DIFFERENTIAL CALCULUS

1 ; AN Ipea OF NuMBeR SysTem

1.1 Introduction : Calculus - origin and extension.

Calculus, fundamentally different from Arithmetic, Algebra or
Geometry, is essentially concerned with change and motion; calculus
deals with quantities that approach other quantities. When there is
continuous and gradual change, however small the change be, Calculus,
with its novel concept of ‘limir’ and limiting operations, is the right
mathematics to apply..

Though invented initially to meet the mechanical or geometrical
needs, today Calculus and its extensions in mathematical analysis are
far reaching. Besides being used in theoretical fields of enquiry, Calculus
is now used in determining the orbits of artificial satellites and space-
craft, in predicting population size, in estimating how fast the price of an
agricultural cofnmodity rises, in forecasting weather, in measuring the
cardiac output of the heart and in a large variety of other areas.

However, diverse be the area of application of subject, the common
theme is the way or manner in which one quantity changes with another
when the change in the later is very small or, more properly, with the rate
of change of one quantity with the other.

In these investigations one has to deal with the relations between
pure numbers which represent the magnitude of the quantities. That is
why we begin our study of Calculus with a short discussion on number
system.

1.2. Numbers.

The earlicst concept of numbers originated from counting, and the
first sct of numbers which was known to men, was the set of positive
integers. The arithmetical process of subtraction needed an extension
to negative integers, and zero was included as a number. The process ot
division required a further extension to rational numbers, which are
defined to be numbers of the form - where m and n are integers,
ultimately prime to each other, n being positive and not equal to zero. It
may be noted that terminating decimals, as also recurring decimals, which

arc expressible in the form 2 fall under this category.
l .
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1.3. Geometrical representation of rational numbers; rational points.
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Take a line m extending indefinitely in either direction, for
reference, and a suitable point O on it as origin. A suitable length OA on
it being chosen as unit, if we divide OA inton equal parts, and take a
length OP (or OP")equal to m such parts (towards the right of O if m
be positive, and towards the left if m be negative), the length OP
(or OP'), or the paint P (or P’, as the case may be) represents the
rational number 2 . The point P, representing a rational number, is called
a rational point.

1.4 Properties of rational numbers.
(i) Rational numbers are well-ordered. This means that of two
.unequal rational numbers a and b, either a > b or a < b; also if
a>barid b>c,then a>c,etc. In other words, rational numbers are
well arranged in respect of their magnitudes, points representing higher
numbers always falling to the right of those representing smaller ones,
and vice versa, in their gcometrical representation.

(ii) Rational numbers are everywhere dense; in other words, between
any two rational numbers, however close, or within any interval on the
axis representing rational numbers, however small, there is an infinite

number of rational numbers or points.

This may be easily seen from the fact that, however close the two
rational numbers a and b may be, %(a+b ) is a rational number lying
between them. Similarly, between a and %(a+b), as also between

%(a+b ) and b, we can insert rational numbers, and so on. Thus there
is an infinite number of rational numbers between a and b.

1.5. Irrational numbers.

Whereas all rational numbers are represented by points on the axis,
and though in any interval, however small, there is an infinite number of
rational points, still the converse, that every point on the axis must

represent some rational number, is not true;

e.g., OP = ﬁ is not rational.
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OA being unity. if AB be taken at right angles to OA and equal to
it, OB is joined and on OX , OP be cut off, equal to OB, then OP
represents a number equal to \E , which is not rational.
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Proof: For, if J2 =m/n where m, n are integers prime to each
other, then m? =2n’ , showing that m? and so m is an even integer (for,
the square of an odd intcgér is evidently odd). Let m=2m' where m’
is an integer. Then we get n? =2m'2 and so n is also an even integer.

Thus m and n, which have a common factor 2, cannot be prime to one -
another, thus leading to a contradiction:

Similarly, equations like x* =7, 4x* =13, etc. cannot be solved in
terms of rational numbers alone. Besides radicals, there are other types
of number like e, 7, ... (called rranscendental numbers) which are not
rational.

There are, therefore, numbers other than rational numbers, which
are called irrational numbers, thus leading to a further extension of
numbers.

1.6. Relations of irrix’tional numbers to rational numbers;
representation of numbers (rational as well as irrational) as sections
of rational numbers.

Consider the number ~/2 . There is no rational number whose square
is 2. The system of rational numbers, therefore, can be divided into two -
classes, say L and R, such that all numbers of the L-class have their
squares less than 2, and those of the R-class have squares greater than
2. Hence, every number of the R-class > every number of the L-class.

Thus, 1,1-4,1-41,1-414,1-4142,.... belong to L-class

and 2,1-5,1-42,1-415,1-4143,.... belongto R-class.

The differences of the corresponding numbers of the two classes
are, respectively,

1,0-1,0-01,0-001,0-0001,......
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Proceeding in this manner (by expressing J2 in a decimal form,
which will lead to an endless decimal not recurring, and choosing the
rational numbers of the two classes by stopping at any stage) we can
find a member of the L-class and a member of the R-class which differ
from one another by as little as we plcase. Our common sense notion,
therefore, demands the existence of a number x, and a corresponding
point P on the axis, such that P divides the class L from the class R.

But this number x is not rational and belongs to neither of the two
classes. Further, xis neither > 2 nor < 2.

For,if x* >2,let 27 = 2+¢& . Then however small £ may be, we can
get rational numbers of the R-class whose squares being > 2 will differ
from 2 by less than €. Such rational numbers of the R-class will lie to the
left of x, and so the assumption that x is the point dividing the two

classes is untenable. Similarly, x? £ 2.

xl= 2,0r; x= JE , and being not rational as proved before, it
belongs neither to class L nor to class R. The point P is thus only a
point of section of the two classes of rational numbers L and R defined
before, not belonging to either class, and representing the irrational:
number v2 .

This leads (0 a new idea of defining numbers us sections of rational
numbers, as follows :

“If by some means or other we divide all rational numbers into two
classes L and R, such that each class contains at least one rational
number, every rational number belongs to cither L or R, and each
number belonging to R-class > every number of the L-class, then we
obtain a section of rational numbers which dcfines a number, rationai or
irrational; the particular mode.of division defines a particular number by
its section.”

Three cases may arise : (i) That L-class has a greatest number, but
the R-class has no least; e.g., let all rational numbers > S belong to R-
class, and the number 5, as also all rational numbers < 5 belong to -
class. The section in this case represents the rational number 5, which
belongs here to one of the two classes, namely, the L-class. (ii) The L-
class has no greatest number, but the R-class has a least one; e.g., all
rational numbers < —3-5 belong to L-class and -3-5 with all rational
numbers greater than this belongs to R-class. Here the section represents
the rational number — 3 - 5, and the number itself belongs to R-class. (iii)
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The L-class has no greatest number and the R-class has no least number;
e.g., all rational numbers whose cubes are < 7 belong o L-class, and
those whose cubes are > 7 belong to R-class; there is no rational number,
as can be shown, whose cube is equal to 7. The section in this case

represents the irrational number Y7 and belongs to none of the classes
L and R which consist of rational numbers only.

It may be noted that the case in which the L-class his a greatest
number and the R-class has a least number simultaneously is not possible,
for otherwise, ‘between these two rational numbers there would be an
infinite number of rational numbers as proved before, and they would
belong to none of the two classes.

This extension of our conception of numbers as sections of rational
numbers gives us a more satisfactory basis of defining all numbers in a
uniform way. We no longer think of numbers as isolated members, but as
an aggregate of rational numbers divided into sections.

1.7. Real numbers.

All kinds of numbers, rational as well as irrational. positive and
negative, including zero, constitute what are called real numbers.

The contents and classification of real number system will be
understood at a glance from the scheme given below.

Real Numbers

l
1 :

Rational Numbers Irrational Numbers

42,7, 41, te. ...

Integers Fractions
1 42
0,+1,+2,... 3.5,

It may be thought that just as from rational numbers, by dividing them
into two classes by sections, we get, in addition to rational numbers, a
new type of numbers, namely irrational numbers; similarly by sections
of real numbers again, we may expect a further extension of numbers.
But this is not true. In this connection we state the following theorem :

(given in the next page)
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Dedekind’s theorem (on sections of real numbers) :

If real numbers be divided into two classes L and R in such a way that
(i) évery real number belongs to one class or the other,

(ii) each class contains at least one number, and

(iifyany number of the L-class is less than every number of the R-
class,

then there exists a real number ‘a’ which effects this section, i.e., which
has the property that all numbers less than ‘a’ belong to L-class, and
all numbers greater than ‘a’ belong to R-class, the number ‘a’ itself
may belong to either class. '

| For proof, see Hardy's Pure Mathematics. |

Thus as sections of real numbers we get real numbers alone (unlike
that in case of rational numbers), and not any other new type of numbers.

Thus no further extension of numbers is possible; and the aggregate
of real numbers is complete. The correspondence (one to one) between
all the points on the line XOX without exception (called the linear
continuum) and the system of all real numbers, rational and irrational

- (constituting what is called the arithmetical continuum), is now perfect.

1.8 Fundamental Properties of real numbers
Properties involving ‘addition’ and ‘multiplication’ of real numbers

@) If a, b are any two real numbers, then (a@+5) and ab are also real
numbers, i.e.,

(a+b), abe R, forall a,be R.
(i) a+b=b+a and ab=ba,forall a,be R.
(i) a+(b+c)=(a+b)+c and a(bc)=(ab)c,forall a,b,ce R.

(iv) The real number O (which is an integer and a rational number) has
the following properties :
a+0=0+a=a, a.0=0.a=0 forall ae R.
Division by zero is meaningless in the set of real numbers.
(v) For every real number a, there exists a real number — g, such that
a+(-a)=-a+a=0.
(Vi) For every real number 1 (which is an integer and a rational number)
has the following properties :
a.l=l.a=a forall ae R.
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' 11
(vii)Forevery a (£0)€ R, there existsle R, where a.; = ;—.a =1.
a

(viii) a—beR forall a,b€ R, where'a—b is defined as
a-b=a+(-b).
(ix) a.(b+c)=a.b+a.c,forall abceR.
() If ais any real number (#0) and b is any real number, then
b b 1
— isdefinedas —=b.—
a: a a
(i) a.(=b)=(-a).b=-(a.b) and (-a).(-b) =ab,forall abeR.
(xii) 1#0. .
(xiii) For a,be R, a.b=0=> at least one of a and b must be zero.

1.9 Properties regarding order relationin R.

(i) For any two real numbers a, b one and only one of the statement :
“a>b”, “a< b”, “a=b" mustbe true.

(i) a>bandb>c = a>c forall abceR.

(i) a>bandc>0 = ac>bc,forall a, b, ceRR.

(iv) a>b=>a+c>b+c,forall a,b, ce RR.

(v) a>0,ifandonlyif ~a<0.

(vi) a>b, ifandonly if a—H>0 and a<b,ifand only if a—b<0,
- where a,b€R.

(vii) a>b and c<0=>ac<bc, where ab,c€ R

(viii) @2 20 forallae R (x> y means x>y, or, x=y)

(ix) Between any two distinct numbers, there exist an infinite number of
rational numbers as well as an infinite numbers of irrational numbers.

(x) Ifa(>0) and b are two real numbers, then there éxisls at least one
positive integer n such that n a > b.

Note : 1. For any real number a, one an only one of ‘a>0’, ‘a<0’, ‘a=0’
must be true.

2. A real number ais said to be positive or negtive according as a> 0,
or,a<0. )
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. 1t should be remembered that the real number 0 (which is also a .
rauonal number) is neither positive nor negative.

1.10. Integers

In Art 1.2, it has been discussed that in the process of counting number
of elements of a finite set (e.g., the number of rooms ina house, the number
of trees in a garden, the number of students in a class, etc.) the natural
numbers denoted by the symbols, 1, 2, 3, . . . we obtained, and the set of
natural numbers is denoted by IN.

Now for every natural number n, the numbers given by the symbol —
is introduced together with the introduction of the number ‘zero’ ex pressed
by the symbol 0, where x+0=0+x=x forevery xe N.U{-nnne N)U{0)
and i+ (=n)=—n+n =0 forevery xe N. )

Elements of the set N U {-n :n € N} (0] are called integers. The set
of all integers is denoted by Z.

Remarks : The integer O is neither positive nor negative.

Factors of an Integer

Aninteger a(# 0) iscalled a factor or adivisor of an integer b, it & can
be expressed as b= ac (or, ¢ a), for some integer c. In this case ¢ will also be
afactorof bif c#0.

Forexample, as 2.3=(-2) (-3) =6, 2, -2, 3, — 3 are factors of 6.

We observe that if a is any non-zero integer, then 1, -1, ¢, ~a are
factors of a.

Prime Numbers

An integer p (> 1) is called a prime number if p has no factor besides
I, =1, p, — p.Forexample, 2,3,5,7, ... are prime numbers. The integer 2 is
the least prime number.

Remark : From the definition of prime numbers, it follows that the integers 0,
I are not prime numbers.

Relatively Prime Numbers

The integer a and b are said to be relatively prime or, co-primes or,
prime to each other if the integer 1 is the only positive integer which is a
* common factor of a and b. We note that 6 and 29 are relatively prime integers,
while, 9 and 24 are not relatively prime to each other.
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AnImportant Property of Prime Numbers

If p be a prime number and a, b are integers where p is a factor of the
product ab, then p is a factor of at least @ and b.
Even and Oddintegers

It can be shown that any integer is either of the form 2im, or, of the form
of 2m+1, where m is aninteger.

An integer of the form 2m (where in is an integer) is called an even
integer, while an integer of the form (2m+1), (where m is an integer) is
called an odd integer.

Thus 0,12, +4, +6,... are even integers and *1,£3, £5,... are
odd integers.

Note : The integer 0 is an even number.

1.11 Intervalsin R.
Let a,beR and a<b.

(i) Theset {x:xeRand a<x<b}isdenoted by (a, D)andis called as
wpen interval.

(i) Theset {x:xeR and a < x < b} is denoted by [a, b] and is called
an clased_ interval.

(i) The sets {x:x€ Randa<x<b) denoted by [a, b) and’
{v:xe Rand a<x<b) denoted by (a, b] are called Semiopen or
Semiclosed intervals.

The set R is also regarded as an interval and is denoted by (—ee. e)

where we write R = {x:—ee < x < o0} .

It should be noted that the symbols oo,—oo do not represent real
nunibers.

For any real number a, the set {x:x€R andx 2 a} is denoted by
[a, o) and this is a semiopen interval.

Similarly the sets (x:xe Randx>a),’ {x:xe Rand x<a},

{x:xe R and x <a) are respectively denoted by (a, ), (—os, a]. (~=, a)
and these sets are also called intervals.
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1.12. Complex numbers.

In order to fill up the gaps and bring about a uniformity in the theory of
equations, as also in all other theorics of higher mathematics, it has
been found necessary to introduce a class of numbers, called complex
numbers. A complex number has been defined by modern
mathematicians as an ordered couple of real numbers, i.e., a pair of real
‘numbers united symbolically in a particular order for the purpose of
technical convenience. Thus a complex number is, strictly speaking, not
a single number at all, but a pair of real numbers with a proper order. If
the order is reversed, we get a different complex number. A complex
number may be cxpressed in the lorm | «, b ], where a and b are two real
numbers. It is also represented. for convenience, in the form a + ib,
where the symbol i has no meaning by itself; it merely indicates the
order in which the real numbers @ and b are considered. In defining all
ordinary algebraical operations with regard to complex numbers it has
been found convenient to associare the symbol i with the property,
i? =1 in which case all operations consistent with the algebra of real

numbers may be applied to the case of complex numbers.
For geometrical representation and further introduction into the
algebra of complex numbers see Chapter VI, Das and Mukherjees’ Higher

Trigonometry.
1.12 Miscellaneous Worked out Examples

Ex. 1. Prove that /3 is not a rational number. [B. P. 1997)

Solution : Since, 1< 3 < 4, 1< 3 < 2. which shows that J3 cannot
be an integer.

Now, if possible, let J3 be arational number. -
We assume, 3 =2, ' (1)

q
where g >1 and p and q are positive integers prime to each other.

2 2
From(1) £; =3,ie, £ =34 -
q q

Since p and q are positive integers prime to eich other, p? and q are

also positive integers prime to each other. Again, since g >1, pT represents
a rational number, which is not an integer, but 3q represents a positive integer.
So, from (2), we get, a positive rational number which i~ not an integer is
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equal to a positive integer. But this is not possible. Hence, our initial
assumption cannot be true, i.e., J-S: cannot be a rational number.

_Ex. 2. Prove that log, 6 is an irrational number.
Solution :  log, 6 =log,(2x3)=log, 2+log, 3=1+log, 3.
log, 6 will be arational number, if log 3 is rational. If possible. let us

assume that log, 3 is rational and log; 3= £ , when ¢ #0 and p, g are

positive integers prime to each other.
P
Now, = log,3=2,29 =3 0r, 29 =39.
q

Obviously, 2 and 3 are prime to each other, and p and g are also assumed
to be integers prime to each other. So, the equation, 2” =37 cannot hold.
Therefore, log, 3 cannot be a rational number.

Since, the sum of a rational number and an itrational number is irrational,
log, 6 cannot be a rational number.

Ex.3. Prove that Y3+42 isan irrational number.

Solution : Let us assume the contrary, i.e., \E -h/i is rational.

(e dB)B-3)=1
1
A %

is also a rational number, since it is the quotient of two rational numbers 1 |

and‘(JShfz—). ' ‘

Thus, V2 = —{(J- 3+42)- (J— =g )} being the difference of two rational
numbers, is rational. Thus we arrive at an absurd conclusion.
‘Hence, our initial assumption that (wﬁ * V2 ) is rational is wrong.
. So, ﬁ + JZ- is an irrational number.

Ex.4. Show that no positive integer m other than a square number has a
square root within the aggregate of rational numbers.

Solution: Letmbea positive integer which is not a square number. Then
we are to prove that Jm cannot be rational.
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Since m is not a square number. we have a positive integer n such that
2 2
nt <m< (n+1)
E)r, n<sm<n+l

whence it follows that Yin cannot be an integer.
If possible, let us assume that Y is rational.

Then Jm =L where ¢ > 1 and p and g are integers prime to each other.
q .

v Bads

q

2
or, p_2 =m
q
2
or, £ =mgq. )
q

" p and g being integers prime to each other, p*and g are also positive

integers prime to each other. Also, since ¢ >1, s is rational number which
1S not an integer. 7
But, m and g being both positive integess, mq is also a positive integer.
" So, from (1) we get a rational number which is not an integer = a positive
integer, which is impossible.
‘ Thcrefore. our assumption cannot be true, i.e., Jin cannot be a rational
_ number.

Ex. 5. (i) If r and s arc any two rational numbers, prove that (r+s) and
(rxs) are also rational numbers. [ C. P 2003, B. P 1992, 93, 95 ]

(ii) Give examples to show that the sum and product of two
irrational numbers may be rational or irrational. [ B. P 1994 ]

Solution : (i) If possible, let r+s=p, where r and s are rational
numbers, while p is an irrational number.

o r=p=—yx
since the difference of an irrational number and a rational number cannot

be a rational number, so r cannot be a rational number, which contradicts
our initial condition that r is rational. Therefore, the sum of two rational

numbers cannot be irrational; i.e., (r+s5) is u rational number, when r
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and s are rational numbers. Next, if possible, let the product of two
rational numbers be an irrational number.

ie, let rxs=q, where r and s arc rational and ¢ an irrational number,
sor=d (s20)
" s
_since division of an irrational number by a rational number is not a

. [¢ " . N . "
rational number, —:— is not rational, but r is rational Thus ¢ cannot be

an irrational number, it must be a rational number.

. rXs is a rational number.

(ii) We have J2 and \/5 are two irrational numbers. Their sum
V3442 s also an irational number. [ Sec Ex. 3. above |

Again, product of two irrational numbers v2 and 8.
V23=42x3=16.

IT possible, let J6 be a rational number.

) 5 5
then 6 =2 | where p and q are positive integers,

X q
prime to each other and g >1

2 3
P P
6="5, e, —=6q.
q q )
; . i
since p and ¢ are prime to each other, p~ and g have no common faglor

2 .

and so £~ cannot be an integer, but 6g is obviously an integer.
/

Thus, a fraction is equal to an integer, which is not possible.

So, product of two irrational numbers JZand V3 is also an irrational
number.

Next, let us consider two irrational numbers 5+42 and 5-v2 .
There sum (5+ ﬁ)»,(s»‘fz'): 10, a rational number;
and their product (5+J2)(5-12)=25-2=23.

a rational number.
Hence, it is shown that the sum and product of irrational numbers may
"be irrational or rational.
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Ex. 6. Examine whether log,,5 is a rational number.[ B. P. 1999, 200])

Solution : If possible, let log,,5 be rational and log](,5=£- , where p
q

and g integers, prime to each other, ¢ > p

(10)¢ =5
or, 107 =59
or, 2P .57 =59,
ie, 27 =59P )

since p and (g- p) are both positive integers and 2 and 5 are prime

to each other, equation (1) cannot hold.

Hence log,,5 cannot be rational, ie., log,y5 is an irrational number.

EXAMPLE-I

1.

Define a rational number. Show that J2 is not a rational number.
[B.F. 1981, ’86, 95, *97, C.P."98)

Show that \E is not rational. [B.P. 2002]
Prove that log;q 7 is not rational.

If, xv2+ y\/§= 0. where x and y are both rational, prove that
x= =y
Define an irrational number. Give examples to show that the sum
and product of two irrational numbers may be rational or irrational.
[B.P.1994]
Given that r and s are two rational numbers, prove that
r+s, r=s,rsand r/s (s # 0) are rational numbers.
[B.P."82, 93, '95]
Prove that the sum of or the difference between, a rational number
~and an irrational number cannot be a rational number.
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2.1. Introduction.

In higher mathematics and various branches of science very often we
have to deal with changeable quantities which are interrelated to one
another, and in many such cases we have occasions to investigate how one

" of these quantities changes with a gradual change in the other. For example,
in a given amount of gas enclosed in a cylinder with a movable piston, and
kept at a constant temperature, the volume and pressure are interdependent,
and a change in one produces a corresponding change in the other ; or
again, for a falling particle, the height from the ground depends on the time,
and changes with it; the area of a circle changes with its radius, etc.

In Diffcrential Calculus we deal with the way in which one quantity
varies with another when the change in the latter is ultimately very small, or
more properly, with the rate of charige of one quantity with another, as also
other allied problems.'

In these investigations we shall be dealing with the relations between
pure numbers which represent the magnitudes (with proper signs) of the
quantities, and not with the concrete quantities themselves, so that the
results will be general in nature, applicable to any pair of interdependent
quantities under similar mathematical conditions.

In the following discussions we shall be concerned with the. system of
real numbers only, meaning by real numbers, zero, integers, rational and
irrational numbers, positive or negative.

2.2. Preliminary Definitions and Notations.

Aggregate or Set : A system of real numbers defined in any way whatever
is called an ‘aggregate’ or ‘set’ of numbers.

Illustration : The aggregate of positive integers; the aggregate of all

negative rational numbers; the aggregate of all real numbers positive or

negative; the aggregate of all rational numbers from -3 to +7; the aggregate
1 1 1 1 1

1
of numbers ~, —, —, —, —, —, etc.
1 -2 3 -4 5 -6

' While investigating problems of this type, Newton (in England) and

Leibnitz (in Germany) were independently led 10 the investigation of the
principles of Calculus, towards the close of the seventeenth century. The
principles of Calculus, in some form, were also known to the Hindus in
India much earlier.
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Variable : Let.x be asymbol used during any mathematical investigation,
0 which may be assigned any numerical value out of a given set of real
numbers. Then xis called a ‘variable’ or a “real variable’, and the totality of
the values of x constitutes what is called the domain of x.

lustration : In the expression x |. x may be considered a real varlable
whose domain is the aggregate of positive integers.

Note. Variables are usually denoted by latter letiers of the alphabet, such as
X, y, 2, U, v, W, g, In, ctc.

Continuous Variable : If x assumes successively every numerical value
of an aggregatce of @il recal numbers from a given number ‘a’ to another
given number ‘b’, then x is called a *continuous real variable’.

The domain or interval (as it will be sometimes called) of x in this case
isdenoted by [a, b] or @ < x < b.
If a be omirted from the domain, it is indicated as a < x < b.

In the last case the domain is said to be open at the left end, whereas
the domain a <.x < b is said to be closed. The interval ¢ <x < b is open
at both ends, a and b being both excluded from the domain of possible
values of x. . .

Illustration : In the expression ,/i5~_r )(T;B) x is a continuous real
variable whose domainis —3< x <5; again, in m/\/r , the real
variable x has the interval —2<x<7. Insin-'x, theinterval of x is
=l=s i<l

The domain of the variable x in any expression containing x, as in the
above cases, consists of those values of x for which the expression has a
definite real value. %

The interval [a, b] is very often graphically represented on the x-axis
by means of the length bounded by the two points A (x = a) and B (x = b).

i 1
I i i’
0 A B
s Fig 2.2.1
The length of the interval [a, b] isobviously AB=0B-0A= b-a.
Constant : A symbol which rctains the same numerical value throughout
a set of mathematical operations is called a constant.

Note. Constants (other than numerical constants like 2, -3, ¢, 7, etc.) are
usually denoted by the earlier letters of the alphabet, such as a, b, a, 3, etc.
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Absolute Value : By absolute value of a quantity x, as distinguished from .
its algebraical value, we mean its magnitude or numerical value, taken with

a positive sign. It is represented by the notation | x| whichis=x, 0 or —x

accordingas x>, = or <0.
From the very definition the following results are apparent, viz.,

@) |atd| < |a|+|b| ormoregenerally,
|atbtct...|s|a|+|b]+|c|+ e
) |atd| 2 |a| ~|b], ie, ||a] -]b].
Dlustration: | -2 | =2, | 6| =6, |-2+6|< 2+6,
|-2-6| =2+6,|-6-2]| >6~2,|2-6]|=2~6, etc.
Note.. Meaning of the symbol |x-a |< é.

Since Ix—a| <6, ifx>a, x-a <8, ie, x<a+d ; and if x<a,
a-x <&, ie, a =8 < x . Hence, combining the two, we see that
|x-a| <8 means a-&<x<a+§. Similarly, |x-a[<5 means
a-8<x<a+6. Symbol 0<|x—a| <8 means a-§Sx<a+d,but
x#a.

'Thus,'|x|<8 means —8 <x<§ .

Functions : By afunction of x, defined for a given domain. is understood
a quantity which has a single and definite value for every value of x in
its dqmain. [See note 1.]

In other words, “If x and y_be two real variables so related that,
corresponding to every value of x within a defined domain, we get a
definite value of y, then y is said to be a function of x defined in its
domain.”

In this case, the variable x, to which we may arbitrarily assign different
values in the given domain, is referred to as the independent variable (or,
argument), and y is called the dependent variable (or, funcnon)

[See note 2.]

We shall generally denote functions of x by such symbols as
£(x), w(x), F(x), $(x), etc., where the mathematical forms of these
funcitons may or may not be obtainable.
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Note1. When an expression or equation which defines a function gives
two or more values of the function for each value of x, we call the function
multiple-valued. The definition given above refers to a single-valued
function with which we are mainly concerned in all mathematical
investigations. A multiple-valued function, with proper limitations imposed
on its value to be used in any particular investigation, can in general be
treated as defining two or more different single-valued functions of x; e.g.,

y=sin™! x(—ls); <1) can be broken up into y =sin™' x,

whcre(i)-—%nﬁys%n
(ii) fn<y<in,
(m) 1t<y —1[ etc.;

again y? = x can be broken up into y=+Jx and y= —J;, and so on.

More generally (without restricting to single-valued functions only).
a funciton of x may be defined as follows : )

If two quantities x and y are so related that, correspoudmg 0
values of x, there are values of v, theny is said to be a function of x.

- Note 2. If y be a function of the variable x, it will generally be open to us
also to regard x as a function of y by virtue of the functional relation
between x and y, the proper domain of y being taken into account in this
case, because it may so happen that the domain in which y is defined is not
the domain in which x is defined. For example, y = J; can be written as
x=y?, the domain of xin the former relation being x> 0, and that of y in
the latter is the aggregate of all real numbers, positive or negative.

' In the latter case, y will be the independent variable, x the dependent
one.

Note 3. A function may be undefined (i.e., may not have adefinite value) for
some particular value or values of x in a given interval. In this connection
we may make the following remark :

0
Divisien by zero (symbols % , 5 )isundefined.

The quotient of two finite numbers a and b (viz., i;' ) is defined as the
definite finite number x such that a = bx. Now, obviously, in the division,
zero value of b is excluded; for, if b=0, then a(=bx)=0, and x canbec
any number. Hence, the above definition rules out division by zero.

a 0 i
Therefore, forms 0o Are undefined.
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The following simple illustration show« how division by zero leads to
Jallacious results.

Suppose, x=y (x#0, y#0), . x*=xy.

~x2_ y2 =xy- y2

or, (x+y)x-y)=y(x-y).

chcc dmdmgoul by x—y, x+y=y, ie, 2y=y, or2=1.

The fallacy is due to the fact that we have divided by x — y which is
equal to zero.

0 » '
Similarly, the assumption ° =1, on the basis that anything divided by
itself is 1, leads to fallacious results, as shown below.
3x9=3x1= 3; again, 3><2=ﬁ = 2 =1, % 3=
0 0 0 0
From the above remarks, it will be apparent that

: 7
the function f(x)= gy is not defined forx=>5;

the function f(® =-sin—lu is not defined forx=0; etc.
x .

Note 4. If f(x) denotes a certain function of x, then in case f (x) is given by
amathematical expression involving x, thenf(a), i.e., the value of the function
for x=a, may, in general [but not always, as explained in note 3 above, and
alsoin (iv), Art. 2.4], be obtained by putting a for x in the expression for f(x).

Thus, If f(x)=sinx, f(0)=sin0=0;
If f(x)=x*=5x+1, f(1)=-3, f(-1)=7
If flx)=x2, f(x+h)= (x+h)’ =x?+2xh + h?; etc

whereas, If f(x)= xcos —, -f(0) is undeﬁvne‘d.

2.3. Graphical representation of functions.

Let y = f(x) be a real valued function with domain A (CR) . Then the
graph of the function y = f (x) is defined to be the ser of all points in the
plane with cartesian coordinates (x, f(x)).,where y= f(x), x€ A .

Taking the straight line X'OX , with origin O on it as usual, to represent
the real variable x, the value of the function, y or f (x), may be represented

' ‘parallel to the line Y'OY drawn at right ;ngles to X'OX , as in ordinary
graphs. Corresponding to every value of x (in the assigned domain) the
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point is plotted whose ordinate gives the corresponding value of the
function. The assemblage of the points, which may or may not form a
continuous line, represents the graph of the function.

In drawing the graph it is not necessary to know the exact mathematical
relation between x and y (which may or may not be obtainable). It will be
sufficient if we know the definite value of y corresponding to every value
(at least a large number of values) of x in the defined domain.

The graph at once presents to the eye the way in which the function is
related to, and changes with the argument.

2.4. Some remarks on functions.
From the very definition the following points should be clear:

@) Irisnot essential for a function to be expressible by a mathematical
Sform always. For example, suppose x hour after noon on a certain day, the
temperature of a patient is T degree. Now, to each value of x (up to a certain
number, depending on our contemplated period of observation), there
corresponds a definite value of 7. Hence, Tis a function of x by definition.
But T cannot be expressed analytically by a mathematical expression in
terms of x. Nevertheless, we can draw a graph which is the temperature
chart of the patient, giving an idea how T changes with the time x. For other
examples, see (vii) of the next article.

(i) In some cases a function may have different mathematical forms
for different ranges of its domain of existence, for illustration, see (v) of the
next article.

(iii) A function may be undefined for some value or values of the
argument, as has already been remarked and illustrated in note 3, Art. 2.2.
Also, every function cannot be defined in every interval; thus, sin’'x cannot
be defined in the interval (2, 3), for sin 2 has no meaning, there being no
angle whose sine is 2.

(iv) A function may be defined arbitrarily. For instance, we may define
a function as

f(x)=x?  when x<0,
f0)=3,
f(x)=%—x when x>0.

The function is thus definitely defined for all real values of x.
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2 and x+5 are different functions. The

2 —_
(v) The functions -

former is undefined at x = 5, and so its domain of existence is the aggregate
of all real numbers excepting 5 for the arguement x. The latter exists for all
real values of x. Hence, though for other values of x the two functions are
equal, there is a point of distinction at x=5.

23 when x# 5,

~

5
A third function might be defined as f(x) ==
-

and f(5)= 20. Then the function is again different from either of the first
two. It exists for all real values of x including x =35, butat its value is
different from that of the second functmn x+5.

when

If we dcfine a fourth functlon by saying that f (x)

x#5,and f(5)=10, then this function is identical with the function x + 5.

2.5. Examples of functions.

Below is given a number of examples-of functions of a variety of types,
with their graphs in certain cases which will help to form a clear notion
about functions and will further elucidate the remarks of the previous article.

2x3+7
x*+9
polynomials in x of the type f(x)s agx"+a x" 14 . .4a, xta,

(where n is a positive integer), or rational algebraic functions of the type

(i) Analytical functions like x 2 , etc.,or more generally,

P(x) )
'b(_x).wherc P (x) and @ (x) are polynomials.

The domain of these are generally the set of all real numbers; in the last
case the zeroes of the denominator are excluded, for, the funcuon is not
defined at these points.

(i) f(x) =x when x>0

=0 when x =0, B

==x when x < 0.
The graph, as shown in Fig 2.5.1, consists ,

of two lines OA and OB which bisect the x- 0 X
angles ZXOY and ZYOX ' respectively.

This is also the graph of the function v

f6)=1x. ~ Fg2sl
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7.

(iii) | fi)=x

X"é X

Y’
Fig2.5.2

[ (x) is defined for' x = 0, and all positive values of x; the graph is a
continuous curve ( parabola ) in the first quadrant.

i) flx)=x1

: 0 | 1 1
or, f_(x) = sum of the first x terms of 1—2 + ? + —3—2 +oe.
The functions are defined only for positive integral values of x.
The graph in each case consists of a series of isolated points.

(v) The height y from the ground, at a time x, of a perfectly elastic ball
originally dropped from a height h.

Y

Xe===
o JZ__" JJE 5JZ_T
s M e AN g
- §

Fig2.53

Here y is defined for all positive values of x, but expressed by different
mathematical terms for different ranges of the values of x.
Thus, denoting the time of fall (from start to first impact),

,thfg by x;,

y= h—%g;r.2 , when 0< x<x (e, before first impact),

y=(x-x)2eh - 1e (x-x,)*, when x,<x<3x
(ie., between first and second impacts), -
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y=(r-3x)J2gh - Lg (x-3x)°, when 3x,<x<5x
(i.e., between second and third impacts), etc.

The graph, as shown, consists of a series of parabolic arcs, on the
positive side of the x-axis. :

2
5
) y=
x
Forx#0, y=x; for x=0, yisnot known (undefined).

Y A
X’
0 X
y‘
B
: Fig2.5.4

The graph is that of the straight line y =x, with the origin left out.
(vii) y=[x], where [ x ] denotes the greatest integer not exceeding x.
Fr0<x<l, y=0; 1<x<2, y=1;

2<x<3, y=2;

-1€x<0, y=-1;

2<2x<-1, y=-2;etc.

Y
-
;
2 A 5
’ = I H 1 1
% T 1 o1 2 3 *
b
| I—
: Y
Fig25.5

Thus, the graph consists of parallel qegmcms of lines in which the
righit-hand end-points are left out.
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(viii) y = x sin 4 .

SN

Fig 2.5.6

Here y is not defined for x = 0. Thus, the domain of x is the aggregate
of all real numbers except 0. Whether x is positive or negative as the numerical
value of x is very large, the value of y approaches I, while always remaining
less than |.

The graph shown in Fig 2.5.6, which is continuous everywhere
excepting at x =0, where a point is missing on the graph. Near O, on either
side, the graph has an inifinite number of oscillations with gradually
diminishing amplitude. The graph is comprised between the lines v =x and
y=-x

(ix) Functions like e*, log x, sin x, cos x, sin ™ x,cos ™! x, etc., which
are not algebraic functions, are called Transcendental functions. For graphs
of first two, see Art. 19.9, and for some others see next page, i.e. Fig 2.5.7.

2.6. Bounded functions and their Bounds. ,

Let f(x) be a function defined in the interval (a, b). If a finite number
K can be found such that f(x) < K for every value of x in the interval,
then f(x) is said to be bounded above in the interval.

Similarly, if a finite number k exists such that f(x) = k forevery xin
the interval, then f(x) is said to be bounded below. '

If f(x) is bounded above and below in the interval. then it is said to be
simply bounded.

If f(x) is bounded above, then it easily follows from Dedekind’s Theorem
that there exists a definite finite number M such that M > f (x) forevery
_value of x in the interval, but £ being any pre-assigned positive quantity,
however small, there is at least one value of x in the interval for which

f(x)>M - g. This number M is called the upper bound of the function

in the interval.
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In a similar way, if f (x) be bounded below, then there exists a definite
finite number m such that m < f(x) forevery x in the interval, but given
any pre-assigned positive number ¢, however small, there is at least one
value of x for which f(x) < m + &. This number m is called the lower
bound of f(x)in the interval. :

We know, sin x, cos x are bounded functions in the interval [-p, pl, the
upper bounds of both being 1 and their lower bounds being 1.

e
o nUm: x

y =sinx Y

N2

o y = cos” x
y = sin’' x y :

Fig 2.5.7
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-For sinx, M =1; now, taking £ = 3‘!- we can find at least one value,

say %.of x, such that sin % >1-1= - Other values of x can be

obtained from tables, for which sin x > — . The function defined in

Ex. (v), § 2.5 is a bounded function in the mterval [0, oo) the upper bound
being & and the lower bound being zero.

For the inteérval 0 < x < Z 5, tanx has the lower bound zero, but no
upper bound. For the interval — -’25< x <0, tanx has no lower bound,

but its upper bound is zero. In the interval. £ sx<t , tan x has neither

lower bound nor upper bound. Thus we see that a funcuon may have
different upper and lower bounds in different intervals.

The function x? + 3x +5, in the interval 1 < x <2 lies between 9
and 15; so its upper bound is 15 and the lower bound is 9.

The —function f(x)= -—ZL is not bounded above in the
G-x)(x-3)

interval 3 < x < 5,in which it is defined.

Let x =3 + ¢, where &£.is a small positive number.

f(x) =vl(25—+él; : > JS;;_E > J—g , which can be

made greater than any positive quantity by taking £ smaller and smaller.
Hence f(x) has no upper bound. -

2.7. Monotone Function. . ;

Let x,, x, be any two points such that x, < x, in the interval of
definition of a function f(x). Then f(x) is said to be monotonically
increasing if f(x)< f(x,) and monotonically decreasing if

S(x)2 f(x;). Thus in [0,-’-'-] ,sinx is a monotonically increasing
function and cosx isa monotczmically decreasing function.

Sometimes the following definition is used. If forx, < x,,

f(x) < f(x;) then f(x) is said to be strictly monotonically increasing,
and if f(x;)> f(x,) then f(x)is said to be strictly monotonically
decreasing. '

In the interval 0 < x < <o, the function ¢' is. a strictly increasing
function, since ¢*' < ¢ . when x, <x,.
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3x+5
g 2x +1
strictly decreasing function, for, f(x;) > f(x;) when x,< x,.

isa

In the interval 0 < x < oo, the function f(x) =

The example (vii) of § 2.5 is an example of a function defined in the
interval (0, 3), which is monotonically increasing but not strictly increasing.
2.8. Classification of Functions '

M Evenand Odd Functions _

Let f(x) be a function deﬁne(i in a domain D(€ R) where D i$ such
that xe D = - x¢e D. The function f(x) is said to be an even function
if f(=x)= f(x),forall x& D and f(x) iscalledtobean odd function if
f(=x)==f(x) forall xe D.

The graph of an even function is symmetrical about the axis of y while
the graph of an odd function is symmetrical in opposite qqadrants.

Every function can be expressed as the sum of an even an odd funtion.

It should be noted that inverse of an even function is not defined.
Examples: f(x)=x?, f(x)=cosx when xe R are even functions, for
f(=x)= (-x)? = f(x), F(=x) =cos(—x) =cosx = F(x).

Again ¢(x) = %3, y(x) = sink, where xe R are odd functions, for
0(-x) = (-x)° = —x’ = —4(x) , W(=x) = =sinx = —y(x).

(D Periodic functions . ;

. ‘A function f(x) defined in adomain D is said to be a periodic function
of peiod pif p be the least positive real number such that f(x+p) = f(x)
forall x& D [Here, x+p e D, forall xe D). :

f(x)=cosx, xe R periodic function of period 27 , since 27 is the
least positive number such that f (x +2x) =sin(x +2%) =sinx = f(x), for
all xeR.

@) Explicit and Implicit Functions

If D (CR) be the domain of a function f, we can express the function
as y= f(x),xeD. (1)

If a function can be expressed in the form (1), the function is said to be
expressed explicitly and we say that the function is explicit.
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F)=x*+2x2 +10x, xe R, isan explicit function.

Now, let x, y be two variables where the relation between x and v is
expressed by an equation, say, ¢(x, y) =0, then it is called an implicit
function.

If x? +y2 =a”, then ox, )=x>+y*-a>=0 is an implicit
function.

Here, y = tda? —x?, —a< x<a-

So, we have two explicit functions, viz.,

» =va’-x*, ~a<x<a
|
and y, =—\’a2—x', —asx<a

(IV) Parametric Function
Let x= f(z) and y=¢(r) be two functions of the variable ¢ in the
interval a <t <b.
. By eleminating 1 fom the relations x = f (1), y = ¢(z) we shall have a
relation connecting x and y, i.c., y can be regarded as a function of x
~ Such functions are called parametric functions. If x = ar”, y = 2at , we
caneasily see that y* = 4ax i, y* - 4ax = 0, which is an implicit function
of x and y.
~
Here, x:atz, y=2ar together constitute a parametric function, ¢
being called parameter.

2.9. Composite function : Function of a function

Let y= f(u) beareal valuesd function defined in a domain D/(cR)
and v = g(x) be another function with domain D, where .u = g(x) € D, for
all xe D.

Here, f:D, = R, g:D — R are two mapping where the range of g i.e.,
g(D) is asubsetof D, . Then the composite mapping fog: D —R canbe
defined where (f o g)(x) = f{g(x)}, xe D.

This composite mapping is called the composite funciton of two real
value functins y= f(u), u€ D and u= g(x).ue D where g(D)C D,

and the composite functions is given by v= fleg(x)}, xe D and so the
composite funciton can be called a function of function.
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Fig29

2.10. Inverse of Function
Let f:A— B be a function defined by y= f(x). such thatfls
buecnve, i.e., both one-one and onto. Then there exists as unique function

g:B— A,suchthat f(x)=y e g(y)=x. forall xe A anforall ye B.
In such case a situation g is said to be the inverse of fand we write

g=f"':B>A
lffandgaremverseloea(.holher (fog)(v) (gaf)(x) x.

ie, flg(x))=glf(x)}.

Domainof f Range of f
f

i)
Range of f" N I Domain of f"'
Fig2.10
2.11 Miscellaneous Worked out Examples.
Ex. 1. Show that f(x)= log(x +1}l+x2 ) is an odd function of x.

Solution :  f(x)+ f(-x)= log(x‘+\h+.7r2 )+log(—x+\’l +x2 )

= Iog{(x+w[l+.x2 X—x+Jl+x2)} -

log{ +xt-x? } logl=0

ie, f(x)=—f(-x)
Thus f (x) is an odd function of x.
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Ex. 2. Prove that any function of x, defined for all real values of x, can
be expressed as the sum of an even and an odd function of .

Solution : Let, f (x) be any function of x defined for all real values of x.
< We can wrie, £(1)=2{7(9+ S0 £ (-0}
' =0(x) + (%), say
Now, as #0)=3{f(x)+ / (-0},
0-2)= {70+ 10} =40,

'So,9(x) is an even function of x.
Also, W(X)=%{f(X)—f(-x)}

V0= 0= FW =@ -0} =y,

so that y(x) is an odd function of x.
Thus any function f (x) of the real variable x can be expressed as the
sum of an even function and an odd function of x.
Ex. 3. (i) Define a Periodic Function.
(i) Find the period, if any, of the following functions :
(a) sin (ax);

(b) | cosx|;
(c) 2c05—;(x—n);
(@) sin® x+cos' x.

Solution :

(0) If f(x) be such that, f (x+k) = f (x), for all values of x within the
domain of definition of f (x), then f (x) is called a Periodic Function, and
k is called its period. Here k is generally taken, if its exists. to be the
least number except 0.

(i) (a) f(x) = sin ax

: 2n ; ol -
Sln{ﬂ( X+ = |r=sin(a+ 2m) =sinay,
a
)

; : o ; - ; 2
sinav 18 a periodic function ol period —,
o
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(b) Here, f(x)=|cosx|=vcos’ x = ‘&(l+cos2x)
Since the function cos2x is periodic with period

=, m, 1(l +cos? x) =] cosx |
2 2
is also a periodic function with period n. _

© fx)= 2cos-:l; (x-m)

_2ms(£_5)
3 3

= cos£ + \/Z’o_si‘ni .
3 3
Obviously, f (x) is a periodic function with period 67 .
. : 2
(d f(x)=sin*x+cos’ x = (sin2 x+cos? x) -2sin? xcos® x
= l—%-sin2 2x = é1\1cns;4)c_
2n
since cos4x is a periodic function with period — = —, f(x) is a
periodic function with period 7
Ex. 4. Find the domain of definition of the following functions :

M) f)=vx—1+J5-x [ B. P 1993 ]
@) f=Bx-1)7-x). [C. P 1994]
(i) f)=v8+2x—3x2. [C. P 199 ]
(@) f(x)=log(x*~5x+6). . [ C. P 1993, 2000, 2006 ]

4x-x?

) f(x)=,/log [ B. P 1995; C. P. 2007 ]

5x- xz

vi) f(x)=log [C P 1997 ]

l‘

i) f(x)= [ C. P.2005)
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Solution : (i). f(x)= Jx-1+5-x
Since f (x) is real, the values of x must be such that both +x -

and J5-x are real quantities, which requires that (x-1)20 and
(5-x)20

ie, x21 and x<5.
So, domain of definition of fix) is 1< x<50n [ 1 5]

(i) f(x)=(Bx-1)(7-x)

In order that flx) may be defined,

(3x=1)(7-x) must be non-negalive.

ie. (3x-1)(7-x)20 .
i.c.. either, (3x=1)20 and (7-x)20 =4
or, (3x-1)<0 and (7-x)<0 L@

1
From([) 37 fxs7

1
Again from (2) X2 3 and 7S x

But these two relations cannot hold simultaneously.

" .
So, the domain of definition of flx) is = <x<7

i) f(x)= V8+2x-3i2
For f (x) to be defined,
8+2x-3x> 20,
ie; (3x+4)2-x)20
i.e., either, (3x+4)20 and (2-x)20 T}
or, (31+4)50 and (2—x)$0 s:(2)

4
From (1) ““3'5152.

) 4
Again, from (2) x< 3 and x >2

But these relations cannot hold simultaneously.

4
So, domain of definition of f{x) is =% <x<2.
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(v) J(x)=log(x? -5x+6)

fixy is defined for all real values of x that make x?-5x+6 >0

or, (x-2)(x-3) >0

This inequality holds for all real values of x, except those that lie
between 2 and 3, including x = 2 and x = 3.

So, domain of definition of f(x) is all real values of x, except
2<x<3.

4
() £()= Jlog =

. . 4x—x* ;
f (%) is defined, if log 20, ie, 2logl

or, dv—x2 23 or, x2 -4x+3<0 or, (x-1)(x-3)<3
This inequality is satisfied if 0 < x < 4.

T :
() Fx) = logy| > -

[ (x) is'defined for those values of x wbhich make
Sx—xl= x(S—_\')>U
Domain of fix) is 0 < x < 5.

g

| x|=x
fix) is defined, when | X |—x >0
ie., | x|>x
and this inequality is satisfied for all values of x <0.
So, domain of definition of fix) is (o<, 0) or, —<<x < 0.

Ex. 5. Show that the domain of definition of the function

1-x
W=lopo—= 5% ~
fx) 08T 5 l<x<l.

Also, show that for x,,x, (=L 1), f(x)+f(x2)= f['x‘HQ )

1+ X1X9
Solution : -~ logx is defined for positive values of x only,
I-x
() is defined onl
fix) is defined only when e >0

i.e., when both (1-x) > 0 and (1+x) >0

or, when (I-x)< 0, and (1+x)<0 '
3 -~
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These two sets of inequalities are satisfied for —l< x < 1.
Thus the domain of definition of fix) is (=1, 1).
_X + X,

X, +x: 1+ x,x
Now, f|—-—2%|=log 172
14+ xx, 4-2pT %

l+.\'1.X2
(l IIXI /\2
(l+x,)(1+ )
+Iog——]u'r7

-—,-log
I-x, I-x,

=f(n)+f(x).

X
Ex. 6. Find the domain and the range of the function f(x)= I—l
: X,

.

[ C. P 1995, 2008 ]

Solution :  Here, f(x)= I—"—'
X

Obviously, fix) is defined for all real values of x, except x = 0.
Hence the domain of fix) is —e< x <, except x = 0

Again, | x|=x, whenx >0

=-~x, when x <0,
’I—x|-=l when x > 0 and |—x—l=—l when x < 0.
x x

So that range of fix) is [-1, l].

0, . )
Ex. 7. If f(x)= xmx(x ;) for x > 0, where max. (a, b) denotes the

greater of the two real numbers @ and b, find the value of f(c)- f l
c
forc>0. [C. P 1988 ]

Solution : -~ f(x)= rmx(a —l)
x

when c21, f(c)= max(c J—J =¢
c
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T

n|--
;

andwhcn0<t.<l f(o) - rmx(c,‘)

Again, f(-::)=M-(l ) (c. %)=f(c)

» when c21, f(c)f( ) {fe)f =

P N_(1Y _1
andwhen0<c<l.f(c)f[:_-=; =,
<

Ex. 8. If f(»)= Lx] and c(#0) be any real number, show that
! X
lf@-fal=2. - [C. P 1994]

Solution :  We have |x|=x, whenx>0
=—x,whenx<0
So, when ¢ >0, f(c)=1 and f(-c)=-1

and | f()-f(=0)|=|1+1|=2 h -
Again, when ¢ <0, f(c)=-1 and f(-c)=1
So, | flo) - f(-o)|=]|-1-1]|=2 - @
Combining (1) and (2), if c(# 0) be any real number,
| fe)-f(=0)|=2.
Ex. 9. If f(x) =x+| x|, find f(3) and f(-3) [ B. k‘_ 19951
Solution : =3+3=6 A :

F(-3=3+|-3|=3+3=6.
Ex. 10. If 2f(%)‘f(x)=5x, find the value of f(x+%)_
Solution :  We have, 2f(%)—f(i')=5x - )

1
Replacing x by Py

1 5
2f(X)-f(;)=; @
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Bra (1)vendl (@), £ = 22422
3 3x
f(x+lJ.—.§(x+l)+_ 10
x 3 x 1
3(x+.;)

sl
)

Ex. 11. (i) The function f satisfies the equation f(x+y)= f(x)+ f(y).
Show that

(@ f(0)=0,

) f(x) is an odd function,

(c) if x is an integer and f£(1) =« . then f(x)=ax

(i) Find the natural number a for which
if(a+k):16(2"—l),
k=l
where' the function f satisfies the relation f(x+y) = f(x)-f(y) for all
natural x, y and f(l)=2.
Solution :  Given that f(x+y)=f(x)+ f(y) - 1))
(a) Putting x=y=0 on both sides of (1),
fO) =) +/(0), ie, f(0)=0
(b) Putting y=—x on both the sides of (1)
fO=fX+f(-x)
- e, fO)= f(x}+ f(=x), Le., f(x)=—f(-x) fO=0
s f(x) is an odd function. ’

(c) Again, putting x =y =1 on both the sides of (1),

F@=fM+fD=2f D=2 [= =il
fR=f2+)=f)+f()=2a+a=3a
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If x be a positive integer, then
f=fl+x-D=fD+f(x-D=a+f(x-1)
flx=D=f(+x=-2)=f(D+f(x-2)=a+[f(x-2)
Similardy, f(x—2)=a+f(x-3)=2a+f(x-4)

Thus, f(x)=a+ f(x-1)=2a+f(x-2)=3a+ f(x-3)
.=4a+f(x-4)_‘
=(x-Da+f()
—‘(x Da+a=ax

If x be a negative integer, puttmg x=-y, where y is a positive
integer, we get

fXy=f(=y=—f(y) [* f(x) is an odd functisn
- =-ay=a(-y)=ax
Thus, when x is any integer, f(x)=ax.
(ii) Here, f(x+y)=f(x)-f(y) a
Putting x=y=1,
f@=fm-f=22=2" [ f=2]
Putting x=2, y=1
fO=f@-f(=2*.2=2°
Similarly, f(4)= f(3)-f()=2%.2=2*
and in general f(n)=2"
" Now, ~ zf(a+k)—m(z"-1)

k=]

= Y i@k = 16(2'—1) [ from (1) ]

k=1
or, f@[fD+F@)+fB)+-+ f(n)]= ,6(2, _ 1)
o, f@[2+2042 o427 = 16(2 -1)

2(2 - )—16(2" 1)

or, f(a)x

or, f(a)=8= 2’ £33
La=3. '
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Ex. 12. Solve : 4{x} = v +[4],
where {x} and [x] denote the fractional and integral parts of a real
number x respectively.
Solution :  If x is any real number, x =[x]+ {x}
s dx) = x+[x]

4x) =[x]+ (x] +x]

. 2 ‘
or, 3{x) =2[x] e, {x)= 3[” : cee (D
Numerical value of {x} is less than 1. So, the only integral values pf

[x] which will satisfy (1) are | and (-1).

2 _
So, {x] =3 when, [x]=1

2
and {x] =—§. when, [x]=-1

3 .\'-H'z—2 .|r~-—l—z'-—2
: 3.3 373

Ex.13. If f(x)=cos (I-'ngx);thcn show that

- f(x>~f<.v>-§{f(1)+f(xv)}=
' : y

Solution : - f(x)=cos(logx) .
S(x)f(y)=cos (log x) cos(logy) R ()

and [[§]+ fe)= oos{los(i)}+ cos{log(xy)}
,og( ] ] +log(xy) Iog(-{) —log(xy)
y . y

=2cos ~ -COSs
2

5 2cm("‘ 2"' [_ g—l?]

= 2cos (logx)cos(log y) [ = cos(-8) =cos® ]

=2cos
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3¢

- f(x)-f(y)-i{f(i)+f(xy>}
200\

= cos (log x) cos(log y) - % 2cos(log x) cos(log y) =0

Ex 14. If f(x+3)=2x*-3x+1, find f(x+])

Solution : f(x+1)=f(x=2+3)
=2(x-2)?-3(x-2)+1
=2x% -11x+15.

Ex. 15. Find the range of the foilnwing Sunctions .

@) f(x)= H

2-cos3x
. (i) cos(2x~P)+sin(2x-p) :

iii) log sinx —cosx+ 32
(iii) 2 JE

Solution: (i) y=f(x)= g

or, l =2-cos3x
y

. or, cos3x=2-l

w —=1<cos3x<l1,

—lSZ-lSl
y

~on, —3S—-!-S-I

.olr.%SySl. 7 : [y>0..'.'—15c053x511
Required range is [%. l].

(i) Let y =cos(2x - P)+sin(2x-p)

- [‘m(zx._ﬂ)oos% + sin(z;t— B)Si'“ %]
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n

=42 2x+—-—
cos[x 2 ﬂ)
—lScos(2x+;—B)Sl

—157{551 I N, g ]

range is. [ —JE, Ji] s

0 L., 3 o, smx—cosx+3~/i

V2
. 2_\,_sinxﬂcosx+3n/—2-__si“ x__?_t_ "
A *——ﬁ r
or, 2’—3=sin(x—£)
4
—lfsin(x—E)Sl
4 )
-1<2Y-3<1"
oor,2<27<4
ie, 2'<27< 22
ie, 1<y<2 rangeis [1, 2].
Ex.16. Find the domain of f(x)=\/4+x+ 9—x.. [B. P. 2004)

Solution : f(x) hasreal valueif 4+x20and 9-x20.
ie, x2—4 and x<9
ie., if xe [—4.-).and .'tg (—oe, 9].
Now [~4, =) (~==, 9] =[4, 9].
Hence, the domain of f(x) is [-4,9].

%x.17. Find the domain of function f(x)= f..._;—ll‘i
S .
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Solution : f(x) will have real value if

x| o '

_2—"|_»"|i 20 s (4]
and 2-|x|#0 ‘ I )]
The relation ( l)'holds if .

@ 12)x| and 2 >|x|,or,if (IT) 1-4x]<0,and 2x|]<D
M if 12 x and 2 >|x| . o

then —1<x<1and 2<x<2.
ie, x€ [-'l. 1] and x€ (-2, 2)
ie, xel-1,11N(-2,2)
e, xel-11] ] ars 3)
@ 1f 1-|x|<0 and 2—]xi< 0 ‘
then 1<|x] and 2 <|x]|
ie, |x]>2
ie, x>20rn x<-2 :
ie., x€ (~,-2)U(2, =) . @
Now (2)holds if |x|#2, i.e.,if x#£2 : e )
From (3), (4) and (5) the required domain is
FLIOU (=, -2U(2 ).
Ex.i8. Find the domain of the function f(x)=10gs,-s) (x? -3x-10).
Solution: f(x) isdefinedif x2 ~3x~10>0 1)
and 2x-5>0, 2x-5#1 .o e (2
“Relation (1) holds if (x—5)(x+2)>0 '
i.e.,if either, (x—5)>0and (x+2)>0
or,if (x-5)<0,and (x+2)<0
- ie.,if x>5 and x>-2,0rif x<5and x<-2
ie,if x<5or x<-2 ‘
Sorelation (1) is valid if x € (5, )U(—=2, —2) I ) K
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" Again, relation (2) holds if x>3 and x#3
ie., foe(i,oo) {3} - “)
Hence the requiréd domain is the common portion of (3) and (4), .
ie., (5, ). '

smx—oosx+3ﬁ

2

Ex.19. Find the range of the function f(x)=log,

sinx—cosx+3sE
2

o, 2" = (%sinx—j'z-oosxhll

Solution : Let y=log,

or, 2" -3=sin(x-T)
Since for all real vaues of x
-lssin(x-J)s1, -1527-351
or, 2527 <4 =2'<27<2? - 1< y<2, sincethebaseis2> 1.
Hence the raﬁgc is[l,2].
Ex.20. Find the period of each of the following functions :
(i) cot £, (ii) 3sin§ +4cosg .
Solution : (i) ** COL(T + x) = cot x, , cotxis a periodic function of period 7 .
So, cot £ is also a periodic function, the period being 115 =2n
(ii) sin(ZﬂHx) =sinx, so sin x is a periodic t'unction2 of the period
2x and hence sin § is a periodic function of the period 315 =4n. '

2

Again oos‘ is a periodic function of period H =8r .

Since 8n is a rational multiple of 4n, 3sm-§-+4cos-§ is a periodic
function, the period being the l.c.m. of 4%t and 87, i.e., 8.

Ex.2L. Show that sin® x +cos’ x is a periodic function. Find the period.
Solution : sin® x+cos’ x = 1 (3sinx- si.n3x) +1(cos3x+ 3cos x)

=1 {3(sin x +cos x) +(cos3x - sir;lr)!
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Both sin x and cos x are periodic functions, period of each of the them
being 21. |

Again cos 3x and sin 3x are also"benodnc functions, period of each of
them bemg ‘

Now Le.m. of 2t and 2% is on.
Hence f(x) isa penodtc function of period 27 .

Ex.22, Find the inverse of the function flx)= log,(x+Jx +1).
Solution : Let y=log,(,ar+\/.‘=2 +1).

then e’ =x+Vx? +1

o, X*+l=(e'-x)? =e> -2xe’ +x?

or, e -2xe" =1
-1
or, X= -
2¢’

2x _
Interchanging x and y, we have f~'(x)= e2 L (e -e™)
e

EXAMPLES-II

1. If y =6 forevery value of x, can y be regarded as a function of x?

2. If y =the number of windows in the house numbered xon a pamcular
road, is y afunctionof x? .

3. Given f(x)= x?-10x + 3, find £(0) and £(-2).
4. If f(x)=sec x + cos x, thenshowthat f(x) = f(-x).

x=—b

5. If f(x) = b ‘; . , then show that

f(@) +£6) = fla+b).
" 6 If f(x) = x? - 3x + 7, then show that
{f(.x+h)-f(x)yh=2x—3+h.

+a

7. Show that

1 -tan x

.. S : -
) wosx—sinx isnotdefinedfor x = ¢ x

(i) xz—Sx;_g is not defined for 2<x<3.
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x2-5c+6

x? < i8x # 12
Also find f(~5) and f(6) in this case.

Draw the graphs of the following functions :

@® y =1 when x>0,

0 when x=0,

is not defined for x = 2.

(i)

= -1 when x<0.
@ y=x*for xz1,
=2 for x=1.
(i) f(x)=1 when x isaninteger,
=0 when x ishotan integer .

TOR—
(iv) y=cos =

_ 1
v) y—xcos—x.

i) y=x-[x],

where [x ] denotes the greatest integer not greater ihan X
Vi) f(x)=y1-(x-1)2.
(viii) f(x )=L:J.

@ f(x)=1- S22,
CosSInmTXx

® f(x)=ys.

where the positive sign of the square root is 1o be taken.
W f(x)=0 when |x|>1,
) 1+x when-1<x< 0,
‘= 1-x when 0<x< 1.
) Show that f(x)=sec x, in the interval 0 < x <17, has the
lower bound 1, and no upper bound.

(i) Show that f(x)=2x"+4x+ 6, intheinterval 0 < x < 1. has
the lower bound 6 and the upper bound 12.
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10.

11.

12.

13.

n
(iii) Show that f(x)= 1+e ,when 0<@ <1, -l<x<l
and n a positive integer, is bounded. l

is monotone ascending for x> 0.

@ Showthat f(x )=xi ;

(ii) Show that

f(x)= L o b1 7 gnbe oy

x+1 x+2 x+n
is monotone descending.

. x
(iii) Show that f(x') = { 1+ i) , x> 0, is monotone ascending.
. X .

Given the relation y -6y-x +7= 0, which of the following
statements is true 7

() The equation defines x as a function of y for all values of y.
(i) The equation defines y as a function of x for all values of x.

A taxi company charges one rupee for one kilometre or less from start,
and at arate of (i) 50 paise per kilometre (ii) 50 paise per kilometre or
any fraction thereof, for additional distance. Express analytically the
fare F (in rupee) as a function of the distance d (in kilometre), and draw
the graph of the function.

Find the domain of definition of the following functions :
@) f(x) =1, whenuxis rational.

= (0, when x is irrational.

1-x

i f(x)=
(i) f(x)= Ll . [CP1995]
X

5x - x?2

(iv) f(x)=4 log [C.P 1997]

1

™ fl)= ——.
Jx=x
o) fle)=Vvx-1+5-x. [B.P.1993]

(vi) f(x) = log( - 5x+6). [ C.P. 1993, 2000



46 ' DIFFERENTIAL CALCULUS

1
@) f (1) log,
Jx’ - I
14. Ifthe function f satisfies the relation f (x+y)= j (x)+ £(). forall
real values of x and y, prove that :

@ s0)=0;
@ fx)==);
(i) f(x) = ax, wherexis any integer il f()=a.

15. If f(x)= 2461 for | < x < oo, show that

57 6= 4 (e [T 08, 3).

ANSWERS
1. Yes. 2. Yes. 3. 3, 27. 7.(ii) & does not exist.
11. (i) True. (ii) Not truc: true only for values of x2-2.

12. (i) [F =1, for 0<d<1;
F=1+1(d-1), for d>1

(i) [F =1, for 0<dsl;
F—l+lm for m<dsm+1, whcrcmlsaposmvemlcger

13.(i) The setof all mnonal numbers ;

(iiy (-1.1); (jii) — oo < x < o0, EXCEPt x = 0
(iv)d<x<5: ! (V) —2<x <0 '
(vi) 1€ x<5:  (vii)altx,except 2 < x<3;

(viii) -1 S xS1,2<x <o, —0<x <=2

(iX) -1 < x < 0.



3.1. Introduction.

The idea of ‘LIMIT" forms the most outstanding concept in Calculus
and plays an important role in the development of the subject. It is this
process of limit, or limiting operation, which marks the line of difference of
Calculus with Algebra, the latter being based upon the four fundamental
operations, viz., addition, subtraction, multiplication and division. The real
essence and strength of this subject, an important part of Mathematical
Analysis, lies in the concept of limit upon which is built the new and broad
structure of Calculus.

3.2. Limit of an Independent Variable.

Suppose, x is a real variable which takes up different values
r=1-9,1-99, 1-999, 1.9999,1-99999, ... It is obvious that as the
variable x passes through successive values, the difference of x from a rcal
number 2, gradually diminishes and finally becomes and remains less than

.any pre-assigned positive quantity, however small. We say that x
approaches or tends 10 the value 2, remaining always less than 2.

Again, we consider the values x=2-1,2-01, 2-001, 2-0001,
2-00001, ... etc. Here also the difference of the successive values of x,
- .from the real number 2, gradually diminishes and ultimately becomes
and remains less than any pre-assigned positive quantity, however small.
In this case, we say x approaches or, tends to 2, remaining always greaier
than 2.

In either case, ]x 2] < & where £ is a pre-assigned posmve
quantity, however small, we may imagine and we write : ,

limit x> 2 or, lim x— 2 or, Lt x—2.

3.3. Geometrical Idea of the Limit of a Variable.

Suppose, the point A on the real number axis X'X represents the
real number x =2, while a point P represents a real variable x. Further, let

us suppose that the points A;,A;,A;,...... etc. represent the real
numbers 1-9, 1-99, 1999, ... etc. respectively -and the poirits
By By Bysvnnsos etc. represents the real numbers 2-1,2-01,2-001, .. ...
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0 1 ArAsAsA BaBs B

Fig 3.3.1

The variable x gradually approaches towards the real number 2 by
assuming the successive values 19, 1-99, I- L etc. and the
point P gradually approaches towards A from its left side after passing
successively through the points A, A 3. A 5,-..... etc., but it never meets
the point A: In this case, we say that lhc pomt P approaches A from the left,
and denote it by the symbol x — @ — 0 or,simplyby x — a —. Again, let
us consider the sequence of numbers 2-1,2-01,2-001,..... etc. When
the variable x gradually approaches towards 2 by assuming the successive
values 2-1,2-01, 2-001,..... etc., then the point P gradually
approaches towards A from the right side after passing successively threugh
the points B |, B, By ooono etc., but it never meets the point A. In this
case, we say that the point P approaches A from the right and denote by
the symbol x — a + 0,or,simply by x — a +.

Notel. If x—a—0 (or, x— a-), the assumed values of x are always
less than a and the numerical diffcrence between the assumed value of x
anda, i.e., I x-a I is less than any pre-assigned positive quantity, however
small, but x is not equal toa (x#a ). ’

Note2. If x—>a+0 (or, x—>a+), the assumed values of x are always
greater than a and the numerical difference between the assumed value of
xanda,i.e., lx a| is less than any pre- assnoned positive quantlty, however

small, but x is not equal toa (x#a ).

Note3. The symbols: x — a is read as “x tends to a’,
x = a -0 (or, x> a-)isread as “xtendstoa from the left”
and x = a + 0 (or, x — a +)isreadas “xtendstoa from the right”.
3.4. Idea of Limit of a Function.

Lety=1f (r) be a function of a real variable x. A question may arise,
what happens to the function f (x)as x> a?
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We examine the case by an example Cons:dcr the flnction defined as

ollows :

4
,when x # 2.

2

L f)==
. . x—
= 3,when x=‘2.

o

Obviously, when x # 2, f(x)=x+2.
We prepare the following table showing values of x and f (x), where

he variable x approaches 2 either from the left or from the right.

1.99 | ... | 21| 2.m | 2:001
399 | ...* 41| a.01 | 4001

x 1.9 1-99

f»139] 39

It is clear from the above tabie that as x gradually approaches 2,
issuming values either less than or greater than 2, and sufficiently close to
2, the values of f (x) gradually approach the number 4, or, in other words,
| f (x) 4 | i.e., the numerical difference between the value of f (x) and 4
can be made less than any pre-assigned positive number, however small

"

We write f (x) — 4, when x — 2 or, symbolically

L f(x)=4
x—=2
2—
or, 7Y - Thee X Y
. x-2 x—-2

It is interesting to note that [t X 4 = 4 does not necessarily
32 X -

imply that f (2) = 4.

In the example cited above, Lt 24 =4,but f(2)=3,ie,

2 x -
L f)=r@)
2. If, on the other hand, we define f(x) us
F)= when x#2
=4. when x=2 @
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then, Lt f (x) =4 and f (2)=4,ie., the limiting value is numerically
=2 .

equal to the value of the function at the point in question.
Here, L f(x)= f(2).
=2
x2 -4
x-2"

f(x) becomes undefined at x = 2, butasdiscussed earlier, Lt f(x)= 4,
x=2

Further,if  f (x)= (€)

i.e:, Ll7 ! (x) exists and has a finite value 4.
v —2 -

Thus. we see that the limiting value of a function at any specific point
is in no way dependent on the viluc of the function at that point. The

distinction between Lt F (x) and f(a) has been discussed in details
X=yd
and explained with illustrations in art. 3.6.
The graph of the function f(x) as defined in (1) is shown in fig. 3.4.1

and the graphical representation of the f(x) as defined in (2) is shown
in fig. 3.4.2 below.

. (e}
1
»Y  x' »
1 23 4
r re
Fig 3.4.1 Fig 3.4.2

By the cxpressiom/‘lhe variable x approaches the constant number a’
or simply ‘x tends to the value a’, we mean that x assumes successive
values,whose numerical differences from q, i.e., the successive values of
| x - a|, become gradually less and less, and | x — a| can ultimately be
taken to be less than any small quantity we can name or imagine (i.e., less
than any pre-assigned positive quantity, however small), and we denote
this by the symbol x — a. ’

Here the successive values of x may be greater than as well as less
‘han a.
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If the variable x, remaining al; ay'; rcater than a, approache< a, such
that ultimately x-a is less thair any pre-asmgned positive quantity,
however small (but x # @ actually), then we say that x approaches or
tends to ‘a’ from the right, and denote it by the symbol x — @ +0 or
simplyby x > a +.

Similarly, when x is less than a always, and a — x is ultimately less’
‘han any pre-assigned positive quantity, however small, we say that x fends
0 ‘a’ from the left, and denote it by x — @ — 0 orsimply by x = a —.

(llustraion : When the successive values of x are 1-9,1-99,1-999..
,» wesay x—2-0, " and when the successive values of x are 2-1,2- 0[
001 e Gk :d we say x —2+0. If the successwe values of x are

24k 2d 2+--§, 2+4, 2+5....,wesay;c—)2+‘

3.5. Limitof a function.
Lt f(x) : When xapproaches a constant quantity a from either side
x—a

(but # a ) if there exists a definite finite number [ towards which f (x)

approaches', such that the numerical difference of f (x) and I can be made

as small as we please (i.e., less than any pre-assigned positive quantity,
however small) by taking x sufficiently close to a, then [ is defined as the’

limit of f(x) as x tends to a. This is symbolically written as Lt fx)=1.

Mathematically speaking, Ll f (x) =1, prov:ded given any pre-
assigned positive quantity €, however small, we can determine another
positive quantity & (depending on €) such that I f(x)- ll < € forall

values of x satisfying 0 <| x—a| € & ,i.e. whenevera— 8 < x < a+ 9,
g

but x#a.
Ex (i) le _39—;6. For, if x =3+8&,, whether § | be positive or
A3 X ==
-9 - 5(6+6
negative,‘x : ___(x 3)(;*+3)= 1(5 l)=6+5:.and,bytaking
; - X- 1

2
8, numencally small enough. the difference of »——vg and 6 can be made
x-

! As a particular case f(x) may remain always equal to { when x is sufficiently
close to.a.
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- as small as we like. It may be noted here that however smdll & | may be, since
&, # 0, wecan cancel the factor x-3,ie. & between the numerator and

denomenator in lhls case. Hence Iy £

—6 But when x =3, the
-3 x-=3

2
i X
function

-9 . .

1s non-existent or undefined, for, we cannot cancel the
= .
factor x — 3, which is equal to zero in that case. Thus, writing

f (x)— L: f (x)=6, whereas £(3) does not exist or is undefined.

Ex (i), Lr xsin% =0. For sinJ; . whatever small value x may have

=0
provided it is not exactly cqual 1o zero, is a finite quantity lying between +1
and - 1, and so by taking x numerically small enough (i.e., sufficiently near

to zero), we can make xsin-ﬁ numerically as small as we like, i.e., ! asind -0
' X
is less than any assignable quantity. Hence the limit is zero.
Here also the value of xsin -'- , when x is exactly equal to zero, is non-

exmstent.

x2-7

Ex. (iii). L

= -3. For, writing x = -1+ &, we can show that the
x=a-1 X+3 '

-
numerical difference of £ —+-3— and - 3 can be made as small as we hkr by

taking & small enough. .

. 2_
In this case the value of = 37 » when x is exactly = -1, is also
x+

available, and that is also equal to —3.

U J(x): Thelimitofafunction f{x),asx approaches the value a
from the right ( i.e.; from bigger values), is that quantity /,, (if one such
exists), towards which f{x) approaches, and from which the numerical
difference of £(x) can be made as small as we please by making x approach
* a sufficiently closely, all the time keeping it greater than «. It is called the
Right-hand limit of f(v) as x tends to a, and is written as

Lt f(x)=1,.

r=a+l) -
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.Malhemat'ically. Lt f(x)=1,, provided, given any pre-assigned

x—a+0

positive quantity €, however small, we can determine a positive quantity
8, such that |f(x)-l| <€ whenever 0<x-aséd, ie.,
a<x<$a+d. :

Lt f (x) .is somehmes denoted by the symbol f(a+0 )

y=a+0

Ex (v). Lt { ! }:0, as can be shown by writing x=2+4
x—2+0 5 ;j_j
+e
where § is positive, and then making & arbitrarily small when the denominator.
becomes arbitrarily large. ’ ’
Lt f(x) : Inasimilar way, we may define the Left-hand limit of a
x—a-0 '

function f(x) as x tends to a as follows :

L f(x)=1,, provided, a quantityl, can be obtained suclt thar,
a0
given any pre-assigned positive quantity €, however small, we can
determine a positive quantity 8, so that I f ) 1, |<g whenever
0O<a-x<8,ie,a-8 <x<a. o
Lt f(x) issometimesdenotedby f(a-0).

Ava -0

Illustration: Ls { 1_|_}=-1-.
x—=2-0 5+€1"2 5

As x—2- 0, x—2 isnegative, and becomes numerically smaller and

smaller, so that e+ approaches zero in this case.
It may be noted that when Ll f (x) = IJ ‘ f (x) , each of lhese is

equalto Lt f(x) Conversely,for Lr f(x) toexist,eachof Lt f(x)

xX—a x—da + (

and Lt f(x) must exist, and must be equal, to one another, and this -
x-+a-0 o
common valueis Lt f ) . L

r=da

If Lt f(x)# Lt f(x),.orevenone oflhbm does not exist, then

Xx—a+0 x=a-0

Lt fix) does not exist.

X
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Ex  (v). Inthe above example (iv),

% 1
since Lt { = } + Lt
x—=2+0 S4er? x=2-0

1
Tl 1
5+ex?

1
.5 { L J does not exist.
’ 5+ex?

Ex. (vi). Again, consider Lt x°
v2

Here, Lt x%=2%= [t 2 [SeeArr. 3.13, Ex.d]

X240 vos2-0
. bl
L'x?=2%=4
r—2 :

Ex. (vii). Consider f(x)=+x-2 .

Here, Lt f(x)doesnotexist, since, for values of x<2 (however

N—2-0
nearto 2 ), f(x) does not exist.

~ Lt vx—2 does not exist.

=2

3.6. Distinction between Lt f(x) andf(a)."

The statement L+ f(v) is a statement about the value of f(x)

when x has any value ;rilaitrarily near to a, except a. In this case, we do not
care to know what happens when x is put equal to a. But f(a) stands for

" the value of f(x) when x is exactly equal to a, obtained either by the
definition of the function at g, or else by substitution of a for x in the
expression f(x), when it exists. -

Note. Five distinct cases may arise.
(i) f(a)doesnotexist,but Lt f(x) exists. .

Y —a

This is illustrated by Ex. (i) of Art. 35

(i) f(a) exists,but Lt f(x) does not exist.

A o

1 when x > 0,
0 when x = 0,
-1 -when x < 0.

Suppose f(x)
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Here, Lt f(x)=1; because when x, remaining greater than 0,
x=0+0

becomes arbitrarily near to 0, f (x) always remains equal to 1 and hence
| feo- 1|, being =0, is < any pre-assigned positive number &, for any
" positive value of x less than 8, hewever small. i

Similarly, Lt f(x0= —1: because when x, remaining less than zero,
x—0-0 E

becomes arbitrarily nearto 0, f (x) always remains.equal to =
Since Lt f(x)z Lt f(05
x-+0-0

x=0+0
Lt f(x) doesnot exist, but, by definition, f(0)= 0, here.

=0

(i) f(a) and Lt f(x) both exist but are unequal. -

let f(x)=0 for x# 0-,
=1 for x=0.

As in (ii). it can be easily shown here that

L f(x)=0= L f(x).
v 0-0

x—= 0+ 0

Lt [(x)=0. Bui, by definition, f0)=1.

=0

(iv) f(a) and Lt f (x) both exist and are equal.
This is illustrated by Ex. (iii) of Art. 35.

(¥) Neither f(a) nor u £ (x) exists.

Let f(x)=sint. 7‘.

"Here, Lt sinl doesnot exist [See Ex.4,An.3.13] and f (0) does
not exist, asxi_t’::vould- involve division by zero, and is otherwise undefined.
3.7. Symbols + - and - .

If a variable x, assuming positive values only, increases without limi

(i.e., ultimately becomes and remains greater than any pre-assigned positive
number, however large), we say that x tends to infinity, and write il

as x — oo.

Similarly, if a variable x, assuming negative values only, increases
numerically without limit (i.e., —x ultimately becomes and remains greater
than any pre-assigned positive number, however large), we say that x tends
to minus infinity and write itas  x — —eo. :
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Note. It should be borne in mind that there is no number such as oo or —oo
towards which x approaches. The symbols are used only to indicate that
the numerical value of x increases without limit.

3.8. Function tending to infinity : L1 ¢ (x)=to.

As x approaches a either from the right or left, if £ (x) tends to infinity
with the same sign in both cases, then we say that, as x tends 10 a, tends

to infinity', (or loosely, the limit of f(x) is infinite), positive or negative as
the case may be; and write itas 14 f(x)= o or —co.

r=a

If, however, as x approaches a from both sides, f (x) tends to infinity
with different signs, we say ‘does not possess any limit as x tends 1o o

The formal definitions are as follows :

1f, carrespondi;ig to any pre-assigned positive quantity N, however
large, we can determine a positive quantity d, such that | (x) > N whenever
0<|x-a|<8, we say
Lt f(x ) = oo,
L a

If, in the above circumstances, — b i (,\) > N whenever 0 <| r—al “é,
we s Lt f(x)= - oo,
—

x a
Similarly, we may define the cases

.|—'>1;(00 f(X) e ¥ -—aI;l»ll f(\.) -
r—d.[;’d»l)f(x): = .(—-ill‘tl—o f(-r) S

x—=0+0 X

1
Hlustration: Iy 5 o, Iy 1. oo, — = o,
x? f=20-0 x2 oy

1 1 1
L — = oo, b o= Zedm, a4 L~ does not exist. In
x=0+0 x r=0-0 x 0 X .

either case, however, f(0) does not exist.

3.9. Limit of a function as the variable tends to infinity : Lt £ (x).
X o0

As x, remaining positive, becomes larger and larger, if there exists a

' According to some modern writers, this is described as f (x) becoming
infinitely large’, and infinite limit is not recognised as a limit.
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definite ﬁnite number ! towards which f (x) continually approaches, such
‘that the numerical difference of f(x) and ! can be made as small as we please
by taking x large enough, wesay Lt f(x)=I.

Mathematically, Lt f(x) =1, provided, given any pre-assigned

positive quantity €, however small, we can determine a positive quantity
M, such that | f)-1 | < € forallvalues of x> M.

Similarly, L+ f(x)=1, provided, given any pre-assigned
positive quantity%?ht—)'{vever small, we can determine a positive quantity M,
such that | f(x)-1" | <€ forall valuesof —x> M.

In a similar way, we may define the cases

L f)=w=, L f()=-m=, L f(x)=e=,ec

X =3 oo X =3 o0
1 1
Ilustration : - =0, L — =0,
X—bee X X = e x
1 2
Lt er =1, L x” =o, €lC

3.10. Fpndamemal Theorems on Limit.

We givé below some fundamental theorems on limit which are of frequent
use.

If Lt f(x) =1, and Lt ¢(x) =I', where [ and I arc finite
quamiligs-,. then i
® L {fmtem)=1+l.
@ L {foxem}=1r.

L]

(i) Lt {%] =—:—,. provided I"#0.
xa X

v L F{fwk F{ L f(x)},i.e.,=F(l),

where F(u)isa function of w which is continuous' for u=1.

! See next chapter.
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v) If ¢ (x) < f(x) < w (x) inacertiain neighbourhood of the point
‘a’ and Lt q)(x):l and Lt w(x)=1,then L f(x) exists and is
equal toxi.m o A
In particular, if lf(x)l(lg(x)|, i.e., f(x) lies between —g (x) and
g(x),andif Lt g(x) =0, then Lt f(x) =0.

oi)If Lt ¢(x) =1,and Lt w(x) =1, andif¢ (x) <y (x)
in a certain Ingi,t;hbourhood of a e;c;pnt a,then I, <1,
Proof : :
@) Since Lt flz)=rl, Et ¢(x) = I'. we can, when any-

x—a

positive number € is given, choose positive numbers &, 8 ,, such that
|r()-1] <ie when0<|x-a|<$5,, N
lo()-1"| <ie when0 <|x-a| <d,, R )

Let 8 be any positive number which is smaller than both 8, and 8 ; then

the inequalities (1) and (2) both hoeld good when 0 < |x—a|<§ .
Now | {f (x)-1}+{o(x)-r'} < |f(x)-1]+|o(x

[{r(x)+ ¢(.x)}—{l+l'}|<-?l:e+ %s, ie.,< ¢,
when 0<|x-a|<é
... by definition, [ + I’ isthelimitof { f(x )+ ¢ (x)} as x > a.
Similarly, it can be shown that | — I” is the limit of {rf(x)-9o(x )}
as x > a.

Hence, Lt {f( ):tqw( }—lil'.
) Wehave f(x)o(x)-10={f(x)-1Ho(x)-1}
wr{s(x)-t}e1{o(x)-1}
| 7(x)e(x)-ir|<|f(x)-1]lo(x)-V|
+H U f(x)=t]+]][e(x)-0] ... O
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Now, € being any pre-assigned positive quantity, and choosing any
other positive quantity k,

_€ E £

AT
are known pesitive quantmes and.

since Lt f(x) =1, Lt ¢(x ) =

x—=a xX-2a

we can choose positive numbers 5,.52. 5;. 8 4, such that
| £(x )-1| <k when 0<|x-a|<8,.
lo(x) _Il“_ when 0<|x-a|<8,,
| r(x)-1] < 3|,|

d 2,
m [0 ()11 < 55
Henee, if & be the least of the positive numbers 3,, 5,,85,8,4al

the above four inequalities hold when
0<|x-a| <4,

when 0<|x-a|<8;,

when 0<|x-a|<$8,.

and so from (1),
' f(x)e(x) d L B B L B
£ €
e, <o+_—+ ie., < € when 0<_|x-a|5 .4

At

. by definition, 1__3{ ( )¢( )} 1.
(g) I
) v

|1.'{f(x)-l}-l{v(X)—l'}

(iii) We have
ro(x)

.
lA)- 1] o)
S -

~ Now, since lJ‘ ¢ (x) = I’,hereexists a positive number 8 such

thattq)( )-r l< ll' | when 0<|x-—a| &, ,for I'#0.
| !-l¢( x) <] o(x)=1]<3[If
or, |¢(x)| > -i:|!| when 0<|.\’-a|55,. e @
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Also, there exist positive numbers 8,. 8., such that
[f(x)-1] <& for O<|x-a|=35,,
]¢(x)—l'|<£' for 0<|x-a|<3$é, sy 3
where £ is any chosen positive number.
If be the smallestof 8,, &, , &5, then it follows from (1), (2). (3)
that, when 0<|.x-—a| <4,
£(x)_1[_frielk
olx) '] Ly p’
Al
Now & being any pre-assinged positive number, if we cheose

&:’:»2'—6{."}2/{]1|+]l’| },wegel

I .
:21;‘7 <€when 0<|x-a|<3§.
p L) 1

Hence, =
xsa ¢ ix i 1

(iv) Letu = f (x ); since F (u ) is continuous for u =,

[ F(u)-F(1)<e when |u-t|<8,,

ie, when|f(x)-1]|<8,, e D
Again, since f(x)—! as x - a, _

|f(x)—l|<¢5| when 0<Ix—a|$5. we (D)
Combining (1) and (2),

iF{f(x)}—F’(()l«s‘ when 0<‘|x—a!55, .
ie, Lt F{f(x)}=F(1).

(v) Assume that the inequalities tp(x)< f(x)< v(x) are satisfied
when O<|x—a| <4,.

Since Lt ¢(x)= l,|¢(x)—1f< € wﬁen 0<|x—a]582.

ie. l-c<¢(x)<l+e& when O<|x-al|<s,.
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Similarly, I ¢ <y (x)<l+& when O0<|x-a|<é

If 8 be the smallest of the numbers 8, 8, . 83 . then all the above
inequalities are satisfied when 0 < |x — a| < 8. Under these conditions,

l-ge<o(x)< f(x).

Also T+e>p(x)> f(x), ~l-e<f(x)<l+e,

ie, |f(x)-1]<e when 0<|x-a|<3§.

f(x)>1 as x—a. .

(vi) Let us suppose that the inequality ¢(x )< w (x) holds good

when 0<|x-a|<&,, i.e, inthe neighbourhood
a-8,<x<a+d,, x#a,
If possible, suppose [} > [,.
Let us choose & = £ (§, ~ I, ), a positive numbcr.

Since Lr ¢(.\')=ll,

|¢(x)-1|<ée when O0<|x-a|=<d,,

ie., l.—-€<¢(x)<l,+£ whena -6, Sx<a+d,.

Il"Jz“(’l "’z)<¢(x) whena-0,<x<a+d,.

ie., Jz-(t,+lz)<¢(:t).
Again, since Lt w(x)=.lz.

X=a

(M

@

l,-e<y(x)<l;+€ when a-8,;Sc<a+d,.

w(x)< ’z'*lz'(»l: “'z)'

ie., v;/(_x)<%(1, +1, whena -85S x<a+d,. ...

-3

Letd be the smallest of the numbers 8, §,, 85, thenall the above

inequalities (1), (2), (3) hold good in the interval a — 8 < xS a +§.

from (2) and (3), ¢(I)>%(I|.+Ig)> w(x) .
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ie., ¢(x)>y(x)ina-6<x<a+s,

which contradicts our hypothesis that ¢ (x ) < w (x ) in that interval.
Hence our assumption [, > [, is incorrect.

% ll ?lz, . i.C.,"| 512.
Note. The first two theorems may be extended 8 any finite number of

functions. In languages, the first three theorems may be stated as follows :

() The limit of the sum or dzjferenee of any finite number of functions
is equal to the sum or difference of the limits of the functions taken
separately.

(i) The limit of the product of a finite number of functions is equal to
the product of their limiiy taken separately.

(ili) The linit of the quotient of two functions is equal to the quotient
of their limits, provided ihe limit of the denominator is not zero.

As examples of (iv). we get

Lr logj'(.t'):log{' Lt f(x)]:log{, provided I:-0,

Lt f(x)

L L,f(«,!_)=ex--—)a wd

x—a ‘
"

Lt {f(x)}":! Lt f(.x)} =1", etc.

X—da [,‘ )‘ﬂ
3.11.Some Important Limits. .
() Lt LS 1, where x is expressed in radian measure.
x—0 X

From elementary Trigonometry', we know that if x be the radian measure

1

of any positive acute angle, i, 0 < x < 17 then

nx

. . s
Sin X < x < tun Xx,o0r, COS x < < L. [4))]
x

sin x .2

1
0<1- < I-cosx, ie, <2 sin Ex.

X

' See Das and Mukherjees’ Intermediare Trigonometry.
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But 2sin” +x< 2(-’~x)z ie, <ix’
? 2 2 , , 2
’ sin x
Hence, 0<l-—— < -zlxz_
s

Now,since x> >0 as x—0+0, weget

Lt (1- S'“")=0,i.t-.. e e
x =040 X

2= 0+0 X
Alternatively, noting that cos x — las x — 0, we can conclude directly

from (1yihet L2l =1,
- X

When — 17 < x <0, putting x = -z, we get 0 < z<in.
2 p 4 g 3

sinx sin(-2z sin z
Also, = - ( ) = P
X - Z Z

sin x sin z o

Hence, Lt =
A—=0-0 X r=0+0 Z-

Hence the result.

(i) (@ Lt

n—y 4o

n E
( 1+ _1_ ) = e,-(n — oo through positive integral
n

values).

(b) Lt Lli—l] =e. 8
X

x=3+o

Proof : We have already seen that

Lt

1 \n ) E i . " ‘
( 1+ — J = e, {( nis a positive integer ). [See Art. 5.12)
n—eo n
Now. let x be any large positive number. Then we can get two

consecutive positive integers n, n + 1, such that

1+—l-zl+l>l+ :
n X n+1

n<x<n+l.

2n,

and each being > l,andas n+1> x

# 1 n+1 l x 1 ]
1+ - > 1+ — > 1+ 5
{ ) ( x) n+1 o

n
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" v ; R |
l+l 1+l > l+-l- > ]+__L / l+L :
n n x n+l n+1
Now when x— oo n— e also,and n bcing‘a positive integer,

n n+l ]
both [l+l) and ( 1+ : ] . — e, as proved before. Also,
n n+l

1 .
1+ " = land 1+ =7 — L. Hence the two extremes in the above

’ . . 2 Yy
inequality tend to a common limit e, and so ( 1+ - ) —e.
. \
{ g

Lastly, suppose x = —p, where pis a large positive number; then as
p—> o x— —oo

N

(oot () (] ()

| q+1
=[l+;) (where g = p—1).

Now,if p-3 co, g— oo and hence

(5] (2] et

8 =

Thus, (l+l] — e as x— - oo,
X
Hence, we see that g (l+—l~) =e,
: Xdte X

x being not confined to be integral here.
Cor, Lt (1+x)u"=¢v

x—0
Proof :

I .
In the above result, replacing v by — as x— teo, y— 0, and
X
we get

L (143 )" =¢, or. Lt (1+x)'*=e.

r—=0 =
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Gii) Lt L] log(1+x)=1.
=0 X i A

Proof : We have

Lt : log(1+x) Llo log(l+Jt:)'/Jr
x=> :

o x
= log {.,Lj‘,( 1+x )"’} by §3.8())
= loge = L. ' |
@ L =l
-

Proof: Put e =1+ z.

Then x =log(1+z), andas ysk O, B+ 0

ef -1 : z
" Thus, Lt =

= Lt
20 X 750 !ogil+z‘i

L {|/ {% log(1+ 2 )}]
l/ 21::0'{5 log (1 + z)}

=1 . [By (iii)]

1
—

n__n ’
™ Lt X2 -pa*!
X—>a Xx—a
for all rational values of n, provided a s positive.

Case 1. When n is a positive integer.
By actual division, we have

xn -ar: !
-z 5 2" 5 x "0 plln. +a” .
xX—-a
reqd.limit= L (x""' +x" a+...... +a"")=na""",
= X=—d :

since the limit of each of the » termsas x —a as @ "= and the limit of the
sum of a finite number of terms is equai to the sum of their limits (Art. 3.8).
5 s
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Case Il When n is a negative integer.
Suppose n = —m, where m isa positive integerand « = 0.

xn _an x—m _a-m I xm _am
Then = &
X—a X=-u xa”  x-a

o I
Now,as x — g, the limiting value of

1
= =—— and
~
x al" aMaM a..l"
o — g™ :
3 x — a, the limiting value of ————=mgq™"", by Case .
X-a :
n n”
x" -a | _ s -
U ——=-ama® ' 2ma™ " = pg"!,
X3¢ X—4a a #

Case lIl. When n is a rational jraction.

Suppose n = p/q, where q is a positive integer and p any mteger positive
or negative.

Letus put x"a=yp and g"a=p

.\'"—a"_x"""—-a”‘("’__ b”_L b”)/y b)
T oweg ‘ x-a (y b"y(y—b)
Now, as x—gq, x' ¥ —)a"", s y—>b. Again, asy — b, the
limiting value of the numerator of the right side = pb P~ (by Cases I and
11') and that of the denominator = g5 ¢~' (by Case I).

- L.
PO e S AR PYIRD B
T—a X-a gb?! q q
When n=0, the limitis Lr 4 = 0.
x=u X —-a

(Vl) Lt M;,l:u,
x>0 X

Proof : We have

,(|+x)"_1=wo{(1+r) .aog(ux)}

x>0 B log (I + x ) X

n
= ki (I+\) s iy Iog(l+x).-
X0 Iog(l+x) =0 X
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- Now, put (1+x)"=1+2z Then nlog(l +x)=log(l +2).
Hence,as x —0,log (1 +z) > 0andsoz—0.

(l+x -

nz
Thus,
.(-—o() Iogil+x; zao Iogil+zi

=zgo[n/{§|%(:+z)}]
=n/zlio{%log(lA+z)}

S =l [by GiD).

1
Als, - fy PELIEEL by Gii).
. ox=0 X
Hence, Lt M =nxl=n.

r—=0 X
This result also follows by replacmu xby x+1and @ by I in (v)
above

3.12. Cauchy’s necessary and suﬁ'icnenl condition for the exlslcm:c ofa
limit.

Thé necessarv and sufficient condition that the limit Lo f(x )

X=u
exists and is finite is that, corresponding 16 any pre-asstgne:l positive
number €, however small (but not equal *o zero), we can find a positive

number § such that x, and x, being any two quantities satisfying

0<|x-a|<8,|fx)-fx)|<e.

To prove that the condition is necessary, let -Lt f(x) exist, and be
X =r .
finite, and = [ (say). ‘

Then, given any pre-assigned positive number £ , we can finda positive
number § , such that

lr(x)-1]<3 e
"when 0 <|x-a|<d.Ifnow x and x, beany two quantities
satisfying 0 <|v-a|< 8,
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wen | £ (e,)- 5 (e)| = {7 (ea)-td- ()= )
Slf(xl)-ll+|f(x2)—ll

4 1 j
<2€+1E, e, < E,

Hence, the condition is necessary.

The proof that the condition is sufficient is beyond the scope of the
present treatise. - :

Note. In some cases even if we may not know the value of a limit beforehand,
Wwe can determine by the above test whether a limit exists or not. Illustrations
of this are given below.

Ex. 1. Showthat I: cos 1 does not exist.
x50 X

In order that the limit may exist, it must be possible to find a positive
\umber 8 such that, x, and x, satisfying 0 <|x|<§,
!

1
COS — —COs “—
Xy X3

<E

where € is any pre-assigned positive quantity.

Now, whatever § we may choose, if we take x,='l;(2mr) and:
x;=1{(2n+1)n }, by taking n a sufficiently large positive integer,
both x, and x, will satisfy 0 <|x|< 6. '

But in this case, '

lcos(l/x,).—cos,(llxz)l =|co$2:_m—~cos(2n+l)lt| =2,
a finite quantity, and is not less than any chosen &. :

Thus, the necessary condition is not satisfied, and so the req’uil.ed
limit does not exist.

Here, the right-hand limit as also the left-hand limit are both non-°
existent. ’

Ex.2  Show that Lt . does not exist.
10 24!l

Here, taking x,= ~1/n, x,=1/n, whatever § we may choose, by
taking i a sufficiently large positive integer, we can make %, and x, both
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Satisfy 0 <|x| <. Butin this case,

- 1 -

1247 2+e”

o da L 8- 0
24" 2+e" 2+e”

R,
2+e'’™ 24

2+e
which is a finite quantity and so cannot be less than any chosen € however

small.

Thus, the necessary condition being not satisfied, the limit in question
does not exisk

Herc, the nght-hand limit exists and =0, and the left-hand limit exists
and=

3.13. Iustrative Examples.
Ex. 1. Find the value of L x?.

x—2
By taking successive values of x, whlch always remammg less than

‘2tend to 2, viz., x = 19, 1-99,1-999, . . ., we see that x” has the values
3-61,3.9601, 3-9_96(1)1_, ... which tend to 4, and we can make the difference
between 4 and x? smaller than any positive number however small by
taking x sufficiently near to 2. Hence, the left-hand limit is 4.

Similarly, by taking values of x, which always remaining greater
than 2 approach2, viz., x=2-1,2-01,2:001, ..., we see that x? has the
values 4-41,4-0401, 4-004001, which continually approach 4. Hence, as

. before, the right-hand limit is 4.

Hence, the value of the required limit is 4.
Note. Exactly in the same way, we canshow that Lr x" = a", where n

x—a
is an integer or a rational fraction (except when a=0 and n is negative).

E‘-LSMW”W‘ @) Lt sin@=0:
0—-0

() L1 cos®=1; e
-0 : :

(iii) Lt sin@ =sina ;

8-a

(iv) Lt cose cosal .

6-oa
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(i) Since, from the definition of sine of areal angle 0 in trigonomeltry,
with the help of a figure. it may be easily seen that |sin0-0] , i.c., |sin® |
can be made less than any positive number €, however small, by making

|@] arbitrarily small, it follows that L sin@=0 .
-0
@) L (1-cos8)= Lt 25in*10=2x Lt (sin LOxsinlo)
00 80 00
=2x0[by ()] =0.

Lt cosO=1.
0-0

(iii) sin@-sinc =2sin%(6—oz)cos%(0+q).

As 0-a, 1(0-a)-0, - Lt sind(0-a)=0.
= 0>
Also, Icos%(0+a)l$l. OLJ (sinB-sina ):0.

—a

Le., Lt sin®=sino.-
0-u

(iv) Since cos 0~ cos o =2sin (o~ 0) sin 3 (8+a ). it follows. as

in (iii), that Ofa(cos 0—cosa )=0, i.e., Uila cos 0 =cosa .
Ex.3.  Apply (3. ¢) definition of limit 10 illustrate thar
‘L54(2,r—2)=6.
Let us choose €= 0-01. )
. Then, |(2x-2)-6|<0-01if| 2x~8|<0-01,ie..if | x-4|<0-005,
i.e.,8 =0.005. Similarly, if € =0-001,8 =0-0005; and so on.
Thus, 8 .depends upon &, i.e., the nearer (2x-— 2 ) is 10 6, the nearer
x is to 4. We have , :
J(2x-2)-6]<0-00 if  0<|x-4|<0-00s,
[(2x-2)-6]<0-001 i  0<|x-4|<0-0005,
andgenerally,[(Z'x—2)—6|<s if 0<|x-4|<le

Hence, Gisthe limitof 2x-2 as x — 4.

Ex. 4. Draw the graph of sin (1/x ) and show that neither the right-hand
limit nor the left-hand limit exists as x tends to zern
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When x = 0,sin — is meaningless ‘and hence its value is not known.

x

For all other values of x, sin( 1/x ) exists and may take any value from
~1 to 1. Thus, the graph is a continuous curve with a break at x =0 and is
comprised between the linesy = 1 and y=-1.

Y

r
Fig.3.13.1

As x — 0+ 0, by passing successively through values 2/ nm, where
n -is a positive integer which can be made as large as we like, sin(l/x)
passes through vaiues 0, -1, 0, 1, etc. taking intermediate values at
intermediate points. Now, it is evident that these values are taken more
frequently as x comes nearer'to 0 and so sin ( I/x ) does not approach any
fixed value as x — 0 + 0, but oscillates through all values between —1 and
+1, i.e., the function has no right-hand limit. Since, when x is negative,
sin (1/x)=-sin (1/z), where z=(- x) is positive, the function behaves
exactly in the same way when x — 0-0. Hence, the left-hand limit also
does not exist for the function. »

Note. Hence, it follows that L¢ sinl also does not exist.
x—0 X

Ex. 5. Give an example to illustrate the following limit-inequality :
If Lt ¢(x)=Aand Lt y(x)=B and if ¢(x)<y(x) ina
X=a 2 X—a
certain neighbourhood of a except a,then A<B .
Suppose, ¢(x)=5+x%; y(x)=5+3x"
o Lo(x)=5= Lew(x).
x=0 =0

! For proof of this important theorem see Appendix.
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But, ¢(x)<wy(x) if x=0.

Thus, the limits of the two functions are equal, even though
¢(x )<y (x) forall values of x on which the limits depend.

If, however,: ¢(x)=5+x2, wy(x )=7+3x2,

then of course, Ll ¢(1)< Ll V(x)

Ex. 6. Evaluate Lr —(m—ﬁ——x)

As it stands, theorcm (iii) of Art. 3.8 is not applicable, since the
. denominator x is zero as x — 0 . But it can be easily transformed into a
form in which the theorem is applicable.
Multiplying the numerator and the denommator by ,/ I+x + f—
the required limit

= Lt L
id) x(‘ll+x +m)
= Lt 2 =—;-=l

=0 ,/I+x+,/l—x
since . Lt ‘}1+x= Lt J;:l (pum’ng H—x=y),
x—=0 . y=l

and similarly Lr l-x=1.
: x—0

Ex.7. lf —-l<x<l, then L: x" =0. (n isa positive integer).
Let us first consider the case when O0<x<l. )
Put x=1-p, sothat 0<p<1. Since (1-p)(1+p)=1- p g
which is less than 1, we have l-p<l/(l+p)
1 1
e e <(1+ )y Tenp np
x" can be made less than any given positive number € by taking

n large unough [l‘.e.lakingn >EL] ; but x” is positive.
‘ ¢ B

Lt x"=0 when pn—eo,

Since (-x )" =(=1) x", the result also holds for -1<x<0.When
x=0, x" =0 forevery positive value of n. Hence L x" =0 when n — oo,
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Note. When x >.1, putting x for 1+p in the inequality
(1+ p)" >1+np>np, it can be shown that x" > k, where k is any
positive number, however large, for all values of n>k/p.

Hence, it follows that, for x>1, Lt x" =
. n=>es
Ex. 8. Prove that (n being a positive integer)

O u ,,_,>"=0 wh¢n| |<1.

LEed 4
@ Lt =0 when |x|<1.
n—pes N
=o when x>I.

(iii) Lt ——0 for-all values of x.
- n!

gy~ gy 2ln1 fom=2 Lok "”) =0 when | x|<I.

n—pe n!

3.14 Miscellaneous Worked out Examples
Ex. 1. Evaluate the following :

10) lim(x—szn) : o [C P.1983]
X—poo & ) ! ‘
@ tim {x-JG-a)x-b) | [ C. P 1992, B. P. 1999 ]
X—poo i
Solution : () lim(x-\‘x’n)
T x—pes

(x—\lxz +X (x+\lx +x]

= lim
X—yoo .I+J;2
. =x
= lim
X—peoo 1
X 1+"l+—} e
s
= lim -
X—peo 1
1 1+~
=— lim —=0
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(id) Iim {x—‘/(x—a)(x—b)}
s {X—\f(x —a)(x=b) }{x+1/(x a)(x— b}

.k x+4J(x—a)(x-b)

= lim X2 —[x —(a-b)x+ab}

X—yeo {x+J(x a)(x- b)}
x{—ﬁé+(~u+b)}
: x
= lim

)

(a-l—’b)—g?
=
X X
sl lal v Tin el i 2 = fig = 0
2 X—3c0 X X-Doo X X—yoo X
Ex. 2. Show that :
x%sin 2
@ lim—%l-p. [ B. P 1989, 91 |
x—=0 sinx )
Gy lim22L g, [ B. P 1995 ]
XA —X
(iii) lim (sec2x—tan2x)=0, [C P 1980 ]
L )
4 ]‘
(iv) ‘lim xsin(—):O. [ B. P 1990 ]
»—0 X E
) lim (1~ %) tan% LY [ B. P 1991, 93 ]
n

wi) lim ﬂ“’“}ﬂz_l, [ B. P 1992 ]
x—0 X 2 .
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2

x*sin| — i i
Solution : () lim ———*/ = lim { x-sin| — |-—
x—0 sinx x—=0 x| Sinx
pd
= lim (x) lim sin(l}-'—ls,n—
=0 =0 X lim _I_.E_
; A0 X
since, lim x=0, lim 32X _), sin(l] <1.
x—0 x=0 X xl
@ i S0 e SNBSS

x=nrT—Xx @-0 6

where, t—x=0 .. x=n-0,and >0 as x 2«

" (i) lim (sec2x— tan2x)
P

v 4 . :
. 1-sin2x . (cos,t—smx)2
) = lim| ———— |= lim -———2————2—
(T cos2x x—T |cos® x—sin” x
4 4
. COsXx—Ssinux
= lim ————=0.
x—X COSX +SInX
: 1
ny lim xsin| —
‘,
(@ x—0 x
. . i |
=0, since lim x=0 and |sin—|<1.
x=0 X

(v)' lim (1-x) tanE
x—0 2
. n
=;T00{an {5(1‘9)}. where 1-x=0, ie., 1-0 and

850 a x—>1

< Fiedptan] B 20
80 3 3 )
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= lim O-colﬂ,
00 2
-
=lim 0 2 =lim cos—-lim 1 xz=—2-
0—0 . o .m0 n
n— sin—
2 2
0
2

. . sinx—tanx . 1/ . sinx
(vi) lim ————= lim — sinx—
x—0 . 3

) T m“']: um[ 1 -Lﬂ.L(_gsinzg)},

=07 cosx x—20 |cosx x  x2

N sin£2 :
=1ih1( 1 )-lim(smx]-lim 2 x[—l]
x—0| cosx | x=0| x| x—0| X 2
2

l .
=1xIx()?ix|-=|=-
o5
Ex. 3. Evalvate :

) '2n+l.,'.3ul ,
O Jm

x2 - xlog+logx —1
i) lim
@) x—1 x-1

1-cos3 x

iii) lim
(’x:vo tan? x

(a+h)?sin(a+h)-a’sina

iv) li
) B SE
‘@) lim = '
= erdxtdx
2n+I + 3n+l



AMIT

77

=
o (3] =0 s pm (3] <o

x2—xlogx+logx-1

(ii) 11-'!: : 1
3 2_ -
= lim [x 1(x l)logx]
x>l x-1 x=1

=lm[(x+1)-logx] - x-120
x—] - " " Yo
=2-limlogx=2, - lim logx=0.

x—=1 x=l

1-cos3 x
tan? x
- ’ 2

= lim ( cosx)(l+¢;osx+co_s x)-cosz
x—0 sira x

' (1-cos x) (1 +cos 2 o
= Nk (1-cos x) (1+ cos x+c(.1sx).wsz
x=0 1-cos? x_ :

‘ 2
='uma_+c.i.“.._c°‘;i)' v 1—cosx#0
x—0 l1+cosx

(uii) Jl[lino

X

X

> li_l:'u0 cosx=1.
X
i) ﬁm (a+h)2sin(a+h)—azsina
x—0 ‘ h

.~ h

x—0

a2-2cos a+ﬂ sinﬁ
2] 2

=lim
h—0 h

+ lim 2asin (a + k) + lim hsin (a + h)
“h—0 h—-0

i {azlsin (a+h)~sina) +2hasin (a+h) + ksin(a + h)
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sin
=a?- lim cos| a+ |- lim —2 =2asina+0
h—0 2] h>0

=a? -cosax(l) +2asina
=a? cosa+2asina-

-
x+Jx+J;

| (v) lim
x—pec
= lim

. Xy

= lim

1
where y=—
e

and as x —ec, y—0

Ex. 4. Evaluate :

42 — (cos x +sin x)°
1-sin2x ’

() lim
S :
.. xtan2x-2xlanx
@) lim ——————.
. x=0  (1—cos2x) ‘

. n x
(iiiy lim {tan(—+ A)} .
x=0 4

() lim (xlan x—%sec.r).

xX==
2
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. Jeosx - Ycosx
(v) lim —_—,
-0 sin? x
Solution :

1
: 4«/5{1-— (cosx+sinx)5}
@ lim 4~J_2-—(cosx+sinx)5 = S 432
X (1-sin2x) = 1-sin2x
T4 4

, [ 1 1 5
l—(~—c03x+—~—sinx) }
=442 lim L il &

:_,ir_ : 1-sin2x

{I—coss x—% }
=4\/§' lim
r—Z

1—sin2x

. l-cos5@
=442 fim =577 where, 0=x-1 g 00 ,as x>
00 | -cos20’ 4

—47. lim (1-cos@)( +cos@ +c0529+c0339+cos46)
-0

2sin0
2sin? 2
=22 lim xltm(l+c0\9 +cos 0+cos33+coe 9)
‘8-0 s]qze 80—
202sin? 2 I
=242 lim 2 5
00 92

sin? 2
—4—)(4 lime—zxe

hm (1+cos® +cos29+c0530+cos49)

0 2
Sll’!

=2./2 hm-— !

X—— %
802 6

: 0 2
el li in 2
2 lm(SI 9]

(l+c036+cm 0 +cos? 8+cos 9)
—Zﬁx(l)szx(l+l+l+l+!) 5V2.
(1
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s Do DT __2xlanx —2xtan x
(i) lim 222X X _ jjm 1otan x___
a0 (1-cos2x)? -0 (2sin?x)

2xtan x{

2 "l} B
= 1k 1-tan?x J_1, _ xtan 2
x—0 4sin® x 2 x50 x(1-tan? x)

Jt4 lan3x

l
2 "-'Dx sin* x(1-tan x)

1
1
since, 1im(i’l“—)= tim 3% o fim ~1— = Ix1 =1,
=0 X x—(0COS X »

_ | |
X , d
(i tim Jtan[ T x |t = tim __-—“‘"“‘}*
x—0 4 xo0 |1+tanx ).
(%) )
g — e x
lim { (1+tanx) *"* lim (l+tanx)"'“'
x—0 . x-0
= tanx = " tan x
U {—] L e 'T]
lim {(1-tanx) “"* lim {(1- tnnt)
I—'ol x—0
1 i
lim {(1+6)°?
g—0 :
=______———=_f"_.=,32 , where, tanx =9, —tanx = -P.
, 1 -1 . : .
lim{a+pB)°? " '
680



LIMIT - ol ‘ 81

(iv) lim (xtanx—-’-:-secx-
n 2

x>
A I e
xsinx—= N7/ 5475
= lim 2 |= lim 2 2 .
1_-.% cosx =0 oos(-’—t-—z)
: 2

where, 7=~ —x s z—0as ¥ —.
2 2

1 |= T
-hm-—~— —CcosZ— zcosz—z

-z=08inz (2
. .=zc08z W .. l-cos
= lim -z_—z,——-llm - 2
-0 singz 2 90 - sinz
" . 22
lim cos z 2sin2 =
=_Q0_._._.__.’_t_.]im 2
fim[322) 2 #9955 %c0s
-0 T 2 2
1 n . z sz C
=————-lim-tan= wosin=#0 as ;0.
1 2 =0 2’ 2 bk
g .
=—]-—-0=-1

2 ) . S
(v) Let us substitute, cosx=16. ' -
Obviously, 1 —» 1 as x— 0 and Jeosx =13, Ycosx =2
and sin2 x =1-cos2 x=L1—r12

- lim Jcosx—v
o0 sinfx

—12 20,

—IIITI' l = lim ‘ -1
511112 =22y
Ilm(t ) ’

=1
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EXAMPLES- I

1. Evaluate the following limits :

x242x-2

x?-3x+2

i) " Lt (ii :
® -1 2x+2 ) =1 x? —4x+3
2 2
a-a’ —x X ,/l+21—-,/l—3x
(i)  Lr o (iv) Lt ;
. x>0 b 4 x—=0 x :
2. Find the value of
P T T L T
7 e el A (b, #0)
x=0 box"+bx"" +...1+b, '
3. Do the following limits exist ? If so, find their values :
@ L — Y L e
x> T —X x—=x T —X
4. Find the values of :
3 : . 2
® u I @ o onls?)
x=0 X x—0 X
Gl gy ASEEE i gy 1oUEE e
x=0 x—=0 x
% _
() L X0 (1/x) . (i) L Soscx-cox
x—=0 s x x=0 X
sin x° sin™' x
(vii) Lt 3 (vih Lt ——.
x—0 by x—=0 X
-1 . =
G5 L tan” x W b sin x ‘
Cx=0 X X e X
i i x+ |
) sinx i) Lt r2 .
: x—ew X+ COS X xoee v 4]

11
tan x

(xi) Lt (
) £—=0

sin x

).
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5.

A function f( x) is defined as follows :
f(x)=x when x>0.
" =0 when x=0,
=-x when x< 0.

Find the valueof L+ f(x).
i . x—=0 .

7.

10.

11.

i) Lt

A function ¢ ( X ) is defined as follows :
o(x)=x*  when x<1,
=25 when x =1,
=x242 when x> 1.
Does 'Lt ¢ (x) exist?

Do the following limits exist ?
(i) Lt [ x ], where [ x ] denotes the integral part of x.
x=2 »

@ L {x?+fx-1}

x=l

e™s ]

tan x )
_r—r-;n € +1

Given f(x)=ax? + bx + ¢, show that

Lt {f(x+h’1)’f(")}=gax+b.

h—0

Given f(x)=|x|, show that
' huo {£(n)-r(0)}/ h does not exist.

If¢'(1‘f)={(X+2)2‘—4}/,vc‘sho'wthat
Lt ¢(x)=4, although ¢(0) does not exist.
x—=0
2x2-8

Show that L+ =X —° = .

Apph (5 , € ) dclinition. [* 4 =0-1.
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12.

13.

14.

15.

16.

17.

2 2 2
a = Ji X a )
—a X—a

2
i B O e I

x—a X—4a x=a X—4a

@ Is o (x2-a? i = {(J;z—az)x : }?

x—a x—a X—d X—a

Evaluate

; 1 2 3 n
(l) Lt (n—2+';'——2'-+"1—'2-'+...+—5—J.

Does Lt f(x)exist, when
x=0
@ f(x)=(2”"+2”i+llz")?
.. . 1 ens ] P |
(i1) f(x)=(sm—+xsm—+x sm—)?
x X x
Evaluate

@ Lt x".

n— oo

x"

(i) Lt 5 [C. H.1957]
noe x " 4] -

B i E f(::)+ls(x)' [ C.H. 1956]
n-—pee X"+

@ L =1

n—e " 4]

Find the value of J; 3— arc tan nx .
n—3es 7T

Evaluate

() Lf sinnmx.
X —poo
1

xoe 14 nsin? nx

(i) [CH. 1957
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1

xoe L+ asin?nx’ LG 207

@)

18. (@ Prove that
Lt tan ' % =-Lx, 00r Ln according as a is negative,
x—0 * X 2 2 2
Zero or positive. .
(i) Draw the graph of the function f(x) where
5 ) :
flx)= L (—{mn : —g—]
t-20 4 t
19. 1f f(x)= Lt , show that f(x)=1, Y, or 0
a—sse 1 4x2" )
according as | x| <, = or >1. [C.H.1950]
_ Draw the graph of f (x ) in this case.
20. The function y = f (= ) is defined as follows :
f(x)=0 when xI>1
f(x)=1 when x* <1
~ f(x)=7 when xt =1,
ﬁsing the idea of a limit, show that the above function can be
represented by ‘
f (x ) = Lt L ,forall values of x. [C.P. 1949 ]‘
noe 14 x 2" ’
ANSWERS .
. oy | ey g 5
1 (la) 4" (n)-z- ’ . (l-“) 2 ° (IV) 3 ’
2. 35 3.(i) Doesnotexist. (i) 1.
a6 1 @O @o. . 3. MO
o) 3. Gidgg. DL @l ®)0,
(xi) 0, (xii) 0, (xiii) 0.
5. 0. 6. Does not exist.

7. (i) Does not exist.(ii) Does notexist  (iii) Does not exist



86 DIFFERENTIAL CALCULUS

11. 0-05.
12. (i) No, (ii) No.
13.G) 5. G5 .
14. (i) No, (ii) No.
15. (i) +e when x>1; ‘O when -1<x<1;1 when x=1; nolimit
exists when x < -1, .

(ii) 0 when —1<x<1; 1 when x=1; 1 when x<-1or >1; not
defined when » = -1, '

(iii) £ (x) when fx]s1s g(x) when [ x]<1;

%{f(,\‘)+g(x)} when x=1; undefined when x = -1,

(iv) =1 when —-l<x<l; 0 when x=1; 1 when |x|:-1.

16. 1 when x>0; 0 when x#O; -1 when x<0.

17. (i) O when x isaninteger; no limit exists if x is not an integer
@) 0.



4| C Comam

4.1. We have a-commonsense idea of what a continuous curve is. For
instance, in Art. 2.5, the curves of example (ii), (iii), (v) are continuous, while
those of (vi) and (vii) are discontinuous, the curve in (vi) having a point of
discontinuity at the origin 0. A function f(x) is commonly said to be
continuous provided its graph is a continuous curve, and, if there is any
discontinuity or break at any point on the curve, the function is said to be
discontinuous for the corresponding value of x. The general notions of
continuity of a function f(x) forany value of the variable x require that the
function should be finite at the point, and for a very small change in x, the
change in the value of f(x) should also be small, or in other words, as we
approach the particular value of x from either side the function should also
approach the corresponding valueof f(x),and ultimately coincide with it
at the point. If f(x) be non-existent at a point, so that the corresponding
point on the graph is missing, or else, if the value of f(x) suddenly jumps
as x passes from one side to the other of the particular value, or f(x)
becomes infinitely large at a point, then the function is discontinuous there.

We proceed below to give a formal mathematical definition of continuity.
4.2. Continuity.
A function f(x) is said to be continuous for x = a, provided
u f ( X ) exists, is finite, and is equal to f (a). '
- In other words, for f(x) to be continuous at x = d,

o= 1t S) =)

X—0+
orbriefly, f(a+0)=f(a-0) =f(a)
This may also be written in the form Lt f(a+hn)=f(a)

If f(x) be continuous for every value of x in the interval [a ,b] Litis
said to be continuous throughout the interval.

A function which is_not continuous at a point is said to have a
discontinuity at that point. ’
Ex (). f(x)=x? iscontinuous for any value a of x,

for, Lt x?=a?,
x—a ;
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» 1
(i) f(x)=cos— is discontinuous at x = 0,since Lt cos— does
X x=0 X

not exist -+ [SeeEx,l,§3.10)

i) f(x )__, lSdlSCOl'llll‘ll.lOUS at x =(,since Lt (—17] is not
x x—0 k

finite.

(iv) f(x)=xsinl when x#0, and fio): 0, then f(x) is
X

continuous at x =0, for L¢ réin L] =0
x—0 x
[ See Ex. (ji), § 3.6 ]

(v) If f(x)=m when x # 2, and f(2);%, then
)lsd:scommuousal x=2,since L f(x)# L f(x)here,
x—2+40 x—2-0
sothat Lt f(x ) does not exist.
x—2

i) f(x)= e~(a-x)7 s discontinuous at x = a, since though

f(x)= Lx_of(x)=0, e, L f(xl)exist_sand'=0,f(a)

x—>a+0

is undefined.

Corresponding to the analytical definition of limit, we have the following
analytical definition of continuity of a function at a point :

The function f (k) is continuous at x = a provided f(a) exists and
given any pre-assigned positive quantity: ¢, however small, we can
~ determine a positive quantity § such that | F (x)-71(a )| < € forall

values of x satisfying a -6 < x<a+§.

4.3. Different classes of Discontinuity.

M f(a+0)# f(a-0 ),thenf(x)issaidtohaveanor}iinary
discontinuity at x = a . In this case. f (a) may or may not exist, or if it
exists, it may be equal toone of f (a +0) and £ (a - 0) or may be equal
to neither.

To these is to be added the case where only one of f (a+0) and
f(a-0)existsand f (a ) exists, but is not equal to that.
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Ilustration: f(x)=|2+e *| hasan ordinary discontinuity at x = 0,

a

f 0, an a3
orx-»lét+of(x) e g x-»lbl-of(x) 2

Note. Continuity on one side.

In case where f(x) is undefined on one side of a (say, for x > a ), if
f(a+0) exists and'is equal to f(a) (which also exists and is finite), we say,
asa special case, that f (x) is continuous at x = a.

® If f(a+0)=f(a-0)=f(a), orf(a)lsnotdeﬁned then f(x)

is said to have a removable discontinuity at x = a.

Illustration : f(x) = (x" —a”)/ (x—a) has a removable discontinuity at
x=a .For, f(a) isundefined here,though L:+ f(x) exists,and=2a.
x—a a d

Again, if f(x)=1 when x=a,and f(x)=e “-4)7 \yhen

x # a, f(x) hasaremovable discontinuity ata, for, Lt f(x)=
X—a

whereas f(x)=1 as defined.

It may be noted that a function which has removable discontinuity at a
' point can be made commuous there by suitably defining the function at the
pamcular point only.

The two classes of discontinuities (A) and (B) are termed simple
discontinuities.

- (C)-If one or both of f (a +0°) and f(a 0) tend o+ or
—oo; then f ( x ) is said to have an infinite discontiniity ata. Here, f. (a )
may or may not exist. :
s
Illustration : f (x )= e *-9 has an infinite discontinuity at x = a, since
. 22 e | ;
I (a-O )—) o, f(x)= (1—2)2 has an infinite discontinuity at x=2.
(D) Any point of discontinuity which is not a point of simple
discontinuity, nor an infinite discontinuity, is called a point of oscillatory

discontinuity. Atsuch a point the funtion may oscillate finitely or oscillate
infinitely, and does not tend.to a limit, ortends tot0 +c0 OF —oo .
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IHustration : f (x )=sin 1 oscillate finitely at x=0.
x

f(x)= 1 sin X
x—a x-a

oscillates finitely,and L+ x" (x < -1) oscillates infinitely as n —eo .

oscillates infinitely atx=a. L+ x" (x=-1)

4.4. Some properties of continuous functions.

(i) The sum or difference of two continuous funcitons is a continuous
function ; . ]
ie., if f(x) and ¢ (x ) are both continuous at v = a, then

f(x ) + ¢ (x) is continuous at x = a.

For in this case, by definition of continuity, Lt f ( x ) exists, and

= _Lr‘ f(a),asalsd _Lr ¢(x)=¢(a;).
Hence, Lt {f(x)+ ¢(x)}= L f(x)x L o(x)
|See § 3.8(i)]
=f(a)to(a),
whence, by definition, f (x) + ¢ (x ) is continuous at x = a.

Note 1. The result may be extended to the case of any finite number of
functions.

Note2. If f(x) is continuous at x=a, and ¢(x) is not, then
f (x) + 0(x) is discontinuous at x = a, and behaves like ¢(x).

(i) The product of two coutinuous functions is continuous function;
i.e., f(x) and ¢(x) being continuous at x = a, f(x )% ¢ (x) is
continuous there.
Proof is exactly similar to that in the above case, depending on the
corresponding limit theorem [See § 3.8 (ii)].
Note. This result may also be extended to any finite number of functions.

(iif) The quotient of two continuous functions is a continuous funciton,
provided the denominator is not zero anywhere for the range of values -
considered ;

i.e.,if F(x) and ¢(x) be both continuous atx=a, and ¢ (u )# 0,
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then f(x)/¢(x) iscontinuous there.
Proof depends on the corresponding limit theorem [See § 3.8(iii)].

@iv) If fix) be continuous at x = a, and f(.a )20, then in the
neighbourhood of x = a,f(x), has the same sign as that of f (a), i.e., we can
get a positive quantity & such that f (x) preserves the same sign as that of

[(a) for every value of x in the interval a-8 <x<a+3d.
Let f(x)=sinx,a=1n; then f(a)=1andhence » o andpositive.
Let us take & = L7. Then in the interval m—+nm <x<im+17 ie.
'}-ﬂ <x< %ﬂ , f(x) is always positive.

Since f (x) is continuous at x = a, from definition, if € be any chosen
positive number, we can get a positive quantity 8, such that

[£(x)-f(a)|<e,ie, f(a)-€ <f(x)<f(a)+e
m

for all values of x'satisfying a-d<x<a+s.

‘As f(a)# 0 here,if f(a) be positive, choose £ = Jz-f(a )
!hcn from ), f (.r ) > f (a )— E.ie, > %f (a ),and is accordingly
positivewhen a -8 < x<a+9d.

If f(a ) be negative, choose € = —lz f(a ), and then we have
from (1), f(x)< f(a )+eie, < f(a) - %f(a ) : i.e..<—;-f(a),
and is accordingly negative when @ -§ < x <a + 5. " 2F

Thus, whatever be the sign of f(a), we can find § suchthat f(x) has
the same sign as that of f(a) in the range a-8 < x< a+§.

o If f (x) be continuous lhrougl'mur the interval [ a, b ], and if
f (a ) and f (b ) be of opposite signs, then there is at least one value,
sav x, of x within the interval for which f (£ )=0.

Let f(x)=cosx,a=0,b=nx.Then f(a)=1, f(b)=-1.
Now, cos x = 0 if x = -an , which obviously lies in the interval (0, ) . and
sohere £ = 1 . Similarly, if we take a =0 . b=3m, we getanother value

of &, viz., -i—!t , besides -;-It %
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Let OA =a, OB = b. Bisect the interval AB at C . If f(x) be not zero
at C,, it must be opposite in sign to one of f(a) and f(b) which are given
1o be of opposite signs. Suppose f(x) has opposite signs at C, and B.
Bisect C, B atC,.If f(x) benotzeroat C, , it must have opposite signs
at the extremities of one of the intervals C, C, or C, B. Bisect that particular
interval at C, . Proceeding in this manner n times, unless f(x) is zero atone

of these points of bisection, we can get an interval C,,_,, C, (say) within.

AB, at the opposite extremities of which f (x) will have opposite signs. This
interval C,_,, C, is clearly is clearly 1/2" of the interval AB, i.e.,
=(b—a)/2", and taking n large enough, can he made as small as we like.

But f (x ) being a continuous function for every value of x within
the interval AB , corresponding to any point C  init, given by x = ¢ say, if
fc) be not zero, it must be possible [by (iv) above ] to get a positive quantity

8 such that f(x) will retain the same sign, namely that of f(c), in the interval -

[c—8,c+8 ]. Now whatever 8 we may choose, = (b—a)/2" can be made
less than & by taking n large enough, and it has been shown that the
extremities of the interval C,,_,, C, which falls within [c—-ﬁ.c+8 ]. Flz)
has got opposite signs. We are thus led to a contradiction if f (x ) is not

zero anywhere within the interval AB. Hence there must be some point in the
interval, givenby x = & (say), where f (&) = 0 under the circumstances.

iy If f (x ) is continuous throughout the interval [ a, b ] and if
fla)#f (b ) then f ( x ) assumes every value between f (a ) and
f (b ) at least once in the interval.
Let. f{x)=x2, a=0,b=1; then f (a)=0, " f(b)=1.
- Let e be any number between 0and 1. Then f (x )= x?
evidently liesin [0, 1]. '

= ¢, which

5
Let f(x)=sinxa :o,b=_2£;menf(a)=0 F(b)=1,%
f(a)= f(b).Letcbeanynumberlyingin[0,l].’[‘hen sinx = c,if

x=nn+(-1)" ;in"c, n=0,+1 +2,... Now,forn=0,1,2 oniy;

_ ; Sn ; 5 N
xbesmthemterval[o,-z— . Thatis, when x=sin"' ¢, or 7—sin I¢c,or

J

21 +sin ~' ¢, wehave F(x)=c.Thus, f (x ) assumes the value c at .

least once ( here 3 times and in the previous example once only ).
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. Let k be any quantity intermediate between f () and f (b) which are

giventobe unequal. Let ¢ (x)=f (ix)- & . Then since f(x) is continuous
inthe interval [a,b], ¢ (x ) isalsocontinuous. Also'¢ (@ )=f(a)-k
and ¢ (b)=f(b)-k are ofoppoéite signs, since k lies between f(a)
and f(b). Hence by (v) above, there is a value x =& in the interval, for
which ¢ (§) = 0,ie, f({) = k .Inother words, f(x)assumes the value
k at some point in the interval.

(vii) A function which is continuous throughout a closed interval is.
bounded therein.

The function f (x) = sinx is continuous in-the closed interval -
0 € x £ 7, and has the upper bound at x = 47 and lower bound at
x=0 or p, henceitis bounded. ‘

Lei the function f (x) be continuous throughout the closed interval
la, b]. Letusdivide all the real numbers in the interval into two classes L,
R, putting a number x in Lif f(x) is bounded in ( 4, x), and in R otherwis:.
Members of L-class exist in this case, since f(x) being continuous at a (i
the right), corresponding to any pre-assigned positive number e we cun
geta positive numberdsuchthat f(a)-¢ < f(x)< f(a)+¢ (and
accordingly f(x) is bounded) in the interval [a, a+43],sothat a+J belongs
to L-class. If now numbers of R-class also exist in tlie interval, then by
Dedekind’s theorem, ther exists a definite number c (say) in the interval,
which represents the section. [ To include all real numbers in the classification,
we put all numbers less than a in L, and all numbers greater than b in R
here. ] ‘

Now since f (x) is continuous at c, for any given positive quantity .
e we can determine a positive number d such that
fc)-€ < f(x)< f(c)+ e withinthe interval (c -6, c +6 )."
i.e., f (x) is bounded therein. Also c — 6 belonging to L-class, f (x) is
bounded in [a,c-5]. Hence, f (x) is bounded throughout the interval
(a, c+8). Bur c + 68 belonging to R-class, [ (x) is not bounded in
[a c- 8] This contradiction shows that no number of the R-class can
exist in the interval [ a, b ); in other words, f(x) is bounded throughout the
interval [ a, b].

~ (viii) A continuous function in an interval actually attains its upper
and lower bounds, at least once each, in the interval.

The function f(x) = sinx is continuous in the interval 0 < x < = . Its
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upper bound 1 is attained at the point x = rt and the lower bound 0 is

attained at the point. x=0 and x =p. Thus, f (x) attains its upper and lower
bounds, at least once each ( here the upper bound is attained once, whereas
the lower bound is attained twice ). ’

@ix) A function f(x), continuous in a closed interval | a, b ], attains
every intermidiate value between its upper and lower bounds in the interval,
at least once.

Let f(x)=x2, a=-1, b=2, then the upper bound of f(x) is4£;nd"its
lower bound is 0. Let ¢ be any number in [0, 4. Now, if 0 < ¢ < 1, then
Fle)=x?=c,if x= 4_-,/? which liesin (-1. 2);andif 1 < ¢ < 4,
then f(x) =x?=cif x= +Jc , of which only ++c lies in the interval
(-1, 2). Thus, f(x) attains the value c at least once.

Let f(x) be continuous in the closed interval [a, b ], and let M and m
be its upper and lower bounds in the interval. If possible, let there be no

point in the interval where f(x)=M.Then M — f ( )> 0 for all points in
the interval. Now, since f (x) is continuous, M — f (x) is also
continous, and so 1 / {M — f (x )} is continuous in the interval. Thus
1/{M - f(x)} is bounded in the - interval, i.e.,
1/{M - f(x)}< k,where k is afixed positive number.

M—f(x)?%.‘or,f(x)sM-——llc.
This contradicts the assumption that M is the upper bound of f(x) in
the interval.
Hence, f(x) must assume the value M at some point in the interval.
Similarly, it may be proved that f(x) assumes the value m also in the
interval.

It now follows from (vi) that f (x) assumes every intermediate value
between M and m.

4.5. Continuity of some Elementary Functions.
()) Function x", where nis any rational number.

Weknowthat Lt x" =a”, forall values of n, except whena=0
xX=a

and n is negative [ See Note, Ex. 1, § 3.11'].

Hence, x" is continuous for all values of x when'n is positive, and
continuous for all values of x except 0 when n is negative.
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When n is negative and = —m, say, where m is positive
x =1/x"
which either does not tend to a limitor — e as x — 0.
(if) Polynomials.
Since the polynomial @g x" + a, x"'4+...+a" isthesumofa
finite number of positive integral power of x (each multiplied by a constant)

fach of which is continuous for all values of x, the polynomial itself
[ by §4.4(0) ] is contmuous for all values of x.

Il

(iii) Rational Algebralc Functions.

Rational algebraic functions like

agx" +a; x" ' +...+a"

box" +b, x" " +...+b"
being the quotient of two polynomials which are continuous for all values of

x, are continuous for all values of x except those which make thc denominator
zero [ by § 4.4(iii) ).

@iv) Trlgnnmetrzc Functions.

Since thchmntmg values of sinxand oS X when x — a,wherea has
any value, are sin g and cos a [ See Ex. 2, § 3.11 ], it follows that sin x and
cos x are continuous for all values of x.

Since tan x = sin x / cos x, tan x is continuous for all values of x ‘

* except those which make cos x zero, i.e., except for x=(2n+1)in

Similarly, sec x is continuous for all values of x exceptfor x= (2n+1 )%n:

and cot x and cosec x are continuous for all values of x, except when
x =0 or any multiple of = when sinx =0.

(v) Inverse Circular Functions.

Inverse circular functions being many valued, we make a convention of
defining their domains in such a way as to make them single-valued.
Throughout the book we shall suppose (unless otherwise stated ) that

“sin™! x, tan™! x, cot™' x, cosec”'x lie between 4%7! and %JI (both
values inclusive ) and cos ! x, sec”! x lie between 0 and 7 ( both values
inclusive ), which are the principal values of these inverse functions. It should
be noted. however, that and have no existence outside the closed interval of
x,and and have no existence outside the closed interval [-— L1 ] of x,and

: =1 -1 .y " o 5 3
cosec”' v and sec™ v have no existence inside the open intesval (—l.l )
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All the inverse circular functions are continuous for all values for which they
exist ; this follows immediately from the continuity of the corresponding
circular functions.

(vi) Function e”*.

Corresponding to the positive number € , however small, we can choose
n sufficiently large such that (1+ & ) > ¢, since (1+€)" >1+ne,and e

is finite. 3
= 1

Thus, e” —1<E€. ; ¥
Hence, if O<x<l/n,e‘—l<e5#‘l<s,
andtherefore Lt (e*-1)=0. 0. L e =1
x—20+ x =04

If x be negative, putting x = -y, Lt e" = L 1/e" =1.

N 0- y=20+

Hence, Lt e* =1.

x50 .
Lt e =1,ie., Lt e*=¢€".
XxX-C E . 53

¢* is continuous at any point x = c.
= (vii) Function log x, lx > 0.

It should be noted that log x is defined only for values of x>0.

Let logx=y and log(x+h)=y+k '

Then e’=x and e’**=x+h;

Lh=e¥tt -,

As e’ is a continuous function of y, et et

ie,h—>0as k —

Thus, {log (x + h)-logx}—> 0 as k =0,

ie,ash—0. O

Hence, log x is continuous. .
4.6. Dustrative Examplés.
Ex. 1. A function f (x) is defined as follows :

f (x)=x when x>0, £(0)=0,f(x)==-x whenx<0.
Prove that the function is continuous a1 x=0.

Here, = = d = -x)=0.
o f().') x—ﬁ;ﬂlx oan, r—-’:ﬂ‘—of(x) A—%-—O( X) 0

x0+0
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Thus L f(x)= Lt f(x)=f(0)=0 her.

Hence, f (x) iscontinuousat x =0,

For its graph, see figure of § 2. S (ii).
Ex. 2. A function f (x ) is defined as follows :

f(x):xsm— for x#0
=0 g forx =0, ,
Show that f (x) is continuous at x = 0. [V.P1999]
Since |sin(1/x)| <1, by making |x|<€,
we can make |xsin(1/x)| <€,

where € is any pre~assngncd positive quantity, however small.

Hence, Lt xsm—— 0. Also, f(0)=0, as defined.
x

* Thus, U £x)= f(o)
Forits graph see figure of §2.5 (viii).
‘Note. It should be noted that the function xsin(1/x ) is continuous for all

values of x, except for x=0; because when x =0, xsin (1/x ) is undefined.

In the above example, the discontinuity of xsin ( Yx) at x =0 has been
remaved by definition of f(0).

Ex. 3 " A function f(x) is defined as follows :
f(x):l—x when 0<x<1i,

2
=-l- when x=—
2 2
=§—x when L<x<l .
2 : 2
1
Shaw rhal f (x) is discontinuous at X=-2-
Here, Lt f(x)— & St S,
1 .\ 2 2 2
x—p;—o x——=-0
L f(x)= Lt (E—x)=§—-l—=l.
.r_-—p%ﬂ) x,—rz'-:ﬂ.'l '2 2 2
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.

Since Lt f (x) does not exist,
e '
hénce f(x) i§ discontinuous at = ';- :
Ex. 4. A function f(x) is definedin (0, 3) in the following way
f(x)=x? " when O<x<l.
= when 1£x<2,
= %x’ when 2<x<3

Show that f(x) i; discontinuousat x=1 and x=2. [C. P. 194! |
when x=1, f(x)=x. .~ f(1)=1
Lt f(x): L x%= I

r=1-0 x—=31-0
L f(x)= L x=1
also, x—i+0 r=1+0

Hence, Lt f(x)= Lt f(x)= f(l)here

A—)[— X140
. f(x) is continuous at x=1.

Sxm]larly, it can be shown (from the definition of the function in the
relevant ranges) that Lt f(x)= Lt f(x)=s(2)=2.

x—2-0 x=2+0

Hence, f(x) is continuousat x=2.

Ex. 5. Show that the function f (x )=|x|+|x~1|+]x-2] is continuous
at the points x = 0,1,2.

—x=(x=1)=(x-2)=-3x+3, for. x<0
x—={x=1)-(x-2)=—x+3, for0<x<l
x+{x=1)-(x-2)=x+1, forl<x<?2
x+(x=1)+(x-2)=3x-3, forx>2

Here, f(x)=

Now, Lt f(x)=- LJ (—3x+3) 3

x—0- A= 0=

f(x)= Lt (~x+3)=3 and f(0)=3.

A= 0+ x=04
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L! f(x) IJ f(x)= f(O) ~f(x) iscontinous at x = 0

'Asam. ,_".'.-f(‘)",f,f(’) f(1)=2,
and ,_Ijz_f(x)—,_l:’+f(x)—f(2) 3.~

f(x) is continuous at x =1 and x =

Ex. 6. Show that the function f defined by f(.x )=x- [x] where [x]
denotes the integral part of x is discontinuous for all integral values of x
and coummous for all others.
x—(a-1).fora-1<x<a
We have, f(x)={0 forx=a
x-o,fora<x<a+l

where « is an integer. ‘
Lif(x)= Lt (x-a+1)=1
o- X0

Lif(x)= u (x-0)=0

,_l;;_f(xh x_l:‘)“f(x)= j'(a)

£ (x) is not continuous at =
Since a is any integer, f(x) is discontinuous for all integral values of x.

f(x) is obviously continuous for other values of x.

Ex.7. Show that the function f defined by
f(x): x—i Jor x#1
l+ex!
=0, for x=1
is continuous at x = 1.

L

e seas x—1-= Lt f(x)=0
x—1-

i :

e! seoas xo14+= Lt f(x):O.
x=l+

so, Lt f(x)=f()= Lt f(x)=0,

Hence, f(x) iscontinuousat x=1.
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'4.7. Some Miscellaneous Worked out Examples

Ex. 1. Discuss the continuity of the following functions at the points
indicated :
(@ fx)=x when 0<x<L [C. P 1989, 97, 2005]
=2-x whenl<x<2.; atx=2

=x—-§-x2 ﬁ_hen x>2

, .
ty feo=22% cz0 [B P 1994 ]
3x at x=0
=§. x=0
i) ) =x> +x, 0<x [C P 1992]
=2 | at x=1 B

=2xt - x+1, l_<x$.2

4 3 '
x'+4x7 +2x .
—_—, x#0 - [C P 1994 ]

@) f(x)=
=0, x=0

Solution : (i) Here tl_igl_ fx)= l_lgl_ 2-x)=0

and f(2)=2-2=0
lim f(x)=lim f(x)=f(2)),
x=32- x—2+
JS(x) is continuous at x = 2.
(i:').We have, &

2 5
; . tan“ x . |sin® x 1 ;
lim f(x)= lim = lim . 2
0 . x30  3x 0| x? cos’x 3

. 2 ‘
: SINX § - 1 - 1
=lim | —=|{ - lim 5— | lim| —x
x=0 43 =20\ cos” x /) 0 3

= (1) x(1)*x(0) = 0-.-
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Bu f(O)=2
ll-l,“o f)# f(0), f(x) isnot continuous at x = 0.

(i) Here, lim f()=lim (;’+x)=2 ’
5 o 3 &
Jim £ = lim (Zx x+1) .2
and f(1)= 2
S -hm f(x)—llm f)=f0
Hence, f(x) ‘is continuous at x = 1.

P

; +4x” +2

@iv) - fx)= F T T2 _x X , when' x 20,
sinx

x—0 -
sin x '(sin x)
= lim| —

x . =0\ X

But f(O) =0 ;

Thus lim fx)# f(0)

Hence, f(x) is not continuous at x=0.

' _ 3 a2 lim (x* +4x2 +2 ;
lii, 7 e 3E = ( ) 2=2
x=0 x—0 1

Ex. 2. (i) Find f(0), so that fx)= xsin(%) .

for x#0 may be continuous at x=0. [ C. P 1982 86 ] .
- ’ sm(a2 x’) - ,
(i) f(x) = , x#0 and f(0)=k. Find the value of k
for which f (x) is continuous al x=0. [B. P 1992 ]

(zu) What should be the value of f(0) so that f defined by

f(x)— , for x#ﬂ by. contmuous at x=07? [C P 1997]

Solution : () Here, f(x)='xsm[1‘;}x¢o.

for all real values of x , | sin (E) <1, lim x-sin[g)=0. .
: ~ X g xfrﬂ X
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If f(x) is continuous ai x =0, li-T) f(x)=f(0)

S fO@=0, - limf(x)=0,
x~) )

- I
(i) Here, f(x)=m, x#0
%

. - sin(azxz)
<o lim f(x) = lim
x=0 - X0 X

b { snfa’s?)

=0 | G2 X

a

2 sin(az.\'z) .
=a®-lim 5= limx =a® x1x(0)=0.
x=l azx— x—0

since f(x) is continuous at x=0, f(0)= lim f(x) ie, k=0.
x—0 :

Xz -X

i) fx)= , X#0
®
=x-1, = x#0
li =-1.
I et
So, in order that f(x) may be continuous at x = 0,
SO)= li_l:]o S(x) e f(O)=-1.
il log(l +ax) - log(1— &

Ex. 3. The function f(x)= oe(l+an) x e is not defined at
x = 0. Find the value of S(0) so that f(x) is continuous at x = 0,

lim log(1+ ax) — log(1 - bx)

Solution : Here, ,l;l-'Po Sf(x)=

=0 X
- log(1 + ax) ¥ (—b) lim log(1-bx)
=0 ax x

=0 (-bx)

=axl+bx(l)=a+b. -

For f(x) to be continuous at x=0, f(0) should be defined and

the value of f(0) must be equal to the limiting value of f(x)as
x—0. Hence, f(O)=a+b : .
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Ex. 4. Find the values of a and b such that the function

‘ f(x)=x+aﬁasinx. 0515%

swookath, R
4 2

=acos2x—bsinx, -E-SxSu

is continuous for all values of x in the interval 0<x<m.

Solution : The funcuon f(x) will be continuous for all values of x in

' I . n 14
0< x<m, if it is continuous at x=— and X= -i' So, we musl have,

hm f(x)= llm fx)= f( )
x—v-;- —-»-4—+

~and lim f(x)- hm f(x) f( )

-—r +
2

Q)

@

Now, lim f(x)= lim f(x+‘/—asmx)=%+a

x—-»:a-
lim f(x) = lim (2.:cotx+b)—-5+b

AL -
4 4

and f( ) 2f- cot—- b-—+b

Also, hm flx)= hm (2xcotx+b) =b
. x—i;- x-'—z—-
lim f(x)= lim (acos2x—bsinx)=-a—b

x——+ x—»—+
2

it {2)- {3} e

From (1) and (2) we have,
T ]
gt s wdnb Sy &
b=-a-b, a=-2b oy S O]

b=——

- g =%
Solving (3) and (4), @ A 12"
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Ex. 5. The function f is defined as follows :

f(x)=-2sinx, —ns,‘g_%

. noom
=asinx+b, ——<x—,
2 2

ESxSﬂ

=Cosx,

If f(x) is continuous in the interval —1< x<mn find the values of a
and b.

Solution : For continuity of fix) at x= —g ,

lim  f(x)= lim f(x)=f(_§)\_

n

ie., lin: (-—28inx)= lim (asinx+b)=-—2sin(—-§)

X—p——= X—d——+t
2 | 2 /
LéE; -a+b=2 (1) )

n
And, for continuity of f (x) at x = %

lim f(x)= lim f(x)=f(;)s
J—Pif

x——=
2

ie, im (asinx+b)= lim (cosx)= cos(’—t)
.r—)z:z-— x—o§+ 2
ie, a+b=0 ' B A
Solving (1) and (2), we get, a=-1,b=1.

Ex. 6. Find the boims where the function f(x)=l—-li_l is
og| x
discontinuous. g :

Soluti(:n : Flxn) =E!’TI

Obviously, the function is not defined for x=0, and hence x=0
s a point of discontinuity of the function.

Again, when log| x|=0, ie., x=41, the function is not defined.
Hence, the function has three points of discontinuity, viz.,
x=-1, x=0and x=1.
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Ex. 7. Show that the function f(x) =[x]+[-x], where [x] denotes
the greatest integer not exceeding x, has removable discontinuity for
integral values of x.
Solution : Let, x=k be any imegen
[k]=k and [ -k ]=-k
S fk)=k-k=0
Now, lim f(x)=lim f(k+h)
x—k+ h=0
i im|-k-h|=k-(k+1)=-
lim [k+h]+£:_’na[ k—h] =k-(k+1)=-1
and lim f(x)=lim f(k~-h)
x—dk- " . h=—0
lim [k ~h]+ tim [~k + 4] = (k-1) = (k) = -1
h—0 h—0
lim f(x)=-1, but f(k)=0

So, f has a discontinuity at x=k, where k is any integer. If
however, we define f(k)=-1, then the funchon becomes continuous
at x=k. :

Hence the function has a removable dlscontlmmy for integral values

of x. ! ;
Ex. 8: Let f(x) be a continuous function and ¢(x) be a
discontinuous function. Prove that f(x)+¢(x) is a discontinuous
function.
Solution : Let, y(x)= f(x)+®(x), where f() is acontlnuous and
¢(x) is a discontinuous function.

If possible, Iet Y(x) be a continuous function.

Since, f(x) is a continuous function, y(x)- f(x) is also a

continuous function, i.e., §(x) is a continuous function. But this
contradicts the given condition.

So, W(x) ie. f (x)+¢(x) must be a discontinuous function.

Ei. 9. Let, f be a function, such that for all real values of x, y

F(x+y)=f(x)+ f(y). If f is continuous at x =4, then prove thatfls
continuous for all real values of x.
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/

Solution : Since f(x) is continuous at x=a.
lim f()=f (a)
cor, f(a)=lim f(a+h)=lim [f(a?+f(h)], | ;
[ fx+y)=fx)+f()]

= lim fla)+ lim f=fa)+lim f(k)

lim f(W=0 . oo son
Similarly, f(a):llmf(a—h)=}'iir'-)f(a)qi_r'r:'f(—h)

= fla)+lim f(-h)

fm /(-1 =0 B
Now, let k be any real number.
lim f(k +h)= }'Tlo[f(#)+f(h)]

=f(k)+’l'i_r'r(\)f(h)=f(k) { from (1) ]
and, lim f(k~h) = lim [£ (k) + -]

=lim f(k)+ lim f (~h)

=f(k) " | from (2]
Also, putting x=0, y=0, we have f(0)= fO+f(0),
so that f(0)=0
5 flk) = fe+0)= fU)+f(0) = f(k)
Thus .I.E.'& f(k+h)=hl_i'r!.1_ fk+h)= f(k)
& f(x) is continuous at x = k.

Since k is arbitrary, f(x) is continuous for all xeR.

Ex. 10. () Show that f (x) = sinx is continuous for all real values of x.
. [ B.P. 1999 ]
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(ii) Apply €-3 definition to show that the follqwi-ng functions
_are continuous at the indicated points :

. e : = ,
(a) f(x)—xsm(x} x#0 - [C P 1981, 95 ]
f®)=0"

. (b) f(x)=xzcos(—l-) x#0
' A x : at x-0
f)=0

Solution : (i) f(x)=sinx will be continuous at x=q, if for any
€>0, we can find &, such that Ivsinx—_sinct|<e, whenever,
| x-a]<d.

[ B. P 1996
y

xX—0  x+aQ
Cos

-2
xX+0

cos—‘

= 2 .

We have, ISiﬂx—SiﬂlII% 2sin

. X—Q
=2|sin .
; x+o :
Since, ' cos <1, for all real values of x
1 ) ; g
. x—a x-a ) x-al| n
and |sin <|——], for 0< <—,
2 , 2
i i . x-al|  x+af . 5 X
| sinx—sina | = Zsin cos < 2

- =|x-a|<e for |x-of <&
The relations are satisfied by taking & =e
So, | sinx-sina |<e, whenever, | x-a|<e.

So, f (x) = sinx is continuous at x =a. Since @ is any real number,
sinx_is continuous for real values of X. .

- s 9 )
(i) (@) f(x)-xsn(x). xf() of ipaD
f(O)=0

{2}

Now, | f(x)~ £(0)|=
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| 1
=| xsin— =|x|— sin —
x| x
: ;A
< x, since | sin— <1
X

<€ for | x—0|<€..

The relations are satisfied, if §=e. So, f (x) is continuous at x = 0.

(b) Here, f(x)= x?cos (é) , when x # 0

f(©0)=0-
For continuity of f (x) at x = 0, we are to find a 8 depending upon
€, such that

If(x)—f(0)|<E, for |x—0|<5.

; 1
ie. |x*cos—-0|<e for, | x|<8.
x
o l - .7 . - <2
Since | cos— | <1, relations are satisfied, if we take | X |<e for
X
| x |<6

So, the relations are satisfied if 5=+ .
Hence, f (x) is continuous at x = 0.

EXAMPLES-IV
1. A function f (x ) is defined as follows :

f( )— 2 when x#1, f(x)=2 when x=1.
Is continuous at x=17?

2. Arethe following functions continuous at the origin 7 .
@ f( )=sm_(l/x) when x 20, f(0)=0
@ f(x)=xcos (1/x) when x#0, f(0)=
i) f(x)= xcos (l/x) when x 20, f(0)=1.

|
sin —

) f(x)= lx when x # 0.

x
=1 when x = 0.
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(iv) f(x):sinxcos—l— when x # 0.

=0 * when x=0.

3. - Afunction ¢ ( x ) is defined as follows :

¢(x)=x? when x<l,

=25 when x=1,

=x*+2 when x>1.
Is ¢ (x ) contirfuous at x=17? R :
4. A function f(x ) isdefined in the following way ;
f(x)=-x when x<0,

=x when O<x<l,
) '=2-x when x21.
Show that it is continuous at x=0 and x= 1. [ C.P. 1942]

5. A function f (x ) is defined as follows :

f(x): I, 0or -1 acct;rdingas x>,=or<0,
Show that it is discontinuous at x=0.

2 —-—
6. Thefunction f(x)= L ‘:6 is undefined at x =4.
x-

What value must be assigned to f (4), if £ (x) is to be continuous at
x=4? :

7. Determine whether the following functions are continuous at x = 0.

0] _f(Jc):(x‘+x3+2x2 )lsinx. f(o)=o.

- (i) f(x)= (x‘ +4x? 4 2x )/sinx, f(0)=0. ‘
8. Find the points of discontinuity of the following functions :
x*+2x+5 . x +2x+5
R LI prer
xS - 8x+12 x°=8x+16
9. A function f(x) is-defined as follows :
f(x) =3+ 2x for —%5x<-0

=3-2x for 051(%

0]

=-3-2x for x23.

-

wf

Show that f(x) is coptinuous at x=0 and discontinuous at x =
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10. The function y =f(x) is defined as foilows: f(x) = 0 when, f=1
when x? <1, f(x)=+ when x2 = 1. Draw a diagram of the
function and discuss fmm diagram that, except at points x=1 and
x= —1, the function is continuous. Discuss also why the function is
discontinuous at these two points although it has a value for every

value of x. )
Examine the continuity of the functions at x = 0-(Ex. 11-14)
1. f(x)=(1+x)Y", whenxz0
=Ty when x = 0.

12. f(x)= (»l+2x‘)'/",when xz0

- when ¢ = 0-
13. f(x)= ,"/‘2 . when x 2 0
= 1k when x = 0.

—|l.|'
14. f(x )— T When =0
=Fs when x = 0.

-15. The function f is defined by
Py |
f(:): 2x—[x}+sm ;,for 20

=0, for x =0,
where [x] denotes the greatest integer not greater than x.

Examine the continuity of f (x)at x =0 and x = 2.

ANSWERS

1. No 3

2. @ No. (i) 'Yes.~ (@) No. () No. (v) Yes

3. No. 6. 8. 7. (i) Continuous. (ii) Discontinuous

8. (i) 6,2. (i) 4. 11. Discontinuous. 12. Continuous.
13. Discontinuous. 14. Discontinuous. 15. Discontinuous.
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e 5.1. SetﬁfRul Numbers. A.

A set of real numbers is a well-defined collection of objects which
are called members or elements of the set. The term ‘well-defined’ means
that given any real number, it can be determined without ambiguity-
whether the real number belongs or does not belong to the set.

Examples :
L..  The set of natural numbers : {1, 2.3 }
2 Theset of all integers : Z = {0 112, }

" “The set of all integers between 3.1 and 8.7. X = { 4,5,6,7,8 }

A setis finite, if it is empty or contains a finite number of elements,
otherwise; a set is infinite. The set defined in example 3 above is finite,
while the sets in.examples 1 and 2 are infinite.

5.2. Greatest and Least Members of a Set.
A number L is the greatest member of a set S of real numbers, if

I Lisitselfa memberof S,and -.
2 L>x,where xis any element of the set

Similarly, /is the least member of a set S of real number, if

1. lisamemberof S,and - .

2 < x, where x is any member of the set

Examples : ) ' . .

L. Inthe set of natural numbers {l 2,3,.... ,n,... }, L is the least member,

but it has no greatest member. :

- 2 For the set of numbers {l s 3 -
but it has no least member.

3. Forthe set of numbers {7,8,9,10,11,12 }.7isthe lcasl member and
12 is the greatest member.

L. } 1 is the greatest member,

5.3. Bounds of a Set.

: Given aset § of real numbers, if there exists anumber G such that
x < G, for'every number x of S. then we say that the set is bounded
above and G is an upper bound, or a rough upper bound.
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If G is am upper bound of a set §, then any number greater than G is
also an upper bound of §. So. if a set is bounded above, the number of
upper bounds is infinite. The least M of all the bounds is called-is the
exact upper bound or, the least upper bound or Supremum.

_ Similarly, if there exists a number g such that x 2 g , for every number
¥in S, we say that the set is bounded below and g is called a lower
bound or, a reugh lower bound. ’

The least m of all the lower bounds is called the exact lower bound
or the greatest lower bound or, infimum or the lower bound of S.

5.4. Neighkourhood of a Point : Points of Accumulation.

() Let & be a real number and € be an arbitrary positive number.
Then the Set of real numbers in the open interval (§ -c,E+¢ ) is called
i ¢ -rieighbourhood of £ . For each separate choice of & , we may form a
;eparate neighbourhood of & .

(i) Deleted Neighbourhood : The set of real numbers in the @pen
nterval (€ — £, & + € ) excluding the point £ itself is called the deteted’
e--neighbourhood of £, where & is a real number and € is an arbitrary
positive number, however small.

(iii) Point of Accumulation : A number & , which may or may not belong
1o a set S of real numbers, is called a point of accumulation or cluster point
of S, if every neighbourhood of &, however small, contains an infinite
number of members of S.

Evidently, a finite set of real numbers cannot have any point of
accumulation. Cluster point is also called Limiting Point. '

Examples:

1. Fortheset {1%%-},{;} L=1,m=0M=1, Iimiling

point is 0, but ! does not exist. :
3 ~d },L=—;~.m=%,M.=‘l,

1.2:3
2. For t.he. set PRk RARA TRt
limiting point is 1, but L does not exist.

5.5. Sequence of Numbers.

A set of real numbers - X, Xz, X35 ceerenens X,---- such that
corresponding to every positive integer n, there exists a real number x,,
of the set, is called a sequence. The individual numbers are called
elen;ehts of the sequence. The sequence whose n' element is x,, is briefly
denoted by {xn } If the sequence terminates after a finite number of
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terms it'is called a finite sequence, otherwise,it is an infinite sequence.
In what follows, we shall be concerned with infinite sequences only and
the word infinite may not be used always. .

Examples.
1. {2.4,6,810 } is a finite sequence

2 {n } is the infinite sequence {1,2,-3,...,n,...} :

n n

-3 {l}islhcinﬁnitesequence{l.%,%,....-‘—....}
4 {x,,. = (-1 }is the infinite sequence {1,- 1.1,-1,... }
5. {x" =1+ (- l)"} gives the infinite sequence {0,2,0,2,... }

6 If x =secl\inm J; .. then { x, f does not give a sequence, for X,
n 2 . nl

becomes undefined when # is the squarz of an odd positive integer.
5.6. Bounded Sequence.

Given a sequence {x } if there exists a number K, such that K is
greater than or equal to any member x, of the sequence, i.e., K 2 x,,
where x, is any element of {x,, } then the sequence is said to be
bounded above, K being called the rough upper bound. Of all the rough
upper bounds, the least one is called the exact upper bound of the

sequence. If K is the exact upper bound of the sequence {x,,}, then
there exists at least one member of {x" }, x, > K —¢€ where € isa
preassigned positive number, however small.

Similarly, given a sequence {x" }, if there exists a number k, which
is less than or equal to any member of the sequence, i.e., if k < {x" },
for all n, then the sequence {x"} is said to be bounded below, k being
called the rough lower bound. Of all the rough lower bounds, the greatest
one is called the exact lower bound of the’ sequence. If k is the exact
lower bound of the sequence {xn } then there exists at least one
member of {x,,} ,suchthat x, <k +¢€ .

If a sequence is bounded both above and below, it is called a

bounded sequence.
8 -
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Exampiles :

1. The sequence .{l +4 } is bounded above, the upper bound being 2.
2. The sequence {-r'r- } is bounded below, the lower bound being 0.

3. The sequence {2 + (—- l)" . -,';} is bounded, for it is bounded both
above and below, the upper and lower bounds being 2-5 and 1 respectively.
4. ‘Thesequence {0,3,-2,5,-4,7,... }i.e {14+(~1)"n) is unbounded,
as it has neither upper nor lower bound. '

5.7. Monotonic Sequence.

A sequence {x,,} is said to be monotonic

(a) increasing (or, more correctly non-decreasing), if x, < x,,,
forevery n;

(b) decreasing (or, non-increasing), if x,, = x,,, foralln;

(c) strictly increasing, if x, < x,,, foralln;

(d) strictly decreasing, if x, > x,,, foralln.

Monotonic sequences are also called monotone sequences.

A sequence is said to be monotonic sequence, if it is monotonic
increasing or monotonic decreasing.

Exampfes 5 .

1. - The sequence { X } where x, = Z e is strictly increasing.
n+
2. The sequence {x" }. where X, = i , is strictly decreasing.
7 ? i
3. Thesequence{1,0,1,0,1,0,...} isneitherincreasing nor decreasing.

5.8. Limit of a Sequence.

The idea of limit forms the most outstanding concept in
Mathematical Analysis and it plays an important role in the discussion
of convergence of an infinite sequence. ) ’

‘Let us consider the sequence {xn }, where X, = 1 .

If we put n=1, 10, 100, 1000, . . . successively, the respective values
ofx are 1,0-1,0-010:001. . .
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Obviously, as 1 increases, -,E steadily decreases, but always remains .

positive. For large value of n, the difference of x, from 0 is very small and
we can make this difference less than any preassigned positive quantity,
however, small, by making n sufficiently large. For example, if we like to
make this difference less than 0-000001, n should be greater than 10°.
Thus, the value of x, can be made as near to 0 as we please by taking n
sufficiently large. This is expressed as

x, =0 as' n — o or, "hm x, =0.

— oo .
Therefore, we hive the formal definition of limit of an infinite
sequence. 1

Definition : A sequence { x, } is said to have finite limit L, if for any
pre-assigned positive quantity €, however small, there corresponds a
positive integer N, such that | x; =1 | <¢€, for n>N.

This state of affairs is expressed as lim x, =1
n-—ee

5.9. Convergent Sequence.

An infinite sequence {x"} is said to be convergent and has the
limit /, if corresponding to any arbitrary small positive number €, we can
find a positive integer N (depending upon € ) such that

Ix"-I|<E,forn2N.
ie,l-€e<x,<l+&,whenn2N.

This is expressed by saying that ‘ x, tends to the limit [, as n tends

to infinity’ and expressed as lim x, =1.
n—eo

By the symbol n — oo, it is meant that n takes up successively an
endless series of integral values which ultimately become and remain
greater than any arbitrarily assigned positive integer.

Example.

Find tke limit of the sequence {-} }as n—3oo.

L,
n

1
<g, When - <€,

; ; 1 o :
by taking N = & or, the integral part of z (when it is a fraction),
€

|1-0|<e.iftn>n,
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Therefore, lim L 0. Hence, the sequence {% }mnverges to 0.

n— N
Note: The limit of a sequence may or may not be a term of the
sequence.

For example, the convergent sequence {I. Taksses b } has the
limit 0, but no member of the sequence is equal to 0.

Again, let us consider the sequence {x,,}, where x, = ﬁ, when n
is odd and x, =0, when n is even, i.e., the sequence {I, 0, % .0, % G }

Obviously, the sequence is convergent and converges to *he timit ()
which is equal to an infinite number of terms of the sequence.

5:10. Non-Convergent Sequences.

A sequence {x”} is said to diverge to + oo, if for any number.K'
whatever is assigned, there corresponds a positive integer N, such that
x, > K forall n > N . This situation is expressed by lim x, = o’

n—pee

In this case the sequence {x,,} is called divergent. =

Here eois no real number, it is a symbol to denote a large positive
number greater than the greatest number one can imagine.

A sequence {x,,} is said to diverge to — <o if, when any number. A
whatever is assigned, there always exists a positive integer N such that

x, < K foralln>N, and we write lim x, = —oo,
H—roo

Here, K is generally chosen a negative number, large in absolutc
value.

A sequence which is neither convergent nor divergent is called an
Oscillatory Sequence. ‘

In an oscillatory sequence {x,, }, if a constant ¢ exists such that
| X, I < ¢, for all n, then the sequence is said to oscillate finitely.
otherwise, it is said to oscillate infinitely.

Note. A monotonic sequence cannot oscillate,
* Examples.
l. . The sequence 12,22 3%, .. .. ie., {"z } diverges to + 0.

2 The sequence —1, - 2,-3,..... Lie.{-n }divergesto —oo.
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3. Thesequence - 1,1,-1,..... g i.e.; {(— 1) } oscillates finitely between
-1 and I. . ’
4. Thesequence — Lv2,— /3,2, - 5,......ie. {(- 1) vn }oscillatcs
infinitely. ; .
5.11. A Few Important Theorems.
Theorem L. A convergent sequence determines its limit uniquely.
Proof: If possible, let I, and I, be two distinct limits of a convergent
sequence {.r,, }
Since I, # I,,wecantake | l, - lzl = & ,where 8 is anon-zero positive
number. Now, let us choose a positive number € , suchthat £ < §.

SinceJ {A',,}.possesses two distinct limits /, and [, ,
|'x” ~ l < %s for n > N, and I.Jlr,| ’[zl < %Eand n>N,,
where N, and N, depends on the given .

Thus, for n > N = max(N,, N,)

"1 _12|=[(xn "2)‘(";. "lx)l
S|.z,,—l,i+lx,, —lll
£

€
<—+—=¢ J .
) forn>1‘k

Thus, § < £ and we arrive at a contradiction. Thus, ihe assumption
that the sequence {x, } has two distinct lim™s is not true. Hence, the
theorem.

Theorem Il. Every convergent sequence is bounded.
Proof : Let the sequence { x, } be bounded having a unique limit /.

Then | x, =1 | <€ forall n> N, N being a positive integer
depending upon €, however small.

ie. l-e<x, <l+&,whenn= N.
‘Let L and M be the least and the greatest of the numbers

X3 Xy Xyyeenn Xy_1n I —E, [+ E,
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Then we have L < x, €M for all values of n.

Thus the sequence {x"} is bounded.
Note.  The converse of this theorem is not always true. For example,
the sequence {1+(— l)"}.‘i.e.. {0.2,0,2....} is bounded but not
convergent.

Also, the sequence {l.%,l, ELII is bounded but not

convergent.

Theorem IIl. A monotonic increasing sequence which is bounded above is
canvergent and converges to its exact upper bound or supremuin.

Proof : A monotonic increasing sequence {x,,} is always bounded
below, for x, 2 x, for all n. Again, since {x,,} is bounded above, if
exact upper bound or the supremum of {.v,,} isM,

@ x, <M orforalln,and

(i) forany given € (>0 ) there exists at least one member of the sequence
{x,, } say xp,suchthat xy > M - €.

Since the sequencc{x,,} is monotonic increasing, x, > M — €,
for n > N . Again from (i) x, < M , forall n, whereby x, < M + ¢ for
each n. |

Thus, M —€ < x, <M +¢ forall n 2 N,andso lim x, = M.

n-—eo

Hence, the theorem is established.
Theorem IV. A monotonic decreasing sequence bounded below is
convergent and converges 1o its exact lower bound.

The proof is exactly similar to that of Theorem III proved above.

Theorem V. A monotonic increasing sequence divergesto + <, ifit is
not bounded above.

Proof : Since the sequence {x,,} is monotonically increasing,

X,4 2 x, foralln, and {x,, } being not bounded above, there exists at

least one member, say, x,, of the sequence such that x,, > M ; where M
is a large positive number. The sequence being monotonic increasing,
Xpmats Xmaa. .. areall greater than M.
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Therefore x, > M foralln2m. ~

ie, lim x, =o.
n—peo

Thus, the sequence {x" } diverges t0 4 co.

Theorem V1. A monotonic decreasing sequence diverges to — o, if not
bounded below.

The proof is similar to the proof of Theorem V.
5.12. AnImportant Sequence.

The sequence {xn } where x, = (l + ';)" is convergent.

[C.P.2004]
It will be shown that the given sequence is monotonic increasing
and bounded above.

Using Binomial expansion,

x, =(I+—l-) =1+’r1.l+n("_l)-

1
n n 2! n?

+"(n—lx"_2)-—l-+'...
3! n?

Replacing nby (n + 1),

x,,*,=1+1+—1—(1— : ]+-1-(1-‘ : )(1— 2 ]+
) 2! n+l 3! n+1 n+l
1 1 2 n
1- - 1=
+(n+l)!( n+l)(l n+l) (l n+l] 42 8

From (1) and (2), we observe that.

' () the first two terms of x, and x,,, areequal, each being |:
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| .
@ - <l 1- ol g e b i ; thus excepting

n+l n n+1 n
the first two terms, every term of x, ., is greater than the corresponding

termsin x,.

(iii) x, contains (n + 1) terms, while x | contains (12 + 2) terms and

n+
all the terms are positive.

Hence x,,, 2 x, forall n, i.e., the sequence {x,,} iS monotonic
increasing.

Next we note that x, 2 2 foralln, ie., {,1‘"} is bounded below and
2 is a lower bound.

Also,« w, =0 14 ol 1= e L= L4~ Z]4 =
2! n 3 n n

1 1 1
<l+l+—+—+...+—
20 3! n!
<1+l+l+—l_—+..+ i
2 2.’ 2n~l
1L
=1+ (J:'x 2" 23

ie, x, <3,foralln
Thus, 2 < x, < 3 forall n.

Hence, the sequence {v,,} is bounded.

Since the sequence {\',,} is increasing and bounded , it is
convergent.

Note. Since the sequence is convergent, its limit exists and this limiting
value is denoted by ‘¢’,

. 1Y
ie., Ilmﬁ{l+—] = ¢,where 2 <e < 3.
n— n

This number e is a rranscendental number.
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5.13. Bernoulli’s Inequality.

For every positive integer n2 2,and 1 + p > 0, (l +p)" >1+np
Proof : The method of mathematical induction will be used to
establish the result.

We note that, when n =2, (1+ p)2 =1+2p+p>>1+2p.
Thus the inequality holds for n = 2. Let us assume that the relation
holds for any particular value k(= 2) of n.

(1+pf>1+kp
(]+le+p)" >(l+p)(1+kp'). since 1 + p> 0,

o (1+p)*"' >1+(1+k)p+ip? >1+(k+1)p,
Thus, we see that the relation is true for n = k + l ,if it is assumed
to be true forn = k.

But, it has been proved to be true for n =2, so it is true for n = 3, and
as it is true for 7 = 3, it is true for n = 4 and so on.

Thus, the inequality holds good for any integral value of n > 2.
Note. The above mequahty is true for n>1, even if nis not a positive mteger

5.14. Null chuence. A

A sequence is said to be a null sequence, if llm x, = 0,ie., for
any positive number e, however small, there exlsts a posmve integer N,
such that | X, ] < € foralla>N.

Then sequence { }isanullsequem:eiﬂx! <l.
_ If x = 0, each number of the sequence is 0'and x" — 0Dasn— .

When x # 0, | x| is a positive proper fraction, we write

1
|x —IT (h>0)

n e 1
l (1+h)"<|+n;.’
(14 h)"> 1+nh  [-Bemoulli’s inequality ]

Now, | X

.l :
\ | x|" < = <& if n>N, where Nis the integral partof 5.~

. Hence, the sequence {}c"} is a null sequence if x| =<l
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5.15. Cauchy Sequences.

A sequence { x"} is called a Cauchy Sequence, if corresponding to
any pre-assigned positive number e however small, there exists a
positive integer N, such that for n > N,

| Xntp = Xn l < € for all positive integral values of p.

¢
Example : { = } is a Cauchy Sequence.

1 1

n+p n

1

ez

1
<—<gforn>N
1+£

1
Hele.!x"”,«x,,I: =;
1

and taking N > d or the integral part of
€ £

1
Hence, { ; } is a Cauchy Sequence.

5.16.  Cauchy’s General Principle of Convergence.

A necessary and sufficient condition for the convergence of the
sequence {x,,} is that corresponding to any pre-assigned positive
number e, however small, there cxists a positive integer N, such that

forn>N,

Xnip = Xq | < €, for qll positive integral values of p.

Condition Necessary : Let the saducnce {x"} be convergent, i.e.,
the sequence has a finite limit, say .. Then, for given e, however small,
there exists a positive integer N, such that

Ix"—ll <%E forallm > N.
Then it follows that

‘]xn+p _1|<%€ forall > N and p>0

. X =l B =

Hence, n+p

x,,+_,,—l|+|x,,—!]‘

L 1
<28+2E

ie, | X4, X%, |<E,forn>Nandp>0.

Thus the condition is proved to be necessary.
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X | <€,

er-p Ty

"Condition Sufficient : Next let us suppose that
for n > N, p being any positive integer. Then

X, = € < x,,, < x, + €, forall positive integral values of p.

{ n+p} is thus bounded as p — <.
Let, L and M be the lower and upper bounds respecuvely Then
L<a,-candM <a, +E€.
Thus, M - L < (a,+e)-(a,-€)=2¢
" Since eis arbitrarily sm;all, this implies that M — L = 0 in the limit.
Therefore, M —€£ < x,,, <M +¢.
It follows that x,,, — M forall int;:gral values of p.
Thus, the sequence {x,,} is convergent and the condition is proved
to be sufficient.

5.17. Theorems on Limits of Sequences.

Let {x,,} and {y,,} be two sequences, such that

lim x, = Aand lim y, =B ;

n—o n—oo
Then, () lim(x, +y,)=A+B,
n—» oo
@) lim(x,-y,)=A-B,
n—e X

i) lim(x,.y,)=A.B, .
n—poo

@iv) Iim‘(-x—"] = %;Provided B#0.

noe y,

Proof : (i) Since lim x, = A, given émy £ > 0, there exists a positive

n-—jeco

integer, Ny, such that | x, — 4| < J € forall n > N,

'Also, since nlem Y = B,forﬁpy € > 0, there existsapositive integer
N,, such that | y, - B|< 1€ forall n > N,.

If N = max{N,, N,} thenfor n > N

|x, ~Aj<Lie and |y, - B|<ie
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Hence, | (x, + y,)- (A + B)|<|x, - A|+]) ,,—B|<£ for all
n>N. ‘

Therefore, by definition lim (x"‘ ey ) =A+8B.

(ii) Proof of this part is similar to that of (:)
(iii) Wc have,

|x,,y,, —AB‘ =Ix,, (y,, —B)+b’(x,, —A)1
<l x|l vn - B +] 81|, - 4]
Since {x,,} is convergent, it is bounded and there exists a positive
number M, such that {x,, } < M | for all values of n. -
Then, | x,y, - AB| <M |y, - B|+{| B|+ 2 }|x, - A]... ®
where 1 is any positive integer.

Now, let ebe any pre-assigned positive number, however small.
Then we can find two positive integers N and N, such that

£
l‘x"—Al<W'f0rn>N' . @

€ .
and Iya"3[<m, forn> N, s (B)
If N be any positive integer greater than both N,, N,, we get from
(1), (2)and (3)°
}xnyn__ABl < %E+%8 =€, foralln> N.

Hence, ﬁm xny," = AB

Note. In (1) we have taken {| B|+A }mstead of | B| in(1); otherwise,
the inequality (2) fails if B=0.
(iv) Here,

B(x, - A)+ A(B-,)
By,,

Bx, — Ay,

X _A
y, B B.y,

el AlslAlE-nl
O
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Since, lim y, = B # 0, there exists a positive integer NI, such
— 00 gH

that
|B=y,|<%|B| fornz N,
or, |Bl-]ya|<|B-y.|<%|B]
or, 31BI<|y,| ; )]
From (1) and (2)
| x, Bl % -A[+]A][B-y,]
i 2
Yo B 11 8]
. 2 A+l
‘<|*B—||x.. Al+ {I I }l Yul &)

where A is a positive number.
Let € be a positive number, however small ; thcn there exists positive
numbers N,, N, such that

Ix,,—A|<%elBLL"oreverynZN2 e U
< |B|2 -lE f nz2N (&)
TTAT+ 2} 2 & forevery =My s

If N be-a.positive integer, greater than each of N,. N,, N, then using
3), (4) and (5), we have

andlB—V

- P <l£+1e—‘£ ' '
y, B| 2 2 ,forevery n > N
X
Hence, lim —2 = i
) 'n—»myn B

.18. Illustrative Examples.

Bl - I g mtobeloge ko
1.2 2. 3 3.4 4 n(
s a bounded monotonic increasing sequence

[C.P 1963, B.P. 1984, 1994 ]

, then show that {x"}
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i)

n+1
n+2’

Similarly, x,,, =

n+l nm 1
. n+2 n+l (n+l)(n+2)
positive integral value of n. : 7

>0, for all

SO, Xngl —%a =

Hence, {.r,,} is a menotonic increasing sequence.

% P n
Again, since
n+1

>0, x,>0.

n ‘ ars
Also, — 1, for all positive values of n.
n+!

Thus, 0< x, <1.
Hence, the sequence {x,,} is bounded also.
3n -1 .
Ex.2. If x, = 55 prove that the sequence {x,.} is monotone

n
n

increasing and bounded. [ V.P. 2000 ]

| 3n -
Here, x, = —— and x| =
n+

e Wor =K T > 0, for all positive integral values
nel T (n 4 2)(n+3) ; o

of n.
Hence, the sequence is monotone increasing.

3n -1 _3(n+2)-7 e 7

Again, x, = =
E " n+2 n+2 n+2
Since = B positive for any positive integral value of n, x, < 3.
Also, x, 2 2.

: 2w
ie, £<x <3

Hence the sequence is bounded.

Ex.3. Provethat lim /" = 1. where n is a positive integer.
n-—»oa
| V. P 1998 ]
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Forn > 1, #;>I,
.Let."n=l+h,,,whcrek,,>0,

then y:(l+h,,)"=l+r_z.h,, +%!_l)lzﬂ2+'-...+h,f'l

> 42- n (n -1) hn2 » since all the terms are positive.

O<h, < 2/(=1)

lim &, = 0,hence fim ¥Yn =1.
n—beo

n—eo

Ex.4. Silow that the sequences given by

' 1 . nn
@ % =2+C10"27" and Gi) x, =—sm7 are convergent.
n
Find the limits. [ B.P. 1965 ]
@ Wehave |2-x,|=2" and |2-x,|<e; where € is any
‘positive number, however small,

if27"<¢,ie, 2" >_l.‘ ie.ifn> Iog(l/s).
€ log 2

Thus, if we choose an integer N > Iolg—(v;) ; l 2= ’ < &, forall
‘ og .
n>N.

Ex.5.  Use Cauchy criterion to show that

() the sequence {x,} defined by x, =l=dedty

+(1)""" L is convergent;

(ii) the sequence {x,} defined x, = I tg+dala 4l
divergent;

(i) Choosing m > n,

1 _ 1 1 _ i
n+l n+2 an+3 'm

_ 1 _ 1 1 i 1 _ 1 _
n+l n+2 n+3 n+4 n+5

N i
<———-<£,ifn+l>—,|fn>l-—l,
n+1 € £
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If now N be so chosen that N is equal to the integral part of (i - l], then
£

Ixm_xn

Hence, the sequence converges by Cauchy’s Criterion.

< £, whenever n > N .

v

(ii) If we choose m = 2n,

lxm '—xn‘ = | X2 —xn|

1 1 1

=ttt

n+l n+2 2n
B
>n.—==
2n 2

Thus | Xm — %, | is not less than any pre-assigned positive number.

Hence the sequence does not cnverge by Cauchy'’s Criterion. Since
the sequence is mondtonic increasing and does not converge. the

sequence diverges 1o + .

Ex.6. (i) Show that the sequence

ﬁ. J2+J5. J2+J2+J§..‘.. o

tends to a definite finite limit and find the limit. [ C.P. 1960 ]
(ii) Show that the Sequence. 7. 22, 1}2 ‘,2 J2.... converges
o 2.
@i) - If the n™ term be X, ,then x, ., = ,’2 +x,
or.xnrﬂ_l—x"—2=0 n
Again, x, = ‘f2 + X, 1
o, x?-x,_,-2=0 . %s 09
From (1) and (2) '
2 ‘ "
Xngl ~ xf = Xp = Xy

or, (xn+l * .I")(X,Hl T .\"") =X~ X1

This implies that X, > X,. if % >X, and a4 <3, if

Ny < Xy-y-
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So, the sequence is monotonic increasing or decreasing according
as a) > a or @; < q;.
Here, obviously x, > x; .

“_  Thus, the seduence is monotonic increasing.
<

'Again from (1) .1:,,2 =%, —2<0, v x, <xp4
or, (Jc,l —2)(,\:,l + l)< 0
Therefore, x, lies between -1 and 2,i.e., -1 < x < 2.

~ Thus the sequence is bounded.

" Since the sequence is monotonic increasing and bounded, it must
tend to a definite limit, say [.

Then, x, =l, x,,, =1 asn—e
So,from(1) 1*-1-2=0,
' =2 -1
Since, all the terms of the sequence are positive, { = 2.

(i) Here, x, = V2, x, = 247 = xy. % = g
T dzxn—l! Xnel = Jin

x2,i = 2x, and x,",’ =2x,_ ;

X:u = "'3 = 2(":! - In—l)

o, (ryer + 6)laey = %) = 206, = %,y)
Therefore, if x, > x,_,then x,,, > x,
Since, x, = ﬁﬁ, x = \E, Xy > x
Therefore, x3 > x,, X3 > xg.....
So, {x,} is monotonic increasing.
Again, x7,; = 25, and %, > x,
.tf < 2x, or, x, (x,, - 2) <-'0
0<x, <2
Thus, {x,,} is bounded, and so it is‘convergent.

Let, lim x, =1/

n—)os
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lxm x,z,ﬂ = lim"2x,

n—yoo
or, 2=21orl(l-2)=0
since x, >0, [ #0, ~.1=2.
Hence, {x,,} converges to 2.

5.19 Miscellaneous Worked Out Examples
Ex. 1. Prove that the sequence {x,}, where x,=(-1)" is not
convergent. [ C. P s ]

Solution :  Let us assume that {x,} is convergent.
Then x,—! (a finite quantity ).

" N
So, for a finite number e=3, (say) there exists a number N, such

l ‘)

that I (-0)"-1 |< 3> for n> N.

: 1
When n is even and n > N, | l—l|<5

i l<I<3 .
ie., 3 z v‘
and whennlsoddandn>N |—l-1|<-—
Le., —£<l—l
2 2

Thus our assumption leads to a contradiction. Hence, {x,,} is not
convergent.

4n+3
Ex. 2. (i) Prove that the sequence { r +3' } is bounded and monotone
increasing . [ CP 198.9}
2 _ 2n+5 : I 1
(i) If x,—m,ﬁndthelwstmtcgerm, x,,-§|<l—63-
forn>m- [ C. P 2000]
4n+3

Solution : - (i) 2 <4,

if 4n+3<4n+8, i.e, if 3 < 8, which is true irrespective of the values

df n
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.Henge the given sequence is bounded.
4n+3

n+2 i
The sequence {x,} will be monotone increasings,

Xn

if- X,SI,,.H

an+3_An+1)+3  an+7

, n+2 (n+l)+2 n+3’
ie., if (4n+3)n+3)<(n+2)4n+7)

ie., if

ie., if 4n2 +15n+9<4n® +152+14
i.e., if 914, which is always true.

Hence {x,} is montone increasing.

ol o[58
=31 <7000 &V [en-11 3| “1000 ' "™

{ 26 1 3(6n-11)
b — ¢
he |3(6n-ll)| Yo g am
6000 :

i.e.,6u<2 +11

- Py @ . o
ie, n>I446-}—8, forn>l,andn>m
Hence the least integer is 1446.

3n+1 2
Ex. 3. Show that if X, =—— , then the sequence {x,} is strictly
increasing. Is the sequence c’:'d'h%e‘rgent ? Justify your answer. Also find

its limit, [ C P 1993, 94]
Solution : The sequence {x,} is monotone increasing if x, < X4
' 3n+1<3(n+l)+l

& 'f_ n+2 (n+1)+2

ie, if (3n+1)(n+3)<(n+2)(3n+4)
ie, if 3n®+10n+3<3n%+10n+8,

which is evidently true for all n>0.
Hence the sequence is strictly increasing.

3n+1 3
—|S3. if 3n+1<3n+6,
n+2 -

Again, .-




132 ’ DIFFERENTIAL CALCULUS

which is true for all n > 0. :
Hence the sequence {x,} is bounded.

Thus {x,} is monotone increasing and at the same time bounded
‘above, hence it is convergent.

3+l

Adus. B 20 < ik

noe p4+2  aoe

|

n
Hence, the limit of the sequence is 3.
Ex. 4. (/) Examine the convergence of the sequences :

(@) 2%,4%,6%,.-- [C P 1989 ]
() 12 222%... o [C P 199]]
(é6) Use Cauchy's criterion to prove that {x, }"converges, when,
11 1
x,—l+z+3—!.+ ....... +;E [CP1'980]
3 3 3 3
(iii) Evaluate : lim {—17+2—4+3—‘++"—4} [C P985
e ln n n n

Solution : (i) (@) Here, x, =(2n)” and x, —oc, as n—se
Hence the sequence is not convergent.
(b) Here, x, =2" 5oc as n—rec
Hence, the sequence is divergent.

i 1 1

We have, — =
|= LI if m>q
(n+1)! (n+2) m!|’ '

1 1 1
Qe =
2" 2n+l 2m—l

|x,, -X,
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Thus | xn—x, |20 as n—3ec,
So, for any € > 0, there exists a positive integer N such that
—— <€ foralln>N. :

ie, | xy—x,|<€ foralln>Nandm> n
* Hence, by Cauchy's Principle, {x.} is convergent.

@iii) Tim P23 il (L2434’
B e R I = nt
lim 2(n+l)
Apec 4n*
2
=-1-l|m (l+-—) =l
4 noe n 4

‘ . 3n+1
Ex. 5. (i) Show that the sequence {x,}, where x, = 47 1S bounded.

[ C. P. 1997, 2006, 2008 ]

. , : 1 ,
(i) Show that the sequence {x,}, where x, = ol decreasing
and bounded. , '
; Correct or justify : {x,} is convergent. RERRENE | CP 19951

(uz)lf x, =(-1)" and y,.&»-(xvhﬂ-.x2+x3+ +x) (n=1,2,3,-),

prove that the sequence {y,,} converges allhough the sequence {x,,}
does not do so.: oo [C. P 1985]

: 1
Solution : (i) Here, X,,=3"+ <3

n+1 ’
if, 3n+1<3n+3, ie., if 1<3, which is true for all n.
Hence the given sequence is bounded above.

1 1
T ® G
st 1 _ 1 -6
"“Ti+6n 5+6n (5+6m)(11+6n) <O forn>0
- X~ % <0.ie. x,,, <x,,sothat x,,, <x, is a decreasing
sequence. .

(if) Here, x, =

CIE Y
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Again, hm x, = lim l =0.

n—= 5+6n
Hence, {x,.} is a bounded sequence.
Since the sequence is decreasing and bounded, it must be
convergent. ‘
(iii) See Ex.1., to prove that {x,}, where x, =(-1)" is divergent.
X+ X +x3+.4x, 0
Yo = e et BB D ki B Bl 0'
n n

X+ Xy + Xy,

if nis even and y, = , if n is odd. .

n

As n—ec, hm ¥Yn = hm(——l)=0

n—rec n

Hence the sequence { y,,} is convcrgent and it converges to 0.

EXAMPLES-V

1. Define the terms ‘bounds", sup:emum , ‘infimunt’ and ‘point of
accumulation’ in connection with a set.

2. (a) Show by suitable examples that the supremum of a set, if it exists,
may or may not be a member of the set.

(b) Give illustrations, where the infimum of a set is and is not a member
of the set.

3. (i) Define theterms ‘limits’, ‘bounds’ and ‘cluster point’ as applied to
a sequence.

(i) Show that the sequence sl is bounded. [V P 1997]
n

4. Prove that a sequence can have at most one limit.

5. What do you mean by a monotonic sequence ?
State whether a monotonic sequence tends or does not tend to a limit
under any circumstances. [C. P.1980.94,2000] .

6. When does a sequence converge ? Prove that a convergent sequence
is always bounded. Comment with reasons on the validity of its
converse proposition. [C. P 1981, 98 B. P. 1997 ]

7. (i) Define a monotone Sequence.
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(ii) Prove that the sequence {x,, }. where x, = (l +1 )" is
(a) monétone increasing, (b) bounded and  (c)convergestoa

limite, where 2 < e < 3. ; [C. P 1985, 88, 98]
@ Show that the sequence {x,, }, defined by,
- LI PR, §
n+l n+2 2n

is monotonic increasing and also show that it is bounded.

(i) Show that the sequence {xn }, is monotone decreasing, where

5= (141)"" [C. H. 1955

* (i) Discuss the behaviour of the sequence { x" } where x is any real

number.

(ii) Prove that the sequence {r" } is convergent, if | r| < 1.
[B.P.1998]

(iti) Show that the sequence {f; } converges to 0.

(i) When a sequence is said to bea Cauchy Sequence ?
(i) State Cauchy’s general principle -of convergence of a sequence
and apply it to show that the sequence {x,, } where

1
x, =1+ 5 F §-+ + = is convergent.

[ V. P 2002; C. P. 2006 ]

(i) Give an example of a sequence which is neither monotone

increasing nor monotone decreasing. [ V. P.2001]

@) Showthat lim ¥Yx =1 (x>1). [B. P. 1996, 1997 ]
n—ee

(i) Provethat lim n.x" =0, for |x|<1.
H =) oo
n

| (iii) Show that lim —'F-; =0.

13.

n—e !

; ¢ e

(iv) Prove that [im =—— =0, for | x|<1.
n—ee 1 5

: 1 .

(v) Provethat lim n" =1. [B. P 1996]
n—eo

What is a Cauchy Sequence? Show that a constant sequence is a

Cauchy Sequence. :
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14.

15.

16.

17,

18.

@) %, =
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Define Cauchy Sequence and show that {—:_!—l} is one such
sequence. . [V.P 1997]
Determine the bounds of the following sequences, if there be any :
@ L-L1- l L
@ L 2‘ 3, 3 .4, 4 gt
(i) — z,— 22 ~23,-24,
35577991

2 2334455
Prove that the sequence Lm} is monotonic increasing and bounded;

where
o

@ * = [ B.P. 1985, V. P. 1999 ]
TR B R P !
® %W=13%3s*57% @n-1)(2n +1)
1 1 1 1
+ + Foot —
n+l n+2 n+3 2n

(@) x, =

[C.P. 1980

L , show that the sequence {x"} is strictly

G If x, =

monotonic decreasing and hence prove that it is convergent.
[C.P. 1996 ]

(ii) Show that the sequence A%
n+1

] is monotonic increilsing.
bounded above and converges to 3. - [ C.P 1991, 2000

(iii) Show that the sequence {4;1 +;} is bounded and monotonic
n+
increasing. : [C.P. 1989 ]

(i) Show that the sequence {x, }, where

; n2n—1
x, =(-1) =~ and x, =—1-+(—l)".2
n
oscillate ﬁmlely

(1) Show thatthesequcnce {x } where x, —(—1) (n+1) oscillates
infinitely.
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Nl ¢
N

19. () Show that the sequence {(" . ‘) } is convergent. [ V.P. 1995 ]

n+1
4n? -5

(ii) Show that the ;equcnce {x,, }, where x, = is not

convergent. : - [VP1996)

(iii) Show that the sequence (x,}, where X, = 3":; is strictly
-n

increasing. Is the sequence convergent ? Justify your answer.
) " [C P 1993]
20. Find an integer N, such that

n

@ i—ol<o-ooouorevcry,.>1v,
S

i -0
(i) N

<0-1forall n> N. [C. P 1988]

gip (203 1 ! twns N

len-11" 3|7 10 3

21. Show that the sequence {x,) is convergent, where -
O a=2+()

' 2n -1

Y

[ CFP 1992]

@ x, =

E

(i) x, = —=sin— ;

@iv) x, =lsin-—;
v g

V) x, = {C.P. 1980]

vi) x,,'=l+(:il]. o [C.P. 1968]

22. Show that the sequence { x, } is divergent, where
. 2 b
@ 2, =V Gi) x, =2 Gi) x, = Iog(-l—].
. n+l 3 n




DIFFERENTIAL CALCULUS

23.

24.

25.

Consider the behaviour of the following sequences with respect to
convergence or divergence :

@ {crk

(i) {(— l)“~"zw+l };
G {(- 1)

nz
(iV){2n1+l,: ’ : [C.P 1981 ]

Show that the sequence. [ L } , where p > 0, is a null sequence.
¢ ’
n

(i) (a) Show that the sequence ‘ﬁ, \/m’_i_ \/7_.:—\/7—4-—_,/7,
converges to the positive root of the equation
t2-1-7=0. )

(b) Show that the sequence .f5, \m, 1/5+m,~-

converges to —;—(1 +421 ) .
@) If x,, = m where x, and K are positive, show that the
. sequence {x,,} is increasing or dvcreasing according as’ x, is

o) 2
less or greater than the positive root of ¢~ —1— K = 0 and has,
in either case, this root as limit.

ANSWERS

15.

19.
20.

(i) lower bound -1, upper bound I;
(ii) no upper bound, lower bound 0;
(iii) upper bound -2, no lower bound:
(iv) upper bound 2, lower bound % .
(iii) yes, convergent.

(DN =1000; (i) N =99; (iii) 1446.
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6.1. Infinite Series.

Let us consider an infinite sequence of numbers, u,, u,, i3, ..., u4,,
or {u,}.The series derived from the terms of this sequence, viz.,
u tuy tuyt...+tu, +..

" o, Y u, or,simply ¥ u_ iscalledan Infinite Series.
n=1

Now, let us form the sequence of the successive partial sums {s"}
of the above infinite series, where s, =u, S, = U +u,,
Sy =uptu, tuy, . ...,5, =u tuy; tuytotu

6.2. Convergence of Infinite Series.

If the sequence {J,,} of the partial sums is convergent. the series
Y.u, is said to be convergent.

If the limit of the sequence { S,,} be a finite number S, then we say that

the series Y, u, converges to S and that § is the sum of the series. It may

be noted that S is not a sum m the normal sense of the term, actually it is the
limit of a sum. .

Definition : Aninfinite series Z u,, issaidtoconverge o §, if corresponding

to an arbitrary positive number ¢, however small it may be, there exists a
pasitive integer N, (depending upon ¢ ), such that

ls, —S|<£,whencvcrn>N. 5

If we denote (u,,; +u,,, +... ) by R,, obviously, for the
convergenceof Y,u, , | R,| <€.forn> N.

If 5, does not tend to a definite finite limit, but , s, — _+‘°° or
s, — —oa ,the s;c:ics Y. u, is properly divergent and diverges to + e
orto —oo respectively.

If, however, 5, does not tend to a definite finite limit, or to + o= orto

- oo, but oscillates finitely or infinitely, then Zu is said to oscillatory. or
" improperly divergent.
Divergent or oscillatory series are generally called non-convergent.
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Examples :
() Show that 1+ + 4+ -+..._ is convergent, and find its sum.
k4

— (L
Here, s, =l (JI =l(3~ 1|J—)§,asn—-)°°.

1~‘§ 2 38 2

So, the series is convergent and its sum is %— b
. s I 4 ;
(i) Show that the series 1 +55t35+--- isconvergent; find its

sum.

= Zu, =,E,r(r+)=$( i‘l)

e

=1-

— l,a8 n —> oo,
n+1

So, the series is convergent and its sum is 1.
(i) Examine the convergence cftheseries: 1+ 2 +3 +---+n+...

Here, s, = in(n+1) > w,as n—>eo.
The series is divergeni, as S, diverges to +2°.

(iv) Show that the scries Z(— 1)"“l =1-1+1-1+... oscillates

finitely.
Since, S=1-1+1-1+...

§, =1, when nis an odd integer.

=0, when nis an even integer. :
Hence S, does not tend to a definite limit, as n — oo. The series
oscillates finitely.

(v) Theseries 1 -2 + 3—4+5—6+---= Y (- 1)*". r oscillates
infinitely, for :
S, =3(n+1), when nis odd,
=-1n,. whenniseven

and it does not aPprouch a finite limitas n — oo,
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6.3. Convergence of Two Important Series. .
L  Geometric Series. The infinite geometric series
' a+arj—ar2+ar3+... (@>0)is
. () Convergent when |r|<]1,
(i) .Divergent when r>1 and

@iii) Oscillates finitely, if r = -1, oscillates infinitely if r<—|.

Proof. Obviously, the n* partial sum S, is given by
=a+ar+ar? +... a—(L--—) (r#l)

(@) Now,if r<l,r” 5 0asn— o

S

lim §, = 2
ne 1-r
: . ) a
and the series converges to -7

(i) If, ontheotherhand, r>1, r" — oo as n — oo .

lim §, — 4+
R =) oo

and the series diverges t0 4oo .
@) fr=1,
S,, =a+a+a+...+a=na
andna,i.e., S 500 as n — oo .
So, in this case also, the series diverges properly.
(iv) When r <=1, {r"} oscillates ihﬁnilely and the series is
oscillatory or improperly divergent. -
(v) If,again,’r = —q,
S, =a-a+a—a+...=a, whennisodd
= 0, whenn is even
and the series oscillates finitely between 0 and a.

* From the above discussions we arrive at the conclusion that the
geometric series converges if | 7 | < 1 and does not converge if | r| 2 1.
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il. The p-series.
N A 1
1‘he1nﬁnztcsenes_‘l—,,~+;;+3—‘,+---+;7"---

@) isconvergentif p > 1, (ii) isdivergentif p < |

Proof. (i) We suppose that p> 1.
Let us consider the partial sums of order. 2" —1,i.e.,§,, S, 5,, S, -

1 1
4+ —t ...t
[(2n—l)p (2" _l)p ]

L 1
= 3 where © =

7

Syn_y <~ = constant.

20

All the terms of the serics being positive, the partial sums are monotonic
increasing. ’
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~ And for any positive integer m, there exists another positive mteger n,
such that 2"”' > m,

' 1
Sm <8, , < —" Constant.
1= P
Thus, the partial sums are bounded. .

The sequence of partial sums, being monotonic mcrcasmg and
bounded, must converge.

Hence, the series is convergent if p > 1.

(i) Next, we supposethat p<1.’
Since p<1,n” <n.

g : ( N 1
— t—+..t—
n 2" 2ll
=l+l+—l-+-l-+...+l=l+—l—n,
2 2 2 2
Therefore, given any number G >0, however large s > G, whenever
n>2(G-1).

Further, the partial sums are strictly monotonic mcreasmg and not
bounded.

Hence, the given series is divergent, when p > 1.

6.4. Conditions of Convergence.
L  Cauchy’s General Principle

The necessary and sufficient condition for the convergence of an
infinite series Y, u, is that corresponding to any arbitrarily chosen
positive number €, however small, a positive integer N can be found thar
foralln= N,
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IS,.H,—S |<Iun¢l +u"+2+...+un+P|<£’

for every integral value of p.

Let, S, =u; +u, +u;+...+u,
Then Y u, isconvergent, if and only if, {S E } is convergent. Now by

Cauchy’s general principle of convergence of a sequence, {Sn} is
convergent, if and only if,

sn+p ~on

Thus, we have ¥ u, is convergent, if and only if

s s Ty oot <E,

a+p S ['<

n+p
when n 2 N for every positive integral value of p.

L Pringshelm s Theorem. !

If the terms of the series Zu of positive terms steadily decrease,

" l‘hen it is necessary for its convergence that lim n.u, =0.
i n—soo

Let the series Y. u, be convergent. Then for a given €, however small,

there can be found a positive integer N, such that, for all valuesof n 2 N ,
we have

U s 1 ‘U, gty +oeet Uy <-§-£

Since the terms of the series steadily decrease, each of the terms 4, 4,

Upys,..., U, is greater than or equal to u,,
1
He_nce, (n-N)u, < zE.whennz N.
Since, limu, = 0, we can choose p > N, such that
Nu, <ie,whenn2p..

Thus, nu, <€ ,whenn ..

This gives limnu, =0.
Note : This condition is necessary but not sufficient. If we consider. the

series Y, u, , where u, = —I:_ ,lim nu, = 0,but Y u, isdivergent.
nlogn .
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6.5. Tests of Convergence of Series of Non-negﬁtlve terms

In order to ascertain the convergence of infinite series it is not always
convenient to find the limiting value of S, as n — <. So, a number of
niethods and rules have been developed for testing the convergence of
infinite series. In this section important rules and methods will be discussed.

L Anecessary condition for convergence of > u, isthat limu, =0,

Proof: Since the terms of Y, u,, areall positive, it follows from Cauchy ]
general principle of Convergence (art. 6.4).

Sa=Sact | < Eoie, |ug| < €
Hence lim u, = 0 isanecessary condition for convergence of Su,.

Note : This condition is not sufficient, for example the series Z-',; is
divergent, although limu, = 0.

IL Ifaseries Y. u, ofpositive and decreasing terms be convergent, then

lim(nu,,)= 0.

This theorem as Pringsheim’s theorem, has already been discussed in
art. 6.4.

‘ OL Comparision Test
Statement :

Let Y u,and Y, v, be two series with non-negative terms, and
suppose that there exists an integer N such that u, < v, .for n > N .

Then (i) 3, u, convergesif Y, v,” convergesand (ii) Y, v, diverges
if 3, u, diverges.

Proof: (i) We denote the n* partialsumsof 3 u, and ¥, v, is. S, S
respectively.

Since 2 v, converges, given€ (>0 ) we can find N, (depending
on € ), such that forall p 21,and n > N,.

lS S,’,|<e'

n+p

Let N, = max(N,N,).Thcn for n > N, we have

-5, |<¢

|'s,”,,_-s l<

ntp
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and since this inequality holds for all posmve integral values of p, it follows
then Y, u, is convergen.

(i) If n > N ,wehave
S, -Sy2S,-Sy
5,28, -8y +5y

or,
- )
n— o, 8, —> since S, e,

If now,
Hence the theorem.

Another form of comparison test
If Yu, and Y v, be two series of positive terms and if

0 < lim —% < oo , then either both of them converge or both diverge
n—e y
IV. D’Alembert’s Ratio Test
Statement :
If Yu, >0,andif lim “"*L = o then
n—ye’ u,

(1) 2 u, convergesif p <1,
(ii) Y, u, divergesif > |.Ifhowever,, p = lthis test is inconclusive

Proof: () If p <!, foranygiven ¢ (<1- p), we can find a positive

integer N (depending upon € ) such that for n 2 N
stlcp+e,onu, <(p+e)u,
. uﬂ
In particular,
uy <(p+e)uy

Uyyo <(p+e )“Nn <(p+£)2 Uy
UN+m <(p+e)uy << (p+e) uy

Since 0 < (p +¢€ )<1, the series S (p+e )" uy converges
m=1

being a geometric series with common ratio <I, and hence 2 u, or E u,
N +1

is convergent by the comparison test.
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(i) If p > 1,foranygiven ¢ (< p — 1), we can find a positive integer
N, such that for n > N

u
=2t s p-gor up,, >(p-€)u,.
uﬂ

Thus, as in (i), we havefor m > 1,

. UNem >(p_£)'"u~
By comparing with the geometric series with common ratio

“(p-£)>1,
“we ¢an conclude that the series Y u, isdivergent.
V. Cauchy’s Root Test. .
Statement :

If u, >0 andif lim (,)" = p,then
n—yeo
i Y u, convergesif p <1,

(ii) divergesif p>1,
Whénlp =1, the test is inconclusive.

L]
Proof: (i) If p <1,givenany ¢ (<1~ p),
we can find a positive integer N, depending upon €, such thzhu n2N,

@ )" <p+e
o, u,<(p+e)”
Comparing with the geometric series with common ratio (p +E )
where 0 < (p + £ )< 1, we conclude that the ¥ u, is convergent.
(i) Next, let us suppose that p > 1.
Givenany ¢ (< p - 1), T infinity of ,

say N, N,, N;,.. ., such that for these values of n, (u

DS p-e
V4 n :
oLu, >{p-¢£)".

Since (p —£) > 0, u,, cannot tend to zero, so that Y u, isdivergent.
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VL Raabe’s Test
Statement :

—3o0

Let Y, u, be aseries of positive terms satisfying lim r{ o I 1] =p,
" n+l

then
Eu,, converges if p>1,

(i) Y u, divergesif p<1,

This test gives no information regarding convergence, if p = 1.
VIL Logarithmic Test
Statement :

The series Y. u,, -of positive terms is convergent or divergent according as

lim {nlog = —l}>lor <l
n—soo

n+l

This test fails, if the limitis 1.

VIIL Gauss’s Test
Statement :

be expressed in powers of

If for a series z u, of positive terms
n+l

el
u n n

n+l

1/1, so that

then Y u, isconvergentif # > 1,and divergent if u<1.

Note. - The notation 0(1/ nz) denotes such a function f (n) that for

evcry n 2 ny (a definite positive intéger), | f (n )I < k —5 . where kis a
finite quantity independent of

6.6. Mixed Series : Absolute and Conditional Convergence.

The series Y, u, which contains both positive and negative terms is
said to be absolutely convergent, if the series E[ u"| be coftvergent.

For example, the series | —% + L. L3 +... 15 absolutely

22
convergent.
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If the series 3 u,, be convergent, but the series Y| u,| be divergent,
then the series Y u, is said to be non-absolutely convergent.

The series 1 - —;- + L % + ... is non-absolutely convergent.

3
A convergent series which remains unaffected by rearrangement of its
terms is said to be unconditionally convergent, while the series which is
affected by rearrangement of its terms is called conditionally convergent.

(D 1
1= 3 + 2—2 = 2—, + ... is an example of unconditionally convergent
series, and '
’ 1 1 1 ; s s .
1- 5 + T h + ... is a conditionally convergent series.

6.7. Alternating Series.

»
A series in which the signs of consecutive terms are alternatively
positive and negative is called an alternating series..

THEOREM L. Leibnitz's test for Alternating Series.
An alternating series u, — t, + U3 — U, +... is convergent if {u,,}

be a sequence of positive terms decreasing monotonically to zero.

THEOREM I1. An infinite series in which the terms are alternately positive.
and negative is convergent if each term be numerically less than the

preceeding term and limu, = 0.
Note: 1.- When we say Zu,, is absolutely convergent we are to test the

convergence of zl u,,l and not that of zu,, ‘

2. To determine the absolute convergence of series we are to use
the test developed for positive series.

3. If the terms of an absolutely convergent series be réan‘anged,
the series remains absolutely convergent and its sum also remains unaltered.
6.8. Power Series.

A series of the form
o n
ceoxa, (x = %) ='ag +aq, (x - xg )+ az(x -x )+

n=0

veta (x—x ) 4.
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- o Ya,x"=a, +a,x + a,x* G G i
n=0
where the coefficient @, a,, a,,..., a,,... are independent of x, is called
a powejr series in x.
The simplest and the most important power series is the geometric
series: 1+ x+x2 4. . +x" +....

From the discussions of art. 6.3, it is obvious that the above geometric
series is convergent (and also absolutely convergent) for |x|<1,ie,
=1 < x <1,divergesto + for x > 1, and oscillatory when x < —].

The above example and other similar situations reveal that as the
variable x, in a power series, changes, the terms also change and the series
may change from a convergent to a non-convergent one. This leads to the
conclusion : a power series is convergent either for all values of x, or fora

_ certain range of values of x, or for no value of xexcept zero. It is, therefore,
important to ascertain the value or values of the variable x for which a
power series is convergent. That is why comes the idea of ‘interval of
convergence’.

6.9. Interval of Convergence. -

Definition : The interval of Convergence of a pm»)er series in x is the
collection of values of x in an interval such that the series converges for
every value of x in this interval, but does not converge for values of x
outside the interval.

If a power series Y a, x" ééinverges absolutely for all values of x,
inside the interval of convergence —r < x < r, and diverges for | % | >r,
then r is called the radius of convergence of the powcr series. .
6.10.  Determination of Interval of Convergence.

D’ Alembert’s Ratio test and Cauchy’s Root test will be useful for the
determination of interval of convergence of Power Series.

. n
For the power series Y a, x" .

@ if lim_‘ Inti | _y 2, afinite quantity other than zero,

n— a

n

@ if im{|a,|}" =4  where 221,
n—eo -

: X G § 1
then the interval of convergence of the series is (- r. r). where r = 3
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Note : The interval of convergence as determined by the above tests is
open. The series may be or may not be convergent at the end points x = £r.

To determine the complete interval of convergence one should first find
the values of x fot which the series is absolutely convergent and then test
the end-points. '

6.11.Properties of Power Series. '

Here we state (without proof) ceriain properties of infinite Power Series,
which are often used in obtaining new series.
L Within its interval convergence, a power series represents a continous
sum function and has not more than one power series representation in a
giveninterval. .

I Two power series converging in the same interval of convergence can
be added and subtracted term by term; thus if

flx)=Ya,x" and ¢ (x)= Y b,x",
f()£9() = Ta,x" £ Tbx" = Tla, £5,)x"

TIL. Two power series converging in the same interval of convergence can
be multiplied term by term.

Thus, if f(x)= Y a,x" and ¢ )= T hx" s
[0 =X ax". X b,x"

= Z(aob,, +abpt .- +apby)x" .
This product series is absolutely convergent in the same common
interval of convergence. .
IV. The quotient of two power series Y, a,x" and Y b, x" (by # 0) is

another power series Y, c,x” , provided x remains within a sufficiently small

interval in which the denominator does not vanish and both numerator and
denominator are convergent series.

2 n
ao+alx+azx +...+a,x "

Thus

y 2 = =co+clx+c2x2+...+cnx
by +bx +byx" +...+b,x
Since, Ya,x" =Y bx"Fc,x", ag =boco. & = coby + €10y,

etc. whence €. €, C2,--- can be calculated.

V. Limits, term by term, are permissible ip case of power series within its
interval of convergence.
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Thus,if f(x)= ¥ a,x" , lim f(x)= lim 3 a,x" .

VLA power series can be differentiated or integrated, term by term, over
any closed interval lying entirely within its interval of convergence, as-
many times as one wishes.

If f(x)= Za,x", i
)= Ynax""' . fq)=Ynk- )a,x"? etc.

and f:‘ f(x)dx= I:' Ya,x"dx=Y na: N (Xz"" - x,"”),

provided x; and x, are both intcrior points of the interval of convergence.

VIL If two power series Y, a,x" and ¥ b x" both converge in the same

interval and both represent the same function f (x) then they e identical,
Le., a, = b, forall values of n.

VIL If y = f(x)= Y a,x" and F(y)= >bx",
then F {f(x)}= by + {3 a,x" }+ 6,{F a,x" }+ ...
= by +b(ag +ayx + a2x2-+...)+ bylag + apx + ayx? + )+
=co+ox+cyxt 4.,
for every value of x for which Z, a,,.r"‘ converges and has a sum less than
the radius of convergence of Y b, y" .

6.12.  Ilustrative Examples.

Ex.1. Prove that the series :

I
T@a-1)@n+)

S -f L _aip1 1
s"_5""'£(2n—1)(2n+l)',.%2{2:.-1 2n+l}

1{ 1 1{1 1 1{ 1 1 }
Efl ===
2 3] 213 5/ 2|2r-1 2n+1

—-l-l—~ 3 —>l
3 2n+ 1 L TS
1

Hence, the series is convergent and its sum is ¥

L .3
-+ ——+_—— +... isconvergen.
3.5 5.7 [V.P1997]

w

Here, u,
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Ex.2.  Examine the convergence of the series :

1.1 1 1
t—t—t =ttt
1t 21 3! (n-1) ‘
1.1 1. 1
Here, S, =1+14¢=4+—+ .
" 2 2.3 2.3.4 2.3.4...(n-1)

{ S } is monotonic increasing sequence and bounded above.
Hence, the series is convergent.

| 2 3 n .
Ex.3. Show that the series i +—+——+...+ —, is convergent.

2 22 22
[V.P.2001

Here, u, = i and u
2’!

= g -
u, 2n +1 2 n 2n 2
Hence, the series is convergent.

Ex.4.. Test the convergence of the following series :

I |
(i C. P. 1998
® nz=l(\/— Jn- ) @ ,.;1 logn - [ I

I _dn—i+dn Y11+
=1 dndm=1 J’,;_Jl_L.

@ Here, u, =

-
+

Let us introduce a companson series Y, v, 27_— where

n=|
\

v, =

[ ‘-‘/_,—'-'
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lxmL lim 'l_l+l-\/t—! | ———--—-——l_"l;Jrl-
n—ee v _n—bw‘/—‘/—l___ A= =4
n

1
But, Y, v, = E I is divergent, for in the p-series, here p=%< 1.
n=1 N

Hence, the series u,, is also divergent.

) = logn< nforall n>1,
1
log
Let us compare the given series with the divergent series
L + L + - F e : + 1
2 3T T e ()
Each term of the given series exceeds the corresponding term of the
divergent series. Hence, the given series is also divergent.

¥ fora]l > 2s

Ex.5. Examine the convergence of :

12 22 3 47 n
—t ettt — .=
2 #F ¥ v g=
[ C.P 1993 2003, 2008 B.P. 1498 ]
_n2 _(n+l)2
Here, #, = - and 4,y = —2—”7—

Uy 2n+] 2" 2]
Hence, the given series is convergent.

Ex.6. Examine the convergence of :

2 3 4 '
(2 +(3) +[2) +... (cP 198692 2007)
3715 Tl7) Tl

e, )" =
hm(u )" lim

1
noe2+dl 2
Hence, by Cauchy’s Root test, the given series is convergent.

<l.
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Ex.7. Examine the convergence of

2+§+4+i+ +("+i)+ f
8727 @ T -- [C.P 1997, 2003
i o nst] 144
ere, = =
" n? n?
y 1
Let us introduce another series Y, v, , where v, = -5
n

Evidently, ), v, isconvergent, forhere p = 2 > 1.

[ 7
.U o JIEE 1
Now, lim -2 = 4im xn’|= lim|1+ =1
: N—yoo vn n—joo nz n—eo n

Since, Y v, isconvergent, the given series Y u,, isalsoconvergent.

Ex.8.  Examine whether the series

; 2 3 n
‘2x+§f——+£—+...+M+
8 27 . n3

is convergent or divergent (x > 0)

%

- Since x > 0, each term of the given series 3, u, is positive and

Em - (" + 2) LNt _’i__ ) i
un (n + 1)3 (Il + l) x'"
_n’(n+2) 2) 1+ 2

‘X x asn—e
(n +1) (1 + 1)4
Therefore, by D’ Alembert’s Ratio test, the series is convergent, if x < 1,

and divergent if x > 1.

 For x =1, this test fails.

n+1

nJ

. : 1
Let us take another series 3, v, , where v, = —.

When x =1, u, =

Y. v, beinga ‘p-series’ with p = 2 > 1, is known to be convergent.
n+1

.U : i 1 ; . .
lim — = lim = lim | 1 + — | = 1, is a finite quantity.
n—e Y n—e n n—yco n

Therefore, Y, u, is also convergent. .

Hence, the given series is convergent if x < 1, and divergent if x > 1.
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Ex.9. Examine whether the series is convergent or divergent :

3 5 v
i X g BB & L LEB F [C.P. 1969]
23 2.4.5 2.4.6 1

Denoting the given series by ug + 1, +u, +..., we have

. =1.3.5...(211--1)..:cz"“l
" 2.4.6..20 2+l
. :1.3.5...(2;;—1)(2n+1).xz"‘”
T 2.4.6...2n(2n+2)  2n+43

B (2n+2)(2ﬂ+3)_L_,L,asn—>°°-

T @n+N@n+1) x* X2

U,

L

" - o L I
Thus the given series is convergent, if i 1., iie.a3f X~ < ;e if
e X

-l<x<1 anditisdivergemif—l— <l,ie,if x>1orx<-I.
"

(2n +2)(2n +3)
. @n+1)*

lim{n[u" —IJ} lim M—§—>l
P T Gy 2

So, by Raabe’s test, the series is convergent for x = +1. Hence the
given series is convergent, if —1 < x <1 and is divergent if x>1 or

When x = t1,

x<-1.

" Ex.10. Examine the convergence of 2 -

n=1 1

[ C.P. 1996, V.P. 2000, B.F. 2001 ]

n n+1
Here, u, = 2 and Uy = giﬂ)——
n! (n+1)

(n+1)' ",

1
“m ﬂ! B ey (1+¢)"

n

1
;<l. oy 2xe<d;
+1

-u,
oo nll
Z "_, is divergent.
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Ex.11. [Examine the convergence of

3 .5 7
() x2+—22—x4+ 2.4 x5+ 246 x4+
3.4 3.4.5.6 3.4.5.6.7.8

[C.P. 1965 N.B.P. 1981, V. P. 1988]
- (2n -1) !2n +1)

. {x>0)

Ll ]
_(m+1) 2n—l)_,w ——
Uy, (2n +1)
im-*_51, Y u, isconvergent.
Ml"ﬂ‘l‘l

(i) Denoting the first term by u,,
2%.4%.6%..2Qn) anaa
"T345. 2n+1)(2n +2)

} _ 2‘,42.62...(2n)z(2n + 2)1 et
and " 3.4.5...(2n+3)(2n+4)

u

u, ___(En+3)(2n+4).L
wir Oa+2f. 8
o G 2)0+2)
N T

so,

u"

lim

L .t
n—eo I z T

5. 3 1 . PE
Therefore, the series is convergent - 1, ie,if x2 <1, ie., if
: \ o

T | 5
—-1<x<land:t:sdlvergennf—?<l,i.e..1fx>lorx<-—l.
x

The ratio test fails when x = £1 and we apply Raabe’s test.

»1] {(2n+3)(2n+4) ] 6n” + 8n

uﬂ
We have, n

Upor (2n + 27 (2n + 2)2
’ - 6+ 8% ;
s liman Yu_ _ 1|= lim = 2 >1,
n—o U, n—poo (2 +'_2' 2

Hence, the given seiies is convergent, if x = £ 1.



158 DIFFERENTIAL CALCULUS

Thus, the given series is convergent, if =1 < x < | and divergent, if
x>lorx<-1.
Ex.12. Determine the region of convergence of the series

2 3
X X x
(i) l+a+§+n+... '
x=3 1 (x-3P¢ 1 (x-3)
+—= +=- -
@ 3 2 3? 3 3}
(i) We have, by the Ratio test,

[C.P. 1998]

Yy x
u, n+l
: Upy1
lim | == | = 0 < 1, for all values of x.
e |y .

Hence, the series is convergent for every value of x and the region of
CONVErgence is —oo < x < oo -

=3yt (x-3)

ii im | Brtt | = hmI (x e =

(ii) Here, }jﬂ - e (n + 1)3M| n.3"

x-3 - n x-3
=|——|- lim =
3 xoe 41 3
Thus, the series is tonvergent if wiimid PO T IS s 3 Z15;
3

ie,0<x<6.
The series is also convergent for x — 3 = -3, i.e., x = (), but not for
x-=3=3,ie,x=6. ‘
Heﬁce, the interval of convergence 0 < x < 6.

6.12 Miscellaneous Worked Out Examples
Ex. 1. Examine the series for convergence.

2 22'32 42

—t =t —+ ..., >
2 22 23' 24 | C. P 1993]
‘ ¢ w1y
Solution : Here, u =2 and Uy =(—'3——)
- . n n 2n+l
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o lim
n—poc !l"

iy +1 1<1
2

z .
s n 5
Hence the series Eu,, where u, = —- is convergent.
2

Ex. 2. Test the convergence of the series :

X xz 13
R A [ C. P 1994, 2003 ]
Sol H 2" ] My =
ti H s == 4 S
ution ere, u, ) and Uy (n+l)2
lim lun+1|=lin'.l| ot |
= PR S YT
-t
(1+—
n
=|x|.

Hence Zu,, converges when |x] <1 and diverges when |x| >1.

When x=1, the ratio test fails

‘At x=1, 2u,,=;li—+-l—+—l-+......

22 3
which is a p’ series with p=2>1.
1 1 1 1
At x=—l,Zu,, =—(F—2—2-+~37—F+ ..... )

since the series l+-il;+3iz+..... being a p-series with p=2>1, is

convergent, by Leibnitz's Test, T, is also convergent.
Hence, the given series is convergent when lx‘l <1 and divergent when

‘xl>l.
Ex. 3. Apply Raab'es Test to examine the convergence of :

1 13 135
s Zro-oak: ilacmeopope: it *....
23 245 2467

@ [ C. P 1990, 93, 94, 2004 ]
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3.6.9... i
1 -— P 1
(i) Tu, where u, T101...(n+4) [C. P 1989 ]

Solution : (i) Denoting the given series by

Ut uytuy+......

1.3.5....(2n-1) 1
246...2n 2n+1

we have u, =

_ BAS...@axl) 1
©2.4.6....20(2n+2) 2043’

and U,y

Uy _(2n+2)(2n+3)
ot (2041

. Iimn{ ul} fi 20td) 3
Tuore | Upyy

n-w E(in+ l) 2
. . Hence the series is convergent.
369....3n

7.10.13... (3,,;"4_)

so that
u

(n) Here, u, =

36 9......3n(3lr+3)
U
" 71003, (n+4)3n+7)

u, _3n+7

Uy 3n+3"
By Raabe's Tt hmn % _1} = lim M. .
y Raabe's Test, g I i3 3>

Hence the series is convergent.
Ex. 4. Use Root-Test to examine the convergence of the following series :

1 (2 2 3y} "
o _,+(_) +(_;) 4. [C P 1986, '92, 2007 |
3 \5) "7 .

n+l e
(i) Y u, , where u,=<("—+l) —("—nﬂ)} [ C. P 1990, 2000 |

n
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) n
Solution : (i) Here, 4, = (Eﬁﬁ) , so that

& 1
(1) = —
2n+l 2+l
n

) L |
_ and ']Il_l;Il(un)n —-2—<l,

Hence the scries is convergent by Cauchy's Root-test.

'(¢i) Obviously, here
1

BT

L 1

Tim (4, )n _'EI'T‘ (H%){(Hi)n-l}‘ |

Hence the given series is convergent.

Ex. 5. Examine the convergence of the following series :

3 4 .
X X X
e )
@ st (x>0)

: 1 x* 13 % 135 x’
(i) x+——t— = —
23 245 246 7

Gip 4 ala+ l) a(a+ lXa +2)
b b(b+1) b(b+l)(b+2)
where a, b are non-neganve integers and 0.
1+a (l+a)(2+a) 1+a)(2+a)(3+cx

T+8  (1+P)2+B) (1+P)2+B)3+P)

©(@iv) 1+

where f# a.
11-

[ B. P 1997 |

‘[ C. P 1994]

[C P 1997]

[C P 19651
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n4l
X

. . A 4
Solution : (i) Here, 4, =— and U,y =—
n n+l

. .on+l 1 1Yy1 1
lim —- = Jim =—. — = lim (1+—-)-—=—
n—yec uﬂ+| Th—es N X n—yo< n X X
Hence the series is convergent if x<1, and divergent if x>1
If x =1, the Ratio-Test is inconclusive.

[ |
when x=1, the series is 1+ —+—+—+- ---
2 3 4
and it is divergent, by the p-test -- p =1 here.
Hence the series is convergent for O<x<l and divergent for x>1.

(1) Denoting the given series by g+, +uy +13 4+ -+ "

1-3:5-(2n-1) i
DolsGass (2"+|)

we have, 4, =

1:3-5-(2n=1)(2n+1) x2*3
2:4-6-2n(2n+2) (2n+3)

and, u,,, =

o lim 2 lim (2n+2)(2n+3)

1
A= Ual n—ye< (2” + l)(2n + l) . x_z :\_'

Thus the given scries is convergent if —5 >1
; i - X
S b ' s 9 LA L AN B
ie,if x*<l,ie if -1<x'<landitis divergent
. 1 . . "
if 5<1, ie, if x>1or x<—-1.
X

[

when x=1=1, the above test fails and we proceed to Raabe's Test

. Uy . n(6n+5) 3
lim n -1 ==||m——--——-—-»2—=ﬂ>l
L Upyy o= (2n+ 1) 2

So, the series is convergent for x=z=1.
Hence, the given series is convergent if —~1<x <1 and is divergent if

&>1, or, x<—1..
»
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u,” b+n
(iii) Here, —=
U,y atn

s u
and lim —-=1
noe Upyy

So pr Alembert's Ratio Test fails. We proceed to Raabe's Test.

. u, 1 b+n
lim n -1}=1lim n -1
g Uyt ne o latn

. n(b-a)
=lim ———=
n—e< a+n
. Hence the series is convergent if (b—a)>1, divergent if (b-a)<l, and
when p=g , the series becomes
T+14 1400 ooe

b—a

which is obviously divergent.

. _(1+a)2+0)(n+a)
B0 e = (1+B)2+B)-~(n+B)

Ia __(1+a)(2+a)~-(n+a)(n+l.+0t)
ik " (14 B)2+B) - (n+B)(n+1+B)

u 1+n+
s, S JEHHE,
Uy l+nta

. u,
) " . (T
o a e lim =1 St . i
: noee Uy § g

‘We proceed to Raabe's Test

lim n {"" —l}:lim n{ poo }
n=ec | Upyy n—yec l+nta

—a —-—
i g B g,
n—vec p+l1+0  noe 1+1+(1

n
Hence the given series if convergent if (B—o)>1 and - '

divergent if (B-o)<l.
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EXAMPLES-VI
1. (@) When does an infinite series is said to converge ?

4.

(ii) Give an example each of (a) a convergent series, (b) a divergent ©
. series and (c) an oscillatory series. )

{iii) Show that the addition or removal of a finite number of terms at the
beginning of an infinite series will not affect the convergence or
divergence of the series.

(iv) Prove that multiplication of each term of an infinite series by a
constant term, different from zero, does not affect the convergence

“or divergence of the series.

() Show that the p-series le converges only when p > 1.
n

‘ i .
. Alsoshow that the harmonic series Y. — is divergent.
n

[ B. P. 1996,1999 |

(i) Show that the series —1-- + : L + ... converges.

.__+
; [C.P 1987]

() State and prove ‘comparison test’ for convergence or divergence
of a series of positive terms.

(ii) Use comparison test to prove the convergence of

)

1 2 3 ;
2_2+32_+4£2+... [C.P 1988]

() State and prove D’Alembert’s ratio test for convergence or
divergence of a series of positive terms.
[C.P. 1982, ‘87; B.P. 1999 ]

(i) Hence, show that 1 + = + ﬁ + 2 + ... converges.
’ S 20 3 2SS
[C.P.1992]
(i) State and establish Cauchy’s Root test for convergence or
divergence of an infinite series. [C.P. 1980]

(i) Use Cauchy’s Root test to examine the convergence of

1+22+.§,)3+ £4+ 86492
37153 7 9 | C.P. 1986, ]



INFINITE SERIES . . ; 165 .

6.

7.

State Raabe’s test for. convergence or dlvergencc of a series of positive
terms. ) [C.P 1994]

For the following series, compute the partial sum S, , and then obtain
their sum:

o 5[

(i) -an [ C.P. 1999 ,2006]

08 ,,Z:'. Gn- l)(2n +)’

iv P 7
) ,% (n+l)(n+2)
Use comparison test to examine the convergence or dwergence of the

series :

11 1

B

® 127327 T a2 [C.P. 1985]
2+3+i+ +£Ll+

@ 2+gFog -t - [C.P 19971

#9. B T |

@) 1052 log3  log 4 [C.P. 1998]

e N NP

“(iv) e i remc s o

(\ Elm [C.P.1994]

) ‘ C.P 1998]
nz-:l(\/- Jn—l) L

Apply D’ Alembert’s ratio test to examine the convergence of :

12 3 n
—t——t— = +... o
S 2 [C. P 2006]
.o 2 2 32 nz
(ii) —+2—2+2—3+...+'2—;"+...
2

v B +42+ +£+
T TR TR T I
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10. Use Cauchy’s root test to investigate the convergence of the series :

1 1
(i) '5+§-5'+4—3+

11.

132 (2+2Y (3+2)
I0) + + +
2.1 2.2 2.3
T -
(n+l)"
2 2 4 n
(1u)l+2 1——2——+2 +2—+
2%, 3

44 n"
n +f o (n"“)

(iv) Z[

n+2)n

[C.P 1981

Examine the following series for convergence or divergence :

(M)
(ii)
(iii)

o142 1+2+3
(iv) + +

)

(vi)

+ +
2.3.4 3.4.5
1 1 1
—+ +
1+1 1+2
1 1.3 1.3.5
+ +

1+243+4
+

+ +
L4 2% F 1422

§C.P 19SI )

{C.P 193]

[C.P. 1991, 20M ]

| C.P 1993]

[C.P 19961

[C.P. 1986 }

[C.P 1991}

[C.P 1941
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12.

13.

14.

-Test the convergence or divergence of the of the series 3, u, , where

@ u, =V’ + -

(i) wu, =si 1)
: n

i) 4, = ———:
n +1
x'l
W) = (x>0), [C.P 1987]
‘ _
) Hy =
n
o) 1y =
n
T . 2 ;
(n+l)"
nﬂ
(viil) u,, = ————
(n+ )"

2.4.6...2n+2)
X)) B, B ;
@, 1.3.5...(2n - 1) .
5 =1 !
® u, = A .
n!
(i) Show 'ihat the series
1 1 1

v 12 T 2E Legr T converses.
(ii) Show that the series
1+ . + L + : +
2Pl Bl B, B SOOVEIEEE

[B.P. 1984, ‘94]
Apply Cauchy’s general principle of convergence to test the following
series : '

() 1+L+-l—+...+l+...
2 3 n
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15.

16.

17.

18.

19,

.20.

1 a1
R R St
(i) R +(=1y =k

Test the convergence of E ; by Cauchy’s criterion.
© n=Q R

Show that the following series are divergent :

21.3.5...(2,:—1)_

n=1 2.4.6. .2’1 ?

i il.3.5 (2n—1) 4n+3
W 25062 ez

(m)':"—,

@ Y{n+1-va}
Prove that the hypergeometric series =

L l@+1)B(B + l)
"L y 1.2.y(r +1)
(where @, B, v are real and none of them is zero or negative integer)
convergesif y > (& + B) and divergesif y < (a + B). [C.P. 1989

@

Discuss the convergence or divergence of the hypergeometric series

N @+1)B (B + l)
1.y 1.2.y(y +1)
(where are real and none of them is zero or negative integer) for
lx|<lI. |x]>landforx—l :
2

l+

Show that the series z - x" converges for I xl <l

amt 02 #1 :
[C.P.1999]
Find the interval of convergence of the following series : ’
x x2 X
D) I+ﬁ+—2_!+i+'“ [C.P 1987]

2 3
T SRS [C.P 1994]
1- 2 32
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+... (x>0)

"3
W =2 +-‘i—i+
2 3 4
(vi) 1+ -;. + :—4' +.
* X
(i) ¥+ 7 + 5y
ANSWERS
L @) @ Z"L: ®) E,—ll; @Y 1)y.
5. (i) Convergent.
7. ()2; Gi)§; G §: (T
8. () Comfergem; (ii) Convergent ; (iii) Divergent;
(iv) Divergent; (v) Convergent ; (vi) Divergent.
(i) Convergent ; (ii) Convergent; (iii) Convergent.
10. (i) Convergent; (ii) Convergent ;
~ (iii) Convergent, (iv) Convergent ;
11. (i) Convergent; (ii) Divergent ; (iii) Convergent;
(iv) Divergent ; (v) Divergent’; (vi) Convergent ;
(vii) Convergent; (viii) Convergent;  (ix) Divergent;
(x) Convergent ; (xi) Convergent.
12. (i) Convergent; (ii) Divergent ; (iii) Convergent ;
(iv) Convergent; (v) Convergent ;
(vi) Convergent when x < 1, Divergent when x > 1; ‘
* (vii) Convergent ; (viii) Divergent ; (ix) Divergent; (x) Convergent.
14. (i) Divergent; (ii) Convergent. i '
20. () - <x<+o; G x|SL (i) -1<sx<1;

(ivvo<xs2;

W)-l<x<1;
(vii) —o0 < x < 400, ‘

(Vi) —o0 < x < + 0}
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7.1. Increment.

The increment of a variable in changing from one value to another is
the difference obtained by subfracting the first value from the second. An
increment of x is denoted by Ax (read as delta x) or h. Evidently, increment
may be positive or negative according as the vanable in changing increases
or decreases.

If,in y= f ( ), the independent variable x takes an increment Ax
(or h),then Ay (or k) denotes the corresponding increment of y, i.e., of
o (x ), and we have

y+Ay=f(x+Ax), i.e.,Ay:f(x+Ax)~f(x)
o, y+k=f(x+h), i.e., k=f(x+h )-f(x)

Illustration : Let y = x?

Suppose. x increases from 2 to 21, ie., Ax =0-1;

then y increases from 4 to 441, ie., Ay =041.
Suppose. x decreases from 2 to 1-9, ie., Ax =-0-1;
then y decreases from 4 to 3-61,i.e., Ay =—0-39.

Increments are always reckoned from the arbitrarily fixed initial value
of the independent variable x.

If y decrcases as x increases, or the reverse, then Ax and Ay will have
opposite signs.

From a fixed initial value 2 of , if x increases successively to
2:1,2:01, 2:001, etc. then although the correspbnding increments
Ax (=0:-1,0-01,0-001,..) and Ay (=0-41,0-401,0-004001, ...) are getting

Ay
smaller, their ratio, i.e., Dt being 4-1, 4-01, 4-001, . . ., is approaching a

definite number 4, thus, illustrating the fact that the ratio can be brought as
near to 4 as we please by making Ax approach zero. Thus, the ratio of the

Ay
increments & has a definite finite limit4 as A x — 0, and, consequently,

Ay—>0.
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7.2. Differential Coefficient (or Derivative).

Lety= f(x ) be a finite and single-valued function defined in any
- interval of x-and assume x to have any particular value in the interval. Let
A x (or h) be the increment of x,and let Ay = f (x+Ax )= f(x) be

the corresponding increment of y. If the ralioz'}‘ of these increments tends

to a definite finite limit as Ax tends to zero, then this limit is called the
 differential coefficient (or derivative ) of f (x) (or y ) for the particular

value of x, and is denoted by L, (%{f(\)}% p{f(x)}.

Thus, symbolically, the differential coeffici entof y=f(x) with respect
to x(for any particular value of x) is :

Flx) o, e 2oy S(xtax)-7(x)
. dx M0 Ax A0 Ax

’ dy f(x+h)-f(x)

=~ = Lt ——r-ovu-—rv--it——" . T .

f(x ) or, g piipgl. . b , provided this limit- exists.

If.as Ax = 0, Ay/Ax — +oo or— ca.thenalso wesay that the

derivative exists,and — + oo or — oo,

Notel. The process of finding the differential coefficient is called
differentiation, and we are said to differentiate f (x) and sometimes to
differentiate f(x) with respect to x, 10 emphasisc that x is the independent
variable.

oo d )
Note 2. Iy stands here for the symbol i (v). a limiting process, and

x :
hence must not be regarded as a fraction dy divided by dx, although, for
: 3

convenience of printing, It may sometimes be written as 2); )

Note3. The differential coefficient of f(x), forany particular value a of

x, is often dé.noted by f’(a).Thus, from definition,

f(a)= ’Lto i(a_"‘ﬁh)_‘f_(‘f_) , provided this limit exists.
1=

Noted. If f’(a) is finite, f(x) must be continuous at x =« .

f'(a)= Lt f(a"’h)'f(ﬁ_),

_h—-0 h
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Wecanwrite f (a+h)- f(a) = f(a+hh)_f(a)><h
ot A{f(arh)-f(a)} =L {L""zﬂxh}

=1t f(a+h)-f(a)x Lt h
0 h h—0

= f(@)x0
= 0, since f’(a) is finite.
L f(a+h )=f(a).
h—0 )
.*. from the definition of continuity, it follows that f (x) is continuous at x =a.

Hence, for the differential coefficient of f (x) to exist finitely for any
value of x, the function f(x) must be continuous at the point .

The converse, however. is not always true, i.e., if a function be
continuous at any point, it is not necessarily true that a finite derivative of
the function for that value of x should exist. For illustration see Ex.4,§7.5.

Again, a function f(x), though discontinuous at a point, may have an
infinite derivative at a point. [ See Ex. 7(ii), Examples VII(A).]

NoteS. The right-hand limit 1¢ f—(ihh)_;(x) for any particular
h—0+0

value of x, when it exists, is called the right-hand derivative of f(x) at that
point and is denoted by Rf'(x) - Similarly, the left-hand limit
Lt M)__Lx) or, Lt ﬂ_{i).—_[.(_x)’ whe}i it exists is
h>0-0 h h-0+0 -
called the left-hand derivative of f (x) at x, denoted by L f'(x ). When
these two derivatives both exist and are equal, it is then only that the derivative
of f(x) exists at x. When, however, the left-hand and right-hand derivatives
of f(x) atx are unequal, or one or both are non-existent then f(x) is said to
have no proper derivative at x.

Thus, though f’(x ) may not exist at a point, one or both of the right-
hand and left-hand derivatives may exist (the two being unequal in the
latter case).

For illustration, see §7.5, kx. 4.



DIFFERENTIATION ' 173

7.3. Differential coefficients in some standard cases. -
@) Differential coefficient of x".

Let f(x)=x".

(x+h)" =x"

h
Now, writing X for x + h, so that h = X -, and noting that when h—>0,
X — x, we get :

Then from definition, f(x)= u

n
f(x)=L —{—x—=nx"".forall rational values of .

Xoar X-x .
4 ) [See §3.9(v)]

. Thus, 1(x' )=nx“'l , for all rational values of n.
dx

Otherwise :
i ft n
Fx)e e G =x" e (h/x) -1
h—0 h h—s0 h/x

[ supposing x = 0]
n-1 (I+Z)" -1
.2
=nx"! [ See §3.9 (vi)]
The result can also be derived for any rational value of n [ 20 ]-from
the weli-known inequality.!

nX " (X -x) EUX"wx" z2 "X -x)
.

upper sign if n >1or >(J',
andlowerif O<n<| ;

[ puttingz=h/x]

ll n
Whence nX"'(X -x) 2 ——-x—x— > ™!
X
Now putting X =x + h, and letting h — 0, we get
¥ x+h)"-x" T .
u_(...—)x__—.nx"l [See §3.8(v) ],
-0 h

since both extremes tend to the same limit nx"~!.

When n is a positive integer, the result can also be proved as follows:

' See any text book on Higher Algebra (e.g., See§ 10, Chapter X1V, Barnard -
& Child ). e

1

L
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’ x+h "_x" o)
f(x)= 1 GHA A .
hs0 h
{x" +nx""h+ln(n—l )x""h2 +.«.+h"}‘—x"
= Lt 2
h—30 _ h
( By Binomial Theorem )
" {nx""h+‘y:(rz—‘l)x""h2 +...-:-h"}
=L
h—0 h
= nxn-—l

When n is not a positive integer, for an alternative proof, see Ex. 1,
§7.13, SeealsoEx. 2, §7.13 for the case when n has any real value, not
necessarily rational.

d d 1 d( 1 n
Cor. 2 (x)=1,—\Vx)J=—+ ._.(__)=_W____
e dx(x) : dx( x) 2% dx\x® x =

Note. It is to be noted that in the above formula we tacitly assume those
values of x as do not make x* or x" -' meaningless ; e.g., if n be a fraction of
even denominator, zero and negative values of x are exciuded and if n — 1
be negative, zero value for v is excluded.

Following the definition it may be seen in particular, that if f(x)=x",

then f’ (0)=0, when n>1, f’(0)=1, when n= 1, and f’ (0) is non-
exispéqtif_n<l.

N v v - - . - - weomE g o Y.

(i) Differential coefficicnt of e*

Let f(x)=e" . Then fromdefinition,

; e,n»h_ex : e"—l .
f(x)=-Lt =Lt e =e
h—-0 h h—-0 h
= h=1 =
since =L (E )/h_l [See §3.9(iv),]

h—>0

Thus, di(e" ):e",

X
(iiiy Differential coefficicntof a*.

Let f(x)=a‘-
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x h
a -a a -1
Then fl(x)= Lt =a"-
h—0 h h

) h_ hloga _
Now, L 2 2 =L & .loga
k=0 & k-0 hloga

- i ah’;—l
=0 H

Jloga [where i =hloga]

P
=loga, since L: g ,1=1.
W —0 h

| See & 3.9(iv) |-
. f(x)=a*loga.

d :
Thus, —-(a = )= a“log.a.
dx
(iv) Differential coefficient of log x.
Let f(x)=logx

log (x +h)—log x
Then  f/(x)= Li gl B "lonys

h—0 h

T —]--log x+h
=0 h x

, = L l_-‘,ilog(nf'_]
ey B ',‘T—"n x h Xy

ot Ll,llog(lwrz)[where :.=£:|
X -0 2 : X
1 3

=y [ See § 3.9 iii) |

d 1
£ (logx)=— .
Thus, (logx) .

Cor. Proceeding exactly as above it can be easily shown that

-d—(log.x)-:-l-. log ,e.
dx X
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(v) Differential coefficient of sin x.
let f ( x )-7- sinx.

Then Vf'(x )=,'l_’.’0 sm(x+:)—sinx

gl - 2sin%hcos(x+-%h)

h—0 h

) sinlh
=1L Z -cos(x+-zlh) =cos x
h—0 -lz-h

because as h — 0, cos x being a continuous function of x,

. cos(x+-21h)—)cosx;
a}so, by §3.9(),

" L {sintn/(4n)}=1.

d
Thus, —(sinx J)=cosx .
4 (sinx)
(vi) Differential coefficientof cos x.
Let f(x) =cos x
M) e iy cos (x + h)- cos x
- h—-0 h
} -2sindh sin(x+%h)
h—0 5 h
. _Lh
= Lt —sin()c+-;-h)-sm2
h—0 | 1h

=-sinx [as in (V)]

Thus, -d—(cos.r) =-sinx.
dx

Note. It should be noted that in finding the above differential coefficients
of sinx and cos x, we tacitly assume that x is in radian measure, because
we make use of the limit sin 1 h / (-;—If ) =1 as = 0, which is true when
h is in radian. Hence, the above results require modification when x is
given in any other measure.
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(vii) Differential coefficient of tan x.
Let f(x)=rtanx

2 tan (x+ h)— tanx
Thes f(x)=hl—for h

_l_{sin(x+k)_;inx}

h—0 h oos(x+h) cos x

sin(x+h-1x)
= L =
h=0 hqos(x+h)cosx

_ .sinh‘ | AR
T h cos(x+h)cos x
¢
%m, {x#%(211+l)7r]
M=l, and Lt cos(.x+h)=cosx
h—0 h h=0

Thus, :—x(hnx)=sec2x. [x#L(2n+1)n )
(viii) Exactly ina similar w.ay, we can get
%(eot x)=-—cosec’x.. [x#nrx]

@) Differential coefficient of secx.
sec (x + h) - sec x

1 1 1
=l d——
h-mh{cos(.t+h) cosx}

{ cosx—cos(x+h)

h—0 hcos(.t+h)cosx
25in%hsin(x+%h)

h—0 hcos(x+h)cm.r

sinth i i
= Lt 2 sin(x+—h)————-——
ns0] 1 h . 2 Jcos(x+h)cos x

12 -
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. v

d : 1
Then —(secx) =1-sin x- 5— = tan xsec x,
dx cos “ x
b 10
. sin . )
since Lt 2 -], Llsm(x+%h)=smx_
nso Lh 0

2
and Lt cos(x+h )= cosx,

h—0
Thus, a—(sccx)=secxtanx_ lx#%(2n+l)n]
X
(x) Proceeding exactly in a similar way, we get

Ed—(cosec x)= —cosec X cot x. [x#tm]
X :

Note. For an alternative method of differentiating tan x , cot x , sec x and
cosec x from a knowledge of the derivatives of sinx and cosx, see § 74,
Theorem V.

7.4. Fundamental Theorems on Differentiation.
In the following theorems we assume that ¢ (x ) and y ( x )are
continuous, and ¢’ (x ) and y’ (x ) exist. :

Theorem .  The differential coefficient of a constant is zero.
. d ) .
ie., —(c¢)=0,where ¢ is a constant
dx
Let  f(x)=c forevery value of x.

Then f'(x) = Lt M

h—0 h
= [t C_C:Lt _Q:O
k=0 h hoo h

TheoremIl. The differential coefficient of the product of a constant and
a function is the product of the constant and the dszcremml coefficient of
the function,

ie., E-{ccp(x )}:c—d—q)(x ), where ¢ is a constant.
dx dx

For,%{cqb(x)}: K f¢(x+h)-f¢( )

h—0
X+’l!— ) (,¢(

lr—>0
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Theorem IIL. The differential coefficient of the sum or difference of two
Junctions is the sum or difference of their derivatives,

ie., < {o(x)tw(x)}=9'(x)ev'(x).

Let  f()=¢()+y(x)
Then  f(x+h)=@¢(x+h)+y(x+h)

Nowf'(x)= Lt { x+h) f( )

- u {¢f-\‘+h)+w(x+h)}—{¢<x)+w(x)}_
“h>0 h
) {¢(x+hh)—¢(x)+W(X*-"h)‘w(x)}
o L $0eth)-o(x) L, wleen)-u(x)
h—0 h Py W
= ¢ (x)+ v’ (x)

Similarly, if f (x)= ¢ (x)-w (x) thgn £ (x)=¢’(x)-y " (x)
Note.  The above result can be easily generalized to the case of the-sim
or difference of any finite number of functions.
INustration :
I f(x)=e*—4sinx+x2+5,then £'(x)=e* —4cosx+2x.

Theorem IV. The differential coefficient of the product of two functions
= ﬁrsl Sfunction x derivative of the second
+ second function x derivative of the fi irst.

ie, 5 {0(x u(c))-olx)w ) b

Let £ (x)=0(x) x y(x)
Then f(x+h)=¢(x+h)x w(x+h)
e i f_(i’l)‘_f(’i.)

h--s0Q h

= 2GEh)y(aen)-o(x)y(x)

h-s0) h
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L Qxth)ylxth)—ofx+ h)y(x) +¢(x + h)w(x) - o(x)w(x)
h—aﬂ h

=nl-fa {¢(x+h)'m%-_w'h—)+w(x)._¢_(ﬂhl;¢(x_)}

=¢(x)y (x)+w(x).0'(x),
by the limit theorems, and the definitions of v (x)and ¢ (x), noting also
thathuucb(x +h) = §(x), since ¢(x) is continuous for ¢"( x) to exist.

Note. This result, by repeated application, may also be easily generalized
for the product of a finite number of functions in the form

di{‘h(") 9:(x)e;s(x)0, (x)}

=9’ (x) {tpz(x)va(x) Jro3x)- {0 ()03 (x)--}
A +94(x)- {0, (x)@2(x) 1.

Hlustration : If f(x)=¢"sinx, then f(x)=e*.cosx+sinx.e”
If f(x)=xtanxlogx, then {

1
2 x.xlogx+—-x" tanx,

f’(x.):lr?.mnx log x +sec
=xz(3tanxiogx+xsoc2xlog.x+tan~x)
Theorem V. ﬂe_dw‘erémiat coefficient of the quotient of two functions
H (Diﬁ'. Coeff. of num )xdenom— ( Diff. Coeff. of denom )xnum
Square of denom
- {9()} o (x)w(x)-v(x)e(x)
rdx | w(x) {v(x)}?
provided y(x)#0
P (x)
v(x)

Then f'(x) = Lt f(x"'")-f(x-)

h—0

} o(x+h)  o(x)
= h{w(x+h) W(I)}

L pla)=———
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o LeGn) w(x) -y (xn)e(x)
A0 h vix+h)w(x)

u w(x){o(x+h)-o(x)}-o(x{w(x+h)-w(x)}
hy(x+h)p(x)

1 Hx+h)-0(x) .,y wix+h)—y(x)
= It ¥ . -
oy (x+h) y(x) vex) h o(x) h }

" )},{v( #(x)-0(x)y(x)}

bythchmn theorems, and the definitions of ¢,( x) and VI’(.\' ), and noting
alsothat Lt w(x+h)=y(x) since y(x) is continuous for w (x)
il ; _ :

10 exist.

Ilustration : (1)1f f (x _SinX e f(x) x? -cos x—2xsinx

x2 Xt *
@ f(x)=cot x=—2X
. sin x
then f,(x)=(—smx).mn.xz—cosx.cosx=_ .Iz
sin? x sin? x
=—cosec 2 Xx.
O)If f(x)-cosecx-_l-a
o sinx
i f'(.t): O.smx—zcosx.l=_ cosx _ e

. sin?x sin? x
1.5. mustnﬂveEnmples.

Ex. L Find,fmmmcﬁrstpnncnple thedenvanveof,[-(x>0)

Let f(x)= f .
JGn)-J(x) )ﬂ’)

f(x) b L by definition )

(x+ h )—

m;.m;;—.)+r} ”""m’f\/— zJ‘
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Ex. 2. Find, from the first principles, the differential coefficient of tan”' x.
“Let tan™' x=yand tan"'(x+h)=y+k.
Then, as h—0, k>0 Also, x=tany, x+h=tan(y+k).
h=(x+h)—x=tan (y+k)-tany.

-1 -1
Ay o 20 (x+h)-tan™ x
dx h—0 h
_ k
k-0 tan(y+k )-tany

= Lt —
k-0 sink

.cos(y+k )cosy

2

=C()Sz)'= £ 3 = =
secy I+tan®y Il+x°

Note. In a similar way, we can work out the derivatives of other inverse
circular functions from first principle. These have, however, been worked
out by a different method in § 7.8.

Ex. 3. Find, from definition, the differential coefficient of log cos x.

Let us put cos x=u, cos (x+h)=u+k
k =cos (x+h)-c05x and so, when h—0, £t —0

log cos (x+h )— log cos x
h

% (Iog cos x) = f,I:fo

log(u+k )—logu ,

= Lt
k—0 k h
. log (1+k/u) 1 k
Tk>0 klu o u'h
As k—0, kfu—0 .. limitof 1* factor=1. [See § 3.9 (iii) ]
K cos(x+h )-cosx _ Sin(x+%h).sin%h
Again, 3=, = h = _ ;—h

as k—0,ie, h—>0, kfu—>-sinx Also, u=cosx.

-i— (log cosx) = -Csin ad

=-—1tan x.
0s X
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Note. Differentiation from *first principle’ or ‘definition’ means that we are
to find out the derivative without assuming any of the rules of differentiation,
or the derivative of any standard function, but we are permitted to use
fundamental rules of limiting operallons (§ 3.8) and the standard limit
results ( § 3.9).

Ex. 4. A function is defined in the following way :

f(x)=|x|,i.e.. f(x)=x,0, or, -x, accordingas x >, =

or, <0 :showthat f'(0) does not exist. [V.P.2000]
f(0+h)-1(0) F(n)
w = L1 = =
f(‘O) h—:ﬂ h /.l—{o h
Now, = Lt __(h_): Lt ﬁ:l.
h—=0+0 N h—=0+0 h
and, 5. Lt Y o =R
o h-.o 0 - h h=0-0- h

o 'Sm_ce ‘the nghl-hand derivative is not equal to the left-hand derivative.
- the derivative at x =0 does not exist.

Ex. 5. A function is defined in the following way :
f(x):xsin—l- for x#0, f(0)=0.
x
Show that f’(0) does not exist.

#(0}= ’Hof(ourl) f(0l) 'hliohsin(hl/h)'

| , '
= Lt sin—, whichdoesnotexist.  [See §3.//,Ex.4]
h—0 h X .

£°(0) does not exist.
Note. In both the Examples 4 and 5, f(x) is continuous at x=0 ( See § 4.6,
Ex. I and Ex. 2)but f(x) does not possess derivative al x = 0.

Ex.6.1ff( )—x ﬁm( )when x#20, and f(0)=0, find [’ (0)
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70)= 1 _MI_W) h—mh(h sl 0]‘

h—0

=Lt (hsin—l——OJ=0.
h

[ when h is not exactly zero, sin-,'; is finite, not exceeding 1 numerically. ]

Ex. 7. Find, from first principles, the derivative of x* (x>0).
CLet fx)=x*=e"loex,

e (x4 )og(v+h) o Xlogx

’ = [
/ (X) h—0 h
L exlogx.e(.r+h)log(x+h)—xlogx_l .
h—0 h.

e.rlog.r_ Lt ez_l_i
h—-0 z h’

where z=(x+h )log (x+h)-xlog x
and hence z—0,as h—0,

L : z_1
sy Fleler- B E 2. péi it nd ~pk
=0 7z h-0h h—0 h -0 2

Now 1r 2o p, X{log(x+h)-logx }+hiog(x+h)
h—-0 h hso h &

x h
= g =
R - log ( 1+x J+ L log (x+h)
i :
_nl_{o 7 log (l+k)+ log x=1+logx.

where k being hlx»-)‘O. as h—0.
F(x)=x"(1+logx).
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EXAMHES-V]I(A)
Find, from first principles, the derivatives of (Ex. I -5):
1. @)« +2x ) x* +6. (i) Yfx (x # 0)

(@iv) I/J; (x>0). (V) Y. (vi) Jx +a’
i) x4 x2 +1. ‘
2 @ eVt i) e™*. @) 2% . () e"/x.
3. () logyx. (C.PI941] (ii) xlog x.
(iii) logsin (x/a ). [C.P1930] (iv) logsec x.
4. (i) asin(x/a). [C.P.1937] @ii) sin 2 x.
(i) sinx?. (V) sin”' . (v) Jtanx.
(i) (sin x)/x. (vii) x? tanx.
5. () e""‘" at x=0. (ii) .Iog x at x=0.
6 @ f(x)=x%cos(1/x)for x#0; f(0)=0.
Find 7'(0). »
G) f(x)=x for 0sxsd; f(x)=1-xfor j<xsl.
“ Does f'(4) exist ?
7. G) f(x)=3+2x for —3<x<0,
=3-2 for O<x<l :

Show that f(x) is continuous at x = 0 but does not exlsl
[C.P 1943]

-(..)f(x) 0when 0sx<i; f(4)=1, f(x)=2
when 1 <x <1

Prove that although f(x) is dxsconunuous al x = — " f (l) exists
and its value is infinite.

8. f(x)=1 for x<O,
=1+sinx for  0sx<im,
=2+(x—~217r)2 for 3ﬂ<x;

show that f*(x ) existsat x = 1 but does not existat x=0.
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9. f(x)sz—4 for 0<x<lI,
=4x? -3x for 1lex<2,
=3x+4 for x2>2.

Discuss the continuity of f ( X ) for x=1 and 2, and the existence
of f'(x) forthese values.

10. () f(x)=x - for  0<x<l,
=2-x ' for lx¥ g2,
=x=1y2 for x> 2.

2

Is f(x) continuousat x=1 and 2 ? Does f(x ) exist for these

values ?

i) ¢(x)=14(b?-a?), for Osx<a
=%b3——(‘,-x2—_%‘(a“/x). for ~ a<x<b,
=_i‘(b3—u‘1 x5 » for  x>b

Show that ¢’ (.x ) is continuous for every positive value of x.
[C.P.1944]

Find the dlfferentlal coeffment,s ofthe followmg with respect to x
(Ex. 11-13)

ll.»_._‘_(i) 3x j“;i—"?.a'",-»' 2x f-'—.; +§' ‘1(.3)’-1‘ (xz =3 )3 s

e f‘l o i - | ‘ 4 }

.;_‘_ o ‘ 2
(11|)!+x+2!+3'+4!. s (:v). (x+2)(x+l) i
‘(vf,(3.;h+4xl'—f2y:r3. - (|+1€ /x

- (vii) "6::-.'2 -3x “'f-+ 4. i) 4x T ext 42,

(:x)}r"a+§x —4-l+:%2- _3}_

(X) \/:+2\/(—)+3ﬂ_—)+4\[(—) J(—)

(xi).n/§+\ J‘+T_,/;+T_
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(xii) T= 'T= + 12 J;

(xiii) 25inx——|ogr——e —6tan x—7cosecx.

I+x

(xiv) log, x + logx“ +e"" +loge" +e
12. () x"e”. (i) x*logx. (i) x?log x?
- (iv) e ' sinx. (V) 2% sinx. (vi) 10* x"°
(vii) cos? x. (viii) sec x tan x. (ix)( 2 +l)sin\'
0 (3x-7)(3-7x). i) (x2+7)(x>+10).
(xii)(sinx+secx+tan.\')(cosecx+cosx+cotx).
(xiii) cosec’ x. ’ (xiv) x tan x log x .
(xv) Jx.e" secx. oevi) (14 x)(1+2x)(1+3x)

(xvii) x (1 —-x)(l - x? ) (xviii) xsecxlog(xe’ )

(xix) x.cotx.log(x‘ ).e".

(i e Mmex x10xyx.
B mE ) ——. Gy ST
cos X cos x x
) x? - cot x
(iv) ——. {C. P 1940] () et
. sin x e
"_rr ¢
(vi) Iogx. (vii) T
o lax? 1+ Vx o l4sinx
iX K : X)) —————.
()1—,\-2 W 7 Yy 8
A e | —cos x (xii) sin x + cos x .
. l+cosx _ 1/‘I+sm2)\'
€OS X — COS 2x et +e™
xiv) ————————- xv) ¥ ———.
l-cosx e*+e "
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o tanx e” ... sinx + cos x
(xvi) slogl — | (xvil) ————————
X x sin x — cos x.
... cot.x+ cosec x 14 x+x?
(v “————————y (xix) ———.
cot x — cosec x I-x+x
3 -3
x"=2+x . tanx
e L fod) —— e " - logx.
x=2+x :

sinx—cosx 5 ,

i) ——— - x*e”.

sin x + cos x

14. If y=J2_x-J—5-+x+4, find y forx=2.
x 4-x dx

3 o2 P
15. If f(x)= e e L] , find the values of x for which

x%-11x+10 )
r'(x)=0.

Is there any value of x for which f” (x ) is non-existent ?
16. From the relation
- il
P P . ' e
: 1-x

deduce the sum of the series 1+ 2x +3x2 + ... 4+ nx"~!
and hence, show that '

1+2x+3x? +...t0 o= (1-x)72; 0<|x|<1.
17. If f(x) =1+x for x<0
=1 for 0<x<1
=2x?+4x+5 for x>1,
find f’(x ) forall values of x for which it exists.

Does Lt f'(x)exist ?
x—0

180 If £(x)=-4x2 for x50

and f(x):x”sin(,l/x) for x>0,
find whether f*(0) existsfor n=1 and 2.
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G If f (x )= [,x ] where [Jr] denotes the greatest integer not
exceeding x, find f'(x ) and draw its graph.
L () 3c2+2- Gi) 4x3. (D) —1/x2. (V) —--;-x-%.

) 4 #4 ; - 3k .

3X (vi) m. (vii) 41 .

2. () eV /2% | Ge™fcosx. (i) 2 log 2.2

(iv) (xe‘ -e” )/x2
3. (i) x ".log ge. (ii) 1+logx. (i) a cot(x/a). (iv) tanx

4. ()cos(x/a) (i) sin2x. (iii) 2xcosx?.
2
- 9 seC X o
1 /(-7 ® . W

(vii) 2xtanx + x Zeeetx,
5. @®0. G)o.
6. (i) 0. (ii) No. ‘
9, Continuousfor x=1 and 2, but f'(x) exists for x=1 ‘amlidoes
not exist for x=2.

10. (i) Continuousat x=1 and 2; f'(x) does not exist for x = 1, but
‘exists atx =2.

2 3
1L ) 15x* +28x% - 4x—1. (i) sx’_-36x3+s4x.(iii)|+xfi‘2—'+%'-.
(iv) 3x248x+5 (v.) 952 —4x~2—6x"4
(vi) - x "2 +3+2x. (vii) —12x "2 +3x72.

o =
(i) -3 +3x 7. (ix) 8x 41004 x 2 —ax " —ox 74,

1 9 1 25 2
X +2+—x?+8x+—ux?,
()23.\' 2 2
1
3 2

1 3
V3, 2.5 .33 .75 _ 1
(-)u)ix?+?.r2+?x>—3x '—EX
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13.

- L4 =4 =% -
(xn)l3x-‘+.\f “+5x T —-x 12,

(xiii) 2cosx—§x" -—%c"—6scc 2 x+ Tcosec xcotx.

(xiv) x_llog,e+a.x;l+2+el+".
(xv) e* secx(1+2x+2xtanx)/2Jx °
(xvi) 18x% +22x+6 (xvii) 4x? -3x2 - 2x41.

(xviii) sec x {1+ x+ (1 +xtanx )(x+log'y ) }.

(xix) e‘r{.\'colx(l +2logx + xlog x )~ x 2 cosec 2 x log x }

1 2]
(xx) 10" cot x —2J;coscc2.\'+\/;l(_) 10+ x77 logx+x77 |,
g 2

() sec?x. (i) sec xtan x. (iii)‘(.tcosx—sin_;' Vx2.
(iv) x2(4sinx—xcos,\')/sini_\‘. (v) —e_"'(coseczx-(»cotx)
° - , X __ =
(i) x"'(nlogx=1) (log x)2,  (vii) iﬂz—]
- (ex-1)
2 X 4y 1
(i) m——esr () —— T
Vo YT Y EC AP
’ 2 cos x 25sin x
(xi) (1—sinx)? (x1) m (xiii) 0.
(xiv) =2sinx. (xv) ¢ (1+2¢).
=2
(xvi) - x " tan x4+ (1 - log x )sec 2 x . (xvii) (_s_m—r:m 3
2 cosec x ’ 1
(i) T3 (xix) 21—
(cot x ~cosec x ) (l—x+.v2)2

(xx) 2(x+l—x'2—x‘3).

(xxi) %H,\sec Zx+(x-1)tanx }logx+ tan x]_

2x? = (xz + 2x )cos 2.r}

(sin x+cosx )’

(XXEJ')C"{

15.4. 16; non-existentat I.10.
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16 I-(n+1)x" +nx"*!

1 (]_x')z
17. 1if x<0,0if O0<x<l,4(x+1) if x>1; No.
18. (i) No, Yes.

(ii) f'(x) =0 forall valuesof x e.xcepl zero and integral values, for
which it does not exist. i

7.6. Differentiation of a Function of a Fﬁnctio.

Let y=f(v), where v = ¢(x_.), and f(v) and ¢ (x) are
continuous. Thus y is also a continuous function of x.*

Let f'(v) and ¢'(x) exist,and be finite.

Assume v+Av=¢(x+Ax) and y+Ay=f(v+Av).

It is evident that when Ax -0, Av—0,andas Av -0, Ay—0.

TR P . S fWe
Ax Av Ax .
o R g A g BER TR ]
Ar—0 Ax  Av—0 Ay Av—0AX
) dy _dy dv
ie., T T
dx dv dx
. dy y
If Av=0,then Ay=0. [Otherwise —l'—, ie, f (v) would not be
. av
finite.] ‘ s Ay/Ax=0 [-: Ax#0]
- dy Ay s dv
—= Lt —=0. Similarly, —=0."
Henee, ™ " soaghe - M

Hence, the above relation is true in this case also.

Hlustration : Suppose y=sinx?;
then we can write y=sinv, where v=x?2
dy _dy dv

14
==2. 2 =cosv.2x=2xcosx° |
dx dv dx

The above rule can easily be gcncralizéd.

Proof depends on the corresponding limit theorem, see § 3.8 (iv).
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Thus, if y= f(v), where v=¢(w),and'w-=\|t(x).

then dx=z;.;w—.§x_ ; and so on.

dx
7.1. —:—!x:—x—-l, ne.—“l/ » provided neither derivative is zero.
X y

Suppose y = f (x ), where f ( x ) is continuous. From this, in most
cases, we can treat x as a function of y.

Lcly+Ay=f(x+Ax). )

Itis evident that when Ay — 0, Ax — 0.

Now, 3% 3 8% _, _._ﬂgl/&:,
- Ax Ay Ax Ay

L Ay _ Ll Ax b
Av—»0AX Ay-0 Ay

dy dx dy dx

ie, — = =1.
dx dy d.r dy ‘
7.8. Differential CoefTicients of Inverse Circular Functions.
@ Let y=sin"'x [leSl]' '_.r=siny.
Jl—sm y= =Vl-x?
(l\
dy dx 5 1

forx#1,0r, -1, =<=1/= :
dx dy 1-x%"

Thus, dix (sin"l)#ji—_lj, '[;I<x<l]

(i)Let y=cos™'x. [|x[$l]' S ox=cosy,
3!‘5=--sil'!y=—\ll—coszy=—\/l—x2
L dvy

dy dy _ 1
. for x#1,0r, -1, ==1 ——
d [ g2

* The domain for whigh y exists.
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Thus, L. (ms -Ix
dx

Note. This also follows immediately from the relation
cos'x= 37 —sin"!x,

Gii)Let y=tan'y. -

X =tan y,
— = sec y-1+lan2y=1+x2
dy ;
&y _ [

dx dy 1+ x?
1
Thus, — |tan~Ix )= "
n ( ) 1+x?
(iv)Let y = cot ! x.=coty,

%z—coseczy=“‘(l+co|?y)=—(l+x,2 )

. . dy _ =1 dx iz’ 1
R ‘ dy 1+x2:
; d 1
Thus, — (oot !x )= -
R

Note. This also follows immediately from the relation

cot ' x=Lm—tantx.

M Let y=sec”x  [|x]21]% -

)=-r_l?. [_l<.x<l]

X =secy,

o~ forx#1,o0r -1, QL—[ dr _ 1
' dx dy x% -1
d: ' 1 .
Thus, = '(gec-lx )= lxl>1
d,‘( ) i >
(vi) Let y=cosec ™ x Hxlal] " X = cosec y
* For which y exists.

7=secytany=secy\/seqzy—l=x\/x2—
y -

13~

»
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dx
——:—cosecycoty=—cosechcoseczy-—l=—x\’:52-
forx=1,or, -1, —=1/—=~-

d -1
Thus, — (cosec™'x)=-—===, [|x|>1]’
) dx xe
Note. This also follows immediately from the relation

cosec ™ 'x-= %ﬂ' —sec'x,

7.9. Derivatives of Hyperbolic Functions®.

X -X

X _ =X .
i(sinhx)=i LM =& ¢  —coshx
dx dx 2 2 :

-X £ _ -X
-d—(coshx) ﬁ- e =2 "% _simhx.
dx dx 2 - 2
ii_(smh x]__ cosh ? x - sinh ?
dx \ cosh x

d
— ( tanh
o (i x) =

cosh 2

=sech?x.

cosh? x

Similarly, di (coth x ) = - cosech ? x
X

d 1 )_i( | )_;()xcosh.\'vsinhx
a(sec-.x s

cosh x cosh ? x
sinh x
T —sech x tanhx

d
Similarly, = (cosech x ) = —cosechx coth x

Let y =sinh 7 x. L sinh-y :

= cosh vy = | +sinh 2 x = 1 +x2

* For the deﬁnifi(;ns and properties of 'Hyperbol'ic Functions, see Authors’
Higher Trigonometry, Chapter XII. ’
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\

Since ] a
dx
Thus, %(sinh"x):
Similarly, A (
dx
£ (ot 1x)
-::—K(coth'I )
% (cosech E )
4
dx

=]/— =
dy Jf+x2'

cosh ~ X) 7==-=- (X>l)

(x<1)

. (x>1)
1

|
o
(sech ".r): -—TL= (x<1)
-x

The derivatives of inverse hvperbohc functions can also be obtained

by dlﬂ'erennatlng their values, viz,,

<ml\. X= log(x+1/x +1 }

1+x

)

tanh "x:—log
g 2 I-x

cosech ~'x = Jog
X

7.10. Logarithmic Differentiation.

" coth ™' x = —log

l+\ll+x2(.

cosh ' x = log (x+ Vx? ~i")

1 x+1

2 x—l;

5

1+4/1-x?

_ sech = log ——

X

If we have a function raised to a power which is also a funtion, or lf we

have the product of a number of functions,
it would be convenient first to take logar
differentiate. Such a process is caiied the

to differentiate such expressions
ithm of the expression and then
logarithmic differentiation, .

i % #(x). &
® Let y={f(x)}*"*) t0find =

Here, log y = ¢ ( x

).Iogf(x).
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Differentiating both sides with respect to x,

1 dy _¢(I),_l_f’(x)+¢'(x)-logf(‘).

yar 7 f(x)
Codr eV o (). 25) L g () 10m £
- 2P e L s )]
G Let y=fi(x)xfr(x)fu(x);  tofind %
" Here, log y = log f; (x)+1log f2(x)+..... +log fa(x).

Differentiate each side with respect tox.  «
1ay_file) filx) | falx)
v AG) ()T falx)
Now, multiplying left-side by y and right-side by
Fil & Jo Ty (o Joawen # G2

%:f;(x).f,(x).f,(x)..,f,,(,)
. -|.f'2(_a:),fl (x).f3():')...f,,(x)+ .....

Hence, the differential coefficient of the product of a finite humber of
- functions is found by multiplying the differential coefficient of each function
taken separately by the product of all the remaining functions and adding
up the results thus formed, as already obtained otherwise. '

’ : [ See § 7.4, Theorem IV, Note.]

7.11. Implicit Functions. ' & e
In many cases it may be inconvienient or gven impossiblefo solve a
given equation of the form f (x,y )= 0 foryintéfiiis of x. However, the

equation may define y as a function of x. In such cases, y is said to be an
d
implicit functionof x.If ybea differentiable function of x, then 2 may be

dx
obtained as follows :
Differentiate each term of the equation with respect to x, regarding y

d
as an unknown function of x having a derivative ﬁ , and then solve the

. : dy
resulting equation for ; i
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‘ THY W :
Ilustration : Find I,:fx -xy“+3y“+2=0.

Differentiating each term with respect to x.

" o dy
P 4+|-x.2yZ oy qleey P o .
( ydx 4 ) Y

Ldy _y?-3?

dy 2 2
= (6y- —=y°=-3x“, .
(6 ny)dx yi-3x 5

7.12. Parametric Equations.
. Sometimes in the equation of a curve, x and y are expressed in
terms of a third variable kndwn as a parameter.

In such cases, to find & it is not essential to eliminate the
de ;
parameter and express y in terms of x. We may proceed as follows :

Let x=¢(z), y=y(2).

Then x may be regarded as a function of r and also y is a funciion
of .1.

dy dy ar dy /dx de -

Lo X, O fOK = %0

i wage Lo k= d )

: [By §7.6 and 7.7]
For illustration see § 7.13, Ex. 6.

-

7.13. Tilustrative Examples.

Ex. 1. (a) Show that f-; q:" =nx"”"l w.hen n is a positive integer, by the
product rule. © [Note, Theorem. IV, Art. 7.4]
Let f(x)=x"=x.x.....x (n factors)
f(x) =x.x..10 (n-1) factors + x.x...to (n-1) factors
+X.X...t0 (n-1) factors +......to n terms

___.nxn—l‘
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3 d & . -
(b) Assuming that Z;x" =nx""! when n is a positive integer,
show that the same result is true when n is a negative integer, or a

rational fraction, positive or negative.

When n is a negative integer, suppose n =—m, where m isa posmve
integer.

ix.Ir:ix—m

dx dx
d 1 s ™ hxl o -
z-d_x-;;r—- B x"rn T =X

Next, let us suppose n is a rational fraction, positive or negative and
let n=p/q, whereq isa positive integer and p any integer positive or
negative.

Then y=x"=x’”’". Let z=x/9. then x=2% and y=2"

Thus, Q dy dI Pz,n q'nx(’J"q)lf=mplq-l=nx"—l_

dx dz q

Ex. 2. Assuming that %{ #x) } ¢(x) ¢ ( ) forall real values of x,
deduce that %(x " ) " for ail real values of x.

Lt y=xn____enlogt,

Then f'z=—d—(e"'°“):e"l"g“.i(nlogx)-—-x".n.l=nx"'l.
dx dx . dx X ’

Ex. 3. Find the differential coefficient of sin 2(log sec x).
Let y ={sin(logsecx )}’

=u?, where u =sin(logsecx)=sinv, where v = logsecx
=log w, where w=secx .

I du dv dw dx w
= 2ssin (log sec x )cos ( log sec x ). tan x
= sin (2log sec x ) .tan x.

[
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Ex4. Differentiate (secx)™*.
Let y=(secx)™* .. logy =tanx.log secx.
Differentiating both sides with respect to x,

-

—= =tan

anx.—— . secx tan x + sec? xlogsecx
y dx ‘ sccx

=tan? x+sec 2 xlogsec x
dy

: z-(secx)""’(tan x+sec 2 xlogsec x )

Note. Writing the given function as e '*" *-185¢ X  \o may proceed

to differenciate it. :

Ex.5. Find —, if y= (x—_lM._)
(x-3)(x-4)"
Taking logarithm of both sides,

logy = %{Iog(x—l)+log(x—Z)—log(x—3)~ldg(x-4 3
Differentiating both sides with respect to x.

1dy=l[l+l_l_l]
ydx 2 .(x—l) (3-72) (1“‘3) (3_4)

_ 2x%-10x+11
(x-l)(x—Z)(x—B)(x-4).
dy _ 2x2-10x+11
dr . (x=1)7(x-2)i (x-3) (x-4)3
Ex. 6. Find %, if x=a(0-sin@), y=a(l+cos).
b _dy [ asmg 20 cesfe
dc 40/ d8  a(1-cosf) 2sin?le ’.'

EX..7. I'Tind dy',f y =tan —l\“'f‘Sinx-Jl—sinx

Jl+smx +Jl—smx

L . _il=cosx-  _y 2sinlx
On rationalising the denominator, y = tan™" = tan~! — s
: g 25m5 X Cos3 X

sinx
=(an""lan-§-x=-;-x. . %
dx

(8]
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Note.  Sometimes an algebraical or trigonometrical transformation as
*shown in this example considerably shortens the work. The next example
also illustrates the same method.

7
Ex.8. y'y=um4-lif——l,ﬁm15f.
p x -

2 _ ) — =
Putting x = tanf, Lt ¥ _l=sec9 1.1 cos

X tan@ sin@
2sin?lg .
= —--—-_2 = tan-;—ﬂ
2sin—2L0cos%9

Hence, y=tan'l tan-%6=-%9 =-;-tan'lx.
.Q_ 1 1

dc 2 1+x?° .
Ex.9. Differentiate sin x with respéct to x*.
Let y =sinx, z=x2.

Note. This is an example of the differential coefficient of a function of x with
respect to another function of x.

Ex.10. If siny =xsin(a+y), prove that

dy _ sin2(a+y)
dx  sina
From the given relation, we haye
' = sin y . (1)
. sin(a+y)
Hence x is a funciton of y. )
differentiating both sides of (1) with respectto y,

_dj;sin(a+ y )cosy —sin ycos(a+y)
dy sin2(a+y)

=sin{(>a+.y)—y}= sina___
sin(a+y) Siﬂz.(“'*,}')
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Smce by Art. 7.7, LA / dx , the reéquired result follows.

Ex. 11. Find the derivatwe of A(x), where
fl(x) ¢1(I) v (x)
f2(x) ¢1(x) wa(x)
- f1(x) ¢3(x) wilx)

and fi(x), f2(x), fJ(I). #:1(x), elc.d.redz:ﬂ'eremﬁmctionsofx.
First Method :

A(x)=

Fi(x+h) gy(x+h) v, (x+h)
fz(-"”') fz(’“‘h) Vz("”')
fi(x+h) @3(x+h) wi(x+h)

A(x+h)=D(x)=

fi(x) $i(x) wailx)
f2(x) ¢2(x) Vz(xv)
f3(x) ¢3(x) wia(x)

filx+h)=11(x) $1(x+h)-gy(x) vilx+h)-vi(x)
= fa(x+h) $2(x+h) va(x+F)
F3(x+h) ¢3(x+h) - wi(x+h)
fi(x) - ¢i(x) vi(x)
+fa(x+h)=f2(x) #2(x+h)-¢2(x) walx+h)-wa(x)
fi(x) $i(x) vi(x)
filx) #1(x) vi(x)
+ fa(x) #i(x) - va(x)
F3(x+h)=f3(x) $3(x+h)-p3(x) wi(x+h)-ys3(x)
)]

[ The right-side on snmphﬁcatlon can be easily shown to be equal to
* the left-side. ]
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Dividing (1) throughout by 4 and letting » - 0, we get

fi(x) 4"1(1_) wi(x) fi(x) ¢|(1) vai(x)
f2(x) 05(x) wa(x) fi(x) ¢3(x) wiy(x)
f;(x) ¢3({2_V:(f‘) Fi(x) 93(x) wi(x)

fi(x) ¢|(»") WJ(I)
fa(x) ¢2(x) wy(x)
fi(x) 05(x) wi(x)

A"(x)=

+

+

Second Method :
Clearly A(x)=3 £, (x {97 (x w3 (x)- 05 (x hury (x)}].
A(x)=3 11 ( Woa (s ()-05 (x)wy (x)}
+ X0 03 (w3 (x)- 05 (2w 5 ()}
+ 311002 (W (x)- 05 (x Wy (x) .

£ilx) 0 () wi()] [£1(x) 61(x) wi(x)
w A (x)= () 02 (e) wale) |+ [Fy(x) 05 (x) wy(x)
Fi(x) 03 (x) walx)| | £(x) 05(x) wi(x)

fi(x) ¢ (x) vy (x) o
+f2(x) 92(x) wa(x)].
F3(x) o3(x) w3 (x)
Thus, the derivative of a third order determinant A (x) is equal to the
sum of three determinants, each obtained by differentiating one column of

A(x) leaving the other columns unaltered. Similarly, 4’(x’) is the sum of

three determinants, each obtained by defferentiating one row of A(x)
leaving the other rows unaltered.

+ The similar result is true whatever be the order of the determinant.

EXAMPLES -VII (B)
Find the differential coefficient of [Ex. 1-7]

Lo {e()l @ (x2+5). i) f{x?+a2).
W 1/ (ax+b). @ (). i) Jlogx.
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4b

(i) sin® x. - (viii)tan ® x. @) sec’x.

® (sin"'x)s. (xi) (tan"'x)2 ) (xii) ~J¢(X )

® e*) an e, T i) o™ e
@) e*’. ™) e™5. . () e™E.

i) e VO _ V1),

® a'(f). @) pxlear. . i) jovex".

@ log¢(x). (i) logsin x. (i) logcos x.

(@iv) Iog(x+a).-(v) log(a.x+b). (vi) Iog«/;-

i) log (ax? +bx+c ) (i) log (log x).

@)  lokesns

® logtan~'x.

() ‘log(secx +tanx ). (xii)  log . a.

(xiii) log , sin x,

(7(\/) lOg sinx X

(xiv) log, (a+x).

(i) log o < ((sec x ).

(xvii) log lﬂ“(]jﬂ’ % sz ) (xviii) log( x+JYx2ta? )

(xix) log(Jx—a +Jx—b). (xx) lOg,0(2x+J4x1+l),

1+ x

(xxi) 4 log :

@) sing (x )

(iv) cosec ¢(x ) .
(vii) sin ax.
() tanmx.

(xiif) cos 2x cos 3x .

_(xvi) e*cos(bx+c).

(i) cos¢(x). (i) anp(x).
) seco(x). (vi) coto(x).
(viii) cos (ax + b ).(ix) cos” x.
(xi) cosec’x. (xii) 'sin 2xcos x .

(xiv) sinx®(degree). (V) (% sin i

(xvii) tan3x + cot 4x.

. (xviii) sin xsin 2xsin3x.  (xix) ‘atan?x+bcot? x.
‘ ‘ 7
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() sin™ xcos " x.

* (xxii) cot x coth x.

(xxiv) log tanh x.
@ sin "q'a(xr).
@ii) sec™' ¢ (x)
(v) tan "(JE ) .
i) sin ™ (x /a ).

~ @ cos ! flax+b).

i) sec (tanx ).
(xiﬁ)fan"(l -Fx+x2)
() sin ! (3x - 4x° ),
(xvi) sec (tan “ )

(ivii) ‘tan (sin Ly )

() cot ! (cosec x + cot x ).

(m)sin"‘x/cos"x.

(xxiii) tanh x - L tanh % x .

(ﬁ) tan "¢ (x)
@iv) sin 152,
(vi) tan ™! (x//a).

(viii) sec ™! x 3.

e
 (® cot™! (e’ ) .

(xii) tan ™' ('sec x ).

(xiv) cos ~! (8x LFs Sxi.+ 1).

[C.P.1940]

(xviii) tan " ( tanh ix ).

(09 lan"(secx+tanx). (xxi) cot"(‘/l+x2 —x).

(i) cor 1 LE X

1-x
(xxiv) tan } 2+ 8%

b - ax
‘(xx\«i)s:e':"—'tz i1

x“ =1
(xxviii)um"'—l——,_

x? =]

(xxix) tan ! - s

_11—12

(xxiii) cos
1+x
(xxv) sin ! 5
1+x
(xxvii) tan ~! =
1-x
[C. P 1943]
[C. P 1938)
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(o)  tan”! ("a]’. . (ood) tan
b-x _
(xxxii) sech ' x — cosech ' x. (xxiii) tanh ~

cooiptanh 1 {(x2 1 Y(x2 +1)}
.6 cos{ L+ x2 } @ el

~1 3X—13'

1-3x?

'(tan%i).

[C. P. 1943, 1948]

@ ey el @ 3 T,
i log tan Lx. (i) (log sinx). (viii) (log sinx)?.

@ cosf2sinM(eosx)}. ) sin2(1ogx?).

) log sec (ax+b)>. ,

(xi) log {21+4+m}.
' i) f (1 + log x ldg sinx ). :

(xiv) tan log sin (Ie x? )

(XV)_A(X'F\IX"'—[)R+B(X—J12—l)n-

8. Find the differential coefficients of :
@ **.@ (@Q+x)*. G =
W a*". o) et (i) ett.
@ (sinx)™*. @ x™ .
() (sinx )" .
o) x <" :
)xiﬁ)(sinx-)“’“ +(cos x ).
xiv) (tanx )™ * +(cot x )"

9. Find the differential coefficients of :
@ (1-x)(1-25)(1-3x)(1-4x).

[C. P 1941]

[C.P1944]

(iV) X 1+xtx 2

(viii) x¢

[C.P.1944]
(C.P.1943]

| C.P.1937]
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10.

@ Yx(z+1)(x+2). G (lﬁ]

1-x
1
al-x?)\? ¥ GO .;
(w)[a +x2J =19 log{e (x+l) ’ -
(w)x ‘} [C.P 194]]

J“

20 3x

e x
(vii) [m] . [C. P 1935)

for x=4.

(4x+1)4
® (2r+3)i (s 1)}

| e N cta bJ? a+b \ g
(X) xc-a Xt x a-b X| x b-c

d
Find =2 in the following cases :

dx
M 3x*-x?y+2y*=0. [C.P1941]
(ii) x“+fx2_v2+y‘ =0, _ - s [C.P1939]
(i) x? + y? +4x2y - 25 = 0.
(V) x? + y? = 3ary. (v) 'x§+y§=a§-.
(vi) mz+2hw+by2+23x+2ﬂ+c= 0 P
(vii) x = y log (xy). (Vi) xPy9 = (x+y)2*9,
® y=x. . | C. P 1940]
® x? =y " [C.P.1945.V. P 2002 ]
() x¥y* ='l. [C. P. 1943, V. P. 2000

@) (cos x)* = (sin y ).  [CR2007]
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1L

12.
13.

(xiii)e"—4xy,=2. ‘

(iv)log (xy )= x? +y2. (C.P1943]
Find % when

() x=acos¢, y=>bsing.

(i) xzat.:osaﬂ, y_=bsin38.

i) x=at?, y=2ar. ' . _

@(iv) x=sin?@, y=tan0." [ C.P1943)
V) x=asc?@, y=atan’0. |C.P 19427
(vi) x='a(oost+]0gtan-§-l), y =asint.’

(i) x=a(cost +1sin1 ), y = a(sinr—ztcost j.

(viii) x = a(2cos? + cos 2r ), y'r-ja(2sinr-sin2t)

@x) x=2a§inztcos2!. y-‘-=—"2a5inzlsin21 ;
®W x=3a/(1+:). y=3a?/(1+¢3). 1CRI%I]

®) tany=———, sinx= 2’2. ; [C. P 1944]
1-1¢ 1+t
- N dy
If y:e““ 'x and z=e " *,thenshow that o is independent of x.
Differentiate the left-side functions with respect to the right-side ones:
® x* wrt xZ (i) secx w.r.t tanx.
(i) log,gx w.r.t x>. (iv) tanTx w.r.t. x2,
"W oeos?ITE wort an™ X
+ x : 1-x?

oo _\”l+x2'-_l ‘ ;
w)tan' X" 7" wrt tan'x.

14.

X
(i) x* ' F w.r.t. sinx. [C. P 1938]
Find the differential coefficients of : -

1 1 . : 7
LY ey B re SERCN PR P T )
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g 14 x+x? g xX+x+1
(iii) —— @iv) log =——-———.
{l—x+x2} ! gJ:z—.x+l_

bl g ‘{l+sfnx}. i) log {l—cosx]
1 -sinx 1+ cosx
(vii) tan ! ’(1—"1}
1+x *

- (i) tan !~ = [ C. P 1942, 1944, V. P 1998]
+ sin x . .
(x) tan~! [l—cosx)‘. ®) tan™! ____*cosx—smx-
1+ cos x Cos x + sin x
() sin ' x+sin ' (1-x2

(xii)-sin"{Zax 1-a?x?, }

(xiii) tan ! J(1+xﬂ—J(1-x2)_
V+x2 ) J(1-52)

(J(iv)sin,Ztan'l [ lth}..
1+x

)+ JT1=%)
® T+ x)-J(1-1)

a?+x? )+ J(a?-x2

J(a‘2+x2)—\/(az—x?)-

- 1
1+ x)* g
(xvii) log ( l.—:: ) ~dtan x,

(xviii) log J( acos x — bsin x ]

(xvip

acos x + bsin x
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e L L , [C.P 1942]
~a-btanx

o {{[253] i}

”

(m.)sin_la+bcosx_ (xxii)oos"3+5c°sx.
b+acosx ' 5+ 3cosx

iioe | [T+ T (=5)
¢ )'og“J(Hﬂ-J(l—f)

(xxiii) log

Find % in the following cases (Ex. 15—23):

15. y=-}x3tan i

'_x—%12+%leg(l‘+x2).

16. y=%x‘/,ia2—‘x“; )+§-.azsin"i—.

17. y=log(x_+J xz—a2)+sec"-z-.

I‘. y-=x,“x1+a2)+azlog.[x+ xz+a2)..
a-(a?—,?

19. x=yla?-y?)+Zi0g =
) ' i az-—yz

20. logl-éu\’ -!-l l+x+x J—m_lvx\/_
-x 2 l-x+=x 1-x?

21 - l+x 2+.\' tan ! xJ—
- T T-W'E? T

14~

}. (xxv)x+—#—
X+
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3 1
. y=;§x(x2+1)5_%x(x2+1)3_%,0g[x+m)
23, y= ! 1
1+x"-m+xp-m l+x"""+xﬂ—n
. 1
—_—
14 xM0 4 g"=F
._a+x~a+b+2x p
24. 1f f(x):( ] - B
b+ x . ;
4 a bl-a? i f”b
s o) =) 2lagl s 20 VAV . (CB i
) Tb ab b L 16 ]
5. 1ff(x)=|o(,m— a - bx

find for what values of x,
. (= | 2n
26. If sinxsin| —+x |sinf —+x |...
n n
. ( n-—1 ) sin.nx
...sin T+x |=
. A ; 2uAI
then show that

.4 21
cotx+cot| —+x |[+cot| —+x [+...
n n :

n-1

e -=+...+c0t( ﬂ+x)=ncotnx. [C. P 1945]

n

27. () From therelation (when n is odd)

2""'c059cos( 0 +2—7I J cos(ﬂ +-J£ )

n n

.Acos(ﬂ +2—(—?——l—)”—)=cosne .
n
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deduce that

tan6+tan(9+£”~)+lan(9+4—”J+...
n n )

+ tan('e +_2(n;l)7£ ) =ntannf
, n

(ii) From the identity ;

0 -0 sin O

cos—qcosizcos-—.;; ....... B8~ e s
2 2 2 2 snni.6/2 ’
show. that '
LIS I I LS T P e
2.2 2 2% g¥ a3 g an
=lcot—a——cm€
2'! n

28. Find f’(x) in the following cases and determine if it is continuous for
x=0.

@ f(x)=0 or x’cos(1/x.) according a x isoris not zero.

() f(x)=0 or x3cos(1/x) according a x isoris not zero.

20, f(i+x)" =co+c,x+cr 2+, +c, x", then prove that

30, 0f y= 14—t o1

x—a, (x-a )(x-as)

. | +C"”|)(x"a:2_)(x"m‘

then show that -

a a a
Qzl['+2+3

de  xla;-x a,-x as — x|
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(x-a)* (x-a)’

3L If A(x)=|(x-b)* (x-5)* 1/, show that
(x-e)t (x-e)
(x—a)4 (.lt—a)z 1

8 (x)= Y(x-b)" (x-b)
(x-¢)*  (x=c)

y sinx cosx sinx
32. If A(x)=|cosx —sinx cosx| ,then show that A" (x ) = 1.
x 1 1
le1 1 1]
32.0f f(x)= i ': i , provethat f'(x)=3(x-1)%.
1 1%

34. If the determinant of the 4" order
x a a a
a x a a
a a x a
aaa x

be denoted by Ay, showthat A"y = 44;.

ANSWERS

L @ n{o ()1 ¢ (x)- (i) 14x(x2 +5) i) /f(x7+a?)-
) -af (@+5)*. @ 3(ex). 1/ fx enx).

(vu)nvsm" 'xeos.t. (viii) Stan * xsec? x. (ix) J:ec xtan x.
T 3(sin 'x 2 s 2tan ' x . ¢ (x)
™ - Lo S AT ) 23’“".

i 2.0 ".(x‘)-W(x) © () ae®™. 7 (iii) (2¢+b~)_eax’0bx+r_
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@) 4x>.e*. . () seclre™r.  (vi)etx =
) 1-x
e‘”xi-li e‘”x—li

i) S TG 2 (1)
3. () log,a.a**) ¢'(x). (ii)z(,u).nqg'z.v"’ﬂx.

(iii) log,10.10"8*" (1+logx). e
4. @ ¢(x)/e(x). (@) cotx. @iii) ~tanx. (iv)1/(x+a).
W) af(ax+b).  @D1/(25). (viD) (2ax+b)/(ax? +bxtc).

(viii) 1/ (xlogx).  (x) 1085 og  10.cot x.

®) I/{(l+:1)-|"'x}. (x) secx.
... Xcot xlog x — logsi
60 -toga/{x(iogx)? ). ap TSRS
. xlog x— (l+x)log (a+x) leg sin x — x cotx log x
(xv) x(a+x)(logx)? - ) x(log sin x )2
.. tan x log sin x + cot x log cos x i
(xvi) (logsinx )2 . (xvii) secx.
(xviii)m. . (m)jr‘—x—j
2log o ¢
. (
Jaxt a1 - M)""
5 @ cos¢(x).¢(x). () -sing(x).¢'(x).
(iii) sec29(x).9'(x). ’ (iv) = cosec 0(x)cot¢(.x).0’(x)_
(v) sec@(x)ung(x).¢°(x). () - cosec?p(x).¢'(x). |
(vii) acos ax . (viii) ~asin (ax+b).
@) -sin2x. - ) msectmx-
(d) - 3cosec? xcot x. (xii) -;-(3cos3x+cosx),
(xiii) - 3 (5sin5x + sinx ). (xiv] T%cosxo(degme)‘

- (xv) e (asinbx + bcos bx ).
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(xvi) e* {acos (bx +c)—bsin(bx +c)}.
(xvif) 3sec? 3x — dcosec 2 4x.  (xviii)3 ( cos 2x + 2cos 4x ~ 3cos 6x ).

- 2
(xix) -Z(atanxseczx—bcotxcosec'x)~

() sin™ ! xcos™! x(mcos2 x - nsin? x).

s om—1
.. sin . ’

(o) —H—H—(mcos 2%+ nsin zx).
cos x

. 2
(xxii) - cosec xcoth x — cot xcosech ” x .

(exdii) sech ® x . (xxiv) 2c‘oscc.h 2x.
. #(x) " ¢ (x) o' (x)
6. () —=—=———_ 1) T ;. 12 i)
1-{o(x))? 1ol o(x) V{0 ()P -1
2x 1 . a
(iv)

T Ytk BTG
1

1=
vil) ———= (viii)**—-“'-—3
\daz-x,zl x 28 -1

1 a x

e '_Jl—(ax+b)-2ﬂax+b). ® Tlte™”

i~ i) —2

xi s xil) ——5—.
T e g b4cos?x’

: 1+2x 4 3

iil) ————5 (xiv) - . (xv) ;
l+(l+1r+x2)2 o 1-x2

i ’ 3
i) 7 - (cvii) (1= 2 3. (xvi) 3sech x.

1
(xix) 3 - 3. TR
- b 2 1
(xxn)-l+x2. (xxii1) e (xxiv) L
(xx%) I4x%" e -l+x2' CGoxvii) 1+x2°

et 1 ; 1 e s
ol ==y FO T O G
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‘ 1 1 o |
¢ )1+ 4 e ;[,/l_xz l_xz}
(Xxxiii) %sexl:x. (xxxiv) 1/ x l
- xsin 1+x? eVt x
R e B O T il s
(i) — ¢ come 7 __cosVx LI

\/;sin3 x. .(IV) ;)l—x:"

1+2x)log3 _ /(1 )
) 2(\/1+ 4152 SV (vi) cosecx
x+x

(vii)—;(log sinx)'_";' cot x . (viii) 2cot xlog sin x.

(ix) 2sin2x - : ) 2x'sin(4log x)-

i) 3a (ax+b) an(ax+b ). (xii) .
xI4+4x-3

log sin x + x cot xlog x

(xiii .
¢ )'ZIJ(I + log x log sin x )

2

2 3
(xiv)secz(log sin e* )cot(e" )e“ 2x.

()J_l{(r—)(J—l)}

. @ x*(logx+1). () (1+x)*'{nog(1+x)+?f_}.
+ x

(i) 2logx.x(¥E*"1).  (iv) x'+”'z.{(2x+l)lngx+x"+l+x}.
) a®".a*(loga)?. (Vi) e®".e*. (vi) e* .x*(logx+1).

(viii) x'r.e'(x'l +logx)- (ix) (sin'a:)mn X.(secleogsin;'!-l)-

. cos ' x log x cos ! x|
x) s + y
o [ J-27) = ’

() (sinx)™ 8 ".{x “!ogssin x + log xcot x }

(i) x*".x*{logx(logx+1)+1/x}-
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10.

11.

(xiii) ('sin x ) °* J‘{cosx::ol.\'—s'inxlogsimt:}
- +(cos x )" * { cos xlog cos x — sinx tan x }.
(V) (tanx ) *{cosec? x(1-logtanx ) }
+(cot x)™ = {sec? x(logcorx—1)}.

3x2 +6x+2
®  96x3 - 150x2 +70x - 10- (i) {a(x+1)x+2)f

. ) -2a%x
&) (1—151|—12 ’ ) (a1+x2)1/¢z"—.r4 ’
%242 x2 (324 + 2052 +36)

(v) (vi)

-1 (x2+4)’-(x +3)
(vii) 120.

(viii) - , ¥ being the given function.

) x]i} -x? ; o

- (5 +2x+ 1812)

i (4x+1)7(2r+3)7 (5x-1)5" &

o & 6‘2" L@ —;fz::: ) —:;;:f"’,
) ‘y“’ ™ {f) . B e
(vﬁ);%}f%. (viii) 2.  ® x_(l“:%g";i

® y(xlogy-y) (xi)_yz(l—loer) i) ytan x + log sin y

x(ylogx-x)’ x2(1-10gy)’ log ces x — xcot y
. . oyl2x?-1
(xiii) ot ()uv)ml_zy2
@ "(b/_")mw- (i) -tan@- (i) 1/¢.
(iv) %sec39 cosec . v) %tanﬂ_ v (vi) tant.

(vii) tanz . (viii) - tan 1. (x) tan3r .
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(i3] :(2-:3)(3-'213)-'. - () L
13. §) §x3. ' i) sinx. @) $xlogige.
a 1/ {=(1+22)} @1t ) L.
. 2 '
(vii)x"."ﬂ" log x +sin ! x- ik ]
X 7
» 1 =% 3
14. (i) 5{(1-.:) z—(lfx)-:]
Bl it Bivs i i1adk
- ® @) re) Jxeb) )
. ! lsz 2‘I_x1!
(i) 0+x+xz)%0—x+xz)%' @) 1+x24+x*”
_ -1
(v) secx. * (vi) ~cosec x, (vii)'ﬂi'_":’{.
(viii) = % ® 3 B =1
) 0. ) 2
1-alx
(i) = (xiv) — o) - —— -y
4% T g EN T
. 2a2 al il 2
: —ab 5 2ab -
(me)a cos2x-blsinix’ '(nx)azcoszx bisin?x’
va?-»? —Jb -a?
2(a+bcosx)’ L Ry b+acosx o )5+Joosx

1
(xxiii) .
Jl-ﬁx2
15. x2panx. -

16. J(a?-42).

18. 2 Jla2+x2). - 19. 2 2.

x4 +x242

(e S
e B

17. —‘I‘—“i.
xXViIx—a:

_._‘

" 1-x%
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1
1+ x
28. (i) f(x)=0 or sin{1/x)+2xcos(1/x) accordingas x is or is not

21. 9 7 RS I8 M 9. walmnls

zero; f'(x) isdiscontinuous for x=0.
(i) f(x)=0or 3x2cos(1/x)+xsin(1/x) accordingas x isoris
not zero; /'(x) is continuous for x=0.

7.14. Significance of derivative and its sign.

A very important aspect of a derivative, following from its definition,
is as a rate-measurer. This will be clear from the following examples.

Let s denote the length of the path covered by a moving particle in
any time. Clearly, as the particle moves continuously, s has a definite
value for every value of t, and, accordingly, by definition, s is a function

oft. If s + A s be the value of scorresponding to the value r + At of ¢,
then As denotes the distance moved over by the particle in time At

As

the ratio A— in the limit, when At becomes infinitely small, represents
t

the rate at which the particle is describing its path per unit of time at the

mbment. But on the other hand, [ Al is, by definition (since

Ar—0 At
A s and denote corresponding changes in s and ¢ ), the derivative of s
ds
with respect to ¢. Thus, the derivative T represents the rate of change

of s withrespectto ¢, ie., the speed of the moving particle.
More generally, if y be a function of the variable x, changing
continuously with x, then A ybeing the change in y corresponding to

N Ay
achange A x of x, the derivative E"K: Lt —— represents the rate of
Ax=0 Ax
change of y with respect to x.
Thus, v being the velocity of a moving particle at time ¢, & ;
y dt

represents the time-rate of change of velocity, ie., its accleration; again,
if V' be the volume of a quantity of gas enclosed in a flexible vesse! at a
constant temperature when its pressure is p , which we can change at

2

dv :
pleasure, :1—— represents the rate of change of volume with pressure and

soon.
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" Next we may note, that y changing with x, if' y increases when x is
increased and diminishes when x is diminished, the corresponding changes

and Ay and A x are of the same sign, and accordingly, the ratio %l is
: x

positive. Hence, 9)— (when it exists and is 0) is positive.
dx
Similarly, ify decreases when x is increased, or increases when x is

dy
diminished —— is negetive.
dx -

Conversely, a positive sign of Z at a point c¢ indicates that in the

neighboixrhood of the point y increases or decreases with x, i.e., both y
and x increase or decrease together. On the other hand, a negative sign of

% means that y decreases when x increases and vice versa near the point.
A formal proof of the above result is given below.

A theorem on the signof f'(x).

Irr ( ) > 0, prove that f(x)< f(a) forallvaluesof x < a
but sufficiently near to a, and [ (x ) > f ( ) for all values of x > a
but sufficiently near to a .

Since f"(a)>0

u Loen)ai(e )

>0, and
h—0+0
et ple)
h—0+0 - h

for all sufficiently small values of h, we have

fla-h)<f(a)< f(a+h).
In other words, there exists some’ neighbourhood-(a-8, a + 6) of
a in which

f(x)>'f(a) for x>a, f(x)< f(a)for x<a,
ie., f(x)>f(a) for x >’a butsufficiently nearto a,

and f(x)< f(a) for x < a butsufficiently near to a.
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When the function y = f (.r) is represented graphically, a

geometrical lnterpreiation of the derivative % corresponding to any
value of x may be given as follows :

Y

Fig7.14.1

Let P be a point (x, y) on the curve, and Q a neighbouring point
(x+Ax, y+ Ay) which may be taken on either side qf P, so that

A x may have any sign. The equation to the line PQ is (X, Y denoting
current co-ordinates)

ytAy-y Ay

Y-ya————=(X-x)=—= (X -x).
X X+Ax—x ( 1) Ax { .

If O be the inclination of this line PQ to the x-axis, the slope of the

fing;, L., tan 22X e (1
. Ax

Now, let Q approach P along the curve indefinitely closely, so that
Ax — 0. If the straight line PQ tends to a definite limiting position
TPR asQ approaches P from either side, then TPR is called the tangent
tothe curveat P. Inthis, if W be the inclinationof TPR to the x-axis, then
as P_Q tends to TPR, 6 — y.Also,as Ax >0, Lt ﬂ=ﬂ

Ax—0 A X dx
from definition. Thus, (1) leads to

dy
tany = —
dx
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e

Hence, the derivative % Sor any value of x, when it exists, is the

" trigonometrical tangent of the inclination (otherwise known as slope or
gradient) of the tangent line at the corresponding point P on the curve

y=f(x). ‘
Also, if %(: tan y ) be positive, W is acute (asat P in the figure
below), and at that point y increases with x. If & e, tany be negative
dx - :

y is negative (as at Q), or is obtuse (as at R), and y diminishes when x
increases, or vice versa.

Y

- Fig 7.14.2

-Ata point where % = 0, the tangent line is parallel to the x-axis (as at

F), and at a point where % s {:‘.;_,o , the tangent line is parallel to
the y-axis (as at G).
7.15. Differentials. .

If (x ) s the derivative of f (x), a:nd A x is an increment of x,
then the differential of f (x), denoted by the symbol df(x), isdefined by
the relation. . -~

(1)=f(X)Ax- W

If f(x)=x, then f'(x)=1,and (1) reducesto dx = Ax.
Thus, when x is the independent variable Uy differential of x(=dx ) is-
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identical with A x . Hence, if Y= (x ) then the relation (1) becomes
dy =f"(x) dx ; e B
i.e., the differential of a function is equal to its derivative multiplied by the
'dtﬁere_mial of the independent variable.
Thus, if y=tanx, dy=sec’ x dx.
From the definition of the differential of a function, the following formulz
for finding differentials are obvious :
d(c)=0, where ¢ is aconstant ;
d(u+v-w)=du+dv-dw;
u)_ v du — udv
d(uv) udv+vdu d _‘Vz—"

_Differentials are especially useful in upphcalions of integral calculus.

Note 1. The students should note carefully that although for the independent
variable x, increment Ax and differential dx are equal, this is generally
not the case with the dependent variable y, i.e., Ay #dy generally.

Note 2. The relation (2) can be written as dy/dx= f'(x); thus, the
quotient of the differentials of y and x is equal to the derivaive of y with
respect to x.

Probably on account of the position that f'(.r) bccupies in equation
(2) above, f'(x) is called the differential coefficient.

7.16.  Approximate Calculations and Small Errors.

If v=f(x),since L = f(x ), Ay is appra.rim&le!y
Ar—0 A

=f'(x) for small values of Ax. Thus dy and Ay may be taken as

approximately equal, when Ax (= dx) is small. Hence, when only an
approximate value of the change of a function is desired, it is usually
convenient to calulate the value of the corresponding differential and use
this value. i

Small errors arising in the value of a function due to ari assumed-small
error in the independent variable may also be calculated on the same principle.

As an illustration, let us consider the following case :

The radius of a sphere is found by measurement to be 7 cm; If an error
of .01 cm is made in measuring the radius, find the error made in calculating
the surface-area of the sphere.
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If S cm? be the surface-area of thé sphere of radius r cm,
S=4nr?.
dS =8nrdr.

Here, r=7 and dr=0-01.
approximate error in the calculation of the surface-area

. =dS =8xZxTx:01=1-76 cm?

Note 1. The actual error is 41;{(7 .01 )2 =77 }cm 2 whictris very nearly

equal to 1:76 cm?

Note 2. If dx is the errorin x, then the ratio (i) ax and (ii) IOOE are
x x

called respectively the relative error (i.e., error per unit x) amd the

percentage error: They may be easily obtained by logarithmic defferentiation. .

7.17. lustrative Examples.

Ex. 1. Ifthe area of a circle‘increases at a uniform rate, show that the rate
of increase of the perimeter varies inversely as the radius. | C. P. 1930

Atany time 7, iet A be the area, P the perimeter and r the radius of
the circle. !
" Then A=nr?; P=2ar. =~ P?=4mA.
differentiating both sides with respect to f, we have

dP_dA dP 2m dA 1 dA

2P =an=" P

dt dr’ d P dt r di
‘Since -@- is constant, ﬂ).mi
dt d r

Ex. 2. A ladder AB; 2.5 m long, leans against a vertical wall. If the
lower end A, which is at a distance of -1 m from the bottom of the wall,
is being moved away on the ground from the wall at the rate of -2 m
per second, find how fast is the top B descending on the wall.

Let the distances of A and B from O, the bottom of the wall, at time ¢
dy

. hence, as
dt

bex and y. Then the velocities of A and B are -‘;3 and
) 1

: dx
given here -—=-2.
dt
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Now, x2+y2=2.52,

" Differentiating with respect to ¢, 2x§:-+2y%=0.
L
Tod ydt:
When x=-7, y2=2-5’--71=5.76=2.4’. y=2-4, -
Hence, when x=.7, y=2.4, %:Q;
fi 1 Q:-ix.zg—l . d _52 /s
rom (1), — 74 12 ™ per second= =3 cm /sec.

theend B is moving at the rate of 5% cm . per second
towards O ( dy [ dtis negative ), i.e., B isdescending at that rate.
Ex. 3. The adiabatic law for the expansion of air is PV'4 = k, where k is

a constany. If at a given time the volume is observed to be 20 cm? and the
presure is 50 dyne per square centimetre, at what rate is the presure

changing, if the volume is decreasmg at the rate of'2 cm? per second?

PV‘" =k
Taking logarithm of both sides and differentiating with respect to 1.

B —.x—+l-4xl-(—2')=0 _-_-‘-if-=l-4x50=7
20 dr

Thus the pressure is chﬁnging at 7 dyne per second.

Ex.4. If y=2x—tan™ x—log(xh}lvl»x2 ). show that y continually
increases as x changes from zero to positive infinity. [C.P1942]

it |1+ =
1+x? x-l—mxz 2\ll+.1r2

Here, -‘—ly— =2~
dx
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Since (l +x? ) and V1+x? are each greater than 1.

_1 > and : are each less than 1.
1+x 1+x? 3

d
o ?i—‘: is positive ; also y=0, when x=0.

-". for positive value of x, y must be positive and continually iricreases
as x increases from 0 t0 oo .

Ex. 5. Find approximately the values of 1an 46° ,given 1°= 01745 radian.
Lety=tanx. .. dy=sec?x dx
Thus, taking x=45° (=17 ), dv=1°x.01745= 01745, we have
dy = 2x-01745 = 03490
Hence, for an increment of 1%in the angle, the increament in the value
of tan45° is 03490, ' ‘
"+ tan 46 ° = 1an 45 * + 03490 = 1.03490 (approximately)

" Ex. 6. If inatriangle the side ¢ and the angle C remain constant while
the remaining elements are changed slightly, show thar
da db
+
cosA cosB

=0

In any triang] - B
n any triangle, —— = — =— g
¥ g. sinA sinB sinC

Since ¢ and C are constants. .. ¢/sin C = constant = K suppose.

Ssa=KsinA,and ..da=KcosA dA
Also,b=KsinB,and .. db=K cos B dB

da + db
“"cosA cosB

=K.(dA+dB)=K.d(A+B)

=K.d(n-C)

=Kx0=0 (vCisa constant )
15-
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7.18 Miscellaneous Worked Out Examples
Ex 1. () A function f(x) is defined in 0<x<2 by

f)=x*+x+1, 0<x<I,

=2x+1» 1€x<52-
Examine the continuity and derivability of f(x) at x=1.

@) f(x) is defined in [0,2] by
f(x)=x+x, for 0<x<l,
=2, for x=1,

=2x3—x+1 for 1<x<2.

Examine the continuity and differentiability of f(x) at x=1.
[C P 1992, B.P.'95]

Solution : (i) For continuity at.x=1, we have
lim f(x)= lim (x2 +x+ l) =3
x— - x— 1= i
liritaf (xf= lim (2x+1)=3
x=1+ . x— 1+
and f(1)=2-1+1=3

Thus, lir}l_f(x)= l_i+rll1+ f)=f@1). So, f(x) is continuous at

x=1.
For derivability at x=1,

_ Gt L REH (I
FU+R)=FO) _ “mg.-{_.(.; G
h =

b=y

. W43 o s o
= Jlim ~— = lim (h+3)=3 [-h=0]

- 2(1+h)+11-3
Rf*(1)= lim D RF AU pashil
" h—-0+ h h—0+ h
. 2h
= lim ===2 [wh=o]

Thus, Lf’(l)# Rf'(D
Hence f’(1)does not exist, i.e., f(x) is not derivable at x=1.
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(i) For continuity at x=1,
lim f(x)= lim (x*+x)=2
x—- x—l-
lim f(x)=lim (2;3 -x+ 1) =2
x—l+ x—]+

and f n=2
Hence, f(x) is continuous at x=1
For differentiability at x=1,
2
- xX“+x)-2
im L@=f@ _ ()
== x-1 x—1- x=1

e (x=D(x+2)
- rl-l-'T— (x-1)

= lim (x+2), = x-1#0

x=]-
=3
ie, Lf'()=3 '
; . 2x% —x +1)-2
i L= _ )
X+ x—=1 o+ x-=1
. (2x® +2x+ lx.r— 1)
"o -1
= li.nl'n (2x2 +2x+ !), v ox=1#0
=+ ¥
=5
ie, Rf'()=5

since Lf’(1)# Rf‘(1),
f(x) is not differentiable at x=1.

Ex. 2. (/) Show that the fu;lc!ion £ (x) defined by
f(x)=3+2x for *%<x50

. . 3
=3-2x for 0<xS< 3
is. continuous but not differentiable a1 \ =0, - [ B. P 1999, 2006 ]
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@) If f(x)=x, O< x <1
=2-Xx le_SZ

X l.Jc2 2
SAE G B x>2,
2 g

show that f(x) is continuous at x=1 and at x=2, and that
f/(2) exists, but f’(1) does not. [ C. P 1989, ,93 '97 ]
Solution : () For continuity of f(x) at x=0,
lim f(x)= lim (3+2x)=3
=0~ x—0-

lim f(x)=lim (3-2x)=3

x—0+

and f(0)=3+2x0=3 .
Thus, 'l,‘},‘ flx)= Jllrg+ f(x)=f(0)

Hence, f(x) is cénlinuous at. x=0.
For differentiability of f (x) at x=0;

L0y = hl_"'g_ f(0+l2—f(0)
34+2(0+h)-3
= lim —————{ i ( o )}
h—0- h
2h

=hl—l-:g—- 7:=2 ('.'h;f())

RO = lim 1(_0&’)74_“’1

< T {3-2(0+#)}-3

h—0+ h
ofin —Haey {wR20)
W0+ h

Since Lf(0) = Rf’(0)
f1x) is not differentiable at x=0.
Hence, f{x) is continuous but not differentiable at x=0.
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(ii) Continuity at x=1 and at x=0.
lir{l f(x)= lin;n_ (x)=1
lim f(x)=lim (2-x)=1
x— 1+ x—=l+
and f()=2-1= ‘
; ]il{l_ fx)= ]inl'l Sfx)=f(), f(x) is continuoussat x=1.

Again, lim f(x)= lim (2-x)=0
x—32- X—2- R

l 21
,I_',T+ f(x)= hm (X‘_"EI )—0
and f(2)=2—2=0
w o lim f(x)= lim f(x)=f(2), f(x) is continuous at x=2.
32— =24+ )
Differentiability at x=1 and at x=2.

Lf'(1) = lim ==L/ f(x) f(l) = x-1 iy -
= Tl x— l
RFW) = lim LA =SD _ L(2-x)-1
x4+ x—1 ekl P
im X0
=+ x-]

© LW R, f’(1) does not exist.
Again, If (@) =lim £X=f@) .

x—2- x=2
2- )=
gy B i
x=2- x=-2
Rf (2)— Iim Ml
X2+ x=-2
(x—-l—xz)—()
. 2
= lim ~———~4
x—32+ x-2
—x(x-2) _

.-—m 2(x 2) -1, vx=2#0
“Lf')=Rf'(2), f'(2) exists and ['(2)=-1.



230 DIFFERENTIAL CALCULUS

Ex. 3. (i) Show that the function

f=x sm(—]l;) wal : )

=0, x=0

is both continuous and derivable at x = 0. -
[ C. P. 1987, '96, 2000 ]
(ii) Show that the function :

fix)=x cos(l), x#0
x

=0, x=0

is continuous at x =0, but has no derivative there.

[C P 1981, 93]
- Solution : (i) For continuity at x=0,
we are to find a §, depending upon e, such that

| f-fO] < e for |x-0|< 5.
el . l
of, | Ao e e for |x| <35,
Since, sini Sl.theaboverelaﬁonswillhoid.ifummkelle < €
x

for] x| < §.ie, §=4e-
So, f(x) is continuous at-x=0.
For derivability at x=0,

= lim
x—0 X

x*sin (1]
. We have, f'(0)=lim fx)-f(0) 5
x—0 X

i oafl) 5w
n(3)
(1)

=l (e

=0,

<1, and limx=0.
=0
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Hence f'(0) exists alnd f0)=0.

Thus f(x) is both continuous and derivable at x=0.

)
co —
x

We can make

<1, by making, | x| < €,

o)

where € is any pre-assigned positive quantity, however small.

@)

2

So, lim (xcosl)= 0, Also, (V)] =0 by definition.
x—0 x

Thus, lim f(x) = (o)

Hence, f(x) is continuous at x=0.

For derivability, at x=0, we have

1
R - hcos(~)
fO+h)-1O . h

h h-30 h

= lim co'{l} w h#0
h—0 h .

which does not exist.
Hence, f‘(0) does not exist.
So, f(x) is continuous at x=0, but has no derivative there.

£ = fim

Ex. 4. If f(x)=2|x|+|x-2| find f'(1). . [ C. P 1992, 2000, 02 ]
Solution : We have | x|=x  for . x>0
=0 for x=0 oo (D
=-X for x<0
and Ix’-2|=x—2, when x> 2
=0, when x =2 sw (D
=2-x, Wwhen x<2

To find f'(l), we are concerned with values of x in the
neighbourhood of x=1.
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From (1] and (2), f(x)=2x+(2-x)

=x+2 for0<x <2
’ . ~ ¢ )23
Now, f’(1) =lim /) ‘f(l)=lim i )
x—1 x— x—l __x-—l
shaE = w x=1#0
-1 x—1

Ex. 5. Let f(x)=x%, when x is rational
=( when x is irrational
show that f/(0)=0. [ C. P. 1996, 2001 |

. ’ K 0+1) = £(0
Solution : f'(0) = lim SO+h)-f(0)
h—0 h
. h*-0
= lim
h—0 h

=lim h=0
h—0 ’

(when h is rational)

Again, f'(0)= ’1'1_% SO+h)-1(0)

h
L e
= hi_% . (when h is irrational)
=0.
s fl(0)=0.
Ex. 6. If f(x) be an even function and f’(0) exists, show that
f(0=0. [ C. P 1983 ]
Solution : -+ f(x) is an even function, f(x)= f(-x).
or, f'(x)=-f"(-x) e (D)

. since f’(0) exists, putting x=0 in (1)
S0 ==-f(0) ie, f(0)=0.
Ex. 7. Show that the derivative of a differentiable odd function is an
even function. '
Solution : Let f(x)be a differentiable odd fuction.
Then, f(x)=-f(-x)
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Since, f(x) is differentiable,
@) =={=f"(=x)}=f"(-x),
so that f’(x) is an even function.
Ex. 8. Find, from definition, the derivatives of :
@ sn(Vx), >0 [C P 1985)
i) sin(logx), (x >0) . (i)  x?cosx.

Solution : = Let f(x)=sin(-/§) x>0
sian+h——sinJ;

% f (X) I:—m h
oy sinvx+h - unJ_ Jx+h \/_
h—0 \/X"‘h .J_ h (l)
. sinVx+h —sinJx
Now, lim ——F—————
h—0 Jx+h-Jx
. sin(y+k)-siny
i e where Jx+h = y+k
k—0 k )
2cos(y+—k—)~sin£
=lim_—2,-2- J;=y as h—0, k-0
k-0 k .

k ‘Hﬂi
=!1_r’1}, cos(y+ z)x’!m X
2

=cosy><l=co$y=cos\/;

and lim Jm‘-J; (JXT J—XM+J—)
= h =i h(afr+_+\/-)
' = lim x+h-x

h—0 h(\/-.x+_+\/_) ] Jx+h+~/_

1

o

2
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Using these results in (1)

f’(x)=cos~/;xﬁ==-2—l‘/=-c05\/;,
X

x
(i) Let f(x)=sin(logx), (x >0)

f(x+h)- f(x)
h

From definition, f'(x)= lim
h—0

- sin{log(x + h)} - sin{log(x)}
h—0 h

m

Let, logx=u

If the increment of u be k corresponding to an increment h of x,
u+k=log(x+h).

Le, & =log(x+h)—u=log(x+h)~-logx _

Obviously, k >0, as k— 0, and h— 0, when k —0.

From (1) we have

sy _ye Sin(u+k)—sinu
frx) = Jim SREICIZSRA

h
pron sm(u+k)-—smux]im 5
k=0 k »0 h

2co u+£ sin£
2 2 .. log(x+h)-logx

= lim x lim
k=0 k h—0 h
x+h
sini Iog( )
a - - X
= lim u+——)xllm x lim
k=0 k—0 Kk h—0 h
2
log(l+£)
= cosu x (1) x lim ——%Z
=0 h
—Xx
X
1 log(l-H) h -
=cosux—-log———————  where —=¢ and 1t —»0 as h—0
x t—»o ¢ x
= _—cos(log %) = l -cos (log x) ,
X

¢
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(i) Let, f(x)=x"cosx

From definition,

v flxth)= f(X)
‘ For= K

I
—

(x+ h)? cos(x+h)— x* cosx

= lim

h—0 " h

_ x*{cos(x+h) —cosx}+2xhcos(x+h) + h? cos(x + h)
=lim

h—0 h
< o i il Sgs(x+ h)—-cosx

h—=0 h-

+2xxlim cos (x+h)+lim [hcos (x+h))
h—0 h—0 :
25in(x+%)sin(——g)
=x? xlim +2xcosx+0

_ h=0 h
sin(-’l)
=—x*x lim sin(x +5)x lim— a2
h—0 2

=

= —x2sinxx 1 +2xcosx = 2xcOSX— X

+2xcosx

2

sinx_
Ex. 9 &) If yI-x2 +J|-y2 =a (x—y), show that
dy l—y2 -
—= i B. P. 1991
= Vie< [ 991 1

@) 1f J1-x2 + J1-y?" =a"(x" - y"), show that
dx y 1—-x2 !
Solution : (i) Let us assume, x =sin@ and y=sin¢

5 gﬁ =cos0, iv» =cosd
do dd

\ll-—x2 +\/I—y": =a(x—-Vv)
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(@i

cos0+cos¢ = a (sin@ - sin )

(o)

=

; 2cos—?l:(6+¢)cos%(9—¢)=2acos%(0+¢)sin%(9—¢)

Ol

=

. cot%(ﬂ—q))-—-a, cos—;-(9+¢t)$0
or, 8—¢=2cot™! g = constant

- d do df
—(0- =0 . ]-—= e, — =
or, a’B( $)=0, .or, » 0 e, 1

Here, v1-x*" +\fl—y2" =a"(x" —_v") sy . (D
Let us substitute : x" =sin@ and y" =sin¢
d .
Then, ux""—{=cos9, ie., dx _ cos@ Q@)
de de nx”_'
and ny"“ﬂ=cos¢, ie., ﬂ: £ash 3)
d¢ d‘P "yn—l

From (1), \/l.—vsin29+ J1-sin? ¢ =a"(sin0-sing)

or, cosB+cos¢;=a"(sin6—sin¢)

or, 2cos%(6+¢)cos%(9—¢)=_2-a"-coszl(9+¢)sin%(9—¢)
or, 00151(9~¢)=a"

ie., 9_¢—_-2cor'(a")=cpnstam

df @

or, 1"£=0, ie, —

m 8
dy _dy dp B _coso | mx"!
Now, Z=£E;—F —: [ From (2), 3) ]

E i n—l. COS¢_ :\_’ n—I. l_y2n
y cos® |y -y ©
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2x
Ex. 10. -() If y=tan™" , prove that
¥ 1+15x2 ¥

dr 1425x> 149x°
(if) If the sum of first n terms of a G.P. with common ratioris S,,’
prove that =

»

ds, - '
(r-1 o =(n-1)§,-n-S,_;.
Solution : 0] y=tan"' = = —tan™" B °
‘ 1+15x 1+5x-3x

= t_an'v' (Sqr) —tan” (3x)
dy __ 5 S 3
dx 1 2 2 T 2 2
: +(5x)" 1+(3x)" 1+ 25x2  1+9x

(ii) Let the first term of the G. P. be a.

a(r". - l)

r=1

Then S, =

or, (r-1S, =a(r" —l)> ‘
Differentiating both the sides w. . 7. T,

ds,
dr

1

(r=1

+8, =nar"”
Now, the s term of the G. P=ar""! =8, - S,

o (r-1)

ds,
dr

+S, =n(S, - S,,)

e, (r—l)isi= (n-1S,-n-S,,
dr

Ex. 1L (i) If y=\’sin.x+\/;nx+,fsinx---low. show that

_d_y_ cosX
dx 2y-1
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. 1 2x 4x3 8x7 .
] h t ——+ + + +...t000 = ——
w1 I+x 14x2 1+x% 1+x8 ) ey
' O<x<l)
W If y=x+ i
x+ i
x+
X+ (0o oo
show thalfi—')i= 1
x
_ 2 - 1
* 1
X+
X+10 oo

Solution : (i) Here, y = sinx+Jsinx+,/sinx -0 o0
= \/sinx+ y

or, yz =sinx+y
Differentiating both the sides wrs. x,

dy._ v dy 0 i‘!: £osx u‘:’.‘
Zydr—cosx+dx. T a2y

(ii) We have, (1-x)(1+x)(1+x2)(1+x4)(1+x5)---(1 + x7)
=(1=x2) 1+ x2)(1+ x4)(1+x8)--(1 4 x7)
=(1=x) 1 +x%) (1+x3)---(1+ x")
=(I=x")(l4x")=1-x2

O<x<l, lim =0
~ lim {(1—x)(1+x)(1+x2)(f+x4)(1+x8)----(1+x")}
=lim (1-x)=1 _ _
log(1— x) + log(l + x) +log (1 + x2) +log (1 +x*) + log (1 + x¥)

+etoec=logl=0
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Differentiating both the sides w.rt. x, we get *

-1 1 2x ax}

.__+__+——+—7+----ron<=0.
I-x l4x 14x? l+x
whence, —l—+ £ 4x‘+ oo =——.
U ol4x o 14x? 1+x 1-x

1
(iii) Here, y=x+;

or, y2=xy+l
Differentiating both the sides w.rt. x,
dy _ dy
2y—=x—+y
ydx i
g‘_y__ y _ 1 1
dx 2y-x o, X o_. &
. y 1
» ..x+_'_———l__—
Xt ———
x+--0 e

Ex.12. () If f(@) =2, f'(@=1, g(a)=+~1, g’(a)=2, then find

the value of
i 25} ()= £l (2

(ii) Show that the function f(x)=x| x|, is differentiable at x=0.

Solution : (i) lim g(f)f (a)- g(a)f (x)

xX—=a

o St~ gl@)}-slaf s () @}

x—a xXxX-a

= f(a)-g'(a)-gla)-["ta)

=2x2-(-)x1=5.

(){g(“) (‘1)} ~limg {f("') fa)}

s (x=-a) *a T (x-a)
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(i) Here,.f(x)=x%, x>0

=0, x=0
=-x?, x<0 .

(O = i LR=FO _ =2
R
. 2
RF(0)= lim XSO _ o X =g
=04 x-0 =0+ x

Lf'(0)= Rf*(0), f(x) is differentiable at x=0, and f7(0)=0.

’ |
Ex. 13. (i) If g be the inverse of the function fand f‘(x)= !
+x
then prove that g’(x) = 1+{g)}".

n*

@) If fx+y)= J(x)- f(y) for all real values of x, ¥, f(x)#0
for any real value of x, and f(0) is defined and f(0)=2, prove
that for all values of x, f’(x)=2f(x). Hence find F(x) .

Solution : (1) "~ g is the inverse of i

gx)=f1(x), ie, flgx))=x
Differentiating both the sides w.rr. x,

flem}e’(x)=1.

1 1 ,
& v f)=
Mg} 1

1+{gn)}"
ie, g'(x)=1+{g(x)}".

or, g'(x)=

n

l+x

(i) = fx+y)=f()-f(y)
for all real values of x and y, putting x = y = 0 in (1),
FO) = f(0)- f(0)
Le, f(O)=1, - f(O)=0

(1)

Now, f’(x)=lim Ml
h—0 h

= —"——f(x)'ﬂ:) L0 [from (D)]
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fh)—£0)
S,

= f(0x lim o f0) =1

= f(x)-f'(0)
=2f(x), = f(0)=2, given.
f'(x)=2f(x), for all real values of x.

fx)
Agiin, iz =
On integration log{f(x)}= 2x+|ogA A bemg constant of

integration.
Putting x=0, log{f(0)}= O+logA
or, logA=logl=0, .~ A=1

Hence, f(x)=e”*

EXAMPLES-VII(C)

1.

3.

5.

16-

A point moves on the parabola 3y = x? in such a way that when x = 3
the abscissa is increasing at the rate of 3cm per.second. At what rate
is the ordinate increasing at that point ?

A toy spherical ballon being inflated, the radius is increasing at the rate
of {; cm per second, At what rate would the volume be increasing at
the instant when r=7cm.?

A circular plate of metal expands by heat so that its radius increases at
the rate of 0-25 cm per second. Find the rate at which the surface-area
is increasing when the radius is 7 cm.

The candle-power C of an incandescent lamp and its voltage V are

sv©¢
connected by the equation C = 10

Find the rate at which the candle-power increases with the voltage
when V=200. ‘
If @ units be the heat required to raise the temperature of 1 gram of
water from 0° C to t° C, then'itis known that

0=1+1072r7 +107 .31
Find the specific heat at 50° C the specific heat being the rate of
increase of heat per unit degree rise of temperature.
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10.

11

12.

13.

14.

15.

A man 1-5m tall walks away from a lamp-post 4-5m high at the rate
of 4 km per hour.

(i) How fast is the farther end of his shadow moving on the
pavement 7

(ii) How fast is his shadow lengthening ?

If a particle moves according to the law xeeot 2 ,where x is the distance
(measured from a fixed point) travelled in time #, show that the velocity
will be proportional to time and the rate of change of velocity will be
constant,

Water is poured into an inverted conical vessel of which the radius of
the base is 2 m and height 4 m, at the rate of 77 litre per minute. At what
rate is the water-level rising at the instant when the depth is 70 cm?

If the side of an equilateral triangle increases at the rate of V3em per
second and its area at the rate of 12 cm? per second, find the side of the
triangle.

If in the rectilinear motion of a particle s = ut + %ft 2 when u and f
are constants, prove that the velocity at time r is u + ¢ and the
acceleration is f. ]

A man is walking at the rate of 5 km per hour towards the foot of a
building 16 m high. At what rate is he approaching the top when he is
12 m from the foot of the building ?

A circular ink-blot grows at the rate of 2cm? per second. Find the rate
at which the radius is increasing after :2% second.
The volume of a right circular cone remains constant. If the radius of

the base is increasing at the rate of 3 cm per second, how fast is the
altitude changing when the altitude is 8 cm and radius 6 cm ?

Sand is being poured on the ground and forms a pile which has always
the shape of a right circular cone whose height is equal to the radius of
the base. If sand is falling at the rate of 1-54 m?/s, how fast is the height
of the pile increasing when the height is 0-7 m ?

The marginal cost of a commodity being the rate of change in the cost

for change in the output, if f(x )= ax- EEb +d (b > c)be the total
x+c

cost of an output x, show that the marginal cost falls continuously as

the output increases.
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16

17.

18.

19.

20.

21.

22.

23. .

(i) Anaeroplane is flying horizontally at a height of 5 2 kmwitha velocny-
of 15 km an hour. Find the rate at which it is recedmg from a fixed
point on the ground which it passed over 2 minute ago.

(i) A kite is 300 m high and there are 500 m of cord out. If the wind
moves the kite horizontally at the rate of 5 km per hour directly
away from the person who is flying it, how fast is the cord being
paid ?

If ¢(x)=(x—1)e* +1,show that ¢(x) is positive for all positive valucs

of x.

If f(x)=cosx+cosx+Xxmnx, show that f (x)continually diminishes

as x increases from 0 to 7.

Skow that, for 0<0 < —;-:n'
(i) continually diminishes as @ continually increases.
4sin 6

(ii) m =0 increases v."ilh 0
() Provethat,If 0<x< {7

(a) l—-il—'x <cosx<l-ix +l)c'1

210 T

| 1 | I
(b) 1--:;.: <smx<x—§;x +g—'x

(ii) Show that,if x >0, -
@ x>log (1+x)>x-1x2  (0) Lx?+2x+3>(3-x)e”

Gi asin x + bcos x "
IVER Y = sin x+d cos x’ PHORESIE
G Ifa= 1 ,b=2, c=3, d=4,theny decreases for all values of x;

(i) If a=2, b=1, c=3, d=4, theny increases for all values of x.

Find the range of values of x for which each of the following functions:
(i) x*-3x?-24x+30 (i) x> -9x? +24x-16
(i) 2x> -9x2 +12x-3 . (iv) x*—4x>+4x2+40

decreases as x increases.

Show that the function 3 _3y2 4 gx— 8 increases with x.
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24.

25.

26.

27.
28.

29.

50.

3L

32.

33.

Find the approximate values of the following by the method of
differentials :

@ log,10-1, given log,10=2.303 .
(i) log,p10-1, given log,ge=0-4343

Gi) {633, given [6.25=2.5

(iv) sec246°, given 1°=0-0175radian

(v) sin 62°, given sin 60° =0-86603

What is the approximate change in sin 6 per minute change in 6 whcn
9 =60°?(given 1’ =0-00029 radian).

Find the approximately the values of :

() x> +4x? +2x+2 when x=2-00012

@i) x* +4x2 +1 when x=1-997

Find approximately the difference in areas of two circles of radii 7cm
and 701 cm.

What error in the common logarithm of a number will be produced by
anerror of 1% inthe number? [log e = 0-4343]

Find the relative error ( i.e., error per unit area) in calculating the area of
a triangle two of whose sides are 5cm and 6 cm, when the included
_angleis taken as 45 instead of 45°2'.

Show that the relative error in computing the volume of a sphere, due to
* an error in measuring the radius, is agproxlmmcly equsl o three times
the relative error in the radius.

The angle of eevation of the top of a tower as obscrved from a distance

of 43m from the foot of the tower is found o be 60 ° ; if the angle of

elevation was really 60°1',obtain approximately the error in the
calculated height. [ 1" = 0-00029 radian | _ -
The pressure p and the volume v of a gas are connected by the relation
pv'*=k,where k is constant. Ifthcrebeanmcmlseof 0-7 % inthe
pressure, shiow that there is a decrease of 0-5 per cent in the volume.
‘An electric current C as measured by a galvanometer is given by the
relation C o.tan@. Find the percentage error in the current

corresponding to an error 0-7 per cent in the measurement of 6, when
0=45°.
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34.

35.

36.

The time T of acomplete oscillation of a simple pendulum of length /
is given by the relation T =2n J—Z ,where g isa constant. Find
approximately the percentage error in the calculated value of T
correspoinding to an erroz of 1 per cent in the value of L.
@ In atriangle if the sides and angles receive small variations, but a
and B are constants, show that
~ tan A db=bdC.
@ii) In atriangle if the sides a, b be constants and the base angles A
and B vary, show that

dA - dB
Ja? -b%sin?A Jb? -a’sin’B
Ifatriangle ABC inscribed in a fixed circle be slightly varied in such a

way as to have its vertices always on the circle, show that

da db dc
+ + =
cosA cosB cosC

ANSWERS

1. 6 cm per second. 2. 56cm?/s. 3. 1lcm? persecond.
4. 9%. 5. 100425.

6. () 6km perhour. g @) 2 km perhour.

8. 20.cm per second. 9. 8cm.

11. 3km per hour. 12. 0-25 cm per second.

13. Decreasing: 8 cm per second. 14. 1 m per second.

16.() 9 km per hour. - @) 4kmperhour.

22.() x>4 or<-2. @@ x>4 or<2.

@) 1<x<2. (iv) x<D and 1<x<2.
24.() 2313. (i) 10043. (ii)2-516. (@iv) 207. (v) 08835
25.000015. 26. (i) 30-0036. i (ii) 32-856.
27.0-44cm?>. ' 28. 0-0043.

29.000058. 31.005mi.e, Scm.
3311 . 34.05.



