
Chapter 8
'	 '	 t

CàfoaI Mapin.
..,

TRANSFORMATIONS OR MAPPINGS
The set of equations

U = u(x,y)
V = v(x,y)

defines, in general, a transformation or mapping which establishes a correspondence between
points in the uv and xy planes. The equations (1) are called transformation equation..
If to each point of the uv plane there corresponds one and only one point of the zy plane,
and conversely, we speak of a one to one transformation or mapping. In such case a set
of points in the zy plane [such as a curve or region] is mapped into a set of points in the
uv plane [curve or region] and conversely. The corresponding sets of points in the two
planes are often called images of each other.

JACOBIAN OF A TRANSFORMATION
Under the transformation (1) a closed region 'k of the zy plane is in general mapped

into a closed region IRI of the uv plane. Then if sAx and aA.. denote respectively the areas
of these regions, we can show that if u and v are continuously differentiable,

Iim -	 =	 d(u,v)	
(2d(x,y)

where urn denotes the limit as AA., (or 	 approaches zero and where the determinant

"U "U

d(u,v)	 TX- duOi'	 dudv	
3a(x, y) - dv dv - dx ay	 8y ax

TX dy
is called the Jacobian of the transformation (1).

If we solve (1) for x and y in terms of u and v, we obtain the transformation
x = x(% v), y = y(% v), often called the inverse transformation corresponding to (1).
If x and y are single-valued and continuously differentiable, the Jacobian of this trans-

8(x,y)	 .	 d(u,v)formation is 8(u, v) and can be shown equal to the reciprocal of O(x, ,) [see Problem 7].
Thus if. one Jacobian is different from zero In a region, so also is the other.

Conversely we can show that if u and v are continuously differentiable in a region '
and if the Jacobian qHLq does not vanish in % then the transformation (1) is one to one.

COMPLEX MAPPING FUNCTIONS
A case of special interest occurs when u and v are real and imaginary parts of an

analytic function of a complex variable z = x + iy, i.e. w = u + iv = 1(z) = f(x + iy).

(1)
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In such case the Jacobian of the transformation is given by

_____ = f'(z)	 (4)

(see Problem 5). It follows that the transformation is one to one in regions where
f'(z) , 0. Points where f(z) = 0 are called critical points.

CONFORMAL MAPPING
Suppose that under transformation (1) point (xo, yo) of the xy plane is mapped into

point (uo, Vo) of the uv plane [Figs. 8-1 and 8-2] while curves C1 and C2 [intersecting at
(x0, yo)] are mapped respectively into curveb C and C [intersecting at (uo, v0)]. Then if
the transformation is such that the angle at (Zo, yo) between C1 and C2 is equal to the
angle at (Uo, Vo) between C and C both in magnitude and sense, the transformation or
mapping is said to be conformal at (Xo, yo). A mapping which preserves the magnitudes
of angles but not necessarily the sense is called isogonal.

Fig. 8-I
	

Fig. 8-2

The following, theorem is fundamental.'

Theorem. If 1(z) is analytic and f'(z) ,' 0 in a region 'It, then the mapping to = 1(z)
is conformal at all points of '.

For conformal mappings or transformations small figures in the neighbourhood of a
point Zo in the z plane map into similar small figures in the w plane and are magnified
[or reduced] by an amount given approximately by jf1 (zo)12, called the area magnification
factor or simply magnification factor. Short distances in the z plane in the neighbourhood
of so are magnified [or reduced] in the w plane by an amount given approximately by
If'(zo)I, called the linear magnification factor. Large figures in the z plane usually map
into figures in the w plane which are far from similar.

RIEMANN'S MAPPING THEOREM

Let C [Fig. 8-31 be a simple closed curve in the z plane forming the boundary of a
region 'Ri. Let C' [Fig. 84] be a circle of radius one and centre at the origin [the unit circle]
forming the boundary of region 'R' in the to plane. The region 'I(' is sometimes called
the unit disk. Then Riemann'a mapping theorem states that there exists a function
w = 1(z), analytic in ', which maps each point 01 IR into a corresponding point of '' and
each point of C into a corresponding point of C', the correspondence being one to one.



z plane it' plane
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Fig. 8-3	 Fig. 8-4

This function 1(z) contains three arbitrary real constants which can be determined
by making the centre of C' correspond to some given point in R while some point on C'
corresponds to a given point on C. It shild be noted that while Riemann's mapping
theorem demonstrates the existence of a mapping function, it does not actually produce
this function.

It is possible to extend Riemann's mapping theorem to the case where a røgion
bounded by two simple closed curves, one inside the other, is mapped into a region
bounded by two concentric circles.

FIXED OR INVARIANT POINTS OF A TRANSFORMATION

Suppose that we superimpose the w plane on the z plane so that the coordinate axes
coincide and there is essentially only one plane. Then we can think of the transformation
w = 1(z) as taking certain points of the plane into other points. Points for which z = 1(z)
will however remain fixed, and for this reason we call them the fixed or invariant points
of the transformation.

Example: The fixed or invariant points of the transformation w =	 are solutions of z2
i.e. z = 0, 1.

SOME GENERAL TRANSFORMATIONS

In the following a, /3 are given complex gonstants while a, Go are real constants.

1. Translation.	 w = Z + 8

By this transformation, figures in the z plane are displaced or translated in
the direction of vector /3.

2. Rotation.	 w =

By this transfbrination, figures in the z plane are rotated through an angle Go.
If Go> 0 the rotation is counterclockwise, while if 0 < 0 the rotation is clockwise.

3. Stretching.	 to = az

By this transformation, figures in the z plane are stretched (or contracted)
in the direction z if a> 1 (or 0 <a < 1). We consider contraction as a special
case of stretching.

4. Inversion.	 w = liz



z plane	 U, plane

Fig. 8-5	 Fig. 8-6
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SUCCESSIVE TRANSFORMATIONS
If w = f(l.) maps region 'R of the C plane into region 'R of the w plane while

= f2(z) maps region R of the z plane into region R, then w = f i [f2(z)] maps 'R,, into %,•
The functions fi and fz define successive transformations from one plane to another which
are equivalent to a single transformation. These ideas are easily generalized.

THE LINEAR TRANSFORMATION
The transformation

WaZ+/3	 .	 (5)

where a and fl are given complex constants, is called a linear transformation. Since we
can write (5) in terms of the successive transformations w + p, C = e'8°r, r = az where
a = ae°', we see that a general linear transformation is a combination of the transforma-
tions of translation, rotation and stretching.

THE BILINEAR OR FRACTIONAL TRANSFORMATION
The transformation

W 
=	

aB —y'O	 (6)

is called a bilinear or fractional transformation. This transformation can be considered
as combinations of the transformations of translation, rotation, stretching and inversion.

The transformation (6) has the property that circles in the z plane are mapped into
circles in the w plane, where by circles we include circles of infinite radius which are
straight lines. See Problems 14 and 15.

The transformation maps any three distinct points of the z plane into three distinct
points of the w plane, one of which may be at infinity.

If z 1 , z2, z3, Z4 are distinct, then the quantity

(Z4—Zl)(Z2—ZS) 	 17
(Z2 Z1)(Z4 - Zi)

is called the cross ratio of z, z2, z3, z4. This ratio is invariant under the bilinear transfor-
mation, and this property can be used in obtaining specific bilinear transformations map-
ping three points into three other points.

MAPPING OF A HALF PLANE ON TO A CIRCLE



w plane

W2
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Let z 0 be any point P in the upper half of the z plane denoted by in Fig. 8-5 above.
Then the transformation

W = eo(z I	 (8)

maps this upper half plane in a one to one manner on to the interior 'Ii' of the unit circle
Iwl = 1, and conversely. Each point of the x axis is mapped on to the boundary of the
circle. The constant Oo can be determined by making one particular point of the x axis
ccrrespond to a given point on the circle.

In the above figures we have used the convention that unprimed points such as
A, B, C, etc., in the z plane correspond to primed points A', B', C', etc., in the w plane.
Also, in the case where points are at infinity we indicate this by an arrow such as at
A and F in Fig. 8-5 which correspond respectively to A' and F' (the same point) in
Fig. 8-6 above. As point z moves on the boundary of CR [i.e. the real axis] from
(point A) to + co (point F), w moves counterclockwise along the unit circle from A' back
to A'.

THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

Consider a polygon [Fig. 8-7] in the w plane having vertices at w 1 , w2, . . . , w with
corresponding interior angles a, a2, . . . , a,, respectively. Let the points w1, w2, . . ., w
map respectively into points x 1 , x2, . . . , x on the real axis of the z plane [Fig. 8-8].

zplane

W3

X21

Fig. 8.7	 Fig. 8-8
A transformation which maps the interior q of the polygon of the w plane on to the

upper half cP l of the z plane and the boundary of the polygon on to the real axis is given by
dw = A (z - x 1)"	 (z - x2)" . . . (z -	 (9)

or

w = A5 (z - x 1)"' (z - x2)211' - 1 ... (z -	 dz + B	 (10)

where A and B are complex constants.

The following facts should be noted:

1. Any three of the points x, x2, . . ., x,, can be chosen at will.
2. The constants A and B determine the size, orientation and position of the polygon.
3. It is convenient to choose one point, say x,,, at infinity in which case the last

factor of (9) and (10) involving x,, is not present.
4. Infinite open polygons can be considered as limiting cases of closed polygons.



Fig. 8-10Fig. 8-9
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TRANSFORMATIONS OF BOUNDARIES IN PARAMETRIC FORM
Suppose that in the z plane a curve C [Fig. 8-9], which may or may not be closed,

has parametric equations given by
x	 F(t), y = G(t)	 (11)

where we assume that F and G are continuously differentiable. Then the transformation

z = F(w) + iG(w)	 (12)

maps curve C on to the real axis C' of the w plane [Fig. 8-10].

II'
z plane	 vl w 

plane

SOME SPECIAL MAPPINGS
For reference purposes we list here some special mappings which are useful in

practice. For convenience we have listed separately the mapping functions which map
the given region 'R. of the w or z plane on to the upper half of the z or w plane or the unit
circle in the z or w plane, depending on which mapping function is simpler. As we have
already seen there exists a transformation [equation (8)] which maps the upper half plane
on to the unit circle.

A. Mappings on the Upper Half Plane

	

A—i Infinite Rector of angle ,r/m	 w = z, m

Fig. 8-I11	 z plane	 I	 .8-12 	 w plane

A-21 Infinite strip of width a

Fig. 8.1 31 	 z plane

TV

C	 B
	

A

V

Fig. 8.141	 w plane
V

4' . ...	 '	 .	 c'

W =

F
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A-3 Semi-Infinite strip of width a

(a)	 W	 81fl

Fig. 8-lj	 z plane	 Fig. 8-161	 w plane

A : E

J31

x

(b)	 W	 Cos 
1z

Fig. 8.171	 z plane	 Fig. 8-1 81	 w plane

V	 V
D	 A

a	 —1	 1

(c)	 w = cosh 7r
-Za

Fig. 8. 19j	 z plane	 Fig. 8.20J	 w plane

y	 V

B	 A

q.
C	 D	 —1	 1

A-4 Half plane with semicircle removed	 W	 ( + 1)

Fig. 81j	 z plane	 Fig. 8.221	 w plane

'V	 V

4B 	;>^D!x
— 1	 1	 —a	 a
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A-5 Semicircle	 W 
=

\1zj

Fig. 8-231	 z plane	 Fig. s.j	 w plane

	

V	 V

A-6 Sector of a circle 	 w 
= (1 + zm)2 

m

Fig. 845	 z plane	 Fig. 8.26j	 w plane

if	 V

C

B

D	 A' Be C' D, 41_a
1	 -.1	 1	 1

A-7 Lens-shaped region of angle Tim	 - 2mf cot p (!. ±i'\ 	 2
ABC and CDA are circular arcs.]	 W - 6	

-	
• m

Fig. 8.27	 z plane	 Fig. 8-281	 w plane

	

If	 V

'	 '

A-8 Half plane with circle removed 	 w = coth (jr/a)

Fig. 8-29 j	 a plane	 Fig. 8-30 1	 w plane

	

y	 1

C()E

,	 'r
—	

-
A	 BF	 G	 1	 1
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A-9 I Exterior of parabola y2 = 4p (p - x)
	

=

Fig. B-311	 zplane	 Fig. 8-32	 plane

A-10 1 Interior of the parabola y2 = 4p(p - x)

Fig. 8-331	 z plane

E	 4P•	 \I

W =
Fig. 8-3j	 w plane

V

•	 '

—1	 1

A—I 1 Plane with two semi-infinite parallel cuts 	 w = _,ri+2lnz_z2

Fig. 8-35 	 w plane
	 Fig. 8-36 I	 z plane

A-12 I Channel with right angle bend
	

w =	 (tanh'p/ - ptan')

Fig. 8-37 1	 w plane
	 Fig. 8-38 I	 z plane
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A-13 Interior of triangle	 w = J te/9 - 1 (1— t)''- 1 dt

	Fig. 8-j	 w plane	 Fig. 8-40 J	 z plane

C	 Pt

wi N
AB	 __________________

dt
A-1 4 Interior of rectangle	 W = f	 - t2)(l - k2t2)' 0 

< IC < 1

	Fig. 8-41	 w plane	 Fig. 8421	 z plane

V	 .

B	 A G	 .	 '..

.___

C	 D	 E	 --1/k —1	 1 1/k

•___

b--i	 Exterior of unit circle	 w = 1/:

	

Fig.  8-43	 w plane	 Fig.	 z plane

X

C_ 

B-2	 Exterior of ellipse	 W =(ze + z16e)

Fig.

	

8-45	 w plane	 Fig. 8-46	 z plane

71 '17

sinh
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8-3 Exterior of parabola y2 = 4p(p - x)	 w = 2 \fr - 1

Fig. 8-41	 z plane	 Fig. 8-481	 w plane

•	 Y-	 DV

4Tp-	 -	
c' a S,r

8-4 Interior of parabola y2 = 4p(p - z)	 w = tan2

Fig. 8-49 1 	 z plane	 Fig. 8-501	 w plane

X	

:(	
c'

McøHanoir Mappings
C—i Semi-infinite strip of width a on to

-isin=quarter plane	 w	 2a
Fig. 8-511	 z plane	 •	 Fig. 8-52 1 	 w plane

	

-	 V.

A	 P	 A'

a

B 	 x 	 B'	 'u
a	 1	 C'

C-2 Interior of cardloid on to circle 	 w = 22

Fig. 8-531	 w plane	 Fig. 8-54 !	 a plane

-	

-	 P_2:(i + 

C:	

A'

	

7	 2a
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C-3 Annulus on to rectangle	 w = In z

Fig	 z plane	 Fig. 8-56	 w plane

v

A% C

HI

C-4 Semi-infinite strip on to infinite strip	 w = In coth (z/2)

Fig. 8-57J	 x plane	 Fig. 8-58	 w plane

11	 V

	

- 	 A	 ('	 F'

	

I,	 •;I•.	 -	 'I.,

	

Ce	 r	 042

	

-	 IL

	

g	 A'

	

______ ______	 _____ - 
ii	 B'	 C'	 LY

C—S Plane with two semi-infinite cuts on to infinite strip	 w = Z+62

Fig. 8-59J	 w plane	 Fig. 8-60	 z plane

A	 ..	 A':'	 Co

• L.	
•.	 E'	 B'

,..q

Solved Problems

TRANSFORMATIONS
1. Let the rectangular region 'R [Fig. 8-61 below] in the z plane be bounded by x =0, y = 0,

x = 2, y = 1. Determine the region '1' of the w plane into which 'I is mapped under
the transformations:
(a) w = z + (1 - 2*), (b) w = VF2 e 4 , (c) w = 1,F2 e '4 z + (1 - 21).

(a) If wz+(1-2i), then u+ivx+iy+1-2i=(x+1)+i(y-2) and u x+1,v =



=1	 = 3

V

a plane W plane

Fig. 8-64Fig. 8-63
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Line x=O is mapped Into u=1; y=O into v=-2; x2 Into u3; yI Into vr-1
(Fig. 8.621. Similarly, we can show that each point of 9 is mapped into one and only one point
of 'k' and conversely.

z plane	 w plane

Fig. 8-61	 Fig. 8-62

The transformation or mapping accomplishes a translation of the rectangle. In general,
w = z + /3 accomplishes a translation of any region.

(b) If w = v' e 14 a, then a + iv = (1 + i)(x + iy) = - y + i(x + y) and a = x - y, t, = a + y.
Line x=O Is mapped into u=—y, v=y or u=—v; = O into u=x, vx or uv;

x=2 into u=2—y, v=2+y or u4-v=4; 1 into u=x—1, vx+1 or v—n=2
[Fig. 8-64].

The mapping accomplishes a rotation of it (through angle .14 or 450) and a stretching of
lengths (of magnitude Vi). In general the transformation w =as accomplishes a rotation and
stretching of a region.

(o) If w='I.''4s+(1-2O, then u+lv=(1+i)(x+iy)+1-2i and ax-3f+1,vx+v-2.
The line. a =0, v =0, a 2, y = 1 are mapped respectively Into a + a = — 1, a - a

u+v=3,u—v=1 (Fig. 8-68).

a plane	 W plane

•1l	 IV	
x

i

Fig. 8-66
	

8.66

The mapping accomplishes a rotation and stretching as in (b) and a subsequent translation. In
general the transformation iii = as + p accomplishes a rotation, stretching and translation. This
can be considered as two successive mappings w = 'i (rotation and stretching) and a, = z + $/a
(translation).



a plane

Fig. 8-69
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2. Determine the region of the w plane into which each of the following is mapped by
the transformation w = z2.
(a) First quadrant of the z plane.

Let a = re', w = pe'. Then if w = z, pe14 = r2e2'° and p = r, • = 20. Thus points in
the a plane at (r, 0) are rotated through angle 20. Since all points in the first quadrant jFig. 8-671
of the a plane occupy the region 0 e v12, they map Into 0 ' or the upper half of the
w plane [Fig. 8-681.

w plane
V	 . •I

Fig. 847	 Fig. 8-68

(b) Region bounded by a = 1, y = 1 and x + y = 1.

Since wz2 is equivalent to u+iv = (X + jy)2 = x2 y2 +2ixy, we see that u =
v = 2z. Then line x = 1 maps Into u = 1 — v2. v 2y or u = 1 - v2/4; line y = 1 Into
u=x2 -1,v=2x or u.=v2/4-1; line x+y=1 or y=l—x into u=x2—(1—x)2=2x-1,
v = 2x(1 - x) = 2x - 2x 2 or v = 4(1 - u2) on eliminating x.

The regions appear shaded in Figures 8-69 and 8-70 below where points A, B, C map into
A', B', C'. Note that the angles of triangle ABC are equal respectively to the angles of curvilinear
triangle A'B'C'. This is a consequence of the fact that the mapping is conformal.

a plane	 w plane
Iv

Vt
I'	 1	 a

	

A'	 B'

\
4

Fig. 8-70

CONFORMAL TRANSFORMATIONS

3. Consider the transformation w = 1(z) where 1(z) is analytic at z0 and f'(zo) 74 0. Prove
that under this transformation the tangent at zo to any curve C in the z plane passing
through z0 [Fig. 8-711 is rotated through the angle arg f'(zo).

a plane	 w plane

Ill

	

	 V

/ao + tz

Fig. 8-71
	

Fig. 8-72

# wo

+"W
WO	 U

/
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As a point moves from 20 to zo + Az along C, the image point moves along C' in the w plane from
w0 to w0 + Aw. If the parameter used to describe the curve is t, then corresponding to the path

= z(t) [or x = x(t), y = y(t)l in the z plane, we have the path it' w(t) [or ii = u(t), ii = v(t)J in the
w plane.

The derivatives dz/dt and dw/dt represent tangent vectors to corresponding points on C and C'.
dw	 dw dx	 dxNov, -- = --	 f(z)	 and, In particular at so and w0,Wt

dw- ,	 dz
-	 f'(-w-w.	 1_a.

provided f(z) in analytic at z = z0. Writing 
	

= p,.1 ., f'(z) = Re t",	 = rO$'s, we
have from (1)

Po Sloe = Rr0&(s.+a)
so that, as required,

Oo = to + a = • + arg /'(z )	 (8)

Note that if f'(z0) = 0, then a is indeterminate. Points where f'(z) = 0 are called critical point..

4. Prove that the angle between two curves C1 and C2 passing through the point z0 in
the z plane [see Figures 8-1 and 8-2, Page 2011 is preserved [in magnitude and sense]
under the transformation w = 1(z), i.e. the mapping is conformal, if 1(z) is analytic
at Zo and f'(zo) ,'. 0.

By Problem 3 each curve is rotated through the angle arg f'(z0). Hence the angle between the
curves must be preserved, both in magnitude and sense, In the mapping.

JACOBIAN OF A TRANSFORMATION

5. If w = 1(z) = u + iv is analytic in a region 'R., prove that
a(	

-
u, v)	 2

	

I	 O(x,y)

If f(z) is analytic in 'N, then the Cauchy-Riemann equations

Ou	 Ot' Ov_	 au
ax	 aj,' Ox -	 Oy

are satisfied in 'N. Hence

" 'U

II
O(u,v) - lax 0111	 -
O(x,y) - av (7v

TX TY

using Problem 5, Chapter 3, Page 72.

au au Ju(Ou\S
au au = (T-)+ j;j

au
— ' j; Ox	

-	 +	 = 
au 12

- Ox

6. Find the Jacobian of the transformation in (a) Problem 1(c), (b) Problem 2 and
interpret geometrically.

(a) If w = 1(z) = Nr2 e 14 z + ( 1 - 21), then by Problem 5 the Jacobian is

= I/'(z)I = I Nr2 1 2	 2

Geometrically this shows that any region in the z plane [in particular rectangular region '
of Fig. 8 .65. Page 2121 is mapped into a region of twice the area. The factor l i '(z) I = 2 I. called
the magnification factor.



from which = 1,	 = 0
ax au OyOu	 OxOv Oydv

(3)

Similarly we find = 1	 =
Ox Ov ay Ov	 Ox On ay On

(4)
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Another method. The transformation is equivalent to u = x — y, v = x + y and so

au a',

 — Ox •	 —	 1 —1 = 2
O(x,y) 

Ox Oy

(b) If w = f(z) = 22, then

= I/'(z)I = 12:1 2 = 12x + 2iyI = 4(x2 + y2)

Geometrically, a small region in the z plane having area A and at approximate distance r
from the origin would be mapped into a region of the w plane having area 4rA. Thus regions far
from the origin would be mapped into regions of greater area than similar regions near the origin.

Note that at the critical point z = 0 the Jacobian is zero. At this point the transformation
Is not conformal.

7. Prove that a(u, v) AE! Y1 = 1.
a(x,y) a(u,v)

Corresponding to the transformation (1) u = u(x, y), v = v(x, y), with Jacobian 
O(u, v) • we have

	

O(x, y)	
O(x, y)

the inverse transformation (2) x = x(u, v), y = y(u,v), with Jacobian
O(u,v)

dv
From (1),	 du = —dx + Lu dy, dv = —dx + Ov

Ox	 Or	 Ox

Ox	 Ox
From (2),	 dz = —du + —dv, dy =	 du + dv.

On	 Oi,	 au

Ou	 Ox 

I
+ 	 I-1du +Hence,	 dn = rjdn + dv 	 ay IOU	 Jv J

10u Ox	 du	 fan Ox On

=	 dxOuOvOuj	 + ax aw ay avj

Using (3) and (4) and the rule for products of determinants (see Problem 94), we have

On On	 Ox as
J(u,v)O(x,y) —	 Ox ay	 On dv

O(x,y) O(u,v) —

Ox dy	 On

= ax au am au ax iv- Oydv = 10 = 1

01
ax au Jydu dxJv OyOv

8. Discuss Problem 7 if u and v are real and imaginary parts of an analytic function 1(z).

In this case	 ' = l/'(')l' by Problem 5. If the Inverse to w = f(s) Is x = g(w) assumed single-

valued and analytic, then	
' = 

g'(w)1 2. The result of Problem 7 is a consequence of the fact that



Fig. 8-73
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1'(z)1 2 Ig'(w)12	
I

- I dw I I dz
= 1

-	 isince dw/dz = 11(dz/dw).	 L

BILINEAR  OR FRACTIONAL TRANSFORMATIONS

9. Find a bilinear transformation which maps points zi, z 2, za of the z plane into points
w 1, w, w, of the w plane respectively.

	If Wk corresponds to Zk, k	 1, 2,3, we have

W	 W1, 	 az+fl - 	 = (a8f37)(zzk)
ys+8	 yzk+8	 (71+8)(yzk+8)

Then	 to—WI = (a8 - /ly)(z - z)	 (a8 - /37)(z - z)
(yz+ 8)(yz 1 + 8)'	

W W3 
= (yz+ 8)(yz+ 8)	 (1)

Replacing to by to2, and z by z21

(al - 9-002 -	 (a8 - fry)(z2 -

	

=	 ,.v2-w• =	 (2)(yz2 +8)(yz1 +8) '	 (yz2+8)(yz3+8)

By division of (1) and (2), assuming a8 - /3y ,' 0,

(w—w j )(w2 —w3) - (z—z1)(z2—z3)
(to - w3)(w2 - w1) - (z - z3)(z2 - z1) (3)

Solving for to In terms of z gives the required transformation. The right-hand side of (3) is called
the erø.a ratio of z, z2 , z3 and z.

10. Find a bilinear transformation which maps points z = 0, —i, —1 into w = i, 1,0
respectively.
Method 1. Since to - 

as + , 
we have- yz + .5

(2) 1 - a(—i)+/3	
(3)	 =

	

(1) * = 
y(0) + .3 '	 - y(—i) + .3 '	 y(—l) + &

From (3), /3 = a. From (1), 8 = /3/i = -ia. From (2), y = ja. Then

W = az-I-a	 1(z+1\	 fz+1\
*az — ia

Method 2. Use Problem 9. Then

(to - X 1 —0) - (z - O)(—i + 1)	 Solving, to = -(w-0)(1—i) - (z+1)(—i-0)

11. If z0 is in the upper half of the z plane, show that
/the bilinear transformation w =	

z — zo
-

\ Z —20
maps the upper half of the z plane into the
interior of the unit circle in the w plane, i.e.
wl1.

We have
(z—z0\	 s—s0Iwj 

= ••';—i-) =

From Fig. 8-73 12 z Is in the upper half plane, I -
Is - oI, the equality holding if and only if a Is on the
x axis. Hence Iwj A 1, as required.

The transformation can also be derived directly
(see Problem 61).



Fig. 8-75

U
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12.Find a bilinear transformation which maps the upper half of the z plane into the
unit circle in the w plane in such a way that z = i is mapped into w = 0 while the point
at infinity is mapped into w = —1.

We have w 0 corresponding to z = i, and w = —1 corresponding to z = o • Then from

W = e iOo( —=- ) we have 0 = el0e(_.—r-) so that Zo = i. Corresponding to z =	 we have
\ Z 20/	 \I Zo/

w = e°o	 —1. hence the required transformation is

(z—i\	 i—z
W = (-1)---) =

The situation is described graphically in Figures 8-74 and 8-75.

z plane

1p

BCDX

Fig. 8-74

13. Find the fixed or invariant points of the transformation w = 
2z-5
 +4

The fixed points are solutions to z	 6 or z + 2z + 5 = 0, i.e. z = —1 ± 2i.

14. Prove that the bilinear transformation can be considered as a combination of the
transformations of translation, rotation, stretching and inversion.

_	 Th'—a8	 IL
By division, w 

=	
= 

a	 = A +	 where A = ely , p = (py — a8)ly 2 and

r = /y are constants. The transformation Is equivalent to r = z +r, r = hr and w = A + 1W

which are combinations of the transformations of translation, rotation, stretching and Inversion.

15. Prove that the bilinear transformation transforms circles of the z plane into circles
of the w plane, where by circles we include circles of infinite radius which are straight
lines.

The general equation of a circle in the z ane is by P )blem 44, Chapter 1, Az + Bz + At + C = 0,

where A > 0, C > 0 and 13 is complex. If A = 0 the circle reduces to a straight line.

Under the transformation of inversion. 'o = liz or z 11w, this equation becomes Cwi, + fJw +
Bi + A = 0, a circle in the w plane.

Under the transformation of rotation and stretching, w = ax or a = w/a, this equation becomes

Awi + (&i)w + (Ba)iZ, + Cad = 0, also a circle.

Similarly we can show either analytically or geometrically that under the transformation of

translation, circles are transformed into circles.

Since by Problem 14 a bilinear transformation can be considered as a combination of translation,
rotation, stretching and inversion, the required result follows.
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SPECIAL MAPPING FUNCTIONS
16. Verify the entries (a) A-2, Page 205 (b) A-4, Page 206 (c) B-I, Page 209.

() Refer to Figures 8-13 and 8-14, Page 205.
If zx+iy, then

w = a + iv	 e1" =	 = e"" (cos ,ry/a + i sin ,ry/a)
or a =	 cos iryla, V = eIa SIfl i-y/a.

The line y = 0 [the real axis in the z plane; DEP in Fig. 8-13] maps into a e'", v = 0
[the positive real axis in the w plane; D'E'F' in Fig. 8-141. The origin E [z = 01 maps into
E' [w = 1] while D [x = —co, y = 01 and P [r = + o , y = 01 map into D' [w = 01 and F' [w 00]

respectively.
The line y =a [ABC In Fig. 8-13] maps Into u = —e 1", v = 0 [the negative real axis in

the w plane; A'B'C* in Fig. 8-141. The points A [x+ .e , ya] and C [x —o, yaj map into
A' [w = 0) and C' (w = 01 respectively.

Any point for which 0< v < a, - <x <	 maps uniquely into one point in the at' plane
for which v >0.

(b) Refer to Figures 8-21 and 8-22, Page 206.
If a = re', then

	

W = u+ iv =	 =	 =

and u= !! ( r +	 cos 6, v = (r -	 sine.2 	 r,,	 2\	 r,
Semicircle BCD (r = 1, 0 6 ir] maps into line segment B'C'D' [a = a cos 0, V = 0, 0 e

i.e. —aual.
The line DE [9 = 0, r> 11 maps into line D'E' [U =	 + !), v = 0]; line ,4B

[o=r,r>1) maps into line AB [U = — çr+- ,), v0

Any point of the a plane for which r 1 and 0 < e < w maps uniquely into one point of the
uv plane for which v 0.

(c) Refer to Figures 8-43 and 8-44, Page 209. 	
1	 1If a = r&8 and vi =	 then w = l/z becomes pe 1 =	 =	 from which p = 1/r,

= —6.
role r

The circle ABCD [p = 11 in the w plane •naps into the circle A'B'C'D' [r 1] of the z plane.
Note that if ARCD is described counterclockwise, A'B'C'D' Is described clockwise.

Any point exterior to the circle ABCD (p> 11 is mapped uniquely into a point interior to
the circle A'B'C'D' (r < 11.

THE SCHWARZ-C}IRISTOFFEL TRANSFORMATION

17. Establish the validity of the Schwarz-Christoffel transformation.
We must show that the mapping function obtained from

dw = A (a - x 1)aiIW -1 (a - 52)10il11 -'' (a -W(1)

maps a given polygon of the vi plane [Fig. 8-76 below] into the real axis of the a plane [Fig. 8-77
below].

To show this observe that from (1) we have
	fa l 	 \arg dw = arg dz + erg A + - - 1) arg (a - xj) +(,,- - 1) arg (a -.

as

	

+ ... +	 __ i) arg(z—x5)

As a moves along the real axis from the left toward x 1 , let us assume that w moves along a side
of the polygon toward w 1 . When a crosses from the left of x to the right of x, 6 = arg (a - x)
changes from i- to 0 while all other terms In (2) stay constant. Hence erg dvi decreases by
(a 1 /r - 1) arg (a - a) = (p1/. - 1).- = a 1 - , or, what is the same thing, increases by a - a 1 [an
increase being in the counterclockwise direction].



w plane

Fig. 8-78

U

Fig. 8-79
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2 plane
-	 -r	 '-

r l 'gr 'l!T

	

X 1 	x2	 x3	 x4

Fig. 8-76	 Fig. 8-77

It follows from this that the direction through w 1 turns through the angle r a1, and thus w now
moves along the side w 1 w2 of the polygon.

When z moves through x2, 8 1 = arg (z - x 1 ) and 82 = erg (z - x2) change from ,r to 0 while
all other terms stay constant. Hence another turn through angle r - a2 in the to plane is made. By
continuing the process we see that as z traverses the x axis, w traverses the polygon, and conversely.

We can actually prove that the interior of the polygon (If it is closed) is mapped on to the upper
half plane by (1) [see Problem 261.

18. Prove that for closed polygons the sum of the exponents - - 1, 
a 

2 - 1, ...,	 - 1

	

7r	 V

in the Schwarz-Christoffel transformation (0) or (10), Page 204, is equal to —2.
The sum of the exterior angles of any closed polygon is 2r. Then

(r - 0 1 ) + ( - a2) I	 + (,r a) = 2ir

and dividing by -,r, we obtain as required,

(al
-	

+ ( -
	 + ... + ( -	 = —2

19. If in the Schwa rz-Christoffel transformation (9) or (10), Page 204, one point, say x,,,
is chosen at infinity, show that the last factor is not present.

In (9), Page 204, let A = K/(-x)"-a1'' where K is a constant. Then the right side of (9) can
be written

	

K (z - x 1)"/- I (z - X2)"1 1 ... (z - x,,_1)a._i/-1 
1x	

)X.

As x,, • , this last factor approaches I; this is equivalent to removal of the factor.

20. Determine a function which maps each of the indicated regions in the w plane on to
the upper half of the z plane.
(a)

w plane	 j plane
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Let points P,Q,S and T [Fig. 8-78 abovej map respectively into J".Q',S' and T !lig. 8-79 above[.
We can consider I'QST as a limiting case of a polygon ta triangle with two vertices at Q and S and
the third vertex 1' or T at infinity.

By the Schwarz-Christoffel transformation, since the angles at Q and S are equal to W. 2. we have

	

dw	 ----i	 A

	

= A (z + 1)	 (z - 1)	 =	 -
Vz-1

Integrating,	 w - K	 + B = K 8jl z + fi
Vri

When z = 1, if = b. Hence	 il 6 = K sin '(t) t- B =K.,21

	When z=-1,w=—b. Hence,	 ) -b = Ksin-1) -- B =

Solving (A) and ?) simultaneously, we find B = 0. K = 2b/. Then

	

26	 -
if = - sin z	 or	 8111

The result is equivalent to entry A-3(u) in the table on Page 206 if we interchange ic and :. and let
6 = a/2.

(b)

	

W plane	 z plane

VA;•	 :

	

•	 i.'•	
.•';

•	 •••.'3•_	
',	

____________

	

Fig. 8-80	 Fig. 8-81

Let points 1', 0, Q [w = bil and S map into 1", 0', Q [z = ij and S respectively. Note that
P, S, V, S' are at infinity as indicated by the arrows) while 0 and 0' are the origins [Ic 0 and
of the w and 2 planes. Since the interior angles at 0 and Q are r/2 and 3r/2 respectively, we have
by the Schwarz- Christoffel transformation.

dul	 N/2

	

= A(z-O)(z-1)	 = A	 = K
dz	 z	 x

Then	 W = K

To integrate this, let z = sin 2 8 and obtain

w = 2K	 c032 o do = K	 (1 + cos 28) do = K( + j sin 2e) + B

= K(e + sin  cos o) + B = K(sin yT + fz(1 -z)) + B

When z=0, w0 so that B0. When z1, w=bi so that 61 = KI2 or Kr 2bi/. Then
the required transformation is

2bi-	 w = —(51n 1 y7 + Vz(1-z))

21. Find a transformation which maps a polygon in the w plane on to the unit circle in
the C plane.

A polygon in the w plane can be mapped on to the x axis of the z plane by the Schwarz-ChristolTel
transformation

	

w = A	 (z - x 1)'- (z - x0'."-'	 (z - z).'- dx + ii	 (1)
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A transformation which maps the upper half of the z plane into the unit circle in the plane i

or (2)

on replacing w by and taking e = r, z0 = I in equation (8), Page 204.
II we let S1, X 2,	 X,,  map into	 ..... ,, respectively on the unit circle, then we have for

k = 1,2.....a.
.fi—\	 k\ 

ZXk = 
\1+J	 \l+&/	 (I±.)(l4k)

Also, dz = —21 df/(l + )2. Substituting into (1) and simplifying using the fact that the sum of the
exponents	 - 1,	 - I......- 1 is —2, we find the required transformation

W = A' f ft - )'' ( - 2)°n' I ... (ç -	 d 4 B

where A' is a new arbitrary constant.

TRANSFORMATIONS OF BOUNDARIES IN PARAMETRIC FORM

22. Let C be a curve in the z plane with parametric equations x = F(t), y = G(t). Show
that the transformation

z = F(w) + iG(w)

maps curve C on to the real axis of the w plane.
If z = x + iy, w = u + iv, the transformation can be written

x + iy = F'(u+iv) + iG(u+iv)
Then v 0 [the real axis of the w planej corresponds to x 4- iy = F(u) -I- i G(u), i.e. x	 F(u), y =
which represents the curve C.

23. Find a transformation which maps the ellipse iii +	 = 1 in the z plane on to the
real axis of the to plane.

A set of parametric equations for the ellipse is given by x = a cos t, y = b sin t where
a > 0, b > 0. Then by Problem 22 the required transformation is z = a cos w + lb sin w.

MISCELLANEOUS PROBLEMS

24. Find a function which maps the interior of a triangle in the w plane [Fig. 8-821 on to
the upper half of the z plane.

Let vertices P [w = 01 and Q [w = 1] of the triangle map into points P' [z = 0] and Q' [z = I] on the
z plane while the third vertex R maps into R' [z = co).

w plane	 z pIano

V	 -.

J_I_ - --------
...,..

U
1

Fig. 8-82	 Fig. 8-83
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By the Schwarz-Christoffel transformation,
dw
d—z = Az I (z1)9/V	 =

Then by integration,

Kf /-t(i —''d + B

Also since w = 1 when z 1, we have

using properties of the beta and gamma functions Chapter 10. Hence

r(1i
K 

= ____
r(alr) 1'(fl/r)

and the required transformation is

V )
W = r(/) r(ft/r) S	 (1— )6/r-I d

Note that this agrees with entry A-13 on Page 209, since the length of side AR in Fig. 8-39 is

5	 (1—'-'d	 = 

25. (a) Find a function which maps the shaded region in the w plane of Fig. 8-84 on to
the upper half of the z plane of Fig. 8-85.

(b) Discuss the case where b - 0.

Iv =

Since w = 0 when z=0, we have B=O

1 = Kf

w plane

IP

..

Fig. 8-84

z plane

gel

..

	

r •Q'	 r
	—1 	 0	 1

Fig. 8-85

(a) The interior angles at Q and 2' are each r - a, while the angle at S is 2r - ( - 2a) = v + 2a.
Then by the Schwarz-Chritoffel transformitlon we have

dw = A (z + I)(.-)I. -1 4+2a)I	 1 (z - 1)-a)/I -1

A	 -	 K z2''
- (z2 - 1)" - (1 -

lice by integration

w =

When a = 0, w = ai; then B = ai and

Kf
2aIr 

d + B
(j -

C
w	 KJ 

(1—r2)'' 
dI + ai	 (1)

The value of K can be expressed In terms of the gamma function using the fact that w = b when a 1
[Problein 1021. We find

K =	 (b— at) ./	 (2)
r(+!\r(1_'\

	2) \	 5')



w plane

Fig. 8-86

a plane w plane

Fig. 8-88

U

Fig. 8-87
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(b) As b 0, a -. ,r/2 and the result in (a) reduces to

w = 01 - ai5	 = ai/iii

=

In this case Fig. 8-84 reduces to Fig. 8-86. The
result for this case can be found directly from
the Schwarz-Chrjstoffel transformation by con-
sidering PQSTU as a polygon with interior an-
gles at Q, S and T equal to r12, 2r, and r/2
respectively.

26. Prove that the Schwarz-Chrjstoffel transformation of Problem 17 maps the interior
of the polygon on to the upper half plane.

It suffices to prove that the transformation maps the interior on to the unit circle, since we
already know [Problem 11] that the unit circle can be mapped on to the upper half plane.

Suppose that the function mapping polygon P in the w plane on to the unit circle C in the
z plane is given by w = 1(z) where f(z) is analytic inside C.

We must now show that to each point a inside P there corresponds one and only one point, say
20, such that f(z) = a.

Now by Cauchy's integral formula, since a is inside P,

1 4 dw
2riYw—a -

Then since w—a = 1(z)—a,
1' f'(z) dz = I2ri Jc f(z)—a

But 1(z) - a is analytic inside C. Hence from Problem 17, Chapter 5, we have shown that there is
only one zero (say Z) of 1(z) - a inside C, i.e. f(z0) = a, as required.

27. Let C be a circle in the z plane having its centre on the real axis, and suppose further
that it passes through z = 1 and has z = —1 as an interior point. Determine the image
of C in the w plane under the transformation w = 1(z) = 4(z + liz).

We have dw/dz = 4(1 - 1i2). Since dw/d = 0 at z = 1, it follows that z = 1 is a critical
point. From the Taylor series of 1(z) = 4(z + liz) about a = 1, we have

W - 1	 4[(z - 1)2 - (a - l) + (a - 1) - .

By Problem 100 we see that angles with vertices at a = 1 are doubled under the transformation. In
particular, since the angle at a = 1 exterior to C is r, the angle at w = 1 exterior to the image C' is 2w.
Hence C' has a sharp tail at w = 1 (see Fig. 8-88), Other points of C' can be found directly.

It is of interest to note that in this ca ge C encloses the circle [z[ = 1 which under the transforma-
tion is mapped into the alit from w = — 1 to w = 1. Thus as C approaches Izi = 1, C' approaches the
straight line joining w = —1 to w = 1.



z plane to plane

Fig. 8-89 Fig. 8.90

U
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28. Suppose the circle C of Problem 27 is moved so that its CCHLEC is in the upper half
plane but that it still passes through z = I and encloses z = —1. Determine the image
of C under the transformation w = (z + liz).

As in Problem 27, since z = 1 is a critical point, we will obtain the sharp tail at w = 1 Fig. 8-901.
If C does not entirely enclose the circle Izl = 1 [as shown in Fig. 8-891, the image C' will not entirely
enclose the image of JzJ 1 [which is the alit from w —1 to to = 11. Instead, C' will only enclose that
portion of the slit which corresponds to the part of Izi = 1 inside C. The appearance of C' is therefore
as shown in Fig. 8-90. By changing C appropriately, other shapes similar to C' can be obtained.

The fact that C' resembles the cross-section of the wing of an airplane, sometimes called an airfoil,
is important in aerodynamic theory (see Chapter 10) and was first used by Joukowgki. For this reason
shapes such as C' are called Joukowki airfoils or profiles and w = (z + liz) is called a Joukownki
transformation.

Supplementary Problems

TRANSFORMATIONS

29. Given triangle T in the z plane with vertices at 1, 1 - i, i + i. Determine the triangle T' into which T is
mapped under the transformations (a) to = 3z + 4 - 21, (b) to = iz + 2—i, (c) w = 6e"113 z — 2 + 41.
What is the relationship between T and T' in each case?

30. Sketch the region of the w plane into which the interior of triangle T of Problem 29 is mapped under
the transformations (a) w = z2, (b) w = iz2 + (2— i)z, (c) w = z + liz.

31. (a) Show that by means of the transformation w = liz the circle C given by I z - 3 = 6 is mapped

into the circle I to + 3116 I = 5/16. (b) Into what region is the interior of C mapped?

32. (a) Prove that under the transformation w = (z - i)/(iz - 1) the region Im (z) 0 is mapped into
the region JwJ	 1. (b) Into what region is Ito {z} 0 mapped under the transformation?

33. (a) Show that the transformation w = 4(zea + z l ea) where a is real, maps the interior of the
circle lzI = 1 on to the exterior of an ellipse [see entry B-2 in the table on Page 2091.

(b) Find the lengths of the major and minor axes of the ellipse in (a) and construct the ellipse.

Ans. (b) 2 cosh a and 2 sinh a respectively.

34. Determine the equation of the curve in the to plane into which the straight line x + y = 1 is mapped
under the transformations (a) w = 22, (b) to = liz.
Ans. (a) u 2	 1, (h) 0+2uv+2v2 - u+v
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1+	 2/3

35. Show that w 
= (-)	

maps the unit circle on to a wedge-shaped region and illustrate graphically.

36. (a) Show that the transformation w = 2z-3U+ 5- 4i is equivalent to u = 2x + 3y + 5,

v = 2y-3x-4.

(b) Determine the triangle in the uv plane into which triangle T of Problem 29 is mapped under

the transformation in (a). Are the triangles similar?

37. Express the transformations (a) u = 4x2 - 8y, v = 8x - 4y2 and (b) u	 x3 - 3xy2, v = 3x2y -

in the form w = F(z, ).	 An8. (a) w = (1 + i)(z2 .+ 2) + (2 - 2i)z + 8iz, (b) w = z3

CONFORMAL TRANSFORMATIONS

38. The straight lines y = 2x, x + y = 6 in the sy plane are mapped on to the to plane by means of the

transformation w = z2 . (a) Show graphically the images of the straight lines in the w plane. (5) Show

analytically that the angle of intersection of the straight lines is the same as the angle of intersection
of their images and explain why this is so.

39. Work Problem 38 if the transformation is (a) w = , (b) w =

40. The interior of the square ,J' with vertices at 1, 2, 1 + i, 2 + i is mapped into a region ci" by

means of the transformations (a) w = 2z + 5 — 3i, (b) w = z2, (c) w sin rz. In each case sketch

the regions and verify directly that the interior angles of Ci" are right angles.

41. (a) Sketch the images of the circle (x - 3)2 + y2 2 and the line 2x + 3y = 7 under the transforma-

tion w = liz. (b) Determine whether the images of the circle and line of (a.) intersect at the same

angles as the circle and line. Explain.

42. Work Problem 41 for the case of the circle (x - 3)2 + y2 = 5 and the line 2x + 3y = 14.

43. (a) Work Problem 38 if the transformation is w = 3z - 2i1.

(b) Is your answer to part (b) the same? Explain.

44. Prove that a necessary and sufficient condition for the transformation w	 F(z, f) to be conformal

in a region '7 is that aF/dJ = 0 and aP/az , 0 in 'J and explain the significance of this.

JACOBIANS
45. (a) For each part of Problem 29, determine the ratio of the areas T and V. (b) Compare your

findings in part (a) with the magnification factor IdwIdzl 2 and explain the significance.

46. Find the Jacobian of the transformations (a) w = 20 — iz + 3 - i, (b) u = Z2— xy + y2, v = x2 + xy + y2.

Ans. (a) 14z - i1 2, (b) 4(x2 + 1,2)

47. Prove that a polygon in the z plane is mapped into a similar polygon In the w plane by means of the

transformation w = F(z) if and only if F'(z) is a constant different from zero.

48. The analytic function F(z) maps the interior 'R of a circle C defined by Iz = 1 into a region

bounded by a simple closed curve C'. Prove that (a) the length of C' Is 5 I F'(z) l Idzl, (b) the area

of '1' Is J'f IF"(z)1 2 dx dy.

qt

49. Prove the result (2) on Page 200.

50. Find the ratio of areas of the triangles in Problem 36(b) and compare with the magnification factor

as obtained from the Jacobian.
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51. Let u = u(x, y), v	 v(x, y) and x = z(j, ), v = v(, ).
a(u, v) ')(x, Y)(a) Prove that

- a(x,y) O(,e)
(b) Interpret the result of (a) geometrically,

(c) Generalize the result in (a).

52. Show that if w = a + it, = F(z), z = x + iy = G() and I = j + it,, the result in Problem 51(a)
is equivalent to the relation

IdwI - JdwIJdzI
-

BILINEAR OR FRACTIONAL TRANSFORMATIONS
53. Find a bilinear transformation which maps the points i, —i, 1 of the z plane into 0, 1, of the w plane

respectively.	 Ana. w	 (1 - i)(z - i)12(z - 1)

54. (a) Find a bilinear transformation which maps the vertices 1 + i, —i, 2—i of a triangle T of the
z plane into the points 0, 1, i of the w plane.

(b) Sketch the region into which the interior of triangle T is mapped under the transformation
obtained in (a).

Ann. (a) w	 (2z - 2— 2i)/((j - 1)z —3-- 5i)

55. Prove that the result of (a) two successive bilinear transformations, (5) any number of successive
bilinear transformations is also a bilinear transformation.

56. If a b are the two fixed points of the bilinear transformation, show that it can be written in the form
W—a -

w—b -	 \z — bwhere K Is a constant.

57. If a = S in Problem sr,, show that the transformation can be written in the form
I	 I-	 =

where k is a constant.	 w - a	 z - a

58. Prove that the most general bilinear transformation which maps izi 1 on to j wj = I is

W = 
where p is a constant,	 \PZ 1

59. Show that the transformation of Problem 58 maps j zj < 1 on to (a) jwj < 1 if ii < 1 and (b) jwj > 1
if jpj > 1.

60. Discuss Problem 58 if jpj = 1.

61. Work Problem 11 directly.

62. (a) If z 1 , z2, z3 , z4 are any four different points of a circle, prove that the cross ratio is real.
(b) Is the converse of part (a) true?	 Ana. (5) Yes

THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

63. Use the Schwarz-Christoffel transformation to determine a function which maps each of the indicated
regions in the w plane on to the upper half of the z plane.
(a)	

z plane . .	 plane

''.A1 /'4Y.	 ,la;:;...	 •..,.. . . .. .-...

Fig. 5 .91	 Fig. 8-92



Fig. 8.96

'I

w plane

(d)	 z plane W plane

Fig. 8-98

I'

Fig. 8-97

w plane a plane

Fig. 8-100Fig. 8-99

U
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(b)	 iplan.

V

B	 A

'
2

Fig. 8.93

W plan.

tr	 :

—1	 1

Fig. 8-94

(C)	 z plane

V

B	 A

OC	

I.

D	 K

Fig. 8-95

An8. (a) w = z3 , (b) w = cosh (7z/2), (c) w e, (d) w =

64. Verify entry A-14 in the table on Page 209 by using the Schwarz .ChristofTel transformation.

65. Find a function which maps the infinite shaded region of Fig. 8-99 on to the upper half of the z plane
[Fig. 8-100] so that P,Q,R map into P',Q',R' respectively [where P,R,P',R' are at infinity as
indicated by the arrows].	 Ans. z = (w + T -

66. Verify entry A-12 in the table on Page 208 by using the Schwarz-Christoffel transformation.



W plane z plane

Fig. 8-102Fig. 8-101

W plane z plane

Fig. 8-103 Fig. 8-104
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67. Find a function which inaps each of the Indicated shaded region. In the w plane on to the upper
half of the z plane.

(a)

(b)

68. (a) Verify entry A-Il of the table on Page 208 by using the Schwarz-Christoffel transformation.
(b) Use the result of (a) together with entry A-2 of the table on Page 206 to arrive at the entry C-5

in the table on Page 211.

TRANSFORMATIONS OF BOUNDARIES IN PARAMETRIC FORM

69. (a) Find a transformation which maps the parabola y2 = 4p(p - x) into a straight line.
(b) Discuss the relationship of your answer to entry A-9 in the table on Page 208.

An.. (a) One possibility is a = p - pw2 + 2piw = p(l + iw)2 obtained by using the parametric
equations x = p(i - t2), y = 2pt.

70. Find a transformation which maps the hyperbola x = a cosh t, y = a sinh t into a straight line.
An.. a = a(cosh w + i sinh w)

71. Find a transformation which maps the cycloid x = a(t - sin t), y = a(1 - cos () into a straight line.
An.. a = o(w + i— i6a)

72. (a) Find a transformation which maps the hypocycloid x 213 + y 2 '3 = a213 into a straight line.
(b) Into what region is the interior of the hypocycloid mapped under the transformation? Justify

your answer.

l'1ifl • Parametric equations for the hypocycloid are a = a cos3 t, y	 a sIr (, 0	 < 2,r.1
An.. (a) a = a(cos3 w + i sin3 w)

73. Two sets of parametric equations for the parabola y = a2 are (a) a = t, y = t2 and (b) a = ±e', y = e21.
Use these parametric equations to arrive at two possible transformations mapping the parabola into
a straight line and determine whether there is any advantage in using one rather than the other.
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MISCELLANEOUS PROBLEMS

74. (a) Show that the transformation w = liz maps the circle I - = a, where a> 0, into a straight
line. Illustrate graphically showing the region into which the interior of the circle is mapped,
as well as various points of the circle.

(b) Show how the result in (a) can be used to derive the transformation for the upper half plane into
the unit circle.

75. Prove that the function w = ( z2/a 2) - 1 maps one loop of the lemniscate r2 = 2a.2 cos 20 oil to the
unit circle.

76. Prove that the function w = z2 maps the circle Iz - a] = a, a> 0, on to the cardioid p = 2a2(1 + cos )
[see entry C-2 in the table on Page 2101.

77. Show that the Joukoweky transformation w = z + k2iz can be written as
/w-2k _, 1z—k s2

w+2k - \z+k

78. (a) Let w = F(z) be a bilinear transformation. Show that the most general linear transformation
for which F{F(z)} = z is given by

t4)—p =

where k2
w — q	 z—q

= 1.

(b) What is the result in (a) if F(F'[F(z)] ) =

(c) Generalize the results in (u) and (b).

Ana. (b) Same as (a) with k3 = 1.

79. (a) Determine a transformation which rotates the ellipse x 2 -I- xy + y2 = 5 so that the major and
minor axes are parallel to the coordinate axes. (b) What are the lengths of the major and minor axes?

80. Find a bilinear transformation which maps the circle Iz - 11 = 2 on to the line x + y = 1.

81. Verify the transformations (a) A-6, (b) A-7, (c) A-8, in the table on Page 207.

82. Consider the stereographic projection of the complex plane on to a unit sphere tangent to it [see
Page 6]. Let an XYZ rectangular coordinate system be constructed so that the Z axis coincides with
NS while the X and Y axes coincide with the x and y axes of Fig. 1-6, Page 6. Prove that the point
(X, Y, Z) of the sphere corresponding to (x, y) on the plane is such that

	

X — ____	 V	 = x2.+y2
- x2 +y2 +1'	 x2+y2+1'	 x2+y2+1

83. Prove that a mapping by means of stereographic projection is conformal.

84. (a) Prove that by means of a stereographic projection, are lengths of the sphere are magnified in
the ratio (x2+y2+1):1.

(b) Discuss what happens to regions in the vicinity of the north pole. What effect does this produce
on navigational charts?

85. Let u = u(x, y), v = v(x,y) be a transformation of points of the xy plane on to points of the uv plane.

(a) Show that in order that the transformation preserve angles, it is necessary and sufficient that

	

(\2 + (2 =	
+	 8u au	 a,,lv - o

\ax xj	 \J	 \,J	 + TZ ay

(b) Deduce from (a) that we must have either

au - av au - av	 or	 (ii)	 - _av au=
ax - ay ' 3y	 ax	 ax	 as,' a,	 TXax

Thus conclude that it + iv must, be an analytic function of x + iy.

229
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86. Find the area of the ellipse ax5 +bzy+cy 2 	 1 where a>0, c>0 and b2<4uc.
An.. 2r//b2

81. A transformation w 1(z) of points in a plane I. called involutory if z = 1(w). In this case a single
repetition of the transformation restores each point to its original position. Find conditions on a, p, y, 8
in order that the bilinear transformation w = (ax + p)/(yz + 8) be involutory.	 An... 8 = — a

88. Show that the transformations (a) w = (z + 1)I(z - 1), (A) w = In coth (z/2) are involutory.

89. Find a bilinear transformation which maps jzj 9 1 on to 1w -	 1 so that the points 1, —i
correspond to 2, 0 respectively.

90. Discuss the significance of the vanishing of the Jacobian for a bilinear transformation.

91. Prove that the bilinear transformation w = (az + 6)/(yz + 8) has one Axed point if and only if
(8 + a)2 = 4(a8 - /3y) ,' 0.

92. (a) Show that the transformation w = (az 1- )/(yz + ) where kP- 1 y 1 2 = 1 transforms the unit
circle and its interior into itself.

(A) Show that if JyJ2 - Ja[ 2 = 1 the interior is mapped Into the exterior.

93. Suppose under the transformation w = F'(z, I) any intersecting curves C1 and C2 in the z plane map
respectively into corresponding intersecting curves C 1 and C2 in the w plane. Prove that if the trans-
formation is conformal then (a) F(z, ) is a function of z alone, say 1(z), and (A) 1(z) is analytic.

94. (a) Prove the multiplication rule for determinants [see Problem 7]:

l

ag b 1 a	 1, 2	-	 a1 a2 + b jc2 u,b2 + b,d2
c, d 1 02 d2 	c1a2 + 0102 c 1 b2 + d,d2

(b) Show how to generalie the result in (a) to third order and higher order determinants.

95. Find a function which maps on to each other the shaded regions of Figures 8-106 and 8-106, where
QS has length A.

w plane	 x plane

96. (a) Show that the function w = J	 maps a regular hexagon into the unit circle.

(b) What is the length of a side of the hexagon in (a)?

An.. (A)
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97. Show that the transformation w = (Az2 + Dx + C)/(Dz2 + FJz + F) can be considered as a combination
of two bilinear transformations separated by a transformation of the type r =

98. Find a function which maps a regular polygon of n sides into the unit circle.

99. Verify the entries: (a) A-9, Page 208; (6) A-b, Page 208; (c) B-3, Page 210, (d) B-4, Page 210;
(e) C-3, Page 211; (1) C-4, Page 211.

100. Suppose the mapping function w = f(z) has the Taylor series expansion

	

= f(z) = /(a) + /'(a) (x— a) +	 + n! (z— a) +

Show that if f(a) = 0 for k = 0,1.....n-1 while /"(a) , 0, then angles in the z plane with
vertices at z = a are multiplied by n in the w plane.

lot. Determine a function which maps the infinite strip —r14 9 x	 r14 on to the interior of the unit
circle jwj	 1 so that z 0 corresponds to w = 0.	 Ans'. w =tan z

102. Verify the value of K obtained in equation (2) of Problem 25.

103. Find a function which maps the upper half plane on to the interior of a triangle with vertices at
w = 0, 1, i corresponding to z = 0, 1,	 respectively.

An..	
r(3/4) f t- "2 (1— t)- 814 dt

'fr(1/4)J0
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Chapter 9

Physical Applications of
Conformal, M,apping, 	 .t,••'

BOUNDARY VALUE PROBLEMS
Many problems of science and engineering when formulated mathematically lead to

partial differential equations and associated conditions called boundary conditions. The
problem of determining solutions to a partial differential equation which satisfy the
boundary conditions is called a boundary-value problem.

It is of fundamental importance, from a mathematical as well as physical viewpoint,
that one should not only be able to find such solutions (i.e. that solutions exist) but that
for any given problem there should be only one solution (i.e. the solution is unique).

HARMONIC AND CONJUGATE FUNCTIONS
A function satisfying Laplace's equation

a2 ,	 ai
V 24' -	 = 0

in a region '1 is called harmonic in R. As we have already seen, if 1(z) = u(x, y) + i v(x, y)
is analytic in '1, then u and v are harmonic in 9.

Example: If 1(z) = 4z2 - 3iz = 4(x + 'p) 2 - 3i(x + iy) = 4x2 - 4y2 + 3y + i(8xy - 3x), then
a = 4x 2 - 4y2 + 3y, v = 8xy - 3x. Since a and v satisfy Laplace's equation, they
are harmonic.

The functions u and v are called conjugate functions; and given one, the other can
be determined within an arbitrary additive constant [see Chapter 31.

DIRICHLET AND NEUMANN PROBLEMS
Let GR,, [Fig. 9-1] be a simply-connected region bounded by a simple closed curve C.

Two types of boundary-value problems are of great importance.

(1)

1. Dirichlet's problem seeks the determina- 	 y
tion of a function I which satisfies La-
place's equation (1) [i.e. is harmonic] in 'R.
and takes prescribed values on the bound-
ary C.

2. Neumann's problem -seeks the determina-
tion of a function ' which satisfies La-
place's equation (1) in R. and whose
normal derivative I'/an takes prescribed
values on the boundary C.

The region 'N may be unbounded. For exam-
ple 'N can be the upper half plAne with the x axis
as the boundary C. Fig. 9-1

232
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It can be shown that solutions to both the Dirichiet and Neumann problems exist
and are unique [the Neumann problem within an arbitrary additive constant] under very
mild restrictions on the boundary conditions [see Problems 29 and 801.

It is of interest that a Neumann problem can be stated in terms of an appropriately
stated Dirichiet problem (see Problem 79). Hence if we can solve the Dirichiet problem
we can (at least theoretically) solve a corresponding Neumann problem.

THE DIRICHLET PROBLEM FOR THE UNIT CIRCLE. POISSON'S FORMULA

Let C be the unit circle jzj = 1 and q be its interior. A function which satisfies
Laplace's equation [i.e. is harmonic] at each point (r, ) in 'R and takes on the prescribed
value P(0) on C [i.e. 4'(1, C) = 1(0)1, is given by

2'	
(1 - r2) (#) d#	 (2)4,(r, 0) 

=	 .[ 1— 2r cos (O—) + r2

This is called Poisson's formula for a circle [see Chapter 5, Page 119].

THE DIRICHLET PROBLEM FOR THE HALF PLANE
A function which is harmonic in the half plane y> 0 Elm (z) > 01 and which takes

on the prescribed value G(x) on the x axis [i.e. 4'(x, 0) = G(x), -- <x < ], is given by

4'(x, y) =	
Y G(71) d,

7T _,,

This is sometimes called Poisson's formula for the half plane [see Chapter 5; Page 120].

SOLUTIONS TO DIRICHLET AND NEUMANN PROBLEMS
BY CONFORMAL MAPPING

The Dirichiet and Neumann problems can be solved for any simply-connected region '&
which can be mapped conformally by an analytic function on to the interior of a unit
circle or half plane. [By Riemann's mapping theorem this can always be accomplished,
at least in theory.] The basic ideas involved are as follows.

(a) Use the mapping function to transform the boundary-value problem for the
region 'J( into a corresponding one for the unit circle or half plane.

(b) Solve the problem for the unit circle or half plane.

(c) Use the solution in (b) to solve the given problem by employing the inverse
mapping function.

Important theorems used in this connection are as follows.

Theorem 1. Let u —1(z) be analytic in a region IR of the z plane. Then there
exists a unique inverse z g(w) in R provided f'(z) 0 in [thus insuring that the
mapping is conformal at each point of q(].

Theorem 2. Let 4'(x, y) be harmonic in 'I and suppose that 'i is mapped into 'k' of
the w plane by the mapping function w = 1(z) where f(z) is analytic and f'(z) 76 0 so that
x = x(u,v), y = y(u,v). Then 4,(x, y) = 44x(u,v),y(u,v)] *(u, v) is harmonic in 'R'.
In words, a harmonic function is transformed into a harmonic function under a trans-
formation w = f(z) which is analytic [see Problem 41.
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Theorem 3. If s a [a constant] on the boundary or part of the boundary C of a
region in the z plane, then ' = a on its image C' in the w plane. Similarly If the normal
derivative of 4' is zero, i.e. tl+/.3n = 0 on C, then the normal derivative of 4' is zero on C'.

Applications to Fluid Flow
BASIC ASSUMPTIONS

The solution of many important problems in fluid flow, also referred to as fluid
dynamics, hydrodynamics or aerodynamics, is often achieved by complex variable methods
under the following assumptions.

1. The fluid flow is two-dimensional, i.e. the basic flow pattern and characteristics
of the fluid motion in any plane are essentially the same as in any parallel plane.
This permits us to confine our attention to just a single plane which we take to
be the z plane. Figures constructed in this plane are interpreted as cross-sections
of corresponding infinite cylinders perpendicular to the plane. For example, in
Fig. 9-7, Page 237, the circle represents an infinite cylindrical obstacle around
which the fluid flows. Naturally, an Infinite cylinder is nothing more than a
mathematical mo"et of a physical cylinder which is so long that end effects can
be reasonably neglected.

2. The flow is stationary or steady, i.e. the velocity of the fluid at any point depends
only on the position (x, y) and not on time.

3. The velocity components are derivable from a potential, i.e. if V. and V denote the
components of velocity of the fluid at (x, y) in the positive x and y directions
respectively, there exists a function 'I', called the velocity potential, such that

V. 	 (4)
An equivalent assumption is that if C is any simple closed curve in the z plane

and V is the tangential component of velocity on C, then

See Problem 48.
	

§ V da = § V dx + V dy = 0	 (5)

Either of the integrals in (5) is called the circulation of the fluid along C.
When the circulation is zero the flow is called irrotational or circulation free.

4. The fluid is incompressible, i.e. the density, or mass per unit volume of the fluid,
is constant. If V. is the normal component of velocity on C this leads to the
conclusion (see Problem 48) that

5 V,,da = 5 V. - V. 	 = 0	 (6)

or	
av.	 = 0	 (7)

which expresses the condition that the quantity of fluid contained inside C is a
constant, i.e. the quantity entering C is equal to the quantity leaving C. For
this reason equation (6), or the equivalent (7), is called the equation of continuity.

5. The fluid is non-viscous, i.e. has no viscosity or internal friction. A moving
viscous fluid tends to adhere to the surface of an obstacle placed in its path. If
there is no viscosity, the pressure forces on the surface are perpendicular to the
surface. A fluid which is non-viscous and incompressible is often called an ideal
fluid. It must of course be realized that such a fluid is only a mathematical model
of a real fluid in which such effects can be safely assumed negligible.
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THE COMPLEX POTENTIAL

From (4) and (7) it is seen that the velocity potential 'i' is harmonic, i.e. satisfies
Laplace's equation 	 2

= 0	 (8)

It follows that there must exist a conjugate harmonic function, say 'P(x, y), such that
0(z) = 4'(x, y) + i P(x, y)	 (9)

is analytic. By differentiation we have, using (4),

do -	 a4..t'4'	 4'al(x) =	 +	 =	 -	 = V - iV,	 (10)ax	 ax	
y

Thus the velocity [sometimes called the complex velocity] is given by

V=V+iV=dci/dz=ci'(z)

and has magnitude

V =	 = /V+V2 = 1 0,W1 = Itl'(z)I2

Points at which the velocity is zero, i.e. W(z) = 0, are called stagnation points.

The function 0(2), of fundamental importance in characterizing a flow, is called the
complex potential.

EQUIPOTENTIAL LINES AND STREAMLINES

The one parameter families of curves

4)(x, Y) = 0,	 -+(x, Y) = p	 (13)

where a and fi are constants, are orthogonal families called respectively the equipotcut jut
lines and streamlines of the flow [although the more appropriate terms equipotential curves
and stream curves are sometimes used]. In steady motion, streamlines represent the
actual paths of fluid particles in the flow pattern.

The function s is called the stream function while, as already seen, the function 4' is
called the velocity potential function or briefly the velocity potential.

SOURCES AND SINKS

In the above development of theory we assumed that there were no points in the
z plane [i.e. lines in the' fluid] at which fluid appears or disappears. Such points are
called sources and sinks respectively (also called line sources and line siik.s]. At such
points, which are singular points, the equation of continuity (7), and hence (8), fail to
hold. In particular the circulation integral in (5) may not be zero around closed curves C
which include such points.

No difficulty arises in using the above theory, however, provided we introduce the
proper singularities into the complex potential 0(z) and note that equations such as (7)
and (8) then hold in any region which excludes these singular points.

(11)

(12)
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SOME SPECIAL FLOWS
Theoretically, any complex potential fl(z) can be associated with, or interpreted as,

a particular two-dimensional fluid flow. The following are some simple cases arising in
practice. [Note that a constant can be added to all complex potentials without affecting
the flow pattern.)

1. Uniform Flow. The complex potential corresponding to the flow of a fluid at
constant speed V0 in a direction making an angle 8 with the positive x direction
is (Fig. 9-2 below)

n(z) = Voez	 (14)

2. Source at z =a. If fluid is emerging at constant rate from a line source at z = a
(Fig. 9-3 above), the complex potential is

	

(z) = kln(z — a)	 (15)
where k> 0 is called the strength of the source. The streamlines are shown heavy
while the equipotential lines are dashed.

3. Sink at z = a. In this case the fluid is disappearing at z = a (Fig. 9-4 below)
and the complex potential is obtained from that of the source by replacing k by
—k, giving

	

12(z) = — kln(z — a)	 (16)

4. Flow with Circulation. The flow corresponding to the complex potential
0(z) = — ikln(z — a)	 (17)

is as indicated in Fig. 9-5 above. The magnitude of the velocity of fluid at any
point is in this case inversely proportional to the distance from a.
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The point z = a is called a vortex and k is called its strength. The circulation
[see equation (5)] about any simple closed curve C enclosing z = a is equal in
magnitude to 27rk. Note that by changing Ic to —k in (17) the complex potential
corresponding to a "clockwise" vortex is obtained.

5. Superposition of Flows. By addition of complex potentials, more complicated
flow patterns can be described. An important example is obtained by considering
the flow due to a source at z = —a and a sink of equal strength at z = a. Then

the complex potential is
U(z) = Ic In (z + a) - k in (z - a) = Ic in (!-±-)	 (18)

By letting a - 0 and Ic	 in such a way that 2/ca = i is finite we obtain the
complex potential =	 (19)

This is the complex potential due to a doublet or dipole, i.e. the combination of a
source and sink of equal strengths separated by a very small distance. The
quantity is called the dipole moment.

FLOW AROUND OBSTACLES
An important problem in fluid flow is that of determining the flow pattern of a fluid

initially moving with uniform velocity V in which an obstacle has been placed.

w plane	 z plane	 plane

Fig. 9 .6	 Fig. 9.7	 Fig. 9-8

A general principle involved in this type of problem is to design a complex potential having
the form	 11(z) = V0 z + G(z)	 (20)

(if the flow is in the z plane) where G(z) is such that urn G'(z) = 0, which means physi-

cally that far from the obstacle the velocity has constant magnitude (in this case Vol.

Furthermore, the complex potential must be chosen so that one of the streamlines repre-
sents the boundary of the-obstacle.

A knowledge of conformal mapping functions is often useful in obtaining complex
potentials. For example, the complex potential corresponding to the uniform flow in the
to plane of Fig. 9-6 is given by Vow. By use of the mappin g function w = z + a 2/Z  [see

entry A-4, Page 2061 the upper half to plane of Fig. 9-6 is transformed into the upper

half z plane exterior to circle C, and the complex potential for the flow of Fig. 9-7 is

given by	 a2
12(z)	 Vo(z+__)	 (21)
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Similarly if z = F() maps C and its exterior on to C' and its exterior (see Fig. 9-81, then
the complex potential for the flow of Fig. 9-8 is obtained by replacing z by 1(C) in (21).
The complex potential can also be obtained on going directly from the w to the C planeby means of a suitable mapping function.

Using the above and introducing other physical phenomena such as circulation, we
can describe the flow pattern about variously shaped airfoils and thus describe the motion
of an airplane in flight.

BERNOULLI'S THEOREM
If P denotes the pressure in a fluid and V is the speed of the fluid, then Bernoulli'stheorem states that 

P + 4oV2 = K (22)
where u is the fluid density and K is a constant along any streamline.

THEOREMS OF BLASIUS
I. Let X and Y be the net forces, in the positive x and y directions respectively, due to

fluid pressure on the surface of an obstacle bounded by a simple closed curve C. Thenif n is the complex potential for the flow,

X -	 = tT5 ()2dz	 (2)
dU

2. If M is the moment about the origin of the pressure forces on the obstacle, then

M = Re{_ & a 5 z()2dz}	 (24)

where "Re" denotes as usual "real part of".

Applications to Electrostatics
COULOMB'S LAW

Let r be the distance between two point electric charges q 1 and qz. Then the forcebetween them is given in magnitude by Coulomb's law which states that

(25)

and is one of repulsion or attraction according as the charges are like (both positive or
both negative) or unlike (one positive and the other negative). The constant ic in (25),which is called the dielectric constant, depends on the medium; in a vacuum c = 1, in othercases c> 1. In the following we assume x = 1 unless otherwise specified.

ELECTRIC FIELD INTENSITY. ELECTROSTATIC POTENTIAL

Suppose we are given a charge distribution which may be continuous, discrete, or a
combination. This charge distribution sets up an electric field. If a unit positive charge
(small enough so as not to affect the field appreciably) is placed at any point A not already
occupied by charge, the force acting on this charge is called the electric field intensityat A and is denoted by 6. This force is derivable from a potential 4' which is sometimescalled the electrostatic potential. In symbols,

= - grad 4' =	 (26)
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If the charge distribution is two-dimensional, which Is our main concern here, then
.	 a.	 a.= E + 2E1 = - a.	 a.

- - s .	where B = - , B, = -	 (27)

In such case if E, denotes the component of the electric field intensity tangential to any
simple closed curve C in the z plane,

5 E de = 5 E dx + B1, dy = 0	 (28)

GAUSS' THEOREM

Let .us confine ourselves to charge distributions which can be considered two-dimen-
sional. If C is any simple closed curve in the z plane having a net charge q in its interior
(actually an infinite cylinder enclosing a net charge q) and E is the normal component of
the electric field intensity, then Gauss' theorem states that

En do = 47rq	 (29)

If C does not enclose any net charge, this reduces to

	

5 E ds = 5 E dy - E. dx	 0	 (SO)

It follows that in any region not occupied by charge,

	

5T	 ay
= 0	 (81)

From (27) and (81), we have

	

02,	 02, -

Ox' + Oy' - 0

i.e. i' is harmonic at all points not occupied by charge.

THE COMPLEX ELECTROSTATIC POTENTIAL
From the above it is evident that there must exist a harmonic function '' conjugate

to 4' such that
C(z) = 4'(x.y) + ts(x,y)	 (88)

is analytic in any region not occupied by charge. We call n(z) the complex electrostatic
potential or, briefly, complex potential. In terms of this, (27) becomes

-	 04'	 a -	 +	 -	 -	 34-	 Ox	 Oy -	 Oy -	 dz -	 (z)	 ( )

	and the magnitude of € is given by B =	 1-1I'(z)I	 jIz'(z)J.	 -

The curves (cylindrical surfaces in three dimensions)

(x, y) = a,	 t(x, y) = 0	 (85)
are called equipotentiat lines and flux linen respectively.

LINE CHARGES	 -

The analogy of the above with fluid flow is quite apparent. The electric field In
electrostatic problems corresponds to the velocity field in fluid flow problems, the only
difference being a change of sign in the corresponding complex potentials.

(82)
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The ideas of sources and sinks of fluid flow have corresponding analogues for electro-
statics. Thus the complex (electrostatic) potential due to a line charge q per unit length

at zo (in a vacuum) is given by
11(z) = - 2q In (z - zo)	 (86)

and represents a source or sink according as q <0 or q> 0. Similarly we talk about
doublets or dipoles, etc. If the medium is not a vacuum, we replace q in (36) by q/,c.

CONDUCTORS
If a solid is perfectly conducting, i.e. is a perfect conductor, all charge is located on

its surface. Thus if we consider the surface represented by the simple closed curve C in
the z plane, the charges are in equilibrium on C and hence C is an equipotential line.

An important problem is the calculation of potential due to a set of charged cylinders.
This can be accomplished by use of conformal mapping.

CAPACITANCE
Two conductors having charges of equal magnitude q but of opposite sign, have a

difference of potential, say V. The quantity C defined by

q=CV	 (37)

depends only on the geometry of the conductors and is called the capacitance. The con-
ductors themselves form what is called a condenser or capacitor.

Applications to Heat Flow

HEAT FLUX
Consider a solid having a temperature distribution which may be varying. We are

often interested in the quantity of heat conducted per unit area per unit time across a
surface located in the solid. This quantity, sometimes called the heat flux across the

	

surface, is given by	 Q =	 K grad P	 (38)

where I' is the temperature and K, assumed to be a constant, is called the thermal con-
ductivity and depends on the material of which the solid is made.

THE COMPLEX TEMPERATURE
If we restrict ourselves to problems of two-dimensional type, then

Q = - K( +	 = Q + iQ 1,	 where Q = —K, Q, = —Kr- (89)
 Ty 	Tx

Let C be any simple closed curve in the z plane (representing the cross-section of a
cylinder). If Q and Q. are the tangential and normal components of the heat flux and
if steady state conditions prevail so that there is no net accumulation of heat inside C,
then we have

	

Q. ds =	 Q dy - Q. dx = 0, § Qt ds = 5 Q dx + Q dy = 0	 (40)
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assuming no sources or sinks inside C. The first equation of (40) yields

= 0	 (41)W ay
which becomes on using (39),

a14'	 a2,6

	

+	 -
ax2 	ay2 -

i.e. 4' is harmonic. Introducing the harmonic conjugate function *, we see that

	

= 4'(x,y) + i*(x,y)	 (42)

is analytic. The families of curves

	

4'(X ' Y) = a,	 *(x, Y) = p	 (43)

are called isothermal lines and flux lines respectively, while 11(z) is called the complex

temperature.
The analogies with fluid flow and electrostatics are evident and procedures used in

these fields can be similarly employed in solving various temperature problems.

Solved Problems

HARMONIC FUNCTIONS
1. Show that the functions (a) x 2 - y2 + 2y and (b) sin x cosh y are harmonic in any

finite region 'N of the z plane.
824.824,	 82.	 824k

(a) If 4' = x 2 — y2 +2y, we have	 2,	 —2. Then -j-+j = 0 and 4' is harmonic In 'N.

	

ayli

82+ 	 d24	 824 82$
(b) If 4' = sin  cosh Y, we have	 = —sin x cosh y,	 = sin  cosh y. Then	 = 0

and 4' is harmonic in 'N.

2. Show that the functions of Problem 1 are harmonic in the w plane under the trans-
formation z = w3.

If 2=w3 , then x+iy = (u+iv)3 = u3_ 3uv2 +0142v_v) and x = u3 -3uv2, y = 3u2v—.v3.

(a) 4. =X2 - y2 + 2y = (u3 -3uv2) 2 —(3u2v—v + 2(3u2v-0)
= u6 - 15u4v2 + 16u2v4 - v + 6u2v - 2v

Then	 = 30u4 -180u2v2 + SOy4 + 12v,	 = —30u4 + 150u2v2 - 30v4 - 12v

	

8u2 	8v2
824.	 84.

and	 +	 = 0 as required.

(b) We must show that 4' = sin (a3 - 3uv2) cash (3u2v - v') satisfies it +	 = 0. This can

readily be established by straightforward but tedious differentiation. O
U2 	 a V2

This problem illustrates a general result proved in Problem 4.
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82,	 d2o 2 
f2 

+

	

3. Prove that	 +	 = If'()I	 where w = 1(z) is analytic and f'(z) ,' 0.

The function 4'(x, y) is transformed into a function +(x(u, v), y(u, v)j by the transformation. By
differentiation we have

8+8+ Au + 8$ 8v	 84. - 84. Au +
	

Ar
Ax - Au Ax	 A Ax '	 Ay - Au Ay	 Av Ay

	

- 8+ A2u + Au A (±\ +	
AV 

+ 
Ar a (a.

Ax2 - Au Ax2 	Ax Ax\, auJ TV- 	 Ax\Av

= A$A2U 
+ 

8u[A (A.f'\ôu + A
Au Ax2 	OxLau auJ Ax	 Av \Au) Ax

+ 
84. 82v + L. A (a+'\ Au + A (a.' Ar

Av Ax2 	ax au avJ Ax	 Ar \AvJ Ax

- 84. 82u + Au f 824. Au + 824. An + 84 82v + Ar [ 824. Au + 82. an
- Au Ax2	 Ax LJu2 Ax	 At, Au Ax]	 A Ax2	Ax Lou Ar Ax	 8v2 Ax

Similarly,

82. - 8$ A2uAu [824. Au	 AZI, Ar]	 Al. 82. + Jr [ 
824. Au	 J24 Ar

- AuOy2 + JyLau2ay 
+ 

AvAu Ow] + AvAy2 	 AY[AUAVAV	 Av2Ay

Adding,

824. + A2$ - Al. (82u	 82u\	 04./'82v	 82v'\	 jZj. [ /'Au\ 2 fau
Ax	

\2

	

2	 8y2 - Au k.8x2 + Jy2) + Av Ax + 8y2) + Au2 L\axI + 8y)

+ 2[+!±] +
	

(1)

	

au aw

Atu 82u	 82v 82vSince u and v are harmonic,	 +	 = 0, --+	 = 0. Also, by the Cauchy-RiemannaX2 a#2
Au Jr At,	 Au	equations - 	 = --. ThenAx Ay Ax	 Ay

	

()1 + ( )2 = () 2 + (j.,,)2 =	 2 + (8)2 

= ax	 ax=
am)

Hence (1) becomes

JuAn	 AuAv
i-X Tx ay ay

= 0

824. 82.	 /824. 82.\+	 = I/'(z)I	 +

4. Prove that a harmonic function +(x, y) remains harmonic under the transformation
w = 1(z) where 1(z) is analytic and fl(z) ' 0.

This follows at once from Problem 3, since if--+	 = 0 and f'(z) ,' 0, then	 +	 = 0.

5. If a is real, show that the real and imaginary parts of w = In (z -a) are harmonic
functions in any region '! not containing z = a.

Method I.
If 'R does not contain a, then w = In (z - a ) is analytic in '. Hence the real and imaginary

parts are harmonic in 4.
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Method 2.
Let z -a - re'". Then if principal values are used for e, w = ?i-f iv	 In (z a) - In , I

so that u	 In r, V	 e.
a24'	 1 0+	 1

In the polar coordinates (r, 6), Laplace 's equation is-I--- 	 + - --- = 0 and by direct

substitution we find that u - III 	 and v	 e arc solutions if '1( nines riot contain r	 0, ie. z :.: a.

Method 3.

	If z--a=r&°, then x-a=r cos 9,	 1, sin 	 and r=/(x_a)24y2, It	 tan '(y/(r-a)).
Then	 a'	 it I iv	 In ((x _a)2l	 i i tan 1 (y/(x -a))	 and	 a.	 - In {(x — a)+ y2},

	

61 2+	 a2q,
= tan — ' (y/(x - a)). Substituting these into Laplace's equation - -- + 	= 0, we find after

straightforward differentiation that ?I 	 v are solutions if z a.	 X	 OY2

DIRICHLET AND NEUMANN PROBLEMS

6. Find a function harmonic in the upper half of the z plane, Im (z) > 0, which takes the

prescribed values on the x axis given by G(x) =

	

	 1 X > 0

10 x<0
We must solve for +(x, y) the boundary-value problem

,12.I,	 O'i' 	 Ii	 x > 0— I------O,	 y>O;	 lint'I'(x,y)G(x)=
OX	 Oy	 i,-.0+	 O x<O

This is a Dirichlet problem for the upper half plane [see Fig. 9-91.
The function A 0 I It, where  /1 and II are real

constants, is harmonic since it is the imaginary part of
A In z + B.

To determine A and it hole that the boundary
conditions aic l' .-- I for x- I), i.e. 0	 0 and 4	 0 for
x<0, i.e. O = r.  Thus

(1) 1 = A(0)+B,	 (2) 0 = A(,) I- B

from which A	 -- I/a-, II = I.
Then the required solution is

Ae I B - I --	 I -	 tan
\xJ	 Fig. 9-9

Another method, using Poisson's formula for the half plane.

(	 )	
(ryG(e)(In	 1 i-'°	 y[01 d5	 ± 1 (	 ylII"n

	

a-.1 ,yF(x-s)2	-	 ,r.L,0y23,(x_,)2	 a-i y2I-(x--,)2

= ! tan i(!L	 =	 + !tan_ i () = 1 - ! tan -
'(

)

	

\y/o	 2	 a-	 y	 a-	 X

7. Solve the boundary-value problem

02,1,	 ,)2,,

YX
±	 = 0, y>O;

T0 x<-1
lim +(X, Y) = (;x) :z	 T1 —1 <x < 1

7'2	 x>1

where T0, T 1 , T2 are constants.

'l'}ijs is ;I 	 1nnoldein for the upper half
plume Isee l'ig. )- I Ii].

The function A g 1 + Be2 -F C where A,JJ and C
are real constants, is hunrnior,ic since it is the imagi-
nary part of A III 	 1 I) 1 it lii (z - 1) + C.

If

-	 ,1(x,v)

PC	 X

•	 '	 ,,
-	 /

/

&

+rrT,

Fig. 9-10
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To determine A, B, C note that the boundary conditions are: $ = T2 for x> I, i.e. 8 = 62 = 0;
,l, =T j for -1<x<1, i.e. e = 01 •=.-; 4'=T0 for x<-1, i.e. •r, • 2 =n. Thus

	

(1) T2 = A(0)+B(0)-I-C	 (2) T, = A(0)+B(r)+C	 (3) T0 = A(ir)+B(7r)+C
	from which C = T2, B = (T, - T2)/f, A	 (T0 - T,)Is-.

Then the required solution is
- T0-T1 

tanJi '\ + Ti_T2tan.I / V41 = A9,+Be2 +C - _____	 _____

	

I.	 z+1)	 .	 1\—i) + ' 2

Another method, using Poisson's formula for the half plane.

4'(x, y)y G(7) dq

= If' yT0d,1	 +11'	 yT1d	 +1.1 yT2d,1
	y 2 + (x - ,)2	 V'-, v2 + (x - i)	 r	 y2 + (x -

T0 /e....x\I'	 T,	 ii	 T2
+ - tan' - I + — tan'= —tan-'

	

( y )	 y

TO-11 tan-'(....iL1) +

	

	 tan'	 VI

8. Find a function harmonic inside the unit circle Izi = 1 and taking the prescribed values

	

given by F(0) = {1 0 <	 on its circumference.0 7r<0<27T
This is a Dirichiet problem for the unit circle [Fig. 9.111 in which we seek a function satisfying

Laplace's equation inside IzI = 1 and taking the values 0 on are ABC and 1 on are CDE.

z plane
V

1,;	 A
X,o 

Fig. 9-11	 Fig. 9-12
Method I, using conformal mapping.

We map the interior of the circle IzI = 1 on to the upper half of the w plane [Fig. 9-121 by using
i—w 	

(I Z)
the mapping function z	 —i--- or w	 t	 [see Problem 12, Chapter 8, Page 217, and
interchange z and w].	 * W

Under this transformation, arcs ABC and CDE are mapped on to the negative and positive real
axis A'B'C' and C'D'E' respectively of the to plane. Then by Problem 81, the boundary conditions
4' = 0 on arc ABC and 4' = 1 on are CDE become respectively '1' = 0 on A'B'C' and 4' = 1 on C'DE'.

Thus we have reduced the problem to finding a function 4' harmonic in the upper half w plane
and taking the values 0 for a < 0 and 1 for u > 0. But this problem has already been solved in
Problem 6 and the solution (replacing x by u and y by v) is given by

4' = 1 - tan-'()
	

(I)

Now from w =	 2ywe find a = (1 +x)2 + y' V = ( 1+x)2+
(x2 + 

y2). Then substituting

these in (1), we find the required solution

+

or in polar coordinates (r, e), where

= 1 -'tan'"_2y	 \
I.	 1_ [XI +y2])

C = r coo 6, y = r sin ,

4' = 1 _!t_i(2rslfl.'\t1	 r')

(2)

=

(3)
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Method 1, using Poisson's formula.

1
jo 1 - 2r cos (a - ) + r2

= i I I - 2r co (9—	
= 1	 tnn' (2r sin 9)

by direct integration [see Proolem 6)(b), Chapter 5, Page 136].

APPLICATIONS TO FLUID FLOW

9. (a) Find the complex potential for a fluid
moving with constant speed Vo in a direc-
tion making an angle 8 with the positive
x axis [see Fig. 9-131.

(b) Determine the velocity potential and
stream function.

(c) Determine the equations for the stream-
lines and equipotential lines.

(a) The x and y components of velocity are
V, = V0 cos 5,	 V 5 = V0 sin S

The complex velocity is
9)	 V, + iV5 = V0 cos S + iV 0 sin S = V 0 e

The complex potential 11(z) is given by

dl

dz

Then integrating, 	 11(z)

omitting the constant of integration.

IV = V0 c '

= V0ez

(b) The velocity potential 'I' and stream function 'I' are the real and imaginary parts of the complex

potential. Thus

11(z) = 4'4 i+ = %'0 e 5 z = V0 (x Cos S +ysit) S) -I- W it (y Cos S—x Sill S)

and	 'I' = V0 (x cos .5 + y sin 5),	 'P = V0 (y cog S - x sin 5)

Another method.

(1)	 = V, = V0 cos 6	 (2)	 = V 5 = V0 sin S
TX	 ay

Solving for 'I' in (1), 4' = (V0 cos s)x + 6(y). Substituting in (2), G'(y) = V0 sin, and G(y) =

(V0 sin ,3)y, omitting the cor.stant of integration. Then

'I' = (Vo cos S)x + (V0 sin 8)y

From the Cauchy-Riemann equations,

	

a4'	 a.t	 04'	 04'

	

(3) -	 - = V,, = V0 cosS	 (4) - = -	 = —V 5 = — V0 sin S
TV Ox

Solving for 9' in (3) 4' = (V0 cog S)y f H(x). Substituting in (4), 11 1 (x) = -V0 sin S and

11(z) = —(1 7 0 sin 5)x, omitting the constant of integration. Then

4' = (V0 cog S)y - (V0 sin S)x

(c) The streamlines are given by 'I' = V 0(y cos S - x sin 5) = p for different values of p. Physically,

under steady-state conditions, a streamline represents the path actually taken by at fluid particle.
in this case it straight line path.

The equipotential lines are given by 4, = V0(x cos 6 + y sin 8) = a for different values
of a. Geometrically they are lines perpendicular to the streamlines; all points on an equipotential
line are at equal potential.
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10. The complex potential of a fluid flow is given by 12(z) = V0 (z +	 where V0 and a
are positive constants. (a) Obtain equations for the streamlines and equipotential lines,
represent them graphically and interpret physically. (b) Show that we can interpret
the flow as that around a circular obstacle of radius a. (c) Find the velocity at any
point and determine its value far from the obstacle. (d) Find the stagnation points.
(a) Let z = re l . Then

12(2) = 'I' + i'i' = vo (re 0 +

from which	 = vo (r +	 cos 9,

vo(	
a2'	

o(r_)ein0=	 r+—Jcos. + iVrj

/	 a2\
'P = Vo(r — —,ejnr,

The streamlines are given by 'P 	 constant = /3, i.e.,

= /3

These are indicated by the heavy curves of Fig. 9-14 and show the actual paths taken by fluid
particles. Note that 'P = 0 corresponds to r = a and 9 = 0 or s-.

The equipotential lines are given by 4' = constant = a, i.e.,

Vo(r+ !!) COS . =

These are indicated by the dashed curves of Fig. 9-14 and are orthogonal to the family of
streamlines.

(6) The circle r = a represents a streamline; and since there cannot be any flow across a streamline,
it can be considered as a circular obstacle of radius a placed in the path of the fluid.

(c) We have

= v0 (i -

Then the complex velocity is

a2	 \	 V0
r2 	 ,:i	

a2
=	 --e_V0 (1 a2 2(0) = V0 (i - !- coo 2.) +	 sin 28

V0 a2
= fl'(z) = V0 (1 - a

2
 cos	 -i —r- sin 28r2	 r

and its magnitude is

V = 'uj	 V{vo( 1 _ cos20)} + 
fVoa'sin2o

r2	 —;72	
12

-	 I	 2a2cos2e a4
- V0.V l_	 r2	 r4(1)

Far from the obstacle, we see from (2) that V = V0 approximately, i.e. the fluid is travelling
in the direction of the positive x axis with constant speed V0.

(d) The stagnation points, i.e. points at which the velocity is zero, are given by

= o, i.e. v0 
(i - ) 

= 0 or z = a and z = —aZI 

The stagnation points are thcrcfore at A and I) in Fig. )-14.

(1)
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11. Show that under the transformation w	 z +	 the fluid flow in the z plane con-
sidered in Problem 10 is mapped into a uniform flow with constant velocity V0 in
the w plane.

The complex potential to.- the flow in the w plane is given by

Vo(z+) = VOW

which represents uniform flow with constant velocity V0 in the w plane [compare entry A-4 in the
table on Page 2061.

In general, the transformation w = 11(z) maps the fluid flow in the z plane with complex potential
11(z) into a uniform flow in the w plane. This is very useful in determining complex potentials of
complicated fluid patterns through a knowledge of mapping functions.

12. Fluid emanates at a constant rate from an infinite line source perpendicular to the
z plane at z = 0 Fig. 9-15]. (a) Show that the speed of the fluid at a distance r from
the source is V = k/r where k is a constant. (b) Show that the complex potential is
11(z) = Ic In z. (c) What modification should be made in (b) if the line source is at
z = a? (d) What modification is made in (b) if the source is replaced by a sink in which
fluid is disappearing at a constant rate?
(a) Consider a portion of the line source of unit, length )Fig. 9-16). If yr is the radial velocity of

the fluid at distance r from the source and a is the density of the fluid (assumed incompressible
so that a is constant), then:

Mass of fluid per unit time emanating from line source of unit length
= Mass of fluid cro&,ing surface of cylinder of radius r and height 1
= (Surface area)(Radial velocity)(Fluid density)
=	 (2irr 1)(V,)()	 =	 2irrV, a

If this is to be a constant K, then
v	 k
r - 2-mr - r

where k = .c/2iro is called the strength of the source.

Fjg.9.15	 Fig. 9-16

(b) Since Vr =	 = k-, we have on integr	 ''ating and omitting the constant of integration, 	 = k In r.
But this is the real part of 11(z)	 k In z which is therefore the required complex potential.

(c) if the line source is at z = a instead of z = 0, replace z by z - a to obtain the complex potential
11(z) = kln(z—a).

(d) If the source is replaced by a sink, the complex potential is 11(z) = —k In z, the minus sign arising
from the fact that the velocity is directed toward z = 0.

Similarly, 11(2) = - k In (z —a) is the complex potential for a sink at z = a.
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13. (a) Find the complex potential due to a source at z = —a and a sink at z = a of equal

strengths k. (b) Determine the equipotential lines and streamlines and represent
graphically. (c) Find the speed of the fluid at any point.

(a) Complex potential due to source at z -a of strength k is k In (z + a).

Complex potential due to sink at z = a of strength k is -k In (z - a).

Then by superposition:
Complex potential due to source at z -a and sink at z = a of strengths k is

fl(z) = k In (z + a) - k In (z - a) = kin

(b) Let z + a = r1e", z - a = r2e1 '. Then

0(z) = 4' + ii' = k In (--) = k In Q) + ik(0 1 - 62)

so that 4' = k In (r 1/r2), + = k(o 1 - 62). The equipot.ential lines and streamlines are thus given by

+ = kln(r1/r2) = a,	 $ = k(e 1 - 62) = p

Using r1 = f(x + a)2 +	 .2 = I(x _'(02 + 21	 = tan1 ( -i) 02 = tan — ' (-!)
the equipotential lines are given by

+ y2 =
'V- a)2 + y2

This can be written in the form
[x - a coth (a/k)] 2 + y2 = a2 csch2 (a/k)

which for different values of a are circles having centres at a coth (a/k) and radii equal to

a Icach (a/k)I.
These circles are shown by the dashed curves of Fig. 9-17.

The streamlines are given by

tan - ' (_jt__ - tan 1 (---" = /3/k

or taking the tangent of both sides and simplifying,

x2 + Lu + a cot (p/k)12 = a2 eec2 (p/k)

which for different values of /3 are circles having centres at - a cot (/3/k) and radii a jcsc (0/k)l.
These circles, which pass through (-a, 0) and (a, 0), are shown heavy in Fig. 9-17.

Fig. 9-17
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-	 ,	 -	 k	 k	 2ka(a) Speed - [U	 -	 -	 = Iz - a21

2ka	 -	 2ka
- Ia2 - r2e2I -	 - 2ar2 cos 28 + 0

14.Discuss the motion of a fluid having complex potential 11(z) = ik in z where k> 0.

If z=re10, then fl(z)=.I'+i+ = . ik(lnr+ie)iklnr—ke or 4'=—ke, $ = klnr.

The streamlines are given by
4' =	constant	 or	 r = constant

which are circles having common centre at z = 0 [shown
heavy in Fig. 9-18].

The equipotential lines, given by 0 = constant, are
shown dashed in Fig. 9-18.

ik	 ik	 k sin e	 ikcoseSince U (z)	 - = — e 18 =	 +z	 r	 r	 r
the complex velocity is given by

	

'V = 5Z'(z)	 ksjn. - ik cos e

and shows that the direction of fluid flow is clock-
wise as indicated in the figure. The speed is given by 	 Fig. 9-18
V = '0] = k/r.

Thus the complex potential describes the flow of a fluid which is rotating around z = 0.
is sometimes referred to as a vortex flow and z = 0 is called a vertex.

15. Show that the circulation about the vortex in Problem 14 is given by y =
If curve C encloses z = 0, the circulation integral is given by

C710	 61*
-, =V, do = 5 Vdz + Vdy = 5 —dx - dy = 5 —d4'

= J kde = 2nk

In terms of the circulation the complex potential can be written fl(z) =	 In z.

16. Discuss the motion of a fluid having complex potential
/

11(z) = Vo(z+ 
a2\
—) + jy—lnz

\	 Z1

This complex potential has the effect of superimposing a circulation on the flow of Problem 10.

If z = re'°,

—icosi - - + St, + j'p = v0 (r +	 fV. sine +	 in rrjr/ 	 2w
= .

Then the equipotential lines and streamlines are given by
/	 a2\

- - sin 8 +

	

vo i r + - cos e -	 = a,	 vo (	 a2	
In r =

\	 rJ	 2r	 rj

There are in general two stagnation points occurring where Q'(z) = 0, i.e.

V0
(

1 -
	

+
)	

= 0	 or	 a =	 + .tJ52 - _____X2	 2rz	 4rV0 -	 16r2V

In case y = 4raV0, there is only one stagnation point.

The flow
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Since r = a is a streamline corresponding to / = 	 In a. the flow can he	 n.q iderpd as one

about a circular obstacle as in Problem 10. Far from this obstacle the fluid has velocity V0 since
urn fl'(z)	 V0.

The flow pattern changes, depending on the magnitude of y. In Figures 9-19 and 9-20 we have
shown two of the many possible ones. Fig. 9-19 corresponds to y < 4,raV0; the stagnation points
are situated at A and B. Fig. 9-20 corresponds to y > 4raV0 and there is only one stagnation point
in the fluid at C.

	Fig. 9-19	 Fig. 9.20

THEOREMS OF BLASIUS
17. Let o(z) be the complex potential describing the flow about a cylindrical obstacle of

unit length whose boundary in the z plane is a simple closed curve C. Prove that the
net fluid force on the obstacle is given by

P = X - jY = iia	 dz

where X and Y are the components of force in the positive x and y directions respec-
tively and a is the fluid density.

The force acting on the element of area do in	 I V
Fig. 9-21 is normal to do and given in magnitude by
P d8 where P is the pressure. On resolving this force 	 I
into components parallel to the x and y axes, we see 	 I

(aT/7that it is given by	 I

	

dF = dX+idY	 I

Pd. RIUS

using the fact that 	 I	 / 't
N11

 S

dz = dx + idy
= ds coo e + ids sine	 Fig. 9-21
= die"

Since C represents a streamline, we have by Bernoulli's theorem, P + JVV2 = K or P = K -

where V is the fluid speed on the streamline. Also by Problem 49 we have,	 = Ve5.do
Then, integrating over C, we find

= —Pdsaine + iPdscoae
iPds (cos e+i sin ø)

= ii' do e1

= iPdz	 -
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I	 F = X+iY = 5iPdz = i5(K_40V2)dz

= _4ie5V2 dz = _iu5V2e8ds

—'ie 4; (V2c210)(e10d8)

or	 P = X -	 = 4ie 4 (V2 e2l)(eW d8)
C

=	 d.

18.Let M denote the total moment about the origin of the pressure forces on the obstacle
in Problem 17. Prove that

M	 Re{_4.x$z()dz}

We consider counterclockwise moments as positive. The moment about the origin of the force
acting on element dB of Fig. 9-21 is

dM	 (P do sin $)y + (P do cose)x = P(ydy + xdx)

since do sin 9 = dy and ds cos e = dz. Then on using Bernoulli's equation, the total moment is

M = f fly dy + x dx) = 5 (K - 40V2)(y dy + x dx)

K5(ydy + xdx) - 4o ,4V2(dY + xdx)

= 0	 -	 5 V2 (x cos e + y sine) do

where we have used the fact that 5 (y dy + x dx) = 0 since y dy + x dx is an exact differential.
Hence	 C

M =	 5 V2 (x cos 9 + y sin,) do

= Re{_.4u 5 V2 (x+iy)(cose - i sin e)dA}

= Re	 5 V2ze_Ieda} = Re {-4o' 5 z(V e NO) (e'° do) }

= Re1—c z () dz}dx

Sometimes we write this result in the form M + iN = A. 5 z ()2 
dz where N has no

simple physical significance. 	 C

19. Find the net force acting on the cylindrical obstacle of Problem 16.
The complex potential for the flow in Problem 16 is

Il	 Vo(z+) + -lnz

where V0 is the speed of the fluid at distances far from the obstacle and y is the circulation. By
Problem 17 the net force acting on the cylindrical obstacle is given by F, where
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p = x - jy = ji.	 dn 2 

dz=	 a2	 dz

i.	 1 2 /	 a2'\2	 2iV0y /	 a2\	 1
=	 +1°\) + 2.z 1_) - _I_ij . dz = —aV0y

Then X	 0, 1'	 e V 11 y and it follows that there is a net force in the positive y direction of magnitude
Vu)'. lit the case where the cylinder is horizontal and the flow takes place in a vertical plane this

force is called the lift on the cylinder.

APPLICATIONS TO ELECTROSTATICS
20. (a) Find the complex potential due to a line of charge q per unit length perpendicular

to the z plane at z = 0.
(b) What modification should be made in (a) if the line is at z =a?
(c) Discuss the similarity with the complex potential for a line source or sink in fluid

flow.
(a) The electric field due to a line charge q per unit

length is radial and the normal component of the 	 ,.- - - -'	 E5 =
electric vector is constant and equal to E, while	 -
the tangential component is zero (see Fig. 9-22).
If C is any cylinder of radius r with axis at z = 0,
then by Gauss' theorem,

E,, d = E, 
4,

, d = Er' 2rr = 4q	 I I
and	 E,. = 2,q-- -	 /

al.-Since E, = — -i—  we	 Ihave 'I . =	 2q Inr, omitting
the constant of integration. This is the real part of
11(2) = - 2q In z which is the required complex 	 Fig. 9-22potential.

(b) If the line of charge is at z = a, the complex potential is 11(z) = - 2q In (z - a).

(c) The complex potential has the same form as that for a line source of fluid if k = —2q [see
Problem 121. If q is a positive charge, this corresponds to a line sink.

21. (a) Find the potential at any point of the region
shown in Fig. 9-23 if the potentials on the
x axis are given by V0 for x >0 and —V0 for
x<O.

(b) Determine the equipotential and flux lines.
(a) We must flnl(l a function, harmonic in the plane,

which takes on the values V 0 for x >0, i.e. 8 = 0,
and —V0 for x <0, i.e. 6 = r. As in Problem 6,
if A and B are real constants Ae + B is harmonic.
Then A(0) + B = V0, A(w) + B = —V0 from which
A = — 2V0!ir, B = V0 so that the required poten-
tial is

vo (i - !	 = vo (i - tan ti-)	 Fig. 9-23

in the upper half plane y > 0. The potential in the lower half plane is obt p ined by symmetry.

(b) The equipotential lines are given by VoI,/	 21 - _tan1__)	 a, i.e. i = mx where rn Is a con-

stant. These are straight lines passing through the origin.
The flux lines are the orthogonal trajectories of the lines y = mx and are given by

X2 + v = i. They are circles with Centre at the origin.



Fig. 9.24
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2	 2V0
Another method. A function conjugate to vo ( i - - tan' X is ----mr. Then the flux lines

are given by r = x2 + y2 = constant, which are circles with centre at the origin.

22. (a) Find the potential due to a line charge q per unit length at z = z0 and a line charge
—q per unit length at z = o.

(b) Show that the potential due to an infinite plane [ABC in Fig. 9-25] kept at zero
potential (ground potential) and a line charge q per unit length parallel to this
plane can be found from the result in (a).

(a) The complex potential due to the two line charges [Fig. 9-241 is

(z
= - 2q in (z - z0) + 2q In (a - to) = 2q In ( a0)

Then the required potential is the real part of this, i.e.,

4' = 2q Re {ln (--:)}
	

(1)

y

q -•
. a0

A	 B	 C

Potential 0

Fig. 9.25

(b) To prove this we must show that the potential (1) reduces to 4' = 0 on the a axis, i.e. ABC in
Fig. 9-25 is at potential zero. This follows at once from the fact that on the a axis, z = a so that

-
£1 = 2qln('—)	 and	 Ii = 2qlnl--) = -

\X — ZoJ	 \X—Zo J

i.e. 4' = Re (a) = 0 on the a axis.

Thus we can replace the charge —q at to (Fig. 9.24] by a plane ABC at potential zero
[Fig. 9-25] and conversely.

23. Two infinite parallel planes, separated by a distance a, are grounded (i.e. are at poten-
tial zero). A line charge q per unit length is located between the planes at a distance b
from one plane. Determine the potential at any point between the planes.

Let ABC and DEF in Fig. 9-26 represent the two planes perpendicular to the a plane, and suppose
the line charge passes through the imaginary axis at the point a = bi.

a plane	 IV plane

Fig. 9-26	 Fig. 9-27
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From entry A-2 in the table on Page 205 we see that the transformation w e''' maps the
shaded region of Fig. 9-26 on to the upper half w plane of Fig. 9-27. The line cha rge q at z = h i in
Fig. 9-26 is mapped into the line charge q at a' = The boundary ABCDEF of Fig. 9-26 (at
potential zero) is mapped into the x axis A'B'C'D'E'F" (at potential zero) where C' and D' are
coincident at w = 0.

By Problem 22 the potential at any point of the shaded region in Fig. 9-27 above is

I —4' = 2qRe..wto —

Then the potential at any point of the shaded region in Fig. 9-26 is

2qRe fell"" -ebUa'I'	 = 

APPLICATIONS TO HEAT FLOW

24. A semi-infinite slab (shaded in Fig. 9-28) has its boundaries maintained at the indicated
temperatures where T is constant. Find the steady-state temperature.

z plane	 w plane

Fig. 9-28	 Fig. 9-29

The shaded region of the z plane is mapped into the upper half of tv" w plane [Fig. 9-291

by the mapping function w = sin (rz/a) which is equivalent to u 	 sin (rx/a) cosh (ryla),

v	 cos (,rx/a) sinh (,ry/a) [see entry A-3(a) in the table on Page 20J1.
We must now solve the equivalent problem in the w 'lane. We use the method of Problem 7 to

find that the solution in the w plane is

T	 (v\	 27'
4' = — tan'(----I — — tan

\
1 I

U 	
J

1J 
+ 2T—

and the required solution to the problem in the z plane is therefore

 tan — ' .1 _cos (lrx/a) sinh (,ry/a) 1 — 	 tan-- I cos (,rxla) sinh (ry/a)

	[sin (,rx/a) cosh (ry/a) —+I f	 r	 isin (,rx/a) cosh (ky/a) — ii + 
27'

25. Find the steady-state temperature at any point of the region shown shaded in Fig. 9-30
if the temperatures are maintained as indicated.

z plane	 W plane

Fig. 9-30	 Fig. 9-31



Fig. 9-32
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The shaded region of the z plane is mapped on to the upper half of the to plane by means of the

mapping function tv = z +	 [entry A-4 in the table on Page 2061 which is equivalent to

1	 x	 ./	 y	 r 
U+W - X+IY + 	 =	 i.e. a=x+ 2 . v=Y —

The solution to the problem in the to plane is, using the method of Problem 7,

-

	

\u-2J	 ,r	 \u+2

Then substituting the values of a and v, the solution to the required problem in the z plane is

60 tan —1	
y(x2+y2-1)	 -	 -tan X_y(x2+yt-1)t	 1

(x2+y2+1)x_2(x2+ys)J	 1(x2+y2+1)x+2(x2+y2)

or, in polar coordinates,

- tan'J_(r2 —1) sine 1 -	 tan J_(r2 —1) sinS

	

l, (r2 + 1) CosS - 2rj	 r	 ](r2 + 1) cos S + 2r

MISCELLANEOUS PROBLEMS
26. A region is bounded by two infinitely long concentric cylindrical conductors of radii

r1 and r2 (rz> r 1 ) which are charged to potentials 4' and 4' respectively [see Fig. 9-32].
Find the (a) potential and (b) electric field vector everywhere in the region.
(a) Consider the function ft = A In 2 + B where A and B are

real constants. If z = re1 , then

a = 4'+i'l' = AInr+Ai+B

or	 4' = A In + B,	 'I' = Ae

Now 4' satisfies Laplace's equation, i.e. is harmonic,
everywhere in the region r 1 <r < r2 and reduces to 4' =
and 4' = +2 on r = r 1 and r = r2 provided A and B are chosen
so that

Alnr1+B,	 4'2Alnr2+B

A - 't'2 -	 B - 
4' In r2 - 4'2 In r1

i.e.,	
- In (r2/r 1 ) '	 -	 In (r2/r1)

Then the required potential is

4' = ('t'z — 4's 
lnr+

	

)
	

+ I I n 	- .t'21nr1

	

In (r2/r 1 )	 In (r2/r1)

(b)	 Electric field vector =	 = - grad 4' = -
ar

- 4'V4'2 1
- In (r2Ir,) r

Note that the lines of force, or flux lines, are orthogonal
to the equipotential lines, and some of these are indicated
by the dashed lines of Fig. 9-33.

27. Find the capacitance of the condenser formed by the two cylindrical conductors in
Problem 26.

If I' is any simple closed curve containing the inner cylinder and q is the charge oil this cylinder,
then by Gauss' theorem and the results of Problem 26 we have

-4'z	 1	 - 2,r(4'1-4'2)
E de = •	 • —?rde - 	 = 4rg

	,,so 1' (r2/r 1 ) r j	In (r2/r1)



Fig. 944

and (2)
!	

ay
?=o in+ AX , Y) on C
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-Then q	 and so- fln/r1)

	Capacitance C =	 -charge	 =	 q	 =	 1
difference in potential	 -	 2 In (r2/r1)

which depends only on the geometry of the condensers, as it should.
The above result holds if there is a vacuum between the conductors. If there is a medium of

dielectric constant K between the conductors, we must replace q by q/K and in this case the
capacitance is 1/(2 In (r2/rj)J.

28. Two circular cylindrical conductors of equal radius R and centres at distance D from
each other [Fig. 9-41 are charged to potentials V0 and —V0 respectively. (a) Determine
the charge per unit length needed to accomplish this. (b) Find an expression for the
capacitance.
(a) We use the results of Problem 13, since we can

replace any of the equipotential curves (surfaces)
by circular conductors at the specified potentials.
Placing a = —V0 and a = V0 and noting that	 D
k = 2q, we find that the centres of the circles are at 	 I

x	 -a coth ( V0/2q) and x = a coth (V0/2q)

80 that	 (1)	 D = 2a coth (V012q)

The radius It of the circles is

(2)	 R = a csch (V0J2q)

Division of (1) by (2) yields 2 cosh ( V012q) = DIR
so that the required charge is

V0
q - 2 cosh -I (D12R)

(b	 charge	 -	 q	 -
Wo

/	 Capacitance	
- difference in potential - 	 - 4 cosh -1 (D12R)

The result holds for a vacuum, if there is a medium of dielectric constant K, we must divide
the result by K.

Note that the capacitance depends as usual only on the geometry. The result is fundamental
in the theory of transmission line cables.

29. Prove the uniqueness of the solution to Dirichiet's problem.
Dirichiet's problem is the problem of determining a function 'I' which satisfies aZi 

+ a2 	 0
in a simply-connected region 'N and which takes on a prescribed value 'I' = f(x, y) on the boundary C
of 'N. To prove the uniqueness, we must show that if such a solution exists it is the only one. To do
this suppose that there are two different solutions, say + 1 and 4'2. Then

o24,	 824, -	 in 9Z	 and	 = Ax, Y) on C
	

(1)

Subtracting and letting G = - 	 we have

ax2 	ay = 0 in 19	 and	 G=0 on 	 (8)

To show that 'l 4'2 identically, we must show that G = 0 identically in 'N.



U U
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	 w plane

Fig. 9-36
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Let P = G in Problem 31, Chapter 4, Page 112 to obtain
2	 2

dx dy	 (4)fG(-Qdx	 G- ----dy1 = _ ff[G(	
a2G\	 /G\	 aC 1

L \aX2 + -) +	 + () j 
'R.

Suppose that G is not identically equal to a constant in 'N . From the fact that G = 0 on C, and

a 2G a2G
I	 0 identieally in 'N (4) becomes

	

/ L( ax )	 () 
jdxdY = 0

Ty

But this contradicts the assumption that G is not identically equal to a constant in 'N, since in
such case

	

ff 

[f\ 2 	 1
dx du >

	

[aXJ	 ç-)

2

 ] 
	 0

It follows that G must be constant in 'N and by continuity we must have G = 0. Thus •I = "'2 and
there is only one solution.

30. An infinite wedge shaped region ABDE of angle r/4 [shaded in Fig. 9-351 has one of
its sides (AR) maintained at constant temperature Ti. The other side BDE has part BD
{of unit length} insulated while the remaining part DE is maintained at constant tem-
perature T2 . Find the temperature everywhere in the region.

	Fig. 9-37	 Fig. 9-38

By the transformation = z 2 , the shaded region of the z plane [Fig. 9-351 is mapped into the
region shaded in Fig. 9-36 with the indicated boundary conditions [see entry A-i in the table on
Page 2051.

By the transformation = sin (,rw/2), the shaded region of the t plane [Fig. 9-361 is mapped
into the region shaded in Fig. 9-37 with the indicated boundary conditions [see entry C-i in the table
on Page 2101.
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Now the temperature problem represented by Fig. 9-37 with B"D" insulated is equivalent to the
temperature problem represented by Fig. 9-38 since, by symmetry, no heat transfer can take place
across B"D". But this is the problem of determining the temperature between two parallel planes
kept at constant temperatures T 1 and T2 respectively. In this case the temperature variation is linear
and so must be given by T 1 + ( T2 - Tj)u.

From	 = z2 and	 = sin (w/2) we have on eliminating l, w = - sin - z2 or u = Re (sin' z2).

Then the required temperature is

T 1 + 
2(7's— T,) 

Re (sin 22)

In polar coordinates (r, e) this can be written as (see Problem 951,

T, + 
2(T2 T1) 

sin'	 + 2r2 cos 2e + 1 - 4[r4 - 2r2 cos 20 + 1)

Supplementary Problems

HARMONIC FUNCTIONS

31. Show that the functions (a) 2xy + y3 - 3x 2y, (b) e sin y are harmonic.

32. Show that the functions of Problem 31 remain harmonic under the transformations (a) z =
(b) z = sin w.

33. If +(x, y) is harmonic, prove that 4'(x + a, y + b), where a and b are any constants, is also harmonic.

3. If 4',4' .....4',, are harmonic in a region '1( and c,,c2. ... . e,, are any constants, prove that
c,I', + c24 2 +	 + c14'1 is harmonic in 'k.

35. Prove that all the harmonic functions which depend only on the distance r from a fixed point must
have the form A In r + B where A and B are any constants.

36. If P(z) is analytic and different from zero in a region '1, prove that the real and imaginary parts of
In F(z) are harmonic in 'Ii.

DIRICHLET AND NEUMANN PROBLEMS

37. Find a function harmonic in the upper half z plane Im z) > 0 which takes the prescribed values on

t-1the x axis given by G(z) =

	

	
i x>0 . Ana. 1 - (2/r) tan-' (y/z)
 x<O

1 1	 x<-1
38. Work Problem 37 if G(x) =	 0 —i < x < 1

1-i
Ana. 1 --!tan-' '__y__\ !tan1

T

39. Find a function harmonic inside the circle Izi = 1 and taking the values F(.) 	
T 0<8<r

=	 < < 2

on its circumference. 	 Ans. T{1 - !.thn-I (2r sin	

I

I 1'	 0<5<w12

40. Work Problem 39 if F'(.) =	 0	 w/2 < D

—T 3r/2<0<2ir
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Isine 0<8<r
41. Work Problem 39 if F(s) =

	 0	 ,r 9 < 2r

42. Find a function harmonic inside the circle IzI =	
110 0	 e<

2 and taking the values F(s) = )
0 v<9<2

I	 I	 /4rsine
i.2

Ans. 10 1—-tan '	 - -----

	

v	 \4 

43. Show by direct substitution that the answers obtained in (a) Problem 0, (b) Problem 7, (c) Problem 8
are actually solutioiis to the corresponding boundary-value problems.

44. Find a function 'i'(x, y) harmonic in the first quadrant x > 0, y > 0 which takes on the values

V(x,0)	 -1, V(0,y)	 2.	 Ans.	 1

45. Find a function 'l'(x, y) which is harmonic in the first quadrant. x > 0, y > 0 and which satisfies the
boundary conditions 'I'(x, 0) = e x , 04'/ax 1 0 	 0.

APPLICATIONS TO FLUID FLOW

iii. Sketch the streamlines and equipoteiitial lines for fluid motion in which the complex potential is given
by (a) z2 + 2z, (14 z, (c) c, (d) cos z.

Fl. Discuss the fluid flow corresponding to the conipiex potential U(z) = V0(.. -4- 1/z2).

18. Verify the statements made before equations (5) and (6) on Page 234.

49. Derive the teiali,,ii 'U/dz	 Vr 11 , where V and e are defined as in Problem 17.

jO. Referring to Problem 10, (a) show that the speed of the fluid at any point E ]Fig. 9-14] is given by
2 V	 i e and (b) determine     at what. points  on tile cylinder the -,Speed is greatest.

If P is the pressure at point E of the obstacle in Fig. 9-14 of Problem 10 and P is the pressure
Car from the obstacle, show that

I' -	 4rV(1 --4 sin2 9)

. Show that a vacuum is created at points B and F if the speed of the fluid is equal to or greater

Iii an V0 	 /2P,, 113e. This is often called c,ti'itation.

52. Der,v, equation (19), Page 237, by a limiting procedure applied to equation (18).

53. Discuss the fluid flow due to three sources of equal strength k located at z = —a, 0, a.

54. Discuss the fluid flow due to two sources at z = ±a and a sink at z - 0 if the strengths all have equal

magnitude.

5. Prove that under the tra,i6furiluttion w E(z) where ?(z) is analytic, a source or sink) in the z plane

at z --: 2 0 IS mapped irto a source (or sink) of equal strength in the w plane at w	 F(z0).

56. Show that the total moment on the ylinlrical obstacle of Problem 10 is zero and explain physically.

57	 If f'(x, i; is the itteall, function, j,ruve that the mass rate of flow of fluid across fill 	 C joining

points (x 1 , y) and (x, y -i) 8 9 W X 2, Y2)	 '(Xi, v1))-

5$. (a Show that Ji	 iolex ijtcntial luc c. R surce of strength k > 0 in a fluid moving with speed

	

is p -V0	k in z and (14 discuss the muion.
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59. A source and sink of equal stren gths in are located at z ±1 between the parallel lines y = ±1. Show
that the complex potential for the fluid motion Is

- 1Il = ,nln
- 1

60. Given a source of fluid at z = 20 and a wall x 0. Prove that the resulting flow is equivalent to
removing the wall and introducing another source of equal strength at z =

61. Fluid flows between the two branches of the hyperbola ax 2 - by = 1, a > 0, 6 > 0. Prove that the
complex potential for the flow is given by K cosh'az where K is a positive constant and
a = '/ab/(a + 6).

APPLICATIONS TO ELECTROSTATICS

62. Two semi-infinite plane conductors, as indicated in Fig. 9-39 below, are charged to constant potentials
l'i and '02 respectively. Find the (a) potential 4' and (6) electric field 6 everywher, in the shaded

region between them.	 An.. (a) 4' = •2 +	 (b) € = (+2-4'1)/ar

63. Find the (a) potential and (b) electric field everywhere in the shaded region of Fig. 9-40 above if
the potentials on the positive x and y axes are constant and equal to V0 and —V0 respectively.

An,. vo{i - !-tan1 (2)}

64. An infinite region has in it 3 wires located at a = —1, 0, 1 and maintained at constant potentials
—V0, 2170, —V0 respectively. Find the (a) potential and (6) electric field everywhere.
An.. (a) V0 In (z(z2 - 1))

65. Prove that the capacity of a capacitor is invariant under a conformal transformation,

66. The semi-infinite plane conductors AB and BC which
intersect at angle a are grounded Fig. 9-411. A line
charge q per unit length is located at point a 1 In the
shaded region at equal distances a from AB and BC.

-
Find the potential. 	 An,. Im{ -2qi In (cia -

67. Work Problem 66 if q is at a distance a from AB and
6 from BC.

68. Work Problem 23 if there are two line charges, q per	 B
unit length and —q per unit length, located at a = bi and
a = ci respectively, where 0 < b < a, 0 < c < a and b #c.

69. An infinitely long circular cylinder has half of its surface charged to constant potential V0 while the
other half i3 grounded, the two halves being insulated from e.rnh other. Find the potential everywhere.
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APPLICATIONS TO HEAT FLOW

70. (a) Find the steady-state temperature at any point of the region shown shaded in Fig. 9-42 below and

(b) determine the isothermal and flux lines. 	 Ana. (a) 60 — (120/v) tan (y/x)

71. Find the steady-state temperature at the point (2,1) of the region shown shaded in Fig. 9-43 below.

72. The convex portions ABC and ADC of a unit cylinder [Fig. 9-44 above] are maintained at tempera-
tures 40° C and 80° C respectively. (a) Find the steady-state temperature at any point inside.

(b) Determine the isothermal and flux lines.

73. Find the steady-state temperature at the point (5,2) in the shaded region of Fig. 9-45 below if the
temperatures are maintained as shown.	 Ans. 45.9° C

A

,.'.	 ,	
..

40°C	 ..

B (01)	 •.•;.;.	 :..:

80°C	 -

	

S	 S

Fig. 9-45 Fig. 9-46

74. An infinite conducting plate has in it a circular hole ABCD of unit radius [Fig. 9-46 above]. Tem-

peratures of 20° C and 80° C are applied to arcs ABC and ADC and maintained indefinitely. Find

the steady-state temperature at any point of the plate.

MISCELLANEOUS PROBLEMS

75. If 'F(x, y) is harmonic, prove that 4'(x/r2, y/r2) where r = ./) + y2 is also harmonic.

76. Prove that if U and V are continuously differentiable, then

(a)	 +	 (b)	 =
an	 ax da	 ay do as 	 ax do	 ay di

where n and a denote the outward drawn normal and arc length parameter respectively to a simple

closed curve C.

aU	 aV	 au	 E
77. If U and V are conjugate harmonic functions, prove that (a) -- = -i--, (b) - =as 	an

78. Prove that the function	
1	 is harmonic in every region which does not include the

point r = 1, 0 =0. 	
1 - 2r cog S + r2
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79. Let it be required to solve the Neumann problem, i.e. to find a function V harmonic in a region '1
such that on the boundary C of R, i3V/,3n = G(a) where s is the arc length parameter. Let
11(g) = 5 G(s) (18 where a is any point of C, and suppose that 	 G(s) d8 = 0. Show that to

find V we must find the conjugate harmonic function U which satisfies the condition U =	 H(s)
oil 	 This is an equivalent Dirichiet problem. I j ' . Use Problem 77.

$0. Prove that, apart from an arbitrary additive constant, the solution to the Neumann problem is unique.

81. Prove Theorem 3, Page 234.

82. how must Theorem 3, Page 234, be modified if the boundary condition 'I' = a. on C is replaced by
'I'	 f(.r, y) on C'

83. How must Theorem 3, Page 234, be modified if the boundary condition 't'/49n = 0 on C is replaced by= g(x, y) on C?

84. If a fluid motion is due to some distribution of sources, sinks and doublets and if C is some curve
such that no flow takes place across it, then the distribution of sources, sinks and doublets to one side
of C is called the image of the distribution of sources, sinks and doublets oil other side of C.
Prove that the image of a source inside a circle C is a source of equal strength at the inverse point
together with a sink of equal strength at the centre of C. [Point P is called the inverse of point Q
with respect to it circle C with centre at 0 if O1'Q is a straight line and OF' OQ	 a2 wherea is the radius of C.J

85. A source of strength k > 0 is located at point 20 in a fluid which is contained in the first quadrant
where the x and y axes are colisidore(l as rigid barriers. Prove that the speed of the fluid at any
point is given by

k I (z — z) -I + ( z — )' + (z -4- Z)' 1 + (z + la)'' I
86. Two infinitely long cylindrical conductors having cross-

sections which are confocac ellipses with foci at (—a, 0)
and (a, 0) [see Fig. 9-471 are charged to constant poten-
tials 4, 1 and "'2 respectively. Show that the capacitance
per unit length is equal to

2ir
cosh ' (!?21c) -- cosh '(t?1/c)

[Flint. Use the transformation z = c cosh w.]

87. In Problem 86 suppose that 4' and ' I'2 represent constant
temperatures appliod to the elliptic cylinders. Find the
steady-state temperature at any point in the conducting
region between the cylinders.

88. A circular cylinder obstacle of radius a rests at the bot-
tom of a channel of fluid which at distances far from the
Obstacle flows with velocity V. [see Fig. 9-481.

(a) Prove that the complex potential is given by
12(z) = raV0 coth (,ra/z)

(0) S110, (Ii itt the speed lit the top of the cylinder is
-2 V0 and compare with that for a circular obstacle

in the middle of a fluid.
(a) Show that the difference in pressure between top

aai,l button, points of the t'yhin.lor io ,I V'132.

vo

Fig. 9-48
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89. (a) Show that the complox potential for fluid flow past
the elliptic cylinder of Fig. 9-49 is given by

	

U(z) = V0	 + 
(a +b)2}

where (r(z-l- .J2_c2) nid a2 = 2 -

(b) Prove that the fluid speed at the top and bottom of the
cylinder is V0 (1 -1 b/a) Discuss the case a = b. [Hint.
Express the coanjoex potential in terms of elliptic

	

coordinates (1 ) where z	 x -I iy = a cosh U 1- i) =
c cosh L.J

vo

Fig. 9-49

90. Show that if the flow in Problem 80 is in a direction making an angles with the positive x axis, the

complex potential is given by the result in (a) with 	 =	 + 1— a2

91. In the theory of elasticity, the equation

=	 V(V4 •) =	 '--
ax4 

1- 2------ +	 = 0
2 y2	 fry4

called the biharntonic equation, is of fundamental importance. Solutions to this equation are called
biharmonic. Prove that if F(z) and G(z) are analytic in a region 'Ii, then the real part of 1 F(z) + G(z)

is biharnionic in 'N

92. Show that biharmonic lunctions (see Problem 91) do not, in general, remain biharnionic under a
con for nm! transformation.

93. (a) Show that 2(z) - K In sinh (rxIa), k> 0, a> 0 represents the complex potential due to a row
of fluid sources at z =- 0, ±ai, ±2ai.....

(lm) Show that, apart from additive coiistaiits, the potentinl and stream functions are given by

'I' = K In (cosh (2rx/a) — cos (Ziry/a)), 	 4' = K tanh (irs/a)

(a) Graph some of the streamlines for the flew.

94. Prove that the complex potential of Problem 93 is the same as that due to a source located halfway
between the parallel lines y = ± 3a/2.

95. Verify the staten,eiit made at the end of l'roblein 30 1eompare Problem 137, Chapter 2, Page 621.

96. A condenser is formed from an elliptic cylinder, with major and minor axes of lengths 2a and Zb
icapectively, together with a fiat 1ilntc iUJ of Ieiigtli 21i jsee Fig. 9-50 belowj. Show that the capacitance

is equal to	 2'r
cosh '(a/h)

97. A fluid flows with uuif,,rn, velocity V 0 through a soi.n-nifinilc channel of width D and emerges
through the opening Al? [Fg 9-51 helowj. a) Find the L omplex potential for the flow. (b) Determine
the streamlines and equipoteimtial lines a,,dobt.ai,i graphs of some of these.
[Hint. Use entry C-b in the Laiic on Page 211

Fig. 9-51	 Fig. 9-61
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98. Give a potential theory interpretation to Problem 30.

99. (a) Show that in a vacuum the capacitance of the parallel cylindrical conductors in Fig. 9-52 is
1

2coshI(_- -
2R1R2 )

(b) Examine the case R 1 = R2 = R and compare with Problem 28.

100.Show that in a vacuum the capacitance of the two parallel cylindrical conductors in Fig. 9-53 is
1

2 cosh _i(R + R -

 2RR2 )

101. Find the potential at any point of the unit cylinder of Fig. 9-54 if AD, BC, CD and DA are kept at
potentials V0, 0, - V0 and 0 respectively.

Y!. (tan -' 2r sine + tan - 2r	
)	

____JIN
I—r2	 r2

102.The shaded region of Fig. 9-55 represents an infinite	 -
conducting half plane in which lines AD, DE and DB

	

are maintained at temperatures 0, 7' and 2T reapec. 	
ALively, where T is a constant. (a) Find the tempera-

	

ture everywhere. (b) Give an interpretation involving 	
Fl •.potential theory.

103.Work the preceding problem if (a) DE is insulated, (b) AD is insulated.

104. In Fig. 9-65 suppose that DE represents an obstacle perpendicular to the base of an Infinite channel
in which a fluid is flowing from left to right so that far from the obstacle the speed of the fluid is V0.
Find (a) the speed and (b) the pressure at any point of the fluid.

105.Find the steady-state temperature at the point (, 2) in the shaded region of Fig. 9-56,

106. An infinite wedge shaped region ABCD of antIe ,/4-[shaded in Fig. 9-571 has one of its sides (CD)
maintained at 500 C; the other side ABC hs te part AD at teature 25° C while part BC, of unit
lenth, is insulated. Find the steady-state tern2erature at ay poSnt.
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ANALYTIC CONTINUATION

Let F1 (z) be a function of z which is analytic in a region "I [Fig. 10-11. Suppose that
we can find a function F2 (z) which is analytic in a region ¶k 2 and which is such that
F1 (z) = P2 (z) in the region common to '1 and 'R i. Then we say that F2 (Z) is an analytic

continuation of F1 (z). This means that there is a function F(z) analytic in the combined
regions R 1 and 4R2 such that F(z) F, (z) in 'R and F(z) = F2 (2) in 'R.2. Actually it

suffices for 'I and 'k2 to have only a small are in common, such as LMN in Fig. 10-2.

tit

	

Q^Ne
x
	 X

Fig. 10.1	 Fig. 10-2

By analytic continuation to regions 'I, 'I(,, etc., we can extend the original region of
definition to other parts of the complex plane. The functions F (z), F2 (z), F3 (z), .

defined in 'R. 1 1 92'	
respectively, are sometimes called function elements or briefly

elements. It is sometimes impossible to extend a function analytically beyond the boundary
of a region. We then call the boundary a natural boundary.

If a function F'1 (z) defined in 'R is contiuued
analytically to region 'k,, along two different paths
[Fig. 10-31, then the two analytic continuations
will be identical if there is no singularity between
the paths. This is the uniqueness theorem for
analytic continuation.

If we do get different results, we can show
that there is a singularity (specifically a branch
point) between the paths. It is in this manner
that we arrive at the various branches of multiple-
valued functions. In this connection the concept
of Riemann surfaces [Chapter 21 proves valuable.

We have already seen how functions represented by power series may be continued
analytically (Chapter 6). In this chapter we consider how functions with other represen-
tations (such as integrals) may be continued analytically.

265
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SCHWARZ'S REFLECTION PRINCIPLE

Suppose that P (z) is analytic in the legion
N 1 Fig. 10-41 and that !"1 (z) assumes real values
on We part LAIN of the real axis.

Then Sc/i warz's reflection principle states
that the analytic continuation of F1 (z) into region
R 2 (considered as a mirror image or reflection

I(of ' with LMN as the mirior) is given by

F2 (Z) = F1 (2)	 (1)

The result can be extended to cases where
LMN is a curve instead of a straight line segment.

INFINITE PRODUCTS

Let P. (1 4- w,)(1 1- u',)	 (1 1 u,) be denoted by fl (1 I- u') where we suppose that

for all Ic, Wk —1. If there exists a value P 0 such that urn P. = P, we say that the

infinite product (1 1 wu)(l -I- 2v)

	

	 jj (1 -I- wk), or briefly 11(1 + 20k), cuoi.'e# JeS Lu I';
k I

otherwise it diverges. The quantities Wk may be constants or functions of z.

If only a finite number of the quantities Wk = — 1 while the rest of the jefinite
product omitting these factors converges, the infinite product is said to converge to zero.

ABSOLUTE, CONDITIONAL AND UNIFORM CONVERGENCE
OF INFINITE PRODUCTS

If the infinite product ii(I -I- WkI) converges, we say that 11(1 4- 20k) is absolutely
convergent.

If 11(1 I w,) converges but 11(1 1- jWk) diverges, we say that 0(1 I w) is condi -

tionally convergent.

An important theorem, analogous to one for infinite series, states that an absolutely
convergent infinite product is convergent, i.e. if IT(1 + jWkI) converges then 11(1 ± Wk)
converges (see Problem 65).

The concept of uniform convergence of infinite products is easily defined by analogy

with infinite series or sequences in general. Thus if fl (1 + Wk(Z)) = P,(z) and

[1 (.1 1- w(z))	 P(z, we qay that P,(z) converges uniformly to P(z) in a region 'Q if,

givcii any ->	 we eau find a number N, depending uul y on ad not on the particular
value of z in ]( su. ii that	 P- (z) -	 c for al l n ' N

iii the	 .LSi 0	 iiiluiile et ic	 Uef:tc ltnlIg3 can be JUI1C with absolutely or
uniformly cun . ctgent iiiiinde products thaL cannot necessarily be done for i nfinite products
in general. Thus, for example, we cars rearrange factors in an absolutely convergent
uflude prcilitct v..nhri,L chanritw the vnlue.
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SOME IMPORTANT THEOREMS ON INFINITE PRODUCTS

1. A necessary condition that 11(1 + Wk) converge is that urn W. = 0. however, the

condition is not sufficient, i.e. even if urn w = 0 the infinite product may diverge.

2. If 7 IwkI converges [i.e. if I Wk converges absolutely], then 11(1 + I w I), and thus

11(1 + wk), converges [i.e. 11(1 + Wk) converges absolutely]. The converse theorem
also holds.

3. If an infinite product is absolutely convergent, its factors can be altered without
affecting the value of the product.

4. If in a region '1, Iwk(z)I <Mk, k = 1, 2,3, ..., where Mk are constants such that Y Mk

converges, then n(1 + Wk(Z)) is uniformly (and absolutely) convergent. This is the
analogue of the Weierstrass M test for series.

5. If Wk(Z), k = 1,2,3, ..., are analytic in a region '1 and lWk(Z) is uniformly con-

vergent in % then 11(1 + wk(z)) converges to an analytic function in 'J.

WEIERSTRASS' THEOREM FOR INFINITE PRODUCTS
Let 1(z) be analytic for all z [i.e. f(z) is an entire function] and suppose that it has

simple zeros at aI,a2,ia, ... where 0 < jail <IaaI <1a3 1 < ... and him IanI = . Then

1(z) can be expressed as an infinite product of the form

1(z) = 1(0) e'°'° fl	 — -_) e''.}
	

(2)

A generalization of this states that if 1(z) has zeros at aj ,' 0, k = 1,2,3,	 of

respective multiplicities or orders ILk, and if for some integer N,

	

	 1/ar is absolutely
k=1

convergent, then 

1(z) = 1(0)	 )] {(i —	
2..	 N" I	 (8)

where G(z) is an entire function. The result is also true if some of the ak's are poles, in

which case their multiplicities are negative.

The results (2) and (3) are sometimes called Weierstra8s' factor theorems.

SOME SPECIAL INFINITE PRODUCTS
I	 z21	

12 1
1. sin 	 =

z2 •

2. cosz	 =

I	 z' I	 z2
3. sinhz =	 + T2.)Tj

Z2,	 Z2r
4. cosh Z =	 1 + (r/2)2 11 + (3ir/2)2j

THE GAMMA FUNCTION
For Re (z) > 0, we define the gamma function by

r(z) = f t"e' t dt
	

()
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Then (see Problem 11) we have the recursion formula
r(z+1) = zr(z)	 where r(1)= 1	 (5)

If z is a positive integer n, we see from (5) that
r(n+1) = n(n-1)	 (1) = n!	 (6)

so that the gamma function is a generalization of the factorial. For this reason the
gamma function is also called the factorial function and is written as z! rather than
r(z + 1), in which case we define 0! = 1.

From (5) we also see that if z is real and positive, then r(z) can be determined by
knowing the values of r(z) for 0 <z < 1. If z = 4, we have [Problem 141

	

r(4) = vc	 (7)
For Re (z) 0, the definition (4) breaks down since the integral diverge g. By

analytic continuation, however, we can define r(z) in the left-hand plane. Essentially
this amounts to use of (5) [see Problem 15). At z = 0, -1, -2, ..., r(z) has simple poles
[see Problem 16].

PROPERTIES OF THE GAMMA FUNCTION
The following list shows some important properties of the gamma function. The

first two can be taken as definitions from which all other properties can be deduced.

1. r(z+1) = lim	 1-2-3 ... k	
= lim rI(z, k)

where n(z, k) is sometimes called Gauss' II function.

2. -1 	 = ze H {i + .} e--/A;r(z)

where y = lim{i + + + ... + - In } = .5772157... is called Euler's
constant.

3. r(z)r(1—z) =	 'I'

Sifl ,rZ

In particular if z = 4, r(4) =

4. 2' r(z) r(3 + 4) = /-w-r(2z)

This is sometimes called the dulication formula for the gamma function.

5. If m = 1,2,3,...,

- - -
Property 4 is a special case of ths with m 2.

	

r"(z) I 	 ____= -
	 ^	 + (-+_) +

7. r'(l) = f e In t dt = —y	 t plane

8. r(z) =
e2 '— 1 f,- t'edt

where C is the contour in Fig. 10-5. This is
an analytic continuation to the left-hand half

	

Plane of the gamma function defined in (4). 	 Fig. 10-5
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9. Another contour integral using contour C [Fig. 10-51 is given by

F(Z) = 	 $ (—t) e' dt = - _ i 5 (—t) e dt
2sin rz c	 2,rt c

THE BETA FUNCTION
For Re (m) > 0, Re (n) > 0, we define the beta function by

B(m, n) = 5 t"- '(1— t)" dt	 (8)

oAs seen in Problem 18, this is related to the gamma function according to

B(m,n) =	 (9)

Various integrals can be expressed in terms of the beta function and thus in terms
of the gamma function. Two interesting results are

f
sin2fh_b ocos2_b OdO =	 B(m,n) =

	 (10)

S
., tp-1

cli: -ii	 = B(p,1—p) = r(p)r(1—p) = 	 .'	 (11)

the first holding for Re (m) > 0 and Re (n) > 0, and the second holding for 0 < Re (p) <1.

For Re (rn) 0 and Re (n) 0, the definition (8) can be extended by use of
analytic continuation.

DIFFERENTIAL EQUATIONS
Suppose we are given the linear differential equation

Y" + p(z) Y' + q(z) Y = 0 (12)
If p(z) and q(z) are analytic at a point a, then a is called an ordinary point of the differential
equation. Points at which p(z) or q(z) or both are not analytic are called singular points
of the differential equation.

Example 1: For Y" + zY' + ( 2 - 4)Y = 0, every point is an ordinary point.

Example 2: For (1 _z 2)Y" - 2zY' + 6Y = 0 or Y" - 
1 _z2' + 1 z2 

Y = 0, z = —1 are

singular points; all other points are ordinary points.

If z = a is a singular point but (z - a) p(z) and (z - a)2 q(z) are analytic at z = a,
then z = a is called a regular singular point. If z = a, is neither an ordinary point or a
regular singular point, it is called an irregular singular point.

'\	 2*
Example 3: In Example 2, a = 1 is a regular singular point since (a — 1) / — 2, —i i = - and

(Z-1)2( I 
6
_Z2 = 6-

6. are analytic at a = 1. Similarly, 1sa regular singu-

lar point.

Example 4: z3 Y" + (1— z)Y' - 2Y = 0 has a = 0 as a singular point. Also, a (!...!) 
=23	 X2

and *2 
(_I) = - are not analytic at z —0, so that a = 0 is an irregular singular

point.

If Yj(z) and Y2 (z) are two solutions of (12) which are not constant multiples of each
other, we call the solutions linearly independent. In such case, if A and B are any con-
stants the general solution of (12) is

Y = AY, + BY2	 (13)
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The following theorems are fundamental.

Theorem 1. If z a is an ordinary point of (12), then there exist two linearly inde-
pendent solutions of (12) having the form

(1.4)

where the constants at, are determined by substitution in (12). In doing this it may b
necessary to expand p(z) and q(z) in powers of (z - a). In practice it is desirable t.
replace (z - a) by a new variable.

The solutions (14) converge in a circle with centre at a which extends up to the
nearest singularity of the differential equation.

Example 5: The equation (1 _z2)Y" - 2zY' + 6Y = 0 [see Example 21 has a solution of the
form laj zk which converges inside the circle Izi	 L.

Theorem 2. If z = a is a regular singular point, then there exists at least one solu-
tion having the form

(z_a)c	 ak(z_a)k	 (15)
k O

where c is a constant. By substituting into (12) and equating the lowest power of (z -a)
to zero, a quadratic equation for c (called the indicial equation) is obtained. If we call the
solutions of this quadratic equation cl and c2, the following situations arise.

1. e 1 - c2 ,' an integer. In this case there are two linearly independent solutions
having the form (15).

2. Cl = C2. Here one solution has the form (15) while the other linearly independent
solution has the form

ln(z_a)bk(z_a)k 	(16)

3. c 1 - c2 an integer ' 0. In this case there is either one solution of the form
(15) or two linearly independent solutions having this form. If only one solution
of the form (15) can be found, the other linearly independent solution has the
form (16).

All solutions obtained coAverge in a circle with centre at a which extends up to the
nearest singularity of the differential equation.

SOLUTION OF DIFFERENTIAL EQUATIONS BY CONTOUR INTEGRALS

It is often desirable to seek a solution of a linear differential equation in the form

Y(z) = $ K(z, t) G(t) dt	 (17)

where K(z, t) is called the kernel. One useful possibility occurs if K(z, t) = 8', in which case

Y(z) = 5 ell G(t) dt	 (18)

Such solutions may occur where the coefficients in the differential equation are rational
functions (see Problems 25 and 26).

BESSEL FUNCTIONS
Bessel's differential equation of order n is given by

z'Y" + zY' 1 (22 n2)Y = 0	 (19)
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A solution of this equation if n 0 is

	

J(z) =2r(n+1){1 - 2(2n+2) + 2'4(2n+2)(2n+4) -	 (20)

and is called Bessel's function of the first kind of order n.

If n is not an integer, the general solution of (18) is
Y = AJ(z) + BJ_(z)	 (21)

where A and B are arbitrary constants. However, if n is an integer then J_,(z) = (-1)J'N(z) -
and (20) fails to yield the general solution. The general solution in this case can be found
as in Problems 182 and 183.

Bessel functions have many interesting and important properties, among them being
the following.

1. tlt)/2	 =	 J,,(z) t"

The left side is often called the generating function for the Bessel functions
of the first kind for integer values of n.

2. zJ_1(z) - 2nJ(z) +. zJ+(z) = 0

This is called the recursion formula for Bessel functions [see Problem 271.

3. -(z"J(z)) = z"J_i(z),(z),	 -(z"J(z)) = -z"J+1(z)

4. J (z) = -f cos (no - z sin ) d4,	 n = integer
7r o

	

if5.	 J. (Z) = -	 cos (it. - z sin ,) d4 -
	

5e' - "" d4,
7r 0	 7r	 o

6. 1 tJR(at).JR(bt)dt = z(aJ(bz)J,(az) - bJ(az)J,(bz)) ab

7. f tJ(at)J(bt)dt = azJ(bz)J_ i (az) - bzJ(az)J_i(bz)
b2-a2	

,	 a',"b

z2
8. J t(.J(at)) 2 dt =	 -[(J(az)) 2 - JR_l(az)Jfl+l(az)]

0	 "

9. J. 	 = i-. 5 t__ e" 1 ° 	 = , 1 ±2,- ,_ 

where C is any simple closed curve enclosing t = 0.
.1

Z	

J	 e' (1- t2)''2 dt10. J11(z) =
135	 (2n -- 	 —1

Z"	 5 cos (z cos J,) sin 21 4,
1'35 . (2n-1)r ,

A second solution to Bessel's differential equation if n is a positive integer, is called
Bessel's function of the ' second kind of order n or NeunuLnn's function and is given by

1''(n-k-1)! /z\2"
Y. (z) = J (z) in z -	 k!	 (\)

(22)

	

(i)'	 fz\2"
- 2 A0	

(G(k) + G(n + k))

where G(k) = 1 + +!+	 + and G(0)=O.

271
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If n = 0, we have
z2	 z4

Yo(z) = Jo(z)lnz +	 -	 - ( l+4) + 224262(1++ *) -	 (23)
il

In terms of these the general solution of (19) if n is a positive integer can be written

Y = AJ(z) + BY(z)	 (24)

LEGENDRE FUNCTIONS
Legendre'8 differential equation of order n is given by

(1-z8)Y" - 2zY' + n(n+l)Y = 0	 (25)
The general solution of this equation is

Y = Al - 
n(n+l) 2 + n(n-2)(n+l)(n+3) 41	 2!	 4!	 1	 (26)

+ 
B I Z
	

(n-1)(n+2) + (n-1)(n 3)(n+2)(n+4) -	
}

If n is not an integer, these series solutions converge for IzI <1. If n is zero or a positive
integer, polynomial solutions of degree n are obtained. We call these polynomial solu-
tions Legendre polynomials and denote them by P (z), n = 0,1,2,3..... By choosing
these so that P. (1) = 1, we find that they can be expressed by Rodrigues' formula

P. 	 =	 1 d"(27)

from which Po (z) = 1, P1 (z) = z, P2 (z) = 4(3z2 - 1), P3 (z) = 4(5z - 3z) etc.

The following are some properties of Legendre polynomials.

1.
1	=

v'1-2zt+t8
This is called the generating function for Legendre polynomials.

2. Pn (z)
(2n)!	 - n(n-1) -'2 + n(n_l)(n_2)(n -3)...4

2R(n !)2 1	 2(2n 1) 2 - 4(2n - 1)(2n -3)

1 5 (t21)R de
3. P(z)	

2,ic2"(t-z)''
where C is any simple closed curve enclosing the pole t = z.

0
if m'n4. 5 P,, (z) PR (z) dz =	 2

-1	
12n+l 

if in=n

[See Problems 30 and 31.1

5. P. (Z) = 	 5[z + yz2_lcos#]*d,

[See Problem 34, Chapter 6.]

6. (n + 1) PR+I (z) - (2n + l)z PR (z) + n PR-I (z) = 0
This is called the recursion formula for Legendre polynomials [see Prob. 32].

7. (2n+1) P. 	 = P.+A(z) -
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If n is a positive integer or zero, the general solution of Legendre's equation can
be written as

1' = A P. (z) + B Q,,(z)	 (28)

where Q(z) is an infinite series convergent for I f 1 <1 obtained from (26). If n is not a
positive integer, there are two infinite seriesjolutions obtained frQm (26) which are
convergent for IzI < 1. These solutions to Legendre's equation are called Legendre functions.
They have properties analogous to those of the Legendre polynomials.

THE HYPERGEOMETRIC FUNCTION
The function defined by

	

ab	 a(a+1)b(b+l)

	

F(a,b;c;z) = 1 +	 +
 1'2.c(c+1) z

2 +	 (29)

is called the hypergeometric function and is a solution to Gauss' differential equation or
the hypergeornetric equation

z(1—z)Y" + (c - (a+b-fl)z)Y' - abY = 0	 (80)

The series (29) is absolutely convergent for 121 <1 and divergent for I z I> 1. For IzI = 1
it converges absolutely if Re (c - a - b) > 0.

If 121 < 1 and Re (c) > Re (b) > 0, we have

P(a,b; C; z) = r(b)r(c— b)S tb-i (1— t)"-' (1— tz)dt
	

(31)

For 121 > 1 the function can be defined by analytic continuation.

THE ZETA FUNCTION
The zeta function, studied extensively by. Riemann in connection with the theory of

numbers, is defined for Re (z) > 1 by

(z) =	 +	 ++ ... =	
1	 (82)

It can be extended by analytic continuation to other values of z. This extended definition
of C(z) has the interesting property that

C(I - z) = 2'	 r(z) cos (z/2) C(z)
	

(88)

Other interesting properties are as follows.

t-1

	

(z) = i) S	 dt	 Re (z)
e + 1

2. The only singularity of C() is a simple pole at z = 1 having residue 1.

3. If Bk, k = 1, 2,3, . .., is the coefficient of z21 in the expansion

4z cot (z) = 1 -

(2k) - 22k-I ,r2k Bk
k = 1,2,3,...-	 (2k)

We have, for example, B 1 = 1/6, B2 = 1/30, ..., from which (2) = 1T2/6, (4) =
The numbers Bk are called Bernoulli numbers. For another definition

of the Bernoulli numbers see Problem 163, Page 171.

1.

then
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4.	 1/	 i\/	 1\/	 1\/	 1\	 -	 /	 1

	

(z) - c l 2)t	 3.)1 5)1 7)	 - f] 1

where the product is taken over all positive primes p.
Riemann conjectured that all zeros of C(z) are situated on the line Re (z) = 4, but

as yet this has neither been proved nor disproved. It has, however, been shown by Hardy
that there are infinitely many zeros which do lie on this line.

ASYMPTOTIC SERIES

A series	 a0 +	 +	 +	 (84)

	

Z	 z2	 ,,=oz

is called an asymptotic series for a function P(z) if for any specified positive integer M,

	lim ZM {F(z) -	 =	 (35)=0z j
In such case we write

	

F(z) -	 (36)

Asymptotic series, and formulae involving them, are very useful in evaluation of
functions for large values of the variable, which might otherwise be difficult. In practice,
an asymptotic series may diverge. However, by taking the sum of successive terms of
the series, stopping just before the terms begin to increase, we may obtain a good
approximation for F(z).

Various operations with asymptotic series are permissible. For example, asymptotic
series may be added, multiplied or integrated term by term to yield another asymptotic
series. however, differentiation is not always possible. For a given range of values of z
an asymptotic series, if it exists, is unique.

THE METHOD OF STEEPEST DESCENTS
Let 1(z) be expressible in the form

1(z)	 5 9P(i) dt	 (37)

where C is some path in the t plane. Since F(t) is complex, we can consider z to be real.
The method of steepest descents is a method for finding an asymptotic formula for

(37) valid for large z. Where applicable, it consists of the following steps.

1. Determine the points at which F'(t) 0. Such points are called saddle points,
and for this reason the method is also called the saddle point method.

We shall assume that there is only one saddle point, say to. The method can
be extended if there is more than one.

2. Assuming F(t) analytic in a neighbourhood of t0 , obtain the Taylor series expansion

F(to) + F"(to)(t - to)" + ,... = F(to) - u2 	 (38)
2!

Now deform contour C so that it passes through the saddle point to, and is such
that Re (F(t)) is largest at to while Tm (F(t)) can be considered equal to the constant
Im (F(to)) in the neighbourhood of to. With these assumptions, the variable u
defined by (38) is real and we obtain to a high degree of approximation

1(z) = e'os '5 e'° () du	 (39)
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where from (38), we can find constants b0, b1, . . such that
dt = 

b0 -t- b1u + b2u2 +
du

3. Substitute (40) into (39) and perform the integrations to obtain the required
asymptotic expansion

	

1(z) —	 e. F(t, {bo +	 +	 +	 :	 +	 }	
(41)

For many practical purposes the first term provides enough accuracy and we find

1(z) — \'zF"(to)	 (42)

Methods similar to the above are also known as Laplace's method and the method of

stationary phase.

SPECIAL ASYMPTOTIC EXPANSIONS
1. The Gamma Function	

1	 139

	

r(z+l)	 Vze_'{i + j_	 - 51,840z3 +
	

}

This is sometimes called Stirling's asymptotic formula for the gamma function.
holds for large values of Izi such that — lr < arg z < lr.

If n is real and large, we have

r(n + 1) =	 n"e e°"2	 where 0 < U < 1

In particular, if n is a large positive integer we have
n! —

called Stirling's asymptotic formula for W.

2. Bessel Functions

J. 	 — C (P(z) cos (z - fl7r - ) + Q(z) sin (z - fl7r -

where

P(z) = 1 +	
( _ 1)k [4n2 - 1 2] [4n2 - 32]	 [4n2 - (4k - 1)2]

k	 (2k)! 261 Z2k

Q(z)	
(1)k [4n2 - 1 2 1 [4n2 -3 21  . . . [4n2 - (4k - 3)2]

	

k=I	 (2k_1)!26k_3z2k_I 	 j

This holds for large values of j zj such that — r <arg Z <ir.

3. The Error Function

	

en (z) =	 5 e-' dt — 1 +	 (1)k r(k— 4)

This result holds for large values of IzI such that —1r/2 < arg z <
/2 < arg z < 3/2 the result holds if we replace z by —z on the right.

4. The Exponential Integral

Ei (z) = 5 - dt — e2	
(_l)kk!

k0

This result holds for large values of Izi such that — <argz <7r.

(40)

(48)

It

(44)

(45)

(46)

(47)

(48)

For

(49)
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ELLIPTIC FUNCTIONS
The integral	

dt
Z = C	 IkI<l	 (50)Jo y(1_t2)(1_k2t2)

is called an elliptic integral of the first kind. The integral exists if w is real and such
that JwJ < 1. By analytic continuation we can extend it to other values of w. If t = sin 0
and to = sin 0, the integral (50) assumes an equivalent form

do

where

	
(51)

	where we often write = am z.	
o	 - k2sin2e

If Ic = 0, (50) becomes z = sin' to or, equivalently, to sin z. By analogy, we denote
the integral in (50) when k,'O by sn'(u;k) or briefly sn'w when k does not change
during a given discussion. Thus

dt

	

z = sn'w =	 (52)
'-	 t(1_t2)(1_k2t2)

This leads to the function w = an z which is called an elliptic function or sometimes a
Jacobian elliptic function.

By analogy with the trigonometric functions, it is convenient to define other elliptic
functions	 ________	 ___________

cn z	 '/1 - sn 2 Z,	 dn z = /1 - Ic2 sn2 z	 (53)
Another function which is sometimes used is tn z = (an z)/(cn z).

The following list shows various properties of these functions.
1. an (0) = 0, cn (0)	 1, dn (0) = 1, an (—z) = —an Z, en (—z) = en z, dn (—z) = dn z
2. ---snz = cnzdnz, W- cnz = — snzdnz, --dnz = —k 2 snzcnzdz 	 dz
3. sn	 sin (am z), en z = cos (am z)

snz,cnz2 dnz2 + cnz,dnz,snz24. sn(z,+z2) =(5.4)
1 - k25n2z,sflzz2

en (z 1 + za) = cnz, en z2 - snz, snz2dnz l dnz2
2 2	 2	 (55)1 - Ic an z, an z2

dnz,dnz2 - k2snz,snz2cnz1cnz2dn (z, + Z2) =21 - Ic Sfl2ZjSfl2Z2	 (56)

These are called addition formulae for the elliptic functions.
5. The elliptic functions have two periods, and for this reason they are often called

doubly-periodic functions. Let us write

	

dt	 "./2	 do
K =J 	 =J	 (57)o 'f(1 - t2)(1 - k2t2)	 ,	 - Ic2 Sifl2 8

	dt 	 ,'/2	 do

	

K'=J	
=J (58)	o 	 (1 - t2)(1 - k"t2)	 o	 - k"sin2 9

where k and k', called the modulus and complementary modulus respectively, are
such that Ic' = V-1 -- 0.  Then the periods of an z are 4K and 2iK', the periods of
en z are 4K and 2K + 2iK 1, and the periods of dn z are 2K and 4iK1. It follows
that there exists a periodic set of parallelograms [often called period parallelograms]
in the complex plane in which the values of an elliptic function repeat. The
smallest of these is often referred to as a unit cell or briefly a cell.
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The above ideas can be extended to other elliptic functions. Thus there exist elliptic
integrals of the second and third kinds defined respectively by

•'°
Z	 1 - k2t2

=
dt	 f v'i - k2 sin 2 o do

dt	 do
Z =	

( 1 + nt2)1 - t2)(1 - k2 t2) = o (1 + n sin2 O)1 - k2 s in2 0o

Solved Problems

(59)

(60)

ANALYTIC CONTINUATION
1. Let F(z) be analytic in a region 'R. and suppose

that F(z) = 0 at all points on an are PQ inside c

[Fig. 10-61. Prove that F(z) = 0 throughout R.
Choose any point, say 20, on arc PQ. Then in some

circle of convergence C with centre at z0 [this circle ex-
tending at least to the boundary of 'R where a singularity
may exist], F(z) has a Taylor series expansion

F(z) = F(zo) + F'(z0)(z - z0) + I F"(zo)( z - z0) 2 +

But by hypothesis F(z0) = F'(z0) = F"(z0) =	 = 0.
Hence F(z) = 0 inside C.

By choosing another are inside C, we can continue
the process. In this manner we can show that F(x) 0
throughout 11.

1'

C
P

Fig. 10-6

'N

2. Given that the identity sin  z + c082 z = 1 holds for real values of z, prove that it
also holds for all complex values of z.

Let F(1) = sin2 z + c082 z - 1 and let 'I be a region of the z plane containing a portion of the
• axis [Fig. 10.71.

Since sin x and coax are analytic in R. it follows that F(z) is analytic in 9. Also F(z) = 0 on the
• axis. Hence by Problem 1, F(z) 0 identically in '1, which shows that sin 2 z + CO32  = 1 for
all a in 'J. Since R is arbitrary, we obtain the required result.

This method is useful in proving for complex values many of the results true for real values.

Fig. 10-7	 Fig. 10-8

3. Let F 1 (z) and F2 (z) be analytic in a region 'R. [Fig. 10-8] and suppose that on an arc PQ
in q, F (z) = F2 (z). Prove that F1 (z) = F2 (z) in 11.

This follows from Problem 1 by choosing F(z) = F1 (a) - F2 (a).
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4. Let P (z) be analytic in region q IFig. 10-91 and on the boundary JKLM. Suppose that
we can find a function F2 (z) analytic in region 9Z, and on the boundary .JKLM such that
F 1 (z) = Fz (z) on JKLM. Prove that the function

F(z)
F. (z) for z in 'R

=
F2 (Z) for z in

is analytic in the region IR which is composed of '1 and cN 2 [sometimes written
=

Fig. 10-9
Method 1.

This follows from Problem 3, since there can be only one function F (z) in 9Z2 satisfying tho
required properties.

Method 2, using Cauchy's integral formulae.

Construct the simple closed curve SLTKS (dashed in Fig. 10-9) and let a be any point inside.
From Cauchy's integral formula, we have (since F2(X) is analytic inside and on LTKL and sincd
F, (z) F(s) on LTK)

1	 1' 1'2()	 1 C Fqz)	 1 j F(z)
F 2 (a) = - —dx = - i —dx + - —dx

2,ri .7 z - a	 2,,-a .y z - a	 2,r* 7 S - a
LTKL,	 LTK	 KL

Also we have by Cauchy's theorem (since F 1 (z)/(z - a) Is analytic inside and on KSLK and since
F1 (x) = F(s) on KSL)

0 =
lfF(z)dz+lfZdz

KSLK	 KSL	 LK

Adding, using the fact that F(z) = P 1 (z) F2 (z) on LK so that the integrals along KL and LK
cancel, we have since F(a) = F2(a)

F(a) =5 
F(z)

LTKSL

In a similar manner we find

F°°(a) =	 L 
5 (x_.a)flld

LTKSL

so that F(s) is analytic at a. But since we can choose a to be any point in the region 9Z by suitably
modifying the dashed contour of Fig. 10-9, it follows that F(s) is analytic in '.

Method 3, using Morera's theorem.

Referring to Fig. 10.9,' wd have

5 F(s) dz = f P(z) dx + 5 F(s) dx + 5 F(s) dx + f F(s) dx

KSLTK	 1(81..	 LX	 Xl.	 LTK

= 5 F1 (z) dx + 5 F'2 (z) dx = 0

KSLK	 ICLTK

by Cauchy'e theorem. Thus the integral around any simple closed path in qZ is zero, and so by

Morera's theorem F(s) must be analytic.

The function F, (z) in called an analy ticcontinuation of F1
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5. (a) Prove that the function defined by F 1 (z) = z - z2 + z3 - z4 +	 is analytic in the

region IzI < 1. (b) Find a function which represents all possible analytic continua-
tions of F, (z).

(a) By the ratio test, the series converges for IzI < 1. Then the series represents an analytic function
in this region.

(b) For Izi	 1, the sum of the series is F 2 (z) = z/(1 -I- z). But this function is analytic at all points

except z = –1. Since F2 (z) = F1 (z) inside IzI	 1, it is the requited function.

6. (a) Prove that the function defined by F, (z) = 5 t3 e' dt is analytic at all points

Z for which Re (z) > 0. (b) Find a function which is the analytic continuation of
F, (z) into the left-band plane Re (z) <0.

(a) On integrating by parts, we have
,..

V'e'dt =	 Urn	 t3e0*dt
M-.. o

Urn .f (0)(2 	 (30) (-e_t)(	 ''\
+ (6t) —i-,, - (6)(--_j2z

16

	

M3 , -1110 3M 2 e M5	 Me 	 6 e_M}

M-.o T4	 X2	 z3 Z4

- 6 if Re (Z) >0
-

(b) For Re {z} > 0, the integral has the value F2 (z) = 61z4. But this function is analytic at all
points except z = 0. Since F'2 (z)	 F', (z) for Re (z) > 0, we see that F' 2 (z)	 61z4 must be

the required analytic continuation.

SCHWARZ'S REFLECTION PRINCIPLE
7. Prove Schwarz's reflection principle (see Page 266).

Refer to Fig. 10-4, Page 266. On the real axis [ y = 01 we have F, (z) = F, (x) = V, W=M.

Then by Problem 3 we have only to prove that F, )	 F, (z) is analytic in '1(2.

Let F, (z) = U,(x,y) + i Vi (z, 	 Since this is analytic in '1(, (i.e. y>0], we have by the

Cauchy-Riemann equations,

	

ill],	 3V, aU,

= --,	
= ---	 (1)

where these partial derivatives are continuous.

Now F, () = F, (x - iv) = U, (x, –y) + i V, (x, –y), and so	 ) = U, x, –y) - i V, (x, –y).
If this is to be analytic in 9(2 we must have, for y> 0,

aU, - a(–V,)	 a(–V1)

ax - a(--y) '	 ax	 -

a(–V,)	 all , a(–V0	 aV,
	But these are equivalent to (I), since	 =	 ax	 =

the required result follows.

ER

(2)

aU,aU,
and –j- = ---. Hence

INFINITE PRODUCTS
8. Prove that a necessary and sufficient condition for

IwkI converges.
Sufficiency. If x > 0, then 1 + x 	 e2 so that

=	
(1 + 1-,,1 ) = ( 1 + 1 w 11)( 1 + jw2I) . (1 + Iwt)
k 1 

Tj (I. + k'kl) 
to converge is that

el0l e"°"	 0-	 1*0,1 + o.I +	 *'+	 ,l
— 
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If	 jwkj converges, it followsthat I',, is a bounded monotonic increasing sequence and so hask 1

a limit, i.e. fl (1 + WkI), converges.

Necesaity. If S.	 we have
P,, = (1 + I w iI)( 1 + I wzI) . (1 + I w I) 9 1 + Iw i i + 1w21 + .. + IwI = 1 + S,.	 1

If urn P. exists, i.e. the infinite product converges, it follows that S. is a bounded monotonic
Increasing sequence and so has a limit, i.e. i IWkI converges.

/9. Prove that fJ 1 - Z2\

 
converges.

I z 1 2	 1Let w, = -. Then 1 w.1 =	 and 1 1 Wk1 = ZI 2 1 j converges. Hence by Problem 8,
the infinite product is absolutely convergent and thus convergent.

\10. Prove that sin  = z(i _)(i — 2)(1	 =	 z2
-

From Problem 35, Chapter 7, Page 192, we have
c /
j	 cot e -dt	 In (!!i) I = In (sin z)

0

	

1	 Z J

Sv	 2t	
dt

=	 0 t2
_2t 2 + t242	 •..) 

j=	 in('i — 2	 In

	

'1	 \

Then sin  = z fi (i - 22 \
k1

THE GAMMA FUNCTION

11. Prove that r(z + 1) = z r(z) using definition (4), Page 267.
Integrating by parts, we have If Re (z) > 0,

F(z+1) = I tedt - urn I tedt"o	 MJ0

r	 M
=	 !hn - (e)(— .—t)	

- J (zt'l)(— e—t) dt

	

0	 o
1

=	
tz-1e—tdg = z r(z)

0

12. Prove that r(m) = 2f. xZ" e— ' dx, m> 0.
If t = x2, we have

	

r(m) = J t0-1e—tdt 
= J (zS)m—lezI2x	

= 
2J x2te-."cjx

0	 0	 0
The result. alsoholds If Re (m) > 0.
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13.Prove that F(z) r(i - z) = sin wz

We first prove it for real values of z such that 0 < z < 1. By analytic continuation we can
then extend it to other values of z.

From Problem 12, we have for 0< in < 1,

P(m) I'(l - m) =	 2)""' x2 ' 1	 dx} {2 5 y' 2,n c" d}

= 45 5 x2-1y1-2mc-('+)dxdy

In terms of polar coordinates (r,) with x = r cos e, y = r sin o this becomes
I2

4 I	 I	 (tan 1 	 •) (re - r') dr do =	 2 I	 tan t2'" a do =
•'80 '=0	 .10	 am m,,

using Problem 20, Page 185, with x = tan2 S and p = 1 - M.

14.Prove that r(4) = 2 fe"du = v•

From Problem 12, letting m 4 , we have

F(4) = zJ e"dx

From Problem 13, letting z = , we have

= r	 or	 '() =

since I'(4) > 0. Thus the required result follows.

Another method. As in Problem 13,

{F(4)}2 = {2Je_'dx}{2f"e_s'd}

.lr/2

	

4J

%00 .	 rJ e(' .F II')dxdy = 4J	 J	 e"rdrda =

	

o J.	 0=0 rO
from which I'(4) = %f.

15. By use of analytic continuation, show that r(— 4) = - 2v'.
If Re (z) > 0, l'(z) is defined by (i), Page 267, but this definition cannot be used for Re {z} Vi 0.

However, we can use the recursion formula F(z + 1) = z i'(z), which holds for Re (z) > 0, to extend
the definition for Re {z} 5 0, i.e. it provides an analytic continuation into the left.-hand plane.

Substituting z = -4 in i'(z + 1)	 z I'(z), we find I'() = - 4 I'( — 4) or I'( — 4) = - 2/ using
Problem 14.

16. (a) Prove that r(z) =	 Zz(z+lz+t?(z+n)

(b) Use (a) to show that r(z) is an analytic function except for simple poles in the left-
hand plane at z = 0,—i, —2, —3.....

(a) We have r(z+ 1) = zr(s), r(z+2) = (z+1)I'(z+ 1) = (z+1)zI'(z), 1'(z+3) = (z+2)I'(z+2) =
(z + 2)(z + 1)z r(z) and, In general, r(z + a + 1) = (z + n)(z + n - 1) • ' ' (z + 2)(z + 1)z F(z) from
which the required result follows.

(b) We know that F(z) is analytic for Re (z) > 0, from definition (4), Page 267. Also, it is clear
from the result in (a) that I'(z) is defined and analytic for Re (z) —n except for the simple
poles at z = 0, —1, —2.....—n. Since this Is the case for any positive integer n, the required
result follows.



282	 SPECIAL TOPICS	 [CHAP. 10

17. Use Weierstrass' factor theorem for infinite products [equation (2), Page 2671 to obtain
the infinite product for the gamma function [Property 2, Page 2681.

Let /(z' = l/r(z + 1). Then f(2) is analytic everywhere and has simple zeros at 2 = - 1. --2, -3,
By Weierstrass' factor theorem, we find

I'(z+ 1) = e''°' fl (i +	 e

To determine f'(0), let z = 1. Then since r(2) = 1, we have

	1 = e"	 n (i + I) 5-IIk

A4/
= e1 ° jim kfl ( 1 +- ) 0/k

	

-	 M-.kt\	 1
Taking logarithms, we see that

= urn {+
	 +	 + 
	 +	 - in [(i +
	 +	

... (i +)]}

	= lim1+++...+M_lnM	 =

where y is Euler's constant. Then the required reiult follows on noting that 1'(z + 1) = z l'(z).

THE BETA FUNCTION
18. Prove that Jf(m, n) = B(n, m).

Letting t = I --
-11

	

!J(n&, n)	 -	 J t' -	 -	 dt	 = J (1 - a)'"--' zt" ' du	 =	 B(n, m)
o	 0

I2

19. Prove that, B(m,n) = 25 sin 2"-' 0 cos2"' 0 dO = 25 cos2'"' 0 sin2"' II do.

	Let t	 j2 0.	 I hen

B(m, n) = J jm -'(1 £)" -1 dt -

=	 sjn2'"-1e cos2", do
by Problem 18.	 0

20. Prove that B(rn, n) =I t'"' (1 - t)"' dt = r(m) r(n)
r(m+n)

From Problem 12, we have on transforming to polar coordinates,

F(m)1'(n) = {25 - X2 1 6-XX dX t2 f y2n- I e—y'dy

=
 45 J ZSlVSNi6I+Il)dXdy

0	 0
,-.I2

= 4 jJ	 (co62'"_' • ein2" 1 ,)(rOm+SII e") drde

8o ""0

= {2f" c"-'i sin2"1s d.} {5" r2 "' " 1 e' dr}

= B(m,n)F(m-i-n)

where we have used Problem 19 and Problem 12 with r replacing t and rn + n replacing m. From
this the required reguit. follows.

	

J(sin2	 (cos2 6)"	 2 ginO cos o do

0	 -

	

= 2J	 $2fl-IV 5jfl2  I * do
0
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21. Evaluate (a) 
52	 /2

/2 - x) dx, (b) j. / Th do.

(a) Letting x = 2t, the integral becomes

Vif— t) 2 dt = 4	 t112 (1 - t) 1/2 dt = 4 B(3/2,3/2)

=	 4 1(3/2)1(3/2)	 4(4.Vc)(r:)	 -
-	 i'(3)	 2

(b) V-tan o do 
=	

sin' 2 8 cos I/2 o do =	 B(, j)
0	 0

1	 ir	 -
=	 1(j) 1(j) =	 Sin (r/4) -

using Problems 13, 19 and 20.

22. Show that	 y3/2(16_yZ)l/2dy =	 (r(j))264f
21 	7r

Let y2 16t, i.e. y = 4t"2, dy = 2t- 1/2 dt. Then the integral becomes

f ,

	

	 C'
(8t3'4){4(1 - t)1I2)(2t- 1/2 dt) 	 =	 64	 t1'4 (1— t)1/2 dt

0
64r()1'(I)	 =

= 64B(j,) 

- 128c r(j)	 128sf (r( j))2	 - 64 
/i {"(t)}2

-	 21	 1(j)	 21	 r(j) 1(1)	 21	 IT

using the fact that 1(j) 1(j) = r/[lfl (/4)] = r'I [Problem 131.

DIFFERENTIAL EQUATIONS
23. Determine the singular points of each of the following differential equations and

specify whether they are regular or irregular.

(a) :2 1" + zY' + (z2_n)Y = 0 or Y" + - y' +(222)
z	 Z2

z = 0 is a singular point. Since 2(1/:) = 1 and :2 ( 	
= zz__ n2 are analytic at

z = 0, it is a regular singular point.	
/

(6) (z - 1)4 Y" + 2(z - 1)1" + 1' = 0 or Y" +	 Y' + (z 1)41' - 0.

At the singular point z = 1, (z - 1) (--r) = 2 is analytic but (z - 1)2. (z-1) =

is not analytic. Then z = 1 is an irregular singular point.

(c) :2(1 - z)Y" + Y' - I = 0 or	 " 
+ 2(1:) -Y'

-	 =
z -	 z2(1_z)

	

1	 :2	 1	
—1-	 are notand	 Z2

—z)
J 1 }	

{} -At the singular point z = 0 1 z 
2(1 —x) = z(1	 - Z)	 1—z

both analytic. Hence z = 0 is an irregular singular point.

1	 1 	 and (z - 1)2 {Z2(1_)}At the singular point z = 1, (z - 1)	 2(1 --.)I = -
are both analytic. Hence z 1 is a regular singular point.
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24. Find the general solution of Bessel's differential equation
z2Y + zY' + (z2_n2)Y = 0	 where n,'0,±1,±2,

The point z =0 is a regular singular point. Hence there is a series solution of the form
Y =	 a,, z" where a,, 0 for k = —1, —2, —3.	 By differentiation, omitting the sum-,,
mation limits, we have

=	 (k + c)az	 Y" = (k + c)(k + c - I)akzk+2

Then	 z2Y" -	 1k +	 4- - I 'I ,,. k +

	

zY' =	 (k + c) ak z +

	

(z2 -_n2)Y =	 a,,zk++2 - In2 a,,zk+

Iak_2zk+, -

Adding,	 2y' + zY' + (z2 - n2)Y = I ([(k + ) 2 - n2 J a + a,,_ 2 ) zk+ ' = 0
from which we obtain

[(k + C)2 - n2J a + a,_ 5 = 0 (1)
If k = 0, (c2 - n2)a0 = 0; and if ao ,' 0, we obtain the indjja1 equation C2 - fl2 = 0 with roots c = ± i*.

Case 1: c=n.

From (1),	 [(k + n)2 - n2 1 a + ak_s = 0 or k(2n + k) a + a 2 = 0.
a0	 a2If k=1, a 1 =0. If k=2, a2 =
	 2(2n+2)	

If k=3, a3 =0. If k=4, a4 =
	 4(2n+4) =a0

etc. Then
Z4(2n + 2)(2n + 4)

Y = Ia,z' f 	 =

Case 2: C = — a.

The result obtained is

all 	 -	 2
2(2n + 2) +	 (2 + 2)(2n + 4) -	 (2)

Z2
Y = a0z	

-

	

2(2-2n) + 2 4(2n + 2)(2n + 4)	 (3)

which can be obtained formally from Case 1 on replacing n by —n.

The general solution if n	 0, ±1, ±2, ... is given by

Y = Az-flI—---	 +-- Z
 2(2n+2)	 2•4(2fl+2)(2n+4)

	

+ Bz"Jl -	
2	 ..

+	 (4)2(2 - Zn)	 2.4(2 - 2n)(4 - Zn)	 JIf n = 0, ±1, ±2, ... only one solution is obtained. To find the general solution in this case we
must proce,d as in Problems 175 and 176.

Since the singularity nearest to z = 0 is at infinity, the solutions should converge for all z. Thisis easily shown by the ratio test.

SOLUTION OF DIFFERENTIAL EQUATIONS BY CONTOUR INTEGRALS
25. (a) Obtain a solution of the equation zY" + (2n + l)Y' + zY = 0 having the form

= $ e' G(t) dt. (b) By letting Y = z'U and choosing the constant r appropriately,
obtain a contour integral solution of z2 U" + zU' + (z2 n)U = 0.
(a.) If Y = 4; e( G(t) dt, we find Y' = 

,4' tee' G(t) dt, Y" = 5 t2 et G(t) dt.
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Then integrating by parts, assuming that C is chosen so that the functional values at the
initial and final points P are equal [and the integrated part is zero], we have

zY = 4) W1 G(t) dl = et G(t) 1 p - 4)  elt G'(() dl = -	 gt G'(t) dl

(2n + 1)Y' 
= 4) (2n + 1)1 e t G(t) dl

zY" = + zt2 c G(t) dl = 5 (ze){t2 G(l)} dl

-	 e t (t2 G(t)) 1 p - 5 e' ((2 G(t)}' dl

= _4) e
ll {t2G(t)}'dt

Thus
zY" + (2n+ 1)Y' + zY	 0	

5 
e [—G'(l) + (2n + 1)t G(t) - (12 G(t)Y] dt

This is satisfied if we choose G(t) so that the integrand is zero, i.e.

—G'(t) + (2n + I)t G(t) - ((2 G(t))' = 0	 or	 G'(t) 
= (2	 G(t)

Solving, G(t) = A (t2 + 1)"½ where A is any constant. Hence a solution is

I' = A5 0(0+ 1)""2dt

(b) If Y = zrU, then Y' = zW' + rzU and Y" = zrU" + 2rz'"U' + r(r— l)z2U. Hence

zY" + (2n + 1)Y' + zY = z' 'U" + 2rzrU' + r(r - 1)z'U

+ (2n+ 1)z'U' + (2n+ 1)rz''U + zrl-IU

= z' U" + [2rzr + (2i + 1):') U'

4- [r(r— 1)z'	 + (2n+ 1)rz'	 + z'JU

The given differential equation is thus equivalent to

z2 U" + (2r + 2n -I- !)zU' + 1: 2 + r2 + Znr]U = 0

Letting r = —n, this becomes z2U" + zU' + (:2 - n2)U = 0.

Hence a contour integral solution is

U	 z"Y = Az" 4)' e (12 + 1)- I ' 2 dt

26. Obtain the general solution of Y" - 3Y' + 2Y = 0 by the method of contour integrals.

Let Y =	 e G(t) dl, Y' = 5 te G(t) dl, Y" = 5 12 ell G(t) dt. Then

Y" - 3Y' + 2Y =	 e' I (t2 - 3t + 2) G(C) dt = 0

is satisfied if we choose G(t) = 11(12 —31 + 2). Hence

1'
12_ 31 + 2

If we choose C so that the simple pole I = 1 lies inside C while I = 2 lies outside C, the integral has

the value 2ie. If I = 2 lies inside C while I = 1 lies outside C, the integral has the value 2irie2.

The general solution is given by Y	 Ac + Bell .	 -'
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BESSEL FUNCTIONS
27. Prove that zJj(z) - 2nJ,(z) + zJ+1(z) = 0.

Differentiating with respect to t both sides of the identity

=	 J,,(z) t"
yields

+ M=	 ( t +.) J(z)t" =2	 T2

i.e.,	 zJ,,(z) (' +	 zJ,,(z) t'- 2	=	 2nJ,(z) V'-'

Equating coefficients of t' on both sides, we have

zJ(z) + zJ,, 2 (z) = 2(n+1)J+1(z)

and the required result follows on replacing n by n - 1.
Since we have used the generating function, the above result is established only for integral

values of a. The result also holds for non-integral values of a [see Problem 1141.

28. Prove J. 	 =	 fl- t - " ' e""° dt, where C is a simple closed curve enclosing

We have	 e½(t1I) =	 J(z) t"

so that	 t-- I

and 5 
t - ' -I e4(10 dt =	 J,,,(z) 5 t" - " dt

Now by Problems 21 and 22, Chapter 4, Page 108, we have

5 t"'-"'dt = 12i if
c	 0 ifrn$n

Thus the series on the right of (1) reduces to 2,U .(z), from which the required result follows.

29. Prove that if a -76 b,

5 tJ(at)J(bt) dl = z(aJ(bz)J.(az) —a2

Yj = J,, (at) and Y2 = J, (bt) satisfy the respective differential equations

(1) t2 Y' + t	 + (a2t2 - n2) Y 1 	 0

(2) t2 Y" + tY + (b2t2 — n2)Y2 = 0

Multiplying (1) by Y2, (2) by Y 1 and subtracting, we find

t2(Y2 Y;' - Y 1 Yç) + t(Y2 Y 1' - Y 1 Y) = ( b2 - a2)t2 V 1 V2

This can be written
d

t (Y2 Y	 V1 Y2 	 (V2 '; - Y I V) = ( b2 - a2)t Y V2

or	 Wt (t(Y 2 Y - Y. Y)) = (b - o2)t V 1 V2

Integrating with respect to t from 0 to z yields

(b2—a2) J tY 1 Y2 dt	 t(V2Y - YiY)I

	

• 0	 1°
or since

f
t J,,(at) J(bt) dt = z(aJ(bz)J(az) - bJ(az)J(bz))

0a	 b2—a2

(I)

(2)
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LEGENDRE FUNCTIONS

30.Prove that fl P. (z)P,,(z) dz	 0 if M ,4 fl.

We have	 (1) (1 - z2) P',, - 2z P,, + tn(nt + 1) Pm = 0

(2)	 (1 - z2) P - 2z l', + n(n + I) I',,	 =	 0

Multiplying (1) by P, (2) by Pm, and subtracting, we obtain

	

(lz){Pt' - PM 1.' - 2z (P. 	 - P. P.) = {n(n+ 1)— ,n(m+ l))P,P,,

which can be written

(1— 22)(PP - PM P,) - 2z(PP - Pm P . ) = (n(n+ 1)— rn(ln+ 1))PmP5

or	 ((I - z2)(P, P', - Pm P)} = {n(n + 1) - rn(m + 1)} Pm P,,

Integrating from —1 to 1, we have

	

(n(n + 1) - rn(tn+ 1)}5 Pm(Z) P,,(z) dz = (1— z2)(P8 P - PP')	 = o

from which the required result follows, since m ,' n.

The result is often called the orthogonality principle for Legendre polynomials and we say that
the Legendre polynomials form an orthogonal set.

31.Prove that 5 P,,, (z) P (z) dz = 2n+ 1
	 if m = n.

Squaring both sides of the identity,

	

1	 -

fi2zt+t2 - ,.=0

1
we obtain	

=	 P,,(z) P,,(z) fm+
1-2xt+t2

Integrating from —1 to 1 and using Problem 30, we find

I	 dz	 .15 Pm(Z) P5 (z) dz} tm+s5	 = mOmO
(1)

11
=
 ,. o 5 (P. (Z)) dx}

=	 -i
But the left side is equal to

I'	 1	 _______
- In (1 - 2zt + t2)	 =	 in	 =	 2 n=o 2n + i} t

2	 (2)
-I

using Problem 23(c), Chapter 6, Page 155. Equating coefficients of t 2" In the series (I) and (2) yields

the required result.

32.Prove that (n + 1) P,+ 1 (z) - (2n+ 1)z P. 	 + nP,,-1 (z) = 0.

Differentiating with respect to t both sides of the identity

1 P,,(z) t"
u1_.2zi+t2 =

we have (1 - Zzt + t2)32	 5=0
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Then multiplying by 1 - 2zt + t2, we have

	

(z - t)	 P,,(z) t"	 =	 (1 2zt + t2)	 n P,(z) t'- 1

=0

or	 z P. (z) t" -	 P. (z) t + I =	 a P,, (z) V — -	 2nz P. (z) t"
,=o

+	 a P,,(z) t"'

Equating coefficients of t" on each side, we obtain

z P, (z) - P_ 1 4) = (n + 1) P,,. 1 (z) — Znz P,(z) + (n - 1) P,_ 1 (a)

which yields the required result on simplifying.

THE HYPERGEOMETRIC FUNCTION

33. Show that F(1/2,1/2; 3/2; z2) =

Since F(a, b; C; a)	 +
I- 

zb + a(a + 1) b(b + 1) 22 +	 we have= 1 —
1 c	 1. 2c(c+ 1)

	

F(1/2, 1/2; 3/2; 2)	 =	 1 + (1/2)(1/2) 
z2 + (1/23/2)(1/2)(3,'2) a4

1 2' (3/2)(5/2)

+ (1/2)(3/2)(5/2)(1/2)(3/2)(512)	 +
1 • 2 • 3 . (3/2)(612)(7/2)

1 Z	 13z4	 136z6	 sin'z
= 1+23+245+2467+••• =	 a

using Problem 89, Chapter 6, Page 166.

THE ZETA FUNCTION
34. Prove that the zeta function C(z) 

= ki	 is analytic in the region of the z plane
for which Re {z} ;^ 1 + 8 where 8 is any fixed positive number.

Each term 1/ks of the series is an analytic function. Also, if x = Re (z)	 1 + 8 then,

	

1	 1	 1	 1	 1
—	 - 5XInk -	 +5

Since	 110 +6 converges, we see by the Welerstrass M test that kikz converges uniformly for
Re (a)	 1 + 8. Hence by Theorem 21, Page 142, (z) is analytic in this region.

ASYMPTOTIC EXPANSIONS AND THE METHOD OF STEEPEST DESCENTS
35. (a) If p > 0, prove that

1(z)	 5edt =	 - p + p(p+1) — •• (_i)P(P+l)' . .(pfl
z" 4• '	 z2

+ ( — l)'p(p+1) ... (v+n)	 dtj'
(b) Use (a) to prove that

1(z)	 5	 - dt — e	 -	 + 
p(p + 1) -	

} 
= 8(z)Z9	ZI'$i	 z"2

i.e. the series on the right is an asymptotic expansion of the function on the left.
(a) htegrating by parts, we have
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19 =dt = urn	 ettPdt
M—

I	 eM
=	 lim . (-e1)(t9) 

M - J (-e')(-pt' - ') dt
M-.1	 a

(
I '	 0-M

= ,,T.. -;7 -	 -	 dl

-- I et

e'
Similarly, I,, + =	 - (p + 1) I + 2 so that

=- P1;;-i:-i - ( P+1)1P +2} =

By continuing in this manner, the result follows.

=

Z	

- pip+I

e 
R	Zp+ I + p(p+i)Jp+2

!-	 + p(p-4-l) -	 (_l)nP(P+1) ... (P+tt_1)}. 	 Then
f

(b) Let S,,(z) = e	
ZP	 zp+l	 29+2

R(z) = 1(z) - S5(z) = (-1)" p(p + 1)" (p + a) 5 etdt
a

Now for real z > 0,

R(z)I = p(p+ 1)" .(P+n) 5 e	 dt	 p(p+ 1) Hp+n) f 	 e-' dt9+5+1	 .-	 Z9+5+l

p(p+1)."(p+n)
2 + +

since	 f edt	 f edt = 1
•0

Thus	 lim I a" R,,(z) I	 urn 
p(y+1) ... (p+n)	 =ZP

and it follows that lim a" R,,(z) = 0. Hence the required result is proved for real a > 0.
I -.

The result can also he extended to complex values of a.
I U,	 = I p(p + 1)' (p + n)Iz9 + I	 =	 where u,, is the nthNote that since i	 I	 Ip(p+1)(p+n-1)/zP"I	 IzI

I U, +
term of the series, we have for all fixed a, lim I—I = " and the series diverges for all a
by the ratio test. 	 I	 I

1	 1	 139
36. Show that r(z + 1)	 Z e fi + 12—z + 288z2 - 51,840z3 +	 }•

We have l'(z + 1) = 5 r e dr. By letting i• = at, this becomes

F(z + 1) = z 1	 t	 dt = z4 5 e"'" 1 - dt	 (1)

which has the form (:7), Page 274, where F(t) = In t - t.
= 0 when t = 1. Letting t = 1 + w we find, using Problem 23, Page 154, or otherwise, the

Taylor series

1(t) = In t-	 = ln(1+w) -(1+w) = (w+-_--+.)

-	 1w2	 w3w	 -	 1(t_1)2+(t_l)3(t_1)4+
-	 2	 3	 4	 -	 2	 3	 4

21
eJ,et-I,2et3,"1'4+dt0

I
	

J0-'I2 e1h3/3 - —4/4 + 	dw
-1

Hence from (1),	 I'(z + 1) =
(2)
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Letting w = V ̂ 2/z v thin become.

r(z + 1) =	 1/2	 e" e(V3	 - '" +	 dv	 (3)
-

For large values of z the lower limit can be replaced by -, and on expanding the exponential we have

'(z + 1)	 - 	 1/2 eJ	 e-" (1 + (Vz 1/2 v3 -	 I v4 ) +	 J (IV	 (4)

or	 ['(:+ 1)	 + j--	 +	 &1,840z3 +	
(5)

Although we have proceeded above in a formal manner, the analysis can be justified rigorously.

Another method.
(t-1)2	 (t-1)3	 (t- 1)

If F(t) = 1 -
	

+	
-	

+	 = -I - u2 , then
2 

	

-- 	 - (t-1)3

and by reversion of series or by using the fact that F(t) = In t - t, we find

dt = b0 + b 1u + b2u2 +	 =	 +	 + A U4 +
du	 6	 216

Then from (41), Page 276, we find

	

r(z + 1) -	 i - I) { .vi + ()! + -- () - + . .

or	 r(z+1) -	 + jj- +	 +

Note that since F"(i) = -1, we find on using (42), Page 275,

1'(z+l) -
which is the first term. For many purposes this first term provides sufficient accuracy.

ELLIPTIC FUNCTIONS

	

37. Prove (a) - snz = cnzdnz, (b)	 enz = - snz dnz.dt
By definition, if a = 5 v'(l -	

, then w = an z. Hence

	

t2)(1	 k2t2)o	 - 

(a) --(.n z) =	 = 1/(dz/dw) =	 (1 - w2)(1 - k2w2) = en a dn a
dz	 dz

(b) -- (en a) = --(1 - an2 Z) 1/2 =	 (1 - an2 z) 1/2 ±(_ an2 z)
dz	 dz	 dz

= 4(1 - sfl2 z) 112 (- 2 snz)(cnz dna) = - in a dna

38. Prove (a) sn (-z) = - sn z, (b) en (-z) = en z, (c) dn (-z) = dn z.

dt
(a) If z = I	 , then w = in a. Let t = - r; then

Jo \Ii t2)(1 - k2t2)

2	
Vf2)(1 - k2v2) 

or - 2 = 5	 (1 - 2)( -

i.e. an(-z) = - w =  - in a

(b) cn (-z) = V1 - in2 (-a) = '/f in2 a	 cn z

Cc) dn (-a) = V1 - k in2 (-2) = VrI - k2 in2 z = dn 2
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39. Prove that (a) sn(z+2K) = — snz, (b) cn(z+2K) = —cnz.
do	We have z	 Jo	 k ain2a

so that	 = am z and in = an cos	 en z. Now
/i— 

	

di- f	 do	 do

	

o	 'i - k2	 i Ii - k2 BiflO + ',r	 11 -. k sin2 0

	

- 2	 do	
+	

6	 dip-/2

f,/ik2 sin2 0 	 J 'fi - -k-.in-j,
using the transformation I = r + 4,. Hence 0 + r = am (x + 2K).

Thus we have
(a) an (z + 2K) = sin (am (z + 2K))	 sIn ( + ir) = -sin  = - an z

(b) en (z + 2K)	 cos (am (z + 2K)) = cos ( + v)	 - cos o	 - en z

40. Prove that (a) sn(z+4K) = ant, (b) cn(z+4K) = cnz, (c) dn(z+2K) = dnz.
From Problem 39,

(a) an (z + 4K)	 - an (a + 2K) = an a

(b) cn (a + 4K) = - en (a + 2K)	 en a
(c) dn (a + 2K) =	 - k2 sn2 (a + 2K) = fi - k2 an2 a	 dn a

Another method. The integrand
[(i t2

1 	 has branch points at = ±1 and I = ±1/k in the
)(1 - k2t2)

plane (Fig. 10-101. Consider the integral from 0 to w along two paths C 1 and C2. We can deform
C2 into the path ABDEPGHJA + C 1 , where DDE and GHJ are circles of radius while JAB and
EFG, drawn separately for visual purposes, are actually coincident with the x axis.

I plane	 I plane
V	 II

SW

Fig. 10-10	 Fig. 10-11

We then have
dt	 dx

- 12)(1 - k2 t2) = 10 	 V(1 - x2)(1 - kSxZ) +
	 1 —)(I - k2t2)ODE (

-1+1	 dx+ S	 1 k2x2)- 2)(	 + 5	 -	 - x2)(1 - k2x2)- 

+ J _Iit2)(1_k2t2)	 5.1+. V1_x2)(1_k2x2)
GHJ

dt

+

+ JV'W_12)(l_k212)
C'

= 5 dx	
+	

di

(1 - x2)(1 - k2x2)	 (1 - 12)(1 - k212)
Cl

di	
+ (	

di

DDE f(F 12)(1 - k212)	 ' _(1t2)(1 - k2t2)

where we have used the fact that In encircaing a branch point the sign of the radical is changed
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On BDE and GHJ we have t = 1 - e' O and I = —1 + e' respectively. Then the corresponding
integrals equal

C 	 —4@90 do 	. 	 elf/2 de

- -(I - k'(1 - .')'} = " Jo y(2 - .')(l - k'(l - .e()2)

i.e" d.	 .	 &' 1.
o ' /(..')(2 - ie')(l - k2(1 + r.")')	 'o V2 - ie)(1 - k(1 +..--)2i

As -. 0, theae integrals approach zero and we obtain

at	
=4	 dx	

+	 dt

	

10 'V(l - 12)(1 - kits)	 Jo '1(1 - x')(l - k2x1)	 'o '/(1 - t')(1 - k2t2)

Now if we write	 z =	
atI	 ,	 i.e. w = an 

'o I(1 - t2)(1 - k212)

dethen	 z + 4K = )
	 -t2)(1 - k212)

	

,	 i.e. w = an (z + 4K)
0' /i 

and since the value of w is the same in both cases, an (z + 4K) = an z.
Similarly we can establish the other results.

4.1. Prove that (a) an (K + iK') = ilk, (b) cn (K + iK') = —W/k, (c) dn (K + iK') = 0.

(a) We have K' 
=	

dt	
, where k' = 11 - Ic2.Jo	 (1 - t')(l - k'2t2)

Let u = 1/ /1 _k'2 t2. When 1=0, u 1; when t 1, u 1/k. Thus as I varies from 0 to 1,
u varies from 1 to 1/k. By Problem 43, Page 56, with p = 1/k, it follows that Vi- =
- ik'uf1 - k'2u2. Thus we have by substitution

Ilk
du

from which	

-

I	 /(1 u')(l k2u2)
I	 I/k

K + tiC' = I	 du	
+	

du	
=	

I/k

	
du

-'o	 (1 - u')(l - k2u2)	 -'i	 f(1 - u')(l - k2u2)	 '0 V'(l - u')(l - k'uS)
i.e. an (K + iK') = 1/k.

(b) From Part (a),

en (K + iK') =	 1 - Sn' (K + tiC') = '/1 -- 1/k2 	 —i1 - k'/k = —ik'/k

(c) dn (K + iK') = '1 - k2 an' (K + iK') = 0 by Part (a).

42. Prove that (a) an(2K+2iK') = 0, (b) cn(2K+2iK') = 1, (c) dn(2K-i-2iK')
From the addition formulae with a 1 = is = K + iK', we have

(a) an(2K+2iK') = 2 sn(K+iK')cfl(K+iK')dfl(K+iK') = 0
1 -

(b) cn (2K + 2iK') = Cfl 2 (K + iK') - an2 (K + iK') dn' (K + lIC') 
= 11 - k'an(K+iIC')

(c) dn (2K + 2iK') = dn' (K + iK') - Ic' In' (K + iK') cn' (K + tK') 
=1 - 4' an4(K+iK')

43. Prove that (a) an (z + 2iK1) = an z, (b) cn (z +2K + 2iK1) = en z, (c) dn (z + 4iK') = dn z.
Using Problems 39, 42, 170 and the addition formulae, we have
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(a) sn(z+2iK') = snz-2K+2K+2iK')

- an (z - 2K) en (2K + 21K') dn (2K + 2iK') -4- an (2K + 2iK') en (z - 2K) dn (z .- 2K)
1 - k2 sn2 (z-2K) 8n2(2K+2K')

= snz

(b) cn(z+2K-1--2iK')	
cnz cn(2K+ 2iK') - an  sn(2K+21K') dnz cln(2K+21K')

1 - k2 an 2 Z 8n2(2K+2iK')

= cnz

(c) dn(z+4iK') = dn(z-4K+4K+4iK')

- dn (z - 4K) dn (4K + 4iK') -	 an (a - 4K) an (4K + 4iK') en (z - 4K) cn (4K + 4iK')
1 - k2 sn2 (z-4K) an 2 (4K + 4iK')

= dna

44. Construct period parallelograms or cells for the functions (a) sn z, (b) en z, (c) dn z.

The results are shown in Figures 10-12, 10-13 and 10-14 respectively.

MISCELLANEOUS PROBLEMS

45. Prove that P. 	 = F(_-n, n+ 
1; 1; ---), 

n = 0,1,2,3.....

The Legendre polynomials P,,(z) are of degree n and have the value 1 for a = 1, Similarly from
(29), Page 273, it is seen that

F(_n.n+1; 1;	 = 1 -	 l-z) + n(n-1)(n+1)(n+2)(l_Z)2 +

is a polynomial of degree n having the value I for a = 1.

The required result follows if we show that P. and F satisfy the same differential equation. To

do this, let	 a, i.e. a = I - 2u, in Legendre's equation (25), Page 272, to obtain
d2 Y	 dY

	u(1 - a) -j---j- + (1 - 2u)	 + n(n + 1)1' = 0du
But this is the hypergeometric equation (30), Page 273, with a = -a, b = n + 1, e = 1 and

u = (1 - z)/2. Hence , thc result is proved.

46. Prove that for m = 1,2,3.....

/ 1 \ (2 \ / 3 \	 /m - 1\	 (2)(m2
r(—)I' l •-rt	 I =
\?fl/ \flJ \ni/	 \ fl1 /

We have

P =r 1	 ..... (_!	 =
\''J \m/	 \ 

rn,	
\	

rnJ 
\ 

rn/ in
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Then multiplying these products term by term and using Problem 13 and Problem 52, Page 25,
we find

=	 V	 •	 V	 V

	

sin (v/rn) sin (2v/m)	 sin (m -
=	 s,N1	 v	 — (Sr)'"

sin (rim) sin (2s-/rn)	 sin (rn — 1),./m	 m/2. —1 —In
or P	 as required.

47. Show that for large positive values of z,

C7 /
^rl

J. (Z) -	
fln

By Problem 33, Chapter 6, we have

J. W =	 J cos (nt z sin t) dt = Re 
f;l
	 e11. de}

Let F(t) = i sin 1. Then F"(t) = i cos t = 0 where t = ,r/2. It we let t = vIZ + v, the integralin braces becomes

.1	 6—'v/2+v) 64.1n(1/2+0 dv =	 eV/S	
5—iSv

e tz Cog V
dvV	 r

=	 e" 54/24

=	

el(/2) ji,,,2 
e " e—ln/z + in/24	 dv

Let v2 = —2i U2/2 or v = (1 - t)ui'1/i, i.e. u	 4(1 + i)\/v. Then the integral can be ap-
proximated by

	

(1—i) 5(z,.v/2> J •	 du

or for large positive values of z,

	(1 - 1) 6(z,/2)('•'	 (1 - i) 51(v/2)
J'

_U, 
du 

=
and the real part is

1 1	 n,r\	 ( -

	
=	 4Icoa /	 "

W.= 1c00 Z - T) +	 Z 
2	 (z - -

Higher order terms can also be obtained [see Problem 162].

48. If C is the contour of Fig. 10-15, prove that for all values of z

F(Z) 
= e2 — 1 $ '' e t dt

Referring to Fig. 10-15 below, we see that along AB, t x; along DDE, t = .e; and along EF,= xe2*. Then

f
— I 6—t d	

=	
x1 e dx +	 (-e1)' a	 ie° do

ABDEP

+ J x'e2(l1.rrdx

= W.I. 1) f x'' e' dx i- i 2%.0 e—"do



I olane

Fig. 10-15

x
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Now if Re {z) > 0, we have on taking the limit as e -. 0
and R -

e di =	 -1)5 x e dx

- (02.1. 	 1) F(z)

But the functions on both sides are analytic fr all z.

Hence for all z,

r(z)	 t I e	 di

49. Prove that	 sn(zt +z2) =
	 !I z, en Z2 dnz2 + cnzi snz2 dnzt

1 — k2sn2z1sn2z2

Let z + z2 = a, a constant. Then dz2/dz 1 = — 1. Let us define U = Sfl 2 1, V = an 2 2. It

follows that
dU	 '	 dV	 dVd22

= U =	 -dzj = V	 = — cnz2dnz2cnz1dnz1, 

where dots denote differentiation with respect to z 1 . Then

U2 = (1 - U2)(1 — k2U2)	 and	 V2 = (1 — V2)(1 — k2V2)

Differentiating and simplifying, we find

(I) U = 2k2 U3 — ( I + k2)U,	 (2) V = 2k 2 V3 - ( 1 + k2)V

Multiplying (1) by V, (2) by U, and subtracting, we have

UV — UV = 2k2 UV(U2 — V 2 )	 (3)

It is easy to verify that 	 &2V2 - U2 V2 = (1 - k2 U2V2)(V2 - U2)	 (4)

or	 liv - ui' = 
(1 — k2 U2 V2)(V2 — U2)

UV + UV

Dividing equations (3) and (5), we have

UV LIV	 — 2k2 UV(UV + UV)	 (6)
liv-	 —	 1_k2U2V2

But UV - UV = --(UV— UV) and _2k2 UV(UV+ UV) = ---(1 — k 2 U2 V2), so that (6)

	

dx1	 dz1
becomes

d(UV — UV) — d(1 - k2U2V2)

liv - ui' —	 i—k2U2V2

An integration yields	 =' (a constant), i.e.,

snz 1 cnz2 dnz2 + cnz 1 snz2 dnzj	 -

T— -0.0Z1.0Sn 2 22	
-

is a solution of the differential equation. It is also clear that 2 1 + 22 =	 is a solution. The two

solutions must be related as follows:
,nz1cnzsdnz2+cnzjanz2dflzi =	 F'(z1+z2)

1 - k2 2 z Sfl22

Putting Z2 = 0, we see that F(x 1 ) = an z 1. Then 1,'(z 1 + z2) = an (Zj ± 22) and the required result
follows.



296	 SPECIAL TOPICS	 [CHAP. 10

Supplementary Problems
ANALYTIC CONTINUATION

50. (a) Show that F 1 (z) = z + 4z2 + JZ3 + J Z4 + . . . converges for j z j < 1.

(b) Show that P2(x)	 - In 2 + (f4) + . (f.4) 2 + ( _ 4) -F	 converges for

(c) Show that F(z) and F2(z) are analytic continuations of each other.
(d) Can you find a function which represents all possible analytic continuations of P1(z)? Justify

your answer.

Ans. (d) - In (1 - z)

51. A function F(z) is represented in Ix - 1 I < 2 by the series

(-1)" (z - 1)25
n0	 224i

Prove that the value of the function at z = 5 is 1/16.

52. (a) Show that F1(z) 
=	

(1 -I- t)et di converges only if Re (z) > 0.

(b) Find a function which is the analytic continuation of F'1(z) into the left-hand plane.
Ann. (b) (z + 1)/z2 	-

53. (a) Find the region of convergence of F, (z) = 5 	 di and graph this region.

(b) Find the value of the analytic continuation of F 1 (z) corresponding to z	 2 - 4i.
Ann. (a) Re (z + 1)2 > 0, (b) (-7 + 24i)/625

54. (a)Prove that	 +	 =
Z	

+	 +	
{ z/(1_z) if ]zI < I

f- Z2	 1 - Z4	 1 - Z8	 11(1 - z) if lxi > I
(5) Discuss these results front the point of view of analytic continuation.

55. Show that the series 	 cannot be continued analytically beyond the circle lxi
n=O

56. if	 a,, z. has Izi = 1 as a natural barrier, would you expect	 (-1)" a, 0. to have lxi = 1 as
5='

natural barrier also? Justify your conclusion.

57. Let {z,,}, a = 1,2,3, ... be a sequence such that lim z,,	 a, and suppose that for all a, z,, ,' a.n -+ =
Let F(z) and G(z) be analytic at a and such that F(z5) = G(z,,), a = 1, 2, 3.....
(a) Prove that F(z) = G(z). (b) Explain the relationship of the result In (a) with analytic continuation.

[Hint. Consider the expansion of F(z) - G(z) in a Taylor series about z a.]

SCHWARZ'S REFLECTION PRINCIPLE

58. Work Problem 2 using Schwarz's reflection principle.

59. (a) Given that sin 2z = 2 sin z cos z holds for all real values of a, prove that it also holds for all
complex values of Z.

(5) Can you use the Schwarz reflection principle to prove that tan 2z = (2 tan z)/(1 - tan2z)?
Justify your conclusion.

60. Does the Schwarz reflection principle apply if reflection takes place in the Imaginary rather than
the real axis? Prove your statements.

61. Can you extend the Schwarz reflection principle to apply to reflection in a curve C?
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INFINITE PRODUCTS

62. Investigate the convergence of the infinite products

	

(a) fl (1 + 1 \	 (b) fl (	 (a) 11
1	 (1 + coskn\

k1	
J'	

k1 \ - ./ IJ'	 ki

A ns. (a) con y.. (b) div., (a) cony.

63. Prove that a necessary condition for [1 (1 + w) to converge is that urn w = 0.
ki

61. Investigate the convergence of (a) fl (1 + ), ( b) fl (i +	 ), (c) kJl (1 + cot k2).

Ans. (a) div., (b) div., (c) cony.

65. If an infinite product is absolutely convergent, prove that it is convergent.

66. Prove that cos z = 6 ( 1
k=1	 - (2k -

67. Show that fI +	 (a) converges absolutely and uniformly in the right half plane Re (z) 9 0

and (b) represents an analytic function of z for Re (z)	 0.

68. Prove that	 (i -

69. Prove that	 (i -	 + )( -
	

...	 i-

70. Prove that (a) sinh z	 fl i +
(	

Z

kl
42	 \(b) cosh 	

k n 1	
+ (2k_1)22)

71. Use infinite products to show that sin 2z = 2 sin z cos z. Justify all steps.

72. Prove that j( + sin	 (a) converges absolutely and uniformly for all z and (b) represents

an analytic function.

73. Prove that 11 + 	 e	 converges.

	

i\	 /

THE GAMMA FUNCTION

74. Evaluate each of the following by use of the gamma function.

(a)f y3 e 2" dy	 (a) f y2e 21' dy

(e) 5 (yel'}hI4

J	
dy

11	 0

(b) J	
u312 e 3' du	 (d)	 (In (1/t))''2 dt

'0	 0

Ans. (a) 3/8, (b) ' / /36, (a) '/16, (d)	 (e)

75. Prove that r(z) = f (In (1/t))	 dl for Re (z) > 0.

76. Show that f [_1)5 dx = r(1 + p) I'(l - i,), —1 < p < 1.
'I

77. If m, n and a are positive constants, show that

5 x" e-" dx = ! a" 1)/c i' (!!!.±.!
	o 	 n
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78. Show that f e___d t =	 if Re (z) > 0.

79. Evaluate	 (x In x) 4 dx.	 Ans. 2413125

80. Evaluate	 (a) r(-7/2), (b) i'(-1/3).	 Ana. (a) 16//105, (b) -31'(2/3)

81. Show that r(— 4—rn) = (—I)" +l y72"''
	

m 0,1,2
     (2 + 1) 

82. Prove that the residue of I'(z) at z = - m, in	 0,1,2,3,	 •, is (_1)m/ml where Of = 1 by
definition.

83. Use the infinite product representation of the gamma function to prove that

(a)	 r(z) 1'(l—z)	 = am rz

(5)	 22' P(z) F(z + 4)	 =	 r(2z)

84. Prove that if y > 0, 	 Ir(iy)I	 =	 jnh a-•

85. Discuss Problem 84 if y <0.

86. Prove (a) Property 6, (b) Property 7, (c) Property 9 on Pages 268 and 269.

87. Prove that F(4) F() = 4r2/%f

88. (a) By using the infinite product representation of the gamma function, prove that for any positive
integer m	

mtm5 r(z) r(z + 1/m) r(z + 2/rn) •. r(z + trn - 1]/rn)
['(ma)

is a constant independent of a.

(b) By letting a -. 0 in the result of (a), evaluate the constant and thus establish Property 5, Page 268.

THE BETA FUNCTION

89. Evaluate (a) 11(3,5/2), (b) 11(1/3,2/3).	 An.. (a) 16/315, (5) 2r/'./

90. Evaluate each of the following using the beta function.

(a) 5 t-" (1 - t) 213 dt,	 (b)	 I u2(1 - u2) 112 du, (c)	 (9— t2)312 dt,	 (d) f4	
dt

	o 	 o	 4t _t2

An.. (a) 4s-/3V, (b) ,r/4, (c) 243,r/16, (d)

91. Prove that	 B(m+ 1, n)	 m
Min, n+1)	 n

f d - 92. If a> 0, prove that	
-- y4 -

11.±J !
(E 2 '2

93. Prove that ________________ = 2 P stating any restrictions on p.
+

94. Evaluate (a) f sins in c094 t de, (5)	 An.. (a) 3ir/512, (b)w/v1i
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' J	 + X'1 dx where Re (m) > 0 and Re (n) > 0.95. Prove that D(in,n) =

[Hint. Let y = x/(1 + x).]

96. Prove that	 dx =
l+x6

97. (a) Show that if either in or a (but not both) is a negative integer and if in + it < 0, then B(m, n)

is infinite. (ii) Investigate B(m, n) when both in and a are negative integers.

DIFFERENTIAL EQUATIONS
98. Determine the singular points of each of the following differential equations and state whether they

are regular or irregular.
(a) (1_22)Y"_2Y'+GY = 0

(c) z2(1 - 2)2 Y" + (2 — z)Y' + 42Y = 0.
(b) (2z4 - z5)Y" + zY' + (z2 + 1)Y = 0
4fl8. (a) z = ±1, regular. (b) z = 2, regular; z = 0, irregular. (a) z = 0, 1, irregular.

99. Solve each of the following differential equations using power series and find the region of convergence.
If possible, sum the series and show that the sum satisfies the differential equation.
(a) Y"-l-2Y'+Y = 0. (b) Y"+zY = 0, (c) zY"+2Y'+zVO.

Ans. (a) ' = Ae + Bze

(b) V = A(1 — z—' 1	 170+ ...) 
+ n(_1 +!7 _2	 8z10+

(a) Y= A sin z ± B coa x

100. (a) If you solved (I - x2)V" + 2Y	 0 by substituting the assumed solution V 	 a,,z", what
region of convergence would you expect? Explain.

(b) Determine whether your expectations in (a) are correct by actually finding the series solution.

flue. (b) V =	 ...)

101. (a) Solve Y" + 2 2 Y = 0 subject to Y(0) = 1, Y'(0) = —1 and (b) determine the region of convergence.
z4	 z5	 z5	 z9Ans. (a) Y = 1 Z - 34 + 4•5+i • 4 • 7 • 8 4 . 5'89 -	 Izi <

102. If Y = V 1 (z) is a solution of Y" + p(z) 1" + q(z) V = 0, show that the general solution is
' e''V = A Y, (z) + B Y, (z) J (y, (Z)) 2 dz

103. (a) Solve zY" + (1 - z) Y' - Y = 0 .and(b) 1etermine the region of convergence.

f	
2	 z3

Ans. (a) Y = (A + B In z)& - B z +	 + 4) + -j-(i + 4 + 4) +	 (b) Izi > 0

104. (a) Use Problem 102 to show that the solution to the differential equation of Problem 103 can be
written as

V = Ac' + Be' f—do

(b) Reconcile the result of (a.) with the series solution obtained in Problem 103.

105. (a) Solve zY" + Y' - Y = 0 and (b) determine the region of convergence.

Ans. (a) V = (A + B Inz)jij+ -j
 12 + z3

j3152+f

- 2B{fl5t+fr(1+3)+i.(1+4+4)+."}
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106.Prove that I = Ve_jjV(x)dx transforms the differential equation Y" + p(z) Y' + q(z) Y = 0 into

V" + {q(z) - 4p'(z) - i1p(2)1 2)V = 0

107.Use the method of Problem 106 to find the general solution of zY" -I- 21' + zY = 0 (see Prob. 99(c)].

SOLUTION OF DIFFERENTIAL EQUATIONS BY CONTOUR INTEGRALS
108.Use the method of contour Integrals to solve each of the following.

(a) Y"-Y'-2Y=0, (b) Y"4-4Y'+4Y =0, (a) Y"+2Y'+2Y=0.
Ans. (a) 1 = Ae2 + Be —, (b) .Y	 Ae' + Bze 2 , (a) 1	 e-8 (A sin  + B coo x).

109.Prove that a solution of zY" + (a - z)Y' - bY = 0, where Re (a) > 0, Re (b) > 0, is given by

Y = J e tb - I ( - g)-b--I 4g

BESSEL FUNCTIONS

110.Prove that J_,, (z) = (-1)" J (z) for n = 0,1,2,3.....

Ill. Prove	 (a) -i-. {z" J,, (z)} = z J,,_ 1 (z),	 (b)	 - (z" J, (z)) = -z- J,,. (z).dz

112.Show that (a) J. (z) = - J1 (z), (b)Z3 J2 (z) dz = 25 J3 (2) + a, (a) 5 23 .10 (z) dz = z3 1 1 (z) -2z2J2(z) + C.

113.Show that (a) JJ12 (z) = V'-2—/wx sin z, (b) J_ 112 (z) = V21WX cos z.

Ill. Prove the result of Problem 27 for non-integral values of n.

115.Show that J312 (z) sin z -	 coa x =

116.Prove that J. (z)	 4(J,, j (z) - J,, + 1(2)).

117.Prove that	 (a) J,'(z) = (J,,_ 2 (z) - 2 J. (z)+ J. +2(2))
(b) J(z)	 (z) - 3 J,._ 1 (z) + 3 J,,. 1 (z) - J,, + , (z)).

118.Generalize the results in Problems 116 and 117.

It'W
119.By direct substitution prove that 4 (z) =	 I cos (z sin ) do satisfies the equation

V

zY" + Y' + zY = 0

120.If Re (z) > 0, prove that fe 4(t) dt =	 1
o	 Vz2+i

121.Prove that: (a) coo (a cos 0) = .F0 () - 2 J2 (a) coo 20 + 2 J4 (a) coo 4o +

(1.) Sifl(aCoS9) = 2J1 (a)coa• - 2J3 ()co83 + 2J5 (.4co.5 -

122. If p is an integer, prove that
J(x + 1')

(flint. Use the generating function.]

123. Establish Property 8, Page 271.

=	 (x)J,(y)
N =
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124.If Re (z} > o, prove that J,,(z)	 e' t-" -' dt where C is the contour of Fig. 10-5,

Page 268.

125.If Re {x) > 0, prove that

J. (Z) =	 ' cos (n# - sin 0) d	
-	 - 'a" d#

r. o 	 '0

126.(a) Verify that Yo (z), given by equation (21) on Page 272, is a solution to Bessel's equation of order
zero. (b) Verify that Y. (z) given by equation (22) on Page 271 is a solution to Bessel's equation of
order n.

127.Show that: (a) z Y, -, (z) - Zn Y. (z) + z	 (z) = 0

(b)	 {z" Y. (z)} = z" Y,,_, (z) 	 (c) -- (z" Y. (z)) = —z	 Y 1(z).
dz

128.Prove that the general solution of

t

I	 l2 - 1/4)------4V = 0
z	 J

is V = 'T (A J,,(z) + B Y,,(z)).

129.Prove that J,.+ 1 (z) Y, (z) - J, (z) Y, 41 (z) = liz.

130.Show that the general solution of V' + zm2 V = 0 is

=	 {AJIIm (
2 z.u2) + in',,,,, (z/2)}

131.(a) Show that th general solution to Bessel's equation z2 Y" + z Y' + (z2 - n2)Y = 0 is

Y = A J,,(z) + B J,.(z) J' —
X J,,(z)

(b) Reconcile this result with that of equation (24), Page 272.

LEGENJ)RE FUNCTIONS

132.Obtai.. the Legendre polynomials (a) P3(2)1 (b) P4 (z), (c) P, (z).

Ans. (a) 4(6z3 - 3z), (b) (35z4 - 3022 + 3), (c) (63z5 - 700 + 15z)

133.Prove (a) P, 4 , (z) - l',.., (z) = (2n + 1) P W. (b) (n + 1) P,. (z) = P+, (z) - z P'

134.Prove that nP + (z) - (2n + 1)zP,(z) + (a + OP. - 1 (z)	 0.

135.Prove that (a) P. (-1) = (—l), (b) P2,. 41 (0) = 0.

136.Prove that P2,,(0) =
	

(Zn—i)' = (_1)1.3.5•'•(2n1)
2 4'6''(2n)

137.Verify Property 2, Page 272.

138.If tnI21 denotes the greatest integer 	 n12, show that
(n/21	 (_i)k (2n - 2k)!

P,,(z) =
k0 2"k!(n—k)!(n--2k)1

139.Prove that the general solution of Legendre's equation (1 - z2)Y" - 2zY' + n(n + l)Y = 0 for

= 0,1,2,3.... is dt
Y = A P,,(z) + B Q,,(z) 	 where	 Q,,(z) = P,,(z)

140. Use Problem 139 to find the general solution of the differential equation (1 - z)Y" - 2zY' + 2Y = 0.

Ana. Y = Az + B {i + 4z In
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THE ZETA FUNCTION
141.If Re (z) > 0, prove that

1

	

f(s) =	 ++	
= ii 0 es — i

142.Prove that	 (i - i)(i - )(i - j)(1 - 4i) ... =	 where 2,3,6,7, . . . are the series of
prime numbers.

143.Prove that the only singularity of f(s) is a simple pole at z = 1 whose residue is equal to 1.

144.Use the analytic continuation of f(s) given by equation ($3), Page 273, to show that (a) f(-1) = — 1/12,(b) r(-3)' = 1/120.

145.Show that if z is replaced by 1 - z in equatiàn (Si), Page 273, the equation remains the same.

THE HYPERGEOMEflUC FUNCTION
146.Prove that: (a) In (1 + z) = z ?(1, 1; 2; —x)

(b) tan	
= F(112, 1; 3/2; _z2).

147.Prove that	 cos 2aZ	 F(a, —a; 1/2; sin2 z).

148.Prove that	 F(o, b; C; z) =	 F(&+1, b+1; c+1; z).

149.If Re (c - a - b) > 0 and c " 0,—i, —2.... . prove that
P(a,b;c;i) = 1'(c)I'(c—a—b)

r(c — a) r(c — b)

150.Prove the result (Si), Page 273.

151.Prove that:	 (a) T(a, b; c; z) = (1 - z)b F'(c—a, c—b; c; z)

(b) F(a, b; c; z) = (1 - z)-a F(a, c—b; c; z/[z-1J).

152.Show that for rz - i I < 1, the equation z(1 - z)Y" + ( c - (a + b + 1)z)Y' - abY = 0 has the
solution F'(a, b; a+b — c+1; 1—z).

ASYMPTOTIC EXPANSIONS AND THE METHOD OF STEEPEST DESCENTS
153.Prove that

-5I dt = 1—ap'

1
1 - 1 + 1 • 3 -	

(-1)" 1 , 8-6 .. .(2* —1)

	

2p2z 	(2p2z)2	(2p2z)	 }

i35" . (2n+i) (p d1
'(-1)'"'	 ()+l	 dt

and thus obtain an asymptotic expansion for the Integral on the left.

151. Use Problem 163 to verify the result (48) on Page 276.

155.Evaluate 501 .	 An,,. 3.04X 10'

I •3•5...(.j)156.Show that for large values of a,	
246 . (2n)	 -
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157. Obtain the asymptotic expansions:

(a) - 11!	 2'31	

+

(b) ji+i

158. Verify the asymptotic expansion (49) on Page 275.

159. Use asymptotic series to evaluate f -Ldt .	 Ans. .915, approx.

160. Under suitable conditions on P(f), prove that

f e P(t) dt -	 +	
+ F"(0) +

z	 22	 Z3

161. Perform the steps needed in order to go from (4) to (5) of Problem 36.

162. Prove the asymptotic expansion (46), Page 275, for the Bessel function.

a	 b
163. If F(z) -	 and 19(z) prove -, prove that:

,.=o	 ,,=o z

(a) F(z) + G(z)	
a,, + b,,

,,=o	 z

(b) F(z) G(z) -	 where C,,	 akb,,_k.
,,=O Z"	 k0

164. If P(z) -	 prove that	 V(z) dz

165. Show that for large values of z,

S
i1i	 3	 25 +

(1 + t2)	
+	 + 128Z5/2

ELLIPTIC FUNCTIONS

166. If 0 < k < 1, prove that

K	 J=	 =-	 -'"	 d•	
+ () 2 k2 + t 'k4 +— k2 j2g	 2.4)

167. Prove: (a) an 2z = 2 an z cn z dn Z 	 (b) en 2z = 1-25fl2 Z +k2 an4 2
1 - k' an4 z	 1 - k2 an4 Z

168. If k = %f '2, show that (a) an (K12)	 / 73, (b) en (K12) = fi7, (c) dn (K12) = v'i72-.

169. Prove that	 en A+ an B
en A + cn B 

= tn 4(A + B) dn 4(A - B).

170. Prove that (a) an (4K + 4iK') = 0, (b) cn (4K + 4iK') = 1. (c) dn (4K + 41K') = 1.

171. Prove: (a) an z = z -. 1( 1 + kt) zS +	 (1+14k+ k4)z5 +

(b) en z = 1 - 4z2 + 21 (1 + 4k2)z4 +

(c) dn z = 1 — 400 + 1k3(k1 + 4)z4 +

I'
172. Prove that	

dt
J	 = r

173. Use contour integration to prove the results of Problem 40 (b) and (a).

303
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174. (a) Show that J	 j-	 j	 where k 1 = 2VE'(l +k) by using

Landen's transformation, tan 0 = (sin 2 1 )/(k + cos

(b) If 0 < k < 1, prove that k < Ic 1 < 1.

(c) Show that by successive applications of Landen's transformation a sequence of moduli Ic,,,
a	 1,2,Z3,... is obtained such that urn Ic,, = 1. Hence show that if 'I' = urn f,,,

' do	 rk. k2k3..	 v

I

	 In tan —+—
0 %ui . k2 sin2 ,	 Ic	 \4	 2

(d) Explain how the result in (c) can be used in the evaluation of elliptic integrals.

175. Is tnz	 (on z)/(fl a) a doubly periodic function? Explain.

176. Derive the addition formulae for (a) cn (z + a2), (b) dn (z 1 + a2) given on Page 276.

MISCELLANEOUS PROBLEMS
./2

177. If II < 1, 8hOW that f	 flPQ d = 4,,- see (pr/2).
0

178. If 0 < n < 2, show that 5	 --dt = ,r csc (n,,'12)
2r(n)

179. If 0< n <1, show that j Cos _ t dt =
2r(n)

180. Prove that the general solUtIoi of (1 — z2)Y" — 4zY' + 10Y = 0 is given by
Y	 A l'(6/2, -1; 1/2; z2) + Ba P(3, -'1/2; 3/2; z2)

181. Show that: (a) 5 sin e5 dt =	 r(1/3)
0

(b) Jo, cos t dt =	 r(1/3).

182. (a) Find a solution of zY" + Y' + zY = 0 having the form (In a) (i ak z'), and thus verify
the result (23) given on Page 272. (b) What Is the general solution?

183. Use the method of Problem 182 to find the general solution of *21'" + zY' + (22 - n)Y = 0. [See
equation (22), Page 271.1

184. Show that the general solution of at)" + (2m + 1)U' + at) = 0 Is

(7 = zm(AJ,,,(z)+BY,,,(z)}

185. (a) Prove that z 112 J1 (2i Z112) is a solution of zU" - U = 0. (b) What is the general solution?
Ans. (b) Y = a 1 "2 (A J (2i Z1/2) + BY 1 (2i Z1/2))

186. Prove that	 (J0 (z)) + 2(J 1 (z)) + 2(J2 (z))' + . . .

P5 (cos a)
187. Prove that	 e°' J0 (z sin a) =	 .

188. Prove that	 r'() =	 /(y + 2 In 2).

189. (a) Show that J e-dt= - - lnz + a -	 + iil -
(5) Is the result in (a) suitable for finding the value of 5	 dl? Explain. [Compare with

Problem 151
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190. If m Is a positive integer, show that 1(4,—m; 4—rn; 1)	 2-4-6 . 2,n
1 • 3 • 5 (2 —1)

191. Prove that	 (1+z)(1 _)(i +.)(i - 1	 V-.-

 =	 _

192. Prove that 
f/2	

= j 
1(4.4; 1; k2).

193. The associated L.egendre functions are defined by

	

P" (z) = (1 - z2)m12	 P (z)
(a) Determine P 21 (z).

(b) Prove that P' 	 satisfies the differential equation

(1 - z2)Y" - 2zY' + {n(n + 1) - T2} y = o
(c) Prove that J p) (z)	 (a) d--= 0 if n' 1.

This is called the orthogonality property for the associated Legendre functions.
Ans. (a) 15z(1 - a2)

194. Prove that if m, n and r are positive constants,
çl 

x"'(1_z)'IdX	 B(rn,n)
'O	 (x+r)"""	 r"(1+r)"4'

[Hint. Let a = (r + 1)y/(r + y).)

195. Prove that if m, n, a and b are positive constants,

(12jn2m_I e cos' ide	 = B(rn,n)
J	 (a s in2 a + b cos2 9) + a	 2a" b"'

[Hint. Let a = sin 2 S in Problem 194 and choose r appropriately.)

a -196. Prove that: (a)	 J, (Z) + 3J3 (z) + 5J5 (z) +

(b) - = 1 2 .12 (5) + 22J4 (z) + 32 J6 (z) +8

191. If rn is a positive integer, prove that:

(a) P2. (a)	 = (-1)" (2rn)! P(—m,m+4; 4; a2)
22m (M!)2

(b) P2m+ (z) - (-1)'" (2rn + 1)! a F(—m, rn+9;; 22)-	 22,., (rn!)2

198.(a) Prove that 1/(sn a) has a simple pole at a = 0 and (b) find the residue at this pole.

199. Prove that

	

	 (1(1))2 = 8\14681012141618
5-5-9-9-13-13.0-0—

200. If jzj < 1, prove Eider's identity: 	 (1 + z)(1 + z2)(1 + )•	
=	 1 -	 - z)

An.. 1

201. If Izi < 1, prove that 	 (1 - z)(1 - z2)(1 - 3). . . = 1 +	 (-1)" (2.0- 1)/2 +	 4 1)12).

,.	 I

202. (a) Prove that _..1__ +	
22

1 + a	 (1+ z)(1 + a2) + (1 + z)(l + z2)(j + a4) +	 converges for IzI < 1 and
IzI > I.

(6) Show that in each region the series represents an analytic function, say P (a) and F2 (a)
respectively.

(c) Are F, (z) and F2 (a) analytic continuations of each other? Is F (a) = 12 (z) Identically?
Justify your answers.



306	 SPECIAL TOPICS 	 [CHAP. 10

203.(a) Show that the series	 f converges at all points of the region Izi 1.

(b) Show that the function represented by all analytic continuations of the series in (a) has a
singularity at a = 1 and reconcile this with the result in (a).

204.Let Ia. ZN have a finite circle of convergence C and let P(z) be the function represented by all
analytic continuations of this series. Prove that F(z) has at least one singularity on C.

205.Prove that en 2z + dn 2z = dn' a.1 -1- cn 2z

206.Prove that a function which Is not identically constant cannot have two periods whose ratio is a real
Irrational number.

207.Prove that a function, not identically constant, cannot have three or more independent periods.

208.(a) If a doubly-periodic function Is analytic everywhere in a cell [period parallelogram], prove that
it must be a constant. (b) Deduce that a doubly-periodic function, not Identically constant, has at
least one singularity in a cell.

209.Let F(z) be a doubly-periodic function. (a) Prove that if C Is the boundary of its period parallelogram,

then F(z) dz = 0. (b) Prove that the number of poles Inside a period parallelogram equals the

number of zeros, due attention being paid to their multiplicities.

210.Prove that the Jacobian elliptic functions an z, en a and dn a (a) have exactly two zeros and two poles
in each cell and that (b) each function assumes any given value exactly twice In each cell.

211.Prove that(i + j)(1 +	 + 'i).-	
(I'(1/3))2

= { (.)}2{ (i.)}2

1	 2!	 4!	 6!212.Prove that J	 — — - 	+ —j-- 	+
0

213.Prove that	 P. (cos 0) = 2 11-3 . 5 ... (2n-1)	 • +1	 1 2n
2'(2n-1)coo cog (n-2)a

246- (2n) J

+	 1 • 3 2n(2n —2) cos (n - 4)e + •
2-4(2n-1)(2n-3)

[Hint. 1 - 2t cog  + j2 = (1— te'°)(l - te').

214.(a) Prove that r(z) is a meromorphic function and (b) determine the principal part at each of its poles.

215.If Re (it) > —1/2, prove that

= 2"/ l'(n + 4) J' e (1— tZ)n—IIS dt

ZN

= 2"v r(n + 4) J' V coo (z cos e) sin 2"9 d•

(in +n+ 12"l'	 2	 )216.Prove that	 t' J,1 (t) di =	
- n+ 1)

2

1217. Prove that 	 W,I COSO Cos qs d	
rr(p+1)

o	 (2 + p + g\ I' (2+P:1)2P'1'	 2	 )

2111,. Prove that	 (r(4))' = 4V	
d.J vi


