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Chapter 5 1
Cauchy's Integral Formula.

and R.IatidTh.or.ms

CAUCHY'S INTEGRAL FORMULAE
If 1(z) is analytic inside and on a simple closed curve C and a is any point inside C

[Fig. 5-1], then
1(a) = -- $ J- 51 dz	 (1)

2irZ cZa

where C is traversed in the positive (counterclockwise) sense.
Also the nth derivative of 1(z) at z = a is given by

n r (Iz=	 " '	 dz	 n = 1,2,3....
2irt Jc (z—a)'"'

(2)

The result (1) can be considered a special case of (2)
with n=O if we define 0! = 1.

The results (1) and (2) are called Cauchy's inte-
gral formulae and are quite remarkable because they
show that if a function 1(z) is known on the simple
closed curve C then the values of the function and
all its derivatives can be found at all points inside C.
Thus if a function of a complex variable has a first
derivative, i.e. is analytic, in a simply-connected re-
gion 'R., all its higher derivatives exist in 'Ri. This is
not necessarily true for functions of real variables.

SOME IMPORTANT THEOREMS
The following is a list of some important theorems which are consequences of Cauchy's

integral formulae.

1. Morera's theorem (converse of Cauchy's theorem).
If 1(z) is continuous in a simply-connected region R, and if § 1(z) dz = o

around every simple closed curve C in 9, then 1(z) is analytic in CR.

2. Cauchy's inequality.
If f(z) is analytic inside and on a circle C of radius r and centre at z =a,

then	
If(a)I	 M•n!	

n = 0,1,2,...	 (3)

where M is a constant such that I1(z)I <M on C, i.e. M is an upper bound of
I1(z)I on C.
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3. Liouville's theorem.
Suppose that for all z in the entire complex plane, (i) 1(z) is analytic and

(ii) 1(z) is bounded, i.e. f(z)I < M for some constant M. Then 1(z) must be a
constant.

4. Fundamental theorem of algebra.
Every polynomial equation P(z) = a0 + a1z + az2 +	 + az"	 0 with

degree n ^ 1 and a	 0 has at least one root.
From this it follows that P(z) = 0 has exactly n roots, due attention being

paid to multiplicities of roots.

5. Gauss' mean value theorem.
If 1(z) is analytic 'nside and on a circle C with centre at a and radius r,

then 1(a) is the mean of the values of 1(z) on C, i.e.,

1C2•
1(a) = - j f(a + re 8) de	 (4)r	 0

6. Maximum modulus theorem.
If 1(z) is analytic inside and on a simple closed curve C and is not identically

equal to a constant, then the maximum value of f(z)I occurs on C.

7. Minimum modulus theorem.

If 1(z) is analytic inside and on a simple closed curve C and 1(z) 0 inside C,
then f(z)I assumes its minimum value on C.

8. The argument theorem.
Let 1(z) be analytic inside and on a simple closed curve C except for a finite

number of poles inside C. Then

J5Ldz	 N 	 (5)27r	 c 1(z)

where N and P are respectively the number of zeros and poles of 1(z) inside C.

For a generalization of this theorem see Problem 90.

9. Rouch's theorem.
If 1(z) and g(z) are analytic inside and on a simple closed curve C and if

g(z) < 1(z)! on C, then 1(z) + g(z) and 1(z) have the same number of zeros inside C.

10. Poisson's integral formulas for a circle.
Let 1(z) be analytic inside and on the circle C defined by ki = R. Then if

z = r&° is any point inside C, we have

(R2 - r2) f(Ret)	 d	 (6/ -- 27r Jo

	

	 4'R2 - 2Rr cos (8 — ç) + r2 

If u(r, 0) and v(r, 0) are the real and imaginary parts of f(r&°) while u(R, s)
and v(R,4') are the real and imaginary parts of f(Re"), then

1	 (J?2 -r2)u(R,)	 (7)u(r, 0) -	 - 2Rr cos (0 -o) + r2

(R2-r2)v(R,)v(r,0) = 2,r	 R2 - 2Rr cos (Q—) + 71 d4'
	 (8)
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These results are called Poisson's integral formulas for a circle. They

express the values of a harmonic function inside a circle in terms of its values

on the boundary.

ii. Poisson's integral formulae for a half plane

Let 1(z) be analytic in the upper half y 0 of the z plane and let L = + i,
be any point in this upper half plane. Then

1(C) =	
dx	 (9)

ir

In terms of the real and imaginary parts of 1(C) this can be written

u(E,'7 )	 = if	 u( x , O)dt	 (10)- ____
r

v(,V) =5_dx:(X_)2+2 	
(11)

These are called Poisson's integral formulae for a half plane. They express

the values of a harmonic function in the upper half plane in terms of the values

on the x axis [the boundary] of the half plane.

Solved Problems

(IY'S N1'EGRAL FORMULAE

f(z) )"analytic inside and on the boundary C of a simply-connected region	 prove

integral formula

f(a) =
az — a

Method 1.

The function f(z)/(z - a) is analytic inside and on C
except at the point z = a. (see Fig. 5-2). By Theorem 4,

Page 97, we have

f(z) dz= 	 d., 	(1)
cz—a

where we can choose 1' as a circle of radius, with
centre at a. Then an equation for I' is 1. — al = e or
z - a = 08 where 0 o< 2w. Substituting z = a + e0,

dz = i,e, the integral on the right of (1) becomes

=j..2' 
f(a + , e u)) "° do

1z-a

= i	 f(a 4. e°) do
'.0

Y

Fig. 52
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Thus we have from (1),

4;
f(x)	

= if f(a + ell) do	 (2)

Taking the limit of both sides of (2) and making use of the continuity of f(z), we have

(lx =;
b02d1	 c') d8

=
 

ifurn f(a + c°) d8	 if 1(a) de = 2ri 1(a)	 (3)
0	 -O	 o

so that we have, as required,
=	 I	 f(z)

Method 2. The right side of equation (1) of Method 1 can be written as

-'---dz =	 1(z) -	 dx +	 --- dz
z—a

= 4; 1(z) - 1(a) dx + 2iri 1(a)
I.

using Problem 21, Chapter 4. The required result will follow if we can show that

I(z)—f(a)	
= 0

r z—a

But by Problem 21, Chapter 3,

iS 1 1(a) dz =	 f'(a) dx +	 , dx = 4; dx

Then choosing r so small that for all points on r we have s < 8/2r, we find

,,dz	 < (_)(21r) =

Thus 4; ,,dz = 0 and the proof is complete.

2. If 1(z) is analytic inside and on the boundary C of a simply-connected region 'k prove
that

f(a)	
•1	 1(z) dz
2rZ fc (z a)2

From Problem 1 if u •d a + h lie in ', we have

f(a + h.) - 1(o) 	 J	 1	 - _L_1. 1(z) d.--
	 C	 f(z) dx

h	 - 2zi Jc k	 - (a+ h) z - aJ	 - 2ri Jc (z - a - h)(z - a)

1	 f(z)dx + h	 1(z)dx
2rri .Yc (z— a)2	 2ri Jc (z - a - k)(z - a)2

The result follows on taking the limit as h -. 0 if we
can show that the last term approaches zero. 	 V

To show this we use the fact that if P is a circle
of radius and centre awhich lies entirely in '1
(See Fig. 5-3), then

f(z) dx
2ri Jc(z—a—h)(x—a)2

=	 f(z) dz
2ri J- (z - a— h)(z - a)2

Choosing h so small in absolute value that a+ h lies
in r and IhI < /2, we have by Problem 7(c), Chap-
ter 1, and the fact that I' has equation Iz - al =
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Is—a—hi	 iz—,3I -JAI > c - @/2	 .12

Also since ((z) is analytic In IR, we can find a positive number M such that I1( z)I < M.

Then since the length of I' is Zr., we have

Ih 4
;f(z)dz	 IhI M(2-.) = 21hIM

(z - a - h)(z - a) I	 2 (./2)(.2)

and it follows that the left side approaches zero as h -. 0, thus completing the proof.

It is of interest to observe that the result is equivalent to

-- dzf(a) = dfj £ 1Ld5 =
do	 da j2ri Jc 9 -0 J	 2rs J ao jz - cJ

which is an extension to contour integral. of Leibnifz's rule for differentiating under the integral sign.

3. Prove that under the conditions of Problem 2,

n! 5 1(z)
f°'(a) =	

;i	 (z_a)dhi	 n = 0,1,2,3,...

The cases where a = 0 and 1 follow from Problems 1 and 2 respectively provided we define
f(0)(a) = 1(a) and 0! = 1.

To establish the case where a 2, we use Problem 2 where a and a+ h lie in '7 to obtain

f'(a + h) - f'(o)	 _L 5 1-
	 1

h	 =	 c 
i f z - a - h)2 - (a - )2} f(s) dz

= 215f(s) dz + k5
2ri c(5—a)3 c (a - a - h)2(z - a)3

The result follows on taking the limit as h -, 0 If we can show that the last term approaches zero.
The proof is similar to that of Problem 2, for using the fact that the integral around C equals the
Integral around I', we have

Jh 5 	 3(z - a) - 2h f(s)	 hi M(2r.) 	4 hI 
M2wi(a - a - h)(z - a)3	2 (./2)2(.3)

Since M exists such that I (3(z - a) - 2h) f(s) I < M.

In a similar manner we can establish the result for a = 3, 4, ... (see Problems 36 and 37).

The result is equivalent to (see last paragraph of Problem 2)

d" 1 1 5 -'---dzl = - 5 " 1/(z) 1
f(a) =	 c a - a	 2	 c

4. If 1(z) is analytic in a region R, prove that f'(z), f"(z), ... are analytic in 'Ii.
Thi.Jollow( om Problems 2 and 3.

SIfl .0 + COB irZ2 d' 
Jc (z-1)(z-2)

(b) 5 (_ 	
dz where C is the circle JzI =

(a) Since1	 -	 L_	 1
we have

(z-1)(z-2) - z-2 z--i,
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sIfl2TZ2 + C08,rZ2 dz -	 sin 722 + CO5 r52 dz - C sinirz2 + COS T22 
dz(z-1)(z-2)	 z-2	 'c	 s - i

By Cauchy's integral formula with a = 2 and a = 1 respectively, we have

csin ,rZ2 + COS ,rZ2
z	 2	

dz = 2,ri{ein ,r(2)2 + cos ,r(Z) 2) =
•	 -

sin VZ2

fc 	
+ cos TZ2 

dz = 2iri{sin r(1) 2 + cos ,r(1) 2) = -2riz-1

/*since z = 1 and z = 2 are inside C and sin irz 2 + cos ,rz2 is analytic inside C. Then the required
integral has the value 2ri - (-2ri) = 4,ri.

(b) Let f(s) = e2 and a = -1 in the Cauchy integral formula

fl!	 f(s)
2ri f, (z— a)"'	 (1)

If n = 3, then /"(z) = 8e2l and f"'(-I) 	 8e 2 . Hence (1) becomes

Ith
from which we see that the required integral has the value 8,rie213.

6. Prove Cauchy's integral formula for multiply-
connected regions.

We present a proof for the multiply-connected re-
gion 'J bounded by the simple closed curves C 1 and C2
as indicated in Fig. 5-4. Extensions to other multiply-
connected regions are easily made (see Problem 40).

Construct a circle 1' having centre at any point a
in 'i so that I' lies entirely in 'R. Let R consist of
the set of points in 9 which are exterior to r. Then

the function s - s analytic inside and on the bound--
1(z) 

a i
ary of 19'. Hence by Cauchy's theorem for multiply-
connected regions (Problem 16, Chapter 4),

 1W dz- - S  -- dz -2r1 ,j. z - a	 2ri	 z - a	 2wi	 z - a

But by Cauchy's integral formula for simply-connected regions, we have

	

f(a) = -L . 	 -1--dz
2rI 'J z 

so that from (1),

Fig. 5-4

= 0	 (1)

(2)

1(a) =	 fl, -'- d;, -	 c1' j(z)--- dx	 (3)
251z—a	 2rtJcZa

Ther, if C represents the entire boundary of '1 (suitably traversed so that an observer moving around C
always has ' lying to his left), we can write (3) as

f(a) = ---'
2,rs	 z -a

In a similar manner we can show that the other Cauchy integral formulae

f(n)= i! £	 f(s) dx	 it = 1 2 3' '	 2wi J, (za)"

hold for multiply-connected regions (see Problem 40).
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MORERA'S THEOREM
7. Prove Morera's theorem (the converse of Cauchy's theorem): If 1(z) is continuous in

a simply-connected region 'R and if

§f(z)dz = 0

around every simple closed curve C in 'Ri, then 1(z) is analytic in 'R.

If	 1(z) dz = 0 independent of C, it follows by Problem 17, Chapter 4, that P(z) = 5' f(z) dz

is independent of the path joining a and z, so long as this path is in 'It.

Then by reasoning identical with that used in Problem 18, Chapter 4, it follows that F(z) is

analytic in 'N and P'(z) = 1(z). However, by Problem 2, it follows that V(z) is also analytic if
F(z) is. Hence f(z) is analytic in 'N.

CAUCHY'S INEQUALITY

8. If 1(z) is analytic inside and on a circle C of radius r and centre at z = a, prove Cauchy's

inequality

If"(a)I	
Mn!	

= 0,1,2,3,...

where M is a constant such that If(z)I <M.

We have by Cauchy's integral formulae,

!	 1"	 f(z)

	

f"(a) = ia— 3)	 1dz	 n = 0,1,2,3,...

	Then by Problem 3, Chapter 4, since l z - a[	 r on C and the length of C is 2rr,

n!I	 1(z)	
dz	

n! M	 M'n!
If(")(-)I	 =	 (z—a)"1	 2"	

2rr =
	 r"

LIOUVILLE'S THEOREM
9. Prove Liouville's theorem: If for all z in the entire complex plane, (i) 1(z) is analytic

and (ii) 1(z) is bounded [i.e. we can find a constant M such that jf(z)I < M], then 1(z)
must be a constant.

Let a and b be any two points in the z plane. Suppose
that C is a circle of radius r having centre at a and enclosing
point b (see Fig. 6-6).

From Cauchy's integral formula, we have

f(b) - /(a) = i-. § '-—dz - -. § ---dz
c z 

- b—a£	 /(z)dz

2riJ'c (z—b)(z—a)

Now we have

co 

x

Fig. 5-5

Ix — al = r,	 lz—bl = Ix—a+abl	 jz—al—la—b[ = r— l a -- bj	 r/2

if we choose r so large that la— bi < r/2. Then since If()I < M and the length of C is 2,rr, we have

by Problem 3, Chapter 4,

lf(b)—I(a)I = lb—al £	
/(z)dz	 lb—alM(2nr) - 21b—alM

2w	 J (z—b)(z—a)	 2ir(r/2)r	 -	 r

Letting r -.	 we' nee that 1 f(b) 1(a) I = 0 or f(b) f(n), whfrh shows that f(z) must be a constant.

0
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Another method. Letting n = 1 in Problem 8 and replacing a by z we have,

M/r
Letting r - , we deduce that II'(z) = 0 and so f'(z) = 0. Hence f(z) = constant, as required.

FUNDAMENTAL THEOREM OF ALGEBRA
10. Prove the fundamental theorem o, algebra: Every polynomial equation P(z) =

a0 + a 1 : + a2: 2 +	 + a,,z" = 0, where the degree n 1 and a,, 0, has at least
one root.

If P(z) = 0 has no root, then 1(z)	 is analytic for all z. Also If(z)I =
	

is bounded
(and in fact approaches zero) as JzI

Then by Liouville's theorem (Problem 9) it follows that 1(z) and thus P(z) must be a constant.
Thus we are led to a contradiction and conclude that P(z) = 0 must have at least one root or, as is
sometimes said, P(z) has at least one zero.

11. Prove that every polynomial equation P(z) = a0 + a 1 : + a2: 2 +	 + aa" = 0, wherethe degree n 1 and a,, 1 0, has exactly it roots.
By the fundamental theorem of algebra (Problem 10), P(z) has at least one root. Denote thisroot by e. Then P(0) = 0. Hence

	

P(z)—P(e) = ao+a1z+a2z2 +	 +a,,z"— (ao+aja+a2a2+...+a,,an)
= aj (z—a) + a2 (22 —a2) + . + a,,(z"—a")
= (z—a)Q(z)

where Q(z) is a polynomial of degree (n - 1).
Applying the fundamental theorem of algebra again, we see that Q(z) has at least one zero

which we can denote by $ [which may equal a and so P(z) = (z - a)(z - fi) R(z). Continuing inthis manner we see that P(z) hasexactly n zeros.

GAUSS' MEAN VALUE THEOREM
12. Let 1(z) be analytic inside and on a circle C with centre at a. Prove Gauss' mean

value theorem that the mean of the values of 1(z) on C is 1(a).
By Cauchy's integral formula,

	

1(a) =	 (1)

If C has radius r, the equation of C is Il - a = r or z = a + re rn. Thus (1) becomes
2,r

1(a) - _L I f(a + re°) ire d =- 2rI o	 re16

which is the required result.

e
f" f(a + re°)

MAXIMUM MODULUS THEOREM

13. Prove the maximum modulus theorem: If f(z) is analytic inside and on a simple closed
curve C, then the maximum value of f(z)l occurs on C, unless 1(z) is a constant.
Method 1.

Since 1(z) is analytic and hence continuous inside and on C, it follows that If(z)I does have a
maximum value M for at least one value of z inside or on C. Suppose this maximum value is not
attained on the boundary of C but is attained at an interior point a, i.e. lf( a)I = M. Let C1 be a circle
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for all points interior to a circle C2 with centre at b and radius &
as shown shaded in the figure.

Construct a circle C3 with centre at a which passes through
b (dashed in Fig. 5-6). On part of this circle [namely that part
PQ included in C21 we have from (2), lf(z)I < M -it. On the	 Fig. 5-6
remaining part of the circle we have lf(z)[	 M.

If we measure o counterclockwise from OP and let LPOQ = a, it follows from Problem 12 that
if r = lb—al,

1f(a) = -% f(a + re18) de + -	 /(a + r010) do
2r10

Then

Pa + re v, I do -
1j2r 

I f(a + re) I do
	 2

(M—)d9 +- 5 Mde

=	 -(M-4e) +	 (2r-9)

= M - -4,,

i.e. If(a)l = M	 M - -, an impossible situation. By virtue of this contradiction we conclude that

lf(z)l cannot attain its maximum at any interior point of C and so must attain its maximum on C.

Method 2.
From Problem 12, we have

11(a)I	 :5	 L j
	

f(a + re°) do
- 2r

Let us suppose that f(a)l is a maximum so that I f(a + re'") I 5 If(a)I. If I f(a + re") I < f(a)l
for one value of 8 then, by continuity of 1 it would hold for a finite arc, say o < 0 < 82 . But in
such case the mean value of I f(a + re' 0) I is less than f(a)j, which would contradict (5). It follows
therefore that iii any neighbourhood of a, i.e. for Iz - a[ < 6, 1(z) must be a constant. If 1(z) is not
a constant, the maximum value of [f(z)l must occur on C.

For another method, see Problem 57.

MINIMUM MODULUS THEOREM

14. Prove the minimum modulus theorem: Let 1(z) be analytic inside and on a simple

closed curve C. Prove that if 1(z) 0 inside C, then If(z)I must assume its minimum

value on C.
Since /(z) is analytic inside and on C and since 1(z) 0 0 inside C, it follows that 111(z) is analytic

inside C. By the maximum modulus theorem it follows that 11If(z)I cannot assume its maximum value
inside C and so f(z)[ cannot assume its minimum value inside C. Then since If(zI has a minimum,
this minimum must be attained on (.

inside C with centre at a (see Fig. 5-6). If we e.clude f(z) from
being a constant inside C 1 , then there must be a point inside (,,
say b, such that If(b)l M or, what is the same thing, I1(b)I =
M ­ where e> 0.

Now by the continuity of lf(z)l at b, we see that for any r >0
we can find S > 0 such that

< If(b)I + J, = M	 4- J, = M	 (2)	

0 Ali,,-
lf(z)I - If(b)[ I < je	 whenever I - b I	 (1)

i.e.,

(8)
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15. Give an example to show that if 1(z) is analytic inside and on a simple closed curve C
and 1(z) = 0 at some point inside C, then f(z)I need not assume its minimum value on C.

Let f(z) = z for jzj 1, so that C is a circle with centre at the origin and radius one. We have
1(z) = 0 at a = 0. If a = re'°, then j/(z)I = r and it is clear that the minimum value of I1(z)I does
not occur on C but occurs inside C where r = 0, i.e. at z = 0.

THE ARGUMENT THEOREM

16. Let 1(z) be analytic inside and on a simple closed
curve C except for a pole z = a of order (multi-
plicity) p inside C. Suppose also that inside C
1(z) has only one zero z = f3 of order (multiplicity)
n and no zeros on C. Prove that

--I f'---dz = n — p
2vZ 	 1(z)

(	 r11 O le/

	Let C 1 and r be non-overlapping circles lying in- 	 Fig. 54
side C and enclosing z = a and a = j respectively. Then

,CLdz =	 (1)
2i 	 1(z)	 2Ti J 1(z)	 2,ri	 1(z)

Since f(z) has a pole of order p at z = a, we have

1(x) = (z4"

where F(z) is analytic and different from zero inside and on C 1 . Then taking logarithms in (f) and

differentiating, We find
f'(z) -	 -

— F(z)	 Za

so that

5 L ) dx	 2,ri 5, P(Z) 52ir	 ((a)	 = 
-L dz - 2vi	 z a =

	 -	 = —p

Since f(z) has a zero of order a at a = /?, we have

1(2) = (z—p)"G(z)

where G(z) is analytic and different from zero inside and on F1.

Then by logarithmic differentiation, we have

f '(z) -	 + G'(z)
TWO - z—	 G(z)

so that
=	 +dz =

Hence from (1), (4) and (7), we have the required result

-L-Stdz = 
t5th-) dz + 1•

2ri	 2ri	 f(s)	 5, LA dz = a - p
f(z)II

17. Let 1(z) be analytic inside and on a simple closed curve C except for a finite number
of poles inside C. Suppose that 1(z) , 0 on C. If N and P are respectively the

(8)

(4)

(5)

(6)

(7)
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number of zeros and poles of 1(z) inside C,
counting multiplicities, prove that

--'f 1--dz = N — P27ri 	 1(z)
Let a ll '2'"'	 and Pi P21 ..., fl, be the re-

spective poles and zeros of f(s) lying inside C [Fig. 6-8)
and suppose their multiplicities are p . P2,	 P) and
711,fl2.....

Enclose each pole and zero by non-overlapping
circles Cl , C2.....C1 and r1 , r2.....rk . This can
always be done since the poles and zeros are isolated.

Then we have, using the results of Problem 16,

- L!Ld5 =	 —rL -f'-3)_dz +
I S	 I •,	 i.

2wi	 1(z)	 ri2wi r, 1(z)

-	 ---.--. _•\

I	 I	 •i')
\	

•4011

 4 ,
-*-'	 /	 I	 •

•	 cJ
I ''\ I	 •pI

'.--.--- (

Fig. 5-1

J, f(s) dz

1	 ¼

EB
	

-	 f'.
r=1

N - P

ROUCHE'S THEOREM

18. Prove Rouché's theorem: If 1(z) and g(z) are analytic inside and on a simple closed
curve C and if jg(z) < 1(z)) on C, then 1(z) + g(z) and 1(z) have the same number of
zeros inside C.

Let F(s) g(z)If(z) so that g(z) = f(z) '(z) or briefly g = fF. Then if N 1 and N2 are the
number of zeros inside C of f + g and f respectively, we have by Problem 17, using the fact that these
functions have no poles inside C,

Ni =	 5 1 + dz,	 N2 =	 § '-dz2,rz cI+U	 2iri c1

Then

-N1 - N2	
Sf'+/'F+fF'd - -_ 5 L

j- 1	
/ + fF	 2,rI	 /

- I 
Sfh+F')+ IF'

	 - 1 5 ij dz-	
c f(1+F)

=	 .5{+_F-4dz --- 1-dzf'
 1+?)	2iri c'

=
T	

= -fP(1_F+P2_F'3+...)dz

= 0

using the given fact that [K) < 1 on C so that theseries is uniformly convergent on C and term by
term integration yields the value zero. Thus N 1 = N2 as required.

19. Use Rouché's theorem (Problem 18) to prove that every polynomial of degree n has
exactly n zeros (fundamental theorem of algebra).

Suppose the polynomial to be as + a 1 z + a222 + -. + a,,z", where a,, ' 0. Choose f(s) = a,,z"
and g(z) = ao+az+a2z2 + ... +a,,_ 1 z''.

If C is a circle having centre at the origin and radius r> 1, then on C we have
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g(z)	 - lao + a 1z + a 2z2 +	 + a,,_iz"l
f(z)	 -

'aol + ja 1 j r + jazI r2 +	 + ja,_ 1 j r"

- 1a.1 71

	

kol r"	 + jail r"	 + laslr"	 + . .. + (a_1jrI
la,,j r"

aol + lad + lasl 4- •.. + ja,,_jj

-

Then by choosing r large enough we can make	
g( 

-y
z)	

i.e.< 1, 	 jg(z)j < If(z)j. Hence by Rouche s

theorem the given polynomial f(z) + g(z) has the same number of zeros as 1(z) = a,,z". But since this
last function has n zeros all located at z = 0, 1(z) + g(z) also has n zeros and the proof is complete.

20. Prove that all the roots of z7 - W + 12 = 0 lie between the circles Izi = 1 and jzl = 2.

Consider the circle C l : IzI = 1. Let /(z) = 12, g(z) = z7 - 5z3. On C 1 we have

lu(z)l = jz 1 - 5z1 1	jz71 + 15z1 5 6 < 12 = jf(z)j

Hence by Rouché's theorem 1(z) + g(z) = z7 - 50 + 12 has the same number of zeros inside jzj = 1 as
f(z) = 12, i.e. there are no zeros inside C1.

Consider the circle C2 : Izi = 2. Let 1(z) = z7, g(z) = 12— 5z3. On C2 we have

jg(z)j = 112— 523 1 	 112 + 1501 ;5 60 < 2	 jf(z)j

Hence by Rouché's theorem 1(z) + g(z)	 - 50 + 12 has the same number of zeros inside jzj 2 as
1(z) = 17, i.e. all the zeros are inside C2.

Hence all the roots lie inside Izi = 2 but outside j zj = 1, as required.

POISSON'S INTEGRAL FORMULAE FOR A CIRCLE
21. (a) Let f(z) be analytic inside and on the circle C defined by 1:1 = R, and let z =

be any point inside C. Prove that

1 fr	 R2—r2
f(ret0)	 2	 R2 - 2Rr cos (0 -.p) + r2 f(Re) d

(b) If u(r, 9) and v(r, 9) are the real and imaginary parts of f(re'°), prove that

1 ,'2r	 (R2—r2)u(R,#)4

	

u(r,O) =	
Jo R2 - 2Rr cos (O-4) + r2

1	 z(R2—r2)v(R,.)d
v(r,O) = 27rJ' R2 - 2Rr cos (O—) + r2

The results are called Poisson's integral formulae for the circle.

(a) Since z = re15 is any point inside C, we have by Cauchy's
Integral formula

f(re1) -- L 4' ---dw	 (1)f(s) =	 Zn Jc w -

The inverse of the point z with respect to C lies outside C and
Is given by R2/1. Hence by Cauchy'a theorem,

- 1	 1(w)
- 2wi ,4 w - R2f dw	 (5)

Fig. 5-9
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If we subtract (2) from (1), we find

1(z) =	 § {_t_ - 
-_ R211} 1(w) dw

	

z - R212	 1(w) dw	 (3)= 2i	 (w - z)(w - R2,'2)

Now let z = re'O and w Re'. Then since 2 = re 9, (3) yields

	2{l8 - (112/r)e18 } f(Rel	 &) iR' do
Pre") = 2	 (Rel - re°){Re" - (R2/r)c

= i_ f2 (r2 - 112)	 f(Re16) dl.
2,r Jo	 (Re(' - re15)(re - R#)

= 1f2	 (112 - r2) f(R&') d
2r J	 (Re1 - re°)(Re t' - re—'8)

- i.	 (R - r2) I (Re1th ) dp
- 2ir Jo R2 - 2Rr cos (8—) + r2

(b) Since f(re°)	 u(r, e) + i v(r, 6) and f(Re") = u(R, ) + i v(R, p), we have from part (a),

u(r, e) + i v(r, e) =
	 i f2,(112-r2)u(R,.p)+iv(R,)}d.j

2r 	 R2 2Rr cos (e—ø) + r2

=	
io0 

2.	 (112-r2)u(R,p)d.,i. 	 +	
2.	 (R2-2)v(R,.)di,,,-

2,r	 112 - 2Rr cos (e - ,) + r 2	2'r	 112 - 2Rr cos (o - ,) + r2

Then the required result follows on equating real and imaginary parts.

POISSON'S INTEGRAL FORMULAE FOR A HALF PLANE

22. Derive Poisson's formulae for the half plane [see Page 1201.
Let C be the boundary of a semicircle of radius R [see Fig. 5-101 containing as an interior point.

Since C encloses but does not enclose we have by Cauchy's integral formula,

=	 4 '---dz,	 0 = —L 'dz	 V2rt. C Z f	 2r2 Jcz—

Then by subtraction,

-

	

- -- 
4 1(z) [
	

-	
J 

dx	
(	 •

2r1.c 

1(z)dz

	

—R	 11of(c'—)—	
C (z—)(z—) Fig. 5.10

Letting	 = + i,	 = — i,7, this can be written

=	 ç 
R	 1(x) dx 	 + ! f .p1(z)dz

r.,_R(x—)2+,,2	 r

where F is the semicircular are of C. As 11 -. , this last integral approaches zero [see Problem 761
and we have

1(0 =	 f ,j 1(x) dx
s.

Writing f() = f( + i) = u, ) + i va, .), f(s) = u(x, 0) + i v(x, 0), we obtain as required,

u(, ,,) =	 I ,u(x,0)dx	 = 1	 ,v(x,0)dx
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MISCELLANEOUS PROBLEMS
23. Let 1( z ) be analytic in a region 'N bounded by two

concentric circles Ci and C2 and on thc boundary
[Fig. 5-11]. Prove that if z0 is any point in 'N, then

Az-) 	 1(z) dz - -- C 1(z) dz
2irZ J Z - Zo	 27ri J z -C.

Method I.

Construct cross-cut EH connecting circles C 1 and C2.
Then f(z) is analytic in the region bounded by EFGEHKJHE.

	Hence by Cauchy's integral formula, 	 F

f(z0)	 -

	

dx	 Fig. 5-11= 	 4 Z -
EFGEHKJUC

f f(z) + -L . f(s)2,rj	 z - z0	 2rj	 z -	 2i.-j z - so
EPGE	 SH	 IIKJH	 Hr

=

	

27ri J, z—z0	2i	 zz0

since the integrals along Eli and HE cancel.

Similar results can be established for the derivatives of f(z).

Method 2. The result also follows from equation (S) of Problem 6 if we replace the simple closed
curves C 1 and C2 by the circles of Fig. 5-11.

24. Prove that J c082 O do = 135 ... (2n-1)271, where n = 1,2,3
24'6..(2n)

Let z = e. Then dx = ie5 d = is de or de = dxlix and cose =	 + e5) = 4(z + 1/i).
Hence if C is the unit circle jz] = 1, we have

	

f'2n 	 /	 '2n

	

J	 8 de = 4)	 z +	
I

2'.

	

o	 .' L
Zn'

-	 1 5 .1 z2n + (2)(Z2-1)(! + ... + ( n)(z2n—k)() + ... + (	 I diZ_—.c \zJ J

+ (2')Z2-3 +	 +	 + ... + z 2'9dz-

-	 I .2ri(')=	 2n) Zr-	 22l..n

-	 1 (2n)!2r
	 =	 (2n)(2n - 1)(2n —2) ... ()(, - 1)•••- 

- 2n!n!	 22nn!n!

=	 I3•5••(2fl_1)2ir
2'4'6"2n

25. If 1(z) = u(x, y) + i v(x, y) is analytic in a region q, prove that u and v are har-
monic in 'N.

In Problem 6, Chapter 3, we proved that u and v are harmonic in 9, i.e. satisfy the equation
,)2 0	2

	

+	 = 0, under the assumption of existence of the second partial derivatives of u and v, I.e.

the existence of f"(z).
This assumption is no longer necessary since we have in fact proved in Problem 4 that if f(z) Is

analytic in 9 then all the derivatives of 1(z) exist.
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26. Prove Schwarz'8 theorem: Let 1(z) be analytic for jzj ;5 R, 1(0) = 0 and f(z)I ;^ M.
Then

!f(z)I	
Mz

The function /(z)/z is analytic in zi R. Hence on Izi = R we have by the maximum modulus
theorem,

	

'(Z-)	 R

However, since this inequality must also hold for points inside zI = R, we have for j zj
Ifz)I	 Mjz[/R as required.

27. Let 1(x) 
= { 

sin (lIx) X	
where x is real. Show that the function (a) has a

first derivative at all values of x for which 0 x 1 but (b) does not have a second
derivative in 0 x 1. (c) Reconcile these conclusions with the result of Problem 4.
(a) The only place where there is any question as to existence of the first derivative is at x = 0. But

at x = 0 the derivative is

	

urn /(0 + Ax) - f(0)	 lirn (AX) 2 sin (11Ax) - 0
Ax	 —o	 Ax

= lim Ax sin (1/Ax) = 0
A. -.0

and so exists.

At all other values of x in 0 ;^-: x	 1, the derivative is given (using elementary differentiation
rules) by

cos (11x) {-1/x 2) + (2x) sin (us) = 2x sin (liz) - cos (11x)

(b) From part (a), we have

1

2x sin (11x) - cos (liz) x ,' 0f'(x) 
=	 o	 x=0

The second derivative exists for all x such that 0 < x ^ 1. At x = 0 the second derivative is
given by

urn f'(O + Ax) - f'(0) =	 urn 2 Ax Sfl (1/AX) - os (11Ax) - 0
Ax	 Ax-.O	 Ax

=	 lirn {2 sin (I/Ax) - (1/Ax) cos (1/Ax))
... 0

which does not exist.

It follows that the second derivative of f(s) does not exist in 0 z 9i 1.

(c) According to Problem 4, If f(z) is analytic in a region ' then all higher derivatives exist and are
analytic in 11. The above results do not conflict with this, since the function 1(z) 2 sin (liz)
is not analytic in any region which includes x = 0.

28. (a) If F(z) is analytic inside and on a simple closed curve C except for a pole of order m
at z = a inside C, prove that

1	 1	 dm

2-n 5Azz	
(rn—i)! dz"t ((za)tF(z))

(b) How would you modify the result in (a) if more than one pole were inside C?



CHAP. 61	 CAUCHY'S INTEGRAL FORMULAS AND RELATED THEOREMS 	 133

(a) If F(z) has a pole of order m at z = a, then F(z) = f(z)I(z - a)'" where f(z) is analytic inside
and on C, and 1(a) 0. Then by Cauchys integral formula,

1 1	 1 '	 m 1) (a- b F(z)dz = -	 "' dx =2rt	 2rt J (z—a)"	 (m — l)i

hm	
1	 d'"-'

(m - 1)! dz"'' {(z - a)"' F(z))

(b) Suppose there are two poles at z = a 1 and z = a2 inside
C, of orders rn., and rn. 2 respectively. Let 1' and 12 be
circles inside C having radii el and •2 and centres at
a 1 and a2 respectively. Then

F(z)dz =	 c F(.) d.
2w1	 2,rt j

1'
+ 1 j F , ) iz	 (1)

h,rI J
F,

If F(z) has a pole of order rn 1 at z = a 1 , then
Fig. 5-12

= 
(z •'" a1)"

'	 where f, (z) is analytic and II (al) e
- 

If E(z) has a pole of order 2119 at 2 = 0 2, then

12(z)-

	

F(z) - (z - a2)""	
where f2 (z) is analytic and f2 (a2) 0

Then by (1) and part (a),

1 ,(z) dz +	 5	 f2(z)

	

5 P(z) dx = è	 (z - a,)'"i	 dx
(z - a2)'".I,

1	 d'"-1
= urn

-.a, (rn, - 1)! dz'"t- , {(z - a,)'"' F(z)}

1	 d'"'-'
+ urn 

(m2 - 1)! dzm,-1 {(z - a2)"" F'(z))
*

If the limits on the right are denoted by R 1 and R2, we can write

5 F(z) dx = 27i(R, +

where R, ai1 R2 are called the residues of P(z) at the poles z = a 1 and z = a2.

In general if F(z) has a number of poles inside C with residues R,, R2. ... . then 5 F(z) dz =

2,rj times the sum of the residues. This result is called the re8idue theorem. Applications of
this theorem together with generalization to singularities other than poles, are treated in Chap. 7.

	

29. Evaluate $ (z2 +ir2)2 dz where C is 	 circle Izi =

e.
The poles of (2 + 7 2) 2 = (z ri)2 (z + ri)2 

are at z = ±irl inside C and are both of o'rder two.

	

I d1	 e'	

} -

Residue at x =,ri is	 urn- - (z - ri)2
, 1! dz	 (z - 7 i) 2 (z + ri)2	 -	 43

_____ 	 - ,riResidue at z = i	 rn 	 (z + .1)2	
5*

—r	
_ u dx	 (z - ri) 2 (z + ri) 2} - 4r8'u 

(ir+i,r1

	

2
\	 t

Then	 ( +.2)2 dz = 2ir1(sum of residues) =	 +	 =



134	 CAIJCHY'S INTEGRAL FORMUI,AS AND RELATED THEOREMS	 [CHAP. 5

Supplementary Problems

CAUCHY'S INTEGRAL FORMULAE

30. Evaluate	 f- --dz If C is (a) the circle lzI = 3, (b) the circle I zI	 1.	 An,. (a) e2, (6) 0

31. Evaluate	
sin ,3z dx if C is the circle 1:1 = 6.	 An,. 27iz + i,,2

"32. Evaluate 4) e3'—dz if C is (a) the circle z - 11 = 4, (6) the ellipse z -21 + I: + 21 = 6.f Z - in

An.. (a) -2wi, (b) 0

33. Evaluate	 §	 -
dz around a rectangle with vertices at: (a) 2 ± 1, -2 ± i; (6) -i, 2- 1, 2 + i, i.

2,rl	 c	 1
An,. (a) 0, (b) -

34. Show that	 ----j dz = sin- t if t>0 and C is the circle zl = 3.

35. Evaluate ' -- dx where C is the circle Izi = 2.	 Ang. —in

c 
Z3

36. Prove that /"(a) =	 1(z) dx
	a)4	 C is a simple closed curve enclosing x = a and f(s) is

analytic inside and on C.

37. Prove Cauchy's integral formulae for all positive integral values of a. [Hint: Use mathematical
induction.]

38. Find the value of (a) C	 Z dz, (6)
Jc z -	 .4 (ZaI6)3z if C is the circle IzI = 1.

A. (a) 7ri132, (b) 21,1/16

39. Evaluate 2 + 1)S dz if t >0 and C is the circle z i = 3.	 A. (sin t - tcos )

40. Prove Cauchy's integral formulae for the multiply-connected region of Fig. 4-26, Page 115.

MORERA'S THEOREM
41. (a) Determine whether G(z) = J	 is independent of the path joining 1 and z.

(6) Discuss the relationship of your answer to part (a) with Morera's theorem.

42. Does Morera's theorem apply in a multiply-connected region? Justify your answer.

43. (a) If P(x, y) and Q(x, y) are conjugate harmonic functis and C is any simple closed curve, prove

that	 P (IX 4- Q dy = 0.

(6) If for all simple closed curves C in a region 9, 	 P dx + Q dy	 0, is it true that P and Q
C

are conjugate harmonic functions, i.e. is the converse of (a) true? Justify your conclusion.

CAUCHY'S INEQUALITY
44. (a) Use Cauchy's inequality to obtain estimates for the derivatives of sin: at z = 0 and (b) determine

how good these estimates are.
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45. (a) Show that if f(z) = 11(1 - z), then f"(z) = n!/(1 -

(b) Use (a) to show that the Cauchy inequidity is "best possible", i.e. the estimate of growth of the
nth derivative cannot be improved for all functions.

46. Prove that the equality in Cauchy's inequality (3), Page 118, holds if and only if f(z) = kMz"/r"
where jkl = 1.

47. Discuss Cauchy's inequality for the function 1(z) =	 in the neighbourhood of z0.

LIOUVILLE'S THEOREM
48. The function of a real variable defined by 1(x) = sin x is (a) analytic everywhere and (b) bounded,

i.e. Isin x 1 for all x but it is certainly not a constant. Does this contradict Liouville's theorem?
Explain.

49. A non-constant function F(z) is such that F(z + a) = F(z), F(z + bi) = F(z) where a > 0 and b > 0

are given constants. Prove that P(z) cannot be analytic in the rectangle 0 x a, 0 y b.

FUNDAMENTAL THEOREM OF ALGEBRA
50. (a) Carry out the details of proof of the fundamental theorem of algebra to show that the particular

function 1(z) = z4 - 22 - 2z + 2 has exactly four zeros. (b) Determine the zeros of 1(z).
Ans. (b) 1, 1, —1 ± j

51. Determine all the roots of the equations (a) z3 - 3z + 41 = 0, (b) z4 + z2 + 1 = 0.

Ans. (a) 1, (—i ± ".,,fi ), (b) j ( — i ± /3 1), j (1 ±	 1)

GAUSS' MEAN VALUE THEOREM

52. Evaluate	 J sin 2 (n-/6 + 2&°) de	 Ans. 1/4
2,r

53. Show that the mean value of any harmonic function over a circle is equal to the value of the function
at the centre.

54. Find the mean value of X2 - y2y2 + 2y over the circle I z - 5 + 211 = 3.	 Ana. 5

55. Prove thatIn sine de = - r In 2. [Hint. Consider f(z) = In (I+ z).}

MAXIMUM MODULUS THEOREM
56. Find the maximum of If(z)I in Izi	 1 for the functions f(z) given by (a) z2 - 3z + 2, (b) z4 + 22 + 1,

(c) cos 3z, (d) (2z + 1)/(2z - 1).

57. (a) If f(z) is analytic inside and on the simple closed curve C enclosing z = a, prove that

	

(1(a))"-,r- 4' U(" dz	 n = 0,1,2,.
2

	

	
..

L J S—a
(b) Use (a) to prove that If(a)I"	 M"/2rD where D is the minimum distance from a to the curve

C and M is the maximum value of lt( z)I on C.

(c) By taking the nth rot of both sides of the inequality in (b) and letting n -. , prove the maximum
modulus theorem.

58. Let U(x, y) be harmonic inside and on a simple closed curve C. Prove that the (a) maximum and
(5) minimum values of 17(x, y) are attained on C. Are there other restrictions on U(x, y)?

59. Verify Problem 58 for the functions (a) X2 - y2 and (b) Z3 - 3xy2 if C is the circle I z i = 1.

60. Is the maximum modulus theorem valid for multiply-connected regions? Justify your answer.
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THE ARGUMENT THEOREM
61. If f(z) = 0 - 3iz2 + 2z —1 + i, evaluate

r t--dz whpr. C encloses all the zeros of 1(z).
Ann. lOw&	 f(z)

62. Let 
1(z) = (22+2z+2)3	

Evaluate	 4	 where C is the circle	 4.	 An. —2

63. Evaluate	 dz if C is the circle Izi = w and (a) 1(z) = sin wz, (b) 1( z) = coo wz, (c) 1(z) = tan ,rz.

An.. (a) 14wj, (b) 12rri, (c) 2wi

64. If 1(z) = z4 - 2z3 + Z2 - 12z + 20 and C is the circle 1 . 1 = 6, evaluate
,f 

!-frdz.	 Ana.	 j'

ROUCHE'S THEOREM
65. If a> e, prove that the equation az" = e l has n roots inside j xj = 1.

66. Prove that ze = a where a' 0 is real has infinitely many roots.

67. Prove that tan z = ax, a > 0 has (a) infinitely many real roots, (b) only two pure imaginary roots if
0 < a < 1, (c) all real roots if a	 1.

68. Prove that z tan z = a, a > 0 has infinitely many real roots but no imaginary roots.

POISSON'S INTEGRAL FORMULAE FOR A CIRCLE

69. Show that

	

	 -	
do =j0 R2 - 2Rr cos (a - çs) + r2

(a) with, (5) without Poisson'a integral formula for a circle.

70. Show that (a) 5	 °'e ' coo (sin ) 
d	 =	 eo cos (sin a)

(5) 5	 d# =	 eC08sin (sin 9)

71. (a) Prove that the function	 U(r,e) = !tan_t(2 sin a0). 0< r < 1, 0 0<2w is harmonic
inside the circle izI = 1	 r

(5) Show that	 lim U(r, a) =
r-.i-	 f-1i 	 O<e<w

 ,r<9<2ir
(c) Can you derive the expression for U(r, a) from Poisson's integral formula for a circle?

72. If 1(z) is analytic inside and on the circle C defined by jzj = R and if z = r&° is any point inside C,
show that

	

f'(r&') = _!..
	

2. R(R2 - r2). f(R&') sin (9 — ) d2w Jo [R2 — 2Rr coo (e — ) + r22

73. Verify that the functions u 'and v of equations (7) and (8), Page 119, satisfy Laplace's equation.

POISSON'S INTEGRAL FORMULAE FOR A HALF PLANE
74. Find a function which is harmonic in the upper half plane y> 0 and which on the x axis takes the

values —1 if x <0 and 1 if x>0.	 An.. 1 - (2/w) tan' (y/x)

75. Work Problem 74 if the function takes the values —1 if z <-1, 0 if —1 <x < 1, and 1 if x> 1.

An..	 tan' (_JL
\X-I-1J	 \X-1
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76. Prove the statement made in Problem 22 that the integral over r approaches zero as R -. .

77. Prove that under suitable restrictions on 1(x),

1 f	 f(x)
2 durn -	 (x-f)2 +	 x = f(s)

fl'O+ 5
and state these restrictions.

78. Verify that the functions u and v of equations (10) and (ii), Page 120, satisfy Laplace's equation.

MISCELLANEOUS PROBLEMS

1 P z2dz79. Evaluate	 3	 where C is the square with vertices at ±2, ±2 + 4i.	 Ans. i

80. Evaluate	
cos2 tz

dz where C is the circle Izi = 1 and t > 0.	 Ana. -2rit2

81. (a) Show that 5	 = 2r-i if C is the circle I z i = 2.

(b) Use (a) to show that

	

f
(x+1)dx + ydy - 0	 4' (x+1)dy - ydx = 2r(x + 1)2 + y2	 - '	 .Ic (x + 1) 2 + yz

and verify these results directly.

82. Find all functions 1(z) which are analytic everywhere in the entire complex plane and which satisfy
the conditions (a) f(2 — i) = 4i and (b) 1(z)) < e2 for all z.

83. If 1(z) is analytic inside and on a simple closed curve C, prove that

2
(a) f'(a)	 = j- 5 e /(a + &°) de

_______	 1	 25
(b)

/(n) (a) - - 5 e-" f(a + e) de	a! 	 - 2r

84. Prove that 8z4 6z + 5 = 0 has one root in each quadrant.

85. Show that	 (a) J	 e°' cos (sine) de = 0,	 (b) J e06 sin (sin *)do = 2r.0	 0

86. Extend the result of Problem 23 so as to obtain formulae for the derivatives of 1(z) at any point
in 'N.

87. Prove that Z3 el 	 1 has exactly two roots inside the circle jzj = 1.

88. If t > 0 and C is any simple closed curve enclosing z = -1, prove that

1 
.0 "a' / 	 ti\ do

-	 2iY(s+l)3	 =

89. Find all functions 1(z) which are analytic in IzI < 1 and which satisfy the conditions (a) 1(0) = 1
and (b) 1(z)) 9 1 for jzj < 1.

90. Let f(z) and g(z) be analytic inside and on a simple closed curve C except that 1(z) has zeros at
a t, a 2 , ....a,,, and poles at b 1 , b2.....ba of orders (multiplicities) Pt ' P2, .... p,,, and q 1 , q2
respectively. Prove that

d.	 pkg(°k) -	 q5g(b)
f(z)
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91. If f(z) = a0 z" + a 1 z" 1 + a2 z" 2 +	 + a,, where a0 ,'0, a1 ,..., a,, are complex constants

and C encloses all the zeros of f(z), evaluate (a) i-. '	 dx, (b) i-. j' -/-- dx and interpret

the results.	 Ana. (a) —a,/a0, ( b) (a - 2aa2)Ia

92. Find all functions 1(z) which are analytic in the region Izi ni 1 and are such that (a) f(0) = 3 and
(b) J(z)[	 3 for all z such that Izi < 1.

93. Prove that z + 192z + 640 = 0 has one root in the first and fourth quadrants and two roots in the
second and third quadrants.

94. Prove that the function xy(x 2 - y2) cannot have an absolute maximum or minimum inside the circle

Izl = 1.

95. (a) If a function is analytic in a region 'It, is it bounded in 'Ii? (b) In view of your answer to (a), is
it necessary to state that f(z) is bounded in Liouville'. theorem?

96. Find all functions 1(z) which are analytic everywhere, have a zero of order two at z = 0, satisfy the
condition IP(z)I	 6z[ for all z, and are such that f(i) = — 2.

97. Prove that all the roots of z + z - 16i = 0 lie between the circles IzI = 1 and IzI = 2.

98. If U is harmonic inside and on a simple closed curve C, prove that

f au
IP —da = 0
Jc

where n is a unit normal to C in the z plane and a is the are length parameter.

99.A theorem of Cauchy states that all the roots of the equation z" + a, z" + a2 z" 2 +	 + a,, = 0,

where a 1 , a2.....a, arr real, lie inside the circle Izi = 1 + max {a j , a2,..., a,,}, i.e. jzj = 1 plus
the maximum of the values a1,a2.....a,,. Verify this theorem for the special cases
(a) z3 - z2 + z - 1 = 0, (b) z + z2 + 1 = 0, (c) Z4 - z2 - 2z + 2 = 0, (d) z4 + 3z2 - 6z + 10 = 0.

100. Prove the theorem of Cauchy stated in Problem 99.

101. Let P(z) be any polynomial. If m is any positive integer and W = e2' 1"', prove that

P(1) + P(w) + P(w2) +	 + P(w") = P(0)
In

and give a geometric Interpretation.

102 Is the result of Problem 101 valid for any function 1(z)? Justify your answer.

103. Prove Jenaen'a tlLcoreln: If /(z) is analytic inside and on the circle hi = R except for zeros at

a1, a2.....a,,, of multiplicities p 11 P ..... p,, and poles at b 1 , b2, . . ., 5,, of multiplicities q 1 , q2.....

respectively, and if /(0) is finite and different from zero, then

	

f2.

 
In hf(R&)I d. = In 11(0)1 +	 p,, In ( 

R ' -	
q In ( 

Rb k2r	 k=l	 lc=1

[Hint. Consider	 In z (f'(x)//(z)) dx where C is the circle lzl = R.]



Chapter 6 ]

Infinite SerI.*
Taylor's and Laurent's Series

SEQUENCES OF FUNCTIONS
The ideas of Chapter 2, Pages 40 and 41, for sequences and series of constants are

easily extended to sequences and series of functions.
Let u 1 (z), uz(z), .. ., u(z), . . ., denoted briefly by {u(z)), be a sequence of functions

of z defined and single-valued in some region of the z plane. We call U(z) the limit of
u(z) as n -. , and write Mm u(z) = U(z), if given any positive number c we can find
a number N [dependirg in general on both c and z] such that

Iu(z) - (J(z)j < £	 for all n > N
In such case we say that the sequence converges or is convergent to U(z).

If a sequence converges for all values of z (points) in a region 'Ii, we call IR the region
of convergence of the sequence. A Sequence which is not convergent at some value (point) z
is called divergent at z.

The theorems on limits given on Page 40 can be extended to sequences of functions.

SERIES OF FUNCTIONS

From the sequence of functions {u,(z)} let us form a new sequence (S(z)) defined by
S1 (z) = u1(z)
S2(z) = u1(z) + u2(z)

S(z) = u,(z) + u2(i) + ... + u,.(z)
where S(z), called the nth partial sum, is the sum of the first n terms of the sequence
(UN(z)).

The sequence S1 (z), Sz(z), . . . or (S(z)) is symbolized by

u(z) + U2(Z) + •..	 u,,(z)	 (1)

called an infinite series. If urn S(z) = S(z), the series is called convergent and S(z) is
its sum; otherwise the sêriés is called divergent. We sometimes write	 u(z) as I u(z)
or I u for brevity.

As we have already seen, a necessary condition that the series (1) converge is
urn u(z) = 0, but this is not sufficient. See, for example, Problem 150, Chapter 2, and
also Problems 67(c), 67(d) and 111(a).

If a series converges for all values of z (points) in a region '1, we call 'I the region
of convergence of the series.

139
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ABSOLUTE CONVERGENCE

A series i u(z) is called absolutely convergent if the series of absciute values, i.e.

ju(z), converges.

If	 u(z) converges but	 u(z)t does not converge, we call 	 u(z) conditionally
n1

convergent.

UNIFORM CONVERGENCE OF SEQUENCES AND SERIES
In the definition of limit of a sequence of functions it was pointed out that the

number N depends in general on ( and the particular value of z. It may happen, however,
that we can find a number N such that I u(z) - U(z) I < e for all n > N, where the same
number N holds for all z in a region 'P... [i.e. N depends only on and not on the particular
value of z (point) in the region]. In such case we say that u(z) converges uniformly, or
is uniformly convergent, to U(z) for all z in '.

Similarly if the sequence of partial sums (S,,(z)) converges uniformly to S(z) in a
region, we say that the infinite series (1) converges uniformly, or is uniformly convergent,
to S(z) in the region.

If we call R,,(z) = u,+i(z) + u 2(z) + . . = S(z) - S(z) the remainder of the
infinite series (1) after n terms, we can equivalently say that the series is uniformly
convergent to S(z) in 'R if given any (>0 we can find a number N such that for all z in 'J,

= I S(z) - S(z)j <	 for all n > N

POWER SERIES
A series having the form

a0 -I- a i (z a) 4- a 2 (z - a) 2 + . .	 =	 a(z - a)"
	

(2)

is called a power series in z - a. We shall sometimes indicate (2) briefly by a.(z -a)".

Clearly the power series (2) converges for z = a, and this may indeed be the only
point for which it convrges [see Problem 13(b)]. In general, however, the series con-
verges for other points as well. In such_case we can show that there exists a positive
number R such that (2' converges for I z al < R and diverges for jz - a > R, while for

- al = R it may or may not converge.
Geometrically if r is a circle of radius R with centre at z = a, then the series (2)

converges at all points inside r and diverges at all points outside r, while it may or may
not converge on the circle r. We can consider the special cases R = 0 and R = respec-
tively to be the cases where (2) converges only at z a or converges for all (finite) values
of z. Because of this geometrical interpretation, R is often called the radius of convergence
of (2) and the corresponding circle is called the circle of convergence.

SOME IMPORTANT THEOREMS
For reference purposes we list here some important theorems involving sequences

and series. Many of these will be familiar from their analogs for real variables.
A. General Theorems

Theorem 1. If a sequence has a limit, the limit is unique [i.e. it is the only one].
Theorem 2. Let u = a + ib, n = 1, 2,3, ..., where a.,, and b are real. Then

a necessary and sufficient condition that (u,,) converge is that ( an ) and (b,) converge.
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Theorem 3. Let (a,,} be a real sequence with the property that
(i) a+,	 a or a,,+ 1	a,,,	 (ii) IaI < M (a constant)

Then (a,,) converges.
If the first condition in Property (i) holds the sequence is called monotonic

increasing, while if the second condition holds it is called monotonic decreasing. If
Property (ii) holds, the sequence is said to be bounded. Thus the theorem states that
every bounded monotonic (increasing or decreasing) sequence has a limit.

Theorem 4. A necessary and sufficient condition that (u,,) converges is that
given any .> 0, we can find a number N such that In, - u, < e for all p > N, q > N.

This result, which has the advantage that the limit itself is not present, is called
Cauchy's convergence criterion.

Theorem 5. A necessary condition that 'u,, converge is that urn u,, = 0. How-
ever, the condition is not sufficient.

Theorem 6. Multiplication of each term of a series by a constant different from
zero does not affect the convergence or divergence. Removal (or addition) of a finite
number of terms from (or to) a series does not affect the convergence or divergence.

Theorem 7. A necessary and sufficient condition that 	 (a.+ ib,,) converge,

where a,, and b,, are real, is that	 a,, and	 b,, converge.

B. Theorems on Absolute Convergence
Theorem 8. If	 lu,j converges, then	 u,, converges. In words, an absolutely

convergent series is convergent.
Theorem 9. The terms of an absolutely convergent series can be rearranged in

any order and all such rearranged series converge to the same sum. Also the sum,
difference and product of absolutely convergent series is absolutely convergent.

These are not so for conditionally convergent series (see Problem 127).

C. Special Tests for Convergence
Theorem 10. (Comparison tests.)

(a) If Y. Iv. converges and lu	 Ivj, then 'u,, converges absolutely.

(b) If Y I v.1 diverges and Iu,,I	 v,,, then Y j u.1 diverges but 'u,, may or may
not converge.

Theorem 11. (Ratio test.)

If urn	 = L, then 'u,, converges (absolutely) if L < 1 and diverges if

L> 1. If L= 1, the test fails.
Theorem 12. (nth Root test.)

If urn Yf	 L, then 'u,, converges (absolutely) if L < 1 and diverges if L> 1.

If L=1, the test fails
Theorem 13. (lute gre.1 test.) If 1(x) 0 for x a, then f(n) converges or

diverges according as urnc
M 

1(x) dx converges or diverges.
M-.o J

Theorem 14. (Raabe's test.)

If urn n (i -	 = L,, then 'u,, converges (absolutely) if L> 1 and diverges

or converges conditionally if L < 1. If L = 1, the test fails.
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Theorem 15. (Gauss' test.)

If	 = 1 - +	 where lc,, <M for all n > N, then Yu. converges

(absolutely) if L> 1 and diverges or converges conditionally if L 1.

Theorem 16. (Alternating series test.)
If a,, 0, a,,+ 1 a-,, for n = 1,2,3,... and lim a. = 0, then a1 —a2 + a3 -
= (-1)"a,, converges.

D. Theorems on Uniform Convergence
Theorem 17. (Weierstrass M test.)
If ju(z) M where M. is independent of z in a region 'R,. and YM. converges,

then u.(z) is uniformly convergent in 'k.
Theorem 18. The sum of a uniformly convergent series of continuous functions

is continuous, i.e. if u(z) is continuous in q and S(z) = u.(z) is uniformly convergent
in q, then S(z) is continuous in R.

Theorem 19. If (u(z)) are continuous in 'N S(z) = u(z) is uniformly con-
vergent in 'R and C is a curve in 'Ii, then

5 S(z)dz = fu i (z)dz + J' u2(z)dz +
or	 5 (u,(z)) dz = 7 5 u,,(z) dz

In words, a uniformly convergent series of continuous functions can be integrated
term by term.

d	
iTheorem 20. If u,,(z) = —u(z) exists n 'R,, u.(z) converges uniformly in Cj

and u(z) converges in R, then d Yu,(Z) = u(z).

Theorem 21. If (,,(z)) are analytic and u(z) is uniformly convergent in R,
then S(z) = u.(z) is analytic in 'Ii.

E. Theorems on Power Series
Theorem 22. A power series converges uniformly and absolutely in any region

which lies entirely inside its circle of convergence.

Theorem 23.
(a) A power series can be differentiated term by term in any region which lies

entirely inside its circle of convergence.
(b) A power series can be integrated term by term along any curve C which lies

entirely inside its circle of convergence.
(c) The sum of a power series is continuous in any region which lies entirely

inside its circle of convergence.
These follow fron Theorems 17, 18, 19 and 21.

Theorem 24. (Abel's theorem.)
Let	 have radius of converg, ce R and suppose that z0 is a point on the

circle of convergence such that a,,z converges. Then urn	 = 1az: where
z - zo from within the circle of convergence.

Extensions to other power series are easily made.

Theorem 25. If 1a,,z converges to zero for all z such that Izi <R where R> 0,
then a., = 0. Equivalently, if Max - 1b,,z for all z such that Izi <R, then a,, = b,,.
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TAYLOR'S THEOREM
Let 1(z) be analytic inside and on a simple closed curve C. Let a and a+ h be two

points inside C. Then

	

f(a+h) = 1(a) + hf'(a) + 
h-"(a) +	 + -jf(n) (a) + ...	 (8)

or writing z = a + h, h = z — a,
i" '	 .) 

(a'

	

1(z) = 1(a) + f'(a)(z—a) + L/(z_a) 2 +	
. + 

f( , '(z—a) +	 (.4)

This is called Taylor's theorem and the series (3) or (4) is called a Taylor series or expansion
for f(a + h) or 1(z).

The region of convergence of the series (4) is given by I z — al < R, where the radius
of convergence R is the distance from a to the nearest singularity of the function 1(z).
On jz — al = R, the series may or may not converge. For jz — al > R, the series diverges.

If the nearest singularity of 1(z) is at infinity, the radius of convergence is infinite,
i.e. the series converges for all z.

If a = 0 in (3) or (4), the resulting series is often called a Maclaurin series.

SOME SPECIAL SERIES
The following list shows some special series together with their regions of con-

vergence. In the case of multiple-valued functions, the principal branch is used.

1.e'	 =1+z+ z2—+ 
z3—++—+

2!	 3!
z3	 z52. sin  = Z	

+5 ! —	
2n— 1)! 

+	 ki <

3. cosz	 = 1 —
	
+-	

Z	
+ ..,	 Izi <

4. In (1 + z) = z —	 +	 - . . . (-1)"- + . . .	 Iz < 1

5. tan z = z — 	 +	 ki < 1

6. (1 + z)	 = 1 + pz + P2 1 Z + 	 + p(p 1) .. . (p — n + 1) z +	 Izi < i
n!

This is the binomial theorem or formula. If (1 + z)P is multiple-valued the result
is valid for that branch of the function which has the value 1 when z =0.

LAURENTS THEOREM
Let C1 and C2 be concentric circles of radii R 1 and

R2 respectively and centre tu [Fig. 6-1]. Suppose that
f(z) is single-valued and analytic on C1 and C2 and in
the ring-shaped region 9( [also called annulus or an-
nular region] between C and C2, shown shaded in the
figure. Let a+ /i be any point in 1R. Then we have

f(a+h) = a0+a1h+azh2+

h	 hl	
h3(5)	 1
 Fig. 6-1
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1 r_where	 a	 =	 L( )
y 	- a)'" 

dz	 n = 0, 1, 2,
(6)

= -_$ (z—,)n'f(z)dz	 n = 1,2,3,...
7T	 c,

C1 and Cz being traversed in the positive direction with respect to their interiors.
We can in the above integrations replace C1 and C2 by any concentric circle C between

C1 and Cz [see Problem 100].. Then the coefficients (6) can be written in a single formula,

a.
1 C f(z)

=

	

	 dx	 n = 0 ±1 ±2 ...	 (7)
2i4 J (z—a)"'

With an appropriate change of notation, we can write the above as

1(z) = ao + a 1 (z - a) + a2(z - a) 2 + •.. +	 +	 2 +	 (8)

1 C f()where	 a, dC	 n = 0, ±1, ±2, ... 	 (9)

This is called Laurent's theorem and (5) or (8) with coefficients (6), (7) or (9) is called a
Laurent series or expansion.

The part a0 + a, (z - a) + a2(z - a) 2 + •.. is called the analytic part of the Laurent
series, while the remainder of the series which consists of inverse powers of z - a is called
the principal part. If the principal part is zero, the Laurent series reduces to a Taylor
series.

CLASSIFICATION OF SINGULARITIES
It is possible to classify the singularities of a function f(z) by examination of its

Laurent series. For this purpose we assume that in Fig. 6-1, R2 = 0, so that 1(z) is
analytic inside and on Ci except at z = a which is an isolated singularity [see Page 67 1.
In the following, all singularities are assumed isolated unless otherwise indicated.

1. Poles. If 1(z) has the form (8) in which the principal part has only a finite num-
ber of terms given by

	

+ 
a-2	a-

z — a	 (z — a)2 
+	 + (z—a)"

where a-, , 0, then z = a is called a pole of order n. If n = 1, it is called a simple

pole.
If 1(z) has a pole at z = a, then urn 1(z) = 00 [see Problem 321.

2. Removable singularities. If a single-valued function f(z) is not defined at z = a but
lim 1(z) exists, then z = a is called a removable singularity. In such case we

define 1(z) at z = a as equal to lim 1(z).

Example: If 1(z) = sin zlz, then z = 0 is a removable singularity since 1(0) is not
defined but urn sin z/z = 1. We define f(0) = urn sin z/z = 1. Note that

z-.O	 zO
in. this case

sin x = !{-+-^...} =
z	 31	 51	 71	 51	 7

3. Essential singularities. If f(z) is single-valued, then any singularity which is
not a pole or removable singularity is called an essential singularity. If z = a is
an essential singularity of 1(z), the 'rincipal part of the Laurent expansion has
infinitely many terms.

Example: Since e	 1 + +
11 	

1 + •.., z = 0 is an essential singularity.
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The following two related theorems are of interest (see Problems 153-155):

Casorati-Weierstrass theorem. In any neighbourhood of an isolated essential
singularity a, an otherwise analytic function 1(z) comes arbitrarily close to any
complex number A. In symbols, given any positive numbers 6 and and any
complex number A, there exists a value of z inside the circle Iz - al = 8 for which
f(z) — A I <C.

Picard's theorem. In the nighbourhood of an isolated essential singularity a,
an otherwise analytic function f(.) can take on any value whatsoever with perhaps
one exception.

4. Branch points. A point z z0 is called a branch point of the multiple-valued
function 1(z) if the branche of 1(z) are interchanged when z describes a closed
path about z0 [see Page 37]. Since each of the branches of a multiple-valued
function is analytic, all of the theorems for analytic functions, in particular
Taylor's theorem, apply.

Example: The branch of 1(z) = Z112 which has the value 1 for z 1, has a Taylor series
of the form z + a 1(z - 1) + a.2 (z - 1)2 + ... with radius of convergence
R = 1 [the distance from z = 1 to the nearest singularity, namely the branch
point z=O].

5. Singularities at infinity. By letting z = 11w in 1(z), we obtain the function
1(17w) = 1(w). Then the nature of the singularity at z = [the point at infinity]
is defined to be the same as that of 1(w) at w = 0.

Example: f(z) = z3 has a pole of order 3 at z = o', since F(w) = 1(11w) = 11w3 has a
pole of order 3 at w = 0. Similarly 1(z) = el has an essential singularity at
z = ", since F(w) = 1(11w) = ell, has an essential singularity at w = 0.

ENTIRE FUNCTIONS
A function which is analytic everywhere in the finite plane [i.e. everywhere except

at w.] is called an entire function or integral function. The functions e, sin z, cos z are
entire functions.

An entire function can be representL2 by a Taylor series which has an infinite radius
of convergence. Conversely if a power series has an infinite radius of convergence, it
represents an entire function.

Note that by Liouville's theorem [Chapter 5, Page 119] a function which is analytic
everywhere including	 must be a constant.

MEROMORPHIC FUNCTIONS
A function which is analytic everywhere in the finite plane except at a finite number

of poles is called a merornorphic function.
Example:

	

	 2 which is analytic everywhere in the finite plane except at the poles z = 1

(simple pole) and z = —3 (pole of order two) is a meromorphic function.

LAGRANGE'S EXPANSION
Let z be that root of z = a+.(z) which has the value z = a when C = O. Then if

(z) is analytic inside and on a circle C containing z = a, we have

z = a +	 (11)

More generally, if 1(z) is analytic inside and on C, then

1(z) = 1(a)	 [(a)]")	 (12)

The expansion (12) and the special case (Ii) are often referred to as Lagrange's expansions.
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ANALYTIC CONTINUATION
Suppose that we do not know the precise

form of an analytic function 1(z) but only know

	

that inside some circle of convergence C1 with	 C
centre at a [Fig. 6-21 1(z) is represented by a
Taylor series

a0 + ai(z — a) + a2(z — a)2 +	 (13)

Choosing a point b inside C 1, we can find the
value of 1(z) and its derivatives at b from (13)
and thus arrive at a new series

b 0 + b i (z — b) + b2(z—b) 2 +	 (14)

having circle of convergence C2. If C2 extends beyond C1, then the values of f(z) and its
derivatives can be obtained in this extended portion and so we have achieved ore
information concerning 1(z).

We say in this case that f(z) has been extended analytically beyond C1 and call the
process analytic continuation or analytic extension.

The process can of course be repeated indefinitely. Thus choosing point c inside C2,
we arrive at a new series having circle of convergence C3 which may extend beyond C
and C2, etc.

The collection of all such power series representations, i.e. all possible analytic con-
tinuations, is defined as the analytic function 1(z) and each power series is sometimes
called an element of f(z).

In performing analytic continuations we must avoid singularities. For example,
there cannot be any singularity in Fig. 6-2 which is both inside C2 and on the boundary
of C1, since otherwise (14) would diverge at this point. In some cases the singularities
on a circle of convergence are so numerous that analytic continuation is impossible. In
these cases the boundary of the circle is called a natural boundary or barrier [see Prob. 30].
The function represented by a series having a natural boundary is called a lacunary function.

In going from circle C1 to circle C [Fig. 6-2], we have chosen the path of centres
a, b, c, . . ., p which we represent briefly by path P 1. Many other paths are also possible,
e.g. a, b', c', . . . , p represented briefly by path P2. A question arises as to whether one
obtains the same series representation valid inside C when one chooses different paths.
The answer is yes so long as the region bounded by paths P1 and P2 has no singularity.

For further discussion of analytic continuation, see Chapter 10.

Solved Problems

SEQUENCES AND SERIES OF FUNCTIONS

1. Using the definition, prove that urn (i +	 = 1 for all z.

Given any number e > 0, we must find N such that I 1 + z/n - ii < e for to > N. Ther
12/it[ < i, i.e. kiln <	 if u > jx1le	 N.
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converges for IzI <1,2. (a) Prove that the series z(1 - z) + z(1 - z) + z3(1 - z) +
and (b) find its sum.

The sum of the first n terms of the series is

S,,(z)	 z(1 - z) + 2 2(1 - z) +	 . + z"(1 - z)
=

= z_Z+i

Now	 S,,(z) - z	 —' i = jz'' < • for (n + 1) In IzI < In a, i.e. n+ 1  > Or
InIzI

n>--1 if z,'O.
lnlzI

If z0, S,(0)	 0 and IS(0)-0I < a for all n.

Hence limS,,(z) = z, the required sum for all z such that jzl < 1.

Anot'er method.
Since S,,(z) = z — z" 1 , we have [by Problem 41, Chapter 2, in which we showed that urn z" 0

if z < 1

Required sum = 8(z) = urn S(z) = urn (z — z'') = z

ABSOLUTE AND UNIFORM CONVERGENCE
3. (a) Prove that the series in Problem 2 converges uniformly to the sum z for Izi 4.

(b) Does the series converge uniformly for Izi 1? Explain.

(a) In Problem 2 we have shown that I S,(z) — z	 a for all n >	 — 1, i.e. the series con-
verges to the sum z for jzj < 1 and thus for j z I	 J.	

In lxi

Now if lxi 4, the largest value of In f - 1 occurs where z = 4 and is given by
In jzj

In e

In (1/2) — 1 = 
N. It follows that I S,,(z) - z I < a for all n > N where N depends only on a and

not on the particular z in I zi	 J. Thus the series converges uniformly to z for I z I	 4.

(b) The same argument given in part (a) serves to show that the series converges uniformly to sum z

for jzj	 .9 or lxi	 .99 by using N 
= 

In
In 	

— 1 and N 
= 

In cIn (.99) — 1 respectively.

However, it is clear that we cannot extend the argument to lxi ;^ 1 since this would require

N =

	

	 — 1 which is infinite, i.e. there is no finite value of N which can be used in this case.
In 1

Thus the series does not converge uniformly for lxi 1.

4. (a) Prove that the sequence { 1 1} is uniformly convergent to zero for all z such

that Izi 2. (b) Can the region of uniform convergence in (a) be extended? Explain.

(a) We have 1	
—.0	 a when 

I 1	
< or Ii ,+ nz > 1/i. Now I 1 + flZ	 Ill + ll =

1 + n lxi and 1 + n xl	 1 + nzi > 1/c for n> 1' —1	 Thus the sequence converges to zero

for lzI>2.	
Z

	To determine whether it converges uniformly to zero, note -that the largest vake of 	
1

in lxi 2 occurs for lxi = 2 and is given by 4((1/e) —1) = N. It follows that 1	
O < a

for all n > N where N depends only on a and not on the particular z in Izi 2. Thus the
sequence is uniformly convergent to zero in this region.
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(b) If 6 is any positive number, the largest value of (1/i)— 1 in jzj 	 8 oevuro for I z I	 8 and is

given by (l/.)—1. As in part (a), it follows that the sequence converges uniformly to zero for

all z such that IzI	 8, i.e. in any region which excludes all points in a neighbourhood of z
Since 6 can be chosen arbitrarily close to zero, it follows that the region of (a) can be extended

considerably.

5. Show that (a) the sum function in Problem 2 is discontinuous at z = 1, (b) the limit
in Problem 4 is discontinuous at z =0.
(a) From Problem 2, S,(z) = z - z" , 5(z) = Urn S,,(z). If jzj < 1. S(z) = lim S,(z) = Z.

,t*c.
If z = 1, Sn(Z) = S,,(1) = 0 and urn S,,(1) = 0. Hence S(z) is discontinuous at z = 1.

(b) From Problem 4 if we write u,,(z) = 1 and U(s) = lim u,,(z) we have U(s) = 0 if

a,' 0 and I if a = 0. Thus U(z) is discontinuous at a = 0.

These are consequences of the fact [see Problem 161 that if a series of continuous functions
is uniformly convergent in a region 'J, then the sum function must be continuous in '. Hence
if the sum function is not continuous, the series cannot be uniformly convergent. A similar result
holds for sequences.

6. Prove that the series of Problem 2 is absolutely convergent for Izi < 1.

Let	 T. 	 = l x(' —z)I + z2 ( 1 — z)I +	 + Iz(I—z)I
=	 I1 — zI{lzl + lzI+ !I +	 + IzI)

IzIn=	 ____

If jzj <1, then lim I zi" = 0 and Urn T. (z) exists so that the series converges absolutely.

Note that the series of absolute values converges in this case to Il — zi Izi
1—lzl

SPECIAL CONVERGENCE TESTS

7. If 2 Ivl converges and IuI	 n = 1,2,3,..., prove that I ju.1 also converges
(i.e. establish the comparison test for convergence).

Let S = 1u11+J u21+ . "+lu 1, T. = lvil+lvzl+."+lvI.

Since I lv5 1 converges, lim T,, exists and equals T, say. Also since Ivl 0, T5 T.

Then S,, = luil+luzl+ ..• +lu ,,l	 ivill vgI+"+lv l 1i 7' or
Thus S is a bounded monotonic increasing sequence and must have a limit [Theorem 3, Page 141],

i.e. I ju.1 converges.

8. Prove that- + ± ... =	 W. converges for any constant p> 1.

We have	
1
- = 1-
10	 1P-1

1	 1
ar	 2P 21 1 1. 1	 1	 1	 1L_ 1

4p+bp+6P+7p	 4p+4p+4p 4p	 4p—i

etc., where we consider 1,2, 4, 8, ... terms of the series. It follows that the sum of any finite number
of terms of the given series is less than the geometric series
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1 + 1 +_L_ .-.!_+	 -	 1

	

ji	 4p-1 + p-1	 - 1-1/29-'

which converges for p> 1. Thus the given sriee, sometimes called the p series, converges.

By using a method analogous to that used here together with the comparison test for divergence

[Theorem 10(b), Page 1411, we can show that

	

	 .- diverges for p 1.
n

9. Prove that an absolutely convergent series is convergent.

Given that T4 lul converges, we must show that 2u,, converges.

Let SM = U1 + it2 +	 + U and TM = lull + [u2 1 + ... + [UMI. Then

SM + TM = (u, + lul l) + (142 + 1 u21) + ... + (UM + UMl)

2[u, + 2 1 u21 + ... + 21uM1

Since I lu.1 converges and it,, + lu'l	 0 for n = 1, 2,3, ..., it follows that SM + TM is a

bounded monotonic increasing sequence and so urn (SM + TM) exists.

Also since urn TM exists [because by hypothesis the series is absolutely convergent,
U-"'

lim SM	 urn (SM + TM - TM)	 Urn (SM + TM)	 urn TM
M­ 	 M­ 	 U	 N-..

must also exist and the result is proved.

N	
zN

10.Prove that ,- n(n 
+ 1) converges (absolutely) for II f-1.

If I z i	 1, theni
	 Z"	

=	 t z l"	 1

n(n+1)I	 n(n+1)	 n(n+1)	 n2

2._
Taking u =	 , V. = 1- in the comparison test and recognizing that .i. converges

	

n(n+1)	 n2 nt

by Problem 8 with p = 2, we see that I ltil converges, i.e. 2u. converges absolutely.

11. Establish the ratio test for convergence.

We must show that if urn I	 = L < 1, then I l u.1 converges or, by Problem 9, 'u,, is

(absolutely) convergent.	
N

By hypothesis, we can choose an integer N so large that for all n 9 N,	 r where r Is
U.

some constant such that L < r < 1. Then

IUN + t I 	 r[u4

uN + St	 ? luu + d < v2 huNt

IUN+81 9 ? l*'N+2l <	 IUNI

etc. By addition,
lttN+1l + ltLN + 2 1 +	 IUNI (r + r2 +	 +	 •)

and so I lUnl converges by the comparison test since 0 <r < 1.

(z+2)',
12. Find the region of convergence of the series	 + 1) 4"'

(z + 2)"'	 (z + 2)"	 Hence, excluding z = —2 for which the given
If U = (n+1)4"' then U1 = (n+2)'4""

series converges, we have
= jim I(s+2)(n+1)8 1 =

jim
.­ U,	 4	 2)31	 4
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Then the series converge, (absolutely) for Iz + 21 < 1, i.e.
Iz+21 < 4. The point z = —2 is included in 1z+21 < 4.

If Is -I- 21 = 1, i.e. l z + 21 = 4, the ratio teat falls.

However it is seen that in this case

I(z+2)-- 1 I -	 I	 2..
I(n+l)5 4"I - 4(n+1)3

and since	 converges [p series with p = 31, the given series

converges (absolutely).

It follows that the given series converges (absolutely) for
I z + 21 Z 4. Geometrically this is the set of all points inside.
and on the circle of radius 4 with centre at z = —2, called the
circle of convergence [shown shaded in Fig. 6-31. The radius
of convergence is equal to 4.

	

13. Find the region of convergence of the series (a) 	 (1Y'' z2"
(b)	 n! zN.

(2n-1)! '

(a) If U.	 , then u,, + i

	

(—l)''z2—1	
= 

(-1)'z2+I= Hence, excluding z = 0 for which the

	

(2n-1)1	 (2n+1)f

given series converges, we have

	

1!lim

I u--L-

	

	 - .- (2n-1)l  	 (Zn - I)! I'I= urn 

	

U,,	 I	 (2n + 1)! I 
=	 lim

,,—.. (2n + 1)(2n)(2n —1)!

=	 lim	 IzI	 -
0-

for all finite z. Thus the series converges (absolutely) for all z, and we say that the seriesconverges for I z i < . We can equivalently say that the circle of convergence is infinite or that
the radius of convergence is infinite.

(b) If u,, = xl 5N, u,, + 1 = (n + 1) I z 4- 1• Then excluding z = 0 for which the given series converges,we have

	

urn!1!-.!	 = urn (n + I)! z"	 = lim (n + 1) jzj =

	

s-.c u,,	 n—no	 n! fl	 n-no

Thus the series converges only for z = 0.

THEOREMS ON UNIFORM CONVERGENCE
14. Prove the Weierstrass M test, i.e. if in a region 'Ii, fu,.(z)j ;5 M,,, n = 1,2,3, ..., where

M are positive constants such that YM. converges, then u.(z) is uniformly (and abso-
lutely) convergent in 'Ri.

The remainder of the series lu,,(z) after n terms is R-(z) = u+ 1 (z) + u,,+ 2 (z) +	 Now

	

tR(z)I = IU+j (z) + U.+2 (Z) + .. .	 Iu,,+1 (z)I + Iu +2 (z) I +

M+1+M,,+3+...

But M,, 1 + M,,+ 2 +	 can be made less than i by choosing n> N, since IM, converges. SinceN is clearly independent of z, we have R,,(z)I <	 for a > N, and the series is uniformly con-
vergent. The absolute convergence follows at once from the comparison test.
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15. Test for uniform convergence in the indicated region:
_____

(a)	 Izi	 1; (b)	
fl2+Z2'	

cosnz1< lI <2; (c) 
n1	

IzJ	 1.1 = I

______	
10 1 	.	 .(a) If u,(z) =	 , then Iu(z)l =	 if JzI	 1. Calling M = 1-j--, we see+ i

that IM. converges (p series with p = 3/2). Hence by the Weierstrass M test the given series
converges uniformly (and absolutely) for 121	 1.

(b) The given series is	
22 + 

22	 2 + 
32 Z2 

+	 . The first two terms can be omitted without
affecting the uniform convergence of the series. 'or n 24 3 and 1 < jzj < 2, we have

nS + z2 1	 - 12 2 1	 - 4 24 jn2 or	 1	 2
fl2+Z	 2

Since	 4 converges, it follows from the Weierstra gs M test (with M = 2/n2) that the given
series converges uniformly (and absolutely) for I < Izi < 2.

Note that the convergence, and thus uniform convergence, breaks down if 1 21 = I or Izi = 2namely at z = ±i and z = 1-2i]. Hence the series cannot converge uniformly for 1	 z] 2.
(c) If z = x + iy, we have

cos nz - e1" + -i.. - e"-" + e" + fl9
fl3	 -	 2n3	 -	 20

= ei (cosnx + i5?lflX) 
+ e

nV(conx -
2n3	2n3

The series	 e" (cos nx - i sin ax) and	 e-"&' (cos nx + i sin nx)	
cannot converge fo2n3	 ,=i	 2n3

Y > 0 and y < 0 respectively [since in these cases the nth term does not approach zero]. Hence
the series does not converge for all z such that jzj	 1, and so cannot possibly be uniformly
convergent in this region.

The series does converge for y = 0, i.e. if z is real. In this case z = x and the series
becomes	 C08 nx. 

Then since 
I 

cos nx I ^ 1	 1
n3	 n3i	

-- and	 - converges, it follows from the
Weiert.ras M test (with M, = 1/0) that the given series converges uniformly in any interval
on the real axis.

16. Prove Theorem 18, Page 142, i.e. if u,,(z), n = 1, 2, 3, ..., are continuous in 'k and
u(z) is uniformly convergent to S(z) in 9Z, then S(z) is continuous in R..

	If S-(z) = u 1 (z) + u24) + . .. + u,,(z), and R,,(z) = u 1 (z) + U. + 2W +	 is the remainderafter a terms, it is clear that

S(z) = S,,(z) + R,,(z)	 and	 S(z + h) = S,(z + h) + R(z + h)
and so	 S(z + h) - S(z) = S(z + h) - S,,(z) + R(z + h) - R,,(z) 	 (1)
where z and z + h are n 'k.

Since S(z) is the .sum of a finite number of continuous functions, it must also be continuous.
Then given 1> 0, we can find S so that

S,,(z + h) - S,(z) I < 1/3 whenever IhI < 8 (2)

Since the series, by hypothesis, is uniformly convergent, we can choose N so that for all z in 'Ii,
jR(z)] < e/3 and R(z + h)I < 1/3 for a. > N	 (3)

Then from (1), (2) and (3),

I S(z + h) - 8(z) I	 I S,(z + h) - S(z) I + I R,,(z + h) I + R(z)j <
for jhj < 8 and all z in 'It, and so the continuity is established,



152	 INFINITE SERIES - TAYLOR'S AND LAURENT'S SERIES	 [CHAP. 6

17. Prove Theorem 19, Page 142, i.e. if (u,.(z)), n - 1, 2,3, ..., are continuous in ',

S(z) =	 u(z) is uniformly convergent in	 and C is a curve in ¶R, then

5 S(z) dx = 5 ( u(z)) dz =	 5 u,,(z)
As in Problem 16, we have S(z) = S,,(z) + R,,(z) and so since these are continuous in ' [by

Problem 161 their integrals exist, i.e.,

fS(z) dx = f S,,(x) dx + £ R8 _,, dx

= f uj(z) dx + f u2(z) dz + ... + f u,,(z) dx + f,: R8(z) dx

By hypothesis the series is uniformly convergent, so that given any e > 0 we can find a number N
independent of z in 'R such that R,,(z)I < • when n > N. Denoting by L the length of C, we have
[using Property 5, Page 93]

< •L

Then	 f S(z) dz - f S5(z) dx can be made as small as we like by choosing n large enough,

and the result is proved.

THEOREMS ON POWER SERIES

18. If a power series I a.,,z converges for z = zo ,.' 0, prove that it converges (ti) absolutely
for Izi < IzoI, (b) uniformly for IzI	 IziI where Izil < Izol.

(a) Since a5z; converges, lim az = 0 and so we can make I o,,x < 1 by choosing n large

1
enough, i.e. 168 1 <	 for n > N. Then

1:018

Iazl	 =	 a,,]z"	 (1)

	

N+I	 N+1 frOI

But the last series in (1) converges for lxi < Izol and so by the comparison test the first
series converges, i.e. the given series is absolutely convergent.

(b) Let M8 = Is". . Then EM,, converges, since lz i l < I zol . As in part a4, la8z"1 < M. for
1:0

lxi 9 lxil so that, by the Weierstrass M test, a.z- is uniformly convergent.

It follows that a power series is uniformly convergent in any region which lies entirely Inside
Its circle of convergence.

19. Prove that both the power series 	 ax and the corresponding series of derivatives

n428 z' 1 have the same radius of convergence.'0
Let ft > 0 be the radius of convergence of az". Let 0 < IzoI < R. Then as in Problem 18 we

can choose N so that ]a < —i-- for n> N.

Thus the terms of the ,series I Ina.z'I = n kI lzl	 can for n> N be made less than

corresponding terms of the series n S— which converges, by the ratio teat, for I:] < Ixol <R.
IzoI

Hence	 z'	 converges absolutely for all points such that lxi < ]zoi (no matter how close ltoI

is to R), i.e. for I: < R.

If however II > R, lim a,,Z ,' 0 and thus lim na8 z"' , 0, so that na5 0 1 does not
converge.

Thus ft is the radius of convergence of 17a,0 1. This is also true if R = 0.

Note that the series of derivatives may or iaij not converge for values of z such that 1:1 = R.
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20. Prove that in any region which lies entirely within its circle of convergence, a power
series (a) represents a continuous funition, say 1(z), (b) can be integrated term by
term to yield the integral of 1(z), (c) can be differentiated term by term to yield the
derivative of 1(z).

We consider the power series la.z n, although analogous results hold for	 a,,(z - a)".

(a) This follows from Problem 16 and the fact that each term az" of the series is continuous.
(b) This follows from Problem 17 and the fact that each term az" of the series is continuous and

thus integrable.

(c) From Problem 19 the derivative of a power series converges within the circle of convergence of
the original power series and therefore is uniformly convergent in any region entirely within
the circle of convergence. Thus the required result follows from Theorem 20, Page 142.

21. Prove that the series 	
Zn
w has a finite value at all points inside and on its circle of

convergence but that this is not true for the series of derivatives.

By the ratio test the series converges for Izi < 1 and diverges for IzI > 1. If jzl = 1, then
z"/n2 = 1/n2 and the series is convergent (absolutely). Thus the series converges for I and

so has a finite value inside and on its circle of convergence.
0

The series of derivatives is 	 -. By the ratio test the series converges for IzI < 1. How-­ n
ever, the series does not converge for all z such that jzj = 1, for example if z = 1 the series diverges.

TAYLOR'S THEOREM

22. Prove Taylor's theorem If 1(z) is analytic inside a circle C with centre at a, then for
all z inside C,

1(z) = 1(a) + f'(a) (z — a) + -i-,f"(a)
-- (z — 

a)2 + ______ 
(z — a) +

Let z be any point inside C. Construct a circle C 1 with centre
at a and enclosing z (See Fig. 6-4). Then by Cauchy's integral
formula,

	

f(z) = i_.5-L(-)dw	 (1)

We have

—	 1	 —	 1 J	 I
w—z — (w — a) — (z — a) — (w—a) 1 1 — (z—a)/(w—a)

=	 1 Ji +	
+ (	 2	

+(w — a)	 w—a)	 \w—a/

(w-- 

Sfl

oJ 1 —(z_a1)/(w_a}

or
'11	 '1	

-4-

	

z—a	 (z—a)2 + . . . + (z—a)"' +
	

z —a \
a i

= —w - z	 w - a	 (w - a)2 + (w — a) 3 	 (w —a)"	 w—a) w—z

Multiplying both sides of (2) by f(w) and using (1), we have

—dw +1(z) = 2ri	
1(w)	 z—a	 1(w) dw +	 +	 (Jw — a	 2,ri	 , (w — a) 2	2wi	 (w — a)"

where	 U. = i-.
 5 (-.'"iL dw\., w — aJ w_z

(2)

(3)
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Using Cauchy's integral formulae

fl ! '

	

=	 Yja)f1dU'	 n = 0,1,2,3,...

(3) becomes

f(z) = f(a) + /'(a)(z — a) + L(z_a)2 +	 + I t)(z_a)	 + U

If we can now show that Urn U. = 0, we will have proved the required result. To do this we

note that since w is on C 1 , "

=	 < 1
w - a

where y is a constant. Also we have I1(w)l < M where M is a constant, and

Iw—zi = [ (w—a) (z—a)	 - Iz—al

where r1 is the radius of C 1. Hence from Property 5, Page 93, we have

	

I U.1 = 	 If- w a W Z

1 yM	
2	

y"Mr1
-	 rr1 =
2,, r 1 - Is - al	 - --. 1

and we see that tim U. = 0, completing the proof.
TI .-t

23. Let 1(z) = In (1 + z), where we consider that branch which has the value zero when
z = 0. (a) Expand 1(z) in a Taylor series about z = 0. (b) Determine the region of

convergence for the series in (a). (c) Expand In	 in a Taylor series about z = 0.

(a) 1(z)	 = ln(1+z)	 1(0)	 = 0

P(Z )	 (1+z)1	 P(0)	 = 1

f"(z)	 = —(1 + Z) - 2	 f"(0)	 = —1

f— (z)	 = (-1)(-2)(1 + 2) 3	f"'(0)	 2!

f( TI+l) (z) =	 f(TI+1)(0) =

Then
f(z) = ln(1+z) = /(0) + f'(0)z +Lz2 +	 a3 +

3!

	

X2 , z3	 a4
=

Another method. If Izi < 1,

= 1—z+z2-23+
1+z

Then integrating from '0 tb a yields

ln(1+z) =

(_1)n- 1 z
(b) The nth term is u,, =	 . Using the ratio test,

It
U,,+i 	 JimJim - = urn - I = Ia!

s-,_ Ufl	 n—. n+1

and the series coltverges for 	 < 1. The series can be shown to converge for lal = 1 except for

a = —1.
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This result also follows from the fact that the series converges in a circle which extends to
the nearest singularity (i.e. z = —1) of 1(z)..

(c) From the result in (a) we have, on replacing z by —z,
Z2	 z3	z4ln(1+z) =

ln(1—z) =	
z2	 z3 	z4

both series convergent for Izi < 1. By subtraction, we have

f1+z\ I! z5ln) = 2z+1++...) =	 02n+11-2

which converges for IzI < 1. We can also show that this series converges for It! = 1 except for
z = ±1.

24. (a) Expand 1(z) = sin z in a Taylor series about z = 7r/4 and (b) determine the region
of convergence of this series.

(a) 1(z) = sin z, /'(z) = cos z, f"(z) = - sin z, /"(z) = - cos z, f1 9z) = sin z,

	

= V/2, f'(/4)	 //2, f"(,,14) = —'//2, /"(r/4) = —//2, f"(r/4) =
Then, since a =

1(z) = 1(a) + f'(a) (z - a) + f"(a) (z - a)2 +
	

(z - a) +
2!	 3!

	

= v 2 	 2
+ -(z—r/4) - _i!_(_,,/4)2 - _L2_(Z.._77/4)3 +

2	 2	 221	 2•31

=I + (z—v/4) - (z-ir/4)2 - (z—r/4)3 +

	

2!	 3!
Another method.

Let u=z-7/4 or z=u+w/4. Then wehave,

sin z = sin (u + ,r/4) = sin u cos (n/4) + cos U sin (r14)

=	 ! (sin u+ coo u)

U2 U4

	

2	 31	 51
-	

u3	 u5

-	 ...) 
+ (i_-^_ ...)}

- 

'{1+U_"	
3

2	 21	 iT 41-

=	 {I + (z - r/4) _. (z _v/4)2 - (z - 7/4) +

	

2!	 3!
(b) Since the singularity of sin z nearest to r/4 is at infinity, the series converges for all finite values

of z, i.e. It! < . This can also be established by the ratio teat.

LAURENT'S THEOREM
25. Prove Laurent'8 theorem: If 1(z) is analytic inside and on the boundary of the ring-

shaped region q bounded by two cocentric circles C1 and C2 with centre at a and
respective radii r1 and r2(r1 > r2), then for all z in %

1(z) =	 a,(z—a) 
+nO	 (z a)*

where
1=
zJc,(w_a)11(ub0	 n=O,1,2,...

a— 
= 

1(	 1(w)
(w_a)_1'°	 n=1,2,3,...
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By Cauchy', integral formula [see Problem 23, Page 1311	 C1
we have

– 1 5 --- dw – --- 5 - dw	 (1)1(z)	 –	 .,	 –	 ,

Consider the first integral in (1). As in Problem 22, equa-
tion (2), we have

1	 –	 1	 Fig. 6-5
w–z	 (w–a){1–(z–a)/(w–a))

=	 + 
z—a +	 + (z—a)"-1 +	 (2)w–a	 (w–a)2	 (w–a)"	 \w–aJ w–z

so that —	 ____dw +S -'- )—dw = _L5	 2–a r f(w) dw
2nj	 w – z	 2ri	 w – a	 2ni	 (w – a)2

(za)1	 1(w)	+ 	
+ 2ri 5	 dw + U,,(w – a)"

= a0 + a(z–a) +	 + a,,1(z–a)"' + U,,	 (3)
where

= 1 S ---dw, a 1 = —c	 dw.....2i	
f(w)	 = 1 5 1(w) dwa0	

, w – a	 S (w - a)2	 Zri c, (w – a)"

and	 U,, = _L. 5	 dw2i , \w–a) w–z

Let us now consider the second integral in (1). We have on interchanging w and z in (2),

1
wz – (z–a)(j–(w–a)/(z–a))

=	 1 w–a	 (w–a)"'	 (w–a'\" 1

	

z – a + (z –a)2 +	 + ( – a)" +	 —

w – aso that --	 _____
1	 1(w) dw	 1 5 -	 dw +	 5 (z – a)2 1(w) dw

2ni S , W–z	 2–a	 2ri
C.	 C.

	

+	
+- S (t°(z -- a)" 1 (w) dw + V,,

C.

+ ...+= —z–a +	 (2–a)" + v	 (4)

where

a_1 = i-.	 25 1(w) dw, a_2 = 1 5(w - a) 1(w) dw, . .., a_,, = _L 5 (w – a)"' 1(w) dw
27ic, 	 2.-i

and	 vn 
=;	

(&" .Li dw
2rf \ z–a) z_-w

From (1), (3) and (4) we have

1(z) = (a..3 + a1 (z–a) +	 + a,,_1(z–a)"t}

^Z_aa..2
	 a_ 1

^	 + 2 +++ U,, + V,,	 (5)

	

 (z – a)	 (z–a)"j

The required result follows if we can show that (a) urn U. = 0 and (b) urn V,, = 0. The
s_a 

proof of (a) follows from Problem 22. To prove	 we first note that since w is on C2,
w — a

=a–a
where or is a constant. Also we have I1(w)I <M where M is a constant and

lx–wI = 1(x – a) — (tv–a)I 9 Iz—a! — r.
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Hence from Property 5, Page 93, we have

IV.  = L C,

1	 K"M	 s"Mr2
jr– -1; 7L--z - a) - r2 2rr2 =	

- - r2Iz

Then urn V,, = 0 and the proof is comp1et

26. Find Laurent series about the indicated singularity for each of the following functions.
Name the singularity in each case and give the region of convergence of each series.

(a) 	 Let z - 1 = u. Then z = 1 + u and
(z— 1)

== L.e2 = e2 
^l + 2u + (2u)' + (u)' + (2u)" +

(z-1)3 	u3	 u3	 21	 3!	 41

2e	 2e2	 4e2	 2e2

= (z-1) + (z-1) +
	 +	 + i(z1) +

z = I is a pole of order 3, or triple pole.

The series converges for all values of z" 1.

Let z+2 = u or z = u-2. Then

(u-5) sin - = (u-5"1
U

5	 15
1 - u - 3?.2 + 313 + 5! u -

1 - z+2 - 6(z+2)2 +
	 +

6(z+2)3 
	 120(z+2)4 -

(b) (z-3) sin ---ij; z=-2.

(z_3) sin —lj =

EE

Ea

z = —2 is an essential singularity.

The series converges for all values of x 7 4 —2.

(o) Z — sin Z	 z=0.

Z3

= {:	 +

- z3 {3!	 5!	 7!	 }	 31	 61	 7!

z = 0 is a removable singularity.

The series converges for all values of z.

(d)
Z	 z = —2.	 Let z + 2 = u. Then

(z + 1)(z + 2)

z	 u-2 - 2—u	 1	 =	 (1+u+u2+U8+ ...)

(z+1)(z+2) - T1__ —1 ) U

=+1+U+u2+... =_j+1+(z+2)+(z+2)2+
U

z = —2 10 a pole of order 1, or simple pole.

The series converges for all values of a such that 0 < )z + 21 < 1.

(e) z = 3. 	 Let z - 3 = u. Then by the binomial theorem,
z2(z - 3)2
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1	 -	 I	 -	 1
z2(z _ 3)2 - u(3 + u) 2 - 9u(1 + /3)2

=^Ull {1 + (_2)()	 + (_2)(-3)(_4)(!) + . }

-
Tui Hu 27 243

—	 1	 -	 2	 +	 - 4(z-3) +- 9(z - 3)2	 27(z - 3)	 27	 243
z = 3 is a pole of order 2 or double pole.

The series converges for all values of z such that 0 < Iz - 31 < 3.

27. Expand 1(z) 
= (z + l)(z + 3) in a 

Laurent series valid for (a) 1 < IzI <3, (b) jzj > 3,

(c) 0 < Iz+1I <2, (d) Iz<1.

(a) Resolving into partial fractions, 	 = (_L -
(z+1)(z+3)	 2\z+1J	 2\z+3

If 121>1,

1	 -	 1	
-
—1(1 1 + 1 	1+ 	 _1	 1+1	 1+.

2(z —+I) 	 2z(1 + 1/:)	 2: \.	 z :2	 / - 2z	 2:2 2Z3- 2z4

If 1:1 < 3,
1	 1	 - 1f	 z + 

:2 : +	 1	 z + 
:2	 Z3

+2( + 3) - 6(1 -z/3)	 6	 3 9	 27	 )	 6	 18	 54	 162

Then the required Laurent expansion valid for bota 1:1 > 1 and J zj < 3, i.e. 1 < 1 :1< 3, is
1 + 1	 1	 1	 1	 z	 :2 + :2z	 2z	 2z2 + 2:	 6 + 18	 54	 162

(b) If jz[ > 1, we have as in part (a),

1	 _1	 1	 1	 1
2(z + 1) - 2:	 2z2 + jz3	 2z 

+

If Jzj > 3,
11	 - 1/	 39 27	 \_ 1	 3	 9	 27

	

2(z+3) = 2z(l+3/z)t - 21+23+ ...J - 2	 2z2z4 +

Then the required Laurent expansion valid for both JzJ >1 and 1:1 > 3, i.e. 1:1 > 3, is by
subtraction

- -+ 
-13 40
 - -. +:2	2	 z

(c) Let z+1 = u. Then

1	 -	 1	 -	 1	 - i(l_.+	 u3
(z + 1)(z + 3) - u(u + 2) - 2u(1 —+ u/2) - 2u	 2 4 - 8

= 2(z+1) -	 + (z+1) - 6 (z+1)2 +

valid for Jul<'2,u0 or 0<Iz+1I<2.

(d) If 1:1 < I,

2(z+ 1) = 2(1+	 4(1 - z + :2 - + .) = 4 - 4: + 4:2 - 4z3 +

If JzJ < 3, we have by part (a),

2(z+3) - 6	 18	 54	 162
Then the required Laurent expansion, valid for both JzJ < 1 and jzj < 3, i.e. 1:1 < I, is by

subtraction
-	 + z2 -z3 +

This is a Taylor serie s .
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LAGRANGE'S EXPANSION
28. Prove Lagrange's expansion (11) on Page 145.

Let us assume that C is taken 80 that thre is only one simple zero of z = a + p(z) inside C.
Then from Problem 90, Page 137, with g(z) = z and 1(z) = z — a — (z), we have

= -L 1 — f '(w) 1 dw
2si	 w — a -

1	
1dw=	 {1 —'(w)}{ —

= j— f --(1 — '(w)} f	w)/(W_a)n} dwW—a

2ri
w
	j' 

_W./."(W)	 w	 (w) '(w)'t,—	 ____ W_ — a	 =	 (w — a)" +	 (w — a)"	
dw

— a — ,121,1f	

d 

[ow
—	 ___

= a+
,,12,rin Jc (W —o)"

= a +d"—' ["(a)]
=In! do--'

ANALYTIC CONTINUATION

29. Show that the series (a)	 and (b)	 are analytic continuations
of each other.	 "°

(a) By the ratio test, the series converges for lzI < 2 [shaded in Fig. 6-61. In this circle the series
[which is a geometric series with first term j and ratio z/21 can be summed and represents the

function 1/2 = -.
1—z/2	 2 

1
—z

(b) By the ratio test, the series converges for	 < 1,

i.e. jz — ii < 'V [see Fig. 6-6]. In this circle the series
[which is a geometric series with first term 1/(2 — i) and
ratio (z — 1)1(2 — 1)] can be summed and represents the

	

11(2—i)	 1function	
i)/(2	

= -
1 — (z—)— i)	 2—z.

Since the power series represent the same function
in the regions common to the interiors of the circles
IzI = 2 and 1 z — ii = it follows that they are ana-
lytic continuations of each other.

30. Prove that the series 1 + z + :2 + z +ZI + . = 1 +	 z" cannot be continued
analytically beyond j zj	 1.	 =0

Let F(z) = 1+z+z2+z4+z8+.... Then F(z) = z+F(z2), F(z) = 2+z2 +F(z), F(z) =
2 + z2 + z4 + F(z9,

From these it is clear that the values of z given by z = 1, z2 = 1, z 4 = 1, zS = 1, . . . are all
singularities of F(s). These singularities all lie on the circle j zj = 1. Given any small are of this
circle, there will be infinitely many such singularities. These represent an impassable barrier and
analytic continuation beyond j zj = 1 Is therefore impossible. The circle Izi = 1 constitutes a natural
boundary.
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MISCELLANEOUS PROBLEMS
31. Let (fk(z)), k = 1,2,3, . .. be a sequence of functions analytic in a region 11. Sup-

pose that
F(z) =	 fk(Z)

is uniformly convergent in 'g. Prove that F(z) is analytic in '1.

Let S,,(z) = Y, f,,(z). By definition of uniform convergence, given any c > 0 we can find a positive

integer N depending on and not on z such that for all z in 'J,

F(z) - S(z) I < e	 for all n > N	 (1)

Now suppose that C is any simple closed curve lying entirely in '1 and denote its length by L.

Then by Problem 16, since fk(Z), k = 1,2,3, ... are continuous, F(z) is also continuous so that

5 F(z) di exists. Also, using (1) we see that for n> N,

5 F(z) di -	 5 fk(z) di	 IS {F(z) - S5(z)) di
C	 k1 C	 C

< .L

Because i can can be made as small as we please, we see that

5 F(z) di 
= k=1 

if,, di

But by Cauchy's theorem, 5 f,(z) dz 	0. Hence

5 F(z)dz = 0

and so by Morera's theorem (Page 118, Chapter 5) F(z) must be analytic.

32. Prove that an analytic function cannot be bounded in the neighbourhood of an isolated
singularity.

Let f(z) be analytic inside and on a circle C of radius r, except at the isolated singularity z =a

taken to be the centre of C. Then by Laurent's theorem f(z) has a Laurent expansion

f(z) =	 ak(z_a)c	 (1)

where the coefficients 0k are given by equation (7), Page 144. In particular,

a ,, -	 5	 f(z)	 di	 n = 1,2,3,...	 (2)-	 -	
C (z-a)"

Now if I/(z)I < M for a constant M, 4 e. if 1(z) is bounded, then from (2),

d.

--r"	M • Zwr = Mr"
2r

Hence since r can be made arbitrarily small, we have a..., = 0, n = 1,2,3,..., i.e. a_ 1 = a_ 2 =
= = U. and the Laurent series reduces to a Taykr series about z = a. This shows that f(z)

Is analytic at z = a so that z = a is not a singularity, contrary to hypothesis. This contradiction

shows that f(z) cannot be bounded in the neighbourhood of an isolated singularity.
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33. Prove that if z 71 0, then
e'	 =	 Jn(a) z

i n2'
where	 .In (a) = --	 cos (no - a sin 0) do	 n 0, 1, 2,2ir J

The point z 0 is the only finite singularity of the function e½ 	 and it follows that the
function must have a Laurent series expansion of the form

=	 J(a) z'	 (1)

which holds for hi > 0. By equation (7), Page 144, the coefficients Jn(a) are given by

=	 5 e' 
dx	 (2)2ri

where C is any simple closed curve having z = 0 inside.

Let us in particular choose C to be a circle of radius 1 having centre at the origin; i.e. the
equation of C is )xi = 1 or z = e. Then (2) becomes

J,(a) 
=	

1
6((n+ 1)9	

do

=.i	 61a,InI - ln do
2rj0

fp2.
- I cos (a sin o - no) do
2r ./

1	 2
cos(ne—asino)d•

2.
+	 sln(asini — ne)dS

0
B

B

using the fact that I = J sin( a sin e - n) do = 0. This last result follows since on letting

	

0 = 2r—, we find	 0

1 =	 sin (—a sin - 2,i-n + no) do = -	 sin (a sin - nØ) 4 = —I

	

JO	 .10

so that I = —1 and I = 0. The required result is thus established.

The function J(a) is called a Beael function of the first kind of order n.

For further discussion of Bessel functions, see Chapter 10.

34. The Legendre polynomials P (t), n 	 0, 1,2,3,... are defined by Rodrigues' formula

P.
	

1 d
 =

(a) Prove that if C is any simple closed curve enclosing the point z = t, then
11 'P. 	 - —.—' 1). dz-	 ' - 2irj 2 J(zt)"

This is called Schlae/Zi's representation for P. (t), or Schtaefli'8 formula.

(b) Prove that

5 2.
P., (t) = j-. 	 ( t + yF- --1  cos 0)" do

(a) By Cauchy's integral formulae, if C encloses point t,

ii4	 dx=	
f(t) = 2ri 'c (z t)'



S
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Then taking 1( t) = (t2 - 1)" so that 1(z) = (z2 - 1)", we
have the required result

1	 d"
P, (t) = i,,-, —(t2—l)"

=	 ii , (z2—i)" 
dx

2" 2,rj j(z—t)"'

(6) Choose C as a circle with centre at t and radius V[- ii as
shown in Fig. 6-7. Then an equation for C is It - I

V[-ii or z = t + ft2_1eb0, 06<2r. Using this in
part (a), we have

P (t)	 -	 1	 1 f2r ((t +	 e10)2 - 1)"	 ie10do

2" 2riJo	 (Ijj e'°)"

-	 1	 1 
f((t2 

-1) + 2tv'i	 + (t2 - I)e210 )" e"6 do

- 2" 2,r	 (t2-1)"2

=	 1	 1	 I{(t2 - 1)e'° + 2tfli + (t2 - 1)e 18 )" do

2w

0

	(t2 - 1)fl12

1	 12 I (2tv! i + 2(t2 — 1) cos a)" do
-Fn 2,r J0	 (t2-1)"'t

2
= — J (t+ /ii cos 9)"dO

IT	 0

For further discussion of Legendre polynomials, see Chapter 10.

Supplementary Problems

SEQUENCES AND SERIES OF FUNCTIONS
ax

35. Using the definition, prove: 	 (a) Jim 3n-2z = 3, (6) u 
.
rn	 = 0.

n-.m fl+t	 n-.,,flz+Z2

36. If urn u 5 (z) = U(z) and Jim v(z) = V(z), prove that (a) urn (u(z) ± v(z)) = U(z) ± V(z),
n-.	 n-.

(6) urn (u(z) v(z)) = U(z) V(z), (c) Jim u(z)/v(z) = U(z)IV(z) if V(z)	 0.

37. (a) Prove that the series - ++	 + ... =
	

converges for lxi < 2 and (b) find its sum.

Ans. (a) S(z) = {1 - (z/2)")/(2 - z) and urn S(z) exists if jzj < 2,	 (b) S(z) = 1/(2 - z)

38. (a) Determine the set of values of z for which the series j (-1)" (z" + zf I) converges and

(b) find its sum.	 Ans. (a) lxi < 1, (6) 1	
5-0

3	 (a) For what values of z does the series1)" converge and (b) what is its sum?

An8. (a) All z such that I z2 +I I > 1, (6) lIz2

40. If urn u(z)I = 0, prove that urn u5(z) = 0. Is the converse true? Justify your answer.
ft_	 fl_S

41. Prove that for all finite z, urn z"/n! = 0.
I, - S

Fig. 6-7
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42. Let (a,,), n = 1, 2, 3, ... be a sequence of positive numbers having zero as a limit. Suppose that
Iu,,(z)I	 a,, for n = 1,2,3.... . Prove that Urn u,,(z) = 0.

43. Prove that the convergence or divergence of a series is not affected by adding (or removing) a finite
number of terms.

44. Let S. = z+2z2 +3z3 + 	 + nz", T. =	 +z". (a) Show that S. (T,,-nz"')I(1-z).

(b) Use (a) to find the sum of the series 	 nz" and determine the set of values for which the series

converges.	 An.. (6) z/(1 - z) 2, Izi < 1

45. Find the sum of the series	 An.. 42.

ABSOLUTE AND UNIFORM CONVERGENCE
46. (a) Prove that u,,(z) = 3. + 4z2/n, n = 1,2,3.... . converges uniformly to 3z for all z inside or on the

circle 1 Z 1 = 1. (b) Can the circle of part (a) be enlarged? Explain.

47. (a) Determine whether the sequence u,,(z) = nz/(n2 + z) [Problem 36(b)] converges uniformly to zero
for all z inside 1.1 = 3. (6) Does the result of (a) hold for all finite values of a?

48. Prove that the series 1 + a. + a2.2 +	 converges uniformly to 1/(1 - az) inside or on the circle

1.1 = R where R < 1/IaI.

49. Investigate the (a) absolute and (b) uniform convergence of the series

+ z(3 - z) + z(3 - z)2 
+ z(3 - z)3 

+
3	 32	 33	 34

Ana. (a) Converges absolutely if lz - 3 1 < 3 or z = 0. (b) Converges uniformly for I. - 31	 R

where 0 < R < 3; does not converge uniformly in any neighbourhood which includes z 0.

50. Investigate the (a) absolute and (b) uniform convergence of the series in Problem 38.

An.. (a) Converges absolutely if j z j < I. (b) Converges uniformly if 1 Z1 R where R < 1.

51. Investigate the (a) absolute and (b) uniform convergence of the series in Problem 39.

Ana. (a) Converges absolutely if ]z2 + i > 1. (b) Converges uniformly if I z + 11 9 R where R > 1.

52. Let (a,,) be a sequence of positive constants having limit zero; and suppose that for all z in a region q,

ju,,(z)I	 a,,, n = 1,2,3,	 Prove that urn u,,(z) = 0 uniformly in 'J.

53. (a) Prove that the sequence u,,(z) = nze"' converges to zero for all finite a such that Re (.2) > 0,

and represent this region geometrically. (b) Discuss the uniform convergence of the sequence in (a).

An.. (b) Not uniformly convergent in any region which includes a = 0.

54. If	 a,, and	 b,, converge absolutely, prove that i.0 c,,, where c,, = a0b,, + a b,, - +	 +
n0	 n=O

a,,b0, converges absolutely.

55. Prove that if each of two series is absolutely and uniformly convergent in 'R., their product is abso-
lutely and uniformly convergent in 'Ri.

SPECIAL CONVERGENCE TESTS
56. Test for convergence:

1	 n	 n+3	 (-1)"	 2n-1
(a) 1 --j,	 (b),,13,,_1,	 (c)13s.._+z.	 ,,14n+3'	

(5)y.

Ana. (a) cony., (b) cony., (a) div., (d) cony., (e) div.
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57. Investigate the convergence of:

(a)	
1	

(b)	 (c)	
1	

•	 (d)

"' 

I n + z	 ,,=j n+ z	 ,,=i n2 + Is	 ,= a + z
An.. a) Diverges for all finite 	 (b) Converges for all z. (c) Converges for all z. (d) Converges for

all z except z = —ni , n =

"""4re$8. Investigate the convergence of	 -	 An.. Cony.8

59. Find the region of convergence O	
(a +1)(n2)' 

(b)	 n2. (!_±_.), (c)	
(1'2"

An.. (a) z+i	 1, (b)	 +1),t-1)f	 8, (c z[ <

60. Investigate the region of absolute convergence c:
And. Cony. abs. for 12	 4.

61. Find the region of convergence of
—0 (n + 1)5I

An.. Converges if Int. z 0

62. Prove that the series	 (vi -	 .e-ei	 the aG, Wrin approaches zero,
=1

63. Let N be a positive integer ac. stjppo,c t,11.1 xu. al . ,i , i'	 1/(n h. n)	 Prove that	 it,,diverges.

64. Establish the yalidn, of	 nc. ou. -est. LThce-eui iz	 (b integral teat [Theorem 13J, on
Page 141.

65. Find the tevalofcoerge,,eo q	 L44 r Z, - t 241 '-	 An.,

66. Prove Raabe's teat (Theor-en, 14) o ttge

1'67. Test for convergence	
2n	 .1&	

1	 4	 -1--, 4•7
3	 41n24	 68	 5-8-11

	

1-.	
2...,	 (C)

2'7	 2'7'12	 biV	 hid
°'

An.. (a) cony., (b) coat	 (c) dix-., (d) d.

THEOREMS ON UNIFORM CONVERGENCE AND POWER SERIES
68. Determine the regions in which each of the fobowiig series 6 uniformly coi.ergent.

'a)	 -c-	 Ib)	
(r_i)2r.
	 (cl
	

'CI)' ,,	 it2	 (n + 1)z"	 '	 , n2 4- z2

An.. (a) jzj R where R < 4	 kk j z-' i'l. (c) zR where R>3. (d) All z

69. Prove Theorem 20, Page 142,

70. State and prove theorems for sequences analogous to Theorems ib, lb and 20, Page 142, lot series.

71. (a) By differentiating both sides of the identity

= 1 -l- a + a2 + z3 +	 K
1—a

find the sum of the series 	 nz" for J z < 1, Justify all steps.

(b) Find the sum of the series	 n2z" for [.[ < 1,
" 2

An.. (a) z/(1 "- a)2 [compare Problem 44j, (b) i -t- zii -
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72. Let z be real and such that 0 z 1, and let u,(z) =	 (a) Find urn 5 t,(z) dx. (b) Find
1	 'I'

f {iim u(z)} dx. (c) Explain why the answers to (a) and (b) are not equal. [See Problem 53.]

An.. (a) 1/2, (b) 0

73. Prove Abel's theorem [Theorem 24, Page 142].

74. (a) Prove that	 I = 1 - .3 + .3 - .3 +	 for IzI < 1.
1 + Z2

(b) If we choose that branch of f(s) = tan's such that f(0) = 0, use (a) to prove that

f.2 1
 dx	 3 .3tan-1. =

	 --j =

(c) Prove that 1 = 1 - + - +

75. Prove Theorem 25, Page 142.

76. (a) Determine Y(x) 
=0 

o,,zn such that for all z in Iz	 1, Y'(z) = Y(z), Y(0) = 1. State all

theorems used and verify that the result obtained Is a solution.

(5) Is the result obtained in (a) valid outside of 	 1? Justify your answer.
(a) Show that Y(z) = e' satisfies the differential equation and conditions in (a).

(d) Can we identify the series in (a) with 64? Explain.

An.	 .3 .3

. (a)Y(z) =
21	 31

77. (a) Use series methods on the differential equation Y"(z) + Y(z) = 0, Y(0) = 0, Y'(0)	 1 to obtain
the series expansion

.3 .3
Bins =

if 51 Tl
(B) How could you obtain a corresponding series for coax?

TAYLOR'S THEOREM
78. Expand each of the following functions in a Taylor series about the indicated point; and determine

the region of convergence in each case.
(a) •Z; z = 0 (b) cos z; z = r12 (a) 1/(1 + z); z = 1 (d) 0 - 32 + 4z - 2 z = 2 (e) ze; z = -1

79. If each of the following functions were expanded into a Taylor series about the indicated point., what
would be the region of convergence? Do not perform the expansion.

(a) sin z/(z2 +4); z0	 (a) (z+3)/(z-1)(z--4); z.2	 (e) e/z(z-1); z4i
(g) aecrz; z1

(B) z/(e8 +1); z=0	 (d) ." ainb(z+2); z0	 (f) coth,2z; z0

An.. (a) jz <2, (b) 1.1< r (c) Iz-21 <1, (d) I z l < . (e) iz-4i1 <4,	 IXI < 7/2, (g) is - lI <1/2

80. Verify the expansions 1, 2, 8 for 6, sin z and co. z on Page 143.

81. Show that sin x2 = .3 - .3 
.30 .34

+ jj - --j- + ..., si < .

	

. 81

82. Prove that tan' z = 
z - 

.3 .3 z7

+	 - + ", jzj < 1.

83. Show that	 (a) tans = z +	 +	 +	 IzI <v/2

	

3	 16

(B) sees = 1 + -+ - + ",	 Jz <r/2

	

2	 2%

	

1 z	 7.3 + 	 0
<Izi<(a) cscz = ; +j+w
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84. By replacing i by iz in the expansion of Problem 82, obtain the result in Problem 23(c) on Page 155.

85. How would you obtain series for (a) tanh z, (b) sech z, (c) cech 2 from the series in Problem 83?

86. Prove the uniqueness of the Taylor series expansion of f(z) about z = a.

[Hint. Assume 1(z) =	 c,,(z - a)" =	 d,,(z - a)	 and show that c,, = d,,, n = 0,1,2,3

87. Prove the binomial Theorem 6 on Page 143.

88. If we choose that branch of vrl ? having the value I for z = 0, show that

	

1	 1	 1•3	 1•3'5
= 12z'+42•4•6

89. (a) Choosing that branch of sin z having the value zero for z = 0, show that

	

1z	 13z5	 13'5z7
sin- 1 z = z +	 +	 +	 +

2.4.67 

(5) Prove that the result in (a) is valid for z = i.

90. (a) Expand 1(z)	 In (3— ix) in powers of z - , choosing that branch of the logarithm for which
/(0) = In 3, and (5) determine the region of convergence.

A. (a) In  - 
i(z - 2i + (z— 212 +- (z—	 - .. . (b) Iz - 2ij < 5

LAURENT'S THEOREM
91. Expand 1(z) = 11(z - 3) in a Laurent series valid for (a) Izi < 3, (b) izj > 3.

Ans. (a) _!_	 (5) z' + 3z 2 + 9z 3 + 27z +
3	 27

92. Expand f(z) 
= ( - 12 - z) 

in a Laurent series valid for:

(a) jzj<1,	 (b) 1 <I zI< 2 ,	 (c) IzI>2,	 (d) I z — fl > 1,	 (e) 0< Iz-21 <1.

Ans. (a)_z_z2_z34Z4_

7	 15
(c) - -4- - - -- - 	 (d) —(z-1) - 2(z1) - 2(z-1)' -

2	 z	 a3

(e) 1 - 2(z-2) - (z-2) + (z-2)2 - (z-2)3 + (z-2) -

93. Expand f(z) = lIz(z - 2) in a Laurent series valid for (a) 0 < jzj < 2, (b) [zi > 2.

94. Find an expansion of 1(z) = z/(z2 + 1) valid for Ia - 3 1 > 2.

95. Expand /(z) = 1/(z - 2)2 in a Laurent series valid for , (a) lzI < 2, (5) jzj > 2

96. Expand each of the following functions in a Laurent series about a = 0, naming the type of singularity
in each case.
(a) (1 - cos z)/z,	 (b) e"/z,	 (c) z	 cosh	 ,	 (d) 22 e - 24 ,	 (e) a sinh \f.

z _	 .	 . 	
214

An,. (a) -	 +	 removable singularity	 (d) z2 a +	 +
2!	 4!	 6!	 -	 213!

ordinary point
2	 z

(5)

	

	 a5/2	 a7'5	 z9'2
( e) z'

pole of order 3	 31	 51	 71

	

(c) - - 1 	- ...; essential singularity	
branch point

j 

97. Show that if tan z is expanded into a Laurent series about 2- -/2. (a) the principal part in

- 7/2), (b) the series, converges for 0 < I a - /2 I < v/2, (c) a = ,-12 is a simple pole.
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98. Determine and classify all the singularities of the functions:

(a) 11(2 sin z - 1) 2,	 (b) z/(e 11 - 1),	 (c) cos (z2 + z- 2),	 (d) tan	 (z2 + 2z + 2),	 (e) zI(e —1).

An.. (a) s'/6 + 2m7, (2m + l)w — r/6, m	 0, ±1, ±2, ...; poles of order 2

(b) i/2inir, in = ±1, ±2, . . .; simple poles, z = 0; essential singularity, z = ; pole of order 2

(c) z = 0, a; essential singularities	 (d) z = —1 ± i; branch points

(e) z 2m7i, m = ±1, ±2, ...; simple poles, z = 0; removable singularity, z = a; essential

singularity

99. (a) Expand 1(z) = czI(2) in a Laurent series about z = 2 and (b) determine the region of con-

vergence of this series. (c) Classify the singularities of f(z).

Ana. (a) c {i + 2(z —2)' + 
22 (z— 2) 2 

+ 
23 (z —2)	

+ . .. } () Iz —21 > 0	 (c) a = 2; essential

	

21	 3

singularity, z = a; removable singularity

100. Establish the result (7), Page 144, for the coefficients in a Laurent series.

101. Prove that the only singularities of a rational function are poles.

102. Prove the converse of Problem 101, i.e. if the only singularities of a function are poles, the function
must be rational.

LAGRANGE'S EXPANSION

103. Show that the root of the equation z = 1 + z .', which is equal to I when = 0, is given by

=	 + + i2 + (
3p)(3p —1) a + (4p)(4p 	 —2) t4 +

104. Calculate the root in Problem 103 if p = 1/2 and = 1, (a) by series and (b) exactly, and compare

the two answers.	 An. 2.62 to two decimal accuracy

105. By considering the equation z = a + 4(0 - 1), show that

	

I	 -
+	 _i: !2_1)a

'/12a+	 —	 ,=12"n! da"

106. Show how Lagrange's expansion can be used to solve Kepler's problem of determining that root of

a = a + sin a for which a = a when = 0.

107. Prove the Lagrange expansion (12) on Page 145.

ANALYTIC CONTINUATION

108. (a) Prove that F2(z) = —i---i (.±4) is an analytic continuation of F(z) =	 a", showing
1+t, 5 1+t

graphically the regions of convergence of the series.

(b) Determine the function represented by all analytic continuations of F1 (z).	 Ans. (b) 11(1 — z)

109. Let F1(z) 
=	

——. (a) Find an analytic continuation of F 1 (z) which converges for a = 3— 4i.

i 	 ji(b) Determine the value of the analytic continuation in (a.) for a = 3— 4i.	 An.. (b) —3 -

110. Prove that the series
211 • X21 + a31 +

has the natural boundary 1.1 I.

MISCELLANEOUS PROBLEMS

111. (a) Prove that 	 diverges if the constant p I.
,.=L fl9

(b) Prove that if p is complex the series in (a) converges if Re { p) > 1.

(c) Investigate the convergence or divergence of the series in (a) if Re (p)	 1.
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fl+81fl2fl112. Teat for convergence or divergence: (a)
+	

(ii)	
ie" + (2— i)n'	

(c)	 , fl sin '(1/n3),

(d)	 --	 (e)	 coth' n, (/)	 ne".
ft

Ana. (a) div., (b) cony., (c) cony., (d) cony., (e) div., (f) cony.

113. Euler presented the following argument to show that 	 z" = 0:

= z+z2+z3+'.' = _! =	 1	 = i+!++... =1—z	 z-1	 1—liz	 z	 Z2	
0

Then adding,	 z' = 0. Explain the fallacy.

114. Show that for I z — 1 < 1,	 z Ins = (z - 1) + Lz - 
1)2 -	

+ 
(z - 1)4 —

	

1 . 2	 23	 34

115. Expand sin3 z in a Maclaurin series.	 An8. 
i (3 - 32.-1),2.—

-i	 4(2n-1)!

	

52	 z2	 52
116. Given the series	 a2 +	

+ (1 + a2)2 + (1 -+ Z2)3  +

(a) Show that the sum of the first n terms is S,,(z) = 1 + z2 — 11(1 + z2)n_1.

(b) Show that the sum of the series is 1 + a 2 for a 0, and 0 for a 0; and hence that a = 0 is a point
of discontinuity.

(c,) Show that the series is not uniformly convergent in the region I z i 	 8 where 8 > 0.

117, If F(z)-
	 3z	

, find a Laurent series of F(z) about z = 1 convergent for 4 < Iz - i < 1.- (2z-1)(z-2)
Ans. •.. — (Z — 1)	 + (z - 1 3 — 4(z - l)2 + (a - 1)-' — I - (z-1) - (z - 1)2 -

118. Let G(z) = (tan-' Z)/Z4. (a) Expand G(z) in a Laurent series. (b) Determine the region of con-
vergence of the series in (a). (c) Evaluate C G(z) dz where C is a square with vertices at 2 ± 2i,

"C1	 1	 a a3—2 ± 2i.	 Ana. (a) - -
	

+ - — + •..	 (b) Iz > 0	 (c) —1/3

119. For each of the functions ze'', (sin 2 z)/z, liz(4 - z) which have singularities at z = 0: (a) give a
Laurent expansion about a = 0 and determine the region of convergence; (b) state in each case whether
z = 0 is a removable singularity, essential singularity or a pole; (c) evaluate the integral of the
function about the circle z	 2.

Ans. (a) a + z 1 + z/2! + z 5/3! + . '; z > 0, 2z - 2z3/3 + 4z5145 - . ,	 0, z 1/4 +
1/16 + z/64 + z2/256 +	 0 < Jz[ < 4

	

(b) essential singularity, removable singularity, pole 	 (c) 2ri, 0, ri!2

120. (a) Investigate the convergence of 	 (b) Does your answer to (a) contradict Problem 8,
Page 148?	 Ans. (a) diverges

2n121. (a) Show that the series sins + 
si
j--:j + si - -

n3z
mj + . .., where a = x + iy, converges absolutely 

the region bounded by sin 2 a + ainh 2 y = 1. (b) Graph the region of (a).

122. If j x j > 0, prove that
ccsh (a + liz) = CO + c,(z + 1/z) + C2( Z2 + 1/z2) +

where	 C. =
	

— fcos no cosh (2 cos ) dii,

123. If f(s) has simple zeros at 1 - i and 1 + i, double poles at —1 + i and —1 - i, but no other finite
singularities, prove that the function must be given by

— K
z2-2z+2

(z2+2a-f2)2
where x is an arbitrary constant.
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124. Prove that for all a, 	 e sin a =	 2"" sin (!	 ,,
nI

125. Show that In 2 = 1 - 4 + 4 - 4 ± ..., justifying all steps. [Hint. Use Problem 23.]

126. Investigate the uniform convergence of the series ,,j [1 + 
(n - 1)z][1 + nz]

[Hint. Resolve the nth term into partial fractions and show that the nth partial sum is

1	 1
1 + nz•

Ans. Not uniformly convergent in any region which includes z = 0; uniformly convergent in a region
a]	 5, where S is any positive numbez,

127. If 1 - 4 + J - 4 +	 converges to S, prove that the rearranged series 1 + 4 - 4 + i + 4 -4 -1- +	 - 4 +	 = S. Explain.

[Hint. Take 1/2 of the first series and write it as U + 4 ± 0 - 4 + 0 + 4 +"•-, then add term by
term to the first series. Note that S = In 2, as shown in Problem 125.1

128. Prove that the hypergeometric series

1 +	 + c(a+1)b(b±152 + a(a + 1)(a + 2) b(b + 1)(b + 2)	 -
1 • c	 1 2 c(c + 1)	 -1-  2 3 . c(c + 1)(c + 2)

(a) converges absolutely if JzJ < 1, (b) diverges for I z i > 1, (c) converges absolutely for -• 1 if
Re (a + b - c) < 0, (d) satisfies the differential equation 41 - z)Y" + (c -- (a ± b + 1)z)Y' a11 = 0.

129. Prove that for izl < 1,
24 z(sin 1 z 2 	 —--- ---- Z 	 2-4-6  a5—----_.. ...._. 1-	 -. +'2	 3•5 3	 3.5.7 4

130. Prove that	 diverges.

131. Show that 	 21u2 ---1

132. Locate and name all the snigularit.ies of ------------------ am / 	
2

----	 -
(z-1)(3z+2)	 Z/

133. By using only properties of infinite se:ies, piove thatI	 a2 a3 	 1 1	 b2	 b	 + b
(a) S.

j
a2 	a4	 as	 2	 1	 a3 	u	 '	 -(b) 1;----r..	

3t51	 l	 I

134. If 1(z) =	 a,,z' eonveiges for .	 .c u	 r -.. R, prove tiat
nO

	 J
2 f.5)2 d8	 -.

u

135. Use ProbletiL 134 t• pr,v. 	 tnequau	 Pge 18), nane;y

MIMI r.	 n = 0, 1.2..

36. If a functti h	 s GX order 4, ad fo..r poles of ordeis 3 . 4 7 ad 8, but no other singularities
in the finite plailo, p..u.. that it has a pie of order 2 at z

137. State whether ea,li tf we following f .tnza, are eLtire nisrcmorphic or neither. - 	 -
(a) z2e	 (b)	 t 2;	 (1 -. cos zIz. td,, osI. z, (e) a sin (1 1a), (f) a + 11a, (g) sin Jz/Vz, (h) Vsin a.
Ans (o) entire, (b .eromorphic, (c	 (d) entire. (a) r.eithez, (/) meromorphic, () entie,

(h) nether

138. if ---	 <e<.. po•e

1:ccsOi2;	 ,5$	 4.o.'2o	 ,-
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139. (a) Expand 1/In (1 + z) in a Laurent series about z = 0 and (b) determine the region of conv?rgence.

I z -±- '2 2--4— (b)0<IzI<1
i 12 i4 720

140. If S(z) = a0+ajz+a2z2+

1—s
giving restrictions if any.

141. Show that the series

prove that

a0 + (a0 +a1 )z + (a0 +G 1 +a2)z2 +

1	 -	 1	 +	 1	 1
l +I z I	 2+Iz I 	 3+IzI - 4+zI +

(a) is not absolutely convergent but (b) is uniformly convergent for all values of z.

142. Prove that i -
Zn 

converges at all points of Izi	 1 except z = 1.
,'= n

143. Prove that the solution of z = a +	 which has the value a when t = 0, is given by

z = a+

if II < Ie+0I.	
"	 n.

144. Find the sum of the series 1 + cos S 
+ cos 2e+	 + . . .	 Ans. e­09 cos (sin e)

	

21	 31

145. Let F(z) be analytic in the finite plane and suppose that F(z) has period 2r, i.e. F(z + 2w) = F(z).

Prove that	 ,.	 1
F(Z) = 	 a,, e1"	 where	 a,, = -

f2.

 
F(z) e" dz

2,r o

The series is called the Fourier series for F(s).

146. Prove that the series
sine +	 sin 3e +	 in	 +

is equal to s-14 if 0<9 <s-, and to —sf4 if —r < e< 0.

147. Prove that I Z = 1 is a natural boundary for the series
n0

148. If 1(z) is analytic and not identically zero in the region 0 < I z - z0 I < R, and if lim f(s) = 0,
* — to

prove that there exists a positive integer n such that 1(z) = (z - :)" g(z) where g(z) is analytic at

o and different from zero.

149. If f(s) is analytic in a deleted neighbourhood of zo and lim I/(z)I = 	 prove that z = z0 is a pole

of f(s).

150. Explain why Problem 149 does not hold for f(x) = e-' where x is real.

151. (a) Show that the function f(s) = o l /s can assume any value except zero. (b) Discuss the relationship
of the result of (a) to the Casorati-Weteratrass theorem and Picard's theorem.

152.(a) Determine whether the function g(z) = z2- 3z + 2 can assume any complex value. (b) Is there

any relationship of the result in (a) to the theorems of Casorati-Weieratrass and Picard? Explain.

153. Prove the Casorati-Weierstrasa theorem stated on Page 145. [Hint. Use the fact tlat if z = a is an
essential singularity of f(s), then it is also an essential singularity of 11(f(z) - A).J

154.(a) Prove that along any ray through z = 0, I z + e

(b) Does the result in (a) contradict the Casor*ti-Weierstrase theorem?
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155. (a) Prove that an entire function 1(z) can aaame any value whatsoever, with perhaps one exception.

(b) Illustrate the result of (a) by considering f(z) = as and stating the exception in this case.

(o) What is the relationship of the result to the Caeorati-Weierstrass and Picard theorems?

156. Prove that every entire function has a singularity at infinity. What type of singularity must this be?
Justify your answer.

157. Prove that: 	
(a) ln(1+z)	

= z - (1 + 4)z2 + (1 + 4 + 4)z' -	 izj < 1

(b) (In(1+z)) 2	- (1+)!!.+ (I + j + lf! — ....
	

izi < 1

158. Find the sum of the following series if Iai <1:

(a)	 na" sin no,	 (b)	 n2a" sin its

159. Show that 8lfl =1 + z + 
2 0 - 0

 + ...	 < .

160. (a) Show that 	 converges for	 1.
.11 fl

(b) Show that the function F(s), defined as the collection of all possible analytic continuations of the
series in (a), has a singular point at z = 1.

(c) Reconcile the results of (a) and (b).

161. Let a,,z" converge inside a circle -of convergence of radius R. There is a theorem which states

that the function F(s) defined by the collection of all possible continuations of this series, has at least
one singular point on the circle of conver:ce. (a) Illustrate the theorem by several examples.
(b) Can you prove the theorem?

162. Show that
R'—r2 2w

u(r,	 = 2, J R2 - 2rR cos (9 - ) + 0

= ao  + i (!-'j"a,, cos n, + b,, sin no)
2	 ,,i\R/

where	 2.	 2.
a,, = ! f U(%) Co. n d.,	 b,, = ; f U() sin nod,

z	 B2z2 B323
163. Let 

68-1  
= 1 + B 1z + -,-- +	 +	 . (a) Show that the numbers B,,, called the Bernoulli

numbers, satisfy the recursion formula (B + 1)" = B" where B" is formally replaced by Bk after
expanding. (b) Using (a) or otherwise, determine B 1 , . . . , B,.

Ass. (b) B 1 = —4, B2= 4, B5 =O, B4 = -, B,=.O,

164. (a) Prove that	 z	 ! (coth -I 	 (6) Use Problem 163 and part (a) to show that B j, + I = 0

If k=1,2,3.....

165. Derive the series expansion.:

(a) coth z = 1 + 1-11+
S	 3••+(2fl)Iz+

(b) cots	 = 1- - 
z -
	 + •. •(-1)" (2n)!z +z

53	 i	 2(22" - 1)B2,,(2z)2"
(c) tans = z +	 +	 + 	 (2*)!3	 16

! + z	
2(221_1)B2,,22

(d) cecs	 =
I +	

+	 (1)"—'	 (2n)l	 + ••

I <w

I z i < r

Izi <s-/2

Izi<w

[Hint. For (a) use Problem 164; for (b) replace z by iz in (a); for (c) use tans = cots - 2 cot 2z;
for (ef) use csc z = cots + tan z/2.I



Chapter 7

The Residue Theorem
Evaluation of Integrals and- Series

RESIDUES
Let 1(z) be single-valued and analytic inside and on a circle C except at the point

z = a chosen as the centre of C. Then, as we have seen in Chapter 6, 1(z) has a Laurent
series about z=a given by

f(z) =
= -

= a 0 + a 1 (z—a) + a2(z—	 a-1a)2 +	 +	 + a-2 + 	 (1)

where	 a,, = 
-i-- $ 1(z) dz	 n = 0, ±, - ,1 ^2	 (2)
2i c(z—a)"

In the special case n = —1, we have from (2)

	

$ f(z)dz = 2ffia- 1	(3)

Formally we can obtain (3) from (1) by integrating term by term and using the results
(Problems 21 and 22, Chapter 4)

	

' dz - 527ri p=1	
4	J (z - a)P - io	 p = integer,' 1	 (

Because of the fact that (3) involves only the coefficient a- 1 in (1), we call a-1 the residue
of 1(z) at z = a.

CALCULATION OF RESIDUES
To obtain the residue of a function 1(z) at z = a, it may appear from (1) that the

Laurent expansion of f(z) about z = a must be obtained. However, in the case where z = a
is a pole of order k there is a simple formula for a- 1 given by

1	 d'

	

= '!?.(k-1)! dz1 
((z_a)kf(z))	 (5)

If k = 1 (simple pole) the result is especially simple and is given by

	

= iim(z—a)f(z)	 (6)

which is a special case of (5) with k = 1 if we define 0! = 1.

Example 1: If 1(z) =z	 , then z = I and z = —1 are poles of orders one and two re(z1)(z+1)Z

apectively. We have, using (6) and (5) with k = 2,

Residue at z = 1 is urn (z— 1){(Z 1)(z + 1)2} =

Residue at a = —1 is lirn . j .{(z + 1)2((Z__1)2 + 1)2

If z = a is an essential singularity, the residue can sometimes be found by using
known series expansions.

172
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Example 2: If 1(z) =	 then z = 0 is an essential singularity and from the known expansion
for e" with u = —liz we find

e 1 	 =	
z	 2!z2 	 3!z

from which we see that the residue at z = 0 is the coefficient of liz and equals —1.

THE RESIDUE THEOREM
Let 1(z) be single-valued and analytic inside

and on a simple closed curve C except at the
singularities a, b, c, . . . inside C which hi' resi-
dues given by a-1, b_ 1 , c- i , . . . [see Fig. 7-11.
Then the residue theorem states that

5 1(z) dz = 2iri(a_ i + b_ 1 + C-1 +	 ) (7)

i.e. the integral of 1(z) around C is 27ri times the
sum of the residues of 1(z) at the singularities
enclosed by C. Note that (7) is a generalization
of (8). Cauchy's theorem and integral formulae
are special cases of this theorem (see Problem 75). Fig. 74

EVALUATION OF DEFINITE INTEGRALS

The evaluation of definite integrals is often achieved by using the residue theorem
together with a suitable function 1(z) and a suitable closed path or contour C, the choice
of which may require great ingenuity. The following types are most common in practice.

1. f 1(x) dx, 1(x) is a rational function.

Consider § 1(z) dz along .,a contour C consisting of the line along the

x axis from —R to +R and the smicircle r above the x axis having this line as
diameter [Fig. 7-2]. Then let R - . If 1(x) is an even function this can be

used to evaluate f F(x) dx. See Problems 7-10.

Fig. 7.2
	

Fig. 7-3

2. 
f 2.

 

G(sin 9, cos 0) do, G(sin 9, cos 9) is a rational function of sin  and cos 9.
 

z—z__1z+z_1Let z = e. Then sin  =	 , cosO =	 and dz = ted9 or

do = dz/iz. The given integral is equivalent to § F(z) dz where C is the unit

circle with centre at the origin [Fig. - 3] . See Problems 11-14.



See Problem 15.
lim e'-1e"'F'(z)dz = 0
—., ra 
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10& i	 ?(x) c .smx dx, F(x) is a rational function.fsin mxj

Here we consider $ F(z) e l-I ix where C is the same contour as that in

Type 1. See Problems 15-17, and 37.

4. Miscellaneous integrals involving particular contours. See Problems 18-23.

SPECIAL THEOREMS USED IN EVALUATING INTEGRALS
In evaluating integrals such as those of Types 1 and 3 above, it is often necessary

to show that 5 F(z) dx and 5 e'- 1 F(z) dz approach zero as I? - oo The following

theorems are fundamental.

Theorem 1. If I F'(z) j 	 for z	 tO, where k> 1 and M are constants, then
if r is the semicircle of Fig. 7-2,

See Problem 7.
	 Jim 5F(z)dz = 0

Theorem 2. If F(z)	 for z = Reto , where k > 0 and M are constants, then
if r is tue semicircle of Fig. 7-2,

THE CAUCHY PRINCIPAL VALUE OF INTEGRALS
If F(x) is continuous in a x b except at a point x 0 such that a < xo < b, then if

c and are positive we define

f

b 
F(x) dx = urn	 F(x) dx +	 F(x) dx}

a	 £j-O	 a

In some cases the above limit does not exist for 	 € but does exist if we take c = =

In such case we call

j
b	 =	

F(x)dx +:+ F(x)dx}

the Cauchy principal value of the integral on the left.

'dx	 = urn fj_]1'Example: 	 J—i.=,— o 	 '..11.-_.o 24
(O	 - ij

does not exist. However, the Cauchy principal value with el =e2 does exist and
equals zero.

DIFFERENTIATION UNDER THE INTEGRAL SIGN. LEIBNITZ'S RULE
A useful method for evaluating integrals employs Leibnitz's rule for differentiation

under the integral sign. This rule states that

d fb 
F(x, a) dx =
	

dx
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The rule is valid if a and b are constants, a is a real parameter such that a 1 a
where a1 and a2 are constants, and F(x, a) is continuous and has a continuous partial
derivative with respect to a for a ;9 x	 a a a2 . It can be extended to cases where
the limits a and b are infinite or dependent on a.

SUMMATION OF SERIES
The residue theorem can often be used to sum various types of series. The following

results are valid under very mild restrictions on 1(z) which are generally satisfied when-
ever the series converge. See Problems 24-32, and 38.

I.	 1(n)	 = — (sum of residues of r cot ,,z 1(z) at all the poles of 1(z))

2.	 (-1)"f(n)	 = — (sum of residues of ir csc7rz 1(z) at all the poles of 1(z))

3	 f (2fl+ 1)	 = (sum of residues of 7r tan 7rz 1(z) at all the poles of 1(z))

4.	 (-1)"! (2n 1) = (sum of residues of ,r sec irZ f(z) at all the poles of 1(z))

MITTAG-LEFFLER'S EXPANSION THEOREM
1. Suppose that the only singularities of 1(z) in the finite z plane are the simple poles

a 1 , a2, al,... arranged in order of increasing absolute value.
2. Let the residues of 1(z) at a 1 , a2, a3, . . . be b, b 2, b3.....

3. Let CN be circles of radius RN which do not pass through any poles and on which
lf(z)I <M, where M is independent of N and RN -	 as N- .

Then Mittag-Leffler's expansion theorem states that

1(z) = 1(0) +	 —a,, +aj

SOME SPECIAL EXPANSIONS
	1	

2z	 1	 1	 11. cscz = -- ____ _____ ____
( - 2 z2 - 4 + z2 92 —

1	 3	 5(	 .	

-...)
2. sec z	 — 7(7r/2)2 — z2 — (37r/2)2 22	(5r/2)2 — 22

3. tan z = 
2z ((/2)1 — z2 + (3r/2)2 z2 + (5/2)2 22 +

__ ___4. cot 	 =	 +—

	

1	
2z 2

 712 + 22 _. 42 + z2 —
1 
922

	

___ z2_	 1 —.

	

5. cschz -= —	 _____ _____1 — 2z

	

2	 (2 + r2 — +4__2 + 22 + 92

6. sechz 
=

1	 —	 3	 5
(/2)2 +z2	(3/2)2+z2 + (5/2)2+z2 —

7. tanh z = 
2z (Z2 + (/2)2 + 22 + (3/2)2 + 22 + (5/2)2 +

8. cothz = -+ 22(_1 	 1	 1	 +

	

z	 22 + + 22 + 42 ± 22 + 92
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Solved Problems

RESIDUES AND THE RESIDUE THEOREM
1. Let 1(z) be analytic inside and on a simple closed curve C except at point a inside C.

(a) Prove that

	

1(z) = i a(z - a)e	 where	 a =	 § (z _.+1 
dz, n = 0, ±1, ±2,

i.e. 1(z) can be expanded into a converging Laurent series about z a.

(b) Prove that
§f(z)dz = 2ia-j

(a) This follows from Problem 25 of Chapter 6.

(b) If we let n = -1 in the result of (a), we lthd

= _L	 /(x) dx,	 i.e.	 f(s) dx = 2Ti a_1
c

We call a_ 1 the residue of f(s) at z = a-

2. Prove the residue theorem. If 1(z) is analytic
inside and on a simple closed curve C except at
a finite number of points a, b, c, . . . inside C at
which the residues are a-1, b.-j, c- 1,... respec-
tively, then

5 f(z)dz = 27ri(a-1 + b_ 1 + C-t +

i.e. 2i times the sum of the residues at all singu-
larities enclosed by C.

With centres at a, b, c, . . . respectively construct cir-
cles C 1 , C21 C31 ... which lie entirely inside C as shown
in Fig. 7-4. This can be done since a, b, c, . . . are interior

	
Fig. 7-4

points. By Theorem 5, Page 97, we have

	

f(s) dz
=

f(s) dx +
	

f(s) dx +	 f(s) dx +	 (1)

But by Problem 1,

	

f f(s) dx = 271-i a_ 1 ,	 f(s) dx = 27i b-1,	 ,f f(s) dx = 27i c_ i•	...	 (2)

I	 C'

Then from (1) and () we have, as required,

§ f(s) dx = 2ri (a_ 1 + b_ 2 + c_ 1 + S..) = 2iri (sum of residues)

The proof given here establishes the residue theorem for simply-connected regions containing a
finite number of singularities of f(s). It can be extended to regions with infinitely many isolated
singularities and to multiply-connected regions (see Problems 96 and 97).

3. Let 1(z) be analytic inside and on a simple closed curve C except at a pole a of order m

inside C. Prove that the residue of 1(z) at a is given by

	

1	 d'"t
= 1(fl_1)!dZ_1((za)f(z))

Method Z. If 1(z) has a pole a of order in, then the Laurent series of f(s) is

cl..	 Is

± Za::):. i_ i ±	 +	 + ao + a 1 (z—a) + o(z_o)2 +	 (1)
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Then multiplying both aides by (z -a)-, we have

(z-a)"f(z) = a_rn + a_rn+ 1(5 - 0) +	 + a_ i (z_o)m-I + 00(z-a)- + •..	 (i)
This represents the Taylor series about z = a of the analytic function on the left. Differentiating
both sides in - 1 times with respect to z, we have

drn-1
((za)"f(z)) = (m-1)ia_ 1 + in(m-l)•••2a0(z-a) +

Thus on letting a - a,
Jim m_i((5_0)mf(5)} = (in-1)la_1i-fl , 

S

from which the required result follows.

Method 2. The, required result also follows directly from Taylor's theorem on noting that the
coefficient of (z - a)"' in the expansion (3) is

1	 dm-I
..	

=	
((a - a)" Az))

Method 3. See Problem 28, Chapter 5, Page 132.

- 2z4. Find the residues of (a) 1(z) =
in the finite plane. 	 (z + 1) (z2 

+4) and (b) 1(z) = ei csc2 z at all its poles

(a) f(s) has a double pole at a = -1 and simple poles at a = ±2*.

Method 1.
Residue at z = -1 in

m --1 

d{	

z2-2z	 (z2+4)(2z2) - (Z2 - 2z)(2s) - _14
a
li
...-'	 (z+l)Z(zs+4)J	 =	 urn

	

a-.-'	 (z+ 4)	 -	 25

Residue at a = 21 is

urn f(z-2e)	 z2 - 2z	

} =

	 -4-4i	 - 7+1
(2i+1)(4i) -	 25

Residue at x = -2i  is

urn 2 I	 }(z+2t).	 z2 2z	 4+4i	 7-i
(+1)(2)(+2)	 - (-2i+1)(-4*)	 ii

-	 -	 -
t-.-

Method 2.
Residue at a = 21 is

.1-21	
- 21)(0 - 2z)	 .[ - J	 z1-2z  1 I	 a -21

T 'l,,(z+1)2(z2+4)f - lz+1hXl*2+4

- -4 - 41 •	 1 - -4 - 4i 1 	 7+1
(21+1)2 a-2s	 (2i+1) • 4i -

	
25

using L'Hospital'i rule. In a similar manner, or by replacing i by -i in the result, we can obtain
the residue at z = -2i.

(b) f(s) = el cact a	 --- has double poles at a = 0, ±r, ±21r,..., i.e. a = in, where in = 0,
±1, ±2.....

Method I.
Residue at a = in, I.

urn--
1 d{(z- 

mr)2s-.rnrlldt	 .inszJ

ea[(s-m-)' sin , + 2(z-m,) sin  - 2(z-mr)1eo.z]
= urna-.,,..	 sin's
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Letting z — mr = u or z = it + mr, this limit can be written

Urn m { U2 sin it + 2u sin it — 2u2 cos u}
e

sin3u

= em J urn 
u2 sin it + 2u sin it — 2u2 COS u}

1.	 srn3u

The limit in braces can be obtained using L'Hoepital's rule. However, it is easier to first note
S

/that urn	 = u . rn - —	 1 and thus write the limit as
.-,osin3 u	 .-.O\SIflUj

e" lirn 
(uS sin it + 2u sin U — 2a2 cos it	 U3

	

U1	 UI

= ellurn it2 sin u + 2u sin u — 2u2 cos u =ell

U3
using L'Hospital'a rule several times. In evaluating this limit we can instead use the series
expansions sin u = u — u3/31 +	 , cos it = 1 — u2/2! +

Method 2 (using Laurent's series).
In this method we expand 1(z) = e csc2 z in a Laurent series about z mr and obtain the

coefficient of 1I(z — mir) as the required residue. To make the calculation easier let z = u + mr.
Then the function to be expanded in a Laurent series about a 0 is e""' 1 " csc2 (Mr + it) =
c"o" c3c2 it. Using the Maclaurin expansicns for e" and sin it, we find using long division

ell
(1+u+++ ...)
	

ell (1+u+!+ ...)
c"o"cac2 U =	 =

(u_+_...)2

/	 i &
=	 = e" —+—+—+U---+

	

U2 2u4	 \u2 it 6 3
U2	 +7 45

and so the residue is ell.

5. Find the residue of F(z) 
= cot  cothzat z = 0.

We have as in Method 2 of Problem 4(b),

(i_22

F(z) —	 cos 2 cosh z	 -	 \	
+ —

z— z3 Sin zsinhz - 
zs(z_ji+ 11  ... )(z+j . j.+z5-+ ...)

—	 (i-ç+...)	

=
7z

—

and so the residue (coefficient of liz) Is —7/45.

Another method. The result can also be obtained by finding

I d4
lim---1z 

COS z cosh z
2..o4! dz4 I z3 sin zsinhz

but this method is much more laborious than that given above.

' dz around the circle C with equation Izi = 3.6. Evaluate	 9
£ z2(z2 + 2z + 2)

The integrand 
22(.t2 e t+ 2Z + 2) has a double pole at z = 0 and two simple poles at z = —1 ± i

[roots of z2 + 2z + 2 = 01. All these poles are inside C.
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Residue at z = 0 is

hm 1z2	 e	 -	 (z2 + 2z + 2)(te) - (e t)(2z + 2) - t - 1
- lilT

	_.o1! dz ) z2 (z2 +2z+2)J - '-.)	 (z2+2z+2)2	 -	 2

Residue at z = —1+i is

-	 2	 uliin	 [z - (-1 +	
-	 {ot}	

{_

z + 1 -

	

z2 (z2 +2z+2)I 	 z	 - - i+ z2+2z+2J

	

urn	 rn 

-	 e(l+t	 1
- (-1+i)2i	 4

Residue at z = —1—i is

urn 11z —(-1—i)]	
e} — 

______

	

z2 (z2 +2z+2)	 —	 4

Then by the residue theorem

§	 et
z 2 (z2 -I- 2z -4- 2) 

dz	 =	 2ri (Sum of residues)

- 2ni ft  — 1 + 
e(— +	

+ 
e( - I —

—	 4	 4j

= 2i{ i + O  Cos t}

	

_Lf2r
t — 1 +	 cost

	

z2 (z2 -f 2z + 2) dz 
=2	 2

i.e.,
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DEFINITE INTEGRALS OF THE TYPE 5F(x)dx

7. If IF(z)I M/R" for z = Re" where k> 1 and M are con-

stants, prove that urn 5 
F(z) dz = 0 where r is the semi-

circular arc of radius R shown in Fig. 7-5.

By Property 5, Page 93, we have

If F(z) dz	 ff	 =

since the length of arc L = 7R. Then

Fig. 7-5

!.'IJ F(z)dzI = 0	 and so	 iimf F(z)dz =

8. Show that for z = R&°, !f(z)I	 ' k>1 if 1(z) = 
1

Rk

If z = Re', i/(z)I = R6e61 + 1
I	 I	 I	 1

R8e6(81 — 1 = 	1 — 1	 if R is large enough (.ay

R > 2, for example) so that M = 2. k = 6.

Note that we have rade use of the inequality I z + Z2 1 	 Iz i l — IzsI with 21 = Re° and 22 = 1.

fdx9. Evaluate 
0 6 + .

Consider £
	

where C is the closed contour of Fig. 7-6 consisting of the line from —R

to R and the semicircle r, traversed in the positive (counterclockwise) sense.
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Since 0 + 1 = 0 when z =	 63I6, e1I6, e 1 "11 , e', 1II5, these are simple poles of1/4 + 1). Only the poles	 and 0-1/6 lie within C. Then using L'I-lospital'a rule,

	

Residue at 5r/e	 tim {(z - 6Ue) 
+ 1	 =	 lim

	

i}	 1 - 1
6z5 - 6

{	
}

	

Residue at	 (=	 tim	 - e-/6	 i	 1	 1= urn	 =

1.	 1

	

Residue at	 =	 lim - --	 - -	 urn	 1-- ..r	 z	i + 1J	 6z	 6

Thus	 •	 = 2,ri	 orVe	 *5-2 ±

C' dx	 C dz	 2,
JRei	 jr	 (1)

Taking the limit of both sides of i) as 1?-. and using Problems ad 8, 'e have

Jim	 R
.ax

iR + 1 JX+l -

	

( dx	 C thr	Sincej	 J -j--1 , the required Integral ha the value r

10. Show that-
	 =

	The poles of (" + 1)rii:
	 enclosed by the contour C of Fig. 7-5 are .i of order 2

and z = —1+i of order 1.

	

z	 .Residue at z = i is	 T d j(z _j)2	 2	
-

3 . 4iResidue at z = —i •i-i	 22(z+ 1 —* (z+ 1)2 (z + 1 — i)(z+1+j) --

	

£	 z2d	 . 19i— 12	 3 4 dThen	 y	 = 25.2 1 100 +

	

or	 R	 x2dx 	
+ C	 zdz

It
(x2 +1)2 (x2 +2x+2)	 Jr(Z2±zl)	 50f

Taking the limit as R -.w and noting that the second integral approaches Lero by Pro&ei
obtain the required result

DEFINITE INTEGRALS OF THE TYPE 
f2 

G(sin 0, cos 6) do

	

11. Evaluate 
£	

de

cos 0+ am 0'
—Let 	 x --	 e	 .=e'. Then sin g =	 , cos g =-.--------_.	 d,.=*zdg so that

	

2*	 2*	 2	 2
f2	

do	 —	 dz/i	 £2dzJo 3— 2 cos g + sin g	.3 2(z+z-1)/2+ (z—z'')/2j - J(1-2j zI -i-6izTfj
where C 19 the cfrcie of unit radius with centre at the origin (Fig, 7-6).
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2 are the simple polesThe poles of (1-2i)z2 + 6iz -1- 2i

Z - -61 ± /61)2 - 4(1 - 21)(-1 .i)
- 2(1-21)
- -Gi±4i = 2-i, (2-1)/b
- 2(1-21)

Only (2- 1)/5 lies inside C.

Residue at (2- 1)16 =	 urn	 {z - (2 - i)/5}{
	

2	
}(1- 21)z2 + 6iz - 1 -21

= Urn	 2	 - 1

	

-.12-0h5 2(1 -2i)z + 61	
by L'Hospital's rule.

( )
Then	 '	 2 d	 = 2r1 1

	
= r,	 the required value.

C (1 - 2i)z2 + 6iz - 1 - 21

2.

12. Show that 
J

do	 =	 2r	 if a> Ibi.a+b sin Oa2_b2
e*e_e- e Z-2

Let z = e t . Then sin e =	 =21	 2i	
dx = ie'° do = ix de so Lhat

2 do	 -	 dz/iz	 -	 2 d
a + b sins -	 c a + b(z - z')/2i	 . bz2 + 2aiz - b

where C is the circle of unit radius with centre at the origin, as shown in Fig. 7-6.

The poles of	 2	 re obtained by solving bz2 + 2aiz - b	 0 and are given by
bz2 + 2aiz - b

- -2ai ±',/4a2 +4b 2 - -ai±./a2_b2i
z -	 2b	 -	 b

= J...a+Va2_b21.
h	 b

.,1a2_ b2 ...............

	

Only -4 
+ 

b	
i lies inside , since

-a+a2 b2 .	 -	 Vb2-a. V' b+j	 bI	 if a > bj
b	 -	 b	 /a2_b2+a	 (/a2_b2+a)

rf

Residue at zi 
=	 b

2
= Urn	 =2bz + 2a1

by L'Hospital's rule.

lim (z - Zi)	 2aiz-b

bz 1 +ai	 r.2

Then	 V	 b2'	
he required value.

S 2,
do =13. Show that	

-
eu3 30

 4Cos 012
+ z_3 , dx = iz do so thatZ+Z 1	 g315 

2	 2	
=	

2If z	 e 8, then cos &	 , oa 31

f2	 -	 _____________	 dzcob 	de -	 (z3+z3)/2 dx =	 1 '	 z+1
5 - 4 cos•	 c 5 - 4(z + z)/2 iz	 21	 z3(2z - 1)(z -2)

where C is the contour of Fig. 7-6.

The integrand has a pole of order 3 at z = 0 and a simple pole z	 Inside C.
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Residue at z = 0 Is Urn - -- .fz3	
° + 1	 1 - 21

-.o! dz2	r(2z__1)z_2)J

-

	

Residue at z =	 is Jim
-.I/S {(z - ).	

z6+1	 66
z3(2z— 1)(z-2)J -

Then	 15	 Z8 + 1	 dz = _.L(21ri){ _} =
	

as required.

	

z3(2z-1)(z-2)	 2i

	

2.r	 dO14. Show that f (5 3sin0) 2 - 32
Letting x = &, we have sin o = (z - z)/2i, dz = ie18 de = iz do and so

52

	

	 do	
- 5	 dz/iz	 -	 4 5	 z dz

	(5 - 3 8j )2 -	 c (5 - 3(z - z')/2i)	 -	 (2 - lOiz - 3)2

where C is the contour of Fig. 7-6.
1Oi±-1O0+36 - 10i -t

The integrand has poles of order 2 at z == 3i, i/3. Only the

	

pole i/S lies inside C.	 6	 -	 6

Residue at z = i13 = urn -
d {(Z_i/3)2.dz	 (3z2_10iz_8)2}

= lim —d {(	 j/3)2
-.	 . (3z_02(z_302}	

- 5
fI3 dz

- S	 z dz	 - - -4 	67

	

 (2Ti)(	
) -66	 i2—(3z2 - lOiz - 3)2 -	 i	 -	 -

Another method.
From Problem 12, we have for a > jb,f

f' do	 - 
Jo a+bsino - _____

Then by differentiating both sides with respect to a (considering b as constant) using Leibnitz's
rule, we have

	

d .2,r	 do	 - f2 (	 1	 - _f 2	 do
da J a + b sin 8 - J aa \a + b sin 8,1	 - 	(a + S sin 0)2

d( Sir	 —2w0
- To 	 - b2 )	 (a2 - b2)3'2

Then

e2 ir	 doi.e.,	
J0 (a + b sin 8)2

Letting a = 6 and b = —3, we have

do	 -
	J (5-3 sin e)	 -

2,ra
- (a2 - b2)3'2

2r(5)	 -
(52_32)3/2 - 32

DEFINITE INTEGRALS. OF THE TYPE	 F(x) 
{cos ?flX} 

dx
sin mx

15. If J F(z)l for z = R&° where k> 0 and M are constants, prove that

lim 5 e" F(z) dz = o

	

-..	 rR 

where p is the semicircular arc of Fig. 7-5 and m is a positive constant.

	If z Reis, 5 e" F(z) dz = 5	 F(Ree) jJI8 do. Then
I :	0
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Ij	 P(Re°) iR&e do 	 9 J I e r '° F(R&°) iR&° I do

	

1°	 0

-
 
Jj emR o.8 - rnR n8 F'(Re'°) iRe'° I do

0

=
 J

e' IP(Rc°)I R do
C)

M	 2M ç/28-mRIn0f6 = 
	
e-.R11n8do

Now sine	 28/r for 0or/2, as can be seen am 0
geometrically from Fig. 7-7 or analytically from Prob. 99. 	 sin 0

Then the last integral is less than or equal to

2!_ j	 52rnR8/ do = ,rM 

	

Rk1	 mRk	 r/2
As R -.	 this approaches zero, since in 	 k are positive,
and the required result is proved.

	
Fig. 7-7

cosmx dx = e_m m>O.16. Show that	
, X2+ 	 2

dz where C is the co,.our of Fig. 7-5. The integrand has simple poles atConsider 
•1

z = ±i, but only z = i lies inside C.

Residue at z = i is lim .[(z	
0rn	 1	 e"

= ---. Then

+ 0Irn
—	 dx = 2,ri (	 =

2i )

R
or	 f -!_ dx + f -!!- dx =

1.25+1

f	 dx =x2 +1	 x2+1J costnx	 Ssin
i.e.,	

-R	
dx +	 dx +

and so1R
	

dx + J	 dx = ,:em

Taking the limit as R -  and using Problem 15 to show that the integral around r approaches
zero, we obtain the required result.

S z sin ,x dx.17. Evaluate	
x2 +2x+5

Consider ,f z5+2z+5
dx where C is the contour of Fig. 7-6. The integrand has simple poles

at z = -1 ± 2i, but only z = -1 + 2i lies i.,jide C.

.	 .Residue at z = -1 + 2i is	 lint+	 z2+2z+51- 2i)•	
ZO	

}
= 

-1+21)	 Then
41

fc dx = 2,ri(-1 + 2i)( 0	 =	 - ( 1 — 2i)e2'
22 + 2z + 5

	

R	
dxdx

f_Rx+2x+6	
+ J

rZ3+2Z+&	
=	 (1_21)e-2

or 

I.e.,	 dx +
if  x sin vx dx + f

	

-R x2 +2x+6	 a x2 +2x+6	 rz2+2z+$	
=	 (1_2i)e_2T



Fig. 7-8

Fig. 7-9
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Taking the limit as I? -.	 and using Problem 15 to show that the integral around I' approaches zero,
this becvr,ies

X cosrx dx + i I 	 dx =	 -
x2 +2x+5	 J_,.x2+2x+6	 2

Equating real and imaginary parts,

X dx
COS 7x

	

= !e-2., I 	 X Bfl TX dx =
J_,x2 +2x+5	 2	 J.x2+2x+5f.

Thus we have obtained the value of another integral in addition to the required one.

MISCELLANEOUS DEFINITE INTEGRALS

r
18. Show that	

sin  
dx =f—.x	 2

The method of Problem 16 leads us to consider
the integral of e/z around the contour of Fig. 7-5.
However, since z = 0 lies on this path of integration
and since we cannot integrate through a singularity,
we modify that contour by indenting the path at z = 0,
as shown in Fig. 7-8, which we call contour C' or
ABDEFGHJA.

Since z = 0 is outside C', we have

fI. ei
—dz = 0

_,c.

	

1'	
fR 

e'	 1'
or	 f —dx + J —dz + J —dx + J —dz = 0

Rn	 z	 x	 2

	

HJA	 BDEFC

Replacing x by —x in the first integral and combining with the third integral, we find

f

R -

dx+ I—dz+ (—dz = 0
C	 J 2	 J S

I2JA	 BDEFG

or	 2i	 sin 	 = — f!Idz -
	

-f dz

	

HJA	 SOEFC

Let ,-. 0 and R -. . By Problem 15, the second integral on the right approaches zero. Letting
= ce10 in the first integral on the right, we see that it approaches

	

— urn 
(0	

i e e do = — urn	 ie'° do =
e-. OJT 6610

since the limit can be taken under the integral sign.

Then we have
I_it .	 Is	 -
I sInX	 .	 I sInx	 V

urn 2i — dx =	 or	 i — dx = -
it-	 J(	 it	 x	 2

19. Prove that

Ir5 sin x2 dx = 5 cos x2 dx =

Let C be the contour indicated In Fig. 7-9, where AD is
the are of a circle with centre at 0 and radius R. By
Cauchy's theorem,

/	 0
= 0

C
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or	

5 610 dz + 5 dx + f e dx = o	 (1)

OA	 AS	 So

Now on OA, zx (from x0 to xR); on AB, zRe'° (from 8=0 to e=r/4); on BO,

z = re"114 (from r = R to r 0). Hence from (1),

5
R 

e" dx +	 e' iR&6 do + 5 
0 
e"'°' e"414 dr = 0	 (2)

i.e.	

5
R 

(cos x 2 + i sin xZ) dx = e"'14 5	 "dr - 
f,14

eo28 - R' Sin 28 iRe'° do	 (3)

We consider the limit of (3) as R-. ". The first integral on the right becomes [see Problem 14,
Chapter 101

e'1I4f e'' dr =	 gl/4 = 	 I
i
 +	 (4)

The absolute value of the second integral on the right of (3) is

f,r14
cos 20 — R' ,1n28 iRe 1° do	 sin 20 R do

R
= 2

=

where we iu,ve used the transformation 2* 	 and the inequality sin	 2/r, 0	 in2 (see
Problem 15). This shows that as R .	 the second Integral on the right of (3) approaches zero.
Thei (3) be,unies

5 (cos x2 + i sin x2) dx =	 %,Iri +

aia; 2 v C	 real and iinuglnary parts we have, as required,

cus X 2 ax	 c. 
J 

sin x2 dx	
-

2	 ...	 C "	 Upi
J r -- ;C	 Sill

-	 a
1 + Z 

d

a6 the	 , Fig
posluve Lea. axis Is the baich line AL'

and GH are actually coincident with th i axis Lc
are shown separated for visual purposes

The integrand nas the sinlp. pa...

Residue at	 .	 is

lim (z -r- 1)	 =	 1	 .	 e"' .Sl

s—I	 1-1-z

Then	 ' !_! dx .- 2re•' ''	 oT. onil.xiog
1+x

the integrand,

V

Fig •-
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j + J + J + j
AD	 BDEFG	 OH	 HJA

We thus have
R	

dx + 
ç2 (Re°)P 'iRe'° do + ( (xe21)P ' 

dx

	

.1, 1 + x	 J	 1 + Re's 	Y,, 1 + xe2'

+
	
(,, 19) P -I iced.	 =	 2rie° 0,,1

.

where we have used z = xe 2 ' 1 for the integral along Gil, since the argument of z is increased by
2r in going around the circle JJDE?G.

Taking the limit as - 0 and R-. a and noting that the second and fourth integrals approach
zero, we find-
	 f0

dx + I C2'(P')XP 
dx = 2,e(P)

 1+x	 J 	 1+x
or	

(1 - e2P1)) 5	 dx =
l+x

so that
fa	

dx --	 2nie 9 '	 -	 277i
) 1+x 	 1 -	 -	 -	 - S in p,

21. Prove that	 cosh ax
dx =	 ir	 wherecosh x	 2 cos (ira/2)	 al < 1.

Il

Consider 5d z where C is a rec-cosh Z	 —R + -i	 2	 R + ri
tangle having vertices at —R, R, R + in, —R + ri

ii
2(see Fig. 7.11).

The poles of c"'/cosh z are simple and occur	 —R	 i	 R
where cosh z = 0, i.e. z = (n + Pri, n = 0, ±1,
±2.....The only pole enclosed by C is ,ri/2. Fig. 7-11

Residue of	 at a = iri/2 iscosh 
-lim (a -	 - __________ = _________ =cosh a	 sinh (ini/2)	 i sin (in/2)

Then by the residue theorem,

—h-- dz = 2ri(_ie0' /S) = 2re0i25 Z

This can be written

	

eiX	

Sin 
ee(R4fv)	 -R

dx +ill- dxcosh a	 cosh (ft	 csh(x+
dy + f -__

	+ty)	 .'	 ori)

'0
+ I	 i dy = 2re/ 2 	 (1)j cosh(—R+sy)

As U -. a the second and fourth integrals on the left approach zero. To show this let us consider
the second integral. Since

cosh (U + iy) I 
=	 " +	

^	 (	 + £vj - j8-R--h ) =	 (eR - eR)	 jeR
I	 2

we have

fo,0o(R+IV) 
idy I

	

coah(R+ i1i)	 J --dy = 4re)R

and the result follows on noting that the right side approaches zero as ft . since jai <1. In a similar
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manner we can show that the fourth integral . the left of (1) approaches zero an R- -.  Hence (1)
becomes

I1'	 dx + 
e"J	

dxt = 2we12
R_..1,_lkR cosh X	 _aconhx j

since cosh (x + ri) = - cosh x. Thus

'-	 -S	 - 2e/2	 2w JIM K 
—dx =	 dx -	 =	 =
cosh 	 - coshx	 1 + e	 6a/2 +	 cos(wa/2)

So -
c-- dx +f dx - _____

_ cosh x ..,, cosh x - cos (wa/2)

Then replacing x ny —z in the first integral, we have

dx +	 dx = 25 
cosh axdx =

o cosh 	 o cosh 	 , cosh 	 cos(wo/2)

from which the required result follows.

Now

22. Prove that	 " In (x2 + 1) dx = ,,In 2.f x2+1

Consider 4;7 z2+1
In (z + t) dz around the contour C con-

sisting of the real axis from —R to R and the semicircle
1' of radius R . (see F ig. 7-12).

The only pole of In (z + i)/(z2 + 1) inside C is the

	

simple pole z = i, and the residue is	 —R

lim(z—i) In( z ±)	 =
(z—i)(z+i)	 2j

Hence by the residue theorem,,

§ln(z+i) dz = 2ri{} = a In (2s) =

on writing ln(2i) = 1n2 + lni = 1n2 + lne' 2 = 1n2 + 7i/2
logarithm. The result can be written

H

Fig. 7-12

vin2 + .4,.2s	 (2)

using principal value, of the

I	 ' • T • $ dxx1 + 1	 + Jr	
dz = w In 2 + ?twi

or

	
f0 In(x+d + Ckl(+ 	+	

ln(z+s)
J	 x3+1 

X j0 x2 +1	 J z+i
ds

Replacing x by —x in the first integral, this can be written

f
R ln(i — x) dx 

+R 
li-s)	

+ Sr	 ' dx

or, since In (i — x) + In (i+ x) = ln(i2 . x2) = ln(x+ 1) + vi,

fR ln(x2±1) 
dx 

+ f	
r

R	

+ 5	 dx

= vin2+a2i

= vin2+v'i

= vin2+4wi	 (2)

As R -. we can show that the integral around r approaches zero (see Problem 101). Hence on
taking real parts we find, as required,

K	 -g In (x' + 1)	 i In (x2 + 1)
limi	 2	 dx =	 dx = wln2
-...j0	 x +1	 '/0

	 X2+1 



Fig. 7-13
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WI!	 v/I

23. Prove that 5 in sin x dx = 5 In cos x dx = — 4. In 2

Letting r = tan a in the result of Problem 22, we find

f
12

In (tan2 . + 1) see2 , de = _2f In coas dl = , In tan2,+1	 o
from which

f
In coss do = -4, In 2	 (1)0

which establishes part of the required result. Letting • = irI2-0 in (1), we find

f

,!
lnSifld	 —4r1n2

SUMMATION OF SERIES

	

24. Let CN be a square with vertices at	
(N

(N+4)(1+i), (N+4)(-1+i),

(N+4)(-1_-), (N+4)(1—s)

as shown in Fig. 7-13. Prove that on CM,
Icot 7rZ I <A where A is a constant.

We -consider the parts of CN which lie in the	
N

regions y> 4, — 4 zi y 4 and y < —4.
Case 1: y>4. In this caw ifz=z+jy

.lv + -.lsI COZI 
=	 •.1v6—vfr	 (N

-	 -	 + —WlX+WI,

- e'-II -

Je'v + je_1f vu
-

-	 +e'e1+e2vs
- 6vs- 5 vs	 1_2W5	 1—.-'

Case 2: y < —4. Here as in Case 1,

Icotvz i	 Is'	 + Ie T "I = e" + e' = 1 + 2W2	 1 + e' = A,I	 - Ie-WIs+vsI	 -	 1 - 2Wp	 1

Case 3:. — 4	 4. Consider z = N+4+iv. Then
cot a-s = cot, (N + 4 + iy) = I cot (.12 + sly) = tanh wy	 tanh (.12) = A2
If z = —N - 4 + iv, we have similarly

cot vs	 I cot. (—N — 4 + iy) = I tAnh vy	 tanh (./2) = As

Thus if we choose A as a number greater than the larger of A 1 and A 5, we have IcotWxI < Aon CM where A is independent of N. it is of interest to note that we actually have Icot n I	 A 1 =coth(w/2) since A2<A1.

25. Let 1(z) be such that along the path CM of Fig. 713, If(z)I -	 where k> 1 and Mare constants independent of N. Prove that

1(n) = - (sum of residues of • cot .z 1(z) at the poles of 1(z))
Case 1: f(s) has a finite number of poles.

In this case we can choose N so large that the path C,,, of Fig. 7-13 encloses all poles of f(s).
The poles of cotra are simple and occur at z 0, ±1, ±2.....
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Residue of v cotwz f(z) at z n, n = 0, 1, ±2,..., is

	

urn (z - a), cot wz 1(z) = lim y (-) cos ,z 1(z)	 1(n)
s-a sin TX

using L'Hoapital'a rule. We have assumed here that f(z) has no poles at z = a, since otherwise the
given series diverges.

By the residue theorem,
N

JcK	
-N

cot sz 1(z) dz = f(n) + S (1)

where S Is the sum of the residues of w cot TX /(z) at the poles of /(x). By Problem 24 and our
assumption on /(z), we have

cotvz f(z)dzl	
!4!(8N+ 4)

cm	
k

since the length of path Cm Is 8N + 4. Then taking the limit as N -	 we see that

Urn 5 , cot ix 1(z) dx = 0	 (1)
N-	 C,,

Thus from (1) we have as required,

= -s
	

(a)

Case 2: 1(z) has infinitely many poles.

If 1(x) has an Infinite number of poles, we can obtain the required result by an appropriate
limiting procedure. See Problem 103.

26. Prove that	 1	
= - coth vS where a> 0.

a

Let f(z) =2	 which has simple poles at x = :tai.

Residue of cot Tx at z = ai Is
X2 + 62

urn (z - at) 7 
Cot VS	 = a cot,ai -	 a

(z - aO(z +	
- - coth as

coth is. ThenSimilarly the residue at z = —si is	 - coth iS, and the sum of the residues is 	 a
- -

by Problem 25,
N	 I

= - (sum of residues) = ! coth vs

27. Prove that V 1	 =	 coth wa -	 where a> 0.
..*fl'+S3	 2a

The result of Problem 26 can be written In the form

-1
++	 = cothva

or	 21	 1 
a1 as + -	

= 2: coth wa

which gives the required result.



190	 THE RESIDUE THEOREM. EVALUATION OF INTEGRALS AND SERIES [CHAP. 7

28. Prove that -1 + + +	 -
1•

____	 (1_ç+_...\
______	 4'	 1

,44

	of 	 51

1 /	 v*sS,.2z'=	 i___+...1(i+'+...) = so
so that the residue at * = 0 is 018.

Then as in Problems 26 and 27,

T 
cot 

VZ	
-	 1	 w'

I'	 - N.-N'	 3cy

	

N1	 ,2'

Taking the limit as N -." we have, since the left side approaches zero,

	

1 TI	
l	

TI2" = 0	 or
N - In 	 -ï	 N-I	 = 6

Another method. Take the limit as a- 0 in the result of Problem 27. Then using L'Ilosoital', rule,

lIrn -	 1	 -	 = urn '° coth wa - 1 - TI

	

. I na-9N.I fl' + a' -	 .-.o	 2a'	 - 6

29. If 1(z) satisfies the same conditions given in Problem 25, prove that

(-1)f(n) = - (sum of residues of v CSCTZ f(z) at the poles of 1(z))

We proceed In a manner similar to that In Problem 25. The poles of eec,. are simple and occur at
£ = 0. ±1, ±2.....

Residue of wc,cvzf(:) at z = n, n = O,±1,±2,..., Is

urn (z - n)r clew, 1(z) = lhn w ----- j /(z) = (_1)Nf(n)
i_N	 I*N 5iflTX,

By the residue theorem,
N

CM
reser. f(s) d. =	

-
N (-1) f(n) + S	 (I)

N-
where S Is the aunt of the residues of , eec wz f(s) at the poles of 1(z).

Letting N-. ", the integral on the left of (1) approaches zero (Problem 106) to that, as required,
(1) becomes	 -

(-1)f(n) = —S	 (1)

-	 1) -30. Prove that	 ,,' coo ,a
where a is real and different from 0, ±1, 2_. (n + a)'	 sin ,a

"whlch has a double pole at s = —a.Lit 1(5) = (z+a)

Residue of reacTs at x --a In

	

lint ..1(z+	 _____
.-.dz	 = —w'cacra cot wa

Then by Problem 29,

__ = - (sum of residue.) = TI eec we cot we = Z2 we
iin'wo

We have F(z)	 ,' cot TX = V cc, vs
Z sin yz
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31. Prove that if a v, 0, ±1, ±2,..., then
a2 +1	 a2+4	 a2+9 -	 - 1	 ir2 cos ra

(a2 - 1)2 - fa-T----4—)- + (a2 - 9)2	 2a2 - 2 sin2 7ra
The result of Problem 30 can be written in the form

	

+	 1	 1	 +	 1	 ,r2CosraW2	 l(a +1)2  	 (a - 1)25	 l(a + 2)2	 (a - 2)2f	 gjfl2

or	 - 2(a2 + 1) + 2(a2 +4) - 2(a2+9) + •.. = 72 Cos ra
a2	(a2 - 1)2	 (a - 4)2	 (a2 - 9)2	 sin2 Wa

from which the required result follows. Note that the grouping of terms in the infinite series is
permissible since the series is absolutely convergent.

32. Prove that	 — + --- 	
= 32

We have r see rz -

	

y(z) = 	-	 coswz	 z(1 - ,2z2/2! + •..)Z3	 x3
(

2)	

-	= 	 \1+2	 =

so that the residue at x = 0 is ir/2.

	

The residue of F(x) at z 	 it + 4, a = 0, ±1, ±2, ... [which are the simple poles of sec ,rZ), Is
______	 ______

	

l	
CO5fZ

im (z - (n + 4))	 = (a +4)5 lim

	

s-.,,+	 COSrZ	 (n+4)3
If C,.., is a square with vertices at N(1 + 1), N(1 - i), N(-1 + i), N(-1 - i), then

wsecrz
N= -	 (--1)'	 1)

	

N	 ("	 ,.3+	 = —8	 (2n+1)3 + 2-N

and since the integral on the left approaches zero as N -. , we have
(-1)" = 2{_+_ ...} 

= 16
from which the required result follows.

MITTAG-LEFFLER'S EXPANSION THEOREM

33. Prove Mittag-Leffier's expansion theorem (see Page 175).
Let 1(z) have poles at z = a,, it = 1, 2, ..., and suppose that z = r is not a pole of 1(z).

the function	 has poles at z = a, a = 1,2,3, ... and .

	

Residue of	 at z = a,,, a	 1,2,3,..., is AM (z_a,,)!L = _±1!_.z — I	 .	 z	 a. — f *
Residue of-- at z = is lint (z —) -- =

Then

Then by the residue theorem,

=	 +	 (1)

where the last summation is taken over all poles inside circle CN
of radius RN (Fig. 7-14).

Suppose that f(z) In analytic at z = 0. Then putting f = 0
In (1), we have I	 dx = 1(0) +	 (s)27i CM5



f(s) - 1(0) +	 1) =

Ea

L	 f(z)
{-- -

f(s) 
dx

2wiJ z(x-t)C.
(3)
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Subtraction of (2) from (1) yield.

Now since is -	 IzI - I l l = R - Ill for z on CN, we have, If f(x)	 M,

	

£ f(s)	 M2WRN
J z(z - I)	 RN(R$ - It!)

As N -	 and therefore RN -. , It follow, that the Integral on the left approaches zero, I.e.,

iim5 f(s) 
dx = 0

N—
CM

Hence from (3), letting N -, , we have as required

f(s) = f(0) +	 b.	 +i.)

the result on Page 175 being obtained on replacing t by a.

34. Prove that cot z =	 +	 (
1 +	 where the summation extends over

- ,	 2	 ,, Zfl,r nw
fl -	 s_p	 .....

	Consider the function f(s) = cots -	 = z coax - .In x. Then f(s) has simple poles at
silas

xnw, n=±1,±2,*3,.. , and the residue at thee. pole. is

cosx—,jnz\	 fz—nr\	 fscoss — slna\Urn (X - .,)(
s

  	 j = Urn i	 p Urn i	 =
 silas	 /	 sins 	 *

At x = 0, f(s) has a removable singularity since
/	 fscoss—,inz\•	 urn i cots - - p = urn p	 p = 0

5/	 x-.O\	 silas
by 1/Hospitals rule. Hence we can define /(0) = 0.

By Problem 110 It follow, that f(s) is bounded on circles C, having centre at the origin and
radius RN = (N + )w. Hence by Problem 83.

	

1	 ..f 1	 1

	

CotZ — —	 21	 +—

	

S	 • \Z — flr fl.
from which the required result follow..

35. Prove that cot s = + 2z
W-17 +

We can write the result of Problem 34 in the form

cots =	 + IimI	 /_1 	 i\ +	 /_i . L \l,.
S	 N*4a..—N \s .... nw 	 )	 R1 ',flr nwJJ

-	 + l ins 	 )_+-_. + (s:2. s) + ...
	

(
. i + 

I )}s—Nw

	

- !+11mI21 2s 	 2z 1
S	 N..._1**_W1+5z4w1++S1_Nwu1

- 

i+2s{_
1	 1

- £	 + p54* 
+ ••}
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MISCELLANEOUS PROBLEMS
S+..

	

36. Evaluate	 5	 dz where a and t are any positive constants.2,rt

The Integrand has a branch point at £
We shall take as branch line that part of the real
axis to the left of z =—I' Since we cannot cross
this branch line, let us consider

D	
ft a+iR,

,

;:;fr1

dx
/-	 xeloowhere C is the contour ABDEFGHJKA shown in 	

-Fig. 7-16: In this figure EFand HJ actually lie on
the real axis but have been shown separated for visual

	

purposes. Also, FGH is a circle of radius • while 	

R	

\

DDE and JKA represent area of a circle of radius R.
A'	Since Vt/./ji is analytic inside and on C, we	

a — iR

have by Cauchy's theorem

	

£	

St	
(1)

Fig. 7-15
Omitting the integrand, this can be written

f + f + f + f + f + f
AS	 son	 Er	 FGII	 HI	 lEA

Now on DDE and JKA, z = Re lf where • goes from to to r and v to 2w — so respectively.
On EP, z + 1 = uc,, fii = ,/012 = i'/; whereas on HJ, a + 1 = ue', '/.Ti =	=	

In both cases a = —u - 1, dx —du, where u varies from R - 1 to • alongEP and i to R - 1 along HJ.
OnPGH, z+1 =ie* where  goes from —rtow.
Thus (2) can be written

dx +

	

f	 ie de '+	 ' e"VRe"+l	 s—I

J•_ 
eiu	 fRI	 +('')' ( dii)

	

+ 	 d, +
•	 'Vie"+l	 •	 —iV'i

	

+	 _____ iR#d. = 0	 (3)•	 VRs+i
Let us now take the limit as R-. and .-'O. We can show (see Problem 111) that the second, fourth
and sixth Integral, approach zero. Hence we have

	

J.--I.
	 - 	du = 2x

	

+	
eat dx =	 lim2i 

R I)t

f	 J	 du
R ..

or letting a =

	

+1.	
dx = 1	 _______ =	 e-"	 =

	

rh.	 0	
du	 dv

 1

'2	 $

	

37. Prove that J	 ' U1 du =
8

Let C be the closed curve of Fig. 7-16 below where F 1 and F, are semicircles of radii • and Rrespectively and centre at the origin. Consider

£ 1n x)2 
dx

Yc2+1



Fig. 7-li

V
(N+1)i	 (N+j)(I+t)

CN

U

Fl

(N + )(— i - 4)	 -(N +1)i	 (N 4 )(t - I)

Fig. 7.17
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Since the integrand has a simple pole z - i inside C
and since the residue at this pole is

Ii (s - i)	 (In z)2-
	

(mi)2
(z— i)(z + i)	 2i

= (i/2)2
2i

Si
we have by the residue theorem

211E
	 (_r2

Z2+	

) -
 

(1)
c1	 = 2ri —c--

Now
r (lnz)2	 fRl3	 + f (In s)2

	

i_.	 5 (in z)2 
dz + Jr z2 + 

1 dz + •	 z2 + 1	 r, z2+1	z2+1	
dx	 (2)dz =	 - z2+1

Let z = -u in the first integral on the right so that Ins = In ( —u) = Inn + In (-1) Inn + Ti

and dx = -du. Also let z = u (so that dx = du and In z = In u) in the third integral on the right.
Then using (1), we have

	

rR 

(In u + 792 du + f -- dz +	 ( In u)2 du + j" J.!L. dx 4u2 +1	 r,52+l	 u2+1	 r,22+

Now let c -. 0 and R * a • Since the integrals around r 1 and c2 approach zero, we have

	

f
(Inn + rj)2 du +	 (In a)2

0	 u2+1	 o	
du =

_—_,ror	 2	 (In U)2 du + 2ri	 In U du- 2f du	 =

u2 +1	 u2+1	 0 n2 +1	 4

Using the fact that	 du	 =f 742+1	 10	 2'

2f
(In	 du + 2rif In U du =
U2 +1	 0 u2 +1	 4

Equating real and imaginary parts, we find

f (In u)2 	 In= -	 In a du = 0_8'	 0

the second integral being a by-product of the evaluation.

38. Prove that

coth ir	 coth 27r	 coth 3ir	 - 77r
+ 2
	 + 33 +	 - 180

Consider
w cot rzcothrz

taken around the square CN shown in Fig. 7-17.
The poles of the integrand are located at: z = 0
(pole of order 5); z	 ±1, ±2, . . . (simple poles);
x	 ±i, ±2i, ... (simple poles).

By Problem 5 (replacing z by 2) we see that:

Residue at z= 0 is -77

Residue at z = n (n	 1, i2,...) is
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lim	 -1(z — n) v coiws coth

vz}
 - coth fly

i-,. 15iflT7	 fla

Residue at z = ni (n = ±1,±2,...) is

r f(z — ni) iu-cótirz cosh irzl	 - cothnr

	

lsinh yx	 28	 5 -	 it3

Hence by the residue theorem,

s- cot irz coth yx	 = — 7,r3 +	
coth fly

45	 ,=,

Taking the limit as N- , we find as in P. ..,blem 25 that the integral on the left approaches zero
and the required result follows.

Supplementary Problems

RESIDUES AND THE RESIDUE THEOREM

39. For each of the following functions determine the poles and the residues at the poles:
,

2z+1	 fz+1\
2 	

slnz
(a) 

2	
, (6) - , (c) —j—, (ci) aech z, (e) cot z.

Z - z — 2	 \Z -

An.. (a) a = — 1,2; 1/3,5/3
(b) z = 1; 4	 (ci) a = 4(2k+1)ri; (_1)J.hui where k =

(c) z = 0, 1	 (e) a = ks-i; 1. where k	 0, ±1, ±2,

40. Prove that	 cosh dx = vi if C is the square with vertices at ± 2 ± 2i.5 28

41. Show that the residue of (csc z each z)/28 at z 0 is —1/60.

42. Evaluate 5 .--- around the circle C defined by lxi = 5.	 An.. 8ri
cosh 

43. Find the zeros and poles of f(z) 
=	 Z + 4	 and determine the residues at the poles.

28 + 228 + 2z

	

Ans. Zeros: a = ±2i Res; ata=0 is 2	 Res; at z —1+i is —4(1-30	 Res; at z
is —4(1+3*)

44. Evaluate 5 e— U sin (liz) dx where C is the circle izi = I.	 An.. 2ri
C

45. Let C be a square bounded by x = 1:2, y = ±2. Evaluate 5 ainh 3z

	

(z - ,/4)3 dx.	 An.. —9si/l2
c 

46. Evaluate S	 2+
z2+ 5

c (z 2) (x2 + 4)z2 dz where C is (a) I: - 2i1 = 6, (b) the square with vertices at

1+i,2+i,2+2i,1+2i;

47. Evaluate 5 2 + 3 sin wz
C z(z - 1)2 

dx where C is a square having vertices at 3 + 3j, 3— 3i, —3 + Si, —3— 3i.

An.. 6i

48. Evaluate 2ri . *2 + 
1) dx, t > 0 around the square with vertices at 1 + i, —1 + , —1—i, 1—t.

An.. 1 - cost



196	 THE RESIDUE THEOREM. EVALUATION OF INTEGRALS AND SERIES (CHAP. 7

DEFINITE INTEGRALS

49. Prove that	 dx
=

f50.Evaluate	 dx	
An.. Sr/288(5 +	 2 + 4)

$1. Evaluate f'	 ' _	 di.	 An.. 0J, 6-3co,O

fsw co. 3a
_____ -52. Evaluate	

5 + 4 , di.	 U. Prove that f"
6 - 4 co. 2s	 - 8

54. Prove that if m>O, f cosmx dx(.2j)i	 4

55. (a) Find the residue ofat x	 .	 (b) Evaluate

	

- ,
.	 f co..

(z2 +1)2 	-	 .
2w

_ — 56. If 42 > 52 + 02, prove that f a + b cosi + C SIfl,	 'ja2 - -
.2w

57. Prove that J 	 C08 3, 	 = 135.-

	

(5 - 3 Cog •)4 	 16,384

" dx	 /i,o$8. Evaluate J0 x + x	 An..+ 1

- dx59. Evaluate f - (x2 +4. + 5)1 An.. r12

60. Prove that f !!!od., =

61. Discuss the validity of the following solution to Problem 19. 	 Let a = (1 + sx/'/i in the
result f e-" dx =	 to obtain f o dx = *( l - i)) from which f Cos x2 dx =

	

0	 0

f

-	 0

sin 2 dx =	 on equating real and imaginary parts.

•0
J- —v62. Show that	

+x+
CO. 2wx dxx 	

-

SUMMATION OF SERIES

63. Prove that+ 1)2 =	 CC)th W +	 cach2 r

1	 w64. Prove that (a)	 =	 =

	

90	 0.1

65. Prove that	 (-1) n,sin.na = , sinh af
—w <• <,.

at	 fl2+a2	 2sinhai-'

66. Prove that - - +1	 - :... _ T212 22 32	 —ii.

1a 1sinh2ira+ sin 2.-al67. Prove that	
it4 + 4a4 =	 l,co$b2.-a-co_2waj'

-68. Prove that	 I	
- coth va coth pb.,_ - ... (m + 62)(n2 + 5')	 aS
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MITrAG.LEFFLERS EXPANSION THEOREM

69. Prove that csc x = 1 - 2z_
1 	 1	 _______

C	 Z2_W2Z2_4f2+,2_9,2).

70. Prove that sech z = v \(	
1	 3

/2)2 + :2 (3,12)2 + *2 +	
5

(5./2)2 +22  -
( 

_ 71. (a) Prove that tan z = 
2* ((/2) -. + (3/2 - +	

1
(,/5)5 2	 j-(6) Use the result ln(a)to show that	 +j+++	 i2

-

72. Prove the expansions (a) 2, (6) 4, (o) S. (d) 7, (e) 8 on Page 175.

.	 1	 "fl -l+73. Prove that 
k'1 2 +	 =	 -; 

+

74. Prove that 1 + 1 + 1 + 1 + ...14	 34 54	 74- 96

MISCELLANEOUS PROBLEMS
75. Prove that Cauchy's theorem and Integral formulae can be obtained as special cases of the residue

theorem.

76. Prove that the sum of the residues of the function 2z- 4 2 + 6 at all the poles is 2/8.3z - 8* + 10

77. If it is a positive integer, prove that 5	 cos (n* - sin *)do =

78. Evaluate	 ze" dz around the circle C with equation 1* - 11 = 4.	 An,. 1/24

79. Prove that under suitably stated conditions on the function:
/'tw 

(a) J f(,) do	 2. f(0),	 (b) J f(e) cos* ds = —w
0

	

	 0

p2w
80. Show that (a) I cos (cos,) cosh (sin.) d* = 2w

"0
,'2w

(b) J eo1* cos (sin a) coo  do = r.
0

f81. Prove that	 _ax dx	 1	 (1
- 1	 = coth -

[Hint. Integrate ./(,2w - 1) around a rectangle with vertices at 0, R, R + i, i and let R -.

n.
U. Prove that	 amex

j	 + 
1 dx =	 - 2 sinh we

+i.
33. If a, p and t are positive constants, prove that 	 z2.,,sP.

______84. Prove that 5'. In z
	=	

In 2d.
0

85. If —w<a<w, prove that	 so, sinh ex dz =	 sine
--	 smnh wx	 cos G + cosh )



Fig. 7-18

198	 THE RESIDUE THEOREM. EVALUATION OF INTEGRALS AND SERIES [CRAP. 7

86. Prove that

	

	 dx	 = ln2
o (4x2 + r2) cosh x

f 	 1' (In a)287. Prove that (a)	 in a
—4--^jdx = 16	 (b)j	 +jdx = 64

[Hint. Consider 5 (in a)2 
dz around a semicircle properly indented at z = 0.1

	

CZ4 +l	 -

88. Evaluate 5	 X

	

(5i) dx.	 An.. i,rIn2

89. Prove that if a! <I and b >0, I Binh aX coo bZdX = ,r /	 sin ax

'o sinh a	 2 (., coo a,r+ cosh birJ

90. Prove that if —1 < p < 1, f COS dx =	 v
cosh a	 2 cosh (px/2)

JThn(1+x) =
,, In 2

91. Prove that	
+ x2	2

92. If a > 0 and —s-/2 < /3 < 7/2, prove that

(a)f go5 cos ( x2 sin fl)dx = 4%(7 cos (p/2).

(b)f —ar'COO sin (ax2 sin /3) dx = . %f	 sin (/3/2).

93. Prove that csc2 z =	 1
=_

94. If a and p are real and such that 0 < )p) < 1 and 0 < H < ,r, prove that

f	 a - dx	 =	 sin pa
+ 2xcosa + 1	 (sinp) (Sinai

95. Prove that 1' _dx	 =	 -. [Hint. Consider the con-
o	 V3

tour of Fig. 7-18.1

96. Prove the residue theorem for multiply-connected regions.

97. Find sufficient conditions under which the residue theorem
(Problem 2) is valid if C encloses infinitely many isolated
singularities.

98. Let C be a circle with equation 11 = 4. Determine the
value of the integral

5 22 csc1
if it exists.	 C	 a

99. Give an analytical proof that sine 9 2SIv for 0 9 e w/2.
[Hint. Consider the derivative of (sin *)/#, showing that it is a decreasing function.]

100. Prove that 5 —f---- dxo nhxX	 4

101. Verify that the integral around I' in equation (2) of Problem 22 goes to zero as R-. .

102. (a) If r is real, prove that	 J In (I - 2r coo  + r2) do = .10	 If ri	 1
0	 i.xlnr2	 if lri1

(b) Use the result in (a) to evaluate f	 in 4inC de (See Problem 23).
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103. Complete the proof of Case 2 in Problem 25.

104. if 0 <p < 1, prove that f	 dx	 s- cot pr in the Cauchy principal value sense.

106. Show that.
	 + + 1 

=	 tanh (!)

106. Verify that as N-. the integral on the left of (1) in Problem 29 goes to zero.

1	 Sir5
101. Prove that p1 — 1

35 F5 Ts	 1636 + 1 —	 + ..• 
=

108. Prove the results given on Page 175 for (a) 	
/(2? 1) and (b)	 (_l)'f(2' 

1).

109. If —w 8 ir, prove that	
(—I)" sin nO = 8(ir — eXit + 0)

110. Prove that the function cots — 1/s of Problem 34 Is bounded on the circles CN.

111. Show that the second, fourth and sixth integrals in equation (3) of Problem 36 approach zero as i -. 0

and R-

112 Prove that	 1	 1	 - +
cosh (712) — 3 cosh (3,r/2)	 5 cosh (fir/2)	 8

0".113. Prove that -L 	 dx =
	 where a and t are any positive constants.

2wt •_.

114. Prove that	
coth nit 

= 66,700

115. Prove that C	 dx	 =

	J0 (x2 +1) cosh sx	 2

116. Prove that	 1	 1	 +	
1	 —	 =

1 sinh it — 2 ainh2w	 3 sinh 3w	 360W

117. Prove that if a and t are any positive constants,

ef cot' g f	 = 
sin I

2wi f+ ( _t-


