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Preface
The theory of functions of a complex variable, also called for brevity complex variables

or complex analysis, is one of the most beautiful as well as useful branches of mathematics.
Although originating in an atmosphere of mystery, suspicion and distrust, as evidenced by
the terms "imaginary" and "complex" present in the literature, it was finally placed on a
sound foundation in the 19th century through the efforts of Cauchy, Riemann, Weierstrass,
Gauss and other great mathematicians.

Today the subject is recognized as an essential part of the mathematical background
of engineers, physicists, mathematicians and other scientists. From the theoretical view-
point this is because many mathematical concepts become clarified and unified when
examined in the light of complex variable theory. From the applied viewpoint the theory
is of tremendous value in the solution of problems of heat flow, potential theory, fluid
mechanics, electromagnetic theory, aerodynamics, elasticity and many other fields of
science and engineering.

This book is designed for use as a supplement to all current standard texts or as a
textbook for a formal course in complex variable theory and applications. It should also be
of considerable value to those taking courses in mathematics, physics, aerodynamics, elas-
ticity or any of the numerous other fields in which complex variable methods are employed.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles so
vital to effective learning. Numerous proofs of theorems and derivations of formulae are
included among the solved problems. The large number of supplementary problems with
answers serve as a complete review of the material in each chapter.

Topics covered include the algebra and geometry of complex numbers, complex differ-
ential and integral calculus, infinite series including Taylor and Laurent series, the theory
of residues with applications to the evaluation of integrals and series, and conformal
mapping with applications drawn from various fields. An added feature is the chapter
on special topics which should prove useful as an introduction to some more advanced topics.

Considerably more material has been included here than can be covered in most first
courses. This has been done to make the book more flexible, to provide a more useful book
of reference and to stimulate further interest in the topics.

I wish to take this opportunity to thank the staff of the Schaum Publishing Company
for their splendid cooperation.

M. R. SPIEGEL
Rensselaer Polytechnic Institute
July, 1964


