
DIFFERENTIAL CALCULUS

ILIII!	
AN IDEA OF NUMBER SYSTEM

1.1 Introduction Calculus - origin and extension.

Calculus, fundamentally different from Arithmetic, Algebra or
Geometry, is essentially concerned with change and motion; calculus
deals with quantities that approach other quantities. When there is
continuous and gradual change, however small the change be, Calculus,
with its novel concept of 'limit' and limiting operations, is the right
mathematics to apply..

Though invented initially to mccl the mechanical or geometrical
needs, today Calculus and its extensions in mathematical analysis are
far reaching. Besides being used in theoretical fields ofenquiry, Calculus
is now used in determining the orbits of artificial satellites and space-
craft, in predicting population size, in estimating how fast the price of an
agricultural cohimodity rises, in forecasting weather, iii measuring the
cardiac output of the heart and in a large variety of other areas.

However, diverse be the area of application of subject, the common
theme is the way or manner in which one quantity changes with another
when the change in the later is very small or, more properly, with the rate

of change of one quantity with the other.

In these investigations one has to deal with the relations bctweer
pure numbers which represent the magnitude of the quantities. That is
why we begin our study of Calculus with a short discussion on number
system.

1.2. Numbers.

The earliest concept of numbers originated from counting, and the
first set of numbers which was known to men, was the set of positive
integers. The arithmetical process of subtraction needed an extension
to negative integers, and zero was included as a number. The process of
division required a further extension to rational numbers, which are
defined to be numbers of the form al where in and n are integers,
ultimately prime to each other, n being positive and not equal to zero. It
may he noted that terminating decimals, as also recurring decimals, which
are expressible in the form 	 fall under this category.
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1.3. Geometrical representation of rational numbers; rational points.
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Fig 1.2.1

Take a line X
7 
OX extending indefinitely in either direction, for

reference, and a suitable point 0 on it as origin. A suitable length OA on
it being chosen as unit, if we divide OA into n equal parts, and take a
length OP (or OP') equal to m such parts (towards the right of 0 if m
be positive, and towards the left if in be negative), the length OP
(Or OP'), or the point P (or P', as the case may be) represents the

rational number . The point P, representing a rational number, is called
a rational point.

1.4 Properties of rational numbers.

(I) Rational numbers are well-ordered. This means that of two
unequal rational numbers a and b, either a > b or a < b; also if
a> h and b > c, then a> c ,ctc. In other words, rational numbers are
well arranged in respect of their magnitudes, points representing higher
numbers always falling to the right of those representing smaller ones,
and vice versa, in their geometrical representation.

(ii) Rational numbers are everywhere dense; in other words, between
any two rational numbers, however close, or within any interval on the
axis representing rational numbers, however small, there is an infinite
number of rational numbers or points.

This may be easily seen from the fact that, however close the two
rational numbers a and  may be, -(a+b) is a rational number lying
between them. Similarly, between a and -(a+b), as also between

(a + b) and b, we can insert rational numbers, and so on. Thus there
is an infinite number of rational numbers between a and b.

1.5. Irrational numbers.

Whereas all rational numbers are represented by points on the axis,
and though in any interval, however small, there is an infinite number of
rational points, still the converse, that every point on the axis must
represent some rational number, is not true;

e.g., OP	 is not rational.
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OA being unity, if AB be taken at right angles to OA and equal to

it, OR is joined and on OX, OP be cut off, equal to OB. then OP

represents a number equal to 'I , which is not rational.

,	 I

()	 A p	 y
Fig 1.4.1

Proof: For, if r2 = rn/n where m, n are integers prime to each

other, then in  = 2n 2 .showing that m 2 and so  is an even integer (for,

the square of an odd integer is evidently odd). Let m = 2rn' where m'

is an integer. Then we get n 2 =2m 2 and son is also an even integer.
Thus m and n, which have a common factor 2, cannot be prime to one
another, thus leading to a contradiction.

Similarly, equations like x 3 = 7, 4x 4 = 13, etc. cannot be solved in
terms of rational numbers alone. Besides radicals, there are other types
of number like e, n, . . . (called transcendental numbers) which arc not
rational.

There are, therefore, numbers other than rational numbers, which
are called irrational numbers, thus leading to a further extension of
numbers.

1.6. Relations of irrational numbers to rational numbers;
representation of numbers (rational as well as irrational) as sections

of rational numbers.

Consider the number J2 There is no rational number whose square
is 2. The system of rational numbers, therefore, can be divided into two
classes, say L and R, such that all numbers of the L-class have their
squares less than 2, and those of the R-class have squares greater thati
2. Hence, every number of the R-class > every number of the L-class.

Thus, I, 1 . 4, 1 41, 1 . 414, 1-4142 ..... belong toL-class

and 2,15. 1-42, 1-415,14143.....belong to R-class.

The differences of the corresponding numbers of the two classes
are, respectively.

1,0 . 1.0-01,0-001,0-0001 .......
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Proceeding in this manner (by expressing ./5 in a decimal form,
which will lead to an endless decimal not recurring, and choosing the
rational numbers of the two classes by stopping at any stage) we can
find a member of the L-class and a member of the R-class which differ
from one another by as little as we please. Our common sense notion,
therefore, demands the existence of a number x, and a corresponding
point P on the axis, such that P divides the class L from the class R.

But this number x is not rational and belongs to neither of the two

classes. Further, x2 is neither > 2 nor < 2.

For, if x 2 > 2 , let x = 2 + C . Then however small c may be, we can
get rational numbers of the R-class whose squares being >2 will differ
from 2 by less than c. Such rational numbers of the R-class will lie to the
left of .v, and so the assumption that r is the point dividing the two

classes is untenable. Similarly, x 2 , 2

X = 2, or, .v = and being not rational as proved before, it
belongs neither to class L nor to class R. The point P is thus only a
point of Section of the two classes of- rational numbers L and R defined
before, not belonging to either class, and representing the irrational
number 'j -

This leads to a new idea of defining numbers as sections of rational
numbers, as follows

"If by some means or other we divide all rational numbers into two
classes L and R, such that each class contains at least one rational
number, every rational number belongs to either L oi' R, and each
number belonging to R-class > every number of the L-class, then we
obtain a section of rational numbers which defines a number, rational or
irrational; the particular mode.of division defines a particular number by
its section."

Three cases may arise : (i) That L-class has it greatest number, but
the R-class has no least; e.g., let all rational numbers > 5 belong to R-
class, and the number 5, as also all rational numbers <5 belong to L-
class. The section in this case represents the rational number 5, which
belongs here to one of the two classes, namely, the L-class. (ii) The L-
class has no greatest number, but the R-class ha' a least one; e.g., all
rational numbers <-3-5 belong to L-class and 3 . 5 with all rational
numbers greater than this belongs to R-class. Here the section represents
the rational number —3 . 5, and the numbcr itself belongs to R-class. (iii)
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The L-class has no greatest number and the R-class has no least number;
e.g., all rational numbers whose cubes are < 7 belong to L-class, and
those whose cubes are >7 belong to R-class; there is no rational number,
as can be shown, whose cube is equal to 7. The section in this case

represents the irrational number V7 and belongs to none of the classes
Land R which consist of rational numbers only.

It may be noted that the case in which the L-class As a greatest
number and the R-class has a least number simultaneously is not possible,
for otherwise, 'between these two rational numbers there would be an
infinite number of rational numbers as proved before, and they would
belong to none of the two classes.

This extension of our conception of numbers as sections of rational
numbers gives us a more satisfactory basis of defining all numbers in a
uniform way. We no longer think of numbers as isolated members, but as
an aggregate of rational numbers divided into sections.

1.7. Real numbers.

All kinds of numbers, rational as well as irrational, positive and
negative, including zero, constitute what are called real numbers.

The contents and classification of real number s y stem will be
understood at a glance from the scheme given below.

Real Numbers

	

Rational Numbers	 Irrational Numbers

I
'I.

Integers	 Fractions

It may be thought that just as from rational numbers, by dividing them
into two classes by sections, we get, in addition to rational numbers, a
new type of numbers, namely irrational numbers; similarly by sections
of real numbers again, we may expect a further extension of numbers.
But this is not true. In this Connection we state the follou ing theorem
(given in the next page)
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Dedekind's theorem (On sections of real numbers)

If real numbers be divided into two classes L and  in such a way that

(i) every real number belong.s to one class or the other,

(ii) each class contains at least one number, 	 and

(iii)any number of the L-class is less than every number of the R-
class,

then there exists a real number 'a' which effects this section, i.e.. which

has the property that all numbers less than 'a' belong to L-class, and

all numbers greater than 'a' belong to R-class, the number 'a' itself

may belong to either class.I For proof, see lifard.vs Pure Mathematics. I
Thus as sections of real numbers we get real numbers alone (unlike

that in case of rational numbers), and not any other new type of numbers.

Thus no further extension of numbers is possible; and the aggregate
of real numbers is complete. The correspondence (one to one) between

all the points on the line X'OX without exception (called the linear
continuum) and the system of all real numbers, rational and irrational
(constituting what is called the arithmetical continuum), is now perect.

1.8 Fundamental Properties of real numoers

Properties involving 'addition' and 'multiplication' of real numbers

(i) If a, bare any two real numbers, then (a + b) and ab are also real
numbers, i.e.,

(a-i-b), ab€R, foralla,heR.

(ii) a+bb+a and ab=ba, for all a,bER..

(in) a+(b+c)=(a+b)+c and a(bc)=(ab)c,for all a,b,c€ R.

(iv) The real number 0 (which is an integer and a rational number) has
the following properties:

a+0=O+a=a, aM=Oa=0 for all aR.
Division by zero is meaningless in the set of real numbers.

(v) For every real number a, there exists a real number -a, such that

a + (—a) = —a + a = 0.

(vi) For every real number I (which is an integer and a rational number)
has the following properties:

a.l=1.a=a for all a€IR.
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(vjj) For every a (.0)e R, there existS!E R, where a.— = —.a = I.
a	 a a

(viii) a —be R forall a,b R, wherea —b is defined as

a - b = a + (—b).

(ix) a..(b+c)=a.b+a.c,foralla,b,cER.

(x) If a is any real number ( 0) and b is any real number, then

- is defined as
a	 a	 a

(xi) a.(—b)=(—a).b—(a.!') and (—a).(—b) =ab,forall a,b€R.

(xii) l0.

(xiii) For a,b e R, a .b = 0	 at least one of a and I, must be zero.

1.9 Properties regarding order relation in R.

(i) For any two real numbers a, b one and only one of the statement:
"a>b","q<b","a=b" must .bc true.

(ii) a>b and b>c = ' a>c for all a,b,c€IR.

(iv) a) band c>0 =ac>bc, for all a, b, c€RR.

(iv) a>b=a+c>b+c, for all a,b,c'ERR.

(v) a>0,if and only if—a<0.

(vi)a>b, ifandonlyifa—b>0 and a<b, ifandonly if a—b<0,

where. a,bE R.

(vii) a>b and c.<0=tac<bc,where a,b,c€R.

(viii) a2 2:0 for all a E R (X 2! y means x> y, or, x = y)

(m) Between any two distinct numbers, there exist an infinite number of
rational numbers as well as an infinite numbers of irrational numbers.

(x) If a (>0) and bare two real numbers, then there exists at least one
positive integer it such that it a > b.

Note: 1.. For any real number a, one an only one Of'a>O', 'a<0','a=O'
must be true.

2. A real number a is said to be positive or negtive according as a>0,
or, a <0.	 -
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3. It should be remembered that the real number 0 (which is also a
rational number) is neither positive nor negative.

1.10. Integers

In Art 1. 2, it has been discussed that in the process of counting number
of elements ofa finite set (e.g., the number of rooms in a house, the number
of trees in a garden, the number of students in a class, etc.) the natural
numbers denoted by the symbols, 1, 2, 3, . . . we obtained, and the set of
natural numbers is denoted by N.

Now for every ntbral numbern, the numbers given by the symbol —n

is introduced together with the introduction of the number 'zero' expressed

bythesymbol 0, where x+O=O+x=x forevety XE N. U{—nn c NT u(OI
and , i•(—n) = — fl +n = 0 f&every xc N.

Elements of the set No (—a n c N) u(0) are called integers- The set
of all integers is denoted by Z.
Remarks : The integer 0 is neither positive nor negative.

Factors of an Integer

An integer a (* 0) is called a factor ora divisor ofan integer b. ui, can
be expressed as b = a c (or, ca), for some intcgerc. In this case c will also be
a factor of b if c* 0

For example, as 2.3 = (-2) (-3) = 6, 2, —2, 3, —3 are factors o16.

We observe that if a is any non-zero integer, then 1. - I, a, - a are
factors of a.

Prime Numbers

An integerp (> 1) is called a prime number if p has no factor besides
—1, p. - p. For example, 2,3,5,7.. . . are prime numbers. The inteeer 2 is

the least prime number.

Remark: From the definition of prime numbers, it follows that the integers 0,
I are not prime numbers.

Relatively Prime Numbers

The integer a and b are said to be relatively prime or, co-primes or,
prime to each other if the integer I is the only positive integer which is a
common factor of a and b. We note that 6 and 29 are relatively prime integers,
while, 9 and 24 are not relatively prime to each other.
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An Important Property of Prime Numbers

If p be a prime number and a, b are integers where p is a factor of the

product ab, then p is a factor of at least a and b.

Even and Odd integers

It can be shown that any integer is either of the form 2m, or, of the form
of 2m-l- 1, where in is an integer.

An integer of the form 2,n (where in is an integer) is called an even

integer, while an integer of the form (2m + I), (where n, is an integer) is

called an odd integer.

Thus 0, ±2, ±4, ±6,.. . are even integers and ±1. ±3, ±5,. .. are

odd integers.

Note : The integer 0 is an even number.

1.11 intervalsinlR..

Let a, be Rand a <b.

(i) The set (x:x E Rand a<x<b) is denoted by (a, b)and is cal led as

pen interval.

(ii) The set (x: x ER and a !-< x !^ b) is denoted by Ia, b  and is called

an closed interval.

(iii) The sets (x:xE Randax<b) denoted by [a, h) and

x  lR and a < x !^ h) denoted by (a, b] are called Semiopen or

Semiclo.sed intervals.

The set R is also regarded as an interval and is denoted by (-. oo)

where we write R= {x-oo< x<oo).

It should be noted that the symbols	 do not represent real

numbers.

For any real number a, the set (x x  IR andx ^: a) is denoted by

[a, oo) and this is a semiopen interval.

Similarly the sets (x:x€ R and x> a) . (x:xE Rand .s !^ a)

x X  Rand x <a) are respectively denoted by (a, oo) , (_oo, a). (---n a)

and these sets are also called intervals.
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1.12. Complex numbers.

In order to fill up the gaps and bring about a uniformity in the theory of
equations, as also in all other theories of higher mathematics, it has
been found necessary to introduce a class of numbers, called complex
numbers. A complex number has been defined by modern
mathematicians as an ordered couple of real numbers, i.e., a pair of real
numbers united symbolically in a particular order for the purpose of
technical convenience. Thus a complex number is, strictly speaking, not
a single number at all, but a pair of real numbers with a proper order. If
the order is reversed, we get a different complex number. A complex
number may be expressed in the Form I a, h i, where a and b are two real
numbers. It is also represented. For convenience, in the form a + ib,
where the symboli has no meaning by itself; it merely indicates the
order in which the real numbers a and h are considered. In defining all
ordinary algebraical operations with regard to complex numbers it has
been found convenient to associm m e the symbol i with the property,

=_I in which case all operations consistent with the algebra of real
numbers may be applied to the case of Complex numbers.

For geometrical representation and further introduction into the
algebra of complex numbers see Chapter VI, Das and Mukherjees' Higher
Trigonometry.

1.12 Miscellaneous Worked out Examples

Ex. 1. Prove that JF3 is not a rational number. 	 B. P 1997]

Solution Since, 1< 3 < 4, 1<	 < 2, which shows that vF3 cannot
be an integer.

Now, if possible, let vf3 be a rational number.

We assume,

	

	 (I)q
where q >1 and p and q are positive integers prime to each other.

From (l)=3,i.e., R_=3q	 ...	 (2)

Since p and q are positive integers prime to etch other, p 2 and q are

also positive integers prime to each other. Again, since  >1, - p-- represents
a rational number, which is not an integer, but 3q represents a positive integer.
So, from (2), we get, a positive rational number which k not an integer is



AN J1)1A OFNUMIJERSYS7EM	 II

equal to a positive integer. But this is not possible. Hence, our initial

assumption cannot be true, i.e., 63 cannot be a rational number.

Ex. 2. Prove that 1092 6 is an irrational number.

Solution	 1092 6= 1092(2x3) =1092 2+1092 3= 1+1092 3.

1092 6 will be a rational number, if 1092 3 is rational If possible. let us

assume that 1092 3 is rational and 1092 3= -11 when q * 0 and p, q are

positive integers prime to each other.	
q

Now, .• log 2 =	 =3 or, 2"=

Obviously, 2 and 3 are prime to each other, and p and q are also assumed

to be integers prime to each other. So, the equation. 2" = 3'I cannot hold.

Therefore, log  3 cannot be a rational number.

Since, the sum of a rational number and an irrational number is irrational,

109  6 cannot be a rational number.

Ex. 3. Prove that JF3 + F2 is an irrational number.

Solution: Let us assume the contrary, i.e., J3 + vr2 is rational.

(J+J)(J-J)=i

is also a rational number, since it is the quotient of two rational numbers 1

and (J+Ji).

Thus, vr2 = {(J + J) - (J _62)) , being the difference of two rational

numbers, is rational. Thus we arrive at an absurd conclusion.

Hence, our initial assumption that (.J+ J) is rational is wrong.

So,	 +	 is an irrational number. 	 -

Ex.4. Show that no positive integer ni other than a square number has a

square root within the aggregate of rational numbers.

Solution: Let m be a positive integer which is not a square number. Then
we are to prove that Jrn cannot be rational.
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Since in is not a square numhcr, we have a positive integer ?l such that

fl 2 < in < (n - 1)2

or,

whence it follows that Fin cannot bean integer.

If possible, let us assume that Ftn is rational.

Then ./ = - ,where q> I andp and q arc integers prime to each other.

q

or, —=m

2
or,	 = nq.	

...	 ()q

p and q being integers prime to each other, ,2 and q are also positive

integers prime to each other. Also, since q >1, J?_ is rational number which
is not an integer.	 1

But, in and q being both positive integers, mq is also a positive integer.
So. from (I) we get a rational number which is not an integer = a positive
integer, which is impossible.

Therefore, our assumption cannot be true, i.e., J,—), 	 be a rational
number.

Ex. S. (1) If rand s are any two rational numbers, prove that (r+) and
(rxs) are also rational numbers.	 [ C. P 2003, B. P. 1992, 93, 95 1

(ii) Give examples to show that the sum and product of two
irrational numbers may be rational or irrational. 	 B. P. 1994

Solution	 (i) If possible, let r+s=p, where r and s are rational
numbers, while p is an irrational number.

r=p—.v

since the difference of an irrational number and a rational number cannot
be a rational number, so r cannot be it number, which contradicts
our initial condition that r is rational. Therefore, the sum of two rational

numbers cannot be irrational; i.e., (P +s) is it rational number, when r
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and s are rational numbers. Next, if possible, let the product of two
rational numbers be an irrational number.

i.e., let rxs=q, where r and s arc rational and q an irrational number,

r=	 (s*o

since division of an irrational number by a rational number is not a

rational number, - is not rational, but r is rational Thus q cannot be

an irrational number, it must be a rational number.

•	 ><.t is a rational number.

(ii) We have F2 and 63 are two irrational numbers. Their sum

s1i-4	 is also an irrational number. [ Sec Ex. 3. above

Again, product of two irrational numbers 	 and

If pi)ssi ble, let JF6 be a rational number.

then	 - 	 where p and q are positive integers,

prime to each other and q >1

2pó=--,i.e., —=6q.
q

since p and q are prime to each other, p 2 and q have no common fior

and so .-. cannot be art integer, but óq is obviously an integer.
'1

Thus, a fraction is equal to an integer, which is not possible.

So, product of two irrational numbers F2 and 63 is also an irrational
number.

Next, let us consider two irrational numbers 5+,C2 and 5-2

'here sum (5 +	 + (s - I3) = 10. a rational number;

and their product (s+J)(s_J)=25_223.

a rational number.

Hence, it is shown that the sum and pioduct of irrational numbers may
be irrational or rational.
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Ex. 6. Examine whether log, is a rational number.[ B. P 1999, 2001]

Solution : If possible, let log 10 5 be rational and log 10 5 -, where p

and q integers, prime to each other, q > p	
q

P
(lO)q=5

or, 10p=5q

or, 2p•5p=5q

i.e., 2 = 5q-p	 ...	 (I)

since p and (q - p) are both positive integers and 2 and 5 are prime

to each other, equation (I) cannot hold.

Hence log 10 5 cannot be rational, i.e., log 10 5 is an irrational number.

EXAMPLE-1

I. Define a rational number. Show that 	 is not a rational number.

[B.P. 1981, '86, '95, '97, C.P. '98]

2. Show that -.i is not rational.	 [B.P 20021

3. Prove that log 10 7 is not rational.

4. If, ..h +	 = 0, where x and y are both rational, prove that

x=0=y.
5. Define an irrational number. Give examples to show that the sum

and product of two irrational numbers may be rational or irrational.
-	

[B.P.1994j

6. Given that r and s are two rational numbers, prove that
r + s, r' s, rs and r/s (. # 0) are rational numbers.

[B.P. '82, '93, '951

7. Prove that the sum of or the difference between, a rational number
and an irrational number cannot be a rational number.
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2.1. Introduction.

In higher mathematics and various branches of science very often we
have to deal with changeable quantifies which are interrelated to one
another, and in many such cases we have occasions to investigate how one
of these quantities changes with a gradual change in the other. For example,
in a given amount of gas enclosed in a cylinder with a movable piston, and
kept at a constant temperature, the volume and pressure are interdependent,
and a change in one produces a corresponding change in the other ; or
again, for a falling particle, the height from the ground depends on the time,
and changes with it; the area of a circle changes with its radius, etc.

In Differential Calculus we deal with the way in which one quantity
varies with another when the change in the latter is ultimately very small, or
more properly, with the rate ofchaAge of one quantity with another, as also
other allied problems.'

In these investigations we shall be dealing with the relations between
pure numbers which represent the magnitudes (with proper signs) of the
quantities, and not with the concrete quantities themselves, so that the
results will be general in nature, applicable to any pair of interdependent
quantities under similar mathematical conditions.

In the following discussions we shall be concerned with thesystem of
real numbers only, meaning by real numbers, zero, integers, rational and
irrational numbers, positive or negative.

2.2. Preliminary Definitions and Notations.

Aggregate or Set: A system of real numbers defined in any way whatever
is called an 'aggregate' or . 'set' of numbers.

Illustration The aggregate of positive integers; the aggregate of all
negative rational numbers; the aggregate of all real numbers positive or
negative; the aggregate of all rational numbers from —3 to +7; the aggregate

I	 I	 1	 1	 I	 1
of numbers - . - . - . - . - . - ' etc.

I	 —2	 3	 —4	 5	 —6

While investigating problems of this type, Newton (in England) and
Leibnitz (in Germany) were independentLy led to the investigation of the
principles of calculus, towards the close of the seventeenth cenflo-11. The
principles of Calculus in some form, were also known to the Hindus in
India much earlier.
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Variable: Let  be a Symbol used during any ia III e mat ical investigation,
o which may he assigned any numerical value out of a given set of real

numbers. Then xis called a 'variable' or a 'real variable', and the totality of
the values of x constitutes what is called the domain of x.

Illustration: In the expression x !. x may be considered a real variable
whosc domain is the aggregate of positive integers.

Note. Variables are usually denoted by latter letters of the alphabet, such as
X, y, z, U, V, W, g. It, etc.

Continuous Variable: If x assumes successively every numerical value
of an aggregate of all real numbers from a given number 'a' to another
given number 'b', then x is called a 'continuous real variable'.

The donmain orinterval (as it will be sometimes called) of x in this case
is denoted by a, b] or a 15 x < I;.

If t be omitted front 	 domain, it is indicated as a < x < b

III last case the domain is said to be open at the left end, whereas
the domain a !^ .v < b is said to be closed. The interval a <x < b is open
at both ends, a and h being both excluded horn the domain of possible
values of x.

Illustration : III 	 expression	 /T)i- -i- 3), x is a continuous real

variable whose domain is —3!^ x !^ 5; again, in ,the real

variable x has the interval —2 f^ x <'1 . lii sin -i x, the interval of x is

—l:5x<l.

The domain of the variable x in any expression containing x, as in the
above cases, consists of those values of .r for which the expression has a
definite real value.

The interval [a, bj is very often graphically represented on the x-axis
by means of the length bounded by the two points A (x = a) and B (x = b).

	

() A	 Ft	 (
Fig 2.2.!

The length of the interval [a, hj is obviously AB = OB - OA = b - a.
Constant: A symbol which retains the same numerical value throughout

a set of mathematical operations is called a constant.

Note. Constants (other than numerical constants like 2, -3, e, it , etc.) are
usually deno ted by the earlier Jciicrs of the alphabet, such as a, b, a, 13 . etc.



FUNCTIONS	 .	 17

Absolute Value : By absolute value of a quantity x, as distinguished from
its algebraical value, we mean its magnitude or numerical value, taken with

a positive sign. It is represented by the notation I x I which is =x. 0 or -x

according as x>,	 or <0.
From the very definition the following results are apparent, viz.,

(i) I a ± b	 a I + b I or more generally,	 -

Ia±b±c± ...... l:5laI+lbI+lcI+..........

(ii) Ia±bI 2^ ja - bI, ie., I jal - IbII.

Illustration: I_2l2,l6l6.I_2+6'l< 2+6,

1 - 2-61=2+6,1 - 6- 21 >6 - 2,12-61 = 2- 6, etc.

Note., Meaning of the symbol Ix - al<o.
Sincelx-al<5, ifx>a,x-a<S, i.e..x<a+6;andifx<a,

a-x <5, i.e., a -ö <x. Hence, combining the two, we see that

I x-al <5 means a-S <x< a+5. Similarly,I x-al :55 means

a-5!5x:5 a+S. Symbol 0<lx-a!58 means a-3:5x5 a+S but

x*a.

Thus, j xj <8 means -S <x <5.

Functions: By afunc:ion ofx definedfor a given domain, is understood

a quantity which has a single and definite value for every value of x in

its domain. [See note 1.1

In other words, "If x and y be two real variables so related that,

corresponding' to every value of x within a defined domain, we get a

definite value of y, the,i y is said to be a function of x defined in its

domain."

In this case, the variable x, to which we may arbitrarily assign different

values in the given domain, is referred to as the independent 'variable (or,

argument), and  is called the dependent variable (or.function).

[See note 2.1

We shall generally denote functions of x by such symbols as

f (x), V (x), F (x), 0(x), etc., where the mathematical forms of these

funcitons may or may not be obtainable.
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Note 1. When an expression or equation which defines a function givs
two or more values of the function for each value of x, we call the function
multiple-valued. The definition given above refeçs to a single-valued
function with which we are mainly Concerned in all mathematical
investigations. A multiple-valued function, with proper limitations imposed
on its value to be used in any particular investigation, can in general be
treated as defining two or more different single-valued functions of x; e.g.,

y=sin x(—l!5x!5l) can be broken up into y = sinx,

where(i) - . -it ^ y :5

(ii) I n:5y!57t,

'fit 5 )' ^ 4t, etc.:

again y 2 = x can be broken up into y = +,Fx and y = -, and so on.

More generally (without restricting to single-valued functions only).
a funciton of x may be defined as follows:

If two quantities x and y are so related that, corresponding to

values of x, there are values of v, then y is said to be a function of x.

Note 2. If y be a function of the variable x, it will generally be open to us
also to regard x as a function of y by virtue of the functional relation
between x• and y, the proper domain of y being taken into account in this
case, because it may so happen that the domain in which y is defined is not
the domain in which x is defined. For example, y =1FX can be written as

x = y 2 , the domain of xin the former relation being x,̂ 0, and  that of y in
the latter is the aggregate ofall real numbers, positive or negative.

In the latter case, y will be the independent variable, x the dependent
one.

Note 3. A function may be undefined (i.e., may not have a definite value) for
some particular value or values of x in a given interval. In this connection
we may make the following remark:

a 
Division by zero (symbols , ) is undefined.

The quotient of two finite numbers a and b (viz., ) is defined as the

definite finite number  such that a = bx. Now, obviously, in the division,
zero value of b is excluded: for, if b = 0, then a ( = bx) = 0, and x can be
any number. Hence, the above definition rules Out division by zero.

Therefore, forms , 	 are undefined.
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The following simple illustration show' how division by zero leads to
fallacious results.

Suppose, x=y(x*0. y*O), .. x2=sy.

x2—y2=xy--y2

or, (x+y)(x—y)rry(x—y).

Hence, dividing out by x - y, x+ y = y, i.e., 2y = y, or 2 = 1.

The fallacy is due to the fact that we have divided by x - y which is
equal to zero.

Similarly, the assumption =1, on the basis that anything divided by
itself is 1, leads to fallacious results, as shown below.

0	 03x0 0
3x—=3x1=3; again, 3x—=----= —=1, .. 3=1.

0	 00	 0
From the above remarks, it will be apparent that

x2-25

	

the function f(x) = 	 is not defined for x = 5;
x-5

the function f(s) =sin Isin! is not defined for x = 0; etc.

Note 4. lff(x) denotes a certain function of x, then in casef(x) is given by

a mathematical expression involving. thenf(a), i.e., the value of the function
for x= a, may, in general [but not always, as explained in note 3 above, and
also in (iv), Art. 2.4], be obtained by putting a forx in the expression for fix).

	Thus, If f(s) = sinx,	 f(0) = sin 0 = 0:

If f(x)sx2 -5x+1, f(l)=-3, f(—l)=7;

If f(x)=x 2 , f(x+h)=(x+h)2	 2xh + h 2 ; etc.,

whereas, If f(x)=x cos !, .f(0) isundefined.

2.3. Graphical representation or functions.

Let  =f(x) be a real valued function with domain A (c 9 1 ). Then the
graph of the function y =f(x) is defined to be the set of all points in the

plane with cartesian coordinates (x, f(x)). where y = f(x), XE A.

Taking the straight line X OX ,with origin 0 on it as usual, to represent
the real variable x, the value of the function, y of(x), may be represented

parallel to the line rOY drawn at right angles to X'OX , as in ordinary
graphs. Corresponding to every value of x (in the assigned domain) the
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point is plotted whose ordinate gives the corresponding value of the
function. The assemblage of the points, which may or may not form a

continuous line, represents the graph of the function.
In drawing the graph it is not necessary to know the exact mathematical

relation between x and  (which may or may not be obtainable). It will be
sufficient if we know the definite value of y corresponding to every value
(at least a large number of values) of x in the defined domain.

The graph at once presents to the eye the way in which the function is
related to, and changes with the argument.

2.4. Some remarks on functions.

From the very definition the following points should be clear:

(i) It is not essential for afunction lobe expressible by mathematical

form always. F example, suppose x hour after noon on a certain day, the
temperature of a patient is Tdegrec. Now, to each value of x (up to a certain
number, depending on our contemplated period of observation), there
corresponds a definite value of T. Hence, Tis a function of x by definition.

But T cannot be expressed analytically by a mathematical expression in
terms of x. Nevertheless, we can draw a graph which is the temperature
chart of the patient, giving an idea how Tchanges with the time x. For other
examples, see (vii) of the next article.

(ii) In some cases a function may have different mathematical forms

for 4ifferenf ranges of its domain of existence; for illustration, see (v) of the

next article.

(iii)A function may be undefined fpr some value or values of the

argument, as has already been remarked and illustrated in note 3, Art. 2.2.

Also, every function Cannot be defined in every interval; thus, sin-' x cannot
be defined in the interval (2, 3), for sin-' 2 has no meaning, there being no

angle whose sine is 2. 	 -

(iv)A function may be defined arbitrarily. For instance, we may define

a function as

f(x)=x 2 when x<O,

f(o)=3.

f(x)=!x when x>O.

The function is thus definitely defined for all real values of x.
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(v) The functions x -25 and x +5  are different functions. The
x-5

former is undefined at x= 5 , and so its domain of existence is the aggregate
of all real numbrs excepting 5 for the arguement x. The latter exists for all
real values of x. Hence, though for other values of x the two functions are
equal, there is a point of distinction at x = 5.

x2—

	

A third function might be defined as 1(x) 
=
	 25 whenx # 5,

and f(5)= 20. Then the function is again different from either of the first

two. It exists for all real values of x including x = 5, but at its value is

different from that of the second function x + 5.

X2_25
If we define a fourth function by saying that 1(x) 

=	

-	
when

x * 5, and 1(5 ) = 10, then this funétion is identical with the function x + 5.

2.5. Examples of functions.

Below is given a number of examples of functions of a variety of types,
with their graphs in certain cases which will help to form a clear notion
about functions and will further elucidate the remarks of the previous article.

(I) Analytical functions like x 2 2 x + 
7 , etc. • or more generally,

X2 +9
polynomials in x of the type f(x)=— a 0 x" + a 1 x` +.. . . + a,, x + a,,

(where n is a positive integer), or rational algebraic functions of the type
P(x)

7) , where P (x) and Q (x) are polynomials.

The domain of these are generally the set of all real numbers; in the last
case the zeroes of the denominator are excluded, for, the function is not
defined at these points.

('ml) f(x)=x when x>0

=0 when x=0,	 B	 r

=—x when x < 0.

The graph, as shown in Fig 2.5.1, consists

	

of two lines QA and 37B which bisect the x'	 o	 x

angles LXOY and ZYOX' respectively.

This is also the graph of the function

f(x)=xI.	
Fig 2.5.l
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(iii) f(x)=,fi

x'	 x
0.

Fig 2.5.2

f(x) is defined for x = 0, and all positive values of x; the graph is a
continuous curve (parabola ) in the flu-si quadrant.

(iv)f(x)=x!

or, f(x) = sum of the first x terms of _- + 	 +	 + .....

The functions are defined only for positive integral values of x.
The graph in each case consists of a series of isolated points.

(v) The height y from the ground, at a time x. of a perfectly elastic ball
originally dropped from a height h.

Y

x•or.3r	 5J

Fig 2.5.3

Here y is defined for all positive values of x, but expressed by different
mathematical terms for different ranges of the values of x.

Thus, denoting the time of fall (from start to first impact).

i.e..	 J2hfg by x 1 ,	 -

y = h—gx 2 , when 0 15 x 5 Xu (i.e., before first impact),

y=(x—xj)f--g (x—x 1 ) 2 , when x 1 < x!53x1
(i.e.. between first and second impacts),
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y = (- 3x1 )Iij - - g (x-3x 1 ) 2 , when 3x 1 < x :55x1

(i.e., between second and third impacts), etc.

The graph, as shown, consists of a series of parabolic arcs, on the
positive side of the x-axis.

x2
(vi) y

X

For x * 0, y = x ; for x = 0, y is not known (undefined).

A

B

Fig 2.5.4

The graph is that of the straight line y = x, with the origin left out.

(vii) y = (x 1, where [x] denotes the greatest integer not exceeding x.

Foi05x<1.y=0;	 1!5x<2,y=1;

2 < x < 3, y = 2

—1!5x<0, y=—l;

—25x<-1, y=-2;etc.

I

IH.
—2-11	 x

2 3

Fig 2.5.5

Thus, the graph consists of parallel segments of lines in which the
right-hand end-points are left Out.
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(viii) y = x sin

Here v is not defined for x = 0. Thus, the domain of x is the aggregate
of all real numbers except 0. Whetherx is positive or negative as the numercal
value of is very large, the value of yapproaches I, while always remaining
less than I.

The graph shown in Fig 2.5.6, which is Continuous everywhere
excepting at x = 0, where a point is missing on the graph. Near 0, on either
side, the graph has an inifinite number of oscillations with gradually
diminishing amplitude. The graph is comprised between the lines v = x and

Y = -x.
(ix) Functions like e', log x, sin x, cosx, sin x,cos x, etc., which

are not algebraic functions, are called Transcendentalfunct ions. For graphs
of first two, see Art. 19.9, and for some others see next page, i.e. Fig 2.5.7.

2.6. Bounded functions and their Bounds.

Let f(x) be a function defined in the interval (a, b). If a finite number
Kcan be found such that f(x) :5 K for every value of x in the interval,
then f(x) is said to be bounded above in the interval.

Similarly, if  finite number k exists such that f(x) 2: k forevery xin
the interval, then f(x) is said to be bounded below

If 1(x) is bounded above and below in the interval, then its said to be
simply bounded.

If f(x) is bounded above, then it easily follows from Dedekind's Theorem
that there exists a definite finite number  such that M 2! 1(x) for every
value of x in the interval, but e being any pre-assigned positive quantity,
however small, there is at least one value of x in the interval for which
f ( x) > M - E. This numborM is called the upper bound of the function

in the interval.
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In a similar way, if f(x) be bounded below, then there exists a definite

finite number in such that in 15 f(x) for every x in the interval, but given

any pre-assigned positive number E, however small, there is at least one

value of x for which f(x) < m + e. This number in is called the lower

bound of f(x) in the interval.

We know, sin x, cos x are bounded functions in the interval [-p, p1, the
upper bounds of both being 1 and their lower bounds being —1.

	

y	

x

Ph

Fig 2.5.7
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- For sin x, M = 1; now, taking £ 	 , we can find at least one value,
2t if 	 Isay ,of x, such that sin > i - = Other values of xcan be

obtained from tables, for which sin x > -. The function defined in

Ex. (v), § 2.5 is a bounded function in the interval [0, co), the upper bound
being h and the lower bound being zero.

For the interval 0 :5 x < 2., tan x has the lower bound zero, but no

upper bound. For the interval - -< x <- 0, tan  has no lower bound,
but its upper bound is zero. ln the jnterval -- :5x < !, tan x  has neither
lower bound nor upper bound. Thus we see that a function may have
different upper and lower bounds in different intervals.

The function X2 + 3x -t- 5, in the interval I 5 x :5 2 lies between 9
and 15; so its upper bound is IS and the lower bound is 9.

	

The function f(x) = /_
2 +x

	is not bounded above in the
y(5—x)(x-3)

interval 3 < x < 5, in  which it is defined.

Let x = 3 + e. where £ .is a small positive number.

.F 5+e	 F5
 =	 > I	 > f— , which can be

y(2—e)e	 2e	 V2e
made greater than any positive quantity by taking C smaller and smaller.
Hence f(x) has no upper bound.

2.7. Monotone Function.
Let x1 ,- x2 be any two points such that x 1 < x 2 in the interval of

definition of a function f(x). Then f(x) is said to be monotonically
increasing if f(x):5 1(x2 ) and monotonically decreasing if

f(x1 )2: f(x2 ). Thus in O,!J , sinx is a monotonically increasing

function and cos x is a monotonically decreasing function.

Sometimes the following definition is used. If forrx 1 <

f (x1 ) < f (x2 ) then f(x) is said to be strictly monotonically increasing,
and if 1(x1 )> 1(x2 ) then f(x) is said to be strictly monotonically
decreasing.

In the interval' 0 5 x <oo the function e' is. a strictly increasing
function, since e 1, < e". when x 1 <x2.
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j	 3x+5In the interval 0 :5x < -, the function ftx) =

	

	 is a
2x+1

strictly decreasing function, for. f(x1 ) > 1(x2) when X 1 <

The example (vii) of § 2.5 is an example of a function defined in the
interval (0, 3), which is monotonically increasing but not strictly increasing.

2.8. Classification of Functions

(I) Even and Odd Functions

Let f(x) be a function defined in a domain D(o R) where D is such

that X  D - x  D. The function f(x) is said to be an even function

if f(—x) = f(x) ,for all x e  and 1(x) is called to be an odd function if

f(—x)=—f(x) for all XED.

The graph of an even function is symmetrical about the axis of y while
the graph of an odd function is symmetrical in opposite quadrants.

Every function can be expressed as the sum of an even an odd funtion.

H should be noted that inverse of an even function is not defined.

Examples: f(x) = x 2 , f(x) = cosx when x€ Rare even functions, for

f(—x) = (—x) 2 = f(x). F(—x) = cos(—x) cosx = P(x).

Again •(x) = 
X 3 , W(x) = sink, where XE R are odd functions, for

= (—x) 3 = — x3 = —$(x). V( —x) = —sinx = —W(x).

I) Periodic functions

A function 1(x) defined in a domain D is said to be aperwdicfunction

of peiod s if jibe the least positive real number such that f(x + jt) = f(x)

forall XED [Here, x+t€D,foral! xED].

f(x) = cos x, x€ R periodic function of period 271 , since 2n is the
least positive number such that f(x + 2n) = sin(x + 2it) = sin x = 1(x) ,for

all XE R.

(llfl Explicit and Implicit Functions

If D (ç R) be the domain of a functionf, we can express the function

as y =f(x),xED.	 ...	 (I)

If a function can be expressed in the form (1), the function is said to he
expressed explicitly and we say that the function is explicit.
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f(x) =	 +2.X+ lOx, X  IR, is an explicit function.

Now, let x, y be two variables where the relation between x and v is
expressed by an equation, say, 4(x, y) = 0, then it is called an implicit
function.

If x2 +y2 =a 2 , then (x, y)=x 2 +y 2 —a 2 =0 is an implicit
function.

Here, y=±Ja2_x2, —a^x^a.

So, we havç two explicit functions, viz.,

y1 =a2_x2, —a!5x5a

and y2=_.1a2_x2,_a:5x!^a

(IV) Parametric Function

Let x = f(r) and y =	 be two functions of the variable tin the
interval a <— 15 b.

By eleminatingi forn the relations .v = f(i), v 4(i) we shall have it
relation connecting x and v, i.e., y can be regarded as a function of x

Such functions are called parametric functions. If x = a! 2 , v = 2a, , we
can easily see that y 2 = 4ax i.e.,.y2 

— 4ax = 0, which is an implicit function
of x and y.

Here, x = at 2 , y = 2at together constitute a parametric function, a'
being called parameter.

2.9. Composite function Function of a function

Let y = f(u) be a real valuesd function defined in a domain D1 (ç R)

and u = g(x) be another function with domain D. where it = g(x) € D1 for
all x eD.

Here, f:D1 —9 R, g:D - Rare two mapping where the range of g i.e.,
g(D) is a subset of D1 Then the composite mapping f rag: D --> R can be
defined where (f o g) (x) = f lg(x) }, x  D.

This composite mapping is called the com/,osirefunci:on of two real
value functins y = f(u), u C D1 and u = g(x). u € 0 where g(D) ç D1

and the composite functions is given by y= I k(x)}. x€ 0 and so the
composite funciton can be called a function off i,nction.
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fog

Fig 2.9

2.10. Inverse of Function

Let f : A —+ B be a function defined by , = f(x). such that! is

bijective, i.e., both one-one and onto. Then, there exists as unique function

g:B-4A, such that f(x)=y4rg(y)=x. for all XEA an for all yEB.
In such case a situation g is said to be the inverse off and we write

gf: B -)A

1ff and g are inverse to each other. (fog) (x) = (go f ' (x) = x.

i.e., f(g(x)) = gf(x)).

Domain off	 Range of I

a

f

3.
Range of f'	 Domain off

Fig2.IO

2.11 Miscellaneous Worked out Examples.

Ex. 1. Show that 1(x) = log(x +	 is an odd function of x.

Solution: f(x)+f(_x)=log(x+1/i7)+IO(_X+/iT7)

= iog{(x+J_x+i7)}

=Iog{l+x -x}= log t=O

i.e.. f(x)=-f(-x)
Thus f 	 is an odd function of x.
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Ex. 2. Prove that any function of x, defined for all real values of x, can
be expressed as the sum of an even and an odd function oft.

Solution Let, 1(x) be any function of x defined for all real values of x.

We can write,

=t(x)+W(x), say

Now, as

x) = !{f(_x) + 1(x)) =

So, 4(x) is an even function of x.

Also, w(x) = !{f(x)_f(_x)}

= !{f_x) - f(X)1 = -! {f(x) - f(—x)} =

so that 119 (x) is an odd function of x.
Thus any function 1(x) of the real variable x can be expressed as the

sum of an even function and an odd function of x.

Ex. 3. (i) Define a Periodic Function.
(ii) Find the period, if any, of the following functions

(a) sin (ax);

(1') !cosxl;

(c) 2cos-(x-7t);

(d) sin 4x+cos4x.

Solution
(i) If f (x) be such that, f (x+k) = 1(x), for all values of .v within the

domain of definition off (.v), then fx) is called a Periodic Function, and
k is called its period. Here k is generally taken, if its exists, to he the
least number except 0.

(ii) (a) f (x) = sin ax

1(	 2n')
sins a . -	 -	 = ,in(o -t 21t) = slnav,

\	 'I
2it

Sill	 is
	 periodic Itiiictioii oF period
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(b)Here, f(x)=I cos xI=/=.!.(1+ cos 2x)

Since the function cos2x is periodic with period

2it 1i, 	 2 "— =it, l-(I+cos xl =1 cosxl
2	 12'	 /

is also a periodic function with period it.

(c) f(x)2 cos-(x_it)

(x it
=2cosi

3

x- 
x

= cos- + 3 sin—.
.3	 3:

Obviously, f 	 is a periodic function with period 67t.

() f(x) = sin  x+cos4 x = (sin2 x+cos 2	-2sin2 xcos2 x

= l_!.Sfl2 2x -+-cos4x
2	 44

since cos4x is a periodic function with period 2n 
it

= , f(x) is a

periodic function with period

Ex. 4. Find the domain of definition of the following functions

(i) f(x)=,i+J.T

(ii) f(x)=.J(3x-1)(7—x).

(iii) f(x)=f8+2x_3x'

(iv) f(x) =log (x2_5x+6)

I 4x-x
(v) f(x)=.log

5x_x2
(vi) f(x)=log 

I

(vii) f W	
I

B. P. 1993 1

C. P 1994]

I C. P 19961

C. P 1993, 2000, 2006]

[B.P 1995; c.P2007]

C. P 1997

C. P 2005]
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Solution: (i) f(1)=i+iT
Since f (x) is real, the values of x must be such that both

and	 are real quantities, which requires that (x - l) -eO and

(5-x)-aO

i.e., x2:1 and x:55.

So, domain of definition of fix) is 1!5x:55 or, 1 1,5 1

(ii) f(x) = (3x- l)(7-x)

In order that J(x) may be defined.

(3x - 1)(7 - x) must be non-negative.

i.e.. (3x- 1)(7-x)^:0

i.e.. either, (3x- 1) ^! 0 and (7- x) ^ 0	 ... (1)

or, (3x- i)!50 and (7-x):50	 ... (2)

From (I),

Again from (2) 	 and 75x

But these two relations cannot hold simultaneously.

So, the domain of definition of fix) is	 x!9 7

(iii) f(x) = Jx_3x2

For f(x) to be defined,

8+2x-3x2 ^:0,

i.e.; (3x+4)(2-x)^!0

i.e., either, (3x+4)>0 and (2-x)2!0	 ... (1)

or, (3x+4)!50 and (2-x)!50	 ... (2)

From (1) -5x:52.

Again. from (2)	 and x>2

But these relations cannot hold simultaneously.

So, domain of definition of fix) is - <- x 5 2.
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(iv) f(x) = log W  _5x+6)

fix) is defined for all real values of x that make x2 - 5x +6 > 0

or, (x-2)(x-3) >0
This inequality holds for all real values of x, except those that lie

between 2 and 3, including x = 2 and x = 3.

So, domain of definition of f(x) is all real values of x, except

2!5x<3.

(v) f(x) = log	

2
f(x) is defined, if log 

X- X 
>0, i.e., ^! lug l

or, 4x-x 2 >-3 or, v 2 -4x+3!CO or, (x-1)(x-3)<3

This inequality is satisfied if 0 < x < 4.

(vi) f(x) = log	 -

f (x) is defined for those values of x which make

5x-x 2 = x(5-x)>0
Domain of/tx) is 0 <x < 5.

(vii)f (x) 
=

I V I	 x
f(x) is defined, when I x 	 >0

i.e., xI>x
and this inequality is satisfied for all values of x < 0.

So, domain of definition of fix) is (- oc, 0) or, - <x <0.

Ex. 5. Show that the domain of definition of the function

f(x)=log— is -1< x< 1.
1+x

Also, show that for x1 , 2 E(-1,l); f(xi)+f(x2)f[2)

Solution	 log x is defined for positive values of x only,
l-x

fix) is defined only when	 >0

i.e., when both (l - x) > 0 and (I+ X) >0

or, when (l-x)< 0, and (l+x)< 0
3-
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These two sets of inequalities are satisfied for l< x < I.

Thus the domain of definition of fix) is (-I, I).

1_X1+x2

Now, 
f( '+XIX2

12 )= log	
l+x1x2

)	 i+xi+x2
1+x1x2

•= log (1-x1XI-x2)

l- X1l - v,log
l-x1 	 l-x2

=f(xj)+f(xj.

Ex. 6. Find lxid the domain and the range of the function f(x) = -.-	 x
I C. P. 1995, 2008 1

lxiSolution:	 Here, f(x) =
X

Obviously, fix) is defined for allreal values of x, except x = 0.
Hence the domain of fix) is —oc < x <=, except x = 0
Again, : i x i= x , whenx>0

= -x, when x < 0,

lxi
—=1 whenx>Oand 

lxi
—=-1 whenx<0.

X	 x

So that range of fix) is [-i, iJ.

Ex. 7. If f(x) = max. (x, .1W) for x> 0, where max. (a, b) denotes the

greater of the two real numbers a and b, find the value of f(c) i(J
for c>0.[C.P.1988]

Solution:	 .. f(x)= Max. (x. ±)

when c ^! I, f(c) = max. (C' 1) = 
c
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and when O<c<l, f(c)

•	 (1'	 (1 	 i
Again, f , yr Imx. , — , c)= 

--(
c'_)(c)

when c^ 1, f(c)f(!) {f(c)}2 2

and whenO<c<l, f(c)f(!)=(!)4.

EL 8. If f(x)=	 and c(*O) be any real number, show that

	

If(c)—f(—c)l=.	 fC.P. 19941

Solution: We have x = x, when x> 0

=-.x,,whenx<0

So, when c > 0, f(c) = I and f(—c) = —1

and I f(c)—f(—c)II1+1I'2	 ...	 (I)

Again, when c < 0, f(c) = —1 and f(—c) = 1

So, lf(c)—f(--011-1-112	 ...	 (2)

Combining (I) and (2), if c(* o) be any real number,

Ex. 9. If f(x) x +J x I. find f(3) and f(-3)	 B. P , 1995 1

Solution:	 f(3)=3+1313+36

f(-3)=3+I-31=3+3=6.

Ex. 10. If 2f(-)_f(x)r5x. find the value of

•Solution :	 We have, 2f()_f(X)5X	 ...	 (I)

Replacing x by -,

2f(x)_f(-!)=	 (2)
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From (1)and (2), f(x) 5x=—+ 10
3x

1	 1	 51	 l'\

	

f	
10

jx+–	 x+– 1+--
x) 3	 x)  (

3i x+ I–X

51(x+—l)'+2

3(x+!)

Ex. 11. (i) The function f satisfies the equation f(x -i- 'P') f(x) + f(y).

Show that

(a)f(0)=0,

(b) f(x) is an odd function.

(c) if x is an integer and	 (1) =a.  then f(x) =ax

(ii) Find the natural number a for which

f(a+k)=16(2"_l),

where the function f satisfies the relation f(x + y ) = f(x) f(y) for all

natural x, y and J(l)=2.

	

Solution:	 Given that f (x + y) = f (x) + f (y)	 ...	 (I)

(a) Putting x = y = 0 on both sides of (I),

f(0)f(0)+f(0), i.e., f(0)=0

(b) Putting y = –x on both the sides of (1)

f(0) = f(x) + f(–x)

i.e., f(0) = f(x) + f(–x), i.e., f(x) = –f(–x) . f(0) = 0

f(x) is an odd function.

(c) Again, putting x = y = I on both the sides of (1),

-

	

f(2)=f(l)-i-f(l)=2f(l)=2a	 [. f(1)=a

f(3) f(2+ I) = f()+f(I) = 2a+a = 3a
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If x be a positive integer, then

f(x) =f(I+x—I)=f(j)+f(x-1)=a+f(x—I)

f(x-1)'f(1+x-2)=f(i)+f(x-2)a+f(x-2)

Similarly, f(x-2)=a+f(x-3)=2a+f(x-4)

Thus, f(x)=a+f(x-1)2a+f(x-2)'3a+f(x-3)

=4a+f(x-4)

=(x—l)a+f(1)

= (x—l)a+a = axIf  he a negative integer, putting x = —y, where y is a positive

integer, we get
f(x) f(—y) = —1(y) [.* f(x) is an odd functiin

= -. ay = a (—y) = a x

Thus, when x is any integer, f(x) = ax.

(ii) Here, f(x+y)=f(x)'f(y)	 (1

Putting x=y1,

1(2) = f(l) . f(l) = 2 . 2 =22 	 f(1) = 2]

Putting x2, y 

f(3) = f(2) .1 (1) = 22 .2= 2

Similarly. f(4)=f(3).f(l)=23.2=24

and in general, f(n) = 2'

Now, ':	 f(a+k)=i6(2'_1)

f(a) • f(k) = l6(2_1) fio.n (1)]

or, f (a)[f(1)+f(2)+f(3)+...+ f(n)] = 16(2 -

or, f(o)[2+22+23+...+...+2]16(2_1)

M f(a)X2116(2'_l)

or, f(a)=8=2=f(3)

a=3.



38	 DIFFERENT/AL cALCIJUIS

EL 12. Solve: 4{x}=x+[x],

where {x} and [x] dcrnne the fractional and integral parts of a real
number x respectively.
Solution:	 lfx is any real number, x=xJ+(x)

4(x)=x+[xi

4(x)=(x]+ (xi +(xJ

or, 3(x) = 2[x]	 i.e., {x) =	 (1)

Numerical value of (x) is less than I. So, the only integral values of

[x] which will satisfy (I) are I and (–I).

So. {x)=-, when, IiiI=l

and (xJ – , when, Ix I= –1

Ex.13. If f(x) = cos (lgx), then show that

AX) .f(v)_-{f(!)+f(.*Y)}

Solution:	 . f(x)= Cos (log x)
f(x)f(y)=cos (log x) cos (log)	 ... (1)

and 4.E) + f(AY) = Cos{log(1)} + cos{Iog(Ay)}

logI i+log(xy)	 14:-l – log(xy)
_ty)

=2cos 
2	 2

(x	 'log– . xv)	 log–'-
=2cos-2—'cos y

2	 2

(kgx 2	(i	 I
-= 2cos	 - i . cosI –log—

.	 2	 )	 t,, 2	 y2

= 2cos (log x)cos(log y) [ 	 cos(–O) = cosO J
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f(x).f(Y)_f{f()+ f(xv)}

= cos (log x) cos(log y) - .2cos(logx) cos(log y) 0.

Ex. 14.Iff(x+3)=2x2 -3x+1.find f(x+1)

Solution:	 f(x+flf(x-2+3)

=2(x-2)2 —3(x--2)+1

=2x2-1lx+15.

Ex. 15. Find the range of the following finction.c

(i) f(x)= 
2 - cos 3x

• (ii) cos(2x—)+sin(2x—j)

(iii) log, sinx—cosx+3'I

Solution: (i) Y f(x) 2— cos 3x

or,!=2_cos3x	 -
y

or. cos3x=2---
y

—1!5cos3x:51,

y

or, 5y:51	 [y>O, . —1cos3x:511

Required range is [!, i].

(ii) Let y=cos(2x—)+ sin (2x—D)
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=.Jcos2x+_)

_1:5 Cos (2x+_)<1

,i.e., —,h.y:5

range is [_f - . .J•]

(iii) Let , y = 
1092 sin x—cosx+3,/

sin x — cosx+3J	 ( n\
2 y 	 =sin i x-- i+3

	

\	 4)

It
or, 2"-3=sinlx--

4

—l:^'sin(x—^1
4)

—t:52"-3<1

or 2!52'<4

i.e.. 2'!52'< 22

i.e., 1:^y!52	 range is [i, 2].

	

EL 16. Find the domain of 1(x) =	 +	 (B. P 20041

Solution: f(x) has real value if4+x^&and 9—x2!0.

i.e., x 2: —4 and x < 9

i.e., if XE (-4,o) and xE(—,9].

Now [-4, oo) fl(—o',9) = 1-4. 91.

Hence, the domain of f(x) is [-4, 91.

"f. 17. Find the domain of function 1(x) = 11
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Solution: f(x) will have real value if

(1)
2—Ixl

and 2—lx I* 0	 ...	 (2)

The relation (1) holds if

(1) 1^:lxI and 2>fxl,or,if(J1) l-Ix I!50,and 2-1xI<O

(I) iM!x and 2>IxI	 --

then -1-.g x!^1 and -2<x<2.

.e., XE[- I . 1 ) and x€(-2,2)

i.e., x eL-I, t]fl(-2, 2)

i.e.. x  1-I. I]	 ...	 (3)

(II) If 1-Ix I :5O and 2-jx

then I:g lxl and 2<lxI

i.e., lx 1>2

•	 i.e., x >2 Or, x < -2

i.e., x  (-o,- 2) U (4 o)	 ..	 (4)

Now (2)holds if lx I* 2, i.e., if x ±2	 (5)

From (3), (4) and (5) the required domain is

[-1,IJU(--°', -2)U(2,°').

Ex. 1& Find the domain of the function 1(x) = log(21_5)(x2 _3X-10).

Solution: f(x) is defined if.x2 -3x-10>O	 :..	 (1)

and 2x-5>0, 2x-51	 ...	 (2)

-Relation (1)holds if (x-5)(x+2)>0

i.e.,ifeither, (x-5)>O and (x+2)>O

or, if (x-5)<0,and (x+2)<O

i.e.,ifx>5 and x>-2,or,ifx<5 and X<2

i.e., i f x < 5 or x < -2

So relation (l)is valid if x€(5, o)U(—oo, -2)	 ...
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Again, relation (2)holds if x> i and x vE 3

i.e.,iI xE(, )-(31	 (4)

Hence the required domain is the common portion of (3) and (4),
i.e.,(5,o).

Ex. 19. Find the range of the function f(x) 
= log2 sin .x - cosx+ 3'I

Solution: Let yIog2 sinx-cosx+3,J

or, 2" =(.j_sinx-*cosx)+3

or, 2'-3=sin(x-)

Since for all real vaues of x

-l:5sin(x-):5l,	 -l52'-3:5I

or, 2:52 Y 54* 2 ' :52 ' :522 .'.l:5y!52. since the base is2>l.

Hence the raigc is [1.21.

Ex.20. Find the period of each of the following functions:

(i) cotf ,	 (ii) 3sinf+4cosf.

Solution: (i)	 cot(lt + x) cot x, , cotxis a periodic function of period ,t.

So, cot A is also a periodic function, the period being = 21t

(ii) sin(2,r + x) =.sin x, so sin x is a periodic function of the period

2x and hence sinf isa periodic function of the period

Again cos* is a periodic function of period 	 8n

Since 871 is a rational multiple of 41t, 3sinf+4cosf is a periodic

function, the period being the l.c.m. of 41t and 8n,i.e., 87t.

Ex. 21. Show that sin 3 x+cos3 x is a periodic function. Find the period.

Solution: sin-' X+COS3 x=-L(3sinx-sin3x)+-L(cos3x+3cosxi

= 4. 13(sinx 4-cosx)+(cos3x-sin3x)}
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Both sin x and cosx are periodic functions, period of each of the them
being 2it.

Again cos 3x and sin 3x are als&)eriodic functions, period of each of

them being 2f.
Now I.c.m. of 2n and	 is 2ir.

Hence 1(x) is a periodic function of period 2n.

EL22. Find the inverse of the function 1(x) log(x+.'/7i).

Solution Let y= log, (x+J7Ti).

then e' =x+'17i
, x2+1(e_x)2=e_2xc3+x2

or, e2-2xe'=l

or x =
2e"

•	 2I
Interchanging  and y, we have 	 (x) =-- = +V -e).

EXAMPLES-il

I. If y = 6 for every value of x, can y be regarded as a function of x?

2. If y = the number of windows in the house numbered x on a particular
road, is y a function of x?

3. Given 1(x) = x 2 — lOx + 3, find j(o) andf(-2).

4. If 1(x) sec x + cos x, then show that 1(x) = f(—x).

5. If 1(x) = b	
— a + a
	 b , then show that

b-a	 a - b

f(a)+f(b) = f(a+b).

6. If 1(x) = x 2 — 3x + 7, then show that

{f(+h) -f(x)}/h=2x--3+h.

7. Show that
I- tan x

() cos -	 is not defined for x = 4, r.sin x

(ii) Jx2 — 5x +6 is not defined for 2< x <3.



44	 D!FFhRhNT!A I. CALCULUS

x2-5x+6
(iii)

	

	 is not defined for x = 2.
x2-8x+12

Also find f(-5) and 1(6) in this case.

8. Draw the graphs of the following functions:

(i) y = 1 when x > 0.
= 0 when x=O,

=-1 when r<0.

(ii) y =x for x^1,

= 2 for x=1.

(iii) 1(x) = 1 when x is an integer,

= 0 when x isiiot an integer.

(iv)

(v)

(vi) y=x-Ix],

where [x] denotes the greatest integer not greater than x.

(vii) f(x)=Ji_(x_l)2.

(viii)f(x)=i-l.

sinsrx
@) f(x)=i-

stnirx

(x)

where the positive sign of the square root is to Ye taken.

(xi) 1(x)	 0	 when	 xI>1,
= 1+x when -l:5x5 0.

1 - x when 0< x :5 I

9. (i) Show that .f(x)=sec x, in the interval 0 55 x <fir, has the
lower bound 1, and no upper bound.

(ii) Show that f(x)=2x 2 +4x+6, inthe interval 0:5x:5l. has
the lower bound 6 and the upper bound 12.
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(iii) Show that f(x)=(
1

	

	
when 0<0<1 , —1< x <1

+Gx
	and n a positive integer, is bounded. 	 -

10. (i) Show that 1(x) =---- is monotone ascending for x > 0.
x+l

(ii) Show that

I	 1	 1
+—, x>0,

	

x+1 x+2	 x + n

is monotone descending.

(iii) Show that f ( X	 I + 

)X, 
x > 0, is monotone ascending.

11. Given the relation y 2 - 6y —.x + 7 = 0, which of the following
statements is true?

(I) The equation defines x as a function of y for all values of y.

(ii) The equation defines y as a function of x for all values ofx.

12. A taxi company charges one rupee for one kilometre or less from start,
and at a rate of (i) 50 paise per kilometre (ii) 50 paise per kilometre or
any fraction thereof, for additional distance. Express analytically the
fare F (in rupee) as a function of the distanced (in kilometre), and draw
the graph of the function.

13. Find the domain of definition of the following functions:

(i) f(x)= 1, whenx is rational.

= 0, when xis irrational.

—(u) f(x)= log 1 x—.
1+x

(iii) f(x)= 1--t .	 [C.P.1995]

(iv)
f (x)

= 
log 5x2 .
	 [C.P.1997]

(v) f(x)=	 .

(vi) f(x)= ,jjTj +	 .	 B. P 19931

(vii) .f(x) = log	 — 5x + 6).	 c.P 1993, 20001
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(viii) 1(x) = Fil__
(Jx) f(x)= log 

14. If the function! satisfies the relation f(r + y) = 1(x) + f(y), forall

real values of x and prove that:

(i)f(0)=O;

(ii) A-x) -Ax);

(iii) f(x) = ax, wherexis any integer and 1(i) = a.

15. If 1(x) = 2' (- ') for I :5x	 show that

fx)= !(i +	 + 4 log, 4.2

ANSWERS

1. Yes.	 2. Yes.	 3. 3: 27.	 7. (iii) ft; does not exist.

11. (I) True.	 (ii) Not true: true only for values of x - 2.

12.(i) V= 1, for 0<d!51;

(ii) F=1. torO<d!gI;
F=l+m. for m<dSui +1, where m isapositive integer.

13. (i) The set of all rational numbers;

(ii)(—Ll);	 ()_o.<x<oo, except x=0

(iV)O<x<5	 (v)-'..<x<O;

(vi) 1< x <5;	 (vii)altx,except 2 15 x :5 3

(viii) _1:Sx1,2<x<. -<x<-2;

(ix) i<x<.
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3.1. Intniduction.

The idea of 'LiMIT forms the most outstanding concept in Calculus
and plays an important role in the development of the subject. It is this
process of limit, or limiting operation, which marks the line of difference of
Calculus with Algebra, the latter being based upon the four fundamental
operations, viz, addition, subtraction, multiplication and division. The real
essence and strength of this subject, an important part of Mathematical
Analysis, lies in the concept of limit upon which is built the new and broad
structure of Calculus.

3.2. Liflsjtofan Independent Variable.

Suppose, x is a real variable which takes up different values
.v= 1 . 9, 1 . 99 1 . 999 i . 9999 1 1 . 99999 .,. it is obvious that as the
variables passes through successive values, the difference of x from a real
number 2, gradually diminishes and finally becomes and remains less than
any pre-assigned positive quantity, however small. We say that x
approaches or tends to the value 2, remaining always less than 2.

Again, we consider the values x=2 . 1, 2-01, 2 . 001, 2.0001,
200001,... etc. Here also the difference of the successive values of.r.
from the real number 2, gradually diminishes and ultimately becomes
and remains less than any pre-assigned positive quantity, however small.
In this case, we say x approaches or, tends :02, remaining always greater
than 2.

In either case, 
J x - 21 <C where e is a pre-assigned positive

quantity, however small, we may imagine and we write:

limit x—t2 or, liin x—,2 or, Lt x—,2.

33. Geometrical idea of the LImito1a Variable.
Suppose, the point A on the real number axis Xx represents the

real number x 2, while a point P represents a real variable x. Further, let
us suppose that the points A 1 , A 2' A ....... . etc. represent the real
numbers 19, 1 . 99, 1 . 999, ... etc respectively and the poiiits
B, B.,, B. ....... etc. represents the real numbers 2.1,2.01,2.001......

etc.
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2-0	 2+0

x'_l	 Ii	 A1A2A3AB3fi2R

Fig ill

The variable x gradually approaches towards the real number 2 by
assuming the successive values 1-9. 1-99, 1-999. ........ etc. and the
point P gradually approaches towards A from its efz side after passing

successively through the points A , A A - etc. .but it never meets

the point A: In this case, we say that the point 1' appioachesAfroni the left,

and denote it by the symbol x - a - U or, simply by x -9 a . Agair, let

us consider the sequence of numbers 2-1,2-01, 2 001 ...... etc. When
the variable x gradually approaches towards 2 by assuming the successive

values 2- 1, 2 . 01, 2-001 ...... etc., then the point P gradually

approaches towards A from the right side after passing successively thwugh

the points B ' B 2 B ....... . etc., bul it never meets the point A. In this

case, we say that the point P approaches A front right and denote by

the symbol x - a + 0, or, simply by x -9 a +.

Note 1. If x -4 a -0 (or, x - a .- ); the assumed values of x are always

less than a and the numerical difference between the assumed value of x

afld a, i.e., I x - al is less than any pre- assigned positive quantity, however

small, but xis not equal to a (x ;^ a).

Note 2. If x -4 a + 0 (or, x -->a + ), the assumed values of x are always

greater than a and the numerical difference between the assumed value of

.x and a, i.e., I x -a I is less than any pre-assigned positive quantity, however

small, but  is not equal to a (x * a).	 --

Note 3. The symbols: x -+ a is read as "x tends to a",

x -, a -0- (or, x -* a - )is read as 'x tends to  from the left"

and x -+ a + 0 (or, x -+ a +) is read as "x tends to a from the right".

3.4. Idea of Limit of a Function.

Let y = f () be a function of a real variablex. A question may arise,

what happens to the function f (x) as x - a 7
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We examine the case by an example. Consider the function defined as

•ollows:

- 4
1. f(x)= x-2 ,when x*2.

	

=3, when x=2.	 .	 •..	 (1)

Obviously, when x * 2. 1(x) = x + 2.

We prepare the following table showing values of x and 1(x), where

he variable x approaches 2 either from the left or from the right.

X
	 1 . 9	 1 .99	 1 . 999	 •	 2.1	 2 . 01	 2.0I)1

j$ 3 .9 3 .99 3 .999 .4-I 4•01 4-00I H,
It is clear from the above table that as x gradually approaches 2,

Issuming values either less than or greater than 2, and sufficiently close to

2, the values of f(x) gradually approach the number 4, or, in other words,

I 1(x) - 4 1, i.e.. the numerical difference between the value of 1(x) and
can be made less than any pre-assigned positive number, however small.

We write 1(x) - 4, when x - 2 or, symbolically

.L12 
f(x)=4

x 2 4or,	 LI	 =4.
-*2 x-2

2
It is interesting to note that Li 

x	
4= 4 does not necessarily

-.2 x-2
imply that f (2) 4.

In the example cited above, Lj x 2 ' = 
4, but 1(2) 3, i.e.,

.-.2 x-2

Li .f(x)*f(2)

2. If, on the other hand, we define 1(x) as

f(x)=X 
4 when x*2

x-2

	

=4. when x=2	 ...	 (2)

4.
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then. Li fx) = 4 and 1(2) 4, i:e., the limiting value is numerically

equal to the value of the function at the point in question.

	

Here,	 Li f(9=f(2).
-'• -22

	Further, if	 f x) 
= 

X 
- 4
	(3)

x-2

f(x) becomes undefined at x = 2, but as discussed earlier, Li f(x)= 4.

i.e., Li I (4 exists and has a finite value 4.

Thus, we see that the limiting value of a function at any specific point
is in no way dependent on the vMuc of the function at that point. The

distinction between Li f (4 and f (a) has been discussed in derails

and explained with illustrations in art. 3.6.

- The graph of the function .1(x) as defined in (1) is shown in fig. 3.4.1
and the graphical representation of thef(x) as defined in (2) is shown
in fig. 3.4.2 below.

. /

4	 (2,4)

3

1234

Fig 3.4.1 Fie 3.4.2

By the expression. 'the variable x approaches the constant number a'
or simply x tends to the value a', we mean that x assumes successive
valueswhose numerical differences from a, i.e., the successive values of

x - a 1, become gradually less and less, and I x - a I can ultimately be
taken to be less than any small quantity we can name or imagine (i.e., less
than any pre-assigned positive quantity, however small), and we denote
this by the symbol x - a.

Here the successive values of x may be greater than as well as less

!.ban a.
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If the variable x remaining alway greater than a approaches a such

that ultimately x - a i s less than any Ore assigned positive quantity,

however small (but x 96 a actually), then we say that x approaches or

'ends to 'a'from the right, and denote it by the symbol x -, m + 0 or

;imply by x -+ a+.

Similarly, when x is less than a always, and a - x is ultimately less

han any pre-assigned positive quantity, however small, we say thatx tends

o a'frorn the left, and denote it by x -9 a -0 or simply by x -9 a -

Illustration : When the successive values of x are I 9, I -99. 1 999 .

we say .	 2-0, and when the successive values of x are 2 I,201,

.001 ......we say x -9 2 + 0 . If the successive values of x are

2+!, 2+, 2-ti, 2+, 2+....,we say x-*2+.

3.5. Limit ofa function.

LI 1(x) When .v approaches a constant quantity a from either side

(but 9 a ) if there exists a definite finite number! towards which f(x)

approaches', such that the numerical difference of f(x) and! can be made

as small as we please (i.e., less than any pre-assigned positive quantity,
however small) by taking x sufficiently close to a, then I is defined as the

limit off(x) as  tends to a. This is symbolically written as Li f(x) 1.

Mathematically speaking, Li 1(x) = I, provided, given any pre-

assigned positive quantity e, however small, we can determine another

positive quantity 8 (depending on C ) such that I f( x) - I I < C for all

values ofxsatisfying 0<1 x - a I i5 S ,Le. whenever a- 6 f^- x < a+ ö,

but x * a.

E (i).Lt
x9 

6. For, if x = 3 + 81, Whether S be positive or
'-.3 x-3

x2-9 (x-3)(x+3) o(6+8)
negative.	 6 + 8	 and, by taking

• x-3	 x-3
•	

.
numerically small enough. the d i fference of -------- and fi can bemade

x - 3

As a panicu!arcasef(x) may remain always equal to 1 when xis sufficiently

close to (1.
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as small as we like. It may be noted here that however small 8 1 may be, since
0, we can cancel the factor x-3, i.e.. 8 between the numerator and

denomenator in this case. Hence, Li X 2
	

=6. But when x = 3, the
-.3 x-3

29
function X	 is non-existent or undefined, for, we cannot cancel the

x-3
factor x - 3, which is equal to zero in that case. Thus, writing

x2

x-3 , 
f(x)=6, whereasf(3)doe not exist orisundefined,-.j

Ex (ii). LixsinJ. = 0. For sin i , whatever small value x may have

provided it is not exactly equal to zero, is a finite quantity lying between + i

and - l, and sobytaking x numerically small enough (ji. sufficiently near
to zero), we can make xsin I numerically as small as we like, i.e.. .* sin J.

is less than any assignable quantity. Hence the limit is zero.

Here also the value of x sin . , when ,r is exactly equal to zero, is non-

exMtent.

Ex. (M). Li	 = —3. For, writing x= —l±ö. wecaà show that the
_.- j x+3

numerical difference of x	 an

	

x+3	
d —3 can be made as small as we like by

taking ö small enough..

x2 7

	

In this case the value of	 . when x is exactly = -, is also
x+3

available, and that is also equal to —3.

U1(x): The limit ofa function f(x),asx approaches the value a
from the right ( i.e. from bigger values), is that quantity 1,, (if one such
exists), towards which 1(x) approaches, and from which the numerical

difference of f(x) can be made as small as we please by making x approach
a sufficiently closely, all the time keeping it greater than ti. It is called the
Right-hand limit of f(r) as x tends to a, and is written as

Li
.1 -3 a + 4)
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Mathematically, Li f(x) = I I , proiided, given any pre-assigned
-	 I-tatO

positive quantity e, however small, we can determine a positive quantity

6, such that l f( x ) - Il < e whenever 0 < x - a :5 6, i.e..

a< x  S a+ö.-

Li f(x) is sometimes denoted by the symbol f( a+ 0).

E'. (Iv). Li	
1 

J = 0, as can be shown by writing x=2+6
,-.2-0 5+eJ

where 6 is positive, and then making 6 arbitrarily small when the denominator
becomes arbitrarily large.

Lt 1(x): Ina similar way, we may define the Left-hand limit of a

function f(x) as x tends to a as follows:

Li f(X)=121 provided, a quantity 12 can be obtained such that,

given any pre-assigned positive quantity C, however small, we can

determine a positive quantity 6, so that A X )- 1 2 1 < E 
whenever

0<a-x:5-6,i.e..a—ö!5x<a.

Li f(x) is sometimes denoted by f( a - 0).
- 0

I	 •i	 i
Illustration: Li	 =

201

	

	 -.1-	 -
5+e'-1 

1

As x -, 2-0, x —2 is negative, and becomes numerically smaller and

smaller, so that e	 approaches zero in this case.

It may be noted that when Li f(x) = Li f(x) , each of these is
x-.n,+O	 x-,a-0

equal to Li f(x) . Conversely, for Li f(x) to exist, each of Li f(x)
N_eu	 s-ta	 s-eD, 0

and Li f(c) must exist, and musu be equalto one another, and this

commonvalueis Li f(x)

If Li f(x)	 Li f(x) ,or even one of them does not exist, then
i-i40	 s-ta-fl

Li f4 x) does not exist.
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E	 (v). Ln the above example (iv),

since LJ{'	
}	 5+e }

does not exist.

Ex. (vi). Again, consider Li x2

	Here, Li x 
2 =2 2 = Li	

2	 [See Art. 3.13, Ex.lJ
x--,2+0	 .2-0

Li .x , = 2=4

Ex. (vii). Consider f( x) =

Here,	 Li f(x) does not exist, since, for values of x< 2 (however

near to 2 ), f(x) does nof exist.

Li	 does not exist.

3.6. Distinction between Lt f(x) and

The statement Li f(v) is a statement about the value of f(x)

when x has any value arbitrarily near to a, except a. In this case, we do not
care to know what happens when x is put equal to a. But f(a) stands for
the value of f(x) when x is exactly equal to a, obtained either by the
definition of the function at a, or else by substitution of a for x in the
expression f(x) ,when it exists.

Note. Five distinct cues may arise.

(i) f( a) does not exist, but Li f(x) exists.	 -

This is illustrated by Ex. (I) ofArt. 3.5.

(ii) f( a) exists, but Li f(x) dues not exist.

Suppose	 f(x) = I	 when x > 0,

	

=0	 when x=0,

	

= -I	 when x < 0.



LIMIT

Here,	 Li f(x)= I; because when x, remaining greater than 0,

becomes arbitrarily near to 0, f(x) always remains equal to I and hence

f(s) - 11, being = 0, is < any pre-assigned positive number E 1 , for any

positive value of x less than 8, however small.

Similarly, Li f (x) = - 1 ; because when x, remaining less than zero,

becomes arbitrarily near to 0, f(x) always remains.equal to

Since Li f(x)	 LI f 

Li f(x) does not exist; but, by definition, f(0) = 0, here.

(iii) f(a) and Li f(s) both exist but are unequal.

Let	 f(x)O	 for .v ;6 0,

= 1 for x = 0.

As in (ii). it can be easily shown here that	 -

Li f(s) =0	 Li f 
x-,0+O

Li .r(x)= 
0. But, by definition, j(o) = I.

(iv) f(a) and Li j (x) both exisf and are equal.

This is illustrated by Ex. (iii) of Art. 3.5.

() Neither 1(a) nor LI f (x) exists.

Let	 j(x)sin-.

Here, Li sin-1- does not exist [See E. 4, Art. 3.131 and j(o) does

not exist, as it would involve division by zero, and is otherwise undefined.

3.7. Symbols + and -
If a variables, assuming positive values only, increases without limit

(i.e., ultimately becomes and remains greater than any pre-assigned positive
number, however large), we say that x tends to infinity, and write it

as x-9°=.
Similarly, if a variable x, assuming negative values only, increases

numerically without limit (i.e., —x ultimately becomes and remains greater
than any pre-assigned positive number, however large), we say that steeds

to minus infinit y and write it as x -4 -



56	
DIFFERENT/AL CALCULUS

Note. It should be borne in mind that there is no number such as 00 or -
towards which x approaches. The symbols are used only to indicate that
the numerical value of x increases without limit.

3.8. Function tending to infinity, : Li f () = ± o.

As x approaches a either from the right or left, iff(x) tends to infinity
with the same sign in both cases, then we say that, as x tends to a, tends
to infinity', (Or loosely, the limit off(x) is infinite), positive or negative as
the case may be; and write it as Li 1(x) = 0o or

If, however, as x approaches a from both sidcs,f(v) tends to infinity
with different signs, we say 'does not possess any limit as  tends to a'.

The formal definitions are as follows:

If corresponding to any /)'e-assgned p051/ut' quantity N, however
large, we can determine a /os,!i ye quantity d, such that f(s) > N whene,'e,
0< Ial !^ 5, Wesay

Llf(x)=00.

I! in the abo ve cjrc,,,,,c,0,,,.5 - f(r) > N whenever O<J s — a
wcs"	 Li f(X)=—oo.

Similarly, we may define the cases

.12 f(x)=oo,	 Li

LI f(x) = —oo	 Li f()
Illustration : Li	 =	 ii	 = oo .'. 

Lj ± =-o.o X2.-o-o 2 	-o

Li ! = ,	 Li	 =-O+O X	
,	 ..	 does not exist. In— 0 -0 x	 -i X

either case, however, f(0) does not exist,

3.9. Limit of a function as the variable tends to infinity: Lt r W.
x -,

As x, remaining positive, becomes larger and larger, if there exists a

According to some modern writers, this is described as 'f(xi becoming
infinitely large', and infinite limit is not recognised as a limit.



definite finite number I towards which f(x) continually approaches, such

that the numerical difference of f(x) and I can be made as small as we please

by taking x large enough, we say Li f(x) = I.

Mathematically, LI 1(x) 1 , provided, given any pre-assigned

positive quantity c, however small, we can determine a positive quantity

M, such that I 1(x)—I I < C for all values of .t> M.

Similarly,	 Li j( x ) 
= I', provided, given any pre-assigned

positive quantityC however small, we can determine a positive quantity M,

such that I f(x) -I' < C for all values of —x> M.

In a similar way, we may define the cases

Li f(x) = , Li f(x) = — oo,	 Li f(x) oo, etc.

Illustration: Li	 = 0, Li
2 

—0,
X

	

Li e =1,	 fix 2 =00 etc.

3.10. Fundamental Theorems on Limit.

We give below some fundamental theorems on limit which are of frequent

use.

If Li f(x) = 1, and Li 4'(x) = I', where I and 1' are finite

quantities, then

(i)	 Lt {f(x)±Ø(x)} = I ± 1'.

(d) Li {f(x)x(x)} = W.

(iii) Li 
lP

X-1 =!_, 
provided I' * 0.

.'-.	 (x)J	 I

(iv) Li F{f(x)_ F{ Ii
,
 f(x) }, i.e., = F(l),

where F(u) is a function of u which is continuous' for u = I.

See next chapter.



58	 DIFFERENTIAL CALCULUS

(v) If 0(x) < f(x) < v, (x) in a certiain neighbourhood of the point

V and Li 0(x) =1 and Ii çtt () = 1 .then Ii f(x) exists and is

equal to 1.

In particular, if I f(x) I < g(x) i.e., f( x) lies between —g (x) and

g(x),andif Li g(x) =0, then Li 1(x) =0.

(vi) If Li 0(x) =	 and Lt '(x) = 1 2 andif0(x)<(x)

in a certain neighbourhood of a except a, then 1 1	 12

Proof:

(i) Since Lt f(x) =1, Lt 0(x) = I', we cart, when any

positive number C is given, choose positive numbers 6 8 2 such that

f(x) — iI < -fe whcno<lx — aI ^ (5,	 (I)

10(x)- 1' ! <e whcno<j x — a I 15 6 	 (2)

Let  be any positive number which is smaller than both 6 and &, then

the inequalities (I) and (2) both hold good when 0 < x - a j !^ 6

Now {f(x)-1}+{0(x)-1'}I ^ f 	 )- 11+10(x)-I'!,

I{f(x) + 0(x)}—{i+1'}I < 1+ 	 i.e.,< C,

when 0<1x—aI i5 5

by definition, 1+1' is the limit of{f(x )+ Ø(x )} as x -, a.

Similarly, itcan be shown that I - I' is the limit of { f( x ) - 0 (x ) }

as x —9 a.

Hence,	 u {f(x)±ç(x)} = 1±1'.

(ii) Wehave f(x)çt(x)_lI'={f(x)—I}{O(x)—I'}

+ I'{f(x )—i}+ i{Ø(x )—i'}.

I i( x )o ( x ) -11'	 f( x ) — J ib (x ) -'

+i I'IIf( x )— I ! + i/Ii O(x)-1'j-	 ...
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Now, e being any pre-assigned positive quantity, and choosing any

other positive quantity k,
e	 e

k,
3111 ' 311'1' 3k

are known positive quantities, and

since Li f(x) =1, Li 0(x) =1',

we can choose positive numbers	 62 , 8 3 , 6 4 , such that

< k	 when o< I x - a I ^ ö

when 0<Ix—aI:562,

If(x)'I<	 when 0<lx—aI!5 83,
31 

E

and Io(x)-l' <3 1 1 1

 vhen O<Ix_al	 84

Hence, if 8 be the least of the positive numbers 	 62, 8 3 , 8 4 all

the above four inequalities hold when

0 < Ix — a ^ 6.

and so from (I),

jf (x )Ø (x 	 < k.	
+	 +

i.e.,

	

	 i.e.,<E when O<jX_al!5Si

by definition, Li{f(x)P(x)}= Ii,.

	1(x) 1	 !'{f(x)—I}—l{c(x)—l'}

q
(in) We have	 -- =

x	 1'

< I 1 'IIf( x )_ h IH h II p(x)—I'I
-	 i'j(x)	

...	 (I)

Now, since Li 0 (x ) = 1' ,there exists a positive number 8,such

that l O(x)_l'I<II'I when 0<1x-al	 5 ,for 1'* 0.

I i'I — j*( x ).l :51 ø(x)-/'I <

or,	 IØ(x)I > #j! ' when	 5 .5,.	 ...	 (2)
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Also, there exist positive numbers 8,, 5, such that

If( x )-1l<'	 for 0< l x — a I 5 S

10( x )—l'l< e' for O< I x—a l 5.c5 3 	 (3)

where e' is any chosen positive number.

IfS be the smallest of 5	 , 5 3,, then it follows from (1), (2), (3)
that, when 0 < I x - a :5

f(x ) 1 I<EL6

Now c being any pre-assingcd positive number, if we

E=c{I}2I{I1j+I1I } .weget

If(x) - lj < when 0 <t x — a l 15 5.

Hence, Ij 1(x) =
(x)	 1'

(iv) Let a = 1(x); since F(u)jscontinuous for u =1.

when lu-1I:55,

i.e., when jf(x)—iJ<51	 ..	 (It

Again, since f(x)-+I as x -40,

Jf(x)_lj<Sj when O< Ix—al :55 	 ...	 (2)
Combining (1) and (2),

F{f (x)}—.p(1 ) I .ce when 0< Ix - al :5 8,

i.e., 
K -ta
Li	 F{f(x)}=F(l)

(v) Assume that the inequalities (,(x)< 1(x) < ( x) are satisfied

when 0< l x_a I <Si.

Since Li Ø(x)=!,lØ(x)_1I< C when 0<Ix—aI!552.

i.e.. l—e<Ø(x)<1+e when 0<Ix_at5 ES,.
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Similarly,I—e<(x)<l+e when O<Ix- al :5 £53.

1(8 be the smallest of the numbers o5j, 32, 5 4 ,then all the above

	

inequalities are satisfied when 0 < I x - a	 8. Under these conditions,

i—c <0(x)< f(x).

Also

i.e., lf( x ) - 1 1 <c when O< Ix—al

f(x)—+1 as x —,a.

(vi) Let us suppose that the inequality 0 ( x ) < iy ( x) holds good

when 0<Ix—aI<51, i.e., in the neighbourhood

	

a-8 1 <x<a+6 1 , x*a,	 •..	 (1)

If possible, suppose I I > 12.

Let us choose e = 4 (i - 12 ), a positive number.

Since ,Lt
,	

()= It

I0(x)-1iI<e when 0<Ix—al :5 ö,

i.e.,1 1 - 6 <çb(x)<1 1 +C when a-4525xca+52.

—1 7 )<Ø(x) when a	 < a+82.

i.e., 4(I1+12)<0(x).	 .. 	 (2)

Again, since LI

1 2 —E<4((x)<1 2 +E when a-83!5v5a+63.

yt(x)< 1 2 • + 4(.1 I —ta),

i.e.,u,(x)< J1 ( 1 1 +1 2 )whena-8 3 !5xi5a+8 3	 (3)

Letö be thesmallestof the numbers 6 1 1 62, 45 3 ,then all the above

inequalities (1),(2),(3) hold good in the interval a—S 5 x S a +6.

from (2) and (3), 0(x)> (i, + 1 4 )> (x I.
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(x)>v(v)ina-55x5a+5,

which contradicts our hypothesis that i (x ) < i, (x ) in that interval.

Hence our assumption I I > 1 2 is incorrect.

l j 	 ' 1 1 	i.e., /	 :512.

Note. The first two theorems may be extended ffi any finite number of
functions. In languages, the first three theorems may be stated as follows

(i) The limit of the sum or difference of any finite number of/un ctions
is equal to the sum or difference of the limits of the functions taken
separately.

(ii) The limit of the/ - roduct of afinite number offunctioiis is equal to
the product of their limiiv taken separately.

(iii) The limit of 11w quotient of two functions is equal 10 the quotient
of their limits, provided the limit of the denominator is not zero.

As examples of(iv). we get

Lt log J(.v)= log	 Li	 tog 1, provided l;.O,

/i f(s)

Li ej(=e540
5-3 a

Lj {j(x) = { 0 f(X)}= 1", etc.

3.11.Some Important Lirnils.

	

0 IA sinx	
i- = I. wherex s expressed in radian measure.

-.o	 x
From elementary Trigonomctiy', we know that ifx he the radian measure

of any positive acute angle. i.e., 0 < x < tr ,then

Sin	 anA < X < t x ,Or, cos;	
sin 

X < -- < I	 . . .	 (I)
S

	

sin 	 i.e.,	 2 1

	

0<}--	 —Cos X,	 <2 sin —x

	

X	 2

Sec Das and Mukherjcc' Intermediate Trigonometry.
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But	 2 sin 1 	 x<2(x) 2 . 	 <

sin  I 2Hence, 0<l--<-x.
x

Now, since x2 —0 as x—*O+O , we get

sin x1

-0.0 (	 x )	
-. O,O	 X

Alternatively, noting that cos x -4 1 a x -, 0, we can conclude directly

from (l)that 
Li sin '-

= 1.
x

When - -fit < x <0, putting x = —z, we get 0< z <

sin x
Also.	

= in (—z) = sin 

,.inx	 sin Z
Hence. Li	 = Li

-.o-o x	 ..O+O Z.

Hence the result.

(ii) a)	 Li (Il 
+ -1- 

J = 
e (ii .- Co through positive integral

values).

I
(b)	 Li	 I	 =e.	 -

l	 x)

Proof: We have already seen that

Li (i+!
]
 = e, ii is a positive integer).	 [See Art. 5.121

Now, let x be any large positive number. Then we can get two

consecutive positive integers n, n + 1, such that

	

0	 X	 ii+l

and each being > 1, and as a + 1 > x n.

1+— I	 >1 1+— I >1	 or
H)	 t,	 x)	 t,	 fl+l)
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(+±(1+fl'>(1+±> +-
n ,)1	 ii)	 x)	 ni-I)	 /	 n+I

Now when X —' °°, fl -4	 also, and n being a positive integer,
/	 i_'•'	 I

both I I + — I and I I + - I	 -9 e, as proved before. Also,
fl)	 11+1)

—+ l and I + ---- —) 1. Hence the two extremes jn the aboven	 n+l

inequality tend to a common limit e, and so ( + -!-	 — e.
-

Lastly, suppose x = -p, where1, is a large posiIve number; then as
P —) 0O, X—'

Then 1l+)	
I 	

)P

P •,I	 p1
I-

= I I +	 (wlwre q = !' — I ).

	

'	 q)
Now, if p—) . q —,	 and hence

I
I
	

^q4l 1+-=(I, ,

 -	 1±-- -e.
	q 	 q	 q

Thus,	 [i+!J -'easx-3-.

Hence, we see that i	 +! ) = e.
—+- ( X

x being not confined to be integral here.

Cox Lt (1+x)' =e.

Proof:

In the above result, replacing v by 	 as x — t co, y —+ 0, and
we get

	

Ll(1+v)t'.	 e, or.	 tf(I+x)''e



6
LiMfi

(in) Lt .- iog(l +x)= I.

Proof: We have

Li ! log(l+x) = Li log(I+x)"

= log{ti(l + x ) 	 by3.8(iv)1

	

= loge	 1.

-I
(iv) U e'
	

=1.
•	 i-..	 x

Proof: Put e' = I + z.

Then	 x=log(l+z), and as x-+O,z---)O.

'-I	 _
Thus	 Lt e
	 = Li	

Z

-.O	 X	 -*O log( l+z)

=

i/ Lt-{log(l+z
I :•-•O Z

= ..= I.	 [lu' (iii)]

(v) Lt	 =1111110-na
-. s-a

for all rational values of it provided a is positive.

CAsE I. When n is a positive integer.

By actual division, we have

3" ,,-I	 ,-2	 ,,-_3 2
=x	 +x	 a+x	 a + .......

x - a

reqd. limit = Li (_i + x" 2 a + ......+ a_I)	 na"',

since the limit ofeaChOfthe n terms as x-a as a", and the limit of the

sum of a finite number of terms is equal to the sum oftheir limits (Art. 3.8).

5-
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CASE II. When n is a negative integer.

Suppose n = -m, where in is a positive integer and a * 0.

- a"	 x " - a fl"	 x"' -a'Then 
X - (I	 X - U	 5" a' x -a

	

Now, as x -+ a. the limiting value ofI
	 =1	

'-4- and

as x -* a, the limiting value ol

	

	 = in a	 , by Case I.
5-a

f- a"	 ILi

	

	 = --ma = -ma	 = nax-a

CASE III. When n is a rational fraction. 	 -
Suppose n = p/q, where q is a positive integer and p any integer, positive
or negative.

Let us put x"q y and o	 b

-	

y" - b" - 

x - a	 s-a	 y_b	 (ve_b(yby

Now, as x-+ a, x' ' -a 1 ,:), -h. Again, as)' b, the
limiting value of the numerator of the right side = ph P - I (by Cases / and
II ) and that of the denominator = qb "(by Case I).

Li 
	 = pb" = E,'- qi a"	 = na"'.s - a	 qb"	 q	 q

•	 When n 0. the limit is Li 
5	

= 0.
-a

(l+x)"-1(vi) Lt	 =n.
x

Proof: We have

Li	
+x	

Li= Li	 it)" -llog(l+x)
x	 •v-.O	 log (l + •r )	 x

	

= Li (l+x)"-1	
Li 

log( l+x)
-+o log(Ii-x)	 .v-.o	 x
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Now, put (1 +x)'= I +z. Then n log (l+x)10g(l+Z).
Hence,asx-40,log( I +z)-,OandSOZ-40.

nz
Thus, 

Li (l+x)-1 = Li

	

._o Iog(l+x)	 Z-0 log (1+z)

z-,O
	 log 	 )}]

=n/ Li {!log(1+z)}
z -,O Z

= n	 (by (iii)l.

Also,	
Li log (I + x)=
	 Lby (iii).

A

+ .v )" -
Hence,	 Li (I
	

=nxl = n.
A

This result also follows by replacing x by x + I and a by I in (v)

above.

3.12. Caucity's necessary and sufficient condition for the existence of a

limit.

The necessary and sufficient condition that the limit ii ((x)

exists and is finite is that, corresponding to any pre-assigned positive

number c, however sinai! (but not equal •o zero), we can find a positive

number 5 such that x 1 and x, being any two quantities satisfying

0< l x—a I :55, If(x1)—f(x2)I<

To prove that the condition is necessary, let Li 1(x) exist, and be

finite, and = 1 (say).
Then, given any pre-assigned positive number e, we can find a positive

number 6, such that

lf(x)- lk

when 0 < . 1 x - a < 5. II now x and s, be any two quantities

satisfying 0<I.—al	 8
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then

Ii (x ' )- I I  + I  ( 2)—i

<E+f ., i.e., <c.
Hence, the condition is necessary.

The proof that the condition is sufficient is beyond the scope of the
present treatise.

Note. In some cases even if we may not know the value of a limit beforehand,
we can determine by the above test whether a limit exists or not. Illustrations
of this are given below.

Ex. i. Show that Li cos .!. does not exist.
-4o	 X

In order that the limit may exist, it must be possible to find a positive
'\number 8 such that, x and x, satisfying 0 < x 15 8,

cos--cos--- <E
x I	 x2

where c is any pie-assigned positive quantity.

Now, whatever 8 we may choose, if we take x 1 =l?(2n,r) and
= 1/{(2n+l )r }, by taking n a sufficiently large positive integer,

both x1 and x2 will satisfy 0 <x:5 8.

But in this case,

Icos(lIx i )_cos(11x 2 )j r Icos2n,r_cos(2n+1),rI = 2,

a finite quantity, and is not less than any chosen e.

Thus, the necessary condition is not satisfied, and so the required
limit does not exist.

Here, the right-hand limit as also the left-hand limit are both non-'
existent.

Ex. 2. Show that Li-
	

does not exist.
-*O 2+e'''

Here, taking x 1 = — I/n, • 2 = 1/n, whatever 8 we may choose, by
taking ii a sufficiently large positive integer, we can make x 1 and x1 both
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satisfy 0 <I x I :5 6. But in this case,

1-	 I	 1=1 1 	
1 2+e	 2+-es

•1.	 I	 I	 I
=	 -	 >

	

2+e	 2+e	 2+e 	 2+e
which is a finite quantity and so cannot be less than any chosen € however

Thus, the necessary condition being not satisfied, the limit in question
does not exisk

Here, the right-hand limit exists and = 0, and the left-hand limit exists

and= 4.

3.13. Illustrative Examples.

Ex. 1. Find the value of L. x2.

By taking successive values of x, which always remaining less than
2 tend to 2, viz.. x = 1-9, 1-99, 1999.....we see that x 2 has the values

3-61,3-9601,3.996001.... which tend to 4, and we can make the difference
between 4 and x 2 smaller than any positive number however small by
taking x sufficiently near to 2. Hence, the left-hand limit is 4.

Similarly, by taking values of .x, which always remaining greater
than 2 approach 2, viz., x 2-1,2-01, 2.001.... . we see that x 2 has the

values 4 .41,4-0401, 4-004001, which continually approach 4. Hence, as
before, the right-hand limit is 4.

Hence, the value of the requied limit is 4.

Note. Exactly in the same way, we can show that Lt XA = a. where n
-	 i-3d

is an integer or a rational fraction (except when a = 0 and n is negative).

Ex. 2. Show that (1) Li sine =0;
e-.o

(ii) Li cosO=l;- -
0-30

(iii) Li- sin O= sin a;
O-.a

(iv) Li- -coso=cosa.
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(i) Since, from the definition of sine of a real angle 0 in trigonometry

with the help ofa figure. it maybe easily seen that sin 0-01 . sin 01
can be made less than any positive number C, however small, by making

101 arbitrarily small, it follows that Li sinO = 0
0-*o

(ii) Li (l-cosO)= Li 2sin 2 -9=2x Li (n 0xsinO)0-40	 0-.0	 0-0	 -

= 2x0 1 b (i) I = 0.

Li cosO=l.
0-)

(iii) sin O-sina = 2sin+(O-a )cos-(0+a).

As 0-a,	 0-ct)--,0,	 .. Li in 1(()

Also.	 ko(0x	 I.	 .. Li (sin0-sincx '=0,

i.e.,	 Li sin0=sina.

(iv) Since cosO - cos u. = 2 sin - . (a-- o) sin -1 	 a ), it follows, as

in(iii),that	 Li (cosO - cos(t )=o, i.e., Li cos 0= cos,'(0-.O	 0-.a
EL 3. Apply ( 5, e ) definition of limit to illustrate i/wi

Lt ()

Let us choose c=0.0J.

•I(2x2)_61<0.01if12x_81<0.0I,ie.,iflx_41.<O.005,
ie.,8 =0005. Similarly, if e =0•00l,5 =00005; and soon.

Thus, :depends upon E,i.e., the nearer (2x - 2) is to 6, the nearer
x is to 4. We have

	

.I( 2x-2 )-6<0.01	 if	 0<Ix'-41<0.005,

	

I( 2 x-2)-61<0 . 001 if	 0<Ix.-41<0.0005,

	and generally, (2x_2)_6 .ce if	 0<lx-41<+e.

Hence, 6is the limit of 2x-2 as x-4.

Ex. 4. Draw the graph of sin (l/x) and show that neither the right-hand

limit nor the left-hand limit exists as x tends tO mm
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When .x = 0,sin .! is meaningless'and hence its value is not known.

For all other values of .x, sin ( l/x) exists and may take any value from

-1 10 1. Thus, the graph is  continuous curve with a break at x = 0 and is
comprised between the lines y = I and y = -I.

As x -) 0 + 0, by passing successively through values 2 I rnt, where

n is a positive integer which can be made as large as we like, sin(l/x)
passes through values 0, -1, 0, I, etc. taking intermediate values at
intermediate points. Now, it is evident that these values are taken more

frequently as x comes nearer-toO and so sin ( l/x) does not approach any
fixed value as x --* 0 + 0, but oscillates through all values between -1 and
+1, i.e., the function has no right-hand limit. Since, when x is negative,

sin (l/x)= - sin (l/), where z = (- x) is positive, the function behaves

exactly in the same way when x -4 0-0. Hence, the left-hand limit also

does not exist for the function.

Note. Hence, it follows that ii sin! also does not exist.
-.o	 x

Ex. 5. Give an example to illustrate the following limit-inequality:

If Li •(x)=A and Li q,(x)=B and if tl(x)<iI(x) in a

certain neighbourhood of a except a. then A5 B)

Suppose, •(x)=5-t-x2;	 (x)=5i-3x2.

Li •(x)=5= Li W(x).

'For proof of this important theorem see Appendix.
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But, 4(x)<w(x) if x*0.

Thus, the limits of the two functions'are equal, even though

•(x)<W(x) forailvaluesof x on which the limits depend.

If, however,	 •(x)=5+x2,	 W(x)=7+3.2,
then of course, Li •(x)< Li w(x).

-	 x-,0	 i-tO

Ex. 6. Evaluate Li

As it stands, theorem (iii) of Art. 3.8 is not applicable, since the
denominator x is zero as x -4 0. But it can he easily transformed into a
form in which the theorem is applicable.

Multiplying the numerator and the denominator by Ji	 + .Ji
the required limit

=12
o(fi+fi)

=i0	 +1.

since Li ,Ji	 = Li	 1 (pulling I + x =
—0v-ti

and similarly Li fi =1.
i-.0

Ex.7. if -l<x<1, then 12 x" 0. (n isaposi:iveiiueger).

Let us first consider the case when 0< x < I.

Put x=1-p, so that o<p<l. Since (l_p.)(1+p)1_p2,

which is less than 1, we have I - p . I / (I + p).

1	 1
<	

1x =(l-p) c 
(i+p)	 l+np np

x can be made less than any Oven positive number e by taking

n large nough Ii.e.takingn>_!_ ) ; but x is positive.
-El,)

bx'=O when n-).

Since (-x)" =(-1 rx', the resultalso holds for -1<x<O.When
x=0,? =Oforeveiypositivevalueof n.Hence Lix' =0 when n-.
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Note. When x >. 1, putting x for l+p in the inequality

(i + p)' >1 + zq > np, it can be shown that .'> k, where k is any

positive number, however large, for all values of n > k/p.

Hence, it follows that, for x>I, Li x =°.

Ex. 8. Prove that (it being a positive integer)

(I)	 =0 when xI.zl.

(i)	 when IxI5l.
when x>l.

Hx
Li —=0 for. allvaluesof x.

(iv) Li 
m(m—1 )(m_-2) .... (m_n+1),, =0 when IxI<l.

3.14 MLSCeUaUeOUS Worked . out Examples

Ex. 1. Evaluate the following:

(i) lim(X_ ,1.2  + x)	 I ç. P,1983 1

(n) lim{x—,J(x_a)(x_b)}	 [C. P 1992, B. p

Solution : () lifl (x_.Ix2 +x)	 ___

(x_x)(x+x2 +)
= lim

x+Jx2+x

= urn	
—x

=Iim
X-4- I

x

.1 hm—=0.
2
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(ii) Jim {x_.J(x._a)(x_b)}

= jim {x-,J(x_a)(x_b) }(x+,j(x-a)(x-b) }

x+-..J(x-a)(x-b)

• x2-(x2-(a-b)x-1-ab
= urn

x-,={x+I(x_a)(x_b)1

b

I- 
a

X—+(a+h)

x{i+(iJi)}
(a+b)——

=Iim
x-

	

	 ( aYb
1+j 1--Ill--

I	 x,)	 x

.
=-(a+b), .	 J

, , _
A 

aJ,
—=0, Jm a

= 0, 
Jim b -=0.

2	 x	 x-= x	 x-= x

Ex. 2. Show that

x2sin[-)

	

0) hrn	 =0.
x-+O sin

sin x
(ii) Iim -

 
- = l.

ir -x

(iii) Jim (Sec 2x - tan 2x) = 0.
X-)-

4

	

(!)
(iv) tim xsin=0

—o	 x

2
(v) Jim (1-x) tan— = -.

	

x-i	 2	 it

(vi) Jim 
sinx—tanx

A 3	 2

A. P 1989. 91 1

B. P 1995]

C. P 1980 1

I B. P 1990 1

B. P. 1991, '93

A. P 1992 1
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x2sinh1)

Solution:	 (i) tim	
'	 = tim x -sin( I

x-+0 sin 	 -o	 x) sin 

x

= urn (x) tim=0.

	

X-0	 x-+O	 J 1im-
x-*0 X

.
since, urn x = 0, urn Sin x 1, srn - :51.

x-,0	 X-0X

(n) lini
sin  = .

urn sin(
— O)

- 
x-fl2t — X 0-40	 6

where. n-x=O .. x=it-O, and 0-0 as X-47t.

•	 sinG
= Imi - = 1,

0-40 0

(iii) lint (sec2x- tan2x)
-4--

=	 C0s2 =
1_ sin 2x)	 J(cosx _ Sin x)2

tim

	

	
l

[cos2x- sin 2xj
4	 4

cosx - sinx
=lim	 =0.

cos x + sin x
4	

(1
(iv) tim xsin I -

x-40	 1X )

= 0, since tim x = 0 and sin- 5 I.
x-*0	 I	 X

(v) urn (1-x) tan 
71X
—

x-*O

= tim O(an(1_0)},	 where l-x=0, i.e., 1-9 and
8-40 12

0-90 as x-31

•	 (,r -0= lim0tanl----
8-4(1	 2
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•
8-cot no—,

oo	 2

,to

	

nO.	 1	 22

	

= tim O•	 tim cos—• tim	 = -0-0 710 0-10	 2 o-.o	 710,
	sin —

2 	 2
,to

2

	

sin x- tan xi ( •	 sinx
(v,) tim	 = tim — smx-----

	

-4O	 X-)O3 i	 COSX )

•	 1	 (cosx-i'	
rn

1COSX

I .sinj 11
sin.lurn	 2s

X-40X 	 COSX	 X-40 	 x x2 	2 J'
2

	

f	 \	 f.	 \	 Sill-	 I

	

I	 1	 i	 ( SiflXl	 2	 1	 I
= tim I - i tim I - tim -2.- -

X-+OCOSX)X-4O( x	 x	 2

= lxi x(l) 2 (_.)= --.

Ex. 3, Evaluate

(i) urn 2+3'
2- +3

(10 
tim x2-xlog+logx-I

x-1

(iii) it...
o tan2x

(iv)
tim (a + h)2 sin (a + h) - a 

2 
sin a

h-O h

S

'(v) tim	 ____

'

+3+I
Solution : (0 urn

,.•_ 2l+3
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3i+If(
3 )n+ }-urn	 -3

•

R-4- 3{1+()}

for, urn (-) =0 and urn () =0.	 •

(ii) 
Jim X2-xlogx+Iogx-1

x-1
1jx2_I(x_1)Iogx

•	 x-1	 x-1

= Iim[(x+1)-4xj . x-I*0

= 2-limlogx=2,-.-Jim Iogx=0.
X-41

1-cos3x
(in) urn

,

(l Cos x)(1+ Cos x+COSX)	 2lim	 -cos x
sin2x

(1cosx)(1+c0s2x+cosx) 	 2=Jim	 -cosx
1-cos2x

=Jim	 • '.. 1-cosx;eO
x-.O	 1+cosx
3

Jim Cos .=j.
2	 X-40

(iv) urn 
(a+h)l sjn(a+/z)_a 2 sin a

x-O	 •	 h

= urn 
I

a2 ( sin (a. + h)_ sjna)+2hasjfl(a+h)+h 2 sjfl(a+ h)

h

(	 h. h
a 2 

2COSIa4----Isin-
•	 2J2Jim

h-,o	 h

+Ijm 2asin(a+h)+ Jim hsin(a+h)
h-,O
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.1.
SIn-

2 2
urn COS i a+	 kin —=2asina+O

2) i,-( h
2

=a2 .cosaX(l)+2asifla

=a2 cosa+2asina

(v) Inn ____

=lim- -

	

•— L 	 r-
+4

lim

I F+FT'+
= urn	 _______	 where v =
'-- ox

and as x-, y-O

EL 4. Evaluate:

• 4..h - 
(COS x+sIflX)5

(i) urn
1— sin 2,

4
xtn2x-2xtanx

(ii) tim
X-30 (l- COS 2x)

	

I	 1ir	 1x
urn jtafl — + xJ!x-+O	 4

	

(	 IC
(iv) urn I xtan x - —seCx

21-4--'
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(v) Jim -

	

-O	 si2x
Solution

•
m
 4.Ji–(cosx^sinx)

(1)	
=

	

 J i
m	 4_________

(t–sin2x)	
–!	 1–sjn2x

	

.4	 4

51

	

4	 Jim

- _—cosx+-__sinxj I'fi
• . ----

l –sin 2
4 11Cos (	

7t'1

=4. urn
'	 ] -sin 2x
4
1–cos5ft	 it

	

= 4 . Jim	 Where, 0	 itv- - nd 0 (1 asxO-.Oj-c0s20	 4

	=4'	Jim (lcosO) (1+coso + cos 2 o+cos 3 e+co 4 o)—

2sin2O

2sin 
26-

	

=2 . Jim	 2 X Jim (1+cos6+c0s20+COS3O+COS4O)o-.o sin 2 U

202 sin2
2.JIirn____ix0-0 02	 . sin X 02—x4 llm_x02

4	 e.oO2

Jim (l+cosO+cos20+c30+COS40)
8-90

(.ei2
I	 i2ñm

	

1j	 Ii	 21	 1

e_o2{

9) ' o

2	 Jim sin
6

(1+cosO 1-cos 2 O +cos 3 0 + Cos 40)

	

1+1	 5,F2.
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2x tan x------2xtanx

(ii) 
urn x tan 2x - 2x tan x = lim
x-0 (1- cos 2x)2	 x4O	 (2sin2 x)2

2x tan x1
1— tan
--'l

=lim	 jJIjm xtan3_
4sin4x	 2.r-.Ox(1- tan 2x)

1	 x tan 3x
=-hm

2x-,O xsinx(1--tan2X)
' 3

1	 itanxl	 I	 1
= -lim - x

X	 (sinx\4. x—,O1.—tafl2X

x
1 3	1	 11

=-(1) x—X-=-
2	 (1)	 1 2

(tanx\	 sinx	 I
since, hmt -j= tim —x urn —=lxl=1.

x ) x—O X	 x-4O COS X.

r	 ( 
_+\l
	 11+tanxl,,

=Iim(iii) urn tanI	 xJf	
•_.i) 11-4-tanxJx-9O(

	

(tonx\	 (ianx
1mm!-

-

urn (l+ tanx) tax 	urn
-4O

= -	 - = -.------------

	

(.anx\	 (tinx
hml--

	

-- X )	
-- -4O X

tim (t-tanx) taflX	 tim (I-tanx) tanxI 

x—*0

I	 ''
urn
0-401

=__---	 2 ,where, tan x8, - tanx -.
! I e1

tim (1p)fl



LIMiT..	 81

(iv) lim(xtaflx_Secx)

2	
(	

J (

	

J
sin '
	 g

= Jim	 2 =iim 
(2122

co
Cos	 z

	

where,	 .. z-O as X4.

=Iim-1- Cos z-zcosz--
•z-4OSm z(2	 2

Jim -z Cos z 
fl. tim 1-cost

= 
:-.O slnz	 2 z-,O sin 

Jim Cos z	 2sjn
_z-'O	 -!.jjm	 2

•	 sinz 	 2z-,o •Z	 Z
lim 	 i	 2sin-cos-
Z-+0(	 )	

2	 2

!.-.1im.tan,	 .. sin !^O as zO.
12z-.O	 2	 2

2
(v) Let us substitute, cosx $6	 - -.

	

Obviously, , -* I as x -, 0 and	 = 3 , 	 =

and sin2x=l-cos2x=L-112

• _________

• tim
,-.o	 sin2x

13 _12	 t2(tI
r Iim -- lim_'
,+i i-rfl	 (r12 -1)

Jim (t2)

•	 12_j
l int
1-41 11.

	

-	 -n
1	 . z

n -a	 n-I

2 •	

.	 tim	 na
12(1)I i	 -z-3a Z-a

6-	 12
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EXAMI1FS-ffl

1. Evaluate the following limits:

+ 2x -2. 
(i) Li	 .	 (ii) Li x 2 -3x+2

.-t 2x+2

() Li 
a_a2 x2

(iv) Li 
11 ;2x -JI-3x

-.o	 x2	 -.O	 X

2. Find the value of

aox" +	 + ... + a	
(b,, * o)Li

.vO b,x"+ b 1 x	 +...+b.

3. Do the following limits exist? If so, find their values:

1	 sin 
(I) Lx—.	 (ii)Ii —

 
-

x -s37 21 - I	 .t —.x Jr - I

4. Find the values of:

(i) tan 
	(ii)	 :a sin(Lt.)

	

I - cosx	 l - cosx
Li	 .	 (iv) Lx	 2

O	 X	 3O	 x

(v) L,
2 sin (1/x)	 (vi) Li COSeC I - cot X

,-.o	 sin 	 O	 I

sin x*	sin- X
(vii) Li	 .	 (viii	 Li 

-.o	 x	 .-.O	 X

(ix) Li
tan 'x	 (x)	 Sin 

	

.	 Li —.
7-.0	 I	 -3..	 I

sin 	 ..	 x+l
(xi)Li	 .	 (xu)Li

'-. X+ Cos X	 i- +1

(xiI)LI ( , - , )Sin  tan 
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5. A function f(x) is defined as follows:

f(x) =x when x>O.

=0 when x=O,

=—x when x<0.

Find the value of Li f(.i).
-4O

6. A . function 0 (x ) is defined as follows:

Q(x)=x 2 	when x<l,

=25	 when x = I,

— x 2 +2 when x>J.

Does L1 #(x )exist?
.,-I

7. Do the following limits exist ?

(i) Li [x ], where [x I denotes the integral part of x.

(ii) Li {2+,JTTTi}.

(iii) Li

2

8. Given f (x)= ax  2 bx + c, show that

Lt	
h

9. Given f(x) = lxi, show that

Li {f(h)_f(o)}/hdoesnotexist.
h—to

10. If(x) {(x+2Y 4}/x, show that

Li 0 (x )= 4. although 0 ( 0 ) does not exist.
K—tO

11. Show that Li 2 x
2 - 

8 = 8.

Appi'	 (s, e ) dc inition. 1	 0 - I .
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2	 '	 2	 '

12. (i) Is Li	 - Li -s---- = Li—
X - a -

x-a	 x-a	 x-a

(ii) Is Li (2 -a )xI	 __!.__ = IJ{(x2 -a 2 )x!}?

13. Evaluate

(1	 2	 3
(0 Li I —+---+—+ ... +--

-.=t 
2

(ij)Li
12+22+32 +...+n2

3fl	 n-,_ 

14. Does Li f (x ) exist, when
. -.0

(I) f(x)=(2"+2+I12) ?

- (ii) f(x)=[ sin !+xsin!+x2 sin !) ?

15. Evaluate

(i) Li X'

X,,
(ii) Li	 .	 I C. 11.1957]

"-= x' +1

x" f(x)+g(x)
(iii) Li	 .	 I CH. 19561

X , + I

(iv) Li
' -. x +1

16. Find the value of Li 2- arc tan nx.
,,-..- n

17. Evaluate

(1)	 Li sin n,rx.

(ü) Li	 2	 [CH. 19571
-.= 1+nsin.nx
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CH. 19571(ii) Li 
1+nfl 2 nx -x -3 -

18. (i) Prove that

	

Li tan --= — 7t, 0 or	 according as a is negative,
x2

zero or positive.

(d) Draw the graph of the function 1(x) where

Lt
	(2x	 x

tanf(x)= 	-

19. If f(x)= Li 1 2 , show that f(x	 ,)= I.	 010
l+x

	

according asX<, = or ?l.	 (C.JL 19501

Draw the graph of f (x ) in this case.

20. The function y = f ( .x ) is defined as follows:

f(x)=0 when .r2>1

f(x)=1 when x2<1

f(x)= when x2l.

Using the idea of a limit, show that the above function can be

represented by

	

f (x ) = Li	
1	 for all values of x. 	 [C.P 19491

1_+X 2,

ANSWERS
5

1. (i)	 ,	 (u)	 ,	 (iii)j I .	 (iv)

3.(i) Does not exist.	 (ii) I.
b.

4. (i) 1,	 (ii) 0,	 (iii) 0,	 (iv)-- ,	 (v) 0,

	

(vi) -j	 (vii)	 (viii) I,	 (ix) I,	 (x) 0.
ISO

	(xi) 0,	 (xii) 01	(xiii) 0.

5.0.	 6. Does not exist.
7. (i) Does not exist. (ii) Does not exist (iii) Does not exist
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11. 0-05.

12. (i) No,	 (ii) No.

13.(i) I ,	 (ii)-.

14. (1) No,	 (ii) No.

15.(i) +co when x>1;	 0 when —1<x<1;I when x=1; nolimit

exists when <

(ii) 0 when - I <x <1; -- when x = 1; 1 when x!< —1  or >1; not

defined when x =

(iii) f(x) when IxI>1;	 g(x) when IxkI;

{f(x)+g(x)} when x=1; undefinedwhen

(iv) —J when —1<x<I;	 0 when x=1;	 I when IxI:J.
16. 1 when A>0; 0 when x = 0; —1 when x<0.

17. (I) 0 when x is an integer; no limit exists if x is not an integer

(ii) 0.



çon

4.1. We have acommonSeflSe idea of what a Continuous curve is. For
instance, in Art. 2.5, the curves of example (ii), (iii), (v) are continuous, while
those of (vi) and (vii) are discontinuous, the curve in (vi) having a point of

discontinuity at the origin 0. A function f(x) is commonly said to be

continuous provided its graph is a continuous curve, and, If there is any
discontinuity or break at any point on the curve, the function is said to be
discontinuous for the corresponding value of x. The general notions of

continuity of a function f(x) for any value of the variable  require that the

function should be finite at the point, and for a very small change in x, the

change in the value of f(x) should also be small, or in other words, as we

approach the particular value of x from either side the function should also

approach the corresponding value of f(x) ,and ultimately coincide with it

at the point. If f(x) be non-existent at a point, so that the corresponding

point on the graph is missing, or else, if the value of f(x) suddenly jumps

as x passes from one side to the other of the particular value, or f(x)

becomes infinitely large at a point, then the function is discontinuous there.

We proceed below to give a formal mathematical definition of continuity.

4.2. Continuity.

A function f(x) is said to he continuous for x = a, provided

Li f ( x) exists, is finite, and is equal tof (a).
x.-4a

In other words, for f(x) to be continuous at x = a,

U f(x)= U f(x)=f(a)
0

orbriefly, f(a+O)= f(a—O) =f(a)

This may also be written in the form Li f(a+h)= f(a).

If f(x) be continuous for every value of x in the interval la, b] , it is

said to be continuous throughout the interval.

A function which is not continuous at a point is said to have a

discontinuity at that point.

Ek (I). f(x)=xt is continuous for any value a of x,.

for, Li 52_a2
-	 1—Ia
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(ii) f(x)=cos 
I 

is discontinuous at x = 0, since Li cos	 does

not exist	 [SeeE.t,'I,l3.l0]

(iii) f(x) =-L   is discontinuous at	 = o,since Li	 is not

finite.

(iv) f(x) x sin! when x * 0, and jo)= 0, then 1(x) is

Continuous atx=0, for Li xin	 0.
x-+O	 X

[See Ex. (ii),* 3.61

(v) If f(x)=	 when x * 2, and 1(2 )= I, then

J(x) is discontinuous at x = 2, since Ii f( x )	 Li f(x)bcre,

so that Li 1(x) does not exist.
'-.2

(vi) f(s) = e (' )	 is discontinuous at x = a, since though

Li f(x)= Li f(x)=o, i.e., Li f(x)existsand =0, f(a)X-. a*O
is undefined.

Corresponding to the analytical definition of limit, we have the following
analytical definition of continuity of a function at a point

The function f(x) is continuous at x = a provided f( a) exists and
given any pre-assigned positive quantity e, however small, we can

determine a positive quantity . ö such that I I (x ) - I (a ) I < e for all
values of x satisfying a - 8 :5 x :5 a + 6.

4.3. Different classes of Discontinuity.

(A) If  (a + 0) * f (a -0 )thenf(x)issaidtohaveanordinwy
discontinuity at x = a. In this case. I (a ) may or may not exist, or if it

exists, it may be equal to one of f ( a + 0) and f ( a - o) or may beequal
to neither.

To these is to be added the case where only one of I (a + 0) and
f (a - 0 ) exists and f (a ) exists, but is not equal to that.
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Illustration : I (x ) = 2 + e	 has an ordinary discontinuity at x 0,

for Li f(x)=O,and Li f(x)=-'.2

Note. Continuity on one side.
In case wheref(x) is undefined on one side of a (say, foi x > a), if

f(a + 0) exists and is equal 101(a) (which also exists and is finite), we say,
as a special case, thatf(x) is continuous at x = a.

(B) lff(a+0)=f(a-0)* f(a),orf(a)isnotdefined,thenf(x)

is said to have a removable discontinuity at x = a.

Illustration: f(x) = (x 2 - a )l (x - a) has a removable discontinuity at

.For, f(o) is undefined here, though Li 1(x) exists, and = 2a.
x-4G

Again, if f(x)=1 when xa, and f(t)=e	 when

x a, f(s) has a removable discontinuity at a, for, Ii 1(x) = 0.
x -UI

whereas f(x)=l as defined.
It maybe noted that a function which has removable discontinuity at a

point can be made continuous there by suitably defining the function at the
particularpoint only.

The two classes of discontinuities (A) and (B) are termed simple

discontinuities.

(C) if one or both of •• f (a +6) and f (a-i)) tend to + or

then .f(i)is said to have aninfiniteiscoUinUiiyata. Hem, f(a)

mayor may not exist.

Illustration: f(x)= e -'° has an infinite discontinuity at x = a, since

f(a-0)_-,co, f(x)= 3x'
2 hasaninfinite discontinuity at x=2.

(x-.2)

(D) Any point of discontinuity which is not a point of simple
discontinuity, nor an infinite discontinuity, is called a point of oscillatory

discontinuity. At such a point the funtion may oscillate finitely or oscillate

infinitely, and does not tend to a limit, or tends to to + or -
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Illustration: j (x ) = sin! oscillate finitely at x = 0.

• f(s) —1 sin—' oscillates infinitely atXa. Li x (x = -i)

oscillates finitely, and Li x" (x <-I) oscillates infinitely as it

4.4. Some properties of continuous functions.

(1) The sum or dtfference of two continuous funcitons is a continuous

function

i.e., if f (x ) and 0 ( x ) are both continuous at v = a, then

f (x ) ± 0 (x ) is continuous at x a.

For in this case, by definition of continuity, Li f (x ) exists, and
S -40

= Lt f(a),asalso Li 0( x ) = 0(a).
x-t0

Hence, L:{f ( x) ± Ø(x )}= Lif (x )± LtØ(x )

lSee 3.8(1)1

=f(a)+ 0(a),

whence, by definition, f ( x ) ± 0 (x ) is continuous at x = a.

Note!. The result may be extended to the case of any finite number of

functions.

Note2. If f(x) is continuous at x = a, and 0(x) is not, then

f (x) ± $ (x) is discontinuous at x = a, and behaves like O(x).

(ii) The product of two continuous functions is Continuous function;

i.e.. f(x) and 0(x) being continuous at x = a, f(s) x 0 (x) is

continuous there.
Proof is exactly similar to that in the above case, depending on the

corresponding limit theorem (See § 3.8 (ii)].

Note. This result may also be extended to any finite number of functions.

(ii,) The quotient of two continuous functions is a COnhiflW'145 fUflCitOfl,
provided the denominator is not zero anywhere for the range of values -

considered;

i.e.,if 7(x) and 0(x) be both continuous atxa,and , (a	 0
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then j (x ) / 0 (x ) is continuous there.

Proof depends on the corresponding limit theorem [See § 3.8(iii)].

(iv) If fix) be continuous at x = a, and f(a)*O, then in the

neighbourhood of x = a,f(x), has the same sign as that off(a), i.e., we can

get a positive quantity 8 such thatf(x) preserves the same sign as that of

f (a) for every value of x in the interval a-8 <x< a+ 8.

Let f(x)= sins, a = In; then f(a)= land hence * o and positive.

Lei us take S = it. Then in the interval -ir — 4ir <x< -!r + + 7T i.e.,

-L it <x< . I(, f(s) is always positive.

Sincefx) is continuous at x = a, from definition, if e be any chosen

positive number, we can get a positive quantity & such that

If(x)—f(a)kc. i.e., 1(a)—c <f(x)< f(a)+e

(1)

foi all values of x satisfying a-8<x< a-t-8-

As f (a 0 here, if f (a ) be positive, choose e = - I (a )

then from (1), 1(x)> f(a )— E, Le., > f(a), and isaccordingly

positive when a - S <x <a +5.

If 1(a) be negative, choose F = -- 1(a), and then we have

fi'oin(l), f(x)< f(a)+E i.e., < f(u) - f(a),

and is accordingly negative when a — S < x < a + 5.

Thus, whatever be the sign of f(a) , we can find 8 such that f(s) has

the same sign as that off(a) in the range a-ö < x< a+8.

(v) if f x) be continuous throughout the interval [a, b], and if

f (a ) and f (b) be of opposite signs, then there is at least one value,

say x, of x within the interval for which f ( ) = 0.

Let f(x)= cos x, a = 0, b = it. Then f(a)= 1. f(b) - I.

Now, cos x = 0 if x = 1 7r, which obviously lies in the interval (0,n). and

so here 4 = -ir . Similarly, ifwetake a=0. b=3n, we get another value

of t, viz.,.-,r,besides .ir.



92	 DIFFERENTIAL CALCULUS

Let OA =a, OR=b. Bisect the interval lB at C,.lff(x) be not zero
at C, , it must be opposite in sign to one off (a) and f(b) which are given
to be of opposite signs. Suppose f (.) has opposite signs at C 1 and B.
Bisect C, B at C 2 . If f(x) be not zero at C 2 , it must have opposite signs
at the extremities of one of the intervals C1 C 3 or C2 B. Bisect that particular
interval at C3 . Proceeding in this manner n times, unless f(x) is zero at one
of these points of bisection, we can get an interval C. - , C. (say) within
AB, at the opposite extremities of whichf(x) will have opposite signs. This
interval C,,_ 1 , C. is clearly is clearly 1/2" of the interval AR. i.e..

= (b— a) / 2" ,and taking n large enough, can he made as small as we like.

But f (x ) being a continuous function for every value of x within

the interval AB, corresponding to any point C . in it, given by x = c say, if

f(c) be not zero, it must be possible [hs (iv) above Ito get a positive quantity

6 such that f(x) will retain the same sign, namely that of f(c), in the interval

[c-6,c+ö ]. Now whatever 6we may choose, =(b—a)/2" can be made

less than 6 by taking n large enough, and it has been shown that the

extremities of the interval C,,-,, C,, which falls within [c —6, c +8 1,  f (x )
has got opposite signs. We are thus led to a contradiction if f (x ) is not

zero anywhere within the interval AB. Hence there must be some point in the
interval, given by x = 4 (say), where f ( 4 ) = 0 under the circumstances.

(vi) If f (x ) is continuous throughout the interval I a, b ] and if

f (a ) * f (b.), then f (x ) assumes every value between I (a ) and

f (b ) at least once in the interval.

Let. [(x)=x2,a=O,br4; then 	 (a)= 0, .f(b)=I.

• Let cbe any number between O and l.Then f(x) X 2 c, which

evidently lies in [0, 11.

Let f(x)= sin x.a =0,b= 
5
2

; then f(a)=0 f(b)= 1, so

f (a	 I (b ).Let c be any number lying in [0, 11. Then sin x c, if

x = n,r + (— I)" sinc, n = 0. +1, ± 2,... Now, for n=0, 1,2 only,

xfles in the interval O,	 1. That is, when x = sin c • or 1r—sin c, or
L	 2J

2r + sin	 c, we have f ( x )= . Thus, f 	 ) assumes the value c at
least once ( here 3 times and in the previous example once only).



CONTINUITY	 93

Let k be any quantity intermediate between 1(a) and f(b) which are

given to be unequal. Let 4, (x ) = f (x ) - Then sincef(x) is continuous

in the interval [a,b], 4' (x ) is also continuous. Also 4, (a ) = f ( a )- k

and 4, (b ) = f (b ) - k are of opposite signs. since * lies between f(a)

and f(b). Hence by (v) above, there is a value x = 4 in the interval, for
which 4,() = O,ie., f() = k .In other words, f(x) assumes the value
k at some point in the interval.

(vii) A function which is continuous throughout a closed interval is

bounded therein.

The function! (x) = sinx is continuous in -the closed interval
0 x :5 2r, and has the upper bound at x = - - 7r and lower bound at
x=0 or p, hence it is bounded.

Let the functionf(x) be continuous throughout the closed interval
[a, b]. Let us divide all the real numbers in the interval into two classes L.

R, putting a number x in L if f(s) is bounded in (a, x), and in R otherwise
Members of L-class exist in this case, sincef(x) being continuous at a (u'

the right), corresponding to any pre-assigned positive number a we can
get a positive numberdsuch that I (a )- e < I ()< I (a )+ E (and

accordingly f(x) is bounded) in the interval (a, a + 81 ,so that a+ö belongs

to L-class. If now numbers of R-class also exist in the interval, then by
Dedekind's theorem, ther exists a definite number c (say) in the interval,
which represents the section. f To include all real numbers in the classification,
we put all numbers less than a in L, and all numbers greater than b in R
here. I

Now sincef(x) is continuous at c, for any given positive quantity

A 'te can determine a positive number d such that

1(c)—c < f(x)< f(c)+ . e withintheintervai(c --S, cs-S ),

i.e., f (x) is bounded therein. Also c - S belonging to L-class. 1(x) is

bounded in [a • c —6 1. Hence, f (x) is bounded throughout the interval

(a • c + 5 ). But c + 5 belonging to R-class, f (x) is not bounded in

[a, c - &]. This contradiction shows that no number of the R-class can

exist in the interval [a, b]: in other words, f(x) is bounded throughout the

interval [a, b J.

(viii) A continuous function in an interval actually attains its upper

and lower bounds, at least once each, in the interval.

The iunctionf(x) = sinx is continuous in the interval 0 :5 x :5 it. Its
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upper bound I is attained at the point .x = it and the lower bound 0 is

attained at the point x = 0 and x = p. Thus, f(x) attains its upper and lower
bounds, at least once each (here the upper bound is attained once, whereas
the lower bound is attained twice).

(tx) A function f(s), continuous in a closed interval I a, b J ,atfains

every intermidiate value between its upper and lower bounds in the interval,

at least once

Let f(x)=x 2 . a=-1. b=2. then the upper bound of f(x) is 4 and its

lower bound is 0. Let c be any number in 10, 41. Now, if 0 ^5 c !^ 1, then

f(x)= x 2 = c, if .r = + rc which liesin (—I. 2); and if 1< c <4,

then f(s) = x2 = c if .x = ±'.J, of which only + vrc lies in the interval

(-1, 2). Thus,f(x) attains the value c at least once.

Letf(x) be continuous in the closed interval L a, b 1, and let M and nz

be its upper and lower bounds in the interval. If possible, let there be no

point in the interval wheref(x) = M. Then M - f (x )> (I for all points in

the interval. Now, since f (x ) is continuous, M - f (x ) is also

continous, and so I / { M - f (x ) } is continuous in the interval. Thus

1/ {M - f  )} is bounded in the interval, i.e.,

1 11 M  - f (x ) } 5 k, where  k is a fixed positive number.

M_f(x)'a, or, f(x)!5M-.

This contradicts the assumption That M is the upper bound of f(s) in

the interval.
Hence,f(x) must assume the value Mat some point in the interval.

Similarly, it may be proved thatf(x) assumes the value m alin in the

interval.

It now follows from (vi) thatf(x) assumes every intermediate value

between M and m.

4.5. Continuity of some Elementary Functions.

(i) Function x. where  is any rational number.

We know that Ii x' = a ", for all values of n, except when a = 0

and n is negative[ See Note, Ex. 1, § 3.111.

Hence, x' is continuous for all values of .x when 	 is positive, and

continuous for all values of x except 0 when n is negative.
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When n is negative and = —m, say, where m is positive

=x=l/x",

which either does not tend to a limit or .—, 	 as x -, 0.
(ii) Polynomials.

Since the polynomial an x + a 1 x' +... + a" isthesumofa

finite number of positive integral power of x (each multiplied by a Constant)
each of which is continuous for all values of x, the polynomial itself

by §4.4(i)] is continuous for all values of x.

(iii) Rational Algebraic Funclion.i.

Rational algebraic functions like

a 0 x"+a 1 x" t + ... +a"

b 0 x " + b 1 x "- ' + ...+ b

being the quotient of two polynomials which are continuous for all values of
x, are continuous for all values of x except those which make the denominator
zero I by § 4.4(iii) 1.

(ii') Trignometric Functions.

Since the limiting values of sin  and cosx when x -4 a ,where a has

any value, are sin a and cos a [See £z. 2, § 3.11 ] ,it follows that sin .s and

cos x are continuous for all values of .x.
Since tan x = sin x / cos x, tan x is continuous for all values of x

except those which make cos x zero, i.e., except for x = (2n + I )4,r

Similarly, secx is continuous for all values of x except for x (2n + 1 )'r

and cot x and cosec x are Continuous for all values of x, except when
x = 0 or any multiple of it when sin x = 0.

(v) Inverse Circular Functions.

Inverse circular functions being many valued, we make a convention of
defining their domains in such a way as to make them single-valued
Throughout the book we shall suppose (unless Otherwise stated ) that

Sin x, tan x, cot -1 x, cosec -l x lie between ---fl' and j- it (both

values inclusive) and cos x, sec' x lie between 0 and it (both values
inclusive ), which are the principal values of these inverse functions. It should

be noted, however, that and have no existence outside the closed interval of

x, and and have no existence outside the closed interval [-1,1] of x, and

cosec - ' v n"-1 sec t x have no existence inside the open interval (- II ).
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All the inverse circular functions are continuous for all values for which they
exist this follows immediately from the continuity of the corresponding

circular functions.
(vi) Function e.
Corresponding to the positive number c, however small, we can choose

n sufficiently large such that (i + e )" >e ,since (l+eY' >1 +ne, and e

is finite.

Thus, e-l<e.

Hence, if 0<x<1/n,e-l<e -l<c,

and therefore Li (e - I )= 0, or .	 Li e' = 1.

If x be negative. putting x = -y, Li e' = Li 1 1 e V =1.
_,-.o--	

•o*

Hence, Lt e = 1.

Li	 =1. i.e., LI e V =e.

e' is continuous at any point x = c.

(vii) Function log x, x >0.

It should be noted that log x is defined only for values of x >0.

Let logx=y and log(x+h)y+k.

Then e"=x and e"'=x+h;

h=	 -e'.

As e is a continuous function of y.	 -' e

i.e.,lI-40ask-*

Thus. { log (x + It ) - log x} -* 0 as k -4 0,

i.e., as h -4 0.

Hence, log x is Continuous.

4.6. Ulustratve Ewnp1s.

Ex. 1. A function 1(x) is definedasfollows:

f(x)rx when x>0,f(0)=0,f(x)x whcnx<0.

Prove that the function is continuous at x = 0.

Here. Li f(x)= Li x=Oand Li f(x)- Li (-x)=O.
x-,O+O
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Thus Li f(x)= Li f(x)f(0)'0 here.
,-.0-0

Hence, f ( x ) is continuous at x = 0,

For its graph, see figure of § 2.5 (ii).

Ex. 2. A function 1(x) is defined as follows:

f(x)=xsin- for x*0

=0	 for x0,

	

Show that 1(x) is eon: inuous at x = 0.	 [V P 19991

Since Isin(1/x)I 15 I ,bymaking IxI<e.
wecanmake lxsin(1/x)ke,
where € is any pre-assigned positive quantity, however small.

Hence, Ii xsin--=0. Also, f(0)=0.asdefined.

Thus, Li f(x)f(0)

For its graph, see figure of §2.5 (viii).

Note. It should be noted that the function .x sin (1/x) is continuous for all

values of x, except for x = 0; because when x = 0, .x sin (1/x) is undefined.

In the above example, the discontinuity of x sin (Ifs ) at x = 0 has been

removed by definition of f(0).

Ex. 3.: A functionf(x) is defined as follows:

f(x)-x when

when x=-
2	 2'

when 4<x<1

Show that f(x) is discontinuous at x

He, 12 f(x)=li(x=_=0.

ii f(x)	 12	
_x)= 3_ 1

2	 2
7-
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Since Li 1(x) does not exist,

2

hence f(x) is discontinuous at x = 
1

Ex. 4. A function f(x) is defined in (0, 3) in the following way

f(x)=x 2 	when 0<x<1,

=x	 when 1:5x<2,

= l x 3 when 2:5x<3..
4

Show that f(x) is discontinuous at x 1 and x = 2. [C. P. 1941 1

when x=I, f(x)=x. :. f(i)=i.

Li f(x)= Lt
1-41-0

also, Li 	 f(x)= Li X=I.
x-.I+O

Hence, Li f(x)= Li f(x)=f(1)here
.—.lco

f(x) IS Continuous at x= 1.

Similarly, it can be shown (from the definition of the function in the

relevant ranges) that Li	 f (.v )= Li f(x ) = f(2)= 2

Hence, f(x) is continuous at x = 2.

Ex. 5. Show that the function f ( x )= I x t-t-I x - 1 I + I x.- 2 1 is continuous

at the points x = 0, t, 2.

1XXXX+-(x-1)-(x-2)=-3x+3, for.x<0
Here,f(x)=- x-1 - x-2 =-x+3, for 0^x'<l

x-I - x-2 =x-t-1, for 1^x<2
+ x-1 + x-2 =3x-3, for x^t2

Now, Li f(x)= Li (-3x+3)=3

Li f()= Li (—x+3)=3 and f(o)=3.
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Li f(x)= Li f(x)f(0). .1( x ) iscontinousat x = o

Again,	 Li f(x)= ii f(x)=f(1)=2,

and	 Li f(x)=Ls f(x)=f(2)3

1(x) is continuous at x = land x 2.

Ex-6- Show that the function f defined by f (x )= x - [x j , where [x]

denotes the integral part of x is discontinuous for all integral values of x

and continuous for all others.	 -

x—(a—l), for a—I<x-<cc
Wehave, f(4= O, 

for
x=a

I x -mfora<x < a +I

where a is an integer.

Ltf(x)=Li(x—a+l)=l

Ltf(x)= LI (x—a)=O

Li f(x)* Li f(x)=f(a)
x-a-

1(x) is not Continuous at = a.
Since a is any integer, f(x) is discontinuous for all integral values of x.

1(x) is obviously continuous for other values of

Ex. i. Show that the function f defined by

f(x)= X_l. 
for X^1

=0,	 for x=1

is continuous at x = 1.

e l _-ooas x-1—=' Li f(x)=0

e — o as x—l+= Li f(x)=0

So LI f(x)f(l) Li f(x)rrO

Hence; 1(x) is continuous at x = I.
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4.7. Some Miscellaneous Worked out Examples

Ex. 1. Discuss the continuity of the following functions at the points

indicated:

(1) f(x)=x	 when O<x<L	 [C.? 1989, 97, 20051

=2.-x whenl!5x!^2. atx=2

=x---x2 when x>2

(ii) f(x)=--- ' , x#0	 [B.? 1994]
3x	 al x=0

=,	 x=0

(iii) f(x)=x2 +x,	 0:5x	 [C. P. 19921

=2,	 x=1	 atx=1	 -.

=2x 3 —x+1, 1<x—<2

+4 +2
(iv) f(x) 

=	 .	
x # 0 

at - 0	 [C.? 19941
sInx	 5—

=0,	 x=0

Solution (i) Here urn f(x)= lim (2-4=0

Urn f(x)= urn (x_! x2)=0
•	 ,—.2*	 r-2+	 2

and f(2)=2-2=0

Jim f(x)= urn f(x)=f(2),

f(x) is continuous at  = 2.

(ii)We have,

	

tan 2 x	 Isinx. 1	 xJim f(X) = Jim	 =

	

-'O 3x	 x	 Cos 2X 3

Jim
,	 • 	 ,,

	

tsInxI	
Jim I	 I	 I .	 ii

	

x )	 .r—O',,cc2) .-..ot.,3

=(I)2 x(1) 2 x(0)=0...



101
CONTINUITY

But f(0)=

tim f(x) * f(0), f(x) is not COntinUOUS at x = 0.

(iii) Here, tim 1(x) = tim (x2 +X)=  2

urn f(x) urn (2x3_x+1)2

and f(l)=2
So 4im f(x) tim f(x)f(l)

1-41+

Hence, f(x) is continuous at x = I.

(iv) f(x)	
+4x3+2

=	 , when x 0,
nnx

x3 +4x2 +2 lim (x 3 +4x2 +2) 2 -

urn
1-40	 1-0	 sm x	 i. 

m 
(sinsi'\	 I

t-

But f(0)=O
Thus tim f(x)*f(0)

Hence, 1(x) is not continuous at x=O.

Ex. 2. (i) Find 1(0), so that .f(x) = xSin().

for x * 0 may be continuous at x0.	 C. P 1982, '86]

sin(a2x2)
(ii) f(x)— ' 

x^O and f(0) =k. Find the value of 

for which f(x) is Continuous at x=0.	 B. P 1992 1

(iii) What should be the value of f(0) so that f defined by

2x—x
f(x) = -, for x *O.•bc continuoUS at x = 0?	 C. P 1997 1

Solution : ( Here, f(x)=xsifl(!}X^0.

for all real values of x	 (!) ^ i ,	 iini .x sin() = 0.
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If 1(x) is continuous at x = 0, urn f(x) = f(0)

f(0)=O, . Jim f(x)rO

(ii) Here, f(x)= ('L2, x*o
x

Jim f(x)=Iim sin(a2x2

	

-*o	 .,-.o

si n(a2x2)
= urn	 -------a2x

sin(a2v2)
a2•lim ----•x-0limx a2xlx(0)—Oa 2x -	..O

Since 1(x) is COntinuous at X0,f(0) Jim f(x) i.e., k =0.
..0

	

X2 _ X
(iii) f(x) =	 -, - t (j

x
xtO

Jim 1(x)

So, in order that f(x) may be Continuous at x = 0,
1(0) = Jim f(x)	 i.e.. 1(0) = —I...0

lOg(l+ax)_Iog(1_bx)Ex. 3. The function 1(x) -	 is not defined atx

x = 0. Find the value of 1(0) so that f(x) is continuous at x = 0.

Solution : Here, Jim f(x)= urn Iog(l +ax)_Iog(l_bx)
x

=a-Iim I0(1f_(_)1j

	

ax	 -o (—bx)
= ci X I + b x (i) = a + b.

For 1(x) to be COfltj flUou at x = 0, f(0) should be defined and
the value of 1(0) must be equal to the limiting value of f(x)as
x-0. Hence, PO) =a+/,
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EL 4. Find the values of a and b such that the function

f(x)=x+.Jasnx 0:5x'-5

=2xcotx+b, —<—x<--
4	 2

=acos2x—b sin x,
4

is Continuous for all values of x in the interval 0:5 x 5 7t.

Solution : The function f(x) will be continuous for all values of x in

TE

	0:5x!5lt, if it is Continuous at	 and x	 So, we must have,

lini f(x) Urn f(x)=f()	 (1)

It
and urn 1(x) = urn f(x) f( 2)	

(2)

Now, urn f(x) tim f(x+,ñasiflX)=_+a
4

limf(x)=lflfl (2xcotx+b)=+b

and

Also, tim f(x)= lint (2Xc0tX+b)

urn f(x) urn

2	 2

and

From (1) and (2) we have,

	

or, a—b—	
(3)

b=—a—b,	 a-2b	
(4)

It	 It
Solving (3) and (4), a= - 	 b=--1-.
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Ex. 5. The function  is defined as follows

f(x)'-2 sin x,	 -7tx<-1

ititasinx+b, ---<x—
2	 2'

2
If 1(x) is continuous in the interval —n < x < it find the values of a
and b.

Solution : For continuity of fix) at x = -

urn f(x) = urn f(x)=f(_ 71

	

i.e., l rn(_2snx) 	 Jim (asflx+b)=_2fl(...11)

i.e., —a+b=2

And, for Continuity off (x) at x =

Jim f(x)	 1im

i.e., Jim (asinx+b)= Jim (cosx)=cos(J

2	 2
i.e., a+b=O

Solving (I) and (2), we get, a=-1,b=1.

Ex. 6. Find the points where the function f(x)= -
	

is
discontinuous.	 log I X

Solution: 1(x) = _____
logx

Obviously, the function is not defined for x = 0, and hence x = 0
s a point of discontinuity of the function.

Again, when log 
J x I = 0, i.e., x ±1, the function is not defined.

Hence, the function has three points of discontinuity, viz.,
=-1, x=0 and x1,

(1)

(2)
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Ex. 7. Show that the function f(x) [x]+[—x], where'her [xJ denotes
the greatest integer not exceeding x, has removable discontinuity for
integral values of x.

Solution: Let, x = k be any integer.

[k]_— k and

f(k)=k—k=o

Now, urn 1(x) = urn f(k + h)

urn [k+h]+Jirn [—ic—h] =k—(k+l)=--I
h-.O

and urn f(.r) = lim f(k —h)
h-.O

lim[k—h]+lirn[_k+h] =(k—l)—(k)=-1
h-.O	 h-.O

limf(x)=-1, but f(k)=O

So, f has a discontinuity at x = k, where Ic is any integer. If
however, we define f(k) = —1, then the function becomes continuous
at x=k.

Hence the function has a removable discontinuity for integral values
of X.	 -

Ex. S. Let 1(x) be a Continuous function and Q(x) be a

discontinuous function. Prove that f(x)++(x) is a discontinuous
function.

Solution : Let, tji(x) = 1(x) +,(x), where f(x) is a continuous and
$(x) is a discontinuous function.

If possible, let W(x) be a continuous function.

Since, 1(x) is a Continuous function, W(x) — f(x) is also a
continuous function, i.e.. •(x) is a continuous function. But this
contradicts the given condition.

So, W(X) i.e.. 1(x) + $< x) must be a discontinuous function.

Ex. 9. Let, f be a function, such that for all real values of x, y.
f(x+y)=f(x)+f(y). Iff is continuous at x=a, then prove that fis
Continuous for all real values of x.
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Solution Since f(x) is continuous at x=a

Jim f(x)f(a)

or, f(a) = tim f(a+h) = tim [f(a)+f(h)].

[.f(x+y)f(X)+f(Y)]

=Jim f(a)+lim f(h)=f(a)+lim f(h)
h-.O	 h-0	 h-.O

	tim f(h)0	 . .,.	 (1)
h-.O

Similarly. f(a) = urn f(a - h) = urn f(a) + urn f(—h)

= f(a) + urn f(—h)
l,-.0

	

limf(—h)0	 ...	 (2)

Now, let k be any real number.

tim f(k +h) urn [1(k ) + f(h)J
h-*O	 h-*O

=f(k)+lim f(h)f(k)	 r from (1)]

and, tim f(k —h) = Jim [f(k)+f(—h)]
h-90

= urn f(k)+ Jim f(h)
h-.O

	

=f(k)	 L from (2)]

Also, putting x = 0, y = 0, we have f(0) = f(0) + f(0),

so that f(0)=O

f(k)__f(k+0)__f(k)+f(0)f(k)

Thus tim f(k+h)= urn f(k+h)—f(k)

1(x) is continuous at x = k.

Since k is arbitrary, 1(x) is continuous for all XE R.

Ex. 10. (i) Show that f(x) = sinx is continuous for all real values of x.
(B.? 1999
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(ii) Apply e –8 definition to show that the following functions
are Continuous at the indicated points

(a) f(x) = x	 X,0
	 X=O	 L .0 P 1981, '95 1

f(0)=O

(b) 1(x) = x2 cos(±) X * 0 at
	 [B. P 1996

f(	

]

0)=O

Solution (1.) f(x) = sinx will be Continuous at x a, if for any
E)O, we can find 8, such that Inx-pina <e, whenever,
x–aI<6

We have, Isinx-sinaI= 2sin x–a
	 x+c(

=

2 sin —cos.---

x–a	 x+aI

Since, cos x	 15 1, for all real values of x

x-a	 x–a itand sin x-a— - 1for0<<
2	 2	 2	 2

I x-a	 x+a	 x-aII Siflx–s! flQI1sin___ cos-- <2 -----

1xakE for lx_al<8
The relations are satisfied by taking S =E
So, I slnx — sinal<E, whenever,

So, f(x) = sinx is continuous at x=u. Since a is any real number,
sinx.is continuous for real values of x.

(II) (a) f(x) = rsin( !-), x 
r

 0
x)	 at x=0

f(0)=0	
i.

Now,
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.1
=IxI

A

15x.since sin— ^l
A

for X-01< E.

The relations are satisfied, if S =e. So, f (x) is continuous at x 0.

(b) Here, f(x) = x2 
cos (-), 

when x * 0

f(0)=0.

For continuity of f W at x = 0, we are to find a 5 depending upon

, such that

I f(x) — f(o) 1 — ' for Ix_01<&

i.e.,	 x2 Cos ._0<€ for, lxI<5.

Since cos-1- !^ 1, relations are satisfied, if we take l- <€ for

lxl<5.
So, the relations are satisfied if S =

Hence, j (x) is continuous at x =

EXAMILFS.JV

1. A function I (x ) is defined as follows:

f ( X ) = X2  when x * 1, f(x) = 2  when X = 1.

Is continuous at A = 1?

2. Are the following functions Continuous at the origin?

c') f(x )= sin(l/ x) when x ;e 0, f(0) = 0-

(fi)

(iii) f(x) xcos (l/x) when x * 0, f(0) = 1.

sin -

(iv) I ( ) =	 when x 0.

x

=1	 when x=O.
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(iv) I (x ) = sin  x	 when x 0.

	=0	 when x=O.

3. A function 0 (x.) is defined as follows:

	

Ø(x)=x 2	 when x. < 1,

	

= 2.5	 when x = 1,

=x 2 +2 when x>1.

Is 0 () conIiiious at x = 1 ?

4. A function 1(x) is defined in the following way;

f(x)=-x	 when x!50,

	

= x	 when 0<x<l,
=2—x when x^l.

Show that it js continuous at x=0 and =I. 	 IC.P 19421

S. A function f (x) is defined as follows:

f(x) = 1,0 or — i according as x >,= or <0,
Show that it is discontinuous at x = 0.

6. The function f (x) 
= x 2 716

6 is undefined at x = 4.

What value must be assigned to f (4), if f (x) is to be continuous at
x=4?

7. Determine whether the following functions are Continuous at x = 0.

(i) f(x) =(xI + X3  +2x 2 )/sinx, i(o)= 0.

(ii) f(x)=(x+4x+2x)/sinx, •f(o)=o.
8. Find the points of discontinuity of the following functions:

0)

	

x 3 +2x+5	 .. )
	

x3+2x+5

	

2	 '

	

xr-8x+12	 x 2 —8x+16
9. A function f(x) is defined as follows:

f(x)=3+2x for —^•..x<o

=3-2x for

=-3-2x for x>'

Show that f(x) is coitinuous at x = 0 and discontinuous at x =
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10. The function y =f(x) is defined as follows: f(x) = 0 when. 1(x) =

when X 2 <1, f(x) = when x 2 = I. Draw a diagram of the

function and discuss from diagram that, except at points x = I and

x = —1, the function is continuous. Discuss also why the function is
discontinuous at these two points although it has a value for every

value of x.

Examine the continuity of thc functions at x = 0 (Ex. 11-14)

11. f(x)=(I+.x)'1'. when 	 0

=1' when x=0.

12. j' (x )= (i + 2x ) 1/1 , when , 	 0

e2	 when

13. f ( x ) = e- '/-' 	 when x()

=1.	 when x=0.

14. f(.r ) =	 when x 0
I +e

=	 when x =0.

15. The function I is defined by

f ( x )= 2x - Ixl+ sin '-,for x ^ 0

=0,	 for x=0,

where fxI denotes the greatest integer not greater than x.

Examine the continuity of I (x ) a x = 0 and x = 2.

ANSWERS

1. No

2. (i) No. (ii) ' Yes.	 (iii) No.	 (iv) No.	 (v) Yes

3. No.	 6. 8.	 7. (i) Continuous. (ii) Discontinuous

8. (i) 6.2. (ii) 4. 11 Discontinuous. 12. Continuous.

13. Discontinuous. 14. Discontinuous. 15. Discontinuous.
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5.1. Set ofRealNumbers.
A set of real numbers is  well-defined collection of objects which

are called members or elements of the set. The term 'well-defined' means
that given any real number, it can be determined without ambiguity
whether the real number belongs or does not belong to the set.

Examples:
1. The set of natural numbers: N = { 1,2,3,...... n, ... }
2. The set of all integers: Z = f0,,± 1, ± 2,...., ± n,... }

3. The set of all integers between 3.1 and 8.7. X = (4,5,6,7,8)
•	 A set is finite, if it is empty or contains a finite number of elements,
otherwisea set is infinite. The set defined in example 3 above is finite,

while the sets inexamples land 2 are infinite.

5.2. Greatest and Least Members of a Set.
A number  is the greatest member of a set Sofreal numbers, if

I. L is itself a member of S. and
2 L2: x, where xis any element of the set
Similarly, I is the least member of a set  of real number, if
1. lisa member of S, and

2 l:5x, where xis any member of the set

Examples:

1. In the set of natural numbers (1,2,3...........}, I is the least member,
but it has no greatest member.

2. For the set of numbers	 I is the greatest member,
but it has no least member.

3. For the set of numbers f7,8,9, 10, 1 L 12 } .7 is the least member and
12 is the greatest member.

5.3. Bounds of a Set.

Given aset S of real numbers, if there exists a number G such that
x < G. for every number x of S. then we say that the set is bounded
above and G is an upper bound, or a rough upper bound.
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If G is an upper bound of a set S, then any number greater than G is
also an upper bound of S. So. if a set is bounded above, the number of
upper bounds is infinite. The least M of all the bounds is called is the

exact upper hound or, the least upper bound or Supremum.

Similarly, if there exists a numberg such that x ^! g ,for every number
in S. we say that the set is bounded below and g is called a lower

bound or, a r.ugh lower bound.

The least m of all the lower bounds is called the exact lower bound

r the greatest lower bound or, infimum or the lower bound of S.

5.4. Neighbourhood of a Point: Points of Accumulation.

(i) Let 4 be a real number and E be an arbitrary positive number.

rhen the Set of real numbers in the open interval ( - e, 4 + C ) is called

to C -neighbourhood of . For each separate choice of e , we may form a

;eparate neighbourhood of .

(ii) D.leted Neighbourhood The set of real numbers in the .pen

nterval ( - c,	 + e ) excluding the point itself is called the deleted

E -neighbourhood of , where	 is a real number and e is an arbitrary

positive number, however small.

(iii) Point of Accumulation: A number 4,which mayor may not belong

to a set  of real numbers, is called a point of accumulation or cluster point

of S. if every neighbourhood of , however smalr, contains an infinite

number of members of S.
Evidently, a finite set of real numbers cannot have any point of

accumulation. Cluster point is also called Limiting Point.

Examples:

1. L=l, m=O, M =1, limiting

point is 0, but l does not exist.

2 For the set.....	 L=. m=, M rl.

limiting point is 1. but L does not exist.

5.5. Sequence of Numbers.

A set of real numbers X1.X2,X3 ........... 
x,, .....such that

corresponding to every positive integer n, there exists a real number x,,

of the set, is called a sequence. The individual numbers are called

elements of the sequence. The sequence whose flh element is x,, is briefly

denoted by {x}. If the sequence terminates after a finite number of
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terms itis called afinute sequence, otherwise,it is an infinite sequence.

In what follows, we shall be concerned with infinite sequences only and

the word infinite may not be used always.

Examples.

1. { 2,4,6,8, 10 } is a finite sequence

2. { n } is the infinite sequence { 1,2,3.....n,... }

3. 1 is the infinite sequence i,!,!!,...
II n	 1 23	 n

4. {x,. = (- iy' } is the infinite sequence {i, -

5. {x,,	 i + (- i)" } gives the infinite sequence 1 0, 2, 0, 2,... }

6. If x	 we (.- r Fit), then {x,, I does not give a sequence, for x,

becomes undefined when n is the square of an odd positive integer.

5.6. Bounded Sequence.

Given a sequence I x. 1, if there exists a number K, such that K is

greater than or equal to any member x,, of the sequence, i.e., K 2! x,,,

where x,, is an y element of {x0 }, then the sequence is said to be

bounded above, K being called the rough upper bound. Of all the rough
upper bounds, the least one is called the exact upper bound of the

sequence. If K is the exact upper bound of the sequence {,,}, then

there exists at least one member of {,}, x,, > K - e where e is a

preassigned positive number, however small.

Similarly, given a sequence { x }, if there exists a number k. which

is less than or equal to any member of the sequence, i.e., if k 2^ {x },

for all n, then the sequence {, } is said to be bounded below, k being

called the rough lower bound. Of all the rough lower bounds, the greatest

one is called the exaci lower bound of th& sequence. If k is the exact

lower bound of the sequence {x,,}, then there exists at least one

member of {x,,} ,such that x,, < k + C

If a sequence is bounded both above and below, it is called a

bounded sequence.
8-
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Examples:

1. The sequence {i + - } is bounded above, the upper bound being 2.

2. The sequence {i- } is bounded below, the lower bound being 0.

3. The sequence 12 + (- i)	 } is bounded, for it is bounded both

above and below, the upper and lower bounds being 25 and I respectively.

4. 'Me sequence {0,3,-2,5,-4,7,...},i.e (1+(—l)'n) is unbounded,

as it has neither upper nor lower bound.

5.7. Monotonic Sequence.	 -

A sequence {,, } is said to be monotonic

(a) increasing -(or, more correctly non-decreasing), if x,, 15 x,
for every n

(b) decreasing (or, non-increasing), if x,, ^! x,, 1 for all n;

(c) strictly increasing, if x,, < x * 1 for all it;

(d) strictly decreasing, if x > x,,	 for all n.

Monotonic sequences are also called monotone sequences.
A sequence is said to be monotonic sequence, if it is monotonic

increasing or monotonic decreasing.

Examples: -

1. The sequence {x,,}, where x = -.--, is strictly increasing.
n+1	 -

2 The sequence	 }. where x = fl_t_i, is strictly decreasing.

3.	 The sequence 11, 0, 1, 0, 1.0.... ) is neither increasing nor decreasing.

5.8. Limit of a Sequence.

The idea of limit forms the most outstanding concept in
Mathematical Analysis and it plays an important role in the discussion

of convergence of an infinite sequence.

Let us consider the sequence Ix,, }' where x, =

If we put n = I, 10, 100, 1000,.. . successively, the respective values

ofx, are 1.01.0010001.
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Obviously, ac it increases, - steadily decreases, but always remains

positive. For large value of n, the difference of x. from 0 is very small and
we can make this difference less than any preassigned positive quantity,
however, small, by making n sufficiently large. For example, if we like to
make this difference less than 0000001, n should be greater than 106.
Thus, the value of x can be made as near to  as we please by taking n

sufficiently large. This is expressed as

. —+0 as n -+ oo or, limx = 0.

Therefore, we hve the formal definition of limit of an infinite

sequence.	 -

Definition: A sequence {x,, } is said to have finite limit!, if for any

pie-assigned positive quantity E, however small, there corresponds a

positive integer N, such that I x,, - I I < C, for n > N.

This state of affairs is expressed as urn x, =

5.9. Convergent Sequence.

An infinite sequence {x,,} is said to be convergent and has the
limit!, if corresponding to any arbitrary small positive number e, we can

find a positive integer N (depending upon e ) such that

x,, -11< e, for n > N.

i.e.,I—e<x,, <l+e. when n^:N.

This is expressed by saying that 'x,, tends to the limit 1, as n tends

to infinity' and expressed as lim x,, = 1.
,7 -4

By the symbol n -, oo , it is meant that n takes up successively an
endless series of integral values which ultimately become and remain

greater than any arbitrarily assigned positive integer.

Find the limit of the sequence {.L } as n -3 00.

when -

by taking N = -- or, the integral part of -- (when it is a fraction),
C	 C

- 0 1 < C, if n > N
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Therefore, urn	 = 0. Hence, the sequence { } converges to 0.

Note: The limit of a sequence may or may not be a term of the
sequence.

For example, the convergent sequence (, - ,.......... } has the
limit 0, but no member of the sequence is equal to (I.

Again, let us consider the sequence { x }, where x,, = , when it

is odd and x, = 0, when n is even, i.e., the sequence {i, 0,.0, , ..

Obviously, the sequence is convergent and converges to he limit 0
which is equal to an infinite number of terms of the sequence.

5.40. Non-Convergent Sequences.

A sequence {} is said to diverge to +00 , if for any number -K
whatever is assigned, there corresponds a positive integer N, such that
x. > K for all n > N . This Situation is expressed by urn .t =

In this case the sequence {x} is called divergent.

Here —is no real number, it is a symbol to denote a large positivc
number greater than the greatest number one can imagine.

A sequence { X. } is said to diverge to -00 if, when any number. K

whatever is assigned, there always exists a positive integer N such that
x4 < K for all n>N, and wewrite tim .v,,

I -4
Here, K is generally chosen a negative number, large in absoluit

value.	 -	 -

A sequence which is neither convergent nor divergent is caltecl,an
Oscillatory Sequence.

In an oscillatory sequence f x. 1, if a constant c exists such that
< c, for all n, then the sequence is said to oscillate finite/y.

otherwise, it is said to oscillate infinitely.

Note.	 A monotonic sequence cannot oscillate.

Examples.

1. - The sequence 1 2 , 22.32i.e., {112} diverges to +

2. The sequence —I,— 2,.— 3.......i.e.. 	 n } diverges to -00.
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3. The sequence - 1, 1, - j.......i.e., {(_ i)" } oscillates finitely between

—1 and I.

4. The sequence - 1. F2, - 'J, 2— F5 ....... i.e., {(_ iy' .1 }osciflates
infinitely.

5.11. A Few Important Theorems.

Theorem 1. A convergent sequence determines its limit uniquely.

Proof: If possible, let I and 12 be two distinct limits of a convergent

sequence

Since 1 * 12,wecantake I' —12 1 = ö ,where isanon-zeropositive
number. Now, let us choose a positive number E , such that e < 8.

Since {., ).,possesses two distinct limits 1 and 12

Ix,,-1it<e for n>N1 and .x,,—l 2 I<4e and n>N,,

where N 1 and N, depends on the given C.

Thus, for n > N = maxN 1 , N2)

l i —1 2 1 = I
 (x,, —'2)— x1, - ')I

!^lx —i2 +x,, 	 1 1 1

e e
< — + — = E for n > N.

Thus, 6 < c and we arrive at a contradiction. Thus, the assumption
that the sequence (x, J has two distinct un' s is not true. Hence, the
theorem.

Theorem II. Every convergent sequence is bounded.

Proof Let the sequence {,, } be bounded having a unique limit 1.

Then I x,, - I I <C for all n ^: N , N being a positive integer
depending upon r, however small.

i.e. 1-6 <x. <1+ewhen n 2! N.

Let L and M be the least and the greatest of the numbers

xM_l,l.C,I+•E.
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Then we have L :5 x,, < Al for all values of n.

Thus the sequence I x . } is bounded.

Note. The converse of this theorem is not always true. For example,

the sequence It + (- i)" }, i.e.. (0,2,0.2.... } is bounded but not

convergent.

I	 L.
Also, the sequence 

I 
2

I, - .1,—3 , 1....	 is bounded but not
1 

convergent.

Theorem HI. A In000ronic increasing sequence which is bounded above is

convergent and converges to its exact upper bound or supremum.

Proof: A monotonic increasing sequence {} is always bounded

below, for x ^t x 1 for all n. Again, since .r } is bounded above, if

exact upper bound or the supremuni of {,, } is M,

(i) x 15 M or for all n, and

(ii) for any given c (>0 ) there exists at least one member of the sequence

{ x,, }, say X N , such that X N > M -

Since the sequence {,,} is monotonic increasing, x > M -

for n ^! N. Again from 	 x,, < M , for all n, whereby x,, < M + e for

each n.

Thus, M - c < x <M + c ,for all n -f^ N and so lim x,, = M.

Hence, the theorem is established.

Theorem W A monotonic decreasing sequence bounded below is

convergent and converges to its exact lower bound.

The proof is exactly similar to that of Theorem HI proved above.

Theorem V. A monotonic increasing sequence diverges to + o, if ills

not bounded above.	 -

Proof : Since the sequence {x,,} is monotonically increasing,

x,,1 ^! x,, for all n, and {x, } being not bounded above, there exists at

least one member, say, xi,,, of the sequence such that x,, > M where M
is a large positive number. The sequence being monotonic increasing,

,,,41, X.. 2,.. . are all greater than M.
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Therefore x, > M for all n ^ rn.

i.e.,	 lim x =
Dl-.

Thus, the sequence { X. } diverges to +

Theorem VI. A monotonic decreasing sequence diverges to - o, if not

bounded below.
The proof is similar to the proof of Theorem V.

5.12. An Important Sequence.

	

The sequence {x, }, where x,, = (i +	 is convergent.

C. P. 2004

It will be shown that the given sequence is monotonic increasing
and bounded above.

Using Binomial expansion.

X ,
	

1+
(	 IY' =1+u. +

1	 n(n-1) 1	 n(n—lXn--2)
=1—I	 —

Dl	 n)	 n	 2!	 n2	 31

nIl

	i( 	

' ) +

 i(	 IV	 2
= 1 + I + —Il - -—Il - - UI - - 1+...

	

2!	 n 	 3!	 n)t	 n)

	i(	 l'(	 2'l	 (	 n-1'
	...+—l1--lIl--l...I1--I	 ...	 (I)

n!	 It A	 fl)	 )
	Replacing n by (n + 1).	 -

2

	

1(	 1 '\	 1(	 i V	 "i
X	 =l+1+—Il---------l+---ll--lll--I+...

	

2fl	 n+1) 3U	 n+1)k,	17+1)

I	 ( I_ I 	 2 	
(2)

1 I	 n"l
—lI1----------l...I1--1

	

(n+l)U	 n+1)	 n+I)	 n+I)

From (1) and (2), we observe that

i) the first two terms of x and x,,, 1 are equal, each being I;
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(ii) _L < I, i -	 > 1—	 and so on thus excepting
n+1 n	 n+1	 n

the first two terms, every term of x,	 is greater than the corresponding

terms in x,,.

(iii) x contains (n + I) terms, while	 contains (n + 2) terms and

all the terms are positive.

Hence .r 41	 x, for all n, i.e., the sequence {x, } is monotonic

increasing.

Next we note that x, 2^ 2 for all n, i.e., {x, } is hounded below and

2 is a lower bound.

Also, x	 1+l+11l_ 	 IIl_iil

2 1.	 n)	 3!	 n)	 n

i (	 ñ ) ( I 2
)

(	 n—I....
n!(	 n	 a	 fl

1	 1	 1
<1+1+ — +—.+...+----

2!	 3!	 a!

<1+1+_+ —+...+---
2 22	 2

=1+	 = 3-2' <3
2

i.e., x,, < 3, for all n.

Thus, 2< x, <3 for all n.

Hence, the sequence fr,, } is bounded.

Since the sequence {} is increasing and bounded , it is

convergent.

Note. Since the sequence is convergent, its limit exists and this limiting
value is denoted by 'e',

i.e.iin(i+ !J = e, where 2<e<3.

This number e is a transcendental number.
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5.13.	 Bernoulli's Inequality.

For every positive integer a 2, and I + p >0, (1+ p)" >1 + up
Proof The method of mathematical induction will be used to

establish the result.

We note that, when a = Z (i+ p 	 >l+2p.

Thus the inequality holds for n = 2. Let us assume that the relation

holds for any particular value k (^ 2) of n.

(i+pYc>i+lqj

or, (i+pXi+pY >(i+p)(i+kp), since l+p>0.

or, (i+pr' >1+(l+k)p+Ai'2 >1+(k+l)p,

Thus, we see that the relation is true for n = k + 1. if it is assumed

to be true for n = k.

But, it has been proved to be true for  = 2, so it is true for n = 3, and

as it is true for ,j= 3,itis true for n = 4 and soon.

Thus, the inequality holds good for any integral value of n > 2.

Note The above inequality is true for n >1, even if a is not a positive integer.

5.14. Null Sequence.

A sequence is said to be a null sequence, if Jim jr. = 0, i.e., for

any positive number e, however small, there exists a positive integer N,

such that I; 1< E for all n>N.

Exane:

Then sequence {" } is a null sequence if x < I.

If x = 0, each number of the sequence is Wand jr! - 0 as n -

When x * 0, I x us a positive proper fraction, we write

Now, Ix"=	
I	 I

(i + h) 0	l+nh

(1+ h)"> 1+ nit [Bernoulli's inequality]

0	 1	 I
\	 Il < - < C ifn>N, where Nis the integral part Of.

Hence, the sequence {x"} is  null sequence if I x < 1.
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5.15. Cauchy Sequences.

A sequence	 is called a Cauchy Sequence, if corresponding to

	

any pre-assigned positive number 	 however small, there exists a
positive integer N, such that for n ^! N,

Ix, , - x,, I <.E for all positive integral values ofp.

Example:
mi

 is a Cauchy Sequence.

Here.Ix,p..-x,I= _! zr! i_—!_. <!< for
 > N

	

1
fl+P n	 n	 l+	 n

11 1

and taking N > ! or the integral part of

Hence, {! } is a Cauchy Sequence.

5.16. Cauchy's General Principle of Convergence.

A necessary and sufficient condition for the convergence of the
sequence { x,, } is that corresponding to any pre-assigned positive
number e, however small, there cxists a positive integer N, such that

for n 2! N. x,,,, - x, < r, for  all positive integral values of p.

Condition Necessary : Let the sequence {,, } be convergent, i.e.,
the sequence has a finite limit, say 1. Then, forgiven e, however small,
there exists a positive integer N, such that

-	 e forall n > N.

Then it follows that

—i<c forall n ^! N and p>0

Hence,	 - x,, I = I x,,,, -1 + 1 - X.

I< 'X	 — l+; — I l—

<tE + - e

Le.,IX,,+p_x,,I<E,forn>Nandp>0

Thus the condition is proved to be necessary.



,tQUtNCE	 123

Condition Sufficient: Next let us suppose that	 —; 
I 
<C.

for n ^ N, p being any positive integer. Then
x,, - I <	 < x,, + C • for all positive integral values ófp.

t x.+p I is thus bounded as p-400.

Let, L and M be the lower and upper bounds respectively. Then

L 15 a,, - E and M :5 a,, + E.

Thus, M—L:5(a,,+c)—(a,,—c)=21

Since eis arbitrarily small, this implies that M - L = 0 in the limit.

Therefore. M - e :5 x,,^,, 5 M + c.

It follows that x,, + , - M for all integral values ofp.

Thus, the sequence { X. } is convergent and the condition is proved

to be sufficient.

5.17. Theorems on Limits of Sequences.

Let {,,} and {y} be two sequences, such that

urn x = A and urn y,, = B

Then,	 (i) Iirn(x,, + y,)= A + B,

(ii) uirn(x—y,)=A—B.

(iii) Iim(x,, .y)= A. B,
I, -3

(iv) lim	 =	 ,Provided B 0.
Y.	

B

Proof: (i) Since urn x = A, given any c > 0, there exists a positive

integer, N1 , such that I; - A I < 1 c for all n > N

Also, since urn y,, = B, for any c > 0, there exists a positive integer

N2 , such that I y,, - B I < 1 c for all n > N2.

If N = max{N1, N21 thenfor n > N

and
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Hence, I(x+y.)r_(A+B)I!^Ix,,—AI+Iy,, —BI <L forall

n> N.

Therefore, by definition urn (x,, + y,,) = A + B.

(ii) Proof of this part is similar to that of
(iii) We have.

- AB I =x ( y - B)+ B(x,, - A)l

y,, - BI+IBhIx,, - A

Since { X. } is convergent, it is bounded and there exists a positive

number M, such that {x } < M ,for all values of n.

Then, Ixy,1_ ABI<'MIy_BI+{IBI+A}IXn —Al... (1)

where I is any positive integer.

Now, let ebe any pre-assigned positive number, however small.

Then we can find two positive integers N 1 and N2, such that

	

I._AI<2{IB+ All for n>N l 	...	 (2)

and	 IY. — B I < ----,	 for n>N 2 	...	 (3)

If N be any positive integer greater than both N 1 , N2 . we get from

1), (2) and (3)

	

xy - AB I <- E +	 = C ,forall n> N.

Hence, lint x,, y,, = AB

Note. ln(l)we have taken 11 B I + A } instead of I RI in (1); otherwise,

the inequality (2) fails if B = 0.

(iv) Here,

x. - A = B.x,, - A.v = B (x,, - A) + A (B - y)

B	 B.y0	 B.y

BIIx - A+ I A II	 I (1)
I  II y.
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Since, tim y = B * 0, there exists a positive integer N 1 , such

that

I B-yI<IBI,forn?Ni

ot, I—IyI<IB—yI<HBI

or,	 lBI<yj	 ...	 (2)

From (1) and (2)

L_ IBJIx_AI+lAIIB_yI

Y. B

2
-AI+ 2{IA+AJIB_yI	

(3)
<—jx,

BI	 '	 fBI2

where A is a positive number.

Let e be a positive number, however small ; then (here exists positive
numbes N,, N such that

...

1B1 2 	 1
and B -	 < {IAi. for every ii 2 N3	...	 (5)

If N be a.positive integer, greater than each of N1 , N2. N3 then using
3), (4) and (5), we have

x,,A	 1	 1- -- <—E +	 = E,forevery n 2 N

Hence, urn x,,- = A -
"-" y,,	 B

.18. Illustrative Examples.

-	 1	 1.x. 1. if xII 1.2
I	

2.3
= - + - + -3.4 + ...	

1	
1 then show that x

n(n+l)
.s a bounded monotonic increasing sequence.

[C.P. 1963, B.P. 1984, 1994]
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Here, x,,	
(	 i	 H	 I) (I	 I)	 (I

+
2)	 2	 3	 3	 4,	 n	 i)

n+l	 n+l

n+l
Similarly, r,+,=

	

n+I	 fl	 _________ >0. for allSo, ;,1-x,, =
	 ii	 (n+l)(n+2)

positive integral value of n.

Hence, {,,} is a monotonic increa.si!lg sequence.

n
Again, since - >0. x,, >0.

n + 1

Also,	 < 1, for all positive values of n.
n + i

Thus, O<Xn<l.

Hence, the sequence (,} is bounded also.

Ex. 2. If ; In- I= -, prove that the sequence (,.} is monotone

increasing and bounded. 	 I V.P. 20001

	

Here, .x, 
= 30 - I and x,,	

3n + 2
= -i-

7
> 0, for all positive integral values- X, 

= (n + 2)(n + 3)
of n.

Hence, the sequence is monotone increasing.

3n—1 3(n+2)-7 = 37
Again, . =

n+2	 n+2	 ,z+2

Since --- is positive for any positive integral value of n, x, <3.

Also, x,, Z!

i.e., 1 ^ .,, <3.
Hence the sequence is bounded.

Ex. 3. Prove that Urn n b" = 1, where n is a positive integer.

V I' 1998]
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For n>i,	 >i,
Let, Gn = I + h, , where h > 0,

then fl=(l+)l+.,+n(h1),,,,2+^,,fl

	

> 4 n (,z —	 since all the terms are positive.

0<!, <J2/(n-1)

urn !=0,hence jim

E.. 4. Show that the sequences given by

	

1	 .G)) x,, = 2 + (- i)". 2 " and (ii) X,, = — Sin 
rnr
-- are Convergent.

	

n	 2
Find the limits.	 [8.1'. 1965]

(I) We have 2 -	 = 2" and 2 — x < E where e is any
positive number, however small,

if2"<E,i.e,2" >!, i.e.,ifn>.2_iPi)
e	 log 

Thus, if we choose an integer N > 
log	

J 2 - x,, < C • for all
N.	

log 
n > 

E,. 5. Use Cauchy criterion to show that

(i) the sequence Ix. I defined by x,,

+ (._ I ) " ' . ,j is convergent;

(ii) the sequence {x,,} defined ; I + . 1 + 1 + I + 1 is
divergent;

(i) Choosing m> n,

1	 1	 I	 Ix —x = ----__. +--...---In	 n
n+l n+2 n+3	 m

	

— I	 (1	 lHl	 I
n+l ln+2 n+3n+t nT1

<e, if n + I>if n > ! i
C
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If now N be so chosen that Nis equal to the integral part of 	 - I]. then

X,,, -X <e.whenever n > N.

Hence, the sequence converges by Cauchy's Criterion.

(ii) If we choose m.=2n,

IX. -	 = I X2. -

1	 •1	 1
=-+----+".-

n+l ,i+2	 2n

I	 I
> fl..	 =

2n 2

Thus x,,, - x, I is not less than any pre-assigned positive number.

Hence the sequence does not cnverge by Cauchy's Criterion. Since
the sequence is monotonic increasing and does not converge, the

sequence diverges to +

Ex. 6. (i) Show that the sequence

,

tends to a definite finite limit and find the limit. 	 [ C.P. 1960]

(ii) Show that the Sequence .J,	 converges

to 2.

(i) If the flh term be ; ,then x.

(I)

Again. ;

or, x,—x120	
...	 (2)

From (1) and (2)

x,,2+l - X.2 	 x., -	 -'

or, (x,.+1 + x,j(.s 1 - x,,)	 x,, - x,,_1

This implies that x,,, 1 > x,, - if x, > x 1 and A 14 1 < .,, , if

< Xo_I
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So, the sequence is monotonic increasing or decreasing according
as a2 > a or a2 <a'.

Here, obviously x2 > x1.

Thus, the sequence is monotonic increasing.

Again from (1) x 2 - x, -2<0,	 x <x1

or, (;- 2) (; + i) < 0

Therefore, x,, lies between -I and 2, i.e.. -1 < • x < 2.

Thus the sequence is bounded.

Since the sequence is monotonic increasing and bounded, it must
tend to a definite limit, say!.

Then, ; = I, x, 11 = 1	 as n -

So from (1) 12_I -2=0,

1=2-1.

Since, all the terms of the sequence are positive, I = 2.

(ii) Here. x1 = .J, x2 = T272 	 =

	

x.=	 x.+.=

2; and x.2 = 2;_i

x.2+,	 .2_I- .A,, -	 -

or,	 +	 -;)= 2(x, -,,_1)

Therefore, if ; > x. -I , then ; >

Since, x2 = 12T21 X1 = h, 52> SI

Therefore, x3 > x2, x4 >

So. { ; } is monotonic increasing.

Again, 4+1 =2;.and	 >x,

4 <2x,, or, x,,(x,, -2)<O

Thus,. {,} is bounded, and so it is convergent.

Let, lim x, = I
II -4

.9
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Jim 4. = Iim2x,
,I-

or, 12 = 21 or, I(/ —2) = 0

since x, >0, 1 *O, .-. 1 =2.

Hence, {x,,} converges to 2.

5.19 Miscellaneous Worked Out Examples

Ex. 1. Prove that the sequence {x}, where x,,=(-1)" is not
convergent.	 I C. P /I J

Solution :	 Let us assume that x,,} is convergent.

Then x, -4 1 (a finite quantity ).

So, for a finite number E = -1-, (say) there exists a number N, such

th.t I(1Y_hI<>forn>N.

When n is even and n > N, Il-1I<

ie	 <t<—

and when n isoddandn>N,

Thus our assumption leads to a contradiction. Hence, {x,,} is not
convergent.

f4n + 3  )
Ex. 2. (i) Prove that the sequence	 is bounded and monotone

increasing.	 F C. P.

(ii) If x,, =	 find the least integer m, such that	 -!I<_
for n>m.	 [C.P20001

Solution:	 (i)
n+2

if 4n+3:^4n+8, i.e., if 3 < 8, which is true irrepecIive of the values

of
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Hence the given sequence is bounded.
4n+3

Let, 
x- =	 2

The sequence {x,, } will be monotone increasings,

if . 	x,,:5x+,

i.e., if
4n+3

^ 
4(n+l)+3 4n-7

—
n+2 (n+I)+2	 n+3

i.e., if (4n+3Xn+3)5(n+2X4n+7)

i.e.,if4n2+15n+9:54n2+15n+l4

i.e., if 9:5 14, which is always twe

Hence {x,, } is montone increasing.

ii	 1	 .	 I2n+5	 II	 1
(ii) x–j<j	 gives	 for n>m

26 1 
> 

I	 3(6n-1I)
3(6n-1l)1000	 '	 26	

<iotm

i.e., 6n< 
26000
--+I1

Le., n> 1446 -j, for n> 1. and	 m

Hence the least integer is 1446.
3n+1

Ex. 3. Show that if x,, = -, then the sequence {x,,} is strictly
increasing. Is the sequence &tergent ? Justify your answer. Also find

its limit. [C. P 1993, 94 1

Solution The sequence {x,, } is monotone increasing if x <x,,+1

i.e., if
3n+1 

< 
3(n+L)+1

-
n+2 (n+1)+2

i.e., if (3n+1)(n+3)<(n+2)(3n+4)

i.e., if 3n2+lOn+3<3n2+I0n+8.
which is evidently true for all n>O.

Hence the sequence is strictly increasing.

Again. ..	 :t:^ 3. if 3n+13n+6,
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which is true for all n > 0.

Hence the sequence {x,j is bounded.

Thus {x.1 is monotone increasing and at the same time bounded
above, hence it is convergent.

1
3n+1 3Also, lun - = Jim	 = - 3.
n+2 a-'"	 I

Hence, the limit of the sequence is 3.

Ex. 4. (i) Examine the convergence of the sequences

	

(a) 22,42,62,...	 [C.P 19891

	

(/i') 1 .2	
.	

t c. i' 1991 i
(ii) Use Cauchy's criterion to prove that {x}converges, when,

11	 1
+	 IC.P. 19801

(üz) Evaluate: Jim {4 +	 +	 .......+!!-}	 [C. P 1.985]

	Solution : (i) (a) Here, .*,, =(2n) 2 and x,,	 as n-0c
Hence the sequence is not convergent.
(b) Here, x, = 2 —oc as n —oc

Hence, the sequence is divergent.

1	 I	 1	 1We have, -=

	

n!	 2.3.45....n	 22.22.....2	 2''

IXI flI + (fl ^ 2)j + *jJ . if m >.i

2

=-i-x	
)

2

2

•1	 I
<—.2=---.
2-2"
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Thus I x,,,—x,--O as n—)°.

So, for any € > 0, there exists a positive integer N such that

for all n>N.

i.e., I x,,1 —x, <E for aim > Nand m > n.

Hence, by Cauchy's Principle, {x} is convergent.

I—n +i

	 2	 33	 fl31
(ni) urn	 --+----+•••+--=lim

 113

n	 n	 J

,.-

1	 (
1)2
	 1

=—•lim 11+—I
4—k. n 4

	

EL 5. (z) Show that the sequence {x, }, where x,, 	 is bounded.

C. P 1997, 2006, 2008 1

(ii) Show that the sequence Ix.), where x,, =	 is decreasing

and bounded.
Correct or justify : Ix, } is convergent.	 [ C. P 1995

(a:) If x,, =-1)' and Y. !(xJ ±x2 +x3 + i-x,,) (n= 1 2 3 )

prove that the sequence [Y. 1 converges although the sequence IX.)
does not do so.. IC.P. 19851

	Solution: (i) Here, x =	 < 3
n+1

if, 3n+1:53n+3, i.e., if 1<3, which is true for all n.
Hence the given sequence is bounded above.

(ii) Here, X. = ---, so X,,. . 1 =	
+ 11	 -5+6n	 6n

-1	 1	 •-6
<0, for n>0

x,,41 — x,, < 0, i.e., x,, 1. 1 <x, so that x,, 1 <x, is a decreasing
sequence.
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Again, Jim x urn __!_ =
"- 5+6n

Hence, {x} is a bounded sequence.

Since the sequence is decreasing and bounded, it must be
convergent.

(iii) See Ex.1., to prove that {x,}, where ; =(—i)" is divergent.

•	 x1+x2+x3+...+x,,00
y., —	 - -

n	 n

•	 .	 xi +x2 +x 4 +...+x	 I
if n is even and y =	 = --, if n is odd.

n	 n

As ,;	 urn y,, = iini 1_! = o
,I-.	 jI-+	 I?)

Hence the sequence {y,} is convergent and it converges to 0.

EXAMPLES-V

1. Define the terms 'bounds', 'supi-emum', 'infimum' and 'point of
accumulation' in connectioh with a set.

2. (a) Show by suitable examples that the supremum ofa set, if it exists.
may or may not be a member of the set.

(b) Give illustrations, where the infimum of a set is and is not a member
of the set.

3. (i) Define the terms 'limits', 'bounds' and 'cluster point' as applied to
a sequence.

(ii) Show that the sequence	 is bounded.	 V P. 19971

4. Prove that a sequence can have at most one limit.

5. What do you mean by a monotonic sequence?

State whether a monotonic sequence tends or does not tend to a limit
under any circumstances. 	 [C. P. 1980, 94, 20001

6. When does a sequence converge? Prove that a convergent sequence
is always bounded. Comment with reasons on the validity of its
converse proposition.	 [C. P 1981, 98. B. P 19971

7. i) Define a monotone Sequence.
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(ü) Prove that the sequence I x. }, where x,, = (i + .. )" is

(a) monotone increasing,	 (b) bounded and (c) converges to a

limit e,where 2< e <3.	 [C. P. 1985, 88, 98]

8. (i) Show that the sequence { x, }, defined by,

I	 1
X. =—+---+....+—
" n+1 n+2	 2n

is monotonic increasing and also show that it is bounded.

(ii) Show that the sequence { x,, }, is monotone decreasing, where

(i .+ 	 C. H. 19551

9. (i) - Discuss the behaviour of the sequence 1x" }, where x is any real

number.

(ii) Prove that the sequence r' } is convergent, if I r I < 1.

[B. P. 19981

(iii) Show that the sequence {i } converges to 0.

10. (i) When a sequence is said to be a Cauchy Sequence?

(ii) State Cauchy's general principle of convergence of a sequence

and apply it to show that the sequence {x}, where

	

11	 1
X,, =1 +	 + +.... +	 is convergent.

V P. 2002; C. P. 2006]

11. (1) Give an example of a sequence which is neither monotone
increasing nor monotone decreasing.	 [ V P 20011

	

12. (I) Show that urn	 = 1, (x> 1).	 [B. P1996.1997]

(ii) Prove that lim;.x" = 0, for I x I < I.

(in) Show that urn -Ir" =0.
a-.- n!

(iv) Prove that ijm L_ =0, for I x <I

(v) Prove that urn ii" = 1. 	 B. p 19961

13. What is a Cauchy Sequence? Show that a constant sequence is a
Cauchy Sequence.
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14. Define Cauchy Sequence and show that

	

	 is one such
n + l JI.

sequence.	 (VP. 19971

15. Determine the bounds of the following sequences, if there be any:

(u)

(iii) _2_22,_23,_24,...

3 5 5 7 7 9 9 Ii(iv) - , - , - , - , -, - , - , -,...
22334455

16. Prove that the sequence L. } is monotonic increasing and bounded;

where

3n+1	 -
0) X, =	 I B. P 1985, V. P 1999]

1	 1	 1	 1
(n) X.

'	 1.3	 3.5	 5.7	 (—i)(+i)

(iii) x =-+---+ i-+...+ 1-
"	

j	 I

n+1 n+2 n+3 2n

(iv) X. = 
4n+3
	 [C.P.10]

n+2

17. (i) If x	
ni-i

2n + , 
show that the sequence 	 is strictly

monotonic decreasing and hence prove that it is convergent.
CF. 1996

(ii) Show that the sequence

	

	 is monotonic increasing,
In1J

bounded above and converges to 3.	 . [C.R 1991, 20001

(iii) Show that the sequence 
{4i + 

3.} is bounded and monotonic
n+2

increasing.	 [C.P. 19891

18. (i) Show that the sequence { x }, where

X. =(_1)'	 _T-'and x,, =!+(_1)".2

oscillate finitely.

(ii) Show that the sequence { x,, }, where x,, = (- I )" (n + 1) oscillates

infinitely.
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19. (1) Show that the sequnce J('!LJ.') J is convergent. I VP 19951

1"') I
2_5

(ii) Show that the sequence {x,}, where X,,	
6n	

is not

convergent. 	 [VP.1996]

(w) Show that the sequence (x j, where x = —
3n+1i- is strictly

increasing. Is the sequence convergent ? Justify your answer.
[C. P. 1993]

20. Find an integer N, such that

(i)	 _oj<o.000l for every n>N.

Ct') 
I j_ 0 k 0.1fo t 1.	

[C.P.1988]

2n+5 I I 
<_!_ for n>N.

6n-11 3	 1O

21. Show that the sequence (xe) is convergent where

	

2+ (- i) ) ;	
[ C.? 19921

2n-1
(ii)	 ,,=

n

1
(In) x, = 7 sin

(iv) x,	 —sin ---;
.n	 2

2+1
(v) x, =	 2	 tC.P,1980]

4n+1

(vi) .x,, =i+(..!)".	 [,C.P.1968]

22. Show that the sequence { x, } is divergent, where

	

(ii) X =	 (ni) x = log !
n + I	 ln
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23. Consider the behaviour of the following sequences with respect to
convergence or divergence

(i)

I	 + I

1n2
(iv)

2n 2 + i	
[ C.P 1981]

24. Show that the sequence . J _L. , where p > 0, is a null sequence.
I" i	 _______________

25.	 (a) Show that the sequence 	 , 1+	 , 7 +	 +

converges to the' positive root of the equation

- 1-7 0.

(b) Show that the sequence F5, /i 5,	 +	 ,...

converges to

(ii) If x,, = .JK + x . where x 1 and Kare positive, show that the

sequence { x,, } is increasing or decreasing according as x 1 is

less or greater than the positive root of t 2 - I - K = 0 and has,

in either case, this root as limit.

ANSWERS

15. (i.) lower bound —i . upper bound 1;
(ii) no upper bound, lower bound 0;

(iii) upper bound —2, no lower bound

(iv) upper bound 5 , lower bound --

19. (iii) yes, convergent.

20. (I) N = 1000; (ii) N = 99; (iii) 1446.
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6.1. Infinite Series.

Let us consider an infinite sequence of numbers. U 1 , u21 u 3 , ...

or {u, J . The series derived from the terms of this sequence, viz.,
ui+u2+u3+...+u,,+...

u,, or, simply j u. is called an Infinite Series.
=1

Now, let us form the sequence of the successive partial sums {s,, }
of the above infinite series, where s 1 = u 1 , s 2 =	 +

S3 = U 1 + U2 + U3 ......5,, = U 1 + U2 + U 3 + ... + U,,

6.2. Convergence of Infinite Series.

If the sequence Is.} of the partial sums is convergent, the series

Eu,, is said to be convergent.

If the limit of the sequence {,, } be a finite number S. then we say that

the series Eu,, converges to Sand that S is the sum of the series. It may
be noted that S is not a sum in the normal sense of the term, actually it is the
limit of a sum.	 -

Definition: An infinite series E u,, is said to converge to S. if corresponding

to an arbitrary positive number r , however small it may be, there exists a
positive integer N. (depending upon e ), such that

S. - S I < c , whenever n > N.

If we denote (,,, 1 + u,,, 2 +... ) by R,,, obviously, for the

convergenceofu,,, IR,,I<E, for n>N.
If s,, does not tend to a definite finite limit, but , s,, —), ±	 or

- o , the series	 u,, is properly divergent and diverges to +

or to - respectively.

If. however, s,, does not tend to a definite finite limit, or to + or to

— , but oscillates finitely or infinitely, then Yu,, is said to oscillatory, or
improperly divergent.

Divergent or oscillatory se,is are generally called non-convergent.
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Examp:

(i) Show that I + + +	 + .-.. is convergent, and find its sum.

Here,s =	 =-I3--I-- 
3
-,asn--3oo,

l-	 2l	 3"1)	 2

So, the series is convergent and its sum is •j-.

(d) Show that the series I ++	 +... is convergent; find its

SUM.

I	 "	 l	 1 )

	

r(r+l)	 (—r r+1

(	 i	 1	 i\ It	 i	 1 i	 iut	 I
2) (1 3) L3 4)	 1n-1 n) n n+I

= 1 — ---- — I , as a —, .
n+1

So, the series is convergeni and its sum is 1.

(iii) Examine the convergence oftheseries: t + 2 + 3 + - + n +

Here, 5,, = a (a + —* -,as n-4--

The series is divergeizi, as S diverges to + .

(iv) Show that the series	 — I)l = 11 + I - 1 + . oscillates

finitely.	 I

Since, S =1-1+1 -1+... 	 -

S. = 1, when n is an odd integer.

= 0, when a is an even integer.
Hence S. does not tend to a definite limit, as n —	 . The series

oscillates finitely.

(v) Theseriest-2+3-4+5-6+-•• =	 (-l)'.r oscillates

infinitely, for	 I

S,,=(n+l), when nisodd,

=--n, whenniseven

and it does not approach a finite limit as n —
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63. Convergence of Two Important Series.

L Geometric Series. The infinite geometric series

	

a+ar+ar 2 +ar 3 +...	 (a>O)is

(,) Convergent when I r I <I,

(ii) Divergent when r2: 1 and

(iii) Oscillates finitely, if r = —1, oscillates infinitely if r < —I.

Proof. Obviously, the ath partial sum S, is given by

	

S,,=a+ar+ar 2 
+..+ar	

= a .•., (ri)

(I) Now, if r < I, r" -4 0 as n -4

urnSS.
	

a

 l—r

and the series converges to -f---.
I — r

(ii) If, on the other hand, r> I, r" -9	 as n -9 .
urnS.

and the series diverges to

(iii) If r = I,

S,,=a+a+a+...+ana

and no, i.e., S -) as n -

So, in this case also, the series diverges properly.

(iv) When r <-1, (r") oscillates infinitely and the series is
oscillatory or improperly divergent..

(v) lf,again,r = —1.

S, =a—a+a—a+...= a, when nisodd

= Q. when a is even
and the series oscillates finitely between 0 and a.

From the above discussions we arrive at the conclusion that the
geometric series converges if I r I < I and does not converge if I r	 1.
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IL The p-series.
I	 I.	 I	 I

	

The infiniteseries	 +	 +	 + ... +	 +

(I) is convergent if p > I, (ii) is divergent if p :5 I

Proof. (i) We suppose that p> I.
Let us consider the partial sums of order. 2" -1, i.e.,  S,, S, S,. S13,

	(1	 I	 (I	 1
S	 1+I_+—I+I—+—+...+

2'-1 (2" 3")	 4" 5"	 7"

	

(I	 .	 I
+1 -+-+ . . . +- 1+...

8" 9"

1	

15")

(i
+1

(2" -I)"

	

(1	 l'\	 (I	 I	 I

	

I,2"	 2") I,4"	 4"	 4"

(I	 i	 1'
+I-+--.-+...+-
•,8"	 8P	 8P

I	 iI
2 -1 r + (2"-' 

11	 1	 ,_i	 I

2"	 4"	 8"	 (2'''

	1 	 I	 I	 1
=l+—+	 +

	

2"	 (2p_l)2	 (2P-'	 (2_i)"-t

1-rn	 I
=	 ,

1 r	
wherer= 2T.

- 

S 2, 1 <	 constant.

2 P 1

All the terms of the series being positive, the partial sums are monotonic
increasing.
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And for any positive integer m, there exists another positive integer ft,
such that 2k_I >m,

	

S. <S2 ,_ 1 <	
1	

= Constant.
1

Thus, the partial sums are bounded.
The sequence of partial sums, being monotonic increasing and

bounded, must converge.

Hence, the series is convergent if p > I.

(ii) Next, we suppose that p :5 1.

Since p I, n 1'	 n

11	 I•l'i	 1'IThcn.S =1+—+
(3P
—+—I+l—+..,+_i^...2	 2" 	 4') t5"	 8')

1	 ..	 1

i (i	 r (1	 1
2 'L3 4) (5 6	 8).

(2 -	2"	 2"

1	 1	 1	 I	 I
=l+-+-+--+...+--=1+-n

2 2 2	 2	 2

Therefore, given any number G >0, however large S > G whenever
n> 2(G-1).

Further, the partial sums are strictly monotonic increasing and not
bounded.

Hence, the given series is divergent, when p ;-> I.

6.4. Conditions of Convergence.

L Cauchy's General Principle
The necessary and sufficient condition for the convergence of an

infinite series u, is that corresponding to any arbitrarily chosen

positive number e, however small, a positive integer N can be found that
forall n 2t N,
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Is,,+_s,,I<Iu,,.i+u,,.2+...+u,+I<c.

for every integral value of p.

Let, S. =	 it2 + U1 + . ..+ it,

Then Eu, is convergent, if and only if, { S. } is convergent. Now by

Cauchy's general principle of convergence of a sequence. IS. } is
convergent, if and only if,

- s, 1< e for n2! N and for every positive integral value ofp.

Thus, we have	 it,, is convergent, if and only if

I -	U,,,1 + U,, 2 +	 + U,,.,.	 <C,

when is ,  N for every positive integral value of p.

II. Pringsheim's Theorem.

If the terms of the series	 u,, of positive terms steadily decrease,

then it is necessary for its convergence that urn n . u,, = 0.

Let the series I u, be convergent. Then for a given e, however snlall,

there can be found a positive integer N, such that, for all values of n _> N

we have

u.+1 +U,,•1 +U, 3 +"+UN <E

Since the terms of the series steadily decrease, each of the terms U,,,

U,,.,. 2 .... . it,, is greater than or equal to it,,

Hence, (n - N)u,, < E, when  n N.

Since, tim u, = 0, we can choose i > N ,such that

Nit, <e, when n^p..

Thus, nu,, <c, when n2^U.

This gives limflu,, =0.

Note This condition is necessary but not sufficient. If we consider the

series u,, .where U. 
= —i----, 

tim nu,, = 0, but	 u ,, is divergent.
it kg n
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6.5. Tests of Convergence of Series of Non-negative terms
In order to ascertain the convergence of infinite series it is not always

convenient to find the limiting value of S. as ii - 00. So, a number of
n'rethods and rules have been developed for testing the convergence of
infinite series. In this section important rules and methods will be discussed.

I. A necessary condition for convergence of 7, u,, is that km u,, = 0.

Proof: Since the terms of	 u,, are all positive, it follows from Cauchy's
general principle of Convergence (art. 6.4).

S. -s_	 < e,i.e., 1 u01.< E

Hence urn u,, = 0 is a necessary condition for convergence of U,,

Note : This condition is not sufficient, for example the series 	 -! is
divergent, although urn u,, = 0.

IL If a series I u,, ofpositive and decreasing terms be convergent, then

lim(nu,,)= 0.

This theorem as Pringsheim 's theorem, has already been discussed in
art. 6.4.

UL Comparislon Test

Statement:

Let	 u,, and	 v,, be two series with non-negative terms, and
suppose that there exists an integer N such that u, :5 v,, for n > N

Then (1) Z u,, converges if Y, v; converges and (ii) Y, v,, diverges

if Y, a,, divçrges.

Proof: (1) We denotç the n" partial sums of ru,, and Y, v, is. S. S'
respectively.

Since V. converges, given e (>0) we can find N, (depending

on  ), such that for all p 2: 1, and a> N1.

Let N2 = max(N,iv 1 ). Then for a> N2 we have

10-	
i's,,, I, -s,, I < js P - s H
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and since this inequality holds for all positive integral values of p. it follows

then ) u, is convergent

(A) If n> N,wehave

S - S 	 S. - SN

or, S^:S,-SN+S

If now, n -, oo, S -9 - ,since S. -3 00.

Hence the theorem.

Another form of comparison test
If 'u,, and iv,, be two series of positive terms and if

0 < Jim	 < 00 , then either both of them converge or both diverge.
n-. V0

IV D'Alembert's Ratio Test

Statement:

If	 > 0, and if	 = p, then

(i)u0 converges if p <I,

(ii) u diverges if P> I If however,, p = ithis testis inconclusive.

Proof: (i) If p < 1, for any given e (< I - p), we can find a positive

integer N (depending upon C ) such that for n ^: N

p+c. or. u,, 1 <(p+e )u,,.

In particular.

U N+I <(p+C)uN

UN+2 <(p + C )u, j < (p + 
c )2 

UN

Since 0 < (p + e )< 1, the series	 ( p + e )" U N converges,

being a geometric series with common ratio <l. and hence i u,, or i u0
N*I

is convergent by the comparison test.
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(ii) If p> l,foranygiven e	 p - 1);we can find a positive integer
N, such that for n 2! N

or, u. 1 >(p—E)u.
U.

Thus, as in (i), we have for m 2^ 1,

UN+,,.>(PE)MN
By comparing with the geometric series with common ratio

(p—a)>!,

we can conclude that the series	 u,, is divergent.

V. Cauchy's Root Test.

Statement:

If u,, >0 and if iim(u, 1" = p, then

(i) Ufl converges if p <1,

(ii) diverges if p>!,

When p = 1, the test is inconclusive.

Proof: (i) If p < l. given any e (<i -vp),

we can find a positive integer N, depending upon a, such thati	 N,

z
Comparing with the geometric series with common ratio (p + a ),

where 0 < (p + a ) < 1, we conclude that the I u, is convergent.

(ii) Next, let us suppose that p> 1.

Given any a (< p —1),we can find an infinity ofn,

say N1 , N 2 , N3,	 such that for these values of n, (a,. )" > p -

or, u,, >(p—c).

Since (p - )> 0, u, cannot tend to zero, so that 	 u,, is divergent.
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VL Raabe's Test

Statement:

Let	 u, be a series of positive terms satisfying urn 	 - =

then
(i) Eu,, converges if p>l,

(ii) E u,, diverges if p< 1,

This test gives no information regarding convergence, if p = I.
'IlL Logarithmic Test

Statement:

The series Eu,, of positive terms is convergent or divergent according as

Jim nlog---1>lor<1
"- 1	 U-1 J

This test fails, if the limit is 1.

VIIL Gauss's Test

Statement:

If for a series	 u,, of positive terms _f !L_ be expressed in powers of
-	 U,,41

1/11, so that
U	 /1	 (1

U,,41	 fl2)'

then	 u,, is convergent if p > I ,and divergent if u!5 I.

Note,	 The notation 0 (i/n 2 ) denotes such a function j (n ) that for

every n 2t no (a definite positive integer), If (n )J < k -4, where k is a

finite quantity independent of n	 -

6.6. Mixed Series: Absolute and Conditional Convergence.

The series I u,, which contains both positive and negative terms is

said to be absolutely convergent, if the series E I u,,I be convergent.

I	 IIFor example, the series I - 2 +	 - -_ +... is absolutely
22	 2

convergent.
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If the series I u,, be convergent, but the series	 be divergent,

then the series Y u, is said to be non-absolutely convergent.

The series I - + ! -! +... is non-absolutely convergent.
234

A convergent series which remains unaffected by rearrangement of its
terms is said to be unconditionally convergent, while the series which is

affected by rearrangement Of its terms is called conditionally convergent.

- -!- + -4 - _- + ... is an example of unconditionally convergent

series, and

- -!- + - -I 1-... is a conditionally convergent series.
234

6.7. Alternating Series.

A series in which the signs of consecutive terms are alternatively
positive and negative is called an alternating series..	 -

THEOREM I. Leihnitz c tes:for Alternating Series.

An alternating series u - u 2 + u 3 - u4 +... is convergent if {u,, }

be a sequence of positive terms decreasing monotonically to zero.

THEOREM H. An infinite series in which the terms are alternately positive
and negative is convergent if each term be numerically less than the

preceeding term and Jim u,, = 0.

• Note: I. When we say 'u,, is absolutely convergent we are to test the

convergence of Y I u.1 and not that of

2. To determine the absolute convergence of series we are to use

the test deve)oped for positive series.

3. If the terms of an absolutely convergent series be rearranged,

the series remains absolutely convergent and its sum also remains unaltered.

68. Power Series.

A series of the form

..a,, (x-x0 ) =a0 +a 1 (x.— x0 )+a2 (x — xo)2 +
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or, ia,, x = a,+  a 1 x + a 2X2  +. . + a,,x" +

where the coefficient cz, a 1 , a 2 ,..., a,,,... are independent of x. is called
a power series in x.

The simplest and the most important power series is the geometric
series: l+x+ x 2 +

From the discussions of art. 6.3, it is obvious that the above geometric
series is convergent (and also absolutely convergent) for 

J x I < 1, i.e.,
—1 < x < l. diverges to +00 for x > 1, and oscillatory when x <_i.

The above example and other similar situations reveal that as the
variable x, in a power series, changes, the terms also change and the series
may change from a convergent to a non-convergent one. This leads to the
Conclusion : a power series is convergent either for all values oh, or for a
certain range of values of x, or for no value of x except zero. It is, therefore,
important to ascertain the value or values of the variable x for which a
power series is convergent. That is why comes the idea of interval of
Convergence'.

6.9. Interval of Convergence.

Definition: The interval of Convergence of a power series in x is the
collection of values of x in an interval such that the series converges for
every value of x in this interval, but does not converge for values of x
outside the interval.

If a power series	 a,, .r0 cnverges absolutely for all values of x,

inside the interval ofconvergence —r < x < r, and diverges for j x I > r,
then r is called the radius of convergence of the power series.

6.10.	 Determination of Interval of Convergence.

D'Alembert's Ratio test and Cauchy's Root test will be useful for the
determination of interval of convergence of Power Series.

For the power series >a,, x".

(i) If lim	 .-* A , a finite quantity other than zero,
"-" a,

(6) if limlIa,I }l/ = A	 where A # 1,

then the interval of convergence of the series is (- r. r). where r =
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Note : The interval of convergence as determined by the above tests is

open. The series may be or may not be convergent at the end points x = ± r.

To determine the complete interval of convergence one should first find

the values of x for which the series is absolutely convergent and then test

the end-points.

6.11.Properties of Power Series.
Here we state (without proof) certain properties of infinite Power Series,

which are often used in obtaining new series.
1. Within its interval convergence, a power series represents a conhinOUS

sum function and has not more than one power series representation in a

given interval.

H. Two power series converging in the same interval of convergence can
be added and subtracted tern, by term; thus if

f(x)=>ax" and

f (x) ±	 ra,,x' ±	 bx'	 (a, ± b,,)x"

III Two power series converging in the same interval of convergence can

be multiplied term by term.

Thus, if 1(x) = a,,x" and 0 (x)	 bx"

f(x).O(x)

=(a0b+a1b,,_1.+ . . . +abo)x".	 -

This product series is absolutely convergent in the same common
interval of convergence.

IV. The quotient of two power series	 ax" and I b,,x° (' * 0) is

another power series , provided x remains within a sufficiently small

interval in which the denominator does not vanish and both numerator and
denominator are convergent series.

a0+a1x+ax2+
Thus,	

2	 ... 	 = C0 + c 1 x + c2 x2 +... + c x"

b0+b1x+b2x2+...+bX

Since.	 Y, ax" = !b,,x.Zc,,x' , a0 = b0c0 , a 1 = c0b1 + c1b0,

etc. whence co, c 1 , c2 ,... can be calculated.

V Limits, term by term, are permissible ip case of power series within its
interval of convergence.
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Thus, if 1(x) = u,,x" lint f(x)= urn

VL A power series can be differentiated or integrated, term by term, over
any closed interval lying entirely within its interval of convergence, as
many times as one wishes.

If f(x)=Ia. x",

	

f'(x1 )= 	nax' . j(x1 )= 	n(n1)ajf2,etc.

and f'f(x)d fat"di-= _1(rz1

provided x and x are both interior points of the interval ofconvergence.

VII If two power series I a0 x" and I b,,x" both converge in the same

interval and both represent the same function f(x), then they are identical,
i.e., a,, = b, for all values of n.

VIII If y = f(x)= sax" and t() Eb,f

then F{f(x)}=b0 ±bi{a,,xJ+b2{a,,x"}+...

= b0 	+a1x+a2x2 +	 (a +a x+a 

= Co + ci x + c 2 x2 +

for every value of x for which	 a,,x" converges and has a sum less than

the radius of convergence of bay"

6.12.	 Illustrative Examples. I
	 1	 1EL 1. Prove that the series	 + - + - +... is convergent.

	

1.3	 3.5	 5.7	
[VP.19971

Here, U,,
(2n — I)(2n + i)

	

I	 I1	 1	 1

	

5 =u	
,,2l2n—I2n+l

	

2 t	 .31	 23	 51	 2 I. 2n-1	 2,z+l

	

Ii	 1]	 1

	

=	 2n+1 	
as n .	 .

Hence, the series is convergent and its sum is 1.
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Ex. 2. Examine the convergence of the series:
1	 1	 1	 1
1!	 2!	 3!	 (n—I)!

Heir, s =i+i.r!+-L.i-	 1.	 1
2	 2.3	 2.3.4	 2.3.4...(n —.i)

(n>)
2 2.3 3.4	 (n-2).(n-1)

	1 (i	 ñ (I	 i	 ( 1	 1

	

2 t2 3) t3 4)	 t,n-2 n—i

	

1(1	 I
=1+1+—+i---------

2 (2 n — i

= 3—	 <3.
n—i

{ S. } is monotonic increasing sequence and bounded above.

Hence, the series is convergent.

Ex. 3.	 Show that the series 	 + -- + 2. - ... + _!_ is convergent.

	

2 22	 2	 2
[V P. 20011

n	 I	Here, u = - and z,	 ='	
n+

 
2	

•7*

u 11+	 n+l	 ii	 n+1	 I(	 ñ	 I
U,	 2-1	 2 11	 2n	 21L	 n)	 2

Hence, the series is convergent.

EL 4. Test the convergence of the following series:

ci)	 (_L + -J_) .	ii)	 _L_	 [C. P 19981
%Fn .jj 	 log n 	-

_____	 + .ç ji-:- +
(i) Hem, u 

=T 

Let us introduce a comparison series	 v, = AT where

V11 =
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• urn	 = urn	
+ .
	 = urn	 + = 2

	

vn fl)	 -

But, Y, v,,	 is divergent, for in the p-series, here p = <1.
,=I fl

Hence, the series U,, is also divergent.

(ii)	 Iogn<ri for all n>1.

1	 1
- > - for all it > 2.
logn n

Let us compare the given series with the divergent series

1	 1	 1
- +	 + - + :.. +	 + .,.	 ... (1)
234	 n

Each term of the given series exceeds the corresponding term of the
divergent series. Hence, the given series is also divergent.

Ex. S. Examine the convergence of:

1 2 	 22	 32	 42

	

2 22 2	 2	 2
[C.P 1993, 2003, 2008 B. P. 1'Q81

	

n 2	(n+1)2
Here, U,, =	 and U,,1 

= 2I

u ,	 (n+1)2 n2	i(	 1t 2	1
-=	 +--=--I 1+—I	 as n -

U,, 2- 1
	 2	 2. nJ	 2

Hence, the given series is convergent.

Ex. 6. Examine the convergence of:

I '2"	
(3\3 14\4

-+1--i +!-t +1--I +... [C.P.1986,'92,20071
3	 5)	 7)	 t9)

-
(- flHere, 

U 
2n + 1

(,,)V" =
2n+1

lirn(u 	 = urn __!T = <1.

	

o-.2+--	 2

Hence, by Cauchy's Root test, the given series is convergent.
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Ex. 7. Examine the convergence of

3	 4	 5	 (ni-i)

	

2+-+-.-+—+...+	 3 +... [C.P.1997,200318 27 64	 n
- n-+ 1 - 1 +

Here, U,, - —i--- -
n	 n

Let us introduce another series	 , where v,,

Evidently,	 v, is convergent, for here p = 2 > I.

U (i+ 1 	I	 i
Now, lim--=1imI-----'-xa2I=IjmIl+_J1

	

"-.-v,,	 "-. 	 n	 ) "--1	 nJ

Since,	 v,, is convergent, the given series	 u,, is also convergent.

Ex. & Examine whether the series

	

3x 2	4x3	 (ni-1)x"

	8	 27

is convergent or divergent (x > o).

	

Since x > 0, each term of the given series	 u,, is positive and

	

!!!±i..= (,i+2) 	 n3 ._L
U,,	 (n+i)3	 (ni- I) x"

n 3 (n+2)	 1+1
•x -,x asn -+oo(j)4	

(i+

Therefore, by D'Alembert's Ratio test, the series is convergent, if x < 1,
and divergent if x>1.

For x = 1 ,this test fails.

When x=1,u,,= 
n+i
-.--1--.

Let us take another series	 v,, , where v = -i-. -

v,, being a 'p-series' with. p = 2 > 1, is known to be convergent.

	

(	 l\tim - = urn 
n+l
- = tim I 1+-	 l,isafinitequantity.n-_ ,-	 fl	 1t'I	 fl)

Therefore, Zu. is also convergent.,.

Hence, the given series is convergent if x !^ 1, and  divergent iix > I.
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EL9.	 Examine whether the series is convergent or divergent:

	

1 x 3 	 1.3 x	 1.3.5 x7
[C.P.1969]

	

2 3	 2.4 5	 2.4.6 7

Denoting the given series by U 0 + u, + U2 +..., we have

1.3.5...(2n-1) x2"
U.=

2.4.6...2n	 2n+1

1.3.5...(2n-1)(2n+1) x2'"3
u *I =

2.4.6 ... 2n(2n+2)	 2n+3

u,, - (2n + 2)(2n + 3) I	 I

(2,i + I)(2n + i) X 2 	
-- ,as n —3 --

Thus the given series is convergent, if -- > I , i.e., if x2 < 1, i.e., if

	

-	 x2

—1<x<1 and it is divergent if --
2
 < 1,i.e.,ifx>1 or x< --I

x
u,,	 (2n + 2)(2n. + 3)

When x = ± 1, -- =
(2n + 1)2

im Un - = urn	 =—1]}	
n(6n+5) 3 >1

•-1 -= (+ 02 2

So, by Raabe's test, the series is convergent for x = ± 1. Hence the

given series is convergent, if —1 :5 x 15 I and is divergent if x > I or

X < — 1.

EL 10. Examine the convergence of
=1 fl

[C.P 1996, VP 2000, B.P 2001 1

Here, u. =- and u,,1 
= (,*1)!

U.
— - n'	 (n + 1)! -	 n'

- (n+If, (i+i

Iim_±<1,	 2<e<3..
e

fl,
is divergent.



	

INFINITE SERIFS	 157

Ex. 11. Examine the convergence of

(i)
7

1+—+—+---+...	 [B.P.1998]
2 	 3! 4!

(ii)	
2	

2x +	 x6 +
2 2 . 4 2	22.42.62

+...	 > o)
3.4	 3.4.5.6	 3.4.5.6.7.8

[C. P. 1965,N. B. P. 1981,VP.19881

(2n-1)	 (2n+1)
(i) Here,u

	

	 U 	
- (n+1)n!

(n+1)(2n-1)
,,

(2iz + i)

11m--> 1,	 is convergent.

(ii) Denoting the first term by uo,

22.42.62... (2.)2 	 22

	

U.
3.45 ... (2n+1)(2n+2)

22.42.62...(2n)2(2n+2)2
and	 U,,1 

= 3.4.5...(2n+3)(2n+4)

	

U,,	 (2n+3)(2n-i.4) I

-	 (2n+2)2

lim----= tim
"-	 .- (i + y	 x2 x2

Therefore, the series is convergent .4 > 1, i.e., if x 2 < 1, i.e., if

-1< x <1 and it is divergent 
if-4< 1,i.e.,if x>lor x

The ratio test fails when x = ± 1 and we apply Raabe's test.

(
We have, n U.

	 n 1(2n +3)(2n + 4)	 6n2+ 8n
I-1I	

1
1

 (2n+2)2	 J	 (20+2)2

•	 6	 3Iirp n( u,, = Jim	 ff =->l.
(2 + 2)2	2

Hence, the given set ies is convergent, if x = ± 1.
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Thus, the given series is convergent, if —1 15 x < I and divergent, if

x> 1 or x < —1.

Ex. 11 Determine the region of convergence of the series

(i) 1+4	 [C.P.1998j

x-3 1 (x-3)2	I (x-3)3
(ii) -+-'	 +–

3	 2	 32	 3	 33

(i) We have, by the Ratio test.

U. = xn+1

urn	 -- = 0< l, for all values ofx.
z__ U4

Hence, the series is convergent for every value of .x and the region of

convergence is – < x <

(ii) Here, hrn 
I UU

.ttL=hrn(	 1)3' 	 n. 3#

=
3	 -..'n+1	 3

Thus, the series is tonvergent ifI
	

3
X3 < i, i.e., - I

.	 3	
< 1,

i.e,O<x<6.

The series is also convergent for x – 3 = —3, i.e., x = () , but not for

x-3=3,i.e.,x=6.

Hence, the interval of convergence 0 :5 x < 6.

6.12 Miscellaneous Worked Out Examples
EL 1. Vxamine the series for convergence.

12 22 32 42

2 22 2	 2	
I C. P. 1993

-i.(n!)2
Solution	 Here, u,, = — an2 and u4.1—

– 

 24+1

So.2
	 1	 1

U4	 2	 fl22('n-)



	

INFINITE SERIES	 159

	

U.
tim	 = 1 <1

U.	 2

Hence the series Yu, where u. = !_ is convergent.

EL 2. Test the convergence of the series:

[C. P 1994, 2003]

	Solution:	 Here, u and U,,	 2'
(n+i)

hrn—=hm
'-•" U,,	 "' x" .(n +

= urn	 2 lxi
11+-
" n

=jxl.

	

Hence	 u,, converges when I x  < I and diverges when I x> I-

	

When jr = 1, the ratio test fails	 -

1	 1	 1
At x=1, )u,, —+—+--+ .......

12 22
which isis a 'p' series with p 2>1.

(i	 I

	

At x=-1,	
1	 1

\.1	 2	 3 .4

since the series i+_! + 4+ ..... being a p-series with p = 2>1, is

convergent, by Leibnitz's Test, Y u, is also convergent.

Hence, the given series is convergent when N:5 1 and divergent when

lxi>!.

Ex. 3. Apply Raab'es Test to examine the convergence of

1	 1.3	 1.35

	

(1) 1+	 +	
2.4.6.7"" I 

C. P1990, 93, 94, 2004
23 243
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(ii) !., where M. =
7.10.13 ... (3 n + 4)	

I C. P 1989 1

Solution	 (1) Denoting the given series by

+ U1 +M2 +

1.3.5 ..... (2n—l)	 i
we have U.	

2.4.6......2n	 2n+1

1.3.5.....(2 n+1)
and "246.

2n(2n+2)2n+3

so that	
(2n+2)(2n+3)

(2n+l)2

Iu	 1	 . n(6n+5) 3
lim ni--I= urn

2(2,1+1) 2

Hence the series is convergent.

•0	 3.6.9.....3n

(ii) Here, u. = 7.10.13.....(3n ;4)

-	 3.6.9 ...... .3n(3n+3)

- 7.1013........

U,,	 3n+7

,,+i	 3n+3

By Raabe's Test, uJrn	 !!.__ 11 = urn .—fL-
",,•I	 J' ,,..3n+33>l

Hence the series is convergent.

EL 4. Use Root-Test to examine the convergence of the following series

1 , 
1 (-
22	 3

(0	 -
5) +() +...
	 I C. P 1986, '92. 2007]

(iii 'u,,, where u,, {(nI )

	

	
F C. P 1990, 20()0]

n )j
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Sn
n

Solution: (I) Here, U, = (
	

• so that

n
(u )n

2n+1 2+_

and lim(un)=!<1.
-	 2

Hence the series is convergent by Cauchy's Root-test.

(i) Obviously, here

(u,,) 
= (i)+1 _(n +1- 

(i+!}["	 1 \"	 I

-	 U	 U	 •fl	
J

lim (u 	
p){( i) } Ji<1

Hence the given series is convergent.

Ex. 5. Examine the convergence of the following scries

2	 3	 4
X x

(0 x+ +—+----+•..	 (x>G)	 B. P 1997]
23-4

1 x3 	1-3 x-'	 1•3•5 x7
(ii) x+—•—+---+.	 .—+ ... . (C. P 19941

2 3 2 . 4 .5	 2•4-6 7

a + a(a + 1) + a(a + id + 2)
(iii) — 

b b(b+I) b(b+1Xb+2)

where a, b are non-negative integers and b * 0.	 [ C. P. 1997 1

1+cz (l+aX2+a)(1+a)(2+aX3+a)
('	

l+3 (1+3)(2+)	 (1+3)(2+3)(3+) +

- C. P.
where	 a.

11•
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-
Solution :	 (i) Here, ii,, - and U, 1 =

n	 n+l

	

u.	 n+1 I	 .	 (	 I '\ .1	 1
=lim---.—=.lim I

,,-	 -- ,,-, n	 X •-( 	 X X

Hence the series is convergent if x<I, and divergent if x>1
If x = 1, the Ratio-Test is inconclusive.

when x=1, the series is
234

and it is divergent, by the p-test ', p = I here.

Hence the series is convergent for Ox< I and divergent for x ^: I

(ii) Denoting the given series by n0 + 14 1 +11 2 + 11 3 -i

1'35''''(2n—I)	 x2"
we have, u,

2.4.6'..	 (2n+1)

1 -3.5 .... (2n -I)(2n + I) x21'3
and, u1 =	 2,i(2iz 1-2)	 (2n+ 3)

urn --- = 
urn (2n+2)(2n + 3) I

(2n 1- 1)(2n + t) x 2 - A2

Thus the given series is convergent if

i.e, if x2 <1, i.e. if	 < x<l and it is divergelil

if -<1, i.e., ifif.>1 or, x<-1
x

when x = ±1, the above test fails and we proceed to Raabe's Test

u,,	 1	 n(6n+5) - 3
urn nL--i= tim

	

"--	 u,,.1	 J	 -(2n+I)2 - 2>1

So, the series is convergent for x=±1.
Hence, the given series is convergent if —1 :5 x 5 I and is divergent if

1, or, x<-1.

4
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u	 b+n

	

(lit) Here,	 = -
a+n

and urn U—=1
n—_

So ii Alembert's Ratio Test fails. We proceed to Raabe's Test.

	

I;
	 1	 .	 Ib+n—I

Jim n--ll' Jim ni—

	

u,+i	 J

	

•	 n(b—a)
=hm	 =b—a
n— a+n

Hence the series is convergent if (b—a)>!, divergent if (b—a)<1, and

when b =a , the series becomes

1 + 1 +1  + ..... . which is obviously divergent.

(1+a)(2+a).'(n+a

	

(iv) Here, U, 
=	

)

(1+ctX2+a) ... (n+cx)('i+l+(L)
and u,,1 

= (1+1)(2+)-••(n+Xn+ t+)

that --= 
1+n+.

l+n+cx

U
	lini .-----=I	 -

Us,.,

We proceed to Raabe's Test

I	 1	 1t3-a
lim n i u--1=hm ni

t+t	 J	 -	 11+n+a

n (13—a) •	 ____
tim	 =hm	 =3—a.

.s —.' 11 +1+U

Hence the given series if convergent if (3 - (x) >1 and

divergent if (—a)<1.
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EXAM11VI

1. (I) When does an infinite series is said to converge?
(u) Give an example each of (a) a convergent series, (b) a divergent.

series and (c) an oscillatory series.

(iii) Show that the addition or removal of a finite number of terms at the
beginning of an infinite series will not affect the convergence or
divergence of the series.

(iv) Prove that multiplication of each term of an infinite series by a
constant term, different from zero, does not affect the convergence
or divergence of the series.

2. (t) Show that the p-series	 ._L converges only when p > i.

Also-show that the harmonic series X is divergent.

lB. 1' 1296.1999]

(ii) Show that the series __L + -__ + _L._ + ... converges.3	

23(C.? 1987]

3. (i) State and prove 'comparison test' for convergence or divergence
of a series of positive terms.

(ii) Use comparison test to prove the convergence ofII
[C.P.1988]

	2 	 32	 42

4. (I) State and prove D'Alembert's ratio test for convergence or
divergence of a series of positive terms.

[C.P. 1982, '87;B.R 19991

2	 22	 2

	

(d) Hence, show that 1 + -
1! 2!	 3!

+ - + - + ... converges.

[C.. 1992]
5. (1) State and establish Cauchy's Root test for convergence or

	

divergence of an infinite series.	 [Ci'. 19801

(ii) Use Cauchy's Root test to examine the convergence of

	

I (2 2
	 3 (4\4

	

+ L:j	 ()	 '•	 ICP.1986. '92]
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6. State Raabe's test for convergence or divergence of a series of positive
terms.	 .	 .	 IC.P. 19941

7. For the following series, compute the partial sum S ,and then obtain
their sum:

(i)

(••)	
1	

[C.R 1999, 20061
+ 3)(n + 4)

(2n-1)(2n+1)

(iv)	
n (n + I)(n + 2)

8. Use comparison test to examine the convergence or divergence of the
series:

1	 .	 I
(i) 1 + 3 4 + + (2,, -	 [C.P 19851

	

3 4	 n+l
(ii) 2+—+--t-...+-----+...	 •[C.P.19971

1	 1	 1
[C.P.1998]

log  log  log 
1	 1	 1

(iv) +	 +...+	 +....
21og2 31og3	 n log n

(v) ,(2n-1)(2n+l)	 .	
1CR 19941

	

+ ,1i_)	 . 	 CP.19981

9. Apply D'Alembert's ratio test to examine the convergence of:

(i) IC.P.20061

1 2	22	 32

(ii) —+—+—+...+— +...
2	 22	 2	 2'
4 42 42	 42
—+—+---+...+-- -'-••.
1!	 2!	 3!
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10. Use Cauchy's root test to investigate the convergence of the series
f	 \2 

( 3	
3

1^2 r2+21	 +2	 (n+2
(i) —+I---I +— +...+l—I +...

2.1	 t, 2.2) 	 2.3	 2n )

I 1 1	 ____

(ii) ++—+•••+	 +...
2 3 2	 43	 (n+I)"

2 2	22	 2	 2'
(in)

22	 3 3	 44

(iv)	
[n 

2] ^ ("')

11. Examine the following series for convergence or divergence

(i)	 C.Pii]
1!	 2!	 3!	 n!
1.2	 2.3	 3.4	 4.5

(ii) —+—+—+---+...
3	 5	 7	 9

(iii)
I' 

+	 +
22	 32	 42

—--- ——...
2 2- 2 

+ 
2 

+

1+2 1+2+3 1+2+3+4
(iv) - +	 +

	

+...	
C.P. 1991, 2(")4 I

22	 33	 41

(V)!++++...	 IC.!'.J9)31
2345

(vi)!+4+._+ ... +-_+	 C. P. I qw)

(vu)	 I	
+ 2.3.4 + 345+.;.	

[C.P 19861

(viii)jj+j— +22	
l^2	

••'	 [C.P.I9)IJ

1	 1.3	 1.3.5
(Ix) —+—+

2	 2.4	 2.4.6

1.2	 3.4	 5.6
(x) ,

3_42
	 +

2 2	12	 42

(xi) I+_+L_+_+...+_	 EC.PJ9'/l
2!	 3!	 4!
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12. Test the convergence or divergence of the of the series 	 where

(I)	 u,,

(ii) u =siJ;

(in) U,, =
n +1

n
(iv) u,, =	 (x > 0);	 [C.R 19871

n!
(v) U,,

it

(vi) u,, =---x
It

(vii) U,, =	
2

(n +1)

(viii)u 
=

"	 (i + i)"'

(IX)

	

	
2.4.6...(2u +2)

u =
"	 1.3.5...(2n-1)

(x) U. 
=

13. (i) Show that the series

1	 1	 .1
+	 +

i + 1 2	1 + 22	1 + 32	
converges.

(ii) Show that the series
1	 1	 I

1+
2.12	

+	 +	 +
+ 1 2.22 + 1 2.32 + 1	

convergent.

[B.P.1984. 94j

14. Apply Cauchy's general principle of convergence to test the following
series

(i)
23	 n
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(ii) i—+_!+...+(_iy'-

15. Test the convergence of 	 - by Cauchy's criterion.
,,=on.

16. Show that the following series are divergent:

l.3.5 ... (2n-1)
(I)

1.3.5...(2n–l) 4n-i-3

2.4.6...2n	 2n-f2'

(iii)	 —;
,,,

(iv)	 JTi}.
17. Prove that the hypergeometric series

a.13 a(a+1)f3(fl+l)
+ ly +	 1.2.y +i)

(where a, /3, y are real and, none of them is zero or negative integer)
converges if y > (a + 0) and diverges if y :5 (a + p) . IC.? 1989]

18. Discuss the convergence or divergence of the hypergeometric series

1 a/3	 a(a+1)13(j3+1) 2
X+	

1.2.y(y+I)	
X

(where are real and none of them is zero or negative integer) for
x I < I. I x 1>1 and for x1.

19. Show that the series	
–1 .
	 converges for J x < 1.

+1
[C.? 1999]

20. Find the interval of convergence of the following series:

x x2 x3
(1)	 [C.? 19871

2	 3+LL_+.	 [C.P.199412 2	 32
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1 x3 	 1.3 x 	 1. 3.5 x7
(iii) x+-"—+--+	 •—+... (x>O)

2 3	 2.4 5	 2.4.6 7

:

(vi) I x
2	 x4

2!	 4!

x' x5
(vii)x+—+--+...

ANSWERS

(a)	 ;	 (b)	 (c)	 (- i)".

5. (d) Convergent.

7.	 (i)2; (ii); (iii); (iv)f.
8. (I) Convergent;	 (ii) Convergent;	 (iii) Divergent;

(iv) Divergent;	 (v) Convergent;	 (vi) Divergent.

9.	 (i) Convergent;	 (ii)Convergent; 	 (iii) Convergent.

10. (i) Convergent; 	 (ii) Convergent;

(iii) Convergent; 	 (iv) Convergent;

11. (i) Conver2ent; 	 (ii) Divergent;	 (iii) Convergent;

(iv) Divergent;	 (v) Diverged;	 (vi) Convergent;

(vii) Convergent; 	 (Viii) Convergent;	 (ix) Divergent;

(x) Convergent; 	 (xi) Convergent.

12. (i) Convergent;	 (ii) Divergent;	 (iii) Convergent;

(iv) Convergent; 	 (v) Convergent;

(vi) Convergent when x :5 1, Divergent when x> I;
(vii) Convergent; (viii) Divergent; (ix) Divergent; (x) Convergent.

14. (i) Divergent; (ii) Convergent.

20.(i)-<<+..;	 (ii)xI !5I ;	 (iii)-I5x:5I;

(iv)o<x:52;	 (v)-I<x:5I;	 (vi)_<x<+oo;

(vii) - < x < +.
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7.1. Increment.

The increment of a variable in changing from one value to another is
the difference obtained by subtracting the first value from the second. An
increment of .v is denoted by Ax (read as delta x) or h. Evidently, increment
may be positive or negative according as the variable in changing increases
or decreases.

If, in v = f (x ), the independent variable x takes an increment Ax
(or /i), then Ay (or k) denotes the corresponding increment of y, i.e., of
f (x), and we have

y+Ay=f(x+Ax), i.e., Ay=f(x+Ax)—f(x)

or, y+k =f(x+h ), i.e., k =f(x+Ji )—f(x)

Illustration: Let y =

Suppose.	 x increases from 2 to 21, i.e., Ax =01;	 -

then	 y increases from 4 to 4-41, i.e., tsy =0-41.
Suppose.	 x decreases from 2 to 1 .9, i.e., Ax =-0l
then	 y decreases from 4 to 3-61, i.e., Ay —039.

Increments are always reckoned from the arbitrarily fixed initial value
of the independent variable x.

If  decreases as x increases, or the reverse, then Ax and Ay will have
opposite signs.

)rom a fixed initial value 2 of x, if x increases successively to

2 . 1,2 .01, 2 .001, etc. then although the corresponding increments

Ax (=0.l.0.0l,0.001,..) and Ay(=O.41,0.401,0.004001,. ..)aregetting
A

smaller, their ratio, i.e., 	
y' 

being 4. 1,4 .01,4 .001.....is approaching a

definite number 4, thus, illustrating the fact that the ratio can be brought as
near to 4 as we please by making Ax approach zero. Thus, the ratio of the

A
increments	 has a definite Finite ljmit4as Ax - 0, and, consequently,

Ay - 0.
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7.2. Differential Coefficient (or Derivative).

Let y = f (x ) be a finite and single-valued function defined in any
interval of x and assume x to have any particular value in the interval. Let

Ax (or h)be the increment OfX, and let Ay = f(x+Ax )- f(x) be

the corresponding increment of y. If the ratio A 
of these increments tends

to a definite finite limit as Ax tends to zero, then this limit is called the

differential coefficient (or derivative ) of f (x) (or y) for the particular

value ofx, and is denoted bY f'(x), --{f(x )},, D{f(x )}.
dx	 dx

Thus, symbolically, the differential coefficient of y =f(x) with respect

to x (for any particular value of x) is

f'(x) or,	 Li!-=

	

-	 dx	 -.o Ax A-*O	 Ax

	

,	 dy	 f(x+h)-f(x)
I, k'J or, - Lt	 provided  this hm,texists.

dx h-O	 Ii

If, as Ax -4 0, A y/Ax - + oo or- oo. then also we say that the

derivative exists, and -8 +	 or - 0O

Note 1. The process of finding the differential coefficient is called

differentiation, and we are said to differentiate f (x) and sometimes to

differentiate f(x) with respect lox, to emphasise that x is the independent

variable.

Note2 !ty-stands here for the symbol .!_(vi. a limiting process, and
dr	 dx

hence must not be regarded as a fraction dv divided by dx. although, for

convenience of printing, It may sometimes be written as dx

Note 3. The differential coefficient of f(x), for any particular value a of

x, is often denoted by f'(a) . Thus, from definition,

	

f,(.)=	
f(a+h)-j , provided this limit exists .

It

Note4. If f'(a) is finite, f(x) must be Continuous at x = a

f(a+l;)-f(a)
)'(a)zo Ii

Ii
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We can write f(a+h)_f(a)

ii {f(a+h)—f(a)} =	 I f(a+h)_f(a)h}
h­0	 h-0 h

Ij f(a+h)_f(a)Uh
h-.O l.-.0

= f'(a)xO

= 0, since f'(a) is finite.

Li f(a+hf(a)
h-,.O

from the definition of continuity, it follows that f (x) is continuous atx = a.

Hence, for the differential coefficient off W to exist finiieh' for any
value of x, the function f(x) must be continuous at the point.

The converse, however, is not always true, i.e., if a function be
continuous at any point, it is not necessarily true that a finite derivative of
the function for that value of x should exist. For illustration see Ex. 4, § 7.5.

Again, a function f(), though discontinuous at a point, may have an
infinite derivative at a point.	 [See Ex. 7(u), Examples Vl1(A).]

Note5 The right-hand limit jj f(x+h )—f(x) 
for any particular

It
value of x, when it exists, is called the right-hand derivative of f(x) at that

point and is denoted by Rf'(x). Similarly, the left-hand limit

Lj f(x+h)—f(x) 
or, Lt f(X_h)_f(x)whenjtexjstsis

h	 ,,-.o+o	 —h
called the left-hand derivative of 1(x) at x, denoted by Lf'(x). when
these two derivatives both exist and are equal, it is then only that the derivative
Of f(x) exists at x. When, however, the left-hand and right-hand derivatives
of f(x) at x are unequal, or one or both are non-existent then f(x) is said to
have no proper derivative at x.

Thus, though f'( x) may not exist at a point, one or both of the right-
hand and left-hand derivatives may exist (the two being unequal in the
latter case).

For illustration, see § 7.5. Lx. 4.
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7.3. Differential coefficients in some standard cases.
(i) Differential coefficient of x'.

Let f(x)=x'.

Then from definition, f'(x)=L., 	
hi)" -.x"

Now, writing X for .r + h, so that h = X-x, and noting that when h
X-,x,we get

f'(x)= Li	 =nx" , for all rational values of a.
X­ X-x

[See * 3.9(v)

Thus, .!_(" )= rix fl	 ,for all rational values of n.
dx

Otherwise:

f '
(x)= Lx (x+h)'-x" = Li x"'. (I+lz/x)"-I

i,-.o	 h	 h-.0	 h/x
[supposing x 0J

,,_i (1+z)-I
=.	 fputtingz=/i/x

[See §3.9(vi)J

The result can also be derived for any rational value of n [ s (I J from
the well-known inequality.'

nX"'(X-x) X .— X
.

nx"'(X-x)

fupper sign if n>li,r >01
(and lower if O<n<l

Whence nX"(X-x) X" -x
X.-x

Now putting X=x+h, and letting h -0, we get

(x+h )" — x "	 ,,_Li	 =nx	 [See §3.8(v)I,
h-30	 h

since both extremes tend to the same limit ax" -
When n is a positive integer, the result can also be proved as/kllows:

See any text book on Higher Algebra ( e.g., See § 10, Chapter XIV. Barnard
& Child).
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f'(x)=IJ 
(x+/i)"–x'

h-.O	 h

Lj
=	 {"

(By Binomial Theorem)

=Lt
h-O	 17

= ILK'
When n is not a posilire intege?; for an alternative proof, see Ex. 1,

§ 7.13, See also Ex. 2, § 7.13 for the case when it ny real value, not

necessarily rational.

d	 dfr\	 1	 d(1'\	 n
Cor. —(x)=1,—yx) ---,

dx	 dx	 2'& dx'.x)	 x

Note. It is to be noted that in the above formula we tacitly assume those

values of x as do not niakex or.t' 'meaningless; e.g., if a Le afraction of

even denominator, zero and negative rabies of x are exc!ude' and if n - 1

be negative, zero value fr v is excluded.

Following the definition it may be seen in particular, that it 1(x) =

then f' (0)=Q, when a> I. f' (0)= I. when n= 1, and f'(0) is non-

existent if n<l.

(ii) Differential coefficient of e'

Let f (x) = e Then from definition,

f'(x)LJ	
–e =

i,-.o	 h	 I, *0	 II

since	 = , Lt0 (€"' h = I	 See § 3.9(iv),)

Thus,
dx

(iii) Differential coefficient of a'

Let	 f(x)=a'.
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x-i-h	 x	 h
a -a	 a - l

Then f'IX)= Li - 
h-+O	 h	 h

I,
Now,	 a 1 =Ls	 .loga

h -,O h	 h-+O h log a

hal
=	 .Joga [where h'=hloga]

11-94)	 h'

a -1
= toga, since Li

l?-40	 h
I See § 3.9(i')

f '(x )= aX log a

Thus,
dx

(iv) Differential coefficient of log x.

Let	 f'(x)=logx

log (x + h) - log x
Then	 f'(x) Li

I?

x+h
= Li - . log

I-.() I?	 x

I	 x	 (	 h
= Li - . -log 1+-

	

o x h	 x

LI ! log (i+ z [where := }

=	 .	 I See § 3.9 (iii) j

Thus,
dx	 x

cor. Proceeding exactly as above it can be easily shown that

—logx)	 loge.
dx	 x



176	 DIFFERENTIAL CALCULUS

(v) Differential coefficient of sin x.

Let f(x)=sinx.

Then	 f'(x 
)=L4 sin(xi-h ) .-sin x

•	 2sinlhcos(x+Ih)
=Li-	 2	 2

h

=	
2 .cos

,
x+-'-h)'=cosx

h-.O2

because as h - 0 • cos x being a continuous function of x,

-	 cos(xi-h)--cosx;

also, by § 3.9(i),

Ll	
sin -j'

Thus,	
d— 

(sin x)= cosx
dr

(vi) Differential coefficient of cos X.

Let	 f(x) =cos x

f'(x)	
Cos (x+h)- cos x

h

-2sin 1 h sin (x+1h)
_j2	 2	 2

h

. sin1h
= Ii -sin x+J-h).	 2

2

=-sinx [as in (v)]

Thus, —(cos x)=- sin x.
dx

Note. It should be noted that in finding the above differential coefficients
of sin x and cos x, we tacitly assume that x is in radian measure, because

we make use of the limit sin h/(--h ) = 1 as Ii -4 0, which is true when
It is in radian. Hence, the above results require modification when x is
given in any other measure,
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(vii) Differential coefficient of tan x.

Let	 f(x)= tan x
tan (x + h)- tan x

Then	 Li
ft

= Li	
I sin (x+h) sin x

h-0lcos(x+h) cosxj

= Li	 J sin (x+!I–x) j
h-,O L11cs(x+h)cos

1.sinh	 I
h-.O

= Li	
t1coS(x+h)cOSX}

= cs2	
[x ^ --(2n +i)lr ]

sin h
Li —=1, and LI cos(x+h)=cosx

k-.O ft

Thus, -_(tanx)=sec2x.	 [x*4(2n+I)nJ

(viii) Exactly in a similar way, we can get

-!.(cot x)=– cos ec2x.. [x * nit]
dx

(x) Differential coefficient of sec x.

d
(	

cc_
—secx)
d	

Li	
ft

=Ll!I_' __L
h-.O h cos (x + h) cos x

I Cos x– Cos (x+h)1
*-.o 1 hcos(x+h)coix

= 
Li 2 sin -hsin(r+4h)
h-.o hcos(xi-h)cosx

sin
= Li	 sin(x+!h)

2	 cos(xi-/,)cosr

12-
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Then	 (secx) = 1-sin x	 = tan x 
see 

x,
dx	 cos2x

Li sin(x^h)= sin x
l,-.0	 h - O

and Li cos(x+ h)= cosx,
1- 0

Thus,	 --(secx)=Secxtanx.	 [x;kJ-(2n+1)n1

(x) Proceeding exactly in a similar way, we get

- (cosec x )= -cosec x cot x.	 # nit I
dx

Note. For an alternative method of differentiating tan x • cot x, sec x and
coscc x front knowledge of the derivatives of sin x and cos x, see § 74,
Theorem V.

7.4. Fundamental Theorems on Differentiation.

n the following theorems we assume that 0 (x ) and m,, (x )arc
continuous, and 0 ' ( x ) and V ' ( x ) exist.

Theorem I. The differential  coefficient of a constant is zero.

i.e.. —(c)=O, where c is a constant
dx

Let	 f( x ) = c for every value of x.

Then	 f'(x) = Ii	 ( + h) -f (x)

It

	

=12 C c 
=1A	 =O.

h-.O	 It	 ,.-o It

Theorem II. The differential coefficient of the product of a constant and

a function is the product of the constant and the d ifferential coefficient of

the function,

i.e., ---{cq,(x )}=cp(x), where eisa constant.	 -
dx	 dx

For,---{C(X)}= Li	
cØ(x+h)cØ(x)

dx	 ,,-o	 It

=c.Lt
h-0	 Ii
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Theorem III. The differential coefficient of the sum or difference of two

functions is the sum or difference of their derivatives,

i.e.
dx

Let	 f(x)=Ø(x)+(x)

Then	 f(x+h)=0(x+h)+i(x+/:)

Now f'(x) Li f(x+h)-f(x)

h

= Li
h

=Ll h	 h

= Li	 Li
	

+

w(-, +h

h	 h-.O	 h

=

Similarly, 1ff (x) = 0(9- ,i (4 thn f ' x) = 0 ' (4- i,ti ' (x)

Note.	 The above result can be easily generalized to the case of thestn,
or difference of any finite number offunciIons.

Illustration:

If f(x)=e -4sinx+x 2 +5,then f'(x)e-' -4 cos x+2x.

Theorem IV. The differential coefficient of (lie product of two functions
= first function x derivative of the second

+ second function x derivative ofthefirsi.

i.e., --{,(x )x(x )}=,(x ).'(x )+ W (x ).,'(x).
dx

Let f(x) = O(x) x(x)

Then f(x+h)=Ø(x+h) x

f'(9	
Li f(x+h)-f(x)

It

• •.•	 =	 ,
h
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Lt 4(x + h)qi(x + h) - _(__+ h)1(x) +$(x + h)W(x) -

h 	 h

= Li
h-0 I 	 h	 Iz

= (x ).,'(x )+ i (x ).'(x),

by the limit theorems, and the definitions of 4,( x ) and 0'(x), noting also

that Li •(x + h) = Ox), since Ø( x) is continuous for 0' ( x) to exist.
h-.O	 -

Note. This result, by repeated application, may also be easily generalized
for the product of a finite number of functions in the form

di
dx

,1(x).p2()ip3(x)., (x)

=p'1 (x).{ 2(x), 3(x)...}+ç2(x).{tp1(x)4P3(x) ... }

+ .....

Illustration :lf f(x)=esinx, then f(x)= ex.cosx+sinx.e

If f(x)=x 3 tanxlogx, then

f'(x.)=3x 2 .tanx logx+sec 2 x.x 3 iogx+-Lx tanx

= x2(3tanxiogx+xsec2xlogx+tanx)

Theorem V. The differential coefficient of the quotient of two functions

(Djff. Coeff. ofnum)xdenom — (DtO Coeff ofdenom)xnum

Square qf denoin

{,(x)}2

provided (x) #O

Let	 f Or) =
4,(X)

Then f '
(x), Li f(x+h)—f(x.)

h

= Li !1) _0(x) 1
h_.0h 141 ( x+h ) 4,(x)
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Li 
i(x+h)W(x)-VI(x+h)Ø(x)

h-.oh	 ji(x+h)W(x)

= Lj W(x){#(x+h)-4(x)}-(x){JiI(x+h)-1iF(x)}

hyi(x+h)141(x)

= Li
h-.OW(x+h)I)/(x)	 h	 h	 J

=

	

	
2 {w( x ).'(x )-(x ).i'(x )},

{w(x)}
by the limit theorems, and the definitions of 0 ' ( x )  and tv ' (x),and noting

also that Li ii(x+h )= w(x)  since	 (x) is continuous for i#"(x)
l,-40

to exist.

	

Illustration: 
(1)1fSIflX 

then f'(r)=	
•cosx-2xsinx

(2)If f ( x ) = cot r = 
Cos x
-,
sin 

	

(-sinx).sinx-cosx.cosx	 I
then f(x)=	 2sInx	 sInx

=- cosec 2x.

(3)If f ( )= cosec x =
ilflX

	O.sinx-cosx.1	 cosxthen	
2	 2

	
cosec XX

sin x	 sin x

7.5. fi istrative Examples.

Ex. 1. Vind,from the first principle, the denvativeof ,[ (x>O)

Let f (x )=

f (x ) = Li
h	

by definition I

- Li	
(x+h)-x	

- Li	
-
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Ex. 2. Find, from the first principles, the differential coefficient of tan' X.

Let tanx=yand tan(x+h)=y+k.

Then, as h—O, k—O Also, x=tany, x+h=tan(y+k).

h=(x+h)—x= tan (y+k)—tany.

d 
tan -1 x = Li 

tan'(x+h)—tanx
—
cfr	 i-.o

Li	
k

k 	 tan (), +k)— tan y

= Li --.
 

Cos (y+k )Cos y
k 	 sink

2 I	 I
'	 2	 =	 2	 'Sec 5 1 + tan y I + x -

Note. In a similar way, we can work out the derivatives of other inverse
circular functions from first principle. These have, however, been worked
Out by a different method in § 78.

Ex. 3. Find, front 	 the differential coefficient of log cos x.

Let us put cosx=u. cos (x+/i)=u+k

	

k = cos (x +	 cos x and so, when h —*0, k *O

d	 .,	 log Cos (x+h)— log Cos x,
• —log Cos x)= Li

dx	 h-.O

- 
Li log (u+k )—logu k

k	 h

- Li log(l+k/u) ! k.
k-.O	 k/u	 u 

	As k -* 0, k/u —*0 .. limit of I"factor= I.	 [See § 3.9 (iii) I

k	 Cos (x+h)—cosx	 sin (Jr +h).sinh

• gain, h h-.O	 h

as k *O, j. e., Ii .—, 0. k/u -4-Sm x Also. u = cos x.

d —sinx

	

—(logcosx)=	 =—tanx.
Lx	 cosx
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Note. Differentiation from 'first principle' or 'definition' means that we are
to find out the derivative without assuming any of the rules of differentiation,
or the derivative of any standard function, but we are permitted to use
fundamental rules of limiting operations ( § 3.8 ) and the standard limit

results ( § 3.9).

Ex. 4. A function is defined in the following way:

f( x )=I x j, i.e.. f(x)=x, 0, or, -x, according as x>, =,

or, <0 show that f'( 0 ) does not exist. 	 I V P. 40001

f(o+/z)-f(0) 
LiLi

It	 i.-o	 h

Now.	 = Li 
f(h)

Li 	 =1.

	

,,-o+O	 Ii	 I,-.o+O h

Li	 Li
• h	 hO-O- h

inc&the right-hand derivative is not equal to the left-hand derivative.
the derivative at x = 0 does not exist.

Ex. . A function is defined in the following way:

f(x)xsin .! for x*, f(0)=0.

Show that 1(0) does not exist.

Li
f(0+h)-f(0)= Li hsin(l/h)

It 	 /-.o	 It

U sin — , which does not exist, 	 [See §3.11, Ex. 4]
I_.o	 /2

f'(o) does not exist.

Note. In both the Examples 4 and 5, f(x) is continuous at x = 0 (See § 4.6,
Ex. land Ex. 2) but f(x) does not possess derivative at x = 0.

Ex. 6. if f(x)= x 
2 sin!) when x* 0, and f(0)=0, find f'(Q).
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f••()	
f(O+h)f(0) 

Li -!-(h2Sifl!_o
h	 *4ohI¼	 h

=LJ (,sifl!_=.
h )

when At is not exactly zero, sin  
is finite, not exceeding I numerically. I

Ex. 7. Find, from firs: principles, the derivative of x' (x> 0).

Let f(x)=x =e°.

	

e)b0. )	 xlqgx
f'(x)= Li

	

h-,O	 h
e '' )I.g(+h ) - - Iog. -

= Li e'1°•

	

h-,O	 h.

=e' Li

	

h-.O	 z

where z=(x+h)log(x+h)-xlogx

and hence z -+ O,as h-90,

	

f'(x)=x . Li	 Li !=	 . Li
z-.O	 Z	 h-.oh	 h-,oh	 :-.O Z

Now b-=Li x{log(x+h)-logx}+h log (x+h)
A-0 Al h-.O	 h

Li 
x ( h'=	 - log 1+-	 Li log (x+h)h-.oh	 X1 h-.O

= Li ! log (1+k)+ log x,rl+logx.
h-.O k

where kbeing h/x-)0, as h -*O.

f'(x)=xr(l+ log x).
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EXAMPLES -VII (A)

Find, fromflrsl principles, the derivatives of (Ex. I -5):

1. (j)X 3 +2x.	 (ii)x4 +6.	 (iv)l/x (x * 0)

(iv) i/ .I; (x > 0). (v) J.	 (vi)	 2 + a 2

(vii) x+.1x2

2. (i) e	 .	 (ii) e " .	 (iii) 2 	 e '/x.

3. (i) log 10 x. [CP.1941]	 (ii) x log x.

(iii) log sin (x/a ). C. P.19301	 (iv) log sec x.

4. (i) a sin (x/a ). [C. P.1937)	 (ii) sin 2 x.

(iii) sin x 2 .	 (iv) sin -1 X.	 (v)

(vi) (sin 4/x. (vii) x 2 tan X.

5. (i) e	 at x = 0.	 (ii) log cos .r at x = 0.

6. (i) f(x)=x2 Cos (1/x)for x*O;f(0)=0.

Find '(o).

(ii)f(x)=X for 0:5 .x:5	 f(x)=1_x for -<x:5I.

Does i'(+ ) exist ?

7. (i)f(x)=3+2X for —<x<-0,

=3-2x for	 0<x<.

Show that f ( x ) is continuous at x = o but does not exist.
C. P. 1943 1

(ii) f(x)0 when O^x<4 f 	 )=i, f(x)=2

when I <x :5 1

-	 Prove that although f(x) is discontinuous at x = -, f'(-) exists
and its value is infinite.

&	 f(x)=1	 for	 x-c0,
=1+ sin x	 for 0!5x<-it,

=2+(x--ir	 for

show that f'(x) exists at .x = - jr but does not exist at x = 0.
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9. f(x)=5x-4	 for	 0<x:5I,

=4x 2 -3x	 for	 I<x<2,
=3x+4	 for x^!2.

Discuss the continuity of f ( x ) for x I and 2, and the existence
of f' ( x ) for these values. 	 -

10. (I)	 f(x)=x	 for	 0<x<l,

for	 l<xi^2,

for	 x>2.

Is 1(x) Continuous at x = I and 2? Does f'( x) exist for these
values ?

(ii)	 (x)4ç (b 2 _2),	
for	 0!5x!^a

	

=b 2 —x 2	 (a/x).	 for	 a<x<—b,

it 3	 3I

	

=-b —a yx,	 for	 x>b

Show that 0' ( ,,,, S Continuous for every positive value of x.

- -	 [C.P.1944J
Find the differential coeffjc jens ofth.folIowing With respect to x

(Ex. 11-13).:

(x	 3

... (ivi.{x+2)(x+l)2.

(14(3x+4x223	 (v)	 (l+x)/x.

(vii)6 2 —3x	 4.	 viii) 4x	 - 6x + 2.

: -'	 I	 2	 3x. —4—_-+---..+-._-.

(x)	 + 2	 + 3/(-;.-i—) + 4 f[T) +

(xi)xJ+x

	

TX	 TX
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5x 3	3x	 lx
(xii)	

-	
++ 12

()iii) 2sinx---logx— L e' —6tanx-7cosecx.

(xiv) log o x + log x + e ig + log e' + e

12. (I) x " e'.	 (ii) x 2 log X.	 (iii) x 2 log x 2

(iv)e' sin x.	 (v)2 sinx.	 (vi) 1O xL0.

(vii) c0s2 X.	 (viii) sec x tan x. (ix) (x2 + i

(x) (3x —7 )(3 - 7x).	 (xi) (x2 + 7 )(x 3 + io).

(xii)( sin x + sec x+ tan x )( cosec x + cos x + cot x ).

(xiii) cosec X.	 (xiv) x tan x log x.

(xv) &.ev sec x .	(xvi) (I+x)(I+2x)(I+3x[

(xvii) x( I —x )(i - x2 ).	
(xviii) x sec x log (xe' ).

(xix) x. cot x. log (x ).e'.

lOrXf.

13 (i)
in x  (ii)	 !___	

(iii)

cosx	 cosx	 x

x4	 cot 
(iv) -----. [CR 19401	 (v) --.

sinx	 C

x
x I+x

(vi) -.	 (vii)	 (viii) -.
log 	 '—i	 1—x

+ X 2
	

(x) +
	

(xi) + 
Slfl X

i —x2	 I —slnx

I —cosx	 ... sin x+ cos x
(xii)	 (xlii)

I+ Cos x	 lT sin 2x

cosx— Cos 2x	 e' +e'
(xiv)	 (xv) x	 -

1— Cos x	 e +e
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tan x 	 sin x+ cos x	(xvi) - log --	 (xvii)X
)	 sIflx — COsX.

(xviii)

	

cot x+corecx	 1+x+x2

	

COtx — CoeCx	 I— x+ x 2

x 3 -2+x 3	tan 
(,)	 (,j) - e log X.

x-2+x	 X

sin COSX 2
()	 xe.

sin x + cos x

14. If y=.i_Ji+L±_, find	 for x=2.

15. If f(x)= X 3 —8x 2 
+ 13x-6 find the values of x for whichX 2 —llx+1O

Is there any value of x for which f' (x ) is non-existent?

16. From the relation

.	 n*Ix

l—x
deduce the sum of the series 1 + 2x + 3x 2 + ...+

and hence, show that

1+2x+3x 2 + ... to o =(I_x) 2 ; O<jxf<l.
17. If 1(x) =i+x	 for x<O

=1	 for 0:5x:51

=2x 2 +4x+5 for x>l,
find f' ( x ) for all values of x for which it exists.

Does Li f' (x) exist ?

18. (1) If f(x)=.x2	 for x_<O

and f(x)= x"sin(I/x)	 for x >0,

find whether f' (0) exists for n = I and 2.
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(ii) If f (x ) = [x ] where [] denotes the greatest integer not

exceeding x,find f(x) and draw itsgraph.

ANSWERS

1. (0 3x2+2	 (ii) 4x 3 .	 (iii) _i/x 2 . (iv) -4x

X

(v) +x(vi) 7( + a 2 ). (vii)	 J(x2 + i)

2. (I) e 4—. / 2 JT.	 (ii) e '.cos x.	 (iii) 2-2 . log . 2. 2x

(iv) (xe' - e' 
)IX 2

3. (i) x.log me. (ii) I +Iogx. (iii) a' cot(x/a). (iv) tanx

4. (j) cos (x / a ) (ii) sin 2x.	 (iii) 2xcos

(iv) i/J(i_ 2 )	 (v) 2J)
	

(•) xcos-sinx

(vii) 2x tan x + x 
2

5. (i) 0.	 (ii) 0.

6. (i) 0. (ii) No.

9. Continuous for x = I and 2, but f'( x) exists for .r = I and does

hot exist for x = 2.
10. (i) Continuous at x = 1 and 2; f'( x) does not exist for x = 1, but

exists atx=2.

11. (i) 15x 4 +28x 3 -4x-1. (ii) 6x 5 -36x 3 +54x. (iii) I+x+—+-.

(iv) 3x 2 +8x+5	 (v) 9x2._4x2_6x

(vi)-x 2 +3+2x.	 (vii) -12x3+3x2.

(viii)3x' +3x.	 (ix) 8+IO+x 2 -4x 3 -9r4.

I	 9!	 25!
(x)	 +2+-x +8x+—x.

2	 2

(-xx ++4 +4x —x
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I	 1	 2	 I;
NO 13x + x •+ 5x

(xiii) 2cosx- . x -e -6sec 2 x+7cosec xcotx.

(xiv) xloge+ &x +2+e.

(xv) esecx(1+2x+2xtanx)/2.f

(xvi) 18x 2 +22x+6	 (xvii) 4x 3 -3x 2 -2xi-I.
(xviii) sec x{j + x+ (I + x tan  )(x + log  ) }.

e'{x cot x(i + 2 log x+ x log x)_v 2cosec2 x log x}.

(xx)iO cot x 1( - 2cosec2x + IFtjoglo+-LX-12)lox+x	
].

13. (I) sec 2 
X	 (ii) sec xtan v	 (iii) (x Cos x - sin )/x 2

(iv) x 2 (4sin- xcosx)/sinx.	 (v) _e_(cosec2x+ cotx)

(Vi) x"1 ( it log x - I )/ ( log )2	 (vii) (
5 (J X)-1

2	 4x(viii) —	 (i.\' -______-__	 (x) ----------(l-x)2	 (x2)2	 (-	 )
2 Cos x	 2 sin x(xi)	
-sinx )2	

(xii)	 + -COS X)2
	

(x) 0.

(xiv) —2 sin x. (xv) e 2 
(i * 2x ).

(Xvi) - x -i tan x + (i - log .v ) ec 2. (Xvii)	
-2

)2

2 cosec x	 2(l_X2)(xviii)	 _________
(cot x—cosecx)2	 (xix)

( - + 2 )2

(xx) 2(x + t - x -2	 _3).

€ -v

() —f{x	 2 X 
+ ( - 1 )tan x }log x + tan xJ.

(xx) C	
2x )cos

1 (sin x+cosx)2

14. 21.	 15.4. 16	 non-existent at I. 10.
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- (n + t)x + nx

16. (I-x)2

17. lifx<O,OifO<x<l,4(x-i-l)ifx>l;No.

18. (i) No, Yes.

(ii) f'(x ) = o for all values of x except zero and integral values, for
which it does not exist.

7.6. Differentiation of a Function of a Function.

Let y = f (v ), where v = 0(x),  and f( v )  and 0(.v)  aie

continuous. Thus y is also a continuous function of x.

Let f'(v) and Ø ' (x) exist, and be finite.

Assume v+v=O(x+Ax) and y+Av=f(v+Lw).

It is evident that when &-0. AV - O,andas AV -4 	 A-40.

iy L.ytw
Now, -=-.-.	 [AV ^1O

Ax AV AX

Li	 = Lt	 . Li	 .	 [^,o]
---oAx A—oAV

dydy dv
i.e.,	

dx dv dx

If AV 0, then Ay = 0. [Otherwise	 , i.e., f'(i') would not be

finite.]	 .. Ay/Ar=O [v A#0 I

d	 . .	 dv
Hence, - Li - 0. Similarly. - = 0.

dx	 -.aAx	 dx
Hence, the above relation is true in this case also.

Illustration : Suppose	 y = sin x

then we can write	 y=sinv,	 where v=

Iv dy di,
—=--=cosv.2x=2xcosx
dx dv dx

The above rule can easily be generalized.

Proof depends on the corresponding limit theorem, see § 3.8 (iv).
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Thus,if y= f(v),where v=4(w),andw..ru,,(x).

dy dydvdw
then	 =

-j- and so on.

dy dx	 dy	 /dx
7,7. —x—=i,	 /—,pmvdedIdva.

dx dy	 dx jdy
Suppose y = f (x ) , where f (x ) is continuous. From this, inmost

cases, we can treat x as a function of y.
Let

Itis evident that when Ay - 0, Ax– 0.

V	

/Ay
Now,	

X 4X 
	 I I

Ax Iiy	 x	 /Lty

/1%ALi ---= b I'i—i,
-.ax	

( 

Ay)

dv	 /dx	 dy dxi.e., - = 1/—, Of, — x — I.
dv /dy	 dx dy

7.8. Differential Coefficients of Inverse Circular Functions.

(I) Let y = sin	 x.	 [I x !^ 1 1' ..	 x	 sin y.

	

dv '-2	 rT=cosy='I–stn y v1–x
(I'

•	 Ifor x^	 ±Y dxJ,or, -1,	 Ji
dx /dy

Thus,	 --- (sfl ') = 	
[–i <x <iJdx

(ii)Let	 y= cos '	 [X:gi]'	 .'. X=tOSy.

dr =_siny=_,J1_cos2y._,/jT.

for x #1. or, - I,	 = I/ = -______

dx •/	 Ji.x2
'The domain for wh y exists.
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	Thus, _d	 1_(Cos ')=_	 ,	dx	 Ii_x2
Note. This also follows immediately from the relation

coslx=,r_sin_Ix.

	

(iii)Let y=tanx.	 x = tan y.

2	 2	 2— =sec y=l+tan y=1+x
dy

•	 dy_ 1 /dx 	 I

dx /dy 1+x2

-	 '	 IThus, - tan 'x)=

	

dx	 1+x2

	(iv) Let y = cot-' x.	 x= cot y.

dx	
cos 2	 /	 2 '	 '	 2	—=-	 y=-l+cot • y.) = -J+xdy

•	 dy1/dc	 I

dx /dv	 l+x2

	

d I	 ____Thus, - cot x1=----

	

dx •	 1+x2
Note. This also follows immediately from the relation

	

cot' x	 1t-tafl X.

	

(V) Let Y=sec'x.	 [jxjai}. •.	 x= sec y.

dX

	

dy = 
sec y tan y = sec y	 y - 1 = x

forx	 or, =i/4=	 1X.
dx /.dy	 jTj

	

d(.	 I	 1

	

*ec x )=	 [lxi>!], 771

	

(vi) Let y = cos ecx.	 X = c 

For which  exists.
13-
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dx- = —cosecycoty = –cosecyJcOSec y–1 = —x'ix –I

Idx
for x#I,or. - I, 

dy
—=1/—=–
'	 I°Y	 xJx2_l.

	

d '
	

I
Thus,

	

	 cosec-'x)=-	 EIx>l1
dx

Note This also follows immediately from the relation

cosecx= -,r – secX.

7.9. Derivatives of Hyperbolic Function?.

d	 d(e–e'') e + e
—(sinhx)=—; 	 1=	 =coshx
dx	 dx'.,	 2	 )	 2

d	 d(ex+e_'l e –e
—(coshx)= — 1	 1=	 =slnhx.
dx	 cfr!i 	 2)	 2

d d (sinh x '	 cosh 2 x - inh 2 x
—(tanhx) =— 1	 1=
dx	 dx cosh xJ	 cosh 2 x

=sech2x.
- cosh 2 x

Similarly, -- (cothx)= –cosech 2 x
dx

	

d	 ( ______
_(sechx)'_

I "Oxcoshx–sinhx

	

dx	 dxcoshx)	 cosh2x

sinhx-

	

- -	 –sech x tanh xcosh x =

Similarly,

	

	 (cosech x ) = –cosech x coth x
dx

Let y=sinh x.	 x = sinh.

dx r 2 r 2—=coshv=,iI+sinh x='jl+x
dy

For the definitions and properties of Hyperbolic Functions, see Authors'
Higher Trigonometry, Chapter XII.
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Since	 4L,/i_	 I

A /a'y	 i.

Thus,	 (SIfl -I	
I

dr	
71 --x

Similarly, !..(COSh_lX)_	 (x> l)

-(tanl'x)=	 ---,	 (x<l)
dc	 l-x2

(x>l)
x2-i

di
	 -'x 1—cosechj=-

-

dl	 ____

	

- sech x)= - 	 .- (x<l)
xl_x2

The derivatives of inverse hyperbolic functions can also be obtained
by differentiating their values. vL'.,

Sinhx=Iog(x+);	 cosh ' x= log ( x+ 177

	

-I	 I	 l±x	
-I	 I	 x+ltanh x = - log	 .	 coth x = - log

	

•	 2	 l-x'	 -	 2	 xl'

	

l+2.	 l+l_cosech x = log -_--_	 sech x = log
X

X

7.10. Logarithmic Differentiation.

If we have a function raised to a power which is also a funtion, or if we
have the product of a number of functions, to differentiate such expressions
it would be convenient first to take logarithm of the expression and then
differentiate. Such a process is cajied the logarithmic differentiation.

(i) Let y = { f ( x )}ø() . ofjfl --

dr
Uei, logy = (x).logf(x)
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Differentiating both sides with respect to x,

= i(x ).__-_)f'(x)+sP'(x ).logf(x)

(il)Lety=f1(X)Xf,(X).....f(x);	 to find
dx

Here, log y = log f (x ) + log f2 (x ) + .... . + log f (x).
Differentiate each side with respect to x.

ldyf( X ) f'2(x)	 ^L

Now, multiplying left-side by y and right-side by

f1(x).f2(x) ..... j(x)

dy	 f(x).f2(x).f(x)...f,,(X)
dx

Hence, the differential coefficient of the product of a finite number of

functions is found by multiplying the differential coefficient ofeachfwtction

taken separately by the product of all the remaining functions and adding

up the results thus formed, as already obtained otherwise.

See § 7.4, Theorem IV, Note.]

7.11. Implicit Functions.	 ..
In many cases it may be inconvienient or even impossible'io solve a

given equation of the form f (x, y ) = 0 fory in téms of x. However, the

equation may define y as a function of x. In such cases, y is said to be an
dy

implicit function of L If y be a differentiable function of x, then 	 may be
dx

obtained as follows:
Differentiate each term of the equation with respect to x, regarding y

as an unknown function of x having a derivative 
dy , 

and then solve the
dir

dy
resulting equation for
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Illustratlon:Fjnd, if

Differentiating each term with respect to x.

3x2

(6y_2)y 2 _3x 2 ,	. '_ y2-3x2
- dx	 dx 6y-2.xy

7.12. Parame'trjc Equations.

Sometimes in the equation of a curve, x and y are expressed in
terms of a third variable known as a parameter.

In such cases, to find

	

	 it is not essential to eliminate the
dx

parameter and express y in terms of x. We may proceed as follows:

Let x=O(t), y = V(t).

of.:. 
Then x may be regarded as a function of t and also y is a funcion

dy_dy th_dy /dx	 (dxNow_.._._/__ — ^O

For illustration see § 7.13, Fm 6.	
(By §7.6 and 7.71

7.13. Illusfrative Ezamples.

Ex. 1. 	 Show that -4--x"=nx" when n isapositive integer by the
dx

product rule.	 [Note, Theorem. IV, Art. 7.4)

Let f(x)=x"=x.x....x (n factors)

f' (x) =x.x ... to (n–i) factors+x,x ... to (n –i) factors

+x.x... to ( n –1) factors + ...... to n terms

=nX n-I
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(b) Assuming that

	

	 x" = nx'	 when n is a positive integer,
dx

show that the same result is true when n is a negative integer or a

rational fraction, positive or negative.

When n is a negative integer, suppose n = - m, where m is a positive

integer.

dx	 dx

d 1 OXx" -mx	 xl

	

-	 = —mx	 = n.E

Next, let us suppose n is a rational fraction, positive or negative and

let n = p / q, where q is a positive integer and p any integer positive or

negative.

Then y=x" =x". Let
11q

; then	 and yz".

Thus, dY=/!=iz/q 
ILX

	 =7-I

dx dz dz q

Ex. 2. Assuming that	 {e*(') }= e	 Ø'(x) for all real values of x,

dx

deduce that - (x- ) at'	 for all real values of x.
dx

n
Let	 y=X =e 

nlogs,

Then
dy

 r.-(e7b0 ) e b0 ._(nlogx) x".n.- = nx

dxdx .	dx	 x

Ex. 3. Find the differential coefficient of sin (log Sec x).

Let y={sin(logsecx)}2

=u 2 , where u=sin(Iogsecx)sinV, where v=Iogsecx

log w, where w= sec x.

dv dydudvdW 1
= 2u. cos v—. sec X tan X

	dx dudvdwdX	 w

=2sin(logseCi )cos(Iogsecx).tanx

	

sin (2 log sec	 . tan x.
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Ez.4. Differentiate (secx ) 's".
Let y=(scx)'. .. logy =tanx.logsecx.

Differentiating both sides with respect to x,

	

ldy	 1	 2= tan x.—.secxtanx+	 xlogsecx

	

ydx	 secx
= tan 2 x+ sec 2x 

log secx
dv
1-=(secx)	 2	 2tan x+Sec xlogsecx

Note. Writing the given function as e Ufl x.Iog Sec X, we may proceed
to diftèrencjate it.

	

Ex. 5. Find	 ,
Y(x-3)(x-4)

Taking logarithm Of both sides,

logy ={1og(x_l)+Iox_2)_log(x_3)log(x4)}.

Differentiating both sides with respect lox.

I	 +I	 -I 
y d - 21jx-l) (x,2) (x-3) (x-4)

- (x - i )(x-2 )(x-3 )(x-4 )•

	

dy	 2x2-IOx+Il

- 

	

EL6.Find	 , if x=a(O-sin8), y=a(1+coso).
dx

	

• dydy/dx	 asinO	 2siniOcosiO

	

dx del dO	 a(I-cos9)	 2 sin 2-O	
-COtO.

	

dx	 ••	 1+sinx+JI-sjnx

2sjn2x
On rationalising the denominator, y = tan - i-cosx = tan 2sin- r cos- .r

dytan Laan4x=+x	
... dx
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Note. Sometimes an algebraical or trigonometrical transformation as
'shown in this example considerably shortens the work. The next example
also illustrates the same method.

Ex.& If y—tan

Putting x tan8,
J,

Putting
	 l seco-1 1—cosO

=	 =	 =
X

	

	 tanO	 sinO
2sin210=	 2	 =tan-LO

2sin-OcosO	 2

Hence, y=tan tan-6=8 =-tanx.

•dy	 I 1

dx 2 1+x2
EL 9. Differentiate sin x with respect to x2

Let	 y=sinx, z'X2.
• dydydxdy/dzcosf

dz dx dz dxl dx 2x

Note. This is an example of the differential coefficient of a function of x with
respect to another function of x.

Ex. 10. If sin y = xsin (a + y), prove that

tsin2(a+y)
dx	 sin 

From the given relation, we have
smy

•x=

	

	
.	 (1)

sin (a+y)
Hence x is a funciton of y.
differentiating both sides of (1) with respect to y,

sin (a-+ y)cosy— sin ycos(a + y)

dy	 sin 2(o+y)

sin{(a+y)—y} =	 sina

sin 2 (a+y)	 sin2(a+y)
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dy	 IdxSince, by Art. 7.7, - 1/ -, the required result follows.
dx /dy

Es. 11. Find the derivative of ( x). where

f(x) #(x) V (x)

A(x)= 12 (x) 02( x ) W2(x)

f3 (x) # 3 (x) V3 (X)

and f 1 (x), f 2 (x), f(x), 0 1 (x), e:c.aredjfferentfunctionsofx.

Fint Method:

f1.(x+h) # i (x+h) v1(x+h)

ti(x+h)-'A(X)= f 2 (x+h) # 2 (x+h) v2(x+h)

if3(x+h) 0 3 (x+h) p'3(x+h)

-

f1 (x) #(x) w (x)

 12( X ) 020) I'2(X)

f3 (x) 030) tV3(X)

f1(x+h)-f,(x) #i(x+h)-#i(x) y' j (x+h)-' (x)

	

f2 (x+h)	 #2(x+h)	 tv2(x+c)

	

f3 (x+h)	 03(x+k)	 p(x+h)

	

f(x)	 #i(x)	 ivi(x)

+ f2 (x+h)-f2 (x) 02(x+h)-02(x)	 2(x+h)-Iv2(x)

	

f3(x)	 •3(X)	 v3(X)

	

f(x)

	 01(X)

	 v(x)

f2(x) 

f3(x+h)-f3(x.) #3(x-4-h)-#3(x) y,3(x±h)-W3(x)

(I)

The right-side on simplification can be easily shown to be equal to
the left-side.
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Dividing (1) throughout by h and letting h -+0. we get

f(x) O'i (x) (1(,(x)	 1(x) •x) ' j(x)
	A(x)= f2(x)	 y1z(x) + f '2(x) 0 2 (x) (11'2(x)

13 (x) o(	 (x)	 13(X) 03(X) p3(x)

f, ( X 	 o(x) ui(x)

+ 1 2 (x) 0 2 (x) 412(X)

f 3 (x) 0 '3(X) (113(X)
Second Method:

Clearly A(x)f1(x){02(x)413(x)03(x)412()}

+	 f (x ) {0'2 ( )41 3 (x ) - 03 (x ) 41 2 (x ) }

f(x) # j (x)	 (x)	 f1(x) Ø'i(x) V 1 (x)
'(x)	 f(x)	 (x) t'(x) + fl ( x ) 0'2(x) 412(X)

f'j (x) 0 3 (x) (1(3(X) I	 fa(x) 0'3(x)	 (x)

f. (X) 

Oi(x) ip'1(x)

+ f2 (x) 02(x) 0"2( 

X)

13(X) 03( x ) V3(x)

Thus, the derivative of a third order determinant A ( x) is equal to the
sum of three determinants, each obtained by differentiating one column of
A(x)  leaving the other columns unaltered. Similarly, A( x) is the sum of
three determinants, each obtained by defferentiating one row of A( x)
leaving the other rows unaltered.

The similar result is true whatever be the order of the determinant.

EXAMPLES -VU (B)

Find the differential coefficient of [Ex. I —7]

1. (i) (OW}'. (ii) (x2 + 5 
)7. 

(iii) j(x 2 + a 2)

	(iv) I/(ax +b)	 (v) (eX)3.	 (vi)	 1j.
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(vii) sin" X.	 (viii)tan Is X.	 (ix) sec 3x.

I.	 .;	 .	 I
(x) srn x) .	 (xi) tan xj	 (xn) J(x).

(1) e	 e"'.	 (iii) e"1"'.

(iv) e	 .	 (v) e " ..	 (vi) e

(vii) e	 - e

(I) a(	 (ii) 7	 (1)

(i) log 0 (x).	 (ii) log sin x.	 (iii) log cos x.

(iv) log (x + a ). (v) log (ax + b).	 (vi) log .J.

(vii) log (ax 2 + bx + c ).	 (viii) log (log x).

(x) 10	 (x)	 log tan x.

(xi) log (sec x+ tan x)	 (xii) log. a.

(xiii) log . sin x •	(,iv) log	 (a + x ).

(xv) log ^in x X	 (xvi) log s,,, (sec x ).

(xvii)log tan (+ n + 4 x).	 (.Viii) log 	 +	 2

(xix) log (+ .i). (Xx) log io(2x+.J2+1).

•(x);) log l+x

5.	 (1) sin 0(x).	 (ii) cosØ(x).	 (iii) tan 0(x).

(Iv) cosecØ(x).	 (v) secØ(x).	 (vi) cot *(x).

(vii) sin ax.	 (viii) cos (ax+b ).(ix) COS 2 x.

(x) tan mx.	 (xi) cosec 3X.	 (xii) sin 2x cos; x,

(xiii) cos 2x cos 3x.	 (xiv) sinx° (degree). (xv)	 e' sin bx

• (Xvi) e' Cos (bx+c).	 (xvii) tan 3x + cot 4x.

• (Xviii) sin xsin 2x sin 3x. 	 (xix) a tan 2 x +.b cot 2 X.
/

2.

3.

4.
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(xx) sin x cos "x	 (=) sin' x / cos x.
(xxii) cot x coth x	 (xxiii) tanh x - -} tanh3x.

(xxiv) log tanb x.

	

6. (') sin Ø(x).	 (ii) tan-'O(x)

(iii) sec Ø(x)
	

(iv) sinx2.

(v) tan'(.J).	 (vi) tan (x
I
/a).

(vü) sin (x/a ).	 (viij)sec' xJ.

(ix) cosJ(ax+b)
	

(x) cot -1 (e' ). .•
(xi) Sec A tan x).	 NO tan '(sec x).	 -

(Xin	
-if)tan	 1+x+.r	 (xiv) cos -' (8x 4 - 8x 2 .+ i).

(xv) sin -j (3x - 4? )

(xvi) sec (tan	 [ C. P. 1940

(xvi) tan (sin 	 x	 (xviii) tan' (tanh .. x).

NO cot (cosec x + cot x).

(xx) tan ( sec x+ tan x)

(xxii) cot -'
l—.x

(xxiv) tan a + bx

b - ax

(xxvi) Sec ' x 2 + 1
X2 -1•

(xxviii) tan'

(Xxi) cot 1 (I1+x 2 ..)
1	 2

(xxiii) cos	
-

I +•x2

(xxv) sin	 2x

1 + x2•

(xxvii)tan	 2x

1- x2•

(C. P 19431

(xxix) tan —__	
[C. P.1938)
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1	 3x-x
()	 tan'. 

t-3x2

(xxxii) sech x - cosech x.	 (xxxiii)tanh (tan - ).

(xxxiv) tanh_ t {(x 2	 x2 +i)}

7. (1) cos	 (H)(ii)	 e. [C.PI943,1948]

(iii) e	 .	 (iv) e	
)2	 rF-;;1.

(Vic log tan -1 x.	 (vii) ,J (log sin x). (viii) (log sin x )2

(ix) cos{2sin'(cOs x)}.	 (x) sin 2 (16g 2)

(xi) log sec (ax+b)3.	 [C.R19411

xi')log {2X+4+J(4x2+l6x_12)}

xii,J(l+ log x log sin x). 	 L. P. 19441

(xiv) tan log sin (e" ).

(xv)A(x+2_1)+Bx_JX2_1).

8. Find the differential coefficients of:

(i)	 (ii)	 (i + W .	 (iii)	 x.	 (iv)

(v) a.	 (vi)	 e ' . (vii)	 (viii)	 x'.

(Ix) •(sinx).	 (x)	 x	 C. P. 19441

(xi) (sinx)b05x.	 .	 IC.P.19431

(xii)x.	 .	 IC.P1937]

(xiii) (sin x)	 +(cos

, (xiv)(tanx)+( cot x)'.

9. Find the differential coefficients of:

(i) (1_x)(l_2-i)(1--3x)(l-4x).
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1( 1+x(ii) jx(x+I)(x+2). (iii)

2 x2 2.1(iv)( 
a2+x2 J	

(v)	
Iog{ex(i:_)2}.

x+1

3FX +4
(vi)x	

.	 (C.P./941J
+3

x3Ix2_12
(vii)	 for x=4.

Y20 --3x

(VW)

(	 x

1+1_2 )
	

1 C.R1935]

(4x+I)
()

(x) ( x
	 X x	 J r

x ( x
10. Find 

dy
tn the following cases:

(I) 3x4-2y+2yo.	 [(.P.1941J

(ii)x 4 +. x2 V2 + y = 0.	 1 C. P 1939]

(iii)x3+y3+4x2y_250.

(iv)x3 + y 3 = 3a.	 (v). x 3 + y 3 = a•
(vi) ax 2 + 2/uy + by 2 + 2gx + 2j5 + c = 0

(vii)x = y log (xy ).	 (viii) xFy 4 = ( x + , )p+q

(ix)y=x'.	 IC.Pl940]

(x) x = Y'.	 F C. P. 1945, V P 2002

(xi) xy' ='i.	 [C.? 1943, VP. 20001

NO (cos x)' = (sin y).	 [C. P2007 1
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(xiii)e'' -&ty ,= 2.

(xiv) log (ty)=x 2 +y 2 .	 IC.R1943]

dy
11. Find	 when

dx

(i) x=acosØ, y=bsinø.

(ii) x=a Cos 3 O,y=b sin 38.

iii) x = at 2 • y = 2a1.

(iv) x=sin 2 O, y=tanO.'	 IC. P 19431

(v) x= asec 2 0, y-= a tan- 3 9.	 IC. P.19421

(vi) x a(cos: +Jogtan - :	 y	 asin:.

(vii)x= a (cos t+:sin:), y	 a (sin t-: cos :j.

(viii) x= a(2 cos r+ cos 2r), y = a(2 sin i- sin 2t )

(ix) x= 2a sin 2 : cos 2t, y =2a sin 2 t sin 2,

(x) x = 3at /(l+ t 3 y=3a1 2 /(l+1 3 ).	 FC.P19411

21
(xi) tan y =	 2 

sin 
x= 2: 

2
	 C. P. 19441

	

1 .-:	 1+1
dv

12. If y=e"	 and z = e°	 then show that T is independent ofx.

13. Differentiate the left-side functions with respect to the right-side ones:

(i) x 5 w. r. t. x 2	 (ii) sec x w. r. t. tan x.

(iii) log 10 x w.r.t. x 3 .	 (iv) tan-x w.r.t. x2.

	

_ 1 1-x 2	 -t 2x
(v) cos j—

	

7. 	 r. t.• tan
+x 	 1-x2

(vi) tan - ____________ w. r. t. tan 1 X.
x

(vii)x'	 w.r.t. sin x.	 (C.P 19381

14. Find the differential coefficients of

(')	 (II)
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FI L, + xx2
(iu)

x+2

(v) log If l+Sinx}

VI l — sinx

x2+x+l(iv) log	 2x —x+l

(vi) log IJ1_cosx}
V tl+cosx

(vii) tan
V i+x)

(viii) tan
I + sin x

(ix) tan	 I 1—COSX).	
(x)

V I i+cosx)

(xi) sin 1 x+ sin _1J(i2)

[CR 1942, 1944, V P 19981

tan	 COSX — SjflX

cos x + sin x

(xii)sin 	 {2a.r((1_a2x2 )}.

(xiii)tan'	
I+;)_J(l_x2 )

(i + x 2 ) + . ( - X2)

(xv)sin{ 2tan
 i V+x)f

(1 +
(xv)	

xj + .1( 1 -

(xvi)hj(0	 )+,J(a2 x2)

(a +)	 (a 2 x2

-t
(xvii) log

	

	 - tan' x.
l._x)

(xviii) log F(a osx - bsin

OSX+frsjflx
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NO 109 
a+btanx	

[.c.P.194j
a - b tan x

0o) ta{i) tan }.

a+bcosx	 .1+5cosx(xx) sin	 (xxii) cos
b+acosx	 5+3 cos x

I1 + —X 2 +x
(xxiii) log I

V 
J1+2_

(x-i")log

	

	
J(i+ x)+(1_x.)J	 (Xxv)x+

v L7(1+77-(1_7j

•	 x+—
x

Find	 in the following cases (Ex. 15-23):

15.

16.yfx,(a 2_ x 2 )+ka 2 sin _.

17. y= log (xfrjx2_a2)+sec1&

18. YX(x2+a2)+a2lo8(x^Jx2+a2).

19. x=(a2_y2)+!Ia2.

1-+x•	 1	 1+x+x2 	
,
320. y=log—+-log

l - x 2	 l - x+x	 1-x

j	 iixf+x2	 I21. '	
I-x2

14-
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::

	

i+x" "+x '	 1+x'" +x

+
1+x ,"_ p + X'-P

- b+ 2x

24. If jr (x ) = [)	 show that
b+x)

22	 I('\.

	

f'(0)=[2lo, a 
h -a	 a

	

+	 C.II946J
ab 

25. if	
______(a + bx ) -	 - bx)

find for what values of x, 	 =0.
f(x)

IT	 (2,r
26. If sin x sin - + x sin I	 + x

)	 fl

	(n — i	 '1	 .Slfl flX
.sinI —,r+x 1=—

-	 I

	

)	
L

then show that

71"	 I2t
cotx+cotl —+x I+cotl

In	 )	 fl	 ) .

+ cot ( 
n	

7r + x	 n cot nx	 C. P. 1945

27. (1) From the relation (when n is odd)

-	 2ir\	 I	 41r
2	 cos B cos (0+ —Cos i

It)	 \.	 Il

	) Ir
0+	 _COSnO

Ii	 ) 
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deduce that

(	 '\	 I	 '\tan o+ tan l 8+ 27r
	 4,rj+ tan I O+	 1+...

n)	 t	 n)

I	 2(n— 	 \
+ taf 	 +	

1),r
 = n tan n9

n	 J

(ii) From the identity

0	 0	 0	 .0	 sin cos — cos —cos— ....... . COS— =
2	 22	 2	 2	 2" sin (6/2")

show that

	

1	 9	 1	 0  
— tafl --+ ----tan --+ 1—(an 0--. ........	

1	 0
tan

2	 2	 2 2	22	 2	 . 2	 2"	 2."

	1	 0
= - cot - - cot 6

	

2	 2"

28. Find f'(x ) in the following cases and determine if it is continuous for
x = 0.

i) J'(x )= O or x cos(l/x.) according ax isorisnotzero.

(ii) f ( ) = 0 or x 3 cos(l / x ) according ax i's or i's not zero.

29. Tf(i+x)"=c 0 +c 1 x+e,v 2 -- ..... +c,,.", then prove that

(1) c 1 +2c 2 +3c 3 + ..... + nc',,n.2"*	 -

(ii) c 0 +2c 1 +3c 2 + .....

.30. If y = 1 + 
at 

+ T
- x—a 1	x	

a2x

_a1)(x_a2)

a3x

-ai)(x_a2)(xa)

then show that

	

dy = v a	
+	 + a3

	

dx	 x a 1 —x a, — x	 a3-x
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(x-a)4 (x-a) 3 I

31. If A(x)= (x—b) 4 (x—b) 3 I show that

(x-c)4 (x-c) 3 1

(x—a)4 (x—a)2 1

A' (X ) = ( x—b)4 (x—b) 2 I
(X—C )

4 (x—c)2 1

	

sin 	 cosx sin 

32. If A ( x)	 cos x - sin x cos x , then show that A' ( x ) = I.

	

X	 1	 1

1.1 1 1

32. If f(x)= 
1 X 

1 1 , prove that f'(x)=3(x—I)2.
lixi

IlIx

34. If the determinant of the 4' order

x a a a

ax a a'

a ax a

a a ax

be denoted by A 4 , show that A'4 = 4A3.

ANSWERS

1-0- (ii) 14x(x2 5)6 (iii)x/J(x2 +2).

	

(iv) -a / ( ax +b) 2 . (v) 3(e )3.
	

(vi)i

	

(vli)nsin'xcosx	 (viii)S tan 4 xsec 2 x. Ox) 3scc4 xtanx.

	

3 (sin	 x') 2	2tan'1x	 .

	

.	 2f()

	

2. (I) e.Ø'(x)	 (ii) ae'.	 (iii) (2+b).e2''.
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(iv) 4x.e 4.	 (v) scc2x.e.	

'71 77
e	 e

2 J( x + I ) - 2J(x—I)

3. 4) Ioga.a().9'(x). (ii) 2(x+ I )772+2

(iii) IogIo.lo'°" .(l+Iogx).

4. 4) Q'(x)/(x). (i) cox.	 (iii)—tan.x.	 (jV)I/(x+a).

(v) a/(ax+b).	 (vi)I/(2x). (vii) (2ax+b)/(ax2+bx+c).

(viii) I/(x log x).	 (ix) lO'°.log,II.coIx.

(x)	 (xi) sec x

x cot x log x— log sin x(xii) —log a/{x(Icx)2}.	 (xiii)
x(Iogx)2

xlogx—(m+x)Iog (a+x) 
(xv) 

I.gsinx— xcot-xlogx
(xiv) x(a+)(Iogx)2	 x(Iogsinx)2

tan x log siila+ cot x log cos x (xv .
(xvi) ii) sec X.

( log sin x)2

('iII) Jx
2 ±a 2	24x-a)(x-b)

2 log 1e

J4x2 +1	 -

S. (i) cosQ(x).*'(x).	 (ii) —sinQ(x).'(x).

(iii)	 20(x),(x)	 (iv) -.cosec(x)cot*(x).Ø'(x).

(v) sec(x)lanØ(x).'(x). (vi) cccc2(x).G(x).

(vii)acosax,	 (viii) —a sin (ax+b).

(ix) —sin2x.	 (x) m see 2mx•

(cj)	 COSOC 	 (xi) 4(3cos3x+cosx).

(xiii)—(5 sin 5x+ sin x).	 (xiv)	 cos x0(degrce)
ISO

(xv) a sin bx + bcos ).
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(xvi) e''{acos(bx+ c)-b sin (bx fC )}.

(xvii) 3 sec 2 3x - 4 cosec 2 4x.	 (xviii)( 
COS 2X + 2 COS 4x - 3 

COS 6x).

(xix) 2 I a tan xsec 2 x - bcot xcosec x

(ix) sinmxcos_lx(m COS 2x_n Sin 2x).

SiflX(	 2.	 2
(xxi) yncos x+nsln x

cos	 x

(xxii) —cosecxcoth x - cotxcosech 2 x -

(xdii) sech x.	 (xxiv) 2 cosech 2x.

6.	
_ 	 Øx) 

(ii)(i)	
1{Ø(x)}2	

14{0(1-)12(iii))}2	 ()}2 -1

2x	 I	 a
(iv)	 (v) 2(1+x)J	

(vi) a2

3
(vii)	

1	
(viii)

F.
(ix)--

1 —(ax+ b) 2(	 + b)

(xi)
sin x4sin x - cos 2

l+2x	 4
(xiii)	 2 (xiv)

3

(xvi)f
x 	

7).	 (xvii)(i_x

cx
(x)	 2•

sin x
(xii)

i- 	 2Xx

(xv)

(xviii) 1 sech x.

(xix) -

(xxil) - _L
1+x

2
(xxv)

(xx)

(xx	
2

m) -.
1+x

2
(-Vi)

I	 I
(xx —.

2 1+x

(xxiv)

2
(xxvii)

(xxviii) -_____
J(2)	

().(xxx) Ja)(b-x
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3	 ..	 1	 1	 I
(xxxi) —i-	 (xxxu)

(xxxiii)- sec x.	 (xxxiv)1/x.

_xsin((i+x2))	 _____x _____

(i+x2)	
(iiJ,) 2sin2f

(iii) - e	 JT
,151n	 x

(l+2x)log33J(i+x+x)
(v)

(vii) -(logsinx	 cot x.

(ix) 2sin 2x

(xi) 3a(ax4-b) 2 tan (ax +b)3

(iv) 2sin
	 (	 -

gl—x

(Vi) cosecx.

(viii) 2cotxlog sin x.

(x) 2x'sin(4logx).

(xii)
2 + 4x 3

log sin x + xcot dog x
(xiii)2	

(1 + log x log sin x)

(Xiv) sec 2( log sin e2 )cote2J e 2 .2x.

(xv) fl {A(x+x 2 _1) +B(x_x2_l)}.

8. (i) x(logx+1).	 (ii) (1+x){log(1+x)+_--}.
t+x

(iii)	
(iv) l+2{(2X+1)logx+x_I+1+x}.

(v) a"'.a(loga )2	 (vi) e el.ex. (Vii) e'.x (logxi-1 ).

(viii) x'	 + log x ). (ix) (sinx )W	 .(sec 2 x log sin x + I).

t

log 	 + Cos x
(x) x	

J(i_2)	 x

(xi) (sin x)b0	 {x' log sin x-i- log x cot x}.

(xii) x.x{logx(lox+l)+l/v}.
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(Xiii)(sinx)CO '{cosxcotx—sinxlogsinx}

+(cos x){cosxIogcosx—sinxtanx}.

(XiV)(tanx)

+(cot x){sec2x(IogcoIx_1)}.

3x2+6x+2
. 0) 96x 3 -150x 2 +70x-10• (II) 

3{x(x+IXx+2)}

2(iv) (a +x 2 )Ja 4 -x 4(i-x

x2(3X4+2ox2+36)
X2(v)	 2	 (vi)

(vii) 120.

(viii)	
fly	

y being the given function.

(ix)
_(s+2X+18X2)

	

 6.	 (x) 0.
(4x+I)4(2x+3)12(5x-1 )5

2x(6x 2 _y)	 X(2X2+y2	 3x2+86y
(I) ___________10.

x , -6y2	 Y(X2+2Y2j3Y+4x

x 2 -ay	
(v) - -

YJ,	

(vi) ax+hy+g
(iv)

ax-y2	
.	 --__________

hx+by+f

y(x-y)	 y	 _________
(vii)() .	 (viii).	 (ix)

x	 x(I.-ykgx)

(xi)- y(IIOgx)	 y tan x+ log sin y
(x)

x(ylogx — x)	 x (I —Iogy	
(x ii)

)	 Iogcosx — xcoly

I (xin) — .	 (xiv) i
X	 xI_2y2)

11. (1) —(b/a )Cot ø.	 (ii) — tanO.	 (iii) If'.

(iv) .} sec 3 cosec 0.	 (v) . tan 0 .	 (Vi) tan:.

NO tan:.	 (viii) - tan -1.	 (m) tan 3
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• ('0 :(2_t3)(1_2I3).

110, !	 .	 (ii) sinx.	 (iii) x3 log 0e.

(iv) 1/ {2x(1 + x2 )}	 (v) 1.	 (vi) .

I—x(vii)x	 Iogx+sin j x•
x

14. (I) 4{(i_xy — (l+xr J

	1	 1
0 2(a-b).J(x+a)J(x+b)

l-x2	 2(I _x2)
(iii) I	 2	 2	 (iv)	 2	 4

	

$I+x+x )1-x+x )'	 1+x. +x

(y) sec X.	 (vi) cosec X.	 (vii)

(viii)	 (ix)	 .	 (x) -I.

2a(xi)a	 (xii)
J(.i_a2x2)

NO	 .	 (
xiv),_____-.	 (xv) - 2Ji

a 2 	"I
(xvi) - -j-I l +-
	

I .	 (xvii)

	

X	 4ax)	 I—x

-ab	 2ab
(xviii) 2	 2	 2	 2	 (di) 2	 2	 2	 2

	

a cos x-b sin x	 a cosx-b sinx

	

4a 2 _b 2 	b2_a2	 ..	 4
(X* . (xxi)	 .(xxu)

2(a+bcosx)	 b+acox	 5+3cosx

	

' I	 .	 -1	 x4+x2+2
(xxiii)	 .	 (xxiv)	 . (xxv)' -	 2

J i+x 2 	 2j-•;-	 (x3+2x)

15. •	 16. JaT7,2).	 .17. !IIT.

Y	 6

	

18. 2J(a+x). • 19. J(a2_y2)	 20.
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21. 
l+x4	

22.	 2x2+i	 23. 0. 250.±(u/b)

28. (I) f'(x ) 0 or sin (I/x )+ 2.Y cos I Ix) according as x isorisnot

zero; f'( x ) is discontinuous for x = 0.

) = 0 or 3x 2 cos( i ix) + xsin (i / x ) according as x is or is

not zero; f'( x) IS Continuous for x = 0.

7.14. Significance of derivative and its sign.

A very important aspect of a derivative, following from its definition,
is as a rate-measurer. This will be clear from the following examples.

Let s denote the length of the path covered by a moving particle in
any time. Clearly, as the particle moves continuously, s has a definite
value for every value of t, and, accordingly, by definition, s is  function

oft. If s + As be the value of $ corresponding to the value I + At of t,

then Li S denotes the distance moved over by the particle in time At
As

the ratio - in the limit, when A £ becomes infinitely small, represents

the rate at which the particle is describing its path per unit of time at the

Asmoment. But on the other hand, Li - is, by definition (Since
-	 .r-o At

As and denote corresponding changes in s and I), the derivative of s

ds
with respect to g . Thus, the derivative	 - represents the rate of change

di
of s with respect to 1, i.e., the speed of the moving particle.

More generally, if y be a function of the variable x, changing

continuously with x, then A y being the change in y corresponding to

a change Ax of x, the derivative - = Li represents the rate of
dt Nv -OL\x

change of y with respect to x.

Thus, v being the velocity of a moving particle at time I,
di

represents the time-rate of change of velocity, i.e., its accleration; again,
if V be the volume of a quantity of gas enclosed in a flexible vessel at a
constant temperature when its pressure is p . which we can change at

dV
pleasure,	 represents the rate of change of volume with pressure and

dp
so on.
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Next we may note, that y changing with x, if y increases when x is

increased and diminishes when xis diminished, the corresponding changes

and A y and A x are of the same sign, and accordingly, the ratio -'- is
Lx

positive. Hence, A (when it exists and is 0) is positive.
dx

Similarly, ify decreases when x is increased, or increases when x is

diminished -	 is negelive.
dx

Conversely, a positive sign of -- at a point c indicates that in the
di

neighbourhood of the point y increases or decreases with x, i.e., both y
and x increase or decrease together. On the other hand, a negative sign of

means that y decreases when x increases and vice versa near the point.
dx

A formal proof of the above result is given below.

A theorem on the sign Of f'(x).

if f' ( a)> 0, prove that f ( x) < f ( a ) for all values of x < a

but sufficiently near to a, and f(x)> f(a) for all values of x > a

but sufficiently flea,' to a,

Since

Li f(a+h)_f(a)>Oand

h

Lt
- h

for all sufficiently small values of h, we have

f(a—h)< f(a)< f(a+h).

In other words, there exists some neighbourhood (a - , a + 5) of

a in which

f(x)> - f(a)  for x> a, f (x)< f (a) for x <a,

i.e., f ( x) > f ( a ) for x > a but sufficiently near to a,

and , f(x) < f ( a ) for x <a but sufficiently near to a.
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When the function y = I (x) is represented graphically, a

geometrical interpretation of the derivative .	 corresponding to any

value of x may be given as follows

Let P be a point (x, y) on the curve, and Q a neighbouring point

(x+Ax, y + A y ) which may be taken on either side of P,sothat

A x may have any sign. The equation to the line PQ is (X, I denoting
current co-ordinates)

Y — y=	 (x_x)=i (X—x).
x+Ax—x	 Ax

If 0 be the inclination of this line PQ to the x-axis, the slope of the

line, i.e., tan  = A Y	 ...	 (1)
Ax

Now, Jet Q approach P along the curve indefinitely closely, so that
A x –, 0. If the straight line PQ tends to a definite limiting position

TPR as Q approaches P from either side, then TPR is called the tangent
to the curve at P. In this. if t, be the inclination of 7PR to the x-axis, then
-	 Aydy

as PQ tends to TP
—

R, 8 - ji . Also, as A x -3 0, LI

	

s,-.oAx	 dx
from definition. Thus, (1) leads to

tamp =
dx
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Hence, the derivative

	

	 for any value of . when it exists, is the
dx

trigonometrical tangent of the inclination (otherwise known as slope or

gradient) of the tangent line at the corresponding point P on the curve

y f(x).

Also, if	 tan .y ) be positive, y is acute (as at P in the figure
dx

below), and at that point y increases with x. If 	 Le., tan u,i be negative
dx

ji is negative (as at Q), or is obtuse (as at R), and y diminishes when x
increases, or vice versa.

.At a point where	 = 0, the tangent line is parallel to the x-axis (as at
dx

	

F), and at a point where A .- o, Le.,	 ,the tangent lineis parallel to
dx	 dy

the y-axis (as at G).

7.15. DIfferentials

If f'(x) is the derivative of 1(x), and Ax is an increment of x,
then the differential of f(x), denoted by the symbol df(x), is defined by
the relation.

	

df(x)=f'(x)Ax.	 ...	 (1)

If f(x)=x, then f'(x)=l.,and (I) reduces to dr = A x.

Thus, when x is the independent variable t,diffcrenLiaP of x ( = dx) is
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identical with Ax. Hence, if y = f (x ), then the relation (1) becomes

dy=f'(x)th	 ...	 (2)

i.e., the differential of a function is equal to its derivative multiplied by the

differential of the independent variable.

Thus, if y = tan x, dy = sec x dx.

From the definition of the differential of a function, the following formula:
for finding differentials are obvious:

d(c)=O, where c isaconstant;

d(u+v—w)= du+dv--dw;

(u' vdu - udv
d(uv)=uth'+t'du;	 2

Differentials are especially useful n applications of integral calculus.

Note L The students should note carefully that although for the independent
variable x, increment Ax and differential dx are equal, this is generally
not the case with the dependent variable y, i.e., Ay ;e dy generally.

Note 2. The relation (2) can be written as dy/dx = f'(x); thus, the
quotient of the diffcrentals of y and x is equal to the derivalive of y with
respect to X.

Probably on account of the position that f'(x) occupies in equation

(2) above, f'(x) is called the differential coefficient..

7.16.	 Approximate Calculations and Small Errors.

If v = f (x ), since Li A)-- = f' (x ), A y is approximately
­ 0 A x

=f'(x ) for small values of Ax. Thus dy and A)' may be taken as

approximately equal, when Ax (= dx) is small. Hence, when only an
approximate value of the change of a function is desired, it is usually
convenient to calulate the value of the corresponding differential and use
this value.

Small errors arising in the value of a function due toad assumed small
error in the independent variable may also be calculated on the same principle.

As an illustration, let us consider the following case

The radius of a sphere is found by measurement to be 7cm; If an error
of .01 cm is made in measuring the radius, find the error made in calculating
the surface-area of the sphere
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If S cm' be the surface-area of the sphere of radius r cm,

S = 4nr2.

dS=8itrdr.

Here, r=7 and dr=0O1.

approximate error in the calculation of the surface-area

=dS=8xx7x'01=l•76cm2

Note 1. The actual error is 4t{(7.01 )2 _72 }cm 2 whichis very ileat-ly

equal to I'76 cm 1.

	Note 2. If dx is the error in x, then the ratio (i) 	 and (ii) 100	 are

X xcalled respectively the relative error (i.e., error per Unit .r) and the

percentage error They may be easily obtained by logarithmic defferentiation.

7.17. Illustrative Examples.

Ex. 1. lIthe area of a circle increases at a uniform rate, show that the rate

of increase of the perimeter varies inversel y as the radius. ( C. P 1930]

At any time 1, let  be the area, P the perimeter and r the radius of

the circle.

Then A=71r 2	P=2itr.:. P 2 =4mA.

differentiating both sides with respect to i, we have

dPdA	 dP 2 7 d4 I dA
2P4it--	 i e

di	 di'	 'dt	 P di rdi

i
dA	 dPi

Since - s constant,	 .. - -.
di	 di	 r

Ex. 2. A ladder All, 2.5 rn long, leans against a vertical wall If the

lower end A, which is at a distance of '7 m .from the bottom of the wall,

is being moved away on the ground from the wall at the rate of 2 rn

per second, find how fast is the top B descending on the wall.

Let the distances of A and B from 0, the bottom of the wall, at time!

	

be x and y. Then the velocities of A and B are 	 and	 - hence, as
di	 di

dx
given here -- =

di
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Now, x 2 +y 2 =252.

Differentiating with respect tot, 2x + 2y =O.

• dyxdx

di	 ydt

When x=7, y'=2 . 5 2	 2 5.76=2.4 2 .	24

Hence, when x=•7, y=24, —=•2;
di

	

dy	 .7	 7	 5
from (1), -i-- -j-X.2=- 1 m per second= -5 cm/sec.

the end B is moving at the rate of 51 cm per second

towards 0 (. dy/dzis negative), i.e.. 13 is descending at that rate.

Ex. 3. The adiabatic law for the expansion of air is PVL 4 = k, where k is
a constant. if a! a given time the volume is observed to be 20 cm3 and the
presure is 5Q dyne per square centimetre, at what raze is the presure

changing, if the volume is decreasing at the rate 012 cm3 per second?

PV'4=k
Taking logarithm of both sides and differentiating with respect to t.

1dP 1 d

	

P di	 V at

Since V=20, P=50 and
di

I dP	 1	 dP—x—+l.4x—.(-2)=0 . —=l.4x50=7
"50 dt 	20	 •dt

Thus the pressure is changing at 7 dyne per second.

Ex.4. if y=2x-tan' x- log (x+ 'Ii 77), show that y continually
increases as x changes flvai zero to positive infinity.	 [C. P 1942

Here, dy = 2__L__1	 1	 2x
dx	

l+x x+2J

-2
I+x 2 Jj•
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Since (i + x 2 ) and .JjTT are each greater than I

and	 are each less than I.
T

	

1+x 2	 fj	 -

dy

dx is positive; also y=O, when x=O.

for positive value of x, y must be positive and continually increases
as x increases from 0 to

Ex. 5. Find approximately the values of tan 460 ,given 10 = 01745 radian.
Let y= tan x: •.dy=sec2xdr

Thus, taking x= 450	
4 	 dx =l 0 x•01745 01745, we have

dy = 2x .0I745 = 03490

Hence, for an increment of 1 in the angle, the increament in the value

of tan 450 is 03490

tan 46 0 = tan 45 ° + 03490 1-03490 (approximately)

Ex. 6. If in a triangle the side c and the angle C remain constant while

the remaining elements are changed slightly, show that

da	 db
—+—=o
cosA cosB

In any triangle, 
a	 b	 c

— ---- = -	 -
sinA sinB sinC

Since c and C are constants. •. c/sin C = constant = K suppose.

	

• a 	
K

	sin 	 sin 

••a=KsjnA,and ;.da=KcosAdA

Also,bKsinB,and •. dbKcosB dB

——+----=K.(dA+dB)Kd(A+B)cosA cosB

= K.d(g—C)

= KxO = 0	 (. C is a constant)
15-
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7.18 Miscellaneous Worked Out Examples

	

1. (i)	 A function 1(x) is defined in 0:5x:92 by

f(x)=x2+x+1. 0:5x!51,

=2x+1,	 1:5x:52•

Examine the continuity and derivability of 1(x) at x 1.

(ii) 1(x) is defined in [0,2] by

f(x)=x2 +x , for 0!5x<1,

=2,	 for x=1,

=2x 3 —x+1 for 1<x:52.

Examine the continuity and differentiability of 1(x) at x1.
C. P 1992, B. P '95 1

	Solution	 (i) For continuity at x= 1, we have

Jim f(x) = tim (x2 +x+ 1)= 3
X-4i-

Iif(x) Urn (2x+1)3

and f(I)=21+13

Thus, Jim f(x) = Jim f (X)=f(l). So, f(x) is Continuous at

x=1.

For derivability at x 1,

Lf (1)= )	
f(1+11)—f(l)-

h-49	 •h

lim 
h2+3h	 -lim	 .(:..h*01

It	 h-0-

	

Rf'(l) = tim 
f(1+h)—f(1) -
	

{2(1+h)+1}-3

	

It	 h

2h
= Urn —=2 Lh*O

h-.O+ h

Thus, Lf'(1) # Rf'(l)

Hence f'(l) does not exist, i.e., f(x) is not derivable at x = 1.
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(ii) For continuity at x = I,

urn f(x) = Jim (x2+x)=2
x-tt-

Jim 1(x) =' Jim (2x—x+1)=2

and f(l)=2

Hence, 1(x) is continuous at x = I

For differentiability at x = 1,

Jim f(x)1(1) = urn	

2 
+x)_2

x-.l-	 x-1	 -.l-	 i—I

= tim (x-1)(+2)

.'-4I-	 (x-1)

= urn (x+2), -. x-1*0
I -

3

i.e., L/'(1) = 3

Jim f(x)—f(1) Jim .(2xxt1)_2

,_.I+	 X-1	 .-i+	 x— 1

= Jim (2x2+2.+IX._1)

(x — i)

= Jim (2x2 + 2 + i).	 ... x —I * 0

=5,

i.e.. Rf'(1)=5

since Lf'(l) * Rf'(l),

1(x) is not differentiable at x = 1.

EL 2. (1) Show that the function f  defined by

f(x)=3+2x for

=3-2x for 0<x<

is continuous but not differentiable at . =0.	 [B. P 1999, 2006
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(ii) If f(x) = x,	 0< x <I

=2—x.	 1:5x!52

1
=x--x 2,

show that f(x) is continuous at x = i and at x = 2, and that

f'(2) exists, but f'(l) does not.	 [ C. P. 1989. .93. '97 1

Solution :	 (i) For continuity of f(x) at x = 0,

Jim f(x)= Jim (3+2x)=3
W-40-

urn f(x) = jim (3-24 3

and f(0)'3+2XO3

Thus, jim f(x) = jim f(X)=f(0)

Hence, f(x) is continuous at. x=0.

For differentiability of f(x) at x = 0,

4f'(0)= urn
h

= lim 
{3+2(0+h)}-3

/2

= jim	 =2 (vht0)
h-.O- I?

f
Rf'(0)= tim

(0+h)—f(0)

h

= urn
h

= u	
—2h

rn ----=-2 (vh;60)
h-.O+	 /2

Since if'(0) * Rf'(0)

f(x) is not differentiable at x=O.

Hence, f 	 is continuous but not differentiable at x = 0.
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(ii) Continuity at x= I and at x=O.

tim f(9= tim (x)=1
i-Il-

Jim f(x)= Jim (2–x)=1
-	 r-.i+

and f(1)=2-1=1.

tim f(x)= urn f(x)=f(1), f 	 is continuous, at x=1.

Again, JimJim f(x)= tim (2–x)=0

Jim f(x) = Jim
• 2

and f(2)=2-2=0.

tim f(x) = Jim f(x)=f(2), f 	 is continuous at x=2.

Differentiability at x = 1 and at x = 2.

	

Lf'(I) = jim	 –1(1) = hm 	 x *I

	

i-I-	 x-1	 i-i- x–I

Rf'(I)= tim f(x)–f(I) = tim (2–-1

	

.-*i+	 x–I	 -.i.	 x-1

–(x--1)

	

= tim	 -=-1,	 •.• x*.1
5-41+ x–1

Lf'(l) * Rf'(J), f'(l) does not exist.

Again, Lf'(2) = tim f–f(2)
s-32-	 x-2

	

rum (2–x)–O	
:x=2*O

s-.2--	 x-2

Rf(2)= iimj_f(2)

	

s-.2+	 x-2

(x±x2)o
= tim

	

s-2+	 x-2

–x(x–)2

	

= tim	 —=-1,	 •. x-2.0s-.2* 2(x-2)

V L/'(2) = Rf'(2), f'(2) exists and f'(2) = –I.
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EL 3. (I) Show that the function

f(x)	
'()'

is both continuous and derivable at x = 0.
C. P 1987, '96, 2000)

(ii) Show that the function

f(x)xCos 
-XI

	

x )I
	 x*0

=0,	 x=0

is continuous at x = 0, but has no derivative there.
C. P. 1981, 93

Solution :	 (i) For continuity at x=0,

we arc to find a 5, depending upon E. such that

	

lf(x)-f(0)I < E	 for	 Ix-0I< 8.

or,	 < c	 for	 IxI <8.

Since. sin ' 1:5 1, the above telations will hold. if we take 
X2 <e

•forl xI <8, i.e. , &=,i.
So. f( . ) is continuous at x=0.
For derivability at x = 0,

x sin
We have, P(0) = lint 

f(x) - f(0) =	
(_)

	

=lim xsinI-)	 '.

	

-°	 kx)

= lint (x)x lim sin I -

	

__*o	 .-.o	 '

( x1

	

= 0,	 '. sin	 ^ 1, and urn x = 0.



DIFFERENTIATION	 231

Hence f'(0) exists and f'(0) = 0.

Thus f(x) is both continuous and derivable at x=0.

(ii) 	 1, by making, I x I < e,

We can make Cos(!)<E.

where E is any pre-assigned positive quantity, however small.

So, lim xo-i-)=o. Also, f(0)=ó by definition.

Thus, urn f(x)f(0)

Hence, f 	 is continuous at x = 0.

For derivability, at x =0. we have

f(0+h)—f(o)	 h
fj0)=lim	 =lim	 (1)

	

h	 h-,O	 h

=iirnco !"1. 	 h*O
k-.O

which does not exist.

I-knce, f'(0) does not exist.

So, f(x) is continuous at x = 0, but has no derivative there.

Ex. 4.Iff(x)21x1+Ix-21 find f'(l).	 [C.P.1992,2000, '02]

	

Solution: We have I x i	 for x >0

	

=0	 for	 x=0	 ...	 (1)

=—x for x<0

	

and Ix-21=x-2,	 when x>2

=0,	 when x=2	 . . . (2)

=2—x, when x<2.

To find f'(1), we are concerned with values of x in the
neighbourhood of x = I.
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From (]land (2), f(x)=2x+(2—x)

	

=x+2	 for O<x.z2

	

f(x)—f(1)	 (x+2)-3
	Now, f'(i) = urn	 = lint

	

-.i	 x—1	 i-I	 x-1
x-1

=hm—=1,	 . x—l*O
-i-" x-1

Ex. 5. Let f(x) = x2 , when x is rational

= 0 when x is irrational

show that f'(0)=O.	 [ ..P. 1996, 2001

Solution : P(0) = Jim 
f(0+h)—f(0)

I.o	 h

	

•	 h2-0

	

= tim	 (when h is rational)

	

h-.O	 h

=lim h=0

	Again, f'(0) =II'	
f(O+h)—f(0)

im

	

h-.O	 h

=	Jim	 (when h is irrational)
h-.O h

=0.
f'(0)rrO

Ex. 6. If f(x) be an even function and f'(0) exists, show that

f'(0)=O.	 IC. P. 19831

Solution	 •; f(s) is an even function, f(x) = f(—x).

or, f'(x)=—f'(—x)	 ..	 (I)

since f'(0) exists, putting x=O in (1)

f'(0)=—f'(0) i.e., f'(0)=O.

Ex. 7. Show that the derivative of a differentiable odd function is an
even function.

Solution	 Let f(x) be a differentiable odd fuction.

Then, f(x) = —f (—x)
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Since, f(x) is differentiable,

f'(x) = -{-f'(-x)} = f'(-x),

so that f'(x) is an even function.

EL 8. Find, from definition, the derivatives of

(i) sin(J), (x >0)

(ii) sin(logx), (x >0)	 (iii)	 x2 COS X.

Solution : Let f(x) = sin (v') (x > 0)

sinJ_sin'/
f'(x) = Jim

h

=Jim
!01	 h

Now, Jim sin
,,_.o

I C. P 1985 J

(1)

Jim
sin(y+k)-siny

= 
k

"	 k" . k
2coslY+-J.sin.

=lim
k

I	 \	 Sifl
•	 i

=hm COS iy+-ix Jim —2
!,.	 2)	 -.o k

2

= cos y x I = cos y = COS IFX

where	 = y + Ic

as h-+0, k-4()

4.	 (/T -	 +
	and Jim	 =Jim

	

h-.O	 h	 h-.O	 h(ii +

u
• 
rn	

x+h-x= 
h-.o h+J)° iT+J'	 . h^O

=.



234	 DIFFERENTIAL CALCULUS

Using these results in (1)
1	 1	 1

f (x)=cos,jxx	 =—cos.Jx
2 x 2J

(ii) Let 1(x) = sin(log4, (x>0)

From definition, P(x) = Lim 
f(x+h)-f(x)

h-.O	 h

lim
sin{Iog(x + h)} - sin{iog(x)}

=	 (1)
h-.O	 Ii

Let, logx=u

If the increment of u be k corresponding to an increment Ii of x,
u+k =log(x+h).

i.e., k=log(x+Ii)-u=log(x+h)-logx

Obviously, k -4 0, as h -, 0, and h -+0, when k -, 0.

From (1) we have

f
•(x)=hm sin(u+k)-sinu

h

lim sin(u + k) - sin u 
x HIM  

k
= -	 -

k-.O	 k	 h-.oh

2	
k

Co u+—,Sifl_

= lim	 2) 2og(x+h)- log xXlim
k-.o	 k	 h

k	 (x+ h)

\
sin

= urn cos('u+ 
k
— Jxhm —2-xlim	 X

k-0k-0 k 	 i-o	 h

2

1o4'l 
+cosuX(l)xlim	 X

h-.O h
—XX
x

	

1iog(1+:)	 hcosux - .log	 where -=1 and t-,0 as h-0x,_.o	 I

cos(logx)	 1
=	 xI=-.cos(logx)

x	 x
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(iii) Let, f(x) = cosx

From definition,

f'(x)=lim 
f(x+h)-f(X)

h

= urn 
(x+h)2C0S(X+h)X2CO5X

x 2 {cos(x+ h) - cosx}+2xhCOS(X+ h) +h 2 cos(x + h)
hm
h-.O	 h

X 22	 cos(x+Ii)—COS.X
=—

+2xXIim cos(x+h)-1-Iim (hcos(x+h))

2sin x	
( h'

=x2xIirn
h-,O	 h

•	 (h
sin! -

• • ( h\ • _____
=–r xhrnsinl x+ ixIrm—- +2xcosx

2) h-.O At

= –x2 sinxxi+2xCOSX 2xcosx — x2 sinx

EL 9. () If I	 +J	 =a(x–y), show that

FL2
B. P19911

(i1) If Ji' +.Ji' =a"(x" – y"). show that

dy - ()
dx	 y)	 V1_x2

Solution: (i) Let us assume, x =sin 0  and y =sin

dxdy
—=cosO, ---=cos+
dO	 d$

J+J=a(x-v)
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cos0+cosqi=a(sino_ sin )

or,

, cot ! (o—q)=a,	 .	 cos -!-(o+ct,)#o

or, 0—'2cota=constant

or,

	

	 or,	 i.e.,dO

Now, 
dx d4 dO dx cosO

(ii) Here, Ij - x2" +	 = a"(x" - v")	 (1)

Let us substitute f = sjn0 and y" = sinp

Then, fix 
dx	 dx cosO- cosO,	 i.e., 	 (2)dO	 (/0 nx"

,,	 y 
= C0s4 i.e.,dy	 cosand ny (/-	 , 	 - = -	 ... (3)

dod ny"

From (I),	 O+JISifl24,(.oi,)

or, cosO+cos=a"(sinO_sin)

or, 2 cos -(O+4)) Cos ± (O_)= 2-a"

or,

i.e., 0_0=2cot_1(a)=constant

d4	 d$
Of 1---O ,e

dO	 '' dO

dy fly 4 dO CO54)
Now,	 =	 ;;;;:i- 	XIX	 I From (2). (3) 1

I \'I	 I \I	 I	 2cos$	 I—y
cO L)	 1_y2
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2x
Ex. 10. -(1) If y = tan	 2 

prove that
I-i-15x

dy_ 5 - 3

dxl+25x 2 1+9x2

(ii) If the sum of first n terms of a OP. with common ratio r is S,,,

prove that

(r—
dr

1)- = (n— 1)S—nS,_1.

2x	 5x-3x
Solution(j) y=tan 	 tan

1+15x 2 	1+5x.3x

= taii'(5x)—tan_'(3X)

dy 	 5	 3•_	 5	 3

dx l+(5x)2 1+(3x) 2 - 1+25x2 I+9x2

(ii) Let the first term of the G. P. be a.

a(r _i)
Then S,, =

r-1

or, (r—l)S,, =a(r" —i)

Differentiating both the sides w. r 1. r,

(r —1) dS
	

= n  r"
dr

Now, the nth term of the G. P.=ar' = S. —S,,_1

(r-1)-+S,, =n(S—S_,)
dr

	

i.e., (r— I)	 = (n— 1)S —nS,,..1
dr

	

Ex. 11. (1) If	 to =, show that

dy cosx

dx 2v-I
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I	 2x	 4x3	 8x7	 I(ii) Show that —+----+----+---^...t=_

	

1+x l+x2 l+x4 I+x8
—
	l—x

(O<x<1)

(iii) If y = x +

x+
Ix+

X+ to

show thaL	 I
dx 2-

X+tOo

Solution (i) Here, y = isinx+.Isinx+Jsj-.-T.

= Ssin -X +  y

or. Y 2 = Sinx+y
Differentiating both the sides wr.:. x,

dy	 dy	 dy cosx
dx	 dx	 dx 2y_i

(ii) We have, (1--x)(1 +x)(l+x2)(j+x4)(1+8)...(1+x'.)

= ( —x)(1 +x2 )(I +x4 )(l +x8 )• .. (1 +x")

=(1—x4)(1+x4)(1+xS)...(I+x)

0<x<1, urn x2'=O
n-_

urn {(1—x)(1 +x)(1+x2)(1+x4)(I+x8)....(1+x)}

=Iirn(1—x2)1

log(l —x)+ Iog(I +x)+log(I+x.2 )+Iog(1 +x4 )+ log(1 +x8)

+10"=Iogl=O
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Differentiating both the sides w.,1. x, we get

-1	 1	 2x	 4x3
--+O.

1-x 1+x I+x2 l+x4

whence, I—+ 
2x 4x3	 1
--+••to—•

1+x j+x2
---+—

I+x4 	l-x

(iii) Here,

or, y2=xy+I
Differentiating both the sides w.1t. x,

dydy
= x+ v

dr dx

dy	 y - I -

dr 2y-x 2!

1 --
x +

x+..ioo

Ex. 12. (i) If f(a)=2, f'(a) = 1, j(a)=-I, g'(a) = 2, then find

the value of

lim

(ii) Show that the function 1(x) = x I x , is differentiable at x = 0.

Solution: (0 tim g(x)f(a)- g(à)f(.r)

x-a

=lim
f(a){g(x)- g(a)l - g(a){f (x) - f(a)}

x-a

= urn f(a).
{g(x)- g(a)}

- - tim 
g(a) {f(x) - f(a)}

	

(x-a)	 (x-a)

=f(a)g'(a)-g(a).f(a)

= 2x2-(-1)< 1 = 5.
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(ii) Here, - f(x)=x 1 ,	 x>O

	

=0.	 x=0

=_x 2 , x<0

4f'(0)= Jim j)-j(0) = tim
-.O-	 x-0	 -.o- x

Rf'(0)= urn f(x)-f(0)= urn —=0
-.fl+.	 x - 0	 -.o. x

Lf'(0) = Rf'(Q), f(x) is differentiable at x = 0, and f'(Q) = 0.

Ex. 13. (i) If g be the inverse of the function f and f'(x) =

then prove that g'(x) =I+ l gwl ' -

(ii) If f(x + y) = f(x) .f( y) for all real values of x, y, f(x) * 0
for any real value of x, and f'(0) is defined and f'(0) =2, prove
that for all values of x, f'(x)=2f(x). Hence find f(x).

Solution	 (i)	 . g is the inverse off,

g(x)=f'(x), i.e., f{g(x)}=x
Differentiating both the sides WI:!. x,

f'{g(x)}g'(x) = 1.

	

or, g'(x) 
=	 =	 1	

.•.	 =

	

f{g(x)}	 I	 l+x

i.e., g'(x) = 1 + {g(x)}.

(ii)	 f(x+y)=f(x).f(y)	 ( I)
for all real values of x and y, putting x = y = 0 in (1),

f(0) = PO) -PO)

	

i.e., f(0)=1,	 .• f(0)0

	

-	 f(x+h)- f(x)
Now, f (x) - u . rn

Ii

[from (1)1
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=f(x)xlim f(h)-f(0)
	 -f(0)=I

= f(x).f'(0)

= 21(x),	 f'(0) = 2, given.

f'(x) = 21(x), for all real values of x.

Again, f(x) -

On integration log{f(x)}=2x+logA, A being constant of
integration.

Putting x = 0, log{f(0)} = 0 + log A

or. log A= log l=O, ..A1

Hence, f(x) =

EXAMPLES-VU(C)

1. A point moves on the parabola 3y =x2 in such a way that when x= 3

the abscissa is increasing at the rate of 3cm per second. At what rate

is the ordinate increasing at that point?

2. A toy spherical ballon being inflated, the radius is increasing at the rate

of cm per second,, At what rate would the volume be increasing at

the instant when r = 7cm-?

3. A circular plate of metal expands by heat so that its radius increases at
the rate of 025 cm per second. Find the rate at which the surface-.area

is increasing when the radius is 7 cm.

4. The candle-power C of an incandescent lamp and its voltage V are

5V6
connected by the equation C =

Find the rate at which the candle-power increases with the voltage
when V=200.

5. If Q units be the heat required to raise the temperature of I grain of

water from 0' C to t C, then it is known that

Q=:+10 5.2f 2	.3:.

Find the specific heat at 50' C the specific heat being the rate of

16- increase of heat per unit degree rise of temperature.
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6. A man 15 m tall walks away from a lamp-post 45 m high at the rate
of 4 k per hour.

(i) How fast is the farther end of his shadow moving on the
pavement?

(ii) How fast is his shadow lengthening?

7. If a particle moves according to the law x: 2 ,where x is the distance
(measured from a fixed point) travelled in time I, show that the velocity
will be proportional to time and the rate of change of velocity will be
constant.

8. Water is poured into an inverted conical vessel of which the radius of
the base is 2 m and height 4 m, at the rate of 77 litre per minute. At what
rate is the water-level rising at the instant when the depth is 70 cm?

9. If the side of an equilateral triangle increases at the rate of cm per
second and its area at the rate of 12 cm 2 per second, find the side of the
triangle.

10. If in the rectilinear motion of a particle s = u  + - ft when u and f
are constants, prove that the velocity at time t is u + ft and the
acceleration is f.

11. A man is walking at the rate of 5 km per hour towards the foot of a
building 16 m high. At what rate is he approaching the top when he is
12 m from the foot of the build,ing?

12. A circular ink-blot grows at the rate of 2cm 2 per second. Find the rate

at which the radius is increasing after 2- second.

13. The volume of a right circular cone remains constant. If the radius of
the base is increasing at the rate of 3 cm per second, how fast is the
altitude changing when the altitude is 8 cm and radius 6 cm?

14. Sand is being poured on the ground and forms a pile which has always
the shape of a right circular cone Whose height is equal to the radius of
the base. If sand is falling at the rate of 154 m 3/s, how fast is the height
of the pile increasing when the height is 07 m?

15. The marginal cost of a commodity being the rate of change in the cost

for change in the output, if f(x)= 
ax. x-t-b

—+d (b > c)bethe total
x+c

cost of an output x, show that the marginal cost falls continuously as
the output increases.
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16. (1) An aeroplane is flying horizontally at a height of I km with a velocity
of 15 km an hour. Find the rate at which it is receding from a fixed
point on the ground which it passed over 2 minute ago.

(ii) A kite is 300 in high and there are 500 m of cord out. If the wind
moves the kite horizontally at the rate of 5 km per hour directly
away from the person who is flying 1, how fast is the cord being
paid?

17. If (x) = (x- 1)e + 1, show that •(x) is positive for all positive values

of X.

18. If 1(x) cos x + cos 2 x + x Mn x, show thatf(x)continually diminishes

as x increases from 0 to

19. Showthat,for 0<0<r

sin 
(i)	 0

	 diminishes as 0 continually increases.

4sin 0
2+cos	 increases with 0

20. (i) Prove that. If 0< x <

1	 2	 •1	 2	 1
(a) I--x <cos x<1--x +—x

2!	 2!	 4!
1 3	.	 131	 S(b) 1--x <sin x .<x--x +—x

3!	 3!	 5!

(ii) Show that, if x >0,

(a)x> log (1+x)>x-.x2	 (b) --x 2 +2x+3> (3-x)e

a sin x+ b cos x
21. Given y =

	

	 ,prove that
csin x+ d COS x

(i) If a=1, b=2, c=3. d=4, then y decreases for all values of x

(ii) If a=2, b=1, c=3, d=4, then  increases for all values of x.

22. Find the range of values of x for which each Of the following functions:
(i) x3-3x2-'24x+30	 (ii) x 3 -9x 2 +24x-16

(iii) 2x 3 -9x 2 +I2x-3	 (iv) x 4 -4x 3 +4x 2 +40
decreases as x increases.

23. Show that the function x 3 - 3x 2 + bx -8 increases with x.
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24. Find the approximate values of the following by the method of
differentials

(i) log10 . 1, given log10=2.303

(n)log 10 101. given log10e=04343

(iii) given J22.5

(iv) sec 2 46°, given I0=00175radian

(v) sin 620, given sin	 0_0803

25. What is the approximate change in sin  per minute change in 0 when
8 =6ff?(given 1'=0•00029radian).

26. Find the approximately the values of:

(i) x 3 +4x 2 +2x+2 when x=2.000l2

(ii)x 4 +4x 2 +1 when x=l-997

27. Find approximately the difference in areas of two ciivles of radii 7 c

and 7Olcm.

28. What error in the common logarithm of a number will be produced by
an error & 1% in the number ? [log 10 e = 04343]

29. Find the relative error (i.e., error per unit area) in calculating the area of
a triangle two of whose sides are 5 c and 6cm, when the included

angle is taken as 45° instead of 4502g.

30. Show that the relative error in computing the volume of aphere, due to
an error in measuring the radius, is aproximately equal to three times
the relative error in the radius.

31. The angle of efevation of the top of a tower as observed from a distance
of 43 m from the foot of the tower is found to be6O°; if the angle of
elevation was really 600l ,obtain approximately the error in the

calculated height. [1' = 0 . 00029 radian

32. The pressure p and the volume v of a gas are connected by the relation
pv L4 =k.where k is constant. tf there bean increase of 07%inthe

pressure, show that there is a decrease of 05 per cent in the volume.

33. An electric current C as measured by a galvanometer is given by the
relation C .tan0 . Find the percentage error in the current
corresponding to an error 07 per cent in the measurement of 0, when
0 = 45°.
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34. The time T of a complete oscillation of a simple pendulum of length I

is given by the relation T 2itwhere g is a constant. Find
yg

approximately the percentage error in the calculated value of T
correspoinding to an error of 1 per cent in the value of I.

35. (i) In a triangle if the sides and angles receive small variations, but a
and B are constants, show that

tan Adb=bdC.

(ii) In a triangle if the sides a, b be constants and the base angles A

and B vary, show that

dA	 =	 dB

a2 -b 2 sin 2A 
4b  -a2 

Sin 2B

36. If a triangle ABC inscribed in a fixed circle be slightly varied in such a

way as to have its vertices always on the circle, show that

da	 db	 de

cosA cosil cqsC

ANSWERS

1. 6 cm per second.	 2. 56cm 3 1s.	 3. llcmpersecond.

4. 96.	 5. 1.00425.

6. (I) 6 k per hour.	 (ii) 2 km per hour.

8. 20cm per second. 	 9. 8cm.

11.3km per hour.	 12. 0•25cm per second.

13. Decreasing 8 c per second.	 14. 1 m per second.

16(i) 9 km per hour.	 (ii) 4km per hour.

22.(i) x>'4 or <-2.	 (H) x>4 or <2.

(iii) 1 .<x<2.	 ('iv) x .<0 and 1<x<2.

24.(i) 2.313.	 (ii) 10043. (iii)2•516. (iv) 297. (v) 08835.

25.01)0015.	 26. (i) 30.0036.	 (ii) 32.856.

27.044cm 2.	 28. 00043.

29.000058.	 31. 0'05rn i.e.. 5cm.

33.11.	 .	 34.05.


