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C H A P T E R 5
The Discrete
Fourier Transform

In Chapters 3 and 4 we studied transform-domain representations of dis-
crete signals. The discrete-time Fourier transform provided the frequency-
domain (ω) representation for absolutely summable sequences. The
z-transform provided a generalized frequency-domain (z) representation
for arbitrary sequences. These transforms have two features in common.
First, the transforms are defined for infinite-length sequences. Second,
and the most important, they are functions of continuous variables (ω
or z). From the numerical computation viewpoint (or from MATLAB’s
viewpoint), these two features are troublesome because one has to evalu-
ate infinite sums at uncountably infinite frequencies. To use MATLAB, we
have to truncate sequences and then evaluate the expressions at finitely
many points. This is what we did in many examples in the two previous
chapters. The evaluations were obviously approximations to the exact
calculations. In other words, the discrete-time Fourier transform and the
z-transform are not numerically computable transforms.

Therefore we turn our attention to a numerically computable trans-
form. It is obtained by sampling the discrete-time Fourier transform in the
frequency domain (or the z-transform on the unit circle). We develop this
transform by first analyzing periodic sequences. From Fourier analysis we
know that a periodic function (or sequence) can always be represented by
a linear combination of harmonically related complex exponentials (which
is a form of sampling). This gives us the discrete Fourier series (DFS) rep-
resentation. Since the sampling is in the frequency domain, we study the
effects of sampling in the time domain and the issue of reconstruction in
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142 Chapter 5 THE DISCRETE FOURIER TRANSFORM

the z-domain. We then extend the DFS to finite-duration sequences, which
leads to a new transform, called the discrete Fourier transform (DFT).
The DFT avoids the two problems mentioned and is a numerically com-
putable transform that is suitable for computer implementation. We study
its properties and its use in system analysis in detail. The numerical com-
putation of the DFT for long sequences is prohibitively time-consuming.
Therefore several algorithms have been developed to efficiently compute
the DFT. These are collectively called fast Fourier transform (or FFT)
algorithms. We will study two such algorithms in detail.

5.1 THE DISCRETE FOURIER SERIES

In Chapter 2 we defined the periodic sequence by x̃(n), satisfying the
condition

x̃(n) = x̃(n + kN), ∀n, k (5.1)

where N is the fundamental period of the sequence. From Fourier analysis
we know that the periodic functions can be synthesized as a linear com-
bination of complex exponentials whose frequencies are multiples (or har-
monics) of the fundamental frequency (which in our case is 2π/N). From
the frequency-domain periodicity of the discrete-time Fourier transform,
we conclude that there are a finite number of harmonics; the frequencies
are { 2π

N k, k = 0, 1, . . . , N − 1}. Therefore a periodic sequence x̃(n) can
be expressed as

x̃(n) =
1
N

N−1∑
k=0

X̃(k)ej
2π
N kn, n = 0,±1, . . . , (5.2)

where {X̃(k), k = 0,±1, . . . , } are called the discrete Fourier series co-
efficients, which are given by

X̃(k) =
N−1∑
n=0

x̃(n)e−j 2π
N nk, k = 0,±1, . . . , (5.3)

Note that X̃(k) is itself a (complex-valued) periodic sequence with fun-
damental period equal to N , that is,

X̃(k + N) = X̃(k) (5.4)

The pair of equations (5.3) and (5.2), taken together, is called the discrete
Fourier series representation of periodic sequences. Using WN

�
= e−j 2π

N to
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The Discrete Fourier Series 143

denote the complex exponential term, we express (5.3) and (5.2) as

X̃(k)
�
= DFS[x̃(n)] =

N−1∑
n=0

x̃(n)Wnk
N : Analysis or a

DFS equation

x̃(n)
�
= IDFS[X̃(k)] =

1
N

N−1∑
k=0

X̃(k)W−nk
N : Synthesis or an inverse

DFS equation
(5.5)

� EXAMPLE 5.1 Find DFS representation of the periodic sequence

x̃(n) = {. . . , 0, 1, 2, 3, 0
↑
, 1, 2, 3, 0, 1, 2, 3, . . .}

Solution The fundamental period of this sequence is N = 4. Hence W4 = e−j 2π
4 =

−j. Now

X̃(k) =

3∑
n=0

x̃(n)Wnk
4 , k = 0,±1,±2, . . .

Hence

X̃(0) =

3∑
0

x̃(n)W 0·n
4 =

3∑
0

x̃(n) = x̃(0) + x̃(1) + x̃(2) + x̃(3) = 6

Similarly,

X̃(1) =

3∑
0

x̃(n)Wn
4 =

3∑
0

x̃(n)(−j)n = (−2 + 2j)

X̃(2) =

3∑
0

x̃(n)W 2n
4 =

3∑
0

x̃(n)(−j)2n = 2

X̃(3) =

3∑
0

x̃(n)W 3n
4 =

3∑
0

x̃(n)(−j)3n = (−2 − 2j)

�

5.1.1 MATLAB IMPLEMENTATION
A careful look at (5.5) reveals that the DFS is a numerically computable
representation. It can be implemented in many ways. To compute each
sample X̃(k), we can implement the summation as a for...end loop.
To compute all DFS coefficients would require another for...end loop.
This will result in a nested two for...end loop implementation. This is
clearly inefficient in MATLAB. An efficient implementation in MATLAB
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144 Chapter 5 THE DISCRETE FOURIER TRANSFORM

would be to use a matrix-vector multiplication for each of the relations
in (5.5). We have used this approach earlier in implementing a numerical
approximation to the discrete-time Fourier transform. Let x̃ and X̃ denote
column vectors corresponding to the primary periods of sequences x̃(n)
and X̃(k), respectively. Then (5.5) is given by

X̃ = WN x̃

x̃ =
1
N

W∗
NX̃

(5.6)

where the matrix WN is given by

WN
�
=
[
W kn

N 0≤k,n≤N−1

]
= k

↓

n −→


1 1 · · · 1

1 W 1
N · · · W

(N−1)
N

...
...

. . .
...

1 W
(N−1)
N · · · W (N−1)2

N




(5.7)

The matrix WN is a square matrix and is called a DFS matrix. The
following MATLAB function dfs implements this procedure.

function [Xk] = dfs(xn,N)

% Computes Discrete Fourier Series Coefficients

% ---------------------------------------------

% [Xk] = dfs(xn,N)

% Xk = DFS coeff. array over 0 <= k <= N-1

% xn = One period of periodic signal over 0 <= n <= N-1

% N = Fundamental period of xn

%

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2*pi/N); % Wn factor

nk = n’*k; % creates a N by N matrix of nk values

WNnk = WN .^ nk; % DFS matrix

Xk = xn * WNnk; % row vector for DFS coefficients

The DFS in Example 5.1 can be computed using MATLAB as

>> xn = [0,1,2,3]; N = 4; Xk = dfs(xn,N)

Xk =

6.0000 -2.0000 + 2.0000i -2.0000 - 0.0000i -2.0000 - 2.0000i
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The Discrete Fourier Series 145

The following idfs function implements the synthesis equation.

function [xn] = idfs(Xk,N)

% Computes Inverse Discrete Fourier Series

% ----------------------------------------

% [xn] = idfs(Xk,N)

% xn = One period of periodic signal over 0 <= n <= N-1

% Xk = DFS coeff. array over 0 <= k <= N-1

% N = Fundamental period of Xk

%

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2*pi/N); % Wn factor

nk = n’*k; % creates a N by N matrix of nk values

WNnk = WN .^ (-nk); % IDFS matrix

xn = (Xk * WNnk)/N; % row vector for IDFS values

Caution: These functions are efficient approaches of implementing (5.5)
in MATLAB. They are not computationally efficient, especially for large
N . We will deal with this problem later in this chapter.

� EXAMPLE 5.2 A periodic “square wave” sequence is given by

x̃(n) =

{
1, mN ≤ n ≤ mN + L− 1

0, mN + L ≤ n ≤ (m + 1)N − 1
; m = 0,±1,±2, . . .

where N is the fundamental period and L/N is the duty cycle.

a. Determine an expression for |X̃(k)| in terms of L and N .
b. Plot the magnitude |X̃(k)| for L = 5, N = 20; L = 5, N = 40; L = 5,

N = 60; and L = 7, N = 60.
c. Comment on the results.

Solution A plot of this sequence for L = 5 and N = 20 is shown in Figure 5.1.
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FIGURE 5.1 Periodic square wave sequence
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146 Chapter 5 THE DISCRETE FOURIER TRANSFORM

a. By applying the analysis equation (5.3),

X̃(k) =

N−1∑
n=0

x̃(n)e−j 2π
N

nk =

L−1∑
n=0

e−j 2π
N

nk =

L−1∑
n=0

(
e−j 2π

N
k
)n

=




L, k = 0,±N,±2N, . . .

1 − e−j2πLk/N

1 − e−j2πk/N
, otherwise

The last step follows from the sum of the geometric terms formula (2.7) in
Chapter 2. The last expression can be simplified to

1 − e−j2πLk/N

1 − e−j2πk/N
=

e−jπLk/N

e−jπk/N

ejπLk/N − e−jπLk/N

ejπk/N − e−jπk/N

= e−jπ(L−1)k/N sin (πkL/N)

sin (πk/N)

or the magnitude of X̃(k) is given by

∣∣X̃(k)
∣∣ =




L, k = 0,±N,±2N, . . .∣∣∣∣
sin (πkL/N)

sin (πk/N)

∣∣∣∣ , otherwise

b. The MATLAB script for L = 5 and N = 20:

>> L = 5; N = 20; k = [-N/2:N/2]; % Sq wave parameters

>> xn = [ones(1,L), zeros(1,N-L)]; % Sq wave x(n)

>> Xk = dfs(xn,N); % DFS

>> magXk = abs([Xk(N/2+1:N) Xk(1:N/2+1)]); % DFS magnitude

>> subplot(2,2,1); stem(k,magXk); axis([-N/2,N/2,-0.5,5.5])

>> xlabel(’k’); ylabel(’Xtilde(k)’)

>> title(’DFS of SQ. wave: L=5, N=20’)

The plots for this and all other cases are shown in Figure 5.2. Note that
since X̃(k) is periodic, the plots are shown from −N/2 to N/2.

c. Several interesting observations can be made from plots in Figure 5.2. The
envelopes of the DFS coefficients of square waves look like “sinc” functions.
The amplitude at k = 0 is equal to L, while the zeros of the functions are
at multiples of N/L, which is the reciprocal of the duty cycle. We will study
these functions later in this chapter. �

5.1.2 RELATION TO THE z-TRANSFORM
Let x(n) be a finite-duration sequence of duration N such that

x(n) =

{
Nonzero, 0 ≤ n ≤ N − 1

0, Elsewhere
(5.8)
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FIGURE 5.2 The DFS plots of a periodic square wave for various L and N

Then we can compute its z-transform:

X(z) =
N−1∑
n=0

x(n)z−n (5.9)

Now we construct a periodic sequence x̃(n) by periodically repeating x(n)
with period N , that is,

x(n) =

{
x̃(n), 0 ≤ n ≤ N − 1

0, Elsewhere
(5.10)

The DFS of x̃(n) is given by

X̃(k) =
N−1∑
n=0

x̃(n)e−j 2π
N nk =

N−1∑
n=0

x(n)
[
ej

2π
N k
]−n

(5.11)

Comparing it with (5.9), we have

X̃(k) = X(z)|
z=e

j 2π
N

k (5.12)

which means that the DFS X̃(k) represents N evenly spaced samples of
the z-transform X(z) around the unit circle.
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148 Chapter 5 THE DISCRETE FOURIER TRANSFORM

5.1.3 RELATION TO THE DTFT
Since x(n) in (5.8) is of finite duration of length N , it is also absolutely
summable. Hence its DTFT exists and is given by

X(ejω) =
N−1∑
n=0

x(n)e−jωn =
N−1∑
n=0

x̃(n)e−jωn (5.13)

Comparing (5.13) with (5.11), we have

X̃(k) = X(ejω)
∣∣
ω= 2π

N k
(5.14)

Let
ω1

�
=

2π
N

and ωk
�
=

2π
N

k = kω1

Then the DFS X(k) = X(ejωk) = X(ejkω1), which means that the DFS is
obtained by evenly sampling the DTFT at ω1 = 2π

N intervals. From (5.12)
and (5.14) we observe that the DFS representation gives us a sampling
mechanism in the frequency domain that, in principle, is similar to sam-
pling in the time domain. The interval ω1 = 2π

N is the sampling interval
in the frequency domain. It is also called the frequency resolution because
it tells us how close the frequency samples (or measurements) are.

� EXAMPLE 5.3 Let x(n) = {0
↑
, 1, 2, 3}.

a. Compute its discrete-time Fourier transform X(ejω).
b. Sample X(ejω) at kω1 = 2π

4
k, k = 0, 1, 2, 3 and show that it is equal to

X̃(k) in Example 5.1.

Solution The sequence x(n) is not periodic but is of finite duration.

a. The discrete-time Fourier transform is given by

X(ejω) =

∞∑
n=−∞

x(n)e−jωn = e−jω + 2e−j2ω + 3e−j3ω

b. Sampling at kω1 = 2π
4
k, k = 0, 1, 2, 3, we obtain

X(ej0) = 1 + 2 + 3 = 6 = X̃(0)

X(ej2π/4) = e−j2π/4 + 2e−j4π/4 + 3e−j6π/4 = −2 + 2j = X̃(1)

X(ej4π/4) = e−j4π/4 + 2e−j8π/4 + 3e−j12π/4 = 2 = X̃(2)

X(ej6π/4) = e−j6π/4 + 2e−j12π/4 + 3e−j18π/4 = −2 − 2j = X̃(3)

as expected. �
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5.2 SAMPLING AND RECONSTRUCTION IN THE z-DOMAIN

Let x(n) be an arbitrary absolutely summable sequence, which may be of
infinite duration. Its z-transform is given by

X(z) =
∞∑

m=−∞
x(m)z−m

and we assume that the ROC of X (z) includes the unit circle. We sample
X(z) on the unit circle at equispaced points separated in angle by ω1 =
2π/N and call it a DFS sequence,

X̃(k)
�
= X(z)|

z=e
j 2π

N
k, k = 0,±1,±2, . . .

=
∞∑

m=−∞
x(m)e−j 2π

N km =
∞∑

m=−∞
x(m)W km

N (5.15)

which is periodic with period N . Finally, we compute the IDFS of X̃(k),

x̃(n) = IDFS
[
X̃(k)

]

which is also periodic with period N . Clearly, there must be a relationship
between the arbitrary x(n) and the periodic x̃(n). This is an important
issue. In order to compute the inverse DTFT or the inverse z-transform
numerically, we must deal with a finite number of samples of X(z) around
the unit circle. Therefore we must know the effect of such sampling on
the time-domain sequence. This relationship is easy to obtain.

x̃(n) =
1
N

N−1∑
k=0

X̃(k)W−kn
N [from (5.2)]

=
1
N

N−1∑
k=0

{ ∞∑
m=−∞

x(m)W km
N

}
W−kn

N [from (5.15)]

or

x̃(n) =
∞∑

m=−∞
x(m)

1
N

N−1∑
0

W
−k(n−m)
N

︸ ︷︷ ︸
=

{
1, n−m = rN
0, elsewhere

=

=
∞∑

r=−∞

∞∑
m=−∞

x(m)δ(n−m− rN)

∞∑
m=−∞

x(m)
∞∑

r=−∞
δ(n−m−rN)
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150 Chapter 5 THE DISCRETE FOURIER TRANSFORM

or

x̃(n) =
∞∑

r=−∞
x(n− rN) = · · ·+x(n+N) +x(n) +x(n−N) + · · · (5.16)

which means that when we sample X(z) on the unit circle, we obtain a
periodic sequence in the time domain. This sequence is a linear combina-
tion of the original x(n) and its infinite replicas, each shifted by multiples
of ±N . This is illustrated in Example 5.5. From (5.16), we observe that if
x(n) = 0 for n < 0 and n ≥ N , then there will be no overlap or aliasing in
the time domain. Hence we should be able to recognize and recover x(n)
from x̃(n), that is,

x(n) = x̃(n) for 0 ≤ n ≤ (N − 1)

or

x(n) = x̃(n)RN (n) =

{
x̃(n), 0 ≤ n ≤ N − 1
0, else

where RN (n) is called a rectangular window of length N . Therefore we
have the following theorem.

THEOREM 1 Frequency Sampling
If x(n) is time-limited (i.e., of finite duration) to [0, N − 1], then N

samples of X(z) on the unit circle determine X(z) for all z.

� EXAMPLE 5.4 Let x1(n) = {6
↑
, 5, 4, 3, 2, 1}. Its DTFT X1(e

jω) is sampled at

ωk =
2πk

4
, k = 0,±1,±2,±3, . . .

to obtain a DFS sequence X̃2(k). Determine the sequence x̃2(n), which is the
inverse DFS of X̃2(k).

Solution Without computing the DTFT, the DFS, or the inverse DFS, we can evaluate
x̃2(n) by using the aliasing formula (5.16).

x̃2(n) =

∞∑
r=−∞

x1(n− 4r)

Thus x(4) is aliased into x(0), and x(5) is aliased into x(1). Hence

x̃2(n) = {. . . , 8, 6, 4, 3, 8
↑
, 6, 4, 3, 8, 6, 4, 3, . . .} �
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Sampling and Reconstruction in the z-Domain 151

� EXAMPLE 5.5 Let x(n) = (0.7)n u(n). Sample its z-transform on the unit circle with N = 5,
10, 20, 50 and study its effect in the time domain.

Solution From Table 4.1 the z-transform of x(n) is

X(z) =
1

1 − 0.7z−1
=

z

z − 0.7
, |z| > 0.7

We can now use MATLAB to implement the sampling operation

X̃(k) = X(z)|z=ej2πk/N , k = 0,±1,±2, . . .

and the inverse DFS computation to determine the corresponding time-domain
sequence. The MATLAB script for N = 5 is as follows.

>> N = 5; k = 0:1:N-1; % sample index

>> wk = 2*pi*k/N; zk = exp(j*wk); % samples of z

>> Xk = (zk)./(zk-0.7); % DFS as samples of X(z)

>> xn = real(idfs(Xk,N)); % IDFS

>> xtilde = xn’* ones(1,8); xtilde = (xtilde(:))’; % Periodic sequence

>> subplot(2,2,1); stem(0:39,xtilde);axis([0,40,-0.1,1.5])

>> xlabel(’n’); ylabel(’xtilde(n)’); title(’N=5’)

The plots in Figure 5.3 clearly demonstrate the aliasing in the time domain,
especially for N = 5 and N = 10. For large values of N the tail end of x(n)
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152 Chapter 5 THE DISCRETE FOURIER TRANSFORM

is sufficiently small to result in any appreciable amount of aliasing in practice.
Such information is useful in effectively truncating an infinite-duration sequence
prior to taking its transform. �

5.2.1 THE z-TRANSFORM RECONSTRUCTION FORMULA
Let x(n) be time-limited to [0, N − 1]. Then from Theorem 1 we should
be able to recover the z-transform X(z) using its samples X̃(k). This is
given by

X(z) = Z [x(n)] = Z [x̃(n)RN (n)]

= Z[ IDFS{ X̃(k)︸ ︷︷ ︸
Samples of X(z)

}RN (n)]

This approach results in the z-domain reconstruction formula.

X(z) =
N−1∑

0

x(n)z−n =
N−1∑

0

x̃(n)z−n

=
N−1∑

0

{
1
N

N−1∑
0

X̃(k)W−kn
N

}
z−n

=
1
N

N−1∑
k=0

X̃(k)

{
N−1∑

0

W−kn
N z−n

}

=
1
N

N−1∑
k=0

X̃(k)

{
N−1∑

0

(
W−k

N z−1
)n
}

=
1
N

N−1∑
k=0

X̃(k)

{
1 −W−kN

N z−N

1 −W−k
N z−1

}

Since W−kN
N = 1, we have

X(z) =
1 − z−N

N

N−1∑
k=0

X̃(k)
1 −W−k

N z−1
(5.17)

5.2.2 THE DTFT INTERPOLATION FORMULA
The reconstruction formula (5.17) can be specialized for the discrete-time
Fourier transform by evaluating it on the unit circle z = ejω. Then

X(ejω) =
1 − e−jωN

N

N−1∑
k=0

X̃(k)
1 − ej2πk/Ne−jω

=
N−1∑
k=0

X̃(k)
1 − e−jωN

N
{
1 − ej2πk/Ne−jω

}
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Consider

1 − e−jωN

N
{
1 − ej2πk/Ne−jω

} =
1 − e−j(ω− 2πk

N )N

N
{

1 − e−j(ω− 2πk
N )

}

=
e−j N

2 (ω− 2πk
N )

e−
1
2 j(ω− 2πk

N )

{
sin

[
(ω − 2πk

N )N2
]

N sin
[
(ω − 2πk

N ) 1
2

]
}

Let

Φ(ω)
�
=

sin(ωN
2 )

N sin(ω2 )
e−jω(N−1

2 ) : an interpolating function (5.18)

Then

X(ejω) =
N−1∑
k=0

X̃(k)Φ
(
ω − 2πk

N

)
(5.19)

This is the DTFT interpolation formula to reconstruct X(ejω) from its
samples X̃ (k). Since Φ(0) = 1, we have that X(ej2πk/N ) = X̃(k), which
means that the interpolation is exact at sampling points. Recall the
time-domain interpolation formula (3.33) for analog signals:

xa(t) =
∞∑

n=−∞
x(n) sinc [Fs(t− nTs)] (5.20)

The DTFT interpolating formula (5.19) looks similar.
However, there are some differences. First, the time-domain formula

(5.20) reconstructs an arbitrary nonperiodic analog signal, while the
frequency-domain formula (5.19) gives us a periodic waveform. Second, in
(5.19) we use a sin(Nx)

N sin x interpolation function instead of our more familiar
sin x
x (sinc) function. The Φ(ω) function is a periodic function and hence

is known as a periodic-sinc function. It is also known as the Dirichlet
function. This is the function we observed in Example 5.2.

5.2.3 MATLAB IMPLEMENTATION
The interpolation formula (5.19) suffers the same fate as that of (5.20)
while trying to implement it in practice. One has to generate several inter-
polating functions (5.18) and perform their linear combinations to obtain
the discrete-time Fourier transform X(ejω) from its computed samples
X̃(k). Furthermore, in MATLAB we have to evaluate (5.19) on a finer grid
over 0 ≤ ω ≤ 2π. This is clearly an inefficient approach. Another approach
is to use the cubic spline interpolation function as an efficient approxi-
mation to (5.19). This is what we did to implement (5.20) in Chapter 3.
However, there is an alternate and efficient approach based on the DFT,
which we will study in the next section.
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5.3 THE DISCRETE FOURIER TRANSFORM

The discrete Fourier series provides a mechanism for numerically comput-
ing the discrete-time Fourier transform. It also alerted us to a potential
problem of aliasing in the time domain. Mathematics dictates that the
sampling of the discrete-time Fourier transform result in a periodic se-
quence x̃(n). But most of the signals in practice are not periodic. They
are likely to be of finite duration. How can we develop a numerically com-
putable Fourier representation for such signals? Theoretically, we can take
care of this problem by defining a periodic signal whose primary shape is
that of the finite-duration signal and then using the DFS on this periodic
signal. Practically, we define a new transform called the discrete Fourier
transform (DFT), which is the primary period of the DFS. This DFT
is the ultimate numerically computable Fourier transform for arbitrary
finite-duration sequences.

First we define a finite-duration sequence x(n) that has N samples
over 0 ≤ n ≤ N − 1 as an N -point sequence. Let x̃(n) be a periodic signal
of period N , created using the N -point sequence x(n); that is, from (5.19)

x̃(n) =
∞∑

r=−∞
x(n− rN)

This is a somewhat cumbersome representation. Using the modulo-N
operation on the argument we can simplify it to

x̃(n) = x(nmodN) (5.21)

A simple way to interpret this operation is the following: if the argument
n is between 0 and N − 1, then leave it as it is; otherwise add or sub-
tract multiples of N from n until the result is between 0 and N − 1. Note
carefully that (5.21) is valid only if the length of x(n) is N or less. Further-
more, we use the following convenient notation to denote the modulo-N
operation.

x((n))N
�
= x(nmodN) (5.22)

Then the compact relationships between x(n) and x̃(n) are

x̃(n) = x((n))N (Periodic extension)

x(n) = x̃(n)RN (n) (Window operation)
(5.23)

The rem(n,N) function in MATLAB determines the remainder after di-
viding n by N . This function can be used to implement our modulo-N
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operation when n ≥ 0. When n < 0, we need to modify the result to
obtain correct values. This is shown below in the m=mod(n,N) function.

function m = mod(n,N)

% Computes m = (n mod N) index

% ----------------------------

% m = mod(n,N)

m = rem(n,N); m = m+N; m = rem(m,N);

In this function n can be any integer array, and the array m contains the
corresponding modulo-N values.

From the frequency sampling theorem we conclude that N equispaced
samples of the discrete-time Fourier transform X(ejω) of the N -point se-
quence x(n) can uniquely reconstruct X(ejω). These N samples around
the unit circle are called the discrete Fourier transform coefficients. Let
X̃(k) = DFS x̃(n), which is a periodic (and hence of infinite duration)
sequence. Its primary interval then is the discrete Fourier transform,
which is of finite duration. These notions are made clear in the follow-
ing definitions. The Discrete Fourier Transform of an N -point sequence is
given by

X(k)
�
= DFT [x(n)] =

{
X̃(k), 0 ≤ k ≤ N − 1
0, elsewhere

= X̃(k)RN (k)

or

X(k) =
N−1∑
n=0

x(n)Wnk
N , 0 ≤ k ≤ N − 1 (5.24)

Note that the DFT X(k) is also an N -point sequence, that is, it is
not defined outside of 0 ≤ k ≤ N − 1. From (5.23) X̃(k) = X((k))N ;
that is, outside the 0 ≤ k ≤ N − 1 interval only the DFS X̃(k) is de-
fined, which of course is the periodic extension of X(k). Finally, X(k) =
X̃(k)RN (k) means that the DFT X(k) is the primary interval of X̃(k).

The inverse discrete Fourier transform of an N -point DFT X(k) is
given by

x(n)
�
= IDFT [X(k)] = x̃(n)RN (n)

or

x(n) =
1
N

N−1∑
k=0

X(k)W−kn
N , 0 ≤ n ≤ N − 1 (5.25)

Once again x(n) is not defined outside 0 ≤ n ≤ N − 1. The extension of
x (n) outside this range is x̃(n).
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5.3.1 MATLAB IMPLEMENTATION
It is clear from the discussions at the top of this section that the DFS is
practically equivalent to the DFT when 0 ≤ n ≤ N − 1. Therefore the
implementation of the DFT can be done in a similar fashion. If x(n) and
X(k) are arranged as column vectors x and X, respectively, then from
(5.24) and (5.25) we have

X = WNx

x =
1
N

W∗
NX

(5.26)

where WN is the matrix defined in (5.7) and will now be called a DFT
matrix. Hence the earlier dfs and idfs MATLAB functions can be re-
named as the dft and idft functions to implement the discrete Fourier
transform computations.

function [Xk] = dft(xn,N)

% Computes Discrete Fourier Transform

% -----------------------------------

% [Xk] = dft(xn,N)

% Xk = DFT coeff. array over 0 <= k <= N-1

% xn = N-point finite-duration sequence

% N = Length of DFT

%

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2*pi/N); % Wn factor

nk = n’*k; % creates a N by N matrix of nk values

WNnk = WN .^ nk; % DFT matrix

Xk = xn * WNnk; % row vector for DFT coefficients

function [xn] = idft(Xk,N)

% Computes Inverse Discrete Transform

% -----------------------------------

% [xn] = idft(Xk,N)

% xn = N-point sequence over 0 <= n <= N-1

% Xk = DFT coeff. array over 0 <= k <= N-1

% N = length of DFT

%

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2*pi/N); % Wn factor

nk = n’*k; % creates a N by N matrix of nk values

WNnk = WN .^ (-nk); % IDFT matrix

xn = (Xk * WNnk)/N; % row vector for IDFT values
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� EXAMPLE 5.6 Let x(n) be a 4-point sequence:

x(n) =

{
1, 0 ≤ n ≤ 3

0, otherwise

a. Compute the discrete-time Fourier transform X(ejω) and plot its magni-
tude and phase.

b. Compute the 4-point DFT of x(n).

Solution a. The discrete-time Fourier transform is given by

X(ejω) =

3∑
0

x(n)e−jωn = 1 + e−jω + e−j2ω + e−j3ω

=
1 − e−j4ω

1 − e−jω
=

sin(2ω)

sin(ω/2)
e−j3ω/2

Hence

∣∣X(ejω)
∣∣ =

∣∣∣∣
sin(2ω)

sin(ω/2)

∣∣∣∣
and

� X(ejω) =




−3ω

2
, when

sin(2ω)

sin(ω/2)
> 0

−3ω

2
± π, when

sin(2ω)

sin(ω/2)
< 0

The plots are shown in Figure 5.4.

b. Let us denote the 4-point DFT by X4 (k). Then

X4(k) =

3∑
n=0

x(n)Wnk
4 ; k = 0, 1, 2, 3; W4 = e−j2π/4 = −j

These calculations are similar to those in Example 5.1. We can also use
MATLAB to compute this DFT.

>> x = [1,1,1,1]; N = 4; X = dft(x,N);

>> magX = abs(X), phaX = angle(X)*180/pi

magX =

4.0000 0.0000 0.0000 0.0000

phaX =

0 -134.9810 -90.0000 -44.9979

Hence

X4(k) = {4
↑
, 0, 0, 0}

Note that when the magnitude sample is zero, the corresponding angle is not
zero. This is due to a particular algorithm used by MATLAB to compute the
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FIGURE 5.4 The DTFT plots in Example 5.6

angle part. Generally these angles should be ignored. The plot of DFT values
is shown in Figure 5.5. The plot of X(ejω) is also shown as a dashed line for
comparison. From the plot in Figure 5.5 we observe that X4 correctly gives
4 samples of X(ejω), but it has only one nonzero sample. Is this surprising? By
looking at the 4-point x(n), which contains all 1’s, one must conclude that its
periodic extension is

x̃(n) = 1, ∀n

which is a constant (or a DC) signal. This is what is predicted by the DFT
X4(k), which has a nonzero sample at k = 0 (or ω = 0) and has no values at
other frequencies. �

� EXAMPLE 5.7 How can we obtain other samples of the DTFT X(ejω)?

Solution It is clear that we should sample at dense (or finer) frequencies; that is, we
should increase N . Suppose we take twice the number of points, or N = 8
instead of 4. This we can achieve by treating x(n) as an 8-point sequence by
appending 4 zeros.

x(n) = {1
↑
, 1, 1, 1, 0, 0, 0, 0}
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FIGURE 5.5 The DFT plots of Example 5.6

This is a very important operation called a zero-padding operation. This oper-
ation is necessary in practice to obtain a dense spectrum of signals as we shall
see. Let X8 (k) be an 8-point DFT, then

X8 (k) =

7∑
n=0

x(n)Wnk
8 ; k = 0, 1, . . . , 7; W8 = e−jπ/4

In this case the frequency resolution is ω1 = 2π/8 = π/4.

MATLAB script:

>> x = [1,1,1,1, zeros(1,4)]; N = 8; X = dft(x,N);

>> magX = abs(X), phaX = angle(X)*180/pi

magX =

4.0000 2.6131 0.0000 1.0824 0.0000 1.0824 0.0000 2.6131

phaX =

0 -67.5000 -134.9810 -22.5000 -90.0000 22.5000 -44.9979 67.5000

Hence

X8 (k) = {4
↑
, 2.6131e−j67.5◦ , 0, 1.0824e−j22.5◦ , 0, 1.0824ej22.5

◦
,

0, 2.6131ej67.5
◦
}
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FIGURE 5.6 The DFT plots of Example 5.7: N = 8

which is shown in Figure 5.6. Continuing further, if we treat x(n) as a 16-point
sequence by padding 12 zeros, such that

x(n) = {1
↑
, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

then the frequency resolution is ω1 = 2π/16 = π/8 and W16 = e−jπ/8. Therefore
we get a more dense spectrum with spectral samples separated by π/8. The
sketch of X16 (k) is shown in Figure 5.7.

It should be clear then that if we obtain many more spectral samples by
choosing a large N value then the resulting DFT samples will be very close to
each other and we will obtain plot values similar to those in Figure 5.4. However,
the displayed stem-plots will be dense. In this situation a better approach to
display samples is to either show them using dots or join the sample values using
the plot command (that is, using the FOH studied in Chapter 3). Figure 5.8
shows the magnitude and phase of the 128-point DFT x128(k) obtained by
padding 120 zeros. The DFT magnitude plot overlaps the DTFT magnitude plot
shown as dotted-line while the phase plot shows discrepancy at discontinuities
due to finite N value, which should be expected. �

Comments: Based on the last two examples there are several comments
that we can make.
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FIGURE 5.7 The DFT plots of Example 5.7: N = 16

1. Zero-padding is an operation in which more zeros are appended to the
original sequence. The resulting longer DFT provides closely spaced
samples of the discrete-time Fourier transform of the original sequence.
In MATLAB zero-padding is implemented using the zeros function.

2. In Example 5.6 all we needed to accurately plot the discrete-time
Fourier transform X(ejω) of x(n) was X4 (k), the 4-point DFT. This
is because x(n) had only 4 nonzero samples, so we could have used the
interpolation formula (5.19) on X4 (k) to obtain X(ejω). However, in
practice, it is easier to obtain X8 (k) and X16 (k), and so on, to fill in
the values of X(ejω) rather than using the interpolation formula. This
approach can be made even more efficient using fast Fourier transform
algorithms to compute the DFT.

3. The zero-padding gives us a high-density spectrum and provides a better
displayed version for plotting. But it does not give us a high-resolution
spectrum because no new information is added to the signal; only ad-
ditional zeros are added in the data.

4. To get a high-resolution spectrum, one has to obtain more data from
the experiment or observations (see Example 5.8 below). There are
also other advanced methods that use additional side information or
nonlinear techniques.
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FIGURE 5.8 The DFT plots of Example 5.7 for N = 128 are shown as line
plots

� EXAMPLE 5.8 To illustrate the difference between the high-density spectrum and the
high-resolution spectrum, consider the sequence

x(n) = cos (0.48πn) + cos (0.52πn)

We want to determine its spectrum based on the finite number of samples.

a. Determine and plot the discrete-time Fourier transform of x(n), 0 ≤ n ≤ 10.
b. Determine and plot the discrete-time Fourier transform of x(n),

0 ≤ n ≤ 100.

Solution We could determine analytically the discrete-time Fourier transform in each
case, but MATLAB is a good vehicle to study these problems.

a. We can first determine the 10-point DFT of x(n) to obtain an estimate of its
discrete-time Fourier transform.
MATLAB Script:

>> n = [0:1:99]; x = cos(0.48*pi*n)+cos(0.52*pi*n);

>> n1 = [0:1:9] ;y1 = x(1:1:10);

>> subplot(2,1,1) ;stem(n1,y1); title(’signal x(n), 0 <= n <= 9’);xlabel(’n’)
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FIGURE 5.9 Signal and its spectrum in Example 5.8a: N = 10

>> Y1 = dft(y1,10); magY1 = abs(Y1(1:1:6));

>> k1 = 0:1:5 ;w1 = 2*pi/10*k1;

>> subplot(2,1,2);stem(w1/pi,magY1);title(’Samples of DTFT Magnitude’);

>> xlabel(’frequency in pi units’)

The plots in Figure 5.9 show there aren’t enough samples to draw any conclu-
sions. Therefore we will pad 90 zeros to obtain a dense spectrum. As explained
in Example 5.7, this spectrum is plotted using the plot command.

MATLAB Script:

>> n2 = [0:1:99]; y2 = [x(1:1:10) zeros(1,90)];

>> subplot(2,1,1) ;stem(n2,y2) ;title(’signal x(n), 0 <= n <= 9 + 90 zeros’);

>> xlabel(’n’)

>> Y2 =dft(y2,100); magY2 = abs(Y2(1:1:51));

>> k2 = 0:1:50; w2 = 2*pi/100*k2;

>> subplot(2,1,2); plot(w3/pi,magY3); title(’DTFT Magnitude’);

>> xlabel(’frequency in pi units’)

Now the plot in Figure 5.10 shows that the sequence has a dominant frequency
at ω = 0.5π. This fact is not supported by the original sequence, which has two
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FIGURE 5.10 Signal and its spectrum in Example 5.8a: N = 100

frequencies. The zero-padding provided a smoother version of the spectrum in
Figure 5.9.

b. To get better spectral information, we will take the first 100 samples of x(n)
and determine its discrete-time Fourier transform.

MATLAB Script:

>> subplot(2,1,1); stem(n,x);

>> title(’signal x(n), 0 <= n <= 99’); xlabel(’n’)

>> X = dft(x,100); magX = abs(X(1:1:51));

>> k = 0:1:50; w = 2*pi/100*k;

>> subplot(2,1,2); plot(w/pi,magX); title(’DTFT Magnitude’);

>> xlabel(’frequency in pi units’)

Now the discrete-time Fourier transform plot in Figure 5.11 clearly shows two
frequencies, which are very close to each other. This is the high-resolution spec-
trum of x(n). Note that padding more zeros to the 100-point sequence will result
in a smoother rendition of the spectrum in Figure 5.11 but will not reveal any
new information. Readers are encouraged to verify this. �
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FIGURE 5.11 Signal and its spectrum in Example 5.8b: N = 100

5.4 PROPERTIES OF THE DISCRETE FOURIER TRANSFORM

The DFT properties are derived from those of the DFS because mathe-
matically DFS is the valid representation. We discuss several useful prop-
erties, which are given without proof. These properties also apply to the
DFS with necessary changes. Let X(k) be an N -point DFT of the se-
quence x(n). Unless otherwise stated, the N -point DFTs will be used in
these properties.

1. Linearity: The DFT is a linear transform

DFT [ax1(n) + bx2(n)] = aDFT [x1(n)] + bDFT [x2(n)] (5.27)

Note: If x1(n) and x2(n) have different durations—that is, they are
N1-point and N2-point sequences, respectively—then choose N3 =
max(N1, N2) and proceed by taking N3-point DFTs.

2. Circular folding: If an N -point sequence is folded, then the result
x(−n) would not be an N -point sequence, and it would not be possible
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to compute its DFT. Therefore we use the modulo-N operation on the
argument (−n) and define folding by

x ((−n))N =

{
x(0), n = 0
x(N − n), 1 ≤ n ≤ N − 1

(5.28)

This is called a circular folding. To visualize it, imagine that the se-
quence x(n) is wrapped around a circle in the counterclockwise direc-
tion so that indices n = 0 and n = N overlap. Then x((−n))N can be
viewed as a clockwise wrapping of x(n) around the circle; hence the
name circular folding. In MATLAB the circular folding can be achieved
by x=x(mod(-n,N)+1). Note that the arguments in MATLAB begin
with 1. The DFT of a circular folding is given by

DFT [x ((−n))N ] = X ((−k))N =

{
X(0), k = 0
X(N − k), 1 ≤ k ≤ N − 1

(5.29)

� EXAMPLE 5.9 Let x(n) = 10 (0.8)n , 0 ≤ n ≤ 10.

a. Determine and plot x ((−n))11.
b. Verify the circular folding property.

Solution a. MATLAB script:

>> n = 0:100; x = 10*(0.8) .^ n; y = x(mod(-n,11)+1);

>> subplot(2,1,1); stem(n,x); title(’Original sequence’)

>> xlabel(’n’); ylabel(’x(n)’);

>> subplot(2,1,2); stem(n,y); title(’Circularly folded sequence’)

>> xlabel(’n’); ylabel(’x(-n mod 10)’);

The plots in Figure 5.12 show the effect of circular folding.

b. MATLAB script:

>> X = dft(x,11); Y = dft(y,11);

>> subplot(2,2,1); stem(n,real(X));

>> title(’Real{DFT[x(n)]}’); xlabel(’k’);

>> subplot(2,2,2); stem(n,imag(X));

>> title(’Imag{DFT[x(n)]}’); xlabel(’k’);

>> subplot(2,2,3); stem(n,real(Y));

>> title(’Real{DFT[x((-n))11]}’); xlabel(’k’);

>> subplot(2,2,4); stem(n,imag(Y));

>> title(’Imag{DFT[x((-n))11]}’); xlabel(’k’);

The plots in Figure 5.13 verify the property. �
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FIGURE 5.12 Circular folding in Example 5.9a
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FIGURE 5.13 Circular folding property in Example 5.9b
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3. Conjugation: Similar to the above property we have to introduce the
circular folding in the frequency domain.

DFT [x∗(n)] = X∗ ((−k))N (5.30)

4. Symmetry properties for real sequences: Let x(n) be a real-
valued N -point sequence. Then x(n) = x∗(n). Using (5.30)

X(k) = X∗ ((−k))N (5.31)

This symmetry is called a circular conjugate symmetry. It further im-
plies that

Re [X(k)] = Re [X ((−k))N ] =⇒ Circular-even sequence

Im [X(k)] = − Im [X ((N − k))N ] =⇒ Circular-odd sequence

|X(k)| = |X ((−k))N | =⇒ Circular-even sequence

� X(k) = −� X ((−k))N =⇒ Circular-odd sequence
(5.32)

Comments:

1. Observe the magnitudes and angles of the various DFTs in Examples
5.6 and 5.7. They do satisfy the above circular symmetries. These sym-
metries are different than the usual even and odd symmetries. To visu-
alize this, imagine that the DFT samples are arranged around a circle
so that the indices k = 0 and k = N overlap; then the samples will
be symmetric with respect to k = 0, which justifies the name circular
symmetry.

2. The corresponding symmetry for the DFS coefficients is called the pe-
riodic conjugate symmetry.

3. Since these DFTs have symmetry, one needs to compute X(k) only for

k = 0, 1, . . . ,
N

2
; N even

or for
k = 0, 1, . . . ,

N − 1
2

; N odd

This results in about 50% savings in computation as well as in storage.
4. From (5.30)

X(0) = X∗((−0))N = X∗(0)

which means that the DFT coefficient at k = 0 must be a real number.
But k = 0 means that the frequency ωk = kω1 = 0, which is the DC
frequency. Hence the DC coefficient for a real-valued x(n) must be a
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real number. In addition, if N is even, then N/2 is also an integer.
Then from (5.32)

X (N/2) = X∗ ((−N/2))N = X∗ (N/2)

which means that even the k = N/2 component is also real-valued.
This component is called the Nyquist component since k = N/2 means
that the frequency ωN/2 = (N/2)(2π/N) = π, which is the digital
Nyquist frequency.

The real-valued signals can also be decomposed into their even and odd
components, xe(n) and xo (n), respectively, as discussed in Chapter 2.
However, these components are not N -point sequences and therefore we
cannot take their N -point DFTs. Hence we define a new set of components
using the circular folding discussed above. These are called circular-even
and circular-odd components defined by

xec (n)
�
= 1

2 [x(n) + x ((−n))N ] =

{
x(0), n = 0
1
2 [x (n) + x (N − n)] , 1 ≤ n ≤ N − 1

xoc (n)
�
= 1

2 [x(n) − x ((−n))N ] =

{
0, n = 0
1
2 [x (n) − x (N − n)] , 1 ≤ n ≤ N − 1

(5.33)

Then
DFT [xec (n)] = Re [X(k)] = Re [X ((−k))N ]

DFT [xoc (n)] = Im [X(k)] = Im [X ((−k))N ]
(5.34)

Implication: If x(n) is real and circular-even, then its DFT is also real
and circular-even. Hence only the first 0 ≤ n ≤ N/2 coefficients are
necessary for complete representation.

Using (5.33), it is easy to develop a function to decompose an N -point
sequence into its circular-even and circular-odd components. The follow-
ing circevod function uses the mod function given earlier to implement
the modulo-N operation.

function [xec, xoc] = circevod(x)

% signal decomposition into circular-even and circular-odd parts

% --------------------------------------------------------------

% [xec, xoc] = circevod(x)

%

if any(imag(x) ~= 0)

error(’x is not a real sequence’)
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170 Chapter 5 THE DISCRETE FOURIER TRANSFORM

end

N = length(x); n = 0:(N-1);

xec = 0.5*(x + x(mod(-n,N)+1)); xoc = 0.5*(x - x(mod(-n,N)+1));

� EXAMPLE 5.10 Let x(n) = 10 (0.8)n , 0 ≤ n ≤ 10 as in Example 5.9.

a. Decompose and plot the xec(n) and xoc(n) components of x(n).
b. Verify the property in (5.34).

Solution a. MATLAB script:

>> n = 0:10; x = 10*(0.8) .^ n;

>> [xec,xoc] = circevod(x);

>> subplot(2,1,1); stem(n,xec); title(’Circular-even component’)

>> xlabel(’n’); ylabel(’xec(n)’); axis([-0.5,10.5,-1,11])

>> subplot(2,1,2); stem(n,xoc); title(’Circular-odd component’)

>> xlabel(’n’); ylabel(’xoc(n)’); axis([-0.5,10.5,-4,4])

The plots in Figure 5.14 show the circularly symmetric components of x(n).
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FIGURE 5.14 Circular-even and circular-odd components of the sequence in
Example 5.10a
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FIGURE 5.15 Plots of DFT symmetry properties in Example 5.10b

b. MATLAB script:

>> X = dft(x,11); Xec = dft(xec,11); Xoc = dft(xoc,11);

>> subplot(2,2,1); stem(n,real(X)); axis([-0.5,10.5,-5,50])

>> title(’Real{DFT[x(n)]}’); xlabel(’k’);

>> subplot(2,2,2); stem(n,imag(X)); axis([-0.5,10.5,-20,20])

>> title(’Imag{DFT[x(n)]}’); xlabel(’k’);

>> subplot(2,2,3); stem(n,real(Xec)); axis([-0.5,10.5,-5,50])

>> title(’DFT[xec(n)]’); xlabel(’k’);

>> subplot(2,2,4); stem(n,imag(Xoc)); axis([-0.5,10.5,-20,20])

>> title(’DFT[xoc(n)]’); xlabel(’k’);

From the plots in Figure 5.15 we observe that the DFT of xec(n) is the same as
the real part of X(k) and that the DFT of xoc(n) is the same as the imaginary
part of X(k). �

A similar property for complex-valued sequences is explored in Prob-
lem P5.18.

5. Circular shift of a sequence: If an N -point sequence is shifted in
either direction, then the result is no longer between 0 ≤ n ≤ N − 1.
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Therefore we first convert x(n) into its periodic extension x̃(n), and
then shift it by m samples to obtain

x̃(n−m) = x ((n−m))N (5.35)

This is called a periodic shift of x̃(n). The periodic shift is then con-
verted into an N -point sequence. The resulting sequence

x̃(n−m)RN (n) = x ((n−m))N RN (n) (5.36)

is called the circular shift of x(n). Once again to visualize this, imagine
that the sequence x(n) is wrapped around a circle. Now rotate the circle
by k samples and unwrap the sequence from 0 ≤ n ≤ N − 1. Its DFT
is given by

DFT [x ((n−m))N RN (n)] = W km
N X(k) (5.37)

� EXAMPLE 5.11 Let x(n) = 10 (0.8)n , 0 ≤ n ≤ 10 be an 11-point sequence.

a. Sketch x((n + 4))11R11(n), that is, a circular shift by 4 samples toward the
left.

b. Sketch x((n− 3))15R15(n), that is, a circular shift by 3 samples toward the
right, where x(n) is assumed to be a 15-point sequence.

Solution We will use a step-by-step graphical approach to illustrate the circular shifting
operation. This approach shows the periodic extension x̃(n) = x((n))N of x(n),
followed by a linear shift in x̃(n) to obtain x̃(n−m) = x((n−m))N , and finally
truncating x̃(n−m) to obtain the circular shift.

a. Figure 5.16 shows four sequences. The top-left shows x(n), the bottom-left
shows x̃(n), the top-right shows x̃(n+4), and finally the bottom-right shows
x((n+4))11R11(n). Note carefully that as samples move out of the [0, N−1]
window in one direction, they reappear from the opposite direction. This is
the meaning of the circular shift, and it is different from the linear shift.

b. In this case the sequence x(n) is treated as a 15-point sequence by padding
4 zeros. Now the circular shift will be different than when N = 11. This
is shown in Figure 5.17. In fact the circular shift x ((n− 3))15 looks like a
linear shift x(n− 3). �

To implement a circular shift, we do not have to go through the
periodic shift as shown in Example 5.11. It can be implemented directly
in two ways. In the first approach, the modulo-N operation can be used
on the argument (n−m) in the time domain. This is shown below in the
cirshftt function.
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FIGURE 5.16 Graphical interpretation of circular shift, N = 11
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FIGURE 5.17 Graphical interpretation of circular shift, N = 15
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function y = cirshftt(x,m,N)

% Circular shift of m samples wrt size N in sequence x: (time domain)

% -------------------------------------------------------------------

% [y] = cirshftt(x,m,N)

% y = output sequence containing the circular shift

% x = input sequence of length <= N

% m = sample shift

% N = size of circular buffer

% Method: y(n) = x((n-m) mod N)

% Check for length of x

if length(x) > N

error(’N must be >= the length of x’)

end

x = [x zeros(1,N-length(x))];

n = [0:1:N-1]; n = mod(n-m,N); y = x(n+1);

In the second approach, the property (5.37) can be used in the frequency
domain. This is explored in Problem P5.20.

� EXAMPLE 5.12 Given an 11-point sequence x(n) = 10 (0.8)n , 0 ≤ n ≤ 10, determine and plot
x ((n− 6))15.

Solution MATLAB script:

>> n = 0:10; x = 10*(0.8) .^ n; y = cirshftt(x,6,15);

>> n = 0:14; x = [x, zeros(1,4)];

>> subplot(2,1,1); stem(n,x); title(’Original sequence’)

>> xlabel(’n’); ylabel(’x(n)’);

>> subplot(2,1,2); stem(n,y);

>> title(’Circularly shifted sequence, N=15’)

>> xlabel(’n’); ylabel(’x((n-6) mod 15)’);

The results are shown in Figure 5.18. �

6. Circular shift in the frequency domain: This property is a dual
of the preceding property given by

DFT
[
W−�n

N x(n)
]

= X ((k − �))N RN (k) (5.38)

7. Circular convolution: A linear convolution between two N -point
sequences will result in a longer sequence. Once again we have to
restrict our interval to 0 ≤ n ≤ N − 1. Therefore instead of linear
shift, we should consider the circular shift. A convolution operation
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FIGURE 5.18 Circularly shifted sequence in Example 5.12

that contains a circular shift is called the circular convolution and is
given by

x1(n) N© x2(n) =
N−1∑
m=0

x1(m)x2 ((n−m))N , 0 ≤ n ≤ N − 1 (5.39)

Note that the circular convolution is also an N -point sequence. It has
a structure similar to that of a linear convolution. The differences
are in the summation limits and in the N -point circular shift. Hence
it depends on N and is also called an N -point circular convolution.
Therefore the use of the notation N© is appropriate. The DFT prop-
erty for the circular convolution is

DFT
[
x1(n) N© x2(n)

]
= X1(k) ·X2(k) (5.40)

An alternate interpretation of this property is that when we multi-
ply two N -point DFTs in the frequency domain, we get the circular
convolution (and not the usual linear convolution) in the time domain.

� EXAMPLE 5.13 Let x1(n) = {1, 2, 2} and x2(n) = {1, 2, 3, 4}. Compute the 4-point circular

convolution x1(n) 4© x2(n).
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Solution Note that x1(n) is a 3-point sequence, hence we will have to pad one zero to
make it a 4-point sequence before we perform the circular convolution. We will
compute this convolution in the time domain as well as in the frequency domain.
In the time domain we will use the mechanism of circular convolution, while in
the frequency domain we will use the DFTs.

• Time-domain approach: The 4-point circular convolution is given by

x1(n) 4© x2(n) =

3∑
m=0

x1 (m)x2 ((n−m))4

Thus we have to create a circularly folded and shifted sequence x2((n−m))N
for each value of n, multiply it sample by sample with x1(m), add the samples
to obtain the circular convolution value for that n, and then repeat the
procedure for 0 ≤ n ≤ 3. Consider

x1(m) = {1, 2, 2, 0} and x2(m) = {1, 2, 3, 4}
for n = 0

3∑
m=0

x1(m) · x2 ((0 −m))5 =

3∑
m=0

[{1, 2, 2, 0} · {1, 4, 3, 2}]

=

3∑
m=0

{1, 8, 6, 0} = 15

for n = 1

3∑
m=0

x1(m) · x2 ((1 −m))5 =

3∑
m=0

[{1, 2, 2, 0} · {2, 1, 4, 3}]

=

3∑
m=0

{2, 2, 8, 0} = 12

for n = 2

3∑
m=0

x1(m) · x2 ((2 −m))5 =

3∑
m=0

[{1, 2, 2, 0} · {3, 2, 1, 4}]

=

3∑
m=0

{3, 4, 2, 0} = 9

for n = 3

3∑
m=0

x1(m) · x2 ((3 −m))5 =

3∑
m=0

[{1, 2, 2, 0} · {4, 3, 2, 1}]

=

3∑
m=0

{4, 6, 4, 0} = 14
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Hence

x1(n) 4© x2(n) = {15, 12, 9, 14}

• Frequency-domain approach: In this approach we first compute 4-point DFTs
of x1(n) and x2(n), multiply them sample by sample, and then take the
inverse DFT of the result to obtain the circular convolution.

DFT of x1(n)

x1(n) = {1, 2, 2, 0} =⇒ X1(k) = {5, −1 − j2, 1, −1 + j2}

DFT of x2(n)

x2(n) = {1, 2, 3, 4} =⇒ X2(k) = {10, −2 + j2, −2, −2 − j2}

Now

X1(k) ·X2(k) = {50, 6 + j2, −2, 6 − j2}

Finally after IDFT,

x1(n) 4© x2(n) = {15, 12, 9, 14}

which is the same as before. �

Similar to the circular shift implementation, we can implement the
circular convolution in a number of different ways. The simplest approach
would be to implement (5.39) literally by using the cirshftt function
and requiring two nested for...end loops. Obviously, this is not efficient.
Another approach is to generate a sequence x ((n−m))N for each n in
[0, N − 1] as rows of a matrix and then implement (5.39) as a matrix-
vector multiplication similar to our dft function. This would require
one for...end loop. The following circonvt function incorporates these
steps.

function y = circonvt(x1,x2,N)

% N-point circular convolution between x1 and x2: (time-domain)

% -------------------------------------------------------------

% [y] = circonvt(x1,x2,N)

% y = output sequence containing the circular convolution

% x1 = input sequence of length N1 <= N

% x2 = input sequence of length N2 <= N

% N = size of circular buffer

% Method: y(n) = sum (x1(m)*x2((n-m) mod N))

% Check for length of x1

if length(x1) > N

error(’N must be >= the length of x1’)

end
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% Check for length of x2

if length(x2) > N

error(’N must be >= the length of x2’)

end

x1=[x1 zeros(1,N-length(x1))];

x2=[x2 zeros(1,N-length(x2))];

m = [0:1:N-1]; x2 = x2(mod(-m,N)+1); H = zeros(N,N);

for n = 1:1:N

H(n,:) = cirshftt(x2,n-1,N);

end

y = x1*conj(H’);

Problems P5.24 and P5.25 explore an approach to eliminate the for...
end loop in the circonvt function. The third approach would be to im-
plement the frequency-domain operation (5.40) using the dft function.
This is explored in Problem P5.26.

� EXAMPLE 5.14 Let us use MATLAB to perform the circular convolution in Example 5.13.

Solution The sequences are x1(n) = {1, 2, 2} and x2(n) = {1, 2, 3, 4}.

MATLAB script:

>> x1 = [1,2,2]; x2 = [1,2,3,4]; y = circonvt(x1, x2, 4)

y =

15 12 9 14

Hence

x1(n) 4© x2(n) = {15, 12, 9, 14}

as before. �

� EXAMPLE 5.15 In this example we will study the effect of N on the circular convolution. Obvi-
ously, N ≥ 4; otherwise there will be a time-domain aliasing for x2(n). We will
use the same two sequences from Example 5.13.

a. Compute x1(n) 5© x2(n).

b. Compute x1(n) 6© x2(n).

c. Comment on the results.

Solution The sequences are x1(n) = {1, 2, 2} and x2(n) = {1, 2, 3, 4}. Even though the
sequences are the same as in Example 5.14, we should expect different results
for different values of N . This is not the case with the linear convolution, which
is unique, given two sequences.
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a. MATLAB Script for 5-point circular convolution:

>> x1 = [1,2,2]; x2 = [1,2,3,4]; y = circonvt(x1, x2, 5)

y =

9 4 9 14 14

Hence

x1(n) 5© x2(n) = {9, 4, 9, 14, 14}

b. MATLAB Script for 6-point circular convolution:

>> x1 = [1,2,2]; x2 = [1,2,3,4]; y = circonvt(x1, x2, 6)

y =

1 4 9 14 14 8

Hence

x1(n) 6© x2(n) = {1, 4, 9, 14, 14, 8}

c. A careful observation of 4-, 5-, and 6-point circular convolutions from
this and the previous example indicates some unique features. Clearly, an
N -point circular convolution is an N -point sequence. However, some sam-
ples in these convolutions have the same values, while other values can be
obtained as a sum of samples in other convolutions. For example, the first
sample in the 5-point convolution is a sum of the first and the last samples
of the 6-point convolution. The linear convolution between x1(n) and x2(n)
is given by

x1(n) ∗ x2(n) = {1, 4, 9, 14, 14, 8}

which is equivalent to the 6-point circular convolution. These and other
issues are explored in the next section. �

8. Multiplication: This is the dual of the circular convolution property.
It is given by

DFT [x1(n) · x2(n)] =
1
N

X1(k) N© X2(k) (5.41)

in which the circular convolution is performed in the frequency domain.
The MATLAB functions developed for circular convolution can also be
used here since X1 (k) and X2 (k) are also N -point sequences.

9. Parseval’s relation: This relation computes the energy in the fre-
quency domain.

Ex =
N−1∑
n=0

|x(n)|2 =
1
N

N−1∑
k=0

|X(k)|2 (5.42)
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The quantity |X(k)|2
N is called the energy spectrum of finite-duration se-

quences. Similarly, for periodic sequences, the quantity | X̃(k)
N |2 is called

the power spectrum.

5.5 LINEAR CONVOLUTION USING THE DFT

One of the most important operations in linear systems is the linear convo-
lution. In fact, FIR filters are generally implemented in practice using this
linear convolution. On the other hand, the DFT is a practical approach
for implementing linear system operations in the frequency domain. As we
shall see later, it is also an efficient operation in terms of computations.
However, there is one problem. The DFT operations result in a circular
convolution (something that we do not desire), not in a linear convolution
that we want. Now we shall see how to use the DFT to perform a linear
convolution (or equivalently, how to make a circular convolution identical
to the linear convolution). We alluded to this problem in Example 5.15.

Let x1(n) be an N1-point sequence and let x2(n) be an N2-point
sequence. Define the linear convolution of x1(n) and x2(n) by x3(n),
that is,

x3(n) = x1(n) ∗ x2(n)

=
∞∑

k=−∞
x1(k)x2(n− k) =

N1−1∑
0

x1(k)x2(n− k) (5.43)

Then x3(n) is a (N1 + N2 − 1)-point sequence. If we choose N =
max(N1, N2) and compute an N -point circular convolution x1(n) N©
x2(n), then we get an N -point sequence, which obviously is different
from x3(n). This observation also gives us a clue. Why not choose
N = N1 + N2 − 1 and perform an (N1 + N2 − 1)-point circular con-
volution? Then at least both of these convolutions will have an equal
number of samples.

Therefore let N = N1 + N2 − 1 and let us treat x1(n) and x2(n) as
N -point sequences. Define the N -point circular convolution by x4(n).

x4(n) = x1(n) N© x2(n) (5.44)

=

[
N−1∑
m=0

x1(m)x2((n−m))N

]
RN (n)

=

[
N−1∑
m=0

x1(m)
∞∑

r=−∞
x2(n−m− rN)

]
RN (n)
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=




∞∑
r=−∞

N1−1∑
m=0

x1(m)x2(n−m− rN)

︸ ︷︷ ︸
x3(n−rN)



RN (n)

=

[ ∞∑
r=−∞

x3(n− rN)

]
RN (n) using (5.43)

This analysis shows that, in general, the circular convolution is an aliased
version of the linear convolution. We observed this fact in Example 5.15.
Now since x3(n) is an N = (N1 + N2 − 1)-point sequence, we have

x4(n) = x3(n); 0 ≤ n ≤ (N − 1)

which means that there is no aliasing in the time domain.

Conclusion: If we make both x1(n) and x2(n) N = N1 + N2 − 1 point
sequences by padding an appropriate number of zeros, then the circular
convolution is identical to the linear convolution.

� EXAMPLE 5.16 Let x1(n) and x2(n) be the following two 4-point sequences.

x1(n) = {1, 2, 2, 1} , x2(n) = {1, −1, −1, 1}

a. Determine their linear convolution x3(n).
b. Compute the circular convolution x4(n) so that it is equal to x3(n).

Solution We will use MATLAB to do this problem.

a. MATLAB Script:

>> x1 = [1,2,2,1]; x2 = [1,-1,-1,1]; x3 = conv(x1,x2)

x3 = 1 1 -1 -2 -1 1 1

Hence the linear convolution x3(n) is a 7-point sequence given by

x3(n) = {1, 1,−1,−2,−1, 1, 1}

b.We will have to use N ≥ 7. Choosing N = 7, we have

>> x4 = circonvt(x1,x2,7)

x4 = 1 1 -1 -2 -1 1 1

Hence

x4 = {1, 1,−1,−2,−1, 1, 1} = x3(n) �
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5.5.1 ERROR ANALYSIS
To use the DFT for linear convolution, we must choose N properly. How-
ever, in practice it may not be possible to do so, especially when N is very
large and there is a limit on memory. Then an error will be introduced
when N is chosen less than the required value to perform the circular
convolution. We want to compute this error, which is useful in practice.
Obviously, N ≥ max(N1, N2). Therefore let

max(N1, N2) ≤ N < (N1 + N2 − 1)

Then, from our previous analysis (5.44)

x4(n) =

[ ∞∑
r=−∞

x3(n− rN)

]
RN (n)

Let an error e(n) be given by

e(n)
�
= x4(n) − x3(n)

=


∑
r �=0

x3(n− rN)


RN (n)

Since N ≥ max(N1, N2), only two terms corresponding to r = ±1 remain
in the above summation. Hence

e(n) = [x3(n−N) + x3(n + N)]RN (n)

Generally, x1(n) and x2(n) are causal sequences. Then x3(n) is also causal,
which means that

x3(n−N) = 0; 0 ≤ n ≤ N − 1

Therefore
e(n) = x3(n + N), 0 ≤ n ≤ N − 1 (5.45)

This is a simple yet important relation. It implies that when
max(N1, N2) ≤ N < (N1 +N2 −1) the error value at n is the same as the
linear convolution value computed N samples away. Now the linear con-
volution will be zero after (N1+N2−1) samples. This means that the first
few samples of the circular convolution are in error, while the remaining
ones are the correct linear convolution values.

� EXAMPLE 5.17 Consider the sequences x1(n) and x2(n) from the previous example. Evaluate
circular convolutions for N = 6, 5, and 4. Verify the error relations in each case.
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Solution Clearly, the linear convolution x3(n) is still the same.

x3(n) = {1, 1,−1,−2,−1, 1, 1}

When N = 6, we obtain a 6-point sequence.

x4(n) = x1(n) 6© x2(n) = {2, 1,−1,−2,−1, 1}

Therefore

e(n) = {2, 1,−1,−2,−1, 1} − {1, 1,−1,−2,−1, 1} , 0 ≤ n ≤ 5

= {1, 0, 0, 0, 0, 0}

= x3(n + 6)

as expected. When N = 5, we obtain a 5-point sequence,

x4(n) = x1(n) 5© x2(n) = {2, 2,−1,−2,−1}
and

e(n) = {2, 2,−1,−2,−1} − {1, 1,−1,−2,−1} , 0 ≤ n ≤ 4

= {1, 1, 0, 0, 0}

= x3(n + 5)

Finally, when N = 4, we obtain a 4-point sequence,

x4(n) = x1(n) 4© x2(n) = {0, 2, 0,−2}
and

e(n) = {0, 2, 0,−2} − {1, 1,−1,−2} , 0 ≤ n ≤ 3

= {−1, 1, 1, 0}
= x3(n + 4)

The last case of N = 4 also provides the following useful observation.

Observation: When N = max(N1, N2) is chosen for circular convolution, then
the first (M − 1) samples are in error (i.e., different from the linear convolution),
where M = min(N1, N2). This result is useful in implementing long convolutions
in the form of block processing. �

5.5.2 BLOCK CONVOLUTIONS
When we want to filter an input sequence that is being received con-
tinuously, such as a speech signal from a microphone, then for practical
purposes we can think of this sequence as an infinite-length sequence. If
we want to implement this filtering operation as an FIR filter in which
the linear convolution is computed using the DFT, then we experience
some practical problems. We will have to compute a large DFT, which is
generally impractical. Furthermore, output samples are not available until
all input samples are processed. This introduces an unacceptably large
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amount of delay. Therefore we have to segment the infinite-length input
sequence into smaller sections (or blocks), process each section using the
DFT, and finally assemble the output sequence from the outputs of each
section. This procedure is called a block convolution (or block processing)
operation.

Let us assume that the sequence x(n) is sectioned into N -point se-
quences and that the impulse response of the filter is an M -point se-
quence, where M < N . Then from the observation in Example 5.17 we
note that the N -point circular convolution between the input block and
the impulse response will yield a block output sequence in which the first
(M − 1) samples are not the correct output values. If we simply partition
x(n) into nonoverlapping sections, then the resulting output sequence will
have intervals of incorrect samples. To correct this problem, we can parti-
tion x(n) into sections, each overlapping with the previous one by exactly
(M − 1) samples, save the last (N −M + 1) output samples, and finally
concatenate these outputs into a sequence. To correct for the first (M − 1)
samples in the first output block, we set the first (M − 1) samples in the
first input block to zero. This procedure is called an overlap-save method
of block convolutions. Clearly, when N � M , this method is more effi-
cient. We illustrate it using a simple example.

� EXAMPLE 5.18 Let x(n) = (n + 1) , 0 ≤ n ≤ 9 and h(n) = {1
↑
, 0,−1}. Implement the overlap-

save method using N = 6 to compute y(n) = x(n) ∗ h(n).

Solution Since M = 3, we will have to overlap each section with the previous one by two
samples. Now x(n) is a 10-point sequence, and we will need (M − 1) = 2 zeros
in the beginning. Since N = 6, we will need 3 sections. Let the sections be

x1(n) = {0, 0, 1, 2, 3, 4}

x2(n) = {3, 4, 5, 6, 7, 8}

x3(n) = {7, 8, 9, 10, 0, 0}

Note that we have to pad x3(n) by two zeros since x(n) runs out of values at
n = 9. Now we will compute the 6-point circular convolution of each section
with h(n).

y1 = x1(n) 6© h(n) = {−3,−4, 1, 2, 2, 2}

y2 = x2(n) 6© h(n) = {−4,−4, 2, 2, 2, 2}

y3 = x3(n) 6© h(n) = {7, 8, 2, 2,−9,−10}
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Noting that the first two samples in each section are to be discarded, we assemble
the output y(n) as

y(n) = {1
↑
, 2, 2, 2, 2, 2, 2, 2, 2, 2,−9,−10}

The linear convolution is given by

x(n) ∗ h(n) = {1
↑
, 2, 2, 2, 2, 2, 2, 2, 2, 2,−9,−10}

which agrees with the overlap-save method. �

5.5.3 MATLAB IMPLEMENTATION
Using this example as a guide, we can develop a MATLAB function to
implement the overlap-save method for a very long input sequence x(n).
The key step in this function is to obtain a proper indexing for the
segmentation. Given x(n) for n ≥ 0, we have to set the first (M − 1)
samples to zero to begin the block processing. Let this augmented se-
quence be

x̂(n)
�
= {0, 0, . . . , 0︸ ︷︷ ︸

(M−1) zeros

, x(n)}, n ≥ 0

and let L = N − M + 1, then the kth block xk(n), 0 ≤ n ≤ N − 1, is
given by

xk(n) = x̂(m); kL ≤ m ≤ kL + N − 1, k ≥ 0, 0 ≤ n ≤ N − 1

The total number of blocks is given by

K =
⌊
Nx + M − 2

L

⌋
+ 1

where Nx is the length of x(n) and 	·
 is the truncation operation. Now
each block can be circularly convolved with h(n) using the circonvt
function developed earlier to obtain

yk(n) = xk(n) N© h(n)

Finally, discarding the first (M − 1) samples from each yk(n) and con-
catenating the remaining samples, we obtain the linear convolution y(n).
This procedure is incorporated in the following ovrlpsav function.
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%%\leftskip12pt

function [y] = ovrlpsav(x,h,N)

% Overlap-Save method of block convolution

% ----------------------------------------

% [y] = ovrlpsav(x,h,N)

% y = output sequence

% x = input sequence

% h = impulse response

% N = block length

%

Lenx = length(x); M = length(h); M1 = M-1; L = N-M1;

h = [h zeros(1,N-M)];

%

x = [zeros(1,M1), x, zeros(1,N-1)]; % preappend (M-1) zeros

K = floor((Lenx+M1-1)/(L)); % # of blocks

Y = zeros(K+1,N);

% convolution with succesive blocks

for k=0:K

xk = x(k*L+1:k*L+N);

Y(k+1,:) = circonvt(xk,h,N);

end

Y = Y(:,M:N)’; % discard the first (M-1) samples

y = (Y(:))’; % assemble output

Note: The ovrlpsav function as developed here is not the most efficient
approach. We will come back to this issue when we discuss the fast Fourier
transform.

� EXAMPLE 5.19 To verify the operation of the ovrlpsav function, let us consider the sequences
given in Example 5.18.

Solution MATLAB script:

>> n = 0:9; x = n+1; h = [1,0,-1]; N = 6; y = ovrlpsav(x,h,N)

y =

1 2 2 2 2 2 2 2 2 2 -9 -10

This is the correct linear convolution as expected. �

There is an alternate method called an overlap-add method of block
convolutions. In this method the input sequence x(n) is partitioned into
nonoverlapping blocks and convolved with the impulse response. The re-
sulting output blocks are overlapped with the subsequent sections and
added to form the overall output. This is explored in Problem P5.32.
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5.6 THE FAST FOURIER TRANSFORM

The DFT (5.24) introduced earlier is the only transform that is discrete in
both the time and the frequency domains, and is defined for finite-duration
sequences. Although it is a computable transform, the straightforward
implementation of (5.24) is very inefficient, especially when the sequence
length N is large. In 1965 Cooley and Tukey [1] showed a procedure to
substantially reduce the amount of computations involved in the DFT.
This led to the explosion of applications of the DFT, including in the
digital signal processing area. Furthermore, it also led to the development
of other efficient algorithms. All these efficient algorithms are collectively
known as fast Fourier transform (FFT) algorithms.

Consider an N -point sequence x(n). Its N -point DFT is given by
(5.24) and reproduced here

X(k) =
N−1∑
n=0

x(n)Wnk
N , 0 ≤ k ≤ N − 1 (5.46)

where WN = e−j2π/N . To obtain one sample of X(k), we need N complex
multiplications and (N−1) complex additions. Hence to obtain a complete
set of DFT coefficients, we need N2 complex multiplications and N(N−1)
� N2 complex additions. Also one has to store N2 complex coefficients{
Wnk

N

}
(or generate internally at an extra cost). Clearly, the number of

DFT computations for an N -point sequence depends quadratically on N ,
which will be denoted by the notation

CN = o
(
N2

)

For large N , o
(
N2

)
is unacceptable in practice. Generally, the pro-

cessing time for one addition is much less than that for one multiplication.
Hence from now on we will concentrate on the number of complex multi-
plications, which itself requires 4 real multiplications and 2 real additions.

Goal of an Efficient Computation In an efficiently designed algo-
rithm the number of computations should be constant per data sample,
and therefore the total number of computations should be linear with
respect to N .

The quadratic dependence on N can be reduced by realizing that most
of the computations (which are done again and again) can be eliminated
using the periodicity property

W kn
N = W

k(n+N)
N = W

(k+N)n
N
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and the symmetry property

W
kn+N/2
N = −W kn

N

of the factor
{
Wnk

N

}
.

One algorithm that considers only the periodicity of Wnk
N is the

Goertzel algorithm. This algorithm still requires CN = o(N2) multi-
plications, but it has certain advantages. This algorithm is described in
Chapter 12. We first begin with an example to illustrate the advantages of
the symmetry and periodicity properties in reducing the number of com-
putations. We then describe and analyze two specific FFT algorithms that
require CN = o(N logN) operations. They are the decimation-in-time
(DIT-FFT) and decimation-in-frequency (DIF-FFT) algorithms.

� EXAMPLE 5.20 Let us discuss the computations of a 4-point DFT and develop an efficient
algorithm for its computation.

X(k) =

3∑
n=0

x(n)Wnk
4 , 0 ≤ k ≤ 3; W4 = e−j2π/4 = −j

Solution These computations can be done in the matrix form




X(0)

X(1)

X(2)

X(3)


 =




W 0
4 W 0

4 W 0
4 W 0

4

W 0
4 W 1

4 W 2
4 W 3

4

W 0
4 W 2

4 W 4
4 W 6

4

W 0
4 W 3

4 W 6
4 W 9

4







x(0)

x(1)

x(2)

x(3)




which requires 16 complex multiplications.

Efficient Approach Using periodicity,

W 0
4 = W 4

4 = 1 ; W 1
4 = W 9

4 = −j

W 2
4 = W 6

4 = −1 ; W 3
4 = j

and substituting in the above matrix form, we get




X(0)

X(1)

X(2)

X(3)


 =




1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j







x(0)

x(1)

x(2)

x(3)
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Using symmetry, we obtain

X(0) = x(0) + x(1) + x(2) + x(3) = [x(0) + x(2)︸ ︷︷ ︸]
g1

+ [x(1) + x(3)︸ ︷︷ ︸
g2

]

X(1) = x(0) − jx(1) − x(2) + jx(3) = [x(0)−x(2)︸ ︷︷ ︸]
h1

−j[x(1) − x(3)︸ ︷︷ ︸
h2

]

X(2) = x(0) − x(1) + x(2) − x(3) = [x(0) + x(2)︸ ︷︷ ︸]
g1

− [x(1) + x(3)︸ ︷︷ ︸
g2

]

X(3) = x(0) + jx(1) − x(2) − jx(3) = [x(0) − x(2)︸ ︷︷ ︸]
h1

+ j[x(1) − x(3)︸ ︷︷ ︸
h2

]

Hence an efficient algorithm is

Step 1

g1 = x(0) + x(2)

g2 = x(1) + x(3)

h1 = x(0) − x(2)

h2 = x(1) − x(3)

∥∥∥∥∥∥∥∥∥∥∥

Step 2

X(0) = g1 + g2

X(1) = h1 − jh2

X(2) = g1 − g2

X(3) = h1 + jh2

(5.47)

which requires only 2 complex multiplications, which is a considerably smaller
number, even for this simple example. A signal flowgraph structure for this
algorithm is given in Figure 5.19.

An Interpretation This efficient algorithm (5.47) can be interpreted differ-
ently. First, a 4-point sequence x(n) is divided into two 2-point sequences, which
are arranged into column vectors as shown here.

[[
x(0)

x(2)

]
,

[
x(1)

x(3)

]]
=

[
x(0) x(1)

x(2) x(3)

]

X (0)x (0)

X (1)x (2)
−1

g1

h1

X (2)x (1)

X (3)x (3)
−1

g2

h2

−j

−1

j

FIGURE 5.19 Signal flowgraph in Example 5.20
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Second, a smaller 2-point DFT of each column is taken.

W2

[
x(0) x(1)

x(2) x(3)

]
=

[
1 1

1 −1

][
x(0) x(1)

x(2) x(3)

]

=

[
x(0) + x(2) x(1) + x(3)

x(0) − x(2) x(1) − x(3)

]
=

[
g1 g2

h1 h2

]

Then each element of the resultant matrix is multiplied by {W pq
4 }, where p is

the row index and q is the column index; that is, the following dot-product is
performed:

[
1 1

1 −j

]
· ∗
[
g1 g2

h1 h2

]
=

[
g1 g2

h1 −jh2

]

Finally, two more smaller 2-point DFTs are taken of row vectors.

[
g1 g2

h1 −jh2

]
W2 =

[
g1 g2

h1 −jh2

][1 1

1 −1

]
=

[
g1 + g2 g1 − g2

h1 − jh2 h1 + jh2

]

=

[
X(0) X(2)

X(1) X(3)

]

Although this interpretation seems to have more multiplications than the effi-
cient algorithm, it does suggest a systematic approach of computing a larger
DFT based on smaller DFTs. �

5.6.1 DIVIDE-AND-COMBINE APPROACH
To reduce the DFT computation’s quadratic dependence on N , one must
choose a composite number N = LM since

L2 + M2 � N2 for large N

Now divide the sequence into M smaller sequences of length L, compute
M smaller L-point DFTs, and then combine these into a larger DFT
using L smaller M -point DFTs. This is the essence of the divide-and-
combine approach. Let N = LM , then the indices n and k in (5.46) can
be written as

n = � + Lm, 0 ≤ � ≤ L− 1, 0 ≤ m ≤ M − 1

k = q + Mp, 0 ≤ p ≤ L− 1, 0 ≤ q ≤ M − 1
(5.48)
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and write sequences x(n) and X(k) as arrays x(�,m) and X(p, q), respec-
tively. Then (5.46) can be written as

X(p, q) =
L−1∑
�=0

M−1∑
m=0

x(�,m)W (�+Lm)(q+Mp)
N

=
L−1∑
�=0

{
W �q

N

[
M−1∑
m=0

x(�,m)WLmq
N

]}
WM�p

N

=
L−1∑
�=0



W �q

N

[
M−1∑
m=0

x(�,m)Wmq
M

]

︸ ︷︷ ︸
M-point DFT




W �p
L

︸ ︷︷ ︸
L-point DFT

(5.49)

Hence (5.49) can be implemented as a three-step procedure:

1. First, we compute the M -point DFT array

F (�, q)
M−1∑
m=0

x(�,m)Wmq
M ; 0 ≤ q ≤ M − 1 (5.50)

for each of the rows � = 0, . . . , L− 1.
2. Second, we modify F (�, q) to obtain another array.

G(�, q) = W �q
N F (�, q),

0 ≤ � ≤ L− 1
0 ≤ q ≤ M − 1

(5.51)

The factor W �q
N is called a twiddle factor.

3. Finally, we compute the L-point DFTs

X(p, q) =
L−1∑
�=0

G(�, q)W �p
L 0 ≤ p ≤ L− 1 (5.52)

for each of the columns q = 0, . . . ,M − 1.

The total number of complex multiplications for this approach can now
be given by

CN = LM2 + N + ML2 < o
(
N2

)
(5.53)

We illustrate this approach in the following example.
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� EXAMPLE 5.21 Develop the divide-and-combine FFT algorithm for N = 15.

Solution Let L = 3 and M = 5. Then, from (5.48), we have

n = � + 3M, 0 ≤ � ≤ 2, 0 ≤ m ≤ 4
k = q + 5p, 0 ≤ p ≤ 2, 0 ≤ q ≤ 4 (5.54)

Hence (5.49) becomes

X(p, q) =
2∑

�=0

{
W �q

15

[
4∑

m=0

x(�,m)Wmq
5

]}
W �p

3 (5.55)

To implement (5.55), we arrange the given sequence x(n) in the form of
an array {x(�,m)} using a column-wise ordering as

x(0) x(3) x(6) x(9) x(12)
x(1) x(4) x(7) x(10) x(13)
x(2) x(5) x(8) x(11) x(14)

(5.56)

The first step is to compute 5-point DFTs F (�, q) for each of the three
rows and arrange them back in the same array formation

F (0, 0) F (0, 1) F (0, 2) F (0, 3) F (0, 4)
F (1, 0) F (1, 1) F (1, 2) F (1, 3) F (1, 4)
F (2, 0) F (2, 1) F (2, 2) F (2, 3) F (2, 4)

(5.57)

which requires a total of 3×52 = 75 complex operations. The second step
is to modify F (�, q) to obtain the array G(�, q) using the twiddle factors
W �q

15

G(0, 0) G(0, 1) G(0, 2) G(0, 3) G(0, 4)
G(1, 0) G(1, 1) G(1, 2) G(1, 3) G(1, 4)
G(2, 0) G(2, 1) G(2, 2) G(2, 3) G(2, 4)

(5.58)

which requires 15 complex operations. The last step is to perform 3-point
DFTs X(p, q) for each of the five columns to obtain

X(0, 0) X(0, 1) X(0, 2) X(0, 3) X(0, 4)
X(1, 0) X(1, 1) X(1, 2) X(1, 3) X(1, 4)
X(2, 0) X(2, 1) X(2, 2) X(2, 3) X(2, 4)

(5.59)

using a total of 5 × 32 = 45 complex operations. According to (5.54) the
array in (5.59) is a rearrangement of X(k) as

X(0) X(1) X(2) X(3) X(4)
X(5) X(6) X(7) X(8) X(9)
X(10) X(11) X(12) X(13) X(14)

(5.60)
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Finally, after “unwinding” this array in the row-wise fashion, we obtain
the required 15-point DFT X(k). The total number of complex operations
required for this divide-and-combine approach is 135, whereas the direct
approach for the 15-point DFT requires 225 complex operations. Thus
the divide-and-combine approach is clearly efficient. �

The divide-and-combine procedure can be further repeated if M or L
are composite numbers. Clearly, the most efficient algorithm is obtained
when N is a highly composite number, that is, N = Rν . Such algorithms
are called radix-R FFT algorithms. When N = Rν1

1 Rν2
2 . . ., then such de-

compositions are called mixed-radix FFT algorithms. The one most pop-
ular and easily programmable algorithm is the radix-2 FFT algorithm.

5.6.2 RADIX-2 FFT ALGORITHM
Let N = 2ν ; then we choose L = 2 and M = N/2 and divide x(n) into
two N/2-point sequences according to (5.48) as

g1(n) = x(2n)
g2(n) = x(2n + 1)

; 0 ≤ n ≤ N

2
− 1

The sequence g1(n) contains even-ordered samples of x(n), while g2(n)
contains odd-ordered samples of x(n). Let G1(k) and G2(k) be N/2-point
DFTs of g1(n) and g2(n), respectively. Then (5.49) reduces to

X(k) = G1(k) + W k
NG2(k), 0 ≤ k ≤ N − 1 (5.61)

This is called a merging formula, which combines two N/2-point DFTs
into one N -point DFT. The total number of complex multiplications re-
duces to

CN =
N2

2
+ N = o

(
N2/2

)

This procedure can be repeated again and again. At each stage the
sequences are decimated and the smaller DFTs combined. This decima-
tion ends after ν stages when we have N one-point sequences, which are
also one-point DFTs. The resulting procedure is called the decimation-in-
time FFT (DIT-FFT) algorithm, for which the total number of complex
multiplications is

CN = Nν = N log2 N

Clearly, if N is large, then CN is approximately linear in N , which was
the goal of our efficient algorithm. Using additional symmetries, CN can
be reduced to N

2 log2 N . The signal flowgraph for this algorithm is shown
in Figure 5.20 for N = 8.
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FIGURE 5.20 Decimation-in-time FFT structure for N = 8

In an alternate approach we choose M = 2, L = N/2 and follow
the steps in (5.49). Note that the initial DFTs are 2-point DFTs, which
contain no complex multiplications. From (5.50)

F (0,m) = x(0,m) + x(1,m)W 0
2

= x(n) + x(n + N/2), 0 ≤ n ≤ N/2
F (1,m) = x(0,m) + x(1,m)W 1

2

= x(n) − x(n + N/2), 0 ≤ n ≤ N/2

and from (5.51)

G(0,m) = F (0,m)W 0
N

= x(n) + x(n + N/2), 0 ≤ n ≤ N/2

G(1,m) = F (1,m)Wm
N

= [x(n) − x(n + N/2)]Wn
N , 0 ≤ n ≤ N/2

(5.62)
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Let G(0,m) = d1(n) and G(1,m) = d2(n) for 0 ≤ n ≤ N/2 − 1 (since
they can be considered as time-domain sequences); then from (5.52) we
have

X(0, q) = X(2q) = D1(q)

X(1, q) = X(2q + 1) = D2(q)
(5.63)

This implies that the DFT values X(k) are computed in a decimated
fashion. Therefore this approach is called a decimation-in-frequency FFT
(DIF-FFT) algorithm. Its signal flowgraph is a transposed structure of
the DIT-FFT structure, and its computational complexity is also equal
to N

2 log2 N .

5.6.3 MATLAB IMPLEMENTATION
MATLAB provides a function called fft to compute the DFT of a vec-
tor x. It is invoked by X = fft(x,N), which computes the N -point DFT.
If the length of x is less than N, then x is padded with zeros. If the argu-
ment N is omitted, then the length of the DFT is the length of x. If x is a
matrix, then fft(x,N) computes the N -point DFT of each column of x.

This fft function is written in machine language and not using
MATLAB commands (i.e., it is not available as a .m file). Therefore it
executes very fast. It is written as a mixed-radix algorithm. If N is a
power of two, then a high-speed radix-2 FFT algorithm is employed. If
N is not a power of two, then N is decomposed into prime factors and
a slower mixed-radix FFT algorithm is used. Finally, if N is a prime
number, then the fft function is reduced to the raw DFT algorithm.

The inverse DFT is computed using the ifft function, which has the
same characteristics as fft.

� EXAMPLE 5.22 In this example we will study the execution time of the fft function for 1 ≤
N ≤ 2048. This will reveal the divide-and-combine strategy for various values
of N . One note of caution. The results obtained in this example are valid only
for MATLAB Versions 5 and earlier. Beginning in Version 6, MATLAB is using
a new numerical computing core called LAPACK. It is optimized for memory
references and cache usage and not for individual floating-point operations.
Therefore, results for Version 6 and later are difficult to interpret. Also the
execution times given here are for a specific computer and may vary on different
computers.

Solution To determine the execution time, MATLAB provides two functions. The clock

function provides the instantaneous clock reading, while the etime(t1,t2) func-
tion computes the elapsed time between two time marks t1 and t2. To determine
the execution time, we will generate random vectors from length 1 through 2048,
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196 Chapter 5 THE DISCRETE FOURIER TRANSFORM

compute their FFTs, and save the computation time in an array. Finally, we
will plot this execution time versus N .

MATLAB script:

>> Nmax = 2048; fft_time=zeros(1,Nmax);

>> for n=1:1:Nmax

>> x=rand(1,n);

>> t=clock;fft(x);fft_time(n)=etime(clock,t);

>> end

>> n=[1:1:Nmax]; plot(n,fft_time,’.’)

>> xlabel(’N’);ylabel(’Time in Sec.’) title(’FFT execution times’)

The plot of the execution times is shown in Figure 5.21. This plot is very
informative. The points in the plot do not show one clear function but appear
to group themselves into various trends. The uppermost group depicts a o(N2)
dependence on N , which means that these values must be prime numbers be-
tween 1 and 2048 for which the FFT algorithm defaults to the DFT algorithm.
Similarly, there are groups corresponding to the o

(
N2/2

)
, o
(
N2/3

)
, o
(
N2/4

)
,

and so on, dependencies for which the number N has fewer decompositions.
The last group shows the (almost linear) o (N logN) dependence, which is for
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FIGURE 5.21 FFT execution times for 1 <= N <= 2048

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Fast Fourier Transform 197

N = 2ν , 0 ≤ ν ≤ 11. For these values of N , the radix-2 FFT algorithm is used.
For all other values, a mixed-radix FFT algorithm is employed. This shows that
the divide-and-combine strategy is very effective when N is highly composite.
For example, the execution time is 0.16 sec for N = 2048, 2.48 sec for N = 2047,
and 46.96 sec for N = 2039. �

The MATLAB functions developed previously in this chapter should
now be modified by substituting the fft function in place of the dft
function. From the preceding example care must be taken to use a highly
composite N . A good practice is to choose N = 2ν unless a specific
situation demands otherwise.

5.6.4 FAST CONVOLUTIONS
The conv function in MATLAB is implemented using the filter function
(which is written in C) and is very efficient for smaller values of N (< 50).
For larger values of N it is possible to speed up the convolution using the
FFT algorithm. This approach uses the circular convolution to implement
the linear convolution, and the FFT to implement the circular convolu-
tion. The resulting algorithm is called a fast convolution algorithm. In
addition, if we choose N = 2ν and implement the radix-2 FFT, then the
algorithm is called a high-speed convolution. Let x1 (n) be a N1-point se-
quence and x2 (n) be a N2-point sequence; then for high-speed convolution
N is chosen to be

N = 2�log2(N1+N2−1)� (5.64)

where �x� is the smallest integer greater than x (also called a ceiling
function). The linear convolution x1 (n) ∗ x2 (n) can now be implemented
by two N -point FFTs, one N -point IFFT, and one N -point dot-product.

x1 (n) ∗ x2 (n) = IFFT [FFT [x1 (n)] · FFT [x2 (n)]] (5.65)

For large values of N , (5.65) is faster than the time-domain convolution,
as we see in the following example.

� EXAMPLE 5.23 To demonstrate the effectiveness of the high-speed convolution, let us compare
the execution times of two approaches. Let x1 (n) be an L-point uniformly
distributed random number between [0, 1], and let x2 (n) be an L-point Gaussian
random sequence with mean 0 and variance 1. We will determine the average
execution times for 1 ≤ L ≤ 150, in which the average is computed over the
100 realizations of random sequences. (Please see the cautionary note given in
Example 5.22.)
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Solution MATLAB script:

conv_time = zeros(1,150); fft_time = zeros(1,150);

%

for L = 1:150

tc = 0; tf=0;

N = 2*L-1; nu = ceil(log10(NI)/log10(2)); N = 2^nu;

for I=1:100

h = randn(1,L); x = rand(1,L);

t0 = clock; y1 = conv(h,x); t1=etime(clock,t0); tc = tc+t1;

t0 = clock; y2 = ifft(fft(h,N).*fft(x,N)); t2=etime(clock,t0);

tf = tf+t2;

end

%

conv_time(L)=tc/100; fft_time(L)=tf/100;

end

%

n = 1:150; subplot(1,1,1);

plot(n(25:150),conv_time(25:150),n(25:150),fft_time(25:150))

Figure 5.22 shows the linear convolution and the high-speed convolution times
for 25 ≤ L ≤ 150. It should be noted that these times are affected by the
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FIGURE 5.22 Comparison of linear and high-speed convolution times
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computing platform used to execute the MATLAB script. The plot in Figure 5.22
was obtained on a 33 MHz 486 computer. It shows that for low values of L
the linear convolution is faster. The crossover point appears to be L = 50,
beyond which the linear convolution time increases exponentially, while the
high-speed convolution time increases fairly linearly. Note that since N = 2ν ,
the high-speed convolution time is constant over a range on L. �

5.6.5 HIGH-SPEED BLOCK CONVOLUTIONS
Earlier we discussed a block convolution algorithm called the overlap-and-
save method (and its companion the overlap-and-add method), which is
used to convolve a very large sequence with a relatively smaller sequence.
The MATLAB function ovrlpsav developed in that section uses the DFT
to implement the linear convolution. We can now replace the DFT by the
radix-2 FFT algorithm to obtain a high-speed overlap-and-save algorithm.
To further reduce the computations, the FFT of the shorter (fixed) se-
quence can be computed only once. The following hsolpsav function
shows this algorithm.

function [y] = hsolpsav(x,h,N)

% High-speed Overlap-Save method of block convolutions using FFT

% --------------------------------------------------------------

% [y] = hsolpsav(x,h,N)

% y = output sequence

% x = input sequence

% h = impulse response

% N = block length (must be a power of two)

%

N = 2^(ceil(log10(N)/log10(2));

Lenx = length(x); M = length(h);

M1 = M-1; L = N-M1; h = fft(h,N);

%

x = [zeros(1,M1), x, zeros(1,N-1)];

K = floor((Lenx+M1-1)/(L)); % # of blocks

Y = zeros(K+1,N);

for k=0:K

xk = fft(x(k*L+1:k*L+N));

Y(k+1,:) = real(ifft(xk.*h));

end

Y = Y(:,M:N)’; y = (Y(:))’;

A similar modification can be done to the overlap-and-add algorithm.
MATLAB also provides the function fftfilt to implement the overlap-
and-add algorithm.
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5.7 PROBLEMS

P5.1 Compute the DFS coefficients of the following periodic sequences using the DFS definition,
and then verify your answers using MATLAB.

1. x̃1(n) = {4, 1,−1, 1}, N = 4

2. x̃2(n) = {2, 0, 0, 0,−1, 0, 0, 0}, N = 8

3. x̃3(n) = {1, 0,−1,−1, 0}, N = 5

4. x̃4(n) = {0, 0, 2j, 0, 2j, 0}, N = 6

5. x̃5(n) = {3, 2, 1}, N = 3

P5.2 Determine the periodic sequences given the following periodic DFS coefficients. First use
the IDFS definition and then verify your answers using MATLAB.

1. X̃1(k) = {4, 3j,−3j}, N = 3

2. X̃2(k) = {j, 2j, 3j, 4j}, N = 4

3. X̃3(k) = {1, 2 + 3j, 4, 2 − 3j}, N = 4

4. X̃4(k) = {0, 0, 2, 0, 0}, N = 5

5. X̃5(k) = {3, 0, 0, 0,−3, 0, 0, 0}, N = 8

P5.3 Let x̃1(n) be periodic with fundamental period N = 40 where one period is given by

x̃1(n) =

{
5 sin(0.1πn), 0 ≤ n ≤ 19

0, 20 ≤ n ≤ 39

and let x̃2(n) be periodic with fundamental period N = 80, where one period is given by

x̃2(n) =

{
5 sin(0.1πn), 0 ≤ n ≤ 19

0, 20 ≤ n ≤ 79

These two periodic sequences differ in their periodicity but otherwise have the same
nonzero samples.

1. Compute the DFS X̃1(k) of x̃1(n), and plot samples (using the stem function) of its
magnitude and angle versus k.

2. Compute the DFS X̃2(k) of x̃2(n), and plot samples of its magnitude and angle versus k.
3. What is the difference between the two preceding DFS plots?

P5.4 Consider the periodic sequence x̃1(n) given in Problem P5.3. Let x̃2(n) be periodic with
fundamental period N = 40, where one period is given by

x̃2(n) =

{
x̃1(n), 0 ≤ n ≤ 19

−x̃1(n− 20), 20 ≤ n ≤ 39

1. Determine analytically the DFS X̃2(k) in terms of X̃1(k).
2. Compute the DFS X̃2(k) of x̃2(n) and plot samples of its magnitude and angle versus k.
3. Verify your answer in part 1 using the plots of X̃1(k) and X̃2(k)?

P5.5 Consider the periodic sequence x̃1(n) given in Problem P5.3. Let x̃3(n) be periodic with
period 80, obtained by concatenating two periods of x̃1(n), i.e.,

x̃3(n) = [x̃1(n), x̃1(n)]PERIODIC
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Clearly, x̃3(n) is different from x̃2(n) of Problem P5.3 even though both of them are
periodic with period 80.

1. Compute the DFS X̃3(k) of x̃3(n), and plot samples of its magnitude and angle versus k.
2. What effect does the periodicity doubling have on the DFS?
3. Generalize this result to M -fold periodicity. In particular, show that if

x̃M (n) =


x̃1(n), x̃1(n), . . . , x̃1(n)︸ ︷︷ ︸

M times




PERIODIC

then

X̃M (Mk) = MX̃1(k), k = 0, 1, . . . , N − 1

X̃M (k) = 0, k �= 0,M, . . . ,MN

P5.6 Let X(ejω) be the DTFT of a finite-length sequence

x(n) =

{
n + 1, 0 ≤ n ≤ 49;

100 − n, 50 ≤ n ≤ 99;
0, otherwise.

1. Let

y1(n) =
10-point
IDFS

[
X(ej0), X(ej2π/10), X(ej4π/10), . . . , X(ej18π/10)

]

Determine y1(n) using the frequency sampling theorem. Verify your answer using
MATLAB.

2. Let

y2(n) =
200-point

IDFS
[
X(ej0), X(ej2π/200), X(ej4π/200), . . . , X(ej398π/200)

]

Determine y2(n) using the frequency sampling theorem. Verify your answer using
MATLAB.

3. Comment on your results in parts (a) and (b).

P5.7 Let x̃(n) be a periodic sequence with period N and let

ỹ(n)
�
= x̃(−n) = x̃(N − n)

that is, ỹ(n) is a periodically folded version of x̃(n). Let X̃(k) and Ỹ (k) be the DFS
sequences.

1. Show that

Ỹ (k) = X̃(−k) = X̃(N − k)

that is, Ỹ (k) is also a periodically folded version of X̃(k).
2. Let x̃(n) = {2

↑
, 4, 6, 1, 3, 5}PERIODIC with N = 6.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



202 Chapter 5 THE DISCRETE FOURIER TRANSFORM

(a) Sketch ỹ(n) for 0 ≤ n ≤ 5.

(b) Compute X̃(k) for 0 ≤ k ≤ 5.

(c) Compute Ỹ (k) for 0 ≤ k ≤ 5.

(d) Verify the relation in part 1.

P5.8 Consider the following finite-length sequence.

x(n) =

{
sinc2{(n− 50)/2}, 0 ≤ n ≤ 100;
0, else.

1. Determine the DFT X(k) of x(n). Plot (using the stem function) its magnitude and
phase.

2. Plot the magnitude and phase of the DTFT X(ejω) of x(n) using MATLAB.
3. Verify that the above DFT is the sampled version of X(ejω). It might be helpful to

combine the above two plots in one graph using the hold function.
4. Is it possible to reconstruct the DTFT X(ejω) from the DFT X(k)? If possible, give the

necessary interpolation formula for reconstruction. If not possible, state why this
reconstruction cannot be done.

P5.9 Let a finite-length sequence be given by

x(n) =

{
2e−0.9|n|, −5 ≤ n ≤ 5;

0, otherwise.

Plot the DTFT X(ejω) of the above sequence using DFT as a computation tool. Choose the
length N of the DFT so that this plot appears to be a smooth graph.

P5.10 Plot the DTFT magnitude and angle of each of the following sequences using the DFT as a
computation tool. Make an educated guess about the length N so that your plots are
meaningful.

1. x(n) = (0.6)|n| [u(n + 10) − u(n− 11)].

2. x(n) = n(0.9)n [u(n) − u(n− 21)].

3. x(n) = [cos(0.5πn) + j sin(0.5πn)][u(n) − u(n− 51)].

4. x(n) = {1, 2, 3, 4
↑
, 3, 2, 1}.

5. x(n) = {−1,−2,−3, 0
↑
, 3, 2, 1}.

P5.11 Let H(ejω) be the frequency response of a real, causal discrete-time LSI system.

1. If

Re
{
H
(
ejω
)}

=

5∑
k=0

(0.9)k cos (kω)

determine the impulse response h(n) analytically. Verify your answer using DFT as a
computation tool. Choose the length N appropriately.

2. If

Im
{
H
(
ejω
)}

=

5∑
�=0

2� sin (�ω) , and

∫ π

−π

H(ejω)dω = 0
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determine the impulse response h(n) analytically. Verify your answer using DFT as a
computation tool. Again choose the length N appropriately.

P5.12 Let X(k) denote the N -point DFT of an N -point sequence x(n). The DFT X(k) itself is an
N -point sequence.

1. If the DFT of X(k) is computed to obtain another N -point sequence x1(n), show that

x1(n) = Nx((−n))N , 0 ≤ n ≤ N − 1

2. Using this property, design a MATLAB function to implement an N -point circular
folding operation x2(n) = x1((−n))N . The format should be

x2 = circfold(x1,N)

% Circular folding using DFT

% x2 = circfold(x1,N)

% x2 = circularly folded output sequence

% x1 = input sequence of length <= N

% N = circular buffer length

3. Determine the circular folding of the following sequence.

x1(n) = {1, 3, 5, 7, 9,−7,−5,−3,−1}

P5.13 Let X(k) be an N -point DFT of an N -point sequence x(n). Let N be an even integer.

1. If x(n) = x(n + N/2) for all n, then show that X(k) = 0 for k odd (i.e., nonzero for k
even). Verify this result for x(n) = {1, 2,−3, 4, 5, 1, 2,−3, 4, 5}.

2. If x(n) = −x(n + N/2) for all n, then show that X(k) = 0 for k even (i.e., nonzero for
k odd). Verify this result for x(n) = {1, 2,−3, 4, 5,−1,−2, 3,−4,−5}.

P5.14 Let X(k) be an N -point DFT of an N -point sequence x(n). Let N = 4ν where ν is an
integer.

1. If x(n) = x(n + ν) for all n, then show that X(k) is nonzero for k = 4� for 0 ≤ � ≤ ν − 1.
Verify this result for x(n) = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}.

2. If x(n) = −x(n + ν) for all n, then show that X(k) is nonzero for k = 4� + 2 for
0 ≤ � ≤ ν − 1. Verify this result for x(n) = {1, 2, 3,−1,−2,−3, 1, 2, 3,−1,−2,−3}.

P5.15 Let X(k) be an N -point DFT of an N -point sequence x(n). Let N = 2µν where µ and ν are
integers.

1. If x(n) = x(n + ν) for all n, then show that X(k) is nonzero for k = 2(µ�) for 0 ≤ � ≤
ν − 1. Verify this result for x(n) = {1,−2, 3, 1,−2, 3, 1,−2, 3, 1,−2, 3, 1,−2, 3, 1,−2, 3}.

2. If x(n) = −x(n + ν) for all n, then show that X(k) is nonzero for k = 2(µ� + 1) for
0 ≤ � ≤ ν − 1. Verify this result for x(n) = {1,−2, 3,−1, 2,−3, 1,−2, 3,−1, 2,−3, 1,−2,
3,−1, 2,−3}.

P5.16 Let X(k) and Y (k) be 10-point DFTs of two 10-point sequences x(n) and y(n),
respectively. If

X(k) = exp(j0.2πk), 0 ≤ k ≤ 9

determine Y (k) in each of the following cases without computing the DFT.
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1. y(n) = x((n− 5))10
2. y(n) = x((n + 4))10
3. y(n) = x((3 − n))10
4. y(n) = x(n)ej3πn/5

5. y(n) = x(n) 10© x((−n))10

Verify your answers using MATLAB.

P5.17 The first six values of the 10-point DFT of a real-valued sequence x(n) are given by

{10,−2 + j3, 3 + j4, 2 − j3, 4 + j5, 12}

Determine the DFT of each of the following sequences using DFT properties.

1. x1(n) = x((2 − n))10
2. x2(n) = x((n + 5))10
3. x3(n) = x(n)x((−n))10

4. x4(n) = x(n) 10© x((−n))10
5. x5(n) = x(n)e−j4πn/5

P5.18 Complex-valued N -point sequence x(n) can be decomposed into N -point circular-conjugate-
symmetric and circular-conjugate-antisymmetric sequences using the following relations

xccs(n)
�
=

1

2
[x(n) + x∗((−n))N ]

xcca(n)
�
=

1

2
[x(n) − x∗((−n))N ]

If XR(k) and XI(k) are the real and imaginary parts of the N -point DFT of x(n), then

DFT [xccs(n)] = XR(k) and DFT [xcca(n)] = jXI(k)

1. Prove these relations property analytically.
2. Modify the circevod function developed in the chapter so that it can be used for

complex-valued sequences.
3. Let X(k) = [3 cos(0.2πk) + j4 sin(0.1πk)][u(k) − u(k − 20)] be a 20-point DFT. Verify

this symmetry property using your circevod function.

P5.19 If X(k) is the N -point DFT of an N -point complex-valued sequence

x(n) = xR(n) + jxI(n)

where xR(n) and xI(n) are the real and imaginary parts of x(n), then

DFT [xR(n)] = Xccs(k) and DFT [jxI(n)] = Xcca(k)

where Xccs(k) and Xcca(k) are the circular-even and circular-odd components of X(k) as
defined in Problem P5.18.

1. Prove this property analytically.
2. This property can be used to compute the DFTs of two real-valued N -point sequences

using one N -point DFT operation. Specifically, let x1(n) and x2(n) be two N -point
sequences. Then we can form a complex-valued sequence

x(n) = x1(n) + jx2(n)
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and use this property. Develop a MATLAB function to implement this approach with
the following format.

function [X1,X2] = real2dft(x1,x2,N)

% DFTs of two real sequences

% [X1,X2] = real2dft(x1,x2,N)

% X1 = n-point DFT of x1

% X2 = n-point DFT of x2

% x1 = sequence of length <= N

% x2 = sequence of length <= N

% N = length of DFT

3. Compute and plot the DFTs of the following two sequences using this function.

x1(n) = cos(0.1πn), x2(n) = sin(0.2πn); 0 ≤ n ≤ 39

P5.20 Using the frequency domain approach, devise a MATLAB function to determine a circular
shift x((n−m))N , given an N1-point sequence x(n) where N1 ≤ N . Your function should
have the following format.

function y = cirshftf(x,m,N)

% Circular shift of m samples wrt size N in sequence x: (freq domain)

% -------------------------------------------------------------------

% y = cirshftf(x,m,N)

% y : output sequence containing the circular shift

% x : input sequence of length <= N

% m : sample shift

% N : size of circular buffer

% Method: y(n) = idft(dft(x(n))*WN^(mk))

%

% If m is a scalar then y is a sequence (row vector)

% If m is a vector then y is a matrix, each row is a circular shift

% in x corresponding to entries in vecor m

% M and x should not be matrices

Verify your function on the following sequence

x(n) = {5
↑
, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4}, 0 ≤ n ≤ 10

with (a) m = −5, N = 12 and (b) m = 8, N = 15.

P5.21 Using the analysis and synthesis equations of the DFT, show that the energy of a sequence
satisfies

EX �
=

N−1∑
n=0

|x(n)|2 =
1

N

N−1∑
k=0

|X(k)|2

This is commonly referred to as a Parseval’s relation for the DFT. Verify this relation using
MATLAB on the sequence in Problem P5.20.
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P5.22 A 512-point DFT X(k) of a real-valued sequence x(n) has the following DFT values:

X(0)= 20 + jα; X(5)= 20 + j30; X(k1)=−10 + j15; X(152)= 17 + j23;

X(k2)= 20 − j30; X(k3) = 17 − j23; X(480) =−10 − j15; X(256)= 30 + jβ

and all other values are known to be zero.

1. Determine the real-valued coefficients α and β.
2. Determine the values of the integers k1, k2, and k3.
3. Determine the energy of the signal x(n).
4. Express the sequence x(n) in a closed form.

P5.23 Let x(n) be a finite length sequence given by

x(n) =

{
. . . , 0, 0, 0, 1

↑
, 2,−3, 4,−5, 0, . . .

}

Determine and sketch the sequence x((−8 − n))7R7 (n) where

R7 (n) =

{
1, 0 ≤ n ≤ 6
0, elsewhere

P5.24 The circonvt function developed in this chapter implements the circular convolution as a
matrix-vector multiplication. The matrix corresponding to the circular shifts {x((n−m))N ;
0 ≤ n ≤ N − 1} has an interesting structure. This matrix is called a circulant matrix, which
is a special case of Toeplitz matrix introduced in Chapter 2.

1. Consider the sequences given in Example 5.13. Express x1(n) as a column vector x1 and
x2((n−m))N as a circulant matrix X2 with rows corresponding to n = 0, 1, 2, 3.
Characterize this matrix X2. Can it completely be described by its first row (or column)?

2. Determine the circular convolution as X2x1 and verify your calculations.

P5.25 Develop a MATLAB function to construct a circulant matrix C given an N -point sequence
x(n). Use the toeplitz function to implement matrix C. Your subroutine function should
have the following format:

function [C] = circulnt(x,N)

% Circulant Matrix from an N-point sequence

% [C] = circulnt(x,N)

% C = circulant matrix of size NxN

% x = sequence of length <= N

% N = size of circulant matrix

Using this function, modify the circular convolution function circonvt discussed in the
chapter so that the for...end loop is eliminated. Verify your functions on the sequences in
Problem P5.24.

P5.26 Using the frequency domain approach, devise a MATLAB function to implement the
circular convolution operation between two sequences. The format of the sequence should be
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function x3 = circonvf(x1,x2,N)

% Circular convolution in the frequency domain

% x3 = circonvf(x1,x2,N)

% x3 = convolution result of length N

% x1 = sequence of length <= N

% x2 = sequence of length <= N

% N = length of circular buffer

Using your function, compute the circular convolution {4, 3, 2, 1} 4© {1, 2, 3, 4}.
P5.27 The following four sequences are given:

x1(n) = {1
↑
, 3, 2,−1}; x2(n) = {2

↑
, 1, 0,−1}; x3(n) = x1(n) ∗ x2(n); x4(n) = x1(n) 5© x2(n)

1. Determine and sketch x3(n).
2. Using x3(n) alone, determine and sketch x4(n). Do not directly compute x4(n).

P5.28 Compute the N -point circular convolution for the following sequences. Plot their samples.

1. x1(n) = sin(πn/3)R6(n), x2(n) = cos(πn/4)R8(n); N = 10
2. x1(n) = cos (2πn/N)RN (n), x2(n) = sin (2πn/N)RN (n); N = 32
3. x1(n) = (0.8)n RN (n), x2(n) = (−0.8)n RN (n); N = 20
4. x1(n) = nRN (n), x2(n) = (N − n)RN (n); N = 10
5. x1(n) = (0.8)nR20, x2(n) = u(n) − u(n− 40); N = 50

P5.29 Let x1(n) and x2(n) be two N -point sequences.

1. If y(n) = x1(n) N© x2(n) show that

N−1∑
n=0

y(n) =

(
N−1∑
n=0

x1(n)

)(
N−1∑
n=0

x2(n)

)

2. Verify this result for the following sequences.

x1(n) = {9, 4,−1, 4,−4,−1, 8, 3}; x2(n) = {−5, 6, 2,−7,−5, 2, 2,−2}

P5.30 Let X(k) be the 8-point DFT of a 3-point sequence x(n) = {5
↑
,−4, 3}. Let Y (k) be the

8-point DFT of a sequence y(n). Determine y(n) when Y (k) = W 5k
8 X(−k)8.

P5.31 For the following sequences compute (i) the N -point circular convolution x3(n) = x1(n)

N© x2(n), (ii) the linear convolution x4(n) = x1(n) ∗ x2(n), and (iii) the error sequence
e(n) = x3(n) − x4(n).

1. x1(n) = {1, 1, 1, 1} , x2(n) = cos (πn/4)R6(n); N = 8
2. x1(n) = cos (2πn/N)R16(n), x2(n) = sin (2πn/N)R16(n); N = 32
3. x1(n) = (0.8)n R10(n), x2(n) = (−0.8)n R10(n); N = 15
4. x1(n) = nR10(n), x2(n) = (N − n)R10(n); N = 10
5. x1(n) = {1,−1, 1,−1} , x2(n) = {1, 0,−1, 0} ; N = 5

In each case verify that e(n) = x4 (n + N).
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P5.32 The overlap-add method of block convolution is an alternative to the overlap-save method.
Let x(n) be a long sequence of length ML where M,L � 1. Divide x(n) into M segments
{xm(n), m = 1, . . . ,M} each of length L

xm(n) =

{
x(n), mL ≤ n ≤ (m + 1)L− 1
0, elsewhere

so that x(n) =

M−1∑
m=0

xm(n)

Let h(n) be an L-point impulse response. Then

y(n) = x(n) ∗ h(n) =

M−1∑
m=0

xm(n) ∗ h(n) =

M−1∑
m=0

ym(n); ym(n)
�
= xm(n) ∗ h(n)

Clearly, ym(n) is a (2L− 1)-point sequence. In this method we have to save the
intermediate convolution results and then properly overlap these before adding to form the
final result y(n). To use DFT for this operation we have to choose N ≥ (2L− 1).

1. Develop a MATLAB function to implement the overlap-add method using the circular
convolution operation. The format should be

function [y] = ovrlpadd(x,h,N)

% Overlap-Add method of block convolution

% [y] = ovrlpadd(x,h,N)

%

% y = output sequence

% x = input sequence

% h = impulse response

% N = block length >= 2*length(h)-1

2. Incorporate the radix-2 FFT implementation in this function to obtain a high-speed
overlap-add block convolution routine. Remember to choose N = 2ν .

3. Verify your functions on the following two sequences

x(n) = cos (πn/500)R4000(n), h(n) = {1,−1, 1,−1}

P5.33 Given the following sequences x1(n) and x2(n):

x1(n) = {2, 1, 1, 2} , x2(n) = {1,−1,−1, 1}

1. Compute the circular convolution x1(n) N© x2(n) for N = 4, 7, and 8.
2. Compute the linear convolution x1(n) ∗ x2(n).
3. Using results of calculations, determine the minimum value of N necessary so that linear

and circular convolutions are same on the N -point interval.
4. Without performing the actual convolutions, explain how you could have obtained the

result of P5.33.3.

P5.34 Let

x(n) =

{
A cos (2π�n/N), 0 ≤ n ≤ N − 1
0, elsewhere

= A cos (2π�n/N)RN (n)
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where � is an integer. Notice that x(n) contains exactly � periods (or cycles) of the cosine
waveform in N samples. This is a windowed cosine sequence containing no leakage.

1. Show that the DFT X(k) is a real sequence given by

X(k) =
AN

2
δ (k − �) +

AN

2
δ(k −N + �); 0 ≤ k ≤ (N − 1), 0 < � < N

2. Show that if � = 0, then the DFT X(k) is given by

X(k) = ANδ(k); 0 ≤ k ≤ (N − 1)

3. Explain clearly how these results should be modified if � < 0 or � > N .
4. Verify the results of parts 1, 2, and 3 using the following sequences. Plot the real parts of

the DFT sequences using the stem function.

(a) x1(n) = 3 cos (0.04πn)R200(n)

(b) x2(n) = 5R50(n)

(c) x3(n) = [1 + 2 cos (0.5πn) + cos (πn)]R100(n)

(d) x4(n) = cos (25πn/16)R64(n)

(e) x5(n) = [4 cos (0.1πn) − 3 cos (1.9πn)]R40(n)

P5.35 Let x(n) = A cos (ω0n)RN (n), where ω0 is a real number.

1. Using the properties of the DFT, show that the real and the imaginary parts of X(k) are
given by

X(k)=XR(k) + jXI(k)

XR(k)= (A/2) cos
[
π(N−1)

N
(k − f0N)

] sin [π (k − f0N)]

sin [π(k − f0N)/N ]

+ (A/2) cos
[
π(N−1)

N
(k + f0N)

] sin [π (k −N + f0N)]

sin [π(k −N + f0N)/N ]

XI(k)=− (A/2) sin
[
π(N−1)

N
(k − f0N)

] sin [π (k − f0N)]

sin [π(k − f0N)/N ]

− (A/2) sin
[
π(N−1)

N
(k + f0N)

] sin [π (k −N + f0N)]

sin [π(k −N + f0N)/N ]

2. This result implies that the original frequency ω0 of the cosine waveform has leaked into
other frequencies that form the harmonics of the time-limited sequence, and hence it is
called the leakage property of cosines. It is a natural result due to the fact that
bandlimited periodic cosines are sampled over noninteger periods. Explain this result
using the periodic extension x̃(n) of x(n) and the result in Problem P5.34.1.

3. Verify the leakage property using x(n) = cos (5πn/99)R200(n). Plot the real and the
imaginary parts of X(k) using the stem function.

P5.36 Let

x(n) =

{
A sin (2π�n/N) , 0 ≤ n ≤ N − 1
0, Elsewhere

= A sin (2π�n/N)RN (n)
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210 Chapter 5 THE DISCRETE FOURIER TRANSFORM

where � is an integer. Notice that x(n) contains exactly � periods (or cycles) of the sine
waveform in N samples. This is a windowed sine sequence containing no leakage.

1. Show that the DFT X(k) is a purely imaginary sequence given by

X(k) =
AN

2j
δ (k − �) − AN

2j
δ(k −N + �); 0 ≤ k ≤ (N − 1), 0 < � < N

2. Show that if � = 0, then the DFT X(k) is given by

X(k) = 0; 0 ≤ k ≤ (N − 1)

3. Explain clearly how these results should be modified if � < 0 or � > N .
4. Verify the results of parts 1, 2, and 3 using the following sequences. Plot the imaginary

parts of the DFT sequences using the stem function.

(a) x1(n) = 3 sin (0.04πn)R200(n)

(b) x2(n) = 5 sin 10πnR50(n)

(c) x3(n) = [2 sin (0.5πn) + sin (πn)]R100(n)

(d) x4(n) = sin (25πn/16)R64(n)

(e) x5(n) = [4 sin (0.1πn) − 3 sin (1.9πn)]R20(n)

P5.37 Let x(n) = A sin (ω0n)RN (n), where ω0 is a real number.

1. Using the properties of the DFT, show that the real and the imaginary parts of X(k) are
given by

X(k) = XR(k) + jXI(k)

XR(k) = − (A/2) sin
[
π(N−1)

N
(k − f0N)

] sin [π (k − f0N)]

sin [π(k − f0N)/N ]

+ (A/2) sin
[
π(N−1)

N
(k + f0N)

] sin [π (k −N + f0N)]

sin [π(k −N + f0N)/N ]

XI(k) = − (A/2) cos
[
π(N−1)

N
(k − f0N)

] sin [π (k − f0N)]

sin [π(k − f0N)/N ]

+ (A/2) cos
[
π(N−1)

N
(k + f0N)

] sin [π (k −N + f0N)]

sin [π(k −N + f0N)/N ]

2. This result is the leakage property of sines. Explain it using the periodic extension x̃(n)
of x(n) and the result in Problem P5.36.1.

3. Verify the leakage property using x(n) = sin (5πn/99)R100(n). Plot the real and the
imaginary parts of X(k) using the stem function.

P5.38 An analog signal xa(t) = 2 sin (4πt) + 5 cos (8πt) is sampled at t = 0.01n for
n = 0, 1, . . . , N − 1 to obtain an N -point sequence x(n). An N -point DFT is used to obtain
an estimate of the magnitude spectrum of xa(t).

1. From the following values of N , choose the one that will provide the accurate estimate of
the spectrum of xa(t). Plot the real and imaginary parts of the DFT spectrum X(k).
(a) N = 40, (b) N = 50, (c) N = 60.
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2. From the following values of N , choose the one that will provide the least amount of
leakage in the spectrum of xa(t). Plot the real and imaginary parts of the DFT spectrum
X(k). (a) N = 90, (b) N = 95, (c) N = 99.

P5.39 Using (5.49), determine and draw the signal flow graph for the N = 8 point, radix-2
decimation-in-frequency FFT algorithm. Using this flow graph, determine the DFT of the
sequence

x(n) = cos (πn/2) , 0 ≤ n ≤ 7

P5.40 Using (5.49), determine and draw the signal flow graph for the N = 16 point, radix-4
decimation-in-time FFT algorithm. Using this flow graph, determine the DFT of the
sequence

x(n) = cos (πn/2) , 0 ≤ n ≤ 15

P5.41 Let x(n) be a uniformly distributed random number between [−1, 1] for 0 ≤ n ≤ 106. Let

h(n) = sin(0.4πn), 0 ≤ n ≤ 100

1. Using the conv function, determine the output sequence y(n) = x(n) ∗ h(n).
2. Consider the overlap-and-save method of block convolution along with the FFT

algorithm to implement high-speed block convolution. Using this approach, determine
y(n) with FFT sizes of 1024, 2048, and 4096.

3. Compare these approaches in terms of the convolution results and their execution times.
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C H A P T E R 6
Implementation
of Discrete-time
Filters

In earlier chapters we studied the theory of discrete systems in both the
time and frequency domains. We will now use this theory for the process-
ing of digital signals. To process signals, we have to design and implement
systems called filters (or spectrum analyzers in some contexts). The filter
design issue is influenced by such factors as the type of the filter (i.e., IIR
or FIR) or the form of its implementation (structures). Hence, before we
discuss the design issue, we first concern ourselves with how these filters
can be implemented in practice. This is an important concern because
different filter structures dictate different design strategies.

IIR filters as designed and used in DSP, can be modeled by rational
system functions or, equivalently, by difference equations. Such filters are
termed autoregressive moving average (ARMA) or, more generally, as re-
cursive filters. Although ARMA filters include moving average filters that
are FIR filters, we will treat FIR filters separately from IIR filters for both
design and implementation purposes.

In addition to describing various filter structures, we also begin to con-
sider problems associated with quantization effects when finite-precision
arithmetic is used in the implementation. Digital hardware contains pro-
cessing elements that use finite-precision arithmetic. When filters are im-
plemented either in hardware or in software, filter coefficients as well as
filter operations are subjected to the effects of these finite-precision op-
erations. In this chapter, we treat the effects on filter frequency response
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characteristics due to coefficient quantization. In Chapter 10, we will con-
sider the round-off noise effects in the digital filter implementations.

We begin with a description of basic building blocks that are used
to describe filter structures. In the subsequent sections, we briefly de-
scribe IIR, FIR, and lattice filter structures, respectively, and provide
MATLAB functions to implement these structures. This is followed by
a brief treatment of the representation of numbers and the resulting er-
ror characteristics, which is then used to analyze coefficient quantization
effects.

6.1 BASIC ELEMENTS

Since our filters are LTI systems, we need the following three elements to
describe digital filter structures. These elements are shown in Figure 6.1.

1. Adder: This element has two inputs and one output and is shown in
Figure 6.1a. Note that the addition of three or more signals is imple-
mented by successive two-input adders.

2. Multiplier (gain): This is a single-input, single-output element and is
shown in Figure 6.1b. Note that the multiplication by 1 is understood
and hence not explicitly shown.

3. Delay element (shifter or memory): This element delays the sig-
nal passing through it by one sample, as shown in Figure 6.1c. It is
implemented by using a shift register.

Using these basic elements, we can now describe various structures of
both IIR and FIR filters. MATLAB is a convenient tool in the develop-
ment of these structures that require operations on polynomials.

x1(n) x1(n) + x2(n)

x2(n)

x(n) ax(n)

(a) Adder

(b) Multiplier

a z−1

x(n) x(n − 1)
(c) Delay element

FIGURE 6.1 Three basic elements
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214 Chapter 6 IMPLEMENTATION OF DISCRETE-TIME FILTERS

6.2 IIR FILTER STRUCTURES

The system function of an IIR filter is given by

H(z) =
B(z)
A(z)

=
∑M

n=0 bnz
−n

∑N
n=0 anz

−n
=

b0 + b1z
−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N
; a0 = 1

(6.1)
where bn and an are the coefficients of the filter. We have assumed without
loss of generality that a0 = 1. The order of such an IIR filter is called N if
aN �= 0. The difference equation representation of an IIR filter is expressed
as

y(n) =
M∑

m=0

bmx(n−m) −
N∑

m=1

amy(n−m) (6.2)

Three different structures can be used to implement an IIR filter:

1. Direct form: In this form the difference equation (6.2) is implemented
directly as given. There are two parts to this filter, namely the moving
average part and the recursive part (or equivalently, the numerator
and denominator parts). Therefore this implementation leads to two
versions: direct form I and direct form II structures.

2. Cascade form: In this form the system function H(z) in equation
(6.1) is factored into smaller 2nd-order sections, called biquads. The
system function is then represented as a product of these biquads. Each
biquad is implemented in a direct form, and the entire system function
is implemented as a cascade of biquad sections.

3. Parallel form: This is similar to the cascade form, but after factor-
ization, a partial fraction expansion is used to represent H(z) as a sum
of smaller 2nd-order sections. Each section is again implemented in a
direct form, and the entire system function is implemented as a parallel
network of sections.

We will briefly discuss these forms in this section. IIR filters are gen-
erally described using the rational form version (or the direct form struc-
ture) of the system function. Hence we will provide MATLAB functions for
converting direct form structures to cascade and parallel form structures.

6.2.1 DIRECT FORM
As the name suggests, the difference equation (6.2) is implemented as
given using delays, multipliers, and adders. For the purpose of illustration,
let M = N = 4. Then the difference equation is

y(n) = b0x(n) + b1x(n− 1) + b2x(n− 2) + b3x(n− 3) + b4x(n− 4)
− a1y(n− 1) − a2y(n− 2) − a3y(n− 3) − a4y(n− 4)
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IIR Filter Structures 215

FIGURE 6.2 Direct form I structure

which can be implemented as shown in Figure 6.2. This block diagram is
called direct form I structure.

The direct form I structure implements each part of the rational
function H(z) separately with a cascade connection between them. The
numerator part is a tapped delay line followed by the denominator part,
which is a feedback tapped delay line. Thus there are two separate delay
lines in this structure, and hence it requires eight delay elements. We
can reduce this delay element count or eliminate one delay line by inter-
changing the order in which the two parts are connected in the cascade.
Now the two delay lines are close to each other, connected by a unity
gain branch. Therefore one delay line can be removed, and this reduction
leads to a canonical structure called direct form II structure, shown in
Figure 6.3. It should be noted that both direct forms are equivalent from
the input-output point of view. Internally, however, they have different
signals.

x (n)

(a) Normal (b) Transposed

y (n)
y (n)

b1

b0

b2

b3

b4

z −1−a1

−a2

−a3

−a4

z −1

z −1

z −1

x (n)

b1

b0

b2

b3

b4

z −1 −a1

−a2

−a3

−a4

z −1

z −1

z −1

FIGURE 6.3 Direct form II structure
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216 Chapter 6 IMPLEMENTATION OF DISCRETE-TIME FILTERS

6.2.2 TRANSPOSED STRUCTURE
An equivalent structure to the direct form can be obtained using a pro-
cedure called transposition. In this operation three steps are performed:

1. All path arrow directions are reversed.
2. All branch nodes are replaced by adder nodes, and all adder nodes are

replaced by branch nodes.
3. The input and output nodes are interchanged.

The resulting structure is called the transposed direct form structure. The
transposed direct form II structure is shown in Figure 6.3b. Problem P6.3
explains this equivalent structure.

6.2.3 MATLAB IMPLEMENTATION
In MATLAB the direct form structure is described by two row vectors;
b containing the {bn} coefficients and a containing the {an} coefficients.
The filter function, which is discussed in Chapter 2, implements the
transposed direct form II structure.

6.2.4 CASCADE FORM
In this form the system function H(z) is written as a product of 2nd-order
sections with real coefficients. This is done by factoring the numerator and
denominator polynomials into their respective roots and then combining
either a complex conjugate root pair or any two real roots into 2nd-order
polynomials. In the remainder of this chapter, we assume that N is an
even integer. Then

H(z) =
b0 + b1z

−1 + · · · + bNz−N

1 + a1z−1 + · · · + aNz−N

= b0
1 + b1

b0
z−1 + · · · + bN

b0
z−N

1 + a1z−1 + · · · + aNz−N

= b0

K∏
k=1

1 + Bk,1z
−1 + Bk,2z

−2

1 + Ak,1z−1 + Ak,2z−2
(6.3)

where K is equal to N
2 , and Bk,1, Bk,2, Ak,1, and Ak,2 are real numbers

representing the coefficients of 2nd-order sections. The 2nd-order section

Hk(z) =
Yk+1(z)
Yk(z)

=
1 + Bk,1z

−1 + Bk,2z
−2

1 + Ak,1z−1 + Ak,2z−2
; k = 1, . . . ,K

with
Y1(z) = b0X(z); YK+1(z) = Y (z)

is called the kth biquad section. The input to the kth biquad section is
the output from the (k − 1)th biquad section, and the output from the
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FIGURE 6.4 Biquad section structure

kth biquad is the input to the (k+ 1)th biquad. Now each biquad section
Hk(z) can be implemented in direct form II, as shown in Figure 6.4. The
entire filter is then implemented as a cascade of biquads.

As an example, consider N = 4. Figure 6.5 shows a cascade form
structure for this 4th-order IIR filter.

6.2.5 MATLAB IMPLEMENTATION
Given the coefficients {bn} and {an} of the direct form filter, we have to
obtain the coefficients b0, {Bk,i}, and {Ak,i}. This is done by the following
function dir2cas.

function [b0,B,A] = dir2cas(b,a);

% DIRECT-form to CASCADE-form conversion (cplxpair version)

% ---------------------------------------------------------

% [b0,B,A] = dir2cas(b,a)

% b0 = gain coefficient

% B = K by 3 matrix of real coefficients containing bk’s

% A = K by 3 matrix of real coefficients containing ak’s

% b = numerator polynomial coefficients of DIRECT form

% a = denominator polynomial coefficients of DIRECT form

% compute gain coefficient b0

b0 = b(1); b = b/b0; a0 = a(1); a = a/a0; b0 = b0/a0;

%

M = length(b); N = length(a);

if N > M

b = [b zeros(1,N-M)];

FIGURE 6.5 Cascade form structure for N = 4
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elseif M > N

a = [a zeros(1,M-N)]; N = M;

else

NM = 0;

end

%

K = floor(N/2); B = zeros(K,3); A = zeros(K,3);

if K*2 == N;

b = [b 0]; a = [a 0];

end

%

broots = cplxpair(roots(b)); aroots = cplxpair(roots(a));

for i=1:2:2*K

Brow = broots(i:1:i+1,:); Brow = real(poly(Brow));

B(fix((i+1)/2),:) = Brow;

Arow = aroots(i:1:i+1,:); Arow = real(poly(Arow));

A(fix((i+1)/2),:) = Arow;

end

This function converts the b and a vectors into K × 3 B and A matrices.
It begins by computing b0, which is equal to b0/a0 (assuming a0 �= 1).
It then makes the vectors b and a of equal length by zero-padding the
shorter vector. This ensures that each biquad has a nonzero numerator
and denominator. Next it computes the roots of the B(z) and A(z) poly-
nomials. Using the cplxpair function, these roots are ordered in complex
conjugate pairs. Now every pair is converted back into a 2nd-order numer-
ator or denominator polynomial using the poly function. The SP toolbox
function, tf2sos (transfer function to 2nd-order section), also performs
a similar operation.

The cascade form is implemented using the following casfiltr
function.

function y = casfiltr(b0,B,A,x);

% CASCADE form realization of IIR and FIR filters

% -----------------------------------------------

% y = casfiltr(b0,B,A,x);

% y = output sequence

% b0 = gain coefficient of CASCADE form

% B = K by 3 matrix of real coefficients containing bk’s

% A = K by 3 matrix of real coefficients containing ak’s

% x = input sequence

%

[K,L] = size(B);

N = length(x); w = zeros(K+1,N); w(1,:) = x;
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for i = 1:1:K

w(i+1,:) = filter(B(i,:),A(i,:),w(i,:));

end

y = b0*w(K+1,:);

It employs the filter function in a loop using the coefficients of
each biquad stored in B and A matrices. The input is scaled by b0,
and the output of each filter operation is used as an input to the next
filter operation. The output of the final filter operation is the overall
output.

The following MATLAB function, cas2dir, converts a cascade form
to a direct form. This is a simple operation that involves multiplication of
several 2nd-order polynomials. For this purpose, the MATLAB function
conv is used in a loop over K factors. The SP toolbox function, sos2tf
also performs a similar operation.

function [b,a] = cas2dir(b0,B,A);

% CASCADE-to-DIRECT form conversion

% ---------------------------------

% [b,a] = cas2dir(b0,B,A)

% b = numerator polynomial coefficients of DIRECT form

% a = denominator polynomial coefficients of DIRECT form

% b0 = gain coefficient

% B = K by 3 matrix of real coefficients containing bk’s

% A = K by 3 matrix of real coefficients containing ak’s

%

[K,L] = size(B);

b = [1]; a = [1];

for i=1:1:K

b=conv(b,B(i,:)); a=conv(a,A(i,:));

end

b = b*b0;

� EXAMPLE 6.1 A filter is described by the following difference equation:

16y(n) + 12y(n− 1) + 2y(n− 2) − 4y(n− 3) − y(n− 4)

= x(n) − 3x(n− 1) + 11x(n− 2) − 27x(n− 3) + 18x(n− 4)

Determine its cascaded form structure.
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Solution MATLAB script:

>> b=[1 -3 11 -27 18]; a=[16 12 2 -4 -1];

>> [b0,B,A]=dir2cas(b,a)

b0 = 0.0625

B =

1.0000 -0.0000 9.0000

1.0000 -3.0000 2.0000

A =

1.0000 1.0000 0.5000

1.0000 -0.2500 -0.1250

The resulting structure is shown in Figure 6.6. To check that our cascade struc-
ture is correct, let us compute the first 8 samples of the impulse response using
both forms.

>> delta = impseq(0,0,7)

delta =

1 0 0 0 0 0 0 0

>> format long

>> hcas=casfiltr(b0,B,A,delta)

hcas =

Columns 1 through 4

0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000

Columns 5 through 8

2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945

>> hdir=filter(b,a,delta)

hdir =

Columns 1 through 4

0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000

Columns 5 through 8

2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945

�

FIGURE 6.6 Cascade structure in Example 6.1
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6.2.6 PARALLEL FORM
In this form the system function H(z) is written as a sum of 2nd-order
sections using partial fraction expansion.

H(z) =
B(z)
A(z)

=
b0 + b1z

−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N

=
b̂0 + b̂1z

−1 + · · · + b̂N−1z
1−N

1 + a1z−1 + · · · + aNz−N
+

M−N∑
0

Ckz
−k

︸ ︷︷ ︸
only if M≥N

=
K∑

k=1

Bk,0 + Bk,1z
−1

1 + Ak,1z−1 + Ak,2z−2
+

M−N∑
0

Ckz
−k

︸ ︷︷ ︸
only if M≥N

(6.4)

where K is equal to N
2 , and Bk,0, Bk,1, Ak,1, and Ak,2 are real num-

bers representing the coefficients of 2nd-order sections. The 2nd-order
section

Hk(z) =
Yk+1(z)
Yk(z)

=
Bk,0 + Bk,1z

−1

1 + Ak,1z−1 + Ak,2z−2
; k = 1, . . . ,K

with

Yk(z) = Hk(z)X(z), Y (z) =
∑

Yk(z), M < N

is the kth proper rational biquad section. The filter input is available to
all biquad sections as well as to the polynomial section if M ≥ N (which
is an FIR part). The output from these sections is summed to form the
filter output. Now each biquad section Hk(z) can be implemented in direct
form II. Due to the summation of subsections, a parallel structure can be
built to realize H(z). As an example, consider M = N = 4. Figure 6.7
shows a parallel-form structure for this 4th-order IIR filter.

6.2.7 MATLAB IMPLEMENTATION
The following function dir2par converts the direct-form coefficients {bn}
and {an} into parallel form coefficients {Bk,i} and {Ak,i}.
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FIGURE 6.7 Parallel form structure for N = 4

function [C,B,A] = dir2par(b,a);

% DIRECT-form to PARALLEL-form conversion

% --------------------------------------

% [C,B,A] = dir2par(b,a)

% C = Polynomial part when length(b) >= length(a)

% B = K by 2 matrix of real coefficients containing bk’s

% A = K by 3 matrix of real coefficients containing ak’s

% b = numerator polynomial coefficients of DIRECT form

% a = denominator polynomial coefficients of DIRECT form

%

M = length(b); N = length(a);

[r1,p1,C] = residuez(b,a);

p = cplxpair(p1,10000000*eps); I = cplxcomp(p1,p); r = r1(I);

K = floor(N/2); B = zeros(K,2); A = zeros(K,3);

if K*2 == N; %N even, order of A(z) odd, one factor is first order

for i=1:2:N-2

Brow = r(i:1:i+1,:); Arow = p(i:1:i+1,:);

[Brow,Arow] = residuez(Brow,Arow,[]);

B(fix((i+1)/2),:) = real(Brow); A(fix((i+1)/2),:) = real(Arow);

end

[Brow,Arow] = residuez(r(N-1),p(N-1),[]);

B(K,:) = [real(Brow) 0]; A(K,:) = [real(Arow) 0];

else

for i=1:2:N-1
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Brow = r(i:1:i+1,:); Arow = p(i:1:i+1,:);

[Brow,Arow] = residuez(Brow,Arow,[]);

B(fix((i+1)/2),:) = real(Brow); A(fix((i+1)/2),:) = real(Arow);

end

end

The dir2cas function first computes the z-domain partial fraction expan-
sion using the residuez function. We need to arrange pole-and-residue
pairs into complex conjugate pole-and-residue pairs followed by real pole-
and-residue pairs. To do this, the cplxpair function from MATLAB can
be used; this sorts a complex array into complex conjugate pairs. How-
ever, two consecutive calls to this function, one each for pole and residue
arrays, will not guarantee that poles and residues will correspond to each
other. Therefore a new cplxcomp function is developed, which compares
two shuffled complex arrays and returns the index of one array, which can
be used to rearrange another array.

function I = cplxcomp(p1,p2)

% I = cplxcomp(p1,p2)

% Compares two complex pairs which contain the same scalar elements

% but (possibly) at differrent indices. This routine should be

% used after CPLXPAIR routine for rearranging pole vector and its

% corresponding residue vector.

% p2 = cplxpair(p1)

%

I=[];

for j=1:1:length(p2)

for i=1:1:length(p1)

if (abs(p1(i)-p2(j)) < 0.0001)

I=[I,i];

end

end

end

I=I’;

After collecting these pole-and-residue pairs, the dir2cas function com-
putes the numerator and denominator of the biquads by employing the
residuez function in the reverse fashion.

These parallel-form coefficients are then used in the function
parfiltr, which implements the parallel form. The parfiltr function
uses the filter function in a loop using the coefficients of each biquad
stored in the B and A matrices. The input is first filtered through the FIR
part C and stored in the first row of a w matrix. Then the outputs of all
biquad filters are computed for the same input and stored as subsequent
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rows in the w matrix. Finally, all the columns of the w matrix are summed
to yield the output.

function y = parfiltr(C,B,A,x);

% PARALLEL form realization of IIR filters

% ----------------------------------------

% [y] = parfiltr(C,B,A,x);

% y = output sequence

% C = polynomial (FIR) part when M >= N

% B = K by 2 matrix of real coefficients containing bk’s

% A = K by 3 matrix of real coefficients containing ak’s

% x = input sequence

%

[K,L] = size(B); N = length(x); w = zeros(K+1,N);

w(1,:) = filter(C,1,x);

for i = 1:1:K

w(i+1,:) = filter(B(i,:),A(i,:),x);

end

y = sum(w);

To obtain a direct form from a parallel form, the function par2dir can
be used. It computes poles and residues of each proper biquad and com-
bines these into system poles and residues. Another call of the residuez
function in reverse order computes the numerator and denominator
polynomials.

function [b,a] = par2dir(C,B,A);

% PARALLEL-to-DIRECT form conversion

% ----------------------------------

% [b,a] = par2dir(C,B,A)

% b = numerator polynomial coefficients of DIRECT form

% a = denominator polynomial coefficients of DIRECT form

% C = Polynomial part of PARALLEL form

% B = K by 2 matrix of real coefficients containing bk’s

% A = K by 3 matrix of real coefficients containing ak’s

%

[K,L] = size(A); R = []; P = [];

for i=1:1:K

[r,p,k]=residuez(B(i,:),A(i,:)); R = [R;r]; P = [P;p];

end

[b,a] = residuez(R,P,C); b = b(:)’; a = a(:)’;
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� EXAMPLE 6.2 Consider the filter given in Example 6.1.

16y(n) + 12y(n− 1) + 2y(n− 2) − 4y(n− 3) − y(n− 4)

= x(n) − 3x(n− 1) + 11x(n− 2) − 27x(n− 3) + 18x(n− 4)

Now determine its parallel form.

Solution MATLAB script:

>> b=[1 -3 11 -27 18]; a=[16 12 2 -4 -1];

>> [C,B,A]=dir2par(b,a)

C =

-18

B =

10.0500 -3.9500

28.1125 -13.3625

A =

1.0000 1.0000 0.5000

1.0000 -0.2500 -0.1250

The resulting structure is shown in Figure 6.8. To check our parallel structure,
let us compute the first 8 samples of the impulse response using both forms.

>> format long; delta = impseq(0,0,7); hpar=parfiltr(C,B,A,delta)

hpar =

Columns 1 through 4

0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000

FIGURE 6.8 Parallel form structure in Example 6.2
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Columns 5 through 8

2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945

>> hdir = filter(b,a,delta)

hdir =

Columns 1 through 4

0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000

Columns 5 through 8

2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945

�

� EXAMPLE 6.3 What would be the overall direct, cascade, or parallel form if a structure contains
a combination of these forms? Consider the block diagram shown in Figure 6.9.

Solution This structure contains a cascade of two parallel sections. The first parallel
section contains 2 biquads, while the second one contains 3 biquads. We will have
to convert each parallel section into a direct form using the par2dir function,
giving us a cascade of 2 direct forms. The overall direct form can be computed
by convolving the corresponding numerator and denominator polynomials. The
overall cascade and parallel forms can now be derived from the direct form.

MATLAB script:

>> C0=0; B1=[2 4;3 1]; A1=[1 1 0.9; 1 0.4 -0.4];

>> B2=[0.5 0.7;1.5 2.5;0.8 1]; A2=[1 -1 0.8;1 0.5 0.5;1 0 -0.5];

>> [b1,a1]=par2dir(C0,B1,A1)

b1 =

5.0000 8.8000 4.5000 -0.7000

FIGURE 6.9 Block diagram in Example 6.3
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a1 =

1.0000 1.4000 0.9000 -0.0400 -0.3600

>> [b2,a2]=par2dir(C0,B2,A2)

b2 =

2.8000 2.5500 -1.5600 2.0950 0.5700 -0.7750

a2 =

1.0000 -0.5000 0.3000 0.1500 0.0000 0.0500 -0.2000

>> b=conv(b1,b2) % Overall direct form numerator

b =

Columns 1 through 7

14.0000 37.3900 27.2400 6.2620 12.4810 11.6605 -5.7215

Columns 8 through 9

-3.8865 0.5425

>> a=conv(a1,a2) % Overall direct form denominator

a =

Columns 1 through 7

1.0000 0.9000 0.5000 0.0800 0.1400 0.3530 -0.2440

Columns 8 through 11

-0.2890 -0.1820 -0.0100 0.0720

>> [b0,Bc,Ac]=dir2cas(b,a) % Overall cascade form

b0 =

14.0000

Bc =

1.0000 1.8836 1.1328

1.0000 -0.6915 0.6719

1.0000 2.0776 0.8666

1.0000 0 0

1.0000 -0.5990 0.0588

Ac =

1.0000 1.0000 0.9000

1.0000 0.5000 0.5000

1.0000 -1.0000 0.8000

1.0000 1.5704 0.6105

1.0000 -1.1704 0.3276

>> [C0,Bp,Ap]=dir2par(b,a) % Overall parallel form

C0 = []

Bp =

-20.4201 -1.6000

24.1602 5.1448

2.4570 3.3774

-0.8101 -0.2382

8.6129 -4.0439

Ap =

1.0000 1.0000 0.9000

1.0000 0.5000 0.5000

1.0000 -1.0000 0.8000

1.0000 1.5704 0.6105

1.0000 -1.1704 0.3276
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This example shows that by using the MATLAB functions developed in this
section, we can probe and construct a wide variety of structures. �

6.3 FIR FILTER STRUCTURES

A finite-duration impulse response filter has a system function of the form

H(z) = b0 + b1z
−1 + · · · + bM−1z

1−M =
M−1∑
n=0

bnz
−n (6.5)

Hence the impulse response h(n) is

h(n) =
{
bn, 0 ≤ n ≤ M − 1
0, else (6.6)

and the difference equation representation is

y(n) = b0x(n) + b1x(n− 1) + · · · + bM−1x(n−M + 1) (6.7)

which is a linear convolution of finite support.
The order of the filter is M − 1, and the length of the filter (which

is equal to the number of coefficients) is M . The FIR filter structures are
always stable, and they are relatively simple compared to IIR structures.
Furthermore, FIR filters can be designed to have a linear-phase response,
which is desirable in some applications.

We will consider the following four structures:

1. Direct form: In this form the difference equation (6.7) is implemented
directly as given.

2. Cascade form: In this form the system function H(z) in (6.5) is fac-
tored into 2nd-order factors, which are then implemented in a cascade
connection.

3. Linear-phase form: When an FIR filter has a linear-phase response,
its impulse response exhibits certain symmetry conditions. In this form
we exploit these symmetry relations to reduce multiplications by about
half.

4. Frequency-sampling form: This structure is based on the DFT of
the impulse response h(n) and leads to a parallel structure. It is also
suitable for a design technique based on the sampling of frequency
response H(ejω).

We will briefly describe these four forms along with some examples.
The MATLAB function dir2cas developed in the previous section is also
applicable for the cascade form.
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FIGURE 6.10 Direct form FIR structure

6.3.1 DIRECT FORM
The difference equation (6.7) is implemented as a tapped delay line since
there are no feedback paths. Let M = 5 (i.e., a 4th-order FIR filter); then

y(n) = b0x(n) + b1x(n− 1) + b2x(n− 2) + b3x(n− 3) + b4x(n− 4)

The direct form structure is given in Figure 6.10. Note that since the
denominator is equal to unity, there is only one direct form structure.

6.3.2 MATLAB IMPLEMENTATION
In MATLAB the direct form FIR structure is described by the row vector
b containing the {bn} coefficients. The structure is implemented by the
filter function, in which the vector a is set to the scalar value 1, as
discussed in Chapter 2.

6.3.3 CASCADE FORM
This form is similar to that of the IIR form. The system function H(z) is
converted into products of 2nd-order sections with real coefficients. These
sections are implemented in direct form and the entire filter as a cascade
of 2nd-order sections. From (6.5)

H(z) = b0 + b1z
−1 + · · · + bM−1z

−M+1 (6.8)

= b0

(
1 +

b1
b0
z−1 + · · · + bM−1

b0
z−M+1

)

= b0

K∏
k=1

(
1 + Bk,1z

−1 + Bk,2z
−2
)

where K is equal to �M
2 �, and Bk,1 and Bk,2 are real numbers representing

the coefficients of 2nd-order sections. For M = 7 the cascade form is shown
in Figure 6.11.

FIGURE 6.11 Cascade form FIR structure
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6.3.4 MATLAB IMPLEMENTATION
Although it is possible to develop a new MATLAB function for the FIR
cascade form, we will use our dir2cas function by setting the denominator
vector a equal to 1. Similarly, cas2dir can be used to obtain the direct
form from the cascade form.

6.3.5 LINEAR-PHASE FORM
For frequency-selective filters (e.g., lowpass filters) it is generally desirable
to have a phase response that is a linear function of frequency; that is, we
want

� H(ejω) = β − αω, −π < ω ≤ π (6.9)

where β = 0 or ±π/2 and α is a constant. For a causal FIR filter with
impulse response over [0, M−1] interval, the linear-phase condition (6.9)
imposes the following symmetry conditions on the impulse response h(n)
(see Problem P6.16):

h(n) = h(M − 1 − n); β = 0, α =
M − 1

2
, 0 ≤ n ≤ M − 1 (6.10)

h(n) = −h(M − 1 − n); β = ±π/2, α =
M − 1

2
, 0 ≤ n ≤ M − 1 (6.11)

An impulse response that satisfies (6.10) is called a symmetric impulse
response, and that in (6.11) is called an antisymmetric impulse response.
These symmetry conditions can now be exploited in a structure called the
linear-phase form.

Consider the difference equation given in (6.7) with a symmetric im-
pulse response in (6.10). We have

y(n) = b0x(n) + b1x(n− 1) + · · · + b1x(n−M + 2) + b0x(n−M + 1)
= b0[x(n) + x(n−M + 1)] + b1[x(n− 1) + x(n−M + 2)] + · · ·

The block diagram implementation of these difference equation is shown
in Figure 6.12 for both odd and even M .

Clearly, this structure requires 50% fewer multiplications than the di-
rect form. A similar structure can be derived for an antisymmetric impulse
response.

6.3.6 MATLAB IMPLEMENTATION
The linear-phase structure is essentially a direct form drawn differently
to save on multiplications. Hence in a MATLAB representation of the
linear-phase structure is equivalent to the direct form.
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FIGURE 6.12 Linear-phase form FIR structures (symmetric impulse response)

� EXAMPLE 6.4 An FIR filter is given by the system function

H(z) = 1 + 16
1

16
z−4 + z−8

Determine and draw the direct, linear-phase, and cascade form structures.

a. Direct form: The difference equation is given by

y(n) = x(n) + 16.0625x(n− 4) + x(n− 8)

and the direct form structure is shown in Figure 6.13(a).
b. Linear-phase form: The difference equation can be written in the form

y(n) = [x(n) + x(n− 8)] + 16.0625x(n− 4)

and the resulting structure is shown in Figure 6.13b.
c. Cascade form: We use the following MATLAB Script.

>> b=[1,0,0,0,16+1/16,0,0,0,1]; [b0,B,A] = dir2cas(b,1)

FIGURE 6.13 FIR filter structures in Example 6.4
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b0 = 1

B =

1.0000 2.8284 4.0000

1.0000 0.7071 0.2500

1.0000 -0.7071 0.2500

1.0000 -2.8284 4.0000

A =

1 0 0

1 0 0

1 0 0

1 0 0

The cascade form structure is shown in Figure 6.13c. �

� EXAMPLE 6.5 For the filter in Example 6.4, what would be the structure if we desire a cascade
form containing linear-phase components with real coefficients?

Solution We are interested in cascade sections that have symmetry and real coefficients.
From the properties of linear-phase FIR filters (see Chapter 7), if such a filter
has an arbitrary zero at z = r � θ, then there must be 3 other zeros at (1/r)� θ,
r � − θ, and (1/r)� − θ to have real filter coefficients. We can now make use of
this property. First we will determine the zero locations of the given 8th-order
polynomial. Then we will group 4 zeros that satisfy this property to obtain
one (4th-order) linear-phase section. There are two such sections, which we will
connect in cascade.

MATLAB script:

>> b=[1,0,0,0,16+1/16,0,0,0,1]; broots=roots(b)

broots =

-1.4142 + 1.4142i

-1.4142 - 1.4142i

1.4142 + 1.4142i

1.4142 - 1.4142i

-0.3536 + 0.3536i

-0.3536 - 0.3536i

0.3536 + 0.3536i

0.3536 - 0.3536i

>> B1=real(poly([broots(1),broots(2),broots(5),broots(6)]))

B1 =

1.0000 3.5355 6.2500 3.5355 1.0000

>> B2=real(poly([broots(3),broots(4),broots(7),broots(8)]))

B2 =

1.0000 -3.5355 6.2500 -3.5355 1.0000

The structure is shown in Figure 6.14. �
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FIGURE 6.14 Cascade of FIR linear-phase elements

6.3.7 FREQUENCY SAMPLING FORM
In this form we use the fact that the system function H (z) of an FIR
filter can be reconstructed from its samples on the unit circle. From our
discussions on the DFT in Chapter 5, we recall that these samples are
in fact the M -point DFT values {H (k) , 0 ≤ k ≤ M − 1} of the M -point
impulse response h (n). Therefore we have

H (z) = Z [h (n)] = Z [IDFT {H (k)}]

Using this procedure, we obtain [see (5.17) in Chapter 5]

H (z) =
(

1 − z−M

M

)M−1∑
k=0

H (k)
1 −W−k

M z−1
(6.12)

This shows that the DFT H (k), rather than the impulse response
h (n) (or the difference equation), is used in this structure. Also note that
the FIR filter described by (6.12) has a recursive form similar to an IIR
filter because (6.12) contains both poles and zeros. The resulting filter is
an FIR filter since the poles at W−k

M are canceled by the roots of

1 − z−M = 0

The system function in (6.12) leads to a parallel structure, as shown in
Figure 6.15 for M = 4.

One problem with the structure in Figure 6.15 is that it requires a
complex arithmetic implementation. Since an FIR filter is almost always a
real-valued filter, it is possible to obtain an alternate realization in which
only real arithmetic is used. This realization is derived using the symmetry
properties of the DFT and the W−k

M factor. Then (6.12) can be expressed
as (see Problem P6.19)

H (z) =
1 − z−M

M

{
L∑

k=1

2 |H (k)|Hk (z) +
H (0)

1 − z−1
+

H (M/2)
1 + z−1

}
(6.13)

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



234 Chapter 6 IMPLEMENTATION OF DISCRETE-TIME FILTERS

FIGURE 6.15 Frequency sampling structure for M = 4

where L = M−1
2 for M odd, L = M

2 − 1 for M even, and {Hk (z) , k = 1,
. . . , L} are 2nd-order sections given by

Hk (z) =
cos [ � H (k)] − z−1 cos

[
� H (k) − 2πk

M

]

1 − 2z−1 cos
(

2πk
M

)
+ z−2

(6.14)

Note that the DFT samples H (0) and H (M/2) are real-valued and that
the third term on the right-hand side of (6.13) is absent if M is odd. Using
(6.13) and (6.14), we show a frequency sampling structure in Figure 6.16
for M = 4 containing real coefficients.

FIGURE 6.16 Frequency sampling structure for M = 4 with real coefficients
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6.3.8 MATLAB IMPLEMENTATION
Given the impulse response h (n) or the DFT H(k), we have to determine
the coefficients in (6.13) and (6.14). The following MATLAB function,
dir2fs, converts a direct form [h (n) values] to the frequency sampling
form by directly implementing (6.13) and (6.14).

function [C,B,A] = dir2fs(h)

% Direct form to Frequency Sampling form conversion

% -------------------------------------------------

% [C,B,A] = dir2fs(h)

% C = Row vector containing gains for parallel sections

% B = Matrix containing numerator coefficients arranged in rows

% A = Matrix containing denominator coefficients arranged in rows

% h = impulse response vector of an FIR filter

%

M = length(h); H = fft(h,M);

magH = abs(H); phaH = angle(H)’;

% check even or odd M

if (M == 2*floor(M/2))

L = M/2-1; % M is even

A1 = [1,-1,0;1,1,0]; C1 = [real(H(1)),real(H(L+2))];

else

L = (M-1)/2; % M is odd

A1 = [1,-1,0]; C1 = [real(H(1))];

end

k = [1:L]’;

% initialize B and A arrays

B = zeros(L,2); A = ones(L,3);

% compute denominator coefficients

A(1:L,2) = -2*cos(2*pi*k/M); A = [A;A1];

% compute numerator coefficients

B(1:L,1) = cos(phaH(2:L+1));

B(1:L,2) = -cos(phaH(2:L+1)-(2*pi*k/M));

% compute gain coefficients

C = [2*magH(2:L+1),C1]’;

In this function, the impulse response values are supplied through the
h array. After conversion, the C array contains the gain values for each
parallel section. The gain values for the 2nd-order parallel sections are
given first, followed by H (0) and H (M/2) (if M is even). The B matrix
contains the numerator coefficients, which are arranged in length-2 row
vectors for each 2nd-order section. The A matrix contains the denominator
coefficients, which are arranged in length-3 row vectors for the 2nd-order
sections corresponding to those in B, followed by the coefficients for the
1st-order sections.
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A practical problem with the structure in Figure 6.16 is that it has
poles on the unit circle, which makes this filter critically unstable. If the
filter is not excited by one of the pole frequencies, then the output is
bounded. We can avoid this problem by sampling H (z) on a circle |z| = r,
where the radius r is very close to 1 but is less than 1 (e.g., r = 0.99),
which results in

H (z) =
1 − rMz−M

M

M−1∑
k=0

H (k)
1 − rW−k

M z−k
; H (k) = H

(
rej2πk/M

)

(6.15)

Now approximating H
(
rej2πk/M

)
≈ H

(
ej2πk/M

)
for r ≈ 1, we can obtain

a stable structure similar to the one in Figure 6.16 containing real values.
This is explored in Problem P6.20.

� EXAMPLE 6.6 Let h (n) = 1
9
{1
↑
, 2, 3, 2, 1}. Determine and draw the frequency sampling form.

Solution MATLAB script:

>> h = [1,2,3,2,1]/9; [C,B,A] = dir2fs(h)

C =

0.5818

0.0849

1.0000

B =

-0.8090 0.8090

0.3090 -0.3090

A =

1.0000 -0.6180 1.0000

1.0000 1.6180 1.0000

1.0000 -1.0000 0

Since M = 5 is odd, there is only one 1st-order section. Hence

H (z) =
1 − z−5

5

[
0.5818

−0.809 + 0.809z−1

1 − 0.618z−1 + z−2

+0.0848
0.309 − 0.309z−1

1 + 1.618z−1 + z−2
+

1

1 − z−1

]

The frequency-sampling form is shown in Figure 6.17. �
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FIGURE 6.17 Frequency sampling structure in Example 6.6

� EXAMPLE 6.7 The frequency samples of a 32-point linear-phase FIR filter are given by

|H (k)| =

{
1, k = 0, 1, 2
0.5, k = 3
0, k = 4, 5, . . . , 15

Determine its frequency sampling form, and compare its computational com-
plexity with the linear-phase form.

Solution In this example since the samples of the DFT H (k) are given, we could use
(6.13) and (6.14) directly to determine the structure. However, we will use the
dir2fs function for which we will have to determine the impulse response h (n).
Using the symmetry property and the linear-phase constraint, we assemble the
DFT H (k) as

H (k) = |H (k)| ej � H(k), k = 0, 1, . . . , 31

|H (k)| = |H (32 − k)| , k = 1, 2, . . . , 31; H (0) = 1

� H (k) = −31

2

2π

32
k = − � H (32 − k) , k = 0, 1, . . . , 31

Now the IDFT of H (k) will result in the desired impulse response.

MATLAB script:

>> M = 32; alpha = (M-1)/2;

>> magHk = [1,1,1,0.5,zeros(1,25),0.5,1,1];

>> k1 = 0:15; k2 = 16:M-1;

>> angHk = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];

>> H = magHk.*exp(j*angHk); h = real(ifft(H,M)); [C,B,A] = dir2fs(h)
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C =

2.0000

2.0000

1.0000

0.0000

0.0000

0.0000

0.0000

0

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

1.0000

0

B =

-0.9952 0.9952

0.9808 -0.9808

-0.9569 0.9569

-0.8944 0.3162

0.9794 -0.7121

0.8265 0.2038

-0.6754 0.8551

1.0000 0.0000

0.6866 -0.5792

0.5191 0.9883

-0.4430 0.4993

-0.8944 -0.3162

-0.2766 0.3039

0.9343 0.9996

-0.9077 -0.8084

A =

1.0000 -1.9616 1.0000

1.0000 -1.8478 1.0000

1.0000 -1.6629 1.0000

1.0000 -1.4142 1.0000

1.0000 -1.1111 1.0000

1.0000 -0.7654 1.0000

1.0000 -0.3902 1.0000

1.0000 0.0000 1.0000

1.0000 0.3902 1.0000

1.0000 0.7654 1.0000

1.0000 1.1111 1.0000

1.0000 1.4142 1.0000

1.0000 1.6629 1.0000
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1.0000 1.8478 1.0000

1.0000 1.9616 1.0000

1.0000 -1.0000 0

1.0000 1.0000 0

Note that only 4 gain coefficients are nonzero. Hence the frequency sampling
form is

H (z) =
1 − z−32

32




2
−0.9952 + 0.9952z−1

1 − 1.9616z−1 + z−2
+ 2

0.9808 − 0.9808z−1

1 − 1.8478z−1 + z−2
+

−0.9569 + 0.9569z−1

1 − 1.6629z−1 + z−2
+

1

1 − z−1




To determine the computational complexity, note that since H (0) = 1, the 1st-
order section requires no multiplication, whereas the three 2nd-order sections
require 3 multiplications each for a total of 9 multiplications per output sample.
The total number of additions is 13. To implement the linear-phase structure
would require 16 multiplications and 31 additions per output sample. Therefore
the frequency sampling structure of this FIR filter is more efficient than the
linear-phase structure. �

6.4 LATTICE FILTER STRUCTURES

The lattice filter is extensively used in digital speech processing and in
the implementation of adaptive filters. It is a preferred form of realization
over other FIR or IIR filter structures because in speech analysis and in
speech synthesis the small number of coefficients allows a large number of
formants to be modeled in real time. The all-zero lattice is the FIR filter
representation of the lattice filter, while the lattice ladder is the IIR filter
representation.

6.4.1 ALL-ZERO LATTICE FILTERS
An FIR filter of length M (or order M − 1) has a lattice structure with
M−1 stages as shown in Figure 6.18. Each stage of the filter has an input
and output that are related by the order-recursive equations [23]:

fm(n) = fm−1(n) + Kmgm−1(n− 1), m = 1, 2, . . . ,M − 1

gm(n) = Kmfm−1(n) + gm−1(n− 1), m = 1, 2, . . . ,M − 1
(6.16)

where the parameters Km, m = 1, 2, . . . ,M − 1, called the reflection
coefficients, are the lattice filter coefficients. If the initial values of fm(n)
and gm(m) are both the scaled value (scaled by K0) of the filter input
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FIGURE 6.18 All-zero lattice filter

x(n), then the output of the (M − 1) stage lattice filter corresponds to
the output of an (M − 1) order FIR filter; that is,

f0(n) = g0(n) = K0x(n)

y(n) = fM−1(n)
(6.17)

If the FIR filter is given by the direct form

H(z) =
M−1∑
m=0

bmz−m = b0

(
1 +

M−1∑
m=1

bm
b0

z−m

)
(6.18)

and if we denote the polynomial AM−1(z) by

AM−1(z) =

(
1 +

M−1∑
m=1

αM−1(m)z−m

)
; (6.19)

αM−1(m) =
bm
b0

, m = 1, . . . ,M − 1

then the lattice filter coefficients {Km} can be obtained by the following
recursive algorithm [23]:

K0 = b0

KM−1 = αM−1 (M − 1)

Jm (z) = z−mAm

(
z−1
)
; m = M − 1, . . . , 1

Am−1(z) =
Am(z) −KmJm(z)

1 −K2
m

, m = M − 1, . . . , 1

Km = αm(m), m = M − 2, . . . , 1

(6.20)

Note that this algorithm will fail if |Km| = 1 for any m = 1, . . . ,M − 1.
Clearly, this condition is satisfied by linear-phase FIR filters since

b0 = |bM−1| ⇒ |KM−1| = |αM−1(M − 1)| =
∣∣∣∣
bM−1

b0

∣∣∣∣ = 1
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Therefore, linear-phase FIR filters cannot be implemented using lattice
structures.

6.4.2 MATLAB IMPLEMENTATION
Given the coefficients {bn} of the direct form, we can obtain the lattice fil-
ter coefficients {Km} using (6.20). This is done by the following MATLAB
function dir2latc. Note that the equation to compute Jm(z) implies that
the polynomial Jm(z) is a fliplr operation on the Am(z) polynomial.

function [K] = dir2latc(b)

% FIR Direct form to All-Zero Lattice form Conversion

% ---------------------------------------------------

% [K] = dir2latc(b)

% K = Lattice filter coefficients (reflection coefficients)

% b = FIR direct form coefficients (impulse response)

%

M = length(b); K = zeros(1,M); b1 = b(1);

if b1 == 0

error(’b(1) is equal to zero’)

end

K(1) = b1; A = b/b1;

for m=M:-1:2

K(m) = A(m); J = fliplr(A);

A = (A-K(m)*J)/(1-K(m)*K(m)); A = A(1:m-1);

end

The lattice filter is implemented using (6.16) and (6.17), which is done by
a latcfilt function, as shown here.

function [y] = latcfilt(K,x)

% LATTICE form realization of FIR filters

% ---------------------------------------

% y = latcfilt(K,x)

% y = output sequence

% K = LATTICE filter (reflection) coefficient array

% x = input sequence

%

Nx = length(x)-1; x = K(1)*x;

M = length(K)-1; K = K(2:M+1); fg = [x; [0 x(1:Nx)]];

for m = 1:M

fg = [1,K(m);K(m),1]*fg;

fg(2,:) = [0 fg(2,1:Nx)];

end

y = fg(1,:);
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The equations (6.20) can also be used to determine the direct, form
coefficients {bm} from the lattice filter coefficients {Km} using a recursive
procedure [22]:

A0(z) = J0(z) = 1

Am(z) = Am−1 (z) + Kmz−1Jm−1 (z) , m = 1, 2, . . . ,M − 1

Jm(z) = z−mAm

(
z−1
)
, m = 1, 2, . . . ,M − 1

bm = K0αM−1(m), m = 0, 1, . . . ,M − 1

(6.21)

The following MATLAB function latc2dir implements (6.21). Note
that the product Kmz−1Jm−1 (z) is obtained by convolving the 2 corre-
sponding arrays, whereas the polynomial Jm(z) is obtained by using a
fliplr operation on the Am(z) polynomial.

function [b] = latc2dir(K)

% All-Zero Lattice form to FIR Direct form Conversion

% ---------------------------------------------------

% [b] = latc2dir(K)

% b = FIR direct form coefficients (impulse response)

% K = Lattice filter coefficients (reflection coefficients)

%

M = length(K); J = 1; A = 1;

for m=2:1:M

A = [A,0]+conv([0,K(m)],J); J = fliplr(A);

end

b=A*K(1);

� EXAMPLE 6.8 An FIR filter is given by the difference equation

y(n) = 2x(n) +
13

12
x(n− 1) +

5

4
x(n− 2) +

2

3
x(n− 3)

Determine its lattice form.

Solution MATLAB script:

>> b=[2, 13/12, 5/4, 2/3]; K=dir2latc(b)

K =

2.0000 0.2500 0.5000 0.3333
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FIGURE 6.19 FIR filter structures in Example 6.8: (a) direct form (b) lattice
form

Hence

K0 = 2, K1 =
1

4
, K2 =

1

2
, K3 =

1

3

The direct form and the lattice form structures are shown in Figure 6.19. To
check that our lattice structure is correct, let us compute the impulse response
of the filter using both forms.

>> [x,n] = impseq(0,0,3]; format long hdirect=filter(b,1,delta)

hdirect =

2.00000000000000 1.08333333333333 1.25000000000000 0.66666666666667

>> hlattice=latcfilt(K,delta)

hlattice =

2.00000000000000 1.08333333333333 1.25000000000000 0.66666666666667

�

6.4.3 ALL-POLE LATTICE FILTERS
A lattice structure for an IIR filter is restricted to an all-pole system
function. It can be developed from an FIR lattice structure. Let an all-
pole system function be given by

H(z) =
1

1 +
N∑

m=1

aN (m)z−m

(6.22)

which from (6.19) is equal to H(z) = 1/AN (z). Clearly, it is an inverse sys-
tem to the FIR lattice of Figure 6.18 (except for factor b0). This IIR filter
of order N has a lattice structure with N stages, as shown in Figure 6.20.
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FIGURE 6.20 All-pole lattice filter

Each stage of the filter has an input and output that are related by the
order-recursive equations [23]:

fN (n) = x(n)

fm−1(n) = fm(n) −Kmgm−1(n− 1), m = N, N − 1, . . . , 1

gm(n) = Kmfm−1(n) + gm−1(n− 1), m = N, N − 1, . . . , 1

y(n) = f0(n) = g0(n)

(6.23)

where the parameters Km, m = 1, 2, . . . ,M − 1, are the reflection coeffi-
cients of the all-pole lattice and are obtained from (6.20) except for K0,
which is equal to 1.

6.4.4 MATLAB IMPLEMENTATION
Since the IIR lattice coefficients are derived from the same (6.20) proce-
dure used for an FIR lattice filter, we can use the dir2latc function in
MATLAB. Care must be taken to ignore the K0 coefficient in the K array.
Similarly, the latc2dir function can be used to convert the lattice {Km}
coefficients into the direct form {aN (m)}, provided that K0 = 1 is used
as the first element of the K array. The implementation of an IIR lattice
is given by (6.23), and we will discuss it in the next section.

� EXAMPLE 6.9 Consider an all-pole IIR filter given by

H(z) =
1

1 + 13
24
z−1 + 5

8
z−2 + 1

3
z−3

Determine its lattice structure.

Solution MATLAB script:

>> a=[1, 13/24, 5/8, 1/3]; K=dir2latc(a)

K =

1.0000 0.2500 0.5000 0.3333
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FIGURE 6.21 IIR filter structures in Example 6.9: (a) direct form (b) lattice
form

Hence

K1 =
1

4
, K2 =

1

2
, and K3 =

1

3

The direct form and the lattice form structures of this IIR filter are shown in
Figure 6.21. �

6.4.5 LATTICE-LADDER FILTERS
A general IIR filter containing both poles and zeros can be realized as
a lattice-type structure by using an all-pole lattice as the basic building
block. Consider an IIR filter with system function

H(z) =

M∑
k=0

bM (k)z−k

1 +
N∑

k=1

aN (k)z−k

=
BM (z)
AN (z)

(6.24)

where, without loss of generality, we assume that N ≥ M . A lattice-
type structure can be constructed by first realizing an all-pole lattice
with coefficients Km, 1 ≤ m ≤ N for the denominator of (6.24), and
then adding a ladder part by taking the output as a weighted linear
combination of {gm(n)}, as shown in Figure 6.22 for M = N . The result
is a pole-zero IIR filter that has the lattice-ladder structure. Its output is
given by

y(n) =
M∑

m=0

Cmgm(n) (6.25)
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FIGURE 6.22 Lattice-ladder structure for realizing a pole-zero IIR filter

where {Cm} are called the ladder coefficients that determine the zeros of
the system function H(z). It can be shown [23] that {Cm} are given by

BM (z) =
M∑

m=0

CmJm(z) (6.26)

where Jm(z) is the polynomial in (6.20). From (6.26) one can obtain a
recursive relation

Bm(z) = Bm−1(z) + CmJm(z); m = 1, 2, . . . ,M

or equivalently,

Cm = bm +
M∑

i=m+1

Ciαi(i−m); m = M, M − 1, . . . , 0 (6.27)

from the definitions of Bm(z) and Am(z).

6.4.6 MATLAB IMPLEMENTATION
To obtain a lattice-ladder structure for a general rational IIR filter, we
can first obtain the lattice coefficients {Km} from AN (z) using the re-
cursion (6.20). Then we can solve (6.27) recursively for the ladder coeffi-
cients {Cm} to realize the numerator BM (z). This is done in the following
MATLAB function dir2ladr. It can also be used to determine the all-pole
lattice parameters when the array b is set to b=[1].
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function [K,C] = dir2ladr(b,a)

% IIR Direct form to pole-zero Lattice/Ladder form Conversion

% -----------------------------------------------------------

% [K,C] = dir2ladr(b,a)

% K = Lattice coefficients (reflection coefficients), [K1,...,KN]

% C = Ladder Coefficients, [C0,...,CN]

% b = Numerator polynomial coefficients (deg <= Num deg)

% a = Denominator polynomial coefficients

%

a1 = a(1); a = a/a1; b = b/a1;

M = length(b); N = length(a);

if M > N

error(’ *** length of b must be <= length of a ***’)

end

b = [b, zeros(1,N-M)]; K = zeros(1,N-1);

A = zeros(N-1,N-1); C = b;

for m = N-1:-1:1

A(m,1:m) = -a(2:m+1)*C(m+1);

K(m) = a(m+1); J = fliplr(a);

a = (a-K(m)*J)/(1-K(m)*K(m)); a = a(1:m);

C(m) = b(m) + sum(diag(A(m:N-1,1:N-m)));

end

Note: To use this function, N ≥ M . If M > N , the numerator AN (z)
should be divided into the denominator BM (z) using the deconv func-
tion to obtain a proper rational part and a polynomial part. The proper
rational part can be implemented using a lattice-ladder structure, while
the polynomial part is implemented using a direct structure.

To convert a lattice-ladder form into a direct form, we first use the
recursive procedure in (6.21) on {Km} coefficients to determine {aN (k)}
and then solve (6.27) recursively to obtain {bM (k)}. This is done in the
following MATLAB function ladr2dir.

function [b,a] = ladr2dir(K,C)

% Lattice/Ladder form to IIR Direct form Conversion

% -------------------------------------------------

% [b,a] = ladr2dir(K,C)

% b = numerator polynomial coefficients

% a = denominator polymonial coefficients

% K = Lattice coefficients (reflection coefficients)

% C = Ladder coefficients

%

N = length(K); M = length(C);

C = [C, zeros(1,N-M+1)];
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J = 1; a = 1; A = zeros(N,N);

for m=1:1:N

a = [a,0]+conv([0,K(m)],J);

A(m,1:m) = -a(2:m+1); J = fliplr(a);

end

b(N+1) = C(N+1);

for m = N:-1:1

A(m,1:m) = A(m,1:m)*C(m+1);

b(m) = C(m) - sum(diag(A(m:N,1:N-m+1)));

end

The lattice-ladder filter is implemented using (6.23) and (6.25).
This is done in the following MATLAB function ladrfilt. It should
be noted that, due to the recursive nature of this implementation along
with the feedback loops, this MATLAB function is neither an elegant
nor an efficient method of implementation. It is not possible to exploit
MATLAB’s inherent parallel processing capabilities in implementing this
lattice-ladder structure.

function [y] = ladrfilt(K,C,x)

% LATTICE/LADDER form realization of IIR filters

% ----------------------------------------------

% [y] = ladrfilt(K,C,x)

% y = output sequence

% K = LATTICE (reflection) coefficient array

% C = LADDER coefficient array

% x = input sequence

%

Nx = length(x); y = zeros(1,Nx);

N = length(C); f = zeros(N,Nx); g = zeros(N,Nx+1);

f(N,:) = x;

for n = 2:1:Nx+1

for m = N:-1:2

f(m-1,n-1) = f(m,n-1) - K(m-1)*g(m-1,n-1);

g(m,n) = K(m-1)*f(m-1,n-1) + g(m-1,n-1);

end

g(1,n) = f(1,n-1);

end

y = C*g(:,2:Nx+1);

� EXAMPLE 6.10 Convert the following pole-zero IIR filter into a lattice-ladder structure.

H(z) =
1 + 2z−1 + 2z−2 + z−3

1 + 13
24
z−1 + 5

8
z−2 + 1

3
z−3
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Solution MATLAB script:

>> b = [1,2,2,1] a = [1, 13/24, 5/8, 1/3]; [K,C] = dir2ladrc(b)

K =

0.2500 0.5000 0.3333

C =

-0.2695 0.8281 1.4583 1.0000

Hence

K1 =
1

4
, K2 =

1

2
, K3 =

1

3
;

and

C0 = −0.2695, C1 = 0.8281, C2 = 1.4583, C3 = 1

FIGURE 6.23 IIR filter structures in Example 6.10: (a) direct form (b) lattice-
ladder form

The resulting direct form and the lattice-ladder form structures are shown in
Figure 6.23. To check that our lattice-ladder structure is correct, let us compute
the first 8 samples of its impulse response using both forms.

>> [x,n]=impseq(0,0,7) format long hdirect = filter(b,a,x)

hdirect =

Columns 1 through 4

1.00000000000000 1.45833333333333 0.58506944444444 -0.56170428240741

Columns 5 through 8

-0.54752302758488 0.45261700163162 0.28426911049255 -0.25435705167494

>> hladder = ladrfilt(K,C,x)

hladder =

Columns 1 through 4

1.00000000000000 1.45833333333333 0.58506944444444 -0.56170428240741

Columns 5 through 8

-0.54752302758488 0.45261700163162 0.28426911049255 -0.25435705167494

�
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Finally, we note that the SP toolbox also provides functions similar to
the ones discussed in this section—the complementary functions, tf2latc
and latc2tf, compute all-pole lattice, all-zero lattice, and lattice-ladder
structure coefficients, and vice versa. Similarly, the function latcfilt
(the same name as the book function) implements the all-zero lattice
structure. The SP toolbox does not provide a function to implement the
lattice-ladder structure.

6.5 OVERVIEW OF FINITE-PRECISION NUMERICAL EFFECTS

Until now we have considered digital filter designs and implementations
in which both the filter coefficients and the filter operations such as addi-
tions and multiplications were expressed using infinite-precision numbers.
When discrete-time systems are implemented in hardware or in software,
all parameters and arithmetic operations are implemented using finite-
precision numbers and hence their effect is unavoidable.

Consider a typical digital filter implemented as a direct-form II struc-
ture, which is shown in Figure 6.24a. When finite-precision representation
is used in its implementation, there are three possible considerations that
affect the overall quality of its output. We have to

1. quantize filter coefficients, {ak, bk}, to obtain their finite word-length
representations, {âk, b̂k},

2. quantize the input sequence, x(n) to obtain x̂(n), and
3. consider all internal arithmetic that must be converted to their next

best representations.

Thus, the output, y(n), is also a quantized value ŷ(n). This gives us a new
filter realization, Ĥ(z), which is shown in Figure 6.24b. We hope that this

x(n) y(n)H(z)x(n) y(n)H(z)

x(n) x(n)y(n) y(n)b0 b0

z−1

z−1

z−1

z−1

z−1

z−1

b1

b2

b3

a1

a2

a3

a1

a2

a3

b1

b2

b3

ˆ ˆ

ˆˆˆ

ˆ

ˆ

ˆ

ˆ ˆ

ˆ

ˆ

(a) (b)

FIGURE 6.24 Direct-form II digital filter implementation: (a) Infinite precision,
(b) Finite precision
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new filter Ĥ(z) and its output ŷ(n) are as close as possible to the original
filter H(z) and the original output y(n).

Since the quantization operation is a nonlinear operation, the overall
analysis that takes into account all three effects described above is very
difficult and tedious. Therefore, we will study each of these effects sepa-
rately as though it were the only one acting at the time. This makes the
analysis easier and the results more interpretable.

We begin by discussing the number representation in a computer—
more accurately, a central processing unit (CPU). This leads to the pro-
cess of number quantization and the resulting error characterization. We
then analyze the effects of filter coefficient quantization on digital filter
frequency responses. The effects of multiplication and addition quantiza-
tion (collectively known as arithmetic round-off errors) on filter output
are discussed in Chapter 10.

6.6 REPRESENTATION OF NUMBERS

In computers, numbers (real-valued or complex-valued, integers or frac-
tions) are represented using binary digits (bits), which take the value of
either a 0 or a 1. The finite word-length arithmetic needed for processing
these numbers is implemented using two different approaches, depending
on the ease of implementation and the accuracy as well as dynamic range
needed in processing. The fixed-point arithmetic is easy to implement but
has only a fixed dynamic range and accuracy (i.e., very large numbers or
very small numbers). The floating-point arithmetic, on the other hand, has
a wide dynamic range and a variable accuracy (relative to the magnitude
of a number) but is more complicated to implement and analyze.

Since a computer can operate only on a binary variable (e.g., a 1 or
a 0), positive numbers can straightforwardly be represented using binary
numbers. The problem arises as to how to represent the negative num-
bers. There are three different formats used in each of these arithmetics:
sign-magnitude format, one’s-complement format, and two’s-complement
format. In discussing and analyzing these representations, we will mostly
consider a binary number system containing bits. However, this discussion
and analysis is also valid for any radix numbering system—for example,
the hexadecimal, octal, or decimal system.

In the following discussion, we will first begin with fixed-point signed
integer arithmetic. A B-bit binary representation of an integer x is given
by1

x ≡ bB−1 bB−2 . . . b0 = bB−1×2B−1 + bB−2×2B−2 + · · ·+ b0×20 (6.28)

1Here the letter b is used to represent a binary bit. It is also used for filter coefficients
{bk}. Its use in the text should be clear from the context.
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252 Chapter 6 IMPLEMENTATION OF DISCRETE-TIME FILTERS

where each bit bi represents either a 0 or a 1. This representation will
help us to understand the advantages and disadvantages of each signed
format and to develop simple MATLAB functions. We will then extend
these concepts to fractional real numbers for both fixed-point and floating-
point arithmetic.

6.6.1 FIXED-POINT SIGNED INTEGER ARITHMETIC
In this arithmetic, positive numbers are coded using their binary repre-
sentation. For example, using 3 bits, we can represent numbers from 0 to
7 as

0 1 2 3 4 5 6 7

-+----+----+----+----+----+----+----+-

000 001 010 011 100 101 110 111

Thus, with 8 bits the numbers represented can be 0 to 255, with 10 bits
we can represent the numbers from 0 to 1023, and with 16 bits the range
covered is 0 to 65535. For negative numbers, the following three formats
are used: sign-magnitude, one’s-complement, and two’s-complement.

Sign-magnitude format In this format, positive numbers are repre-
sented using bits as before. However, the leftmost bit (also known as the
most-significant bit or MSB) is used as the sign bit (0 is +, and 1 is −),
and the remaining bits hold the absolute magnitude of the number as
shown here:

Sign Bit

-+ Absolute Magnitude

+---+----------------------+

| | |

+---+----------------------+

This system has thus two different codes for 0, one for the positive 0, the
other one for the negative 0. For example, using 3 bits, we can represent
numbers from −3 to 3 as

-3 -2 -1 -0 0 1 2 3

-+----+----+----+----+----+----+----+-

111 110 101 100 000 001 010 011

Thus, 8 bits cover the interval [−127,+127], while 16 bits cover [−32, 767,
+32, 767]. If we use B bits in the sign-magnitude format, then we can
represent integers from −(2B−1 − 1) to +(2B−1 − 1) only.

This format has two drawbacks. First, there are two representations
for 0. Second, the arithmetic using sign-magnitude format requires one
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rule to compute addition, another rule to compute subtraction, and a
way to compare two magnitudes to determine their relative value before
subtraction.

MATLAB Implementation MATLAB is a 64-bit floating-point com-
putation engine that provides results in decimal numbers. Therefore,
fixed-point binary operations must be simulated in MATLAB. It provides
a function, dec2bin, to convert a positive decimal integer into a B-bit
representation, which is a symbol (or a code) and not a number. Hence
it cannot be used in computation. Similarly, the function bin2dec con-
verts a B-bit binary character code into a decimal integer. For example,
dec2bin(3,3) gives 011 and bin2dec(’111’) results in 7. To obtain a
sign-magnitude format, a sign bit must be prefixed. Similarly, to convert a
sign-magnitude format, the leading bit must be used to impart a positive
or negative value. These functions are explored in Problem P9.1.

One’s-complement format In this format, the negation (or comple-
mentation) of an integer x is obtained by complementing every bit (i.e., a
0 is replaced by 1 and a 1 by 0) in the binary representation of x. Suppose
the B-bit binary representation of x is bB−1 bB−2 · · · b0; then the B-bit
one’s-complement, x̄, of x is given by

x̄
�
= b̄B−1 b̄B−2 · · · b̄0

where each bit b̄i is a complement of bit bi. Clearly then

x + x̄ ≡ 1 1 . . . 1 = 2B − 1 (6.29)

The MSB of the representation once again represents the sign bit,
because the positive integer has the MSB of 0 so that its negation (or a
negative integer) has the MSB of 1. The remaining bits represent either
the number x (if positive) or its one’s-complement (if negative). Thus,
using (6.29) the one’s-complement format representation2 is given by

x(1)
∆=

{
x, x ≥ 0
|x|, x < 0

=
{
x, x ≥ 0
2B − 1 − |x|, x < 0=

{
x, x ≥ 0
2B − 1 + x, x < 0 (6.30)

Clearly, if B bits are available, then we can represent only integers from
(−2B−1+1) to (+2B−1−1), which is similar to the sign-magnitude format.

2The one’s-complement format refers to the representation of positive and negative
numbers, whereas the one’s-complement of a number refers to the negation of that
number.
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For example, using 3 bits, we can represent numbers from −3 to 3 as

-3 -2 -1 -0 0 1 2 3

-+----+----+----+----+----+----+----+-

100 101 110 111 000 001 010 011

which is a different bit arrangement for negative numbers compared to
the sign-magnitude format.

The advantage of this format is that subtraction can be achieved by
adding the complement, which is very easy to obtain by simply comple-
menting a number’s bits. However, there are many drawbacks. There are
still two different codes for 0. The addition is a bit tricky to implement,
and overflow management requires addition of the overflow bit to the least
significant bit (or 20).

MATLAB Implementation The 1s-complement of a positive in-
teger x using B bits can be obtained by using the built-in function
bitcmp(x,B), which complements the number’s bits. The result is a dec-
imal number between 0 and 2B − 1. As before, the dec2bin can be used
to obtain the binary code. Using (6.30), we can develop the MATLAB
function, OnesComplement, which obtains the one’s-complement format
representation. It uses the sign of a number to determine when to use
one’s-complement and can use scalar as well as vector values. The result
is a decimal equivalent of the representation.

function y = OnesComplement(x,B)

% y = OnesComplement(x,B)

% ---------------

% Decimal equivalent of

% Sign-Magnitude format integer to b-bit Ones’-Complement format conversion

%

% x: integer between -2^(b-1) < x < 2^(b-1) (sign-magnitude)

% y: integer between 0 <= y <= 2^b-1 (1’s-complement)

if any((x <= -2^(B-1) | (x >= 2^(B-1))))

error(’Numbers must satisfy -2^(B-1) < x < 2^(B-1)’)

end

s = sign(x); % sign of x (-1 if x<0, 0 if x=0, 1 if x>0)

sb = (s < 0); % sign-bit (0 if x>=0, 1 if x<0));

y = (1-sb).*x + sb.*bitcmp(abs(x),B);

� EXAMPLE 6.11 Using the function OnesComplement, obtain one’s-complement format represen-
tation of integers from −7 to 7 using 4 bits.
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Solution MATLAB script:

>> x = -7:7

x =

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

>> y = OnesComplement(x,4)

y =

8 9 10 11 12 13 14 0 1 2 3 4 5 6 7

Note that the number 15 is missing since we do not have −0 in our original
array. �

Two’s-complement format The disadvantage of having two codes for
the number 0 is eliminated in this format. Positive numbers are coded as
usual. The B-bit two’s-complement, x̃, of a positive integer x is given by

x̃ = x̄ + 1 = 2B − x or x + x̃ = 2B (6.31)

where the second equality is obtained from (6.30). Once again, the
MSB of the representation provides the sign bit. Thus, using (6.31) the
two’s-complement format representation3 is given by

x(2) =
{
x, x ≥ 0
|x̃|, x < 0=

{
x, x ≥ 0
2B − |x|, x < 0=

{
x, x ≥ 0
2B + x, x < 0 (6.32)

Thus, in B-bit two’s-complement format negative numbers are obtained
by adding 2B to them. Clearly, if B bits are available, then we can repre-
sent 2B integers from (−2B−1) to (+2B−1−1). For example, using 3 bits,
we can represent numbers from −4 to 3 as

-4 -3 -2 -1 0 1 2 3

-+----+----+----+----+----+----+----+-

100 101 110 111 000 001 010 011

This format, by shifting to the right (e.g., by incrementing) the code
of the negative numbers, straightforwardly removes the problem of having
2 codes for 0 and gives access to an additional negative number at the
left of the line. Thus, 4 bits go from −8 to +7, 8 bits cover the interval
[−127,+127] and 16 bits cover [−32768,+32767].

3Again, the two’s-complement format refers to the representation of positive and neg-
ative numbers, whereas the two’s-complement of a number refers to the negation of
that number.
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MATLAB Implementation Using (6.32), we can develop the
MATLAB function, TwosComplement, which obtains the two’s-complement
format representation. We can use the bitcmp function and then add one
to the result to obtain the two’s-complement. However, we will use the
last equality in (6.32) to obtain the two’s-complement since this approach
will also be useful for fractional numbers. The function can use scalar
as well as vector values. The result is a decimal equivalent of the two’s-
complement representation. As before, the dec2bin can be used to obtain
the binary code.

function y = TwosComplement(x,b)

% y = TwosComplement(x,b)

% ---------------

% Decimal equivalent of

% Sign-Magnitude format integer to b-bit Ones’-Complement format conversion

%

% x: integer between -2^(b-1) <= x < 2^(b-1) (sign-magnitude)

% y: integer between 0 <= y <= 2^b-1 (2’s-complement)

if any((x < -2^(b-1) | (x >= 2^(b-1))))

error(’Numbers must satisfy -2^(b-1) <= x < 2^(b-1)’)

end

s = sign(x); % sign of x (-1 if x<0, 0 if x=0, 1 if x>0)

sb = (s < 0); % sign-bit (0 if x>=0, 1 if x<0));

y = (1-sb).*x + sb.*(2^b+x); % or y = (1-sb).*x + sb.*(bitcmp(abs(x),b)+1);

� EXAMPLE 6.12 Using the function TwosComplement, obtain the two’s-complement format rep-
resentation of integers from −8 to 7 using 4 bits.

Solution MATLAB script:

>> x = -8:7

x =

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

>> y = TwosComplement(x,4)

y =

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

>> y = dec2bin(y,4); disp(sprintf(’%s’,[y’;char(ones(1,16)*32)]))

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

�

The two’s-complement format has many interesting characteristics
and advantages. These will be given after we discuss the next format,
namely the ten’s-complement.
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Ten’s-complement format This is a representation for decimal inte-
gers. We will describe it so that we can explore characteristics of two’s-
complement through decimal integers, which is much easier to understand.
Following (6.31), the N -digit ten’s-complement of a positive integer x is
given by

x̃ = 10N − x or x + x̃ = 10N (6.33)

Using (6.33), the N -digit ten’s-complement format representation is given
by

x(10N )
∆=
{
x, x ≥ 0
|x̃|, x < 0=

{
x, x ≥ 0
10N − |x|, x < 0=

{
x, x ≥ 0
10N + x, x < 0 (6.34)

Thus, in N -digit ten’s-complement format (which is sometimes re-
ferred to as 10N -complement format), negative numbers are obtained by
adding 10N to them. Clearly, when N digits are available, we can repre-
sent 10N integers from (− 10N

2 ) to (+ 10N

2 − 1). For example, using 1 digit,
we can represent numbers from −5 to 4 as

-5 -4 -3 -2 -1 0 1 2 3 4

-+----+----+----+----+----+----+----+----+----+

5 6 7 8 9 0 1 2 3 4

� EXAMPLE 6.13 Using the 2-digit ten’s-complement, i.e., 100s-complement format, perform the
following operations:
1. 16 − 32, 2. 32 − 16, 3. −30 − 40, 4. 40 + 20 − 30, 5. −40 − 20 + 30.

Solution 1. 16 − 32
First we note that 16 − 32 = −16. If we use the usual subtraction rule
to proceed from right to left generating carries in the process, we cannot
complete the operation. To use the 100s-complement format, we first note
that in the 100s-complement format we have

16(100) = 16, −16(100) = 100− 16 = 84, and − 32(100) = 100− 32 = 68

Hence 16 − 32 ≡ 16 + 68 = 84 ≡ −16 in the sign-magnitude format as
expected.

2. 32 − 16
In this case the 100s-complement format gives

32 + 84 = 116 ≡ 16

in the sign-magnitude format by ignoring the generated carry digit. This is
because the sign bits were different; therefore, the operation cannot generate
an overflow. Hence, we check for overflow only if the sign bits are same.

3. −30 − 40
In this case the 100s-complement format gives

(100 − 30) + (100 − 40) = 70 + 60 = 130
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Since the sign bits were the same, an overflow is generated and the result is
invalid.

4. 40 + 20 − 30
This is an example of more than one addition or subtraction. Since the final
result is well within the range, the overflow can be ignored—that is,

40 + 20 + (100 − 30) = 40 + 20 + 70 = 130 ≡ 30

which is a correct result.

5. −40 − 20 + 30
In this case, we have

(100 − 40) + (100 − 20) + 30 = 60 + 80 + 30 = 170 ≡ −30

in the sign-magnitude format, which is, again, a correct result. �

MATLAB Implementation Using (6.34), one can develop the
MATLAB function, TensComplement, which obtains ten’s-complement
format representation. It is similar to the TwosComplement function and
is explored in Problem P6.25.

Advantages of two’s-complement format Using the results of the
Example 6.13, we now state the benefits of the two’s-complement format.
These also hold (with obvious modifications) for the ten’s-complement
format.

1. It provides for all 2B+1 distinct representations for a B-bit fractional
representation. There is only one representation for zero.

2. This complement is compatible with our notion of negation: the com-
plement of a complement is the number itself.

3. It unifies the subtraction and addition operations (subtractions are
essentially additions).

4. In a sum of more than two numbers, the internal overflows do not affect
the final result so long as the result is within the range (i.e., adding
two positive numbers gives a positive result, and adding two negative
numbers gives a negative result).

Hence in most A/D converters and processors, negative numbers are rep-
resented using two’s-complement format. Almost all current processors
implement signed arithmetic using this format and provide special func-
tions (e.g., an overflow flag) to support it.

Excess-2B−1 format This format is used in describing the exponent
of floating-point arithmetic; hence it is briefly discussed here. In excess-
2B−1 signed format (also known as a biased format), all positive and
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negative integers between −2B−1 and 2B−1 − 1 are given by

x(e)
∆= 2B−1 + x (6.35)

For example, using 3 bits, we can represent the numbers from −4 to
3 as

-4 -3 -2 -1 0 1 2 3

-+----+----+----+----+----+----+----+-

000 001 010 011 100 101 110 111

Notice that this format is very similar to the two’s-complement format,
but the sign bit is complemented. The arithmetic for this format is similar
to that of the two’s-complement format. It is used in the exponent of
floating-point number representation.

6.6.2 GENERAL FIXED-POINT ARITHMETIC
Using the discussion of integer arithmetic from the last section as a guide,
we can extend the fixed-point representation to arbitrary real (integer
and fractional) numbers. We assume that a given infinite-precision real
number, x, is approximated by a binary number, x̂, with the following bit
arrangement:

x̂ = ±
↑

Sign bit

xx · · · x︸ ︷︷ ︸
“L”

Integer bits

� xx · · · x︸ ︷︷ ︸
“B”

Fraction bits

(6.36)

where the sign bit ± is 0 for positive numbers and 1 for negative numbers,
x represents either a 0 or a 1, and � represents the binary point. This
representation is in fact the sign-magnitude format for real numbers, as
we will see. The total word length of the number x̂ is then equal to L+B+1
bits.

� EXAMPLE 6.14 Let L = 4 and B = 5, which means x̂ is a 10-bit number. Represent 11010�01110
in decimal.

Solution
x̂ = −(1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 + 0 × 2−1 + 1 × 2−2 + 1 × 2−3 + 1 × 2−4 + 0 × 2−5)

= −10.4375

in decimal. �

In many A/D converters and processors, the real numbers are scaled
so that the fixed-point representation is in the (−1, 1) range. This has
the advantage that the multiplication of two fractions is always a fraction
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and, as such, there is no overflow. Hence we will consider the following
representation:

x̂ = A(± � xxxxxx · · · x︸ ︷︷ ︸
B fraction bits

) (6.37)

where A is a positive scaling factor.

� EXAMPLE 6.15 Represent the number x̂ = −10.4375 in Example 6.14 using a fraction-only
arrangement.

Solution Choose A = 24 = 16 and B = 9. Then

x̂ = −10.4375 = 16 (1�101001110)

Hence by properly choosing A and B, one can obtain any fraction-only repre-
sentation.
Note: The scalar A need not be a power of 2. In fact, by choosing any real number
A we can obtain an arbitrary range. The power-of-2 choice for A, however, makes
hardware implementation a little easier. �

As discussed in the previous section, there are three main formats for
fixed-point arithmetic, depending on how negative numbers are obtained.
For all these formats, positive numbers have exactly the same represen-
tation. In the following we assume the fraction-only arrangement.

Sign-magnitude format As the name suggests, the magnitude is
given by the B-bit fraction, and the sign is given by the MSB. Thus,

x̂ =
{
0�x1x2 · · · xB if x ≥ 0
1�x1x2 · · · xB if x < 0 (6.38)

For example, when B = 2, x̂ = +1/4 is represented by x̂ = 0�01, and
x̂ = −1/4 is represented by x̂ = 1�01.

One’s-complement format In this format, the positive numbers have
the same representation as the sign-magnitude format. When the number
is negative, then its magnitude is given by its bit-complement arrange-
ment. Thus,

x̂ =
{
0�x1x2 · · · xB if x ≥ 0
1� x̄1x̄2 · · · x̄B if x < 0 (6.39)

For example, when B = 2, x̂ = +1/4 is represented by x̂ = 0�01, and
x̂ = −1/4 is represented by x̂ = 1�10.
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Two’s-complement format Once again, the positive numbers have
the same representation. Negative numbers are obtained by first comple-
menting the magnitude and then modulo-2 adding one to the last bit
or the least-significant bit (LSB). Stated differently, two’s-complement is
formed by subtracting the magnitude of the number from 2. Thus

x̂ =



0�x1x2 · · · xB if x ≥ 0
2 − |x| = 1� x̄1x̄2 · · · x̄B ⊕ 0�00 · · · 1 = 1�y1y2 · · · yB if x < 0

(6.40)

where ⊕ represents modulo-2 addition and bit y is, in general, different
from bit x̄. For example, when B = 2, x̂ = +1/4 is represented by x̂ =
0�01, and x̂ = −1/4 is represented by x̂ = 1�10 ⊕ 0�01 = 1�11.

� EXAMPLE 6.16 Let B = 3; then x̂ is a 4-bit number (sign plus 3 bits). Provide all possible
values that x̂ can take in each of the three formats.

Solution There are 24 = 16 possible values that x̂ can take for each of the three formats,
as shown in the following table.

Binary Sign-Magnitude one’s two’s

0�111 7/8 7/8 7/8
0�110 6/8 6/8 6/8
0�101 5/8 5/8 5/8
0�100 4/8 4/8 4/8
0�011 3/8 3/8 3/8
0�010 2/8 2/8 2/8
0�001 1/8 1/8 1/8
0�000 0 0 0
1�000 −0 −7/8 −1
1�001 −1/8 −6/8 −7/8
1�010 −2/8 −5/8 −6/8
1�011 −3/8 −4/8 −5/8
1�100 −4/8 −3/8 −4/8
1�101 −5/8 −2/8 −3/8
1�110 −6/8 −1/8 −2/8
1�111 −7/8 −0 −1/8

�

In the Example, observe that the bit arrangement is exactly the same
as in the integer case for 4 bits. The only difference is in the position of
the binary point. Thus the MATLAB programs developed in the previ-
ous section can easily be used with proper modifications. The MATLAB
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function sm2oc converts a decimal sign-magnitude fraction into its one’s-
complement format, while the function oc2sm performs the inverse opera-
tion. These functions are explored in Problem P6.24. Similarly, MATLAB
functions sm2tc and tc2sm convert a decimal sign-magnitude fraction
into its two’s-complement format and vice versa, respectively; they are
explored in Problem P6.25.

6.6.3 FLOATING-POINT ARITHMETIC
In many applications, the range of numbers needed is very large. For
example, in physics one might need, at the same time, the mass of the sun
(e.g., 2.1030kg) and the mass of the electron (e.g., 9.10−31kg). These two
numbers cover a range of over 1060. For fixed-point arithmetic, we would
need 62-digit numbers (or 62-digit precision). However, even the mass of
the sun is not accurately known with a precision of 5 digits, and there is
almost no measurement in physics that could be made with a precision of
62 digits. One could then imagine making all calculations with a precision
of 62 digits and throwing away 50 or 60 of them before printing out the
final results. This would be wasteful of both CPU time and memory space.
So what is needed is a system for representing numbers in which the range
of expressible numbers is independent of the number of significant digits.

Decimal numbers The floating-point representation for a decimal
number x is based on expressing the number in the scientific notation:

x = ±M × 10±E

where M is called the mantissa and E is the exponent. However, there
are different possible representations of the same number, depending on
the actual position of the decimal point—for example,

1234 = 0.1234 × 104 = 1.234 × 103 = 12.34 × 102 = · · ·

To fix this problem, a floating-point number is always stored using
a unique representation, which has only one nonzero digit to the left
of the decimal point. This representation of a floating-point number is
called a normalized form. The normalized form of the preceding number
is 1.234 × 103, because it is the only representation resulting in a unique
nonzero digit to the left of the decimal point. The digit arrangement for
the normalized form is given by

x̂ =

sign of M
↓
± x� xx · · · x︸ ︷︷ ︸

N-bitM

sign of E
↓
± xx · · · x︸ ︷︷ ︸

L-bitE

(6.41)
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For the negative numbers we have the same formats as the fixed-point
representations, including the 10s-complement format.

The number of digits used in the exponent determine the range of
representable numbers, whereas the number of digits used in the mantissa
determine the precision of the numbers. For example, if the mantissa is
expressed using 2 digits plus the sign, and the exponent is expressed using
2 digits plus the sign, then the real number line will be covered as:

99 -99 -99 99
-9.99x10 -1.0x10 0 1.0x10 9.99x10

----------+-------------+-----------+-----------+-------------+----------->
| accessible | 0 | accessible |

negative | negative | negative | positive | positive | positive
overflow | numbers | underflow | underflow | numbers | overflow

The range of accessible floating-point numbers with a given representation
can be large, but it is still finite. In the preceding example (e.g., with 2 dig-
its for the mantissa and 2 digits for the exponent), there are only 9×10×
10×199 = 179, 100 positive numbers, and as many negative numbers, plus
the number zero, for a total of 358,201 numbers that can be represented.

Binary numbers Although the fraction-only fixed-point arithmetic
does not have any overflow problems when two numbers are multiplied, it
does suffer from overflow problems when two numbers are added. Also, the
fixed-point numbers have limited dynamic range. Both of these aspects
are unacceptable for an intensive computational job. These limitations
can be removed by making the binary point � floating rather than fixed.

The floating-point bit arrangement for binary-number representation
is similar to that for the decimal numbers. In practice, however, two ex-
ceptions are made. The exponent is expressed using L-bit excess-2L−1

format, and the B-bit normalized mantissa is a fractional number with
a 1 following the binary point. Note that the sign bit is the MSB of the
bit pattern. Thus the B-bit mantissa and L-bit exponent (for a total of
B + L + 1 word length) bit pattern is given by (note the reversal of the
mantissa exponent places)

x̂ =

Sign of M
↓
± xx · · · x︸ ︷︷ ︸

L-bitE

� 1x · · · x︸ ︷︷ ︸
B-bitM

(6.42)

where exponent E is adjusted so that we have a normalized mantissa—
that is, 1/2 ≤ M < 1. Hence the first bit after the binary point is always 1.
The decimal equivalent of x̂ is given by

x̂ = ±M × 2E (6.43)

For the negative numbers we can have the same formats as the fixed-point
representations for the mantissa including two’s-complement format.
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However, the most widely used format for the mantissa is the sign-
magnitude one.

� EXAMPLE 6.17 Consider a 32-bit floating-point word with the following arrangement:

x̂ = ± xx · · · x︸ ︷︷ ︸
8-bit E

� 1x · · · x︸ ︷︷ ︸
23-bit M

Determine the decimal equivalent of

01000001111000000000000000000000

Solution Since the exponent is 8-bit, it is expressed in excess-27 or in excess-128 format.
Then the bit pattern can be partitioned into

x̂ =

Sign
↓
0 10000011︸ ︷︷ ︸

E=131

� 11000000000000000000000︸ ︷︷ ︸
M=2−1+2−2

The sign bit is 0, which means that the number is positive. The exponent code is
131, which means that its decimal value is 131− 128 = 3. Thus, the bit pattern
represents the decimal number x̂ = +

(
2−1 + 2−2

)
(23) = 22 + 21 = 6. �

� EXAMPLE 6.18 Let x̂ = −0.1875. Represent x̂ using the format given in (6.42), in which B = 11,
L = 4 (for a total of 16 bits), and sign-magnitude format is used for the mantissa.

Solution We can write

x̂ = −0.1875 = −0.75 × 2−2

Hence the exponent is −2, the mantissa is 0.75, and the sign is negative. The
4-bit exponent, in excess-8 format, is expressed as 8− 2 = 6 or with bit pattern
0110. The mantissa is expressed as 11000000000. Since x̂ is negative, the bit
pattern is

x̂ ≡ 1011011000000000

�

The advantages of the floating-point representation are that it has
a large dynamic range and that its resolution, defined as the interval
between two consecutive representable levels, is proportional to the mag-
nitude. The disadvantages include no representation for the number 0 and
the fact that the arithmetic operations are more complicated than their
fixed-point representations.
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IEEE 754 standard In the early days of the digital computer revolu-
tion, each processor design had its own internal representation for floating-
point numbers. Since floating-point arithmetic is more complicated to
implement, some of these designs did incorrect arithmetic. Therefore, in
1985 IEEE issued a standard (IEEE standard 754-1985 or IEEE-754 for
short) to allow floating-point data exchange among different computers
and to provide hardware designers with a model known to be correct. Cur-
rently, almost all manufacturers design main processors or a dedicated
coprocessor for floating-point operations using the IEEE-754 standard
representation.

The IEEE 754 standard defines three formats for binary numbers: a
32-bit single precision format, a 64-bit double precision format, and an
80-bit temporary format (which is used internally by the processors or
arithmetic coprocessors to minimize rounding errors).

We will briefly describe the 32-bit single precision standard. This
standard has many similarities with the floating-point representation dis-
cussed above, but there are also differences. Remember, this is another
model advocated by IEEE. The form of this model is

x̂ =

sign of M
↓
± xx · · · x︸ ︷︷ ︸

8−bit E

� xx · · · x︸ ︷︷ ︸
23−bit M

(6.44)

The mantissa’s value is called the significand in this standard. Features
of this model are as follows:

• If the sign bit is 0, the number is positive; if the sign bit is 1, the
number is negative.

• The exponent is coded in 8-bit excess-127 (and not 128) format. Hence
the uncoded exponents are between −127 and 128.

• The mantissa is in 23-bit binary. A normalized mantissa always starts
with a bit 1, followed by the binary point, followed by the rest of the
23-bit mantissa. However, the leading bit 1, which is always present in a
normalized mantissa, is hidden (not stored) and needs to be restored for
computation. Again, note that this is different from the usual definition
of the normalized mantissa. If all the 23 bits representing the mantissa
are set to 0, the significand is 1 (remember the implicit leading 1). If
all 23 bits are set to 1, the significand is almost 2 (in fact 2−2−23). All
IEEE 754 normalized numbers have a significand that is in the interval
1 ≤ M < 2.

• The smallest normalized number is 2−126, and the greatest normalized
number is almost 2128. The resulting positive decimal range is roughly
10−38 to 1038 with a similar negative range.

• If E = 0 and M = 0, then the representation is interpreted as a de-
normalized number (i.e., the hidden bit is 0) and is assigned a value of
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±0, depending on the sign bit (called the soft zero). Thus 0 has two
representations.

• If E = 255 and M �= 0, then the representation is interpreted as a
not-a-number (abbreviated as NaN). MATLAB assigns a variable NaN
when this happens—e.g., 0/0.

• If E = 255 and M = 0, then the representation is interpreted as ±∞.
MATLAB assigns a variable inf when this happens—e.g., 1/0.

� EXAMPLE 6.19 Consider the bit pattern given in Example 6.17. Assuming IEEE-754 format,
determine its decimal equivalent.

Solution The sign bit is 0 and the exponent code is 131, which means that the exponent
is 131− 127 = 4. The significand is 1+2−1 +2−2 = 1.75. Hence the bit pattern
represents

x̂ = +(1 + 2−1 + 2−2)(24) = 24 + 23 + 22 = 28

which is different from the number in Example 6.17. �

MATLAB employs the 64-bit double-precision IEEE-754 format for
all its number representations and the 80-bit temporary format for its in-
ternal computations. Hence all calculations that we perform in MATLAB
are in fact floating-point computations. Simulating a different floating-
point format in MATLAB would be much more complicated and would
not add any more insight to our understanding than the native format.
Hence we will not consider a MATLAB simulation of floating-point arith-
metic as we did for fixed-point.

6.7 THE PROCESS OF QUANTIZATION AND ERROR

CHARACTERIZATIONS

From the discussion of number representations in the previous section, it
should be clear that a general infinite-precision real number must be as-
signed to one of the finite representable number, given a specific structure
for the finite-length register (that is, the arithmetic as well as the format).
Usually in practice, there are two different operations by which this as-
signment is made to the nearest number or level: the truncation operation
and the rounding operation. These operations affect the accuracy as well
as general characteristics of digital filters and DSP operations.

We assume, without loss of generality, that there are B + 1 bits in
the fixed-point (fractional) arithmetic or in the mantissa of floating-point
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arithmetic including the sign bit. Then the resolution (∆) is given by

∆ = 2−B

{
absolute in the case of fixed-point arithmetic
relative in the case of floating-point arithmetic (6.45)

6.7.1 FIXED-POINT ARITHMETIC
The quantizer block diagram in this case is given by

x
Infinite−precision

−→ Quantizer
B, ∆

Q[·] −→ Q[x]
Finite−precision

where B, the number of fractional bits, and ∆, the resolution, are the pa-
rameters of the quantizer. We will denote the finite word-length number,
after quantization, by Q[x] for an input number x. Let the quantization
error be given by

e
�
= Q[x] − x (6.46)

We will analyze this error for both the truncation and the rounding
operations.

Truncation operation In this operation, the number x is truncated
beyond B significant bits (that is, the rest of the bits are eliminated) to
obtain QT[x]. In MATLAB, to obtain a B-bit truncation, we have to first
scale the number x upward by 2B , then use the fix function on the scaled
number, and finally scale the result down by 2−B . Thus, the MATLAB
statement xhat = fix(x*2^B)/2^B; implements the desired operation.
We will now consider each of the 3 formats.

Sign-magnitude format If the number x is positive, then after trun-
cation QT[x] ≤ x since some value in x is lost. Hence quantizer error for
truncation denoted by eT is less than or equal to 0 or eT ≤ 0. However,
since there are B bits in the quantizer, the maximum error in terms of
magnitude is

|eT| = 0� 00 · · · 0︸ ︷︷ ︸
B bits

111 · · · = 2−B (decimal) (6.47)

or
−2−B ≤ eT ≤ 0, for x ≥ 0 (6.48)

Similarly, if the x < 0 then after truncation QT[x] ≥ x since QT[x] is less
negative, or eT ≥ 0. The largest magnitude of this error is again 2−B or

0 ≤ eT ≤ 2−B , for x < 0 (6.49)
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FIGURE 6.25 Truncation error characteristics in the sign-magnitude format

� EXAMPLE 6.20 Let −1 < x < 1 and B = 2. Using MATLAB, verify the truncation error
characteristics.

Solution The resolution is ∆ = 2−2 = 0.25. Using the following MATLAB script, we can
verify the truncation error eT relations given in (6.48) and (6.49).

x = [-1+2^(-10):2^(-10):1-2^(-10)]; % Sign-Mag numbers between -1 and 1

B = 2; % Number of bits for Truncation

xhat = fix(x*2^B)/2^B % Truncation

plot(x,x,’g’,x,xhat,’r’,’linewidth’,1); % Plot

The resulting plots of x and x̂ are shown in Figure 6.25. Note that the plot of
x̂ has a staircase shape and that it satisfies (6.48) and (6.49). �

One’s-complement format For x ≥ 0, we have the same character-
istics for eT as in sign-magnitude format—that is,

−2−B ≤ eT ≤ 0, for x ≥ 0 (6.50)

For x < 0, the representation is obtained by complementing all bits in-
cluding sign bit. To compute maximum error, let

x = 1�b1b2 · · · bB000 · · · = −{� (1 − b1) (1 − b2) · · · (1 − bB) 111 · · ·}

After truncation, we obtain

QT[x] = 1�b1b2 · · · bB = −{� (1 − b1) (1 − b2) · · · (1 − bB)}
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FIGURE 6.26 Truncation error characteristics in the one’s-complement format

Clearly, x is more negative than QT[x] or x ≤ QT[x] or eT ≥ 0. In fact,
the maximum truncation error is

eTmax = 0�00 · · · 0111 · · · = 2−B (decimal)

Hence
0 ≤ eT ≤ 2−B , for x < 0 (6.51)

� EXAMPLE 6.21 Again let −1 < x < 1 and B = 2 with the resolution ∆ = 2−2 = 0.25. Using
MATLAB script, verify the truncation error eT relations given in (6.50) and
(6.51).

Solution The MATLAB script uses functions sm2oc and oc2sm, which are explored in
Problem P6.25.

x = [-1+2^(-10):2^(-10):1-2^(-10)]; % Sign-Magnitude numbers between -1 and 1

B = 2; % Select bits for Truncation

y = sm2oc(x,B); % Sign-Mag to One’s Complement

yhat = fix(y*2^B)/2^B; % Truncation

xhat = oc2sm(yhat,B); % Ones’-Complement to Sign-Mag

plot(x,x,’g’,x,xhat,’r’,’linewidth’,1); % Plot

The resulting plots of x and x̂ are shown in Figure 6.26. Note that the
plot of x̂ is identical to the plot in Figure 6.25 and that it satisfies (6.50)
and (6.51). �
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Two’s-complement format Once again, for x ≥ 0, we have

−2−B ≤ eT ≤ 0, for x ≥ 0 (6.52)

For x < 0, the representation is given by 2− |x| where |x| is the magnitude.
Hence the magnitude of x is given by

|x| = 2 − x (6.53)

with x = 1�b1b2 · · · bBbB+1 · · ·. After truncation to B bits, we obtain
QT[x] = 1�b1b2 · · · bB the magnitude of which is

|QT[x]| = 2 −QT[x] (6.54)

From (6.53) and (6.54)

|QT[x]| − |x| = x−QT[x] = 1�b1b2 · · · bBbB+1 · · · − 1�b1b2 · · · bB
= 0�00 · · · 0bB+1 · · · (6.55)

The largest change in magnitude from (6.55) is

0�00 · · · 0111 · · · = 2−B (decimal) (6.56)

Since the change in the magnitude is positive, then after truncation QT[x]
becomes more negative, which means that QT[x] ≤ x. Hence

−2−B ≤ eT ≤ 0, for x < 0 (6.57)

� EXAMPLE 6.22 Again consider −1 < x < 1 and B = 2 with the resolution ∆ = 2−2 = 0.25.
Using MATLAB, verify the truncation error eT relations given in (6.52) and
(6.57).

Solution The MATLAB script uses functions sm2tc and tc2sm, which are explored in
Problem P9.4.

x = [-1+2^(-10):2^(-10):1-2^(-10)]; % Sign-Magnitude numbers between -1 and 1

B = 2; % Select bits for Truncation

y = sm2tc(x); % Sign-Mag to Two’s Complement

yhat = fix(y*2^B)/2^B; % Truncation

xq = tc2sm(yq ); % Two’s-Complement to Sign-Mag

plot(x,x,’g’,x,xhat,’r’,’linewidth’,1); % Plot

The resulting plots of x and x̂ are shown in Figure 6.27. Note that the plot of
x̂ is also a staircase graph but is below the x graph and that it satisfies (6.52)
and (6.57). �

Collecting results (6.48)–(6.52), and (6.57) along with in Figures 6.25–
6.27, we conclude that the truncation characteristics for fixed-point
arithmetic are the same for the sign-magnitude and the one’s-complement
formats but are different for the two’s-complement format.
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FIGURE 6.27 Truncation error characteristics in the two’s-complement format

Rounding operation In this operation, the real number x is rounded
to the nearest representable level, which we will refer to as QR[x]. In
MATLAB, to obtain a B-bit rounding approximation, we have to first
scale the number x up by 2B , then use the round function on the scaled
number, and finally scale the result down by 2−B . Thus the MAT-
LAB statement xhat = round(x*2^B)/2^B; implements the desired
operation.

Since the quantization step or resolution is ∆ = 2−B , the magnitude
of the maximum error is

|eR|max =
∆
2

=
1
2
2−B (6.58)

Hence for all three formats, the quantizer error due to rounding, denoted
by eR, satisfies

−1
2
2−B ≤ eR ≤ 1

2
2−B (6.59)

� EXAMPLE 6.23 Demonstrate the rounding operations and the corresponding error characteris-
tics on the signal of Examples 6.20–6.22 using the three formats.

Solution Since the rounding operation assigns values that can be larger than the unquan-
tized values, which can create problems for the two’s- and one’s-complement
format, we will restrict the signal over the interval [−1, 1− 2−B−1]. The follow-
ing MATLAB script shows the two’s-complement format rounding, but other
scripts are similar (readers are encouraged to verify).
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FIGURE 6.28 Rounding error characteristics in the fixed-point representation

B = 2; % Select bits for Rounding

x = [-1:2^(-10):1-2^(-B-1)]; % Sign-Magnitude numbers between -1 and 1

y = sm2tc(x); % Sign-Mag to Two’s Complement

yq = round(y*2^B)/2^B; % Rounding

xq = tc2sm(yq); % Two’-Complement to Sign-Mag

The resulting plots for the sign-magnitude, ones-, and two’s-complement
formats are shown in Figure 6.28. These plots do satisfy (6.59). �

Comparing the error characteristics of the truncation and rounding
operations given in Figures 6.25 through 6.28, it is clear that the rounding
operation is a superior one for the quantization error. This is because the
error is symmetric with respect to zero (or equal positive and negative
distribution) and because the error is the same across all three formats.
Hence we will mostly consider the rounding operation for the floating-
point arithmetic as well as for further analysis.

6.7.2 FLOATING-POINT ARITHMETIC
In this arithmetic, the quantizer affects only the mantissa M . However,
the number x is represented by M × 2E where E is the exponent. Hence
the quantizer errors are multiplicative and depend on the magnitude of
x. Therefore, the more appropriate measure of error is the relative error
rather than the absolute error, (Q[x] − x). Let us define the relative error,
ε, as

ε
�
=

Q[x] − x

x
(6.60)

Then the quantized value Q[x] can be written as

Q[x] = x + εx = x (1 + ε) (6.61)
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When Q[x] is due to the rounding operation, then the error in the man-
tissa is between [−1

22−B , 1
22−B ]. In this case we will denote the relative

error by εR. Then from (6.43), the absolute error, QR[x] − x = εRx, is
between (

−1
2
2−B

)
2E ≤ εRx ≤

(
1
2
2−B

)
2E (6.62)

Now for a given E, and since the mantissa is between 1
2 ≤ M < 1 (this is

not the IEEE-754 model), the number x is between

2E−1 ≤ x < 2E (6.63)

Hence from (6.62) and using the smallest value in (6.63), we obtain

−2−B ≤ εR ≤ 2−B (6.64)

This relative error relation, (6.64), will be used in subsequent analysis.

6.8 QUANTIZATION OF FILTER COEFFICIENTS

We now study the finite word-length effects on the filter responses, pole-
zero locations, and stability when the filter coefficients are quantized. We
will separately discuss the issues relating to IIR and FIR filters since we
can obtain simpler results for FIR filters. We begin with the case of IIR
filters.

6.8.1 IIR FILTERS
Consider a general IIR filter described by

H(z) =
∑M

k=0 bkz
−k

1 +
∑N

k=1 akz
−k

(6.65)

where aks and bks are the filter coefficients. Now assume that these coeffi-
cients are represented by their finite precision numbers âks and b̂ks. Then
we get a new filter system function

H(z) → Ĥ(z)
�
=

∑M
k=0 b̂kz

−k

1 +
∑N

k=1 âkz
−k

(6.66)

Since this is a new filter, we want to know how “different” this filter is
from the original one H(z). Various aspects can be compared; for example,
we may want to compare their magnitude responses, or phase responses,
or change in their pole-zero locations, and so on. A general analytical
expression to compute this change in all these aspects is difficult to derive.
This is where MATLAB can be used to investigate this change and its
overall effect on the usability of the filter.
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6.8.2 EFFECT ON POLE-ZERO LOCATIONS
One aspect can be reasonably analyzed, which is the movement of filter
poles when ak is changed to âk. This can be used to check the stabil-
ity of IIR filters. A similar movement of zeros to changes in numerator
coefficients can also be analyzed.

To evaluate this movement, consider the denominator polynomial of
H(z) in (6.65)

D(z)
�
= 1 +

N∑
k=1

akz
−k =

N∏
�=1

(
1 − p� z

−1
)

(6.67)

where {p�}s are the poles of H(z). We will regard D(z) as a function
D(p1, . . . , pN ) of poles {p1, . . . , pN} where each pole p� is a function of the
filter coefficients {a1, . . . , aN}—that is, p� = f(a1, . . . , aN ), � = 1, . . . N .
Then the change in the denominator D(z) due to a change in the kth
coefficient ak is given by
(
∂D(z)
∂ak

)
=
(
∂D(z)
∂p1

)(
∂p1

∂ak

)
+
(
∂D(z)
∂p2

)(
∂p2

∂ak

)
+· · ·+

(
∂D(z)
∂pN

)(
∂pN
∂ak

)

(6.68)
where from (6.67)

(
∂D(z)
∂pi

)
=

∂

∂pi

[
N∏
�=1

(
1 − p� z

−1
)]

= −z−1
∏
��=i

(
1 − p� z

−1
)

(6.69)

From (6.69), note that
(

∂D(z)
∂pi

)∣∣∣
z=p�

= 0 for � �= i. Hence from (6.68) we

obtain

(
∂D(z)
∂ak

)∣∣∣∣
z=p�

=
(
∂D(z)
∂p�

)∣∣∣∣
z=p�

(
∂p�
∂ak

)
or

(
∂p�
∂ak

)
=

(
∂D(z)
∂ak

)∣∣∣
z=p�(

∂D(z)
∂p�

)∣∣∣
z=p�

(6.70)
Now

(
∂D(z)
∂ak

) ∣∣∣∣
z=p�

=
∂

∂ak

(
1 +

N∑
i=1

aiz
−i

)∣∣∣∣∣
z=p�

= z−k
∣∣
z=p�

= p−k
� (6.71)

From (6.69), (6.70) and (6.71), we obtain

(
∂p�
∂ak

)
=

p−k
�

−z−1
∏

i�=� (1 − pi z−1)
∣∣
z=p�

= − pN−k
�∏

i�=� (p� − pi )
(6.72)
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FIGURE 6.29 z-plane plots of tightly clustered poles of a digital filter

Finally, the total perturbation error �p� can be expressed as

�p� =
N∑

k=1

∂p�
∂ak

�ak (6.73)

This formula measures the movement of the �th pole, p�, to changes in
each of the coefficient {ak}; hence it is known as a sensitivity formula.
It shows that if the coefficients {ak} are such that if the poles p� and pi are
very close for some �, i, then (p�−pi) is very small and as a result the filter
is very sensitive to the changes in filter coefficients. A similar result can
be obtained for the sensitivity of zeros to changes in the parameters {bk}.

To investigate this further in the light of various filter realizations,
consider the z-plane plot shown in Figure 6.29(a) where poles are tightly
clustered. This situation arises in wideband frequency selective filters such
as lowpass or highpass filters. Now if we were to realize this filter using the
direct form (either I or II), then the filter has all these tightly clustered
poles, which makes the direct-form realization very sensitive to coefficient
changes due to finite word length. Thus, the direct form realizations will
suffer severely from coefficient quantization effects.

On the other hand, if we were to use either the cascade or the parallel
forms, then we would realize the filter using 2nd-order sections containing
widely separated poles, as shown in Figure 6.29(b). Thus, each 2nd-order
section will have low sensitivity in that its pole locations will be perturbed
only slightly. Consequently, we expect that the overall system function
H(z) will be perturbed only slightly. Thus, the cascade or the parallel
forms, when realized properly, will have low sensitivity to the changes or
errors in filter coefficients.

� EXAMPLE 6.24 Consider a digital resonator that is a 2nd-order IIR filter given by

H(z) =
1

1 − (2r cos θ) z−1 + r2z−2
(6.74)

Analyze its sensitivity to pole locations when a 3-bit sign-magnitude format is
used for the coefficient representation.
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FIGURE 6.30 Digital filter in Example 6.24 (a) pole-zero plot, (b) filter realiza-
tion

Solution The filter has two complex-conjugate poles at

p1 = rejθ and p2 = re−jθ = p∗1

For a proper operation as a resonator, the poles must be close to the unit
circle—that is, r � 1 (but r < 1). Then the resonant frequency ωr � θ.
The zero-pole diagram is shown in Figure 6.30 along with the filter realiza-
tion. Let r = 0.9 and θ = π/3. Then from (6.74),

a1 = −2r cos θ = −0.9 and a2 = r2 = 0.81

We now represent a1 and a2, each using 3-bit sign-magnitude format
representation—that is,

ak = ± �b1 b2 b3 = ±
(
b12

−1 + b22
−2 + b32

−3
)
, k = 1, 2

where bj represents the jth bit and � represents the binary point. Then for the
closest representation, we must have

â1 = 1�1 1 1 = −0.875 and â2 = 0�1 1 0 = +0.75

Hence |�a1| = 0.025 and |�a2| = 0.06. Consider the sensitivity formula (6.73)
in which

∂p1

∂a1
= − p2−1

1

(p1 − p∗1)
=

−p1

2 Im {p1}
=

−rejθ

2r (sin θ)
=

ejπ/3

√
3

, and

∂p1

∂a2
= − p2−2

1

(p1 − p∗1)
=

−1

2 Im {p1}
=

1

0.9
√

3

Using (6.73), we obtain

|�p1| ≤
∣∣∣∂p1

∂a1

∣∣∣ |�a1| +
∣∣∣∂p1

∂a2

∣∣∣ |�a2|

=
1√
3

(0.025) +
1

0.9
√

3
(0.06) = 0.0529 (6.75)
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To determine the exact locations of the changed poles, consider the changed
denominator

D̂ (z) = 1−0.875z−1 +0.75z−2 =
(
1 − 0.866ej0.331πz−1

) (
1 − 0.866e−j0.331πz−1

)

Thus, the changed pole locations are p̂1 = 0.866ej0.331π = p̂∗2. Then |�p1| =∣∣0.9eiπ/3 − 0.866ei0.331π
∣∣ = 0.0344, which agrees with (6.75). �

Analysis using MATLAB To investigate the effect of coefficient
quantization on filter behavior, MATLAB is an ideal vehicle. Using func-
tions developed in previous sections, we can obtain quantized coefficients
and then study such aspects as pole-zero movements, frequency response,
or impulse response. We will have to represent all filter coefficients using
the same number of integer and fraction bits. Hence instead of quan-
tizing each coefficient separately, we will develop the function, QCoeff,
for coefficient quantization. This function implements quantization using
rounding operation on sign-magnitude format. Although similar functions
can be written for truncation as well as for other formats, we will analyze
the effects using the Qcoeff function as explained previously.

function [y,L,B] = QCoeff(x,N)

% [y,L,B] = QCoeff(x,N)

% Coefficient Quantization using N=1+L+B bit Representation

% with Rounding operation

% y: quantized array (same dim as x)

% L: number of integer bits

% B: number of fractional bits

% x: a scalar, vector, or matrix

% N: total number of bits

xm = abs(x);

L = max(max(0,fix(log2(xm(:)+eps)+1))); % Integer bits

if (L > N)

errmsg = [’ *** N must be at least ’,num2str(L),’ ***’]; error(errmsg);

end

B = N-L; % Fractional bits

y = xm./(2^L); y = round(y.*(2^N)); % Rounding to N bits

y = sign(x).*y*(2^(-B)); % L+B+1 bit representation

The Qcoeff function represents each coefficient in the x array using
N+1-bit (including the sign bit) representation. First, it determines the
number of bits L needed for integer representation for the magnitude-wise
largest coefficient, and then it assigns N-L bits to the fraction part. The
resulting number is returned in B. Thus all coefficients have the same bit
pattern L+B+1. Clearly, N ≥ L.
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� EXAMPLE 6.25 Consider the digital resonator in Example 6.24. Determine the change in the
pole locations using MATLAB.

Solution The filter coefficients, a1 = −0.9 and a2 = 0.81 can be quantized using

>> x = [-0.9,0.81]; [y,L,B] = Qcoeff(x,3)

y = -0.8750 0.7500

L = 0

B = 3

as expected. Now using the following MATLAB script, we can determine the
change in the location of the poles:

% Unquantized parameters

r = 0.9; theta = pi/3; a1 = -2*r*cos(theta); a2 = r*r;

p1 = r*exp(j*theta); p2 = p1’;

% Quantized parameters: N = 3;

[ahat,L,B] = Qcoeff([a1,a2],3); rhat = sqrt(ahat(2));

thetahat = acos(-ahat(1)/(2*rhat)); p1hat = rhat*exp(j*thetahat); p2 = p1’;

% Changes in pole locations

Dp1 = abs(p1-p1hat)

Dp1 = 0.0344

This is the same as before. �

� EXAMPLE 6.26 Consider the following IIR filter with 10 poles closely packed at a radius of
r = 0.9 around angles ±45◦ with a separation of 5◦. Due to large number of
poles, the denominator coefficients have values that require 6 bits for the integer
part. Using 9 bits for the fractional part for a total of 16-bit representation, we
compute and plot the new locations of poles:

r = 0.9; theta = (pi/180)*[-55:5:-35,35:5:55]’;

p = r*exp(j*theta); a = poly(p); b = 1;

% Direct form: quantized coefficients

N = 15; [ahat,L,B] = Qcoeff(a,N);

TITLE = sprintf(’%i-bit (1+%i+%i) Precision’,N+1,L,B);

% Comparison of Pole-Zero Plots

subplot(1,2,1); [HZ,HP,Hl] = zplane(1,a);

set(HZ,’color’,’g’,’linewidth’,1); set(HP,’color’,’g’,’linewidth’,1);

set(Hl,’color’,’w’); axis([-1.1,1.1,-1.1,1.1]);

title(’Infinite Precision’,’fontsize’,10,’fontweight’,’bold’);
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FIGURE 6.31 Pole-zero plots for direct-form structure in Example 6.26

subplot(1,2,2); [HZhat,HPhat,Hlhat] = zplane(1,ahat);

set(HZhat,’color’,’r’,’linewidth’,1); set(HPhat,’color’,’r’,’linewidth’,1);

set(Hlhat,’color’,’w’); title(TITLE,’fontsize’,10,’fontweight’,’bold’);

axis([-1.1,1.1,-1.1,1.1]);

Figure 6.31 shows the pole-zero plots for filters with both infinite and 16-
bit precision coefficients. Clearly, with 16-bit word length, the resulting filter
is completely different from the original one and is unstable. To investigate fi-
nite word-length effect on the cascade-form structure, we first converted the
direct-form coefficients into the cascade-form coefficients using the dir2cas

function, quantized the resulting set of coefficients, and then converted back
to the direct-form for pole-zero plotting. We show results for two different word
lengths. In the first case, we used the same 16-bit word length. Since the cas-
cade coefficients have smaller integer parts that require only one integer bit,
the number of fractional bits is 14. In the second case we used 9 fractional bits
(same as those in the direct form) for a total word length of 11 bits.

% Cascade form: quantized coefficients: Same N

[b0,B0,A0] = dir2cas(b,a); [BAhat1,L1,B1] = Qcoeff([B0,A0],N);

TITLE1 = sprintf(’%i-bit (1+%i+%i) Precision’,N+1,L1,B1);

Bhat1 = BAhat1(:,1:3); Ahat1 = BAhat1(:,4:6);

[bhat1,ahat1] = cas2dir(b0,Bhat1,Ahat1);

subplot(1,2,1); [HZhat1,HPhat1,Hlhat1] = zplane(bhat1,ahat1);

set(HZhat1,’color’,’g’,’linewidth’,1); set(HPhat1,’color’,’g’,’linewidth’,1);

set(Hlhat1,’color’,’w’); axis([-1.1,1.1,-1.1,1.1]);

title(TITLE1,’fontsize’,10,’fontweight’,’bold’);
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FIGURE 6.32 Pole-zero plots for cascade-form structure in Example 6.26

% Cascade form: quantized coefficients: Same B (N=L1+B)

N1 = L1+B; [BAhat2,L2,B2] = Qcoeff([B0,A0],N1);

TITLE2 = sprintf(’%i-bit (1+%i+%i) Precision’,N1+1,L2,B2);

Bhat2 = BAhat2(:,1:3); Ahat2 = BAhat2(:,4:6);

[bhat2,ahat2] = cas2dir(b0,Bhat2,Ahat2);

subplot(1,2,2); [HZhat2,HPhat2,Hlhat2] = zplane(bhat2,ahat2);

set(HZhat2,’color’,’r’,’linewidth’,1); set(HPhat2,’color’,’r’,’linewidth’,1);

set(Hlhat2,’color’,’w’);title(TITLE2,’fontsize’,10,’fontweight’,’bold’);

axis([-1.1,1.1,-1.1,1.1]);

The results are shown in Figure 6.32. We observe that not only for 16-bit rep-
resentation but also for 11-bit representation, the resulting filter is essentially
the same as the original one and is stable. Clearly, the cascade form structure
has better finite word-length properties than the direct form structure. �

6.8.3 EFFECTS ON FREQUENCY RESPONSE
The frequency response of the IIR filter in (6.50) is given by

H(eω) =
∑M

k=0 bk e−ωk

1 +
∑N

k=1 ak e−ωk
(6.76)

When the coefficients {ak} and {bk} are quantized to {âk} and {b̂k},
respectively, the new frequency response is given by

Ĥ(eω) =
∑M

k=0 b̂k e−ωk

1 +
∑N

k=1 âk e−ωk
(6.77)
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One can perform analysis similar to that for the movement of poles to
obtain maximum change in the magnitude or phase responses due to
changes in filter coefficients. However, such an analysis is very complicated
and may not add any new insight. Hence we will study these effects using
MATLAB. We provide the following two examples.

� EXAMPLE 6.27 Compute and plot magnitude responses of filter structures given for the filter
in Example 6.26.

Solution The filter is a bandpass filter with 10 tightly clustered poles implemented using
the direct and the cascade forms. For the direct-form structure, we compute the
magnitude response for infinite precision as well as for 16-bit quantization. For
the cascade-form structure, we use 16-bit and 11-bit representations.

r = 0.9; theta = (pi/180)*[-55:5:-35,35:5:55]’;

p = r*exp(j*theta); a = poly(p); b = 1;

w = [0:500]*pi/500; H = freqz(b*1e-4,a,w);

magH = abs(H); magHdb = 20*log10(magH);

% Direct form: quantized coefficients

N = 15; [ahat,L,B] = Qcoeff(a,N);

TITLE = sprintf(’%i-bit (1+%i+%i) Precision (DF)’,N+1,L,B);

Hhat = freqz(b*1e-4,ahat,w); magHhat = abs(Hhat);

% Cascade form: quantized coefficients: Same N

[b0,B0,A0] = dir2cas(b,a);

[BAhat1,L1,B1] = Qcoeff([B0,A0],N);

TITLE1 = sprintf(’%i-bit (1+%i+%i) Precision (CF)’,N+1,L1,B1);

Bhat1 = BAhat1(:,1:3); Ahat1 = BAhat1(:,4:6);

[bhat1,ahat1] = cas2dir(b0,Bhat1,Ahat1);

Hhat1 = freqz(b*1e-4,ahat1,w); magHhat1 = abs(Hhat1);

% Cascade form: quantized coefficients: Same B (N=L1+B)

N1 = L1+B; [BAhat2,L2,B2] = Qcoeff([B0,A0],N1);

TITLE2 = sprintf(’%i-bit (1+%i+%i) Precision (CF)’,N1+1,L2,B2);

Bhat2 = BAhat2(:,1:3); Ahat2 = BAhat2(:,4:6);

[bhat2,ahat2] = cas2dir(b0,Bhat2,Ahat2);

Hhat2 = freqz(b*1e-4,ahat2,w); magHhat2 = abs(Hhat2);

% Comparison of Magnitude Plots

Hf_1 = figure(’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

subplot(2,2,1); plot(w/pi,magH,’g’,’linewidth’,2); axis([0,1,0,0.7]);

%xlabel(’Digital Frequency in \pi units’,’fontsize’,10);

ylabel(’Magnitude Response’,’fontsize’,10);

title(’Infinite Precision (DF)’,’fontsize’,10,’fontweight’,’bold’);

subplot(2,2,2); plot(w/pi,magHhat,’r’,’linewidth’,2); axis([0,1,0,0.7]);
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%xlabel(’Digital Frequency in \pi units’,’fontsize’,10);

ylabel(’Magnitude Response’,’fontsize’,10);

title(TITLE,’fontsize’,10,’fontweight’,’bold’);

subplot(2,2,3); plot(w/pi,magHhat1,’r’,’linewidth’,2); axis([0,1,0,0.7]);

xlabel(’Digital Frequency in \pi units’,’fontsize’,10);

ylabel(’Magnitude Response’,’fontsize’,10);

title(TITLE1,’fontsize’,10,’fontweight’,’bold’);

subplot(2,2,4); plot(w/pi,magHhat2,’r’,’linewidth’,2); axis([0,1,0,0.7]);

xlabel(’Digital Frequency in \pi units’,’fontsize’,10);

ylabel(’Magnitude Response’,’fontsize’,10);

title(TITLE2,’fontsize’,10,’fontweight’,’bold’);

The plots are shown in Figure 6.33. The top row shows plots for the direct
form, and the bottom row shows those for the cascade form. As expected, the
magnitude plot of the direct form is severely distorted for 16-bit representation,
while those for the cascade form are preserved even for 11-bit word length. �

� EXAMPLE 6.28 An 8th-order bandpass filter was obtained using the elliptic filter design ap-
proach. This and other design methods will be discussed in Chapter 8. The
MATLAB functions needed for this design are shown in the following script.
This design produces direct-form filter coefficients bk and ak, using 64-bit
floating-point arithmetic, which gives the precision of 15 decimals and hence
can be considered as unquantized coefficients. Table 6.1 shows these filter
coefficients.

Represent the unquantized filter coefficients using 16-bit and 8-bit word
lengths. Plot the filter log-magnitude responses and pole-zero locations for both
the infinite and finite word-length coefficients.

TABLE 6.1 Unquantized IIR filter coefficients used in Example 6.28

k bk ak

0 0.021985541264351 1.000000000000000
1 0.000000000000000 −0.000000000000004
2 −0.032498273955222 2.344233276056572
3 0.000000000000000 −0.000000000000003
4 0.046424673058794 2.689868616770005
5 0.000000000000000 0.000000000000001
6 −0.032498273955221 1.584557559015230
7 0.000000000000000 0.000000000000001
8 0.021985541264351 0.413275250482975
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FIGURE 6.33 Magnitude plots for direct- and cascade-form structures in Exam-
ple 6.27

Solution Unlike the previous example, some of the filter coefficient values (specifically
those of the autoregressive part) are greater than one and hence require bits for
the integer part. This assignment is done for all coefficients since in practice,
the same bit-pattern is used for the filter representation. These and other steps
are given in the following MATLAB script.

% The following 3 lines produce filter coefficients shown in Table 6.1.

wp = [0.35,0.65]; ws = [0.25,0.75]; Rp = 1; As = 50;

[N, wn] = ellipord(wp, ws, Rp, As);

[b,a] = ellip(N,Rp,As,wn);

w = [0:500]*pi/500; H = freqz(b,a,w); magH = abs(H);

magHdb = 20*log10(magH);

% 16-bit word-length quantization

N1 = 15; [bahat,L1,B1] = QCoeff([b;a],N1);

TITLE1 = sprintf(’%i-bits (1+%i+%i)’,N1+1,L1,B1);

bhat1 = bahat(1,:); ahat1 = bahat(2,:);

Hhat1 = freqz(bhat1,ahat1,w); magHhat1 = abs(Hhat1);

magHhat1db = 20*log10(magHhat1); zhat1 = roots(bhat1);
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% 8-bit word-length quantization

N2 = 7; [bahat,L2,B2] = QCoeff([b;a],N2);

TITLE2 = sprintf(’%i-bits (1+%i+%i)’,N2+1,L2,B2);

bhat2 = bahat(1,:); ahat2 = bahat(2,:);

Hhat2 = freqz(bhat2,ahat2,w); magHhat2 = abs(Hhat2);

magHhat2db = 20*log10(magHhat2); zhat2 = roots(bhat2);

% Plots

Hf_1 = figure(’paperunits’,’inches’,’paperposition’,[0,0,6,5]);

% Comparison of Log-Magnitude Responses: 16 bits

subplot(2,2,1); plot(w/pi,magHdb,’g’,’linewidth’,1.5); axis([0,1,-80,5]);

hold on; plot(w/pi,magHhat1db,’r’,’linewidth’,1); hold off;

xlabel(’Digital Frequency in \pi units’,’fontsize’,10);

ylabel(’Decibels’,’fontsize’,10);

title([’Log-Mag plot: ’,TITLE1],’fontsize’,10,’fontweight’,’bold’);

% Comparison of Pole-Zero Plots: 16 bits

subplot(2,2,3); [HZ,HP,Hl] = zplane([b],[a]); axis([-2,2,-2,2]); hold on;

set(HZ,’color’,’g’,’linewidth’,1,’markersize’,4);

set(HP,’color’,’g’,’linewidth’,1,’markersize’,4);

plot(real(zhat1),imag(zhat1),’r+’,’linewidth’,1);

title([’PZ Plot: ’,TITLE1],’fontsize’,10,’fontweight’,’bold’);

hold off;

% Comparison of Log-Magnitude Responses: 8 bits

subplot(2,2,2); plot(w/pi,magHdb,’g’,’linewidth’,1.5); axis([0,1,-80,5]);

hold on; plot(w/pi,magHhat2db,’r’,’linewidth’,1); hold off;

xlabel(’Digital Frequency in \pi units’,’fontsize’,10);

ylabel(’Decibels’,’fontsize’,10);

title([’Log-Mag plot: ’,TITLE2],’fontsize’,10,’fontweight’,’bold’);

% Comparison of Pole-Zero Plots: 8 bits

subplot(2,2,4); [HZ,HP,Hl] = zplane([b],[a]); axis([-2,2,-2,2]); hold on;

set(HZ,’color’,’g’,’linewidth’,1,’markersize’,4);

set(HP,’color’,’g’,’linewidth’,1,’markersize’,4);

plot(real(zhat2),imag(zhat2),’r+’,’linewidth’,1);

title([’PZ Plot: ’,TITLE2],’fontsize’,10,’fontweight’,’bold’);

hold off;

The log-magnitude responses and zero-pole locations of the resulting filters are
plotted in Figure 6.34 along with those of the original filter. When 16 bits
are used, the resulting filter is virtually indistinguishable from the original one.
However, when 8 bits are used, the filter behavior is severely distorted. The filter
is still stable, but it does not satisfy the design specifications. �
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FIGURE 6.34 Plots for the IIR filter in Example 6.28

6.8.4 FIR FILTERS
A similar analysis can be done for FIR filters. Let the impulse response
of an FIR filter be h(n) with system response

H(z) =
M−1∑
n=0

h(n)z−n (6.78)

Then,

∆H(z) =
M−1∑
n=0

∆h(n)z−n (6.79)

where ∆H(z) is the change due to change in the impulse response h(n).
Hence

∆H (e ω) =
M−1∑
n=0

∆h(n) e−ωn or |∆H(e ω)| ≤
M−1∑
n=0

|∆h(n)| (6.80)
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Now, if each coefficient is quantized to B fraction bits (i.e., total register
length is B + 1), then,

|∆h(n)| ≤ 1
2
2−B

Therefore,

|∆H(eω)| ≤ 1
2
2−BM =

M

2
2−B (6.81)

Thus, the change in frequency response depends not only on the number
of bits used but also on the length M of the filter. For large M and small
b, this difference can be significant and can destroy the desirable behavior
of the filter, as we see in the following example.

� EXAMPLE 6.29 An order-30 lowpass FIR filter is designed using the firpm function. This and
other FIR filter design functions will be discussed in Chapter 7. The resulting
filter coefficients are symmetric and are shown in Table 6.2. We will consider
these coefficients as essentially unquantized. The coefficients are quantized to
16 bits (15 fractional plus 1 sign bit) and to 8 bits (7 fractional and 1 sign bit).
The resulting filter frequency responses and pole-zero plots are determined and
compared. These and other relevant steps are shown in the following MATLAB
script.

TABLE 6.2 Unquantized FIR filter coefficients used in
Example 6.29

k bk k

0 0.000199512328641 30
1 −0.002708453461401 29
2 −0.002400461099957 28
3 0.003546543555809 27
4 0.008266607456720 26
5 0.000012109690648 25
6 −0.015608300819736 24
7 −0.012905580320708 23
8 0.017047710292001 22
9 0.036435951059014 21
10 0.000019292305776 20
11 −0.065652005307521 19
12 −0.057621325403582 18
13 0.090301607282890 17
14 0.300096964940136 16
15 0.400022084144842 15

% The following function computes the filter

% coefficients given in Table 6.2.

b = firpm(30,[0,0.3,0.5,1],[1,1,0,0]);

w = [0:500]*pi/500; H = freqz(b,1,w); magH = abs(H);
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magHdb = 20*log10(magH);

N1 = 15; [bhat1,L1,B1] = Qcoeff(b,N1);

TITLE1 = sprintf(’%i-bits (1+%i+%i)’,N1+1,L1,B1);

Hhat1 = freqz(bhat1,1,w); magHhat1 = abs(Hhat1);

magHhat1db = 20*log10(magHhat1);

zhat1 = roots(bhat1);

N2 = 7; [bhat2,L2,B2] = Qcoeff(b,N2);

TITLE2 = sprintf(’%i-bits (1+%i+%i)’,N2+1,L2,B2);

Hhat2 = freqz(bhat2,1,w); magHhat2 = abs(Hhat2);

magHhat2db = 20*log10(magHhat2);

zhat2 = roots(bhat2);

% Plots

Hf_1 = figure(’paperunits’,’inches’,’paperposition’,[0,0,6,5]);

% Comparison of Log-Magnitude Responses: 16 bits

subplot(2,2,1); plot(w/pi,magHdb,’g’,’linewidth’,1.5); axis([0,1,-80,5]);

hold on; plot(w/pi,magHhat1db,’r’,’linewidth’,1); hold off;

xlabel(’Digital Frequency in \pi units’,’fontsize’,10);

ylabel(’Decibels’,’fontsize’,10);

title([’Log-Mag plot: ’,TITLE1],’fontsize’,10,’fontweight’,’bold’);

% Comparison of Pole-Zero Plots: 16 bits

subplot(2,2,3); [HZ,HP,Hl] = zplane([b],[1]); axis([-2,2,-2,2]); hold on;

set(HZ,’color’,’g’,’linewidth’,1,’markersize’,4);

set(HP,’color’,’g’,’linewidth’,1,’markersize’,4);

plot(real(zhat1),imag(zhat1),’r+’,’linewidth’,1);

title([’PZ Plot: ’,TITLE1],’fontsize’,10,’fontweight’,’bold’);

hold off;

% Comparison of Log-Magnitude Responses: 8 bits

subplot(2,2,2); plot(w/pi,magHdb,’g’,’linewidth’,1.5); axis([0,1,-80,5]);

hold on; plot(w/pi,magHhat2db,’r’,’linewidth’,1); hold off;

xlabel(’Digital Frequency in \pi units’,’fontsize’,10);

ylabel(’Decibels’,’fontsize’,10);

title([’Log-Mag plot: ’,TITLE2],’fontsize’,10,’fontweight’,’bold’);

% Comparison of Pole-Zero Plots: 8 bits

subplot(2,2,4); [HZ,HP,Hl] = zplane([b],[1]); axis([-2,2,-2,2]); hold on;

set(HZ,’color’,’g’,’linewidth’,1,’markersize’,4);

set(HP,’color’,’g’,’linewidth’,1,’markersize’,4);

plot(real(zhat2),imag(zhat2),’r+’,’linewidth’,1);

title([’PZ Plot: ’,TITLE2],’fontsize’,10,’fontweight’,’bold’);

hold off;

The log-magnitude responses and zero-pole locations of the resulting filters are
computed and plotted in Figure 6.35 along with those of the original filter.
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FIGURE 6.35 Plots for the FIR filter in Example 6.29

When 16 bits are used, the resulting filter is virtually indistinguishable from
the original one. However, when 8 bits are used, the filter behavior is severely
distorted and the filter does not satisfy the design specifications. �

6.9 PROBLEMS

P6.1 Draw direct form I block diagram structures for each of the following LTI systems with
input node x(n) and output node y(n).

1. y(n) = x(n) + 2x(n− 1) + 3x(n− 2)

2. H(z) =
1

1 − 1.7z−1 + 1.53z−2 − 0.648z−3

3. y(n) = 1.7 y(n− 1) − 1.36 y(n− 2) + 0.576 y(n− 3) + x(n)

4. y(n) = 1.6 y(n− 1) + 0.64 y(n− 2) + x(n) + 2x(n− 1) + x(n− 2)

5. H(z) =
1 − 3z−1 + 3z−2 + z−3

1 + 0.2z−1 − 0.14z−2 + 0.44z−3
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FIGURE P6.1 Block diagrams for Problem 6.2

P6.2 Two block diagrams are shown in Figure P6.1. Answer the following for each structure.

1. Determine the system function H(z) = Y (z)/X(z).
2. Is the structure canonical (i.e., with the least number of delays)? If not, draw a

canonical structure.
3. Determine the value of K so that H(ej 0) = 1.

P6.3 Consider the LTI system described by

y(n) = a y(n− 1) + b x(n) (6.82)

1. Draw a block diagram of this system with input node x(n) and output node y(n).
2. Now perform the following two operations on the structure drawn in part 1: (i) reverse

all arrow directions and (ii) interchange the input node with the output node. Notice
that the branch node becomes the adder node and vice versa. Redraw the block diagram
so that input node is on the left side and the output node is on the right side. This is the
transposed block diagram.

3. Determine the difference equation representation of your transposed structure in part 2,
and verify that it is the same equation as (6.82).

P6.4 Consider the LTI system given by

H(z) =
1 − 2.818z−1 + 3.97z−2 − 2.8180z−3 + z−4

1 − 2.536z−1 + 3.215z−2 − 2.054z−3 + 0.6560z−4
(6.83)

1. Draw the normal direct form I structure block diagram.
2. Draw the transposed direct form I structure block diagram.
3. Draw the normal direct form II structure block diagram. Observe that it looks very

similar to that in part 2.
4. Draw the transposed direct form II structure block diagram. Observe that it looks very

similar to that in part 1.

P6.5 Consider the LTI system given in Problem P6.4.

1. Draw a cascade structure containing 2nd-order normal direct-form-II sections.
2. Draw a cascade structure containing 2nd-order transposed direct-form-II sections.
3. Draw a parallel structure containing 2nd-order normal direct-form-II sections.
4. Draw a parallel structure containing 2nd-order transposed direct-form-II sections.
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P6.6 A causal linear time-invariant system is described by

y(n) =

4∑
k=0

cos(0.1πk)x(n− k) −
5∑

k=1

(0.8)k sin(0.1πk)y(n− k)

Determine and draw the block diagrams of the following structures. Compute the response
of the system to

x(n) = [1 + 2(−1)n] , 0 ≤ n ≤ 50

in each case, using the following structures.

1. Normal direct form I
2. Transposed direct form II
3. Cascade form containing 2nd-order normal direct-form-II sections
4. Parallel form containing 2nd-order transposed direct-form-II sections
5. Lattice-ladder form

P6.7 An IIR filter is described by the following system function

H(z) = 2

(
1 + 0z−1 + z−2

1 − 0.8z−1 + 0.64z−2

)
+

(
2 − z−1

1 − 0.75z−1

)
+

(
1 + 2z−1 + z−2

1 + 0.81z−2

)

Determine and draw the following structures.

1. Transposed direct form I
2. Normal direct form II
3. Cascade form containing transposed 2nd-order direct-form-II sections
4. Parallel form containing normal 2nd-order direct-form-II sections
5. Lattice-ladder form

P6.8 An IIR filter is described by the following system function

H(z) =

(
−14.75 − 12.9z−1

1 − 7
8
z−1 + 3

32
z−2

)
+

(
24.5 + 26.82z−1

1 − z−1 + 1
2
z−2

)(
1 + 2z−1 + z−2

1 + 0.81z−2

)

Determine and draw the following structures:

1. Normal direct form I
2. Normal direct form II
3. Cascade form containing transposed 2nd-order direct-form-II sections
4. Parallel form containing transposed 2nd-order direct-form-II sections
5. Lattice-ladder form
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z −1 z −1 z −1

0.56−2/3−1/2

−0.562/31/2

x(n)

y(n)

FIGURE P6.2 Structure for Problem 6.9

P6.9 Figure P6.2 describes a causal linear time-invariant system. Determine and draw the
following structures:

1. Direct form I
2. Direct form II
3. Cascade form containing second-order direct-form-II sections
4. Parallel form containing second-order direct-form-II sections

P6.10 A linear time-invariant system with system function

H(z) =
0.05 − 0.01z−1 − 0.13z−2 + 0.13z−4 + 0.01z−5 − 0.05z−6

1 − 0.77z−1 + 1.59z−2 − 0.88z−3 + 1.2z−4 − 0.35z−5 + 0.31z−6

is to be implemented using a flow graph of the form shown in Figure P6.3.

1. Fill in all the coefficients in the diagram.
2. Is your solution unique? Explain.

z −1

z −1

z −1

z −1

z −1

z −1

z −1

z −1

y (n)x(n)

FIGURE P6.3 Structure for Problem 6.10

P6.11 A linear time-invariant system with system function

H(z) =
0.051 + 0.088z−1 + 0.06z−2 − 0.029z−3 − 0.069z−4 − 0.046z−5

1 − 1.34z−1 + 1.478z−2 − 0.789z−3 + 0.232z−4

is to be implemented using a flow graph of the form shown in Figure P6.4. Fill in all the
coefficients in the diagram.
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z−1

z−1

z−1

z−1

z−1

x(n) y (n)

FIGURE P6.4 Problem for Problem 6.11

P6.12 Consider the linear time-invariant system given in Problem P6.10.

H(z) =
0.05 − 0.01z−1 − 0.13z−2 + 0.13z−4 + 0.01z−5 − 0.05z−6

1 − 0.77z−1 + 1.59z−2 − 0.88z−3 + 1.2z−4 − 0.35z−5 + 0.31z−6

It is to be implemented using a flow graph of the form shown in Figure P6.5.

1. Fill in all the coefficients in the diagram.
2. Is your solution unique? Explain.

y(n)x(n)
z −1 z −1

z −1z −1

z −1

z −1

FIGURE P6.5 Structure for Problem 6.12

P6.13 The filter structure shown in Figure P6.6 contains a parallel connection of cascade sections.
Determine and draw the overall

1. direct form (normal) structure,
2. direct form (transposed) structure,
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2

0.5

1.5

−1

−0.9

−0.5

2

3

−0.4

−0.4

3

1

1

−0.8

2

1

1

−0.5

−0.5

0.4

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

x(n) y(n)

FIGURE P6.6 Structure for Problem 6.13

3. cascade form structure containing 2nd-order sections,
4. parallel form structure containing 2nd-order sections.

P6.14 In filter structure shown in Figure P6.7, systems H1(z) and H2(z) are subcomponents of a
larger system H(z). The system function H1(z) is given in the parallel form

H1(z) = 2 +
0.2 − 0.3z−1

1 + 0.9z−1 + 0.9z−2
+

0.4 + 0.5z−1

1 − 0.8z−1 + 0.8z−2

and the system function H2(z) is given in the cascade form

H2(z) =

(
2 + z−1 − z−2

1 + 1.7z−1 + 0.72z−2

)(
3 + 4z−1 + 5z−2

1 − 1.5z−1 + 0.56z−2

)

1. Express H(z) as a rational function.
2. Draw the block diagram of H(z) as a cascade-form structure.
3. Draw the block diagram of H(z) as a parallel-form structure.

H(z)

x(n)

H2(z)

H1(z)

y(n)

FIGURE P6.7 Structure for Problem 6.14

P6.15 The digital filter structure shown in Figure P6.8 is a cascade of 2 parallel sections and
corresponds to a 10th-order IIR digital filter system function

H(z) =
1 − 2.2z−2 + 1.6368z−4 − 0.48928z−6 + 5395456 × 10−8z−8 − 147456 × 10−8z−10

1 − 1.65z−2 + 0.8778z−4 − 0.17281z−6 + 1057221 × 10−8z−8 − 893025 × 10−10z−10
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x(n) y(n)

4.0635 4.0635

−0.0793

−0.0815−1.6

−0.63

−2.8255

0.4

−0.03

0.7747

−0.2076

0.1319

−0.0304

−0.9

−0.35

1.2

−0.5502

−0.2245

−2.4609

−0.8

−0.15

−0.1

z−1

z −1

z−1z −1

z −1

z −1

z −1 z −1

z −1

z −1

FIGURE P6.8 Structure for Problem 6.15

1. Due to an error in labeling, two of the multiplier coefficients (rounded to 4 decimals) in
this structure have incorrect values. Locate these 2 multipliers and determine their
correct values.

2. Determine and draw an overall cascade structure containing 2nd-order section and which
contains the least number of multipliers.

P6.16 As described in this chapter, a linear-phase FIR filter is obtained by requiring certain
symmetry conditions on its impulse responses.

1. In the case of symmetrical impulse response, we have h(n) = h(M − 1 − n),
0 ≤ n ≤ M − 1. Show that the resulting phase response is linear in ω and is given by

� H
(
ejω
)

= −
(
M − 1

2

)
ω, −π < ω ≤ π

2. Draw the linear-phase structures for this form when M = 5 and M = 6.
3. In the case of antisymmetrical impulse response, we have h(n) = −h(M − 1 − n),

0 ≤ n ≤ M − 1. Show that the resulting phase response is given by

� H
(
ejω
)

= ±π

2
−
(
M − 1

2

)
ω, −π < ω ≤ π

4. Draw the linear-phase structures for this form when M = 5 and M = 6.

P6.17 An FIR filter is described by the difference equation

y(n) =

6∑
k=0

e−0.9|k−3|x(n− k)

Determine and draw the block diagrams of the following structures.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems 295

1. Direct form
2. Linear-phase form
3. Cascade form
4. Frequency sampling form

P6.18 A linear time-invariant system is given by the system function

H(z) = 2 + 3z−1 + 5z−2 − 3z−3 + 4z−5 + 8z−7 − 7z−8 + 4z−9

Determine and draw the block diagrams of the following structures.

1. Direct form
2. Cascade form
3. Lattice form
4. Frequency sampling form

P6.19 Using the conjugate symmetry property of the DFT

H (k) =

{
H (0) , k = 0
H∗ (M − k) , k = 1, . . . ,M − 1

and the conjugate symmetry property of the W−k
M factor, show that (6.12) can be put in

the form (6.13) and (6.14) for real FIR filters.

P6.20 To avoid poles on the unit circle in the frequency sampling structure, one samples H(z) at
zk = rej2πk/M , k = 0, . . . ,M − 1 where r ≈ 1(but < 1), as discussed in Section 6.3.

1. Using

H
(
rej2πk/M

)
≈ H (k) ,

show that the frequency-sampling structure is given by

H (z) =
1 − (rz)−M

M

{
L∑

k=1

2 |H (k)|Hk (z) +
H (0)

1 − rz−1
+

H (M/2)

1 + rz−1

}

where

Hk (z) =
cos [ � H (k)] − rz−1 cos

[
� H (k) − 2πk

M

]
1 − 2rz−1 cos

(
2πk
M

)
+ r2z−2

, k = 1, . . . , L

and M is even.
2. Modify the MATLAB function dir2fs (which was developed in Section 6.3) to

implement this frequency-sampling form. The format of this function should be

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



296 Chapter 6 IMPLEMENTATION OF DISCRETE-TIME FILTERS

[C,B,A,rM] = dir2fs(h,r)

% Direct form to Frequency Sampling form conversion

% -------------------------------------------------

% [C,B,A,rM] = dir2fs(h,r)

% C = Row vector containing gains for parallel sections

% B = Matrix containing numerator coefficients arranged in rows

% A = Matrix containing denominator coefficients arranged in rows

% rM = r^M factor needed in the feedforward loop

% h = impulse response vector of an FIR filter

% r = radius of the circle over which samples are taken (r<1)

%

3. Determine the frequency sampling structure for the impulse response given in Example
6.6 using this function.

P6.21 Determine the impulse response of an FIR filter with lattice parameters

K0 = 2, K1 = 0.6, K2 = 0.3, K3 = 0.5, K4 = 0.9

Draw the direct form and lattice form structures of this filter.

P6.22 Consider the following system function of an FIR filter

H(z) = 1 − 4z−1 + 6.4z−2 − 5.12z−3 + 2.048z−4 − 0.32768z−5

1. Provide block diagram structures in the following forms:

(a) Normal and transposed direct forms

(b) Cascade of five 1st-order sections

(c) Cascade of one 1st-order section and two 2nd-order sections

(d) Cascade of one 2nd-order section and one 3rd-order section

(e) Frequency-sampling structure with real coefficients

2. The computational complexity of a digital filter structure can be given by the total
number of multiplications and the total number of 2-input additions that are required
per output point. Assume that x(n) is real and that multiplication by 1 is not counted
as a multiplication. Compare the computational complexity of each of these structures.

P6.23 A causal digital filter is described by the following zeros:

z1 = 0.5 ej60
◦
, z2 = 0.5 e−j60◦ , z3 =2 ej60

◦
, z4 =2 e−j60◦ ,

z5 =0.25 ej30
◦
, z6 =0.25 e−j30◦ , z7 =4 ej30

◦
, z8 =4 e−j30◦ ,

and poles: {pi}8
i=1 = 0.

1. Determine the phase response of this filter, and show that it is a linear-phase FIR filter.
2. Determine the impulse response of the filter.
3. Draw a block diagram of the filter structure in the direct form.
4. Draw a block diagram of the filter structure in the linear-phase form.
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P6.24 MATLAB provides the built-in functions dec2bin and bin2dec to convert non-negative
decimal integers into binary codes and vice versa, respectively.

1. Develop a function B = sm2bin(D) to convert a sign-magnitude format decimal integer D
into its binary representation B. Verify your function on the following numbers:

(a) D = 1001 (b) D = −63 (c) D = −449 (d) D = 978 (e) D = −205

2. Develop a function D = bin2sm(B) to convert a binary representation B into its sign-
magnitude format decimal integer D. Verify your function on the following
representations:

(a) B = 1010 (b) B = 011011011 (c) B = 11001

(d) B = 1010101 (e) B = 011011

P6.25 Using the function TwosComplement as a model, develop a function y = TensComplement

(x,N) that converts a sign-magnitude format integer x into the N -digit ten’s-complement
integer y.

1. Verify your function using the following integers:

(a) x = 1234, N = 6 (b) x = −603, N = 4 (c) x = −843, N = 5
(d) x = −1978, N = 6 (e) x = 50, N = 3

2. Using the ten’s-complement format, perform the following arithmetic operations. In each
case, choose an appropriate value on N for the meaningful result.

(a) 123 + 456 − 789 (b) 648 + 836 − 452 (c) 2001 + 3756
(d) −968 + 4539 (e) 888 − 666 + 777

Verify your results using decimal operations.

P6.26 The function OnesComplement developed in this chapter converts signed integers into one’s-
complement format decimal representations. In this problem we will develop functions that
will operate on fractional numbers.

1. Develop a MATLAB function y = sm2oc(x, B) that converts the sign-magnitude format
fraction x into the B-bit 1s-complement format decimal equivalent number y. Verify
your function on the following numbers. In each case the numbers to be considered are
both positive and negative. Also, in each case select the appropriate number of bits B.

(a) x = ±0.5625 (b) x = ±0.40625 (c) x = ±0.953125
(d) x = ±0.1328125 (e) x = ±0.7314453125

2. Develop a MATLAB function x = oc2sm(y, B) that converts the B-bit one’s-complement
format decimal equivalent number y into the sign-magnitude format fraction x. Verify
your function on the following fractional binary representations:

(a) y = 1�10110 (b) y = 0.�011001 (c) y = 1�00110011

(d) y = 1�11101110 (e) y = 0�00010001

P6.27 The function TwosComplement developed in this chapter converts signed integers into two’s-
complement format decimal representations. In this problem we will develop functions that
will operate on fractional numbers.

1. Develop a MATLAB function y = sm2tc(x, B) that converts the sign-magnitude format
fraction x into the B-bit two’s-complement format decimal equivalent number y. Verify
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your function on the following numbers. In each case the numbers to be considered are
both positive and negative. Also, in each case select the appropriate number of bits B.

(a) x = ±0.5625 (b) x = ±0.40625 (c) x = ±0.953125
(d) x = ±0.1328125 (f) x = ±0.7314453125

Compare your representations with those in Problem P6.26, part 1.
2. Develop a MATLAB function x = tc2sm(y, B) that converts the B-bit two’s-complement

format decimal equivalent number y into the sign-magnitude format fraction x. Verify
your function on the following fractional binary representations:

(a) y = 1�10110 (b) y = 0.�011001 (c) y = 1�00110011

(d) y = 1�11101110 (e) y = 0�00010001

Compare your representations with those in Problem P6.26, part 2.

P6.28 Determine the 10-bit sign-magnitude, one’s-complement, and two’s-complement
representation of the following decimal numbers:

(a) 0.12345 (b) −0.56789 (c) 0.38452386 (d) −0.762349 (e) −0.90625

P6.29 Consider a 32-bit floating-point number representation with a 6-bit exponent and a 25-bit
mantissa.

1. Determine the value of the smallest number that can be represented.
2. Determine the value of the largest number that can be represented.
3. Determine the dynamic range of this floating-point representation and compare it with

the dynamic range of a 32-bit fixed-point signed integer representation.

P6.30 Show that the magnitudes of floating-point numbers in a 32-bit IEEE standard range from
1.18 × 10−38 to 3.4 × 1038.

P6.31 Compute and plot the truncation error characteristics when B = 4 for the sign-magnitude,
one’s-complement, and two’s-complement formats.

P6.32 Consider the 3rd-order elliptic lowpass filter:

H(z) =
0.1214

(
1 − 1.4211z−1 + z−2

) (
1 + z−1

)
(1 − 1.4928z−1 + 0.8612z−2) (1 − 0.6183z−1)

1. If the filter is realized using a direct-form structure, determine its pole sensitivity.
2. If the filter is realized using a cascade-form structure, determine its pole sensitivity.

P6.33 Consider the filter described by the difference equation

y(n) =
1√
2
y(n− 1) − x(n) +

√
2x(n− 1) (6.84)

1. Show that this filter is an all-pass filter (i.e., |H(ejω)|) is a constant over the entire
frequency range −π ≤ ω ≤ π. Verify your answer by plotting the magnitude response
|H(ejω)| over the normalized frequency range 0 ≤ ω/π ≤ 1. Use subplot(3,1,1).

2. Round the coefficients of the difference equation in (6.84) to 3 decimals. Is the filter still
all-pass? Verify your answer by plotting the resulting magnitude response, |Ĥ1(e

jω)|,
over the normalized frequency range 0 ≤ ω/π ≤ 1. Use subplot(3,1,2).

3. Round the coefficients of the difference equation in (6.84) to 2 decimals. Is the filter still
all-pass? Verify your answer by plotting the resulting magnitude response, |Ĥ2(e

jω)|,
over the normalized frequency range 0 ≤ ω/π ≤ 1. Use subplot(3,1,3).
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4. Explain why the magnitude |Ĥ1(e
jω)| is “different” from the magnitude |Ĥ2(e

jω)|.
P6.34 An IIR lowpass filter designed to meet the specifications of 0.5 dB ripple in the passband,

60 dB ripple in the stopband, a passband edge frequency ωp = 0.25π, and a stopband edge
frequency ωs = 0.3π is obtained using the following MATLAB script:

wp = 0.25*pi; ws = 0.3*pi; Rp = 0.5; As = 60;

[N, Wn] = ellipord(wp/pi, ws/pi, Rp, As);

[b,a] = ellip(N,Rp,As,Wn);

The filter coefficients bk and ak are in the arrays b and a, respectively, and can be
considered to have infinite precision.

1. Using infinite precision, plot the log-magnitude and phase responses of the designed
filter. Use two rows and one column of subplots.

2. Quantize the direct-form coefficients to 4 decimals (by rounding). Now plot the
log-magnitude and phase responses of the resulting filter. Use 2 rows and 1 column of
subplots.

3. Quantize the direct form coefficients to 3 decimals (by rounding). Now plot the
log-magnitude and phase responses of the resulting filter. Use 2 rows and 1 column of
subplots.

4. Comment on the plots in parts 1, 2, and 3.

P6.35 Consider the digital lowpass filter used in Problem P6.34.

1. Using infinite precision and cascade-form realization, plot the log-magnitude and phase
responses of the designed filter. Use two rows and one column of subplots.

2. Quantize the cascade-form coefficients to 4 decimals (by rounding). Now plot the
log-magnitude and phase responses of the resulting filter. Use two rows and one column
of subplots.

3. Quantize the cascade-form coefficients to 3 decimals (by rounding). Now plot the
log-magnitude and phase responses of the resulting filter. Use two rows and one column
of subplots.

4. Comment on the plots in the above three parts and compare them with the similar plots
in Problem P6.34.

P6.36 A length-32 linear-phase FIR bandpass filter that satisfies the requirements of 60 dB
stopband attenuation, lower stopband edge frequency ωs1 = 0.2π, and upper stopband edge
frequency ωs2 = 0.8π is obtained using the following MATLAB script.

ws1 = 0.2*pi; ws2 = 0.8*pi; As = 60;

M = 32; Df = 0.2115;

fp1 = ws1/pi+Df; fp2 = ws2/pi-Df;

h = firpm(M-1,[0,ws1/pi,fp1,fp2,ws2/pi,1],[0,0,1,1,0,0]);

The filter impulse response h(n) is in the array h and can be considered to have infinite
precision.

1. Using infinite precision, plot the log-magnitude and amplitude responses of the designed
filter. Use 2 rows and 1 column of subplots.
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2. Quantize the direct-form coefficients to 4 decimals (by rounding). Now plot the
log-magnitude and amplitude responses of the resulting filter. Use 2 rows and 1 column
of subplots.

3. Quantize the direct-form coefficients to 3 decimals (by rounding). Now plot the
log-magnitude and amplitude responses of the resulting filter. Use 2 rows and 1 column
of subplots.

4. Comment on the plots in parts 1, 2, and 3.
5. Based on the results of this problem, determine how many significant bits (and not

decimals) are needed in practice to represent FIR direct form realizations.

P6.37 The digital filter structure shown in Figure P6.9 is a cascade of 2 parallel sections and
corresponds to a 10th-order IIR digital filter system function

H(z) =
1 − 2.2z−2 + 1.6368z−4 − 0.48928z−6 + 5395456 × 10−8z−8 − 147456 × 10−8z−10

1 − 1.65z−2 + 0.8778z−4 − 0.17281z−6 + 1057221 × 10−8z−8 − 893025 × 10−10z−10

x(n) y(n)

4.06354.0635

−0.0793

−1.6

−0.63

−2.8255

0.4

−0.03

0.7747

−0.2076

0.1319

−0.0304

−0.9

−0.35

1.2

−0.5502

−0.2245

−2.4609

−0.8

−0.15

−0.1

−0.0815
z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

FIGURE P6.9 Structure for Problem P6.37

1. Due to an error in labeling, two of the multiplier coefficients (rounded to 4 decimals) in
this structure have incorrect values. Locate these 2 multipliers and determine their
correct values.

2. By inspecting the pole locations of the system function H(z), you should realize that
this structure is sensitive to the coefficient quantization. Suggest, with justification, an
alternative structure that in your opinion is least sensitive to coefficient quantization.
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P6.38 An IIR bandstop digital filter that satisfies the requirements:

0.95 ≤ |H(ejω)| ≤ 1.05,
0 ≤ |H(ejω)| ≤ 0.01,

0.95 ≤ |H(ejω)| ≤ 1.05,

0 ≤ |ω| ≤ 0.25π
0.35π ≤ |ω| ≤ 0.65π
0.75π ≤ |ω| ≤ π

can be obtained using the following MATLAB script:

wp = [0.25,0.75]; ws = [0.35,0.65]; delta1 = 0.05; delta2 = 0.01;

[Rp,As] = delta2db(delta1,delta2);

[N, wn] = cheb2ord(wp, ws, Rp, As);

[b,a] = cheby2(N,As,wn,’stop’);

The filter coefficients bk and ak are in the arrays b and a, respectively, and can be
considered to have infinite precision.

1. Using infinite precision, provide the log-magnitude response plot and the pole-zero plot
of the designed filter.

2. Assuming direct-form structure and a 12-bit representation for filter coefficients, provide
the log-magnitude response plot and the pole-zero plot of the designed filter. Use the
Qcoeff function.

3. Assuming cascade-form structure and a 12-bit representation for filter coefficients,
provide the log-magnitude response plot and the pole-zero plot of the designed filter. Use
the Qcoeff function.

P6.39 An IIR lowpass digital filter that satisfies the specifications:

passband edge: 0.4π, Rp = 0.5 dB
stopband edge: 0.6π, As = 50 dB

can be obtained using the following MATLAB script:

wp = 0.4; ws = 0.6; Rp = 0.5; As = 50;

[N, wn] = buttord(wp, ws, Rp, As);

[b,a] = butter(N,wn);

The filter coefficients bk and ak are in the arrays b and a, respectively, and can be
considered to have infinite precision.

1. Using infinite precision, provide the magnitude response plot and the pole-zero plot of
the designed filter.

2. Assuming direct-form structure and a 10-bit representation for filter coefficients, provide
the magnitude response plot and the pole-zero plot of the designed filter. Use the Qcoeff

function.
3. Assuming cascade-form structure and a 10-bit representation for filter coefficients,

provide the magnitude response plot and the pole-zero plot of the designed filter. Use
the Qcoeff function.

P6.40 An IIR highpass digital filter that satisfies the specifications:

stopband edge: 0.4π, As = 60 dB
passband edge: 0.6π, Rp = 0.5 dB
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can be obtained using the following MATLAB script:

wp = 0.6; ws = 0.4; Rp = 0.5; As = 60;

[N,wn] = ellipord(wp, ws, Rp, As);

[b,a] = ellip(N,Rp,As,wn,’high’);

The filter coefficients bk and ak are in the arrays b and a, respectively, and can be
considered to have infinite precision.

1. Using infinite precision, provide the magnitude response plot and the pole-zero plot of
the designed filter.

2. Assuming direct-form structure and a 10-bit representation for filter coefficients, provide
the magnitude response plot and the pole-zero plot of the designed filter. Use the Qcoeff

function.
3. Assuming parallel-form structure and a 10-bit representation for filter coefficients,

provide the magnitude response plot and the pole-zero plot of the designed filter. Use
the Qcoeff function.

P6.41 A bandstop linear-phase FIR filter that satisfies the specifications:

lower stopband edge: 0.4π
upper stopband edge: 0.6π

As = 50 dB

lower passband edge: 0.3π
upper passband edge: 0.7π

Rp = 0.2 dB

can be obtained using the following MATLAB script:

wp1 = 0.3; ws1 = 0.4; ws2 = 0.6; wp2 = 0.7; Rp = 0.2; As = 50;

[delta1,delta2] = db2delta(Rp,As);

b = firpm(44,[0,wp1,ws1,ws2,wp2,1],[1,1,0,0,1,1],...

[delta2/delta1,1,delta2/delta1]);

The filter impulse response h(n) is in the array b and can be considered to have infinite
precision.

P6.42 A bandpass linear-phase FIR filter that satisfies the specifications:

0 ≤ |H(ejω)| ≤ 0.01,
0.95 ≤ |H(ejω)| ≤ 1.05,

0 ≤ |H(ejω)| ≤ 0.01,

0 ≤ ω ≤ 0.25π
0.35π ≤ ω ≤ 0.65π
0.75π ≤ ω ≤ π

can be obtained using the following MATLAB script:

ws1 = 0.25; wp1 = 0.35; wp2 = 0.65; ws2 = 0.75;

delta1 = 0.05; delta2 = 0.01;

b = firpm(40,[0,ws1,wp1,wp2,ws2,1],[0,0,1,1,0,0],...

[1,delta2/delta1,1]);

The filter impulse response h(n) is in the array b and can be considered to have infinite
precision.
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C H A P T E R 7
FIR Filter
Design

We now turn our attention to the inverse problem of designing systems
from the given specifications. It is an important as well as a difficult
problem. In digital signal processing there are two important types of
systems. The first type of systems perform signal filtering in the time
domain and hence are called digital filters. The second type of systems
provide signal representation in the frequency domain and are called
spectrum analyzers. In Chapter 5 we described signal representations
using the DFT. In this and the next chapter we will study several basic
design algorithms for both FIR and IIR filters. These designs are mostly
of the frequency selective type; that is, we will design primarily multiband
lowpass, highpass, bandpass, and bandstop filters. In FIR filter design
we will also consider systems like differentiators or Hilbert transformers,
which, although not frequency-selective filters, nevertheless follow the
design techniques being considered. More sophisticated filter designs are
based on arbitrary frequency-domain specifications and require tools that
are beyond the scope of this book.

We first begin with some preliminary issues related to design philos-
ophy and design specifications. These issues are applicable to both FIR
and IIR filter designs. We will then study FIR filter design algorithms in
the rest of this chapter. In Chapter 8 we will provide a similar treatment
for IIR filters.
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7.1 PRELIMINARIES

The design of a digital filter is carried out in three steps:

• Specifications: Before we can design a filter, we must have some spec-
ifications. These specifications are determined by the applications.

• Approximations: Once the specifications are defined, we use various
concepts and mathematics that we studied so far to come up with a
filter description that approximates the given set of specifications. This
step is the topic of filter design.

• Implementation: The product of the above step is a filter description
in the form of either a difference equation, or a system function H(z),
or an impulse response h(n). From this description we implement the
filter in hardware or through software on a computer as we discussed
in Chapter 6.

In this and the next chapter we will discuss in detail only the second step,
which is the conversion of specifications into a filter description.

In many applications like speech or audio signal processing, digital
filters are used to implement frequency-selective operations. Therefore,
specifications are required in the frequency-domain in terms of the de-
sired magnitude and phase response of the filter. Generally a linear phase
response in the passband is desirable. In the case of FIR filters, it is pos-
sible to have exact linear phase as we have seen in Chapter 6. In the case
of IIR filters a linear phase in the passband is not achievable. Hence we
will consider magnitude-only specifications.

The magnitude specifications are given in one of two ways. The first
approach is called absolute specifications, which provide a set of require-
ments on the magnitude response function |H(ejω)|. These specifications
are generally used for FIR filters. IIR filters are specified in a somewhat
different way, which we will discuss in Chapter 8. The second approach is
called relative specifications, which provide requirements in decibels (dB),
given by

dB scale = −20 log10

|H(ejω)|
|H(ejω)|max

≥ 0

This approach is the most popular one in practice and is used for both
FIR and IIR filters. To illustrate these specifications, we will consider a
lowpass filter design as an example.

7.1.1 ABSOLUTE SPECIFICATIONS
A typical absolute specification of a lowpass filter is shown in Figure 7.1a,
in which

• band [0, ωp] is called the passband, and δ1 is the tolerance (or ripple)
that we are willing to accept in the ideal passband response,
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FIGURE 7.1 FIR filter specifications: (a) absolute (b) relative

• band [ωs, π] is called the stopband, and δ2 is the corresponding tolerance
(or ripple), and

• band [ωp, ωs] is called the transition band, and there are no restrictions
on the magnitude response in this band.

7.1.2 RELATIVE (DB) SPECIFICATIONS
A typical absolute specification of a lowpass filter is shown in Figure 7.1b,
in which

• Rp is the passband ripple in dB, and
• As is the stopband attenuation in dB.

The parameters given in these two specifications are obviously related.
Since |H(ejω)|max in absolute specifications is equal to (1 + δ1), we have

Rp = −20 log10

1 − δ1
1 + δ1

> 0 (≈ 0) (7.1)

and
As = −20 log10

δ2
1 + δ1

> 0 (� 1) (7.2)

� EXAMPLE 7.1 In a certain filter’s specifications the passband ripple is 0.25 dB, and the stop-
band attenuation is 50 dB. Determine δ1 and δ2.

Solution Using (7.1), we obtain

Rp = 0.25 = −20 log10

1 − δ1
1 + δ1

⇒ δ1 = 0.0144
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Using (7.2), we obtain

As = 50 = −20 log10

δ2
1 + δ1

= −20 log10

δ2
1 + 0.0144

⇒ δ2 = 0.0032 �

� EXAMPLE 7.2 Given the passband tolerance δ1 = 0.01 and the stopband tolerance δ2 = 0.001,
determine the passband ripple Rp and the stopband attenuation As.

Solution From (7.1) the passband ripple is

Rp = −20 log10

1 − δ1
1 + δ1

= 0.1737 dB

and from (7.2) the stopband attenuation is

As = −20 log10

δ2
1 + δ1

= 60 dB �

Problem P7.1 develops MATLAB functions to convert one set of spec-
ifications into another.

These specifications were given for a lowpass filter. Similar specifica-
tions can also be given for other types of frequency-selective filters, such
as highpass or bandpass. However, the most important design parame-
ters are frequency-band tolerances (or ripples) and band-edge frequencies.
Whether the given band is a passband or a stopband is a relatively mi-
nor issue. Therefore in describing design techniques, we will concentrate
on a lowpass filter. In the next chapter we will discuss how to transform
a lowpass filter into other types of frequency-selective filters. Hence it
makes more sense to develop techniques for a lowpass filter so that we
can compare these techniques. However, we will also provide examples
of other types of filters. In light of this discussion our design goal is the
following.

Problem statement Design a lowpass filter (i.e., obtain its system
function H(z) or its difference equation) that has a passband [0, ωp] with
tolerance δ1 (or Rp in dB) and a stopband [ωs, π] with tolerance δ2 (or
As in dB).

In this chapter we turn our attention to the design and approximation
of FIR digital filters. These filters have several design and implementa-
tional advantages:

• The phase response can be exactly linear.
• They are relatively easy to design since there are no stability problems.
• They are efficient to implement.
• The DFT can be used in their implementation.
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As we discussed in Chapter 6, we are generally interested in linear-
phase frequency-selective FIR filters. Advantages of a linear-phase re-
sponse are:

• design problem contains only real arithmetic and not complex
arithmetic

• linear-phase filters provide no delay distortion and only a fixed amount
of delay

• for the filter of length M (or order M − 1) the number of operations
are of the order of M/2 as we discussed in the linear-phase filter im-
plementation

We first begin with a discussion of the properties of the linear-phase
FIR filters, which are required in design algorithms. Then we will discuss
three design techniques, namely the window design, the frequency sam-
pling design, and the optimal equiripple design techniques for linear-phase
FIR filters.

7.2 PROPERTIES OF LINEAR-PHASE FIR FILTERS

In this section we discuss shapes of impulse and frequency responses and
locations of system function zeros of linear-phase FIR filters. Let h(n),
0 ≤ n ≤ M − 1 be the impulse response of length (or duration) M . Then
the system function is

H(z) =
M−1∑
n=0

h(n)z−n = z−(M−1)
M−1∑
n=0

h(n)zM−1−n

which has (M − 1) poles at the origin z = 0 (trivial poles) and (M − 1)
zeros located anywhere in the z-plane. The frequency response function
is

H(ejω) =
M−1∑
n=0

h(n)e−jωn, −π < ω ≤ π

Now we will discuss specific requirements on the forms of h(n) and H(ejω)
as well as requirements on the specific locations of (M − 1) zeros that the
linear-phase constraint imposes.

7.2.1 IMPULSE RESPONSE h(n)
We impose a linear-phase constraint

� H(ejω) = −αω, −π < ω ≤ π
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   0   (M – 1)/2  (M – 1) 

0

n

h(
n)

Symmetric Impulse Response: M odd

where α is a constant phase delay. Then we know from Chapter 6 that
h(n) must be symmetric, that is,

h (n) = h(M − 1 − n), 0 ≤ n ≤ (M − 1) with α =
M − 1

2
(7.3)

Hence h(n) is symmetric about α, which is the index of symmetry. There
are two possible types of symmetry:

• M odd: In this case α = (M −1)/2 is an integer. The impulse response
is as shown below.

• M even: In this case α = (M − 1)/2 is not an integer. The impulse
response is as shown here.

  0  M/2 + 1 M/2  M – 1 

0

n

h(
n)

Symmetric Impulse Response: M even

We also have a second type of “linear-phase” FIR filter if we require
that the phase response � H(ejω) satisfy the condition

� H(ejω) = β − αω

which is a straight line but not through the origin. In this case α is not a
constant phase delay, but

d � H(ejω)
dω

= −α

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Properties of Linear-phase FIR Filters 309

is constant, which is the group delay. Therefore α is called a constant
group delay. In this case, as a group, frequencies are delayed at a constant
rate. But some frequencies may get delayed more and others delayed less.
For this type of linear phase one can show that

h (n) = −h(M−1−n), 0 ≤ n ≤ (M−1); α =
M − 1

2
, β = ±π

2
(7.4)

This means that the impulse response h(n) is antisymmetric. The index
of symmetry is still α = (M − 1)/2. Once again we have two possible
types, one for M odd and one for M even.

• M odd: In this case α = (M − 1)/2 is an integer and the impulse
response is as shown.

   0  (M – 1)/2 M – 1 

0

n

h(
n)

Antisymmetric Impulse Response: M odd

Note that the sample h(α) at α = (M −1)/2 must necessarily be equal
to zero, i.e., h((M − 1)/2) = 0.

• M even: In this case α = (M − 1)/2 is not an integer and the impulse
response is as shown.

  0  M/2 +1  M/2  M – 1 

0

n

h(
n)

Antisymmetric Impulse Response: M even
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7.2.2 FREQUENCY RESPONSE H(ejω)
When the cases of symmetry and antisymmetry are combined with odd
and even M , we obtain four types of linear-phase FIR filters. Frequency
response functions for each of these types have some peculiar expressions
and shapes. To study these responses, we write H(ejω) as

H(ejω) = Hr(ω)ej(β−αω); β = ±π

2
, α =

M − 1
2

(7.5)

where Hr(ω) is an amplitude response function and not a magnitude re-
sponse function. The amplitude response is a real function, but unlike
the magnitude response, which is always positive, the amplitude response
may be both positive and negative. The phase response associated with
the magnitude response is a discontinuous function, while that associated
with the amplitude response is a continuous linear function. To illustrate
the difference between these two types of responses, consider the following
example.

� EXAMPLE 7.3 Let the impulse response be h(n) = {1
↑
, 1, 1}. Determine and draw frequency

responses.

Solution The frequency response function is

H(ejω) =

2∑
0

h(n)ejωn = 1 + 1e−jω + e−j2ω =
{
ejω + 1 + e−jω

}
e−jω

= {1 + 2 cosω} e−jω

From this the magnitude and the phase responses are

|H(ejω)| = |1 + 2 cosω| , 0 < ω ≤ π

� H(ejω) =

{
−ω, 0 < ω < 2π/3

π − ω, 2π/3 < ω < π

since cosω can be both positive and negative. In this case the phase response
is piecewise linear. On the other hand, the amplitude and the corresponding
phase responses are

Hr(ω) = 1 + 2 cosω,

� H(ejω) = −ω,
− π < ω ≤ π

In this case the phase response is truly linear. These responses are shown in
Figure 7.2. From this example, the difference between the magnitude and the
amplitude (or between the piecewise linear and the linear-phase) responses
should be clear. �
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FIGURE 7.2 Frequency responses in Example 7.3

Type-1 linear-phase FIR filter: Symmetrical impulse response,
M odd In this case β = 0, α = (M − 1)/2 is an integer, and h(n) =
h(M − 1 − n), 0 ≤ n ≤ M − 1. Then we can show (see Problem P7.2)
that

H(ejω) =




(M−1)/2∑
n=0

a(n) cosωn


 e−jω(M−1)/2 (7.6)

where sequence a(n) is obtained from h(n) as

a(0) = h

(
M − 1

2

)
: the middle sample

a(n) = 2h
(
M − 1

2
− n

)
, 1 ≤ n ≤ M − 3

2

(7.7)

Comparing (7.5) with (7.6), we have

Hr(ω) =
(M−1)/2∑

n=0

a(n) cosωn (7.8)
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Type-2 linear-phase FIR filter: Symmetrical impulse response,
M even In this case again β = 0 , h(n) = h(M−1−n), 0 ≤ n ≤ M−1,
but α = (M−1)/2 is not an integer. Then we can show (see Problem P7.3)
that

H(ejω) =



M/2∑
n=1

b(n) cos
{
ω

(
n− 1

2

)}
 e−jω(M−1)/2 (7.9)

where

b(n) = 2h
(
M

2
− n

)
, n = 1, 2, . . . ,

M

2
(7.10)

Hence

Hr(ω) =
M/2∑
n=1

b(n) cos
{
ω

(
n− 1

2

)}
(7.11)

Note: At ω = π we get

Hr(π) =
M/2∑
n=1

b(n) cos
{
π

(
n− 1

2

)}
= 0

regardless of b(n) or h(n). Hence we cannot use this type (i.e., symmetric
h(n), M even) for highpass or bandstop filters.

Type-3 linear-phase FIR filter: Antisymmetric impulse response,
M odd In this case β = π/2, α = (M − 1)/2 is an integer, h(n) =
−h(M − 1 − n), 0 ≤ n ≤ M − 1, and h((M − 1)/2) = 0. Then we can
show (see Problem P7.4) that

H(ejω) =




(M−1)/2∑
n=1

c(n) sinωn


 ej[

π
2 −(M−1

2 )ω] (7.12)

where

c(n) = 2h
(
M − 1

2
− n

)
, n = 1, 2, . . . ,

M − 1
2

(7.13)

and

Hr(ω) =
(M−1)/2∑

n=1

c(n) sinωn (7.14)

Note: At ω = 0 and ω = π we have Hr(ω) = 0, regardless of c(n) or
h(n). Furthermore, ejπ/2 = j, which means that jHr(ω) is purely imagi-
nary. Hence this type of filter is not suitable for designing a lowpass filter
or a highpass filter. However, this behavior is suitable for approximat-
ing ideal digital Hilbert transformers and differentiators. An ideal Hilbert
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transformer [23] is an all-pass filter that imparts a 90◦ phase shift on the
input signal. It is frequently used in communication systems for modula-
tion purposes. Differentiators are used in many analog and digital systems
to take the derivative of a signal.

Type-4 linear-phase FIR filter: Antisymmetric impulse response,
M even This case is similar to Type-2. We have (see Problem P7.5)

H(ejω) =



M/2∑
n=1

d(n) sin
{
ω

(
n− 1

2

)}
 ej[

π
2 −ω(M−1)/2] (7.15)

where
d(n) = 2h

(
M

2
− n

)
, n = 1, 2, . . . ,

M

2
(7.16)

and

Hr(ω) =
M/2∑
n=1

d(n) sin
{
ω

(
n− 1

2

)}
(7.17)

Note: At ω = 0, Hr(0) = 0 and ejπ/2 = j. Hence this type is also
suitable for designing digital Hilbert transformers and differentiators.

7.2.3 MATLAB IMPLEMENTATION
The MATLAB function freqz computes the frequency response from
which we can determine the magnitude response but not the amplitude
response. The SP toolbox now provides the function zerophase that can
compute the amplitude response. However, it easy to write simple func-
tions to compute amplitude responses for each of the four types. We pro-
vide four functions to do this.

1. Hr type1:

function [Hr,w,a,L] = Hr_Type1(h);

% Computes Amplitude response Hr(w) of a Type-1 LP FIR filter

% -----------------------------------------------------------

% [Hr,w,a,L] = Hr_Type1(h)

% Hr = Amplitude Response

% w = 500 frequencies between [0 pi] over which Hr is computed

% a = Type-1 LP filter coefficients

% L = Order of Hr

% h = Type-1 LP filter impulse response

%

M = length(h); L = (M-1)/2;

a = [h(L+1) 2*h(L:-1:1)]; % 1x(L+1) row vector

n = [0:1:L]; % (L+1)x1 column vector

w = [0:1:500]’*pi/500; Hr = cos(w*n)*a’;
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2. Hr type2:

function [Hr,w,b,L] = Hr_Type2(h);

% Computes Amplitude response of a Type-2 LP FIR filter

% -----------------------------------------------------

% [Hr,w,b,L] = Hr_Type2(h)

% Hr = Amplitude Response

% w = frequencies between [0 pi] over which Hr is computed

% b = Type-2 LP filter coefficients

% L = Order of Hr

% h = Type-2 LP impulse response

%

M = length(h); L = M/2;

b = 2*[h(L:-1:1)]; n = [1:1:L]; n = n-0.5;

w = [0:1:500]’*pi/500; Hr = cos(w*n)*b’;

3. Hr type3:

function [Hr,w,c,L] = Hr_Type3(h);

% Computes Amplitude response Hr(w) of a Type-3 LP FIR filter

% -----------------------------------------------------------

% [Hr,w,c,L] = Hr_Type3(h)

% Hr = Amplitude Response

% w = frequencies between [0 pi] over which Hr is computed

% c = Type-3 LP filter coefficients

% L = Order of Hr

% h = Type-3 LP impulse response

%

M = length(h); L = (M-1)/2;

c = [2*h(L+1:-1:1)]; n = [0:1:L];

w = [0:1:500]’*pi/500; Hr = sin(w*n)*c’;

4. Hr type4:

function [Hr,w,d,L] = Hr_Type4(h);

% Computes Amplitude response of a Type-4 LP FIR filter

% -----------------------------------------------------

% [Hr,w,d,L] = Hr_Type4(h)

% Hr = Amplitude Response

% w = frequencies between [0 pi] over which Hr is computed

% d = Type-4 LP filter coefficients

% L = Order of d

% h = Type-4 LP impulse response

%

M = length(h); L = M/2;

d = 2*[h(L:-1:1)]; n = [1:1:L]; n = n-0.5;

w = [0:1:500]’*pi/500; Hr = sin(w*n)*d’;
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These four functions can be combined into one function, called
ampl-res, that can be written to determine the type of the linear-phase
filter and to implement the appropriate amplitude response expression.
This is explored in Problem P7.6. The use of these functions is described
in Examples 7.4 through 7.7.

The zerophase function from the SP toolbox is similar in use to the
freqz function. The invocation [Hr,w, phi] = zerophase(b,a) returns
the amplitude response in Hr, evaluated at 512 values around the top half
of the unit circle in the array w and the continuous phase response in
phi. Thus, this function can be used for both FIR and IIR filters. Other
invocations are also available.

7.2.4 ZERO LOCATIONS
Recall that for an FIR filter there are (M −1) (trivial) poles at the origin
and (M − 1) zeros located somewhere in the z-plane. For linear-phase
FIR filters, these zeros possess certain symmetries that are due to the
symmetry constraints on h(n). It can be shown (see [23] and Problem
P7.7) that if H(z) has a zero at

z = z1 = rejθ

then for linear phase there must be a zero at

z =
1
z1

=
1
r
e−jθ

For a real-valued filter we also know that if z1 is complex, then there must
be a conjugate zero at z∗1 = re−jθ, which implies that there must be a
zero at 1/z∗1 = (1/r) ejθ. Thus a general zero constellation is a quadruplet

rejθ
1
r
ejθ re−jθ and

1
r
e−jθ

as shown in Figure 7.3. Clearly, if r = 1, then 1/r = 1, and hence the
zeros are on the unit circle and occur in pairs

ejθ and e−jθ

If θ = 0 or θ = π, then the zeros are on the real line and occur in pairs

r and
1
r

Finally, if r = 1 and θ = 0 or θ = π, the zeros are either at z = 1 or
z = −1. These symmetries can be used to implement cascade forms with
linear-phase sections.
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FIGURE 7.3 A general zero constellation

In the following examples, we illustrate the preceding properties of
linear-phase FIR filters.

� EXAMPLE 7.4 Let h(n) = {−4
↑
, 1,−1,−2, 5, 6, 5,−2,−1, 1,−4}. Determine the amplitude re-

sponse Hr (ω) and the locations of the zeros of H (z).

Solution Since M = 11, which is odd, and since h(n) is symmetric about α = (11−1)/2 =
5, this is a Type-1 linear-phase FIR filter. From (7.7) we have

a(0) = h (α) = h(5) = 6, a(1) = 2h(5 − 1) = 10, a(2) = 2h(5 − 2) = −4

a (3) = 2h (5 − 3) = −2, a (4) = 2h (5 − 4) = 2, a (5) = 2h (5 − 5) = −8

From (7.8), we obtain

Hr(ω) = a(0)+ a(1) cosω+ a(2) cos 2ω+ a(3) cos 3ω+ a(4) cos 4ω+ a(5) cos 5ω

= 6 + 10 cosω − 4 cos 2ω − 2 cos 3ω + 2 cos 4ω − 8 cos 5ω

MATLAB script:

>> h = [-4,1,-1,-2,5,6,5,-2,-1,1,-4];

>> M = length(h); n = 0:M-1;

>> [Hr,w,a,L] = Hr_Type1(h);
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>> a,L

a = 6 10 -4 -2 2 -8

L = 5

>> amax = max(a)+1; amin = min(a)-1;

>> subplot(2,2,1); stem(n,h); axis([-1 2*L+1 amin amax])

>> xlabel(’n’); ylabel(’h(n)’); title(’Impulse Response’)

>> subplot(2,2,3); stem(0:L,a); axis([-1 2*L+1 amin amax])

>> xlabel(’n’); ylabel(’a(n)’); title(’a(n) coefficients’)

>> subplot(2,2,2); plot(w/pi,Hr);grid

>> xlabel(’frequency in pi units’); ylabel(’Hr’)

>> title(’Type-1 Amplitude Response’)

>> subplot(2,2,4); pzplotz(h,1)

The plots and the zero locations are shown in Figure 7.4. From these plots, we
observe that there are no restrictions on Hr (ω) either at ω = 0 or at ω = π.
There is one zero-quadruplet constellation and three zero pairs. �

� EXAMPLE 7.5 Let h(n) = {−4
↑
, 1,−1,−2, 5, 6, 6, 5,−2,−1, 1,−4}. Determine the amplitude

response Hr (ω) and the locations of the zeros of H (z).
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FIGURE 7.4 Plots in Example 7.4
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Solution This is a Type-2 linear-phase FIR filter since M = 12 and since h (n) is sym-
metric with respect to α = (12 − 1) /2 = 5.5. From (7.10) we have

b(1) = 2h
(

12
2
− 1

)
= 12, b(2) = 2h

(
12
2
− 2

)
= 10, b(3) = 2h

(
12
2
− 3

)
= −4

b(4) = 2h
(

12
2
− 4

)
= −2, b(5) = 2h

(
12
2
− 5

)
= 2, b(6) = 2h

(
12
2
− 6

)
= −8

Hence from (7.11) we obtain

Hr(ω) = b(1) cos
[
ω
(
1 − 1

2

)]
+ b(2) cos

[
ω
(
2 − 1

2

)]
+ b(3) cos

[
ω
(
3 − 1

2

)]

+ b(4) cos
[
ω
(
4 − 1

2

)]
+ b(5) cos

[
ω
(
5 − 1

2

)]
+ b(6) cos

[
ω
(
6 − 1

2

)]

= 12 cos
(
ω

2

)
+ 10 cos

(
3ω

2

)
− 4 cos

(
5ω

2

)
− 2 cos

(
7ω

2

)

+ 2 cos
(

9ω

2

)
− 8 cos

(
11ω

2

)

MATLAB script:

>> h = [-4,1,-1,-2,5,6,6,5,-2,-1,1,-4];

>> M = length(h); n = 0:M-1; [Hr,w,a,L] = Hr_Type2(h);

>> b,L

b = 12 10 -4 -2 2 -8

L = 6

>> bmax = max(b)+1; bmin = min(b)-1;

>> subplot(2,2,1); stem(n,h); axis([-1 2*L+1 bmin bmax])

>> xlabel(’n’); ylabel(’h(n)’); title(’Impulse Response’)

>> subplot(2,2,3); stem(1:L,b); axis([-1 2*L+1 bmin bmax])

>> xlabel(’n’); ylabel(’b(n)’); title(’b(n) coefficients’)

>> subplot(2,2,2); plot(w/pi,Hr);grid

>> xlabel(’frequency in pi units’); ylabel(’Hr’)

>> title(’Type-1 Amplitude Response’)

>> subplot(2,2,4); pzplotz(h,1)

The plots and the zero locations are shown in Figure 7.5. From these plots, we
observe that Hr (ω) is zero at ω = π. There is one zero-quadruplet constellation,
three zero pairs, and one zero at ω = π as expected. �

� EXAMPLE 7.6 Let h(n) = {−4
↑
, 1,−1,−2, 5, 0,−5, 2, 1,−1, 4}. Determine the amplitude re-

sponse Hr (ω) and the locations of the zeros of H (z).

Solution Since M = 11, which is odd, and since h(n) is antisymmetric about α =
(11 − 1)/2 = 5, this is a Type-3 linear-phase FIR filter. From (7.13) we have

c(0) = h (α) = h(5) = 0, c(1) = 2h(5 − 1) = 10, c(2) = 2h(2 − 2) = −4

c (3) = 2h (5 − 3) = −2, c (4) = 2h (5 − 4) = 2, c (5) = 2h (5 − 5) = −8
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FIGURE 7.5 Plots in Example 7.5

From (7.14) we obtain

Hr(ω) = c(0) + c(1) sinω + c(2) sin 2ω + c(3) sin 3ω + c(4) sin 4ω + c(5) sin 5ω

= 0 + 10 sinω − 4 sin 2ω − 2 sin 3ω + 2 sin 4ω − 8 sin 5ω

MATLAB script:

>> h = [-4,1,-1,-2,5,0,-5,2,1,-1,4];

>> M = length(h); n = 0:M-1; [Hr,w,c,L] = Hr_Type3(h);

>> c,L

a = 0 10 -4 -2 2 -8

L = 5

>> cmax = max(c)+1; cmin = min(c)-1;

>> subplot(2,2,1); stem(n,h); axis([-1 2*L+1 cmin cmax])

>> xlabel(’n’); ylabel(’h(n)’); title(’Impulse Response’)

>> subplot(2,2,3); stem(0:L,c); axis([-1 2*L+1 cmin cmax])

>> xlabel(’n’); ylabel(’c(n)’); title(’c(n) coefficients’)

>> subplot(2,2,2); plot(w/pi,Hr);grid

>> xlabel(’frequency in pi units’); ylabel(’Hr’)

>> title(’Type-1 Amplitude Response’)

>> subplot(2,2,4); pzplotz(h,1)

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



320 Chapter 7 FIR FILTER DESIGN

The plots and the zero locations are shown in Figure 7.6. From these plots, we
observe that Hr (ω) = 0 at ω = 0 and at ω = π. There is one zero-quadruplet
constellation, two zero pairs, and zeros at ω = 0 and ω = π as expected. �
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FIGURE 7.6 Plots in Example 7.6

� EXAMPLE 7.7 Let h(n) = {−4
↑
, 1,−1,−2, 5, 6,−6,−5, 2, 1,−1, 4}. Determine the amplitude

response Hr (ω) and the locations of the zeros of H (z).

Solution This is a Type-4 linear-phase FIR filter since M = 12 and since h (n) is anti-
symmetric with respect to α = (12 − 1) /2 = 5.5. From (7.16) we have

d(1) = 2h
(

12
2
− 1

)
= 12, d(2) = 2h

(
12
2
− 2

)
= 10, d(3) = 2h

(
12
2
− 3

)
= −4

d(4) = 2h
(

12
2
− 4

)
= −2, d(5) = 2h

(
12
2
− 5

)
= 2, d(6) = 2h

(
12
2
− 6

)
= −8

Hence from (7.17) we obtain

Hr(ω) = d(1) sin
[
ω
(
1 − 1

2

)]
+ d(2) sin

[
ω
(
2 − 1

2

)]
+ d(3) sin

[
ω
(
3 − 1

2

)]

+d(4) sin
[
ω
(
4 − 1

2

)]
+ d(5) sin

[
ω
(
5 − 1

2

)]
+ d(6) sin

[
ω
(
6 − 1

2

)]

= 12 sin
(
ω

2

)
+ 10 sin

(
3ω

2

)
− 4 sin

(
5ω

2

)
− 2 sin

(
7ω

2

)

+2 sin
(

9ω

2

)
− 8 sin

(
11ω

2

)
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FIGURE 7.7 Plots in Example 7.7

MATLAB script:

>> h = [-4,1,-1,-2,5,6,-6,-5,2,1,-1,4];

>> M = length(h); n = 0:M-1; [Hr,w,d,L] = Hr_Type4(h);

>> b,L

d = 12 10 -4 -2 2 -8

L = 6

>> dmax = max(d)+1; dmin = min(d)-1;

>> subplot(2,2,1); stem(n,h); axis([-1 2*L+1 dmin dmax])

>> xlabel(’n’); ylabel(’h(n)’); title(’Impulse Response’)

>> subplot(2,2,3); stem(1:L,d); axis([-1 2*L+1 dmin dmax])

>> xlabel(’n’); ylabel(’d(n)’); title(’d(n) coefficients’)

>> subplot(2,2,2); plot(w/pi,Hr);grid

>> xlabel(’frequency in pi units’); ylabel(’Hr’)

>> title(’Type-1 Amplitude Response’)

>> subplot(2,2,4); pzplotz(h,1)

The plots and the zero locations are shown in Figure 7.7. From these plots, we
observe that Hr (ω) is zero at ω = 0. There is one zero-quadruplet constellation,
three zero pairs, and one zero at ω = 0 as expected. �
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7.3 WINDOW DESIGN TECHNIQUES

The basic idea behind the window design is to choose a proper ideal
frequency-selective filter (which always has a noncausal, infinite-duration
impulse response) and then to truncate (or window) its impulse response
to obtain a linear-phase and causal FIR filter. Therefore the emphasis
in this method is on selecting an appropriate windowing function and
an appropriate ideal filter. We will denote an ideal frequency-selective
filter by Hd(ejω), which has a unity magnitude gain and linear-phase
characteristics over its passband, and zero response over its stopband. An
ideal LPF of bandwidth ωc < π is given by

Hd(ejω) =

{
1 · e−jαω, |ω| ≤ ωc

0, ωc < |ω| ≤ π
(7.18)

where ωc is also called the cutoff frequency, and α is called the sample
delay. (Note that from the DTFT properties, e−jαω implies shift in the
positive n direction or delay.) The impulse response of this filter is of
infinite duration and is given by

hd(n) = F−1
[
Hd(ejω)

]
=

1
2π

π∫

−π

Hd(ejω)ejωndω (7.19)

=
1
2π

ωc∫

−ωc

1 · e−jαωejωndω

=
sin [ωc(n− α)]

π(n− α)

Note that hd(n) is symmetric with respect to α, a fact useful for linear-
phase FIR filters.

To obtain an FIR filter from hd(n), one has to truncate hd(n) on both
sides. To obtain a causal and linear-phase FIR filter h(n) of length M , we
must have

h(n) =

{
hd(n), 0 ≤ n ≤ M − 1

0, elsewhere
and α =

M − 1
2

(7.20)

This operation is called “windowing.” In general, h(n) can be thought of
as being formed by the product of hd(n) and a window function w(n) as
follows:

h(n) = hd(n)w(n) (7.21)

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Window Design Techniques 323

where

w(n) =




some symmetric function with respect to
α over 0 ≤ n ≤ M − 1

0, otherwise

Depending on how we define w(n), we obtain different window designs.
For example, in (7.20)

w(n) =

{
1, 0 ≤ n ≤ M − 1
0, otherwise

= RM (n)

which is the rectangular window defined earlier.
In the frequency domain the causal FIR filter response H(ejω) is given

by the periodic convolution of Hd(ejω) and the window response W (ejω);
that is,

H(ejω) = Hd(ejω) ∗©W (ejω) =
1
2π

π∫

−π

W
(
ejλ

)
Hd

(
ej(ω−λ)

)
dλ

(7.22)

This is shown pictorially in Figure 7.8 for a typical window response, from
which we have the following observations:

1. Since the window w(n) has a finite length equal to M , its response has
a peaky main lobe whose width is proportional to 1/M , and has side
lobes of smaller heights.

0
ω

πωc−ωc

−ωc ωc

−π

H (e jω)

Ripples
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Stopband

Attenuation

Periodic
Convolution

Transition
Bandwidth

0
ω

π−π
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0
ω

π−π
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Max Side-lobe
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Main Lobe
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FIGURE 7.8 Windowing operation in the frequency domain

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



324 Chapter 7 FIR FILTER DESIGN

2. The periodic convolution (7.22) produces a smeared version of the ideal
response Hd(ejω).

3. The main lobe produces a transition band in H(ejω) whose width is
responsible for the transition width. This width is then proportional to
1/M . The wider the main lobe, the wider will be the transition width.

4. The side lobes produce ripples that have similar shapes in both the
passband and stopband.

Basic window design idea For the given filter specifications, choose
the filter length M and a window function w(n) for the narrowest main
lobe width and the smallest side lobe attenuation possible.

From observation 4, we note that the passband tolerance δ1 and the
stopband tolerance δ2 cannot be specified independently. We generally
take care of δ2 alone, which results in δ2 = δ1. We now briefly describe
various well-known window functions. We will use the rectangular window
as an example to study their performances in the frequency domain.

7.3.1 RECTANGULAR WINDOW
This is the simplest window function but provides the worst performance
from the viewpoint of stopband attenuation. It was defined earlier by

w(n) =

{
1, 0 ≤ n ≤ M − 1
0, otherwise

(7.23)

Its frequency response function is

W (ejω) =

[
sin

(
ωM
2

)

sin
(
ω
2

)
]
e−jωM−1

2 ⇒ Wr(ω) =
sin

(
ωM
2

)

sin
(
ω
2

)

which is the amplitude response. From (7.22) the actual amplitude re-
sponse Hr (ω) is given by

Hr (ω) � 1
2π

ω+ωc∫

−π

Wr (λ) dλ =
1
2π

ω+ωc∫

−π

sin
(
ωM
2

)

sin
(
ω
2

) dλ, M � 1 (7.24)

This implies that the running integral of the window amplitude response
(or accumulated amplitude response) is necessary in the accurate analysis
of the transition bandwidth and the stopband attenuation. Figure 7.9
shows the rectangular window function w (n), its amplitude response
W (ω), the amplitude response in dB, and the accumulated amplitude
response (7.24) in dB. From the observation of plots in Figure 7.9, we can
make several observations.
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FIGURE 7.9 Rectangular window: M = 45

1. The amplitude response Wr (ω) has the first zero at ω = ω1, where

ω1M

2
= π or ω1 =

2π
M

Hence the width of the main lobe is 2ω1 = 4π/M . Therefore the ap-
proximate transition bandwidth is 4π/M .

2. The magnitude of the first side lobe (which is also the peak side lobe
magnitude) is approximately at ω = 3π/M and is given by

∣∣∣∣Wr

(
ω =

3π
M

)∣∣∣∣ =

∣∣∣∣∣
sin

(
3π
2

)

sin
(

3π
2M

)
∣∣∣∣∣ �

2M
3π

for M � 1

Comparing this with the main lobe amplitude, which is equal to M ,
the peak side lobe magnitude is

2
3π

= 21.22% ≡ 13 dB

of the main lobe amplitude.
3. The accumulated amplitude response has the first side lobe magnitude

at 21 dB. This results in the minimum stopband attenuation of 21 dB
irrespective of the window length M .
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4. Using the minimum stopband attenuation, the transition bandwidth
can be accurately computed. It is shown in the accumulated amplitude
response plot in Figure 7.9. This computed exact transition bandwidth is

ωs − ωp =
1.8π
M

which is less than half the approximate bandwidth of 4π/M .

Clearly, this is a simple window operation in the time domain and
an easy function to analyze in the frequency domain. However, there are
two main problems. First, the minimum stopband attenuation of 21 dB is
insufficient in practical applications. Second, the rectangular windowing
being a direct truncation of the infinite length hd (n), it suffers from the
Gibbs phenomenon. If we increase M , the width of each side lobe will
decrease, but the area under each lobe will remain constant. Therefore, the
relative amplitudes of side lobes will remain constant, and the minimum
stopband attenuation will remain at 21 dB. This implies that all ripples
will bunch up near the band edges. It is shown in Figure 7.10.

Since the rectangular window is impractical in many applications,
we consider other fixed window functions that provide a fixed amount
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of attenuation. These window functions bear the names of the people
who first proposed them. Although these window functions can also be
analyzed similar to the rectangular window, we present only their results.

7.3.2 BARTLETT WINDOW
Since the Gibbs phenomenon results from the fact that the rectangular
window has a sudden transition from 0 to 1 (or 1 to 0), Bartlett suggested
a more gradual transition in the form of a triangular window, which is
given by

w(n) =




2n
M − 1

, 0 ≤ n ≤ M − 1
2

2 − 2n
M − 1

,
M − 1

2
≤ n ≤ M − 1

0, otherwise

(7.25)

This window and its frequency-domain responses are shown in Figure 7.11.
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7.3.3 HANN WINDOW
This is a raised cosine window function given by

w(n) =




0.5
[
1 − cos

(
2πn
M−1

)]
, 0 ≤ n ≤ M − 1

0, otherwise

(7.26)

This window and its frequency-domain responses are shown in Figure 7.12.

7.3.4 HAMMING WINDOW
This window is similar to the Hann window except that it has a small
amount of discontinuity and is given by

w(n) =




0.54 − 0.46 cos
(

2πn
M−1

)
, 0 ≤ n ≤ M − 1

0, otherwise
(7.27)

This window and its frequency-domain responses are shown in Figure 7.13.
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FIGURE 7.13 Hamming window: M = 45

7.3.5 BLACKMAN WINDOW
This window is also similar to the previous two but contains a second
harmonic term and is given by

w(n) =




0.42 − 0.5 cos
(

2πn
M−1

)
+ 0.08 cos

(
4πn
M−1

)
, 0 ≤ n ≤ M − 1

0, otherwise

(7.28)

This window and its frequency-domain responses are shown in Figure 7.14.
In Table 7.1 we provide a summary of fixed window function charac-

teristics in terms of their transition widths (as a function of M) and their
minimum stopband attenuations in dB. Both the approximate as well as
the exact transition bandwidths are given. Note that the transition widths
and the stopband attenuations increase as we go down the table. The
Hamming window appears to be the best choice for many applications.

7.3.6 KAISER WINDOW
This is an adjustable window function that is widely used in practice. The
window function is due to J. F. Kaiser and is given by

w(n) =
I0

[
β
√

1 − (1 − 2n
M−1 )2

]

I0 [β]
, 0 ≤ n ≤ M − 1 (7.29)
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TABLE 7.1 Summary of commonly used window function characteristics

Window Transition Width ∆ω Min. Stopband
Name Approximate Exact Values Attenuation

Rectangular
4π

M

1.8π

M
21 dB

Bartlett
8π

M

6.1π

M
25 dB

Hann
8π

M

6.2π

M
44 dB

Hamming
8π

M

6.6π

M
53 dB

Blackman
12π

M

11π

M
74 dB
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where I0[ · ] is the modified zero-order Bessel function given by

I0(x) = 1 +
∞∑
k=0

[
(x/2)k

k!

]2

which is positive for all real values of x. The parameter β controls the
minimum stopband attenuation As and can be chosen to yield different
transition widths for near-optimum As. This window can provide different
transition widths for the same M , which is something other fixed windows
lack. For example,

• if β = 5.658, then the transition width is equal to 7.8π/M , and the
minimum stopband attenuation is equal to 60 dB. This is shown in
Figure 7.15.

• if β = 4.538, then the transition width is equal to 5.8π/M , and the
minimum stopband attenuation is equal to 50 dB.

Hence the performance of this window is comparable to that of the
Hamming window. In addition, the Kaiser window provides flexible tran-
sition bandwidths. Due to the complexity involved in the Bessel functions,
the design equations for this window are not easy to derive. Fortunately,
Kaiser has developed empirical design equations, which we provide here
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FIGURE 7.15 Kaiser window: M = 45, β = 5.658
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without proof. Given ωp, ωs, Rp, and As the parameters M and β are
given by

transition width = ∆ω = ωs − ωp

Filter length M � As − 7.95
2.285∆ω

+ 1 (7.30)

Parameter β =




0.1102(As − 8.7), As ≥ 50

0.5842 (As − 21)0.4

+ 0.07886(As − 21), 21 < As < 50

7.3.7 MATLAB IMPLEMENTATION
MATLAB provides several functions to implement window functions dis-
cussed in this section. A brief description of these functions follow.

• w=boxcar(M) returns the M-point rectangular window function in ar-
ray w.

• w=bartlett(M) returns the M-point Bartlett window function in ar-
ray w.

• w=hann(M) returns the M-point Hann window function in array w.
• w=hamming(M) returns the M-point Hamming window function in ar-

ray w.
• w=blackman(M) returns the M-point Blackman window function in ar-

ray w.
• w=kaiser(M,beta) returns the beta-valued M-point rectangular win-

dow function in array w.

Using these functions, we can use MATLAB to design FIR filters based
on the window technique, which also requires an ideal lowpass impulse
response hd(n). Therefore it is convenient to have a simple routine that
creates hd(n) as shown here.

function hd = ideal_lp(wc,M);

% Ideal LowPass filter computation

% --------------------------------

% [hd] = ideal_lp(wc,M)

% hd = ideal impulse response between 0 to M-1

% wc = cutoff frequency in radians

% M = length of the ideal filter

%

alpha = (M-1)/2; n = [0:1:(M-1)];

m = n - alpha; fc = wc/pi; hd = fc*sinc(fc*m);
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To display the frequency-domain plots of digital filters, MATLAB
provides the freqz function, which we used in earlier chapters. Using this
function, we have developed a modified version, called freqz m, which
returns the magnitude response in absolute as well as in relative dB scale,
the phase response, and the group delay response. We will need the group
delay response in the next chapter.

function [db,mag,pha,grd,w] = freqz_m(b,a);

% Modified version of freqz subroutine

% ------------------------------------

% [db,mag,pha,grd,w] = freqz_m(b,a);

% db = Relative magnitude in dB computed over 0 to pi radians

% mag = absolute magnitude computed over 0 to pi radians

% pha = Phase response in radians over 0 to pi radians

% grd = Group delay over 0 to pi radians

% w = 501 frequency samples between 0 to pi radians

% b = numerator polynomial of H(z) (for FIR: b=h)

% a = denominator polynomial of H(z) (for FIR: a=[1])

%

[H,w] = freqz(b,a,1000,’whole’);

H = (H(1:1:501))’; w = (w(1:1:501))’;

mag = abs(H); db = 20*log10((mag+eps)/max(mag));

pha = angle(H); grd = grpdelay(b,a,w);

7.3.8 DESIGN EXAMPLES
We now provide several examples of FIR filter design using window tech-
niques and MATLAB functions.

� EXAMPLE 7.8 Design a digital FIR lowpass filter with the following specifications:

ωp = 0.2π,

ωs = 0.3π,

Rp = 0.25 dB

As = 50 dB

Choose an appropriate window function from Table 7.1. Determine the impulse
response and provide a plot of the frequency response of the designed filter.

Solution Both the Hamming and Blackman windows can provide attenuation of more
than 50 dB. Let us choose the Hamming window, which provides the smaller
transition band and hence has the smaller order. Although we do not use the
passband ripple value of Rp = 0.25 dB in the design, we will have to check
the actual ripple from the design and verify that it is indeed within the given
tolerance. The design steps are given in the following MATLAB script.
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>> wp = 0.2*pi; ws = 0.3*pi; tr_width = ws - wp;

>> M = ceil(6.6*pi/tr_width) + 1

M = 67

>> n=[0:1:M-1];

>> wc = (ws+wp)/2, % Ideal LPF cutoff frequency

>> hd = ideal_lp(wc,M); w_ham = (hamming(M))’; h = hd .* w_ham;

>> [db,mag,pha,grd,w] = freqz_m(h,[1]); delta_w = 2*pi/1000;

>> Rp = -(min(db(1:1:wp/delta_w+1))); % Actual Passband Ripple

Rp = 0.0394

>> As = -round(max(db(ws/delta_w+1:1:501))) % Min Stopband attenuation

As = 52

% plots

>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)

>> axis([0 M-1 -0.1 0.3]); xlabel(’n’); ylabel(’hd(n)’)

>> subplot(2,2,2); stem(n,w_ham);title(’Hamming Window’)

>> axis([0 M-1 0 1.1]); xlabel(’n’); ylabel(’w(n)’)

>> subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

>> axis([0 M-1 -0.1 0.3]); xlabel(’n’); ylabel(’h(n)’)

>> subplot(2,2,4); plot(w/pi,db);title(’Magnitude Response in dB’);grid

>> axis([0 1 -100 10]); xlabel(’frequency in pi units’); ylabel(’Decibels’)

Note that the filter length is M = 67, the actual stopband attenuation is
52 dB, and the actual passband ripple is 0.0394 dB. Clearly, the passband
ripple is satisfied by this design. This practice of verifying the passband ripple
is strongly recommended. The time- and the frequency-domain plots are shown
in Figure 7.16. �

� EXAMPLE 7.9 For the design specifications given in Example 7.8, choose the Kaiser window
to design the necessary lowpass filter.

Solution The design steps are given in the following MATLAB script.

>> wp = 0.2*pi; ws = 0.3*pi; As = 50; tr_width = ws - wp;

>> M = ceil((As-7.95)/(2.285*tr_width/)+1) + 1

M = 61

>> n=[0:1:M-1]; beta = 0.1102*(As-8.7)

beta = 4.5513

>> wc = (ws+wp)/2; hd = ideal_lp(wc,M);

>> w_kai = (kaiser(M,beta))’; h = hd .* w_kai;

>> [db,mag,pha,grd,w] = freqz_m(h,[1]); delta_w = 2*pi/1000;

>> As = -round(max(db(ws/delta_w+1:1:501))) % Min Stopband Attenuation
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FIGURE 7.16 Lowpass filter plots for Example 7.8

As = 52

% Plots

>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)

>> axis([0 M-1 -0.1 0.3]); xlabel(’n’); ylabel(’hd(n)’)

>> subplot(2,2,2); stem(n,w_kai);title(’Kaiser Window’)

>> axis([0 M-1 0 1.1]); xlabel(’n’); ylabel(’w(n)’)

>> subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

>> axis([0 M-1 -0.1 0.3]); xlabel(’n’); ylabel(’h(n)’)

>> subplot(2,2,4);plot(w/pi,db);title(’Magnitude Response in dB’);grid

>> axis([0 1 -100 10]); xlabel(’frequency in pi units’); ylabel(’Decibels’)

Note that the Kaiser window parameters are M = 61 and β = 4.5513 and that
the actual stopband attenuation is 52 dB. The time- and the frequency-domain
plots are shown in Figure 7.17. �
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FIGURE 7.17 Lowpass filter plots for Example 7.9

� EXAMPLE 7.10 Let us design the following digital bandpass filter.

lower stopband edge: ω1s = 0.2π, As = 60 dB

lower passband edge: ω1p = 0.35π, Rp = 1 dB

upper passband edge: ω2p = 0.65π Rp = 1 dB

upper stopband edge: ω2s = 0.8π As = 60 dB

These quantities are shown in Figure 7.18.
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FIGURE 7.18 Bandpass filter specifications in Example 7.10
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Solution There are two transition bands, namely, ∆ω1
�
= ω1p−ω1s and ∆ω2

�
= ω2s−ω2p.

These two bandwidths must be the same in the window design; that is, there is
no independent control over ∆ω1 and ∆ω2. Hence ∆ω1 = ∆ω2 = ∆ω. For this
design we can use either the Kaiser window or the Blackman window. Let us
use the Blackman Window. We will also need the ideal bandpass filter impulse
response hd (n). Note that this impulse response can be obtained from two ideal
lowpass magnitude responses, provided they have the same phase response. This
is shown in Figure 7.19. Therefore the MATLAB routine ideal lp(wc,M) is
sufficient to determine the impulse response of an ideal bandpass filter. The
design steps are given in the following MATLAB script.

>> ws1 = 0.2*pi; wp1 = 0.35*pi; wp2 = 0.65*pi; ws2 = 0.8*pi; As = 60;

>> tr_width = min((wp1-ws1),(ws2-wp2)); M = ceil(11*pi/tr_width) + 1

M = 75

>> n=[0:1:M-1]; wc1 = (ws1+wp1)/2; wc2 = (wp2+ws2)/2;

>> hd = ideal_lp(wc2,M) - ideal_lp(wc1,M);

>> w_bla = (blackman(M))’; h = hd .* w_bla;

>> [db,mag,pha,grd,w] = freqz_m(h,[1]); delta_w = 2*pi/1000;

>> Rp = -min(db(wp1/delta_w+1:1:wp2/delta_w)) % Actua; Passband Ripple

Rp = 0.0030

>> As = -round(max(db(ws2/delta_w+1:1:501))) % Min Stopband Attenuation

As = 75

%Plots

>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)

>> axis([0 M-1 -0.4 0.5]); xlabel(’n’); ylabel(’hd(n)’)

>> subplot(2,2,2); stem(n,w_bla);title(’Blackman Window’)

>> axis([0 M-1 0 1.1]); xlabel(’n’); ylabel(’w(n)’)

>> subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

>> axis([0 M-1 -0.4 0.5]); xlabel(’n’); ylabel(’h(n)’)

>> subplot(2,2,4);plot(w/pi,db);axis([0 1 -150 10]);

>> title(’Magnitude Response in dB’);grid;

>> xlabel(’frequency in pi units’); ylabel(’Decibels’)

+

−

0

0

ωc2

ωc2

π

π
0 ωc1

ωc1

π

FIGURE 7.19 Ideal bandpass filter from two lowpass filters
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FIGURE 7.20 Bandpass filter plots in Example 7.10

Note that the Blackman window length is M = 61 and that the actual stopband
attenuation is 75 dB. The time- and the frequency-domain plots are shown in
Figure 7.20. �

� EXAMPLE 7.11 The frequency response of an ideal bandstop filter is given by

He(e
jω) =




1, 0 ≤ |ω| < π/3

0, π/3 ≤ |ω| ≤ 2π/3

1, 2π/3 < |ω| ≤ π

Using a Kaiser window, design a bandstop filter of length 45 with stopband
attenuation of 60 dB.

Solution Note that in these design specifications, the transition bandwidth is not given.
It will be determined by the length M = 45 and the parameter β of the
Kaiser window. From the design equations (7.30), we can determine β from As;
that is,

β = 0.1102 × (As − 8.7)
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The ideal bandstop impulse response can also be determined from the ideal
lowpass impulse response using a method similar to Figure 7.19. We can now
implement the Kaiser window design and check for the minimum stopband
attenuation. This is shown in the following MATLAB script.

>> M = 45; As = 60; n=[0:1:M-1];

>> beta = 0.1102*(As-8.7)

beta = 5.6533

>> w_kai = (kaiser(M,beta))’; wc1 = pi/3; wc2 = 2*pi/3;

>> hd = ideal_lp(wc1,M) + ideal_lp(pi,M) - ideal_lp(wc2,M);

>> h = hd .* w_kai; [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)

>> axis([-1 M -0.2 0.8]); xlabel(’n’); ylabel(’hd(n)’)

>> subplot(2,2,2); stem(n,w_kai);title(’Kaiser Window’)

>> axis([-1 M 0 1.1]); xlabel(’n’); ylabel(’w(n)’)

>> subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

>> axis([-1 M -0.2 0.8]); xlabel(’n’); ylabel(’h(n)’)

>> subplot(2,2,4);plot(w/pi,db); axis([0 1 -80 10]);

>> title(’Magnitude Response in dB’);grid;

>> xlabel(’frequency in pi units’); ylabel(’Decibels’)

The β parameter is equal to 5.6533, and, from the magnitude plot in Figure 7.21,
we observe that the minimum stopband attenuation is smaller than 60 dB.
Clearly, we have to increase β to increase the attenuation to 60 dB. The required
value was found to be β = 5.9533.
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FIGURE 7.21 Bandstop filter magnitude response in Example 7.11 for β =
5.6533
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FIGURE 7.22 Bandstop filter plots in Example 7.11: β = 5.9533

>> M = 45; As = 60; n=[0:1:M-1];

>> beta = 0.1102*(As-8.7)+0.3

beta = 5.9533

>> w_kai = (kaiser(M,beta))’; wc1 = pi/3; wc2 = 2*pi/3;

>> hd = ideal_lp(wc1,M) + ideal_lp(pi,M) - ideal_lp(wc2,M);

>> h = hd .* w_kai; [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)

>> axis([-1 M -0.2 0.8]); xlabel(’n’); ylabel(’hd(n)’)

>> subplot(2,2,2); stem(n,w_kai);title(’Kaiser Window’)

>> axis([-1 M 0 1.1]); xlabel(’n’); ylabel(’w(n)’)

>> subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

>> axis([-1 M -0.2 0.8]); xlabel(’n’); ylabel(’h(n)’)

>> subplot(2,2,4);plot(w/pi,db); axis([0 1 -80 10]);

>> title(’Magnitude Response in dB’);grid;

>> xlabel(’frequency in pi units’); ylabel(’Decibels’)

The time- and the frequency-domain plots are shown in Figure 7.22, in which
the designed filter satisfies the necessary requirements. �
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� EXAMPLE 7.12 The frequency response of an ideal digital differentiator is given by

Hd(e
jω) =

{
jω, 0 < ω ≤ π

−jω, −π < ω < 0
(7.31)

Using a Hamming window of length 21, design a digital FIR differentiator. Plot
the time- and the frequency-domain responses.

Solution The ideal impulse response of a digital differentiator with linear phase is given
by

hd (n) = F
[
Hd(e

jω)e−jαω
]

=
1

2π

π∫

−π

Hd(e
jω)e−jαωejωndω

=
1

2π

0∫

−π

(−jω) e−jαωejωndω +
1

2π

π∫

0

(jω) e−jαωejωndω

=




cosπ (n− α)

(n− α)
, n �= α

0, n = α

This impulse response can be implemented in MATLAB, along with the
Hamming window to design the required differentiator. Note that if M is an
even number, then α = (M − 1)/2 is not an integer and hd (n) will be zero for
all n. Hence M must be an odd number, and this will be a Type-3 linear-
phase FIR filter. However, the filter will not be a full-band differentiator since
Hr (π) = 0 for Type-3 filters.

>> M = 21; alpha = (M-1)/2; n = 0:M-1;

>> hd = (cos(pi*(n-alpha)))./(n-alpha); hd(alpha+1)=0;

>> w_ham = (hamming(M))’; h = hd .* w_ham; [Hr,w,P,L] = Hr_Type3(h);

% plots

>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)

>> axis([-1 M -1.2 1.2]); xlabel(’n’); ylabel(’hd(n)’)

>> subplot(2,2,2); stem(n,w_ham);title(’Hamming Window’)

>> axis([-1 M 0 1.2]); xlabel(’n’); ylabel(’w(n)’)

>> subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

>> axis([-1 M -1.2 1.2]); xlabel(’n’); ylabel(’h(n)’)

>> subplot(2,2,4);plot(w/pi,Hr/pi); title(’Amplitude Response’);grid;

>> xlabel(’frequency in pi units’); ylabel(’slope in pi units’); axis([0 1 0 1]);

The plots are shown in Figure 7.23. �
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FIGURE 7.23 FIR differentiator design in Example 7.12

� EXAMPLE 7.13 Design a length-25 digital Hilbert transformer using a Hann window.

Solution The ideal frequency response of a linear-phase Hilbert transformer is given by

Hd(e
jω) =

{
−je−jαω, 0 < ω < π

+je−jαω, −π < ω < 0
(7.32)

After inverse transformation the ideal impulse response is given by

hd (n) =




2

π

sin2 π (n− α) /2

n− α
, n �= α

0, n = α

which can be easily implemented in MATLAB. Note that since M = 25, the
designed filter is of Type-3.

MATLAB script:

>> M = 25; alpha = (M-1)/2; n = 0:M-1;

>> hd = (2/pi)*((sin((pi/2)*(n-alpha)).^2)./(n-alpha)); hd(alpha+1)=0;

>> w_han = (hann(M))’; h = hd .* w_han; [Hr,w,P,L] = Hr_Type3(h);

>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)

>> axis([-1 M -1.2 1.2]); xlabel(’n’); ylabel(’hd(n)’)
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FIGURE 7.24 FIR Hilbert transformer design in Example 7.13

>> subplot(2,2,2); stem(n,w_han);title(’Hann Window’)

>> axis([-1 M 0 1.2]); xlabel(’n’); ylabel(’w(n)’)

>> subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

>> axis([-1 M -1.2 1.2]); xlabel(’n’); ylabel(’h(n)’)

>> w = w’; Hr = Hr’;

>> w = [-fliplr(w), w(2:501)]; Hr = [-fliplr(Hr), Hr(2:501)];

>> subplot(2,2,4);plot(w/pi,Hr); title(’Amplitude Response’);grid;

>> xlabel(’frequency in pi units’); ylabel(’Hr’); axis([-1 1 -1.1 1.1]);

The plots are shown in Figure 7.24. Observe that the amplitude response is
plotted over −π ≤ ω ≤ π. �

The SP toolbox provides a function called fir1 which designs conven-
tional lowpass, highpass, and other multiband FIR filters using window
technique. This function’s syntax has several forms, including:

• h = fir1(N,wc) designs an Nth-order (N = M − 1) lowpass FIR
filter and returns the impulse response in vector h. By default this is
a Hamming-window based, linear-phase design with normalized cutoff
frequency in wc which is a number between 0 and 1, where 1 corresponds
to π rad/sample. If wc is a two-element vector, i.e., wc = [wc1 wc2],
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then fir1 returns a bandpass filter with passband cutoffs wc1 and wc2.
If wc is a multi-element (more than two) vector, then fir1 returns a
multiband filter with cutoffs given in wc.

• h = fir1(N,wc,’ftype’) specifies a filter type, where ’ftype’ is:

a. ’high’ for a highpass filter with cutoff frequency Wn.
b. ’stop’ for a bandstop filter, if Wc = [wc1 wc2]. The stopband fre-

quency range is specified by this interval.
c. ’DC-1’ to make the first band of a multiband filter a passband.
d. ’DC-0’ to make the first band of a multiband filter a stopband.

• h = fir1(N,wc,’ftype’,window) or h = fir1(N,wc,window) uses
the vector window of length N+1 obtained from one of the specified
MATLAB window function. The default window function used is the
Hamming window.

To design FIR filters using the Kaiser window, the SP toolbox pro-
vides the function kaiserord, which estimates window parameters that
can be used in the fir1 function. The basic syntax is

[N,wc,beta,ftype] = kaiserord(f,m,ripple);

The function computes the window order N, the cutoff frequency vector
wc, parameter β in beta, and the filter type ftype as discussed. The
vector f is a vector of normalized band edges and m is a vector specifying
the desired amplitude on the bands defined by f. The length of f is twice
the length of m, minus 2; i.e., f does not contain 0 or 1. The vector ripple
specifies tolerances in each band (not in decibels). Using the estimated
parameters, Kaiser window array can be computed and used in the fir1
function.

To design FIR filters using window technique with arbitrary shaped
magnitude response, the SP toolbox provides the function fir2, which
also incorporates the frequency sampling technique. It is explained in the
following section.

7.4 FREQUENCY SAMPLING DESIGN TECHNIQUES

In this design approach we use the fact that the system function H (z)
can be obtained from the samples H(k) of the frequency response H(ejω).
Furthermore, this design technique fits nicely with the frequency sampling
structure that we discussed in Chapter 6. Let h(n) be the impulse response
of an M -point FIR filter, H(k) be its M -point DFT, and H(z) be its
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system function. Then from (6.12) we have

H (z) =
M−1∑
n=0

h (n) z−n =
1 − z−M

M

M−1∑
k=0

H(k)
1 − z−1ej2πk/M

(7.33)

and

H(ejω) =
1 − e−jωM

M

M−1∑
k=0

H(k)
1 − e−jωej2πk/M

(7.34)

with

H (k) = H
(
ej2πk/M

)
=

{
H (0) , k = 0
H∗ (M − k) , k = 1, . . . ,M − 1

For a linear-phase FIR filter we have

h(n) = ±h(M − 1 − n), n = 0, 1, . . . ,M − 1

where the positive sign is for the Type-1 and Type-2 linear-phase filters,
while the negative sign is for the Type-3 and Type-4 linear-phase filters.
Then H (k) is given by

H (k) = Hr

(
2πk
M

)
ej

� H(k) (7.35)

where

Hr

(
2πk
M

)
=



Hr (0) , k = 0

Hr

(
2π(M−k)

M

)
, k = 1, . . . ,M − 1

(7.36)

and

� H (k) =




−
(
M − 1

2

)(
2πk
M

)
, k = 0, . . . ,

⌊
M − 1

2

⌋

+
(
M − 1

2

)
2π
M

(M − k) , k =
⌊
M − 1

2

⌋
+ 1, . . . ,M − 1

, (Type-1 & 2)

(7.37)
or

� H (k) =




(
±π

2

)
−
(
M − 1

2

)(
2πk
M

)
, k = 0, . . . ,

⌊
M − 1

2

⌋

−
(
±π

2

)
+
(
M − 1

2

)
2π
M

(M − k) ,

k =
⌊
M − 1

2

⌋
+ 1, . . . ,M − 1

, (Type-3 & 4)

(7.38)
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Finally, we have
h(n) = IDFT [H(k)] (7.39)

Note that several textbooks (e.g., [18, 23, 24]) provide explicit formu-
las to compute h(n), given H(k). We will use MATLAB’s ifft function
to compute h(n) from (7.39).

Basic idea Given the ideal lowpass filter Hd(ejω), choose the filter
length M and then sample Hd(ejω) at M equispaced frequencies between
0 and 2π. The actual response H(ejω) is the interpolation of the samples
H(k) given by (7.34). This is shown in Figure 7.25. The impulse response
is given by (7.39). Similar steps apply to other frequency-selective filters.
Furthermore, this idea can also be extended for approximating arbitrary
frequency-domain specifications.

From Figure 7.25, we observe the following:

1. The approximation error—that is, the difference between the ideal and
the actual response—is zero at the sampled frequencies.

2. The approximation error at all other frequencies depends on the shape
of the ideal response; that is, the sharper the ideal response, the larger
the approximation error.

3. The error is larger near the band edges and smaller within the band.

There are two design approaches. In the first approach, we use the
basic idea literally and provide no constraints on the approximation er-
ror; that is, we accept whatever error we get from the design. This ap-
proach is called a naive design method. In the second approach, we try to
minimize error in the stopband by varying values of the transition band
samples. It results in a much better design called an optimum design
method.

0

1
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Ideal Response and
Frequency Samples

Frequency Samples and
Approximated Response

7 8 9 10
kωπ

Hd (e jω)

0
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FIGURE 7.25 Pictorial description of frequency sampling technique
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7.4.1 NAIVE DESIGN METHOD
In this method we set H(k) = Hd(ej2πk/M ), k = 0, . . . ,M − 1 and use
(7.35) through (7.39) to obtain the impulse response h(n).

� EXAMPLE 7.14 Consider the lowpass filter specifications from Example 7.8.

ωp = 0.2π,

ωs = 0.3π,

Rp = 0.25 dB

As = 50 dB

Design an FIR filter using the frequency sampling approach.

Solution Let us choose M = 20 so that we have a frequency sample at ωp, that is, at
k = 2:

ωp = 0.2π =
2π

20
2

and the next sample at ωs, that is, at k = 3:

ωs = 0.3π =
2π

20
3

Thus we have 3 samples in the passband [0 ≤ ω ≤ ωp] and 7 samples in the
stopband [ωs ≤ ω ≤ π]. From (7.36) we have

Hr (k) = [1, 1, 1, 0, . . . , 0︸ ︷︷ ︸
15 zeros

, 1, 1]

Since M = 20, α = 20−1
2

= 9.5 and since this is a Type-2 linear-phase filter,
from (7.37) we have

� H (k) =



−9.5

2π

20
k = −0.95πk, 0 ≤ k ≤ 9

+0.95π (20 − k) , 10 ≤ k ≤ 19

Now from (7.35) we assemble H (k) and from (7.39) determine the impulse
response h (n). The MATLAB script follows:

>> M = 20; alpha = (M-1)/2; l = 0:M-1; wl = (2*pi/M)*l;

>> Hrs = [1,1,1,zeros(1,15),1,1]; %Ideal Amp Res sampled

>> Hdr = [1,1,0,0]; wdl = [0,0.25,0.25,1]; %Ideal Amp Res for plotting

>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];

>> H = Hrs.*exp(j*angH); h = real(ifft(H,M));

>> [db,mag,pha,grd,w] = freqz_m(h,1); [Hr,ww,a,L] = Hr_Type2(h);

>> subplot(2,2,1);plot(wl(1:11)/pi,Hrs(1:11),’o’,wdl,Hdr);

>> axis([0,1,-0.1,1.1]); title(’Frequency Samples: M=20’)

>> xlabel(’frequency in pi units’); ylabel(’Hr(k)’)
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FIGURE 7.26 Naive frequency sampling design method

>> subplot(2,2,2); stem(l,h); axis([-1,M,-0.1,0.3])

>> title(’Impulse Response’); xlabel(’n’); ylabel(’h(n)’);

>> subplot(2,2,3); plot(ww/pi,Hr,wl(1:11)/pi,Hrs(1:11),’o’);

>> axis([0,1,-0.2,1.2]); title(’Amplitude Response’)

>> xlabel(’frequency in pi units’); ylabel(’Hr(w)’)

>> subplot(2,2,4);plot(w/pi,db); axis([0,1,-60,10]); grid

>> title(’Magnitude Response’); xlabel(’frequency in pi units’);

>> ylabel(’Decibels’);

The time- and the frequency-domain plots are shown in Figure 7.26. Observe
that the minimum stopband attenuation is about 16 dB, which is clearly unac-
ceptable. If we increase M , then there will be samples in the transition band,
for which we do not precisely know the frequency response. Therefore the naive
design method is seldom used in practice. �

7.4.2 OPTIMUM DESIGN METHOD
To obtain more attenuation, we will have to increase M and make the
transition band samples free samples—that is, we vary their values to
obtain the largest attenuation for the given M and the transition width.
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This problem is known as an optimization problem, and it is solved using
linear programming techniques. We demonstrate the effect of transition
band sample variation on the design using the following example.

� EXAMPLE 7.15 Using the optimum design method, design a better lowpass filter of Example
7.14.

Solution Let us choose M = 40 so that we have one sample in the transition band

0.2π < ω < 0.3π. Since ω1
�
= 2π/40, the transition band samples are at k = 5

and at k = 40 − 5 = 35. Let us denote the value of these samples by T1,
0 < T1 < 1; then the sampled amplitude response is

Hr (k) = [1, 1, 1, 1, 1, T1, 0, . . . , 0︸ ︷︷ ︸
29 zeros

, T1, 1, 1, 1, 1]

Since α = 40−1
2

= 19.5, the samples of the phase response are

� H (k) =



−19.5

2π

40
k = −0.975πk, 0 ≤ k ≤ 19

+0.975π (40 − k) , 20 ≤ k ≤ 39

Now we can vary T1 to get the best minimum stopband attenuation. This will
result in the widening of the transition width. We first see what happens when
T1 = 0.5 using the following MATLAB script.

% T1 = 0.5

>> M = 40; alpha = (M-1)/2;

>> Hrs = [ones(1,5),0.5,zeros(1,29),0.5,ones(1,4)];

>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];

>> H = Hrs.*exp(j*angH);

>> h = real(ifft(H,M));

From the plots of this design in Figure 7.27, we observe that the minimum
stopband attenuation is now 30 dB, which is better than the naive design at-
tenuation but is still not at the acceptable level of 50 dB. The best value for T1

was obtained by varying it manually (although more efficient linear program-
ming techniques are available, these were not used in this case), and the near
optimum solution was found at T1 = 0.39. The resulting filter is a obtained
using the following MATLAB script.

% T1 = 0.39

>> M = 40; alpha = (M-1)/2;

>> Hrs = [ones(1,5),0.39,zeros(1,29),0.39,ones(1,4)];

>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];

>> H = Hrs.*exp(j*angH); h = real(ifft(H,M));
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FIGURE 7.27 Optimum frequency design method: T1 = 0.5

From the plots in Figure 7.28, we observe that the optimum stopband atten-
uation is 43 dB. It is obvious that to further increase the attenuation, we will
have to vary more than one sample in the transition band. �

Clearly, this method is superior in that by varying one sample we
can get a much better design. In practice the transition bandwidth is
generally small, containing either one or two samples. Hence we need to
optimize at most two samples to obtain the largest minimum stopband
attenuation. This is also equivalent to minimizing the maximum side-lobe
magnitudes in the absolute sense. Hence this optimization problem is also
called a minimax problem. This problem is solved by Rabiner et al. [24],
and the solution is available in the form of tables of transition values.
A selected number of tables are also available in [23, Appendix B]. This
problem can also be solved in MATLAB, but it would require the use of
the Optimization toolbox. We will consider a more general version of this
problem in the next section. We now illustrate the use of these tables in
the following examples.
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FIGURE 7.28 Optimum frequency design method: T1 = 0.39

� EXAMPLE 7.16 Let us revisit our lowpass filter design in Example 7.14. We will solve it using two
samples in the transition band so that we can get a better stopband attenuation.

Solution Let us choose M = 60 so that there are two samples in the transition band. Let
the values of these transition band samples be T1 and T2. Then Hr (ω) is given
by

H (ω) = [1, . . . , 1︸ ︷︷ ︸
7 ones

, T1, T2, 0, . . . , 0︸ ︷︷ ︸
43 zeros

, T2, T1, 1, . . . , 1︸ ︷︷ ︸
6 ones

]

From tables in [22, Appendix B] T1 = 0.5925 and T2 = 0.1099. Using these
values, we use MATLAB to compute h (n).

>> M = 60; alpha = (M-1)/2; l = 0:M-1; wl = (2*pi/M)*l;

>> Hrs = [ones(1,7),0.5925,0.1099,zeros(1,43),0.1099,0.5925,ones(1,6)];

>> Hdr = [1,1,0,0]; wdl = [0,0.2,0.3,1];

>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];

>> H = Hrs.*exp(j*angH); h = real(ifft(H,M));

>> [db,mag,pha,grd,w] = freqz_m(h,1); [Hr,ww,a,L] = Hr_Type2(h);

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



352 Chapter 7 FIR FILTER DESIGN

0 0.2 0.3 1

0

0.59

0.109

1

Lowpass: M=60,T1=0.59, T2=0.109

frequency in π units

H
r(

k)

0 20 40 60
−0.1

0

0.1

0.2

n

h(
n)

Impulse Response

0 0.2 0.3 1

0

0.59

0.109

1

Amplitude Response

frequency in π units

H
r(

w
)

0 0.2 0.3 1

63

 0

Magnitude Response

frequency in π units
D

ec
ib

el
s

FIGURE 7.29 Lowpass filter design plots in Example 7.16

The time- and the frequency-domain plots are shown in Figure 7.29. The min-
imum stopband attenuation is now at 63 dB, which is acceptable. �

� EXAMPLE 7.17 Design the bandpass filter of Example 7.10 using the frequency sampling tech-
nique. The design specifications are these:

lower stopband edge: ω1s = 0.2π, As = 60 dB

lower passband edge: ω1p = 0.35π, Rp = 1 dB

upper passband edge: ω2p = 0.65π Rp = 1 dB

upper stopband edge: ω2s = 0.8π As = 60 dB

Solution Let us choose M = 40 so that we have two samples in the transition band.
Let the frequency samples in the lower transition band be T1 and T2. Then the
samples of the amplitude response are

Hr (ω) = [0, . . . , 0︸ ︷︷ ︸
5

, T1, T2, 1, . . . , 1︸ ︷︷ ︸
7

, T2, T1, 0, . . . , 0︸ ︷︷ ︸
9

, T1, T2, 1, . . . , 1︸ ︷︷ ︸
7

, T2, T1, 0, . . . , 0︸ ︷︷ ︸
4

]
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FIGURE 7.30 Bandpass filter design plots in Example 7.17

The optimum values of T1 and T2 for M = 40 and seven samples in the passband
[23, Appendix B] are

T1 = 0.109021, T2 = 0.59417456

The MATLAB script is

>> M = 40; alpha = (M-1)/2; l = 0:M-1; wl = (2*pi/M)*l;

>> T1 = 0.109021; T2 = 0.59417456;

>> Hrs=[zeros(1,5),T1,T2,ones(1,7),T2,T1,zeros(1,9),T1,T2,ones(1,7),T2,T1,zeros(1,4)];

>> Hdr = [0,0,1,1,0,0]; wdl = [0,0.2,0.35,0.65,0.8,1];

>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];

>> H = Hrs.*exp(j*angH); h = real(ifft(H,M));

>> [db,mag,pha,grd,w] = freqz_m(h,1); [Hr,ww,a,L] = Hr_Type2(h);

The plots in Figure 7.30 show an acceptable bandpass filter design. �

� EXAMPLE 7.18 Design the following highpass filter:

Stopband edge: ωs = 0.6π As = 50 dB

Passband edge: ωp = 0.8π Rp = 1 dB
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Solution Recall that for a highpass filter M must be odd (or Type-1 filter). Hence we
will choose M = 33 to get two samples in the transition band. With this choice
of M it is not possible to have frequency samples at ωs and ωp. The samples of
the amplitude response are

Hr (k) = [0, . . . , 0︸ ︷︷ ︸
11

, T1, T2, 1, . . . , 1︸ ︷︷ ︸
8

, T2, T1, 0, . . . , 0︸ ︷︷ ︸
10

]

while the phase response samples are

� H (k) =



−33 − 1

2

2π

33
k = −32

33
πk, 0 ≤ k ≤ 16

+
32

33
π (33 − k) , 17 ≤ k ≤ 32

The optimum values of transition samples are T1 = 0.1095 and T2 = 0.598.
Using these values, the MATLAB design is given in the following script.

>> M = 33; alpha = (M-1)/2; l = 0:M-1; wl = (2*pi/M)*l;

>> T1 = 0.1095; T2 = 0.598;

>> Hrs = [zeros(1,11),T1,T2,ones(1,8),T2,T1,zeros(1,10)];

>> Hdr = [0,0,1,1]; wdl = [0,0.6,0.8,1];

>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

>> angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];

>> H = Hrs.*exp(j*angH); h = real(ifft(H,M));

>> [db,mag,pha,grd,w] = freqz_m(h,1); [Hr,ww,a,L] = Hr_Type1(h);

The time- and the frequency-domain plots of the design are shown in
Figure 7.31. �

� EXAMPLE 7.19 Design a 33-point digital differentiator based on the ideal differentiator of (7.31)
given in Example 7.12.

Solution From (7.31) the samples of the (imaginary-valued) amplitude response are given
by

jHr (k) =




+j
2π

M
k, k = 0, . . . ,

⌊
M − 1

2

⌋

−j
2π

M
(M − k) , k =

⌊
M − 1

2

⌋
+ 1, . . . ,M − 1

and for linear phase the phase samples are

� H (k) =



−M − 1

2

2π

M
k = −M − 1

M
πk, k = 0, . . . ,

⌊
M − 1

2

⌋

+
M − 1

M
π (M − k) , k =

⌊
M − 1

2

⌋
+ 1, . . . ,M − 1

Therefore

H (k) = jHr (k) ej
� H(k), 0 ≤ k ≤ M − 1 and h (n) = IDFT [H (k)]
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FIGURE 7.31 Highpass filter design plots in Example 7.18

MATLAB script:

>> M = 33; alpha = (M-1)/2; Dw = 2*pi/M; l = 0:M-1; wl = Dw*l;

>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

>> Hrs = [j*Dw*k1,-j*Dw*(M-k2)];

>> angH = [-alpha*Dw*k1, alpha*Dw*(M-k2)];

>> H = Hrs.*exp(j*angH); h = real(ifft(H,M)); [Hr,ww,a,P]=Hr_Type3(h);

The time- and the frequency-domain plots are shown in Figure 7.32. We observe
that the differentiator is not a full-band differentiator. �

� EXAMPLE 7.20 Design a 51-point digital Hilbert transformer based on the ideal Hilbert trans-
former of (7.32).

Solution From (7.32) the samples of the (imaginary-valued) amplitude response are
given by

jHr (k) =




−j, k = 1, . . . ,
⌊
M − 1

2

⌋

0, k = 0

+j, k =
⌊
M − 1

2

⌋
+ 1, . . . ,M − 1

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



356 Chapter 7 FIR FILTER DESIGN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
Differentiator, frequency sampling design : M = 33

frequency in π units

H
r 

in
 π

 u
ni

ts

0 16 32
−1

−0.5

0

0.5

1

n

h(
n)

Impulse response

FIGURE 7.32 Differentiator design plots in Example 7.19

Since this is a Type-3 linear-phase filter, the amplitude response will be zero
at ω = π. Hence to reduce the ripples, we should choose the two samples (in
transition bands) near ω = π optimally between 0 and j. Using our previous
experience, we could select this value as 0.39j. The samples of the phase response
are selected similar to those in Example 7.19.

MATLAB script:

>> M = 51; alpha = (M-1)/2; Dw = 2*pi/M; l = 0:M-1; wl = Dw*l;

>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

>> Hrs = [0,-j*ones(1,(M-3)/2),-0.39j,0.39j,j*ones(1,(M-3)/2)];

>> angH = [-alpha*Dw*k1, alpha*Dw*(M-k2)];

>> H = Hrs.*exp(j*angH); h = real(ifft(H,M)); [Hr,ww,a,P]=Hr_Type3(h);

The plots in Figure 7.33 show the effect of the transition band samples. �

The SP toolbox provides a function called fir2 which combines fre-
quency sampling technique with the window technique to design arbitrary
shaped magnitude response FIR filters. After computing filter impulse
response using the naive design method, fir2 then applies a selected
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FIGURE 7.33 Digital Hilbert transformer design plots in Example 7.20

window to minimize ripples near the band-edge frequencies. This func-
tion’s syntax also has several forms including:

• h = fir2(N,f,m) designs an Nth-order (N = M−1) lowpass FIR filter
and returns the impulse response in vector h. The desired magnitude
response of the filter is supplied in vectors f and m, which must be
of the same length. The vector f contains normalized frequencies in
the range from 0 to 1, where 1 corresponds to π rad/sample. The first
value of f must be 0 and the last value 1. The vector m, contains the
samples of the desired magnitude response at the values specified in f.
The desired frequency response is then interpolated onto a dense, evenly
spaced grid of length 512. Thus, this syntax corresponds to the naive
design method.

• h = fir2(N,f,m,window) uses the vector window of length N+1 ob-
tained from one of the specified MATLAB window function. The de-
fault window function used is the Hamming window.

• h = fir2(N,f,m,npt) or h = fir2(N,f,m,npt,window) specifies the
number of points, npt, for the grid onto which fir2 interpolates the
frequency response. The default npt value is 512.
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Note that the fir2 does not implement the classic optimum frequency
sampling method. By incorporating window design, fir2 has found an al-
ternative (and somewhat clever) approach to do away with the optimum
transition band values and the associated tables. By densely sampling
values in the entire band, interpolation errors are reduced (but not mini-
mized), and stopband attenuation is increased to an acceptable level. How-
ever, the basic design is contaminated by the window operation; hence,
the frequency response does not go through the original sampled values. It
is more suitable for designing FIR filters with arbitrary shaped frequency
responses.

The type of frequency sampling filter that we considered is called a
Type-A filter, in which the sampled frequencies are

ωk =
2π
M

k, 0 ≤ k ≤ M − 1

There is a second set of uniformly spaced samples given by

ωk =
2π

(
k + 1

2

)
M

, 0 ≤ k ≤ M − 1

This is called a Type-B filter, for which a frequency sampling structure is
also available. The expressions for the magnitude response H(ejω) and the
impulse response h(n) are somewhat more complicated and are available
in Proakis and Manolakis [23]. Their design can also be done in MATLAB
using the approach discussed in this section.

7.5 OPTIMAL EQUIRIPPLE DESIGN TECHNIQUE

The last two techniques—namely, the window design and the frequency
sampling design—were easy to understand and implement. However, they
have some disadvantages. First, we cannot specify the band frequencies
ωp and ωs precisely in the design; that is, we have to accept whatever
values we obtain after the design. Second, we cannot specify both δ1 and
δ2 ripple factors simultaneously. Either we have δ1 = δ2 in the window
design method, or we can optimize only δ2 in the frequency sampling
method. Finally, the approximation error—that is, the difference between
the ideal response and the actual response—is not uniformly distributed
over the band intervals. It is higher near the band edges and smaller in
the regions away from band edges. By distributing the error uniformly,
we can obtain a lower-order filter satisfying the same specifications. For-
tunately, a technique exists that can eliminate these three problems. This
technique is somewhat difficult to understand and requires a computer
for its implementation.
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For linear-phase FIR filters, it is possible to derive a set of conditions
for which it can be proved that the design solution is optimal in the sense
of minimizing the maximum approximation error (sometimes called the
minimax or the Chebyshev error). Filters that have this property are called
equiripple filters because the approximation error is uniformly distributed
in both the passband and the stopband. This results in lower-order
filters.

In the following we first formulate a minimax optimal FIR design
problem and discuss the total number of maxima and minima (collec-
tively called extrema) that one can obtain in the amplitude response of
a linear-phase FIR filter. Using this, we then discuss a general equiripple
FIR filter design algorithm, which uses polynomial interpolation for its so-
lution. This algorithm is known as the Parks-McClellan algorithm, and it
incorporates the Remez exchange algorithm for polynomial solution. This
algorithm is available as a subroutine on many computing platforms. In
this section we will use MATLAB to design equiripple FIR filters.

7.5.1 DEVELOPMENT OF THE MINIMAX PROBLEM
Earlier in this chapter we showed that the frequency response of the four
cases of linear-phase FIR filters can be written in the form

H(ejω) = ejβe−j M−1
2 ωHr(w)

where the values for β and the expressions for Hr(ω) are given in
Table 7.2.

TABLE 7.2 Amplitude response and β-values for linear-phase FIR filters

Linear-phase FIR Filter Type β Hr(e
jω)

Type-1: M odd, symmetric h(n) 0
(M−1)/2∑

0

a(n) cosωn

Type-2: M even, symmetric h(n) 0
M/2∑

1

b(n) cos [ω(n− 1/2)]

Type-3: M odd, antisymmetric h(n)
π

2

(M−1)/2∑
1

c(n) sinωn

Type-4: M even, antisymmetric h(n)
π

2

M/2∑
1

d(n) sin [ω(n− 1/2)]
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Using simple trigonometric identities, each expression for Hr(ω) can
be written as a product of a fixed function of ω (call this Q(ω)) and a
function that is a sum of cosines (call this P (ω)). For details see Proakis
and Manolakis [23] and Problems P7.2–P7.5. Thus

Hr(ω) = Q(ω)P (ω) (7.40)

where P (ω) is of the form

P (ω) =
L∑

n=0

α(n) cosωn (7.41)

and Q(ω), L, P (ω) for the four cases are given in Table 7.3.

TABLE 7.3 Q(ω), L, and P (ω) for linear-phase FIR filters

LP FIR Filter Type Q(ω) L P (ω)

Type-1 1
M − 1

2

L∑
0

a(n) cosωn

Type-2 cos
ω

2

M

2
− 1

L∑
0

b̃(n) cosωn

Type-3 sinω
M − 3

2

L∑
0

c̃(n) cosωn

Type-4 sin
ω

2

M

2
− 1

L∑
0

d̃(n) cosωn

The purpose of the previous analysis was to have a common form
for Hr(ω) across all four cases. It makes the problem formulation much
easier. To formulate our problem as a Chebyshev approximation problem,
we have to define the desired amplitude response Hdr(ω) and a weighting
function W (ω), both defined over passbands and stopbands. The weight-
ing function is necessary so that we can have an independent control over
δ1 and δ2. The weighted error is defined as

E (ω)
�
= W (ω) [Hdr(ω) −Hr(ω)] , ω ∈ S �

= [0, ωp] ∪ [ωs, π] (7.42)

These concepts are made clear in the following set of figures. It shows a
typical equiripple filter response along with its ideal response.
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The error [Hdr (ω) −Hr (ω)] response is shown here.
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Now if we choose

W (ω) =




δ2
δ1

, in the passband

1, in the stopband
(7.43)
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Then the weighted error E(ω) response is

 0 0.3 0.5  1 

−0.05

 0.0 

 0.05

frequency in π units

Weighted Error Function

weight = 0.5 weight = 1.0

Thus the maximum error in both the passband and stopband is δ2. There-
fore, if we succeed in minimizing the maximum weighted error to δ2, we
automatically also satisfy the specification in the passband to δ1. Substi-
tuting Hr(ω) from (7.40) into (7.42), we obtain

E (ω) = W (ω) [Hdr (ω) −Q (ω)P (ω)]

= W (ω)Q (ω)
[
Hdr (ω)
Q (ω)

− P (ω)
]
, ω ∈ S

If we define

Ŵ (ω)
�
= W (ω)Q(w) and Ĥdr (ω)

�
=

Hdr (ω)
Q (ω)

then we obtain

E(ω) = Ŵ (ω)
[
Ĥdr(ω) − P (ω)

]
, ω ∈ S (7.44)

Thus we have a common form of E(ω) for all four cases.

Problem statement The Chebyshev approximation problem can now
be defined as:

Determine the set of coefficients a(n) or b̃(n) or c̃(n) or d̃(n) [or equiva-
lently a(n) or b(n) or c(n) or d(n)] to minimize the maximum absolute
value of E (ω) over the passband and stopband, i.e.,

min
over coeff.

[
max
ω∈S

|E (ω)|
]

(7.45)

Now we have succeeded in specifying the exact ωp, ωs, δ1, and δ2. In
addition the error can now be distributed uniformly in both the passband
and stopband.
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7.5.2 CONSTRAINT ON THE NUMBER OF EXTREMA
Before we give the solution to this above problem, we will first discuss
the issue: how many local maxima and minima exist in the error func-
tion E(ω) for a given M -point filter? This information is used by the
Parks-McClellan algorithm to obtain the polynomial interpolation. The
answer is in the expression P (ω). From (7.41) P (ω) is a trigonometric
function in ω. Using trigonometric identities of the form

cos (2ω) = 2 cos2 (ω) − 1
cos (3ω) = 4 cos3 (ω) − 3 cos (ω)

... =
...

P (ω) can be converted to a trigonometric polynomial in cos (ω), which
we can write (7.41) as

P (ω) =
L∑

n=0

β(n) cosn ω (7.46)

� EXAMPLE 7.21 Let h(n) = 1
15

[1, 2, 3, 4, 3, 2, 1] . Then M = 7 and h(n) is symmetric, which
means that we have a Type-1 linear-phase filter. Hence L = (M − 1)/2 = 3.
Now from (7.7)

α(n) = a(n) = 2h(3 − n), 1 ≤ n ≤ 2; and α(0) = a(0) = h(3)

or α(n) = 1
15

[4, 6, 4, 2]. Hence

P (ω) =

3∑
0

α(n) cosωn = 1
15

(4 + 6 cosω + 4 cos 2ω + 2 cos 3ω)

= 1
15

{
4 + 6 cosω + 4(2 cos2 ω − 1) + 2(4 cos3 ω − 3 cosω)

}

= 0 + 0 + 8
15

cos2 ω + 8
15

cos3 ω =

3∑
0

β(n) cosn ω

or β(n) =
[
0, 0,

8

15
,

8

15

]
.

From (7.46) we note that P (ω) is an Lth-order polynomial in cos(ω). Since
cos(ω) is a monotone function in the open interval 0 < ω < π, then it follows
that the Lth-order polynomial P (ω) in cos(ω) should behave like an ordinary
Lth-order polynomial P (x) in x.Therefore P (ω) has at most (i.e., no more than)
(L− 1) local extrema in the open interval 0 < ω < π. For example,

cos2(ω) =
1 + cos 2ω

2

has only one minimum at ω = π/2. However, it has three extrema in the closed
interval 0 ≤ ω ≤ π (i.e., a maximum at ω = 0, a minimum at ω = π/2, and
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FIGURE 7.34 Amplitude response and the error function in Example 7.22

a maximum at ω = π). Now if we include the end points ω = 0 and ω = π,
then P (ω) has at most (L + 1) local extrema in the closed interval 0 ≤ ω ≤ π.
Finally, we would like the filter specifications to be met exactly at band edges
ωp and ωs. Then the specifications can be met at no more than (L + 3) extremal
frequencies in the 0 ≤ ω ≤ π interval.

Conclusion The error function E(ω) has at most (L + 3) extrema in S. �

� EXAMPLE 7.22 Let us plot the amplitude response of the filter given in Example 7.21 and count
the total number of extrema in the corresponding error function.

Solution The impulse response is

h(n) =
1

15
[1, 2, 3, 4, 3, 2, 1], M = 7 or L = 3

and α(n) = 1
15

[4, 6, 4, 2] and β(n) =
[
0, 0, 8

15
, 8

15

]
from Example 7.21. Hence

P (ω) =
8

15
cos2 ω +

8

15
cos3 ω

which is shown in Figure 7.34. Clearly, P (ω) has (L− 1) = 2 extrema in the
open interval 0 < ω < π. Also shown in Figure 7.34 is the error function, which
has (L + 3) = 6 extrema. �
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Let us now turn our attention to the problem statement and equa-
tion (7.45). It is a well-known problem in approximation theory, and the
solution is given by the following important theorem.

THEOREM 1 Alternation Theorem
Let S be any closed subset of the closed interval [0, π]. In order that

P (ω) be the unique minimax approximation to Hdr(ω) on S, it is necessary
and sufficient that the error function E(ω) exhibit at least (L + 2) “alter-
nations” or extremal frequencies in S; that is, there must exist (L + 2)
frequencies ωi in S such that

E (ωi) = −E (ωi−1) = ±max
S

|E (ω)| (7.47)

�
= ±δ, ∀ ω0 < ω1 < · · · < ωL+1 ∈ S

Combining this theorem with our earlier conclusion, we infer that
the optimal equiripple filter has either (L + 2) or (L + 3) alternations
in its error function over S. Most of the equiripple filters have (L + 2)
alternations. However, for some combinations of ωp and ωs, we can get
filters with (L+3) alternations. These filters have one extra ripple in their
response and hence are called Extraripple filters.

7.5.3 PARKS-McCLELLAN ALGORITHM
The alternation theorem ensures that the solution to our minimax ap-
proximation problem exists and is unique, but it does not tell us how
to obtain this solution. We know neither the order M (or equivalently,
L), nor the extremal frequencies ωi, nor the parameters {α(n)}, nor the
maximum error δ. Parks and McClellan [20] provided an iterative solution
using the Remez exchange algorithm. It assumes that the filter length M
(or L) and the ratio δ2/δ1 are known. If we choose the weighting function
as in (7.43), and if we choose the order M correctly, then δ = δ2 when
the solution is obtained. Clearly, δ and M are related; the larger the M ,
the smaller the δ. In the filter specifications δ1, δ2, ωp, and ωs are given.
Therefore M has to be assumed. Fortunately, a simple formula, due to
Kaiser, exists for approximating M . It is given by

M̂ =
−20 log10

√
δ1δ2 − 13

2.285∆ω
+ 1; ∆ω = ωs − ωp (7.48)

The Parks-McClellan algorithm begins by guessing (L + 2) extremal
frequencies {ωi} and estimating the maximum error δ at these frequencies.
It then fits an Lth-order polynomial (7.46) through points given in (7.47).
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Local maximum errors are determined over a finer grid, and the extremal
frequencies {ωi} are adjusted at these new extremal values. A new Lth-
order polynomial is fit through these new frequencies, and the procedure
is repeated. This iteration continues until the optimum set {ωi} and the
global maximum error δ are found. The iterative procedure is guaranteed
to converge, yielding the polynomial P (ω). From (7.46) coefficients β(n)
are determined. Finally, the coefficients a(n) as well as the impulse re-
sponse h(n) are computed. This algorithm is available in MATLAB as
the firpm function, which is described shortly.

Since we approximated M , the maximum error δ may not be equal to
δ2. If this is the case, then we have to increase M (if δ > δ2) or decrease
M (if δ < δ2) and use the firpm algorithm again to determine a new
δ. We repeat this procedure until δ ≤ δ2. The optimal equiripple FIR
filter, which satisfies all the three requirements discussed earlier, is now
determined.

7.5.4 MATLAB IMPLEMENTATION
The Parks-McClellan algorithm is available in MATLAB as a function
called firpm, the most general syntax of which is

[h] = firpm(N,f,m,weights,ftype)

There are several versions of this syntax

• [h] = firpm(N,f,m) designs an Nth-order (note that the length of the
filter is M = N + 1) FIR digital filter whose frequency response is
specified by the arrays f and m. The filter coefficients (or the impulse
response) are returned in array h of length M . The array f contains
band-edge frequencies in units of π, that is, 0.0 ≤ f ≤ 1.0. These fre-
quencies must be in increasing order, starting with 0.0 and ending with
1.0. The array m contains the desired magnitude response at frequen-
cies specified in f. The lengths of f and m arrays must be the same and
must be an even number. The weighting function used in each band
is equal to unity, which means that the tolerances (δi’s) in every band
are the same.

• [h] = firpm(N,f,m,weights) is similar to the preceding case except
that the array weights specifies the weighting function in each band.

• [h] = firpm(N,f,m,ftype) is similar to the first case except when
ftype is the string ‘differentiator’ or ‘hilbert’, it designs digi-
tal differentiators or digital Hilbert transformers, respectively. For the
digital Hilbert transformer, the lowest frequency in the f array should
not be 0, and the highest frequency should not be 1. For the digital
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differentiator, the m vector does not specify the desired slope in each
band but the desired magnitude.

• [h] = firpm(N,f,m,weights,ftype) is similar to the above case ex-
cept that the array weights specifies the weighting function in each
band.

To estimate the filter order N , the SP toolbox provides the function
firpmord, which also estimates other parameters that can be used in the
firpm function. The basic syntax is

[N,f0,m0,weights] = firpmord(f,m,delta);

The function computes the window order N, the normalized frequency
band edges in f0, amplitude response in a0, and the band weights in
weights. The vector f is a vector of normalized band edges and m is a
vector specifying the desired amplitude on the bands defined by f. The
length of f is two less than twice the length of m; i.e., f does not contain 0
or 1. The vector delta specifies tolerances in each band (not in decibels).
The estimated parameters can now be used in the firpm function.

As explained during the description of the Parks-McClellan algorithm,
we have to first guess the order of the filter using (7.48) to use the function
firpm. After we obtain the filter coefficients in array h, we have to check
the minimum stopband attenuation and compare it with the given As

and then increase (or decrease) the filter order. We have to repeat this
procedure until we obtain the desired As. We illustrate this procedure
in the following several MATLAB examples. These examples also use the
ripple conversion function db2delta, which is developed in Problem P7.1.

� EXAMPLE 7.23 Let us design the lowpass filter described in Example 7.8 using the Parks-
McClellan algorithm. The design parameters are

ωp = 0.2π ,

ωs = 0.3π ,

Rp = 0.25 dB

As = 50 dB

We provide a MATLAB script to design this filter.

>> wp = 0.2*pi; ws = 0.3*pi; Rp = 0.25; As = 50;

>> [delta1,delta2] = db2delta(Rp,As);

>> [N,f,m,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2]);

>> h = firpm(N,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> delta_w = 2*pi/1000; wsi=ws/delta_w+1; wpi = wp/delta_w;

>> Asd = -max(db(wsi:1:501))

Asd = 47.8404
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>> N = N+1

N = 43

>> h = firpm(N,f,m,weights); [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> Asd = -max(db(wsi:1:501))

Asd = 48.2131

>> N = N+1

N = 44

>> h = firpm(N,f,m,weights); [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> Asd = -max(db(wsi:1:501))

Asd = 48.8689

>> N = N+1

N = 45

>> h = firpm(N,f,m,weights); [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> Asd = -max(db(wsi:1:501))

Asd = 49.8241

>> N = N+1

N = 46

>> h = firpm(N,f,m,weights); [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> Asd = -max(db(wsi:1:501))

Asd = 51.0857

>> M = N+1

M = 47

Note that we stopped this iterative procedure when the computed stopband
attenuation exceeded the given stopband attenuation As, and the optimal value
of M was found to be 47. This value is considerably lower than the window
design techniques (M = 61 for a Kaiser window) or the frequency sampling
technique (M = 60). In Figure 7.35 we show the time- and the frequency-
domain plots of the designed filter along with the error function in both the
passband and the stopband to illustrate the equiripple behavior.

� EXAMPLE 7.24 Let us design the bandpass filter described in Example 7.10 using the Parks-
McClellan algorithm. The design parameters are:

ω1s = 0.2π

ω1p = 0.35π

ω2p = 0.65π

ω2s = 0.8π

; Rp = 1 dB

; As = 60 db

Solution The following MATLAB script shows how to design this filter.

>> ws1 = 0.2*pi; wp1 = 0.35*pi; wp2 = 0.65*pi; ws2 = 0.8*pi;

>> Rp = 1.0; As = 60;

>> [delta1,delta2] = db2delta(Rp,As);
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>> f = [ws1,wp1,wp2,ws2]/pi; m = [0,1,0]; delta = [delta2,delta1,delta2];

>> [N,f,m,weights] = firpmord(f,m,delta); N

N = 26

>> h = firpm(N,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> delta_w=2*pi/1000;

>> ws1i=floor(ws1/delta_w)+1; wp1i = floor(wp1/delta_w)+1;

>> ws2i=floor(ws2/delta_w)+1; wp2i = floor(wp2/delta_w)+1;

>> Asd = -max(db(1:1:ws1i))

Asd = 54.7756

>> N = N+1;

>> h = firpm(N,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> Asd = -max(db(1:1:ws1i))

Asd = 56.5910

>> N = N+1;

>> h = firpm(N,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

Asd = -max(db(1:1:ws1i))

>> Asd = 61.2843

>> M = N+1

M = 29
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FIGURE 7.35 Plots for equiripple lowpass FIR filter in Example 7.23
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FIGURE 7.36 Plots for equiripple bandpass FIR filter in Example 7.24

The optimal value of M was found to be 29. The time- and the frequency-domain
plots of the designed filter are shown in Figure 7.36. �

� EXAMPLE 7.25 Design a highpass filter that has the following specifications:

ωs = 0.6π,

ωp = 0.75π,

As = 50 dB

Rp = 0.5 dB

Solution Since this is a highpass filter, we must ensure that the length M is an odd
number. This is shown in the following MATLAB script.

>> ws = 0.6*pi; wp = 0.75*pi; Rp = 0.5; As = 50;

>> [delta1,delta2] = db2delta(Rp,As);

>> [N,f,m,weights] = firpmord([ws,wp]/pi,[0,1],[delta2,delta1]); N

N = 26

>> h = firpm(N,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> delta_w = 2*pi/1000; wsi=ws/delta_w; wpi = wp/delta_w;
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>> Asd = -max(db(1:1:wsi))

Asd = 49.5918

>> N = N+2;

>> h = firpm(N,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> Asd = -max(db(1:1:wsi))

>> Asd = 50.2253

>> M = N+1

M = 29

Note also that we increased the value of N by two to maintain its even value.
The optimum M was found to be 29. The time- and the frequency-domain plots
of the designed filter are shown in Figure 7.37. �

� EXAMPLE 7.26 In this example we will design a “staircase” filter, which has 3 bands with
different ideal responses and different tolerances in each band. The design spec-
ifications are

Band-1: 0 ≤ ω ≤ 0.3π, Ideal gain = 1, Tolerance δ1 = 0.01

Band-2: 0.4π ≤ ω ≤ 0.7π, Ideal gain = 0.5, Tolerance δ2 = 0.005

Band-3: 0.8π ≤ ω ≤ π, Ideal gain = 0, Tolerance δ3 = 0.001
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FIGURE 7.37 Plots for equiripple highpass FIR filter in Example 7.25
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Solution The following MATLAB script describes the design procedure.

>> w1 = 0; w2 = 0.3*pi; delta1 = 0.01;

>> w3 = 0.4*pi; w4 = 0.7*pi; delta2 = 0.005;

>> w5 = 0.8*pi; w6 = pi; delta3 = 0.001;

>> weights = [delta3/delta1 delta3/delta2 1];

>> Dw = min((w3-w2), (w5-w3));

>> M = ceil((-20*log10((delta1*delta2*delta3)^(1/3))-13)/(2.285*Dw)+1)

>> M = 51

>> f = [0 w2/pi w3/pi w4/pi w5/pi 1];

>> m = [1 1 0.5 0.5 0 0];

>> h = firpm(M-1,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> delta_w = 2*pi/1000;

>> w1i=floor(w1/delta_w)+1; w2i = floor(w2/delta_w)+1;

>> w3i=floor(w3/delta_w)+1; w4i = floor(w4/delta_w)+1;

>> w5i=floor(w5/delta_w)+1; w6i = floor(w6/delta_w)+1;

>> Asd = -max(db(w5i:w6i))

Asd = 62.0745

>> M = M-1; h = firpm(M-1,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> Asd = -max(db(w5i:w6i))

Asd = 60.0299

>> M = M-1; h = firpm(M-1,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> Asd = -max(db(w5i:w6i))

Asd = 60.6068

>> M

M = 49

The time- and the frequency-domain plots of the designed filter are shown in
Figure 7.38. �

� EXAMPLE 7.27 In this example we will design a digital differentiator with different slopes in
each band. The specifications are

Band-1: 0 ≤ ω ≤ 0.2π, Slope = 1 sam/cycle

Band-2: 0.4π ≤ ω ≤ 0.6π, Slope = 2 sam/cycle

Band-3: 0.8π ≤ ω ≤ π, Slope = 3 sam/cycle

Solution We need desired magnitude response values in each band. These can be ob-
tained by multiplying band-edge frequencies in cycles/sam by the slope values
in sam/cycle
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FIGURE 7.38 Plots for equiripple staircase FIR filter in Example 7.26

Band-1: 0 ≤ f ≤ 0.1, Slope = 1 sam/cycle ⇒ 0.0 ≤ |H| ≤ 0.1

Band-2: 0.2 ≤ f ≤ 0.3, Slope = 2 sam/cycle ⇒ 0.4 ≤ |H| ≤ 0.6

Band-3: 0.4 ≤ f ≤ 0.5, Slope = 3 sam/cycle ⇒ 1.2 ≤ |H| ≤ 1.5

Let the weights be equal in all bands. The MATLAB script is:

>> f = [0 0.2 0.4 0.6 0.8 1]; % in w/pi unis

>> m = [0,0.1,0.4,0.6,1.2,1.5]; % magnitude values

>> h = firpm(25,f,m,’differentiator’);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> subplot(2,1,1); stem([0:25],h); title(’Impulse Response’);

>> xlabel(’n’); ylabel(’h(n)’); axis([0,25,-0.6,0.6])

>> set(gca,’XTickMode’,’manual’,’XTick’,[0,25])

>> set(gca,’YTickMode’,’manual’,’YTick’,[-0.6:0.2:0.6]);

>> subplot(2,1,2); plot(w/(2*pi),mag); title(’Magnitude Response’)

>> xlabel(’Normalized frequency f’); ylabel(’|H|’)

>> set(gca,’XTickMode’,’manual’,’XTick’,f/2)

>> set(gca,’YTickMode’,’manual’,’YTick’,[0,0.1,0.4,0.6,1.2,1.5]); grid

The frequency-domain response is shown in Figure 7.39. �
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FIGURE 7.39 Plots of the differentiator in Example 7.27

� EXAMPLE 7.28 Finally, we design a Hilbert transformer over the band 0.05π ≤ ω ≤ 0.95π.

Solution Since this is a wideband Hilbert transformer, we will choose an odd length for
our filter (i.e., a Type-3 filter). Let us choose M = 51. The MATLAB script is:

>> f = [0.05,0.95]; m = [1 1]; h = firpm(50,f,m,’hilbert’);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> subplot(2,1,1); stem([0:50],h); title(’Impulse Response’);

>> xlabel(’n’); ylabel(’h(n)’); axis([0,50,-0.8,0.8])

>> set(gca,’XTickMode’,’manual’,’XTick’,[0,50])

>> set(gca,’YTickMode’,’manual’,’YTick’,[-0.8:0.2:0.8]);

>> subplot(2,1,2); plot(w/pi,mag); title(’Magnitude Response’)

>> xlabel(’frequency in pi units’); ylabel(’|H|’)

>> set(gca,’XTickMode’,’manual’,’XTick’,[0,f,1])

>> set(gca,’YTickMode’,’manual’,’YTick’,[0,1]);grid

The plots of this Hilbert transformer are shown in Figure 7.40. �
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FIGURE 7.40 Plots of the Hilbert transformer in Example 7.28

7.6 PROBLEMS

P7.1 The absolute and relative (dB) specifications for a lowpass filter are related by (7.1) and
(7.2). In this problem we will develop a simple MATLAB function to convert one set of
specifications into another.

1. Write a MATLAB function to convert absolute specifications δ1 and δ2 into the relative
specifications Rp and As in dB. The format of the function should be

function [Rp,As] = delta2db(delta1,delta2)

% Converts absolute specs delta1 and delta2 into dB specs Rp and As

% [Rp,As] = delta2db(delta1,delta2)

Verify your function using the specifications given in Example 7.2.
2. Write a MATLAB function to convert relative (dB) specifications Rp and As into the

absolute specifications δ1 and δ2. The format of the function should be

function [delta1,delta2] = db2delta(Rp,As)

% Converts dB specs Rp and As into absolute specs delta1 and delta2

% [delta1,delta2] = db2delta(Rp,As)

Verify your function using the specifications given in Example 7.1.
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P7.2 The Type-1 linear-phase FIR filter is characterized by

h(n) = h(M − 1 − n)), 0 ≤ n ≤ M − 1, M odd

Show that its amplitude response Hr(ω) is given by

Hr(ω) =

L∑
n=0

a(n) cos(ωn), L =
M − 1

2

where coefficients {a(n)} are obtained as defined in (7.6).

P7.3 The Type-2 linear-phase FIR filter is characterized by

h(n) = h(M − 1 − n), 0 ≤ n ≤ M − 1, M even

1. Show that its amplitude response Hr(ω) is given by

Hr(ω) =

M/2∑
n=1

b(n) cos
{
ω
(
n− 1

2

)}

where coefficients {b(n)} are obtained as defined in (7.10).
2. Show that Hr(ω) can be further expressed as

Hr(ω) = cos
(
ω

2

) L∑
n=0

b̃(n) cos(ωn), L =
M

2
− 1

where coefficients b̃(n) are given by

b(1) = b̃(0) + 1
2
b̃(1),

b(n) =
1

2

[
b̃(n− 1) + b̃(n)

]
, 2 ≤ n ≤ M

2
− 1,

b
(
M
2

)
=

1

2
b̃
(
M
2
− 1

)
.

P7.4 The Type-3 linear-phase FIR filter is characterized by

h(n) = −h(M − 1 − n), 0 ≤ n ≤ M − 1, M odd

1. Show that its amplitude response Hr(ω) is given by

Hr(ω) =

(M−1)/2∑
n=1

c(n) sin(ωn)

where coefficients {c(n)} are obtained as defined in (7.13).
2. Show that Hr(ω) can be further expressed as

Hr(ω) = sin(ω)

L∑
n=0

c̃(n) cos(ωn), L =
M − 3

2
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where coefficients c̃(n) are given by

c(1) = c̃(0) − 1
2
c̃(1),

c(n) =
1

2
[c̃(n− 1) − c̃(n)] , 2 ≤ n ≤ M − 3

2
,

c
(
M − 1

2

)
=

1

2
c̃
(
M − 3

2

)
.

P7.5 The Type-4 linear-phase FIR filter is characterized by

h(n) = −h(M − 1 − n), 0 ≤ n ≤ M − 1, M even

1. Show that its amplitude response Hr(ω) is given by

Hr(ω) =

M/2∑
n=1

d(n) sin
{
ω
(
n− 1

2

)}

where coefficients {d(n)} are obtained as defined in (7.16).
2. Show that the above Hr(ω) can be further expressed as

Hr(ω) = sin
(
ω

2

) L∑
n=0

d̃(n) cos(ωn), L =
M

2
− 1

where coefficients d̃(n) are given by

d(1) = d̃(0) − 1
2
d̃(1),

d(n) =
1

2

[
d̃(n− 1) − d̃(n)

]
, 2 ≤ n ≤ M

2
− 1,

d
(
M

2

)
=

1

2
d̃
(
M
2
− 1

)
.

P7.6 Write a MATLAB function to compute the amplitude response Hr(ω) given a linear phase
impulse response h(n). The format of this function should be

function [Hr,w,P,L] = Ampl_Res(h);

% Computes Amplitude response Hr(w) and its polynomial P of order L,

% given a linear-phase FIR filter impulse response h.

% The type of filter is determined automatically by the subroutine.

%

% [Hr,w,P,L] = Ampl_Res(h)

% Hr = Amplitude Response

% w = frequencies between [0 pi] over which Hr is computed

% P = Polynomial coefficients

% L = Order of P

% h = Linear Phase filter impulse response

The function should first determine the type of the linear-phase FIR filter and then use the
appropriate Hr Type# function discussed in this chapter. It should also check if the given
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h(n) is of a linear-phase type. Verify your function on sequences given here.

hI(n) = (0.9)|n−5| cos[π(n− 5)/12] [u(n) − u(n− 11)]

hII(n) = (0.9)|n−4.5| cos[π(n− 4.5)/11] [u(n) − u(n− 10)]

hIII(n) = (0.9)|n−5| sin[π(n− 5)/12] [u(n) − u(n− 11)]

hIV(n) = (0.9)|n−4.5| sin[π(n− 4.5)/11] [u(n) − u(n− 10)]

h(n) = (0.9)n cos[π(n− 5)/12] [u(n) − u(n− 11)]

P7.7 Prove the following properties of linear-phase FIR filters.

1. If H(z) has four zeros at z1 = rejθ, z2 = 1
r
e−jθ, z3 = re−jθ, and z4 = 1

r
e−jθ then H(z)

represents a linear-phase FIR filter.
2. If H(z) has two zeros at z1 = ejθ and z2 = e−jθ then H(z) represents a linear-phase FIR

filter.
3. If H(z) has two zeros at z1 = r and z2 = 1

r
then H(z) represents a linear-phase FIR

filter.
4. If H(z) has a zero at z1 = 1 or a zero at z1 = −1 then H(z) represents a linear-phase

FIR filter.
5. For each of the sequences given in Problem P7.6, plot the locations of zeros. Determine

which sequences imply linear-phase FIR filters.

P7.8 A notch filter is an LTI system, which is used to eliminate an arbitrary frequency ω = ω0.
The ideal linear-phase notch filter frequency response is given by

Hd

(
ejω

)
=

{
0, |ω| = ω0;
1 · e−jαω, otherwise.

(α is a delay in samples)

1. Determine the ideal impulse response, hd(n), of the ideal notch filter.
2. Using hd(n), design a linear-phase FIR notch filter using a length 51 rectangular window

to eliminate the frequency ω0 = π/2 rad/sample. Plot amplitude the response of the
resulting filter.

3. Repeat part 2 using a length 51 Hamming window. Compare your results.

P7.9 Design a linear-phase bandpass filter using the Hann window design technique. The
specifications are

lower stopband edge: 0.2π
upper stopband edge: 0.75π

As = 40 dB

lower passband edge: 0.35π
upper passband edge: 0.55π

Rp = 0.25 dB

Plot the impulse response and the magnitude response (in dB) of the designed filter. Do not
use the fir1 function.

P7.10 Design a bandstop filter using the Hamming window design technique. The specifications are

lower stopband edge: 0.4π
upper stopband edge: 0.6π

As = 50 dB

lower passband edge: 0.3π
upper passband edge: 0.7π

Rp = 0.2 dB
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Plot the impulse response and the magnitude response (in dB) of the designed filter. Do not
use the fir1 function.

P7.11 Design a bandpass filter using the Hamming window design technique. The specifications are

lower stopband edge: 0.3π
upper stopband edge: 0.6π

As = 50 dB

lower passband edge: 0.4π
upper passband edge: 0.5π

Rp = 0.5 dB

Plot the impulse response and the magnitude response (in dB) of the designed filter. Do not
use the fir1 function.

P7.12 Design a highpass filter using one of the fixed window functions. The specifications are

stopband edge: 0.4π, As = 50 dB
passband edge: 0.6π, Rp = 0.004 dB

Plot the zoomed magnitude response (in dB) of the designed filter in the passband to verify
the passband ripple Rp. Do not use the fir1 function.

P7.13 Using the Kaiser window method, design a linear-phase FIR digital filter that meets the
following specifications

0.975 ≤ |H(ejω)| ≤ 1.025,
0 ≤ |H(ejω)| ≤ 0.005,

0.975 ≤ |H(ejω)| ≤ 1.025,

0 ≤ ω ≤ 0.25π
0.35π ≤ ω ≤ 0.65π
0.75π ≤ ω ≤ π

Determine the minimum length impulse response h(n) of such a filter. Provide a plot
containing subplots of the amplitude response and the magnitude response in dB. Do not
use the fir1 function.

P7.14 We wish to use the Kaiser window method to design a linear-phase FIR digital filter that
meets the following specifications:

0 ≤ |H(ejω)| ≤ 0.01,
0.95 ≤ |H(ejω)| ≤ 1.05,

0 ≤ |H(ejω)| ≤ 0.01,

0 ≤ ω ≤ 0.25π
0.35π ≤ ω ≤ 0.65π
0.75π ≤ ω ≤ π

Determine the minimum length impulse response h(n) of such a filter. Provide a plot
containing subplots of the amplitude response and the magnitude response in dB. Do not
use the fir1 function.

P7.15 Design the staircase filter of Example 7.26 using the Kaiser window approach. The
specifications are

Band-1: 0 ≤ ω ≤ 0.3π, Ideal gain = 1, δ1 = 0.01
Band-2: 0.4π ≤ ω ≤ 0.7π, Ideal gain = 0.5, δ2 = 0.005
Band-3: 0.8π ≤ ω ≤ π, Ideal gain = 0, δ3 = 0.001

Compare the filter length of this design with that of Example 7.26. Provide a plot of the
magnitude response in dB. Do not use the fir1 function.
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P7.16 Design a bandpass filter using a fixed window design technique that has the minimum
length and that satisfies the following specifications:

lower stopband edge = 0.3π
upper stopband edge = 0.6π

}
As = 40 dB

lower passband edge = 0.4π
upper passband edge = 0.5π

}
Rp = 0.5 dB.

Provide a plot of the log-magnitude response in dB and stem plot of the impulse response.

P7.17 Repeat Problem P7.9 using the fir1 function.

P7.18 Repeat Problem P7.10 using the fir1 function.

P7.19 Repeat Problem P7.11 using the fir1 function.

P7.20 Repeat Problem P7.12 using the fir1 function.

P7.21 Repeat Problem P7.13 using the fir1 function.

P7.22 Repeat Problem P7.14 using the fir1 function.

P7.23 Consider an ideal lowpass filter with the cutoff frequency ωc = 0.3π. We want to
approximate this filter using a frequency sampling design in which we choose 40 samples.

1. Choose the sample at ωc equal to 0.5, and use the naive design method to compute h(n).
Determine the minimum stopband attenuation.

2. Now vary the sample at ωc, and determine the optimum value to obtain the largest
minimum stopband attenuation.

3. Plot the magnitude responses in dB of the preceding two designs in one plot, and
comment on the results.

P7.24 Design the bandstop filter of Problem P7.10 using the frequency sampling method. Choose
the order of the filter appropriately so that there are two samples in the transition band.
Use optimum values for these samples. Compare your results with those obtained using the
fir2 function.

P7.25 Design the bandpass filter of Problem P7.11 using the frequency sampling method. Choose
the order of the filter appropriately so that there are two samples in the transition band.
Use optimum values for these samples. Compare your results with those obtained using the
fir2 function.

P7.26 Design the highpass filter of Problem P7.12 using the frequency sampling method. Choose
the order of the filter appropriately so that there are two samples in the transition band.
Use optimum values. Compare your results with those obtained using the fir2 function.

P7.27 Consider the filter specifications given in Figure P7.1. Use the fir2 function and a
Hamming window to design a linear-phase FIR filter via the frequency sampling method.
Experiment with the filter length to achieve the required design. Plot the amplitude
response of the resulting filter.

P7.28 Design a bandpass filter using the frequency sampling method. Choose the order of the
filter appropriately so that there is one sample in the transition band. Use optimum value
for this sample. The specifications are as follows:

lower stopband edge = 0.3π
upper stopband edge = 0.7π

}
As = 40 dB
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FIGURE P7.1 Filter Specifications for Problem P7.27

lower passband edge = 0.4π
upper passband edge = 0.6π

}
Rp = 0.5 dB.

Provide a plot of the log-magnitude response in dB and stem plot of the impulse response.

P7.29 The frequency response of an ideal bandpass filter is given by

Hd(e
jω) =

{
0, 0 ≤ |ω| ≤ π/3
1, π/3 ≤ |ω| ≤ 2π/3
0, 2π/3 ≤ |ω| ≤ π

1. Determine the coefficients of a 25-tap filter based on the Parks-McClellan algorithm
with stopband attenuation of 50 dB. The designed filter should have the smallest
possible transition width.

2. Plot the amplitude response of the filter using the function developed in Problem P7.6.

P7.30 Consider the bandstop filter given in Problem P7.10.

1. Design a linear-phase bandstop FIR filter using the Parks-McClellan algorithm. Note
that the length of the filter must be odd. Provide a plot of the impulse response and the
magnitude response in dB of the designed filter.

2. Plot the amplitude response of the designed filter and count the total number of extrema
in stopband and passbands. Verify this number with the theoretical estimate of the total
number of extrema.

3. Compare the order of this filter with those of the filters in Problems P7.10 and P7.24.
4. Verify the operation of the designed filter on the following signal

x(n) = 5 − 5 cos
(
πn

2

)
; 0 ≤ n ≤ 300
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P7.31 Using the Parks-McClellan algorithm, design a 25-tap FIR differentiator with slope equal to
1 sample/cycle.

1. Choose the frequency band of interest between 0.1π and 0.9π. Plot the impulse response
and the amplitude response.

2. Generate 100 samples of the sinusoid

x(n) = 3 sin(0.25πn), n = 0, ..., 100

and process through the preceding FIR differentiator. Compare the result with the
theoretical “derivative” of x(n). Note: Don’t forget to take the 12-sample delay of the
FIR filter into account.

P7.32 Design a lowest-order equiripple linear-phase FIR filter to satisfy the specifications given in
Figure P7.2. Provide a plot of the amplitude response and a plot of the impulse response.

P7.33 A digital signal x(n) contains a sinusoid of frequency π/2 and a Gaussian noise w(n) of zero
mean and unit variance; i.e.,

x(n) = 2 cos
πn

2
+ w(n)

We want to filter out the noise component using a 50th-order causal and linear-phase FIR
filter.

1. Using the Parks-McClellan algorithm, design a narrow bandpass filter with passband
width of no more than 0.02π and stopband attenuation of at least 30 dB. Note that no
other parameters are given and that you have to choose the remaining parameters for
the firpm function to satisfy the requirements. Provide a plot of the log-magnitude
response in dB of the designed filter.

2. Generate 200 samples of the sequence x(n) and processed through the preceding filter to
obtain the output y(n). Provide subplots of x(n) and y(n) for 100 ≤ n ≤ 200 on one plot
and comment on your results.
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FIGURE P7.2 Filter Specifications for Problem P7.32
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P7.34 Design a minimum order linear-phase FIR filter, using the Parks-McClellan algorithm, to
satisfy the requirements given in Figure P7.1.

1. Provide a plot of the amplitude response with grid-lines and axis labeling as shown in
Figure P7.1.

2. Generate the following signals

x1(n) = cos(0.25πn), x2(n) = cos(0.5πn), x3(n) = cos(0.75πn); 0 ≤ n ≤ 100.

Process these signals through this filter to obtain the corresponding output signals
y1(n), y2(n), and y3(n). Provide stem plots of all input and output signals in one figure.

P7.35 Design a minimum-order linear-phase FIR filter, using the Parks-McClellan algorithm, to
satisfy the requirements given in Figure P7.3. Provide a plot of the amplitude response with
grid-lines and axis labeling as shown in Figure P7.3.

P7.36 The specifications on the amplitude response of an FIR filter are given in Figure P7.4.

1. Using a window design approach and a fixed window function, design a minimum-length
linear-phase FIR filter to satisfy the given requirements. Provide a plot of the amplitude
response with grid-lines as shown in Figure P7.4.

2. Using a window design approach and the Kaiser window function, design a
minimum-length linear-phase FIR filter to satisfy the given requirements. Provide a plot
of the amplitude response with grid-lines as shown in Figure P7.4.

3. Using a frequency-sampling design approach and with no more than two samples in the
transition bands, design a minimum-length linear-phase FIR filter to satisfy the given
requirements. Provide a plot of the amplitude response with grid-lines as shown in
Figure P7.4.

4. Using the Parks-McClellan design approach, design a minimum-length linear-phase FIR
filter to satisfy the given requirements. Provide a plot of the amplitude response with
grid-lines as shown in Figure P7.4.
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5. Compare the preceding four design methods in terms of

• the order of the filter

• the exact band-edge frequencies

• the exact tolerances in each band

P7.37 Design a minimum-order linear-phase FIR filter, using the Parks-McClellan algorithm, to
satisfy the requirements given in Figure P7.5. Provide a plot of the amplitude response with
grid-lines as shown in Figure P7.5.
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FIGURE P7.5 Filter Specifications for Problem P7.37
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P7.38 Design a minimum-length linear-phase bandpass filter of Problem P7.9 using the
Parks-McClellan algorithm.

1. Plot the impulse response and the magnitude response in dB of the designed filter in one
figure plot.

2. Plot the amplitude response of the designed filter and count the total number of extrema
in passband and stopbands. Verify this number with the theoretical estimate of the total
number of extrema.

3. Compare the order of this filter with that of the filter in Problem P7.9.
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C H A P T E R 8
IIR Filter
Design

IIR filters have infinite-duration impulse responses, hence they can be
matched to analog filters, all of which generally have infinitely long im-
pulse responses. Therefore the basic technique of IIR filter design trans-
forms well-known analog filters into digital filters using complex-valued
mappings. The advantage of this technique lies in the fact that both
analog filter design (AFD) tables and the mappings are available exten-
sively in the literature. This basic technique is called the A/D (analog-
to-digital) filter transformation. However, the AFD tables are available
only for lowpass filters. We also want to design other frequency-selective
filters (highpass, bandpass, bandstop, etc.). To do this, we need to apply
frequency-band transformations to lowpass filters. These transformations
are also complex-valued mappings, and they are also available in the liter-
ature. There are two approaches to this basic technique of IIR filter design:

Approach 1:

Design analog
lowpass filter −→

Apply freq. band
transformation

s → s
−→

Apply filter
transformation

s → z
−→ Desired IIR

filter

Approach 2:

Design analog
lowpass filter −→

Apply filter
transformation

s → z
−→

Apply freq. band
transformation

z → z
−→ Desired IIR

filter
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The first approach is used in MATLAB to design IIR filters. A
straightforward use of these MATLAB functions does not provide any
insight into the design methodology. Therefore we will study the second
approach because it involves the frequency-band transformation in the
digital domain. Hence in this IIR filter design technique we will follow
the following steps:

• Design analog lowpass filters.
• Study and apply filter transformations to obtain digital lowpass filters.
• Study and apply frequency-band transformations to obtain other digi-

tal filters from digital lowpass filters.

The main problem with these approaches is that we have no control
over the phase characteristics of the IIR filter. Hence IIR filter designs
will be treated as magnitude-only designs. More sophisticated techniques,
which can simultaneously approximate both the magnitude and the phase
responses, require advanced optimization tools and hence will not be cov-
ered in this book.

We begin with a discussion on the analog filter specifications and the
properties of the magnitude-squared response used in specifying analog
filters. Next, before we delve into basic techniques for general IIR filters,
we consider the design of special types of digital filters—for example,
resonators, notch filters, comb filters, etc. This is followed by a brief de-
scription of the characteristics of three widely used analog filters: namely.
Butterworth, Chebyshev, and elliptic filters. Finally, we will study transfor-
mations to convert these prototype analog filters into different frequency-
selective digital filters and conclude this chapter with several IIR filter
designs using MATLAB.

8.1 SOME PRELIMINARIES

We discuss two preliminary issues in this section. First, we consider the
magnitude-squared response specifications, which are more typical of ana-
log (and hence of IIR) filters. These specifications are given on the relative
linear scale. Second, we study the properties of the magnitude-squared
response.

8.1.1 RELATIVE LINEAR SCALE
Let Ha(jΩ) be the frequency response of an analog filter. Then the lowpass
filter specifications on the magnitude-squared response are given by

1
1 + ε2

≤ |Ha(jΩ)|2 ≤ 1, |Ω| ≤ Ωp

0 ≤ |Ha(jΩ)|2 ≤ 1
A2

, Ωs ≤ |Ω|
(8.1)
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FIGURE 8.1 Analog lowpass filter specifications

where ε is a passband ripple parameter, Ωp is the passband cutoff fre-
quency in rad/sec, A is a stopband attenuation parameter, and Ωs is the
stopband cutoff in rad/sec. These specifications are shown in Figure 8.1,
from which we observe that |Ha(jΩ)|2 must satisfy

|Ha(jΩp)|2 =
1

1 + ε2
at Ω = Ωp

|Ha(jΩs)|2 =
1
A2

at Ω = Ωs

(8.2)

The parameters ε and A are related to parameters Rp and As, respec-
tively, of the dB scale. These relations are given by

Rp = −10 log10

1
1 + ε2

=⇒ ε =
√

10Rp/10 − 1 (8.3)

and

As = −10 log10

1
A2

=⇒ A = 10As/20 (8.4)

The ripples, δ1 and δ2, of the absolute scale are related to ε and A by

1 − δ1
1 + δ1

=

√
1

1 + ε2
=⇒ ε =

2
√
δ1

1 − δ1

and
δ2

1 + δ1
=

1
A

=⇒ A =
1 + δ1
δ2
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8.1.2 PROPERTIES OF |Ha(jΩ)|2
Analog filter specifications (8.1), which are given in terms of the
magnitude-squared response, contain no phase information. Now to eval-
uate the s-domain system function Ha(s), consider

Ha(jΩ) = Ha(s)|s=jΩ

Then we have

|Ha(jΩ)|2 = Ha(jΩ)H∗
a(jΩ) = Ha(jΩ)Ha(−jΩ) = Ha(s)Ha(−s)|s=jΩ

or

Ha(s)Ha(−s) = |Ha(jΩ)|2
∣∣∣
Ω=s/j

(8.5)

Therefore the poles and zeros of the magnitude-squared function are dis-
tributed in a mirror-image symmetry with respect to the jΩ axis. Also for
real filters, poles and zeros occur in complex conjugate pairs (or mirror-
image symmetry with respect to the real axis). A typical pole-zero pat-
tern of Ha(s)Ha(−s) is shown in Figure 8.2. From this pattern we can
construct Ha(s), which is the system function of our analog filter. We
want Ha(s) to represent a causal and stable filter. Then all poles of Ha(s)
must lie within the left half-plane. Thus we assign all left-half poles of
Ha(s)Ha(−s) to Ha(s). However, zeros of Ha(s) can lie anywhere in the
s-plane. Therefore they are not uniquely determined unless they all are
on the jΩ axis. We will choose the zeros of Ha(s)Ha(−s) lying left to or
on the jΩ axis as the zeros of Ha(s). The resulting filter is then called a
minimum-phase filter.

jΩ

s-plane

σ

FIGURE 8.2 Typical pole-zero pattern of Ha(s)Ha(−s)
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8.2 SOME SPECIAL FILTER TYPES

In this section we consider the design of several special types of digital
filters and describe their frequency response characteristics. We begin by
describing the design and characteristics of a digital resonator.

8.2.1 DIGITAL RESONATORS
A digital resonator is a special two-pole bandpass filter with a pair of
complex-conjugate poles located very near the unit circle, as shown in
Figure 8.3a. The magnitude of the frequency response of the filter is shown
in Figure 8.3b. The name resonator refers to the fact that the filter has a
large magnitude response in the vicinity of the pole position. The angle of
the pole location determines the resonant frequency of the filter. Digital
resonators are useful in many applications, including simple bandpass
filtering and speech generation.

Let us consider the design of a digital resonator with a resonant peak
at or near ω = ω0. Hence, we select the pole position as

p1,2 = re±jω0 (8.6)

–1 –0.5 0 0.5 1

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

2

Real Part

Im
ag

in
ar

y 
P

ar
t

Pole–zero Plot

–1 –1/3  0  1/3  1 
0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de

Magnitude Response
Digital Resonator Responeses

–1 –1/3  0  1/3  1 
–0.5

0

0.5
Phase Response

ω in π units

R
ad

ia
ns

 / 
π

FIGURE 8.3 Pole positions and frequency response of a digital resonator with
r = 0.9 and ω0 = π/3
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The corresponding system function is

H(z) =
b0

(1 − rejω0z−1)(1 − re−jω0z−1)

=
b0

1 − (2r cosω0)z−1 + r2z−2
(8.7)

where b0 is a gain parameter. The frequency response of the resonator is

H
(
ejω

)
=

b0[
1 − re−j(ω−ω0)

] [
1 − re−j(ω+ω0)

] (8.8)

Since
∣∣H(ejω)∣∣ has its peak at or near ω = ω0, we select the gain param-

eter b0 so that
∣∣H(ejω)∣∣ = 1. Hence,

∣∣H(ejω0
)∣∣ =

b0
|(1 − r)(1 − re−j2ω0)|

=
b0

(1 − r)
√

1 + r2 − 2r cos 2ω0

(8.9)

Consequently, the desired gain parameter is

b0 = (1 − r)
√

1 + r2 − 2r cos 2ω0 (8.10)

The magnitude of the frequency response H(ω) may be expressed as

∣∣H(ejω)∣∣ =
b0

D1(ω)D2(ω)
(8.11)

where D1(ω) and D2(ω) are given as

D1(ω) =
√

1 + r2 − 2r cos(ω − ω0) (8.12a)

D2(ω) =
√

1 + r2 − 2r cos(ω + ω0) (8.12b)

For a given value of r, D1(ω) takes its minimum value (1− r) at ω = ω0,
and the product D1(ω)D2(ω) attains a minimum at the frequency

ωr = cos−1

(
1 + r2

2r
cosω0

)
(8.13)

which defines precisely the resonant frequency of the filter. Note that
when r is very close to unity, ωr ≈ ω0, which is the angular position of
the pole. Furthermore, as r approaches unity, the resonant peak becomes
sharper (narrower) because D1(ω) changes rapidly in the vicinity of ω0.
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A quantitative measure of the width of the peak is the 3dB bandwidth of
the filter, denoted as ∆(ω). For values of r close to unity,

∆ω ≈ 2(1 − r) (8.14)

Figure 8.3 illustrates the magnitude and phase responses of a digital res-
onator with ω0 = π/3, r = 0.90. Note that the phase response has its
greatest rate of change near the resonant frequency ωr ≈ ω0 = π/3.

This resonator has two zeros at z = 0. Instead of placing zeros at the
origin, an alternative choice is to locate the zeros at z = 1 and z = −1.
This choice completely eliminates the response of the filter at the frequen-
cies ω = 0 and ω = π, which may be desirable in some applications. The
corresponding resonator has the system function

H(z) =
G(1 − z−1)(1 + z−1)

(1 − rejω0z−1)(1 − re−jω0z−1)

= G
1 − z−2

1 − (2r cosω0)z−1 + r2z−2
(8.15)

and the frequency response characteristic

H
(
ejω

)
= G

1 − e−j2ω

[1 − rej(ω0−ω)][1 − re−j(ω0+ω)]
(8.16)

where G is a gain parameter that is selected so that
∣∣H(ejω0

)∣∣ = 1.
The introduction of zeros at z = ±1 alters both the magnitude and

phase response of the resonator. The magnitude response may be ex-
pressed as ∣∣H(ejω)∣∣ = G

N(ω)
D1(ω)D2(ω)

(8.17)

where N(ω) is defined as

N(ω) =
√

2(1 − cos 2ω) (8.18)

Due to the presence of the zeros at z = ±1, the resonant frequency of the
resonator is altered from the expression given by (8.13). The bandwidth
of the filter is also altered. Although exact values for these two parameters
are rather tedious to derive, we can easily compute the frequency response
when the zeros are at z = ±1 and z = 0, and compare the results.

Figure 8.4 illustrates the magnitude and phase responses for the cases
z = ±1 and z = 0, for pole location at ω = π/3 and r = 0.90. We observe
that the resonator with z = ±1 has a slightly smaller bandwidth than
the resonator with zeros at z = 0. In addition, there appears to be a very
small shift in the resonant frequency between the two cases.
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FIGURE 8.4 Magnitude and phase responses of digital resonator with zeros at
z = ±1 (solid lines) and z = 0 (dotted lines) for r = 0.9 and ω0 = π/3

8.2.2 NOTCH FILTERS
A notch filter is a filter that contains one or more deep notches or, ideally,
perfect nulls in its frequency response. Figure 8.5 illustrates the frequency
response of a notch filter with a null at the frequency ω = ω0. Notch filters
are useful in many applications where specific frequency components must
be eliminated. For example, instrumentation systems require that the
power line frequency of 60 Hz and its harmonics be eliminated.

To create a null in the frequency response of a filter at a frequency
ω0, we simply introduce a pair of complex-conjugate zeros on the unit
circle at the angle ω0. Hence, the zeros are selected as

z1,2 = e±jω0 (8.19)

Then, the system function for the notch filter is

H(z) = b0(1 − ejω0z−1)(1 − e−jω0z−1)

= b0(1 − (2 cosω0)z−1 + z−2) (8.20)

where b0 is a gain factor. Figure 8.6 illustrates the magnitude response of
a notch filter having a null at ω = π/4.

The major problem with this notch filter is that the notch has a rela-
tively large bandwidth, which means that other frequency components
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FIGURE 8.5 Frequency response of a typical notch filter

around the desired null are severely attenuated. To reduce the band-
width of the null, we may resort to the more sophisticated, longer FIR
filter designed according to the optimum equiripple design method de-
scribed in Chapter 7. Alternatively, we could attempt to improve the fre-
quency response of the filter by introducing poles in the system function.
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FIGURE 8.6 Frequency response of a notch filter with ω0 = π/4
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FIGURE 8.7 Magnitude and phase responses of notch filter with poles (solid
lines) and without poles (dotted lines) for ω0 = π/4 and r = 0.85

In particular, suppose that we select the poles at

p1,2 = re±jω0 (8.21)

Hence, the system function becomes

H(z) = b0
1 − (2 cosω0)z−1 + z2

1 − (2r cosω0)z−1 + r2z−2
(8.22)

The magnitude of the frequency response
∣∣H(ejω)∣∣ of this filter is illus-

trated in Figure 8.7 for ω0 = π/4 and r = 0.85. Also plotted in this figure
is the frequency response without the poles. We observe that the effect of
the pole is to introduce a resonance in the vicinity of the null and, thus, to
reduce the bandwidth of the notch. In addition to reducing the bandwidth
of the notch, the introduction of a pole in the vicinity of the null may re-
sult in a small ripple in the passband of the filter due to the resonance
created by the pole.

8.2.3 COMB FILTERS
In its simplest form, a comb filter may be viewed as a notch filter in which
the nulls occur periodically across the frequency band, hence the analogy
to an ordinary comb that has periodically spaced teeth. Comb filters are
used in many practical systems, including the rejections of power-line
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harmonics, and the suppression of clutter from fixed objects in moving-
target indicator (MTI) radars.

We can create a comb filter by taking our FIR filter with system
function

H(z) =
M∑
k=0

h(k)z−k (8.23)

and replacing z by zL, where L is a positive integer. Thus, the new FIR
filter has the system function

HL(z) =
M∑
k=0

h(k)z−kL (8.24)

If the frequency response of the original FIR filter is H
(
ejω

)
, the frequency

response of the filter given by (8.24) is

HL

(
ejω

)
=

M∑
k=0

h(k)e−jkLω = H
(
ejLω

)
(8.25)

Consequently, the frequency response characteristic HL

(
ejω

)
is an L-order

repetition of H
(
ejω

)
in the range 0 ≤ ω ≤ 2π. Figure 8.8 illustrates the

relationship between HL

(
ejω

)
and H

(
ejω

)
for L = 4. The introduction of

a pole at each notch may be used to narrow the bandwidth of each notch,
as just described.

8.2.4 ALLPASS FILTERS
An allpass filter is characterized by a system function that has a constant
magnitude response for all frequencies, i.e.,

∣∣H(ejω)∣∣ = 1, 0 ≤ ω ≤ π (8.26)

A simple example of an allpass system is a system that introduces a pure
delay to an input signal, i.e.,

H(z) = z−k (8.27)

This system passes all frequency components of an input signal without
any frequency dependent attenuation. It simply delays all frequency com-
ponents by k samples.

A more general characterization of an allpass filter is one having a
system function of the form

H(z) =
aN + aN−1z

−1 + · · · + a1z
−N+1 + z−N

1 + a1z−1 + · · · + aN−1z−N+1 + aNz−N
(8.28)
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(a)

(b)

FIGURE 8.8 Comb filters with frequency response HL

(
ejω
)

obtained from

H
(
ejω
)

for L = 4

which may be expressed in the compact form as

H(z) = z−N A(z−1)
A(z)

(8.29)

where

A(z) =
N∑

k=0

akz
−k, a0 = 1 (8.30)

We observe that
∣∣H(ejω)∣∣2 = H(z)H(z−1)|z=ejω = 1 (8.31)

for all frequencies. Hence, the system is all-pass.
From the form of H(z) given by (8.28), we observe that if z0 is a pole

of H(z), then 1/z0 is a zero of H(z). That is, the poles and zeros are
reciprocals of one another. Figure 8.9 illustrates the typical pole-zero pat-
tern for a single-pole, single-zero filter and a 2-pole, 2-zero filter. Graphs
of the magnitude and phase characteristics of these two filters are shown
in Figure 8.10 for a = 0.6 and r = 0.9, ω0 = π/4, where A(z) for the two
filters is, respectively, given as

A(z) = 1 + az−1 (8.32a)

A(z) = 1 − (2r cosω0)z−1 + r2z−2 (8.32b)
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(a) (b)

Unit circle

FIGURE 8.9 Pole-zero locations for (a) one-pole and (b) two-pole allpass filter

The general form for the system function of an allpass filter with real
coefficients may be expressed in factored form as

H(z) =
NR∏
k=1

z−1 − αk

1 − αkz−1

NC∏
k=1

(z−1 − βk)(z−1 − β∗
k)

(1 − βkz−1)(1 − β∗
kz

−1)
(8.33)

where NR is the number of real poles and zeros and NC is the number
of complex-conjugate pairs of poles and zeros. For a causal and stable
system, we require that |αk| < 1 and |βk| < 1.

Allpass filters are usually employed as phase equalizers. When placed
in cascade with a system that has an undesirable phase response, a phase
equalizer is designed to compensate for the poor phase characteristics of
the system and thus result in an overall linear phase system.

8.2.5 DIGITAL SINUSOIDAL OSCILLATORS
A digital sinusoidal oscillator can be viewed as a limiting form of a 2-pole
resonator for which the complex-conjugate poles are located on the unit
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FIGURE 8.10 Magnitude and phase responses for 1-pole (solid line) and 2-pole
(dotted line) allpass filters
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Some Special Filter Types 399

circle. From our previous discussion of resonators, the system function for
a resonator with poles at re±jω0 is

H(z) =
b0

1 − (2r cosω0)z−1 + r2z−2
(8.34)

When we set r = 1 and select the gain parameter b0 as

b0 = A sinω0 (8.35)

The system function becomes

H(z) =
A sinω0

1 − (2 cosω0)z−1 + z−2
(8.36)

and the corresponding impulse response of the system becomes

h(n) = A sin(n + 1)ω0 u(n) (8.37)

Thus, this system generates a sinusoidal signal of frequency ω0 when ex-
cited by an impulse δ(n) = 1.

The block diagram representation of the system function given by
(8.36) is illustrated in Figure 8.11. The corresponding difference equation
for this system is

y(n) = (2 cosω0) y(n− 1) − y(n− 2) + b0δ(n) (8.38)

where b0 = A sinω0.
Note that the sinusoidal oscillation obtained from the difference equa-

tion in (8.38) can also be obtained by setting the input to zero and setting
the initial conditions to y(−1) = 0, y(−2) = −A sinω0. Thus, the zero-
input response to the 2nd-order system described by the homogeneous
difference equation

y(n) = (2 cosω0) y(n− 1) − y(n− 2) (8.39)

FIGURE 8.11 Digital sinusoidal oscillator
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400 Chapter 8 IIR FILTER DESIGN

with initial conditions y(−1) = 0, y(−2) = −A sinω0 is exactly the same
as the response of (8.38) to an impulse excitation. In fact, the homo-
geneous difference equation in (8.39) can be obtained directly from the
trigonometric identity

sinα + sinβ = 2 sin
(
α + β

2

)
cos

(
α− β

2

)
(8.40)

where, by definition, α = (n + 1)ω0, β = (n − 1)ω0, and y(n) = sin(n +
1)ω0.

In practical applications involving modulation of two sinusoidal car-
rier signals in phase quadrature, there is a need to generate the sinusoids
A sinω0n and A cosω0n. These quadrature carrier signals can be gener-
ated by the so-called coupled-form oscillator, which can be obtained with
the aid of the trigonometric formulas

cos(α + β) = cosα cosβ − sinα sinβ (8.41)

sin(α + β) = sinα cosβ + cosα sinβ (8.42)

where by definition, α = nω0, β = ω0, yc(n) = cos(n+1)ω0, and ys(n) =
sin(n + 1)ω0. Thus, with substitution of these quantities into the two
trigonometric identities, we obtain the two coupled difference equations.

yc(n) = (cosω0) yc(n− 1) − (sinω0) ys(n− 1) (8.43)

ys(n) = (sinω0) yc(n− 1) + (cosω0) ys(n− 1) (8.44)

The structure for the realization of the coupled-form oscillator is il-
lustrated in Figure 8.12. Note that this is a 2-output system that does
not require any input excitation, but it does require setting the initial
conditions yc(−1) = A cosω0 and ys(−1) = −A sinω0 in order to begin
its self-sustaining oscillations.

8.3 CHARACTERISTICS OF PROTOTYPE ANALOG FILTERS

IIR filter design techniques rely on existing analog filters to obtain digital
filters. We designate these analog filters as prototype filters. Three pro-
totypes are widely used in practice. In this section we briefly summarize
the characteristics of the lowpass versions of these prototypes: Butter-
worth lowpass, Chebyshev lowpass (Type I and II), and Elliptic lowpass.
Although we will use MATLAB functions to design these filters, it is nec-
essary to learn the characteristics of these filters so that we can use proper
parameters in MATLAB functions to obtain correct results.
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FIGURE 8.12 Realization of the coupled form oscillator

8.3.1 BUTTERWORTH LOWPASS FILTERS
This filter is characterized by the property that its magnitude response is
flat in both passband and stopband. The magnitude-squared response of
an Nth-order lowpass filter is given by

|Ha(jΩ)|2 =
1

1 +
(

Ω
Ωc

)2N
(8.45)

where N is the order of the filter and Ωc is the cutoff frequency in rad/sec.
The plot of the magnitude-squared response is as follow.

From this plot, we can observe the following properties:

• at Ω = 0, |Ha(j0)|2 = 1 for all N .
• at Ω = Ωc, |Ha(jΩc)|2 = 1

2 for all N , which implies a 3 dB attenuation
at Ωc.

• |Ha(jΩ)|2 is a monotonically decreasing function of Ω.
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402 Chapter 8 IIR FILTER DESIGN

• |Ha(jΩ)|2 approaches an ideal lowpass filter as N → ∞.
• |Ha(jΩ)|2 is maximally flat at Ω = 0 since derivatives of all orders exist

and are equal to zero.

To determine the system function Ha(s), we put (8.45) in the form of
(8.5) to obtain

Ha(s)Ha(−s) = |Ha(jΩ)|2
∣∣∣
Ω=s/j

=
1

1 +
(

s

jΩc

)2N
=

(jΩ)2N

s2N + (jΩc)
2N

(8.46)

The roots of the denominator polynomial (or poles of Ha(s)Ha(−s)) from
(8.46) are given by

pk = (−1)
1

2N (jΩ) = Ωce
j π

2N (2k+N+1), k = 0, 1, . . . , 2N − 1 (8.47)

An interpretation of (8.47) is that

• there are 2N poles of Ha(s)Ha(−s), which are equally distributed on
a circle of radius Ωc with angular spacing of π/N radians

• for N odd the poles are given by pk = Ωce
jkπ/N , k = 0, 1, . . . , 2N −1

• for N even the poles are given by pk = Ωce
j( π

2N + kπ
N ), k = 0, 1, . . . ,

2N − 1
• the poles are symmetrically located with respect to the jΩ axis
• a pole never falls on the imaginary axis, and falls on the real axis only

if N is odd

As an example, poles of 3rd- and 4th-order Butterworth filters are shown
in Figure 8.13.

0

jΩ

Ωc

σ

k = 2N − 1

N = 3

k = 0
0

jΩ

Ωc

σ

k = 2N − 1

N = 4

k = 0

FIGURE 8.13 Pole plots for Butterworth filters
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FIGURE 8.14 Pole plot for Example 8.1

A stable and causal filter Ha(s) can now be specified by selecting
poles in the left half-plane, and Ha(s) can be written in the form

Ha(s) =
ΩN

c∏
LHP poles

(s− pk)
(8.48)

� EXAMPLE 8.1 Given that |Ha(jΩ)|2 =
1

1 + 64Ω6
, determine the analog filter system function

Ha(s).

Solution From the given magnitude-squared response,

|Ha(jΩ)|2 =
1

1 + 64Ω6
=

1

1 +
(

Ω

0.5

)2(3)

Comparing this with expression (8.45), we obtain N = 3 and Ωc = 0.5. The
poles of Ha(s)Ha(−s) are as shown in Figure 8.14.

Hence

Ha(jΩ) =
Ω3

c

(s− p2)(s− p3)(s− p4)

=
1/8

(s + 0.25 − j0.433)(s + 0.5)(s + 0.25 + j0.433)

=
0.125

(s + 0.5)(s2 + 0.5s + 0.25)
�

8.3.2 MATLAB IMPLEMENTATION
MATLAB provides a function called [z,p,k]=buttap(N) to design a nor-
malized (i.e., Ωc = 1) Butterworth analog prototype filter of order N ,
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404 Chapter 8 IIR FILTER DESIGN

which returns zeros in z array, poles in p array, and the gain value k.
However, we need an unnormalized Butterworth filter with arbitrary Ωc.
From Example 8.1 we observe that there are no zeros and that the poles
of the unnormalized filter are on a circle with radius Ωc instead of on a
unit circle. This means that we have to scale the array p of the normal-
ized filter by Ωc and the gain k by ΩN

c . In the following function, called
U buttap(N,Omegac), we design the unnormalized Butterworth analog
prototype filter.

function [b,a] = u_buttap(N,Omegac);

% Unnormalized Butterworth Analog Lowpass Filter Prototype

% --------------------------------------------------------

% [b,a] = u_buttap(N,Omegac);

% b = numerator polynomial coefficients of Ha(s)

% a = denominator polynomial coefficients of Ha(s)

% N = Order of the Butterworth Filter

% Omegac = Cutoff frequency in radians/sec

%

[z,p,k] = buttap(N);

p = p*Omegac;

k = k*Omegac^N;

B = real(poly(z));

b0 = k; b = k*B; a = real(poly(p));

This function provides a direct form (or numerator-denominator) struc-
ture. Often we also need a cascade form structure. In Chapter 6 we have
already studied how to convert a direct form into a cascade form. The
following sdir2cas function describes the procedure that is suitable for
analog filters.

function [C,B,A] = sdir2cas(b,a);

% DIRECT-form to CASCADE-form conversion in s-plane

% -------------------------------------------------

% [C,B,A] = sdir2cas(b,a)

% C = gain coefficient

% B = K by 3 matrix of real coefficients containing bk’s

% A = K by 3 matrix of real coefficients containing ak’s

% b = numerator polynomial coefficients of DIRECT form

% a = denominator polynomial coefficients of DIRECT form

%

Na = length(a)-1; Nb = length(b)-1;
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% compute gain coefficient C

b0 = b(1); b = b/b0; a0 = a(1); a = a/a0; C = b0/a0;

%

% Denominator second-order sections:

p= cplxpair(roots(a)); K = floor(Na/2);

if K*2 == Na % Computation when Na is even

A = zeros(K,3);

for n=1:2:Na

Arow = p(n:1:n+1,:); Arow = poly(Arow);

A(fix((n+1)/2),:) = real(Arow);

end

elseif Na == 1 % Computation when Na = 1

A = [0 real(poly(p))];

else % Computation when Na is odd and > 1

A = zeros(K+1,3);

for n=1:2:2*K

Arow = p(n:1:n+1,:); Arow = poly(Arow);

A(fix((n+1)/2),:) = real(Arow);

end

A(K+1,:) = [0 real(poly(p(Na)))];

end

% Numerator second-order sections:

z = cplxpair(roots(b)); K = floor(Nb/2);

if Nb == 0 % Computation when Nb = 0

B = [0 0 poly(z)];

elseif K*2 == Nb % Computation when Nb is even

B = zeros(K,3);

for n=1:2:Nb

Brow = z(n:1:n+1,:); Brow = poly(Brow);

B(fix((n+1)/2),:) = real(Brow);

end

elseif Nb == 1 % Computation when Nb = 1

B = [0 real(poly(z))];

else % Computation when Nb is odd and > 1

B = zeros(K+1,3);

for n=1:2:2*K

Brow = z(n:1:n+1,:); Brow = poly(Brow);

B(fix((n+1)/2),:) = real(Brow);

end

B(K+1,:) = [0 real(poly(z(Nb)))];

end
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� EXAMPLE 8.2 Design a 3rd-order Butterworth analog prototype filter with Ωc = 0.5 given in
Example 8.1.

Solution MATLAB script:

>> N = 3; OmegaC = 0.5; [b,a] = u_buttap(N,OmegaC);

>> [C,B,A] = sdir2cas(b,a)

C = 0.1250

B = 0 0 1

A = 1.0000 0.5000 0.2500

0 1.0000 0.5000

The cascade form coefficients agree with those in Example 8.1. �

8.3.3 DESIGN EQUATIONS
The analog lowpass filter is specified by the parameters Ωp, Rp, Ωs, and
As. Therefore the essence of the design in the case of Butterworth filter
is to obtain the order N and the cutoff frequency Ωc, given these specifi-
cations. We want

• at Ω = Ωp, −10 log10 |Ha(jΩ)|2 = Rp or

−10 log10




1

1 +
(

Ωp

Ωc

)2N


 = Rp

and
• at Ω = Ωs, −10 log10 |Ha(jΩ)|2 = As or

−10 log10




1

1 +
(

Ωs

Ωc

)2N


 = As

Solving these two equations for N and Ωc, we have

N =
log10

[(
10Rp/10 − 1

)
/
(
10As/10 − 1

)]
2 log10 (Ωp/Ωs)

In general, N will not be an integer. Since we want N to be an integer,
we must choose

N =

⌈
log10

[(
10Rp/10 − 1

)
/
(
10As/10 − 1

)]
2 log10 (Ωp/Ωs)

⌉
(8.49)
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where the operation �x� means “choose the smallest integer larger than
x”—for example, �4.5�= 5. Since the actual N chosen is larger than re-
quired, specifications can be either met or exceeded either at Ωp or at Ωs.
To satisfy the specifications exactly at Ωp,

Ωc =
Ωp

2N
√(

10Rp/10 − 1
) (8.50)

or, to satisfy the specifications exactly at Ωs,

Ωc =
Ωs

2N
√(

10As/10 − 1
) (8.51)

� EXAMPLE 8.3 Design a lowpass Butterworth filter to satisfy

Passband cutoff: Ωp = 0.2π ; Passband ripple: Rp = 7dB

Stopband cutoff: Ωs = 0.3π ; Stopband ripple: As = 16dB

Solution From (8.49)

N =

⌈
log10

[(
100.7 − 1

)
/
(
101.6 − 1

)]
2 log10 (0.2π/0.3π)

⌉
= �2.79� = 3

To satisfy the specifications exactly at Ωp, from (8.50) we obtain

Ωc =
0.2π

6
√

(100.7 − 1)
= 0.4985

To satisfy specifications exactly at Ωs, from (8.51) we obtain

Ωc =
0.3π

6
√

(101.6 − 1)
= 0.5122

Now we can choose any Ωc between the above two numbers. Let us choose
Ωc = 0.5. We have to design a Butterworth filter with N = 3 and Ωc = 0.5,
which we did in Example 8.1. Hence

Ha(jΩ) =
0.125

(s + 0.5) (s2 + 0.5s + 0.25)

�
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8.3.4 MATLAB IMPLEMENTATION
The preceding design procedure can be implemented in MATLAB as a
simple function. Using the U buttap function, we provide the afd butt
function to design an analog Butterworth lowpass filter, given its specifi-
cations. This function uses (8.50).

function [b,a] = afd_butt(Wp,Ws,Rp,As);

% Analog Lowpass Filter Design: Butterworth

% -----------------------------------------

% [b,a] = afd_butt(Wp,Ws,Rp,As);

% b = Numerator coefficients of Ha(s)

% a = Denominator coefficients of Ha(s)

% Wp = Passband edge frequency in rad/sec; Wp > 0

% Ws = Stopband edge frequency in rad/sec; Ws > Wp > 0

% Rp = Passband ripple in +dB; (Rp > 0)

% As = Stopband attenuation in +dB; (As > 0)

%

if Wp <= 0

error(’Passband edge must be larger than 0’)

end

if Ws <= Wp

error(’Stopband edge must be larger than Passband edge’)

end

if (Rp <= 0) | (As < 0)

error(’PB ripple and/or SB attenuation ust be larger than 0’)

end

N = ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(Wp/Ws)));

fprintf(’\n*** Butterworth Filter Order = %2.0f \n’,N)

OmegaC = Wp/((10^(Rp/10)-1)^(1/(2*N)));

[b,a]=u_buttap(N,OmegaC);

To display the frequency-domain plots of analog filters, we provide a
function called freqs m, which is a modified version of a function freqs
provided by MATLAB. This function computes the magnitude response
in absolute as well as in relative dB scale and the phase response. This
function is similar to the freqz m function discussed earlier. One main
difference between them is that in the freqs m function the responses are
computed up to a maximum frequency Ωmax.

function [db,mag,pha,w] = freqs_m(b,a,wmax);

% Computation of s-domain frequency response: Modified version

% ------------------------------------------------------------

% [db,mag,pha,w] = freqs_m(b,a,wmax);
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% db = Relative magnitude in db over [0 to wmax]

% mag = Absolute magnitude over [0 to wmax]

% pha = Phase response in radians over [0 to wmax]

% w = array of 500 frequency samples between [0 to wmax]

% b = Numerator polynomial coefficents of Ha(s)

% a = Denominator polynomial coefficents of Ha(s)

% wmax = Maximum frequency in rad/sec over which response is desired

%

w = [0:1:500]*wmax/500; H = freqs(b,a,w);

mag = abs(H); db = 20*log10((mag+eps)/max(mag)); pha = angle(H);

The impulse response ha(t) of the analog filter is computed using
MATLAB’s impulse function.

� EXAMPLE 8.4 Design the analog Butterworth lowpass filter specified in Example 8.3 using
MATLAB.

Solution MATLAB script:

>> Wp = 0.2*pi; Ws = 0.3*pi; Rp = 7; As = 16;

>> Ripple = 10 ^ (-Rp/20); Attn = 10 ^ (-As/20);

>> % Analog filter design:

>> [b,a] = afd_butt(Wp,Ws,Rp,As);

*** Butterworth Filter Order = 3

>> % Calculation of second-order sections:

>> [C,B,A] = sdir2cas(b,a)

C = 0.1238

B = 0 0 1

A = 1.0000 0.4985 0.2485

0 1.0000 0.4985

>> % Calculation of Frequency Response:

>> [db,mag,pha,w] = freqs_m(b,a,0.5*pi);

>> % Calculation of Impulse response:

>> [ha,x,t] = impulse(b,a);

The system function is given by

Ha(s) =
0.1238

(s2 + 0.4985s + 0.2485) (s + 0.4985)

This Ha(s) is slightly different from the one in Example 8.3 because in that
example we used Ωc = 0.5, while in the afd butt function Ωc is chosen to
satisfy the specifications at Ωp. The filter plots are shown in Figure 8.15. �
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FIGURE 8.15 Butterworth analog filter in Example 8.4

8.3.5 CHEBYSHEV LOWPASS FILTERS
There are two types of Chebyshev filters. The Chebyshev-I filters have
equiripple response in the passband, while the Chebyshev-II filters have
equiripple response in the stopband. Butterworth filters have monotonic
response in both bands. Recall our discussions regarding equiripple FIR
filters. We noted that by choosing a filter that has an equiripple rather
than a monotonic behavior, we can obtain a lower-order filter. Therefore
Chebyshev filters provide lower order than Butterworth filters for the
same specifications.

The magnitude-squared response of a Chebyshev-I filter is

|Ha(jΩ)|2 =
1

1 + ε2T 2
N

(
Ω
Ωc

) (8.52)

where N is the order of the filter, ε is the passband ripple factor, which is
related to Rp, and TN (x) is the Nth-order Chebyshev polynomial given by

TN (x) =

{
cos

(
N cos−1(x)

)
, 0 ≤ x ≤ 1

cosh
(
cosh−1(x)

)
, 1 < x < ∞

where x =
Ω
Ωc
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The equiripple response of the Chebyshev filters is due to this polynomial
TN (x). Its key properties are (a) for 0 < x < 1, TN (x) oscillates be-
tween −1 and 1, and (b) for 1 < x < ∞, TN (x) increases monotonically
to ∞.

There are two possible shapes of |Ha(jΩ)|2, one for N odd and one for
N even as shown here. Note that x = Ω/Ωc is the normalized frequency.

1

0

1

A 2

x =

|Ha( j Ω)|2

N Odd

1 1

N Even

1

0

1

A 2

|Ha( j Ω)|2

Ωr
Ωc

Ωr
Ωc

Ω
Ωc

x = Ω
Ωc

1
1 + 

1
1 + 

From these two response plots we observe the following properties:

• At x = 0 (or Ω = 0); |Ha(j0)|2 = 1 for N odd.

|Ha(j0)|2 =
1

1 + ε2
for N even.

• At x = 1 (or Ω = Ωc); |Ha(j1)|2 =
1

1 + ε2
for all N .

• For 0 ≤ x ≤ 1 (or 0 ≤ Ω ≤ Ωc), |Ha(jx)|2 oscillates between 1 and
1

1 + ε2
.

• For x > 1 (or Ω > Ωc), |Ha(jx)|2 decreases monotonically to 0.

• At x = Ωr, |Ha(jx)|2 =
1
A2

.

To determine a causal and stable Ha(s), we must find the poles of
Ha(s)Ha(−s) and select the left half-plane poles for Ha(s). The poles of
Ha(s)Ha(−s) are obtained by finding the roots of

1 + ε2T 2
N

(
s

jΩc

)

The solution of this equation is tedious if not difficult to obtain. It can be
shown that if pk = σk + jΩk, k = 0, . . . , N − 1 are the (left half-plane)
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roots of these polynomial, then

σk = (aΩc) cos
[
π

2
+

(2k + 1)π
2N

]

Ωk = (bΩc) sin
[
π

2
+

(2k + 1)π
2N

] k = 0, . . . , N − 1 (8.53)

where

a =
1
2

(
N
√
α−N

√
1/α

)
, b =

1
2

(
N
√
α+N

√
1/α

)
, and α =

1
ε

+

√
1 +

1
ε2

(8.54)

These roots fall on an ellipse with major axis bΩc and minor axis aΩc.
Now the system function is given by

Ha(s) =
K∏

k

(s− pk)
(8.55)

where K is a normalizing factor chosen to make

Ha(j0) =




1, N odd

1√
1 + ε2

, N even
(8.56)

8.3.6 MATLAB IMPLEMENTATION
MATLAB provides a function called [z,p,k]=cheb1ap(N,Rp) to design
a normalized Chebyshev-I analog prototype filter of order N and pass-
band ripple Rp and that returns zeros in z array, poles in p array, and
the gain value k. We need an unnormalized Chebyshev-I filter with arbi-
trary Ωc. This is achieved by scaling the array p of the normalized filter
by Ωc. Similar to the Butterworth prototype, this filter has no zeros.
The new gain k is determined using (8.56), which is achieved by scaling
the old k by the ratio of the unnormalized to the normalized denom-
inator polynomials evaluated at s = 0. In the following function, called
U chb1ap(N,Rp,Omegac), we design an unnormalized Chebyshev-I analog
prototype filter that returns Ha(s) in the direct form.
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function [b,a] = u_chb1ap(N,Rp,Omegac);

% Unnormalized Chebyshev-1 Analog Lowpass Filter Prototype

% --------------------------------------------------------

% [b,a] = u_chb1ap(N,Rp,Omegac);

% b = numerator polynomial coefficients

% a = denominator polynomial coefficients

% N = Order of the Elliptic Filter

% Rp = Passband Ripple in dB; Rp > 0

% Omegac = Cutoff frequency in radians/sec

%

[z,p,k] = cheb1ap(N,Rp); a = real(poly(p)); aNn = a(N+1);

p = p*Omegac; a = real(poly(p)); aNu = a(N+1);

k = k*aNu/aNn;

b0 = k; B = real(poly(z)); b = k*B;

8.3.7 DESIGN EQUATIONS
Given Ωp, Ωs, Rp, and AS , three parameters are required to determine
a Chebyshev-I filter: ε, Ωc, and N . From equations (8.3) and (8.4), we
obtain

ε =
√

100.1Rp − 1 and A = 10As/20

From these properties, we have

Ωc = Ωp and Ωr =
Ωs

Ωp
(8.57)

The order N is given by

g =
√

(A2 − 1) /ε2 (8.58)

N =




log10

[
g +

√
g2 − 1

]

log10

[
Ωr +

√
Ω2

r − 1
]



(8.59)

Now using (8.54), (8.53), and (8.55), we can determine Ha(s).

� EXAMPLE 8.5 Design a lowpass Chebyshev-I filter to satisfy

Passband cutoff: Ωp = 0.2π ; Passband ripple: Rp = 1dB

Stopband cutoff: Ωs = 0.3π ; Stopband ripple: As = 16dB

Solution First compute the necessary parameters.

ε =
√

100.1(1) − 1 = 0.5088 A = 1016/20 = 6.3096

Ωc = Ωp = 0.2π Ωr =
0.3π

0.2π
= 1.5

g =
√

(A2 − 1) /ε2 = 12.2429 N = 4
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Now we can determine Ha(s).

α =
1

ε
+

√
1 +

1

ε2
= 4.1702

a = 0.5
(

N
√
α− N

√
1/α

)
= 0.3646

b = 0.5
(

N
√
α + N

√
1/α

)
= 1.0644

There are four poles for Ha(s):

p0,3 = (aΩc) cos
[
π

2
+

π

8

]
± (bΩc) sin

[
π

2
+

π

8

]
= −0.0877 ± j0.6179

p1,2 = (aΩc) cos
[
π

2
+

3π

8

]
± (bΩc) sin

[
π

2
+

3π

8

]
= −0.2117 ± j0.2559

Hence

Ha(s) =
K

3∏
k=0

(s− pk)

=

0.03829︷ ︸︸ ︷
0.89125 × .1103 × .3895

(s2 + 0.1754s + 0.3895) (s2 + 0.4234s + 0.1103)

Note that the numerator is such that

Ha(j0) =
1√

1 + ε2
= 0.89125

�

8.3.8 MATLAB IMPLEMENTATION
Using the U chb1ap function, we provide a function called afd chb1 to
design an analog Chebyshev-II lowpass filter, given its specifications. This
is shown below and uses the procedure described in Example 8.5.

function [b,a] = afd_chb1(Wp,Ws,Rp,As);

% Analog Lowpass Filter Design: Chebyshev-1

% -----------------------------------------

% [b,a] = afd_chb1(Wp,Ws,Rp,As);

% b = Numerator coefficients of Ha(s)

% a = Denominator coefficients of Ha(s)

% Wp = Passband edge frequency in rad/sec; Wp > 0

% Ws = Stopband edge frequency in rad/sec; Ws > Wp > 0

% Rp = Passband ripple in +dB; (Rp > 0)

% As = Stopband attenuation in +dB; (As > 0)
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%

if Wp <= 0

error(’Passband edge must be larger than 0’)

end

if Ws <= Wp

error(’Stopband edge must be larger than Passband edge’)

end

if (Rp <= 0) | (As < 0)

error(’PB ripple and/or SB attenuation ust be larger than 0’)

end

ep = sqrt(10^(Rp/10)-1); A = 10^(As/20);

OmegaC = Wp; OmegaR = Ws/Wp; g = sqrt(A*A-1)/ep;

N = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));

fprintf(’\n*** Chebyshev-1 Filter Order = %2.0f \n’,N)

[b,a]=u_chb1ap(N,Rp,OmegaC);

� EXAMPLE 8.6 Design the analog Chebyshev-I lowpass filter given in Example 8.5 using
MATLAB.

Solution MATLAB script:

>> Wp = 0.2*pi; Ws = 0.3*pi; Rp = 1; As = 16;

>> Ripple = 10 ^ (-Rp/20); Attn = 10 ^ (-As/20);

>> % Analog filter design:

>> [b,a] = afd_chb1(Wp,Ws,Rp,As);

*** Chebyshev-1 Filter Order = 4

>> % Calculation of second-order sections:

>> [C,B,A] = sdir2cas(b,a)

C = 0.0383

B = 0 0 1

A = 1.0000 0.4233 0.1103

1.0000 0.1753 0.3895

>> % Calculation of Frequency Response:

>> [db,mag,pha,w] = freqs_m(b,a,0.5*pi);

>> % Calculation of Impulse response:

>> [ha,x,t] = impulse(b,a);

The specifications are satisfied by a 4th-order Chebyshev-I filter whose system
function is

Ha(s) =
0.0383

(s2 + 4233s + 0.1103) (s2 + 0.1753s + 0.3895)

The filter plots are shown in Figure 8.16. �

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



416 Chapter 8 IIR FILTER DESIGN

0 0.2 0.3 0.5
0

0.1585

0.8913
1

Magnitude Response

Analog frequency in π units

|H
|

0 0.2 0.3 0.5
30

16

1
0

Magnitude in dB

Analog frequency in π units

de
ci

be
ls

0 0.2 0.3 0.5
−1

−0.5

0

0.5

1
Phase Response

Analog frequency in π units

ra
di

an
s

0 10 20 30 40

−0.05

0

0.05

0.1

0.15

0.2

Impulse Response

time in seconds
ha

(t
)

FIGURE 8.16 Chebyshev-I analog filter in Example 8.6

A Chebyshev-II filter is related to the Chebyshev-I filter through a
simple transformation. It has a monotone passband and an equiripple
stopband, which implies that this filter has both poles and zeros in the
s-plane. Therefore the group delay characteristics are better (and the
phase response more linear) in the passband than the Chebyshev-I pro-
totype. If we replace the term ε2T 2

N (Ω/Ωc) in (8.52) by its reciprocal and
also the argument x = Ω/Ωc by its reciprocal, we obtain the magnitude-
squared response of Chebyshev-II as

|Ha(jΩ)|2 =
1

1 + [ε2T 2
N (Ωc/Ω)]−1 (8.60)

One approach to designing a Chebyshev-II filter is to design the corre-
sponding Chebyshev-I first and then apply these transformations. We will
not discuss the details of this filter but will use a function from MATLAB
to design a Chebyshev-II filter.

8.3.9 MATLAB IMPLEMENTATION
MATLAB provides a function called [z,p,k]=cheb2ap(N,As) to design a
normalized Chebyshev-II analog prototype filter of order N and passband
ripple As and that returns zeros in z array, poles in p array, and the gain
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value k. We need an unnormalized Chebyshev-I filter with arbitrary Ωc.
This is achieved by scaling the array p of the normalized filter by Ωc. Since
this filter has zeros, we also have to scale the array z by Ωc. The new gain
k is determined using (8.56), which is achieved by scaling the old k by the
ratio of the unnormalized to the normalized rational functions evaluated
at s = 0. In the following function, called U chb2ap(N,As,Omegac), we
design an unnormalized Chebyshev-II analog prototype filter that returns
Ha(s) in the direct form.

function [b,a] = u_chb2ap(N,As,Omegac);

% Unnormalized Chebyshev-2 Analog Lowpass Filter Prototype

% --------------------------------------------------------

% [b,a] = u_chb2ap(N,As,Omegac);

% b = numerator polynomial coefficients

% a = denominator polynomial coefficients

% N = Order of the Elliptic Filter

% As = Stopband Ripple in dB; As > 0

% Omegac = Cutoff frequency in radians/sec

%

[z,p,k] = cheb2ap(N,As);

a = real(poly(p)); aNn = a(N+1);

p = p*Omegac; a = real(poly(p)); aNu = a(N+1);

b = real(poly(z)); M = length(b); bNn = b(M);

z = z*Omegac; b = real(poly(z)); bNu = b(M);

k = k*(aNu*bNn)/(aNn*bNu);

b0 = k; b = k*b;

The design equations for the Chebyshev-II prototype are similar to
those of the Chebyshev-I except that Ωc = Ωs since the ripples are in the
stopband. Therefore we can develop a MATLAB function similar to the
afd chb1 function for the Chebyshev-II prototype.

function [b,a] = afd_chb2(Wp,Ws,Rp,As);

% Analog Lowpass Filter Design: Chebyshev-2

% -----------------------------------------

% [b,a] = afd_chb2(Wp,Ws,Rp,As);

% b = Numerator coefficients of Ha(s)

% a = Denominator coefficients of Ha(s)

% Wp = Passband edge frequency in rad/sec; Wp > 0

% Ws = Stopband edge frequency in rad/sec; Ws > Wp > 0

% Rp = Passband ripple in +dB; (Rp > 0)

% As = Stopband attenuation in +dB; (As > 0)

%

if Wp <= 0

error(’Passband edge must be larger than 0’)

end
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if Ws <= Wp

error(’Stopband edge must be larger than Passband edge’)

end

if (Rp <= 0) | (As < 0)

error(’PB ripple and/or SB attenuation ust be larger than 0’)

end

ep = sqrt(10^(Rp/10)-1); A = 10^(As/20);

OmegaC = Wp; OmegaR = Ws/Wp; g = sqrt(A*A-1)/ep;

N = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));

fprintf(’\n*** Chebyshev-2 Filter Order = %2.0f \n’,N)

[b,a]=u_chb2ap(N,As,Ws);

� EXAMPLE 8.7 Design a Chebyshev-II analog lowpass filter to satisfy the specifications given
in Example 8.5:

Passband cutoff: Ωp = 0.2π ; Passband ripple: Rp = 1dB

Stopband cutoff: Ωs = 0.3π ; Stopband ripple: As = 16dB

Solution MATLAB script:

>> Wp = 0.2*pi; Ws = 0.3*pi; Rp = 1; As = 16;

>> Ripple = 10 ^ (-Rp/20); Attn = 10 ^ (-As/20);

>> % Analog filter design:

>> [b,a] = afd_chb2(Wp,Ws,Rp,As);

*** Chebyshev-2 Filter Order = 4

>> % Calculation of second-order sections:

>> [C,B,A] = sdir2cas(b,a)

C = 0.1585

B = 1.0000 0 6.0654

1.0000 0 1.0407

A = 1.0000 1.9521 1.4747

1.0000 0.3719 0.6784

>> % Calculation of Frequency Response:

>> [db,mag,pha,w] = freqs_m(b,a,0.5*pi);

>> % Calculation of Impulse response:

>> [ha,x,t] = impulse(b,a);

The specifications are satisfied by a 4th-order Chebyshev-II filter whose system
function is

Ha(s) =
0.1585

(
s2 + 6.0654

) (
s2 + 1.0407

)
(s2 + 1.9521s + 1.4747) (s2 + 0.3719s + 0.6784)

The filter plots are shown in Figure 8.17. �
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FIGURE 8.17 Chebyshev-II analog filter in Example 8.7

8.3.10 ELLIPTIC LOWPASS FILTERS
These filters exhibit equiripple behavior in the passband as well as in
the stopband. They are similar in magnitude response characteristics to
the FIR equiripple filters. Therefore elliptic filters are optimum filters
in that they achieve the minimum order N for the given specifications
(or alternately, achieve the sharpest transition band for the given order
N). These filters, for obvious reasons, are very difficult to analyze and,
therefore, to design. It is not possible to design them using simple tools,
and often programs or tables are needed to design them.

The magnitude-squared response of elliptic filters is given by

|Ha(jΩ)|2 =
1

1 + ε2U2
N

(
Ω
Ωc

) (8.61)

where N is the order, ε is the passband ripple (which is related to Rp),
and UN (·) is the Nth-order Jacobian elliptic function. The analysis of
this function, even on a superficial level, is beyond the scope of this book.
Note the similarity between the preceding response (8.61) and that of the
Chebyshev filters given by (8.52). Typical responses for odd and even N
are as follows.
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1

0

1
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Ω
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1

0

1
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Ω

|Ha( j Ω)|2

Ωc

1
1 + 

1
1 + 

8.3.11 COMPUTATION OF FILTER ORDER N
Even though the analysis of (8.61) is difficult, the order calculation for-
mula is very compact and is available in many textbooks [18, 23, 24]. It
is given by

N =
K(k)K

(√
1 − k2

1

)

K (k1)K
(√

1 − k2
) (8.62)

where

k =
Ωp

Ωs
, k1 =

ε√
A2 − 1

and

K(x) =
∫ π/2

0

dθ√
1 − x2 sin2 θ

is the complete elliptic integral of the first kind. MATLAB provides the
function ellipke to numerically compute the above integral, which we
will use to compute N and to design elliptic filters.

8.3.12 MATLAB IMPLEMENTATION
MATLAB provides a function called [z,p,k]=ellipap(N,Rp,As) to de-
sign a normalized elliptic analog prototype filter of order N, passband
ripple Rp, and stopband attenuation As, and that returns zeros in z array,
poles in p array, and the gain value k. We need an unnormalized elliptic
filter with arbitrary Ωc. This is achieved by scaling the arrays p and z of
the normalized filter by Ωc and the gain k by the ratio of the unnormalized
to the normalized rational functions evaluated at s = 0. In the following
function, called U elipap(N,Rp,As,Omegac), we design an unnormalized
elliptic analog prototype filter that returns Ha(s) in the direct form.
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function [b,a] = u_elipap(N,Rp,As,Omegac);

% Unnormalized Elliptic Analog Lowpass Filter Prototype

% -----------------------------------------------------

% [b,a] = u_elipap(N,Rp,As,Omegac);

% b = numerator polynomial coefficients

% a = denominator polynomial coefficients

% N = Order of the Elliptic Filter

% Rp = Passband Ripple in dB; Rp > 0

% As = Stopband Attenuation in dB; As > 0

% Omegac = Cutoff frequency in radians/sec

%

[z,p,k] = ellipap(N,Rp,As);

a = real(poly(p)); aNn = a(N+1);

p = p*Omegac; a = real(poly(p)); aNu = a(N+1);

b = real(poly(z)); M = length(b); bNn = b(M);

z = z*Omegac; b = real(poly(z)); bNu = b(M);

k = k*(aNu*bNn)/(aNn*bNu);

b0 = k; b = k*b;

Using the U elipap function, we provide a function called afd elip
to design an analog elliptic lowpass filter, given its specifications. This
follows and uses the filter order computation formula given in (8.62).

function [b,a] = afd_elip(Wp,Ws,Rp,As);

% Analog Lowpass Filter Design: Elliptic

% --------------------------------------

% [b,a] = afd_elip(Wp,Ws,Rp,As);

% b = Numerator coefficients of Ha(s)

% a = Denominator coefficients of Ha(s)

% Wp = Passband edge frequency in rad/sec; Wp > 0

% Ws = Stopband edge frequency in rad/sec; Ws > Wp > 0

% Rp = Passband ripple in +dB; (Rp > 0)

% As = Stopband attenuation in +dB; (As > 0)

%

if Wp <= 0

error(’Passband edge must be larger than 0’)

end

if Ws <= Wp

error(’Stopband edge must be larger than Passband edge’)

end

if (Rp <= 0) | (As < 0)

error(’PB ripple and/or SB attenuation ust be larger than 0’)

end

ep = sqrt(10^(Rp/10)-1); A = 10^(As/20);

OmegaC = Wp; k = Wp/Ws; k1 = ep/sqrt(A*A-1);
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capk = ellipke([k.^2 1-k.^2]); % Version 4.0 code

capk1 = ellipke([(k1 .^2) 1-(k1 .^2)]); % Version 4.0 code

N = ceil(capk(1)*capk1(2)/(capk(2)*capk1(1)));

fprintf(’\n*** Elliptic Filter Order = %2.0f \n’,N)

[b,a]=u_elipap(N,Rp,As,OmegaC);

� EXAMPLE 8.8 Design an analog elliptic lowpass filter to satisfy the following specifications of
Example 8.5:

Ωp = 0.2π, Rp = 1 dB

Ωs = 0.3π, As = 16 db

Solution MATLAB script:

>> Wp = 0.2*pi; Ws = 0.3*pi; Rp = 1; As = 16;

>> Ripple = 10 ^ (-Rp/20); Attn = 10 ^ (-As/20);

>> % Analog filter design:

>> [b,a] = afd_elip(Wp,Ws,Rp,As);

*** Elliptic Filter Order = 3

>> % Calculation of second-order sections:

>> [C,B,A] = sdir2cas(b,a)

C = 0.2740

B = 1.0000 0 0.6641

A = 1.0000 0.1696 0.4102

0 1.0000 0.4435

>> % Calculation of Frequency Response:

>> [db,mag,pha,w] = freqs_m(b,a,0.5*pi);

>> % Calculation of Impulse response:

>> [ha,x,t] = impulse(b,a);

The specifications are satisfied by a 3rd-order elliptic filter whose system func-
tion is

Ha(s) =
0.274

(
s2 + 0.6641

)
(s2 + 0.1696s + 0.4102) (s + 0.4435)

The filter plots are shown in Figure 8.18. �

8.3.13 PHASE RESPONSES OF PROTOTYPE FILTERS
Elliptic filters provide optimal performance in the magnitude-squared re-
sponse but have highly nonlinear phase response in the passband (which is
undesirable in many applications). Even though we decided not to worry
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FIGURE 8.18 Elliptic analog lowpass filter in Example 8.8

about phase response in our designs, phase is still an important issue in the
overall system. At the other end of the performance scale are the Butter-
worth filters, which have maximally flat magnitude response and require a
higher-order N (more poles) to achieve the same stopband specification.
However, they exhibit a fairly linear phase response in their passband.
The Chebyshev filters have phase characteristics that lie somewhere in
between. Therefore in practical applications we do consider Butterworth
as well as Chebyshev filters, in addition to elliptic filters. The choice de-
pends on both the filter order (which influences processing speed and
implementation complexity) and the phase characteristics (which control
the distortion).

8.4 ANALOG-TO-DIGITAL FILTER TRANSFORMATIONS

After discussing different approaches to the design of analog filters, we
are now ready to transform them into digital filters. These transfor-
mations are complex-valued mappings that are extensively studied in
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the literature. These transformations are derived by preserving different
aspects of analog and digital filters. If we want to preserve the shape
of the impulse response from analog to digital filter, then we obtain a
technique called impulse invariance transformation. If we want to con-
vert a differential equation representation into a corresponding difference
equation representation, then we obtain a finite difference approximation
technique. Numerous other techniques are also possible. One technique,
called step invariance, preserves the shape of the step response; this is
explored in Problem P8.24. Another technique that is similar to the
impulse invariance is the matched-z transformation, which matches the
pole-zero representation. It is described at the end of this section and is
explored in Problem P8.26. The most popular technique used in practice
is called a Bilinear transformation, which preserves the system function
representation from analog to digital domain. In this section we will study
in detail impulse invariance and bilinear transformations, both of which
can be easily implemented in MATLAB.

8.4.1 IMPULSE INVARIANCE TRANSFORMATION
In this design method we want the digital filter impulse response to look
“similar” to that of a frequency-selective analog filter. Hence we sample
ha(t) at some sampling interval T to obtain h(n); that is,

h(n) = ha(nT )

The parameter T is chosen so that the shape of ha(t) is “captured” by
the samples. Since this is a sampling operation, the analog and digital
frequencies are related by

ω = ΩT or ejω = ejΩT

Since z = ejω on the unit circle and s = jΩ on the imaginary axis, we
have the following transformation from the s-plane to the z-plane:

z = esT (8.63)

The system functions H(z) and Ha(s) are related through the frequency-
domain aliasing formula (3.27):

H(z) =
1
T

∞∑
k=−∞

Ha

(
s− j

2π
T

k

)
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FIGURE 8.19 Complex-plane mapping in impulse invariance transformation

The complex plane transformation under the mapping (8.63) is shown in
Figure 8.19, from which we have the following observations:

1. Using σ = Re(s), we note that

σ < 0 maps into |z| < 1 (inside of the UC)

σ = 0 maps onto |z| = 1 (on the UC)

σ > 0 maps into |z| > 1 (outside of the UC)

2. All semi-infinite strips (shown above) of width 2π/T map into |z| < 1.
Thus this mapping is not unique but a many-to-one mapping.

3. Since the entire left half of the s-plane maps into the unit circle, a
causal and stable analog filter maps into a causal and stable digital
filter.

4. If Ha(jΩ) = Ha(jω/T ) = 0 for |Ω| ≥ π/T , then

H(ejω) =
1
T
Ha(jω/T ), |ω| ≤ π

and there will be no aliasing. However, no analog filter of finite order
can be exactly band-limited. Therefore some aliasing error will occur
in this design procedure, and hence the sampling interval T plays a
minor role in this design method.

8.4.2 DESIGN PROCEDURE
Given the digital lowpass filter specifications ωp, ωs, Rp, and As, we want
to determine H(z) by first designing an equivalent analog filter and then
mapping it into the desired digital filter. The steps required for this pro-
cedure are

1. Choose T and determine the analog frequencies

Ωp =
ωp

Tp
and Ωs =

ωs

T
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2. Design an analog filter Ha(s) using the specifications Ωp, Ωs, Rp, and
As. This can be done using any one of the three (Butterworth, Cheby-
shev, or elliptic) prototypes of the previous section.

3. Using partial fraction expansion, expand Ha(s) into

Ha(s) =
N∑

k=1

Rk

s− pk

4. Now transform analog poles {pk} into digital poles {epkT } to obtain
the digital filter:

H(z) =
N∑

k=1

Rk

1 − epkT z−1
(8.64)

� EXAMPLE 8.9 Transform

Ha(s) =
s + 1

s2 + 5s + 6

into a digital filter H(z) using the impulse invariance technique in which
T = 0.1.

Solution We first expand Ha(s) using partial fraction expansion:

Ha(s) =
s + 1

s2 + 5s + 6
=

2

s + 3
− 1

s + 2

The poles are at p1 = −3 and p2 = −2. Then from (8.64) and using T = 0.1,
we obtain

H(z) =
2

1 − e−3T z−1
− 1

1 − e−2T z−1
=

1 − 0.8966z−1

1 − 1.5595z−1 + 0.6065z−2

It is easy to develop a MATLAB function to implement the impulse invari-
ance mapping. Given a rational function description of Ha(s), we can use the
residue function to obtain its pole-zero description. Then each analog pole is
mapped into a digital pole using (8.63). Finally, the residuez function can be
used to convert H(z) into rational function form. This procedure is given in the
function imp invr.

function [b,a] = imp_invr(c,d,T)

% Impulse Invariance Transformation from Analog to Digital Filter

% ---------------------------------------------------------------

% [b,a] = imp_invr(c,d,T)

% b = Numerator polynomial in z^(-1) of the digital filter

% a = Denominator polynomial in z^(-1) of the digital filter

% c = Numerator polynomial in s of the analog filter
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% d = Denominator polynomial in s of the analog filter

% T = Sampling (transformation) parameter

%

[R,p,k] = residue(c,d); p = exp(p*T);

[b,a] = residuez(R,p,k); b = real(b’); a = real(a’);

A similar function called impinvar is available in the SP toolbox of MATLAB.

�

� EXAMPLE 8.10 We demonstrate the use of the imp invr function on the system function from
Example 8.9.

Solution MATLAB script:

>> c = [1,1]; d = [1,5,6]; T = 0.1;

>> [b,a] = imp_invr(c,d,T)

b = 1.0000 -0.8966

a = 1.0000 -1.5595 0.6065

The digital filter is

H(z) =
1 − 0.8966z−1

1 − 1.5595z−1 + 0.6065z−2

as expected. In Figure 8.20 we show the impulse responses and the magnitude
responses (plotted up to the sampling frequency 1/T ) of the analog and the
resulting digital filter. Clearly, the aliasing in the frequency domain is evident.

�

In the next several examples we illustrate the impulse invariance de-
sign procedure on all three prototypes.

� EXAMPLE 8.11 Design a lowpass digital filter using a Butterworth prototype to satisfy

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB

Solution The design procedure is described in the following MATLAB script:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; % digital Passband freq in Hz

>> ws = 0.3*pi; % digital Stopband freq in Hz

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB
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FIGURE 8.20 Impulse and frequency response plots in Example 8.10

>> % Analog Prototype Specifications: Inverse mapping for frequencies

>> T = 1; % Set T=1

>> OmegaP = wp / T; % Prototype Passband freq

>> OmegaS = ws / T; % Prototype Stopband freq

>> % Analog Butterworth Prototype Filter Calculation:

>> [cs,ds] = afd_butt(OmegaP,OmegaS,Rp,As);

*** Butterworth Filter Order = 6

>> % Impulse Invariance transformation:

>> [b,a] = imp_invr(cs,ds,T); [C,B,A] = dir2par(b,a)

C = []

B = 1.8557 -0.6304

-2.1428 1.1454

0.2871 -0.4466

A = 1.0000 -0.9973 0.2570

1.0000 -1.0691 0.3699

1.0000 -1.2972 0.6949
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FIGURE 8.21 Digital Butterworth lowpass filter using impulse invariance design

The desired filter is a 6th-order Butterworth filter whose system function H(z)
is given in the parallel form

H(z) =
1.8587 − 0.6304z−1

1 − 0.9973z−1 + 0.257z−2
+

−2.1428 + 1.1454z−1

1 − 1.0691z−1 + 0.3699z−2

+
0.2871 − 0.4463z−1

1 − 1.2972z−1 + 0.6449z−2

The frequency response plots are given in Figure 8.21. �

� EXAMPLE 8.12 Design a lowpass digital filter using a Chebyshev-I prototype to satisfy

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB
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Solution The design procedure is described in the following MATLAB script:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; % digital Passband freq in rad

>> ws = 0.3*pi; % digital Stopband freq in rad

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

>> T = 1; % Set T=1

>> OmegaP = wp / T; % Prototype Passband freq

>> OmegaS = ws / T; % Prototype Stopband freq

>> % Analog Chebyshev-1 Prototype Filter Calculation:

>> [cs,ds] = afd_chb1(OmegaP,OmegaS,Rp,As);

*** Chebyshev-1 Filter Order = 4

>> % Impulse Invariance transformation:

>> [b,a] = imp_invr(cs,ds,T); [C,B,A] = dir2par(b,a)

C = []

B =-0.0833 -0.0246

0.0833 0.0239

A = 1.0000 -1.4934 0.8392

1.0000 -1.5658 0.6549

The desired filter is a 4th-order Chebyshev-I filter whose system function H(z) is

H(z) =
−0.0833 − 0.0246z−1

1 − 1.4934z−1 + 0.8392z−2
+

−0.0833 + 0.0239z−1

1 − 1.5658z−1 + 0.6549z−2

The frequency response plots are given in Figure 8.22. �

� EXAMPLE 8.13 Design a lowpass digital filter using a Chebyshev-II prototype to satisfy

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB

Solution Recall that the Chebyshev-II filter is equiripple in the stopband. It means that
this analog filter has a response that does not go to zero at high frequencies in
the stopband. Therefore after impulse invariance transformation, the aliasing
effect will be significant; this can degrade the passband response. The MATLAB
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FIGURE 8.22 Digital Chebyshev-I lowpass filter using impulse invariance design

script follows:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; % digital Passband freq in rad

>> ws = 0.3*pi; % digital Stopband freq in rad

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

>> T = 1; % Set T=1

>> OmegaP = wp / T; % Prototype Passband freq

>> OmegaS = ws / T; % Prototype Stopband freq

>> % Analog Chebyshev-1 Prototype Filter Calculation:

>> [cs,ds] = afd_chb2(OmegaP,OmegaS,Rp,As);

*** Chebyshev-2 Filter Order = 4

>> % Impulse Invariance transformation:

>> [b,a] = imp_invr(cs,ds,T); [C,B,A] = dir2par(b,a);
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FIGURE 8.23 Digital Chebyshev-II lowpass filter using impulse invariance
design

From the frequency response plots in Figure 8.23 we clearly observe the pass-
band as well as stopband degradation. Hence the impulse invariance design
technique has failed to produce a desired digital filter. �

� EXAMPLE 8.14 Design a lowpass digital filter using an elliptic prototype to satisfy

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB

Solution The elliptic filter is equiripple in both bands. Hence this situation is similar to
that of the Chebyshev-II filter, and we should not expect a good digital filter.
The MATLAB script follows:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; % digital Passband freq in rad

>> ws = 0.3*pi; % digital Stopband freq in rad

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB
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FIGURE 8.24 Digital elliptic lowpass filter using impulse invariance design

>> % Analog Prototype Specifications: Inverse mapping for frequencies

>> T = 1; % Set T=1

>> OmegaP = wp / T; % Prototype Passband freq

>> OmegaS = ws / T; % Prototype Stopband freq

>> % Analog Elliptic Prototype Filter Calculation:

>> [cs,ds] = afd_elip(OmegaP,OmegaS,Rp,As);

*** Elliptic Filter Order = 3

>> % Impulse Invariance transformation:

>> [b,a] = imp_invr(cs,ds,T); [C,B,A] = dir2par(b,a);

From the frequency response plots in Figure 8.24 we clearly observe that once
again the impulse invariance design technique has failed. �

The advantages of the impulse invariance mapping are that it is a
stable design and that the frequencies Ω and ω are linearly related. But
the disadvantage is that we should expect some aliasing of the ana-
log frequency response, and in some cases this aliasing is intolerable.
Consequently, this design method is useful only when the analog filter
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is essentially band-limited to a lowpass or bandpass filter in which there
are no oscillations in the stopband.

8.4.3 BILINEAR TRANSFORMATION
This mapping is the best transformation method; it involves a well-known
function given by

s =
2
T

1 − z−1

1 + z−1
=⇒ z =

1 + sT/2
1 − sT/2

(8.65)

where T is a parameter. Another name for this transformation is the linear
fractional transformation because when cleared of fractions, we obtain

T

2
sz +

T

2
s− z + 1 = 0

which is linear in each variable if the other is fixed, or bilinear in s and z.
The complex plane mapping under (8.65) is shown in Figure 8.25, from
which we have the following observations:

1. Using s = σ + jΩ in (8.65), we obtain

z =
(

1 +
σT

2
+ j

ΩT

2

) / (
1 − σT

2
− j

ΩT

2

)
(8.66)

Hence

σ < 0 =⇒ |z| =

∣∣∣∣∣
1 + σT

2 + j ΩT
2

1 − σT
2 − j ΩT

2

∣∣∣∣∣ < 1

σ = 0 =⇒ |z| =

∣∣∣∣∣
1 + j ΩT

2

1 − j ΩT
2

∣∣∣∣∣ = 1

σ > 0 =⇒ |z| =

∣∣∣∣∣
1 + σT

2 + j ΩT
2

1 − σT
2 − j ΩT

2

∣∣∣∣∣ > 1

Im {z}
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 =  z
1 + (sT /2)
1 − (sT /2)

FIGURE 8.25 Complex-plane mapping in bilinear transformation
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2. The entire left half-plane maps into the inside of the unit circle. Hence
this is a stable transformation.

3. The imaginary axis maps onto the unit circle in a one-to-one fashion.
Hence there is no aliasing in the frequency domain.

Substituting σ = 0 in (8.66), we obtain

z =
1 + j ΩT

2

1 − j ΩT
2

= ejω

since the magnitude is 1. Solving for ω as a function of Ω, we obtain

ω = 2 tan−1

(
ΩT

2

)
or Ω =

2
T

tan
(ω

2

)
(8.67)

This shows that Ω is nonlinearly related to (or warped into) ω but that
there is no aliasing. Hence in (8.67) we will say that ω is prewarped into Ω.

� EXAMPLE 8.15 Transform Ha(s) =
s + 1

s2 + 5s + 6
into a digital filter using the bilinear transfor-

mation. Choose T = 1.

Solution Using (8.65), we obtain

H(z) = Ha

(
2

T

1 − z−1

1 + z−1

∣∣∣∣
T=1

)
= Ha

(
2
1 − z−1

1 + z−1

)

=
2
1 − z−1

1 + z−1
+ 1

(
2
1 − z−1

1 + z−1

)2

+ 5

(
2
1 − z−1

1 + z−1

)
+ 6

Simplifying,

H(z) =
3 + 2z−1 − z−2

20 + 4z−1
=

0.15 + 0.1z−1 − 0.05z−2

1 + 0.2z−1

�

MATLAB provides a function called bilinear to implement this
mapping. Its invocation is similar to the imp invr function, but it also
takes several forms for different input-output quantities. The SP tool-
box manual should be consulted for more details. Its use is shown in the
following example.
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� EXAMPLE 8.16 Transform the system function Ha(s) in Example 8.15 using the bilinear func-
tion.

Solution MATLAB script:

>> c = [1,1]; d = [1,5,6]; T = 1; Fs = 1/T;

>> [b,a] = bilinear(c,d,Fs)

b = 0.1500 0.1000 -0.0500

a = 1.0000 0.2000 0.0000

The filter is

H(z) =
0.15 + 0.1z−1 − 0.05z−2

1 + 0.2z−1

as before. �

8.4.4 DESIGN PROCEDURE
Given digital filter specifications ωp, ωs, Rp, and As, we want to determine
H(z). The design steps in this procedure are the following:

1. Choose a value for T . This is arbitrary, and we may set T = 1.
2. Prewarp the cutoff frequencies ωp and ωs; that is, calculate Ωp and Ωs

using (8.67):

Ωp =
2
T

tan
(ωp

2

)
, Ωs =

2
T

tan
(ωs

2

)
(8.68)

3. Design an analog filter Ha(s) to meet the specifications Ωp, Ωs, Rp,
and As. We have already described how to do this in the previous
section.

4. Finally, set

H(z) = Ha

(
2
T

1 − z−1

1 + z−1

)

and simplify to obtain H(z) as a rational function in z−1.

In the next several examples we demonstrate this design procedure
on our analog prototype filters.

� EXAMPLE 8.17 Design the digital Butterworth filter of Example 8.11. The specifications are

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB
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Solution MATLAB script:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; % digital Passband freq in rad

>> ws = 0.3*pi; % digital Stopband freq in rad

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

>> T = 1; Fs = 1/T; % Set T=1

>> OmegaP = (2/T)*tan(wp/2); % Prewarp Prototype Passband freq

>> OmegaS = (2/T)*tan(ws/2); % Prewarp Prototype Stopband freq

>> % Analog Butterworth Prototype Filter Calculation:

>> [cs,ds] = afd_butt(OmegaP,OmegaS,Rp,As);

*** Butterworth Filter Order = 6

>> % Bilinear transformation:

>> [b,a] = bilinear(cs,ds,Fs); [C,B,A] = dir2cas(b,a)

C = 5.7969e-004

B = 1.0000 2.0183 1.0186

1.0000 1.9814 0.9817

1.0000 2.0004 1.0000

A = 1.0000 -0.9459 0.2342

1.0000 -1.0541 0.3753

1.0000 -1.3143 0.7149

The desired filter is once again a 6th-order filter and has 6 zeros. Since the
6th-order zero of Ha(s) at s = −∞ is mapped to z = −1, these zeros should be
at z = −1. Due to the finite precision of MATLAB these zeros are not exactly
at z = −1. Hence the system function should be

H(z) =
0.00057969

(
1 + z−1

)6
(1 − 0.9459z−1 + 0.2342z−2) (1 − 1.0541z−1 + 0.3753z−2) (1 − 1.3143z−1 + 0.7149z−2)

The frequency response plots are given in Figure 8.26. Comparing these plots
with those in Figure 8.21, we observe that these two designs are very similar.

�

� EXAMPLE 8.18 Design the digital Chebyshev-I filter of Example 8.12. The specifications are

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB
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FIGURE 8.26 Digital Butterworth lowpass filter using bilinear transformation

Solution MATLAB script:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; % digital Passband freq in rad

>> ws = 0.3*pi; % digital Stopband freq in rad

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

>> T = 1; Fs = 1/T; % Set T=1

>> OmegaP = (2/T)*tan(wp/2); % Prewarp Prototype Passband freq

>> OmegaS = (2/T)*tan(ws/2); % Prewarp Prototype Stopband freq

>> % Analog Chebyshev-1 Prototype Filter Calculation:

>> [cs,ds] = afd_chb1(OmegaP,OmegaS,Rp,As);

*** Chebyshev-1 Filter Order = 4

>> % Bilinear transformation:

>> [b,a] = bilinear(cs,ds,Fs); [C,B,A] = dir2cas(b,a)

C = 0.0018

B = 1.0000 2.0000 1.0000

1.0000 2.0000 1.0000

A = 1.0000 -1.4996 0.8482

1.0000 -1.5548 0.6493
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FIGURE 8.27 Digital Chebyshev-I lowpass filter using bilinear transformation

The desired filter is a 4th-order filter and has 4 zeros at z = −1. The system
function is

H(z) =
0.0018

(
1 + z−1

)4
(1 − 1.4996z−1 + 0.8482z−2) (1 − 1.5548z−1 + 0.6493z−2)

The frequency response plots are given in Figure 8.27 which are similar to those
in Figure 8.22. �

� EXAMPLE 8.19 Design the digital Chebyshev-II filter of Example 8.13. The specifications are

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB
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Solution MATLAB script:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; % digital Passband freq in rad

>> ws = 0.3*pi; % digital Stopband freq in rad

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

>> T = 1; Fs = 1/T; % Set T=1

>> OmegaP = (2/T)*tan(wp/2); % Prewarp Prototype Passband freq

>> OmegaS = (2/T)*tan(ws/2); % Prewarp Prototype Stopband freq

>> % Analog Chebyshev-2 Prototype Filter Calculation:

>> [cs,ds] = afd_chb2(OmegaP,OmegaS,Rp,As);

*** Chebyshev-2 Filter Order = 4

>> % Bilinear transformation:

>> [b,a] = bilinear(cs,ds,Fs); [C,B,A] = dir2cas(b,a)

C = 0.1797

B = 1.0000 0.5574 1.0000

1.0000 -1.0671 1.0000

A = 1.0000 -0.4183 0.1503

1.0000 -1.1325 0.7183

The desired filter is again a 4th-order filter with system function

H(z) =
0.1797

(
1 + 0.5574z−1 + z−2

) (
1 − 1.0671z−1 + z−2

)
(1 − 0.4183z−1 + 0.1503z−2) (1 − 1.1325z−1 + 0.7183z−2)

The frequency response plots are given in Figure 8.28. Note that the bilinear
transformation has properly designed the Chebyshev-II digital filter. �

� EXAMPLE 8.20 Design the digital elliptic filter of Example 8.14. The specifications are

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB

Solution MATLAB script:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; % digital Passband freq in rad

>> ws = 0.3*pi; % digital Stopband freq in rad

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

>> T = 1; Fs = 1/T; % Set T=1
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FIGURE 8.28 Digital Chebyshev-II lowpass filter using bilinear transformation

>> OmegaP = (2/T)*tan(wp/2); % Prewarp Prototype Passband freq

>> OmegaS = (2/T)*tan(ws/2); % Prewarp Prototype Stopband freq

>> % Analog Elliptic Prototype Filter Calculation:

>> [cs,ds] = afd_elip(OmegaP,OmegaS,Rp,As);

*** Elliptic Filter Order = 3

>> % Bilinear transformation:

>> [b,a] = bilinear(cs,ds,Fs); [C,B,A] = dir2cas(b,a)

C = 0.1214

B = 1.0000 -1.4211 1.0000

1.0000 1.0000 0

A = 1.0000 -1.4928 0.8612

1.0000 -0.6183 0

The desired filter is a 3rd-order filter with system function

H(z) =
0.1214

(
1 − 1.4211z−1 + z−2

) (
1 + z−1

)
(1 − 1.4928z−1 + 0.8612z−2) (1 − 0.6183z−1)

The frequency response plots are given in Figure 8.29. Note that the bilinear
transformation has again properly designed the elliptic digital filter. �
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FIGURE 8.29 Digital elliptic lowpass filter using bilinear transformation

The advantages of this mapping are that (a) it is a stable design,
(b) there is no aliasing, and (c) there is no restriction on the type of filter
that can be transformed. Therefore this method is used exclusively in
computer programs including MATLAB, as we shall see next.

8.4.5 MATCHED-z TRANSFORMATION
In this method of filter transformation, zeros and poles of Ha(s) are di-
rectly mapped into zeros and poles in the z-plane using an exponential
function. Given a root (zero or pole) at the location s = a in the s-plane,
we map it in the z-plane at z = eaT where T is a sampling interval. Thus,
the system function Ha(s) with zeros {zk} and poles {p�} is mapped into
the digital filter system function H(z) as

Ha(s) =
∏M

k=1 (s− zk)∏N
�=1 (s− p�)

→ H(z) =
∏M

k=1

(
1 − ezkT z−1

)
∏N

�=1 (s− ep�T z−1)
(8.69)

Clearly the z-transform system function is “matched” to the s-domain
system function.

Note that this technique appears to be similar to the impulse invari-
ance mapping in that the pole locations are identical and aliasing is un-
avoidable. However, these two techniques differ in zero locations. Also the
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matched-z transformation does not preserve either the impulse response
or the frequency response characteristics. Hence it is suitable when de-
signing using pole-zero placement, but it is generally unsuitable when the
frequency-domain specifications are given.

8.5 LOWPASS FILTER DESIGN USING MATLAB

In this section we will demonstrate the use of MATLAB’s filter design
functions to design digital lowpass filters. These functions use the bilinear
transformation because of its desirable advantages as discussed in the
previous section. These functions are as follows:

1. [b,a]=butter(N,wn)
This function designs an Nth-order lowpass digital Butterworth filter
and returns the filter coefficients in length N + 1 vectors b and a. The
filter order is given by (8.49), and the cutoff frequency wn is determined
by the prewarping formula (8.68). However, in MATLAB all digital
frequencies are given in units of π. Hence wn is computed by using the
following relation:

ωn =
2
π

tan−1

(
ΩcT

2

)

The use of this function is given in Example 8.21.
2. [b,a]=cheby1(N,Rp,wn)

This function designs an Nth-order lowpass digital Chebyshev-I filter
with Rp decibels of ripple in the passband. It returns the filter coef-
ficients in length N + 1 vectors b and a. The filter order is given by
(8.59), and the cutoff frequency wn is the digital passband frequency
in units of π; that is,

ωn = ωp/π

The use of this function is given in Example 8.22.
3. [b,a]=cheby2(N,As,wn)

This function designs an Nth-order lowpass digital Chebyshev-II filter
with the stopband attenuation As decibels. It returns the filter coef-
ficients in length N + 1 vectors b and a. The filter order is given by
(8.59), and the cutoff frequency wn is the digital stopband frequency
in units of π; that is,

ωn = ωs/π

The use of this function is given in Example 8.23.
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4. [b,a]=ellip(N,Rp,As,wn)
This function designs an Nth-order lowpass digital elliptic filter with
the passband ripple of Rp decibels and a stopband attenuation of As
decibels. It returns the filter coefficients in length N + 1 vectors b and
a. The filter order is given by (8.62), and the cutoff frequency wn is the
digital passband frequency in units of π; that is,

ωn = ωp/π

The use of this function is given in Example 8.24.

All these above functions can also be used to design other frequency-
selective filters, such as highpass and bandpass. We will discuss their
additional capabilities in Section 8.6.

There is also another set of filter functions, namely the buttord,
cheb1ord, cheb2ord, and ellipord functions, which can provide filter
order N and filter cutoff frequency ωn, given the specifications. These
functions are available in the Signal Processing toolbox. In the examples
to follow we will determine these parameters using the formulas given
earlier. We will discuss the filter-order functions in the next section.

In the following examples we will redesign the same lowpass filters
of previous examples and compare their results. The specifications of the
lowpass digital filter are

ωp = 0.2π, Rp = 1 dB

ωs = 0.3π, As = 15 dB

� EXAMPLE 8.21 Digital Butterworth lowpass filter design:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; %digital Passband freq in rad

>> ws = 0.3*pi; %digital Stopband freq in rad

>> Rp = 1; %Passband ripple in dB

>> As = 15; %Stopband attenuation in dB

>> % Analog Prototype Specifications:

>> T = 1; %Set T=1

>> OmegaP = (2/T)*tan(wp/2); %Prewarp Prototype Passband freq

>> OmegaS = (2/T)*tan(ws/2); %Prewarp Prototype Stopband freq

>> % Analog Prototype Order Calculation:

>> N =ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS)));

>> fprintf(’\n*** Butterworth Filter Order = %2.0f \n’,N)

** Butterworth Filter Order = 6

>> OmegaC = OmegaP/((10^(Rp/10)-1)^(1/(2*N))); %Analog BW prototype cutoff

>> wn = 2*atan((OmegaC*T)/2); %Digital BW cutoff freq
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>> % Digital Butterworth Filter Design:

>> wn = wn/pi; %Digital Butter cutoff in pi units

>> [b,a]=butter(N,wn); [b0,B,A] = dir2cas(b,a)

C = 5.7969e-004

B = 1.0000 2.0297 1.0300

1.0000 1.9997 1.0000

1.0000 1.9706 0.9709

A = 1.0000 -0.9459 0.2342

1.0000 -1.0541 0.3753

1.0000 -1.3143 0.7149

The system function is

H(z) =
0.00057969

(
1 + z−1

)6
(1 − 0.9459z−1 + 0.2342z−2) (1 − 1.0541z−1 + 0.3753z−2) (1 − 1.3143z−1 + 0.7149z−2)

which is the same as in Example 8.17. The frequency-domain plots were shown
in Figure 8.26. �

� EXAMPLE 8.22 Digital Chebyshev-I lowpass filter design:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; %digital Passband freq in rad

>> ws = 0.3*pi; %digital Stopband freq in rad

>> Rp = 1; %Passband ripple in dB

>> As = 15; %Stopband attenuation in dB

>> % Analog Prototype Specifications:

>> T = 1; %Set T=1

>> OmegaP = (2/T)*tan(wp/2); %Prewarp Prototype Passband freq

>> OmegaS = (2/T)*tan(ws/2); %Prewarp Prototype Stopband freq

>> % Analog Prototype Order Calculation:

>> ep = sqrt(10^(Rp/10)-1); %Passband Ripple Factor

>> A = 10^(As/20); %Stopband Attenuation Factor

>> OmegaC = OmegaP; %Analog Prototype Cutoff freq

>> OmegaR = OmegaS/OmegaP; %Analog Prototype Transition Ratio

>> g = sqrt(A*A-1)/ep; %Analog Prototype Intermediate cal.

>> N = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));

>> fprintf(’\n*** Chebyshev-1 Filter Order = %2.0f \n’,N)

*** Chebyshev-1 Filter Order = 4

>> % Digital Chebyshev-I Filter Design:

>> wn = wp/pi; %Digital Passband freq in pi units

>> [b,a]=cheby1(N,Rp,wn); [b0,B,A] = dir2cas(b,a)
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b0 = 0.0018

B = 1.0000 2.0000 1.0000

1.0000 2.0000 1.0000

A = 1.0000 -1.4996 0.8482

1.0000 -1.5548 0.6493

The system function is

H(z) =
0.0018

(
1 + z−1

)4
(1 − 1.4996z−1 + 0.8482z−2) (1 − 1.5548z−1 + 0.6493z−2)

which is the same as in Example 8.18. The frequency-domain plots were shown
in Figure 8.27. �

� EXAMPLE 8.23 Digital Chebyshev-II lowpass filter design:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; %digital Passband freq in rad

>> ws = 0.3*pi; %digital Stopband freq in rad

>> Rp = 1; %Passband ripple in dB

>> As = 15; %Stopband attenuation in dB

>> % Analog Prototype Specifications:

>> T = 1; %Set T=1

>> OmegaP = (2/T)*tan(wp/2); %Prewarp Prototype Passband freq

>> OmegaS = (2/T)*tan(ws/2); %Prewarp Prototype Stopband freq

>> % Analog Prototype Order Calculation:

>> ep = sqrt(10^(Rp/10)-1); %Passband Ripple Factor

>> A = 10^(As/20); %Stopband Attenuation Factor

>> OmegaC = OmegaP; %Analog Prototype Cutoff freq

>> OmegaR = OmegaS/OmegaP; %Analog Prototype Transition Ratio

>> g = sqrt(A*A-1)/ep; %Analog Prototype Intermediate cal.

>> N = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));

>> fprintf(’\n*** Chebyshev-2 Filter Order = %2.0f \n’,N)

*** Chebyshev-2 Filter Order = 4

>> % Digital Chebyshev-II Filter Design:

>> wn = ws/pi; %Digital Stopband freq in pi units

>> [b,a]=cheby2(N,As,wn); [b0,B,A] = dir2cas(b,a)

b0 = 0.1797

B = 1.0000 0.5574 1.0000

1.0000 -1.0671 1.0000

A = 1.0000 -0.4183 0.1503

1.0000 -1.1325 0.7183
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The system function is

H(z) =
0.1797

(
1 + 0.5574z−1 + z−2

) (
1 − 1.0671z−1 + z−2

)
(1 − 0.4183z−1 + 0.1503z−2) (1 − 1.1325z−1 + 0.7183z−2)

which is the same as in Example 8.19. The frequency-domain plots were shown
in Figure 8.28. �

� EXAMPLE 8.24 Digital elliptic lowpass filter design:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; %digital Passband freq in rad

>> ws = 0.3*pi; %digital Stopband freq in rad

>> Rp = 1; %Passband ripple in dB

>> As = 15; %Stopband attenuation in dB

>> % Analog Prototype Specifications:

>> T = 1; %Set T=1

>> OmegaP = (2/T)*tan(wp/2); %Prewarp Prototype Passband freq

>> OmegaS = (2/T)*tan(ws/2); %Prewarp Prototype Stopband freq

>> % Analog Elliptic Filter order calculations:

>> ep = sqrt(10^(Rp/10)-1); %Passband Ripple Factor

>> A = 10^(As/20); %Stopband Attenuation Factor

>> OmegaC = OmegaP; %Analog Prototype Cutoff freq

>> k = OmegaP/OmegaS; %Analog Prototype Transition Ratio;

>> k1 = ep/sqrt(A*A-1); %Analog Prototype Intermediate cal.

>> capk = ellipke([k.^2 1-k.^2]);

>> capk1 = ellipke([(k1 .^2) 1-(k1 .^2)]);

>> N = ceil(capk(1)*capk1(2)/(capk(2)*capk1(1)));

>> fprintf(’\n*** Elliptic Filter Order = %2.0f \n’,N)

*** Elliptic Filter Order = 3

>> % Digital Elliptic Filter Design:

>> wn = wp/pi; %Digital Passband freq in pi units

>> [b,a]=ellip(N,Rp,As,wn); [b0,B,A] = dir2cas(b,a)

b0 = 0.1214

B = 1.0000 -1.4211 1.0000

1.0000 1.0000 0

A = 1.0000 -1.4928 0.8612

1.0000 -0.6183 0

The system function is

H(z) =
0.1214

(
1 − 1.4211z−1 + z−2

) (
1 + z−1

)
(1 − 1.4928z−1 + 0.8612z−2) (1 − 0.6183z−1)

which is the same as in Example 8.20. The frequency-domain plots were shown
in Figure 8.29. �
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TABLE 8.1 Comparison of three filters

Prototype Order N Stopband Att.

Butterworth 6 15
Chebyshev-I 4 25
Elliptic 3 27

8.5.1 COMPARISON OF THREE FILTERS
In our examples we designed the same digital filter using four different
prototype analog filters. Let us compare their performance. The specifi-
cations were ωp = 0.2π, Rp = 1 dB, ωs = 0.3π, and As = 15 dB. This
comparison in terms of order N and the minimum stopband attenuations
is shown in Table 8.1.

Clearly, the elliptic prototype gives the best design. However, if we
compare their phase responses, then the elliptic design has the most non-
linear phase response in the passband.

8.6 FREQUENCY-BAND TRANSFORMATIONS

In the preceding two sections we designed digital lowpass filters from
their corresponding analog filters. Certainly, we would like to design other
types of frequency-selective filters, such as highpass, bandpass, and band-
stop. This is accomplished by transforming the frequency axis (or band)
of a lowpass filter so that it behaves as another frequency-selective fil-
ter. These transformations on the complex variable z are very similar
to bilinear transformations, and the design equations are algebraic. The
procedure to design a general frequency-selective filter is to first design
a digital prototype (of fixed bandwidth, say unit bandwidth) lowpass fil-
ter and then to apply these algebraic transformations. In this section we
will describe the basic philosophy behind these mappings and illustrate
their mechanism through examples. MATLAB provides functions that
incorporate frequency-band transformation in the s-plane. We will first
demonstrate the use of the z-plane mapping and then illustrate the use
of MATLAB functions. Typical specifications for most commonly used
types of frequency-selective digital filters are shown in Figure 8.30.

Let HLP (Z) be the given prototype lowpass digital filter, and let H(z)
be the desired frequency-selective digital filter. Note that we are using
two different frequency variables, Z and z, with HLP and H, respectively.
Define a mapping of the form

Z−1 = G(z−1)
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FIGURE 8.30 Specifications of frequency-selective filters

such that
H(z) = HLP (Z)|Z−1=G(z−1)

To do this, we simply replace Z−1 everywhere in HLP by the function
G(z−1). Given that HLP (Z) is a stable and causal filter, we also want
H(z) to be stable and causal. This imposes the following requirements:

1. G(·) must be a rational function in z−1 so that H(z) is implementable.
2. The unit circle of the Z-plane must map onto the unit circle of the

z-plane.
3. For stable filters, the inside of the unit circle of the Z-plane must also

map onto the inside of the unit circle of the z-plane.

Let ω′ and ω be the frequency variables of Z and z, respectively—that
is, Z = ejω

′
and z = ejω on their respective unit circles. Then requirement

2 above implies that
∣∣Z−1

∣∣ =
∣∣G(z−1)

∣∣ =
∣∣G(e−jω)

∣∣ = 1
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and
e−jω′

=
∣∣G(e−jω)

∣∣ ej � G(e−jω)

or
−ω′ = � G(e−jω)

The general form of the function G(·) that satisfies these requirements is
a rational function of the all-pass type given by

Z−1 = G
(
z−1

)
= ±

n∏
k=1

z−1 − αk

1 − αkz−1

where |αk| < 1 for stability and to satisfy requirement 3.
Now by choosing an appropriate order n and the coefficients {αk}, we

can obtain a variety of mappings. The most widely used transformations
are given in Table 8.2. We will now illustrate the use of this table for
designing a highpass digital filter.

� EXAMPLE 8.25 In Example 8.22 we designed a Chebyshev-I lowpass filter with specifications

ω′
p = 0.2π,

ω′
s = 0.3π,

Rp = 1 dB

As = 15 dB

and determined its system function

HLP (Z) =
0.001836(1 + Z−1)4

(1 − 1.4996Z−1 + 0.8482Z−2)(1 − 1.5548Z−1 + 0.6493Z−2)

Design a highpass filter with these tolerances but with passband beginning at
ωp = 0.6π.

Solution We want to transform the given lowpass filter into a highpass filter such that
the cutoff frequency ω′

p = 0.2π is mapped onto the cutoff frequency ωp = 0.6π.
From Table 8.2

α = −cos[(0.2π + 0.6π)/2]

cos[(0.2π − 0.6π)/2]
= −0.38197 (8.70)

Hence

HLP (z) = H(Z)|
Z=− z−1−0.38197

1−0.38197z−1

=
0.02426(1 − z−1)4

(1 + 0.5661z−1 + 0.7657z−2)(1 + 1.0416z−1 + 0.4019z−2)

which is the desired filter. The frequency response plots of the lowpass filter
and the new highpass filter are shown in Figure 8.31. �
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TABLE 8.2 Frequency transformation for digital filters (prototype lowpass filter has cutoff
frequency ω′

c)

Type of
Transformation Transformation Parameters

Lowpass z−1 −→ z−1 − α

1 − αz−1
ωc = cutoff frequency of new filter

α =
sin [(ω′

c − ωc) /2]

sin [(ω′
c + ωc) /2]

Highpass z−1 −→ − z−1 + α

1 + αz−1
ωc = cutoff frequency of new filter

α = −cos [(ω′
c + ωc) /2]

cos [(ω′
c − ωc) /2]

Bandpass z−1 −→ − z−2 − α1z
−1 + α2

α2z−2 − α1z−1 + 1
ω� = lower cutoff frequency

ωu = upper cutoff frequency

α1 = −2βK/(K + 1)

α2 = (K − 1)/(K + 1)

β =
cos [(ωu + ω�) /2]

cos [(ωu − ω�) /2]

K = cot
ωu − ω�

2
tan

ω′
c

2

Bandstop z−1 −→ z−2 − α1z
−1 + α2

α2z−2 − α1z−1 + 1
ω� = lower cutoff frequency

ωu = upper cutoff frequency

α1 = −2β/(K + 1)

α2 = (K − 1)/(K + 1)

β =
cos [(ωu + ω�) /2]

cos [(ωu − ω�) /2]

K = tan
ωu − ω�

2
tan

ω′
c

2

From this example it is obvious that to obtain the rational function
of a new digital filter from the prototype lowpass digital filter, we should
be able to implement rational function substitutions from Table 8.2. This
appears to be a difficult task, but since these are algebraic functions, we
can use the conv function repetitively for this purpose. The following
zmapping function illustrates this approach.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



452 Chapter 8 IIR FILTER DESIGN

0 0.2 1
0

0.8913
1

Lowpass Filter Magnitude Response

frequency in π units

|H
|

0 0.2 1
30

1
0

Lowpass Filter Magnitude in dB

frequency in π units

de
ci

be
ls

0 0.6 1
0

0.8913
1
Highpass Filter Magnitude Response

frequency in π units

|H
|

0 0.6 1
30

1
0

Highpass Filter Magnitude in dB

frequency in π units
de

ci
be

ls

FIGURE 8.31 Magnitude response plots for Example 8.25

function [bz,az] = zmapping(bZ,aZ,Nz,Dz)

% Frequency band Transformation from Z-domain to z-domain

% -------------------------------------------------------

% [bz,az] = zmapping(bZ,aZ,Nz,Dz)

% performs:

% b(z) b(Z)|

% ---- = ----| N(z)

% a(z) a(Z)|@Z = ----

% D(z)

%

bNzord = (length(bZ)-1)*(length(Nz)-1);

aDzord = (length(aZ)-1)*(length(Dz)-1);

bzord = length(bZ)-1; azord = length(aZ)-1;

bz = zeros(1,bNzord+1);

for k = 0:bzord

pln = [1];

for l = 0:k-1

pln = conv(pln,Nz);

end

pld = [1];
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for l = 0:bzord-k-1

pld = conv(pld,Dz);

end

bz = bz+bZ(k+1)*conv(pln,pld);

end

az = zeros(1,aDzord+1);

for k = 0:azord

pln = [1];

for l = 0:k-1

pln = conv(pln,Nz);

end

pld = [1];

for l = 0:azord-k-1

pld = conv(pld,Dz);

end

az = az+aZ(k+1)*conv(pln,pld);

end

� EXAMPLE 8.26 Use the zmapping function to perform the lowpass-to-highpass transformation
in Example 8.25.

Solution First we will design the lowpass digital filter in MATLAB using the bilinear
transformation procedure and then use the zmapping function.

MATLAB script:

>> % Digital Lowpass Filter Specifications:

>> wplp = 0.2*pi; % digital Passband freq in rad

>> wslp = 0.3*pi; % digital Stopband freq in rad

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

>> T = 1; Fs = 1/T; % Set T=1

>> OmegaP = (2/T)*tan(wplp/2); % Prewarp Prototype Passband freq

>> OmegaS = (2/T)*tan(wslp/2); % Prewarp Prototype Stopband freq

>> % Analog Chebyshev Prototype Filter Calculation:

>> [cs,ds] = afd_chb1(OmegaP,OmegaS,Rp,As);

** Chebyshev-1 Filter Order = 4

>> % Bilinear transformation:

>> [blp,alp] = bilinear(cs,ds,Fs);
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>> % Digital Highpass Filter Cutoff frequency:

>> wphp = 0.6*pi; % Passband edge frequency

>> % LP-to-HP frequency-band transformation:

>> alpha = -(cos((wplp+wphp)/2))/(cos((wplp-wphp)/2))

alpha = -0.3820

>> Nz = -[alpha,1]; Dz = [1,alpha];

>> [bhp,ahp] = zmapping(blp,alp,Nz,Dz); [C,B,A] = dir2cas(bhp,ahp)

C = 0.0243

B = 1.0000 -2.0000 1.0000

1.0000 -2.0000 1.0000

A = 1.0000 1.0416 0.4019

1.0000 0.5561 0.7647

The system function of the highpass filter is

H(z) =
0.0243(1 − z−1)4

(1 + 0.5661z−1 + 0.7647z−2)(1 + 1.0416z−1 + 0.4019z−2)

which is essentially identical to that in Example 8.25. �

8.6.1 DESIGN PROCEDURE
In Example 8.26 a lowpass prototype digital filter was available to trans-
form into a highpass filter so that a particular band-edge frequency was
properly mapped. In practice we have to first design a prototype lowpass
digital filter whose specifications should be obtained from specifications
of other frequency-selective filters as given in Figure 8.30. We will now
show that the lowpass prototype filter specifications can be obtained from
the transformation formulas given in Table 8.2.

Let us use the highpass filter of Example 8.25 as an example. The
passband-edge frequencies were transformed using the parameter α =
−0.38197 in (8.70). What is the stopband-edge frequency of the highpass
filter, say ωs, corresponding to the stopband edge ω′

s = 0.3π of the pro-
totype lowpass filter? This can be answered by (8.70). Since α is fixed for
the transformation, we set the equation

α = −cos[(0.3π + ωs)/2]
cos[(0.3π − ωs)/2]

= −0.38197

This is a transcendental equation whose solution can be obtained iter-
atively from an initial guess. It can be done using MATLAB, and the
solution is

ωs = 0.4586π
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Now in practice we will know the desired highpass frequencies ωs and
ωp, and we are required to find the prototype lowpass cutoff frequencies
ω′
s and ω′

p. We can choose the passband frequency ω′
p with a reasonable

value, say ω′
p = 0.2π, and determine α from ωp using the formula from

Table 8.2. Now ω′
s can be determined (for our highpass filter example)

from α and

Z = − z−1 + α

1 + αz−1

where Z = ejω
′
s and z = ejωs , or

ω′
s = �

(
− e−jωs + α

1 + αe−jωs

)
(8.71)

Continuing our highpass filter example, let ωp = 0.6π and ωs = 0.4586π be
the band-edge frequencies. Let us choose ω′

p = 0.2π. Then α = −0.38197
from (8.70), and from (8.71)

ω′
s = �

(
− e−j0.4586π − 0.38197

1 − 0.38197e−j−0.38197

)
= 0.3π

as expected. Now we can design a digital lowpass filter and transform
it into a highpass filter using the zmapping function to complete our
design procedure. For designing a highpass Chebyshev-I digital filter, the
above procedure can be incorporated into a MATLAB function called the
cheb1hpf function shown here.

function [b,a] = cheb1hpf(wp,ws,Rp,As)

% IIR Highpass filter design using Chebyshev-1 prototype

% function [b,a] = cheb1hpf(wp,ws,Rp,As)

% b = Numerator polynomial of the highpass filter

% a = Denominator polynomial of the highpass filter

% wp = Passband frequency in radians

% ws = Stopband frequency in radians

% Rp = Passband ripple in dB

% As = Stopband attenuation in dB

%

% Determine the digital lowpass cutoff frequencies:

wplp = 0.2*pi;

alpha = -(cos((wplp+wp)/2))/(cos((wplp-wp)/2));

wslp = angle(-(exp(-j*ws)+alpha)/(1+alpha*exp(-j*ws)));

%
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% Compute Analog lowpass Prototype Specifications:

T = 1; Fs = 1/T;

OmegaP = (2/T)*tan(wplp/2);

OmegaS = (2/T)*tan(wslp/2);

% Design Analog Chebyshev Prototype Lowpass Filter:

[cs,ds] = afd_chb1(OmegaP,OmegaS,Rp,As);

% Perform Bilinear transformation to obtain digital lowpass

[blp,alp] = bilinear(cs,ds,Fs);

% Transform digital lowpass into highpass filter

Nz = -[alpha,1]; Dz = [1,alpha];

[b,a] = zmapping(blp,alp,Nz,Dz);

We will demonstrate this procedure in the following example.

� EXAMPLE 8.27 Design a highpass digital filter to satisfy

ωp = 0.6π,

ωs = 0.4586π,

Rp = 1 dB

As = 15 dB

Use the Chebyshev-I prototype.

Solution MATLAB script:

>> % Digital Highpass Filter Specifications:

>> wp = 0.6*pi; % digital Passband freq in rad

>> ws = 0.4586*pi; % digital Stopband freq in rad

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> [b,a] = cheb1hpf(wp,ws,Rp,As); [C,B,A] = dir2cas(b,a)

C = 0.0243

B = 1.0000 -2.0000 1.0000

1.0000 -2.0000 1.0000

A = 1.0000 1.0416 0.4019

1.0000 0.5561 0.7647

The system function is

H(z) =
0.0243(1 − z−1)4

(1 + 0.5661z−1 + 0.7647z−2)(1 + 1.0416z−1 + 0.4019z−2)

which is identical to that in Example 8.26. �
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This highpass filter design procedure can be easily extended to other
frequency-selective filters using the transformation functions in Table 8.2.
These design procedures are explored in Problems P8.34, P8.36, P8.38,
and P8.40. We now describe MATLAB’s filter design functions for design-
ing arbitrary frequency-selective filters.

8.6.2 MATLAB IMPLEMENTATION
In the preceding section we discussed four MATLAB functions to design
digital lowpass filters. These same functions can also be used to design
highpass, bandpass, and bandstop filters. The frequency-band transfor-
mations in these functions are done in the s-plane, that is, they use
Approach-1 discussed on page 386. For the purpose of illustration we
will use the function butter. It can be used with the following variations
in its input arguments.

• [b,a] = BUTTER(N,wn,’high’) designs an Nth-order highpass filter
with digital 3-dB cutoff frequency wn in units of π.

• [b,a] = BUTTER(N,wn,)designs an order 2N bandpass filter if wn is a
two-element vector, wn=[w1 w2], with 3-dB passband w1 < w < w2 in
units of π.

• [b,a] = BUTTER(N,wn,’stop’) is an order 2N bandstop filter if wn=[w1
w2]with 3-dB stopband w1 < w < w2 in units of π.

To design any frequency-selective Butterworth filter, we need to know
the order N and the 3-dB cutoff frequency vector wn. In this chapter we
described how to determine these parameters for lowpass filters. However,
these calculations are more complicated for bandpass and bandstop filters.
In their SP toolbox, MATLAB provides a function called buttord to
compute these parameters. Given the specifications, ωp, ωs, Rp, and As,
this function determines the necessary parameters. Its syntax is

[N,wn] = buttord(wp,ws,Rp,As)

The parameters wp and ws have some restrictions, depending on the type
of filter:

• For lowpass filters wp < ws.
• For highpass filters wp > ws.
• For bandpass filters wp and ws are two-element vectors, wp=[wp1,

wp2] and ws=[ws1,ws2], such that ws1 < wp1 < wp2 < ws2.
• For bandstop filters wp1 < ws1 < ws2 < wp2.

Now using the buttord function in conjunction with the butter func-
tion, we can design any Butterworth IIR filter. Similar discussions apply
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for cheby1, cheby2, and ellip functions with appropriate modifications.
We illustrate the use of these functions through the following examples.

� EXAMPLE 8.28 In this example we will design a Chebyshev-I highpass filter whose specifications
were given in Example 8.27.

Solution MATLAB script:

>> % Digital Filter Specifications: % Type: Chebyshev-I highpass

>> ws = 0.4586*pi; % Dig. stopband edge frequency

>> wp = 0.6*pi; % Dig. passband edge frequency

>> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> % Calculations of Chebyshev-I Filter Parameters:

>> [N,wn] = cheb1ord(wp/pi,ws/pi,Rp,As);

>> % Digital Chebyshev-I Highpass Filter Design:

>> [b,a] = cheby1(N,Rp,wn,’high’);

>> % Cascade Form Realization:

>> [b0,B,A] = dir2cas(b,a)

b0 = 0.0243

B = 1.0000 -1.9991 0.9991

1.0000 -2.0009 1.0009

A = 1.0000 1.0416 0.4019

1.0000 0.5561 0.7647

The cascade form system function

H(z) =
0.0243(1 − z−1)4

(1 + 0.5661z−1 + 0.7647z−2)(1 + 1.0416z−1 + 0.4019z−2)

is identical to the filter designed in Example 8.27, which demonstrates that
the two approaches described on page 386 are identical. The frequency-domain
plots are shown in Figure 8.32. �

� EXAMPLE 8.29 In this example we will design an elliptic bandpass filter whose specifications
are given in the following MATLAB script:

>> % Digital Filter Specifications: % Type: Elliptic Bandpass

>> ws = [0.3*pi 0.75*pi]; % Dig. stopband edge frequency

>> wp = [0.4*pi 0.6*pi]; % Dig. passband edge frequency

>> Rp = 1; % Passband ripple in dB

>> As = 40; % Stopband attenuation in dB
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FIGURE 8.32 Digital Chebyshev-I highpass filter in Example 8.28

>> % Calculations of Elliptic Filter Parameters:

>> [N,wn] = ellipord(wp/pi,ws/pi,Rp,As);

>> % Digital Elliptic Bandpass Filter Design:

>> [b,a] = ellip(N,Rp,As,wn);

>> % Cascade Form Realization:

>> [b0,B,A] = dir2cas(b,a)

b0 = 0.0197

B = 1.0000 1.5066 1.0000

1.0000 0.9268 1.0000

1.0000 -0.9268 1.0000

1.0000 -1.5066 1.0000

A = 1.0000 0.5963 0.9399

1.0000 0.2774 0.7929

1.0000 -0.2774 0.7929

1.0000 -0.5963 0.9399

Note that the designed filter is a 10th-order filter. The frequency-domain plots
are shown in Figure 8.33. �
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FIGURE 8.33 Digital elliptic bandpass filter in Example 8.29

� EXAMPLE 8.30 Finally, we will design a Chebyshev-II bandstop filter whose specifications are
given in the following MATLAB script.

>> % Digital Filter Specifications: % Type: Chebyshev-II Bandstop

>> ws = [0.4*pi 0.7*pi]; % Dig. stopband edge frequency

>> wp = [0.25*pi 0.8*pi]; % Dig. passband edge frequency

>> Rp = 1; % Passband ripple in dB

>> As = 40; % Stopband attenuation in dB

>> % Calculations of Chebyshev-II Filter Parameters:

>> [N,wn] = cheb2ord(wp/pi,ws/pi,Rp,As);

>> % Digital Chebyshev-II Bandstop Filter Design:

>> [b,a] = cheby2(N,As,ws/pi,’stop’);

>> % Cascade Form Realization:

>> [b0,B,A] = dir2cas(b,a)

b0 = 0.1558

B = 1.0000 1.1456 1.0000

1.0000 0.8879 1.0000

1.0000 0.3511 1.0000

1.0000 -0.2434 1.0000

1.0000 -0.5768 1.0000
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FIGURE 8.34 Digital Chebyshev-II bandstop filter in Example 8.30

A = 1.0000 1.3041 0.8031

1.0000 0.8901 0.4614

1.0000 0.2132 0.2145

1.0000 -0.4713 0.3916

1.0000 -0.8936 0.7602

This is also a 10th-order filter. The frequency domain plots are shown in
Figure 8.34. �

8.7 PROBLEMS

P8.1 A digital resonator is to be designed with ω0 = π/4 that has 2 zeros at z = 0.

1. Compute and plot the frequency response of this resonator for r = 0.8, 0.9, and 0.99.
2. For each case in part 1, determine the 3 dB bandwidth and the resonant frequency ωr

from your magnitude plots.
3. Check if your results in part 2 are in agreement with the theoretical results.
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P8.2 A digital resonator is to be designed with ω0 = π/4 that has 2 zeros at z = 1 and z = −1.

1. Compute and plot the frequency response of this resonator for r = 0.8, 0.9, and 0.99.
2. For each case in part 1 determine the 3 dB bandwidth and the resonant frequency ωr

from your magnitude plots.
3. Compare your results in part 2 with (8.48) and (8.47 ), respectively.

P8.3 We want to design a digital resonator with the following requirements: a 3 dB bandwidth of
0.05 rad, a resonant frequency of 0.375 cycles/sam, and zeros at z = 1 and z = −1. Using
trial-and-error approach, determine the difference equation of the resonator.

P8.4 A notch filter is to be designed with a null at the frequency ω0 = π/2.

1. Compute and plot the frequency response of this notch filter for r = 0.7, 0.9, and 0.99.
2. For each case in part 1, determine the 3 dB bandwidth from your magnitude plots.
3. By trial-and-error approach, determine the value of r if we want the 3 dB bandwidth to

be 0.04 radians at the null frequency ω0 = π/2.

P8.5 Repeat Problem P8.4 for a null at ω0 = π/6.

P8.6 A speech signal with bandwidth of 4 kHz is sampled at 8 kHz. The signal is corrupted by
sinusoids with frequencies 1 kH, 2 kHz, and 3 kHz.

1. Design an IIR filter using notch filter components that eliminates these sinusoidal
signals.

2. Choose the gain of the filter so that the maximum gain is equal to 1, and plot the
log-magnitude response of your filter.

3. Load the handel sound file in MATLAB, and add the preceding three sinusoidal signals
to create a corrupted sound signal. Now filter the corrupted sound signal using your
filter and comment on its performance.

P8.7 Consider the system function of an IIR lowpass filter

H(z) = K
1 + z−1

1 − 0.9z−1
(8.72)

where K is a constant that can be adjusted to make the maximum gain response equal to 1.
We obtain the system function of an Lth-order comb filter HL(z) using HL(z) = H

(
zL
)
.

1. Determine the value of K for the system function in (8.72).
2. Using the K value from part 1, determine and plot the log-magnitude response of the

comb filter for L = 6.
3. Describe the shape of your plot in part 2.

P8.8 Consider the system function of an IIR highpass filter

H(z) = K
1 − z−1

1 − 0.9z−1
(8.73)

where K is a constant that can be adjusted to make the maximum gain response equal to 1.
We obtain the system function of an Lth-order comb filter HL(z) using HL(z) = H

(
zL
)
.
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1. Determine the value of K for the system function in (8.73).
2. Using the K value from part 1, determine and plot the log-magnitude response of the

comb filter for L = 6.
3. Describe the shape of your plot in part 2.

P8.9 (Adapted from [19]) As discussed in Chapter 1, echos and reverberations of a signal x(n)
can be obtained by scaling and delaying, that is,

y(n) =

∞∑
k=0

αkx(n− kD) (8.74)

where D is a positive integer for minimum delay and αk > αk−1 > 0.

1. Consider the IIR comb filter given by

H(z) =
1

1 − az−D
(8.75)

Determine its impulse response. Explain why this filter can be used as a reverberator.
2. Consider the cascade of three allpass comb filters

H(z) =
zD1 − a1

1 − a1z−D1
× zD2 − a2

1 − a2z−D2
× zD3 − a3

1 − a3z−D3
(8.76)

which can be used as a practical digital reverberator. Compute and plot the impulse
response of this reverberator for D1 = 50, a1 = 0.7; D2 = 41, a2 = 0.665; and D3 = 32,
a3 = 0.63175.

3. Repeat part 2 for D1 = 53, a1 = 0.7; D2 = 40, a2 = 0.665; and D3 = 31, a3 = 0.63175.
How does the shape of this reverberator different from the one in part 2? Which is a
good reverberator?

P8.10 Consider the 1st-order allpass system function given by

H(z) =
a + z−1

1 + az−1
, 0 < a < 1 (8.77)

The phase-delay of a system is defined as Φ(ω)�
=
− � H

(
ejω
)
/ω and is measured in samples.

1. Show that the phase-delay of the system in (8.77) at low frequencies is given by

Φ(ω) ≈ 1 − a

1 + a
for a ≈ 1 (8.78)

2. Plot the phase-delay over −π/2 ≤ ω ≤ π/2 for a = 0.9, 0.95, and 0.99 to verify
Problem P8.10. Comment on the accuracy of the results.

3. Design a 1st-order allpass system that has phase delay of 0.01 samples. Plot its
magnitude and phase-delay responses.

P8.11 Consider the second-order allpass system function given by

H(z) =
a2 + a1z

−1 + z−2

1 + a1z−1 + a2z−2
(8.79)
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The phase-delay of a system is defined as Φ(ω)�
=
− � H

(
ejω
)
/ω and is measured in samples.

It can be shown that if we choose

a1 = 1
(

2 − d

1 + d

)
, a2 =

(2 − d)(1 − d)

(2 + d)(1 + d)
(8.80)

Then phase-delay Φ(ω) at low frequencies is approximated by d in samples. Verify this
result by plotting Φ(ω) over −π/2 ≤ ω ≤ π/2 for d = 0.1, d = 0.05, and d = 0.01.

P8.12 Design an analog Butterworth lowpass filter that has a 0.25 dB or better ripple at
500 rad/sec and at least 50 dB of attenuation at 2000 rad/sec. Determine the system
function in a rational function form. Plot the magnitude response, the log-magnitude
response in dB, the phase response, and the impulse response of the filter.

P8.13 Design an analog Butterworth lowpass filter that has a 0.5 dB or better ripple at 10 kHz
and at least 45 dB of attenuation at 20 kHz. Determine the system function in a cascade
form. Plot the magnitude response, the log-magnitude response in dB, the group-delay, and
the impulse response of the filter.

P8.14 Design a lowpass analog Chebyshev-I filter with an acceptable ripple of 1 dB for |Ω| ≤ 10
and an attenuation of 50 dB or greater beyond |Ω| = 15 rad/sec. Determine the system
function in a rational function form. Plot the magnitude response, the log-magnitude
response in dB, the group-delay, and the impulse response of the filter.

P8.15 Design a lowpass analog Chebyshev-I filter with the following characteristics:

• A passband ripple of 0.5 dB,
• passband cutoff frequency of 4 kHz, and
• stopband attenuation of 45 dB or greater beyond 20 kHz.

Determine the system function in a cascade form. Plot the magnitude response, the
log-magnitude response in dB, the phase response, and the impulse response of the filter.

P8.16 A signal xa(t) contains two frequencies, 10 kHz and 15 kHz. We want to suppress the
15 kHz component to 50 dB attenuation while passing the 10 kHz component with less than
0.25 dB attenuation. Design a minimum-order Chebyshev-II analog filter to perform this
filtering operation. Plot the log-magnitude response, and verify the design.

P8.17 Design an analog Chebyshev-II lowpass filter that has a 0.25 dB or better ripple at 250 Hz
and at least 40 dB of attenuation at 400 Hz. Plot the magnitude response, the
log-magnitude response in dB, the group-delay, and the impulse response of the filter.

P8.18 A signal xa(t) contains two frequencies, 10 kHz and 15 kHz. We want to suppress the
15 kHz component to 50 dB attenuation while passing the 10 kHz component with less than
0.25 dB attenuation. Design a minimum-order elliptic analog filter to perform this filtering
operation. Plot the log-magnitude response and verify the design. Compare your design
with the Chebyshev-II design in Problem P8.16.

P8.19 Design an analog elliptic lowpass filter that has a 0.25 dB or better ripple at 500 rad/sec
and at least 50 dB of attenuation at 2000 rad/sec. Determine the system function in a
rational function form. Plot the magnitude response, the log-magnitude response in dB, the
phase response, and the impulse response of the filter. Compare your design with the
Butterworth design in Problem P8.12.

P8.20 Write a MATLAB function to design analog lowpass filters. The format of this function
should be

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems 465

function [b,a] =afd(type,Fp,Fs,Rp,As)

%

% function [b,a] =afd(type,Fp,Fs,Rp,As)

% Designs analog lowpass filters

% type = ’butter’ or ’cheby1’ or ’cheby2’ or ’ellip’

% Fp = passband cutoff in Hz

% Fs = stopband cutoff in Hz

% Rp = passband ripple in dB

% As = stopband attenuation in dB

Use the afd butt, afd chb1, afd chb2, and afd elip functions developed in this chapter.
Check your function using specifications given in Problems P8.12 through P8.17.

P8.21 We want to design a Chebyshev-I prototype lowpass digital filter operating at a sampling
rate of 8 kHz with a passband edge of 3.2 kHz, a passband ripple of 0.5 dB, and a minimum
stopband attenuation of 45 dB at 3.8 kHz.

1. Using the impulse invariance transformation with T = 1 sec, design the digital filter. Plot
the magnitude and the log-magnitude responses as functions of analog frequency in kHz.

2. Repeat part 1 using T = 1/8000 sec.
3. Compare the above two designs in parts 1 and 2 in terms of their frequency responses.

Comment on the effect of T on the impulse invariance design.

P8.22 Design a Butterworth digital lowpass filter to satisfy the specifications:

passband edge: 0.4π, Rp = 0.5 dB

stopband edge: 0.6π, As = 50 dB

Use the impulse invariance method with T = 2. Determine the system function in the
rational form, and plot the log-magnitude response in dB. Plot the impulse response h(n)
and the impulse response ha(t) of the analog prototype and compare their shapes.

P8.23 Write a MATLAB function to design digital lowpass filters based on the impulse invariance
transformation. The format of this function should be

function [b,a] =dlpfd_ii(type,wp,ws,Rp,As,T)

%

% function [b,a] =dlpfd_ii(type,wp,ws,Rp,As,T)

% Designs digital lowpass filters using impulse invariance

% type = ’butter’ or ’cheby1’

% wp = passband cutoff in Hz

% ws = stopband cutoff in Hz

% Rp = passband ripple in dB

% As = stopband attenuation in dB

% T = sampling interval

Use the afd function developed in Problem P8.20. Check your function on specifications
given in Problems P8.21 and P8.22.
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P8.24 In this problem we will develop a technique called the step invariance transformation. In
this technique, the step response of an analog prototype filter is preserved in the resulting
digital filter; i.e., if va(t) is the step response of the prototype and if v(n) is the step
response of the digital filter, then

v(n) = va(t)|t=nT , T : sampling interval

Note that the frequency-domain quantities are related by

Va(s)
�
= L [va(t)] = Ha(s)/s

and

V (z)
�
= Z [v(n)] = H(z)

1

1 − z−1

Hence the step invariance transformation steps are: Given Ha(s)

• divide Ha(s) by s to obtain Va(s),
• find residues {Rk} and poles {pk} of Va(s),
• transform analog poles {pk} into digital poles

{
epkT

}
where T is arbitrary,

• determine V (z) from residues {Rk} and poles
{
epkT

}
, and finally

• determine H(z) by multiplying V (z) by
(
1 − z−1

)
.

Use the above procedure to develop a MATLAB function to implement the step invariance
transformation. The format of this function should be

function [b,a] =stp_invr(c,d,T)

% Step Invariance Transformation from Analog to Digital Filter

% [b,a] =stp_invr(c,d,T)

% b = Numerator polynomial in z^(-1) of the digital filter

% a = Denominator polynomial in z^(-1) of the digital filter

% c = Numerator polynomial in s of the analog filter

% d = Denominator polynomial in s of the analog filter

% T = Sampling (transformation) parameter

P8.25 Design the lowpass Butterworth digital filter of Problem P8.22 using the step invariance
method. Plot the log-magnitude response in dB and compare it with that in Problem P8.22.
Plot the step response v(n) and the impulse response va(t) of the analog prototype and
compare their shapes.

P8.26 In this chapter we discussed a filter transformation technique called the matched-z
transformation. Using (8.69) write a MATLAB function called mzt that maps the analog
system function Ha(s) into the digital system function H(z). The format of the function
should be
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function [b,a] = mzt(c,d,T)

% Matched-Z Transformation from Analog to Digital Filter

% [b,a] = MZT(c,d,T)

% b = Numerator polynomial in z^(-1) of the digital filter

% a = Denominator polynomial in z^(-1) of the digital filter

% c = Numerator polynomial in s of the analog filter

% d = Denominator polynomial in s of the analog filter

% T = Sampling interval (transformation parameter)

Using this function, transform

Ha(s) =
s + 1

s2 + 5s + 6

into a digital filter H(z) for the sampling intervals (in seconds): T = 0.05, T = 0.1, and
T = 0.2. In each case obtain a plot similar to that in Figure 8.20 and comment on the
performance of this technique.

P8.27 Consider an analog Butterworth lowpass filter that has a 1 dB or better ripple at 100 Hz
and at least 30 dB of attenuation at 150 Hz. Transform this filter into a digital filter using
the matched-z transformation technique in which Fs = 1000 Hz. Plot the magnitude and
phase response of the resulting digital filter and determine the exact band-edge frequencies
for the given dB specifications. Comment on the results.

P8.28 Consider an analog Chebyshev-I lowpass filter that has a 0.5 dB or better ripple at 500 Hz
and at least 40 dB of attenuation at 700 Hz. Transform this filter into a digital filter using
the matched-z transformation technique in which Fs = 2000 Hz. Plot the magnitude and
phase response of the resulting digital filter and determine the exact band-edge frequencies
for the given dB specifications. Comment on the results.

P8.29 Consider an analog Chebyshev-II lowpass filter that has a 0.25 dB or better ripple at
1500 Hz and at least 80 dB of attenuation at 2000 Hz. Transform this filter into a digital
filter using the matched-z transformation technique in which Fs = 8000 Hz. Plot the
magnitude and phase response of the resulting digital filter, and determine the exact
band-edge frequencies for the given dB specifications. Comment on the results. Is this a
satisfactory design?

P8.30 Consider the design of the lowpass Butterworth filter of Problem P8.22.

1. Use the bilinear transformation technique outlined in this chapter and the bilinear

function. Plot the log-magnitude response in dB. Compare the impulse responses of the
analog prototype and the digital filter.

2. Use the butter function and compare this design with the one in part 1.

P8.31 Consider the design of the digital Chebyshev-1 filter of Problem P8.21.

1. Use the bilinear transformation technique outlined in this chapter and the bilinear

function. Plot the log-magnitude response in dB. Compare the impulse responses of the
analog prototype and the digital filter.

2. Use the cheby1 function and compare this design with the one above.
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P8.32 Design a digital lowpass filter using elliptic prototype to satisfy the requirements:

passband edge: 0.3π, Rp = 0.25 dB

stopband edge: 0.4π, As = 50 dB

Use the bilinear as well as the ellip function and compare your designs.

P8.33 Design a digital lowpass filter to satisfy the specifications:

passband edge: 0.45π, Rp = 0.5 dB

stopband edge: 0.5π, As = 60 dB

1. Use the butter function and determine the order N and the actual minimum stopband
attenuation in dB.

2. Use the cheby1 function and determine the order N and the actual minimum stopband
attenuation in dB.

3. Use the cheby2 function and determine the order N and the actual minimum stopband
attenuation in dB.

4. Use the ellip function and determine the order N and the actual minimum stopband
attenuation in dB.

5. Compare the orders, the actual minimum stopband attenuations, and the group delays
in each of the above designs.

P8.34 Write a MATLAB function to determine the lowpass prototype digital filter frequencies
from an highpass digital filter specifications using the procedure outlined in this chapter.
The format of this function should be

function [wpLP,wsLP,alpha] = hp2lpfre(wphp,wshp)

% Band-edge frequency conversion from highpass to lowpass digital filter

% [wpLP,wsLP,a] = hp2lpfre(wphp,wshp)

% wpLP = passband egde for the lowpass prototype

% wsLP = stopband egde for the lowpass prototype

% alpha = lowpass to highpass transformation parameter

% wphp = passband egde for the highpass

% wshp = stopband egde for the highpass

Using this function develop a MATLAB function to design a highpass digital filter using the
bilinear transformation. The format of this function should be

function [b,a] = dhpfd_bl(type,wp,ws,Rp,As)

% IIR Highpass filter design using bilinear transformation

% [b,a] = dhpfd_bl(type,wp,ws,Rp,As)

% type = ’butter’ or ’cheby1’ or ’chevy2’ or ’ellip’

% b = Numerator polynomial of the highpass filter

% a = Denominator polynomial of the highpass filter

% wp = Passband frequency in radians

% ws = Stopband frequency in radians (wp < ws)

% Rp = Passband ripple in dB

% As = Stopband attenuation in dB

Verify your function using the specifications in Example 8.27.
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P8.35 Design a highpass filter to satisfy the specifications:

stopband edge: 0.4π, As = 60 dB
passband edge: 0.6π, Rp = 0.5 dB

1. Use the dhpfd bl function of Problem P8.34 and the Chebyshev-I prototype to design
this filter. Plot the log-magnitude response in dB of the designed filter.

2. Use the cheby1 function for design and plot the log-magnitude response in dB. Compare
these two designs.

P8.36 Write a MATLAB function to determine the lowpass prototype digital filter frequencies
from an arbitrary lowpass digital filter specifications using the functions given in Table 8.2
and the procedure outlined for highpass filters. The format of this function should be

function [wpLP,wsLP,alpha] = lp2lpfre(wplp,wslp)

% Band-edge frequency conversion from lowpass to lowpass digital filter

% [wpLP,wsLP,a] = lp2lpfre(wplp,wslp)

% wpLP = passband egde for the lowpass prototype

% wsLP = stopband egde for the lowpass prototype

% alpha = lowpass to highpass transformation parameter

% wplp = passband egde for the given lowpass

% wslp = passband egde for the given lowpass

Using this function, develop a MATLAB function to design a lowpass filter from a
prototype lowpass digital filter using the bilinear transformation. The format of this
function should be

function [b,a] = dlpfd_bl(type,wp,ws,Rp,As)

% IIR lowpass filter design using bilinear transformation

% [b,a] = dlpfd_bl(type,wp,ws,Rp,As)

% type = ’butter’ or ’cheby1’ or ’chevy2’ or ’ellip’

% b = Numerator polynomial of the bandpass filter

% a = Denominator polynomial of the bandpass filter

% wp = Passband frequency in radians

% ws = Stopband frequency in radians

% Rp = Passband ripple in dB

% As = Stopband attenuation in dB

Verify your function using the designs in Problem P8.33.

P8.37 Design a bandpass digital filter using the Cheby2 function. The specifications are:

lower stopband edge: 0.3π
upper stopband edge: 0.6π

As = 50 dB

lower passband edge: 0.4π
upper passband edge: 0.5π

Rp = 0.5 dB

Plot the impulse response and the log-magnitude response in dB of the designed filter.

P8.38 Write a MATLAB function to determine the lowpass prototype digital filter frequencies
from a bandpass digital filter specifications using the functions given in Table 8.2 and the
procedure outlined for highpass filters. The format of this function should be
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function [wpLP,wsLP,alpha] = bp2lpfre(wpbp,wsblp)

% Band-edge frequency conversion from bandpass to lowpass digital filter

% [wpLP,wsLP,a] = bp2lpfre(wpbp,wsbp)

% wpLP = passband egde for the lowpass prototype

% wsLP = stopband egde for the lowpass prototype

% alpha = lowpass to highpass transformation parameter

% wpbp = passband egde frequency array [wp_lower, wp_upper] for the bandpass

% wsbp = passband egde frequency array [ws_lower, ws_upper] for the bandpass

Using this function, develop a MATLAB function to design a bandpass filter from a
prototype lowpass digital filter using the bilinear transformation. The format of this
function should be

function [b,a] = dbpfd_bl(type,wp,ws,Rp,As)

% IIR bandpass filter design using bilinear transformation

% [b,a] = dbpfd_bl(type,wp,ws,Rp,As)

% type = ’butter’ or ’cheby1’ or ’chevy2’ or ’ellip’

% b = Numerator polynomial of the bandpass filter

% a = Denominator polynomial of the bandpass filter

% wp = Passband frequency array [wp_lower, wp_upper] in radians

% ws = Stopband frequency array [wp_lower, wp_upper] in radians

% Rp = Passband ripple in dB

% As = Stopband attenuation in dB

Verify your function using the design in Problem P8.37.

P8.39 We wish to use the Chebyshev-I prototype to design a bandstop digital IIR filter that meets
the following specifications:

0.95 ≤ |H(ejω)| ≤ 1.05,
0 ≤ |H(ejω)| ≤ 0.01,

0.95 ≤ |H(ejω)| ≤ 1.05,

0 ≤ |ω| ≤ 0.25π
0.35π ≤ |ω| ≤ 0.65π
0.75π ≤ |ω| ≤ π

Use the cheby1 function and determine the system function H(z) of such a filter. Provide a
plot containing subplots of the log-magnitude response in dB and the impulse response.

P8.40 Write a MATLAB function to determine the lowpass prototype digital filter frequencies
from a bandstop digital filter specifications using the functions given in Table 8.2 and the
procedure outlined for highpass filters. The format of this function should be

function [wpLP,wsLP,alpha] = bs2lpfre(wpbp,wsblp)

% Band-edge frequency conversion from bandstop to lowpass digital filter

% [wpLP,wsLP,a] = bs2lpfre(wpbp,wsbp)

% wpLP = passband egde for the lowpass prototype

% wsLP = stopband egde for the lowpass prototype

% alpha = lowpass to highpass transformation parameter

% wpbp = passband egde frequency array [wp_lower, wp_upper] for the bandstop

% wsbp = passband egde frequency array [ws_lower, ws_upper] for the bandstop
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Using this function, develop a MATLAB function to design a bandstop filter from a
prototype lowpass digital filter using the bilinear transformation. The format of this
function should be

function [b,a] = dbsfd_bl(type,wp,ws,Rp,As)

% IIR bandstop filter design using bilinear transformation

% [b,a] = dbsfd_bl(type,wp,ws,Rp,As)

% type = ’butter’ or ’cheby1’ or ’chevy2’ or ’ellip’

% b = Numerator polynomial of the bandstop filter

% a = Denominator polynomial of the bandstop filter

% wp = Passband frequency array [wp_lower, wp_upper] in radians

% ws = Stopband frequency array [wp_lower, wp_upper] in radians

% Rp = Passband ripple in dB

% As = Stopband attenuation in dB

Verify your function using the design in Problem P8.39.

P8.41 An analog signal

xa(t) = 3 sin(40πt) + 3 cos(50πt)

is to be processed by a

xa(t) −→ A/D −→ H(z) −→ D/A −→ ya(t)

system in which the sampling frequency is 100 sam/sec

1. Design a minimum order IIR digital filter that will pass the first component of xa(t)
with attenuation of less than 1 dB and suppress the second component to at least 50 dB.
The filter should have a monotone passband and an equiripple stopband. Determine the
system function in rational function form and plot the log-magnitude response.

2. Generate 500 samples (sampled at 100 sam/sec) of the signal xa(t) and process through
the designed filter to obtain the output sequence. Interpolate this sequence (using any
one of the interpolating techniques discussed in Chapter 3) to obtain ya(t). Plot the
input and the output signals and comment on your results.

P8.42 Using the bilinear transformation method, design a 10th-order elliptic bandstop filter to
remove the digital frequency ω = 0.44π with bandwidth of 0.08π. Choose a reasonable value
for the stopband attenuation. Plot the magnitude response. Generate 201 samples of the
sequence

x(n) = sin [0.44πn] , n = 0, . . . , 200

and process thorough the bandstop filter. Comment on your results.

P8.43 Design a digital highpass filter H(z) to be used in a

xa(t) −→ A/D −→ H(z) −→ D/A −→ ya(t)
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472 Chapter 8 IIR FILTER DESIGN

structure to satisfy the following requirements:

• sampling rate of 10 Khz
• stopband edge of 1.5 Khz with attenuation of 40 dB
• passband edge of 2 Khz with ripple of 1dB
• equiripple passband and stopband
• bilinear transformation method

1. Plot the magnitude response of the overall analog filter over the [0, 5 Khz] interval.
2. Plot the magnitude response of the digital lowpass prototype.
3. What limitations must be placed on the input signals so that the preceding structure

truly acts as a highpass filter to them?

P8.44 The filter specifications shown in Figure P8.1 can be considered a combination of a
bandpass and a highpass specifications. Design a minimum-order IIR digital filter to satisfy
these specifications. Provide a plot of the magnitude response with grid-lines as shown in
Figure P8.1. From your design and plot determine the order of the filter and the exact
band-edge frequencies.

P8.45 The filter specifications shown in Figure P8.2 can be considered as a combination of a
lowpass and a bandpass specifications. Design a minimum-order IIR digital filter to satisfy
these specifications. Provide a plot of the magnitude response with grid-lines as shown in
Figure P8.2. From your design and plot determine the order of the filter and the exact
band-edge frequencies.

P8.46 Design a minimum-order IIR digital filter to satisfy the following specifications:

• a passband over the [0.35π, 0.5π] interval
• stopbands over the [0, 0.3π] and [0.6π, π] intervals
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FIGURE P8.1 Filter specifications for Problem P8.44
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FIGURE P8.2 Filter specifications for Problem P8.45

• passband ripple of 1 dB
• stopband attenuation of 40 db
• equiripple passbands and stopband

Determine the system function H(z) of the designed filter in the rational function form.
Provide a plot of the log-magnitude response in dB. From your design and plot, answer the
following questions:

1. What is the order of the filter?
2. From your plot what are the exact band-edge frequencies for the given passband and

stopband attenuations?
3. Why is there a discrepancy between the specification frequencies and the exact

frequencies?
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