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C H A P T E R 9
Sampling Rate
Conversion

In many practical applications of digital signal processing, one is faced
with the problem of changing the sampling rate of a signal, either increas-
ing it or decreasing it by some amount. The process of converting a signal
from a given rate to a different rate is called sampling rate conversion.
In turn, systems that employ multiple sampling rates in the processing
of digital signals are called multirate digital signal processing systems. In
this chapter we describe sampling rate conversion and multirate signal
processing in the digital domain.

As an example, consider the system shown in Figure 9.1 in which
an analog signal xa(t) is sampled using the sampling rate of Fs = 1

T
samples/second. The resulting digital signal x(n) is subsequently filtered
using a lowpass filter (LPF) with a cutoff frequency of ωc.

Thus, the output signal y(n) has all its energy in the band 0 ≤ ω ≤
ωc = 2πfc. According to the sampling theorem, such a signal may be rep-
resented by the rate of 2fc/T samples/second instead of its existing rate
of Fs = 1/T . Note that |fc| ≤ 0.5. However, if fc � 0.5, then 2fc/T � Fs.
Hence it would seem more advantageous to lower the sampling frequency
to a value closer to 2fc/T and perform signal processing operations at
this lower rate.

Other applications include the need for an optimal interpolation in
computer tomography and efficient multistage designs of narrowband low-
pass filters.
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FIGURE 9.1 A typical signal processing system

9.1 INTRODUCTION

The idea of interpolation is a very familiar concept to most of us and has
its origin in numerical analysis. Typically, interpolation is performed on a
table of numbers representing a mathematical function. Such a table may
be printed in a handbook or stored in a computer memory device. The
interpolation, often simply linear (or straight line) approximation, cre-
ates an error called the interpolation error. The main difference between
interpolation in digital signal processing and interpolation in numerical
analysis is that we will assume that the given data is bandlimited to some
band of frequencies and develop schemes that are optimal on this ba-
sis, whereas a numerical analyst typically assumes that the data consists
of samples of polynomials (or very nearly so) and develops schemes to
minimize the resulting error.

To motivate this concept of interpolation in signal processing, it is
helpful to think of an underlying (or original) analog signal xa(t) that
was sampled to produce the given discrete signal x(n). If the xa(t) was
sampled at the minimum required rate, then, according to the sampling
theorem, it can be recovered completely from the samples x(n). If we now
sample this recovered analog signal, at say twice the old rate, we have
succeeded in doubling the sampling rate or interpolating by a factor of 2
with zero interpolation error. Specifically, we have:

Original discrete signal: x(n) = xa(nT ) (9.1)

Reconstructed analog signal: xa(t) =
∑

k xa(kT )
sin[π(t− kT )/T ]
π(t− kT )/T

(9.2)
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Resampled analog signal: xa
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=
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) (9.3)

resulting in high-rate discrete signal : y(m)
�
=xa

(
m
T

2

)
(9.4)

In this formulation of ideal interpolation, the discrete signal was converted
to the analog signal and then back to the discrete signal at twice the rate.
In the subsequent sections we will study how to avoid this roundabout
approach and perform sampling rate conversion completely in the digital
domain.

The process of sampling rate conversion in the digital domain can
be viewed as a linear filtering operation, as illustrated in Figure 9.2a.
The input signal x(n) is characterized by the sampling rate Fx = 1/Tx,
and the output signal y(m) is characterized by the sampling rate Fy =
1/Ty, where Tx and Ty are the corresponding sampling intervals. In our
treatment, the ratio Fy/Fx is constrained to be rational

Fy

Fx
=

I

D
(9.5)

where D and I are relatively prime integers. We shall show that the
linear filter is characterized by a time-variant impulse response, denoted

Rate Fx =

(a)

(b)
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FIGURE 9.2 Sampling rate conversion viewed as a linear filtering process
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as h(n,m). Hence the input x(n) and the output y(m) are related by the
superposition summation for time-variant systems.

The sampling rate conversion process can also be understood from the
point of view of digital resampling of the same analog signal. Let xa(t)
be the analog signal that is sampled at the first rate Fx to generate x(n).
The goal of rate conversion is to obtain another sequence y(m) directly
from x(n), which is equal to the sampled values of xa(t) at a second rate
Fy. As is depicted in Figure 9.2b, y(m) is a time-shifted version of x(n).
Such a time shift can be realized by using a linear filter that has a flat
magnitude response and a linear phase response (i.e., it has a frequency
response of e−ωτi , where τi is the time delay generated by the filter). If
the two sampling rates are not equal, the required amount of time shifting
will vary from sample to sample, as shown in Figure 9.2b. Thus, the rate
converter can be implemented using a set of linear filters that have the
same flat magnitude response but generate different time delays.

Before considering the general case of sampling rate conversion, we
shall consider two special cases. One is the case of sampling rate reduction
by an integer factor D, and the second is the case of a sampling rate
increase by an integer factor I. The process of reducing the sampling rate
by a factor D (downsampling by D) is called decimation. The process of
increasing the sampling rate by an integer factor I (upsampling by I) is
called interpolation.

9.2 DECIMATION BY A FACTOR D

The basic operation required in decimation is the downsampling of the
high-rate signal x(n) into a low-rate signal y(m). We will develop the
time- and frequency-domain relationships between these two signals to
understand the frequency-domain aliasing in y(m). We will then study
the condition needed for error-free decimation and the system structure
required for its implementation.

9.2.1 THE DOWNSAMPLER
Note that the downsampled signal y(m) is obtained by selecting one out
of D samples of x(n) and throwing away the other (D − 1) samples out
of every D samples—i.e.,

y(m) = x(n)|n=mD = x(mD); n,m,D ∈ {integers} (9.6)

The block diagram representation of (9.6) is shown in Figure 9.3. This
downsampling element changes the rate of processing and thus is funda-
mentally different from other block diagram elements that we have used
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x(n) y(m)
Rate Fx Rate Fy =

Fx 

D

↓ D

FIGURE 9.3 A downsampling element

previously. In fact, we can show that a system containing a downsam-
pling element is shift varying. However, this fact does not prohibit the
frequency-domain analysis of y(m) in terms of x(n) as we shall see later.

� EXAMPLE 9.1 Using D = 2 and x(n) = {1
↑
, 2, 3, 4, 3, 2, 1} verify that the downsampler is time

varying.

Solution The downsampled signal is y(m) = {1
↑
, 3, 3, 1}. If we now delay x(n) by one

sample, we get x(n−1) = {0
↑
, 1, 2, 3, 4, 3, 2, 1}. The corresponding downsampled

signal is y1(m) = {0
↑
, 2, 4, 2}, which is different from y(m− 1). �

MATLAB Implementation MATLAB provides the function [y] =
downsample(x,D) that downsamples input array x into output array y
by keeping every D-th sample starting with the first sample. An optional
third parameter “phase” specifies the sample offset which must be an
integer between 0 and (D-1). For example,

>> x = [1,2,3,4,3,2,1]; y = downsample(x,2)

y =

1 3 3 1

downsamples by a factor of 2 starting with the first sample. However,

>> x = [1,2,3,4,3,2,1]; y = downsample(x,2,1)

y =

2 4 2

produces an entirely different sequence by downsampling, starting with
the second sample (i.e., offset by 1).

The frequency-domain representation of the downsampled sig-
nal y(m) We now express Y (ω) in terms of X(ω) using z-transform
relations. Toward this we introduce a high-rate sequence x̄(n), which is
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given by

x̄(n)
�
=

{
x(n), n = 0,±D,±2D, . . .

0, elsewhere
(9.7)

Clearly, x̄(n) can be viewed as a sequence obtained by multiplying x(n)
with a periodic train of impulses p(n), with period D, as illustrated in
Figure 9.4. The discrete Fourier series representation of p(n) is

p(n)
�
=

{
1, n = 0,±D,±2D, . . .

0, elsewhere.
=

1
D

D−1∑
�=0

e
2π
D �n (9.8)

Hence we can write
x̄(n) = x(n)p(n) (9.9)

and
y(m) = x̄(mD) = x(mD)p(mD) = x(mD) (9.10)

n

n

n

m

x(n)

y(m)

p(n)

(a)

(b)

(c)

(d)
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FIGURE 9.4 Operation of downsampling: (a) original signal x(n), (b) periodic
impulse train p(n) with period D = 3, (c) multiplication of x(n) with p(n), and
(d) downsampled signal y(n)
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480 Chapter 9 SAMPLING RATE CONVERSION

as shown in (9.6). Figure 9.4 shows an example of sequences x(n), x̄(n),
and y(m) defined in (9.7)–(9.10).

Now the z-transform of the output sequence y(m) is

Y (z) =
∞∑

m=−∞
y(m)z−m =

∞∑
m=−∞

x̄(mD)z−m

(9.11)

Y (z) =
∞∑

m=−∞
x̄(m)z−m/D

where the last step follows from the fact that x̄(m) = 0, except at multi-
ples of D. By making use of the relations in (9.7) and (9.8) in (9.11), we
obtain

Y (z) =
∞∑

m=−∞
x(m)

[
1
D

D−1∑
k=0

e2πmk/D

]
z−m/D

=
1
D

D−1∑
k=0

∞∑
m=−∞

x(m)
(
e−2πk/Dz1/D

)−m

=
1
D

D−1∑
k=0

X
(
e−2πk/Dz1/D

)
(9.12)

The key steps in obtaining the z-transform representation (9.12), for the
(D ↓ 1) downsampler, are as follows:

• the introduction of the high-rate sequence x̄(n), which has (D−1) zeros
in between the retained values x(nD), and

• the impulse-train representation (9.8) for the periodic sampling series
that relates x(n) to x̄(n).

By evaluating Y (z) on the unit circle, we obtain the spectrum of the
output signal y(m). Since the rate of y(m) is Fy = 1/Ty, the frequency
variable, which we denote as ωy, is in radians and is relative to the sam-
pling rate Fy,

ωy =
2πF
Fy

= 2πFTy (9.13)

Since the sampling rates are related by the expression

Fy =
Fx

D
(9.14)

it follows that the frequency variables ωy and

ωx =
2πF
Fx

2πFTx (9.15)
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FIGURE 9.5 Spectra of x(n) and y(m) in no-aliasing case

are related by
ωy = Dωx (9.16)

Thus, as expected, the frequency range 0 ≤ |ωx| ≤ π/D is stretched into
the corresponding frequency range 0 ≤ |ωy| ≤ π by the downsampling
process.

We conclude that the spectrum Y (ωy), which is obtained by evaluat-
ing (9.12) on the unit circle, can be expressed as1

Y (ωy) =
1
D

D−1∑
k=0

X

(
ωy − 2πk

D

)
(9.17)

which is an aliased version of the spectrum X(ωx) of x(n). To avoid alias-
ing error, one needs the spectrum X(ωx) to be less than full band or
bandlimited (note that this bandlimitedness is in the digital frequency
domain). In fact we must have

X(ωx) = 0 for
π

D
≤ |ωx| ≤ π (9.18)

Then,

Y (ωy) =
1
D
X

(ωy

D

)
, |ωy| ≤ π (9.19)

and no aliasing error is present. An example of this for D = 3 is shown in
Figure 9.5.

1In this chapter, we will make a slight change in our notation for the DTFT. We will use
X(ω) to denote the spectrum of x(n) instead of the previously used notation X(ejω).
Although this change does conflict with the z-transform notation, the meaning should
be clear from the context. This change is made for the sake of clarity and visibility of
variables.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



482 Chapter 9 SAMPLING RATE CONVERSION

Comments:

1. The sampling theorem interpretation for (9.19) is that the sequence
x(n) was originally sampled at D times higher rate than required;
therefore, downsampling by D simply reduces the effective sampling
rate to the minimum required to prevent aliasing.

2. Equation (9.18) expresses the requirement for zero decimation error
in the sense that no information is lost—i.e., there is no irreversible
aliasing error in the frequency domain.

3. The argument ωy

D occurs because in our notation ω is expressed in
rad/sample. Thus the frequency of y(m) expressed in terms of the
higher-rate sequence x(n) must be divided by D to account for the
slower rate of y(m).

4. Note that there is a factor 1
D in (9.19). This factor is required to make

the inverse Fourier transform work out properly and is entirely consis-
tent with the spectra of the sampled analog signals.

9.2.2 THE IDEAL DECIMATOR
In general, (9.18) will not be exactly true, and the (D ↓ 1) downsampler
would cause irreversible aliasing error. To avoid aliasing, we must first
reduce the bandwidth of x(n) to Fx,max = Fx/2D or, equivalently, to
ωx,max = π/D. Then we may downsample by D and thus avoid aliasing.

The decimation process is illustrated in Figure 9.6. The input se-
quence x(n) is passed through a lowpass filter, characterized by the
impulse response h(n) and a frequency response HD(ωx), which ideally
satisfies the condition

HD(ωx) =

{
1, |ωx| ≤ π/D

0, otherwise
(9.20)

Thus, the filter eliminates the spectrum of X(ωx) in the range π/D <
ωx < π. Of course, the implication is that only the frequency components
of x(n) in the range |ωx| ≤ π/D are of interest in further processing of
the signal.

IDEAL
LPF

↓D y(m)x(n)
v (n)

Rate: Fx Fx

Ideal Decimator

= Fy
Fx

D

FIGURE 9.6 Ideal decimation by a factor D

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Decimation by a Factor D 483

The output of the filter is a sequence v(n) given as

v(n)
�
=

∞∑
k=0

h(k)x(n− k) (9.21)

which is then downsampled by the factor D to produce y(m). Thus,

y(m) = v(mD) =
∞∑
k=0

h(k)x(mD − k) (9.22)

Although the filtering operation on x(n) is linear and time invariant, the
downsampling operation in combination with the filtering results also in
a time-variant system.

The frequency-domain characteristics of the output sequence y(m) ob-
tained through the filtered signal v(n) can be determined by following the
analysis steps given before—i.e., by relating the spectrum of y(m) to the
spectrum of the input sequence x(n). Using these steps, we can show that

Y (z) =
1
D

D−1∑
k=0

H
(
e−2πk/Dz1/D

)
X

(
e−2πk/Dz1/D

)
(9.23)

or that

Y (ωy) =
1
D

D−1∑
k=0

H

(
ωy − 2πk

D

)
X

(
ωy − 2πk

D

)
(9.24)

With a properly designed filter HD(ω), the aliasing is eliminated and,
consequently, all but the first term in (9.24) vanish. Hence,

Y (ωy) =
1
D
HD

(ωy

D

)
X

(ωy

D

)
=

1
D
X

(ωy

D

)
(9.25)

for 0 ≤ |ωy| ≤ π. The spectra for the sequences x(n), h(n), v(n), and
y(m) are illustrated in Figure 9.7.

MATLAB Implementation MATLAB provides the function y =
decimate(x,D) that resamples the sequence in array x at 1/D times
the original sampling rate. The resulting resampled array y is D times
shorter—i.e., length(y) = length(x)/D. An ideal lowpass filter given
in (9.20) is not possible in the MATLAB implementation; however, fairly
accurate approximations are used. The default lowpass filter used in the
function is an 8th-order Chebyshev type-I lowpass filter with the cutoff
frequency of 0.8π/D. Using additional optional arguments, the filter order
can be changed or an FIR filter of specified order and cutoff frequency
can be used.
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FIGURE 9.7 Spectra of signals in the decimation of x(n) by a factor D

� EXAMPLE 9.2 Let x(n) = cos(0.125πn). Generate a large number of samples of x(n) and
decimate them using D = 2, 4, and 8 to show the results of decimation.

Solution We will plot the middle segments of the signals to avoid end-effects due to
the default lowpass filter in the decimate function. The following MATLAB
script shows details of these operations, and Figure 9.7 shows the plots of the
sequences.

n = 0:2048; k1 = 256; k2 = k1+32; m = 0:(k2-k1);

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

% (a) Original signal

x = cos(0.125*pi*n); subplot(2,2,1);

Ha = stem(m,x(m+k1+1),’g’,’filled’); axis([-1,33,-1.1,1.1]);

set(Ha,’markersize’,2); ylabel(’Amplitude’);

title(’Original Sequence x(n)’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

% (b) Decimation by D = 2

D = 2; y = decimate(x,D); subplot(2,2,2);

Hb = stem(m,y(m+k1/D+1),’c’,’filled’); axis([-1,33,-1.1,1.1]);

set(Hb,’markersize’,2); ylabel(’Amplitude’);

title(’Decimated by D = 2’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);
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% (c) Decimation by D = 4

D = 4; y = decimate(x,D); subplot(2,2,3);

Hc = stem(m,y(m+k1/D+1),’r’,’filled’); axis([-1,33,-1.1,1.1]);

set(Hc,’markersize’,2); ylabel(’Amplitude’);

title(’Decimated by D = 4’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

xlabel(’n’);

% (d) Decimation by D = 8

D = 8; y = decimate(x,D); subplot(2,2,4);

Hd = stem(m,y(m+k1/D+1),’m’,’filled’); axis([-1,33,-1.1,1.1]);

set(Hd,’markersize’,2); ylabel(’Amplitude’);

title(’Decimated by D = 8’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

xlabel(’n’);

From Figure 9.8, we observe that the decimated sequences for D = 2 and
D = 4 are correct and represent the original sinusoidal sequence x(n) at lower
sampling rates. However, the sequence for D = 8 is almost zero because the
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FIGURE 9.8 Original and decimated signals in Example 9.2
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486 Chapter 9 SAMPLING RATE CONVERSION

lowpass filter has attenuated x(n) prior to downsampling. Recall that the cutoff
frequency of the lowpass filter is set to 0.8π/D = 0.1π which eliminates x(n).
If we had used the downsampling operation on x(n) instead of decimation, the
resulting sequence would be y(m) = 1, which is an aliased signal. Thus, the
lowpass filtering is necessary. �

9.3 INTERPOLATION BY A FACTOR I

An increase in the sampling rate by an integer factor of I—i.e., Fy =
IFx—can be accomplished by interpolating I − 1 new samples between
successive values of the signal. The interpolation process can be accom-
plished in a variety of ways. We shall describe a process that preserves
the spectral shape of the signal sequence x(n). This process can be ac-
complished in two steps. The first step creates an intermediate signal at
the high rate Fy by interlacing zeros in between nonzero samples in an
operation called upsampling. In the second step, the intermediate signal
is filtered to “fill in” zero-interlaced samples to create the interpolated
high-rate signal. As before, we will first study the time- and frequency-
domain characteristics of the upsampled signal and then introduce the
interpolation system.

9.3.1 THE UPSAMPLER
Let v(m) denote the intermediate sequence with a rate Fy = IFx, which
is obtained from x(n) by adding I − 1 zeros between successive values of
x(n). Thus,

v(m) =

{
x(m/I), m = 0,±I,±2I, . . .
0, otherwise

(9.26)

and its sampling rate is identical to the rate of v(m). The block diagram
of the upsampler is shown in Figure 9.9. Again, any system containing
the upsampler is a time-varying system (Problem P9.1).

↑I v(m)x(n)

Rate IFx = FvRate Fx

FIGURE 9.9 An upsampling element

� EXAMPLE 9.3 Let I = 2 and x(n) = {1
↑
, 2, 3, 4}. Verify that the upsampler is time varying.
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Solution The upsampled signal is v(m) = {1
↑
, 0, 2, 0, 3, 0, 4, 0}. If we now delay x(n) by

one sample, we get x(n−1) = {0
↑
, 1, 2, 3, 4}. The corresponding upsampled signal

is v1(m) = {0
↑
, 0, 1, 0, 2, 0, 3, 0, 4, 0} = v(m− 2) and not v(m− 1). �

MATLAB Implementation MATLAB provides the function [v] =
upsample(x,I) that upsamples input array x into output v by insert-
ing (I-1) zeros between input samples. An optional third parameter,
“phase,” specifies the sample offset, which must be an integer between
0 and (I-1). For example,

>> x = [1,2,3,4]; v = upsample(x,3)

v =

1 0 0 2 0 0 3 0 0 4 0 0

upsamples by a factor of 2 starting with the first sample. However,

>> v = upsample(x,3,1)

v =

0 1 0 0 2 0 0 3 0 0 4 0

>> v = upsample(x,3,2)

v =

0 0 1 0 0 2 0 0 3 0 0 4

produces two different signals by upsampling, starting with the second
and the third sample (i.e., offset by 1), respectively. Note that the lengths
of the upsampled signals are I times the length of the original signal.

The frequency-domain representation of the upsampled signal
y(m) The sequence v(m) has a z-transform

V (z) =
∞∑

m=−∞
v(m)z−m =

∞∑
m=−∞

v(m)z−mI = X(zI) (9.27)

The corresponding spectrum of v(m) is obtained by evaluating (9.27) on
the unit circle. Thus

V (ωy) = X(ωyI) (9.28)

where ωy denotes the frequency variable relative to the new sampling rate
Fy (i.e., ωy = 2πF/Fy). Now the relationship between sampling rates
is Fy = IFx, and hence the frequency variables ωx and ωy are related
according to the formula

ωy =
ωx

I
(9.29)
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|X(ωx)| |V(ωx)|
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−3π
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3π
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ωy =
ωx

I
− π

I
π
I

FIGURE 9.10 Spectra of x(n) and v(m) where V (ωy) = X(ωyI)

The spectra X(ωx) and V (ωy) are illustrated in Figure 9.10. We observe
that the sampling rate increase, obtained by the addition of I − 1 zero
samples between successive values of x(n), results in a signal whose spec-
trum V (ωy) is an I-fold periodic repetition of the input signal spectrum
X(ωx).

9.3.2 THE IDEAL INTERPOLATOR
Since only the frequency components of x(n) in the range 0 ≤ ωy ≤
π/I are unique, the images of X(ω) above ωy = π/I should be rejected
by passing the sequence v(m) through a lowpass filter with a frequency
response HI(ωy) that ideally has the characteristic

HI(ωy) =

{
C, 0 ≤ |ωy| ≤ π/I

0, otherwise
(9.30)

where C is a scale factor required to properly normalize the output
sequence y(m). Consequently, the output spectrum is

Y (ωy) =

{
CX(ωyI), 0 ≤ |ωy| ≤ π/I

0, otherwise
(9.31)

The scale factor C is selected so that the output y(m) = x(m/I) for
m = 0,±I,±2I, . . . . For mathematical convenience, we select the point
m = 0. Thus,

y(0) =
1
2π

∫ π

−π

Y (ωy)dωy =
C

2π

∫ π/I

−π/I

X(ωyI)dωy (9.32)

Since ωy = ωx/I, (9.32) can be expressed as

y(0) =
C

I

1
2π

∫ π

−π

X(ωx)dωx =
C

I
x(0) (9.33)

therefore, C = I is the desired normalization factor.
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IDEAL
LPF

↑I y(m)x(n)
v (m)

Rate: Fx IFx IFx

Ideal Interpolator

FIGURE 9.11 Ideal interpolation by a factor I

Finally, we indicate that the output sequence y(m) can be expressed
as a convolution of the sequence v(n) with the unit sample response h(n)
of the lowpass filter. Thus

y(m) =
∞∑

k=−∞
h(m− k)v(k) (9.34)

Since v(k) = 0 except at multiples of I, where v(kI) = x(k), (9.34)
becomes

y(m) =
∞∑

k=−∞
h(m− kI)x(k) (9.35)

The ideal interpolator is shown in Figure 9.11.

MATLAB Implementation MATLAB provides the function [y,h] =
interp(x,I) that resamples the signal in array x at I times the original
sampling rate. The resulting resampled array y is I times longer—i.e.,
length(y) = I*length(x). The ideal lowpass filter given in (9.30) is
approximated by a symmetric filter impulse response, h, which is designed
internally. It allows the original samples to pass through unchanged and
interpolates between so that the mean square error between them and
their ideal values is minimized. The third optional parameter L specifies
the length of the symmetric filter as 2*L*I+1, and the fourth optional
parameter cutoff specifies the cutoff frequency of the input signal in π
units. The default values are L = 5 and cutoff = 0.5. Thus, if I = 2,
then the length of the symmetric filter is 21 for the default L = 5.

� EXAMPLE 9.4 Let x(n) = cos(πn). Generate samples of x(n) and interpolate them using I = 2,
4, and 8 to show the results of interpolation.

Solution We will plot the middle segments of the signals to avoid end-effects due to
the default lowpass filter in the interp function. The following MATLAB
script shows details of these operations, and Figure 9.12 shows the plots of the
sequences.
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FIGURE 9.12 Original and interpolated signals in Example 9.4

n = 0:256; k1 = 64; k2 = k1+32; m = 0:(k2-k1);

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

% (a) Original signal

x = cos(pi*n); subplot(2,2,1);

Ha = stem(m,x(m+k1+1),’g’,’filled’); axis([-1,33,-1.1,1.1]);

set(Ha,’markersize’,2); ylabel(’Amplitude’);

title(’Original Sequence x(n)’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

% (b) Interpolation by I = 2

I = 2; y = interp(x,I); subplot(2,2,2);

Hb = stem(m,y(m+k1*I+1),’c’,’filled’); axis([-1,33,-1.1,1.1]);

set(Hb,’markersize’,2); ylabel(’Amplitude’);

title(’Interpolated by I = 2’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);
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% (c) Interpolation by I = 4

I = 4; y = interp(x,I); subplot(2,2,3);

Hc = stem(m,y(m+k1*I+1),’r’,’filled’); axis([-1,33,-1.1,1.1]);

set(Hc,’markersize’,2); ylabel(’Amplitude’);

title(’Interpolated by I = 4’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

xlabel(’n’);

% (d) Interpolation by I = 8

I = 8; y = interp(x,I); subplot(2,2,4);

Hd = stem(m,y(m+k1*I+1),’m’,’filled’); axis([-1,33,-1.1,1.1]);

set(Hd,’markersize’,2); ylabel(’Amplitude’);

title(’Interpolated by I = 8’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

xlabel(’n’);

From Figure 9.11, we observe that the interpolated sequences for all three values
of I are appropriate and represent the original sinusoidal signal x(n) at higher
sampling rates. In the case of I = 8, the resulting sequence does not appear to
be perfectly sinusoidal in shape. This may be due the fact the lowpass filter is
not close to an ideal filter. �

� EXAMPLE 9.5 Examine the frequency response of the lowpass filter used in the interpolation
of the signal in Example 10.4.

Solution The second optional argument in the interp function provides the impulse
response from which we can compute the frequency response, as shown in the
following MATLAB script.

n = 0:256; x = cos(pi*n); w = [0:100]*pi/100;

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

% (a) Interpolation by I = 2, L = 5;

I = 2; [y,h] = interp(x,I); H = freqz(h,1,w); H = abs(H);

subplot(2,2,1); plot(w/pi,H,’g’); axis([0,1,0,I+0.1]); ylabel(’Magnitude’);

title(’I = 2, L = 5’,’fontsize’,TF);

set(gca,’xtick’,[0,0.5,1]); set(gca,’ytick’,[0:1:I]);

% (b) Interpolation by I = 4, L = 5;

I = 4; [y,h] = interp(x,I); H = freqz(h,1,w); H = abs(H);

subplot(2,2,2); plot(w/pi,H,’g’); axis([0,1,0,I+0.2]); ylabel(’Magnitude’);

title(’I = 4, L = 5’,’fontsize’,TF);

set(gca,’xtick’,[0,0.25,1]); set(gca,’ytick’,[0:1:I]);
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FIGURE 9.13 Filter frequency responses in Example 9.5

% (c) Interpolation by I = 8, L = 5;

I = 8; [y,h] = interp(x,I); H = freqz(h,1,w); H = abs(H);

subplot(2,2,3); plot(w/pi,H,’g’); axis([0,1,0,I+0.4]); ylabel(’Magnitude’);

title(’I = 8, L = 5’,’fontsize’,TF); xlabel(’\omega/\pi’,’fontsize’,10)

set(gca,’xtick’,[0,0.125,1]); set(gca,’ytick’,[0:2:I]);

% (d) Interpolation by I = 8, L = 10;

I = 8; [y,h] = interp(x,I,10); H = freqz(h,1,w); H = abs(H);

subplot(2,2,4); plot(w/pi,H,’g’); axis([0,1,0,I+0.4]); ylabel(’Magnitude’);

title(’I = 8, L = 10’,’fontsize’,TF); xlabel(’\omega/\pi’,’fontsize’,10)

set(gca,’xtick’,[0,0.125,1]); set(gca,’ytick’,[0:2:I]);

The frequency response plots are shown in Figure 9.13. The first three plots
are for L = 5 and, as expected, the filters are all lowpass with passband edges
approximately around π/I frequencies and the gain of I. Also note that the
filters do not have sharp transitions and thus are not good approximations to
the ideal filter. The last plot shows the response for L = 10, which indicates
a more sharp transition, which is to be expected. Any value beyond L = 10

results in an unstable filter design and hence should be avoided. �
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9.4 SAMPLING RATE CONVERSION BY A RATIONAL FACTOR I/D

Having discussed the special cases of decimation (downsampling by a fac-
tor D) and interpolation (upsampling by a factor I), we now consider
the general case of sampling rate conversion by a rational factor I/D.
Basically, we can achieve this sampling rate conversion by first perform-
ing interpolation by the factor I and then decimating the output of the
interpolator by the factor D. In other words, a sampling rate conversion
by the rational factor I/D is accomplished by cascading an interpolator
with a decimator, as illustrated in Figure 9.14.

We emphasize that the importance of performing the interpolation
first and the decimation second is to preserve the desired spectral charac-
teristics of x(n). Furthermore, with the cascade configuration illustrated
in Figure 9.14, the two filters with impulse response {hu(k)} and {hd(k)}
are operated at the same rate, namely IFx, and hence can be combined
into a single lowpass filter with impulse response h(k), as illustrated in
Figure 9.15. The frequency response H(ωv) of the combined filter must
incorporate the filtering operations for both interpolation and decimation,
and hence it should ideally possess the frequency-response characteristic

H(ωv) =

{
I, 0 ≤ |ωv| ≤ min(π/D, π/I)
0, otherwise

(9.36)

where ωv = 2πF/Fv = 2πF/IFx = ωx/I.

Explanation of (9.36) Note that V (ωv) and hence W (ωv) in
Figure 9.15 are periodic with period 2π/I. Thus, if

• D < I, then filter H(ωv) allows a full period through and there is no
net lowpass filtering.

• D > I, then filter must first truncate the fundamental period of W (ωv)
to avoid aliasing error in the (D↓1) decimation stage to follow.

Putting these two observations together, we can state that when
D/I < 1, we have net interpolation and no smoothing is required by

IDEAL
LPF
hu(k)

IDEAL
LPF
hd(k)

↑I ↓D y(m)x(n)
v (k) w(k)

Rate: Fx IFx IFx IFx

Interpolator Decimator

Fx = Fy
I

D

FIGURE 9.14 Cascade of interpolator and decimator for sampling rate conver-
sion by a factor I/D
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IDEAL
LPF
h(k)

↑I ↓D y (m)x(n)
v(k) w (k)

Rate: Fx IFx IFx

Ideal Resampler

Fx = Fy
I
D

FIGURE 9.15 Method for sampling rate conversion by a factor I/D

H(ωv) other than to extract the fundamental period of W (ωv). In this
respect, H(ωv) acts as a lowpass filter as in the ideal interpolator. On
the other hand, if D/I > 1, then we have net decimation. Hence it is
necessary to first truncate even the fundamental period of W (ωv) to get
the frequency band down to [−π/D, π/D] and to avoid aliasing in the
decimation that follows. In this respect, H(ωv) acts as a smoothing filter
in the ideal decimator. When D or I is equal to 1, the general deci-
mator/interpolator in Figure 9.15 along with (9.36) reduces to the ideal
interpolator or decimator as special case, respectively.

In the time domain, the output of the upsampler is the sequence

v(k) =

{
x(k/I), k = 0,±I,±2I, . . .
0, otherwise

(9.37)

and the output of the linear time-invariant filter is

w(k) =
∞∑

�=−∞
h(k − �)v(�) =

∞∑
�=−∞

h(k − �I)x(�) (9.38)

Finally, the output of the sampling rate converter is the sequence {y(m)},
which is obtained by downsampling the sequence {w(k)} by a factor of
D. Thus

y(m) = w(mD) =
∞∑

�=−∞
h(mD − �I)x(�) (9.39)

It is illuminating to express (9.39) in a different form by making a
change in variable. Let

� =
⌊
mD

I

⌋
− n (9.40)

where the notation�r� denotes the largest integer contained in r. With
this change in variable, (9.39) becomes

y(m) =
∞∑

n=−∞
h

(
mD −

⌊
mD

I

⌋
I + nI

)
x

(⌊
mD

I

⌋
− n

)
(9.41)

We note that

mD −
⌊
mD

I

⌋
I = (mD) modulo I = ((mD))I
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FIGURE 9.16 Examples of signals x(n), v(k), w(k), and y(m) in the sampling
rate converter of Figure 9.15 for I = 3 and D = 2

Consequently, (9.41) can be expressed as

y(m) =
∞∑

n=−∞
h[nI + ((mD))I ]x

(⌊
mD

I

⌋
− n

)
(9.42)

These operations are shown in Figure 9.16 for I = 3 and D = 2.
It is apparent from (9.41) and Figure 9.16 that the output y(m) is

obtained by passing the input sequence x(n) through a time-variant filter
with impulse response

g(n,m) = h[nI + ((mD))I ] −∞ < m,n < ∞ (9.43)
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where h(k) is the impulse response of the time-invariant lowpass filter
operating at the sampling rate IFx. We further observe that for any
integer k,

g(n,m + kI) = h[nI + ((mD + kDI))I ] = h[nI + ((mD))I ]
= g(n,m) (9.44)

Hence g(n,m) is periodic in the variable m with period I.
Regarding the computational complexity of the lowpass filter in the

general resampler, we note that it has a nonzero input only every I sam-
ples and the output is required only every D samples. If we use an FIR im-
plementation for this lowpass filter, we need only compute its output one
out of every D samples. However, if we instead use IIR implementation,
we would generally have to compute intermediate outputs also because
of the recursive nature of the filter. However, both types of filter benefit
from the computational savings due to their sparse input.

The frequency-domain representation of the resampled signal
y(m) The frequency-domain relationships can be obtained by combin-
ing the results of the interpolation and decimation process. Thus, the
spectrum at the output of the linear filter with impulse response h(k) is

V (ωv) = H(ωv)X(ωvI)

=

{
IX(ωvI), 0 ≤ |ωv| ≤ min(π/D, π/I)
0, otherwise

(9.45)

The spectrum of the output sequence y(m), obtained by decimating the
sequence v(n) by a factor of D, is

Y (ωy) =
1
D

D−1∑
k=0

V

(
ωy − 2πk

D

)
(9.46)

where ωy = Dωv. Since the linear filter prevents aliasing as implied by
(9.45), the spectrum of the output sequence given by (9.46) reduces to

Y (ωy) =




I

D
X

(ωy

D

)
, 0 ≤ |ωy| ≤ min

(
π, πD

I

)

0, otherwise

(9.47)

MATLAB Implementation MATLAB provides the function [y,h]
= resample(x,I,D) that resamples the signal in array x at I/D times
the original sampling rate. The resulting resampled array y is I/D times
longer (or the ceiling of it if the ratio is not an integer)—i.e., length(y) =
ceil(I/D)*length(x). The function approximates the anti-aliasing (low-
pass) filter given in (9.36) by an FIR filter, h, designed (internally) using
the Kaiser window. It also compensates for the filter’s delay.
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The length of the FIR filter h that resample uses is proportional to
the fourth (optional) parameter L that has the default value of 10. For
L = 0, resample performs a nearest-neighbor interpolation. The fifth op-
tional parameter beta (default value 5) can be used to specify the Kaiser
window stopband attenuation parameter β. The filter characteristics can
be studied using the impulse response h.

� EXAMPLE 9.6 Consider the sequence x(n) = cos(0.125πn) discussed in Example 9.2. Change
its sampling rate by 3/2, 3/4, and 5/8.

Solution The following MATLAB script shows the details.

n = 0:2048; k1 = 256; k2 = k1+32; m = 0:(k2-k1);

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

% (a) Original signal

x = cos(0.125*pi*n); subplot(2,2,1);

Ha = stem(m,x(m+k1+1),’g’,’filled’); axis([-1,33,-1.1,1.1]);

set(Ha,’markersize’,2); ylabel(’Amplitude’);

title(’Original Sequence x(n)’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

% (b) Sample rate Conversion by 3/2: I= 3, D = 2

I = 3; D = 2; y = resample(x,I,D); subplot(2,2,2);

Hb = stem(m,y(m+k1*I/D+1),’c’,’filled’); axis([-1,33,-1.1,1.1]);

set(Hb,’markersize’,2); ylabel(’Amplitude’);

title(’Sample Rate I/D: I = 3, D = 2’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

% (c) Sample rate Conversion by 3/4: I= 3, D = 4

I = 3; D = 4; y = resample(x,I,D); subplot(2,2,3);

Hc = stem(m,y(m+k1*I/D+1),’r’,’filled’); axis([-1,33,-1.1,1.1]);

set(Hc,’markersize’,2); ylabel(’Amplitude’);

title(’Sample Rate I/D: I = 3, D = 4’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

xlabel(’n’, ’fontsize’,LF);

% (d) Sample rate Conversion by 5/8: I= 5, D = 8

I = 5; D = 8; y = resample(x,I,D); subplot(2,2,4);

Hd = stem(m,y(m+k1*I/D+1),’m’,’filled’); axis([-1,33,-1.1,1.1]);

set(Hd,’markersize’,2); ylabel(’Amplitude’);

title(’Sample Rate I/D: I = 5, D = 8’,’fontsize’,TF);

set(gca,’xtick’,[0,16,32]); set(gca,’ytick’,[-1,0,1]);

xlabel(’n’, ’fontsize’,LF);

The resulting plots are shown in Figure 9.17. The original x(n) signal has 16
samples in one period of the cosine waveform. Since the first sampling rate
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FIGURE 9.17 Original and resampled signals in Example 9.6

conversion by 3/2 is greater than one, the overall effect is to interpolate x(n).
The resulting signal has 16 × 3/2 = 24 samples in one period. The other two
sampling rate conversion factors are less than one; thus, overall effect is to
decimate x(n). The resulting signals have 16 × 3/4 = 12 and 16 × 5/8 = 10
samples per period, respectively. �

9.5 FIR FILTER DESIGNS FOR SAMPLING RATE CONVERSION

In practical implementation of sampling rate converters we must replace
the ideal lowpass filters of equations (9.20), (9.30), and (9.36) by a prac-
tical finite-order filter. The lowpass filter can be designed to have linear
phase, a specified passband ripple, and stopband attenuation. Any of the
standard, well-known FIR filter design techniques (e.g., window method,
frequency sampling method) can be used to carry out this design. We
consider linear-phase FIR filters for this purpose because of their ease
of design and because they fit very nicely into a decimator stage where
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FIGURE 9.18 An FIR integer interpolator

only one of D outputs is required [see the discussion following (9.44) on
page 496]. We will first discuss integer interpolators, followed by integer
decimators and then the rational resamplers. The main emphasis will be
on the specifications of these FIR lowpass filters, since the design problem
has already been considered in Chapter 7.

9.5.1 FIR INTEGER INTERPOLATION
Replacing the ideal filter of the system given on page 489 with an FIR
filter, we obtain the system shown in Figure 9.18. The relevant equation
that relates the Fourier transforms V (ω) and X(ω) is (9.28), repeated
here for convenience.

V (ω) = X(ωI) (9.48)

Considering the frequency compression by I and the required amplitude
scale factor of I, the ideal lowpass filter was determined in (9.30) and
(9.33) to be

HI(ω) =

{
I, |ω| < π/I;
0, otherwise.

(9.49)

MATLAB Implementation To design a linear-phase FIR filter for
use in interpolation (and as we shall see later for decimation) operation,
MATLAB provides the function h = intfilt(I,L,alpha). When used
on a sequence interspersed with I-1 consecutive zeros between every I
samples, the function performs ideal bandlimited interpolation using the
nearest 2*L nonzero samples. It assumes that the bandwidth of the signal
x(n) is alpha times π radians/sample—i.e., alpha=1 means the full signal
bandwidth. The length of the filter impulse response array h is 2*I*L-1.
The designed filter is identical to that used by the interp function. There-
fore, the parameter L should be chosen carefully to avoid numerical insta-
bility. It should be a smaller value for higher I value but no more than ten.

� EXAMPLE 9.7 Design a linear-phase FIR interpolation filter to interpolate a signal by a factor
of 4, using the bandlimited method.
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Solution We will explore the intfilt function for the design using L = 5 and study the
effect of alpha on the filter design. The following MATLAB script provides the
detail.

I = 4; L = 5;

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

% (a) Full signal bandwidth: alpha = 1

alpha = 1; h = intfilt(I,L,alpha);

[Hr,w,a,L] = Hr_Type1(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);

H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);

subplot(2,2,1); plot(ww/pi,Hr,’g’,’linewidth’,1.0); axis([0,1,-1,5]);

set(gca,’xtick’,[0,1/I,1],’ytick’,[0,I]); grid; ylabel(’Amplitude’);

title(’Amplitude Response: alpha = 1’,’fontsize’,TF)

subplot(2,2,3); plot(w/pi,Hdb,’m’,’linewidth’,1.0); axis([0,1,-50,10]);

set(gca,’xtick’,[0,1/I,1],’ytick’,[-50,round(min_attn),0]); grid

ylabel(’Decibels’); xlabel(’\omega/\pi’, ’fontsize’,10);

title(’Log-mag Response: alpha = 1’,’fontsize’,TF)

% (b) Partial signal bandwidth: alpha = 0.75

alpha = 0.75; h = intfilt(I,L,alpha);

[Hr,w,a,L] = Hr_Type1(h); Hr_min = max(Hr(end/2:end)); w_min = find(Hr == Hr_min);

H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);

subplot(2,2,2); plot(ww/pi,Hr,’g’,’linewidth’,1.0); axis([0,1,-1,5]);

set(gca,’xtick’,[0,1/I,1],’ytick’,[0,I]); grid; ylabel(’Amplitude’);

title(’Amplitude Response: alpha = 0.75’,’fontsize’,TF)

subplot(2,2,4); plot(w/pi,Hdb,’m’,’linewidth’,1.0); axis([0,1,-50,10]);

set(gca,’xtick’,[0,1/I,1],’ytick’,[-50,round(min_attn),0]); grid

ylabel(’Decibels’); xlabel(’\omega/\pi’, ’fontsize’,10);

title(’Log-mag Response: alpha = 0.75’,’fontsize’,TF)

The plots are shown in Figure 9.19. For the full bandwidth case of alpha = 1,
the filter has more ripple in both the passband and the stopband with the
minimum stopband attenuation of 22 DB. This is because the filter transition
band is very narrow. For alpha = 0.75, the filter specifications are more lenient,
and hence its response is well behaved with minimum stopband attenuation of
40 DB. Note that we do not have complete control over other design parameters.
These issues are discussed in more detail further along in this section. �

In the following example, we design a linear-phase equiripple FIR
interpolation filter using the Parks-McClellen algorithm.

� EXAMPLE 9.8 Design an interpolator that increases the input sampling rate by a factor of
I = 5. Use the firpm algorithm to determine the coefficients of the FIR filter
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FIGURE 9.19 FIR interpolation filter design plots for I = 4 and L = 5

that has 0.1 dB ripple in the passband and is down by at least 30 dB in the
stopband. Choose reasonable values for band-edge frequencies.

Solution The passband cutoff frequency should be ωp = π/I = 0.2π. To get a reasonable
value for the filter length we choose the transition width of 0.12π, which gives
stopband cutoff frequency of ωs = 0.32π. Note that the nominal gain of the
filter in the passband should be equal to I = 5, which means that the ripple
values computed using the decibel values are scaled by 5. A filter of length
M = 31 achieves the design specifications given above. The details are given in
the following MATLAB script.

I = 5; Rp = 0.1; As = 30; wp = pi/I; ws = wp+pi*0.12;

[delta1,delta2] = db2delta(Rp,As); weights = [delta2/delta1,1];

F = [0,wp,ws,pi]/pi; A = [I,I,0,0];

h = firpm(30,F,A,weights); n = [0:length(h)-1];

[Hr,w,a,L] = Hr_Type1(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);

H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);
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Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

subplot(2,2,1); Hs1 = stem(n,h,’filled’); set(Hs1,’markersize’,2);

axis([-1,length(n),-0.5,1.5]); ylabel(’Amplitude’); xlabel(’n’,’vertical’,’bottom’);

Title(’Impulse Response’,’fontsize’,TF);

subplot(2,2,3); plot(ww/pi,Hr,’m’,’linewidth’,1.0); axis([0,1,-1,6]);

set(gca,’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[0,I]); grid; ylabel(’Amplitude’);

title(’Amplitude Response’,’fontsize’,TF); xlabel(’Frequency in \pi units’);

subplot(2,2,2); plot(w/pi,Hdb,’m’,’linewidth’,1.0); axis([0,1,-50,10]);

set(gca,’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[-50,round(min_attn),0]); grid

ylabel(’Decibels’);

title(’Log-magnitude Response’,’fontsize’,TF);

subplot(2,2,4);

lw = length(w)-1; PB = [0:floor(wp/pi*lw)]; HrPB = Hr(PB+1)-I;

SB = [ceil(ws/pi*lw):lw]; HrSB = Hr(SB+1);

[AX,H1,H2] = plotyy(PB/lw,HrPB,SB/lw,HrSB);

delta1 = round(delta1*I*100)/100; delta2 = round(delta2*I*100)/100;

set(AX(1),’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[-delta1,0,delta1],’Ycolor’,’g’);

set(AX(2),’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[-delta2,0,delta2],’Ycolor’,’r’);

set(H1,’color’,’g’,’linewidth’,1); set(H2,’color’,’r’,’linewidth’,1);

title(’Scaled Ripples’,’fontsize’,TF); xlabel(’Frequency in \pi units’);

The responses of the designed FIR filter are given in Figure 9.20. Even
though this filter passes the original signal, it is possible that some of the neigh-
boring spectral energy may also leak through if the signal is of full bandwidth
of π radians. Hence we need better design specifications, which are discussed
further along in this section. �

MATLAB Implementation To use the FIR filter for interpolation
purposes (such as the one designed in Example 9.8), MATLAB has pro-
vided a general function, upfirdn, that can be used for interpolation
and decimation as well as for resampling purposes. Unlike other functions
discussed in this chapter, upfirdn incorporates the user-defined FIR fil-
ter (which need not be linear phase) in the operation. When invoked as
y = upfirdn(x,h,I), the function upsamples the input data in the array
x by a factor of the integer I and then filters the upsampled signal data
with the impulse response sequence given in the array h to produce the
output array y, thus implementing the system in Figure 9.18.

� EXAMPLE 9.9 Let x(n) = cos(0.5πn). Increase the input sampling rate by a factor of I = 5,
using the filter designed in Example 9.8.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



FIR Filter Designs for Sampling Rate Conversion 503

0 10 20 30
−0.5

0

0.5

1

1.5

A
m

pl
itu

de

n

Impulse Response

0 0.2 0.32 1

0

5

A
m

pl
itu

de

Amplitude Response

0 0.2 0.32 1
−50

−30

0

D
ec

ib
el

s

Frequency in π units

Frequency in π units Frequency in π units

 

Log–magnitude Response 

0 0.2 0.32 1

−0.03

0

0.03

Scaled Ripples

A
m

pl
itu

de

 −0.16

0

0.16

FIGURE 9.20 Responses of the FIR interpolation filter in Example 9.8

Solution The steps are given in the following MATLAB script.

% Given Parameters:

I = 5; Rp = 0.1; As = 30; wp = pi/I; ws = 0.32*pi;

[delta1,delta2] = db2delta(Rp,As); weights = [delta2/delta1,1];

n = [0:50]; x = cos(0.5*pi*n);

n1 = n(1:17); x1 = x(17:33); % for plotting purposes

% Input signal

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

subplot(2,2,1); Hs1 = stem(n1,x1,’filled’); set(Hs1,’markersize’,2,’color’,’g’);

set(gca,’xtick’,[0:4:16],’ytick’,[-1,0,1]);

axis([-1,17,-1.2,1.2]); ylabel(’Amplitude’); xlabel(’n’,’vertical’,’middle’);

Title(’Input Signal x(n)’,’fontsize’,TF);

% Interpolation with Filter Design: Length M = 31

M = 31; F = [0,wp,ws,pi]/pi; A = [I,I,0,0];

h = firpm(M-1,F,A,weights); y = upfirdn(x,h,I);

delay = (M-1)/2; % Delay imparted by the filter

m = delay+1:1:50*I+delay+1; y = y(m); m = 1:81; y = y(81:161); % for plotting
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FIGURE 9.21 Signal plots in Example 9.9

subplot(2,2,2); Hs2 = stem(m,y,’filled’); set(Hs2,’markersize’,2,’color’,’m’);

axis([-5,85,-1.2,1.2]); set(gca,’xtick’,[0:4:16]*I,’ytick’,[-1,0,1]);

title(’Output y(n): Filter length=31’,’fontsize’,TF);

xlabel(’n’,’vertical’,’middle’); ylabel(’Amplitude’);

The signal stem plots are shown in Figure 9.21. The upper left-hand plot shows
a segment of the input signal x(n), and the upper right-hand plot shows the
interpolated signal y(n) using the filter of length 31. The plot is corrected for
filter delay and the effect of its transient response. It is somewhat surprising that
the interpolated signal is not what it should be. The signal peak is more than
one, and the shape is distorted. A careful observation of the filter response plot
in Figure 9.20 reveals that the broad transition width and a smaller attenuation
has allowed some of the spectral energy to leak, creating a distortion.

To investigate this further, we designed filters with larger orders of 51 and
81, as detailed in the following MATLAB script.

% Interpolation with Filter Design: Length M = 51

M = 51; F = [0,wp,ws,pi]/pi; A = [I,I,0,0];

h = firpm(M-1,F,A,weights); y = upfirdn(x,h,I);
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delay = (M-1)/2; % Delay imparted by the filter

m = delay+1:1:50*I+delay+1; y = y(m); m = 1:81; y = y(81:161);

subplot(2,2,3); Hs3 = stem(m,y,’filled’); set(Hs3,’markersize’,2,’color’,’m’);

axis([-5,85,-1.2,1.2]); set(gca,’xtick’,[0:4:16]*I,’ytick’,[-1,0,1]);

title(’Output y(n): Filter length=51’,’fontsize’,TF);

xlabel(’n’,’vertical’,’middle’); ylabel(’Amplitude’);

% Interpolation with Filter Design: Length M = 81

M = 81; F = [0,wp,ws,pi]/pi; A = [I,I,0,0];

h = firpm(M-1,F,A,weights); y = upfirdn(x,h,I);

delay = (M-1)/2; % Delay imparted by the filter

m = delay+1:1:50*I+delay+1; y = y(m); m = 1:81; y = y(81:161);

subplot(2,2,4); Hs3 = stem(m,y,’filled’); set(Hs3,’markersize’,2,’color’,’m’);

axis([-5,85,-1.2,1.2]); set(gca,’xtick’,[0:4:16]*I,’ytick’,[-1,0,1]);

title(’Output y(n): Filter length=81’,’fontsize’,TF);

xlabel(’n’,’vertical’,’middle’); ylabel(’Amplitude’);

The resulting signals are also shown in lower plots in Figure 9.21. Clearly, for
large orders, the filter has better lowpass characteristics. The signal peak value
approaches 1, and its shape approaches the cosine waveform. Thus, a good filter
design is critical even in a simple signal case. �

9.5.2 DESIGN SPECIFICATIONS
When we replace HI(ω) by a finite-order FIR filter H(ω), we must allow
for a transition band; thus, the filter cannot have a passband edge up to
π/I. Towards this, we define

• ωx,p as the highest frequency of the signal x(n) that we want to preserve
• ωx,s as the full signal bandwidth of x(n),—i.e., there is no energy in

x(n) above the frequency ωx,s.

Thus, we have 0 < ωx,p < ωx,s < π. Note that the parameters ωx,p

and ωx,s, as defined are signal parameters, not filter parameters; they are
shown in Figure 9.22a. The filter parameters will be defined based on ωx,p

and ωx,s.
From equation (9.48), these signal parameter frequencies for v(m)

become ωx,p/I and ωx,s/I, respectively, because the frequency scale is
compressed by the factor I. This is shown in Figure 9.22b. A linear-phase
FIR filter can now be designed to pass frequencies up to ωx,p/I and to
suppress frequencies starting at (2π − ωx,s)/I. Let

ωp =
(ωx,p

I

)
and ωs =

(
2π − ωx,s

I

)
(9.50)
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be the passband and stopband edge frequencies, respectively, of the low-
pass linear-phase FIR filter given by

H(ω) = Hr(ω)eθ(ω) (9.51)

where Hr(ω) is the real-valued amplitude response and θ(ω) is the un-
wrapped phase response. Then we have the following filter design specifi-
cations:

1
I
Hr(ω) ≤ 1 ± δ1 for |ω| ∈ [0, ωp]

1
I
Hr(ω) ≤ ±δ2 for |ω| ∈ [ωs, π]

(9.52)

where ωp and ωs are as given in (9.50) and δ1 and δ2 are the passband
and stopband ripple parameters, respectively, of the lowpass FIR filter.

Comment: Instead of beginning the stopband at π/I, we were able to
shift it to (2π − ωs) /I. If ωx,s � π, then this will be an important con-
sideration to lower filter order. However, in the worst-case scenario of
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ωx,s = π, the stopband will begin at π
I , which is the same as in the ideal

lowpass filter of (9.49). Almost always ωx,s < π, and we can then choose
ωx,p as close to ωx,s as we want. However, this will reduce the size of the
transition band, which means a higher filter order.

� EXAMPLE 9.10 Design a better FIR lowpass filter for sampling rate increase by a factor of I = 5
for the signal in Example 9.9.

Solution Since x(n) = cos(0.5πn), the signal bandwidth and bandwidth to be preserved
are the same—i.e., ωx,p = ωx,s = 0.5π. Thus, from (9.50), ωp = 0.5π/5 = 0.1π
and ωs = (2π − 0.5π)/5 = 0.3π. We will design the filter for Rp = 0.01 and
As = 50 dB. The resulting filter order is 32, which is 2 higher than the one in
Example 9.9 but with much superior attenuation. The details are given below.

% Given Parameters:

n = [0:50]; wxp = 0.5*pi; x = cos(wxp*n);

n1 = n(1:9); x1 = x(9:17); % for plotting purposes

I = 5; I = 5; Rp = 0.01; As = 50; wp = wxp/I; ws = (2*pi-wxp)/I;

[delta1,delta2] = db2delta(Rp,As); weights = [delta2/delta1,1];

[N,Fo,Ao,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2],2);N = N+2;

% Input signal

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

subplot(2,2,1); Hs1 = stem(n1,x1,’filled’); set(Hs1,’markersize’,2,’color’,’g’);

set(gca,’xtick’,[0:4:16],’ytick’,[-1,0,1]);

axis([-1,9,-1.2,1.2]); ylabel(’Amplitude’); xlabel(’n’,’vertical’,’middle’);

Title(’Input Signal x(n)’,’fontsize’,TF);

% Interpolation with Filter Design: Length M = 31

h = firpm(N,Fo,I*Ao,weights); y = upfirdn(x,h,I);

delay = (N)/2; % Delay imparted by the filter

m = delay+1:1:50*I+delay+1; y = y(m); m = 0:40; y = y(81:121);

subplot(2,2,3); Hs2 = stem(m,y,’filled’); set(Hs2,’markersize’,2,’color’,’m’);

axis([-5,45,-1.2,1.2]); set(gca,’xtick’,[0:4:16]*I,’ytick’,[-1,0,1]);

title(’Output Signal y(n): I=5’,’fontsize’,TF);

xlabel(’m’,’vertical’,’middle’); ylabel(’Amplitude’);

% Filter Design Plots

[Hr,w,a,L] = Hr_Type1(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);

H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);

subplot(2,2,2); plot(ww/pi,Hr,’m’,’linewidth’,1.0); axis([0,1,-1,6]);

set(gca,’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[0,I]); grid; ylabel(’Amplitude’);

title(’Amplitude Response’,’fontsize’,TF);

xlabel(’Frequency in \pi units’,’vertical’,’middle’);

subplot(2,2,4); plot(w/pi,Hdb,’m’,’linewidth’,1.0); axis([0,1,-60,10]);
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FIGURE 9.23 Signal plots and filter design plots in Example 9.10

set(gca,’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[-60,round(min_attn),0]); grid

ylabel(’Decibels’); xlabel(’Frequency in \pi units’,’vertical’,’middle’);

title(’Log-magnitude Response’,’fontsize’,TF);

The signal stem plots and filter design plots are shown in Figure 9.23. The
designed filter has a minimum stopband attenuation of 53 dB, and the resulting
interpolation is accurate even with the filter order of 32. �

9.5.3 FIR INTEGER DECIMATION
Consider the system in Figure 9.5 on page 481 in which the ideal lowpass
filter is replaced by an FIR filter H(ω), which then results in the system
shown in Figure 9.24. The relationship between Y (ωy) and X(ω) is given
by (9.24), which is repeated here for convenience

Y (ωy) =
1
D

D−1∑
k=0

H

(
ω − 2πk

D

)
X

(
ω − 2πk

D

)
; ω =

ωy

D
(9.53)
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FIR LPF
H(ω) ↓D y (m)x(n)

v (n)

Rate: Fx Fx

FIR Decimator

= Fy
Fx

D

FIGURE 9.24 An FIR integer decimator

which is nothing but the aliased sum of the H(ω)X(ω). Thus, the condi-
tion necessary to avoid aliasing is

H(ω)X(ω) = 0 for
π

D
≤ |ω| ≤ π (9.54)

Then,

Y (ωy) =
1
D
X(ω)H(ω) (9.55)

as in (9.25), where the ideal filtering was accomplished with HD(ω) as
given in (9.20).

� EXAMPLE 9.11 Design a decimator that downsamples an input signal x(n) by a factor D = 2.
Use the firpm algorithm to determine the coefficients of the FIR filter that has
a 0.1 dB ripple in the passband and is down by at least 30 dB in the stopband.
Choose reasonable values for band-edge frequencies.

Solution The passband cutoff frequency should be ωp = π/D = 0.5π. To get a reasonable
value for the filter length we choose the transition width of 0.1π, which gives
stopband a cutoff frequency of ωs = 0.3π. A filter of length M = 37 achieves the
preceding design specifications. The details are given in the following MATLAB
script.

% Filter Design

D = 2; Rp = 0.1; As = 30; wp = pi/D; ws = wp+0.1*pi;

[delta1,delta2] = db2delta(Rp,As);

[N,F,A,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2],2);

h = firpm(N,F,A,weights); n = [0:length(h)-1];

[Hr,w,a,L] = Hr_Type1(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);

H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

subplot(2,2,1); Hs1 = stem(n,h,’filled’); set(Hs1,’markersize’,2);

axis([-1,length(n),-0.15,0.6]); ylabel(’Amplitude’,’vertical’,’cap’);

xlabel(’n’,’vertical’,’bottom’);set(gca,’xtick’,[n(1),n(end)],’ytick’,[0,0.5]);

Title(’Impulse Response’,’fontsize’,TF,’vertical’,’baseline’);

subplot(2,2,3); plot(w/pi,Hr,’m’,’linewidth’,1.0); axis([0,1,-0.1,1.1]);

set(gca,’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[0,1]); grid;
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ylabel(’Amplitude’,’vertical’,’cap’);

title(’Amplitude Response’,’fontsize’,TF,’vertical’,’baseline’);

xlabel(’Frequency in \pi units’,’vertical’,’middle’);

subplot(2,2,2); plot(w/pi,Hdb,’m’,’linewidth’,1.0); axis([0,1,-50,10]);

set(gca,’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[-50,round(min_attn),0]); grid

ylabel(’Decibels’,’vertical’,’cap’);

xlabel(’Frequency in \pi units’,’vertical’,’middle’);

title(’Log-magnitude Response’,’fontsize’,TF,’vertical’,’baseline’);

subplot(2,2,4);

lw = length(w)-1; PB = [0:floor(wp/pi*lw)]; HrPB = Hr(PB+1)-1;

SB = [ceil(ws/pi*lw):lw]; HrSB = Hr(SB+1);

[AX,H1,H2] = plotyy(PB/lw,HrPB,SB/lw,HrSB);

delta1 = round(delta1*1000)/1000; delta2 = round(delta2*100)/100;

set(AX(1),’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[-delta1,0,delta1],’Ycolor’,’g’);

set(AX(2),’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[-delta2,0,delta2],’Ycolor’,’r’);

set(H1,’color’,’g’,’linewidth’,1); set(H2,’color’,’r’,’linewidth’,1);

title(’Unweighted Ripples’,’fontsize’,TF,’vertical’,’baseline’);

ylabel(’Amplitude’,’vertical’,’cap’)

xlabel(’Frequency in \pi units’,’vertical’,’middle’);

The responses of the designed FIR filter are given in Figure 9.25. This filter
passes the signal spectrum over the passband [0, π/2] without any distortion.
However, since the transition width is not very narrow, it is possible that some
of the signal over the transition band may alias into the band of interest. Also
the 30 db attenuation may allow a small fraction of the signal spectrum from the
stopband into the passband after downsampling. Therefore, we need a better
approach for filter specifications, as discussed further along in this section. �

MATLAB Implementation As discussed, the upfirdn function can
also be used for implementing the user-designed FIR filter in the decima-
tion operation. When invoked as y = upfirdn(x,h,1,D), the function
filters the signal data in the array x with the impulse response given in
the array h and then downsamples the filtered data by the integer fac-
tor D to produce the output array y, thus implementing the system in
Figure 9.24.

� EXAMPLE 9.12 Using the filter designed in Example 9.11 decimate sinusoidal signals x1(n)=
cos(πn/8) and x2(n)= cos(πn/2) with frequencies within the passband of the
filter. Verify the performance of the FIR filter and the results of the decimation.

Solution The following MATLAB script provides the details.
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FIGURE 9.25 Responses of the FIR decimation filter in Example 9.11

% Given Parameters:

D = 2; Rp = 0.1; As = 30; wp = pi/D; ws = wp+0.1*pi;

% Filter Design

[delta1,delta2] = db2delta(Rp,As);

[N,F,A,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2],2);

h = firpm(N,F,A,weights); delay = N/2; % Delay imparted by the filter

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

% Input signal x1(n) = cos(2*pi*n/16)

n = [0:256]; x = cos(pi*n/8);

n1 = n(1:33); x1 = x(33:65); % for plotting purposes

subplot(2,2,1); Hs1 = stem(n1,x1,’filled’); set(Hs1,’markersize’,2,’color’,’g’);

set(gca,’xtick’,[0:8:32],’ytick’,[-1,0,1]);

axis([-2,34,-1.2,1.2]); ylabel(’Amplitude’); xlabel(’n’,’vertical’,’middle’);

Title(’Input Signal: x1(n) = cos(\pin/8)’,’fontsize’,TF,’vertical’,’baseline’);

% Decimation of x1(n): D = 2

y = upfirdn(x,h,1,D);
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m = delay+1:1:128/D+delay+1; y = y(m); m = 0:16; y = y(16:32);

subplot(2,2,3); Hs2 = stem(m,y,’filled’); set(Hs2,’markersize’,2,’color’,’m’);

axis([-1,17,-1.2,1.2]); set(gca,’xtick’,[0:8:32]/D,’ytick’,[-1,0,1]);

title(’Output signal: y1(n): D=2’,’fontsize’,TF,’vertical’,’baseline’);

xlabel(’m’,’vertical’,’middle’); ylabel(’Amplitude’);

% Input signal x2(n) = cos(8*pi*n/16)

n = [0:256]; x = cos(8*pi*n/(16));

n1 = n(1:33); x1 = x(33:65); % for plotting purposes

subplot(2,2,2); Hs1 = stem(n1,x1,’filled’); set(Hs1,’markersize’,2,’color’,’g’);

set(gca,’xtick’,[0:8:32],’ytick’,[-1,0,1]);

axis([-2,34,-1.2,1.2]); ylabel(’Amplitude’); xlabel(’n’,’vertical’,’middle’);

Title(’Input Signal: x2(n) = cos(\pin/2)’,’fontsize’,TF,’vertical’,’baseline’);

% Decimation of x2(n): D = 2

y = upfirdn(x,[h],1,D); %y = downsample(conv(x,h),2);

m = delay+1:1:128/D+delay+1; y = y(m); m = 0:16; y = y(16:32);

subplot(2,2,4); Hs2 = stem(m,y,’filled’); set(Hs2,’markersize’,2,’color’,’m’);

axis([-1,17,-1.2,1.2]); set(gca,’xtick’,[0:8:32]/D,’ytick’,[-1,0,1]);

title(’Output signal: y2(n): D=2’,’fontsize’,TF,’vertical’,’baseline’);

xlabel(’m’,’vertical’,’middle’); ylabel(’Amplitude’);

The signal stem plots are shown in Figure 9.26. The leftside plots show the
signal x1(n) and the corresponding decimated signal y1(n), and the rightside
plots show the same for x2(n) and y2(n). In both cases the decimation appears
to be correct. If we had chosen any frequency above π/2, then the filter would
have attenuated or eliminated the signal. �

9.5.4 DESIGN SPECIFICATIONS
When we replace the ideal lowpass filter HD(ω) by a finite-order FIR filter
H(ω), we must allow for a transition band. Again we define

• ωx,p as the signal bandwidth to be preserved
• ωx,s as the frequency above which aliasing error is tolerated

Then we have 0 < ωx,p ≤ ωx,s ≤ π/D. If we choose ωx,s = π/D, then the
decimator will give no aliasing error. If we choose ωx,s = ωx,p, then the
band above the signal band will contain aliasing errors. With these defini-
tions and observations we can now specify the desired filter specifications.
The filter must pass frequencies up to ωx,p, and its stopband must begin
at

(
2π
D − ωx,s

)
and continue up to π. Then, none of the k �= 0 terms in

(9.53)—i.e., the “aliases,” will cause appreciable distortion in the band
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FIGURE 9.26 Signal plots in Example 9.12

up to ωx,s. Let

ωp = ωx,p and ωs =
(

2π
D

− ωx,s

)
(9.56)

be the passband and stopband edge frequencies, respectively, of the low-
pass linear-phase FIR filter given in (9.51). Then we have the following
filter design specifications:

Hr(ω) ≤ 1 ± δ1 for |ω| ∈ [0, ωp]

Hr(ω) ≤ ±δ2 for |ω| ∈ [ωs, π]
(9.57)

where ωp and ωs are as given in (9.56) and δ1 and δ2 are the passband and
stopband ripple parameters of the lowpass FIR filter, respectively. Note
that it does not matter what the spectrum X(ω) is. We simply require
that the product X(ω)H(ω) be very small beginning at ω| = 2π/D−ωx,s

so that k �= 0 terms in (9.53) do not provide significant contribution in
the band [−ωx,s, ωx,s], which is required to be free of aliasing.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



514 Chapter 9 SAMPLING RATE CONVERSION

Significance of δ1 and δ2 The filter ripple parameters δ1 and δ2 have
the following significance, which must be taken into consideration while
specifying their values:

• The passband ripple δ1 measures the ripple in the passband and hence
controls the distortion in the signal bandwidth ωp.

• The stopband ripple δ2 controls the amount of aliased energy (also
called leakage) that gets into the band up to ωx,s.

There are (D − 1) contributions due to k �= 0 terms in (9.53). These
are expected to add incoherently (i.e., have peaks at different locations),
so the overall peak error should be about δ2. The actual error depends
on how X(ω) varies over the rest of the band |ω| > ωx,p. Clearly, the
filter stopband ripple δ2 controls the aliasing error in the signal passband.
Therefore, both δ1 and δ2 affect the decimated signal in its passband.

Comment: Comparing the FIR decimator filter specifications (9.57) to
those for the FIR interpolator in (9.52), we see a high degree of similarity.
In fact, a filter designed to decimate by factor D can also be used to
interpolate by the factor I = D, as we see from the following example.
This means that the function intfilt can also be used to design FIR
filters for decimation.

� EXAMPLE 9.13 To design a decimate by D stage we need values for ωx,p and ωx,s (remember
that these are signal parameters). Assume ωx,p = π/(2D), which satisfies the
constraint ωx,p ≤ π/D and is exactly half the decimated bandwidth. Let ωx,s =
ωx,p. Then the FIR lowpass filter must pass frequencies up to ωp = π/(2D) and
stop frequencies above ωs = 2π/D − π/(2D) = 3π/(2D).

Now consider the corresponding interpolation problem. We want to inter-
polate by I. We again choose ωx,s = ωx,p, but now the range is ωx,p < π. If we
take exactly half this band, we get ωx,p = π/2. Then according to the specifi-
cations (9.52) for the interpolation, we want the filter to pass frequencies up to
π/2I and to stop above 3π/2I. Thus, for I = D, we have the same filter spec-
ifications, so the same filter could serve both the decimation and interpolation
problems. �

� EXAMPLE 9.14 Design a decimation FIR filter for the signal x1(n) in Example 9.12 that has a
better stopband attenuation of As = 50 dB and a lower filter order.

Solution The signal bandwidth is ωx,p = π/8, and we will choose ωx,s = π/D = π/2.
Then ωp = π/8 and ωs = (2π/D) − ωx,s = π/2. With these parameters the
optimum FIR filter length is 13, which is much lower than the previous one of
37 with a higher attenuation.

MATLAB script:

% Given Parameters:

D = 2; Rp = 0.1; As = 50; wxp = pi/8; wxs = pi/D; wp = wxp; ws = (2*pi/D)-wxs;
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% Filter Design

[delta1,delta2] = db2delta(Rp,As);

[N,F,A,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2],2); N = ceil(N/2)*2;

h = firpm(N,F,A,weights); delay = N/2; % Delay imparted by the filter

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,4],...

’paperunits’,’inches’,’paperposition’,[0,0,6,4]);

% Input signal x(n) = cos(2*pi*n/16)

n = [0:256]; x = cos(pi*n/8);

n1 = n(1:33); x1 = x(33:65); % for plotting purposes

subplot(2,2,1); Hs1 = stem(n1,x1,’filled’); set(Hs1,’markersize’,2,’color’,’g’);

set(gca,’xtick’,[0:8:32],’ytick’,[-1,0,1]);

axis([-2,34,-1.2,1.2]); ylabel(’Amplitude’,’vertical’,’cap’);

xlabel(’n’,’vertical’,’middle’);

Title(’Input Signal: x(n) = cos(\pin/8)’,’fontsize’,TF,’vertical’,’baseline’);

% Decimation of x(n): D = 2

y = upfirdn(x,h,1,D);

m = delay+1:1:128/D+delay+1; y1 = y(m); m = 0:16; y1 = y1(14:30);

subplot(2,2,3); Hs2 = stem(m,y1,’filled’); set(Hs2,’markersize’,2,’color’,’m’);

axis([-1,17,-1.2,1.2]); set(gca,’xtick’,[0:8:32]/D,’ytick’,[-1,0,1]);

title(’Output signal y(n): D=2’,’fontsize’,TF,’vertical’,’baseline’);

xlabel(’m’,’vertical’,’middle’); ylabel(’Amplitude’,’vertical’,’cap’);

% Filter Design Plots

[Hr,w,a,L] = Hr_Type1(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);

H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);

subplot(2,2,2); plot(w/pi,Hr,’m’,’linewidth’,1.0); axis([0,1,-0.1,1.1]);

set(gca,’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[0,1]); grid;

ylabel(’Amplitude’,’vertical’,’cap’);

title(’Amplitude Response’,’fontsize’,TF,’vertical’,’baseline’);

xlabel(’Frequency in \pi units’,’vertical’,’middle’);

subplot(2,2,4); plot(w/pi,Hdb,’m’,’linewidth’,1.0); axis([0,1,-60,10]);

set(gca,’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[-60,round(min_attn),0]); grid

ylabel(’Decibels’,’vertical’,’cap’);

xlabel(’Frequency in \pi units’,’vertical’,’middle’);

title(’Log-magnitude Response’,’fontsize’,TF,’vertical’,’baseline’);

The signal stem plots and the filter responses are shown in Figure 9.27. The
designed filter achieves an attenuation of 51 dB, and the decimated signal is
correct. �
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FIGURE 9.27 Signal plots and filter design plots in Example 9.14

9.5.5 FIR RATIONAL-FACTOR RATE CONVERSION
Replacing the ideal filter of the system given on page 494 with an FIR
filter H(ω), we obtain the system shown in Figure 9.28. In this case the
relevant ideal lowpass filter is given by (9.36), which is repeated here for
convenience.

H(ω) =

{
I, 0 ≤ |ω| ≤ min(π/D, π/I)
0, otherwise

(9.58)

For the signal x(n) we define

• ωx,p as the signal bandwidth that should be preserved
• ωx,s1 as the overall signal bandwidth
• ωx,s2 as the signal bandwidth that is required to be free of aliasing error

after resampling

Then we have

0 < ωx,p ≤ ωx,s2 ≤ Iπ

D
and ωx,s1 ≤ π (9.59)
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FIR LPF
H(ω)↑I ↓D y (m)x(n)

Rate: Fx IFx IFx

FIR Resampler

Fx = Fy
I
D

FIGURE 9.28 An FIR rational-factor resampler

Now for the interpolation part, the lowpass filter must pass frequencies
up to ωx,p/I and attenuate frequencies starting at (2π/I − ωx,s1/I). The
decimation part of the filter must again pass frequencies up to ωx,p/I
but attenuate frequencies above (2π/D − ωx,s2/I). Therefore, the stop-
band must start at the lower of these two values. Defining filter cutoff
frequencies as

ωp =
(ωx,p

I

)
and ωs = min

[
2π
I

− ωx,s1

I
,
2π
D

− ωx,s2

I

]
(9.60)

and the corresponding ripple parameters as δ1 and δ2, we have the fol-
lowing filter specifications:

1
I
Hr(ω) ≤ 1 ± δ1 for |ω| ∈ [0, ωp]

1
I
Hr(ω) ≤ ±δ2 for |ω| ∈ [ωs, π]

(9.61)

where Hr(ω) is the amplitude response. Note that if we set ωx,s1 = π and
ωx,s2 = Iπ/D, which are their maximum values, then we get the ideal
cutoff frequency max[π/I, π/D], as given before in (9.36).

MATLAB Implementation Clearly, the upfirdn function implements
all the necessary operations needed in the rational sampling rate conver-
sion system shown in Figure 9.28. When invoked as y = upfirdn(x,h,
I,D), it performs a cascade of three operations: upsampling the input data
array x by a factor of the integer I, FIR filtering the upsampled signal data
with the impulse response sequence given in the array h, and finally down-
sampling the result by a factor of the integer D. Using a well designed filter,
we have a complete control over the sampling rate conversion operation.

� EXAMPLE 9.15 Design a sampling rate converter that increases the sampling rate by a factor of
2.5. Use the firpm algorithm to determine the coefficients of the FIR filter that
has 0.1 dB ripple in the passband and is down by at least 30 dB in the stopband.
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Solution The FIR filter that meets the specifications of this problem is exactly the same
as the filter designed in Example 9.8. Its bandwidth is π/5. �

� EXAMPLE 9.16 A signal x(n) has a total bandwidth of 0.9π. It is resampled by a factor of
4/3 to obtain y(m). We want to preserve the frequency band up to 0.8π and
require that the band up to 0.7π be free of aliasing. Using the Parks-McClellan
algorithm, determine the coefficients of the FIR filter that has 0.1 dB ripple in
the passband and 40 dB attenuation in the stopband.

Solution The overall signal bandwidth is ωx,s1 = 0.9π, the bandwidth to be preserved is
ωx,p = 0.8π, and the bandwidth above which aliasing is tolerated is ωx,s2 = 0.7π.
From (9.60) and using I = 4 and D = 3, the FIR filter design parameters are
ωp = 0.2π and ωs = 0.275π. With these parameters, along with the passband
ripple of 0.1 dB and stopband attenuation of 40 dB, the optimum FIR filter
length is 58. The details and computation of design plots follow.

% Given Parameters:

I = 4; D = 3; Rp = 0.1; As = 40;

wxp = 0.8*pi; wxs1 = 0.9*pi; wxs2 = 0.7*pi;

% Computed Filter Parameters

wp = wxp/I; ws = min((2*pi/I-wxs1/I),(2*pi/D-wxs2/I));

% Filter Design

[delta1,delta2] = db2delta(Rp,As);

[N,F,A,weights] = firpmord([wp,ws]/pi,[1,0],[delta1,delta2],2);

N = ceil(N/2)*2+1; h = firpm(N,F,I*A,weights);

Hf1 = figure(’units’,’inches’,’position’,[1,1,6,3],...

’paperunits’,’inches’,’paperposition’,[0,0,6,3]);

% Filter Design Plots

[Hr,w,a,L] = Ampl_res(h); Hr_min = min(Hr); w_min = find(Hr == Hr_min);

H = abs(freqz(h,1,w)); Hdb = 20*log10(H/max(H)); min_attn = Hdb(w_min);

subplot(2,1,1); plot(w/pi,Hr,’m’,’linewidth’,1.0); axis([0,1,-0.1,I+0.1]);

set(gca,’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[0,I]); grid;

ylabel(’Amplitude’,’vertical’,’cap’);

title(’Amplitude Response’,’fontsize’,TF,’vertical’,’baseline’);

xlabel(’Frequency in \pi units’,’vertical’,’middle’);

subplot(2,1,2); plot(w/pi,Hdb,’m’,’linewidth’,1.0); axis([0,1,-60,10]);

set(gca,’xtick’,[0,wp/pi,ws/pi,1],’ytick’,[-60,round(min_attn),0]); grid

ylabel(’Decibels’,’vertical’,’cap’);

xlabel(’Frequency in \pi units’,’vertical’,’middle’);

title(’Log-magnitude Response’,’fontsize’,TF,’vertical’,’baseline’);

The filter responses are shown in Figure 9.29, which shows that the designed
filter achieves the attenuation of 40 db. �
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FIGURE 9.29 The filter design plots in Example 9.16

9.5.6 FIR FILTERS WITH MULTIPLE STOPBANDS
We now discuss the use of multiple stopbands in the design of FIR in-
teger interpolators when the low sampling rate is more than two times
that required. Let us refer back to the Figure 9.22b on page 506, which
illustrates a typical spectrum V (ω) in integer interpolators. We could
use a lowpass filter with multiple stopbands of bandwidth ωs/I cen-
tered at 2πk/I for k �= 0. For I = 4, such a spectrum is shown in
Figure 9.30(a), and the corresponding filter specifications are shown in
Figure 9.30b.

Clearly, these filter specifications differ from those given in (9.52) on
page 506 in that the stopband is no longer one contiguous interval. Now
if ωs < π/2, then there is a practical advantage to using this multiband
design because it results in a lower order filter [2]. For π ≥ ωs > π/2,
the single-band lowpass filter specification (9.52) is easier and works as
well.

Similar advantages can be obtained for FIR integer decimators. We
again find that we can substitute a multiple stopband lowpass filter for the
single stopband design given in (9.57). With reference to the signal spec-
ifications on page 513, we note that only part of the bands [π/D, 3π/D],
[3π/D, 5π/D], . . . etc. will get aliased into [−ωs,+ωs]. Therefore, the mul-
tiple stopbands are given by [(2π/D) − ωs, (2π/D) + ωs], [(4π/D) − ωs,
(4π/D) + ωs], etc., centered at 2πk/D, k �= 0. Once again there are prac-
tical advantages when ωs < π/2M .
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FIGURE 9.30 Multiple stopband design: (a) signal spectrum, (b) filter specifica-
tions

9.6 FIR FILTER STRUCTURES FOR SAMPLING RATE CONVERSION

As indicated in the discussion in section 9.4, sampling rate conversion by
a factor I/D can be achieved by first increasing the sampling rate by I,
accomplished by inserting I − 1 zeros between successive values of the
input signal x(n), followed by linear filtering of the resulting sequence to
eliminate the unwanted images of X(ω), and finally by downsampling the
filtered signal by the factor D. In this section we consider the design and
implementation of the linear filter. We begin with the simplest structure,
which is the direct-form FIR filter structure, and develop its computation-
ally efficient implementation. We then consider another computationally
efficient structure called the polyphase structure, which is used in the im-
plementation of the MATLAB functions resample and upfirdn. Finally,
we close this section by discussing the time-variant filter structures for
the general case of sampling rate conversion.

9.6.1 DIRECT-FORM FIR FILTER STRUCTURES
In principle, the simplest realization of the filter is the direct-form FIR
structure with system function

H(z) =
M−1∑
k=0

h(k)z−k (9.62)
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I

3

2

1

FIGURE 9.31 Direct-form realization of FIR filter in sampling rate conversion
by a factor I/D

where h(k) is the unit sample response of the FIR filter. After design-
ing the filter as discussed in the previous section, we will have the filter
parameters h(k), which allow us to implement the FIR filter directly, as
shown in Figure 9.31.

Although the direct-form FIR filter realization illustrated in
Figure 9.31 is simple, it is also very inefficient. The inefficiency results
from the fact that the upsampling process introduces I − 1 zeros between
successive points of the input signal. If I is large, most of the signal
components in the FIR filter are zero. Consequently, most of the multi-
plications and additions result in zeros. Furthermore, the downsampling
process at the output of the filter implies that only one out of every D
output samples is required at the output of the filter. Consequently, only
one out of every D possible values at the output of the filter should be
computed.

To develop a more efficient filter structure, let us begin with a deci-
mator that reduces the sampling rate by an integer factor D. From our
previous discussion, the decimator is obtained by passing the input se-
quence x(n) through an FIR filter and then downsampling the filter out-
put by a factor D, as illustrated in Figure 9.32a. In this configuration,
the filter is operating at the high sampling rate Fx, while only one out of
every D output samples is actually needed. The logical solution to this
inefficiency problem is to embed the downsampling operation within the
filter, as illustrated in the filter realization given in Figure 9.32b. In this
filter structure, all the multiplications and additions are performed at the
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FIGURE 9.32 Decimation by a factor D: (a) standard realization, (b) efficient
realization

lower sampling rate Fx/D. Thus, we have achieved the desired efficiency.
Additional reduction in computation can be achieved by exploiting the
symmetry characteristics of {h(k)}. Figure 9.33 illustrates an efficient re-
alization of the decimator in which the FIR filter has linear phase and
hence {h(k)} is symmetric.

Next, let us consider the efficient implementation of an interpolator,
which is realized by first inserting I − 1 zeros between samples of x(n)
and then filtering the resulting sequence. The direct-form realization is
illustrated in Figure 9.34. The major problem with this structure is that
the filter computations are performed at the high sampling rate of IFx.
The desired simplification is achieved by first using the transposed form
of the FIR filter, as illustrated in Figure 9.35a, and then embedding the
upsampler within the filter, as shown in Figure 9.35b. Thus, all the filter
multiplications are performed at the low rate Fx, while the upsampling
process introduces I−1 zeros in each of the filter branches of the structure
shown in Figure 9.35b. The reader can easily verify that the two filter
structures in Figure 9.35 are equivalent.

It is interesting to note that the structure of the interpolator, shown
in Figure 9.35b, can be obtained by transposing the structure of the deci-
mator shown in Figure 9.32. We observe that the transpose of a decimator
is an interpolator, and vice versa. These relationships are illustrated in
Figure 9.36, where part b is obtained by transposing part a and part d is
obtained by transposing part c. Consequently, a decimator is the dual of
an interpolator, and vice versa. From these relationships, it follows that
there is an interpolator whose structure is the dual of the decimator shown
in Figure 9.33, which exploits the symmetry in h(n).
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FIGURE 9.33 Efficient realization of a decimator that exploits the symmetry in
the FIR filter
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FIGURE 9.34 Direct-form realization of FIR filter in interpolation by a factor I
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FIGURE 9.35 Efficient realization of an interpolator

9.6.2 POLYPHASE FILTER STRUCTURE
The computational efficiency of the filter structure shown in Figure 9.35
can also be achieved by reducing the large FIR filter of length M into
a set of smaller filters of length K = M/I, where M is selected to be a
multiple of I. To demonstrate this point, let us consider the interpolator
given in Figure 9.34. Since the upsampling process inserts I − 1 zeros
between successive values of x(n), only K out of the M input values
stored in the FIR filter at any one time are nonzero. At one time-instant,
these nonzero values coincide and are multiplied by the filter coefficients
h(0), h(I), h(2I), . . . , h(M − I). In the following time instant, the non-
zero values of the input sequence coincide and are multiplied by the filter
coefficients h(1), h(I + 1), h(2I + 1), and so on. This observation leads us
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y (m)x (n)

Output
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Input
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FIGURE 9.36 Duality relationships obtained through transpositions
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FIGURE 9.37 Interpolation by use of polyphase filters

to define a set of smaller filters, called polyphase filters, with unit sample
responses

pk(n) = h(k + nI); k = 0, 1, . . . , I − 1, n = 0, 1, . . . ,K − 1 (9.63)

where K = M/I is an integer.
From this discussion it follows that the set of I polyphase filters can

be arranged as a parallel realization, and the output of each filter can be
selected by a commutator, as illustrated in Figure 9.37. The rotation of
the commutator is in the counterclockwise direction, beginning with the
point at m = 0. Thus, the polyphase filters perform the computations at
the low sampling rate Fx, and the rate conversion results from the fact
that I output samples are generated, one from each of the filters, for each
input sample.

The decomposition of {h(k)} into the set of I subfilters with impulse
response pk(n), k = 0, 1, . . . , I−1 is consistent with our previous observa-
tion that the input signal was being filtered by a periodically time-variant
linear filter with impulse response

g(n,m) = h(nI + (mD)I) (9.64)

where D = 1 in the case of the interpolator. We noted previously that
g(n,m) varies periodically with period I. Consequently, a different set of
coefficients is used to generate the set of I output samples y(m),m =
0, 1, . . . , I − 1.

Additional insight can be gained about the characteristics of the set
of polyphase subfilters by noting that pk(n) is obtained from h(n) by
decimation with a factor I. Consequently, if the original filter frequency
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response H(ω) is flat over the range 0 ≤ |ω| ≤ ω/I, each of the polyphase
subfilters possesses a relatively flat response over the range 0 ≤ |ω| ≤ π
(i.e., the polyphase subfilters are basically allpass filters and differ pri-
marily in their phase characteristics). This explains the reason for using
the term polyphase in describing these filters.

The polyphase filter can also be viewed as a set of I subfilters con-
nected to a common delay line. Ideally, the kth subfilter will generate a
forward time shift of (k/I)Tx, for k = 0, 1, 2, . . . , I − 1, relative to the
zeroth subfilter. Therefore, if the 0th filter generates zero delay, the fre-
quency response of the kth subfilter is

pk(ω) = ejωk/I

A time shift of an integer number of input sampling intervals (e.g., kTx)
can be generated by shifting the input data in the delay line by I samples
and using the same subfilters. By combining these two methods, we can
generate an output that is shifted forward by an amount (k + i/I)Tx

relative to the previous output.
By transposing the interpolator structure in Figure 9.37, we obtain

a commutator structure for a decimator based on the parallel bank of
polyphase filters, as illustrated in Figure 9.38. The unit sample responses
of the polyphase filters are now defined as

pk(n) = h(k + nD); k = 0, 1, . . . , D − 1, n = 0, 1, . . . ,K − 1 (9.65)

where K = M/D is an integer when M is selected to be a multiple of
D. The commutator rotates in a counterclockwise direction, starting with
the filter p0(n) at m = 0.

Although the two commutator structures for the interpolator and the
decimator just described rotate in a counterclockwise direction, it is also
possible to derive an equivalent pair of commutator structures having a
clockwise rotation. In this alternative formulation, the sets of polyphase
filters are defined to have impulse responses

pk(n) = h(nI − k), k = 0, 1, . . . , I − 1 (9.66)

and
pk(n) = h(nD − k), k = 0, 1, . . . , D − 1 (9.67)

for the interpolator and decimator, respectively,

� EXAMPLE 9.17 For the decimation filter designed in Example 9.11, determine the polyphase
filter coefficients {pk(n)} in terms of the FIR filter coefficients {h(n)}

Solution The polyphase filters obtained from h(n) have impulse responses

pk(n) = h(2n + k) k = 0, 1; n = 0, 1, . . . , 14
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FIGURE 9.38 Decimation by use of polyphase filters

Note that p0(n) = h(2n) and p1(n) = h(2n + 1). Hence one filter consists of
the even-numbered samples of h(n), and the other filter consists of the odd-
numbered samples of h(n). �

� EXAMPLE 9.18 For the interpolation filter designed in Example 9.8, determine the polyphase
filter coefficients {pk(n)} in terms of the filter coefficients {h(n)}.

Solution The polyphase filters obtained from h(n) have impulse responses

pk(n) = h(5n + k) k = 0, 1, 2, 3, 4

Consequently, each filter has length 6. �

9.6.3 TIME-VARIANT FILTER STRUCTURES
Having described the filter implementation for a decimator and an inter-
polator, let us now consider the general problem of sampling rate conver-
sion by the factor I/D. In the general case of sampling rate conversion
by a factor I/D, the filtering can be accomplished by means of the linear
time-variant filter described by the response function

g(n,m) = h[nI − ((mD))I ] (9.68)

where h(n) is the impulse response of the low-pass FIR filter, which
ideally, has the frequency response specified by (9.36). For convenience
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we select the length of the FIR filter {h(n)} to a multiple of I (i.e.,
M = KI). As a consequence, the set of coefficients {g(n,m)} for each
m = 0, 1, 2, . . . , I − 1, contains K elements. Since g(n,m) is also periodic
with period I, as demonstrated in (9.44), it follows that the output y(m)
can be expressed as

y(m) =
K−1∑
n=0

g
(
n,m−

⌊m
I

⌋
I
)
x

(⌊
mD

I

⌋
− n

)
(9.69)

Conceptually, we can think of performing the computations specified
by (9.69) by processing blocks of data of length K by a set of K filter
coefficients g(n,m − �m/I� I), n = 0, 1, . . . ,K − 1. There are I such sets
of coefficients, one set for each block of I output points of y(m). For each
block of I output points, there is a corresponding block of D input points
of x(n) that enter in the computation.

The block processing algorithm for computing (9.69) can be visual-
ized as illustrated in Figure 9.39. A block of D input samples is buffered
and shifted into a second buffer of length K, one sample at a time. The
shifting from the input buffer to the second buffer occurs at a rate of
one sample each time the quantity �mD/I� increases by one. For each
output sample y(l), the samples from the second buffer are multiplied by
the corresponding set of filter coefficients g(n, l) for n = 0, 1, . . . ,K − 1,
and the K products are accumulated to give y(l), for l = 0, 1, . . . , I − 1.
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FIGURE 9.39 Efficient implementation of sampling rate conversion by block
processing
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FIGURE 9.40 Efficient realization of sampling rate conversion by a factor I/D

Thus this computation produces I outputs. It is then repeated for a new
set of D input samples, and so on.

An alternative method for computing the output of the sampling rate
converter, specified by (9.69), is by means of an FIR filter structure with
periodically varying filter coefficients. Such a structure is illustrated in
Figure 9.40. The input samples x(n) are passed into a shift register that
operates at the sampling rate Fx and is of length K = M/I, where M
is the length of the time-invariant FIR filter specified by the frequency
response given by (9.36). Each stage of the register is connected to a hold-
and-sample device that serves to couple the input sampling rate Fx to
the output sampling rate Fy = (I/D)Fx. The sample at the input to each
hold-and-sample device is held until the next input sample arrives and
then is discarded. The output samples on the hold-and-sample device are
taken at times mD/I,m = 0, 1, 2, . . . . When both the input and output
sampling times coincide (i.e., when mD/I is an integer), the input to the
hold-and-sample is changed first; then the output samples the new input.
The K outputs from the K hold-and-sample devices are multiplied by
the periodically time-varying coefficients g(n,m − �m/I� I), for n = 0,
1, . . . ,K − 1, and the resulting products are summed to yield y(m). The
computations at the output of the hold-and-sample devices are repeated
at the output sampling rate of Fy = (I/D)Fx.

Finally, rate conversion by a rational factor I/D can also be performed
by use of a polyphase filter having I subfilters. If we assume that the mth
sample y(m) is computed by taking the output of the imth subfilter with
input data x(n), x(n − 1), . . . , x(n − K + 1), in the delay line, the next
sample y(m + 1) is taken from the (im+1)st subfilter after shifting lm+1

new samples in the delay lines where im+1 = (im +D)mod I
and lm+1 is
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the integer part of (im + D)/I. The integer im+1 should be saved to be
used in determining the subfilter from which the next sample is taken.

� EXAMPLE 9.19 For the sampling rate converter designed in Example 9.15, specify the set of
time-varying coefficients {g(n,m)} used in the realization of the converter based
on the structure given in Figure 9.19. Also, specify the corresponding implemen-
tation based in polyphase filters.

Solution The coefficients of the filter are given by (9.43)

g(n,m) = h(nI + (mD)I) = h
(
nI + mD −

⌊
D

I
m

⌋
I
)

By substituting I = 5 and D = 2, we obtain

g(n,m) = h
(
5n + 2m− 5

⌊
2m

5

⌋)

By evaluating g(n,m) for n = 0, 1, . . . , 5 and m = 0, 1, . . . ., 4 we obtain the
following coefficients for the time-variant filter:

g(0,m) = {h(0) h(2) h(4) h(1) h(3)}
g(1,m) = {h(5) h(7) h(9) h(6) h(8)}
g(2,m) = {h(10) h(12) h(14) h(11) h(13)}
g(3,m) = {h(15) h(17) h(19) h(16) h(18)}
g(4,m) = {h(20) h(22) h(24) h(21) h(23)}
g(5,m) = {h(25) h(27) h(29) h(26) h(28)}

A polyphase filter implementation would employ five subfilters, each of length
six. To decimate the output of the polyphase filters by a factor of D = 2 simply
means that we take every other output from the polyphase filters. Thus, the first
output y(0) is taken from p0(n), the second output y(1) is taken from p2(n),
the third output is taken from p4(n), the fourth output is taken from p1(n), the
fifth output is taken from p3(n), and so on. �

9.7 PROBLEMS

P9.1 Consider the upsampler with input x(n) and output v(m) given in (9.26). Show that the
upsampler is a linear but time-varying system.

P9.2 Let x(n) = 0.9nu(n). The signal is applied to a downsampler that reduces the rate by a
factor of 2 to obtain the signal y(m).

1. Determine and plot the spectrum X(ω).
2. Determine and plot the spectrum Y (ω).
3. Show that the spectrum in part (2) is simply the DTFT of x(2n).
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P9.3 Consider a signal with spectrum

X(ω) =

{
nonzero, |ω| ≤ ω0;
0, ω0 < |ω| ≤ π.

1. Show that the signal x(n) can be recovered from its samples x(mD) if the sampling

frequency ωs
�
=2π/D ≥ 2ω0.

2. Sketch the spectra of x(n) and x(mD) for D = 4.
3. Show that x(n) can reconstructed from the bandlimited interpolation

x(n) =

∞∑
k=−∞

x(kD) sinc[fc(n− kD)]; ω0 < 2πfc < ωs − ω0, fc =
1

D

P9.4 Using the function downsample, study the operation of factor-of-4 downsampling on the
following sequences. Use the stem function to plot the original and the downsampled
sequences. Experiment using the default offset value of zero and the offset value equal to 2.
Comment on any differences.

1. x1(n) = cos(0.15πn), 0 ≤ n ≤ 100
2. x2(n) = sin(0.1πn) + sin(0.4πn), 0 ≤ n ≤ 100
3. x3(n) = 1 − cos(0.25πn), 0 ≤ n ≤ 100
4. x4(n) = 0.1n, 0 ≤ n ≤ 100
5. x5(n) = {0, 1, 2, 3, 4, 5, 4, 3, 2, 1}PERIODIC, 0 ≤ n ≤ 100

P9.5 Repeat Problem P9.4 using the factor-of-5 downsampler.

P9.6 Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain
sampled values are 0.5 at ω = 0, 1 at ω = 0.1π, 1 at ω = 0.2, 0 at ω = 0.22π, and 0 at
ω = π.

1. Compute and plot the DTFT magnitude of x(n).
2. Downsample x(n) by a factor of 2, and plot the DTFT of the resulting sequence.
3. Downsample x(n) by a factor of 4, and plot the DTFT of the resulting sequence.
4. Downsample x(n) by a factor of 5, and plot the DTFT of the resulting sequence.
5. Comment on your results.

P9.7 Using the function decimate, study the operation of factor-of-4 decimation on the
following sequences. Use the stem function to plot the original and the decimated
sequences. Experiment, using both the default IIR and FIR decimation filters. Comment
on any differences.

1. x1(n) = sin(0.15πn), 0 ≤ n ≤ 100
2. x2(n) = cos(0.1πn) + cos(0.4πn), 0 ≤ n ≤ 100
3. x3(n) = 1 − cos(0.25πn), 0 ≤ n ≤ 100
4. x4(n) = 0.1n, 0 ≤ n ≤ 100
5. x5(n) = {0, 1, 2, 3, 4, 5, 4, 3, 2, 1}PERIODIC, 0 ≤ n ≤ 100

P9.8 Repeat Problem P9.7 using the 4th-order IIR filter and the 15th-order FIR decimation
filters. Comment on any performance differences.

P9.9 Repeat Problem P9.7 using the factor-of-5 decimation. Comment on any differences.

P9.10 Repeat Problem P9.9 using the the 4th-order IIR filter and the 15th-order FIR decimation
filters. Comment on any differences.
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P9.11 Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain
sampled values are 0.5 at ω = 0, 1 at ω = 0.1π, 1 at ω = 0.2, 0 at ω = 0.22π, and 0 at
ω = π.

1. Compute and plot the DTFT of x(n).
2. Decimate x(n) by a factor of 2, and plot the DTFT of the resulting sequence.
3. Decimate x(n) by a factor of 4, and plot the DTFT of the resulting sequence.
4. Decimate x(n) by a factor of 5, and plot the DTFT of the resulting sequence.
5. Comment on your results.

P9.12 Using the function upsample, study the operation of factor-of-4 upsampling on the
following sequences. Use the stem function to plot the original and the upsampled
sequences. Experiment using the default offset value of zero and the offset value
equal to 2.

1. x1(n) = sin(0.6πn), 0 ≤ n ≤ 100
2. x2(n) = sin(0.8πn) + cos(0.5πn), 0 ≤ n ≤ 100
3. x3(n) = 1 + cos(πn), 0 ≤ n ≤ 100
4. x4(n) = 0.2n, 0 ≤ n ≤ 100
5. x5(n) = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0}PERIODIC, 0 ≤ n ≤ 100

P9.13 Using the fir2 function, generate a 91-length sequence x(n) whose frequency-domain
sampled values are 0 at ω = 0, 0.5 at ω = 0.1π, 1 at ω = 0.2, 1 at ω = 0.7π, 0.5 at
ω = 0.75π, 0 at ω = 0.8π, and 0 at ω = π.

1. Compute and plot the DTFT magnitude of x(n).
2. Upsample x(n) by a factor of 2, and plot the DTFT magnitude of the resulting

sequence.
3. Upsample x(n) by a factor of 3, and plot the DTFT magnitude of the resulting

sequence.
4. Upsample x(n) by a factor of 4, and plot the DTFT magnitude of the resulting

sequence.
5. Comment on your results.

P9.14 Using the function interp, study the operation of factor-of-4 interpolation on the
sequences of Problem P9.12. Use the stem function to plot the original and the
interpolated sequences. Experiment, using the filter length parameter values equal to 3
and 5. Comment on any differences in performance of the interpolation.

P9.15 Provide the frequency response plots of the lowpass filters used in the interpolators of
Problem P9.14.

P9.16 Repeat Problem P9.14, using the factor-of-3 interpolation.

P9.17 Provide the frequency response plots of the lowpass filters used in the interpolators of
Problem P9.16.

P9.18 Repeat Problem P9.14, using the factor-of-5 interpolation.

P9.19 Provide the frequency response plots of the lowpass filters used in the interpolators of
Problem P9.18.

P9.20 Using the fir2 function generate a 91-length sequence x(n) whose frequency-domain
sampled values are 0 at ω = 0, 0.5 at ω = 0.1π, 1 at ω = 0.2, 1 at ω = 0.7π, 0.5 at
ω = 0.75π, 0 at ω = 0.8π, and 0 at ω = π.
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1. Compute and plot the DTFT of x(n).
2. Interpolate x(n) by a factor of 2, and plot the DTFT of the resulting sequence.
3. Interpolate x(n) by a factor of 3, and plot the DTFT of the resulting sequence.
4. Interpolate x(n) by a factor of 4 and plot the DTFT of the resulting sequence.
5. Comment on your results.

P9.21 Consider two sequences x1(n) and x2(n), which appear to be related.

x1(n) = max (10 − |n|, 0) and x2(n) = min (|n|, 10)

Use the resample function with default parameters.

1. Resample the sequence x1(n) at 3/2 times the original rate to obtain y1(m), and
provide the stem plots of both sequences.

2. Resample the sequence x2(n) at 3/2 times the original rate to obtain y2(m), and
provide the stem plots of both sequences.

3. Explain why the resampled plot of y2(n) has inaccuracies near the boundaries that
y1(n) does not have.

4. Plot the frequency response of the filter used in the resampling operation.

P9.22 Let x(n) = cos(0.1πn) + 0.5 sin(0.2πn) + 0.25 cos(0.4πn). Use the resample function with
default parameters.

1. Resample the sequence x(n) at 4/5 times the original rate to obtain y1(m), and provide
the stem plots of both sequences.

2. Resample the sequence x(n) at 5/4 times the original rate to obtain y2(m), and provide
the stem plots of both sequences.

3. Resample the sequence x(n) at 2/3 times the original rate to obtain y3(m), and provide
the stem plots of both sequences.

4. Explain which of the three output sequences retain the “shape” of the original sequence
x(n).

P9.23 Let x(n) = {0, 0, 0, 1, 1, 1, 1, 0, 0, 0}PERIODIC be a periodic sequence with period 10. Use
the resample function for the following parts to resample the sequence x(n) at 3/5 times
the original rate. Consider the length of the input sequence to be 80.

1. Use the filter length parameter L equal to zero to obtain y1(m) and provide the stem

plots of x(n) and y1(m) sequences.
2. Use the default value of the filter length parameter L to obtain y2(m) and provide the

stem plots of x(n) and y2(m) sequences.
3. Use the filter length parameter L equal to 15 to obtain y3(m) and provide the stem

plots of x(n) and y3(m) sequences.

P9.24 Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain
sampled values are 0 at ω = 0, 0.5 at ω = 0.1π, 1 at ω = 0.2π, 1 at ω = 0.5π, 0.5 at
ω = 0.55π, 0 at ω = 0.6π, and 0 at ω = π.

1. Compute and plot the DTFT of x(n).
2. Resample x(n) by a factor of 4/3, and plot the DTFT of the resulting sequence.
3. Resample x(n) by a factor of 3/4, and plot the DTFT of the resulting sequence.
4. Resample x(n) by a factor of 4/5, and plot the DTFT of the resulting sequence.
5. Comment on your results.
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P9.25 We want to design a linear-phase FIR filter to increase the input sampling rate by a factor
of 3 using the intfilt function.

1. Assuming full bandwidth of the signal to be interpolated, determine the impulse
response of the required FIR filter. Plot its amplitude response and the log-magnitude
response in dB. Experiment with the length parameter L to obtain a reasonable
stopband attenuation.

2. Assuming that bandwidth of the signal to be interpolated is π/2, determine the
impulse response of the required FIR filter. Plot its amplitude response and the
log-magnitude response in decibels. Again experiment with the length parameter L to
obtain a reasonable stopband attenuation.

P9.26 We want to design a linear-phase FIR filter to increase the input sampling rate by a factor
of 5 using the intfilt function.

1. Assuming full bandwidth of the signal to be interpolated, determine the impulse
response of the required FIR filter. Plot its amplitude response and the log-magnitude
response in decibels. Experiment with the length parameter L to obtain a reasonable
stopband attenuation.

2. Assuming that bandwidth of the signal to be interpolated is 4π/5, determine the
impulse response of the required FIR filter. Plot its amplitude response and the
log-magnitude response in decibels. Again experiment with the length parameter L to
obtain a reasonable stopband attenuation.

P9.27 Using the Parks-McClellan algorithm, design an interpolator that increases the input
sampling rate by a factor of I = 2.

1. Determine the coefficients of the FIR filter that has 0.5 dB ripple in the passband and
50 dB attenuation in the stopband. Choose reasonable values for the band-edge
frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Determine the corresponding polyphase structure for implementing the filter.
4. Let x(n) = cos(0.4πn). Generate 100 samples of x(n), and process it using this filter to

interpolate by I = 2 to obtain y(m). Provide the stem plots of the both sequences.

P9.28 Using the Parks-McClellan algorithm, design an interpolator that increases the input
sampling rate by a factor of I = 3.

1. Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband and
40 dB attenuation in the stopband. Choose reasonable values for the band-edge
frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Determine the corresponding polyphase structure for implementing the filter.
4. Let x(n) = cos(0.3πn). Generate 100 samples of x(n) and process it using this filter to

interpolate by I = 3 to obtain y(m). Provide the stem plots of both sequences.

P9.29 A signal x(n) is to be interpolated by a factor of 3. It has a bandwidth of 0.4π, but we
want to preserve frequency band up to 0.3π in the interpolated signal. Using the
Parks-McClellan algorithm, we want to design such an interpolator.

1. Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband and
40 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
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3. Let x(n) = cos(0.3πn) + 0.5 sin(0.4πn). Generate 100 samples of x(n), and process it
using this filter to interpolate by I = 3 to obtain y(m). Provide the stem plots of both
sequences.

P9.30 A signal x(n) is to be interpolated by a factor of 4. It has a bandwidth of 0.7π, but we
want to preserve frequency band up to 0.6π in the interpolated signal. Using the
Parks-McClellan algorithm, we want to design such an interpolator.

1. Determine the coefficients of the FIR filter that has 0.5 dB ripple in the passband and
50 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Let x(n) = sin(0.5πn) + cos(0.7πn). Generate 100 samples of x(n) and process it using

this filter to interpolate by I = 4 to obtain y(m). Provide the stem plots of both
sequences.

P9.31 Using the Parks-McClellan algorithm, design a decimator that downsamples an input
signal x(n) by a factor of D = 5.

1. Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband and
30 dB attenuation in the stopband. Choose reasonable values for the band-edge
frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Determine the corresponding polyphase structure for implementing the filter.
4. Using the fir2 function, generate a 131-length sequence x(n) whose frequency-domain

sampled values are 1 at ω = 0, 0.9 at ω = 0.1π, 1 at ω = 0.2π, 1 at ω = 0.5π, 0.5 at
ω = 0.55π, 0 at ω = 0.6π, and 0 at ω = π. Process x(n) using this filter to decimate it
by a factor of 5 to obtain y(m). Provide the spectral plots of both sequences.

P9.32 Using the Parks-McClellan algorithm, design a decimator that downsamples an input
signal x(n) by a factor of D = 3.

1. Determine the coefficients of the FIR filter that has 0.5 dB ripple in the passband and
30 dB attenuation in the stopband. Choose reasonable values for the band-edge
frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Let x1(n) = sin(0.2πn) + 0.2 cos(0.5πn). Generate 500 samples of x1(n), and process it

using this to decimate by D = 3 to obtain y1(m). Provide the stem plots of both
sequences.

4. Using the fir2 function, generate a 131-length sequence x2(n) whose frequency-domain
sampled values are 1 at ω = 0, 0.8 at ω = 0.15π, 1 at ω = 0.3π, 1 at ω = 0.4π, 0.5 at
ω = 0.45π, 0 at ω = 0.5π, and 0 at ω = π. Process x2(n), using this filter to decimate it
by a factor of 3 to obtain y2(m). Provide the spectral plots of both sequences.

P9.33 A signal x(n) is to be decimated by a factor of D = 2. It has a bandwidth of 0.4π, and we
will tolerate aliasing this frequency 0.45π in the decimated signal. Using the
Parks-McClellan algorithm, we want to design such a decimator.

1. Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband and
45 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Let x1(n) = cos(0.4πn) + 2 sin(0.45πn). Generate 200 samples of x1(n), and process it

using this filter to decimate by D = 2 to obtain y1(m). Provide the stem plots of both
sequences.
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4. Using the fir2 function, generate a 151-length sequence x2(n) whose frequency-domain
sampled values are 1 at ω = 0, 0.9 at ω = 0.2π, 1 at ω = 0.4π, 0.5 at ω = 0.45π, 0 at
ω = 0.5π, and 0 at ω = π. Process x2(n), using this filter to decimate it by a factor of 2
to obtain y2(m). Provide the spectral plots of both sequences.

P9.34 A signal x(n) is to be decimated by a factor of D = 3. It has a bandwidth of 0.25π, and we
will tolerate aliasing this frequency 0.3π in the decimated signal. Using the
Parks-McClellan algorithm, we want to design such a decimator.

1. Determine the coefficients of the FIR filter that has 0.1 dB ripple in the passband and
40 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Let x1(n) = cos(0.2πn) + 2 sin(0.3πn). Generate 300 samples of x1(n), and process it

using this filter to decimate by D = 3 to obtain y1(m). Provide the stem plots of both
sequences.

4. Using the fir2 function, generate a 151-length sequence x2(n) whose frequency-domain
sampled values are 1 at ω = 0, 1 at ω = 0.1π, 1 at ω = 0.25π, 0.5 at ω = 0.3π, 0 at
ω = 0.35π, and 0 at ω = π. Process x2(n), using this filter to decimate it by a factor of
3 to obtain y2(m). Provide the spectral plots of both sequences.

P9.35 Design a sampling rate converter that reduces the sampling rate by a factor of 2/5.

1. Using the Parks-McClellan algorithm, determine the coefficients of the FIR filter that
has 0.1 dB ripple in the passband and 30 dB attenuation in the stopband. Choose
reasonable values for the band-edge frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Specify the sets of the time-varying coefficients g(m,n) and the corresponding

coefficients in the polyphase filter realization.
4. Let x(n) = sin(0.35πn) + 2 cos(0.45πn). Generate 500 samples of x(n) and process it

using this filter to resample by 2/5 to obtain y(m). Provide the stem plots of both
sequences.

P9.36 Design a sampling rate converter that increases the sampling rate by a factor of 7/4.

1. Using the Parks-McClellan algorithm, determine the coefficients of the FIR filter that
has 0.1 dB ripple in the passband and 40 dB attenuation in the stopband. Choose
reasonable values for the band-edge frequencies.

2. Provide plots of the impulse and the log-magnitude responses.
3. Specify the sets of the time-varying coefficients g(m,n) and the corresponding

coefficients in the polyphase filter realization.
4. Let x(n) = 2 sin(0.35πn) + cos(0.95πn). Generate 500 samples of x(n) and process it,

using this filter to resample by 7/4 to obtain y(m). Provide the stem plots of both
sequences.

P9.37 A signal x(n) is to be resampled by a factor of 3/2. It has a total bandwidth of 0.8π, but
we want to preserve frequencies only up to 0.6π and require that the band up to 0.75π be
free of aliasing in the resampled signal.

1. Using the Parks-McClellan algorithm, determine the coefficients of the FIR filter that
has 0.5 dB ripple in the passband and 50 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
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3. Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain
sampled values are 0.7 at ω = 0, 1 at ω = 0.3π, 1 at ω = 0.7π, 0.5 at ω = 0.75π, 0 at
ω = 0.8π, and 0 at ω = π. Process x(n) using this filter to resample it by 3/2 to obtain
y(m). Provide the spectral plots of both sequences.

P9.38 A signal x(n) is to be resampled by a factor of 4/5. It has a total bandwidth of 0.8π, but
we want to preserve frequencies only up to 0.5π and require that the band up to 0.75π be
free of aliasing in the resampled signal.

1. Using the Parks-McClellan algorithm, determine the coefficients of the FIR filter that
has 0.1 dB ripple in the passband and 40 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain

sampled values are 0.7 at ω = 0, 1 at ω = 0.3π, 1 at ω = 0.7π, 0.5 at ω = 0.75π, 0 at
ω = 0.8π, and 0 at ω = π. Process x(n), using this filter to resample it by 4/5 to obtain
y(m). Provide the spectral plots of both sequences.

P9.39 A signal x(n) is to be resampled by a factor of 5/2. It has a total bandwidth of 0.8π, but
we want to preserve frequencies only up to 0.7π and require that the band up to 0.75π be
free of aliasing in the resampled signal.

1. Using the Parks-McClellan algorithm, determine the coefficients of the FIR filter that
has 0.5 dB ripple in the passband and 50 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain

sampled values are 0.7 at ω = 0, 1 at ω = 0.3π, 1 at ω = 0.7π, 0.5 at ω = 0.75π, 0 at
ω = 0.8π, and 0 at ω = π. Process x(n) using this filter to resample it by a 5/2 to
obtain y(m). Provide the spectral plots of both sequences.

P9.40 A signal x(n) is to be resampled by a factor of 3/8. It has a total bandwidth of 0.5π, but
we want to preserve frequencies only up to 0.3π and require that the band up to 0.35π be
free of aliasing in the resampled signal.

1. Using the Parks-McClellan algorithm, determine the coefficients of the FIR filter that
has 0.1 dB ripple in the passband and 40 dB attenuation in the stopband.

2. Provide plots of the impulse and the log-magnitude responses.
3. Using the fir2 function, generate a 101-length sequence x(n) whose frequency-domain

sampled values are 1 at ω = 0, 1 at ω = 0.25π, 1 at ω = 0.5π, 0.5 at ω = 0.55π, 0 at
ω = 0.6π, and 0 at ω = π. Process x(n) using this filter to resample it by 3/8 to obtain
y(m). Provide the spectral plots of both sequences.
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C H A P T E R 10
Round-off Effects
in Digital Filters

In the latter part of Chapter 6 we discussed the finite-precision num-
ber representations for the purpose of implementing filtering operations
on digital hardware. In particular, we focused on the process of number
quantization, the resulting error characterizations, and the effects of fil-
ter coefficient quantization on filter specifications and responses. In this
chapter, we further extend the effects of finite-precision numerical effects
to the filtering aspects in signal processing.

We begin by discussing analog-to-digital (A/D) conversion noise us-
ing the number representations and quantization error characteristics de-
veloped in Chapter 6. We then analyze the multiplication and addition
quantization (collectively known as arithmetic round-off error) models.
The effects of these errors on filter output are discussed as two topics:
correlated errors called limit cycles and uncorrelated round-off noise.

10.1 ANALYSIS OF A/D QUANTIZATION NOISE

From the quantizer characteristics obtained in Chapter 6, it is obvious
that the quantized value Q[x] is a nonlinear operation on the value x.
Hence the exact analysis of the finite word-length effects in digital filters
is generally difficult and one has to consider less ideal analysis techniques
that work well in practice.

One such technique is the statistical modeling technique. It converts
the nonlinear analysis problem into a linear one and allows us to examine
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QUANTIZERx(n) x(n) x(n) + e(n)Q[x (n)]

e(n)

⇒

FIGURE 10.1 Statistical model of a quantizer

output-error characteristics. In this technique, we assume that the quan-
tized value Q[x] is a sum of the exact value x and the quantization error e,
which is assumed to be a random variable. When x(n) is applied as an
input sequence to the quantizer, the error e(n) is assumed to be a random
sequence. We then develop a statistical model for this random sequence
to analyze its effects through a digital filter.

For the purpose of analysis, we assume that the quantizer employs
fixed-point two’s-complement number format representation. Using the
results given previously, we can extend this analysis to other formats as
well.

10.1.1 STATISTICAL MODEL
We model the quantizer block on the input as a signal-plus-noise
operation—that is, from (6.46)

Q[x(n)] = x(n) + e(n) (10.1)

where e(n) is a random sequence that describes the quantization error se-
quence and is termed the quantization noise. This is shown in Figure 10.1.

Model assumptions For the model in (10.1) to be mathematically
convenient and hence practically useful, we have to assume reasonable
statistical properties for the sequences involved. That these assumptions
are practically reasonable can be ascertained using simple MATLAB ex-
amples, as we shall see. We assume that the error sequence, e(n) has the
following characteristics:1

1. The sequence e(n) is a sample sequence from a stationary random
process {e(n)}.

2. This random process {e(n)} is uncorrelated with sequence x(n).
3. The process {e(n)} is an independent process (i.e., the samples are

independent of each other).
4. The probability density function (pdf), fE(e), of sample e(n) for each

n is uniformly distributed over the interval of width ∆ = 2−B , which
is the quantizer resolution.

1We assume that the reader is familiar with the topic of random variables and processes
and the terminology associated with it.
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540 Chapter 10 ROUND-OFF EFFECTS IN DIGITAL FILTERS

These assumptions are reasonable in practice if the sequence x(n) is suf-
ficiently random to traverse many quantization steps in going from time
n to n + 1.

10.1.2 ANALYSIS USING MATLAB
To investigate the statistical properties of the error samples, we will have
to generate a large number of these samples and plot their distribution
using a histogram (or a probability bar graph). Furthermore, we have to
design the sequence x(n) so that its samples do not repeat; otherwise, the
error samples will also repeat, which will result in an inaccurate analy-
sis. This can be guaranteed either by choosing a well-defined aperiodic
sequence or a random sequence.

We will quantize x(n) using B-bit rounding operation. A similar im-
plementation can be developed for the truncation operation. Since all
three error characteristics are exactly the same under the rounding op-
eration, we will choose the sign-magnitude format for ease in implemen-
tation. After quantization, the resulting error samples e(n) are uniformly
distributed over the [−∆

2 ,
∆
2 ] interval. Let e1(n) be the normalized error

given by

e1(n)
�
=

e(n)
∆

= e(n) 2B ⇒ e1(n) ∈ [−1/2, 1/2] (10.2)

Then e1(n) is uniform over the interval [− 1
2 ,+

1
2 ], as shown in Figure 10.2a.

Thus the histogram interval will be uniform across all B-bit values, which
will make its computation and plotting easier. This interval will be divided
into 128 bins for the purpose of plotting.

To determine the sample independence we consider the histogram of
the sequence

e2(n)
�
=

e1(n) + e1(n− 1)
2

(10.3)

which is the average of two consecutive normalized error samples. If
e1(n) is uniformly distributed between [−1/2, 1/2], then, for sample
independence, e2(n) must have a triangle-shaped distribution between
[−1/2, 1/2], as shown in Figure 10.2b. We will again generate a 128-
bin histogram for e2(n). These steps are implemented in the following
MATLAB function.

     

  
f1(n) f2(n)

e1(n) e2(n)
−1�2 1�2 −1�2 1�2

1 2

FIGURE 10.2 Probability distributions of the normalized errors e1(n) and e2(n)
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function [H1,H2,Q, estat] = StatModelR(xn,B,N);

% Statistical Model (Rounding) for A/D Quantization error and its Distribution

% ------------- -------------------------------------------------------------

% [H1,H2,Q] = StatModelR(xn,B,N);

% OUT: H1 = Normalized histogram of e1

% H2 = Normalized histogram of e2

% Q = Normalized histogram bins

% estat = row vector: [[e1avg,e1std,e2avg,e2std]

% IN: B = bits to quantize

% N = number of samples of x(n)

% xn = samples of the sequence

% Plot variables

bM = 7; DbM = 2^bM; % bin parameter

M = round((DbM)/2); % Half number of bins

bins = [-M+0.5:1:M-0.5]; % Bin values from -M to M

Q = bins/(DbM); % Normalized bins

% Quantization error analysis

xq = (round(xn*(2^B)))/(2^B); % Quantized to B bits

e1 = xq-xn; clear xn xq; % Quantization error

e2 = 0.5*(e1(1:N-1)+e1(2:N)); % Average of two adj errors

e1avg = mean(e1); e1std = std(e1); % Mean & std dev of the error e1

e2avg = mean(e2); e2std = std(e2); % Mean & std dev of the error e2

estat = [e1avg,e1std,e2avg,e2std];

% Probability distribution of e1

e1 = floor(e1*(2^(B+bM))); % Normalized e1 (int between -M & M)

e1 = sort([e1,-M-1:1:M]); %

H1 = diff(find(diff(e1)))-1; clear e1; % Error histogram

if length(H1) == DbM+1

H1(DbM) = H1(DbM)+H1(DbM+1);

H1 = H1(1:DbM);

end

H1 = H1/N; % Normalized histogram

% Probability distribution of e2

e2 = floor(e2*(2^(B+bM))); % Normalized e2 (int between -M & M)

e2 = sort([e2,-M-1:1:M]); %

H2 = diff(find(diff(e2)))-1; clear e2; % Error histogram

if length(H2) == DbM+1

H2(DbM) = H2(DbM)+H2(DbM+1);

H2 = H2(1:DbM);

end

H2 = H2/N; % Normalized histogram

To validate the model assumptions, we consider the following two ex-
amples. In the first example an aperiodic sinusoidal sequence is quantized
to B bits, and in the second example a random sequence is quantized to B
bits. The resulting quantization errors are analyzed for their distribution
properties and for their sample independence for various values of B.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



542 Chapter 10 ROUND-OFF EFFECTS IN DIGITAL FILTERS

−0.5 −0.375 −0.25 −0.125 0 0.125 0.25 0.375 0.5
0

1�128

2�128

3�128

4�128

Normalized error e1 

D
is

tr
ib

ut
io

n 
of

 e
1 SAMPLE SIZE N = 500000

 ROUNDED T0 B = 2 BITS
         MEAN = 3.4239e–005

MIN PROB BAR HEIGHT = 0.007446
MAX PROB BAR HEIGHT = 0.00828
              SIGMA = 0.072073

 −0.5  −0.375  −0.25  −0.125 0 0.125 0.25 0.375 0.5
    0

1�128

2�128

3�128

4�128

Normalized error e2 

D
is

tr
ib

ut
io

n 
of

 e
2 SAMPLE SIZE N = 500000

 ROUNDED T0 B = 2 BITS
         MEAN = 3.4396e–005 

MIN PROB BAR HEIGHT = 0.000334
MAX PROB BAR HEIGHT = 0.015212
              SIGMA = 0.063851

FIGURE 10.3 A/D quantization error distribution for the sinusoidal signal in
Example 10.1, B = 2 bits

Through these examples we hope to learn how small error e must be (or
equivalently, how large B must be) for the above assumptions to be valid.

� EXAMPLE 10.1 Let x(n) = 1
3
{sin(n/11) + sin(n/31) + cos(n/67)}. This sequence is not peri-

odic, and hence its samples never repeat using infinite-precision representation.
However, since the sequence is of sinusoidal nature, its continuous envelope is
periodic and the samples are continuously distributed over the fundamental
period of this envelope. Determine the error distributions for B = 2 and 6 bits.

Solution To minimize statistical variations, the sample size must be large. We choose
500,000 samples. The following MATLAB script computes the distributions for
B = 2 bits.

clear; close all;

% Example parameters

B = 2; N = 500000; n = [1:N];

xn = (1/3)*(sin(n/11)+sin(n/31)+cos(n/67)); clear n;

% Quantization error analysis

[H1,H2,Q, estat]] = StatModelR(xn,B,N); % Compute histograms

H1max = max(H1); H1min = min(H1); % Max and Min of H1

H2max = max(H2); H2min = min(H2); % Max and Min of H2

The plots of the resulting histogram are shown in Figure 10.3. Clearly, even
though the error samples appear to be uniformly distributed, the samples
are not independent. The corresponding plots for B = 6 bits are shown in
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FIGURE 10.4 Quantization error distribution for the sinusoidal signal in
Example 10.1, B = 6 bits

Figure 10.4, from which we observe that the quantization error sequence ap-
pears to satisfy the model assumptions for B ≥ 6 bits. �

� EXAMPLE 10.2 Let x(n) be an independent and identically distributed random sequence whose
samples are uniformly distributed over the [−1, 1] interval. Determine the error
distributions for B = 2 and 6 bits.

Solution We again choose 500,000 samples to minimize any statistical variations. The
following MATLAB fragment computes the distributions for B = 2 bits.

clear; close all;

% Example parameters

B = 2; N = 500000; xn = (2*rand(1,N)-1);

% Quantization error analysis

[H1,H2,Q, estat]] = StatModelR(xn,B,N); % Compute histograms

H1max = max(H1); H1min = min(H1); % Max and Min of H1

H2max = max(H2); H2min = min(H2); % Max and Min of H2

The plots of the resulting histogram are shown in Figure 10.5. The correspond-
ing plots for B = 6 bits are shown in Figure 10.6. From these plots we observe
that even for B = 2 bits the quantization error samples are independent and
uniformly distributed. �
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FIGURE 10.5 A/D quantization error distribution for the random signal in Ex-
ample 10.2, B = 2 bits
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FIGURE 10.6 Quantization error distribution for the random signal in Exam-
ple 10.2, B = 6 bits
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Since practical signals processed using a DSP chip are typically ran-
dom in nature (or can be modeled as such), we conclude from these two
examples that the statistical model, with its stated assumptions, is a very
good model.

10.1.3 STATISTICS OF A/D QUANTIZATION NOISE
We now develop a second-order statistical description of the error sequence
e(n) for both the truncation and rounding operations.

10.1.4 TRUNCATION
From (6.57), the pdf fET(e) of eT(n) is uniform over [−∆, 0], as shown in
Figure 10.7a. Then the average of eT(n) is given by

meT
�
= E[eT(n)] = −∆/2 (10.4)

and the variance is

σ2
eT

�
= E

[
(eT(n) −meT)2

]
=

∫ 0

−∆

(e− ∆/2)2 fET(e) de

=
∫ ∆/2

−∆/2

e2

(
1
∆

)
de =

∆2

12
(10.5)

Using ∆ = 2−B , we obtain

σ2
eT =

2−2B

12
or σeT =

2−B

2
√

3
(10.6)

Rounding From (6.59), the pdf fER(e) of eR(n) is uniform over
[−∆/2, ∆/2], as shown in Figure 10.7b. Then the average of eR(n) is
given by

meR
�
= [EeR] = 0 (10.7)

fT(e) fR(e) 

e

1�∆
1�∆

−∆�2−∆ −∆�2 ∆�2
e

0 0

(a) (b)

FIGURE 10.7 Probability density functions: (a) truncation and (b) rounding
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and the variance is

σ2
eR

�
= E

[
(eR(n) −meR)2

]
=

∫ ∆/2

−∆/2

e2 fER(e) de =
∫ ∆/2

−∆/2

e2

(
1
∆

)
de

=
∆2

12
(10.8)

Using (6.45), we obtain

σ2
eR =

2−2B

12
or σeR =

2−B

2
√

3
(10.9)

Since the samples of the sequence eR(n) are assumed to be independent
of each other, the variance of [eR(n) + eR(n− 1)]/2 is given by

var
[
eR(n) + eR(n− 1)

2

]
=

1
4

(
2−2B

12
+

2−2B

12

)
=

2−2B

24
=

1
2
σ2
eR

(10.10)
or the standard deviation is σeR/

√
2.

From the model assumptions and (10.6) or (10.9), the covariance of
the error sequence (which is an independent sequence) is given by

E[e(m)e(n)]
�
= Ce(m− n)

�
= Ce(�) =

2−2B

12
δ (�) (10.11)

where �
�
= m− n is called the lag variable. Such an error sequence is also

known as a white noise sequence.

10.1.5 MATLAB IMPLEMENTATION
In MATLAB, the sample mean and standard deviation are computed
using the functions mean and std, respectively. The last argument of the
function StatModelR is a vector containing sample means and standard
deviations of unnormalized errors e(n) and [e(n) + e(n − 1)]/2. Thus,
these values can be compared with the theoretical values obtained from
the statistical model.

� EXAMPLE 10.3 The plots in Example 10.1 also indicate the sample means and standard devi-
ations of the errors e(n) and [e(n) + e(n − 1)]/2. For B = 2, these computed
values are shown in Figure 10.3. Since e(n) is uniformly distributed over the
interval [−2−3, 2−3], its mean value is 0, and so is the mean of [e(n)+e(n−1)]/2.
The computed values are 3.4239× 10−5 and 3.4396× 10−5, respectively, which
agree fairly well with the model. The standard deviation of e(n), from (10.9), is
0.072169, while that from the top plot in Figure 10.3 is 0.072073, which again
agrees closely with the model. The standard deviation of the average of the two
consecutive samples, from (10.10), is 0.051031, and from the bottom plot in
Figure 10.3 it is 0.063851, which clearly does not agree with the model. Hence
the samples of e(n) for B = 2 are not independent. This was confirmed by the
bottom plot in Figure 10.3.
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Similarly, for B = 6 computed statistical values are shown in Figure 10.4.
The computed values of the two means are −4.1044 × 10−6, which agree very
well with the model. The standard deviation of e(n), from (10.9), is 0.0045105,
while that from the top plot in Figure 10.4 is 0.0045076, which again agrees
closely with the model. The standard deviation of the average of the two con-
secutive samples, from (10.10), is 0.0031894, while from the bottom plot in
Figure 10.4 it is 0.00318181, which clearly agrees with the model. Hence the
samples of e(n) for B = 6 are independent. This was also confirmed by the
bottom plot in Figure 10.4. �

Similar calculations can be carried out for the signal in Example 10.2.
The details are left to the reader.

10.1.6 A/D QUANTIZATION NOISE THROUGH DIGITAL FILTERS
Let a digital filter be described by the impulse response, h(n), or the fre-
quency response, H(eω). When a quantized input, Q[x(n)] = x(n)+e(n),
is applied to this system, we can determine the effects of the error sequence
e(n) on the filter output as it propagates through the filter, assuming
infinite-precision arithmetic implementation in the filter. We are generally
interested in the mean and variance of this output-noise sequence, which
we can obtain using linear system theory concepts. Details of these re-
sults can be found in many introductory texts on random processes,
including [27].

Referring to Figure 10.8, let the output of the filter be ŷ(n). Using
LTI properties and the statistical independence between x(n) and e(n),
the output ŷ(n) can be expressed as the sum of two components. Let y(n)
be the (true) output due to x(n) and q(n) the response due to e(n). Then
we can show that q(n) is also a random sequence with mean

mq
�
= E[q(n)] = me

∞∑
−∞

h(n) = me H(e0) (10.12)

where the term H(e0) is termed the DC gain of the filter. For truncation,
meT = −∆/2, which gives

mqT = −∆
2
H(e0) (10.13)

For rounding, meR = 0 or
mqR = 0 (10.14)

x(n) = x(n) + e(n) y(n) = y(n) + q(n)h(n), H(e jω )ˆ ˆ

FIGURE 10.8 Noise through digital filter
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We can also show that the variance of q(n), for both the truncation or
rounding, is given by

σ2
q = σ2

e

∞∑
−∞

|h(n)|2 =
σ2
e

2π

∫ π

−π

|H(eω)|2 dω (10.15)

The variance gain from the input to the output (also known as the nor-
malized output variance) is the ratio

σ2
q

σ2
e

=
∞∑
−∞

|h(n)|2 =
1
2π

∫ π

−π

|H(eω)|2 dω (10.16)

For a real and stable filter, using the substitution z = eω, the integral in
(10.16) can be further expressed as a complex contour integral∫ π

−π

|H(eω)|2 dω =
1

2π

∮
UC

H(z)H(z−1)z−1dz (10.17)

where UC is the unit circle and can be computed using residues (or the
inverse Z-transform) as∫ π

−π

|H(eω)|2 dω =
∑

[Residues of H(z)H(z−1)z−1 inside UC](10.18a)

= Z−1
[
H(z)H(z−1)

]∣∣
n=0

(10.18b)

10.1.7 MATLAB IMPLEMENTATION
Computation of the variance-gain for the A/D quantization noise can be
carried out in MATLAB using (10.16) and (10.18). For FIR filters, we can
perform exact calculations using the time-domain expression in (10.16).
In the case of IIR filters, exact calculations can only be done using (10.18)
in special cases, as we shall see (fortunately, this works for most practical
filters). The approximate computations can always be done using the
time-domain expression.

Let the FIR filter be given by the coefficients {bk}M−1
0 . Then using

the time-domain expression in (10.16), the variance-gain is given by

σ2
q

σ2
e

=
M−1∑
k=0

|bk|2 (10.19)

Let an IIR filter be given by the system function

H(z) =
∑N−1

�=0 b�z
−�

1 +
∑N−1

k=1 akz−k
(10.20)

with impulse response h(n). If we assume that the filter is real, causal, and
stable and has only simple poles, then using the partial fraction expansion,
we can write

H(z) = R0 +
N−1∑
k=1

Rk

z − pk
(10.21)
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where R0 is the constant term and Rk’s are the residues at the pole
locations pk. This expansion can be computed using the residue function.
Note that both poles and the corresponding residues are either real-valued
or occur in complex-conjugate pairs. Then using (10.18a), we can show
that (see [17] and also Problem P10.3)

σ2
q

σ2
e

= R2
0 +

N−1∑
k=1

N−1∑
�=1

RkR
∗
�

1 − pkp∗�
(10.22)

The variance-gain expression in (10.22) is applicable for most practical
filters since rarely do they have multiple poles. The approximate value of
the variance-gain for IIR filters is given by

σ2
q

σ2
e

�
K−1∑
k=0

|h(n)|2 , K � 1 (10.23)

where K is chosen so that the impulse response values (magnitudewise)
are almost zero beyond K samples. The following MATLAB function,
VarGain, computes variance-gain using (10.19) or (10.22).

function Gv = VarGain(b,a)

% Computation of variance-gain for the output noise process

% of digital filter described by b(z)/a(z)

% Gv = VarGain(b,a)

a0 = a(1); a = a/a0; b = b/a0; M = length(b); N = length(a);

if N == 1 % FIR Filter

Gv = sum(b.*b);

return

else % IIR Filter

[R,p,P] = residue(b,a);

if length(P) > 1

error(’*** Variance Gain Not computable ***’);

elseif length(P) == 1

Gv = P*P;

else

Gv = 0;

end

Rnum = R*R’; pden = 1-p*p’;

H = Rnum./pden; Gv = Gv + real(sum(H(:)));

end

It should be noted that the actual output noise variance is obtained by
multiplying the A/D quantization noise variance by the variance-gain.

� EXAMPLE 10.4 Consider an 8-order IIR filter with poles at pk = r e2πk/8, k = 0, . . . , 7. If r is
close to 1, then the filter has 4 narrowband peaks. Determine the variance-gain
for this filter when r = 0.9 and r = 0.99.
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Solution The following MATLAB script illustrates calculations for r = 0.9, which imple-
ments exact as well as approximate approaches.

% Filter Parameters

N = 8; r = 0.9; b = 1; pl = r*exp(j*2*pi*[0:N-1]/N); a = real(poly(pl));

% Variance-gain (Exact)

Vg = VarGain(b,a)

Vg =

1.02896272593178

% Variance-Gain (approximate)

x = [1,zeros(1,10000)]; % Unit sample sequence

h = filter(b,a,x); % Impulse response

VgCheck = sum(h.*h)

VgCheck =

1.02896272593178

Clearly, both approaches give the same variance-gain, which for r = 0.9 is about
3% above unity. For r = 0.99 the calculations are:

% Filter Parameters

N = 8; r = 0.99; b = 1; pl = r*exp(j*2*pi*[0:N-1]/N); a = real(poly(pl));

% Variance-gain (Exact)

Vg = VarGain(b,a)

Vg =

6.73209233071894

The variance-gain is more than 673%, which means that when poles are close
to the unit circle, the filter output can be very noisy. �

10.2 ROUND-OFF EFFECTS IN IIR DIGITAL FILTERS

With our insight into the quantizer operation and its simpler statistical
model, we are now ready to delve into the analysis of finite word-length
effects in both IIR and FIR digital filters. We have already studied the
effects of input signal quantization and filter coefficient quantization on
filter behavior. We will now turn our attention to the effects of arithmetic
operation quantization on filter output responses (in terms of signal-to-
noise ratios). For this study we will consider both fixed-point and floating-
point arithmetic. We first consider the effects on IIR filters since, due to
feedback paths, the results are more complicated—yet more interesting—
than those in FIR filters. The effects on FIR filters are studied in the next
section.
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We will restrict ourselves to the rounding operation of the quan-
tizer due to its superior statistical qualities (no bias or average value).
From (6.59), we know that, for the rounding operation, the quantizer
error, eR, has the same characteristics across all three number representa-
tion formats. Hence for MATLAB simulation purposes, we will consider
the sign-magnitude format because it is easy to program and simulate
for arithmetic operation. However, in practice, two’s-complement format
number representation has advantages over the others in terms of hard-
ware implementation.

Digital filter implementation requires arithmetic operations of mul-
tiplication and addition. If two B-bit fractional numbers are multiplied,
the result is a 2B-bit fractional number that must be quantized to B bits.
Similarly, if two B-bit fractional numbers are added, the sum could be
more than one, which results in an overflow, which in itself is a nonlinear
characteristic; or the sum must be corrected using a saturation strategy,
which is also nonlinear. Thus, a finite word-length implementation of the
filter is a highly nonlinear filter and must be analyzed carefully for any
meaningful results.

In this section, we will consider two approaches to deal with errors due
to finite word-length representation. The first type of error can occur when
error samples become correlated with each other due to the nonlinearity
of the quantizer. This is called limit-cycle behavior, and it can exist only
in IIR filters. We will analyze this problem using the nonlinear quantizer
model rather than the statistical model of the quantizer. In the second
type of error, we assume that more nonlinear effects in the quantizer have
been suppressed. Then, using the statistical model of the quantizer, we
develop a quantization noise model for IIR filters that is more useful in
predicting the finite word-length effects.

10.2.1 LIMIT CYCLES
Digital filters are linear systems, but when quantizers are incorporated
in their implementation, they become nonlinear systems. For nonlinear
systems it is possible to have an output sequence even when there is no
input. Limit cycles is one such behavior that creates an oscillatory periodic
output that is highly undesirable.

DEFINITION 1 Limit cycle
A zero-input limit cycle is a nonzero periodic output sequence pro-

duced by nonlinear elements or quantizers in the feedback loop of a
digital filter. �
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There are two types of limit cycles. The granular limit cycles are due
to nonlinearities in multiplication quantization and are of low amplitude.
The overflow limit cycles are a result of overflow in addition and can have
large amplitudes.

10.2.2 GRANULAR LIMIT CYCLES
This type of limit cycle can easily be demonstrated with a simple round-
ing quantizer following a multiplication. We illustrate with the following
example.

� EXAMPLE 10.5 Consider a simple 1st-order IIR filter given by

y(n) = αy(n− 1) + x(n); y(−1) = 0, n ≥ 0 (10.24)

Let α = − 1
2
; then this is a highpass filter, since its pole is near z = −1.

Determine the output y(n) when x(n) = 7
8
δ(n), assuming a 3-bit quantizer in

the multiplier.

Solution After multiplication by α, we have to quantize the result. Let the output due
to this quantization be ŷ(n). Then the actual implementable digital filter is

ŷ(n) = Q
[
−1

2
ŷ(n− 1)

]
+ x(n); ŷ(−1) = 0, n ≥ 0 (10.25)

We assume that the input in (10.24) is quantized and that there is no overflow
due to addition. Let B = 3 (that is, we have 3 fraction bits and 1 sign bit) and
let x(n) = 7

8
δ(n). Now α = − 1

2
is represented by 1�110 in two’s-complement

format. Hence the output sequence is obtained as:

ŷ(0) = x(0) = +
7

8
: 0�111

ŷ(1) = Q [α ŷ(0)] = Q
[
−1

2

(
+

7

8

)]
= Q

[
− 7

16

]
= −1

2
: 1�100

ŷ(2) = Q [α ŷ(1)] = Q
[
−1

2

(
−1

2

)]
= Q

[
+

1

4

]
= +

1

4
: 0�010

ŷ(3) = Q [α ŷ(2)] = Q
[
−1

2

(
+

1

4

)]
= Q

[
−1

8

]
= −1

8
: 1�111

ŷ(4) = Q [α ŷ(3)] = Q
[
−1

2

(
−1

8

)]
= Q

[
+

1

16

]
= +

1

8
: 0�001

ŷ(5) = Q [α ŷ(4)] = Q
[
−1

2

(
+

1

8

)]
= Q

[
− 1

16

]
= −1

8
: 1�111

...
...

...
...

...

(10.26)
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Thus ŷ(n) = ± 1
8

for n ≥ 5. The desired output y(n) is

y(n) =
{

7

8
,− 7

16
,

7

32
,− 7

64
,

7

128
, · · · ,→ 0

}
(10.27)

Hence the error sequence is

e(n) = ŷ(n) − y(n) =
{

0,− 1

16
,

1

32
,− 1

64
,

9

128
, · · · ,→ ±1

8

}
(10.28)

This shows that the error e(n) slowly builds up to ± 1
8
. Hence the error is

asymptotically periodic with period 2. �

From Example 10.5, it is clear that, in the steady state, the system
has poles on the unit circle and hence the nonlinear system has effectively
become a linear system [12]. This implies that, effectively, for the system
in (10.24)

Q [αŷ(n− 1)] =
{
ŷ(n− 1), α > 0,
−ŷ(n− 1), α < 0. (10.29)

Also due to the rounding operation, the quantization error is bounded by
±∆/2 where ∆ = 2−B is the quantization step, or

|Q [αŷ(n− 1)] − αŷ(n− 1)| ≤ ∆
2

(10.30)

From (10.29) and (10.30), we conclude that

|ŷ(n− 1)| ≤ ∆
2(1 − |α|) (10.31)

which is the amplitude range of limit-cycle oscillations and is called a dead
band. For the system in Example 10.5, B = 3 and α = − 1

2 . Hence the
dead-band range is ± 1

8 , which agrees with (10.31). If the output ŷ(n− 1)
gets trapped in this band when the input is zero, the filter exhibits the
granular limit cycle. From (10.29), the period of the oscillation is either
1 or 2.

Analysis using MATLAB In our previous MATLAB simulations, we
did not worry about the quantization in multiplication or addition op-
erations because the emphasis was on either signal quantization or on
filter coefficient quantization. The important operation that we have to
consider is the arithmetic overflow characteristics. We assume that the
represented numbers are in fractional two’s-complement format. Then in
practice, two overflow characteristics are used: a two’s-complement over-
flow, which is a modulo (periodic) function, and a saturation, which is a
limiting function. These characteristics are shown in Figure 10.9.
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(a) Two’s-complement Overflow (b) Saturation

y y
1

−1 −1

−1

1

1

−1
−2 2

xx

FIGURE 10.9 Overflow characteristics used in Qfix

To simulate these two effects, we provide the function y = Qfix(x,B,
’Qmode’,’Omode’). This function performs a fixed-point two’s-
complement format quantization using (B+1)-bit representation so that
the resulting number y is between −1 ≤ y < 1. The quantization mode,
Qmode, is either a rounding or a truncation operation. The overflow char-
acteristic is provided in Omode. Using this function, we can study both
types of limit cycles.

function [y] = QFix(x,B,Qmode,Omode)

% Fixed-point Arithmetic using (B+1)-bit Representation

% -----------------------------------------------------

% [y] = QFix(x,B,Qmode,Omode)

% y: Decimal equivalent of quantized x with values in [-1,1)

% x: a real number array

% B: Number of fractional bits

% Qmode: Quantizer mode

% ’round’: two’s-complement rounding characteristics

% ’trunc’: Two’s complement truncation characteristics

% Omode: Overflow mode

% ’satur’: Saturation limiter

% ’twosc’: Two’s-complement overflow

% Quantization operation

if strcmp(lower(Qmode), ’round’);

y = round(x.*(2^B));

elseif strcmp(lower(Qmode), ’trunc’);

y = floor(x.*(2^B));

else

error(’Use Qmode = "round" or "trunc"’);

end;

y = y*(2^(-B)); % (B+1)-bit representation

% Overflow operation

if strcmp(lower(Omode), ’satur’);

y = min(y,1-2^(-B)); y = max(-1,y); % Saturation

elseif strcmp(lower(Omode), ’twosc’);

y = 2*(mod(y/2-0.5,1)-0.5); % Overflow

else error(’Use Omode = "satur" or "twosc"’);

end;
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� EXAMPLE 10.6 In this example simulate the results for the system given in Example 10.5 using
the Qfix function with B = 3 bits. In addition, also examine limit-cycle behavior
for the truncation operation in the multiplier and for the case when the system
is a lowpass filter with coefficient α = 0.5.

Solution The MATLAB scripts:

% Highpass filter, rounding operation in multiplier

a = -0.5; yn1 = 0; m = 0:10; y = [yn1, zeros(1,length(m))];

x = 0.875*impseq(m(1),m(1)-1,m(end));

for n = m+2

yn1 = y(n-1);

y(n) = QFix(a*yn1,3,’round’,’satur’) + x(n);

end

subplot(’position’,[0.08,0.2,0.24,0.6]);

plot([-1,20],[0,0],’w’); axis([-1,10,-1,1]); hold on;

Hs_1 = stem([-1,m],y,’filled’);set(Hs_1,’markersize’,3,’color’,[0,1,0]);

set(gca,’ytick’,[-1:0.25:1],’fontsize’,6); ylabel(’Amplitude’,’fontsize’,8);

title(’\alpha = -0.5, Rounding’,’fontsize’,10);

xlabel(’Sample index n’,’fontsize’,8);

% Lowpass filter, rounding operation in multiplier

a = 0.5; yn1 = 0; m = 0:10; y = [yn1, zeros(1,length(m))];

x = 0.875*impseq(m(1),m(1)-1,m(end));

for n = m+2

yn1 = y(n-1);

y(n) = QFix(a*yn1,3,’round’,’satur’) + x(n);

end

subplot(’position’,[0.42,0.2,0.24,0.6]);

plot([-1,20],[0,0],’w’); axis([-1,10,-1,1]); hold on;

Hs_1 = stem([-1,m],y,’filled’);set(Hs_1,’markersize’,3,’color’,[0,1,0]);

set(gca,’ytick’,[-1:0.25:1],’fontsize’,6); ylabel(’Amplitude’,’fontsize’,8);

title(’\alpha = 0.5, Rounding’,’fontsize’,10);

xlabel(’Sample index n’,’fontsize’,8);

% Highpass filter, Truncation operation in multiplier

a = -0.5; yn1 = 0; m = 0:10; y = [yn1, zeros(1,length(m))];

x = 0.875*impseq(m(1),m(1)-1,m(end));

for n = m+2

yn1 = y(n-1);

y(n) = QFix(a*yn1,3,’trunc’,’satur’) + x(n);

end

subplot(’position’,[0.76,0.2,0.24,0.6]);

plot([-1,20],[0,0],’w’); axis([-1,10,-1,1]); hold on;
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FIGURE 10.10 Granular limit cycles in Example 10.6

Hs_1 = stem([-1,m],y,’filled’);set(Hs_1,’markersize’,3,’color’,[0,1,0]);

set(gca,’ytick’,[-1:0.25:1],’fontsize’,6); ylabel(’Amplitude’,’fontsize’,8);

title(’\alpha = -0.5, Truncation’,’fontsize’,10);

xlabel(’Sample index n’,’fontsize’,8);

The resulting plots are shown in Figure 10.10. The output signal in the left
plot agrees with that in Example 10.5 and has an asymptotic period of two
samples. The middle plot for α = 0.5 (lowpass filter) shows that the limit cycle
has a period of one sample with amplitude of 1

8
. Finally, the right plot shows

that the limit cycles vanish for the truncation operation. This behavior for the
truncation operation is also exhibited for lowpass filters. �

In the case of 2nd-order and higher-order digital filters, granular limit
cycles not only exist but also are of various types. These cycles in 2nd-
order filters can be analyzed, and dead-band as well as frequency of os-
cillations can be estimated. For example, if the recursive all-pole filter is
implemented with rounding quantizers in the multipliers as

ŷ(n) = Q[a1ŷ(n− 1)] + Q[a2ŷ(n− 2)] + x(n) (10.32)

where ŷ(n) is the quantized output, then using the analysis similar to that
of the 1-order case, the dead-band region is given by

ŷ(n− 2) ≤ ∆
2(1 − |a2|)

(10.33)

with a1 determining the frequency of oscillations. For more details see
Proakis, and Manolakis [23]. We provide the following example to illus-
trate granular limit cycles in 2nd-order filters using 3-bit quantizers.

� EXAMPLE 10.7 Consider the 2nd-order recursive filter

y(n) = 0.875y(n− 1) − 0.75y(n− 2) + x(n) (10.34)
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with zero initial conditions. This filter has two complex-conjugate poles and
hence is a bandpass filter. Let the input be x(n) = 0.375δ(n). Analyze the limit
cycle behavior using a 3-bit quantizer.

Solution In the filter implementation the coefficient products are quantized, which
results in

ŷ(n) = Q[0.875ŷ(n− 1)] −Q[0.75ŷ(n− 2)] + x(n) (10.35)

where ŷ(n) is the quantized output. We simulate (10.35) in MATLAB using
both the rounding and truncation operations.

% Bandpass filter

a1 = 0.875; a2 = -0.75;

% Rounding operation in multipliers

yn1 = 0; yn2 = 0;

m = 0:20; y = [yn2,yn1,zeros(1,length(m))];

x = 0.375*impseq(m(1),m(1)-2,m(end));

for n = m+3

yn1 = y(n-1); yn2 = y(n-2);

y(n) = QFix(a1*yn1,3,’round’,’satur’)+QFix(a2*yn2,3,’round’,’satur’)+x(n);

end

subplot(’position’,[0.1,0.2,0.39,0.6]);

plot([-1,20],[0,0],’w’); axis([-1,20,-0.5,0.5]); hold on;

Hs_1 = stem([-2,-1,m],y,’filled’); set(Hs_1,’markersize’,3,’color’,[0,1,0]);

set(gca,’ytick’,[-0.5:0.25:0.5],’fontsize’,6); ylabel(’Amplitude’,’fontsize’,8);

title(’Rounding Operation’,’fontsize’,10);

xlabel(’Sample index n’,’fontsize’,8);

% Truncation operation in multipliers

yn1 = 0; yn2 = 0;

m = 0:20; y = [yn2,yn1,zeros(1,length(m))];

x = 0.375*impseq(m(1),m(1)-2,m(end));

for n = m+3

yn1 = y(n-1); yn2 = y(n-2);

y(n) = QFix(a1*yn1,3,’trunc’,’satur’)+QFix(a2*yn2,3,’trunc’,’satur’)+x(n);

end

subplot(’position’,[0.59,0.2,0.39,0.6]);

plot([-1,20],[0,0],’w’); axis([-1,20,-0.5,0.5]); hold on;

Hs_1 = stem([-2,-1,m],y,’filled’); set(Hs_1,’markersize’,3,’color’,[0,1,0]);

set(gca,’ytick’,[-0.5:0.25:0.5],’fontsize’,6); ylabel(’Amplitude’,’fontsize’,8);

title(’Truncation Operation’,’fontsize’,10);

xlabel(’Sample index n’,’fontsize’,8);
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FIGURE 10.11 Granular limit cycles in Example 10.7

The resulting plots are shown in Figure 10.11. The round-off limit cycles have a
period of six samples and amplitude of 0.25, which agrees with (10.33). Unlike
in the case of 1st-order filters, the limit cycles for the 2nd-order exist even when
truncation is used in the quantizer. �

10.2.3 OVERFLOW LIMIT CYCLES
This type of limit cycle is also a zero-input behavior that gives an os-
cillatory output. It is due to overflow in the addition even if we ignore
multiplication or product quantization in the filter implementation. This
is a more serious limit cycle because the oscillations can cover the entire
dynamic range of the quantizer. It can be avoided in practice by using
the saturation characteristics instead of overflow in the quantizer. In the
following example, we simulate both granular and overflow limit cycles in
a second-order filter, in addition to infinite precision implementation.

� EXAMPLE 10.8 To obtain overflow in addition we will consider the second-order filter with large
coefficient values and initial conditions (magnitudewise) excited by a zero input:

y(n) = 0.875y(n− 1) − 0.875y(n− 1); y(−1) = −0.875, y(−2) = 0.875
(10.36)

The overflow in the addition is obtained by placing the quantizer after the
additions as

ŷ(n) = Q[0.875ŷ(n− 1) − 0.875ŷ(n− 1)]; ŷ(−1) = −0.875, ŷ(−2) = 0.875

(10.37)

where ŷ(n) is the quantized output. We first simulate the infinite-precision op-
eration of (10.36) and compare its output with the granular limit-cycle imple-
mentation in (10.35) and with the overflow limit-cycle in (10.37). We use the
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rounding operation. The details are in the MATLAB script:

M = 100; B = 3; A = 1-2^(-B);

a1 = A; a2 = -A; yn1 = -A; yn2 = A;

m = 0:M; y = [yn2,yn1,zeros(1,length(m))];

% Infinite precision

for n = m+3

yn1 = y(n-1); yn2 = y(n-2);

y(n) = a1*yn1 + a2*yn2;

end

subplot(’position’,[0.08,0.2,0.24,0.6]);

plot([-1,100],[0,0],’w’); axis([-1,80,-1,1]); hold on;

Hs_1 = stem([-2,-1,m],y,’filled’);set(Hs_1,’markersize’,3,’color’,[0,1,0]);

set(gca,’ytick’,[-1:0.25:1],’fontsize’,6); ylabel(’Amplitude’,’fontsize’,8);

title(’No Limit Cycles’,’fontsize’,10);

xlabel(’Sample index n’,’fontsize’,8);

% Granular limit cycle

for n = m+3

yn1 = y(n-1); yn2 = y(n-2);

y(n) = QFix(a1*yn1,B,’round’,’satur’)+QFix(a2*yn2,B,’round’,’satur’);

y(n) = QFix(y(n),B,’round’,’satur’);

end

subplot(’position’,[0.42,0.2,0.24,0.6]);

plot([-1,100],[0,0],’w’); axis([-1,80,-1,1]); hold on;

Hs_1 = stem([-2,-1,m],y,’filled’);set(Hs_1,’markersize’,3,’color’,[0,1,0]);

set(gca,’ytick’,[-1:0.25:1],’fontsize’,6); ylabel(’Amplitude’,’fontsize’,8);

title(’Granular Limit Cycles’,’fontsize’,10);

xlabel(’Sample index n’,’fontsize’,8);

% Overflow limit cycle

for n = m+3

yn1 = y(n-1); yn2 = y(n-2);

y(n) = a1*yn1 + a2*yn2;

y(n) = QFix(y(n),B,’round’,’twosc’);

end

subplot(’position’,[0.76,0.2,0.23,0.6]);

plot([-1,100],[0,0],’w’); axis([-1,80,-1,1]); hold on;

Hs_1 = stem([-2,-1,m],y,’filled’);set(Hs_1,’markersize’,3,’color’,[0,1,0]);

set(gca,’ytick’,[-1:0.25:1],’fontsize’,6); ylabel(’Amplitude’,’fontsize’,8);

title(’Overflow Limit Cycles’,’fontsize’,10);

xlabel(’Sample index n’,’fontsize’,8);

The resulting plots are shown in Figure 10.12. As expected, the infinite-precision
implementation has no limit cycles. The granular limit cycles are of smaller
amplitudes. Clearly, the overflow limit cycles have large amplitudes spanning
the −1 to 1 range of the quantizers. �
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FIGURE 10.12 Comparison of limit cycles in Example 10.8

As shown in these examples, the limit-cycle behaviors of many differ-
ent filters can be studied for different quantizer characteristics using the
MATLAB function QFix.

10.2.4 MULTIPLICATION QUANTIZATION ERROR
A multiplier element in the filter implementation can introduce additional
quantization errors since multiplication of two B-bit fractional numbers
results in a 2B-bit fraction and must be quantized to a B-bit fraction.
Consider a multiplier in fixed-point arithmetic with B = 8. The number
1√
3

is represented as 0.578125 in decimal. The square of 0.578125 rounded
to 8 bits is 0.3359375 (which should not be confused with 1/3 rounded to
8 bits, which is 0.33203125). The additional error in the squaring opera-
tion is

0.3359375 − (0.578125)2 = 0.001708984375

This additional error is termed as the multiplication quantization error. Its
statistically equivalent model is similar to that of the A/D quantization
error model, as shown in Figure 10.13.

Statistical model Consider the B-bit quantizer block following the
multiplier element shown in Figure 10.13a. The sequence x(n) and the con-
stant c are quantized to B fractional bits prior to multiplication (as would
be the case in a typical implementation). The multiplied sequence {c x(n)}
is quantized to obtain y(n). We want to replace the quantizer by a simpler
linear system model shown in Figure 10.13b, in which y(n) = c x(n)+e(n),

Qx(n) x(n) cx(n) + e(n)Q[cx (n)]

e(n)

c c
⇒

(a) Quantizer (b) Linear system model

FIGURE 10.13 Linear system model for multiplication quantization error
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where e(n) is a multiplication quantization error. For analysis purposes
we assume that the conditions on e(n) are similar to those for the A/D
quantization error:

1. The random signal e(n) is uncorrelated with the sequence x(n) for
rounding operation (or two’s-complement truncation operation) in the
quantizer.

2. The signal e(n) is an independent process (i.e., the samples are inde-
pendent of each other).

3. The probability density function (pdf) fE(e) of e(n) for each n is uni-
formly distributed over the interval of width ∆ = 2−B , which is the
quantizer resolution.

We will emphasize the rounding operation for the rest of this section.
Based on the above model assumptions, the results given in (10.7), (10.9),
and (10.10) are also applicable for the multiplication quantization error
e(n).

We offer the following two MATLAB examples to illustrate this
model. A more thorough investigation of this error can be found in
Rabiner and Tukey [25].

� EXAMPLE 10.9 Consider the sequence given in Example 10.1, which is repeated here.

x(n) =
1

3
[sin(n/11) + sin(n/31) + cos(n/67)]

This signal is multiplied by c = 1/
√

2, quantized to B bits and the resulting
multiplication is quantized to B bits with rounding. Using the StatModelR

function and 500,000 samples, compute and analyze normalized errors e1(n)
and e2(n), defined in (10.2) and (10.3), respectively.

Solution The following MATLAB script computes error distribution, for B = 6 bits.

clear; close all;

% Example parameters

B = 6; N = 500000; n = [1:N]; bM = 7;

xn = (1/3)*(sin(n/11)+sin(n/31)+cos(n/67)); clear n;

c = 1/sqrt(2);

% Signal and Coefficient Quantization

xq = (round(xn*(2^B)))/(2^B); c = (round(c*(2^B)))/(2^B);

cxq = c*xq; % Multiplication of constant and signal

% Quantization error analysis

[H1,H2,Q, estat] = StatModelR(cxq,B,N);

H1max = max(H1); H1min = min(H1); % Max and Min of H1

H2max = max(H2); H2min = min(H2); % Max and Min of H2
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FIGURE 10.14 Multiplication quantization error distribution for the sinusoidal
signal in Example 10.9, B = 6 bits

The plots of the resulting histogram are shown in Figure 10.14. For the sinu-
soidal signal, when B = 6 bits, the error samples are not uniformly distributed
and the samples are not independent. The means of e(n) and [e(n)+e(n−1)]/2
are small. Their standard deviations are 0.0045105 and 0.0031059, which do
not agree with (10.10). The corresponding plots for B = 12 bits are shown in
Figure 10.15 from which we observe that the quantization error sequence ap-
pears to satisfy the model assumptions for B ≥ 12 bits. The means of e(n) and
[e(n) + e(n − 1)]/2 are very small, and their standard deviations agree closely
with (10.10). �

� EXAMPLE 10.10 Let x(n) be an independent and identically distributed random sequence whose
samples are uniformly distributed over the [−1, 1] interval. Using 500,000 sam-
ples to minimize any statistical variations, analyze normalized errors.

Solution The following MATLAB script computes the distributions for B = 6 bits.

clear; close all;

% Example parameters

B = 6; N = 500000; xn = (2*rand(1,N)-1); bM = 7; c = 1/sqrt(2);

% Signal and Coefficient Quantization

xq = (round(xn*(2^B)))/(2^B); c = (round(c*(2^B)))/(2^B);

cxq = c*xq; % Multiplication of constant and signal
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FIGURE 10.15 Multiplication quantization error distribution for the sinusoidal
signal in Example 10.9, B = 12 bits

% Quantization error analysis

[H1,H2,Q, estat] = StatModelR(cxq,B,N);

H1max = max(H1); H1min = min(H1); % Max and Min of H1

H2max = max(H2); H2min = min(H2); % Max and Min of H2

The plots of the resulting histogram are shown in Figure 10.16. Even for B = 6
bits, the error samples appear to be uniformly distributed (albeit in discrete
fashion) and are independent of each other. The corresponding plots for B = 12
bits are shown in Figure 10.17. It is clear for B = 12 bits that the quantization
error samples are independent and uniformly distributed. Readers should verify
the statistics of these errors given in (10.7), (10.9), and (10.10). �

From these two examples, we conclude that the statistical model for
the multiplication quantization error, with its stated assumptions, is a
very good model for random signals when the number of bits in the quan-
tizer is large enough.

10.2.5 STATISTICAL ROUND-OFF NOISE—FIXED-POINT ARITHMETIC
In this and the next section, we will consider the round-off effects on IIR
filters using the multiplication quantization error model developed in the
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FIGURE 10.16 Multiplication quantization error distribution for the random
signal in Example 10.10, B = 6 bits
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FIGURE 10.17 Multiplication quantization error distribution for the random
signal in Example 10.10, B = 12 bits
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FIGURE 10.18 First-order IIR filter: (a) structure, (b) structure with quantizer,
(c) round-off noise model

previous section. Since we emphasize the rounding operation, this model
is also known as a round-off noise model. We will limit ourselves to the 1st-
and 2nd-order filters since practical realizations involve 1st- or 2nd-order
sections.

1st-order filter Consider the 1st-order filter shown in Figure 10.18a.
When a quantizer Q[·] is introduced after the multiplier, the resulting
filter model is shown in Figure 10.18b, which is a nonlinear system. When
Q [·] is a quantizer based on the round-off characteristics, then its effect is
to add a zero-mean, stationary white noise sequence e(n) at the multiplier
output as shown in Figure 10.18c.

Let q(n) be the response due to e(n) and let he(n) be the noise impulse
response (i.e., between e(n) and q(n)). For the system in Figure 10.18c

he(n) = h(n) = αnu(n) (10.38)

Using (10.12) and (10.7), the mean of q(n) is

mq = me

∞∑
0

he(n) = 0 (10.39)

Similarly, using (10.15), the variance of q(n) is

σ2
q = σ2

e

( ∞∑
0

|he(n)|2
)

(10.40)

Substituting σ2
e = 2−2B/12 for rounding and he(n) from (10.38), we

obtain

σ2
q =

2−2B

12

( ∞∑
0

|αn|2
)

=
2−2B

12

∞∑
0

(
|α|2

)n
=

2−2B

12 (1 − |α|2) (10.41)

which is the output noise power due to rounding following the multipli-
cation.
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FIGURE 10.19 Scaled first-order IIR filter: (a) structure with quantizer, (b)
round-off noise model

However, we also have to prevent a possible overflow following the
adder. Let y1(n) be the signal at the output of the adder in Figure 10.18a,
which in this case is equal to y(n). Now the upper bound on y1(n) is

|y1(n)| = |y(n)| =

∣∣∣∣∣
∞∑
0

h(k)x(n− k)

∣∣∣∣∣ ≤
∞∑
0

|h(k)| |x(n− k)| (10.42)

Let the input sequence be bounded by Xmax (i.e., |x(n)| ≤ Xmax). Then

|y1(n)| ≤ Xmax

∞∑
0

|h(k)| (10.43)

Since y1(n) is represented by B fraction bits, we have |y1(n)| ≤ 1. The
condition (10.43) can be satisfied by requiring

Xmax =
1∑∞

0 |h(k)| =
1

1/ (1 − |α|) = 1 − |α| (10.44)

Thus, to prevent overflow x(n) must satisfy

− (1 − |α|) ≤ x(n) ≤ (1 − |α|) (10.45)

Thus, the input must be scaled before it is applied to the filter as shown
in Figure 10.19.

Signal-to-noise ratio We will now compute the finite word-length
effect in terms of the output signal-to-noise ratio (SNR). We assume
that there is no overflow at the output by properly scaling x(n). Let
x(n) be a stationary white sequence, uniformly distributed between
[− (1 − |α|) , (1 − |α|)]. Then

mx = 0 and σ2
x =

(1 − |α|)2
3

(10.46)

Therefore, y(n) is also a stationary random sequence with mean my = 0
and

σ2
y = σ2

x

∞∑
0

|h(n)|2 =
(1 − |α|)2

3
1

1 − |α|2 =
(1 − |α|)2

3 (1 − |α|2) (10.47)
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Using (10.41) and (10.47), the output SNR is

SNR
�
=

σ2
y

σ2
q

=
(1 − |α|)2

3 (1 − |α|2)
12

(
1 − |α|2

)
2−2B

= 4
(
22B

)
(1 − |α|)2 = 22(B+1) (1 − |α|)2

(10.48)

or the SNR in dB is

SNRdB
�
= 10 log10(SNR) = 6.02 + 6.02B + 20 log10(1 − |α|) (10.49)

Let δ = 1− |α|, which is the distance of the pole from the unit circle.
Then

SNRdB = 6.02 + 6.02B + 20 log10(δ) (10.50)

which is a very informative result. First, it shows that the SNR is directly
proportional to B and increases by about 6 dB for each additional bit
added to the word length. Second, the SNR is also directly proportional
to the distance δ. The smaller the δ (or nearer the pole to the unit circle),
the smaller is the SNR, which is a consequence of the filter characteristics.
As an example, if B = 6 and δ = 0.05, then SNR = 16.12 dB and if B = 12
and δ = 0.1, then SNR = 58.26 dB.

10.2.6 ANALYSIS USING MATLAB
To analyze the properties of the round-off errors in IIR filters we will
simulate them using the MATLAB function QFix with quantization mode
’round’ and overflow mode ’satur’. If proper scaling to avoid overflow is
performed, then only the multiplier output needs to be quantized at each
n without worrying about the overflow. However, we will still saturate
the final sum to avoid any unforeseen problems. In previous simulations,
we could perform the quantization operations on vectors (i.e., perform
parallel processing). Since IIR filters are recursive filters and since each
error is fed back into the system, vector operation is generally not possible.
Hence the filter output will be computed sequentially from the first to the
last sample. For a large number of samples, this implementation will slow
the execution speed in MATLAB since MATLAB is optimized for vector
calculations. However, for newer fast processors, the execution time is
within a few seconds. These simulation steps are detailed in the following
example.

� EXAMPLE 10.11 Consider the model given in Figure 10.19b. We will simulate this model in
MATLAB and investigate its output error characteristics. Let a = 0.9, which
will be quantized to B bits. The input signal is uniformly distributed over
the [−1,+1] interval and is also quantized to B bits prior to filtering. The
scaling factor Xmax is computed from (10.44). Using 100, 000 signal samples
and B = 6 bits, the following MATLAB script computes the true output y(n),
the quantized output ŷ(n), the output error q(n), and the output SNR.
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close all; clc;

% Example Parameters

B = 6; % # of fractional bits

N = 100000; % # of samples

xn = (2*rand(1,N)-1); % Input sequence - Uniform Distribution

a = 0.9; % Filter parameter

Xm = 1-abs(a); % Scaling factor

% Local variables

bM = 7; DbM = 2^bM; % bin parameter

BB = 2^B; % useful factor in quantization

M = round(DbM/2); % Half number of bins

bins = [-M+0.5:1:M-0.5]; % Bin values from -M to M

Q = bins/DbM; % Normalized bins

YTN = 2^(-bM); % Ytick marks interval

YLM = 4*YTN; % Yaxis limit

% Quantize the input and the filter coefficients

xn = QFix(Xm*xn,B,’round’,’satur’); % Scaled Input quant to B bits

a = QFix(a,B,’round’,’satur’); % a quantized to B bits

% Filter output without multiplication quantization

yn = filter(1,[1,-a],xn); % output using filter routine

% Filter output with multiplication quantization

yq = zeros(1,N); % Initialize quantized output array

yq(1) = xn(1); % Calculation of the first sample yq(1)

for I = 2:N;

A1Y = QFix(a*yq(I-1),B,’round’,’satur’); % Quantization of a*y(n-1)

yq(I) = QFix(A1Y+xn(I),B,’round’,’satur’); % I-th sample yq(I)

end

% Output Error Analysis

en = yn-yq; % Output error sequence

varyn = var(yn); varen = var(en); % Signal and noise power

eemax = max(en); eemin = min(en); % Maximum and minimum of the error

enmax = max(abs([eemax,eemin])); % Absolute maximum range of the error

enavg = mean(en); enstd = std(en); % Mean and std dev of the error

en = round(en*(2^bM)/(2*enmax)+0.5); % Normalized en (integer between -M & M)

en = sort([en,-M:1:(M+1)]); %

H = diff(find(diff(en)))-1; % Error histogram

H = H/N; % Normalized histogram

Hmax = max(H); Hmin = min(H); % Max and Min of the normalized histogram

% Output SNRs

SNR_C = 10*log10(varyn/varen); % Computed SNR

SNR_T = 6.02 + 6.02*B + 20*log10(Xm); % Theoretical SNR
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FIGURE 10.20 Multiplication quantization effects in the first-order IIR filter in
Example 10.11, B = 6 bits

The part of the script not shown above also computes and plots the normal-
ized histogram of the output error and prints the statistical values in the plot,
as shown in Figure 10.20. The error appears to have a Gaussian distribution,
which is to be expected. The exact value of the output SNR is 22.14 dB, which
agrees with the computed value of 22.21 dB. Similar results done for B = 12
bits are shown in Figure 10.21. Again, the simulation results agree with the
model results. �

2nd-order filter Similar analysis can be done for 2nd-order filters with
poles near the unit circle. Let the two poles be at complex locations reθ

and re−θ. Then the system function of the filter is given by

H(z) =
1

(1 − reθz−1)(1 − re−θz−1)
=

1
1 − 2r cos(θ) z−1 + r2z−2

(10.51)
with impulse response

h(n) =
rn sin{(n + 1)θ}

sin(θ)
u(n) (10.52)

The difference equation from (10.51) is given by

y(n) = x(n)−a1y(n−1)−a2y(n−2); a1 = −2r cos(θ), a2 = r2 (10.53)

which requires two multiplications and two additions, as shown in
Figure 10.22a. Thus, there are two noise sources and two possible lo-
cations for overflow. The round-off noise model for quantization following
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FIGURE 10.21 Multiplication quantization effects in the 1st-order IIR filter in
Example 10.11, B = 12 bits

the two multipliers is shown in Figure 10.22b, where the responses q1(n)
and q2(n) are due to noise sources e1(n) and e2(n), respectively. We can
combine two noise sources into one. However, to avoid overflow we have
to scale signals at the input of each adder, which can complicate this
consolidation of sources.

In modern DSP chips, the intermediate results of multiply-add op-
erations are stored in a multiply-accumulate or MAC unit that has
a double precision register to accumulate sums. The final sum [which
for Figure 10.22b is at the output of the top adder] is quantized to
obtain ŷ(n). This implementation not only reduces the total multipli-
cation quantization noise but also makes the resulting analysis easier.
Assuming this modern implementation, the resulting simplified model is
shown in Figure 10.22c, where e(n) is the single noise source that is uni-
formly distributed between [−2−(B+1), 2−(B+1)] and q(n) is the response
due to e(n). Note that e(n) �= e1(n)+e2(n) and that q(n) �= q1(n)+q2(n).
The only overflow that we have to worry about is at the output of the
top adder, which can be controlled by scaling the input sequence x(n)
as shown in Figure 10.22d. Now the round-off noise analysis can be car-
ried out in a fashion similar to that of the 1st-order filter. The details,
however, are more involved due to the impulse response in (10.52).

Signal-to-noise ratio Referring to Figure 10.22d, the noise impulse
response he(n) is equal to h(n). Hence the output round-off noise power
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FIGURE 10.22 2nd-order IIR filter: (a) structure, (b) round-off noise model,
(c) simplified model, (d) scaled simplified model

is given by

σ2
q = σ2

e

∞∑
n=0

|h(n)|2 =
2−2B

12

∞∑
n=0

|h(n)|2 (10.54)

Since x(n) is quantized, we have |x(n)| ≤ 1. It is then scaled by Xmax to
avoid overflow in the adder. Hence the output signal power is given by

σ2
y = X2

maxσ
2
x

∞∑
n=0

|h(n)|2 =
X2

max

3

∞∑
n=0

|h(n)|2 (10.55)

assuming that x(n) is uniformly distributed over [−1,+1]. Hence the out-
put SNR is given by

SNR =
σ2
y

σ2
q

= 4
(
22B

)
X2

max = 22(B+1)X2
max (10.56)

or
SNRdB = 6.02 + 6.02B + 20 log10 Xmax (10.57)
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Following (10.43), (10.44), and (10.45), the scaling factor Xmax is given
by

Xmax =
1∑∞

n=0 |h(n)| (10.58)

which is not easy to compute. However, lower and upper bounds on Xmax

are easy to obtain. From (10.52), the upper bound on the denominator of
(10.58) is given by

∞∑
n=0

|h(n)| =
1

sin θ

∞∑
n=0

rn| sin[(n + 1)θ]| ≤ 1
sin θ

∞∑
n=0

rn =
1

(1 − r) sin θ

(10.59)
or the lower bound on Xmax is given by

Xmax ≥ (1 − r) sin θ (10.60)

The lower bound on the denominator of (10.58) is obtained by noting that

|H(eω)| =

∣∣∣∣∣
∞∑

n=0

h(n)e−ω

∣∣∣∣∣ ≤
∞∑

n=0

|h(n)|

Now from (10.51), the magnitude |H(eω)| is given by

|H(eω)| =
∣∣∣∣

1
1 − 2r cos(θ)e−ω + r2e−2ω

∣∣∣∣
which has the maximum value at the resonant frequency ω = θ, which
can be easily obtained. Hence

∞∑
n=0

|h(n)| ≥
∣∣H(eθ)

∣∣ =
1

(1 − r)
√

1 + r2 − 2r cos(2θ)
(10.61)

or the upper bound on Xmax is given by

Xmax ≤ (1 − r)
√

1 + r2 − 2r cos(2θ) (10.62)

Substituting (10.60) and (10.62) in (10.56), the output SNR is upper and
lower bounded by

22(B+1)(1−r)2 sin2 θ ≤ SNR ≤ 22(B+1)(1−r)2(1+r2−2r cos 2θ) (10.63)

Substituting 1 − r = δ 	 1 and after some simplification, we obtain

22(B+1)δ2 sin2 θ ≤ SNR ≤ 4
(
22(B+1)

)
δ2 sin2 θ (10.64)

or the difference between the upper and lower SNR bounds is about 6 dB.
Once again the output SNR is directly proportional to B and δ. Fur-
thermore, it also depends on the angle θ. Some of these observations are
investigated in Example 10.12.
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10.2.7 ANALYSIS USING MATLAB
We will again simulate round-off errors using the MATLAB function QFix
with quantization mode ’round’ and overflow mode ’satur’. Since a
MAC architecture is assumed, we do not have to quantize the intermediate
results and worry about overflow. Only the final sum needs to be quantized
with saturation. These operations are also simulated in sequential fashion,
which has an impact on execution speed. The simulation steps for the
2nd-order filter are detailed in the following example.

� EXAMPLE 10.12 Consider the model given in Figure 10.22d. We will simulate this model in
MATLAB and investigate its output error characteristics. Let r = 0.9 and
θ = π/3, from which filter parameters are computed and quantized to B bits.
The input signal is uniformly distributed over the [−1,+1] interval and is also
quantized to B bits prior to filtering. The scaling factor Xmax is determined
using (10.58), which can be obtained in MATLAB by computing the impulse
response for a sufficiently large number of samples. Using 100, 000 signal samples
and B = 6 bits, the following MATLAB script computes the true output SNR,
the computed SNR, and the lower and upper bounds of the SNR.

close all; clc;

% Example Parameters

B = 12; % # of fractional bits

N = 100000; % # of samples

xn = (2*rand(1,N)-1); % Input sequence - Uniform

r = 0.9; theta = pi/3;% Pole locations

% Computed Parameters

p1 = r*exp(j*theta); % Poles

p2 = conj(p1); %

a = poly([p1,p2]); % Filter parameters

hn = filter(1,a,[1,zeros(1,1000)]); % Imp res

Xm = 1/sum(abs(hn)); % Scaling factor

Xm_L = (1-r)*sin(theta); % Lower bound

Xm_U = (1-r)*sqrt(1+r*r-2*r*cos(2*theta)); % Upper bound

% Local variables

bM = 7; DbM = 2^bM; % bin parameter

BB = 2^B; % useful factor in quantization

M = round(DbM/2); % Half number of bins

bins = [-M+0.5:1:M-0.5]; % Bin values from -M to M

Q = bins/DbM; % Normalized bins

YTN = 2^(-bM); % Ytick marks interval

YLM = 4*YTN; % Yaxis limit

% Quantize the input and the filter coefficients

xn = QFix(Xm*xn,B,’round’,’satur’); % Scaled Input quant B bits

a = QFix(a,B,’round’,’satur’); % a quantized to B bits

a1 = a(2); a2 = a(3);
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% Filter output without multiplication quantization

yn = filter(1,a,xn); % output using filter routine

% Filter output with multiplication quantization

yq = zeros(1,N); % Initialize quantized output array

yq(1) = xn(1); % sample yq(1)

yq(2) = QFix((xn(2)-a1*yq(1)),B,’round’,’satur’); % sample yq(2)

for I = 3:N;

yq(I) = xn(I)-a1*yq(I-1)-a2*yq(I-2); % Unquantized sample

yq(I) = QFix(yq(I),B,’round’,’satur’); % Quantized sample

end

% Output Error Analysis

en = yn-yq; % Output error sequence

varyn = var(yn); varen = var(en); % Signal and noise power

eemax = max(en); eemin = min(en); % Maximum and minimum of the error

enmax = max(abs([eemax,eemin])); % Absolute maximum range of the error

enavg = mean(en); enstd = std(en); % Mean and std dev of the error

en = round(en*(2^bM)/(2*enmax)+0.5); % Normalized en (integer between -M & M)

en = sort([en,-M:1:(M+1)]); %

H = diff(find(diff(en)))-1; % Error histogram

H = H/N; % Normalized histogram

Hmax = max(H); Hmin = min(H); % Max and Min of the normalized histogram

% Output SNRs

SNR_C = 10*log10(varyn/varen); % Computed SNR

SNR_T = 6.02 + 6.02*B + 20*log10(Xm); % Theoretical SNR

SNR_L = 6.02 + 6.02*B + 20*log10(Xm_L); % Lower SNR bound

SNR_U = 6.02 + 6.02*B + 20*log10(Xm_U); % Upper SNR bound

The part of the script not shown above also computes and plots the normalized
histogram of the output error and prints the statistical values in the plot, as
shown in Figure 10.23. The error again has a Gaussian distribution. The exact
value of the output SNR is 25.22 dB, which agrees with the computed value of
25.11 dB and lies between the lower bound of 20.89 dB and the upper bound
of 26.47 dB. Similar results done for B = 12 bits are shown in Figure 10.24.
Again, the simulation results agree with the model results. �

10.2.8 HIGHER-ORDER FILTERS
The analysis of the quantization effects in a second-order filter can be
applied directly to higher-order filters based on a parallel realization.
In this case each 2nd-order filter section is independent of all the other
sections, and therefore the total quantization noise power at the output
of the parallel structure is simply the linear sum of the quantization noise
powers of each of the individual sections. On the other hand, the cascade
realization is more difficult to analyze because the noise generated in any
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FIGURE 10.23 Multiplication quantization effects in the 1st-order IIR filter in
Example 10.12, B = 6 bits

second-order filter section is filtered by the succeeding sections. To min-
imize the total noise power at the output of the high-order filter, a
reasonable strategy is to place the sections in the order of decreasing max-
imum frequency gain. In this case the noise power generated in the early

0 0.1 0.2 0.3 0.4 0.5
0

0.0078

0.0156

0.0234

0.0313
SAMPLE SIZE N = 100000
     RADIAL r = 0.9
  SNR(THEORY) = 61.3443
   SNR(LOWER) = 57.0106

ROUNDED TO B  = 12 BITS
  ANGLE THETA = 60 DEG
SNR(COMPUTED) = 61.3968
   SNR(UPPER) = 62.5897

D
is

tr
ib

ut
io

n 
of

 O
ut

pu
t E

rr
or

−0.5 −0.4 −0.3 −0.2 −0.1

Normalized Error

FIGURE 10.24 Multiplication quantization effects in the 1st-order IIR filter in
Example 10.12, B = 12 bits
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high-gain section is not boosted significantly by the latter sections. Using
the MATLAB techniques developed in the previous sections, it is easier
to simulate finite word-length implementations and determine the output
SNR for a given cascade structure.

10.2.9 STATISTICAL ROUND-OFF NOISE—FLOATING-POINT
ARITHMETIC

As stated in Chapter 6, the floating-point arithmetic gives an error that
is relative to the magnitude rather than an absolute error. This results in
a multiplicative noise rather than additive noise—that is, from (6.61)

Q[x(n)] = x(n) + ε(n)x(n) = x(n) {1 + ε(n)} (10.65)

with
−2−B < ε(n) ≤ 2−B (10.66)

for a (B+1)-bit mantissa. Hence the mean of the relative error is mε = 0
and its variance is

σ2
ε =

2−2B

3
(10.67)

Since MATLAB is implemented in IEEE-754 floating-point arithmetic,
all simulations that we perform are IEEE-754 floating-point calculations.
It is difficult (if not impossible) to simulate an arbitrary floating-point
arithmetic in MATLAB. Therefore, we give theoretical results only.

1st-order filter Consider a 1st-order filter as before and shown in Fig-
ure 10.25a. For the finite word-length analysis with floating-point arith-
metic we need quantizers after both multiplication and addition to ac-
count for rounding off in the mantissa, as shown in Figure 10.25b. Hence
there are two noise sources in the the statistical model as shown in Fig-
ure 10.25c, where e1(n) is the noise source in the multiplier, e2(n) is the
noise source in the adder, ĝ(n) is an adder sequence prior to quantization,
and ŷ(n) is the quantized output. Now

e1(n) = ε1(n)α ŷ(n− 1) (10.68a)

e2(n) = ε2(n) ĝ(n) (10.68b)

z −1 z−1 z−1

x(n) x(n) x(n) y(n) + q(n)

e1(n)

e2(n)

g(n)

y(n − 1)

y(n) g(n)

α α α
Q

Q
ˆ y(n)ˆ g(n)ˆ

y (n − 1)ˆ y(n − 1)ˆ

(b) (c)(a)

FIGURE 10.25 First-order IIR filter: (a) structure, (b) finite word-length model
for floating-point arithmetic, (c) statistical model for floating-point arithmetic
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where ε1(n) and ε2(n) are the relative errors in the corresponding quan-
tizers. The exact analysis even for the 1st-order case is tedious; hence we
make a few practically reasonable approximations. If the absolute values
of the errors are small, then we have ŷ(n−1) ≈ y(n−1) and ĝ(n) ≈ y(n);
hence from (10.68a) we obtain

e1(n) ≈ α ε1(n) y(n− 1) (10.69a)

e2(n) ≈ ε2(n) y(n) (10.69b)

Furthermore, we make the following assumption about the noise sources:

1. ε1(n) and ε2(n) are white noise sources.
2. ε1(n) and ε2(n) are uncorrelated with each other.
3. ε1(n) and ε2(n) are uncorrelated with the input x(n).
4. ε1(n) and ε2(n) are uniformly distributed between −2−B and 2−B .

Let x(n) be a zero-mean, stationary random sequence. Then y(n) is
also a zero-mean, stationary sequence. Hence from (10.69)

σ2
e1 = |α|2σ2

ε1σ
2
y (10.70a)

σ2
e2 = σ2

ε2σ
2
y (10.70b)

Let the error in the output due e1(n) be q1(n) and that due to e2(n) be
q2(n). Let h1(n) and h2(n) be the corresponding noise impulse responses.
Note that h1(n) = h2(n) = h(n) = αnu(n). Then the total error q(n) is

q(n) = q1(n) + q2(n) (10.71)

with
σ2
q = σ2

q1 + σ2
q2 (10.72)

where

σ2
q1 = σ2

e1

∞∑
0

|h1(n)|2 and σ2
q2 = σ2

e2

∞∑
0

|h2(n)|2 (10.73)

Hence using (10.72), (10.73), and (10.70),

σ2
q =

(
σ2
e1 + σ2

e2

) (
1

1 − |α|2
)

= σ2
y

(
1

1 − |α|2
) (

|α|2σ2
ε1 + σ2

ε2

)
(10.74)

Using σ2
ε1 = σ2

ε2 = 2−2B/3, we obtain

σ2
q = σ2

y

(
2−2B

3

) (
1 + |α|2
1 − |α|2

)
(10.75)

Therefore

SNR =
σ2
y

σ2
q

= 3
(
22B

) (
1 − |α|2
1 + |α|2

)
(10.76)
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or

SNRdB = 4.77 + 6.02B + 10 log10(1 − |α|2) − 10 log10(1 + |α|2) (10.77)

which is also a very informative result. Some comments are in order.

1. The SNR in (10.76) was derived without assuming any input statistics,
Hence the result is valid for a large class of inputs including white-noise,
narrow-band, or wide-band signals. The floating-point arithmetic does
not have to worry about the scaling or limiting input values since it
can handle a large dynamic range.

2. Using 0 < δ = 1− |α| 	 1, the SNR in (10.77) can be put in the form

SNRdB ≈ 4.77 + 6.02B + 10 log10(δ) = O(δ) (10.78)

This is to be compared with the fixed-point result (10.50) where SNR ≈
O(δ2). Thus, the floating-point result is less sensitive to the distance
of the pole to the unit circle.

3. In floating-point arithmetic, the output noise variance, σ2
q , in (10.75) is

proportional to σ2
y. Thus, if the input signal is scaled up, so is the noise

variance since σ2
y is also scaled up. Hence the SNR remains constant.

This again should be compared with the fixed-point case (10.41), in
which σ2

q is independent of the input signal. Hence if the signal level
increases, then σ2

y, increases, which increases the SNR.

2nd-order filter Similar analysis can be done for the 2nd-order filter
with poles close to the unit circle. If the poles are given by re±jθ, then
we can show that (see [18])

SNR =
σ2
y

σ2
q

≈ 3
(
22B

) 4δ sin2θ

3 + 4 cos θ
≈ O (δ) (10.79)

where δ = 1− r. This again is an approximate result that works very well
in practice. In this case again, the SNR depends on δ rather than on δ2

as in the fixed-point case.

10.3 ROUND-OFF EFFECTS IN FIR DIGITAL FILTERS

We will now turn our attention to the finite word-length effects in FIR
digital filters. As before, we will consider the fixed-point and floating-point
cases separately. We will then conclude this section with some represen-
tative examples.
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10.3.1 FIXED-POINT ARITHMETIC
We will consider the effects on two realizations: direct-form and cascade-
form. There is no parallel-form realization for FIR filters since we do
not have a partial fraction expansion, except for the frequency sampling
realization, which can be analyzed using IIR filter techniques. The analysis
of FIR filters is much simpler than that for IIR because there are no
feedback paths. One consequence of this is the absence of limit cycles.

Direct-form realization Consider an FIR filter of length M (i.e.,
there are M samples in the impulse response), which is realized using the
direct form as shown in Figure 10.26a. The filter coefficients are the sam-
ples of the impulse response h(n). We have to introduce quantizers in the
vertical branches. If we use the implementation in which each multiplier
output is quantized, then we obtain the model shown in Figure 10.26b.
On the other hand if we implement the filter in a typical DSP chip, then
the final sum is quantized as shown in Figure 10.26c. We will separately
consider the effects of round-off noise and scaling (to avoid overflow).

Round-off noise Let the output of the filter in Figure 10.26b due to
round-off errors be ŷ(n) = y(n) + q(n). Then

q(n) =
M−1∑
k=0

ek(n) (10.80)

where ek(n) are the noise sources introduced in each vertical branch to
account for the rounding operations. Since these noise sources are all
independent and identical, the noise power in q(n) is given by

σ2
q =

M−1∑
0

σ2
ek

= M σ2
e = M

(
2−2B

12

)
=

M

3
2−2(B+1) (10.81)

In Figure 10.26c the output due to the rounding operation is ŷ(n) =
y(n) + e(n). Hence the noise power in this case is given by

σ2
q = σ2

e =
1
3
2−2(B+1) (10.82)

which is smaller by a factor of M compared to (10.81) as expected.

Scaling to avoid overflow We assume that the fixed-point numbers
have the two’s-complement form representation, which is a reasonable
assumption. Then we will have to check only the overflow of the total sum.
Thus, this analysis is the same for both implementations in Figure 10.26
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e1(n) e2(n) eM−1(n) eM−1(n)e0(n)
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y(n)
=  y(n)  + q(n)

h(M − 1) h(M − 2)h(1) h(2)h(0)
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(a)

(b)

(c)

Q Q Q Q Q

Q ˆ

FIGURE 10.26 Direct-form FIR filter: (a) structure, (b) round-off noise model
with quantizers after each multiplier, (c) round-off noise mode with one quan-
tizer after the final sum

and is similar to that for the IIR filter in (10.42)–(10.44). The upper-
bound on y(n) is obtained as

|y(n)| =
∣∣∣
∑

h(k)x(n− k)
∣∣∣ ≤ Xmax

∑
|h(n)| (10.83)

where Xmax is the upper-bound on x(n). To guarantee that |y(n)| ≤ 1,
we need the scaling factor Xmax on x(n) as

Xmax ≤ 1∑
|h(n)| (10.84)

which is the most conservative scaling factor. There are other scaling
factors, depending on the applications—for example, the narrowband
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signals use

Xmax ≤ 1
max |H(eω)|

and wideband random signals use

Xmax ≤ 1
4σx

√∑
|h(n)|2

.

Using (10.84) and assuming that x(n) is uniformly distributed over
[−Xmax, +Xmax], the input signal power is given by

σ2
x =

X2
max

3
=

1
3 (

∑
|h(n)|)2

(10.85)

Furthermore, assuming that x(n) is also a white sequence, the output
signal power is given by

σ2
y = σ2

x

∑
|h(n)|2 =

1
3

∑
|h(n)|2

(
∑

|h(n)|)2
(10.86)

Thus, the output SNR is

SNR =
σ2
y

σ2
q

=
22(B+1)

A

[ ∑
|h(n)|2

(
∑

|h(n)|)2

]
(10.87)

where A = M for the model in Figure 10.26b or A = 1 for the model in
Figure 10.26c. The corresponding SNR in dB is

SNRdB = 6.02 + 6.02B + 10 log10

( ∑
|h(n)|2

(
∑

|h(n)|)2

)
− 10 log10 A (10.88)

10.3.2 ANALYSIS USING MATLAB
This simulation in MATLAB can be done in parallel fashion since there
is no feedback path for the multiplication quantization errors. Using the
function Qfix function with ’round’ mode, we will compute the quan-
tized multiplier output. In the case of M quantizers, assuming two’s-
complement format, we will use the ’twosc’ mode for each quantizer.
Only the final sum will be quantized and saturated. In the case of one
quantizer, we need the ’satur’ mode. These simulation steps are detailed
in the following example.

� EXAMPLE 10.13 Let a fourth-order (M = 5) FIR filter be given by

H(z) = 0.1 + 0.2z−1 + 0.4z−2 + 0.2z−3 + 0.1z−4 (10.89)

which is implemented as a direct form with B = 12 fractional bit quantiz-
ers. Compute SNRs for models in Figure 10.26b and c and verify them using
MATLAB simulations.
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Solution We will need the quantities
∑

|h(n)|2 and (
∑

|h(n)|)2. These quantities should
be computed using 12-bit quantization of the filter coefficients. These values
using the quantized numbers are

∑
|h(n)|2 =0.2599 and (

∑
|h(n)|)2 = 1. Using

(10.88), the output SNR is 65.42 dB for 5 multipliers and is 72.41 dB for 1
multiplier. The following MATLAB script evaluates these and other quantities.

% Example Parameters

B = 12; % # of fractional bits

N = 100000; % # of samples

xn = (2*rand(1,N)-1); % Input sequence - Uniform Distribution

h = [0.1,0.2,0.4,0.2,0.1]; % Filter parameters

M = length(h);

% Local variables

bM = 7; DbM = 2^bM; % bin parameter

BB = 2^B; % useful factor in quantization

K = round(DbM/2); % Half number of bins

bins = [-K+0.5:1:K-0.5]; % Bin values from -K to K

Q = bins/DbM; % Normalized bins

YTN = 2^(-bM); % Ytick marks interval

YLM = 4*YTN; % Yaxis limit

% Quantize the input and the filter coefficients

h = QFix(h,B,’round’,’satur’); % h quantized to B bits

Xm = 1/sum(abs(h)); % Scaling factor

xn = QFix(Xm*xn,B,’round’,’satur’);% Scaled Input quant to B bits

% Filter output without multiplication quantization

yn = filter(h,1,xn); % output using filter routine

% Filter output with multi quant (5 multipliers)

x1 = [zeros(1,1),xn(1:N-1)]; x2 = [zeros(1,2),xn(1:N-2)];

x3 = [zeros(1,3),xn(1:N-3)]; x4 = [zeros(1,4),xn(1:N-4)];

h0x0 = QFix(h(1)*xn,B,’round’,’twosc’);

h1x1 = QFix(h(2)*x1,B,’round’,’twosc’);

h2x2 = QFix(h(3)*x2,B,’round’,’twosc’);

h3x3 = QFix(h(4)*x3,B,’round’,’twosc’);

h4x4 = QFix(h(5)*x4,B,’round’,’twosc’);

yq = h0x0+h1x1+h2x2+h3x3+h4x4;

yq = QFix(yq,B,’round’,’satur’);

% Output Error Analysis

qn = yn-yq; % Outout error sequence

varyn = var(yn); varqn = var(qn); % Signal and noise power

qqmax = max(qn); qqmin = min(qn); % Maximun and minimum of the error

qnmax = max(abs([qqmax,qqmin])); % Absolute maximum range of the error

qnavg = mean(qn); qnstd = std(qn); % Mean and std dev of the error
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qn = round(qn*(2^bM)/(2*qnmax)+0.5); % Normalized en (interger between -K & K)

qn = sort([qn,-K:1:(K+1)]); %

H = diff(find(diff(qn)))-1; % Error histogram

H = H/N; % Normalized histogram

Hmax = max(H); Hmin = min(H); % Max and Min of the normalized histogram

% Output SNRs

SNR_C = 10*log10(varyn/varqn); % Computed SNR

SNR_T = 6.02 + 6.02*B + 10*log10(sum(h.*h)/Xm^2) - 10*log10(M); % Theoretical SNR

% Filter output with multi quant (1 multiplier)

yq = QFix(yn,B,’round’,’satur’);

% Output Error Analysis

qn = yn-yq; % Outout error sequence

varyn = var(yn); varqn = var(qn); % Signal and noise power

qqmax = max(qn); qqmin = min(qn); % Maximun and minimum of the error

qnmax = max(abs([qqmax,qqmin])); % Absolute maximum range of the error

qnavg = mean(qn); qnstd = std(qn); % Mean and std dev of the error

qn = round(qn*(2^bM)/(2*qnmax)+0.5); % Normalized en (interger between -K & K)

qn = sort([qn,-K:1:(K+1)]); %

H = diff(find(diff(qn)))-1; % Error histogram

H = H/N; % Normalized histogram

Hmax = max(H); Hmin = min(H); % Max and Min of the normalized histogram

% Output SNRs

SNR_C = 10*log10(varyn/varqn); % Computed SNR

SNR_T = 6.02 + 6.02*B + 10*log10(sum(h.*h)/Xm^2); % Theoretical SNR

The computed and theoretical SNRs as well as output error histograms for the
two models are shown in Figure 10.27. The top plot shows the histogram when
five multipliers are used. The output error has Gaussian-like distribution with
SNR equal to 65.42 dB, which agrees with the theoretical value. The bottom
plot show the histogram when one multiplier is used. As expected, the error is
uniformly distributed with SNR equal to 72.43 dB, which also agrees with the
theoretical one. �

Cascade-form realization Let the filter be realized by a cascade of
K, 2nd-order (M = 3) sections given by

H(z) =
K∑
i=1

Hi(z) where Hi(z) = β0i + β1i z
−1 + β2i z

−2 (10.90)

as shown in Figure 10.28. The overall length of the filter is M = 2K + 1.
Figure 10.28 also shows the finite word-length model for the cascade form,
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FIGURE 10.27 Multiplication quantization effects for the direct-form FIR filter
in Example 10.13

in which quantization noise sources, ei(n) 1 ≤ i ≤ K, at each section’s
output are incorporated. Let y(n) be the output due to input x(n), and
let q(n) be the output due to all noise sources. We make the following
reasonable assumptions:

1. The sections are implemented using the MAC (multiply-accumulate)
architecture so that there is only one independent noise source in each
section that contributes to ei(n). The other possibility of three multi-
pliers in each section is straightforward.

x(n) H1(z) H2(z) HK (z)

e1(n) e2(n) eK−1(n) eK (n)

y (n) = y (n) + q(n)ˆ

FIGURE 10.28 Cascade form FIR filter structure with noise sources inserted for
multiplication quantization
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2. The noise sources are independent of each other—that is,

ei(n) ⊥ ej(n) for i �= j

3. Each noise source is a white noise source with σ2
ei = 2−2B/12.

We will now consider the issues of round-off noise and scaling (to prevent
overflow) for the cascade-form realization.

Round-off noise Let the noise impulse response at the output from
the ei(n) node be denoted by gi(n). Then the length of gi(n) is equal to
(M − 2i). Let qi(n) be the output noise due to ei(n). Then its power is
given by

σ2
qi = σ2

ei

M−2i∑
0

|gi(n)|2 =
2−2B

12

M−2i∑
0

|gi(n)|2 (10.91)

Since q(n) =
∑K

i=1 qi(n) we obtain the total noise power as

σ2
q =

K∑
i=1

σ2
qi =

2−2B

12

(
K∑
i=1

M−2i∑
n=1

|gi(n)|2
)

(10.92)

The expression
∑K

i=1

∑M−2i
n=1 |gi(n)|2 shows that the error power depends

on the order of the cascade connections. It has been shown that for the
majority of the orderings the noise power is approximately the same.

Scaling to prevent overflow From Figure 10.28 we note that one
must prevent overflow at each node. Let hk(n) be the impulse response
at each node k; then we need a scaling constant Xmax as

Xmax =
1

maxk

∑
|hk(n)|

so that |y(n)| ≤ 1. Clearly, this is a very conservative value. A better
approach is to scale the impulse responses of every section {hi(n)} so
that

∑
|hi| = 1 for each i. Hence the output of every section is limited

between −1 and +1 if the input x(n) is distributed over the same interval.
Assuming that x(n) is uniformly distributed over [−1,+1] and is white,
the output signal power is

σ2
y = σ2

x

M−1∑
0

|h(n)|2 =
1
3

M−1∑
0

|h(n)|2 (10.93)

where h(n) is the overall impulse response of the filter. Let ĝi be the
corresponding scaled impulse responses in (10.92). Now the output SNR
can be computed as

SNR =
σ2
y

σ2
q

= 22(B+1)

∑M−1
0 |h(n)|2(∑K

i=1

∑M−2i
n=1 |ĝi(n)|2

) (10.94)
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or

SNRdB = 6.02(B+1)+10 log10

(
M−1∑

0

|h(n)|2
)
−10 log10

(
K∑
i=1

M−2i∑
n=1

|ĝi(n)|2
)

(10.95)

10.3.3 ANALYSIS USING MATLAB
Using the casfiltr function, we can compute the output of the infinite-
precision cascade structure. Using the scaling approach outlined above,
each second-order section can be scaled and used in the simulation of
quantized outputs. Again, all calculations can be done in vector fashion,
which improves the execution speed. These and other simulation steps are
detailed in the following example.

� EXAMPLE 10.14 Consider the 4th-order FIR filter given in Example 10.13. Its cascade-form
realization has two sections along with a gain constant b0, which can be obtained
using the dir2cas function:

H1(z) = 1+1.4859z−1+2.8901z−2, H2(z) = 1+0.5141z−1+0.3460z−2, and b0 = 0.1

(10.96)
Note that some of these coefficients are greater than 1, which will cause problems
with coefficient quantization when only B fractional bits are used. Hence we
need to scale each section as explained. The scaled values are

Ĥ1(z) = 0.1860+0.2764z−1 +0.5376z−2, Ĥ2(z) = 0.5376+0.2764z−1 +0.1860z−2

(10.97)
and b̂0 = 1. Thus we do not need to scale the input. Now ĝ1(n) = ĥ2(n) and
ĝ2(n) = 1 in (10.94). Thus, from (10.95) the output SNR is 70.96 dB, which
compares well with the one-multiplier direct-form implementation (72.41 dB).
These calculations and error histogram plotting are illustrated in the following
MATLAB script.

% Example Parameters

B = 12; % # of fractional bits

N = 100000; % # of samples

xn = (2*rand(1,N)-1); % Input sequence - Uniform Distribution

h = [0.1,0.2,0.4,0.2,0.1]; % Filter parameters

M = length(h); % Filter length

[b0,Bh,Ah] = dir2cas(h,1); % Cascade sections

h1 = Bh(1,:); % Section-1

h2 = Bh(2,:); % Section-2

h1 = h1/sum(h1); % Scaled so Gain=1

h2 = h2/sum(h2); % Scaled so Gain=1

% Local variables

bM = 7; DbM = 2^bM; % bin parameter

BB = 2^B; % useful factor in quantization

K = round(DbM/2); % Half number of bins
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bins = [-K+0.5:1:K-0.5]; % Bin values from -K to K

Q = bins/DbM; % Normalized bins

YTN = 2^(-bM); % Ytick marks interval

YLM = 20*YTN; % Yaxis limit

% Quantize the input and the filter coefficients

h1 = QFix(h1,B,’round’,’satur’); % h1 quantized to B bits

h2 = QFix(h2,B,’round’,’satur’); % h1 quantized to B bits

xn = QFix(xn,B,’round’,’satur’); % Input quantized to B bits

% Filter output without multiplication quantization

yn = casfiltr(b0,Bh,Ah,xn); % output using Casfiltr routine

% Filter output with multi quant (1 multiplier/section)

xq = QFix(xn,B,’round’,’satur’); % Section-1 scaled input

wn = filter(h1,1,xq); % Sec-1 unquantized output

wq = QFix(wn,B,’round’,’satur’); % Sec-1 quantized output

wq = QFix(wq,B,’round’,’satur’); % Section-2 scaled input

yq = filter(h2,1,wq); % Sec-2 unquantized output

yq = QFix(yq,B,’round’,’satur’); % Sec-2 quantized output

% Output Error Analysis

qn = yn-yq; % Outout error sequence

varyn = var(yn); varqn = var(qn); % Signal and noise power

qqmax = max(qn); qqmin = min(qn); % Maximun and minimum of the error

qnmax = max(abs([qqmax,qqmin])); % Absolute maximum range of the error

qnavg = mean(qn); qnstd = std(qn); % Mean and std dev of the error

qn = round(qn*(2^bM)/(2*qnmax)+0.5); % Normalized en (interger between -K & K)

qn = sort([qn,-K:1:(K+1)]); %

H = diff(find(diff(qn)))-1; % Error histogram

H = H/N; % Normalized histogram

Hmax = max(H); Hmin = min(H); % Max and Min of the normalized histogram

% Output SNRs

SNR_C = 10*log10(varyn/varqn); % Computed SNR

SNR_T = 6.02*(B+1) + 10*log10(sum(h.*h)) ...

- 10*log10(1+sum(h2.*h2)); % Theoretical SNR

The plot is shown in Figure 10.29. The error distribution appears to have a
Gaussian envelope, but the error is not continuously distributed. This behavior
indicates that the output error takes only a fixed set of values, which is due
to a particular set of coefficient values. The computed SNR is 70.85 dB,
which agrees with the above theoretical value. Thus, our assumptions are
reasonable. �

10.3.4 FLOATING-POINT ARITHMETIC
Analysis for the floating-point arithmetic is more complicated and tedious.
Hence we will consider only the direct-form realization with simplified
assumptions. Figure 10.30 shows a direct-form realization with a floating-
point arithmetic model. In this realization, {ηi(n)}, 1 ≤ i ≤ M − 1 are
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FIGURE 10.29 Multiplication quantization effects for the cascade-form FIR
filter in Example 10.14

the relative errors in adders and {εi(n)}, 0 ≤ i ≤ M − 1 are the relative
errors in multipliers, with |ηi| ≤ 2−2B and |εi| ≤ 2−2B .

Let A(n, k) be the gain from the kth multiplier to the output node,
which is given by

A(n, k) =




(1 + εk(n))
∏M−1

r=k (1 + ηr(n)) , k �= 0;

(1 + ε0(n))
∏M−1

r=k (1 + ηr(n)) , k = 0.
(10.98)

Let ŷ(n)
�
= y(n) + q(n) be the overall output where y(n) is the output

due to the input x(n) and q(n) is the output due to noise sources. Then

ŷ(n) =
M−1∑
k=0

A(n, k)h(k)x(n− k) (10.99)

x(n)

y(n) + q(n)

1 + ε0(n) 1 + ε1(n)

1 + η1(n) 1 + η2(n)

1 + ε2(n) 1 + ε3(n) 1 + εM−2(n) 1 + εM−1(n)

1 + ηM−2(n) 1 + ηM−1(n)

z−1 z −1 z −1 z −1

h(0) h(1) h(2) h(3) h(M − 2) h(M − 1)

1

FIGURE 10.30 Multiplication quantization model for direct-form floating-point
implementation of an FIR filter
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Subtracting y(n) =
∑M−1

k=0 h(k)x(n− k) from (10.99), we obtain

q(n) =
M−1∑
k=0

{A(n, k) − 1}h(k)x(n− k) (10.100)

Now from (10.98), the average value of A(n, k) is EA(n, k) = 1 and the
average power of A(n, k) is

E[A2(n, k)] =
(

1 +
1
3

2−2B

)M+1−k

≈ 1 + (M + 1 − k)
2−2B

3
for small 2−2B (10.101)

Assuming that the input signal x(n) is also a white sequence with variance
σ2
x, then from (10.101) the noise power is given by

σ2
q =

(M + 1)2−2B

3
σ2
x

M−1∑
k=0

|h(k)|2
(

1 − k

M + 1

)
(10.102)

Since (1− k
M+1 ) ≤ 1 and using σ2

y = σ2
x

∑M−1
k=0 |h(k)|2 the noise power σ2

q

is upper bounded by

σ2
q ≤ (M + 1)

2−2B

3
σ2
y (10.103)

or the SNR is lower bounded by

SNR ≥ 3
M + 1

22B (10.104)

Equation (10.104) shows that it is best to compute products in order of
increasing magnitude.

� EXAMPLE 10.15 Again consider the 4th-order FIR filter given in Example 10.13 in which
M = 5, B = 12, and h(n) = {0.1, 0.2, 0.4, 0.2, 0.1}. From (10.104), the SNR is
lower bounded by

SNRdB ≥ 10 log10

(
3

M + 1
224

)
= 69.24 dB

and the approximate value from (10.102) is 71 dB, which is comparable to the
fixed-point value of 72 dB. Note that the fixed-point results would degrade with
less than optimum scaling (e.g., if signal amplitude were 10 dB down), whereas
the floating point SNR would remain the same. To counter this, one could put a
variable scaling factor A on the fixed-point system, which is then getting close to
the full floating-point system. In fact, floating-point is nothing but fixed-point
with variable scaling—that is, a scaling by a power of two (or shifting) at each
multiplication and addition. �
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590 Chapter 10 ROUND-OFF EFFECTS IN DIGITAL FILTERS

10.4 PROBLEMS

P10.1 Let x(n) = 0.5[cos(n/17) + sin(n/23)]. For the following parts, use 500, 000 samples of
x(n) and the StatModelR function.

1. Quantize x(n) to B = 2 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

2. Quantize x(n) to B = 4 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

3. Quantize x(n) to B = 6 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

P10.2 Let x(n) = 1
3

[cos(0.1πn) + sin(0.2πn) + sin(0.4πn)]. For the following parts use 500, 000
samples of x(n) and the StatModelR function.

1. Quantize x(n) to B = 2 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

2. Quantize x(n) to B = 4 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

3. Quantize x(n) to B = 6 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

P10.3 Let a real, causal, and stable IIR filter be given by

H(z) = R0 +

N−1∑
k=1

Rk

z − pk
(10.105)

where all poles are distinct. Using (10.16), (10.18a), and (10.105), show that

σ2
q

σ2
e

= R2
0 +

N−1∑
k=1

N−1∑
�=1

RkR
∗
�

1 − pkp∗�

P10.4 Consider the lowpass digital filter designed in Problem P6.39. The input to this filter is
an independent and identically distributed Gaussian sequence with zero-mean and
variance equal to 0.1.

1. Determine the variance of the filter output process using the VarGain function.
2. Determine numerically the variance of the output process by generating 500,000

samples of the input sequence. Comment on your results.

P10.5 Design an elliptic bandpass digital filter that has a lower stopband of 0.3π, a lower
passband of 0.4π, an upper passband of 0.5π, and an upper stopband of 0.65π. The
passband ripple is 0.1 dB and the stopband attenuation is 50 dB. The input signal is a
random sequence whose components are independent and uniformly distributed between
−1 and 1.

1. Determine the variance of the filter output process using the VarGain function.
2. Determine numerically the variance of the output process by generating 500,000

samples of the input sequence. Comment on your results.
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P10.6 Consider the 1st-order recursive system y(n) = 0.75 y(n− 1) + 0.125δ(n) with zero initial
conditions. The filter is implemented in 4-bit (including sign) fixed-point
two’s-complement fractional arithmetic. Products are rounded to 3-bits.

1. Determine and plot the first 20 samples of the output using saturation limiter for the
addition. Does the filter go into a limit cycle?

2. Determine and plot the first 20 samples of the output using two’s-complement overflow
for the addition. Does the filter go into a limit cycle?

P10.7 Repeat Problem P10.6 when products are truncated to 3 bits.

P10.8 Consider the 2nd-order recursive system y(n) = 0.125δ(n) − 0.875 y(n− 2) with zero
initial conditions. The filter is implemented in 5-bit (including sign) fixed-point
two’s-complement fractional arithmetic. Products are rounded to 4-bits.

1. Determine and plot the first 30 samples of the output using a saturation limiter for the
addition. Does the filter go into a limit cycle?

2. Determine and plot the first 30 samples of the output using two’s-complement overflow
for the addition. Does the filter go into a limit cycle?

P10.9 Repeat Problem P10.8 when products are truncated to 4 bits.

P10.10 Let x(n) = 1
4
[sin(n/11) + cos(n/13) + sin(n/17) + cos(n/19)] and c = 0.7777. For the

following parts use 500, 000 samples of x(n) and the StatModelR function.

1. Quantize c x(n) to B = 4 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

2. Quantize cx(n) to B = 8 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

3. Quantize cx(n) to B = 12 bits, and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

P10.11 Let x(n) = be a random sequence uniformly distributed between −1 and 1, and let
c = 0.7777. For the following parts, use 500, 000 samples of x(n) and the StatModelR

function.

1. Quantize c x(n) to B = 4 bits and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

2. Quantize cx(n) to B = 8 bits and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

3. Quantize cx(n) to B = 12 bits and plot the resulting distributions for the error signals
e1(n) and e2(n). Comment on these plots.

P10.12 Consider an LTI system with the input x(n) and output y(n)

y(n) = b0x(n) + b1x(n− 1) + a1y(n− 1) (10.106)

1. Draw the direct-form I structure for the above system.
2. Let eb0(n) denote the multiplication quantization error resulting from the product

b0x(n), eb1(n− 1) from the product b1x(n− 1), and ea1(n− 1) from the product
a1y(n− 1) in the direct-form I realization. Draw an equivalent structure that contains
only one noise source.

3. Draw an equivalent system that can be used to study multiplication quantization error
for the system in (10.106). The input to this system should be the noise source in
part 2, and the output should be the overall output error q(n).

4. Using the model in part 3, determine an expression for the variance of the output error
e(n).
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592 Chapter 10 ROUND-OFF EFFECTS IN DIGITAL FILTERS

P10.13 Let the system be given by y(n) = a y(n− 1) + x(n). Let a = 0.7, which is quantized to B
(fractional) bits in the filter realization. Let the input sequence be x(n) = sin(n/11),
which is properly scaled to avoid overflow in the adder and quantized to B bits prior to
filtering. The multiplications in the filtering operations are also quantized to B bits.

1. Let B = 5. Generate 100,000 samples of x(n), and filter through the system with
multiplication quantization. Compute the true output, the quantized output, the
output error, and the output SNR. Provide a plot of normalized histogram, and
comment on the results.

2. Let B = 10. Generate 100,000 samples of x(n) and filter through the system with
multiplication quantization. Compute the true output, the quantized output, the
output error, and the output SNR. Provide a plot of normalized histogram, and
comment on the results.

P10.14 Let the system be given by y(n) = a y(n− 1) + x(n). Let a = 0.333, which is quantized to
B (fractional) bits in the filter realization. Let the input sequence be x(n) = sin(n/11),
which is properly scaled to avoid overflow in the adder and quantized to B bits prior to
filtering. The multiplications in the filtering operations are also quantized to B bits.

1. Let B = 5. Generate 100,000 samples of x(n), and filter through the system with
multiplication quantization. Compute the true output, the quantized output, the
output error, and the output SNR. Provide a plot of normalized histogram and
comment on the results.

2. Let B = 10. Generate 100,000 samples of x(n), and filter through the system with
multiplication quantization. Compute the true output, the quantized output, the
output error, and the output SNR. Provide a plot of normalized histogram and
comment on the results.

P10.15 Consider the 2nd-order IIR filter given in (10.51) with r = 0.8 and θ = π/4. The input to
this filter is x(n) = sin(n/23).

1. Investigate the multiplication quantization error behavior of this filter for B = 5 bits.
Determine the true output SNR, the computed output SNR, and the upper and
lower bounds of the SNR. Plot the normalized histogram of the output error.

2. Investigate the multiplication quantization error behavior of this filter for B = 10
bits. Determine the true output SNR, the computed output SNR, and the upper and
lower bounds of the SNR. Plot the normalized histogram of the output error.

P10.16 Consider the second-order IIR filter given in (10.51) with r = 0.− 8 and θ = 2π/3. The
input to this filter is x(n) = sin(n/23).

1. Investigate the multiplication quantization error behavior of this filter for B = 5 bits.
Determine the true output SNR, the computed output SNR, and the upper and
lower bounds of the SNR. Plot the normalized histogram of the output error.

2. Investigate the multiplication quantization error behavior of this filter for B = 10 bits.
Determine the true output SNR, the computed output SNR, and the upper and
lower bounds of the SNR. Plot the normalized histogram of the output error.

P10.17 Consider a 5th-order FIR system given by

H(z) = 0.1 + 0.2z−1 + 0.3z−2 + 0.3z−3 + 0.2z−4 + 0.1z−5
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which is implemented in a direct form using B = 10 bits. Input to the filter is a random
sequence whose samples are independent and identically distributed over [−1, 1].

1. Investigate the multiplication quantization errors when all 6 multipliers are used in the
implementation. Provide a plot of the normalized histogram of the output error.

2. Investigate the multiplication quantization errors when one multiplier is used in the
implementation. Provide a plot of the normalized histogram of the output error.

P10.18 Consider a 4th-order FIR system given by

H(z) = 0.1 + 0.2z−1 + 0.3z−2 + 0.2z−3 + 0.1z−4

which is implemented in a cascade form containing second-order sections. Input to the
filter is a random sequence whose samples are independent and identically distributed
over [−1, 1].

1. Investigate the multiplication quantization errors when B = 6 bits is used in the
implementation. Provide a plot of the normalized histogram of the output error.

2. Investigate the multiplication quantization errors when B = 12 bits is used in the
implementation. Provide a plot of the normalized histogram of the output error.
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C H A P T E R 11
Applications
in Adaptive
Filtering

In Chapters 7 and 8 we described methods for designing FIR and IIR digi-
tal filters to satisfy some desired specifications. Our goal was to determine
the coefficients of the digital filter that met the desired specifications.

In contrast to the filter design techniques considered in those two
chapters, there are many digital signal processing applications in which
the filter coefficients cannot be specified a priori. For example, let us con-
sider a high-speed modem that is designed to transmit data over telephone
channels. Such a modem employs a filter called a channel equalizer to com-
pensate for the channel distortion. The modem must effectively transmit
data through communication channels that have different frequency re-
sponse characteristics and hence result in different distortion effects. The
only way in which this is possible is if the channel equalizer has adjustable
coefficients that can be optimized to minimize some measure of the dis-
tortion, on the basis of measurements performed on the characteristics of
the channel. Such a filter with adjustable parameters is called an adaptive
filter, in this case an adaptive equalizer.

Numerous applications of adaptive filters have been described in the
literature. Some of the more noteworthy applications include (1) adaptive
antenna systems, in which adaptive filters are used for beam steering and
for providing nulls in the beam pattern to remove undesired interference
[29]; (2) digital communication receivers, in which adaptive filters are
used to provide equalization of intersymbol interference and for channel
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identification [21]; (3) adaptive noise canceling techniques, in which an
adaptive filter is used to estimate and eliminate a noise component in
some desired signal [27, 9, 15]; and (4) system modeling, in which an
adaptive filter is used as a model to estimate the characteristics of an un-
known system. These are just a few of the best known examples on the use
of adaptive filters.

Although both IIR and FIR filters have been considered for adap-
tive filtering, the FIR filter is by far the most practical and widely used.
The reason for this preference is quite simple. The FIR filter has only
adjustable zeros, and hence it is free of stability problems associated with
adaptive IIR filters that have adjustable poles as well as zeros. We should
not conclude, however, that adaptive FIR filters are always stable. On the
contrary, the stability of the filter depends critically on the algorithm for
adjusting its coefficients.

Of the various FIR filter structures that we may use, the direct form
and the lattice form are the ones often used in adaptive filtering appli-
cations. The direct form FIR filter structure with adjustable coefficients
h(0), h(1), . . . , h(N − 1) is illustrated in Figure 11.1. On the other hand,
the adjustable parameters in an FIR lattice structure are the reflection
coefficients Kn shown in Figure 6.18.

An important consideration in the use of an adaptive filter is the
criterion for optimizing the adjustable filter parameters. The criterion
must not only provide a meaningful measure of filter performance, but it
must also result in a practically realizable algorithm.

One criterion that provides a good measure of performance in adap-
tive filtering applications is the least-squares criterion, and its counterpart
in a statistical formulation of the problem, namely, the mean-square-error
(MSE) criterion. The least squares (and MSE) criterion results in a qua-
dratic performance index as a function of the filter coefficients, and hence
it possesses a single minimum. The resulting algorithms for adjusting the
coefficients of the filter are relatively easy to implement.

FIGURE 11.1 Direct-form adaptive FIR filter
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596 Chapter 11 APPLICATIONS IN ADAPTIVE FILTERING

In this chapter we describe a basic algorithm, called the least-mean-
square (LMS) algorithm, to adaptively adjust the coefficients of an FIR
filter. The adaptive filter structure that will be implemented is the di-
rect form FIR filter structure with adjustable coefficients h(0), h(1), . . . ,
h(N − 1), as illustrated in Figure 11.1. After we describe the LMS algo-
rithm, we apply it to several practical systems in which adaptive filters
are employed.

11.1 LMS ALGORITHM FOR COEFFICIENT ADJUSTMENT

Suppose we have an FIR filter with adjustable coefficients {h(k), 0 ≤ k ≤
N − 1}. Let {x(n)} denote the input sequence to the filter, and let the
corresponding output be {y(n)}, where

y(n) =
N−1∑
k=0

h(k)x (n− k) , n = 0, . . . ,M (11.1)

Suppose that we also have a desired sequence {d(n)} with which we can
compare the FIR filter output. Then we can form the error sequence
{e(n)} by taking the difference between d(n) and y(n), that is,

e(n) = d(n) − y(n), n = 0, . . . ,M (11.2)

The coefficients of the FIR filter will be selected to minimize the sum of
squared errors. Thus we have

E =
M∑
n=0

e2(n) =
M∑
n=0

[
d(n) −

N−1∑
k=0

h(k)x (n− k)

]2

(11.3)

=
M∑
n=0

d2(n) − 2
N−1∑
k=0

h(k)rdx(k) +
N−1∑
k=0

N−1∑
�=0

h(k)h (�) rxx (k − �)

where, by definition,

rdx(k) =
M∑
n=0

d(n)x (n− k) , 0 ≤ k ≤ N − 1 (11.4)

rxx(k) =
M∑
n=0

x(n)x (n + k) , 0 ≤ k ≤ N − 1 (11.5)
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We call {rdx(k)} the crosscorrelation between the desired output sequence
{d(n)} and the input sequence {x(n)}, and {rxx(k)} is the autocorrelation
sequence of {x(n)}.

The sum of squared errors E is a quadratic function of the FIR filter
coefficients. Consequently, the minimization of E with respect to the filter
coefficients {h(k)} results in a set of linear equations. By differentiating
E with respect to each of the filter coefficients, we obtain

∂E
∂h(m)

= 0, 0 ≤ m ≤ N − 1 (11.6)

and hence
N−1∑
k=0

h(k)rxx (k −m) = rdx(m), 0 ≤ m ≤ N − 1 (11.7)

This is the set of linear equations that yield the optimum filter coefficients.
To solve the set of linear equations directly, we must first compute

the autocorrelation sequence {rxx(k)} of the input signal and the cross-
correlation sequence {rdx(k)} between the desired sequence {d(n)} and
the input sequence {x(n)}.

The LMS algorithm provides an alternative computational method for
determining the optimum filter coefficients {h(k)} without explicitly com-
puting the correlation sequences {rxx(k)} and {rdx(k)}. The algorithm is
basically a recursive gradient (steepest-descent) method that finds the
minimum of E and thus yields the set of optimum filter coefficients.

We begin with any arbitrary choice for the initial values of {h(k)},
say {h0(k)}. For example, we may begin with h0(k) = 0, 0 ≤ k ≤ N−1.
Then after each new input sample {x(n)} enters the adaptive FIR filter,
we compute the corresponding output, say {y(n)}, form the error signal
e(n) = d(n) − y(n), and update the filter coefficients according to the
equation

hn(k) = hn−1(k) + � · e(n) · x (n− k) , 0 ≤ k ≤ N − 1, n = 0, 1, . . .

(11.8)

where � is called the step size parameter, x(n − k) is the sample of the
input signal located at the kth tap of the filter at time n, and e(n)x (n− k)
is an approximation (estimate) of the negative of the gradient for the kth
filter coefficient. This is the LMS recursive algorithm for adjusting the
filter coefficients adaptively so as to minimize the sum of squared errors E .

The step size parameter � controls the rate of convergence of the
algorithm to the optimum solution. A large value of � leads to large step
size adjustments and thus to rapid convergence, while a small value of
� results in slower convergence. However, if � is made too large the
algorithm becomes unstable. To ensure stability, � must be chosen [22]
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598 Chapter 11 APPLICATIONS IN ADAPTIVE FILTERING

to be in the range

0 < � <
1

10NPx
(11.9)

where N is the length of the adaptive FIR filter and Px is the power in
the input signal, which can be approximated by

Px ≈ 1
1 + M

M∑
n=0

x2(n) =
rxx (0)
M + 1

(11.10)

The mathematical justification of equations (11.9) and (11.10) and
the proof that the LMS algorithm leads to the solution for the optimum
filter coefficients is given in more advanced treatments of adaptive filters.
The interested reader may refer to the books by Haykin [8] and Proakis
and Manolakis [23].

11.1.1 MATLAB IMPLEMENTATION
The LMS algorithm (11.8) can easily be implemented in MATLAB.
Given the input sequence {x(n)}, the desired sequence {d(n)}, step size
�, and the desired length of the adaptive FIR filter N , we can use
(11.1), (11.2), and (11.8) to determine the adaptive filter coefficients
{h(n), 0 ≤ n ≤ N − 1} recursively. This is shown in the following func-
tion, called lms.

function [h,y] = lms(x,d,delta,N)

% LMS Algorithm for Coefficient Adjustment

% ----------------------------------------

% [h,y] = lms(x,d,delta,N)

% h = estimated FIR filter

% y = output array y(n)

% x = input array x(n)

% d = desired array d(n), length must be same as x

% delta = step size

% N = length of the FIR filter

%

M = length(x); y = zeros(1,M);

h = zeros(1,N);

for n = N:M

x1 = x(n:-1:n-N+1);

y = h * x1’;

e = d(n) - y;

h = h + delta*e*x1;

end

In addition, the lms function provides the output {y(n)} of the adaptive
filter.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



System Identification or System Modeling 599

We will apply the LMS algorithm to several practical applications
involving adaptive filtering.

11.2 SYSTEM IDENTIFICATION OR SYSTEM MODELING

To formulate the problem, let us refer to Figure 11.2. We have an un-
known linear system that we wish to identify. The unknown system may
be an all-zero (FIR) system or a pole-zero (IIR) system. The unknown
system will be approximated (modeled) by an FIR filter of length N . Both
the unknown system and the FIR model are connected in parallel and are
excited by the same input sequence {x(n)}. If {y(n)} denotes the output
of the model and {d(n)} denotes the output of the unknown system, the
error sequence is {e(n) = d(n) − y(n)}. If we minimize the sum of squared
errors, we obtain the same set of linear equations as in (11.7). Therefore,
the LMS algorithm given by (11.8) may be used to adapt the coefficients of
the FIR model so that its output approximates the output of the unknown
system.

11.2.1 PROJECT 11.1: SYSTEM IDENTIFICATION
There are three basic modules that are needed to perform this project.

1. A noise signal generator that generates a sequence of random numbers
with zero mean value. For example, we may generate a sequence of
uniformly distributed random numbers over the interval [−a, a]. Such
a sequence of uniformly distributed numbers has an average value of
zero and a variance of a2/3. This signal sequence, call it {x(n)}, will be
used as the input to the unknown system and the adaptive FIR model.
In this case the input signal {x(n)} has power Px = a2/3. In MATLAB
this can be implemented using the rand function.

FIGURE 11.2 Block diagram of system identification or system modeling
problem
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600 Chapter 11 APPLICATIONS IN ADAPTIVE FILTERING

2. An unknown system module that may be selected is an IIR filter and
implemented by its difference equation. For example, we may select an
IIR filter specified by the second-order difference equation

d(n) = a1d (n− 1) + a2d (n− 2) + x(n) + b1x (n− 1) + b2x (n− 2)

(11.11)

where the parameters {a1, a2} determine the positions of the poles and
{b1, b2} determine the positions of the zeros of the filter. These param-
eters are input variables to the program. This can be implemented by
the filter function.

3. An adaptive FIR filter module where the FIR filter has N tap coeffi-
cients that are adjusted by means of the LMS algorithm. The length
N of the filter is an input variable to the program. This can be imple-
mented using the lms function given in the previous section.

The three modules are configured as shown in Figure 11.2. From this
project we can determine how closely the impulse response of the FIR
model approximates the impulse response of the unknown system after
the LMS algorithm has converged.

To monitor the convergence rate of the LMS algorithm, we may com-
pute a short-term average of the squared error e2(n) and plot it. That is,
we may compute

ASE(m) =
1
K

n+K∑
k=n+1

e2(k) (11.12)

where m = n/K = 1, 2, . . . . The averaging interval K may be selected
to be (approximately) K = 10N . The effect of the choice of the step
size parameter � on the convergence rate of the LMS algorithm may be
observed by monitoring the ASE(m).

Besides the main part of the program, you should also include, as an
aside, the computation of the impulse response of the unknown system,
which can be obtained by exciting the system with a unit sample sequence
δ(n). This actual impulse response can be compared with that of the FIR
model after convergence of the LMS algorithm. The two impulse responses
can be plotted for the purpose of comparison.

11.3 SUPPRESSION OF NARROWBAND INTERFERENCE

IN A WIDEBAND SIGNAL

Let us assume that we have a signal sequence {x(n)} that consists of
a desired wideband signal sequence, say {w(n)}, corrupted by an ad-
ditive narrowband interference sequence {s(n)}. The two sequences are
uncorrelated. This problem arises in digital communications and in signal
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Suppression of Narrowband Interference in a Wideband Signal 601

detection, where the desired signal sequence {w(n)} is a spread-spectrum
signal, while the narrowband interference represents a signal from another
user of the frequency band or some intentional interference from a jammer
who is trying to disrupt the communication or detection system.

From a filtering point of view, our objective is to design a filter that
suppresses the narrowband interference. In effect, such a filter should place
a notch in the frequency band occupied by the interference. In practice,
however, the frequency band of the interference might be unknown. More-
over, the frequency band of the interference may vary slowly in time.

The narrowband characteristics of the interference allow us to esti-
mate s(n) from past samples of the sequence x(n) = s(n) + w(n) and to
subtract the estimate from x(n). Since the bandwidth of {s(n)} is nar-
row compared to the bandwidth of {w(n)}, the samples of {s(n)} are
highly correlated. On the other hand, the wideband sequence {w(n)} has
a relatively narrow correlation.

The general configuration of the interference suppression system is
shown in Figure 11.3. The signal x(n) is delayed by D samples, where
the delay D is chosen sufficiently large so that the wideband signal com-
ponents w(n) and w(n−D), which are contained in x(n) and x(n−D),
respectively, are uncorrelated. The output of the adaptive FIR filter is the
estimate

ŝ(n) =
N−1∑
k=0

h(k)x(n− k −D) (11.13)

The error signal that is used in optimizing the FIR filter coefficients is
e(n) = x(n)− ŝ(n). The minimization of the sum of squared errors again
leads to a set of linear equations for determining the optimum coefficients.
Due to the delay D, the LMS algorithm for adjusting the coefficients
recursively becomes

hn(k) = hn−1(k) + �e(n)x(n− k −D),
k = 0, 1, . . . , N − 1
n = 1, 2, . . .

(11.14)

FIGURE 11.3 Adaptive filter for estimating and suppressing a narrowband in-
terference
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602 Chapter 11 APPLICATIONS IN ADAPTIVE FILTERING

FIGURE 11.4 Configuration of modules for experiment on interference suppres-
sion

11.3.1 PROJECT 11.2: SUPPRESSION OF SINUSOIDAL INTERFERENCE
Three basic modules are required to perform this project.

1. A noise signal generator module that generates a wideband sequence
{w(n)} of random numbers with zero mean value. In particular, we may
generate a sequence of uniformly distributed random numbers using
the rand function as previously described in the project on system
identification. The signal power is denoted as Pw.

2. A sinusoidal signal generator module that generates a sine wave se-
quence s(n) = A sinω0n, where 0 < ω0 < π and A is the signal ampli-
tude. The power of the sinusoidal sequence is denoted as Ps.

3. An adaptive FIR filter module using the lms function, where the FIR
filter has N tap coefficients that are adjusted by the LMS algorithm.
The length N of the filter is an input variable to the program.

The three modules are configured as shown in Figure 11.4. In this
project the delay D = 1 is sufficient, since the sequence {w(n)} is a white
noise (spectrally flat or uncorrelated) sequence. The objective is to adapt
the FIR filter coefficients and then to investigate the characteristics of the
adaptive filter.

It is interesting to select the interference signal to be much stronger
than the desired signal w(n), for example, Ps = 10Pw. Note that the
power Px required in selecting the step size parameter in the LMS algo-
rithm is Px = Ps + Pw. The frequency response characteristic H(ejω) of
the adaptive FIR filter with coefficients {h(k)} should exhibit a resonant
peak at the frequency of the interference. The frequency response of the
interference suppression filter is Hs(ejω) = 1−H(ejω), which should then
exhibit a notch at the frequency of the interference.

It is interesting to plot the sequences {w(n)}, {s(n)}, and {x(n)}. It
is also interesting to plot the frequency responses H(ejω) and Hs(ejω)
after the LMS algorithm has converged. The short-time average squared
error ASE(m), defined by (11.12), may be used to monitor the conver-
gence characteristics of the LMS algorithm. The effect of the length of
the adaptive filter on the quality of the estimate should be investigated.
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Adaptive Channel Equalization 603

The project may be generalized by adding a second sinusoid of a
different frequency. Then H(ejω) should exhibit two resonant peaks, pro-
vided the frequencies are sufficiently separated. Investigate the effect of
the filter length N on the resolution of two closely spaced sinusoids.

11.4 ADAPTIVE LINE ENHANCEMENT

In the preceding section we described a method for suppressing a strong
narrowband interference from a wideband signal. An adaptive line en-
hancer (ALE) has the same configuration as the interference suppression
filter in Figure 11.3, except that the objective is different.

In the adaptive line enhancer, {s(n)} is the desired signal and {w(n)}
represents a wideband noise component that masks {s(n)}. The desired
signal {s(n)} may be a spectral line (a pure sinusoid) or a relatively
narrowband signal. Usually, the power in the wideband signal is greater
than that in the narrowband signal—that is, Pw > Ps. It is apparent that
the ALE is a self-tuning filter that has a peak in its frequency response
at the frequency of the input sinusoid or in the frequency band occupied
by the narrowband signal. By having a narrow bandwidth FIR filter, the
noise outside the frequency band of the signal is suppressed, and thus
the spectral line is enhanced in amplitude relative to the noise power in
{w(n)}.

11.4.1 PROJECT 11.3: ADAPTIVE LINE ENHANCEMENT
This project requires the same software modules as those used in the
project on interference suppression. Hence the description given in
the preceding section applies directly. One change is that in the ALE, the
condition is that Pw > Ps. Second, the output signal from the ALE is
{s(n)}. Repeat the project described in the previous section under these
conditions.

11.5 ADAPTIVE CHANNEL EQUALIZATION

The speed of data transmission over telephone channels is usually limited
by channel distortion that causes intersymbol interference (ISI). At data
rates below 2400 bits the ISI is relatively small and is usually not a prob-
lem in the operation of a modem. However, at data rates above 2400 bits,
an adaptive equalizer is employed in the modem to compensate for the
channel distortion and thus to allow for highly reliable high-speed data
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604 Chapter 11 APPLICATIONS IN ADAPTIVE FILTERING

FIGURE 11.5 Application of adaptive filtering to adaptive channel equalization

transmission. In telephone channels, filters are used throughout the sys-
tem to separate signals in different frequency bands. These filters cause
amplitude and phase distortion. The adaptive equalizer is basically an
adaptive FIR filter with coefficients that are adjusted by means of the
LMS algorithm to correct for the channel distortion.

A block diagram showing the basic elements of a modem transmit-
ting data over a channel is given in Figure 11.5. Initially, the equalizer
coefficients are adjusted by transmitting a short training sequence, usu-
ally less than one second in duration. After the short training period,
the transmitter begins to transmit the data sequence {a(n)}. To track
the possible slow time variations in the channel, the equalizer coefficients
must continue to be adjusted in an adaptive manner while receiving data.
This is usually accomplished, as illustrated in Figure 11.5, by treating
the decisions at the output of the decision device as correct and by using
the decisions in place of the reference {d(n)} to generate the error signal.
This approach works quite well when decision errors occur infrequently,
such as less than one error in 100 data symbols. The occasional decision
errors cause only a small misadjustment in the equalizer coefficients.

11.5.1 PROJECT 11.4: ADAPTIVE CHANNEL EQUALIZATION
The objective of this project is to investigate the performance of an adap-
tive equalizer for data transmission over a channel that causes intersym-
bol interference. The basic configuration of the system to be simulated
is shown in Figure 11.6. As we observe, five basic modules are required.
Note that we have avoided carrier modulation and demodulation, which
is required in a telephone channel modem. This is done to simplify the
simulation program. However, all processing involves complex arithmetic
operations.
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Adaptive Channel Equalization 605

FIGURE 11.6 Experiment for investigating the performance of an adaptive
equalizer

The five modules are as follows:

1. The data generator module is used to generate a sequence of complex-
valued information symbols {a(n)}. In particular, employ four equally
probable symbols s + js, s − js, −s + js, and −s − js, where s is a
scale factor that may be set to s = 1, or it can be an input parameter.

2. The channel filter module is an FIR filter with coefficients {c(n),
0 ≤ n ≤ K − 1} that simulates the channel distortion. For distortion-
less transmission, set c(0) = 1 and c(n) = 0 for 1 ≤ n ≤ K − 1. The
length K of the filter is an input parameter.

3. The noise generator module is used to generate additive noise that is
usually present in any digital communication system. If we are model-
ing noise that is generated by electronic devices, the noise distribution
should be Gaussian with zero mean. Use the randu function.

4. The adaptive equalizer module is an FIR filter with tap coefficients
{h(k), 0 < k < N − 1}, which are adjusted by the LMS algorithm.
However, due to the use of complex arithmetic, the recursive equation
in the LMS algorithm is slightly modified to

hn(k) = hn−1(k) + � e(n)x∗(n− k) (11.15)

where the asterisk denotes the complex conjugate.
5. The decision device module takes the estimate â(n) and quantizes it

to one of the four possible signal points on the basis of the following
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606 Chapter 11 APPLICATIONS IN ADAPTIVE FILTERING

decision rule:

Re [â(n)] > 0 and Im [â(n)] > 0 −→ 1 + j

Re [â(n)] > 0 and Im [â(n)] < 0 −→ 1 − j

Re [â(n)] < 0 and Im [â(n)] > 0 −→ −1 + j

Re [â(n)] < 0 and Im [â(n)] < 0 −→ −1 − j

The effectiveness of the equalizer in suppressing the ISI introduced by
the channel filter may be seen by plotting the following relevant sequences
in a two-dimensional (real–imaginary) display. The data generator out-
put {a(n)} should consist of four points with values ±1 ± j. The effect
of channel distortion and additive noise may be viewed by displaying
the sequence {x(n)} at the input to the equalizer. The effectiveness of
the adaptive equalizer may be assessed by plotting its output {â(n)} af-
ter convergence of its coefficients. The short-time average squared error
ASE(n) may also be used to monitor the convergence characteristics of
the LMS algorithm. Note that a delay must be introduced into the output
of the data generator to compensate for the delays that the signal encoun-
ters due to the channel filter and the adaptive equalizer. For example, this
delay may be set to the largest integer closest to (N + K)/2. Finally, an
error counter may be used to count the number of symbol errors in the
received data sequence, and the ratio for the number of errors to the total
number of symbols (error rate) may be displayed. The error rate may be
varied by changing the level of the ISI and the level of the additive noise.

It is suggested that simulations be performed for the following three
channel conditions:

a. No ISI: c(0) = 1, c(n) = 0, 1 ≤ n ≤ K − 1
b. Mild ISI: c(0) = 1, c(1) = 0.2, c(2) = −0.2, c(n) = 0, 3 ≤ n ≤ K − 1
c. Strong ISI: c(0) = 1, c(1) = 0.5, c(2) = 0.5, c(n) = 0, 3 ≤ n ≤ K − 1

The measured error rate may be plotted as a function of the signal-
to-noise ratio (SNR) at the input to the equalizer, where SNR is defined
as Ps/Pn, where Ps is the signal power, given as Ps = s2, and Pn is the
noise power of the sequence at the output of the noise generator.
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C H A P T E R 12
Applications in
Communications

Today MATLAB finds widespread use in the simulation of a variety of
communication systems. In this chapter we shall focus on several applica-
tions dealing with waveform representation and coding, especially speech
coding, and with digital communications. In particular, we shall describe
several methods for digitizing analog waveforms, with specific application
to speech coding and transmission. These methods are pulse-code modula-
tion (PCM), differential PCM and adaptive differential PCM (ADPCM),
delta modulation (DM) and adaptive delta modulation (ADM), and lin-
ear predictive coding (LPC). A project is formulated involving each of
these waveform encoding methods for simulation using MATLAB.

The last three topics treated in this chapter deal with signal-detection
applications that are usually encountered in the implementation of a re-
ceiver in a digital communication system. For each of these topics we
describe a project that involves the implementations via simulation of the
detection scheme in MATLAB.

12.1 PULSE-CODE MODULATION

Pulse-code modulation is a method for quantizing an analog signal for
the purpose of transmitting or storing the signal in digital form. PCM is
widely used for speech transmission in telephone communications and for
telemetry systems that employ radio transmission. We shall concentrate
our attention on the application of PCM to speech signal processing.
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608 Chapter 12 APPLICATIONS IN COMMUNICATIONS

Speech signals transmitted over telephone channels are usually limited
in bandwidth to the frequency range below 4 kHz. Hence the Nyquist rate
for sampling such a signal is less than 8 kHz. In PCM the analog speech
signal is sampled at the nominal rate of 8 kHz (samples per second), and
each sample is quantized to one of 2b levels, and represented digitally by
a sequence of b bits. Thus the bit rate required to transmit the digitized
speech signal is 8000 b bits per second.

The quantization process may be modeled mathematically as

s̃(n) = s(n) + q(n) (12.1)

where s̃(n) represents the quantized value of s(n), and q(n) represents the
quantization error, which we treat as an additive noise. Assuming that a
uniform quantizer is used and the number of levels is sufficiently large,
the quantization noise is well characterized statistically by the uniform
probability density function,

p(q) =
1
∆
, −∆

2
≤ q ≤ ∆

2
(12.2)

where the step size of the quantizer is ∆ = 2−b. The mean square value
of the quantization error is

E(q2) =
∆2

12
=

2−2b

12
(12.3)

Measured in decibels, the mean square value of the noise is

10 log
(

∆2

12

)
= 10 log

(
2−2b

12

)
= −6b− 10.8 dB (12.4)

We observe that the quantization noise decreases by 6 dB/bit used
in the quantizer. High-quality speech requires a minimum of 12 bits per
sample and hence a bit rate of 96,000 bits per second (bps).

Speech signals have the characteristic that small signal amplitudes
occur more frequently than large signal amplitudes. However, a uniform
quantizer provides the same spacing between successive levels through-
out the entire dynamic range of the signal. A better approach is to use
a nonuniform quantizer, which provides more closely spaced levels at the
low signal amplitudes and more widely spaced levels at the large signal
amplitudes. For a nonuniform quantizer with b bits, the resulting quan-
tization error has a mean square value that is smaller than that given
by (12.4). A nonuniform quantizer characteristic is usually obtained by
passing the signal through a nonlinear device that compresses the signal
amplitude, followed by a uniform quantizer. For example, a logarithmic
compressor employed in U.S. and Canadian telecommunications systems,
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Pulse-Code Modulation 609

called a µ-law compressor, has an input-output magnitude characteristic
of the form

y =
ln (1 + µ|s|)
ln(1 + µ)

sgn(s); |s| ≤ 1, |y| ≤ 1 (12.5)

where s is the normalized input, y is the normalized output, sgn (·) is the
sign function, and µ is a parameter that is selected to give the desired
compression characteristic.

In the encoding of speech waveforms the value of µ = 255 has been
adopted as a standard in the U.S. and Canada. This value results in about
a 24 dB reduction in the quantization noise power relative to uniform
quantization. Consequently, an 8-bit quantizer used in conjunction with
a µ = 255 logarithmic compressor produces the same quality speech as a
12-bit uniform quantizer with no compression. Thus the compressed PCM
speech signal has a bit rate of 64,000 bps.

The logarithmic compressor standard used in European telecommu-
nication systems is called A-law and is defined as

y =




1 + ln(A|s|)
1 + lnA

sgn(s), 1
A ≤ |s| ≤ 1

A|s|
1 + lnA

sgn(s), 0 ≤ |s| ≤ 1
A

(12.6)

where A is chosen as 87.56. Although (12.5) and (12.6) are different
nonlinear functions, the two compression characteristics are very similar.
Figure 12.1 illustrates these two compression functions. Note their strong
similarity.

FIGURE 12.1 Comparison of µ-law and A-law nonlinearities

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



610 Chapter 12 APPLICATIONS IN COMMUNICATIONS

In the reconstruction of the signal from the quantized values, the
decoder employs an inverse logarithmic relation to expand the signal
amplitude. For example, in µ-law the inverse relation is given by

|s| =
(1 + µ)|y| − 1

µ
; |y| ≤ 1, |s| ≤ 1 (12.7)

The combined compressor-expander pair is termed a compander.

12.1.1 PROJECT 12.1: PCM
The purpose of this project is to gain an understanding of PCM compres-
sion (linear-to-logarithmic) and PCM expansion (logarithmic-to-linear).
Write the following three MATLAB functions for this project:

1. a µ-law compressor function to implement (12.5) that accepts a zero-
mean normalized (|s| ≤ 1) signal and produces a compressed zero-mean
signal with µ as a free parameter that can be specified,

2. a quantizer function that accepts a zero-mean input and produces an
integer output after b-bit quantization that can be specified, and

3. a µ-law expander to implement (12.7) that accepts an integer input
and produces a zero-mean output for a specified µ parameter.

For simulation purposes generate a large number of samples (10,000
or more) of the following sequences: (a) a sawtooth sequence, (b) an expo-
nential pulse train sequence, (c) a sinusoidal sequence, and (d) a random
sequence with small variance. Care must be taken to generate nonperiodic
sequences by choosing their normalized frequencies as irrational numbers
(i.e., sample values should not repeat). For example, a sinusoidal sequence
can be generated using

s(n) = 0.5 sin(n/33), 0 ≤ n ≤ 10,000

From our discussions in Chapter 2, this sequence is nonperiodic, yet it
has a periodic envelope. Other sequences can also be generated in a sim-
ilar fashion. Process these signals through the above µ-law compressor,
quantizer, and expander functions as shown in Figure 12.2, and compute

FIGURE 12.2 PCM project
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the signal-to-quantization noise ratio (SQNR) in dB as

SQNR = 10 log10

( ∑N
n=1 s

2(n)∑N
n=1 (s(n) − sq(n))2

)
.

For different b-bit quantizers, systematically determine the value of µ
that maximizes the SQNR. Also plot the input and output waveforms
and comment on the results.

12.2 DIFFERENTIAL PCM (DPCM)

In PCM each sample of the waveform is encoded independently of all the
other samples. However, most signals, including speech, sampled at the
Nyquist rate or faster exhibit significant correlation between successive
samples. In other words, the average change in amplitude between suc-
cessive samples is relatively small. Consequently, an encoding scheme that
exploits the redundancy in the samples will result in a lower bit rate for
the speech signal.

A relatively simple solution is to encode the differences between suc-
cessive samples rather than the samples themselves. Since differences be-
tween samples are expected to be smaller than the actual sampled ampli-
tudes, fewer bits are required to represent the differences. A refinement
of this general approach is to predict the current sample based on the
previous p samples. To be specific, let s(n) denote the current sample of
speech and let ŝ(n) denote the predicted value of s(n), defined as

ŝ(n) =
p∑

i=1

a (i) s (n− i) (12.8)

Thus ŝ(n) is a weighted linear combination of the past p samples, and
the a (i) are the predictor (filter) coefficients. The a (i) are selected to
minimize some function of the error between s(n) and ŝ(n).

A mathematically and practically convenient error function is the sum
of squared errors. With this as the performance index for the predictor,
we select the a (i) to minimize

Ep
�
=

N∑
n=1

e2(n)=
N∑

n=1

[
s(n) −

p∑
i=1

a (i) s (n− i)

]2

(12.9)

=rss (0) − 2
p∑

i=1

a (i) rss (i) +
p∑

i=1

p∑
j=1

a (i) a (j) rss (i− j)
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612 Chapter 12 APPLICATIONS IN COMMUNICATIONS

where rss (m) is the autocorrelation function of the sampled signal se-
quence s(n), defined as

rss (m) =
N∑
i=1

s (i) s (i + m) (12.10)

Minimization of Ep with respect to the predictor coefficients {ai(n)} re-
sults in the set of linear equations, called the normal equations,

p∑
i=1

a (i) rss (i− j) = rss (j) , j = 1, 2, . . . , p (12.11)

or in the matrix form,

Ra = r =⇒ a = R−1r (12.12)

where R is the autocorrelation matrix, a is the coefficient vector, and r
is the autocorrelation vector. Thus the values of the predictor coefficients
are established.

Having described the method for determining the predictor coeffi-
cients, let us now consider the block diagram of a practical DPCM system,
shown in Figure 12.3. In this configuration the predictor is implemented
with the feedback loop around the quantizer. The input to the predictor
is denoted as s̃(n), which represents the signal sample s(n) modified by
the quantization process, and the output of the predictor is

̂̃s =
p∑

i=1

a (i) s̃ (n− i) (12.13)

The difference
e(n) = s(n) − ̂̃s(n) (12.14)

is the input to the quantizer, and ẽ(n) denotes the output. Each value of
the quantized prediction error ẽ(n) is encoded into a sequence of binary

FIGURE 12.3 Block diagram of a DPCM transcoder: (a) encoder, (b) decoder
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digits and transmitted over the channel to the receiver. The quantized
error ẽ(n) is also added to the predicted value ̂̃s(n) to yield s̃(n).

At the receiver the same predictor that was used at the transmitting
end is synthesized, and its output ̂̃s(n) is added to ẽ(n) to yield s̃(n). The
signal s̃(n) is the desired excitation for the predictor and also the desired
output sequence from which the reconstructed signal s̃ (t) is obtained by
filtering, as shown in Figure 12.3b.

The use of feedback around the quantizer, as described, ensures that
the error in s̃(n) is simply the quantization error q(n) = ẽ(n) − e(n)
and that there is no accumulation of previous quantization errors in the
implementation of the decoder. That is,

q(n) = ẽ(n) − e(n) = ẽ(n) − s(n) + ̂̃s(n) = s̃(n) − s(n) (12.15)

Hence s̃(n) = s(n) + q(n). This means that the quantized sample s̃(n)
differs from the input s(n) by the quantization error q(n) indepen-
dent of the predictor used. Therefore the quantization errors do not
accumulate.

In the DPCM system illustrated in Figure 12.3, the estimate or pre-
dicted value s̃(n) of the signal sample s(n) is obtained by taking a linear
combination of past values s̃ (n− k) , k = 1, 2, . . . , p, as indicated by
(12.13). An improvement in the quality of the estimate is obtained by
including linearly filtered past values of the quantized error. Specifically,
the estimate of s(n) may be expressed as

̂̃s(n) =
p∑

i=1

a (i) s̃ (n− i) +
m∑
i=1

b (i) ẽ (n− i) (12.16)

where b (i) are the coefficients of the filter for the quantized error sequence
ẽ(n). The block diagram of the encoder at the transmitter and the decoder
at the receiver are shown in Figure 12.4. The two sets of coefficients
a (i) and b (i) are selected to minimize some function of the error e(n) =
s̃(n) − s(n), such as the sum of squared errors.

By using a logarithmic compressor and a 4-bit quantizer for the error
sequence e(n), DPCM results in high-quality speech at a rate of 32,000
bps, which is a factor of two lower than logarithmic PCM.

12.2.1 PROJECT 12.2: DPCM
The objective of this project is to gain understanding of the DPCM encod-
ing and decoding operations. For simulation purposes, generate correlated
random sequences using a pole-zero signal model of the form

s(n) = a (1) s (n− 1) + b0x(n) + b1x (n− 1) (12.17)

where x(n) is a zero-mean unit variance Gaussian sequence. This can be
done using the filter function. The sequences developed in Project 12.1
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614 Chapter 12 APPLICATIONS IN COMMUNICATIONS

FIGURE 12.4 DPCM modified by the linearly filtered error sequence

can also be used for simulation. Develop the following three MATLAB
modules for this project:

1. a model predictor function to implement (12.12), given the input signal
s(n);

2. a DPCM encoder function to implement the block diagram of Fig-
ure 12.3a, which accepts a zero-mean input sequence and produces a
quantized b-bit integer error sequence, where b is a free parameter; and

3. a DPCM decoder function of Figure 12.3b, which reconstructs the sig-
nal from the quantized error sequence.

Experiment with several p-order prediction models for a given signal
and determine the optimum order. Compare this DPCM implementation
with the PCM system of Project 12.1 (at the end of the chapter) and
comment on the results. Extend this implementation to include an mth-
order moving average filter as indicated in (12.16).

12.3 ADAPTIVE PCM AND DPCM (ADPCM)

In general, the power in a speech signal varies slowly with time. PCM
and DPCM encoders, however, are designed on the basis that the speech
signal power is constant, and hence the quantizer is fixed. The efficiency
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and performance of these encoders can be improved by having them adapt
to the slowly time-variant power level of the speech signal.

In both PCM and DPCM the quantization error q(n) resulting from a
uniform quantizer operating on a slowly varying power level input signal
will have a time-variant variance (quantization noise power). One im-
provement that reduces the dynamic range of the quantization noise is
the use of an adaptive quantizer.

Adaptive quantizers can be classified as feedforward or feedback. A
feedforward adaptive quantizer adjusts its step size for each signal sample,
based on a measurement of the input speech signal variance (power). For
example, the estimated variance, based as a sliding window estimator, is

σ̂2
n+1 =

1
M

n+1∑
k=n+1−M

s2 (k) (12.18)

Then the step size for the quantizer is

∆ (n + 1) = ∆(n)σ̂n+1 (12.19)

In this case it is necessary to transmit ∆ (n + 1) to the decoder in order
for it to reconstruct the signal.

A feedback adaptive quantizer employs the output of the quantizer
in the adjustment of the step size. In particular, we may set the step size
as

∆ (n + 1) = α(n)∆(n) (12.20)

where the scale factor α(n) depends on the previous quantizer output.
For example, if the previous quantizer output is small, we may select
α(n) < 1 in order to provide for finer quantization. On the other hand,
if the quantizer output is large, then the step size should be increased
to reduce the possibility of signal clipping. Such an algorithm has been
successfully used in the encoding of speech signals. Figure 12.5 illustrates
such a (3-bit) quantizer in which the step size is adjusted recursively
according to the relation

∆ (n + 1) = ∆(n) ·M(n)

where M(n) is a multiplication factor whose value depends on the quan-
tizer level for the sample s(n), and ∆(n) is the step size of the quantizer for
processing s(n). Values of the multiplication factors optimized for speech
encoding have been given by [14]. These values are displayed in Table 12.1
for 2-, 3-, and 4-bit quantization for PCM and DPCM.

In DPCM the predictor can also be made adaptive. Thus in ADPCM
the coefficients of the predictor are changed periodically to reflect the
changing signal statistics of the speech. The linear equations given by
(12.11) still apply, but the short-term autocorrelation function of s(n),
rss (m) changes with time.
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FIGURE 12.5 Example of a quantizer with an adaptive step size ([10])

12.3.1 ADPCM STANDARD
Figure 12.6 illustrates, in block diagram form, a 32, 000 bps ADPCM
encoder and decoder that has been adopted as an international (CCITT)
standard for speech transmission over telephone channels. The ADPCM
encoder is designed to accept 8-bit PCM compressed signal samples at
64,000 bps, and by means of adaptive prediction and adaptive 4-bit
quantization to reduce the bit rate over the channel to 32,000 bps. The
ADPCM decoder accepts the 32,000 bps data stream and reconstructs
the signal in the form of an 8-bit compressed PCM at 64,000 bps. Thus we
have a configuration shown in Figure 12.7, where the ADPCM encoder/
decoder is embedded into a PCM system. Although the ADPCM encoder/

TABLE 12.1 Multiplication factors for adaptive step size adjustment ([9])

PCM DPCM
2 3 4 2 3 4

M(1) 0.60 0.85 0.80 0.80 0.90 0.90
M(2) 2.20 1.00 0.80 1.60 0.90 0.90
M(3) 1.00 0.80 1.25 0.90
M(4) 1.50 0.80 1.70 0.90
M(5) 0.80 1.20
M(6) 0.80 1.60
M(7) 0.80 2.00
M(8) 0.80 2.40
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FIGURE 12.6 ADPCM block diagram

decoder could be used directly on the speech signal, the interface to the
PCM system is necessary in practice in order to maintain compatibility
with existing PCM systems that are widely used in the telephone network.

The ADPCM encoder accepts the 8-bit PCM compressed signal and
expands it to a 14-bit-per-sample linear representation for processing. The
predicted value is subtracted from this 14-bit linear value to produce a
difference signal sample that is fed to the quantizer. Adaptive quantiza-
tion is performed on the difference signal to produce a 4-bit output for
transmission over the channel.

Both the encoder and decoder update their internal variables, based
only on the ADPCM values that are generated. Consequently, an ADPCM

FIGURE 12.7 ADPCM interface to PCM system
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618 Chapter 12 APPLICATIONS IN COMMUNICATIONS

decoder, including an inverse adaptive quantizer, is embedded in the
encoder so that all internal variables are updated, based on the same
data. This ensures that the encoder and decoder operate in synchronism
without the need to transmit any information on the values of internal
variables.

The adaptive predictor computes a weighted average of the last six
dequantized difference values and the last two predicted values. Hence this
predictor is basically a 2-pole (p = 2) and 6-zero (m = 6) filter governed
by the difference equation given by (12.16). The filter coefficients are
updated adaptively for every new input sample.

At the receiving decoder and at the decoder that is embedded in
the encoder, the 4-bit transmitted ADPCM value is used to update the
inverse adaptive quantizer, whose output is a dequantized version of the
difference signal. This dequantized value is added to the value generated
by the adaptive predictor to produce the reconstructed speech sample.
This signal is the output of the decoder, which is converted to compressed
PCM format at the receiver.

12.3.2 PROJECT 12.3: ADPCM
The objective of this project is to gain familiarity with, and understanding
of, ADPCM and its interface with a PCM encoder/decoder (transcoder).
As described, the ADPCM transcoder is inserted between the PCM com-
pressor and the PCM expander as shown in Figure 12.7. Use the already
developed MATLAB PCM and DPCM modules for this project.

The input to the PCM-ADPCM transcoder system can be supplied
from internally generated waveform data files, just as in the case of the
PCM project. The output of the transcoder can be plotted. Compar-
isons should be made between the output signal from the PCM-ADPCM
transcoder with the signal from the PCM transcoder (PCM Project 12.1),
and with the original input signal.

12.4 DELTA MODULATION (DM)

Delta modulation may be viewed as a simplified form of DPCM in which
a 2-level (1-bit) quantizer is used in conjunction with a fixed 1st-order
predictor. The block diagram of a DM encoder-decoder is shown in
Figure 12.8. We note that

̂̃s(n) = s̃ (n− 1) = ̂̃s (n− 1) + ẽ (n− 1) (12.21)

Since
q(n) = ẽ(n) − e(n) = ẽ(n) −

[
s(n) − ̂̃s(n)

]
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FIGURE 12.8 Block diagram of a delta modulation system

it follows that
̂̃s(n) = s (n− 1) + q (n− 1) (12.22)

Thus the estimated (predicted) value of s(n) is really the previous sam-
ple s (n− 1) modified by the quantization noise q (n− 1). We also note
that the difference equation in (12.21) represents an integrator with an
input ẽ(n). Hence an equivalent realization of the 1-step predictor is an
accumulator with an input equal to the quantized error signal ẽ(n). In gen-
eral, the quantized error signal is scaled by some value, say ∆1, which is
called the step size. This equivalent realization is illustrated in Figure 12.9.
In effect, the encoder shown in Figure 12.9 approximates a waveform s (t)

FIGURE 12.9 An equivalent realization of a delta modulation system
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FIGURE 12.10 Two types of distortion in the DM encoder

by a linear staircase function. In order for the approximation to be rela-
tively good, the waveform s (t) must change slowly relative to the sampling
rate. This requirement implies that the sampling rate must be several (a
factor of at least 5) times the Nyquist rate. A lowpass filter is usually
incorporated into the decoder to smooth out discontinuities in the recon-
structed signal.

12.4.1 ADAPTIVE DELTA MODULATION (ADM)
At any given sampling rate, the performance of the DM encoder is limited
by two types of distortion as shown in Figure 12.10. One is called slope-
overload distortion. It is due to the use of a step size ∆1 that is too small to
follow portions of the waveform that have a steep slope. The second type
of distortion, called granular noise, results from using a step size that is too
large in parts of the waveform having a small slope. The need to minimize
both of these two types of distortion results in conflicting requirements in
the selection of the step size ∆1.

An alternative solution is to employ a variable size that adapts itself
to the short-term characteristics of the source signal. That is, the step size
is increased when the waveform has a steep slope and decreased when the
waveform has a relatively small slope.

A variety of methods can be used to set adaptively the step size in
every iteration. The quantized error sequence ẽ(n) provides a good indica-
tion of the slope characteristics of the waveform being encoded. When the
quantized error ẽ(n) is changing signs between successive iterations, this
is an indication that the slope of the waveform in the locality is relatively
small. On the other hand, when the waveform has a steep slope, successive
values of the error ẽ(n) are expected to have identical signs. From these ob-
servations it is possible to devise algorithms that decrease or increase the
step size, depending on successive values of ẽ(n). A relatively simple rule
devised by [13] is to vary adaptively the step size according to the relation

∆(n) = ∆ (n− 1)K ẽ(n)ẽ(n−1), n = 1, 2, . . . (12.23)
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FIGURE 12.11 An example of a delta modulation system with adaptive step size

where K ≥ 1 is a constant that is selected to minimize the total distortion.
A block diagram of a DM encoder-decoder that incorporates this adaptive
algorithm is illustrated in Figure 12.11.

Several other variations of adaptive DM encoding have been inves-
tigated and described in the technical literature. A particularly effective
and popular technique first proposed by [6] is called continuously variable
slope delta modulation (CVSD). In CVSD the adaptive step size parame-
ter may be expressed as

∆(n) = α∆ (n− 1) + k1 (12.24)

if ẽ(n), ẽ (n− 1), and ẽ(n− 2) have the same sign; otherwise

∆(n) = α∆ (n− 1) + k2 (12.25)

The parameters α, k1, and k2 are selected such that 0 < α < 1 and
k1 > k2 > 0. For more discussion on this and other variations of adaptive
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DM, the interested reader is referred to the papers by Jayant [14] and
Flanagan et al. [4] and to the extensive references contained in these
papers.

12.4.2 PROJECT 12.4: DM AND ADM
The purpose of this project is to gain an understanding of delta modula-
tion and adaptive delta modulation for coding of waveforms. This project
involves writing MATLAB functions for the DM encoder and decoder as
shown in Figure 12.9, and for the ADM encoder and decoder shown in
Figure 12.11. The lowpass filter at the decoder can be implemented as a
linear-phase FIR filter. For example, a Hanning filter that has the impulse
response

h(n) =
1
2

[
1 − cos

(
2πn
N − 1

)]
, 0 ≤ n ≤ N − 1 (12.26)

may be used, where the length N may be selected in the range 5 ≤ N ≤ 15.
The input to the DM and ADM systems can be supplied from the

waveforms generated in Project 12.1 except that the sampling rate should
be higher by a factor of 5 to 10. The output of the decoder can be plotted.
Comparisons should be made between the output signal from the DM and
ADM decoders and the original input signal.

12.5 LINEAR PREDICTIVE CODING (LPC) OF SPEECH

The linear predictive coding (LPC) method for speech analysis and syn-
thesis is based on modeling the vocal tract as a linear all-pole (IIR) filter
having the system function

H (z) =
G

1 +
p∑

k=1

ap (k) z−k

(12.27)

where p is the number of poles, G is the filter gain, and {ap (k)} are the
parameters that determine the poles. There are two mutually exclusive
excitation functions to model voiced and unvoiced speech sounds. On a
short-time basis, voiced speech is periodic with a fundamental frequency
F0, or a pitch period 1/F0, which depends on the speaker. Thus voiced
speech is generated by exciting the all-pole filter model by a periodic
impulse train with a period equal to the desired pitch period. Unvoiced
speech sounds are generated by exciting the all-pole filter model by the
output of a random-noise generator. This model is shown in Figure 12.12.
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FIGURE 12.12 Block diagram model for the generation of a speech signal

Given a short-time segment of a speech signal, usually about 20 ms
or 160 samples at an 8 kHz sampling rate, the speech encoder at the
transmitter must determine the proper excitation function, the pitch pe-
riod for voiced speech, the gain parameter G, and the coefficients ap (k).
A block diagram that illustrates the speech encoding system is given in
Figure 12.13. The parameters of the model are determined adaptively
from the data and encoded into a binary sequence and transmitted to the
receiver. At the receiver the speech signal is synthesized from the model
and the excitation signal.

The parameters of the all-pole filter model are easily determined from
the speech samples by means of linear prediction. To be specific, the
output of the FIR linear prediction filter is

ŝ(n) = −
p∑

k=1

ap (k) s (n− k) (12.28)

FIGURE 12.13 Encoder and decoder for LPC
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and the corresponding error between the observed sample s(n) and the
predicted value ŝ(n) is

e(n) = s(n) +
p∑

k=1

ap (k) s (n− k) (12.29)

By minimizing the sum of squared errors, that is,

E =
N∑

n=0

e2(n) =
N∑

n=0

[
s(n) +

p∑
k=1

ap (k) s (n− k)

]2

(12.30)

we can determine the pole parameters {ap (k)} of the model. The result
of differentiating E with respect to each of the parameters and equating
the result to zero, is a set of p linear equations

p∑
k=1

ap (k) rss (m− k) = −rss (m) , m = 1, 2, . . . , p (12.31)

where rss (m) is the autocorrelation of the sequence s(n) defined as

rss (m) =
N∑

n=0

s(n)s (n + m) (12.32)

The linear equation (12.31) can be expressed in matrix form as

Rssa = −rss (12.33)

where Rss is a p× p autocorrelation matrix, rss is a p× 1 autocorrelation
vector, and a is a p× 1 vector of model parameters. Hence

a = −R−1
ss rss (12.34)

These equations can also be solved recursively and most efficiently, with-
out resorting to matrix inversion, by using the Levinson-Durbin algorithm
[19]. However, in MATLAB it is convenient to use the matrix inversion.
The all-pole filter parameters {ap (k)} can be converted to the all-pole
lattice parameters {Ki} (called the reflection coefficients) using the
MATLAB function dir2latc developed in Chapter 6.

The gain parameter of the filter can be obtained by noting that its
input-output equation is

s(n) = −
p∑

k=1

ap (k) s (n− k) + Gx(n) (12.35)

where x(n) is the input sequence. Clearly,

Gx(n) = s(n) +
p∑

k=1

ap (k) s (n− k) = e(n)
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Then

G2
N−1∑
n=0

x2(n) =
N−1∑
n=0

e2(n) (12.36)

If the input excitation is normalized to unit energy by design, then

G2 =
N−1∑
n=0

e2(n) = rss (0) +
p∑

k=1

ap (k) rss (k) (12.37)

Thus G2 is set equal to the residual energy resulting from the least-squares
optimization.

Once the LPC coefficients are computed, we can determine whether
the input speech frame is voiced, and if so, what the pitch is. This is
accomplished by computing the sequence

re(n) =
p∑

k=1

ra (k) rss (n− k) (12.38)

where ra (k) is defined as

ra (k) =
p∑

i=1

ap (i) ap (i + k) (12.39)

which is the autocorrelation sequence of the prediction coefficients.
The pitch is detected by finding the peak of the normalized sequence
re(n)/re (0) in the time interval that corresponds to 3 to 15 ms in the
20-ms sampling frame. If the value of this peak is at least 0.25, the frame
of speech is considered voiced with a pitch period equal to the value of
n = Np, where re (Np) /re (0) is a maximum. If the peak value is less than
0.25, the frame of speech is considered unvoiced and the pitch is zero.

The values of the LPC coefficients, the pitch period, and the type of
excitation are transmitted to the receiver, where the decoder synthesizes
the speech signal by passing the proper excitation through the all-pole
filter model of the vocal tract. Typically, the pitch period requires 6 bits,
and the gain parameter may be represented by 5 bits after its dynamic
range is compressed logarithmically. If the prediction coefficients were to
be coded, they would require between 8 to 10 bits per coefficient for accu-
rate representation. The reason for such high accuracy is that relatively
small changes in the prediction coefficients result in a large change in the
pole positions of the filter model. The accuracy requirements are lessened
by transmitting the reflection coefficients {Ki}, which have a smaller dy-
namic range—that is, |Ki| < 1. These are adequately represented by 6
bits per coefficient. Thus for a 10th-order predictor the total number of
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626 Chapter 12 APPLICATIONS IN COMMUNICATIONS

bits assigned to the model parameters per frame is 72. If the model pa-
rameters are changed every 20 µsec. the resulting bit rate is 3, 600 bps.
Since the reflection coefficients are usually transmitted to the receiver, the
synthesis filter at the receiver is implemented as an all-pole lattice filter,
described in Chapter 6.

12.5.1 PROJECT 12.5: LPC
The objective of this project is to analyze a speech signal through an
LPC coder and then to synthesize it through the corresponding PLC
decoder. Use several .wav sound files (sampled at 8000 sam/sec rate),
which are available in MATLAB for this purpose. Divide speech signals
into short-time segments (with lengths between 120 and 150 samples) and
process each segment to determine the proper excitation function (voiced
or unvoiced), the pitch period for voiced speech, the coefficients {ap (k)}
(p ≤ 10), and the gain G. The decoder that performs the synthesis is an
all-pole lattice filter whose parameters are the reflection coefficients that
can be determined from {ap (k)}. The output of this project is a syn-
thetic speech signal that can be compared with the original speech signal.
The distortion effects due to LPC analysis/synthesis may be assessed
qualitatively.

12.6 DUAL-TONE MULTIFREQUENCY (DTMF) SIGNALS

DTMF is the generic name for push-button telephone signaling that is
equivalent to the Touch Tone system in use within the Bell System. DTMF
also finds widespread use in electronic mail systems and telephone banking
systems in which the user can select options from a menu by sending
DTMF signals from a telephone.

In a DTMF signaling system a combination of a high-frequency tone
and a low-frequency tone represent a specific digit or the characters *
and #. The eight frequencies are arranged as shown in Figure 12.14, to
accommodate a total of 16 characters, 12 of which are assigned as shown,
while the other four are reserved for future use.

DTMF signals are easily generated in software and detected by means
of digital filters, also implemented in software, that are tuned to the 8 fre-
quency tones. Usually, DTMF signals are interfaced to the analog world
via a codec (coder/decoder) chip or by linear A/D and D/A converters.
Codec chips contain all the necessary A/D and D/A, sampling, and fil-
tering circuitry for a bidirectional analog/digital interface.

The DTMF tones may be generated either mathematically or from
a look-up table. In a hardware implementation (e.g., in a digital signal

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Dual-tone Multifrequency (DTMF) Signals 627

FIGURE 12.14 DTMF digits

processor), digital samples of two sine waves are generated mathemati-
cally, scaled, and added together. The sum is logarithmically compressed
and sent to the codec for conversion to an analog signal. At an 8 kHz
sampling rate the hardware must output a sample every 125 ms. In this
case a sine look-up table is not used because the values of the sine wave
can be computed quickly without using the large amount of data mem-
ory that a table look-up would require. For simulation and investigation
purposes, the look-up table might be a good approach in MATLAB.

At the receiving end, the logarithmically compressed, 8-bit digital
data words from the codec are received and logarithmically expanded to
their 16-bit linear format. Then the tones are detected to decide on the
transmitted digit. The detection algorithm can be a DFT implementa-
tion using the FFT algorithm or a filter bank implementation. For the
relatively small number of tones to be detected, the filter bank implemen-
tation is more efficient. We now describe the use of the Goertzel algorithm
to implement the 8 tuned filters.

Recall from the discussion in Chapter 5 that the DFT of an N -point
data sequence {x(n)} is

X (k) =
N−1∑
n=0

x(n)Wnk
N , k = 0, 1, . . . , N − 1 (12.40)

If the FFT algorithm is used to perform the computation of the DFT,
the number of computations (complex multiplications and additions) is
N log2 N . In this case we obtain all N values of the DFT at once. However,
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628 Chapter 12 APPLICATIONS IN COMMUNICATIONS

if we desire to compute only M points of the DFT, where M < log2 N ,
then a direct computation of the DFT is more efficient. The Goertzel
algorithm, which is now described, is basically a linear filtering approach
to the computation of the DFT and provides an alternative to direct
computation.

12.6.1 THE GOERTZEL ALGORITHM
The Goertzel algorithm exploits the periodicity of the phase factors {W k

N}
and allows us to express the computation of the DFT as a linear filtering
operation. Since W−kN

N = 1, we can multiply the DFT by this factor.
Thus

X (k) = W−kN
N X (k) =

N−1∑
m=0

x (m)W−k(N−m)
N (12.41)

We note that (12.41) is in the form of a convolution. Indeed, if we define
the sequence yk(n) as

yk(n) =
N−1∑
m=0

x (m)W−k(n−m)
N (12.42)

then it is clear that yk(n) is the convolution of the finite-duration input
sequence x(n) of length N with a filter that has an impulse response

hk(n) = W−kn
N u(n) (12.43)

The output of this filter at n = N yields the value of the DFT at the
frequency ωk = 2πk/N . That is,

X (k) = yk(n)|n=N (12.44)

as can be verified by comparing (12.41) with (12.42).
The filter with impulse response hk(n) has the system function

Hk (z) =
1

1 −W−k
N z−1

(12.45)

This filter has a pole on the unit circle at the frequency ωk = 2πk/N .
Thus the entire DFT can be computed by passing the block of input data
into a parallel bank of N single-pole filters (resonators), where each filter
has a pole at the corresponding frequency of the DFT.

Instead of performing the computation of the DFT as in (12.42), via
convolution, we can use the difference equation corresponding to the filter
given by (12.45) to compute yk(n) recursively. Thus we have

yk(n) = W−k
N yk (n− 1) + x(n), yk (−1) = 0 (12.46)
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FIGURE 12.15 Realization of two-pole resonator for computing the DFT

The desired output is X (k) = yk(N). To perform this computation, we
can compute once and store the phase factor W−k

N .
The complex multiplications and additions inherent in (12.46) can

be avoided by combining the pairs of resonators possessing complex con-
jugate poles. This leads to 2-pole filters with system functions of the
form

Hk (z) =
1 −W k

Nz−1

1 − 2 cos (2πk/N) z−1 + z−2
(12.47)

The realization of the system illustrated in Figure 12.15 is described by
the difference equations

vk(n)=2 cos
2πk
N

vk (n− 1) − vk(n− 2) + x(n) (12.48)

yk(n)=vk(n) −W k
Nvk (n− 1) (12.49)

with initial conditions vk (−1) = vk (−2) = 0. This is the Goertzel algo-
rithm.

The recursive relation in (12.48) is iterated for n = 0, 1, . . . , N , but the
equation in (12.49) is computed only once, at time n = N . Each iteration
requires one real multiplication and two additions. Consequently, for a real
input sequence x(n), this algorithm requires N +1 real multiplications to
yield not only X (k) but also, due to symmetry, the value of X (N − k).

We can now implement the DTMF decoder by use of the Goertzel
algorithm. Since there are eight possible tones to be detected, we require
eight filters of the type given by (12.47), with each filter tuned to one of the
eight frequencies. In the DTMF detector, there is no need to compute the
complex value X (k); only the magnitude |X(k)| or the magnitude-squared
value |X(k)|2 will suffice. Consequently, the final step in the computation
of the DFT value involving the numerator term (feedforward part of the
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filter computation) can be simplified. In particular, we have

|X(k)|2=|yk(N)|2 =
∣∣vk(N) −W k

Nvk (N − 1)
∣∣2 (12.50)

=v2
k(N) + v2

k (N − 1) −
(

2 cos
2πk
N

)
vk(N)vk (N − 1)

Thus complex-valued arithmetic operations are completely eliminated in
the DTMF detector.

12.6.2 PROJECT 12.6: DTMF SIGNALING
The objective of this project is to gain an understanding of the DTMF
tone generation software and the DTMF decoding algorithm (the Goertzel
algorithm). Design the following MATLAB modules:

1. a tone generation function that accepts an array containing dial-
ing digits and produces a signal containing appropriate tones (from
Figure 12.14) of 0.5-second duration for each digit at 8 kHz sampling
frequency

2. a dial-tone generator generating samples of (350 + 440) Hz frequency
at 8 kHz sampling interval for a specified amount of duration

3. a decoding function to implement (12.50) that accepts a DTMF signal
and produces an array containing dialing digits

Generate several dialing list arrays containing a mix of digits and
dial tones. Experiment with the tone generation and detection modules
and comment on your observations. Use MATLAB’s sound generation
capabilities to listen to the tones and to observe the frequency components
of the generated tones.

12.7 BINARY DIGITAL COMMUNICATIONS

Digitized speech signals that have been encoded via PCM, ADPCM, DM,
and LPC are usually transmitted to the decoder by means of digital modu-
lation. A binary digital communications system employs two signal wave-
forms, say s1(t) = s(t) and s2(t) = −s(t), to transmit the binary sequence
representing the speech signal. The signal waveform s(t), which is nonzero
over the interval 0 ≤ t ≤ T , is transmitted to the receiver if the data bit is
a 1, and the signal waveform −s(t), 0 ≤ t ≤ T is transmitted if the data bit
is a 0. The time interval T is called the signal interval, and the bit rate over
the channel is R = 1/T bits per second. A typical signal waveform s(t) is
a rectangular pulse—that is, s(t) = A, 0 ≤ t ≤ T—which has energy A2T .
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FIGURE 12.16 Model of binary data communications system

In practice the signal waveforms transmitted over the channel are
corrupted by additive noise and other types of channel distortions that
ultimately limit the performance of the communications system. As a
measure of performance, we normally use the average probability of error,
which is often called the bit error rate.

12.7.1 PROJECT 12.7: BINARY DATA COMMUNICATIONS SYSTEM
The purpose of this project is to investigate the performance of a binary
data communications system on an additive noise channel by means of
simulation. The basic configuration of the system to be simulated is shown
in Figure 12.16. Five MATLAB functions are required.

1. A binary data generator module that generates a sequence of indepen-
dent binary digits with equal probability.

2. A modulator module that maps a binary digit 1 into a sequence of
M consecutive +1’s, and maps a binary digit 0 into a sequence of M
consecutive −1’s. Thus the M consecutive +1’s represent a sampled
version of the rectangular pulse.

3. A noise generator that generates a sequence of uniformly distributed
numbers over the interval (−a, a). Each noise sample is added to a
corresponding signal sample.

4. A demodulator module that sums the M successive outputs of the
noise corrupted sequence +1’s or −1’s received from the channel. We
assume that the demodulator is time synchronized so that it knows the
beginning and end of each waveform.

5. A detector and error-counting module. The detector compares the out-
put of the modulator with zero and decides in favor of 1 if the output
is greater than zero and in favor of zero if the output is less than zero.
If the output of the detector does not agree with the transmitted bit
from the transmitter, an error is counted by the counter. The error rate
depends on the ratio (called signal-to-noise ratio) of the size of M to
the additive noise power, which is Pn = a2/3.

The measured error rate can be plotted for different signal-to-noise
ratios, either by changing M and keeping Pn fixed or vice versa.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



632 Chapter 12 APPLICATIONS IN COMMUNICATIONS

12.8 SPREAD-SPECTRUM COMMUNICATIONS

Spread-spectrum signals are often used in the transmission of digital data
over communication channels that are corrupted by interference due to
intentional jamming or from other users of the channel (e.g., cellular tele-
phones and other wireless applications). In applications other than com-
munications, spread-spectrum signals are used to obtain accurate range
(time delay) and range rate (velocity) measurements in radar and navi-
gation. For the sake of brevity we shall limit our discussion to the use of
spread spectrum for digital communications. Such signals have the char-
acteristic that their bandwidth is much greater than the information rate
in bits per second.

In combatting intentional interference (jamming), it is important to
the communicators that the jammer who is trying to disrupt their com-
munication does not have prior knowledge of the signal characteristics. To
accomplish this, the transmitter introduces an element of unpredictability
or randomness (pseudo-randomness) in each of the possible transmitted
signal waveforms, which is known to the intended receiver, but not to the
jammer. As a consequence, the jammer must transmit an interfering sig-
nal without knowledge of the pseudo-random characteristics of the desired
signal.

Interference from other users arises in multiple-access communica-
tions systems in which a number of users share a common communications
channel. At any given time a subset of these users may transmit informa-
tion simultaneously over a common channel to corresponding receivers.
The transmitted signals in this common channel may be distinguished
from one another by superimposing a different pseudo-random pattern,
called a multiple-access code, in each transmitted signal. Thus a particular
receiver can recover the transmitted data intended for it by knowing the
pseudo-random pattern, that is, the key used by the corresponding trans-
mitter. This type of communication technique, which allows multiple users
to simultaneously use a common channel for data transmission, is called
code division multiple access (CDMA).

The block diagram shown in Figure 12.17 illustrates the basic el-
ements of a spread-spectrum digital communications system. It differs

FIGURE 12.17 Basic spread spectrum digital communications system
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from a conventional digital communications system by the inclusion of
two identical pseudo-random pattern generators, one that interfaces with
the modulator at the transmitting end and the second that interfaces with
the demodulator at the receiving end. The generators generate a pseudo-
random or pseudo-noise (PN) binary-valued sequence (±1’s), which is
impressed on the transmitted signal at the modulator and removed from
the received signal at the demodulator.

Synchronization of the PN sequence generated at the demodula-
tor with the PN sequence contained in the incoming received signal is
required in order to demodulate the received signal. Initially, prior to the
transmission of data, synchronization is achieved by transmitting a short
fixed PN sequence to the receiver for purposes of establishing synchro-
nization. After time synchronization of the PN generators is established,
the transmission of data commences.

12.8.1 PROJECT 12.8: BINARY SPREAD-SPECTRUM
COMMUNICATIONS

The objective of this project is to demonstrate the effectiveness of a PN
spread-spectrum signal in suppressing sinusoidal interference. Let us con-
sider the binary communication system described in Project 12.7, and let
us multiply the output of the modulator by a binary (±1) PN sequence.
The same binary PN sequence is used to multiply the input to the demod-
ulator and thus to remove the effect of the PN sequence in the desired
signal. The channel corrupts the transmitted signal by the addition of a

FIGURE 12.18 Block diagram of binary PN spread-spectrum system for simula-
tion experiment
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wideband noise sequence {w(n)} and a sinusoidal interference sequence
of the form i(n) = A sinω0n, where 0 < ω0 < π. We may assume that
A ≥ M , where M is the number of samples per bit from the modula-
tor. The basic binary spread spectrum-system is shown in Figure 12.18.
As can be observed, this is just the binary digital communication system
shown in Figure 12.16, to which we have added the sinusoidal interference
and the PN sequence generators. The PN sequence may be generated by
using a random-number generator to generate a sequence of equally prob-
able ±1’s.

Execute the simulated system with and without the use of the PN
sequence, and measure the error rate under the condition that A ≥ M
for different values of M , such as M = 50, 100, 500, 1000. Explain the
effect of the PN sequence on the sinusoidal interference signal. Thus ex-
plain why the PN spread-spectrum system outperforms the conventional
binary communication system in the presence of the sinusoidal jamming
signal.
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