Chapter 1

THE REAL NUMBER SYSTEM
The number system as we know it today is a result of gradual development as indicated
in the following list.

1. Natural numbers 1,2,3,4, ..., zlso called positive integers, were first used in
counting. The symbols varied with the times, e.g. the Romans used I, II, IIL IV, . ...
If a and b are natural numbers, the sum a + b and product a+b, (a)(b) or ab are
also natural numbers. For this reason the set of natural numbers is said to be
closed under the operations of addition and multiplication or to satisfy the closure
property with respect to these operations.

2. Negative integers and zero, denoted by —1,-2,-3,... and 0 respectively, arose
to permit solutions of equations such as z +b = a where a and b are any natural
numbers. This leads to the operation of subtraction, or inverse of addition, and
we write £ = a—0b.

The set of positive and negative integers and zero is called the set of integers
and is closed under the operations of addition, multiplication and subtraction.

3. Rational numbers or fractions such as %,—§,... arose to permit solutions of
equations such as bz =a for all integers @ and b where b+ 0. This leads to the
operation of division or inverse of multiplication, and we write x=a/b or a+b
[called the quotient of a and b] where a is the numerator and b is the denominator.

The set of integers is a part or subset of the rational numbers, since integers
correspond to rational numbers a/b where b=1.

The set of rational numbers is closed under the operations of addition, sub-
traction, multiplication and division, so long as division by zero is excluded.

4. Irrational numbers such as /2=1.41423--- and ~=3.14159--- are numbers
which are not rational, i.e. cannot be expressed as a/b where a and b are integers
and b+0.

The set of rational and irrational numbers is called the set of real numbers. 1t is
assumed that the student is already familiar with the various operations on real numbers.

GRAPHICAL REPRESENTATION OF REAL NUMBERS

Real numbers can be represented by points on a line called the real axis, as indicated
in Fig. 1-1. The point corresponding to zero is called the origin.
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Fig. 1-1

Conversely, to each point on the line there is one and only one real number. If a
point A corresponding to a real number a lies to the right of a point B corresponding to
a real number b, we say that a is greater than b or b is less than a and write respectively
a>b or b<a.
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The set of all values of z such that a <z <b is called an open interval on the real axis
while @ = z.< b, which also includes the endpoints a and b, is called a closed interval. The
symbol z, which can stand for any of a set of real numbers, is called a real variable.

The absolute value of a real number a, denoted by |a|, is equal to a if >0, to —a if
a<0and to 0 if a=0. The distance between two points @ and b on the real axis is |a — b|.

THE COMPLEX NUMBER SYSTEM
There is no real number z which satisfies the polynomial equation z?+1 = 0. To
permit solutions of this and similar equations, the set of complex numbers is introduced.

We can consider a complex number as having the form a + bi where a and b are real
numbers and i, which is called the imaginary unit, has the property that 12=-1. If
z = a+ bi, then a is called the real part of z and b is called the imaginary part of z and
are denoted by Re {2z} and Im {2z} respectively. The symbol 2, which can stand for any of
a set of complex numbers, is called a complex variable.

Two complex numbers a + bi and ¢ + di are equal if and only if a=c and b =d. We
can consider real numbers as a subset of the set of complex numbers with b=0. Thus
the complex numbers 0 + 0i and —3 + 0i represent the real numbers 0 and —3 respectively.
If @ =0, the complex number 0 + bi or bi is called a pure imaginary number.

The complex conjugate, or briefly conjugate, of a complex number a+ bi is a— bi.
The complex conjugate of a complex number z is often indicated by Z or z*.

FUNDAMENTAL OPERATIONS WITH COMPLEX NUMBERS
In performing operations with complex numbers we can proceed as in the algebra
of real numbers, replacing i? by —1 when it occurs.

1. Addition

(@+bi)+(c+di) = o +bi+c+di = (a+c)+ (b+d)i

2. Subtraction . .
' (a + bi) — (c +di)

3. Multiplication
(a + bi)(c +di) = ac + adi + bei + bdi? = (ac— bd) + (ad + be)i
4. Division

a+bi—c—di = (@a—c) + (b—d)

a+bi _ a+bi c—di _ ac —adi + bei — bdi?
c+di ~ c+di c—di et —dnit
_ ac+bd+(bc—ad)yi _ ac+bd bc—adi
- c?+d? - d+d? c+dt

ABSOLUTE VALUE
The absolute value or modulus of a complex number a+bi is defined as |a+bi| =
ve*+ bt
Example: |—4+2i| = V(=4 + (2)2 = V20 = 2V/6

If 21,22,23,...,2n are complex numbers, the following properties hold.

1. Izl 22] = iz,l |23| or ]z; 23+ ‘"'[ = |zl| Iz:l v |Zm|
2 IZII .
: — = = ¥
2 u| 2] if 220
3. |ental S ol +lal or  [mtmtoobea] S b lal e o
4 |utz| Z |al—ja]  or  |u—z| = |a] - |z
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EULER’S FORMULA

By assuming that the infinite series expansion e* = 1+ +a%/2!4+2%3!4--- df
elementary calculus holds when z =16, we can arrive at the result
e = cosf + isind e = 271828, .. (7)

which is called Euler’s formula..' It is more convenient, however, simply to take (7) as a
definition of €. In general, we define

e = e**W = eTe" = e*(cosy + isiny) 8)
In the special case where y =0 this reduces to e=.

Note that in terms of (?) De Moivre’s theorem essentially reduces to (e')" = e,

POLYNOMIAL EQUATIONS
Often in practice we require solutions of polynomial equations having the form

Q2" + @2+ @2+ o+ Ap-12ta = 0 9)

where ao#0,a,, ..., a, are given complex numbers and = is a positive integer called
the degree of the equation. Such solutions are also called zeros of the polynomial on the
left of (9) or roots of the equation.

A very important theorem called the fundamental theorem of algebra [to be proved
in Chapter 5] states that every polynomial equation of the form (9) has at least one root
which is complex. From this we can show that it has in fact n complex roots, some or all
of which may be identical.

If 21,25, ...,2. are the n roots, (9) can be written
ao(z—21)(z2—22) -+ (2—-2a) = O (10)

which is called the factored form of the polynomial equation. Conversely if we can write
(9) in the form (10), we can easily determine the roots.

THE nth ROOTS OF UNITY

The solutions of the equation z"=1 where n is a pogitive integer are called the
nth roots of unity and are given by

2 = co82kn/n + is8in2kn/n = e¥i/n k=012, ...,n-1 (11)

If we let o = cos2x/n+1i8in2x/n = /", the n roots are 1,u,0?%...,0"" L. Geo-
metrically they represent the n vertices of a regular polygon of n sides inscribed in a circle
of radius one with centre at the origin. This circle has the equation |¢|=1 and is often
called the unit circle.

VECTOR INTERPRETATION OF COMPLEX NUMBERS
A complex number z = z +1y can be con- v
sidered as a vector OP whose initial point is the B
origin O and whose terminal point P is the /
point (x,¥) as in Fig. 1-4. We sometimes call A
OP = x + 1y the position vector of P. Two vec- )
tors having the same length or magnitude and ]
direction but different initial points, such as [9) ;

OP and AB in Fig. 1-4, are considered equal.
Hence we write OP = AB = x +1y. Fig. 1-4
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Addition of complex numbers corresponds
to the parallelogram law for addition of vectors
[see Fig.1-6]. Thus to add the complex num-
bers z, and 2., we complete the parallelogram
OABC whose sides OA and OC correspond to
z; and z;. The diagonal OB of this parallelo-
gram corresponds to z; + z2. See Problem 5.

SPHERICAL REPRESENTATION OF COMPLEX NUMBERS.
STEREOGRAPHIC PROJECTION

Let P [Fig. 1-6] be the complex plane and consider a unit sphere d [radius one] tangent
to ® at z=0. The diameter NS is perpendicular to ¢ and we call points N and S the north
and south poles of J. Corresponding to any
point A on P we can construct line NA inter-
secting o at point A’. Thus to each point of
the complex plane ¢ there corresponds one
and only one point of the sphere of, and we can
represent any complex number by a point u.
the sphere. For completeness we say that the
point N itself corresponds to the “point at
infinity” of the plane. The set of all points
of the complex plane including the point at
infinity is called the entire complex plane, the
entire z plane, or the extended complex plane. Fig. 1-6

The above method for mapping the plane on to the sphere is called stereographic
projection. The sphere is sometimes called the Riemann sphere.

DOT AND CROSS PRODUCT

Let 21 = 141y, and 22 = Z2+iy, be two complex numbers [vectors]. The dot
product [also called the scalar product] of zi and z; is defined by
Zyozy = 121H22I cosf = xxz + Y1y = Re{Zi122) = §{Zi122 + 2122} (12)

where ¢ is the angle between z; and 2z, which lies between 0 and .

The cross product of z, and z; is defined by
d : = T .. =
21X 2y = |zi||22] 8in8 = Zyys — Yx2 = Im {Z122) = ﬁ(llh—zlzz} (13)

Clearly,
fhizs = (moz) +i(21 X 22) = [2][2e] € (14)

If z, and z; are non-zero, then

1. A necessary and sufficient condition that z; and z; be perpendicular is that
Z10z = 0. ’

2. A necessary and sufficient condition that z; and z; be parallel is that 2z, Xz, = 0.
3. The magnitude of the projection of 2z on 2 is |21024|/|24|.

4. The area of a parallelogram having sides z, and 2z, i3 |21 X zJ].
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COMPLEX CONJUGATE COORDINATES

A point in the complex plane can be located by rectangular coordinates (x,y) or polar
coordinates (r,6). Many other possibilities exist. One such possibility uses the fact that

z=3=2+2), y= Zli(z—é) where z = z+iy. The coordinates (z,Z) which locate a point

are called complex conjugate coordinates or ‘briefly conjugate coordinates of the point
[see Problems 43 and 44].

POINT SETS

Any collection of points in the complex plane is called a (two-dimensional) point set,
and each point is called a member or element of the set. The following fundamental
definitions are given here for reference.

1. Neighbourhoods. A delta, or s, neighbourhood of a point z, i8 the set of all points 2z
such that |z—2z| < 8 where § is any given positive number. A deleted § neigh-
bourhood of z, is a neighbourhood of z, in which the point 2, is omitted, i.e.
0< Iz—Zol < 8.

2. Limit Points. A point 2o is called a limit point, cluster point, or point of accumu-
lation of a point set S if every deleted § neighbourhood of z, contains points of S.

Since § can be any positive number, it follows that S must have infinitely
many points. Note that zo may cr may not belong to the set S.

3. Closed Sets. A set S is said to be closed if every limit point of S belongs to S,
i.e. if S contains all its limit points. For example, the set of all points z such
that |z| =1 is a closed set.

4. Bounded Sets. A set S is called bounded if we can find a constant M such that
|2 <M for every point z in S. An unbounded set is one which is not bounded.
A set which is both bounded and closed is sometimes called compact.

5. Interior, Exterior and Boundary Points. A point z, is called an interior point
of a set S if we can find a § neighbourhood of z, all of whose points belong to S. If
every § neighbourhood of z, contains points belonging to S and also points not
belonging to S, then 2z, is called a boundary point. If a point is not an interior
or boundary point of a set S, it is an exterior point of S.

6. Open Sets. An open set is a set which consists only of interior points. For
example, the set of points z such that |2 <1 is an open set.

7. Connected Sets. An open set S is said to be connected if any two points of the
set can be joined by a path consisting of straight line segments (i.e. a polygonal
path) all points of which are in S.

8. Open Regions or Domains. An open connected set is called an open region or
domain. 1

9. Closure of a Set. If to a set S we add all the limit points of S, the new set is
called the closure of S and is a closed set.

10. Closed Regions. The closure of an open region or domain is called a closed
region.

11. Regions. If to an open region or domain we add some, all or none of its limit
points, we obtain a set called a region. If all the limit points are added, the
region is closed; if none are added, the region is open. In this book whenever we
use the word region without qualifying it, we shall mean open region or domain.
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Union and Intersection of Sets. A set consisting of all points belonging to set S;
or set S; or to both sets S; and Sz is called the union of S; and S; and is denoted
by Si+ Ss or S;U Sa.

A set consisting of all points helonging to both sets S, and S, is called the
intersection of Sy and S:-and is denoted by SiS: or Sin Sa.

Complement of a Set. A set consisting of all pgints which do not belong to S is
called the complement of S and is denoted by S.

Null Sets and Subsets. It is convenient to consider a set consisting of no points at
all. This set is called the null set and is denoted by . If two sets Si and S
have no points in common (in which case they are called disjoint or mutually
exclusive sets), we can indicate this by writing SinS; =0Q.

Any set formed by choosing some, all or none of the points of a set S is
called a subset of S. If we exclude the case where all points of S are chosen,
the set is called a proper subset of S.

Countability of a Set. If the members or elements of a set can be placed into a
one to one correspondence with the natural numbers 1,2,3, ..., the set is called
countable or denumerable; otherwise it is non-countable or non-denumerable.

The following are two important theorems on point sets.

1.

2.

Weierstrass-Bolzano Theorem. Every bounded infinite set has at least one limit
point.

Heine-Borel Theorem. Let S be a compact set each point of which is contained
in one or more of the open sets Ay, Az, ... [which are then said to cover S]. Then
there exists a finite number of the sets Ai, As, ... which will cover S.

Solved Problems

FUNDAMENTAL OPERATIONS WITH COMPLEX NUMBERS

1.

Perform each of the indicated operations.

(@) 3+2)+(-7—1) =3-T+2i—1i = —4+1

b (-7T=19+@3+2) = —T+3—-i+2i = —4+1

The results (a) and (b) illustrate the commutative law of addition.

() 8—6i))—(20—T7) = 8—6i—2(+7 = 16— 8¢

(d) (6+31) + {(—1+2i) + (7T— bi)}
(e) {(b+3i) + (—1+2i)} + (7—57)

(5+8)+{(—1+2i+T7—5i) = (5+3))+(6—3) = 11
(6+3i—1+42i} + (7T—6bi) = (4+6i) +(7T—6i) = 11

The results (d) and (e) illustrate the associative law of addition.

(f) (2—38)d+2i) = 2(4-I'-2i)—3i(4+21') = 8+4i—12i—6i2 = 8+ 4i—12i+ 6
(@ (A+20)(2—30) = 4(2—31) +2i(2—-37) = 8—12i+4i—6i2 = 8— 121 +4i+ 6

14 — 8i
14 — 8i

The results (f) and (g) illustrate the commutative law of multiplication.

(k) (2 —){(—3 + 2i)(b — 41)}

() {(2—i(—=3+2)}5—4)

(2 —19){—16 + 12i + 10i — 8i2}

2—i)(=T+22) = —14 +44i + 7i — 222 = 8 + b1i
{—6 + 4i + 3i — 2i2)}(5 — 41)

(—4 + 79)(6 — 4i) = —20 + 16i + 361 — 28i2 = 8 + bli

i nn

The results (k) and (i) illustrate the associative law of multiplication.
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() (F14+2){(T—6) + (-3+4)) = (-1+2)(4—i) = —4+i+8i—2i2 = —2+9i

Another method.  (—1+ 20){(7T—5{) + (=3 + 4i)} = (=1 + 2i)(7 — 6i) + (=1 + 2i)(—3 + 4i)
{~T7 + 5i + 14i — 10i2} + {3 — 4i — 6i + 8i2}

]

= (3419) + (—5—10i)) = -2+ 9
This illustrates the distributive law.
gy BB o Fel =l MREAMEN . SEd B L1,
—1+1 —14i —-1—-1i — 1-12 2 2 2

Another method. By definition, (3 —2i)/(—1+ 1) is that number a + bi, where a and b are real,
such that (—1+1d(a+bi) = —a—b+(a—b)i = 3—2i. Then —a—b =3, a—b = —2 and -
solving simultaneously, a = —56/2, b» = —1/2 or a+ bt = —b6/2—1i/2,

(@ 5B, 20 5+56i 3+4i 20 4-3i
3—4i " 4+3  3—4i 3+4i " 1+3 4—3i
~ 16+20i+15i+20i  B0—60i _ —5+36i BO—60i _ g _
9 — 1612 16 —9i2 26 26
oy I g R . B DN
2i—1 2i—1 i —1+2i
_ —8+i -—1-2i _ 3+6i—i—%? _ 5+b6i _ ;. ;
—1+2i —-1-2i ~ 1-—442 b
: y 1 V3. :
If 20=2+14, 22=8-2i and 2z = —~2—+Tt, evaluate each of the following.
(@) |82,—42,| = |3(2+4) —4(3—2i)| = |6+3i—12+8i|

= |-6+11i| = V(=62 + (11)2 = V167

(b) 23 —322+4z,—8 = 2+ — 32+ +4(2+1i) —8
{(2) + 3(2)2(i) + 3(2)(i)2 + %) — 34+ 4i+i?) + 8+ 4i — 8
=8+12i—6—i—12—12i+3+8+4i—8 = —T+3i

———\4 4 22
@ o = (_;d;,-) - (G304 [
eV, 8 oA VRN 1 N E. T VB,
= {z+?'+z"] 2 (“E"‘T') =% B oo gl
2,+2,—6—if' _ |28-20+@2+9—-6—if®
() 2z, —2z,+3—4|  |2@+9)—(3-20)+3—14

3—4i]* _ |3—dil2 _ (VEPF(—42)?
4+3i| T |4+38iF T @R+ @R)e

Find real numbers z and y such that 3z +2iy—ix+5y = 7+5i.

The given equation can be written as 3z + 5y +i(2y —x) = T+5i. Then equating real and
imaginary parts, 3z+6y =17, 2y—=z = 6. Solving simultaneously, = = —1, y=2.

Prove: (a) zi+22 = Zi+ 2, (b) |212ze] = |21 |22
Let 2, = 2y +1iy;, 23 = 23+iy;. Then
(@) 2tz = = + iy + 23+ iy, = 2+ 23 + iy, +yy)
31+32_i(y1+y2) = Zl—‘iy]"“”-iyg = xl+1.]l| + xz+l‘yz = il+iﬂ
[+ iy) (@ + v | = |22 — yywp + i(xwe +¥129) |
= Viz @ —vi? + @+ ni7e)? = V(2 +t)(ai+42) = Val+ i Vel +42 = [zl ]zl
Another method.
|2y25]2 = (2129) (3123) = zyzadidy = (2,3))(2220) = |52 |2al2  or  |2429] = 2] 2]
where we have used the fact that the conjugate of a product of two complex numbers is equal to
the product of their conjugates (see Problem 56).

(b) |22,

/
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GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS. VECTORS
5. Perform the indicated operations both analytically and graphically:
(a) (B +4i) + (5+24), (b) (6—2i) — (2— 51), (c) (=3 +56¢) + (4 + 2i) + (6—31) +
(—4 — 6i).
(a) Analytically. (3+4i) + (6+2i) = 3+6+4i+2i = 8+ 61
Graphically. Represent the two complex numbers by points P, and P, respectively as in Fig. 1-7
below. Complete the parallelogram with OP, and OP, as adjacent sides. Point P represents the
sum,8 + 6i, of the two given complex numbers. Note the similarity with the parallelogram law
for addition of vectors OP; and OP, to obtain vector OP. For this reason it is often convenient

to consider a complex number a + bi as a vector having components a and b in the directions of
the positive z and y axes respectively.

Fig. 1-7 Fig.1-8

(b) Analytically. (6—2i) —(2—56i)) = 6 —-2—2i+b6i = 4+ 3i
Graphically. (6 —2i)—(2—5i) = 6—2i+(—2+56i). We now add 6—2i and (-2+ b6i) as in
part (a)., The result is indicated by OP in Fig. 1-8 above.

(¢) Analytically.

(—3+56i)+(4+2)+(5—-8)+(—4—-6i) = (-3+4+b6—4)+ (i+2i—3i—61) = 2—2i
Graphically. Represent the numbers to be added by 2,2, 23,24 respectively. These are shown
graphically in Fig. 1-9. To find the required sum proceed as shown in Fig. 1-10. At the terminal
point of vector z; construct vector z;. At the terminal point of z, construct vector z,, and at the
terminal point of z; construct vector z,, The required sum, sometimes called the resultant, is
obtained by constructing the vector OP from the initial point of z; to the terminal point of z,, i.e.
OP = zl+22+23+z‘ = 2-—2i.

v

Fig. 19 Fig.1-10
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6. If z, and z: are two given complex nurabers (vec-
tors) as in Fig. 1-11, construct graphically
(@) 3z1— 222 (D) $22 +}2
(a) In Fig. 1-12 below, OA =3z, is a vector having length )

3 times vector z; and the same direction. z
OB = —2z, is a vector having length 2 timer vector %2

2, and the opposite direction.
Then vector OC = OA + OB = 3z, — 2z,. Fig.1-11

Fig.1-12 Fig. 1-13
(b) The required vector (complex number) is represented by OP in Fig. 1-13 above.

7. Prove (a) |ei+22| = |a| + |22, (D) |+ 22+ 23] = |&a| + |22 + |23, () |[21— 22 =

|z1] — |22| and give a graphical interpretation.
(a) Analytically. Let 2z, = z, +1y,;, 2o = 25+ 1ys. Then we must show that

_ Vi +2)? + (n+u)? s Vait+ut+ Vai+43

Squaring both sides, this will be true if

@+ + (+w)? S o + 43+ 2V@I+ D+ ud) + o3 + o)
i.e. if % + Yy = Wm
or if (squaring both sides again)
daf + 20z + s S afad +2lvd + vl + i

or 2%,20,¥; S 2jy; t+ ylixd

But this is equivalent to (%;y;—%,y)? Z 0 which is true. Reversing the steps, which are
reversible, proves the result.

Graphically. The result follows graphically from the fact that |z,], |z3], |2; + 25| represent the
lengths of the sides of a triangle (see Fig. 1-14) and that the sum of the lengths of two sides of
a triangle is greater than or equal to the length of the third side.

¥y
24|
Il
|21+ 25 P
x x
[0)
Fig.1-14 Fig. 1-15

(b) Analytically. By part (a),
|2y +2o+23] = |zp+ (zg+29)| S |z + |29+ 23] = |zy| + |za] + |24

Graphically. The result is a consequence of the geometric fact that in a plane a straight line
is the shortest distance between two points O and P (see Fig. 1-15).
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(¢) Analytically. By part(a), |z, = |zy—23+24| S |23 25| + |23]. Then |zy—z| 2 |24] — [29].
An equivalent result obtained on replacing z; by —z; is |2z, +2z;| 2 |2y — |zg].
Graphically. The result is equivalent to the statement that a side of a triangle has length
greater than or equal to the difference in lengths of the other two sides.
Let the position vectors of points A(zy,¥:) and

B(x2,y2) be represented by z; and z; respec-
tively. (a) Represent the vector AB as a com-
plex number. (b) Find the distance between
points A and B.

(a) From Fig.1-16, OA + AB = OB or
AB = OB — 0A = Z9 —m 2y
(xg +iyg) — (=, +1iy,)

I

= (wg—xy) + i(ya— 1) Fig.1-16
(b) The distance between points A and B is given by

[AB| = [(za— ) + ilya—w) | = Viza—21)? + (g —¥,)?

Let 2z, = x1+1y, and 22 = x2+iy: represent two non-collinear or non-parallel vectors.
If @ and b are real numbers (scalars) such that az, + bz; = 0, prove that a=0 and b=0.
The given condition az;+ bz, = 0 is equivalent to a(x; +iy,) + b(xz+iy,) = 0 or ax,+ bx,+

i(ay, + byy) = 0. Then ax;+bx; = 0 and ay,;+ by; = 0. These equations have the simultaneous
solution a =0, b =0 if y,/2,  y,/x,, i.e. if the vectors are non-collinear or non-parallel vectors.

Prove that the diagonals of a parallelogram
bisect each other.

Let OABC [Fig. 1-17] be the given parallelogram
with diagonals intersecting at P.

Since z,+ AC = 2y, AC = 2z9—2z,. Then AP =
m(zz — z;) where 0=m =1.

Since OB = z; + 23, OP = n(z;+2;,) where
0=ns=1.

But 0A + AP = OP, ie. z;+m(zp—z) =
n(zy +25) or (1—m—mn)z; + (m—n)z; = 0. Hence
by Problem 9, 1-m—n =0, m—n =0 or m={,
n=4 and so P is the midpoint of both diagonals. Fig. 1-17

Find an equation for the straight line which passes through two given points A(z, )
and B(z, y2).

Let 2, = 2, +14y, and 2z; = =z, + iy, be the posi- v
tion vectdrs of A and B respectively, Let z = z + iy A
be the position vector of any point P on the line join-
ing A and B. ‘

From Fig. 1-18, % r
OA+AP =OP or z;+ AP =z, ie. AP =z2—1z, s~ B
OA+AB = OB or z;+ AB = z,, ie. AB = 2,—z, =

Since AP and AB are collinear, AP = tAB or : 0 z
z—z; = #(z;—2;) where t is real, and the required
equation is

z = 2+ Uzpg—2y) or z = (1—1t)z; + tzy Fig.1-18
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Using 2z, = 2, + 1, 23 = 23+ 1y, and z = z + 1y, this can be written
r—x ¥V~ W
Xy — X, Va— ¥

z—=z = tz—2), ¥v—¥1 = t— ) or

The first two are called parametric equations of the line and ¢ is the parameter; the second is called the
equation of the line in standard form.

Another method. Since AP and PB are collinear, we have for real numbers m and n:

mAP = nPB or m(z — z;) = n(zy — z)
Solvi _ mz +nz, _ mx; +nxy _ my, + ny,
I T Tmtn i 2= "m n YT Tmrn

which is called the symmetric form.

12. Let A(1,—2), B(—3,4), C(2,2) be the three ver-
tices of triangle ABC. Find the length of the
median from C to the side AB.

The position vectors of A, B and C are given by

z, = 1—2i, 2 = —3+4i and z3 = 2+2i respec-
tively. Then from Fig. 1-19,
AC = z3—2, = 2+2i—(1—2) = 1+4i
BC = z3— 25 = 2+2i—(—3+4) = b—2i .
AB = z,—2, = -3 + 4i— (1-2i) = —4 + 6i s
AD = }AB = }(—4+6i) = —2 + 3i since D is the midpoint of AB.
AC+CD =AD or CD =AD—-AC = —-2+3i—(1+4i) = —3—1.
Then the length of median CD is |CD| = |-3—i| = V10.

13. Find an equation for (a) a circle of radius 4 with centre at (-2, 1), (b) an ellipse with
major axis of length 10 and foci at (=3,0) and (3, 0).

(a) The centre can be represented by the complex number —2+i. I{ z is any point on the circle
[Fig. 1-20], the distance from z to —2+1is

|z —(—2+49)| = 4
Then |z+2—1i| = 4 is the required equation. In rectangular form this is given by
l@+2) +iy—1)| = 4, ie (@+2?2+@—1)?* = 16

Fig.1-20 Fig.1-21
(b) The sum of the distances from any point z on the ellipse [Fig. 1-21] to the foci must equal 10.
Hence the required equation is
[z+3] +|z—3] = 10

In rectangular form this reduces to «2%/25 + /16 = 1 (see Problem 74).

AXIOMATIC FOUNDATIONS OF COMPLEX NUMBERS

14. Use the definition of a complex number as an ordered pair of real numbers and the
definitions on Page 3 to prove that (a,b) = a(1,0)+b(0,1) where (0,1)(0, 1) = (-1,0).
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From the definitions of sum and product on Page 8, we have
(a,b) = (a,0)+ (0,b) = a(1,0) + b(0,1)
- where (0,1)(0,1) = (00 — 1+1, 01+ 1-0) = (-1,0)
By identifying (1,0) with 1 and (0,1) with i, we see that (a,b) = a + bi.

15. If 21 = (a1, b1), 22 = (as, b2) and 23 = (as, bs), prove the distributive law: z(zs+25) =
2122 + 21 23.

(ay, b){(ag, by) + (a3, b)) = (ay, by)(ay+ ag, by + b3)

= {ay(ag+ az) — by(by + b3), ay(by+ by) + by(az + az))

(ay03 — byby + aya3 — byby, asby + byay + aybs + bay)

(ajaz — byby, asby + byay) + (aya5— biby, aiby+ byay)

= (ay, b))(ag, by) + (ay,b))(as, b) = 229 + 2425

We have zy(zg + 23)

Il

POLAR FORM OF COMPLEX NUMBERS
16. Express each of the following complex numbers in polar form.

(@ 2+ 2V3i Vo sievai
Modulus or absolute value, » = |2+2\/§i| = V4+12 = 4.
Amplitude or argument, ¢ = sin—! 2V/3/4 = sin—! V3/2 = 60° = y 2V3
7/3 (radians), o .
Then I 1
- - . . = o ¥ (3 o
2+ 2\/51 r(cos & + 7 sin @) 4(cos 60° + i 8in 60°) Fig. 1-22

4(cos 7/3 + 1 sin #/3)

The result can also be written as 4 cis #/3 or, using Euler’s formula, as 4e7i/3,

) —5 + bi v
r = |-5+5bi] = V26+26 = b5V2 5VZ| ,
[ I8
o = 180° — 45° = 135° = 3¢/4 (radians) P \ .
Then —b + bi = 52 (cos 136° + isin 135°) -8
= bV2cis 3n/4 = bV/2Z eI Fig.1-23
) v
(6) —V6 — V2i 7 f\%"
r=|—/6—-V2i| = V6+2 = 2V2 o .
6 = 180° + 30° = 210° = 7+/6 (radians) —vi| *
2v2
Then  —V6 — V2i = 2V/2(cos 210° + isin 210°)
= 2V2cis Tz/6 = 2V/2 ¢Tmile Fig. 1-24
@ -3 . S
r = |-3i = |0-3i| = y0+9 = 3 '“f*\ z
¢ = 270° = 3x/2 (radians) \‘“’
Then —3i = 3(cos 3x/2 + 17 sin 37/2)
=~ 3 tis 37/2 = 3e3mi/2 Fig.1-25

17. Graph each of the following: (a) 6(cos240° + i sin240°), (b) 4e3ms, (c) 2e-mi4,
(a) 6(cos 240° + i sin 240°) = 6 ¢cis 240° = 6 cis 47/3 = 6 eini/3
can be represented graphically by OP in Fig. 1-26 below.

If we start with vector OA, whose magnitude is 6 and whose direction is that of the positive
x axis, we can obtain OP by rotating OA counterclockwise through an angle of 240°. In general,
re'® is equivalent to a vector obtained by rotating a vector of magnitude r and direction that of
the positive z axis, counterclockwise through an angle ¢.
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18.

v v v
K P
e[‘\ (. x 0 2 - F
0 A e A
4 p
6 000 i
, \ i -
P 0 P
Fig. 1-26 Fig.1-27 Fig.1-28
(®) 4¢5™/5 = 4(cos 3r/b + i sin 37/6) = 4(cos 108° + i sin 108°)
is represented by OP in Fig. 1-27 above.
(c) 2e"m/4 = 2{cos (—r/4) + isin(—r/4)} = 2{cos(—46°) + i sin (—45°))

This complex number can be represented by vector OP in Fig. 1-28 above. This vector can
be obtained by starting with vector OA, whose magnitude is 2 and whose direction is that of the
positive z axis, and rotating it counterclockwise through an angle of —45° (which is the same
as rotating it clockwise through an angle of 45°). .

A man travels 12 miles northeast, 20 miles 30°

west of north, and then 18 miles 60° south of

west. Determine (a) analytically and (b) graphi- PrQ

cally how far and in what direction he is from 2 miles

his starting point.

(a) Analytically. Let O be the starting point (see Fig.
1-29). Then the successive displacements are repre-

sented by vectors OA, AB and BC. The result of all
three displacements is represented by the vector

OC = OA + AB + BC
Now OA = 12(cos 456° + i8in45°) = 12 emi/4
AB = 20{cos (90° + 30°) + i8in (90° + 30°)} = 20 ¢2ni/3
BC = 18{cos(180° + 60°) + 1 sin (180° + 60°)} = 18 ¢iri/3

Fig.1-29
x

Then
oc 12 emi/d 4+ 20 e2mi/3 4 18 dri/3

{12 cos 45° + 20 cos 120° + 18 cos 240°} + {12 sin 45° + 20 sin 120° + 18 sin 240°)

{(12)(V2/2) + (20)(—1/2) + (18)(=1/2)} + {(12)(V2/2) + (20)(\/5/2)_ + (18)(—V3/2)

(6V2 = 19) + (6V2 + V3)i
If r(coss + ising) = 6y2Z — 19 + (6Y2 + V3)i, then r = \/(sﬁ— 19)2 + (6V2+V3)2 =

14.7 approximately, and ¢ = cos—!(6V2 —19)/r = cos—1(—.717) = 1365°49’ approximately.
Thus the man is 14.7 miles from his stnrtmg point in a direction 135°49’ — 90° = 45°49’

west of north.

(b) Graphically. Using a convenient unit of length such as PQ in Fig. 1-29 which represent.s- 2 miles,
and a protractor to measure angles, construct vectors OA, AB and BC. Then by determining the
number of units in OC and the angle which OC makes with the y ax1s. we obtain the approximate

results of (a).

]

DE MOIVRE'S THEOREM

19.

If 2z = ri(cosd +isindy) and 2z: = ry(cosd:+ isinfbs), prove:
(a) 217 = 117 {cos (6: + 62) + 1i8in(6: + 62))

(b) ::—; = —:;' (cos (01 — 62) + isin (61 — 62)).
(@) 22, = {ry(coss, + isiney)}{ry(cos ey + isin 6y)}

r,72{(cos 8, cos 6, — sin 4, sin ;) + i(sine, cos s, + cos 6, sin 6,)}
rira{cos (6, + 68,) + isin (6, + 8,)}



20.

21.

22.
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®) s 7,(cos 8, + 1 8iné,) . (cos 85 — 1 8in @y)
Z2 r4(cos 8, + 18in 8;) (cos 8y — 1 8in 8,)

7y ((cos 6, cos 0, + s8in 8, 8in 6) + i(sin 8, cos 8, — cos 0, 8in 85)
T2 cos? 8, + sin? o,

= E(COS (al = ﬂz) + 1 sin (8, — 03))
T2

In terms of Euler’s formula ¢/ = cos ¢ + i sin g, the results state that if z, = ry €' and z, = rgelfs,
r, el ry

z
then 22z, = ryryed®*0) and -' = — el —0),
12 ik voan 2z, ryelfa e
Prove De Moivre’s theorem: (cosf +isinf)* = cosnf +isinnd where n is any

positive integer.

We use the principle of mathematical induction. Assume that the result is true for the particular
positive integer k, i.e. assume (cosé + isine)k = coske + isin ké. Then multiplying both sides by
cos 6 + ising, we find

(cos g + ising)ktl = (cos'ke + i sinke)(cos# + ising) = cos (k+ 1) + isin(k+1)e

by Problem 19. Thus if the result is true for n =k, then it is also true for n = k+1. But since the
result is clearly true for n =1, it must also be true for n =1+1=2 and n =2+1 = 3, etc., and
so must be true for all positive integers.

The result is equivalent to the statement (eto)n = enid,

Prove the identities: (a) cos50 = 16 cos®d — 20 cos®§ + 5 cos 6; (b) (sinb6)/(sinf) =
16 cos*d — 12 cos?d + 1, if 0 # 0, %7, 27, ....
We use the binomial formula
(e+b)r = an + ("')au~lb + ('g')d."" b2 4+ o+ + (Par-Tb" + -0 + bn

where the coefficients (7) = ,'-T(_:-E—T)T' also denoted by ,C,, are called the binomial caeﬂiciénu.

The number n! or factorial n, is defined as the product 1+2+3---n and we define 0! = 1.
From Problem 20, with n =5, and the binomial formula,
cosbs + isinbe = (cose + isina)’
cosSe + (3)(costs)(ising) + (3)(cos?e)(i sin¢)?
+ (3)(cos?o)(i sin8)® + (§)(cose)(isina)* + (isine)®

cos58 + bicostesine — 10 cos®e sin?e

— 10i cos2e sin3¢ + bcose sinte + isin®e
cos®9 — 10 cos3o sin2e + b cose sinte

+ (5 costs sine — 10 cos? ¢ sin?6 + sin’ 6)

Hence
(a) cosbs = cosSe — 10 cosde sin?e + bHcose sint ¢
— cos’d — 10 cosde (1 — cos?8) + B cose (1 — cos? a)2
= 16 cos’¢ — 20cos’e + bcose
and
(b) sins = bcostssing — 10 cos?d sinde + sin® ¢
or ; s =
ga be 5 costs — 10 cos?é sinZe + sinte
sin @

§coste — 10 cos?e (1 —cos?e) + (1 — cos? 8)?
= 16coste — 12cos?e + 1
provided sin¢ # 0, i.e. 870, *m, - .~

i0 —-1i8 i _ p—i0
Show that (a) cosfd = E—-’;——, (b) sind = e——%—-.

We have (1) e = cosé + ising, (2) e = cosg —isgine
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24.

25.

26.

{0 -8
(a) Adding (1) and (2), eld+ e—10 = 2cogs or cose = "_'*.'2‘__
10 — o—10
(b) Subtracting (2) from (1), el — g—10 = Uigine or sing = %—-—

3
s g _ el — g—i0 _ (et0 — e—16)3
(a) sin3e (—Zi _—_81' =

4

2i

= - é(eam — 3el® 4 310 — ,,—m) = ‘3 (M) - ,1:. (M)

4 2t

= gsina —-%sin3a

17

- Prove the identities (a) sin®0 = }sinv — 1sin30, (b) cos'd = § cos4d + § cos20 + g

- —sl‘.{(ew)fi — 8(e'%)2(e—10) + 3(e%)(e—10)2 — (e~10)3)

4
el 4 g-t0\*4 (e® + e~io)
iy = [S=LE = = —_—_
(b) coste ( 2 ) T
= 15 D1+ 4e(e=) + (e e-tt + 4(et)(om0) + (o=0)0)
1 1 [ 410 4+ o410 1 [ 620 4 g-2i6 3
= = (gti0 2i0 —210 —4i N e ¥ i A sl i 8
16 (640 + 4620 + 6 + 4o=20 4 o—4t0) s( 5 )+2< 3 )+8
B L 1 3
= 8cos4o + 2c0520 + 8
Given a complex number (vector) 2z, interpret o
geometrically ze'® where o is real. i
Let z = re'® be represented graphically by vector
OA in Fig. 1-30. Then ) B
zei® = relfegla = pgi(a+ad e z2=rel0
zela
is the vector represented by OB. U x
Hence multiplication of a vector z by e!* amounts o
to rotating z counterclockwise through angle «. We can
consider e'® as an operator which acts on z to produce
this rotation. Fig. 1-30
Prove: e = ¢it#+%m [L—( =1, %2 ...
el0+2km = o3 (9 + 2kr) + isin (9 +2kr) = coss + ising = el
Evaluate each of the following.
(a) [3(cos 40° + 1sin 40°)][4(cos 80° + i sin 80°)] = 3-4[cos (40° + 80°) + i sin (40° + 80°)]
: = 12(cos 120° + i sin 120°)
= 12 (—%+i2-§i) = —6 + 634
b (2 cis 150)1 = 128 cis 106° = 2cis(105° — 135°
@) s 64 cis 135° cis )
= 2[cos(—30°) + isin(—30°)] = 2[cos30° —isin30°] = V8 — i
. 10 = 10
@ (LrYBN" . _ [ zcis(eoo) |® _ (cis120°)10 = ¢is1200° = cis120° = —+ 4 X2,
1=3¢ 2 cis (—60°) 2
Another method.
.\ 10 10
1+ V3i W i = (e2T/3)10 = 20w/
1-— ‘/51. Qe-mi/3
1.v3%

eSmliedm/d = (1)[cos (2#/3) + isin (2¢/3)] =

Tg Tgt
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27. Prove that (a) arg(zi12:) = argz +argz, (b) arg (#1/22) = argz — arg 2, stating

appropriate conditions of validity.

Let z, = 7,(cosé, +1ising,), 2z, = ry(cosd, + isind,), Then argz, =48, argz = ;.
(a) Since 22z, = rry{cos (8, + o) + isin(e,+8,)}, arg (z,2) = 6, + 8, = argz, + argz,.
" Zy 7y Gt % )
(b) Since — = — {cos (8, —8y) + isin(6, —0y)}, arg|—) = 6 —6; = argz — argzy
29 Ty Z
Since there are many possible values for ¢, = argz, and ¢, = argz,;, we can only say that the

two sides in the above equalities are equal for somc values of argz, and argz, They may not hold
even if principal values are used.

ROOTS OF COMPLEX NUMBERS
28. (@) Find all values of z for which 2z*=-32, and (b) locate these values in the com-

29. Find each of the indicated roots and locate them graphically.

plex plane.
(@) In polar form, —32 = 32{cos (r + 2kr) + i sin (z + 2kn)}, k = 0,*1,%2, -+,
Let z = r(cosé + ising). Then by De Moivre’s theorem,
25 = 15(cosbe + isinbe) = 32{cos(r+2kr) + isin(r+ 2kr)}
and so 73 =232, 66 = 7+ 2kr, from which r=2, ¢ = (r + 2kn)/b. Hence

z = 2{cos (r______'i' 2k’r) + isin <”+2k">}
b b

If k=0, z = 2z, = 2(cos x/b + 1isin x/b).

Ifk=1 =z 2z, = 2(cos 3=/6 + i sin 37/5).
If k=2 z = zz; = 2(cos ba/b + isin bs/b) = —2.
If k=3, .z = z, = 2(cos Tr/6 + i sin T=/b).
If k=4, z = z5 = 2(cos 9r/6 + isin 92/6).

By considering k = 5,6,... as well as
negative values, —1,—2, ..., repetitions of the
above five values of z are obtained. Hence
these are the only solutions or roots of the
given equation. These five roots are called the
fifth roots of —32 and are collectively denoted
by (—32)1/5, In general, al/" represents the nth
roots of @ and there are n such roots.

{b) The values of z are indicated in Fig. 1-31.
Note that they are equally spaced along the
circumference of a circle with centre at the
origin and radius 2. Another way of saying
this is that the roots are represented by the
vertices of a regular polygon.

(@ (=143
—14i = VZ{cos(3z/4 + 2kx) + isin(3n/4 + 2kr)}

k
21/6 {cos (3-—-—'—"/4 ; ZkF) + isin (_____31r/4 ;_ 2 #)}

If k=0, z, = 2V/8(cos /4 + isin x/4).
If k=1, 2z, 21/8(cos 117/12 + i sin 11#/12).
Hk=2 24 21/8{cos 197/12 + 1 sin 194/12).

I

(14173

These are represented graphically in Fig. 1-32. Fig. 1-32
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(%) (—2v3 — 201/
—2V3—2i = 4{cos (Tz/6 + 2kw) + i sinr (Tx/6 + 2kx)}

(—2\/5— 214 = 41/4 { cos (-———-—7’,6 : 2’“) + 1sin (———7’/6 :' 2’")}

If k=0, z = V2(cos T«/24 + isin Tx/24).

If k=1, 25 = V2 (cos 197/24 + 1 sin 19x/24).
If k=2, z; = V2 (cos 31x/24 + i sin 81x/24).
If k=3, z, = V2(cos 432/24 + i sin 43x/24).

These are represented graphically in Fig, 1-33. Fig.1-33

30. Find the square roots of —15 — 8i.
Method 1.
—156 — 8{ = 17{cos (¢ + 2kr) + 1isin (6 + 2kv)} where cose = —15/17, sine = —8/11.
Then the square roots of —15—8i are

V17 (cos 6/2 + i sin 6/2) (1)
and V17 {cos (8/2 + x) + i sin (6/2 + x)} = —V17 (cos #/2 + i sin 0/2) (2)
Now cos 8/2 = =\/(1 + cos 8)/2 = =V(1 — 16/17)/2 = *1/\/17

sin /2 = *=V(1 — cos8)/2 = =\({1 + 16/17)/2 = =4/V/17

Since ¢ is an angle in the third quadrant, ¢/2 is an angle in the second quadrant. Hence cos¢/2 =
—1/V/17, sine/2 = 4/\/17 and so from (1) and (2) the required square roots are —1+4i and 1 — 4i.
As a check note that (—1+ 4i)2 = (1 — 4i)2 = —15 — 8i.

Method 2.
Let p + iq, where p and ¢ are real, represent the required square roots. Then
(p+iq)? = p*—gq*+ 2pqi = —15 — 8i or (9) p?P—q* =16, (4) pq = —4

Substituting ¢ = —4/p from (4) into (3), it becomes p2—16/p? = —15 or p*+16p2—16 = 0, ie.
(p2+16)(p2—1) = 0 or p2=—16, p2 =1. Since p is real, p = x1. From (4) if p=1, ¢ = —4; if
p=—1, ¢ =4. Thus the roots are —1+4i and 1—4i,

POLYNOMIAL EQUATIONS
. 31. Solve the quadratic equation az*+bz+c =0, a»0

.

Transposing ¢ and dividing by a # 0, 22 + %z = -—%

Adding (i)z [completing the square], 22 + %z + (%)’ = —E + (2%)2
Then ( %) b' e “'"

Taking square roots, z + EJ = E—Vb;u_

Hence i o Vzr_ dac

32. Solve the equation 2* + (2i—3)z+5—1i = 0.
From Problem 31, a=1, b =2i—3, ¢ = 5—1 and so the solutions are
—b + /b2 — dac _ —(2i—-3) % V(2i—382—4(1)p—19) _ 3-—2ix \/—15—81'
2a v 2(1) & 2

——--——-——3“2"*2“"" 2—9% or 1+

using the fact that the square roots of —15—8i are *(] —4i) [see Problem 30]. These are found to
satisfy the given equation.

32 =
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33.

36.
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If the real rational number p/q (where 1 and ¢ have no common factor except =1, i.e.
p/q is in lowest terms) satisfies the polynomial equation aoz" + a;z*™ '+ -+ +an = 0
where ao, a4, . ..,a. are integers, show that p and ¢ must be factors of a, and a
respectively.

Substituting z = p/q in the given equation and multiplying by ¢" yields

ap* + ap" g+ oo+ ap P! +oangt = 0 (1)
Dividing by p and transposing the last term,
aq"
QP b e e b eyt = =2 (2

Since the left side of (2) is an integer, so also is the right side. But since » has no factor in common
with g, it cannot divide ¢® and so must divide a,.

Similarly on dividing (1) by ¢ and transposing the first term, we find that ¢ must divide a,.

Solve 62* — 252° 4+ 3222+ 32— 10 = 0.

The integer factors of 6 and —10 are respectively *1,+2,+3, *+6 and *1, *2, 5, *10. Hence by
Prob. 33 the possible rational solutions are *1,+1/2, *+1/3, +1/6, 2, +2/3, b, +b/2, +5/3, +56/6, +10, +10/3.

By trial we find that z = —1/2 and z = 2/3 are solutions, and so the polynomial (2z 4+ 1)(3z—2) =
6s2—2z—2 is a factor of 6z% — 2622 + 3222 4 3z — 10, the other factor being 22— 4z+5 as found by
long division. Hence

64 — 2653 +32:2 + 32— 10 = (622—2—2)22—dz+5) = 0
The solutions of 22— 43+ 5 = 0 are [see Problem 31]
o= 4EVIETR _ 4sVd a2 _ o,
2 = 2 T2 -

Then the solutions are -—1/2, 2/3, 2+1, 2—1.

Prove that the sum and product of all the roots of a@¢z" + @12 '+ -+ +a. = 0 where
@s 70, are —a,/ao and (—1)"an/ao respectively.
If 24,3, ...,2, are the n roots, the equation ean be written in factored form as
a{s—2z)(z— %)) - (3—2,) = 0
Direct multiplication shows that
ag{s® — (zy+ 29+ - - +z)a" "t + <+ + (=1)"3,24°--2,}) = O
It follows that —ag(z,+ 23+ ---+2,) = a; and ay(—1)*2z2;-- -z, = a,, from which
2yt a3+ -+ 2, = —ay/ay, 2252, = (—1)"a,/ay
as required. ;

If p+qt isaroot of @z +a12* '+ --- +a. = 0 where ao»0, a;,...,as, p and ¢
are real, prove that p — qi is also a root.
Let p+ ¢i = re* in-polar form. Since this satisfies the equation,
agrhe® + g re-letn—1 4 ... o re® +a, = 0
Teaking the conjugate of both sides
agree— | g m—lg-Un-1)0 4 ... 4 g, _,7e ¥ + a, = 0

we see that re—® = p—gqi is also a root. The result does not hold if @y, ...,a, are not all real
(see Problem 32).

The theorem is often expressed in the statement: The zeros of a polynomial with real coeflicients
oceur in conjugate pairs.
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. THE nth ROOTS OF UNITY
37. Find all the 6th roots of unity.
22 = 1 = cosa2ks + isiniksr = e2kvl where k = 0,%1,%2, ..,

2kx 3 &!

Then g = cocT + isin = g2kwi/3

where it is sufficient to use k = 0,1,2,3,4 since all other values of k lead to repetition.

Thus the roots are 1, e27!/3, ¢4mi/5 ¢0mi/3 o8%i/5, [f we call €37¥/3 = ,, these can be denoted by
1, W, U:o Uav wi,

38. If n=2,34,..., prove that

(a) cosgf- + cos-d—t + cosﬁl S ) cosM = -1
n n n , n
(b) UL JPRETOL | PRI, ixil | O
. n n n n

Consider the equation 2" —1 = 0 whose solutions are the nth roots of unity,
1’ ,zmu' ehriln’ cOv(/n' il | cﬁ(n-l)ﬂln

By Problem 35 the sum of these roots is zero. Then

1 4 e2mi/n 4 gimi/n 4 g8mi/n 4 ... 4 g2(n—=Dwi/n = ¢
ie.,

{1 + cosz—’ + condZ 4+ -0 4 cosM} + i{ain23+sin‘—'+ St o uinu} =0
n n n n n n

from which the required results follow.

DOT AND CROSS PRODUCT
39. If 2, =34t and 22 = —4+3i, find (a) zi02z, (b) 21 X 22.

(#) z;023 = Re{#2} = Re{(8+4i)(—4+31)}) = Re{—24—Ti} = —-24
Another method. z,°2z, = (3)(—4) + (—4)(3) = —24

(b) 2z X 23 = Im{22,} = Im{(83+4i)(—4+3%)} = Im{-24—-Ti} = -7
Another method. 2z, X z, = (3)(3) — (—4)(—4) = —T

40. Find the acute angle between the vectors in Problem 39.

21°2 —24 —24
From Problem 39(a), we have cose = = = — = -.96.
il [zl l2al = 13— 4il -4+ 31| 26

Then the acute angle is cos—1.96 = 16°16' approximately.

41. Prove that the area of a parallelogram having
sides z; and z; is |21 X 22|

Area of parallelogram [Fig. 1-34] A= |2 sin §

(base)(height)

(Iz2])(|2y| sin ¢)

|z)] |zo] sine = |zy X z,| Fig.1-34

1l
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42. Find the area of a triangle with vertices at
A(z1, y1), B(z:,v2) and C(zs, ys).
The vectors from C to A and B [Fig. 1-356] are
respectively given by
(21— 29 + iy~ W),
(zg — zg) + (¥ — ¥s)
Since the area of a triangle with sides z, and z,

zZy
z3

wn

is half the area of the correspondidg parallelogram, Fig.1-35
we have by Problem 41:
Areaof triangle = } %, X 2| = §|Im{[(z, — 2y — iy) — ¥y)][(x2— 25) + i(va—w3)]} |

§ | (21— 29)(Ws — vs) — (V1 —vs)(z3— 23) |

§ | 2w — vizs + Zavs — Va%s + ZaV) — V% |
% ¥ 1
g yp 1
%y ¥s 1

t I

in determinant form.

COMPLEX CONJUGATE COORDINATES
43. Express each equation in terms of conjugate coordinates: (a) 2z +y = 5, (b) x* + %= 36.

(a) Since z =xz+1iy, £ =z—1iy, s=f—2—-. v=T. Then 2z+y = b becomes
z(’—fz'-—’) & (‘;") = 6 or  (Z+ls+ @i-1)i = 10i

The equation represents a straight line in the z plane.

() Method 1. The equation is (z+ iy)(x —iy) = 36 or zZ = 36.
Method 2. Substitute z = ”2", y= ’;,‘ in 224y® = 36 to obtain i = 36.

The equation represents a circle in the z plane of radius 6 with centre at the origin.

44. Prove that the equation of any circle or line in. the z plane can be written as
azf + Pz + Pz +y = 0 where « and y are real constants while 8 may be a complex
constant.

The general equation of a circle in the zy plane can be written
A(x2+y?) + Bz+Cy+D = 0
which in conjugate coordinates becomes

ey et ~ B, C B C _
A“+B(T)+C(T)+D =0 or A!’+(2+zi)l+(-2— 2'.)E+D =0

Calling A = a, % + % =B and D =y, the required result follows.

In the special case A = a = 0, the circle degenerates into a line.

POINT SETS

45. Given the point set S:.(i-4i,4i,4i,...) or Lriefly {i/n}). (a) Is S bounded? (b) What
are its limit points, if any? (c) Is S closed? (d) What are its interior and boundary
points? (¢) Is S open? (f) Is S connected? (g) Is S an open region or domain?
(k) What is the closure of S? (i) What is the complement of S? (j) Is S countable?
(k) Is S compact? (I) Is the closure of S compact?
(a) S is bounded since for every point z in S, |z] <2 [for example], i.e. all points of S lie inside a

circle of radius 2 with centre at the origin.

(b} Since every deleted neighbourhood of z = 0 contains poinis of S, a limit point is z = 0. It is the
only limit point.
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Note that since S is bounded and infinize the Weierstrass-Bolzano theorem predicts at least one
limit point.

(¢) S is not closed since the limit point z =0 does not belong to S.

(d) Every & neighbourhood of any point i/n [i.e. every circle of radius § with centre at i/n] contains
points which belong to S and points which uo not belong to S. Thus every point of S, as well as
the point z =0, is a boundary point, S has no interior points.

(e) S does not consist of any interior points. Hence it cannot be open. Thus S is neither open nor
closed.

(f) If we join any two points of S by a polygonal path, there are points on this path which do not
belong to S. Thus S is not connected.

(g) Since S is not an open connected set, it is not an open region or domain.
(h) The closure of S consists of the set S together with the limit point zero, i.e. {0,1, 3, 34, .. )
(1) The complement of S is the set of all points not belonging to S, i.e. all points z + i, i/2,4/3, ....

(J) There is a one to one correspondence between the elements of S and the natural numbers 1,2,3, ...
as indicated below, . y . .
i §i 3 i

+ & 4 %
1 2 3 4
Hence S is countable.
(k) S is bounded but not closed. Hence it is not compact.

() The closure of S is bounded and closed and so is compact.

46. Given the point sets A = (3, —i,4,2+14,5), B = (—i,0,-1,2+1}, C = {(—V/21, 4, 3).
Find (a) A+B or AUB, (b) AB or ANB, (¢) AC or AnC, (d) A(B+C) or
An(BUQ), (¢) AB+AC or (ANB)U(ANCQ), (f) A(BC) or An(BNC).

(a) A+B = AUB consists of points belonging either to A or B or both and is given by
{3, —i,4,2+14,6,0,~1). i
(b) AB or ANB consists of points belonging to both A and B and is given by {—i, 2+ i}.
(¢c) AC or ANC = {3}, consisting of only the member 3.
(d B+Cor BUC = {—i, 0, -1, 2+i, —V2i, §, 3).
Hence A(B+C) or AN(BUC) = {3, —i,2+1}, consisting of points belonging to both A
and B + C.
(e) AB = {—i,2+ 1}, AC = {3} from parts (b) and (c). Hence AB+ AC = {—i,2+1,3).
From this and the result of (d) we see that A(B+C) = AB+ AC or An(BuUC) =
(ANB)U(ANC), which illustrates the fact that A, B, C satisfy the distributive law. We can show

that sets exhibit many of the properties valid in the algebra of numbers. This is of great im-
portance in theory and application.

(f) BC = BNC = @, the null set, since there are no points common to both B and C. Hence
A(BC) = @ also.

MISCELLANEOUS PROBLEMS
47. A number is called an algebraic number if it is a solution of a polynomial equation
2"+ @2t '+ - + @12+ a. = 0 where ao,a1,...,a, are integers. Prove that

(@) V3 + V2 and (b) V/4 —2i are algebraic numbers.

(@) Let z = V3+ V2 ‘or,z—\/i = V3. Squaring, 22— 2\/5: +2=3 or 22—-1= 2\/2-2. Squaring
again, z—222+1 = 822 or 2z—10224+1 = 0, a polynomial equation with integer coefficients
having V3 + V2 as a root. Hence V3 + \/f is an algebraic number.

(b) Let z = Vd—2i or z+2i = V/4. Cubing, 23+ 32%(20)+32(2)2+(2i)® = 4 or #—122—4 =
i(8 — 622). Squaring, 2%+ 1224 —823+ 48224+ 962+80 = 0, a polynomial equation with integer
coefficients having ‘?fi — 2i as a root. Hence \afi— 2¢ is an algebraic number.

Numbers which are not algebraic, i.e. do not satisfy any polynomial equation with integer
coefficients, are called transcendental numbers. It has been proved that the numbers = = 3.14169...
and e = 2.71828... are transcendental. However, it is still not yet known whether numbers such as
er or ¢+ r, for example, are transcendental or not.
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48. Represent graphically the set of values of z for which (a) ;—:%I =2, (b ;—:—g] < 2
(a) The given equation is equivalent to |z—3| = 2|z+3| or, if 2 = 2+1y, |lz+iy—3| =

2|z+iy+3], ie, i
(z—38)2+y* = 2y(z+3)2+ 2
Squaring and simplifying, this becomes
23+ 9y3+10x+9 = 0 or (zx+56)2+y* = 16
ie. |2+6| = 4, a circle of radius 4 with contre
at (—b,0) as shown in Fig. 1-36.

Geometrically, any point P on this circle is
such that the distance from P to point B(3,0) is
twice the distance from P to point A(—3,0).

Another ‘mclltod.

z—3| _ .

e 2 is equivalent to
z—3\/2—-3\ _ =
(z+3)(i+3> = 4’ or 22+5b2+562+9 =0

je. (2+5)(2+56) = 16 or |z+5| =4. Fig.1-36

(b) The given inequality is equivalent to |z—38| < 2|z+3| or V(z—3)2+y? < 2V(x+3)2+y2
Squaring and simplifying, this becomes 2432+ 102+9 > 0 or (x+5)2+y? > 16, ie.
lz+6| > 4.

The required set thus consists of all points external to the circle of Fig. 1-36.

49. Given the sets A and B represented by |z—1| < 3 and |z—2i] < 2 respectively.
Represent geometrically (¢) ANB or AB, (b) AUB or A+B.

The required sets of points are shown shaded in Figures 1-37 and 1-38 respectively.

Fig.1-37

~

50. Solve z%*(1—2?) = 16.

Method 1. The equation can be written 24 —22+16 =0, ie. 24+822+16 922 = 0, (22 + 4)2-922 =0
or (22+4+32)(22+4—3z) = 0. Then the required solutions are the solutions of 22+3z+4 = 0

3. V7 VAl

3
g = —2 e Xl LEP R ADS
and z2—3z+4 =0, or —5 = i and R

Method 3. Letting w = 2%, the eyquation can be written w?—w+16 = 0 and w = %: %\/’7:
To obtain solutions of 22 = % * %\/’7 i, the methods of Problem 30 can be used.
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51. If 2, 2., 23 represent vertices of an equilateral v
triangle, prove that

22+ 2]+ 2] = 2122 + 2223 + 232

From Fig. 1-39 we see that

23—z = €3 (z3—2z))
z — 23 = €3 (33— ay) L
Then by divisi R"%H _ H—y
en by division, 7, — 73 = zz—_z-; or
2+ 2+ 2] = 28 + 2925 + 299, Fig. 1-39
b
52. Prove that for m = 2.3 v

.om . 27 ., 3r . (m—l!'rr m

sin — —_— — = ——

m 8in m sin m sin m om—1

The roots of zm =1 are z =1, e?vi/m glwiim _ g2m—Dwi/m Then we can write
2m — 1 = (z—1)(z — e27i/m)(z — edri/m) ... (z — g2(m—1D)mitm)

Dividing both sides by z—1 and then letting z=1 [realizing that (z—1)/(z—1) = 1+z + 22 +

++++2zm-1] we find
m = (1— emi/m)(] — gdwi/m) ... (] — gdm=Dwi/m)

Taking the complex conjugate of both sides of (1) yields
m = (1—e~2/m)(] — g—4wi/m).. . (1 — g~ 2(m—Dwi/m)
Multiplying (1) by (2) using (1 — e3kwi/m)(] — g—2kmi/m) — 2 — 2 cos (2kn/m), we have
m: = om-1 (1 —eo--z-i)(l —-conk) (1 = co’&("‘_‘:&_)
m m m
Since 1 — cos (Zkr/m) = 2 sin(kz/m), (3) becomes
= it gint e gint ZX . vo gipp MU
™ m m.

Then taking the positive square root of both sides yields the required resuit.

Supplementary Problems
FUNDAMENTAL OPERATIONS WITH COMPLEX NUMBERS
53 Perform each of the indicated operations:
(a) (4—3i) + (2i—8) (e) 24__3: (h) (2i—1) {1 i,- + f;:
(b) 3(—1+4i) — 2(T—4)
(¢) 3+2)2—19)

O wrasri-0 0 Aty

. N\ 3
@ G-EA+9-3i—1) () EEI-2AL! a(:—’:—:)'—z(:-i—:)

a-q
Ans. (@) —4—i (c) 8B+ (e) 11/17 — (10/17)i (g) —15/2 + 6
(b) —17 + 14i (d) -9+ T ) 21+ (h) —11/2 — (23/2)i

5. If 2z, =1—i, 25 = —2+4i, 5, = V3—2i, evaluate’euch of the following:

2+t

(@) #1424, -3 () :‘I"'f::r_—: (h) |22+ @22 + |2 — 23

(b) |22;—32 |2 () Re {2z} + 322 — 513)
PEVLI ,

(e) (33— %3)° 2\% 24 () Im{z,24/25)

(d) | 233+ 2,3 | (g) (23 + 33)(3) — 33)

Ans. (@) —1 —4i (c) 1024s (e) 3/ (@) =7+ 3V/3+V3i (9 —36

(1)

@)

s

(4)

G) —3-2

%) 170 (dy 12 7 e 4 (A) 765 + 128Y3 G) (6V3+ /7
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55.
56.

57.

59.

60.

COMPLEX NUMBERS [CHAP. 1

Prove that (a) (z;73) = %2, (b) (£Z323) = %,3,%;. Generalize these results.
Prove that (a) (21/2) = #)/%4y, (b) |2/za| = |z|/lza] if 2,7 0.

Find real numbers z and y such that 2x—3iy4-dix—2y—56—10i = (x+y +2) — (y —x+ 3)i.
Ans. z=1,y=-2 .

Prove that (a) Re{z} = (z+2)/2, (b) Im{z} = (z— 2)/2i.
Prove that if the product of two complex numbers is zero then at least one of the numbers must be zero.

If w=3iz—22 and z = z+1iy, find |w|? in terms of = and y.
Ans. x*+ yt + 2a2%2 — 622y — 6% + 922 + 9y?

GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS. VECTORS.

61.

62.

64.

65.

67.

69.

70.

7.

72,

Perform the indicated operations both analytically and graphically.

(a) (24 37) + (4 —51) (¢) 3(1+27) —2(2—39) (e) 3(4-30)+ 3(5+29)
(b) (T+17) — (4—29) (d) 3(1+1) + (s —31) — (2+ 59

Ans. (a) 6 —2i, (b) 3+3i, (¢) —1+ 121, (d) 9— 8;‘, (e) 19/2 + (3/2)i

If z;, 2z, and z; are the vectors indicated in Fig. 1-40, construct ¥
~ graphically: z
2 z

(a) 22+ 24 (¢) zy + (29 + 23) (€) h2z2— 32+ 323 L z
(b) (2 + z5) + 24 (d) 3z, — 2z, + 5z, s

3
If z; =4—3i and 2, = —1+ 21, obtain graphically and analyti-
cally (a) |z, +2;], (b) |2y — 22, (¢) 2 — 2y, (d) |22 — 32— 2]
Ans. (a) V10, (b) 5V2, (¢) 5+ bi, (d) 16 Fig. 1-40

The position vectors of points A, B and C of triangle ABC are given by z, = 1+2i, z, = 4—2i and
z; = 1 —6i respectively. "Prove that ABC is an isosceles triangle and find the lengths of the sides.

Ans. 5,5,8

Let 2,2, 23,24 be the position vectors of the vertices for quadrilateral ABCD. Prove that ABCD

is. a parallelogram if and only if 2, —2;,—2z3+2z, = 0.
If the diagonals of a quadrilateral bisect each other, prove that the quadrilateral is a parallelogram.

Prove that the medians of a triangle meet in a point.

Let ABCD be a quadrilateral and E,F,G, H the midpoints of the sides. Prove that EFGH is a
parallelogram.

In parallelogram ABCD, point E bisects side AD. Prove that the point where BE meets AC trisects AC.

The position vectors of points A and B are 2+1i and 3 —2i respectively. (a) Find an equation for
line AB. (b) Find an equation for the line perpendicular to AB at its midpoint.

Ans. (a) z— (241 = t(1—3i) or x =2+t y=1-3¢t or x+y =1
(b) z— (6/2—i/2) = f13+1) or 2=8t+56/2, y=t—1/2 or x—3y =4

Describe and graph the locus represented by each of the following: (a) lz—i| =2, (b) |z+2i|+
|z—2i| =6, (¢) |2—3|—|z+3| =4, (d) 2(2+2) =3, (e) Im {22} = 4.

Ans. (a) circle, (b) ellipse, (¢) hyperbola, (d) circle, (e) hyperbola

Find an equation for (a) a circle of radius 2 with centre at (—3,4), (b) an ellipse with foci at (0,2)
and (0, —2) whose major axis has length 10.
Ans. (a) |z43—4i]j =2 or (+32+ (y—4)2 =4, (b) |z+2i| + |lz—2i] = 10
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73. Describe graphically the region represented by each of the following:
(@ 1<|z+i| =2, () Re{s)>1, (o) |2+3i| >4, (&) |2+2-3i| + |s—2+3i| < 10.

74. Show that the ellipse [z+3|+|2—3] = 10 can be expressed in rectangular form as 2%/26 +
¥%/16 = 1 [see Problem 13(b)]. :

AXIOMATIC FOUNDATIONS OF COMPLEX NUMBERS

75. Use the definition of a complex number as an ordered pair of real numbers to prove that if the
product of two complex numbers is zero then at least one of the numbers must be zero,

76. Prove the commutative laws with respect to (a) addition, (b) multiplication.
77. Prove the associative laws with respect to (a) addition, (b) multiplication.

78. (a) Find real numbers x and y such that (c,d)*(z,y) = (a,b) where (c,d) # (0,0).
(b) How is (»,y) related to the result for division of complex numbers given on Page 27

79. Prove that
(cos 6, sin 6,)(cos @5, 8in 8,): - *(cos 0, 8in 8,) = (cos [6,+ 6;+ - +4,], sin[o;+ 6+ -+ +4,))

80. (a) How would you define (a, b)!/n where n is a positive integer?
(b) Determine (a, b)1/2 in terms of a and b.

POLAR FORM OF COMPLEX NUMBERS
81. Express each of the following complex numbers in polar form.
(@) 2-2i, (b) —1+V3i, (c) 2V2+2VZ4, (d) —i, (&) —4, () —2VB—2i, (g) VZi, (k) V3/2—3i/2.

Ans. (a) 2V/2 cis 315° or 2/2 7mi/4, (b) 2 cis 120° or 2e27/3, (c) 4 cis 45° or 4e7!/4, (d) cis 270° or e37i/2,
(e) 4 cis 180° or 4e™, (f) 4 cis 210° or 4e77/8, (g) V/2 cis 90° or V2 em/2, (h) \/3 cis 300° or /3 eSmi/3,

82. Show that 2+ i = Fe'tmn (W2

83. Express in polar form: (a) —3 —4i, (b) 1—2i.
Ans. (@) & ellm + lan-HI.’S)’ (b) \/Ee-“'"" 2

84, Graph each of the following and express in rectangular form.
(a) 6 (cos 135° + i8in136°), (b) 12 cis90°, (c) 4 cis 315°, (d) 2e57i/4, (e) Ge™i/8, (f) 3g—2mi/3,

Ans. (a) —3V2 + 3VZ1, (b) 124, (¢) 2V2 — 224, (d) —V2Z —VZ1i, () —5V3/2 — (5/2)i, (f) —3V/3/2 — (3/2)i

85. An airplane travels 150km southeast, 100km due west, 225km 30° north of east, and then 323km
northeast. Determine (a) analytically and (b) graphically how far and in what direction it is from
its starting point. Ans. 375km, 23° north of east (approx.)

86. Three forces as shown in Fig. 1-41 act in a plane on an v
object placed at 0. Determine (a) graphically ....d (b) ana-
lytically what force is needed to prevent the object from
moving. [This force is sometimes called the equilibrant.)

87. Prove that on the circle z = Re'®, |eif| = ¢—Rsing,

88. (a) Prove that r,ei® + ryei®s = riel®s where

rs = Vi + rI+ 2r,r, cos (8, — 05)
sin #; + rysin ¢
— <T| 1 2 2)
r{CO8 8y + ryc08 0,

(b) Generalize the result in (a).

L4

Fig.1-41
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DE MOIVRE'S THEOREM
89. Evaluate each of the following:
(@) (5cis20°)3 cisd0?) . Bcisd0o)® () (BemO)(Ze-SANGeST) ) (\/5 —1)‘(1_:2')’
(b) (2 cis50°)8 ¢ (2cis60o)F (de27i73)2 VB+i/ \1—i
Ans. (a) 16/2 + (16V/3/2)i, (b) 32— 3234, (¢) —16 —16V/34, (d) 3V3/2 — (3V/3/2)i, (¢) —V/3/2— (1/2)i

90, Prove that (a) sin3¢ = 3sing — 4 s8ine, (b) cos30 = 4 cos®e — 3 cose.

91. Prove that the solutions of z* —3z2+ 1 = 0 are given by z = 2cos 36°, 2 cos 72°, 2 cos 216°, 2 cos 262°.

92. Show that (a) cos36° = (VB +1)/4, (b) cos72° = V5 — 1)/4. [Hint: Use Problem 91.]

93. Prove that .(u) %’;—?— = 8cos?0 —4 = 2co0836 + 6cose — 4
(b) cos4¢ = B8sinte — 8sin2p + 1

94. Prove De Moivre’s theorem for (a) negative integers, (b) rational numbers.

ROOTS OF COMPLEX NUMBERS
95. Find each of the indicated roots and locate them graphically.
(a) (2V3 — 20)1/2, (b) (—4 + 4015, (c) (2 + 2VB )3, (d) (—169)1/4, (e) (64)V/8, () (/3.
Ans. (a) 2cis166°, 2 cis346°. (b) VZcin27°, VZcis99°, VZcis171°, V2 cis243°, V2 cis316°.
(¢) V4 cis20°, V4 cis140°, V4 cis260°. (d) 2 cis67.6°, 2 cis167.6°, 2 cis 247.6°, 2 cis 337.6°.
(e) 2 cis 0°, 2 cis60°, 2 cis120°, 2 cis 180°, 2 cis240°, 2 cis 300°. (f) cis 60°, cis 180°, cis 300°.

96. Find all the indicated roots and locate them in the complex plane.
(@) cube roots of 8, (b) square roots of 4V2+ 424, (c) fifth roots of —16+ 16V31, (d) sixth roots
of —27i.
Ans, (a) 2 cis 0°, 2 cis 120°, 2 cis‘240°. (b) V8 cis 22.5°, VB cis 202.5°. (c) 2 cis 48°, 2 cis 120°, 2 cis 192°,
2 cis 264°, 2 cis 336°. (d) V3 cis 46°, V3 cis 106°, V/3 cis 165°, /3 cis 226°, /3 cis 286°, V/3 cis 345°.

97. Solve the equations (a) z¢+81 = 0, (b) 2#+1 = V34
Ans. (a) 8 cis46°, 3 cis 136°, 3 cis 226°, 3 cis 316°
() VZ cis 40°, V2 cis 100°, V2 cis 160°, V2 cis 220°, V2 cis 280°, Y2 cis 340°

98. Find the square roots of (a) 65— 12i, (b) 8+ 4Vhi.
Ans. (a) 3—2i, —8+2i, (b) V10+V2i, —V/10—V2i

99, Find the cube roots of —11 — 2i. Ans. 1+2i, §—VB+ (1+3V3)i, - — V3 + (GV3-1)i

POLYNOMIAL EQUATIONS
100. Solve the following equations, obtaining all roots: (a) 622 +2z+10 =0, (b) 22+ (i—2)z2+(3—1) = 0.

Ans. (a) (—1x=79)/6, (b) 1+14, 1—21
161, Solve 25 —2z4—23+4+6z—4 = 0. Ans. 1,1,2, -1%4

102. (a) Find all the roots of z¢+2z2+1 = 0 and (b) locate them in the complex plane.
Ans, }(1£iV3), §(-1 =iV/3)

103. Prove that the sum of the roots of agz" + a;z"~1+ agz"~2+ --- +a, = 0 where a7 0 taken
" r at a time is (—1)"a,/a; where 0 < r <mn.

104. Find two numbers whose sum iz 4 and whose product is 8. Ans. 2+2i, 2—2i
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THE nth ROOTS OF UNITY
105. Find all the (a) fourth roots, (b) seventh roots of unity and, exhibit them graphically.

Ans. (a) e?mik/d = gmik/2 [ = 0,1,2,8 (b) e2mki7, | =01,...,6

106. (a) Prove that 1 + cos72° + cos 144° + cos 216° + c0s 288° = 0.
(b) Give a graphical interpretation of the result in (a).

107. Prove that cos36° + cos72° + cos 108° + cos 144° — 0 and interpret graphically.

108. Prove that the sum of the products of all the nth roots of unity taken 2, 3,4,...,(n—1) at a time
is zero.

109. Find all roots of (1+42)5 = (1 —z)5,
Ans. 0, (w— D/(w+1), (w2—1)/(w2+1), (03— 1)/(w®+ 1), (wf—1)/(wt+ 1), where w = ¢27i/5

THE DOT AND CROSS PRODUCT

110. If 2z, = 2+46i and 2, = 3—4, find (a) 21°23 (B) 2z, Xz, (¢) 2302, (d) 23Xz, (e) |2 02z, |,
(N 12302,], (9) |2y X 25|, (h) 23X 7|
Ans. (a) 1, (b) —17, (¢) 1, (d) 17, (e) 1, (N 1, (9) 17, (k) 17

111. Prove that (a) z,0z, = z,02,, (b) 2 X2y = —2z5 X z;.

2. If z; = re! and z, = ryeis, prove that (a) 2y 02, = 717y cos (6, — 6,), (b) 2y X 23 = ry7ry sin (9, — @,).

113. Prove that (a) z,0(zy+2;) = Z1°zy + 71025, (b)) z; X (23425 = z, % zy + 2z X zg.
114. Find the area of a triangle having vertices at —4 -1, 1421, 4—3i. Ans. 17
115. Find the area of a quadrilateral having vertices at (2,—1), (4, 3), (—1,2) and (-3, -2). Ans. 18

CONJUGATE COORDINATES

116. Describe each of the following loci expressed in terms of conjugate coordinates z, Z.
(@) 22 =16, (b) 22—2z2—2:+8 =0, (¢c) 2+ % = 4, (d) z = z+ 61,
Ans. (a) 224+ y2 =16, (b) 22+ y2—4x+8 = 0, (@)z=2, (dy=-3

117. Write each of the following equations in terms of conjugate coordinates,
(@) (x—3)2+y2 =9, (b) 2¢—3y = 5, (c) 4x% + 16y2 = 25.
Ans. (a) (z—3)(z—3) =9, (b) (2i—8)z+ (2i+3)z = 104, (c) 3(z2+22) — 1022+ 25 = 0

'POINT SETS v

118. Let S be the set of all points a + bi, where a and b are rational i 1+14
numbers, which lie inside the square shown shaded in Fig. 1-42. A
(a) Is S bounded? (b) What are the limit points of S, if any?
(¢) Is S closed? (d) What are its interior and boundary points? ) x
(e) Is S open? (f) Is S connected? () Is S an open region or 0 1
domain? (k) What is the closure of S? (i) What is the comple-
ment of S? (j) Is S countable? (k) Is S compact? (!) Is the clo-
sure of S compact?

Ans. (a) Yes. (b) Every point inside or on the boundary of the square is a limit point. (c¢) No.
(d) All points of the square are boundary points; there are no interior points. (e) No. (f) No.
(g) No. (h) The closure of S is the set of all points inside and on the boundary of the square.
(i) The complement of S is the set of all points which are not equal to @+ bi when a and b
[where 0<a<1,0<b< 1] are rational. (j) Yes. (k) No. (I) Yes.

Fig. 1-42

119. Answer Problem 118 if S is the set of all points inside the square.
Ans. (a) Yes. (b) Every point inside or on the ~-2are is a limit point. (¢) No. (d) Every point inside
is an interior point, while every point on the boundary is a boundary point. (e) Yes. (f) Yes.
(9) Yes. (h) The closure of S is the set of all points inside and on the boundary of the square.
(i) The complement of S is the set of all points exterior to the square or on its boundary.
(/) No. (k) No. (!) Yes.
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120. Answer Problem 118 if S is the set of all points inside or on the square.
Ans, (a) Yes. (b) Every point of S is a limit point. (¢) Yes. (d) Every point inside the square is an
interior point, while every point on the boundary is a boundary point. (e) No. (f) Yes. (9) No.
(k) S itself. (i) All points exterior to the square. (j) No. (k) Yes. () Yes.

121. Given the point sets A = {1,i,—1}, B = {2,1,-1), C = (i,—i,1+1), D = {0,—i,1}. Find:
(a) A+ (B+C) or Au(BuC), (b) AC+BD or (AnC)u(BnD), (c) (A +C)YB+ D) or (AuC)n(BUD).
Ans. (G) (2y 1,_i,‘i,1+i}, (b) {liil—_i}i (c) {lu_i)

122. If A, B,C and D are any point sets, prove that (¢) A+ B =B+ A, (b) AB = BA, (¢) A+B+C) =

(A+B)+C, (@ A(BC) = (AB)C, (o) AB+C) = AB+AC. Give equivalent results using the
notations N and U. Discuss how these can be used to define an algebra of sets.

123. If A, B and C are the point sets defined by |z+i] < 3, |2] <5, [+ 1| < 4, represent graphically
each of the following:
(@) AnBNC, (b) AUBUC, (¢) AnBUC, (d) C(4 +B), (d (AuB)r.(BuC), (e AB + BC + CA,

() AB+BC+CA.
124. Prove that the complement of a set S is open or closed according as S is closed or open.
125. If S,, Sz ..., S, are open sets, prove that S;+Sy+ -+ +S, is open.

126. If a limit point of a set does not belong to the set, prove that it must be a boundary point of the set.

MISCELLANEOUS PROBLEMS
127. Let ABCD be a parallelogram. Prove that (AC):+(BD)? = (AB)2+ (BC)2 + (CD)2+ (DA)%.

128. Explain the fallacy: —1= V=iv=1= V=)D =Vi=1 Hencel= -1

129. () Show that the equation z* +aBd+apz?tagzta, = 0 where a;,ay ag a4 are real constants
different from zero, has a pure imaginary root if a}+ alay = @;8,05

(b) Is the converse of (a) true?

130. (@) Prove that cos"¢ = —z-n—l_—l {cos ng + ncos(n—2)¢ + EQE':D cos(n—4)p + -+ + Ry }
cos ¢ if n is odd
- 1
where R, = {—(;77);]—1 if n is even.

(b) Derive a similar result for sin™ ¢.

131. If z = 6em/3, evaluate |eZ|. Ang. e—3V3

% m
132. Show that for any real numbers p and m, giwloot™lp {g:—t—i} = 1.

133. If P(z) is any polynomial in z with real coefficients, prove that P(z) = P(3).

134. If z;,2, and z3 are collinear, prove that there exist real constants «,p,7y, not all zero, such that
azy + Bzy +yz3 = 0 where atpt+y =0

$ " ™

135. Given the complex number z, represent geometrically (a) Z, (b) =z, (¢) 1/z, (d) z2.

136. Given any two complex numbers z, and z, not equal to zero, show how to represent graphically using
only ruler and compass (@) 2,29, (b) 21/23, (¢) 23 + 22, (d) e (e) z)/4.

137. Prove that an equation for a line passing through the points z; and z; is given by
arg ((z —2)/(za —z)} = 0

138. If z = x + iy, prove that |z| + W s VZ|z+ivl
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139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

Is the converse to Problem 51 true? Justify your answer.

Find an equation for the circle passing through the points 1—4, 2i, 1+1.
Ans. |z+1]| = V6 or (z+1)2+¥2 =5

Show that the locus of z such that |z—al|z+a] = a?,
a>0 is a lemniscate as shown in Fig. 1-43.

2
‘P;ﬁ 3

Let p, = aﬁ+bi, n=1238,... where a, and b, are
positive integers. Prove that for every positive integer
M we can always find positive integers A and B such
that p,py - Py = A2+ B2 [Example: If b = 22 4 12

and 26 = 32+ 42, then b5-26 = 22+ 112] Fig.1-43
Prove that
(@) cose + cos(0+a) + -+ + cos(d+na) = wcos(a+ina)
8in §a
() sine + sin(eta) + oo + sin(etna) = nAEIDe 40 tne)

sin {a
Prove that (a) Re{z}) >0 and (b) |z—1| < |z+1]| are equivalent statements.

A wheel of radius 1-2 metres [Fig. 1-44] is rotating counterclockwise
about an axis through its centre at 30 revolutions per minute.
(@) Show that the position and velocity of any point P on the
wheel are given respectively by 4e'™ and 4rie'™, where t is the
time in seconds measured from the instant when P was on the
positive z axis. (b) Find the position and velocity when t = 2/3
and ¢t = 16/4.

Prove t.hat.. for any integer m > 1, ;
g
(z+a)m — (z—a)?™ = 4maz un {2 + a2 cot? (kx/2m)}
=1

m—1
where k]'[ denotes the product of all the factors indicated from k=1 to m — 1
=1

If points P, and P,, represented by z, and z, respectively, are such that |z, +z,| = |z, — 23|, prove
that (a) z,/z, is a pure imaginary number, (b) LP,OP, = 90°.

Prove that for any integer m > 1,

- 35 g m=1r

2m 2m 2m

Prove and generalize: (@) csc?(x/7) + csc? (2r/T) + csc? (4a/T) = 2
(b) tan2(r/16) + tan?(3z/16) + tan?(6x/16) + tan? (7r/16) = 28

cot cot L. cot
2m

If masses m,, my, my are located at points z;, 2, 25 respectively, prove that the centre of mass is given by
A myz, + MoZg + myZy
z —3
wi my + my + my
Generalize to n masses. —

Find that point on the line joining points z, ‘and z, which divides it in the ratio p: gq.
Ans. (g2, + pzy)/(q + P)

Show that an equation for a circle passing through 3 points z;, 25,23 is given by

/6=« E =)
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153.

154.

155.

156.

157.

158.

159

. 160.

161.

162.

163.

164.

165.

166.

167.

168.
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Prove that the medians of a triangle with verlices at Zy, 2y, #3 intersect in the point }(z, + 25+ z,).

Prove that the rational numbers between 0 and 1 are countable.
(Hint. Arrange the numbers as 0, §, }, §, 1, Le 8k

Prove that all the real rationufl numbers are countable,

Prove that the irrational numbers between 0 and 1 are not countable.

Replesen.t. graphically the set of values of z for which (a) |2| > |z—1 [ ®) ]z+2] > 14 [|z—2].
Show that (a) \3/5+ V3 and (0) 2—V2i are algebraic numbers.

Prove that V2 + V/3 is an irrational number.

Let ABCD---PQ represent a regular polygon of n sides inscribed in a circle of unit radius. Prove
that the product of the lengths of the diagonals AC, AD, io AP is in csc? (z/n).

Prove that if sine # 0,

(a) ssiir:"';a an—1 kI:Il {cos 8 — cos (ki’/n”
sin(Zn+1)s _ n 3 sin? e
(b) e = (2n+1) kgl {1 Py P
= (1 []d1 — —roste
Prove cos2ns = (—1) k[=11 {l o 1)1’/4"} ;

If the product of two complex numbers z, and 2y is real and different from zero, prove that there
exists a real number p such that z, = pz,.

If z is any point on the circle |z—1| = 1, prove that arg (z—1) = 2argz = 4 arg (22—2z) and
give a geometrical interpretation.

Prove that under suitable restrictions (a) zmzn = gmin (h) (zm)n = zmn,

]

Prove (a) Re{z,2,} Re {z;} Re {2} — Im{z;} Im (z,}
() Im{z;z;} = Re{z,}) Im{z;} + Im{z;} Re {z5).

Find the area of the polygon with vertices at 2+ 38, 3+1, —2 —4i, —4 — i, —1 + 2i. Ans. 47/2
Let a;, a3 ...,a, and by, b,,...,b, be any complex numbers. Prove Schwarz’s inequality,

l"i a, by i = (*§| I"klz)(kél "’kl’)




Chapter 2

VARIABLES AND FUNCTIONS

A symbol, such as z, which can stand for any one of a set of complex numbers is
called a complex variable. ‘

If to each value which a complex variable z can assume there corresponds one or
more values of a complex variable w, we say that w is a function of z and write w = f(2)
or w = ((2), etc. The variable z is sometimes called an independent variable, while w is
called a dependent variable. The value of a function at z=a is often written f(a). Thus
if f(z) = 2% then f(2i) = (2i)? = —4.

SINGLE-AND MULTIPLE-VALUED FUNCTIONS
If only one value of w corresponds to each value of z, we say that w is a single-valued

function of z or that f(z) is single-valued. If more than one value of w corresponds to each
value of z, we say that w is a multiple-valued or many-valued function of z.

A multiple-valued function can be considered as a collection of single-valued functions,
each member of which is called a branch of the function. It is customary to consider one
particular member as a principal branch of the multiple-vatued function and the value of
the function corresponding to this branch as the principal value.

Example 1:  If w =22, then to each value of z there is only one value of w. Hence w = f(z)=22is a
single-valued function of z.

Example 2: If w =212, then to each value of z there are two values of w. Hence w =f(z) =212 is
a multiple-valued (in this case two-valued) function of z.

Whenever we speak of function we shall, unless otherwise stated, assume single-valued
function.

INVERSE FUNCTIONS

If w = f(z), then we can also consider z as a function of w, written z = g(w) = - (w).
The function f~! is often called the inverse function corresponding to f. Thus w = f(z)
and w = f~!(2) are inverse functions of each other.

TRANSFORMATIONS

If w=wu+iv (whereu and v are real) is a single-valued function of z = z +iy (where
x and y are real), we can write u+iv = f(z +1iy). By equating real and imaginary parts
this is seen to be equivalent to

= uz,y), v = 2y (1)
Thus given a point (a!, ) in the z plane, such as P in Fig. 2-1 below, there corresponds a
point (u,v) in the w plane, say P’ in Fig. 2-2 below. The set of equations (1) [or the

equivalent, w = f(z)] is called a transformation. We say that point P is mapped or
transformed into point P’ by means of the transformation and call P’ the image of P.

33
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Example: If w=2% then u+ v = (2+iy)?2 = z2—y? + 2izy and the transformation is
u=2x2—1y2% v=2zy. Theimageof a point (1,2) in the z plane is the point (—3,4) in
the w plane.

z plgne p w plane

/\NQ &
d " /-/ u

Fig. 2-1 Fig. 2-2

In general, under a transformation, a set of points such as those on curve PQ of
Fig. 2-1 is mapped into a corresponding set of points, called the image, such as those on
curve P’Q’ in Fig. 2-2. The particular characteristics of the image depend of course on
the type of function f(2), which is sometimes called a mapping function. If f(2) is multiple-
valued, a point (or curve) in the z plane is mapped in general into more than one point
(or curve) in the w plane.

CURVILINEAR COORDINATES

Given the transformation w = f(z) or, equivalently, u = u(z,y), v = v(z,y), we call
(=, v) the rectangular coordinates corresponding to a point P in the z plane and (u,v) the
curvilinear coordinates of P.

mr;,ﬂup,f«i’f.

7 1

Fig. 2-3 ‘ Fig. 2-4

The curves u(z,y) = ¢, v(2,9) = ¢ where ¢, and c» are constants, are called
coordinate curves [see Fig. 2-3] and each pair of these curves intersects in a point. These
curves map into mutually orthogonal lines in the w plane [see Fig. 2-4].

THE ELEMENTARY FUNCTIONS
1. Polynomial Functions are defined by
w = Q"+ a2+ s 12+ 0 = P(z) (2)
where Go# 0, ay, ...,an are complex constants and n is a positive integer called the
degree of the polynomial P(2).

The transformation w = az+0b is called a linear transformation.
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2. Rational Algebraic Functions are defined by

P(z)

e 3
Q) i
where P(z) and Q(z) are polynomials. We sometimes call (3) a rational transformation.
The special case w = Z:ig where ad—bc # 0 is often called a bilinear or frac-

tional linear transformation.

3. Exponential Functions are defined by

w = ¢ = et = e*(cosy +1isiny) (4)
where e = 2.71828. .. is the natural base of logarithms. If a is real and positive, we
define

a* = etne %)

where In a is the natural logarithm of a. This reduces to (4) if a=e.
Complex exponential functions have properties similar to those of real exponential
functions. For example, e* e = entn, etfer = en ™™,

4. Trigonometric Functions. We define the trigonometric or Fircular functions sinz,
cos z, etc., in terms of exponential functions as follows.

. e — e e*+ ek
sinz = ———— C082 = ———=
21 2

BEC 2 = 1 = cscz = = o
cos 2 e+ e ginz = e*—g™*
sinz et — e cosz i(e*+e ™

tan z = = e cotz = — = (‘ _h)
cos z (e + e~ ") sinz e*—e

Many of the properties familiar in the case of real trigonometric functions also
hold for the complex trigonometric functions. For example, we have

sin?z + cos?z = 1 1 + tan?z = sec?z 1 + cot?z = csc?z

sin(—z) = —sinz cos(—2) = cosz tan(—2) = —tanz
sin(zi*2z)) = 8inzi co8z: * co082i8in2;
cos(21+2;) = C€0821C0822 F 8inzi8inz;

tanz; * tanz.
1 = tanz; tanz.

tan (21 = 22)

5. Hyperbolic Functions are defined as follows:

. et — e~ * e+e*
inhz = coshz = ——
) 2 2
sechz = Los = = cschz = L= 2
C ~ Coshz T et t et - sinhz etE—e"*
N sinh z _ et — e~ % - coshz o e+e*
tanh z = coshz = i cothz = sinhe -6

The following properties hold:
cosh?z — sinh?z = 1 1 — tanh?z = sech?z coth?z — 1 = csch?z

sinh (—2) = —sinhz cosh(—2) = coshz tanh(—2) = —tanhz
sinh(z1+25) = sinhz coshz; * coshz sinhz
cosh(21+2;) = coshz coshz: = sinhz sinhz:

tanh z, = tanhz.

tanh (21 % za) 1 = tanhz, tanh z2
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The following relations exist between the trigonometric or circular functions and
the hyperbolic functions:
siniz = isinhz cos iz = coshz taniz = itanhz
gsinhiz = isinz coshiz = cosz tanhiz = itanz

Logarithmic Functions. If 2z =e*, then we write w =1Inz, called the natural loga-
rithm of z. Thus the natural logarithmic function is the inverse of the exponential
function and can be defined by
w = Inz = Inr + (0 + 2kn) k=0, %1, %2, ...

where z = re'® = re!®*2km_  Note that Inz is a multiple-valued (in this case infinitely-
many-valued) function. The principal-value or principal branch of Inz is sometimes
defined as Inr +i9 where 0 =60 <2r. However, any other interval of length 2x
can be used, e.g. —7 < 0 = =, etc.

The logarithmic function can be defined for real bases other than e. Thus if
z=a" then w=Ilog,z where ¢ >0 and a=0,1. In this case z=-e%*"* and so
w = (In 2)/(In a).

Inverse Trigonometric Functions. If z = sinw, then w =sin~'z is called the inverse
sine of z or arc sine of z. Similarly we define other inverse trigonometric or circular
functions cos~'z, tan~'z, etc. These functions, which are multiple-valued, can be
expressed in terms of natural logarithms as follows. In all cases we omit an additive
constant 2kxi, k =0,%1,%2, ..., in the logarithm.

sin"tz = :—.ln (iz + V1 —2%) esci g = %ln(i+\/z2_—1)
z

cos~'z = %ln (2 +Vv22-1) sec™'z = %In('l +_\/1_—z—2)
z

1 1+iz 1 z+14
“1g = & g :
tan~!z iln (1 i) cot 2iln( z)

Inverse Hyperbolic Functions. If 2 =sinhw then w =sinh~'z is called the inverse
hyperbolic sine of z. Similarly we define other inverse hyperbolic functions cosh-'z,
tanh~'z, etc. These functions, which are multiple-valued, can be expressed in terms
of natural logarithms as follows. In all cases we omit an additive constant 2kni,
k=0,%1,%2,,.., in the logarithm.

sinh™'z = In(z + V2 +1) csch™'z = In (1 . \f’_'*'—l)

cosh™'z = In(z + V2*-1) sech-'z = In <_1+ 1_z2)
F4

tanh-! z %ln (Iﬂ) coth-'z = -l-ln (z_'.*'._l)

1-2 2 z—1

The Function 27, where « may be complex, is defined as e*'"*, Similarly if f(z) and 9(2)

are two given functiohs’of z, we can define f(2)*® = e9® i In general such func-

tions are multiple-valued.

Algebraic and Transcendental Functions. If w is a solution of the polynomial equation
Po(z)w + Pi(z)w" ' + -+ + Puy(2)w + Pa(2) = 0 (6)

where Po # 0, Pi(2), ..., Pa(2) are polynomials in z and n is a positive integer, then
w = f(z) is called an algebraic function of z. '

Example: w = z!/2 i3 a solution of the equation w?—2z = 0 and so is an algebraic function of z.
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Any function which cannot be expressed as a solution of (6) is called a transcendental
function. The logarithmic, trigonometric and hyperbolic functions and their correspond-
ing inverses are examples of transcendental functions.

The functions considered in 1-9 above, together with functions derived from them
by a finite number of operations involving addition, subtraction, multiplication, division
and roots are called elementary functions.

BRANCH POINTS AND BRANCH LINES

Suppose that we are given the function
w = 2"%2, Suppose further that we allow z to make
a complete circuit (counterclockwise) around the
origin starting from point A [Fig. 2-5]. We have
z=r1re", wz\/Fe‘m so that at A, 0 =6, and
w = \/re®2,  After a complete circuit back to A,
0 =6, +2r and w = \/,‘.euo,nn/z = —\/re®2,
Thus. we have not achieved the same value of w
with which we started. However, by making a
second complete circuit back to 4, i.e. § = 0, + 4,
w = /1 *m2 = /[y ¢92 and we then do obtain
the same value of w with which we started. Fig. 2-5

We can describe the above by stating that if 0 =0 < 2r we are on one branch of the

multiple-valued function z'%, while if 27 =0 <4r we are on the other branch of the
function.

z plane

It is clear that each branch of the function is single-valued. In order to keep the
function single-valued, we set up an artificial barrier such as OB where B is at infinity
[although any other line from O can be used] which we agree not to cross. This barrier
[drawn heavy in the figure] is called a branch line or branch cut, and point O is called a
branch point. It should be noted that a circuit around any point other than z=0 does not
lead to different values; thus z=0 is the only finite branch point.

RIEMANN SURFACES

There is another way to achieve the purpose of the branch line described above. To
see this we imagine that the z plane consists of two sheets superimposed on each other.
We now cut the sheets along OB and imagine that the lower edge of the bottom sheet is
joined to the upper edge of the top sheet. Then starting in the bottom sheet and making
one complete circuit about O we arrive in the top sheet. We must now imagine the other
cut edges joined together so that by continuing the circuit we go from the top sheet back
to the bottom sheet.

The collection of two sheets is called a Riemann surface corresponding to the function
Each sheet corresponds to a branch of the function and on each sheet the function
is single-valued.

zlll.

The concept of Riemann surfaces has the advantage in that the various values of
multiple-valued functions are obtained in a continuous fashion.

The ideas are easily extended. For example, for the function 2!/ the Riemann surface
has 3 sheets; for Inz the Riemann surface has infinitely many sheets.
LIMITS

Let f(z) be defined and single~valuegi in a neighbourhood of 2=z, with the possible
exception of z=z, itself (i.e. in a deleted neighbourhood § of z,). We say that the number !
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is the limit of f(z) as z approaches 2, and write lim f(¢) = | if for any positive num-

z=zy
ber ¢« (however small) we can find some positive number 8 (usually depending on ¢) such
that |f(z) —1| < « whenever 0 < |z2—2]| < §.

In such case we also say that f(z) approaches ! as z approaches z, and write f(z)~>1
as z > zo. The limit must be independent of the manner in which z approaches zo.

Geometrically, if zo is a point in the complex plane, then lim f(z) = ! if the difference

Z=2q
in absolute value between f(z) and ! can be made as small as we wish by choosing points z
sufficiently close to zo (excluding z =z, itself).
22 oz
0 z=1i
to i2=—1. We thus suspect that lim‘ f(z) = —1. To prove this we must see whether
P

Example: Let f(z) = { Then as z gets closer to i (i.e. 2 approaches 1), f(z) gets closer

the above definition of limit is satisfied. For this proof see Problem 23.
Note that lim‘ f(z) = f(i), i.e. the limit of f(z) as z = i is not the same as the value
Z -

of f(z) at z =1, since f(i) =0 by definition. The limit would in fact be —1 even if f(z)
were not defined at z=1.

When the limit of a function exists it is unique, i.e. it is the only one (see Problem 26).
If f(2) is multiple-valued, tne limit as z - z, may depend on the particular branch.

THEOREMS ON LIMITS
If limf(z) = A and limg(z) = B, then

2=+ 2y z+ 2z

1. lim (f(z) +g(z)) = limf(z) + limg(z) = A+ B
2. lim{f(2) -g(z)) = limf(2) — limg(z) = A - B

-2z
r

3 im /@@ = {imfa)lfiim o)} = AB

lim f(z)
. &)_ . z= 2, _ 14_ .
4. ll-.n,‘.,g(z) = Tmo@ ~ B if B#0

INFINITY

By means of the transformation w = 1/z the point z=0 (i.e. the origin) is mapped
into w =, called the point at infinity in the w plane. Similarly we denote by 2= the
point at infinity in the z plane. To consider the behaviour of f(z) at z==, it suffices to let
z=1/w and examine the behaviour of f(1/w) at w=0.

We say that lim f(z) = I or f(z) approaches l’ as z approaches infinity, if for any
«>0 we can find MI;?) such that |f(z) =] < ¢ whenever |z| > M.

We say that lim f(z) = « or f(z) approaches infinity as z approaches 2o, if for any
N >0 we can find 'B“;O such that |f(z)] > N wlenever 0 < |z—2 < 8.

CONTINUITY

Let f(z) be defined and single-valued in a neighbourhood of z=2z, as well as at z=z,
(i.e. in a § neighbourhood of z,). The function f(z) is said to be continuous at z=2, if
lim f(z) = f(zo). Note that this implies three conditions which must be met in order that

J{z) be continuous at z =z
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1. limf(z) = | must exist

zes2q
2. f(z0) must exist, i.e. f(z) is defined at zo
3. 1= f(20)
Equivalently, if f(z) is continuous at zo we can write this in the suggestive form
lim f(z) = f(lim z).
21y 229
Example 1: If f(z) = ;2 : : : then from the Example on Page 38, ln._.nn‘ f(z) = —1. But f(i))=0.

Hence lim f(z) # f(i) and the function is not continuous at z=1.
z=i
Exa.mple 2: If f(z) = 22 for all z, then lim‘ f(z) = f(i) = —1 and f(z) is continuous at z =1,
z=

Points in the z plane where f(z) fails to be continuous are called discontinuities of
f(z), and f(z) is said to be discontinuous at these points. If ]nm f(z) exists but is not

equal to f(z0), we call 20 a removable discontinuity since by redeﬁnmg f(z0) to be the same
as lim f(z) the function becomes continuous. -

Alternative to the above definition of continuity, we can define f(z) as continuous at
z=2o if for any ¢>0 we can find 8§ >0 such that |f(z)— f(ze)] < ¢ whenever |z—2zo| < 8.
Note that this is simply the definition of limit with ! = f(zo) and removal of the restriction
that z + z..

To examine the continuity of f(z) at 2=, we place z=1/w and examine the continuity
of f(1/w) at w=0.

CONTINUITY IN A REGION
A function f(z) is said to be continuous in a region if it is continuous at all points of
the region.

THEOREMS ON CONTINUITY
Theorem 1. If f(z) and g(2) are continuous at z =2, so also are the functions

1(2) +9(2), f(z) — 9(2), f(2) 9(2) and f(( )), the last only if g(z0) 0. Similar results hold for

continuity in a region.

Theorem 2. Among the functions continuous in every finite region are (a) all poly-
nomials, (b) e*, (c) sinz and cosz. S

Theorem 3. If w=f(z) is continuous at z=2 and z=g({) is continuous at {={,
and if ¢, = f(20), then the function w = g[f(2)], called a function of a function or composite
function, is continuous at z = 2o. ' This is sometimes briefly stated as: A continuous function
of a continuous function is continuous. '

Theorem 4. If f(z) is continuous in a closed region, it is bounded in the region; i.e.
there exists a constant M such that |f(2)] <M for all points z of the region.

Theorem 5. If f(z) is continuous in a region, then the real and imaginary parts of
f(z) are also continuous in the region.

UNIFORM CONTINUITY

Let f(z) be continuous in a region. Then by definition at each point 2, of the region
and for any ¢« > 0, we can find 8 > 0 (which will in general depend on both ¢ and the particular
point zo) such that |f(z)—f(20)| < ¢ whenever |z—z| < 8. If we can find § depending
on ¢ but not on the particular point z,, we say that f(z) is uniformly continuous in the region.
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Alternatively, f(z) is uniforinly continuous in a region if for any «>0 we can find
8 > 0 such that |f(z)) — f(z2) | < « whenever |21 —22] < 8§ where z; and z; are any two points

of the region.

Theorem. If f(z) is continuous in a closed region, it is uniformly continuous there.

SEQUENCES

A function of a positive integral variable, designated by f(n) or u,, wheren =1,2,3, .. .,
is called a sequence. 'Thus a sequence is a set of numbers %, us, %3, ... in a definite order
of arrangement and formed according to a definite rule. Each number in the sequence
is called a term and u. is called the nth term. The sequence ui, sz, us, ... i8 also designated
briefly by {u#.}. The sequence is called finiie or infinite according as there are a finite
number of terms or not. Unless otherwise specified, we shall consider infinite sequences only.

Example 1: The set of numbers t,12,13,...,11% js a finite sequence; the nth term is given by
u,=i", n=12,...,100.

2 3
Example 2: The set of numbers 1+1, Q_%‘!jl’ i%’ ... is an infinite sequence; the nth term

is given by u, = (1+)"/n!, n = 1,2,3,....

LIMIT OF A SEQUENCE

A number [ is called the limit of an infinite sequence u, us, us, ... if for any positive
number ¢« we can find a positive number N depending on ¢ such that |u,—1| < ¢ for all
n>N. In such case we write lim u, = I. If the limit of a sequence exists, the sequence

n = oo

is called convergent; otherwise it is called divergent. A sequence can converge to only
one limit, i.e. if a limit exists it is unique.

A more intuitive but unrigorous way of expressing this concept of limit is to say that
a sequence u;, Uz, U3, ... has a limit ! if the successive terms get “closer and closer” to [.
This is often used to provide a ‘“‘guess” as to the value of the limit, after which the
definition is applied to see if the guess is really correct.

THEOREMS ON LIMITS OF SEQUENCES
If lima, = A and limb, = B, then

1. lim(a.+bs) = liman + limb. = A + B
n=+o n—+o nt o
2. lim(an—bs) = lima, — limb, = A — B
3. lim (anb) = (lim a,.) lim b,.) = AB
limam
. O peew -
4 Iyt = Mgy = 5 EE0

n=sw

Further discussion of sequences is given in Chapter 6.

INFINITE SERIES

Let i, u2,u3, ... be a given sequence.
Form a new sequence Si, S, Ss3, ... defined by
Si=wm, S:=u+u, Sz=wtutws, -, Sn=uUr+U+ " +Un

where S., called the nth partial sum, is the sum of the first n terms of the sequence (u.).
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The sequence Si, Sz, S3, ... is symbolized by
U+ Uz + Uy - = Eun

which is called an infinite series. If lim S, = S exists, the series is called convergent

and S is ils sum; otherwise the series is called divergent. A necessary condition that a
series converges is lim u, = 0; however, this is not sufficient (see Problems 40 and 150).

=0

Further discussion of infinite series is given in Chapter 6.

Solved Problems

FUNCTIONS AND TRANSFORMATIONS

1.

2.

Let w = f(2) =22 Find the values of w which correspond to (a) z = —-2+1i and
(b) 2 = 1—3i, and show how the correspondence can be represented graphically.

(a) w = f(—2+49) = (—24+1)2 = 4—4i+12 = 83— 4
() w = f(1—317) = (1—39)2 = 1 —6it+9i2 = —8 — 61
z plane w plane
v v
+ +
i 1
—2+ie + x T n
e —
;l:ol—3i P’
4 ) + e3—4i
o—8—6i 1
Fig. 2-6 Fig. 2-7

The point z = —2+1i, represented by point P in the z plane of Fig. 2-6, has the image point
w = 3—4i represented by P’ in the w plane of Fig. 2-7. We say that P is mapped into P’ by means
of the mapping function or transformation w =22. Similarly, z = 1—3i [point Q of Fig. 2-6] is
mapped into w = —8 — 61 [point Q' of Fig. 2-7]. To each point in the z plane there corresponds one
and only one point (image) in the w plane, so that w is a single-valued function of z.

Show that the line joining the points P and Q in the z plane of Problem 1 [Fig. 2-6] is
mapped by w = 2* into a curve joining points P’Q’ [Fig. 2-7] and determine the equation
of this curve.
Points P and Q have coordinates (—2,1) and (1, —3). Then the parametric equations of the line

joining these points are given by

z—(—-2) _ y—1

1-(-2) ~ -3-1
The equation of the line PQ can be represented by z = 3t— 2+ i(1 — 4t). The curve in the w plane
into which this line is mapped has the equation

w =22 = {(3t—2+i(l—4t))2 = (3t—2)2 — (1—48)2 + 2(3t — 2)(1 — 4¢t)i
= 3 — 4t — 72 + (—4 + 22t — 2412)i
Then since w = u+ iv, the parametric equations of the image curve are given by
= 3—-4t— T2, v = —4 + 22t — 24¢2

By assigning various values to the parameter ¢, this curve may be graphed.

=t or z=3—-2 y=1—4t
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3.

4.
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A point P moves in a counterclockwise direction around a circle in the z plane having
centre at the origin and radius 1. If the mapping function is w = z®, show that when P
makes one complete revolution the image P’ of P in the w plane makes three complete
revolutions in a counterclockwise direction on a circle having centre at the origin and
radius 1.

Let z=re!%. Then on the circle |z] =1 [Fig. 2-8], r=1 and z=¢!. Hence w = z% = (el?)3 = €30,
Letting (p, ¢) denote polar coordinates in the w plane, we have w = pel¢ = €3 50 that p=1, ¢ =36,

z plane w plane

Fig. 2-8 Fig. 2-9

Since p =1, it follows that the image point P’ moves on a circle in the w plane of radius 1 and
centre at the origin [Fig. 2-9]. Also, when P moves counterclockwise through an angle ¢, P’ moves
counterclockwise through an angle 3¢. Thus when P makes one complete revolution, P’ makes three
complete revolutions. In terms of vectors it means that vector O'P’ is rotating three times as fast
as vector OP.

If ¢; and ¢, are any real constants, determine the set of all points in the z plane which
map into the lines (a) u = ¢, (b) v = ¢z in the w plane by means of the mapping func-
tion w = 22 Illustrate by considering the cases ¢; =2,4,-2,—4 and c; =2,4,-2,—-4.

We have w = u+iv = 22 = (x+1iy)2 = 22— y2+ 2ixzy so that u = z22—y2% v = 2xy. Then

lines u=¢, and v=c, in the w plane correspond respectively to hyperbolae x2—yt = ¢ and
2xy = ¢, in the z plane as indicated in Figures 2-10 and 2-11.
»
I'd
z plane 3 & ¥ ¥
® w plane
\ i P T
N & ,’,834’ " ] Il Il
| ’ ’\': 7 »
e “J 7/ t: ¥ w
NN T .J
& C XY W V' or 2’

=—4 \c @f =4 _1S T T v=2
=-2 ‘:_-‘E‘i"a‘%‘ ... /:::—: ﬁ’ % ,f u

w ‘ 5l
2eulloc S LR -
/ “‘l{... \\ ) T or X U’ or Y

-y =4 A \ v=-—4
-yt = 2—F . . \
S |
”((z'-— = —4 A
2?2 - y? = -2
2 Fig. 2-10 Fig. 2-11

Referring to Problem 4, determine: (a) the image of the region in the first quadrant
bounded by a?!—y? = -2, zy = 1, 2*—y* = —4 and xy = 2; (b) the image of the
region in the z plane bounded by all the branches of z?—3»2 =2, ay =1, a?—y? = -2
and zy = —1; (¢) the curvilinear coordinates of that point in the xy plane whose
rectangular coordinales are (2, —1).
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(a) The region in the z plane is indicated by the shaded portion PQRS of Fig. 2-10. This region
maps into the required image region P'Q'R'S’ shown shaded in Fig. 2-11. It should be noted
that curve PQRSP is traversed in a counterclockwise direction and the image curve P'Q'R'S'P!
is also traversed in a counterclockwise direction.

(b) The region in the z plane is indicated by the shaded portion PTUVWXYZ of Fig. 2-10. This
region maps into the required image region P'T’U’V’ shown shaded in Fig. 2-11.

It is of interest to note that when the boundary of the region PTUVWXYZ is traversed only
once, the boundary of the image region P'T'U'V’ is traversed twice. This is due to the fact that
the eight points P and W, T and X, U and Y,V and Z of the z plane map into the four points
P or W, T or X', U’ or Y', V' or Z' respectively.

However, when the boundary of region PQRS is traversed only once, the boundary of the
image region is also traversed only once. The difference is due to the fact that in traversing
the curve PTUVWXYZP we are encircling the origin z =0, whereas when we are traversing the
curve PQRSP we are not encircling the origin.

() u=a2—y2 = (2)2—(-1)2 = 3, v = 22y = 2(2)(—1) = —4. Then the curvilinear coordinates are
u=3, v=—4.

MULTIPLE-YALUED FUNCTIONS

6. Let w®=z'and suppose that corresponding to the particular value z = z) we have w = w,.
(@) If we start at the point 2, in the z plane [see Fig. 2-12] and make one complete
circuit counterclockwis: around the origin, show thal the value of w on returning to

21 is wie*5, (b) What are the values of w on returning to zi, after 2,83, ... complete
circuits around the origin? (c) Discuss parts (a) and (b) if the paths do not enclose
the origin.
z plane gy w plane
v 4 g @

0.0""’”5

C i 2
2z ’ : :
L 3" wy
'R - x wlciutls u
K w,edwi/5 4
w]eﬂwlls

Fig.2-12 Fig. 2-13

(a) We have z = reid, so that w = z1/5 = 1/5¢ie/5, If =7, and ¢ =9, then wy = r]/5ci0/s,

As ¢ increases from ¢, to 8, + 2x, which is what happens when one complete circuit counter-
clockwise around the origin is made, we find
w = rlSele+m/s = 718 g0/ g2aiss = 4 g2mils

(b) After 2 complete circuits around the origin, we find
w = ri/ssl(9.+4r)15 = ri/5eli/s gAni/S = 4 gimi/s
Similarly after 3 and 4 complete circuits arourd the origin, we find
w = w, edni/s and w = w, e8wils

After 5 complete circuits the value of w is w,e!0m/5 = 4y, go that the original value of w is
obtained after 5 revolutions about the origin. Thereafter the cycle is repeated [see Fig. 2-13].

Another method. Since w® =2z we have arg 2z = bargw from which

Change in argw = *(Change in arg 2)
Then if arg z increases by 2r,47,6#,87,107,..., argw increases by 2#/b,4x/5,6x/5, 87/5,
27, ... leading to the same results obtained in (a) and (b).

(c) If the path does not enclose the origin then the increase in arg z is zero and so the increasc in
arg w is also zero. In this case the value of w is w;, regardless of the number of circuits made.
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7. (a)

(b)
(c)

(a)

(b)

(c)
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In the preceding problem explain why we can consider w as a collection of five
single-valued functions of z.

Explain geometrically the relationship between these single-valued functions.

Show geometrically how we can restrict ourselves to a particular single-valued
function.

Since w5 = z = rel® = rel@+2km where k is an integer, we have
w o pVEeitar2kmy/s = yl/5{cos (@ + 2k=)/6 -+ isin (6 + 2kn)/b}

and so w is a five-valued function of z, the five values being given by k = 0,1,2,3,4.

Equivalently, we can consider w as a collection of five single-valued functions, called branches
of the multiple-valued function, by properly restricting 8. Thus, for example, we can write
' w = ri{cos /6 + isin 8/b)
where we take the five possible intervals for ¢ given by 0=6< 2r, 27 =0.<4rm,...,87 =6 <107,
all other such intervals producing repetitions of these.

The first interval,” 0 =4 < 27, is sometimes called the principal range of ¢ and corresponds
to the principal branch of the multiple-valued function.

Other intervals for ¢ of length 2r can also be taken; for example, —7 =6 <w, = <6 < 3n, etc.,
the first of these being taken as the principal range.

We start with the (principal) branch
w = rV5(cos /5 + 1sin 6/b) where 0 =6 < 27
After one complete cireuit about the origin in the z plane, ¢ increases by 2r to give another branch

of the function. After another complete circuit about the origin, still another branch of the
function is obtained until all five branches have been found, after which we return to the original

(principal) branch.

Beenuse different values of f(z) are obtained by saccessively encircling z -0, we call z =0 a
branch point.

We can restrict ourselves to a particular single-valued function, usually the principal branch, by
insuring that not more than one complete circuit about the branch point is made, i.c. by suitably
restricting a.

In the case of the principal range 0 =6 <2r, this is accomplished by constructing a cut,
indicated by 0A in Fig. 2-14 below, called a branch cut or branch line, on the positive real axis;
the purpose being that we do not allow ourselves to cross this cut (if we do cross the cut, another
branch of the function is obtained).

If another interval for @ is chosen, the branch line or cut is taken to be some other line in
the z plane emanating from the branch point. '

For some purposes, as we shall see later, it is useful to consider the curve of Fig. 2-15 of which
Fig. 2-14 is a limiting case.

z plane

Fig. 2-14

THE ELEMENTARY FUNCTIONS
8. Prove that (a) en-em = entn, (b) |ef] = €, (¢) et — gt | =0,21,22,....

(a)

By definition ¢* = e¢*(cosy + isiny) where z = % +iy. Then if z, =z, +iy, and z, = 23+ iy,
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ef1sen = e%(cosy; + isiny,) © e*x(cosy, + isinyy)
= % + %1 (cosy,; + isiny,)(cos y; + 18inyy)
= en*n{cos(yy+yy) + isin(y; +yg)} = en'=n
(b let|] = |e*(cosy + isiny)| = |e*||cosy +isiny| = e*:1 = ¢
(¢) By part (a), ext2kmi = gz e2kml = g¥(cos 2kr + isin2kr) = e*

This shows that the function e? has period 2kri, In particular, it has period 2ri.

9. Prove:
(a) sin*z + cos’z =1 (c) sin (21 +23) = 8inz; cos 2z + co8 21 8in 2;
(b) e = cosz +isinz, e = cosz —isinz (d) cos(z1+22) = c082; cO82; — 8inz; 8inz;
iz — p—iz iz —iz
By definition, sinz = e——?:—, cosz = e_%e_. Then
iz — g-iz\\2 iz -iz\ 2
(a) sin2z + cos?z = (e' 2ie => + (e +28 z)
o e2iz — 2 4 g2z + ez | 2 4 g2z = i
4 4
(b) (1) e — ez = 2isginz, (2) e*+ ez = 2cosz
Adding (1) and (2): 2elz = 2cosz + 2isinz and e'* = cosz + isinz
Subtracting (7) from (2): 2e~%# = 2cosz — 2isinz and e it = cosgz — isinz
e i(z; +2y) — g~ i(zy%2q) elz1v ity — g izie g-iz
¢) sin(z,+zy) = & =
Vo), i (e 2 2
_ (cosz, + isinzj)(cos 2, + isinzy) — (cos z; — 1i8in 2;)(cos zy — 1i8in zy)
21
= sinz, cosz, + cosz, 8inz,
i(zyt2g) | g~ iz %2q) eltiegity 4+ e iryo g iz
d z; + 2. = g =
(d) cos (z; + z9) 2 3 -
_ (cosz; + isinz)(coszy + isinz;) + (cos z, — i8in zy)(cos 2, — 18in zy)
- 2

= o8z coszg — Binz; 8inz,

10. Prove that the zeros of (a) sinz and (b) cosz are all real and find them.

iz — g—iz
(a) If sinz = - 2: = 0, then ez =e ¥ or er=1=¢*" k = 0,*1,*2,....
Hence 2iz = 2kri and z = kr, ie. z =0, *r, *27,*3r, ... are the zeros.
iz —iz
(b) 1f cosz = _e__i-ze__:-_ 0, then el = —e~iz or ez = —1 =2kt j =0, %1,%2,....

Hence 2iz = (2k+1)7i and 2z = (k+ ), ie. z= +7/2, *37/2, *bx/2, ... are the zeros.

11. Prove that (a) sin(—z) = —sinz, (b) cos(—z) =cosz, (c) tan (—z) = —tanz.

N o Rl e S A Tl el A elr — g—i\ _ .
(a) sin(—z) ¥ = o = - (T) = —sinz
(b) p—_— (-»z) - ell—2) 4 e— (=) = e~z elz — elz 4 e iz A ——
2 2 2
(¢) tan(—z) = sin(—2z) _ —8inZ _ _44n,  using (a) and (b).
cos (—z) co8 z
Functions of z having the property that f(—z) = — f(z) are called odd functions, while those for

which f(—z) = f(z) are called even functions. Thus sinz and tanz are odd functions. while cos z
is an even function.
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46
12. Prove: (a) 1 — tanh?z = sech?z (¢) cosiz = coshz
(b) sintz = tsinhz (d) ain(x +1y) = sinx coshy + icosz sinhy
53 e
(@) By definition, coshz = Z L, ginhz = " Then
el e = (,,x -+ ,,—.>1 - (c: = c")"' ud 02t 4 2 4 =22 _ 02t — 2 .} g—2¢ =
2 2 4 4
Dividing by :osh?z, cosh?z — sinh?z _ 1 or 1 — tanh2z = sech?z.
cosh? z cosh?z
"L ellin) — g—itin) _et—ex _ .fer—ex\ . .
(b) siniz = % = oF = 1(——2 ) = isinhz
L eltin) —i(iz) - -
(¢) cos1z = i +2e = & ‘2+ g = e'+2¢ F = cosh z

13.

14

(d) From Problem 9(c) and parts (b) and (c), we have
sin{x+1iy) = sinxzcosiy + cosxsiniy = sinxzcoshy + ?cosx sinhy

(a) If z=¢" where z = r(cos0¢ +is8in0) and w = u + iv, show that u = In7 and
v =0+2kn, k=0,%1,%2,... sothat w =1Inz = In7r+ 0 + 2kr). () Determine
the values of In(1—1i). What is the principal value?

(a) Since z = r(cose + ising) = e* = cev*tiv = eu(cosv + 1sinv), we have on cquating real and

imaginary parts
AL RS (1) e*cosv = 7 cos @ (2) etsinv = rsine

Squaring (1) and (2) and addirg, we find ¢2* =72 or ¢* =7 and w = Inr. Then from (/) and (2),
rcosv =1rcosd, r sinv=r38ine from which v =6+ 2kr. Hence w = u+iv = In » + i(6 + 2kn).

If z=ew, we say that w =In z. We thus see that Inz = In r + i(# + 2kx). An equivalent
way of saying the same thing is to write Inz = Inr + i¢ where ¢ can assume infinitely many

values which differ by 2x.

Note that formally In z = In(rei®) = In r + is using laws of real logarithms familiar from
elementary mathematics.
¢ . o
(b) Since 1—i = \/2ZTriM+2knl e have In(l—1) = In V2 + (-7:—1-% 2kri> = %lnz + 1:—' + 2kxi.

The principal value is % Ing2 + % obtained by letting k= 0.

Prove that f(z) =Inz has a branch point at 2z = 0.

We have Inz = Inr + 1. Suppose that we start at some
point z, # 0 in the complex plane for which r=7r;, ¢ =¢; so that
Inz, = Inr + is; [see Fig. 2-16]. Then after making one com-
plete circuit about the origin in the positive or counterclockwise
direction, we find on returning to z, that r=1r;, ¢ = ¢;+ 2r s>
that In'z; = In7 + i(e; +2r). Thus we are on another branch
of the function, and so z =0 is"a branch point.

Further complete circuits about the origin lead to other

branches and (unlike the case of functions such as z1/2 or z1/5) we
Fig. 2-16
never return to the same branch.

It follows that In z is an infinitely many-valued function of z with infinitely many branches. That
particular branch of In z which is real when z is real and positive is called the principal branch. To
obtain this branch we require that ¢ =0 when z> 0. To accomplish this we can take Inz = In » + i8
where ¢ is chosen so that 0 = ¢ < 27 or —7 S ¢ <, etec.

As a generalization we note that In (z — @) has a branch point at z = a.
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15. Consider the transformation w =Inz. Show that (a) circies with centre at the origin
in the z plane are mapped into lines pz.rallel to the v axis in the w plane, (D) lines or
rays emanating from the origin in the z plane are mapped into lines parallel to the
% axis in the w plane, (c) the 2z plane is mapped into a strip of width 2= in the w plane.
Illustrate the results graphically.

Wehave w = u-+iv = Inz = Inr 4+ i9 sothat u=1In~» v =o9.
Choose the principal branch as w = Inr + i¢ where 0 = ¢ < 2r.

(¢) Circles with centre at the origin and radius ¢ have the equation |z2] =7 = a. These are mapped
into lines in the w plane whose equations are # = In e. In Figures 2-17 and 2-18 the circles and
lines corresponding to a = 1/2,1,3/2,2 are indicated.

w plane
v
. i r_ a=w/2
R | S | i | |2 a=n/3
SE——— S S | S (]
a=0 u
cl Ll ]
" i n
i
;3 L ﬁ il
&
N\ o
4 N \Y
l/‘ J; \";‘\
¢ il I
L]
Fig.2-17° Fig. 2-18

(b) Lines or rays emanating from the origin in the z plane (dashed in Fig. 2-17) have the equation
6 = a. These are mapped into lines in the w plane (dashed in Fig. 2-18) whose equations are v = a.
We have shown the corresponding lines for a« = 0,#/6,7/3 and =/2.

(¢) Corresponding to any given point I’ in the z plane defined by z+ 0 and having polar coordinates
(r,6) where 0 =¢ <27, >0, there is a point P’ in the strip of width 2= shown shaded in
Fig. 2-20. Thus the z plane is mapped into this strip. The point z =0 is mapped into a point of
this strip sometimes called the point at infinity.

If ¢ is such that 27 = ¢ < 4, the z plane is mapped into the strip 2z = v < 4r of Fig. 2-20.
Similarly, we obtain the other strips shown in Fig. 2-20.

It follows that given any point z # 0 in the z plane, there are infinitely nany image points in
the w plane corresponding to it.

zplane w plane
v . v
z ST e TRt
Pills R ST T
v 4 [} z g 4 op 3 ’b !‘
[ Y
Fig. 2-19 Fig. 2-20

It should be noted that if we had taken ¢ such that —7 = 8 < », » = ¢ < 3r, etc., the strips
of Fig. 2-20 would be shifted vertically a distance =.
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16. If we choose the principal branch of sin~'z to be that one for which s8in~10 = 0, prove

s gin"'z = % In (iz + V1 —2%)
If w = sin—!z, then z = sinw = d—w—'-;-:—-—_w from which
ew — 2iz — e”w = 0 or e2w — 24zeiw — 1 = 0
Solving, elv = 2isx yd— 427 VZ“—M = iz % \fl—:_z_z = iz + Vi-2?
since *y1—22 is implied‘by V1—22. Now elw= elw=2km [k =0,%],%2,... 8o that

eltw—2km = iz 4 1 —22 or w = 2kw+%ln(1’z+\/1—z’)
The branch for which w =0 when z =0 is ot‘ained by taking k=0 from which we find, as required,

w = sin"lz = %ln(iz+\/1—zz)

17. If we choose the principal branch of tanh~'z to be that one for which tanh='0 = 0,

prove that " 14
FA
-1 - =
tanh~! 2 2 In (1 = z)
If w = tanh—12z, then z = tanhw = sinhw _ e° —¢7%  £.0m which

cosh w ev | e~ W
A—2e? = (1+2)e~® or 2w = (14+2)/(1—2)

Since e2w = e2(w—km)  we have

1—2

1+z 1. /142
2(w—kmi) = = Lri =
e or w fn'l+2ln\1 z)

The principal branch is the one for which k=0 and leads to the required result.

18. (a) If z=reY, prove that 2i = e~**™ {cos (In7) + isin(In7)} where & =0,*1,%2,....

(b) If z is a point on the unit circle with centre at the origin, prove that z' represents
infinitely many real numbers and determine the principal value. -

(c) Find the principal value of it
(a) By definition, 2z = eflnz = gi{inr + 16+ 2km))
= eilnr - (0+2km) — e-—(leh-) (cos(ln ,,-) + 1 sin (lr. r)}

The principal branch of the many-valued function f(z) = #' is obtained by taking k=0 and
is given by e—9{cos (In 7) + i sin (In 1)} where we can choose ¢ such that 0 =6 < 2r.

(b) If z is any point on the urit circle with centre at the origin, then |zl = r = 1. Hence by part (a),
since Inr =0, we have zi = e~-(9+%m which represents inﬂnibely‘many real numbers. The

principal value is e~¢ where we choose ¢ such that 0 = ¢ < 2n.
(¢) By definition, it = eilni = ei(itn/2+2km} = e~ (m/242km) gince i = e/(7/2+2%km and Ini = i(z/2 + 2kx).
The principal value is given by e~"™/2,

Another method. By part (b), since z =1 lies on the unit circle with centre at the origin and since
8 = x/2, the principal value is e~ "/2,

BRANCH POINTS, BRANCH LINES, RIEMANN SURFACES
19. Let w = f(2) = (22+1)"% (a, Show that z= +i are branch points of f(z). (b) Shew

that a complete circuit around both branch points produces no change in the branches

of f(2).

(@) Wehave w = (22+1)V/2 = {(z—i)(z + 9)}1/2, Then argw = }{arg(z— i) + 4arg(z+14) so that
Change in arg w = 4{Change in arg (z—1)} + }{Changein arg (z+ 1)}
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Let C [Fig. 2-21] be a closed curve enclosing the point i but not the point —i. Then as point z
goes once counterclockwise around C,

Change in arg(z—1) = 2n, Change in arg(z+1i) = 0
so that s

Change in argw = =
Hence w does not return to its original value, ie. a
change in branches has occurred. Since a complete cir-
cuit about z =i alters the branches of the function,
z =i is & branch point. Similarly if C is a closed curve
enclosing- the point —i but not i, we can show that
z = —1 is a branch point.

Another method.
Let z—1i = rel%, z+1i = ryel¥s, Then
w = {rlrzei(ﬂl'#'a’)}l/z = '\,T|1'26“‘/2 el0/2

Suppose we start with a particular value of z correspond-
ing to 8; = a; and 8, =a,. Then w = Vr 7, ela/2glas/2,
As z goes once counterclockwise around %, 8, increases
to ay + 27 while ¢, remains the same, i.e. 6; =a;. Hence

w = W,"']"'z eltay +2m)/2 glay/2

= —Vr 7, e{u,lz elag/2

showing that we do not obtain the original value of w, Fig. 221
i.e. a change of branches has occurred, showing that g
z =1 is a branch point.

(b) If C encloses both branch points z = *i as in Fig. 2-22, z plane

then as point z goes counterclockwise around C,
27
2r

1l

Change in arg (z — 1)
Change in arg (z + 1)

1]

so that
Change in argw = 2r

Hence a complete circuit around both branch points
produces no change in the branches.

Another method.

In this case, referring to the second method of -
part (a), 8, increases from a; to a;+ 27 while 6, in-
creases from a, to ay + 2r. Thus

w = Vg eitan t2m /2 gitag +23m/2 = VT irs ele/? giay/2
and no change in branch is observed. Fig. 2-22

20. Determine branch lines for the function of Problem 19.

The branch lines can be taken as those indicated heavy in either of Figures 2-23, 2-24. In both
cases, by not crossing these heavy lines we ir.ure the single-valuedness of the function.

z plane z plane
v Yy
1 i§
x x
-1 9 —1 9

Fig. 2-23 Fig. 2-24
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21.

22.
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Discuss the Riemann surface for the function of Problem 19.

We can have different Riemann surfaces correspondirz to Fig. 2-23 or 2-24 of Problem 20.
Referring to Fig. 2-23, for example, we imagine that the z plane consists of two sheets superimposed
on each other and cut along the branch line. Opposite edges of the cut are then joined, forming the
Riemann surface. On making one complete circuit around z =1, we start on one branch and wind up
on the other. However, if we make one circuit about both z =1 and z= —i, we do not change branches
at all. This agrees with the results of Problem 19.

Discuss the Riemann surface for the function f(z) = Inz [see Problem 14].

In this case we imagine the z plane to consist of infinitely many sheets superimposed on each
other and cut along a branch line emanating from the origin z=0. We then connect each cut edge to
the opposite cut edge of an adjacent sheet. Then every time we make a circuit about z=0 we are on
another sheet corresponding to a different branch of the function. The collection of sheets is the
Riemann surface. In this case, unlike Problems 6 and 7, successive circuits never bring us back to
the original branch.

LIMITS

23.

24.

(a) If f(z) = 2, prove that lim f(z) = 22.

z=s2g

(b) Find lim f(2) if f(2) = {f)z .y

(a) We must show that given any ¢>0 we can find § (depending in general on ¢) such that
l22—22| < ¢ whenever 0 < |z—2y| < &.
If 8 =1, then 0 < |z— 25| < § implies that
[22=2f| = |z—z|lz+z| < 8lz—zo+22| < &{lz—z29| + |22} < (1 + 2|zo])
Take & as 1 or e/(1+ 2|z)|), whichever is smaller. Then we have |22—2%| < ¢ whenever
|z2—25| < 8, and the required result is proved.

(b) There is no difference between this problem and that in part (a), since in both cases we exclude
z=12zy from consideration. Hence lim f(z) = zg. Note that the limit of f(z) as z -z, has

2= 2y

nothing whatsoever to do with the value of f(z) at z,.

Interpret Problem 23 geometrically.

(a) The equation w = f(z) = 22 defines a transformation or mapping of points of the z plane into
points of the w plane. In particular let us suppose that point z, is mapped into wy = 23.

z plane w plane
v v

%

Fig. 2-25 Fig. 2-26

In Problem 23(a) we prove that given any ¢>0 we can find § >0 such that Jw—wy| < e
whenever |z—z,| < §. Geometrically this means that if we wish w to be inside a circle of
radius ¢ [see Fig. 2-26] we must choose § (dcpending on «) so that z lies inside a circle of radius §.
According to Problem 23(a) this is certainly accomplished if & is the smaller of 1 and /(1 + 2|zq)).

(6) In Problem 23(a), w = w, = 2} is the image of z = z;. However, in Problem 23(b), w =0 is the
image of z =2z, Except for this, the geometric interpretation is identical with that given in
part (a). ’
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25. Prove that lim 321 - 20 + 8z. 2 +5
z=i zZ—1
We must show that for any ¢ > 0 we can find 8 > 0 such that
324 — 23+ 82— 2245
z—1
Since z » i, we can write

374 — 29+ 82— 2: + 6 [32% — (2—3i)#? + (6 — 20)z + bi[z — 4]

z—1 z—1
323 — (2—3i)z22 + (6—20z + bi

4 + 4,

—(4+4)| < ¢ when 0<]|z—i|<3s.

on cancelling the common factor z—1i # 0.
Then we must show that for any > 0, we can find 8 > 0 such that

[823 — (2—3i)22 + (5—20)z—4 +i| < « when 0<|z—i| <38

If 551, then 0<|z—i| < & implies
|828 — (2—3i)22 + (5—2()z — 4 + i |z—i]|322 + (6i—2)z — 1 — 4i]|

|t—i||3(z—i+i)’+(6£—2)(z—i+i)—1—41‘]
|z—1'||8(t—i)’+(12i—2)(z—1)—10—61‘|
8{3|z—i|? + |12i—2||z—i] + |-10—6i|}
5(3+13+12) = 283
Taking & as the smaller of 1 and ¢/28, the required result follows.

AAT I

THEOREMS ON LIMITS
. If lim f(2) exists, prove that it must be unique.

We must show that if lim f(z) = I, and lim f(z) = L, then [, =1,

z=2g T=rzy
By hypothesis, given any ¢ > 0, we can find 8 > 0 such that
[ f(z) = 1] < /2 when 0<|z—2)| <38
[ f(z) — ] < o2 when 0<|z—2| <38

T h—bl = -+ k] S [h—fE] + [ —b)] < B+ = «

61

ie. [l —ly| is less than any positive number ¢ (however small) and so must be zero. Thus L =1,

27. If lim g(2) = B » 0, prove that there exists § > 0 such that
' l9(2)] > 4|B] for 0<|z—2z]| <3
Since lim g(z) = B, we can find 3 such that |g(z)—B| < #$IB| for 0 < |2~z < 8.

Writing B = B — g(z) + g(z), we have
Bl s |B-g@)|+ oG] < }IB| + lg2)]
ie. |B| < §IB| +|g(2)]  from which  |g(z)| > §|B|

28. Given lim f(z) = A and lim 9(z) = B, prove that (a) ll_.m [f(2) +g(z)] = A+B,

T2y

) lim f2)g(e) = AB, (©) lim L. -1- if B0, (@ imI® -4 it g,

M 22y g(Z) T2y 9(2)
(@) We must show that for any «> 0 we can find 8 > 0 such that

|[f(z)+9(z)) —(A+B)] <« when 0<]|z—2]| <38
We have

[[f(2) +9(2) —(A+B)| = /&) —A] + [0(x)—B]| S |f()—A|+ |g(z)—B|
By hypothesis, given ¢ > 0 we can find 3, > 0 and 8, > 0 such that
| f(2) —A| < «/2 when 0 < |2—2) < 3,
|g(z) —B| < o2 when 0<|z—2| < 8

(1)

(2)
&)
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Then from (1), (2) and (3),
[[f(2) +9(2)] —(A+B)| < e/2+¢/2 = e when 0<|z—z| <38

where 8 is chosen as the smaller of §, and &,.

| #(2){g(2) — B} + B{f(z) — A}|
[f@) | g() —B| + |B||f(z) —A]
If(2)| 1 9(2) = B| + (1B +1) | f(z) —A|

(b) We have | f(z) g(z) — AB|

HA A I

[CHAP. 2

(4)

Since lim f(z) = A, we can find &, such that |f(z)—A| < 1 for 0 < |z—24| < 8;.

z-+29

Hence by inequalities 4, Page 2,
(o~ A| 2 [f@)] - |Al, e 12 |fa)|—lAl or =) S 4] +1

i.e. |f(z)] < P where P is a positive constant.

Since lim g(z) = B, given ¢>0 we can find 8,>0 such that |g(z) —B| < ¢/2P for

2=+ 2o

0 < |z=2] < 85

Since lim f(z) = A, given ¢>0 we can find 8;3>0 such that [f(z)—A| <

z=+2Zg

for 0 < |z—2| < 8.

Using these in (4), we have

|/ o) — AB| < Pogp+ (Bl + D gmirs =

for 0 < |z— 25| < 8 where § is the smnller of &,,38, 83 and the proof is complete.
(¢) We must show that for any ¢ >0 we can find § >0 such that

1 1 lgx) —B| _

—_ — = B o h <|z—z)| <
o B Bl o) e when 0<]|z—z| <38
By hypothesis, given any ¢> 0 we can find §; > 0 such that

lg(z) —B| < 4I|Bl2e when 0<|z—2]<3§

By Problem 27, since hm g(z) = B # 0, we can find §; >0 such that

|g(z)! > §|Bl when 0 < |z—z]| < 3§,
Then if 8 is the smaller of §; and 3;, we can write
e I lo(z) — B| §|BJ2e
9@ " B 1Bl lg ()| B+ §1B]
and the required result is proved.
(d) From parts (b) and (¢),

. fz) " _ y i 1 _ A
lim == = lim {I(z) g(z)} = lim f(2) llm = A B = B

z+2, g(2) 22y -+ 2g ﬂ(z)

This can also be proved directly [see Problem 145].

€

2(/B| + 1)

[N

= e whenever 0<|z—2]|<3$

Note. In the proof of (a) we have used the results |f(z) —A| < ¢/2 and |g(z) —B| < €/2, so
that the final result would come out to be |f(z) +g(2) — (4 + B)| < e Of course the proof would be
just as valid if we had used 2¢ [or any other positive multlple of ¢ in place of e. Similar remarks

hold for the proofs of (b), (¢) and (d).

29. Evaluate each of the following using theorems on limits.
(@) lim (zz—5z+ 10) = -~ ltm 22 + lulr}“ (—bz) + lirlnH 10

z- 1+ z= 1+1

(‘.l.illll‘l)(' -]o]nlz) + (x-ltnl'-‘H —5)('}.“:1'1) + ‘lir{‘_H 10

1+ +9) — 6(1+49 +10 = b — 3

In practice the intermediate steps are omitted.

@) T EETEGSL), P i sl - @—49(=2i-1) _ _1
e—s-2u 22—2z+4 lim (31—21+4) 44 2

g —2

11‘.
4
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B L&
zee2emi/3 24 + 422+ 16

In this case the limits of the numerator and denominator are each zero and the theorems on
limits fail to apply,

()

However, by obtaining the factors of the polynomials, we see that
2+8 e (z + 2)(z — 2e™/3)(z — 2¢571/3)

,..lg'::ua A+422+16 ...l ;.nvri/a (z — 2em/3)(z — 2¢2m/3)(z — 2¢471/3)(z — 2¢571/3)
= Virin (z+2) = em/s 4 1
T segemisd (z — 262m)(z — 24MI/3) T (/3 — 2mI/3)(gmi/3 — Ami/3)
3 _ V3,
8 8

Another method. Since 28—64 = (22— 4)(z* + 422 + 16), the problem is equivalent to finding

lim B=EE+8 L 2-4 _ ems—1 3 _ V3,

z2em/3 2% — 64 gmgem/323 — 8 ~  2(em—1) 8 8

30. Prove that lim - does not exist.

z—0
If the limit is to exist it must be independent of the manner in which z approaches the point 0.

Let z— 0 along the x axis. Then y =0, and z=xz+iy =z and Z = z—1y = z, so that the
required limit is z
lim=— = 1
x=0%

P Let z— 0 along the y axis. Then z =0, and z = z+1iy = iy and 2z = z — iy = —iy, so that the
“ required limit is
/ lim — = -1

Since the two approaches do not give the same answer, the limit does not exist.

CONTINUITY
31. (a) Prove that f(2) =2® is continuous at z = zo.
(b) Prove that f(z) = {32 : ': :° , where 200, is discontinuous at z = 2.
(e) By Problem 23(a), hm f(z) = f(zy) = 23 and so f(z) is continuous at z = z,.
Another method. We muat show that given any ¢>0, we can find § >0 (depending on ¢) such

that |f(z)—f(z))| = |#22—2%| < ¢ when |z—z| < 8 The proof patterns that given in
Problem 23(a).

(b) By Problem 23(b), zlln}.f(z) = 22, but f(zp) = 0. Hence len: f(z) * f(zy) and so f(z) is

discontinuous at z =z, if z,%0.

If 2z,=0, then f(z)=0;, and since lim f(z) = 0 = f(0), we see that the function is
continuous. iy

32+ -2 +822—22+5
z—1
f(i) does not exist, i.e. f(2) is not defined at z=1. Thus f(z) is not continuous at z=1.

32. Is the function f(2) = continuous at z =17

By redefining f(z) so that f(i) = 1im| f(z2) = 4+ 4i (see Problem 25), it becomes continuous
F g

at z=1. In such case we call z=1 a removable discontinuity,

33. Prove that if f(z) and g(z) are continuous at z =zo, so also are
f(z
@ 1@ +ot), O (s, © 13
These results follow at once from Problem 28 by taking A = f(z)), B = g(z,) and rewriting
0<|2—2| <3 as |z2—z%| < 3, ie. including z =z,

if g(2o) %0



b4 ' FUNCTIONS, LIMITS AND CONTINUITY [CHAP. 2

34. Prove that f(2) = 2? is continuous in the region |2| = 1.

Let z, be any point in the region |z = 1. By Problem 23(a), f(z) is continuous at z;. Thus f(z)
is continuous in the region since it is continuous at any point of the region.

35. For what values of z are each of the following functions continuous?
z

— ‘ —
WM E ey ® D
continuous everywhere except z = i,
(®) flz) = cscz = £ —.

continuous everywhere except at these points.

Since the denominator is zero when z = %i, the function is

By Problem 10(a), sinz = 0 for z = 0,*x,*27,.... Hence f(z) is

UNIFORM CONTINUITY
36. Prove that f(z) =2? is uniformly continuous in the region |z| <1.

We must show that given any «> 0, we can find 8 > 0 such that |22—2z%| < ¢ when |[z—2z| < 3,
where 8 depends only on « and not on the particular point z, of the region.

If z and 2, are any points in |z| < 1, then
|22—23| = |z+z|lz—2] = {lzl+|2]}|z2—2] < 2]|z2—2]|
Thus if |z—2z| < 8, it follows that |z2—2z%| < 23. Choosing & =¢/2, we see that |22—22| < .

when |z—2z,| < 8, where § depends only on ¢ and not on 2z,, Hence f(z) =22 is uniformly con-
tinuous in the region.

Prove that f(z) = 1/z is not uniformly continuous in the region |z| < 1.

Method 1.

Suppose that f(z) is uniformly continuous in the region. Then for any ¢>0 we should be able
to find 3, say between 0 and 1, such that |/(z) —f(z))| < ¢ when |z—2,] < § for all z and z, in
the region.

37

_ _ 8 _ _ __s e
Let z=3 and i Then |z—z,| = |8 19 ———1+(8<8.
1 1 _ 14e| _ e :
However, |- _Z_n 3 3 = & > ¢ (since 0<3<1).
Thus we have a contradiction, and it follows that f(z) = 1/z cannot be uniformly continuous in
the region.
Method 2.
Let zy, and z,+ { be any two points of the region such that |z,+{—z| = [¢{| = 8. Then
1 1 Is1 3
— fzo+ . =
e = fleot D1 = (20" 2FF| = TalTaot 8]~ Fell20 8]

can be made larger than any positive number by choosing z, sufficiently close to 0. Hence the function
cannot be uniformly continuous in the region.

SEQUENCL.S AND SERIES
38. Investigate the convergence of the sequences

i - 149
@ =2, n=123"., (b w= (-n—).
, 2 48 ¢4 45 . 1 =i 1 i
(a) The first few terms of the sequence are t,E,E, 'S’ ete.,, or i, 2 3T On
plotting the corresponding points in the z plane, we suspect that the limit is zero. To prove this
we must show that
|ug—1l] = |i®/n—0| < ¢ when =n>N (1)
Now linm—0| = |iv/a] = |ij"/n = 1/n < ¢ when n>1/e

Let us choose N =1/e. Then we see that (i) is true, and so the sequence converges to zero.
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, wart| _ QYD g = MV2
(b) Consider . |_—_—(1+i)"ln =51 |1+1] i
V2
For all = =10 (for example), we have ::—+—-1 > g =1.2. Thus |u,4+q > 1.2Ju,| for n > 10,

ie. Jug| > 1.2 ugls |gg] > 1.2 |uy| > (1.2)2 |ugol, and in general |u,| > (1.2)"~10 uyql. It follows
that |u,| can be made larger than any preassigned positive number (no matter how large) and
thus the limit of |u,| cannot exist, and consequently the limit of u, cannot exist. Thus the

sequence diverges.

39. If lima, = A and lim b, = B, prove that lim (a.+bs) = A +B.

n=s o0 n=+ n=— o

By definition, given ¢ we can find N such that
|an—A| < ¢/2, |b,—B| < ¢/2 for n>N
Then for n > N, ‘
|[(@n+b) —(A+B)| = |(an—A)+ (b,—B)| = |a,—A|+[b—B] < e
which proves the result.
It is seen that this parallels the proof for limits of functions [Problem 28].

40. Prove that if a series ui;+us+us+ -+ is to converge, we must have lim u. = 0.

ne—s 20

If S, is the sum of the first n terms of the ceries, then S,4+; = S, un. Hence if lim S, exists
n-—+o0
and equals S, we have lim S,4y = lim S, + lim %, or § = § + lim u, ie lim u, = 0.
=00 =+ x

ne=n n=—- 0 n-—+ow

Conversely, however, if lim u, = 0 the series may or may not converge. See Problem 150.

ne=s o0

Prove that 1+z+22+2°+ --- =——_1_—£ if |2|<1.

41.
1
Let S, = 1424224+« +2n1
Then 25, = 24284 oo = | gn
—_—n
Subtracting, (1—2)8, = 1—2" or Sy = 11—-_—;—

If |2| <1, then we suspect that lim z* = 0. To prove this we must show that given any ¢>0
n

- 00

we can find N such that |27 —0| < e for all n>N. The result is certainly true if z=0; hence we
can consider z # 0.

Now |#"| =|z|* <e when nln|zl < Ine or n > (In¢/(Infz]) = N [since if lz] <1, In|z| is

negative]. We have therefore found the required N, and nllzll 2" = 0.
o i e i 1=a® 1—-0 1
Thus 1+z+22+:-- = Jgnns,, = P-.":ol—z = F=—= = 2=
The series
at+aztazt - = 2
‘ l1—2

Iisl called a geomelric sertes with first term equal to a« and ratio z, and its sum is a/(1 — z) provided
7zl < 1.

MISCELLANEOUS PROBLEMS

42. Let w = (22+1)"2, (a) If w=1 when 2=0, and z describes the curve C: shown in
Fig. 2-27 below, find the value of w when z=1. (b) If z describes the curve C: shown
in Fig. 2-28 below, is the value of w when z=1 the same as that obtained in (a)?

(@) The branch points of w = f(2) = (22+1)V2 = {(z—i)(z+1)}1/2 are at z = *i by Problem 19.



b6 ' FUNCTIONS, LIMITS AND CONTINUITY [CHAP. 2

C, .
o= f@—t—
1
T
z ,
0 i 0 1
Ty *
p—-L- —i 4
—1
Fig. 2-27 Fig. 2-28

Let (1) z—i = ryei®, (2) z+i = rpef®. Then since 6, and ¢, are determined only within
integer multiples of 2ri, we can write

w = Ty el0r+0)/2 g2kul/2 = VT 75 €l(01+09)/2 gk ®

Referring to Fig. 2-27 [or by using the equations (1) and (2)] we see that when z is at 0, =1,
8,=3x/2 and r,=1, 0,=17/2. Since w=1 at z=0, we have from (3), 1 = e(k+Dm and we
choose k=—1 [or 1,—3,...]. Then

w = —Vrraeltite2

As z traverses C; from 0 to 1, r, changes from 1 to V2, 8, changes from 37/2 to —zl4,
r, changes from 1 to vz, 6, changes from =/2 to /4. Then

w = ,«\’(‘[ﬁ)(\/’g)eu—wM\t-mm = —\/2

(b) Asin part (a), w = —Vrr el(0,+89)/2, Referring to Fig. 2-28 we see that as z traverses Csy,
7, changes from 1 to V2, 6, changes from 3x/2 to Tw/4, vy changes from 1 to V2 and ¢, changes
from z/2 to =/4. Then

w = - (‘[i)(ﬁ) T4 + WA /2 = ‘/5

which is not the same as the value obtained in (a).

43, Let V/1-22=1 for 2=0. Show that as z varies from 0 to p > 1 along the real axis,

y/1—2? varies from 1 to -iVp*—1.

v
2 /"‘"&p
\\
{5 3
A, B \s F_a
1
" Fig. 2-29

Consider the case where z travels along path ABDEF, where BDE is a semi-circle as shown in
Fig. 2-29. From this figure, we have
1—2 = 1—x—iy = rcosd — irsing
sothat 1—22 = Vi—2(1+2 = V7 (cos ¢/2 — i sin 6/2) V2 — 7 cos o + ir sine
Along AB: z=1z, r=1-2, 6 = 0 and V1—-22 = \/l—m\/l_-l:; = V1—22
Along EF: 2=z, r=z—1, 6 =r and Vi—22 = —ife—1Vz+1 = —iyz? — 1.
Hence as z varies from 0 [where z =0] to p [where x=p], V1 —22 varies from 1 to —-iVpP—1.
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4.

45.

46.

Find a mapping function which maps the points z = 0, i, +2{, 31, ... of the z plane
into the point w =1 of the w plane [see Figures 2-30 and 2-31].
z plane w plane
Y v
3i
2i
'l v’
x - u
¢ 1
—i
—2i
Fig. 2-30 Fig. 2-31

Since the points in the z plane are equally spaced, we are led, because of Problem 15, to consider
a logarithmic function of the type z =In w.

Now if w=1=¢27 | = 0,%1,+2 ..., then z=1Inw = 2ksi so that the point w=1 is
mapped into the points 0, £2zi, *4x1, ... .

If, however, we consider z = (Inw)/2z, the point w =1 is mapped into z = 0,*1,%2i,... as
cequired. Conversely, by means of this mapping function the points z = 0,%i,+2i,... are mapped
into the point w=1.

Then a suitable mapping function is z = (Inw)/2r or w = €272,

If lim z. = I, prove that lim Re{z,) = Re{l} and lim Im{z.}) = Im(l}.

ne=sco n=+o0
Let z, = x,+iy, and =l +il,, where z,,, and l;, 1, are the real and imaginary parts of
z, and ! respectively.

By hypothesis, given any ¢>0 we can fi..] N such that |z,—I| < ¢ for n > N, ie,
|2 + iyp — (y+il))| < e for =n>N
oF VZa =12+ (yu—1)2 < e for =n>N
From this it necessarily follows that
|zp—0| < e and |yp—L|<e for =2>N

ie. lim 2, =!; and lim y, = [, as required.

n—s o L]

Prove that if |a| <1, ,
1 —acosé
(@ 1+ acosd + a*cos20 + a’cos30 + -+ = =g cosd +ab
. ~ . ) asind
(b) asind + a*sin20 + a*sind0 + --- = s entr B
Let z = ae'® in Problem 41. We can do this since |z| = [a| <1. Then
1 + ael® + a2 + g% + -+ = -Lﬁ
L —ae
or (1+acose + a?cos20 + ) + i(asine + a?s8in20 + ---) = l—lu“.::::::
e — 1—acose +iasine

|

1 —2acose + a

The required results follow on equating real and imaginary parts.
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Supplementary Problems

FUNCTIONS AND TRANSFORMATIONS
47. Let w = f(z) = z(2—2z). Find the values of w corresponding to (a) z = 1+, (b) 2z = 2—2i and
graph corresponding values in the w and z planes. Ans, (a) 2, (b) 4+ 4i

48. If w = f(z) = (1+2)/(1—2), find (a) f(i), (b) f(1 —1) and represent graphically.
Ans. (a) 1, (b) —1—2i
49. If f(z) = (2z+1)/(3z2—2), z+ 2/3, find (a) f(1/2), (b) f{f(z)}. Ans. (a) (2+ 2)/(3 —2z2), (b) 2z
50. (a) If w = f(z) = (z+2)/(2z—1), find f(0), f(1), f(1+1). (b) Find the values of z such that
f(z) =1, f(z) = 2—3i. (c) Show that z is a single-valued function of w. (d) Find the values of z

such that f(z) = z and explain geometrically why we would call such values the fixed or invariant
points of the transformation. Ans. (a) —2, —1, 1 —1, (b) —1, (2+1)/3

51. A square S in the z plane has vertices at (0,0), (1,0), (1,1), (0,1). Determine the region in the
w plane into which S is mapped under the transformations (a) w = 22, (b) w = 1/(z+1).

52. Discuss Problem 51 if the square has vertices at (1,1), (—1,1), (—1,-1), (1, -1).

53. Separate each of the following into real and imaginary parts, i.e. find u(x,y) and v(x,y) such that
f(z) = u+iv: (a) f(z) = 222 —3iz, (b) f(2) = 2+ 1/z, (¢) f(z) = (1 —2)/(1 +2), (d) f(z) = 212

Ans. (a) u = 222 —2y?2+ 3y, v = 4xy — 3= () u = 1—u — v = —2y
! (1 +2)2+y2' (1+2)24+y2
(b) u=x+ x/(x2+ y?), (d) u = r1/2 cos 6/2, v = rV/2 gin 6/2
v=y—ylx?+y?) where z = r cos6, y = rsineé

54. If f(z) = 1/2 = u+ iv, construct several members of the families wu(x,y) = «, v(x,y) = B where
« and 8 are constants, showing that they are families of circles.

MULTIPLE-VALUED FUNCTIONS

55. Let w3 =2z and suppose that corresponding to 2=1 we have w=1. (a) If we start at z=1 in the
z plane and make one complete circuit counterclockwise around the origin, find the value of w on
returning to z=1 for the first time. (b) What are the values of w on returning to z=1 after
2,3,4, ... complete circuits about the origin? Discuss (a) and (b) if the paths do not enclose the origin.
Ans. (a) e2mi/3, (b) eAmi/3, 1, ¢2mi/3 '

56. Let w = (1—2%)V2 and suppose that corresponding to z=0 we have w=1. (a) If we start at 2=0
in the z plane and make one complete circuit counterclockwise so as to include z =1 but not to include
z=—1, find the value of w on returning to z=0 for the first time. (b) What are the values of w if
the circuit in (a) is repeated over and over again? (¢) Work parts (a) and (b) if the circuit includes
z=—1 but does not include z=1. (d) Work parts (a) and (b) if the circuit includes both z=1 and
z=—1. (¢).Work parts (a) and (b) if the circuit excludes both z=1 and z=—1. (f) Explain why
z=1 and z= -1 are branch points. (g) What lines can be taken as branch lines?

57. Find branch points and construct branch lines for the functions () f(z) = {2/(1—2)}V3
(b) f(z) = (22— 4)V/3, (c) f(z) = In(z—22).

THE ELEMENTARY FUNCTIONS

58. Prove that (a) e#i/enr = efni—n, (b) |ef| = eV,

59. Prove that there cannot be any finite values of z such that e* = 0.
60. Prove that 27 is a period of e!*. Are there any other periods?

-

61. Find all values of z for which (a) €3* =1, (b) e¥* =1,
Ans. (a) 2kzi/3, (b) dxi+ Jkri, where k = 0, =1, %2, ....

62. Prove (a)' 8in2z = 2 sinz cosz, (b) cos 2z = cos?z — sin?z, (c) sin?(2/2) = §(1 —cos2), (d) cos?(2/2) =
4(1 + cos 2).

Prove (a) 1+ tanZz = sec?z, (b) 1+ cot?z = csc?z.

&

64. If cosz = 2, find (a) cos2z, (b) cos3z. Ans. (a) 7, (b) 26

65. Prove that all the roots of (a) sinz = a, (b) cosz =a, where —1 S a =1, are real.



66.
67.
68,

69.
70.

1.
12.

73.

74.

95.

76

.

78.

79.

8l.

82.

83.
84,
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Prove that if |sinz| = 1 for all z, then z must be real.
Show that (a) sinz = sin2, (b) cosz = cos2, (c) tanz = tan%.

For each of the following functions find u(,y) and v(z,y) such that f(z) = u+iv, i.e. separate into

real and imaginary parts: (a) f(z) = edlr, (b) f(z) = cosz, (¢) f(z) = 8in 2z, (d) f(z) = z2e2=.

Ans. (a) u = e~ cos 3z, v = ¢~ gin 3z, (b) u = cos x coshy, v = —sin z sinhy, (c) u = sin 2z cosh 2y,
v = cos 2z sinh 2y, (d) u = €2*{(x2 — y?) cos 2y — 2zy sin 2y}, v = €2*{2xy cos 2y + (22 — y2) sin 2y)

Prove that (a) sinh(—z) = —sinhz, (b) cosh(—z) = coshz, (c) tanh(—z) = —tanhz.

Prove that (a) sinh(z, +2;) = sinhz, coshz, + coshz, sinhz;,, (b) cosh2z = cosh?z + sinh?z,
(¢) 1 — tanh?z = sech?z.

Prove that (a) sinh2? (2/2) = 4 (coshz—1), (b) cosh?(z/2) = 4 (cosh z + 1).

Find u(z,y) and v(z, y) such that (a) sinh2z = u+iv, (b) zcoshz = u + iv.

Ans. (o) u = sinh 22 cos 2y, v = cosh 2z sin 2y
(b)) u = xcoshzcosy — ysinhzsiny, v = y coshz cosy + « sinh z siny

Find the value of (a) 4 sinh(zi/3), (b) cosh(2k + 1)xi/2, k = 0,%1,%2,..., (¢) coth 3=i/4.
Ans. (a) 2iV/3, (b) 0, (¢) §
3 :
(a) Show that In (—1 - %:) = %’ + 2kr) i, k=0,%1,%2, .. .. (b) What is the principal value?

Ans. (b) 4x1/8

Obtain all the values of (a) In(—4), (b) In (34), (c) In(V8—14) and find the principal value in each case.
Ans. (a) 2In2 + (v + 2k#)i, 2In2 + wi. (b) In3 + (x/2 + 2k=)i, In3 + =i/2. (c) In2 + (11x/6 + 2k=)i,
In2 + 11xi/6

Show that In(z—1) = §In{(x—1)2+ 2} + itan—1y/(x—1), giving restrictions if any.

z+1

Prove'that (a)cos—lz = % In(z+V22—1), (b) cot—22z = 1 ln (‘ ‘.) indicating any restrictions.

Prove that (a) sinh~1z = In(z+ V22 +1), () coth~1¢ = —ln (:f :)

Find all the values of (a) sin—12, (b) cos—!4.
Ans. (@) *iln@+V3)+=/2+2kr (b) —iln(V2+1)+ »/2 + 2kr, —iIn (V2 —1) + 32/2 + 2k=
Find all the values of (a) cosh—14, (b) sinh—1{In(-1)}.
Ans. (@) In(VZ+1) + 7i/2 + 2kwi, In (V2 — 1) + 37i/2 + 2pri
(5) In [k + 1)x + V(2k + 1)%2 — 1] + #i/2 + 2mei,
In [V(2k + 1)%2 — 1 — (2k + 1)x] + 3#i/2 + 2mwi, k,m = 0,%1,%2,...

Determine all the values of (a) (1+14)!, (b) 1v3,
Ans. (a) e~"/4+2kv {cog (§In2) + i sin(§In2)}, (b) cos (2V2 kr) + i sin (2V2 kx)

Find (a) Re (1= 9149, () |(-)~"].
Ans. (a) e%in2 — Tn/4 — 2kr cog (To/d + $in2), (b) edm/a+ ke

Find the real and imaginary parts of z* where z = 2+ y.

Show that (a) f(z) = (£2-="1)1/3, (b) f(z) = 2!/2+21/3 are algebraic functions of z.

BRANCH POINTS, BRANCH LINES AND RIEMANN SURFACES

8.
86.
87.
88.

Prove that z = *{ are branch points of (z%+ 1)1/3,

1/3
Construct a Riemann surface for the functions (a) z!/3, (b) z1/2(z—1)1/2, (¢) (: t 2) i

Show that the Riemann surface for the function z1/2+4 z1/3 has 6 sheets.

Construct Riemann surfaces for the functions (a) In(z+2), (b) sin—1z, (c) tan—!s.
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LIMITS
89. (a) If f(z) = 22+ 2z, prove that Iim| f(z) = 2i—1.

F L

, find lim‘ f(z) and justify your answer.
z-

22+2z z7i
(8. 8. 0 = {3+21‘ z=i

24+ L4 .. 5 i
Prove that BT’}(W =1 -}l.

= 3 93
91. Guess at a possible value for (a) lim 7’, (b) lim X = 2;’ and investigate the correctness
of your guess. r2+i1+2 =241 22+
92. If lim f(zy = A and lim g(z) = B, prove that (a) lim {2f(z) — 3ig(z)} = 24 — 3iB,
z=+ 2y z=2z, z=2g
(b) lim {pf(z) + qg(z)} = pA + qgB where p and g are any constants.
l'-.ln
93, If lim f(z) = A, prove that (a) lim {f(2)}2 = A%, (b) lim {f(z)}®> = A3. Can you make a
z=+2g z= 29 z=+2q
similar statement for lim {f(z)}*? What restrictions, if any, must be imposed?
z=—+ 2y
94. Evaluate using theorems on limits. In each case state precisely which theorems are used.
. » e (2z—3)(4z+1
(a) zanr;‘ (iz4 + 3z 101) (c) I"F/z =17 ' R 2
() lim R TR
) lim 22 22+ 1 z1+i |22—22+2
zemira 2+ 2+ 1 29+1
Ans. (a) —12 + 61, (b) \/5(1 +1)/2, (¢) —4/3 — 4i, (d) 1/3, (e) —1/4
. . R z .
95. Find ; _l.x:nl (z—em )(,a 7 1); Ans. 1/6 — iV/3/6
96. Prove that if f(z) = 322+ 2z, then lim 10— flz) 62, + 2.
T2y z2—2
=] . flzg+ k) — f(zo) 7 2
97. 1 = = #* —2/3,
f f(z) = 3 e £ 3" prove that }.I-Lno & BT provided z, 2/3
98. If we restrict ourselves to that branch of f(z) = Vz2+ 3 for which f(0) = V3, prove that
lim M2 T9— 4 Vz + 3—2 . 1
z=1 1 . 2
99. Explain exactly what is meant by the statements (a) lim‘ /(z—i)?2 = =, (b) |lm 2z4 :11 =2
T tad ]
100. Show that (a) lim (sinz)/z = 2/#, (b) lim 22 cosh 4z/3 = =%/8.
z=w/2 z=—7i/2
101. Show that if we restrict ourselves to that branch of f(z) = tanh—1z such that f(0) =0, then
lim f(z) = 3=i/4.
z=-—{
CONTINUITY
2
102. Let f(z) = :—4"24' if z% 2i, while f(2¢{) = 3+ 4i. (a) Prove that lim‘ f(z) exists and determine its
= , zZ=
value. (b) Is f(z) continuous at z=2i? Explain. (c) Is f(z) continuous at points z+2i?7 Explain.
103. Answer Problem 102 if f(2i) is redefined as equal to 4i and explain why any differences should occur.
104. Prove that f(z) = 2z/(z44-1) is continuous at all points inside and on the unit circle |z| =1 except
at four points, and determine these points. Ans, e2k+Dri/d | = 0,1,2,3
105. If f(z) and g(z) are continuous at z=z, prove that 3f(z) —4ig(z) is also continuous at z =z,
106. If f(z) is continuous at z = z,, prove that (a) {f(2)}? and (8) {f(z)}* are also continucus at z=2z,

Can you extend the result to {f(z)}* where n is any positive integer?
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107. Find all points of discontinuity for the following functions.

= h
@ f = 20 1w = 2L (@ fa) = eots, @) S5 = [~ sees, () J@) = S
Ans. (a) —1 x4 (c) kx, k = 0,%1,%2, ...

(b) £2, *2i (d) 0, (k+ m, k=0,%1,*2, ... B e T e B

E 108. Prove that f(z) = z22—2z+ 3 is continuous everywhere in the finite plane.

2241

P g is (a) continuous and (b) bounded in the region |z| = 2.

109. Prove that f(z) =

110. Prove that if f(z) is continuous in a closed region, it is bounded in the region.
111. Prove that f(z) = 1/z is continuous for all z such that |z| > 0, but that it is not bounded.

112. Prove that a polynomial is continuous everywhere in the finite plane.

2241

113. Show that f(z) = Z————

is continuous for all z outside |z| = 2.

UNIFORM CONTINUITY
114. Prove that f(z) = 8z2—2 is uniformly continuous in the region |z| = 10. .

115. Prove that f(z) = 1/z2 (a) is not uniformly continuous in'the region |z| =1 but (b) is uniformly
continuous in the region § =|z| S 1.

116. Prove that if f(z) is continuous in a closed region R} it is uniformly continuous in R.

SEQUENCES AND SERIES

n2n n n :
117. Prove tha a im —=20 im - =1-1.
. that (a) ,].l...nn3+1 v (0 ul-.lu(n+3i n+ ) X

1
118. Prove that for any complex number 2z, lim (1 + 32/n2) = 1.
N =+ 00

n=s oo

S\
119. Prove that lim n (1;”> = 0.

120. Prove that lim ni™ does not exist.

n=s00

121. If lim |u,) = 0, prove that lim u, = 0. Is the converse true? Justify your conclusion.
n =+ 00

=0

122. If lim a, = A and lim b, = B, prove that (a) lim (a,+b,) = A+ B, (b) lim (a,—b,) =
n=sx0 n=+n

n= o0 ne=s 0

A—B, (c) lim ab, = AR, (d) lim a,/b, = A/B if B#0.

123. Use theorems on limits to evaluate each of the following.

. in—in+1—38i " . -
(a) ’!l_r}as _——(Zn+4i—-3)(n—i) (c) "gnz Vn+2i — Vnti
@ lim Va{Vn+2i — Vn+i)

(n? + Bi)(n — 1)
ind—3n+4—1i

Ans. (a) 4i, (0) 1, () 0, (d) &i

{(b) lim

n =00

cee +
W8 I T we = § pooes et fipp RN o

N0 n=—o n

125. Prove that the series 1+ /3 + (i/3)2+4 -+ = 3 (i/3)"~! converges and find its sum.
Ans. (9 + 39)/10 =t

126. Prove that the series i— 2i + 3i — 4i+ -+ diverges.

127 If the series 3 a, converges to A, and 3 b, converges to B, prove that S (a, +ib,) converges
n=1 :

n=1 n=1
to A +iB. Is the converse true?

L n
128. Investigate the convergence of E'f:ﬁ where o = V3+i. Ans. conv.
¥ n=1
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MISCELLANEOUS PROBLEMS

129.

131.
132.

133.

134.

135

136

-

137.

138.

139,

140.
141,

142,

143.

144

145

146.
147.

148.

149.

150.

151,

Let w = {(4d—2)(z2+4)}"/2. If w=4 when z=0, show that
if z describes the curve C of Fig. 2-32, then the value of w at c
2=6is —41'\/5.

Prove that a necessary and sufficient condition for f(z) =
u(x,y) + iv(z,y) to be continuous at z = zy = z,+ 1Yo is that l“
u(z,y) and v(z, y) be continuous at (z,, ¥,).

i Fig. 2-32
Prove that the equation tanz = z has only real roots.

A student remarked that 1 raised to any power is equal to 1. Was he correct? Explain,

i in2  sin3¢ , ° 2 sine
Show that 302 4 8in2e & wa = sing
2 22 23 5 —4cose

Show that the relation |f(z+iy)| = | f(x) + f(iy) | is satisfied by f(z) =sinz. Can you find any
other functions for which it is true?

Prove that lim % —3z+2

zswzi+ 22— 3245 = 5

Prove that |cscz| = 2e/(e2—1) if |y| 2 1.

Show that Re({sin-'z} = J(Va?+2+2z+1 — Va2 +y2— 2z +1).

If f(z) is continuous in a bounded closed region R, prove that (a) there exists a positive number M
such that for all z in R, |f(2)| = M, (b) | f(z)| has a least upper bound ux in R and there exists at
least one value z, in R such that | f(zy) | = p.

Show that |tanh =(1+i)/4| = 1.

Prove that all the values of (1 —i)VZ{ lie on a sl. «ight line.

Evaluate (a) coshri/2, (b) tanh~tw.  Ans. (a) 0, (b) (2Kk+ L)wif2, k = 0,=1,+2, ...
If tanz = w+iv, show that
= sin 2z § = sinh 2y
cos 2z + cosh 2y ' cos 2z + cosh 2y

Evaluate to 3 decimal place accuracy: () e3~2,, (b) sin (5 — 4i).

1 + ¢ tan (¢/2)

P R
Tore e {1 — i tan (#/2)

} = cos 8, indicating any exceptional values.

If lim f(z) = A and 1lim g(z) = B » 0, prove that lim f(2)/g(z) = A/B without first

=2 I=* 2y Z= 2y

proving that lim 1/g(z) = 1/B.
T= 2y

1 if || is-rational

. .. . . Prove that f(z) is discontinuous at all values of z.
0 if |2] is irrational

Let  f(2) :’{
Prove that if f(z) = u(x,y) + iv(z,y) is continuous in a region, then (a) Re({f(z)} = u(x,y) and
(6) Im {f(2)} = v(x,y) are continuous in the region.

Prove that all the roots of 2z tanz = k, where k > 0, are real.

Prove that if the limit of a sequence exists it must be unique.
' i
(a) Prove that lim (Vn+1 — Vn) = 0.

n=»

(b) Prove that the series E Vn+1—+vn) diverges, thus showing that a series whose nth term
n=1

approaches zero need not converge.

If zg4y = §z, +1/2,), n=0,1,2,... and —=/2 < arg 2y < '1-/2, prove that lim 2z, = 1.,

ne=sw



Chapter 3

DERIVATIVES _
If f(2) is single-valued in some region R of the z plane, the derivative of f(z) is
defined as
z) = lim {Z+22) —f(2)
f'(2) Jim e (1)

provided that the limit exists independent of the manner in which Az- 0. In such case
we say that f(z) is differentiable at z. In the definition (1) we sometimes use & instead
of Az. Although differentiability implies continuity, the reverse is not true (see Problem 4).

ANALYTIC FUNCTIONS

If the derivative f’(z) exists at all points z of a region R, then f(z) is said to be
analytic in R and is referred to as an analytic function in R or a function analytic in R.
The terms regular and holomorphic are sometimes used as synonyms for analytic.

A function f(z) is said to be analytic at a point z, if there exists a neighbourhood
|z2—z| < 8 at all points of which f’(z) exists.

CAUCHY-RIEMANN EQUATIONS
A necessary condition that w = f(2) = w(z,y) + iv(x,y) be analytic in a region ®
is that, in R, u and » satisfy the Cauchy-Riemann equations
ou _ v su _ _ov
ay’ dy ~ oz 2)
If the partial derivatives in (2) are continuous in R, then the Cauchy-Riemann equations
are sufficient conditions that f(z) be analytic in ®. See Problem 5.

The functions u(z,y) and v(z,y) are sometimes called conjugate functions. Given
one we can find the other (within an arbitrary additive constant) so that u+iv = f(2)
is analytic (see Problems 7 and 8).

HARMONIC FUNCTIONS
If the second partial derivatives of u and v with respect to z and y exist and are
continuous in a region R, then we find from (2) that (see Problem 6)

Pu | Pu v | v _
wrtay =0 wty =0 )
It follows that under these conditions the real and imaginary parts of an analytic function
satisfy Laplace's equation denoted by 7
o A 4 92 9%
a7+£,-=0 or Vv =0 where V"E*W (4)
The operator V2 is often called the Laplacian.

63
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Functions such as u(z,y) and v(z,y) waich satisfy Laplace’s equation in a region R
are called harmonic functions and are said to be harmonic in R.

GEOMETRIC INTERPRETATION OF THE DERIVATIVE

Let 2o [Fig. 3-1] be.a point P in the z piane and let wo [Fig. 3-2] be its image P’ in
the w plane under the transformation w = f(z). Since we suppose that f(z) is single-valued,
the point zo maps into only one point we.

z plane

Y

' Az
zo+ Az

%o

Fig. 3-1 Fig.3-2

If we give zo an increment Az we obtain the point Q of Fig. 3-1. This point has
image Q' in the w plane. Thus from Fig. 3-2 we see that P’Q’ represents the complex
number Aw = f(zo+ Az) — f(zo). It follows that the derivative at 2o (if it exists) is given by

lim [Go+82) — fz9) _  py P (5)
Bz—0 Az Q=P
i.e. the limit of the ratio @’P’ to QP as point Q approaches point P. The above interpre-
tation clearly holds when zo is replaced by any point z.

DIFFERENTIALS
Let Az =dz be an increment given to z. Then
Aaw = f(z+4z) — f{z) (6)
is called the increment in w = f(z). If f(z) is continuous and has a continuous first
derivative in a region, then

aw = fl(2)az + Az = f(2)dz + edz (7)

-

where ¢~ 0 as Az~ 0. T}le expression
: . dw = f'(z)dz (8)
is called the differential of w or f(z), or the principal part of Aw. Note that aw »#dw
in general. We call dz the differential of 2.

Because of the definitions (1) and (8), we often write

dw fz+82) - f(z) _ |im &% (9)
Az

@ = e = I s B2
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It is emphasized that dz and dw are not the limits of Az and Aw as Az 0, since these
limits are zero whereas dz and dw are not necessarily zero. Instead, given dz we determine
dw from (8), i.e. dw is a dependent variable determined from the independent variable dz

for a given z.

It is useful to think of d/dz as being an operator which when operating on w = f(?)
leads to dw/dz = f’(2).

RULES FOR DIFFERENTIATION

If f(z), 9(z) and h(z) are analytic functions of 2, the following differentiation rules
(identical with those of elementary calculus) are valid.

1. f—zlf(z)w(z)} = g‘;f(zﬁgzg(z) f'@) + 9'(2)

d
2. L) -0@) = Si) - o) = () - o)
3. % {cf(2)} = c;—z f(z) = cf’(?) where ¢ is any constant

1. Ly@een = MEee +e@ L@ = 9@ + 6 1)

d d
dffe _ /BT e re) - 1000
5. p

9) 9P : 9@P 1E S
6. If w=f({) where {=g(z) then
d ;
™= L= 0% = M@ ee (10)
Similarly, if w = f({) where { = g(y) and 5 = h(2), then
dw _ dw df dy (11)

EZ— - Ef'dq dz

The results (10) and (1) are often called chain rules for differentiation of
composite functions.

7. If w=f(z), then z=f"!(w); and dw/dz and dz/dw are related by

dw _ 1
dz T dz/dw e
8. If z=f(t) and w = g(t) where t is a parameter, then
dw _ dw/dt _ g'(t) (13)

de 7 defdt’ T (D)
Similar rules can be formulated for differentials. For example,
d(f(2) +9@)). = df(2) + dg(z) = [(D)dz+g'(@)dz = ([(2) +0'(2)) dz
d{f(z) 9(2)) = f(2) dg(z) + 9(2) df(z) = {f(2) 9'(2) + 9(2) f'(2)} dz

DERIVATIVES OF ELEMENTARY FUNCTIONS

In the following we assume that the functions are defined as in Chapter 2. In the
cases where functions have branches, i.e. are multi-valued, the branch of the function
on the right is chosen so as to correspond to the branch of the function on the left. Note
that the results are identical with those of elementary calculus.
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d _ d s |
1. E(C) =0 16. acot 12 = 132
-Ei— " = n—1 _d_ -1y = 1
2. dzz = nz 17. dzsec z = T
e I TS |
3. dze = e 18. 2z °5¢ z = e
4. O%a' = a*lna 19. a%sinhz = coshz
d . d .
6. S—sinz = cosz 20. —-coshz = sinhz
dz dz
Gi z = —sinz 21 —d—t hz = h?z
. gz 082z = —sin ] = sec
7 itanz: = sec?z 22 —d—cothz = —csch?z
todz * o dz
d d
8. E—COtz = —csclz 23. ——sechz = —sechztanhz
z dz
d d
9. 4 Secz = secz tan z 24. TCSChz = —cschzcothz
¥4 ¥4
d . 1
10. Ed;cscz = —csczcotz 25. »(Esmh"lz = m
4 ~ 4, _1 P T
11, dzlogez = dzlnz =3 26. a;cosh Z = oy
a4 _ logae 4., - 1
12, == logaz = ; 27. 7= tanh~!'z = o5
d ., _ 1 4 i, = 1
13. cEsm 1z = = 28. T coth-'z = =
14 icos"z - 29. g-sech"z o
T odz 1= 22 % 21—zt
) P | 30. ic:«u:h“z .. I
el L A dz A+ 1

HIGHER ORDER DERIVAT!IVES
If w = f(z) is analytic in a region, its derivative is given by f/(z), w’ or dw/dz. If
) d\/d d?
f'(z) is also analytic in the region, its derivative is denoted by f"'(z), w”* or (d—zX%) = Tizl"z_
d"w

Similarly the nth derivative of f(z), if it exists, is denoted by f™(z), w™ or 7= where
n is called the order of the derivative. Thus derivatives of first, second, third, ... orders
are given by f/(z), f(z), f'(z), .... Computations of these higher order derivatives

follow by repeated application of the above differentiation rules.

One of the most remarkable theorems valid for functions of a complex variable and
not necessarily valid for functions of a real variable is the following

Theorem. If f(z) is analytic in a region R, so also are f’(z), f(2), ... analytic in R,
i.e. all higher derivatives exist in R.

This important theorem is proved in Chapter b.



CHAP.3]" COMPLEX DIFFERENTIATION, THE CAUCHY-RIEMANN EQUATIONS 67

L’HOSPITAL’S RULE
Let f(z) and g(z) be analytic in a ragion containing the point z, and suppose that
f(z0) = g(z0) = 0 but g’(z0) 0. Then L'Hospital’s rule states that
) _  f(z)
me@ = ) (14)
In case f’(z0) = 9’(z0) = 0, the rule may be extended. See Problems 21-24.

We sometimes say that the left side of (14) has the “indeterminate form” 0/0, although
such terminology is somewhat misleading since there is usually nothing indeterminate
involved. Limits represented by 3o-called indeterminate forms /w0, 0+, «°, 0°, 1 and
 — can often be evaluated by appropriate modifications of L'Hospital’s rule.

SINGULAR POINTS

A point at which f(z) fails to be analytic is called a smgular point or singularity of
f(z). Various types of singularities exist.

1. Isolated Singularities. The point z =2, is called an isolated singularity or isolated
singular point of f(z) if we can find 8§ >0 such that the circle |z— 2z = 8 encloses
no singular point other than z, (i.e. there exists a deleted § neighbourhood of z,
containing no singularity). If no such & can be found, we call z, a non-isolated
stngularity.
If zo is not a singular point and we can find >0 such that |z—z| = &
encloses no singular point, then we call zo an ordinary point of f(z).

2. Poles. If we can find a positive integer n such that !gr}. (z—2zo)"f(z) = A = 0,

then z =z, is called a pole of order n. If n=1, z is called a simple pole.
Example 1: f(z) = - hau a pole of order 3 at z =2.
(z—2)3
3z— 2
(z—=1)2%(z+ 1)(z—4)
poles at z=—1 and z2=4
If g(2) = (z—20)"f(z), where f(zo) #0 and n is a positive integer, then
2=z is called a zero of order n of g(z). If n=1, z is called a simple zero. In
such case 2o is a pole of order = of the function 1/g(2).

Example 2: f(z) = has a pole of order 2 at z=1, and simple

3. Branch Points of multiple-valued functxons, already considered in Chapter 2, are
singular points.
Example 1:  f(z) = (z—3)!2 has a branch point at z=3.
Example 2: f(z) = In(22+2z—2) has branch points where 22+z—2 = 0, ie. at
z=1 and z=-2.

4. Removable Singularities. The s::gular point zo is called a removable singularity
of f(z) if lim f(z) exists.

Example: The singular point z=0 is a removable singularity of f(z) = ___sn; % since
. 8inz
= lim =1L
z=0

5. [Essential Singularities. A singularity which is not a pole, branch point or remov-
‘able singularity is called an essential singularity.
Example: f(z) = e1/(x=2) hag an essential singularity at z =2.
If a function is single-valued and has a singularity, then the singularity is
either a pole or an essential singularity. For this reason a pole is sometimes

called a non-essential singularity. Equivalently, z=z, is an essential singularity
if we cannot find any positive integer n such that lim (z —z)"f(z) = A » 0.
22y
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6. Singularities at Infinity. The type «f singularity of f(z) at z=e [the point at
infinity; see Pages 6 and 38] is the sarae as that of f(1/w) at w=0.
Example: The function f(z) =2z% has a pole of order 3 at z= =, since f(1/w)=1/w?
has a pole of order 3 at w =0.

For methods of classifying singularities using infinite series, see Chapter 6.

ORTHOGONAL FAMILIES
If w=f(z) =u(x,y)+iv(z,y) is analytic, then the one-parameter families of curves

wz,y) = o v(z,y) =B (15)
where a-and.B are constants, are orthogonal, i.e. each member of one family [shown heavy
in Fig. 3-3] is perpendicular to each member of the other family [shown dashed in Fig. 3-3]
at the point of intersection. The corresponding image curves in the w plane consisting of
lines parallel to the » and v axes also form orthogonal families [see Fig. 3-4].

z plane w plane
v v
|
/ |
—_ 1 11
J— | / f
, ﬁ\/\/\ 7
L ] u
/ /\
V] # /
7/
/ // P P
s P
Fig. 3-3 Fig. 3-4

In view of this, one might conjecture that when the mapping function f(z) is analytic
the angle between any two intersecting curves C, and C: in the z plane would equal (both
in magnitude and sense) the angle between corresponding intersecting image curves Ci
and C: in the w plane. This conjecture is in fact correct and leads to the subject of
conformal mapping which is of such great importance in both theory and application that
two chapters (8 and 9) will be devoted to it.

CURVES

If ¢(t) and y(t) are real functions of the real variable ¢ assumed continuous in
t1 =t =t;, the parametric equations ;

z = zxz+1iy = ¢() +iy(t) = 2(1), Wst=t, (16)
define a continuous eurve or arc in the z pl.ne joining points a =z(t,) and b = z(t,)
[see Fig. 3-6 below]. ,

If ¢ » &, while 2(t)) = z(t2), i.e. a =b, the endpoints coincide and the curve is said
to be closed. A closed curve which does not intersect itself anywhere is called a simple
closed curve. For example the curve of Fig. 3-6 is a simple closed curve while that of
Fig. 3-7 is not.

If ¢(¢) and y¢(t) [and thus 2z(t)] have continuous derivatives in ¢, =t =1¢;, the curve
is often called a smooth curve or arc. A curve which is composed of a finite number of
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v Yy v

L

Fig.3-5 Fig. 3-6 Fig.3-7

smooth arcs is called a piecewise or sectionally smooth curve or sometimes a contour. For
example, the boundary of a square is a piecewise smooth curve or contour.

Unless otherwise specified, whenever we refer to a curve or simple closed curve we
shall assume it to be piecewise smooth.

APPLICATIONS TO GEOMETRY AND MECHANICS

We can consider z(t) as a position vector
whose terminal point describes a curve C in a
definite sense or direction as { varies from ¢, P az = z(t+ At) - a(t)
to f2. If z(t) and z(f{ + At) represent position
vectors of points P and Q respectively, then

Az 2(t +at) — 2(t)

at At
is a vector m the direction of Az [Fig. 3-8].
If RTO -i—z ELT exists, the limit is a vector in
the direction of the tangent to C at point P and

is given by

dz £ 4 dy Fig.3-8

dt ~ dt
If ¢t is the time, dz/dt represents the velocity with which the terminal point describes the
curve. Similarly, d?z/dt? represents its acceleration along the curve.

COMPLEX DIFFERENTIAL OPERATORS
Let us define the operators V (del) and ¥ (del bar) by
- - vl _3d g8
v=~+t@_2 V= ‘ay"zaz (17)
where the equivalence in terms of the conjugate coordinates z and z (Page 7) follows from
Problem 32.

GRADIENT, DIVERGENCE, CURL AND LAPLACIAN

The operator ¥ enables us to define the following operations. In all cases we con-
sider F(x,y) as a real continuously differentiable function of x and y (scalar), while
A(z,¥) = P(x,y) +iQ(x,y) is a complex continuously differentiable function of z and y
(vector). y

’ ; 2+Z2 z-—12 b

In terms of conjugate coordinates, F(z,y) = F‘(—Z—, —21—> = G(z,2) and
A(z,y) = B(z,32).

1. Gradient. We define the gradient of a real function F' (scalar) by

oF aF G

grad F = ©QYF = -a;+i—a§ = 2—6? (18)
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Geometrically, this represents a vector normal to the curve F(z,y) = ¢ where
c is a constant (see Problem 33).
Similarly, the gradient of a complex function A = P +1iQ (vector) is defined by

o .0 .
gradA = VA = (3—5+15;;)(P+10)
P aQ . [P 0Q>_ aB
- 55_6y+l(ay+ax = %% (£8)

In particular if B is an analytic function of z then 9B/dZ = 0 and so the gradient

is zero, i.e. 2z = ﬂ, oF = —9—9, which shows that the Cauchy-Riemann equa-
ox oy’ oy ox
tions are satisfied in this case.

Divergence. By using the definition of dot product of two complex numbers
(Page 6) extended to the case of operators, we define the divergence of a complex

function (vector) by

divA = VoA = Re(TVA)} = Re{(%—ia—a&)(P+iQ)}
oP | 9Q _ B
H-F&_y = ZRG{GZ} (20)

Similarly we can define the divergence of a real function. It should be noted that
the divergence of a complex or real function (vector or scalar) is always a real

function (scalar).

Curl. By using the definition of cross product of two complex numbers (Page 6),
we define the curl of a complex function by

curldA = Vx4 = Im(v4) = Im{(%—ié%)wu@)}
Q P B

Similarly we can define the curl of a real function.

Laplacian. The Laplacian operator is defined as the dot or scalar product of ¢
with itself, i.e.,

- vt = Re(UYl = Rel(Z_id)(L il
VoV = VY? = Re(VV) = Re{(ax t&y)(&xd*'iay)}
T T Y .
W Tt T tna (22)

'Note that if A is analytic, V?A =0 so that V2P =0 and V?Q =0, ie. P and Q

are harmonic.

SOME IDENTITIES INVOLVING GRADIENT, DIVERGENCE AND CURL
The following identities hold if A,, A; and A are differentiable functions.

I

grad (A, + A;) = grad A, + grad A,

div(A:+A2) = divA, + div A,
curl (A;+A2) = curl A, + curl A.
grad (A14:) = (Ai)(grad Az) + (grad A)(A2)

curl grad A 0 if A is real or, more generally, if Im {A} is harmonic.
div grad A = 0 if A is imaginary or, more generally, if Re {4} is harmonic.

Il
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Solved Problems

DERIVATIVES

1. Using the definition, find the derivative of w = f(z) = 2°—2z at the point where
(a) 2=20, (b) 2=-1. '
(a) By deﬁhition, the derivative at z =z, is

- (2o + Az) — f(z) (20 + A2)* — 2(z + Az) — {2} — 22}

! = 1 -
flag) = Jim > i -
= i Ft 3382 + 320(A2)? + (A2 — 220 — 202 — 2] + 25,
Az=0 Az :
= ]imo 31‘(2) + 3254z + (A2)2 — 2 = 323 ]
Az =

In general, f'(z) = 322—2 for all 2.

(b) From (a), or directly, we find that if zo=—1 then f'(—1) = 3(—1)2—2 = 1.

2. Show that Edéz does not exist anywhere, i.e. f(z) = Z is non-analytic anywhere.

By definition, iy = lim [eto2) — f)
dz Az=0 Az
if this limit exists independent of the manner in which Az = Az +iAy approaches zero.
Then Ao lim 2tAz— 2 lim S X W FAcFisy — z+iy
dz Az Az Az—0 Az + 1Ay
Ay =0
- “mx—iy+Ax—iAy-(:c—iy) il mAx——iAy
Az—0 Az + iAy Ax—0 Az + 1Ay
Ay =0 Ay=0

B I
If Ay =0, the required limit is Al:nllo e 1.

If Ax =0, the required limit is lim —2¥ = —1,
Av=0 Ay
Then since the limit depends on the manner in which Az- 0, the derivative does not exist, i.e.
f(z) =z is non-analytic anywhere.

3. If w={f(z)= ;—i—g, find (a) %} and (b) determine where f(z) is non-analytic.

(a) Method I, using the definition.
1+ (2+42) 142z

dw = lim [etas) —fa) _ lim bl kst Aol
dz Az=0 Az Az=0 Az
. 2 _ 2
S ETT e 2)?

independent of the manner in which Az - 0, provided z# 1.
Method 2, using differentiation rules.
By the quotient rule [see Problem 10(c)] we have if z+ 1,

* Td d
4(1ts) _ Trgidn =G0 . peamepassy . 04
a\1=3) = a—p =

(1-2) (1—2)?

(d) The function f(z) is analytic for all finite values of z except z=1 where the derivative does not
exist and the function is non-analytic. The point z=1 is a singular point of f(z).

4. (a) If f(2) is analytic at zo, prove that it must be continuous at z,.
(b) Give an example to show that the converse of (a) is not necessarily true.
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flzg -+ k) — f(zg)

(@) Since  f(zo+ h) — f(z9) = *h where h = Aé # 0, we have

h
+h) — - ’
i At = 1) = i (IR otk & o =
because f’(z;) exists by hypothesis. Thus
'l‘imnf(lo‘*h) = flzg) = 0 or 'l'imof(zo+h) = f(zo)

showing that f(z) is continuous at z,.

(b) The function f(z) = z is continuous at z,, However, by Problem 2, f(z) is not analytic anywhere.
This shows that a function which is continuous need not have a derivative, i.e. need not be analytic.

‘CAUCHY-RIEMANN EQUATIONS

5. Prove that a (a) necessary and (b) sufficient condition that w = f(z) = u(z, y) +iv(z,¥)
u v du oV
9 oy’ oy oz
are satisfied in R where it is supposed that these partial derivatives are continuous in R.

be analytic in a region R is that the Cauchy-Riemann equations

(a) Necessity. In order for f(z) to be analytic, the limit
f(z + Az) — f(2)

Alz‘-'-?o Az . .
= P& = Jim {u(z + Az, y + Ay) + iv(x + Ax, y_+ Ay)) — {u(x,y) + iv(x,y)} (1)
A:-og Ax + 1Ay
A=

must exist independent of the manner in which Az (or Ax and Ay) approaches zero. We consider
two possible approaches.

Case 1. Ay =0, Ax —» 0. In this case (1) becomes
lim {u(a:+Aa:, y) — u(x, y) [v(n:+Aac y) — v(x, y)]} B au _F .dv

Ax—0 Ax Az ax

provided the partial derivatives exist.
Case 2. Ax =0, Ay~ 0. In this case (1) becomes

{u(x.y+Av) —wzy) , v, y+ay) — v(x,y)} = 10w  ov _ _ou N

lim ; = i —
1Ay Ay 10y Y oy Yy

Ay =0

Now f(z) cannot possibly be analytic unless these two limits are identical. Thus a necessary
condition that f(z) be analytic is
au + .0V du |, v Ju v v du

% = Tty or "oy’ w - oy

(b) Sufficiency. Since du/dx and du/dy are supposed continuous, we have

Au = u(x+ Az, y+Ay) — u(z,y)
= f{u(x+Aax,y+4ay) — ulz,y+4ay)} + {ux, y+ay) — ulz,y))
F) 3 E)
= (%"‘f})ﬁ%"‘(é‘ﬁ"{“’h)ﬁv - uA:v+'—Av+qA:¢+v;lAy

where ¢, >0 and », >0 as Ax >0 and Ay - 0.

& -

Similarly, since dv/éx and dv/dy are supposed continuous, we have

v
& Av = (£+ (2) Ax + ( y+"2) Ay = 3 28w + —'Ay + oz + ny Ay
where ¢,—>0 and 7,20 as Az~ 0 and Ay = 0. Then
Aw = Au + i4v = ( +z—-—)Ax+( +t—~>Ay+eAx+nAy (2)

where ¢ = ¢;+1, >0 and » = 9, +inp >0 as Az >0 and Ay — 0.

By the Cauchy-Riemann equations, (2) can be written
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.U

du , .dv ov
aw = (-t t-a;)Az + (—a—;+1-é;)£w + ez + ndy

du  .dv .
= (‘—’-E-Fzﬁ)(t\x-l'n\v) + eAz + nay

Then on dividing by Az = Az +iAy and taking the limit as Az— 0, we see that
dw . Aw

T f(z) = lim

aw _ e o
Az—0 AZ 0% ox

so that the derivative exists and is unique, i.e. f(z) is analytic in R.

If f(z) = u+1iv is analytic in a region R, prove that » and v are harmonic in R if
they have continuous second partial derivatives in K.

: . . . u _ o v _

If f(z) is analytic in R then the Cauchy-Riemann equations (1) e and (2) W

are satisfied in ®. Assuming u« and v have continuous second partial derivatives, we can differentiate
2 2

both sides of (1) with respect to = and (2) with respect to y to obtain (%) % _ 0% ard

0z @
2y u _ 2u |, u i

(4) W= Tt from which v Sl or 3;5"*':3? = 0, i.e. u is harmonic.

Similarly, by differentiating both sides of (1) with respect to y and (2) with respect to x, we find
a2y | 9% _ s "
FrRir i 0 and v is harmonic.

It will be shown later (Chapter 5) that if f(z) is analytic in R, all its derivatives exist and are
continuous in R. Hence the above assumptions will not be necessary.

(e) Prove that % = e *(xsiny — y cosy) is harmonic.
(b) Find v such that f(z) = u+ v is analytic. ‘

(a) g% = (e~ *)(siny) + (—e~*)(xsiny —ycosy) = e~ *giny — xe Fsiny + ye Tcosy

2
% = a_i(e-f siny — ze~Fsiny + ye~Tcosy) = —2e~*siny + ze~*siny —ye Tcosy (1)
%s = e *(xcosy + ysiny —cosy) = ze Tcosy + ye *siny — e *cosy
2
g—;’; = %(ze“’ cosy + ye~*siny — e Fcosy) = —=xe~*siny + 2e *siny +ye Tcosy (2)

" 2 ?u |, % z =
Adding (1) and (2) yields PP + W = 0 and u is harmonic.

(b) From the Cauchy-Riemann equations,

v Ju

_—= —= = -z gi - -z gi -z 3
5 = e~fginy — xe~*giny + ye Tcosy (6))
LA e~%cosy — xe~Tcosy — ye Tsiny 4)
ax Yy

Integrate (3) with respect to y, keeping z constant. Then
v = —e fcosy + ze"*cosy + e *(ysiny+ cosy) + F(=)
= ye *giny + ze~*cosy + F(z) ) . (5)
where F(x) is an arbitrary real function of z.

Substitute (5) into (4) and obtain

—ye~Tginy — xe~*cosy + e *cosy + F'(x) = —ye *siny — xe"Tcosy — ye *siny
or F'(x) =0 and F(x) =¢, a constant. Then from (5),
v = e *(ysiny + xcosy) + ¢

For another method, see Problem 40.
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8. Find f(z) in Problem 7.

Method 1.
We have f(z) = flz+1iy) = ulz,y) + iv(z,y).
Putting y =0, f(z) = u(z,0) + iv(z,0).

Replacing z by 2, f(z) = wu(z,0) + tv(z,0).
Then from Problem 7, u(z,0) = 0, v(z,0) = ze~* and so f(z) = u(z,0) +iv(z,0) = ize~%
apart from an arbitrary additive constant.

Method 2.
Apart from an arbitrary additive constant, we have from the results of Problem 7,

fiz2) = u+ v = e T(xsiny —ycosy) + ‘e *(ysiny + xcosy)

- v — g— ¥ v 4 g—tv e elv — e~ v el + et
= (=) (S5} e (55 ()
2i 2 2i 2
= i(x+iy)e- @t = jze—z

Method 3.
z+2z z—

We have 2 = ——, ¢y = Then substituting into u(x,y) + iv(»,y), we find after much

z
2 2’
tedious labour that Z disappears and we are left with the result ize—=.

In general method 1 is preferable over methods 2 and 3 when both u and v are known. If only u
" (or v) is known another procedure is given in Problem 101. '

DIFFERENTIALS
9. If w=f(2) =22—22% find (a) aw, (b) dw, (c¢) aw — dw.
{(z + Az)? — 2(z + Az)?) — (28 — 222}

= 23 + 3224z + 3z(A2)2 + (Az)3 — 222 — 4z Az — 2(A2)? — 2% + 222
= (322 —4z) Az + (3z — 2)(Az)? + (A2)®

(a) Aw = f(z+ Az) — f(2)

(b) dw = principal part of Aw = (322 —4z2)Az = (322 —4z)dz, since by definition Az =dz. -
Note that f'(z) = 322—4z and dw = (322 —42)dz, ie. dw/dz = 322 — 4z
(¢c) From (a) and (b), dw —dw = (3z2—2)(Az)2 + (Az)3 = eAz. where ¢ = (3z—2)Az + (A2)%
Aw — dw

Note that «—»> 0 as Az— 0, i.e. ST - 0 as Az— 0. It follows that Aw —dw .3 an

infinitesimal of higher order than Az.

DIFFERENTIATION RULES. DERIVATIVES OF ELEMENTARY FUNCTIONS
10. Prove the following assuming that f(z) and g(z) are analytic in a region X.

@ i)+ = @) + 4o

DL + o) i)

Il

) ) 9@)

. o) - 1) — 1(2) $-0(@)

g M} = if g(z) =0
(a) Rd_ (f(2)+g(z)) = lim f(z + Az) + g(z + Az) — {f(2) + g(2)}
¥4 Az=—{ Az

= lim [EX8) = fG) 4 i 08D - 9@ - Ly Lo
Az Z z

Az—0 Az=0 Az
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®) %m,, o) = Jim [z +82) g(z + A:z) — f(#) g(2)
= lim [+ 82){g(z+82) — 1(2)} + g(){f(z+ B2) — f(z))
Az~ 0 Az

= Jlim f(z+89) {L(ii.é%‘_‘i’_)} + Jim o(2) {f(z + A:: - f(z)}

= 1) fole) + o) 102
Note that we have used the fact that lim f(z+ Az) = f(z) which follows since f(z) is

analytic and thus continuous (see Problem 4).

Another method.
Let U=§(z), V=g(z). Then AU = flz+A4z) — f(z) and AV = g(z+az) — g(2), ie.
flz+4z) = U+ AU, g(z+42) = V2 AV. Thus

T}UV = lim WAV +AV)-UV _ lim UAV + VAU + aU &Y
z Az=0 Az Az=0 Az

— tim (&Y 4 pAU AU _ pdv o dU

™~ Al:-n.‘o (UE+ Vit Az AV) = Uy ¥ Py

where it is noted that AV->0 as Az— 0, since V is supposed analytic and thus continuous.

A similar procedure can be used to prove (a).

() We use the second method in (b). Then

_1(g = qim L{U+aU Ul _ . VAU - UaV

dz\V) T ez |V+aV V[ T ™ axVianyv
i 1 yaU _ AV _ V(dU/ds) - UdV/dz)
Bee (V+av)v Az Az - V2

The first method of (b) can also be used.

11. Prove that (a) %e’ =e, (b) ;—ze‘“ = ac¢* where a is any constant.

(2) By definition, w = e* = >+ = ex(cosy +isiny) = u+iv or u = e*cos ¥, v = e*siny.

" u _ 9 v _ _ _0u ¢ :
Since % = efcosy = 3y and ke e*giny = 7’ the Cauchy-Riemann equations are
satisfied. Then by Problem b the required derivative exists and is equal to
u , 0V du  dv % 3 et
a:+'az 'ﬂy+ay = e*cosy + ie*giny = ¢

(b) Let w = et where { =az. Then by part (a) and Problem 39,
d d d di

—_— = —¢gl = —ele 2 = 14 =
& [ P e a e ¥ e *a aedx
We can also proceed as in part (a).
12. Prove that (a) —q-sin z-=-cosz, (b) —d—cosz = —sinz, (c) —fd—tanz = sec?z.
dz . dz ! dz
(@) We have w = sinz = sin(x+iy) = sinz cosh y +icosz sinhy. Then
l u = sinz coshy, v = cosx sinhy
o _ _ B o skiy = 2R !
Now 3z = coszcoshy = M and = = sinz sinhy = 3y so that the Cauchy
Riemann equations are satisfied. Hence by Problem 5 the required derivative is equal to
ou L0v ou v sdipym: ¢ o 0 =
ey + e = tay + -l cosx coshy — isinxz sinhy = cos(zx+1iy) = cosz
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13.

14.
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Another method.
Since sinz = i_z—,e—-h , we have, using Problem 11(b),
1
d . _ d felz—e—1z =_l_d_(z_l£'.—u=.1.u Locty =
dy T = EE(‘T) 2idz®  Zidz' 1T gt e
d o dfdatety _ 1d.,  14d _,
®) 4z %% = dz( 2 ) = 2d:” ot
= 2o = Ln e{'_f’_h = -—sginz
2 21
The first method of part (a) can also be used.
(¢) By the quotient rule of Problem 10(c) we have
: d . . d
d d fainz cosz g-sinz — sinz - cosz
—tanz = - =
dz dz (coa z) cos? z
— (cosz)(cosz) — (sinz)(—sinz) _ cos?z + sin?z _ 1 ~ wecdz
cos?z - cos? z T cos?z
d 1/2 1 ok 1/2 3§ H 3
Prove that T o172’ realizing that z'? is a multiple-valued function.

A function must be single-valued in order to have a derivative. Thus since z!/2 is multiple-valued
(in this case two-valued) we must restrict ourselves to one branch of this function at a time.

Case 1I.
Let us first consider that branch of w = 2!/2 for which w = 1 where z = 1. In this case, w2 =1z
%0 that & _, Gee G0 LA, 1
dw ~ W MOS0 gy T OF @ T
Case 2.
Next we consider that branch of w =z!/2 for which w =—1 where z=1. In this case too, we
have w? =z so that i i i d 7
£ - oW = L e
dw 2w and dz 2w or ® 221/2
In both cases we have -‘;—i;z”z — ﬁ Note that the derivative does not exist at the branch
z

point z=0. In general a function does not have a derivative, i.e. is not analytic, at a branch point.
Thus branch points are singular points.

Prove that di-lnz = —1-
z z

Let w = Inz. Then z = e* and dz/dw = e¥ = z. Hence
d dw 1 1

E'"’ = 4z dzjdw Tz

Note that the result is valid regardless of the particular branch of In z. Also observe that the
derivative does not exist at the branch point z =40, illustrating further the remark at the end of
Problem 13.

15. Prove that ;_zln flg) = f'(z)

d
16. Prove that (a) 5-sin"'z = ——
dz _ ‘/1 2

L f@)
Let w = In{ where { = f(z). Then

dw _ dw df _ 1 d _ [(2)
dz ~dt dz ~ t dz ~— f(2)
1 1

d
, (b) 4 tanh~tz = ——

(a) If we consider the principal branch of sin—1z, we have by Problem 22 of Chapter 2 and by
Problem 16,



«
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d
2 sin-1 &= 22 V1i=22
2z din~'z d{ In (iz + V1 z)}
= -11-% u+\/1—-zz)/(iz+\/1-z'4)
= T+ ja-@) - 22)}/(1z+\/ =)
1
= (14t ) iz+Vi-2) =
(+ 7 / Vi) = =
The result is also true if we consider other branches.
(b) We have, on considering the principal branch,
1 1+z 1 1
-1 = = = = SRS -—
tanh—!z 2ln(l_z) 2ln(1+z) 21!1(1 z)
Then
d 1d 1/ 1 1/ 1 1
—_ -1 = =— = = - = —_—
dztanh z 2 dz In(1+2z) — ln(l z) 2(1+z) +2(1_z) =2

Note that in both parts (a) and (b) tl.. derivatives do not exist at the branch points z = %1,

17. Using rules of differentiation, find the derivatives of each of the following:
(@) cos®(2z +3i), (b) ztan~'(Inz), (c) {tanh~!(iz+2)}~!, (d) (z— 3¢)*=+2

(a) Let n = 22+4+3i, { = cosn, w = {2 from which w = cos?(2z+ 3i). Then using the chain
rule, we have

dw _ dw dg dy -

dz - df d?’ dz (2“)( 8“11,)(2)

(2 cos n)(—sin9)(2) = —4 cos (2z + 31) sin (2z + 31)

]

Another method.

:—z {cos (22 + 31))2 2{cos (2z + 31)) {— cos (2z + 30}

2{cos (2z + 31)}{—sin (2z + 31)} {E (2z + 31)}

—4 cos (2z + 31) sin (2z + 31)

Il

(b diz{(z)[mn-iunz)]} z%[tan"‘(lnz)] + [tan=1(n2) - (z)

Il

B THO 1
z {1 T n z)l} (Inz) + tan—1(Inz)

e =k
1+ (In2)2 + Byt )

(@) o (tanh=1 (iz +2)) 1 ~1(tanh~1 (iz +2)}~? - (tanh~1 (iz + 2))

—{tanh~1 (iz + 2)} -2 {‘(—14.2)‘3} &2 +2)

- _ —i{tanh—1(iz +2)}-?
1— (iz+2)?

]

(d) :iiz {(z — 3i)4=+2} Tdd;(‘“'”’ In(z-3)} = g(4z+2)In (z—3D Edz_ {(4z + 2) In (z — 31)}
= Uzt In(z-3D) {(u +2) % (In(z—39)] + In(z— 3i) %(4: + 2)}
= (42+2)In (z—3{) {42 +2 + 4In(z— 3,’)}

= (z2—3i)*1(42+2) + 4(z— 3i)*=+2 In(z— 3i)



8 COMPLEX DIFFERENTIATION, THE CAUCHY-RIEMANN EQUATIONS [CHAP. 3

18. If w® — 322w + 41Inz = 0, find dw/dz.

Differentiating with respect to z, considering w as an implicit function of 2z, we have

ad;(w"’) - 3%(1210) + 4%(]:\1) = 0 or 3w=d"’ 3z2“;—': —6w T = 0
: . dw _ 6zw — 4/
Then solving for dw/dz, we obtain D 7 —3—w—2_—3; .
19. If w =sin"*(t—3) and z = cos(Int), find dw/dz.
dw _ dwide _ IN1-(-87 _ _ ¢
as ds/de — sin (In t)(1/¢] gin (In t) VI — (¢ — 3)2
20. In Prob]em 18, find d?w/dz>.
dw _ d (dw) 5 i(sz—-‘l/z
dz T dz/ ~ dz\3w?-—322
— (Bw? — 32%)(6zdw/dz + 6w + 4/22) — (6zw — 4/z)(6w dw/dz — 62)
(3w? — 3z2)2

The required result follows on substituting the value of dw/dz from Problem 18 and simplifying.

L’HOSPITAL’S RULE
21. Prove that if f(z) is analytic in a region ‘R including the point z,, then
f(2) = f(za) + ['(20)(z — 20) + 3(2 — 20)
where > 0 as z > zo.
Let _/(z:_—i(_zl) — f'(zg) = = so that
]
f2) = flzo) + F(zo)(z—20) + n(z—2)
Then since f(z) is analytic at z, we have as required

lim g = lim {_——""":"” - f’(Zo)} = ) ~ f) = 0

=+ zy =2y z— Z

22. Prove that if f(z) and g(z) are analytic at z,, and f(z0) = g(20) = 0 but g’(z0) 0, then

f(2) _ f(z)
Iim e = 7

By Problem 21 we have, using the fact that f(zo) = g(z9) = 0,

f(z) = fzo) + f'(zo) (2 —20) + m(z—20) = ['(z) (z— 29) + my(z — 2()
g(2) = g(zo) + 9'(20) (2 — 2zg) + malz — 2g) = 9'(20) (z—2¢) + ma(z — 2)
where lim », = lim 3, = 0. Then, as required,
Z=+ 2y Z=>2zg .
f(z) . {{'(z0) + mHz—2) _ f'(z)
z-u. o(z) 2=z {g'(z0) + 12}z —20) ~ g'(20)

Another method.

lim @D~ i f(2) — f(zo) /9(z) — g(z0)
2= zy o(2)” z= 2 z— 2 z— 2
- . f(2) — f(zq) . g(2) — g(zq) - f'(zo)
= (1 5200/ (m, 125) = 5
219+ 1 — cosz — co82
23. Evaluate (a) hm - (d) 1 1m —?_' (¢) Lo o i

(@) If f{z) = 229+ 1 and g(z) = 26+1, then f(i) = g(i) = 0. Also, f(z) and g(z) are analytic at
z2=14. Hence by L'Hospital's rule,
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1041 1029 5 5
lim 2 = I = lim-zt = 2
:l-onl 28+1 20t 628 zl-I-n(:’lz4 3

() If f(z) = 1—cosz and g(z) =22, then f(0) =g(0) =0. Also, f(z) and g(z) are analytic at
z=0. Hence by L'Hospital's rule,

. 1—cosz . 8inz
lim ——= = lim
z=0 22 z=0 22

Since fy(z) = sinz and g;(z) = 2z are analytic and equal to zero when z=0, we can apply
L'Hospital's rule again to obtain the required limit.

sin z lim $982 _ 1

li = = =
1b 2% amd 2 2

(c) Method I. By repeated application of L'Hospital’s rule, we have

1 1—cosz _ lim sin z = i CoS Z _ 1
z=0 sin 2% z-+022 cos 22 z=02cosz? — 4228inz2 = 2
Method 2. Since limos':z = 1, we have by one application of L'Hospital’s rule,
z=
limlocosz _ g sinz lim (sin z)( 1
=0 8inz2 T ;502zc0822  yLo\ 2 2 cos 22
_ . [sinz\ . 1 . 1y _ 1
- ,l.'...mo( 2 ) ."I‘},(z coszz) - (1)<§) - 9
in 22 2
Method 3. Since lim smzz = 1 or, equivalently, lim-.L—z- = 1, we can write
) =0 2 z~0 8in z
lim 1—cosz _ lim 1 —cosz z2 = ]iml—cosz o &
z=0 8inz?2 T .0 22 sinz2/ = ;¢ 22 T2

using part (b).
5 :
24. Evaluate lim (cosz)""..
z=0
In cos z

2
Let w = (cos z)“.. Then lnw = - where we consider the principal branch of the
logarithm. By L’Hospital's rule,

. . Incosz o (—si
Iimhhw = hm—z,— = lim sin z)/cos z

=0 =0 z=0 2z

- () mm) - o) =

But since the logarithm is a continuous function, we have

Iimlnw = In(lim w> g =i
z=0 z=0 2
or lin}' w = e~1/2 which is the required value.
F
Note that since limcosz = 1 and lina 1/22 = «, the required limit has the “indeterminate
z= F A d

form” 1=,

SINGULAR POINTS

25. For each of the following functions locate and name the singularities in the finite
z plane and determine whether they are isolated singularities or not.

. z o z _ z
@ 1) = o = {GF2n—201 ~ GIopPGe—oipF"
Since lim (:-202/(z) = lim (széﬁ - 81—! % 0, z=2iis a pole of order 2. Similarly

z=—2i i8 a pole of order 2.

Since we can find 8 such that no singularity other than z = 2i lies inside the circle le—2i] = &
(e.g. choose 8 = 1), it follows that z = 2i is an isolated singularity. Similarly z=—2i is an isolated
singularity.
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b) f(z) = sec(l/2).

Since sec (1/z) = the singularities occur where cos(1l/z) =0, ie. 1/z = (2n+ 1)z/2

1
cos (1/z)"
or z = 2/(2n+ 1)r, where n = 0,*1,%2,*3,.... Also, since f(z) is not defined at z=0, it
follows that z =0 is also a singularity.

Now by L'Hospital’s rule,

" 2 1o = i | A 2(@nt Dy
cmaiimmtne |° @n+Dr T es2/@n+ne cos(l/z)
’ = B, e
T 2= 2/(2n+ D — 8in (1/2){—1/22}
_ {2/(2n+1)m)}2 4(—1)n % 0
T sin(@n+1)a/2 T (2n+1)%?
Thus the singularities z = 2/(2n+ 1)/m, v
n =0,%1,%2,... are poles of order one, i.e.
simple poles. Note that these poles are located
on the real axis at z = *2/x, *2/3r, *2/b7, ... —2/6v | 2/6x
and that there are infinitely many in a finite x
interval which includes 0 (see Fig. 3-9). —2/x -2/3z 2/3z 2/
Since we can surround each of these by a
circle of radius 8§ which contains no other
singularity, it follows that they are isolated

singularities. It should be noted that the §
required is smaller the closer the singularity is Fig.3-9
to the origin.
Since we cannot find any positive integer n such that lin-é (z—0)nf(z) = A » 0, it follows
z=-s
that z=0 is an essential singularity. Also since every circle of radius § with centre at z=0
containg singular points other than z =0, no matter how small we take 5, we see that z=0 is a
non-isolated singularity.
= In(z—2)
© f&) = mroran
The point z =2 is a branch peint and is an isolated singularity. Also since 22+2z+2 = 0
where 2z = —1 %14, it follows that 22+2z+2 = (z+1+1)(z+1—1) and that z = —1 %1 are
poles of order 4 which are isolated singularities.
sin Vz
@ flz) = 7
At first sight it appears as if z=0 is a branch point. To test this let z = rei0 = reit0+2m
where 0 = ¢ < 2r.

If z = re'®, we have

H . sin (V; 8‘9,2)
flz) = N
1f z = ref®+2m, we have
fodf = sin (V7 €i0/2 ¢m) _ sin (—V7 €l9/2) _ sin (V7 ¢10/2)

VT €lt/2 gmi —\/T elor2 V7 elor2

Thus there is actually only one branch to the function, and so z=0 cannot be a branch point.

s\/?=1
z

Since lim gy , it follows in fact that z =0 is a removable singularity.

z=0 V_

26. (a) Locate and name all the singularities of f(z) = (7% :
(b) Determine where f(2) is analytic.

(a) The singularities in the finite z plane are located at z=1 and z= —2/3; z=1 is a pole of order 8
and z=—2/3 is a pole of order 2.

To determine whether there is a singularity at z= » (the point at infinity), let z=1/w. Then
(1/w)8 + (1/w)d + 2 1+ wi + 2wl

(WVw =18 3/w + 22~ wi(l—w)(3+2w)?

fjw) =
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Thus since w =0 is a pole of order 3 for the function f(1/w), it follows that z=« is a pole of
order 3 for the function f(z).

Then the given function has three singularities: a pole of order 3 at z=1, a pole of order 2
at z=—2/3, and a pole of order 3 at z= =,

(b) From (a) it follows that f(z) is analytic everywhere in the finite z plane except at the points
z=1 and —2/3.

ORTHOGONAL FAMILIES

27. Let u(x,y) = « and v(zx,y) = B, where u and v are the real and imaginary parts of
an analytic function f(z) and a and g are any constants, represent two families of
curves. Prove that the families are orthogonal (i.e. each member of one family is
perpendicular to each member of the other family at their point of intersection).

Consider any two members of the respective

familiesj say w(x,y) = a; and v(x,y) = B, where a y
and B, are particular constants [Fig. 3-10]. Ya %4 oy
¥, &
Differentiating u(z,y) = a; with respect to z ) 5 8, -u.\""‘“
yields o A u dy o
oz = dy dx
Then the slope of u(z,y) = «a; is ®
dy _ _ou fau
dx — ox/ oy
Similarly the slope of v(z,y) = 8, is
dy _ _v fov Fig.3-10
dx i/ dy

The product of the slopes is, using the Cauchy-Riemann equations,

oudy faudy _ _dvou foudv
ox dx/ dy oy dy dy/ oy oy
Thus the curves are orthogonal,

-1

28. Find the orthogonal trajectories of the family of curves in the zy plane defined by
e *(xsiny — ycosy) = a where a is a real constant.

By Problems 7 and 27, it follows that e—=(y siny + zcosy) = B, where g is a real constant,
is the required equation of the orthogonal trajcetories.

APPLICATIONS TO GEOMETRY AND MECHANICS

4 29. An ellipse C has the equation 2z = acoset+ bisinet where a,b,o are positive
constants, a>b, and t is a real variable. (a) Graph the ellipse and show that as
t increases from ¢ =0 the ellipse is traversed in a counterclockwise direction. (b) Find
a unit tangent vector to C at any point.

(@) As t increases from 0 to /20, /20 to w/w,
7/w to 37/20 and 3r/20 to 2r/w, point z on C
moves from A to . B,-B to D, D to E and D
E to A respectively, i.e. it moves in a counter-
clockwise direction as shown in Fig. 3-11.

(b) A tangent vector to C at any point ¢ is

%:— = —awsinwt + bwi coswt

v

C .

(S

Fig. 3-11

i\

Then a unit tangent vector to C at any point ¢ is
dz/dt _ —awsinwt + buicoswt _  —asinet + bicoswt
|dz/dt| | —aw sinwt + bwicoswt| Va? gin2ut + b2 cos? ot
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30. In Problem 29 suppose that z is the position vector of a particle moving on C and
that ¢ is the time.
(a) Determine the velocity and speed of the particle at any time.

(b) Determine the acceleration both in magnitude and direction at any time.

(¢) Prove that d?z/dt* = —w?z and give a physical interpretation.

(d) Determine where the velocity and acceleration have the greatest and least magnitudes.
(a) Velocity = dz/dt = —aw sinwt + bwi cos wt

Speed = magnitude of velocity = |dz/dt| = wVa?sin2uwt + b2 cos?wt

(b) Acceleration = d?z/di? = —aw? coswt — bw? sin vt

Magnitude of acceleration = |[d2z/dt?| = w?Va? cos?wt + b? sin2wt

(¢) From (b) we see that
d2z/dt? = —aw?coswt — bulisinet = —wXacoswt+ bisinet) = —u¥z
Physically this states that the acceleration at any time is always directed toward point O and
has magnitude proportional to the instantaneous distance from O. As the particle moves, its

projection on the x and y axes describes what is sometimes called simple harmonic motion of
period 2r/w. The acceleration is sometimes known as the centripetal acceleration.

(d) From (a) and (b) we have

Magnitude of velocity = wVa?sinot + 01 — sinZet) = woV(a®—b?) sin2ut + b2
Magnitude of acceleration = w2V/a? cos?wt + bl — cos?wt) = w2V (a2 — b2) cos? wt + b2

Then the velocity has the greatest magnitude [given by wa] where sinwt = *1, ie. at points
B and E [Fig. 3-11], and the least magnitude [given by wb] where sinwt =0, i.e. at points A
and D.

Similarly the acceleration has the greatest magnitude [given by «?a] where coswt = %1,
ji.e. at points A and D, and the least magnitude [given by w?b] where coswt =0, ie. at points
B and E.

Theoretically the planets of our solar system move in elliptical paths with the sun at one
focus. In practice there is some deviation from an exact elliptical path.

GRADIENT, DIVERGENCE, CURL AND LAPLACIAN

31. Prove the equivalence of the operators (a) % = %+§i—, (b) % = ‘(Faz"z%) where

z=zx+1iy, Z=2x—1y.
If F is any continuously differentiable function, then
OF _ aF oz  oF 9z _ oF  oF

(@) % " zow  9zox ~ oz ' 01
. . d _ a0
showing the equivalence v Rl + % '
aF _ aF 3z | aF 3z _ oF aF .g_g_{)
®) W R TER "~ 2z W+ 5 (=9 "'(az oz
. E a _ (o _ 3
showing the equivalence - t( 7 ai)'
d , .90 ] = @iyl e
32. Show thgt (a) V = a—5+15§ = 23—2, b) v = 7 "ay = 2az'

-From the equivalences established in Problem 31, we have

o F ool o B @ gl 8N o gd

(@) VEuetiy 2atatt (az Bi) 2%
* 8 o 0 Tl - el Rl e Y . pd

®) : T ey Sty (az 6i) = 5
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33. If F(x,y) = ¢ [where ¢ is a constant and F is continuously differentiable] is a curve in

the zy plane, show that grad F = yF = %g-f- i%, is a vector normal to the curve.
We have dF = %dx + %dv = 0. In terms of dot product [see Page 6] this can be written
oF | .oF . -
(-5;+:5)0(dz+1dy) = 0
3 oF w
But dx + idy is a vector tangent to C. Hence VF = 3 must be perpendicular to C.

B_2, (R, Y B - :
34. Show _that oz oy +ilgo+ W= 25 where B(z,2) = P(z,y) +1Q(2,y).

From Problem 32, VB = 268 Hence

0

= (242 Q) = £ _3Q , . (Q P\ _ ,9B
VB = (ax+1ay>(P+lQ) = 5 ay+|(‘m+au) = 8

35. Let C be the curve in the zy plane defined by 32% —2y* = bz'y?— 622 Find a unit
vector normal to C at (1,-—1).

Let F(x,y) = 322y — 23— b24y2+ 622 = 0. By Problem 33, a vector normal to C is

vF = %‘;—' + i%' = (6wy — 20292+ 122) + (32— 62— 102%) = —14 + Ti  at (1,~1)
g‘lle:l a unit vector normal to C at (1,—1) is I:::i;il = —2‘/;{' Another- such unit vector is
75
. 86. If A(z,y) = 2y — iz%®, find (a) grad A, (b) div 4, (c) curl A, (d) Laplacian of A.
_ _ (8 , .9 -, e W u el s
(a) gradA = VA = (0:: + 1ay)(2zy ix2y’) = 5= (2zy — ix2y®) + “ay (2zy — 122y3)
= 2y — 2izyd + i(2x — Bix?) = 2y + 3x%y? + i(2x — 2x0)
()) divA = VoA = Re(VA)} = Re{(%—i%)(&w—ix"y’)}
. 9 = - 222
= oz (2zv) 37 (x%%) = 2y — 3a%

() curlA = VXA = Im{VA) = lm{(%—ia%)(zzy—izzya)}

W ST W ) = = =
= a_z—( z2y’) ay @xy) = -2z — 22
. 1 924 924 92 . 92 .
= 2 - -— e = s 2.,3 oo J - 24,3
(d) LaplacianA = V24 = Re{(V VA) 32 + Fe S8 (2zy — 1223 + P (2zy — ix?yYd)
= ——a‘l (2y — 2ixzy®) + %(2;; —3ixly?) = —2iy’ — Gizly

MISCELLANEOUS PROBLEMS
37. Prove that in polar form the Cauchy-Riemann equations can be written

w_ 1w w_ 1w
ar  rad’ oar rof
We have x =rcose, y =rsine or r=1vVaz2+y2 o = tan—!(y/x). Then
w _ owar awde _ ol ® N\ el -y \ _ ow__, _ lou
dx ~  or oz + d0 ox ar(,/,u.,z) * ao(a:’+y’) = g e v ol @)

du __ dudr  dude _ au ¥ du x - ou . 10u
oy ~ oroy T aeay ~ ar (‘/,,z.;._,z) + ao(z’+v’) B il L L



84 COMPLEX DIFFERENTIATION, THE CAUCHY-RIEMANN EQUATIONS [CHAP. 3

Similarly,
o B B B, AL @
dx  orax | asaa  or a9 ™'
v _ dvar wade _ v 1dv
W - R e e - or sing + cn cos @ (4)
" % du dv 5
From the Cauchy-Riemann equation o 5; we have, using (1) and (4),
du 1dv 1 du -
(5-; ;$>coso (ar+ ra’)sma = 0 (5)
. 2 du dv .
From the Cauchy-Riemann equation W = e 8 have, using (2) and (3),
du  1av\ . 1 du _
(ar——;ﬁ)sma + <Br+;¢—ﬁ)c°s' = 0 (6)
o . . p o ou 1ov _ du _ 1lav
Multiplying (5) by cos e, (6) by sin#é and adding yields =g =0 m w =
A 3 1du av 1 du
Mul 5 —si i — = L = . =le
ultiplying (5) by —sin e, (6) by cos# and adding yields ar + =5 0 or e .

38. Prove that the real and imaginary parts of an analytic function of a complex variable
when expressed in polar form satisfy the equation [Laplace’s equation in polar form)|

o laov | 13%%
= aandhaes = ()
ar? r or r? 30
v o du v _ 1o
From Problem 37, (1) 3% = Tyt 2 B e
To eliminate v differentiate (1) partially with respect to r and (2) with respect to 6. Then
v _ 9 fov) _ 9 u\ % u
@ 5% = (ao) T (’ar) = %@ T 5
PO I N () QU N .\ R |
asor aa T a8\ rae) T rae?
v 9% ; . L . .
ut e = agay Assuming the second partial derivatives are continuous. Hence from (3)
and (4), 7790 00T '
Ju 1w Puo daw 1o
at o~ T v °F ar T rar T 2 ae2

v 1av , 1 020

Similarly by elimination of u we find At st = 0 so that the required result is

proved.

39. If w = f({) where { = g(z), prove that %’: — ((i;'g g—i assuming f and g are analytic

in a region K.

Let z be given an increment Az » 0 so that z+ Az is in R. Then as a consequence { and w
take on increments A{ and Aw respectively, where

Aw = fE+8) — (), Al = gla+Az) — glz) (1)
Note that as Az =0, Aw = 0 and A{ — 0.

If Al # 0, let us write ¢ = %-?-—‘i—': so that ¢=+ 0 as A{—+ 0 and
i S b 4k 2

If At =0 for values of Az, then (1) shows that Aw = 0 for these values of Az. For such cases,
we define e =0,
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It follows that in both cases, Af # 0 or A{ =0, (2) holds. Then dividing (2) by Az 0 and
taking the limit as Az = 0, we have

L o S (d“’“+.i’ﬂ
dz azm0 AZ  azee0 \ dI Az Az
dw At Aw
= =+ lim = . 25
dg A:TOA T A]z"-?o' Alleo Az
_ dw dt dt _ dw dt
==tV T @d:

40. (a) If wi(z,y) = du/dx and us(x,y) = du/dy, prove that f/(z) = wui(z,0) — ius(z,0).
(b) Show how the result in (@) can be used to solve Problems 7 and 8.

(¢) From Problem 5, we have f'(z) = — — ig-;—:— = uy(z,y) — tuy(z,y).

Putting y =0, this becomes f’(x) = uy(x, 0) — tuy(z, 0).
Then replacing « by 2z, we have as required f'(z) = u;(z,0) — iuy(z,0).

(b) Since we are given u = e *(xsiny — y cosy), we have
u(z,y) = % = e *giny — xe " *siny + ye *cosy
ou ” vt -
uy(z,y) = 5-1-’- = xe"Tcosy + ye Tsiny — e Tcosy

so that from part (a),
fi(2) = uy(2,0) — fug(z,0) = 0 — i(ze 2 — ¢~ = —i(ze~%— e~%)

Integrating with respect to z we have, apart from a constant, f(z) = ize—=. By separating this into
real and imaginary parts, v = e~ *(ysiny + x cosy) apart from a constant.

41. Prove that curlgrad A = 0 if A is real or, more generally, if Im A is harmonic.

)(P+1Q) - %—%H(%g %g) Then

E
) P | 9Q
[ - 55 (G 9]
P 9% (9% 82Q\ _ [ #P  ?Q PP , 3%Q
Im l:ax’ dx oy el (a:c Ay * axZ) L (ay a2 # ay? + dy dx

7Q , 7q
x? ay?

If A=P+@Qi, gradd (

curl grad A

Hence if @ =0, i.e. A is real, or if Q is harmonic, curl grad A = 0.

; ¢ . . U  a*U
42. Solve the partial dlffe_rentlal equation ¥ + e = z? — 2
Let z==x+1iy, z=2x—1y so that z=z+i,y=z_.i. Then
2 2i
3 v 22U U
a2 — y? = 2+ 2Y and F'f‘é'y—z = VU = 4628i
U

Thus the given partial differential equation becomes 4 g = -;-(z2 + 3% or

2(%) = lwem )
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Integrating (1) with respect to z (treating # as constant),

ary 23 z32 .
% Sty trthe 2
where F,(Z) is an arbitrary function of . Integrating (2) with respect to Z,
_ 2% =
U = ey + 24 + F(2) + G(2) (3)

where F'(z) is the function obtained by integrating F,(z), and G(z) is an arbitrary function of z.
Replacing z and %z by x + iy and z — iy respectively, we obtain

U = ﬁ(x‘—y‘) + F(x—iy) + G(x+ iy)

Supplementary Problems

DERIVATIVES :

43. Using the definition, find the derivative of each function at the indicated points,
(a) f(z) = 322+ 4iz—b+i; z=2. (b) f(z) = ?4-;2:; z=—1. (c) f(z2) = 8272%2; z = 1+1.

Ans. (a) 12 + 4i (6) —bz (c) 3/2 + 3i/2
. :
44. Prove that E;(z’z) does not exist anywhere.

46. Determine whether |z|2 has a derivative anywhere.

46. For each of the following functions determine the singular points, i.e. points at whirh the function
5 5 _— i z 3z2—2
is not analytic. Determine the derivatives at all other points. (a) T (b) g

Ans. (a) —i, i/(z+ 1% (b) —1%2i, (19 + 4z — 322)/(22 + 2z + b)2

CAUCHY-RIEMANN EQUATIONS
47. Verify that the real and imaginary parts of the following functions satisfy the Cauchy-Riemann
equations and thus deduce the analyticity of each function:

(@) f(z2) = 22+biz+3~14, (b) f(z) = ze~%, (c) f(z) = sin2z.

48. Show that the function 2+ iy® is not analytic anywhere. Reconcile this with the fact that the
Cauchy-Riemann equations are satisfied at z =0, y =0.

49. Prove that if w = f(z) = u+1iv is analytic in a region R, then %:—J = %‘f = —i';—":.

50. (a) Prove that the function u = 22(1 —y) is harmonic. (b) Find a function v such that f(z) = u + v
is analytic [i.e. find the conjugate function of u]. (c¢) Express f(z) in terms of z.

Ans. (b) 2y + 22— y2, (c) iz22+ 22
51. Answer Problem 50 for the fumction u = 22 — y2 — 22y — 2z + 3y. Ans. (b) 22 —y2 + 22y — 32— 2y
52. Verify that the Cauchy-Riemann equations are satisfied for the functions (a) e=’, (b) cos 2z, (c) sinh 4z.

53. Determine which of the following functions w are harmonic. For each harmonic function find the
conjugate harmonic function v and express u+iv as an analytic function of z.

(@) 32y + 222 — 33 — 242, (b) 20y +3xy?— 243, (c) xe*cosy — ye*siny, (d) e—2%¥ gin (a2 — v?).
Ans, (a) v = dzy— 23+ 3zy?+e¢, f(z) = 222 —izd + ic (¢) ye*cosy + ze*siny + ¢, z6* + ic
(b) Not harmonie (d) —e~2:¥ com (22— y2) + ¢, —iels® + ic
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54. (a) Prove that y = In[(z—1)2+ (y —2)?] is harmonic in every region which does not include the
point (1,2). (b) Find a function ¢ such that ¢ + iy is analytic. (¢) Express ¢+ iy as a function of z.

Ans. (b) —2tan—1 {(y —2)/(z—1)} (¢) 2iln(z—1-21)
55. If Im({f'(z)} = 6x(2y—1) and f(0) = 3—2i, f(1) = 6—5i, find f(1+1). Ans. 6 + 3i

DIFFERFENTIALS
56. If w = 122—4z+3i, find (a) Aw, (b) dw, (¢) Aw —dw at the point z = 2i.
Ans. (a) —8Az+1i(Az)2 = —Bdz+i(dz)?, (b) —8dz, (c) i(dz)?

57. Find (a) Aw and (b)) dw if w = (2z+1)3, z = —i, Az = 1+1. Ans. (a) 38—2i, (b) 6 —42i

58. If w = 3i22+2z+1—3i, find (a) Aw, (b) dw, (c) Aw/Az, (d) dw/dz where z =1i.
Ans. (a) —4Az + 3i(Az)?, (b) —4dz, (¢) —4 + 3iAz, (d) —4 -

" Aw sindz\ _ _ . sin2(Az/2)
59. (a) If w = sin z, show that o (cosz)(—Az ) 2smz{—-—M }

(b) Assuming Al‘irn”% = 1, prove that ﬁ—": = co82z.

(¢) Show that dw = (cosz)dz.

80 () I w = Ins, show that if Asfe=1, %: %m (@ + proy.

(b) Assuming %irr‘n) (1+V = ¢ = 271828, .., prove that iidi-: = -:1;

(¢) Show that d(Inz) = dz/z.

61. Prove that (a) d{f(2) g(2)} = {f(2) 9'(2) + g(2) f'(2)} dz
(®) d{f(2)/e(2)} = {g(2) ['(z) — f(2) ¢'(2)} dz/ {s(2)}?

giving restrictions on f(z) and g(z).

DIFFERENTIATION RULES. DERIVATIVES OF ELEMENTARY FUNCTIONS.
62. Prove that if f(z) and g(z) are analytic in a region R, then

(a) %{2if(z)—(1+t')v(z)} = 2f(@) =1 +1i)9'G), ((b) d%(f(ﬂ)}’ = 2f@f@), (o) %{f(z))“ =
—={f(2)}~2f"(2).

63. Using differentiation rules, find the derivatives of each of the following functions: (a) (1 + 4i)22 — 32 — 2,
(b) (22 + 3i)(z — 1), (¢) (22— )/(z+2i), (d) (Ziz+1)2, (e) (iz—1)-3,
Ans. (a) (24 8i)2—3, (b) dz+1, (¢) bi/(z+ 23)2, (d) 4i—8z, (e) —3i(iz—1)—4

64. Find the derivatives of each of the following at the indicated points:
(@) (z+20)(i—2)/(22—1), z=14. (b)) {z+ (z2+1)2)2, 2= 1+i.
Ans. (a) —6/6 + 3i/b, (b) —108 — 781

65. Prove that (a) f—'—[ gecz = gecz tanz, (b) %cotz = —csc?z.

d z d 2z 42

2 Vi R 2.8 iy OB TR L ; soti
66. Prove that (a) # > (22 +1)1/2 = Ernia (b) 3z In(22+4+22+2) = A+ 2532 indicating restrictions

if any.
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87. Find the derivatives of each of the following, indicating restrictions if any.
(a) 3 sin2?(2/2), (b) tand (22— 3z+ 4i), (c¢) In(secz+ tanz), (d) csc{(z? + 1)1/2}, (e) (22 — 1) cos (z + 2i).

Ans. (a) 3 sin(z/2) cos (2/2) (@ —z csc {(22 + 1)'2} cot {(22 +1)!/2}
(b) 3(2z — 3) tan? (22 — 3z + 41i) sec? (22 — 3z + 41) (22 4+ 1)1/2
(c) secz (e) (1 —22) sin(z+ 2i) + 2z cos (z + 21)

68. Prove that (a) diz(l +22)3/2 = 3z(1 + 2212, (b) diz(z +2Vz)113 = %z‘”’ (z+2V2)"23 (\z+1).

69. Prove that (a) gz—(tan‘lz) = z’i—l' (b) :—z(aec“z) = 5 z:—l
1 d —1

70. Prove that (a) ad;sinh—'z = ira (b) 7 csch~'z = N
z 2\/z

71. Find the derivatives of each of the following:
(a) {sin—1(2z —1))2 (¢) cos—1(sinz — cosz) (e) coth—!(z csec 2z)
(b) In {cot~122} (d) tan—!(z+3i)~12 () In(z—}+VaT—3z+2i)
Ans. (a) 2sin—1(2z—1)/(z—2?)1/2 (d) —1/2(z+ 1+ 3i)(z + 31)1/2
(b) —22/(1 + 2%) cot—122 (e) (cse 22)(1 — 2z cot 22)/(1 — 22 csc? 22)
(¢) —(sin z + cos z)/(sin 2z)1/2 12) llm

72. If w = cos~1(z—1), z = sinh(3{+2) and { = Vt, find dw/dt.
Ans. —3[cosh (3¢ + 21)]/2(2z — z2)1/2 t1/2

73. If w = tsec(t—3i) and z = sin—1(2t—1), find dw/dz.
Ans. sec (t— 3i) {1+ ¢t tan (¢t — 37)}(t — t2)1/2

74, If w?—2w+sin2z = 0, find (a) dw/dz, (b) d*w/dz3.
Ans. (a) (cos22)/(1—w), (b) {cos?2z — 2(1 — w)? sin 2z}/(1 — w)?

75. Find d?w/dz2 at t =0 if w = cos{, z = tan ({ + mi). Ans. —coshér
. d d i F tan—! (z+30)
76. Find (a) o {zinz}, (b) s {[sin (iz — 2)] }

Ans. (a) 2zmz—1]nz
(4) {[sin (iz—2)]"*"" “*®) (i tan—1 (z + 3i) cot (iz— 2) + [In sin (iz — 2)]/[2? + 6iz — 8]}

77. Find the second derivatives of each of the following:
. (a) 38in2(2z—1+14), (b) Intanz? (¢) sinh(z+1)2, (d) cos~1(Inz), (e) sech—! Vit
Ans. (a) 24 cos(4z—2+ 2i) (d) (1 —Inz—In2z)/22(1 — In22)%/2
(b) 4 csc 222 — 1622 cac 222 cot 222 (e) —i(1+ 82)/4(1 + 2)2z%/2
(¢) 2 cosh(z+1)2 + 4(z+ 1)? sinh (z + 1)2

L’'HOSPITAL’S RULE
224+ 4 s __'Ua( z ) . g3 =0z —1
B Enlut @ s crra—mi—a O 00,0 Ne5) O maeed
Ans. (a) (16 +120/25, (8) (1 —3VB)/6, (c) —1/4

79. Evaluate (a) lifo’—_-z:—i“—', ® lim (z—m,ﬂ(si"n' z). Ans. (a) 1/6, (b) em™/(cosh mx)

; . tan—1(z2+1)? . e
80. Find lim where the branch of the inverse tangent is chosen such that tan—10 = 0.
=i 8in2(z2+1)

Ans. 1

/4
81. Evaluate Hn;(ﬂ:—z) ¢ Ans. e~ 1/8
E=
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SINGULAR POINTS

82.

83.

84.

85.

For each of the following functions locate ani name the singularities in the finite z plane.
@ 2z, ® BEEN o sinmi1/), @ VEETD, (o s
Ans. (@) z = —1*1; simple poles

(b) z = —3i; branch point, z = 0; pole of order 2

(¢) z = 0; essential singularity

(d) z =0, *i; branch points

(¢) z = —i; pole of order 3

5
i Fah 7 has double poles at z = 1=2{ and a simple pole at infinity.

Show that [{z) = (zz—__m—s)—

Show that e* has an essential singularity at infinity.

Locate and name sall the singularities of each of the following functions.
(a) (z+3)/(22—1), (b) csc(1/22), (c) (22+ 1)/2%/2.

Ans. (@) z= *1; simple poles, z = »; simple pole. (b) z = 1/ymw, m = %1, *2,*3, .. .; simple poles,
z = 0; essential singularity, z = «; pole of order 2. (¢) z=0; branch point, z= «; branch point.

ORTHOGONAL FAMILIES

86.

87.

88

89.

Find the orthogonal trajectories of the follow...g families of curves:
(a) By —-ayd =a, (b) e Zcosy + 2y = a.
Ans. (a) z*—~ 6232+ 4yt =8, (b) 2e *giny + 22— y2 = B

Find the orthogonal trajectories of the family of curves 72cos2¢ = a. Ans. r2sin20 = 8

By separating f(z) = z+ 1/z into real and imaginary parts, show that the families (r2+ 1)cos# = ar
and (r2—1)sing = Br are orthogonsl trajectories and verify this by another method.

If n is any real constant, prove that ™ = asecne¢ and ™ = fcscng are orthogonal trajectories.

APPLICATIONS TO GEOMETRY AND MECHANICS

90.

ot

92.

93.

A particle moves along a curve z = e t(2sint - icost).
(a) Find a unit tangent vector to the curve at the point where ¢ = z/4.
(b) Determine the magnitudes of velocity and acceleration of the particle at t=0 and #/2

Ans (a) =i, (b) Velocity: V6, VBe~7/2, Acceleration 4, Ze~v/2

A particle inoves along the curve z = ae'@t. (a) Show that its speed js always constant and equal to wa.
{b) Show that the magnitude of its acceieration is alway: constant and equal to w?a. (¢} Show that
the acceleration is always directed toward z=0. (d) Explain the reiationship of this problem to the
problem of a stone being twirled at the end of = string in a horizontal plane.

The position at time ¢ of a particle moving in the z plane is given by z - 3te #t Find the magnitudes
of (a) the velocity, (b) the acceleration of the particle at ¢t =0 and ¢ =w. ‘

Ans. (a) 3, 3V1+ 1622 (b) 24, 24V1 + da?

A particle P moves along the line 4y = 2 in the z plane with a uniform speed of 3\/'2> ft/sec from
the point z = —5+1Ti to z = 10—8i. If w = 222—3 and P’ is the image of P in the w plane, find
the magnitudes of (a) the velocity and (b) the acceleration of P’ after 3 seconds.

Ans. (a) 24V10, (b) 72
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GRADIENT, DIVERGENCE, CURL AND LAPLACIAN
If F=a%—ay? find (a) VF, (b) V2F, Ans. (a) (2zy — y?) + i(22 —2zy), (b) 2y — 22

94,

95.

96.

97.

98.

99.

100.

Let B = 322+ 42 Find (a) grad B, (b) divB, (c¢) curl B, (d) Laplacian B.
Ans. (a) 8, (b) 12z, (c) 12y, (d) O

Let C be the curve in the zy plane defined by #?2—azy+y? = 7. Find a unit vector normal to C at

(a) the point (—1, 2), (b) any point.
Ans. (a) (—4 +5i)/V/al, (b) {2z —y + i(2y — x)}/Vb22 — Bzy + by?

Find an equation for the line normal to the curve 22y = 2xy -+ 6 at the point (3, 2).

Ang. z = 8t+3, y = 3t+2
Show that VZ|f(z)|2 = 4|/'(z)|2. [llustrate by choosing f(z) = 22+ 1z.

Prove VXFG) = FVG + GV2F + 2VFoVG

Prove divgrad A = 0 if A is imaginary or, more generally, if Re {4} is harmonie.

MISCELLANEOUS PROBLEMS

101.

102.

103,

104.

105.

106.

107.
108.

109.

110.

If f(z) = wulz,y) + 1v(x,y), prove that:
(a) f(z2) = 2u(z/2, —iz/2) + constant, (b) f(z) = 2iv(z/2, —iz/2) -+ constant.

Use Problem 101 to find f(2) if (a) u(z,y) = x* - 6x2y2 4+ y4, (b) vw(z,¥) =

sinh z cos y.

If V is the instantaneous speed of a particle moving along any plane curve C, prove that the normal
component of the acceleration at any point of C is given by VZ/R where R is the radius of curvature

at the point.

Find an analytic function f(z) such that Re{f'(z)} = 3224y —3y? and f(1+1) = 0.

Ans. 23+ 2122 +6 — 21

Show that the family of curves
xz ”3 =4

a?+ ) + b2+

with —a? < A < --b? is orthogonal to the family with A > —b% > —a2,

Prove that the equation #(x,y) = constant can be expressed as u(z,y) =

.. .. 02F/3x2 + 92F'/ay?
h
armonic if and only if (3FJaz) ¥ (oF /oyt

is a function of F.

Illustrate the result in Problem 106 by considering (y + 2)/(x —1) = constant.

If f(z) =0 in a region K, prove that f(z) must be a constant in R.

If w= f(z) is analytic and expressed in polar coordinates (r,6), prove that
EE = '(Oa_w
dz - ¢

If u and v are conjugate harmonic functions, prove that

_ du ou
dv = “dy avda:

constant where u is
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111. If « and v are harmonic in a region R, prove that
u  dv i ou ' v
(av 3.;) & (az _ay)

112. Prove that f(z) = |s|* is differentiable but not analytic at z=0.

is analytic in R.

113. Prove that y = In|f(z)| is harmonic in a yegion R if f(z) is analytic in R and f(2) f'(¢) 0 in R.

114, Express the Cauchy-Riemann equations in terms of the curvilinear coordinates (¢,m) where
% = ¢t coshyn, y = ef sinhy.

115. Show that a solution of the differential equation

da2Q d Q=
LE+ R§+-5 = E,coswt

where L, R, C, E, and « are constants, is given by

; fot
Q = Re e
w[R + (ol — 1/uC))
The equation arises in the theory of alternating currents of electricity.

[Hint. Rewrite the right-hand side as E,e't and then assume a solution of the form Ae't where A is
to be determined.]

1i6. Show that V2 {f(z)}* = n?|f(s)|*~%|f'(2)|3, stating restrictions on f(z).
a2U |, 2U _ 8
117. Solve the partial differential equation = 3 + il F L

Anse. U = i(lq (22 + y?))2 + 2(tan—!? (vlz)_)”+ F(z + iy) + G(z — iy)
i

118. Prove that VAU = V(VU) = gg + 2.5.521_” + %‘# = ma::gfi’_

119, Solve the partial differential equatibn %‘;{{- + 255-%. + %—;y = 86(x2 + ¢2).
Ans. U = fa2+y)? + @+i) Fi(z—iy) + Gi(z—iy) + (¢ — iy) Fa(z + iy) + Gg(z + iy)



Chapter 4

COMPLEX LINE INTEGRALS

Let f(z) be continuous at all points
of a curve C [Fig. 4-1] which we shall
assume has a finite length, ie. C is a
rectifiable curve.

Subdivide C into n parts by means
of points 2i, 2z, ..., z.—1, chosen arbi-
trarily, and call a =2, b=2.. On each
arc joining zx-1 to 2z« [where k goes
from 1 to n| choose a point {,. Form

Fig.4-1
the sum
Sn = flE)(i—a) + f(&)(z2—21) + -+ + f(£)(D—2n-1) (1)
On writing 2x — 2xk—-1 = Az, this becomes
$oo= Tl e-a-) = 3 fE)an @)

Let the number of subdivisions n increase in such a way that the largest of the chord
lengths |Az:| approaches zero. Then the sum S, approaches a limit which does not depend
.on the mode of subdivision and we denote this limit by

S ra o f e ®

called the complex line integral or briefly line integral of f(z) along curve C, or the definite
integral of f(z) from a to b along curve C. In such case f(z) is said to be integrable along
C. Note that if f(2) is analytic at all points of a region ® and if C is a curve lying in R,
- then f(2) is certainly integrable along C.

REAL LINE INTEGRALS

If P(z,y) and Q(x, y) are real functions of  and y continuous at all points of curve C,
the real line integral of Pdx + Qdy along curve C can be defined in a manner similar
to that given above and is dgnoted by

L[P(x,y) dz + Q(z,y)dy] or j;sz + Qdy (4)

the second notation being used for brevity. If C is smooth and has parametric equations
2= ¢(t), y=y(t) where t; =t =t,, the value of (4) is given by

7 P, ume e + Q. 4w 0 d)
‘Suitable modifications can be made if C is piecewise smooth (see Problem 1).

82
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CONNECTION BETWEEN REAL AND COMPLEX LINE INTEGRALS
If f(z) = u(x,y) +iv(z,y) = u+iv the complex line integral (3) can be expressed
in terms of real line integrals as

L f(e)dz = J; (u + 1)(dx + 1 dy)

= J;udx—'vdy + zj;vdx-i-udy (5)

For this reason (5) is sometimes taken as a definition of a complex line integral.

PROPERTIES OF INTEGRALS
If f(z) and g(2) are integrable along C, then

c Sverime = i+ owae

et

2 j; Aflz)dz = AJ: f(z) dz where A = any constant
3 L f(r)dz = —J;u f(z) dz
b m b
4 f(z)dz = f f(z)dz + f f(2) dz where points a, b, m are on C.

= ML

o .
g Q
a

.

—_—

™

—

IS

xR

where |f(z)| = M, i.e. M is an upper bound of |f(z)| on C, and L is the length of C.

There are various other ways in which the above properties can be described. For
example if T, U and V are successive points on a curve, property 3 can be written

fr fe)dz = — J: @) da.

Similarly if C, C, and C; represent curves from a to b, a to m and m to b respectively,
it is natural for us to consider C = C,+ C; and to write property 4 as

J;w. fe)dz = j; f2)dz + j; f(2) de

CHANGE OF VARIABLES

Let z=g({) be a continuous function of. a complex variable { = u+iv. Suppose
that curve C in the z plane corresponds to curve C’ in the { plane and that the derivative
g’({) is continuous on ¢’ Then

- Srmae = reen o d (6)

These conditions are certainly satisfied if ¢ is analytic in a region containing curve C’.

SIMPLY- AND MULTIPLY-CONNECTED REGIONS

A region R is called simply-connected if any simple closed curve [Page 68] which
lies in R can be shrunk to a point without leaving R. A region ® which is not simply-
connected is called multiply-connected.
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For example, suppose R is the region defined by |z <2 shown shaded in Fig. 4-2.
If T is any simple closed curve lying in R [i.e. whose poinis are in R], we see that it can be
shrunk to a point which lies in R, and thus does not leave R, so that R is simply-connected.
On the other hand if R is the region defined by 1 <|z| <2, shown shaded in Fig. 4-3,
then there is a simple closed curve T' lying in R which cannot possibly be shrunk to a point
without leaving R, so that R is multiply-connected.

v v v

Fig. 4-2 Fig.4-3 Fig. 4-4
Intuitively, a simply-connected region is one which does not have any “holes” in it,
while a multiply-connected region is one which does. Thus the multiply-connected regions
of Figures 4-3 and 4-4 have respectively one and three holes in them.

JORDAN CURVE THEOREM

Any continuous, closed curve which does not intersect itself and which may or may
not have a finite lenggh is called a Jordan curve [see Problem 30]. An important theorem
which, although very difficult to prove, seems intuitively obvious is the following.

Jordan Curve Theorem, A Jordan curve divides the plane into two regions having
the curve as common boundary. That region which is bounded [i.e. is such that all points
of it satisfy |z| <M, where M is some positive constant] is called the interior or inside
of the curve, while the other region is called the exterior or outside of the curve. -

It follows from this that the region inside a simple closed curve is a simply-connected
region whose boundary is the simple closed curve.

CONVENITION REGARDING TRAVERSAL OF A CLOSED PATH
The boundary C of a region is said to be traversed in the positive sense or direction

if an observer travelling in this direction [and perpendicular to the plane] has the region
to the left. This convention leads to the directions indicated by the arrows in Figures 4-2,

4-3 and 4-4.- We use the special symbol

£ f(z) dz

to denote integration of f(z) around the boundary C in ’the positive sense. Note that in
the case of a circle [Fig. 4-2] the positive direction is the counterclockwise direction. The
integral around C is often called a contour integral.
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GREEN’S THEOREM IN THE PLANE
Let P(z,y) and Q(=,¥) be continuous and have continuous partial derivatives in a
region R and on its boundary C. Green’s theorem states that

£de +Qdy = ff(%g—— %) dz dy )
R

The theorem is valid for both simply- and multiply-connected regions.

COMPLEX FORM OF GREEN’S THEOREM

Let F(z, %) be continuous and have continuous partial derivatives in a region R and
on its boundary C, where z = z+1iy, Z = x—1iy are complex conjugate coordinates
[see Page 7). Then Green’s theorem can be written in the complex form

§ Feade = 2 f o da @)
4 ' ®
where dA represents the element of area dx dy.
For a generalization of (8), see Problem 56.

CAUCHY’S THEOREM. THE CAUCHY-GOURSAT THEOREM
Let f(2) be analytic in a region ® and on its boundary C. Then

}; f@ydz = 0 0

This fundamental theorem, often called Cauchy’s integral theorem or briefly Cauchy’s
theorem, is valid for both simply- and .. tiply-connected regions. It was first proved by
use of Green’s theorem with the added restriction that f’(z) be continuous in R [see Prob-
lem 11]. However, Goursat gave a proof which removed this restriction. For this reason
the theorem is sometimes called the Cauchy-Goursat theorem [see Problems 13-16] when
one desires to emphasize the removal of this restriction.

MORERA’S THEOREM
Let f(z) be continuous in a simply-connected region ® and suppose that

fc f)dz = 0 (10)

around every simple closed curve C in R. Then f(2) is analytic in R.

This theorem, due to Morera, is often called the converse of Cauchy’s theorem. It
can be extended to multiply-connected regions. For a proof which assumes that f’(z) is
continuous in R, see Problem 22. For a proof which eliminates this restriction, see
Problem 7, Chapter 5.

INDEFINITE INTEGRALS
If f(z) and F(2) are analytic in a region R and such that F’(z) = f(z), then F(2) is
called an indefinite integral or anti-derivative of f(z) denoted by

Fe) = | feds (11)

Since the derivative of any constant is zefo, it follows that any two indefinite integrals
can differ by a constant. For this reason an arbitrary constant ¢ is often added to the
right of (11).

Example: Since 7:;(3:’ — 4sinz) = 6z — 4cosz, we can write

f 6z —4dcosz)dz = 822 — 4s8inz + ¢
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INTEGRALS OF SPECIAL FUNCTIONS

ing results (omitting a constant of integratior).
1. f zrdz = :'; i
2.
3.
4.

5.

6.

©

10.

11:
12.
13.
14.
15.
16.

17.

COMPLEX INTEGRATION AND CAUCHY’S THEOREM

[CHAP. 4

Using results on Page 66 [or by direct differentiation], we can arrive at the follow-

[z
z

fe'dz = e*

f a*dz = =
Ina

f sinzdz =
f coszdz =
f tanzdz =

j' cotzdz =

f seczdz =

f cscz dz

f sec’zdz =
f cscizdz =

f secz tanz dz
f cscz cotz dz
[ sinhzdz =
fcoshzdz =

ftanhzdz =

—Co8 2
sinz

In secz
—In cosz

In sinz

In (secz + tanz)
In tan (2/2 + =/4)

In (cscz — cot 2)
In tan (2/2)

tanz

—cot z _
= secz
= —csc2z
coshz
sinhz

In cosh z

18.

19.

20.

21.

22.

23.

24,

25~

26.

27.

28.

29.

30.

31.

32.

33.

34.

f cothzdz =

In sinh z

f sechzdz =

tan—! (sinh 2)

f cschzdz = —coth™!(coshz)
f sech?zdz = tanhz
f csch?zdz = —cothz
f sechztanhzdz = —sechz
f cschzecothzdz = —cschz
f s = In(z+V22xa?)
VEza B
dz _ l 1 E 1 oz
Fra T gl o Tt
dz _ 1 ] z2=0
23— a’ = ™ (z + a)
f = sin-Z z 12

fz\/a.’Tz’ = (7=

1 i 1

dz 2
_— - 2 17 Zgee-1Z
fz\/z’—-—a’ g o8!S or _secT's
f Vedxatdz = %\/z’ta’
2
t%ln(z+\/zzia”)

} }
f vai—-22dz = -g\/a’—z2 + %—sin“%

e**(a sin bz — b cos bz)

f e*sinbzdz = P S
_ e*(a cos bz + b sin bz)

fe“cosbzdz = g

SOME CONSEQUENCES OF CAUCHY’S THEOREM
Let f(2) be analytic in a simply-connected region ®. Then the followmg theorems hold.

Theorem 1.

If a and z are any two points in &, then

_f; " f(e) da

is independent of the path in R joining a and z.
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Theorem 2. If a and z are any two points in ® and W\, \

Glz) == f f(2) dz

then G(z) is analytic in R and G’(2) = f(z).
Occasionally, confusion may arise because the variable of integration z in (12) is the
same as the upper limit of integration. Since a definite integral depends only on the
curve and limits of integration, any symbol can be used for the variable of integration,

and for this reason we call it a dummy variable or dummy symbol. Thus (12) can be
equivalently written

6@ = [ fod a9
Theorem 3. If a and b are any two points in R and F’(z) = f(z), then
b
[ f@ydz = F@) - F (14)
This can also be writteh in the form, familiar from elementary calculus,
b
[ rwa = Fe| = Fo)-F@ (15)
1-i 1—i
Example: f dzdz = 222 = 2(1-92—2(3) = 18— 4i
3i 3i S,

Theorem 4. Let f(z) be analytic in a region bounded by two si;?xpknclosed curves

C and C, [where C, lies inside C as in Fig. 4-5 below] and on these curves. Then
EeY

§f@dz = § fz)dz S (16)

c ci : 4

where C and C, are both traversed in the positive sense relative to their interiors [counter-
clockwise in Fig. 4-5].

The result shows that if we wish to integrate f(z) along curve C we can equivalently
replace C by any curve C: so long as f(z) is analytic in the region between C and C,.

vy v

ng. 4-5 Fig. 4-6

Theorem 5. Lei f(2) be analytic in a region bounded by the non-overlapping simple
closed curves C,Cy,CyCs, ...,Cu [Where Cy,Cs, ...,Cx are inside C as in Fig. 4-6 above]
and on these curves. Then

j;f(z)dz = £ f(z)dz + £ f()dz + - + _£ f(z) dz (17)

This is a generalization of Theorem 4.
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/ Solved Problems
LINE INTEGRALS

(2,4)
1. Evaluate f (2y + 2?)dz + (3z —y)dy  along: (@) the parabola z = 2,

0,3)
= 24 3; (b) straight lines from (0,3) to (2,3) and then from (2,3) to (2,4); (c) a
stra:ght line from (0,3) to (2,4). ‘

(d) The points (0,3) and (2,4) on the parabola correspond to- t-0 and t—l respectively. Then the
given integral equals

1 1
f (22 +3) + (26)2) 2dt + (3(2t) — (t2+3)}2tdt = f (24¢2 4+ 12 — 213 — 6t)dt = 33/2
t=0

(b) Along-the straight line from (0,3) to (2, 3), y=3,dy=0 and the line integral equals

2 2
f (6+=x2)dx + (3z—3)0 = J‘ (6+x)dx = 44/3
z=0 s z=0
Along the straight line from (2,3) to (2,4), #=2, de=0 and the line integral equals
4 4
f Qu+40 + G-ydy = f @—y)dy = b2
y=3 v=3

Then the required value = 44/3 + 5/2 = 103/6.

(¢) An equation for the line joining (0, 3) and (2,4) is 2y —x = 6. Solving for x, we have = = 2y — 6.
Then the line mtegral equals :

4 4
f {2yF (21/—6)2} 2dy + {8(2y—6) —y}dy = J; (8y2—39y +b64)dy = 97/6

result can also be obtained by using y = 4(x + 6).

luate f 5dz from z=0 to z = 4+2i along the curve C given by (a) z = t? +it,

Z(b).the line from z=0 to z=2i¢ and then the line from z=2i to z = 4+2i.

(a) The points z=0 and z = 4+ 2i on C correspond to t=0 and t=2 respectively. Then the lme
integral equals

2 2 2
f C(e24idt)d(i2+it) = f (t2—it)(2t +i)dt = f @2 —itz+t)dt = 10 — 8i/3
t=0 0 (]
Another Method. The given integral equals .

f(x-—ty)(da:+1'dy) = fxdx+ydy + ifxdy-ydz
C c c

The parametric equations of C are == 2, y=t from t=0 to ¢ =2. Then the line integral
equals

2 2
f (t2)(2t dt) + (t)(dt) + if (t2)(dt) — (t)(2t dt)
t=0

t=0
2 2
f @2t +t)dt + ‘l'f (—t)dt = 10 — 8i/3
0 0
(b) The given line integral equals

f(::—w)(dz+|dy) = fa:dx+ydy 4+ ifzdy—yd:c

The line from z=0 to z2=2i is the same as the line from (0,0) to (0,2) for which z2=0,
dx =0 and the line integral equals

2 2 2
d i 0)(dy) — y(0 = d = 2
[ o0 rviy + if O -vo = [ v

The line from z = 2i to z = 4+2i is the same as the line from (0,2) to (4,2) for which
y=2, dy=0 and the line integral equals =

4 4
/f ads £350 + .'f 20 —8ds = f o & if Jods = 8=8i
z=0 =0 [ 0

Then thc required value = 24-(8—8i) = 10 — 8i,



CHAP. 4] COMPLEX INTEGRATION AND CAUCHY'S THEOREM

3. Prove that if f(z) is integrable along a curve C having finite length L and if there
exists a positive number M such that |f(2)| = M on C, then

‘ j; f(2) dz

By definition we have on using the notation of Page 92,

= ML

froa = tim 3 fe)an )
Now = ekt
3 fan| 5 3 ifte las
s M3 janl @
k=1
= ML

where we have used the facts that |f(z)| = M for all points z on C and that 2 |az;| represents
=1

the sum of all the chord lengths joining points 2y, and z;, where k = 1,2, . ,n and that this sum
is not greater than the length of C.

Taking the limit of both sides of (2), using (1), the required result follows.
It is possible to show, more generally, that

fc f(2) dz’ s fc 1f¢a)] ||

- GREEN’S THEOREM IN THE PLANE A Lo J L '

4. "Prove Green's theorem in the plane if C is a
simple closed curve which has the property

1
that any straight line parallel to the coordi- E r '
nate axes cuts C in at most two points. P, N—— 1% :
Let the equations of the curves EGF and EHF E ’ & E
(see Fig. 4-7) be y = Y (x) and y = Y,(x) respec- 1{! i z
tively. If R is the region bounded by C, we have @ /

(D op ] Fig. 4-7
—d
ff ay %% v J:’=z [J;=v,m aw ™ da

® Yg(x) i
= J ) P(z,y) ) f [P(x,Yy) — P(z,Y,)] dx
r=e v=Y,(x) e
== I (xl Y]) dx — f’ P(z, Y,)dz = _f P dx
€ ! c

Then § Pdus = ff dz dy (1)
c

Similarly let the equations of curves GEH and GFH be z=X,(y) and = = X,(y) respectively.

Th
e LA e - [ -
R

[ exnay + f exunan = fé“"
Then i Q dy ff dz dy (2)

Kiisg: 1) a6E 10, j) Pdz + Qdy f f (——-——)dz dy
C

]
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8 theorem in the plane for

_ j) (2ey — 2% dx + (x+y*)dy
c

where C is the closed curve of the region
bounded by ¥ =z? and ¥*=1=z.

The plane curves y =22 and y2 =z intersect at
(0,0) and (1,1). The positive direction in traversing

Cis as g n in Fig. 4-8. Fig.4-8
long y = 22, the line integral equals
1 1

f {(2x)(x?) — x?} dx + {x + (x2)2} d(2?) = f (223 + z2 4+ 225 dx = 17/6
“r=0 0

Along y? =, the line integral equals

0 . 0
f WA W) — W2 dy?) + (W2 +y2dy = J; Wyt —2y5+2y0)dy = -17/15

hen the required integral = 7/6 — 17/15 = 1/30.

ff( )d ¥ = ff{,:_x(x+yz)‘%(2$ﬂ“x2) dz dy
R
f B il & flo f: (1-22) dy dx
R

1 VI
= [, -2

Hence Green’s theorem is verified.

1
de = f (x1/2 — 223/2 — 32 4+ 243 dx = 1/30
0

v=x

Extend the proof of Green’s theorem in the v
plane given in Problem 4 to curves C for
which lines parallel to the coordinate axes
may cut C in more than two points.

Consider a simple closed curve C such as shown
in Fig. 4-9 in which lines parallel to the axes may
meet C in more than two points. By constructing
line ST the region is divided into two regions R, and 0
Ry which are of the type considered in Problem 4 and Fig. 4-9

for which Green’s theorem applies, i.e.,
dex+Qdy ff( )d:cciy, (2) fP(_lx-}-Qdy ff (%—S——%g)dzdy
Adding the left-hand sides of (1) and (2), we have, omitting the integrjnd Pdx + Qdy in

0

STUS SVTS

each case,
sSTUS  SVTS TUS SVT TUS SVT TUSVT
using the fact that { = x f a
ST TS

Adding the right-hand sides of (1) and (2), omitting the integrand,
=4
R, Ry R

s, = 244k
Then f Pds + Qdy = [T (61: 5y ) d= v
TUSVT ®
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and the theorem is proved. We have proved Green’s theorem for the simply-connected region of
Fig. 4-9 bounded by the simple closed curve C. For more complicated regions it may be necessary to
construct more lines, such as ST, to establish the theorem.

Green’s theorem is also true for multiply-connected regions, as shown in Problem 7.

Show that Green’s theorem in the plane is also
valid for a multiply-connected region R such as
shown shaded in Fig. 4-10.

The boundary of R, which consists of the exterior
boundary AHJKLA and the interior boundary DEFGD,
is to be traversed in the positive direction so that a per-
son travelling in this direction always has the region on
his left. It is seen that the positive directions are as
indicated in the figure.

x
In order to establish the theorem construct a line,
such as AD, called a cross-cut, connecting the ex-
terior and interior boundaries. The region bounded by Fig.4-10
ADEFGDALKJHA is simply-connected, and so Green's
theorem is valid. Then
_ 8Q _ AP
‘ Pde + Qdy = ff (ﬂ:c 6y>dxdy
ADEFGDALKJHA R
But the integral on the left, leaving out the integrand, is equal to
S Ll f o= [+ f
DEFGD ALKJHA DEFGD  ALKJHA
since f = - r Thus if C, is the curve ALKJHA, C, is the curve DEFGD and C is the bound-

AD DA
ary of R consisting of C, and C, (traveised in the positive directions with respect to R), then

+ =4 and
J;' fc’ ffc Em §dex+ody ff(———a—y)dd

Let P(x,y) and Q(x,y) be continuous and have continuous first partial derivatives at
each point of a simply-connected region ®. Prove that a necessary and sufficient

condition that i Pdx + Qdy = 0 around every closed path C in ] is that dP/dy =
0Q/0x identically in R.
Sufficiency. Suppose 9P/dy = dQ/dx. Then by Green’s theorem,

3
§de + Qdy = ff (—-—f—)da:dy = .9
c
where R is the region bounded by C.
Necessity. = B

Suppose § Pdxz + Qdy = 0 around every closed path C in R and that dP/dy # 3Q/dx at some
c

point of ®. In particular suppose 9P/dy — 3Q/dx > 0 at the point (z,, ¥y).

By hypothesis dP/dy and 9Q/dx are continuous in R so that there must be some region r con-
taining (zy, ¥y) as an interior point for which aP/dy —a@Q/dz > 0. If I is the boundary of r, then

by Green'’s theorem
§de+Qdy ff(——-—-)dxdy 5.0l
Jr
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contradicting the hypothesis that f Pdz + Qdy = 0 for all closed curves in ®. Thus 9Q/dz — aP/dy
cannot be positive. c

Similarly we can show that 9Q/dx — dP/dy cannot be negative and it follows that it must be
identically. zero, i.e. aP/dy = 3Q/oz identically in <.

The results can be extended to multiply-connected regions.

9. Let P and Q be defined as in Problem 8. Prove
th%t a necessary and sufficient condition that

L Pdx + Qdy be independent of the path

in R joining points A and B is that oP/ay =
9Q/dz identically in R.

Sufficiency. It oP/dy = 3Q/dx, then by Problem 8

fl’dz-l-Qdy = 0
ADBEA

([see Fig. 4-11]. From this, omitting for brevity the Fig. 4-11
integrand Pdz + Qdy, we have

drg =0 Jof-f wan f-f

BEA ADB BEA  AEB
i.e. the integ'rnl is independent of the path.

Necessity.
If the integral is independent of the path, then for all paths C;, and C, in ® we have

‘_’;=J;’, f:f and f:o

ADB AEB ADBEA

From this it follows that the line integral around any closed path in R is zero, and hence by Problem 8
that aP/oy = 0Q/ox.

The results can be extended to multiply-connected regions.

COMPLEX FORM OF GREEN’S THEOREM

10. If B(z, ) is continuous and has continuous partial derivatives in a region ® and on
its boundary C, where z = z+1y and % = z—iy, prove that Green’s theorem can
be written in complex form as

B(2,2)dz = 2 —dx dy
$. U

Let B(z,i) = P(z,y) + iQ(x,y). Then using Green’s theorem, we have

iB(lz,i)dz §(P+1'Q)(dx+idy) = fpdx—q.iy + ifcqczxuﬂdy

— —ff( )d dy + J]‘(a—x-——)dzdy

= G+ (530 e
» 2.ff OF dzdy

from Problem 34, Page 83. The result can also be written in terms of curl B [see Page 70].

~
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CA Y'S OREM AND THE CAUCHY-GOURSAT THEOREM

1. Prove Cauchy's theorem § f(z)dz = 0 if f(z) is analytic with derivative f’(z) which
C
is continuous at all points inside and on a simple closed curve C.

Since f(z) = u+ iv is analytic and has a continuous derivative
ou dv v .du

’ —_ oo — e el s
re = 35 +ig W ‘w
it foll that the partial derivativ (1) i 9 @2 —=— i are continuous inside and C
ollows p erivatives % 3y o Tay col inside and on C.
Thus Green’s theorem can be applied and we have
f{(z)d: §(u+w)(dx+tdy) = fudx—-vdy + i§ vdx + udy
e c

[ (5-g)eean o off (2-F) o = o

using the Cauchy-Riemann equations (1) and (2).

By using the fact that Green's theorem is applicable to multiply-connected regions, we can extend
the result to multiply-connected regions under the given conditions on f(z).

The Cauchy-Goursat theorem [see Problems 13-16] removes the restriction that f’(z) be continuous.
Another method.
The result can be obtained from the complex form of Green’s theorem [Problem 10] by noting

that if B(z,z) = f(z) is independent of %, then 0B/3z = 0 and so § f(z)dz = 0.
c

12. Prove (a) f dz = 0, (b) f zdz =0, (¢ j; (2—20)dz = 0 where C is any simple
¢ ¢ (o
closed curve and z, is a constant.
These follow at once from Cauchy’s theorem since the functions 1, z and z—z, are analytic
inside C and have continuous derivatives.
The results can also be established directly from the definition of an integral (see Problem 90).
13. Prove the Cauchy-Goursat theorem for the case

of a triangle.

Consider any triangle in the z plane such as ABC,
denoted briefly by 4, in Fig. 4-12. Join the midpoints
D, E and F of sides AB, AC and BC respectively
to form four triangles indicated briefly by 4;, 4,
A"l and AlV'

If f(z) is analytic inside and on triangle ABC we
have, omitting the integrand on the right,

.
ABCA DAE FCD

IR TR R TR
SRR

DAED EBFE FCDF DEFD

‘4); f(z)dz + ‘£ f(z2)dz + 4

A

"9'5
-
—
N
-

)
N
I

f(2)dz + tf f(z) dz
117

where in the second line we have made use of the fact that

s‘! G _a[' r'sf D _e[' o'!. Al
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Then

- ~

j; f(2) dz

(1)

IIA

+ + + f(z) dz

jf f(z) dz

Ay

f; fl2) dz <£ f(a) dz

Let A, be the triangle corresponding to that term on the right of (/) having largest value (if there
are two or more such terms then A; is any of the associated triangles). Then

f(z)d d
f f(z) dz ‘(f. f(z) dz

By joining midpoints of the sides of triangie A,, we obtain similarly a triangle A, such that

! ff; [(z) dz 4 <f f(z) dz

1 Ta,

‘l}i ,"(z)d:‘ = 42 -{, /(z)dz! (4)

After n steps we obtain a triangle A, such that

l -
' f s n d
it .(Z)dzl 4 § f(z) dz

‘Lll

Sy

= 4 (2)

(3)

A

so that

(5)

‘Now 3,3,,3,,14; ... is a sequence of triangles each of which is contained in the preceding (i.e. a
sequence of nested triangles) and there exists a point z, which lies in every triangle of the sequence.

Since z, lies inside or on the boundary of A, it follows that f(z) is analytic at z,. Then by
Problem 21, Page 78,

fle) = flzg) + [z0) (2 =29 + 2(z—2) (6)
where for any 0 we can find § such that |y < ¢ whenever |z—z,! < &.
Thus by integration of both sides of (6) and using Problem 12,
§ 1oa: = § se-ma "
Yo Ay

Now if P is the perimeter of A, then the perimeter of A, is P, = P/2",
If z is any point on A,, then as seen from Fig. 4-12 we must have
|z—2z,| < P/20 < §. Hence from (7) and Property 5, Page 93 we have

. P P P2
i flz)dz| = ‘f n(z — 2zg) dz = e-é-;'a = SZT 0z,
Then (5) becomes
2 Fig.4-13
i f(2) dz s 4n- —‘4% = P2

Since ¢ can be made arbitrarily small it follows that, as required,

i/(z)dz = 0

Prove the Cauchy-Goursat theorem for any closed 7
polygon.

Consider for example a closed polygon ABCDEFA such
as indicated in Fig. 4-14. By constructing the lines BF,
CF and DF the polygon is subdivided into triangles, Then
by Cauchy's theorem for triangles [Problem 13] and the
fact that the integrals along BF and FB, CF and FC, DF
and FD cancel, we find as required

fisyde = f fa)de + f f(2) dz

ABCDEFA ABFA BCFB

+ [ f@dz + f f(2) dz

cDFe DEFD Fig. 4-14

14

S
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15

where we suppose that f(z) is analytic inside and on the polygon.

It should be noted that we have proved the result for simple polygons whose sides do not cross.
A proof can also be given for any polygon which intersects itself (see Problem 66).

Prove the Cauchy-Goursat theorem for any
simple closed curve.

Let us assume that C is contained in a region
R in which f(z) is analytic.

Choose n points of subdivision z;,2,, ...,2, on
curve C [Fig. 4-15] where for convenience of nota-
tion we consider zy =z, Construct polygon P by
joining these points.

Let us define the sum

S, = 3 fla) az
k=1

where Az, = 2z, — z,_;. Since

Fig. 4-15

limS, = §f(z)dz
c

(where the limit on the left means that n = = in such a way that the largest of |z ]~ 0], it follows
that given any ¢ >0 we can choose N so that for n > N

- i SN 8)

N

i fz)dz — S,

Consider now the integral along polygon P. Since this is zero by Problem 14, we have

if(z)dz = 0

1 L] Tn
f f(z)dz + f flz)dz + -+ + f(z) dz
% % -1

1 2y

= f U@ - fa) + fe)dr e+ f " @) — flz) + f(2)} dz
zp Zn—1g
7 2
= [ U@ -rend + o+ 7 @ -tena + s,
%o Zn—y
so that
z y
S, = {fiz) — f(2))dz + o0 4 {f(z2) — f(2)} d (2)
Lo z z)} dz J;._‘ z
Let us now choose N so large that on the lines joining zy and 2z, z; and z, ..., 2, and z,,
@) —fa| <gp e = f@] < 550 o 1f@) = f@)] < 5F )

where L is the length of C. Then from (2) and (9) we have

ELY L4 Zy
S| = - f@a)d —f@)de| + 0+ W) — f@)}d
S = | [ e - s | f 0~ sy S st = s ae
or & €
ISl = ~E{|21_201 + la—ag| + o0+ |ze=2,m]) = 2 . (4)
From

i}’(z)dz = i}'(z)d: = Sp + S;

we have, using (1) and (4),

i f(z) dz i f(z)dz - S,

Thus since ¢ is arbitrary, it follows that f f(z)dz = 0 as required.
(o

= + I8 <« %+é=.
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16. Prove the Cauchy-Goursat theorem for multiply-connected regions.

We shall present a proof for the multiply-
connected region ® bounded by the simple closed
curves C; and C, as indicated in Fig. 4-16. Exten-
sions to other multiply-connected regions are easily
made (see Problem 67).

Construct cross-cut AH. Then the region bounded
by ABDEFGAHJIHA is simply-connected so that by

Problem 15,
fz)dz = 0
ABDEFGAHJIHA
Hence f(z)dz + f(z)dz + f(z)dz + f(z)dz = 0
Aao's’;cn A‘! m?!; ‘ n!

Since f f(z)dz = -J‘ f(z) dz, this becomes
AH HA

fla)ds # f fydz = 0
ABDEFGA HJIH
This however amounts to saying that

where C ig"the complete boundary of R (consisting of ABDEFGA and HJIH) traversed in the sense
that, an 4 bserver walking on the boundary always has the region R on his left.

-

7
\-;tﬁd EQUENCES OF CAUCHY'S THEOREM

If f(z) is analytic in a simply-connected region R, prove that f(2)dz is independent
of the path in R joining any two points a and b in R. °
By Cauchy’s theorem,
fds = 0 Y
. ADBEA
or f(z)dz + flzydz = 0
S
Hence
'ff(z) de = —J"f(:) de = f/(z)dz
ADB BEA AEB
Thus
b x
fd = f roa = | o
Cy Cy a
which yields the required result.

Fig. 4-17

18. Let f(z) be analytic in'a simply-connected region R and let a and z be points in R.
Prove that (a) F(2) = f f(u)du is analytic in R and (b) F'(2) = f(2).

We have
z+ Az z
Hetad - F6@ — jm = zl;{f fwdu — f I(u)du} - 1@

zt+Azx
= 4 j: [fw) — f(2)] du o
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19.

By Cauchy’s theorem, the last integral is inde- v
pendent of the path joining z and z+ Az so long
as the path is in R. In particular we can choose
as path the straight line segment joining z und
z + Az (see Fig. 4-18) provided we choose |Az| small
enough so that this path lies in R.

Now by the continuity of f(z) we have for all
points u on this straight line path | f(u) — f(z)| < e
whenever |u—z| < 8, which will certainly be
true if |Az| < 8.

Furthermore, we have

z+ Az
f ) - f@du| < <oz (@) Fig. 4-18

so that from (1)

I 1 244z
! F(2+'-\:l F(z) _ fe) | = T J: [fw) = fz)]du| < e

F(z+ Az) — F(2) = f(a),

i.e. F(z) is ana-
Az

for |Az| <&. This, however, amounts to saying that lim
lytic and F'(z) = f(2). aesy

A function F(z) such that F’(z) = f(z) is called an indefinite integral of f(z) and is
denoted by f f(z)dz. Show that (a) f sinzd: = —cosz+c¢, (b) J‘dz Inz+e¢

where ¢ is an arbitrary constant.

(ai Since E;(—cosz + ¢) = sinz, we have f sinzdz = —cosz+ c.

(b) Since %(Inz-!-c) = —lz—, we have I‘%E = lnz+ec.

(2) be analytic in a region R bounded
by two simple closed curves C: and C;
[shaded in Fig. 4-19] and also on C; and C..

Prove that f f(z)dz = }; f(z) dz, where
Cy 1

Ci and C: are both traversed in the positive
sense relative to their interiors [counter-
clockwise in Fig. 4-19].

Construct cross-cut DE. Then since f(z) is ana-
Iytic in the region R, we have by Cauchy’s theorem

flz)dz = 0
R DEFGEDHJKLD
or I'/(z)dz & ff(z)dz # ff(z)dz 4 f fWds = o
EFGE DHIKLD

Hence since f[(z) dz = — f/(z) dz,
DE ED

fdz = —f fe)ds = f f@)dz  or jj fis)ds = § f(2) ds

DHJKLD EFGE EGFE
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{ Evaluate j; z—‘?—; where C is any simple closed curve C and z=a is (a) outside C,

(b) inside C.

(a) If a is outside C, then f(z) = 1/(z—a) is analytic every-
where inside and on C. Hence by Cauchy’s theorem,

dz

z—a

= 0.
c
(b) Suppose a is inside C and let T be a circle of radius ¢ with
centre at z = a so that I is inside C [this can be done since
z=a is an interior point|.

By Problem 20,

f ziza - f cha 1) S
(4 /i
NowonT, |z—a| =¢ or z—a = ¢ ie -z =a+e® 0=¢<2r. Thus since dz = ieeld dg,
the right side of (1) becomes
27 . e 2n
f feRdl _ i e = 2w
9=0 [{4

(
which is the required value. '

%uate i (72%5;, n = 2,8,4,... where z=a is inside the simple closed curve C.

As in Problem 21, ds = = Lde_
C(z—a) r (z—a)r
27 - i0 . 27
ieeldde i -
= J; enelnd T n—1 J; ett-mi0de
_ i eU-miglew g _
BTN S T=mo-ile 1] = 0

where n # 1.

23. If C is the curve y = 2°—3a2?+4x —1 joining points (1,1) and (2,3), find the
value of

.£ (1222 — 4iz) dz

Method 1. By Problem 17, the integral is independent of the path joining (1,1) and (2,3). Hence
any path can be chosen. In particular let us choose the straight line paths from (1,1) to (2,1) and
then from (2,1) to (2, 3).

Case 1. Along the path from (1,1) to (2,1), y=1, dy=0 so that z = x+iy = x+1i, dz = dx.
Then the integral equals

= 20 + 30¢

2
f {12(x + 1)2 — di(x+ 1)} dx {4(x 4+ 1) — 2i(x + 1)2}

Case 2. Along the path from (2,1) to (2,3), #=2,de=0 so that 2z = x+iy = 2+1iy, dz = idy.
Then the integral equals

-

3 3
f (122 + iy)? — 4i2+iy))idy = (4@2+iy)d — 2i2+iy2| = —176 + 8i
v=1 1
Then adding, the required value = (20 + 30i) + (—176 + 8:) = —156 + 38i.
Method 2. The given integral equals
2431 243
f (1222 — diz)dz = (443 — 2is?) = —156 + 38

1+4 14+

it is clear that Method 2 is easier.
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INTEGRALS OF SPECIAL FUNCTIONS
24. Determine (a) f sin 3z cos 3z dz, (V) f cot (22 + 5) dz.

(a) Method 1. Let sin32z = u. Then du = 3cos3zdz or cos3zdz = du/3. Then

o - Cde 1 ( I T
J sin3zcos3zdz = J ugy = §l/‘ udu = 39 4+ o
- 1., = L .
= 6“ + ¢ g sin 3z + ¢
Method 2.
[ sin3zcos3zdz = % f sin 3z d(sin3z) = (l—iain2 3z + ¢
Method 3. Let cos3z = u. Then du = —3sin3zdz or sin3zdz = —du/3. Then
fsiniizcosflzdz = —%J uwdu = —%u2+c, = —%c0323z+c,

Note that the results of Methods 1 and 2 differ by a constant.

(b) Method 1.

) _ cos (2z + 5)
‘ cot (22 +56)dz = f PRI ] dz
Let u = 8in(22+5). Then du = 2cos(2z+5) dz and cos(2z2+5)dz = du/2. Thus
cos(2z+6)dz 1 de 1 i _ 1 :
f——_sin(22+5) = 3 e = 2lnu Fe = 21nsnn(2=+l§)+¢:
Method 2. { }
i cos (2z + 5) f d{sin (22 + 5)
J cot (22 + 6) dz f sin (2z + 5) =2 Tsin (22 +5)

= ln sin(22+6) + ¢

5. (@) Prove that f F2)G'(2)dz = F(2)G(z) — f F'(2) G(2) dz
1
1 2z 2z
(b) Find J‘ze dz and j: ze¥dz.
2
. - f i Bils.
(¢) Find f 2%2sin4zdz and j; 22 8in4z dz

(d) Evaluate r (z + 2)e*dz along the parabola C defined by =%y =2? from (0,0)

to ('rr, 1). we
(a) We have
d{F(z) G(z)} = F()G'(x)dz + F'(z) G(z) dz
Integrating both sides yields
f d{F(2) G(z)} = F(2)G(z) = f F(z) G'(z)dz + f F'(z) G(2) dz
Then

'f F(z)G'(z)dz = F(2)G(z) — f F'(z) G(z) dz

The method is often called integration by parts.

(b) Let F(z) =z, G'(z) = e?2. Then F'(z) =1 and G(z) = Le?:, omitting the constant of integration.
Thus by part (a),

f ze?rdz = f F(z)G'(z)dz = F(z)G(z) — f F'(z) G(z) dz

= (2)(}e) — J‘ 1- jerrdz = Jze2t — Je2* + ¢
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Hence J;l zerdz = (§ze* — }e¥* + ¢) = Je2—je2+ } = }j(e2+]1)

1
0
(¢) Integrating by parts choosing F'(z) = 22, G'(z) = sind4z we have
’. z22gindzdz = (2?)(—} cosdz) — f (22)(—} cos 4z) dz
= —41:’ cosd4z + % fzcosudz
Integrating this last integral by parts, this time choosing F(z) = z and G’(z) = cos 4z, we find
f zcosdzdz = (z)(4 sindz) — f (1)(} sin4z)dz = -}zsindz + & cosdz

Hence f 22sindzdz = —}22cosdz + }zsindz + 5 cosdz + ¢

1.3
and fz’sintlzdz 2 S e de = gk
(1}
The double integration by parts can be indicated in a suggestive manner by writing

f 22sindzdz = (2%)(—} cosdz) — (2z)(—{4 sindz) + (2)(f;cosdz) + ¢
= —}2%cosdz + }jzsindz + F; cosdz

where the first parentheses in each term [after the first] is obtained by differentiating 2% suc-
cessively, the second parentheses is obtained by integrating sin 4z successively, and the terms
alternate in sign.

(d) The points (0,0) and (»,1) correspond to z =0 and z = »+1i. Since (z+ 2)e'* is analytic, we
see by Problem 17 that the integral is independent of the path and is equal to

141 i
f (z+2) et dz = {(z +2) ("T) = (l)(—e‘*)}
0

eunn) + oltrtd _ % _ 1

r+i
0

= (r+i+2)(

= 21— 14 124+ 7e "1+ 271 .

dz 1, _,z 1 (z—ai)
26. Show that - g b Etan a + ¢ = mlll z‘+ai + cCa.
Let z = atanu. Then
dz _ a sec? u du _ _l_f _ 1. _,z
22+a? T fa?(tan2u+l) T a ai. B Shn=ie R g
Al bee 1 = 1/ 1 _ 1
" Zta? = (z—ad(z+ad)  Zai\z—ai z+ai
ad dz _ 1 dz 1 dz
el 224+a?2 ~  2ai z—ai 2ai J z+ai
_ 1 . _ 1, (1=ai
= 2—m:ln(z-—m') 2m.ln(z+ai) + ¢ = 2ai In (z+ai) + ey

MISCELLANEOQOUS PROBLEMS
27. Prove Morera’s theorem [Page 95] under the assumption that f(z) has a continuous
derivative in R.
If f(z) has a continuous derivative in R, then we can apply Green’s theorem to obtain

‘if(z)dz = §ud=~—vdy + t'}.vdz-i-udy

(4

c
dv  du s du v
. ff('x‘sv)“""'*‘ff 5:‘5)““’"
R |
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Then if £_ f(z)dz = 0 around every closed path C in R, we must have

fudz—vdy:O, §vdz+udy=0
c c

around every closed path C in R. Hence from Problem 8, the Cauchy-Riemann equations

wo_ v v

oz~ ' 9ax ~
are satisfied and thus [since these partial derivatives are continuous] it follows [Problem 5, Chapter 3]
that u+iv = f(z) is analytic.

28. A force field is given by F = 3z+5. Find the work done in moving an object in this
force field along the parabola z = t?+it from 2z =0 to z = 4+ 2i.
Total work done = Fod: = ReJ; Fdz = Re{J; (3z+56) dz}

= Re{

Re {3(10 —§i) + b6(4+29)} = 560
using the result of Problem 2.

(/-]
"y

™

&

+

o
a

&
.

1

29. Find- (a) f e gin bx dx, (D) f e cos bz dx.

Omitting the constant of integration, we have

(a+ib)z < HPN
f ¢ W atib
which can be written
: 7 o _ e%%(cos bx + i sin bx) e*(cos bx + 1 sin bx)(a — ib)
ed.! = —
f (cos bz + 1 sin bx)dx ¥ pray

Then equating real and imaginary parts,

J‘ o sonhdi ¢3%(a cos bz + b sin bx)

a? + b2

e%%(a gin bz — b cos bx) .
a? + b?

f ed* ginbx dxr =

30. Give an example of a continuous, closed, non-intersecting curve which lies in a bounded
region R but which has an infinite length.

Consider equilateral triangle ABC [Fig. 4-21] with sides of unit length. By trisecting each side,
construct equilateral triangles DEF, GHJ and KLM. Then omitting sides DF, GJ and KM, we obtain
the closed non-intersecting curve ADEFBGHJCKLMA of Fig. 4-22.

B

Fig.4-21
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The process can now be continued by trisecting sides
DE, EF, FB, BG, GH, ele., and constructing equ lateral
triangles as before. By repecating the process indefinitely
[see Fig. 4-23] we obtain a continuous closed non-inter-
secting curve which is the boundary of a region with
finite area equal to

W3+ @rYE 4 (9)(5)2f + eneeYs +
V3 ' V3 1 3V3
=, +EELH ) = TIicis * 5

or 1.b l;imes the area of triangle ABC, and which has
infinite length (see Problem 91).

Fig.4-23

31. Let F(x,y) and G(x,y) be continuous and have continuous first and second partial
derivatives in a simply-connected region ‘R bounded by a simple closed curve C.

Prove that

(G ) o (f[p(28,26) , (FL oG
f F\«)y Edy) - 5 {F(axz ay2> T (ax vy ay M)]d.z:dy
G :(7 .
Let P = t’" 1 Q = ﬁ" in Green's thecorem

§ Pdx + Qdy = ff( —-1-—>r!a:n’y
Je ay
Then as required

(e 2a) - (5 (e - b i)

?2G | %G aF 3G . 9F aG
‘ff[ (ax= W) T (ax o +55§>] srdy

Il

Supplementary Problems

LINE INTEGRALS
2,5)
32. Evaluate (Bx+y)dx + (2y —x)dy along (a) the curve y = x2+1, (b) the straight line
0,1)
joining (0, 1) and (2,5), (c) the straight lines from (0,1) to (0,5) and then from (0,5) to (2,5), (d) the
straight lines from (0,1) to (2,1) and then from (2,1) to (2,5).

Ans. (a) 88/3, (b) 32, (c) 40, (d) 24

33. (a) Evaluate § (x +2y)dx + (y — 2x) dy around the ellipse C defined by x = 4 coss, y = 3sins,
(o
0 =6 <2r if C is described in a counterclockwise direction. (b) What is the answer to (a) if C is
described in a clockwise direction? Ans. (a) —48r, (b) 48r
34. Evaluate f (x2—1iy?)dz along (a) the parabola y =2x2 from (1,1) to (2,8), (b) the straight lines
(]

“"from (1,1) to (1,8) and then from (1,8) to (2,8), (c) the straight line from (1,1) to (2, 8).
Ans. (a) 4 — 44, (b) ¥ — 57i, () Yt - 8i

35. Evaluate § |z|2dz around the square with vertices at (0,0), (1,0), (1,1), (0,1). Ans. —1+1
Je
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36.

317.

38.

39.

40.

41,

42.

43.

4.

Evaluate f (224 82)dz along (a) the circle |z =2 from (2,0) to (0,2) in a counterclockwisc
(o

direction, (b) the straight line from (2,0) to (0,2), (¢) the straight lines from (2,0) to (2,2) and then
from (2,2) to (0,2). Ans. —4 —4i for al. cases

If f(z) and g(z) are integrable, prove that

(@ f!(z)dz = - "t as

(b) J; {2f(z) — 3ig(2)}dz = 2J; f(z)dz — 31'J; g(2) dz.

2—1 )

Evaluate f (3xy +iy?) dz (a) along the straight line joining z = i and z = 2—14, (b) along
{

the curve = 2t—2, y = 1+ ¢t—¢2 Ans. (a) —%+8i, () —§+ i

Evaluate f 22dz around the circles (a) |z2| =1, (b) |z—1] = 1. Ans. (a) 0, (b) 4ni
c

Evaluate § (64— 23+ 2)dz around (a) the circle |z| =1, (b) the square with vertices at (0,0),
c

(1,0), (1,1) and (1,0), (¢) the curve consisting of the parabolae y =z? from (0,0) to (1,1) and y2==«
from (1,1) to (0,0). Ans. 0 in all cases

Evaluate f (22+ 1)2dz along the arc of the cycloid z = a(6 —sins), ¥y = a(l —coss) from the
c
point where ¢ =0 to the point where ¢ = 2z. Ans. (967%a% + 8073a3 + 307a)/16

Evaluate f 22dz + 22dz along the curve C defined by 22 + 22z + 22 = (2—21)z + (2+ 21)2 from
c
the point 2 =1 to z = 2+ 2i. Ans. 248/16

d
Evaluate f - 22 around (a) the circle |z—2| .= 4, (b) the circle |z— 1] = b, (c) the square with
2 —

vertices at 2 x2{, —2*x 24, Ans. 2ri in all cases

Evaluate ff (22 + iy?) ds around the circle |2 =2 where 8 is the arc length. Ans. 8x(1+1)
c

GREEN'S THEOREM IN THE PLANE

45.

46.

47.

48.

49.

Verify Green’s theorem in the plane for f (22— 2zy) dx + (y2— x%y)dy where C is a square with
c
vertices at (0, 0), (2,0), (2,2), (0,2). Ans. common value = —8

Evaluate f (bx+6y—3)dx + (3x—4y +2)dy around a triangle in the xy plane with vertices at
c
(0,0), (4,0) and (4, 3). Ans. —18

Let C be any simple closed curve bounding a region having
area A. Prove that -

A = 1»f:»:dy—udac
2 Je

Use the result of Problem 47 to find the area bounded by the
ellipse =z = acosd, y = bsing, 0=¢ <2r. Ans. wab

Find the area bounded by the hypocycloid x2/3 + y2/3 = @2/3
shown shaded in Fig. 4-24. [Hint. Parametric equations are
x =acos’d, y =asinde, 0=6<2r] Ans. 3ra?/8 Fig. 4-24
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50.

51.

52.

COMPLEX INTEGRATION AND CAUCHY’S THEOREM [CHAP. 4

Verify Green’s theorem in the plane for f z?ydx + (y*—zy?)dy where C is the boundary of the
C

region enclosed by the circles z?+ y? = 4, x? | y* = 16, Ang. common value = 1207

(a) Prove that tf(y2 cosz — 2e¥)dx + (2y sinxz — 2xev)dy = 0 around any simple closed curve C.
Je
(b) Evaluate the integral in (a) along the parabola y =22 from (0,0) to (=, 7?). Ans. (b) —2re™

(3,2)

(@) Show that f (2zy® —2y2 — 6y) dz + (3x2y® — 4xy — 62) dy is independent of the path joining
2.1

points (2,1) and (3,2). (b) Evaluate the integral in (a). Ans. (b) 24

COMPLEX FORM OF GREEN'S THEOREM

53. If C is a simple closed curve enclosing a region of area A, prove that A = 211 § zdz.
C
54. Evaluate § zdz around (a) the circle |z—2| = 3, (b) the square with vertices at z=0, 2, 2i
c
and 2+ 2i, (c) the ellipse |z—3|+ |2+ 3] = 10. Ans. (a) 187i, (b) 8i, (c) 40xi
55. Evaluate .(f (82 + 3z)dz around the hypocycloid «2/3+ y2/3 = a2/3. Ans. 6ria?
c
56. Let P(z,z) and Q(z,%) be continuous and have continuous partial derivatives in a region R and on
its boundary C. Prove that
fP(z,z)dz + Qz,5)dz = 2;‘ff(‘i = ﬂ) dA
{of 0z 0z
R
57. Show that the area in Problem 53 can be written in the form A = ;}; &id: — zdz.
S
58. Show that the centroid of the region of Problem 53 is given in conjugate coordinates by (;, ‘i\) where
- 1 2 13 & = 1 §-2
z 4Ai£211, z 4A',.Czdz
59. Find the centroid of the region bounded above by [z] = a > 0 and below by Imz = 0.

Ans. 2 = 2ailw, 2 = —2ai/z

CAUCHY’'S THEOREM AND THE CAUCHY-GOURSAT THEOREM

60.

61,

62.

Verify Cauchy’s theorem for the functions (a) 3z2+iz—4, (b) b sin2z, (c) 3cosh(z+2) if C is
the square with vertices at 1*i, —1 %1,

Verify Cauchy's theorem for the function z3 —iz2—bz+2i if C is (a) the circle |z| =1, (b) the circle
[z—1] = 2, (c) the ellipse |z—3i| + |z+3i] = 20.

If C is the circle |z—2| = 5, determine whether § z(iza = 0. (b) Does your answer to (a) contra-

dict Cauchy’s theorem? g

Explain clearly the relationsmip between the observations

f(xz—yz¥2i)dz+(2x—zmy)dy = 0 and (f(z’—m'z)dz = 0
C C

where C is any simple closed curve.
By evaluating f erdz around the circle |z| = 1, show that
(5

2 2w
f " ecos0 con (0 + sing)de = f ecos0gin(o + sing)ds = 0
0 0

State and prove Cauchy’s theorem for multiply-connected regions.
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66.

67.

69,

70.

71,

Prove the Cauchy-Goursat theorem for a polygon, such as ABCDEFGA shown in Fig. 4-26, which
may intersect itself. p

Prove the Cauchy-Goursat theorem for the multiply-connected region R shown shaded in Fig. 4-26.

Fig. 4-25 Fig. 4-26

(a) Prove the Cauchy-Goursat theorem for a rectangle and (b) show how the result of (a) can be used
to prove the theorem for any simple closed curve C.

Let P and Q be continuous and have continuous first partial derivatives in a region R. Let C be
any simple closed curve in R and suppose that for any such curve

§de+Qdy = 0
C

(a) Prove that there exists an analytic function f(z) such that Re {f(z)dz} = Pdx + Qdy is an
exact differential.

(b) Determine p and ¢ in terms of P and Q such that Im {f(2)dz} = pdx + qdy and verify that
§pdz + qdy = 0.
c

(c) Discuss the connection between (¢) and () and Cauchy’s theorem.

Iilustrate the results of Problem 69 if PP = 2z ty—2xy, Q = z—2y—22+y2 by finding p,q
and f(z). Ans. One possibility is p = 22— y2+2y—2, q = 2z +y— 2zy, [(z) = 1224 (2 —1)z.

Let P and Q be continuous and have continuous partial derivatives in a region R. Suppose that for
any simple closed curve C in ‘R we have (ﬁ Pdx+ Qdy = 0. (a) Prove that § Qdx — Pdy = 0.
Jc Je

(b) Discuss the relationship of (a) with Cauchy’s theorem.

CONSEQUENCES OF CAUCHY'S THEOREM

72,

73.

74.

75.

76.

4-3i .
Show directly that (622 + Biz)dz has the same value along the following paths C joining
3440
the points 3+4i and 4—3i: (a) a straight line, (b) the straight lines from 3+ 4i to 4+ 4i and

.then from 4+4i to 4—3i, (c) the circle |z] = 6. Determine this value. Ans., 238 — 266i

Show that f e~2dz is independent of the path C joining the points 1— i and 2+ 3zi and

(o
determine its value. Ans. Je (1 —e-?)

z -
Given G(z) = f cos3f df. (a) Prove that G(z) is independent of the path joining » — »i and

the arbitrary point z.  (b) Determine G(ri). (c) Prove that G’(z) = cos 3z. Ans. (b) 0

2

Given G(z) = r sin{2d{. (a) Prove that G(z) is an analytic function of z. (b) Prove that
G'(z) = sinz2, '

State and prove a theorem corresponding to (a) Problem 17, (b) Problem 18, (c) Problem 20 for the
real line integral f Pdx + Qdy.
c
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78.

COMPLEX INTEGRATION AND CAUCHY'S THEOREM

[CHAP. 4

Prove Theorem 5, Page 97 for the region of Fig. 4-26.

(a) If C is the circle |z| = R, show that

lim §
R=® J(C

224+ 22—56
(22 + 4)(22 + 22 + 2)

(b) Use the result of (a) to deduce that if C, is the circle [z—2| = b, then

22+ 2z—6 = G

ﬁ:. (22 + 4)(22 + 2z + 2)
(¢) Is the result in (b) true if C, is the circle [z+ 1] = 27

INTEGRALS OF SPECIAL FUNCTIONS

79.

80.

81.

82.

84.

85.

Find each of the foilowing integrals:

(a) f e~ 22dz, (b) f zsinz?dz, (c) f

Ans. (a) —fe ¥+ ¢
(b) —4 cosz? + ¢

(e) f z? tanh (423) dz

Find each of the following integrals:
(a) [ zcos2zdz, (b) ] 22 ¢~ 2 dz,

Ans. (a) dzsin2z + }cos2z + ¢
(b) —e~*(22+2z+2) + ¢

Evaluate each of the following:
2mi i

(a) f edzdz, (b) ’ sinh bz dz,
mi 70

Ans. (a) 2/3, (b) —2/5, (¢) 4 cosh2 —

/2
Show that I sin? z dz

‘ w/2 '
f cos?z dz
0 0

dz 1

22—a’> ~ 2a

Show that

|n(“"

+a

Show that if we restrict ourselves to

[ zy22+ 56 dz
Evaluate J \’1 + Vz+1dz, stating

Explain.

z2 4+ 1
D +3z+2 .
() yIn(z2+32+2) + ¢

(d) 116 sin®2z + ¢

dz, (d) f sint 22z cos 2z dz

(e) ;% Incosh (42%) + ¢

(c) f zlnzdz, (d) f z% sinh z dz.

(¢ §22Inz —} + ¢
(d) (2% -+ 62) coshz — 3(22+ 2) sinhz + ¢

m+i
(¢) f z cos 2z dz.
/0

4 sinh 2 + §wi sinh 2

n/4.

) +e = —1-cot,h—‘—+ ¢y

the 'same branch of the square root, ,

@B — @zt BV + o

conditions under which your result is valid.

Ans. $(1+Vz+1)%2 — 41 +Vz+1)P2 + ¢

MISCELLANEOUS PROBLEMS
Use the definition of an integral to prove that along any arbitrary path joining points a and b,

86.

87.

88.

v b
(a) f dz b—a, (b f z2dz
a ﬂ
Prove the theorem concerning change
[Hint. Express each side as two real

Let u(x,y) be harmonic and have conti
(a) Show that

v(z,¥)

$(b2— a2).

of variables on Page 93.
line integrals and use the Cauchy-Riemann equations.]

nuous derivatives, of order two at least, in a region R.

(z,¥)
f —gy 4
(a,b) v

is independent of the path in R joining (a, b) to (x, ).

(b)
(¢)

Prove that v is harmonic in R.

Prove that u + iv is an analytic function of z = £+iy in R.
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89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Work Problem 88 for the special cases (a) u = 3x2y + 222 — 3 —2y2, (b) u = xe* cosy — yc* siny.
[See Problems 53(a) and (c), Page 86.]

Using the definition of an integral, verify direcily that

(a) §dz = 0, (b) §zdz =0 (e) § (z—29)dz = 0
(o c ¢

where C is a simple closed curve and z, is any constant.

Find the length of the closed curve of Problem 30 after n steps and verify that as »n = » the length
of the curve becomes infinite.

d 4 : " . 2 3
Evaluate f }-2{-&- along the line 2+ y = 1 in the direction of increasing . Ans. #/2
€2F

Show that ’ ze~Tsing dr = {.
Jo

-2+ 2V3i
Evaluate z12dz along a straight line path if we choose that branch of z!/2 such that
-2 —2V3i
212 =1 for z=1. Ans. 32/3

Does Cauchy’s theorem hold for the function f(z) = z1/2 where C is the circle |zl =17 Explain.

Does Cauchy’s theorem hold for a curve, such as v E
EFGHFJE in Fig. 4-27, which intersects itself?
Justify your answer.

If n is the direction of the outward drawn normal 7
to a simple closed curve C, 8 is the arc length
parameter and U is any continuously differentiable G x
function, prove that )
W adx aUdy
m T ox ds dy ds Fig. 4-27

Prove Green's first identity,

aU avV | aUaV § oV
2 - pa— P e
ﬂUV Vdzdy + .U(_dx ——-—h-i- Ay ay)dxdy CUands

92

22
- 4+ 2
ay?’

where ‘R is the region bounded by the simple closed curve C, vz = Fre
as in Problem 97.

while n and s are

Use Problem 98 to prove Green's second identity

2y — = iV .. p3U
f (U V2V — V V2U)dA ﬁ(van Vo) ds

R
where dA is an element of area of R.

Write the result of Problem.31 in terms of the operator V.
Eval : - d the unit circl 1 t th 1 ing th
valuate ———————— around the unit circle |z| = starting wi z =1, assuming e
.4:: Vz2+2z+2 e Il &
integrand positive for this value.
If n is a positive integer, show that

2w "
f esInnd ¢co5 (¢ — cosng)de = f esnnf gin (9 — cosne)de = 0
o (1



