Chapter 5§

Caqéh;'s lnhgml ﬁirmulao
. and Related Theorems

CAUCHY'’S INTEGRAL FORMULAE .
If f(z) is analytic inside and on a simple closed curve C and a is any point inside C

(Fig. 6-1], then i
f@ = 3 $ fa (1)

where C is traversed in the positive (counterclockwise) sense.
Also the nth derivative of f(2) at z=a is given by

(n) —_— EI_ fz .

f™ (@) = 50 C(z—a)"“dz n = 1,28,... (2)
The result (1) can be considered a special case of (2)
with n=0 if we define 0! = 1. C

The results (1) and (2) are called Cauchy’s inte-
gral formulae and are quite remarkable because they
show that if a function f(z) is known on the simple
closed curve C then the values of the function and
all its derivatives can be found at all points inside C.
Thus if a function of a complex variable has a first z
derivative, i.e. is analytic, in a simply-connected re-
gion R, all its higher derivatives exist in ®. This is
not necessarily true for functions of real variables. Fig.5-1

SOME IMPORTANT THEOREMS

The following is a list of some important theorems which are consequences of Cauchy’s
integral formulae.

1. Morera’s theorem (converse of Cauchy’s théorem).
If f(z) is continuous in a simply-connected region R and if ‘£ f(z)dz = 0

around every simple closed curve C in R, then f(z) is analytic in K.

2. Cauchy’s inequality.
- If f(2) is analytic inside and on a circle € of radius r and centre at z=a,

then

@ s XM a=o1... )
where M is a constant such that ‘|f(z)| <M on C, i.e. M is an upper bound of
|f(z)] on C.
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Liouville’s theorem.

Suppose that for all z in the entire complex plane, (i) f(2) is analytic and
(ii) f(z) is bounded, i.e. |f(z)] < M for some constant M. Then f(z) must be a
constant.

Fundamental theorem of algebra.
Every polynomial equation P(z) = a0+ a1z + @222+ - - +a.2" = 0 with
degree m =1 and a. » 0 has at least one root.

From this it follows that P(z) = 0 has exactly n roots, due attention being
paid to multiplicities of roots.

Gauss’ mean value theorem.

If f(z) is analytic inside and on a circle C with centre at a and radius r,
then f(a) is the mean of the values of f(z) on C, i.e.,

27
fa) = 2_1,  fla+ren)ds 4)
Maximum modulus theorem.

If f(2) is analytic inside and on a simple closed curve C and is not identically
equal to a constant, then the maximum value of |f(2)| occurs on C.

Minimum modulus theorem.

If f(z) is analytic inside and on a simple closed curve C and f(2) # 0 inside C,
then |f(z)| assumes its minimum value on C.

The argument theorem.
Let f(z) be analytic inside and on a simple closed curve C except for a finite
riumber of poles inside C. Then

1 f'(2) _
L ™ = A= )

where N and P are respectively the number of zeros and poles of f(z) inside C.
For a generalization of this theorem see Problem 90.

Rouché’s theorem.

If f(z) and g(2) are analytic inside and on a simple closed curve C and if
|9(2)| <|f(z)| on C, then f(2) + g(2) and f(z) have the same number of zeros inside C.

Poisson’s inlegral formulas for a circle.
Let f(z) be analytic inside and on the circle C defined by |¢| = R. Then if
z = re" is any point inside C, we have
I = (R? — ?) f(Re')
i = .=
fre®) = o)y B 3Rrcos(o—g) ¥ 7

dé (6)

If u(r,0) and v(», 0) are the real and imaginary parts of f(re”) while u(R, ¢)
and v(R, ¢) are the real and imaginary parts of f(Re'%), then
L (" (RP—r?)u(R, )

uno = g o R*—2Rrcos(0—¢) + ? 4 7

_ 1 (" (R-r)u(R,¢)
L 2r Jo R — 2Rrcos(0—¢) + 7* i (8)
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These results are called Poisson’s integral formulas for a circle. They
express the values of a harmonic function inside a circle in terms of its values
on the boundary.

11. Poisson’s integral formulae for a half plane

[

Let f(z) be analytic in the upper half y =0 of the z plane and let ¢ = £+ in
be any point in this upper half plane. Then

1 A
fo = 2f D ©)

In terms of the real and imaginary parts of f(¢) this can be written

_ 1" qu(,0)
ugn) = - w—-—_-(x"_ 5 o dx | (10)
ooy = 1 f (xvv; 0y (11)

These are called Poisson’s integral formulae for a half plane. They express
the values of a harmonic function in the upper half plane in terms of the values
on the z axis [the boundary] of the half plane.

Solved Problems

'EGRAL FORMULAE

analytic inside and on the boundary C of a simply-connected region R, prove
wcky's integral formula

' ' - J(2)
= 2m § z—a dz
Method 1.

The function f(z)/(z — a) is analytic inside and on C v
except at the point z=a (see Fig. 5-2). By Theorem 4,
Page 97, we have

};-zﬂ_—’%dz = fr;ﬂ_’—)adz )

where we ‘can choose I' as a circle of radius e with
centre at a. Then an equation for I' is |z—a| = € or
z—a = ee® where 0 =6 < 2r. Substituting z = a- e,
dz = iee®, the integral on the right of (1) becomes

J@) fla + eelf) ieclt uc" x
§r z—a = f el

= i"; fla + I'Cm) de " Fig. 5-2
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Thus we have from (1),

2
f ilN La: = i flat et do @)
cZ— 0
Taking the limit of both sides of (2) and making use of the continuity of f(z), we have
2w
‘L(E)—dz = lim i J(a+ «ci®) do
C TG €=0 0
2 2w
= if lin})f(a +eci®)de = 1 fla)de = 2rif(a) (€))
[ 0

so that we have, as required, A
_ f(Z)

Method 2. The right side of equation (1) of Method 1 can be written as
f(z) dz _— f(Z)_f(a) dz + § f(a') dz
rz—a

rz—a r Z2—a

f@Q —fla) . 2ri f(a)

r 2—a
using Problem 21, Chapter 4. The required result will follow if we can show that ¥
§ @&=f@, _ ,
z—a

But by Problem 21, Chapter 3,

" f(z) — f(a) _ ) =
§ Bl = if(a)dz'rﬁndz = §l:qdz

Then choosing I' so small that for all points on ' we have [g| < §/27, we find

}r ndz < (%)(2#:) = e

Thus 4). ndz = 0 and the proof is complete. =
Jy .

2. If f(2) is analytic inside and on the boundary C of a simply-connected region R, prove

that s = § f@) o
i 2«1 (z— a)?

From Problem 1 if « .d a+ h lie in R, we have

flath = fa) - Ziii%{z—(}l*kh) i },(z,d, s L f(z) dz

27t Je (2 —a—h)(z—a)

1 f(2) dz k. f(2) dz
27 Jo (z—a)? 2ri Jc (z—a—h)(z—a)?

The result follows on taking the limit as h = 0 if we
can show that the last term approaches zero. v

To show this we use the fact that if I' is a circle
of radius ¢ and. centre a _which lies entirely in R
(see Fig. 5-3), then

b ) dz
271t Jc(z—a— h)(z—a)?

h [ f(z) dz
271, r(z—a—h)(z—a)?

Choosing h so small in absolute value that a + h lies
in T and |h| < ¢/2, we have by Problem 7(¢), Chap-
ter 1, and the fact that I' has equation |z—a| = ¢, Fig.5-3
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|z—a—=h| 2 |z—u| — |h] > ¢— 2 = ¢2
Also since f(z) is analytic in R, we can find a positive number M such that [f(z)| <M.

Then since the length of I is 2r¢, we have

Al M2ve) _ 2[R M
2 ((/2)() - &

2ri § (z—a— h)(s —a)?

and it follows that the left side approaches zero as h -+ 0, thus completing the proof.

It is of interest to observe that the result is equivalent to

c'id;,(a) = %{;:i;t'(f); } = 2nf&a{z—}

which is an extension to contour integrals of Leibnitz’s rule for differentiating under the integral sign.

3. Prove that under the conditions of Problem 2,

@ = 2 C(ZJ_fgmdz n=0123,...

The cases where n=0 and 1 follow from Problems 1 and 2 respectively provided we define
f®(a) = f(a) and 0! =1.

To establish the case where n =2, we use Problem 2 wﬁere a and a+ h lie in R to obtain

flath —f@ _ L 1] 1 1
a h a) _ 2zi Jo h {(z —a—h?  (z— a)g} f(z) dz
= 3l —L(—L . 3(z—a)—2h
- i f (z—a)® = ¥ 2n C(,J_;*_‘T,)Ln(,—_a), f(z) dz

The result follows on taking the limit as h - 0 if we can show that the last term approaches zero.
The proof is similar to that of Problem 2, for using the fact that the integral around C equals the

integral around I', we have

h 3(1-6‘-2" (‘)d‘l = J_’ﬂ M(Z’") - M

2iJ. z—a—hz—ap’ 27 (/2)2()
Since M exists such that | {3(z—a) — 2k} f(2)| < M.
In a similar manner we can establish the result for n = 3,4,... (see Problems 36 and 37).

The result is equivalent to (see last paragraph of Problem 2)

=& o) - L ﬂ{_fji}d,

dn _
Z;if(“’ T da" |27i J; z—a 27i Jc da" |z—a

If f(z) is analytic in a region R, prove that f’(z), f(z), ... are analytic in R.
from Problems 2 and 3.

P

8in n2? + cos nz?
vdluate (a) ~£ T-DG-2) dz,

e ; . i
(b) f; mdz where C is the circle |z| =38.

1 1

1 .
z—1z—2) 2—2 x=1°* we have

(a) Since
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gin 722 + cos 7z § sin 722 + cos 722 f sin 722 + cos 722
——= 1 2"l dz = —_— T dz - —_— . d
i G—1)z-2) b -2 . =y #

By Cauchy’s integral formula with a =2 and a =1 respectively, we have

2
(f sings? teonwtd 4o o orifaine(2)? + cosr(2)T} = 2vi
Je z—2 i
3 2 2
f____smvrzz-f-tl:osu dz = 2ri{sinw(1)? + cos=(1)?) = —2rxi
. C -

/ since z=1 and z=2 are inside C and sinrz? + cosx2? is analytic inside C. Then the required
mt.egral has the value 2zi— (—2#1) = 4ri.

-~
'
(b) Let f(z) =e2* and a = —1 in the Cauchy integral formula
- n! f(z)
e} = 5o (T——a)"—”d (1)

If n =3, then f"”'(z) = 8e2* and f'''(—1) = 8e~2. Hence (1) becomes

- 3! § e2z
2 = 2
o B w3 (TP 1Y

from which we see that the required integral has the value 8rie—2/3.

6. Prove Cauchy's integral formula for multiply-
connected regions.

We present a proof for the multiply-connected re-
gion R bounded by the simple closed curves C; and C,
as indicated in Fig. 6-4. Extensions to other multiply-
connected regions are easily made (see Problem 40).

Construct a circle I' having centre at any point a
in R so that I' lies entirely in ®. Let R’ consist of
the set of points in R which are exterior to I Then

f(z)

the function g is analytic inside and on the bound-

ary of R'. Hence by Cauchy’s theorem for multiply-
connected regions (Problem 16, Chapter 4),

fz) - ok LN G =) _
2n1 § z—a s 2ri Je,z—a 2ﬂ rz—a % = 0 @)
But by Cauchy’s integral formula for simply-connected regions, we have
= 1L £ fa ,
= gz HE5 (2)

so that from (1),

= - 1 £ [
f@) = 2ri § 271 ‘i’ z—a - @)

Then if C represents the en'tir; boundary of R (suitably traversed so that an observer moving around C
always has R lying to his left), we can write (.1) as

fla) = §

In a similar manner we can show that the other Cauchy integral formulae

fM™(a) = 2r1§ (z—a)"“ dz n=1,28 ...

hold for multiply-connected regions (see Problem 40).
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MORERA’S THEOREM
7. Prove Morera’s theorem (the converse of Cauchy’s theorem): If f(z) is continuous in
a simply-connected region R and if

if(z)dz = 0

around every simple closed curve C in R, then f(z) is analytic in R.

z
If § f(z) dz = 0 independent of C, it follows by Problem 17, Chapter 4, that F(z) = f f(z) dz
c a

is independent of the path joining a and z, so long as this path is in R.

Then by reasoning identical with that used in Problem 18, Chapter 4, it follows that F(z) is
analytic in ® and F'(z) = f(z). However, by Problem 2, it follows that F’(z) is also analytic if

F(z) is. Hence f(z) is analytic in R.

CAUCHY'’S INEQUALITY
8. If f(z) is analytic inside and on a circle C of radius 7 and centre at z=a, prove Cauchy’s

inequality —_—
@ = o= n=0,123,...

where M is a constant such that |f(z)| < M.
We have by Cauchy'’s integral formulae,

1
@ = CG_—ﬁ:T)"*_'d’ n=0,1,23,...

Then by Problem 3, Chapter 4, since |z—a| = r on C and the length of C is 27,

nl f(z) n! M Men!
i (z__a)n+l dz

lf™ @)l = 37 oy enFi T = /3

LIOUVILLE’S THEOREM

9. Prove Liouville’s theorem: If for all z in the entire complex plane, (i) f(z) is analytic
and (ii) f(z) is bounded [i.e. we can find a constant M such that |f(z)] < M], then f(z)

must be a constant.

Let @ and & be any two points in the z plane. Suppose ¥
that C is a circle of radius » having centre at ¢ and enclosing C
point b (see Fig. 5-5).

From Cauchy’s integral formula, we have

= - 1 £ @ 4 _ 1 £ [ z
o) = fl@ = 35 f; 5% T I f; i—a®
= Db—6 f f(z) dz
2ri_J¢ (z—b)z—a) Fig.5-5

Now we have
|lz=a| = 7, |z—b| = |z—a+a—b| = |z—a|—|a—b] = r—|a—b] Z r/2
if we choose r so large that |a —b| < r/2. Then since |f(z)] < M and the length of C is 2rr, we have
by Problem 3, Chapter 4,
b — a] M(2x7) 2lb—alM

- 2w(r/2)r = r

16— af

e (z—b)(z—a)

Letting r - = we see that | /(b) — fa)]| = 0 or f(b) = f(a), which shows that f(z) musi be a constant.
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Another method. Letting n =1 in Problem 8 and replacing a by z we have,
I/l = M/r
Letting r » =, we deduce that |f(z)] = 0 and so f'(z) = 0. Hence f(z) = constant, as required.

FUNDAMENTAL THEOREM OF ALGEBRA

10. Prove the fundamental theorem o, algebra: Every polynomial equation P(z) =
@G0+ @12 + @2z* + -+ + a.2" = 0, where the degree =1 and a,#0, has at least

one root.

If P(z) = 0 has no root, then f(z) = ~,1— is analytic for all z. Also |f(z)] = A is bounded
! P(z) [P(2)]

(and in fact approaches zero) as |z| = .

Then by Liouville’s theorem (Problem 9) it follows that f(z) and thus P{z) must be a constant.
Thus we are led to a contradiction and conclude that P(z) = 0 must have at least one root or, as is
sometimes said, P(z) has at least one zero.

11. Prove that every polynomial equation Piz) = ao+ a1z + ae2® + -+ - + auz" = 0, where
the degree n =1 and a, 0, has exactly n roots.

By the fundamental theorem of algebra (Problem 10), P(z) has at least one root. Denote this
= root by a. Then P(a) = 0. Hence

P(z) — Pla) = ap + ajz + age? + -+ + apz® — (ap + @ + aza? + ¢ + a,an)
= az—a) + ayz2—a?) + '+ + a,(z"—an)
= (2—a)Q(2)

where Q(z) is a polynomial of degree (n—1).

Applying the fundamental theorem of algebra again, we see that Q(z) has at least one zero
which we can denote by g [which may equal a] and so P(z) = (z— a)(z — B) R(2). Continuing in
this manner we see that P(z) has exactly n zeros.

GAUSS’ MEAN VALUE THEOREM

12. Let f(z) be analytic inside and on a circle ¢ with centre at a. Prove Gauss’ mean
value theorem that the mean of the values of f(z) on C is f(a).

By Cauchy’s integral formula,

- _ _1— z

If C has radius r, the equation of C is |z—a| = 7 or z = a+re®. Thus (1) becomes

2 2w
- 1 fla + re'd) irete 1 10
fla) = i e de = 2 J, fla + re'f) do

which is the required result.

MAXIMUM MODULUS THEOREM

13. Prove the maximum modulus theorem: If f(z) is analytic inside and on a simple closed
curve C, then the maximum value of |f(2)| occurs on C, unless f(z) is a constant.
Method 1.

Since f(z) is analytic and hence continuous ingide and on C, it follows that |f(z)| does have a
maximum value M for at least one value of z inside or on C. Suppose this maximum value is not
attained on the boundary of C but is attained at an interior point a, i.e. |f(a)] = M. Let C, be a circle
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inside C with centre at a (see Fig. 5-6). If we exclude f(z) from
being a constant inside C,, then there must be a point inside Cy,
say b, such that |f(b)| < M or, what is the same thing, 1f(B)] =
M — ¢ where ¢> 0.

Now by the continuity of |f(z)| at b, we see that for any ¢ >0
we can find § > 0 such that

[1f() = |f(B)|| < 4e¢ whenever |z—b| < 8 (1)
ie.,
If(z)! < lf(b)l =k ét = M — ¢+ Ac = M- éc (2)

for all points interior to a circle C; with centre at b and radius $,
as shown shaded in the figure.

Construct a circle C; with centre at a which passes through
b (dashed in Fig. 5-6). On part of this circle [namely that part
PQ included in C,) we have from (2), |f(2)] < M —4e. On the Fig.5-6
remaining part of the circle we have |f(z)| = M.

If we measure # counterclockwise from OP and let £P0Q = a, it follows from Problem 12 that

if r=1]b—a,
1 [ 1 2m
flay = EJ:, flatre®ds + 5o | - flatre)ds
Then
v 1 o 1 2m
Iflw) = EJ; | fla+rey,|de + -2—;£ | fa -+ re'f) | de
1 o 1 2
s -Z—;J; (M—'%c)dﬂ + 5; L M ds

= SM-jo + %”;(2,,—:.)

ae

4r

M -
ie. |fe)) =M = M—%, gan impossible situation. By virtue of this contradiction we conclude that
|f(z)| cannot attain its maximum at any interior point of C and so must attain its maximum on C.

Method 2.
From Problem 12, we have

1A

2w
@l = 5 f 1 fatren|ds ()

Let us suppose that |f(a)| is a maximum so that | fla + rei®) | = |f(a)]. If | fla+re®)| < |f(a)l
for one value of 6 then, by continuity of f, it would hold for a finite arc, say 8, < 8 < 85. But in
such case the mean value of |f(a+ rei®)| is less than |f(a)|, which would contradict (9). It follows
therefore that in any neighbourhood of a, i.e. for |z—a| < &, f(z) must be a constant. If f(2) is not
a constant, the maximum value of |f(z)] must occur on C.

(1

For another method, see Problem 57.

MINIMUM MODULUS THEOREM

14. Prove the minimum modulus theorem: Let f(z) be analytic inside and on a simple
closed curve C. Prove that if f(z)#0 inside C, then |f(z)] must assume its minimum
value on C.

Since f(z) is analytic inside and on C and since f(z) »* 0 inside C, it follows that 1/f(z) is analytic

inside C. By the maximum modulus theorem it follows that 1/|f(z)| cannot assume its maximum value
inside C and so |f(z)| cannot assume its minimum value inside C. Then since |f(z)] has a minimum,

this minimum must be attained on C.
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15. Give an example to show that if f(z) is analytic inside and on a simple closed curve C
and f(z) = 0 at some point inside C, then |f(2)| need not assume its minimum value on C.

Let f(z) = z for |z| =1, so that C is a circle with centre at the origin and radius one. We have
f(z)=0 at 2=0. If z=re!®, then |f(z)) =~ and it is clear that the minimum value of |f(z)| does
not occur on C but occurs inside C where r =0, i.e. at z=0.

THE ARGUMENT THEOREM

16. Let f(z) be analytic inside and on a simple closed
curve C except for a pole z=a of order (multi-
plicity) p inside C. Suppose also that inside C
f(2) has only one zero z = f of order (multiplicity)
n and no zeros on C. Prove that

2ﬂ§—féz—)ldz = n-—-7p

Let C, and T'; be non-overlapping circles lying in- ‘ Fig. 5-7
side C and enclosing z=a and z = respectively. Then
1 ¢ re = ok § [(z)
i § 0 T f(z) i 3. 1o % @
Since f(z) has a pole of order p at z =a, we have
F
1o = 2 ®

where F(z) is analytic and different from zero inside and on C,. Then taking logarithms in (2) and
differentiating, we find

f@ _ F@ _ _»p
fz) — F(2) z—a )
so that
_1.. f (z) _ F(Z) _ dz - _ .
2mi f 2 & = 5 § F(z) dz 2," e, ~ e 0—1p P )
Since f(z) has a zero of order n at z=f, we have
fa) = (=p"G) )

where G(z) is analytic and different from zero inside and on T,.
Then by logarithmic differentiation, we have

L@ _ n G'(2)
o — =8 ' G @

so that

1, - n g4, Lo, -
Zri f(z)d = B frlz—-p t 5 P G # L ™

Hence from (1), (4) and (?), we have thu required result

f'(2) _ A (2 ﬁ(ﬂ 5 _
2ri § fz) & = @ f(z) i 2:1 f(z) ds n=p

17. Let f(z) be analytic inside and on a simple closed curve C except for a finite number
of poles inside C. Suppose that f(z) »0 on C. If N and P are respectively the
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number of zeros and poles of f(z) inside C,
counting multiplicities, prove that

1 f(z _
mifi(z—)ldz - N-P

Let ay, a3, ...,a; and By, By, ..., By be the re-
spective poles and zeros of f(z) lying inside C [Fig. 5-8]
and suppose their multiplicities are p,, p,, ...,p; and
My, Ny, oo oy N

Enclose each pole and zero by non-overlapping
circles C,,Cp ...,C; and ITIy,...,T,. This can
always be done since the poles and zeros are isolated. Fig.5-8

Then we have, using the results of Problem 16,

L Clie o 1 £ [@ s .1 § [
2ri i de - ,él 2ri £ de c, f(2) s

f(2) f(z) — 2
k
= é Ny — 2 Pr
r=1 r=1
= N-P

ROUCHE’S THEOREM

18.

19.

Prove Rouché’s theorem: If f(z) and g(z) are analytic inside and on a simple closed
curve C and if |g(2)| <|f(2)] on C, then f(2) + g(2) and f(z) have the same number of
zeros inside C.

Let F(z) = g(2)/f(z) so that g(z) = f(z) ¥(z) or briely g = fF. Then if N; and N, are the
number of zeros inside C of f + g and f respectively, we have by Problem 17, using the fact that these
functions have no poles inside C,

N = E,l}'i c’;Ig'dz, Ny, = E}r-l-. cf—;dz
Then
N, - N, = %ﬂi%}m—'h - o CT'dz
- ZL:n C__—H_.____f'(lf“(“ﬂ;)”"dz = ziﬂ CIT’d.’z
- E b e - A g e
- #iﬂ_’ﬁdz = %LF‘(I—-F:%FZ-F'-’+---)M
= 0

using the given fact that |F| <1 on C so that the series is uniformly convergent on C and term by
term integration yields the value zero. Thus N, = N, as required.

Use Rouché’s theorem (Problem 18) to prove that every polynomial of degree n has
exactly n zeros (fundamental theorem of algebra).

Suppose the polynomial to be ag+ a;2+ az22+ -+ + a,2", where a, 7 0. Choose f(z) = a,z"
and g(z) = aptaiz+azl+ o +a,_y2nL

If C is a circle having centre at the origin and radius + > 1, then on C we have
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9| _ lag+ @z + a2 4+ o + @, 2771
f(2) |e:nz|
= lag] + lagr + lag| 72 + -+ - + |ap—y| ™!
|an| ¥
& laol 7 =1 + lag| -t + lagl =1 + --- + Ia“__d,-n—-l
Ia’n| ™

lagl + lay] + lagl + - -+ + lan—
|an] 7

%((%) <1, ie |g(2)| < |f(z)l. Hence by Rouché’s
theorem the given polynomial f(z) + g(z) has the same number of zeros as f(z) = a,z". But since this
last function has n zeros all located at z=0, f(z) + g(z) also has n zeros and the proof is complete.

Then by choosing r large enough we can make

20. Prove that all the roots of 27—5z°+12 = 0 lie between the circles |z|=1 and |z|=2.

Consider the circle Cy: |z| = 1. Let f(2) =12, g(z) = 27—52%. On C, we have
lg(z)] = |27—62% = |7+ 523 = 6 < 12 = |[f(2)|

Hence by Rouché’s theorem f(z) + g(z) = 27— 523+ 12 has the same number of zeros inside |2 =1 as
f(z) =12, i.e. there are no zeros inside C;.

Consider the circle Cy: |z] = 2. Let f(z) =27, g(z) = 12—5623. On C; we have

lg(z)) = |12—62% = [12] + |62 = 60 < 27 = |f(2)|

Hence by Rouché’s theorem f(z) + g(z) = 27— 523+ 12 has the same number of zeros inside |z2| =2 as
f(z) =27, i.e. all the zeros are inside Cj.

Hence all the roots lie inside |z] =2 but outside |z| =1, as required.

POISSON’S INTEGRAL FORMULAE FOR A CIRCLE
21. (a) Let f(z) be analytic inside and on the circle C defined by |z|=E, and let z=re"
be any point inside C. Prove that

- 1= R? — 2 i
fre) = 2. ). B eRrempp=p T 0%

(b) If u(r,8) and v(r,0) are the real and imaginary parts of f(re®), prove that
1 " (RR—r)u(R,4)ds

ur,0) = 3- ) R* —2Rrcos(0—¢) + r*
_ LT (R-r)u(R,¢)ds
u(r,0) = 3. ), R* — 2Rrcos (0 —¢) + *

The results are called Poisson’s integral formulae for the circle.
(a) Since z = re'® is any .point inside C, we have by Cauchy's
integral formula
o = fre = 35§ L aw )

2ri cWwW—2z

The inverse of the point z with respect to C lies outside C and
is given by R2?/z. Hence by Cauchy’s theorem,

w A )
b2 i w— 11 v ) Fig.5-9
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If we subtract (2) from (1), we find
1 1 i

_ A f a-mp
= 2ri§c(w—z)(w—m/z) fiw) dw )

I

Now let z = re® and w = Rei®, Then since z = re— 0, (3) yields

1 ("*"{rele — (R/7)e!%) f(Re") iRe' dg

fiedy = 2ri Jo  (Re'd — re){Reld — (R?/r)cl%)

i 27 (12 — R2) ¢i(0+8) f(Reld) dg
27 Jo (Re'® — relf)(rei® — Relf)

1 (" (R2—1?) f(Re'd) dg
27 Jy (Rei® — rei®)(Re—16 — re—19)

zm

(R2— 7?) f(Re'¢) dg
R2?2 — 2Rr cos (6 — ¢) + 72

(b) Since f(rei®) = w(r,0) + iv(r,8) and f(Rel?) = w(R,¢) + iv(R,9), we have from part (a),

1 ((R2— ) {u(R, ¢) + iv(R,¢)) dg
27 Jo R? — 2Rr cos (6 — ¢) + 72

u(r,8) + iv(r,0)

1 (" @) uRe)dy i J"” (R?— 7% v(R, 9) d¢
2 Jo R2— 2Rrcos(6 —¢) + 12 2r Jo R? — 2Rr cos (6 —¢) + 72

Then the required result follows on equating real and imaginary parts.

POISSON’S INTEGRAL FORMULAE FOR A HALF PLANE

22. Derive Poisson’s formulae for the half plane [see Page 120].

Let C be the boundary of a semicircle of radius R [see Fig. 5-10] containing { as an interior point.
Since C encloses { but does not enclose {, we have by Cauchy’s integral formula,

0 = 21rt§ f(z) “, = 27i jc f(z) 7 9 y

Then by subtraction,

g i .3
o = Mﬁ/@{,_; z—;}d’

‘ x
_ (0 f(2) dz J R
2riJe 2= {)(z-D) Fig. 5-10

Letting { = ¢+1in, { = £t —in, this can be written

= 3 nf@de 1 1 f(2) dz
f.m. fn(z-i)’ﬂ’ ™ Jr—HE-0

where I' is the semicircular arc of C. As R - =, this last integral approaches zero [see Problem 76|

and we have
= 1 n f(x) dx
) = .f.(x—e)w»z

Writing  f(¢) = f(¢+1in) = u(¢,9) + iv(¢,n), f(x) = u(x,0) + iv(x,0), we obtain as required,

i =L LA e - L LIS
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MISCELLANEOUS PROBLEMS

23. Let f(z) be analytic in a region R bounded by two
concentric circles C; and C; and on the boundary
[Fig. 5-11]. Prove that if 2 is any point in R, then

f(zo) = __1_ _L(ELdz s _1_ 'l(ELdZ

2m J. 2= 2% 2nt J 2 — 2o

Method 1.

Construct cross-cut EH connecting circles C, and C,.
Then f(z) is analytic in the region bounded by EFGEHKJHE.
Hence by Cauchy’s integral formula,

1
flzg) = o z—f_(_zl“ dz Fig. 5-11
EFGEHKJHE
1 1) 1 f@) 1 ¢ f@ 1 ¢ /)
- 2qi :‘.'---z.,dz s 27t f z2—2 ds + 271 § z—2zg s 271, z-z.,d‘t
EFGE EH HKJH HE
S L e L e,
2ri J, z2— 2 271 z2—2z
1 CI

since the integrals along EH and HE cancel.

Similar results can be established for the derivatives of f(z).

Method 2. The result also follows from equation (3) of Problem 6 if we replace the simple closed
curves C, and C, by the circles of Fig. b-11.

o 1:3-5---(2n—1)
. gde = 2 h =1238,....
24. Prove that J; cos®" ¢ 246 - (2n) w where n 3

Let z =e!% Then dz = ie®ds = izds or d¢ = dz/iz and coss = (e +e-10) = }(z+l/z).
Hence if C is the unit circle |z|] =1, we have

J:w cos?n g de fﬁ{%(z " %)}h%
g e conm(l) e mn(l) o o (2]

S gl f{zln—l ()Y ek ()B4 e I ds
c

- gy
1 . 1
= Fin g '27!(":"‘) = %(2“)27
1 @) (@n)(2n — 1)(2n — 2)- - (W) — 1) -1
ol T b ( 2 nlnl ix

25. If f(z) = w(x,y) +iv(zx,y) is analytic in a region R, prove that u and v are har-
monic in R.
In Problem 6, Chapter 3, we proved that u and v are harmonic in R, i.e. satisfy the equation

72 2
},x—ﬁ :-T‘: = 0, under the assumption of existence of the second partial derivatives of u and v, i.e.
the existence of f'(z). \

This assumption is no longer necessary since we have in fact proved in Problem 4 that if f(z) is

analytic in R then all the derivatives of f(z) exist.
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26. Prove Schwarz’s theorem: Let f(z) be analytic for |z| =R, f(0)=0 and If(z)| = M.
Then

M |z|
z)| = —-
r@ s 5
The function f(z)/z is analytic in |z| S R. Hence on |z = R we have by the maximum modulus
theorem,
f(z) M
% = F

However, since this inequality must also hold for points inside |zl = R, we have for |z| SR,
|fz)] = M|z|/R as required.

.
27. Let f(z) = :S‘"(”‘”) i:g

first derivative at all values of z for which 0=z =<1 but (b) does not have a second
derivative in 0 =z = 1. (c) Reconcile these conclusions with the result of Problem 4.

where z is real. Show that the function (a) has a

(a) The only place where there is any question as to existence of the first derivative is at z = 0. But
at z = 0 the derivative is

(Az)? sin (1/Az) — 0

[0 +4a2) — f(0) _

lim lim
AT =0 Ax Ax=—0 Ax
= lim Az sin(l/az) = 0
Ax =0

and so exists.

At all other values of x in 0 S x = 1, the derivative is given (using elementary differentiation
rules) by
%? cos (1/x) {—1/2%} + (2z) sin(1/z) = 2xsin(l/z) — cos (1/2)

(b) From part (a), we have

f'(=)

2x gin (1/2) — cos(l/x) =z +#0
0 z=0

The second derivative exists for all x such that 0 <z S 1. At =0 the second derivative is
given by

lim [0+32) — f(0) _ . 24z sin(l/az) — cos (1/Az) — 0
Az -0 Az Az =0 Ax

= ALimo {2 sin (1/Az) — (1/Az) cos (1/Ax)}
which does not exist.
It follows that the second derivative of f(x) does not exist in 0 S z = 1.
(¢) According to Problem 4, if f(z) is analytic in a region R then all higher derivatives exist and are

analytic in R. The above results do not conflict with this, since the function f(z) = z%8in(1/2)
is not analytic in any region which includes z = 0.

28. (a) If F(2) is analytic inside and on a simple closed curve C except for a pole of order m
at z=a inside C, prove that

dm—1
g §FEde = im Lo 2 (- o F)

(b) How would you modify the result in (a) if more than one pole were inside C?
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(a) If F(z) has a pole of order m at z=a, then F(2)
and on C, and f(a) # 0. Then by Cnuchy's integral formula,

1 s f()
271 £F(z) v 2-1 c (z—a)m
1 dm-—
= lim T g i

Suppose there are two poles at z=a, and z = a, inside
C, of orders m, and m, respectively. Let I'y and I'; be
circles inside C having radii ¢; and ¢, and centres at
a; and a; respectively. Then

1 1
5o §C F(z) dz L }; 1 Fl(z) dz

1
+ o § Fs) lz
Ty

(b)

(1)

If F(z) has a pole of order m; at z=a,, then

f1(2)

(z—ay)m

F(z) where f, (z) is analytic

If F(z) has a pole of order m, at z =a,, then

- fa(z)

T (z—ap)™ where f;(2) is analytic
-Gy

F(z)

Then by (1) and part (a),

1 P h1(2) 1
E;-; ‘£F(l) dz = ori r. (Z"‘ﬂ-l)m‘ dz + '271-
_ l 1 dmi—1
= Jim i g1 ¢

1 dmy—
lim

t o im me— 1)1 doma1
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= f(2)/(z—a)m

183

where f(z) is analytic inside

fm=1) (q)
(m—1)!

a)™ F(z)}

Fig. 5-12

and f,(a,) 0

and fy(az) # 0

fa(2)

——dz

rl (2 - ‘12)""

(z—a)™ F(2)}

— {(z— ap)™ F(2))

If the limits on the right are denoted by R, and R,, we can write

27i(Ry + Ry)

§ F(z)dz
. c

where R, and R, are called the residues of F(z) at the poles z=a, and z =a,.

In general if F(z) has a number of poles inside C with residues R, Ry, ..., then f F(z)dz
(o

271 times the sum of the residues.

This result is called the residue theorem.

Applications of

this theorem together with generalization to singularities other than poles, are treated in Chap. 7.

29. Evaluate i (?sz)zdz where C is’the circle |z| =4

er - ex
The polee o e o = T
Residue at z=ri s lim S B e i sy
w11 dz (z — 7i)2(z + =1)?
. o oom e .
Residue at z=—xi is hr:nﬂ “ pm {(z + #i)? F=e i T o) “),}
Then i@-%(?r_z)fdz = 2ri(sum of residues) = 27:( -I;'

+

are at z = *4i inside C and are both of otrder two.

r+1
473 7

r—1
473

%=1 4

)

And
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Supplementary Problems

CAUCHY'S INTEGRAL FORMULAE

30. Evaluate -2% f z—‘_lidz it Cis (a) the circle [z] =3, (b) the circle |z =1. Ans. (a) €2, (b) O
31. Evaluate _‘f sz;z ds if C is the circle |s| =5.  Ans. 2¢i
C.

3
32. Evaluate § ze_‘m.dz if C is (a) the circle |z— 1| = 4, (b) the ellipse |z—2| + [z+2] = 6.

c
Ans. (a) l—Zri, (b) 0
1 §cosn
33. Evaluate o Cz-—’—l
Ans. (a) 0, (b) —*

dz around 2 rectangle with vertices at: (a) 2*1, —2*4; (b) —1, 2—1, 2414, 1.

et

34. Show that i% i mdz = sint if ¢>0 and C is the circle |z| =3.

35. Evaluate f e—adz where C is the circle |z| = 2. Ans, —ni
c
36. Prove that f''’(a) = Srer i if C is a simple closed curve enclosin =a and f(z) is
’ 2n~: ‘(z—a)‘ p ¢'e mE; 2=

analytic inside and on C.

37. Prove Cauchy’s integral formulae for all positive integral values of nm. [Hint: Use mathematical
induction.]

38. Find the value of (a) f () § (z‘ﬂ"w/z)ad if C is the circle |2/ = 1.

Ans. (a) #i/32, (b) 217i/16 !

1 ezt . . i o= o g
39. Evaluate 2 § (z’+l)2dz if t>0 and C is the circle |z| =3. Ans. 4(sint — tcost)

40. Prove Cauchy's integral formulae for the multiply-connected région of Fig. 4-26, Page 116.
L ]

MORERA'S THEOREM >
41. (a) Determine whether G(z) = f _fi is independent of the path joining 1 and z.
1

(b) Discuss the relationship of your answer to part (a) with Morera’s theorem.
42. Does Morera’s theorem apply in a multiply-connected region? Justify your answer.

43. (a) If P(z,y) and Q(x,y) are conjugate harmonic tunctio’s and C is any simple closed curve, prove
that’ f Pdx + Qdy = 0.
c

(b) If for all simple closed curves C in a region X, f Pdx + Qdy = 0, is it true that P and Q
are conjugate harmonic functions, i.e. is the converse of (a) true? Justify your conclusion.

v

CAUCHY'S INEQUALITY
44. (a) Use Cauchy’s inequality to obtain estimates for the derivatives of sinz at z=0 and (b) determine

how good these estimates are.
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45. (a) Show that if f(z) = 1/(1—2), then fi™)(z) = n!/(1—2)n+l,
(b) Use (a) to show that the Cauchy inequulity is “best possible”, i.e. the estimate of growth of the
nth derivative cannot be improved for all functions.

46. Prove that the equality in Cauchy’s inequality (3), Page 118, holds if and only if f(z) = kMz"/r"
where |k| = 1.

47. Discuss Cauchy’s inequality for the function f(z) = é—1/2* in the neighbourhood of z=0.

LIOUVILLE'S THEOREM

48. The function of a real variable defined by f(x) = sinx is (a) analytic everywhere and (b) bounded,
i.e. |sinz] =1 for all » but it is certainly not a constant. Does this contradict Liouville’s theorem?

Explain.

49. A non-constant function F(z) is such that F(z+a) = F(2), F(z+ bi) = F(z) where ¢>0 and b>0
are given constants. Prove that F(z) cannot be analytic in the rectangle 0 = x =a, 0 =y = b.

FUNDAMENTAL THEOREM OF ALGEBRA
50. (a) Carry out the details of proof of the fundamental theorem of algebra to show that the particular
function f(z) = 24 — 22— 224 2 has exactly four zeros. (b) Determine the zeros of f(z).

Ans. (b) 1,1, -1 %1

51. Determine all the roots of the equations (a) 22—3z+4i =0, (b) z44+224+1 = 0.
Ams. (a) i, §(—i=V15), (b) §(~1=V34), §(1=V3i)
GAUSS’ MEAN VALUE THEOREM
2w
52. Evaluate ZLJ sin2 (#/6 + 2¢) do Ans. 1/4
T Jo

53. Show that the mean value of any harmonic function over a circle is equal to the value of the function
at the centre.

54. Find the mean value of x2—y2+2y over the circle |z—b+2i| = 3. Ans. b
55. Prove that f Insineds = —=In2 [Hint. Consider f(z) = In(1+2).]
/0

MAXIMUM MODULUS THEOREM
56. Find the maximum of |f(z)| in |z] = 1 for the functions f(z) given by (a) 22—32+2, (b) z¢+22+1,
(¢) cos 3z, (d) (2z+ 1)/(2z—1).

57. (a) If f(z) is analytic inside and on the simple closed curve C enclosing z=a, prove that
Y@y = L § Y& g, n=012,...
271 c Z—a
(b) Use (a) to prove that [f(a)|® = M"/2zD where D is the minimum distance from a to the curve
C and M is the maximum value of |f(z)| on C.

(c) By taking the nth root of both sides of the inequality in (b) and letting n = «, prove the maximum
modulus theorem.

58. Let U(x,y) be harmonic inside and on a simple closed curve C. Prove that the (a¢) maximum and
(b) minimum values of U(x,y) are attained on C. Are there other restrictions on U(x,y)?

59. Verify Problem 58 for the functions (a) z2—y2 and (b) 23 —3zy? if C is the circle |z| =1.

60. Is the maximum modulus theorem valid for multiply-connected regions? Justify your answer.
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THE ARGUMENT THEOREM .
61. If f(z) = 25—3i22+4+ 22— 1+ 1, evaluate %) dz where C encloses all the zeros of f(z).
c

Ans. 10z
.20 1 f 1) i = -
62. Let f(z) = @12+ 2p" Evaluate 2 Y. T2 dz where C is the circle |z| =4. Ans. —2

63. Evaluate § IT’(%)dz if C is the circle |z2| =% and (a) f(z) = li!.l 7z, (b) f(z) = cosxz, (c) f(z) = tan rz.
fo
Ans. (a) 147i, (b) 1271, (¢) 27

64. If f(2) = 2 —2:8+22—122z+4+ 20 and C is the circle |z| =5, evaluate f %’L)dz. Ans. Azt
C

ROUCHE'S THEOREM
65. If a>e, prove that the equation az" = e* has n roots inside |z| = 1.

66. Prove that ze* =a where a0 is real has infinitely many roots.

67. Prove that tanz = az,a >0 has (a) infinitely many real roots, (b) only two pure imaginary roots if
0<ac<1, (c)all real roots if a = 1.

68. Prove that ztanz = ¢, @ > 0 has infinitely many real roots but no imaginary roots.

POISSON'S INTEGRAL-FORMULAE FOR A CIRCLE

2T 2
69. Show that f R — 12 d¢ = 2r
0

R% — 2Ry cos (0 — ¢) + »2

(a) with, (b) without Poisson’s integral formula for a circle.

2 &
70. Show that (a) f €224 cos (sin ) de
0

27
—— gcos @ in é
B = icosii- g 3¢ cos (8in @)

I

(®) J;z' %8 ¢ gin (gin ¢) dg

2r
— gC08 8 g3 i
S = Troulssl 3¢ 8in (sin ¢)

71. (a) Prove that the function U(r,6) = %tan—‘ (%;g), 0<r<1, 0=6<2r is harmonic

ingide the circle |z| = 1.
() Show that lim U(r,e) = 1 0<e<w
rel- -1 r<o<2r

(¢) Can you derive the expression for U(r,#) from Poisson’s integral formula for a circle?

72. If f(z) is analytic inside and on the circle C defined by |z| = R and if z = r¢'® i3 any point inside C,

show that -
i _ 1 R(R2 — 12), f(Re'®) sin (9 — ¢)
Pty = 2r Jo [R*—2Rrcos (¢ —¢) + rJ? d¢

73. Verify that the functions u-and v of equations (?) and (8), Page 119, satisfy Laplace’s equation.

POISSON'S INTEGRAL FORMULAE FOR A HALF PLANE
74. Find a function which is harmonic in the upper half plane y > 0 and which on the x axis takes the
values —1 if <0 and 1if x> 0. Ans. 1 — (2/7) tan—1(y/x)

75. Work Problem 74 if the function' takes the values —1 if 2<—1, 0 if —1<2<1, and 1 if z>1.

1 5 L) (R S v
Am.l—;tnn l(z-l-l) 'tan (x-—l)
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76. Prove the statement made in Problem 22 that the integral over I' approaches zero as R - =,

77. Prove that under suitable restrictions on f(x),

lim —f @ ":)(,m?’_ sdz = f()

n—0+ 17
and state these restrictions.

78. Verify that the functions u and v of equations (10) and (1), Page 120, satisfy Laplace’s equation.

MISCELLANEOUS PROBLEMS
1 22dz

79. Evaluate a7 § ) where C is the square with vertices at =*2, *2+ 41, Ans. i
‘ i Jo 22+ 4
¢
80. Evaluate f Lo zdz where C is the circle |z =1 and ¢> 0. Ans. —2rit?
c
81. (a) Show that zizl = 27i if C is the circle |z| = 2.

(b) Use (a) to show that

§§x+12dz+!d1 = B §§x+1)dg—ydx e D
e (+1)2+ 42 ’ c (z+1)2+ 32

and verify these results directly,

82. Find all functions f(z) which are analytic everywhere in the entire complex plane and which satisfy
the conditions (a) f(2—1) = 4i and (b) |f(z)| < ¢2 for all z.

83. If j"(z) is analytic inside and on a simple closed curve C, prove that

2m
@ 1@ = & f e s+ o) do

. 2
() s ;ga) = 2—1”_'1; e~ ™0 f(a + ¢!f) do

84. Prove that 8z*—6z+5 = 0 has one root in each quadrant.

27

2w
85. Show that (a) J; eco38 cog (sing) de = 0, (b) €80 gin (sin ) do = 27.
(]

86. Extend the result of Problem 23 so as to obtain formulae for the derivatives of f(z) at any point
in K.

87. Prove that z%e¢!'~# =1 has exactly two roots inside the circle |z| = 1.

88. If t>0 and C is any simple closed curve enclosing z = —1, prove that
1 zert 12
.. - - ) ot
A 2 L arp de (t g) ]

89. Find all functions f(z) which are analytic in |z] <1 and which satisfy the conditions (a) f(0) =1
and (b) |f(z)] 21 for |z] < 1.

90. Let f(z) and g(z) be analytic inside and on a simple closed curve C except that f(z) has zeros at
ay,day,...,a, and poles at b,, by, ..., b, of orders (multiplicities) p;,ps, ..., P and ¢, qz ..., qn

respectively. Prove that
m

i §owfla = 3 poew) - 2 aot
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91.

92.

93.

94.

95.

96.

97.

99.

100,

101,

102,

103.
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If f(z) = apz"+a;z"-1+az"~2+ - +a, where ag*0, @, ..., a, are complex constants
’ 2 f7,

and C encloses all the zeros of f(z), evaluate (a) 2%,; §; zlf(i)’l dz, (b) 2—:_-:. ﬁ z—f{—z()ﬂ dz and interpret

the results. Ans. (a) —aj/ay, (b) (a} — 2acay)/al

Find all functions f(z) which are analytic in the region |z| =1 and are such that (a) f(0) =3 and
(b) |f(z)] = 3 for all z such that |z| < 1.

Prove that z% + 192z + 640 = 0 has one root in the first and fourth quadrants and two roots in the
second and third quadrants.

Prove that the function zy(x2— y?) cannot have an absolute maximum or minimum inside the circle
|z] = 1.

(a) If a function is analytic in a region R, is it bounded in ®? (b) In view of your answer to (a), is
it necessary to state that f(z) is bounded in Liouville’s theorem?

Find all functions f(z) which are analytic everywhere, have a zero of order two at z =0, satisfy the
condition |f’(z)] = 6|z| for all z, and are such that f(i) = —2.

Prove that all the roots of 2%+ 2z—16i = 0 lie between the circles |z] =1 and |z| = 2.

If U is harmonic inside and on a simple closed curve C, prove that
Wy = o
c on
where 7 is a unit normal to C in the z plane and s is the arc length parameter.

A theorem of Cauchy states that all the roots of the equation z" + a 2"~ 1+ ayz"~2+ -+, = 0,
where a;,ay,...,a, arc real, lie inside the circle [z| = 1+ max {a;, a3 ...,a,), ie |zl =1 plus
the maximum of the values a, @y, ...,a, Verify this theorem for the special cases

(@ B3—224+2—1=0, (b) 24+224+1 =0, (c) ##—22—22+2 =0, (d) 2*+322—62+10=0.

Prove the theorem of Cauchy stated in Problem 89.

Let P(z) be any polynomial. If m is any positive integer and » = €2"//m, prove that

P(1) + P(w) + P) + -+ + P™"Y)  _ p
m

and give a geometric interpretation.

Is the result of Problem 101 valid for any function f(z)? Justify your answer.

Prove Jensen’s theorem: If f(z) is analytic inside and on the circle |z] = R except for zeros at
a;,ay, ..., a, of multiplicities p;,py, ...,Pm and poles at by, by, ..., b, of multiplicities g¢,,qz ..., 4,
respectively, and if f(0) is finite and different from zero, then

1 2 " m R _: L R
gj; In [f(Re'®)| de = In|f(0)] + El P In (I-G-J) kgl gx In (l_b:[>

[Hint. Consider i Inz {f(2)/f(z)} d2 where C is the circle |z = R\



Chapter 6

Infinite Serles
Taylor's and Laurent's Series

SEQUENCES OF FUNCTIONS

The ideas of Chapter 2, Pages 40 and 41, for sequences and series of constants are
easily extended to sequences and series of functions.

Let ui(2), ua(2), ..., ua(2), ..., denoted briefly by {ua(z)}, be a sequence of functions
of z defined and single-valued in some region of the z plane. We call U(z) the limit of
un(2) 88 n—+ =, and write Hm us(z) = U(z), if given any positive number ¢« we can find
a number N [depending in general on both ¢ and 2] such that

|ua(2) — U(z)| < ¢ forall n>N
In such case we say that the sequence converges or is convergent to U (2).

If a sequence converges for all values of z (points) in a region R, we call R the region
of convergence of the sequence. A sequence which is not convergent at some value (point) z
is called divergent at z.

The theorems on limits given on Page 40 can be extended to sequences of functions.

SERIES OF FUNCTIONS
From the sequence of functions {us(2)) let us form a new sequence {Sn(2)) defined by

Si(z) = w(2)
S2(z) = wi(2) + ua(2)
S.:(z) = w(z) + ua(Z) + -+ + un(2)

where S.(z), called the nth partial sum, is the sum of the first n terms of the sequence
{un(2)}.
The sequence Si(z), Sz(2), ... or (Sa(z)} is symbolized by

wle) + ) + o = 3w C)

called an infinite series. If lim Sa(z) = S(z), the series is called convergent and S(z) is

its sum; otherwise the sériés is called divergent. We sometimes write ¥ u.(2) as 3 ua(2)
or 2 u, for brevity. o

As we have already seen, a necessary condition that the series (1) converge is
lim ua(z) = 0, but this is not sufficient. See, for example, Problem 150, Chapter 2, and

"0

also Problems 67(c), 67(d) and 111(a).

If a series converges for all values of z (points) in a region R, we call ® the region
of convergence of the series.

139
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ABSOLUTE CONVERGENCE
A series :V‘_ ua(2z) is called absolutely convergent if the series of absclute values, i.e.

> |ua(z)|, converges.
n=1

If D) ua(z) converges but > |ua(z)] does not converge, we call 3 ux(z) conditionally
n=1 n=1

n=1

convergent.

UNIFORM CONVERGENCE OF SEQUENCES AND SERIES

In the deﬁnition of limit of a sequence of functions it was pointed out that the
number N depends in general on ¢ and the particular value of z. It may happen, however,
that we can find a number N such that |ua.(z) — U(2)| < ¢ for all n> N, where the same
number N holds for all z in a region R [i.e. N depends only on ¢ and not on the particular
value of z (point) in the region]. In such case we say that ua(z) converges uniformly, or
is uniformly convergent, to U(z) for all z in R.

Similarly if the sequence of partial sums {S.(z)} converges uniformly to S(z) in a
region, we say that the infinite series (1) converges uniformly, or is uniformly convergent,
to S(z) in the region.

If we call Ru(2) = uat1(2) + Uni2(2) + -+ = S(2) — Sa(z) the remainder of the
infinite series (1) after n terms, we can equivalently say that the series is uniformly
convergent to S(z) in R if given any «> 0 we can find a number N such that for all z in R,

|Ra(2)] = |S(2) — Sa(2)| < for all n > N

POWER SERIES
A series having the form
@+ az—a) +axz—a)?+ -+ = 3 a.z—a) (2)
n=0

is called a power series in z—a. We shall sometimes indicate (2) briefly by Zan(z —a)".

Clearly the power series (2) converges for z=a, and this may indeed be the only
point for which it conv:rges [see Problem 13(b)]. In general, howeyer, the series con-
verges for other points as well. In such.case we can show that there exists a positive
number R such that (2' converges for |z—a] < R and diverges for |z—a| > E, while for
|¢—a] = R it may or may not converge.

Geometrically if T is a circle of radius R with centre at z=a, then the series (2)
converges at all points inside I and diverges at all points outside I, while it may or may
not converge on the circle . We can consider the special cases R =0 and R = « respec-
tively to be the cases where (2) converges only at z=a or converges for all (finite) values
of z. Because of this geometrical interpretation, R is often called the radius of convergence
of (2) and the corresponding circle is called the circle of convergence.

SOME IMPORTANT THEOREMS

For reference purposes we list here some important theorems involving sequences
and series. Many of these will be familiar from their analogs for real variables.

A. General Theorems
Theorem 1. If a sequence has a limit, the limit is unique [i.e. it is the only one].

Theorem 2. Let u, = an+1ibs, n =1,2,3,..., where a, and b, are real. Then
a necessary and suflicient condition that {u.} converge is that {a.} and {ba} converge.
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Theorem 3.7 Let {a.) be a real sequence with the property that
(I) @Gne1=@n OF Anit = @n, (ii) |an) < M (a constant)
Then {a.} converges.

If the first condition in Property (i) holds the sequence is called monotonic
increasing, while if the second condition holds it is called monotonic decreasing. If
Property (ii) holds, the sequence is said to be bounded. Thus the theorem states that
every bounded monotonic (increasing or decreasing) sequence has a limit.

Theorem 4. A necessary and sufficient condition that {u.} converges is that
given any ¢> 0, we can find a number N such that |u,—u, < ¢ forallp>N, ¢>N.

This result, which has the advantage that the limit itself is not present, is called
Cauchy’'s convergence criterion.

Theorem 5. A necessary condition that 2u, converge is that limu, = 0. How-
ever, the condition is not sufficient. g

Theorem 6. Multiplication of each term of a series by a constant different from
zero does not affect the convergence or divergence. Removal (or addition) of a finite
number of terms from (or to) a series does not affect the convergence or divergence.

Theorem 7. A necessary and sufficient condition that E (an +tbs) converge,

where an and b. are real, is that E a» and E b. converge.

B. Theorems on Absolute Convergence
Theorem 8. If E lua| converges, then E un converges. In words, an absolutely
convergent series is convergent

Theorem 9. The terms of an absolutely convergent series can be rearranged in
any order and all such rearranged series converge to the same sum. Also the sum,
difference and product of absolutely convergent series is absolutely convergent.

These are not so for conditionally convergent series (see Problem 127).

C. Special Tests for Convergence
Theorem 10. (Comparison tests.)
(@) If Z|va| converges and |u.| = |va|, then Zu. converges absolutely.
(b) If X|vs| diverges and [ua| = |va|, then 3 |us| diverges but Su, may or may
not converge.
Theorem 11. (Ratio test.)
If lim |2 = L, then Zu. converges (absolutely) if L <1 and diverges if

n—+o

L>1. If L=1, the test fails.
Theorem 12. (nth Root test.)
If lim V[us] = L, then 3u, converges (absolutely) if L <1 and diverges if L > 1.
n=+ o0

If L=1, the test fails]
Theorem 13. (Integreltest) If f(z)= 0 for x=a, then 2f(n) converges or

. . ; M .
diverges according as lim J‘ f(x)dz . converges or diverges.
M = o0
a

Theorem 14. (Raabe’s test.)

If limn (1 s
Un

n-—+ o

) = L, then Zu, converges (absolutely) if L >1 and diverges
or converges conditionally if L <1. If L=1, the test fails.
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Theorem 15. (Gauss’ test.)
If & it S

" n n?
(absolutely) if L>1 and diverges or converges conditionally if L=1.

Theorem 16. (Alternating series test.)
If .20, ans1=Sa, for n =1,2,8,... and lima, = 0, then ai—az+a;—
-+ = 2(=1)""'a, converges. nee

faid where |c.| <M for all n>N, then Zu. converges

D. Theorems on Uniform Convergence

Theorem 17. (Weierstrass M lest.)

If  |ua(2)] = Mn where M, is independent of z in a region R and 3M. converges,
then 3ua.(z) is uniformly convergent in R.

Theorem 18. The sum of a uniformly convergent series of continuous functions
is continuous, i.e. if ua(2) is continuous in R and S(z) = 3ua(z) is uniformly convergent
in R, then S(z) is continuous in R.

Theorem 19. If {u.(z)} are continuous in R, S(z) = 3ua(z) is uniformly con-
vergent in R and C is a curve in |, then

_j;S(z)dz = J;ul(Z)dz + J;ug(z)dz F. w i
f GuEnd: = 3 [ wieds

In words, a uniformly convergent series of continuous functions can be integrated
term by term.

Theorem 20. If wu(2) = %u,(z) exists in R, Zu/(z) converges uniformly in R

or

and Zua(z) converges in R, then ;—ziu,(z) = Zul(2).

Theorem 21. If {ga(z)} are analytic and 2us(z) is uniformly convergent in R,
then S(z) = Zua(z) is analytic in R.

E. Theorems on Power Series
Theorem 22. A power series converges uniformly and absolutely in any region
which lies entirely inside its circle of convergence.

Theorem 23.

(@) A power series can be differentiated term by term in any region which lies
entirely inside its circle of convergence.

(b) A power series can be integrated term by term along any curve C which lies
entirely inside its circle of convergence.

(c) The sum of a power series is continuous in any region which lies entirely
inside its circle of convergence.

These follow from Theorems 17, 18, 19 and 21.

Theorem 24. (Abel’s theorem.)

Let Sa.z" have radius of converg.nce R and suppose that z, is a point on the
circle of convergence such that Za.z! converges. Then lim Za.z" = 2a.z; where
2z~ zo from within the circle of convergence. =

Extensions to other power series are easily made.

Theorem 25. If Za.z" converges to zero for all z such that |z| < R where R >0,
then a.=0. Equivalently, if Za.z® = Zbaz" for all z such that |z| <R, then a.= bn.
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TAYLOR’S THEOREM

Let f(z) be analytic inside and on a simple closed curve C. Let ¢ and a+h be two
points inside C. Then

L

fla+h) = fla) + hf(a) + g—;f”(a) + x4 o :—:f‘"’(a) + wws _(3)
or writing z2=a+h, h=2—a,
) = f@ + r@e-a + D&eap + o s g v )

This is called Taylor’s theorem and the series (3) or (4) is called a Taylor series or expansion
for f(a+ k) or f(2).

The region of convergence of the series (4) is given by |z —a| < R, where the radius
of convergence R is the distance from a to the nearest singularity of the function f(z).
On |z—a| = R, the series may or may not converge. For |z—a| > R, the series diverges.

If the nearest singularity of f(z) is at infinity, the radius of convergence is infinite,
i.e. the series converges for all z. '

If a=0in (3) or (4), the resulting series is often called a Maclaurin series.

SOME SPECIAL SERIES

The following list shows some special series together with their regions of con-
vergence. In the case of multiple-valued functions, the principal branch is used.

1. & = 1+z+;—2!+—;—3!+---+‘%+--- : 2] < =
i

2. sinz = z—-;—"!+;—:—---(—1)"“(§-:—l% 2] < o

3. cosz = 1—;—i+§-}—---(—1)""(2§n—__;)!+--~ 2] <

4. In(l+2) = z—%z-i—%s— ---(—1)""%+ 2] <1

5. tan-'z = z—§+%’- IR 7] < 1

6. (l+2p = 1+pz+-1Lpz%-Hz’+-~+p(p_1)”n'$p_n+l)z“+--- g <1

This is the binomial theorem or formula. 1f (1 +2)? is multiple-valued the result
is valid for that branch of the function which has the value 1 when z2=0.

LAURENT'S THEOREM ]

Let C; and C: be concentric circles of radii R, and
R; respectively and centre atu [Fig. 6-1]. Suppose that
f(2) is single-valued and analytic on C; and C: and in
the ring-shaped region R [also called annulus or an-
nular region] between C, and C;, shown shaded in the
figure. Let a+h be any point in R. Then we have

f(a+h) = ao+a1h+azh’+ LR

a-1 a-2 ad-3
L "

AL Fig. 6-1
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o ek F B _
where @ = 5 _i (z—a)"“dz n=2012... -
1
A-pn = ﬁ.{’ (z—a)""'f(z) dz n=1238...

C, and C: being traversed in the positive direction with respect to their interiors.

We can in the above integrations replace C, and C: by any concentric circle C between
C: and C; [see Problem 100]. Then the coefficients (6) can be written in a single formula,

1 f(z
n = mi(z—_(#ﬁdz n=0=x1,%2 ... (7)
With an appropriate change of notation, we can write the above as
e — — DR a_l a-z . 4
f(z2) = a0 + ai(z—a) + axz—a)® + f oo T Z—op + (8
_ 1 £(£) _
where & = 5 A (t—a)"“dc n = 0, &1, £8, ..., 9

This is called Laurent’s theorem and (5) or (8) with coefficients (6), (7) or (9) is called a
Laurent series or expansion.

The part o+ ai(z—a) + ax(z—a)* + --- is called the enalytic part of the Laurent
series, while the remainder of the series which consists of inverse powers of z—a is called
the principal part. If the principal part is zero, the Laurent series reduces to a Taylor
series.

CLASSIFICATION OF SINGULARITIES
It is possible to classify the singularities of a function f(z) by examination of its
Laurent series. For this purpose we assume that in Fig. 6-1, R2=0, so that f(z) is
analytic inside and on C, except at z=a which is an isolated singularity [see Page 67].
In the following, all singularities are assumed isolated unless otherwise indicated.
1. Poles. If f(z) has the form (8) in which the principal part has only a finite num-
ber of terms given by

ad-—y a-2 A—n
z—a o (z—a)? o * (z—a)
where a—, # 0, then z=a is called a pole of order n. If n=1, it is called a simple

pole.
If f(z) has a pole at z=a, then lim f(z) = « [see Problem 32].

z—a

2. Removable singularities. If a single-valued function f(z) is not defined at z=a but
lim f(z) exists, then z=a is called a removable singularity. In such case we

define f(z) at z=a as equal to lim f(2).

Example: If f(z) = sinz/z, then z=0 is a removable singularity since f(0) is not
defined but lin}) sinz/z = 1. We define f(0) = limo sinz/z = 1. Note that
z= z=

in. this case
sin z 1 23 2% a7 z2 74 28
SR = = s A R e v = =5 =2
z z{' atermt } ate ot

3. Essential singularities. If f(z) is single-valued, then any singularity which is
not a pole or removable singularity is called an essential singularity. If z=a is
an essential singularity of f(z), the nrincipal part of the Laurent expansion has
infinitely many terms.

1 1 1

. H 1/ — - . see = i H H i
Example: Since e 1+ z T A + 3 z3+ , z=0 is an essential singularity.
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The following two related theorems are of interest (see Problems 153-1565):

Casorati-Weierstrass theorem. In any neighbourhood of an isolated essential
singularity a, an otherwise analytic function f(z) comes arbitrarily close to any
complex number A. In symbols, given any positive numbers 8 and ¢« and any
complex number A, there exists a value of z inside the circle |z —a| = § for which
|f(z)—A| < e

Picard’s theorem. In the neighbourhood of an isolated essential singularity a,
an otherwise analytic function f(..) can take on any value whatsoever with perhaps
one exception.

4. Branch points. A point z2=2, is called a branch point of the multiple-valued
function f(z) if the branchesg of f(z) are interchanged when z describes a closed
path about z, [see Page 37]. Since each of the branches of a multiple-valued
function is analytic, all of the theorems for analytic functions, in particular
Taylor’s theorem, apply.

Example: The branch of f(z) = z1/2 which has the value 1 for z =1, has a Taylor series

of the form ay + a(2—1) + a3(z—1)2 + -+ with radius of convergence
R =1 [the distance from z =1 to the nearest singularity, namely the branch
point z=10].

5. Singularities at infinity. By letting z=1/w in f(z), we obtain the function
f(1/w) = F(w). Then the nature of the singularity at 2=« [the point at infinity)
is defined to be the same as that of F(w) at w=0.

Example: f(z) = 2% has a pole of order 3 at 2= =, gsince F(w) = f(1/w) = 1/w® has a
pole of order 3 at w = 0. Similarly f(z) = ¢* has an essential singularity at
z=w, gince F(w) = f(1/w) = e!/* has an essential singularity at w =0.

ENTIRE FUNCTIONS

A function which is analytic everywhere in the finite plane [i.e. everywhere except
at =] is called an entire function or integral function. The functions e?, sinz, cosz are
entire functions. %

An entire function can be representc! by a Taylor series which has an infinite radius
of convergence. Conversely if a power series has an infinite radius of convergence, it
represents an entire function.

Note that by Liouville’s theorem [Chapter 5, Page 119] a function which is analytic
everywhere including « must be a constant.

MEROMORPHIC FUNCTIONS

A function which is analytic everywhere in the finite plane except at a finite number
of poles is called a meromorphic function.

Example: m which is analytic everywhere in the finite plane except at the poles z=1

(simple pole) and z=—3 (pole of order two) is a meromorphic function.

LAGRANGE’S EXPANSION

Let z be that root of" z = a + { ¢(2) which has the value z=a when ¢{=0. Then if
#(z) is analytic inside and on a circle C containing z=a, we have

z = a+ Zfl,(in_ll{[(ﬁ( a)"} (11)

More generally, if F(z) is analytic inside and on C, then

Fiz) = F(>+En,dan ~ (F(@) [$(@)]") (12)

The expansion (12) and the special case (11) are often referred to as Lagrange’s expansions.
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ANALYTIC CONTINUATION "

Suppose that we do not know the precise
form of an analytic function f(z) but only know
that inside some circle of convergence C: with
centre at a [Fig. 6-2| f(z) is represented by a
Taylor series

@ + ai(z —a) + ax(z—a)®> + - (13) o
’ ,/
Choosing a point b inside C., we can find the ~swet oo P,
value of f(z) and its derivatives at b from (13) e
and thus arrive at a new series
bo + bi(z—Db) + be(z—b) + -+ (14) FigA-2

having circle of convergence C.. If C. extends beyond C,, then the values of f(z) and its
derivatives can be obtained in this extended portion and so we have achieved ore
information concerning f(z).

We say in this case that f(z) has been extended analytically beyond C, and call the
process analytic continuation or analytic extension.

The process can of course be repeated indefinitely. Thus choosing point ¢ inside C,,
we arrive at a new series having circle of convergence C3 which may extend beyond C,

and C,, etc.

The collection of all such power series representations, i.e. all possible analytic con-
tinuations, is defined as the analytic function f(z) and each power series is sometimes
called an element of f(z).

In performing analytic continuations we must avoid singularities. For example,
there cannot be any singularity in Fig. 6-2 which is both inside C. and on the boundary
of Cy, since otherwise (14) would diverge at this point. In some cases the singularities
on a circle of convergence are so numerous that analytic continuation is impossible. In
these cases the boundary of the circle is called a natural boundary or barrier [see Prob. 30].
The function represented by a series having a natural boundary is called a lacunary function.

In going from circle C; to circle C. [Fig. 6-2], we have chosen the path of centres
a,b,c,...,p which we represent briefly by path P,. Many other paths are also possible,
eg. a,b’,c’,...,p represented briefly by path P.. A question arises as to whether one
obtains the same series representation valid inside C. when one chooses different paths.
The answer is yes so long as the region bounded by paths P, and P: has no singularity.

For further discussion of analytic continuation, see Chapter 10.

Solved Problems

SEQUENCES AND SERIES OF FUNCTIONS

1. Using the definition, prove that lim (1 +%) =1 for all z.

n=w

Given a-ny number ¢>0, we must find N such that |1+2z/n—1] < ¢ for n>N. Ther
|z/n] < e, ie. |z]/fn <e if n>|z|fe = N.
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2. (a) Prove that the series z(1-2) + 241—2) + 2(1—2) + --- converges for |z|<]1,
and (b) find its sum.

The sum of the first n terms of the series is

Su(z) = z(1—2) + 221—2) + -+ + z"(1—2)
=z_,z+,z_.,a+...+zu._za+|
= gz — zntl
Now |Su(z)—z| = |—2"*1| = |z|**1<e for (n+1)Infz] < Ine ie. nt+1 > 1:‘n|;| or
n>IBL_ 1 it 2w0,
In |z|

If z=0, S,(0)=0 and |S,(0)—0] < ¢ for all n.
Hence lim S.(z) = z, the requii‘ed sum for all z such that |z| < 1.
n=+w

Another method.

Since Sn(z) = z—2"*1, we have [by Problem 41, Chapter 2, in which we showed that lim z» = 0
if |z] < 1] N

Required sum = S(z) = lim Sy(z) = lim (z—2"*) = 2z
n-. e

n—+wo

ABSOLUTE AND UNIFORM CONVERGENCE
3. (a) Prove that the series in Problem 2 converges uniformly to the sum z for |z| = 4.

(b) Does the series converge uniformly for |s2f =17 Explain.

(@) In Problem 2 we have shown that |S,(z)—z| < ¢ for all n > Jhe 1, i.e. the series con-
verges to the sum z for |z] <1 and thus for |z] = §. In 2|

Now if |z| = §, the largest value of i:ln_l;:l_ 1 occurs where |2 =} and is given by
i;n-lﬂ;_2) —1 = N. It follows that |S,(2z) —z| < e for all n > N where N depends only on ¢ and

not on the particular z in |z| = }. Thus the series converges uniformly to z for |2| = 4.

(b) The same argument given in part (a) serves to show that the series converges uniformly to sum z

for ||/ =.9 or |z| =.99 by using N = 11:'2.;) —1 and N = ﬁl('l.ég—)— 1 respectively.
However, it is clear that we cannot extend the argument to |z =1 since this would require
N = l]n;. — 1 which is infinite, i.e. there is no finite value of N which can be used in this case.
n

Thus the series does not converge uniformly for |z| = 1.

4. (a) Prove that the sequence { } is uniformly convergent to zero for all z such

1+nz
that |z| = 2. (b) Can the region of uniform convergence in (a) be extended? Explain.

1 1 3
(a) We have 1—+—m—.0|»< ¢ when Tigma] <eor |14+nz|>1/e. Now |1+nz| =1+ |nz| =
1+nlz| and 1+ n|z| 2 |1 +nzl > 1/e for n > i'l—Tl Thus the sequence converges to zero

for |z > 2. "

1/e—1
To determine whether it converges uniformly to zero, note-that the largest value of ‘lzl

—0] < e

1
1+nz
for all n> N where N depends only on « and not on the particular z in [z| = 2. Thus the
sequence is uniformly convergent to zero in this region.

in |z| = 2 occurs for |z| =2 and is given by ${(1/e)—1} = N. It follows that
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(b) If & is any positive number, the largest value of UTiI_ 1 in |z| =8 occurs for |z =48 and is
given by (1/%-1- . As in part (a), it follows that the sequence converges uniformly to zero for
all z such that |z| = §, i.e. in any region which excludes all points in a neighbourhood of z = 0.

Since 3 can be chosen arbitrarily close to zero, it follows that the region of (a) can be cxtended
considerably.

Show that (a) the sum function in Problem 2 is discontinuous at z=1, (b) the limit
in Problem 4 is discontinuous at z=0.

(a) From Problem 2, S,(z) = z—2zrtl, S(2)

I

Jim Su(2). If |z <1, S() = lim S,(z) = z
- 00" ne=+ew

If z=1, S,(z) = S,(1) = 0 and lim S,(1) = 0. Hence S(z) is discontinuous at z=1.
e n =+

(b) From Problem 4 if we write u,(z) = and U(z) = lim u,(2z) we have U(z) =0 if
. N => 00

1
1+ nz
z#0 and 1 if 2=0. Thus U(z) is discontinuous at z=10.

These are consequences of the fact [see Problem 16] that if a series of continuous functions
is uniformly convergent in a region ®, then the sum function must be continuous in ®. Hence
if the sum function is not continuous, the series cannot be uniformly convergent. A similar result
holds for sequences.

Prove that the series of Problem 2 is absolutely convergent for |z|<1.

Let T,(2) = |201—2)| + |221—2)] + +++ + |21—2)|
[1=2z[{lz] + [2[* + [z[* + -+ + |2|}

xl—zuzi{‘l%'l‘jl—‘-}

If |2/ <1, then lim |z|* = 0 and lim T,(z) exists so that the series converges absolutely.
n =+ o0 n =+ 0

Note that the series of absolute values converges in this case to J-l-l—T_—_‘:ll—zllil

SPECIAL CONVERGENCE TESTS

7.

If 2 |va| converges and |ua| =|va|, n=1,2,8,..., prove that 3 |u.| also converges
(i.e. establish the comparison test for convergence).
Let Sp = |uy| + |ug| + ==+ + [upl, To = vy + |vg] + =+ + ||
Since 2 |v,| converges, lim T, exists and equals T, say. Also since |v,| 20, T, =T.
=+ 0
Then S, = |uy| + |ug| + == +|u,] = |v)| 2 |vg|+ -+ |v,| =T or 0=8,=T.

Thus S, is a bounded monotonic increasing sequence and must have a limit [Theorem 3, Page 141],
ie. 2 |u,| converges.

Prove that il;+%+§1;+ cee = 2% converges for any constant p>1.
. n=}
1 1
We have T = P
1 1 1 ) .
¥y Tty T o
1 1 1 1 1 1  SIPRE RPN |
rietetn » E+4r+4p+4p = w1

ete,, where we consider 1,2,4,8, ... terms of the series. It follows that the sum of ar;y finite number
of terms of the given series is less than the geometric series
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1 1 1 1 " 1
it ter et T 1T

which converges for p>1. Thus the given scries, sometimes called the p series, converges.

By using a method analogous to that used here together with the comparison test for divergence
[Theorem 10(b), Page 141], we can show that 3 -1% diverges for p = 1.

n=1

9. Prove that an absolutely convergent series is convergent.

Given that 3 [u,| converges, we must show that 3u, converges.

Let Sy = uy+ug+ -+ +uy and Ty = |uy| + |ug| + -+ + |um|l. Then

Sy + Ty = (utlwh) + (g+lugh + oo + (uag+|und)
s 2uyl + 2fu] + - + 2 |upl
Since 3 |u,| converges and u,+|uy| =2 0 for n = 1,2,3,..., it follows that Sy+ Ty is a

bounded monotonic increasing sequence and so l}im (Sm + Ty) exists.
- o
Also since ‘}im Ty exists [because by hypothesis the series is absolutely convergent],
-0
; - Te — - u _
Jm Sw = Jm Gt Tu=Ti = Jim Gut T = i T

must also exist and the result is proved.

o0 z'
10. Prove that ) converges (absolutely) for |z| = 1.
n=1
z" —am 1 1
If |z S 1, then n(u+1)l =T s s 1 s -
Taking u, = __z-___‘ v, = e in the comparison test and recognizing that 2-!— converges
nn+1) n? n?

by Problem 8 with p=2, we see that X |u,| converges, i.e. Zu, converges absolutely.

11. Establish the ratio test for convergence.

u
"+1| _ I, < 1, then 3 |u,| converges or, by Problem 9, 2u, is

We must show that if lim
(absolutely) convergent. W

Unt1] < y where r is

By hypothesis, we can choose an integer N so large that for all nZN,
some constant such that L <r <1, Then

[ 41l 7 |uy]|

=
lunszl S rlunsdl < 2 unl
lunssl S 7lunsel < r3unl
etc. By addition,
lunsql + lunsel + 000 S lunltr+r2 0+ 000)

and so 3 |u,| converges by the comparison test sirce 0 <r<1.

: . ' & (z+2)*!
12. Find the region of convergence of the series -21 CESVIh
I u, = ((%E—i-))—:—;-“;, then u,4q = (T% Hence, excluding z = —2 for which the given
series converges, we have
lim sk lim (z+2) ("_'"_lzl = L'_+El
nere | Uy n=+o 4 (n+ 2)’ 4




160 ' INFINITE SERIES — TAYLOR’S AND LAURENT'S SERIES [CHAP. 6

Then the series converges (absolutely) for |_z__-:-_2f < 1 Le
|z+2| < 4. The point z = —2 is included in |z+ 2| < 4.

It J’—Fﬂ =1 La [s+8.= 4, the ratio test falls.
However it is seen that in this case

1 1

(z+2)"—1 23
4(n+1)3 - nd

(n+1)34n

and since ¥ —an converges [p series with p = 3], the given series

converges (absolutely).

It follows that the given series converges (absolutely) for
|z+2| = 4. Geometrically this is the set of all points inside.
and on the circle of radius 4 with centre at z = —2, called the
cirele of convergence {shown shaded in Fig. 6-3]. The radius Fig. 6-3
of convergence is equal to 4.

13. Find the region of convergence of the series (@) i M, (b) i nlzr,
n=1

a=1 (2n—1)!
(a) If u, = (—-—3%:,;—', then wu,,, = % Hence, excluding z=0 for which the
given series converges, we have
] u::,:l = - i _%%1“, . (2n-(+2?)(_z:;(!:zk I:m
i o = 0

for all finite z. Thus the series converges (absolutely) for all z, and we say that the series
converges for [z] < ». We can equivalently say that the circle of convergence is infinite or that
the radius of convex;gence is infinite.

b) If u, =nl2m, u,,, = (n+ 1)l zn+1. Then excluding z=0 for which the given series converges,
n+1

we have
lim [T = gy [ DLey m+1))z = w
n=seo| U, =0 n!z" ne=+e

Thus the series converges only for z = 0.

THEOREMS ON UNIFORM CONVERGENCE
14. Prove the Weierstrass M test, i.e. if in a region R, [Un(2)] = Ma, n = 1,2,3,..., where
» are positive constants such that 3M, converges, then 3un(2) is uniformly (and abso-
lutely) convergent in ®. -

The remainder of the series 3u,(z) after n terms is R, (2) = Uns1(2) + upy0(z) + -+, Now

|Ra(z)| = | Ups1(2) + Uppg(2) + +++| = [ty 1 (2)] + juni-!(z)l C C
S My + Myyg+ -

But M., +M,,,+ -+ can be made less than e by choosing n> N, since =M, converges. Since
N is clearly independent of z, we have |R,(2)] < « for n> N, and the series is uniformly con-
vergent. The absolute convergence follows at once from the comparison test,
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15. Test for uniform convergence in the indicated region:

& 2" - 1 & COS Mz
a ; 2l =1 (b ——— A <2V (e y 18] =1,
()ngl'n\/n'f"l ,j ()“Z:ln2+zl ’| ()ngl nd Il
(@ I wu(z) = n—:";—l then |un(z)] = W'—:':L—l = ;}7 if |2l S 1. Calling M, = # we see

that ZM, converges (p series with p=23/2). Hence by the Weierstrass M test the given series
converges uniformly (and absolutely) for lz] = 1. i

1 1
+
Tzt 22422 32422
affecting the uniform convergence of the series. “or n = 3 and 1< |z] <2, we have

+ +++. The first two terms can be omitted without

(b) The given series is

1 2
In? 422 = |n2 — |22 Z n2—4 = n?  or I—-——n2+z2 ]

Since 3 ;12; converges, it follows from the Weierstrass M test (with M, =2/n?) that the given
n=3
series converges uniformly (and absolutely) for 1 < [z < 2.

Note that the convergence, and thus uniform convergence, breaks down if |z] =1 or |¢/ =2
[namely at z==i and-z = *2i]. Hence the series cannot converge uniformly for 1= |¢| =2,

(¢) If z = x+1y, we have
cos nz _ einz 4 g—inz einz—ny + e-inz+my

n3 2n3 - 2n3

e~ " (cos nx + isi1nx) by €™V (cos nx — isin nx)
2nd 2n3

i €™ (cos nx — igin nx) and i e~™ (cos nx + isin nx)
n=1 2n3 n=1 2”3

¥ >0 and y <0 respectively [since in these cases the nth term does not approach zero]. Hence
the series does not converge for all z such that |2l =1, and so cannot possibly be uniformly
convergent in this region.

The series cannot converge for

The series does converge for. ¥=0, ie. if z is real. In this case z=2x and the series

< COS nx : cos nx 1 @« 1 z
becomes n§1 v aat Then since 3 s 1:_3_ and ,El 73 converges, it follows from the

Weierstrass M test (with M, = 1/n3) that the given series converges uniformly in any interval
on the real axis.

16. Prove Theorem 18, Page 142, i.e. if ua(2), n=1,2,8,..., are continuous in R and
X ux(z) is uniformly convergent to S(z) in R, then S(2) is continuous in R.
n=1

If S.(2) = uy(2)+ uy(z) + ++- +u,(z), and Ro(z) = uy41(2) +upyp(z)+-++ is the remainder
after n terms, it is clear that

S(z) = S,(2) + R,(2) and " S(z+h) = Sy(z+h) + R,(z+h)
and so Sz+h) — S(z) = Sp(z+h) — S,(z) + R.(z+ k) — R,(2) (1)
where z and z+ h are in R.

Since S,(z) is the .sum of a finite number of continuous functions, it must also be continuous.
Then given ¢> 0, we can find 8 so that

[Sa(z+h) —Sp(2)| < ¢/3 whenever k| < & (2)
Sivnce the series, by hypothesis, is uniformly convergent, we can choose N so that for all z in R},
|Bn(2)] < /3 and |R,(z+h)| <e/3 for n>N (€))]
Then from (), (2) and (9),
|SE+h) —5@)| S |Sya+h) = Su@)| + |Rulz+h)| + [Ry2)] < o
for [k < § and all z in R, and so0 the continuity is established,
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17. Prove Theorem 19, Page 142, ie. if {u«(z)}, n=1,2,8,..., are continuous in R,

S(z) = f: uUn(z) is uniformly convergent in R and C is a curve in R, then

e j;S(z)dz = I("g‘m(z)>dz = ;ljgu,(z)dz

As in Problem 16, we have S(z) = S.(2z) + R,(z) and so since these are continuous in R [by
Problem 16] their integrals exist, i.e.,

j; S(z)dz = J'CS.(Z) dz + J; R,\-) Jlz

J;ul(z)dz + J;uq(z)dz + e 4+ J;u,,(z)dz + LR,(z)dz

By hypothesis the series is uniformly convergent, so that given any «> 0 we can find a number N
independent of z in R such that |R,(z)] < ¢« when n > N. Denoting by L the length of C, we have

[wsing Property b, Page 93]
J. R,(2) dz
c

f S(z)dz — f S,(z)dz| can be made as small as we like by choosing n large enough,
c c

and the result is proved.

< L

Then

THEOREMS ON POWER SERIES
18. If a power series X a.z" converges for z = zo v 0, prove that it converges (a) absolutely

for |z| <|zd|, (b) uniformly for |z| =|z1] where |21 < |zo|.

(@) Since Za,z} converges, lim a,z} = 0 and so we can make | apz3| < 1 by choosing n large
N=t e

enough, ie. |a,| < s for n > N. Then

|2o]™

Sl = 3lar s 3 EE )
N+1 N+1

N+1 [zo|™

But the last series in (I) converges for "|z| < |zo] and so by the comparison test the first
series converges, i.e. the given series is absolutely convergent.

) Let M, = "
|Zol®

|z2| S |z;] so that, by the Weierstrass M test, 2a,z" is uniformly convergent.

Then IM, converges, since |z;] < |zo. As in part (a), |anz® < M, for

o It follows that a power series is uniformly convergent in any region which lies entirely inside
its circle of convergence.

19. Prove that both the power series f‘, a.z* and the corresponding series of derivatives |

> na.z*~! have the same radius of convergence.

n=0

Let R > 0 be the radius of convergence of 2a,2". Let 0 < |zo| < R. Then as in Problem 18 we

can choose N so that |a,| < II_IF for n > N.
o

Thus the terms of the .series 3 |na,2"~1| = Zn|a,||z|*~! can for n > N be made less than
-1
corresponding terms of the series Snl—Tlrl—‘- which converges, by the ratio test, for |z| < |zo| < R.
g

Hence Zna, z°~! converges absolutely for all points such that |z| < |zo| (no matter how close |20l
is to R), i.e. for |z| < R.

If however |zl > R, lim a,2* v 0 and thus lim ma,2z"~! » 0, so that Zna,z"~'! does not
converge. i i

Thus R is the radius of convergence of Zna, 2z#~!. This iz also true if B =0.
' Note that the series of derivatives may or mi.y not converge for values of z such that |2l = R.
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20.

21.

Prove that in any region which lies entirely within its circle of convergence, a power
series (a) represents a continuous function, say f(z), (b) can be integrated term by
term to yield the integral of f(z), (c) ¢an be differentiated term by term to yield the
derivative of f(z).

We consider the power series Za,z", although analogous results hold for Za,(z—a)n
(a) This follows from Problem 16 and the fact that each term a,z" of the series is continuous.

(b) This follows from Problem 17 and the fact that each term a,z" of the series is continuous and
thus integrable.

(¢) From Problem 19 the derivative of a power series converges within the circle of convergence of
the original power series and therefore is uniformly convergent in any region entirely within
the circle of convergence. Thus the required result follows from Theorem 20, Page 142.

Prove that the series > '% has a finite value at all points inside and on its circle of
n=1

convergence but that this is not true for the series of derivatives.

By the ratio test the series converges for |z <1 and diverges for |z| > 1. If |z| =1, then
|z"/n? = 1/n? and the series is convergent (absolutely). Thus the series converges for |z =1 and
so has a finite value inside and on its circle of convergence.

Zn—1

The series of derivatives is 3, By the ratio test the series converges for |z| < 1. How-

n=1
ever, the series does not converge for all z such that |z| = 1, for example if z=1 the series diverges.

TAYLOR’S THEOREM
22.«Prove Taylor’s theorem: If f(z) is analytic inside a circle C with centre at a, then for

all z inside C,

fz) = f(a) + fa)(z—a) + f—;g!a—)(z—a)z = f"(a)

Let z be any point inside C. Construct a circle C; with centre
at a and enclosing z (see Fig. 6-4). Then by Cauchy's integral
formula,

= 8 LT f(w)
'We have
1 . 1 - 1 1
w—z = (w—a)—(z—a) (w—a) |1 — (z— a)/(w—a)
. 1 {1 + (z—a) + (z—-a)z (z—a)n-l
= — —_— + e +
(w—a) w—a w—a w—a
z—a\" 1
i (w—a) 1-(z—a)/(w—ai}
1 - 1° z—a (z—a)? (z—a)n—! z—a\" 1
= w—z = w-—a ¥ (w—a)? + (w—a)d * i (w—a)r + (w-—a) w—2z )
Multiplying both sides of (2) by f(w) and using (1), we have
Y | f(w) z—a f(w) e 4 =)t f(w)
flz) = 5 C.w—adw + Zni A (w—u)’dw + + i i‘l(w__a)ndw + U, (9

n
where v, = E—i—‘ fc (z—*‘-"-) é-{_'f—)z dw
1

w—a



154 ' INFINITE SERIES — TAYLOR'’S AND LAURENT'S SERIES [CHAP. 6

Using Cauchy’s integral formulae

= rl g _Sfw) -
f™(a) = -2-;_‘;‘£l (w—a)"“dw n=0123,...
(8) becomes
fa) = fa) + f'(a)(z—a) + -):-Z(Tu)(z-a)2 + e+ L——)((;j_nlgt: (z—a~! + U,

If we can now show that lim U, = 0, we will have proved the required result. To do this we
note that since w is on C,, L

z—a

w—u.| = p

where y is a constant. Also we have |f(w)| <M where M is a constant, and
|lw—z| = |[(w—a)-(2—a)] & 7 —|z—a]

where 7, is the radius of C;. Hence from Property b, Page 93, we have

n
i = L|§ (o) L9 |
2r w—a/ wW—z
Cy
1 M wMr

s *2rry, =

-l n-le—dl

and we see that lim U, = 0, completing the proof.
ne=+

23. Let f(z) = In(1+2), where we consider that branch which has the value zero when
2z=0. (a) Expand f(z) in a Taylor series about z=0. (b) Determine the region of

convergence for the series in (a). (¢) Expand ln( i i :) in a Taylor series about z=0.
(a) f(z) = In(1+2) £(0) =0
ra = o = At re =1
f(2) = —(1+2)"2 (0 = -1
f"(2) = (-1(-2)1+2)"2 Moy = 2l
frt(z) = (=1)mal(l+z)~ 0D fint1x0) = (=1)*n!
Then " "
@ = ma+n = [0+ @+ L0 + E0 s
o A e
==Y T
Another method. 1If |2| <1,
1 - - — — “
e 5 1—a2+a22—-2+
Then integrating from 0 td z yields
s = a=TpBo g .
AR W RS T 4
. = (_l)n—l zn
(6) The nth term is u, = s, Using the ratio test,
.| Un+1 _ ; nz .
Lo - el

and the series converges for jz| < 1. The series can be shown to converge for |z| = 1 except for
z=-L
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This result also follows from the fact that the series converges in a circle which extends to
the nearest singularity (i.e. z = —1) of f(z).

(¢) From the result in (a) we have, on replacing z by —z,

s BBy
In(1+2) = =z 2+3 4+
2
In1—2) = _,_.’2__333_%‘__...

both series convergent for |z| < 1. By subtraction, we have
1+z 3 2 ' 2 2a22n+1
1 = 2(z4+=4+=+.---) = L)
“(1—:) (’ 5% ) P

which converges for [z| < 1. We can also show that this series converges for |zl =1 except for
z = =*1.

24. (a) Expand f(z) = sinz in a Taylor series about z=x=/4 and (b) determine the region
of convergence of this series.

(@) f(z) = 8inz, f'(z) = cosz, f"(z) = —sinz, f'"(z) = —cosz, f1V(z) = sinz, ...
f(xl4) = V2/2, f'(z/d) = V212, ["(x/8) = —V2/2, ["(z/8) = —V/2/2, [V(z/8) = \/2/2,
Then, since a = /4,

) = flo) + fae-a + LOE=0

3l W

= iz-i + g(z—rﬁi) f ——(z—w/4)2 — \0[2“! (z—=/4) +

2-2!
Ve (z—r/4)2  (z2— /4P 4 ...
- -2— 1+(z—1r/4)-—- 2! 3'
Another method.
Let u=2z—=/4 or 2= u+ /4. Then we have,
sinz = sin(u+z/4) = sinucos(z/4) + cosu sin (x/4)

vz

= &N (sin u,+ cos u)

Y2 w2 ud | ut
= gy te=rnTar

Ve { B (z—w/d) (2= /d)} }
i ¥ 1+ (z—=/4) — 21 = 31 +

(b) Since the singularity of sin z nearest to z/4 is at infinity, the series converges for all finite values
of z, i.e. |z| < ». This can also be established by the ratio test.

LAURENT'S THEOREM

25. Prove Laurent’s theorem: If f(z) is analytic inside and on the boundary of the ring-
shaped region R bounded by two concentric circles C, and C: with centre at a and
respective radii 7, and r(r, > 7,), then for all z in R,

= L
h ) = Fue-or + 3
where
1 =
an = 3 j’; (w— a),,ﬂ n=012...
1 =
b-s = z_.f oo - n=lad...
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By Cauchy’s integral formula [see Problem 23, Page 131]

we have
1 = zﬂf - ,f L) g,
Consider the first integral in (1). As in Problem 22, equa-
tion (2), we have
1 - 1
w—z (w—a){1 = (z— a)/(w — a)}
= 1 z—a (z—a)r1 (z-—a)n 1
w—-a+ (w — a)? ® £ (w —a)n * w—a/ w—z )
o f(w) _ § ( z—a f(w)
so that o .i.w—zdw = 33 d + 2ni b v —op dw
+ oo .+. gta)n_l f(w) dw + U
27 c, (w—a)" n
= ap + afz—a) + - + ap_y(z—a)*! + U, ($)
where
_ 1 £ fw) = 1 § f(w) _ 1 § f(w)
%o = 2ai £1w~—adw' “Z i Y e o O T S e
and Up = 30 ( ) __.). dw
i w—a/ w—
G
Let us now consider the second integral in (1). We have on interchanging w and z in (2),
— - i
w—z (z—a){1 — (w—a)/(z— a)}
= 1 w—a (w—a)n—! w—a\"_1
T z-a + (z — a)? ¥ B (z—a)n * (z—a> Z—=w

/(w) = 1 w—a
so that ~53 f dw = g § z-—-a + 2ﬂ.§ (z—a)’,(w) dw

+ o 4 gTEL—f(w)dw + Vv,

Zﬂ ¢ {
= a—y a_g a_p
R b ek & b et W %)
where
a1 = g § fwidw, oy = f(w O f(w)dw, ..., a_, = E}r;-f(w*a)""f(w)dw
Cs Cy
and Vo = E:_—. (1:::) ;f—(_w—ildw
From (1), (3) and (4) we have
fl2) = {ey+ayz—a)+ -+ +a,_y(z—a)*"1}
’ +{-5-‘-'—+-:I-’—+---+ = }+U + Va (5)
z—a (z — a)? (z a)"

The required result follows if we can show that (@) lim U, = 0 and (b) lim V, = 0. The
n=+x

n=+o

proof of (a) follows from Problem 22. To prove ..} we first note that since w is on C,,

wa|=x<1
a

where « is a constant. Also we have |f(w)] < M where M is a constant and

lz—w| = |[G—a)—(w—a)] & |2-a|—n,
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Hence from Property 5, Page 93, we have
1 § ( w—a)" jw) g4,
2r z—a z—w
€y
1 xn M ; k"M ry

gl 2 = —
rlz—al—rp "2 e —a] — 7,

Then lim V, = 0 and the proof is completé.'

M=t o0

Vol =

26. Find Laurent series about the indicated singularity for each of the following functions.
Name the singularity in each case and give the region of convergence of each series.

2
(a) (Ti_lﬂ;; z2=1. Let z—1 =u. Then z = 1+u and
o2t et et e Qu)E | @ud | (uwt
G- - e ow T us{1+2“+ T TR TR
2 2 2 2 2
e 2e 2e 4_e_+'a_7_¢_z_(z_1) &

e ti-1 T T

z=1 is a pole of order 3, or triple pole.

The series converges for all values of z 7 1.

(b) (z—3) sin : z=-=2. Let 242 = uwor z = u
z+2
N TR AR | S T T R

(2 3)sm1z+2 = (u ﬁ)smu = (u 5){u 3Iu3+5lu~" }
_ _5_ 1 5] ) S
= 1=y 31u2+3‘.u3+5!u‘
= 6 1 b 1 o e
= 1= S T e+2: T GGt T 120+ 20

z = —2 is an essential singularity.

The series converges for all values of z ¥ —2.

©) z—sinz; G,

zs
z—sinz _ 1] _( _#,2 .,
3 - za{” (’ TRETET )}
o Afe @ et ] _ 2 & s
N 13{31 G } TR TR T

z =10 is a removable singularity.

The series converges for all values of z.

() —2——; z2=-2 Let z+2 = u. Then
(z+1)(z+2)
z T u—2 2—u 1 2—u
—_— = = . = 1+ut+u2+ud+ .-
(z+1)(z+2) (u—1)u u 1—u u ( )
2 & 2
= “ee — 22 oo
S+ 1tutuls —S 1+ G+ + e+ +
z=—2 is a pole of order 1, or simple pole.

The series converges for all values of z such that 0 < ls+2]| < 1.

——1-—; z2=8. Let z—8 = u. Then by the binomial theorem,
22(z — 38)?

(e)



168

27.
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1 = 1 _ 1
22(z — 3)2 u2(3 + u)? 9u(1 + u./3)2
= g % g + (~2)( 3)(u (=2)(=3)(=4)
{ 2(3) 3 E 3l
- 1 _ 2 .1 4
T u 27 27 " 2%t
_ 1 __2 1 _4e-3
T 9(z—3)2  27(z—23) 243

z=23 is a pole of order 2 or double pole.

The series converges for all values of z such that 0 < |z—3| < 3.

B 1
Expand f(Z) = m
()0 <|z2+1] <2, (d) |¢| <1.

in a Laurent series valid for (a) 1 <|?] <3,

[CHAP. 6

R

(0) || >3,

is

21
2z4

|z| > 3, is by

)

(a) Resolving into partial fractions, m = %(ﬁ—;) - 5(213) 5
If |2] > 1, .
1 i 1 =i(_1i_l >_L_1L
2(z+1) 22(1 + 1/2) 2\ "zt st = % w2
If |z] <38,
2 3 2
1 = 1 = 2l Ba B ot = Lalal.. b
2(z+3) 6(1 P 2/3) 6 3 9 27 6 18 b4
Then the required Laurent expansion valid for bota |z| > 1 and |z| <3, ie. 1< |z]| <3,
1, 1 .1 1,z 2 2B
2z4 223 222 2z 6 18 b4 162
‘(b) If |z| > 1, we have as in part (a),
i 4 1 . 1 1
2z+1) ~ 2z 2z? tos za
If |z >3,
. 1 " L(,h§+1_21+ ) - e B B
2(z + 3) Zz(1+3/2) 2z z 22 8 T o2z 222" 28
Then the required Laurent expansion valid for both |z] > 1 and |z| > 3, i.e.
subtraction r 4 4, 13 Q_ e
22 7
(¢) Let z+1 = u. Then
1 = ol o o om N E W
(z+ 1)z + 3) u(u+ 2) 2u(l+w/2) ~ 2u 2 4 8
1 1 1
= amd R R = 1)2
2e+n 4ttt Tt A
valid for |u| <2, u#0 or 0<|z+1] <2
@ If |z <1,
1 1
= s = jl—z+ 2=+ ) = - ho+ §2 - }B +
2+ 1) 21 +2) B S8 & ) Sl A e L
If |z| <3, we have by part (a),
‘ 1T _1_ =z 2 2
20z+3) = 6 18 e Tt
Then the required Laurent expansion, valid for both |2] <1 and |2| <3, ie. |2| <1, is by
subtraction 1 L4 18 13 e 40 -
3 9 T

This is a Taylor series.
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LAGRANGE’S EXPANSION
28. Prove Lagrange’s expansion (11) on Page 145.
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Let us assume that C is taken so that thgre is only one simple zero of z = a+ ! ¢(z) inside C.
Then from Problem 90, Page 137, with g(z) =2z and f(z) = z—a—{¢(z), we have

z =

1 — §¢'(w)
me {w - w(w)} a

1

1 w i
= mf;_,w_a“‘”‘w”{l

o0

i ‘zl,: f; 21— § ¢'(w) {.Eo tn gn(w)/ (w — a)n

- " w ¢™(w)
- 2n§w adw * 22::-1 c{(w—a)"*’l

N Ei{ﬂ(w_)}dw'

n=1271 Jo ndw |(w—a)®

L] "ﬂ ﬂﬂ(w!
s T .E,Zn-in j’; (w—a)" dw

= o+ 382 )

n=1M

ANALYTIC CONTINUATION

29. Show that the series (a) 2 ooy and  (b) i
of each other. ) A=Y

= $ p(w)/(w — a)

(z—a)
1‘)!!+1

b

_ wen ! (w) ¢’(w)} i

(w—a)"

are analytic continuations

(a) By the ratio test, the series converges for |z| < 2 [shaded in Fig. 6-6]. In this circle the series
[which is a geometric series with first term & and ratio z/2] can be summed and represents the

1/2 1
—a2  2-z

function

z—1

o f <1,
ie. |[z—i] < Vb, [see Fig. 6-6]. In this circle the series
[which is a geometric series with first term 1/(2 — i) and
ratio (z —1)/(2 —1)] can be summed and represents the

1/(2 — ) 1

(b) By the ratio test, the series converges for

function

1-(z—9/2—-9)  2-z°

Since the power series represent the same function
in the regions common to the interiors of the circles
|2 =2 and |z—i| = /b, it follows that they are ana-
lytic continuations of each other.

30. Prove that the series 1+z+ 22+ 2z +2°+ ---
analytically beyond |z| = 1.

Let F(z) = 1+z+z'~‘+z‘+z“+
z+ 22+ 24+ F(28), - -

Then F(z) =

From these it is clear that the values of z given by z2=1, 22=1, z¢=1, 28=1,
These singularities all lie on the circle |z = 1.
These represent an impassable barrier and

singularities of F(z).
circle, there will be infinitely many such singularities.

z+ F(22), F(z) =

+ 3 22" cannot be continued
n=0

z+ 22+ F(z4), F(z) =

are all
leen any small arc of this

analytic continuation beyond |2| =1 is therefore impossible. The circle |z| =1 constitutes a natural

boundary.
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MISCELLANEOUS PROBLEMS
31. Let {f«(2)), k=1,2,3,... be a sequence of functions analytic in a region ®. Sup-

32.

pose that -
F(z) = glfu(z)

is uniformly convergent in R. Prove that F(z) is analytic in K.

n
Let S,(z) = E fx(z). By-definition of uniform convergence, given any ¢ > 0 we can find a positive
k=1

integer N depending on ¢ 'and not on z such that for all z in R,
| F(z) —Sp(2)| < e for all n > N ()

Now suppose that C is any simple closed curve lying entirely in ® and denote its length by L.
Then by Problem 16, since fi(z), k =1,2,3,... are continucus, F(z) is also continuous so that

§ F(z)dz exists. Also, using (1) we see that for n> N,
c

I §CF'(1) B = él i ful2) dz|

|§ e - syenar

< L

Because ¢ can can be made as small as we please, we see that

§C F(z)dz = El i fi(2) dz

But by Cauchy’s theorem, 5 fx(z)dz = 0. Hence
c

£F’(z)dz = 0

and so by Morera’s theorem (Page 118, Chapter 5) F(z) must be analytic.

Prove that an analytic function cannot be bounded in the neighbourhood of an isolated
singularity.

Let f(z) be analytic inside and on a circle C of radius 7, except at the isolated singularity z=a
taken to be the centre of C. Then by Laurent’s theorem f(z) has a Laurent expansion

fay = 2 alz—a) (1}
k==
where the coefficients a, are given by equation (7), Page 144. In particular,

1 z

i c(z—a)‘”*‘dz n=12328... (2)

a_pn

Now if |f(z)] <M for a constant M, i.e. if f(2) is bounded, then from (2),

- L -
la—gl = " fc(z a)r=1 f(z) dz
=2 —:—r““ M+ 2rr = Mm
2r
Hence since r can be made arbitrarily small, we have a_, =0, n= 1,2,8,..., lea_j=a_y=
a_yg= '+ =0, and the Laurent series reduces to a Taylcr series ebout z=a. This shows that f(z)

is analytic at z=a so that z=a is not a singularity, contrary to hypothesis. This contradiction
shows that f{z) cannot be bounded in the neighbourhood of an isolated singularity.
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33. Prove that if z+ 0, then
ehhaz—1/z)  — i )zn

2w
where Jala) = %J; cos (nf — a 8in @) do n=2012...

The point z=0 is the only finite singularity of the function e%a(z=1/2) and it follows that the
function must have a Laurent series expansion of the form

eWha(z—1/2) = i Jula) 2" (1)

n=-—on

which holds for |z| > 0. By equation (7), Page 144, the coefficients J (a) are given by

1 Yatz—1/2)
Mo = g § S s (2)

where C is any simple closed curve having z =0 inside.

Let us in particular choose C to be a circle of radius 1 having centre at the origin; i.e. the
equation of C is |zl =1 or z = ¢!, Then (2) becomes

2w 19
tha(eld — ¢—10)
Jal) = 2ﬂf 2 — T ieldg
" ,lu.lno—tnad,
27 )

2 s b1
= lf cos (asino — ne) do  + —l—f 8in (a sin 8 — ne) de
27 0 2r 0

1 2w
= E—f cos (né — a 8in @) de
T Jo

2w
using the fact that I = f sin(asine — ne)de = 0. ' This last result follows since on letting
6 = 27 — ¢, we find 0

2 2
1 = f sin (—a sing — 2zn + ng)dp = —f sin(a sing — ng)dp = ~—I
0 0
so that I = —I and I = 0. The required result is thus established.
The function J,(a) is called a Bessel function of the first kind of order n.

For further discussion of Bessel functions, see Chapter 10.

34. The Legendre polynomials P.(t), n = 0,1,2,3,... are defined by Rodrigues’ formula
gy (8= 1)1
{a) Prove that if C is any simple closed curve enclosing the point 2= ¢, then
1.1 (s*—=1)*
Z i 21- c(z— )"+t
This is called Schlaeﬂz E] representatwn for P.(t), or Schlaefli's formula.

Pu(t) =

P.(t) dz

(b) Prove that

Pu(t) = z_l’rj;“(tﬂ/tz—uoso)"do

(a) By Cauchy'’s integral formulae, if C enciosea point ¢,
o = Epe = g 1@ g
tn c
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Then taking f(t) = (2—1)* so that f(z) = (2—1)», we y
have the required result 04
.
— 2 - 1)n
P, (t) il dt"(t 1)
- § @—1m
2n 2”1 (z_t)n+l
(b) Choose C as a circle with centre at ¢t and radius V|2 —1| as z
shown in Fig. 6-7. Then an equation for C is |z—¢t| =
VIE=1] or 2z = t +ViZ—1e®, 0=6<2r. Using this in Fig. 6-7
part (a), we have
P() = 3.4 2Lt 4+ Vi2 —1ei0)2 — 130 /12 — 1 iei® do
" 2n 2ri ), (VE =10+
= L1 (- 1) + 2tV — 16l -+ (12— 1)e2i0)n g~ in0 dy
2n 27 Jy (2= 1)n'2
_ 1.1 (e—1e-te 42/ —1 4+ (12— 1)e")n do
2 27 J, (=12
_ 1.1 (/e —1+2(2—1) cos6) de
on 27 o (tz_ 1)-/2

2w
= El;f (t + VE—1 cos o) de
0

For further discussion of Legendre polynomials, see Chapter 10.

Supplementary Problems

SEQUENCES AND SERIES OF FUNCTIONS

35.

36.

3.

38.

40.-

41,

Using the definition, prove: (a) lim % =3, (b llm 712—-:5 =

n—+w N

If lim u,(z) = U(z) and lim v,(z) = V(z), prove that (@) lim {u,(z) = v,(2)} = Ulz) = V(2),

ne-+ow

(b) lim {u,(z) vu(2)} = Uz) V(z), (¢) lim u,(2)/v,(2) = Ul2)/V(z) if V(z) # 0.

© an—1
(a) Prove that the series —;— 2 245 2 + = 3 z;“ converges for |z| <2 and (b) find its sum.
n=1

Ans. (a) Sp(z) = {1—(2/2)"}/(2—2) and lim S,(z) exists if lz| <2, (b) S(z) = 1/(2—2)

(a) Determine the set of values of z for which the series S (—1)n(z"+z"*1) converges and

(b) find its sum. Ans. (a) |2/ <1, (B)1

- -

o0

(a) For what values of z does the series 3 (_z%ﬁ; converge and (b) what is its sum?
n=1

Ans. (¢) All z such that |22+1| > 1, (b) 1/22

If lim |u,(z)] = 0, prove that lim u,(z) = 0. Is the converse true? Justify your answer.
n=+ o

Prove that for all finite z, Iim z*/n! = 0.

n=s o
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42. Let {a,}), n=1,2,3,... be a sequence of positive numbers having zero as a limit. Suppose that
|un(2)] S @, for n=1,2,3,.... Prove that lim u,(z) = 0.
ne=sw
43. Prove that the convergence or divergence of a series is not affected by adding (or removing) a finite
number of terms.
44, Let S,=z+222+3823+ - +nz", T, = z2+22+ 23+ +++ + 2" (a) Show that S, = (Tp—nzn*+1)/(1 —2).
(b) Use (a) to find the sum of the series El nz" and determine the set of values for which the series
e
converges. Ans. (b) z/(1—2)?, |2| <1
8 . S n+1
45. Find the sum of the series 3 - Ans. 4
. n=0
ABSOLUTE AND UNIFORM CONVERGENCE
46. (a) Prove that u,(z) = 3z +4z%/n, n=1,2,3,..., converges uniformly to 3z for all z inside or on the
circle |z = 1. (b) Can the circle of part (a) be enlarged? Explain.
47. (a) Determine whether the sequence u,(z) = nz/(n? + z?) [Problem 35(b)] converges uniformly to zero
for all z inside |z = 3. (b) Does the result of (a) hold for all finite values of 2?
48. Prove that the series 1+ az + a22® + - 54 converges uniformiy to 1/(1 —az) inside or on the circle
|zl = R where R < 1/|al.
49. Investigate the (a) absolute and (b) uniform convergence of the series
z z2(3—2) , #(3—2)? z(3 —z)3
— + + e
3 32 3 T *
Ans. (a) Converges absolutely if [¢—3| < 3 or z=0. (b) Converges uniformly for |z—38| = R
where 0 < R < 3; does not converge uniformly in any neighbourhood which includes z = 0.
50. Investigate the (a) absolute and (b) uniform convergence of the series in Problem 38.
Ans. (a) Converges absolutely if [z| <1. (b) Converges uniformly if |z| = R where R <1.
51. Investigate the (a) absolute and (b) uniform convergence of the series in Problem 39.
Ans. (a) Converges absolutely if [22+1| > 1. (b) Converges uniformly if |22+ 1] =2 R where R> 1.
52. Let {a,} be a sequence of positive constants having limit zero; and suppose that for all 2 in a region R,
|un(z)| = ap, n =1,2,8,.... Prove that lim u,(z) = 0 uniformly in K.
n=+00
53. (a) Prove that the sequence un(z) = nze—"* converges to zero for all finite z such that Re {22} >0,
and represent this region geometrically. (b) Discuss the uniform convergence of the sequence in (a).
Ans. (b) Not uniformly convergent in any region which includes z=0.
54. If X a, and 2 b, converge absolutely, prove that S ¢, where ¢, = agbytarby_y+ -t
n=0 n=0 n=0
u,bo‘, converges absolutely.
55. Prove that if each of two series is absolutely and uniformly convergent in R, their product is abso-

lutely and uniformly convergent in R.

SPECIAL CONVERGENCE TESTS

56.

Test for convergence:

& i 2 n = a+3 2 (=1 =  2n—1
@3z O 2Fop O 5 D2maw O 2T

Ans. (a) conv., (b) conv., (¢) div., (d) conv., (e) div.
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5T.

59.

61.

62,

67.

Investigate the convergence of:

(=1" 1 v 1
(e) 2"‘Hzl ()uEln"'l! ()n§1n2+ll (d)..§nﬁ+z'
Ans. (a) Diverges for all finite z. (b) Converges for all z. (c) Converges for all z. (d) Converges for
all z except z=-n? n=1,23,....
< nienmi/é
Investigate the convergence of 3 pra e Amns. Conv.

Find the region of convergence of (a

: Grip & 1 <z+l>" S (=1)nan
amom+1)n+2)’ ®) -Ex n2e3n\z—1/ ' () ,E, n!
Ans. (a) 2414 =1, (b) fz+1)/(z—1)| = 8, (e 7 < »

Investigate the region of x'lbsolute convergence oi "%1 FrER
Ans. Conv. abs. for |21 = 4.

Find the region of convergence of 5‘_ _ﬁ'fi'__.
¢ ¢ r=0 (n+ 1)8/2

Ans. Converges if Im z = ¢

©
Prove thai the series 3 (Va+1-—Vu; diverger altiougl: the wub term approaches zero.
n={

Let N be a positive integer aac suppuse that fo: all a > N ju,| > 1(mlun) Prove that S u,
diverges. n=1

Establish the validity of the (e =il rooi test {Theoremn 1€, (b) integral test (Theorem 13], on
Page 141.
Find the interval of conveigence of 1 - Lz~ zt- %&b 4 29 - 56 4 .. Ans. [z < 1

Prove Raabe’s test (Theorem 14) on Fage 14°

aa I p 1 14 1:4.7
Test for convergence {u 2Tnt2  81ni8 ' dinid ) " BB r5°8~114+ , (e) =
2:7 , 2:7°12 o In2_ I3 Ing.
5°10 ' 5-10-16 A I SR

Ans. (a) conv., (b) conv., (¢} div., (d) div

THEOREMS ON UNIFORM CONVEKGENCE AND POWER SERIES

69,
0.

71,

Determine the regions in which each of the following series is uniformly convergent:

G =0 o— 5 YAtL
(@) 2, s-+1' ® 32 5 @ ,;1 wrne 92y l=/*

Ans. (a) [z =R where R<8 (b z—i=1 (o 2zl = R where R>1. (d) All z

Prove Theorem 20, Page 142.
State and prove theorems for sequences analogous to Theorems i8, 16 and 20, Page 142, for series.
(a) By differentiating both sides of the identity

1
1—-2

find the sum of the series 3 nz® for [z| < 1. Justify all steps.
n=1

= 1+z2+4+22+2+ - el <1

(6) Find the sum of the series El niz* for |z] < 1.

Ans. (a) z/(1—2z)? [compare Problem 44], (b) (I+2)/(i—2)p
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1
72. Let z be real and such that 0 = 2 S 1, and let u,(z) = nze—"*. (a) Find lim f u,(z)dz. (b) Find
1 n—wnJg
f {lim u,,(z)} dz. (c) Explain why the answers to (a) and (b) are not equal. [See Problem 53.]
0 |n—w
Ans. (a) 1/2, (b) 0

73. Prove Abel's theorem [Theorem 24, Page 142).

74. (a) Prove that o S 1—224+24—28+ .-+ for |2/<1.
1+ 22
(b) If we choose that branch of f(z) = tan—!z such that f(0) =0, use (a) to prove that
* ds 2, B
-1g = R = gk LR
tan—1z J; i+t z 3 + 5 7 +
P o jakad L o
(¢) Prove that 4—1 8+5 7+

75. Prove Theorem 26, Page 142.

76. (a) Determine Y(z) = gﬂ a,z* such that for all z in |2| S 1, Y'(z) = Y(2), Y(0) =1. State all
theorems used and v:rify that the result obtained is a solution.
(b) Is the result obtained in (a) valid outside of |z| = 1? Justify your answer.
(6) Show that Y(z) = e* satisfles the differential equation and conditions in (a).
(d) Can we identify the series in (a) with e¢? Explain.

= 2.2 ..
Ans. (a) Y(2) = 1+z+2|+31+

71. (a) Use series methods on the differential equation Y*(z)+ Y(z) =0, Y(0) = 0, Y'(0) = 1 to obtain
the series expansion
sinz = z——+———+---

(b) How could you obtain a corresponding series for cos z?

TAYLOR'S THEOREM

78. Expand each of the following functions in a Taylor series about the indicated point and determine
the region of convergence in each case.

(@) e % z2=0 (b)cosz; z==/2 (c) 1/(1+2z);2=1 (d) 23—322+42—2; z2=2 (o) ze2; z = —1

79. If each of the following functions were expanded into a Taylor series about the indicated points, what
: would be the region of convergence? Do not perform the expansion.

(a) sinz/(22+4); 2=0 (¢) (2+8)/(z—1)(z—4); 2=2 (e) e*/z(z—1); z=41
(b) z/(ex+1); 2=0 (d) e~**ginh(z+2); z=0 (f) coth2z; z=0
Ans. (a) |2 <2, (b) |z| <m (o) |z—2| <1, (d) |o| <=, (6) |z—4i] < 4, (f) |s] <=/2, (g) |2—1] < 1/2

{g) secrz; z2=1

80. Verify the expansions 1,2,8 for e, sinz and cos z on Page 143.

st = sdeigfao ®e o s :
81, Show that sinz 2 q31+ Bl ,”+ y g < =
5 7
82. Prove that tan—1z = z—£+-z——1-+---, l2] < 1.
3 b 7
83. Show that (a) tanz = ’+=§"_+21_z‘+ cee, 2| < =/2
. ,
(b) secz = 1+_§_+_5__z:+ Heisy 2| < /2
2 24
(0) csez = 1+£+.E+..., 0<|z|<w
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84. By replacing z by iz in the expansion of Problem 82, obtain the result in Problem 23(c) on Page 156.
85. How would you obtain series for (a) tanhz, (b) sechz, (¢) eschz from the series in Problem 8317
86. Prove the uniqueness of the Taylor series expansion of f(z) about z =a.
[Hint. Assume f(z) = 3 e z—a) = S d,(z—a)" and show that ¢, = d, n =10123,... J
n=0 n=0

87. Prove the binomial Theorem 6 on Page 143.

88. If we choose that branch of V1 + 23 having the value 1 for z =0, show that

1 1:3 , 1:35 ;
= —— =08 S <
Ao 1 z"+2 41“ T + 2] < 1

89. (a) Choosing that branch of sin~—!z having the value zero for z =0, show that
1 28 1328 1°3+6 27

in—1 = Cm——— — e
sin—!z z + = +2_‘“5 2-4~67+ lz| < 1

(b) Prove that the result in (a) is anld for z =i,

90. (a) Expand f(z) = In(3—4iz) in powers of z—i, choosing that branch of the logarithm for which
f(0) =1In3, and (b) determine the region of convergence.
(z—2i) , (z—2i)? i(z-—2i)3_(z-—21')‘ pE—— ) s
5 + 75 + 3759 T (b) |2—2i] < b

Ans. (a) Inb — !

LAURENT'S THEOREM
91, Expand f(z) = 1/(z—3) in a Laurent series valid for (a) |¢| <3, (b) |z| > 3.

Ans. (a) —l—--—z*——zz—l—zs— (B) 2=1 + 822+ 9273 + 27274 + -+

92. Expand f(z) = F-l—;(—z:-z—) in a Laurent series valid for:

(a) |2 <1, (b) 1<|s <2 (c) |z >2, (d)]z—1 >1, () 0< [z—2] < 1.

1, 38, 1 16, _ ORI S | 1 ,1,,1
Ans. (a) 22 4z z’-Q 24 (b) +zz+z+1+2z+4z +823+
_l_i_l_ﬂ_... el AN Bl A 5 B W e
() 2 2 B A (d) —(z—1) 2(z—1) 2(z—1)

]

(1 —2z—-21'— (-2 + (z—22— (=23 + -2 — -+
93. Expand f(z) = 1/z(z—2) . in a Laurent series valid for (a) 0 < 2] <2, (b) lz| > 2.
94, Find an expansion of f(z) = _z/(z’+ 1) valid for |z—3| > 2.
95. Expand f(z) = 1/’(11‘--2)2 ‘in a Laurent series v—alid for’ (a) |2| <2, (b) [¢] >2
96. Expand each ;')f the following functions in a Laurent series about z=0, naming the type of singularity

in each case.
(@) (1—cosz)/z, (b) e*/s%, (¢) 2~!coshz™}, (d) 22e~#, (e) z sinh Vz.

PR 0 14
Ans. (a) £ _Z + %-'- — 7.+; removable singularity (d) 22— 28+ - ;_! o
(b) 5 + 4+ L5 2 +1_ " 27 4 vesg ordinary point
ZACAC AL A @ S+ o T2 80
po]e of order 3 M = b :

1_ 1 1 branch point

@ ;- satas

97. Show that if tanz is expanded into a Laurent series sbout z ==/2, (a) the principal part is
‘—1/(z — #/2), (b) the series. converges for 0 < |z—#/2| < =/2, (o) z=w#/2 is a simple pole.

— «++; essential singularity
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98. Determine and classify all the singularities of the functions:
(@) 1/(2sinz—1)%, (b) 2/(et/z—1), (c) cos(:2+272), (d) tan~! (22+22+2), (e) z/(ex—1).

Ans. (@) #/6 + 2mx, 2m+1)r — #/6, m =0, *1,*2,...; poles of order 2
(b) i/2mz, m = *1,%2,...; simple poles, z = 0; essential singularity, z = =; pole of order 2
(¢) z = 0, »; essential singularities (d) z = —1 = 1, branch points
() z=2mri, m = =1,%2,...; simple poles, z= 0; removable singularity, z = =; essential
singularity

99. (a) Expand f(z) = ¢**~2? in‘'a Laurent series about z=2 and (b) determine the region of con-
vergence of this series. (¢) Classify the singularities of f(z).

22(z—2)—2 23(z—2)"3
2! 3!

singularity, z = «; removable singularity

Ans. (a) c{l + 2(z—2)"1! + + } ®) |z—2| >0 (c) 2=2; essential

100. Establish the result (?), Page 144, for the coefficients in a Laurent series.

101. Prove that the only singularities of a rational function are poles.

102. Prove the converse of Problem 101, i.e. if the only singularities of a function are poles, the function
must be rational.

LAGRANGE'S EXPANSION

103. Show that the root of the equation z = 1+ {z”, which is equal to 1 when ¢ =0, is given by

z = 14+¢+ .:_!BIZ + (3”)(3?—1) 3+ (4p)(4p ';})(41""2) I R

104. Calculate the root in Problem 103 if p=1/2 and { =1, (a) by series and (b) exactly, and compare
the two answers. Ans. 2.62 to two decimal accuracy

105. By considering the equation z = a + §4(2—1), show that

L = 14+ 3 55 i(a?—l)"

V1 —2at + 2 n=12"n! dan

106. Show how Lagrange’s expansion can be used to solve Kepler's problem of determining that root of
2z = a+ {sinz for which z=a when {=0.

107. Prove the_ Lagrange expansion (12) on Page 146.

ANALYTIC CONTINUATION
108. () Prove that Fy(z) = 1%_-‘ S ("H)" is an analytic continuation of Fy(z) = Eoz", showing
n=0 n=

1+14
graphically the regions of convergence of the series.
(b) Determine the function represented by all analytic continuations of F(2). Ans. (b) 1/(1—2)
o +1
109. Let Fy(z) = 3 z';n . (a) Find an analytic continuation of F\(z) which converges for z = 3 —4i.
n=0 i 3
(b) Determine the value of the analytic continuation in (a) for z = 3 —4i. Ans. (b) -3 —%i

110. Prove that the series + =
ZI 4 220 4 23 4 ..

has the natural boundary lz2| = 1.
MISCELLANEOUS PROBLEMS
111. (a) Prove that 3 "—l, diverges if the constant p =1.
n=1

(b) Prove that if p is complex the series in (a) converges if Re {p} > 1.

(¢) Investigate the convergence or divergence of the series in (a) if Re({p} = 1.
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112

113.

114,

115.

116.

117.

118.

119,

120.

121.

122,

123.

INFINITE SERIES — TAYLOR’S AND LAURENT’S SERIES [CHAP. 6
0 o0 2 o0
Test for convergence or divergence: (a) 3 —["—., b 3 :—m—, () 3 nsin—1(1/n3),
© " P i n=|n+1 ”zllcn“}'(z_l)n n=1
@ 3 -O% ) 3 coth-tn, () 3 nen
p=2nlun n=1 n=1

Ans. (a) div., (b) conv., (c) conv., (d) conv., (e) div., (f) conv.

Euler presented the following argument to show that 3 z» = 0:

2 = s+ 2+ B4 = S £ st maededy i 2 ¥
1-2z i z—1 1—-1/z z 2? = R

Then adding, 2 z" = 0. Explain the fallacy.
z—1)2 (z—1)3+ (z=1*
1:2 23 34 .

Show that for |[2—1| < 1, zlnz = (z—1)+(
Ans; 3 (38— 3m—1)z2n—1
e 2 =1

Given the seri TR T S
iven e series z 1 +z’ (1 +z2)2 (1 +32)3 . .

Expand sin?z in a Maclaurin series.

(a) Show that the sum of the first n terms is S,(z) = 1+ 22 — 1/(1 + z22)n—1,

(b) Show that the sum of the series is 1+ 22 for z 0, and 0 for z = 0; and hence that z =0 is a point
of discontinuity.

(c) Show that the series is not uniformly convergent in the region |z| =8 where 8 > 0.

_ 3z—3
It Fa) = e

Ans. -+ — JE—1D)"t+ {z—1D3 - J(z—1)"2+ (z— 1)1 — 1= (2—1) — (z—1)2 — -~

find a Laurent series of F(z) about z =1 convergent for §<|z—-1 < 1L

Let G(z) = (tan~'z)/2%. (a) Expand G(z) in a Laurent series. (b) Determine the region of con-

vergence of the series in (a). (c) Evaluate § G(2)dz where C is a square with vertices at 2 * 2,
. 1 1  z 28 ¢

-2+ 2], dwe, {8} F=gmhg =¥ (6) 12| >0 (c) —1/3 ,

For each of the functions zel/#*, (sin?z)/z, 1/2(4 —z) which have singularities at z = 0: (a) give a
Laurent expansion about z =0 and determine the region of convergence; (b) state in each case whether
z=0 is a removable singularity, essential singularity or a pole; (c) evaluate the integral of the

function about the circle |z| = 2.
Ans. (@) z+ 271 + 27321 + 275/8! + --+; 2] >0, 2z — 2233 + 425/45 — -+, [¢| 2 0, 2-1/4 +
1/16 + 2/64 + 22/266 + -+, 0 < |o| <4
(b) essential singularity, removable singularity, pole (¢) 2x1, 0, #i/2

< 1

(a) Investigate the convergence of 3 TTHim (b) Does your answer to (a) contradict Problem 8,
Page 1487 Ans. (a) diverges !

; sin z sin2z  sindz _ . .
(a) Show that the series T + 271 + 211 + +++, where z = x4+ 1y, converges absolutely in

the region bounded by sin?z +sinh2y = 1. (b) Graph the region of (a).

If |z| >0, prove that . .
cosh(z+1/z) = ¢ + elz + 1/2) + co(z2 + 1/22) + ---
2w
where - ey = zlf cos ng cosh (2 cos ¢) dg
T Vo
If f(z) has simple zeros at 1 —1 and 1+1, double poles at —1+1i and —1 —4, but no other finite
singularities, prove that the function must be given by
— 22—2z+2
fia) “Grzzt+ep

where « is an arbitrary constant.
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124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137,

138.

o0 ,2 .
Prove that for all z, e*sinz = 3 2"—';—"‘(‘1‘@ 2n,

n=1

Show that In2 = 1-1+ $— 4+ -+, justifying all steps. [Hint. Use Problem 23.]
; £ : < z
Investigate the uniform convergence of the series ..gl TR

[Hint. Resolve the nth term into partial fractions and show that the nth partial sum is S,(z) =

1
Ans. Not uniformly convergent in any region which includes z = 0; uniformly convergent in a region
|z| =z 8, where 5 is any positive number.

If 1-4+4—1+ -+ converges to S, prove that the rearranged series 1-+§ — 4+ t+4-—
}+3+4 -3+ =§S. Explain

(Hint. Take 1/2 of the first series and write it as 0 + $+0—4+0+ 3+ -, then add term by
term to the first series. Note that S = In 2, as shown in Problem 126.]

Prove that the hypergeometric series
a*b a(a+1) b(b + 1) a{e + 1){a+2) b(b + 1)(b + 2)
1+ + =l A T )2 S
Toe’ 7 TgecerD © ¥ T 1728 cet ety "
(a) converges absolutely if |z| <1, (b) diverges for |z]| > 1, (¢) converges absolutely for z—1 if
Re{a+b—c} <0, (d) satisfies the differential equation 2(L=2)Y" + {c—(a+b+1)z}Y' — abY = 0.

Prove that for |z| <1,
in-1z)2 = g o 4,7  2°4 2%  2°4-6 2
I “ %' 3’8 Tasera T
Prove that 3 llﬂ diverges.
n=1 M
1 1 1 1
Sh t s i e e e e
ow tha 12 2.3 I~3”1 4_5+ 2in2 i
Locate and name all the singularities of SO .o’ S sin ! s )
5 =13 @z+22 """ 278/
By using only properties of infinite se:ies, prove that
a? ad ] L, o, b2 B | 4 . {u+ b)%
(a) {1+a+'2~!+§f-+-~ {1‘1")* -2-1 rﬁ'i“rj = Ll'r\a"ru,‘ ""—‘il 2Ll
a? gt g 12 { ad @b al A
1_.__4‘:'_”___.'... i e S e o ey sk (w0 -
(b){ FTI TR T jk+\“ ST :
If flz} = X a,z* converges for 2! < K ane 0 .5r <R, prove that
n=0

1 e el .
o flre®)2 dg = 3 lg 2 r2s
2r Jy n=0

Use Problen: 134 ¢ prove Cauchy’s inequalivy (Page 118), namely
30 M <l P
gf‘“’(O)I = - *’;" n= 0, 12

If a function has si. woous of order 4, and four poles of orders 3,4 7 anrd 8, but no other singularities
in the finite plane, pro.c that it has a pole of order 2 at z= «.

State whether eack of the foliowing fuuctiong are eittire, meromorphic or neither. e L

(a) z2e—=%, (b) cot 2z, (e) (I—cosa)z, (d) -ushiz?, (e) zsin(1/2), (f) z+ i/z, (9) sinVz/Vz, (k) sinz.

Ans. (o) enure, (b) meromorphic, (¢} culie, (d) entive, (e) neither, (f) meromorphic, (g) entive,
(h} neither

if —a <6 <7, prove that

la (2 ccs 0/2) o8 6 4 cos20 - § cou3o - } cosde + ---
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139.

140.

141,

142.

143.

144,

145

146.

147.

148,

149,

150

151.

152.

153.

154.

INFINITE SERIES — TAYLOR’S AND LAURENT’S SERIES [CHAP. 6

(a) Expand 1/In(1+2) in a Laurent series about z=0 and (b) determine the region of convergence.

1.8 & 22 8923
Anas. (u)z+2 12+24+-m+ . b) 0< 2| <1
If S(z) = ag+ ayz+ ayz?+ ---, prove that
S
l—f—zlz = ay + (ag+ay)z + (ap+a;+ag)z? + ---

giving restrictions if any.

Show that the series
1 1 1 1

= ¥ = -
1+1zl 2+1s 3+ 4+ T

(@) is not absolutely convergent but (b) is uniformly convergent for all values of z.

2 an
Prove that EI Z. converges at all points of |z =1 except z=1.
n=

Prove that the solution of 2z = a+ te?, which has the value a when { =0, is given by

2 nmn—1gna
z = a + En__cﬁ
n=1 n!

if m < le—(a+l)i'

cos 26 4 Cos 30

Pexiocestaciadd .o 08 6 i
21 31 + . Ans. ec°%8 cos (sin ¢)

Find the sum of the series 1 + cos¢ +

Let F(z) be analytic in the finite plane and suppose that F(z) has period 27, ie. F(z+2r) = F(z).

Prove that o 1 o
Fiz) = 2 apein where ay = o= F(z) e~z dz
n=-—ow 27 0
The series is called the Fourier series for F(z).
Prove that the series
sing + jsin3¢ + }sinbe + ---
is equal to »/4 if 0 <& <w, and to —n/4 if —r<¢<0.
Prove that |z| =1 is a natural boundary for the series 3 2-nz%",

n=0

If f(z) is analytic and not identically zero in the region 0 < |z2—2| < R, and if ,lin‘l f(z) =0,
%

prove that there exists a positive integer n such that f(z) = (z— zo)" g(z) where g(z) is analytic at
2o and different from zero.

If f(z) isanalyticina deleted neighbourhood of z, and lim |f(z)] = =, prove that 2=z, is a pole
of f(2). £sete
Explain why Problem 149 does not hold for f(x) = el/z* where x is real.

(a) Show that the function f(z) = el/* can assume any value except zero. (b) Discuss the relationship
of the result of (a) to the Casorati-Weierstrass theorem and Picard’s theorem,

(a) Determine whether the function g(z) = 22—3z+2 can assume any complex value. (b) Is there
any relationship of the result in (a) to the theorems of Casorati-Weierstrass and Picard? Explain.

Prove the Casorati-Weierstrass theorem stated on Page 145. [Hint. Use the fact that if z=a is an
essential singularity of f(z), then it is also an essentiui singularity of 1/{f(z) —A}.]

(a) Prove that along any ray through z=0, |z+e*| = .
(b) Does the result in (a) contradict the Casorati-Weierstrass theorem?
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165. (¢) Prove that an entire function f(z) can assyme any value whatsoever, with perhaps one exception.
(b) Illustrate the result of (a) by considering f(z) = ¢* and stating the exception in this case.
(c) What is the relationship of the result to the Casorati-Weierstrass and Picard theorems?

156. Prove that every entire function has a singularity at infinity. What type of singularity must this be?
Justify your answer. .

157. Prove that:  (a) ‘—“&ﬁl = 2— QPR+ AH§HPS — oo, 2] < 1
® {n(+2) = zﬂ—(1+;)2—;';+(1+§+§)%’3----, 7] < 1

158. Find the sum of the following series if [a] < 1:

(a) il na" sin ne, (6) il n2a™ gin ne

2 5
159. Show that etinr = 14+ z4 —————+4 -+, [z <=,

160. (¢) Show that 3 % converges for |z| = 1.
n=1n

(5) Show that the function F(z), defined as the collection of all possible analytic continuations of the
series in (a), has a singular point at z =1.

(¢) Reconcile the results of (a) and (b).

161. Let X a,2* converge inside a circle -of convergence of radius B. There is a theorem which states

n=]1
that the function F(z) defined by the collection of all possible continuations of this series, has at least
one singular point on the circle of converg...ce. (a) Illustrate the theorem by several examples.
(b) Can you prove the theorem?

162. Show that

_ 3w
wo = BoR (Mo Ued

2r — 2rR cos (0 — ¢) + 72

L) Q/rY
= 7 + E(E) {a, cos ne + b, sin ne}

n=1]

where 10 ' 1
o = - f U(g) cos ng ds, b, = - f U(g) sin ng d¢
0 0
Fi B,z’ Baza )
163. Let - o Pl 1+ Bz +—2—!— +-3—' + +++. (a) Show that the numbers B,, called the Bernoulli

numbers, satisfy the recursion formula (B+ 1)* = B» where B* is formally replaced by B, after
expanding. (b) Using (a) or otherwise, determire B,,...,Bs.

Ans. (b) By =—4, B;=1}, B3=0, B,=—%,B;=0,By=5%

164. (a) Prove that ‘,z_ o % (cothé-— 1) . (b) Use Problem 163 and part (a) to show that By, =0
it k=1,2,38,....

165. Derive the series expansions:

(6). coths = %+§—:‘—5+---+%(:;—):+---, <
(®) cotz = %—%‘—‘% + ---(—1)»%’2{% + e, 2| < =
() tanz = z+ % + -21-"6- # ---(«1)-—12(2"_1()21:;';(2’)“_‘. l2| < w/2
@ ecsez = -:-+-;-+%"6+ .--(—1)--12(22“4;3?""'”_1 PSP P

[Hint. For (a) use Problem 164; for (b) replace z by iz in (a); for (c) use tanz = cotz — 2 cot 2z;
for (d) use cscz = cotz + tan 2/2.]
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RESIDUES

Let f(z) be single-valued and analytic inside and on a circle C except at the point
z=a chosen as the centre of C. Then, as we have seen in Chapter 6, f(z) has a Laurent
series about z=a given by

oc

fa) = 2 awz—a)

n=-—on

= a + a;(z—a) +az—a) + - + za—_:z % (za—_a)’ * wen (1)
where = zﬂ arr _f(:))““ z n=0=x1=2 ... (2)

In the special case n = —1, we have from (2)

ff(z)dz_ = 2ria- (%)

Formally we can obtain (3) from (1) by integrating term by term and using the results
(Problems 21 and 22, Chapter 4)

dz — {2171: p=1 ( 4)
c (z—a)y 0 p = integer #* 1

Because of the fact that (3) involves only the coefficient a—, in (1), we call a-, the residue
of f(z) at z=a.

CALCULATION OF RESIDUES

To obtain the residue of a function f(z) at z=a, it may appear from (1) that the
Laurent expansion of f(z) about z=a must be obtained. However, in the case where z=a
is a pole of order k there is a simple formula for a-, given by

e = limp e (e 0k fa)) (%)

If k=1 (simple pole) the result is especially simple and is given by
a-y = lim(z-a)f(2) (6)

which is a special case of (5) with k=1 if we define 0!=1.

Example1: If f(z) = m, then 2=1 and z=—1 are poles of orders one and two re-

spectively. We have, using (6) and (5) with k=2,

Residue at z=1is lim (z— 1){(3—_1—)%;-43;5} = %
1
Residue at z = —1 is l-lml_l_! -E-{(z + 1)2 (m)} = "7

If z=a is an essential singularity, the residue can sometimes be found by using
known series expansions.

172
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Example 2: If f(z) = e~ 1% then z =0 is an essential singularity and from the known expansion

for e* with u = —1/z we find
1 1 1
-1z = o g e
o & z ¥ 2122 3123

from which we see that the residue at z = 0 is the coefficient of 1/z and equals —1.

+ -

THE RESIDUE THEOREM v

Let f(z) be single-valued and analytic inside
and on a simple closed curve C except at the
singularities a, b, ¢, ... inside C which havc resi-
dues given by a-i, b-y, c-y, ... [see Fig. 7-1].
Then the residue theorem states that

_£f(z)dz = 2ni(a-1+byte1+---) (7)

i.e. the integral of f(z) around C is 2ri times the
sum of the residues of f(2) at the singularities
enclosed by C. Note that (?) is a generalization
of (3). Cauchy’s theorem and integral formulae
are special cases of this theorem (see Problem 75). Fig.7-1

EVALUATION OF DEFINITE INTEGRALS

The evaluation of definite integrals is often achieved by using the residue theorem
together with a suitable function f(2) and a suitable closed path or contour C, the choice
of which may require great ingenuity. The following types are most common in practice.

1. f F(x)dx, F(x) is a rational function.

Consider § F(z)dz along a contour C consisting of the line along the
c . =

z axis from —R to +R and the sémicircle T above the x axis having this line as
diameter [Fig. 7-2]. Then let R - ». If F(x) is an even function this can be

used to evaluate f F(z)dx. See Problems 7-10.
0

Fig.7-2 Fig. 7-3

2w
2. f G(sin @, cos9)dd, G(siné, cosd) is a rational function of sin# and cosé.
(]

z—z! cosa_z+z“
2t ’ wl,

dé = dzfiz. The given integral is equivalent to f F(z)dz where C is the unit
C
circle with centre at the origin [Fig. 7-3]. See Problems 11-14.

Let z=¢€"% Then sing = and dz = te'*dd or
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3. f F(z) {C?S m:c} dz, F(x) is a rational function.
ol sin mzx
Here we consider § F(z)e'™* 4z where C iz the same contour as that in
C

Type 1. See Problems 15-17, and 37.

4. Miscellaneous integrals involving particular contours. See Problems 18-23.

SPECIAL THEOREMS USED IN EVALUATING INTEGRALS
In evaluating integrals such as those of Types 1 and 3 above, it is often necessary

to show that f F(z)dz and j; e™*F(z)dz approach zero as £ -+ «. The following
r

theorems are fundamental.

Theorem 1. If |F(z)] = % for z= 02" where k>1 and M are constants, then
if T is the semicircle of Fig. 7-2,

lim F'(z) dz = 0
R==

See Problem 7.

Theorem 2. If |F(z)| = %

if T is tne semicircle of Fig. 7-2,

for z= Re*®, where k>0 and M are constants, then

lim em™F(2)dz = 0
R= r

See Problem 15.

THE CAUCHY PRINCIPAL VALUE OF INTEGRALS
If F(x) is continuous in @ = x = b except at a point %o such that e < zo < b, then if

¢, and ¢, are positive we defink
b

f " Floydsy = (133.;){ f e & " F(a:)dx}

€0
In some cases the above limit does not exnst for ¢ # ¢, but does exist if we take ¢ = ¢, =
In such case we call

f Fz)dz = hm{ . F(a:) dz +
the Cauchy principal value of the integral on the left.

. 3 4a Yde _ . 4 dx J“dz e A 1 _ 1
Example: J: = = (l"_'f‘o{[ 23 + ";,'5 = .lllflo 22 22

1 @0 1 €@g—0

b

F() da:}

Ipte

does not exist. However, the Cauchy principal value with ¢ = ¢; = ¢ does exist and
equals zero.

DIFFERENTIATION UNDER THE INTEGRAL SIGN. LEIBNITZ'S RULE

A useful method for evaluating integrals employs Leibnitz’s rule for differentiation
under the integral sign. This rule states that

ai® " boF
&;J: F(x.a)dx = n:,:dx
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The rule is valid if @ and b are constants, a« is a real parameter such that e, SaSa
where «, and «, are constants, and F(z,a) is continuous and has a continuous partial
derivative with respect to « for a =2 =b, a, Sa =a, It can be extended to cases where
the limits a and b are infinite or dependent on a.

SUMMATION OF SERIES

The residue theorem can often be used to sum various types of series. The following
results are valid under very mild restrictions on f(z) which are generally satisfied when-
ever the series converge. See Problems 24-32, and 38.

1. _i f(n) = —{sum of residues of = cotrz f(z) at all the poles of f(z)}

—{sum of residues of = cscwz f(z) at all the poles of f(2)}

2. 2 (-1 /)

3. i f (2n2+ 1) = {sum of residues of = tann=z f(z) at all the poles of f(z)}

4. f: (=1 f (2"; 1) = {sum of residues of = sec=z f(z) at all the poles of f(z)}

MITTAG-LEFFLER’S EXPANSION THEOREM

1. Suppose that the only singularities of f(z) in the finite z plane are the simple poles
ai,as @s, ... arranged in order of increasing absolute value.

2. Let the residues of f(z) at ai,az,as,... be by, by, b, .

3. Let Cv be circles of radius Ry which do not pass through any poles and on which
[f(z)] <M, where M is independent of N and Ry~ as N - w,

Then Mittag-Leffler’'s expansion theorem states that
e & 1 1
fe) = f0) + ..2. b"{z—a,. + a_,}

SOME SPECIAL EXPANSIONS
1. cscz =l—22( 1 __1 5 1 )

22— o2 22— 4x? 22— 9x?

K4

2oseer = (- Gt R T )

3. tanz = Zz<(t/2)1,_z, + (3”/2;,_23 ¥ (51,/2%,_2, + )

4. cotz = -:— + 22 (zzi”, + z,_lw % z,__lgw, # )

5. cschz = % - Zz(zzir,— z2:4w2+22:97"2 N )

6. sechz = « ((,,/2)12+z2 - (3,,/2:;2-1-22 + (57r/2t-))’+z2 AL )

o SRR (z=+(1w/2)’ & z=+(§'m/2)’ X z’+(tivr/2)’ bl :
8. cothz = %+22<zz:—w’+22:4ﬂz+z=:9”2 + )
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Solved Problems

RESIDUES AND THE RESIDUE THEOREM
1. Let f(z) be analytic inside and on a simple closed curve C except at point a inside C.
(a) Prove that

. 1
flz2) = X an(z—a) where G = ﬂi.ﬁu_—ﬂ%mdz’ =0, 1,28, .5

i.e. f(z) can be expanded into a converging Laurent series about z = a.
(b) Prove that

n=-—w

§f(z)dz = 2ria,

(a) This follows from Problem 26 of Chapter 6.
(b) If we let m = —1 in the result of (a), we find
. f fa)dz, e f f()dz = 2wia_,
2?1 ¢ c
We call a_, the residue of f(z) at z=a.

2. Prove the residue theorem. If f(2) is analytic
inside and on a simple closed curve C except at
a finite number of points a,b,c, ... inside C at
which the residues are a-;, b-i,¢-1, ... respec-
tively, then

£f(z)dz = 2n(a-1+b-1+c-i+ )

i.e. 271 times the sum of the residues at all singu-
larities enclosed by C.

With centres at a, b, ¢, ... respectively construct cir-
cles C,,Cy, Cy, ... which lie entirely inside C as shown
in Fig. T-4. This can be done since a, b, ¢, ... are interior e Fig. 7-4
points. By Theorem 6, Page 97, we have !
§f(z)dz = § f(z)dz + j; f(z)dz + f f(z)dz + - (1)
(e Cy Cy Cy

But by Problem 1,
f(z2)dz = 2zia_,, § f(2)dz = 2=7ib_,, :f f(2)dz = 2mic_y, Py (2)
(o Cy Cs '
Then from (1) and (2) we have, as required,
ff(z) dz = 2ri(a_,+b_y+e_y+ 1) = 2ri(sum of residues)
c

The proof given here establishes the residue theorem for simply-connected regions containing a
finite number of singularities of f(z). It can be extended to regions with infinitely many isolated
singularities and to multiply-connected regions (see Problems 96 and 97).

3. Let f(z) be analytic inside and on a simple closed curve C except at a pole a of order m
inside C. Prove that the residue of f(z) at a is given by
1 dm—l

-1 = lim ey g (E -9 1)

Method 1. If f(z) has a pole a of order m, then the Laurent series of f(2) is

+ ap + ay(z—a) + ag(z—a)? + - (1)

- @—m a_m+"__ s ot
ey - (z-—a)m * (z—a)m—1? L L z—a
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Then multiplying both sides by (z — a)™, we have
E=a"f@) = Gmt O miile=a)+  F o =@+ ar—a)m 4 e (9)

This represents the Taylor series about z=a of the analytic function on the left. Differentiating
both sides m — 1 times with respect to z, we have

di;;_lT((z—a)"f(z)} = (m=Dla_, + mm—1)--2age—a) + -
Thus on letting z = a, P
'li-r.r:'h—m—_—l((z—u)'"f(zz)} = (m—=1)la_,

from which the required result follows.

Method 2. The. required result also follows directly from Taylor's theorem on noting that the
coefficient of (z—a)m~1 in the expansion (g) is
P S . N TR
4 (m—1)! dzm-1 r=a

Method 3. See Problem 28, Chapter b5, Page 132.

22— 22

SRS e T N, = gt 2 .
GF @) and (b) f(z) = e*csc*z at all its poles

4. Find the residues of (a) f(2) =
in the finite plane.

(a) f(z) has a double pole at z = —1 and simple poles at z = £2i.

Method 1.
Residue at z = —1 is
1 d . 22— 2z . (22+4)(22—2) — (2—22)(22) _ _14
LT {“ MR 4)} - ey S
Residue at z = 2i is
1. —20) - z’_-.zz . —4 — 4i 1l 7+‘.
I 1 Grie=—ne+H @+17@) ~ 25
Residue at z = —2i is
. o 2—22 _ —4 + 4 .
AT GGG - CEIDCE - %

Method 2.
Residue at z = 2i is

3 (z — 2i)(s% — 22) _ 22— 2z z—2i
i) {(z+ 1)!(:=+4)} = {.lfl"a =+ 1)!} {.".'.‘L zi+4}

. e I S L. | SO G &
(2i4+1)? o2 (20 +1) 4 25

using L'Hospital’s rule. In a similar manner, or by replacing § by —i in the result, we can obtain
the residue at z = —2i.

() f(z) = e*cactz =,é}; has double poles at z = 0,+r,*2r,..., Le. z=mr where m =0,
+1,%2,....

Method 1.
Residue at z = mr is

1d
.l-lo]:' 1_! a-; {(‘ - mf): I‘::. ‘}
o*[(zs — mr)?sins + 2(s —ms)sinz — 2(z — mr)3 cos 3]

.- sins
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Letting z—ms = u or z = w+ mwr, this limit can be written

2 gi g Ogd
i ou+ {u sinu + 2usinu — 2u coau}

u=0 sind u

lim

u—s0 sin® u

em'{ . ulsinu + 2usinu — 2u? cosu}

The limit in braces can be obtained using L'Hospital's rule. However, it is easier to first note

3
= lirr:)(- L) = 1 and thus write the limit as
u -

that lim —; :
w—s08ind u sinu
2 ui ; — 9u2 3
il (u ginu + 2u m:lu 2u? cos u | .us )
u=0 o sind u
=  em lim ulsinu + 2usinu — 2ucosu _  mx
u=+0 ud
using L’Hospital’s rule several times. In evaluating this limit we can instead use the series
expansions sinu = u—u3/3!+ -+, cosu = 1—u¥2! + -,

Method 2 (using Laurent's series).

In this method we expand f(z) = e*csc?z in a Laurent series about z=mz and obtain the
coefficient of 1/(z — mw) as the required residue. To make the calculation easier let z = u + mr.
Then the function to be expanded in a Laurent series about u=0 is em7+¥ csc? (mr+u) =
emwgn csc2u. Using the Maclaurin expansicns for ev and sin x, we find using long division

2 3 2
emw(1+u+%+%+---> emw(1+u+’%+---)
emTe% cac2u = =
B : 2 (1 u’+u‘_ S8
(“ ar t 51 ) “( 120 )
mw(1+ Y )
3 S
= 2! = emm™ L+_l_+.5_+£+>
w2 u 6 3

2 9,4
211 =2 2% g
u(l et )

and so the residue is e™7.

; . ot z coth z
5. Find the residue of F(z):c—T—- at z=0.
We have as in Method 2 of Problem 4(b),
_2 ,z:_...)( 2o,
Fz) = cos z cosh z = (1 2!+4! 1+2!+4!+
2% sin z sinh 2z 3 _£+3i_... +£+£+_“
’(’ 31" ! )(’ 3l ! )

(1-%+.-)
) R O T
6 l’ (1 1 )
51— # E's o3 .
90 ) :
and so the residue (coefficient of 1/z) is —7/46.
Another method. The result can also be obtained by finding

o Pl . 1 db ] s coszcoshz
lm“d‘t‘ {z z”sinzsinhz}

but this method is much more laborious than that given above.

1 et s . s bl
6. Evaluate 35— i P ) dz around the circle C with equation |2 = 3.
= —1%i

’ ext . § =
The integrand FHE 12212 has a double pole at z=0 and two simple poles at 2z
[roots of z2+2z+2 = 0]. All these poles are inside C.
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Residue at z =0 is

.1 d 22 ext ‘[ = i (224 2z + 2)(text) — (ex)(22+2) _ t—1
z=0l1!d zz(zz+22+2)j T e (22 + 2z + 2)2 i 2
Residue at z = —1+1 is
y j N ext _ . ext . 24+ 1—1
z—oI!-"ll{»il[z (=1+9)] z’(zz+23+2)} o z-ol-l-nl"u{zz}z-—h—r?+l{z’+2z+2}
_et-1Dt 1 (=14
T Frrgrz 1
Residue at z = —1—1 is
2t (—1-it
i &= 1= ) = i
,_,]11?_ {[ - ]zz(z2+2z+ 2)} 4

Then by the residue theorem

ect . )
§ ————F———=-dz = 271 (sum of residues)

c 2222+ 22+ 2)
a fe—1  et-14+dt  gl-1-i
= 21”-{ 2 + 2 + 1

1 et t—1 y F—
i BEF B P T g Tt e cost

DEFINITE INTEGRALS OF THE TYPE -[ F(x)dx

7. If |F(z)] = M/R* for z= Re" where k>1 and M are con-
stants, prove that lim | F(z)dz = 0 where T is the semi-
R+ » I

circular arc of radius R shown in Fig. 7-5.

By Property b, Page 93, we have
|f F(z)dz| 2 e
I

SR = ooy Fig.1-5
since the length of arc L = #R. Then

R=

lim lf F(z)dzl = 0 and so lim F(z)dz = 0
r R=wJr

M .
— Relo Lo
8. Show that for z = Re", |[f(2)| = R k>1 if f(z) = e
1 1 2 &
If z=Re® |f(z)] = |R‘e“‘+ 1I TReeb] — 1 = R -1 = R if R is large enough (say

R > 2, for example) so that M =2, k=8.

Note that we have made use of the inequality |2y + 29| = |24] — |25] with z; = R%®¢ and z; = 1.

> dx
, Evatuate |7
9. Evaluate s
Consider z‘d_: T where C is the closed contour of Fig. 7-5 consisting of the line from —R
c

to R and the semicircle T, traversed in the positive (counterclockwise) sense.
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Since 28+1 = 0 when z =m0, ¢3ri/6, ¢Sri/6 (ri/e gomi/8 glimise,

these are simple poles of
1/(z®+1). Only the poles ¢7/6, ¢3m/8 gnd ¢5i/6 lig within C. Then using

L’Hospital’s rule,

Residue at ™/ = ‘Ji‘r:lm {(z — emi/0) %H'} - ‘Ji.l:lu. 3% = %a-"‘/'
Residue at e¥7i/¢ — ._,l,ial:l-l/l {(z — e¥ri/e) p o } = .:i:;nﬂl‘al'—’ = é—a—lm/z
Residue at ef7i/6  — ,,,',‘3‘1,. ',}[fz — gbi/e) &5 } 2 ,_,l"s':‘m éﬁ - (1; J—
Thus Cz“a:1 = 2wi{je-omse Je—oma 4 Jo- ey - ‘25;';’
o S i;ﬁﬁg . f, 1t ¥ )
Taking the limit of both sides of {) a8 B~ « and using Problems 7 aud 8, we have
L R @)

dz _ e dx ‘ . i
Since j:” e 2"‘0 p S the required integral has the vaiue x/%

. ridx _ Ir
W, Blow that. ) @+ 1P (@ +20+2) 50
The poles of L

@I AT BT enclosea Ly the contour C of Fig. 7-6 are 2 = i of order 2
and z = —1+1{ of order 1.

‘] P
=i i & o z? . 91732
Residue at z =1 is lmd {(z 1) PR Y (z”+2z+2)j 100
. _ 5 . 22 I R ¢
Residue at z = —1+41 is l-.l_l_nllH (z+1—1) EF DI GF1=9GF 1+0 = "
2 dz = o.]8%i—12 3-4il _ 1,
Then c @+1)2(2+2:+2) 2’"{ T } T Bo
or f 2l dz + f __#tdz = 4
_p @2+ 1) (22 + 22+ 2) rGEF1)2 (22 + 22 + 2) b0

Taking the limit as R -+ «» and noting that the second integral approaches zero by Problem 7,
obtain the required result.

2w
DEFINITE INTEGRALS OF THE TYPE f G(sin 0, cos ¢) d¢
0

2w da‘
1L Evaluate | .
TRriunts o 3 — 2cosd + sing

10— ,—io —— 10 1 518 3
Let z=¢'%, Then sing = & g _ T e e 24z

= .:,_._._,,_____.__ ., dz =1 h
% 5" cos ¢ 3 ) z = 1zd# so that

J‘" de i f dz/iz - f 2dz
o 3—2cose + sine c3—2z+2"1)/2 + (z—2z-1)/2i e (L—20)z2 + 61z — 1 — 2i

where C is the circle of unit radius with centre at the origin (Fig. 7-8).
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of TSP +26iz gy are the simple poles

—6i = V/(6)% — 4(1 — 20)(—1 - 2i)

The poles

2= 2(1 — 2i)
Y N
= o 2—i, (2—i)/6

Only (2 — 1)/6 lies inside C.

" o " . 2
2 - = -2~
Residue at (2 —1)/b ‘_’(l;rlst {z — (2 — 1)/b} {(1 oA F 6 — 1= 21}
] 2 1 "
1 —_— = = d 4 .
. s sieTs = n @ Vwislymh
2dz 1 .
Th f = ( ) = » th .
en Ity +6a—1-& 27 % 4 the required value
2 ;
= if a > |b|.

2w
12. Show that jo‘ a+bsm0 = ﬁ

10 — o—18 —_ =1
e i dz = iede = izde so that

= elf i = —
Let z = ¢'%. Then sine ¥ T
f o de = § dzliz - 2dz
o a+bsing ca+ blz—271)/2i c bz2 + 2aiz — b
where C is the circle of unit radius with centre at the origin, as shown in Fig. 7-6.
The poles of —2——--— are obtained by solving bz2+2aiz—b = 0 and are given by
bz2+ 2a1z— b
J = —2ai % V—4a2+4b2 _  —ai = Va2-b2i
2b i b
= 2 2 —a— Va2 — b2
{ a+\/ba b}i,{ a v‘ba }i

Only .T..“_'*'_T“iiz.i lies inside T, since

e+ VB, _ |YEoBoe VEBrel b}y iap
b Var— bl +a| ' (Ja?—B% + a) |
—a + Va2—b? . . 2
5 P = 1 =5 TR N, S
Residue at z; e 1 ;l_.m.‘ (z—2y) b2 F 2ais — b
= lim 0/—— = 1 = .
2=z 2bz + 2ai bz + ai Va2 —b2i

by L’Hospital’s rule.

= 2 the required value.

Then § 2dz L ogif ) = ——,
b22 + 2aiz — b A\ =8t i/ Jab= bt

2w i .
36 T
13. Show that f . L
o b — 4cosd 12
If z= ¢! then cosé = z+;_l, cos 36 = &;—_:—‘2 = 2—3—4'2—2:—3. dz = izde so that
“” c0s30 g = (B+z-%/2 dz _ _if 28+ 1 2
b—4cose cb—4(z+2z71)/2 iz i J. 2322 — 1)(z — 2)

<0
where C is the contour of Fig. 7-6.

The integrand has a pole of order 3 at z=0 and a simple pole z=} inside C.
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1 a2 [,
Residueat z =0 isl L o7 33 {z

L A4 _ 21
f2-1)e-2)] 8’

Residue at z =} is lim {(z — 1) . ___z_'_-l_-l.__} = - 66
2=1/2 2

232z —1)(z —2)

ﬁ-
1 B+ 1 S =l 21 _66| _ x :
Then ~% A mz—_i!) dz = (2:) { 8 24} 12 as required.
2w
do _ br
14. Show that J‘: &= Ssmo) 3

Letting z = e'®, we have sing = (z—271)/2i

dz = ie'®ds = izd¢ and so
f"’ de _ dz/iz _ _4 f zdz
o (6 — 3sing)? c {6 — 3(z—2"1)/2{)2 (31’— 10iz — 3)2
where C is the contour of Fig. 7-
) T .
The integrand has poles of order 2 at z = 1 wore = MR =8 = 381, /3.
pole i/8 lies inside C. 6 6
= i e
Residue at z =1/3 = 'l_x.r}}a T {(z i/8) GA—10% —8)’}
d . z b
= im = - . S — = —_——
Mo s {(‘ RAL Py PP an’} 266
4 A | =65\ - br
L § (3:2—1012 B2—10iz—82 i (2")<256> T
Another method.

From Problem 12, we have for a > [b],

THE RESIDUE THEOREM. EVALUATION OF INTEGRALS AND SERIES

[CHAP. 7

Only the

f!l’ de _ 2r
o a-+ bsine Va2 — b2
Then by differentiating both sides with respect to a (considering b as constant) using Leibnitz’
rule, we have ¢
d (" de ™ 9 1 "
daJ, a+bsine J; E(a-#baino) _f (.'.1+bsin0)2
o A2\ _ 2w
da \ /az — b2 (G’ i b!)sfl
Le f“ ds _ 2ra
- b (@ + b 8in ¢)2 (a2 — b2)3/2
Letting @« =6 and b = —3, we have

2r de

= a8 = b

o (6—3sing)2 ~— (52-—38%%2 T 32
DEFINITE INTEGRALS. OF THE TYPE f F( ){::’: ::} dx
15. 1 |F(z)| =

2 for z = Re** where k>0 and M are constants, prove that

lim : e F(z)dz =

= 0
R= o

where I i the semicircular arc of Fig. 7-5 and m is a positive constant

If z = Re'9, f eim:r F(z) dz =

f e'mRe'® F(Rel%) iRet® dp. Then
r 0
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16.

17.

L w
f eimRe'® P(Re®) iRe'® do| = f | eimRe® F(Rei®) iRe' | do
0 0

: .
= f | eimR coso — mR sin® FY(Reif) iRei® | do
0

14
= f e—mRsiné |F(Rcm)| R de
0

M fl‘ oM /2
S = e—mRsiné g = = e—mRsind dg
Rx-t ), Rk-1 ),

Now siné = 26/r for 0 =6 = n/2, as can be seen
geometrically from Fig. 7-7 or analytically from Prob. 99.
Then the last integral is less than or equal to .

w2
T:‘iﬁ?li e—2mRO/T dg = ”M = — g~mR)

As R — = this approaches zero, since m and k are positive,
and the required result is proved.

coS Mz L
Show that J; ’+1dx = N, m > 0.

em:

Consider § 7] dz where C is the cuuntour of Fig. 7-5. The integrand has simple poles at
c

z = *i, but only z =1 lies inside C.

imz -m
Residue at z =1 is li i) — Ly
esidue at 2z ,‘.'.“.{(’ G=0EF '.)} o Then
§ ————z;‘:'l dz = 2nri (62:'.) = ge ™
c
i IR eimz @ eimz d . e
. g v hapms T ™
R R
: cos ma sin mz eimz X o
1e., f —2—_‘_—1—d£€ + 1f 22 + 1 dx + jrzT_—':-i dz = me™ ™
imz
2 cosmx 4. f e i e—m
woxl, e ,’; 2+1 - x

Taking the limit as R~ = and using Problem 15 to show that the integral around T approaches
zero, we obtain the required result.

1 f" z sinnz _
Evaluate i ———z+2x+5d.’c

Consider § -z-z—e‘:"——dz where C is the contour of Fig. 7-5. The integrand has simple poles
c22+2z+5 “ i
at z=—1=%2i, but only z = —1+ 2 lies iuside C.

i 1 ar
Residue at z = —1+2i is _lim {(z+1—2a-—ﬁl—} = (-1+2) . Then

e 224+2z+56
zelrz e—ir—2m T "
L AP | = 2 oo = =(1-—-2 14
£z3+2z+5 . = 1+2')( Iy ) i
R xeinx f zelvz N ; -
e . — i = —=(1—-2 2w
e I_Rz’+2x+5 *t ) armrs g

R R i irz
% cos T ; zsinwz g o f ze dz = T(1—2i)e-"
T J:n z’+22+6dx + ‘J:u 22+ 22 +5 rz2+2z+56 2( e
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Taking the limit as R = =« and using Problem 15 to show that the integral around I' approaches zero,

this becomes
“  zcoswx ?  zsinrx T 5
WL, b oL [ e |_f d = —e— 2 -2
f_,x2+2x+5 cwZB ¥ 246 z° o=
Equating real and imaginary parts,
*  xcoswz T *  zsinrx
— " _dzx = —e f ————_dx = —ge v
f_..,x=+zx+5 2 w2+ 22+5 e

Thus we have obtained the value of another integral in addition to the required one.

MISCELLANEOUS DEFINITE INTEGRALS ¥

18. Show that f ML = =

2
The ' method of Problem 16 leads us to consider F,

the integral of e'*/z around the contour of Fig. 7-5.

However, since z=0 lies on this path of integration £
and since we cannot integrate through a singularity,
we modify that contour by indenting the path at z=0, G __H
as shown in Fig. 7-8, which we call contour C’ or -R =4
ABDEFGHJA.

. = . . ’
Since z = 0 is outside C’, we have Fig. 7-8

1z
f‘—’—dzzo
z

c

—‘6“’ elz
or f dx + f—-dz ——da: + —dz = 0

HJIA BDEFG
Replacing z by —x in the first integral and combining with the third integral, we find

R — iz iz
fa‘*___ﬁdw,fz.d” fz_d, = @
¢ x z 2

HIA BDEFG

R i i
- 2if sinz ;. _ _ (4 — f ."_'d,
€ z o

HJA BDEFG

Let ¢— 0 and R- =. By Problem 15, the second integral on the right approaches zero. Letting
7z = eel® in the first integral on the right, we see that it approaches

0
—lim . ‘m ice?de = —lim ietee® dg = g
=0 [ €=0
since the limit can be taken under the integral sign.
Then we have

" sinw “ sinw P
lim zif Mn® oy = i - J’ sing , _ 7
Aus ~x & 0o % 2

=0

19. Prove that .-

. a 1\/?
2 — 2 —_ e
_j; sinz?*dr = j: cosz?dr = 2 \2

Let C be the contour indicated in Fig. 7-9, where AB is
the arc of a circle with centre at O and radius R. By

Cauchy’s theorem,
f &'dz = o0

c
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o
U

or

fe*" dz + fo“’dz ER fa"' dz = 0 )
AB

0A BO

Now on OA, z=2z (from =0 to x=R); on AB, z=Re'® (from ¢ =0 to ¢ = r/4); on BO,
2z =re™4 (from r=R to r=0). Hence from (1),

R ae 2,210 . wi/2
f ei” de + f e!R'e"" {Rel® do + f eirte" P eriid gy = 0 (2)
0 (3 R

R R w/4
f (cosx? + isinz?)dz = enmf e—rdr — f giR? cos20 — R'sin20 ;R .18 dg )
0 0 v

We consider the limit of (3) as R ». The first integral on the right becomes [see Problem 14,

Chapter 10]
ejrlli e 2 d;r = _‘ eﬂll — 5 4 ﬂ - 4 1‘ A ’ P ‘

The absolute value of the sccond integral on the right of (3) is

/4 N . T/4 5 Y
f ¢iR" cos20 — R sin26 ;o 10 d’l = f e—R"sin20 R dg
0 0

m/2
f e—R*siné dg
0
w/2
f e—2R"%/m dg
0

1— e—R")

e L]

T

ar
where we have used the transformation 2¢ = ¢ and the inequality sing = 2¢/7, 0 = ¢ = /2 (see
Problem 156). This shows that as R- « the second integral on the right of () approaches zero.

Then (38) becomes
= o 1 T 1 T
2 2 s S E g Sl B
J; (cos x? + 1 sinx?) dzx 3 2+2 5

and au equaviig real and imaginary parts we have, as required,

@ @ 1
f coszldx = f sinz?2dx = JE
o o 2\2

e i
Skow that coaee (Bl B v C<p<l
S f 42 "7 sinpa v -

) . 22! . " 7 2
Consides } 2 __de Sinee z=0 is a branch
“ 1+2

point, chivese ¢ as the contous of Fig T-1v wheie ihe
posilive real axis is the brauch line and where AL
and GH are actually coincident with the x axis buc
are shown separated for visual purposes.

fe

The integrand nas the simpie poic 7 - L ILeide o
Residue at z = —%1 - ¢" 18
p-1 )
lim (z41) 22 = (ehyp-1 == glp-iiml
-1 ( ) 1+2z ™

p—1 5 " i
Then f S dz = 2me? Yai or omictlug
cltz

the integrand, Fig 7-1¢
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J+ f + f+ f = rico-vm

AB BDEFG HIA
We thus have

r" #0144 fzw(Re"’)P"iRe“’do & J" (we2mpp=1
. o X

¢ l+wm 1 + Ret® 1 + ze2m
= fo (ce®)~Viea8ds  _ g ;pto-nmt
o 1 + eef®

where we have used z = xe?™ for the integral along GH, since the argument of z is increased by
27 in going around the circle BDEFG.

Taking the limit as ¢~ 0 and R~ = and noting that the second and fourth integrals approach
zero, we find

© gr—1 P J“’ etrits- go-1 Byt 1361
0 1+=2 1 + z
or 5
(1 — e2mitr—1)) f- -l o 2rie(p—Dni
— @ —; 1e
0 142 3
so that
f“’ &Pl . = 2rpiele—lw 2ri R .
0o 1+=z 1—e2mp=D = gprl —e—pri T  Ginpr
” cosh ax
21. Prove that f —t—dr = —T——  where |g/|<1.
h coshz 2 cos (ra/2)
v
Consider f dz where C is a rec- 3ri
h z —R+ =i 2 R+ i
tangle having vertlces at R, R, R+ i, —R + =i T O T
: : AT ¥ |
(see Fig. 7-11). ) 17 .
The poles of ¢**/cosh z are simple and occur -R g 7 R
where coshz =0, ie. 2z = (n+ ;})ﬂ', n=0,=*l1, )
*2,.... The only pole enclosed by C is »i/2. Fig. 7-11
Residue of ol at z = 7i/2 is
cosh z
ami/2 eami/2 .
—_ 2 = e - = —ieami/2
e e sinh (z1/2) i sin (v/2)
Then by the residue theorem,
d.
f ¢ 4z =  Zpi(—ieo™3) = 2geamis2
cosh 2z

c
This can be written

R 14 -R
eax ea(R+iy) | f ea(x+mi)
» d SR i b ¢ . Sehpsii i S |
J:R coshz T J.; cosh (R + iy) v+ r  cosh (z+ =) *

0 ga(-R+iw)
T _idy = - 2geerin 1
+£ cosh(—R+iy)‘ v " 1)

As R - = the second and fourth integrals on the left approach zero. To show this let us consider
the second integral. Since

|cosh (R +iy)| = i"_*ii%'i:f_'! Z J{|eR+W] — [o=R-B|} = J(eR—eR) = jeR
we have

T m
ed(R+1) | f eaR = =
—_—id s —=dy = dgela-DR
J; cosh (R + iy) ¥ o et ¥ ‘

and the result follows on noting that the right side approaches zero as R — = since |a| < 1. In a similar
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22.

manner we can show that the fourth integral .: the left of (1) approaches zero as R+ ». Hence (1)

becomes
R].i-!o': {f_‘; coa:;a: o el .[: co‘:lrz dx} e oo
since cosh (z+ 7zi) = —coshx. Thus
R ™
;H.r."m R c::;x - = i. co:ll:x e f'r:: = emnz -iz-'a'“"” = Cos (:al2)
0
Now f = COsh a: cosh z r m

Then replacing z by —z in the first integral, we have

" g-ox ® gor _ * cosh ax . T
j; cosh:zdx +.£ eoshzdx E 2,]; conh:r.dz o8 (za/2)

from which the required result follows.

Prove that f ]—n(z—x_*_%l—)dx = 7ln2.

li(ii—'ldz around the contm:; C con-
Jo 22 +1

sisting of the real axis from —R to R and the semicircle
I' of radius R (see Fig. 7-12).

Consider

The only pole of In(z+1)/(z2+ 1) inside C is the x
simple pole z =1, and the residue is
" _a _In(z+4) _ In(2)
I VeTnrs - % Fig.7-12
Hence by the residue theorem,,
In (z + 1) _ Y29  _ k. .
a4 = 2o {——2'. = #ln(2) = =In2 + 4ot ()

on writing In(2) = In2 + Ini = In2 +In e'“’ = In2 + #i/2 using principal values of the
logarithm. The result can be written

In (z + i) f n(z+i _ g
f_n et D gy 4 [ BEEDa = m2 e

or

0
In(z+1) . J‘ In(z+1) J‘ In(z+19) 4 x
-[:n pea dx + . ,+1dz+ ,+1dz rIn2 + }«%
Replacing x by —z in the first integral, this can be written

J; -——l"“"’dz+f —L—l“‘+’dz+f—-(——1“‘+‘ds = rlng+ %

z2+1 x2+1 341

or, since In(i—z) + In (:+z) = In(2—22) = In(z2+1) + i,

R n(e2+1 L rr. . _
J; -';Es_ﬁ)-dz"'.’; mdx +f_$1T1d‘ = wln2+ =% (#)

As R- » we can show that the integral around I' approaches zero (see Problem 101). Hence on .
taking real parts we find, as required,

2
flia .__(ﬂi-_l)dg e f In(z+1) ;0 - .2

R= =g z2+1 341
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w/2

w/3
23. Prove that f Insinzdzr = f Incoszdz = —§»In2
[] 0
Letting z = tane in the result of Problem 22, we find

w/2 w/2
f In(tan?o +1) ooy gy = _2f Incosods = »in2
° 0

tan?e + 1
from which w2
f Incosoede = —¢rIn2
0
which establishes part of thg required result. Letting ¢ = #/2—¢ in (1), we ﬂntj
w/2
J' Insingdgp = —4rin2
0
SUMMATION OF SERIES
24. Let Cy be a square with vertices at 4

[CHAP. 7

N+ +1),  (N+§)(-1+9), TR
(N+§(-1-1), (N +§)(1-19)

as shown in Fig. 7-13. Prove that on Cn, _
lcot#z| < A where A is a constant. AL

N+ -1+ Cy (N+(1+9)

(1

-N-1fNtcget | 13 N

We.consider the parts of Cy which lie in the R e
regions y > §, —$=ysS}andy< . ]

Case 1: ¥> 4. In this case if z = z + iy,

p -

wiz 4 g—wiz
|cotwz| = |e X

erix—wy 4 g—wir+wy
erir=my — g—wixtwy

]

< |,ﬁs—n| + |¢—-ﬂ:+nl Fig.7-13
L omm ] ~ Jorm

= €™+ e™ 14 e-Im l+e ™ _ A

T e —em T T_eim 1—e* :

Case 2: ¥ < —} Here as in Case 1,

feotes| |eTiz—mv| 4 |g—wix+my| i i Ll B L 1+e 7
|evtz—mv] — |g—wiz+m| e~ Y — gmy 1 — e2m 1—e¢*

Case 3:. —iSyS*. Conliders=N+i+iv. Then

|eotzz| = leotx N+ 4 +iy)| = leot(x/2+xiy)| = |tanhsy| = tanh(#/2)
If 2=-N—-}+iy, we have similarly ’
|eotwz| = leotw (N —§+iy)| = |tanhey| = tanh (s/2) = 4,

P ge—— N+ §)=1-4) TN+ -0

N+1

Thus if we choose A as a number greater than the larger of A, and A;, we have |cotwz] < A
on Cy where A is indepéndent of N. It is of interest to note that we actually have |cotwz| S A, =

coth (v/2) since A3 < A4,. :

. =

25. Let f(z) be such that along the path Cy of Fig. 7-13, |f(2)) = — where k>1 and M

M
are constants independent of N. Prove that laf*

i f(n) = — {sum of residues of = cotrz f(z) at the poles of f(z))
Case 1: .I(z) has a finite number of p-olu.

In this case we can choose N so large that the path Cy of Fig. 7-13 encloses all poles of f(z).

The poles of cotxz are simple and occur at z = 071,28, ;.5
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Residue of rcotwzz f(z) at z=n, n = 0,*1,%2, ..., is

—n) coszz f(z) = f(n)

. ; = i £
’h-]'.r:‘ (z—n)recotrz f(z) = 1‘_.‘“-' (gin rZ

using L'Hospital’s rule. We have assumed here that f(z) has no poles at z=n, since otherwise the
given series diverges.

By the residue theorem,

f wcotwz f(z)dz = i f(ﬂ) + S (1)
c

N

where S is the sum of the residues of = cotzz f(z) at the poles of f(z). By Problem 24 and our
assumption on f(z), we have

rA M

I § w cotrz f(z) dz = (8N + 4)
Cn
since the length of path Cy is 8N + 4. Then taking the limit as N+ » we see that
lim ¢ weotszf(z)dz = 0 ' ()
Ne=tw Cy
Thus from (1) we have as required,
_E. fm) = -8 : ).

Case 2: f(z) has infinitely many poles.

If f(z) has an infinite number of poles, we can obtain the required result by an npproprhta
limiting procedure. See Problem 103,

00

26. Prove that z = + ;= Ecoth =a  where a > 0.

Let f(2) = —51—; which has simple poles at z = *ai.

. = cot 72
Residue of g at z=ai is
r cot w2 _ wcotwai _ _ ¥
Jj.rr: (z— aﬂ(‘_a‘.)(‘+a‘) = ; 2q coth ra

Similarly the residue at z = —ai is EE T coth ra, and the sum of the residues is ——coth wa. Then
by Problem 25,
= 1 =

. z-m — (sum of residues) = i coth ra

1. a2 . _
27. Prove that ;.F'-i-_a" = 2acoth1ra 2ab where a > 0.

The result of Problem 26 can be written in the form

el 41§l - Zomie

n=—unl+al ;i n=i nt+a? = @ M
s 1 : T

or 2-2. e gt R 3 cothra

which gives the required result.
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190
1 1 1 _
28. Prove that ntate -
(1_ﬁ+r"‘ )
. wcotyz _  wcosrz 2! 4!
e F@ S TR T S © oo
( 31 6! )
1 izt 222 o L .
?(1—T+"°)(1+-3T+"') = '.(1 3 + )
so that the residue at z = 0 is —=%/8.
Then as in Problems 26 and 27,
reoter ;. _ 0§ 1L . &1 _
g = 3353
- by
- - z.glﬂ’ 3
Taking the limit as N = ©» we have, since the left side approaches zero,
: e 1 w2 ‘ s 1 _ =
dw-F =0 WP Iag-=3F

- 30.

Another method. Take the limit as a— 0 in the result of Problem 27. Then using L’Hospital’s rule,
i 1 lim T¢cothwa —1 _

s 1
lim 3 5t a n o oal » %

a=9 n=1 n=1
If f(z) satisfies the same conditions given in Problem 25, prove that
i (=1)*f(r) = — {sum of residues of x csc=z f(z) at the poles of f(z))

We proceed in a manner similar to that in Problem 25. The poles of csc rz are simple and occur at
£2=0,%x1,%2,....

Residue of rcscrz f(z) at 2=n, n = 0,%1,%2, ..., is

lim (= —‘ Wresers f5) = limr ( .‘i;’:) f5) = (1) f(m)

By the residue theorem,
N
f rescrz f(r)de = 3 (—1)*f(n) + S (6}
c' x n=—-N -

where S is the sum of the residues of » cscrz f(z) at the poles of f(z).
Letting N -+ =, the integral on the left of (1) approaches zero (Problem 106) so that, as required,

(1) becomes -
. _E- (=1)*f(n) = -8 (#)

Prove that i (’(‘__'_l)a;, = ,:i:;s';a where a is real and different from 0, 1,2, ....

Let f(s) = FET)’ "which has a double pole at = = —a.

Residue of ﬁ at s=—a is

_5:5.:—;{(”.)-.%} S Y TN
Then by Problem 29,
--ni—-(—é_Tl);? = —(sumof residues) = slescracotra = e
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31. Prove that if a » 0,%1,*2, ..., then
at+1 a*+4 a*+9

@17 T @ @~

The result of Problem 30 can be written in the form

(a+2)2 +

1 1 1 1
a {(a+l)’ i (u-—l)’} ;3 {

i 1 _ 2a2+1) , 2(a?+4)

THE RESIDUE THEOREM. EVALUATION OF INTEGRALS AND SERIES

1 o n% COs na
2a? 2 sin?ra

e
1S

@@~ @i t
from which the required result follows.

32. Prove that i1 1,11

3
=+

_ 2a?+9)
(a2—4)?  (a2-09)2

w2 cos ra
sin? zra

— rn?cosrwa

8in? zra

Note that the grouping of terms in the infinite series is
permissible since the series is alsolutely convergent.

™
pgtp Tt T 32’
W = v 8eCnwZ 4 L4
de Fis) = Feosws | (-2 F )
= B ko] o TP
< 5(egee) < gege
80 that the residue at z =0 is »3/2.

The residue of F(z) at z=n+4, =

0, 1,22, .
'Jl“m {z—(n+§)5—7—

z’coa Tz

z—(n+})

s lim
m+4)Baens

If Cy is a square with vertices at N(1 + 1), N(1 — i), N(—1 + 1), N(—1—1), then

n 8ec vz il N, (=1 i
5’;,, V= = . 3 S |-

LA 1.1 .1
2@ty - Mnomt
from which the required result follows.

MITTAG-LEFFLER’S EXPANSION THEOREM

1% CcoS 72z

N

_32

3}

33. Prove Mittag-Leffler’s expansion theorem (see Page 175)

Let f(z) have poles at z=¢a,, n=1,2,...,
the function z,’_z)

[which are the simple poles of sec xz]

= __.(—._L_ _l“

R

g_lzl

3
16

Wyt Ty
and since the integral on the left approaches zero as N — «, we have

and suppose that z={ is not a pole of f(2).
__rhua poles at z=a, n=1,2,3

and {.
Residue of ;[g)f at z2=a, n = 1,2,38,

vy is lim (z—
v geeey
f2) e D s A
Residue ofz_‘ at z=1{ is ll_r.n‘(z Do 1)
Then by the residue_ theorem,
1 £ [ =
21 ﬂn z—¢ ds =

(1)

where the last summation is taken over all poles inside circle Cy
of radius Ry (Fig. 7-14).

Suppose that f(z) is analytic at 2 = 0. Then putting { =
in (1), we have

b
2,,fmd= = f(o)+§z" (2)

a0 22

=y

—f-

eay| of

Fig.7-14

191
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35.
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Subtraction of (2) from (1) yields

1 1Y ‘= L 1 _1
10— f0) + ?b.(%_r i)k g f”!(z) {,_ ‘} ds
= 2w f —p @
Now since |z—¢| & |z] — || = Ry — |§| for z on Cy, we have, if |f(z)] S M,
< M-Z:RN
' lf !(l"'f) Ry(Ry — 5]

As N- « and therefore Ry - =, it follows that the integral on the left approaches zero, i.e.,

) E
:.!i.:.n.. .{:’ z(z—1}) ds ’
Hence from (9), letting N — =, we have as required
1 = f0 + b, (r T a_)

the result on Page 176 being obtained on replacing ¢ by z.

Prove that cotz = 1 o E( +—1—-) where the summation extends over
z . N -

n==x1,%2.... Py
Consider the function f(s) = cots- = = Zconf_SINZ  Then f(s) has simple poles at
z=nr, n=%]1,22,23,.. , and the residue at these poles is
lim (‘_")(seoat - linz) " T (s—u) lim (scoll - slnl) s i
Yy zs8inz E=s AW sinz Ses AW F

At z =0, f(z) has a removable singularity since

m(owe- 1) = () <o

by L'Hospital’s rule. Hence we can define f(0) =

By Problem 110 it follows that f(z) is bounded on circles Cy having centre at the origin and
radius Ry = (N+ {)s. Hence by Problem 38,

wohy X ( + 1
s z z—nr nr

from which the required result follows.

1 1 1
Prove that cotz = - 2’{2’—w’+z’—4y’+ }
We can write the result of Problem 34 in the form
= 1 1
4 n".{n.'{.'.i_u (l—lr Ilr) * 2 (:—uar ;;)}

* J..h;{(l-:-r."sir) * (s+12f+s—lh) P (-._4-1_N.:+._—IITI:)}
e (el 4]

N |-

cotz =

It W

LA

1 1
”{;r:i*;r:m* }
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MISCELLANEOUS PROBLEMS

+iw ezt

1. e
36. Evaluate -— dz where a and t are any positive constants.
¥ A 2“ a—iwn V z + 1

The integrand has a branch point at z = —1.
We shall take as branch line that part of the real
axis to the left of z = —1. Since we cannot cross
this branch line, let us consider

et d
Z
i Va+1
where C is the contour ABDEFGHJKA shown in
Fig. 7-15: In this figure EF and HJ actually lie on
the real axis but have been shown separated for visual
purposes. Also, FGH is a circle of radius ¢« while
BDE and JKA represent arcs of a circle of radius R.

Since e#/\/z+1 is analytic inside and on C, we
have by Cauchy’s theorem

ot
dz = 0 1
£Vz+1 o

Omitting the integrand, this can be written

‘A{+”‘[+f+f+f+f=o ®

EF FGH HJ JKA

Fig. 7-15

Now on BDE and JKA, z = Re'® where # goes from 6 to » and = to 27 — o, respectively.

On EF, z4+1 = ue™, Vz+1 = Yueri/2 = iVu; whereas on HJ, z+1 = ue=™, \z24+1 =
\/;e"'” = —i\/;. In both cases 2 = —yu — 1, dz = —du, where u varies from R — 1 to ¢ along
EF and « to R — 1 along HJ.

On FGH, z+1 = e¢e'* where ¢ goes from —=r to .
Thus (2) can be written

fu-m it T gRet : © e~ DE (—dy)
a—iR

dz + ————1iRel’ds + =
e+ 1 VRe# +1 R-1 Vu
()

—% gleelé—13e R=1 g=(ut+ 1t (—dy)
t L e ) T
w—08p gRel0t
r  VRe® 1
Let us now take the limit as R -+ = and ¢« 0. We can show (see Problem 111) that the second, fourth
and sixth integrals approach zero. Hence we have

o o2t ds " 2'fl!—l e—(u+1)t & 2 r g —(ut1)t 2
= m i = du = 1) T du
-Il::h Yz+1 €0 « Yu Jn ﬁ

Rew

P iRe?ds = 0 )

or letting u = v2,

+ie ®a—(uti) - -t
_1: -—L dz = l f _‘-— du = 3‘_‘ Q_U“ dv = G__
258 Jy e 1/,84:1 r.Jo Yu r J, Vvt

: Sl T(nwp g
37. Prove that J: u'+1d“ 3

Let C be the closed curve of Fig. 7-16 below where Iy and I'y are semicircles of radii ¢« and R
rupectivgly and centre at the origin. Consider

fﬂ“_'Ed,

32+1
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Since the integrand has a simple pole z =i inside C
and since the residue at this pole is
in )2
1 _ (In z)2 = :
Hm G G=56+9 2
_ (@22 x
2i
8i Fig. 7-16
we have by the residue theorem
2 sl -
fc %“—f)—laz = 2ri (?’:—) = T’° 0
Now ;
R
(In 2)? _ ~¢ (In 2)2 f (In z) f (In 2)? f (In 2)?
j’; 2r1% = ), arr® T JErie ) an e+ ) Ar1 % @

Let z = —u in the first integral on the right so that Inz = In(—4) = Inu+1In(=1) = Inu+ #i
and dz = —du. Also let z=u (so that dz=du and Inz=1Inw) in the third integral on the right.
Then using (1), we have

R (Inu + xi)? J‘ (In 2)? f" (In u)? f (In z)? —zd
d d d = —
I w1 T r,z’+1"l'“r ) ul1 v r, 2241 $o T g

Now let ¢ 0 and R~ =. Since the integrals around I', and I'; approach zero, we have

f.(ln""’"!zdu+J“°!l"“)’du = —n?
0 u2+l 0 4

u+1
L] 0 0
(In u)? z-f In u _ zf du = 1 B
or ZJ; uz+1du+ ﬂn uz+1du s . g 4
g du  _ - R
Using the fact that | o tan "u.o =3
“ (In u)? " Inu 3
2_[( du + 2 f u = =
a1 ™ T ) we ™ a

Equating real and imaginary parts, we find

(Inws g - =2 f In u = 0
_I:u’+1 o 8’ , w1

the second integral being a by-product of the evaluation.

Prove that v
cothr  coth2r  coth 3« Tn® B ' - A"” b+
7t t-s T T 180 i i
Consider ; Cn

« cot vz coth 7z
e e ds
‘£ 2 -

N
taken around the square Cy shown in Fig. 7-17. —N-1

The poles of the integrand are located at: z=10

(pole of order 6); z = =*1,*2, ... (simple poles);
z = =i, +2i, ... (simple poles). i
Bi Problem b (replacing z by 72) we see that: (N + )1 .;o b -(N+1)i - (N+ -1
' P -
Residue at 2 =10 is 5

Residue at z=n (n = *1,%2,...) is Fig. 7-17
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lim J(Z=") rcoswscothwz| _ coth nr
z—+n | 8in #z P n®
Residue at z=ni (n = *1,%2,...) is "
lim (z —ni) _ = cot vz cosh rz — coth nr
z-+ni |8inh vz 23 nd

Hence by the residue theorem,

f rcotwrzcothwz 4o _ —Ta3 + ﬁ cothamr
Cx 23 46 n=1 n

Taking the limit as N - =, we find as in P.sblem 25 that the integral on the left approaches zero
and the required result follows. ‘

Supplementary Problems

RESIDUES AND THE RESIDUE THEOREM
39. For each of the following functions determine the poles and the residues at the poles:

2 )
) 2l (’“). (@) %55, @ sechz, (o) cots.

22—z—-2
Ans. (a) z = —1,2; 1/3, 5/3
b z=1,4 (d) z = §(2k + =g (—1)k*1i where k = 0,*1,*2, ...
(¢) 2=0;1 (¢) z = kri; 1. where k = 0,%1,%2, ...
40, Prove that f “—"%idz = i if C is the square with vertices at =2 2i.

c

41. Show that the residue of (cscz cschz)/z3 at z=0 is —1/60.

42. Evaluate f—fi'— around the circle C defined by |z| = b. Ans. 8ri
c cosh z e

.43 Find the zeros and poles of f(z) = G ok el and determine the residues at the poles

: i Bt22+2z '
Ans. Zeros: z=*2i Res;atz=0is2 Res;at z=—-1+1i is —§(1 =31 Res; at z = —1—1¢
is —§(1+30)

44. Evaluate f e~ 1/ gin (1/z) dz where C is the circle |z| = 1. Ans. 2xi
c

45. Let C be a square bounded by z = =2, y = *2. Evaluate § (7'?:—2:-’)—5&3 Ans. -91\/5/2

46. Evaluate - -5 where C is (a) |z—2i] = 6, (b) the square with vertices at
c (z+2)2 (z’+4)z’

1+4,2+4,2+2i, 1+2i, .

2 + Sum:rzdz

=)t where C is a square having vertices at 3+ 3i, 3—3i, —3+3i, —3— 3i.

47. Evaluate

Ans. —6xi

1 : . ; 2 2
48. Evaluate 2 f z(z" D dz, t >0 around the square with vertices at 1-+1, —1+4¢ —1—7%, 1—-4d

Ans. 1 — cost
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DEFINITE INTEGRALS

® de  _ x
49. Prove that J: = P i m—.
° dx
50. Evaluate £ (—2’_4'1-)_(-2_’-{-—‘)" Ans. Bx/288
v
51. Evaluate ’ M—do. Ans. 0
0 b — 3cose
2w 314
cos 3¢ f cos? 3¢ — 3
52. Evaluate £ 5+4cos0d" 53. Prove that £ 5__‘“.2.4{0 =3
54. Prove that it m > 0, COOME gy = Te (1t m)
. o (x2+1)8 4

ols g 7 f" cos x
8. (¢) Find the residue of =" at s=i  (b) Evaluate ) @I

2w de _

2r
o a+bcoss +osine  Gopi-g

’ w
57. Prove that r E—M—do = 1=
°

66. If a® > b2+ ¢2, prove that

65 — 3 cose)t 16,384
58. Evaluate f " e A \/i)a
3 a X x‘+s’+ 1. ns. o .
= dz

§9. Evaluate Ans. =/2

—w (22 + 42 + B)2"

61. Discuss the validity of the following solution to Problem 19. Let u = (14+92/V2 in the
result f e~wdy = *\/; to obtain f e-t? dy = $(1 —9)V=/2 from which f cosztdz =
0 ° 0

f sinz?dx = }\/r 2 on equating real and imaginary parts.
0

L
g cos 27z = 'Tr
62. Show that J: __—z‘-i-z’i—ldx = --—2‘/53 w/V3,

SUMMATION OF SERIES

s 1 = r LSRR |

63. Prove that “gl WriE: T cothsr + % csch? » 2
1 _ o 1 _

64. Prove that (a) 3 =% %) .g‘ =~ Rl

§ (U~ nsinme _ rsichar _
65. Prove that 'El =5 b’ TSI<T

®

T g _ =
66. Prove that Fratag-gt = T

< 1 T {slnh 2ra + sin 2tu}

67. Prove that ._2_-;.:,.-4; = 0% \cosh 2ra — cos 2ra [’

1 2
= % coth ra coth »b,

68. Prove that 2___l§__m -

n=
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MITTAG-LEFFLER'S EXPANSION THEOREM

1 1 1 1
69. Prove that cscz = ;"2'(:’—:"-:1—4.!"',1_9,3_"')'

70. Prove that sechz

¥ ( : s 3 4 5 = 2% )
\(#22 422 (3x/2)+ 22" (6x/2)2 + 22 .

. 1 1 1
71. (a) Prove that tanz = 2‘((:/2)’—:3+(3:/2)’—s’+(5r12)’—z‘+ )
P R | _
(b) Use the result in (a) to show that 1—2+32+5=+ﬁ+ = 3

E 72. Prove the expansions (a) 2, (b) 4, (c) 6, (d) 7, (¢) 8 on Page 1765.

73. Prove that 3 L = 1{1 1+—-1—-}.

t,122+4k’r’ é; i—ﬁ e—1
4
74. Prove that l~}-—!-+l+_1_.4.... = X

14 3¢ ¢ T4 96

MISCELLANEOUS PROBLEMS

75. Prove that Cauchy’s theorem and integral formulae can be obtained as special cases of the residue
theorem.

76. Prove that the sum of the residues of the function 22842245 at all the poles is 2/3.

320—8z+ 10
2
77. If n is a positive integer, prove that f eco88 cog (ng — sing)de = :—'l'
[
78. Evaluate § z%¢l/rdz around the circle C with equation |z—1| = 4. Ans. 1/24
c

79. Prove that under suitably stated conditions on the function:
2% i g
de = 2xf(0), b L de = -—=f'(0).
(@ f.. ) 10, () j: f(e#) conodoe = —r ['(0)

80. Show that (a) f' cos (cos @) cosh (sine)de = 2»
0

(b) f" ecos? cop (sin 6) cose do = r.i
°

® sin oz - & e 1
81. Prove that J; ,m—...id" = 4cot 3 %"

[Hint. Integrate edi*/(¢?7*—1) around a rectangle with vertices at 0, R, R+i, i and let R =]

“ sin az T T

82. Prove that J; .,,,_1‘“ ~ 2a 2 sinhra’
. Hio ot sin pt
33. If a,p and t are positive constants, prove that _r 1 ds = :
a—few 2 +,” P
Inz _ =In2
84. Prove that A Atad® = T34
B ® _ossinh az -

85. If —x <a <, prove that _[- e cosa + cosh "
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- dz _ In2

86. Prove that. J; m = e
" Inz _ —n/2 [’ (nz? , _ 332
87. Prove that (a)J; sl = 0 ) Ghde = T

[Hint. Consider f Mdz around a semicircle properly indented at z=0.]

AF1
88. Evaluate f pds. Ans. jzin2
89. Prove that if |a] <1 and b >0, f '—i,nl'——af-cosb:cdz = Z(__ sinar )
o sinhzx 2 \ cosar + cosh br
90. Prove that if —1<p <1, f CBPR iy = T ____
o cosh z 2 cosh (pr/2)
In(l+z),, _ rin2
91. Prove that J; 122 dx = 2

92. If «a>0 and —#/2 < B < #/2, prove that

(a) f‘n e—ax’cosB cog (ax? sin B) dz = *\/r/a cos (8/2).
°
(b) fﬁ e~or'cosB gin (ax? sin B)dz = }Vw/a sin (B/2).
(}
< 1

2z = AR |
93. Prove that csc?z ‘ =2_‘ z—na)?"

94. If « and p are real and such that 0 < |p| <1 and 0 < |a|] < #, prove that

| g = ( v ) (EM

o %2 + 2z cosa + 1 sin pr sin a

95. Prove that fl X = 2 [Hint. Consider the con v

. A = = . e -
[ !\/3 22— 23 V3
tour of Fig. 7-18.] : C

96. Prove the residue theorem for multiply-connected regions.

97. Find sufficient conditions under which the residue theorem 4 l z
(Problem 2) is valid if C encloses infinitely many isolated AN e
singularities. AR

98, Let C be a circle with equation |z| = 4. Determine the
value of the integral

f z? c:sc1 dz
(od z

if it exists. _ Fig.7-18

© 99. Give an analytical proof that sine¢ = 26/ for 0 = ¢ = »/2.
[Hint. Consider the derivative of (sin #)/¢, showing that it is a decreasing function.]

5 'm

100. Prove that f dx = l
; smh T 4

101. Verify t.hat the integral around T' in equation (2) of Problem 22 goes to zero as R =.

102. (a) If r is real, prove that J" In(l1 — 2rcose + 7r3)de = ¢ =1 :
0 s = rlnr2 if |r|=1
w,

(b) Use the result in (a) to evaluate J: Inawine de  (see Problem 23).



CHAP.7] THE RESIDUE THEOREM. EVALUATION OF INTEGRALS AND SERIES 199

103. Complete the proof of Case 2 in Problem 26.

104. If 0 < p <1, prove that f ::’1 dx = wzcotpr in the Cauchy principal value sense.
(]
= 1 fﬁ 7 (r\/ﬁ)
. Sh h _— = —~——tanh|——
105. Show that ,..E__,u‘+n'+1 3 n 2

108. Verify that as N— = the integral on the left of (1) in Problem 29 goes to zero.

1 1,1 _1 .
107. Prove that ste mt " T s

108. Prove the results given on Page 1756 for (a) 2 ,(211._24-_1_) and (b) i (—1)"!(91—}1).

-

109. If —v = 0 = =, prove that (—l)"n:m n o Mr— :)2(” to),
n=1

110. Prove that the function cotz — 1/z of Problem 34 is bounded on the circles Cy.

111. Show that the second, fourth and sixth integrals in equation (3) of Problem 36 approach zero as ¢— 0

and R- =.
1 1 1 T
112. Prove that - " = e . B
rove that = "7%) ~ 3 cosh (37/2) ' cosh (67/2) 8
e g F il b d ¢ iti tants
. Prove that ;— £ _dz = —— where a an are any positive constants.
2ri a—{w ﬁ \/:t-
& cothmr 1947
114. Prove that .E. = = 56700
115. Prove that i dz w %
: , (@2+1) coshwz 2
1 1 1 - U .
116. Prove that 3o — Ziginh2s © P einhdr 360"
117. Prove that if @ and t are any positive constants,
1 i gin t

r" a—iw

ettcot—-lzdz =



