ASP)—for example,
radio and television receivers.

Analog signal: xa(t) −→ Analog signal processor −→ ya(t) :Analog signal

They can also be processed using digital hardware containing adders,
multipliers, and logic elements or using special-purpose microprocessors.
However, one needs to convert analog signals into a form suitable for
digital hardware. This form of the signal is called a digital signal. It takes
one of the finite number of values at specific instances in time, and hence
it can be represented by binary numbers, or bits. The processing of digital
signals is called DSP; in block diagram form it is represented by

Analog →

Equivalent Analog Signal Processor

→ PrF ADC
digital

DSP
digital

Discrete System

DAC PoF → → Analog

The various block elements are discussed as follows.

PrF: This is a prefilter or an antialiasing filter, which conditions the analog
signal to prevent aliasing.

ADC: This is an analog-to-digital converter, which produces a stream of
binary numbers from analog signals.

Digital Signal Processor: This is the heart of DSP and can represent a general-
purpose computer or a special-purpose processor, or digital hardware,
and so on.

DAC: This is the inverse operation to the ADC, called a digital-to-analog
converter, which produces a staircase waveform from a sequence of
binary numbers, a first step toward producing an analog signal.

PoF: This is a postfilter to smooth out staircase waveform into the desired
analog signal.

It appears from the above two approaches to signal processing, analog
and digital, that the DSP approach is the more complicated, containing
more components than the “simpler looking” ASP. Therefore one might
ask, Why process signals digitally? The answer lies in the many advan-
tages offered by DSP.

1.1.2 ADVANTAGES OF DSP OVER ASP
A major drawback of ASP is its limited scope for performing complicated
signal-processing applications. This translates into nonflexibility in pro-
cessing and complexity in system designs. All of these generally lead to

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4 Chapter 1 INTRODUCTION

expensive products. On the other hand, using a DSP approach, it is pos-
sible to convert an inexpensive personal computer into a powerful signal
processor. Some important advantages of DSP are these:

1. Systems using the DSP approach can be developed using software run-
ning on a general-purpose computer. Therefore DSP is relatively con-
venient to develop and test, and the software is portable.

2. DSP operations are based solely on additions and multiplications, lead-
ing to extremely stable processing capability—for example, stability
independent of temperature.

3. DSP operations can easily be modified in real time, often by simple
programming changes, or by reloading of registers.

4. DSP has lower cost due to VLSI technology, which reduces costs of
memories, gates, microprocessors, and so forth.

The principal disadvantage of DSP is the limited speed of operations
limited by the DSP hardware, especially at very high frequencies. Primar-
ily because of its advantages, DSP is now becoming a first choice in many
technologies and applications, such as consumer electronics, communica-
tions, wireless telephones, and medical imaging.

1.1.3 TWO IMPORTANT CATEGORIES OF DSP
Most DSP operations can be categorized as being either signal analysis
tasks or signal filtering tasks:

Digital Signal

Analysis Digital Filter

Measurements Digital Signal

Signal analysis This task deals with the measurement of signal prop-
erties. It is generally a frequency-domain operation. Some of its applica-
tions are

• spectrum (frequency and/or phase) analysis
• speech recognition
• speaker verification
• target detection

Signal filtering This task is characterized by the signal-in signal-out
situation. The systems that perform this task are generally called filters.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Brief Introduction to MATLAB 5

It is usually (but not always) a time-domain operation. Some of the ap-
plications are

• removal of unwanted background noise
• removal of interference
• separation of frequency bands
• shaping of the signal spectrum

In some applications, such as voice synthesis, a signal is first analyzed
to study its characteristics, which are then used in digital filtering to
generate a synthetic voice.

1.2 A BRIEF INTRODUCTION TO MATLAB

MATLAB is an interactive, matrix-based system for scientific and engi-
neering numeric computation and visualization. Its strength lies in the fact
that complex numerical problems can be solved easily and in a fraction
of the time required by a programming language such as Fortran or C. It
is also powerful in the sense that, with its relatively simple programming
capability, MATLAB can be easily extended to create new commands and
functions.

MATLAB is available in a number of computing environments: PCs
running all flavors of Windows, Apple Macs running OS-X, UNIX/Linux
workstations, and parallel computers. The basic MATLAB program is
further enhanced by the availability of numerous toolboxes (a collection
of specialized functions in a specific topic) over the years. The information
in this book generally applies to all these environments. In addition to the
basic MATLAB product, the Signal Processing toolbox (SP toolbox) is
required for this book. The original development of the book was done us-
ing the professional version 3.5 running under DOS. The MATLAB scripts
and functions described in the book were later extended and made com-
patible with the present version of MATLAB. Furthermore, through the
services of www.cengagebrain.com every effort will be made to preserve
this compatibility under future versions of MATLAB.

In this section, we will undertake a brief review of MATLAB. The
scope and power of MATLAB go far beyond the few topics discussed
in this section. For more detailed tutorial-based discussion, students and
readers new to MATLAB should also consult several excellent reference
books available in the literature, including [10], [7], and [21]. The informa-
tion given in all these references, along with the online MATLAB’s help
facility, usually is sufficient to enable readers to use this book. The best ap-
proach to become familiar with MATLAB is to open a MATLAB session
and experiment with various operators, functions, and commands until

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengagebrain.com

6 Chapter 1 INTRODUCTION

their use and capabilities are understood. Then one can progress to writ-
ing simple MATLAB scripts and functions to execute a sequence of in-
structions to accomplish an analytical goal.

1.2.1 GETTING STARTED
The interaction with MATLAB is through the command window of its
graphical user interface (GUI). In the command window, the user types
MATLAB instructions, which are executed instantaneously, and the re-
sults are displayed in the window. In the MATLAB command window the
characters “>>” indicate the prompt which is waiting for the user to type
a command to be executed. For example,

>> command;

means an instruction command has been issued at the MATLAB prompt.
If a semicolon (;) is placed at the end of a command, then all output
from that command is suppressed. Multiple commands can be placed on
the same line, separated by semicolons ;. Comments are marked by the
percent sign (%), in which case MATLAB ignores anything to the right
of the sign. The comments allow the reader to follow code more easily.
The integrated help manual provides help for every command through the
fragment

>> help command;

which will provide information on the inputs, outputs, usage, and func-
tionality of the command. A complete listing of commands sorted by
functionality can be obtained by typing help at the prompt.

There are three basic elements in MATLAB: numbers, variables, and
operators. In addition, punctuation marks (,, ;, :, etc.) have special
meanings.

Numbers MATLAB is a high-precision numerical engine and can han-
dle all types of numbers, that is, integers, real numbers, complex numbers,
among others, with relative ease. For example, the real number 1.23 is rep-
resented as simply 1.23 while the real number 4.56 × 107 can be written
as 4.56e7. The imaginary number

√
−1 is denoted either by 1i or 1j,

although in this book we will use the symbol 1j. Hence the complex num-
ber whose real part is 5 and whose imaginary part is 3 will be written as
5+1j*3. Other constants preassigned by MATLAB are pi for π, inf for
∞, and NaN for not a number (for example, 0/0). These preassigned con-
stants are very important and, to avoid confusion, should not be redefined
by users.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Brief Introduction to MATLAB 7

Variables In MATLAB, which stands for MATrix LABoratory, the ba-
sic variable is a matrix, or an array. Hence, when MATLAB operates on
this variable, it operates on all its elements. This is what makes it a pow-
erful and an efficient engine. MATLAB now supports multidimensional
arrays; we will discuss only up to two-dimensional arrays of numbers.

1. Matrix: A matrix is a two-dimensional set of numbers arranged in
rows and columns. Numbers can be real- or complex-valued.

2. Array: This is another name for matrix. However, operations on arrays
are treated differently from those on matrices. This difference is very
important in implementation.

The following are four types of matrices (or arrays):

• Scalar: This is a 1 × 1 matrix or a single number that is denoted by
the variable symbol, that is, lowercase italic typeface like

a = a11

• Column vector: This is an (N × 1) matrix or a vertical arrangement
of numbers. It is denoted by the vector symbol, that is, lowercase bold
typeface like

x = [xi1]i:1,...,N =

x11

x21

...
xN1

A typical vector in linear algebra is denoted by the column vector.
• Row vector: This is a (1 ×M) matrix or a horizontal arrangement of

numbers. It is also denoted by the vector symbol, that is,

y = [y1j]j=1,...,M =
[
y11 y12 · · · y1M

]

A one-dimensional discrete-time signal is typically represented by an
array as a row vector.

• General matrix: This is the most general case of an (N ×M) matrix
and is denoted by the matrix symbol, that is, uppercase bold typeface
like

A = [aij]i=1,...,N ;j=1,...,m =

a11 a12 · · · a1M

a21 a22 · · · a2M

...
...

. . .
...

aN1 aN2 · · · aNM

This arrangement is typically used for two-dimensional discrete-time
signals or images.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8 Chapter 1 INTRODUCTION

MATLAB does not distinguish between an array and a matrix except for
operations. The following assignments denote indicated matrix types in
MATLAB:

a = [3] is a scalar,
x = [1,2,3] is a row vector,
y = [1;2;3] is a column vector, and
A = [1,2,3;4,5,6] is a matrix.

MATLAB provides many useful functions to create special matrices.
These include zeros(M,N) for creating a matrix of all zeros, ones(M,N)
for creating matrix of all ones, eye(N) for creating an N × N identity
matrix, etc. Consult MATLAB’s help manual for a complete list.

Operators MATLAB provides several arithmetic and logical operators,
some of which follow. For a complete list, MATLAB’s help manual should
be consulted.

= assignment == equality
+ addition - subtraction or minus
* multiplication .* array multiplication
^ power .^ array power
/ division ./ array division
<> relational operators & logical AND
| logical OR ~ logical NOT
’ transpose .’ array transpose

We now provide a more detailed explanation on some of these operators.

1.2.2 MATRIX OPERATIONS
Following are the most useful and important operations on matrices.

• Matrix addition and subtraction: These are straightforward oper-
ations that are also used for array addition and subtraction. Care must
be taken that the two matrix operands be exactly the same size.

• Matrix conjugation: This operation is meaningful only for complex-
valued matrices. It produces a matrix in which all imaginary parts are
negated. It is denoted by A∗ in analysis and by conj(A) in MATLAB.

• Matrix transposition: This is an operation in which every row (col-
umn) is turned into column (row). Let X be an (N ×M) matrix. Then

X
′
= [xji] ; j = 1, . . . ,M, i = 1, . . . , N

is an (M ×N) matrix. In MATLAB, this operation has one additional
feature. If the matrix is real-valued, then the operation produces the

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Brief Introduction to MATLAB 9

usual transposition. However, if the matrix is complex-valued, then the
operation produces a complex-conjugate transposition. To obtain just
the transposition, we use the array operation of conjugation, that is,
A.′ will do just the transposition.

• Multiplication by a scalar: This is a simple straightforward
operation in which each element of a matrix is scaled by a constant,
that is,

ab ⇒ a*b (scalar)

ax ⇒ a*x (vector or array)

aX ⇒ a*X (matrix)

This operation is also valid for an array scaling by a constant.
• Vector-vector multiplication: In this operation, one has to be care-

ful about matrix dimensions to avoid invalid results. The operation
produces either a scalar or a matrix. Let x be an (N × 1) and y be a
(1 ×M) vectors. Then

x ∗ y ⇒ xy =

x1

...
xN

 [

y1 · · · yM
]

=

x1y1 · · · x1yM

...
. . .

...
xNy1 · · · xNyM

produces a matrix. If M = N , then

y ∗ x ⇒ yx =
[
y1 · · · yM

]

x1

...
xM

 = x1y1 + · · · + xMyM

• Matrix-vector multiplication: If the matrix and the vector are com-
patible (i.e., the number of matrix-columns is equal to the vector-rows),
then this operation produces a column vector:

y = A*x ⇒ y = Ax =

a11 · · · a1M

...
. . .

...
aN1 · · · aNM

x1

...
xM

 =

y1

...
yN

• Matrix-matrix multiplication: Finally, if two matrices are compat-
ible, then their product is well-defined. The result is also a matrix with
the number of rows equal to that of the first matrix and the number
of columns equal to that of the second matrix. Note that the order in
matrix multiplication is very important.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10 Chapter 1 INTRODUCTION

Array Operations These operations treat matrices as arrays. They
are also known as dot operations because the arithmetic operators are
prefixed by a dot (.), that is, .*, ./, or .^.

• Array multiplication: This is an element by element multiplication
operation. For it to be a valid operation, both arrays must be the same
size. Thus we have

x.*y → 1D array

X.*Y → 2D array

• Array exponentiation: In this operation, a scalar (real- or complex-
valued) is raised to the power equal to every element in an array, that is,

a.ˆx ≡

ax1

ax2

...

axN

is an (N × 1) array, whereas

a.ˆX ≡

ax11 ax12 · · · ax1M

ax21 ax22 · · · ax2M

...
...

. . .
...

axN1 axN2 · · · axNM

is an (N ×M) array.
• Array transposition: As explained, the operation A.′ produces trans-

position of real- or complex-valued array A.

Indexing Operations MATLAB provides very useful and powerful ar-
ray indexing operations using operator :. It can be used to generate se-
quences of numbers as well as to access certain row/column elements of a
matrix. Using the fragment x = [a:b:c], we can generate numbers from
a to c in b increments. If b is positive (negative) then, we get increasing
(decreasing) values in the sequence x.

The fragment x(a:b:c) accesses elements of x beginning with index
a in steps of b and ending at c. Care must be taken to use integer values
of indexing elements. Similarly, the : operator can be used to extract a
submatrix from a matrix. For example, B = A(2:4,3:6) extracts a 3× 4
submatrix starting at row 2 and column 3.

Another use of the : operator is in forming column vectors from row
vectors or matrices. When used on the right-hand side of the equality (=)
operator, the fragment x=A(:) forms a long column vector x of elements

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Brief Introduction to MATLAB 11

of A by concatenating its columns. Similarly, x=A(:,3) forms a vector x
from the third column of A. However, when used on the right-hand side
of the = operator, the fragment A(:)=x reformats elements in x into a
predefined size of A.

Control-Flow MATLAB provides a variety of commands that allow
us to control the flow of commands in a program. The most common
construct is the if-elseif-else structure. With these commands, we can
allow different blocks of code to be executed depending on some condition.
The format of this construct is

if condition1

command1

elseif condition2

command2

else

command3

end

which executes statements in command1 if condition-1 is satisfied; other-
wise statements in command2 if condition-2 is satisfied, or finally state-
ments in command3.

Another common control flow construct is the for..end loop. It is
simply an iteration loop that tells the computer to repeat some task a
given number of times. The format of a for..end loop is

for index = values

program statements

:

end

Although for..end loops are useful for processing data inside of arrays by
using the iteration variable as an index into the array, whenever possible
the user should try to use MATLAB’s whole array mathematics. This will
result in shorter programs and more efficient code. In some situations the
use of the for..end loop is unavoidable. The following example illustrates
these concepts.

� EXAMPLE 1.1 Consider the following sum of sinusoidal functions.

x(t) = sin(2πt) + 1
3

sin(6πt) + 1
5

sin(10πt) =
3∑

k=1

1

k
sin(2πkt), 0 ≤ t ≤ 1

Using MATLAB, we want to generate samples of x(t) at time instances
0:0.01:1. We will discuss three approaches.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12 Chapter 1 INTRODUCTION

Approach 1 Here we will consider a typical C or Fortran approach, that is, we will use two
for..end loops, one each on t and k. This is the most inefficient approach in
MATLAB, but possible.

>> t = 0:0.01:1; N = length(t); xt = zeros(1,N);

>> for n = 1:N

>> temp = 0;

>> for k = 1:3

>> temp = temp + (1/k)*sin(2*pi*k*t(n));

>> end

>> xt(n) = temp;

>> end

Approach 2 In this approach, we will compute each sinusoidal component in one step as a
vector, using the time vector t = 0:0.01:1 and then add all components using
one for..end loop.

>> t = 0:0.01:1; xt = zeros(1,length(t));

>> for k = 1:3

>> xt = xt + (1/k)*sin(2*pi*k*t);

>> end

Clearly, this is a better approach with fewer lines of code than the first one.

Approach 3 In this approach, we will use matrix-vector multiplication, in which MATLAB
is very efficient. For the purpose of demonstration, consider only four values for
t = [t1, t2, t3, t4]. Then

x(t1) = sin(2πt1) + 1
3

sin(2π3t1) + 1
5

sin(2π5t1)

x(t2) = sin(2πt2) + 1
3

sin(2π3t2) + 1
5

sin(2π5t2)

x(t3) = sin(2πt3) + 1
3

sin(2π3t3) + 1
5

sin(2π5t3)

x(t4) = sin(2πt4) + 1
3

sin(2π3t4) + 1
5

sin(2π5t4)

which can be written in matrix form as

x(t1)

x(t2)

x(t3)

x(t4)

 =

sin(2πt1) sin(2π3t1) sin(2π5t1)

sin(2πt2) sin(2π3t2) sin(2π5t2)

sin(2πt3) sin(2π3t3) sin(2π5t3)

sin(2πt4) sin(2π3t4) sin(2π5t4)

1
1
3
1
5

= sin

2π

t1

t2

t3

t4

[
1 3 5

]

1
1
3
1
5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Brief Introduction to MATLAB 13

or after taking transposition

[
x(t1) x(t2) x(t3) x(t4)

]
=

[
1 1

3
1
5

]
sin

2π

1

3

5

 [

t1 t2 t3 t4
]

Thus the MATLAB code is

>> t = 0:0.01:1; k = 1:3;

>> xt = (1./k)*sin(2*pi*k’*t);

Note the use of the array division (1./k) to generate a row vector and ma-
trix multiplications to implement all other operations. This is the most compact
code and the most efficient execution in MATLAB, especially when the number
of sinusoidal terms is very large.

1.2.3 SCRIPTS AND FUNCTIONS
MATLAB is convenient in the interactive command mode if we want to
execute few lines of code. But it is not efficient if we want to write code of
several lines that we want to run repeatedly or if we want to use the code
in several programs with different variable values. MATLAB provides two
constructs for this purpose.

Scripts The first construct can be accomplished by using the so-called
block mode of operation. In MATLAB, this mode is implemented using
a script file called an m-file (with an extension .m), which is only a text
file that contains each line of the file as though you typed them at the
command prompt. These scripts are created using MATLAB’s built-in
editor, which also provides for context-sensitive colors and indents for
making fewer mistakes and for easy reading. The script is executed by
typing the name of the script at the command prompt. The script file must
be in the current directory on in the directory of the path environment.
As an example, consider the sinusoidal function in Example 1.1. A general
form of this function is

x(t) =
K∑

k=1

ck sin(2πkt) (1.1)

If we want to experiment with different values of the coefficients ck and/or
the number of terms K, then we should create a script file. To implement
the third approach in Example 1.1, we can write a script file

% Script file to implement (1.1)

t = 0:0.01:1; k = 1:2:5; ck = 1./k;

xt = ck * sin(2*pi*k’*t);

Now we can experiment with different values.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14 Chapter 1 INTRODUCTION

Functions The second construct of creating a block of code is through
subroutines. These are called functions, which also allow us to extend the
capabilities of MATLAB. In fact a major portion of MATLAB is assem-
bled using function files in several categories and using special collections
called toolboxes. Functions are also m-files (with extension .m). A major
difference between script and function files is that the first executable
line in a function file begins with the keyword function followed by an
output-input variable declaration. As an example, consider the compu-
tation of the x(t) function in Example 1.1 with an arbitrary number of
sinusoidal terms, which we will implement as a function stored as m-file
sinsum.m.

function xt = sinsum(t,ck)

% Computes sum of sinusoidal terms of the form in (1.1)

% x = sinsum(t,ck)

%

K = length(ck); k = 1:K;

ck = ck(:)’; t = t(:)’;

xt = ck * sin(2*pi*k’*t);

The vectors t and ck should be assigned prior to using the sinsum
function. Note that ck(:)’ and t(:)’ use indexing and transposition
operations to force them to be row vectors. Also note the comments im-
mediately following the function declaration, which are used by the help
sinsum command. Sufficient information should be given there for the user
to understand what the function is supposed to do.

1.2.4 PLOTTING
One of the most powerful features of MATLAB for signal and data analysis
is its graphical data plotting. MATLAB provides several types of plots,
starting with simple two-dimensional (2D) graphs to complex, higher-
dimensional plots with full-color capability. We will examine only the 2D
plotting, which is the plotting of one vector versus another in a 2D coor-
dinate system. The basic plotting command is the plot(t,x) command,
which generates a plot of x values versus t values in a separate figure
window. The arrays t and x should be the same length and orientation.
Optionally, some additional formatting keywords can also be provided in
the plot function. The commands xlabel and ylabel are used to add
text to the axis, and the command title is used to provide a title on
the top of the graph. When plotting data, one should get into the habit
of always labeling the axis and providing a title. Almost all aspects of
a plot (style, size, color, etc.) can be changed by appropriate commands
embedded in the program or directly through the GUI.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Brief Introduction to MATLAB 15

The following set of commands creates a list of sample points, eval-
uates the sine function at those points, and then generates a plot of a
simple sinusoidal wave, putting axis labels and title on the plot.

>> t = 0:0.01:2; % sample points from 0 to 2 in steps of 0.01

>> x = sin(2*pi*t); % Evaluate sin(2 pi t)

>> plot(t,x,’b’); % Create plot with blue line

>> xlabel(’t in sec’); ylabel(’x(t)’); % Label axis

>> title(’Plot of sin(2\pi t)’); % Title plot

The resulting plot is shown in Figure 1.1.
For plotting a set of discrete numbers (or discrete-time signals), we

will use the stem command which displays data values as a stem, that
is, a small circle at the end of a line connecting it to the horizontal axis.
The circle can be open (default) or filled (using the option ’filled’).
Using Handle Graphics (MATLAB’s extensive manipulation of graphics
primitives), we can resize circle markers. The following set of commands
displays a discrete-time sine function using these constructs.

>> n = 0:1:40; % sample index from 0 to 20

>> x = sin(0.1*pi*n); % Evaluate sin(0.2 pi n)

>> Hs = stem(n,x,’b’,’filled’); % Stem-plot with handle Hs

>> set(Hs,’markersize’,4); % Change circle size

>> xlabel(’n’); ylabel(’x(n)’); % Label axis

>> title(’Stem Plot of sin(0.2 pi n)’); % Title plot

The resulting plot is shown in Figure 1.2.
MATLAB provides an ability to display more than one graph in the

same figure window. By means of the hold on command, several graphs
can be plotted on the same set of axes. The hold off command stops
the simultaneous plotting. The following MATLAB fragment (Figure 1.3)

0 0.5 1 1.5 2
–1

–0.5

0

0.5

1

t in sec

x(
t)

Plot of sin(2π t)

FIGURE 1.1 Plot of the sin(2πt) function

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16 Chapter 1 INTRODUCTION

0 5 10 15 20 25 30 35 40
n

x(
n)

Stem Plot of sin(0.2 π n)

–1

–0.5

0

0.5

1

FIGURE 1.2 Plot of the sin(0.2π n) sequence

displays graphs in Figures 1.1 and 1.2 as one plot, depicting a “sampling”
operation that we will study later.

>> plot(t,xt,’b’); hold on; % Create plot with blue line

>> Hs = stem(n*0.05,xn,’b’,’filled’); % Stem-plot with handle Hs

>> set(Hs,’markersize’,4); hold off; % Change circle size

Another approach is to use the subplot command, which displays
several graphs in each individual set of axes arranged in a grid, using the
parameters in the subplot command. The following fragment (Figure 1.4)
displays graphs in Figure 1.1 and 1.2 as two separate plots in two rows.

. . .

>> subplot(2,1,1); % Two rows, one column, first plot

>> plot(t,x,’b’); % Create plot with blue line

. . .

>> subplot(2,1,2); % Two rows, one column, second plot

>> Hs = stem(n,x,’b’,’filled’); % Stem-plot with handle Hs

. . .

0 0.5 1 1.5 2

Plot of sin(2π t) and its samples

t in sec

x(
t)

 a
nd

 x
(n

)

–1

–0.5

0

0.5

1

FIGURE 1.3 Simultaneous plots of x(t) and x(n)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Applications of Digital Signal Processing 17

0 0.5 1 1.5 2
t in sec

x(
t)

Plot of sin(2π t)

0 5 10 15 20 25 30 35 40

n

x(
n)

Stem Plot of sin(0.2π n)

–1

–0.5

0

0.5

1

–1

–0.5

0

0.5

1

FIGURE 1.4 Plots of x(t) and x(n) in two rows

The plotting environment provided by MATLAB is very rich in
its complexity and usefulness. It is made even richer using the handle-
graphics constructs. Therefore, readers are strongly recommended to
consult MATLAB’s manuals on plotting. Many of these constructs will
be used throughout this book.

In this brief review, we have barely made a dent in the enormous
capabilities and functionalities in MATLAB. Using its basic integrated
help system, detailed help browser, and tutorials, it is possible to acquire
sufficient skills in MATLAB in a reasonable amount of time.

1.3 APPLICATIONS OF DIGITAL SIGNAL PROCESSING

The field of DSP has matured considerably over the last several decades
and now is at the core of many diverse applications and products. These
include

• speech/audio (speech recognition/synthesis, digital audio, equalization,
etc.),

• image/video (enhancement, coding for storage and transmission,
robotic vision, animation, etc.),

• military/space (radar processing, secure communication, missile guid-
ance, sonar processing, etc.),

• biomedical/health care (scanners, ECG analysis, X-ray analysis, EEG
brain mappers, etc.)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18 Chapter 1 INTRODUCTION

• consumer electronics (cellular/mobile phones, digital television, digital
camera, Internet voice/music/video, interactive entertainment systems,
etc) and many more.

These applications and products require many interconnected com-
plex steps, such as collection, processing, transmission, analysis, audio/
display of real-world information in near real time. DSP technology has
made it possible to incorporate these steps into devices that are inno-
vative, affordable, and of high quality (for example, iPhone from Apple,
Inc.). A typical application to music is now considered as a motivation
for the study of DSP.

Musical sound processing In the music industry, almost all musical
products (songs, albums, etc.) are produced in basically two stages. First,
the sound from an individual instrument or performer is recorded in an
acoustically inert studio on a single track of a multitrack recording device.
Then, stored signals from each track are digitally processed by the sound
engineer by adding special effects and combined into a stereo recording,
which is then made available either on a CD or as an audio file.

The audio effects are artificially generated using various signal-
processing techniques. These effects include echo generation, reverber-
ation (concert hall effect), flanging (in which audio playback is slowed
down by placing DJ’s thumb on the flange of the feed reel), chorus effect
(when several musicians play the same instrument with small changes
in amplitudes and delays), and phasing (aka phase shifting, in which
an audio effect takes advantage of how sound waves interact with each
other when they are out of phase). These effects are now generated using
digital-signal-processing techniques. We now discuss a few of these sound
effects in some detail.

Echo Generation The most basic of all audio effects is that of time
delay, or echoes. It is used as the building block of more complicated effects
such as reverb or flanging. In a listening space such as a room, sound
waves arriving at our ears consist of direct sound from the source as well
as reflected off the walls, arriving with different amounts of attenuation
and delays.

Echoes are delayed signals, and as such are generated using delay
units. For example, the combination of the direct sound represented by
discrete signal y[n] and a single echo appearing D samples later (which is
related to delay in seconds) can be generated by the equation of the form
(called a difference equation)

x[n] = y[n] + αy[n−D], |α| < 1 (1.2)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Applications of Digital Signal Processing 19

where x[n] is the resulting signal and α models attenuation of the di-
rect sound. Difference equations are implemented in MATLAB using the
filter function. Available in MATLAB is a short snippet of Handel’s
hallelujah chorus, which is a digital sound about 9 seconds long, sampled
at 8192 sam/sec. To experience the sound with echo in (1.2), execute
the following fragment at the command window. The echo is delayed by
D = 4196 samples, which amount to 0.5 sec of delay.

load handel; % the signal is in y and sampling freq in Fs

sound(y,Fs); pause(10); % Play the original sound

alpha = 0.9; D = 4196; % Echo parameters

b = [1,zeros(1,D),alpha]; % Filter parameters

x = filter(b,1,y); % Generate sound plus its echo

sound(x,Fs); % Play sound with echo

You should be able to hear the distinct echo of the chorus in about a
half second.

Echo Removal After executing this simulation, you may experience
that the echo is an objectionable interference while listening. Again DSP
can be used effectively to reduce (almost eliminate) echoes. Such an echo-
removal system is given by the difference equation

w[n] + αw[n−D] = x[n] (1.3)

where x[n] is the echo-corrupted sound signal and w[n] is the output
sound signal, which has the echo (hopefully) removed. Note again that
this system is very simple to implement in software or hardware. Now try
the following MATLAB script on the signal x[n].

w = filter(1,b,x);

sound(w,Fs)

The echo should no longer be audible.

Digital Reverberation Multiple close-spaced echoes eventually lead
to reverberation, which can be created digitally using a somewhat more
involved difference equation

x[n] =
N−1∑
k=0

αky[n− kD] (1.4)

which generates multiple echoes spaced D samples apart with exponen-
tially decaying amplitudes. Another natural sounding reverberation is

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20 Chapter 1 INTRODUCTION

given by

x[n] = αy[n] + y[n−D] + αx[n−D], |α| < 1 (1.5)

which simulates a higher echo density.
These simple applications are examples of DSP. Using techniques,

concepts, and MATLAB functions learned in this book you should be
able to simulate these and other interesting sound effects.

1.4 BRIEF OVERVIEW OF THE BOOK

The first part of this book, which comprises Chapters 2 through 5, deals
with the signal-analysis aspect of DSP. Chapter 2 begins with basic de-
scriptions of discrete-time signals and systems. These signals and systems
are analyzed in the frequency domain in Chapter 3. A generalization of
the frequency-domain description, called the z-transform, is introduced in
Chapter 4. The practical algorithms for computing the Fourier transform
are discussed in Chapter 5 in the form of the discrete Fourier transform
and the fast Fourier transform.

Chapters 6 through 8 constitute the second part of this book, which is
devoted to the signal-filtering aspect of DSP. Chapter 6 describes various
implementations and structures of digital filters. It also introduces finite-
precision number representation, filter coefficient quantization, and its
effect on filter performance. Chapter 7 introduces design techniques and
algorithms for designing one type of digital filter called finite-duration
impulse response (FIR) filters, and Chapter 8 provides a similar treatment
for another type of filter called infinite-duration impulse response (IIR)
filters. In both chapters only the simpler but practically useful techniques
of filter design are discussed. More advanced techniques are not covered.

Finally, the last part, which consists of the remaining four chapters,
provides important topics and applications in DSP. Chapter 9 deals with
the useful topic of the sampling-rate conversion and applies FIR filter de-
signs from Chapter 7 to design practical sample-rate converters. Chapter
10 extends the treatment of finite-precision numerical representation to
signal quantization and the effect of finite-precision arithmetic on filter
performance. The last two chapters provide some practical applications
in the form of projects that can be done using material presented in the
first 10 chapters. In Chapter 11, concepts in adaptive filtering are intro-
duced, and simple projects in system identification, interference suppres-
sion, adaptive line enhancement, and so forth are discussed. In Chapter 12
a brief introduction to digital communications is presented with projects
involving such topics as PCM, DPCM, and LPC being outlined.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Brief Overview of the Book 21

In all these chapters, the central theme is the generous use and ad-
equate demonstration of MATLAB, which can be used as an effective
teaching as well as learning tool. Most of the existing MATLAB functions
for DSP are described in detail, and their correct use is demonstrated in
many examples. Furthermore, many new MATLAB functions are devel-
oped to provide insights into the working of many algorithms. The authors
believe that this hand-holding approach enables students to dispel fears
about DSP and provides an enriching learning experience.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22

C H A P T E R 2
Discrete-time
Signals and
Systems

We begin with the concepts of signals and systems in discrete time. A
number of important types of signals and their operations are introduced.
Linear and shift-invariant systems are discussed mostly because they are
easier to analyze and implement. The convolution and the difference equa-
tion representations are given special attention because of their impor-
tance in digital signal processing and in MATLAB. The emphasis in this
chapter is on the representations and implementation of signals and sys-
tems using MATLAB.

2.1 DISCRETE-TIME SIGNALS

Signals are broadly classified into analog and discrete signals. An analog
signal will be denoted by xa(t), in which the variable t can represent any
physical quantity, but we will assume that it represents time in seconds. A
discrete signal will be denoted by x(n), in which the variable n is integer-
valued and represents discrete instances in time. Therefore it is also called
a discrete-time signal, which is a number sequence and will be denoted by
one of the following notations:

x(n) = {x(n)} = {. . . , x(−1), x(0)
↑

, x(1), . . .}

where the up-arrow indicates the sample at n = 0.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discrete-time Signals 23

In MATLAB we can represent a finite-duration sequence by a row
vector of appropriate values. However, such a vector does not have any
information about sample position n. Therefore a correct representation
of x(n) would require two vectors, one each for x and n. For example, a
sequence x(n) = {2, 1,−1, 0

↑
, 1, 4, 3, 7} can be represented in MATLAB by

>> n=[-3,-2,-1,0,1,2,3,4]; x=[2,1,-1,0,1,4,3,7];

Generally, we will use the x-vector representation alone when the sample
position information is not required or when such information is trivial
(e.g. when the sequence begins at n = 0). An arbitrary infinite-duration
sequence cannot be represented in MATLAB due to the finite memory
limitations.

2.1.1 TYPES OF SEQUENCES
We use several elementary sequences in digital signal processing for anal-
ysis purposes. Their definitions and MATLAB representations follow.

1. Unit sample sequence:

δ(n) =
{

1, n = 0
0, n �= 0 =

{
. . . , 0, 0, 1

↑
, 0, 0, . . .

}

In MATLAB the function zeros(1,N) generates a row vector of N
zeros, which can be used to implement δ(n) over a finite interval. How-
ever, the logical relation n==0 is an elegant way of implementing δ(n).
For example, to implement

δ(n− n0) =
{

1, n = n0

0, n �= n0

over the n1 ≤n0 ≤n2 interval, we will use the following MATLAB
function.

function [x,n] = impseq(n0,n1,n2)

% Generates x(n) = delta(n-n0); n1 <= n <= n2

% --

% [x,n] = impseq(n0,n1,n2)

%

n = [n1:n2]; x = [(n-n0) == 0];

2. Unit step sequence:

u(n) =
{

1, n ≥ 0
0, n < 0 = {. . . , 0, 0, 1

↑
, 1, 1, . . .}

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

In MATLAB the function ones(1,N) generates a row vector of N ones.
It can be used to generate u(n) over a finite interval. Once again an
elegant approach is to use the logical relation n>=0. To implement

u(n− n0) =
{

1, n ≥ n0

0, n < n0

over the n1 ≤n0 ≤n2 interval, we will use the following MATLAB
function.

function [x,n] = stepseq(n0,n1,n2)

% Generates x(n) = u(n-n0); n1 <= n <= n2

% --

% [x,n] = stepseq(n0,n1,n2)

%

n = [n1:n2]; x = [(n-n0) >= 0];

3. Real-valued exponential sequence:

x(n) = an,∀n; a ∈ R

In MATLAB an array operator “.^” is required to implement a real
exponential sequence. For example, to generate x(n) = (0.9)n, 0 ≤
n ≤ 10, we will need the following MATLAB script:

>> n = [0:10]; x = (0.9).^n;

4. Complex-valued exponential sequence:

x(n) = e(σ+jω0)n, ∀n

where σ produces an attenuation (if <0) or amplification (if >0)
and ω0 is the frequency in radians. A MATLAB function exp is
used to generate exponential sequences. For example, to generate
x(n) = exp[(2 + j3)n], 0≤n≤ 10, we will need the following MATLAB
script:

>> n = [0:10]; x = exp((2+3j)*n);

5. Sinusoidal sequence:

x(n) = A cos(ω0n + θ0),∀n

where A is an amplitude and θ0 is the phase in radians. A MAT-
LAB function cos (or sin) is used to generate sinusoidal sequences.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discrete-time Signals 25

For example, to generate x(n) = 3 cos(0.1πn + π/3) + 2 sin(0.5πn),
0 ≤ n ≤ 10, we will need the following MATLAB script:

>> n = [0:10]; x = 3*cos(0.1*pi*n+pi/3) + 2*sin(0.5*pi*n);

6. Random sequences: Many practical sequences cannot be described
by mathematical expressions like those above. These sequences are
called random (or stochastic) sequences and are characterized by pa-
rameters of the associated probability density functions. In MATLAB
two types of (pseudo-) random sequences are available. The rand(1,N)
generates a length N random sequence whose elements are uniformly
distributed between [0, 1]. The randn(1,N) generates a length N Gaus-
sian random sequence with mean 0 and variance 1. Other random se-
quences can be generated using transformations of the above functions.

7. Periodic sequence: A sequence x(n) is periodic if x(n) = x(n + N),
∀n. The smallest integer N that satisfies this relation is called the
fundamental period. We will use x̃(n) to denote a periodic sequence.
To generate P periods of x̃(n) from one period {x(n), 0 ≤ n ≤ N−1},
we can copy x(n) P times:

>> xtilde = [x,x,...,x];

But an elegant approach is to use MATLAB’s powerful indexing capa-
bilities. First we generate a matrix containing P rows of x(n) values.
Then we can concatenate P rows into a long row vector using the
construct (:). However, this construct works only on columns. Hence
we will have to use the matrix transposition operator ’ to provide the
same effect on rows.

>> xtilde = x’ * ones(1,P); % P columns of x; x is a row vector

>> xtilde = xtilde(:); % long column vector

>> xtilde = xtilde’; % long row vector

Note that the last two lines can be combined into one for compact
coding. This is shown in Example 2.1.

2.1.2 OPERATIONS ON SEQUENCES
Here we briefly describe basic sequence operations and their MATLAB
equivalents.

1. Signal addition: This is a sample-by-sample addition given by

{x1(n)} + {x2(n)} = {x1(n) + x2(n)}

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

26 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

It is implemented in MATLAB by the arithmetic operator “+”. How-
ever, the lengths of x1(n) and x2(n) must be the same. If sequences are
of unequal lengths, or if the sample positions are different for equal-
length sequences, then we cannot directly use the operator +. We have
to first augment x1(n) and x2(n) so that they have the same position
vector n (and hence the same length). This requires careful attention
to MATLAB’s indexing operations. In particular, logical operation of
intersection “&”, relational operations like “<=” and “==”, and the
find function are required to make x1(n) and x2(n) of equal length.
The following function, called the sigadd function, demonstrates these
operations.

function [y,n] = sigadd(x1,n1,x2,n2)

% implements y(n) = x1(n)+x2(n)

% -----------------------------

% [y,n] = sigadd(x1,n1,x2,n2)

% y = sum sequence over n, which includes n1 and n2

% x1 = first sequence over n1

% x2 = second sequence over n2 (n2 can be different from n1)

%

n = min(min(n1),min(n2)):max(max(n1),max(n2)); % duration of y(n)

y1 = zeros(1,length(n)); y2 = y1; % initialization

y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y

y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y

y = y1+y2; % sequence addition

Its use is illustrated in Example 2.2.
2. Signal multiplication: This is a sample-by-sample (or “dot”) multi-

plication) given by

{x1(n)} · {x2(n)} = {x1(n)x2(n)}

It is implemented in MATLAB by the array operator .*. Once again,
the similar restrictions apply for the .* operator as for the + operator.
Therefore we have developed the sigmult function, which is similar to
the sigadd function.

function [y,n] = sigmult(x1,n1,x2,n2)

% implements y(n) = x1(n)*x2(n)

% -----------------------------

% [y,n] = sigmult(x1,n1,x2,n2)

% y = product sequence over n, which includes n1 and n2

% x1 = first sequence over n1

% x2 = second sequence over n2 (n2 can be different from n1)

%

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discrete-time Signals 27

n = min(min(n1),min(n2)):max(max(n1),max(n2)); % duration of y(n)

y1 = zeros(1,length(n)); y2 = y1; %

y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y

y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y

y = y1 .* y2; % sequence multiplication

Its use is also given in Example 2.2.
3. Scaling: In this operation each sample is multiplied by a scalar α.

α {x(n)} = {αx(n)}
An arithmetic operator (*) is used to implement the scaling operation
in MATLAB.

4. Shifting: In this operation, each sample of x(n) is shifted by an
amount k to obtain a shifted sequence y(n).

y(n) = {x(n− k)}
If we let m = n−k, then n = m+k and the above operation is given by

y(m + k) = {x (m)}
Hence this operation has no effect on the vector x, but the vector n is
changed by adding k to each element. This is shown in the function
sigshift.

function [y,n] = sigshift(x,m,k)

% implements y(n) = x(n-k)

% -------------------------

% [y,n] = sigshift(x,m,k)

%

n = m+k; y = x;

Its use is given in Example 2.2.
5. Folding: In this operation each sample of x(n) is flipped around n = 0

to obtain a folded sequence y(n).

y(n) = {x(−n)}
In MATLAB this operation is implemented by fliplr(x)function for
sample values and by -fliplr(n) function for sample positions as
shown in the sigfold function.

function [y,n] = sigfold(x,n)

% implements y(n) = x(-n)

% -----------------------

% [y,n] = sigfold(x,n)

%

y = fliplr(x); n = -fliplr(n);

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

28 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

6. Sample summation: This operation differs from signal addition
operation. It adds all sample values of x(n) between n1 and n2.

n2∑
n=n1

x(n) = x(n1) + · · · + x(n2)

It is implemented by the sum(x(n1:n2)) function.
7. Sample products: This operation also differs from signal multi-

plication operation. It multiplies all sample values of x(n) between
n1 and n2.

n2∏
n1

x(n) = x(n1) × · · · × x(n2)

It is implemented by the prod(x(n1:n2)) function.
8. Signal energy: The energy of a sequence x(n) is given by

Ex =
∞∑
−∞

x(n)x∗(n) =
∞∑
−∞

|x(n)|2

where superscript ∗ denotes the operation of complex conjugation.1

The energy of a finite-duration sequence x(n) can be computed in
MATLAB using

>> Ex = sum(x .* conj(x)); % one approach

>> Ex = sum(abs(x) .^ 2); % another approach

9. Signal power: The average power of a periodic sequence x̃(n) with
fundamental period N is given by

Px =
1
N

N−1∑
0

|x̃(n)|2

� EXAMPLE 2.1 Generate and plot each of the following sequences over the indicated interval.

a. x(n) = 2δ(n + 2) − δ(n− 4), −5 ≤ n ≤ 5.
b. x(n) = n[u(n)−u(n−10)]+10e−0.3(n−10)[u(n−10)−u(n−20)], 0 ≤ n ≤ 20.
c. x(n) = cos(0.04πn) + 0.2w(n), 0 ≤ n ≤ 50, where w(n) is a Gaussian

random sequence with zero mean and unit variance.
d. x̃(n) = {..., 5, 4, 3, 2, 1, 5

↑
, 4, 3, 2, 1, 5, 4, 3, 2, 1, ...}; −10 ≤ n ≤ 9.

1The symbol * denotes many operations in digital signal processing. Its font (roman
or computer) and its position (normal or superscript) will distinguish each operation.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discrete-time Signals 29

Solution a. x(n) = 2δ(n + 2) − δ(n− 4), −5 ≤ n ≤ 5.

>> n = [-5:5];

>> x = 2*impseq(-2,-5,5) - impseq(4,-5,5);

>> stem(n,x); title(’Sequence in Problem 2.1a’)

>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1a.

b. x(n) = n [u(n) − u(n− 10)]+10e−0.3(n−10) [u(n− 10) − u(n− 20)], 0 ≤ n ≤
20.

>> n = [0:20]; x1 = n.*(stepseq(0,0,20)-stepseq(10,0,20));

>> x2 = 10*exp(-0.3*(n-10)).*(stepseq(10,0,20)-stepseq(20,0,20));

>> x = x1+x2;

>> subplot(2,2,3); stem(n,x); title(’Sequence in Problem 2.1b’)

>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1b.

−5 0 5
−2

−1

0

1

2

3

n

x(
n)

Sequence in Example 2.1a

0 5 10 15 20

0

2

4

6

8

10

n

x(
n)

Sequence in Example 2.1b

0 10 20 30 40

−1

−0.5

0

0.5

1

n

x(
n)

Sequence in Example 2.1c

−10 −5 0 5

0

2

4

6

n

xt
ild

e(
n)

Sequence in Example 2.1d

FIGURE 2.1 Sequences in Example 2.1

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

c. x(n) = cos(0.04πn) + 0.2w(n), 0 ≤ n ≤ 50.

>> n = [0:50]; x = cos(0.04*pi*n)+0.2*randn(size(n));

>> subplot(2,2,2); stem(n,x); title(’Sequence in Problem 2.1c’)

>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1c.

d. x̃(n) = {..., 5, 4, 3, 2, 1, 5
↑
, 4, 3, 2, 1, 5, 4, 3, 2, 1, ...}; −10 ≤ n ≤ 9.

Note that over the given interval, the sequence x̃ (n) has four periods.

>> n = [-10:9]; x = [5,4,3,2,1];

>> xtilde = x’ * ones(1,4); xtilde = (xtilde(:))’;

>> subplot(2,2,4); stem(n,xtilde); title(’Sequence in Problem 2.1d’)

>> xlabel(’n’); ylabel(’xtilde(n)’);

The plot of the sequence is shown in Figure 2.1d. �

� EXAMPLE 2.2 Let x(n) = {1, 2, 3
↑
, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1}. Determine and plot the following

sequences.

a. x1(n) = 2x(n− 5) − 3x(n + 4)
b. x2(n) = x(3 − n) + x(n)x(n− 2)

Solution The sequence x(n) is nonzero over −2 ≤ n ≤ 10. Hence

>> n = -2:10; x = [1:7,6:-1:1];

will generate x(n).

a. x1(n) = 2x(n− 5) − 3x(n + 4).
The first part is obtained by shifting x(n) by 5 and the second part by
shifting x(n) by −4. This shifting and the addition can be easily done using
the sigshift and the sigadd functions.

>> [x11,n11] = sigshift(x,n,5); [x12,n12] = sigshift(x,n,-4);

>> [x1,n1] = sigadd(2*x11,n11,-3*x12,n12);

>> subplot(2,1,1); stem(n1,x1); title(’Sequence in Example 2.2a’)

>> xlabel(’n’); ylabel(’x1(n)’);

The plot of x1(n) is shown in Figure 2.2a.

b. x2(n) = x(3 − n) + x(n)x(n− 2).
The first term can be written as x(−(n − 3)). Hence it is obtained by first
folding x(n) and then shifting the result by 3. The second part is a multipli-
cation of x(n) and x(n−2), both of which have the same length but different

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discrete-time Signals 31

−6 0 15

−20

−15

−10

−5

0

5

10

n

x1
(n

)

Sequence in Example 2.2a

−7 0 12
0

10

20

30

40

n

x2
(n

)

Sequence in Example 2.2b

FIGURE 2.2 Sequences in Example 2.2

support (or sample positions). These operations can be easily done using the
sigfold and the sigmult functions.

>> [x21,n21] = sigfold(x,n); [x21,n21] = sigshift(x21,n21,3);

>> [x22,n22] = sigshift(x,n,2); [x22,n22] = sigmult(x,n,x22,n22);

>> [x2,n2] = sigadd(x21,n21,x22,n22);

>> subplot(2,1,2); stem(n2,x2); title(’Sequence in Example 2.2b’)

>> xlabel(’n’); ylabel(’x2(n)’);

The plot of x2(n) is shown in Figure 2.2b. �

Example 2.2 shows that the four sig* functions developed in this
section provide a convenient approach for sequence manipulations.

� EXAMPLE 2.3 Generate the complex-valued signal

x(n) = e(−0.1+j0.3)n, −10 ≤ n ≤ 10

and plot its magnitude, phase, the real part, and the imaginary part in four
separate subplots.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

32 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

−10 −5 0 5 10
−3

−2

−1

0

1

2

n

Real Part

−10 −5 0 5 10
−2

−1

0

1

n

Imaginary Part

−10 −5 0 5 10
0

1

2

3

n

Magnitude Part

−10 −5 0 5 10
−200

−100

0

100

200

n

Phase Part

FIGURE 2.3 Complex-valued sequence plots in Example 2.3

Solution MATLAB script:

>> n = [-10:1:10]; alpha = -0.1+0.3j;

>> x = exp(alpha*n);

>> subplot(2,2,1); stem(n,real(x));title(’real part’);xlabel(’n’)

>> subplot(2,2,2); stem(n,imag(x));title(’imaginary part’);xlabel(’n’)

>> subplot(2,2,3); stem(n,abs(x));title(’magnitude part’);xlabel(’n’)

>> subplot(2,2,4); stem(n,(180/pi)*angle(x));title(’phase part’);xlabel(’n’)

The plot of the sequence is shown in Figure 2.3. �

2.1.3 DISCRETE-TIME SINUSOIDS
In the last section we introduced the discrete-time sinusoidal sequence
x(n) = A cos(ω0n + θ0), for all n as one of the basic signals. This signal
is very important in signal theory as a basis for Fourier transform and
in system theory as a basis for steady-state analysis. It can be conve-
niently related to the continuous-time sinusoid xa(t) = A cos(Ω0t + θ0)
using an operation called sampling (Chapter 3), in which continuous-time
sinusoidal values at equally spaced points t = nTs are assigned to x(n).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discrete-time Signals 33

The quantity Ts is called the sampling interval, and Ω0 = ω0/Ts is called
the analog frequency, measured in radians per second.

The fact that n is a discrete variable, whereas t is a continuous
variable, leads to some important differences between discrete-time and
continuous-time sinusoidal signals.

Periodicity in time From our definition of periodicity, the sinusoidal
sequence is periodic if

x[n + N] = A cos(ω0n + ω0N + θ) = A cos(ω0n + θ0) = x[n] (2.1)

This is possible if and only if ω0N = 2πk, where k is an integer. This
leads to the following important result (see Problem P2.5):

The sequence x(n) = A cos(ω0n + θ0) is periodic if and only if f0
�
=

ω0/2π = k/N , that is, f0 is a rational number. If k and N are a
pair of prime numbers, then N is the fundamental period of x(n) and
k represents an integer number of periods kTs of the corresponding
continuous-time sinusoid.

Periodicity in frequency From the definition of the discrete-time si-
nusoid, we can easily see that

A cos[(ω0 + k2π)n + θ0] = A cos(ω0n + kn2π + θ0)
= A cos(ω0n + θ0)

since (kn)2π is always an integer multiple of 2π. Therefore, we have the
following property:

The sequence x(n) = A cos(ω0n+θ) is periodic in ω0 with fundamen-
tal period 2π and periodic in f0 with fundamental period one.

This property has a number of very important implications:

1. Sinusoidal sequences with radian frequencies separated by integer mul-
tiples of 2π are identical.

2. All distinct sinusoidal sequences have frequencies within an interval of
2π radians. We shall use the so-called fundamental frequency ranges

−π < ω ≤ π or 0 ≤ ω < 2π (2.2)

Therefore, if 0 ≤ ω0 < 2π, the frequencies ω0 and ω0 + m2π are
indistinguishable from the observation of the corresponding sequences.

3. Since A cos[ω0(n + n0) + θ] = A cos[ω0n + (ω0n0 + θ)], a time shift is
equivalent to a phase change.

4. The rate of oscillation of a discrete-time sinusoid increases as ω0 in-
creases from ω0 = 0 to ω0 = π. However, as ω0 increases from ω0 = π
to ω0 = 2π, the oscillations become slower. Therefore, low frequencies
(slow oscillations) are at the vicinity of ω0 = k2π, and high frequencies
(rapid oscillations) are at the vicinity of ω0 = π + k2π.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

34 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

2.1.4 SOME USEFUL RESULTS
There are several important results in discrete-time signal theory. We will
discuss some that are useful in digital signal processing.

Unit sample synthesis Any arbitrary sequence x(n) can be synthe-
sized as a weighted sum of delayed and scaled unit sample sequences, such
as

x(n) =
∞∑

k=−∞
x(k)δ(n− k) (2.3)

We will use this result in the next section.

Even and odd synthesis A real-valued sequence xe(n) is called even
(symmetric) if

xe(−n) = xe(n)

Similarly, a real-valued sequence xo(n) is called odd (antisymmetric) if

xo(−n) = −xo(n)

Then any arbitrary real-valued sequence x(n) can be decomposed into its
even and odd components

x(n) = xe(n) + xo(n) (2.4)

where the even and odd parts are given by

xe(n) =
1
2

[x(n) + x(−n)] and xo(n) =
1
2

[x(n) − x(−n)] (2.5)

respectively. We will use this decomposition in studying properties of the
Fourier transform. Therefore it is a good exercise to develop a simple
MATLAB function to decompose a given sequence into its even and odd
components. Using MATLAB operations discussed so far, we can obtain
the following evenodd function.

function [xe, xo, m] = evenodd(x,n)

% Real signal decomposition into even and odd parts

% ---

% [xe, xo, m] = evenodd(x,n)

%

if any(imag(x) ~= 0)

error(’x is not a real sequence’)

end

m = -fliplr(n);

m1 = min([m,n]); m2 = max([m,n]); m = m1:m2;

nm = n(1)-m(1); n1 = 1:length(n);

x1 = zeros(1,length(m)); x1(n1+nm) = x; x = x1;

xe = 0.5*(x + fliplr(x)); xo = 0.5*(x - fliplr(x));

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discrete-time Signals 35

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

n

x(
n)

Rectangular Pulse

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

n

xe
(n

)

Even Part

−10 −5 0 5 10

−0.4

−0.2

0

0.2

0.4

0.6

n
xe

(n
)

Odd Part

FIGURE 2.4 Even-odd decomposition in Example 2.4

The sequence and its support are supplied in x and n arrays, respectively.
It first checks if the given sequence is real and determines the support
of the even and odd components in m array. It then implements (2.5)
with special attention to the MATLAB indexing operation. The resulting
components are stored in xe and xo arrays.

� EXAMPLE 2.4 Let x(n) = u(n) − u(n− 10). Decompose x(n) into even and odd components.

Solution The sequence x(n), which is nonzero over 0 ≤ n ≤ 9, is called a rectangular
pulse. We will use MATLAB to determine and plot its even and odd parts.

>> n = [0:10]; x = stepseq(0,0,10)-stepseq(10,0,10);

>> [xe,xo,m] = evenodd(x,n);

>> subplot(2,2,1); stem(n,x); title(’Rectangular pulse’)

>> xlabel(’n’); ylabel(’x(n)’); axis([-10,10,0,1.2])

>> subplot(2,2,2); stem(m,xe); title(’Even Part’)

>> xlabel(’n’); ylabel(’xe(n)’); axis([-10,10,0,1.2])

>> subplot(2,2,4); stem(m,xo); title(’Odd Part’)

>> xlabel(’n’); ylabel(’xe(n)’); axis([-10,10,-0.6,0.6])

The plots shown in Figure 2.4 clearly demonstrate the decomposition. �

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

36 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

A similar decomposition for complex-valued sequences is explored in
Problem P2.5.

The geometric series A one-sided exponential sequence of the form
{αn, n ≥ 0}, where α is an arbitrary constant, is called a geometric
series. In digital signal processing, the convergence and expression for the
sum of this series are used in many applications. The series converges for
|α| < 1, while the sum of its components converges to

∞∑
n=0

αn −→ 1
1 − α

, for |α| < 1 (2.6)

We will also need an expression for the sum of any finite number of terms
of the series given by

N−1∑
n=0

αn =
1 − αN

1 − α
,∀α (2.7)

These two results will be used throughout this book.

Correlations of sequences Correlation is an operation used in many
applications in digital signal processing. It is a measure of the degree to
which two sequences are similar. Given two real-valued sequences x(n) and
y(n) of finite energy, the crosscorrelation of x(n) and y(n) is a sequence
rxy(�) defined as

rx,y(�) =
∞∑

n=−∞
x(n)y(n− �) (2.8)

The index � is called the shift or lag parameter. The special case of (2.8)
when y(n) = x(n) is called autocorrelation and is defined by

rxx(�) =
∞∑

n=−∞
x(n)x(n− �) (2.9)

It provides a measure of self-similarity between different alignments of the
sequence. MATLAB functions to compute auto- and crosscorrelations are
discussed later in the chapter.

2.2 DISCRETE SYSTEMS

Mathematically, a discrete-time system (or discrete system for short) is
described as an operator T [·] that takes a sequence x(n) (called excitation)
and transforms it into another sequence y(n) (called response). That is,

y(n) = T [x(n)]

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discrete Systems 37

In DSP we will say that the system processes an input signal into an output
signal. Discrete systems are broadly classified into linear and nonlinear
systems. We will deal mostly with linear systems.

2.2.1 LINEAR SYSTEMS
A discrete system T [·] is a linear operator L[·] if and only if L[·] satisfies
the principle of superposition, namely,

L[a1x1(n) + a2x2(n)] = a1L[x1(n)] + a2L[x2(n)],∀a1, a2, x1(n), x2(n)
(2.10)

Using (2.3) and (2.10), the output y(n) of a linear system to an arbitrary
input x(n) is given by

y(n) = L[x(n)] = L

[∞∑
n=−∞

x(k) δ(n− k)

]
=

∞∑
n=−∞

x(k)L[δ(n− k)]

The response L[δ(n − k)] can be interpreted as the response of a linear
system at time n due to a unit sample (a well-known sequence) at time k.
It is called an impulse response and is denoted by h(n, k). The output
then is given by the superposition summation

y(n) =
∞∑

n=−∞
x(k)h(n, k) (2.11)

The computation of (2.11) requires the time-varying impulse response
h(n, k), which in practice is not very convenient. Therefore time-invariant
systems are widely used in DSP.

� EXAMPLE 2.5 Determine whether the following systems are linear:

1. y(n) = T [x(n)] = 3x2(n)
2. y(n) = 2x(n− 2) + 5
3. y(n) = x(n + 1) − x(n− 1)

Solution Let y1(n) = T
[
x1(n)

]
and y2(n) = T

[
x2(n)

]
. We will determine the

response of each system to the linear combination a1x1(n) + a2x2(n) and
check whether it is equal to the linear combination a1x1(n) + a2x2(n)
where a1 and a2 are arbitrary constants.

1. y(n) = T [x(n)] = 3x2(n): Consider

T
[
a1x1(n) + a2x2(n)

]
= 3 [a1x1(n) + a2x2(n)]2

= 3a2
1x

2
1(n) + 3a2

2x
2
2(n) + 6a1a2x1(n)x2(n)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

38 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

which is not equal to

a1y1(n) + a2y2(n) = 3a2
1x

2
1(n) + 3a2

2x
2
2(n)

Hence the given system is nonlinear.
2. y(n) = 2x(n− 2) + 5: Consider

T
[
a1x1(n) + a2x2(n)

]
= 2 [a1x1(n− 2) + a2x2(n− 2)] + 5

= a1y1(n) + a2y2(n) − 5

Clearly, the given system is nonlinear even though the input-output
relation is a straight-line function.

3. y(n) = x(n + 1) − x(1 − n): Consider

T [a1x1(n) + a2x2(n)] = a1x1(n + 1) + a2x2(n + 1) + a1x1(1 − n)
+ a2x2(1 − n)

= a1[x1(n + 1) − x1(1 − n)]
+ a2[x2(n + 1) − x2(1 − n)]

= a1y1(n) + a2y2(n)

Hence the given system is linear. �

Linear time-invariant (LTI) system A linear system in which an
input-output pair, x(n) and y(n), is invariant to a shift k in time is called
a linear time-invariant system i.e.,

y(n) = L[x(n)] ⇒ L[x(n− k)] = y(n− k) (2.12)

For an LTI system the L[·] and the shifting operators are reversible as
shown here.

x(n) −→ L [·] −→ y(n) −→ Shift by k −→ y(n− k)

x(n) −→ Shift by k −→ x(n− k) −→ L [·] −→ y(n− k)

� EXAMPLE 2.6 Determine whether the following linear systems are time-invariant.

1. y(n) = L[x(n)] = 10 sin(0.1πn)x(n)
2. y(n) = L[x(n)] = x(n + 1) − x(1 − n)
3. y(n) = L[x(n)] = 1

4
x(n) + 1

2
x(n− 1) + 1

4
x(n− 2)

Solution First we will compute the response yk(n)
�
= L[x(n − k)] to the shifted

input sequence. This is obtained by subtracting k from the arguments of

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discrete Systems 39

every input sequence term on the right-hand side of the linear transforma-
tion. To determine time-invariance, we will then compare it to the shifted
output sequence y(n− k), obtained after replacing every n by (n− k) on
the right-hand side of the linear transformation.

1. y(n) = L[x(n)] = 10 sin(0.1πn)x(n): The response due to shifted
input is

yk(n) = L[x(n− k)] = 10 sin(0.1πn)x(n− k)

while the shifted output is

y(n− k) = 10 sin[0.1π(n− k)]x(n− k) �= yk(n).

Hence the given system is not time-invariant.
2. y(n) = L[x(n)] = x(n + 1) − x(1 − n): The response due to shifted

input is

yk(n) = L[x(n− k)] = x(n− k) − x(1 − n− k)

while the shifted output is

y(n−k) = x(n−k)−x(1− [n−k]) = x(n−k)−x(1−n+k) �= yk(n).

Hence the given system is not time-invariant.
3. y(n) = L[x(n)] = 1

4x(n) + 1
2x(n − 1) + 1

4x(n − 2): The response due
to shifted input is

yk(n) = L[x(n− k)] = 1
4x(n− k) + 1

2x(n− 1 − k) + 1
4x(n− 2 − k)

while the shifted output is

y(n− k) = 1
4x(n− k) + 1

2x(n− k − 1) + 1
4x(n− k − 2) = yk(n)

Hence the given system is time-invariant. �

We will denote an LTI system by the operator LTI [·]. Let x(n) and
y(n) be the input-output pair of an LTI system. Then the time-varying
function h(n, k) becomes a time-invariant function h(n− k), and the out-
put from (2.11) is given by

y(n) = LTI [x(n)] =
∞∑

k=−∞
x(k)h(n− k) (2.13)

The impulse response of an LTI system is given by h(n). The mathemati-
cal operation in (2.13) is called a linear convolution sum and is denoted by

y(n)
�
= x(n) ∗ h(n) (2.14)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

40 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

Hence an LTI system is completely characterized in the time domain by
the impulse response h(n).

x(n) −→ h(n) −→ y(n) = x(n) ∗ h(n)

We will explore several properties of the convolution in Problem P2.14.

Stability This is a very important concept in linear system theory. The
primary reason for considering stability is to avoid building harmful sys-
tems or to avoid burnout or saturation in the system operation. A system
is said to be bounded-input bounded-output (BIBO) stable if every bounded
input produces a bounded output.

|x(n)| < ∞ ⇒ |y(n)| < ∞,∀x, y
An LTI system is BIBO stable if and only if its impulse response is abso-
lutely summable.

BIBO Stability ⇐⇒
∞∑
−∞

|h(n)| < ∞ (2.15)

Causality This important concept is necessary to make sure that sys-
tems can be built. A system is said to be causal if the output at index n0

depends only on the input up to and including the index n0; that is, the
output does not depend on the future values of the input. An LTI system
is causal if and only if the impulse response

h(n) = 0, n < 0 (2.16)

Such a sequence is termed a causal sequence. In signal processing, unless
otherwise stated, we will always assume that the system is causal.

2.3 CONVOLUTION

We introduced the convolution operation (2.14) to describe the response
of an LTI system. In DSP it is an important operation and has many other
uses that we will see throughout this book. Convolution can be evaluated
in many different ways. If the sequences are mathematical functions (of
finite or infinite duration), then we can analytically evaluate (2.14) for all
n to obtain a functional form of y(n).

� EXAMPLE 2.7 Let the rectangular pulse x(n) = u(n) − u(n− 10) of Example 2.4 be an input
to an LTI system with impulse response

h(n) = (0.9)n u(n)

Determine the output y(n).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convolution 41

−5 0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

n

x(
n)

Input Sequence

−5 0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

n

h(
n)

Impulse Response

FIGURE 2.5 The input sequence and the impulse response in Example 2.7

Solution The input x(n) and the impulse response h(n) are shown in Figure 2.5. From
(2.14)

y(n) =

9∑
k=0

(1) (0.9)(n−k) u(n− k) = (0.9)n
9∑

k=0

(0.9)−k u(n− k) (2.17)

The sum in (2.17) is almost a geometric series sum except that the term u(n−k)
takes different values depending on n and k. There are three possible conditions
under which u(n− k) can be evaluated.

CASE i n < 0: Then u(n− k) = 0, 0 ≤ k ≤ 9. Hence from (2.17)

y(n) = 0 (2.18)

CASE ii In this case the nonzero values of x(n) and h(n) do not overlap.
0 ≤ n < 9: Then u(n− k) = 1, 0 ≤ k ≤ n. Hence from (2.17)

y(n) = (0.9)n
n∑

k=0

(0.9)−k = (0.9)n
n∑

k=0

[(0.9)−1]k

= (0.9)n
1 − (0.9)−(n+1)

1 − (0.9)−1
= 10[1 − (0.9)n+1], 0 ≤ n < 9 (2.19)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

42 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

−5 0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

n

y(
n)

Output Sequence

FIGURE 2.6 The output sequence in Example 2.7

CASE iii In this case the impulse response h(n) partially overlaps the input x(n).
n ≥ 9: Then u(n− k) = 1, 0 ≤ k ≤ 9 and from (2.17)

y(n) = (0.9)n
9∑

k=0

(0.9)−k

= (0.9)n
1 − (0.9)−10

1 − (0.9)−1
= 10(0.9)n−9[1 − (0.9)10], n ≥ 9 (2.20)

In this last case h(n) completely overlaps x(n).

The complete response is given by (2.18), (2.19), and (2.20). It is shown in
Figure 2.6 which depicts the distortion of the input pulse. �

This example can also be done using a method called graphical convo-
lution, in which (2.14) is given a graphical interpretation. In this method,
h(n− k) is interpreted as a folded-and-shifted version of h(k). The output
y(n) is obtained as a sample sum under the overlap of x(k) and h(n− k).
We use an example to illustrate this.

� EXAMPLE 2.8 Given the following two sequences

x(n) = [3, 11, 7, 0
↑
,−1, 4, 2], −3 ≤ n ≤ 3; h(n) = [2, 3

↑
, 0,−5, 2, 1], −1 ≤ n ≤ 4

determine the convolution y(n) = x(n) ∗ h(n).

Solution In Figure 2.7 we show four plots. The top-left plot shows x(k) and h(k), the
original sequences. The top-right plot shows x(k) and h(−k), the folded version
of h(k). The bottom-left plot shows x(k) and h(−1−k), the folded-and-shifted-
by- −1 version of h(k). Then

∑
k

x(k)h(−1 − k) = 3 × (−5) + 11 × 0 + 7 × 3 + 0 × 2 = 6 = y(−1)

The bottom-right plot shows x(k) and h(2 − k), the folded-and-shifted-by-2
version of h(k), which gives
∑
k

x(k)h(2−k) = 11×1+7×2+0×(−5)+(−1)×0+4×3+2×2 = 41 = y(2)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convolution 43

−5 0 5
−5

0

5

10

k

x(k) and h(k)

Solid: x Dashed: h

−5 0 5
−5

0

5

10

k

x(k) and h(−k)

n=0

Solid: x Dashed: h

Solid: x Dashed: h Solid: x Dashed: h

−5 0 5
−5

0

5

10

k

x(k) and h(−1−k)

n=−1

−5 0 5
−5

0

5

10

k

x(k) and h(2−k)

n=2

FIGURE 2.7 Graphical convolution in Example 2.8

Thus we have obtained two values of y(n). Similar graphical calculations can
be done for other remaining values of y(n). Note that the beginning point (first
nonzero sample) of y(n) is given by n = −3 + (−1) = −4, while the end point
(the last nonzero sample) is given by n = 3 + 4 = 7. The complete output is
given by

y(n) = {6, 31, 47, 6,−51
↑

,−5, 41, 18,−22,−3, 8, 2}

Students are strongly encouraged to verify the above result. Note that the re-
sulting sequence y(n) has a longer length than both the x(n) and h(n) sequences.

�

2.3.1 MATLAB IMPLEMENTATION
If arbitrary sequences are of infinite duration, then MATLAB cannot
be used directly to compute the convolution. MATLAB does provide a
built-in function called conv that computes the convolution between two
finite-duration sequences. The conv function assumes that the two se-
quences begin at n = 0 and is invoked by

>> y = conv(x,h);

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

44 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

For example, to do the convolution in Example 2.7, we could use

>> x = [3, 11, 7, 0, -1, 4, 2]; h = [2, 3, 0, -5, 2, 1];

>> y = conv(x, h)

y =

6 31 47 6 -51 -5 41 18 -22 -3 8 2

to obtain the correct y(n) values. However, the conv function neither
provides nor accepts any timing information if the sequences have arbi-
trary support. What is needed is a beginning point and an end point of
y(n). Given finite duration x(n) and h(n), it is easy to determine these
points. Let

{x(n); nxb ≤ n ≤ nxe} and {h(n); nhb ≤ n ≤ nhe}
be two finite-duration sequences. Then referring to Example 2.8 we ob-
serve that the beginning and end points of y(n) are

nyb = nxb + nhb and nye = nxe + nhe

respectively. A simple modification of the conv function, called conv m,
which performs the convolution of arbitrary support sequences can now
be designed.

function [y,ny] = conv_m(x,nx,h,nh)

% Modified convolution routine for signal processing

% --

% [y,ny] = conv_m(x,nx,h,nh)

% [y,ny] = convolution result

% [x,nx] = first signal

% [h,nh] = second signal

%

nyb = nx(1)+nh(1); nye = nx(length(x)) + nh(length(h));

ny = [nyb:nye]; y = conv(x,h);

� EXAMPLE 2.9 Perform the convolution in Example 2.8 using the conv m function.

Solution MATLAB script:

>> x = [3, 11, 7, 0, -1, 4, 2]; nx = [-3:3];

>> h = [2, 3, 0, -5, 2, 1]; ny = [-1:4];

>> [y,ny] = conv_m(x,nx,h,nh)

y =

6 31 47 6 -51 -5 41 18 -22 -3 8 2

ny =

-4 -3 -2 -1 0 1 2 3 4 5 6 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Convolution 45

Hence

y(n) = {6, 31, 47, 6,−51
↑

,−5, 41, 18,−22,−3, 8, 2}

as in Example 2.8. �

An alternate method in MATLAB can be used to perform the convo-
lution. This method uses a matrix-vector multiplication approach, which
we will explore in Problem P2.17.

2.3.2 SEQUENCE CORRELATIONS REVISITED
If we compare the convolution operation (2.14) with that of the crosscor-
relation of two sequences defined in (2.8), we observe a close resemblance.
The crosscorrelation ryx(�) can be put in the form

ryx(�) = y(�) ∗ x(−�)

with the autocorrelation rxx(�) in the form

rxx(�) = x(�) ∗ x(−�)

Therefore these correlations can be computed using the conv m function
if sequences are of finite duration.

� EXAMPLE 2.10 In this example we will demonstrate one application of the crosscorrelation
sequence. Let

x(n) = [3, 11, 7, 0
↑
,−1, 4, 2]

be a prototype sequence, and let y(n) be its noise-corrupted-and-shifted version

y(n) = x(n− 2) + w(n)

where w(n) is Gaussian sequence with mean 0 and variance 1. Compute the
crosscorrelation between y(n) and x(n).

Solution From the construction of y(n) it follows that y(n) is “similar” to x(n− 2) and
hence their crosscorrelation would show the strongest similarity at � = 2. To
test this out using MATLAB, let us compute the crosscorrelation using two
different noise sequences.

% noise sequence 1

>> x = [3, 11, 7, 0, -1, 4, 2]; nx=[-3:3]; % given signal x(n)

>> [y,ny] = sigshift(x,nx,2); % obtain x(n-2)

>> w = randn(1,length(y)); nw = ny; % generate w(n)

>> [y,ny] = sigadd(y,ny,w,nw); % obtain y(n) = x(n-2) + w(n)

>> [x,nx] = sigfold(x,nx); % obtain x(-n)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

46 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

−4 −2 0 2 4 6 8
−50

0

50

100

150

200

250

Lag Variable l

rx
y

Crosscorrelation: Noise Sequence 1

Maximum

−4 −2 0 2 4 6 8
−50

0

50

100

150

200

Lag Variable l

rx
y

Crosscorrelation: Noise Sequence 2

Maximum

FIGURE 2.8 Crosscorrelation sequence with two different noise realizations

>> [rxy,nrxy] = conv_m(y,ny,x,nx); % crosscorrelation

>> subplot(1,1,1), subplot(2,1,1);stem(nrxy,rxy)

>> axis([-5,10,-50,250]);xlabel(’lag variable l’)

>> ylabel(’rxy’);title(’Crosscorrelation: noise sequence 1’)

%

% noise sequence 2

>> x = [3, 11, 7, 0, -1, 4, 2]; nx=[-3:3]; % given signal x(n)

>> [y,ny] = sigshift(x,nx,2); % obtain x(n-2)

>> w = randn(1,length(y)); nw = ny; % generate w(n)

>> [y,ny] = sigadd(y,ny,w,nw); % obtain y(n) = x(n-2) + w(n)

>> [x,nx] = sigfold(x,nx); % obtain x(-n)

>> [rxy,nrxy] = conv_m(y,ny,x,nx); % crosscorrelation

>> subplot(2,1,2);stem(nrxy,rxy)

>> axis([-5,10,-50,250]);xlabel(’lag variable l’)

>> ylabel(’rxy’);title(’Crosscorrelation: noise sequence 2’)

From Figure 2.8 we observe that the crosscorrelation indeed peaks at � = 2,
which implies that y(n) is similar to x(n) shifted by 2. This approach can be
used in applications like radar signal processing in identifying and localizing
targets. �

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Difference Equations 47

Note that the signal-processing toolbox in MATLAB also provides a
function called xcorr for sequence correlation computations. In its sim-
plest form

>> xcorr(x,y)

computes the crosscorrelation between vectors x and y, while

>> xcorr(x)

computes the autocorrelation of vector x. It generates results that are
identical to the one obtained from the proper use of the conv m function.
However, the xcorr function cannot provide the timing (or lag) informa-
tion (as done by the conv m function), which then must be obtained by
some other means.

2.4 DIFFERENCE EQUATIONS

An LTI discrete system can also be described by a linear constant coeffi-
cient difference equation of the form

N∑
k=0

aky(n− k) =
M∑

m=0

bmx(n−m), ∀n (2.21)

If aN �= 0, then the difference equation is of order N . This equation de-
scribes a recursive approach for computing the current output, given the
input values and previously computed output values. In practice this equa-
tion is computed forward in time, from n = −∞ to n = ∞. Therefore
another form of this equation is

y(n) =
M∑

m=0

bmx(n−m) −
N∑

k=1

aky(n− k) (2.22)

A solution to this equation can be obtained in the form

y(n) = yH(n) + yP (n)

The homogeneous part of the solution, yH(n), is given by

yH(n) =
N∑

k=1

ckz
n
k

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

48 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

where zk, k = 1, . . . , N are N roots (also called natural frequencies) of the
characteristic equation

N∑
0

akz
k = 0

This characteristic equation is important in determining the stability of
systems. If the roots zk satisfy the condition

|zk| < 1, k = 1, . . . , N (2.23)

then a causal system described by (2.22) is stable. The particular part
of the solution, yP (n), is determined from the right-hand side of (2.21).
In Chapter 4 we will discuss the analytical approach of solving difference
equations using the z-transform.

2.4.1 MATLAB IMPLEMENTATION
A function called filter is available to solve difference equations nu-
merically, given the input and the difference equation coefficients. In its
simplest form this function is invoked by

y = filter(b,a,x)

where

b = [b0, b1, ..., bM]; a = [a0, a1, ..., aN];

are the coefficient arrays from the equation given in (2.21), and x is the
input sequence array. The output y has the same length as input x. One
must ensure that the coefficient a0 not be zero.

To compute and plot impulse response, MATLAB provides the func-
tion impz. When invoked by

h = impz(b,a,n);

it computes samples of the impulse response of the filter at the sample
indices given in n with numerator coefficients in b and denominator co-
efficients in a. When no output arguments are given, the impz function
plots the response in the current figure window using the stem function.
We will illustrate the use of these functions in the following example.

� EXAMPLE 2.11 Given the following difference equation

y(n) − y(n− 1) + 0.9y(n− 2) = x(n); ∀n

a. Calculate and plot the impulse response h(n) at n = −20, . . . , 100.
b. Calculate and plot the unit step response s(n) at n = −20, . . . , 100.
c. Is the system specified by h(n) stable?

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Difference Equations 49

Solution From the given difference equation the coefficient arrays are

b = [1]; a=[1, -1, 0.9];

a. MATLAB script:

>> b = [1]; a = [1, -1, 0.9]; n = [-20:120];

>> h = impz(b,a,n);

>> subplot(2,1,1); stem(n,h);

>> title(’Impulse Response’); xlabel(’n’); ylabel(’h(n)’)

The plot of the impulse response is shown in Figure 2.9.

b. MATLAB script:

>> x = stepseq(0,-20,120); s = filter(b,a,x);

>> subplot(2,1,2); stem(n,s)

>> title(’Step Response’); xlabel(’n’); ylabel(’s(n)’)

The plot of the unit step response is shown in Figure 2.9.

c. To determine the stability of the system, we have to determine h(n) for all n.
Although we have not described a method to solve the difference equation,

−20 0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

n

h(
n)

Impulse Response

−20 0 20 40 60 80 100 120
−0.5

0

0.5

1

1.5

2

n

s(
n)

Step Response

FIGURE 2.9 Impulse response and step response plots in Example 2.11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

50 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

we can use the plot of the impulse response to observe that h(n) is practically
zero for n > 120. Hence the sum

∑
|h(n)| can be determined from MATLAB

using

>> sum(abs(h))

ans = 14.8785

which implies that the system is stable. An alternate approach is to use the
stability condition (2.23) using MATLAB’s roots function.

>>z = roots(a); magz = abs(z)

magz = 0.9487

0.9487

Since the magnitudes of both roots are less than one, the system is stable.

�

In the previous section we noted that if one or both sequences in
the convolution are of infinite length, then the conv function cannot be
used. If one of the sequences is of infinite length, then it is possible to use
MATLAB for numerical evaluation of the convolution. This is done using
the filter function as we will see in the following example.

� EXAMPLE 2.12 Let us consider the convolution given in Example 2.7. The input sequence is of
finite duration

x(n) = u(n) − u(n− 10)

while the impulse response is of infinite duration

h(n) = (0.9)n u(n)

Determine y(n) = x(n) ∗ h(n).

Solution If the LTI system, given by the impulse response h(n), can be described by a
difference equation, then y(n) can be obtained from the filter function. From
the h(n) expression

(0.9)h(n− 1) = (0.9) (0.9)n−1 u(n− 1) = (0.9)n u(n− 1)

or

h(n) − (0.9)h(n− 1) = (0.9)n u(n) − (0.9)n u(n− 1)

= (0.9)n [u(n) − u(n− 1)] = (0.9)n δ(n)

= δ(n)

The last step follows from the fact that δ(n) is nonzero only at n = 0. By
definition h(n) is the output of an LTI system when the input is δ(n). Hence
substituting x(n) for δ(n) and y(n) for h(n), the difference equation is

y(n) − 0.9y(n− 1) = x(n)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Difference Equations 51

−5 0 5 10 15 20 25 30 35 40 45

0

2

4

6

8

n

y(
n)

Output Sequence

FIGURE 2.10 Output sequence in Example 2.12

Now MATLAB’s filter function can be used to compute the convolution in-
directly.

>> b = [1]; a = [1,-0.9];

>> n = -5:50; x = stepseq(0,-5,50) - stepseq(10,-5,50);

>> y = filter(b,a,x);

>> subplot(2,1,2); stem(n,y); title(’Output sequence’)

>> xlabel(’n’); ylabel(’y(n)’); axis([-5,50,-0.5,8])

The plot of the output is shown in Figure 2.10, which is exactly the same as
that in Figure 2.6. �

In Example 2.12 the impulse response was a one-sided exponential se-
quence for which we could determine a difference equation representation.
This means that not all infinite-length impulse responses can be converted
into difference equations. The above analysis, however, can be extended to
a linear combination of one-sided exponential sequences, which results in
higher-order difference equations. We will discuss this topic of conversion
from one representation to another one in Chapter 4.

2.4.2 ZERO-INPUT AND ZERO-STATE RESPONSES
In digital signal processing the difference equation is generally solved for-
ward in time from n = 0. Therefore initial conditions on x(n) and y(n)
are necessary to determine the output for n ≥ 0. The difference equation
is then given by

y(n) =
M∑

m=0

bmx(n−m) −
N∑

k=1

aky(n− k); n ≥ 0 (2.24)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

52 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

subject to the initial conditions:

{y(n); −N ≤ n ≤ −1} and {x(n); −M ≤ n ≤ −1}

A solution to (2.24) can be obtained in the form

y(n) = yZI(n) + yZS(n)

where yZI(n) is called the zero-input solution, which is a solution due
to the initial conditions alone (assuming they exist), while the zero-state
solution, yZS(n), is a solution due to input x(n) alone (or assuming that
the initial conditions are zero). In MATLAB another form of the function
filter can be used to solve for the difference equation, given its initial
conditions. We will illustrate the use of this form in Chapter 4.

2.4.3 DIGITAL FILTERS
Filter is a generic name that means a linear time-invariant system designed
for a specific job of frequency selection or frequency discrimination. Hence
discrete-time LTI systems are also called digital filters. There are two
types of digital filters.

FIR filter If the unit impulse response of an LTI system is of finite
duration, then the system is called a finite-duration impulse response (or
FIR) filter. Hence for an FIR filter h(n) = 0 for n < n1 and for n > n2.
The following part of the difference equation (2.21) describes a causal FIR
filter:

y(n) =
M∑

m=0

bmx(n−m) (2.25)

Furthermore, h(0) = b0, h(1) = b1, . . . , h(M) = bM , while all other h(n)’s
are 0. FIR filters are also called nonrecursive or moving average (MA)
filters. In MATLAB FIR filters are represented either as impulse response
values {h(n)} or as difference equation coefficients {bm} and {a0 = 1}.
Therefore to implement FIR filters, we can use either the conv(x,h)
function (and its modification that we discussed) or the filter(b,1,x)
function. There is a difference in the outputs of these two implementations
that should be noted. The output sequence from the conv(x,h) function
has a longer length than both the x(n) and h(n) sequences. On the other
hand, the output sequence from the filter(b,1,x) function has exactly
the same length as the input x(n) sequence. In practice (and especially
for processing signals) the use of the filter function is encouraged.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Problems 53

IIR filter If the impulse response of an LTI system is of infinite dura-
tion, then the system is called an infinite-duration impulse response (or
IIR) filter. The following part of the difference equation (2.21):

N∑
k=0

aky(n− k) = x(n) (2.26)

describes a recursive filter in which the output y(n) is recursively com-
puted from its previously computed values and is called an autoregressive
(AR) filter. The impulse response of such filter is of infinite duration and
hence it represents an IIR filter. The general equation (2.21) also describes
an IIR filter. It has two parts: an AR part and an MA part. Such an IIR
filter is called an autoregressive moving average, or an ARMA, filter. In
MATLAB, IIR filters are described by the difference equation coefficients
{bm} and {ak} and are implemented by the filter(b,a,x) function.

2.5 PROBLEMS

P2.1 Generate the following sequences using the basic MATLAB signal functions and the basic
MATLAB signal operations discussed in this chapter. Plot signal samples using the stem

function.

1. x1(n) = 3δ(n + 2) + 2δ(n) − δ(n− 3) + 5δ(n− 7), −5 ≤ n ≤ 15.

2. x2(n) =
∑5

k=−5
e−|k|δ(n− 2k), −10 ≤ n ≤ 10.

3. x3(n) = 10u(n) − 5u(n− 5) − 10u(n− 10) + 5u(n− 15).
4. x4(n) = e0.1n[u(n + 20) − u(n− 10)].

5. x5(n) = 5[cos(0.49πn) + cos(0.51πn)], −200 ≤ n ≤ 200. Comment on the waveform
shape.

6. x6(n) = 2 sin(0.01πn) cos(0.5πn), −200 ≤ n ≤ 200. Comment on the waveform shape.
7. x7(n) = e−0.05n sin(0.1πn + π/3), 0 ≤ n ≤ 100. Comment on the waveform shape.
8. x8(n) = e0.01n sin(0.1πn), 0 ≤ n ≤ 100. Comment on the waveform shape.

P2.2 Generate the following random sequences and obtain their histogram using the hist

function with 100 bins. Use the bar function to plot each histogram.

1. x1(n) is a random sequence whose samples are independent and uniformly distributed
over [0, 2] interval. Generate 100,000 samples.

2. x2(n) is a Gaussian random sequence whose samples are independent with mean 10 and
variance 10. Generate 10,000 samples.

3. x3(n) = x1(n) + x1(n− 1) where x1(n) is the random sequence given in part 1 above.
Comment on the shape of this histogram and explain the shape.

4. x4(n) =
∑4

k=1
yk(n) where each random sequence yk(n) is independent of others with

samples uniformly distributed over [−0.5, 0.5]. Comment on the shape of this histogram.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

54 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

P2.3 Generate the following periodic sequences and plot their samples (using the stem function)
over the indicated number of periods.

1. x̃1(n) = {. . . ,−2,−1, 0
↑
, 1, 2, . . .}periodic. Plot 5 periods.

2. x̃2(n) = e0.1n[u(n) − u(n− 20]periodic. Plot 3 periods.
3. x̃3(n) = sin(0.1πn)[u(n) − u(n− 10)]. Plot 4 periods.

4. x̃4(n) = {. . . , 1
↑
, 2, 3, . . .}periodic + {. . . , 1

↑
, 2, 3, 4, . . .}periodic, 0 ≤ n ≤ 24. What is the

period of x̃4(n)?

P2.4 Let x(n) = {2, 4,−3, 1
↑
,−5, 4, 7}. Generate and plot the samples (use the stem function) of

the following sequences.

1. x1(n) = 2x(n− 3) + 3x(n + 4) − x(n)

2. x2(n) = 4x(4 + n) + 5x(n + 5) + 2x(n)

3. x3(n) = x(n + 3)x(n− 2) + x(1 − n)x(n + 1)

4. x4(n) = 2e0.5nx(n) + cos (0.1πn)x (n + 2) , −10 ≤ n ≤ 10

P2.5 The complex exponential sequence ejω0n or the sinusoidal sequence cos (ω0n) are periodic if

the normalized frequency f0
�
=

ω0

2π
is a rational number; that is, f0 =

K

N
, where K and N

are integers.

1. Prove the above result.
2. Generate exp(0.1πn), −100 ≤ n ≤ 100. Plot its real and imaginary parts using the stem

function. Is this sequence periodic? If it is, what is its fundamental period? From the
examination of the plot what interpretation can you give to the integers K and N above?

3. Generate and plot cos(0.1n), −20 ≤ n ≤ 20. Is this sequence periodic? What do you
conclude from the plot? If necessary examine the values of the sequence in MATLAB to
arrive at your answer.

P2.6 Using the evenodd function, decompose the following sequences into their even and odd
components. Plot these components using the stem function.

1. x1(n) = {0
↑
, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

2. x2(n) = e0.1n[u(n + 5) − u(n− 10)].

3. x3(n) = cos(0.2πn + π/4), −20 ≤ n ≤ 20.

4. x4(n) = e−0.05n sin(0.1πn + π/3), 0 ≤ n ≤ 100.

P2.7 A complex-valued sequence xe(n) is called conjugate-symmetric if xe(n) = x∗
e(−n) and a

complex-valued sequence xo(n) is called conjugate-antisymmetric if xo(n) = −x∗
o(−n).

Then, any arbitrary complex-valued sequence x(n) can be decomposed into
x(n) = xe(n) + xo(n) where xe(n) and xo(n) are given by

xe(n) =
1

2
[x(n) + x∗(−n)] and xo(n) =

1

2
[x(n) − x∗(−n)] (2.27)

respectively.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Problems 55

1. Modify the evenodd function discussed in the text so that it accepts an arbitrary
sequence and decomposes it into its conjugate-symmetric and conjugate-antisymmetric
components by implementing (2.27).

2. Decompose the following sequence:

x(n) = 10 exp([−0.1 + 0.2π]n), 0 ≤ n ≤ 10

into its conjugate-symmetric and conjugate-antisymmetric components. Plot their real
and imaginary parts to verify the decomposition. (Use the subplot function.)

P2.8 The operation of signal dilation (or decimation or down-sampling) is defined by

y(n) = x(nM)

in which the sequence x(n) is down-sampled by an integer factor M . For example, if

x(n) = {. . . ,−2, 4, 3
↑
,−6, 5,−1, 8, . . .}

then the down-sampled sequences by a factor 2 are given by

y(n) = {. . . ,−2, 3
↑
, 5, 8, . . .}

1. Develop a MATLAB function dnsample that has the form

function [y,m] = dnsample(x,n,M)

% Downsample sequence x(n) by a factor M to obtain y(m)

to implement the above operation. Use the indexing mechanism of MATLAB with
careful attention to the origin of the time axis n = 0.

2. Generate x(n) = sin(0.125πn), − 50 ≤ n ≤ 50. Decimate x(n) by a factor of 4 to
generate y(n). Plot both x(n) and y(n) using subplot and comment on the results.

3. Repeat the above using x(n) = sin(0.5πn), − 50 ≤ n ≤ 50. Qualitatively discuss the
effect of down-sampling on signals.

P2.9 Using the conv_m function, determine the autocorrelation sequence rxx(�) and the
crosscorrelation sequence rxy(�) for the following sequences.

x(n) = (0.9)n , 0 ≤ n ≤ 20; y(n) = (0.8)−n, − 20 ≤ n ≤ 0

Describe your observations of these results.

P2.10 In a certain concert hall, echoes of the original audio signal x(n) are generated due to the
reflections at the walls and ceiling. The audio signal experienced by the listener y(n) is a
combination of x(n) and its echoes. Let

y(n) = x(n) + αx(n− k)

where k is the amount of delay in samples and α is its relative strength. We want to
estimate the delay using the correlation analysis.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

56 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

1. Determine analytically the crosscorrelation ryx(�) in terms of the autocorrelation rxx(�).
2. Let x(n) = cos(0.2πn) + 0.5 cos(0.6πn), α = 0.1, and k = 50. Generate 200 samples of

y(n) and determine its crosscorrelation. Can you obtain α and k by observing ryx(�)?

P2.11 Consider the following discrete-time systems:

T1[x(n)]= x(n)u(n) T2[x(n)]= x(n) + nx(n + 1)

T3[x(n)]= x(n) +
1

2
x(n− 2) − 1

3
x(n− 3)x(2n) T4[x(n)]=

∑n+5

k=−∞ 2x(k)

T5[x(n)]= x(2n) T6[x(n)]= round[x(n)]

where round[·] denotes rounding to the nearest integer.

1. Use (2.10) to determine analytically whether these systems are linear.
2. Let x1(n) be a uniformly distributed random sequence between [0, 1] over 0 ≤ n ≤ 100,

and let x2(n) be a Gaussian random sequence with mean 0 and variance 10 over
0 ≤ n ≤ 100. Using these sequences, verify the linearity of these systems. Choose any
values for constants a1 and a2 in (2.10). You should use several realizations of the above
sequences to arrive at your answers.

P2.12 Consider the discrete-time systems given in Problem P2.11.

1. Use (2.12) to determine analytically whether these systems are time-invariant.
2. Let x(n) be a Gaussian random sequence with mean 0 and variance 10 over 0 ≤ n ≤ 100.

Using this sequence, verify the time invariance of the above systems. Choose any values
for sample shift k in (2.12). You should use several realizations of the above sequence to
arrive at your answers.

P2.13 For the systems given in Problem P2.11, determine analytically their stability and causality.

P2.14 The linear convolution defined in (2.14) has several properties:

x1(n) ∗ x2(n) = x1(n) ∗ x2(n) : Commutation

[x1(n) ∗ x2(n)] ∗ x3(n) = x1(n) ∗ [x2(n) ∗ x3(n)] : Association

x1(n) ∗ [x2(n) + x3(n)] = x1(n) ∗ x2(n) + x1(n) ∗ x3(n) : Distribution

x(n) ∗ δ(n− n0) = x(n− n0) : Identity

(2.28)

1. Analytically prove these properties.
2. Using the following three sequences, verify the above properties.

x1(n)= cos(πn/4)[u(n + 5) − u(n− 25)]

x2(n)= (0.9)−n[u(n) − u(n− 20)]

x3(n)= round[5w(n)], −10 ≤ n ≤ 10; where w(n) is uniform over [−1, 1]

Use the conv m function.

P2.15 Determine analytically the convolution y(n) = x(n) ∗ h(n) of the following sequences, and
verify your answers using the conv_m function.

1. x(n) = {2,−4, 5, 3
↑
,−1,−2, 6}, h(n) = {1,−1

↑
, 1,−1, 1}

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Problems 57

2. x(n) = {1, 1, 0
↑
, 1, 1}, h(n) = {1,−2,−3, 4

↑
}

3. x(n) = (1/4)−n[u(n + 1) − u(n− 4)], h(n) = u(n) − u(n− 5)

4. x(n) = n/4[u(n) − u(n− 6)], h(n) = 2[u(n + 2) − u(n− 3)]

P2.16 Let x(n) = (0.8)nu(n), h(n) = (−0.9)nu(n), and y(n) = h(n) ∗ x(n). Use 3 columns and 1
row of subplots for the following parts.

1. Determine y(n) analytically. Plot first 51 samples of y(n) using the stem function.
2. Truncate x(n) and h(n) to 26 samples. Use conv function to compute y(n). Plot y(n)

using the stem function. Compare your results with those of part 1.
3. Using the filter function, determine the first 51 samples of x(n) ∗ h(n). Plot y(n) using

the stem function. Compare your results with those of parts 1 and 2.

P2.17 When the sequences x(n) and h(n) are of finite duration Nx and Nh, respectively, then
their linear convolution (2.13) can also be implemented using matrix-vector multiplication.
If elements of y(n) and x(n) are arranged in column vectors x and y respectively, then from
(2.13) we obtain

y = Hx

where linear shifts in h(n− k) for n = 0, . . . , Nh − 1 are arranged as rows in the matrix H.
This matrix has an interesting structure and is called a Toeplitz matrix. To investigate this
matrix, consider the sequences

x(n) = {1
↑
, 2, 3, 4, 5} and h(n) = {6

↑
, 7, 8, 9}

1. Determine the linear convolution y(n) = h(n) ∗ x(n).
2. Express x(n) as a 5 × 1 column vector x and y(n) as a 8 × 1 column vector y. Now

determine the 8 × 5 matrix H so that y = Hx.
3. Characterize the matrix H. From this characterization can you give a definition of a

Toeplitz matrix? How does this definition compare with that of time invariance?
4. What can you say about the first column and the first row of H?

P2.18 MATLAB provides a function called toeplitz to generate a Toeplitz matrix, given the first
row and the first column.

1. Using this function and your answer to Problem P2.17, part 4, develop another MATLAB
function to implement linear convolution. The format of the function should be

function [y,H]=conv_tp(h,x)

% Linear Convolution using Toeplitz Matrix

% --

% [y,H] = conv_tp(h,x)

% y = output sequence in column vector form

% H = Toeplitz matrix corresponding to sequence h so that y = Hx

% h = Impulse response sequence in column vector form

% x = input sequence in column vector form

2. Verify your function on the sequences given in Problem P2.17.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

58 Chapter 2 DISCRETE-TIME SIGNALS AND SYSTEMS

P2.19 A linear and time-invariant system is described by the difference equation

y(n) − 0.5y(n− 1) + 0.25y(n− 2) = x(n) + 2x(n− 1) + x(n− 3)

1. Using the filter function, compute and plot the impulse response of the system over
0 ≤ n ≤ 100.

2. Determine the stability of the system from this impulse response.
3. If the input to this system is x(n) = [5 + 3 cos(0.2πn) + 4 sin(0.6πn)]u(n), determine the

response y(n) over 0 ≤ n ≤ 200 using the filter function.

P2.20 A “simple” digital differentiator is given by

y(n) = x(n) − x(n− 1)

which computes a backward first-order difference of the input sequence. Implement this
differentiator on the following sequences, and plot the results. Comment on the
appropriateness of this simple differentiator.

1. x(n) = 5 [u(n) − u(n− 20)]: a rectangular pulse

2. x(n) = n [u(n) − u(n− 10)] + (20 − n) [u(n− 10) − u(n− 20)]: a triangular pulse

3. x(n) = sin
(
πn

25

)
[u(n) − u(n− 100)]: a sinusoidal pulse

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

59

C H A P T E R 3
The Discrete-time
Fourier Analysis

We have seen how a linear and time-invariant system can be represented
using its response to the unit sample sequence. This response, called the
unit impulse response h(n), allows us to compute the system response to
any arbitrary input x(n) using the linear convolution:

x(n) −→ h(n) −→ y(n) = h(n) ∗ x(n)

This convolution representation is based on the fact that any signal
can be represented by a linear combination of scaled and delayed unit
samples. Similarly, we can also represent any arbitrary discrete signal
as a linear combination of basis signals introduced in Chapter 2. Each
basis signal set provides a new signal representation. Each representation
has some advantages and some disadvantages depending upon the type
of system under consideration. However, when the system is linear and
time-invariant, only one representation stands out as the most useful. It
is based on the complex exponential signal set {ejωn} and is called the
discrete-time Fourier transform.

3.1 THE DISCRETE-TIME FOURIER TRANSFORM (DTFT)

If x(n) is absolutely summable, that is,
∑∞

−∞ |x(n)|<∞, then its discrete-
time Fourier transform is given by

X(ejω)
�
= F [x(n)] =

∞∑
n=−∞

x(n)e−jωn (3.1)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

60 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

The inverse discrete-time Fourier transform (IDTFT) of X(ejω) is given
by

x(n)
�
= F−1[X(ejω)] =

1
2π

π∫

−π

X(ejω)ejωndω (3.2)

The operator F [·] transforms a discrete signal x(n) into a complex-valued
continuous function X(ejω) of real variable ω, called a digital frequency,
which is measured in radians/sample.

� EXAMPLE 3.1 Determine the discrete-time Fourier transform of x(n) = (0.5)n u(n).

Solution The sequence x(n) is absolutely summable; therefore its discrete-time Fourier
transform exists.

X(ejω) =

∞∑
−∞

x(n)e−jωn =

∞∑
0

(0.5)n e−jωn

=

∞∑
0

(0.5e−jω)n =
1

1 − 0.5e−jω
=

ejω

ejω − 0.5
�

� EXAMPLE 3.2 Determine the discrete-time Fourier transform of the following finite-duration
sequence:

x(n) = {1, 2
↑
, 3, 4, 5}

Solution Using definition (3.1),

X(ejω) =

∞∑
−∞

x(n)e−jωn = ejω + 2 + 3e−jω + 4e−j2ω + 5e−j3ω

�

Since X(ejω) is a complex-valued function, we will have to plot its
magnitude and its angle (or the real and the imaginary part) with respect
to ω separately to visually describe X(ejω). Now ω is a real variable
between −∞ and ∞, which would mean that we can plot only a part of the
X(ejω) function using MATLAB. Using two important properties of the
discrete-time Fourier transform, we can reduce this domain to the [0, π]
interval for real-valued sequences. We will discuss other useful properties
of X(ejω) in the next section.

3.1.1 TWO IMPORTANT PROPERTIES
We will state the following two properties without proof.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Discrete-time Fourier Transform (DTFT) 61

1. Periodicity: The discrete-time Fourier transform X(ejω) is periodic
in ω with period 2π.

X(ejω) = X(ej[ω+2π])
Implication: We need only one period of X(ejω) (i.e., ω ∈[0, 2π], or
[−π, π], etc.) for analysis and not the whole domain −∞ < ω < ∞.

2. Symmetry: For real-valued x(n), X(ejω) is conjugate symmetric.

X(e−jω) = X∗(ejω)

or

Re[X(e−jω)] = Re[X(ejω)] (even symmetry)

Im[X(e−jω)] = − Im[X(ejω)] (odd symmetry)

|X(e−jω)| = |X(ejω)| (even symmetry)

� X(e−jω) = −� X(ejω) (odd symmetry)

Implication: To plot X(ejω), we now need to consider only a half
period of X(ejω). Generally, in practice this period is chosen to be
ω ∈ [0, π].

3.1.2 MATLAB IMPLEMENTATION
If x(n) is of infinite duration, then MATLAB cannot be used directly
to compute X(ejω) from x(n). However, we can use it to evaluate the
expression X(ejω) over [0, π] frequencies and then plot its magnitude and
angle (or real and imaginary parts).

� EXAMPLE 3.3 Evaluate X(ejω) in Example 3.1 at 501 equispaced points between [0, π] and
plot its magnitude, angle, real, and imaginary parts.

Solution MATLAB script:

>> w = [0:1:500]*pi/500; % [0, pi] axis divided into 501 points.

>> X = exp(j*w) ./ (exp(j*w) - 0.5*ones(1,501));

>> magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X);

>> subplot(2,2,1); plot(w/pi,magX); grid

>> xlabel(’frequency in pi units’); title(’Magnitude Part’); ylabel(’Magnitude’)

>> subplot(2,2,3); plot(w/pi,angX); grid

>> xlabel(’frequency in pi units’); title(’Angle Part’); ylabel(’Radians’)

>> subplot(2,2,2); plot(w/pi,realX); grid

>> xlabel(’frequency in pi units’); title(’Real Part’); ylabel(’Real’)

>> subplot(2,2,4); plot(w/pi,imagX); grid

>> xlabel(’frequency in pi units’); title(’Imaginary Part’); ylabel(’Imaginary’)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

62 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

0 0.5 1
0.5

1

1.5

2

frequency in π units

M
ag

ni
tu

de

Magnitude Part

0 0.5 1
–0.6

–0.4

–0.2

0

frequency in π units

R
ad

ia
ns

Angle Part

0 0.5 1
0.5

1

1.5

2

frequency in π units

R
ea

l

Real Part

0 0.5 1
–0.8

–0.6

–0.4

–0.2

0

frequency in π units
Im

ag
in

ar
y

Imaginary Part

FIGURE 3.1 Plots in Example 3.3

The resulting plots are shown in Figure 3.1. Note that we divided the w array by
pi before plotting so that the frequency axes are in the units of π and therefore
easier to read. This practice is strongly recommended. �

If x(n) is of finite duration, then MATLAB can be used to compute
X(ejω) numerically at any frequency ω. The approach is to implement
(3.1) directly. If, in addition, we evaluate X(ejω) at equispaced frequen-
cies between [0, π], then (3.1) can be implemented as a matrix-vector mul-
tiplication operation. To understand this, let us assume that the sequence
x(n) has N samples between n1 ≤ n ≤ nN (i.e., not necessarily between
[0, N − 1]) and that we want to evaluate X(ejω) at

ωk
�
=

π

M
k, k = 0, 1, . . . ,M

which are (M + 1) equispaced frequencies between [0, π]. Then (3.1) can
be written as

X(ejωk) =
N∑
�=1

e−j(π/M)kn�x(n�), k = 0, 1, . . . ,M

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Discrete-time Fourier Transform (DTFT) 63

When {x (n�)} and {X(ejωk)} are arranged as column vectors x and X,
respectively, we have

X = Wx (3.3)

where W is an (M + 1) ×N matrix given by

W
�
=

{
e−j(π/M)kn� ; n1 ≤ n ≤ nN , k = 0, 1, . . . ,M

}

In addition, if we arrange {k} and {n�} as row vectors k and n respectively,
then

W =
[
exp

(
−j

π

M
kTn

)]

In MATLAB we represent sequences and indices as row vectors; therefore
taking the transpose of (3.3), we obtain

XT = xT
[
exp

(
−j

π

M
nTk

)]
(3.4)

Note that nTk is an N × (M + 1) matrix. Now (3.4) can be implemented
in MATLAB as follows.

>> k = [0:M]; n = [n1:n2];

>> X = x * (exp(-j*pi/M)) .^ (n’*k);

� EXAMPLE 3.4 Numerically compute the discrete-time Fourier transform of the sequence x(n)
given in Example 3.2 at 501 equispaced frequencies between [0, π].

Solution MATLAB script:

>> n = -1:3; x = 1:5; k = 0:500; w = (pi/500)*k;

>> X = x * (exp(-j*pi/500)) .^ (n’*k);

>> magX = abs(X); angX = angle(X);

>> realX = real(X); imagX = imag(X);

>> subplot(2,2,1); plot(k/500,magX);grid

>> xlabel(’frequency in pi units’); title(’Magnitude Part’)

>> subplot(2,2,3); plot(k/500,angX/pi);grid

>> xlabel(’frequency in pi units’); title(’Angle Part’)

>> subplot(2,2,2); plot(k/500,realX);grid

>> xlabel(’frequency in pi units’); title(’Real Part’)

>> subplot(2,2,4); plot(k/500,imagX);grid

>> xlabel(’frequency in pi units’); title(’Imaginary Part’)

The frequency-domain plots are shown in Figure 3.2. Note that the angle plot
is depicted as a discontinuous function between −π and π. This is because the
angle function in MATLAB computes the principal angle. �

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

64 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

0 0.5 1
0

5

10

15

frequency in π units

Magnitude Part

M
ag

ni
tu

de

0 0.5 1
–4

–2

0

2

4

frequency in π units

Angle Part

R
ad

ia
ns

0 0.5 1
–5

0

5

10

15

frequency in π units

Real Part

R
ea

l

0 0.5 1
–10

–5

0

5

frequency in π units

Imaginary Part

Im
ag

in
ar

y

FIGURE 3.2 Plots in Example 3.4

The procedure of Example 3.4 can be compiled into a MATLAB func-
tion, say a dtft function, for ease of implementation. This is explored in
Problem P3.1. This numerical computation is based on definition (3.1).
It is not the most elegant way of numerically computing the discrete-
time Fourier transform of a finite-duration sequence. In Chapter 5 we
will discuss in detail the topic of a computable transform called the dis-
crete Fourier transform (DFT) and its efficient computation called the
fast Fourier transform (FFT). Also there is an alternate approach based
on the z-transform using the MATLAB function freqz, which we will dis-
cuss in Chapter 4. In this chapter we will continue to use the approaches
discussed so far for calculation as well as for investigation purposes.

In the next two examples we investigate the periodicity and symmetry
properties using complex-valued and real-valued sequences.

� EXAMPLE 3.5 Let x(n) = (0.9 exp (jπ/3))n , 0 ≤ n ≤ 10. Determine X(ejω) and investigate
its periodicity.

Solution Since x(n) is complex-valued, X(ejω) satisfies only the periodicity property.
Therefore it is uniquely defined over one period of 2π. However, we will evaluate
and plot it at 401 frequencies over two periods between [−2π, 2π] to observe its
periodicity.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Discrete-time Fourier Transform (DTFT) 65

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

2

4

6

8

frequency in units of π

|X
|

Magnitude Part

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

frequency in units of π

ra
di

an
s /

π

Angle Part

FIGURE 3.3 Plots in Example 3.5

MATLAB script:

>> n = 0:10; x = (0.9*exp(j*pi/3)).^n;

>> k = -200:200; w = (pi/100)*k;

>> X = x * (exp(-j*pi/100)) .^ (n’*k);

>> magX = abs(X); angX =angle(X);

>> subplot(2,1,1); plot(w/pi,magX);grid

>> xlabel(’frequency in units of pi’); ylabel(’|X|’)

>> title(’Magnitude Part’)

>> subplot(2,1,2); plot(w/pi,angX/pi);grid

>> xlabel(’frequency in units of pi’); ylabel(’radians/pi’)

>> title(’Angle Part’)

From the plots in Figure 3.3 we observe that X(ejω) is periodic in ω but is not
conjugate-symmetric. �

� EXAMPLE 3.6 Let x(n) = (0.9)n, −10 ≤ n ≤ 10. Investigate the conjugate-symmetry property
of its discrete-time Fourier transform.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

66 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

5

10

15

frequency in units of π

|X
|

Magnitude Part

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

frequency in units of π

ra
di

an
s /

π

Angle Part

FIGURE 3.4 Plots in Example 3.6

Solution Once again we will compute and plot X(ejω) over two periods to study its
symmetry property.

MATLAB script:

>> n = -5:5; x = (-0.9).^n;

>> k = -200:200; w = (pi/100)*k; X = x * (exp(-j*pi/100)) .^ (n’*k);

>> magX = abs(X); angX =angle(X);

>> subplot(2,1,1); plot(w/pi,magX);grid; axis([-2,2,0,15])

>> xlabel(’frequency in units of pi’); ylabel(’|X|’)

>> title(’Magnitude Part’)

>> subplot(2,1,2); plot(w/pi,angX/pi);grid; axis([-2,2,-1,1])

>> xlabel(’frequency in units of pi’); ylabel(’radians/pi’)

>> title(’Angle Part’)

From the plots in Figure 3.4 we observe that X(ejω) is not only periodic in ω
but is also conjugate-symmetric. Therefore for real sequences we will plot their
Fourier transform magnitude and angle graphs from 0 to π. �

3.1.3 SOME COMMON DTFT PAIRS
The discrete-time Fourier transforms of the basic sequences discussed in
Chapter 2 are very useful. The discrete-time Fourier transforms of some

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Properties of the DTFT 67

TABLE 3.1 Some common DTFT pairs

Signal Type Sequence x(n) DTFT X
(
ejω

)
, −π ≤ ω ≤ π

Unit impulse δ(n) 1

Constant 1 2πδ(ω)

Unit step u(n)
1

1 − e−jω
+ πδ(ω)

Causal exponential αnu(n)
1

1 − αe−jω

Complex exponential ejω0n 2πδ(ω − ω0)

Cosine cos(ω0n) π[δ(ω − ω0) + δ(ω + ω0)]

Sine sin(ω0n) jπ[δ(ω + ω0) − δ(ω − ω0)]

Double exponential α|n|u(n)
1 − α2

1 − 2α cos(ω) + α2

Note: Since X
(
ejω

)
is periodic with period 2π, expressions over only

the primary period of −π ≤ ω ≤ π are given.

of these sequences can be easily obtained using the basic definitions (3.1)
and (3.2). These transform pairs and those of few other pairs are given
in Table 3.1. Note that, even if sequences like unit step u(n) are not
absolutely summable, their discrete-time Fourier transforms exist in the
limiting sense if we allow impulses in the Fourier transform. Such se-
quences are said to have finite power, that is,

∑
n |x(n)|2 < ∞. Using

this table and the properties of the Fourier transform (discussed in Sec-
tion 3.2), it is possible to obtain discrete-time Fourier transform of many
more sequences.

3.2 THE PROPERTIES OF THE DTFT

In the previous section, we discussed two important properties that
we needed for plotting purposes. We now discuss the remaining useful
properties, which are given below without proof. Let X(ejω) be the
discrete-time Fourier transform of x(n).

1. Linearity: The discrete-time Fourier transform is a linear transforma-
tion; that is,

F [αx1(n) + βx2(n)] = αF [x1(n)] + βF [x2(n)] (3.5)

for every α, β, x1(n), and x2(n).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

68 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

2. Time shifting: A shift in the time domain corresponds to the phase
shifting.

F [x(n− k)] = X(ejω)e−jωk (3.6)

3. Frequency shifting: Multiplication by a complex exponential corre-
sponds to a shift in the frequency domain.

F
[
x(n)ejω0n

]
= X(ej(ω−ω0)) (3.7)

4. Conjugation: Conjugation in the time domain corresponds to the
folding and conjugation in the frequency domain.

F [x∗(n)] = X∗(e−jω) (3.8)

5. Folding: Folding in the time domain corresponds to the folding in the
frequency domain.

F [x(−n)] = X(e−jω) (3.9)

6. Symmetries in real sequences: We have already studied the conju-
gate symmetry of real sequences. These real sequences can be decom-
posed into their even and odd parts, as discussed in Chapter 2.

x(n) = xe(n) + xo(n)

Then

F [xe(n)] = Re
[
X(ejω)

]

F [xo(n)] = j Im
[
X(ejω)

] (3.10)

Implication: If the sequence x(n) is real and even, then X(ejω) is
also real and even. Hence only one plot over [0, π] is necessary for its
complete representation.

A similar property for complex-valued sequences is explored in
Problem P3.7.

7. Convolution: This is one of the most useful properties that makes
system analysis convenient in the frequency domain.

F [x1(n) ∗ x2(n)] = F [x1(n)]F [x2(n)] = X1(ejω)X2(ejω) (3.11)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Properties of the DTFT 69

8. Multiplication: This is a dual of the convolution property.

F [x1(n)·x2(n)] = F [x1(n)] ∗© F [x2(n)]
�
=

1
2π

∫ π

−π

X1(ejθ)X2(ej(ω−θ))dθ

(3.12)

This convolution-like operation is called a periodic convolution and
hence denoted by ∗©. It is discussed (in its discrete form) in
Chapter 5.

9. Energy: The energy of the sequence x(n) can be written as

Ex =
∞∑
−∞

|x(n)|2 =
1
2π

π∫

−π

|X(ejω)|2dω (3.13)

=

π∫

0

|X(ejω)|2
π

dω (for real sequences using even symmetry)

This is also known as Parseval’s theorem. From (3.13) the energy den-
sity spectrum of x(n) is defined as

Φx(ω)
�
=

|X(ejω)|2
π

(3.14)

Then the energy of x(n) in the [ω1, ω2] band is given by
ω2∫

ω1

Φx(ω)dω, 0 ≤ ω1 < ω2 ≤ π

In the next several examples we will verify some of these properties
using finite-duration sequences. We will follow our numerical procedure
to compute discrete-time Fourier transforms in each case. Although this
does not analytically prove the validity of each property, it provides us
with an experimental tool in practice.

� EXAMPLE 3.7 In this example we will verify the linearity property (3.5) using real-valued finite-
duration sequences. Let x1(n) and x2(n) be two random sequences uniformly
distributed between [0, 1] over 0 ≤ n ≤ 10. Then we can use our numerical
discrete-time Fourier transform procedure as follows.

MATLAB script:

>> x1 = rand(1,11); x2 = rand(1,11); n = 0:10;

>> alpha = 2; beta = 3; k = 0:500; w = (pi/500)*k;

>> X1 = x1 * (exp(-j*pi/500)).^(n’*k); % DTFT of x1

>> X2 = x2 * (exp(-j*pi/500)).^(n’*k); % DTFT of x2

>> x = alpha*x1 + beta*x2; % Linear combination of x1 & x2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

70 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

>> X = x * (exp(-j*pi/500)).^(n’*k); % DTFT of x

>> % verification

>> X_check = alpha*X1 + beta*X2; % Linear Combination of X1 & X2

>> error = max(abs(X-X_check)) % Difference

error =

7.1054e-015

Since the maximum absolute error between the two Fourier transform arrays
is less than 10−14, the two arrays are identical within the limited numerical
precision of MATLAB. �

� EXAMPLE 3.8 Let x(n) be a random sequence uniformly distributed between [0, 1] over 0 ≤
n ≤ 10 and let y(n) = x(n − 2). Then we can verify the sample shift property
(3.6) as follows.

>> x = rand(1,11); n = 0:10;

>> k = 0:500; w = (pi/500)*k;

>> X = x * (exp(-j*pi/500)).^(n’*k); % DTFT of x

>> % signal shifted by two samples

>> y = x; m = n+2;

>> Y = y * (exp(-j*pi/500)).^(m’*k); % DTFT of y

>> % verification

>> Y_check = (exp(-j*2).^w).*X; % multiplication by exp(-j2w)

>> error = max(abs(Y-Y_check)) % Difference

error =

5.7737e-015 �

� EXAMPLE 3.9 To verify the frequency shift property (3.7), we will use the graphical approach.
Let

x(n) = cos(πn/2), 0 ≤ n ≤ 100 and y(n) = ejπn/4x(n)

Then using MATLAB,

>> n = 0:100; x = cos(pi*n/2);

>> k = -100:100; w = (pi/100)*k; % frequency between -pi and +pi

>> X = x * (exp(-j*pi/100)).^(n’*k); % DTFT of x

%

>> y = exp(j*pi*n/4).*x; % signal multiplied by exp(j*pi*n/4)

>> Y = y * (exp(-j*pi/100)).^(n’*k); % DTFT of y

% Graphical verification

>> subplot(2,2,1); plot(w/pi,abs(X)); grid; axis([-1,1,0,60])

>> xlabel(’frequency in pi units’); ylabel(’|X|’)

>> title(’Magnitude of X’)

>> subplot(2,2,2); plot(w/pi,angle(X)/pi); grid; axis([-1,1,-1,1])

>> xlabel(’frequency in pi units’); ylabel(’radiands/pi’)

>> title(’Angle of X’)

>> subplot(2,2,3); plot(w/pi,abs(Y)); grid; axis([-1,1,0,60])

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Properties of the DTFT 71

−1 −0.5 0 0.5 1
0

20

40

60

frequency in π units

|X
|

Magnitude of X

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

frequency in π units

ra
di

an
ds

/p
i

Angle of X

−1 −0.5 0 0.5 1
0

20

40

60

frequency in π units

|Y
|

Magnitude of Y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

frequency in π units
ra

di
an

s /
pi

Angle of Y

FIGURE 3.5 Plots in Example 3.9

>> xlabel(’frequency in pi units’); ylabel(’|Y|’)

>> title(’Magnitude of Y’)

>> subplot(2,2,4); plot(w/pi,angle(Y)/pi); grid; axis([-1,1,-1,1])

>> xlabel(’frequency in pi units’); ylabel(’radians/pi’)

>> title(’Angle of Y’)

From the plots in Figure 3.5, we observe that X(ejω) is indeed shifted by π/4
in both magnitude and angle. �

� EXAMPLE 3.10 To verify the conjugation property (3.8), let x(n) be a complex-valued random
sequence over −5 ≤ n ≤ 10 with real and imaginary parts uniformly distributed
between [0, 1]. The MATLAB verification is as follows.

>> n = -5:10; x = rand(1,length(n)) + j*rand(1,length(n));

>> k = -100:100; w = (pi/100)*k; % frequency between -pi and +pi

>> X = x * (exp(-j*pi/100)).^(n’*k); % DTFT of x

% conjugation property

>> y = conj(x); % signal conjugation

>> Y = y * (exp(-j*pi/100)).^(n’*k); % DTFT of y

% verification

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

72 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

>> Y_check = conj(fliplr(X)); % conj(X(-w))

>> error = max(abs(Y-Y_check)) % Difference

error =

0

�

� EXAMPLE 3.11 To verify the folding property (3.9), let x(n) be a random sequence over −5 ≤
n ≤ 10 uniformly distributed between [0, 1]. The MATLAB verification is as
follows.

>> n = -5:10; x = rand(1,length(n));

>> k = -100:100; w = (pi/100)*k; % frequency between -pi and +pi

>> X = x * (exp(-j*pi/100)).^(n’*k); % DTFT of x

% folding property

>> y = fliplr(x); m = -fliplr(n); % signal folding

>> Y = y * (exp(-j*pi/100)).^(m’*k); % DTFT of y

% verification

>> Y_check = fliplr(X); % X(-w)

>> error = max(abs(Y-Y_check)) % Difference

error =

0 �

� EXAMPLE 3.12 In this problem we verify the symmetry property (3.10) of real signals. Let

x(n) = sin(πn/2), −5 ≤ n ≤ 10

Then using the evenodd function developed in Chapter 2, we can compute
the even and odd parts of x(n) and then evaluate their discrete-time Fourier
transforms. We will provide the numerical as well as graphical verification.

MATLAB script:

>> n = -5:10; x = sin(pi*n/2);

>> k = -100:100; w = (pi/100)*k; % frequency between -pi and +pi

>> X = x * (exp(-j*pi/100)).^(n’*k); % DTFT of x

% signal decomposition

>> [xe,xo,m] = evenodd(x,n); % even and odd parts

>> XE = xe * (exp(-j*pi/100)).^(m’*k); % DTFT of xe

>> XO = xo * (exp(-j*pi/100)).^(m’*k); % DTFT of xo

% verification

>> XR = real(X); % real part of X

>> error1 = max(abs(XE-XR)) % Difference

error1 =

1.8974e-019

>> XI = imag(X); % imag part of X

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Properties of the DTFT 73

–1 –0.5 0 0.5 1
–2

–1

0

1

2

frequency in π units

R
e(

X
)

Real part of X

–1 –0.5 0 0.5 1
–10

–5

0

5

10

frequency in π units

Im
(X

)

Imaginary part of X

–1 –0.5 0 0.5 1
–2

–1

0

1

2

frequency in π units

X
E

Transform of even part

–1 –0.5 0 0.5 1
–10

–5

0

5

10

frequency in π units
X

O

Transform of odd part

FIGURE 3.6 Plots in Example 3.12

>> error2 = max(abs(XO-j*XI)) % Difference

error2 =

1.8033e-019

% graphical verification

>> subplot(2,2,1); plot(w/pi,XR); grid; axis([-1,1,-2,2])

>> xlabel(’frequency in pi units’); ylabel(’Re(X)’);

>> title(’Real part of X’)

>> subplot(2,2,2); plot(w/pi,XI); grid; axis([-1,1,-10,10])

>> xlabel(’frequency in pi units’); ylabel(’Im(X)’);

>> title(’Imaginary part of X’)

>> subplot(2,2,3); plot(w/pi,real(XE)); grid; axis([-1,1,-2,2])

>> xlabel(’frequency in pi units’); ylabel(’XE’);

>> title(’Transform of even part’)

>> subplot(2,2,4); plot(w/pi,imag(XO)); grid; axis([-1,1,-10,10])

>> xlabel(’frequency in pi units’); ylabel(’XO’);

>> title(’Transform of odd part’)

From the plots in Figure 3.6 we observe that the real part of X(ejω) [or the
imaginary part of X(ejω)] is equal to the discrete-time Fourier transform of
xe(n) [or xo(n)]. �

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

74 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

3.3 THE FREQUENCY DOMAIN REPRESENTATION

OF LTI SYSTEMS

We earlier stated that the Fourier transform representation is the most
useful signal representation for LTI systems. It is due to the following
result.

3.3.1 RESPONSE TO A COMPLEX EXPONENTIAL e jω0n

Let x(n) = ejω0n be the input to an LTI system represented by the impulse
response h(n).

ejω0n −→ h(n) −→ h(n) ∗ ejω0n

Then

y(n) = h(n) ∗ ejω0n =
∞∑
−∞

h(k)ejω0(n−k)

=

[∞∑
−∞

h(k)e−jω0k

]
ejω0n (3.15)

= [F [h(n)]|ω=ω0] e
jω0n

DEFINITION 1 [Frequency Response] The discrete-time Fourier transform of an impulse
response is called the frequency response (or transfer function) of an LTI
system and is denoted by

H(ejωn)
�
=

∞∑
−∞

h(n)e−jωn (3.16)

Then from (3.15) we can represent the system by

x(n) = ejω0n −→ H(ejω) −→ y(n) = H(ejω0) × ejω0n (3.17)

Hence the output sequence is the input exponential sequence modified by
the response of the system at frequency ω0. This justifies the definition
of H(ejω) as a frequency response because it is what the complex expo-
nential is multiplied by to obtain the output y(n). This powerful result
can be extended to a linear combination of complex exponentials using
the linearity of LTI systems.

∑
k

Ake
jωkn −→ h(n) −→

∑
k

AkH(ejωk) ejωkn

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Frequency Domain Representation

of LTI Systems 75

In general, the frequency response H(ejω) is a complex function of
ω. The magnitude |H(ejω)| of H(ejω) is called the magnitude (or gain)
response function, and the angle � H(ejω) is called the phase response
function as we shall see below.

3.3.2 RESPONSE TO SINUSOIDAL SEQUENCES
Let x(n) = A cos(ω0n + θ0) be an input to an LTI system h(n). Then
from (3.17) we can show that the response y(n) is another sinusoid of the
same frequency ω0, with amplitude gained by |H(ejω0)| and phase shifted
by � H(ejω0), that is,

y(n) = A|H(ejω0)| cos(ω0n + θ0 + � H(ejω0)) (3.18)

This response is called the steady-state response, denoted by yss(n). It
can be extended to a linear combination of sinusoidal sequences.∑

k

Ak cos(ωkn + θk) −→ H(ejω) −→
∑

k Ak|H(ejωk)|

cos(ωkn + θk + � H(ejωk))

3.3.3 RESPONSE TO ARBITRARY SEQUENCES
Finally, (3.17) can be generalized to arbitrary absolutely summable se-
quences. Let X(ejω) = F [x(n)] and Y (ejω) = F [y(n)]; then using the
convolution property (3.11), we have

Y (ejω) = H(ejω) X(ejω) (3.19)

Therefore an LTI system can be represented in the frequency domain by

X(ejω) −→ H(ejω) −→ Y (ejω) = H(ejω) X(ejω)

The output y(n) is then computed from Y (ejω) using the inverse
discrete-time Fourier transform (3.2). This requires an integral operation,
which is not a convenient operation in MATLAB. As we shall see in
Chapter 4, there is an alternate approach to the computation of output to
arbitrary inputs using the z-transform and partial fraction expansion. In
this chapter we will concentrate on computing the steady-state response.

� EXAMPLE 3.13 Determine the frequency response H(ejω) of a system characterized by h(n) =
(0.9)nu(n). Plot the magnitude and the phase responses.

Solution Using (3.16),

H(ejω) =

∞∑
−∞

h(n)e−jωn =

∞∑
0

(0.9)ne−jωn

=

∞∑
0

(0.9e−jω)n =
1

1 − 0.9e−jω

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

76 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

Hence

|H(ejω)| =

√
1

(1 − 0.9 cosω)2 + (0.9 sinω)2
=

1√
1.81 − 1.8 cosω

and

� H(ejω) = − arctan
[

0.9 sinω

1 − 0.9 cosω

]

To plot these responses, we can either implement the |H(ejω)| and � H(ejω)
functions or the frequency response H(ejω) and then compute its magnitude
and phase. The latter approach is more useful from a practical viewpoint [as
shown in (3.18)].

>> w = [0:1:500]*pi/500; % [0, pi] axis divided into 501 points.

>> H = exp(j*w) ./ (exp(j*w) - 0.9*ones(1,501));

>> magH = abs(H); angH = angle(H);

>> subplot(2,1,1); plot(w/pi,magH); grid;

>> xlabel(’frequency in pi units’); ylabel(’|H|’);

>> title(’Magnitude Response’);

>> subplot(2,1,2); plot(w/pi,angH/pi); grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi Radians’);

>> title(’Phase Response’);

The plots are shown in Figure 3.7. �

� EXAMPLE 3.14 Let an input to the system in Example 3.13 be 0.1u(n). Determine the steady-
state response yss(n).

Solution Since the input is not absolutely summable, the discrete-time Fourier transform
is not particularly useful in computing the complete response. However, it can
be used to compute the steady-state response. In the steady state (i.e., n → ∞),
the input is a constant sequence (or a sinusoid with ω0 = θ0 = 0). Then the
output is

yss(n) = 0.1 ×H(ej0) = 0.1 × 10 = 1

where the gain of the system at ω = 0 (also called the DC gain) is H(ej0) = 10,
which is obtained from Figure 3.7. �

3.3.4 FREQUENCY RESPONSE FUNCTION FROM DIFFERENCE EQUA-
TIONS

When an LTI system is represented by the difference equation

y(n) +
N∑
�=1

a�y(n− �) =
M∑

m=0

bmx(n−m) (3.20)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Frequency Domain Representation

of LTI Systems 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

frequency in π units

|H
|

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

frequency in π units

P
ha

se
 in

 π
 R

ad
ia

ns

Phase Response

FIGURE 3.7 Frequency response plots in Example 3.13

then to evaluate its frequency response from (3.16), we would need the im-
pulse response h(n). However, using (3.17), we can easily obtain H(ejω).
We know that when x(n) = ejωn, then y(n) must be H(ejω)ejωn. Substi-
tuting in (3.20), we have

H(ejω)ejωn +
N∑
�=1

a�H(ejω)ejω(n−�) =
M∑

m=0

bm ejω(n−m)

or

H(ejω) =
∑M

m=0 bm e−jωm

1 +
∑N

�=1 a� e−jω�
(3.21)

after canceling the common factor ejωn term and rearranging. This equa-
tion can easily be implemented in MATLAB, given the difference equation
parameters.

� EXAMPLE 3.15 An LTI system is specified by the difference equation

y(n) = 0.8y(n− 1) + x(n)

a. Determine H(ejω).
b. Calculate and plot the steady-state response yss(n) to

x(n) = cos(0.05πn)u(n)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

78 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

Solution Rewrite the difference equation as y(n) − 0.8y(n− 1) = x(n).

a. Using (3.21), we obtain

H(ejω) =
1

1 − 0.8e−jω
(3.22)

b. In the steady state the input is x(n) = cos(0.05πn) with frequency ω0 =
0.05π and θ0 = 0◦. The response of the system is

H(ej0.05π) =
1

1 − 0.8e−j0.05π
= 4.0928e−j0.5377

Therefore

yss(n) = 4.0928 cos(0.05πn− 0.5377) = 4.0928 cos [0.05π(n− 3.42)]

This means that at the output the sinusoid is scaled by 4.0928 and shifted
by 3.42 samples. This can be verified using MATLAB.

>> subplot(1,1,1)

>> b = 1; a = [1,-0.8];

>> n=[0:100];x = cos(0.05*pi*n);

>> y = filter(b,a,x);

>> subplot(2,1,1); stem(n,x);

>> xlabel(’n’); ylabel(’x(n)’); title(’Input sequence’)

>> subplot(2,1,2); stem(n,y);

>> xlabel(’n’); ylabel(’y(n)’); title(’Output sequence’)

From the plots in Figure 3.8, we note that the amplitude of yss(n) is approx-
imately 4. To determine the shift in the output sinusoid, we can compare
zero crossings of the input and the output. This is shown in Figure 3.8, from
which the shift is approximately 3.4 samples. �

In Example 3.15 the system was characterized by a 1st-order dif-
ference equation. It is fairly straightforward to implement (3.22) in
MATLAB as we did in Example 3.13. In practice the difference equations
are of large order and hence we need a compact procedure to implement
the general expression (3.21). This can be done using a simple matrix-
vector multiplication. If we evaluate H(ejω) at k = 0, 1, . . . ,K equispaced
frequencies over [0, π], then

H(ejωk) =
∑M

m=0 bm e−jωkm

1 +
∑N

�=1 a� e−jωk�
, k = 0, 1, . . . ,K (3.23)

If we let {bm}, {a�} (with a0 = 1), {m = 0, . . . ,M}, {� = 0, . . . , N}, and
{ωk} be arrays (or row vectors), then the numerator and the denominator
of (3.23) become

b exp(−jmTω); a exp(−j�Tω)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Frequency Domain Representation

of LTI Systems 79

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

n

Input sequence

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

n

y(
n)

Output sequence

x(
n)

3.42

4.092

FIGURE 3.8 Plots in Example 3.15

respectively. Now the array H(ejωk) in (3.23) can be computed using a ./
operation. This procedure can be implemented in a MATLAB function to
determine the frequency response function, given {bm} and {a�} arrays.
We will explore this in Example 3.16 and in Problem P3.16.

� EXAMPLE 3.16 A 3rd-order lowpass filter is described by the difference equation

y(n) = 0.0181x(n) + 0.0543x(n− 1) + 0.0543x(n− 2) + 0.0181x(n− 3)

+1.76y(n− 1) − 1.1829y(n− 2) + 0.2781y(n− 3)

Plot the magnitude and the phase response of this filter, and verify that it is a
lowpass filter.

Solution We will implement this procedure in MATLAB and then plot the filter
responses.

>> b = [0.0181, 0.0543, 0.0543, 0.0181]; % filter coefficient array b

>> a = [1.0000, -1.7600, 1.1829, -0.2781]; % filter coefficient array a

>> m = 0:length(b)-1; l = 0:length(a)-1; % index arrays m and l

>> K = 500; k = 0:1:K; % index array k for frequencies

>> w = pi*k/K; % [0, pi] axis divided into 501 points.

>> num = b * exp(-j*m’*w); % Numerator calculations

>> den = a * exp(-j*l’*w); % Denominator calculations

>> H = num ./ den; % Frequency response

>> magH = abs(H); angH = angle(H); % mag and phase responses

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

80 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

frequency in π units

|H
|

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

frequency in π units

P
ha

se
 in

 π
 R

ad
ia

ns

Phase Response

FIGURE 3.9 Plots for Example 3.16

>> subplot(2,1,1); plot(w/pi,magH); grid; axis([0,1,0,1])

>> xlabel(’frequency in pi units’); ylabel(’|H|’);

>> title(’Magnitude Response’);

>> subplot(2,1,2); plot(w/pi,angH/pi); grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi Radians’);

>> title(’Phase Response’);

From the plots in Figure 3.9 we see that the filter is indeed a lowpass filter. �

3.4 SAMPLING AND RECONSTRUCTION OF ANALOG SIGNALS

In many applications—for example, in digital communications—real-
world analog signals are converted into discrete signals using sampling
and quantization operations (collectively called analog-to-digital con-
version, or ADC). These discrete signals are processed by digital signal
processors, and the processed signals are converted into analog signals
using a reconstruction operation (called digital-to-analog conversion or

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sampling and Reconstruction of Analog Signals 81

DAC). Using Fourier analysis, we can describe the sampling operation
from the frequency-domain viewpoint, analyze its effects, and then ad-
dress the reconstruction operation. We will also assume that the number
of quantization levels is sufficiently large that the effect of quantization
on discrete signals is negligible. We will study the effects of quantization
in Chapter 10.

3.4.1 SAMPLING
Let xa(t) be an analog (absolutely integrable) signal. Its continuous-time
Fourier transform (CTFT) is given by

Xa(jΩ)
�
=

∞∫

−∞

xa(t)e−jΩtdt (3.24)

where Ω is an analog frequency in radians/sec. The inverse continuous-
time Fourier transform is given by

xa(t) =
1
2π

∞∫

−∞

Xa(jΩ)ejΩtdΩ (3.25)

We now sample xa(t) at sampling interval Ts seconds apart to obtain the
discrete-time signal x(n).

x(n)
�
= xa(nTs)

Let X(ejω) be the discrete-time Fourier transform of x(n). Then it can be
shown [23] that X(ejω) is a countable sum of amplitude-scaled, frequency-
scaled, and translated versions of the Fourier transform Xa(jΩ).

X(ejω) =
1
Ts

∞∑
�=−∞

Xa

[
j

(
ω

Ts
− 2π

Ts
�

)]
(3.26)

This relation is known as the aliasing formula. The analog and digital
frequencies are related through Ts

ω = ΩTs (3.27)

while the sampling frequency Fs is given by

Fs
�
=

1
Ts

, sam/sec (3.28)

The graphical illustration of (3.26) is shown in Figure 3.10, from which
we observe that, in general, the discrete signal is an aliased version of the
corresponding analog signal because higher frequencies are aliased into
lower frequencies if there is an overlap. However, it is possible to recover
the Fourier transform Xa(jΩ) from X(ejω) [or equivalently, the analog

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

82 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

A /Ts

X (e jw)

X (e jw)

A /Ts

−Ω 0/Ts

−Ω 0/Ts

Ω0/Ts

Ω0/Ts

w

w

0

x (n)

n
0−5

−2 −1 21

5

DTFT

eq. (3.27)

−2π π 2π

Xa(jΩ)xa(t)

1

1

A

Ω
0

x (n)

n
0

t
0

CTFT

Sample

−Ω0 Ω0

−π

0 π 2π−π

Ts < π/Ω0

Ts > π/Ω0

−2π

FIGURE 3.10 Sampling operation in the time and frequency domains

signal xa(t) from its samples x(n)] if the infinite “replicas” of Xa(jΩ) do
not overlap with each other to form X(ejω). This is true for band-limited
analog signals.

DEFINITION 2 [Band-limited Signal] A signal is band-limited if there exists a finite ra-
dian frequency Ω0 such that Xa(jΩ) is zero for |Ω| > Ω0. The frequency
F0=Ω0/2π is called the signal bandwidth in Hz.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sampling and Reconstruction of Analog Signals 83

Referring to Figure 3.10, if π > Ω0Ts—or equivalently, Fs/2 > F0—
then

X(ejω) =
1
Ts

X

(
j
ω

Ts

)
; − π

Ts
<

ω

Ts
≤ π

Ts
(3.29)

which leads to the sampling theorem for band-limited signals.

THEOREM 3 Sampling Principle
A band-limited signal xa(t) with bandwidth F0 can be reconstructed from

its sample values x(n) = xa(nTs) if the sampling frequency Fs = 1/Ts is
greater than twice the bandwidth F0 of xa(t).

Fs > 2F0

Otherwise aliasing would result in x(n). The sampling rate of 2F0 for an
analog band-limited signal is called the Nyquist rate.

Note: After xa(t) is sampled, the highest analog frequency that x(n) rep-
resents is Fs/2 Hz (or ω = π). This agrees with the implication stated in
property 2 of the discrete-time Fourier transform in Section 3.1. Before
we delve into MATLAB implementation of sampling, we first consider
sampling of sinusoidal signals and the resulting Fourier transform in the
following example.

� EXAMPLE 3.17 The analog signal xa(t) = 4 + 2 cos(150πt + π/3) + 4 sin(350πt) is sampled at
Fs = 200 sam/sec to obtain the discrete-time signal x(n). Determine x(n) and
its corresponding DTFT X(ejω).

Solution The highest frequency in the given xa(t) is F0 = 175 Hz. Since Fs = 200, which
is less than 2F0, there will be aliasing in x(n) after sampling. The sampling
interval is Ts = 1/Fs = 0.005 sec. Hence we have

x(n) = xa(nTs) = xa(0.005n)

= 4 + 2 cos
(
0.75πn +

π

3

)
+ 4 sin(1.75πn) (3.30)

Note that the digital frequency, 1.75π, of the third term in (3.30) is outside the
primary interval of −π ≤ ω ≤ π, signifying that aliasing has occurred. From
the periodicity property of digital sinusoidal sequences in Chapter 2, we know
that the period of the digital sinusoid is 2π. Hence we can determine the alias
of the frequency 1.75π. From (3.30) we have

x(n) = 4 + 2 cos(0.75πn + π
3) + 4 sin(1.75πn− 2πn)

= 4 + 2 cos(0.75πn + π
3) − 4 sin(0.25πn) (3.31)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

84 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

Using Euler’s identity, we can expess x(n) as

x(n) = 4 + ejπ/3ej0.75πn + e−jπ/3e−j0.75πn + 2jej0.25πn − 2jej0.25πn (3.32)

From Table 3.1 and the DTFT properties, the DTFT of x(n) is given by

X(ejω) = 8πδ(ω) + 2πejπ/3δ(ω − 0.75π) + 2πe−jπ/3δ(ω + 0.75π)

+ j4πδ(ω − 0.25π) − j4πδ(ω + 0.25π), −π ≤ ω ≤ π. (3.33)

The plot of X(ejω) is shown in Figure 3.15. �

3.4.2 MATLAB IMPLEMENTATION
In a strict sense it is not possible to analyze analog signals using MATLAB
unless we use the Symbolic toolbox. However, if we sample xa(t) on a fine
grid that has a sufficiently small time increment to yield a smooth plot
and a large enough maximum time to show all the modes, then we can
approximate its analysis. Let ∆t be the grid interval such that ∆t � Ts.
Then

xG(m)
�
= xa(m∆t) (3.34)

can be used as an array to simulate an analog signal. The sampling in-
terval Ts should not be confused with the grid interval ∆t, which is used
strictly to represent an analog signal in MATLAB. Similarly, the Fourier
transform relation (3.24) should also be approximated in light of (3.34)
as follows:

Xa(jΩ) ≈
∑
m

xG(m)e−jΩm∆t∆t = ∆t
∑
m

xG(m)e−jΩm∆t (3.35)

Now if xa(t) [and hence xG(m)] is of finite duration, then (3.35) is similar
to the discrete-time Fourier transform relation (3.3) and hence can be
implemented in MATLAB in a similar fashion to analyze the sampling
phenomenon.

� EXAMPLE 3.18 Let xa(t) = e−1000|t|. Determine and plot its Fourier transform.

Solution From (3.24)

Xa(jΩ) =

∞∫

−∞

xa(t)e
−jΩtdt =

0∫

−∞

e1000te−jΩtdt +

∞∫

0

e−1000te−jΩtdt

=
0.002

1 + (Ω
1000

)2
(3.36)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sampling and Reconstruction of Analog Signals 85

which is a real-valued function since xa(t) is a real and even signal. To evaluate
Xa(jΩ) numerically, we have to first approximate xa(t) by a finite-duration
grid sequence xG(m). Using the approximation e−5 ≈ 0, we note that xa(t)
can be approximated by a finite-duration signal over −0.005 ≤ t ≤ 0.005 (or
equivalently, over [−5, 5] msec). Similarly from (3.36), Xa(jΩ) ≈ 0 for Ω ≥
2π (2000). Hence choosing

∆t = 5 × 10−5 � 1

2 (2000)
= 25 × 10−5

we can obtain xG(m) and then implement (3.35) in MATLAB.

% Analog Signal

>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t));

% Continuous-time Fourier Transform

>>Wmax = 2*pi*2000; K = 500; k = 0:1:K; W = k*Wmax/K;

>>Xa = xa * exp(-j*t’*W) * Dt; Xa = real(Xa);

>>W = [-fliplr(W), W(2:501)]; % Omega from -Wmax to Wmax

>>Xa = [fliplr(Xa), Xa(2:501)]; % Xa over -Wmax to Wmax interval

>>subplot(2,1,1);plot(t*1000,xa);

>>xlabel(’t in msec.’); ylabel(’xa(t)’)

>>title(’Analog Signal’)

>>subplot(2,1,2);plot(W/(2*pi*1000),Xa*1000);

>>xlabel(’Frequency in KHz’); ylabel(’Xa(jW)*1000’)

>>title(’Continuous-time Fourier Transform’)

Figure 3.11 shows the plots of xa(t) and Xa(jΩ). Note that to reduce the number
of computations, we computed Xa(jΩ) over [0, 4000π] rad/sec (or equivalently,
over [0, 2] KHz) and then duplicated it over [−4000π, 0] for plotting purposes.
The displayed plot of Xa(jΩ) agrees with (3.36). �

� EXAMPLE 3.19 To study the effect of sampling on the frequency-domain quantities, we will
sample xa(t) in Example 3.18 at 2 different sampling frequencies.

a. Sample xa(t) at Fs = 5000 sam/sec to obtain x1(n). Determine and plot
X1(e

jω).
b. Sample xa(t) at Fs = 1000 sam/sec to obtain x2(n). Determine and plot

X2(e
jω).

Solution a. Since the bandwidth of xa(t) is 2KHz, the Nyquist rate is 4000 sam/sec,
which is less than the given Fs. Therefore aliasing will be (almost) nonexis-
tent.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

86 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t in msec.

xa
(t

)

Analog Signal

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

Frequency in KHz

X
a(

jW
)*

10
00

Continuous-time Fourier Transform

FIGURE 3.11 Plots in Example 3.18

MATLAB script:

% Analog Signal

>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t));

% Discrete-time Signal

>> Ts = 0.0002; n = -25:1:25; x = exp(-1000*abs(n*Ts));

% Discrete-time Fourier transform

>> K = 500; k = 0:1:K; w = pi*k/K;

>> X = x * exp(-j*n’*w); X = real(X);

>> w = [-fliplr(w), w(2:K+1)]; X = [fliplr(X), X(2:K+1)];

>> subplot(2,1,1);plot(t*1000,xa);

>> xlabel(’t in msec.’); ylabel(’x1(n)’)

>> title(’Discrete Signal’); hold on

>> stem(n*Ts*1000,x); gtext(’Ts=0.2 msec’); hold off

>> subplot(2,1,2);plot(w/pi,X);

>> xlabel(’Frequency in pi units’); ylabel(’X1(w)’)

>> title(’Discrete-time Fourier Transform’)

In the top plot in Figure 3.12, we have superimposed the discrete signal x1(n)
over xa(t) to emphasize the sampling. The plot of X2(e

jω) shows that it is a
scaled version (scaled by Fs = 5000) of Xa(jΩ). Clearly there is no aliasing.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sampling and Reconstruction of Analog Signals 87

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t in msec.

x1
(n

)

Discrete Signal

Ts=0.2 msec

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Frequency in π units

X
1(

w
)

Discrete-time Fourier Transform

FIGURE 3.12 Plots in Example 3.19a

b. Here Fs = 1000 < 4000. Hence there will be a considerable amount of alias-
ing. This is evident from Figure 3.13, in which the shape of X(ejω) is different
from that of Xa(jΩ) and can be seen to be a result of adding overlapping
replicas of Xa(jΩ). �

3.4.3 RECONSTRUCTION
From the sampling theorem and the preceding examples, it is clear that if
we sample band-limited xa(t) above its Nyquist rate, then we can recon-
struct xa(t) from its samples x(n). This reconstruction can be thought of
as a 2-step process:

• First the samples are converted into a weighted impulse train.
∞∑

n=−∞
x(n)δ(t−nTs) = · · ·+x(−1)δ(n+Ts)+x(0)δ(t)+x(1)δ(n−Ts)+ · · ·

• Then the impulse train is filtered through an ideal analog lowpass filter
band-limited to the [−Fs/2, Fs/2] band.

x(n) −→ Impulse train
conversion −→ Ideal lowpass

filter −→ xa(t)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

88 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t in msec.

x2
(n

)

Discrete Signal

Ts=1 msec

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Frequency in π units

X
2(

w
)

Discrete-time Fourier Transform

FIGURE 3.13 Plots in Example 3.18b

This two-step procedure can be described mathematically using an inter-
polating formula [23]

xa(t) =
∞∑

n=−∞
x(n) sinc [Fs(t− nTs)] (3.37)

where sinc(x) = sinπx
πx is an interpolating function. The physical inter-

pretation of the above reconstruction (3.37) is given in Figure 3.14, from
which we observe that this ideal interpolation is not practically feasible
because the entire system is noncausal and hence not realizable.

� EXAMPLE 3.20 Consider the sampled signal x(n) from Example 3.17. It is applied as an in-
put to an ideal D/A converter (that is, an ideal interpolator) to obtain the
analog signal ya(t). The ideal D/A converter is also operating at Fs = 200
sam/sec. Obtain the reconstructed signal ya(t), and determine whether the sam-
pling/reconstruction operation resulted in any aliasing. Also plot the Fourier
transforms Xa(jΩ), X(ejω), and Ya(jΩ).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sampling and Reconstruction of Analog Signals 89

t
0

t
0

+...
=

+.
..

+

x (n)

x (1)
x (0)x (−1)

x (2) x (3)

xa(t)

n
0 1−1 3 −Ts Ts 2Ts 3Ts

Ts

2Ts

3Ts

2

xa (t) = Σx (n) sinc[Fs(t − nTs)]

t
0−Ts Ts 2Ts 3Ts

Sample at
t = nTs

Sampling Reconstruction

t

t

t

+

+ x (3) sinc[Fs(t − 3Ts)]

x (2) sinc[Fs(t − 2Ts)]

x (1) sinc[Fs(t − Ts)]

x (0) sinc[Fst]

FIGURE 3.14 Reconstruction of band-limited signal from its samples

Solution We can determine ya(t) using (3.31). However, since all frequencies in the sinu-
soidal sequence x(n) are between the primary period of −π ≤ ω ≤ π, we can
equivalently obtain ya(t) by substituting n by tFs. Thus from (3.31), we have

ya(t) = x(n)
∣∣
n=tFs

= x(n)
∣∣
n=200t

= 4 + 2 cos
(
0.75π200t +

π

3

)
− 4 sin(0.25π200t)

= 4 + 2 cos
(
150πt +

π

3

)
− 4 sin(50πt) (3.38)

As expected, the 175 Hz component in xa(t) is aliased into the 25 Hz component
in ya(t).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

90 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

Using Euler’s identity on the given xa(t) and the properties, the CTFT
Xa(jΩ) is given by

Xa(jΩ) = 8πδ(Ω) + 2πejπ/3δ(Ω − 150π) + 2πe−jπ/3δ(Ω + 150π)

+ 4jπδ(Ω − 350π) − 4jπδ(Ω + 350π). (3.39)

It is informative to plot the CTFT Xa(jΩ) as a function of the cyclic frequency
F in Hz using Ω = 2πF . Thus the quantity Xa(j2πF) from (3.39) is given by

Xa(j2πF) = 4δ(F) + ejπ/3δ(F − 75) + e−jπ/3δ(F + 75)

+2jδ(F − 175) − 2jδ(F + 175). (3.40)

where we have used the identity δ(Ω) = δ(2πF) = 1
2π

δ(F). Similarly, the CTFT
Ya(j2πF) is given by

Ya(j2πF) = 4δ(F) + ejπ/3δ(F − 75) + e−jπ/3δ(F + 75)

+2jδ(F − 25) − 2jδ(F + 25). (3.41)

Figure 3.15a shows the CTFT of the original signal xa(t) as a function of
F . The DTFT X

(
ejω

)
of the sampled sequence x(n) is shown as a function of

ω in Figure 3.15b, in which the impulses due to shifted replicas are shown in
gray shade for clarity. The ideal D/A converter response is also shown in gray
shade. The CTFT of the reconstructed signal ya(t) is shown in Figure 3.15c
which clearly shows the aliasing effect. �

Practical D/A converters In practice we need a different approach
than (3.37). The two-step procedure is still feasible, but now we replace
the ideal lowpass filter by a practical analog lowpass filter. Another in-
terpretation of (3.37) is that it is an infinite-order interpolation. We want
finite-order (and in fact low-order) interpolations. There are several ap-
proaches to do this.

• Zero-order-hold (ZOH) interpolation: In this interpolation a given
sample value is held for the sample interval until the next sample is
received.

x̂a(t) = x(n), nTs ≤ n < (n + 1)Ts

which can be obtained by filtering the impulse train through an inter-
polating filter of the form

h0(t) =

{
1, 0 ≤ t ≤ Ts

0, otherwise

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sampling and Reconstruction of Analog Signals 91

F, Hz

F, Hz

Aliased component
Aliased component

Ideal D/A converter response

(a)

(b)

(c)

FIGURE 3.15 Fourier transforms of the sinusoidal signals xa(t), x(n), and ya(t)

which is a rectangular pulse. The resulting signal is a piecewise-constant
(staircase) waveform which requires an appropriately designed analog
postfilter for accurate waveform reconstruction.

x(n) −→ ZOH −→ x̂a(t) −→ Postfilter −→ xa(t)

• 1st-order-hold (FOH) interpolation: In this case the adjacent sam-
ples are joined by straight lines. This can be obtained by filtering the
impulse train through

h1(t) =

1 +
t

Ts
, 0 ≤ t ≤ Ts

1 − t

Ts
, Ts ≤ t ≤ 2Ts

0, otherwise

Once again, an appropriately designed analog postfilter is required
for accurate reconstruction. These interpolations can be extended

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

92 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

to higher orders. One particularly useful interpolation employed by
MATLAB is the following.

• Cubic spline interpolation: This approach uses spline interpolants
for a smoother, but not necessarily more accurate, estimate of the ana-
log signals between samples. Hence this interpolation does not require
an analog postfilter. The smoother reconstruction is obtained by us-
ing a set of piecewise continuous third-order polynomials called cubic
splines, given by [3]

xa (t) = α0(n) + α1(n) (t− nTs) + α2(n) (t− nTs)
2

+α3(n) (t− nTs)
3
, nTs ≤ n < (n + 1)Ts (3.42)

where {αi(n), 0 ≤ i ≤ 3} are the polynomial coefficients, which are de-
termined by using least-squares analysis on the sample values. (Strictly
speaking, this is not a causal operation but is a convenient one in
MATLAB.)

3.4.4 MATLAB IMPLEMENTATION
For interpolation between samples MATLAB provides several approaches.
The function sinc(x), which generates the (sinπx) /πx function, can
be used to implement (3.37), given a finite number of samples. If
{x(n), n1 ≤ n ≤ n2} is given, and if we want to interpolate xa (t) on
a very fine grid with the grid interval ∆t, then from (3.37)

xa (m∆t) ≈
n2∑

n=n1

x(n) sinc [Fs(m∆t− nTs)] , t1 ≤ m∆t ≤ t2 (3.43)

which can be implemented as a matrix-vector multiplication operation as
shown below.

>> n = n1:n2; t = t1:t2; Fs = 1/Ts; nTs = n*Ts; % Ts is the sampling interval

>> xa = x * sinc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));

Note that it is not possible to obtain an exact analog xa(t) in light of the
fact that we have assumed a finite number of samples. We now demon-
strate the use of the sinc function in the following two examples and also
study the aliasing problem in the time domain.

� EXAMPLE 3.21 From the samples x1(n) in Example 3.19a, reconstruct xa(t) and comment on
the results.

Solution Note that x1(n) was obtained by sampling xa(t) at Ts = 1/Fs = 0.0002 sec. We
will use the grid spacing of 0.00005 sec over −0.005 ≤ t ≤ 0.005, which gives
x(n) over −25 ≤ n ≤ 25.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sampling and Reconstruction of Analog Signals 93

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t in msec.

xa
(t

)

Reconstructed Signal from x1(n) using sinc function

FIGURE 3.16 Reconstructed signal in Example 3.21

MATLAB script:

% Discrete-time Signal x1(n)

>> Ts = 0.0002; n = -25:1:25; nTs = n*Ts; x = exp(-1000*abs(nTs));

% Analog Signal reconstruction

>> Dt = 0.00005; t = -0.005:Dt:0.005;

>> xa = x * sinc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));

% check

>> error = max(abs(xa - exp(-1000*abs(t))))

error =

0.0363

The maximum error between the reconstructed and the actual analog signal is
0.0363, which is due to the fact that xa(t) is not strictly band-limited (and also
we have a finite number of samples). From Figure 3.16, we note that visually
the reconstruction is excellent. �

� EXAMPLE 3.22 From the samples x2(n) in Example 3.17b reconstruct xa(t) and comment on
the results.

Solution In this case x2(n) was obtained by sampling xa(t) at Ts = 1/Fs = 0.001 sec. We
will again use the grid spacing of 0.00005 sec over −0.005 ≤ t ≤ 0.005, which
gives x(n) over −5 ≤ n ≤ 5.

% Discrete-time Signal x2(n)

>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; x = exp(-1000*abs(nTs));

% Analog Signal reconstruction

>> Dt = 0.00005; t = -0.005:Dt:0.005;

>> xa = x * sinc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));

% check

>> error = max(abs(xa - exp(-1000*abs(t))))

error =

0.1852

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

94 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

–5 –4 –3 –2 –1 0 1 2 3 4 5
–0.5

0

0.5

1

t in msec.

xa
(t

)

Reconstructed Signal from x2(n) Using Sinc Function

FIGURE 3.17 Reconstructed signal in Example 3.22

The maximum error between the reconstructed and the actual analog signals is
0.1852, which is significant and cannot be attributed to the nonband-limitedness
of xa(t) alone. From Figure 3.17, observe that the reconstructed signal differs
from the actual one in many places over the interpolated regions. This is the
visual demonstration of aliasing in the time domain. �

The second MATLAB approach for signal reconstruction is a plotting
approach. The stairs function plots a staircase (ZOH) rendition of the
analog signal, given its samples, while the plot function depicts a linear
(FOH) interpolation between samples.

� EXAMPLE 3.23 Plot the reconstructed signal from the samples x1(n) in Example 3.19 using the
ZOH and the FOH interpolations. Comment on the plots.

Solution Note that in this reconstruction we do not compute xa(t) but merely plot it
using its samples.

% Discrete-time Signal x1(n) : Ts = 0.0002

>> Ts = 0.0002; n = -25:1:25; nTs = n*Ts; x = exp(-1000*abs(nTs));

% Plots

>> subplot(2,1,1); stairs(nTs*1000,x);

>> xlabel(’t in msec.’); ylabel(’xa(t)’)

>> title(’Reconstructed Signal from x1(n) using zero-order-hold’); hold on

>> stem(n*Ts*1000,x); hold off

%

% Discrete-time Signal x2(n) : Ts = 0.001

>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; x = exp(-1000*abs(nTs));

% Plots

>> subplot(2,1,2); plot(nTs*1000,x);

>> xlabel(’t in msec.’); ylabel(’xa(t)’)

>> title(’Reconstructed Signal from x2(n) using zero-order-hold’); hold on

>> stem(n*Ts*1000,x); hold off

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sampling and Reconstruction of Analog Signals 95

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t in msec.

xa
(t

)

Reconstructed Signal from x1(n) using zero–order–hold

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t in msec.

xa
(t

)

Reconstructed Signal from x1(n) using first–order–hold

FIGURE 3.18 Signal reconstruction in Example 3.23

The plots are shown in Figure 3.18, from which we observe that the ZOH re-
construction is a crude one and that the further processing of analog signal is
necessary. The FOH reconstruction appears to be a good one, but a careful
observation near t = 0 reveals that the peak of the signal is not correctly repro-
duced. In general, if the sampling frequency is much higher than the Nyquist
rate, then the FOH interpolation provides an acceptable reconstruction. �

The third approach of reconstruction in MATLAB involves the use
of cubic spline functions. The spline function implements interpolation
between sample points. It is invoked by xa = spline(nTs,x,t), in which
x and nTs are arrays containing samples x(n) at nTs instances, respec-
tively, and t array contains a fine grid at which xa(t) values are desired.
Note once again that it is not possible to obtain an exact analog xa(t).

� EXAMPLE 3.24 From the samples x1(n) and x2(n) in Example 3.19, reconstruct xa(t) using the
spline function. Comment on the results.

Solution This example is similar to Examples 3.21 and 3.22. Hence sampling parameters
are the same as before.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

96 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t in msec.

xa
(t

)

Reconstructed Signal from x1(n) using cubic spline function

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t in msec.

xa
(t

)

Reconstructed Signal from x2(n) using cubic spline function

FIGURE 3.19 Reconstructed signal in Example 3.24

MATLAB script:

% a) Discrete-time Signal x1(n): Ts = 0.0002

>> Ts = 0.0002; n = -25:1:25; nTs = n*Ts; x = exp(-1000*abs(nTs));

% Analog Signal reconstruction

>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = spline(nTs,x,t);

% check

>> error = max(abs(xa - exp(-1000*abs(t))))

error = 0.0317

The maximum error between the reconstructed and the actual analog signal is
0.0317, which is due to the nonideal interpolation and the fact that xa(t) is
nonband-limited. Comparing this error with that from the sinc (or ideal) inter-
polation, we note that this error is lower. The ideal interpolation generally suf-
fers more from time-limitedness (or from a finite number of samples). From the
top plot in Figure 3.19 we observe that visually the reconstruction is excellent.

MATLAB script:

% Discrete-time Signal x2(n): Ts = 0.001

>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; x = exp(-1000*abs(nTs));

% Analog Signal reconstruction

>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = spline(nTs,x,t);

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Problems 97

% check

>> error = max(abs(xa - exp(-1000*abs(t))))

error = 0.1679

The maximum error in this case is 0.1679, which is significant and cannot be
attributed to the nonideal interpolation or nonband-limitedness of xa(t). From
the bottom plot in Figure 3.19 observe that the reconstructed signal again
differs from the actual one in many places over the interpolated regions. �

From these examples it is clear that for practical purposes the spline
interpolation provides the best results.

3.5 PROBLEMS

P3.1 Using the matrix-vector multiplication approach discussed in this chapter, write a
MATLAB function to compute the DTFT of a finite-duration sequence. The format of
the function should be

function [X] = dtft(x,n,w)

% Computes Discrete-time Fourier Transform

% [X] = dtft(x,n,w)

% X = DTFT values computed at w frequencies

% x = finite duration sequence over n

% n = sample position vector

% w = frequency location vector

Use this function to compute the DTFT X(ejω) of the following finite-duration sequences
over −π ≤ ω ≤ π. Plot DTFT magnitude and angle graphs in one figure window.

1. x(n) = (0.6)|n| [u(n + 10) − u(n− 11)]. Comment on the angle plot.

2. x(n) = n(0.9)n [u(n) − u(n− 21)].

3. x(n) = [cos(0.5πn) + j sin(0.5πn)][u(n) − u(n− 51)]. Comment on the magnitude plot.

4. x(n) = {4
↑
, 3, 2, 1, 1, 2, 3, 4}. Comment on the angle plot.

5. x(n) = {4
↑
, 3, 2, 1,−1,−2,−3,−4}. Comment on the angle plot.

P3.2 Let x1(n) = {1
↑
, 2, 2, 1}. A new sequence x2(n) is formed using

x2(n) =

{
x1(n), 0 ≤ n ≤ 3;
x1(n− 4), 4 ≤ n ≤ 7;
0, Otherwise.

(3.44)

1. Express X2(e
jω) in terms of X1(e

jω) without explicitly computing X1(e
jω).

2. Verify your result using MATLAB by computing and plotting magnitudes of the
respective DTFTs.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

98 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

P3.3 Determine analytically the DTFT of each of the following sequences. Plot the magnitude
and angle of X(ejω) over 0 ≤ ω ≤ π.

1. x(n) = 2 (0.5)n u(n + 2).

2. x(n) = (0.6)|n| [u(n + 10) − u(n− 11)].

3. x(n) = n (0.9)n u(n + 3).

4. x(n) = (n + 3) (0.8)n−1 u(n− 2).

5. x(n) = 4 (−0.7)n cos(0.25πn)u(n).

P3.4 The following finite-duration sequences are called windows and are very useful in DSP.

Rectangular: RM (n) =

{
1, 0 ≤ n < M
0, otherwise

;

Hanning: CM (n) = 0.5
[
1 − cos

2πn

M − 1

]
RM (n)

Triangular: TM (n) =

[
1 − |M − 1 − 2n|

M − 1

]
RM (n);

Hamming: HM (n) =
[
0.54 − 0.46 cos

2πn

M − 1

]
RM (n)

For each of these windows, determine their DTFTs for M = 10, 25, 50, 101. Scale
transform values so that the maximum value is equal to 1. Plot the magnitude of the
normalized DTFT over −π ≤ ω ≤ π. Study these plots and comment on their behavior as
a function of M .

P3.5 Using the definition of the DTFT in (3.1), determine the sequences corresponding to the
following DTFTs:

1. X(ejω) = 3 + 2 cos(ω) + 4 cos(2ω).

2. X(ejω) = [1 − 6 cos(3ω) + 8 cos(5ω)] e−j3ω.

3. X(ejω) = 2 + j4 sin(2ω) − 5 cos(4ω).

4. X(ejω) = [1 + 2 cos(ω) + 3 cos(2ω)] cos(ω/2)e−j5ω/2.

5. X(ejω) = j [3 + 2 cos(ω) + 4 cos(2ω)] sin(ω)e−j3ω.

P3.6 Using the definition of the inverse DTFT in (3.2), determine the sequences corresponding
to the following DTFTs:

1. X(ejω) =

{
1, 0 ≤ |ω| ≤ π/3;
0, π/3 < |ω| ≤ π.

2. X(ejω) =

{
0, 0 ≤ |ω| ≤ 3π/4;
1, 3π/4 < |ω| ≤ π.

3. X(ejω) =

{
2, 0 ≤ |ω| ≤ π/8;
1, π/8 < |ω| ≤ 3π/4.
0, 3π/4 < |ω| ≤ π.

4. X(ejω) =

{
0, −π ≤ |ω| < π/4;
1, π/4 ≤ |ω| ≤ 3π/4.
0, 3π/4 < |ω| ≤ π.

5. X(ejω) = ω ej(π/2−10ω).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Problems 99

Remember that the above transforms are periodic in ω with period equal to 2π. Hence,
functions are given only over the primary period of −π ≤ ω ≤ π.

P3.7 A complex-valued sequence x(n) can be decomposed into a conjugate symmetric part
xe(n) and an conjugate anti-symmetric part xo(n) as discussed in Chapter 2. Show that

F [xe(n)] = XR(ejω) and F [xo(n)] = jXI(e
jω)

where XR(ejω) and XR(ejω) are the real and imaginary parts of the DTFT X(ejω)
respectively. Verify this property on

x(n) = 2(0.9)−n [cos(0.1πn) + j sin(0.9πn)] [u(n) − u(n− 10)]

using the MATLAB functions developed in Chapter 2.

P3.8 A complex-valued DTFT X(ejω) can also be decomposed into its conjugate symmetric
part Xe(e

jω) and conjugate anti-symmetric part Xo(e
jω), i.e.,

X(ejω) = Xe(e
jω) + Xo(e

jω)

where

Xe(e
jω) =

1

2
[X(ejω) + X∗(e−jω)] and X0(e

jω) =
1

2
[X(ejω) −X∗(e−jω)]

Show that

F−1[Xe(e
jω)] = xR(n) and F−1[X0(e

jω)] = jxI(n)

where xR(n) and xI(n) are the real and imaginary parts of x(n). Verify this property on

x(n) = ej0.1πn [u(n) − u (n− 20)]

using the MATLAB functions developed in Chapter 2.

P3.9 Using the frequency-shifting property of the DTFT, show that the real part of X(ejω) of
a sinusoidal pulse

x(n) = (cosωon)RM (n)

where RM (n) is the rectangular pulse given in Problem P3.4 is given by

XR(ejω) =
1

2
cos

{
(ω − ω0)(M − 1)

2

}
sin {(ω − ω0)M/2}
sin {(ω − ω0) /2}

+
1

2
cos

{
(ω + ω0)(M − 1)

2

}
sin {[ω − (2π − ω0)]M/2}
sin {[ω − (2π − ω0)] /2}

Compute and plot XR(ejω) for ωo = π/2 and M = 5, 15, 25, 100. Use the plotting
interval [−π, π]. Comment on your results.

P3.10 Let x(n) = T10(n) be a triangular pulse given in Problem P3.4. Using properties of the
DTFT, determine and plot the DTFT of the following sequences.

1. x(n) = T10(−n)

2. x(n) = T10(n) − T10(n− 10)
3. x(n) = T10(n) ∗ T10(−n)

4. x(n) = T10(n)ejπn

5. x(n) = cos(0.1πn)T10(n)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

100 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

P3.11 For each of the linear, shift-invariant systems described by the impulse response,
determine the frequency response function H(ejω). Plot the magnitude response |H(ejω)|
and the phase response � H(ejω) over the interval [−π, π].

1. h(n) = (0.9)|n|

2. h(n) = sinc(0.2n)[u(n + 20) − u(n− 20)], where sinc 0 = 1.

3. h(n) = sinc(0.2n)[u(n) − u(n− 40)]

4. h(n) = [(0.5)n + (0.4)n]u(n)

5. h(n) = (0.5)|n| cos(0.1πn)

P3.12 Let x(n) = A cos(ω0n + θ0) be an input sequence to an LTI system described by the
impulse response h(n). Show that the output sequence y(n) is given by

y(n) = A|H(ejω0)| cos[ω0n + θ0 + � H(ejω0)]

P3.13 Let x(n) = 3 cos (0.5πn + 60◦) + 2 sin (0.3πn) be the input to each of the systems
described in Problem P3.11. In each case, determine the output sequence y(n).

P3.14 An ideal lowpass filter is described in the frequency domain by

Hd(e
jω) =

{
1 · e−jαω, |ω| ≤ ωc

0, ωc < |ω| ≤ π

where ωc is called the cutoff frequency and α is called the phase delay.

1. Determine the ideal impulse response hd(n) using the IDTFT relation (3.2).
2. Determine and plot the truncated impulse response

h(n) =

{
hd(n), 0 ≤ n ≤ N − 1

0, otherwise

for N = 41, α = 20, and ωc = 0.5π.
3. Determine and plot the frequency response function H(ejω), and compare it with the

ideal lowpass filter response Hd(e
jω). Comment on your observations.

P3.15 An ideal highpass filter is described in the frequency-domain by

Hd(e
jω) =

{
1 · e−jαω, ωc < |ω| ≤ π

0, |ω| ≤ ωc

where ωc is called the cutoff frequency and α is called the phase delay.

1. Determine the ideal impulse response hd(n) using the IDTFT relation (3.2).
2. Determine and plot the truncated impulse response

h(n) =

{
hd(n), 0 ≤ n ≤ N − 1

0, otherwise

for N = 31, α = 15, and ωc = 0.5π.
3. Determine and plot the frequency response function H(ejω), and compare it with the

ideal highpass filter response Hd(e
jω). Comment on your observations

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Problems 101

P3.16 For a linear, shift-invariant system described by the difference equation

y(n) =

M∑
m=0

bmx (n−m) −
N∑
�=1

a�y (n− �)

the frequency-response function is given by

H(ejω) =

∑M

m=0
bme−jωm

1 +
∑N

�=1
a�e−jω�

Write a MATLAB function freqresp to implement this relation. The format of this
function should be

function [H] = freqresp(b,a,w)

% Frequency response function from difference equation

% [H] = freqresp(b,a,w)

% H = frequency response array evaluated at w frequencies

% b = numerator coefficient array

% a = denominator coefficient array (a(1)=1)

% w = frequency location array

P3.17 Determine H(ejω), and plot its magnitude and phase for each of the following systems:

1. y(n) = 1
5

∑4

m=0
x(n−m)

2. y(n) = x(n) − x(n− 2) + 0.95y(n− 1) − 0.9025y(n− 2)

3. y(n) = x(n) − x(n− 1) + x(n− 2) + 0.95y(n− 1) − 0.9025y(n− 2)

4. y(n) = x(n) − 1.7678x(n− 1) + 1.5625x(n− 2) + 1.1314y(n− 1) − 0.64y(n− 2)

5. y(n) = x(n) −
∑5

�=1
(0.5)� y (n− �)

P3.18 A linear, shift-invariant system is described by the difference equation

y(n) =

3∑
m=0

x (n− 2m) −
3∑

�=1

(0.81)� y (n− 2�)

Determine the steady-state response of the system to the following inputs:

1. x(n) = 5 + 10 (−1)n

2. x(n) = 1 + cos (0.5πn + π/2)

3. x(n) = 2 sin (πn/4) + 3 cos (3πn/4)

4. x(n) =
∑5

k=0
(k + 1) cos (πkn/4)

5. x(n) = cos (πn)

In each case, generate x(n), 0 ≤ n ≤ 200, and process it through the filter function to
obtain y(n). Compare your y(n) with the steady-state responses in each case.

P3.19 An analog signal xa (t) = sin (1000πt) is sampled using the following sampling intervals.
In each case, plot the spectrum of the resulting discrete-time signal.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

102 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS

1. Ts = 0.1 ms
2. Ts = 1 ms
3. Ts = 0.01 sec

P3.20 We implement the following analog filter using a discrete filter.

xa (t) −→ A/D
x(n)−→ h(n)

y(n)−→ D/A −→ ya (t)

The sampling rate in the A/D and D/A is 8000 sam/sec, and the impulse response is
h(n) = (−0.9)n u(n).

1. What is the digital frequency in x(n) if xa (t) = 10 cos (10, 000πt)?
2. Determine the steady-state output ya (t) if xa (t) = 10 cos (10, 000πt).
3. Determine the steady-state output ya (t) if xa (t) = 5 sin(8, 000πt).
4. Find two other analog signals xa (t), with different analog frequencies, that will give

the same steady-state output ya(t) when xa(t) = 10 cos(10, 000πt) is applied.
5. To prevent aliasing, a prefilter would be required to process xa (t) before it passes to

the A/D converter. What type of filter should be used, and what should be the largest
cutoff frequency that would work for the given configuration?

P3.21 Consider an analog signal xa (t) = cos(20πt), 0 ≤ t ≤ 1. It is sampled at Ts = 0.01, 0.05,
and 0.1 sec intervals to obtain x(n).

1. For each Ts plot x(n).
2. Reconstruct the analog signal ya (t) from the samples x(n) using the sinc interpolation

(use ∆t = 0.001) and determine the frequency in ya (t) from your plot. (Ignore the end
effects.)

3. Reconstruct the analog signal ya (t) from the samples x(n) using the cubic spline
interpolation, and determine the frequency in ya (t) from your plot. (Again, ignore the
end effects.)

4. Comment on your results.

P3.22 Consider the analog signal xa (t) = cos (20πt + θ) , 0 ≤ t ≤ 1. It is sampled at Ts = 0.05
sec intervals to obtain x(n). Let θ = 0, π/6, π/4, π/3, π/2. For each of these θ values,
perform the following.

1. Plot xa (t) and superimpose x(n) on it using the plot(n,x,’o’) function.
2. Reconstruct the analog signal ya (t) from the samples x(n) using the sinc interpolation

(Use ∆t = 0.001) and superimpose x(n) on it.
3. Reconstruct the analog signal ya (t) from the samples x(n) using the cubic spline

interpolation and superimpose x(n) on it.
4. You should observe that the resultant reconstruction in each case has the correct

frequency but a different amplitude. Explain this observation. Comment on the role of
phase of xa (t) on the sampling and reconstruction of signals.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

103

C H A P T E R 4

The z-Transform

In Chapter 3 we studied the discrete-time Fourier transform approach for
representing discrete signals using complex exponential sequences. This
representation clearly has advantages for LTI systems because it describes
systems in the frequency domain using the frequency response function
H(ejω). The computation of the sinusoidal steady-state response is greatly
facilitated by the use of H(ejω). Furthermore, response to any arbitrary
absolutely summable sequence x(n) can easily be computed in the fre-
quency domain by multiplying the transform X(ejω) and the frequency
response H(ejω). However, there are two shortcomings to the Fourier
transform approach. First, there are many useful signals in practice—
such as u(n) and nu(n)—for which the discrete-time Fourier transform
does not exist. Second, the transient response of a system due to ini-
tial conditions or due to changing inputs cannot be computed using the
discrete-time Fourier transform approach.

Therefore we now consider an extension of the discrete-time Fourier
transform to address these two problems. This extension is called the
z-transform. Its bilateral (or two-sided) version provides another domain
in which a larger class of sequences and systems can be analyzed, and its
unilateral (or one-sided) version can be used to obtain system responses
with initial conditions or changing inputs.

4.1 THE BILATERAL z-TRANSFORM

The z-transform of a sequence x(n) is given by

X(z)
�
= Z[x(n)] =

∞∑
n=−∞

x(n)z−n (4.1)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

104 Chapter 4 THE z-TRANSFORM

where z is a complex variable. The set of z values for which X(z) exists
is called the region of convergence (ROC) and is given by

Rx− < |z| < Rx+ (4.2)

for some non-negative numbers Rx− and Rx+.
The inverse z-transform of a complex function X(z) is given by

x(n)
�
= Z−1[X(z)] =

1
2πj

∮
C

X(z)zn−1dz (4.3)

where C is a counterclockwise contour encircling the origin and lying
in the ROC.

Comments:

1. The complex variable z is called the complex frequency given by z =
|z|ejω, where |z| is the magnitude and ω is the real frequency.

2. Since the ROC (4.2) is defined in terms of the magnitude |z|, the shape
of the ROC is an open ring, as shown in Figure 4.1. Note that Rx−
may be equal to zero and/or Rx+ could possibly be ∞.

3. If Rx+ < Rx−, then the ROC is a null space and the z-transform does
not exist.

4. The function |z| = 1 (or z = ejω) is a circle of unit radius in the z-plane
and is called the unit circle. If the ROC contains the unit circle, then
we can evaluate X(z) on the unit circle.

X(z)|z=ejω = X(ejω) =
∞∑

n=−∞
x(n)e−jω = F [x(n)]

Therefore the discrete-time Fourier transform X(ejω) may be viewed
as a special case of the z-transform X(z).

Re{z}

Rx+

Rx –

Im{z}

FIGURE 4.1 A general region of convergence

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Bilateral z-Transform 105

Im{z}

Re{z}
0

a

FIGURE 4.2 The ROC in Example 4.1

� EXAMPLE 4.1 Let x1(n) = anu(n), 0 < |a| < ∞. (This sequence is called a positive-time
sequence). Then

X1(z) =

∞∑
0

anz−n =

∞∑
0

(
a

z

)n

=
1

1 − az−1
; if

∣∣∣a
z

∣∣∣ < 1

=
z

z − a
, |z| > |a| ⇒ ROC1: |a|︸︷︷︸

Rx−

< |z| < ∞︸︷︷︸
Rx+

Note: X1(z) in this example is a rational function; that is,

X1(z)
�
=

B(z)

A(z)
=

z

z − a

where B(z) = z is the numerator polynomial and A(z) = z−a is the denominator
polynomial. The roots of B(z) are called the zeros of X(z), whereas the roots
of A(z) are called the poles of X(z). In this example X1(z) has a zero at the
origin z = 0 and a pole at z = a. Hence x1(n) can also be represented by a
pole-zero diagram in the z-plane in which zeros are denoted by ◦ and poles by
× as shown in Figure 4.2. �

� EXAMPLE 4.2 Let x2(n) = −bnu(−n−1), 0 < |b| < ∞. (This sequence is called a negative-time
sequence.) Then

X2(z) = −
−1∑
−∞

bnz−n = −
−1∑
−∞

(
b

z

)n

= −
∞∑
1

(
z

b

)n

= 1 −
∞∑
0

(
z

b

)n

= 1 − 1

1 − z/b
=

z

z − b
, ROC2: 0︸︷︷︸

Rx−

< |z| < |b|︸︷︷︸
Rx+

The ROC2 and the pole-zero plot for this x2(n) are shown in Figure 4.3.

Im{z}

Re{z}
0

b

FIGURE 4.3 The ROC in Example 4.2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

106 Chapter 4 THE z-TRANSFORM

Note: If b = a in this example, then X2(z) = X1(z) except for their respective
ROCs; that is, ROC1 �= ROC2. This implies that the ROC is a distinguishing
feature that guarantees the uniqueness of the z-transform. Hence it plays a very
important role in system analysis. �

� EXAMPLE 4.3 Let x3(n) = x1(n) + x2(n) = anu(n) − bnu(−n − 1) (This sequence is called a
two-sided sequence.) Then using the preceding two examples,

X3(z) =

∞∑
n=0

anz−n −
−1∑
−∞

bnz−n

=
{

z

z − a
,ROC1: |z| > |a|

}
+

{
z

z − b
,ROC1: |z| < |b|

}

=
z

z − a
+

z

z − b
; ROC3: ROC1 ∩ ROC2

If |b| < |a|, than ROC3 is a null space, and X3(z) does not exist. If |a| < |b|,
then the ROC3 is |a| < |z| < |b|, and X3(z) exists in this region as shown in
Figure 4.4. �

4.1.1 PROPERTIES OF THE ROC
From the observation of the ROCs in the preceding three examples, we
state the following properties.

1. The ROC is always bounded by a circle since the convergence
condition is on the magnitude |z|.

2. The sequence x1(n) = anu(n) in Example 4.1 is a special case of a right-
sided sequence, defined as a sequence x(n) that is zero for some n <
n0. From Example 4.1, the ROC for right-sided sequences is always
outside of a circle of radius Rx−. If n0 ≥ 0, then the right-sided
sequence is also called a causal sequence.

3. The sequence x2(n) = −bnu(−n−1) in Example 4.2 is a special case of a
left-sided sequence, defined as a sequence x(n) that is zero for some n >
n0. If n0 ≤ 0, the resulting sequence is called an anticausal sequence.
From Example 4.2, the ROC for left-sided sequences is always inside
of a circle of radius Rx+.

Im{z}

Re{z}
0

a

b

a > b

Im{z}

Re{z}
0

a

b
a < b

FIGURE 4.4 The ROC in Example 4.3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Important Properties of the z-Transform 107

4. The sequence x3(n) in Example 4.3 is a two-sided sequence. The ROC
for two-sided sequences is always an open ring Rx− < |z| < Rx+,
if it exists.

5. The sequences that are zero for n < n1 and n > n2 are called
finite-duration sequences. The ROC for such sequences is the entire
z-plane. If n1 < 0, then z = ∞ is not in the ROC. If n2 > 0, then
z = 0 is not in the ROC.

6. The ROC cannot include a pole since X(z) converges uniformly in
there.

7. There is at least one pole on the boundary of a ROC of a rational X(z).
8. The ROC is one contiguous region; that is, the ROC does not come in

pieces.

In digital signal processing, signals are assumed to be causal since
almost every digital data is acquired in real time. Therefore the only
ROC of interest to us is the one given in statement 2.

4.2 IMPORTANT PROPERTIES OF THE z-TRANSFORM

The properties of the z-transform are generalizations of the properties
of the discrete-time Fourier transform that we studied in Chapter 3. We
state the following important properties of the z-transform without proof.

1. Linearity:

Z [a1x1(n) + a2x2(n)] = a1X1(z) + a2X2(z); ROC: ROCx1 ∩ ROCx2

(4.4)

2. Sample shifting:

Z [x (n− n0)] = z−n0X(z); ROC: ROCx (4.5)

3. Frequency shifting:

Z [anx(n)] = X
(z
a

)
; ROC: ROCx scaled by |a| (4.6)

4. Folding:

Z [x (−n)] = X (1/z) ; ROC: Inverted ROCx (4.7)

5. Complex conjugation:

Z [x∗(n)] = X∗(z∗); ROC: ROCx (4.8)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

108 Chapter 4 THE z-TRANSFORM

6. Differentiation in the z-domain:

Z [nx(n)] = −z
dX(z)
dz

; ROC: ROCx (4.9)

This property is also called the multiplication-by-a-ramp property.
7. Multiplication:

Z [x1(n)x2 (n)] =
1

2πj

∮
C

X1(ν)X2 (z/ν) ν−1dν; (4.10)

ROC: ROCx1 ∩ Inverted ROCx2

where C is a closed contour that encloses the origin and lies in the
common ROC.

8. Convolution:

Z [x1(n) ∗ x2(n)] = X1(z)X2(z); ROC: ROCx1 ∩ ROCx2 (4.11)

This last property transforms the time-domain convolution operation
into a multiplication between two functions. It is a significant property
in many ways. First, if X1(z) and X2(z) are two polynomials, then their
product can be implemented using the conv function in MATLAB.

� EXAMPLE 4.4 Let X1(z) = 2 + 3z−1 + 4z−2 and X2(z) = 3 + 4z−1 + 5z−2 + 6z−3. Determine
X3(z) = X1(z)X2(z).

Solution From the definition of the z-transform, we observe that

x1(n) = {2
↑
, 3, 4} and x2(n) = {3

↑
, 4, 5, 6}

Then the convolution of these two sequences will give the coefficients of the
required polynomial product.

MATLAB script:

>> x1 = [2,3,4]; x2 = [3,4,5,6]; x3 = conv(x1,x2)

x3 = 6 17 34 43 38 24

Hence

X3(z) = 6 + 17z−1 + 34z−2 + 43z−3 + 38z−4 + 24z−5

Using the conv m function developed in Chapter 2, we can also multiply
two z-domain polynomials corresponding to noncausal sequences. �

� EXAMPLE 4.5 Let X1(z) = z+2+3z−1 and X2(z) = 2z2 +4z+3+5z−1. Determine X3(z) =
X1(z)X2(z).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Important Properties of the z-Transform 109

Solution Note that

x1(n) = {1, 2
↑
, 3} and x2(n) = {2, 4, 3

↑
, 5}

Using the MATLAB script,

>> x1 = [1,2,3]; n1 = [-1:1]; x2 = [2,4,3,5]; n2 = [-2:1];

>> [x3,n3] = conv_m(x1,n1,x2,n2)

x3 =

2 8 17 23 19 15

n3 =

-3 -2 -1 0 1 2

we have

X3(z) = 2z3 + 8z2 + 17z + 23 + 19z−1 + 15z−2 �

In passing we note that to divide one polynomial by another one, we
would require an inverse operation called deconvolution [23, Chapter 6].
In MATLAB [p,r] = deconv(b,a) computes the result of dividing b by
a in a polynomial part p and a remainder r. For example, if we divide the
polynomial X3(z) in Example 4.4 by X1(z), as follows,

>> x3 = [6,17,34,43,38,24]; x1 = [2,3,4]; [x2,r] = deconv(x3,x1)

x2 =

3 4 5 6

r =

0 0 0 0 0 0

then we obtain the coefficients of the polynomial X2(z) as expected. To
obtain the sample index, we will have to modify the deconv function as
we did in the conv m function. This is explored in Problem P4.10. This
operation is useful in obtaining a proper rational part from an improper
rational function.

The second important use of the convolution property is in system
output computations as we shall see in a later section. This interpretation
is particularly useful for verifying the z-transform expression X(z) of a
casual sequence using MATLAB. Note that since MATLAB is a numerical
processor (unless the Symbolic toolbox is used), it cannot be used for
symbolic z-transform calculations. We will now elaborate on this. Let
x(n) be a sequence with a rational transform

X(z) =
B(z)
A(z)

where B(z) and A(z) are polynomials in z−1. If we use the coefficients of
B(z) and A(z) as the b and a arrays in the filter routine and excite this

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

110 Chapter 4 THE z-TRANSFORM

filter by the impulse sequence δ(n), then from (4.11) and using Z[δ(n)] =
1, the output of the filter will be x(n). (This is a numerical approach
of computing the inverse z-transform; we will discuss the analytical ap-
proach in the next section.) We can compare this output with the given
x(n) to verify that X(z) is indeed the transform of x(n). This is illus-
trated in Example 4.6. An equivalent approach is to use the impz function
discussed in Chapter 2.

4.2.1 SOME COMMON z-TRANSFORM PAIRS
Using the definition of z-transform and its properties, one can determine
z-transforms of common sequences. A list of some of these sequences is
given in Table 4.1.

TABLE 4.1 Some common z-transform pairs

Sequence Transform ROC

δ(n) 1 ∀ z

u(n)
1

1 − z−1
|z| > 1

−u(−n− 1)
1

1 − z−1
|z| < 1

anu(n)
1

1 − az−1
|z| > |a|

−bnu(−n− 1)
1

1 − bz−1
|z| < |b|

[an sinω0n]u(n)
(a sinω0)z

−1

1 − (2a cosω0)z−1 + a2z−2
|z| > |a|

[an cosω0n]u(n)
1 − (a cosω0)z

−1

1 − (2a cosω0)z−1 + a2z−2
|z| > |a|

nanu(n)
az−1

(1 − az−1)2
|z| > |a|

−nbnu(−n− 1)
bz−1

(1 − bz−1)2
|z| < |b|

� EXAMPLE 4.6 Using z-transform properties and the z-transform table, determine the z-
transform of

x(n) = (n− 2)(0.5)(n−2) cos
[
π

3
(n− 2)

]
u(n− 2)

Solution Applying the sample-shift property,

X(z) = Z[x(n)] = z−2Z
[
n(0.5)n cos

(
πn

3

)
u(n)

]

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Important Properties of the z-Transform 111

with no change in the ROC. Applying the multiplication by a ramp property,

X(z) = z−2

{
−z

dZ[(0.5)n cos(π
3
n)u(n)]

dz

}

with no change in the ROC. Now the z-transform of (0.5)n cos(π
3
n)u(n) from

Table 4.1 is

Z
[
(0.5)n cos

(
πn

3

)
u(n)

]
=

1 − (0.5 cos π
3
)z−1

1 − 2(0.5 cos π
3
)z−1 + 0.25z−2

; |z| > 0.5

=
1 − 0.25z−1

1 − 0.5z−1 + 0.25z−2
; |z| > 0.5

Hence

X(z) = −z−1 d

dz

{
1 − 0.25z−1

1 − 0.5z−1 + 0.25z−2

}
, |z| > 0.5

= −z−1

{
−0.25z−2 + 0.5z−3 − 0.0625z−4

1 − z−1 + 0.75z−2 − 0.25z−3 + 0.0625z−4

}
, |z| > 0.5

=
0.25z−3 − 0.5z−4 + 0.0625z−5

1 − z−1 + 0.75z−2 − 0.25z−3 + 0.0625z−4
, |z| > 0.5

MATLAB verification: To check that this X(z) is indeed the correct expression,
let us compute the first 8 samples of the sequence x(n) corresponding to X(z),
as discussed before.

>> b = [0,0,0,0.25,-0.5,0.0625]; a = [1,-1,0.75,-0.25,0.0625];

>> [delta,n]=impseq(0,0,7)

delta =

1 0 0 0 0 0 0 0

n =

0 1 2 3 4 5 6 7

>> x = filter(b,a,delta) % check sequence

x =

Columns 1 through 4

0 0 0 0.25000000000000

Columns 5 through 8

-0.25000000000000 -0.37500000000000 -0.12500000000000 0.07812500000000

>> x = [(n-2).*(1/2).^(n-2).*cos(pi*(n-2)/3)].*stepseq(2,0,7) % original sequence

x =

Columns 1 through 4

0 0 0 0.25000000000000

Columns 5 through 8

-0.25000000000000 -0.37500000000000 -0.12500000000000 0.07812500000000

This approach can be used to verify the z-transform computations. �

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

112 Chapter 4 THE z-TRANSFORM

4.3 INVERSION OF THE z-TRANSFORM

From equation (4.3), the inverse z-transform computation requires an
evaluation of a complex contour integral that, in general, is a complicated
procedure. The most practical approach is to use the partial fraction ex-
pansion method. It makes use of the z-transform Table 4.1 (or similar
tables available in many textbooks). The z-transform, however, must be
a rational function. This requirement is generally satisfied in digital signal
processing.

Central Idea

• When X(z) is a rational function of z−1, it can be expressed as a sum
of simple factors using the partial fraction expansion. The individual
sequences corresponding to these factors can then be written down
using the z-transform table.
The inverse z-transform procedure can be summarized as follows:

Method

• Given

X(z) =
b0 + b1z

−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N
, Rx− < |z| < Rx+ (4.12)

• express it as

X(z) =
b̃0 + b̃1z

−1 + · · · + b̃N−1z
−(N−1)

1 + a1z−1 + · · · + aNz−N︸ ︷︷ ︸
Proper rational part

+
M−N∑
k=0

Ckz
−k

︸ ︷︷ ︸
polynomial part if M≥N

where the first term on the right-hand side is the proper rational part,
and the second term is the polynomial (finite-length) part. This can
be obtained by performing polynomial division if M ≥ N using the
deconv function.

• Perform a partial fraction expansion on the proper rational part of
X(z) to obtain

X(z) =
N∑

k=1

Rk

1 − pkz−1
+

M−N∑
k=0

Ckz
−k

︸ ︷︷ ︸
M≥N

(4.13)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Inversion of the z-Transform 113

where pk is the kth pole of X(z) and Rk is the residue at pk. It is
assumed that the poles are distinct for which the residues are given by

Rk =
b̃0 + b̃1z

−1 + · · · + b̃N−1z
−(N−1)

1 + a1z−1 + · · · + aNz−N
(1 − pkz

−1)

∣∣∣∣∣
z=pk

For repeated poles the expansion (4.13) has a more general form. If a
pole pk has multiplicity r, then its expansion is given by

r∑
�=1

Rk,�z
−(�−1)

(1 − pkz−1)�
=

Rk,1

1 − pkz−1
+

Rk,2z
−1

(1 − pkz−1)2
+ · · · + Rk,rz

−(r−1)

(1 − pkz−1)r

(4.14)

where the residues Rk,� are computed using a more general formula,
which is available in reference [23].

• assuming distinct poles as in (4.13), write x(n) as

x(n) =
N∑

k=1

RkZ−1

[
1

1 − pkz−1

]
+

M−N∑
k=0

Ckδ(n− k)

︸ ︷︷ ︸
M≥N

• finally, use the relation from Table 4.1

Z−1

[
z

z − pk

]
=

{
pnku(n) |zk| ≤ Rx−

−pnku(−n− 1) |zk| ≥ Rx+

(4.15)

to complete x(n).

A similar procedure is used for repeated poles.

� EXAMPLE 4.7 Find the inverse z-transform of x(z) =
z

3z2 − 4z + 1
.

Solution Write

X(z) =
z

3(z2 − 4
3
z + 1

3
)

=
1
3
z−1

1 − 4
3
z−1 + 1

3
z−2

=
1
3
z−1

(1 − z−1)(1 − 1
3
z−1)

=
1
2

1 − z−1
−

1
2

1 − 1
3
z−1

or

X(z) =
1

2

(
1

1 − z−1

)
− 1

2

(
1

1 − 1
3
z−1

)

Now, X(z) has two poles: z1 = 1 and z2 = 1
3
; and since the ROC is not specified,

there are three possible ROCs as shown in Figure 4.5.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

114 Chapter 4 THE z-TRANSFORM

Im{z}

Re{z}
0 1/3 1

ROC1

Im{z}

Re{z}
1/3 1

ROC2

Im{z}

Re{z}
1/3 1

ROC3

FIGURE 4.5 The ROCs in Example 4.7

a. ROC1: 1 < |z| < ∞. Here both poles are on the interior side of the ROC1;
that is, |z1| ≤ Rx− = 1 and |z2| ≤ 1. Hence from (4.15)

x1(n) =
1

2
u(n) − 1

2

(
1

3

)n

u(n)

which is a right-sided sequence.

b. ROC2: 0 < |z| < 1
3
. Here both poles are on the exterior side of the ROC2;

that is, |z1| ≥ Rx+ = 1
3

and |z2| ≥ 1
3
. Hence from (4.15)

x2(n) =
1

2
{−u(−n− 1)} − 1

2

{
−

(
1
3

)n
u(−n− 1)

}

=
1

2

(
1

3

)n

u(−n− 1) − 1

2
u(−n− 1)

which is a left-sided sequence.

c. ROC3:
1
3
< |z| < 1. Here pole z1 is on the exterior side of the ROC3—that

is, |z1| ≥ Rx+ = 1—while pole z2 is on the interior side—that is, |z2| ≤ 1
3
.

Hence from (4.15)

x3(n) = −1

2
u(−n− 1) − 1

2

(
1

3

)n

u(n)

which is a two-sided sequence. �

4.3.1 MATLAB IMPLEMENTATION
A MATLAB function residuez is available to compute the residue part
and the direct (or polynomial) terms of a rational function in z−1. Let

X(z) =
b0 + b1z

−1 + · · · + bMz−M

a0 + a1z−1 + · · · + aNz−N
=

B(z)
A(z)

=
N∑

k=1

Rk

1 − pkz−1
+

M−N∑
k=0

Ckz
−k

︸ ︷︷ ︸
M≥N

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Inversion of the z-Transform 115

be a rational function in which the numerator and the denominator poly-
nomials are in ascending powers of z−1. Then [R,p,C]=residuez(b,a)
computes the residues, poles, and direct terms of X(z) in which two poly-
nomials B(z) and A(z) are given in two vectors b and a, respectively.
The returned column vector R contains the residues, column vector p
contains the pole locations, and row vector C contains the direct terms.
If p(k)=...=p(k+r-1) is a pole of multiplicity r, then the expansion in-
cludes the term of the form

Rk

1 − pkz−1
+

Rk+1

(1 − pkz−1)2
+ · · · + Rk+r−1

(1 − pkz−1)r
(4.16)

which is different from (4.14).
Similarly, [b,a]=residuez(R,p,C), with three input arguments and

two output arguments, converts the partial fraction expansion back to
polynomials with coefficients in row vectors b and a.

� EXAMPLE 4.8 To check our residue calculations, let us consider the rational function

X(z) =
z

3z2 − 4z + 1
given in Example 4.7.

Solution First rearrange X(z) so that it is a function in ascending powers of z−1.

X(z) =
z−1

3 − 4z−1 + z−2
=

0 + z−1

3 − 4z−1 + z−2

Now using the MATLAB script

>> b = [0,1]; a = [3,-4,1]; [R,p,C] = residuez(b,a)

R =

0.5000

-0.5000

p =

1.0000

0.3333

c =

[]

we obtain

X(z) =
1
2

1 − z−1
−

1
2

1 − 1
3
z−1

as before. Similarly, to convert back to the rational function form,

>> [b,a] = residuez(R,p,C)

b =

0.0000

0.3333

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

116 Chapter 4 THE z-TRANSFORM

a =

1.0000

-1.3333

0.3333

so that

X(z) =
0 + 1

3
z−1

1 − 4
3
z−1 + 1

3
z−2

=
z−1

3 − 4z−1 + z−2
=

z

3z2 − 4z + 1

as before. �

� EXAMPLE 4.9 Compute the inverse z-transform of

X(z) =
1

(1 − 0.9z−1)2 (1 + 0.9z−1)
, |z| > 0.9

Solution We will evaluate the denominator polynomial as well as the residues using the
MATLAB script:

>> b = 1; a = poly([0.9,0.9,-0.9])

a =

1.0000 -0.9000 -0.8100 0.7290

>> [R,p,C]=residuez(b,a)

R =

0.2500

0.5000

0.2500

p =

0.9000

0.9000

-0.9000

c =

[]

Note that the denominator polynomial is computed using MATLAB’s polyno-
mial function poly, which computes the polynomial coefficients, given its roots.
We could have used the conv function, but the use of the poly function is more
convenient for this purpose. From the residue calculations and using the order
of residues given in (4.16), we have

X(z) =
0.25

1 − 0.9z−1
+

0.5

(1 − 0.9z−1)2
+

0.25

1 + 0.9z−1
, |z| > 0.9

=
0.25

1 − 0.9z−1
+

0.5

0.9
z

(
0.9z−1

)
(1 − 0.9z−1)2

+
0.25

1 + 0.9z−1
, |z| > 0.9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Inversion of the z-Transform 117

Hence from Table 4.1 and using the z-transform property of time-shift,

x(n) = 0.25(0.9)nu(n) +
5

9
(n + 1)(0.9)n+1u(n + 1) + 0.25 (−0.9)n u(n)

which, upon simplification, becomes

x(n) = 0.75(0.9)nu(n) + 0.5n(0.9)nu(n) + 0.25 (−0.9)n u(n)

MATLAB verification:

>> [delta,n] = impseq(0,0,7); x = filter(b,a,delta) % check sequence

x =

Columns 1 through 4

1.00000000000000 0.90000000000000 1.62000000000000 1.45800000000000

Columns 5 through 8

1.96830000000000 1.77147000000000 2.12576400000000 1.91318760000000

>> x = (0.75)*(0.9).^n + (0.5)*n.*(0.9).^n + (0.25)*(-0.9).^n % answer sequence

x =

Columns 1 through 4

1.00000000000000 0.90000000000000 1.62000000000000 1.45800000000000

Columns 5 through 8

1.96830000000000 1.77147000000000 2.12576400000000 1.91318760000000 �

� EXAMPLE 4.10 Determine the inverse z-transform of

X(z) =
1 + 0.4

√
2z−1

1 − 0.8
√

2z−1 + 0.64z−2

so that the resulting sequence is causal and contains no complex numbers.

Solution We will have to find the poles of X(z) in the polar form to determine the ROC
of the causal sequence.

MATLAB script:

>> b = [1,0.4*sqrt(2)]; a=[1,-0.8*sqrt(2),0.64];

>> [R,p,C] = residuez(b,a)

R =

0.5000 - 1.0000i

0.5000 + 1.0000i

p =

0.5657 + 0.5657i

0.5657 - 0.5657i

C =

[]

>> Mp=(abs(p))’ % pole magnitudes

Mp =

0.8000 0.8000

>> Ap=(angle(p))’/pi % pole angles in pi units

Ap =

0.2500 -0.2500

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

118 Chapter 4 THE z-TRANSFORM

From these calculations

X(z) =
0.5 − j

1 − 0.8e+j π
4 z−1

+
0.5 + j

1 − 0.8e−j π
4 z−1

, |z| > 0.8

and from Table 4.1, we have

x(n) = (0.5 − j) 0.8ne+j π
4 nu(n) + (0.5 + j) 0.8ne−j π

4 nu(n)

= 0.8n[0.5{e+j π
4 n + e−j π

4 n} − j{e+j π
4 n − e−j π

4 n}]u(n)

= 0.8n
[
cos

(
πn

4

)
+ 2 sin

(
πn

4

)]
u(n)

MATLAB verification:

>> [delta, n] = impseq(0,0,6);

x = filter(b,a,delta) % check sequence

x =

Columns 1 through 4

1.00000000000000 1.69705627484771 1.28000000000000 0.36203867196751

Columns 5 through 8

-0.40960000000000 -0.69511425017762 -0.52428800000000 -0.14829104003789

>> x = ((0.8).^n).*(cos(pi*n/4)+2*sin(pi*n/4))

x =

Columns 1 through 4

1.00000000000000 1.69705627484771 1.28000000000000 0.36203867196751

Columns 5 through 8

-0.40960000000000 -0.69511425017762 -0.52428800000000 -0.14829104003789 �

4.4 SYSTEM REPRESENTATION IN THE z-DOMAIN

Similar to the frequency response function H(ejω), we can define the
z-domain function, H(z), called the system function. However, unlike
H(ejω), H(z) exists for systems that may not be BIBO stable.

DEFINITION 1 [The System Function] The system function H(z) is given by

H(z)
�
= Z [h(n)] =

∞∑
−∞

h(n)z−n; Rh− < |z| < Rh+ (4.17)

Using the convolution property (4.11) of the z-transform, the output
transform Y (z) is given by

Y (z) = H(z) X(z) : ROCy = ROCh ∩ ROCx (4.18)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

System Representation in the z-Domain 119

provided ROCx overlaps with ROCh. Therefore a linear and time-
invariant system can be represented in the z-domain by

X(z) −→ H(z) −→ Y (z) = H(z) X(z)

4.4.1 SYSTEM FUNCTION FROM THE DIFFERENCE
EQUATION REPRESENTATION

When LTI systems are described by a difference equation

y(n) +
N∑

k=1

aky(n− k) =
M∑
�=0

b�x(n− �) (4.19)

the system function H(z) can easily be computed. Taking the z-transform
of both sides, and using properties of the z-transform,

Y (z) +
N∑

k=1

akz
−kY (z) =

M∑
�=0

b�z
−�X(z)

or

H(z)
�
=

Y (z)
X(z)

=
∑M

�=0 b�z
−�

1 +
∑N

k=1 akz
−k

=
B(z)
A(z)

=
b0z

−M
(
zM + · · · + bM

b0

)

z−N (zN + · · · + aN)
(4.20)

After factorization, we obtain

H(z) = b0 zN−M

∏N
�=1(z − z�)∏N
k=1(z − pk)

(4.21)

where z�s are the system zeros and pk’s are the system poles. Thus H(z)
(and hence an LTI system) can also be represented in the z-domain using
a pole-zero plot. This fact is useful in designing simple filters by proper
placement of poles and zeros.

To determine zeros and poles of a rational H(z), we can use the
MATLAB function roots on both the numerator and the denominator
polynomials. (Its inverse function poly determines polynomial coefficients
from its roots, as discussed in the previous section.) It is also possible to
use MATLAB to plot these roots for a visual display of a pole-zero plot.
The function zplane(b,a) plots poles and zeros, given the numerator
row vector b and the denominator row vector a. As before, the symbol o
represents a zero and the symbol x represents a pole. The plot includes
the unit circle for reference. Similarly, zplane(z,p) plots the zeros in
column vector z and the poles in column vector p. Note very carefully the
form of the input arguments for the proper use of this function.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

120 Chapter 4 THE z-TRANSFORM

4.4.2 TRANSFER FUNCTION REPRESENTATION
If the ROC of H(z) includes a unit circle (z = ejω), then we can evaluate
H(z) on the unit circle, resulting in a frequency response function or
transfer function H(ejω). Then from (4.21)

H(ejω) = b0 ej(N−M)ω

∏M
1 (ejω − z�)∏N
1 (ejω − pk)

(4.22)

The factor (ejω−z�) can be interpreted as a vector in the complex z-plane
from a zero z� to the unit circle at z = ejω, while the factor (ejω − pk)
can be interpreted as a vector from a pole pk to the unit circle at z = ejω.
This is shown in Figure 4.6. Hence the magnitude response function

|H(ejω)| = |b0|
|ejω − z1| · · · |ejω − zM |
|ejω − p1| · · · |ejω − pN | (4.23)

can be interpreted as a product of the lengths of vectors from zeros to the
unit circle divided by the lengths of vectors from poles to the unit circle
and scaled by |b0|. Similarly, the phase response function

� H(ejω) =[0 or π]︸ ︷︷ ︸
Constant

+ [(N −M)ω]︸ ︷︷ ︸
Linear

+
M∑
1

� (ejω − zk) −
N∑
1

� (ejω − pk)

︸ ︷︷ ︸
Nonlinear

(4.24)

can be interpreted as a sum of a constant factor, a linear-phase factor,
and a nonlinear-phase factor (angles from the “zero vectors” minus the
sum of angles from the “pole vectors”).

4.4.3 MATLAB IMPLEMENTATION
In Chapter 3, we plotted magnitude and phase responses in MATLAB
by directly implementing their functional forms. MATLAB also provides

Im{z}

Unit
circle

Re{z}
0

ω
pk

zl

FIGURE 4.6 Pole and zero vectors

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

System Representation in the z-Domain 121

a function called freqz for this computation, which uses the preceding
interpretation. In its simplest form, this function is invoked by

[H,w] = freqz(b,a,N)

which returns the N-point frequency vector w and the N-point complex
frequency response vector H of the system, given its numerator and de-
nominator coefficients in vectors b and a. The frequency response is eval-
uated at N points equally spaced around the upper half of the unit circle.
Note that the b and a vectors are the same vectors we use in the filter
function or derived from the difference equation representation (4.19).

The second form

[H,w] = freqz(b,a,N,’whole’)

uses N points around the whole unit circle for computation.
In yet another form

H = freqz(b,a,w)

it returns the frequency response at frequencies designated in vector w,
normally between 0 and π. It should be noted that the freqz function can
also be used for numerical computation of the DTFT of a finite-duration,
causal sequence x(n). In this approach, b = x and a = 1.

� EXAMPLE 4.11 Given a causal system

y(n) = 0.9y(n− 1) + x(n)

a. Determine H(z) and sketch its pole-zero plot.
b. Plot |H(ejω)| and � H(ejω).
c. Determine the impulse response h(n).

Solution The difference equation can be put in the form

y(n) − 0.9y(n− 1) = x(n)

a. From (4.21)

H(z) =
1

1 − 0.9z−1
; |z| > 0.9

since the system is causal. There is one pole at 0.9 and one zero at the origin.
We will use MATLAB to illustrate the use of the zplane function.

>> b = [1, 0]; a = [1, -0.9]; zplane(b,a)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

122 Chapter 4 THE z-TRANSFORM

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
pa

rt

Pole–Zero Plot

0.90

FIGURE 4.7 Pole-zero plot of Example 4.11a

Note that we specified b=[1,0] instead of b=1 because the zplane function
assumes that scalars are zeros or poles. The resulting pole-zero plot is shown
in Figure 4.7.

b.Using (4.23) and (4.24), we can determine the magnitude and phase of
H(ejω). Once again we will use MATLAB to illustrate the use of the freqz

function. Using its first form, we will take 100 points along the upper half of
the unit circle.

MATLAB Script:

>> [H,w] = freqz(b,a,100); magH = abs(H); phaH = angle(H);

>> subplot(2,1,1);plot(w/pi,magH);grid

>> xlabel(’frequency in pi units’); ylabel(’Magnitude’);

>> title(’Magnitude Response’)

>> subplot(2,1,2);plot(w/pi,phaH/pi);grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi units’);

>> title(’Phase Response’)

The response plots are shown in Figure 4.8. If you study these plots carefully,
you will observe that the plots are computed between 0 ≤ ω ≤ 0.99π and
fall short at ω = π. This is due to the fact that in MATLAB the lower half

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

System Representation in the z-Domain 123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

frequency in π units

M
ag

ni
tu

de

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

frequency in π units

P
ha

se
 in

 π
 u

ni
ts

Phase Response

FIGURE 4.8 Frequency response plots in Example 4.11

of the unit circle begins at ω = π. To overcome this problem, we will use the
second form of the freqz function as follows.

>> [H,w] = freqz(b,a,200,’whole’);

>> magH = abs(H(1:101)); phaH = angle(H(1:101));

Now the 101st element of the array H will correspond to ω = π. A similar
result can be obtained using the third form of the freqz function.

>> w = [0:1:100]*pi/100; H = freqz(b,a,w);

>> magH = abs(H); phaH = angle(H);

In the future we will use any one of these forms, depending on our conve-
nience. Also note that in the plots we divided the w and phaH arrays by pi

so that the plot axes are in the units of π and easier to read. This practice
is strongly recommended.

c. From the z-transform in Table 4.1

h(n) = Z−1
[

1

1 − 0.9z−1
, |z| > 0.9

]
= (0.9)nu(n) �

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

124 Chapter 4 THE z-TRANSFORM

� EXAMPLE 4.12 Given that

H(z) =
z + 1

z2 − 0.9z + 0.81

is a causal system, find

a. its transfer function representation,
b. its difference equation representation, and
c. its impulse response representation.

Solution The poles of the system function are at z = 0.9 � ± π/3. Hence the ROC of
this causal system is |z| > 0.9. Therefore the unit circle is in the ROC, and the
discrete-time Fourier transform H(ejω) exists.

a. Substituting z = ejω in H(z),

H(ejω) =
ejω + 1

ej2ω − 0.9ejω + 0.81
=

ejω + 1

(ejω − 0.9ejπ/3)(ejω − 0.9e−jπ/3)

b. Using H(z) = Y (z)/X(z),

Y (z)

X(z)
=

z + 1

z2 − 0.9z + 0.81

(
z−2

z−2

)
=

z−1 + z−2

1 − 0.9z−1 + 0.81z−2

Cross multiplying,

Y (z) − 0.9z−1Y (z) + 0.81z−2Y (z) = z−1X(z) + z−2X(z)

Now taking the inverse z-transform,

y(n) − 0.9y(n− 1) + 0.81y(n− 2) = x(n− 1) + x(n− 2)

or

y(n) = 0.9y(n− 1) − 0.81y(n− 2) + x(n− 1) + x(n− 2)

c. Using the MATLAB script,

>> b = [0,1,1]; a = [1,-0.9,0.81]; [R,p,C] = residuez(b,a)

R =

-0.6173 - 0.9979i

-0.6173 + 0.9979i

p =

0.4500 + 0.7794i

0.4500 - 0.7794i

C =

1.2346

>> Mp = (abs(p))’

Mp =

0.9000 0.9000

>> Ap = (angle(p))’/pi

Ap =

0.3333 -0.3333

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

System Representation in the z-Domain 125

we have

H(z) = 1.2346 +
−0.6173 + j0.9979

1 − 0.9e−jπ/3z−1
+

−0.6173 − j0.9979

1 − 0.9ejπ/3z−1
, |z| > 0.9

Hence from Table 4.1

h(n) = 1.2346δ(n) + [(−0.6173 + j0.9979)0.9ne−jπn/3

+(−0.6173 − j0.9979)0.9nejπn/3]u(n)

= 1.2346δ(n) + 0.9n[−1.2346 cos(πn/3) + 1.9958 sin(πn/3)]u(n)

= 0.9n[−1.2346 cos(πn/3) + 1.9958 sin(πn/3)]u(n− 1)

The last step results from the fact that h(0) = 0. �

4.4.4 RELATIONSHIPS BETWEEN SYSTEM REPRESENTATIONS
In this and the previous two chapters, we developed several system rep-
resentations. Figure 4.9 depicts the relationships among these representa-
tions in a graphical form.

Diff Equation h(n)

H (z)

H (e jω)

Substitute
z = e jω

Express H(z) in z–1,
cross multiply, and

take inverse

Take inverse
z -transform

Take inverse
DTFT

Take Fourier
transform

Take DTFT,
solve for Y /X

Take
z-transform

Take
z-transform,

solve for Y /X

FIGURE 4.9 System representations in pictorial form

4.4.5 STABILITY AND CAUSALITY
For LTI systems, the BIBO stability is equivalent to

∑∞
−∞ |h(k)| < ∞.

From the existence of the discrete-time Fourier transform, this stability
implies that H(ejω) exists, which further implies that the unit circle |z| =
1 must be in the ROC of H(z). This result is called the z-domain stability
theorem; therefore the dashed paths in Figure 4.9 exist only if the system
is stable.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

126 Chapter 4 THE z-TRANSFORM

THEOREM 2 z-Domain LTI Stability
An LTI system is stable if and only if the unit circle is in the ROC of

H(z).

For LTI causality we require that h(n) = 0, for n < 0 (i.e., a right-
sided sequence). This implies that the ROC of H(z) must be outside some
circle of radius Rh−. This is not a sufficient condition since any right-sided
sequence has a similar ROC. However, when the system is stable, then its
causality is easy to check.

THEOREM 3 z-Domain Causal LTI Stability
A causal LTI system is stable if and only if the system function H(z)

has all its poles inside the unit circle.

� EXAMPLE 4.13 A causal LTI system is described by the following difference equation:

y(n) = 0.81y(n− 2) + x(n) − x(n− 2)

Determine

a. the system function H(z),
b. the unit impulse response h(n),
c. the unit step response v(n), that is, the response to the unit step u(n), and
d. the frequency response function H(ejω), and plot its magnitude and phase

over 0 ≤ ω ≤ π.

Solution Since the system is causal, the ROC will be outside a circle with radius equal
to the largest pole magnitude.

a. Taking the z-transform of both sides of the difference equation and then
solving for Y (z)/X(z) or using (4.20), we obtain

H(z) =
1 − z−2

1 − 0.81z−2
=

1 − z−2

(1 + 0.9z−1) (1 − 0.9z−1)
, |z| > 0.9

b. Using the MATLAB script for the partial fraction expansion,

>> b = [1,0,-1]; a = [1,0,-0.81]; [R,p,C] = residuez(b,a);

R =

-0.1173

-0.1173

p =

-0.9000

0.9000

C =

1.2346

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

System Representation in the z-Domain 127

we have

H(z) = 1.2346 − 0.1173
1

1 + 0.9z−1
− 0.1173

1

1 − 0.9z−1
, |z| > 0.9

or from Table 4.1

h(n) = 1.2346δ(n) − 0.1173 {1 + (−1)n} (0.9)nu(n)

c. From Table 4.1 Z[u(n)] = U(z) =
1

1 − z−1
, |z| > 1. Hence

V (z) = H(z)U(z)

=

[
(1 + z−1)(1 − z−1)

(1 + 0.9z−1) (1 − 0.9z−1)

] [
1

1 − z−1

]
, |z| > 0.9 ∩ |z|> 1

=
1 + z−1

(1 + 0.9z−1) (1 − 0.9z−1)
, |z| > 0.9

or

V (z) = 1.0556
1

1 − 0.9z−1
− 0.0556

1

1 + 0.9z−1
, |z| > 0.9

Finally,

v(n) = [1.0556(0.9)n − 0.0556 (−0.9)n]u(n)

Note that in the calculation of V (z) there is a pole-zero cancellation at z = 1.
This has two implications. First, the ROC of V (z) is still {|z| > 0.9} and not
{|z| > 0.9 ∩ |z| > 1 = |z| > 1}. Second, the step response v(n) contains no
steady-state term u(n).

d. Substituting z = ejω in H(z),

H(ejω) =
1 − e−j2ω

1 − 0.81e−j2ω

We will use the MATLAB script to compute and plot responses.

>> w = [0:1:500]*pi/500; H = freqz(b,a,w);

>> magH = abs(H); phaH = angle(H);

>> subplot(2,1,1); plot(w/pi,magH); grid

>> xlabel(’frequency in pi units’); ylabel(’Magnitude’)

>> title(’Magnitude Response’)

>> subplot(2,1,2); plot(w/pi,phaH/pi); grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi units’)

>> title(’Phase Response’)

The frequency response plots are shown in Figure 4.10. �

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

128 Chapter 4 THE z-TRANSFORM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

frequency in π units

M
ag

ni
tu

de

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

frequency in π units

P
ha

se
 in

 π
 u

ni
ts

Phase Response

FIGURE 4.10 Frequency response plots for Example 4.13

4.5 SOLUTIONS OF THE DIFFERENCE EQUATIONS

In Chapter 2 we mentioned two forms for the solution of linear constant
coefficient difference equations. One form involved finding the particu-
lar and the homogeneous solutions, while the other form involved find-
ing the zero-input (initial condition) and the zero-state responses. Using
z-transforms, we now provide a method for obtaining these forms. In ad-
dition, we will also discuss the transient and the steady-state responses.
In digital signal processing, difference equations generally evolve in the
positive n direction. Therefore our time frame for these solutions will be
n ≥ 0. For this purpose we define a version of the bilateral z-transform
called the one-sided z-transform.

DEFINITION 4 The One-sided z Transform
The one-sided z-transform of a sequence x(n) is given by

Z+[x(n)]
�
= Z [x(n)u(n)]

�
= X+ [z] =

∞∑
n=0

x(n)z−n (4.25)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Solutions of the Difference Equations 129

Then the sample shifting property is given by

Z+ [x(n− k)] = Z [x(n− k)u(n)]

=
∞∑

n=0

x(n− k)z−n =
∞∑

m=−k

x(m)z−(m+k)

=
−1∑

m=−k

x(m)z−(m+k) +

[∞∑
m=0

x(m)z−m

]
z−k

or

Z+ [x(n− k)] = x(−1)z1−k+x(−2)z2−k+ · · ·+x(−k)+z−kX+(z) (4.26)

This result can now be used to solve difference equations with nonzero
initial conditions or with changing inputs. We want to solve the difference
equation

1 +
N∑

k=1

aky(n− k) =
M∑

m=0

bmx(n−m), n ≥ 0

subject to these initial conditions:

{y(i), i = −1, . . . ,−N} and {x(i), i = −1, . . . ,−M}.

We now demonstrate its solution using an example.

� EXAMPLE 4.14 Solve

y(n) − 3

2
y(n− 1) +

1

2
y(n− 2) = x(n), n ≥ 0

where

x(n) =
(

1

4

)n

u(n)

subject to y(−1) = 4 and y(−2) = 10.

Solution Taking the one-sided z-transform of both sides of the difference equation, we
obtain

Y +(z)− 3

2
[y(−1)+ z−1Y +(z)]+

1

2
[y(−2)+ z−1y(−1)+ z−2Y +(z)] =

1

1 − 1
4
z−1

Substituting the initial conditions and rearranging,

Y +(z)
[
1 − 3

2
z−1 +

1

2
z−2

]
=

1

1 − 1
4
z−1

+ (1 − 2z−1)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

130 Chapter 4 THE z-TRANSFORM

or

Y +(z) =

1

1 − 1
4
z−1

1 − 3
2
z−1 + 1

2
z−2

+
1 − 2z−1

1 − 3
2
z−1 + 1

2
z−2

(4.27)

Finally,

Y +(z) =
2 − 9

4
z−1 + 1

2
z−2

(1 − 1
2
z−1)(1 − z−1)(1 − 1

4
z−1)

Using the partial fraction expansion, we obtain

Y +(z) =
1

1 − 1
2
z−1

+
2
3

1 − z−1
+

1
3

1 − 1
4
z−1

(4.28)

After inverse transformation the solution is

y(n) =
[(

1

2

)n

+
2

3
+

1

3

(
1

4

)n]
u(n) (4.29)

�

Forms of the solutions The preceding solution is the complete re-
sponse of the difference equation. It can be expressed in several forms.

• Homogeneous and particular parts:

y(n) =
[(

1
2

)n

+
2
3

]
u(n)

︸ ︷︷ ︸
Homogeneous part

+
1
3

(
1
4

)n

u(n)
︸ ︷︷ ︸
Particular part

The homogeneous part is due to the system poles, and the particular
part is due to the input poles.

• Transient and steady-state responses:

y(n) =
[
1
3

(
1
4

)n

+
(

1
2

)n]
u(n)

︸ ︷︷ ︸
Transient response

+
2
3
u(n)

︸ ︷︷ ︸
Steady-state response

The transient response is due to poles that are inside the unit circle,
whereas the steady-state response is due to poles that are on the unit
circle. Note that when the poles are outside the unit circle, the response
is termed an unbounded response.

• Zero-input (or initial condition) and zero-state responses:
In equation (4.27) Y +(z) has two parts. The first part can be inter-
preted as

YZS(z) = H(z)X(z)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Solutions of the Difference Equations 131

while the second part as

YZI(z) = H(z)XIC(z)

where XIC(z) can be thought of as an equivalent initial-condition in-
put that generates the same output YZI as generated by the initial
conditions. In this example xIC(n) is

xIC(n) = {1
↑
,−2}

Now taking the inverse z-transform of each part of (4.27), we write the
complete response as

y(n) =
[
1
3

(
1
4

)n

− 2
(

1
2

)n

+
8
3

]
u(n)

︸ ︷︷ ︸
Zero-state response

+
[
3
(

1
2

)n

− 2
]
u(n)

︸ ︷︷ ︸
Zero-input response

From this example, it is clear that each part of the complete solution
is, in general, a different function and emphasizes a different aspect of
system analysis.

4.5.1 MATLAB IMPLEMENTATION
In Chapter 2 we used the filter function to solve the difference equation,
given its coefficients and an input. This function can also be used to find
the complete response when initial conditions are given. In this form the
filter function is invoked by

y = filter(b,a,x,xic)

where xic is an equivalent initial-condition input array. To find the com-
plete response in Example 4.14, we will use the MATLAB script

>> n = [0:7]; x = (1/4).^n; xic = [1, -2];

>> format long; y1 = filter(b,a,x,xic)

y1 =

Columns 1 through 4

2.00000000000000 1.25000000000000 0.93750000000000 0.79687500000000

Columns 5 through 8

0.73046875000000 0.69824218750000 0.68237304687500 0.67449951171875

>> y2 = (1/3)*(1/4).^n+(1/2).^n+(2/3)*ones(1,8) % MATLAB Check

y2 =

Columns 1 through 4

2.00000000000000 1.25000000000000 0.93750000000000 0.79687500000000

Columns 5 through 8

0.73046875000000 0.69824218750000 0.68237304687500 0.67449951171875

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

132 Chapter 4 THE z-TRANSFORM

which agrees with the response given in (4.29). In Example 4.14 we com-
puted xIC(n) analytically. However, in practice, and especially for large-
order difference equations, it is tedious to determine xIC(n) analytically.
MATLAB provides a function called filtic, which is available only in
the Signal Processing toolbox. It is invoked by

xic = filtic(b,a,Y,X)

in which b and a are the filter coefficient arrays and Y and X are the initial-
condition arrays from the initial conditions on y(n) and x(n), respectively,
in the form

Y = [y(−1), y(−2), . . . , y(−N)]
X = [x(−1), x(−2), . . . , x(−M)]

If x(n) = 0, n ≤ −1 then X need not be specified in the filtic function.
In Example 4.14 we could have used

>> Y = [4, 10]; xic = filtic(b,a,Y)

xic =

1 -2

to determine xIC(n).

� EXAMPLE 4.15 Solve the difference equation

y(n) =
1

3
[x(n) + x(n− 1) + x(n− 2)] + 0.95y(n− 1)− 0.9025y(n− 2), n ≥ 0

where x(n) = cos(πn/3)u(n) and

y(−1) = −2, y(−2) = −3; x(−1) = 1, x(−2) = 1

First determine the solution analytically and then by using MATLAB.

Solution Taking a one-sided z-transform of the difference equation

Y +(z) =
1

3
[X+(z) + x(−1) + z−1X+(z) + x(−2) + z−1x(−1) + z−2X+(z)]

+ 0.95[y(−1) + z−1Y +(z)] − 0.9025[y(−2) + z−1y(−1) + z−2Y +(z)]

and substituting the initial conditions, we obtain

Y +(z) =
1
3

+ 1
3
z−1 + 1

3
z−2

1 − 0.95z−1 + 0.9025z−2
X+(z) +

1.4742 + 2.1383z−1

1 − 0.95z−1 + 0.9025z−2

Clearly, xIC(n) = [1.4742, 2.1383]. Now substituting X+(z) =
1 − 0.5z−1

1 − z−1 + z−2

and simplifying, we will obtain Y +(z) as a rational function. This simplification
and further partial fraction expansion can be done using MATLAB.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Solutions of the Difference Equations 133

MATLAB script:

>> b = [1,1,1]/3; a = [1,-0.95,0.9025];

>> Y = [-2,-3]; X = [1,1]; xic=filtic(b,a,Y,X)

xic =

1.4742 2.1383

>> bxplus = [1,-0.5]; axplus = [1,-1,1]; % X(z) transform coeff.

>> ayplus = conv(a,axplus) % Denominator of Yplus(z)

ayplus =

1.0000 -1.9500 2.8525 -1.8525 0.9025

>> byplus = conv(b,bxplus)+conv(xic,axplus) % Numerator of Yplus(z)

byplus =

1.8075 0.8308 -0.4975 1.9717

>> [R,p,C] = residuez(byplus,ayplus)

R =

0.0584 + 3.9468i 0.0584 - 3.9468i 0.8453 + 2.0311i 0.8453 - 2.0311i

p =

0.5000 - 0.8660i 0.5000 + 0.8660i 0.4750 + 0.8227i 0.4750 - 0.8227i

C =

[]

>> Mp = abs(p), Ap = angle(p)/pi % Polar form

Mp =

1.0000 1.0000 0.9500 0.9500

Ap =

-0.3333 0.3333 0.3333 -0.3333

Hence

Y +(z) =
1.8075 + 0.8308z−1 − 0.4975z−2 + 1.9717z−3

1 − 1.95z−1 + 2.8525z−2 − 1.8525z−3 + 0.9025z−4

=
0.0584 + j3.9468

1 − e−jπ/3z−1
+

0.0584 − j3.9468

1 − ejπ/3z−1

+
0.8453 + j2.0311

1 − 0.95ejπ/3z−1
+

0.8453 − j2.0311

1 − 0.95e−jπ/3z−1

Now from Table 4.1

y(n) = (0.0584 + j3.9468) e−jπn/3 + (0.0584 − j3.9468) ejπn/3

+ (0.8453 + j2.031) (0.95)n ejπn/3 + (0.8453 − j2.031) (0.95)n e−jπn/3

= 0.1169 cos(πn/3) + 7.8937 sin(πn/3)

+ (0.95)n [1.6906 cos(πn/3) − 4.0623 sin(πn/3)] , n ≥ 0

The first two terms of y(n) correspond to the steady-state response, as well as
to the particular response, while the last two terms are the transient response
(and homogeneous response) terms.

To solve this example using MATLAB, we will need the filtic function,
which we have already used to determine the xIC(n) sequence. The solution
will be a numerical one. Let us determine the first 8 samples of y(n).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

134 Chapter 4 THE z-TRANSFORM

MATLAB script:

>> n = [0:7]; x = cos(pi*n/3); y = filter(b,a,x,xic)

y =

Columns 1 through 4

1.80750000000000 4.35545833333333 2.83975000000000 -1.56637197916667

Columns 5 through 8

-4.71759442187500 -3.40139732291667 1.35963484230469 5.02808085078841

% Matlab Verification

>> A=real(2*R(1)); B=imag(2*R(1)); C=real(2*R(3)); D=imag(2*R(4));

>> y=A*cos(pi*n/3)+B*sin(pi*n/3)+((0.95).^n).*(C*cos(pi*n/3)+D*sin(pi*n/3))

y =

Columns 1 through 4

1.80750000000048 4.35545833333359 2.83974999999978 -1.56637197916714

Columns 5 through 8

-4.71759442187528 -3.40139732291648 1.35963484230515 5.02808085078871 �

4.6 PROBLEMS

P4.1 Determine the z-transform of the following sequences using the definition (4.1). Indicate the
region of convergence for each sequence and verify the z-transform expression using
MATLAB.

1. x(n) = {3, 2, 1
↑
,−2,−3}.

2. x(n) = (0.8)nu(n− 2). Verify the z-transform expression using MATLAB.

3. x(n) = [(0.5)n + (−0.8)n]u(n). Verify the z-transform expression using MATLAB.

4. x(n) = 2n cos(0.4πn)u(−n).

5. x(n) = (n + 1)(3)nu(n). Verify the z-transform expression using MATLAB.

P4.2 Consider the sequence x(n) = (0.9)n cos(πn/4)u(n). Let

y(n) =

{
x(n/2), n = 0,±2,±4, · · ·;
0, otherwise.

1. Show that the z-transform Y (z) of y(n) can be expressed in terms of the z-transform
X(z) of x(n) as Y (z) = X(z2).

2. Determine Y (z).
3. Using MATLAB, verify that the sequence y(n) has the z-transform Y (z).

P4.3 Determine the z-transform of the following sequences using the z-transform table and the
z-transform properties. Express X(z) as a rational function in z−1. Verify your results using
MATLAB. Indicate the region of convergence in each case, and provide a pole-zero plot.

1. x(n) = 2δ(n− 2) + 3u(n− 3)

2. x(n) = 3(0.75)n cos(0.3πn)u(n) + 4(0.75)n sin(0.3πn)u(n)

3. x(n) = n sin(πn
3

)u(n) + (0.9)nu(n− 2)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Problems 135

4. x(n) = n2(2/3)n−2u(n− 1)

5. x(n) = (n− 3)(1
4
)n−2 cos{π

2
(n− 1)}u(n)

P4.4 Let x(n) be a complex-valued sequence with the real part xR(n) and the imaginary part
xI(n).

1. Prove the following z-transform relations:

XR(z)
�
= Z [xR(n)] =

X(z) + X∗(z∗)

2
and XI(z)

�
= Z [xI(n)] =

X(z) −X∗(z∗)

2

2. Verify these relations for x(n) = exp {(−1 + j0.2π)n}u(n).

P4.5 The z-transform of x(n) is X(z) = 1/(1 + 0.5z−1), |z| ≥ 0.5. Determine the z-transforms of
the following sequences and indicate their region of convergence.

1. x1(n) = x(3 − n) + x(n− 3)

2. x2(n) = (1 + n + n2)x(n)

3. x3(n) = (1
2
)nx(n− 2)

4. x4(n) = x(n + 2) ∗ x(n− 2)

5. x5(n) = cos(πn/2)x∗(n)

P4.6 Repeat Problem P4.5 if

X(z) =
1 + z−1

1 + 5
6
z−1 + 1

6
z−2

; |z| > 1

2

P4.7 The inverse z-transform of X(z) is x(n) = (1/2)nu(n). Using the z-transform properties,
determine the sequences in each of the following cases.

1. X1(z) = z−1
z

X(z)

2. X2(z) = zX(z−1)

3. X3(z) = 2X(3z) + 3X(z/3)

4. X4(z) = X(z)X(z−1)

5. X5(z) = z2 dX(z)
dz

P4.8 If sequences x1(n), x2(n), and x3(n) are related by x3(n) = x1(n) ∗ x2(n), then

∞∑
n=−∞

x3(n) =

(
∞∑

n=−∞

x1(n)

)(
∞∑

n=−∞

x2(n)

)

1. Prove this result by substituting the definition of convolution in the left-hand side.
2. Prove this result using the convolution property.
3. Verify this result using MATLABand choosing any two random sequences x1(n), and

x2(n).

P4.9 Determine the results of the following polynomial operations using MATLAB.

1. X1(z) = (1 − 2z−1 + 3z−2 − 4z−3)(4 + 3z−1 − 2z−2 + z−3)

2. X2(z) = (z2 − 2z + 3 + 2z−1 + z−2)(z3 − z−3)

3. X3(z) = (1 + z−1 + z−2)3

4. X4(z) = X1(z)X2(z) + X3(z)

5. X5(z) = (z−1 − 3z−3 + 2z−5 + 5z−7 − z−9)(z + 3z2 + 2z3 + 4z4)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

136 Chapter 4 THE z-TRANSFORM

P4.10 The deconv function is useful in dividing two causal sequences. Write a MATLAB function
deconv m to divide two noncausal sequences (similar to the conv function). The format of
this function should be

function [p,np,r,nr] = deconv_m(b,nb,a,na)

% Modified deconvolution routine for noncausal sequences

% function [p,np,r,nr] = deconv_m(b,nb,a,na)

%

% p = polynomial part of support np1 <= n <= np2

% np = [np1, np2]

% r = remainder part of support nr1 <= n <= nr2

% nr = [nr1, nr2]

% b = numerator polynomial of support nb1 <= n <= nb2

% nb = [nb1, nb2]

% a = denominator polynomial of support na1 <= n <= na2

% na = [na1, na2]

%

Check your function on the following operartion

z2 + z + 1 + z−1 + z−2 + z−3

z + 2 + z−1
= (z − 1 + 2z−1 − 2z−2) +

3z−2 + 3z−3

z + 2 + z−1

P4.11 Determine the following inverse z-transforms using the partial fraction expansion method.

1. X1(z) = (1− z−1 − 4z−2 +4z−3)/(1− 11
4
z−1 + 13

8
z−2 − 1

4
z−3). The sequence is rightsided.

2. X2(z) = (1 + z−1 − 4z−2 + 4z−3)/(1 − 11
4
z−1 + 13

8
z−2 − 1

4
z−3). The sequence is

absolutely summable.

3. X3(z) = (z3 − 3z2 + 4z + 1)/(z3 − 4z2 + z − 0.16). The sequence is leftsided.

4. X4(z) = z/(z3 + 2z2 + 1.25z + 0.25), |z| > 1

5. X5(z) = z/(z2 − 0.25)2, |z| < 0.5

P4.12 Consider the sequence

x(n) = Ac(r)
n cos(πv0n)u(n) + As(r)

n sin(πv0n)u(n) (4.30)

The z-transform of this sequence is a 2-order (proper) rational function that contains a
complex-conjugate pole pair. The objective of this problem is to develop a MATLAB
function that can be used to obtain the inverse z-transform of such a rational function so
that the inverse does not contain any complex numbers.

1. Show that the z-transform of x(n) in (4.30) is given by

X(z) =
b0 + b1z

−1

1 + a1z−1 + a2z−2
; |z| > |r| (4.31)

where

b0 = Ac; b1 = r[As sin(πv0) −Ac cos(πv0)]; a1 = −2r cos(πv0); a2 = r2 (4.32)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Problems 137

2. Using (4.32), determine the signal parameters Ac, As, r, and v0 in terms of the rational
function parameters b0, b1, a1, and a2.

3. Using your results in part b above, design a MATLABfunction, invCCPP, that computes
signal parameters using the rational function parameters. The format of this function
should be:

function [As,Ac,r,v0] = invCCPP(b0,b1,a1,a2)

P4.13 Suppose X(z) is given as follows:

X(z) =
2 + 3z−1

1 − z−1 + 0.81z−2
, |z| > 0.9

1. Using the MATLABfunction invCCPP given in Problem P4.12, determine x(n) in a form
that contains no complex numbers.

2. Using MATLAB, compute the first 20 samples of x(n), and compare them with your
answer in the above part.

P4.14 The z-transform of a causal sequence is given as

X(z) =
−2 + 5.65z−1 − 2.88z−2

1 − 0.1z−1 + 0.09z−2 + 0.648z−3
(4.33)

which contains a complex-conjugate pole pair as well as a real-valued pole.

1. Using the residuez function express (4.33) as

X(z) =
() + ()z−1

1 + ()z−1 + ()z−2
+

()

1 + ()z−1
(4.34)

Note that you will have to use the residuez function in both directions.
2. Now using your function invCCPP and the inverse of the real-valued pole factor,

determine the causal sequence x(n) from the X(z) in (4.34) so that it contains no
complex numbers.

P4.15 For the linear and time-invariant systems described by the following impulse responses,
determine (i) the system function representation, (ii) the difference equation representation,
(iii) the pole-zero plot, and (iv) the output y(n) if the input is x(n) =

(
1
4

)n
u(n).

1. h(n) = 5(1/4)nu(n)

2. h(n) = n(1/3)nu(n) + (−1/4)nu(n)

3. h(n) = 3(0.9)n cos(πn/4 + π/3)u(n + 1)

4. h(n) =
(0.5)n sin[(n + 1)π/3]

sin(π/3)
u(n)

5. h(n) = [2 − sin(πn)]u(n)

P4.16 Consider the system shown below.

1. Using the z-transform approach, show that the impulse response, h(n), of the overall
system is given by

h(n) = δ(n) − 1

2
δ(n− 1)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

138 Chapter 4 THE z-TRANSFORM

2. Determine the difference equation representation of the overall system that relates the
output y(n) to the input x(n).

3. Is this system causal? BIBO stable? Explain clearly to receive full credit.
4. Determine the frequency response H(ejω) of the overall system.
5. Using MATLAB, provide a plot of this frequency response over 0 ≤ ω ≤ π.

P4.17 For the linear and time-invariant systems described by the following system functions,
determine (i) the impulse response representation, (ii) the difference equation
representation, (iii) the pole-zero plot, and (iv) the output y(n) if the input is
x(n) = 3 cos(πn/3)u(n).

1. H(z) = (z + 1)/(z − 0.5), causal system

2. H(z) = (1 + z−1 + z−2)/(1 + 0.5z−1 − 0.25z−2), stable system

3. H(z) = (z2 − 1)/(z − 3)2, anticausal system

4. H(z) =
z

z − 0.25
+

1 − 0.5z−1

1 + 2z−1
, stable system

5. H(z) = (1 + z−1 + z−2)2

P4.18 For the linear, causal, and time-invariant systems described by the following difference
equations, determine (i) the impulse response representation, (ii) the system function
representation, (iii) the pole-zero plot, and (iv) the output y(n) if the input is
x(n) = 2(0.9)nu(n).

1. y(n) = [x(n) + 2x(n− 1) + x(n− 3)] /4

2. y(n) = x(n) + 0.5x(n− 1) − 0.5y(n− 1) + 0.25y(n− 2)

3. y(n) = 2x(n) + 0.9y(n− 1)

4. y(n) = −0.45x(n) − 0.4x(n− 1) + x(n− 2) + 0.4y(n− 1) + 0.45y(n− 2)

5. y(n) =
∑4

m=0
(0.8)mx(n−m) −

∑4

�=1
(0.9)�y(n− �)

P4.19 The output sequence y(n) in Problem P4.18 is the total response. For each of the systems
given in Problem P4.18, separate y(n) into (i) the homogeneous part, (ii) the particular
part, (iii) the transient response, and (iv) the steady-state response.

P4.20 A stable system has four zeros and four poles as given here:

zeros: ± 1, ±j1 Poles: ± 0.9, ±j0.9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Problems 139

It is also known that the frequency response function H(ejω) evaluated at ω = π/4 is equal
to 1, i.e.,

H(ejπ/4) = 1

1. Determine the system function H(z), and indicate its region of convergence.
2. Determine the difference equation representation.
3. Determine the steady-state response yss(n) if the input is x(n) = cos(πn/4)u(n).
4. Determine the transient response ytr(n) if the input is x(n) = cos(πn/4)u(n).

P4.21 A digital filter is described by the frequency response function

H(ejω) = [1 + 2 cos(ω) + 3 cos(2ω)] cos
(
ω

2

)
e−j5ω/2

1. Determine the difference equation representation.
2. Using the freqz function, plot the magnitude and phase of the frequency response of the

filter. Note the magnitude and phase at ω = π/2 and at ω = π.
3. Generate 200 samples of the signal x(n) = sin(πn/2) + 5 cos(πn), and process through

the filter to obtain y(n). Compare the steady-state portion of y(n) to x(n). How are the
amplitudes and phases of two sinusoids affected by the filter?

P4.22 Repeat Problem 4.21 for the following filter

H(ejω) =
1 + e−j4ω

1 − 0.8145e−j4ω

P4.23 Solve the following difference equation for y(n) using the one-sided z-transform approach.

y(n) = 0.81y(n− 2) + x(n) − x(n− 1), n ≥ 0; y(−1) = 2, y(−2) = 2
x(n) = (0.7)nu(n + 1)

Generate the first 20 samples of y(n) using MATLAB, and compare them with your answer.

P4.24 Solve the difference equation for y(n), n ≥ 0

y(n) − 0.4y(n− 1) − 0.45y(n− 2) = 0.45x(n) + 0.4x(n− 1) − x(n− 2)

driven by the input x(n) =
[
2 +

(
1
2

)n]
u(n) and subject to

y(−1) = 0, y(−2) = 3; x(−1) = x(−2) = 2

Decompose the solution y(n) into (i) transient response, (ii) steady-state response, (iii)
zero-input response, and (iv) zero-state response.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

140 Chapter 4 THE z-TRANSFORM

P4.25 A stable, linear and time-invariant system is given by the following system function

H(z) =
4z2 − 2

√
2z + 1

z2 − 2
√

2z + 4

1. Determine the difference equation representation for this system.
2. Plot the poles and zeros of H(z), and indicate the ROC.
3. Determine the unit sample response h(n) of this system.
4. Is this system causal? If the answer is yes, justify it. If the answer is no, find a causal

unit sample response that satisfies the system function.

P4.26 Determine the zero-input, zero-state, and steady-state responses of the system

y(n) = 0.9801y(n− 2) + x(n) + 2x(n− 1) + x(n− 2), n ≥ 0; y(−2) = 1, y(−1) = 0

to the input x(n) = 5(−1)nu(n).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

