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THE REAL NUMBER SYSTEM
The number system as we know it today is a result of gradual development as indicated

in the following list.

1. Natural numbers 1,2,3,4, . .., .lso called positive integers, were first used in
counting. The symbols varied with the times, e.g. the Romans used 1, 11, III, IV.....
If a and b are natural numbers, the sum a+ b and product a b, (a)(b) or ab are
also natural numbers. For this reason the set of natural numbers is said to be
closed under the operations of addition and multiplication or to satisfy the closure
property with respect to these operations.

2. Negative integers and zero, denoted by —1, —2,-3.... and 0 respectively, arose
to permit solutions of equations such as x + b = a where a and b are any natural
numbers. This leads to the operation of subtraction, or inverse of addition, and
we write x=a — b.

The set of positive and negative integers and zero is called the set of integers
and is closed under the operations of addition, multiplication and subtraction.

3. Rational numbers or fractions such as 1, -, ... arose to permit solutions of
equations such as bx = a for all integers a and b where b 76 0. This leads to the
operation of division or inverse of multiplication, and we write x = a/b or a —, b
[called the quotient of a and b] where a is the numerator and b is the denominator.

The set of integers is a part or subset of the rational numbers, since integers
correspond to rational numbers a/b where b = 1.

The set of rational numbers is closed under the operations of addition, sub-
traction, multiplication and division, so long as division by zero is excluded.

4. Irrational numbers such as J.41423• and 7r =3.l4l59•• are numbers
which are not rational, i.e. cannot be expressed as a/b where a and b are integers
and bO.

The set of rational and irrational numbers is called the set of real numbers. It is
assumed that the student is already familiar with the various operations on real numbers.

GRAPHICAL REPRESENTATION OF REAL NUMBERS
Real numbers can be represented by points on a line called the real axis, as indicated

in Fig. 1-1. The point corresponding to zero is called the origin.
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Fig. 1-I

Conversely, to each point on the line there is one and only one real number. If a
point A corresponding to a real number a lies to the right of a point B corresponding to
a real number b, we say that a is greater than b or b is less than a and write respectively
a>b or b<a.
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The set of all values of x such that a < x < b is called an open interval on the real axis

while a5 x b, which also includes the endpoints a and b, is called a closed interval. The
symbol x, which can stand for any of a set of real numbers, is called a real variable.

The absolute value of a real number a, denoted by lal, is equal to a if a> 0, to —a if

a < 0 and to 0 if a = 0. The distance between two points a and b on the real axis is Ia - l)j.

THE COMPLEX NUMBER SYSTEM
There is no real number x which satisfies the polynomial equation x2 + 1 = 0. To

permit solutions of this and similar equations, the set of complex numbers is introduced.

We can consider a complex number as having the form a+ bi where a and b are real
numbers and i, which is called the imaginary unit, has the property that i 2 =-1. If
z = a+ bi, then a is called the real part of z and b is called the imaginary part of z and

are denoted by Re (z) and Im {z} respectively. The symbol z, which can stand for any of
a set of complex numbers, is called a complex variable.

Two complex numbers a + bi and c + di are equal if and only if a = c and b = d. We
can consider real numbers as a subset of the set of complex numbers with b = 0. Thus
the complex numbers 0 + Oi and —3 + Oi represent the real numbers 0 and —3 respectively.
If a = 0, the complex number 0 + bi or bi is called a pure imaginary number.

The complex conjugate, or briefly conjugate, of a complex number a + bi is a - bi.
The complex conjugate of a complex number z is often indicated by 2 or z.

FUNDAMENTAL OPERATIONS WITH COMPLEX NUMBERS
In performing operations with complex numbers we can proceed as in the algebra

of real numbers, replacing i 2 by —1 when it occurs.

1. Addition

	

	 .
(a + bi) + (c + dl) = a + bz + c + di = (a + c) + (b + d)l

2. Subtraction	 .
(a + bz) - (c + di) = a + bz - c - di = (a - c) + (b - d)z

3. Multiplication
(a+bi)(c+di) = ac + adi + bci + bdi 2 = (ac — bd) + (ad +bc)i

4. Division	
a+bi - a+bic—di =
c+di - c+di c—dz

- ac+bd+ (be —ad)i
-

ac—adi+bci—bdi2
- d2i2

ac+bd	 bc — ad.
= c2+d2 + c2+d2

ABSOLUTE VALUE
The absolute value or modulus of a complex number a + bi is defined as I a + bi I =

a2 + b2.

	

Example: 1-4+211	 (_4)2 + (2)2 =	 = 2

If z 1 , z2 , z 3 , . . . , z,,, are complex numbers, the following properties hold.

fz i Z2 = IziI Iz21	 or	 I Zj 22	 I = JZI IZaI

Z. I
= iii	 if	 z20

221	 Izil
z + z2	 I ' I + 1221	 or	 1 21 + Zi +	 + Z.	 IZII + 1 221 +	 +

I z ' + Z21	 ku - kzi	 or	 121-221	 lzuI - 1221

1.

2.

3.

4.
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EULER'S FORMULA
By assuming that the infinite series expansion e = 1 + x + z2/2! + x3•18! +	 of

elementary calculus holds when x = iO, we can arrive at the result

= cos 0 + i sin 	 e = 2.71828... 	 (7)

which is called Euler's formula. It is more convenient, however, simply to take (7) as a
definition of 00. In general, we define

ez = e flv = ex e f V = 9(cosy + i sin y)	 (8)

In the special case where y = 0 this reduces to e.

Note that in terms of (7) De Moivre's theorem essentially reduces to (e°) =

POLYNOMIAL EQUATIONS
Often in practice we require solutions of polynomial equations having the form

a0 z + a 1 z' + a2 Z-2 +	 + a-z + a = 0	 (9)

where ao k 0, a 1 , . . ., a are given complex numbers and n is a positive integer called
the degree of the equation. Such solutions are also called zeros of the polynomial on the
left of (9) or roots of the equation.

A very important theorem called the fundamental theorem of algebra [to be proved
in Chapter 5] states that every. polynomial equation of the form (9) has at least one root
which is complex. From this we can show that it has in fact n complex roots, some or all
of which may be identical.

If z 1 , Z2,	 z. are the n roots, (9) can be written

ao(z - z 1 )(z - z2)	 . (z -- z) = 0	 (10)
which is called the factored form of the polynomial equation. Conversely if we can write
(9) in the form (10), we can easily determine the roots.

THE nth ROOTS OF UNITY
The solutions of the equation z" = 1 where n is a positive integer are called the

nth roots of unity and are given by

z = cos2kir/n + i sin 2k7T/n = e2 '"	 k = 0, 1, 2, . . ., n—i	 (11)

If we let = cos 2irin + i sin 27r/n e 2"", the n roots are It w, 0)2, . . . , w" 1. Geo-
metrically they represent the n vertices of a regular polygon of n sides inscribed in a circle
of radius one with centre at the origin. This circle has the equation Izi = 1 and is often
called the unit circle.

VECTOR INTERPRETATION OF COMPLEX NUMBERS
A complex number z = x + iy can be con-

sidered as a vector OP whose initial point is the
origin 0 and whose terminal point P is the
point (x, y) as in Fig. 1-4. We sometimes call

	 A
OP = x + iy the position vector of P. Two vec-
tors having the same length or magnitude and
direction but different initial points, such as	 o
OP and AB in Fig. 1-4, are considered equal.
Hence we write OP = AR = x + iy.

Z

Fig. 1-4
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Addition of complex numbers corresponds
to the parallelogram Ian' for addition of vectors
(see Fig. 1-51. Thus to add the complex num-
bers z and 22, we complete the parallelogram
OABC whose sides QA and OC correspond to
z1 and 22. The diagonal OB of this parallelo-
gram corresponds to z 1 i- 22. See Problem 5.

A

Fig. 1-5

SPHERICAL REPRESENTATION OF COMPLEX NUMBERS.
STEREOGRAPHIC PROJECTION

Let P [Fig. 1-61 be the complex plane and consider a unit sphere J [radius one] tangent
to P at z = 0. The diameter NS is perpendicular to 'P and we call points N and S the north
and south poles of F. Corresponding to any
point A on P we can construct line NA inter-
secting J at point A'. Thus to each point of	 N

the complex plane P there corresponds one
and only one point of the sphere J, and we can
represent any complex number by a point t,.

1

the sphere. For completeness we say that the
point N itself corresponds to the "point at
infinity " of the plane. The set of all points
of the complex plane including the point at
infinity is called the entire complex plane, the
entire z plane, or the extended complex plane.	 Fir. 1-6

The above method for mapping the plane on to the sphere is called stereographic
projection. The sphere is sometimes called the Riemann sphere.

DOT AND CROSS PRODUCT
-	 Let z, = x 1 + iv, and z2 = X2 + iy2 be two complex numbers [vectors]. The dot

product [also called the scalar product] of z1 and z2 is defined by

21 0 22 = Jz] Jz21 cos 9 = x1x2 + lhY = Re (1z2) = I (iZ + Zj)	 (12)

where 0 is the angle between z and 22 which lies between 0 and ir.

The cross product of z and 22 is defined by

21 )( 22 = ti] 221 sin 0 =	 Y-rX = IM (IZ2) =	 - z2)
	

(13)

Clearly,

	

2122 = (Zi 0 22) + i(z 1 x z2) = zi] ]z2 ] e
	

(14)

If ti and z2 are non-zero,, then

I. A necessary and sufficient condition that z i and 22 be perpendicular is that
z1 0 z2 = 0.

2. A necessary and sufficient condition that z and Zz be parallel is that ZI X 22 = U.

3. The magnitude of the projection of Zi on 22 15 z1oz21/]z2].

4. The area of a parallelogram having sides z 1 and 27 is ]z, x zr].



CHAP. 11	 COMPLEX NUMBERS	 7

COMPLEX CONJUGATE COORDINATES
A point in the complex plane can be located by rectangular coordinates (x,y) or polar

coordinates (r, 8). Many other possibilities exist. One such possibility uses the fact that

X = (z + 2), y = (z —2) where z = x + iy. The coordinates (z, 2) which locate a point
are called complex conjugate coordinates or briefly conjugate coordinates of the point
[see Problems 43 and 44].

POINT SETS
Any collection of points in the complex plane is called a (two-dimensional) point set,

and each point is called a member or element of the set. The following fundamental
definitions are given here for reference.

1. Neighbourhoods. A delta, or 6, neighbourhood of a point Zo is the set of all points z
such that 1 z - zof < 8 where 8 is any given positive number. A deleted 8 neigh-
bourhood of z0 is a neighbourhood of z0 in which the point z0 is omitted, i.e.
o < Iz — zoI < 8.

2. Limit Points. A point z0 is called a limit point, cluster point, or point of accumu-
lation of a point set S if every deleted 6 neighbourhood of z0 contains points of S.

Since 6 can be any positive number, it follows that S must have infinitely
many points. Note that z0 may cr may not belong to the set S.

3. Closed Sets. A set S is said to be closed if every limit point of S belongs to S,
i.e. if S contains all its limit points. For example, the set of all points z such
that I z	 .l is a closed set.

4. Bounded Sets. A set S is called bounded if we can find a constant M such that
Izi <M for every point z in S. An unbounded set is one which is not bounded.
A set which is both bounded and closed is sometimes called compact.

5. Interior, Exterior and Boundary Points. A point z0 is called an interior point
of a set S if we can find a 6 neighbourhood of z0 all of whose points belong to S. If
every 6 neighbourhood of z0 contains points belonging to S and also points not
belonging to S, then z0 is called a boundary point. If a point is not an interior
or boundary point of a set S, it is an exterior point of S.

6. Open Sets. An open set is a set which consists only of interior points. For
example, the set of points z such that I zi <1 is an open set.

7. Connected Sets. An open set S is said to be connected if any two points of the
set can be joined by a path consisting of straight line segments (i.e. a polygonal
path) all points of which are in S.

8. Open Regions or Domains. An open connected set is called an open region or
domain.

9. Closure of a Set. If to a set S we add all the limit points of S, the new set is
called the closure of S and is a closed set.

10. Closed Regions. The closure of an open region or domain is called a closed
region.

11. Regions. If to an open region or domain we add some, all or none of its limit
points, we obtain a set called a region. If all the limit points are added, the
region is closed; if none are added, the region is open. In this book whenever we
use the word region without qualifying it, we shall mean open region or domain.
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12. Union and Intersection of Sets. A. set consisting of all points belonging to set Si

or set S2 or to both sets S1 and S2 i:; called the union of Si and S2 and is denoted

by S 1 +S2 or S1US2.

A set consisting of all points belonging to both sets S1 and S2 is called the

intersection of S1 and S2 and is denoted by S1S2 or Si fl S2.

13. Complement of a Set. A set consisting of all points which do not belong to S is

called the complement of S and is denoted by S.

14. Null Sets and Subsets. It is convenient to consider a set consisting of no points at
all. This set is called the null set and is denoted by 0. If two sets S1 and S2

have no points in common (in which case they are called disjoint or mutually

exclusive sets), we can indicate this by writing S1 fl S2 =

Any set formed by choosing some, all or none of the points of a set S is
called a subset of S. If we exclude the case where all points of S are chosen,
the set is called a proper subset of S.

15. Countability of a Set. If the members or elements of a set can be placed into a
one to one correspondence with the natural numbers 1, 2, 3, .'. ., the set is called
countable or denumerable; otherwise it is non-countable or non-denumerable.

The following are two important theorems on point sets.

1. Weierstrass-Bolzano Theorem. Every bounded infinite set has at least one limit
point.

2. Heine-Borel Theorem. Let S be a compact set each point of which is contained
in one or more of the open sets A 1 , A 2, . . . [which are then said to cover S]. Then
there exists a finite number of the sets A,, A2, . . . which will cover S.

Solved Problems

FUNDAMENTAL OPERATIONS WITH COMPLEX NUMBERS

1. Perform each of the indicated operations.
(a) (3+2i)+(-7—i) = 3-7+2i — i = —4+i

(b) (-7—i)+(3+2i) = —7+3—i+2i = —4+i

The results (a) and (b) illustrate the commutative law of addition.

(c) (8— 6i) - (2i —7) = 8 - 6i - 2i + 7 = 15 - Si

(d) (5 + 3i) + ((-1 + 2i) + (7— Si)) = (5 + 3i) + (-1 + 2i + 7 - Si) = (5 + 3i) + (6— Si) = 11

(e) {(5 + 3i) + (-1 + 2i)} + (7— Si) = (5 + 3i - 1 + 2i) + (7 5i) = (4 + 5i) + (7 Si) = 11

The results (d) and (e) illustrate the associative law of addition.

(f) (2-3i)(4+2i) = 2(4+2i)-3i(4+2i) = 8+4j_12j_6i 2 = 8+4i-12i+6 = 14—Si

() (4+2i)(2-3i) = 4(2-31)+2i(2-31) = 8_12i+4i_6i 2 = 8-12i+4i+6 = 14-8i

The results (f) and (g) illustrate the commutative law of multiplication.

(h) (2— i)((-3 + 2i)(5 - 4i)) = (2— i)(-15 + 12i + lOi - 8i2)
= (2— i)(-7 + 22i) = —14 + 44i + 7i - 22j2 = 8+61i

(i) ((2—i)(-3+2i))(5-4i) = (-6+4i+3i-2i2)(5-4i)
= (-4+ 71)(6 - 41)	 —20 + 16i + 35i - 28i 2 = 8 ± Mi

The results (h) and (1) illustrate the associative law of multiplication.
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(j) (-1 + 21)((7 - 51) + (-3 + 41)) = (-1 + 21)(4 - i) = 4 + i + 8i - 2i2 = -2 + 9i

Another method.	 (-1 + 2i)((7 - 51) + (-3 + 40) = (-1 + 2i)(7 - Si) + (-1 + 2i)(-3 + 41)
= (-7+5i+ 14i- 10i 2) + {3-4i-6i+ 8i2}
= (3 + 191) + (-5 - lOi) = -2 + 9i

This illustrates the distributive law.
k 3-2i - 3-2i -1-i - _3_3i+2i+2i2 - -5-i -	 5 - 1.

1+i - -1+i•-1-i -	 1_j2	 -	 2	 -	 2 22

Another method. By definition, (3 - 2i)/(-1 + i) is that number a + Si, where a and b are real,
such that (-1+i)(a+bi) = -a--b+(a-b)i = 3-2i. Then -a-b = 3, a-b = -2 and
solving simultaneously, a = -5/2, b = -1/2 or a+ Si = -5/2 - i/2.

5+5j20	 5+5i• 3+4i	 20	 43i
3-4i + 4+3i - 3-4i 3+4i + ;i-:i-?

- 15 + 20i + lbi + 20i' 80- 60i - -5 + 35i	 80- 60i -	 -
-	 9-16i'	 + 16_9i2 -	 25	 + 25	 -

(m) 3j3 - j 19 = 3(i 2) 1 5 - (i 2)9i - 3(-1)' 5 - (-1)°i
2i-1	 2i-1	 -	 -1+2i

= -3+i -1-2i - 3+6ii_2i2 =	 = 1 +

	

-1+2i -1-2i -	 I-4t2	 5

2. If z, = 2 + i, Z2 =3-2i and a3 = - +	 i, evaluate each of the following.

(a) 13z 1 -4z2 1 = 13(2+i)-4(3-2i)l = 16+3i-12+8i1

= 1-6 + hi I = f(._6) 2 +(11)2 =

(6) z-3z+4z 1 -8 = (2+i)3-3(2+1)2+4(2+i)-8
= {(2) + 3(2)2(i) + 3(2)(i)2 + j ') - 3(4 + 4i + j2) + 8 + 4i - 8
= 8+12i-6-i--12-12i+3+8+4i-8 = -7+3i

)4
1

	

 / 1	
)4 - [( 

1
(e) ()4 =	

+ -
/

i-	 = - - 1-i	 -	 - - 
-i_i

	

== (_-.+i) 2	 3,'I3	 - _1
-

I 2z,+z,-5-i 1 2 	I 2(3-2i) + (2+i) 5.il2

(d) 251_zs+3_iI = 12(2+t)-(3_20+3-iI

- I - 4j 1	 --	 _4j 2	 ('fä+ (_4)2 )2
=1

-	 - I4+3il - ((4)2
___

+(3)2)2

3. Find real numbers x and y such that 3x + 2iy - ix + 5y = 7 + 5i.
The given equation can be written as 3x + 5y + i(2y - a) = 7+5i.  Then equating real and

imaginary parts, 3x + by = 7, 2y - a = 5. Solving simultaneously, a = -1, y = 2.

4. Prove: (a) Zi + Z2 = 11 + 22, (b) k1z21 = JZ11 kI.
Let z = a 1 + iy, z = a2 + i112. Then

(a) z -+z 2 = a 1 + i111 + a2 + iy2 = a 1 + a2 + i(11 1 + 112)
= a 1 + a2 - iU', + 112) = x 1 - i111 + x2 - i112 = a 1 + 1111 + X2 + 119 = 	 * Z2

(b) kiz2I = I (x + iy,)(x2 + 'y2)1 = I x ix2 - 111112 + i(x,y2 + y1a2)
= Ix2_y,y2)2 + (x 1 y2 +y 1 x2)2 - ' f21 +y)(x+i4) = 1 72 + Y2, \/x + Y22 = Izilizzi

Another method.
I z i z2 I 2	 (02) (i) = zz2f 1f2 = (1I)(22) = 1_- 1 1 2 152 1 2	 or	 l z izzI = lz d l2l

where we have used the fact that the conjugate of a product of two complex numbers is equal to
the product of their conjugates (see Problem 55).
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GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS. VECTORS
5. Perform the indicated operations both analytically and graphically:

(a) (3 + 4i) + (5 + 2i), (b) (6 - 2i) - (2 - 5i), (c) (-3 + 5i) + (4 + 2i) + (5 - 3i) +
(-4 - 6i).
(a) Analytically. (3 + 4i) + (5 + 2i)	 3 + 5 + 4i + 2i = 8 + 6i

Graphically. Represent the two complex numbers by points P 1 and P2 respectively as in Fig. 1-7
below. Complete the parallelogram with OP, and OP2 as adjacent sides. Point P represents the
sum,8 + 6i, of the two given complex numbers. Note the similarity with the parallelogram law
for addition of vectors OP, and OP2 to obtain vector OP. For this reason it is often convenient
to consider a complex number a+ Si as a vector having components a and b in the directions of
the positive x and y axes respectively.

(b) Analytically. (6 - 2i) - (2— Si) = 6 - 2 - 2i + Si = 4 + 3i
Graphically. (6— 2i) —(2— Si) = 6— 2i + (-2 + Si). We now add 6— 2i and (-2 + Si) as in
part (a). The result is indicated by OP in Fig. 1-8 above.

(a) Analytically.
(_3+5i)+(4+2i)+(5_3i)+(_4_6i)(_3+4+54)+(5i+2i_3i_6i)2-22

Graphically. Represent the numbers to be added by z, z2, z3, 54 respectively. These are shown
graphically in Fig. 1-9. To find the required sum proceed as shown in Fig. 1-10. At the terminal
point of vector z construct vector z2. At the terminal point of z2 construct vector Z, and at the

terminal point of z3 construct vector 24. The required sum, sometimes called the resultant, is
obtained by constructing the vector OP from the initial point of x, to the terminal point of 24 , i.e.

OP = z 1 +52 +z3 +24 = 2-2i.

Fig. 1-9	 Fig. 1-10
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6. If z 1 and z2 are two given complex numbers (vec-
tors) as in Fig. 1-11, construct graphically
(a) 3z 1 - 2z2 	 (b) 4z2 + Z1

(a) In Fig. 1-12 below, OA = 3z is a vector having length
3 times vector z and the same direction.

OB —2:2 is a vector having length 2 time, vector
Z2 and the opposite direction.

Then vector OC = OA + OR = 3z - 2: 2 .	 Fig. i-il

(b) The required vector (complex number) is represented by OP in Fig. 1-13 above.

7. Prove (a) Izi + z2 	 zjj + jz21, (b) Izi + z2 + z31	 jz1J + Izzi + jz3 1, (c) Izj - z21
IzaI - I Z21 and give a graphical interpretation.
(a) Analytically. Let z1 = x + iy 1 , z2 = x2 + iy2. Then we must show that

V'(xi+xz)2+(yi+vs)2VX21+

Squaring both sides, this will be true if

(x +r 2 ) 2 + (yt+y2)2 ;g x + y + 2V(x + y ) (x +i4) + x + i4

i.e. if	 2122 + YIW2	 (x ± y2 )(x + i4)
or if (squaring both sides again)

xx + 2I2YlY2 + i4 ;g 44 + XY + YX + VZ4

or	 2xIx2yIye	 Xy +

But this is equivalent to (Iy2 - x2y1)?	 0 which is true. Reversing the steps, which are
reversible, proves the result.

Graphically. The result follows graphically from the fact that I z iI, 1 2211 kI + : 21 represent the
lengths of the sides of a triangle (see Fig. 1 .14) and that the sum of the lengths of two sides of
a triangle is greater than or equal to the length of the third side.

7	 Lt---	 P

Fig. 1-15

(b) Analytically. By part (a),

Iz i + 22 + 23 1 = I z + (Z + 23)1	 lz j l + I z + 23	1211 + 122 1 + 1:31

Graphically. The result is a consequence of the geometric fact that in a plane a straight line
is the shortest distance between two points 0 and P (see Fig. 1-15).
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(c) Analytically. By part (a), lx i i 	- z + X V I Z I x -	 + lz!. Then I Z I -	 I	 IiI - lz21.

An equivalent result obtained on replacing z2 by —z2 is I z 1 + Z2	 lx i i - lxxi.

Graphically. The result is equivalent to the statement that a side of a triangle has length
greater than or equal to the difference in lengths of the other two sides.

8. Let the position vectors of points A(x i , y') and
B(x2, y2) be represented by z 1 and z2 respec-
tively. (a) Represent the vector AB as a com-
plex number. (b) Find the distance between
points A and B.

(a) From 'Fig. 1-16, OA + AB OB or

AB = OB - OA = Z2 --
= (x2 +i1/2) - (XI +iy1)

= (x2 - x 1 ) + 42 - y1)	 Fig. 1-16

(b) The distance between points A and B is given by

IABI = I (x2 - x 1 ) + i(1/2 - ui) I = 'V x2 — x 1)2 + (Y2 -

9. Let z 1 = x1 + iy 1 and z2 = x2 + i,2 represent two non-collinear or non-parallel vectors.
If a and b are real numbers (scalars) such that az 1 + bz2 = 0, prove that a = 0 and b = 0.

The given condition ax 1 + hz2 = 0 is equivalent to a(z 1 + iy 1 ) + b(x 2 + 42) 0 or ax 1 -I- bx2 +
i(ay 1 + by2) = 0. Then ax 1 + bx2 = 0 and ay 1 + by2 = 0. These equations have the simultaneous
solution a. = 0, b = 0 if y 1 1x 1 ,' y2/x2 , i.e. if the vectors are non-collinear or non-parallel vectors.

10. Prove that the diagonals of a parallelogram
bisect each other.

Let OABC [Fig. 1-171 be the given parallelogram
with diagonals intersecting at P.

Since a 1 + AC = z2, AC = a2 - a 1. Then AP =
m(z2 - a 1) where 0 m 1.

Since OR = 21 + a2, OP = n(a 1 + a2) where
0 n 1.

But OA + AP = OP, i.e. 2 1 + m(z2 - a1)
n(z 1 + is) or (1 - m - n)z1 + (m - n)z2 = 0. Hence
by Problem 9, 1 - m - n = 0, m - n = 0 or m = 4,
n = 4 and so P is the midpoint of both diagonals.

11. Find an equation for the straight line which passes through two given points A(x i , y')
and B(x2, y2).

Let a 1 = x 1 +iy 1 and a2 = x2 +i12 be the posi-
tion vectbrs of A and B respectively. Let a = x + iy
be the position vector of any point P on the line join-
ing A and B.

From Fig. 1-18,

OA + AP = OP or i + AP z, i.e. AP = a - a1
OA + AR OB or a 1 + AB = a2, i.e. AR = - a1

Since AP and AB are collinear, AP = tAB or
a - a 1 = t(r - 2 1) where t is real, and the required
equation is

Z	 a1 + t(z - a 1 )	 or	 a = (1 - t)a1 + tz2	 Fig. 1-18



Fig. 1-20 Fig. 1.21
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Using Z i = x 1 + iy, Z2 = x2 + iy2 and z = x + iy, this can be written

	

x — xi	 yyi
X - 7-1 = t(x2 - x01 y -	 = t(, 2 - v)	 or

	

X2X1	 VYi
The first two are called parametric equations of the line and t is the parameter; the second is called the
equation of the line in standard form.

Another method. Since AP and PB are collinear, we have for real numbers ii and n:

mAP = nPB	 or	 m(z—z1) n(z2—z)

mz 1 + fl:2 	 mx1 + fix2 	 my + fly2
Solving	 z =	 or	 x =	 , y =

M + ?t m + n	 7* + n

which is called the symmetric form.

12. Let A(1, —2), B(-3,4), C(2,2) be the three ver-
tices of triangle ABC. Find the length of the
median from C to the side AB.

The position vectors of A,B and C are given by
:1 = 1 - 2i,  22 = —3+ 4i and 23 = 2 + 2i respec-
tively. Then from Fig. 1.19,

AC = z3 —z1 = 2+2i—(1-2i) = 1+4i

BC = 23 -	 = 2 + 2i - (-3 + 30 = 6 - 2i	
Fig. 1-19

AR = :2 - : 1 = —3 + 4i - (1— 2i) = —4 + 6i

AD = AB = 4(-4 + 6i) = —2 + 3i since D is the midpoint of AB.

AC+CD = AD or CD = AD—AC = —2+3i—(1+4i) = —3—i.

Then the length of median CD is JCDJ	 I —3 - i I = vTh.

13. Find an equation for (a) a circle of radius 4 with centre at (-2, 1), (b) an ellipse with
in 	 axis of length 10 and foci at (-3,0) and (3, 0).
(a) The centre can be represented by the complex number —2 + j. If z is any point on the circle

[Fig. 1 .201, the distance from z to —2 + i is

Iz—(-2+0 = 4

Then I z + 2 - i I = 4 is the required equation. In rectangular form this is given by

I (x + 2) + i(v - 1)1 = 4, i.e. ( Z +2)2+ (y -1)2 = 16

(b) The sum of the distances from any point z on the ellipse [Fig. 1-211 to the foci must equal 10.

Hence the required equation is
Iz+31 + jz-31 = 10

In rectangular form this reduces to x/25 + y2/16 = 1 (see Problem 74).

AXIOMATIC FOUNDATIONS OF COMPLEX NUMBERS

14. Use the definition of a complex number as an ordered pair of real numbers and the
definitions on Page 3 to prove that (a, b) = a(1, 0) + b(O, 1) where (0, 1)(0, 1)	 (-1,0).
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From the definitions of sum and product on Page 3, we have

(a, b)	 (a,0) + (0,b) = a(1,0) + b(0,1)
where	 (0, 1)(0, 1) = (00 - 1 1, 0 • I + 1 0) = (-1,0)

By identifying (1,0) with 1 and (0,1) with i, we see that (a, b)	 a + bi.

15. If z 1 = (a 1 , b 1 ), z2 = (a2, b2) and z3 = (as, b3), prove the distributive law: z 1 (z2 + z3) =
z 1 z2 + z1z3.

We have	 z1(z2 + Z) = (as, b j )((a2 , b2) + (as, bq)) = (a,, b,)(a, + a,, b, + b.)
(a 1 (a2 + a3) - b1 (b2 + b3), a 1 (b2 +b3)+ 6 1 (a2 + a3))

= (a 1 a2 — b 1 b2 -l- a 1 a3 — b 1 b3, a 1 b2 + b 1a2 + a1 b3 + b1a3)
= (a 1a2 - b 1 b2 , a1 b2 + b 1a) + (a LaS - b 1 b3, a 1 b3 + bja3)
= (a 1 , b 1 )(a2 , b2) + (a1 , b 1 )(a3, b) = z 1 z2 + z1z3

2+2 3i

X
2

2 + 2 V i = r(coso + i sin a) = 4(cos60 1 + i sin 60o)
Fig. 1-22

= 4(cos rr13 + i sin r/3)

The result can also be written as 4 cis r/3 or, using Euler's formula, as 4e'.

(b) —5 + 5i

= I-5+6iI = y25+25 = 5V(2—	
^6v-L2

8 = 180 0 - 45 0 = 135 0 = 31,14 (radians)

Then	 —5 + 5i = 5V'(cos 135° + i sin 1351)

= 5Vcis 3n14 = 6V2— e3"4	 Fig. 1-23

POLAR FORM OF COMPLEX NUMBERS
16. Express each of the following complex numbers in polar form.

(a) 2 + 2/i

Modulus or absolute value, r = 1 2 + 2' / i! = f4 _+ 12 = 4.

2V-314Amplitude or argument, 8 = jl 2i4 = sin- 1 v'/2 = 60° =
1,/3 (radians),

Then

_____

(c) —i— Vi
r =  V6 — r2 i 	 =

8 = 180° + 30° = 210 1 = 71-16 (radians)

Then	 —v' -	 = 2/(cog 210° + isin 2100)

= 2V_2 cis 7ir/6 = 2/ e71-118

'V

2 v2

Fig. 1-24

(d) —3i
	 oIl

= —3i1 = 10-311 =	 = 3
6 = 270° = 3,r/2 (radians)

Then	 —31 = 3(cos 37/2 + I sin 3ir/2)
3 tis 3w/2 = 3e3/2

	
Fig. 1-25

17. Graph each of the following: (a) 6(cos 240° + i sin 240 1), (b) 4e 15, (c) 2e"4.
(a)

	

	 6(cos 240° + i sin 240°) = 6 cis 240° = 6 cis 4w/3 = 6 e4°1'
can be represented graphically by OP in Fig. 1-26 below.

If we start with vector OA, whose magnitude is 6 and whose direction is that of the positive
x axis, we can obtain OP by rotating OA counterclockwise through an angle of 240°. In general,

is equivalent to a vector obtained by rotating a vector of magnitude r and d i rection that of
the positive x axis, counterclockwise through an angle 6.
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Fig. 1-26	 Fig. 1 .27	 Fig. 1-28

(b) 4 3115 = 4(coa 3,r/5 + i sin 3,7/5) = 4(cos 108 1 + i sin 108°)
is represented by OP in Fig. 1-27 above.

(c) 2 e' 14 = 2{cog ( —r/4) + i sin (—/4)) = 2(cos (-45 1 ) + i sin (-451))

This complex number can be represented by vector OP in Fig. 1-28 above. This vector can
be obtained by starting with vector OA, whose magnitude is 2 and whose direction is that of the
positive x axis, and rotating it counterclockwise through an angle of —45° (which is the same
as rotating it clockwise through an angle of 459).

Bv

	

18. A man travels 12 miles northeast, 20 miles 30° 	 -
west of north, and then 18 miles 60 0 south of
west. Determine (a) analytically and (b) graphi-	 P-4Q	 ... \ so
cally how far and in what direction he is from 	 2 mIle.
his starting point. 	 c
(a) Analytically. Let 0 be the starting point (see Fig.

1-29). Then the successive displacements are repre-	 Fig. 1-29	 12
sented by vectors OA,AB and BC. The result of all 	 45°
three displacements is represented by the vector 	 0

OC=OA+AB+BC

Now	 OA = 12(cos 45° + i sin 45°) = 12 e1114

	

AD = 20{cos (90° + 30°) + i sin (90° + 30°))	 20 e2''3
BC = 18{cos (180° + 60°) + i sin (180 1 + 60 0)) = 18 c4"1/3

Then

OC = 12 e1114 + 20 e2" + 18 e4°'3

= (12 cos 45 0 + 20 cog 120° + 18 cos 240 1 ) + i(12 sin 45 1 + 20 sin 120 1 + 18 sin 2400)

= {(12)(s,/i/2) + (20)(-1/2) + (18)(-1/2)) + i{(12)(V'/2) + ( 20)(V/2) + (18)(—Vi/2)
= (6V2- — 19) + (6 ,,r2- + v(3_ )i 	________

	

If r(cos 8 + i sin .) = 6\./ - 19 + (6V2_ + V)i, then r =	 (6/— 19)2 + (6V'+ J)Z =

14.7 approximately, and a = cog - 1 (6v' — 19)/r = cos' (—.717) = 136 049' approximately.

Thus the man is 14.7 miles from his starting point in a direction 135 1 49' - 90 0	45°49'
west of north.

(b) Graphically. Using a convenient unit of length such as PQ in Fig. 1-29 which represents 2 miles,
and a protractor to measure angles, construct vectors OA, AB and BC. Then by determining the
number of units in OC and the angle which OC makes with the y axis, we obtain the approximate
results of (a).

DE MOIVRE'S THEOREM
19. If z 1 = r1 (cos O + i sin Oj) and z2 = r2 (cos Og + i sin 02), prove:

(a) z 1 z2 = r 1 r2 (COS (01 + 02) + i sin (0i + 02))

(b) 1, = - (COS (01- 02) + i sin (0a - 02)).
	Z2	 r2

	

(a) z 1 2 2	 {r1(co3 e + i sin 8 1 )){r2(co8 2 + i sin 02))
= r 1 r2 ( (cos Di COS 8 - 5fl e l Sill 2) + i(sin 8	 5 + cos * I sin 8))
= r1r2(cos (o + 2) + i sin (o + 2))
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(5) 
2 1	 r1(cos 8j + i sin e) (coB 9 - t BIfl 2)

22 - r2(cos 8 + Bin 82) (cos 82 - I SIR 82)

= r 1 f(cos  e i cos 82 + sines sin 2) + i(sin 81 coB 82 - COB 8 1 S
i
n 82)

co.2 8 + 81fl282

rl= —(CO3(8 1 -82) + i sin (8j-8))
r2

In terms of Euler's formula e18 = cos 6 + i sine, the results state that if z1 = r1&8 1 and z2 =

z	 rern'	 r
then z 1 z 2 = r1r2	 F8) and	 =	 = ! eis1.

22	 r2 a"'	 r2

20. Prove De Moivre's theorem: (cos C + j sin O) = cos no + i sin no where n is any

positive integer.
We use the principle of mathematical induction. Assume that the result is true for the particular

positive integer k, i.e. assume (coB e + i sin 8)k = cos ke + i sin ke. Then multiplying both sides by

cose + i sin e, we find

(cose + i sin 8)k	 = (cos k8 + i sin ke)(cose + i sine) = 
COS (k+ 1)8 + j sin (k + 1)e

by Problem 19. Thus if the result is true for n = k, then it is also true for n = k + 1. But since the

result is clearly true for n = 1, it must also be true for it = 1 -I-- 1 = 2 and n = 2 + 1 = 3, etc., and

so must be true for all positive integers.
The result is equivalent to the statement (& 6 )5 =

21. Prove the identities: (a) cos 58 = 16 cos5 0 - 20 c053 0 + 5 con 0; (b) (sin 50)/(sin 0) =

l6 cos" O - 12c082 0 + 1, if 00,±,r,±27r.....
We use the binomial formula

(a+b)"	 a" + (')a"-'b + ( n2 )an - 2 b2 +	 + 0)a-- 1 b' +	 + 6"

where the coefficients 	 = r! (n— r)!	
also denoted by 5C,, are called the binomial coefficients.

The number n! or factorial n, is defined as the product 1 • 2'3" n and we define 0! = 1.

From Problem 20, with n = 5, and the binomial formula,

COS 5o + i sin 50 = (cose + i sin e)5

= cos5• + ()(co 4 8)(i sin 6) + ()(cos3 e)(i sin 8)2

+ ()(cos2 8)(i sin 0)3 + () (cos8)(i sin 8)4 + (i sin e)5

= coB5 8 + 5i c034 8 sin 8 - 10 cos" 8 sin2 8

- lOi c032 a sin3 8 + 5 COS 8 SIR4 8 + i sin 8

= c085 8 - 10 cos3 a sin2 a + 5 cos e sin4 a
+ i(5 cos4 8 sin 8 - 10 c032 8 sin3 e + sins a)

Hence
(a)	 cos 50 = cos5 e - 10 cos3 e sin2 6 + 5 cos a sing 8

= c08
5 e - 10 c033 6 (1 - cos2 a) + 5 cos e (1 - CO52 8)

= 16 cos5 9 - 20 coB3 0 + 5 COB 8

and
(6)	 sin Se = 5 c054 8 sin 8 - 10 cos2 8 sin3 e + sin5 a

or sin 5e = 6 c094 a - 10 cos2 a sin2 8 + sin4 e
sin 8

= 5 
c08

4 e - 10 c08
2 a (1 - coB2 a) + (1 - c002 8)2

= l6 Coat e - 12cos20 + 1

provided sin  ,' 0, i.e. e 9& 0, ±r, ±2,i......

22. Show that (a) con 0 -
- -2, 

(b) sin 0 = 2i
We have	 (1) e = cos, + i sin o.	 (2) 6" = COBS -- i sine



(a) Adding (1) and (2),	 = 2 Cos e

(b) Subtracting (2) from (1),	 e9 —	 = Lisine

or	 coat = e + e
2

—or	 sine =
2i

Fig. 1-30
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23. Prove the identities (a) sin
s
 0 = sin u - 1 sin 39, (b) c084 0 = cos 40 + j cos 20 + .

(a)
(&0	

—e)3 -
- (e'° —	 )3 

= _L {(&°) 3 - 3(610)2(6 - 10) + 3(elB)(eI)2 — ( i9)$}= \,	 2i 	 30	 8i

= - (e310 3e + 3e	 — 8-10)	
3 /e° - e'° \ 	 1 1e'° -

8i	 = 41\	 2i	 2i
31= i- sine	 sin 3a

(b) cos4o =
(e18_+ 

e )4 = 
(e'° + e10)4

2	 16

=	
{(e°) + 4(&0)3 (e 19) + 6(5i)2(eM)2 + 4(e18)(.e)3 + (0)41

1	 ' 15\
=
	 (e410 + 4e + 6 + 420 + e-410) =	

2
 (e41@ + e -

V ) 
+	 +

22 ) +

= Cos 4a + Cos 20 +

24. Given a complex number (vector) z, interpret
geometrically z&' where a is real.

Let a = re° be represented graphically by vector
OA in Fig. 1-30. Then	 -

ze(a = r&° • e° = ret(S+a)

is the vector represented by OB.

Hence multiplication of a vector a by ela amounts
to rotating a counterclockwise through angle a. We can
consider &a as an operator which acts on a to produce
this rotation.

25. Prove: e18 = e l" +2k), k = 0, ±1, ±2.....
et(042ka) = cos (e + 2k7) + i sin (e + 2k7) = coo 8 + i sine =

26. Evaluate each of the following.
(a) [3(cos 400 + i sin 400 )1[ 4 (cos 80° + i sin 80°)] = 3 - 4[cos (400 + 800) + i sin (400 + 801)]

= 12(coa 120 0 + i sin 1200)

= 12( 1
	 /• \_+_i) = —6+6/i

(b) (2 do 150)7 - 128 CIS 1050 = 2 cis (105° — 135°)
(4 cis 450)3 - 64 cia 135°

= 2[cos(-30°) + i sin (-30°)] = 2[coa 30° — i sin 30°]

10	 (ii+f	 j 2 cis (6O°)

-	 2 cis (600)1	
= (cia 1200)10 = cis 12001 = cis 12O* = — +

Another method.

(1

1—

+

i) = \

(I1I3

)

_2e	 \ 10

26"h/3	
= (,2.1/3) 10 = e20I'/3

= e0'4 2t1/8= (1)[cos (2w/3) + i sin (2r/3)) = — +



Fig. 1-31
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27. Prove that (a) arg(z i zz) = argz 1 + argz2, (b) arg(zi/z2) = argzi - argz2, stating

appropriate conditions of validity.

Let z 1 = r 1 (cos i + i sin e r), z2 = r2 (cos 62 + i sin 8 2 ). Then erg z  = Oi, arg z 2 =

(a) Since z 1 z2 = r1r2 (cos (° + 82) + j sin ( e + 92)).	 arg (z j z 2) = 8 1 + 0 2 = erg z + arg z2.

zi
(b) Since - = - (cos ( e - 02) + i sin (° - 2)}. erg ( - ) = 61 8 2 = erg z 1 - erg Z.

Z2	 ?

Since there are many possible values for 8i = arg z 1 and a 2 = erg z3, we can only say that the
two sides in the above equalities are equal for some values of erg 2 1 and erg 22. They may not hold
even if principal values are used.

ROOTS OF COMPLEX NUMBERS
28. (a) Find all values of z for which z5 = —32, and (b) locate these values in the com-

plex plane.
(a) In polar form, —32 = 32(cos (,- + 2kr) + i sin (,r + 2kir)), k = 0, ±1, ±2,

Let z	 r(cose + i sin 6). Then by De Moivre's theorem,
= r5(cos 58 + i sin Se) = 32{cos (r + 2k,r) + i sin (,r + 2kr))

and so r5 = 32, 58 = ir + 2kr, from which r = 2, 9 = ( ,r + 2k,r)15. Hence

/r+2kw'\	 . . (,r+2k,r
z = 2 I cos	

) + 
t Sin

If k=O, z = zi = 2(cosr/5 + i sin irl5).

If k = 1, z = Z2 = 2(cos 3,r/5 + i sin 3,i5).
If k=2, z	 = 2(cos5r/5 + i sin 5,r/5) = —2.
If k = 3, z =	 2(cos 7,r/5 + i sin 7,r/5).
If k4, z =zs2(cos9r/6+ i sin 9r/5).
By considering k = 5, 6,... as well as

negative values, —1, —2.....repetitions of the
above five values of z are obtained. Hence
these are the only 801Ut10fl8 or roots of the
given equation. These five roots are celled the
fifth roots of —32 and are collectively denoted
by (_32)1'5. In general, &" represents the nth
roots of a and there are n such roots.

(b) The values of z are indicated in Fig. 1-31.
Note that they are equally spaced along the
circumference of a circle with centre at the
origin and radius 2. Another way of saying
this is that the roots are represented by the
vertices of a regular polygon.

29. Find each of the indicated roots and locate them graphically.

(a) (-1 + i)I/3
—1 + i = y'{cos (,r/4 + 2kr) + i S in(3,r/4 + 2kr))

(-1 +,)1/3	 +21/6 {cos (3r14 + 2k,r\
) 	

(3r/4 + 2kr)}

If k = 0, z i = 2 116(cos ir/4 + i sin ,,/4).

If k = 1, 22 = 2 1 /6(cos 11,r/12 + i sin llr/12).

If k	 2, 23 = 2116(cos 19r/12 + i sin 19,r/12).

These are represented graphically in Fig. 1-32.	 Fig. 1-32



Fig. 1-33

Then

Taking square roots,

Hence

/	 b\2	 b-4ac
= 4a2

±V52.4ac
2a	 .2a

- ________
1—

2a
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(5) (-2' I3- - 2i)"

—2v`3-2v' —21 = 4(cos (7,/6 + 2Icw) + 1 si:i (7w/6 + 2kw))

(-2.,r3- — 21) 1/ = 41/4 { Cos (7v/6 + 2k\	 /7,16 + 2kr)}
4	

)+isin(	
4

If k = 0, z 1 = ' f (cos 7/24 + i sin 7/24).

If k = 1, 22 = 'V(cos 19w/24 + i sin 19w!24).

If k = 2, z3 = \J (cos 31w/24 + i sin 31w/24).

If k = 3, z4 = V(cos 43/24 + i sin 43r/24).

These are represented graphically in Fig. 1-33.

30. Find the square roots of —15 - 8i.
Method 1.

—15 - 8i = 17{cos (e + 2k,) + I sin (9 + 24)) where cos e = —15/17, sine = —8/17.

Then the square roots of —15— 81 are

V'i (cos 012 + i sin 0/2)
	

(1)
and	 ON (cog (02 + ,) + I sin (0/2 + ,)) = —' /i (cos ./2 + I sin #/2)

	
(3)

Now	 cos 0/2 = ± /(1 + cog e)/2 = ± I(1 - 16/17)/2 = ± 1/'Ii-7

sin e/2 = ±(l - cos e)/2 = ±(1 + 15/17)/2 =

Since 9 is an angle in the third quadrant, ./2 is an angle in the second quadrant. Hence cos 0/2 =
—iIvT , sin ./2 = 4/' 1 and so from (1) and (2) the required square roots are —1 + 41 and 1 - 41.
As a check note that (-1 + 41)2 = (1 41) 2 = —15-- 81.
Method 2.

Let p + iq, where p and q are real, represent the required square roots. Then

(p + iq) Z = p2 - q2 + 2pqi = —15 - 81	 or	 (3) p2 - q2 = —15, (4) pq = —4

Substituting q = —4/p from (4) into (3), it becomes p2 - 16/p2 = —15 or p4 + 15p2 - 16 = 0, i.e.
(p2 +16)(p2 -1) = 0 or p2 = —16, p2 = 1. Since p is real, p	 ±1. From (4) if p	 1, q —4; if
p = —1, g = 4. Thus the roots are —1+41 and 1-41.

POLYNOMIAL EQUATIONS
31. Solve the quadratic equation az2 + bz + c = 0, a ,' 0.

Transposing c and dividing by a' 0, 	 z2 + z = —!
a	 a

Adding 
()2 

[completing the square],	 2 +	

2	 2

=—+a()

32. Solve the equation z2 + (2i - 3)z + 5 - i = 0.

From Problem 31, a = 1, b = 21-3, c = 5—i and so the solutions are

= —b ± './b2 -4ac - —(21-3) ± 2i-3--4(1)(5-1) = 3-21± —15-8i
2a	 -	 2(1)	 2

= 2-31 or 1+1

using the fact that the square roots of —15 - Si are ±( - 41) [see Problem 301. These are found to
satisfy the given equation.
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33. If the real rational number p/q (where p and q have no common factor except ±1, i.e.
p/q is in lowest terms) satisfies the polynomial equation a0 z + a 1 z' + + an = 0
where a.,a 1 , . . . , a, are integers, show that p and q must be factors of a,, and a0
respectively.

Substituting z = p/g in the given equation and multiplying by q" yields

a0 p" + a,p"g +	 + o,,_ 1 pq"' + c,,q = 0	 (1)

Dividing by p and transposing the last term,

	

ap"	 + o 1 p 2 q +	 + a,,,.. I q" I =	 (2)

Since the left aide of (2) is an Integer, 50 also is the right side. But since p has no factor in common
with q, it cannot divide q and so must divide a,,,.

Similarly on dividing (1) by g and transposing the first term, we find that q must divide a0.

34. Solve 6z4 -25z1 +32z2 +3z — 10 = 0.

The integer factors of 6 and —10 are respectively ±1, ±2, ±3, ±6 and ±1, ±2, ±5, ±10. Hence by
Prob. 83 the possible rational solution, are ±1, ±1/2, ±1/3, ±1/6, 2-2, ±2/3, ±5, ±6/2,±5/3,±: 5/6, ± 10, ±10/3.

By trial we find that z = —1/2 and z = 2/3 are solutions, and so the polynomial (2z + 1)(3z —2) =
set z2 is a factor of 60250+320+3z10, the other factor being z24z+5 as found by
long division. Hence

	

60 - 25x + 320 + 3z - 10 = (6z - - 2)(22 - tz + 5)	 0

The solutions of z —4z + 6 = 0 are (see Problem 311

4±I1'6 —20 - 4±j	 - 4±2t	 2±i
2	 -	 2	 - 2

Then the solutions are —1/2, 213, 2+i, 2—i.

35. Prove that the sum and product of all the roots of a0z' + a1 z +	 + a,, = 0 where
a,,' 0, are —a1/a, and (-1)a.,,/ao respectively.

If 21, 2V .. . , Z. are the is roots, the equation can be written in factored form as

a(z - i)( - )... ( - z,,) = 0
Direct multiplication shows that

- (z + z, +	 + z,)a"' + ... + (—l)"zz, z,,,) = 0

It follow, that —a0 (z1 + 23 + ... + 5,) = a 1 and a0 (-1)'z 1 22 "	 = a.,,, from which

	

Zj + I +	 + S. = —a1/a0,	 x1z2	 = (-1) aJa0
as required.

	

3& if p + qi is a root of aoz + a 1 z +	 + a. = 0 where a0 ' 0, a, .. . , a., p and q
are real, prove that p — qi i's also root.

Let p + qi = re" in -polar form. Since this satisfies the equation,

aor"e4*' + a1 l e	 +	 + a, 1 re" + a,, = 0

Taking the conjugate of both aides

a,re'" + a	 1•KCl)5 +	 + ta,,... l re	 + a,, = 0

w. ass, that re=p—qils also aroot. The result does not hold if so, ...,e, are not all real
(ae. Problem 32).

The theorem Is often expressed In the statement The zero, of a polynomial with real coefficients
occur In conjugate pairs.
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THE nth ROOTS OF UNITY
37. Find all the 6th roots of unity.

= I = cos 2k + I sin	 = e2 	where k = 0, ±1, t2,
21cr . SinThen	 z = co. - + i sin - = e

where it is sufficient to use k = 0,1,2,3,4 since all other values of k lead to repetition.

Thus the roots are 1, e2'115 , e415,	 e5'115. If we call gUiA = , these can be denoted by
1, W, s2,3, Ø4

38. If n = 2,3,4,..., prove that
2v	 4	 6w	 2(fl—I)ir(a)	 cos— + cos — + cos— +	 + cos	 =It	 n	 It	 n
2T 	 4w	 . 6w 	 sin(b)	 sin— + sin 	 + sin— + 	+ sin	 = 0n	 n	 n	 Is

Consider the equation z" - I = 0 whose solutions are the nth roots of unity,

	

2.U% e4" 1",	 .....	 I)r*/,,

By Problem 36 the sum of these roots is zero. Then

	

1 + e2'" + e01 /" + e5' 1" +	 + e2	 1)u/, = 0
i.e.,

I	 2w	 4w	 2(n - 1)w)	 . I . 2w	 . 4,	 . 2(n -	 01 + COB — + CO3 +	 + COB	 + t Sm— + Sin - +	 + Bin	 =
I	 n	 n j	 n	 a	 a

from which the required results follow.

DOT AND CROSS PRODUCT
39. If z 1 = 3---4i and z2 = —4 +3i, find (a) Z i oZ, (b) z 1 x z2.

(a) 2 0 52 = Re (i2) = Re ((3 + 41)(-4 + 30) = Re (-24— 71) = —24

Another method. z 0 z2 = (3)(-4) + (-4)(3) = —24

(b) z 1 )<	 = IM (iZ2) = Im ((3 + 41X-4 + 31)) = lm (-24-71) = —7

Another method. 21 )< 22 = (3)(3) - (-4)(-4) = —7

40. Find the acute angle between the vectors in Problem 39.

	

- 21052 -	 — 24	 - —24 -From Problem 39(o), we have cose -
	

—.96.
F-111 221 - 13 — 4111-4 + 31 - 26 -

Then the acute angle is cos -1 .96 = 16°16' approximately.

41. Prove that the area of a parallelogram having
sides z 1 and z2 is z1 X z21.

Area of parallelogram [Fig. 1-341
= (base)(height)
= ( 1 z21)(I z1l sin •)
= 1 Z 11 1 Z21 sin • = I 2 * X Z21

A= I2I sin 0

/<0 I	 z2

Fig. 1.34
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42. Find the area of a triangle with vertices at
A(x, yi), B(zz, ye) and C(zs, ye).

The vectors from C to A and B lFig. 1-351 are
respectively given by

a 1 = (xX) +i(y1—y),
C, = (x,—x,) + i(y,—,)

Since the area of a triangle with sides s i and e
is half the area of the correspondlig parallelogram,
we have by Problem 41:

	

Area of triangle =	 I z1 x 1,1 =	 I Im ([(xi - a5) - i(y -	 - a3) + i(y, - vs)l)

= * I(x i xs)(V2v3) - (y1—v,)(x,—x,)I

=

5i Vi 1

	

=	 I xs Vi 1 I
X Ys 1

In determinant form.

COMPLEX CONJUGATE COORDINATES
43. Express each equation in terms of conjugate coordinates: (a) 2x + y = 5, (b) x2 + y' = 36.
	zf 	 zk

(a) Since a = a + iv. * = a — iv. a = — +j-- • v = —j—. Then 2x + v = 5 becomes

2(x+ 	 + (!j_) = 5	 or	 (2i + 1)x + (2i - 1)f = 101

The equation represents a straight line in the z plane.

(6) Method 1. The equation is (a + iy)(x - iv) = 36 or d = 36.

	

Method 2. Substitute a = !j.! , v =	 in x'+V' = 36 to obtain :1 = 36.

The equation represents a circle in the z plane of radius 6 with centre at the origin.

44. Prove that the equation of any circle or line in the z plane can be written as
az2 + liz + + y = 0 where a and are real constants while p may be a complex
constant.

The general equation of a circle in the xv plane can be written

A(x'+y)+Bx+Cy+D = 0

which in conjugate coordinates becomes

	

Aa+B(f-)+C(fj-!)+D = 0	 or	 Azk+(-+)z+(_)i+D = 0

Calling A = a, 9 + = p and D = y, the required result follows.
2 2i

In the special case A = a = 0, the circle degenerates into a line.

POINT SETS
45. Given the point set S :.(i4i, ii, Ii, ...) or Lriefly (i/n). (a) Is S bounded? (b) What

are its limit points, if any? (c) Is S closed? (d) What are its interior and boundary
points? (e) Is S open? (1) Is S connected? (g) Is S an open region or domain?
(h) What is the closure of S? (i) What is the complement of S? (5) Is S countable?
(k) Is S compact? (1) Is the closure of S compact?
(a) S is bounded since for every point a in S. Izi < 2 (for examplel, i.e. all points of S lie inside a

circle of radius 2 with centre at the origin.

(b Since every deleted neighbourhood of a - 0 contains points of S. a limit paint is 2 - 0. It IS the
only limit point.
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Note that since S is bounded and infinite the Weierstrass-Bolzano theorem predicts at least one
limit point.

(c) S is not closed since the limit point z = 0 does not belong to S.

(d) Every 5 neighbourhood of any point i/n [i.e. every circle of radius & with centre at i/n) contains
points which belong to S and points which uO not belong to S. Thus every point of S. as well as
the point a = 0, is a boundary point. S has no interior points.

(e) S does not consist of any interior points. Hence it cannot be open. Thus S is neither open nor
closed.

(f) If we join any two points of S by a polygonal path, there are points on this path which do not
belong to S. Thus S is not connected.

(p) Since S is not an open connected set, it is not an open region or domain.
(h) The closure of S consists of the set S together with the limit point zero, i.e. (0, 1, 4i, i-i, . . .
(i) The complement of S is the set of all points not belonging to S. i.e. all points a ' 1, 1/2, 1/3.....
(j) There is a one to one correspondence between the elements of S and the natural numbers 1,2,3,...

as indicated below.	 .	
42	 t

1	 2	 3	 4
Hence S is countable.

(k) S is bounded but not closed. Hence it is not compact.
(1) The closure of S is bounded and closed and so is compact.

46. Gwen the point sets A = (3, —i, 4,2 + i, 5), B = {—i, 0, —1,2 + i}, C = (—V2i, J, 3).
Find (a) A+B or AuB, (b) AR or AnB, (c) AC or AnC, (d) A(B+C) or
Afl(BuC), (e) AB+AC or (AIB)u(AnC), (1) A(BC) or Afl(BflC).
(a)A+ B = A uB consists of points belonging either to A or B or both and is given by

(3, —1,4,2+1,5,0,—i).

(b)AR or A rB consists of points belonging to both A and B and is given by (—i, 2 + i).

(c)AC or AriC = (3), consisting of only the member 3.

(d)B + C or BuC = (—i, 0, —1, 2 + 1,	 4, 3).
Hence A(B+C) or An(BuC) = (3, —i, 2+1), consisting of points belonging to both A

and B+C.

(e)AB = (—i, 2 + 1), AC = (3) from parts (b) and (c). Hence AR + AC = (--i, 2 + i, 3).

From this and the result of (d) we see that A(B+C) AB+AC or An(BuC) =
(AnB)u(AnC), which illustrates the fact that A,B,C satisfy the distributive low. We can show
that sets exhibit many of the properties valid in the algebra of numbers. This is of great im-
portance in theory and application.

(f)BC = BnC = 0, the null set, since there are no points common to both B and C. Hence
A(BC) = 0 also.

MISCELLANEOUS PROBLEMS
47. A number is called an algebraic number if it is a solution of a polynomial equation

a0 z + a 1 z" + • - + a,,-.. 1 z + a = 0 where a0,a1 , . _ a. are integers. Prove that
(a)	 +	 and (b) V4 — 2i are algebraic numbers.
(a) Let a =	 orz — V = V. Squaring, a2 - 2V'z + 2 = 3 or a2 —1 = 2/iz. Squaring

again, z4 - 2z2 + 1	 8z2 or Z4 - 10z + 1 = 0, a polynomial equation with integer coefficients
having '/ + NF2 as a root. Hence fi +	 is an algebraic number.

(6) Let a =	 —21 or a + 2i = ¼. Cubing, a3 + 3Z2(2t) + 3z(2t) 2 + (21)3 = 4 or : - 12z —4 =
i(8 - 6z2). Squaring, 0 + 12z - 80 + 48z2 + 96z + 80 = 0, a polynomial equation with integer
coefficients having	 — 21 as a root. Hence ¼ - 21 is an algebraic number.
Numbers which are not algebraic, i.e. do not satisfy any polynomial equation with integer

coefficients, are called transcendental number,. It has been proved that the numbers w = 3.14169...
and e = 2.71828... are transcendental. However, it is still not yet known whether numbers such as
ew or e + r, for example, are transcendental or not.
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48. Represent graphically the set of values of z for which (a) -:4 = 2, (b)	 < 2.

(a) The given equation is equivalent to I z - 3 = 21 z + 31 or, if z = x + iy, x + iy —3 =

2 1 x + iy + 3 1, i.e.,	 _________
3)2 + y-./(z 1 = 2'I+ 8)2 + y

Squaring and simplifying, this becomes

x2 +13 +l0x+9 =0 or (x+5)2 +y2 = 16

i.e. I z + 5 1 = 4, a circle of radius 4 with centre
at (-5,0) as shown in Fig. 1-36.

Geometrically, any point P on this circle is
such that the distance from P to point B(3, 0) is
twice the distance from P to point A(-3, 0).

Another method.
IS = 2 is equivalent to

(-' -')( * -3) 4 or z2+51+5z+9 = 0

i.e. (z+5)(1+5) = 16 or z + 5 I = 4.

(b) The given inequality is equivalent to I z — 3 1 < 2 I z + 3 I or (x - 3)2 + y2 < 2V-(x + 3)2 + y.
Squaring and simplifying, this becomes x 2 + y2 + lOx + 9 > 0 or (x + 5)2 + y 2 > 16, i.e.
I: + 5 I > 4.

The required set thus consists of all points external to the circle of Fig. 1-36.

49. Given the sets A and B represented by 12 -I I < 3 and Iz - 2i1 < 2 respectively.
Represent geometrically (a) An B or AB, (b) Au B or A + B.

The required sets of points are shown shaded in Figures 1-37 and 1-38 respectively.

Fig. 1-37	 -	 Fig. 1-38

50. Solve z2(1 - 22) = 16.

Method I. The equation can be written z4 - z + 16 = 0, i.e. z' + 8:2 + 16— 92 = 0, (:2 + 4)2 - 92 = 0
or (:2 + 4 + 3z)(z2 + 4-3:) = 0. Then the required solutions are the solutions of Z2 + 3 + 4 =

and X2-3X +4 = 0, or -1t:	 i and ±

Method 2. Letting w -'- *2, the equation can be written w - w + 16 = 0 and w = ±

To obtain solutions of 22 = ± 'Jii, the methods of Problem 30 can be used.
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51. If z1, z2, z3 represent vertices of an equilateral
triangle, prove that

+ Z + Z32 = Z1Z2 + Z2Z3 + ZiZt

From Fig. 1-39 we see that

-	 = e''3 (z3 - z1)

e'41302-23)
z2-2 I	 z3—Z,

Then by division,	 = or2 I — z3 	 z2—.za

+ z + 232 = z1z2 + z2z3 + z3z1 Fig. 1-39

52. Prove that for m = 2,3,...	
. (m —1)v	 msin 7T	 27	 3w 

5jfl - 3jfl	
m	 =Vtin M

The roots of z = 1 are z = 1, e1 , 54wU. e2(m1)/l . Then we can write
- I	 (x - 1)(z - e2I')(z e4'") . (z - e2/1)

Dividing both sides by z - I and then letting x = 1 [realizing that (z"' - 1)/(z - 1) = 1 + Z + Z2 +
we find

M = (1— e1")(1 - c"") . . . (1— (11)w4/lfl)

Taking the complex conjugate of both sides of (1) yields

M = (1— _2)(1 - ,-4.1/..). (1 -

Multiplying (1) by (2) using (1 - k.'I.)(i - e,m) = 2 - 2 co. (2kw/in), we have

=	 —ccs--}(1—cos--)"	 —cos

	

=2
2,\/	 4w\ (i	

2(rn-1)r\

	

tnJ\	 mj	 m

Since 1 - coo (2kr/rn) = 2 sin2 (kr/rn). (3) becomes
w	 2w

	

m2 = 22m 2 3is2 - sin2 -	
sin2 (m-1)w

	

in in	 in.
Then taking the positive square root of both sides yields the required result.

Supplementary Problems

(1)

(2)

(3)

(4)

FUNDAMENTAL OPERATIONS WITH COMPLEX NUMBERS

53. Perform each of the Indicated operations:
—

(a) (4 — 3i) + (2i — 8)	 (e) 
2 3i
TT

(6) 3(-1+4i)-2(7—i)
(f) (4+i)(3+21)(1—i)

(c) (3+2i)(2—i)

(d) (i-2)(2(1+i)-3(i-1)}	 > (2+tX3-21)(1+21
(1_i)2

(h) 1—s
i + i + its

2—is + ill - ill

(1)
(L+ i)2 

2 
(L__ i)3

1—i

An.. (a) —4—i	 (c) 8+ i 	(e) 11/17 - (10/17)1	 (g) —15/2 + 51	 (i) 2+i

(b) —17+141	 (d) —9+71	 () 21+1	 (A) —11/2 - (23/2)1	 (j) —3-21

54. If x = 1—i, x2 = —2 44i, z3 =	 — 24 evaluateach of the following-.

(a) zl+2Zj-3	 (e)	 (A) Iz+ i2 + 4— 412

(6) I 2z - 3z1 I	 -	 (i Re (2z + 34 - 54)
1/3	 Z3\

(c) (z3 _23)2 	 (I)	 u lm(z122/x3)

(d) I z112+ z3a1l	 (t) (z,+'s)(z—zs)

Au. (a) —1-41	 (c) 10241	 (e) 315	 (j) —7 + 3' + NF3 i	 (i) —35

(6) 170	 (d) 12	 (fl —1/7	 (A) 715 + 128 4'	 (5) (6f + 4)17
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55. Prove that (a) (ii) = z 1 z21 (b) (i1) = 1 1 2I3. Generalize these results.

56. Prove that (a) (z7i) =	 ( b)	 I = kI /1 x21	 if Z2 76 0'

57. Find real number1. x and y such that 2x-3iy-1-4ix-2y-5— lOi = (x+y+2) - (y—x+3)i.

Ans. x=1,yr-2

58. Prove that (a) Re (z) = (z+ z)/2, (b) Im (z) = (z - I)/2i.

59. Prove that if the product of two complex numbers is zero then at least one of the numbers must be zero.

60. If w = 3iz - Z2 and z = x + iy, find 1 w 1 2 in terms of x and y.

Ans. x4 + y4 + 2x2y 2 - 6x2y - 6y3 + 92 + 9y2

GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS. VECTORS.
61. Perform the indicated operations both analytically and graphically.

(a) (2+31) + (4—Si)	 (c) 3(1+20 - 2(2-3i)
	

(e)	 (4-3i)+(5+2i)

(b) (7 + i) - (4 - 21)	 (d) 3(1 + 1) + 24 - 31) - (2 + 5*)

Ans. (a) 6— 2i, (b) 3 + 31, (c) —1 + 12i, (d) 9— 81, (e) 19/2 + (3/2)i

62. If z 1 , z 2 and Z3 are the vectors indicated in Fig. 1-40, construct
graphically:

(a.) 2z 1 + 2 3 	 (c) z I + (22 + 23)	 (e) J Z2 - Z1 +

(b) (z + 22) + z 3 	 (d) 3z - 2z2 + 5z

63. If z = 4 —31 and 22 = —1 + 21, obtain graphically and analyti-
cally (a) 12 1 + 22 1, (i-') 121—	 I. (c) '1 - 12,  (d) 1221 -32-21.

Ans. (a) '/Tö, (b) 5XF2, (c) 5 + bj, (d) 16
	

Fig. 1.40

64. The position vectors of points A, B and C of triangle ABC are given by z = 1 + 21, 22 = 4 — 2i and
= 1 - 61 respectively. 'Prove that ABC is an isosceles triangle and find the lengths of the sides.

Ans. 5, 5, 8

65. Let 21, 23 , 23 ,24 be the position vectors of the vertices for quadrilateral ABCD. Prove that ABCD

is a parallelogram if and only if Z[—	 Z + Z4	 0.

66. If the diagonals of a quadrilateral bisect each other, prove that the quadrilateral is a parallelogram.

67. Prove that the medians of a triangle meet in a point.

68. Let ABCD be a quadrilateral and E, F, G, H the midpoints of the sides. Prove that EF'GH is a

parallelogram.

69. In parallelogram ABCD, point E bisects side AD. Prove that the point where BE meets AC trisects AC.

70. The position vectors of points A and B are 2 + j and 3— 21 respectively. (a) Find an equation for
line All. (b) Find an equation for the line perpendicular to AB at its midpoint.

Ans. (a) z — (2 + i) = t(1 — 31)	 or	 x = 2+t,  y 1-3t	 or	 3z + y = 7

(b) z — ( 5/2 — i/2)	 fl3 + 1)	 or	 x 3t + 5/2, y = t - 1/2	 or	 x -	 = 4

71. Describe and graph the locus represented by each of the following: (a) I g - il = 2, (b) I z + 211 +

z - 211	 6, (a) I z — 3 — I z + 3 I = 4, (d) z( + 2) = 3, (e) IM {x2} = 4,

Ans. (a) circle. (b) ellipse, (a) hyperbola, (d) circle, (e) hyperbola

72. Find an equation for (a) a circle of radius 2 with centre at (-3,4), (b) an ellipse with foci at (0,2)
and (0, —2) whose major axis has length 10.

And. (a) k+- 4l ! = 2 or (xl-3)2+(y-4)2	 4. (b) 12+211 + Iz-2iI = 10
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73. Describe graphically the region represented by each of the following:

(a) 1< Iz+iI	 2, (b) Re{z2}> 1, (c) Iz+3i1 >4, (d) Iz+2-3i1 + Iz-2+3i1 < 10.

74. Show that the ellipse I z + 3 I + I s —3 1 = 10 can be expressed in rectangular form as 0/25 +
y2/16 = 1 [See Problem 13(b)].

AXIOMATIC FOUNDATIONS OF COMPLEX NUMBERS
75. Use the definition of a complex number as an ordered pair of real numbers to prove that if the

product of two complex numbers is zero then at least one of the numbers must be zero.

76. Prove the commutative laws with respect to (a) addition, (b) multiplication.

77. Prove the associative laws with respect to (a) addition, (b) multiplication.

78. (a) Find real numbers x and y such that (c, d) . (x, y) = (a, b) where (c, d) ,' (0, 0).
(b) How is (z, y) related to the result for division of complex numbers given on Page 2?

79. Prove that
(cos o, sin e t)(cos 621 sin 2) . (cos o,,, sin a,,) = (cos [i + 02 +	 + a,,], sin [e + 62 +	 . + 6,,])

80, (a) How would you define (a, b)'/ n where n is a positive integer?
(b) Determine (a, b)1/2 in terms of a and 5.

POLAR FORM OF COMPLEX NUMBERS

81. Express each of the following complex numbers in polar form.
(a) 2— 2i, (b) —1 + ',/i, (c) 2V1 + 2V1i, (d) —i, (e) —4, (f) —2V— 2i, (g)	 (h) j3—/2 - 3i/2.
Ann. (a) 2vr2 cis 315 0 or 2'1e 11/ , (b) 2 cis 1200 or 2e2' ' 3, (c) 4 cis 450 or	 (d) cis 2700 or
(e) 4 cis 180 0 or 4ert, (f) 4 cis 210 0 or 4e7 '6, (u) '/ is 90° or	 (h) NF3 cis 3000 or V3 e15.

82. Show that 2 + i =

83. Express in polar form: (a) —3 - 4i, (b) 1 - 2i.

Ann. (a) 5 e' +	 (b)	 2

84. Graph each of the following and express in rectangular form.
(a) 6 (cos 1350 + i sin 135°), (b) 12 cis 90°, (c) 4 cis 315 0, (d) 2e'', (e) 5e7"1'8, If) 3-2/3•

A ns. (a) —3v'1 + 3VF2 i, (5) 12i, (c) 2 j'1 -	 i, (d) —',/ — V'i i, (e) —5'f/2 - (5/2)i, (f) —3'/12 - (3/2)i

85. An airplane travels 150km southeast, 100km due west, 225km 30° north of east, and then 323km
northeast. Determine (a) analytically and (5) graphically how far and in what direction it is from
its starting point.	 Ans. 375km, 23 0 north of east (approx.)

86. Three forces as shown in Fig. 1-41 act in a plane on an
object placed at 0. Determine (a) graphically ...d (5) ana-
lytically what force is needed to prevent the object from
moving. [This force is sometimes called the equilibrant.]

87. Prove that on the circle z = R&, Ie'i = eR1n5.

88. (a) Prove that r 1 e + r2e2 = r3O 3 where

= Vr + r + 2rr2 cos (6, - 6)

(r1 sin si + r2 sin
63 = tan	

r, COS 6 1 + rscos.2)

(b) Generalize the result in (a).
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DE MOIVRE'S THEOREM
89. Evaluate each of the following:

(a) (5 cis 20 0 )(3 cis 400)	 (8 cis 40°)	 (1)	 (e) (v	
i\4(1._4-_'

(b) (2 cis 60°)	 (2 cis 60°)	 (462i/a)2	 + J \ I iJ

An,. (a) 15/2 + (I5V/ 2 ) i, ( b) 32— 32fi, (c) —16— 16i, (d) 3',Ji/2 - (3V/2 ) i, (e) —//2 - (1/2)i

90. Prove that (a) sin 39 = 3 sin g - 4 sin3 8, (b) cos 36 = 4 cos3 6 - 3 cos 8.

91. Prove that the solutions of z - 3z + 1 = 0 are given by z = 2 cos 36°, 2 cos 72°, 2 cos 216°, 2 cos 252°.

92. Show that (a) cos 36 0 = (V'5— + 1)14, (b) cos 72 1 = ( %f - 1)14. [Hint: Use Problem 91.1

93. Prove that	 (a)	 = 8 cog3 6 - 4 = 2 cos 38 + 6 cos 6 - 4
sin 6

(b) cos 48 = 8 sin4 6 - 8 sin2 8 + 1

94. Prove De Moivre's theorem for (a) negative integers, (b) rational numbers.

ROOTS OF COMPLEX NUMBERS
95. Find each of the indicated roots and locate them graphically.

(a) (2'/ - 2i) 112, (b) (-4 + 4i)1/5, (c) (2 + 2v' i)'8, (d) (_16i) 1 / 4, (e) (64)116, (f) (1)213.

An,. (a) 2 cia 165°, 2 cia 345°. (5) IF26s27 0 , '/ cia 99°, '/ cia 171°, ',/ cia 243°,	 cia 315°.
(c)	 cia 20°, NcislW,	 cia 260°. (d) 2 cia 67.6°, 2 cia 157.5°, 2 cia 247.5°, 2 cia 337.6°.

(e) 2 cia 0°, 2 cia 60°, 2 cia 120°, 2 cia 180°, 2 cia 240°, 2 cia 300°. (f) cia 60°, cia 180°, cia 300°.

96. Find all the indicated roots and locate them in the complex plane.
(a) cube roots of 8, (b) square roots of 4V + 4vr2 i, (c) fifth roots of —16 + 16V' i, (d) sixth roots
of —27i.
An,. (a) 2 cis 0°, 2 cis 120 1 , 2 cis 240°. (b) Vcia 22.5°, /cis 202.5 0 . (c) 2 cis 48°, 2 cis 120°, 2 cis 192°,

2 cis 264°, 2 cis 336°. (ci) /3 cis 45°, NF3 cis 105°, { cis 165 1 , NF3 cis 225 1 , /i cis 285 0 ,	 cis 3451.

97. Solve the equations (a) z4 + 81 = 0, (b) + 1 =	 .

Ana. (a) 3 cis 45 1 , 3 cis 135°, 3 cis 225 1 , 3 cis 3150
(b)	 cis 40 1 ,	 cis 100 1 ,	 cis 160 1 ,	 cis 220 1 , /I cis 280 1 ,	 cis 340°

98. Find the square roots of (a) 6— 12i, (b) 8 +

An.. (a) 3— 2i, —3 + 2i, (b) ',/iö + V2—  -v'Th - -,r2 i

99. Find the cube roots of —11-2i. 	 Ana. 1 +2i, —'V'+(1+'V)i, — —. Vi + (JO —1)i

POLYNOMIAL EQUATIONS
100. Solve the following equations, obtaining all roots: (a) 55 + 2: + 10 = 0, (b) zz + (i - 2): + (3—i) = 0.

An,. (a) (-1 ± 71)15, (b) 1 + i, 1 - 2i

101. Solve z-2z—z+6z-4	 0.	 An.. 1,1,2,-1±i

102. (a) Find all the roots of Z4 + Z2 + J = 0 and (b) locate them in the complex plane.

An.. j(1 :t 	 4(-1±i'I)

103. Prove that the sum of the roots of 6 Z" + a 1 x'	 + a2 z 2 + ... + a,, = 0 where a0 ,' 0 taken
r at a time is (-1)'a,/a 0 where 0 <r < n.

104. Find two numbers whut sum is 4 and whose product in 8.	 Ans. 2 + 2i, 2— 2i
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THE nth ROOTS OF UNITY
105.Find all the (a) fourth roots, (b) seventh roots of unity and, exhibit them graphically.

An.. (a) 52k/4 = etk12, k = 0,1,2,3	 (5) 21k17, k = 0, 1, . . ., 6

106.(a) Prove that 1 + cos 721 + cos 144 1 + COS 216° + cos 288° = 0.
(b) Give a graphical interpretation of the result in (a).

107.Prove that cos 36° + cos 72 0 + cos 108° + cos 144 0 = 0 and interpret graphically.

108.Prove that the sum of the products of all the nth roots of unity taken 2,3,4.... . (n - 1) at a timeis zero.

109.Find all roots of (1 + z) = (1 -
An,. 0, (, 1)/(., + 1), ( 2 - 1)/(w2 + 1), (3 - 1)f(w3 + 1),	 - 1)/( 4 + 1), where	 =

THE DOT AND CROSS PRODUCT
110.If z = 2 + Si and 22 = 3—i, find (a) 21° z, (5) 21 X 23 1 (c) z2 o Z j , (d) 22 X 21, (e) I z 0221,

(I) 1--2 * Z I  I, (g)	 X Z21, (h) 1 Z2 X Zr!.
An.. (a) 1, (b) —17, (c) 1, (d) 17, (e) 1, (f) 1, (g) 17, (h) 17

lii. Prove that (a) Z1 0 22	 Z2 °z, (6) ZI X 22	 —22 X z1.

112.If z = r 1 e 8, and 22 = r2e'°2, prove that (a) ZI o Z2 = r 1r2 cos (e - 'i), (b) 21 X 22 = r 1r2 sin ('2 -
113.Prove that (a) 210 (22 + 23) = 21 0 22 + 9 1 023,	 (5) z X ( 2 2 + Z) = 2 1 X z + ZI X z.

114.Find the area of a triangle having vertices at —4 - i, 1 + 2i, 4 - 3i.	 An.. 17

115.Find the area of a quadrilateral having vertices at (2,-1), (4, 3), (-1,2) and (-3,-2).	 Ass. 18

CONJUGATE COORDINATES
116.Describe each of the following loci expressed in terms of conjugate coordinates z,1.

(a) zf = 16, (6) zl - 2z - 21 + 8 = 0, (c) z +2 = 4, (d) 2 = z + 6i.
An,. (a) x2 + y2 = 16, (6) x2 + y2 - 4x + 8 = 0, (c) x = 2, (d) y = — 3

117.Write each of the following equations in terms of conjugate coordinates.
(a) (x-3)2 +y2	9, (b) 2x-3y = 5, (c) 4x2 +16y2	25.
An,. (a) (z - 3)(I —3) = 9, (b) (2i - 3)z + (2i + 3)1 = lOi, (c) 3(z2 + 12)_ lOzI + 25 = 0

POINT SETS
118.Let S be the set of all points a+ Si, where a and S are rational 	

I 71"numbers, which lie inside the square shown shaded in Fig. 1-42.
(a) Is S bounded? (b) What are the limit points of 5, if any?
(c) Is S closed? (d) What are its interior and boundary points? 	 x
(e) Is S open? (f) Is S connected? (g) Is S an open region or	 0	 1domain? (h) What is the closure of ST (i) What is the comple-
ment of S? (i) Is S countable? (k) Is S compact? (1) Is the do-	

Fl 1-42sure of S compact?	 g.
An,. (a) Yes. (b) Every point inside or on the boundary of the square is a limit point. (c) No.

(d) All points of the'sqliare are boundary points; there are no interior points. (e) No. (I) No.(g) No. (h) The closure of S is the set of all points inside and on the boundary of the square.
(I) The complement of S is the set of all points which are not equal to a+ bi when a and b[where 0< a < 1, 0 < b < 11 are rational. (j) Yes. (k) No. (1) Yes.

119.Answer Problem 118 if S is the set of all points inside the square.
An,. (a) Yes. (6) Every point inside or on the ...are is a limit point. (c) No. (d) Every point inside

is an interior point, while every point on the boundary is a boundary point. (e) Yes. (I) Yes.
(g) Yes. (4) The closure of S is the set of all points inside and on the boundary of the square.
(I) The complement of S is the set of all points exterior to the square or on its boundary.
(5) No. (Ic) No. (1) Yes.
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120. Answer Problem 118 if S is the set of all points inside or on the square.

Ana, (a) Yes. (b) Every point of S is a limit point. (c) Yes. (d) Every point inside the square is an

interior point, while every point on the boundary is a boundary point. (e) No. (I) Yes. (g) No.

(h) S itself. (i) All points exterior to the square. ( j) No. (k) Yes. (1) Yes.

121. Given the point sets A = {1,i, —i), B = (2,1,—i), C = (i, —i, 1 + i), D = (0, —i. 1). Find:

(a)A+(B+G)Or Au (BU C), (b) AC+IJD or(AOC)U(BflD), (c) (A+G)(B+D) or (AUC)fl 
(Bu D).

Ans. (a) (2,1,-0, 1 + i), (b) (1, i, —i), (c) (1,—i)

122. If A,B,C and Dare any point sets, prove that (a) A +B B+A, (b) AL? = BA, (c) A +(B+C) =

(A + B) + C, (d) A(BC) = (AB)C, (c) A(B 1 C) = AR + AC. Give equivalent results using the

notations 0 and u. Discuss how these can be used to define an algebra of sets.

123. If A,B and C are the point sets defined by i + ii < 3, Izi < 5 i + 1 < 4, represent graphically

each of the following:

(a) AnBOC, (b) AuBUC, (e) AOBUC, (d) C(A+B), (d) (AUB)1(BUC), (e) AB+BC+CA,

(/) AB+BC+CA.

124. Prove that the complement of a set S is open or closed according as S is closed or open.

125. If S 1 . S2.....S,, are open sets, prove that S 1 + S2 +	 + S,, is open.

126. If a limit point of a set does not belong to the set, prove that it must be a boundary point of the set.

MISCELLANEOUS PROBLEMS
Prove that (AC)2 + (BD)2 , = (A B)2 + (BC)2 + (CD)2 + (DA)2.

127. Let ABCD be a parallelogram. 

128. Explain the fallacy: —1	 = Iii)	 = 1. Hence 1

129. (a) Show that the equation z4 + a 1 z3 + a2 Z2 + a3z + a4 	 0 where a 1 , a, a3, a4 are real constants

different from zero, has a pure imaginary root if a + aa 4 = a1a.203.

(b) Is the converse of (a) true?

130. (a) Prove that cos	 =	 cos no+ n ' cos (fl-2) +	
1) cos(fl4)# + ... + B5 }

cos'o	 if n is odd

where R =	 .	 n!
I	 ifniseven.

[(n/2) !12

(b) Derive a similar result for sin" o.

131. If z = 6e"' 3 , evaluate	 Ans.

132. Show that for any real numbers p and m, 
5 2m1 COL 1 P

	

	 = 1.
pt— 1

133. If P(z) is any polynomial in z with real coefficients, prove that P(z)

134. If Z022 and 2 3 are collinear, prove that there exist real constants &,/3,y, not all zero, such that

aS 1 + /32 + '(23 = 0 where a + p + y 0.

135. Given the complex number z, represent geometrically (a) 1, (b) —z, (c) liz, (d) z2.

136. Given any two complex numbers z and z2 not equal to zero, show how to represent graphically using

only ruler and compass (a) z 1z2, (b) ziz, (c) zf + 4 (d z 12, (e) z.

137. Prove that an equation for a line passing through the points z i and 22 is given by

arg ((z - Z)/(S - z1 )) = 0

138. If	 x + iy, prove that lxi + lvi	 V2 I x + iy
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139. Is the converse to Problem 51 true? Justify your answer.

140. Find an equation for the circle passing through the points 1 - i, 2i, 1 + i.

Ann. lz+1l =	 or (x+1)2 +y2 = 5

141. Show that the locus of z such that 1 z —al Ir + al = a2 ,	 y

a> 0 is a lemniscate as shown in Fig. 1.43.

142. Let p,, = a2. + b, n = 1,2,3, ... where a,, and b,, are	 .
positive integers. Prove that for every positive integer
M we can always find positive integers A and B such
that PiP2	 = A2 + B2. [Example: If 5 = 2 + P
and 25 = 32 + 42, then 525 = 22 + 112.J	 Fig. 1-43

143. Prove that

(a) cosO + COB (e+a) +	 + Cos (e+na) =

(b) sins +	 ( n + a) +	 + sin (e + na) =

gin 4(n 
+ 1)a cos (e + 4na)

sin 4a
sin 4(n + 1)a 

sin (e + 4na)
sin 4a

144. Prove that (a) Re (z) > 0 and (b) I z - fl	 I a + 1 I are equivalent statements.

145. A wheel of radius 1 . 2 metres [Fig. 1-44) is rotating counterclockwise	
)'

about an axis through its centre at 30 revolutions per minute

	

(a) Show that the position and velocity of any point P on the	 1.2m 
	wheel are given respectively by 4& t and 4Tie 1 , where t is the	 -

time in seconds measured from the instant when P was on the

positive a axis. (b) Find the position and velocity when t = 2/3
and t = 15/4. Fig. 1.44

146. Prove that for any integer In> 1, 'n-I

	

(2 + a)2 - (a - a)5'"	 4maz fl (a2 + 02 cotZ (kr/2ns))
k1

where fl denotes the product of all the factors indicated from k = 1 to in - 1.
kl

147. If points P1 and P2, represented by z and 22 respectively, are such that I a 1 + 22 = I a 1 - X2 1, prove

that (a) 2 1/22 is a pure imaginary number, (b) LP1OP2 = 900.

148. Prove that for any integer in> 1,
 2s-	 3,r	 (m-1)r

	cot -I--cot - cot -	 cot	 = 1

	

2m 2m 2m	 2m

149. Prove and generalize:	 (a) csc2 (7/7) + csc2 (2r/7) + csc2 (47/7) = 2

(b) tan2 (s-/16) + tan2 (3r/16) + tan2 (5a116) + tan 2 (IT/16) = 28

150. If masses m 1 ,m21 m3 are located at points 2 1, Z2,23 respectively, prove that the centre of mass is given by

m 1 z 1 + m2z2 + m3z3

	

a 
=	 m1+,n2+ifl.3

Generalize to n masses.

151. Find that point on the line joining points z and Z 2 which divides it in the ratio p: q.

Ans. (qz 1 + pz2)/(q + p)

152. Show that an equation for a circle passing through 3 points 21, Z2 1 Z3 is given by

(Z_Z i '\ /(Z3_ZI\\ - 
(\ /I'-

l z_z2)/ kzsx2J - .z_'—z2J/ \z3 —z 12
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153. Prove that the medians of a triangle with vertices at z 11 z2 , 23 intersect in the point 1( 2 1 + 22 + 23).

154. Prove that the rational numbers between 0 and 1 are countable.

[Hint. Arrange the numbers as 0, 4 , j, , . t . 1 . 91	 .1

155. Prove that all the real rational numbers are countable.

156. Prove that the irrational numbers between 0 and 1 are not countable.

157. Repiesent graphically the set of values of z for which (a) Jz[ > 12 — 11, (b) I z + 21 > 1 + I 2-21.

158. Show that (a)	 + V and (b) 2 - '/i are algebraic numbers.

159. Prove that '/ +	 is an irrational number.

160. Let ABCD . . PQ represent a regular polygon of it sides inscribed in a circle of unit radius. Prove
that the product of the lengths of the diagonals AC, AD, ....AP is in csc 2 (inn).

161. Prove that if sine 96 0,

sin no
(a) -;-.-.	 2"-'fl (cose - C08(kT/fl))

Is 
sin

in (2n + 1)0 =
	 sin20(b) (2n + 1) II I 1 -	i 	 8fl2 kr/(2n + 1)e k 

162. Prove cos 2ne = (-1) 	 Ifl 1 eo2
k=1	 - cos2 (2k - 1)r/4nf

163. If the product of two complex numbers 21 and 22 10 real and different from zero, prove that there
exists a real number p such that z = p.

164. If z is any point on the circle Iz - 1 = 1, prove that arg(z — 1) = 2 argz = arg(z2 —z) and
give a geometrical interpretation.

465. Prove that under suitable restrictions (a) z"z" = jia+a, (b) (z")' =

166. Prove (a) Re (2 1 22) = Re (z) Re ( 22) - Im {z} IM (22)

(b) Im{z 1 z2) = Re (z1) 'M 42)+ Im(z 1 ) Re 42).

167. Find the area of the polyon with vertices at 2 + 3i, 3 + i, —2— 4i, —4 - 1, —1 + 2i.	 Ani. 47/2

168. Let O i, 02.... . a,, and 15 1 , b2. ....b,, be any complex numbers. Prove Schwarz'. inequality,

I :	 ab	 (	 1a[2'(	 Jb2)

	

k1	 j\=
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VARIABLES AND FUNCTIONS
A symbol, such as z, which can stand for any one of a set of complex numbers is

called a complex variable.

If to each value which a complex variable z can assume there corresponds one or
more values of a complex variable w, we say that w is a function of z and write w = 1(z)
or w = G(z), etc. The variable z is sometimes called an independent variable, while w is
called a dependent variable. The value of a function at z = a is often written 1(a). Thus
if 1(z) = 22, then f(2i) = (2i) 2 = —4.

SINGLE-AND MULTIPLE-VALUED FUNCTIONS
If only one value of w corresponds to each value of z, we say that w is a single-valued

function of z or that 1(z) is single-valued. If more than one value of w corresponds to each
value of z, we say that w is a multiple-valued or many-valued function of z.

A multiple-valued function can be considered as a collection of single-valued functions,
each member of which is called a branch of the function. It is customary to consider one
particular member as a principal branch of the multiple-vahied function and the value of
the function corresponding to this branch as the principal value.

Example 1: If w = z2, then to each value of z there is only one value of w. Hence w = f(z) = 22 is a
single-valued function of z.

Example 2: If w = z 112 , then to each value of a there are two values of w. Hence w = f(z) = z112 j
a multiple-valued (in this case two-valued) function of a.

Whenever we speak of function we shall, unless otherwise stated, assume single-valued
function.

INVERSE FUNCTIONS
If w = f(z), then we can also consider z as a function of w, written z = g(w) = f (w).

The function f- 1 is often called the inverse function corresponding to 1. Thus to = 1(z)
and w = f (z) are inverse functions of each other.

TRANSFORMATIONS
If w = u + iv (where u and v are real) is a single-valued function of z = x + iy (where

x and y are real), we can write u + iv = f(x + iy). By equating real and imaginary parts
this is seen to be equivalent to

U = u(x,y),	 V = v(x,y)	 (1)

Thus given a point (, y) in the z plane, such as P in Fig. 2-1 below, there corresponds a
point (u, v) in the to plane, say P' in Fig. 2-2 below. The set of equations (1) [or the
equivalent, to = f(z)] is called a transformation. We say that point P is mapped or
transformed into point P' by means of the transformation and call P' the image of P.

33
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Example: If w = z2, then u + it' = (x + iy)2 =	 - y2 + 2ixy and the transformation is

U =	 - y2, v = 2xy. The image of a point (1,2) in the z plane is the point (-3,4) in

the w plane.

Fig. 24	 Fig. 2-2

In general, under a transformation, a set of points such as those on curve PQ of

Fig. 2-1 is mapped into a corresponding set of points, called the image, such as those on

curve P'Q' in Fig. 2-2. The particular characteristics of the image depend of course on
the type of function f(z), which is sometimes called a mapping function. If 1(z) is multiple-

valued, a point (or curve) in the z plane is mapped in general into more than one point

(or curve) in the w plane.

CURVILINEAR COORDINATES
Given the transformation w = f(z) or, equivalently, u = u(x, y), v = v(x, y), we call

(x, y) the rectangular coordinates corresponding to a point P in the z plane and (u, v) the

curvilinear coordinates of P.

z plane	 w plane
1?	 -

'lh T 
L : : r41j.

0 
L1 I!I

Fig. 2-3	
Fig. 2-4

The curves u(x, y) = c, v(x, y) = c2, where c 1 and c2 are constants, are called

coordinate curves [see Fig. 2-31 and each pair of these curves intersects in a point. These
curves map into mutually orthogonal lines in the w plane [see Fig. 2-41.

THE ELEMENTARY FUNCTIONS
1. Polynomial Functions are defined by

	

w = aoz" + a, z— + ... + a-z + a = P(z)	 (2)

where ao ,- 0, a,, .,a. are complex constants and n is a positive integer called the

degree of the polynomial P(z).

The transformation w = az + b is called a linear transformation.
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2. Rational Algebraic Functions are defined by
P(z)

W=)	 (3)

where P(z) and Q(z) are polynomials. We sometimes call (3) a rational transformation.

The special case w = 
az+b

+ d 
where ad - be ,	 th0 is often called a bnear or frac-

cz
tional linear transformation.

3. Exponential Functions are defined by
IV = e = e'- ' = el (Cos y + i sin y)	 (4)

where e = 2.71828. . . is the natural base of logarithms. If a is real and positive, we

define	 a =	 (5)

where In a is the natural logarithm of a. This reduces to (4) if a = e.

Complex exponential functions have properties similar to those of real exponential
functions. For example, e' e' = e 1 ', e'/e =

4. Trigonometric Functions. We define the trigonometric or ,circular functions sin z,

cosz, etc., in terms of exponential functions as follows.

- e	 e + e

2i
sinz=	 coSZ	

2 -

1	 2	 1	 2i
sec  =-=	 CSC  =---=

cos z	 e + e	 sin z	 e -

sin z	 e - e	 cos z	 i(e + e
tanz=	

)
—= . 	 cot =---=
cos z	 z(e + e 2)	 sin z	 e -

Many of the properties familiar in the case of real trigonometric functions also
hold for the complex trigonometric functions. For example, we have

sin 2 z + cos2 z = 1	 1 + tan 2 z = sec2 z	 1 + cot2 z = csc2z

sin (-z)	 - sin z	 cos (-z) = cos z	 tan (-z) = - tan z

sin (Zt±Zi) = sin Zi COS Zz ± Cos Zi sin Zz

COS (Zi±ZZ) = COS ZI COS ZZ	 sin zl sin z2
tan Z ± tan Z2

tan(z i ±zz) =

	

1	 tan zi tan zz

5. Hyperbolic Functions are defined as follows:
e.

sinh z =

1_
sech z = coshz	

2
-

cosh z = e + e
2

2
cschz	

1
= si	

_
nhz - ex -

sinhz - 9 — e
tanh z = cohz

cothz
cosh z - el + e-ff

= sinhz -

The following properties hold:

cosh2 z - sj nh 2 z = 1	 1 - t.anh2 z = sech2 z 	coth2 z - 1 = csch2z

sinh(—z) = — sinhz	 cosh (—z) = cosh 	 tanh(-z) = —tanhz

sinh (z 1 ± z2) = sinh z i cosh z2 ± cosh z 1 sinh z2

cosh (z i ± z2) = cosh z i cosh z2 ± sinh z 1 sinh Zz

tanh (z ± z2) 
= tanh z i ± tanh z2

1 ± tanh z 1 tanh z2
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The following relations exist between the trigonometric or circular functions and
the hyperbolic functions:

sin iz = i sinh z	 cos iz = cosh z	 tan iz = i tanh z
sinh iz = i sin z	 cosh Iz = cos z	 tanh iz	 i tan z

6. Logarithmic Functions. If z = e'°, then we write w = In z, called the natural loga-
rithm of z. Thus the natural logarithmic function is the inverse of the exponential
function and can be defined by

w = In z = In r + i(O + 2k7r)	 k = 0, ±1, ±2,
where z = re" = re" 12 . Note that In z is a multiple-valued (in this case infinitely-
many-valued) function. The principal-value or principal branch of In z is sometimes
defined as In r ± iG where 0 0 <2n. However, any other interval of length 2r
can be used, e.g. — n < 0	 r, etc.

The logarithmic function can be defined for real bases other than e. Thus if
z = a's', then w = loga z where a> 0 and a 0, 1. In this case z = ew I n a and so
w = (In z)/(In a).

7. Inverse Trigonometric Functions. If z = sin w, then w = sin — ' z is called the inverse
sine of , z or arc sine of z. Similarly we define other inverse trigonometric or circular
functions cos'z, tan*z, etc. These functions, which are multiple-valued, can be
expressed in terms of natural logarithms as follows. In all cases we omit an additive
constant 2k7i, k = 0,:L-1, ±2.....in the logarithm.

sin - ' z = In (iz + /1 -- Z, ) 	 csc' z = In( + Vz2 - 1')

Cos 'z = ln(z+V'i)

1	 (1+iz\tan'z =	 In
2i ii __1_z

,

1	 1+sec'z = In	 V1_22)
z

1 (z-i
)z+icotz = —In

2i 

8. Inverse Hyperbolic Functions. If z = sinhw then w = sinh'z is called the inverse
hyperbolic sine of z. Similarly we define other inverse hyperbolic functions cosh z,
tanh'z, etc. These functions, which are multiple-valued, can be expressed in terms
of natural logarithms as follows. In all cases we omit an additive constant 2k,rj,
k = 0, ±1, ±2, ..., in the logarithm.

csch'z = in(i+v'zz+i)

	

sech'z = In	 +i z
1 /i+z \	1 7z+itanhz = -ln(-------)	 cothz = -lnf------2 \1-Z	 2 \z-1

9. The Function Za, where a may be complex, is defined as e° In z Similarly if 1(z) and g(z)
are two given functiohsof z, we can define f(z)9 ' = In In general such func-
tions are multiple-valued.

10. Algebraic and Transcendental Functions. If w is a solution of the polynomial equation

	

Po(z)w + P1(z)w' + •.. + P- i(z)w + P. 	 = 0	 (6)
where P0 94 0, PI (z), .. ., P. 	 are polynomials in z and n is a positive integer, then
w = 1(z) is called an aif/eb-raic function of z.

Example: w = z 2 is a solution of the equation w2 - z = 0 and so is an algebraic function of z.

sinhz = In(z+Vz2+1)

cosh 'z = ln(z+ y'z2_1)



z plane

Fig. 2-5

CHAP. 21	 FUNCTIONS, LIMITS AND CONTINUITY 	 37

Any function which cannot be expressed as a solution of (6) is called a transcendental
function. The logarithmic, trigonometric and hyperbolic functions and their correspond-
ing inverses are examples of transcendental functions.

The functions considered in 1-9 above, together with functions derived from them
by a finite number of operations involving addition, subtraction, multiplication, division
and roots are called elementary functions.

BRANCH POINTS AND BRANCH LINES

Suppose that we are given the function
w = z" 2. Suppose further that we allow z to make
a complete circuit (counterclockwise) around the
origin starting from point A [Fig. 2-5]. We have
z = r&°, w = \/ei82 so that at A, 6 = O and
to =	 After a complete circuit back to A,
O = 0,+ 27r  and to = Veue1+22 = _/eb0v'2.

Thus. we have not achieved the same value of w
with which we started. However, by making a
second complete circuit back to A, i.e. 0 = Oi + 4r,
W = V r e' +4012 = /e0t'2 and we then do obtain
the same value of w with which we started.

We can describe the above by stating that if 0 0 <2r we are on one branch of the
multiple-valued function Z 112 , while if 2v ^ 0 <4r we are on the other branch of the
function.

It is clear that each branch of the function is single-valued. In order to keep the
function single-valued, we set up an artificial barrier such as OB where B is at infinity
[although any other line from 0 can be used] which we agree not to cross. This barrier
[drawn heavy in the figure] is called a branch line or branch cut, and point 0 is called a
branch point. It should be noted that a circuit around any point other than z = 0 does not
lead to different values; thus z = 0 is the only finite branch point.

RIEMANN SURFACES

There is another way to achieve the purpose of the branch line described above. To
see this we imagine that the z plane consists of two sheets superimposed on each other.
We now cut the sheets along OB and imagine that the lower edge of the bottom sheet is
joined to the upper edge of the top sheet. Then starting in the bottom sheet and making
one complete circuit about 0 we arrive in the top sheet. We must now imagine the other
cut edges joined together so that by continuing the circuit we go from the top sheet back
to the bottom sheet.

The collection of two sheets is called a Riemann surface corresponding to the function
z'2. Each sheet corresponds to a branch of the function and on each sheet the function
is single-valued.

The concept of Tiemann surfaces has the advantage in that the various values of
multiple-valued functions are obtained in a continuous fashion.

The ideas are easily extended. For example, for the function z"3 the Riemann surface
has 3 sheets; for in z the Riemann surface has infinitely many sheets.

LIMITS

Let f(z) he defined and single-valued in a neighbourhood of z=z0 with the possible
exception of z=z0 itself (i.e. in a deleted neighbourhood 6 of z 0 ). We say that the number 1
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is the limit of 1(z) as z approaches z0 and write urn f() = 1 if for any positive num-

ber (however small) we can find some positive number 8 (usually depending on r) such
that 1(z) — I < whenever 0< z — zo I < 8.

In such case we also say that 1(z) approaches 1 as z approaches Zo and write 1(z) - 1
as z -. z 0. The limit must be independent of the manner in which z approaches zo.

Geometrically, if z0 is a point in the complex plane, then urn 1(z) = I if the difference
22

in absolute value between 1(z) and 1 can be made as small as we wish by choosing points z
sufficiently close to z0 (excluding z = zo itself).

r	 zExample:	 Let 1(z) = 
05s	

•. Then as z gets closer to i (i.e. z approaches i), f(s) gets closer
1	 5=1

,'i

to j2 = — 1. We thus suspect that urn f(s) = — 1. To prove this we must see whether
the above definition of limit is satisfied. For this proof see Problem 23.

Note that urn f(s) Y6 1(0, i.e. the limit of f(s) as z - i is not the same as the value
2' I

of f(s) at z = i, since f(i) = 0 by definition. The limit would in fact be —1 even if f(s)
were not defined at z = i.

When the limit of a function exists it is unique, i.e. it is the only one (see Problem 26).
If 1(z) is multiple-valued, the limit as z — zo may depend on the particular branch.

THEOREMS ON LIMITS

If tim f(z) = A and..tim g(z) = B, then

	

2_to	 2*Xg

1. lim (1(z) + g(z)) = urn 1(z) + lim g(z) = A + B

	

2_Xe	 z-•zo	 2—to

2. lim (1(z) — g(z)) = lim 1(z) — lim g(z) = A — B

	

2t0	 z-•zo

3. Jim (1(z) g(z)) = ' Jim f(z)}{iirn(z)} = AB

urn 1(z)
4. urn	 = ______ =	 if B v 0hm g(z)	 B

X —.

INFINITY

By means of the transformation iv = liz the point z = 0 (i.e. the origin) is mapped
into w = oo, called the point at infinity in the w plane. Similarly we denote by z = 00 the
point at infinity in the z plane. To consider the behaviour of .1(z) at z=°°, it suffices to let
z = 11w and examine the behaviour of [(11w) at w0.

We say that lim 1(z)	 1 or 1(z) approaches 1 as z approaches infinity, if for any

e> 0 we can find M;O such that 11(z) — 11 ( c whenever Izl > M.

We say that lim 1(z) = io or 1(z) approaches infinity as z approaches Zo, if for any

N>0 we can find 6>0 such that I1(z)I> N whenever 0 < lz — zo; < 8.

CONTINUITY

Let [(z) be defined and single-valued in a neighbourhood of z='z0 as well as at z=z0
(i.e. in a 6 neighbourhood of z0 ). The function f(z) is said to be continuous at zz0 if
Jim 1(z) = f(zo). Note that this implies three conditions which must be met in order that
2

1(z) be continuous at z = z0:
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1. Urn 1(z) = 1 must exist
2 Zo

2. 1(zo) must exist, i.e. f(z) is defined at z0

3. 1 = f(zo)

Equivalently, if
urn 1(z) = f(Iim z).
2ZO	 Z*Z0

1(z) is continuous at z0 we can write this in the suggestive form

Example I:	 If 1(z) 
= 1z2 Z	

then from the Example on Page 38, urn f(z) = —1. But f(i) = 0.
lo z=i
I-

Hence urn 1(z) , f(i) and the function is not continuous at a = i.

	Example 2: 	If f(z) = z2 for all 	a, then Urn f(z) = f(i) = —1 and 1(z) is continuous at a = i.

Points in the z plane where 1(z) fails to be continuous are called discontinuities of
1(z), and 1(z) is said to be discontinuous at these points. If lim f(z) exists but is not

111equal to f(zo), we call zo a removable discontinuity since by redefining 1(zo) to be the same
as lim f(z) the function becomes continuous.

a — ao
Alternative to the above definition of continuity, we can define 1(z) as continuous at

z = z0 if for any > 0 we can find 8 > 0 such that If(z) - f(zo)I < whenever jz - zoj < 8.

Note that this is simply the definition of limit with I = 1(zo) and removal of the restriction
that z - z0.

To examine the continuity of 1(z) at z = o, we place z 11w and examine the continuity
of 1(11w) at w = 0.

CONTINUITY IN A REGION
A function 1(z) is said to be continuous in a region if it is continuous at all points of

the region.

THEOREMS ON CONTINUITY
Theorem 1. If 1(z) and g(z) are continuous at z = Zo, so also are the functions

1(z) + g(z), 1(z) - g(z), 1(z) g(z) and the last only if g(zo) 7L0. Similar results hold for

continuity in a region.

Theorem 2. Among the functions continuous in every finite region are (a) all poly-
nomials, (b) et, (c) sin z and cos z.

Theorem 3. If w = 1(z) is continuous at z = zo and z = g() is continuous at C = Co

and if C o = 1(zo), then the function w = g[f(z)], called a function of a function or composite
function, is continuous at z = z0. This is sometimes briefly stated as: A continuous function
of a continuous function is continuous.

Theorem 4. 111(z) is continuous in a closed region, it is bounded in the region; i.e.
there exists a constant M such that If(z)I <M for all points z of the region.

Theorem 5. If 1(z) is continuous in a region, then the real and imaginary parts of
1(z) are also continuous in the region.

UNIFORM CONTINUITY
Let 1(z) be continuous in a region. Then by definition at each point Z(I of the region

and for any > 0, we can find 6 > 0 (which will in general depend on both ( and the particular
point z,,) such that 11(z) — 1(zo) I whenever I z - zol < 8. If we can find 8 depending
on c but not on the particular point z,,, we say that 1(z) is uniformly continuous in the region.
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Alternatively, 1(z) is uniformly continuous in a region if for any .>O we can find
S > 0 such that 11(z1) - 1(z2) I whenever Izi - z21 < S where z 1 and Z2 are any two points
of the region.

Theorem. If 1(z) is continuous in a closed region, it is uniformly continuous there.

SEQUENCES
A function of a positive integral variable, designated by 1(n) or u, where n = 1, 2,3,

is called a sequence. Thus a sequence is a set of numbers ui, u2, u3, . . . in a definite order
of arrangement and formed according to a definite rule. Each number in the sequence
is called a term and u,, is called the nth term. The sequence u 1 , u2, u3, . . . is also designated
briefly by (u). The sequence is called finite or infinite according as there are a finite
number of terms or not. Unless otherwise specified, we shall consider infinite sequences only.

Example 1:	 The set of numbers j, j, j3 , 	i 100 is a finite sequence; the nth term is given by
U. = i", n = 1,2.....100.

(1+ 1)2 (1+i)3
Example 2:	 The set of numbers 1 + i, 21	 31	

is an infinite sequence; the nth term

is given by u, = (1 + i)"/n!, n = 1,2,3.....

LIMIT OF A SEQUENCE
A number I is called the Iiniit of an infinite sequence ui,uz,us, . .. if for any positive

number we can find a positive number N depending on e such that Iu,, - t < for all
n > N. In such case we write tim u,, = 1. If the limit of a sequence exists, the sequence
is called convergent; otherwise it is called divergent. A sequence can converge to only
one limit, i.e. if a limit exists it is unique.

A more intuitive but unrigorous way of expressing this concept of limit is to say that
a sequence U1, U2, u3, . . . has a limit I if the successive terms get "closer and closer" to 1.
This is often used to provide a "guess" as to the value of the limit, after which the
definition is applied to see if the guess is really correct.

THEOREMS ON LIMITS OF SEQUENCES

If lim a. 	 A and lim b. = B, thet.

1. urn (a,, + b) = lim a. + lim b. = A + B

2. tim (a,, - b,,) = lima. - lim b. = A - B

3. hm(ab,,) = (hrnan)(llmbn) = AB

a,, lima,,
4. lim -- =	 .	 = -	 if B ,4 0limb,,	 B

Further discussion of sequences is given in Chapter 6.

INFINITE SERIES

Let u 1 , u2 , u3, . .. be a given sequence.

Form a new sequence Si, S2, S3,... defined by

	

S1 = U1, S2 = Ui + U, S3 u 1 + u2 + u3,	 , S. = U1 + U +	 + U.

where S., called the nth partial sum, is the sum of the first n terms of the sequence (u,,).
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The sequence S1, S2, S3.... is symbolized by

u 1 +u2 +u+ •.. =	 U.

which is called an infinite series. If Jim S. = S exists, the series is called convergent

and S is its sum; otherwise the series is called divergent. A necessary condition that a
series converges is Jim u,. = 0; however, this is not sufficient (see Problems 40 and 150).

Further discussion of infinite series is given in Chapter 6.

Solved Problems

FUNCTIONS AND TRANSFORMATIONS
1. Let w = 1(z) = z2. Find the values of w which correspond to (a) z	 —2+ i and

(b) z = 1 - 3i, and show how the correspondence can be represented graphically.
(a) w = f(-2 + i) = (-2 + 1)2 = 4 - 4i + j2 = 3 - 4j
(b) w = 1(1 - 31) = (1 - 31)2 = 1 - 61 .+ 9j2 = —8 — 6i

zplane	 wplane

Fig. 2-6	 Fig. 2-7

The point z = —2 + i, represented by point P in the z plane of Fig. 2-6, has the image point
to = 3 — 4i represented by P' in the w plane of Fig. 2-7. We say that P is mapped into P' by means
of the mapping function or transformation w = 22. Similarly, z = I - 3i [point Q of Fig. 2-61 is
mapped into to = —8 — 6i (point Q' of Fig. 2-71. To each point in the z plane there corresponds one
and only one point (image) in the w plane, so that w is a single-valued function of z.

2. Show that the line joining the points P and Q in the z plane of Problem 1 [Fig. 2-61 is
mapped by w = 0 into a curve joining points P'Q' [Fig. 2-7] and determine the equation
of this curve.

Points P and Q have coordinates (-2,1) and (1,-3). Then the parametric equations of the line
joining these points are given by

= 31 = I	 or	 x = 31-2, y = 1-41

The equation of the line PQ can be represented by z = 31— 2 + i(l - 4t). The curve in the w plane
into which this line is mapped has the equation

W = z2 = (31-2+i(1-4t))2 = (3t_2)2_(1_4t)2+2(3t_2)(I_41)i
= 3-41— 7t2 + (-4 + 22t — 24t2)i

Then since w = a + iv, the parametric equations of the image curve are given by
u = 3 - 41 - 712, v = —4 + 221 - 2412

By assigning various values to the parameter 1, this curve may be graphed.
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3. A point P moves in a counterclockwise direction around a circle in the z plane having
centre at the origin and radius 1. If the mapping function is w = z3, show that when P
makes one complete revolution the image P' of P in the w plane makes three complete
revolutions in a counterclockwise direction on a circle having centre at the origin and
radius 1.

Let z re15. Then on the circle Izi = 1 [Fig. 2-81, r 1 and z = &. Hence w = z3 = (cW)3 = e3tO.

Letting (p, ) denote polar coordinates in the w plane, we have w = pe = e310 so that p = 1, . = 38.

z plane	 w plane

Fig. 2-8	 Fig. 2-9

Since p = 1, it follows that the image point P' moves on a circle in the w plane of radius 1 and
centre at the origin [Fig. 2-91. Also, when P moves counterclockwise through an angle e, P' moves
counterclockwise through an angle 38. Thus when P makes one complete revolution, P' makes three
complete revolutions. In terms of vectors it means that vector O'P' is rotating three times as fast
as vector OP.

4.. If c 1 and c2 are any real constants, determine the set of all points in the z plane which
map into the lines (a) u = c, (b) v = c2 in the w plane by means of the mapping func-
tion w = z2. Illustrate by considering the cases c = 2,4, —2, —4 and c2 = 2,4, —2, —4.

We have w = u+iv =	 = (x+iy)2 = x2 — y2 +Zixy so that U = x2— y2 , v = 2xy. Then
lines u = c 1 and v c2 in the w plane correspond respectively to hyperbolae x 2 -	 and
2xy = C2 in the z plane as indicated in Figures 2-10 and 2-11.

5. Referring to Problem 4, determine: (a) the image of the region in the first quadrant
bounded by x 2 - y2 = —2, xy = 1, x2 - = —4 and xy = 2; (b) the image of the
region in the z plane bounded by all the branches of x 2 - = 2, zy = 1, x2 - = —2
and zy = —1; (c) the curvilinear coordinates of that point in the xy plane whose
rectangular coordinates are (2,-1).



W plane

Fig. 2-13

a plane

Fig. 2-12
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(a) The region in the z plane is indicated by the shaded portion PQRS at Fig. 2-10. This regionmaps into the required image region P'QRS' shown shaded in Fj. 2-11. It should be notedthat curve PQRSP is traversed in a counterclockwise direction and the image curve P'QR'S'P'is also traversed in a counterclockwise direction.
(b) The region in the z plane is indicated by the shaded portion PTUVWXYZ of Fig. 2-10. Thisregion maps into the required image region P'T'U'V' shown shaded in Fig. 2-I1.

It is of interest to note that when the boundary of the region PTUVWXYZ is traversed onlyonce, the boundary of the image region P'T'U'V' is traversed twice. This is due to the fact thatthe eight points P and W, T and X, U and 1', V and Z of the z plane map into the four points1" or W', T' or X', U' or Y', V' or Z' respectively.
However, when the boundary of region PQRS is traversed only once, the boundary of the

image region is also traversed only once. The difference is due to the fact that in traversing
the curve PTUVWXyZp we are encircling the origin a = 0, whereas when we are traversing the
curve PQRSP we are not encircling the origin.

(c) a = x'- y = (2)1— (-1)2 = 3, v = 2xy = 2(2)(-1) = —4. Then the curvilinear coordinatçs areu=3, v-4.

MULTIPLE-VALUED FUNCTIONS
6. Let w5 zand suppose that corresponding to the particular value z z1 we have w = wi.(a) If we start at the point z 1 in the z plane [see Fig. 2-121 and make one complete

circuit counterclocl:wjs, around the origin, show that the value of w on returning to
z1 is w 1 e2 ' 5 . (b) What are the values of w on returning to z 1 , after 2, 3, . . . completecircuits around the origin? (c) Discuss parts (a) and (b) if the paths do not enclosethe origin.

(a) We have z = re'9, so that to	 r115c'°. If r = 1I and e = 6 1, then it' 1 = r'°'.
As a increases from 6 1 to Si + 2r, which is what happens when one complete circuit counter-

clockwise around the origin is made, we find

W = r 15 e°i +2)/5 = r'5 e6/5 eZwIIS = W 1 e215

(b) After 2 complete circuits around the origin, we find

w = r15	 +4)/5 = r 15 e'°,'5	 1/5 = w1

Similarly after 3 and 4 complete circuits arourd the origin, we find

W = w 1 e 15	 and	 w = w 1 e8115
After 5 complete circuits the value of w is w1eI0.1/5 = W I , so that the original value of w is
obtained after 5 revolutions about the origin. Thereafter the cycle is repeated [see Fig. 2-131.

Another method. Since w5 = a, we have arg a = 5 arg w from which

Change in arg w = (Change in arg a)
Then if arg a increases by 2w, 4w, 6w, Sw, low.....arg w increases by
2w, ... leading to the same results obtained in (a) and (b).

(c) If the path does not enclose the origin then the increase in arg a is zero and so the increase in
arg w is also zero. In this case the value of w is w 1 , regardless of the number of circuits made.
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7. (a) In the preceding problem explain why we can consider -w as a collection of five

single-valued functions of Z.

(b) Explain geometrically the relationship between these single-valued functions.

(c) Show geometrically how we can restrict ourselves to a particular single-valued

function.

(a) Since w 5 = z = re° = re0+2k 	 where k is an integer, we have
- -	 r1	 21,)/i--	 r 1	 (cos (8 -I- 2kr)/5 -i- i sin (8 I 2kr)/5)

and so w is a five-valued function of z, the five values being given by k = 0,1,2,3,4.

Equivalently, we can consider w as a collection of five single-valued functions, called branches

of the multiple-valued function, by properly restricting 9. Thus, for example, we can write

to = r"' cos e/5 + i sin 8/5)

where we take the five possible intervals for e given by 0 8 < 2,r, 2,r 5 8< 4r,..., Sr 8 < lOir,
all other such intervals producing repetitions of these.

The first interval, 0 ii < 2r, is sometimes called the principal range of 8 and corresponds

to the principal branch of the multiple-valued function.
Other intervals for 8 of length 21r can also be taken; for example, -,r 8 <i,, ,r 8 <3r, etc.,

the first of these being taken as the principal range.

(b) We start with the (principal) branch
w = rUS (cos e/5 + i sin 9/5)	 where 0 9 < Zir

After one complete circuit about the origin in the z plane, e increases by 2,r to give another branch
of the function. After another complete circuit about the origin, still another branch of the
function is obtained until all five branches have , been found, after which we return to the original
(principal) branch.

Because different values of f(z) are obtained by sdccessively encircling z 0, we call z 0 a

branch pois t.

(c) We can restrict out-selves to a particular single-valued function, usually the principal branch, by
insuring that not more than one complete circuit about the branch point is made, i.e. by suitably
restricting 8.

In the case of the principal range 0 8 <2,r, this is accomplished by constructing a cut,
indicated by OA in Fig. 2-14 below, called a branch cut or branch line, on the positive real axis,
the purpose being that we do not allow ourselves to cross this cut (if we do cross the cut, another
branch of the function is obtained).

If another interval for 9 is chosen, the -branch line or cut is taken to be some other line in
the z plane emanating from the branch point.

For some purposes, as we shall see later, it is useful to consider the curve of Fig. 2-15 of which
Fig. 2-14 is a limiting case.

THE ELEMENTARY FUNCTIONS
8. Prove that (a) e" eZ2 =	 () jel l = e, (c) e 2k7 = e, k = 0, ±1, ±2

(o) By definition e' -- c(cos y + i sin y) where a = a + jy. Then if a 1 = a 1 + iy 1 and z2 = a2 + iy21
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•	 en (cog y + i sin 7/i) ell (coB Y + i Sfl 7/2)
= en . • e. (cos ,,,1 1 + i sin y 1 )(cos 1/2 + i sin 7/2)
=	 {cos (y 1 + 7/2) + lain (y i + 7/2)) =

(b) lea] = I en(cos i + i sin i') I = len l I cos y + i sin I = ex • 1 = en

(c) By part (a),	 en2Il = en e2kri = en(cos 2kr + i sin 2kw) = en

This shows that the function en has period 2kwi In particular, it has period 2,ri.

9. Prove:
(a) sjn2 Z + cos 2 z = 1	 (c) sin(za +z2) = sin z1 COS Z2 + cos z 1 sin Z2

(b) e = cosz + i sin z, e	 = cosz - i sin z (d) cos(z i + z2) = COS ZI COS Z2 - sin z1 sin Z2

0. - e + e'
By definition, sin  =	 2i	 cosz =	 i—.	 Then

/ e	 e-
(a) sin2 : + cos2z	

+
21	

)2	

ç	 2

=	 (e2mn - 2 + e_24) + (e2 + 2 + e_21n) = 1
4	 4

(b) (1)	 - e	 = 21 sin:,	 (2) e + ea = 2 cog 

Adding (1) and (2):	 2e = 2 cosz + 2i sinz and e	 coax + I sinz

Subtracting (1) from (2):	 2e	 = 2 cog  - 21 sin: and e	 = cos z - i sin:

- e( n
i t)

 - el • e. - enl e.
(c) 5ifl (z + :2) = 2i	 -	 2i

- (cog : 1 + I sin z 1 )(cos 22 + I am 22) - (cos zj - I sin z 1 )(cos 22 - I sin z2)

-	 21
= Sifl Z i C08 22 + COS Z j Sfl Z

(d) cos (i + z2) 
= el( 	 +	 R., 	 - e. ' e, + en. •

2	 -	 2

(cos : 1 + I sin z 1 )(cos 22 + lain 2 ) + (cos i 1 - i sin z 1 )(cos 22 - i sin Z)

= COS Z 1 COS 22 - Sin Zj 5fl 22

10. Prove that the zeros of (a) sin z and (b) cos z are all real and find them.
-

(a) If sin: =	 2i	
= 0, then e m = e 1n or e2tn= 1 = eZ k , k = 0, ±1, ±2.....

Hence 2iz = 2kwi and z = kw, i.e. z = 0, ±w, ±27, ±Sw, ... are the zeros.

eiz+ e1'
(b) If coBs =	 2	

= 0, then 5n = —e	 or eZln = —1 = 9(2k+	 k = 0, ±1, ±2

Hence 21: = (2k + l)wi and z = (k + )w, i.e. z = ±r/2, ±3r/2, ±5ir/2, . . . are the zeros.

11. Prove that (a) sin (—z) = — sin z, (b) cos (—z) = cos z, (c) tan (—z) = —tan z.

e - e = - (em— e-n\ -
(a) sin ( —z) = 	 =

21	 21	 \	 21	 j -

(b) cos (—z) = g) + c- = e b + CIa = em + e
____________ _______ _______ = coax

2	 2	 2

(c) tan (—z) = SIfl ( —z) = —sin z = —tan:, using (a) and (b).
cos ( —z)	 cos 2

Functions of z having the property that /(—z) = - 1(z) are called odd functions, while those for

which f( —z) = 1(z) are called even functions. Thus sin z and tan: are odd functions while coax

is an even function.
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12. Prove: (a) 1 - tanh 2 z = sech 2 z 	 ( c) cosiz = cosh 
(b) sin iz = I sinh z	 (d) j in (x + iy) = sin x cosh y + i cos x sinh y

	

r' + e	 - e-(a) By definition, cosh z 
=	 2	 sinh z	 2	 Then

cosh 2 z	 ainh2z =	 (_e\2	 e2-l-2-+-e2' - c2-2-I-c2'
\	 2 1	 \	 2/	 4	 4

Dividing by 2osh2Z,	 cosh2 z	 sjnh 2 z =	 1	 or 1	 t.anh 2 z = sech 2 z.cosh2 z	 C08h22

- en> -	 e - e - . (e - e_) -
isin(b) 8mhz -	 =	 I

2i	 2i	 2	
-	 hr

e 1 + e" 1-' > - e + ez - e + e	 -(c) cos iz	 cosh z
2	 2	 -	 2	 -

(d) From Problem 9(c) and parts (b) and (c), we have

sin (x+iy) = sinx cos iy + coax siniy = sin x cosh y + i cos xsinhy

13. (a) If z = C" where z = r(cosO ± i sin O) and w = u 4- iv, show that it = In r and
v = 9+2kr, k = 0, ±1, ±2,... so that w = In  = In r + i(O + 2k7). (b) Determine
the values of hi (1 - i). What is the principal value?
(a) Since z = r (cos e + i sine) = e w	 c" 4 to = e' (cos v + i sin v), we have on equating real and

imaginary parts,

	

(1) e' cos V = r cos 8	 (2) e" am v = r sin 9
Squaring (I) and (2) and addii'g, we find e2 = r2 or ii"	 r and u = In r. Then from (I) and (2),
r cos v=r cos e,r sin v=r sin e fromwhich v=9+2kz. Hence w=u+iv=lnr-l-i(o+2k,,.).

If a = e u', we say that w = In z. We thus see that In z = In r + i(e + 2kr). An equivalent
way of saying the same thing is to write In a = In r + is where • can assume infinitely many
values which differ by 2r.

Note that formally In a = In (r&°) = In r + is using laws of real logarithms familiar from
elementary mathematics.

(b) Since 1-i =	 c11142"1, we have ln(1-i) = InV'+ (--f 2kri) = -ln2 +	 + 2kiri.

	The principal value is	 ln2 + -- obtained by letting k = 0.

14. Prove that 1(z) In z has a branch point at z = 0.
We have In a = In r + i,. Suppose that we start at some

point a 1 76 0 in the complex plane for which r = r 1 , 9 = Sj so that
In a 1 -= In r 1 + is, [see Fig. 2-161. Then after making one com-
plete circuit about the origin in the positive or counterclockwise
direction, we find on returning to a 1 that r = r 1, 8 • + 2ir an
that In a 1 = In r 1 + i(8 1 + 2T). Thus we are on another branch
of the function, and so a = 0' isa branch point.

Further complete circuits about the origin lead to other
branches and (unlike the case of functions such as 112 or z") we	

Fl 2.16never return to the same branch.	 g.

It follows that In a is an infinitely many-valued function of a with infinitely many branches. That
particular branch of In a which is real when a is real and positive is called the principal branch. To
obtain this branch we require that e 0 when a > 0. To accomplish this we can take In a = In r + is
where S is chosen so that 0 8 < 2,r or -r S < r, etc.

As a generalization we note that In (a - a) has a branch point at a = a.
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15. Consider the transformation w = In z. Show that (a) circles with centre at the origin
in the z plane are mapped into lines p.rallel to the v axis in the w plane, (b) lines or
rays emanating from the origin in the z plane are mapped into lines parallel to the
u axis in the w plane, (c) the z plane is mapped into a strip of width 2 in the w plane.
Illustrate the results graphically.

We have w = u -I- iv = In z = In r ± is so that u = In ', p = e.

Choose the principal branch as to = In r + is where 0 e < 2.

(a) Circles with centre at the origin and radius a have the equation jz) r = a. These are mapped
into lines in the to plane whose equations are u = In a. In Figures 2-17 and 2-18 the circles and
lines corresponding to a = 1/2,1,3/2,2 are indicated.

Fig. 2-17'	 Fig. 2-18
(6) Lines or rays emanating from the origin in the z plane (dashed in Fig. 2-17) have the equation

8 = a. These are mapped into lines in the w plane (dashed in Fig. 2-18) whose equations are v a.
We have shown the corresponding lines for a = 0, rIO, r/3 and 7/2.

(c) Corresponding to any given point P in the z plane defined by z 76 0 and having polar coordinates
(r, 0) where 0 a < 2r, r > 0, there is a point P' in the strip of width 2v shown shaded in
Fig. 2-20. Thus the z plane is mapped into this strip. The point z = 0 is mapped into a point of
this strip sometimes called the point at infinity.

If e is such that 2i, e < 4,r, the z plane is mapped into the strip 2r v < 4w of Fig. 2-20.
Similarly, we obtain the other strips shown in Fig. 2-20.

It follows that given any point z 0 in the z plane, there are infinitely many image points in
the to plane corresponding to it.

It should be noted that if we had taken • such that —v S ,r,	 a < 3,, etc., the strips
of Fig. 2-20 would be shifted vertically a distance
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16. If we choose the principal branch of sin - ' z to be that one for which sin 0 = 0, prove

thatsin-' Z 	 I	 Z2ln(iz +

w	
e10

1f)

If sin-' 	 then z = sin 	 = 	 from which

- 2iz - e" = 0	 or	 e21° - 2ize"° - 1 = 0

Solving,	
2iz :t 	 4z2 =tZ ± 	 = ix + VI Z2

since ± !l _— z2 is implied by /i::-;.i Now e"	 51(w27), k = 0, ±1, ±2, ... so that

	

,0 2k.) = iz +	 or	 w = 2kir + In (ix +

The branch for which w = 0 when z 0 is oL.ained by taking k = 0 from which we find, as required,

w = sin' z = 1 1n(iz ± Vfz2)

17. If we choose the principal branch of tanh z to be that one for which tanh 0 = 0,
prove that	

(T-
tanh1z = 1-ml+z

2 	 Z

	If w = tanh z, then z = tanh w = ainhw =	 - 0-w from which

	

cosh 	 e0+e

(1-z)e'° =(l+z)ew	 or	 e20 = (1+z)/(1-z)

Since e2'° = e2(0r, we have
1+z	 1	 (i+
-	 or	 W = Lrt + - In I
1-z	 2 \1-z

The principal branch is the one for which k = 0 and leads to the required result.

18. (a) If z = re10, prove that z = e- 1 0 + 1 	 (cos (In r) + i sin (In r)) where k = 0, ±1, ±2.....

(b) If z is a point on the unit circle with centre at the origin, prove that z1 represents
infinitely many real numbers and determine the principal value.

(c) Find the principal value of V.

(a) By definition, 21 = e j in z = &{1 r + 1(e+2k7)}

=	 - e(0+ 2k7) {coa(in r) + i sin (lr, r))

The principal branch of the many-valued function f(z) = z is obtained by taking k = 0 and

is given by ee {cos (In r) + i sin (In i-)) where we can choose e such that 0 e < 2r.

(6) If z is any point on the ur'it circle with centre at the origin, then I zI = r = 1. Hence by part (a),

ince in r = 0, we have zl = e 8 + 2I) which represents infinitely many real numbers. The

principal value is e 8 where we choose e such that 0 a < Zr.

(c) By definition, i = ei I n = l(l(r/2+2k7)) = e_(/2+2k'r) since i = e11221" and in i = i(ir/2 + 2k7).

The principal value is given by e'2.

Another method. By part (b), since z = i lies on the unit circle with centre at the origin and since

8 = r/2, the principal value is e12.

BRANCH POINTS, BRANCH LINES, RIEMANN SURFACES
19. Let w = f(z) = (z2 + 1) 12. (a, Show that z = ±i are branch points of 1(z). (b) She 

that a complete circuit around both branch points produces no change in the branches
of f(z).
(a) We have w	 (z2 + 1) 1 ' 2 = {(z - i)(z + i))112. Then arg w = arg (z - a) + j arg (z + i) so that

Change in arg w	 {Change In arg (z - i)) + 4(Change in arg (z+ i)}
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Let C [Fig. 2-211 be a closed curve enclosing the point i but not the point —i. Then as point z
goes once counterclockwise around C,

Change in arg (z -	 27,	 Change in arg (z + 1) = 0
so that Change in arg w = r

Hence w does not return to its original value, i.e. a
change in branches has occurred. Since a complete cir-
cuit about z = i alters the branches of the function,
z = i is a branch point. Similarly if C is a closed curve
enclosing the point —i but not i, we can show that
z = —i is a branch point.

Another method.
Let z - = i 1 e 18l , z + j = r2 e 0I. Then

w = {r1r2e1i°')P'2 =	 I5tI2eIei/2

Suppose we start with a particular value of z correspond-
ing to 8 1 = aj and 82 = a2, Then w = e"12 &,/2
As z goes once counterclockwise around i, e l increases
to at + Zw while 82 remains the same, i.e. 8	 a2. Hence

W =

=

showing that we do not obtain the original value of w,
i.e. a change of branches has occurred, showing that
z = £ is a branch point.

(b) If C encloses both branch points z = ±i as in Fig. 2-22,

then as point z goes counterclockwise around C,

Change in arg (z - i) =

Change in arg (z + i) = 2w

so that
Change in arg w = Zw

Hence a complete circuit around both branch points
produces no change in the branches.

Another method.
In this case, referring to the second method of

part (a), *I increases from a 1 to a, + Zr while 85 in-
creases from a2 to 02 + Zr. Thus

W = J'j eU + 2w)/2	 + 2.)/2 =	 ea/2 elatS

and no change in branch is observed.

20. Determine branch lines for the function of Problem 19.

The branch lines can be taken as those indicated heavy in either of Figures 2-23, 2-24. In both
cases, by not crossing these heavy lines we it,....:e the single-valuedness of the function.

a plane	 a plane

Fig. 2-23	
Fig. 2-24
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21. Discuss the Riemann surface for the function of Problem 19.
We can have different Riemann surfaces correapondirg to Fig. 2-23 or 2-24 of Problem 20.

Referring to Fig. 2-23, for aAample, we imagine that the z plane consists of two sheet,, superimposed
on each other and cut along the branch line. Opposite edges of the cut are then joined, forming the
Riemann surface. On making one complete circuit around z = 1, we start on one branch and wind up
on the other. However, if we make one circuit about both z = i and z = —i, we do not change branches
at all. This agrees with the results of Problem 19.

22. Discuss the Riemann surface for the function 1(z) = In z (see Problem 141.
In this case we imagine the z plane to consist of infinitely many sheets superimposed on each

other and cut along a branch line emanating from the origin z = 0. We then connect each cut edge to
the opposite cut edge of an adjacent sheet. Then every time we make a circuit about z 0 we are on
another sheet corresponding to a different branch of the function. The collection of sheets is the
Riemann surface. In this case, unlike Problems 6 and 7, successive circuits never bring us back to
the original branch.

LIMITS
23. (a) If 1(z) = z 2, prove that urn 1(z) = z.

.—to

(b) Find urn f(z) if 1(z) 
= 'Z2 Z

1.	 —0

(a) We must show that given any > 0 we can find S (depending in general on €) such that
IzZ—zI <t whenever 0 < z — z0 < S.

If S	 1, then 0 < Z 2 < S implies that
Z'2—z I = I zzoH z + zoI < 6 [ z—z0+ 2z0[ < S ([ z—zoI+[ 2z01} < 8(14-2z0)

Take	 as 1 or 21(1 + 2 I zoI), whichever is smaller. Then we have I z2 — z	 whenever
z — z0 I < 5, and the required result is proved.

(b) There is no difference between this problem and that in part (a), since in both cases we exclude
Z = z0 from consideration. Hence Jim 1(z) = z. Note that the limit of f(z) as z -. z0 has2
nothing whatsoever to do with the value of 1(z) at z0.

24. Interpret Problem 23 geometrically.
(a) The equation w = 1(z) = z2 defines a transformation or mapping of points of the z plane into

points of the to plane. In particular let us suppose that point z0 is mapped into w0 = 4.

w plane
'V

Fig. 2 .25	 Fig. 2-26

(I
U

In. Problem 23(a) we prove that given any i>0 we can find 5 >0 such that I w — w0 j <
whenever I z — z0 j < S. Geometrically this means that if we wish w to be inside a circle of
radius e [see Fig. 2-261 we must choose S (depending on ) so that z lies inside a circle of radius S.
According to Problem 23(a) this is certainly accomplished if 8 is the sn-.aller of 1 and /(1 + 2IzoJ).

(b) In Problem 23(a), w = z02 is the image of i — z0. However, in Problem 23(b), w = 0 is the
image of z z0. Except for this, the geometric interpretation is identical with that given in
part (a).
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3z4-2Z34-8z2-2z+525. Prove that urn	 .	 - 4 + 4j.z — t
We must show that for any ,> 0 we can find 8 > 0 such that

I 
3z4 -20+ '8z3 -2z+5 -

	(4+ 401< .	 when	 0<Iz—iJ<8.z — i
Since z ,' i, we can write

	

3z4 - 2z3 + 8z— 2z + 5	 [3z3 — (2-30z2 + (5-2j)z + 5i][z —i)
z — i	 z — i

= Si3 - (2-31)z2 + (5-20z + Si
on cancelling the common factor z - i # 0.

Then we must show that for any e> 0, we can find 8 > 0 such that

1 3z3— (2 -30z2 +(5_. 202_4+iI < •	 when	 0<lz—iI<8
If 8	 1, then 0 < Iz—il <3 implies

130_(2_3022+ (5 -21)z-4+il = l z—i 11 3z2 + (6i-2)z-1 —4i1
= Iz__i113(z_i+i)2+(61_2)(z_i+i)_l_.4i1
= Iz_i113(Z_i)2+(12i_2)(z_t)_1o_ejI
• 8(3z—t 2 + 112i-211z—tl + 1 -10 -6i1)
• 8(3+13+12) = 288

Taking 8 as the smaller of I and /28, the required result follows.

TOREMS ON LIMITS
If urn 1(z) exists, prove that it must be unique.

We must show that if urn 1(z) = 1 1 and urn f(z) = 2, then 1 1 = 12.
s- I.

/17	 By hypothesis, given any e > 0, we can find 8 > 0 such that

1(z) - 11 I < e/2 when 0 < IX-z0  < 8
1(z) - 12 1 < •/2 	 when	 0 < z	 < 8

	Then 
I l l - 121 = I l l - f(z) + 1(z) - 12 1	 12 - 1(4 I + 11(z) - 121 < 42 + e/2 =

i.e. j1 -	 is less than any positive number s (however small) and so must be zero. Thus Li = 12.

27. If urn g(z) = B ,' 0, prove that there exists 8 > 0 such that
5+

g(z) >11B 1 for 0< Jz—zoj< s
Since urn g(z) = B, we can find 8 such that I u(z) - R I < 4 JBI for 0 < lz— z0 I < 8.I-.

Writing B = B - g(z) + g(z), we have

IBI ;5 I B - g(z) I + IV(z) < 4 IBI + !u(z)I
i.e.	 IBI < 4IB I + Ip (z)I	 from which	 ig(z)j > 41B1

28. Given lim f(z) = A and urn g(z) = B, prove that (a) urn [1(z) + g(z)] = A + B,2_I.	 I_I.
_1

	

(b) urn 1(z) g(z) = A, (c) urn 1	 if B , 0, (d) urn 1(z)	 A
,'=	 if B 0.

(a) We must show that for any s> 0 we can find 8 > 0 such that

1 114) + o(z)) - (A + B) I < •	 when	 0 < I 12oI < 8
We have

I [1(z) + g(z)J - (A +B) I	 1[1(z) —A] + (g(z)—BJ I	 1/(z)—Al + Iu(z) — B I	 (1)
By hypothesis, given >0 we can find 8 > 0 and 82 >0 such that

	

f(z) - A I < •/2	when	 0 < I X - X01  < 8	 (I)
	I g(z) - B I < •/2	 when	 0 < I X-201  < 82 	 (2)
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Then from (1), (2) and (3),

I [1( z) -1- g(z)I - (A + B) I < .12 + .12 = .	 when	 0 < z z0 <

where 8 is chosen as the smaller of 8 1 and 62.

(b) We have	 I f(z) g(z) - AB I = I f(z)(g(s) - B) + B(f(z) - A) I	 (4)

If(z)lIu(Z)B1 + IBIII(z) — Al
II(z)l I g(z) —B I + (I B I + 1)11(z)—Al

Since jim 1(z) = A, wecanfind8 i such that 11(z) —A l < 1 for 0< Iz—zol < 61•
I -. to

Hence by inequalities 4, Page 2,

I f(z)— A I	 If(z)I - IAI,	 i.e.	 1 i., If(z)I - IAI	 or	 lI(z)l ^ IAI + 1

i.e. I1(z)I < P where P is a positive constant.

Since urn g(z) = B, given •>0 we can find 82 >0 such that
.-I.

0 < lz—zoI <

Since urn /(z) = A, given • >0 we can find 6 >0 such that
1-• *0

for 0< I z—z I < 53.

Using these in (4), we have

	

If(z ) g (z) - AB 	 < + (1 8 1 + 1 2(IfiI+1) =

for 0 < Is - z0 j < 6 where 6 is the smaller of S 1, 8 2, 83, and the proof is complete.

(c) We must show that for any • > 0 we can find 6 > 0 such that

1	 1	 l9(z)—BI
=	 < . when	 0<lz—zoI<6g(z)	 B	 IBI Iv(x)1

By hypothesis, given any .> 0 we can find 6 >0 such that

I u(s) - B I < 4 I B 1 2 •	 when	 0 < I z —zol < s

	

By Problem 27, since urn g(z)	 B ,' 0, we can find S 2 > 0 such that
I

lg(z)l > JI BIJIB	 when 0 < - I < 8 2

Then if 6 is the smaller of 8 1 and 62, we can write

	

i	 I g(z) - B I4IBI2e
______ - = e whenever 0 < Z -	 <

	

g(z)	 B	 IBI Ig(z)l	 IBI 4181
and the required result is proved.

(d) From parts (1,) and (c),

	

1(z )	 .1	 i1	 .	 .	 1	 1	 A
I . rn	 = lim f(s)	 = lim f(s) lm - = A	 - -

	

g(z)	 u(z)j	 ....,	 g(z)	 B	 B

This can also be proved directly [see Problem 1451.

Note. In the proof of (a) we have used the results If(z) - A I < ./2 and I g(z) - B I < ./2, so
that the final result would come out to be I f(s) + g(z) - (A + B) I < e. Of course the proof would be

just as valid if we had used 2. [or any other positive multiple of .] in place of .. Similar remarks
hold for the proofs of (b), (c) and (d).

29. Evaluate each of the following using theorems on limits.
(a) Jim (z2 - bz + 10) =	 Itm z2 + Jim (-5z) + Jim 10

1+1	 *-. i-I-I

jim 10

	

- ( lim	 lim z"	 / lim _5'\/ lim

	

+	
/ 

+

= (1+0(1 +0 - 5(1+0 + 10 = 5— 3i

In practice the intermediate steps are omitted.

(2z + 3)(z - 1)
jim 

21 
(2z + 3) jim 

21 
(z - 

1) - (3 40(-21 —1) =	 + 11(b) jim	
- '-. —	 -. — 

•-.-2 zt -2z+4	 -	 urn (z2 2z+4)	 4i	 2	 4'

I g(z) - B I < ./2P for

If(s)-AI < 
€

2(jBI + 1)

(4
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z3+8
(c)	

z4 + 42 + 16

In this case the limits of the numerator and denominator are each zero and the theorems on
limits fail to apply.

However, by obtaining the factors of the polynomials, we see that

urn
Ze-i

	z3 + 8	 -	 lim	 (z + 2)(z - 2e"113)(z - 20-1/3)
a4 + 4z2 + 16 - 5 ...21,rus (a - 2e"3)(z - 2e2"'3)(z - 2e411/3)(Z - 2e5'3)

=	 urn	 (z+2)
..2,,i/3 (z - 2e21 '3)(z - 2e'')

3V.
-

-
- 2(e 03 - e2"3)(e" 113 - e4/3)

Another method. Since z —64 = (z2 - 4)(z4 + 4z2 + 16), the problem is equivalent to finding

(a2 - 4)(z3 + 8) =	 Urn a2 - 4 =	 - 1 = 3 -
urn

z-..2e"'3	a6 - 64	 -..2"/3 z3 - 8	 2(e' - 1)	 8	 8

30. Prove that urn does not exist.
-.o Z

If the limit is to exist it must be independent of the manner in which a approaches the point 0.

Let z-0 along the x axis. Then y = 0, and z= x+iy = x and * = x—iy = x, so that the
required limit is

Urn—	 1

Let z-0 along they axis. Then a = 0, and z = x+iy = iy and * = x—iy = —iy, so that the
required limit is

lim—	 = —1
V-0 tI

Since the two approaches do not give the same answer, the limit does not exist.

CONTINUITY
31. (a) Prove that 1(z) = z2 is continuous at z = zo.

(b) Prove that 1(z) = 
1Z

2 z 'Zo
o Z=Zo 

where z0 0, is discontinuous at z = z0.

(a) By Problem 23(a), lit 1(z) = 1(z0) = Z2 and so 1(z) is continuous at a = z0.

o
z

Another method. We must show that given any e> 0, we can find 8 > 0 (depending on e) such
that 1(z) - 1(z0) I = I a2 - z2] < e when j a - a0 < 8. The proof patterns that given in
Problem 23(a).

(b) By Problem 23(b), lim f(z) = z2, but f(z0) = 0. Hence lim f(z)	 f(z0) and so f(z) is
z_xo 

discontinuous at a = a0 if z0 ' 0.

If a0 = 0, then f(z) = 0; and since Brn /(z) = 0 = /(0), we see that the function is
continuous.

32. Is the function 1(z) = 3z -- 2z3 +822 - 2z + 5 continuous at z =

f(i) does not exist, Le.- f(z) is not defined at a = i. Thus f(z) is not continuous at a = i.

By redefining 1(z) so that f(s) = urn /(z) = 4 + 4i (see Problem 25), it becomes continuous

at a = i. In such case we call a i a removable discontinuity.

33. Prove that if 1(z) and g(z) are continuous at z = z0, so also are

(a) f(z) + g(z),	 (b) 1(z) g(z),	 (c)	 if g(zo) r' 0

These results follow at once from Problem 28 by taking A = 1(z0), B = g(z0) and rewriting
0 < 12 - aol < 3 as I a - o I < 8, i.e. including a = a0.
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34. Prove that 1(z) = z2 is continuous in the region lzI ;^i 1.

Let so be any point in the regionItl 9 1. By Problem 23(a), f(z) is continuous at z. Thus f(z)
is continuous in the region since it Is continuous at any point of the region.

35. For what values of z are each of the following functions continuous?

= z2 +j = (z - i + .. Since the denominator is zero when z = ±i, the function is

continuous everywhere except z = ±i.

(b) 1(z) = csc z =	 By Problem 10(a), sin z = 0 for z = 0, ± r, ±2ir..... Hence f(z) is
sin x

continuous everywhere except at these points.

UNIFORM CONTINUITY
36. Prove that f(z) = z2 is uniformly continuous in the region Izi < 1

We must show that given any i>0, we can find 8>0 such that Iz s — ZU < • when lz — zol <8,

where 8 depends only on i and not on the particular point 20 of the region.

If z and so are any points in (zI < 1, then
lz2_ z1 = Iz+zoIIz — zol	 ([zI+IzoI)Iz—zol < 21z — z0

Thu. if I z—z0 I < 8, it follows that 1 22 — Z < 28. Choosing 8 = l2, we see that I z2z < •
when I z - 20 I < 8, where S depends only on • and not on Z . Hence f(z) = z2 is uniformly con-
tinuous in the region.

37. Prove that 1(z) = liz is not uniformly continuous in the region Izi < 1.
Method 1.

Suppose that 1(z) is uniformly continuous in the region. Then for any •> 0 we should be able
to find 8, say between 0 and 1, such that I/(t)1(zo)l < • when l22o1 < S for all z and 20 in
the region.

Let z = 8 and 20 = r•	 Z Zo l = fr- j-4- =	 < 8.

However, - - - = - - -	 - > i (since 0 < 8 < 1).
I s	 20	 0	 0	 0

Thus we have a contradiction, and it follows that f(z) = l/z cannot be uniformly continuous in
the region.
Method 2.

Let 20 and z + r be any two points of the region such that I 20 + t so I =	 = 8. Then

If(zo) f(zo+)I 
=	 1	 1	 =	 Ii	 =	 S

20	 20	 1201 Izo+tI	 1201 lzo+I
can be ma'ie larger than any positive number by choosing 20 sufficiently close to 0. Hence the function
cannot be uniformly continuous in the region.

SEQUENCLS AND SERIES
38. Investigate the convergence of the sequences

(a) u,, =-, n = 1,2,3,'.., (b) U. = 
-____

it jS j4 j5 .	 1 —i 1 i
(a) The first few terms of the sequence are s, -, -, -- , -, etc., or t, - , j-, ,	 On

plotting the corresponding points in the z plane, we suspect that the limit is zero. To prove this
we must show that

Iu—il = Ii"/-01 < •	 when	 n > N	 (1)

Now	 Ii/n - 0  = I i /nI = I iI"in = IN < a	 when	 a > lii

Let us choose, N = 14. Then we see that (i) Is true, and so the sequence converges to zero.
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I(1+i)"+1/(n+1)I =	 =(b) Consider —'U.	 (1+i)/n	 J	 n+1	 n+1

	For all n 9 10 (for example), we have	 > = 1.2. Thus Iu,,+,I > 1.21uI for n > 10,
n+1 5

i.e. luj i l > 1.2 Ju jol, I U121 > 1.2 Iu ii I > ( 1.2) 2 Iu io], and in general Iu,,I > ( 1.2)fl 10 Iu i oI. It follows

that ju.1 can be made larger than any preassigned positive number (no matter how large) and
thus the limit of Ia,,] cannot exist, and consequently the limit of U,, cannot exist. Thus the

sequence diverges.

39. If lima, = A and limb,, = B, prove that Jim (a+b) = A+B.

By definition, given we can find N such that

Ia,,—AI <e/2, lb,,—BI <e/2 for n > N

Then for n>N,

I(a,,+b,,)—(A+B)I = I(a,,-4)(bn'-B)I	 Ia—I + Ib- BI <

which proves the result.

It is seen that this parallels the proof for limits of functions [Problem 281.

40. Prove that if a series u1 + U2 + u3 +	 is to converge, we must have urn u = 0.

- If S, is the sum of the first n terms of the aeries, then S,,+ 1 = S. a,,. Hence if lim S. exists

and equals S, we have urn S,,+ 1 = urn S. + urn u,, or S = S + lim a,,, i.e. lim U,, = 0.
n-.n	 n-st	 n—n	 n-sn

Conversely, however, if urn U, = 0 the series may or may not converge. See Problem 150.
n — -

41. Prove that 1 + z + z2 + z3 +	 =	 if IzI < 1.
1—z

Let	 S. = 1+z+z2+"+Z''
Then	 zS,, =	 z + z2 +	 + X.—I + z"

1 Zn
Subtracting,	 (1 - z)S,, = 1 -2"	 or	 S. =

If j zj < 1, then we suspect that urn a" = 0. To prove this we must show that given any e> 0

"
I—n

we can find N such that I a" - 0 j	 for all n> N. The result is certainly true if a = 0; hence we
can consider z -A

Now Iz-1 = I : ]" < e when n In I:] < In e or n > (In e)/(In 1 :1) = N [since if 1:1 < 1, In 1:1 is

negative]. We have therefore found the required N, and Jim a" = 0.
N -.

Thus	 1 + a + :2 + ... = Jim S. = Urn 1—z" =	 =

	

n-. 	 z	 z

The series

	

a+az+az2+" =	
a

1—:
is called a geometric series with first term equal to a and ratio a, and its sum is a/(1 - a) provided

I:] < 1.

MISCELLANEOUS PROBLEMS
42. Let w = (z2 + 1) 112. (a) If w = 1 when z = 0, and z describes the curve C1 shown in

Fig. 2-27 below, find the value of w when z = 1. (b) If z describes the curve C2 shown
in Fig. 2-28 below, is the value of w when z = 1 the same as that obtained in (a)?
(a) The branch points of w = f(z) = (Z2+ 1) 1 /2 = ( (a - i)(z + 1)}112 are at a = ±i by Problem 19.



Fig. 2-27 Fig. 2-28
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Let (1) z - i = r 1 e 1 , (2) z + i = ?28l Then since 81 and 82 are determined only within

integer multiples of 2wi, we can write

W =	 / çe e + )Il e2kThI2 = Ji e 8 '' ek	 (3)

Referring to Fig. 2-27 for by using the equations (1) and (2)] we see that when z is at 0, r1 = 1,

e l = 37/2 and r2 = 1, 82 = 7I2. Since w = I at z = 0, we have from (3). 1 = I),,i and we

choose k = —1 (or 1, —3, . . .. Then
W = —

As z traverses C 1 from 0 to 1, r1 changes from 1 to \,/i, 81 changes from 3r/2 to v/4,

r2 changes from 1 to Vi, 02 changes from ir/2 to r/4. Then

= -'.J(')(') ((14 	 =

(b) As in part (a), w = —	 Referring to Fig. 2-28 we see that as z traverses C21

r1 changes from 1 to V, 8 changes from 3/2 to 7,r/4, r2 changes from 1 to vr2 and 82 changes

from 7/2 to r14. Then	 ________
w = -J)(V) l(7,'i4 + T/4)/2 = {z

which is not the same as the value obtained in (a).

43. Let /'I—  = 1 for z = 0. Show that as z varies from 0 to p> 1 along the real axis,

yl. __ Z2  varies from 1 to -iV =1-

V	 D2

B /\\
/
j

	

1	 p

Fig. 2-29

Consider the case where z travels along path ABDEF, where BDE is a semi-circle as shown In

Fig. 2-29. From this figure, we have

1-2 = 1—x—ty = rcosl— i?SiflO

so that	 .i	 fi1T) = ' f(cos i'/Z — i sin e12)	 cos 8 + ir gin 

Along AB: z = x, r = 1 — x, • = 0 and	 z = iT XV1T =	 - x2.

AIongEF: 22,r=x1.6v and

Hence as 2 varies from 0 [where x = 01 to p [where x p, vTii varies from 1 to



z plane w plane

Fig. 2-30 Fig. 2.31
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44. Find a mapping function which maps th a points z = 0, ±i, ±2i, ±3i,... of the z plane
into the point w = 1 of the w plane [see Figures 2-30 and 2-31].

Since the points in the z plane are equally spaced, we are led, because of Problem 15, to consider
a logarithmic function of the type z = In w.

Now if w 1 = e2kt, k = 0,±1,±2, ..., then z In  = 2k7i so that the point w1 is
mapped into the points 0, ±2ri, ±4rj.....

If, however, we consider z (In w)/27, the point to = 1 is mapped into a 0, ±i, ±2i, ... as
required. Conversely, by means of this mapping function the points a = 0, ±i, ±2i,... are mapped
into the point w1.

Then a suitable mapping function is a = (In w)12n- or w =

45. If Urn z,, = 1, prove that Urn Re (z) = Re (1) and urn Im (Zn) = Im (1).

Let z, = a,, + iy,, and I = 1 + i12, where a,,, y,, and l, 12 are the real and imaginary parts of
a,, and I respectively.

By hypothesis, given any e>0 we can f... N such that I z,, — I I < e for n > N, i.e.,

X. + iy,, - (t + i12) 1 <	 for	 n> N

or	 V'(x,,—I1)2 + (Y,,12)2 <	 for	 n > N

From this it necessarily follows that

k,-'tI < . and	 <i for n > N

i.e. urn z, = 1 1 and urn y,, = 12, as required.
I, -n—c

46. Prove that if Ia! <1, 	
1 - a cos e

(a) 1 + a cos 0 + a2 cos 20 + as cos 30 +	
= 1 - 2a cos 0 + a'

(b) a sin 0 + a2 sin 20 + as sin 39 +	
=	

a sin 0
 1 - 2a cos 0 + a2

Let a ae in Problem 41. We can do this since tat = lot < 1. Then

1 + as" + a262 +	 +	 I

1	 1—ae'
or	 (1 + a cos, + a2 cos 2s + ...) + i(a sin a + a2 sin 2e +	

= 1 -	 i -ae'O

= 1—a cos ø+ia sin 9
1-2a cos s+a'

The required results follow on equating real and imaginary parts.
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Supplementary Problems
FUNCTIONS AND TRANSFORMATIONS
47. Let w = 1(z) = z(2 - z). Find the values of w oorreaponding to (a) z = 1 + i, (b) z = 2- 2i and

graph corresponding values in the w and a planes.	 Ans. (a) 2, (b) 4 + 4i

48. If w	 1(z) = (1 + z)/(1 - a), find (a) 1(i), (b) /(1 - i) and represent graphically.
Ans. (a) i, (b) -1 - 2i

49. If 1(z) = 2z + 1)/(3z -2), a 0 2/3, find (a) 1(1/i), (b) 1(1(z)).	 Ana. (a) (2 + z)/(3 - 2z), (5) z

50. (a) If w = 1(z) (a + 2)/(2z - 1), find 1(0), f(i), /(1 + 0. (5) Find the values of a such that
1(z) = i, f(z) = 2 - 3i. (a) Show that a is a single-valued function of w. (d) Find the values of a
such that 1(z) = a and explain geometrically why we would call such values the fixed or invariant

points of the transformation.	 Ans. (a) -2, -i, 1 - i, (5) -i, (2 + i)/3

51. A square S in the a plane has vertices at (0, 0), (1,0), (1, 1), (0,1). Determine the region in the
w plane into which S is mapped under the transformations (a) w = z2, (b) w = 11(z + 1).

52. Discuss Problem 51 if the square has vertices at (1, 1), (-1,1), (-1,-i), (1, -1).

53. Separate each of the following into real and imaginary parts, i.e. find u(x, y) and v(x, y) such that
1(z) = it + iv: (a) /(z)	 2z2 - 3iz, (5) f(z) = z + liz, (a) 1(z) = (1 - z)/(1 + a), (d) f(z) = z112.

1-a2 - 2	 -2
Ans. (a) it = 2x2 -2y2 +3y, v = 4xy-3x	 (c) 

U = (1+ X)2+y2'	 = (1+x)2+y2

(5) a = a + xI(x2 + y2 ),	 (d) it =	 cos e12, v = r112 sin 0/2

V = y - y/(x2 + 2)	 where a = r cos 0, y r sine

54. If f(z) = 11a = u + iv, construct several members of the families u(x, y)	 a, v(x, y ) = 13 where
a and /3 are constants, showing that they are families of circles.

MULTIPLE-VALUED FUNCTIONS
55. Let w3 = z and suppose that corresponding to a = 1 we have w = 1. (a) If we start at a = 1 in the

a plane and make one complete circuit counterclockwise around the origin, find the value of w on
returning to a = 1 for the first time. (b) What are the values of w on returning to z = 1 after
2,3,4, . . complete circuits about the origin? Discuss (a) and (5) if the paths do not enclose the origin.

Any. (a) e2-'/3 , (5) e43, 1, e113

56. Let w = (1 - z2 ) 1 /2 and suppose that corresponding to z = 0 we have w = I. (a) If we start at a 0
in the a plane and make one complete circuit counterclockwise so as to include a = 1 but not to include
a = -1, find the value of w on returning to a = 0 for the first time. (5) What are the values of w if
the circuit in (a) is repeated over and over again? (c) Work parts (a) and (b) if the circuit includes
a = -1 but does not include a = 1. (d) Work parts (a) and (b) if the circuit includes both a = 1 and
a = -1. (e) .Work parts (a) and (5) if the circuit excludes both a = 1 and a = -1. (f) Explain why
a = 1 and a = --1 are branch points. (g) What lines can be taken as branch lines?

57. Find branch points and construct branch lines for the functions (a) f(z) = (Z/(I -Z))1/2,

(b) 1(z) = ( z2_ 4) t ' 3 , (c) 1(z) = In(z_a2).

THE ELEMENTARY FUNCTIONS

58. Prove that (a) e-l/es = ezI-as, (b) Iei =

59. Prove that there cannot be any finite values of a such that e2 = 0.

60. Prove that 2ir is a period of e. Are there any other periods?

61. Find all values of z for which (a) e = 1, (5) e4 = i.

Ans. (a) 2kiril3, (b) 4iri + 4kiri, where k = 0, ±1, ±2.....

62. Prove (a) sin 2z = 2 sin a coax, (b) cos 2z = cos2 a - Sin2 a, (a) 5jfl2 (z/2) = 4(1 - cos a), (d) c032 (z12) =
4(1 + coax).

63. Prove (a) 1 + tan 2 a = sec2 z, (5) 1 + cot2 z = csc2z.

64. If coax = 2, find (a) cos 2x, (b) cos 3z.	 An.. (a) 7, (b) 26

65. Prove that all the roots of (a) sin,. = a, (b) COIl = a, where -1	 1, are real.
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66. Prove that if I sin z	 1 for all z, then z must be real.

61. Show that (a) sin i = sink, (b) i5ar = coo 1, (e) iiii = tank.

68. For each of the following functions find u(x, y) and v(x, y) such that f(z) = u + iv, i.e. separate into
real and imaginary parts: (a) 1(z) = es", (b) /(z) = cot z, (c) 1(z) = sin 2z, (d) /(z) = Z262'.
An,. (a) u = 3I COS 3X, v =	 sin 3x, (b) u = coax cosh V, v = - sins tinhy, (c) u = sin 2x cosh 2y,

v = cot 2x ,inh 2y, (d) u = 0((x' - y2) cot 2y - 2xy sin 2y), v = e'(2xy cot 2y + (x2 - y') sin 2y)

69. Prove that (a) ainh (-z) = -sinh z, (b) cosh (-z) = cosh z, (c) tanh (-z) = -tanh z.

70. Prove that (a) sinh (z 1 + z2) = sinh z 1 cosh z2 + cosh z 1 sinh z2, (b) cosh 2z = cosh' z + sinht z,
(c) 1 - tanh2 z = sech2z.

71. Prove that (a) sinht (z/2) = 4 (cosh z - 1), (b) cosht (z/2)	 4 (cosh z + 1).

72. Find u(x, y) and v(x, y) such that (a) sinh 2z = u + iv, (6) z cosh z = it + iv.
An,. (a) it = sinh 2x COB 2y, v = cosh 2x sin 2y

(b) u = x cosh x cos y - v sinh x sin y, v	 y cosh x cot y + x sinh x tiny

73. Find the value of (a) 4 sinh(.i/3), (6) cosh(2k + 1)ri/2, k = 0, ±1, ±2, ..., (c) coth 3.i/4.
Ant. (a) 2i'V, (b) 0, (c) i

74. (a) Show that In
(- 

-	
= ( 

+ 2ki)i k = 0, ±1, ±2.....(6) What is the principal value?
An,. (b) 47i/3

75. Obtain all the values of (a) In (-4), (b) In (3i), (c) In (I - i) and find the principal value in each case.
An,. (a) 2 1n2 + (r + 2kv)i, 2 In  + ri. (b) 1n3 + (.12 + 2kt)i, 1n3 + .1/2. (c) 1n2 + (11.16 + 2kr)i,

In 2 + 1Iri/6

76 Show that In (z - 1) = 4 In ((x -1)' + y2) + i tan —I y/(x -1), giving restrictions if any.

71. Prove'that (a) coo 1 z = In (z + ' /1i) , (b) cot s = .- 
In( 

-±4) Indicating any restrictions.

78. Prove that (a) sinh' z = In (z + (Jii), (6) coth 1 , = In (!-±-).

79. Find all the values of (a) sin' 2, (6) cos' 1.
Ant. (a) ±iIn(2+'/i)+v/2 + 2k.	 (b) -iIn(V'+1)+ .12 + 2kv, -iIn('V-1)+ 3.12 + 2k.

80. Find all the values of (a) cosh l i, (b) einh' (In (-1)).
Ant. (a) In(' i +1) + .1/2 + 2kri, ln (-,- 1 ) + 3.112 + 2Ii

(6) In [(2k + 1), + V(2k + 1).' - 1] + t-i/2 + 2invi,
In [V-(2k + 1)20 - 1 - (2k -I- 1).] + 342 + 2miu-i, k, m = 0, ±1, ±2,

81. Determine all the values of (a) (1 + 1)1, (b) 1 r2.
An,. (a) e'4+2JIV (coo (4ln2) + i sin (41n2)}, (b) cos(2%r2kr) + i sin (2/kv)

82. Find (a) Re ((1- ,)i+9 (b) I (—t) I.
An.. (a) 6½1n3 -	 - ' cot (7./4 + 41n2), (b) e/+2kw

83. Find the real and imaginary parts of as where z = x + iy.

84. Show that (a) f(z) = (z -1) 1/, (6) f(z) = X113 + z113 are algebraic functions of z.

BRANCH POINTS, BRANCH LINES AND RIEMANN SURFACES

85. Prove that z = ±i are branch points of (2 + 1)1/5.

2 1/3

86. Construct a Riemann surface for the functions (a) S IM, (b) z"(z - 1)1/2, (c)	 +

87. Show that the Riemann surface for the function z112 + z115 has 6 sheets.

88. Construct Rlemann surfaces for the functions (a) In (z + 2), (6) sin - I z, (c) tan I
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LIMITS
89. (a) If 1(z) = z2 + 2; prove that Urn 1(z) = 2* - 1.

(b) If 1(z) = [
z2

 

+2z z9A i	 find urn f(z) and justify your answer.
z=s

90. Prove that urn Z2 - Z + 1 - i = 1 -—i-i z2-2z+2

91. Guess at a possible value for (a) lim 1-2
-, (b) urn	 2 

-2iz and investigate the correctness
of your guess.	 0 2 2+1 1 +	 o— 2+ * 

z2

i + 4

92. If urn /(z) = A and urn g(z)	 B, prove that (a) lim (21(z) - 3ig(z)) = 2A	 3iB,
2_ta	 2_to	 a_ti

(b) urn (p 1(z) + qg(z)) = pA + qB where p and q are any constants.
a

93. If lim f(z) = A, prove that (a) urn {f(z) ) 2 =. A 2, (b) Urn (1( z)) 3 = A. Can you make a
2 t t0	 Z.tt	 Z20

similar statement for urn (1(z))"? What restrictions, if any, must be imposed?
2—to

94. Evaluate using theorems on limits. In each case state precisely which theorems are used.

(a) ljrn (iz4 + 3z2 - lOi)	 (c) Urn (2z - 3)(4z + t)	 r 2

'
t**12	 (zz— 1)2	 'e urn	 z —1— i

(b) Urn
	 Z22	 z2+1	 ' a_1+*122_2z+2

lim

Ant. (a) —12 + 61, (b) 'f (1 + 1)12, (c) —4/3 - 41, (d) 1/3, (e) —1/4

95. Find	 Jim /3(Z - e' 3) (--)	 An.. 1/6 -

96. Prove that if 1(z) = 322 + 2z, then urn 1(z) - 1(z0) = 6z + 2.
220	 ZZ0

97. If 1(z) = ---, prove that lirn	 + h) - 1(zo) =
	 provided z0 —2/3.

98. If we restrict ourselves to that branch of 1(z) =	 for which f(0) = Vi, prove that

ijm'V' 2 - 1
aI	 z-1	 - 2

99. Explain exactly what is meant by the statements (a) urn 1/(z - j)2 = °, (b) lim 2z44 + 1 = 2.Z +1

100. Show that (a) urn (sin z)/z = 2/r, (1*) urn z2 cosh 4z/3 = 72/8.

101. Show that if we restrict ourselves to that branch of 1(z) = tanh z such that /(0) = 0, then
jim f(z) = 3,ri/4.

2

CONTINUITY

102. Let (z) =	 if z,' 21, while 1(21) = 3 + 41. (a) Prove that urn 1(z) exists and determine its
2-

value. (b) Is 1(z) continuous at z = 20 Explain. (c) Is f(z) continuous at points z ' 2i? Explain.

103. Answer Problem 102 if f(2i) is redefined as equal to 4i and explain why any differences should occur.

104. Prove that 1(z) = z/(z4 + 1) is continuous at all points inside and on the unit circle itt = 1 except
at four points, and determine these points. 	 An.. 6(2k+I)o1/4, k = 0,1,2,3

105. if f(z) and g(z) are continuous at z = z0, prove that 3 f(z) - 41 g(z) is also continuous at z = z0.

06. If f(z) is continuous at z = z0, prove that (a) (f())2 and (b) (1(z))3 are also continuous at z = z0.

Can you extend the result to (I(x))- where a Is any positive integer?
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107. Find all points of discontinuity for the following functions.

	

2z-33z2 4-4	 1	 tanhz
(a) f(z) = z2+2z+2' (b) f(z) =	 (c) f(z) = cot; (d) f(s) = - - sees, (e) 1(z) = z2 + 1

Ans. (a) -1 ± i	 (c) kir, k = 0, ±1, ±2,	
(e)- i

' 	
w(k + ) i, -k	 0,:!- 1, -2

(b) ±2, ±2i	 (d) 0, (k +	 , k = 0,:!-1, ±2,... 	
-	 - 

108. Prove that 1(z) = 22 - 2z + 3 is continuous everywhere in the finite plane.

109. Prove that 1(z) = 
52 

+ I is (a) continuous and (b) bounded in the region j zj	 2.

110. Prove that if f(s) is continuous in a closed region, it is bounded in the region.

111. Prove that /(z) = liz Is continuous for all z such that Il > 0, but that it is not bounded.

112. Prove that a polynomial is continuous everywhere in the finite plane.

22 + 1
113. Show that f(s) = 2 - 3z 

+ 2 is continuous for all z outside Izi = 2.

UNIFORM CONTINUITY

114. Prove that f(z) = 3z -2 is uniformly continuous in the region I z i ;^i 10.

115. Prove that f(z) = 1/s2 (a) is not uniformly continuous in the region I z i	 I but (b) is uniformly
continuous in the region	 Izi	 1.

116. Prove that if f(z) is continuous in a closed region '1 it is uniformly continuous in W.

SEQUENCES AND SERIES

117. Prove that (a) urn	 o, (b) lim (_' . - ---"j = 1 - i.
i.

,,..,,n +1	 n+3t n+l/

118. Prove that for any complex number z, urn (1 + 3z/n2) = 1.

119. Prove that urn n - j = 0.
2

120. Prove that lim ni" does not exist.

121. if urn IuI = 0, prove that liin a,, = 0. Is the converse true? Justify your conclusion.

122. If lima,, = A and limb,, = B, prove that (a) lirn(a,,+b,,) = A +B, (b) lim(a,,-b,,) =

A - B, (c) urn a,,b,, = AB, (d) urn a,,/b,, = A/B if B' 0.

123. Use theorems on limits to evaluate each of the following.

(a) Urn in
2 - in + 1- 3j	 (c) Urn /n + 2i -

n-. 'c (2n+4t-3)(n-i)	 n-"c

(b) lim (n2+3i)(ni)	 (d) urn /{Vn+2i -
"-'c tn8-3n+4-z

Ans. (a) 4i, (b) 1, (a) 0, (d) 4i

124. If urn u,, = 1, prove that lim 
U1+U2+'''+U,, = 1.

8•4

125. Prove that the series 1 + i/3 + (j/3)2 +	 =	 (i/3)"1 converges and find its sum.

Ana. (9+3t)/10	
cd

126. Prove that the series i - 2i + 3i - 4i + ... diverges.

127. If the series	 a,, converges to A, and	 b,, converges to B, prove that	 (a.,, + ib,,) converges

to A + W. Is the converse true?

128. Investigate the convergence of	 where	 =	 + i.	 Ans. cony.
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MISCELLANEOUS PROBLEMS
129.Let w = ((4- 2)(z2 + 4)}1/2. If w = 4 when i = 0, show that

? 
6jd;rtbe	 Ccurve C of Fig. 2-32, then the value of w at 

130.Prove that a necessary and sufficient condition for f(z) =	 X
u(x, y) + I v(x, y) to be continuous at z = zo = xo + iy o is that	 0	 0

u(x, y) and v(x, y) be continuous at (x0, yo).
131.Prove that the equation tan z = z has only real roots.	 Fig. 2-32

132.A student remarked that I raised to any power is equal to 1. Was he correct? Explain.

133.Show that.	 +	 +	 +... =	 2 sing
2	 22	 23	 5-4 cos o

134.Show that the relation I f(x + ly) I = 1(x) + /(iy) I is satisfied by 1(z) = sin z.	 Can you find anyother functions for which it is true?

135.Prove that lini 	 z3 - 3z + 2
z-.-z4+z2-3z+5

136.Pro1'e that Jcsczj	 2e/(e2 -1) if Jy 

137.Show that Re {sin 'z) = ( ' z2 + -y2 + 2x + 1 - Tx2 + -y2- 2x + 1).
138.If f(z) is continuous in a bounded closed region ', prove that (a) there exists a positive number M

such that for all z in 'J, I f(z) I M, (b) 11(z) I has a least upper bound x in '7 and there exists atleast one value 20 in IR such that I 1(20) I = i'.

139.Show that j tanh r(l + i)/4 1 = 1.

140.Prove that all the values of (1 - 0 r2 i lie on a bLight line.
141.Evaluate (a) cosh wi12, (b) tanh ' .	 Ans. (a) 0, (b) (2k + 1)ri/2, k = 0, ±1, ±2.....

142.If tan z = u + iv, show that

	

=	 sin 2z	 =	 sinh2y
coo 2x+ cosh 2y'	 coo 2x+ cosh 2y

143.Evaluate to 3 decimal place accuracy: (a) e321, (b) sin (5- 41).

144.Prove Re Ii + I tan (6/2)1	 cos e, i

	

=	 ndicating any exceptional values.IT- tan (e/2)J
145.If urn 1(z) = A and urn g(z) = B ,' 0, prove that	 lim f(z)/g(z) = AID without first2_i.	 i_xe	 2_i.

proving that urn 1/9(z) = 11B.

11	 if lzI is rational146. Let	 f(z) =	 - Prove that f(z) i discontinuous at all values Ox 2.0	 if IzI is irrational

147.Prove that if 1(z) = u(x, y) + i v(x, y) is continuous in a region, then (a) Re (1(z)) = u(x, y) and(b) Im (f(z)) = v(x,y) are continuous in the region.

148.Prove that all the roots of z tan z = k, where k > 0, are real.

149.Prove that if the limit of a sequence exists it must be unique.

150.(a) Prove that lim (%/ i - V) = 0.
(b) Prove that the series	 (J:ri - %f) diverges, thus showing that a series whose nth term

approaches zero need not converge.

151.If z, + i = (z,, 4- 1/zn), a '. 0,1,2, ... and -r/2 < srg a0	s/2, prove that lim a,,	 1.
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DERIVATIVES
If 1(z) is single-valued in some region '1 of the z plane, the derivative of 1(z) is

defined as
f'(z)	 urn Az + z) - 1(z)	 (1)

A-0	 AZ

provided that the limit exists independent of the manner in which Az- 0. In such case
we say that 1(z) is differentiable at z. In the definition (1) we sometimes use h instead
of Az. Although differentiability implies continuity, the reverse is not true (see Problem 4).

ANALYTIC FUNCTIONS
If the derivative P(z) exists at all points z of a region 'R, then 1(z) is said to be

analytic in IR and is referred to as an analytic function in 'P or a function analytic in 17..
The terms regular and holomorphic are sometimes used as synonyms for analytic.

A function 1(z) is said to be analytic at a point z0 if there exists a neighbourhood
I z -	 S at all points of which fl(z) exists.

CAUCHY..RIEMANN EQUATIONS
A necessary condition that w = 1(z)	 u(x, y) + iv(x, y) be analytic in a region 'R.

is that, in % u and v satisfy the Cauchy-Riemann equations

auov	 au_ av	 2
Ty	 ax

If the partial derivatives in (2) are continuous in IR, then the Cauchy-Riemann equations
are sufficient conditions that 1(z) be analytic in R. See Problem 5.

The functions u(x, y) and v(x, y) are sometimes called conjugate functions. Given
one we can find the other (within an arbitrary additive constant) so that u + iv = 1(z)
is analytic (see Problems 7 and 8).

HARMONIC FUNCTIONS
If the second partial derivatives of u and v with respect to x and y exist and are

continuous in a region '1, then we find from (2) that (see Problem 6)

	

ô2u	 a2U a2v 	a2v+	 --	 -0,	 +	 - 0	 (8)
ay 2

It follows that under these conditions the real and imaginary parts of an analytic function
satisfy Laplace's equation denoted by

014	 as	 a2	 a2+	 = 0	 or	 V = 0	 where V2 + 	 (4)

The operator V 2 is often called the Laplacian.

63
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Functions such as u(x, y) and v(x, y) waich satisfy Laplace's equation in a region R
are called harmonic functions and are said to be harmonic in '.

GEOMETRIC INTERPRETATION OF THE DERIVATIVE
Let z0 [Fig. 3-11 be. a point P in the z plane and let Wo [Fig. 3-21 be its image P' in

the w plane under the transformation w = f(z). Since we suppose that 1(z) is single-valued,
the point z0 maps into only one point Wo.

z plane
	 w plane

Fig. 3-1	 Fig. 3-2

If we give z0 an increment Az we obtain the point Q of Fig. 3-1. This point has

image Q' in the w plane. Thus from Fig. 3-2 we see that P'Q' represents the complex

number Aw = f(zo + Az) - 1(zo). It follows that the derivative at zo (if it exists) is given by

	

urn 
f(zo + AZ) - f(zo) = Jim --	 (5)

AZ	 Q-P QP

i.e. the limit of the ratio Q'P' to QP as point Q approaches point P. The above interpre-

tation clearly holds when zo is replaced by any point z.

DIFFERENTIALS
Let Az = dz be an increment given to z. Then

AW = f(z+ Az) —Az)	 (6)

is called the increment in w = 1(z). If 1(z) is continuous and has a continuous first

derivative in a region, then

= f'(z)AZ + eAZ = f'(z) dz + c dz

where e - 0 as Az - 0. The expression

dw = f'(z) di

is called the differential of w or 1(z), or the principal part of Aw

in general. We call di the differential of z.

Because of the definitions (1) and (R), we often write

(7)

(8)

Note that AW 9.& dw

dw-	 f(z + AZ) - 1(z) = urn	 (9)- fl(z) = u.rn -.dz	 A-0 AZ	 o AZ
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It is emphasized that dx and dw are not the limits of Az and aw as Az - 0, since these
limits are zero whereas dx and dw are not necessarily zero. Instead, given dz we determine
dw from (8), i.e. dw is a dependent variable determined from the independent variable dx

for a given z.

It is useful to think of d/dz as being an operator which when operating on to = 1(z)

leads to dw/dz = f'(z).

RULES FOR DIFFERENTIATION
If 1(z), g(z) and h(z) are analytic functions of z, the following differentiation rules

(identical with those of elementary calculus) are valid.

1. (1(z) + g(z) } 
= W 1(z) +	 g(z) = P(Z) + g'(z)

2. (f(z)-g(z)) =	 -f(z) - -g(z) = f'(z) - g'(z)

d	 d3. _-(cf(z)) = cd_f(z) = cf'(z)	 where c is any constant

4. (AZ) 	 = f(z)g(z) + g(z) 4j	 -f(z) = f(z)g'(z) + g(z)f'(z)

g(z)f(z) - f(z)g(z)

	

g(z) 	 - 1(z) g'(z)
5.

=
df(z)	

= if g(z) , 0
dz1g(z)J	 [g(z)]2	 [g(z)]2

6. If w f(C) where C = g(z)  then
dw -

 dw dC - 1'(C)-- = f'(g(z))g'(z)
dz

Similarly, if w = 1(C) where C = g() and 7 = h(z), then
dw - dw dCdii

it a17j'dz

The results (10) and (11) are often called chain rules for differentiation of
composite functions.

7. If w = 1(z), then z = f"(w); and dw/dz and dz/dw are related by
dw	 1_
dx - dz/dw

8. If z = 1(t) and w = g(t) where t is a parameter, then

	

dw - dw/dt - g'(t)	 (13)
dx	 dzfdt	 f'(t)

Similar rules can be formulated for differentials. For example,
d{f(z) + g(z)} = df(z) + dg(z) = f'(z) dx + g'(z) dx = { f(z) + g'(z)) dx

d{f(z) g(z))	 1(z) dg(z) + g(z) df(z) = (1(z) g'(z) + g(z) f'(z)} dx

DERIVATIVES OF ELEMENTARY FUNCTIONS
In the following we assume that the functions are defined as in Chapter 2. In the

cases where functions have branches, i.e. are multi-valued, the branch of the function
on the right is chosen so as to correspond to the branch of the function on the left. Note
that the results are identical with those of elementary calculus.

(10)

(11)
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3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

1. (e) - 0

2. z" = nz"dz

3z_
e - e.
 -

d = alna

d.
T sin Z = COSZ

d
Tz cosz = -sinz

tan  = sec2z

d-cotz = -csc2z

daz-secz = sec z tan z

d-cscz = -cscz Cot z

logez =	 lnz =

--logz = loge- z

d.	 1
-sin- 1 z 	 _____dz	 z2

d	 -1-cOs_ I z = _____dz	 Vnl_z2
d	 1-tanz = ____dz	 1+z2

16.	 cot 'z = -1
TZ	 1+z2

17. --sec	 1
dz

18. --csc'z =	 -1
dz	 zz21

19. sinh z = cosh z

20. --coshz = sinhzdz

21. tanhz = sech2zdz

22. d---cothz = -csch2zdz

23. sech z = -sech z tanh zdz

24. -cschz = -cschzcothz

25. -- sinh'z =	 1
dz	 y1 +z2

26. d Cosh-1 =	 1
dz	 z2_1

27. tanh'z =	 1
1 - z2

28. coth 'z 
= 1

-129. T sechz =	 _
Zvi -

30. 4csch_lz =	 -1
dz	 zy'z2+1

HIGHER ORDER DERIVATIVES

If w = f(z) is analytic in a region, its derivative is given by f'(z), w' or dw/dz. If
/d\/dw\ d2w

1(z) is also analytic in the region, its derivative is denoted by f"(z), w" or
_d_zj =

Similarly the nth derivative of 1(z), if it exists, is denoted by f")(z), w' or 
d"w where

n is called the order of the derivative. Thus derivatives of first, second, third, ... orders
are given by f'(z), f"(z), /"(z).... . Computations of these higher order derivatives
follow by repeated application of the above differentiation rules.

One of the most remarkable theorems valid for functions of a complex variable and
not necessarily valid for functions of a real variable is the following

Theorem. If 1(z) is analytic in a region 'R., so also are f'(z), f"(z), ... analytic in 'R,
i.e. all higher derivatives exist in 'k.

This important theorem is proved in Chapter 5.
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L'HOSPITAL'S RULE
Let 1(z) and g(z) be analytic in a region containing the point Zo and suppose that

f(zo) = g(zo) = 0 but g'(zo) 0. Then L'Hospital's rule states that

lim	 = L2)	 (14., g(z)	 g'(zo)

In case f'(zo)= g'(zo) = 0, the rule may be extended. See Problems 21-24.
We sometimes say that the left side of (14) has the "indeterminate form" 0/0, although

such terminology is somewhat misleading since there is usually nothing indeterminate
involved. Limits represented by 3o-called indeterminate forms 00/00, 0 . 00, 0°, 1 and
oo - can often be evaluated by appropriate modifications of L'Hospital's rule.

SINGULAR POINTS
A point at which f(z) fails to be analytic is called a singular point or singularity of

1(z). Various types of singularities exist.

1. Isolated Singularities. The point z z0 is called an isolated singularity or isolated
singular point of 1(z) if we can find 8 > 0 such that the circle Iz - zol = 8 encloses
no singular point other than z0 (i.e. there exists a deleted S neighbourhood of z0
containing no singularity). If no such 8 can be found, we call zo a non-isolated
singularity.

If zo is not a singular point and we can find 8 >0 such that Iz — zoI = 8
encloses no singular point, then we call Zo an ordinary point of 1(z).

2. Poles. If we can find a positive integer n such that urn (z - zo)f(z) = A ,' 0,
then z = z0 is called a pole of order n. If n = 1, Zo is called a simple pole.

Example 1: 1(z) =I	 has a pole of order 3 at z = 2.
(z-2)

Example 2: 1(z) =	 3z - 2
(z-1)2(z+ 1)(z	 has a pole of order 2 at a = 1, and simple

—4)

poles at a = —1 and z = 4.
If g(z) = (z—z0)"f(z), where 1(zo) ,. 0 and n is a positive integer, then

z = z0 is called a zero of order n of g(z). If n = 1, Zo is called a simple zero. In
such case z0 is a pole of order n of the function 1/g(z).

3. Branch Points of multiple-valued functions, already considered in Chapter 2, are
singular points.

Example I:	 f(z) = (a - 3)112 has a branch point at a = 3.

Example 2: 1(z) = In (z2 + a —2) has branch points where a 2 + a — 2 = 0, i.e. at
zrrl and z=-2.

4. Removable Singularities. The sgular point Zu is called a removable singularity
of 1(z) if lim 1(z) exists.

Example:	 The singular point a = 0 is a removable singularity of f(s) = aln 2 since
sin 

lim-=1.
-.o a

5. Essential Singularities. A singularity which is not a pole, branch point or remov-
able singularity is called an essential singularity.

Example:	 f(s) = e" 2 has an essential singularity at zr2.

If a function is single-valued and has a singularity, then the singularity is
either a pole or an essential singularity. For this reason a pole is sometimes
called a non-essential singularity. Equivalently, z = zo is an essential singularity
if we cannot find any positive integer n such that urn (z - Zo)" 1(z) = A	 0.

 26
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6. Singularities at Infinity. The type f singularity of 1(z) at z =	 [the point at
infinity; see Pages 6 and 38] is the same as that of 1(17w) at w = 0.

Example:

	

	 The function 1(z) z3 has a pole of order 3 at z = , since 1(11w) 11w3
has a pole of order 3 at w = 0.

For methods of classifying singularities using infinite series, see Chapter 6.

ORTHOGONAL FAMILIES
If w = 1(z) = u(x, y) + i v(x, y) is analytic, then the one-parameter families of curves

u(x,y) = a,	 v(x,y) = fl	 (15)

where aand . f? are constants, are orthogonal, i.e. each member of one family [shown heavy
in Fig. 3-3] is perpendicular to each member of the other family [shown dashed in Fig. 3-3]
at the point of intersection. The corresponding image curves in the w plane consisting of
lines parallel to the u and v axes also form orthogonal families [see Fig. 3-4].

a plane	 w plane

Fig. 3-3	 Fig. 3-4

In view of this, one might conjecture that when the mapping function 1(z) is analytic
the angle between any two intersecting curves Ci and C2 in the z plane would equal (both
in magnitude and sense) the angle between corresponding intersecting image curves
and C2' in the to plane. This conjecture is in fact correct and leads to the subject of
conformal mapping which is of such great importance in both theory and application that
two chapters (8 and 9) will be devoted to it.

CURVES
If (t) and (t) are real functions of the real variable t assumed continuous in

t 1	 t2, the parametric equations	 -
z = x + iy = ( t) + i (t) = z(t),	 t1 t t2 	 (16)

define a continuous curve or arc in the z pLne joining points a = z(t 1) and b = z(t2)
[see Fig. 3-5 below].

If t 1 ,' t2 while z(t 1) = z(tz), i.e. a = b, the endpoints coincide and the curve is said
to be closed. A closed curve which does not intersect itself anywhere is called a simple
closed curve. For example the curve of Fig. 3-6 is a simple closed curve while that of
Fig. 3-7 is not.

If (t) and &(t) [and thus z(t)] have continuous derivatives in t 1 t t2, the curve
is often called a smooth curve or arc. A curve which is composed of a finite number of
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Fig. 3-5	 Fig. 3-6	 Fig. 3-7

smooth arcs is called a piecewise or sectionally smooth curve or sometimes a contour. For
example, the boundary of a square is a piecewise smooth curve or contour.

Unless otherwise specified, whenever we refer to a curve or simple closed curve we
shall assume it to be piecewise smooth.

APPLICATIONS TO GEOMETRY AND MECHANICS
We can consider z(t) as a position vector

whose terminal point describes a curve C in a
definite sense or direction as t varies from t1
to t2. If z(t) and z(t + At) represent position
vectors of points P and Q respectively, then

AZ - z(t+ At) —z(t)
At

is a vector in the direction of AZ [Fig. 3-81.
If urn	 =exists, the limit is a vector in

the direction of the tangent to C at point P and
is given by

dz	 dx	 . dy	 Fig. 3-8
-

If t is the time, dz/dt represents the velocity with which the terminal point describes the
curve. Similarly, d2zldt2 represents its acceleration along the curve.

COMPLEX DIFFERENTIAL OPERATORS
Let us define the operators V (del) and JV (del bar) by

V+i=2ä,	 (17)
ax	 ay

where the equivalence in terms of the conjugate coordinates z and 2 (Page 7) follows from
Problem 32.

GRADIENT, DIVERGENCE, CURL AND LAPLACIAN
The operator V enables us to define the following operations. In all cases we con-

sider F(x, y) as a real continuously differentiable function of x and y (scalar), while
A(x, y) = P(x, y) + i Q(x, y) is a complex continuously differentiable function of x and y
(vector).

/z+2 z-2\	 -
In terms of conjugate coordinates, F(x,y) = Fi — --, -j--,) = G(z,z)	 and

A(x,y) = B(z,2).
1. Gradient. We define the gradient of a real function F (scalar) by

	

aFgrad.? = V.? =	 + i f/I =	 (18)
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Geometrically, this represents a vector normal to the curve F(x, y) = c where
c is a constant (see Problem 33).

Similarly, the gradient of a complex function A = P + iQ (vector) is defined by

grad 	 = VA = (+i-)(P+iQ)

-	
+ •("+\ — 

23B
- 3x	 3y	

Z\3y 
ax) -	 di (	 )

In particular if B is an analytic function of z then aB/a = 0 and so the gradient

	

3P aQ3P	 3Qis zero, i.e.	 = -, -• = - ----, which shows that the Cauchy-Riemann equa-ax

tions are satisfied in this case.

2. Divergence. By using the definition of dot product of two complex numbers
(Page 6) extended to the case of operators, we define the divergence of a complex
function (vector) by

	

div A = V o A = Re ( A) = Re	 — i	 (P + iQ)}

=	 +	 = 2Re{}	 (20)
ax	 ay 

Similarly we can define the divergence of a real function. It should be noted that
the divergence of a complex or real function (vector or scalar) is always a real
function (scalar).

3. Curl. By using the definition of cross product of two complex numbers (Page 6),
we define the curl of a complex function by

	

curl A = V x A	 Im ( A) = Im	 -	 (P + iQ)}

dQ=	 -	 = 2Im{}	 (21)
ax	 ay	 49Z

Similarly we can define the curl of a real function.

4. Laplacian. The Laplacian operator is defined as the dot or scalar product of V
with itself, i.e.,

V 0 V	 V2

Note that if A is analytic,
are harmonic.

Re(V)	 Re a — i va +ia)^
f (ax	 ay ax	 ay

32	 32	 32
=	 = 4-	 (22)aX2	

ay	 az 02

V 2A = 0 so that V 2P=0 and v2Q=0, i.e. P and Q

SOME IDENTITIES INVOLVING GRADIENT, DIVERGENCE AND CURL
The following identities hold if A 1 , A 2 and A are differentiable functions.
I. grad (A 1 +Az) = gradA 1 + grad A2
2. div(Aj+A 2) = divA 1 ± divA2
3. curl (A 1 +Az) = curl A + curl A2
4. grad (A A 2) = (A1)(gradA 2) + (grad Ai)(A2)
5. curl grad A	 -r 0 if A is real or, more generally, if Im (A) is harmonic.
6. div grad A	 = 0 if A is imaginary or, more generally, if Re (A) is harmonic.
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Solved Problems
DERIVATIVES
1. Using the definition, find the derivative of w = f(z) = z3 - 2z at the point where

(a) z = zo, (b) z = —1.

(a) By de nition, the derivative at 2 = 20 is

f'(20) - urn 
f(z0 + Az) - f(z0)

Jim 
(z + Az)3 - 2(z + Az) - (zg - 2zo)

Az	 -.0	 AZ

= lirn 
z + 34 z + 3z0(Az) 2 + (Az)3 - 2z - 2Az - 4 + 2z

Az

=34 + 3z0 Az + (Az) 2 - 2 = 34 - 2

In general, f'(z) = 3z2 - 2 for all z.

(b) From (a), or directly, we find that if :0 = —1 then f'(—l) = 3(_1)2 —2 = 1.

2. Show that az 2 does not exist anywhere, i.e. 1(z) = 2 is non-analytic anywhere.

By definition,----f(z)	 urn /(z + Ax) - f(s)
dz	 a-.o	 Ax

if this limit exists independent of the manner in which Az = Ax + iAy approaches zero.

Then	 = Jim	 -	 = Jim x + iy + Ax + jAy - x + iy
dz	 —o	 Az	 &-.o	 Ax + zAy

-.0

= Jim x—iy+Ax—iAy—(x—iy) 
= Urn Ax — zAy

	

AX+ iAy	 A.0AX+iAy

	

AY-0	 AY-0

Ax
If Ay = 0, the required limit is Jim	 1.

A.-OAX

—iAyIf Ax 0, the required limit is Jim ------ = —1.
—o zAy

Then since the limit depends on the manner in which Ax-0, the derivative does not exist, i.e.
f(z) =!is non-analytic anywhere.

1+zdw3. If w = 1(z) = i—, find (a) 
z

and (b) determine where 1(z) is non-analytic.
(a) Method 1, using the definition.

1 + (z+AZ) - 1+:
div

= Jim f(z + A:) - f(s) = Jim 1 - 
(z + Ax)	 1—s

WZ	 A-0	 Az	 Az

	= Jim	 2	 -	 2
a-.0(1—z—Az)(1—z) - ( 1—z)2

independent of the manner in which Az • 0, provided z i 1.
Method 2, using differentiation rules.

By the quotient rule [see Problem 10(c)] we have if z 1,

d

d	
(1—z) --(1+z) - ( l+s)T(l_z) - (

1—z)(1)—(1+z)(-1) -	 2
dzji) =	 (1 2)2	 -	 (1_z)2	 - (1_z)2

(b) The function /(z) is analytic for all finite values of z except z = 1 where the derivative does not
exist and the function is non-analytic. The point z 1 is a singular point of 1(z).

4. (a) If 1(z) is analytic at z0, prove that it must be continuous at zo.

(b) Give an example to show that the converse of (a) is not necessarily true.
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(a) Since	 1( + — 1(z) = AZO I ) f(Z) h	 where h = AZ 'a 0, we have

urn f(z + h) — 1(z0) = tim -9 + h) — 1(z0) . 
urn h = f'(z0) . 0 = o

11-0	 — 0 h	 h-.0

because f'(z0) exists by hypothesis. Thus

	

Jim f(z0 + h) — f(z) = 0	 or	 urn f(z0 + h) = f(z0)
h-.0

showing that 1(z) is continuous at z0.

(b) The function 1(z) = i is continuous at 2. However, by Problem 2, f(z) is not analytic anywhere.
This shows that a function which is continuous need not have a derivative, i.e. need not be analytic.

CAUCHY-RIEMANN EQUATIONS
5. Prove that a (a) necessary and (b) sufficient condition that w = 1(z) = u(x, y) + I v(x, y)

a-v aau	 u

	

be analytic in a region '1 is that the Cauchy-Riemann equations --- =	 - = —--
are satisfied in q where it is supposed that these partial derivatives are continuous in 'R..

(a) Necessity. In order for f(z) to be analytic, the limit

Jim f(z + Ax) — 1(z)

A:

= f'(z) = tim {u(x + Ax, y -4- Ay) + i v(x + Ax, y+ Ay)) — {u(x, y) + i v(x, y))	 (1)
Ar-.0	 Ax + tAy
av*0

must exist independent of the manner in which Az (or Ax and Ay) approaches zero. We consider
two possible approaches.

Case I. Ay = 0, Ax -. 0. In this case (1) becomes

	

urn 1u(x + Ax, y) — u(x, A 
+ . 

[v(x + Ax, y) — v(x, )1
JJ 

=	 +
Ax	 L	 Ax	 3x	 ax

provided the partial derivatives exist.

Case 2. Ax = 0, Ay -+ 0. In this case (1) becomes

Jim 1'' y + y) — u(x, y) + v(x, y + Ay) — v(x, Y) 	 1au 
+	 =	 au 

+
âw-0 I	 sAy	 Ay	 j	 lay	 ay	 au	 at,

Now f(z) cannot possibly be analytic unless these two limits are identical. Thus a necessary
condition that 1(z) be analytic is

au	 .öv	 .au	 av	 au	 av	 av

	

- + 5 — = —s— + —	 or	 - = —, — = --ax	 ax	 ay	 ay	 ax	 ay	 ax

(b) Sufficiency. Since au/ax and aulay are supposed continuous, we have

Au = u(x + Ax, y + Ay) — u(x, y)

= {u(x + Ax, y + Ay) - u(x, y + Ay)}+ (1'0' y + Ay) — u(x, y))

=
 (

+	 Ax + (!±+ tii) Ay = !Ax + Ay + f l ax + 1 1 Ay
ax	 ay	 ax	 ay

	where	 0 and il l -*0 as Ax-0 and Ay -0.

Similarly, since aviax and av/ay are supposed continuous, we have

	

avAV = (-^ ) Ax + (.!+	 Ay =	 Ax + -Ay + z2 Ax + i72Ay
Z	 Y	 Tx	 ay

where -0 and 'i -. 0 as Ax -O0 and Ay - 0. Then

Aw = All + i Av = (! +	 Ax + ( - + -) Ay + Ax + 'iAy	 (2)

	

ax	 ax)	 dy	 ay

where . = .. + i, -0 and n = 'i + i'i, -. 0 as Ax -. 0 and Ay -. 0.

By the Cauchy-Riemann equations, (2) can be written
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= (—+s—)Az+	 +
1au .av\	

-	 +	 + ,,

	

\ax	 = ax
au
	 ( ax

	

'au	 .\
	= 1-+2-

av
 )(AZ+iAV) +	 x + Ay

	

(ax	 axj

Then on dividing by Az = Ax + i Ay and taking the limit as Liz . 0, we see that

	

dw-
	 )	

Aw	 au	 ,Ov
p -Z -

	

d -	
lim— =

	

ax	 axz	 4x-.O Az

so that the derivative exists and is unique, i.e. 1(z) is analytic in 'Ii.

6. If 1(z) = u + iv is analytic in a region ¶, prove that u and v are harmonic in 'R. if

they have continuous second partial derivatives in 'R..

	

JuJv	 Jv	 au
If f(z) is analytic in R then the Cauchy-Riemann equations (1)	 =	 and (2)	 = -

TX

are satisfied in '. Assuming it and v have continuous second partial derivatives, we can differentiate

both sides of (1) with respect to x and (2) with respect to y to obtain (3) J
2u	 J2v

=	 and
a2V	 a21,	 a¼	 8¼	 8¼

	 .ax ay(4) -- = —---j from which	 = —j or	 j+ —j = 0, i.e..e. u s harmonic.

Similarly, by differentiating both sides of (1) with respect to y and (2) with respect to x, we find
82v	 Ji,

= 0 and v is harmonic.
8x2 8y2

It will be shown later (Chapter 5) that if f(z) Is analytic in 'R., all its derivatives exist and are
continuous in 'k. Hence the above assumptions will not be necessary.

7. (a) Prove that u	 e (x sin y - y cos y) is harmonic.
(b) Find v such that f(z) = u + iv is analytic.

ou
= (e')(sin y) + (-e')(x sin y - y cos y) 	 e sin y - xe' sin y + ye' cosy

a2u	 a
= -(e' sin y - xe' sin y + ye' cos y) = -2e' sin y + xer	 y - ye' cos y (1)

au
= e'(x cosy + y sin  - cosy) = X5' COSV + Y' sin  - e' coo 

TY
82U	 a

= Ty	 cos y + ye' sin y - e' cos y) = -xe sin y + 2e' Sfl V + ye' cos y (f)

82u82u
Adding (1) and (2) yields	 +	 = 0 and a is harmonic.

(b) From the Cauchy-Riemann equations,

av -
Ty	 X

- = 6' Sin V - xe' sin y + ye cos w	 (3)

avau-	 -
e' cos y - x6' cos y - ye — ' sin y	 (4)

Integrate (8) with respect to y, keeping x constant. Then

v = -e' coo y + x5' coo y + e'(y sin y+ coo y) + F(z)

	= ye sin y + xe' cos y + F(x)	 .	 (5)

where F(x) is an arbitrary real function of x.

Substitute (5) into (4) and obtain

-ye' sin y - xe' cos y + e' cos y + F'(x) = -ye' sin y - xe' cos y - ye' sin V

or F"(x) = 0 and F(x) = c, a constant. Then from (5),

v = e r (y sin y + x cos V) + c

For another method, see Problem 40.
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8. Find 1(z) in Problem 7.
Method 1.

We have	 f(z) = f(x + iy) = u(x, y) + i v(x, j).

Putting y = 0,	 1(x) = u(x, 0) + i v(x, 0).

Replacing x by z,	 1(z) = u(z, 0) + i v(z, 0).

Then from Problem 7, u(z,O) = 0, v(z,0) = ze	 and so 1(z) = u(z,0) + iv(z,O) = ize,
apart from an arbitrary additive constant.

Method 2.
Apart from an arbitrary additive constant, we have from the results of Problem 7,

1(z)	 u + iv	 e (x sin y - y cos y) + ie (y sin y + x cos y)

= e-. { (efti ....e_fti)	 (e +e_fs)} +	 ly ( I'M- 
e_v) + (ev +e_t')}

2i	 2	 2i	 2

= i(x+iy)e 41"	 =

Method 3.	 -
We have x =	 Then substituting into u(x,y) + iv(x,y), we find after much

tedious labour that I disappears and we are left with the result ize.

In general method 1 is preferable over methods 2 and 3 when both u and v are known. If only a
(or v) is known another procedure is given in Problem 101.

DIFFERENTIALS

9. If w = f(z) = z3 - 2z2, find (a) Aw, (b) dw, (c) iw - dw.

(a) Aw = f(z + Az) - 1(z) = { (z + Az)3 - 2(z + Az)2) - (z3 - 2221
Z3 + 3z2 Az + 3z(Az)2 + (AZ)3 - 2z2 - 4z Az - 2(Az) 2 - z3 + 2z2

= (3z2 - 4z) A: + (3z - 2)(Az) 2 + (A2)3

(b) dw = principal part of Aw = (3z2 - 4z)Az = (3z2 - 4z)dz, since by definition Az = dz.

Note that f'(z) = 3z2 - 4z and dw = (3z2 - 4z)dz, i.e. dwldz = 3z2 - 4z.

(c) From (a) and (b), Aw - dw = (3z - 2)(Az) 2 + (Az)3 = Ax where e = (3z - 2)Az + (Ax)2.

	Note that £ -. 0 as Az • o, i.e.	
- 

dw -. o as Az- 0. It follows that Aw - dw s an
A:

infinitesimal of higher order than Ax.

DIFFERENTIATION RULES. DERIVATIVES OF ELEMENTARY FUNCTIONS

10. Prove the following assuming that 1(z) and g(z) are analytic in a region 'l(.

d
(a) d— ( 1(z z) + g(z)) =	 -/(z) +

(b) -(f(z)g(z))	 ffz)g(z) + g(z)jf(z)

(c) d{f(z)	
g(z)-f(z) - f(z)-g(z)

MOP
	 g(z) " 0

dz-

(a)--{f(z) + g(z)) =	 lim f(z + AZ) + g(z + Az) - {f(z) + g(z))
dx	 Az

= Jim Az + Az) - f(z) + urn g(z + AZ) - g(z) = - - f(z) +	 g(z)

	

As	 AZ	 dz
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(b)	 —(f(z) g(z)) = Jim f(z + AZ) g(z + AZ) - 1(z) g(z)
Az

= tim f(z + Az)(g(z + AZ) - 11(z)) + g(z)(f(z + AZ) - 1(z))
Az

= urn f(z + AZ){u(z + AZ) - u(z)} ^ urn g(z) ff(z + AZ) - f(z)}
4.	 As A-.O	 A.

= f(z) -g(z) + g(z) -f(z)

Note that we have used the fact that lirn /(z + Az) = 1(z) which follows since 1(z) is
analytic and thus continuous (see Problem 4).

Another method.
Let U = Az), V = g(z). Then AU	 f(z+Az) - /(z) and AV = g(z+Az) - g(z), i.e.

Az + AZ) = U + AU, g(z + AZ) = V -- AV. Thus
d 
UV = urn (U+AU)(V+AV) - UV 

= lim UAV + VAU + AUAV
dz	 Az	 Az

=	 VAU 	 =	 + v4
where it is noted that AV-. 0 as Az- 0, since V is supposed analytic and thus continuous.

A similar procedure can be used to prove (a).

(c) We use the second method in (b). Then

d(U) -	 1{u+Auul	 VAU — UAV
W	 - tim—z V	 .o Az	 = Jim

A .-.O Az(V+AV)V

Jim

	

1
-.	

{vL -	 = V(dU/dz) - U(dV/dz)
o(V+AV)V	 z	 Az	 V2

The first method of (b) can also be used.

	

11. Prove that (a) e = 9, (b)	 e = ac" where a is any constant.dz	 dz
(a) By definition, w = e5 = e+Il = e'(cosy+isiny) u+iv or u = eX cos y, V = e' sin y.

.Since - = e cosy = 
dv 

and 
dv = e2 sin y = - , the Cauchy-Riemann equations are

satisfied. Then by Problem 5 the required derivative exists and is equal to

du	 ,dv	 .du	 dt,
Tx	 ax	 ey ay

+	 = —t +	 = 5' cos y + 2.' sin y

(b) Let w = eC where t = a:. Then by part (a) and Problem 39,
d	 d	 d	 d

	

=	 =e c 	 e • a =

We can also proceed as In part (a).

d	 d	 d12. Prove that (a) — sinz=cosz, (b) z- cos = —sin z, (c) —tanz = sec2 Z.
dz

(a) We have w = sin: = sin (x + iy) = sin x cosh y + i cos x sinh y. Then
a = sin: cosh y,	 v = coax sinh y

dv	Now - = cos x cosh y =	 and - = - sin x sinh y = -	 so that the Cauchy-ax	 dy
dv

ax Oy

Riernann equations are satisfied. Hence by Problem 5 the required derivative is equal to
du	 .dv	 .Ju	 dv -	 .- + t - = —i - + - - cos x cuh y - t sin: sinh y = cos (x + ty) = cos zdx	 ax	 ay ay
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Another method.
-

Since sin x - eb - 	 we have, using Problem 11(b),
2i

d.	 d feb - e' - 1 d eb - ! d elx =	 ei + e	 = cos z

	

SIflZ	 dz	 2i	 ) - 2idx	 2idz	 2	 2dx

--e1d	 d (el- + e_b) - 1 d	 1 d
(b) —cosxdx	 dZç	 2	 Zdz	

+2e

2	 2	 -=	 eb - _e-b	 - 	 — sin a
2	 2	 2i

The first method of part (a) can also be used.

(c) By the quotient rule of Problem 10(c) we have
•	 d.	 .	 d

cos — ama - smnz — coszd	 d ama 
—tanz = -	 =	 dx	 dx
dx	 dz(cosxj	 cos2z

= (cos z)(cos a) - (sin z)(—sln a) - cos 2 z + sin 2 a	 1	 = sec2 a
cos2 z	 -	 cos2z	 -CO52 Z

13.Prove thatrealizing that z 112 is a multiple-valued function.

A function must be single-valued in order to have a derivative. Thus since a 112 is multiple-valued
(in this case two-valued) we must restrict ourselves to one branch of this function at a time.

Case I.
Let us first consider that branch of w = z 112 for which w = 1 where a = 1. In this case, w2 = a

so that dz	 dw
dw- = 2w and so - = -I or — a 112 = 1dx	 2w	

d
dx	 2x"2

Case 2.
Next we consider that branch of w = a 112 for which w = —1 where a = 1. In this case too, we

have w2 = a so that
dx	

-
1

	

= 2w and 
dw- =	 or — a112 = 1dw	 dx	 2-w	 dx	 2z112

In both cases we have	 21F2 = ----. Note that the derivative does not exist at the branchdx	 2z"2
point z = 0. In general a function does not have a derivative, i.e. is not analytic, at a branch point.
Thus branch points are singular points.

14. Prove that d—lnz = 1-.

	

dz	 z
Let w = In a. Then a = e'° and dz/dw = e'° = a. Hence

d	 dw	 1	 1
Tin: =	 = dz/dw =

Note that the result is valid regardless of theparticular branch of In a. Also observe that the
derivative does not exist at the branch point a = 0, illustrating further the remark at the end of
Problem 13.

15. Prove that 4-1nf(z) =%).

Let w = In where = f(x). Then

dw - dw d - 1 d -
dx - d	 -dx 	 dx - f(z)

16. Prove that (a)	 sin' z 
=

(b) - tanh' z = 1

(a) If we consider the principal branch of sin z, we have by Problem 22 of Chapter 2 and by
Problem 15,
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a.	 fl
— 5 	

d
1n1z =1In(iz+1_z2)}

dz

ld
= -_(zz+VT2 )/(iz+Vn1_z2)clx

=	 {i + 4(1 - z2) 112 (_2z))/(iz + vT)

ix
Z2 71= (1+	 )/(iz+V1_z2) 

=	 j—i

The result is also true if we consider other branches.

(b) We have, on considering the principal branch,

\
tanh' z =	 In (

l+z
j—) = 1 In(1 + z) - ln(1 - z)

Then
d	 id

z	 =	 +	 =tanh'z =	 T In ( l+z) -- d-In(1-z)	
1

Note that in both parts (a) and (b) ti... derivatives do not exist at the branch points z = ±1.

17. Using rules of differentiation, find the derivatives of each of the following:
(a) c082 (2z + 3i), (b) z tan-' (in z), (c) (tanh' (iz + 2))', (d) (z - 3i)'11+ 1.

(a) Let I = 2z + 3i,	 = COS, w = 2 from which w = cos2 (2z + 3i). Then using the chain
rule, we have

dwdw d cl,7

Zz = _ _	 = (20(-sin 17)(2)

= (2 cos 7)(-sin )(2) = -4 cos (2z + 3s) sin (2z + 3i)

Another method.

(cos(2z+3i))2 = 2(cos(2z+3I)){- COB (2z+3i)}

= 2(cos (2z + 3i))-sin (2z + 3i)){(2z + 3i)}

= -4 Cos (2x+3i) sin (2z+3i)

(b) {(z)[tan1(Inz)]} = a -d	 ci
[tan' (In a)] + [tan — '(In a)] —(a).

dz	 dx

I	 i=	 -' (In a)
+ (In z)2J 

-(ln a) + tan 

=	 I	 +	 nI(Inz)
1+ (In a)2

(c) —d (tanh' (ix + 2))' = -1(tanh-' (ix + 2))2--(tanh' (ix + 2))
dz	 dz

= -(tanh-' (ü + 2))-2 I	 1l - (ix + 2)	
(i + 2)

= -i(tanh1 (ix+ 2))-2
1 - (ix + 2)2

(d) 4_ ((z 31)4+2) =	 _{0(4+2) In (Z - 30) = 8(4+2) I (-3O - { (4z + 2) In (a - Si))

= e 42>	 {(4z + 2)	 [In (z - 31)) + In (a -31) --(4x + 2)1
dx	 J

14z+ 2= e(4Z+ 2 ) In (3l)	 + 4 In (a - 3i)}

= (a- 3i)41I (4z + 2) + 4(z -- 3 1)4* + 2 In (z-3i)
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18. If w3 3z2w + 4 In  = 0, find dw/dz.

Differentiating with respect to z, considering w as an implicit function of z, we have
(w.1) - 3 (z2w) + 4- (In z)	 0	 or	 3w2	 - 322	 - 6zw +	 0

Then solving for dw/dz, we obtain	 = 6zw - 4/s
dx	 3w2 - 3Z2

19. If w = sin (t-3) and z = cos (In t), find dw/dz.

dw - dw/dt - iiIi - —(t- 3)2 - 
dx - 	 sin (In t)(l/t] - - sin (In t) 11 - -( t - 3)2

20. In Problem 18, find d2w/dz2.

d2w - d (dw - d(6zw-4/z
dz - dz '. dz) - dx 3w 2 - 32

= (3w2 - 322)(6z dw/dz + 6w + 41z2) - (6zw - 41z)(6w dw/dz - 6z)
(3w2 - 3z2)2

The required result follows on substituting the value of dw/dz from Problem 18 and simplifying.

L'HOSPITAL'S RULE
21. Prove that if f(z) is analytic in a region -I( including the point z0, then

1(z) = f(zo) + f'(zo)(z - Zo) + (z - Zo)
where , 0 as z -, zo.

f(s) - f(z)Let 	 - f(z) = , so that
2 -

f(s) = f(Z) + f'(zo)(z - Z) + (z - Z)

Then since f(s) is analytic at so we have as required

lim n = jim.(	 - /(o) - f'(z0)1 = M20) - f(s0) = 0
*ZZ*Z•	 t	 J

22. Prove that if 1(z) and g(z) are analytic at z0, and 1(zo) = g(zo) = 0 but g'(zo) 0, then

urn Az)
	 f'(zo)

g(z)	 g'(zo)

By Problem 21 we have, using the fact that f() = g(z0) = 0,
AX) = f(zo) + f'(zo) (Z—Z ) + l i (z — zø) = f'(z0)(x—x0) +
g(z) = 9( 20) + 9'(z0) (z— z0) + 24 - Z) = 9'(o) (z -	 + (Z -

where jim	 = urn 27 = 0. Then, as required,

Aim
54*.

Az) -	 (f'(z)+i,)(zzo) - Mxd
g(z) -	 W40) + V2) (Z - o) -

Another method.

As) - f(z urn f( s)—.	 lim o) /g(z) - g(z)
z— g(z)	 •-•s 7=.—o /  	 -

= (urn 
f(s) - f(zo)) /( jim 9'(x) - Q(Zo) = 1'(o)

S - 70 / x—	 S -

23. Evaluate (a) lim Z'° + 1

	

	 1 COSZ	 (c) Jim 1 - CoSz
(b) Urn

z—i z6 + 1 '	 -.o	 Z2	 '	 -.0 sin z2

u) If f(s)	 IU + I and g(z) - z + 1. then 1(i) = g(i) = 0. Also, f(s) and g(z) are analytic at
z = i. Hence by L'Hospital's rule,
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z'°+l	 . 1Oz	 5	 5urn	 = urn - = urn -z = -z-.	 + 1	 ..i 6z	 3	 3

(b) If 1(z) = I - cog : and g(z) = :2, then 1(0) = g(0) = 0. Also, 1(z) and g(z) are analytic at
z = 0. Hence by L'Hospital's rule,

1-cog: . sinz

	

urn	 = urn—
1-.o	 :2	 -.o 2:

Since f, (z) = sin: and ci (z) = 2z are analytic and equal to zero when z = 0, we can apply
L'Jlospital's rule again to obtain the required limit.

sin:	 . cosz	 1urn— = urn— -
z-.o 2:	 z-.o 2	 2

(c) Method 1. By repeated application of L'Hospital's rule, we have

	

I - cos z	 .	 sin z	 cos zInn	 = lim	 = urn

	

-.o sin ;1 2	 -.o 2z cos :2	 -.o 2 cos :2 - 4z2 sin :2 - 2

Method 2. Since jim sin z- = 1, we have by one application of L'Hospital's rule,
1*0 Z

1 - cos z	 sin z	 . 
(sin 

z)(	 1urn	 = Jim	
2 = urn -

	

z*0 sin Z2	 :..o2z COS z	 2 Cog z2)

= Jim fsinz'\ Jim( 1

2) 
= (1)() - 

1
z J O\2 COS Z	 - 2

	

sinz2	. 	 22Method 3. Since urn	 = 1 or, equivalently, jim	 = 1, we can write
l-.0 Z 1-.O sin Z

im

	

1 - Cos z	
Jim	

Cos Z)(22)	 1- Cos Z - 1l	 = m (	 2 = jim1-.0 sin Z2	 1-.0\	 z2	 sin:	 :2	 -

using part (5).

24. Evaluate urn (cos z)i!..

Let w = (cos z). Then In w	 In COS Z 
where we consider the principal branch of the

	

logarithm. By L'Hospital's rule, 	 z2

	Incog z 	Jim (sin z)/cOszlimlnw = jim	 = 
X-0	 -.o	 2:

= (sinz)(i) 

= (1)(-) -
- -

1-0 \

But since the logarithm is a continuous function, we have

urn In w = In (urn w")	 1
1*0	 \-.0 /	 2

or urn w = e 112 which is the required value.z-0

Note that since urn cosz = 1 and lint 1/:2 = , the required limit has the "indeterminate
form" -.	 z-.O	 -

SINGULAR POINTS
25. For each of the following functions locate and name the singularities in the finite

z plane and determine whether they are isolated singularities or not.
(a) /(z)=	 Z	 Z	 -	 C

(Z2+4)2 - ( (z + 2i)(z - 2i))2 - (z + 2i)2(z - 2i)2

Since lim (z - 21)2 1(z) = u	
z	 Irn	 - = - '' 0, z = 2i is a pole of order 2. Similarly. 211-.21 (z+2i)2 	 8i

z = -21 is a pole of order 2.

Since we can find 8 such that no singularity other than z = 2i lies inside the circle I: -211 = 8
(e.g. choose i = 1), it follows that z = 2i is an isolated singularity. Similarly z = -2i is an isolated
singularity.
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(b) 1(z)	 sec (1/2).

Since sec (liz) = 1
cos (liz) , 

the singulaiitiea occur where cos (liz) = 0, i.e. liz = (2n + l)r/Z

or z = 2/(2n + 1),.. where a = 0. ±1. ±2. ±3. ... .Also, since f(s) is not defined at z = 0, it

follows that z = 0 is also a singularity.
Now by L'Hospital's rule,

z-21(2n+1)r
	Inn	 1	 2	 i/(z) =	 urn

*2/(2n+i) 1 - (2n+ l)rJ	 -.2/(2n+1)r	 coa(l/z)

-	 Urn	
1

2/(2+i). - 5fl (l/z)(—l/z')

= {2/(2n + 1)r) 2 —	 4(—l)"
sin (Zn + l)ri2	 (Zn + 1)2r2

Thus the singularities z = 2i(2n + 1)/er,	 y

n = 0, ±1, ±2, ... are poles of order one, i.e.
simple poles. Note that these poles are located
on the real axis at z = ±2/f, ±2/3w, ±2/5r, —2/6k 2/5r
and that there are infinitely many in a finite
interval which includes 0 (see Fig. 3-9).	 —2/-	 -2i3r	 2/3w	 Ziw

Since we can surround each of these by a
circle of radius 8 which contains no other
singularity, it follows that they are isolated
singularities. It should be noted that the 8
required is smaller the closer the singularity is 	 Fig. 3-9
to the origin.

Since we cannot find any positive integer n such that urn (z - 0)" f(s) = A 96 0, it follows

that z = 0 is an essential singularity. Also since every circle of radius 8 with centre at z = 0
contains singular points other than z = 0, no matter how small we take &, we see that z = 0 is a
non-isolated singularity.

=	 ln(z-2)Az)	 (z2+2z+2)4'
The point z 2 is a branch point and Is an isolated singularity. Also since z2 + 2z + 2 = 0

where z = —l±i, it follows that z2+2z+2 = (z+1+i)(z+l—i) and that z —1±i are
poles of order 4 which are isolated singularities.

s
Az)	

inV

At first sight it appears as if z = 0 is a branch point. To test this let z = re° =
where 0 5 s < Zw.

If z = re°, we have	 — sin (f e12)
Az) -

U z = re 2', we have

f(s) - sin (V'? e112 e'') — sin (—v' &0 1 2) - sin (/ e'2)

-	 '/	 10/2 e,i—	 —'./	 -	 e1012

Thus there is actually only one branch to the function, and so z = 0 cannot be a branch point.

Since lim am "i = 1, it follows in fact that z = 0 is a removable singularity.

	26. (a) Locate and name all the singularities of 1(z) =	 z5 + z4 + 2
(z - 1) 3(3z + 2)2

(b) Determine where 1(z) is analytic.
(a) The singularities in the finite z plane are located at z = 1 and z = —2/3; z = 1 is a pole of order S

and z = —2i3 is a pole of order S.

To determine whether there Is a singularity at a = oo (the point at infinity), let a = 11w. Then

	

f(l/w) 
= (11w)5 + ( 11w)4 + 2 =	 1 + w4 + 20

(1/u' - 1) (31w f 2)2	w3(1 — w)3 (3 + 2w)2

(c)

(d)
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Thus since w = 0 is a pole of order 3 for the function 1(11w), it follows that z = is a pole of
order 3 for the function 1(z).

Then the given function has three singularities: a pole of order 3 at z = 1, a pole of order 2
at z —2/3, and a pole of order 3 at a =

(b) From (a) it follows that f(a) is analytic everywhere in the finite a plane except at the points
a = 1 and —2/3.

ORTHOGONAL FAMILIES
27. Let u(x, y) = a and v(x, y) = /3, where u and v are the real and imaginary parts of

an analytic function 1(z) and a and 13 are any constants, represent two families of
curves. Prove that the families are orthogonal (i.e. each member of one family is
perpendicular to each member of the other family at their point of intersection).

Consider any two members of the respective
families say u(x, y) = a 1 and v(x, ii) = P1 where a
and # I are particular constants [Fig. 3401.

Differentiating u(x, y) = a 1 with respect to x
yields	

au	 au dy
= 0T Oydx

Then the slope of u(x, y) =a, is

dy -	 au all
dx - TX

Similarly the slope of v(x, y) = 8 1 is
dy	 - ! / 	 Fig. 3-1e
dx - TX

The product of the slopes is, using the Cauchy-Riemann &luations,

au av	 -= — 1Ox axf TyTy-	 Ty O,/ a  01,
Thus the curves are orthogonal.

28. Find the orthogonal trajectories of the family of curves in the xy plane defined bye(x sin y - ycosy) = a where a is a real constant.
By Problems 7 and 27, it follows that e (V sin y + x cos y) = p, where /? is a real constant,

is the required equation of the orthogonal tr..jcctories.

APPLICATIONS TO GEOMETRY AND MECHANICS
29. An ellipse C has the equation z = a cos t + bi sin t where a,b,ffl are positive

constants, a> b, and t is a real variable. (a) Graph the ellipse and show that as
t increases from t = 0 the ellipse is traversed in a counterclockwise direction. (b) Find
a unit tangent vector to C at any point.
(a) As t increases from 0 to 712, r/Z., to r/ø,	 B 

V 
C z

	to 3r/2., and 3,r/2w to 2r/w, point a on C	
6	moves from A to ,B,.. B to D, D to E and	 D	 A	 a	E to A respectively, i.e. it moves in a counter- 	 oclockwise direction as shown in Fig. 3-11.

(b) A tangent vector to C at any point t is	 E
dz

= —a.., sin wt+bwi Cos otdt	
Fig. 3-11

Then a Unit tangent vector to C at any point t 1.
dz/dt -	 — ow sin wt + 6.ii cos .,t - —a sin .,t + bi CO. wt

]dz/dtl	 I—aw sin wt + bwi Cos .tI - y'a2 iin2 i.t + bSco.21.,t



v	 ax	 ay

-	 a.8
8x	 öy

= L+-(L_- / = 2-\8z 8zat

=	 =
8z	 cz	 \3Z	 81,

(a)

(b)
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30. In Problem 29 suppose that z is the position vector of a particle moving on C and
that t is the time.
(a;) Determine the velocity and speed of the particle at any time.
(b) Determine the acceleration both in magnitude and direction at any time.
(c) Prove that d2zldt2 = —,2z and give a physical interpretation.
(d) Determine where the velocity and acceleration have the greatest and least magnitudes.
(a) Velocity = dx/dt	 —a sin øt + bwi cos wt

Speed = magnitude of velocity = Idz/dtl	 sin2t + b2 COS2WI

(6) Acceleration = d2z/dt2 =	 cos .,t - be2i Bin wt

Magnitude of acceleration	 Id2z/dt2l	 w2fiz2 c032 ,et + b2 sin2

(c) From (6) we see that
d2z/dt2 = _ 2 cos .,t - bw2i sin wt = — 2 (a cos wt + bi sin ut) =

Physically this states that the acceleration at any time is always directed toward point 0 and
has magnitude proportional to the instantaneous distance from 0. As the particle moves, its
projection on the x and y axes describes what is sometimes called simple harmonic motion of
period 2,-/w. The acceleration is sometimes known as the centripetal acceleration.

(d) From (a) and (6) we have

Magnitude of velocity	 =wvra2 sin t + 62(1 - sin2 wt) = wVf a2 - b) sin2 .,t + b2

Magnitude of acceleration = w2 i2 C082 wt + 62(1 - cos2 et) = w2V i 62) C082 wt + 152

Then the velocity has the greatest magnitude [given by Wa] where sin wt = ±1, i.e. at points
B and E [Fig. 3-11], and the least magnitude [given by .ib] where sin øt = 0, i.e. at points A
and D.

Similarly the acceleration has the greatest magnitude (given by e 2a] where cos wt = ±1,
i.e. at points A and D, and the least magnitude [given by w2b] where cos wt = 0, i.e. at points
B and E.

Theoretically the planets of our solar system move in elliptical paths with the sun at one
focus. In practice there is some deviation from an exact elliptical path.

GRADIENT, DIVERGENCE, CURL AND LAPLACIAN

31. Prove the equivalence of the operators (a) 	 =	 +
z=x+iy, 2 =x—iy.

If F is any continuously differentiable function, then

OF	 8F'8z8P8
(a)	 = — —+ --:-- =8x-	 8z8x Oz8x

showing the equivalence	 = - +

(b)= i (- —
	

where

OF + 8?8z	 81

a?(OF
öX	 8z(6) OF8F'àz + OF at 	 OF	 8?

8z
a 8y— / 8	 a\

= — (i) + (-0 =

-
showing the equivalence -

01, 

aa a	 =2a
32. Show that (a) V	 —+ . -- = 2, (b) V

- From the equivalences established in Problem 31, we have
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33. If F(x, y) = c [where c is a constant and F is continuously differentiable] is a curve in
OF.aFthe xy plane, show that grad F = VF =	 + z , is a vector normal to the curve.

	We have dF =	 dx + dy = 0. In terms of dot product [see Page 6] this can be written

OF .aI\
= 0ax TY

But dx + i dy is a vector tangent to C. Hence VP = OF
TZ
 

IFmust be perpendicular to C.

34. Show that ap  -
	 + i	 +	 = 2	 where B(z, 2) = P(x, y) + i Q(x, y).Ox Oy	 Ox ay—TZ

From Problem 32, VB = 2. Hence

p	 anVB =	 + i-1(P+iQ) =	 a	 Ox	 ) 
= 2--Ox

35. Let C be the curve in the xy plane defined by 3x2y - 2y3 = 5x4y2 - 6x2. Find a unit
vector normal to C at (1,—i).

Let P(x, y) = 3x2y - 2y3 5x4y' + 6x2 = ). By Problem 33, a vector normal to C is

VP = OF +	 = (6xy - 20x3y2 + 12x) + i(3x2 - 6y2 - l0x4y) = —14 + Ii at (1, —1)

Then a unit vector normal to C at (1,-1) is	 =	 '. Another such unit vector is

36. If A(x,y)	 2xy - ix2y3, find (a) grad A, (b) div A, (c) curl A, (d) Laplacian of A.

(a) grad A	 VA 
= (i-. + j	 (2xy - ix2y3) = _ (2xy - ix2j,3) + i (2xy - ixiJ)

= 2y - 2ixy + i(2x - 3ix2y2) = 2y + 3x2y2 + i(2x - 2xy3)

(b) divA = 	 Re( VA) = Re{ 
(ax._ifl(2xY_ix2Y3)}

= - (2xy) — 57y

	

(xy3)	 2y — 3x2y2

(c) curl A = V )< A = Irn (VA) = liii	 - i/_)(2xY - ix23)}

= —(—x 2y3) - —(2xy) = —2xy3 - 2xOy

	

a2A 02A 	02(d) Laplacian A = V2A = Re (V VA) =	 +	 = -(2xy - ix2y3) + -2 (2xy - ix2y3)

= (2y - 2ixy3) +	 (2x - 3ix2y2)	 —2iy - 6ix2aj

MISCELLANEOUS PROBLEMS

37. Prove that in polar form the Cauchy-Riemann equations can be written
au 1 a av l_	 Ou
Or - -r To Or - --r To

We have- x = r cost, y

+ Ou Oa	
+

r sin  or t = /x —+y 2. a = tan-' (y/x). Then

	

au - au Or	 (_x \	 Ou_—y '\ -	 1 Ou
r	 Or

Ou
[x2+y2) 	 —Y	 au CoS -	 B1fl9

	

au Ou Or	 Ju a,	 L" y 	 Ou I x 	. 	
1 Ou con 0=	 +	

=	 (yx2+v2) + (2+2) =. r"' +Oy

(1)

(2)
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Similarly,
av - avar	 av	 av	 1 Ov

— C flRe - - Sifl8	 (3)

	

- - . + -	 =	 r Os

	

- av a.	 1 Ov-	 +—	 --  — sine +ay or ay

	

	 as ay	 Or	 r	 Cosa	 (4)

OuFrom the Cauchy-Riemann equation — -Ov we have, using (1) and (4),

	

Ox	 ay

	

(Oulav)
COBS	

(of, 
+ 

1Ou\
- Ir 05	 \ar r sin  = 0	 (5)

	

au	 OvFrom the Cauchy-Riemann equation — = -- we have, using (2) and (3),

	

Oy	 Ox

(OulOv)	 tOt,	 lOu)
Tr _r To	 \Or	

-

	

SiflS + ( — + rae coss - 0	 (6)

Multiplying (5) by Cos 0, (6) by sine and adding yields	 au - -lay = 0 or ,3u
	 jOy

Tr r To— = -r —Or	 Oe

Multiplying (5) by --sine, (6) by cos e and adding yields av- + - 1 
a

-- = 
0 or 

at, 	lOu- = -
 _r 4

38. Prove that the real and imaginary parts of an analytic function of a complex variable
when expressed in polar form satisfy the equation [Laplace's equation in polar form]

025	 10*	 1 02*

	

+ 
r Tr

	 1.2002 --- 0

From Problem 37, 	 (1) av_ au	 (2)	Tr 	 Or	 rOD

To eliminate v differentiate (1) partially with respect to r and (2) with respect to 6. Then

a2 	a faA	 a (aft) 	 02u	 On(3) .--- 
=ar as	 8r_-) 

=	 çr_) = r--,j +

02v	 a (av\ 	 a / 1 Ou"	 I a2u
(4) =	 =	 = —;:

82v	 a2vBut - -	 assuming the second partial derivatives are continuous. Hence from (3)
and (4),

Or8	 OeOr

02u	 au	 1 02u	 02f,	 1 On +	 a2u	or 	 - + - -	
-

0ar2	 Tr = ----j	 r20e2 -

0 2v lay	iO2Similarly by elimination of u we flid	 + b- +	 = 0 so that the required result is
proved.

dv dw d39. If w = f() where C = g(z), prove that - = -- - assuming I and g are analytic
in a region 'I(.

Let z be given an increment Az 0 so that z + Az is in 9Z. Then as a consequence t and w
take on increments 

At 
and Aw respectively, where

	

Aw = At + A0 - f(s),	 g(z + Az) - g(z)	 (1)

Note that as Az - O, Aw -0 and At-'0.

wIf	 ,'0, let us write	 = - 
A

-- -dw- so that eO asll-. 0 andAt	 dt

	

AW	
dw

= --	 + e	 (2)dr

If At = 0 for values of r. then (1) shows that Aw = 0 for these values of Az. For such cases,
we define = 0.
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It follows that in both cases, at , 0 or	 = 0, (2) holds. Then dividing (2) by Az i' 0 and
taking the limit as Ax -. 0, we have

dw.	 . /dw A	 Aw- = urn -AW  = urn i--+dz	 _o z	 -.o d Az	 AZ

= - urn - + lim urn 
Mvdw

	

dr t,... 0 Az	 a.-o	 -.o Ax

- lw d +
	

d - dw d
d dx	 dz	 d dz

40. (a) If ui(x, y) = au/ax and u2(x, y) = .3u/Oy, prove that P(Z) = u1(z, 0) - iu2(z, 0).
(b) Show how the result in (a) can be used to solve Problems 7 and 8.

u	 .9u(a) From Problem 5, we have 1(z) =	 - t i- = u 1 (x, y) - i u(x, y).

Putting y = 0, this becomes P(Z) = u 1 (x, 0) - i u2 (x, 0).

	

Then replacing x by z, we have as required P(Z)	 uj(z,O) - ' U2(2 , 0).

(b) Since we are given u = e (x sin y - y cosy), we have

u j (x,y) =	 = e siny - xe-r amy + yeX cosyax

u2(x, y) =	 = xe cos y + ye sin y - e 5 cos y

so that from part (a),

f'(z) = u 1 (z 1 0) - iu2(z,O) = 0 - i(ze - ez) = —i(ze	 - e')

Integrating with respect to z we have, apart from a constant, f(z) = ize'. By separating this into
real and imaginary parts, v = ex (y sin y + x cosy) apart from a constant.

	

41. Prove that curl grad A = 0 if A is real or, more generally, if Im A is harmonic.

apIf A = P + Qi, grad A = (- + i--'(P + iQ) = 	- 	 + i 	 +	 . Then

	

ay/	 ax	 8y	 (ôy ax)

curl grad A = Im- a " Iap _ aQ + laP aQ\1
L\ax	

i_)	
at,	

I	 +ay	 ax

[82p-
	 ( o2P +
	 \	 / alp	 aQ\ 	 ( a lp + a2Q1	= Im j -j- - ax a y -	

-	 + (—	 ax)]

—a2Q + a2Q
— ax2	 ay 

Hence if Q = 0, i.e. A is real, or if Q is harmonic, curl grad A = 0.

a2U a2U

	

42. Solve the partial differential equation -j-j + --	 x2 — y2.

_Let z x + it,, = x — it, so that x
z+_	 z — z

-1 y=-1---. Then

a2 U	 a2Ua2u

	

— y2 = j(z2 + 2)	 and	 -- + -- = VU = 4

Thus the given partial differential equation becomes 4 2-2U— = 1 
(z2 + 2) or

	

az at
a(au'	 i

	

5z at	 8
=	 (z2 -4-i2)	 (1)
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Integrating (1) with respect to z (treating 2 as constant),
zzz2	

(

where F 1 (2) is an arbitrary function of 2. Integrating (2) with respect to 2,

	

z22	 z23U =	 + -j4 + F(z) + G(z)	 (3)

where F'(2) is the function obtained by integrating F 1 (2), and G(z) Is an arbitrary function of z.
Replacing z and 2 by z + iy and x - iy respectively, we obtain

U = .(x4 - 0) + F(x - iy) + G(x + iy)

Supplementary Problems
DERIVATIVES
43. Using the definition, find the derivative of each function at the indicated points.

(a) f(z)	 3z+4iz-5+j; z=2. (5) 1(z) =	 z=-i. (c) f(z) = 3z2; a = 1+i.
An.. (a) 12 + 4i	 (b) -Si	 (c) 3/2 + 3i/2

44. Prove that _(z22) does not exist anywhere.dz

45. Determine whether I Z12 has a derivative anywhere.

46. For each of the following functions determine the singular points, i.e. points at wbhh the function
3z-2is not analytic. Determine the derivatives at all other points. (a) - 2

.:--;- (5) 2 + 2: + 5An.. (a) -i, i/(z + j)2; (5) -1 ± 2i, (19 + 4: 3z 2)/(z2 + 2z + 5)2

CAUCHY-RIEMANN EQUATIONS
47. Verify that the real and imaginary parts of the following functions satisfy the Cauchy-Riemann

equations and thus deduce the analyticity of each function:

(a) 1(z) -= :2 + Si: -- 3-i,	 (b) f(z) = ze, (c) 1(z) = sin 2z.

18. Show that the function a 2 - iY3 is not analytic anywhere. Reconcile this with the fact that the
Cauchy-Riemann equations are satisfied at x = 0, y = 0.

49. Prove that if w = f(z) = u + iv is analytic in a region ', then- 
aw •_ aw

dz 

50. (a) Prove that the function u = 2x(1 - y) is harmonic. (b) Find a function v such that 1(z) = u + iv
is analytic i.e. find the conjugate function of a]. (c) Express f(z) in terms of z.
An.. (b) 2y + z2 - y2, (c) iz2 + 2z

51. Answer Problem 50 for the fiThetion u = a2 - y2 - 2xy - 2x + 3y.	 Ana. (b) a2 y2 + 2xy - 3x - 2y

52. Verify that the Cauchy-Riemann equations are satisfied for the functions (a) e', (b) cos 2:, (c) sinh 4:.

53. Determine which of the following functions u are harmonic. For each harmonic function find the
conjugate harmonic function v and express a + iv as an analytic function of Z.

(a) 3x2y + W - - 2y2, (b) 2zy + 3xy2 - 2y1, (c) x.X cc. y - yex sin y, (d) a -2z sin (x - y2).

An.. (a) v 4'v - a3 + 3xy2 + c, f(s) = 20 - j1 + je	 (c) ye- cos y + rex gin y + c, sex + ic
(5) Not harmonic	 (d)	 COS (X2-y2) + c, -i@' 1- ic
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$4. (a) Prove that p = In f(x - 1)2 + (y - 2)2) Is harmonic in every region which does not include the
point (1, 2). (b) Find a function 0 such that 0 4- ip is analytic. (c) Express çS + i.p as a function of X.

An.. (b) — 2tan {(y-2)/(z-1))	 (c) 2iln(z-1-2t)

55. If Im (f'(z)) = 6x(2y —1) and 1(0) = 3— 2i, /(1) = 6— 5i, find 1(1 + i).	 An.. 6 + 3i

DIFFERENTIALS
56. If w = iz2_4x+3i, find (a) Aw, (b) dw, (c) Aw—dw at the point z = 2i.

An... (a) —8 Az + i(Az)2 = —8 dx + j(dz)2, (b) —8 dx, (c) i(dz)2

57. Find (a) Aw and (b) dw if w = (2z+1)3, z = —i, Az = 1+i.	 An.. (a) 38-2i, (b) 6-42i

58. If w = 3jj2 + 2z + 1 - 3i, find (a) Aw, (b) dw, (c) Aw/Az, (d) dw/dz where z
An.. (a) —44z + 3i(Az)2, (b) —4 dz, (c) —4 + 3i Ax, (d) —4

(sin Az	 I
59. (a) If w = sin z, show that	 = (cos z)(\-___ ' - 2 sin z 

$jn2(Az/2)
AxAAz

sin Az	 dw -(b) Assuming Jim	 = 1, prove that -- - coax.
b.x-.O Ax

(c) Show that dw = (cos z) dz.

60. (a) if w=lnz, show that if Az/z	 -,

dw 1(b) A.ssuming Jim (1	 = e = 2.71828... prove that --dx z

(c) Show that d(ln z) = dxix.

61. Prove that (a) d{f(z) g(z)} = {f( z) g'(x) + g(z) f'(z)) dz
(b) d{f(z)/g(z)) = {g(z) f'(z) - /(z) g'(z)) dxl {S(z)}2

giving restrictions on 1(z) and g(z).

DIFFERENTIATION RULES. DERIVATIVES OF ELEMENTARY FUNCTIONS.
62. Prove that if 1(z) and g(z) are analytic in a region % then

(a)	 - (2i/(z) —(1 + i) g(z)} = 2i f'(z) —(1 + i) g'(z), (b)	 - (f(z))2 = 2f(z) /'(z), (c)	 -(f(z)Y' =

—(1(z)) 2

63. Using differentiation rules, find the derivatives of each of the following functions: (a) (1 + 4i)z2 - 3z - 2,
(b) (2z + 3i)(z - i), (c) (Zz - i)/(z + 20, (d) (2iz + 1)2, (e) (ix - 1).

Ans. (a) (2 + Si)z —3, (b) 4z + 1, (o) 5i/(z + 2i)2, (d) 4i - 8z, (e.) —3i(iz - 1)

64. Find the derivatives of each of the following at the indicated points:
(a) (z+2i)(a—z)/(2z— 1'), z = i. (b) (z + (z2 + 1)2)2, Z = 1+.i.

An.e. (a) — 6/6 + 3i/5, (b) —108 - 78i

65. Prove that (a) d- sec z = sec z tan z, (b) d- cot z = —csc2 Z.
dz	 dx

66. Prove that (a) -_(z2 + 1)1/2 	 Z	
(b) .--- In (z2 + 2z + 2) =

	 2z + 2	
indicating restrictionsdx	 (z2+1)"2'	 dx	 22+2z+2if any.
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67. Find the derivatives of each of the following, indicating restrictions if any.
(a) 3 sin2 (z/2), (b) tan3 (z —3:4- 4i), (c) In (Sec 2 + tan z), (d) eec ((:2 + 1)1/2), (e) (:2 - 1) cos (z + 21),

Ana. (a) 3 sin (:/2) cos (z/2)	
(d) —z 

csc ((:2 + 1)112) cot {(z2 + 1)1}

(b) 3(2z - 3) tan 2 (:2 - 3: + 41) s& (z2 - 3: + 41)	 (:2 + 1)1/2

(c) see z	 (e) (1 - :2) sin (z + 21) + 2: cos (z + 21)

68. Prove that (a)	 -(1 + :2)3/2 = 3z(1 + :2)1/2, (b)	 (z + 2)" = z 112 (z + 2',1)-2/3 W + 1).

69. Prove that (a) 
d 
—(tan z) = ---I -, (b) 

d 
—(sec z)	

1

70. Prove that (a)	 sinh 1 z	
v'i' 

(b)
	 each_ 

t z =

71. Find the derivatives of each of the following:

(a) (sin -1 (2z-l))2	(e) CO3 1 (sin z - coB:)	 (e) coth 1 (z csc 2:)

(b) ln(cot'z2 )	 (d) tan 1 (z+31)"	 (f) ln(z_+Vz2_3z+2j)

An.. (a) 2 sin - ' (2z- 1)/(z - :2) 1/2	 (d) —1/2(z + I + 3i)(z + 3i)h'2

(b) —2:1(1 + z) cot' :2	(e) (csc 2z)(1 - 2: cot 2z)/(l - 22 csc2 2:)

(c) —(sin: + cos z)/(sin 2z)112	 (I) i/V- 3: + 21

72. If w = cos (z —1), z = sinh(3 + 2i) and	 = \Ti, find dw/dt.

An.. —3[cosh (3r + 21)]/2(2z - :2) 1/2 fI/Z

73. If w = t see (t —31) and z = sin (2t —1), find dw/dz.

An.. see (t —31) (1 + t tan (t - 3i))(t -

74. If w2 - 2w + sin 2: = 0, find (a) dw/dz, (b) d3wldz2.

Ans. (a) (cos 22)/(1 - w), (b) (coB2 2: - 2(1 - w)2 sin 2z)/(l - w)3

75. Find d2w/dz2 at r = 0 if w = coB , z = tan ( + ,r1).	 Ana. —cosh4 r

76. Find (a)(z. z), (b)	 ([sin (1:— 2)] tn I (5+ 30

An.. (a) 2zln	 ' In z

(b) ([sin (iz - 2)J'	 f30)(1 tan' (z + 31) cot (1: —2) + [In sin (1: - 2)1/1:2 + 612 —8])

77. Find the second derivatives of each of the following:
(a) 3 sin 2 (2: - 1 + i), (b) In tan :2, (r.) sinh (z + 1)2, (d) cos (In z), (e) sech' vTVi

Ans. (a) 24 cos (4:— 2 + 2*) 	 (d) (1 - In: - In2 2)/22(1 - In2 2)5.'2

(b) 4 csc 2:2 - 16Z2 csc 2:2 cot 2z2	 (e) —1(1 + 3z)/4(1 + z)20/2

(c) 2 cosh (z+ 1)2 + 4(z + 1)2 sinh (z+ 1)2

L'HOSPITAL'S RULE

78. Evaluate (a)	
2Z2 + :2+4 - 

6i' (8) 
Iim (z— e"') (-fj) , (c) lirn

An,. (a) (16 + 121)/25, (b) (1 -,i'JI )/6, (c) —1/4

79. Evaluate (a) ,
in - SIfl 2 

(b) Urn (z - 
mTI)(-_) .
	 An.. (a) 1/6, (b) e""/(cosh mw)

O	 2	 SIflZ:-. 

80. Find lim tan 
l 1z2 +
	 where the branch of the inverse tangent is chosen such that tan' 0 = 0.

sin2(z2+1)
Ana. I

(sin z\1'
81. Evaluate Urn - I . An..

z /



CHAP. 31 COMPLEX DIFFERENTIATION, FHE CAUCHY-RIEMANN EQUATIONS 	 89

SINGULAR POINTS
82. For each of the following functions locate ani name the singularities in the finite z plane.

z2-3z	 (b) ln(z+3i)	 cosz
z2 + 2z + 2	

(c) sin'' (liz), (d) Vz(z2 + ,	 (z + 4)8

Ans. (a) z	 —I ± i; simple poles
(6) z = —3i; branch point, z = 0; pole of order 2
(c) z = 0; essential singularity
(d) z = 0, ±i; branch points
(e) z = —i; pole of order 3

83. Show that Ar)	
(z+3i)5

(z2 - 2z + 5)2 has double poles at z = I ± 2i and a simple pole at infinity.

84. Show that e" has an essential singularity at infinity.

85. Locate and name all the singularities of each of the following functions.
(a) (z + 3)/(z2 - 1), (b) csc (liz2), (c) (z2 + 1)/s312.

Ans. (a) z = ±1; simple poles, z	 ; simple pole. (6) z = 11"./, in = ±1, ±2, ±3.... . simple poles,
z = 0; essential singularity, z = o; pole of order 2. (a) z 0; branch point, z = ; branch point.

ORTHOGONAL FAMILIES

86. Find the orthogonal trajectories of the follow...g families of curves:
(a) xy xy3 = a, (6) e -- cos y + xy = a.

Airs. (a) x4 -6x2y2 +y = I, (0) 2e sin y + r2 -

87. Find the orthogonal trajectories of the family of curves r2 cos 26 = a.	 Airs. r2 sin 2e = /3

88. By separating f(z) = z + 11i into real and imaginary parts. show that the families (r2 + 1) coss = or
and (r2 - 1) sins = pr are orthogonal trajectories and verify this by another method.

89. If n is any real constant, prove that r" = a sec no and ," = /1 csc no are orthogonal trajectories.

APPLICATIONS TO GEOMETRY AND MECHANICS

90 A particle moves along a curve z	 e t (2 am t - i cos
(a) Find a unit tangent vector to the curve at the oint where t--- ri4.
(b) Determine the magnitudes of velocity and acceleration of the particle at t 0 and in2.

Ana (a) ±i. b) Velocity: .i/, Ie r 1 2 Acceleration 4, 2e!2

91. A particie inoves along the curve z	 ae	 (a) Show that ts speed js always constant and equal to Wa.

(b) Show that the magnitude of its acelration is atwayj xonstant and equal to 	 (c) Show that
the acceleration is always directed toward z	 (d) Explain the relationship of this problem to the
problem of a stone being twirled at the end of a string in a horizontal plane.

92. The position at time i of a particle moving in the z plane is given by z	 3te 411 Fud the magnitudes
of (a) the velocity, (b) the acceleration of the particle at C = 0 and tin.

Ans (a) 3, 3y 1 -+1&P.  (6) 24, 24V—1 +1,2

93. A particle P moves along the line x + y 2 in the 2 plane with a uniform speed of 3f2 ft/sec from
the point z = —5+7i to z = 10-8i. If w = 2z2 -3 and P' is the image of P in the w plane, find
the magnitudes of (a) the velocity and (6) the acceleration of P' after 3 seconds

Airs. (a) 24ftö, (b) 72
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GRADIENT, DIVERGENCE, CURL AND LAPLACIAN
94. If P	 xy - xy2, find (a) VP, (b) V2F.	 Ans. (a) (2xy - y2) + i(x - 2zy), (b) 2y - 2x

95. Let B = 3z2 + 4. Find (a) grad B, (b) dlv B, tc) curl B, (d) Laplacian B.

Ans. (a) 8, (b) 12x, (c) 12y, (d) 0

96. Let C be the curve in the xy plane defined by x2 - zy + y2 = 7. Find a unit vector normal to C at
(a) the point (-1,2), (b) any point.

Ans. (a) (-4 + 5i)//i, (b) {2x - y + i(2y - x))/V5x2 - 8zy + 5y2

97. Find an equation for the line normal to the curve x2y = 2xy + 6 at the point (3, 2).

Ans. x = 8t-4-3, y = 3t+2

98. Show that V 2 If(z)1 2 = 4 f'(z)(. Illustrate by choosing 1(z) = z 2 + ix,

99. Prove V 2 (FG) = FV 2G + GVZF + 2VFVG

100. Prove dlv grad A = 0 if A is imaginary or, more generally, if Re (A) is harmonic,

MISCELLANEOUS PROBLEMS
101. If 1(z) = u(x, y) + i v(x, y), prove that:

(a) 1(z)	 2u(z/2, -iz/2) + constant,	 (b) f(s) = 2iv(z/2, --iz/2) + constant.

102. Use Problem 101 to find f(s) if (a) u(x., y)	 x4	 6x2y2 + y4 ,	 (b) v(x, 1')	 sinh x cos y.

103. If V is the instantaneous speed of a particle moving along any plane curve C, prove that the normal
component of the acceleration at any point of C is given by V21'R where R is the radius of curvature
at the point.

104. Find an analytic function f(s) such that Re {f'(z)} = 3X2.- 4y -- 	 and f(1 + i)	 O.

Ans. z3 + 2iz2 1- 6-- 2i

105. Show that the family of curves
L_ = 1

a2- + X	 b2+

with -a2 < A < - b2 is orthogonal to the family with A > _b2 > —a2.

106. Prove that the equation P(x, y) rr constant can be expressed as u(x, y) = constant where u is

harmonic if and only if 
a2F/x2 - -• a2F/ay2

(aF/ay)2 
is a function of F.

107. Illustrate the result in Problem 106 by considering (y + 2)/(x - 1)	 constant

108. If 1(z) = 0 in a region ', prove that 1(z) must be a constant in '.

109. If to f(s) is analytic and expressed in polar coordinates (r, 0), prove that

dw -
dz

110. If v and v are conjugate harmonic functions, prove that
andv = —dy - —dx
axey
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Ill. If u and v are harmonic in a region 'It, prove that

fau av	 .fau av
(---I +

ay	
-

	

dJ	 \aX	 8i

is analytic in 'R..

112. Prove that f(z) = JsJ4 I. differentiable but not analytic at z = 0.

113. Prove that J, = In I f(s) I Is harmonic in a eglon 9t If 1(x) Is analytic In qt and f(s) /'(z) ' 0 in '.

114. Express the Cauchy-Rleniann equations in terms of the curvilinear coordinates (, ,) where
x = o f cosh il , y = e(sinht7.

115. Show that a solution of the differential equation

	

d2QdQ	 —E

	

-	 0 cos øt

where L, R, C, E0 and w are constants, Is given by

Q = Re.
1v.4R + t(a.L - 1/.1C)]

The equation arises in the theory of alternating currents of electricity.

(Hint. Rewrite the right-hand side as E0 et and then assume a solution of the form Ae't where A is
to be determined.]

116. Show that V 2 ((z)) =	 If(z)I' I1?(I)12, stating restrictions on f(s).

a2 J
117. Solve the partial differential equation	 j- + 

a2u	 8
= X2 +

An.. U = 4(ln(x2 +y2) ) 2 + 2(tan'(y/z) 2 + F(x+iv) + G(x — iy)

a4 U	 aU	 (=16a4U
118. Prove that VU = V 2(V 3U) =	 + 2 

a 8y2 
+ ay'	 as2 al

119. Solve the partial differential equation+ 2a3 +	 = 86(12 4. y2).

An.. U = 115(x2 + y2)' + (z + iy) P1 (x - iy) + G 1 (x - iy) + (x - iy) F5 (x + iy) + G2 (x + iy)

0



V
ik

Zj

X

Fig. 4.1

Chapter 4

COMPLEX LINE INTEGRALS
Let 1(z) be continuous at all points

of a curve C [Fig. 4-1] which we shall
assume has a finite length, i.e. C is a
rectifiable curve.

Subdivide C into n parts by means
of points z 1 , z 2, . . ., Zn—i, chosen arbi-
trarily, and call a = zo, b = Zn. On each
arc joining z- 1 to Zk [where k goes
from 1 to n] choose a point 1k . Form
the sum

	

S. = 1(C 1 ) (z 1 - a) + f(C2) (z2 - z) +	 . + f() (b - z,,. )	 (1)

On writing Zk - Zk—t = IlZk, this becomes

S,1 =	 f(C,) (z - Zk—i) = 	 NO AZ"	 (2)

Let the number of subdivisions n increase in such a way that the largest of the chord
lengths I L ZkI approaches zero. Then the sum S approaches a limit which does not depend
on the mode of s'ibdivision and we denote this limit byfb 

1(z) dz	 or	 5' f(z) dz	 (3)

called the complex tine integral or briefly tine integral of 1(z) along curve C, or the definite
integral of 1(z) from a to b along curve C. Iii such case 1(z) is said to be integrable along
C. Note that if 1(z) is analytic at all points of a region 'I and if C is a curve lying in 'R.,
then 1(z) is certainly integrable along C.

REAL LINE INTEGRALS
If P(x, y) and Q(x, y) are real functions of x and y continuous at all points of curve C,

the real tine integral of P dx + Q dy along curve C can be defined in a manner similar
to that given above and is denoted by

[P(x, y) dx + Q(x, y) dy]	 or f P dx + Q dy	 (4)

the second notation being used for brevity. If C is smooth and has parametric equations
x = #(t), y = #(t) where t 1 < t t2, the value of (4) is given by

ft1 [P(j.,(t), #(t))#'(t) dt + Q((t), ,b(t))#'(t) dt]

Suitable modifications can be made if C is piecewise smooth (see Problem 1).

ITA
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CONNECTION BETWEEN REAL AND COMPLEX LINE INTEGRALS
If 1(z) = u(x, y) + i v(x, y) = u + iv the complex line integral (8) can be expressed

in terms of real line integrals as

5 f(z)dz = f (u + iv)(dx + i dy)

5 u dx - v dy + if v dx + u dy	 (5)

For this reason (5) is sometimes taken as a definition of a complex line integral.

PROPERTIES OF INTEGRALS
If 1(z) and g(z) are integrable along C, then

1. 5 (1(z) + g(z)) dz = 5 f(z) dz + 5 g(z) dz

= A  1(z) dz	 where A = any constant

-f 1(z) dz

5m	 b
1(z) dz + 5 1(z) dz	 where points a, b, m are on C.

2. 5 Af(z)dz

. 
j.b	 =

. 
fb

5.	 ML

where 11(z) I M, i.e. M is an upper bound of 11(z) I on C, and L is the length of C.

There are various other ways in which the above properties can be described. For
example if T, U and V are successive points on a curve, property 3 can be written

5 f(z)dz = -$ /(z)dz.
TUV	 VUT

Similarly if C, C1 and C2 represent curves from a to b, a to m and m to b respectively,
it is natural for us to consider C = C1+ C2 and to write property 4 as

5c	 1(z) dz = 5 1(z) dz + 5 1(z) dz
I+cI	 Ci	 C,

CHANGE OF VARIABLES
Let z = g() be a continuous function of, a complex variable C = u + iv. Suppose

that curve C in the z plane corresponds to curve C' in the Z plane and that the derivative
g'() is continuous on C' Then

5 1(z) dz = 5 f(g()) g'() d	 (6)

These conditions are certainly satisfied if g is analytic in a region containing curve C'.

SIMPLY. AND MULTIPLY-CONNECTED REGIONS
A region qZ is called simply-connected if any simple closed curve [Page 681 which

lies in R can be shrunk to a point without leaving 'l(. A region 'R which is not simply-
connected is called multiply-connected.
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For example, suppose 'R is the region defined by jzI <2 shown shaded in Fig. 4-2.
If r is any simple closed curve lying in '1 , [i.e. whose points are in 'R] we see that it can be
shrunk to a point which lies in q, and thus does not leave ', so that 'g is simply-connected.
On the other hand if ( is the region defined by 1 <Iz I <2, shown shaded in Fig. 4-3,
then there is a simple closed curve r lying in CR,. which cannot possibly be shrunk to a point
without leaving R, so that 'N. is multiply-connected.

Fig. 4.2	 Fig. 4.3	 Fig. 4-4

Intuitively, a simply-connected region is one which does not have any "holes" in it,
while a multiply-connected region is one which does. Thus the multiply-connected regions
of Figures 4-3 and 4-4 have respectively one and three holes in them.

JORDAN CURVE THEOREM
Any continuous, closed curve which does not intersect itself and which may or may

not have a finite length is called a Jordan curve [see Problem 301. An important theorem
which, although very difficult to prove, seems intuitively obvious is the following.

Jordan Curve Theorem,, A Jordan curve divides the plane into two regions having
the curve as common boundary. That region which is bounded [i.e. is such that all points
of it satisfy Izi < M, where M is some positive constant] is called the interior or inside

of the curve, while the other region is called the exterior or outside of the curve.

It follows from this that the region inside a simple closed curve is a simply-connected
region whose boundary is the simple closed curve.

CONVENTION REGARDING TRAVERSAL OF A CLOSED PATH
The boundary C of a region is said to be traversed in the positive sense or direction

if an observer travelling in this direction [and perpendicular to the plane] has the region
to the left. This convention leads to the directions indicated by the arrows in Figures 4-2,
4-3 and 4-4. We use the special symbol

§f(z)dz

to denote integration of 1(z) around the boundary C in the positive sense. Note that in
the case of a circle [Fig. 4-2] the positive direction is the counterclockwise direction. The

integral around C is often called a contour integral.
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GREEN'S THEOREM IN THE PLANE
Let P(x, y) and Q(x, y) be continuous and have continuous partial derivatives in a

region 'R. and on its boundary C. Green's theorem states that

Pdx + Qdy =	 -	
dxdy	 (7).j \ax

The theorem is valid for both simply- and multiply-connected regions.

COMPLEX FORM OF GREEN'S THEOREM
Let F(z, ) be continuous and have continuous partial derivatives in a region IR and

on its boundary C, where z = x + iy, 2 = x - iy are complex conjugate coordinates
[see Page 7]. Then Green's theorem can be written in the complex form

5 F(z, ) dx = 2i 55 dA	 (8)
C

IR

where dA represents the element of area dx dy.
For a generalization of (8), see Problem 56.

CAUCHY'S THEOREM. THE CAUCHY.GOURSAT THEOREM
Let 1(z) be analytic in a region q and on its boundary C. Then

5 /(z)dz = 0	 (9)

This fundamental theorem, often called Cauchy's integral theorem or briefly Cauchy'8
theorem, is valid for both simply- and i.tiply-connected regions. It was first proved by
use of Green's theorem with the added restriction that f'(z) be continuous in R [see Prob-
lem 111. However, Gour8at gave a proof which removed this restriction. For this reason
the theorem is sometimes called the Cauchy-Goursat theorem [see Problems 13-16] when
one desires to emphasize the removal of this restriction.

MORERA'S THEOREM
Let 1(z) be continuous in a simply-connected region 'I . and suppose that

$ f(z)dz = 0	 (10)

around every simple closed curve C in 'Ri. Then f(z) is analytic in '1.
This theorem, due to Morera, is often called the converse of Cauchy's theorem. It

can be extended to multiply-connected regions. For a proof which assumes that f(z) is
continuous in % see Problem 22. For a proof which eliminates this restriction, see
Problem 7, Chapter 5.

INDEFINITE INTEGRALS
If 1(z) and F(z) are analytic in a region 'R. and such that Fl(z) = 1(z), then F(z) is

called an indefinite integral or anti-derivative of 1(z) denoted by

F(z)	 5 f(z)dz	 (11)

Since the derivative of any constant is zero, it follows that any two indefinite integrals
can differ by a constant. For this reason an arbitrary constant c is often added to the
right of (11).

Example: Sincece	 - 4 sin z) = 6z - 4 coo z, we can writeds

f(Oz - 4 co. z) dz = 30 - 4 Bin Z +
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INTEGRALS OF SPECIAL FUNCTIONS
Using results on Page 66 for by direct differentiation, we can arrive at the follow-

ing results (omitting a constant of integratior).

z+j1.5 z" dz =+ , 	 18. J coth z dz = In sinh z

2. 5
dz - In 	 19. 5 sechzdz = tan '(sinhz)

3. $ e
l di = el	 20. 5 cschz dz = - coth' (cosh z)

4, 5 a di =21. 5 sech 2 z di	 tanh z
In a

5.5 sin z dz = -cos z	 22. 5 csch 2 z di = -coth z

6.5 cos z di = sin z	 23. 5 sech z tanh z di = -sech z

7.5 tan z di = In sec z	 24. 5 csch z coth z dz = -csch z
= — In cos z	 -

25 5 _____ - ln(z+Vz2±a2)Vz2 ±a2 -

26 5 di	 ltalZ or
•	 z2+a2	 a	 a	 a	 a

27 5 di	 1 1z—a—ln(•	 z2-a2 = 2a \,z+aj

28 5 di	 z	 _zsin- or -cos - 1—•	 =	 a	 a

29 5	 di	
2-ln'•	 zyj±z2 = a	 a+ya2±z2)

1di30.S	 =	 cos- , a 	 1- or -sec'-z
2— a2 	 a	 z	 a	 a

31.5 \/Z ± a2 dz =	 ± a2
a2± ln(z+/z2±a2)

32.5 i/a2 -z2 di	 /a2_z2 + a2	 z

33.5 e° sin bidZ 	
(_ sin bz — b cos bz)

a2+b2

34.5 ecosbzdz	
e(acosbz + b sin bz)

a2 + b3

8. cot zdz = ln sin z

9.5 sec z di = In (sec z + tan z)
= In tan (z/2 + 7r/4)

10.5 csczdz = In(cscz - cotz)
= In tan (z/2)

11.5 sec2 z di = tan z

12.5 csc2 z di = -cotz

13.5 see z tan zdz = see 

14.5 csez cot  di = -cscz

15. fsiniiziz = cosh 

16.5 cosh zdz = sinhz

17.5 thnh z di = In cosh 

SOME CONSEQUENCES OF CAUCHY'S THEOREM
Let f(z) be analytic in a simply-connected region % Then the following theorems hold.

Theorem 1. If a and z are any two points in 'R.,, then

E 1(z) di

is independent of the path in	 joining a and z.



CHAP. 41	 COMPLEX INTEGRATION AND CAUCHY'S THEOREM

Theorem 2. If a and z are any two points in R and

G(z) = f f(z)dz	 (12)

then G(z) is analytic in W and G 1 (z) = 1(z).
Occasionally, confusion may arise because the variable of integration z in (12) is the

same as the upper limit of integration. Since a definite integral depends only on the
curve and limits of integration, any symbol can be used for the variable of integration,
and for this reason we call it a dummy variable or dummy symbol. Thus (12) can be
equivalently written

G(z) = 5 1(4) dC	 (13)

Theorem 3. If a and b are any two points in '1 and F'(z) = f(z), then

5 b

f(z)dz = 1(b) - 1(a)

This can also be written in the form, familiar from elementary calculus,
rb

J F'(z) dz = 1(z)	 = 1(b) - F(a)a	 a
l—I	 I—i

Example:	 4z dz = 2z2	= 2(1 - ,)2- 2(3i)- = 18- 4if
Theorem 4. Let 1(z) be analytic in a region bounded by two sik' closed curves

C and C1 [where C1 lies inside C as in Fig. 4-5 below] and on these curves. Then

5 1(z)dz = 5 f(z)dz	 (16)

where C and C1 are both traversed in the positive sense relative to their interiors [counter-
clockwise in Fig. 4-5].

The result shows that if we wish to integrate 1(z) along curve C we can equivalently
replace C by any curve C1 so long as 1(z) is analytic in the region between C and C1.

Y

C

C
c

..cI C
C. 00.

X

Fig. 4 .5	 Fig. 4-6

Theorem 5. Let. 1(z) be analytic in a region bounded by the non-overlapping simple
closed curves C, C1, C2, C3, . . ., C [where C1, C2, . . ., C are inside C as in Fig. 4-6 above]
and on these curves. Then

5 1(z) dz =fc, 1(z) dz + 5, 1(z) dz + •.. + 5 1(z) dz	 (17)

This is a generalization of Theorem 4.

(14)

(1.5)
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/	 Solved Problems
LINE INTEGRALS

1. Evaluate J	 (2y + x2) dx + (3x - l) dy	 along: (a) the parabola
(0	

x = 2t,

,3)	 -

y = t2 +3; (b) straight lines from (0,3) to (2,3) and then from (2,3) to (2,4); (c) a

straight line from (0,3) to (2,4).
(d) The points (0,3) and (2,4) on the parabola correspond to t 0 and t=- 1 respectively. Then the

given integral equals 
j-1

J 0
(2(t2 +3) + (2t) 2) 2 dt + (3(2t) - ( t2+ 3)) 2t dt = Jo (24t2 +12 — 2t3 - 6t) dt = 33/2

(	 0

(b) Along the straight line from (0,3) to (2, 3), y = 3, dy = 0 and the line integral equals

	

f.2 
(6 + x2) dx + (3x - 3)0	 J

(6 + x2) dx = 44/3
x0

Along the straight line from (2,3) to (2, 4), x = 2, dx = 0 and the line integral equals

	

fV

4 
(2y+4)0 + (6—y)dy =	 (6—y)dy = 5/2

3

Then the required vahie = 44/3 + 5/2 = 103/6.

(c) An equation for the line joining (0,3) and (2,4) is 2y - x = 6. Solving for x, we have x = 2y- 6.

Then the line integral equals

J
, (2ii'+ (2y - 6)2) 2 dy + {3(2y —6) - y} dy = f (8y2 - 39y + 54) dy	 97/6

result can also be obtained by using y = -&( + 6).

uate
£ 

2 d from z = 0 to z = 4+2i along the curve C given by (a) z = t2+it,

I .. (b),  the line from z = 0 to z = 2i and then the line from z 2i to z = 4 +2i.

(a) The points z = 0 and z = 4 + 2i on C correspond to t 0 and t = 2 respectively. Then the line

integral equals
p2	 p2	 2

J
(t2 + it) d(t2 + it) = J (t2 - it)(2t + i)dt = J (2t3 - it2 + t) dt = 10 - 8i/3

t=0	 0	 0

Another Method. The given integral equals

f(x - ly)(dx + i dy) = £ x dx + y dy + i f,7 x dii y dx

The parametric equations of C are x =- t2, y = t from t = 0 to t = 2. Then the line integral

equals	 2	 p2

	

(t(2t dt) + (t)(dt) + iJ	 (e2)(dt) - (t)(2t dt)f
p2	 p2

=
 J

(2t3 + t) dt + iJ (—t2) dt = 10 - 8i/3
0	 0

(b) The given line integral equals

(x - iy)(dx + i dy) = 5 x dx + y dy + i £ xdy - y dx

The line from z =0 to z = 2i is the same as the line from (0,0) to (0,2) for which x = 0,

dx = 0 and the line integral equals

f
2 	

Co
(0)(0) + ydy + i 	(0)(dy) - y(0) = I ydy	 2

Jv,,0

The line from z = .2i to z = 4 + 2i is the same as the line from (0,2) to (4,2) for which

y = 2, dy = 0 and the line integral equals

	

fxdx+20 + if x-0-2d 	 5 xdx.+ if —Zdx = 8-8i

Then the required value = 2 i (8 — 8t)	 10— 8i.
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Prove that if 1(z) is integrable along a curve C having finite length L and ,.
exists a positive number M such that 11(z) J 

M on C, then

If
f(z) dz	 ML

By definition we have on using the notation of Page 92,

Now

	 fc 1(z) dz	 urn	 f(tk) Aza	 (1)

J1 f() 4--k
	

If(k)I I&I

M 
k 
1 lAzal
	

(I)

ML

where we have used the facts that I 1(z) I	 M for all points z on C and that	 .IAzkI represents
the sum of all the chord lengths joining points 	 and z, where k = 1,2..... n, and that this sum
is not greater than the length of C.

Taking the limit of both sides of (2), using (1), the required result follows.

It is possible to show, more generally, that

f f(z) dz 1 9 f II(z)I

GREEN'S THEOREM IN THE PLANE
4. Prove Green's theorem in the plane if C is a

simple closed curve which has the property
that any straight line parallel to the coordi-
nate axes cuts C in at most two points.

Let the equations of the curves EG? and RH?
(see Fig. 4-7) be y = Y 1 (x) and y = '2 (x) respec-
tively. If 'N is the region bounded by C, we have

ff 
Lp dx dy = •f ['> d] dx

Y,(r)

= J P(- Y)	 dx =
vY1(x)

::f1IzT

Fig. 4-7

[P(x, Y,) - P(x, Y 1 )] dx

= -f P(x,Y1)dx - f P(x,Y2)dx = _5Pdx

Then	 Pd = _Jfdxdy	 (1)

Similarly let the equations of curve, GRH and GFH be x = X 1 (y) and x = X,(y) respectively.
Then

	

- LJ

Ii

 [	
ä9dxldy = f [Q(s,v) - Q(Xi,y)jdy

Q	 =X,(v)dx	 j	S

= IQ(Xi,y)di, + fh Q(X5,y)dy = .r
Qdv

	

p	 C

Q dy	 ff dx d&,

	

C	 It

Pdx+Qdy =
C	

it

dx'dyax

Then

Adding (1) and (2),

(2)
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theorem in the plane for

3) (2xy - x 2) dx + (x + y2)

where C is the closed curve of the region
bounded by y= X2 and y2=x.

The plane curves y = x 2 and y2 = x intersect at
(0,0) and (1, 1). The positive direction in traversing
C isas))own in Fig. 4-8. 	 Fig. 4-8

,Aiong y = x 2 , the line integral equals

J	 {(2x)(x2) - x 2 ) dx + {x + (x2 ) 2 } d(x2)	 J (2x3 + x2 + 2x 5) dx = 7/6
0

Along y2 = x, the line integral equals
1'O

j	
(2(y2)(y) - ( y2 ) 2 ) d(y2) + ( yZ + y2 ) dy = J (4y4 - 2y5 + 2y 2) dy = —17/15

hen the required integral = 7/6 - 17/15 = 1/30.

ff( - -)ix dy = ff	 + y2 )	 - ( 2xy— x2) jdxdy

=
ff ( 1_2x ) dxdy =I	 (1-2x)dydx

	

 .-'r'0	 v''

= J	 (y - 2xy)	 dr = J (XI/2 - 2x312 - x2 + 2x 3 ) dx = 1/30

Hence Green's theorem is verified.

	

6. Extend the proof of Green's theorem in the 	 uplane given in Problem 4 to curves C for
which lines parallel to the coordinate axes
may cut C in more than two points. T

	

Consider a simple closed curve C such as shown 	 s
in Fig. 4-9 in which lines parallel to the axes may

	

meet C in more than two points. By constructing 	 v	 x
	hoe ST the region is divided into two regions 'I and 	 0

	

R2 which are of the type considered in Problem 4 and 	
Fig 4-9for which Green's theorem applies, i.e.,

(1) f P dx + Q dy = ff ( -	 dx dy,	 (2) J P dx + Q 4' = J'f ( - -	 dx dy
ap

SflTS	 'N,	 SVTS

Adding the left-hand sides of (1) and (2), we have, omitting the integnd Pdx + Qdy in
each case,	 i

.1 + S = .1 + .1 + S + S = S + S = I
Sf/S	 SVTS	 sr	 TUS	 svr	 rs	 TLIS	 SVr	 TUSVT

using the fact that	 =
ST	 TS

Adding the right-hand sides of (1) and (2), omitting the int.egrand,

ff+5f = 55
Then	 5 Pdz + Qdy =

	

lax	 W,
TU.SVT	 'N
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and the theorem is proved. We have proved Green's theorem for the simply-connected region of
Fig. 4-9 bounded by the simple closed curve C. For more complicated regions it may be necessary to
construct more lines, such as ST, to establish the theorem.

Green's theorem is also true for multiply-connected regions, as shown in Problem 7.

7. Show that Green's theorem in the plane is also
valid for a multiply-connected region 9 such as
shown shaded in Fig. 4-10.

The boundary of R. which consists of the exterior
boundary AHJKLA and the interior boundary DEF'GD,
is to be traversed in the positive direction so that a per-
son travelling in this direction always has the region on
his left. It is seen that the positive directions are as
indicated in the figure.

In order to establish the theorem construct a line,
such as AD, called a cross-cue, connecting the ex-
terior and interior boundaries. The region bounded by
ADEFGDALKJHA is simply-connected, and so Green's
theorem is valid. Then

4;	 Pdx+Qdy =

AT)EFODALKJIIA

'I

I'	 E
D G F' q'

Ac

K	 X

Fig. 4-10

.[J' (_)dXdY

But the integral on the left, leaving out the integrand, is equal to

ç + f + f + ç =	 + f
Al)	 DEFCI)	 DA	 ALKJUA	 DEFGD	 ALKJUA

since=
	

- Thus if C is the curve ALKJHA, C2 is the curve DEFGD and C is the bound-
AD

ary of 'J consisting of C 1 and C2 (travecd in the positive directions with respect to 'n), then

S+ 1' =C and so 

Pdx+Qdy = ff_-_ a!' 
)dxdY

8. Let P(x, y) and Q(x, y) be continuous and have continuous first partial derivatives at
each point of a simply-connected region 11. Prove that a necessary and sufficient

condition that 4; P dx + Q dy = 0 around every closed path C in	 is that äP/äy =

SQ/ax identically in

Sufficiency . Suppose aPlay OQ/ax. Then by Green's theorem,

4;Pdx+Qdy = ff (	 dx dy = 0

where 'Ri is the region bounded by C.

Necessity.

Suppose ,4;Pdx + Qdy = o around every closed path C in qZ and that 9P/3y =A aQ/ax at some

point of '. In particular suppose aPlay - aQiax > 0 at the point (x 0 , y)

By hypothesis aP/ay and &Q/ax are continuous in 'J so that there must be some region 	 con-
taining (x 0 , y0) as an interior point for which aPlay - 0Q/6z > 0. If r is the boundary of r, then
by Green's theorem	 -

/aQ aP
4;Pdx + Qdy = j'f-_)dxdY > 0



Fig. 4.11

=f
	

and so	
=

AND
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contradicting the hypothesis that 	 P dx + Q dy = 0 for all dosed curve, in '. Thu. aQ/ax -
cannot be positive.	 C

Similarly we can show that aQiax - aP/ay cannot be negative and it follows that it must be
Identically zero, i.e. 8PI8y = aQ/ax identically fa qZ.

The results can be extended to multiply-connected regions.

9. Let P and Q be defined as in Problem 8. Prove
that a necessary and sufficient condition that
"B

J
P dx + Q dy be independent of he path

A

in 'I joining points A and B is that OP/3y =
aQ/ax identically in 'R.

Sufficiency. If aplay = JQ/ax, then by Problem 8

f Pdx+Qdy	 0
ADBA

[see Fig. 4-111. From this, omitting for brevity the
integrand P dx + Q dy, we have

f + f =0, s=-f
ADS	 SEA	 ADS	 SEA

i.e. the integral is independent of the path.

Necessity.
If the integral is independent of the path, then for all paths C and C2 in ' we have

	

C = 5 , 5 = 5 and	 5 =
I	 l	 ADS	 AEI	 ADBSA

From this it follows that the line integral around any closed path in qZ is zero, and hence by Problem 8
that aP/dy = OQiox.

The results can be extended to multiply-connected regions.

COMPLEX FORM OF GREEN'S THEOREM

10. If B(z, ) is continuous and has continuous partial derivatives in a region 'Ri and on
its boundary C, where z = x + iy and 2 = x - iy, prove that Green's theorem can
be written in complex form as

f	 -	 . (Cay B(z, z) dz = 2ijj
B
- dx dy

Let B(z, *) = P(r, y) + iQ(x, y). Then using Green's theorem, we have

5 B(z, ) dx = 5 (P + iQ)(dx + I dy) = 5 P dx - Q dy + if" dx + P

=	 ff(+'\.axdv + iff" - aQ\	 LP dx dyax\OX 3y/
R.

-	 \;-	 x)

=
 2iff

dzdyai

from Problem 34, Page 83 The result can also be written in terms of curl B [see Page 701.
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/' CA,1jY'S	 OREM 	 THE CAUCHY-GOURSAT THEOREM

1. Prove Cauchy's theorem 5 1(z) dz = 0 if 1(z) is analytic with derivative fl(z) which
is continuous at all points inside and on a simple closed curve C.

Since 1(z) = a + iv is analytic and has a continuous derivative
au	 .av	 av	 .au1(z) = - + i- = - -TX	 ax	 a,,	 I ay

it follows that the partial derivatives (1) au- = av,-,	 av	 au

	

(2)	 = - - are continuous inside and on C.TX ay	 ax	 ôy
Thus Green's theorem can be applied and we have

1(z) dz = (u + iv)(dx + i 4,) =	 u dx - v 4, + if v dx + u dy

J f 
/ av au\	 (au=	 I-----Jdxdy + z	 I---Jdxdy = 0
\ ax ay j	 ax ayj

using the Cauchy-Riemann equations (1) and (2).
By using the fact that Green's theorem is applicable to multiply-connected regions, we can extend

the result to multiply-connected regions under the given conditions on f(z).
The Cauchy-Goursa( theorem [see Problems 13-161 removes the restriction that f'(z) be continuous.

Another method.
The result can be obtained from the complex form of Green's theorem (Problem 101 by noting

that if 13(z, 2) = f(z) is independent of 2, then aB/o2 = 0 and so 5 f(z) dz = 0.

12. Prove (a) § dz = 0, (b) 5 zdz = 0, (c) 5 (z — zo)dz = 0 where C is any simple
closed curve and z0 is a constant.

These follow at once from Cauchy's theorem since the functions 1, z and z - z0 are analytic
inside C and have continuous derivatives.

The results can also be established directly from the definition of an integral (see Problem 90).

13. Prove the Cauchy-Goursat theorem for the case	 A

of a triangle.	
Fig. 4-12Consider any triangle in the z plane such as ABC,

-D, E and F' of sides AD, AC and BC respectively 
to form four triangles indicated briefly by 	 ,	 ,,
A111 and

/denoted briefly by , in Fig. 4-12. Join the midpoints

	

If 1(z) is analytic inside and on triangle ABC we	 All 'k.,,(
have, omitting the integrand on the right,

4'/(z)dz 
=	 I -t- .1 +	

B	 F	 -

AflCA	 DAt 	 EDP	 FCD

= J f + 11 ^ I f ^ ft + I f +	 + 11 + S- DAr	 ED J	 EBF	 FE J	 tyco	 or	 EF	 FD
 

f

= .1	 f	 .1+ 1
DAED	 ESFE	 FCDF	 DEFD

= + f(z)dz + + f(z)dz + f f(z)dz + if f(z)dz

where in the second line we have made use of the fact that

1=-.f	 .1=-f' .1= - I
ED	 DE	 FE	 Er	 OF	 ED
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Then

4) f(z) dz	 f(z) dz I + 4) 1(z) dz •F .4)	 f(z) dz
+ 4)	 f(z) dz	 (1)

A	 61	 A11	 A111

Let A, be the triangle corresponding to that term on the right of (1) having largest value (if there
are two or more such terms then A I is any of the associated triangles). Then

JA 
f(z) dz	 4 4, 1(z) dz	 (2)

I 
By joining midpoints of the sides of triange .,, we obtain similarly a triangle 2 such that

4) f(z)dz	 4	 f(z) dz
IA

so that
4) 1(z) d-	 .	 42 + f(z)dz I	 (4)

A

After n steps we obtain a triangle A n such that

4) 1(z) dz	 " 4, f(z) dz	 (5)
l .A	 I

Now A, ., .,	 is a sequence of triangles each of which is contained in the preceding (i.e. a
sequence of nested triangles) and there exists a point z0 which lies in every triangle of the sequence.

Since z0 lies inside or on the boundary of ., it follows that f(z) is analytic at z 0 . Then by
Problem 21, Page 78,

1(z)	 =	 f(z) -I- f'(z0)(z—z0) + ,, (z—z0)
	

(6)

where for	 0 we can find 6 such that I'll < e whenever z - z0 < 5.

Thus by integration of both sides of (6) and using Problem 12,

4) f(z)dz =
	

(7)

Now if P is the perimeter of ., then the perimeter of An is P = P12".

If z is any point on ., then as seen from Fig. 4-12 we must have
z - Z1) I < P12" < 5. hence from (7) and Property 5, Page 93 we have

4 f(z)dz	 =	 4)' ,i(z—zo)dz	
<	 • PP = il'2	

A,,

Then (5) becomes
Fig. 4-13

f(z) dz	 < 4fl.

Since can be made arbitrarily small it follows that, as required,

f(z)dz = 0

14. Prove the Cauchy-Goursat theorem for any closed
polygon.

Consider for example a closed polygon ABCDEPA such

as indicated in Fig. 4-14. By constructing the lines B?,

CF and DF the polygon is subdivided into triangles. Then
by Cauchy's theorem for triangles [Problem 131 and the
fact that the integrals along B? and PB, CF and FC, DF

and PD cancel, we find as required

f f(z)d. = 1f(z) d. +

ABCDEFA	 ABFA	 BCFB

+	 +	 ff(z)dz
,'rr	 DEFD

= 0

a—

D

\	 -s

-

/

F

Fig. 4-14
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where we suppose that 1(z) is analytic inside and on the polygon.

It should be noted that we have proved the result for simple polygons whose sides do not cross.
A proof can also be given for any polygon which intersects itself (see Problem 66).

15. Prove the Cauchy-Goursat theorem for any
simple closed curve.

Let us assume that C is contained in a regionc 
'N in which /(x) is analytic.

Choose n points of subdivision '1,22, ... Z. on

	

-	 -•	 .	 -

curve C[Fig 415[ where for convenience of noa	 /
tion we consider	 z,, Construct polygon P by
joining these points.	 M.;

Let us define the sum

12k ) -%Zk

where AZk =	 - Zk_1. Since

jim S,, =	 f(z) dx	
Fig. 4-15

[where the limit on the left means that n -	 in such a way that the largest of Iz,j -. 01, it follows
that given any > 0 we can choose N so that for n > N

- Sn <	 —	 (1)

Consider now the integral along polygon P. Since this is zero by Problem 14, we have

1"	 1. •

	

f(z) dx = 0 = J f(z) dx + J 1(z) dx +	 + J	 f(z) dx
P	 20	 2,

=

 J
(f(z) - f(z) + f(z,)} dx +	 . . + J	 {f(z) - f(z) + 1(Zn)} dx

20

	

r t '	 p2,

	

= J	 (f(z) - f(z 1 )} dx +	 .	
+ )	

{f(z) --- f(x,)} dx + S
to

so that

	

pZj	 rt
Sn	 = J	 (f(z,) - 1(z)) dz + 	A- 	 - f(z)) dz	 (2)

	

Zn	
• tn—I

Let us now choose N so large that on the lines joining zo and 21, z and 
Z2,	

zn — I and z,

I AZ  - 1(z) I < !L. , I f(z) - f(z) < fr
,.., I f() - f(z) I <	 ( 3)

where L is the length of C. Then from (2) and (3) we have

IS	 f
or	

{f(z,) - /(z)) dx +
	

(1(22) - f(z)} dx + ... 
+	 f	 1(z)) dz

IS,I(1z1 — x01 + 1z2 — .Z l $ + .-. -	 z-z_,I)	 =	 -	 ( 4)	2L	 2

From
f(z)dz = 5f(z)dz - S, + S

we have, using (1) and (4),

	

J 5 1(z) dx I	 /(z)dz — S, + ls) <	 4-	 =

Thus since is arbitrary, it follows that 
5 

1(z) dz = 0 as required.
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16. Prove the Cauchy-Goursat theorem for multiply-connected regions.
We shall present a proof for the multiply-

connected region 'R bounded by the simple closed
curves C1 and C2 as indicated in Fig. 4-16. Exten-
sions to other multiply-connected regions are easily
made (see Problem 67).

Construct cross-cut All. Then the region bounded
by ABDEFGAHJIHA is simply-connected so that by
Problem 15,

	

5	 f(z) dz = 0

	

ABDEFGAHJIHA	 Fig. 4.16

Hence	 f f(z) dx + f /(z) dx + 51( z) dx + 5 f(s) dx = 0

	

ADDCFGA	 All	 HJIH	 HA

Since	 1(z) 
dx = -f 

1(z) dz, this becomes
AU 

5 f(z) dz + 5 f(s) dz =

	

A8DEGA	 HJUI
This however amounts to saying that

5 1(z)dz = 0

where C i the complete boundary of 'I (consisting of ABDEFGA and H/Ill) traversed in the sense
th a/bserver walking on the boundary always has the region 'k on his left.

EQUENCES OF CAUCHY'S THEOREM

If 1(z) is analytic in a simply-connected region 'R, prove that
J f(z) dz is independent

of the path in joining any two points a and b in '1(.
By Cauchy's theorem,

f
f(z)dz = 0

	

ADBEA	 8

or	 f f(z) dx + 5 1(z) dx = 0	 C1	 b

Hence	
ADS	 BEA	

A

5 1(z) dz = - 51(z) dz = 51(z) dz	 a
	 C2

APB	 SEA	 AEB
Thus

	
E

5 f(z) dx = 5 f(z) dx 
= fb 

f(z) dz	 _______ ________________________________

which yields the required result.

Fig. 4-17

	

18. Let f(z) be analytic in 	 simply-connected region 'R. and let a and z be points in 'Ii.
Prove that (a) F(z) = 5 1(u) du is analytic in '1 and (b) Fl(z) = f(z).

We have

	

F(z+ Az) — F(z) - 1(z) = 	 As /(u) du - f f(u)du} - f(z)

I + Al

(1(u) — f(z)J du	 (1)
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By Cauchy's theorem, the last integral I. inde-
pendent of the path joining z and z + As so long
as the path is in '. In particular we can choose
as path the straight line segment joining z and
z + Az (see Fig. 4-18) provided we choose IzI small
enough so that this path lies in 'It.

Now by the continuity of 1(z) we have for all
points u on this straight line path I 1(u) - 1(z)] < i
whenever I u - z I < 8, which will certainly be
true if jtzI < S.

Furthermore, we have

51 + St

[1(u) - 1(z)] du	 <	 IzI	 (2)

so that from (1)

Fig. 448

P(z + z) - F(z) -	
1 + .Xf(z)	 If	 [1(u) - 1(z)] du I <

for JA zJ < S. This, however, amounts to saying that lim F'(Z + z) - P(z) = f(z), i.e. F(z) is ana-
lytic and F'(z) = 1(z).

19. A function F(z) such that P(z) = 1(z) is called an indefinite integral of 1(z) and is
denoted by 5 f(z)dz. Show that (a) 5 sin zdz = —cosz + c, (b) 5 = lnz + c
where c is an arbitrary constant.

(a) Since d—(—cost + c) = sin z, we ave f sin  dx = —cost + c.dz

	

d	 1	 have fdz(b) Since •—(lnz+c) = -, we	 - = lnz+c.

	

Cli	 Z	 Z

be analytic in a region	 bounded
by two simple closed curves C1 and C2

ft

(shaded in Fig. 4-19] and also on Cj and C2.
D

Prove that 5 1(z) dz = 5 1(z) dz, where
Cl	Cl

C1 and C2 are both traversed in the positive
sense relative to their interiors [counter- 	 Hclockwise in Fig. 4-191.	 j

Construct cross-cut DE. Then since 1(z) is ana-
lytic in the region 'R, we have by Cauchy's theorem	 Fig. 4-19

5	 f(z)dz = 0
DEFGEDHJKLD

or	 1(z) dx + f f(.) d. + 5 1(.)d. + f 1(z) dz = 0
LE	 EFGE	 ED	 DHJKLD

Hence since f 1(z) di =	 1(z) dx,
DE	 ED

f1(z) dz = - f 1(z) dx = f 1(z) dz	 or	 5 1(z) dx = 5 )'(z) dx

	

0:11MM	 EFGE
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Evaluate	 dz where C is any simple closed curve C and z = a isf
(b) inside C.	 C

(a) If a is outside C, then f(z) = 1/(z - a) is analytic every-
where inside and on C. Hence by Cauchy's theorem,

dz 
= 0.

z - a

(b) Suppose a is inside C and let r be a circle of radius c with
centre at z = a. so that I' is inside C [this can be done since
z =a is an interior point].

By Problem 20,
F'

(a) outside C,

•	 41 ---=	 -	 (-I)
	 Fig. 4-20

2—a	 Z—a

Now onr, Iz — aI = e or z — a	 i.e. 2	 a+e 18, 08<27. Thus since dz = ie&0d8,
the right side of (I) becomes

f1. e 10 do	 .2.
= t	 do = 2t

_ 0 .e

which is the required value.

dz*/Evaluate 
§ (z —a), n 

= 2,3,4, . . . where z a is inside the simple closed curve C.

As in Problem 21,

where it a 1.

ç 
dz = 5 dz

• (z—a)"	 . (z —a)"

2,r
- L 0

-	 I

0'9 do

(1— n)i	 = (1— ) "' 
[ e2(1  ) —1] = 0

23. If C is the curve y = x3 - 3x 2 + 4x - 1 joining points (1, 1) and (2, 3), find the
value of

5 (12z - 4iz)

Method 1. By Problem 17, the integral is independent of the path joining (1, 1) and (2, 3). Hence
any path can be chosen. In particular let us choose the straight line paths from (1, 1) to (2,1) and
then from (2,1) to (2, 3).

Case I. Along the path from (1,1) to (2, 1), y = 1, dy = 0 so that z = x + iy = x + i, dx = dx.
Then the integral equals

p

	

J	 {12(x + i)2 - 41(x + I)) dx = {4(x + j)3 - 2i(x + )2} 2 = 20 + 301
2 =2 1 	 I

Case 2. Along the path from (2,1) to (2, 3), x2, dx=0 so that z = x+ iy = 2-fly, dz = idy.
Then the integral equals

	

J

3
(l2(2l-iy) - 4i(2+iy))idy = {4(2+iy) 3 - 21(2+iy)2)	 = —176 + 8i

	

v1	 I

Then adding, the required value = (20 + 30i) + (-176 + 81) = —156 + 381.

Method 2. The given integral equals
f2+31	 2+31

(12z 2 - 4iz) dz = (4z3 - 2iz2)	 = —156 + 381
+l	 1+1

It is clear that Method 2 is easier.
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INTEGRALS OF SPECIAL FUNCTIONS

24. Determine (a) 5 sin 3z cos 3z dz, (0) 5 cot (2z + 5) dz.

(a) Method 1. Let sin 3x = u. Then du = 3 cos 3z dx or cos 3z dx = du/3. Then

C	 1	 du	 1 1
3 sin 3z cos 3z dx = J U T =	 3' u du = -	 +

= 6u2 + c =	 .sifl23Z + C

Method 2.
sin 3z cos 3z dx = 	 in 3z d(sin 3z) =	 - sin2 3z + C

Method 3. Let cos 3z = u. Then du = - 3 sin 3z dz or sin 3z dx = - du/3. Then

	

sin 3z cos 3z dx = - J u du = - U2 + o f 	- - cos2 3z + a1

Note that the results of Methods I and 2 differ by a constant.

(b) Method I.
C cos(2z4-5)

	

(	 )
	cot (2z + 5) dx =	 dx

Let u = sin (2z + 5). Then du = 2 cos (2z + 5) dx and cos (2z + 5) dx = du/2. Thus

	

C cos (2z + 5) dx	 1 C du	 1	 1
3 sin (2: + 5)	 = 2 3 -- =	

In u -I- c =	 In sin (2: + 5) + a

Method 2.
C cos (2: + 5)	 1 C d(sin (2: + 5))

	

cot (2: + 5) dx =	 i	 - dx = -
j	 sin (2x + 5)	 2 j sin (2: + 5)

	

=	 In sin (2: + 5) + C

25. (a) Prove that 5 F(z) G'(z) dz = F(z) G(z) - 5 F 1(z) G(z) dz.

(b) Find	 ze2:dz and 5 ze2dz.

(c) Find 5 Z2 sin 4z dz and 
f2. 

z2 sin 4z dz.

(d) Evaluate	 (z + 2)ei: dz along the parabola C defined by 7r2y = x2 from (0,0)
to (7r,1).

(a) We have

	

d (F(z) G(x))	 =	 F(z) G'(z) dx + F'(x) G(z) dx

Integrating both sides yields

f d {F(z) G(z)} = F(z) G(z) = f F(z) G'(x) di + J F'(x) G(z) dx

Then

-ç
 

F(z) G'(z) di = F(z) G(x) - 5 F'(z) G(z) di

The method is often called integration by part8.

(b) Let F(z) = z, G'(z) = e 2 . Then F"(z) = 1 and G(z) = Jell,omitting the constant of integration.
Thus by part (a),

J ze2 dx = J F(z) G'(z) dx = F(z) G(z) - J F"(z) G(x) dx

	

= (z)(c2) - f 1	 edz = J ZC21- Jell + 0
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j. 1	 I
Hence	 J ze2 dz = (4ze25 -	 + c)	 = 3e2	 + I = (g2 4 1)

0	 0

(c) Integrating by parts choosing F(z) = 22, G'(z) = Bin 4: we have

fz in 4: dx =	 con 4:) - f (2,)(-1 cos 4:) dz

= -	 cos 4* + f z cos 4: dx

Integrating this last integral by parts, this time choosing F(z) = z and G'(z) = cos 4:, we find

	

fz cos 4* dz = (z)(1 sin 4:) - f (I)Q Bin 4:) dz =	 z sin 4: + A cos 4:

Hence	 f Z2 sin4z dz =	 cos 4: + jz sin 4: +	 cos 42 + c

and	 5 z	 ...	sin 4: dx =	 72 +	 -	 =
0

The double integration by parts can be indicated in a suggestive manner by writing

5 Z2 sin 4: dx = (z2)(__i COB 4:) - (2z)(i' Bin 4:) + (2)(4 COB 4z) + c
= _JZ2 cos 4: + jz sin 4: + A cos 4*

where the first parentheses in each term [after the first] is obtained by differentiating :2 suc-
cessively, the second parentheses is obtained by integrating sin 4: successively, and the terms
alternate in sign.

(d) The points (0,0) and (, 1) correspond to z = 0 and z	 : + i. Since (z + 2)e1z is analytic, we
see by Problem 17 that the integral is independent of the path and is equal to

(z+2)&dz = {(z+2)5	 (_) - (1)(_eIs)} L
2= (w+i+2)ç	

) + 
e1	- 1

	

= —2e	 - 1 + i(2 + re' + 2e)

_____	 1 /z — ai
 a 	Tai

dz _1 26. Show that S 2 + a2	 tan-	 + c 1	 III 	 ai) + 2.

Let z = a tan u. Then

f
dx	

5 
a sect  du	 = i f du = !tan_I . . + c1*2 + a2 -	 a2(tan2 u + 1)	 a •	 a	 a

1	 1	 if 1	 1 \
Also,	 *2 + a2 = (z - ai)(x + aj) = 2ai z — ai z+ai)

f
dx

	

	 1 fdz	 1 e dx
and so	 z2 + a2 =	 z - at	 Jz V7

1	 1	 1	 (z_ai)

	

='^_ai ln(:—ai) - —ln(z+ai) + c2 = 	 In	 . + c22tn	 z-1-at

MISCELLANEOUS PROBLEMS

27. Prove Morera's theorem (Page 951 under the assumption that 1(z) has a continuous
derivative in 'R.

If 1(z) has a continuous derivative in 'R,, then we can apply Green's theorem to obtain

5 f(.) d: 
= 5 u dx - v dy + i v dx + u dy

if dx dv + iff ( - dx
^dX
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Then if f /(z) dz = 0 around every closed path C in 9, we must have

	

fc udx — vdy = 0,	 vdx+udy = 0

around every closed path C in '1. Hence from Problem 8, the Cauchy-Riemann equations
au_av	 au
ax	 a'	 ax	 ay

are satisfied and thus [since these partial derivatives are continuous] it follows [Problem 5, Chapter 3]
that u + iv = f(z) is analytic.

28. A force field is given by F = 3z + 5. Find the work done in moving an object in this
force field along the parabola z = t2 + it from z = 0 to z = 4 + 2i.

Total work done = J F 0 dz = Ref Pd. = Re{ f(31 + 5)dz}

Re{3f idz + 5f dz} = Re{3(l0—i) + 5(4+2i)) = 50

using the result of Problem 2.

29. Find- (a) J' e° sin bx dx, (b) 5 e cos bx dx.

Omitting the constant of integration, we have

dx =f
which can be written

f e(cos bx + i sin bx) dx	 e(cos bx + i sin bx) = e(cos bx + i sin bx)(a - ib)
a+ib	 a2+b2

Then equating real and imaginary parts,

e cosbx dx = e°(a co!_b + b sin bx)J a2 + b2

S ex sin bx dx

	

	 e(a sin bx - b cos bx).
a2 + b2

30. Give an example of a continuous, closed, non-intersecting curve which lies in a bounded
region '1 but which has an infinite length.

Consider equilateral triangle ABC [Fig. 4-211 with sides of unit length. By trisecting each side,
construct equilateral triangles DEF, GHJ and KLM.. Then omitting sides DF, GJ and KM, we obtain
the closed non-intersecting curve ADEF'BGHJCKLMA of Fig. 4-22.

 a+ib

L

Fig. 4-21	 Fig. 4-22



Fig. 4-23
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The process can now be continued by trisecting aides
DE, EF, PB, HG, Gil, et-., and constructing equ lateral
triangles as before. By repeating the process indefinitely
[see Fig. 4-231 we obtain a continuous closed non-inter-
secting curve which is the boundary of a region with
finite area equal to

+ (3)(	 + (9)()2	 + (27)(4)2 VF3 +

-	 (1 + + 4-
-	 4	 3	 9	 -	 4 I 1/3 -	 8

or 1.5 times the area of triangle ABC, and which has
infinite length (see Problem 91).

31. Let F(x, y) and G(x,y) be continuous and have continuous first and second partial
derivatives in a simply-connected region ' bounded by a simple closed curve C.
Prove that

	

 32G if(;	 aF aG a? aG\ 1§ faG	 aGd\

	

F-dx	 y\	 ) - - SS[ F 
c-a 

+ y2)	 (x aX a!, ay
+ --+----Hdxdy

Let I' = F ')G' Q	 -b'--- iii Green's theorem

	

at,	 ax

	

Pdx + Qdy = fJ ( -	 dxdy

Then as required	 'it

Ff (at, - _d) = ff ( {_l - -axJ	 a,,1

	

ff [
faG a2G'\	 /ap aG= -

CR'

Supplementary Problems
LINE INTEGRALS

(2.5)
32. Evaluate	 (3x + y) d + (2y - x) dy along (a) the curve y	 x2 + 1, (b) the straight line

(0. I)

joining (0, 1) and (2, 5), (c) the straight lines from (0,1) to (0,5) and then from (0,5) to (2, 5), (d) the
straight lines from (0,1) to (2,1) and then from (2,1) to (2,5).
Ana. (a) 88/3, (b) 32, (c) 40, (d) 24

33. (a) Evaluate 5 (x + 2y) dx + (y - 2x) dy around the ellipse C defined by x = 4 cos 8, y = 3 sin 8,

0 8 < 2w if C is described in a counterclockwise direction. (b) What is the answer to (a) if C is
described in a clockwise direction? 	 Ans. (a) -48w, (b) 48w

34. Evaluate 5 (x2 - jy2) dz along (a) the parabola y = 2x2 from (1,1) to (2,13), (b) the straight lines

from (1,1) to (1,8) and then from (1,8) to (2, 8), (c) the straight line from (1,1) to (2, 8).

Ann. (a) 51 1 - 13 i, (b) Did - 57i, (c) AP - 8i

35. Evaluate 5 z 2 dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1). 	 Ass. -1 +
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36. Evaluate 5 (z + 3z) dz along (a) the circle IzI = 2 from (2,0) to (0,2) in a counterclockwise

direction, (b) the straight line from (2,0) to (0, 2), (c) the straight lines from (2,0) to (2,2) and then

from (2,2) to (0, 2).	 Ans. -V - i for al.. cases

37. If 1(z) and y(z) are integrable, prove that

(a)f 1(z) dx = - f f(s) dx

(b)5 (21(z) - 3i g(z)) dx = 25 f(z) dx - 3if g(z) dz.

38. Evaluate	 (3xy + iyz) dx (a) along the straight line joining z = i and z	 2—i, (b) along

the curve x = 2t-2, y = 1+t—t.	 Ans. (a) —4+i, (b)

39. Evaluate 5 l dz around the circles (a) z[ = 1, (6) Ix - 11 = 1.	 Ans. (a) 0, (6) 4iri

40. Evaluate 5 (5z4 - z3 + 2) dx around (a) the circle Izi 1, (b) the square with vertices at (0, 0),

(1, 0), (1,1) and (1, 0). (c) the curve consisting of the parabolae y = X2 from (0,0) to (1,1) and y2 = a
from (1,1) to (0, 0).	 Ana. 0 in all cases

41. Evaluate 5 ( z2 + 1)2 dx along the are of Liae cycloid a = a(6 - sin e), y = a(1 - cos o) from the

point where e = 0 to the point where 8 = 2a. 	 Ana. (96ir5a5 + 800 + 30ira)/15

42. Evaluate 5 z 2 dx + z2 di along the curve C defined by z2 + 2z2 + 12 = (2 - 2i)z + (2 + 201 from

the point z 1 to z = 2 + 2t.	 Ans. 248/16

43. Evaluate 5 -- around (a.) the circle Ix-21	 4, (b) the circle Iz -	 = fi, (c) the square with

vertices at 2 ± 2i, —2 ± 2i.	 Ans. 2ri in all cases

44. Evaluate(a2 + iy2) ds around the circle Izi = 2 where 8 S the arc length.	 An8. 8r(l + i)

GREEN'S THEOREM IN THE PLANE

45. Verify Green's theorem in the plane for 5 (a2 - 2xy) dx + (y2 - x3y) dy where C is a square with

vertices at (0, 0), (2, 0), (2, 2), (0, 2).	 Ana. common value = —8

46. Evaluate	 (5x + Gy —3) dx + (3x - 'ly + 2) dy around a triangle in the zy plane with vertices at

(0, 0), (4,0) and t, 3).	 Ana. —18

47. Let C be any simple closed curve bounding a region having
area A. Prove that

A =	 fxdy — vdx

48. Use the result of Problem 47 to find the area bounded by the
ellipse a = a cos e, y = b sin e, 08<2r.	 Ans. ira.b

49. Find the area bounded by the hypocycloid X2/3+ y2'3 = a213
shown shaded in Fig. 4-24. [Hint. Parametric equations are
a = acos8, y = asin 3 $, 0<2s.]	 Ans. 3ra218
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50. Verify Green's theorem in the plane for 	 xy dx + (y3 - xy2) dy where C is the boundary of the

region enclosed by the circles x 2 + y2 = 4, x' I y2 = 16.	 An.. common value = 120

51. (a) Prove that	 (y2 coax - 2e w) dx + (2y sin x - 2xeV) dy = 0 around any simple closed curve C.

(b) Evaluate the integral in (a) along the parabola y = x 2 from (0,0) to (r, ,,2). 	 Ann. (b) —2re"

3.2)

52. (a) Show that I 	(2xy3 - 2y2 - 6y) dx + (3x 2y2 - dxy - 6x) dy is independent of the path joining
.1(2. I)

points (2, 1) and (3, 2). (b) Evaluate the integral in (a).	 An.. (b) 24

COMPLEX FORM OF GREEN'S THEOREM

53. If C is a simple closed curve enclosing a region of area A, prove that A = -	 I dz.
2i f

54. Evaluate	 I dx around (a) the circle Iz - 21 = 3, (b) the square with vertices at z = 0, 2, 2i

and 2 + 2i, (c) the ellipse Ix - 31 + Ix + 31 = 10.	 An8. (a) 18,ri, (b) 8i, (c) 40ri

55. Evaluate 5 (81 + 3z) dz around the hypocycloid x213 + y213 = 4213 .	 Ans. 6ria2

56, Let P(z, I) and Q(z, I) be continuous and have continuous partial derivatives in a region 'J and on
its boundary C. Prove that

5 P(x, z) dx + Q(z, z) dI = Zi ff ( -
57. Show that the area in Problem 53 can be written in the form A =	 I dx - z di.

4 Jr

58. Show that the centroid of the region of Problem 53 is given in conjugate coordinates by (, *) where

I	 I'-	 '	 I	 f-

	

2 = - ---- (T z 2 1z	 2 = --	 (t( z2 dZ
4Ai.jc	 4fl'Jc

59. Find the centroid of the region bounded above by lxi = a > 0 and below by Im z = 0.

Ang. S = 2ai/r, = —2ai/r

CAUCHY'S THEOREM AND THE CAUCHY-GOURSAT THEOREM

60. Verify Cauchy's theorem for the functions (a) 3z2 + ix —4, (b) 5 sin 2z, (c) 3 cosh (z + 2) if C is

the square with vertices at 1 ± i, —1 ± i.

61. Verify Cauchy's theorem for the function z - ex2 - 5z + 2i if C is (a) the circle lxi = j, (b) the circle

Iz-	 = 2, (c) the ellipse ix - 3i1 + [x + . 3i[ = 20.

62. If C is the circle Iz - 2	 5, determine whether' ---- = 0. (b) Does your answer to (a) contra-dz

diet Cauchy's theorem?	 C 2

63. Explain clearly the relationsnip between the observations

5 (x2 - y2 - 2y) dx + (2x - 2xy) dy = 0	 and	 (z2 - 2iz) dx = 0

where C is any simple closed curve.

64. By evaluating 5 edz around the circle lxi = 1, show that

5 	 cos (e + sin a) do = 5 e° ° sin (a + sin a) do = 0
0	 0

65. State and prove Cauchy's theorem for multiply-connected regions.
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66. Prove the Cauchy-Goursat theorem for a polygon, such as ABCDEFGA shown in Fig. 4-25, which
may intersect itself.

67. Prove the Cauchy-Goursat theorem for the multiply-connected region 'N shown shaded in Fig. 4-26.

Fig. 4.25	 Fig. 4-26

68. (a) Prove the Cauchy-Goursat theorem for a rectangle and (b) show how the result of (a) can be used
to prove the theorem for any simple closed curve C.

69. Let P and Q be continuous and have continuous first partial derivatives in a region 'N . Let C be
any simple closed curve in 'N and suppose that for any such curve

' Pdx+Qdy = 0

(a) Prove that there exists an analytic function f(z) such that Re (f(z)dz) = Pdx + Qdy is an
exact differential.

(b) Determine p and q in terms of P and Q such that Im (1(z) dz) = p dx + q dy and verify that

5 pdx -4- qdy = 0.

(c) Discuss the Connection between (a) and (b) and Cauchy's theorem.

70. lilustrute the results of Problem 69 if I'	 2x f y - 2xy, Q	 x - 2y - x2 1- y2 by finding p, q
and f(z).	 Ana. One possibility is p = x2 —y2 +2y—x, q	 2x+y-2xy, 1(z) = i.z2+(2—i)z.

71. Let P and Q be continuous and have continuous partial derivatives in a region 'N. Suppose that for

any simple closed curve C in 'N we have I' dx + Q dy = 0. (a) Prove that Q dx - P dy 0.

(b) Discuss the relationship of (a) with Cauchy's theorem.

CONSEQUENCES OF CAUCHY'S THEOREM

72. Show directly that 
f4-31

 (6z2 + 8iz) dz has the same value along the following paths C joining
"3 

+41the points 3 + 41 and 4 —31: (a) a straight line, (b) the straight lines from 3 + 41 to 4 + 4i and
then from 4 + 41 to 4 - 3i, (c) the circle IzI = 5. Determine this value. 	 An.. 238— 2661

73. Show that f e2zdz is independent of the path C joining the points I - rI and 2 + 3r1 and

determine its value. 	 An.. 4c 2(1 - e2)

2	 .	 -
74. Given G(z) = f	 cos3 d.	 (a) Prove that G(z) is independent of the path joining - i and

the arbitrary point X. (5) Determine Gfri).	 (c) Prove that G'(z)	 cos 3z.	 An.. (5) 0

75. Given G(z) 
=	 sin d.	 (a) Prove that G(z) is an analytic function of z.	 (5) Prove that

G'(z)	 sin z2	 -

76. State and prove a theorem corresponding to (a) Problem 17, (b) Problem 18, (a) Problem 20 for the

real line integral 5 Pdx + Qdy.
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77. Prove Theorem 5, Page 97 for the region of Fig. 4-26.

78. (a) If C is the circle Izi = R, show that

	

lim	 z2+2x-5	 dx = 0
R-.. Jc (x2+4)(z2+2z+2)

(b) Use the result of (a) to deduce that if C is the circle Iz - 21 = 6, then

	

'	 z+2z-6	
dx - 0

	

Jc,(z2+4)( 22 +2z+2)	 -

(a) Is the result in (b) true if C 1 is the circle Iz + l( = 2? Explain.

INTEGRALS OF SPECIAL FUNCTIONS
79. Find each of the following integrals:

J(a) f a - 2	 z2+1dx, 	(b) j z sin 22 dx, 	(c)	
+	

+ 2 ' (d) J sin' 2z cos 2x dx

	

Ans. (a) —e 2 + a	 (a)	 In (z + 3z + 2) + a
(e) f z2 tanh (4z3) dx	

(b) -	 2 +	 (d)	 sin5 2x + a	
in cosh (4z) + a

80. Find each of the following integrals:

(a)	 z cos 2: d,	 (h)	 z2 e 5 dx,	 (c) f z In z dx,	 (d)	 z3 sinh z dz.

Ans. (a) 4z sin 2z+ J Cos 2z+c	 (a) 4z 2 Inz— J +c

(b) —e(x2 -1-2z+2) + c .	 (d) (z3 4-6z) cosh z - 3(z2 +2)sinhz -1 a

81. Evaluate each of the following:

(a))
	

e3 dx,	 (b)	 sinh 5: dx,	 (a) j	 z cos 2x dz.
'0

Ans. (a) 2/3, (5) —2/5, (a) j cosh 2 - 4 sinh 2 + 4ri sinh 2

82. Show that 
J	

sin2: dx = j	
c032 z dx = ,r14.

83. Show that	
dx	

= - ln() +	 = i coth	 + c5.
Z2 a2 2a \x+a	 a	 a

84. Show that if we restrict, ourselves to the same branch of the square root,

Jz"/2z + 5 dx =(2: + 5)5/2 - (2: + 5)3'2 + a

85. Evaluate	 dx, stating conditions under which your result is valid.

Ans. (1 + cT i )512 - (1 + ,/ Ti )3/2 + c

MISCELLANEOUS PROBLEMS
86. Use the definition of an integral to prove that along any arbitrary path joining points a and 6,

(a) f

b	 b

d., = b - a,	 (b) 5 zdz = 4(152-0).

87. Prove the theorem concerning change of variables on Page 93.
[Hint. Express each side as two real line integrals and use the Cauchy-Riemann equations.)

88. Let u(x, y) be harmonic and have continuous derivatives, of order two at least, in a region 'Ii.
(a.) Show that an	 an

	

v(x,y) =	 ——dx + —dy
X

is independent of the path in 'k joining (a, b) to (x, y).

(b) Prove that a + iv is an analytic function of z = x + iy in 'k.

(a) Prove that v is harmonic in 'it.
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89. Work Problem 88 for the special cases (a) u = 3x2 y -4- 2x 2 - y3 - 2y2, (b) it = xer cos y - yer sin ,.
[See Problems 53(a) and (c), Page 85.1

90. Using the definition of an integral, verify directly that

(a) çd2 = O	 (b) 5zdz = 0,	 (c) f
,

(z—z 1)dz = 0

where C is a simple closed curve and z0 is any constant.

91. Find the length of the closed curve of Problem 30 after n steps and verify that as i, 	 the length
of the curve becomes infinite.

92. Evaluate j	 -	
along the line x + p = I in the direction of increasing x. 	 A n..

93. Show that çxe sin x dx =

94. Evaluate	
2 + 2 /i I z"

2 dz along a straight line path if we choose that branch of z 12 such that
2Vi

	

Z1/2=1  for z = 1.	 Ans. 32/3

95. Does Cauchy's theorem hold for the function f(z) = 1/2 where C is the circle ]z	 1? Explain.

96. Does Cauchy's theorem hold for a curve, such as
EF'GHFJE in Fig. 4-27, which intersects itself?
Justify your answer.

97. If it is the direction of the outward drawn normal
to a simple closed curve C. s is the are length
parameter and U is any continuously differentiable
function, prove that

L1 - a  (1X + au dy
On - axds	 ayds Fig. 4-27

98. Prove Green's first identity,

ff U V 2 V dx dy + ff (i + u av\ dxdy =	 U
TX	

--1
x	 ay ay	 can

'R.
2	 ,2
+ -, while a and s arewhere 'i is the region bounded by the simple closed curve C, V2 =

as in Problem 97.

99. Use Problem 98 to prove Green's second identity

Jj (UV2VVV2U)dA =
an	 an

where dA is an element of area of R.

100. Write the result of Problem31 in terms of the operator V.

-	 dz
101. Evaluate	 + 2 + 2 around the unit circle Izi = 1 starting with z = 1, assuming the

Fz2

integrand positive for this value.

102. If a is a positive integer, show that
r2

J
e°' " cos (0 - cos no) do = J e 1" "° sin (o - cos no) de = 0

0	 0


