Chapter 8

TRANSFORMATIONS OR MAPPINGS

The set of equations _—

u = u(x,y

v = vz,9) } - @)
defines, in general, a transformation or mapping which establishes a correspondence between
points in the uv and zy planes. The equations (1) are called transformation equations.
If to each point of the uv plane there corresponds one and only one point of the xy plane,
and conversely, we speak of a one to one transformation or mapping. In such case a set
of points in the zy plane [such as a curve or region] is mapped into a set of points in the
uv plane [curve or region] and conversely. The corresponding sets of points in the two
planes are often called images of each other.

JACOBIAN OF A TRANSFORMATION

Under the transformation (1) a closed region R of the 2y plane is in general mapped
into a closed region R’ of the uv plane. Then if AA., and AA.. denote respectively the areas
of these regions, we can show that if « and v are continuously differentiable,

. AAuy o(u,v
' hm AA:! agzn V; (2)
where lim denotes the limit as a4., (or AA.) approaches zero and where the determinant
ou  du
o) _ | W _ mw _ duw )
a(z,y) o T dxdy dyox
ax oy y

is called the Jacobian of the transformation (1).

If we solve (1) for z and y in terms of u and v, we obtain the transformation
z = z(w,v), ¥ = y(u,v), often called the inverse transformation corresponding to (1).
If z and y are single-valued and continuously differentiable, the Jacobian of this trans-

formation is g—g%} and can be shown equal to the reciprocal of %—3—% [see Problem 7).

Thus if one Jacobian is different from zero in a region, so also is the other.

Conversely we can show that if u and v are continuously differentiable in a region R
and if the Jacobian gg“ci:-)ldoes not vanish in R, then the transformation (1) is one to one.
COMPLEX MAPPING FUNCTIONS

A case of special interest occurs when u and v are real and imaginary parts of an
analytic function of a complex variable z = z+1iy, ie. w = u+iv = f(2) = f(z +y).
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In such case the Jacobian of the transformation is given by
a(u, v 7
| w2 = I *)
(see Problem 5). It follows that the transformation is one to one in regions where
f'(z) » 0. Points where f/(z) =0 are called critical points.

CONFORMAL MAPPING

Suppose that under transformation (1) point (o, %) of the xzy plane is mapped into
point (ue, vo) of the uv plane [Figs. 8-1 and 8-2] while curves Ci and C: [intersecting at
(%o, ¥0)] are mapped respectively into curves C, and C; [intersecting at (uo,vo)]. Then if
the transformation is such that the angle at (%o, %) between C; and C: is equal to the
angle at (uo, vo) between C,' and C,' both in magnitude and sense, the transformation or
mapping is said to be conformal at (xo,%). A mapping which preserves the magnitudes
of angles but not necessarily the sense is called isogonal.

Ca

("»on 1’0)
C )
(zOn Ilo) CB

Fig. 8-1 Fig.8-2

The following. theorem is fundamental. :

Theorem. If f(z) is analytic and f(z)»0 in a region R, then the mapping w = f(2)
is conformal at all points of X.

For conformal mappings or transformations small figures in the neighbourhood of a
point z, in the z plane map into similar small figures in the w plane and are magnified
[or reduced] by an amount given approximately by |f(20)|", called the area magnification
factor or simply magnification factor. Short distances in the z plane in the neighbourhood
of z, are magnified [or reduced] in the w plane by an amount given approximately by
|f*(20)|, called the linear magnification factor. Large figures in the z plane usually map

into figures in the w plane which are far from similar.

-

RIEMANN’S MAPPING THEOREM

Let C [Fig. 8-3] be a simple closed curve in the z plane forming the boundary of a
region R. Let C’ [Fig. 8-4) be a circle of radius one and centre at the origin [the unit circle]
forming the boundary of region R’ in the w plane. The region R’ is sometimes called
the unit disk. Then Riemann’'s mapping theorem states that there exists a function
w = f(z), analytic in R, which maps each point ot R into a corresponding point of R’ and
each point of C into a corresponding point of C’, the correspondence being one to one.
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z plane w plane
d
Fig. 8-3 Fig.8-4

This function f(z) contains three arbitrary real constants which can be determined
by making the centre of C’ correspond to some given point in R, while some point on C’
corresponds to a given point on C. It sh.uld be noted that while Riemann’s mapping
theorem demonstrates the existence of a mapping function, it does not actually produce
this function. .

It is possible to extend Riemann’s mapping theorem to the case where a region
bounded by two simple closed curves, one inside the other, is mapped into a region
bounded by two concentric circles.

FIXED OR INVARIANT POINTS OF A TRANSFORMATION

Suppose that we superimpose the w plane on the z plane so that the coordinate axes
coincide and there is essentially only one plane. Then we can think of the transformation
w = f(z) as taking certain points of the plane into other points. Points for which z = f(2)
will however remain fixed, and for this reason we call them the fixed or invariant points -
of the transformation.

Example: The fixed or invariant points of the transformation w = z2 are solutions of 22 = z,
ie. 2=0, 1. ‘

SOME GENERAL TRANSFORMATIONS

In the following «, 8 are given complex gonstants while a, 9, are real constants.

1. Translation. w=2z2+8
By this transformation, figures in the z plane are displaced or translated in
the direction of vector 8.
2. Rotation. w = ez

By this transformation, figures in the z plane are rotated through an angle 6.
If 0o > 0 the rotation is counterclockwise, while if 6, < 0 the rotation is clockwise.

3. Stretching. w = az

By this transformation, figures in the z plane are stretched (or contracted)
in the direction z if a>1 (or 0'<a <1). We consider contraction as a special
case of stretching. ;

4. Inversion. w.=x 1z
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SUCCESSIVE TRANSFORMATIONS

If w=fi({) maps region Ry of the { plane into region Rw of the w plane while
¢ = f2(z) maps region R. of the z plane into region R;, then w = f[f2(z)] maps R.into R..
The functions f, and f2 define successive transformations from one plane to another which
are equivalent to a single transformation. These ideas are easily generalized.

THE LINEAR TRANSFORMATION

The transformation
w = a?+ B : (5)
where « and g are given complex constants, is called a linear transformation. Since we
can write (5) in terms of the successive transformations w = {+ 8, { = €'%r, + = az where
a = ae'%, we see that a general linear transformation is a combination of the {ransforma-
tions of translation, rotation and stretching.

THE BILINEAR OR FRACTIONAL TRANSFORMATION

The transformation
az + B

yz2+8’
is called a bilinear or fractional transformation. This transformation can be considered
as combinations of the transformations of translation, rotation, stretching and inversion.

The transformation (6) has the property that circles in the z plane are mapped into
circles in the w plane, where by circles we include circles of infinite radius which are
straight lines. See Problems 14 and 15.

The transformation maps any three distinct points of the z plane into three distinct
points of the w plane, one of which may be at infinity.

If 2y,2,, 23,24 are distinct, then the quantity

ad — By # 0 (6)

24— 21)(22 — 23)
7
(22— 21)(24 — z3) @
is called the cross ratio of 2, 2s, 23, z4. This ratio is invariant under the bilinear transfor-
mation, and this property can be used in obtaining specific bilinear transformations map-
ping three points into three other points.

MAPPING OF A HALF PLANE ON TO A CIRCLE

Fig. 8-5 Fig.8-6
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Let z; be any point P in the upper half of the z plane denoted by R in Fig. 8-5 above.
Then the transformation o
w = ei% (————_‘-’) (8)
zZ— 20
maps this upper half planc in a one to one manner on to the interior R’ of the unit circle
jw| =1, and conversely. Each point of the z axis is mapped on to the boundary of the

circle. The constant 6, can be determined by making one particular point of the = axis
ccrrespond to a given point on the circle.

In the above figures we have used the convention that unprimed points such as
A,B,C, etc., in the z plane correspond to primed points A’, B’,C’,etc., in the w plane.
Also, in the case where points are at infinity we indicate this by an arrow such as at
A and F'in Fig. 8-56 which correspond respectively to A’ and F’ (the same point) in
Fig. 8-6 above. As point z moves on the boundary of ® [i.e. the real axis] from —c
(point A) to +« (point F), w moves counterclockwise along the unit circle from A’ back
to A’.

THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

Consider a polygon [Fig. 8-7] in the w plane having vertices at Wy, W, ..., W, with
corresponding interior angles a,a, ...,a, respectively. Let the points wi,w,, ...; w,
map respectively into points i, s, ...,2. on the real axis of the z plane [Fig. 8-8].

w plane z plane

v

Fig. 8-7 Fig. 8-8

A transformation which maps the interior ® of the polygon of the w plane on to the
upper half R’ of the z plane and the boundary of the polygon on to the real axis is given by

%": = A(z—a)w? (z2—22)™/™=1 o\ (2 — g,)on/7—1 (9)

or

w = AJ‘ (Z—x)WT N (z— )™V - .. (z2—z0)™'""'dz + B (10)

where A and B are complex constants.
The following facts should be noted:
1. Any three of the points z),2, ...,%. can be chosen at will.
2. The constants A and B determine the size, orientation and position of the polygon.

3. It is convenient to choose one point, say . at infinity in which case the last
factor of (9) and (10) involving x. is not present.

4. Infinite open polygons can be considered as limiting cases of closed polygons.
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TRANSFORMATIONS OF BOUNDARIES IN PARAMETRIC FORM

Suppose that in the z plane a curve C [Fig. 8-9), which may or may not be closed,
has parametric equations given by

z = F(t), ¥=G() (11)
~ where we assume that F’ and G are continuously differentiable. Then the transformation
' z = F(w)+ iG(w) (12)
maps curve C on to the real axis C’ of the w plane [Fig. 8-10].
v z plane & w plane
C
x o u
Fig.8-9 ‘ Fig. 8-10

SOME SPECIAL MAPPINGS

~ For reference purposes we list here some special mappings which are useful in
practice. For convenience we have listed separately the mapping functions which map
the given region ® of the w or z plane on to the upper half of the z or w plane or the unit
circle in the z or w plane, depending on which mapping function is simpler. As we have
already seen there exists a transformation [equation (8)] which maps the upper half plane
on to the unit circle.

l b A b S 421 A. Mappings on the Upper Half Plane
A-1| Infinite sector of angle »/m w=2zm mz1/2
ﬂ'_.ﬂ] z plane iig_ﬂ_-lﬂ w plane
]

A-2| Infinite strip of width a w = emi/a
Fig.8-13 z plane
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A3

Semi-Infinite strip of width a-

(a)

Fig. 8-15,

= 3
(b) w = cos
Fig. 8-17’ z plane Fig. 8-18[ w plane
T M A ;. v »
D y :1A
% R o P bR
a '
c 491 B x j‘(v:‘: g '9» .qf_"‘,!v"
L 1
(c) w = conhl:-
Fig. 8-19] z plane Fig. 8-20| w plane
$
v v
B A
J o {' B 0' Q’j
c D : -1 1 -
A4 | Half plane with semicircle removed w = %(z + %)
Fig. 8-21| z plane Fig. 8-22' w plane
- v v
C
\
45 D5 a4 p lo p oy
-1 1 —-a a
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A-5| Semicircle w = l—z)
Fig. 8-23[ z plane w plane
" s 1
: oo
P A’ B’ [+ ' Ay
- o : 2o

A-6| Sector of a circle
Fig. 3-25] z plane Fig. 8-26| w plane
v v 3
C
D v, /m W A & 4! BI G, Dr AI
1 i -1 1
A-7| Lens-shaped region of angle »/m _ — L b
|[ABC and CDA are circular arcs.] S g e
Fig. 8-27 | z plane Fig. s-zs| w plane
v - .
B
=/m Ve
W
C ’ A » & p oy p,
-1 1 -1 1
A-8| Half plane with circle removed w = coth (x/2)
Fig.8-29 I z plane Fig. 8-30[ w plane
y . :
D~ ) ‘
1 i Y
c E
A B
A B|F G -1
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A-9 Exterior of parabola y2 = 4p'(p — ) w t(\/; - \fj; )
Fig. 8-31 z plane
—
4p
o 8 3 Rt
A-10 | Interior of the parabola 32 = 4p(p — x)
Fig. 8-33[ z plane
E
< x
A-11| Plane with two semi-infinite parallel cuts w = —gi+2Inz — 22
Fig. 8-35 ] w plane
A-12 | Channel with right angle bend w f{tanh*l pVz — p tan—! Vz}

Fig. 8-37 ' w plane

z plane




CHAP. 8]

CONFORMAL MAPPING

209

A-13

Interior of triangle

f talm=1 (1 — g)8/x=1d¢
0

w plane

Fig.8-39 I

Fig. 8-40 l

z plane

A-14

u dt
Inte - f , 0<k<
nterior of rectangle w 8 ,—————-—-—-( - o)1 — kith) 0 1
Fig. 8-41 I w plane Fig. B-ﬂl z plane

Exterior of unit circle
Fig. 8-43 | w plane Fig. 8-44 | z plane
B-2

w plane

Fig. 8-45 I
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B—-3 | Exterior of parabola 32 = 4p(p — )

w = 2{5—1
z

Fig. 8-47|

Fig. 8-48'

w plane

J75i

O u

B—4 | Interior of parabola y2 = 4p(p —z) tan’% -:;
Fig. 8-49| z plane Fig. 8-5|I| w plane
1
! C u
C-1| Semi-infinite strip of width a on to .
w = sin ;-
quarter plane 2a
Fig. 8-51 I z plane Fig. s-sz| w plane

C-2

Interior of cardioid on to circle

Fig. 8-53 I w plane

? = 2a%(1 + cos ¢)

Fig. 8-54 [
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c-3

Annulus on to rectangle

Fig.8-55 I z plane Fig. 8-56 l w plane

Semi-infinite strip on to infinite strip w = In coth (2/2)

Fig. 8-57| z plane Fig. 8-58 ' w plane

Plane with two semi-infinite cuts on to infinite strip

Fig. 8-59' w plane Fig. 8-60 I _z plane

.- Solved Problems

TRANSFORMATIONS

1.

Let the rectangular region R [Fig. 8-61 below] in the z plane be bounded by =0, ¥y =0,
=2, y=1. Determine the region R’ of the w plane into which ® is mapped under

the transformations:
(@ w=2z+(1-2i), (b) w=V2e"z, (c) w=\2e"z+ (1-2i).

(@) If w=2+(1—21i), then ut+iv=z+iy+1-2i=(2+1)+i(y—2) and u=z+1,v=y—2.
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Line =0 is mapped ir;to u=1l;, y=0 into v=-2; =2 into u=3; y=1 into v=-1
[Fig. 8-62]. Similarly, we can show that each point of ® is mapped into one and only one point
of R’ and conversely.

z plane w plane

Fig. 8-61 Fig.8-62

The transformation or mapping accomplishes a translation of the rectangle. In general,
w = z+ 8 accomplishes a translation of any region.

) If w=+v2emz, then u+iv = A+i)(z+iy) = z—y+iz+y) and v =z—y, v = z+y.

Line =0 is mapped into u=—y, v=y or u=—v; y=0 into u=2, v=2 or u=v;

z=2 into u=2-y, v=2+4+y or u+v=4; y=1 into u=2—1, v=2+1 or v—u=2
[Fig. 8-64).

z plane

Fig.8-63 - Fig. 8-64

The mapping accomplishes a rotation of ® (through angle r/4 or 45°) and a stretching of
lengths (of magnitude V2). In general the transformation w =az accomplishes a rotation and
stretching of a region.

(¢) If w=vy2e"/4z+(1—2i), then u+iv=(1+(z+iy)+1—2i and u=2z—y+lL,v=a+y—2
The lines 2=0, y=0, =2, y=1 age mapped respectively into u+v=-1, u—v=3,
u+v=3, u—v=1 [Fig. 8-66). '

z plane w plane
v
y=1
&m0 9&'“‘? s=3
e x
v=0
Fig. 8-65 Fig. 8-66

The mapping accomplishes a rotation and stretching as in (b) and a subsequent translation. In
general the transformation w = az+ 8 accomplishes a rotation, stretching and translation. This
can be considered as two successive mappings w = a2, (rotation and stretching) and 2z, = s + f/a

(translation).
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2. Determine the region of the w plane into which each of the following is mapped by
the transformation w = 22,

(a) First quadrant of the z plane.

Let z =re, w = petd, Then if w =123, peld =12%20 and p =12 ¢ =26. Thus points in
the z plane at (r, 8) are rotated through angle 26. Since all points in the first quadrant [Fig. 8-67)
of the z plane occupy the region 0 = ¢ = /2, they map into 0 =S¢ S or the upper half of the
w plane [Fig. 8-68].

Fig. 8-67 Fig. 8-68

() Region bounded by 2 =1, y =1 and z+y = 1.

Since w =22 is equivalent to u+iv = (z+1iy)? = 22 —y? + 2iry, we see that u = x?—y?,
v=2xy. Then line x=1 maps into u = 1—p% v=2y or u = 1—v2/4; line y=1 into
u=22—1,v=2x or u=1v2/4—1; line x+y=1o0r y=1—2 into u = 2—=(1—z)2=2x—1,
v=2x(1—x) =22—222 or v = §(1—u?) on eliminating =.

The regions appear shaded in Figures 8-69 and 8-70 below where points A, B, C map into
A’,B',C’". Note that the angles of triangle ABC are equal respectively to the angles of curvilinear
triangle A’B’C’. This is a consequence of the fact that the mapping is conformal.

z plane w plane

Fig. 8-69 Fig.8-70

CONFORMAL TRANSFORMATIONS

3. Consider the transformation w = f(z) where f(2) is analytic at zo and f’(z0) 0. Prove
that under this transformation the tangent at z, to any curve C in the z plane passing
through 2, [Fig. 8-71] is rotated through the angle arg f’(zo).

z plane w plane
v RS v
zo+ Az wy + Aw
-~ P

c/ ~ ol
z _/_X'L__'_ v gt a
0 w, = R

2 u

Fig. 8-71 Fig.8-72
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As a point moves from z, to z;, + Az along C, the image point moves along C’ in the w plane from
wy to wy+ Aw. If the pargmeter used to describe the curve is t, then corresponding to the path
z=12(t) [or z=2x(t), y =y(t)] in the z plane, we have the path w =w(t) [or u=u(t), v=9(t)] in the
w plane.

The derivatives dz/dt and dw/dt represent tangent vectors to corresponding points on C and C'.

Now %170 = %’ '§ = f’(z):—: and, in particular at z, and w,,
dw — g,y 92
Blonw, = THIGH I..., n
provided f(z) is analytic at z =2,. Writing %”I _— = poel®, ['(z) = Rela, é‘% _., = roet%, we
have from (1) e ’ e
. poe'®s = Rryeltteta) (2
so that, as required,
0 = 8+ a = 0, + arg f'(z) (€5

Note that if f'(zg) = 0, then a is indeterminate. Points where f(z) =0 are called critical points.

Prove that the angle between two curves C; and C; passing through the point z, in
the z plane [see Figures 8-1 and 8-2, Page 201] is preserved [in magnitude and sense]
under the transformation w = f(z), i.e. the mapping is conformal, if f(z) is analytic
at 2o and f'(20) » 0.

By Problem 3 each curve is rotated through the angle arg f'(zy). Hence the angle between the
curves must be preserved, both in magnitude and sense, in the mapping.

JACOBIAN OF A TRANSFORMATION

5.

If w= f(z) = w+1v is analytic in a region R, prove that

90) — |z

: azy)
If f(z) is analytic in R, then the Cauchy-Riemann equations
o _ v
dx ~ dy’ o= ay
are satisfied in ®. Hence
du ou u du
u,v) _ |9z 9y _ ox dy - (a_u_)’ + (f;‘f)’
a(zr y) dv dv ou ou oz 3”
dz .O_y— _a =z g
’ i a_u a_u — ?, 2
oz + ‘avl = I,(z)l

using Problem 5, Chapter 3, Page 72.

Find the Jacobian of 'the transformation in (a) Problem 1(c), (b) Problem 2 and
interpret geometrically.
(@ If w=f(z) = VZem4z+ (1—2i), then by Problem 5 the Jacobian is

N S

Geometrically this shows that any region in the z plane [in particular rectangular region R
of Fig. 8-65, Page 212j is mapped into a region of twice the area. The factor |f'(z)|2 = 2 is called
the magnification factor.
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Another method. The transformation is equivalent to u = z—y, v = z+y and so

u ou
dwv) _ |9 | _ ll —-1| - 3
=, v) w v - |
oz dy
() If w = f(z) = 22, then
w,v) _ IFaF = |22 = [2z+2iyl2 = 4(=2+?)

oz, y)

Geometrically, a small region in the z plane having area A and at approximate distance r
from the origin would be mapped into a region of the w plane having area 4r24A. Thus regions far
from the origin would be mapped into regions of greater area than similar regions near the origin.

Note that at the critical point z=0 the Jacobian is zero. At this point the transformation
is not conformal.

a(u,v) dz,¥y

7. Prove that 3z, y)' 3(u, v) = L

Corresponding to the transformation (f) u = u(z,y), v = v(x,y), with Jacobian g::: :; , we have
the inverse transformation (2) z = z(u,v), ‘y = y(u,v), with Jacobian % .
From (1), du = Pds+ foay, av = L + g—:dy.
From (2), dr= Zau+ Lay, day = Ldu + FLav.
Hence, . du = :—E{%du + g%dv} + %—:— {g’%du + -g—%dv}
{pi s oeimla s [ 2ula
from which g%g%+:_‘;g = 1, ‘;_;‘;_:. g_""g% =0 ®
Similarlywetind %:—:—+ :—;”% = 1, :—:gﬁ gg%ﬁ =0 )

Using ($) and (4) and the rule for products of determinants (see Problem 984), we have
du dul |9z 9z
a(u,v) =z, y) = oz dy du v
ax,y) o(u,v) w | y
oz oy ou v

4

uds  dudy duds  dudy

_ |emdu T wyou dmav wyav| _ |1 o . g
iz  dvdy iz iy 01
> iz ou you dzdv oy v

8. Discuss Problem 7 if » and v are r2al and imaginary parts of an analytic function f(z).

a(u,v) _
oz, ¥)

valued and analytic, then g%% = |g’(w)|2. The result of Problem 7 is a consequence of the fact that

In this case |f'(2)]2 by Problem 6. If the inverse to w = f(z) is z=g(w) assumed single-
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) 2 2
rorivwr = |92 |l = 1
since dw/dz = 1/(dz/dw).

BILINEAR OR FRACTIONAL TRANSFORMATIONS

9. Find a bilinear transformation which maps points z,, 25,23 of the z plane into points
w1, w2, w3 of the w plane respectively.
If wy corresponds to z,, k = 1,2,3, we have

w—w, = 2tf _mtf _  (@—pY)z—12)
X yz+ 38 Yz + 8 (v2 + 8)(yz, + 8)
' _ _ (a8 —By)(z—12) . _ (a8 —pBY)(z—2zy)
- YT T mraen T’ YT T mroun T @

Replacing w by w,, and z by zg,
_ (a8 —By)(z9—12,) _ — (a8 —BY)(23—2,)
T Gmt st 1T T Gt o) @

By division of (1) and (2), assuming a8 — By * 0,

Wy — w,

(w—w)(wy—wy) _  (2—2,)(23—2y) )
(0 — wa)(wy — 1) (2 — 29)(29 — 2,)
Solving for w in terms of z gives the required transformation. The right-hand side of (3) is called
the cross ratio of z,,2z, 2, and z.

10. Find a bilinear transformation which maps points z2=0,—i,—1 into w=4,1,0
respectively.

Method I. Since w = ;:I‘:, we have
_ al0)+8 _ a(-0)+p8 _ a=1)+p
W i=mvsr @ 1=350 @ 0= o
From (3), B =a. From (1), 8 = /i = —ia. From (2), y =1a. Then
w = Mte _ 1(s+1\ _ z+1)
T daz—ta  1\z—1/ ~ z—1

Method 2. Use Problem 9. Then

z—1

(w=9)(1=0) _ (z—0)(—i+1) Sibving, w = _‘.(z+l).

(w=0(1—4%) ~ (z+1)(-i—0)"

11. If z is in the upper half of the z plane, show that ]
the bilinear transformation w = e% ( : _;")
— &0

maps the upper half of the z plane into the
interior of the unit circle in the w plane, i.e.
|w] =1. v

z— 129

We have ‘“‘(::::)’ e

o] =
From Fig. 8-73 if z is in the upper half plane, |z —z,| =
|#— %], the equality holding if and only if = is on the
# axis. Hence |w| S 1, as required.

The transformation can also be derived directly
(see Problem 61). Fig.8-78
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12.

13

14.

15.

Find a bilinear transformation which maps the upper half of the z plane into {he
unit circle in the w plane in such a way that z =1 is mapped into w =0 while the point
at infinity is mapped into w = —1.

We have w =0 corresponding to z=1i, and w = —1 corresponding to z= . Then from
2 =% i—2
w = em"(z—z':) we have 0 = e”"(i—zo) so that z; =1i. Corresponding to 2 =« we have
)
w = e'% = —1. Hence the required transformation is

gl t—2

e = i .
w =1 1)(:: + 1') T itz
The situation is described graphically in Figures 8-74 and 8-76.

z plane w plane

i |
' u
CI
®
Fig. 8-74 Fig. 8-75
Fi - : : y 2z—-5
ind the fixed or invariant points of the transformation w = Y%
The fixed points are solutions to 2z = 2:;45 or 22+2z+6 =0, ie z = -—-1%x2i

Prove that the bilinear transformation can be considered as a combination of the
transformations of translation, rotation, stretching and inversion.
gL _az+B _a PBy—ad _ # - Y Iz
By division, w = s el + At = Rt where A =aly, » = (By —ad)/y? and

» = 8/y are constants. The transformation is equivalent to { = z2+v, r =1/t and w = A+apr
which are combinations of the transformations of translation, rotation, stretching and inversion.

Prove that the bilinear transformation transforms circles of the z plane into circles
of the w plane, where by circles we include circles of infinite radius which are straight
lines. :

The general equation of a circle in the z ,.ane is by P: sblem 44, Chapter 1, Azz+ Bz+ Bz+C =0,
where A >0, C>0 and B is complex. If A =0 the circle reduces to a straight line.

Under the transformation of inversion, w =1/z or z = 1/w, this equation becomes Cwib + Bw +
Bw+ A = 0, a circle in the w plane.

Under the t.r_ansformation of rotation and stretching, w =az or z =w/a, this equation becomes
Aww + (Bd)w + (Ba)w + Cad@ = 0, also a circle.

Similarly we can show either analytically or geometrically that under the transformation of
translation, circles are transformed into circles.

Since by Problem 14 a bilinear transformation can be considered as a combination of translation,
rotation, stretching and inversion, the required result follows.
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SPECIAL MAPPING FUNCTIONS

16. Verify the entries (a) A-2, Page 206 (b) A-4, Page 206 (c) B-1, Page 2009.
(a) Refer to Figures 8-13 and 8-14, Page 205.
If z = x+ iy, then
w = u+tiv = em/a = em(z+W)/a = gmr/a(cogry/a + isinry/a)
or u = e" /% cog ry/a, v = e"*/Y gin ry/a.
The line y =0 [the real axis in the z plane; DEF in Fig. 8-13) maps into u = e™*/a, v =0
[the positive real axis in the w plane; D'E'F’ in Fig. 8-14]. The origin E [z=0] maps into
E' [w=1] while D [x=—», y=0] and F [x=+=, y=0] map into D’ [w=0] and F' [w= =]
respectively.
The line y=a [ABC in Fig. 8-13) maps into u = —e"*/a, v = 0 [the negative real axis in
the w plane; A’B’C’ in Fig. 8-14]. The points A [z-+w y=a] and C [z =—=, y =a] map into
A’ [w=—=] and C’ [w = 0] respectively.
Any point for which 0<y<a, —w <z<«~ maps uniquely into one point in the uv plane
for which v> 0.
(b) Refer to Figures 8-21 and 8-22, Page 206.

If z=re® then
w = utiv = —;—(z+%> = %(n“+%e““) = g(r+%)coso+%(r—l)umo

and u:%(ri-%)coac, =%(r—1)sma.

Semicircle BCD [r=1, 0 = 6 = 7] maps into line segment B'C'D’ [u = acose, v=0,0S0 S,
ie. —a=u=a.

The line DE [¢=0, r>1] maps into line D'E’ [u = g(r-f- 1), u=0:|; line AB
[e =w, r > 1] maps into line A’B’ [u = —%(r+%). v=0:l.

Any point of the z plane for which » =1 and 0 <# <7 maps uniquely into one point of the
uv plane for which v= 0.
(¢) Refer to Figures 8-43 and 8-44, Page 209,

If z=1rel® and w = pe', then w = 1/z becomes pe'¢ = miw = %e'“’ from which p = 1/r,
¢ = —o.

The circle ABCD [p=1] in the w plane maps into the circle A’B'C’'D’ [r =1] of the z plane.
Note that if ABCD is described counterclockwise, A’B’C'D’ is described clockwise.

Any point exterior to the circle ABCD [p > 1] is mapped uniquely into a point interior to
the circle A'B'C'D’ [r < 1).

THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

17. Establish the validity of the Schwarz-Christoffel transformation.

We must show that the mapping function obtained from
%;g = A (z —‘xi)ﬂﬂﬂ'—l (z -— :‘)ﬂ.ll’—l cee (z -— z”)ﬂ.li—l (_i)
maps a given polygon of the w plane [Fig. 8-76 below] into the real axis of the z plane [Fig. 8-77
below).
To show this observe that from (1) we have

-

v

argdw = argdz + arg A +(——l) arg (z— ;) + (—— )arg(z—x,)
3 (®)
+ - +(-;'l—1)ng(z-z,)

As z moves along the real axis from the left toward z;, let us assume that w moves along a side
of the polygon toward w,. When z crosses from the left of z, to the right of z;, ¢, = arg(z—=z,)
changes from = to 0 while all other terms in (2) stay constant. Hence argdw decreases by
(aj/z— 1) nrg(z—z,) (ay/r—1)r = ay—w or, what is the same thing, increases by = —«, [an
increase being in the counierclockwise direction].
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18.

19.

20.

w plane

. Fig. 8-76 Fig. 8-77
It follows from this that the direction through w, turns through the angle = — a;, and thus w now
moves along the side w;w, of the polygon.

When z moves through x,, ¢, = arg(z—x,) and 8, = arg(z— ;) change from = to 0 while
all other terms stay constant. Hence another turn through angle = — a; in the w plane is made. By
continuing the process we see that as z traverses the z axis, w traverses the polygon, and conversely.

We can actually prove that the interior of the polygon (if it is closed) is mapped on to the upper
half plane by (1) [see Problem 26].

Prove that for closed polygons the sum of the exponents ? -1, :—’ -1, ..., —1;'1— 1
in the Schwarz-Christoffel transformation (9) or (10), Page 204, is equal to —2.
The sum of the exterior angles of any closed polygon is 2z. Then
(r—ay) + (g—ag) + -+ + (r—a,) = 2r

and dividing by —=, we obtain as required,
(51—1) % (2—1) #oeoe F ('11—1) = -2
T w w

If in the Schwarz-Christoffel transformation (9) or (10), Page 204, one point, say z.,
is chosen at infinity, show that the last factor is not present.

In (9), Page 204, let A = K/(—=z,)@/7~1 where K is a constant. Then the right side of (9) can
be written

= a,/m—1
K(z—a)m/7m—1(z — xY)o/ M et (2=, )W-1/T1 (x"_z_>

Tn

As z,— =, this last factor approaches 1; this is equivalent to removal of the factor.

Determine a function which maps each of the indicated regions in the w plane on to
the upper half of the z plane.

(a)

Fig.8-78 Fig. 8-79
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Let points P,Q,S and T [Fig. 8-78 above| map respectively ints I, Q",5" and T" |Fig. 8-79 above|.
We can consider PQST as a limiting case of a polygon (a triangle) with two vertices at @ and 5 and
the third vertex P or T at infinity.

By the Schwarz-Christoffel transformation, since the angles at @ and S are equal to 2, we have
o w/2 _ 1 l/2 -1 A K

L7k
—— = A@z+1) (z — l) = = o
dz Vit -1 vVi—z
Integrating, w = K ’ ds + B = Ksin'z + B
V1-—z?
When z2=1, w =>b. Ience (1 b = Ksin (1) + B = Ke/2 + DB.
When 2z = —1, w = —b. Hence, ) —b = Ksin~'(—=1) + B = =Ke/2 + B.
Solving (1) and (2) simultaneously, we find B = 0, K = 2b/r. Then
o eb
w = -v—sm z or : = sin o "b

The result is equivalent to entry A-3(a) in the table on Page 206 if we interchange w and :, and let
b = a/2.

()

w plane z plane

Fig. 8-80 Fig. 8-81

Let points P,0,Q [w=0>bi and S map into P’,0°,Q" [z=1] and S respectively. Note that
P,S, P, S are at infinity (as indicated by the arrows) while O and O’ are the origins [w =0 and : = 0]
of the w and z planes. Since the interior angles at O and Q are /2 and 3s/2 respectively, we have
by the Schwarz-Christoffel transformation,

dw i A 1{ =
- A(z—0) (z—1) -
Then w = K _’\/

To integrate this, let z = sin?¢ and obtain

I

2K [ costods = K [ (L+cos20)ds = KGo + }sin2o) + B

= K(§ + singcoss) + B = K(ain"\/;+ Vz(l—z))-}-l?

w

When 2=0, w=0 so that B=0. When z=1, w=>bi so that bi = K#/2 or K = 2bi/r. Then
the required transformation is

;e W = glﬂsnn—'\fz_+\,/z(1—z))

21. Find a transformation which maps a polygon in the w plane on to the unit circle in
the ¢ plane.
A polygon in the w plane can be mapped on to the = axis of the z plane by the Schwarz-Christoffel
transformation -
w = A J (z-—xl)ﬂl/'—l(zmz’)a./"‘“ vor(z—z)/T1dz + B (3}
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A transformation which maps the upper half of the z plane into the unit circle in the { plane is

| <= =
¢ = :+: or z = :(ﬁ—i) (2)

on replacing w by { and taking ¢ ==, zp=1 in equation (8), Page 204.

If we let xy,xy, ...,0, map into {;, ¢, ...,{, respectively on the unit circle, then we have for
| S
- o s fl=Ey .(1-;,,) o =2it - &)
L l(lﬂ) ‘WiFhy T TFDAFL)
Also, dz = —2idi/(1 +{)2. Substituting into (1) and simplifying using the fact that the sum of the
exponents % = 1, ‘—:-’_1—1, ...,'1—"— is —2, we find the required transformation
w = A’ f ¢ - {l)u,lw—l (e fz)n,lw—l ces (- r")a../vr—l d: + B ’

where A’ is a new arbitrary constant.

TRANSFORMATIONS OF BOUNDARIES IN PARAMETRIC FORM

22. Let C be a curve in the 2z plane with parametric equations x=F\(t), y = G(t). Show
that the transformation
z = Fw) + iG(w)
maps curve C on to the real axis of the w plane.

If z=2ax+1iy, w = u+1iv, the transformation can be written
z+ iy = Fu+iv) + iGu+iv)

Then v = 0 [the real axis of the w plane| corresponds to x + iy = F(u) + 1 G(u), ie. x = F(u), y = G(v),
which represents the curve C.

2 2
23. Find a transformation which maps the ellipse % + g in the z plane on to the

5=
real axis of the w plane. .

acost, y = bsint where

A set of parametric equations for the ellipse is given by « =
z = acosw + ib sin w.

a>0,b>0. Then by Problem 22 the required transformation is

MISCELLANEOUS PROBLEMS

24. Find a function which maps the interior of a triangle in the w plane [I"ig. 8-82] on to
the upper half of the z plane.

Let vertices P [w =0] and Q [w = 1] of the triangle map into points P’ [z =0] and Q" [z=1] on the
z plane while the third vertex R maps into R’ [z = =].

w plane z plane

Fig. 8-82 Fig.8-83
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By the Schwarz-Christoffel transformation,
dw
dz

Then by integration,

Azalr—l(z_l)ﬂlr—l = K:all“—-l(l_z)nlr—l

w = Kf fa/r=1(1 —p)B/r-1dt 4+ B
[

Since w =0 when z=0, we have B =0. Also since w=1 when z=1, we have

1

1 = K f fa/e—1 (1 —q)B/T=1d¢ - l‘(a]r) l‘(glr)
0 (a * B)
[‘ e =y
4 T
using properties of the beta and gamma functions {Chapter 10}, Hence
p =8
T

= T(a/z) T'(B/7)

a=—f
—_ e St =1 -— r—
= E /')fo ga/T=1 (1= g)8/v-1dg

Note that this agrees with entry A-13 on Page 209, since the length of side AB in Fig. 8-39 is
Jﬂ jare=1(1 —gppre-1gy = Lla/r)T(8/r)
0 (a + p)
r{ —=t
T
25. (a) Find a function which maps the shaded region in the w plane of Fig. 8-84 on to
the upper half of the z plane of Fig. 8-85.

(b) Discuss the case where b - 0.

and the required transformation is

Fig.8-84 Fig. 8-85

(a) The interior angles at Q and T are each g — @, .while the angle at S is 2r — (r — 2a) = v+ 2a.
Then by the Schwarz-Christoffel transformation we have

.(.i&"_: = A (z+ 1)(:—-a)/r—l.‘r+h)lr—l(z_l)uvc)lv—l
A zealw _ K zza/w'
(ZZ—1)alr  —  (1—z%alw
Hence by integration . .
= P & B
vy = w KJ; (1—t2)alr P+

When z2=0, w=ai;, then B=at and
z
_ “!&/' .
w = KJ;(]—-—{—’F'F'R‘FM (1)
The value of K can be expressed in terms of the gamma function using the fact that w = b when z =

[Problem 102], We find
K = (b—ai) Vr @)

P(E+%)r(l—§)
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(b) As b= 0, a~ z/2 and the result in (a) reduces to

z

& : ¢ dt . =

w = at — ai ——— = aiyl-—2?
o V1-—i2

= ayzt—-1

In this case Fig. 8-84 reduces to Fig. 8-86. The
result for this case can be found directly from
the Schwarz-Christoffel transformation by con-
sidering PQSTU as a polygon with interior an-
gles at Q,S and T equal to »/2, 2, and =/2
respectively.

26. Prove that the Schwarz-Christoffel transformation of Problem 17 maps the interior
of the polygon on to the upper half plane.

It suffices to prove that the transformation maps the interior on to the unit circle, since we
already know [Problem 11] that the unit circle can be mapped on to the upper half plane.

Suppose that the function mapping polygon P in the w plane on to the unit circle C in the
z plane is given by w = f(z) where f(z) is analytic inside C.

We must now show that to each point a inside P there corresponds one and only one point, say
2y, such that f(zg) = a.

Now by Cauchy’s integral formula, since a is inside P,

1 g dw
271 w—a

= 1
P

1 f'( =
2wi£_—£)-—dz = 4

Then since w—a = f(z) — a,

f(z)—a

But f(z) — a is analytic inside C. Hence from Problem 17, Chapter 5, we have shown that there is
only one zero (say zo) of f(z) — a inside C, i.e. f(zo) = a, as required.

27. Let C be a circle in the z plane having its centre on the real axis, and suppose further
that it passes through z2=1 and has z=—1 as an interior point. Determine the image
of C in the w plane under the transformation w = f(z) = §(z + 1/2).
We have dw/dz = #(1—1/2%). Since dw/dz =0 at z =1, it follows that z=1 is a critical
point. From the Taylor series of f(z) = }(z+ 1/z) about z =1, we have
w—1 = j{z=12—(z=1P + (z—1)4 — -]
By Problem 100 we see that angles with vertices at z =1 are doubled under the transformation. In

particular, since the angle at z =1 exterior to C is r, the angle at w =1 exterior to the image C’ is 2r.
Hence C’ has a sharp tail at w =1 (see Fig. 8-88). Other points of C’ can be found directly.

z plane w plane
v ) v
/—-\ [od
. g. P,
-1 ; 1
Fig. 8-87 Fig. 8-88

It is of interest to note that in this case C encloses the circle |z] =1 which under the transforma-
tion is mapped into the slit from w =—1 to w =1, Thus as C approaches |z| =1, C’ approaches the
straight line joining w=-1 to w=1.
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28.
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Suppose the circle C of Problem 27 is moved so that its centre is in the upper half
plane but that it still passes through 2 =1 and encloses z=—1. Determine the image
of C under the transformation w = §(z + 1/2).

As in Problem 27, since z =1 is a critical point, we will obtain the sharp tail at w =1 [Fig. 8-90].
If C does not entirely enclose the circle |z| =1 [as shown in Fig. 8-89], the image C’ will not entirely
enclose the image of |z| =1 [which is the slit from w = —1 to w =1]. Instead, C’ will only enclose that
portion of the slit which corresponds to the part of |z| =1 inside C. The appearance of C’ is therefore
as shown in Fig. 8-90. .By changing C appropriately, other shapes similar to C’ can be obtained.

Fig. 8-89 Fig. 8-90

The fact that C’ resembles the cross-section of the wing of an airplane, sometimes called an airfoil,
is important in aerodynamic theory (see Chapter 10) and was first used by Joukowski. For this reason
shapes such as C’ are called Joukowski airfoils or profiles and w = }(z+1/z) is called a Joukowski

transformation.

Supplementary Problems

TRANSFORMATIONS

29.

30.

31.

32.

33.

34.

Given triangle T in the z plane with vertices at i, 1 —4, 1 +1i. Determine the triangle T’ into which T is
mapped under the transformations (a) w = 3z+4—2i, (b)) w = iz+2—1, (¢) w = be™/32 — 2+ 4i.
What is the relationship between T and T’ in each case?

Sketch the region of the w plane into which the interior of triangle T of Problem 29 is mapped under
the transformations (a) w = 22, (b) w = 22+ (2—1)z, (c) w = z+1/z.

(a) Show that by means of the transformation w = 1/z the circle C given by |z—3| = b is mapped
into the circle |w +38/16| = b5/16. (b) Into what region is the interior of C mapped?

(a) Prove that under the transformation w = (z —1i)/(iz—1) the region Im {z} = 0 is mapped into
the region |w| = 1. (b) Into what region is Im{z} =0 mapped under the transformation?

(a) Show that the transfo'rmation w = 1}(23'“+2"|e“) where « is real, maps the interior of the
circle |z =1 on to the exterior of an ellipse [see entry B-2 in the table on Page 209].

(b) Find the lengths of the major and minor axes of the ellipse in (a) and construct the ellipse.

Ans. (b) 2cosha and 2 sinh a respectively.

Determine the equation of the curve in the w plane into which the straight line 2 +y = 1 is mapped
under the transformations (a) w=22% (b) w=1/z

Ans. (@) u2+2v =1, () w?+2uv+2v2 = utv
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2/3
35. Show that w = ( } t z) maps the unit circle on to a wedge-shaped region and illustrate graphically.

36. (o) Show that the transformation w = 9, —3iz4+6—4i is equivalent to u = 2z+3y+5,
v = 2y—3z—4.
(b) Determine the triangle in the uv plane into which triangle T of Problem 29 is mapped under
the transformation in (a). Are the triangles similar?

37. Express the transformations (a) u = 422 -8y, v = 8x—4y? and (b) u = x3— 3xy2, v = 322y —y°
in the form w = F(z,%). Ans. (@) w = (14 i)(22+ 22) + (2 — 2i)zz + 8iz, (b) w = 23

CONFORMAL TRANSFORMATIONS -

38. The straight lines y = 2z, x+y = 6 in the ay plane are mapped on to the w plane by means of the
transformation w = z2. (a) Show graphically the images of the straight lines in the w plane. (b) Show
analytically that the angle of intersection of the straight lines is the same as the angle of intersection
of their images and explain why this is so.

39. Work Problem 38 if the transformation is (a) w = %, ) w= —'::_—i

40. The interior of the square of with vertices at 1, 2, 1+14, 2+1i is mapped into a region J" by
means of the transformations (a) w = 2z2+5 —38i, (b) w =22 (c)w = sinwzz. In each case sketch
the regions and verify directly that the interior angles of o are right angles.

41. (a) Sketch the images of the circle (x— 3)2+y% = 2 and the line 2x+3y =7 under the transforma-
tion w =1/z. (b) Determine whether the images of the circle and line of (a) intersect at the same
angles as the circle and line. Explain.

42. Work Problem 41 for the case of the circle (x—8)2+y2 = b6 and the line 2z + 3y = 14. .

43. (a) Work Problem 38 if the transformation is w = 3z — 2iz.

(b) Is your answer to part (b) the same? Explain.

\

44. Prove that a necessary and sufficient condition for the transformation w = F(z,2) to be conformal
in a region K is that 8F/?z = 0 and aF/az ¥ 0 in R and explain the significance of this.

JACOBIANS
45. (a) For each part of Problem 29, determine the ratio of the areas T and T'. (b) Compare your
findings in part (a) with the magnification factor |dw/dz|* and gxplain the significance.

6. Find the Jacobian of the transformations (a) w = 222 —iz+8—i, (Du=a2—2y+ytv= 22 + zy + ¥y
Ans. (a) |4z —i[2, (b) 4(x%+y?)

47. Prove that a polygon in the z plane is mapped into a similar polygon in the w plane by means of the
. transformation w = F(z) if and only if F'(z) is a constant different from zero.

48. The analytic function F(z) maps the interior R of a circle C defined by |zl =1 into a region R’
bounded by a simple closed curve C’'. Prove that (a) the length of C’ is f |F'(z)| |dz|, (b) the area
(o

of R’ is ff |F'(2)|2 dz dy.
R
49. Prove the result (¢) on Page 200.

50. Find the ratio of areas of the triangles in Problem 36(b) and compare with the magnification factor
as obtained from the Jacobian.
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51. Let u = u(a,y), v = v(x,y) and = = =({,n), ¥ = ¥t ).
Nu, v) _ A, v)  d(x,y)

3(5, ") a(xr JI) a(‘- '7) .

(b) Interpret the result of (a) geometrically.

(a) Prove that

(¢) Generalize the result in (a).

52. Show that if w = u+iv = F(z), 2z = z+1iy = G() and [ = ¢+1iy, the result in Problem 651(a)
is equivalent to the relation
[d_w dw riz,
dy

dz || dg
BILINEAR OR FRACTIONAL TRANSFORMATIONS
53. Find a bilinear transformation which maps the points i, —1,1 of the z plane into 0,1, » of the w plane
respectively. Ans. w = (1—14)(z—1)/2(z— 1)

54. (a) Find a bilinear transformation which maps the vertices 1+4, —i, 2—i of a triangle T of the
z plane into the points 0,1,i of the w plane.

(b) Sketch the region into which the interior of triangle T is mapped under the transformation
obtained in (a).
Ans. (a) w = (22—2—20)/{(i — 1)z — 3 — bi)

55. Prove that the result of (a) two successive bilinear transformations, (b) any number of successive
bilinear transformations is also a bilinear transformation.

56. If a+ b are the two fixed points of the bilinear transformation, show that it can be written in the form

w—a z—a
w—b = (z = b)
where K is a constant.
57. If a=b in Problem 56, show that the transformation can be written in the form
’ /
1 = 1 + k
w—a i—a

where k is a constant.

58. Prove that the most general bilinear transformation which maps |z/=1 on to |w| =1 is
/
w = elo ﬂ) f

where p is a constant, =1

59. Show that the transformation of Problem 58 maps |z| <1 on to (a) |lw]<1if [p|]<1 and (b) |w|>1
if |p| > 1.

60. Discuss Problem 68 if |p| = 1.
61. Work Problem_ll directly.

62. (a) If 2,2y, 252, are any four different points of a circle, prove that the cross ratio is real.
(b) Is the converse of part (a) true? Ans. (b) Yes

THE SCHWARZ-CHRISTOFFEL TRANSFORMATION
63. Use the Schwarz-Christoffel transformation to determine a function which maps each of the indicated
regions in the w plane on to the upper half of the z plane.

(a) zplane & . w plane

Fig. 8-91 Fig. 8-92
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(&)
2 K
rr
Fig. 8-93 Fig.8-94
(e - z plane w plane
v v
C B A
.- ol e » E
c -1 1 "
Fig. 8-95 Fig. 8-96
(d) z plane w plane
] ¥y v
> ’
v B__.C A o B__c
& = o P U
[4] 1 1
A
Fig. 8-97 Fig.8-98

]

Ans. (a) w = 23, (b) w = cosh (z2/2), (c) w = e, (d) w = 2z4/5

64. Verify entry A-14 in the table on Page 209 by using the Schwarz-Christoffel transformation.

Find a function which maps the infinite shaded region of Fig. 8-99 on to the upper half of the z plane
[Fig. 8-100] so that P,Q,R map into P’,Q’,R’' respectively [where P,R,P',R’' are at infinity as

indicated by the arrows). Ans. z = (W+w—ri)?
w plane z plane
v Lt v
s 4 + " Q I i £¥ )
. ; , ,
u :P :R ®
P
Fig. 8-99 Fig. 8-100

66. Verify entry A-12 in the table on Page 208 by using the Schwarz-Christoffel transformation.
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67. Find a function which maps each of the indicated shaded regions in the w plane on to the upper
half of the z plane. .

(a)

Fig. 8-101 Fig. 8-102
(b)

w plane z plane

Fig. 8-108 Fig. 8-104

68. (a) Verify entry A-11 of the table on Page 208 by using the Schwarz-Christoffel transformation.

(b) Use the result of (a) together with entry A-2 of the table on Page 205 to arrive at the entry C-b
in the table on Page 211.

TRANSFORMATIONS OF BOUNDARIES IN PARAMETRIC FORM

69. (a) Find a transformation which maps the parabola 32 = 4p(p — x) into a straight line.
(b) Discuss the relationship of your answer to entry A-9 in the table on Page 208.

Ans. (a) One possibility is z = p—pw?+2piw = p(1+iw)? obtained by using the parametric
equations = = p(1 —2), y = 2pt.

70. Find a transformation which maps the hyperbola z = acosht, y = asinht into a straight line.

Ans. z = a(coshw + isinhw)

71. Find a transformation which maps the cycloid z = a(t — sint), ¥y = a(l — cos t) into a straight line.
Ans. z = a(w + i — ie—iw)
72. (a) Find a transformation which maps the hypocycloid x2?/3 + y?/3 = a2/3 into a straight line.
(5) Into what region is the interior of the hypocycloid mapped under the transformation? Justify
your answer.

[Hint. Parametric equations for the hypocycloid are z = a cos?® t, v = asin?t, 05¢t< 2]
Ans. (a) z = a(cos? w + 1 sind w)
73. Two sets of parametric equations for the parabola y = x2 are (a) z = ¢, y=12 and (b) x = *et, y = 2t

Use these parametric equations to arrive at two possible transformations mapping the parabola into
a straight line and determine whether there is any advantage in using one rather than the other.
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MISCELLANEOUS PROBLEMS

74.

76.

7.

8.

79.

80.

81.

82.

84.

85.

(a) Show that the transformation w = 1/z maps the circle |z—a| = a, where a >0, into a straight
line. Illustrate graphically showing the region into which the interior of the circle is mapped,
as well as various points of the circle.

(b) Show how the result in (a) can be used to derive the transformation for the upper half plane into
the unit circle.

Prove that the function w = (z¢/a?) — 1 maps one loop of the lemniscate 2 = 2a? cos26 on to the
unit circle.

Prove that the function w = 22 maps the circle |z—a| = a, a >0, on to the cardioid p = 2a?(1 + cos ¢)
[see entry C-2 in the table on Page 210].

Show that the Joukowsky transformation w = z+ k?/z can be written as
w—2k _ ( z—k\?
w + 2k z+k

(a) Let w = F(z) be a bilinear transformation. Show that the most general linear transformation
for which F{F(z)} = z is given by

=g . TP

w—q z—q

where k% = 1.
(b) What is the result in (a) if F{F[F(2)]} = 2?
(¢) Generalize the resulls in (a) and (b).
Ans. (b) Same as (a) with k3 =1.

(a) Determine a transformation which rotates the ellipse 22+ xy+y2 = b so that the major and
minor axes are parallel to the coordinate axes. (b) What are the lengths of the major and minor axes?

Find a bilinear transformation which maps the circle [z—1| = 2 on to the line z+y = 1.
Verify the transformations (a) A-6, (b) A-7, (¢) A-8, in the table on Page 207.

Consider the stereographic projection of the complex plane on to a unit sphere tangent to it [see
Page 6]. Let an XYZ rectangular coordinate system be constructed so that the Z axis coincides with
NS while the X and Y axes coincide with the z and y axes of Fig. 1-6, Page 6. Prove that the point
(X,Y,Z) of the sphere corresponding to (z,y) on the plane is such that

— x ¥ 2242

I Y = -4 . Z = T
22+ y?+1 22+ y?2+1 x24y2+1
Prove that a mapping by means of stereographic projection is conformal.

(a) Prove that by means of a stereographic projection, arc lengths of the sphere are magnified in
the ratio (x2+y2+1):1.

(b) Discuss what happens to regions in the vicinity of the north pole. What effect does this produce
on navigational charts?

Let w = u(z,y), v= 13(::, %) be a transformation of points of the xy plane on to points of the uv plane.

(a) Show that in order that the transformation preserve angles, it is necessary and sufficient that

(a_u)’ i (a_v)’ (9.5)’ % _a_v_)’ dudu  dvdv
0x iz ay /)’ 0z oy dx dy
(b) Deduce from (a) that we must have either
G Moo v
ox dy' oy ox
Thus conclude that u -+ iv must be an analytic function of =z + iy.

or (ii) —=—-—7/—, —=—
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86. Find the area of the ellipse ax2+bay+oy? = 1 where a> 0, ¢>0 and 5? < daec.

Ans. 2x/\/dac — b2

87. A transformation w = f(z) of points in a plane is called involutory if z=f(w). In this case a single
repetition of the transformation restores each point to its original position. Find conditions on afB,Y8
in order that the bilinear transformation w = (az+ B8)/(yz+38) be involutory. Ans. 8 =—a

88. Show that the transformations (a) w = (z+ 1)/(z— 1), (b)) w = In coth (2/2) are involutory.

89. Find a bilinear transformation which maps |z S1 on to lw—1] S 1 so that the points 1, —i
correspond .to 2, 0 respectively.

90. Discuss the significance of the vanishing of the Jacobian for a bilinear transformation.

91. Prove that the bilinear transformation w = (az+ B)/(yz+8) has one fixed point if and only if
(8 +a)? = 4(ad8 — By) » 0.

92. (a) Show that the transformation w = (az + 7)/(yz+ &) where |a|2—|y|? = 1 transforms the unit
circle and its interior into itself.

(6) Show that if |y|2—|a]2 = 1 the interior is mapped into the exterior.

93. Suppose under the transformation w = F(z,%) any intersecting curves C; and C, in the z plane map
respectively into corresponding intersecting curves C{ and C,' in the w plane. Prove that if the trans-
formation is conformal then (a) F(z,2) is a function of z alone, say f(z), and (b) f(z) is analytic.

94. (a) Prove the multiplication rule for determinants [see Problem 7]:
a; by aa; + byey  ayb; + byd,

cg dy cjag + eie;  eyby + dydy
(b) Show how to genernliie the result in (a) to third order and higher order determinants.

ay b]

¢ d,

95. Find a function which maps on to each other the shaded regions of Figures 8-106 and 8-106, where
QS has length b.

w plane z plane

v

Fig. 8-105

2
96. (a) Show that the function w = J (f..—dtto)Tn maps a regular hexagon into the unit circle,
0

(b) What is the Jength of a side of the hexagon in (a)?
Ans. (b) § VErip)
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97.

" 98.

100.

10L.

102.

103.

Show that the transformation w = (A22+ Bz + C)/(Dz2+ Ez+ F) can be considered as a combination
of two bilinear transformations separated by a transformation of the type »={2

Find a function which maps a regular polygon of n sides into the unit circle.

Verify the entries: (a) A-9, Page 208; (b) A-10, Page 208; (c) B-3, Page 210; (d) B-4, Page 210;
(¢) C-3, Page 211; (f) C-4, Page 211.

Suppose the mapping function w = f(z) has the Taylor series expansion
(n)
w o= ) = @)+ L@+ o+ LS et

Show th.nt if f*Ya)=0 for k=0,1,...,n—1 while f("(a) # 0, then angles in the z plane with
vertices at z = a are multiplied by n in the w plane.

Determine a function which maps the infinite strip —»/4 = 2 = #/4 on to the interior of the unit
circle |w| = 1 so that z=0 corresponds to w=0. Ans. w = tanz

Verify the value of K obtained in equation (2) of Problem 25.

Find a function which maps the upper half plane on to the interior of a triangle with vertices at
w = 0,1,i corresponding to z = 0,1,* respectively.

T(3/4) ¥ s _
T0/4) $-1/2 (1 — ¢)—8/4 d¢
Vr T(1/4) J, ( )

Ans. w =
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BOUNDARY VALUE PROBLEMS

Many problems of science and engineering when formulated mathematically lead to
partial differential equations and associated conditions called boundary conditions. The
problem of determining solutions to a partial differential equation which satisfy the
boundary conditions is called a boundary-value problem.

It is of fundamental importance, from a mathematical as well as physical viewpoint,
that one should not only be able to find such solutions (i.e. that solutions exist) but that
for any given problem there should be only one solution (i.e. the solution is unique).

HARMONIC AND CONJUGATE FUNCTIONS

A function satisfying Laplace’s equation
P ik
2 = _— e =
v P ax2 + a,yﬁ 0 (1)
in a region R is called harmonic in ‘R. As we have already seen, if f(z) = u(x,y) +iv(x,y)
is analytic in R, then u# and v are harmonic in R.

Example: If f(z) = 422 — 3iz = 4(z+1y)2 — 3i(z + iy) = 422 — 4y2 + 3y + i(8xy — 3x), then
u = 422 —4y?2 + 3y, v = Bay — 3x. Since u and v satisfy Laplace’s equation, they
are harmonic.
The functions » and v are called conjugate functions; and given one, the other can
be determined within an arbitrary additive constant [see Chapter 3].

DIRICHLET AND NEUMANN PROBLEMS

Let R [Fig. 9-1] be a simply-connected region bounded by a simple closed curve C.
Two types of boundary-value problems are of great importance.

1. Dirichlet’s problem seeks the determina- v
tion of a function ® which satisfies La-
place’s equation (1) [i.e. is harmonic] in R
and'takes prescribed values on the bound-
ary C.

2. Neumann’s problemseeks the determina-
tion of a function & which satisfies La-
place’s equation (I) in R and whose
normal derivative a®/an takes prescribed
values on the boundary C. x

The region € may be unbounded. For exam-
ple R can be the upper half plane with the z axis
as the boundary C. Fig. 9-1

232
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It can be shown that solﬁtions to both the Dirichlet and Neumann problems exist
and are unique [the Neumann problem within an arbitrary additive constant] under very
mild restrictions on the boundary conditions [see Problems 29 and 80].

It is of interest that a Neumann problem can be stated in terms of an appropriately
stated Dirichlet problem (see Problem 79). Hence if we can solve the Dirichlet problem
we can (at least theoretically) solve a corresponding Neumann problem.

THE DIRICHLET PROBLEM FOR THE UNIT CIRCLE. POISSON'S FORMULA

Let C be the unit circle |¢/=1 and R be its interior. A function which satisfies
Laplace’s equation [i.e. is harmonic] at each point (r,0) in R and takes on the prescribed
value F(9) on C [ie. &(1,0) = F(6)], is given by

_ 1 (" (- F(g)ds
L B b 1 —2rcos(d—¢) + (%)

This is called Poisson’s formula for a circle [see Chapter 5, Page 119].

THE DIRICHLET PROBLEM FOR THE HALF PLANE

A function which is harmonic in the half plane ¥ >0 [Im {z} > 0] and which takes
on the prescribed value G(x) on the x axis [i.e. &(z, O) = G(x), —o <z <], is given by

sy = 2f ¥ ff;) 4 ®)

This is semetimes called Poisson’s formula for the half plane [see Chapter 5, Page 120].

SOLUTIONS TO DIRICHLET AND NEUMANN PROBLEMS
BY CONFORMAL MAPPING

The Dirichlet and Neumann problems can be solved for any simply-connected region R
which can be mapped conformally by an analytic function on to the interior of a unit
circle or half plane. [By Riemann's mapping theorem this can always be accomplished,
at least in theory.] The basic ideas involved are as follows.

(@) Use the mapping function to transform the boundary-value problem for the
region R into a corresponding one for the unit circle or half plane.

(b) Solve the problem for the unit circle or half plane.

(¢) Use the solution in (b) to solve the given problem by employing the inverse
mapping function.

Important theorems used in this connection are as follows.

Theorem 1. Let . =-f(z) be analytic in a region R of the z plane. Then there
exists a unique inverse z = g(w) in R, provided f’(z) 0 in R [thus insuring that the
mapping is conformal at each point of R].

Theorem 2. Let &(x,y) be harmonic in R and suppose that ® is mapped into R’ of
the w plane by the mapping function w = f(z) where f(2) is analytic and f’(z) # 0 so that
r = x(u,v), ¥y = y(u,v). Then &(z,y) = ®[x(u,v), y(%,v)] = ¥(u,v) is harmonic in R’
In words, a harmonic function is transformed into a harmonic function under a trans-
formation w = f(z) which is analytic [see Problem 4].
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Theorem 3. If #=a [a cbnstant] on the boundary or part of the boundary C of a
region in the z plane, then ¥ =a on its image C’ in the w plane. Similarly if the normal
derivative of ¢ is zero, i.e. d®/an =0 on C, then the normal derivative of ¥ is zero on C’.

Applications to Fluid Flow

BASIC ASSUMPTIONS

The solution of many important problems in fluid flow, also referred to as fuid
dynamics, hydrodynamics or aerodynamics, is often achieved by complex variable methods
under the following assumptions.

1. The fluid flow is two-dimensional, i.e. the basic flow pattern and characteristics
of the fluid motion in any plane are essentially the same as in any parallel plane.
This permits us to confine our attention to just a single plane which we take to
be the z plane. Figures constructed in this plane are interpreted as cross-sections
of corresponding infinite cylinders perpendicular to the plane. For example, in
Fig. 9-7, Page 237, the circle represents an infinite cylindrical obstacle around
which the fluid flows. Naturally, an infinite cylinder is nothing more than a
mathematical mo-el of a physical cylinder which is so long that end effects can
be reasonably neglected.

2. The flow is stationary or steady, i.e. the velocity of the fluid at any point depends
only on the position (x,y) and not on time.
3. The velocity components are derivable from a potential, i.e. if V, and V, denote the

components of velocity of the fluid at (z,¥%) in the positive z and y directions
respectively, there exists a function &, called the velocity potential, such that

_ _
Vo= Ve=3 )

An equivalent assumption is that if C is any simple closed curve in the z plane
and V., is the tangential component of velocity on C, then

§vias = § Vi +Vdy = 0 (5)
See Problem 48. ¢ ¢
Either of the integrals in (5) is called the circulatior. of the fluid along C.
When the circulation is zero the flow is called irrotational or circulation free.
4. The fluid is incompressible, i.e. the density, or mass per unit volume of the fluid,
is constant. If V, is the normal component of velocity on C this leads to the
conclusion (see Problem 48) that

_£V.ds = fcv,dy—v.dx - 0 (6)
V. Vv,
or ' + £ 0 (7)

which expresses the condition that the quantity of fluid contained inside C is a
constant, i.e. the quantity entering C is equal to the quantity leaving C. For
this reason equation (6), or the equivalent (7), is called the equation of continuity.

5. The fluid is non-viscous, i.e. has no viscosity or internal friction. A moving
viscous fluid tends to adhere to the surface of an obstacle placed in its path. If
there is no viscosity, the pressure forces on the surface are perpendicular to the
surface. A fluid which is non-viscous and incompressible is often called an tdeal
fluid. It must of course be realized that such a fluid is only a mathematical model
of a real fluid in which such effects can be safely assumed negligible.



CHAP. 9] PHYSICAL APPLICATIONS OF CONFORMAL MAPPING 2356

THE COMPLEX POTENTIAL ;

From (4) and (?) it is seen that the velocity potential & is harmonic, i.e. satisfies
Laplace’s equation
@ B
xl Piiseg ayz g 0 5 (8)
It follows that there must exist a conjugate harmonic function, say ¥(z,y), such that
22) = o(z,y) + 1¥(x,¥) (9)

is analytic. By differentiation we have, using (4),

20 . L. ST S

Thus the velocity [sometimes called the complex velocity] is given by

‘ UV = Ve+iV, = dajdz = Q') (11)
and has magnitude
V= Y = VVI+V; = |9@)] = |o(2) (12)

Points at which the velocity is zero, i.e. Q'(z) =0, are called stagnation points.

The function 2(z), of fundamental importance in characterizing a flow, is called the
complex potential.

EQUIPOTENTIAL LINES AND STREAMLINES
The one parameter families of curves -
b(z,¥) =  ¥(z,9) =P (19)

where « and 8 are constants, are orthogonal families called respectively the equipotential
lines and streamlines of the flow [although the more appropriate terms equipotential curves
and stream curves are sometimes used]. In steady motion, streamlines represent the
actual paths of fluid particles in the flow pattern.

The function ¥ is called the stream function while, as already seen, the function & is
called the velocity potential function or briefly the velocity potential.

SOURCES AND SINKS

In the above development of theory we assumed that there were no points in the
z plane [ie. lines in the fluid] at which fluid appears or disappears. Such points are
called sources and sinks respectively [also called line sources and line sinks|. At such
points, which are singular points, the equation of continuity (?), and hence (8), fail to
hold. In particular the circulation integral in (5) may not be zero around closed curves C
which include such points.

No difficulty arises in using the above theory, however, provided we introduce the
proper singularities into the complex potential 0(z) and note that equations such as (?)
and (8) then hold in any region which excludes these singular points.
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SOME SPECIAL FLOWS

Theoretically, any complex potential 0(z) can be associated with, or interpreted as,

".a particular two-diménsional fluid flow. The following are some simple cases arising in

practice. [Note that a constant can be added to all complex potentials without affecting
the flow pattern.]

1. Uniform Flow. The complex potential corresponding to the flow of a fluid at
constant speed V, in a direction making an angle 3 with the positive = direction
is (Fig. 9-2 below)

////f’
///

2z) = Voe ™z (14)

\

P :::)/f’ 5
/////’
= w

2. Source at z=a. If fluid is emerging at constant rate from a line source at z=a
(Fig. 9-3 above), the complex potential is

@z = kln(z—a) (15)

where k> 0 is called the strength of the source. The streamlines are shown heavy
while the equipotential lines are dashed.

3. Sink at z=a. In this case the fluid is disappearing at z=a (Fig. 9-4 below)
and the complex potential is obtained from that of the source by replacing k by
—k, giving ;

22) = —kIn(z—a) (16)

x

Fig.9-4 Fig.9-5

4. Flow with Circulation. The flow corresponding to the complex potential
2z) = —ikIn(z—a) (17)

is as indicated in Fig. 9-56 above. The magnitude of the velocity of fluid at any
point is in this case inversely proportional to the distance from a.
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The point z = a is called a vortex and k is called its strength. The circulation
[see equation (5)] about any simple closed curve C enclosing 2=a is equal in
magnitude to 2zk. Note that by changing k to —k in (17) the complex potential
corresponding to a “clockwise” vortex is obtained.

5. Superposition of Flows. By addition of complex potentials, more complicated
flow patterns can be described. An important example is obtained by considering
the flow due to a source at z=—a and a sink of equal strength at z=a. Then
the complex potential is

2z) = kln(z+a) — kln(z—a) = kln<z+a) (18)

z—a

By letting a0 and k-~ in such a way that 2ka = p is finite we obtain the
complex potential

Q(z) = % (19)

This is the complex potential due to a doublet or dipole, i.e. the combination of a
source and sink of equal strengths separated by a very small distance. The
quantity p is called the dipole moment. }

FLOW AROUND OBSTACLES

An important problem in fluid flow is that of determining the flow pattern of a fluid
initially moving with uniform velocity Vo in which an obstacle has been placed.

w plane zplane { plane

N

Y
Wa

\

t
.

77

Fig.9-6 Fig.9-7 Fig.9-8

A\

Wi
/)

A general principle involved in this type of problem is to design a complex potential having
Ahi o a@z) = Voz + G(2) (20)
(if the flow is in the z plane) where G(2) is such that I1|im G’(z) = 0, which means physi-
cally that far from t.he obstacle the velocity has constant magnitude (in this case Vo).
Furthermore, the complex potential must be chosen so that one of the streamlines repre-
sents the boundary of the-obstacle.

A knowledge of conformal mapping functions is often useful in obtaining complex
potentials. For example, the complex potential corresponding to the uniform flow in the
w plane of Fig. 9-6 is given by Vow. By use of the mapping function w = z+a*/z [see

entry A-4, Page 206] the upper half w plane of Fig. 9-6 is transformed into the upper
half z plane exterior to circle C, and the complex potential for the flow of Fig. 9-7 is

given by 5
o) = Vo (z + a?> (21)
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Similarly if z = F({) maps C and its exterior on to C’ and its exterior [see Fig. 9-8], then
the complex potential for the flow of Fig. 9-8 is obtained by replacing z by F({) in (21).
The complex potential can also be obtained on going directly from the w to the { plane
by means of a suitable mapping function. :

Using the above and introducing other physical phenomena such as circulation, we
can describe the flow pattern about variously shaped airfoils and thus describe the motion
of an airplane in flight.

BERNOULLI’'S THEOREM

If P denotes the pressure in a fluid and V is the speed of the fluid, then Bernowlli’s
theorem states that P+ioV? = K (22)

where ¢ is the fluid density and K is a constant along any ‘streamline.

THEOREMS OF BLASIUS

1. Let X and Y be the net forces, in the positive z and ¥ directions respectively, due to
fluid pressure on the surface of an obstacle bounded by a simple closed curve C. Then
if 0 is the complex potential for the flow,

X =i = He £ (%)2& (23)

~

2. If M is the moment about the origin of the pressure forces on the obstacle, then

M o= Re{—gci z(z—g),dz} (24)

where “Re” denotes as usual “real part of”.

Applications to Electrostatics

COULOMB’S LAW

Let » be the distance between, two point electric charges ¢, and ¢s. Then the force

between them is given in magnitude by Coulomb’s law which states that
— Mq

F = 23 (25)

and is one of repulsion or attraction according as the charges are like (both positive or

both negative) or unlike (one positive and the other negative). The constant « in (25),

which is called the dielectric constant, depends on the medium; in a vacuum x = 1, in other
cases x> 1. In the following we assume x =1 unless otherwise specified.

ELECTRIC FIELD INTENSITY. ELECTROSTATIC POTENTIAL

Suppose we are given a charge distribution which may be continuous, discrete, or a
combination. This charge distribution sets up an electric field. If a unit positive charge
(small enough so as not to affect the field appreciably) is placed at any point A not already
occupied by charge, the force acting on this charge is called the electric field intensity
at A and is denoted by &£ This force is derivable from a potential @ which is sometimes

called the electrostatic potential. In symbols,

€ = —grade = -yo (26)
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If the charge distributio;n is two-dimensional, which is our main concern here, then

5 (i) . 0P P oP

&€ = E:+1iE, = —a—x-—iﬁ where Es=—'a;, E'=_W (27)
In such case if E. denotes the component of the electric field intensity tangential to 'any
simple closed curve C in the z plane, '

£E,de = £E,dx+E.dy =0 (28)

GAUSS’ THEOREM

Let .us confine ourselves to charge distributions which can be considered two-dimen-
sional. If C is any simple closed curve in the z plane having a net charge ¢ in its interior
(actually an infinite cylinder enclosing a net charge ¢) and E, is the normal component of
the electric field intensity, then Gauss’ theorem states that

f Eids = dug (29)
C
If C does not enclose any net charge, this reduces to
fz-;',.da = iE,dy—E,dz = 0 (30)
C
It follows that in any region not occupied by charge,
’ ok, oK,
= i 0 (81)
From (27) and (31), we have
o JON ;. 32
ox? W = ' ( )

i.e. ® is harmonic at all points not occupied by charge.

THE COMPLEX ELECTROSTATIC POTENTIAL
From the above it is evident that i;here must exist a harmonic function ¥ conjugate

A S @) = ey + vz (#3)

is analytic in any region not occupied by charge. We call 1(z) the complex electrostatic
potential or, briefly, complex potential. Jn terms of this, (27) becomes

@ .o _ g .ov _ _da _
e = -B-i s B A (24)
and the magnitude of € is given by E = 6| = |-'(2)| = |2’(2)|. ’

The curves (cylindrical surfaces in three dimensions)
- ®2,y) = a - ¥(z,9) = B (35)
are called equipotential lines and flux linea respectively.

LINE CHARGES

The analogy of the above with fluid flow is quite apparent. The electric field in
electrostatic problems corresponds to the velocity field in fluid flow problems, the only
difference being a change of sign in the corresponding complex potentials.
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The ideas of sources and sinks of fluid flow have corresponding analogues for electro-
statics. Thus the complex (electrostatic) potential due to a line charge ¢ per unit length

at zo (in a vacuum) is given by
0(z) = —2qIn(z-2) (36)

and represents a source or sink according as q<0 or ¢>0. Similarly we talk about
doublets or dipoles, ete. If the medium is not a vacuum, we replace g in (36) by q/x.

CONDUCTORS

If a solid is perfectly conducting, i.e. is a perfect conductor, all charge is located on
it surface.. Thus if we consider the surface represented by the simple closed curve C in
the z plane, the charges are in equilibrium on C and hence C is an equipotential line.

An important problem is the calculation of potential due to a set of charged cylinders.
This can be accomplished by use of conformal mapping.

CAPACITANCE

Two conductors having charges of equal magnitude g but of opposite sign, have a
difference of potential, say V. The quantity C defined by

q = CV (87)

depends only on the geometry of the conductors and is called the capacitance. The con-
ductors themselves form what is called a condenser or capacitor.

Applications to Heat Flow

HEAT FLUX

Consider a solid having a temperature distribution which may be varying. We are
often interested in the quantity of heat conducted per unit area per unit time across a
surface located in the solid. This quantity, sometimes called the heal fluz across the

surface, is given by Q = —Kgrad® (33)

~where @ is the temperature and K, assumed to be a constant, is called the thermal con-
ductivity and depends on the material of which the solid is made.

THE COMPLEX TEMPERATURE
If we restrict ourselves to problems of two-dimensional type, then

B 3 | .\ _ ; . PR
Q = —K(a-l-ta) = Q. +iQ  where Q. =-K3, @=-Kg. (39

Let C be any simple closed curve in the z plane (representing the cross-section of a
cylinder). If Q. and Q. are the tangential and normal components of the heat flux and
if steady state conditions prevail so that there is no net accumulation of heat inside C,

then we have

§ o = §oa-qd =0 §ads = §audz+Qiy =0 Go
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assuming no sources or sinks inside C. The first equation of (40) yields

Q= 0Qy  _

w vy - O i
which becomes on using (39),

’?e | e _

st = 0

i.e. ® is harmonic. Introducing the harmonic conjugate function ¥, we see that

az) = o= + i¥(z, ) (42)

is analytic. The families of curves

Q(xp y) = a, ?(xn y) = ﬂ (‘&3)

are called isothermal lines and fluz lines respectively, while Q(z) is called the complex
temperature.

The analogies with fluid flow and electrostaties are evident and procedures used in

these fields can be similarly employed in solving various temperature problems.

Solved Problems

HARMONIC FUNCTIONS

1

Show that the functions (a) 2?—y*+2y and (b) sinz coshy are harmonic in any
finite region R of the z plane.

% 2¢ 2
- 22 — y2 —_— = - i
(a) If & = 22—y2+ 2y, we have ) 2, . 2. Then 5:7"' i = 0 and & is harmonic in R.
(b) If @ = sinx coshy, we have g—:;- = —ancoshy, % = sinz coshy. Then :3 +g:: =0

and ¢ is harmonic in R.

Show that the functions of Problem 1 are harmonic in the w plane under the trans-
formation z = w?.
If z=w?, then «+iy = (u+iv)? = ud— uv? +i(Bulv — v and x = ud—3uv?, y = 3ulv—d,
(@) & = 22— y2+ 2y = (ud— 3uv?)? — (3uv — v3)3 + 2(3uv — 3)
= ub — 16utv? + 16u2vt — v + 6ulv — 2v%

Then —';—25 = 30ut — 180u2v? + 30v* + 12v, g%:— = —30ut + 180u2v? — 30v* — 12v

9 ;
and %] + av2 = 0 as required.

(b) We must show that ¢ = sin (u3 — 3uv?) cosh (3u?v — v3) satisfies %—:—:—+ﬂ = 0. This can

2
readily be established by straightforward but tedious differentiation. e

This problem illustrates a general result proved in Problem 4.
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¢
Fra +

The function ¢(x.y) is transformed into a function &[x(u,v), y(x,v)] by the transformation. By
differentiation we have

3. Prove that |f’( )2 ‘W, + -a—;) where w = f(2) is analytic and f’(2) » 0.

s _ avou  avaw  oe _ abou , #w
dx  dudx  dv ax’ ay  away | avay
2o _ e wm(w) , swit o (2
0z  ~  du dx? oz dx \ du dv dx? 3z dx \ 9v

& aiﬂ+ﬂ_'*[i 20y du . 2 (3620
T du ox? x| ou \du/ oz v 0z

b %y d (o) ou 9 v
+ v 3x? + _[au (dv) ax + av( )az]

% | du[aou | 0% av] b v av[ e du | 3% @]

= du dx? 9z | du? EZ v du iz v 8w3 oz | dudv ax ' vl dx
. Similarly,
P o0 Pu  u[ddouw 2 aw| | Mt | aw[ % g o av
ay? u ay? ay u? dy Gv ou dy ‘v ay’ ay ouovay = ov? y
Adding, :
P % ok [u | A% b2y % a2 [ /aun)? '\
w T W o (a::* i ay? t % (az’ * a_y’) + m[(.u) +(§_v-):|
% dudv oud e @
u dv u dv
+ 2auau % 9x + 55}] * aui[( ) ( )]
Since # and v are harmonic + 3'u =0 a%y + = 0. Also, by the Cauchg-hRiemann
*oox T gyt T ' 3a? ay’ * '
¢ du __dv dv _  du
equations, "W w W Then
2 2
ou\? au\? v av\? u ov T |ou .00 |2
b podad = — — —_ —_ = — — '(2)|2
(az * (ay) (ax) & (ay Fry R & aw t 6::, IF'l

u dv du dv
9z oz dy dy

Hence (1) becomes 'g;%; + %: = |f(2) (gz: + a::)

4. Prove that a harmonic function ®(x,y) remains harmonic under the transformation
w = f(z) where f(z) is analytic and f’(2) 0.

This follows at once from Problem 3, since if i‘:—+ a:: =0 and f'(z) # 0, then az taw =0

% -

5. If a is real, show that the real and imaginary parts of w = In(z—a) are harmonic
functions in any region R not containing z=a '

Method 1. :
If R does not contain -a, then w = In(z—a) is analytic in R. Hence the real and imaginary
parts are harmonic in R. 3
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Method 2.
Let z—a = 7re®. Then if principal values are used for ¢, w = n+1w = In(z—a) = In»r | ig

so that u = Inr, v = a.

2e  1adb 1 920

o " ror | 12 as?

In the polar coordinates (r,¢), Laplace's equation is = 0 and by direct

substitution we find that « - In» and v = ¢ are solutions if R docs not contain » =0, ie. 2= a.
Method 3.
If z—a = 7rei?, then x—a = rcosd, y =rsing and r = /(x — a)? +u2% 6 = tan~ ! {y/(x — a)}.
Then w = wliv = }lIn {(x—a)2-Fye) | 1tan 1 {y/(x — a)} and  w = }In{(x—-a)?+y?},
024 924

v = tan—!{y/(x —a)}. Substituting these into Laplace’s equation
straightforward differentiation that « and v are solutions if z+ a.

32t Yo = 0, we find after
Yy

DIRICHLET AND NEUMANN PROBLEMS

6. Find a function harmonic in the upper half of the z plane, Im {z} > 0, which takes the

1 2z>0

prescribed values on the x axis given by G(x) = .
0 2<0

We must solve for (x,y) the boundary-value problem

L }7,';2_4. = 0 >0, lim ¢(x,y) = Gx) =

This is a Dirichlet problem for the upper half plane [see Fig. 9-9].

1 >0
0 <0

The function Aeg |1 BB, where A and I3 are real v . 3
constants, is harmonic since it is the imaginary part of ; /(z, V)
Alnz + B.

To determine A and B note that the boundary r //
conditions are # - 1 for ® + 0, i.ec. ¢ 0 and # =0 for . ,/
<0, ie. 6=w. Thus /\.

(n1=A0)+B, (2 0=A@x+8 »
: =0 Pp =1
from which A = —1/#, B =1.
Then the required solution is

W= Rl L=f e Lea pn Y )
L g z Fig.9-9

Another method, using Poisson’s formula for the half plane.

o 0 w0
1 ¥ G(n) dy 1 y[0] dn 1 [ y|1] dn
(x — =] —_— e = - e b e W i e —
s ’ SVt (=)t v ‘., 2t (x—m)? 7wy g (e m)?
= ltan‘l (u) Vo= L + ! ta-n“(?-) = 1= -1tan—l (g)
T v 0 2 T v 4 x
7. Solve the boundary-value problem
92 %P
ox? _-:j'i': 0, ¥>0; v
x y i Az v)
s 5 TD T < —1 v':‘,- ¥, /// ,I
lim o(x,y) = G(x) = T, -1<z<1 ’ g /
y—0+ T, # 51 i gy /// y
i L R
where Ty, Ty, T; are constants. R IT iw,,/fﬁ e JI\" x
This is a Dirichlet problem for the upper half *=Ty -1 =T, y w=dy
plane [see FFig. 9-10].
The function Ag¢, + Be, + C where A,B and C

are real constants, is harmonic since it is the imagi-
nary part of Aln(z11) | Bin(z—1) + C. Fig.9-10
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To determine A,B,C note that the boundary conditions are: ® =T, for x> 1, i.e. 6, =6, =0;
=T for —1<z<1, ie. 0, =0, ¢g=w; ¢ =T, for x<—1, i.e. 8, =w, 63=w. Thus

(1) T, = A(0) + B(0) + C (#) T, = A(0) + B(x) + C ($) To = A(z) + B(r) + C
from which C=T, B = (T,— Tylr, A = (To— T))/r.

Then the required solution is

= Ty =T
¢ = Ao, +Boy+cC = DT (v ) L T (-l—) + T,
T z+1 L x—

1

Another method, using Poisson’s formula for the half plane.
= 11 _yGmd
d(z,y) = =+ ¥ G(n) dn_
. TV oyt (x—1)?
-1

= 1 yTodq 1] yTydy lf y Ty dy
L4 —-»u’+(z—n)’, 12+ ()2 ¥+ (z— )2
= ﬁmn—l(?_:i) e 4 Eu (’L’_E) ' 4 Et‘in—l("_—f)
L v —~0 v o ™ v

. r‘,—T,m_l y ot Y & w
x = z—1 2

«©

1

8. Find a function harmonic inside the unit circle || =1 and taking the préscribed values

given by F(0) = {(1) 0 Z z 2’2' on its circumference.
m ™

This is a Dirichlet problem for the unit circle [Fig. 9-11] in which we seek a function satisfying
Laplace’s equation inside |z = 1 and taking the values 0 on arc ABC and 1 on arec CDE.

Fig.9-11 Fig.9-12
Method 1, using conformal mapping.

We map the interior of the circle |z| =1 on to the upper half of the w plane [Fig. 9-12] by using
1—w

the mapping function 2z = - or w =1
interchange z and w). e 1 b

Under this transformation, arcs ABC and CDE are mapped on to the negative and positive real
axis A’B'C’ and C'D'E’ respectively of the w plane. Then by Problem 81, the boundary conditions
¢ =0 on arc ABC and ¢+ =1 on arc CDE become respectively ¢ =0 on A’B’C’ and =1 on C'D'E".

Thus we have reduced the problem to finding a function ¢ harmonic in the upper half w plane
and taking the values 0 for «u <0 and 1 for »>0. But this problem has already been solved in
Problem 6 and the solution (replacing # by » and y by v) is given by

= - Lun-1/* '
v o P 1 'ta.n (“) (1)

) [see Problem 12, Chapter 8, Page 217, and

Now from w =1 we find u = —————i————zv v -—5——1 (&3 ) Then substituting
14g/* (1+2)%+ 92’ (1+2) + y2°
these in (1), we find the required solution

ga T [P SRR ‘
¢ = 1 ——tan (1 — = e v’]) (®
or in polar coordinates (r,#), where z = r cosed, y = r sing,
¢ = 1 —2Lan-1(2rsine ') @
r \1—ys
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Method 2, using Poisson’s formula.

2T
&(r,0) = o J F(g) d¢
’ 27 Jy 1 — 2rcos(6—9) + 12
= i dg = 1 — 1 tan-1 _2_1'__sin‘o \
2r Jy 1| — 2rcos(0—¢) | s 1—r?

by direct integration [see Problem 64(b), Chapter 5, Page 136].

APPLICATIONS TO FLUID FLOW
9. (a) Find the complex potential for a fluid

(b)
()

(a)

(b)

(¢)

moving with constant speed Vo in a direc-
tion making an angle 8§ with the positive
x axis [see Fig. 9-13].

Determine the velocity potential and
stream function.

Determine the equations for the stream-
lines and equipotential lines.

The x and y components of velocity are
V, = Vjcoss, V, = Vgsing Fig.9-13
The complex velocity is
U = Vo + iV, = Vycosd + iVysinsd = V,eld
The complex potential ©2(z) is given by
s
dz
Then integrating, Qz) = Voe ¥z

U = Vye 8

omitting the constant of integration,

The velocity potential # and stream function ¥ are the real and imaginary parts of the complex
potential. Thus

Qz) = @+ iV = Voe iz = Vo(xcoss + ysind) + iVg (4 cos § — xsin §)
and ¢ = Vo(xcosd + ysins), ¥ = Vy(ycosd — xzsind)
Another method.
1) 3—:1 = V, = Vycoss (2) %‘5‘- =V, = Vysind

Solving for ¢ in (1), ® = (V, cos 8)x + &(y). Substituting in (2), G'(y) = V,sind and Gy =
(Vg sin )y, omitting the corstant of integration. Then

& = (Vycosd)x + (Vg sind)y

From the Cauchy-Riemann equations,

N Ak B . Wy
() il V, = Vgycosd W w = W V, = —V,sins
Solving for ¥ in (8), ¥ = (Vo cos8)y + H(x). Substituting in (4), H'(x) = —Vysiné and
H(x) = —(V, sin §)x, omitting the constant of integration. Then
v = (Vycosd)y — (Vgsind)x

The streamlines are given by ¥ = V,(y cosd — =z sin8) = B for different values of f. Physically,
under steady-state conditions, a streamline represents the path actually taken by a fluid particle,
in this case a straight line path.

The equipotential lines are given by ¢ = Vo(x cos § + y sins) = a for different values

of . Geometrically they are lines perpendicular to the streamlines; all points on an equipotential
line are at equal potential.
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o 2
10. The complex potential of a fluid flow is given by (z) = Vo (z +a7) where V, and a

are positive constants. (a) Obtain equations for the streamlines and equipotential lines,
represent them graphically and interpret physically. (b) Show that we can interpret
the flow as that around a circular obstacle of radius a. (c) Find the velocity at any
point and delermine its value far from the obstacle. (d) Find the stagnation points.

(a)

(6)

(e)

(d)

Let 2 = re!®. Then

2 2 2
Qz) = &+ ¥ = Vo(re‘9+9;-e“9> = Vo(r+9;)coso+iV.,<r-a7)nino

: a? a?
from which ¢ =V, r+-; cos @, Y =V, r== sin ¢

‘The streamlines are given by ¥ = constant = B, ie.,

' Vo(r—-¥>uin0 = B

These are indicated by the heavy curves of Fig. 9-14 and show the actual paths taken by fluid
particles. Note that ¥ =0 corresponds to r=a and ¢ =0 or r.

The equipotential lines are given by & = constant = a, ie.,
Vo (r+a7’) co88 = a

These are indicated by the dashed curves of Fig. 9-14 and are orthogonal to the family of
streamlines.

Vo

< €€
U]
23®

H Fig.9-14

The circle » = a represents a streamline; and since there cannot be any flow across a streamline,
it can be considered as a circular obstacle of radius a placed in the path of the fluid.

We have

Ve = V, (1 = :—:) = v, (1 —:—:e-2u> = W, (1 = g;-cos 20) £ i V:,u’ sin 26
Then the complex velocity is
V = 9QF = Vo (l = :—:coa'n) - iV::z sin 26 (1)
and its magnitude is
' Vv = v = J{Vo (1 - g cos 20)}2 + {V::’ sin 20}’
- = VoJl _ 2a2 ::sza + gr_:_ )

Far from the obstacle, we see from (1) that U = V, approximately, i.e. the fluid is travelling
in the direction of the positive z axis with constant speed Vo

The stagnation points, i.e. points at which the velocity is zero, are given by
2
2(z) = 0, ie. V.,(l—%):O or z=a and z = —a

The stagnation points ere therefore at A and D in Fig. 9-14.
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2

11. Show that under the transformation w = z +-az— the fluid flow in the z plane con-

sidered in Problem 10 is mapped into a uniform flow with constant velocity V, in
the w plane.

The complex potential for the flow in the w plane is given by

2
Vo(z +—‘;—) = Vow

which represents uniform flow with constant velocity V, in the w plane [compare entry A-4 in the
table on Page 206].

In general, the transformation w = Q(z) maps the fluid flow in the z plane with complex potential

2(z) into a uniform flow in the w plane. This is very useful in determining complex potentials of
complicated fluid patterns through a knowledge of mapping functions.

12. Fluid emanates at a constant rate from an infinite line source perpendicular to the
z plane at z=0 [Fig. 9-15]. (a) Show that the speed of the fluid at a distance » from
the source is V = k/r where k is a constant. (b) Show that the complex potential is
(2) = klnz. (c) What modification should be made in (b) if the line source is at
z=a? (d) What modification is made in (b) if the source is replaced by a sink in which
fluid is disappearing at a constant rate?

(a)

(b)

()

(d)

Consider a portion of the line source of unit length [Fig. 9-16]. If V, is the radial velocity of
the fluid at distance » from the source and o is the density of the fluid (assumed incompressible
so that ¢ is constant), then:

Mass of fluid per unit time emanating from line source of unit length

=  Mass of fluid crossing surface of cylinder of radius r and height 1

(Surface area)(Radial velocity)(Fluid density)
Crr-1)(V)(e) = 2mrV,0
If this is to be a constant «, then

M

- K Ik
V'—Znor_r

where k = x/270 is called the strength of the source.

Fig.9-15 Fig. 9-16
Since V, = g—: = g—, we have on integrgting and omitting the constant of integration, ¢ = k In r.

But this is the real part of 2(z) = klnz which is therefore the required complex potential.

If the line source is at z =a instead of z =0, replace z by z—a to obtain the complex potential
2Az) = klIn(z—a)

If the source is replaced by a sink, the complex potential is @(z) = —k Inz, the minus sign arising
from the fact that the velocity is directed toward z = 0.

Similarly, 2(z) = —kIn(z—a) is the complex potential for a sink at z =a.
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13. (a) Find the complex potential due to a source at z=—a and a sink at z=a of equal
strengths k. (b) Determine the equipotential lines and streamlines and represent
graphically. (c) Find the speed of the fluid at any point.

(a) Complex potential due to source at z=—a of strength k is k In(z + a).

(b)

Complex potential due to sink at z=a of strength k is —k In (z — a).

" Then by superposition:
Complex potential due to source at z=—a and sink at z = a of strengths k is

az) = kin(z+a) — kln(z—a) = "'"(:iZ)
Let z+4a = rl‘“‘t £2—a = TgG“’- Then
B r,e"l L .
z) = ¢+ ¥ = kin ".27;) = kln(z) + ik(6y — 62)

so that & = k In (r,/ry), ¥ = k(é; — 6;). The equipotential lines and streamlines are thus given by
& = kin(r/ry) = q ¥ = kie,—0) = B

Using r, = V(z+a)2+42 r, = Vie—a)+y? 0 = tﬂn“‘(xiq), 0 = tﬂn"(zf_a).

the equipotential lines are given by

Vietap+ ' _ gan

Viz—ap + 42
This can be written in the form
[ — a coth(a/k)]2 + 32 = a? csch? (a/k)

which for different values of « are circles having centres at a coth (a/k) and radii equal to
a [csch (a/k)|.
These circles are shown by the dashed curves of Fig. 9-17.

The streamlines are given by

tan"l(-L) - tan“( ¥ ) = plk

z+a r—a
or taking the tangent of both sides and simplifying,
22 + [y + acot(p/k))?2 = acac?(B/k)

which for different values of 8 are circles having centres at —a cot (8/k) and radii a|csc (B/k)|.
These circles, which pass through (—a,0) and (a,0), are shown heavy in Fig. 9-17.

Fig.9-17
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. ) _ "k N (e 2ka
(c) Speed = [Q'(z)] = zta z-a| ~ [a_g
2ka = 2ka
|a? — r2e2t| at — 2a%? cos 20 + 14

14. Discuss the motion of a fluid having complex potential Q(z) = ikInz where k> 0.
If z=rel then Nz) = ®+i¥ = ik(lnr + i6) = tkinr — ke or ® =—ks, ¥ = klinr.
The streamlines are given by

¥ = constant or r = constant

which are circles having common centre at z=0 [shown
heavy in Fig. 9-18].

The equipotential lines, given by ¢ = constant, are

shown dashed in Fig. 9-18. .
Since Q'(z) = * ieqp _ ksine + tkcosa’
2z r r _——r

the complex velocity is given by

ksine ikcose

v () = =

and shows that the direction of fluid flow is clock-
wise as indicated in the figure. The speed is given by Fig.9-18
V = |V| = kfr.

Thus the complex potential describes the flow of a fluid which is rotating around z=0. The flow
is sometimes referred to as a vortex flow and z=0 is called a vortex.

15. Show that the circulation about the vortex in Problem 14 is given by y = 2xk.

If curve C encloses z =0, the circulation integral is given by
b b
y = deu = dez+de = §——-—d:¢——dy = f—dﬂb
c c y c 9= oy c

2T
s J kde = 2k
0

In terms of the circulation the complex potential can be written (z) = %ln 2.

16. Discuss the motion of a fluid having complex potential

" h
o(z) = Vo(z+a7)+ﬂlnz

27
This complex potential has the effect of superimposing a circulation on the flow of Problem 10.
If z = re',
2z) = ¢+ i¥ = V, (r +a_:) cos 8 — ;—:— + i{Vo(r —z—z) sine + E};— lnr}

Then the equipotential lines and streamlines are given by

a? Y6 a?\ . Y
Vo(r+7)cosa—5; = a Vo(r—-r—)sma+§;lnr = B

There are in general two stagnation points occurring where 2'(z) =0, i.e.

) B . = Al ,{ .
Vo(l .,) +2” =0 or 2 = ym = - a? 1622V

In case y = 4zaV,, there is only one stagnation point.
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Since r =a is a streamline corresponding to g8 = EY; Ina, the flow can be considered as one

about a circular obstacle as in Problem 10. Far from this obstacle the fluid has velocity V, since
lim ﬂ'(z) = Vo.
lz]= _

The flow pattern changes, depending on the magnitude of y. In Figures 9-19 and 9-20 we have
shown two of the many possible ones. Fig. 9-19 corresponds to y < 4zaV,; the stagnation points
are situated at A and B. Fig. 9-20 corresponds to y > 47aV,; and there is only one stagnation point
in the fluid at C.

___,/k. = e
| R /

THEOREMS OF BLASIUS

&

Let Q(z) be the complex potential describing the flow about a cylindrical obstacle of
unit length whose boundary in the z plane is a simple closed curve C. Prove that the -

net fluid force on the obstacle is given by
v v . f/day
P =X-iy = *”ﬁ(“‘dz) de

where X and Y are the components of force in the positive x and y direclions respec-
tively and o is the fluid density.

The force acting on the element of area ds in
Fig. 9-21 is normal to ds and given in magnitude by
P ds where P is the pressure. On resolving this force
into components parallel to the x and y axes, we see
that it is given by

dFF = dX + idY
—Pdssine + iPdscose
iP ds (cos ¢ + ising)
iP ds '®
iPdz X
using the fact that
dz = dx + idy

= dscosé® + ids sine Fig. 9-21

= ds el

Since C represents a streamline, we have by Bernoulli’s theorem, P+ §oV2 =K or P = K — §oV?,
where V is the fluid speed on the streamline. Also by Problem 49 we have, ‘:n—z = Ve—1o,

y

Il

N

I

Then, integrating over C, we find
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F = X+i¥y = iipdz = ii(x—;uvz)dz
= —giai Vidz = —.gwi V20 ds
= =} §C (V2 c2i0)( 10 di)
or F = X—-i¥ = ;iai(vz e~ 210)(¢i® dg)

f ()

18. Let M denote the total moment about the origin of the pressure forces on the obstacle
in Problem 17. Prove that

do\?
M = . f ( dz
{ 4 dz
We consider counterclockwise moments as positive. The moment about the origin of the force
acting on element ds of Fig. 9-21 is
dM = (Pdssins)y + (Pdscosd)x = P(ydy+ zdx)

gsince dssingd = dy and dscosé# = dx. Then on using Bernoulli's equation, the total moment is

M

§ Plydy + zdx) = § (K — 4oV (ydy + x dx)
c c

Il

= " vz
Ki (ydy + =z dzx) éaiV (ydy + xdx)

= 0 = &ofvz(xcosa+ysina)da
c

where we have used the fact that f (ydy + xdx) = 0 since ydy + zdx is an exact differential.
Hence c

M = -}o® V2 + in 6) ds
4 i < cos @ y siné
= Re{—icf V’(z+iy)(cosa—isina)dn}
c

= Re<{—31c @ Vize—iids = Req—4do (V2 e—2i0 “’ds}

e{ 3 i 2e } e{ 4 iz e~ 2i0)(el0 dg)
dae
= { }cf ( ) dz}

2
Sometimes we write this result in the form M +iN = —§¢§ z(%) dz where N has no
(o

simple physical significance.

- -

19. Find the net force acting on the cylindrical obstacle of Problem 16.
The complex potential for the flow in Problem 16 is

= a Sy
a = Vo(z-l- z) + 21,_lnz
where V, is the speed of the fluid at distances far from the obstacle and y is the circulation. By
Problem 17 the net force acting on the cylindrical obstacle is given by F, where
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. T L [da)\? ¢ a? iv1?
N (O D e

2 .
! 2 a? 2iVyy a? ¥2 _
ita &{V‘)(l—ﬁ) + P (1—‘2—2"> - m dz = —'ﬂVO'Y
el o

=
I

Then X =0, Y = oV,y and it follows that there is a net force in the positive y dircction of magnitude
aVyy. In the case where the cylinder is horizontal and the flow takes place in a vertical plane this
force is called the /ift on the cylinder.

APPLICATIONS TO ELECTROSTATICS

20. ()

(b
(c)

(a)

(b)
(c)

21. (a)

(0)

(b)

Find the complex potential due to a line of charge q per unit length perpendicular
to the z plane at z=0.

What modification should be made in (a) if the line is at z=a?

Discuss the similarity with the complex potential for a line source or sink in fluid
flow. :

The electric field due to a line charge ¢ per unit
length is radial and the normal component of the
electric vector is constant and equal to E, while
the tangential component is zero (see Fig. 9-22).
If C is any cylinder of radius r with axis at z=0,
then by Gauss’ theorem,

§En€ln = E,(fr[n = FE,*2rr = dnq
o Je

and E, = o
=
Since E, = -—%‘: we have & = — 2q Inr, omitting
the constant of integration. This is the real part of
22) = —2qlnz which is the required complex Fig. 9-22
potential.
If the line of charge is at z=a, the complex potential is 2z) = —2¢ In(z—a).
The complex potential has the same form as that for a line source of fluid if k = —2q [see

Problem 12]. If q is a positive charge, this corresponds to a line sink.

Find the potential at any point of the region . v
shown in Fig. 9-23 if the potentials on the
x axis are given by V, for x>0 and —V, for @ v
x<0. '

Determine the equipotential and flux lines.

We must find a function, harmonic in the plane, P
which takes on the values V, for ©>0, ie. 8 =0, -
and —V, for <0, i.e. #=w. As in Problem 6, =V Vo
if A and B are real constants A¢ + B is harmonic.
Then A(0)+ B = V,, A(z)+B = —V, from which
A = -2Vy/r, B=V, so that the required poten-
tial is .o

Vo(l - %—o) = V.,(1 - %tan“‘%) Fig.9-23

in the upper half plane y >0. The potential in the lower half plane is obtrined by symmetry.

The equipotential lines are given by Vn(l —%tnn“'-:—:) = a, i.e. y =mzx where m is a con-

stant. These are straight lines passing through the origin.
The flux lines are the orthogonal trajectories of the lines y = ma and are given by
x?+y% = . They are circles with cenire at the origin.
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o 2 Y 2V,
Another method. A function conjugate to Vg (1 —;tan“l = is —Tln 7. Then the flux lines

are given by r = a2+ y2 = constant, which are circles with centre at the origin.

22. (a) Find the potential due to a line charge q per unit length at 2=z, and a line charge
—q per unit length at z = z,.

(b) Show that the potential due to an infinite plane [ABC in Fig. 9-26] kept at zero
potential (ground potential) and a line charge ¢ per unit length parallel to this
plane can be found from the result in (a).

(a) The complex potential due to the two line charges [Fig. 9-24] is

Qz) = —2qln(z—2) + 2¢qln(z—3z) = 2qln<:::°>
0

Then the required potential is the real part of this, i.e.,

§ = gy 1
o= ¢ Re n — zo) (1)
Y Y
¥ 7‘" Zy 9 ‘l‘. 2y
x A B c &
Potential =0
=
Fig.9-24 Fig.9-25

(b) To prove this we must show that the potential (1) reduces to ¢ =0 on the x axis, i.e. ABC in
Fig. 9-25 is at potential zero. This follows at once from the fact that on the x axis, z=2x so that

_ x—Z = x— 2z _ &
2 = 2¢In ) and Q@ = 2qln Py = -

xr—2

ie. ¥ = Re{Q2)} = 0 on the z axis.

Thus we can replace the charge —q at z, [Fig. 9-24] by a plane ABC at potential zero
[Fig. 9-25] and conversely.

23. Two infinite parallel planes, separated by a distance a, are grounded (i.e. are at poten-
tial zero). A line charge ¢ per unit length is located between the planes at a distance b
from one plane. Determine the potential at any point between the planes.

Let ABC and DEF in Fig. 9-26 represent the two planes perpendicular to the z plane, and suppose
the line charge passes through the imaginary axis at the point z = bi.

z plane w plane
v e : .
_ tential =0__

Potential =0 Potentlial =0

Fig.9-26 Fig.9-27
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From entry A-2 in the table on Page 206 we see that the transformation w = e"?/¢ maps the
shaded region of Fig. 9-26 on to the upper half w plane of Fig. 9-27. The line charge ¢ at z=5bi in
Fig. 9-26 is.mapped into the line charge ¢ at w = ¢"bi/a,  The boundary ABCDEF of Fig. 9-26 (at
potential zero) is mapped into the x axis A'B'C'D'E'F' (at potential zero) where C’ and D’ are
coincident at w = 0. ’

By Problem 22 the potential at any point of the shaded region in Fig. 9-27 above is

_ w — e—7bila
¢ = 2 Re{ w — emdila }
Then the potential at any point of the shaded region in Fig. 9-26 is
o emz/a — g—mubi/a
® - 2q Re{ enz/a . gmbila }

APPLICATIONS TO HEAT FLOW

24. A semi-infinite slab (shaded in Fig. 9-28) has its boundaries maintained at the indicated
temperatures where T is constant. Find the steady-state temperature.

Fig.9-28 Fig. 9-29

The shaded region of the z plane is mapped into the upper half of th~ w plane [Fig. 9-29]
by the mapping function w = sin(rz/a) which is equivalent to u = sin (rx/a) cosh (ry/a),
v = cos (rx/a) sinh (ry/a) [see entry A-3(a) in the table on Page 204|.

We must now solve the equivalent problem in the w rlane. We use the method of Problem 7 to
find that the solution in the w plane is TN

A T v 2T v
= — | — ae =1 —_—
b vtan (u+1) = tan (u 1) + 2T
and the required solution to the problem in the 2 plane is therefore

T, coilydli Aink el - cos (rx/a) sinh (zy/a)
* - £a0 {Sin (rx/a) cosh (zy/a) + 1} " . {’i" (rz/a) cosh (vy/a) — 1} v

25. Find the steady-state temperature at any point of the region shown shaded in Fig. 9-30
if the temperatures are maintained as indicated.

z plane . w plane

o°C C A 0°C

Fig.9-30 Fig. 5-31



CHAP. 9] PHYSICAL APPLICATIONS OF CONFORMAL MAPPING 255

The shaded region of the z plane is mapped on to the upper half of the w plane by means of the
mapping function w = z +% [entry A-4 in the table on Page 206] which is equivalent to’

S L ; i & B eetg . M - gy e i e
u+w-x+1y+z+iy—x+zz+y,+1(y x2+y2)' i.e, u-—z+z2+y2,v—y P g

The solution to the problem in the w plane is, using the method of Problem 17,

gl L.y — Byg-if-=
s u—2 T u+2
Then substituting the values of  and v, the solution to the required problem in the z plane is
80 pan-1 yxz+y2—1) - Y2+ y2—1)
™ (x2+ y2 + 1 — 2(x2 + y?) L (x2+ y2+ Dz + 2(22 + y?)

or, in polar coordinates,

60 = (r2—1) sine . Q_Qt _1 (r2—1) sine
. {(r’H) coso — 2r 7 o FF D cose + 2r

MISCELLANEOUS PROBLEMS

26. A region is bounded by two infinitely long concentric cylindrical conductors of radii
71 and 72 (r2>71) which are charged to potentials &, and ®, respectively [see Fig. 9-32].
Find the (a) potential and () electric field vector everywhere in the region.

(¢) Consider the function # = Alnz + B where A and B are
real constants. If z = re'®, then At
Q = &+ = Alnr + Ais + B

or ¢ = Alnr + B, v = Ae

Now ¢ _satisﬂes Laplace's equation, i.e. is harmonic, v

everywhere in the region r; <7 <r, and reduces to ¢ =1,
and # =4, on r =7, and r =, provided A and B are chosen

so that
'b‘ = Aln 7y + B, ¢2 = Aln Ly + B
. 1’2—"'1 q"lnfg—"‘zlnfl
6 A= AL B = 9.
ie In (ra/7y) In (r/77) Fip.#-2

Then the required potential is

("’2 e ‘bl) "" In rg — 4'2 in 1
¢ — —Inr +
In (rg/7y) In (ry/7y)
(b) Electric field vector = & = —grad® = -— %
sith Y
In (7'2/1'1) T

Note that the lines of force, or flux lines, are orthogonal
to the equipotential lines, and some of these are indicated
by the dashed lines of Fig. 9-33. Fig.9-33

& -

27. Find the capacitance of the condenser formed by the two cylindrical conductors in
Problem 26. :

If I' is any simple closed curve containing the inner cylinder and q is the charge on this cylinder,
then by Gauss' theorem and the results of Problem 26 we have

2 (@ — @, 1 _ 2(®y — k)
.f.E"d’ - .L:o{ln(rglr,) r[*" = g M
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B, — by
Then = ————_ and so
1 2 In (ry/r;)
] _ charge = 9 = 1
Capacitance C = difference in potential ~ &, — @, ~  21In(ry/r,)

which depends only on the geometry of the condensers, as it should.

The above result holds if there is a vacuum between the conductors. If there is a medium of
dielectric constant x between the conductors, we must replace ¢ by gq/x and in this case the
capacitance is 1/[2« In (ry/r))].

28. Two circular cylindrical conductors of equal radius B and centres at distance D from
each other [Fig. 9-34] are charged to potentials V, and —V, respectively. (a) Determine
the charge per unit length needed to accomplish this. (b) Find an expression for the
capacitance.

(2) We use the results of Problem 13, since we can v
replace any of the equipotential curves (surfaces)
by circular conductors at the specified potentials.
Placing a = -V, and a =V, and noting that - D
k = 2q, we find that the centres of the circles are at il

1
i
x = —acoth(Vy/2q) and 2« = a coth(Vy/2q) Vo~ t /‘i}'\’o
so that (1) D = 2a coth(Vy/2q) et o e
The radius I of the circles is U ‘
(2) R = acsch(Vy/2q)

Division of (1) by (2) yields 2 cosh (Vy/2q) = D/R
80 that the required charge is

Vo
- Y Fig. 9-24
7 2 cosh-1(D/2R) *

. _ charge _ _q  _ ) —
®) Capicltancs €' = difference in potential ~— 2V, ~ 4 cosh—1(D/2R)

The result holds for a vacuum. 1f there is a medium of dielectric constant x, we must divide
the result by «.

Note that the capacitance depends as usual only on the geometry. The result is fundamental
in the theory of transmission line cables.

29, Prove the uniqueness of the solution tu Dirichlet’s problem.
Dirichlet’s problem is the problem of determining a function ¢ which satisfies g§+$ =0

in a simply-connected region R and which takes on a preécribed value ¢ = f(z,y) on the boundary C
of R. To prove the uniqueness, we must show that if such a solution exists it is the only one. To do
this suppose that there are two different solutions, say &, and ®;. Then

0%, %W, i —
=y +'3_3If = 0 in R and ®;, = f(z,¥) on C (1)
92, i TO P =
Bt + ‘W = 0 in R and ®y = f(z,¥) on C (2)

Subtracting and letting G = ®, — ¢,, we have

2 2
«;_34.%5:01“« and G=0 onC ®

To show that &, = &, identically, we must show that G =0 identically in R.
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Let F = G in Problem 31, Chapter 4, Page 112 to obtain

. 2 2
9G 4. . 36 B 2G| 3G oG G ,
‘Q‘G(axdz aydy) = {I[G(E}?er)’L(ax) +(ay)}d.cdy (4)
Suppose that G is not identically equal to a constant in ®. From the fact that G =0 'on C, and

2G 126G ; ; :
2 Dol =g identically in ‘R, (4) becomes

ﬂ[(g)h(g)’]m = o

But this contradicts the assumption that G is not identically equal to a constant in K, since in

such case 3G 2 G 2
< d
. {f [(3;) + (-5-'—;) ]dx dy > 0

It follows that G must be constant in R, and by continuity we must have G =0. Thus &, =&, and
there 1s only one solution.

30. An infinite wedge shaped region ABDE of angle »/4 [shaded in Fig. 9-35] has one of
its sides (AB) maintained at constant temperature Ty. The other side BDE has part. BD
[of unit length] insulated while the remaining part DE is maintained at constant tem-
perature T.. Find the temperature everywhere in the region.

z plane { plane
A ek T AY
83 T,
B «lB D P B D B
sacasassscn g >~ z A GAARA S et 3
Insulated 1 T, Insulated 1 T,
Fig.9-35 Fig. 9-36
w plane w plane
v v
UAu
; 1
T, T,
T, : T,
| - Bll L =
Insulated |
TI Tz
Fig. 9-37 Fig.9-38

By the transformation { = 22, the shaded region of the z plane (Fig. 9-36) is mapped into the
region shaded in Fig. 9-36 with the indicated boundary conditions [see entry A-1 in the table on
Page 205]. .

By the transformation { = sin (rw/2), the shaded region of the { plane [Fig. 9-36] is mapped
into the region shaded in Fig. 9-37 with the indicated boundary conditions [see entry C-1 in the table

on Page 210].
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Now the temperature problem represented by Fig. 9-37 with B”’D" insulated is equivalent to the
temperature problem represented by Fig. 9-38 since, by symmetry, no heat transfer can take place
across B”’D"”. But this is the problem of determining the temperature between two parallel planes
kept at constant temperatures T, and T, respectively. In this case the temperature variation is linear
and so must be given by T, + (Ty— Ty)u. :

From { = 22 and { = sin (rw/2) we have on eliminating {, w ‘:--guin “122 or u = 2 Re {sin—1! 22},
Then the required temperature is % Gl

2(T,—T
T, + 2—'—)- Re {sin—! 22}
m
In polar coordinates (r, #) this can be written as [see Problem 95),
2(T,—T
T, + ——(—z—v—-——l) sin“{Q\/r‘ + 2r2cos20 + 1 — &\/_r' — 2r2cos20 + 1)

Supplementary Problems

HARMONIC FUNCTIONS

31.

32.

3.

36.

Show that the functions (a) 2xy + y® — 322y, (b) e *siny are harmonic.

Show that the functions of Problem 31 remain harmonic under the transformations (a) z = w?,
(b) z = sinw.

If #(x,y) is harmonic, prove that #(z + a, ¥ + b), where a and b are any constants, is also harmonic.

If &, &, ...,%, are harmonic in a region ® and e¢j¢, ...,¢, are any constants, prove that
cyby + cgby + ¢+ - + ¢, b, is harmenic in R.

Prove that all the harmonic functions which depend only on the distance r from a fixed point must
have the form A Inr + B where A and B are any constants.

If F(z) is analytic and different from zero in a region R, prove that the real and imaginary parts of
In F(z) are harmonic in R.

DIRICHLET AND NEUMANN PROBLEMS

317.

39.

40.

Find a function harmonic in the upper half z plane Im{z} > 0 which takes the prescribed values on

the x axis given by G(x) = { L w=4 Ans. 1 — (2/x) tan—1! (y/x)
-1 z2z<0
1 z<-—1
Work Problem 37 if G(z) = 0 -1<z<1.
-1 z>1
1 - v 1 ol y
Ans. 1 — ;-tan ‘(z—l X ;_—_t.an 1(——1_'_1

{ T 0<6<n

Find a function harmonic inside the circle |z} =1 and taking the values F(¢) =
—T »<60<2r

on its circumference. Ans. T{l - g—tan"l(zLSi—"!)}
T 1—1r2%

T 0<6<n/2

Work Problem 39 if F(e) = 0 #/2<6<3x/2-
—T 8:/2<0<2¢
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41.

42.

43.

44.

gsine 0<e¢<n

Work Problem 39 if F(o) = i
0 <8 <2z

i &
Find a function harmonic inside the circle |z| = 2 and taking the values F(s) = J1o 0<o<s
L 0 n<e8<2r

Ans. 10 {1 - | tan l("r_?'_".g)}
w 4 -2

Show by direct substitution that the answers obtained in (a) Problem 6, (b) Problem 7, (c) Problem 8
are actually solutions to the corresponding boundary-value problems.

Find a function #(z,y) harmonic in the first quadrant* x>0, y >0 which takes on the values
V(x,0) = —1, V(0,y) = 2. Ans. imn--l(_fﬂm) -1

' z2— y?

Find a function ®(x,y) which is harmonic in the first quadrant x>0, ¥y >0 and which satisfies the
boundary conditions ®(x,0) = e~ %, /x| .., = 0.

APPLICATIONS TO FLUID FLOW

i6.

47.

8.

Sketch the streamlines and equipotential lines for fluid motion in which the complex potential is given
by (a) 22+ 2z, (b) 2%, (c) e %, (d) cosz.

Discuss the fluid flow corresponding to the complex potential €Q(z) = V(: 4 1/22).
Verify the statements made before equations (5) and (6) on Page 234.

Derive the relation ¢@/dz = Ve ©, where V and ¢ are defined as in Problem 17.

Referving to Problem 10, (a) show that the speed of the fluid at any point E [Fig. 9-14] is given by
2V, lsina] and (b) determine at what points on the cylinder the speed is greatest.

(¢) If P is the pressure at point B of the obstacle in Fig. 9-14 of Problem 10 and P, is the pressure
far from the obstacle, show that
P~ P, = j}oVi(l —4sinZe)

(b} Show that a vacuum is created at points B and F' if the speed of the fluid is equal to or greater
than V, -~ V2P _/3¢. This is often called cavitation.

Derive equation (19), Page 237, by a limiting procedure applied to equation (18).
Discuss the fluid flow due to three sources of equal strength k located at z = —a, 0, a.

Discuss the Auid flow due to two sources at z = *a and a sink at z =0 if the strengths all have equal
magnitude,

Prove that under the transformation w = F(z) where F'(z) is analytic, a source {or sink) in the z plane
at z == z, is mapped into "a source (or sink) of equal strength in the w plane at w = w, = F(zo).

Show that the total moment on the cylindrical obstacle of Problem 10 is zero and explain physically.

If w(c,y) is the stream function, prove that the mass rate of flow of fluid across an arc C joining
points (x;, ¥,) and (xy yy) is o{¥(®y, ¥a) — ¥z, ¥}

(¢} Show that the complex potential due w a source of strength k>0 in a fluid moving with speed
Vyis 12 Voz | kluz and {b) discuss the motion.
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A source and sink of equal strengths m are located at z= *1 between the parallel lines y = +1. Show
that the complex potential for the fluid motion is :

_ em(z+1) — 1
o, = . {,n(-—n - 1}

Given a source of fluid at z =2, and a wall =0. Prove that the resulting flow is equivalent to
removing the wall and introducing another source of equal strength at z = —2g.

Fluid flows between the two branches of the hyperbola axz2—by? = 1, a>0, b>0. Prove that the
complex potential for the flow is given by K cosh—1az where K is a positive constant and

a = Yab/(a + b).

APPLICATIONS. TO ELECTROSTATICS

62.

64.

65.

66.

67.

69.

Two semi-infinite piane conductors, as indicated in Fig. 9-39 below, are charged to constant potentials
%, and ®, respectivelg. Find the (a) potential & and (b) electric field & everywhere in the shaded

&, — b
region between them. Ans. (a) & = &y + (%)0 (b) € = (by— &))/ar

Potential 4, Vo

Fig.9-39 Fig. 9-40

Find the (a) potential and (b) electric field everywhere in the shaded region of Fig. 9-40 above if
the potentials on the positive  and y axcs are constant and equal to V, and —V, respectively.

Ans. Vo{l — 2 an-1 (ﬁL)}
T

P

An infinite region has in it 3 wires located at z = —1,0,1 and maintained at constant potentials
—Vo, 2V, —V, respectively. Find the (a) potential and (b) electric field everywhere.

Ans.” (a) Vg In {2(z2— 1)}
Prove that the capacity of a capacitor is invariant under a conformal transformation.

The semi-infiriite plane conductors AB and BC which v
intersect at angle a are grounded [Fig.9-41). A line
charge ¢ per unit length is located at point z; in the
shaded region at equal distances ¢ from AB and BC.

zv/a — gnla
Find the potential. Ans. Im { —2qi In (1'7—:5%7;)

Work Problem 66 if ¢ is at a distance a from AB and
b from BC,

Work Problein 23 if there are two line charges, ¢ per
unit length and —q per unit length, located at z = bi and
z = ci respectively, where 0<b<a, 0<c<a and b#*ec. Fig. 9-41

An infinitely long circular cylinder has half of its surface charged to constant potential V, while the
other half is grounded, the two halves being insulated from each other. Find the potential everywhere.
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APPLICATIONS TO HEAT FLOW

70. (a) Find the steady-state temperature at any point of the region shown shaded in Fig. 9-42 below and
(b) determine the isothermal and flux lines. Ans. (a) 60 — (120/7) tan—! (y/x)

71. Find the steady-state temperature at the point (2,1) of the region shown shaded in Fig.' 9-43 below.

B (;‘::ﬁ s

Fig. 9-42 Fig.9-43 ) Fig. 9-44

72. The convex portions ABC and ADC of a unit cylinder [Fig. 9-44 above] are maintained at tempera-
tures 40° C and 80° C respectively. (a) Find the steady-state temperature at any point inside.
(b) Determine the isothermal and flux lines.

73. Find the steady-state temperature at the point (b, 2) in the shaded region of Fig. 9-46 below if the
temperatures are maintained as shown. Ans. 46.9°C

¥ ST A
&‘ LhiN 2K

gy

¥

> 24

Fig. 9-45 Fig. 9-46

74. An infinite conducting plate has in it a circqlar hole ABCD of unit radius [Fig. 9-46 above]. Tem-

peratures of 20° C and 80° C are applied to arcs ABC and ADC and maintained indefinitely. Find
the steady-state temperature at any point of the plate.

MISCELLANEOUS PROBLEMS
75. If ®(z,y) is harmonic, prove that ®(x/r2, y/r?) where r = Va?+ y? is also harmonic.

76. Prove that if U and V are continuously differentiable, then

WU aUdx | aU dy av aVdy , 9V dzx
— e — b el B e e ot et
@ an dx ds ¥ dy ds (b) a8 dx ds dy ds
where n and s denote the outward drawn normal and arc length parameter respectively to a simple
closed curve C.
g ¢ " aU _ aV au _ v
77. 1f U and V are conjugate harmonic functions, prove that (a) o R (b) i bt 4
1 =173

T T E T is harmonic in every region which does not include the
- C

78. Prove that the function
point r=1, e =0.
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79. Let it be required to solve the Neumann problem, i.e. to find a function V harmonic in a region |
such that on the boundary C of R, aV/dn = G(s) where & is the arc length parameter. Let

H(s) = f G(s)ds where a is any point of C, and suppose that § G(s)ds = 0. Show that to
a €

find V we must find the conjugate harmonic function U which satisfies the condition U = - H(s)

on C. This is an equivalent Dirichlet problem. [Hint. Use Problem 77.]

80. Prove that, apart from an arbitrary additive constant, the solution to the Neumann problem is unique.

8l. Prove Thecrem 3, Page 234.

82. How must Theorem 3, Page 234, be modified if the boundary condition ¢ = a on C is replaced by
¢ = f(x,y) on C?

83. How must Theorem 3, Page 234, be modified if the boundary condition d4/dn = 0 on C is replaced by
ab/on = y(x,y) on C?

84. If a fluid motion is due to some distribution of sources, sinks and doublets and if C is some curve
such that no flow takes place acress it, then the distribution of sources, sinks and doublets to one side
of C is called the image of the distribution of sources, sinks and doublets on the other side of C.
Prove that the image of a source inside a circle C is a source of equal strength ot the inverse point
together with a sink of equal strength at the centre of C. [Point P is called the inverse of point Q
with respect to a circle C with centre at O if OPQ is a straight line and OP+-0Q = a? where
a is the radius of C.

85. A source of strength k>0 is located at point zp in a fluid which is contained in the first quadrant
where the x and y axes are considered as rigid barriers. Prove that the speed of the fluid at any
point is given by

kl(z—29) 1+ (z—20) "1 + (2 + 29) =1 + (2 + Z9) ! |

86. Two infinitely long cylindrical conductors having cross-
sections which are confocaf ellipses with foci at (—¢,0)
and (¢, 0) [sce Fig. 9-47) are charged to constant poten-
tials &, and &, respectively. Show that the capacitance
per unit length is equal to

2m
cosh™ ! (Ry/e} — cosh—!(R,/c)

[Hunt. Use the transformation z = ¢ cosh w.] o0
87. In Problem 86 suppose that %, and ®, represent constant \K
temperatures applizd to the elliptic cylinders. Find the \_/

steady-state temperature at any point in the conducting
region between the cylinders.

2R,

83. A circular cylinder obstacle of radius a rests at the bot- Fig. 9-47
tom of a channel of fluid which at distances far from the
obstacle flows with velocity V, [see Fig. 9-48).

{a) Prove that the complex potential is given by
2z) = waV, coth (ra/z)

(0) Show that the speed at the top of the cylinder is
}7?V, and compare with that for a circular obstacle
in the middle of a fluid.

(¢) Show that the difference in pressure between top
and botlom points of the cylinder is ox4V}/32. Fig.9-48
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89.

90.

91.

92.

93.

94.

97.

(¢) Show that tiie complex potential for fluid flow past
the elliptic cylinder of Fig. 9-49 is given by v

+ b)? . LQ
o) = Vo{; ® (_";‘if_)} m
where { = §(z + V2= c2) and ¢ = a?— % _—M—

(b) Prove that the fluid speed at the top and bottom of the
cylinder is V(1 + b/a). Discuss the case a = b. [Hint.

Express the compex potential in terms of elliptic Fig. 9-49
coordinates (¢, n) where z = x -+ iy = ¢ cosh (¢ + in) =
¢ cosh {.]

Show that if the flow in Problem 89 is in a direction making an angle 8 with the positive r axis, the
complex potential is given by the result in (a) with § = 3z + Va2—¢? )eid,

In the theory of clasticity, the equation
Al Al b
4 = 2( 7 2 = — -} B R .
e b T Paiae T A
called the biharmonic equation, is of fundamental importance. Solutions to this equation are called
biharmonic. Prove that if F'(z) and G(z) are analytic in a region R, then the real part of zF(z) + G(z2)

is biharmonic in XK.

= 0

Show that biharmonic lunctions (sce Problem 91) do not, in general, remain biharmonic under a
conformal transformation.

(e¢) Show that $(z) = K In sinh (rz/a), k>0, a >0 represents the complex potential due to a row
of fluid sources at z = 0, *ai, *2ai, ....

(b) Show that, apart from additive constants, the potential and stream functions are given by

¢ = K In{cosh (2rx/a) — cos (2ry/a)}, v = K tan—! _an (ry/a)
tanh (vx/a)

(¢) Graph some-of the streamlines for the flow.

Prove that the complex potential of Problem 93 is the same as that due to a source located halfway
between the parallel lines y = * 3a/2.

Verify the statement made at the end of Problem 30 [compare Problem 137, Chapter 2, Page 62).

A condenser is formed from an elliptic cylinder, with major and minor axes of lengths 2e and 2b
respeetively, together with a flat plate A of length 2k [see Fig. 9-60 below]. Show that the capacitance
" 2
is equal to —————.

" cosh 1 (a/h)
A fluid flows with uniform velocity ¥V, through a sewii-infinite channel of width D and emerges
through the opening AB [Fig. 9-51 Lelow|. (¢} Find the complex potential for the flow. (b) Determine
the streamlines and equipotential lines and=obtain graphs of svme of these.

[Hint. Use entry C-b in the table on Page 211,

Fig.9-50 Fig. 8-51
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98. Give a potential theory interpretation to Problem 30.

99. (a) Show that in a vacuum the capacitance of the parallel cylindrical conductors in Fig. 9-52 is
1

D? — R} - R}
2cosh~ ! - —o——
2R\R,

(b) Examine the case B, = R, = R and compare with Problem 28.

100. Show that in a vacuum the capacitance of the two parallel cylindrical conductors in Fig. 9-b3 ia
1
R} + R3—D2 )

2coah—1(

Fig.9-52 Fig.9-53 Fig. 9-54

101. Find the potential at any point of the unit cylinder of Fig. 9-64 if AB, BC, CD and DA are kept at
potentials V,,0,—V, and 0 respectively.

Vo 2r sin @ 2r cos @
iR g ar St =las e
Ans. ~ (tan == + tan = )

102. The shaded region of Fig. 9-66 represents an infinite

J conducting half plane in which lines AD, DE and DB
are maintained at temperatures 0,7 and 2T respec-
tively, where T is a constant. (a) Find the tempera-
ture everywhere. (b) Give an interpretation involving Fig. 9-58
potential theory. !

103. Work the preceding problem if (a) DE is insulated, (b) AB is insulated.

104. In Fig. 9-66 suppose that DE represents an obstacle perpendicular to the base of an infinite channel
in which a fluid is flowing from left to right so that far from the obstacle the speed of the fluid is V.
Find (a) the speed and (b) the pressure at any point of the fluid.

105. Find the steady-state temperature at the point (3,2) in the shaded region of Fig. 9-56.

106. An infinite wedge shaped region ABCD of angle y/4~[shaded in Fig. 9-67] has one of its sides (CD)
maintained at 60° C; the other side ABC heas il'e part AB at temperature 26° C while part BC, of unit
length, is insulated. Find the steady-state tempjerature at any noint.

Fig. 5-58 Fig. 9-87
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ANALYTIC CONTINUATION

Let Fi(2) be a function of z which is analytic in a region R, [Fig. 10-1]. Suppose that
we can find a function F.(z) which is analytic in a region R, and which is such that
Fy(2) = F2(z) in the region common to R, and R,. Then we say that F:(2) is an analytic
continuation of Fi(z). This means that there is a function F(z) analytic in the combined
regions R, and R, such that F(z) = Fi(2) in R, and F(z) = F1(z) in R, Actually it
suffices for R, and R, to have only a small arc in common, such as LMN in Fig. 10-2.

v : v

Fig. 10-1 Fig. 10-2

By analytic continuation to regions R, R, etc., we can extend the original region of
definition to other parts of the complex plane. The functions Fi(z), F2(2), Fs(2), ...,
defined in R, Ry, Ry - - - respectively, are sometimes called function elements or briefly
elements. It is sometimes impossible to extend a function analytically beyond the boundary
of a region. We then call the boundary a natural boundary.

If a function F (2) defined in R, is continued
analytically to region R, along two different paths
 [Fig. 10-3], then the two analytic continuations

will be identical if there is no singularity between
the paths. This is the uniqueness theorem for
analytic continuation. '

If we do get different results, we can show
that there is a singularity (specifically a branch
point) between the paths. It is in this manner
that we arrive at the various branches of multiple-
valued functions. In this connection the concept
of Riemann surfaces [Chapter 2] proves valuable.

We have already seen how functions represented by power series may be continued
analytically (Chapter 6). In this chapter we consider how functions with other represen-
tations (such as integrals) may be continued analytically.

Fig.10-3

266
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SCHWARZ'S REFLECTION PRINCIPLE ¥
Suppose that F';(z) is analytic in the region

R, 'Fig. 10-4] and that F'(z) assumes real values
on the part LMN of the real axis.

Then Schwarz’s reflection principle states
that the analytic continuation of F', (z) into region
R, (considered as a mirror image or reflection
of R, with LMN as the mirior) is given by

Fo(2) = Fi(3) (1)

The result can be extended Lo cases where
LMN is a curve instead of a straight line segment. Fig. 10-4

INFINITE PRODUCTS
Let Py = (14-w)(1 Fw)-- (1 +w,) be denoted by n (1 +2.) where we suppose Lhat
k=1

for all k, wx + —1. If there exists a value P+ 0 such that lim P, = P, we say that the

n-+oo
on

infinite product (1 +wi)(1-+ws):-- = [](1-+w), or briefly 1(1+wk), converges to P,

k=1
otherwise it diverges. The quantities wx may be constants or functions of z.

If only a finite number of the quantities we = —1 while the rest of the infinite
product omitting these factors converges, the infinite product is said to converge to zero.

ABSOLUTE, CONDITIONAL AND UNIFORM CONVERGENCE
OF INFINITE PRODUCTS

If the infinile product 1i(1 -+ |ws]) converges, we say that I1I(L -+ wy) is absolutely
convergent.

If 1(1 -+ wx) converges but 1(1 + |wk]) diverges, we say that (1l + wy) is condi-
tionally convergent.

An important theorem, analogous to one for infinite series, states that an absolutely
convergent infinile product is convergent, i.e. if 11(1 + |wi|) converges then 11(1 + wx)
converges (see Problem 65).

The concept of uniform convergence of infinite products is easily defined by analogy

with infinite series or sequences in general. Thus if |] {1+ wk(z)} = Pu(z) and
N k=1

ﬂ {1+ awi(z)} = P(z), we 8ay that P.(2) converges uniformly to P(z) in a region K if,

]
given any ¢ >0, we can find & number N, depending only on ¢ and not on the particular
value of z in R, such that |[P.(2)— P(z)] < ¢ for all n>>N.

Ag oin the case ol mfinile series, certain things can be done with absolutely or
uniformly convergenl miinile products that cannot necessarily be doue for infinite products
in general. Thus, for example, we can rearrange factors in an absolulely convergent
infinile praduct without changing the value.
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SOME IMPORTANT THEOREMS ON INFINITE PRODUCTS
1. A necessary condition that 1I(1 + wy) converge is that lim w. = 0. llowever, the

n = co

condition is not sufficient, i.e. even if lim w. = 0 the infinite product may diverge.

2. If X|ws| converges [i.e. if 2wk converges absolutely], then 1i(1 + |wi|), and thus
(1 + we), converges [i.e. 1I(1+ wx) converges absolutely]. The converse theorem
also holds.

3. If an infinite product is absolutely convergent, its factors can be altered without
affecting the value of the product.

4. If in a region R, |w«(2)| < Mi, k=1,2,8, ..., where M are constants such that EM
converges, then IT{1 + wx(2)) is uniformly (and absolutely) convergent. This is the
analogue of the Weierstrass M test for series.

5. If w(2), k=1,2,8,..., are analytic in a region R and 3wx(z) is uniformly con-
vergent in R, then 11{1 + w«(2)} converges to an analytic function in R.

WEIERSTRASS’ THEOREM FOR INFINITE PRODUCTS

Let f(z) be analytic for all z [i.e. f(2) is an entire function] and suppose that it has
gimple zeros at ai,@s,ds, ... where 0 <|ai <|as| <lasf < --- and lim |a,| = . Then
f(2) can be expressed as an infinite product of the form

@) = fO) " I {(1 -3) e""t} ()
A generalization of this states that if f(z) has zeros at axr»0, k=1,23,..., of

respective multiplicities or orders g,, and if for some integer N, 3 1/a) is absolutely
convergent, then k=1 .

) = oo [1{(1-Z) ¢ HE e &

where G(z) is an entire function. The result is also true if some of the ai’s are poles, in
which case their multiplicities are negative.

The results (2) and (3) are sometimes called Weierstrass’ factor theorems.

SOME SPECIAL INFINITE PRODUCTS

1. sinz = z{l—g}{l—(—z%;}--- = z:(lwﬁ%)

2. co8z = {I-G.?ZT’}{I_(?’—:}T)‘}“' = :(1—-(7,-‘47?@)
3. sinhz = z{1+:—:}{1+(;—:)-,}--- = [1(1+4)
4, coshz‘ — {1+-(%)~2}{1+-(3—:;§)—,}-“ = :‘(1*"@%_‘1:‘)—2?)

THE GAMMA FUNCTION
For Re(z) >0, we define the gamma function by

(s) = j.: " premtdt : (4)
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Then (see Problem 11) we have the recursion formula

Nz+1) = zI1(2) where 1(1) =1 (5)
If z is a positive integer n, we see from (5) that '
rm+1) = am—-1---(1) = n! - (6)

80 that the gamma funclion is a generalization of the factorial. For this reason the
gamma function is also called the factorial function and is written as z! rather than
I(z+1), in which case we define 0!=1. _

From (5) we also see that if z is real and positive, then 1'(z) can be determined by
knowing the values of r(z) for 0 <z<1. If z=4, we have [Problem 14]

_ i) =v= ”

For Re(z) =0, the definition (4) breaks down since the integral diverges. By

analytic continuation, however, we can define I(z) in the left=hand plane. Essentially

this amounts to use of (5) [see Problem 15]. At z=0,-1,-2,..., I(z) has simple poles
[see Problem 16].

PROPERTIES OF THE GAMMA FUNCTION

The following list shows some important properties of the gamma function. The
first two can be taken as definitions from which all other properties can be deduced.

1:2:3..-k

. Me+l) = lme e+ —erge = lmoek

where TII(z, k) is sometimes called Gauss’ II function.

1 . T -

2. F(“z'j = ze" .(1;1{14-%}8 &

where y = lim {1 + % + :—; + e+ % - lnp} = .bT721567... is called Euler's

p-+ o
constant.
= T

3. rz)r(l—2) = e

In particular if z=4, r(})= V=
4. 251 T(a+4) = VD22
This is sometimes called the duplication formula for the gamma function.
5. If m=1,23,..., ' 1.
2 - -1 =
I‘(z) I‘(z + }ﬂ) r(z + E) P I‘(\-n( -+ mﬂ‘—.> = ph-mz (2.”)(m I)Iﬂr(mz)

Property 4 is a special case of this with m=2.
™) _ _ 1_1 S, PR S |
e - vt (T—?) s (2 ¢+l) T = (u z+n—i) i
b ™1) = .e“‘lntdt = - t plane
(1) J; Y .

8. r(z) = F}__l_ftmeﬂdt D/- P
2%

P —
where C is the contour in Fig. 10-5. This is /E 1
an analytic continuation to the left-hand half
plane of the gamma function defined in (4). Fig.10-5

G2

A
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9. Another contour integr‘al using contour C [Fig. 10-5) is given by

1

r(z) = i(—t)"'e"dt‘ = —#i(—t)"e"dt

2 sinnwz

THE BETA FUNCTION
For Re{m) >0, Re{n} >0, we define the beta function by

1
B(m,n) = f tm-1(1—t)ytdt (8)
0
As seen in Problem 18, this is related to the gamma function according to
_ I(m)T(n)
B(m,n) = T(m ¥ n) 9

Various integrals can be expressed in terms of the beta function and thus in terms
of the gamma function. Two interesting results are ‘

J:' gin?™-19 cos™~'9dd = ¢B(m,n) = %%%% (10)
o"{l}'—tdt = Bp,1-p) = O)T(1-D) = G (11)

the first holding for Re {m} > 0 and Re (n) > 0, and the second holding for 0 <Re {p} <1.

For Re{m)=0 and Re(n) =0, the definition (8) can be extended by use of
analytic continuation.

DIFFERENTIAL EQUATIONS
Suppose we are given the linear differential equation
Y + p(2)Y + qY = 0 (12)
If p(z) and q(z) are analytic at a point a, then a is called an ordinary point of the differential

equation. Points at which p(z) or ¢(z) or both are not analytic are called stngular points
of the differential equation.

Example 1: For Y” +2zY’'+ (z22—4)Y = 0, every point is an ordinary point.

Example 2: For (1—#)" —2:Y'+6Y = 0 or Y= ooy’ +-22¥ =0, s=*1 are

singular points; all other points are ordinary points.
If z=a is a singular point but (z—a)p(z) and (z—a)*q(z) are analytic at z=a,
then z=a is called a regular singular point. If z=a is neither an ordinary point or a
regular singular point, it is called an irregular singular point.

Example 3: In Example 2, z=1 is a regular singular point since (z—1) (-— 2 ) =3 and

1-22) ~ z+1
(z— 1)2(i-_—67) = 611612 are analytic at z=1. Similarly, z=—1 is a regular singu-
lar point.
Example 4: 23Y" + (l'—;)Y’ —2Y = 0 has z=0 as a singular point. Also, z(l;z) = -1-—51
anfi tnz2 (-— '}3) = —% are not analytic at z=: 0, so that z =0 is an irregular singular
poin

If Y.(z) and Ya(z) are two solutions of (12) which are not constant multiples of each
other, we call the solutions linearly independent. In such case, if A and B are any con-
stants the general solution of (12) is

Y = AY, + BY: (13)
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The following theorems are fundamental.

Theorem 1. If z=a is an ordinary point of (12), then there exist two linearly inde-
pendent solutions of (12) having the form

2 ax(z—a)* (14)

Where the constants a. are determined by substitution in (72). In doing this it may b¢
necessary to expand p(z) and ¢(z) in powers of (z—a). In practice it is desirable tc
replace (2 —a) by a new variable.

The solutions (14) converge in a circle with centre at a which extends up to the
nearest singularity of the differential equation.

Example 5: The equation (1—32z2)Y" —2zY’'+6Y = 0 [see Example 2] has a solution of the
form Za,z* which converges inside the circle |z| =1,

Theorem 2. If z=a is a regulay singular point, then there exists at least one solu-
tion having the form

(z=a) 3 aulz—a)* (25)

where ¢ is a constant. By substituting into (12) and equating the lowest power of (z—a)
to zero, a quadratic equation for ¢ (called the indicial equation) is obtained. If we call the
solutions of this quadratic equation ¢: and c¢;, the following situations arise.
1. ¢i—cz # an integer. In this case there are two linearly independent solutions
having the form (15).
2. ¢1 = c3. Here one solution has the form (15) while the other linearly independent

solution has the form =
In(z—a) .;Zo bu(z — a)<+e (16)

3. c1—¢; = an integer # 0. In this case there is either one solution of the form
(15) or two linearly independent solutions having this form. If only one solution
of the form (15) can be found, the other linearly independent solution has the

form (16).
All solutions obtained cohverge in a circle with centre at ¢ which extends up to the
nearest singularity of the differential equation.

SOLUTION OF DIFFERENTIAL EQUATIONS BY CONTOUR INTEGRALS
It is often desirable to seek a solution of a linear differential equation in the form

Y() = f K(z,1) G(t) dt (17)
C
where K(z, t) is called the kernel. One useful possibility occurs if K(z,t) = e*, in which case
Y() = f et G(t) dt (18)
C

Such solutions may occur \;vh;re the coefficients in the differential equation are rational
functions (see Problems 25 and 26).

BESSEL FUNCTIONS
Bessel’s differential equation of order n is given by
2Y" 4+ 2Y" + (*-n)Y = 0 (19)
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A solution of this equation if n = 0 is

" 23 ol
Ju(e) = 2"r(n+l){1 T 3@nve) T2 d@nt)nrd) } (20)

and is called Bessel’s function of the first kind of order n.

If n is not an integer, the general solution of (18) is
Y = AJu(z) + BJ-a(?) ' (21)
where A and B are arbitrary constants. However, if n is an integer then J-u(2) = (—1)"Ja(2)
and (20) fails to yield the general solution. The general solution in this case can be found
as in Problems 182 and 183.

Bessel functions have many interesting and important properties, among them being
the following.

1. ext-1/0/2  — i Jn(2)

The left side is often called the generating function for the Bessel functions
of the first kind for integer values of n.

2. 2Jn-1(2) — 2nJn(2) + 2Jas1(z) = 0
This is called the recursion formula for Bessel functions [see Problem 27).

’

d
3. d—i{z"J,.(z)} = 2" Ja-1(2), &;(z‘"J..(z)} = —2""Ja+1(?)
1 (T ; ;
4. a() = = f cos (ng — z8in¢) de , n = integer
m g
T Z Y B e v
b. Ja(z) = "jo‘ cos (n¢ — 2z sin¢) d¢ = jo' g b zsinho g
6. Jo' tJ,.(at)J..(bt) dat z{a Ja(b2) J..(a;)a _—alz‘JJ..(az)Jr.(bz)} b
5 l“ tJn(at) J"(bt) dt az J..(bz) Jn—l(azl;)’n : abzz JIn (GZ) Jn—-ljbz) ! asb
8. f Cta@t)Pdt = ?2—2—[(J,.(az)]’ — Jn_1(a2) Jus1(a2)]
0
9, Julz) = El—ift-n-'e%-"-w dt, n=0=1,22 ...
L] ]
where C is any simple closed curve enclosing ¢t = 0.
zn ! 25
i B0 = g, oo

z"
= 186 @2n—1)r

f cos (2 cos ¢) sin? ¢ d¢
0

A second solution to Bessel’s differential equation if n is a positive integer, is called
Bessel's function of the second kind of order m or Neumann's function and is given by
n—1 —l B ] 2k—n

Yuz) = Ja(z)lnz — 2 fn—k—”(f)

4 (22)

2
- 33 i (2) G + Gt i

where G(k) = 1+%+§+---+}‘- and G(0) = 0.
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If n=0, we have

z? z 2°
Yo(2) = Jo(2)Inz + 2t~ W(l'{**) + 2_-"'4—;6;(1+*+*) — 4B (29)
In terms of these the general solution of (19) if n is a positive integer can be written
Y = AJa(2) + BYa(2) (24)

LEGENDRE FUNCTIONS
Legendre’s differential équation of order n is given by

(1-28Y” — 22Y’ + n(n+1)Y = 0 (25)
The general solution of this equation is
+1 —2)(n+1)(n+38
i A{l - 5 e } (26)
(n—1)(n+2) (n— 1)(n— 8)(n + 2)(n + 4)
+B{z— 31 2 + Bl z’—---}

If n is not an integer, these series solutions converge for |z| <1. If n is zero or a positive
integer, polynomial solutions of degree m are obtained. We call these polynomial solu-
tions Legendre polynomials and denote them by P.(z), n = 0,1,2,8,.... By choosing
these so that P.(1) =1, we find that they can be expressed by Rodrigues’ formula

Pae) = moo@—1) (27)

“from which Po(z) = 1, Pi(2) = z, P2(2) = $(822—1), Ps(2) = 4(52*— 32), etc.
The following are some properties of Legendre polynomials.

1 3
1. —— P, (2) t»
Vi-2z+ e Zh@
This is called the generating function for Legendre polynomials.
) { n_nn-1) ., ne-1)n-2)n-3) .,
2. P = gy 2en=1)" T 2-4@n-1)@n-3)
S 1 (e—-1"
3. P.(2) = Zwiizﬂ(t—z)-“dt
where C is any simple closed curve enclosing the pole ¢ = z.
. j’ 0 ifme*n
4. [ Pa@Pagae =" { 5
-1 [2n 1 if m=n
[See Problems 30 and 31.]
. 1 v
5. P.(z) = —f [z + V22 —1cos¢]" do
L
[See Problem 34, Chapter 6.]
6. (n+1)Pas1(2) — (2n+1)2Pa(2) + nPa-s(2) = 0

This is called the recursion formula for Legendre polynomials [see Prob. 32].

1, (@n+1) Pu(z) = Pasi(2) — Pa-1(2)
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If n is a positive integer or zero, the general solution of Legendre’s equation can
be written as
e Y = AP.(2) + BQu(2) (28)

where Q.(2) is an infinite series convergent for |z] <1 obtained from (26). If n is not a
positive integer, there are two infinite senes[&o]utxons obtained from (26) which are
convergent for |z| <1. These solutions to Legendre s equation are called Legendre functions.
They have properties analogous to those of the Legendre polynomials.

THE HYPERGEOMETRIC FUNCTION
Thé function defined by

Fl,bie;z) = 1+ %0, 4 olatl)bd+1),,

1c” 1:2+¢(c+1)

is called the hypergeometric function and is a solution to Gauss’ differential equation or
the hypergeometric equation

2(1-2)Y" + {(c—(a+b+1)2)Y — adY = 0 (30)

The series (29) is absolutely convergent for |z <1 and divergent for |z|>1. For |¢|=1
it converges absolutely if Re{c—a—b) > 0.

If |¢<1 and Re{c) > Re(b) > 0, we have

F(a,b; e;2) = Wéﬁf (-1 (1 — t)e=b=1 (1 — tz)~odt (31)

For |z| > 1 the function can be defined by analytic continuation.

(29)

THE ZETA FUNCTION

The zeta function, studied extensively by Riemann in connection with the theory of
numbers, is defined for Re(z} > 1 by

1 1 1 I |
e = 545 Ll .‘;k— (82)
It can be extended by analytic continuation to other values of z. This extended definition

of {(2) has the interesting property that

{(l-2) = 2'"*z7*1(2) cos (x2/2) {(2) (83)
Other interesting properties are as follows.
z—1
1. e = m)f e‘t+1 dt  Re(z) >0

2. The only singularity of {(z) is a simple pole at z=1 having residue 1.

3. If By, k=1,2,8,..., is the coefficient of z** in the expansion

m= = < B;,_Z2t
dzcot(dz) = 1 ’;. 2y
22k~1 2% B, 5
then ¢(2k) —@nT k=123,
We have, for example, B1=1/6, B,=1/30, ..., from which ¢(2)=+%6, {(4)=
#4/90, .... The numbers B« are called Bernoulli numbers. For another definition

of the Bernoull_i numbers see Problem 163, Page 171.
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C = (BB = T

where the product is taken over all positive primes p.

Riemann conjectured that all zeros of {(z) are situated on the line Re{z} = §, but
ag yet this has neither been proved nor disproved. It has, however, been shown by Hardy
that there are infinitely many zeros which do lie on this line.

ASYMPTOTIC SERIES

A sori a , 8 . _ O
series o h =g ¥ ..zo - . (84)
is called an asymptotic series for a function F(z) if for any specified positive integer M,
M
limz" [ F(z) — $ %0 _
lim e {Fe) - £} = o (32)

In such case we write -
F(z) ~ go = (36)

Asymptotic series, and formulae involving them, are very useful in evaluation of
functions for large values of the variable, which might otherwise be difficult. In practice,
an asymptotic series may diverge. However, by taking the sum of successive terms of
the series, stopping just before the terms begin to increase, we may obtain a good
approximation for F(z).

Various operations with asymptotic series are permissible. For example, asymptotic
series may be added, multiplied or integrated term by term to yield another asymptotic
series. However, differentiation is not always possible. For a given range of values of 2
an asymptotic series, if it exists, is unique. :

THE METHOD OF STEEPEST DESCENTS
Let I(z) be expressible in the form

I(z) = jc‘e”'“’ dt (87)

where C is some path in the t plane. Since F(t) is complex, we can consider z to be real.

The method of steepest descents is a method for finding an asymptotic formula for
(87) valid for large z. Where applicable, it consists of the following steps.

1. Determine the points at which F’(t) = 0. Such points are called saddle points,
and for this reason the method is also called the saddle point method.

We shall assume that there is only one saddle point, say t.. The method can
be extended if there is more than one.

2. Assuming F(t) analytic in a neighbourhood of ¢,, obtain the Taylor series expansion
FO = P+ TG0 4o ) - w (38)

Now deform contour C so that it passes through the saddle point ¢, and is such -
that Re {F(t)} is largest at to while Im (F(t)} can be considered equal to the constant
Im {F(t)) in the neighbourhood of t,. With these assumptions, the variable u
defined by (88) is real and we obtain to a high degree of approximation

Ig) = eFw J: : gt (%) du (39)
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-

where from (38), we c-an find constants bo, by, ... such that
di
!—i;lj = bo + biu + bau® + --- (,&0)

3. Substitute (40) into (39) and perform the integrations to obtain the required
asymptotic expansion

B R

For many practical purposes the- first term provides enough accuracy and we find

—2n
Iz) ~ \/me’"“’ (42)

Methods similar to the above are also known as Laplace’s method and the method of
stationary phase.

SPECIAL ASYMPTOTIC EXPANSIONS
1. The Gamma Function

e A L . 180
r(z+1) 2nz 2% e {1 + 1% + 2882 51,8407 + } (43)

This is sometimes called Stirling’s asymptotic formula for the gamma function. It
holds for large values of |z| such that —» <argz <.

If n is real and large, we have

rn+1) = V2mnmnre "e¥'n where 0<6<1 (44)
In particular, if n is a large positive integer we have
n! ~ 2mn"e™™ (45)

called Stirling’s asymptotic formula for n!.

2. DBessel Functions

In(2) ~ \/—f—; (P(2) cos (z — 4nwr — 1x) + Q(2) 8in (z — §nrx — 1)} (46)

where 9
A = 4+ HEALIS AR [4n® — (4k = 1] %
Q) = 2‘ (~1) [4n2—1(2 I£4_n’1 )—' :;]k ;;-;,E’fz — (4k— 3y (47)
This holds for large values of |z| such that —= <argz <.
3. The Error Function
erf(2) = % jo" il e A ze:- é:l 1) L"i’__%_) 48)

This result holds for large values of |z| such that —=/2 <argz< »/2. For
#/2 < arg z < 3=/2 the result holds if we replace z by —z on the right.

4. The Exponential Integral
s ®© ,—t o ¢ 1)k !
Ei(z) = f ert ~ e-'kgo%%"— (49)

This result holds for large values of |z| such that —= <argz <.
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ELLIPTIC FUNCTIONS

The integral - dt

§'aE J' k| <1 (50)
o V(1—1¢)(1-— k%2 -

is called an elliptic integral of the first kind. The integral exists if w is real and such

that |w| < 1. By analytic continuation we can extend it to other values of w. If ¢ = sind

and w = sin¢, the integral (50) assumes an equivalent form

- j“ de
o V1 — k®gin%4
where we often write ¢ = am z.

If k=0, (50) becomes z =sin"'w or, equivalently, w = sinz. By analogy, we denote
the integral in (50) when k0 by sn~'(w; k) or briefly sn—'w when k does not change
during a given discussion. Thus

(61)

dt

zZ = sn'w = f
o V(1T—-8)(1- k)
This leads to the function w =snz which is called an elliptic function or sometimes a
Jacobian elliptic function. ,
By analogy with the trigonometric functions, it is convenient to define other elliptic

function
g cnz = /1 — sn?z, dnz = /1 — k?sn?z (53)

Another function which is sometimes used is tn z = (sn z)/(cn 2).

(52)

The following list shows various properties of these functions.
1. sn(0) =0, cn(0) =1, dn(0) = 1, sn(—2) = —snz, cn (—2) = cnz, dn(-2) = dnz

d _ d = d _ .
2. 8Nz = .cnzdnz, Nz = snzdnz, Ednz = —k?snzenz

3. snz = sin(amz), cnz = cos(am 2)

snzicnz;dnz; + cnz dnz snz
3 = 5
* sait ¥aa) 1 — k?sn?z; sn%z, (54)
cnzicnz; — snziSnz:dnz, dnz,
= 5
e +5) 1 — k*sn?z,sn’z (#5)
— 2
dn(zi+2) = dnzidnzs — k®snz snz.cnz cnzs (56)

1 — k*sn?z,8n?z
These are called addition formulae for the elliptic functions.

5. The elliptic functions have two periods, and for this reason they are often called
doubly-periodic functions. Let us write

K = J‘l dt _ J-r/z dé -
S V- a-ke)  J VI- ksinte 7

i & 1 dt /2 de
K = f = f —————— (58)
o V(1—t)(1-k"t) ( 1 — k"sin?¢

where k and ¥, called the modulus and complementary modulus respectively, are
such that &’ = \/1—k% Then the periods of snz are 4K and 2iK’, the periods of
cnz are 4K and 2K +2iK’, and the periods of dnz are 2K and 4iK’. It follows
that there exists a periodic set of parallelograms [often called period parallelograms]
in the complex plane in which the values of an elliptic function repeat. The
smallest of these is often referred to as a unit cell or briefly a cell.
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The above ideas can be extended to other elliptic functions. Thus there exist elliptic
integrals of the second and third kinds defined respectively by

w L]
=t f 1’-1_ﬂdt = f VI = @ sin?d do (59)
0 1= §F 0
dt )

w L
-f L+ nen/ (A= Okt ‘f (1 + n sin?0)\/1 — k? sin?0 (60)

z =

Solved Problems

ANALYTIC CONTINUATION v

1. Let F(2) be analytic in a region R and suppose
that F(z) = 0 at all points on an arc PQ inside R
[Fig. 10-6]. Prove that F(z) =0 throughout R.

Choose any point, say z,, on arc PQ. Then in some
circle of convergence C with centre at z, [this circle ex-
tending at least to the boundary of R where a singularity
may exisi], F'(z) has a Taylor series expansion

F(z) = F(zg) + F'(2o)(z—29) + §F""(2e)(z— 20)2 + -+
But by hypothesis F(zp) = F'(z9) = F'(zp) = +++ = 0. ; z
Hence F(z) = 0 inside C.

By choosing another arc inside C, we can continue
the process, In this manner we can show that F(z) =0 Fig. 10-6
throughout R.

2. Given that the identity sin?z + cos?z = 1 holds for real values of z, prove that it
also holds for all complex values of z.

Let F(z) = sin2z+cos2z—1 and let R be a region of the z plane containing a portion of the
« axis [Fig. 10-7].

Since sin z and cos z are analytic in R, it follows that F(z) is analytic in ®. Also F(z) =0 on the
x axis. Hence by Problem 1, F(z) = 0 identically in ®, which shows that sin2z+cos?z = 1 for
all z in R. Since R is arbitrary, we obtain the required result.

This method is useful in proving for complex values many of the results true for real values.

v

Fig.10-7 Fig.10-8

3. Let Fi(z) and F3(2) be analytic in a region R [Fig. 10-8] and suppose that on an arc PQ
in R, Fi(2) = Fa(z). Prove that Fi(2) = Fa(2) in R.

This follows from Problem 1 by choosing F(z) = F,;(z) — Fy(2).
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4. Let F'{(2) be analytic in region R, [Fig. 10-9] and on the boundary JKLM. Suppose that
we can find a function F; (z) analytic in region ®, and on the boundary JKLM such that
Fi(z) = F3(z) on JKLM. Prove that the function

{Fl (z) for z in R,

F3(z) for z in R,
is analytic in the region R which is composed of R, and ®, [sometimes written

R = R, +R,].

F(Z) =

Fig. 10-9

Method 1.
Thia follows from Problem 3, since there can be only one function F;(z) in R, satisfying the
required properties.

Method 2, using Cauchy’s integral formulae.

Construct the simple closed curve SLTKS (dashed in Fig. 10-9) and let a be any point inside.
From Cauchy’s integral formula, we have (since Fy(z) is analytic inside and on LTKL and sincé
Fgy(2) = F(z) on LTK) '

Fy (a)

1 Fy(z) 1 J‘ F\z) i F(z)
P e = m)i=e*taa) i
LTKL LTK KL

Also we have by Cauchy’s theorem (since F';(z)/(z—a) is analytic inside and on KSLK and since
F,(z) = F(z) on KSL)

o __1_ Fy(2) P f F(z) de + L 1 F(z) dz
2mt z—a 2w z2—a z—a
KSLK KSL LK

Adding, using the fact that F(z) = F;(z) = Fy(z) on LK so that the integrals along KL and LK
cancel, we have since F(a) = Fy(a) i

Flap = 2= F2)

i z—a
; LTKSL _
In a similar manner we find -
o Al ..
s = 5 § G—aypti %
LTKSL

so that F(z) is analytic at a. But since we can choose a to be any point in the region ‘R by suitably
modifying the dnnhed contour of Fig. 10-9, it follows that F'(z) is analytic in R,

- Method 3, using Morera’s theorem.
Referring to Fig. 10-9,"wé have

F(z)dz = f F(z)dz + fF(z)dz + J-F’(z)dz + f F(z) dz
KSLTK KSL LTK
= § Fy(z) dz + § Fy(2)dz = 0
KSLK KLTK

by Cauchy’s theorem. Thus the integral‘around any simple closed path in ® is zero, and so by
Morera’s theorem F(z) must be analytic.

The function F;(z) is called an analylic continuation of F,(z).
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5. (a) Prove that the function defined by Fi(z) = z2—22+2*—2'+ -+ is analytic in the
region |2/ <1. (b) Find a function which represents all possible analytic continua-
tions of # (2).

(a) By the ratio test, the series converges for |z| < 1. Then the series represents an analytic function
in this region. I

(b) For |z| <1, the sum of the series is F,(z) = z/(1+2z). But this function is analytic at all points
except z = —1. Since Fj(z) = F,(2) inside |z] =1, it is the required function.

6. (a) Prove that the function defined by Fi(z) = f Be-#dt is analytic al all points
5 0

z for which Re(z) >0. (b) Find a function which is the analytic continuation of
F\(2) into the left-hand plane Re (2} <0.

(@) On integrating by parts, we have

£ WM
J- e 2tdt = lim e 2tdt
(]

M-—sw /g

- o (D) - wn () + @) - oS

F Y
" 6 M3 g Mz 3M2 ¢~ Mz 6M e Mz e Mz
= lim§3 — &= e =

M=o « 22 23 z
6
= if Refz} > 0

(b) For Re{z} > 0, the integral has the value Fj(z) = 6/z%. But this function is analytic at all
points except z=0. Since Fy(2) = Fy(z) for Re {z} > 0, we see that F',(z) = 6/z* must be
the required analytic continuation.

SCHWARZ'S REFLECTION PRINCIPLE

7. Prove Schwarz’s reflection principle (see Page 266).
Refer to Fig. 10-4, Page 266. On the real axis [y =0] we have F,(2) = Fi(x) = Fy(x) = F(2).
Then by Problem 3 we have only to prove that F,(z) = F,(z) is analytic in R,.

Let Fy(z) = Uy(z,¥) + iV (z,y). Since this is analytic in R, [i.e. ¥ > 0], we have by the
Cauchy-Riemann equations,

al, av, av, U,
= = L B = e (1)
where these partial derivatives are continuous.

Now F,(3) = F,(z—iy) = U;(z,—y) +iV,(x,—y), andso Fy(2) = Uyta,—y) — i Vy(z,—9).
If this is to be analytic in R, we must have, for y > 0,
U, -V, a=vy _ U,

T T W . F I TE) ®)
; -V, 9V, a(—Vy v, alU, al,
But these are equivalent to (1), since Zr—n= = 7.7, 5 = e and === " Hence

the required result follows.

INFINITE PRODUCTS

8. Prove that a necessary and sufficient condition for TT (1 + [wi]) to converge is that
X |wi| converges. e

Sufficicney. 1f >0, then 1+z = e* so that
n
P* = kl:}l 1+ lwkl) = (1+ lwll)(l it lwﬂl)' (14 Iwuh = led le'l T lell = elwll + |wg] + -0+ |wyl
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If 3 |w| converges, it follows that P, is a bounded monotonic increasing sequence and so has
K=1

L
a limit, i.e. TJ (1 + |wg|), converges.
k=1

n
Necessity. 1f S, = ,‘E |wy|, we have
=1
Py = (A+|w)@+|wal) - +]wa) Z 1+ fwyj + |wg| + -+ + |w,] = 1+ Sp = 1

If lim P, exists, i.e. the infinite product converges. it follows that S, is a bounded monotonic

n=+ 00

increasing sequence and so has a limit, i.e. E |w| converges.
' k=1

9. Prove that l—[ ( 1- -—, converges.

z= lae
Let w, = —73. Then |w,| = %z and 2 |w| = |2f? 2 converges. Hence by Problem 8,

2
the infinite product is absolutely convergent and thus convergent

10. Prove that sinz = 2(1-£)(1-2)(1- &) = J1(1- %)

From Problem 36, Chapter 7, Page 192, we have
& I sin z
z

'z z
J‘(cott—l)dt = ]n(ﬂu)
[ ¢ ¢ o
2
_ 2t 2t
o [l )

= "glln(l—k:—::2 e lnkljl(l—'j‘%;)

Then sinz = zkljl(l—kLz;).

THE GAMMA FUNCTION
11. Prove that TI(z+1) = zr(2) using definition (4), Page 267.
Integrating by parts, we have if Re{z)} > 0,

L M
I'z+1) = f tre~tdt = lim f tre~tdt
0 M=o 0

M .M
gi_in_{(t')(—c"‘)L —Jo (zt"")(—c")dl}

sj;‘ t*=lg=tdt = 2zr(2)

12. Prove that I(m) = Zf gn=leg-2dy, m>0.
0
If t =22 we have

r(m) = J:t"'—lr‘dc = L“(z’)ﬂ‘—'c“”hdtz = 2j;-z3""a"‘dx

The result also holds if Re{m)} > 0.
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13. Prove that I(z)T(1—2) = g

We first prove it for real values of z such that 0 < z < 1. By analytic continuation we can
then extend it to other values of z. ;
From Problem 12, we have for 0 <m < 1,

rm) r(d—m) = {2J.” z2m—1g—x* dx} {2 fw y"2"'e—v' dy}
0 0

= 4,[“_" ZIm—1yl=2m o~ (2 + ) dp dy
o Yo

In terms of polar coordinates (r,9) with x = rcose, y = r sing this becomes

w2 e /2
4f f (tan!—2m g)(re-r)drde = Zf tan!—2mg dy = -
PRI - A sin mx
using Problem 20, Page 185, with x = tan2¢ and p = 1 —m.
14. Prove that 1(§) = Zf edu = /.
(]
From Problem 12, letting m = 4, we have
rg) = 2j e~ dx
0
From Problem 13, letting z = 4, we have
(r(gn: = » or r§) = Vr
since I'(4) > 0. Thus the required result follows.
Another method. As in Problem 13,
(rgyr = {2f u"'dw} {zf o' dy}
0 ) 0
vo0 00 /2 0
= 4J J e~ dp dy = 4J f erdrde = 1
0o Yo =0 Yr=0

from which I'(§) = V7.

15. By use of analytic continuation, show that TI(—4) = —2/7.

If Re{z} > 0, 1'(2) is defined by (4), Page 267, but this definition cannot be used for Re {z} = 0.
However, we can use the recursion formula I(z+ 1) = zI'(z), which holds for Re{z} > 0, to extend
the definition for Re {2z} = 0, i.e. it provides an analytic continuation into the left-hand plane.

Substituting z=—4 in I(z+1) = zI'(z), we find I'(§) = —§1(—4) or I'(—4) = —2Vr using
Problem 14. .

rz+n+1)
2(z+1)(z2+2) . - (z+n)’ _
(b) Use (a) to show that r(z) is an analytic function except for simple poles in the left-
hand plane at z = 0,-1,-2,-3,....
(@) We have T(z+1) = 2I(z), I'(z+2) = z+ 1)I'(z+1) = (z+1)z(z), 1(z2+3) = (z+2)Ir'(z+2) =
(z+2)(z+1)zr(z) and, in general, I'z+n+1) = (z+n)(z+n—1)-(z+2)(z+ 1)zT(z) from
which the required result follows.

(b) We know that I'(z) is analytic for Re{z)}) > 0, from definition (4), Page 267. Also, it is clear
from the result in (a) that I(z) is defined and analytic for Re {z} = —n except for the simple
poles at z = 0,—1,—2,...,—n. Since this is the case for any positive integer n, the required
result follows. g o=

16. (a) Prove that 1(2) =
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17. Use Weierstrass' factor theorem for infinite products [equation (2), Page 267| to obtain
the infinite product for the gamma function [Property 2, Page 268].

Let f(z) = 1/1'(z + 1). Then f(z) is analytic everywhere and has simple zeros at z = —1,—2,-3, - -,
By Weierstrass' factor theorem, we find

e == /"0y 2 = z -2lk
Mz+1) e uI;l; Lk k :
To determine f'(0), let z = 1. Then since I'(2) = 1, we have

1 = o® ] (1+%>6-m¢

k=1

1'(0) T 1 1/k
. o yim I (145) ¢
Taking logarithms, we see that

' = G dr ) e le e p.ik - 1 1y 1

roy = ,J'i“.,{x*z*a* v L 1n[(1+1)(1+2) (1+M)]}
L 1,1 1 N
—h}l-'"‘n{l+§+§+ +M—]nM}—'r

where y is Euler’s constant. Then the required remult follows on noting that I'(z+1) = zI'(2).

THE BETA FUNCTION
18. Prove that B(m,n) = B(n,m).
Letting ¢t = 1 —u,

i 1
B(m,n) = ‘J. tm—t(1—¢)n—tdt = f l=u)ym"tur—ldu = DB(n,m)
0 (}

w/2 w/2
19. Prove that B(m,n) = ZI s8in?™~1¢ cosg™ '0dfd = Zf cog?™ 1§ gin*™ ' ¢ dd.
. (1] 0

Let ¢ = sin2¢. Then o
v /2
B(m,n) = J tm—1(1—gt)yn—1dt = f (sin2 &)™~ (cos2 ¢)"—! 2 gin ¢ cos ¢ do
0 0 -
/2 /2
= 2f sin?m—1g cos?n—1g ds = zf cog?m—1g gin2"—14 do
by Problem 18. 0 0

1
20. Prove that B(m,n) = f tnr(1-tprde = MM
o I(m+mn)

From Problem 12, we have on transforming to polar coordinates,

rm)r(n) = {2 fu x2m—1g—as dx} {2 fﬂ yin—1 U_"dy}
0 ]

41‘“} ZIm=1yIn=14= 21+ dy dy
o Yo

I

B /2 0
4 J- f (cos2m—1¢ gin2n—1g)(r2m+2n—1 g—r1) dr dg
6=0 Yr=0

{2 7 ot ainin=14 a.} { 7 raemimigon dr}

0

= B(m,n)T(m+n)

where we have used Problem 19 and Problem 12 with » replacing t and m +n replacing m. From
this the required result follows. :
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21. Evaluate (a) |  VEE=d dz, () f " e b,

(a) Letting x = 2¢, the integral hecomes

i 1
f\/uu-c)zd: 4f @21 —ei/2de = 4B(3/2,3/2)
0

0

It

_ 41'(3/2) ra/2)  _ 4(5\/;)(\}\/;) T
- '(3) 2 2
w/2 T/2
(b) f Vtane ds = f sin!/2¢ cos~126de = 4B, })
0 0
- _ 1 T - E_\/é
: = TP = s5mEm T 2
using Problems 13, 19 and 20.
e . i 64 [2
22. Show that ¥ (16— 2dy = 5747 (TAD*
()
Let 2 = 16¢, i.e. y = 4tV/2, dy = 2t-1/2dt. Then the integral becomes
1 1
f (8B3/M4}{d(1 — Y2} {2¢—V2dt}y = 64f $1/4 (1 — t)V/2 dt
0 0
N _oear@rE 64 ) D rd)
= 64B(4, = —=—= =
@ TP Y

128V r 128V r 2
i 2;/_% - 2;/_1‘{(111?1)‘:2) = %ﬁ(r({)}z

using the fact that T(}) I'(}) = »/[sin (+/4)] = V2 [Problem 13].

DIFFERENTIAL EQUATIONS
23. Determine the singular points of each of the following differential equations and

specify whether they are regular or irregular.
2 p?
(@) 2Y" +zY'+ (22—n2)Y = 0 or Y"+}-Y’+ P ¥ & 6
z 22
‘ 2 n2
z=0 is a singular point. Since 2(1/2) = 1 and 22 (z zzn
z=0, it is a regular singular point.

) = z2—n2 are analytic at

2 1
—1)4Y" —1)3Y’ - i 2 VP ke Y =
(b) (z—1AY" + 2(z—1°3Y" + Y 0 or Y'+ ) 1Y +( 1)‘Y 0.

i 1
At the singular point z=1, (¢—1) (zfl) = 2 is analytic but (z—11* =7 = G

is not analytic. Then z=1 is an irregular singular point.

» 1 1 _

21 — " B R sm " - e—Y' - =
(@ #A-AY"+Y' —F =0 or ¥+ gTo¥ -k =0

; . . 1 - 1 2 -1 _ =1
At the singular point z=0, =z {z’(l—z)} = -3 and =z {zg(l_z)} =i are not

both analytic. Hence z=0 is an irregular singular point.

At the singular point z=1, (z—1)-° {zﬁ_(ll—_z)} = -_7:- and (z—1)2 {12(1_1 z)} = z;l

are both analytic. Hence z=1 is a regular singular point.
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24. Find the general solution of Bessel's differential equation

2Y" + z2Y" + (2 —n)Y = 0 where n » 0, +1, +2, , ..
The point z:‘O is a regular singular point. Hence there is a series solution of the form
Y = i a, zk*c  where @, =0 for k = -1;—2,—8,.... By differentiation, omitting the sum-
mntionk ;l;?ts, we have
Y' = Z(k+c)agzkte—1, Y" = Z(k+c)k+c—1)a,zk+c—2
Then 22Y" = Zk+o)k+ec—1)a,zkte
Y = Z(k+c)a, zkte
(2—n)Y = Za,zktctz — Inta, zkte
= Zag_gzktc — Iplq, zkte
Adding, 2Y" + 2Y' + (22— n)Y = 2{{(k+e)—n?a, + ap_ytzkte = o

from which we obtain
[((k+ec)2—n2a, + ay_y = 0 (1)

If k=0, (¢2—n%ay = 0; and if @9 7 0, we obtain the indicial equation ¢ —n2 = 0 with roots ¢ = *n,

Case 1: ¢ =n.
From (1), [((k+n)2—n?a, +ap_y = 0 or k@n+k)a, + ap_, = 0.

a
= If k=3, a3=0. If k=4, a, = :

k=1, 8,=0 I K=, ng = g, Ca@ntd)
0 y ete. Then
2°4(2n + 2)(2n + 4)
2
_ i - n s z 4 =S Wi 2
Y Zayzkte a2 {1 2(2n + 2) * 2+4(2n + 2)(2n + 4) } ()

Case 2: ¢ = —n,

The result obtained is

Y = gga-n{1 — — 2 __ i e wae ®
o 2(2 — 2n) 2:4(2n + 2)(2n + 4)

which can be obtained formally from Case 1 on replacing n by —n.

The general solution if n » 0,*1,%2,... is given by
2
= Azn - -_L z4 —_ e
¥ g {1 2@n+2) | T AEnF @R T d) }
22 2t

Bz—n — —— —_ e
ol {1 2@—2n) T Zoa@—2md—2n) } W
If n=0,x1,=+2 . ., only one solution is obtained. To find the general solution in this case we

must procead as in Problems 175 and 176,

Since the singularity nearest to z = 0 is at infinity, the solutions should converge for all z. This
is easily shown by the ratio test.

SOLUTION OF DIFFERENTIAL EQUATIONS BY CONTOUR INTEGRALS
25. (a) Obtain a solution of the equation zY” + (2n+1)Y’ +2Y = 0 having the form

¥ = f e G(t)dt. (b) By letting Y = 2'U and choosing the constant » appropriately,
{ o
obtain a contour integral solution of 2:U” + zU’ + (22—=ny)U = 0.

(@) If ¥ = § et G(t)dt, we find Y’ = f tet G(t)dt, Y = f t2 ext G(t) dt.
c c c
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Then integrating by parts, assuming that C is chosen so that the functional values at the
initial and final points P are equal [and the integrated part is zero], we have

. P
Yy = @HG()dt = 2t G(t - et G'(t)dt = — 2t (3'(t) dt
z j)c ze e ) , £ ‘i e ( )
@n+ 1Y = § (2n + 1)t e2t G(t) dt
c
YY" = 1 tZext G(t)dt = ) (2 G(t)} dt
z }Cz e i(ze
P
= weem| - § ey a
P c
i = —§ ext {12 G(t)}’ dt
Thus ¢
Y+ @4 DY + Y = 0 = § et [—G'(t) + (2n+ 1)EG(t) — {2 G(1)}'] dt
c
This is satisfied if we choose G(t) so that the integrand is zero, i.e.
—G't) + @n+1)EG() — {(BCW) = 0 or G = %G(t)

Solving, G(t) = A (t2+ 1)»~% where A is any constant. Hence a solution is

Y = A§e=f(a2+1)n—mda
C

() If Y =2U, then Y’ = 27U’ +rz7-'U and Y” = 2'U” + 2rz"" WU’ + #(r —1)2""2U. Hence
2Y" + En+ )Y + zY = ztWU” + 2r2’U' + r(r—1)z7 VU
+ 2n+ 1)z7U" + @n+ Drzr—U + 27+\U

= zrt1yU” + [2rz" + (2n+ 1)z |U’
+ [rr—1Dzr=! + 2n+ Drar—t + 27U
The given differential equation is thus equivalent to
20" + 2r+2n+ 1)U + [22+r2+20)]U = 0
Letting » = —n, this becomes 22U" + zU’' + (22— n?)U = 0.

Hence a contour integral solution is

U = 2Y = Az"fe"(t2+l)"_”2dt
C

26. Obtain the general solution of Y” —3Y’+2Y = 0 by the method of contour integrals.

Let Y = § et G(t)dt, Y = § tet G(t)dt, Y = § t2 ¢2t G(t) dt. Then
c c

c
¥’ — 3y’ + 2y = ff et (2—3+2)GHdt = 0
c
is satisfied if we choose G(t) = 1/(t? —3t+ 2). Hence
t
Y = § e
=36+ 2

If we choose C so that the simple pole t =1 lies inside C while ¢t =2 lies outside C, the integral has
the value 2riet. If t=2 lies inside C while t =1 lies outside C, the integral has the value 2rie?s,

~

The general solution is given by Y = Ae* + Be?,
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BESSEL FUNCTIONS

21.

29.

Prove that 2J.-(2) — 2nJa(2) + 2Ja+1(2) = 0.
Differentiating with respect to t both sides of the identity

gYaz(t—1/0) = i J“(z) Ll
yields b2
oo ) = % (e B)nee = % anee
i.e., i zJ, (z)t» + i 2, (2) 02 = i 2nJ, (z) tr—1

Equating coefficients of t" on both sides, we have
2Ja(2) + 2J,40(20) = 2m+1)Jy4,(2)
and the required result follows on replacing n by n — 1.

Since we have used the generating function, the above result is established only for integral

values of n. The resuit also holds for non-integral values of n [see Problem 114].

Prove Ja.(z) = 51_1§ t—n-teWt-1/0 gt where C is a simple closed curve enclosing
C

t=0.
We have eWzt—1/) = i I (2) tm
m=—eo
80 that t—n—1 glar(t—1/0) = 3 tmon-1J (z)
m= o0
and § t—n—1 oYaz(t—1/t) gy = i Jm(z) § tm—n—1 d¢
c m=-ow (4

Now by Problems 21 and 22, Chapter 4, Page 108, we have

§ m-n—t gy = 27t if m=n
c 0 if m#»n

Thus the series on the right of (1) reduces to 2ziJ,(z), from which the required result follows.

4
Prove that if a # b,

_f'tJ,.(at) b de = z{aJ..(bz)J.:(a:Z - l:J..(az)J.:(bz)}
(3 — @
Y, = J,(at) and Y, = J,(bt) satisfy the respective differential equations

(1) ey +tY, + (@2—n2)Y, = 0

(2) Y, +tY;, + (b2—n?)Y, = 0

Multiplying (1) by Y, (2) by Y, and subtracting, we find
(Y, Y, - Y, Yy) + (Y, ¥, — Y, Yy
This can be written
LSV~ YY) + (Y] - YY) = (-adtY Yy

(b2—a®)2Y, Y,

d
or 3¢ (Y2 Y- Y,Y)) = (b*—ad)tY,Y,
Integrating with respect to ¢t from 0 to z yields
z
(b!—az)f LY, Yydt = uY,v|—v, vl
0 o
or since a* b

f.tJ..(al) J,btydt = ‘{“"*(b‘”*“‘;’_"u';"'(“‘)""“"”
0

(1)

2)
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LEGENDRE FUNCTIONS
1

30. Prove that f Pn(2) Pu(2)dz = 0 if m»n.
-1

We have (1 Q-zpP, — 2zP,, + m(m+1)P,, = 0
2 (A—2)r — 2P, + an+1P, = 0
Multiplying (1) by P,, (2) by P,, and subtracting, we obtain
(1— 2P, P — PuP)l) — 2P Py — PuPy} = (n(n+1)— mm+1)}P,P,

which can be written

(1= (PPl = PPl — 2P Pl = PuPR) = (n(n+1) = mm+ D) P Py

or L (A= )Py P~ PaPR) = (a(n+1) = mm+1) P P
Integrating from —1 to 1, we have
1 1
{n(n+1) — m(m+ 1)} f Pn(2) Po(z)dz = (1—23)(P, P, — P, P)) = 0
=4 -1
from which the required result follows, since m #* n.

The result is often called the orthogonality principle for Legendre polynomials and we say that
the Legendre polynomials form an orthogonal set.

1
2 ;
31. Prove that £1 Pn(2) Pa(2) dz = R | if m= n
Squaring both sides of the identity,
——1—' = i P,(z) tn
Vi—2zt+6  n=0 "
. 1 — < = m+n
we obtain T e ~ m2=° ”20 Pp(z) Po(z) ¢

Integrating from —1 to 1 and using Problem 30, we find

L dz N N 1
_f_lm - mgo.g'o{f_lPm(l)Pn(z)dZ}t'"‘f“

o 1
= { i G dz} f2n

LS T2 2 W 1 B 5
Be & t'“(1—t> - ,§o{2n+1}‘2 )

using Problem 23(c), Chapter 6, Page 166. Equnting coefficients of t2n in the series () and (2) yields
the required result.

(1)

But the left side is equal to

1
— - 2
2tln(l 2zt + t2)

32. Prove that (n+1) Pari(2) — (2n+1)2 Pa(2) + nPa-i(2) = 0.
Differentiating with respect to t both sides of the identity

1 L
—— = 3 Pa)tr
V1 — 2zt + 2 n=0
we have —ft=t ___ = 3 P, (z)r?

(1= 2zt + t2)%73 -
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Then multiplying by 1— 2zt + t2, we have

(z—¢) io P,(z)t» = (1=2zt+1¢?) iﬁ nP,(z) t»!
or io zP,(z) t» — io P,(z) tn+1 = ﬁo n P,(z) tn—1 — io 2nz P, (z) tn

+ 3 nP,(2) tnt1
n=0

Equating coefficients of t" on each side, we obtain
z2Pu(2) — Poy(2) = (n+1)Puyy(z) — 2nzP,(2) + (n—1)P,_,(2)
which yields the required result on simplifying.

THE HYPERGEOMETRIC FUNCTION

in—1
33. Show that F(1/2,1/2; 3/2; 2?) = %ﬁ

3 o _ a*b a(a+1!b(b+1) 2
Since F(a,b;c;2) = 1 + Te* + T2 ce+1) 22 + we have

o Q. £ (1/2)(1/2) (1/2)(3/2)(1/2)(3/2)
FARVZIZS = 1+ Toam * * Toa-amem ©
+ (1/2)(3/2)(6/2)(1/2)(3/2)(6/2) 6 . .
1+2+3+(3/2)(6/2)(7/2)
1:324 | 1-3:528 _ sin"lz
2:4:67 z

_ 122
= 1+§§+

using Problem 89, Chapter 6, Page 166.

THE ZETA FUNCTION 3
34. Prove that the zeta function ¢((z) = 3 T is analytic in the region of the z plane
k=1

for which Re{z} = 1+8 where § is any fixed positive number.
Each term 1/k# of the series is an analytic function. Also, if =z Re{z} = 1+ 8 then,

i1 1 S | _ 1 1
k= eztink| — exink — Tz S zive

Since 2 1/k!*8% converges, we see by the Weierstrass M test that kEl% converges uniformly for
Re{z} = 1+8. Hence by Theorem 21, Page 142, {(z) is analytic in this region.

ASYMPTOTIC EXPANSIONS AND THE METHOD OF STEEPEST DESCENTS
35. (@) If p > 0, prove that '

Po = [T = “"{z—lv—,,,.,—’11+’”—‘,’%i—”—‘---(—1)”’"’“";,;‘?”_1)}

+ * et
LG PRSI ESY (P
(b) Use (a) to prove that 3

gt I | P +1
Fz) = f Srdt ~ e'{z—,—;;—,ﬁ’(fm)—---} = S(z)

i.e. the series on the right is an asymptotic expansion of the function on the left.

(a) mtegrating by parts, we have
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ol ® et . - ——
I, —,J; Tdlﬁ = A}l-.'.n., ; e~ tt-rdt
= Ji_r.n”{( e~ (L ") f (—e~ ) (—pt~ "“')dt}
M
. e~ e~ M
- {‘;r B Ol Pf, th‘”}
e * f et
= F1d - P tl"‘fl Fid ™ pIP"'
Similarly, I,4, = :m (p+1)1,4; so that
e~z ez e % -z
L, = 5 - p{;m - (P+1”p+z} = S5 - B+ spr1) 1,
By continuing in this manner, the result follows.
SR R p(p+1) (p+1)---(p+n—1)
(b) Let Sp(z) = e z{z, < ¥ Bt v = )2 S Then
Ryz) = F@) — 8,z = (=1)"*'p(p+1)-- (p+u)f t,”“ dt
Now for real z >0,
-t
|Ru(z2)] = oplp+ 1)---(p+'n)f;;§—;;—,dt = plp+1)-- (p+n)f M,,“dt
< +1)--(p+n)
zptntl
since f e~tdt = [ e"tdt = 1
z o0
Thus lim |"RBys)] = lim B “’;,','(”"'") = 0
T=+ 0 T=+ 0
. and it follows that lim z"R,(z) = 0. Hence the required result is proved for real z > 0.
¥ =+ o0
The result can also be extended to complex values of z.
i Untt (pt+1):--(p+m)/zptnt! ptn i
Note that since s lﬂlﬂ' 1) (ptn—1)zptn S where u,, is the nth

term of the series, we have for all fixed z, lim '_‘;“ =i T Wios i Abvurgcs Tor ol @
by the ratio test. n=eco "
V2rz 1 1 139
6. h = 3 - CEEEY 3
36. Show that r(z+1) . 27z2z%e {1 + 122 + 2882 518407 + }

We have I'(z+1) = f 2 e~Tdr. By letting r = z¢, this becomes
0

rnz+1) = zt#lf fte-2tdt = zrblf ex(int —t) d¢
0 [

which has the form (37), Page 274, where F(t) = Int — t.

1

F'(t) =0 when t =1. Letting ¢t = 14+ w we find, using Problem 23, Page 164, or otherwise, the

Taylor series

v o~ 2 4
Fit)y = Int—t = In(l+w) — (1+w) = (w—w?+u—:—1:—+---)—l—-w
= = _w2 w3_w‘ e B = _(l——l)2 (t—l)’_(t—-l)‘
e LTS a - ! § T3 ke
Hence from (1). lx(z+ 1) — ,z{-teAgJ. e_,”_”l/z ez(l—l)’t:l—z(l-n‘ﬂ& o dt
[}

o
= ,ul,—:f o —rwl/2 gTWHMI—TwAA 4 . g
-1

2
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Letting w = V2/zv, this becomes
riz+1) = ﬁzmﬂe"fm o= (AT B —aTiut o gy @
—Vz/2

For large values of z the lower limit can be replaced by —=, and on expanding the exponential we have

riz+1) ~ ﬁz'“”c"] e~ {1 + (ﬁﬁzﬂ/zva_,—lvq) + o )dv 4)
’ 1 1 139
Yz - ~ 2 g—# —_ —_— - 5
or I'(z+1) V2rz 2% e {1 + 122 + 2882 51,8402 + } (6)

Although we have proceeded above in a formal manner, the analysis can be justified rigorously.

Another method.

TR U ok | TR Lot B o PR, SUR. ST
2 3 4
(t—1)2 (t—1)3
g = - —
u 2 3 +
and by reversion of series or by using the fact that F(t) = Int—¢, we find

dt V2 V2
L= ;S R LA AT
= bo + bju + bgu? + V2 + W i

Then from (41), Page 276, we find
o~ T 4241 gz(inl = 1) 1 Q 1 1-3 ﬁ 1
r(z+1) \[:,z ez(in {\/E+2(6 =+ ==lamia®

or Mz+1) ~ V2-rzz‘c"'{l+-1—+ 1 +}

12z 28822

Note that since F'/(1) = —1, we find on using (42), Page 276,
I'(z+1) ~ V2rzz2e =

which is the first term. For many purposes this first term provides sufficient accuracy.

ELLIPTIC FUNCTIONS
37. Prove (a) ;—zsnz = cnzdnz, (D) ?I%C"z = —snzdnz.

dt

By definition, if = i
y definition, if z J; TP
(a) ;;—1; (snz) = % = 1/(dz/dw) = V(1—w?(1—k®>w?) = cnzdnz

then w = snz. Hence

(5) %(cn 27) = d—dz-(l —sn2z)V/2 = }(1—sn2z)"1/2 %(-— sn? z)
= 3} — 8n2z)~1/2(— 2 snz)(cnzdnz) ‘= —snzdnz
38. Prove (a) sn(—z) = —snz, (b) cn(—2) =cnz, (¢ _dn(—z) = dn 2.

en w = snz. Let t = —r; then

w dt
B/ 8 _fo i —em
» e dr -w dr
. _fo Vi—ai—-kz T TF =.£ VI — )1 — k)’

iie. sn(—2) = —w = —s8nz
(b) cn(—2) V1 —s8n2(-z) = V1 —38n2z = cnz
(e dnl(—z) V1 — k®sni(—2) = Vi — kisniz = dnz
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39. Prove that (a) sn(z+2K) = —snz, (b) cn(z+2K) = —cnz.

4 de
We have z = —
o V1 — k2 sin%e

so that ¢ = amz and ain¢=an;, cos¢p = cnz. Now

J‘O'O-ﬂ’ de o fr de b f0+1r de

() V1 — k? sin2¢ B o V1 — k2 ginZe - V1 — k2 gin%¢
w/2 de & d

=t ) e
o 1 — k2 gin?¢ 0 1 — k2ginZy

using the transformation ¢ = v +y. Hence ¢ + = = am(z+ 2K).

Thus we have
(e) sn(z+2K) = sin{am (z +2K)} = sin(¢ +n)
(b) cn(z+2K) = cos{am(z+2K)} = cos(¢+n)

—sging = —snz

—Cco8¢ = —cnz

I

40. Prove that (a) sn(z+4K) = snz, (b) cn(z+4K) = cnz, (¢) dn(z+2K) = dnz.

From Problem 39,

(a) sn(z+4K) = —s8sn(z+2K) = snz

() ecn(z+4K) = —cn(z2+2K) = ecnz ‘

(¢) dn(z+2K) = V1 —k?sn2(z+2K) = /1 —Kk?sn?z = dnz
1

Another method. The integrand ——————————has branch points at ¢t ==*1 and ¢ = *1/k in the
V(1 — 2)(1 — k2t2)

t plane [Fig. 10-10]. Consider the integral from 0 to w along two paths C, and C,. We can deform

C, into the path ABDEFGHJA + C,, where BDE and GHJ are circles of radius « while JAB and

EFG, drawn separately for visual purposes, are actually coincident with the = axis.

GHJ

t plane : t plane
v v
w w
C, C,
Py P < P x 'H(’ '\\-"__‘_‘4" "—"'_Bil’ v\\;D- x
“1/k K_//J 1k Th N e Rl ik
G :
Fig.10-10 Fig.10-11
We then have
J‘"’ dt _ J‘“‘ dx N J‘ dt _
&0 V(1 — t2)(1 — k2t2) 0 (1 — 22)(1 — k2x2) Son V(1 — 2)(1 — k2t2)
B fﬂ dz - f —-1+e dx
1-¢ =V (1 — 22)(1 — k222) [} —V(1 — 22)(1 — k222)
: 0
+ J‘ dt + J‘ dx
-V (1 — ¢2)(1 — k2t?) —1+¢ V(1 —22)(1 — k222)

" J""______!‘__._
oo Vil-ea—iee

1=e dz w dt
4'[; V(1 — 2?)(1 — k2z?) i CJ; V(1 — t2)(1 — k2t2)
1
dt dt
“+ — 4
f V(1 —2)(1 — k2t?) G'l!; —V(1 — t2)(1 — k2¢?)

BDE

where we have used the fact that in encirciing a branch point the sign of the radical is changed
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On BDE and GHJ we have t = 1 —ee® and t = —1+ 0! respectively. Then the corresponding
integrals equal

f:r —iee!® do = —iy Jd el9/3 dg
0 V(2 — ee')(ee) {1 — k2(1 — coi®)?) 0 V(2 — ee®){1 — k(1 — cc9)?)
J"' iee'® de = ',‘[;J‘ 6'%/2 dg
0 V(ee!)(2 - ee'®){1 — k2(—1 + «e'?)?) o V(E- e@9) (1 — k2(—1 + «e'?)2}

As ¢~ 0, these integrals approach zero and we obtain
dt

‘j'lﬂ _J__ - ‘ fl dﬂ & flﬂ .
oo V-1 -k o Vi—ah(1—Ka¥) o VI-1-k03)

jiee. w=gs8nz

Now if we write * z = f
\/ 1-—- t’)(l — k2¢2)
de .
then z + 4K = —_—, iie. w = sn(z+4K)
&0 V(1 —#2)(1 — k2¢e2)

and since the value of w is the same in both cases, sn(z+ 4K) = snz.
Similarly we can establish the other results.

41. Prove that (a) sn(K +iK’) = 1/k, (b) cn(K +iK’) = —ik'/k, (¢) dn(K +iK’) = 0.

. dt
(0) We have K =_’; m, where k' = \/1—k3,

Let u = 1/V1— k2. When t=0, u=1; when ¢t = 1, u=1/k. Thus as ¢t varies from 0 to 1,
u varies from 1 to 1/k. By Problem 43, Page 56, with p = 1/k, it follows that Vi—¢ =
— ik'u/V1 —k2u?. Thus we have by substitution

fllk du
1 (1 — u?)(1 — k2u?)

X = —i
from which

t du il du Lk du
K + iK' = + =
jc; V(I —ud)(1 — k) J: V(1 —ud)(1 — k%ud) -’; Vil —u?)(1 - k2u3)

le. sn(K+iK') = 1/k.

(b) From Part (a),

en(K+iK) = Vi—snd(K+iK) = VIi—1/k = —ifi-ki/k = —ik'/k
() dn(K+iK') = Vi—ken?(K+iK) = 0 by Part (a).

42. Prove that (a) sn(2K +2iK") = 0, (b) cn(2K+2iK’) = 1, (c) dn (2K +2iK’) = —

From the addition formulae with z; = z, = K + iK', we have

k) = 28n(K+iK’)en(K+iK') dn (K+iK) _
(@) sn (2K + 2iK") e ..T(x—&'x')i 0

ikn = cn? (K +iK’) — sn?(K + iK’) dn? (K + iK") -
(6) cn (2K + 2iK") e KT 1
{0) dn (2K + 2iK") dn?(K + iK") — ken?(K+iK') en?(K+K") _ _,

1 — k®gnt(K +iK')

43. Prove that (a) sn (2 +2iK’) = snz, (b) en(z+ 2K +2iK’) = cnz, (¢) dn(z + 4iK’) = dn 2.
Using Problems 39, 42, 170 and the addition formulae, we have
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(a) sn(z+2iK’) = sni{z—2K+2K+ 2iK’)

_ sn(z—2K) cn (2K + 2iK’) dn (2K + 2iK') + sn (2K + 2iK') en (z — 2K) dn (z — 2K)
i 1 — kZsn?(z— 2K) sn2? (2K + 2iK’)

= 8nz

.o cnzen (2K +2iK') — snzsn (2K + 2iK’) dn z dn (2K + 2iK")
(b) en(z+2K +2iK) = 1 — kZsn2?zsn?(2K + 21K')

= cnz

dn (z — 4K + 4K + 4iK")

dn (z—4K) dn (4K +4iK') — k2 sn(z—4K) sn (4K + 4iK’) cn (z—4K) en (4K + 4iK')
1 — k2 sn?(z— 4K) sn? (4K + 4iK")

(¢) dn(z+ 4K")

I

= dnz

44. Construct period parallelograms or cells for the functions (a) snz, (b) cnz, (¢) dnz.
The results are shown in Figures 10-12, 10-13 and 10-14 respectively.

¥
v / / / v
ey S ek b el S (B ™ S
| / / K + 2k [/ L I |— i v | T-
_I_ . ¥ s = ' | | | |
} z // 7 ‘/ P L ' | ®
&K 7/ | T
g ra i i ! § A .
I / 71 7‘ -7 7 | |
. S 3 Py AN [0 1 O %
S TS SRR
I 7
Period Parallelograms Period Parallelograms Period Parallelograms
for sn z for cn z for d
Fig. 10-12 Fig.10-13 F?g. ll:li
MISCELLANEOUS PROBLEMS
1-2

45. Prove that P.(2) = F(—n,n+1; 155 ) n=0,128,....

The Legendre polynomials P,(z) are of degree n and have the value 1 for z=1. Similarly from
(29), Page 273, it is seen that

F(—n,n+1; 1; 1—5—’) = f _*”(”2“)(1—2) + "("““("1; Nt 2 g2 4 .-

is a polynomial of degree n having the value 1 for z=1.
The required result follows if we show that P, and F satisfy the same differential equation. To

do this, let 1;’ = u, i.e. z=1—2u, in Legendre's equation (25), Page 272, to obtain
d
u(l~u)%]-:- + (1—2u)-dl‘:- + nn+1)Y = 0
But this is the hypergeometric equation (30), Page 273, with a = -n, b =n+1, ¢ =1 and

u = (1 —2)/2. Hence thg result is proved.

46. Prove that for m = 1,2,3, ...,
1_ 2 . 3 o m — 1) B (2,,)(»--—1)12
r(m)r(ﬁ)l (Tn-) P( m /- Vm
We have

P @@ erton) = ()R @)
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Then multiplying these products term by term and using Problem 13 and Problem 62, Page 26,

@R @ (R {03 G}

L

we find
P2

L4 ' .o
sin (z/m) ~ sin (2x/m) sin (m — D)z/m
gm—1

am=1 - _ gz,!m—l

sin (x/m) sin (2z/m) - - - 8in (m — 1)z/m m/2m—-1 m

or P = (27)(m-1/2/\/m, as required.

47. Show that for large positive values of Z;

In(z) ~ \’%cos (z —%’-—E)

By Problem 33, Chapter 6, we have
1.4 w
Ja(z) = L j cos(nt — zsint)dt = Re {lf e~ int glzsint dt}
L T J

Let F(t) = isint. Then F'(t) = icost = 0 where t=n/2. If welet t = /2 + v, the integral

in braces becomes

1 (™2 —lozs YR

- f e—in(m/240v) gizsin(w/24v) g, = € f e—inv glzcosv gy,
—n/2

T —-m/2
_ w/2
_ e "'"’f 6—inv glz(1—v¥/2 +vd/24— .. ) g
T
-uw/2
= w/2
— ez “’”f e=iInv gV /2 +izvA /U ~ .. gy
L —-w/2

Let 2 = —2iu?/z or v = (1—du/Vz, ie. u = $(1 +9)Vzv. Then the integral can be ap-

proximated by
(l_"ggﬂ f e~ (1 +Onu/VE g —ut—ju/6z - ... gy
vz e

or for large positive vqluen’ of z,

(1 — i) eitz—nm/D) f iy = (1 —1) eltz—nm/2)

e =
and the real part is

o (8) B} - (g9

Higher order terms can also be obtained [see Problem 162).

i . J_.

48. If C is the contour of Fig. 10-15, prove that for all values of z

F(Z) = e""—ll—l £ t="le tdt

Referring to Fig. 10-156 below, we see that along AB, t=gz; along BDE, t = ¢e'%; and along EF,

t = xe?™, Then
€ 2w
tr-lg-tdt = f 2~ le~rdx + f (eet®)z—1 g—ce'? jooi0 dg
(]

R
ABDEF R
+ f xr—Velmilz—1) -1 gdp

R 2w i
= (e - x)f a*~le~rdx + if & lox g—cet? gy
« 0
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. t plane
Now if Re{z} > 0, we have on taking the limit as ¢~ 0

and R = =,
(e2miz — l)f zr-le—* dx \
s D B A

Il

f tz—1 e tdt
c
(e2mz — 1) T'(2)

But the functions on both sides are analytic for all z.
Hence for all z,

1 _
= =1 g—t :
re e?mis — 1 -£ e Fig. 10-15

snzicnzzdnz: + enz;snz:dnz
1 — k2s8n2z;8n%2 ’

49. Prove that sn(zi+2) =

Let z,+2; = a, & constant. Then dzy/dz, = —1. Let us define U = snz, V = snz, It
follows that .
du _ av. _ o _dV %
r U = c¢nz;dnzy, 7 i vV = dag 02, cn zy dn z,

where dots denote differentiation with respect to z,. Then
U2 = (1- U3 — k2U? and Vo= (1- V3l — k2V2)

Difterentiating and simplifying, we find

(1) U = 2k2U% — (1+k)U, (@ V = 26V — (1+ RV
Multiplying (1) by V, (2) by U, and subtracting, we have
Uv — UV = 20V(U2—V?) @)
It is easy to verify that U2ve — U2v: = (1 — kRU2V(VE — U?) )
or v - uv i o= k2.U2V2)(V? = (6)
Uv + UV
Dividing equations (3) and (5), we have
Uv -UV  _ _ akeuv(UV + UV) ©
UV — UV 1 — k2U2V3

But UV - UV = %(fnum?) and  —2RUV(UV+UV) = (1= kRUVE, so that (6)
becomes L 1

dUV =UV) 4 — k2U2V?)
gv-py | L=BUW
Uv — uv

An integration yields = eve = ¢ (a constant), i.e.,

snz,enzydnzy + cnz;snzy;dnz,
1 — k%2sn2z,sn?z,

= c

is a solution of the differential equation. It is also clear that z,+2z, = a is a solution. The two
solutions must be related as follows:

snz,cnzydnzg + cenz;snzy;dnz

1 — k2sn2z sn?z, Fitr ¥ aa)

Putting zy = 0, we see that F(z)) =snz;. Then F(z, + z5) = sn(z; +z3) and the required result
follows.
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Sup]ﬂementary Problems

ANALYTIC CONTINUATION

50.

51,

52.

53.

54.

55,

56.

67.

(@) Show that Fy(z) = z+ 422+ }22 + }24 + ... converges for |2] < 1.
2 3
— T AR U7 T AS T A
(b) Show that Fy(z) = fri §In2 + (1 _‘.) + ) (ﬁ) + 3 (1—:’) + converges for

lz—i] < V2.
(¢) Show that F'\(z) and F,(z) are analytic continuations of each other.
(d) Can you find a function which represents all possible analytic continuations of F(z)? Justify
your answer.

Ans. (d) —In(1-—2)

A function F(z) is represented in |z—1| < 2 by the series

< (—1) (z —1)2n

Prove that the value of the function at z=56 is 1/16.

() Show that F(z) = f (1+¢t)e==tdt converges only if Re{z} > 0.
0
(b) Find a function which is the analytic continuation of F';(z) into the left-hand plane.

Ans. (b) (z+1)/22

o0
(a) Find the region of convergence of Fi(2) = f e—z+D% dt and graph this region.
(]

(b) Find the value of the analytic continuation of F(z) corresponding to z = 2 — 4i.
Ans. (a) Re{z+1)2 > 0, (b) (—7 + 244)/62b

2 4 zZ/(1—2z if <1
(2) Prove that e i s o g e G ( ) |2l
Y(1—2) if |2 >1

1-—22 1—24 1-—28
(b) Discuss these results from the point of view of analytic continuation.

Show that the series 3 2z cannot be continued analytically beyond the circle |z] = 1.
n=0

If 3 a,z% has |z/=1 as a natural barrier, would you expect 3 (—1)"a,zf to have 2| =1 as
1 1

n= n=

natural barrier also? Justify your conclusion.

Let {(z,}, n=1,2,8,... be a sequence such that lim Z, = a, and suppose that for all n, z, + a.

n=co

Let F(z) and G(z) be analytic at a and such that F(z,) = G(z,), n = 1,2,8,....
(@) Prove that F(z) = G(z). (b) Explain the relationship of the result in (a) with analytic continuation.
[Hint. Consider the expansion of F(z) — G(z) in a Taylor series about z =a.

SCHWARZ’S REFLECTION PRINCIPLE

58.

59.

61.

Work Problem 2 using Schwarz's reflection principle.

(a) Given that sin2z = 2sinzcosz holds for all real values of z, prove that it also holds for all
complex values of z.

(b) Can you use the Schwarz reflection principle to prove that tan2z = (2 tan2z)/(1 — tan?2)?
Justify your conclusion.

Does the Schwarz reflection principle apply if reflection takes place in the imaginary rather than
the real axis? Prove your statements.

Can you extend the Schwarz reflection principle to apply to reflection in a curve C?
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INFINITE PRODUCTS
62. Investigate the convergence of the infinite products

el 1 = _ 3 =2 cos kr
(@ IT (1 + k3)' ® I (1 ﬁ) (@ IT (1 + _—_k2+1)
Ans. (a) conv., (b) div,, (¢) conv.

63. Prove that a necessary condition for [] (1+ w,) to converge is that lim w, = 0.
k=1

=+ 00

64. Investigate the convergence of (a) [] (l + 1), (b) kn (1 +
k=1 =1

% ). (¢) kﬁl (1 + cot—1k2).
Ans. (a) div., (b) div., (c) conv.

k2+1
65. If an infinke product is absolutely convergent, prove that it is convergent.
k=1

L e 422
66. Prove that cosz = [] (1 (2k_1)z,z)'

sl —kz
67. Show that kn (1 + ___ekz ) (a) converges absolutely and uniformly in the right half plane Re {z} = 0
=1

and (b) represents an analytic function of z for Re{z} = 0.

1 1 1 1
68. Prove that (l - 55)(1 - ﬁ)(l - -4—,) e = s

1 1 1 B
69. Prove that (l —E><l +§>(1--4-)... = 3
L 2
70. Prove that (a) sinhz = [] (1 + i‘_:.._z)
k=1 w
T 422
(b)) coshz = kl:[l (l + = 1)2',) .

71. Use infinite products to show that sin2z = 2 sinz cosz. Justify all steps.

72. Prove that [] (1 + % sin %) (a) converges absolutely and uniformly for all z and (b) represents
k=1
an analytic function.

73. Prove that [] (1 + %) e~*'k  converges.

THE GAMMA FUNCTION
74. Evaluate each of the following by use of the gamma function.

(a) fm yle~ dy (c) J‘n ye~ ' dy "
. i (e) f {ye~"')114 dy

0 1
b 3/2 —3ud’ ] 1/‘ —ll!dt
()J;ue u (d)fn(n( ) ‘
Ans. (a) 3/8, (b) V/3/36, (c) - 24/18, (d) V=, (e) T(6/8)/V2

vl
75. Prove that 1'(z) = r {In(1/t))*—t dt for Re{z} > 0.
“o

76. Show that f (i_;illfdx = rl+p)(l—p), —-1<p<l
Ledl |

77. If m, n and a are positive constants, show that

J‘n xm g—ax" dy.. = 1 a-minmp (ﬂ_t_l.)
2 n n
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o0 e_‘t w4
78. Show that f dt = '\lt if Re{z} > 0.
o \ft- z
1
79. Evaluate f (z In z)4 dx. Ans. 24/3126
0
80. Evaluate (a) 1'(—17/2), (b) I(—1/3). Ans. (a) 16\/x/106, (b) — 31(2/3)

81 Show that r(-j-m) = CIRMVERRLL, m=o1z,..

82. Prove that the residue of I'(z) at z = —m, m = 0,1,2,3,, .., is (=1)"/m! where 0! =1 by
definition.

83. Use the infinite product representation of the gamma function to prove that

T
sin 7z

() 22-1r(2) Mz +§) = VrrI(29)

84. Prove that if y >0, - |I(iy)] = \’y_ui?TT;,}'

85. Discuss Problem 84 if y <O0.

(a) rizyr(l—z =

86. Prove (a) Property 6, (b) Property 7, (c) Property 9 on Pages 268 and 269.
87. Prove that T(}) I'(§) = 4s%/VG.

88. (a) By using the infinite product representation of the gamma function, prove that for any positive

Lo =, mme I(z) T(z + 1/m) T(z + 2/m) - - T(z + [m— 1)/m)
r'(mz)

is a constant independent of z.

(b) By letting z = 0 in the result of (a), evaluate the constant and thus establish Property 5, Page 268.

THE BETA FUNCTION
89. Evaluate (a) B(3,6/2), (b) B(1/3,2/3). Ans. (a) 16/315, (b) 27/V3

90. Evaluate each of the following using the beta function.
.1 1 4
@ f craa-gmd, @ [ wi-w)-rid @ f' O-wprd, @ [
0 0 0 0

Ans. (a) 47/3V3, (b) v/4, (c) 243z/16, (d) =

de

Vit—a&

91. Prove that Bm+lm _ m
B(m,n+1) n

f" dy - {ra/4p*
0 _\/q‘ -yt daV2r

p+1 1
=t 0)

p+1 p+1
p(tt2)

92, If a >0, prove that

93. Prove that

= 2P stating any restrictions on p.

w/2
94. Evaluate (a) f 8in% ¢ cost o deo, (b) f

w/
: tan o de. Ans. (a) 8v/512, () »/V2
[
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96.

97.

O £
Prove that B(m,n) = -;-f ?(111‘%—1 dz where Re {m} > 0 and Re{n} > 0.
A ;

[Hint. Let y = /(1 + z).]

“ 23 dx = 7

1+ 28 3ﬁ i
(a) Show that if either m or n (but not both) is a negative integer and if m+n < 0, then B(m,n)
is infinite. (b) Investigate B(m,n) when both m and n are negative integers.

Prove that

DIFFERENTIAL EQUATIONS

98.

101,

102.

103.

104.

105.

Determine the singular points of each of the following differential equations and state whether they
are regular or irregular.

(a) (1—22)Y" —2Y'+6Y = 0
(b) (224 —25)Y" +2Y' + (22+1)Y = 0

Ans. (a) z=*1, regular. (b) z=2, regular; z=0, irregular. (¢) z=0,1, irregular.

(¢) 22(1—2)2Y" + (2—2)Y' + 422Y = 0.

Solve each of the following differential equations using power series and find the region of convergence.
If possible, sum the series and show that the sum satisfies the differential equation.

(@) Y'42Y'+Y =0, (b) Y'+2Y =0, (o) 2Y" 4+ 27"+ 2Y = 0.
Ans. (a) Y = Ae *+ Bze*

3 . oy 4 . «phe
(b) Y = A(l_z_+!_£zl_1_4__zzn+...) + B(z_.zi.+..2_5.z7...2 5 8:!04....)

3! 61 9! 4! 7! 10!
(¢ Y = Asinz + Bcosz
z

(a) If you solved (1—22)¥Y” +2Y =0 by substi‘.uting the assumed solution Y = Xa,z", what
region of convergence would you expect? Explain.

(b) Determine whether your expectations in (a) are correct by actually finding the series solution.

= 2 B P B

Ans. (b) Y Al z)+8(z 1.3 35 57

(a) Solve Y +2z2Y = 0 subject to Y(0)=1, Y'(0)=-1 and (b) determine the region of convergence.
: 5 8 S

Ans. (a)Y=1—z-L+—z-—+ £ = 2 — (b) |z] <

34 4-5 3¢4+7+8 4589

If Y = Y,(z) is a solution of Y + p(2) Y’ + q(z) Y = 0, show that the general solution is
_ e~ 'p(2)dz
Y = A Y,(z) & BY,(z)J oo
(a) Solve 2Y”" +(1—-2)Y' —Y =0 nnd' (L) Jebermine the region of convergence.

Ans. (a) Y=(A+Blnz)e'—B{ (|+g)+ (1+§+},)+ } (b) 12| >0

(1) Use Problem 102 to show that the solution to the differential equation of Problem 103 can be
written as peen
Y = Ae + Be* f sz

(b) Reconcile the resuit of (a) with the series solution obtained in Problem 103.

(a) Solve zY” +Y' —Y = 0 and (b) determine the region of convergence.

. _ z i A
Ans. (@) Y = (A+”"‘”{("ﬁ‘)?+(zl)=+(3!)’+ }

_zB{() (2”,(1+p+(3m(1+;+p+ }
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106. Prove that Y = Ve-d/rx)ds 'transforms the differential equation Y” + p(z) Y’ + q(z) Y = 0 into
V" + {q(z) — §p'(2) — §[p@}V = o

107. Use the method of Problem 106 to find the general solution of zY” + 2Y’ + zY¥ = 0 [see Prob. 99(c)).

SOLUTION OF DIFFERENTIAL EQUATIONS BY CONTOUR INTEGRALS
108. Use the method of contour integrals to solve each of the following.
(@ Y*"— Y —2Y =0, (b) Y'"4+4Y' +4Y =0, (c) V" + 2Y' + 2Y = 0.
Ans. (a) Y = Ae + Be-x, (b).Y = Ae~2+ Bze~2, (¢) Y = e *(A sinz + B cos z).

109. Prove that a solution of z¥V” + (a—2)Y' — bY = 0, where Re {a} > 0, Re{d} >0, is given by
4 o8
Y = J est tb—1 (1 — t)a—-b—1g¢
[

BESSEL FUNCTIONS
110. Prove that J_,(z) = (—1)» Ju(z) for n =0,1,2,3,....

111. Prove (a) gd;(z" Ju(2)}) = 22 J,_,(2), (b) ;z- {z77J,(2)) = —2=%J 4 (2).

112. Show that (a) Jg(z) = —Ji(2), (b) f 2Jy(2)dz = 23J5(2) +¢, (¢ f Bly(2)dz = 28J,(2) —
222 J, (z) + e.

113. Show that (o) Jy3(2) = V2/wzsinz, (8) J_19(2) = V2/wz cosz.
114. Prove the result of Problem 27 for non-integral values of n.

115. Show that Jy,5(z) sinz — J_j,5cosz = /2/z2d.

116. Prove that Jy(2) = §(Jp_,(2) — Jo,,(2)).

117. Prove that (a) J,'(2) = }{Jp-3(z) — 2 Jp(2) + Jni2(2)}
b J;"(') = f{"u—d(') = 83 Jp1(2) + 3Jni1(2) — Jns3(2)).

118. Generalize the results in Problems 116 and 117,

v
119. By direct substitution prove that Jo(z) = %f cos (z 8in ¢) de  satisfies the equation
°

2Y' + Y +2Y = 0

. 1
120. If Re({z} > 0, prove that f e~ Jo(t)dt = 5
) 0 ° Vﬂ’ +1
121. Prove that: (a) cos(acose) = Jola) — 2Jg(a) cos20 + 2 J,(a) cosde + ---
(®) sin(acose) = 2J,(a)cose — 2Jy(a) cos3¢ + 2 Jy(a) cosbe — -
122. If p is an integer, prove that ®
HEtn = 2 Ju(®) Ty )

[Hint. Use the generating function.]

123. Establish Property 8, Page 271.
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124.

125.

126.

127.

128.

129,

130.

131.

If Re{z} > 0, prove that J.(2) = ;—:l- fc"“‘“"’” t-n-1dt where C is the contour of Fig. 10-5,
Page 268. e

If Re {z} > 0, prove that
v p -
J.2) = 1 f cos (ng — zsing)dp — Bin twx f e-nd — zsinh & g
T Jo v J,

(a) Verify that Y, (2), given by equation (23) on Page 272, is a solution to Bessel’s equation of order
zero. (b) Verify that Y, (z) given by equation (22) on Page 271 is a solution to Bessel’s equation of
order n.

Show that: (@) zY,_;(2) — 2nY,(2) + 2Y, 4,02 = 0
(b) adz{z" Ya(2)) = 2" Y, (2) (c) %(‘_" Yo(@)} = —27"Ya4, (2
Prove that the general solution of
V" o+ {1 Lt L ',”‘)}V = B
z
is V = vz{A4J,.(2) + BY,(2)).
Prove that Jn41(2) Yo(2) — Ju(2) Yoy (2) = 1/z.

Show that the general solution of V" + zm-2V = 0 is

N RS

(a) Show that the general solution to Bessel’s equation 22Y" + 2Y' + (z22—n2)¥ = 0 s
* dz
Y = AJ, &) + BJ J
n(2) n(2) RITE)

() Reconcile this result with that of equation (24), Page 272.

LEGENDRE FUNCTIONS

132.

133.

134.

135.

136.

137.

138.

139.

140.

Obtai. the Legendre polynomials (a) Pj(2), (b) Py(2), (e) Py(2).
Ans. (a) -.}(5:3 — 32), (b) }(36z4 — 3022 + 3), (c) }(63z% — 7023 + 162)

Prove (a) PlLiy(2) — Pa_y(2) = (2n+1) Pya(2), (8) (n+1) P, (2) & Pl (2) & 2 PL(2).
Prove that nP.,,(2) — (2n+1)zPy(2) + (n+ HP,_,(z) = 0.
Prove that (a) P,(=1) = (=1)n, (b) Pga4,(0) = 0.
(=1 /1\/8\/B\ .. (2m—1) _ (_qml-3:5---(@rn—1)
S il o (EXE)(E) ( 2 ) = O Seem

Verify Property 2, Page 272.

If [n/2] denotes the greatest integer = n/2, show that
B (=1) (2n — 2k)!
K=o 2"k! (n—k)! (n— 2k)!

Pn (z) n—2k

Prove that the general solution of Legendre's equation (1 —22)Y" — 2z2Y’ + n(n + )Y = 0 for
n=01223... is

Y = AP, + BQ.) where  Qu(z) = Pa(2 r dt

(2 — (P, (0)}?

Use Problem 139 to find the general solution of the differential equation (1 —z2)Y" — 2zY" + 2Y = 0.

Ane. Y = Az+B{l+ ;.in(-:-;r—:)}
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.THE ZETA FUNCTION
141. If Re(z} > 0, prove that
t-lde

= 1 1,1 ... =
t(z2) = 1—,+ 5;4 5 + = I‘(z)f =T

142. Prove that (1—2%)( 3,)( 5,)( 7,) -

prime numbers.

where 2,3,6,7, ... are the o'eries of

=1

143. Prove that the only singularity of {(z) is a simple pole at z =1 whose residue is equal to 1.

144. Use the analytic continuation of {(z) given by equation (33), Page 273, to show that (a) {(—1) = —1/12,
(b) £(—3) = 1/120.

145. Show that if z is replaced by 1 —z in equation (38), Page 273, the equation remains the same.

THE HYPERGEOMETRIC FUNCTION
146. Prove that: (a) In(1+2) = zF(1,1;2; —z)

(6) % = F(1/2,1; 3/2; —23).

147. Prove that co8 2az = F'(a,—a; 1/2; 8in22).
d ab
148. Prove that 5 F(a,b;c;2) = = F(a+1, b+1; ¢+1; 2).

149. If Re{c—a—b} > 0 and ¢ » 0,—1,-2, ..., prove that

o = IMe)T(e—a—10b)
Fio,b: & 1) I'(ce — a) I'(c —‘b)

150. Prove the result (31), Page 273.

(1 —z)c=a=b F(c—a, c—b; ¢; 2)

(1—2)=2 F(a, c—b; ¢; z/[z—1]).

151. Prove ?mh' (a) F(a,b;c;z)
(6) Ff(a,b;¢c; 2)

152. Show that for fz—1| < 1, the equation 2Z(1—2)Y"+{e—(a+b+1)z)Y' —abY = 0 has the
solution F(a,b;a+b—c+1;1—2).

ASYMPTOTIC EXPANSIONS AND THE METHOD OF STEEPEST DESCENTS
153. Prove that

[ ewar = e-'-'{l ~ Ly 18 lt8ebe@n— 1}
P

2pz 2p?z (2p2z)2 (2p%z)"
1°3°6 - (2n+1) [ ¢—=
o (2,)-11" : " ::u-u de

and thus obtain an asymptotic expansion for the integral on the left.

154. Use Problem 1563 to verify the result (48) on Page 276.

155. Evaluate 50! . Ans. 3.04 X 1084

1°36---@2n—1) _ 1
156. Show that for large values of n, 246 (Zn) o
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157. Obtain the asymptotic expansions:
= D[S I C X
@ ) 1v8%* " 2 {‘ T et

0

g7 = 11, 2t 3.,
®) .£1+¢d' i I Bl s

158. Verify the asymptotic expansion (49) on Page 275.
o -t
159. Use asymptotic series to evaluate f S’—i—d!,. Am._ 916, approx.

160. Under suitable conditions on F(f), prove that
- F(O) F’(O) F'"(O)
f e~ =t F(t) dt = "

[
161. Perform the steps needed in order to go from (4) to (5) of Problem 36.
162. Prove the asymptotic expansion (46), Page 275, for the Bessel function.

L] b
163. If F(z2) ~ 3 % and G(z) ~ 3 -Z, - prove that:
0 Z" n=0 2"

(@ F)+G) ~ 3 2th
n=0 o
®) F@)6@) ~ S where ¢, = 3 ab,_p.
n=0 2 k=0

@0 a- ” - -~ an
164. If F(z) ~ '22 S+ Prove that j; F(z) dz .Ez m—1)-1"

165. Show that for large values of z,

: dt Vr 3 25
L, aFerE T{zm t gan t 1o t

ELLIPTIC FUNCTIONS
166. If 0 < k < 1, prove that

w/2 de pe 1 2 13 2
m—— = I 1) g2 128V pe 4 ...
N o V1-—k?sin?e 2{l k (2) ol (2-4) B }

2snzenzdnz 1 —2s8n2z + k2sntz
167. . = S SIS s =
67. Prove: (a) sn 2z T " (b) en 2z TG

168. If k = 1/3/2, show that (a) sn(K/2) = V2/3, (b) en(K/2) = V173, (c) dn (K/2) = V1/2.

169. Prove th snd + snB _ - B).
rove that Ty ik tn (A + B) dn }(4 - B)

170. Prove that (a) sn (4K + 4iK’) = 0, (b) cn (4K + 4iK') = 1, (c) dn (4K + 4iK") = 1.

171, Prove: (a) snz - A+ k)23 + dy(1 4 14k + k425 +
() enz = 1 — 422 + A(1+4k9)24 + -
() dnz 1 — jk%® + Ak3(k3+4)zt + -

172. Prove that fw\fdt_ ‘/_ (‘}.)

173. Use contour integration to prove the results of Problem 40 (b) and (¢).
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174,

175.

176.
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where k, = 2V/k/(1+ k) by using

L] d¢ ¥ _—2_- fd!. 1
(@) Show that J; _m Y ! mm
Landen's transformation, tan ¢ = (sin 2¢,)/(k + cos 2¢,).
(b) If 0 <k <1, prove that k <k, < 1.

(¢) Show that by successive applications of Landen’s transformation a aequence of moduh k.
n=1,23,... isobtained such that lim k, = 1. Hence show that if & = lim ¢,,

n=+co n=s o

¢ d¢ ’k, kg ks . .. (. o)
= o, . i LS T
.’; 1 — k2gin2¢ k e 4 2

(d) Explain how the result in (¢) can be used in the evaluation of elliptic integrals.

Is tnz = (sn z)/(en 2) a doubly periodic function? Explain.

Derive the addition formulae for (@) cn(z, +2,), (b) dn(z, +2;) given on Page 276,

MISCELLANEOUS PROBLEMS

177,

178.

179.

180.

181.

182.

183.

w/2
If |p| <1, show that f tan*e do = }r sec(pr/2).
0
” sin t _  mese (nn/2)
< at = .
If 0 <n <2, show that J; 5 T
If 0 <=n<1, show that JU £o8 tge = msec(nr/2)
o f 2 1(n)

Prove that the general solution of (1—22)Y"” — 42Y' + 10Y = 0 is given by
Y = AF(G/2,-1;1/2;22) + Bz F(3,~—1/2;3/2; 2?)
Show that: (a) f sint®dt = }r(1/3)
0
00
(b) f cogtddt = -‘g—g r(1/3).
0

(@) Find a golution of 2¥” + Y’ + z¥ = 0 having the form (In 2) ( 3 akz") , and thus verify
the result (23) given on Page 272. (b) What is the general solution? A

Use the method of Problem 182 to find the general solution of 22Y" + z¥’ + (22— 22)Y = 0. [See
equation (22), Page 271.]

184. Show that the general solution of zU” + 2m+ 1)U’ +2U = 0 is
U = zm{AJ,(2) + BY,(2)}
185. () Prove that z!/2J,(2iz1/2) is a solution of zU" —U = 0. (b) What is the general solution?
Ans. (b) Y = zU2{AJ,(2i2'/?) + BY, (2i2'/?)
186. Prove that  {J,(2)}2 + 2(J,(2))? + 2{Ja(2)}2 + -+ = L.
187. Prove that  etcosa Jy(z gina) = 3 Polewnal
n=0 n!
188. Prove that TI'(}) = —Vz(y + 2In2).
B 2l b o
189. (@) Show that J; dt = Y Inz + 2z 2437 + 3231 n
(b) Is the result in (a) suitable for finding the value of j £ an Explain. [Compare with

Problem 159.]
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190. If m is a positive integer, show that F(},—m; §—m;1) = - .L;'.:.B:(‘z:'i -
191. Prove that (1+z)(1—-25)(1+ )(1——) i S Vr
142 2—z
*(452)r (%)

w/2 d¢ - 5
i 192, Prove that L Vl_'—m b= EF(ip *- ll K )'

193. The associated Legendre functions are defined by
dm
PA™M () = (1-—s)m2 Py P, (2)
(a) Determine P§? (z).

(b) Prove that Py (z) satisfies the differential equation
m2
l (lfzz)Y" -~ 22Y' + {n(n+ 1) — i:_zi} Y = 0
(¢) Prove that f P{™ (z) P{™ (z)dz = 0 if nvl
-1

This is called the orthogonality property for the associated Legendre functions.
Ans. (a) 152(1 — 22)

194. Prove that if m, n and r are positive constants,

J'l xm-1 (1 — g)n—1 L it B(m,n)
o (xtrmin rm(l+r)mn

[Hint. Let z = (r+ 1)y/(r + y).]

195. Prove that if m, n, a and b are positive constants,
f"g 8in2m—1¢ cos2—1¢ do _  Bim,n
[

(asin2¢ + b cos2e)mtn 2an bm
[Hint. Let z = sin2¢ in Problem 194 and choose r appropriately.]

196. Prove that: (a) % = Jy(2) + 8Jy(z) + 5Js(z) + -+

22

(b) & = 12Jy(2) + 22J,(2) + 32Jg(2) + -

197. If m is a positive integer, prove that:

(@) Py (2) %%!1;‘# F(=m,m+§; §; 2%

EVCmAD!, pem,m+11; )

22m (m !)3

198. (a) Prove that 1/(sn z) has a simple pole at z=0 and () find the residue at this pole. Ans. 1

(b) Pamyy(2)

:8\/—4681012141618

2
199, Prove that  (r(})} Y TTT L O L

200. If |z| <1, prove Euler’s identity: (1+2)1+2)1+2%)--+ =

-

1
(1 =g}l =R (L2} s vs”

-

201, If |z| <1, prove that (1=2)1—2(1 =23+ = 1 4+ I (—1)n {zn3n=1)/2 4 zn3n+1)/2),
n=]
202. (a) Prove that ¥ - L + .-+ converges for |zl < 1 and
2 > 1. 1+z (1 +2)(1+ 1’) 1 +2)(1+22)(1 + 29
(b) Show that in each region the series represents an analytic function, say F,(z) and Fy (:)
respectively.

(¢) Are F,(z) and F,(z) analytic continuations of ench other? Is F,;(z) = F,(z) identically?
Justxfy your answers.
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203. (a) Show that the series i % converges at all points of the region |z| = 1.
n=]
(5) Show that the function represented by all analytic continuations of the series in (a) has a
singularity at z=1 and reconcile this with the result in (a).

204. Let X a,z* have a finite circle of convergence C and let F(z) be the function represented by all
analytic continuations of this series. Prove that F(z) has at least one singularity on C.

205. Prove that en2z + dn2z _ dn? z,
1 + en 2z

206. Prove that a function which is not identically constant cannot have two periods whose ratio is a real
irrational number.

207. Prove that a function, not identically constant, cannot have three or more independent periods.

208. (a) If a doubly-periodic function is analytic everywhere in a cell [period parallelogram], prove that
it must be a constant. (b) Deduce that a doubly-periodic function, not identically constant, has at

least one singularity in a cell.

209. Let F(z) be a doubly-periodic function. (a) Prove that if C is the boundary of its period parallelogram,
then f F(z)dz = 0. (b) Prove that the number of poles inside a period parallelogram equals the
number ‘:)f zeros, due attention being paid to fheir multiplicities.

210. Prove that the Jacobian elliptic' functions snz, cnz and dnz (a) have exactly two zeros and two poles
in each cell and that (b) each function assumes any given value exactly twice in each cell.

211, Prove that (1 + fli)(l + %)(1 + 71;) cee = s .(l‘(12/3)}’ —.
{1t r 1—-i
t ()
w/2
212, Prove that J; e~xtand dg ~ —:—-%-{» %_i—:+

_ 1°3¢6---(2n—1) 1-2n i
213. Prove that P,(cos o) = 2{‘ Sedo8 - (B }{conno+————2.(2n_l)coa(n )é

13+ 2n(2n—2) = .oin
t e et }

[Hint. 1 — 2tcoso + 2 = (1—te')(1—te19).]

214. (a) Prove that I'(z) is a meromorphic function and (b) determine the principal part at each of its poles.

215. If Re{n) > —1/2, prove that
Jn(2)

" 1

2vrrint+§)J_,

eizt (1 — 2)n—1/2 d¢

cos (z cos ¢) sin?" ¢ do

2" L
2rrint§) J;

. r(m+;+ 1)

y /2
217. Prove that f' cosPo cosqo do = zT(p+1) .
o go+ip (“_lzh"l) r (2_+_.rz'__'l— )

216. Prove that f tnJa(t)dt =
0

w2
218. Prove that {I'(}))? = lﬁf —l—h
A =



