8 - Successive DIFFERENTIATION

8.1. Definitions and Notations.

We have seen that the derivative of a function of x, say f (x), is in
general a function of x. This new function (i.e., the derivative) may have a
derivative, which is called the second derivative (or second differential

, coefficient) of S (x), the original derivative being called the first derivative
© (or first differential coefficient). Similarly, the derivative of the second
derivative is called the third derivative; and so on for the n-th derivative.

: dy 2
Thus, if y=x', 2ZL=3x
il e

Again, %[Zx—y)=%(3xz)=ﬁx

_d(dy). d’y d’y
Since ’d—x(g;) is denoted by -d—x; . Therefore, F (i.e., the second
derivative of y with respect to x ) in this case is 6x.

2
Again,'i | 5; (6x)=06

dx | dx?
_d (d%y). dy
Since e ;x—z— is denoted by E ‘
d’ N

;iy— (ie., the lhird.dcrivalive of y with respect to x) is 6here.

Similarly, the n-th derivative of y with respect to x is generally

denoted by 4 :’ 3
If  y=f(x), the successive derivatives are also denoted by
Yis Ya» - Pgiwreis sess e Vn
or, y, ¥ Y e, y™
o, y, - f——
o, if (=), 7, FUaYassnns F9%5)

o, Df(x) D*f(x), D*f(x)......D"f(x)

. : d
D standing for the symbol o
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8.2. The n-th derivatives* of some special functions.
@i y =xv, where n isa positive integer.

y, =mx"

y, =n(n-1)x""%;

y, =n(n=1)(n-2)x"* and proceeding in a similar manner,
y, =n(n-1)(n=2)....(n-(r=1)}x"" (r<n)

y, =n(n-1)(n-2)....32.1=n!,
ie, D"(x") = n! '

Cor. Since y =n !, which is aconstant,’ Yoerr Yusar:o- etc. all zeroes
in this case.

(i) .y =(ax+b)™, where m isany number.
y, =ma(ax+b)"";
y, =m(m-1)a* (ax+b)"?%
y, =m(m-1)(m-2)a’(ax+b)"?; and proceeding similarly,
y, =m(m-1)(m=2)........ (m-n+1)a"(ax+b)"-",
D"(ax+b)"=m(m-1)(m-2)(m-n+1)a°(ax +b)™"

If m be a positive integer greater than n,

Ly
Sincem(m-1)Y(m=2)...... (m—n+l)='_(mm_n)!
m! ’
- D"(ax+b)® =———— a"(ax+b)" ™",
(m-m) ! )

m being a positi\.rc integer greater than n.
Note. If m be a positive integer less thann, D" (ax+b)™ = 0
When m=n, D'(ax+b)"=a".n!.

) y=e=
Ly =ae™; y,=d’e™;: y,=a’e®;...y, =a"e",
o pr(e)=aren.

Cor.(i)D"(e*)=e”*

Cor.(ii) y=a*=¢"%", .. D"(a")=(log a)"a".

* Strictly speaking, in these cases, the n-th derivatives are to be established
generally by the method of Induction.
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(iV) y= X+a
N =-l.(x+a)2
V2= (D) x+a)> =(-D2. 2L (x+a)

Similarly, y; =(~1)*.3!.(x+a)™ etc.
_ n
pof A Y. 10"
x+a (x +a)™!

1 - (-1)"a"(m+n-1)!
(ax+b)"| (m-=1)! (ax+b)"™""

Cor. Proceeding as above, D“{

(v) y=tlog(x+a)
1

¥ = Hence, as in (iv) above

D"l -1n!
(x + a) n '

)" @m-1)'a"

- (ax+b)"

X+ a

D" {log(x +a)}=

Cor. D"{log(ax+b))=

(vi) y=sin(ax+b)

¥, =acos(ax+b) =asin (l2n+ax+b)

y2 =a®cos(Ln+ax+b)=a’ sin (2.im+ax+b)

¥y =a’cos 2. L n+ax+d)=a’ sin(3.Ln+ax+b) etc
D "{sin (ax+b)} =a"sin[g—n+ax+b)
Similarly, D "{cos (ax + b)}=a°cos(-'2iu+ ax + b]
As particular cases when b=0,

D"{sin ax }= a" sin(—gn * ax);

D "{cos ax }=a" cqs(gu+ ax].
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8.3. The n-th derivatives of rational algebraic functions.

The nth derivative of a fraction whose numerator and denominator
are both rational integral algebraic functions may be conveniently
obtained by resolving the fraction into partial fractions. This is shown
in Ex. 4, Art. 8.4. The rules for decomposing a fraction into partial
fractions are given in the Appendix. \

Even when the denominator of a given algebraic fraction cannot be
broken up into real linear factors, the above method of decomposition
can be used by resolving the denominator into imaginary linear factors.
In this case, DeMoivre s theorem is conveniently applied to put the final
result in the real form. This is illustrated in Ex. 5, Art. 8.4,

8.4. INustrative Examples.
Ex. 1. If y=sin’x, find y,.

sin 3x=3sinx—4sin’x .

& ¥ =Sin3x=% (3 sin x - sin 3x)

y,,=l 3 sin lmwx -3"sin. ln1|:+3x
4 2 2
- Ex.2.If y=sin3x.cos2x, find ¥, .

v =

£
* 2

1 a . [ 1 . (1 :
V== 45" sin| —m+Sx |+sin|—nm+x |-
reeg (5 (g e Jom(mes))

Ex.3. If y=e®sinbx,find y,.

yi=e“.asinbx +e“ . coshx . b

.2 sin3x cos2x =% ( sinSx + sinx)

=e® (a sinbx + b cos bx) -
Let a =rcos ¢, b=rsind, so that
1
r =(az+b2)3,¢=tan"£
a

y, = re™ sin (bx +I¢).
Similarly, y,= re” {asin(bx+¢)+bcos{bx+9))
=r?e*sin( bx + 2¢ ), as before.
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In a similar way y,=r%e®sin(bx + 3 ¢), etc. and generally
y,=rt"e”sin(bx + n$ ),
1
i.e., D" (e™sinbx) = (a2 +b? )2ne“sin (bx+ n tan™' E} ,
‘ a
Note.  Similarly,
L ‘
D" (e™ cos bx) =(z::2+b’)2,‘vz"“’cos(bxﬂnan”l ),
Again, if y =e*sin(bx + ¢),
: a’
Fn =(¢z2 +b2)2 ™ sin [bx +c+ntan”! EJ
‘ a
if y =e~cos(bx+c),

and
Vi = Glz"'bz.); e™ cos [bx+c+ntan'l é—)
a

; 2 -
Ex. 4. lfy=--u-x——-]6—-,ﬁnd Yo
x

3 rx?-
P 4x?—bx=x(x?+x-6)=x(x+3)(x-2)
xt+x-1 A 3 c
s act el vy :
x  +x°“-6x X x+3 x—-2

Multiplying both sides by x(x+3)(x— 2), we get
x4+ x—-1=A(x+3)(x—2)+ Bx (x-2)+Cx (x + 3).

Putting x=0, -3, 2 successively on both sides, we get

el Ead .@=l.
.6 3 2
1 1.1 1 1 1
y:—-_.-+—._——-+—. .
6 x 3 +3 2 x-2

x
' 1 1 1 1 1 1
sy =(=1)"atd=. L L. :
Y= (=D"n {6 o S PPETIL s (x—2)"“}

Ex5. I y = — findy,.

x‘+a
v o W%, ME B )
& (x+ia)(x‘—':§'i.rh) " 2ia\x-ia x+ia
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_Entar g
Y 2ia  |(x-ia)"" (x+ia)"*!

- (—l)nn! 3 —(n+l) . =(n+l)
= (@)~ (2 4ia) o0 )
Put x=rcos9, a=rsin@
1
So that r=(x2+a2)5, O=tan'a/x

Now,  (x=ia)™*" = Y (cos0-sin@)"*"

= r"V{os (n+1)0+isin(n+1)0}

(x+ia)™™*" = 7O (cos0+ising) "D

=r " feos (n+1)8-isin(n+10 }

—N*n
o D) 20 sin(n41)0 .
2ia ;
Since r=-2_, 0 _ a ™ _sin"'@
sin®’ © sinTlthg g
O TR T I '
~D [m)-—-ﬁ—mn 0 sin(n+1)0,
where 6= tan? L =co X
x a
1) pt
Note. If y:—]— =msin"“esin(n+l)6.

+ ¥n
(x+b)? +a? a™?

where @ = tan™ {a /(b + x)}= cot " {(b+ x)/ a}.

Cor.If y=tan~'x, y, = hence

+x2- 7
D* (tan"'x)= (-1)""! (n—1)!sin"0 sinnd,

- where O=tan' ~ = cot "' x.

|-
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EXAMPLES - VIII (A)

1. Find y, in the following cases :
@ y=(a=bx)™ (i) y=1/(ax+b)".
(i) y=1/(a—x). (iv) y=log (ax+b)”.
(v) y=log{(a-x)/(a+x)}). )  y=vix.
(vii) y=1/x. (viili)  y=(2-3x)".
x) y=log(ax+x?) . X y=10°%-2.
() y=x/(a+bx). i) y=(a-x)/(a+x).
(xiii) y=x"/(x-1). (xiv) y =sin2x .
(xv) y=cos2xcos x . (xvi) y=cos’x .
(xvii) y = sin?x cos ’x. (xviii) y=sinx sin2x sin3x .
(xx) y=e~*cosx. (xx) y=e"sinxsin2x .
(od) y=e¥sindx. (xxii)y = e *sin 2.x .

2. Find y,, if
@ y=x’logx. C(i) y=e®s,
(i) y=e'. (iv) y=sin'x.

3. Find the n-th derivatives of the following functions :

1 1 : :
* R -[C.P1993] (i) tan™ =
O “3_ | (i) 2416 | ] (i) tan”t =

X" —a
. 1 .
(IV) X2+ﬂz E (V) 14 —114 s . (V") x2+x+]
1
vid 77 Y2 757)’ e ek
R 0 il cp 9z
W Go)x-2) " e e e
Xz xz

0d) (x+1)* (x+2) ’ st} (x-a)(x-b)
(xiii) tan™* ——llti : (xiv) sin” -

1 —
xv) tan™ L . (xvi) cot™" ol

x . a
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4

5..

6.

7.

If y =x2? where nis apositive integer, show that

y,=2"{1.3.5...(2n-1) } x".
If u =sin ax+cos ax, show that

u=a"{1+(-1)"sin 2ax )", [B.P. 1993]
I ax?+ 2hxy + by*=1. show that

Cd’y _ h’-ab
dx?  (hetby)®

Find y, if
() sinx+cosy=1.

@) y=tan(x+y). -

(i) X+ = 3axy =0.

10.

il.

5 dzy g Ty

(a) Find —= in the following cases :
o e

@ If x=acos0, y=bsin6.
@) If x=a(B+sin8), y=a(l-cos0). [C.P 1988}
(M) If X=Cos! and y =logt, then prove that at .r=12t-

dy (dyY ~

-d—x,!-*{i) =0. [J.E.E. 1985

If x=ftr), y=0(r), then

d’y =5y~ NX
% dx'z x[} 5
where suffixes denote differentiations with respect to 1.

[V.P.1998]

If xsin® +ycos® =a’and xcos® —ysin@ = b then prove that

is a constant.

dof 407 do? d40°

n =D)"n!
Show that 2 [ ! )— =1

dc" k2 +1) 2+

{(n+l)x"-[{l+l]x"hz+[n+l}x"4— ]
‘ i : 5 _—
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12. If y=sin mx,show that

where suffixs of y denote the order of differentiations of y with respect

Yy N N
s Ya ¥s|=0,
Yo Y1 Y8
to x.
ANSWERS

1. @) ~1)"m(m-1)(m-
(“) ( l) m(m—l)(m—Z)

. (m-n+1)b"(a-bx)""

m-n+bha”

(a + bx)

n!
(lll) W

(v) (n- l)!{

135..2n-1)

o1
#5

(vi)) (=1)" -

"%
x) (- 1)"'"~1){

=n"'ab"" _at
(a+ b.r)""

(xi)

=T at 1) al
(xiii) - anl £

i S )
(a-x)" (a+x)"

LI
x" (a+ x’

)" pa(n =1

@) (ax + b)"
. no1 1.35.2n-3)
(vi) "' e
Py

(viii) (~1)"3"n!

(x) 10%-2~(-2)".(log, 10)"

2a(-)'n!
( +X)”“

(xii)

(xiv) —2"" cos[% nrw + 2x} .

] (xv) 12*{3" cos[-;— N+ 3x] +cos(% nm+ x]]
(xvi) i { 3eos(l nw+ x)+ 3" cos(lmr B 3x)}.
4 2 2

'(xvii) ~ 2272 cos (% nm + 4x}

(xviii) L {4" sin[-l— R7 + 4x |+ 2" sin L nm+ 2x |- 6".sin —nn + ﬁx“
/ 4 \2 2 I
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. .
—n
(xix) 22 ¢ cos [x + %urz}

I 1
4o 1
(xx) —;—e“zz cos (x + % mr] -102" cos (3x +ntan”! 3}],
2 (xxi) 5"¢** sin (4x+ ntan”! %)

t
(xxii) %e"[] - 52" cos (2x + ntan' 2 )]

(1) 2/x (i) —e*"* cos x.sin x.(sin x + 3)

1 2
!I+6x+6x1!e; 2 1+2x°)
(m) 5 = (iv) (] I E

@ (—-l)'n!{ 1 }

2a |(x-a)"" (x+a) "_'

(— 1)’n'sm"" 8 sin(n + 1)9

where 0 = tan”

. (ii)

4
4n+ x
voe (=1 =121 " 1
(ii) ( l)’ (n - D! sin esmne‘ where 6 = tan™' 2.
a" X
(1v) sm"”e cos(n+1)0, where @ =tan' 2.
x
. (-l)"n! 1 1 2 b
) e {(x—a)‘”' - Gra T sin "0 sin (n+ 1)8}

where x =acot@ -

(Vl) ( l)n Zu'l

5.
-n"nt {sin " g sin(n+1)0 _ sin n"' o sin (n+1) ¢]

L a? -b? p™? a?

(viii)(—I)"n!-%sin"“B sin(n+ 10, where cot = x+ L
’ 2

" 16 1 .
(ix) (—l)’."!((x—Z)"*' _(x—l)"” , whenn > 2.

in"*' @ sin(n+1)8 > whereg = tan"{\ﬁl(Z.\'H)}-
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® (—lru!i fo > 3 ]

l)“l (x- z)u-l (1_3)n+l

) (_lru!1 axl .. 3 + 4 ]

x +-“n+2 (x+ l) a+l (x+ 2)u+l

(xii) (—‘I)"n!i a® o b L
@-b) |( n+l n+l

x —a) (x + a)

(xiii) (=1)""'(n — 1)!sin" @ sinn@, where cot@ = x.
(xiv) 2(=1)""(n - 1)!sin" @ sin n@, where cotf = x.

(xv) %(—-l)"'(u —1)!sin*@ sinn@, where cot0 = x.

) (- D! sin 6 sinn® where @ = ot X

(xvi
aﬂ
" sin? : 2 ; ]
. @ - ) —31'-2‘%). Gi) - f‘“" -
sin” y y _‘u)
. b 3 - b .0
8 (@ -a—zcosec e (i) 4asec =
‘)alaeibnilz’s Theorem®*. (n-th derivative of the product of twe

functions)
If uand v are iwo functions of x, each possessing derivatives upto

nth order, then the nth derivative of their product, i.e.,

(uv) =uyv+"cu, v +u, ,V,+..& "en, VAU,
where the suffixes o « and v denote the order of differentiations of u
and v with respect 10 X .,

Lety=uv.

By actual differentiation, we have

Yy =y + uvy,

= - 2
Y2 =UpV + 20V + uvy = gy + Sy + 1y,
y3 =uzv + Jupv +3u,vy tuvs,

=uyv + ey + 3euyvy +uvy,
The theorem is thus seen to be true when n=2 and 3.

* Leibnitz (1646-1716) was a German mathematician, who invented Calculus
_ in Germany, as Newton did in England.
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Let us assume, therefore, that
Vo =UNVH CUe vy +" Cltpzva ¥ e i, v, +o Uy,
where n has any particular value '
.. differentiating,
- )’n+1-“n+|"+( C|+l)“n"1+( € % Cl) n-1V2 .o
+( ¢t Cr—l) Up_pp1 VitttV
n+l

. n n = n _n+l
Since "¢, +" ¢, =" c,and "¢ +1=""" ¢

o - n+l n+l
o y,,+l—u"+lv+ Cl ﬂ"Vl"‘ C2 Uy Vo +
n+l
+ UV e UV, -

Thus, if the theorem holds for n differentiations, it also holds for n+1.
But it is proved to hold for 2 and 3 differentiations; hence it holds for four,
and so on, and thus the therem is true for every positive integral value of n.

8.6. Important results of symbolic operation.
If F(D) be any rational integral aléebraic function of D or ;; (the
symbolic opc;ator), i.e., if
F(D) =AD" + A, D" + .. + AD + A
=Y A, D", where A, isindependentof D, then
@ F(D)e™ = F(a)e™.
(i) F(D)e™V = e™F(D + a) V Vbemg a function of x.

sin (ax+b) _ § (—az) {sm (ax+b)
cos (ax+b) cos (ax+b)

(i) F(D?) {
Proof : .
@) Since D’ e =a'e™,
s F(D)e™V =Y A D" ™
= 2 A a"e™
=X, D" Jees

= F(a)e™
17-
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(i) Let y=¢™V. Since D"e™ =a'e™,
.*. by Leibnitz's Theorem, we have
vy, =e™ (a"V + "c,a" DV +"c,a" DV +...+D"V)
which by analogy with the Binomial theorem may be written as
D" (e“v)=e“‘(z)+a)"v, ‘
FD)e™v=(Y a0 )erv
=2 AD e™V
=e"'zAr(D+a Yv
=e“F(D+a)V. .
(iii) We have Dsin (ax +b) = acos(a.x+b).;angsoon
D*sin(ax+b) =(-a? )sin(ax+b);
D¥ sin(ax+b) = (-a ’)sin(anb).
Hence, as in (i) and (ii), it follows that
F(D?)sinax+b) =F(-a?)sin(ax+b)
similarly, £ (D ? Jcos (ax+) = F (-a” Jeos (ax+5)

8.7 Illustrative Examples:

Ex.1. If y=e*x’, find y,.
s Let wu=e*, v=x° Now, u_=a"e"".
.. by Leibnitz’s Theorem,

n _ax 3

. ‘n(n-1
Yo =a"e® x> +na""'e” 3x? +fﬂ——)‘-

: 2
L= D0=2) ng e g
3
= e”a"3{ax* + 3na’x? + In(n - Dax + n(n-1)(n-2)}
Ex. 2. If y=acos(log x)+bsin(logx) , show that x’y, + xy,+y =0.
Differentiating,

arr—leu.v 6x

¥, =-asin (log x).-lr + b cos (log ,\:).l :
X %
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.

. xy, = —asin (log x) + bcos(log x).
Differentiating again,

xy, + y, = —acos(log x).i—bsin(log x).i- ,
& x*y, +xy, =-(acos log x +bsinlog x) = -y,
xz)’z +xy, +v=0.

Note. This is called the differential equation formed from the above
equation.

Ex. 3. Differentiate n times the equation
(1+x3) y, +(2x--Dy, =0.
By Leibnitz’s Theorem,

(y, (14 xD)) =y (14 x2) 40y, 25+

u(n—l)y 9

dx" .
d’n
dx"
adding,

(9,2x=D) =y 2x-D+n.y, .2

U+ x2)y,02 #1200+ Dx~1}y,, +n(n+) y, =0.

Ex. 4. Find the value of y, forx=0, when y=¢"'*, [C. P.2004]"
" From the value of y, whenx =0, y=1 3 ;

asin™! x 1

v Here y, =¢ a—= e (D

1

1-x?

ylz(l—x2)=azy2‘
Differentiating, 2y1y2(l = 12)4- n2( 2x) = 2a%yy,.

or, (l—xz)yz—xy]—azy;-o. . @
Differentiating this n times by Leibnitz’s Theorem as in Ex. 3, we
easily get (l —xz)y,,+2 —‘(Zn + 1).}(),",”'l —(n2 +a2)_v,, =0.

Puttingx»: 0, (yn+2 )ﬂ= (r‘Z + a2 )(yn)ﬂ' B e (3)

"
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Replacing n by n— 2, we get, similarly
Gn)o= {("'2)2 +a’ }()'n—! )o
= {(11—2)2 +a2}kn—4)2 +a? }(yn_., )0

Alsofrom ()and 2), (y)o =a,  (v;), =a’.
Thus (y, )o ={(n—2)2 +a_2}kn—4)2 +az} s
(4240224 02)a? ,ifniseven
and ={(n-2)? +a? -4 +a?}. ...
(2 +a2 )12 + a?)a?, if nis oda.
Note. The value of y‘n forx=0 is shortly denoted by (y,),

8.12 Miscellaneous Worked Out Examples

Ex. 1. () If F(x)=f(x)¢(x) and f'(x)¢’(x)=k, (k is a constant),
then show that '

! il ” 2k

——=-f}—-+%;—l+ ' (F(x)#0)

F
(i) If x=sint, y=sinkt where & is a constant, show that

(l—xz)z—iixz—;—x%+kzy=0.

Solution : () v F(x)=f(x) ¢(x),
F'(x) = f(x) §(x)+ £ (x) §'(x) ss: @
Differentiating (1) w.rt. x,
F7(x) = f(x) 0(x)+ f(x) ¢’ (x)+ f7(x) &"(x) + f (%) ¢”"(x)
=f ”(I)_¢(I) +£(x) ¢"(x) +2k
w F(x)= f(x) ¢(x) #0, dividing the left-hand ‘side by
F (x) and the right-hand side by fix) &(x), we get
Fr) _f"x) 0", 2k -
F(x)  Fx)  6x) () 6x)
Fr_ 17 ¥, 2k

Le, —="—+

F(x
: —f y
F F % v,
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i) - x=sint -dl—cost
) (!i).' = » di
‘ &
=sinkt, — = kcoskt
a"'.j = dt

dx dt dt cost

;d d?y d(dy) d(kcoskr) dt
n — T — | — = | —— |+—

dx?  dxldx) dr\ cost ) dx
cost(—kzsinkr)—kcoskt(—sim) 1
- ' cos?t ;o-s_l_

{—k’ cos!sinkt + k sin? -coskr}

(l—sin2 r)cosr ‘

} —k? sinkt+sint(kcos"d)}
¢

x? { ost
1
]

V l dy
_k2 + | —
y+x }

(l x)%—xz kly=0

1

I B -
Ex. 2. If ym+y m =2x, prove that ,(xz ',l).Vz+x.)'1-m2y=0.

dy d’y
where,
vl dl’ Y= dlz
LI § . ..
Solution: -+ y"+y ™ =2x, g’-2ax+1=0, where a=y"
2—
a=2x—t—;i—.—4r=xt_ x-1

1
o, y"=x1 x-1
Taking logarithm of both the sides,

l-Iogy = log(xi x? -l)
m
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Differentiaing both the sides w. r. 1. x,

d
b N T } where y.=zy
m .y (x:t xz—lJ xt-1

or, ;yl_zj: 1

my Vil -1

or, (xZ - l-)yiz = mzy2
Differentiating agein w.r.t. x,
d?
(12 —l)2y,y2 +2x-y,2 =m’ -2y-y,, where y, :Zzy_

or, (xz-l))"z +xy, —m?y=0, 2y, #0.

Ex. 3. () If x=a(B+sin@), y=a(l-cosB) verify that

" .
‘;;V=4l-sec‘g. [C. P 19881
® da
d’y * =n
(i) If x=2cosB-c0s26, y=2sinB+sin20 find g at 0‘—*5.
[C P 1990]

- Solution : (i) - x=a(8+sin6), %:a(lﬂ.‘osﬂ)

asin®
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G - x=2cos0-cos20, =2sin20-2sin0

5%

*  and v y=2sin0+sin20, %;2cosﬁ+2cos2_9

20520
2(cos20+cosB) _ “€035 %5

2sin28-5in8) 50630 .in?
' 22

or,

—coseczg
= 2
2-2(sin20 - sin6)

2
n Zy —Ccosec Z
at e:E' ——-2—.: =

dx 4(sin1t—sin3£)
; : 2

S
[SAE

e 2 -1 d’x
Ex. 4. (i) If sinx=——, coty=——, find the value of —.
1+1 B 2

{C P 1987]

(i) If y=—"—, show that y,(0)=$! [ C. P 1991, 2003 |
X 7

(iii) If y=2cosx (sinx=cosx) pshow that (y,o)o =210,

[ C. P21992, 2000, 2002, 2005, 2007 ]

" Solution : (i) "~ sinx= 2’2 .
: 141
=l 2t l
x=sino7 =2tan" (1)
1-¢2 2t
= — t =
= o I

or, y= tan~" I—f% =2tan"'(r)

M

@
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From (I)and (2) x=y

X x+1-1 -1
s =_=.—_=l_ +l
i x+1 x+1 e+l

=D x4
Y2 = (=D-D)(-2)(x + 1) = -1’2(x+1)73

y3=(-D*3x+n™*
Proceeding in this way, we have -

Y= DS+
(y5)o = (-1)° 511 =51
(ifi)  y=2cosx(sinx~ cosx)

=2sinxcosx—2cos’ x
=sin2x - (1+cos2x) .

=sin2x —cost—.l
Piog=2" sin{lO- g + Zx} -210 cos{lo-zzt- + Zx}
' [ vide art. 52 (vi) |

ol '
If y=sinax, y, =a"-sm(n5+x),and

if y=cosax, y, =a"-cos(n§“+x)
»

- (¥10)g =2'°-sin5n 2" cossn = 219.0-20 x(-1)= 2",

e | . :
Ex. 5. If y=-2 ': . | x|<1, show that
I-x

@ (l—xz)yz -3xy,-y=0

D) (1=5ypey = (20 43y, ~(n+ )2y, =0 [ C. P 1993 ]
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Solution : - y=

‘ (l—Ja:z)y2 =(sin'I x)z
Differentiating w.r.t. x.

2sin”! x

(!_32)2)’)71 "2'.‘)’2 = m‘ =2y
or, (l--xz)y,—xy=l » (- 2y#0)

Differentiating again w. r. t. x,,
(l—xz)y;-Zx,yI -y-xy, =0
o, (1-x*)y, -3xy,-y=0 REN))

Differentiating (1) n times by Leibnitz's theorem,

D
Swa(1=2) 41320+ KD ()

,"3 {."m»l x+n-y, 'l}_ Yn = 0
of, (1-2%)ypez = 20+ 3y, = (n+1)’ y, = 0.

) Ex.'6. If y 5WS(10WS“I x), show that (l—xz)yu =2lxy,,

[C P 1983 )
Solution : y = cos(10cos™ %) ‘ : S
; -1
» =‘—sin(10cosr" ,x\(:z): B l()snr:](llﬂc:: x)
(l x )y, —lOOsmz(IOc.os x)
_100{1 cos? (lOoos =)}
=100(1-y%) . [ from (1.]

Differentiating again w.r.t. x
(1‘12)2Y|Y2 - 2x- le =-2-100y-y,

or, (l-xz)y2=xy|—100_v (- 2y, 20) R ¥4
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Differentiating (2) 10 times with the help of Leibnitz's theorem,
(1‘ J‘2) Yiz t 10-y“(—2x)+l—lq_—'22-yw(—2)
= xy;; +10- yo+(1) = 100y10
or, (l-—xz)yu'—*?!l-xvy“. .
Ex. 7. () If f(x)=x". prove that

FOL LW L0, D g

fih 1! 2! 3! n!

(i) If f(x)=tanx and .n is a positive integer, prove with the
help of Leibnitz's theorem that

LM O)="cy f "2 (0)+"cy (0 -+ = sin(n--z’f] [C P 1992]
Solution : (i) ~+ f(x)=x" '
Fra=nx"" f0x)=n(n-Dx"?
) =atn=)(n=2)--r+hx"", -, fM(x)=n!

FACCN AV ) BT (¢

It 2! 3 “n!
_l+_n_+n(n-l)+n(n—l)(n—2)+__‘+_l_1_!
TN 3! n!

= 4"C+"C,+"Cy - 4"C, = (141) = 2"

L DA+

- = tan’y o SNX
@y - f(x)=tanx o
f(x)-cosx =sinx PR ()]

Applying Leibnitz's theorem to differentiate both the sides n times
wit. x, we get

f" (x)cosx+"C1f""(x)(-‘n X)+"C,f " (x)(~cos x) )
+" C;j"'_}(,rc)(s'in.:c)+"C‘,,f"'4 (x)(cosx) +:-= sin(n% + x)
Putting x=0 on both the sides,

FO-"Cof HO"Cy " (O) 4 = sm[%)
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Ex. 8. If y=cos(msin™' x), show that
@ (1-2)y, -2 +mPy=0
(i) (l—xz)y,,+1 —(2n+ Dxy,y, -!—(m2 -n? )y= 0
Also, find the value of y, when x=0. [B. P 1999 ]

Solution : Given, y=cos(msin_|;() N ()]
Differentiating wrt. x,
o 1

dy =y = —msin(msin'I x)—'—-—

e i L
or, (l—x.z)y,2 =m’ sinz(msin'l x) = mz{l ~cosz(msin_l \)}
or, (1-2*)yf =m’(1-y*)  [fom D] )
Differentiating again w.r.t. x
(1= 25132 + ¥ (-20) = =m? -2,
or,vi(l—xz)yz-—xy,+m2y=0, (-2y:#0) - &)
Differentiating (3) n times by Leibnitz's theorem, we get
(1-x2);-,,+,+"c. Yne1 (=2X)+"C1y,(=2) = Yy, x ="Ciy,()+m’y, =0
or, (I—xz)y,,+2 =21 XYy == 1)y, = XYy = 1Y, + 17y, =0
or, (l—xz)y“z -(2n+1)xy,,, +(mz -n? )y,, =0 ves )
Last pért : From (1), (2), (3), we have y=1, y, =0, y, =—-m’, when

x=0. )
putting n = 1, 2, 3 successively in (4), we get

3 =—m1y1 =-m’*x0=0

o= i =2 -

ys = (3 -m)y, =0 4

Y (42-m?)y, y —m?(2? - m? )42 _mz)
Thus, y, =0, when n is odd and, )
Y =—m2(22 —m2X42 —mz)----{(n-z)z.-mz}, when 7 is even.
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Ex. 9. If y= £ ' %, show that an equation connecting y,, Yn,; and _
Yns+2 IS given by (l-xz)y,ﬁ,g - (2n+)xy,, —(n2 + l)y,, =0
' [ C. P. 1980, B. P. 1996 ]

Solution : y= £ XL . oo (D
- =j = y P :
n oy =™ A K = , using (1)
) Vi-x? V1-x?
or, (l—-.xz)ylz—y2=0 ) cvw - 1@

Differentiating (2) again w.rit. x,
(l-x?)Zy.yz +yi(-2x)-2y-y5 =0
or, (l—x’)yz—xy,—y=0 .  (3)
Differentiating (3) n times with the help of Leibnitz's theorem, we have,
(1= 2 )Yas2+"Ci¥nat (~200+"Cy 30 (=2) = 1Yy
_ ="Ciya() =y, =0
ot (1=22)yauz = (20 + )y, = (n? +1)y, =0.
Ex. 10. If x=sin®, y=sinpB, then prove that
@ (1-2)y2—xv +p?y=0

(ii) (l —xz)ynu —-(2n+ l)xy,,” +(p2 —nz)_y" =0

where y, denotes the nth order derivative of y with respect to x.
[ C. P 2002]

Solution : Here, x =sin® and y =sin pb
Proceeding exactly. as in Ex. 1. (i), we have
(1 x)yz o +p’y=0 ()
Differentiating (1) n times with the help of Leibnitz's lheorem, we

-1
(1'12))';.+2 +n- Yo (-20)+ "(r 2 !

get,.

'Yn(-;)-wn+l
-n-1-3, +p*y, =0
or, (l-—xz)y,“z =(2n+1D)xy,y +(p2 -nz)y,, =0.
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EXAMPLES - VIII (B)

1. Findy, in the following cases :
@ y=xle= {ii) y=x’sinx. (i) y=x3logx.
(iv) y=xtan'x. (v) y=e"cosbx. (vi) y=|og(,u+x2)
(vii)y=x"(1=x).  (viii) y=x" (1+x). _

2. If y=Asin mx+B'c_os vix, provethat y, +m’y=0.

3. lfY=A e”"’+B_e_'”"', provethat y,-m’y = 0. '

4. If y =e™sin bx, show that y, - 2ay, +(¢z2 +b? )y =0,

S5 Ify= log(x+ Ja? +xz) .5ho,yf thai (az'-,ia x? )yz +xy, =0.
S 4 ;
6. If y=log (x, + 1+ x? ) , then prove. that

(l-le2 )y2 +xyl—m2y=0.
/Z./ If y=tan'x, then prove that
® (1+x? )y, =1, and

T () (l+x2)y“] +2.n_):y,,+r'a(n—l)y,,_l =0.
- Find also the value of (y')o 3

&? If y=sin' x, then show that
@ (l'xz )J’z ;XY| =0,
(i) (1—12 )y,”, -(2n+1)xy,,,~n%y, = 0. [C. P 1997
" Find also the value of (5,),-
A0 y=(sin" x)2 , then show that ‘
0 (1-x2)y,-xy,-2=0,  [C.P 1988 95 9]
@ (1-x )y, ~(2041)0y,,, = n?y, =0 .
1. If log y=tan"' x, then prove th;at
@ (+x2)y, +@x-1)y, =0

(i) (l + xz)y"*_i +@nx+2x-1)y,,, +n( + 1)y, =0.

4
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1.

13.

15.

16.

17.

8.

" 20.

If y =acos (log x) + b sin (log x), then prove that.

xzy,,” + (2n + l)xy "- + (n2 + lb' =0.
[C.P. 1989, 96 2007BP 1990, 97, V.P. 1999]

Iy (52 < 1), dhesstione et
(x;7 - l)."n+2 + 2-‘3’»” - "(n +1)yn =0.
If y=¢"""* then prove that

(l'f x° ) Yps2 (2n + l)xy“, (;12 + az)y,, = 0.
' [C.P. 1985, 94, 98, 2004)

If y=sin (m éin" x) then show that

® (-2)y, —xy, +m?y=0,  [C.P.1990, 2002, 2003)

@ 0-x2)y,..-@n+ )y, +m?-n?)y, =0

If y= (a.:c2 +bx + c)l (1 - x), show that (1-x )y, = 3y,.
If y=e"cosx.provethat y, +4y = 0. L B. P. 1998, 2001 ]
n-1 ("‘l !
If y=x""logx,showthat y, = 3
: X

[ C.P1985, 2000, B. P. 1991 ]
Show that D" (e'”x" )= a™~"x"~"D" (e""x')

If u, v, w be functions of x and if suffixes denote differentiations with
respect to x, prove that

U v, ow U, vow
4 U, v, W Uy, V, W
| % =142 2 2 |
o 2 2
K3 V3 Wy Uy Vg4 Wy

By forming in two different ways the nth deriva:ives of x*", show that
(o2 p2lu=1f  n'e-Pl-2f | G
ERTPY 1%.2%3% ()
[Equate the nth derivative of the product x". x" to that of %2 ]
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21. Preve that %{Eﬂ),_ {Psir{,w%)w* Qcos{x+%’-}}/x" +

X
where P =x"—n(n-1x""? + n(n-D(n-2)(n-3)x""* - ...
and Q= nx"'fl —h(n -(n- Z)x""J Fo

22. Prove that

: :x: (coix) = {Pcos(x+ %n)_ Qsin(x + E;J}/x"”

where Pand O have the same values as in Ex. 21.

23. Prove that

- (x"— sin x) =n !(P sin x + Q cos 1),

24. Show that

“d”" (log x n! 1
=11 1 - ==
[n( x ) ( )’l"‘:rnl(og'r 2 3 ] "}

25. Show that

A" (orgrv0) prerge i[ *J% a>-1.

n
dx r=0

26. If f(x)=tanx, prove that

")-" e f"20)+" ¢, f"*(0)- ... = sin %mz

27. Show that the n* differential coefficient of . is
: 1+ x+ 22 +28
1
5 CV'ntsin™le {sin (n+1)0-cos (n+ 1) + (sirn + cosp) ™1},

where @ = cot™! x:
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ANSWERS

1. () e“a"'z{aixz + 2nax + n(n— 1)}
G » sin(—; nw + i] + 3nx? sin'{—; (n-1)x+ x} +3n(n—1)x
x sin{-zl-(n-2)n+x}+n(n—1)(n—2)sin{-;-(n—3)u'+x}4

(iii) (~1)".6(n —4)!“"13-
X . 5
(v) (1) (2 - 3)!sin""28 {(n - 1){n - 2)sin n 6 cos’ &
~2n(pn - 2)sin (1 — 1)@ cos@ +n(n - sin(n - 2)0} where cotf = x.

) e’“{ a" cos bx +" cla"_fﬁ cos (bx + % 1:)

+ ’.'cza”""b2 cos(bx + 2.%}(]4— et b cos[bx+ n.%n)

(vi)(—l)""(n—l)![xi” L ]

(x +a)"
(vii) n_.'{ (i-x)" - ("c, )?'(I -x)" x4 ("cz)z.(l - x)"_z.x ) - }
(viii) nt /(1 + x)™.

i
7. 0, or (-1)3 @) (n - 1)t according as n is even or odd.

8. 0,0r {1.3.5..(n-2)F according as n is even or odd.
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9.1. Rolle’s Theorem.
¥ () f(x) iscontinuous in the closed interval g < x<p .
(i) f'( ) exists in the open interval a<x<b,

and (m)f( ) f( ),

then there exists at least one value of x ( say ﬁ ) between a and b
lie, a<&<bl, suchthat f'(£)=0

Since f(a) = f(b) ,if f(x) be constant throughout the mterval[a b,
being equal to f(a) or f(b) ,then evidently f’(x)=0 atevery pointin
the interval. _

If f( x) be not constant throughout, then it must have values either
greater than or less than f(a) or both, in the interval. Suppose f(x) has
values greater than f(a). Now, since f(x) is continuous in the interval, -
it must be bounded and M being its upper bound [which is > f(a) in this
case], there must be a value £ of x in the interval a<x<b for which
f(g)=m

i< (5 + h)— f ( & )S 0 for positive as well as negative values of h.
)

f(E+n)-f(&
h

Hence Lt f(‘§+h) é)<() sand  Lr .f..(§+h) f( )

h—0+ h—0-

provided the limits exist.

<0 if h be positive, and 20 if h be negative.

Now, since f'(,\' ) exists for every value of xin g<x<b , f'(§ )
also exists, and so the above two limits must both exist and be equal,
and the only equal value they can have is zero. Hence f'(€)=0

If f(x) has values less than f (@) inthe interval, we can similarly
show that /" (& )= 0, where f (& )=m, the lower bound of f (x)in
the interval. .

If f(x ) has values both greater than and less than f (a ), then there
must be an upper bound M which is greater than f (a ) and a lower bound
m which is less than f (a )and for values of x for which either f (x)=M
or f(x)=m. f’(x) willbe zero.

18
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9.2 Geometrical interpretation of Rolle’s Theorem

Y

o

Let L, M be the points on the number axis 6} representing the real
numbers a, b respectively. We draw the graph of the function y = f (x ) and
let A, B be the points on it corresponding to L, M respecnvcly, that is,
LA=f(a) and MB=f(b).

From the condition (i) of Rolle’s theorem, we say that the graphisa

continuous curve between the points A and B: the condition (ii) says
that the curve has tangents at every point between A and B and the third

condition implies that LA = MB .

Y

Fig9.2.2

Now, f’ (&) is the gradient of the tangent to the curve at x=& . By

 Rolle's theorem f '(x ) vanishes at Jeast once between x=a and x=b.
" Geometrically we say that we get at least one point C on the graph between

A and B such that the tangent at C is parallel to OX .

Note. From the above graph, it is clear that there are more points D and
- _Elike C.
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9.3. Mean Value Theorem. [ Lagrange’s form | -
“If (i) f(x) is continuous in the closed interval a < x< b ,and
(i) f'(x) exists in the open interval a<x<b, then there is at

least one value of x (say £) between a and b [ie, a<§ < b ], such
that
f(b)-f(a) = (b-a)f'(£).
Consider the function y(x) defined in (a, b) by
b-x
b-a

Here w(x) is continuous in a < x < b, since f (x ) and b- x
are so,

wx) = f(b) - f(x) - {re6)- fla)k

vix) = _f’(x)+M exists in a< x< b, since
b-a : v
f(x)existsing< x<b.
Also, y (a) =0, w (b) =0, sow(a) = w(b),

Hence, by Rolle’s Theorem, w’ (x) vanishes for at least one value
of x (say § ) between aand b, ie, y () =0,

a 0= )+ LO)=fla),
b-a

Whence f(b)-—\f(a): b-a)f'€) la<&<bl.

Cor. Since & lies between a and b, E can be written as a+0(-a)
where 0< 6 <1, Putting b= a+h we get another form of the Mean
Value Theorem
fla+n)=f@)+hf(@+0h), where 0<@ <1,
o, f(xth)=f(x)+hf(x+0h), whereg<a<].

Note.  The value of © usually depends upon both x and k, but there
are cases where it is not so dependent. [ See. Ex. 2 and I3, Examples IX
(A)]. Also 8 may have more than one value in a given range in some’
cases. [ See Ex. 12, Examples IX (A) ].
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9.4. Geometrical interpretation of Mean Value Theorem.

Let ACB be the graph of f (x) in the interval [a, b] and let
a, &, bbe the absciss of the noints A, C, B on the curve y = f(x),
such that the relation f(b)- f(a) = (b - a)f' (&) is satistied.

Draw AL, BM perpendiculars on OX and AB, perpendicular on
FW . Then AL = f(a), BM = f(b). Let CT. be the tangent at C.

b
b0
X 0 TL M X
yi  Fig 9.4.1
Then, f(b)_ f(a) = BM - AL — —B—N = tan BAN

b-a LM AN

Since f(£)= tanCTX (as explained in § 7.14), it follows from the
Mean Value Theorem that tan BAN =tan CTX, i.e., mZBAN =mZCTX e,
AB is parallel to €T’

Hence, we have the following geometrical interpretation of the Mean
Value Theorem :*

If the graph ACB of f (x) is a continuous curve having everywhere a
tangent, then there must be at least on point C intermediate between A

and B at which the tangent is perallel to the chord AB .

9.5. Taylor’s Series in finite form. (Generalized Mean Value Theorem)

If f (x) possesses differential coefficients of the first (n — 1) orders
for every value of x in the closed interval anSb' and the nth
derivative of exists in the open intervala<x<b [i.e. if (%) is

continuous in a < x < b and f" (x) existsin a<x<b ], then
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16)= 1@+ 6-a) 7 @+ =L 5

(b"*a)"_l n—l. _(b__u)" n
+Wf (a) + = frE),

where a<&<b e, (A)
and Ifb=a+h, Sothat b—a=h, then

Flash)= 1)+ hfa)+ ’;_zr F@ 4
. hn—l
) "'()+ " rrlaven,
where 0<60 <l ) B)

or writing x for a,

<t h) = F(x) + b+ I;—z'f’(x) .

hn_l n-1 i n
+(n—l)!f (x)+ n!f (x+80h),
where (0<0 <1 .(C)
Consider the function y/(x) defined in [a, b ] by
V) = 9() - é” : ;‘; #(a). A o
where )= 6= 16)- 6 - 019~ L2 g
( —;':)"m1 n |
— et . 2
" (x)

Then, evidently w(a) =0 and w(b) = 0 [since ¢(b)=0 is
identically],

. e ‘ ’ # o -2} .
¢’ () ==&+ {f(x)- - x)f (x)}+{(b—x)f (x)——?_!——f (x)}+- o

®-x)y g (b )c)l
+{(n_2), - =L f()]
- (b x)"l n

- o),
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Hence, from (1),

(b—x) n(b-x)""! £ |
R N

Since y(a) = y(b), and y’(x)exists in (a, b), by Rolle’s Theorem,
v'(E)=0, where a < £ < b.

w(x) =

Substituting & for x in (3), and cancelling the common factor
(b -&)y™", wegetultimately

= (b a) £" (&), and since, from (2)

’ b . p n=1¢’
o(a)= )~ fla)- (b—a)f(a)—---—-((—n_i)l)ff '), the
required result in the form (A) follows by transposition. .

Since a < & < b,wecanwrite £ = a + (b - a)f,

i, £ =a+h6,where 0 <0 <1,and b—a=h,and hence the
form (B) follows and writing x for a in the form (B), the form (C) can be
obtained.

Note 1. The series (A), (B) or (C) is called Taylor’s series with the
rem'nder in Lagrange’s form, the remainder (after n terms) being

o n n

(b—ah)':r"(g), or " tn(aton), or B n(x+0m), 0<0 <1, which is
n! ‘n! n!

generally denoted by R

Note 2. Put.ling n=1jn Taylor’s series, we get
fla+h)= fla)+hffa+0hB), 0<6<I,
which is the Mean Value Theorem. .

So, Taylor’s theorem is sometimes called Mean Value Theorem of
the nth order.

Putting n =2 in Taylor’s series, we get

fla+h) = f(a)+hf'(a) +—— f“a+6n), 0<0O<1,
which is often called the Mean Value Theorem of the second order and
SO on.

'Note3. Yet another form of Taylm' s series which is found some times
useful is obtained by putting x for b in (A). Thus,
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1= 1@+ - @+ S ey s LD g

+M}'"{a +9(x—a)}. 0<6<l1
n ~ .

~ and the function f(x) is said to be expanded about or in the
neighbourhood of x = a.

9.6. Maclaurin’s series in finite form. )
Putting x =0, h=x in Taylor’s series in finite form (C), we get

- ; xz xn—l x"
£(x) = £(0) + x°(0)+ —£(0) + ...+ ——£""1(0) + 2" (0x), 0< 6 <1
-2 (m-1)! n!
the corresponding form of the remainder R, being
X tn0x)
n!
The above is known as Maclaurin’s series for f(x), and f(x) is said

to be expandéd in the neighbourhood of x = () .

Note. Puttingn=1, 2, we get Maclaurin’s series of the first and second
orders, viz., .

Ca

. 2 )
S(x)="£(0)+ 26 x) and f(x) = £(0) + xf(0) + g-,-f'( 0x),0<0<1.
~
9.7. Cauchy’s series in finite form.

In Art. 9.5, if we take Y (x)= ¢ (x)— il:{q) (a). the other condi-lions )
. . . -a
remaining the same, and carry out the investigation as in that Art.,
we get ; .
iy B=xy Lk
w'(x)= =R () +—0(a) e @
Since y (a) = y (b) and y’ (x) existsin (a,b ) by Rolle’s theorem, we
havey' (£)=0,a<&<b.
Substituting & for x in (4), we get

¢(a)=(b‘“(2’(fl_ﬁ)"-lf"(ﬁ) e e ©®

WritingE=a+(b—-a )0, where 0<f8<1,
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wehaveb-E=b—a—-b0 +ab =(1-0)(b-a).

(b'—ﬁ)"-l= (]_e)nfl(b__a)n-‘lz(l "B)”"h"’l,since
b-a=h.
from (5), we get

0(a)= 1'—%—'—9))—1‘ (a+0h)

Now replacing a by x, the required expression for the remainder R,
would come out as

_hr(n- o)y

" (n-1)!
This is known as Cauchy’s form of remainder in Taylor’s expansion.
The corresponding form in Maclaurin’s expansion is

R f"(x+0h) 0<0 <1.

n n—1
R, = = ((rll_—;)—))!——f“(ﬂx ). 0<6<l.
This form of remainder is sometimes more useful than that of
Lagrange’s form. It should be noted that the value of 0 in the two forms
of the remainder for the same function need not be the same.

9.8 Illustrative Examples.

Ex.1. (@) If f'(,r):O for all values of x in an interval, then f(x) is
constant in that interval.

(i) 1f ¢’ (x)=y’(x) in an interval, then q)(x)' and y (,x) differ

by a constant in that interval.
(i) Suppose, f’(x)=0 atevery point in (a, b).
Let us take any two points x, x,in [a, b ], suchlhalx: >,\:|,
By Mean Value Theorem,
flx)-7(x)=(x-x)f (c) wherex <c<x,
=0, since f'(c)=0, by hypothesis.
Flx)=f(x1).
Since x,, x, are any two points in [a, b ]. it follows that f(x) must
be constant throughout [ a, & ].
(i) Let f(x)=¢(x)-w(x).
f(x)=¢"(x)-v'(x)=0,everywherein (a,b).
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f (x) = constant = k, say, by (i).
o(0)-wlx)=k.

Note: The result (ii) is fundamcntal in the theory of integration.

Ex. 2. Iff(h) = f(0)+hf’ (0)+ ”(eh) 0<0<1, find 9, when h=1

andifl =t~  [C.P 1944
~ We have f(h)=(1- h)g, since f(x)=(1 —x)g ;

U!

f(h)w— l—h)z f”(h) T(l-h)é
=1 f'(O):—§

from the given relation -

5 I
(l—h)i=l—5h+~z— ——(1—9/)2
) 1 4
putting h:l,0=1—§+E(l—9h)?v whence (1-0)2 = —,
2 4 5
e_ﬁ ():1,
75 25

Ex. 3. Prove that the Lagrange’s remainder after m terms in the
expansion of gax in powers of x is

L,
(22 +b2)

' x"e™®x cos(b6x+n tan~! — ) 0<0<1.[ C.P. 1942]
n! a

Lagrange's remainder after 12 terms in the expansion of f(x) is

n
%f”(ex),0<9<l. (byArt.9.6) ... )
Here, since f(x)= €4* cos bx
1
f(x)= (a2 +b2)5" e™ cos(bx +ntan”! S) . . (2)
[See Ex. 3§84]

writing 0 x for x in (2), we get f"(6 x), and substituting this
value of £"(8 x) in (1), the required remainder is obtained.
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Ex. 4. Prove that the Cauchy’s remainder after n terms in the expansiorn
of (1+x Y (m being a negative integer or fraction) in powers of X is

m(m—l()’;:}()':‘_"+l L"(HBx)"‘"'[%)q- , 0<B<l1.

Cauchy’s remainder after n terms in the expansion of f(x ) is

X"((rlr ?)i'nlf (Gx 0<8<]_>(b_vArt_ 9.7) ”"(f),
Here f(X)=(l+x)", - @
F(x)=m(m=1)(m=2) (m-n+1)(t+x)"",

So, the expression (1) is cquivalem to

(m l)(m 2) ('" n+l) (l+9)nl(l+e )m n
(n-1)
which is the required remainder. ¢
Ex.5. Show that the Cauchy's remainder after n terms in the

expansion of log‘(l+x) in powers of x is

P _ n-I
(-=1)"! -L‘{ . J + Ol

1+0x| 1+0x

v

2" {1-8)7* il i1
Hence, ( ) T i T (9 )( ) X (.1_9) m

which is the required remainder in Cauchy’s form.
Ex.6. If () f'(x) existsin a<x<b, (i) f(a)=a, f'(b)=8.
T a#B, and (iii) y lies between o. and B, then there exists a value & of
x between a and b such that f (&)=1y. [ Darboux’s Theorem |
Suppose, a<y<P andlet ¢(x)= f(x)-y(x-a 1
o' (x)=r"(x)-v
Since ¢'(x) exists in (a, b), ® (x) is continuous in [a, b] and

therefore attains its lower bound at some point & in the interval. [ § 4.4

(viii) ]
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“Now, this point cannot bé a or b, since ¢'(a )= f'(a)-y=a-vy
which is negative and ¢’(b )= f’(b)-y=B-y and which is positive.
* Hence, the point & is between a and b, and ¢’ (ﬁ) 0. - f(&)y=
o f(E)=y for a<E<b

Ex.7.. (a)if () o(x) and v(x) are both continuous in a<x<b
(i) ¢'(x) and y'(x) existsin a<x<b,

and (iii) w’(x );t 0 anywheré ina<x<b,
theri there is a value € of ‘x between a and b for which

38 ;: j’((‘; )) = g,gg ; . . [ Cauchy’s Mean Value Theorem ]
®) If further ¢(a)=y(a)=0 and (x)#0 in the
neighbourhood of a, ’

then Lt ¢(a ) Lt ¢"(x ) , if the latter Iimit.exisrs.
w0 y(a) " ey’ (x) '

[ L’Hospital’s Theorem]

(a) Consider the function f( ) defined by the equation
)= 1. 6(b)-0(a) :
f(x)—¢(b)—¢(x)— (b) ( ){W(b)_‘l’(x)}.

Now, f(a)=s(b).sinceeach =0 identically.

, o(b)-¢(a)
Also,  f/(x)=-¢'(x )+ v v(a) v'(x)

Since f ('x ) satisfies all the conditions of Rolle’s theorem
f(&)=0, for some &, where a<E<b , whence the required
result follows. '

Note 1. The condition y’(x)#0 anywhere in (a, b) ensures that
v(a)zw(b); for, if y(a) =y(b), w(x)then satisfying all the '
conditions of Rolle’s theorem, y!(x ) would vanish at some point x in
(a, b).
Note2. Putting b —a = h, we get

o(a+h)-o(a) _ ¢,( a+0h )' GieBiei

w(a+h)-y(a) w(a+or)
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¢(x+h )—q)('x) = ¢'(x+6h )‘ 0<B<l.
w(x+h)-w(x) w(x+0h)
Note 3. Mean value Theorem can be deduced from this theorem by
putting \u(x):x

(b) We have, for g<x<b.

o(x) __o(x)-0(a)

olx) wln)owil) Soee la) = la]=0 liets.
'(2) "

a<E&<x, by Cauchy’s theorem.

or, writing x for a,

RS
Taking limits, and noting that £ - aas x—a,
We get Lt ¢(1)_ ¢'(§)_ It ¢'(x)

x—a+0 \U(x )_ Eat0 “J'(E_,) " ka0 w'(_x )
Again, when b, < x<a, [assuming b, sufficiently close to a such
that ¢'(x) and \u’(x) exist at every point in the interval, and
g’ ( ¥ );t 0in it], we may similarly write

o(x)_ ola)-0o(x) _¢'(&)
w(x) wla)-w(x) (&)

Theorem, and making x — a we get

where x <&, <a, by Cauchy’s

o(x) o(E ), o(x)
:—Iiﬁ—olu(x)_é.—l:i—olll'(é])—'*—H‘OW’(I)

Combining the two cases, L’Hospital’s Theorem follows.

EXAMPLES - IX(A)
1. Find the value of £ inthe Mean Value Theorem
f(b)-r(a)=(b-a)f' ()
@& @ flx)=ata=1,6=2, =
@ if f(x)=Vx,a=4,b6=9, [ C. P 2006)
i if f(x)=x(x-1)(x-2),a=0,b=1,
[-C.P. 1987,B.P. 1997
(v) if f(x)=Ax>+Bx+C in[ab]



EXPANSION OF FUNCTION 285

2. Inthe Mean Value Theorem
f(x+h)=f(x)+hf(x+0h),
if f(x)=Ax®+Bx+C, whereA#0,showthat 6 =
Give a geometrical interpretation of the result.
3. Inthe Mean Value Theorem
fla+h)=f(a)+hf (a+6h),
if a=1, h=3 and f(x)=J;, find 0 .
4. @ In ;he Mean Value Theorem
f(r)=r(0)+ns(0n), 0<o<1,
1
N

according as f (x ) is cosx or sinx. [ C. P 1994, 2005 ]

show that the limiting value of 6 as 1 > 0+ js % or

(ii) Inthe Mean Value Theorem
flx+h)=f(x)+hf(x+0h), 0<0<1,
shiow that the limiting valueof 6 as h — 0+ is % whether f (x)
is sin X or cos x. [C. P 1994, 2008 ]
2
5. 10 £(h)=1(0)+hs (0) 4+ ;" (0h). 0<0<1ndo0,
1

1+x°

when h=7 and f(x)=

6. From the relation .
5

F()=r(0)+xf(0)+ 77 (0x). 0<p<1,

show that log (14 x )> x - 4 x%, if x>0,

and c05x>x-—%x2.if 0<x<%n’.

1
7. Showthat sinx > x - ¢ x*, if 0<x<—m, [V.P.1995]

8 Iff(x)=tanx, then f£(0)=0 and f(z)=0.
Is Rolle’s theorem applicable tc f (x ) in (0,7: )?
[ C.P. 1982,°86, 96, 2004 ]
9. Is thc Mean Value Theorem applicable to the functions (i) and (ii) in
the intervals [ -1, 1] and [5,7] respectively ?
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[0) f(x):xcosi for x#0
X
=0 for x=0
@ f(x)=4-(6-2x). [C. P. 2005 ]
10. If f '( x ) exists_).and > 0 everywhere inthe interval (a, b), then show

that f (x) isan inereasing functionin [a,b] and f'(x)<0

everywhere in (a, b), then show that -f (x ) is decreasing function in
(a,b). '

11. Showthat 2x* 4+ 2x% — 10x + 6 is positive if x> 1.
12. () Inthe Mean Value Theorem
fla+h)-f(a)=hf(a+0h), 0<8<1,
If f(x)=_%x3 ——'}xz +2%, and a=0, h=3,
show that © has got two values and find them.
(i) In the Mean Value Theorem

FB)f(a)=(b-a)f(E) a<E<b,.

find E, if f(x)=x —3x—l,a——— b-—T-‘ and give a
. geometrical interpretation of the result.

13. Inthe Mean Value Theorem
f(x+h)=f(x)+hf' (x40
(1) find O wherc( ) f(x ) 1
(¢) f(x)=logx.

G) if f(x)=a+bx+cm"
then show that 0 is independent of x.

14. Show that
(x+n) = 5 +v-§-xl=i;+ .....
Find 6, when x=0.

15. Expand in a finite series in powers of A, and find the remainder in each
cas

S€
(§\ log (x+h), @) sin(x+h)  GiD) (x+n)

\
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16. () Apply Taylor’s Theorem to obtain the Binomial expansion of

17.

19.

20.

21.

(a+n), where n isapositive integer.
G) If £(x)isa polynomial of degree r, then show that

flarh)=fla)ens () 2 p(a)

r

(iii) Expand 5x® +7x + 3 inpowersof (x -2 ).

Expand the following functions in a finite series in powers of x, with
the remainder in Lagrange’s form in each case :

(i) e*, @) a*, (iii) sin x,
(iv) cos x, ™ tog(1+x), (vi) log(1-x),
i) (1+x )", (viii) tan™! o, (ix) " cos x,

®) e“ sinby.
Find the value of 0 in the Lagi'ange's form of remainder R for the

expansion

in powers of x.

Ll
Expand the following functions in the nei ghbourhood of x=0 to three
terms plus remainder (in Lagrange’s form) :
(i) sin? x, i) cos’ x, (iii) ™.
Expand the following functions in a finite series in powers of x, with
the remainder in Cauchy’s form in each case :

@ e*, (i) cos x, (i) (1-x)'.

() Provethat [t f(a+h)_";f(a—h)=f'(a),

h—0 2

provided f'(x ) is continuous.

(i) Provethat Lt f(a+h)—2f(a)+f.(a—h)=f,,(a),

h=0 h?

provided f"(x) is cortinuous.
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22.

23.

25.

26.

27.

@ If ( % ) is continuous in the interval [a.a +h] and

f7(x )+ 0, prove that L 0 =L, where 0 is given by
fla+n)=f(a)+hf’ (a+oh), 0<6 <1,
(i) Show that the limitwhen h — a of 8 which occurs in Lagrange’s
form of remainder Ll f"(x+0h ) inlhcexpzmsion'of fx+h)
n.

1
n+1

is

provided f™!(x) is continuous and # 0.

In Cauchy’s Mean Value Theorem,

@ if (IJ(x):sinx and y (x )= cosx,or

@ if@(x)=e" and y(x)=e", 0r

(i) if ¢(x):.\'2+x+l and 1;1()():2.\'2 +3x + 4, then

show that 0 isindependent of both x and -4, and is equalto 3.

k Iff(x):.\‘:, ¢(x)=x, then find a value of & in terms of & and

b in Cauchy’s Mean Value Theorem.

If f(x)and ¢ (x) arecontinuousin a<x=<b and differentiable

in a<x<b such that f'(x) and ¢ (x ) never vanish for the same
value of x, then show that

r(g)-fla) _£(&)
o(b)-0(E) ¢ (é),where a<E<h.

If q,l’(x):t() for ¢ < x < b. then prove that

¢(b) ) (b-a)¢’(a) AL ¢)
w(b)- )-(b-a)y'(a ) w(E)

wherea<§<b

If f{x ) and g(x) E.l!'e differentiable in the interval (a, b) then
prove that there is a number & a <& < b, such that
f(a) f(b)=(b_a)f(a).F(éw
g(a) g(b) gla) & (&)
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28.

29.

30.

31.

19-

.(i) If f(x),n;b(x),w(x) are continuous in a < x <b and

differentiable in a < x < b, then show that

fla) ¢(a) y(a)

r(6) o(6) w(p)|=0

(&) o°(8) v ()
() If F(x), G(,x), H(x) are continuousin a < x < b and
diffentiable in @ < x < b, then prove that

1 F(b)-F(a) F (¢
1 G(b)-G(a) G (&)=0
L oH(s)-H(a) #(2)
sinx sina sinf _
[ff( )=|cos x cosa cos |, O<’a<B<-£—7r,
tanx tana tanf
show that f'(& )= 0, where a <& < B. [C. H.1955)
Deduce Taylor’s Theorem from Cauchy’s Mean Value Theorem.”
[C.H 19611
[ Assume ¢(x)=f(b)=-s(x)=-(b=x)f'(x)-..

_(p-x)! 7 Y(x) and“V(1)=(b")n']

n-1)!
If f(a)=f(c)=f(b)=0 where a < c < b,andif f (x) satisfies
the conditions of Rolle’s Theorem in [ a, b ], prove that there exists at
least one number £ such that f'(§ )= 0,where a <& < b,

Given that( ) ( ) ) ( )
(x=-b)(x-c c)\x—a
Bl e e ) f(“)+——5c)
' ‘ Jc a (.x b! )
(c a)(c-b)
where a<c<b and f* ( X ) exists at all points in (a, b). Prove, by
considering the function ¢ ( x ), that there exists a number &,
a < & < b, such that ’
@ K] f(c) 14
+ + —~——
@b G-ob-a Cc-ale-5 ' (&)
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33. Given that

fEX) G|
ol f b) b2 b |
¢( ) f(a) a’ a 1

f'(a) 2a 1 0]

and f"( x) exists at all points in («, b), deduce
fb)y=f@+@®-a)f@+idbra)f €, a<i<b.
34. If f”(x ) existsatall points in (a.b) and ‘
Ie)-fla)_ f(b)=7le)

c—a b-c

where a < ¢ < b, then show that there is a number such that g <& < b
and f°(¢)=0. a
35. Given that
y(a) 1(6) f(x
¢(x)=|gla) &(b) g(x
h(a ) h(b) h(.r)

(x-a)x=b), .

and F(x)=¢)(x )_m

~where a<c<band f"(x), g"(x), h"(x) exists throughout
the interval (a, b), show that, by considering the function F (x),

¢(c~)=é—(c—a)(c—b)¢'(§), a<&é<b
36. If f"(x) existsatall points in (a, b) and if fla)=f(b)=0
andif f (c )> 0. where g < ¢ < b, prove that there is at least one
value £ suchthat f"(&)<0,a<é&<b.

ANSWERS

L.G) 15 Gi) 625 (i) -3 . (v) L(a+b).

2. The tangent at the middle point of a parabolic arc is parallel to the
chord of the arc.

3. 3 5. %2, 8. No. 9. (i) No.  (ii) No.

12 °

12. yo=1(3:43).
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(ii) & = #1; the tangents at these two points are parallel to the line
joining the points {a,f(a)} and {b, 7(#)} which is parallel to the
x-axis in this case. . ‘

f 2 Moy 1 ¥
x° +xh — o o
—_ e

13. (i) (a) p (b) —log (c) og(l+hlx
. h - "

15. () log x + — = —= + cevcenee +(-1 _—
(i) log x +— o3 ( )’ TEEYTY

2 3 "
(ll)smx+hcosr—-h—-smxw—cosx+ +h—sm x+0h+ﬂ_.
2! 3! n! 2

e = m
(i) x" +mx""'h+

m(m—l)(m-—Z') s (m—-n+l)h,, (.r+3h ),,,_,,
n!

5

16. () a" + "cpa" 'h+ "y @ vk ", @ T R Ak R
() 37+27(x-2)+5(x-2).
In the following series, in every case, 0 <0 < | .

n

2 3
17. (i) 14 St # St il
2% .3 n!

6 x

' 2 -] n
(ii) l+xloga+%—|(loga )+-§—'—(Ioga Y +...+‘x—'(loga T,
il 4 n:

3 5 n
(m)x——-+ et sin| o x |
31 .51 n! 2

4 n
(lv)l——'+'—:—|— +iTcos(L+9 )
n-|\ n

tv) g 5 e (—l) X

§ g ¥ n (1+0x)

" 1 x" .
(Vi) —x —— -~

"W (imexy

(vii)l-+mx+L';l_—l—)xz+ .........

m(m—l)(m 2) (m n+l) "(x+9h)" ,.'

n!
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2 .3 n 1 X"
(Viii)x-—%+%—...+ ( sin” (cot )smﬂ(cot'l Hx),

(|x)l+——J—cos(l—)+— )( ) ..........

T xt 2 X" noafx .
x) -i—'rsm¢+~;—‘+r Sin2¢ +...... iy sin (b6 x + no)-

where r = Va? +b? and ¢‘=tan"£_
a

e ]_(]_x)]/(nﬂ)
: e
4 6
2x
19 (l,’xz-i— = ————x'5in20x
3 45
- (1) 1—-'11.1:2 -lx4 ——]-—xs(Slsin36x+‘s'm Gx).
27 8" 160
(i) 1-x +;x4—Lx5e'6:"'z(4A65x5—206313+150x) ,
2 3 n n-1
20. (1) 1+i+L+£—+....+MeG’
o2t 3 (n=1)

4 n—|
. b 4 X X (] ) T
" i (ll) l——2!+—4!+....+ (n_l T ws[T+BxJ

. n=1
(i) oma? Bt =8I
(l—Bx)’”]

24. L(b+a)

9.9. Expansion of functions in infinite power series.

Taylor’s series (extended to infinity).

If f(x), £'(x), £7(x), ..., f"(x) exist finitelyhowever large n may
be in any interval [ x - &, x + & ] enclosing the point x and if in addition

R tends to zero as n tends to infinity, then Taylor’s series extended to
infinity is valid, and we have

’ b e
f(x+h)=l'(x)+hf(x)+ﬁf (xX)+....to o, [|h]|<d]

Denoting the first n terms of the expansion of by S, and the remainder
~ by R, we have, by Art. 9.5.
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flx+h)=S,+R, ie, f(x+h)-R,=85,,

Now, let n — o ;thenIf R, — 0, we have
. 2
f+h)= Lt S, =f(x)+hf'(x)+%f’(x)+...to =
n—eo .
Again, since f(x+h)—S,, =R,,if f(x+h)= L S,
. . n—ee

then Lt R, =0.

n—eo

Thus, Lt R, = 0 is both necessary and sufficient condition that

n—oo

£ (x + k) can be expanded in an infinite series.

Cor. Another form of Taylor’s series which is found often useful is
obtained by putting x— a for h in the form (B), Art. 9.5.

(x- a)

Thus, f(x)= fla)+(x-a)f(a)+—— f"(a)+

Maclaurin’s series (extended to infinity).

If f(x), ), £, . ... f"(x) exist finitely however large n may
be in any interval (~ 8,8 ) and R, tends to zero as n tends to infinity,
then Maclaurin’s series extended to infinity is valid, and we have

f(x)= f(0)+xf’(0)+ f"(0)+ , where | x[< 8.

Illustration.

Ex. Expand the following functions in powers of x in infinite series
stating in each case the conditions under which the expansion is valid:

(i) sinx, (i) cosx, (i) €, (iv) log (1+x),

™) (1+x).

(i Let f(x)=sinx

| f" (x )= sin (%mt+x ), so that f (x) posseséés derivatives of

every order for every value of x. Also, f" (0 )= sin —% nmt which is 0 or
+1 according as n is even or odd. ’

n n ' -
=%f" (9x)=%éin[ Bx+%’£)
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n
X

LS
n!

sin( Bx+EJ
2

» : 1
since Ism (Bx+ 3 na )| Z1.
n
x
7 —0as n—e fora]l values of x.

R, =0 as n—eo, since —
n

(Ex. 8§3.11]
Thus the conditions for Maclaurin’s infinite expansion are satisfied.
PSS S
smx=x—§+—§?—~7—‘-+ ------ toe  forall values of x.

(i) Let f(x):cosx.
f"(x):cos(-é—rm+x), f"(O):cos(n.

=

n), which is 0
or *1 according as »n is odd or even.

n n
R,,:i—f"(()x)ziacos ox+ = |
‘n! n! 2

Now proceeding as in the case of sin x, we can show that

R, =0 as n—oo, for all values of x.

2 4
toee | for all values of x.

(iii) Let f(x)=e".
" (x)=e*, - f"(0)=1,thus f"(0) exists and is finite,

however large n may be.

R, =% I (e;:):%e"-‘

Now, since €%* < el (a finite quantity for a given x)
xﬂ

and ——0asn—e,R, —0 asn—oo.
n!

‘ 2 3
’ x? x
e =1+X+3“+"§+ ------ tooe  forall values of x.
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" vy Let f(x)=log(1+x).
, ~ iy {a-1)
f (X )= ( ) (H" )
(1+x)
which exists for every value of n for x>-1.
77 (0)=(~1)"" (n-1)! _
If R, denotes Lagrange’s form of remainder, we have

Ry="—r"(8x)=(~1 )""i[;’fe—;)n

n! n

n
)—)O as n-—oe, since
X

(i) Let 0<x<I1, so that o
1+0

is positive and less than 1.
1+0x

Also, l_,() as n—e, . R, >0 asn—ree.
n '
v

x
(ii) Let —1<x<0;inthis case 1+0x may not be numerically

n
X

less than unity and hence [ T:(; may not tend to 0 as n— o .

“Thus, we fail to draw any definite conclusion from Lagrange’s form of
\remainder. Using Cauchy’s form of remainder, we have

; -1
x"(l-—e)"_' 5 o : x,, 1-8 n
R, = "(ox )=(-1 An SO
" (n=1) £*(0x) ( ) 1+0x| 1+0x '
'o 1-8 ) 1—0 n-1
Now, 17 g is positive and less than 1; hence Twbe -0
as n—roo. ;
Also, x" =0, as n > =, since -1 <x<0; T is bounded
R, —0 asn—oo,
‘ 3
log(l+x):x—x7+%—- ........ is valid for -1< x<1.
Proceeding similarly we can shew that
¥ X
log(1-x)=-x-"—-Z—~.... is valid for -1 < x<1.’
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(v) Let f(x)=(1+x)™, where m is any real number.
[ Binomial expansion |
(i) Whenmis apositive integer, f"(x)=0, whenn > m, for every
value of x. Hence the expansion stops after the (m + 1)" term and the
binomial expansion, being a finite series, is valid for all values of x.

(ii) When m is a negative integer or a fraction,

P =mm=1D...(m-n+)1+x)"" for x>-1
Hence Cauchy’s form of remainder R, is

_m(m—l)...(m—n+l) =2 e
R"f (n-1) s 1+6x ‘

Let -1<x<l,ie,|x|<1;also, 0<B<].

& 0<1-0<1+06x.

n-1
1-8 1-6 Y
0< <l o 0< <l.
1+6x [ 1+6x J
(n being a positive integer > 1 .
jilh n—-1 )
-0 as n— . Also, (1+0x)"" is finite
1+6x :

whether (m - 1)’is positive or negative.
m(m—l) (m n+l) n

_1)1

Again, if |x|<1,

—0.

[Art. 3.11, Ex 81iv) ]
|x|<1, R, >0 as n— .

for lx | <1, Maclaurin’s infinite expansion for (l +x )" isvalid,
m being a negative integer or a fraction.

9.10. . Determination of the coefficients in the expansion of f(x) and
f (x+h). (Alternative Method).

(i) Assuming that f (x) admits of expansion in a convergent power
series in x for all values of x within a certiain range, and that the expansion _
can be differentiated term by term any iumber of times within this range,
we can easily get the i:oel"'ficient of different powers of x as follows :

Lct-f(x)=a0+a|x+a212+a3x34 ......... ’ o (D)
where .a,, a,, ay,......... are constants.
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We have by successive differentiations,

f'(x)=a|+2a2x+3a3x2 +4a4_x3+ _________ )

F(x)=21a, +32a;x +43a,x> + ... e (3)

f7(x)=321a; +432a,x +........ ' o (4)
etc. - etc. etc.

Putting x=0 in (1), (2), (3), (4),........, we get -
7(0)=a,, f'(0)=a,,‘f'(0)=2'az, f"( }=3la;...

Hence, f(x)= (0)+xf(0)+—— (0)+—f(0) -------

(i) Let f(x + h)bea functionof A ( x bemg mdependent of h),and let
us assume that it can be expanded in powers of 4, and that the expansion
" can be differentiated with respectto h term by term any number of times
within a certain range of values of . We can easily obtain the coefficients of
" various powers of h as follows:

Let f(x+h)=a0+a|h+azh2+a3h3+ ......... e (D)

where ay, a,, a, ,......... are functions of x, and independent of A.
d d '\ dz '
Since Ef(x"'" =Z_'f(2)£ [where z=x+h]
=f'(z)=1'(x+h),

differentiating (1) successively with respect to h, we get

S (x+h)=a +2ah+3ah? +dah +.. e ()

f(x+h)=21a, +32ah+43ah’ + ... e (3)

ST (x+h)=321a, +432ah+... s (&)
etc. etc. etc. '

Putting =0 in (1), (2), (3), (4),........, we get
- S(x)=a, f(x)=a, f(x)=21ay, f7(x)=3a;, ..
Sl = ) W (e 2 () e 2 g ()

Note. Although the forms of the series obtained above for S(x+h)and
f(x) are identical with the Taylor’s and Maclaurin’s infinite series for the
¢xpansions of these two functions, the above method of proof if used
for establishing these two series, is considered as defective in as much
as it does not enable us to determine exactly the value of x for which the
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infinite series obtained from each of the functions converges to the
value of the function. In fact, Taylor’s and Maclaurin’s expansions in
infinite series do not converge to the functions from which they are
developed unless R, — 0 as i — o, even though the function might
possess finite differential coefficients of all order and the infinite series
may be convergent ; e.g., f(x)=eV" (x 20 ), r(0)=0.

Here, f* (0 ) =0 for every value of r. But Maclaurin’s infinite series
for this function, though convergent for all values of x, is not equal to f(x).

9.11. Other methods of Expansion.

The use of Maclaurin’s (as also of Taylor’s) theorem in expanding a
given function in infinite power series is limited in applications because
of the unwieldy form of the remainder (i.e., of the nth derivative of the
function) in many cases. So we employ other methods for expansion.
Now, in this connection it should be noted that the operations of algebra
like addition, subtration, multiplication, division and operations of
calculus like term by term limit and term by term differentiation, though
applicable to the sum of a finite nurmber of functions, are not applicable
without further examination to the case when the number of terms is
infinite, and hence to the infinite power series Ia,x”. [fa power series
in x converges (i.e., has a finite sum) for values of x lying within a
certain range (called the interval of convergence)', then for values of x
within that range, operations of algebra and calculus referred to above
are applicaBle, as in the case of polynomials, and the series obtained by
such operations would repfese.nt_ the function for which it stands only
for those values of x which lie within the interval of convergence. We
illustrate below some of these methods.

9.12. Ilustrative Examples.
A.  Algebraical Method.

Ex. 1. Expand tan x in powers of x as far.as x*.

3 ‘xa
. x_*f e
- sin x 3L 5
Since tanx= = - : s
COsx S, X
|- —+—=—...
21 41

we may, by actual division, show that
! See Chapter 6
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i } o4 28
tanx=x+3x" +55x° +...
: log (1+x)
Ex. 2. Expand G in powers of x as far as x*.

Multiplying the two series
log(1+x)=x—%x2 +%x3 —-“Ix" +... (~1<x<1)

3

and (1+x )" =1-x+x? —x* +x% -... (~1<x<1)

and collecting together the coefficients of like powers of x, we have
log ( I+x ) 2 - 3

; Lol 4
T =x—(l+.l2)x +(l+%+§)x ——(1+3+3+%)x +.. for-
|¥]<1 (the common interval of convergence).

B. Method of Undetermined Coefficients.

Ex.3. Expand log(1+x) inascending powersof x. [V.P.1998]
Let log(1+x )=a,+ax+a,x” +a;x° +... 5. i)
differentiating with respect to x,

1
I+x
(l+x)(a,+2a2x+3a312 -{—,..):1 w3}
Equating coefficients of x" on both sides,

=a, +2ayx+3azx? +--- . @

na, +(n+1)a,,, =0 @
Putting x=0in(1)and (2), ag = logl =0, a; =1 .

Putting n=1,2,3,... in(4), weget @, =—1, a;=1,a, =7 ,etc.

2adxd - e (5

log(1+x)=x-1x
Alternati vely .
For |x|<l, (1+x) "' =1-x+x® -x* +x* -
Hence, comparing coefficients of like powers of x on both sides of
(2), we obtain @, =1, @y =—1, ay =13, etc.
Note. We shall have now to find for which values of x the series is
convergent, and hence represents the function.

It can be shown that the series is convergent for —1 < x < 1.
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Ex. 4. Show that
f 1x 13X 1354

sin” x=x4+-—"——4— 4T 4
23 245 2467 = B
Let y=sin"x=ao+a,x+a2x2 L RS 5 I S e e (D
Since  y=sin~'x, .. differentiating, y, = . N )
1= x?
1 1.3 135
(1-1):—1+ e x"4 " ?3)
2 2. 4 2 46
for —1.<x <1 by Binomial expansion.
Also, y =a; +2a,x+3asx? +.....+ na x"V 4 RPN )]
Hence, comparing the coefficients of (3) and (4), we get
1 1.3
a=1,a,=0,a3;=—,a,=0, a; =——""— etc.
; . T ° 7245
Also, putting x=0 in (1), a,=sin"'0 = 0.
Hence, the result.
C.  Method of formation of Differential equation.
Ex. 5. Expand (sin -' x) ? in a series of ascending powers of x.
Let y=(sin™' x)2. URO))

2sin”' x

L A8 ‘ g N0
or, y,2 (l—Jr2 ) (sm )z =4y.
Differentiating again, and dividing by 2y, #0,

(1-—1’2 )y-_,—-xy,—2=0. N )]
Differentiating this » times by Leibnitz’s theorem, we get
(1—12 )y,.+2 _znxynﬂ -n ("— 1 )yn = XYy —ny, =0,

: or, (l x )yn+2 (2n+l)xyn+l -n yn =0 . X (4)
From (1), (2) and. (3), we get ¥%,=0, (»),=0, (v,),=2, and from 4),
pumng x =0, we get

Differentiating, y, =

(y'H-Z )():"z(yu )0 5
putting n=1,3,5,..... in (5), we get

(73)0=(33 )y =31 )g =m0
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and puttingn=2,4,6,..... in (5), we have
()’4 )o=22()’2 )o =22-2,
()’6 )o =42'()’4 )o =4 342,

Similarly, (g ), =6%.4%2.22.2, etc. _
Assuming that a Maclaurin’s series exists for this function, the

coefficients are the values of Yo Ypa Vg aeenees NS P when x=0.
Hence,
2 . 242 2422
‘ (sin" x)z sl d g B 506 20 o,
2! 4! 6! 8! :

Note. It can be shown that this series converges for Uar 3P

D. Differentiation of known series.
Ex. 6. Assuming expansion of sin x, prove that

2 4 6
cosx=l—-—+—-—+......
21 41 6!
' ) 35,7
From the series Sih«\’-=1—3—!+§—7ﬁ+ ......

which converges for all values of x, we get the required result by
differentiation.

Ex.7. Show that sec® x=1+x2+2x* +......
. 3

Since tanx=x+1x’ + 2% +....

we get the required relult by differentiation.

9.13 Miscellaneous Worked Out Examples

1
Ex. 1. (i) Is Rolle's theorem applicable to f(x) = . in[-1,1]7
Justify your answer. [C P 1989 ]
(i) Does f(x)=cos (-l-) satisfy Rolle's Theorem in the interval
x
—-1<x<1? g [C P 1993 ]

\

(iii) Is Rolle's Theorem applicable to S(x)=1-x3 in —-1£x51?

Justify your answer. [C P 1990 ]
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Solution : (i) f(x)=

3 is continuous in -] < y<|.
2-x"
Fix)= (—l)(2— xz)‘z(-zx) = L , which exists .in l<x <l.
- b7
And f)=——=1, f(-hh=ot =1
" -1 B-1
“Thus f(=1)=f(1) :
So, f (x) satisfies all the three conditions of Rolle's Thearem.
Hence; Rolle's Theorem is applicable to £ (x) in [~1, 1].

(i) f(x) =cos (—l)
N

1
f(0) =cos (6)' is undefined

So, f(x) is not continuous at x =0 which is a point in the interval
-1=x<1.

Again, f’(x)—_——losm (-l-) which does not exist at x=0.
X X
So, f (x) does not satisfy the first two conditions of Rolle's
Theorem.

Rolle's Theorem is not applicable to f(x) = cos (l) in [—J. l].
X

2
(i) Here, f(x)=1-x3

1
It x#0, f'(x)= —%x_i =——2—|
33
J(0) does not exisi.
f (x) is not derivable at all points in the open interval —1< x < 1.

2
Hence, Rolle's Theorem is not applicable to f(x)=1-x3 in the

“interval —-1<x<1.
Ex. 2. Explain whether Rolle's Theorem is applicable to the function
fx) = I xl in any interval containing the origin.
[C. P 1980, '95, B. P 95 ]
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Solution :  Here, f(x)=x, x>0
= 0 ’ X= 0
i ) x < 0
Let us consider an interval —g < x<a , where a > 0. Obviously,
this interval contains the origin.

Here, f(a)= f(-a)=a
And since, hll’nO1+ f(h) =0, hll)rg~ f.(h)=0

and f(0)=0, f(x) is continuous at y=( and so at all points in

-a<x<a-
Now, Lf’(0) = lim wz lim ;h=_1
. h—0- h "—"0* h
and Rf’(0)= lim M: lim 2=+1
h—0+ h h-30+ h

Lf'(0) # Rf'(0), fix) is not derivable at x=0.
So, it is not derivable at all points in —~a< x < a.
Second condition of Rolle's Theorem is not satisfied.
Hence, Rolle’s Theorem is not applicable to f(x) =| X | , in [—a. a],

i.e., in any interval containing the origin.

Ex. 3. (i) Test the applicability of Rolle's Theorem for the function
f(x)=(x-a)"-(x-b)"in a<x<b where m, n are positive integers.
(i) If f(x)=(x—a)"(x-b)", where m and n are positive
integers, show that 'c’ in Rolle's Theorem divides the segment a S x<b
in the ratio m : n. [C P 1998 ]

Solution : (1) f(x)=(x—a)"-(x-b)"
since m and n are positive integers, f(x) is a polynomial of
degree (m+n), which is continuous at every point, so it is continuous

inagsx<bh.
Also, f'(x)=m(x—a)" (x=b)" +n(x—-a)"(x-b)""!
=(x-a)""(x=0)"Hm(x-b)+n(x-a)} ..: (1)
which exists in @ < x < b.

fl@)=0=f(b)
So f (x) satisfies all the conditions of Rolle's Theorem. Rolle's
theorem is applicable to f(x)in a<x<b.
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(if) Since f(x) satisfies all the conditions of Rolle's Theorem,
there is at least one point 'c’ in @ < x < b, such that f’(c)=0.

From (1), (c—a)" "' (c~=b)""{m(c-b)+n(c-a)} =0
wa<c<b c-a#0, c-b#0

mb +na

3 m(c;b)+n(c'—a)=0 or, €=
m+n

so that the point x =¢ divides the segment ¢ < x<b intemally in the
ratic m : n.

Ex. 4. Verify Rolle's Theorem for the function f(x)=x>-5x+6 in
1<x<4. ' ‘ [ C P 4991]
Solution : f(x)=x?-5x+6
- f(x) is a polynomial function, it is continuous at every point,
s0 it is continuous is < x<4.
f(x)=2x-5, exists in 1 <x < 4.
f)=2=7(4)
Thus f(x) satisfies all the three conditions of Rolle's theorem.

Then there exists at least one point x=c¢ in 1< x < 4, such that.

f(©)=0.

5
. 2¢-5=0, or, C=E, which lies is 1< x < 4.
Thus Rolle's theorem is verified.
Ex. 5. Discuss the applicability of the Mean value value theorem

F®)-f@=b-a)f"(®), a<t<b.
Find &, if the theorem is applicable.
) fx)=x(x-1)(x-3), 0<x<4 [C P 1992 B P 2002 )
) f)=|x|, -1=x<1 [ B. P 1995 ]

o

i) f(x)=|x|, 0<x<] i [C P 1988]
() fR)=x(x-D(x-2), a=0,-b=" [C. P 1987, B. P 1997]
Solution : @ f(x)=x(x=1(x-3)

=x3 —4x? +3x

“(x)=3x7 -8x+3.
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f (x) being a polynomial function of x is continuous in 0<x<4,
f(x)also being a polynomial function of x, exists in 0<x<4.
So, f(x) satisfies the conditions of Lagrange's Mean value
theorem in <x<4.
There exists at least one pointt in 0 < x < 4, such that
- fO)-fla)=(-a)f ()
ie, f(4)-£(0)=(4-0)f"(E)

©or, 12-0=4(3 -88+3)

-

or, 3E2-88=0 . . E=0, g
8
v 0<E< 4, §=-5 (the value & =0 is rejected )

) f)=|x]| -1=x<1

Here f(x) =| xl is continuous in _15'-1»51; but f’(x) does not
exist at x=0, in the interval [see Ex. 2 ]. So, Mean Value theorem is
not applicable for the function f(x) =! x| in the interval -1<x <1

@) f()=|x], 0gx<1 '

F(x)=| x| is continuous in the interval -0 < x < 1and F(x)
exists at all points in 0< x <I. f’(x)=1. Thus f(x)=|x|satisfies the
conditions of Mean Value theforem in 0< x<'.

So, there exists at least one point £ in 0'<E< 1,

‘such that f(1)~ £(0) =(1-0) f*(&) « aw @
ie, 1-D=1-1
so the relation (1) is satisfied identically.

Hence, &is any number in the open interval 0 < x < 1.
) f(x)=x(x-1)(x-2), a=0, b =%
Here, f(x)=x>-3x +2x

F(x)=3x2-6x+2

' : 1
f(x) being a polynomial function is continuous is 0< xs-z- and

: . 1
f’(x) also being a polynomial function exists in 0 < x <—2—.
20 - .
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1 3 i
f(i)*'g- f=0

f(%)— F(O) = (% - O)f’(&) gives

or, 1287 —24E+5=0 .
6+421

~E=
6
I 6-+21
0<g<—, B EEe———
G - :
Ex. 6. (i) For what range of values of x. 2x3~9x> +12x-3
decreases as x increases? [ C. P 1986 B. P 1989 |

(ify Show that Mx?-5x+3 is monotone increasing when x >1.
[C P 1992])

(iii) Show that —2x%+15x* =36x+6 is stricily increasing in
2<x<?. [C P 1993 )

(iv) Show that 253 —12x% +24x+6 is increasing on the real line.
[ C P 1995 )

(v) Secparate the intervals in which 2_x3—15.\'2+36x+l is
increasing or decreasing. [ B. P 1994 ]

Solution : () Let, f(x)= 252 —9x? +12x -3
fr(x) =657 —18x+12
=6(x-1x-2)
ftx) decreases as x inCreases if fiix) <0

Obviously, f’(x)< 0, for lex<?
Hence tie required range of values of xis lcex<2

(iiy Here, f(x)= w2 ra?~5x+3

fi(x)= 3%+ 2 "5=3(I—l)[x+%)

Here, f'(1)=0 and [’(x) >0, when x >1.
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Hence, f (x) is monotone iﬁcreasing when x >1.
(iif) Here, f(x)=-2x+15x2 -36x+6
J7(x) = —6x* +30x - 36 = —6(x — 2)(x - 3)
f(x) > 0 for all values of x satisfying 2 < x <3.
Hence, f(x) is strictly increasing in 2 < x <3
(iv) Here, f(x)=2x>-12x2+24x+6
S(x) = 6x% ~24x + 24 = 6(x - 2)?
For all real values of x, f'(x) >0.
Hence, f(x) is illcre&;sing on the real number line.
(v) Here, f(x)=2x>-15x2 +36x+1

/() =6x? -30x+36=6(x - 2)(x-3)
Obviously, f(x)>0ifx>3 orx <2
and, f'(x)<0if 2<x<3
So, f(x) is a decreasing function when 2 < x < 3 and it is an
increasing function in (— oc, 2) and (3. ¢>=)

Ex. 7. (i) Show that 1_:? <log (1+x)< x, if x > 0.
[ C. P 1987, '89, B. P 2000 ]

Solytion :  Let ¢(x) = log (1+.x) -ITX

X
Here ¢(0)=0
and, ¢’(x) = L AR s o 0, for x >0

+x  (1+4x)?  (1+x)7?

¢(x)> 0 for x > O, and consequen:lv

X
;e log(1+x) for x >0 ()

Now let, y(x)=x~log(l+x)
Here, y(0) =0
1 X

and V(x)=l-——=-"— <0 forx >0
I+x  1+x’

“ Y(x)>0, when x -0
ie., x—log (1+x)> 0, when x >0
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. ()

ie, log(1+x) <x forx>0

From (1) and (2), -lﬁ< log (1+x)<x. if x> 0.

Ex. 8. Show that (ﬂ_) décreases steadily in 0 <x<g.

x
[ C. P. 1983, B. P. 1993 ]

Solution : Let, f(x) =4
X
0= xcosz;sinx W

Let F(x)=xcosx—sinx
then F’(x)=cosx—XxSinx—Ccosx

=—xsinx< 0, in0<x<2
T[

=+ F(0)=0 and F (x) is strictly decreasing function in 0 <x <7 .

n
F(x)<0in0<x<-2~.

ie., xcosx—sinx<0,in0<x< 2

T
So, from (1) f(x)<0in()<x<5.

. sin x oy b1
Hence, T decreases steadily in 0< x <—2—.

2 sinx T .
Ex. 9. Show that —<—<l, for O<x <7 .
nox 2
Solution :  Let us define a function ¢, such that
sinx
¢(x)=-—;—, when x#0
=1 ) when x=0
: n
Obviously, ¢(x) is continuous in 0<x< gand derivable in

T . XCOs X —sinx
0<x<E and ¢'(x)=—"—F"
X
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~

Let us consider another function y(x), such that
y(x) ?xcmx—sinx defined in [ 0, %]
.
V'(x) = —xsinx <0 for O< x <3
" W(x) is strictly decreasing in 0 x S'i'.
o 3 n
~ W(x) <y(0) =0 for all x, OSISE’_
n
#'(x)< 0, for OS.ISE

Sod(x) is strictly decreasing in OSXSE.
% ¢(0)> ¢(x)>¢(‘g')for 0<x<§.

. 1

sinx
ie, I>—>T
x 77

2 sinx n
iLe., —<—<l for O< x <—.
x 2

Ex. 10. Show that =X, rocxc X
x sin x 2°
[ C P 1983, B. P 1993 |

Solution : Here, we shall have to show that

; 2
tan xsinx - x n
——.—w for O<cx<—
xsinx. 2

xsinx>0, when0<x<—2-,

it will be enough to show that
T n
tanx sinx - x2> 0, for O< x <?

) n
Let F(x)=tanxsinx-x?, O<x L

then F’(x)=sec? x sinx +tanx cosx—2x
=sinx sec? x+sinx -2x
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and F"(x)= cosxsec’ x-+sinx-2sec.x sec x tanx +cosx—2

—secx+cosx—2+2sinxtanx sec? x
2
2 (Jsecx—\fcosx) +2sinx tan x sec? x

; T

> 0, for 0< x< 3

So. F(x) is strictly increasing in the interval 0<xs
n

ie., F(x)>0, for 0<x< 2

Therefore, F(x) is strictly increasing in 05.'&5-12£ and also
F(0)=0.

oA

T

So, F(x)>0, for 0< x< 3

- n
ie., tanxsinx—x>>0, for 0< x<—

2
. 2
t - 19 T
or, —misi_qx——x—ﬁ, in0<x<, (% xsinx>0in 0< x<73)
xsimnx “ &
tanx X n
ie, ——>——,when O0<x<7
x  sin 2
EXAMPLE - IX (B) .
1. Expand in infinite series in powers of f:
@ th. @ cos(x+h). (D) " sin(x+h).

2. [Expand the following functions in powers of x ininfinite serics, stating
in each case the condition under which the expansion is valid :

i a*. (@ii) sinhx. (i) cosh x.
(iv) tan~' x. ) cot™'x- (vi) e sin bx.
(vii) €™ cos bx . (viii) e” sin x. @) e"cosx.
’ 1
® 1+x’ = 14 x2
3. Show that

tan'(x+h)=tan" x +(hsin0 ).sin@ -4 (hsin@ ) sin20

+1(hsin@ ) sin30 ..., where § = et -
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4.

6.

Find approximately the value of sin60°3423" to 4 places of decimals

from the expansion of sin (x + & ) in a series of ascending powers of A
by putting

x=1n x(= 60° ) and h=gks of a radian (=34'23"nearly).
Show that
@ logr=(x-1)-2(x-1P+4(x-1) -
istruefor 0 < x < 2.
P 1 1
(li) ;=5—-2—2-(x—2)+;;-(x—2)2—...
istruefqr O<x<4.

Expand e". inpowersof (x—1).

Verify the following series (Ex. 7 19): .

7.

8.

10.

11.

12.

13.

14.

15.

—_ 1,2 .5 .4 .
sec x l+2x ta Xt

x3

log (1+x )" =x+ X 4
og (1+x) Xt

2 4
2 X
logli- x4 2 Jerssd-gs S d o
(b fain s b s
3.5
efsinx=x+x +X +£——...
3 30 »
2 3 ]
x 2x 9x
e* log(l+x) x+;+ N +?_,,_
-2 =l—l +"ix2—-—x‘+...
AR B 2 12 720
xcotx=1- }xz 45.»:‘—...
. 2, 3
dog{l+sinx)=x-2-+2
g ( ) 7%
Iogsecx:-"—!+y—+l6xo+
2! 4! 6
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16 e™F =1+x+da? -1t~
- z 3 ’ .
17. e ' F=1exe - - [C.P. 1940]
5 2 6
{ & 13 &
18. logf x+ VP41 |=x-o 4= -
. og(" - ] *9'F 24 3
19. (l+x)+ =e(l-!7x+;—‘:xz —I7—h,\'3+....)
20. () By differentiation the identity
(1-x)'=1+x+x? + 7+, lx] =L
show that
(i-x)? TS . TE .
1.2 1.2.3

(i) Differentiating the expansion for log (1 + sin x ), obtain the
expansion for sec x — tan x-

21. (i) Show that Jx and x% cannot be expanded in Maclaurin’s
infinite series.

@) Given f(x)= x'% , show that for this function the expansion of
f(x+h ) fails when x = 0, but that there exists a proper
fraction @ such that

Flx+h)=f(x)+bf' (x)+ 301 (x+0h)
holds when x = 0. Find g. [C.P.1949]
22 1f y=(1+x) =ag+ax+ayx" +..., show that
(14x)y =ny
and hence obtain the expansionof (1+ x ).
23 If y=e" ' =ag +axtax’ +ayx’ +o

prove that
M (1-2 )y, = o +a’y.

(ii) (n+l)(n+2)n,,” -(n +a )a,,, )
and hence obtain the expansion of , x,

Deduce, from the expansion of c""" "*  the expansion of sin 'x.
. (C.P. 1945]
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U K y=e"m ' F=ay+tax+ a,x? +..., show that
(0] (l +x2 )y, =my,
@ (n+1)am, +(n=1)a., = ma,
and hence obtain the expansion of gmt@e™' .
5. 6 y= sin(msin" x). show that
(1= 2 Jynaz - (2041 )30y + {m? = 0? )y, =0
and hence obtain the cxpansion of sin (msin™ x ). * [ C. P. 1938]
26. § y = e™ cosbx, prove that
Y2 —iay, +(¢i2 +b? )y=0.
and hence obtain the expansion of e cos bx.

Deduce the expansion of ¢ and cos bx . - [C.P 1937]'
‘ANSWERS
. h! 3
1. @) € l+h+?'-+-—3—'—+
h? K
(ii) COsX hsinx——z—!cosx+—3—!sin\x+-...
2
(iii) sinx+ﬁhsin(x+£]+@2—?)vsin( x4+ — )+
B . x? x? 1
2. (l)l+xloga+-2-'-(loga)1+-;‘-(loga)3+...
- X -
(ii) x+—3—!+—5—i+... . for all valuesof x
2 .4
x°  x
(|u)l+—2—!+-z+..
82X
iv) Xx——+—+...
-t

for-1<x<1

(v)zlz-:-[x-f; +-x;-—-...] .
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(vi)%rsin¢+§:-r2sln2¢+... WP ® 5

b
= L
(vﬂ)l+l—':rcos¢+-;—!rzcosz¢+... = a

M")xﬁsm-+— J_) sm%«t +i-215mT”+

n noo-
(ix) I+xf2-cos'—+'——(f2') cosz—”-+...+x—-22 cos 2% 4 .
4 2} 4 n! 4
Ex. (vi) - (ix) are valid for all values of x.
x) 1—x+x% - +... |x|<l.
o) -2 exf =1%o Clcrel
x-1)2 (x-1)
4. 08710. 6. "["‘("’)*(T)“*( 3 L,
220, () -+ da? -ty 2. Gi) .

22. 14 nx+ f("*zrl).\'z +in

P a ‘ a4+ 13 ) 1 az(a2 + 22 ) 4
+ o+ x

23, 14ax+ &5
2

3 a
0(02 +12 )Glz +32 ).‘5 +..
s:n"'t=x+x—3+lz'2x5+ "
3t St -
24, l+nu+-5ix2+m( —2)x3+ _2(':":*8),\-4 Fo..
" ﬂ'"_),, +_(m 12 Jon? - 3?)
. =
26. l+wr+"2—b2x’+a “2'3"’2)x’+...
‘ 2! 30
2.2
5
b22 b“



EI MaxiMa AND MINIMA (Functions of a Single Varaible)

10.1. By the maximum value of afunction f(x) in Calculus we donot
necessarily mean the absolutely greatest value attainable by the function.
A function f(x) is said to be maximum for a value ¢ of x, provided
f(c) is greager than every other value assumed by f(x) in the
immediate neighbourhood of x=c¢. Similarly, a minimum value of f(x)
is defined to be the value which is less than other value in the immediate
neighbourhood. A formal definition is as follows : :
A function f(x) is said to have a maximum value for x=c, provided

we can get a positive quantity & such that for all values of x in the
interval o

=8 ex<erd{xne) r(c)>r(x);:
ie.,if f(c+h)—f(c)< 0, for Ihl sufficiently small.

Similarly, the function f (x) has @ minimum value for x=d , provided
we can get an interval d -8 <x<d +8 " within which

fla)<f(x)(x2d);
ie,if f(d+ h)-f(d)>0,for | 1| sufficiently small.

Thus, in the Fig.10.1.1 which represents graphically the function
f(x) (acontinuous function here), the function has maximum value at
P,.asalsoat Py, Py, P,, etc. and has minimum values at @, @2,
Q3, Q4,etc.At P, forinstance. cofresponding to x=0C, (=¢, say),
“the value of the function, namely, the ordinate A,C, is not necessarily
bigger than the value Q,D, at x = 0D, but we can get a range, say
LC,L, inthe neighbourhood of C, on either side of it, (i.e., we can find
a 8=L,C, =C,L,, say) such that for every value of x within L,C,L,
(execept “at C,), the value of the function (represented by the
‘corresponding ordinate) is less than BC, (the value at C;).
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Y P? P.i
H

10 :

H ! :

' : '

: | :

PO i i

.: ' H '

L L, H TMiM, :

X 0] C, C> D, Ca X
Y Fig 10.1.1

Hence, by det-”l-nilion. the function is; maximum at x = OC |- Similarly,
we can find out an interval M DM, MD, = DM,=§, say) in the
neighbourhood of D, within which for every other values of x the
function is greater than that at D,. Hence, the function at D, (represented
by 9,D,) is a minimum. )

From the figure the following features regarding maxima and minima
of a continuous function will be apparent :

(i) that the function may have several maxima and minima in an
interval;

(ii) that a maximum value of the function at some poinit may be less—
than a2 minimum value of it at another point (C P, <D,0));

(iii) maximum and minimum values of the function occur alternately,
i.e.,between any two consecutive maximum values there is a minimum
value, and vice versa. '

10.2. A necessary condition for maximum and minimum.

I f(x) beamaximum, or a minimum ar x=candif f'(c)
exists, then 1 (¢ )=0.

By definition, f ( x ) is a maximum at x = ¢, provided we can find
a positive number 8 such that '

f(c+h)—f(r)<0whcncvcr-6<h<5,(h#O).
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f (c 2 hh)~ f(c ) < 0 if k be positive and sufficiently small, >0

if h be negative and numerically sufficiently small. -

Thus, Lt f(”"h)‘f(‘)sb,[See Ex. 5 §3-11]

h—=0+

7 f(c+h -flc >0.

and, similarly, p
h—=0- 1

Now, if f'(c ) exists, the above two limits, which represent the

right-hand and left hand derivatives respectively of f ( x)at x=c,
must be equal. Hence, the only common value of the limit is zero. Thus,
f(e)=0.

Exactly similar is the proof when f(c) isa minimum.
Note. In case f'(c) does not exist, f(c) may be a maximum or a
minimum, as is apparent form the figure for points Q, and P,. At the
former point f(x) is a minimum, and at the latter it is a maximum. f'(x)
is, however, not zero at these points, for, f'(x) does not exist at all at
these points.
10.3. Determination of Maxima and Minima.

(A) If ¢ be a point in the interval in which the function f(x) is
defined, and if £'(c)=0 and £"(c)= 0, then f(c) is

(i) a maximum if £*(c) is negative and
(ii) a minimum if is positive.
_ Proof : Suppose f'(c)=0, and s"(c) exists, and #0.
By the Mean Value Theorem',
f(c+h)~f(r): hf'(c+8h ), whereo<@<1,
_gpr fleson)-r(c)
0h 8

Since 0 <@ <1, 0h — 0 as h — 0, and writing 8h=k,

the coefficient of @ 42 onthe right side — kﬁof (C+kk—f (k ) = f'(C)'

Accordingly, since 8 h? s positive, f (c +h )— f (c ) has the same sign as that
of f7(¢) when | B | is sufficiently small.

! Since f"(x) exists, f(x) also exists in the neighbourhood of ¢
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. If s”(c) ispositive, f(c+h)-f(c) is positive, whether A
is positive or negative, provided | # | is small. Hence f(c ) is aminimum,
by definition.

Similarly, If £*(c) is negative, s (c+h)- f(c) is negative,
whether / is positive or negative, when [ i | is small.
Hence f(c)isamaximum.

(B) Let ¢ be an interior point of the interval of definition of the
Sunction f (.\"), and let

t'(c)=t(c)= - =r""(c)=0, and 1" (c)=0;
then (i) If n beeven, f(c) is  maximum or a minimum according as £ "(c)
is negative or positive, _
and (ii) if n headd, f (c) is neither a minimum nor a maximum.
Proof: By the Mean Value Theorem of Higher order, here

'n~l
f(C+”)*f(C)=(,LT_—~ " (c40h). gepa<y,

Ly
on" f'ij_(f'-%.()h)— f”l‘ (L)

= 0h

Since 0<0O<l,as h— 0,0k — 0, and
the coefficient of 04" /(n—1 )!. on the right side —» f" ()

Now, suppose n is even: then 94" /(n-1)! is positive.

Sle+n )—f(c ) has the same sign as of " (¢ ), whether h

1S positive or negative, provided ih I is sufficiently small. Hence, if
" (¢) be positive, f(c+h)-f{c) is positive for either sign of &,
when lhi issmall,andso j (+) isaminimum. Similarly, i [ (L)
is negative, f(c) is amaximum.

Next. supposc n is odd ; then 0/" .,/‘ (n-1 )! is positive or negative
according as h is positive or negative, Hence, f (c+h )~ f (¢ ) changes
in sign with the change of /i whatever the sign of " (¢ ) may be, and

so f (¢ ) cannot be cither a maximum or a minimum at x = c.
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Hence, to determine maxima and minima of f ( x ), we proceed
with the following working rule::

Equate f'(x ) to zero, and let the roots be ¢, c;, ¢35.... Now
work out the value of f* ( < ) If it is negative, then x = ¢, makes a
maximum. If be positive, then is a minimum of . Similarly test the sign of
for the other values of x for which is zero, and determine whether isa
maximum or a minimum at these points.

If, in any case above, /" (¢, ) = 0, usc criterion (B).

Note 1. The above criterion for determiniming maxima and minima of
£ (x) falls at a point where f"(x) is non-existent, even though f(x)
may be continuous. ‘ ,

In such a case we should bear in mind that if f(x) be a maximum
at a point, immediately to the left of it the value of 7(x) is less, and
gradually increases towards the value at the peint andso f' ( x ) [ which
represents the rate of increase of _/'( X ) 1is positive. Immediately te the
right, the value of 1 ( x ) is again less, and so f{x) decreases with x
increasing and, therefore, f'(x ) is negative to the right. Thus changes
sign from positive on the left to negative towards the right of the point.
[ See point P,, in the figure of Art. 10.1]

Similarly, if j'(.\' ) be a minimum at any point, f( X ) is larger on the
left, and diminishes to the value at the point, and again becomes larger
on the right, i.e., f(x) increases to the right. Thus f"(x) changes
sign herc. being negative on the left and positive on the right of the
point.

Thus, we have the following alternative criterion for maxima and
minima : At a point where f(x ] is @ maximum or a minimum, f'(x )
changes sign, from positive on the left to negativé on the right if f(x )
be a maximum, and from negative on the lcft to positive on the right if
f(x ) be a minimum.

if _t"( x) exists at such a point, its change of sign from one
side to another takes place through the zero value of j"( v). so
that f'(x}=0 at the point. If f'( x) be non-existent at the peint,
the lefi-hand and right-hand derivatives are of opposite signs at the
point.
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Even in the case ‘where the successive derivates exist, instead of
proceeding to calculate their values at a point to apply the usual criteria
for maxima and minima of f ( x ) at the point, we may apply effectively
in many cases this simple criterion of changing of sign of f"(x+#h) as
h is changed from negaitve to positive values, being numerically small.
[ For illustration see Ex. 4,§105]

Note 2. At points where f( X ) is maximum of a minimum, f'( x )= 0
when it exists, and accordingly, at these points the tangent line to the
graph of f'(x) will be parallel to the x-axis (asat P, Q,, P,, 0,, P,, g,
etc. in figure of § 10.]). At points where f(x ) is a maximum or a
minimum, but /'(x) doesnotexist (e.g., at Q,and P)), the tangent line
to the curve changes its direction abruptly while passing through the
point. A special case is where the tangent is parallel to the y-axis, the
change in the sign of f’-(x) taking place through an infinite value.

Note 3. A maximum or minimum is often called an ‘extremum’ (extremal)

or ‘turning value’.

The values of x for which f*(x) or 1//'(x)=0 are often
called “critical values’ or critical points of f(x).

Note 4. The use of the following priﬂciples greatly simplifies the solution
of problems on maxima and minima.

(i) Since f(x) and log f(x) increase and decrease together,
log f ( X ) is maximum or minimum for any value of x for which f(x)
is maximum or minimum.

(i) When f(x) increases, since I/f(x) decreases, any value
of x which renders f(x ) amaximum or minimum renders its reciprocal
1/£(x") aminimum or amaximum.

(iit) Any value of x which renders f( x ) positive and 2 maximum
or a minimum renders { f(x) }" amaximum or a inimum, nbeinga
positive integer.

For examples on maxima and minima of functions of two variables
connected by arelation, see Ex. 7and Ex. 12 of Art. 10.5.
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10.4. Elementary methods (Algebraical and Trigonometrical).
Certain types of prob'lems on maxima and minima can be solved
very simply by elementary algebra or trigonometry'. The discussion of
the maxima and minima of the quadratic functions or the quotient of two
quadratic functions will be found in any text-book on algebra.?
In solving simpler problems of maxima and minima of functions of
more than one variable, the following elementary results are of great use:

M o={t(x+y)f -{L(x-»)F.

@ (x+y) =do+(x-y).

@iy x> +y? = %(x+y)2 +%(x— y).

When the sum of two positive quantities is given, it follows from

(i) that their product is greatest, and from

(1i1) that the sum of their squares is least, when they are équal.
When the product of two quantities is given, from

(ii) their sum is least when they are equal.

The above theorems may easily be extended to the cases of more
than two quantities.

Thus, when the sum of any number of positive quantities is given,
» their product is greatest when they are all equal, and so on.
For illustrative examples sce Art. 10.5,Ex.9to 11.
Note. In algebraical or trigonometrical example, by maximum or minimum
value of a function we vsually mean the greatest or the least value
attainable by the function out of all its possible values. In Calculus,
however, as has already been remarked, a maximum or a minimum value -
indicates a local (or relative) maximum or minimum. .
10.5 An absolute or Global maximum and an absolute or Global minimum
A real valued function f(x) defined in [a, b] is said to have an absolute
maximum (or, a global maximum) at apoint c€ [a, b] if f(x)< f(c),for
all xe(a, b] and f (x) is said to have an absolute minumum (or, global
minignum) at x =c€[a, b] , if f(x)2 f(c) forall x€ [a, b], f(c) being
“called the absolute maximum or the absolute minimum value of f(x)in[a, b].
To find the Absolute maximum or the Absolute minimum of values of a
continuous function defined in a closed interval [a, b], the points A, A,,
..., A, in[a, b] are determined where f'(A,)=0,r=1,2,...n.

' See Das & Mukherjee’s Higher Trigorometry, Chap. X V, Sec. B.

2 See Ganguly & Mukherjee’s Intermediate Aigebra Chap. VI, Art. 6.12.
21"
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Then the Absolute or Global maximum of f(a) in [a,.b] is given by
G =max{f(a), f(A)). fA;)..... f(A,), f(b) and the Absolute or
global minimum off(a) in[a, b] is given by L= mlnlf(a), f(l ) SRy,
- FlR)s FB . '
Remarks 1. Any qbsolute maximum (or, minimum of f (x) is also a local
maximum (or, minimum) but the converse is not true. .
2. A functionf(x)in [a, b] can have no local maxintum (or, minimum)
or may have one or more points of local maxirma (or minima).

Example 1. Find the global minimum if the f(x)= x> —6x2+9x+1 in
(0,1]. '

Solution. Here, f(x) = I
SI(x)=3x" ~12x 49
For maxima or minimaof f(x), f(x)=0
o, 3 (x?-4x+3)=0
or, (x=1(x-=-3)=0 s-x=13
But 3¢ [0, 1]
Only critical pointis x=1."
Global maximum value = max{f(0), f(1), f(2)}.
=max{l, 5, 3} .
Global minimum = mm{f(O) f), f(2)} =min{}, §, 3}=1.
Hence the global maximum and global minimum of f(x)in [0, 1] are 5 and 1
respectively.

Example2. Discuss the absolute maximum and absolute minimumof

f(x)=tan” lx——logx in [T’ \/_]

Solution. f(x)=tan lx¥—l<)g . -
1 11 («=D
F W=
1427 " 2'x  2x(l+x%)
f(x):OgEves x=1. " ‘ .

Absolute maximum = max {/(J!E) £, f(ﬁ)}

—max{z'irllo g2 —~——l 3}~ log3
5§ 4 ~ 43 & " _E+_"g
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Absolute iiaimum = min {I(T', % F, F3)]

n 1 nomol

= min{—+ — 3, ~, ===1
‘mm{6+4lo_g 23 4-og3}

n |
=—-—log3
6 & =
Note : The Absolute max or absolute min does not cortespond to x=1,
where f (x) =0.

Example3.  Examine the function f(x)=|x|, -2<x<2.
Jor absolutemaximum and absolute minimum.

Solution. Here, [x]|20

; Y
“forall xe [~2. 2] and f(x) =0, - A
when x=0.
So, f(x)= f(0) for all P P
x€[-2, 2] #
Hence f (x) has absolute X< |' a I > X
minimum at x = 0 and the "

absolute minimum value of f(x) ,
is 0. Y

Also,|x|<0 forall xe (-2, 2] andf(2)=2, f(-2)=2.

So f(x) has absolute minima at x = —2, 2 and the absolute maximum
value of f(x)is 2. ’
Note : Here f'(x) doesnotexistatx=0and f(x)#0 at x=%2.
10.6. Illustrative Examples.

Ex. 1. Find for what values of x, the following expression is maximum
and mininum respectively :

2x3 -21x2 +36x-20
Find also the maximum and minimum values of the expression
-[C.P. 1936 ]

Let f(x)=2x%-21x%+36x-20.
S (x )= 6x? —42x+36 , which exists for all values of x.
Now., when f (x) is a maximum or a minimum, f'(x ): 0.

we should have 6x? —42x +36 =0, m‘ x2=Tx+6=0,
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o, (x-1)(x-6)=0; . x=lor6.
Again, f"(x)=12x-42=6(2x-7).
Now, when x=1, f"(x)=-30, which is negative,
when x=6, f"”(x)=30, which is positive.
Hence, the given expression is maximum for x = 1, and minimum
for x=¢.

The maximum and minimum values of the given expression are
respectively f (l ), ie., -3, and f(6),i.e.. —-128.
Ex.2.  Investigate for what values of x,
f(x)=5x"-18x" +15x* -10
is a maximum or minimum.
Here, f’(_r )= 30(,\'5 -3x* 4247 ),
Putting f’(x ): 0, wehave x° (.tz —3x+2 ): 0,
e x3 (x—l )(x—2 ):0, whence x=0,10r 2.
Again, f"(x)=30(5x* 1267 4657 ).
When x=1, f”(x) is negative, and hence f (x) isamaximum
forx=1.
When x=2, f'( x) is positive, and hence f(x) isamininuon
forx=2.
When x=0, f(x )=0; so the test fails, and we have to examine
higher order derivatives.
S (x)=120(55* ~9x% +3x ), . f(0)=0,
£ (x)=360(sx? ~6x+1), - £ (0) is positive,
Since even order derivative is positive for x=0,
.- ferx=0, f(x ) is a minimum,
Ex.3. Show that f(x)=x*—6x”+24x+4 has neither a maximum nor
a minimum.

Here, f'(x)=3(x*-4x+8)=3{(x-2)"+4)
which is always positive and can never be zero.

£ (x) has neither a maximum nor a minimum.

Ex. 4. Examine f(x)=x*-9x% +24x-12 for maximum or minimum
values. )
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Here, f'(x)=3(x?-6x+8)=3(x-2)(x-4).
Putting f’(x)=0,wefind x=2 or 4.
Now, f'(2-h)=3(=h)(-2-h)=4ve,
And f(2+h)=3(k)(h-2)= ~ve,, since h is positive and small.
by §10.3. Note 1, for x =2, f(x) has a maximum value, and
thisis f(2)=8.
Again, f'(4-h)=3.(2-h)(~h)=-ve,since h is positive and
small, ' ‘
S (4+h)=3.(2+h)(h)=+ve,
by § 10.3, Note 1, for x =4, f(x) has a minimum value, and this
isf(4)=4.
Note. _In this case we could have easily applied rule of Art, 10.3.
Ex.5. Find the maxima and minima of _
1+ 2sinx+3cos? x, (()st%'n)
Let f(x)=1+2sinx+3cos? x.
Then  f'(x)=2cosx—6cos xsin x.
f'(x)=0 when 2cosx(1-3sinx)=0, i.e,, when cosx=0,
and also when sinx=1. ’
f7(x)=-2sin x—6(c052 x-sin® x )
When cosx =0, x = 5‘1:, ~sinx = L o f(x)=-2+6=4 (+ve).
for cos x =0, f (x ) is a minimum, and the minimum value is 3.
When sinx=3, .
 f7(x)=-2sinx-6(1-2sin? x }==2-6(1-2 ) (negative)
Therefore, for sinx= %.f (x) is a maximum and the maximum
valueis 1+2.4+3.(1-4) =41
1

Ex. 6. Examine whether xx possesses a maximum or a minimum and
determine the same. C[C.P. 1941, '45]

Let y=x%_ log_v=llogx.
x
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ydx..—z—;—logx—~—(l—logx) e L)
: dy :
. when Ix-z(), I-logx=0, .'.logx:l:!oge. nx=e.,

Again, differentiating (1) with respect to x,

_ 1 (dy +ld2_v_xz.(—l/.\'A)—(l—ing.\‘)-E_:r_—3+2]0gx
yz dx Y dc’ o -
dly 1 -3ed ¢ /
2 . !
. when x=¢, év:e'_ : —e—‘-, which is negative.
vid e’

( forx:e,ﬂ= J .
dx ’

1
for x = e, the function is maximum, and the maximum value is ¢' .

Ex. 7. Find the maximum and minimum values of u where

4 36
=—+— and x+y=2, [C. P.2006]
x Yy

Eliminating y between the two given relations

4,36 du__ 4 36 16{224x-1)
u=—+ ; T =

x 2-x" a7 (2—x)2— ,\r2(2—_wr)2

2
4k =0 gives x=4 or -1 Alend" 8~+_'—7P—T
dx . (2-x)

2
When x=1, i;;._%{,_-’i which is positive.
RON®;
2 2

for x*-;, u is a minimum.

+v36—=32,
2

4
minimum value of u = :

bl
V'

(51}

When x=-1, L5 | =-8+ b which is negetive.
"dx? 27

for x=-1, wisa maximum.
36

4
U=—+-—=8
maximum vatue of 1 240
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Ex. 8. Examine the function f (x)= 4—3(1-2)% Jor maxima and
minima at x=2.
2

x=2p .
For x=2, f'(x) c(loes ng)t exist, the left-hand derivative being
+ oo and the right-hand derivative — o ; but l/f’( x ) is zero for x=2.
So, the test of Art. 10.2 fails. Let us apply the criterion of § 10.3, Note I.
Now, f'(2-h) is pesitive and f'(2+h) is negative.

7 Here, f'(x)-‘--

Hence, the function has a maximum value for x = 2, and the maximum
valueis f(2), ie., 4.

Ex. 9. A conical tent of given capacity has to be constructed. Find the
ratio of the height to the radius of the,bas_é for the minimum amount of
canvas required for the tent. ' ; .:f-»’r

Let r be the radius of the base, &1 the height, V the volume and S

the surface-area of the conical tent.
Then, V=1imn’h ) PR i

“and §=mrr? +h? w2

Here, V is given as constant.
5 o gy?
S =n2r? (r2 +h? )=1t2r2[ rt+ R ) [from(1)]-

1
"2 5
Now, if S is a maximum or a minimum, 52 is so and herce for

=g2rt +ov?

maximum or minimum of S, i(Sz)=0, ie., A a2 gy L)oo,
: dr dr

rl

1

9v2. 3
T N LA e

I’ 2n 1;.,/_2—
2
Now, 4 (s? )=120%2 +54v2. L, which is positive for
dr? rt

~(2)
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for minimum amount of canvas,

1

v ) 9v2 9.lg?pip? 4
gl b ;. e, r6=——=—9T[from(l)]=r—.hz,
2 2n? 2n 2
i.e.,r2=%ft2. A L ) or r:h=1:42.

Ex.10. Show that for a given perimeter, the area of a triangle is
maximum when it is equilateral.

The area A of a triangle ABC = Js(s—a)(s—b)(s—c):

The area A of a triangle ABC = Js(s -a )(.r -b )(s —c) 7
Let s—a=rn, s—b=y,s-c=g,
L xty+z=3s-(a+b+c )=3s-2s=s=const.

Now, A = m - Since s is a constant, A will be maximum when xyz
will be maximum subject to the condition x + y+2z =const., j.e., when
x=y=g, [See §10.4]

i.e.,when.s-—a =s—-b=s-c ie,a=b=c.
Ex.11. Show that the maximum triangle which can be inscribed in a
circle is equilateral. )

Area A of atriangle ABC inscribed in a circle of radius R

=3bcsinA= EI -2Rsin B.2Rsin C.sin A
=2R? sin Asin Bsin C

=R2{cos(A—B )—cos(A+B )}sinC.

Let us suppose C remains constant, while A and B vary. Since R is
constant, the above expression will be maximum when A = B.

Hence, so long as any two of the angles A, B, C are unequal, the
expression 2R’ sin Asin Bsin C isnota maximum, that is, it is maximum
when A=B=C. ‘

Thus, A will be maximum when A=B=C.

Ex.12; Find the maximum and minimum values of
asinx+bcos x.

Let a<rcos®, b=rsin0,

sothat r* = a> +b> and tan® = h/a.
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i

Thus asin x+bcos x. = r (sin x cos 0+ cos xsin 0 )=‘rsin (x+0)

=va? +b? sin(x+ tan™! b/a)

Since the greatest and least values of sine of an angle are 1 and -1,
" the required maximum and minimum values of the given expression are

va? +b? and - a’l+b? .

Ex.13. Assuming Fermat's theorem thai a ray of light in passing fromn
a point A in one medium 10 a point B in another medium takes the path
for which the time of description is a minimum, prove the-law of
refraction.

Fig 10.5.1

Let AOB be a possible path of the ray of light, O being the point where

it meets the surface of separation MON of the two media and let POQ be
the normal to the common surface MN at O,and AM, BN the perpendiculars
from A and B-on MN .

Let mZAOP =8, mZBOQ =¢ ,and let v'and v’ be the velocities
of light in the two media. If AM = a, BN = b, then AO=asec0,
BO =bsec ¢ . The time taken by the ray of light to travel the path AOB is

asec® bsec ;
T=———:#+ ,¢ . erl (D)
v v

and by Fermat's theorem this is to be a mininfum.

Again, since A and. B are fixed points,
atan8+b tan¢ =MO+ON = MN ='c0|-|s[an[ S (2)

sothat© and ¢ are not independent, and we can, thus consider ¢ as a
“ function of 0, which is then the only independent variable.
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For T to be minimum, % =0, giving

= sethaneﬁ-—b—,scccbtanq:@:
v v do.

Also, from (2),

asec® 0+ bsec? ¢

¢0.

' d¢ .
From these two, eliminating ——, we ¢asily get

° de’
sin0._ sm’¢ i Sf" ¥ .Y; =u (say)
" v sing v

which is the law of refraction, sat:sﬁed for the actual path of the rav of
light.
10.7 Miscellancous Worked Out Example§
Ex. 1. (/) What do you mean by the maximum or minimum value of 2
function f(x) at x=¢? If f’(x) exists, what will be the valuc of
)7 1s it neccessary as well as sufficient condition?
[ C. P 1987, '96, ; B. P. '96, 98 |

(i) Cite an illustration to show that even if f*(c) does not exist.

£(x) may have a maximum or minimum at x =c [C P 1987 ]

Solution : (i) A function f (x) is said to have a maximum ( or, a local
maximum) at x = ¢, if f (c) is greatest of all the values, ie., f(x)< f(c) -
in some suitably small neighbourhood of c.

Analytically, this means &
fle+h)=f(c)<0, for || sufficienty small.

Similarly, f (x) is said to have a minimum (or, a local minimum) at
x=c, if f(c) is smallest of all the values, i.e., f(x)Z f(c) in some
suitably small neighbourhood of c, i.e.,

S(c+h)=f(c)=0, for|h]|sufficiently small.

Second part : If f(x) be a maximum or a minimum at x =¢, and if
f'(c) exists, then f’(c) =0. .
Proof : By definition, f (x) is a maximum at x =, provided we can
find a positive number 8, such that
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flc+h)- f(c) <0, whenever -5 < »<s (h=0)
ferh) 1) _
h
S(c+h)-f(c)
h

0, if & is positive and sufficiently small and

>0 if A is negative and numerically sufficiently

small.
. flc+h)-f(c)
Thus /.l_l.r& === <0
ot deA,

Now, if f“(c) exists, the above two limiting values which represent
the right-hand and left-hand derivatives respectively of f(c)at x=c,
must be equal. )

Hence, the only common value of the limit is zero, ie. . f'(c)=0

Similarly, when f(c) is a minimum, f‘(c)=0.

Third Part : [ ‘(¢)=0, if it exists, is a necessary, but net sufficient
condition that f(x) may have a maximum or minimum value at x = ¢.

As an cxample, let us consider the function f(x)=x°.

Obvieusly /*(0) =0, but whenever x>0, f(x)> f(0) and whenever

x <0, f(x)<s(0). Hence, f(x) has neither a maximum nor a minimum
value at x =

(if) Let us consider the function §(x)=|x|
Obviously, ¢(x) is minimum at x=0, but ¢‘(0) does not exist.

Ex. 2. (/) Show that the maximum value of xy subject to the condition

25 .
3x+4y=5is TS [C P 1991, B. P 1996 ]
(if) Show that the function f(x)=x*-3x"+6x+3 does not
possess any maximum or minimum value. [C P 1994]
Solution : . 3x +4y= 5 y= -‘:.—(5—3.\‘).

Let u=xy= —x(S 3))— (Sx 3\')
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du | :
—=—(5-6x
dx 4( ")
du 6 3
d —=—-—=-=_
AT T2
~ For a maximum or minimum of = xy,
du 5 du

3
B :.0’ : 3 L iy - == —
" which gives 6 Also, at x 5’ 5 <0

5
u=xy iSa maximum at X = p and the maximum value of

2
i[. 5 fs¥] -5
= =—<I5x——3 — = —
e 4{”6 (6)} 48

(i) f(x)=x>-35*+6x+3
S =3(x? -2x+2)

S'(x)=0 gives x> —2x+2=0,0r, x=1%i.

Thus f’(x) does not vanish for any real value of x.

Hence f(x) has neither a maximum nor a minimum.
Ex. 3. When does the function sin3x—3sinx attain its maximum or
minimum values in (0, 2m)? [C P 1981]
Solution : Here, f(x)=sin3x—3sinx

J'(x) =3cos3x —3cosx

J"(x)=-9sin3x +3sinx

For, maximum or minimum values of f(x),

J'(x) =0, which gives 3(cos3x—cosx) =0

or, 4 cos.\'(cosz x- I) =0

woecosx=0, I, -1

W

n

wi= =
2

G2 02X < on )

N A
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At x=12t-. f”(x)=—9sin-32£+3sin§ >0
n on 3r
==, “(x) = =9sin— + 3sin —
Atx== f(x) = 5 80

3n .
s f(x) is maximum at X = —2— and minimum at X= E

Ex. 4. (i) Show that of all rectangles of given area, the -square has the
smallest perimeter. [ C. P. 1984, 2008 ]
(if) Show that, of all rectangles of given perimeter, square has
the largest area.
Solution : Let x be the length and y be the breadth of a rectangle.
Its area =xy =k, say, where & is constant.
k
y=—
X
g k
If S be the perimeter of the rectangle, S=2(x+y)=2| x+—
. X

Y 2
-‘£= 2(1——"—) and Q:ﬂ
dx x° x3
; ; d U
For maximum or minimum of §, ar =0, which gives

2(l—~k—2)=0,i.e.. x=vk .

x
2
when X=JE, i’—f=i3=2~/€>0
“ () A
.. .So, § is minimum when x=ﬁ. and when x=+Jk, y:ﬁ,
( coxy= k). ’
ie. x=y.
Hence the perimeter of the rectangle is smallest when the rectangle is
a square.
(i) Let, x be the length and y be the breadth of a rectangle. -
Perimeter of the rectangle =2(x+y)=2k, say, where k is :
constant.
y=k-x
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Area A of the rectangle is given by
A =xy=,f(lc-wt)=A’Jr—.xz ]

dA da .
I=k'—2x and Zr—z=—2

For maximum or minimum of A, 2\ =0, which gives k -2x=0.

1
e, x=—k .
Lé 2

d’A

for, x=
dx2

k,

l =-2<0
2 ,

. 1
~ A is maximum when x=§k_

1 1
en x=—k, y=—k -
when X 2 y 2 ; thus x =

Hence, the rectangle of given perimeter has largest area when it is a
square. '
Ex. 5. (7)) Show that the rectangle inscribed in a circle has maximum area
when it is a square.
(i7) Find the largest rectangle that can be inscribed within the
A ;_) ‘
ellipse a—2+'—2-=], [ C P 1993 |

Solution : Let ABCD be the rectangle
inscribed within the circle of radius «.

.
apc==2,

AC is a diar%e[er of the/,circlc. o

Let ZCAB=0, then’ \‘ A : B

AB = ACcos0 = 2acosf and

BC =2asin®. ™

Area § of the rectangle ABCD is given by
S =ABXBC =4a®sinOcos = 2a? sin20
2
B g cos 20, . —8a? sin20
do do?

For, extremum of S, ;‘% =0, ie., 41:‘3 cos20=0
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n n
29=" X 1ie 6=%
7 [ 0S952 Jie, 6 n
2
For, B—E ‘—i—-§=~8azsm£='—8zzz<0
4’ 40? 2

Then, AB= 2acos—— J_a and BC 2asm-— s/ia

AB=BC, lhc recmngle mscnbed in the cu'cIe with largest area is

a square. .
(ii) Let ABCD be ‘the
rectangle inscribed in the ellipse Y
i g b
—+=5=1. The length and .

.breadth of the rectangle are

. A >
parallel to the axes of the x~ o PlJ &
cllipse which are coordinate P s
axes also.

Let coordinate of A be ]
(acos®, bsind). . iy

§ = area of the rectangle ABCD =4 X area of the rectangle OPAQ
. =4:0P- PA=4acos0-bsinB = 2absin 20

) ’ . ‘
L dabcos20; 51—25; = —8absin20
do ¥ do .

ds %
For extremum of S, —d—e— =0, which gives cos20=0

n T
v 20=— :, = e
2,15, 0 e
) . ‘
For, g=Z i-;i=~8absinf‘-=—3ab <0
4 4o 2 -
-, S is maximum when G:-:—.

In that case, length of the’:i'eclanglc =20P= Za(:os—;E =2a
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and breadth of the rectangle =2pPA = stin% =2b

and area of the largest rectangle = 2qb.
1y . 1
Ex. 6. (i) Show that the maximum value of x2 log(-) is %
ik

[C P 1989 ]
I
(i) Show that x¥ (x > 0) is a maximum at x = ¢. Deduce that

et >nc. [C P 1992 ]

Solution : (i) Let, f(x)=x’ log[—l—Jz ~x? logx .
>

. 1
o fix)=-2xlogx-xt.—= —2xlogx—x
x

. 1 :
and JS"(x)=-2logx-2x-~-1=-2logx-3,
x

For, extremum of f(x), f'(x)=0, which gives —x (Zlogx +1) =10,
1

' 1
ie., Iogxr-—E. Lx=e 2,

ik
At x=¢ 2, f"(x)=—2[-%)—3=—2<0

s f(x) is maximum for x =e

| -

1 {1
Maximum value of fix)= f| ¢ 2]: it} -logte 2

1
(if) Let f(x)=xx

logf(x):l-logi
x

Differentiating, -fi(x)= L. —lé-logA' = —12—(1- log x)
=% X.X x x

£ = f(x){i,(l . logx)}

X
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frx=f (x){ (l-]ogx)}+f(x){——+ 2 logx}
For, extremum of f(x)., f’(x)=0, which gives

xiz(l;logx)=0 or, logx=1=loge, .. x=e

: : 3 2
f )= f’(e){elz(l - loge)} +f(e){-_-e—3 +:3--loge}

1
covéf-t
!

© f(x) is maximum at x =¢.
1

and maximum value of f(x) is e
Since f(x) is ma;u'mum for x=e.
f(e)>f(m
1 3
o, et > n"
ie, e" >T°. [e, ©>0 ]

Ex. 7. Find the point on the /
parabola 2y=x?,which is

nearest to the point (0, 3).
[ C P 1990, 1997 ]

Selution : Let P(x, y) be
any point on the parabola

1
y==x?and A(0, 3) is the fixed point

M

. 2 2 .
AP? = (x=0)" +(y-3)* = »? +("?-3J = f(x) (say)

: 2
Fix)=2x+ 2.{% = 3] =xd—4x

frx)=3x%-4. _
when AP is minimum, AP? = f(x) is also minimum.
22~
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For maximum or minimum of f(x), f'(x)=0,

which gives, :c(;c2 —4) =0

ie, x=0, 2,-2 at x=0, f"(x)=-4<0

at x=12, f"(x)=34)-4=8>0

& fx) is maximum when x =0and minimum when x=12.

- AP is minimum when x=12. When x=%2 y=2,

Hence, the points on the given parabola, nearest to the point (0, 3)
are (2, 2) and (—2, 2}.

Ex. 8. Prove that the function f(x, y)=x"+3x% +4xy+y’ attains a
¥ y+Yy

minimum at the point (%, —%) [ C P. 1990 ]

Solution :  f(x, y)= x> +3x2 +4ch+y2
fomay+brecd, fu=646x, [y =6x42y, f1=2, fo =4,
- For, exlremurﬁ of f(x, ¥, fi=0, [f,=0, which give
4y+6x+3x7 =0 o e mn
4x+2y=0  ie, y==2x . . @

Now, from (1), ~8x+6x+3x2 20

2
or, x(3xr-2)=0, .~ x=0, =
3 2 i 4
From (1) when x=0, y=0, and when x= 3 _V‘—‘-g
4
At (%‘__3)’ f.l:\ o 10’ f_v_v =2~ fx_\l =4

So, fux [ (f_,r, )2 = lO><2—(4)2 =450

2 4
Thus f(x, y) has an extremum at (;» E 3]

Also, . f,, =10>0

2 4
hence, f(x, y) has a minimum at (E’ "5)
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Ex. 9 Find the extreme value of f(x, y)=2x%-xy+2y? - 20x.
[C. P 2000
Solution :  f(x, y)=2x>-xy+2y? -20x
fe=4x-y-20, f,=-x+4y f, =4, fy_,.=4, Sy ==
For extremum of f(x, y), f, 0, f.=
ie, 4x—y-20=0, —x+4y=0

16 4
which gives x=?, Y=

' 3
Again at (-1—6 i)
3°3

2
S f=(fy) =16-1=1550
and f, . =4>0

: oy ! 16 4
Hence, f(x,y) has a minimum value at (—3-,—:;) and

256 64 32 16 160
in =2X ——— —20X—=——

Jmin 9 979 s 3 3
Ex. 10. (i) A wire of leﬁglh I-is to'be cut into two pieces, one being
bent to form a square and the other to form a circle. How should the
wire be cut if the sum of the areas enclosed by the two pieces 'to be a
minimum?

(ii) A wire of length 20 metre is bent so as to form a circular
sector of maximum area. Find the radius of the circular sector.

[ C. P 1983, 96 ]

Solution : (i) Let the wire be cut in two pieces i the ratio 1: A . Then

lengths of the pieces w:l] be —— and
+)~ 1+

If the length of each sxde of the square be x and the radius of the
sircle r, then

l i

4x=——

respectively.

e Ty
and 2nr= , Le., r=—!2'—.
1+A 2n(l1+A)
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Let A be the sum of the areas of the square and the circlc‘.
2 w2 Pn+a?)
= + =
160+4)°  4n2(1+A)°  16n(1+A)’

a4 U [h-5) W
D 8n (141)°
d’A _ 1> (41+3m-8A)
D2 8 (40

@

For maximum or minimum value of A, a =0,
which gives from (1) A=

Also, from (2), when A=

’

J:-I:i hl.‘:l

d’A_ PP (4+3n-2m) 7 (4l+m)
a2 st (1+1)°* 8 (1+2)*

n
Hence, A will be minimum, when A = Z

" 2 )

In that case, the lengths of the pieces of the wire will be - and
I+—
4

T
Ix—
—4 respectively,

PR
4

5.
T d+m N A4

ie respectively.
(i) Let, OAB be the circular sector
formed by the wire of length 20 metre, r
metre be the radius of the circle and
£ AOB=60, where 6 is in circular 0
measure; 0 A

then 2r+s5=20, i.e., s=2(10-7r)
) )]
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Area of the sector AOB=S§ = %rze

s

1
—‘5"2)(;' [ s=r0 ]
=lr-2'(10—r)
_ 2
or, §=10r-r?
2
ﬁi—‘i:lO—Zr and -d—2§=—2
dr dr

ds _ d’s
For an extremum of §, o =0, which gives r=5 and ;T =-2<0
r
Hence, S is maximum when r=35 meltre, i.e., radius of the circulap

sector is 5 metre.

EXAMPLES -X

1.

Find for which values of x the following functions are maximum and
minimum :

0 xP—ox? +15x-3. (i) 4% —15x% +12x - 2.

2 _
i) fLm*G. [C.P 1939]
..
2
Gv) X_tx+1 (V) x* —8x* + 22x? = 24x +5.
’ xz—x+l

Find the maximum and minimum values of (iii), (iv) and (v) of Ex. 1.

. () Show that the maximum value of x-ifl is less than its miniml_sm

X
value. [ B.P. 1990, V.P. 2000 ]

(2x-1)(x-8)
C=1)(x-4)

(ii) Show that the minimum value of is greater

than its maximum value.
Showthat x> — 6x% + 12x — 3 is neither a maximum nor a minimum
when x=2. '

Show that the following function possess neither a maximum nor a
minimum :
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@ x* =37 +6x+3. @ x> -3xr+9x-—1.

10.

11.

@iii) sin (x +a )fsin (x +b). ) (ax+b)(cex+4d).

Show that x° —5x* +5x3 -1 s neither a maximum nor a minimum -
when x = 3; neither when x = 0.
Examine for maxima and minima of the following functions :

@) sinx. (it) COS x. (iii) XS.

B

Gv) x°. )  +xX7-dx' i) efsinx

Test the following functions for maxima and minimaat x=0:

3 5 ‘ 2 4
. : X X " X x .
@ smx~x+-§?—3—!. (1) cosa~l+2—!—z?.

Show that
@® 3sinx+3cosx isamaximumfor x = iz, '

@) sin x(1+ cos x ) isamaximumfor x =iz [C.P 1942, 47]
(iii)) sin® xcos x is maximum when x = 1/3=n .

(iv) xsinx + 4cos x is maximum for x=0.

(v) secx + logcos® x is a maximum for x=0 and a minimum for

x=4ixm.
(vi) m (6 >0) ismaximumwhen 6 = 17
e :

If y is defined as a function of x by the equations
y=a(l-cos0), x=a(0 -sin@),
show that y isa maximumwhen 9 = 7.
Show that
@) the maximumvalueof (1 /x )" is ¢'/e.
' [ C.P. 1990, B.P. 1995, V.P. 2002 ]

(ii) the minimum value of x/log x is e.

(iii) the minimum value of 4e>* + 9¢72* is 12. [C.P 1994 ]
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12.

13.

() Showthat 4* — 8xlog, 2 is minimum when x=1.

(i) Show that l2( log x + 1 ) +x% = 10x + 3 is a maximum when
x=2 and a minimum when x = 3.
(i) Show that x? log (1 /x) isamaximum for x = 1 /e .

If f'(x)=(x-"a)l"(x-5)""", when m and n are positive
integers, show that x=a gives neither a maximum nora minimum value

of 7 (x), but x=b gives a minimum.

14.

15.

" 16.

17.

18.

19.

4

Find the maxima and minima, if any, of ——i——} .
(x-1)(x-3)

ax + b

(x—l) x-4)

and show that the turning value is a maximum.

If y= has a turning value at (2,~1),find a and b

2 s . . .

Prove that Z(x -a, ) isaminimum when x is the arithmetic

mean of a,,a,,as,...,4,.

() Given x/2 + y/3 = |, find the maximum value of xy and minimum
valueof x* + y?.

(i) Given xy=4, find the maximum and minimum values of 4x + 9y.
[ VP 2001 ]

O Iff(x)=1- \/.\—Z— , when the square root is to be taken positive,
show that x =0 gives a maximum for f( x ).

@ If f(x)=a+(x-b) +(x—b)' showthat f(x )isminimum
forx=b. ‘ ' ; :

(iii) Show that (x - a )" (2x T )%- is a maximum for x = La,a .

minimum for x = %a and neither for x=a. [a>0]

It f(x)= |x|, show that f(0) is a minimum although
7'(0) does not exist.

Show that
(i) the largest rectangle with a given perimeter a square;
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20.
21.

22.

23.

24,

25.

26.

27.

28.

(i) the maximum rectangle inscribable in a circle is a square.
[C.P.1936]

Find the point on the parabola 2y = x? which is nearest to the point (0, 3).

P is any point on the curve y=/(x) and C is a fixed point not on the
curve. Ifthelength PC is either a maximum or a minimum, show that

the line PC is perp.endicular to the tangent at P.

Find the length of the perpendicular from the point (0, 2) upon the line
3x+4y+ 2 =0, showing that it is the shortest distance of the pomt from
the line. Find also the foot of the perpendicular.

A cylindrical tin can, closed at both ends and of a given capacity, has
to be constructed. Show that the amount of tin required will be a
minimum when the height is equal to the diameter.

By the Post Office regulations, the combined length and girth of a
parcel must not exceed 3 metre. Find the volume of the biggest
cylindrical (right circular) packet that can be sent by the parcel posl
A line drawn through the point P (1, 8) cuts the posmvc sides of the
axes OX and OY at A and B. Findthe intercepts of this line on the
axes so that

(i) thearea of the triangle OAB is a minimum;

(i) the length of the line 4B is minimum.

Find also in the above cases the area of the triangle and the length of
the line respectively.

P is a point on an ellipse whose centre is C, and Nis the foot of the
perpendicular from C upon the tangent to the ellipse at P; find the

maximum valueof PN . [C.P 1945]

The height of a particle projected with velocity » atan angle o with
the horizontal is usinar -4 gt? atany time 1. Find the greatest
height attained and the time of reaching it.

The total waste per mile in an electric conductor is given by

I C. ;
W=C2R +E K? , where C'is the current, R thq resistance, and K a

constant. What resistance will make-the waste a minimum if the current
C is kept constant.?
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29.

30.

31.

32.

33.

34.

3s.

The force F exerted by a circular electric current of radius a on a
magnet whose axis coincides with the axis of the coil is given by
-2
F o x(a? +x2) 2,
where x is the distance of the magnet from the centre of the circle.

Show that F is greatest when x = a.

Assuming that the intensity of light at a point on an illuminated

* surface varies directly as the sine of the angle at which the ray of

light strickes the surface, and inversely as the square of the distance
of the source from the point, find how high should a light be placed

directly over the centre of a circular field of radius 1542 m in order

to have a maximum illumination on the boundary.

(i) Find the altitude of the right cone of maximum volume that can
be inscribed in a sphere of radius a.

(i) Find the altitude of the right circular cylinder of maximum volume
that can be inscribed in a given right circular cone of height /.

(i) For a given curved surface of a right circular cone when the

_ volume is maximum, show that the semi-vertical angle is
MO |
sin”! —

5

(i) For a given volume of a right cone show that, when curved

- . . oo 1
surface is minimum, the semi-vertical angle is sin T
3
An open tank of a given volume consists of a square base with
vertical sides. Show that the expense of lining the tank with lead
will be least if the height of the tank is half the width."

If POP’" and QTQ' be any tow conjugate diameters of an ellipse,
and from P and Q are drawn two perpendiculars to the major axis
cutting it at M and N respectively, show that PM + QN is a
maximum when POP’ and EGTQ—' arecqui-cohjugatc diameters.

A window is in the form of rectangle surmounted by a semi-circle. If
the total perimeter be 10 m, find the dimensions so that the greatest
possible amount of light may be admitted.
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- 36. A particle is moving in a straight line. Its distance x ¢m from a fixed
point O at any time ¢ second is given by the relation

x=1" — 100 + 24 4 361 + 12,
When is it moving most slowly ?

37. In enclosing a rectangular lawn that has one side along a neigh-
bour’s plot, a person has to pay for the fence for the three sides on
his own ground and for half of that along the dividing line. What
dimensions would give him the least cost if the lawn is to contain
4800m?? )

38. A gardener having 120 m of fencing wishes to enclose a rectangular
plot of land and also to erect a fence across the land parallel to two
of the sides. What is the maximum area he can enclose ?

39. A shot is fired with a velocity u at a vertical wall whose distance
from the point of projection is x. find the greatest height above the
~level of the point of projection at which the bullet can hit the wall.

40. From the fixed point A on the circumference of a circle of radius < the

perpendicular AY is let fall on the tangentat P. Show that the maximum
area of the triangle APY is gcz B, [C.P 1930]

41. The intensity of light varies inversely as the square of the distance
from the source. If two lights are 15 m apart and one light is 8 times
as strong as the other, where should an object be placed between
the lights to have the least illumination ?

42. The boundary wall of a house is 2-7 m high, and is at a distance 80
cm from the house. Show that a ladder, one end of which rests on
the ground outside the wall and which passes over the wall, must at
least be 1-3/13 m long in order to reach the house.

43. A maninaboat V3 km from the bank wishes to reach a village that
is 11 km distant along the bank from the point nearest to him. He
can walk 8 km per hour and row 4 km per hour. Where should he
land in order to reach the village in the least time ? Find also the
time.

44. If for a steamer the consumption of coal varies as the cube of its
speed, show that the most economical rate of steaming against a
current will be a speed equal 10 | 1 times that of the current.
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45. For a train the cost of fuel varies as the square of its speed (in km

© 46.

417.

per hour), and the cost is Rs. 24 per hour when the speed is 12 km/h.
If other expenses total Rs. 96 per hour, find the most economical
speed and the cost for a journey of 100 kilometre.

Assuming Fermat's law, that a ray of light in passing from a point A
toa point B in the same medium after meeting a reflecting surface
takes the path for which the time is minimum, prove the law of
reflection.

Assuming the law of refraction, if a ray of light passes through a
prism in a plane ﬁcrpendicular to its edge, prove that the deviation
in its direction is minimum when the angle of incidence is equal to
the angle of emergence.

ANSWERS g

1.

8.
14.

17.

20.
25.

() x=1(max.), x=5(min.), (i) x= 1 (max.), x=2(min),

(iii) x=4(maX.), x=16(min.), (iv)x=1 (max.), x=-1 (min.),

(v) x=1(max.), x=2(min.), x=3(min.),

Max. value = |, min. value = 25 for (i),

Max. value = 3, min. value =  for (iv),

Max. value = -3, and min. value = — 4 in both cases for (v),
() x=(2n+4§)n(max.), x=(2n--%)m (min),

(i) x=2nm(max.), x=(2n% 1) 7 (min.),

(iii) Neither max. nor min. (iv)‘ x =0 gives minimum

(v) x=0(max.), x=I (min.),

(vi) x=20m ¥ 3 m (max.), x=2nm-— L (min),

(i) Neither max. nor min. (i) Max. for x=0.
Min. for x=0, max. for x=§. 15. a=1, b=0.
G 2.9k, (ii) Max. value =-—24; min. value =24.

(i;g}L 22. 2 units; (—%%) 24, %m3.
iy~ 2,16, " (ii) 5, 10.Area fo the triangle in (i) = 16 sq. units ;

length of the line in (ii) = 5J/5 units.
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26.

28.

31.
35;

36.
38.
41.

43.
45.

a-—b. 27. (uzsinza)/(Zg)L(“Si"a)/g-
K .

" units. 30. I5m.

@ 3a () 3k,

Height of the rectangle = radius of the semi-circle. -

Atthe end of 4 sccond.  37. 80m x 60m
600 m?, -39, (114 - g%x? )/ (Zuzg )
10 m from the stronger light.

1 km from the point nearest to him ; 13 hour.
24 km/h ; Rs. 800.



11 INDETERMINATE FORMS (Evaluation of certain limits)

11.1. Thelimitof ¢ (x )/w (x) as x — a is, in general, equal to the
quotient of the limiting values of the numerator and denominator [see Rule
(iii) of Art. 3.7 ], but when these two limits are both zero that rule is no
longer applicable since the quotient takes the form which is meaningless.

We shall consider in the present chapter how to obtam the limiting values
of the quotient in such cases, and also the limiting values of the quotient in
such cases, and also the limiting values in other cases of meaningless forms,
apparently arising out of the indiscriminate use of the rules of Art. 3.7. The
name ‘indeterminate forms’, as applied to these cases, is rather misleading
and vague.

11.2. Form % (L’ Hospital’s theorem)

.,’f o (x ), w (x) as also their derivatives ¢'(x ), l,v'(.r ) are
continuous at x = a, and if ¢(u )= w(a )= O[ie, Lt ¢(x)

= Lt y(x)=01 then
XxX—d

p(x)_, ¢(x)_¢(a)
e iy i LT v )

provided y’ (a)# 0.
Since ¢( )—0 and v (a )—0 we have

(x)=0(x)-¢(a) and y (x ) v(x)-w(a)

Now, by thc Mean Value Theorem,

¢(x)-¢(a) = (x-a)¢'{a +6,(x-a)} 0<0, <1,

wi(x)- ( ) (x- a)w{a+92(r-u)} 0<0,<1.

0(x) _#(x)-9(a) _ o{a+6,(x-a)}

y(x) w(x)-y(a) w'{afﬂz(x-a)}’
p(x) _¢'(a) o' (x)
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Generalization :
Incase ¢’ ( a ) and y’ ( a ) are both zero, applying the above theorem
again, we get
ACI ¢ (x)_¢(a)
ay’(x) ey (x) vy (a)
provided ¢ (a ) and y* (a ) are continuous at v = ¢, and v (a)=o0.

If, however, ¢“ (a )= v (a ) = 0, then we again apply the above theorem
and obtain the limiting valucas ¢”(a )/ (a ). and so on.
[ For illustration, see Ex. 1, Art. 11.8 |

Note 1. The above result can also be established by Cauchy’s Mean
Value Theorem. [ See Ex. 7(a), Art. 9.7 ]

Note2. Inthe theorem of this article if x tends to e instead of a, then
‘the substitution 1t Sfor x would reduce it to the above form when 1t
tends to zero.

11.3. Form = .

. X : . : g
exists then Lt %(—) will also exist, and its value is equal to the
wilx

ToXx=a
former limit.

Let Lt ¢,('\A)

X a !’/ (_l_' )

such thatin the interval a -8 <x<a+ 8 x » al, ‘E’_('_) is as nearto [/
v

= [ . Then we can determine a positive number §,

as we please. Also, since the limit exists, it follows ?t,wt for x sufficiently
close to a [but # 4] ¢'(a)and y'(a ) must both exist, and
w'(a )# 0 there.

Now first consider the interval a<x<a+3§,and x, be any particular
value therein, and take another value x such that « < x < X5

Then, by Cauchy’s Mean Value Theorem [see § 9.7, Ex. 7(a)],

¢(x” )"?’(x) = ¢’(§)
vix)-w(x) v(g)

where x<{ <xgandso a<é<a+é
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o] 542)-1) _oe)

Hence,

o(x)_w(x) "~ o) : 1
v(x) m)) v (E) =
¢lx '

Now keeping x, fixed, if we make x—a, w(x)—o and

¢(x);»w. and so {J{)ﬁ) }/{‘#I’V((T))_}}_)g:i’

ie,—1.

Also Ei is as near to / as we like, by a proper choice of 3.
Ty

¢(x).
v (x
¢ (x

s, KT

Similarly, considering the interval a— & < x < a, and proceeding

5 M=) o

a—=a-0Y | X-
Hence, Lt ¢(x): Li ¢,(x),
x—»aw(x) say’ (x)
We can also prove a modified form of the above theorem as follows :

If Ll ¢ (x)and Lt v (x ) are both infinite, then

Hence, from (1), is arbitrarily closeto l,as x—a +0.

Vv

exactly as before, we get

4 ( ) =
Lt (when itexists) = Lt
T)

¢ (x)
xoa iy x ay'(x )
o (x w(x)_ . £(x)
.\I;lnly(x)—x-wl/'g( xl:fng(x), -
(

[ where f(x):l/:y(x) and g(x)=1/p(x)1

which, being of the form — [ see Ar, 11.2, above ]
. 0’
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- - m2beh- ]

o(x) . vi(x) v ()]’
Serls) & dl5) {,E,, ¢(x)}

o(x)_ |
NOW,LCt Lt 7?)—1 i (2)

A=a
Three cases arise :

Casel. [/ is neither zero, nor infinitely large.
Dividing both sides of (1) by /2, we obtain.

! vix) o pela)  e(x)

= Ty - ol ie. 2 = o 2

! X—a ’ixi' l'lc'.i—euw(_x) x-—my]( )
Casell. /=0. i

Adding 1 to each side of (2),

L o) rw(x)_ . (s )+ (x)
[ +1= Lt
x—pa ‘ i X—=d I‘/ X
[ by case (1) ]
=Lt "',(")H'.
x-—saw X g
b 8 o(x)_ ., #(x)

.A'—)aw‘xi x—)awixi
Case IIl. When [ is inﬁnitely large,
vix)_ . v(x)
Lt Lt Lt —
x o {¢( )/w( )} x—a ¢(x) x=va ¢ (x)
L 20x)_ g, ()
x—mq/(x) x—mlp(x)'
Hence, the theorem is proved in all cases.
For illustration see Ex. 3, Art. 11.08.

Note 1. Theorem is evidently true also when one or both the limits
tend to — oo,

Note 2. By substituting x = 1/, it can be shown that the theorem is
also true when x tends to o> instead of a.
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11.4. Form ( x o,
Such forms arise when we want to find the limiting value of
¢(x).w(x)asx—a, whereg(x)>0and y(x)>e asx—a.

. w7
‘We can write .

o) v(o)
oL v ()= Ty o 5ot

when being of the forms 0/0 and oo/, as , can be evaluated by the methods
of Arts. 11.2 and 11.3. - [ See liustrative Ex. 4, Art. 11.8]

11.5. Form o« — . N
Such forms arise. when we want to find the limiting value of
¢(x)-w(x)asx—>awherep(x)—>coandy (x)— oas.

‘We can write

w (x)-1p(x)
o(x)-y (x) Lels ) e
which being of the form 0/0 can be evaluated by the method of Art. 11.2.

/

[ See Illustrative Example 4, Art. 11.8 ]
1L.6. Form 0°, &?, 1*=.
These forms occur when we want to evaluate the limits of functions of
the form { ( x )}y(:) as x> a,
When (i) both ¢ (x)and y (x)—0as x— a;
@ii) p(x)>e andw(x)——)Q as;é—)a 5
(i) ¢(x)-1andy(x )—)iwas x—a,

ol iy = B2 PP h logy = (% g (a)

. Lt log y reduces to the form discussed in Art. 11.4, and, hence,
can be evaluated. ) )
Since Lt log y=log Lty therequiredlimit Lty can be obtained
' [ See lilustrative Example 6, Art. 11.8.]
11.7 Use of power series.

In evaluating limits of certain expressions; it is sometimes found
convenient to use the expansions of known functions in the expression 1n
power series in 4 finite form, and then to take the limit. -

- [ See llustrative Example 7, Art. 11.8. ]
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11.8. Illustrative Examples.
Exl If o¢(a)e’(a)e’(a)...0"" (a) and w(a)y'(a)
v*(a)....w"" (a) areallzero, and y" (a )0, then
L olx) e (x)
x—aal{]() \—va"’ (X

Put x=a+h sothat, when x—a, h—0.
Now, by Taylor’s theorem

¢(a+h) ¢(a)+h¢ (a)+——¢( )+

A"

+ = )!q:“" (a)+—:l—!¢"(a+0,h)

n

= ’:'—!¢"(a+9,h), where 0<0, <1,

Similarly, w(a+h)=h—rw"(a +6, h)where 0<6, <1,
n!

¢(x)_ ¢(a+h)= h" 0" (a+0,h)
xl-faw(x)_hl—{ow(a+h) "‘th”\u"(a+9 h)
¢" () _0"(a)

Ty () v (a)

provided ¢” (x ) and y " (x) are continuous at x = . '

Ex2 Evalusie L1 22¢ —3% [ C.P. 2001 ]
x—0 X=Sinx

The required limit, as it stands, being of the form 0/0, [ see § /1.2 ]

X =
= [f e te -2 {fon‘ng]
x=0 |-cosx 0
Sl B ¢ 0
= It e & [form—-]
x=0 sinx g 0
B 4 -x
it e +e =2
x—=0 Ccosx

since ..Lt (e‘+e" )=l+l=2,and Lt cosx=1.

x—0 t—0
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o
Ex.3. Evaluate Lt —.

o ot

; . - )
The given limit, as it stands, being of the form = can be written [ by
§11.3]as -

[}

LIPS 2
Lt 4L(formg'i)= Lt 12% (formf-)

row pf 5] xsn gf 0
= Lt 24x(fomi]= Lt i =0
e of @ x4 o¥ )

Ex.4. Evaluate Lt (1-sinx)tanx.
—v%n

The given limit, as it stands, being of the form (x o , can be written as

g A5 S
.r-a%ir cotx 0

—Cosx
= L 2 =,
x->ix —cosec’x

since cos x=0 and cosecx=1 as x—)-‘z»n.

Ex.5. FEvaluate It [ _,l 2 )
sl x2 o1 xt -
The given limit, as it stands, being of the form o — o, can be written as
w g 2 ! I:formg]
=1 ,\'4 =1 0
. P!
xaix2 ] 2 '
Ex.6. Evaluate Lru(cosx )cotz,\'. [ Patna 1933, V.P. 1997 ]
r— E
The given limit, as it stands, is of the form 1®.
Let y= (cos x )mr 5,
log y=cot? x log cos x.= l_o_gcTosz_c_ .
tan® x

2

Now, Lt logy= Lt L L [formg]
x—0 x=0 tan“ x 0
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—(sinx /cosx)

= Lt = Lt {-Lcos® x
x>0 2tan xsec’ x -““’( ! )
=—%(’.‘ Lt coszx=1).
x—0
Since Lt logy=1log Lt y, log Lt y=-1.
x¥=0 =0 x—=0
=8 E
Lt y=e . . therequired limit=e *.
x—0
—si |
Ex.7. Show that LIOX = == [C.P 1932, 1995
e x'

Writing down the expansion of sin x in a finite power series, we have

: . T S
x—sinx=x-— x—i—+f—sin(§7—t+6x , 0<8<|
35 2

x-sinx 1 x' (5«
T — =—-—sin| —+0x |,
X i L1 2

. 2
ot —Luf—sin(s—nﬂax) S
x=0 . xd x=0| 3! 5! 2 3! 6
s'm(s—n+6'xj
. 2

Note. This being of the form 0/0 can also be obtained by the method of Art.
12. '

. x? 5n s ‘
since ?sin(—2-+ex —0as x>0, being < 1.

Ja? +ax+x? —Ja? —ax+x?

Ja+x-Ja-x

Multiplying both the numerator and denominator by &

(\/az +axtx® +ya? =ax+x? J( a+x+{;)

Ex.8. Evaluate Lt
x=0
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and sumplymg. the required limit

2ar(\/;;+\/:z_x)

=’"’°2x(\/a tax+x 2 4Va? -ax+xz)
-, el
'—’u(r+ax+x +J_z—ax+x )

Now, the limit of the numerator =a. 21/; and that of the denominator
= 2a. Therefore the required limit = Ja.

Note. An algebraical or trigonometrical transformation often enables us to
obtain the limiting values without using calculus, as shown above, which
case belongs to the form 0/0.

Ex.9. If Lt M be fnire, find the value of ‘a’ and the
x=30 x

limit. [ C.P. 1931, 1994, 2000, 2006 ]
The given limit, being of the form 0/0,

2cos2x+acos x

= A R

When x— 0, the denominator 3x? = 0 ; hence, in order that the
limiting value of the expression may be finite, the numerator

(Zcos 2x+acos x ) should be zero,as x—0. . 2+a=0, ie, a=-2.
When a =-2, the given limit becomes

sin 2x—2sin x- T 1
=. ——3——' -form —
=0 X ) I 0_
- L 2cos2x—2cos x form—w
x=0 3x2 P L N
- u —4sin2x+2sinx : fomgT
=0 . 6x L 0 ]
- T4 —8m82x+2cosx__g e

x—0 6 6=
1

Ex.10. Evaluate un("“”‘) [c P. 1947, 1994, 1997, V.P. 1999 |
x— X -
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e el
Fo(e)

=1 Lt logu isofthe form ~ .
=0 x x—=0 § 0

Lt logu= Lt log(tanx]/x
=0 x—0 x

o X’ xseczx—tanx 1 y
“.\'——:0 tanx %2 / (by §11.2)

2x—sin2x i 2-2cos2x
r—0 xsin2x x=05sin 2x+ 2x cos 2x

log u —_—log(

) 45sin 2x
Lt ——0— —__—9.
x—=0 2¢0s 2x —4xsin 2x

1]

Si = ’ s Lt u=0.
ince Ll logu logx[_{o" Boi

Lt u=e’=1, ie,the required limit=1.
x=0

Otherwise : Writing the finite form of the expansion of tan x by Maclaurin’s
theorem,

‘lanx=x+'}.x3a where a=scc9x(|+2tan20x), 0<0<l.

x+1x’a
]ogu_.l_log(tmx]=llog—-—-}—-—-llog(l+%x2a)
x x x

12(1 Iog(l+%x2a)%x(x=—llog(l+v)-_%x{1,
3 :

When x—0,v—50,also Lt llog(l+v)=l.
v=0 y
1 1
Hence, Lt log u= Lt —log(l+v)- Lt (;m )
x=0 v0 vy . x=0

Lt log u=0. Hence, etc.
x—0
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!e" -1 !tan2 x
Ex.11. Evaluate L

x—0 x3

, 2
e*-1 (tanx)
Given limit xlf-{o{ pe { o ) }

-1 tanx\’
e’ —
Lt x( Lt ) )
x=0 X x—=0 x

X - RY
Now, Lt - Al(beingof lhcforng= L E=e=1,
=0 X 0 x=0 1
t .
Also, Lt sl =1, the required Iimlt--.lxl! =1.
=0 x

Note. Such forms are sometimes called Compound Indetermindte forms.
In evaluating limits of such forms, the use of the theorems on limit (Art. 3.8)
is of great help.

11.9 Mlscellaneous Worked Out Exampla

1

» X
Ex. 1. Evaluate : lim {—-—} [ C P 198]]
: 1 |x—-1 logx

7 x |
Solution :  lim {———-——
=1 |x—1. logx

: logx—x+1 0
=lim AR e =
xl—bl { (x-1logx } [ Form 0 1
1
Iogx+.x-——l
" =lim —'——— [ By L'Hospitals Rule ]
== logx+(x—1)— y P

= lim {__Xﬁgf__} { Form _q ]

- | xlogx+x-1
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-  lim(1+logx

i L logx lim 1+ log )u 140

x—1 2+logx lim(2+logx)_2+0'_
x—1

1

7"
li 1 2

Ex. 2. Evaluate : ,'_T) x X(exﬂ)

[C P 1982]

1
. lim {——
Solution : o0 | 3 x( = l)

O B 0
r—0 x (e»\' + l) [ Form 6 ]
. e’ .
=lim—7"=" .
x50 14 (x+1)e*

lim e*
- x=0

-
_ii_%{u(xﬂ)e’} 141

: . sinx—yx
Ex. 3. Evaluate : lim _ [CP 1995
. x—0 X s
C L sinx—x
Solution : lim
x=—0

0

[ Form — ]
x ]
. cosx—1
= lim >
=0 3y

. —sinx 0
= lim Form —
x50 6x [ 0 1

- COSX 1

= lim =
=0 6 6

Ex. 4. Find the value of

1
@ lim (cosx)x . [ C. P 1989, 98 |
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. 1 |

(i) lim (ﬂ-r). [C P 1995]

x—l
l &

. (iii) li_r.ll(1+x)x. [C P 19% ]

@) lim (x?5"). [C P 1996 ]
x=0

) li_t)r(l)(l+sinx)m' [C.P1993]

: o
Solution : (i) Let y = (cosx)*®

1
log y=—-logcosa =
2

% l:m logy-hm{ go;)sz}

=0

x
. —tanx
= lim
=0 2x
. —seclx -1
= lim =——

x—0 2 2
. 1
or, log {}l_l}:, y}——E
|
* lim y=e 2

x—0

(1)) Le.l y= x(ﬁ]

or, logy= L-logx o JOR%
I E
" . logx
1 = —=
i Yosot= I s

= lim (—1)= -1
x| X

Iobc 8 X

F =
[omno}

[ Base of logarithm is e ]

0
[ Form 6]

0

Fom19
[ Form ]
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log {Iim y} sl

x—3

lim y=¢!

)

1
(iii) tim {1+x)x

lim x
X=r]

1
Let,Z?—'-; then z—0 as x—c
1
Let y=(1+x)x
1
then logy=z-log(l+—)
z
//-i'i;,s lim {log y}=lim {z-log l+1
=0 z—0 z

log(1+l) .
Z . oC

=lim ——==
-0 [ Form -;- ]

P L
—!l-"“"Hz [as z—0, z#0 |
=0

*. log {lim y}:()

ie, limy= o)
X—poc

I
Thus lim (1+x)x =1.
x—pec
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(iv) Let, y= x?n :
or, logy=2sinx-logx [ Base of logarithm is e ] '

2log x

0
e Thoses i [
or, lim {log y} = lim [ Form &

x—0 cosecx

2

= lim —X
-0 —=cosecx cotx

2sin? v

|
—

= lim
x40 —xCOSX
2sin xcosx

o 0
[ Form 0

—

=-2 lim s
-0 COSX—XSinx -

limsin2x
=0 -
lim (cosx— xsinx)
x—0 8

-2 X-9=0.
1

or, log {lim y} =0
X—0
ie, lim y=¢% =1
x—0

ie, lim x|
=0

(v) Let y=(1+sinx)*""
or, log y =cotxlog (1+sinx) | Base of logarithm is e ]

_ log(1+sinx)
tan x

’ . log (1+siny) 0
lim logy = lim ————M~ o
x—0 24 =0 tan x [ Barmh 0 ]
cosx
= lim ltsinx
A—0 swz x
3
=lim =% -

=0 | +sinx
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a1 li =1
o8 {lim, 7}
or, lim y=e' =e
x—0

lim (1+sinx)™" =¢
x—0

Ex. 5. Evaluate :

d

G) lim(‘a“")" [ B. P. 1995, C. P 1994, 97 |
x=0 X .
N ,
1 2
(i)  lim (EJ‘ : - [C P 1990, |
x—0 x

Solution : (i) Let, y= (Ei]
X

1 tan x
li 1 =1 —log| ———
iy e} i {1 22

g{mnx)
logl —— 0 )
= lim X [ Form ax—)O,smceas x—=0
x=0 X
y tan x
tan x
Y 5% . i log( )—*0 ]
X x
sec?y 1
= lim tan x X
x—0 1

) [ - 1)
s=lim| ————-—
x=0| SInx COSx x

. ' 2x-—sin2x
s= lim-——
x>0 xsin2x

Fesiii
[onnol
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—é-lim I-cos2x - B 9_
x-0 sin2x + 2xc0s2x { B 0 ]

=21im 2sin2x F ) 9
10 2c0s2x+2cos2x—4xsin2x b B 0]

lim sin2x
—4. =30 -
lim (4cos2x—4xsin2x)
x—0

4x9=0
4
or, log {ll_rﬂl y} =0

or, lim y=e’=1
x—=0

15 (tanx).w -
x—0 x

() Let, y= (sinx)?'
x

sinx
i ()g——
sinx =

x2

lim (-Sl—ni‘-)zl, lim ]og(ﬂ)=0

) 1
or, logy =— -log
T ox

x—0 X x—0 X

sin x

= : ‘ [ = |
i im —X Form
Jl(m?) (log y) lim 5 0

= lim
x—0 2x

lim XCOs X —sinx ) [F 0 !
= T orm —
=0 2x“sinx 0

. COSX—XSinx—cosx
= lim - =
-0 4xsinx+2x° cosx
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= lim —-sinx ' F 0
x50 2xcosx+4sinx s 0
n —cosx |
= lim - =——
x=0 2cosx—2xsinx +4cosx 6
|
I | li =——
e {xl—l:r(l) _Y} 6
-l
lim y=¢ ©
or, x:::)y e
1
[sinx)?f A
li — =e
x—=0 X
Ex. 6. Evaluate :
. log (1-x)
S okt -5 il :
0) xlg: ot ) [ C £ 1993 ]
(i) lim (cos mx)/ ' [ C. P 2002]
. lim log (1--x) >
Solution : (i) i ot (70) | Form — ]
- __l —
= lim (]-',‘.)
x=1 —mcosec” (Rx)
4 sin’(my) 0
—xl_!'T: ',T[(I-‘ t‘) I [ Form 6 }
2sin (my) cos(mx) 1
= lim i Ll '} =lim (-2sin2mx) =0,

x—1 nx (—l) x=l

(D) lin?.\ (cos mx)%’

n
Let y = (cosmx)x*
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“then logy= Lz log(cosmx)
X

o a_ . log(cesmx)
sl

I
-=m’n

or, limy=¢e.2
x=0

1
“—n'n

n
T ==, 2
- lim (cosmx) =e ,

' ) . x(1+acosx)-bsinx
Ex. 7. (i) Find a, b such that lim e =1
[ C P 1990}
. sin2x+asinx ; .
@i If 1‘_%—'?— is finite, find a and the value of the limit.

[ C. P 1994, 2000 ]
‘x(1+ acosx)—bsinx

0
Solution : (i) Here, lim 3 [ Form = ]
x—0 X 0

. ll+acosx)—axsinx—bcosx
<= lim
x50 3x2

= lim 1+(a-b)cosx—arsinxy
5550 e )

0
For (1) to be of the form 6.!ﬂ—a—b)=0

Lé, F=lra ™ " RN V)|
: : : I-cosx—axsinx 0
So, the given expression = lin ————— [ Form 0 ]

n 3x?
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. sinx —asinx —axcosx 0
= lim : : [ Form — ]
x—0 6.x 5 : 0

© cO$X —acosx—acosx+axsinx

= lim
x=0 6
= lim (1-2u) cosx +ax sinx _l-—2a_l .
T 0 6 6 + BiveR
1-2a=6 j a——é
a=6, ie, 5
: 5 3
From (2), b=1--=-=
o 2 I 2
e B 3
a=-=, b=-—,
Thus, 2 2
& i sin2x +asinx 0
(i 1m PEE [ Form ]

2c0s2x+acosx
nl 2
x—0 3x

0
For this limit to be finite, the form should be ‘(-) =

Le., 2+a=0,0r g=-2

lim sin2x+asinx _ lim 2cos2x—2cosx A 0
x—0 x3 x—0 3X2 [ orm 0 ]
i —4sin2x+2sinx & 0
Tio0 0 6x pra 0]
. —8cos2x+2cosx
= lim ——mMmM————
x=0 6
L Bt2 =
6

Hence, a =-2 ai.. the value of the limit is —1.
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EXAMPLES-XI
Evaluate the following limits [ Ex. /1 -9]

x — sin x cos x tanx — x

L 0 L —— ) L —— [C. P. 2007 )
x—=0 X x=0 X —Sinx
LI n n
R TR i Lt
(Il}) x—=0 |0g(l + x ) (iv) ra xX—da
© =22 +2x -4 e +eF —2cosx
) i~ i ) Ll W_—_——-—.[V.ng%]
=2 X -5x+6 Xsin x
o a’ - b”* 74 e’ +sinx— 1|
by y-2a _;'H“_ (Vlll) -0 lOg ( 1+ x )
el x ¥ sin x
W o o8& 0 i ETE [ P2004]
Rt W 120 x —sinx
tan nx — ntan x 2z =slb=x
o) Lr —— 2 i) L .
+-40 psin X — sin ax x=2 3y - 2/19 - 5x
s Ty 2 sin x - sin 2x ) sinlog(l+x)
(i) 7 tan> x - ) Fo log (1+sinx)
.. .2 . 2
o Lt sin 2x + 2sin® x — 2sin x + 1 =cos x
v 0 COs x — cos > X cos xsin? x
. (‘, - x) log sin x cos x
(xvi) Lt —= + .
vodn | e —I+log(l+x+%n) o &7
: 2
A @ o BUOE @ L BE
+—odx tanx <0 Jog cot” x

. n ‘
(iii) Lt x_t (n being positive ).
N -poo e‘

24
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' tan 37x log x — cot § mx
Bup $p st V) bp e BT
x—y% Sec mmx x— 0+ cot mx

x2 4 3x

x—eo | — 512

(vi) Lzo log tan? 2x . (vii)

tan? x

i) Lt x’log x2. (1) Lt cosec (mx Ylog x .
=0 N2

(i) Lt xlogsin? x. Gv) Lt sec ‘\'(1\' sin x - 'i‘”)
10 v lr g

(v) Lt sinx.log i, (vi) L1 sec 5x cos Tx.
=0 yodn

m

(i) Lt x" (logx Y, mand n being positive .
x>0+ s

a L{I (sec X~ tAn % ) (i) Lt (x" - cot x )

Ny on X =0
e
1 |
() Lr i el [ C.P. 1996, B.P. 1998
v=0) X sin” x

(iv) .
(vi) Lt

B I (_\«u X -9 ) oy (sz +§—x].

X—deo N —pes

i L . Gy L x> [ C.P 1996 ]
x—0 x—=0

i) Lt (sinx)®™ (iv) Li (cos)c)c"'z".
x—0 N 20

[ C.P. 1989, 1997 ]

v L (sinx )W~ (vi) L x
x—ydm vl
[ C P.2005]
o) 2 (o 2 )™ i (177 )

x—0 v e ()
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) Lt (1—12 )I/log(l«x).(x) L (logx /(I-'Ogr)lr

eyl xe
1 x - -
Lt T — ) i Lr s x |« :
) Hm( xz) (s Ho( :
[ C.P. 1985, B.P. 1996, V.P. 1995 |
k. A
(xiii) u(‘a" ‘) (v) Lt (’““)"".
x=0 X x=0 X
[ C.P. 1990, 1998, V.P. 1998 ]
5, L apx" +ax" + agx"'z +...ta,

xe pox™ +bx" T+ byx™ P 4+ by,
(a(, 20, 0,20 ),accordingas n>=or<m [n and m being

positive integers |.

1
7. Lt (ﬂnX +a " £ +”2Xm_2 +...+a );, m being a positive

m
Voo

integer (a(, +0 )

8. L 2‘<m~(aru) [C. P 1946]
HEOB o \
% @ i SLEEE G L Botelx-1)
xoe x4 1 x—rl( —l)s—x+l

10. If [ M is finite, find the value of a. and tne limit.

x-30 [;an3 X

[C.P 19971
11. Adjust the constants @ and b in order that

” 0(1+acos® )—bsin®
60 63

=]_

12. Determine the values of a, b, ¢ so that

X X
: ae’ —bcos x + ce
0] - —2,a x—0.
xsin x
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(i)

(a+bcosx)x-csinx
—l,as v—0.

5
X

; 2 3
(iii) asinx - bx + cx” + x may tend to a finite limit as

2x% log (1 +x)-2x> + x*
x — 0, and determine this limit.

Evaluate the following | Ev. 13— /9]

13, © Lt ff__;'ig;i'_*j_)_ G P 2007]
x—0 '
= 1 1
@) Lt {—-—log(1+x)}. | C.P 1989, 199] |
r—0 X X :
iy Lt xco';xultzg(l«!—x)
r—=0 X
S
i) U_[anx.tanﬁ X=X
x=0 X

e’ —e " +2sinx -~ 4x

14 Lt .
& b cosx—log(li-.r)Jrsinx—l. )
£=20 —(]+x)

16 2+cos2,x—smx B x-2¢ Y
) r-,ln xs:n2\+)u)sx 2sin 2x '

0. u M‘) HEd

= A

--—+2J(x+2) \/(3\—2)
19. Lt J;_"@___ \“_‘Q

X=—a+0

18.

2
xz =
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Show that [ Ex. 20—- 26 ]

. b ;
20. It a*sin— =0 or b accordingasO<a<l, ora>1.
X —>eo a

2. Lt {x—leog(H—l}}':l-
X—des X 2

Lt log(l +x+2a? )+ |(.)g(1— x+x2)'___ P
X0 SEC X — COS X

' T 4
2. Iy e 1 [ 3sinx—sin3x -1
0 x4 sin x | cos x - cos 3x

22.

10 (cosx)
24' Ll SIH X
x>olog. ;, (cos 1x )
L,

i
25. Lt M:-le

=0 X
’ A
a,'/’ +a2'/’ +...+ a,,‘/'r
26. L =aqay...a,
x—yeo ‘n

a” sinbx — b" sin ax

27. Evaluate Lt
a—b  tan bx — tan ax

28. If ¢(x)=x"sin(1fx) and v (x)=tan x, show that,

¢ (x) o(x)
!I’( ) doesnolexnst ~l—‘+louf(.r)

exists and = (.

although Ll

ANSWERS'

L@ % )2 GiD2 (V) o', (v) -6
o) 2 i) log (a/b). (i) 2. (x)-1. (0 L) 2
W L. i) L iy L ) 164, i) 4.

2 0 3. (-L G0 vEW-2 L i) -1
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3G 0 @i)(-1/m) (ii)0. (iv)-1 (v) 0(vi) -1, (i) ©

4. () 0. (i) 0. (i) - 1. (iv) 3. (v —%+.(vD). (viD) 0. (vii) L
s, @ 1L G L i) L ) T w1

(vi) 1/e. Wiy 1L (i) L @ e

© l/e.. ) L i) 1 (i) ¥, (xiv) e

6. towor— e (corresponding to aq /by being positive or negative)

ag /by, 0 accordingas n>=,<m

g WL 8.a 9. G .(ii)—%. 10. a=2; limit=1.

11. a=—%. bs*%, | |

12. ) a=1, b=2,c=1. (i) a=120, b =60, c=180.
(i) a=6, b=6,c=0;limit= .

1360 3. i Gt v 3. 145, 15.0.

16. - 17. da/rm . 18.-8. 19. 1/\2a .

L
1

27. 5~ (b cos bx — sin bx) cos” bx -



12 PARTIAL DIFFERENTIATION
(Functions of two or more variables)

12.1.  Definition.

If three variables «, x, y are so related that for every pair of values of x
and y within the defined domain, say, g < x < pand ¢ £ y £d, uhasa
single definite value, « is said to be a function of the two independe:..
variables x and y, and this is denoted by u = f ( X,y )

More generally (i.e., without restricting to single-valued functions
only), if the three variables u, x, v are so related that « is determined when
x and y are known, u is said to be a function of the two independent
variables x and y. '

Illustration : Since the area of a triangle is determined when its base and
altitude are given, the area of a triangle is a function of its base and altitude.

Similarly, the volume of a gas is a function of its pressure and temperature.
In a similar way, a function of three or more independent variables can be
defined.

Thus, the volume of a paralleloplped is a fuction of three variables, its
length, breadth and height.

Note 1. Ifto each pair of volues of x and y, u has a single definite value,
u is called a single-valued function (to which the definition refers and with
which we are mainly concerned in all mathematical investigations), and if to
each set of values of x and y, u has more than one definite value, u is
called a multiple-valued function. A multiple-valued function with proper
limitations imposed on its value can, in general, be treated as defining two
or more single-valued functions.’

Note2. Geometrical representation of z = f (xy).

When a single-valued function z = f (x,y ) is given, for each pair of
values of x and y, there corresponds a point Q in the plane OXY, and if a
perpendicular QP is then erected of length equal to the value of z obtained
from the given relation, the points like P déscribe what'is called a surface in
three-dimensional space. Thus to a functional relation between three-variables
x, ¥, z, therefore, corresponds a surface referred to axes OX , 0¥, OZ in
space.

Note3. Continuity ' -
The function f (x. v ) is said to be continuous at the point (ab),if
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corresponding to a pre-assigned positive number €, however small, there
exists a positive number & such that

[ f(xy)-flab)|<e,
whenever 0<|x-a|<5 and 0<|v-b|<$§
12.2. Partial Derivatives.

. The result of differentiating w = f ( x, v ), with respect to.x. treating
Y. as a constant, is called the partial derivative of w with respect to x, and

ou of

is denoted by one of the symbols =— | 2| fi (,\', y ) Lorbriefly,f ). 1,
de dx ' Sl
etc.
Analytically, 9[- = i 2 (x+avy)-f(xy )‘
dv a0 Ax

when this limit exists.

The partial derivative of 1 = f ( X ¥ ) with respect 1o y is similarly

defined and s denoted by 'g‘“' , %f'  fu(xy ) [or briefly, f], u, etc.
_\" (_)’ : 4
Thus, &= 1 f(ny+ay)-f(xny )
dv Ay — 0 A_)’

provided this limit exists.

Hu=jr (x, Y. Z ) then the partial derivative of ¥ with respect to x
is the derivative of 1« withrespect to x, when both y and z are regarded as
constants.

Fx+ax )= 1 (xnz)

Thus, Qf-: L 22 :
ox &0 Ax

Similarly for QL, Qf,
_ dy dz

Iustrations :

Let u=x’ +xy+y2; then

Ju du
— =2x+y; —=2y+x.
p™ y F
Let- u = yz+ zx+ xy; then
Ou

ou ou ,
o =Ml EEohAn T EXEy

ox B 9z
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Note. Thecurl 9 is generally used to denote the symbol of partial derivative,
in order to distinguish it from the symbol d of ordinary derivative.

12.3. Successive Partial Derivatives.

Since each of the partial derivatives -g—" ; gﬂ is, in general, a function
x y

of x and y, each may possess partial derivatives with respect to these two
independent variables. and these are called the second order partial
derivatives of u. The usual notatiions for these second order partial
derivatives are

(Y
3l ax | e ;x—z- or f, etc.
afa) o
Caylay | e W or[‘?. etc.
o)
ox|ay | L& Iy or f“

9 (du) | 3%
W 3 | e s or f_”. etc. .
Although for most of the functions that occur in applications we have

u _ 0%

axdy " dyox
i.e., the partial derivative has the same value whether we differentiate
partially first with respect to x and then with respectto y or the reverse, it
must not be supposed that the above relation holds good for all functions;
because the equality implies that the two limiting operations involved therein
should _be commutative, which may not be true always. Ex. 3, Art. 12.4 will

2
elucidate the point. We can prove, in particular, that if the funtions % 5‘
dydx
2 :
and sa-l;“— both exist for a particular set of values of x, y, and one of them is
Xoy :

continuous there, the equality will hold good.

%
dyox

f " %u _
Proof of the equality m—

/A O f,, all exist, and f, (ot f,) is continuous then f=1
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Proof: Let ¢(.\’):f(x,y+k)—f(.r,y), (1)
Now applying Mean Value Theoremto ¢ ( x ) we gel
o(x+n)-9(x)=ho, (x+6h), 0<g<i,

=h{f(x+0h, y+k)-f (x+0n, v)}
=h{F(v+k)-F(y)} say o
[where F(y)=f (x+6h, v)]
=h{kF, (y+6'k)},  0<@'<l,
by Mean Value Theorem
=hk{f (x+0h, y+0'k)} sie 100
Againfmm(l),t;)(x+h)=f(x+h,y+k)—f(x+h',y)
$(xen)-o(x)=f(xsh, y+k)-f(x+h,y)
~f(x, y+k)=f(x,5). o B

Now, f.(xy)= oA L{my+ kk)— f(x)

and f,\'_v(-r’y)‘: o4 f\'(x+h’y)—-ﬁv (x’y)

h—0 h

= i f(_r+h,y+_-lr)—f(x+h,y)—f(x,y+k)+f(,r,y)

h30k—>0 hk

o 2lxen)-0(x) from (3)]
h—0 k-0 hk

=L L f(x+0hy+0'k) [from (2)]
h->0k-50"

= ful(x y). since £, is continuous. -

2 2
Illustration : Jf f(x,y)z xyxz—y—z, when x#0,0ry+#0,
. X= 4y
=0, whenx =0, y=0,
how that at the point (0,0), L« 2 [ C. P 2004, 2007 |
show n? e point (0, 0), By B 5 I o

Le., f“‘((’),());e f):\ (0’0)-
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When x#0, ory#0,

f,,(x,y):y -y +x(12+y2 )ZI—(Xz -y? )2x

2
24y (Jc2+)'2)2
. o s 4x2)?
=y % 1,+ = oo (D
x“+y (x2+y2)‘
x2_y2_ 4.\:2_)/2

7 Similarly, f_‘: (x, v ) =X (2)

2 2
x“+y (X2+y2)2

 (a0)- o L060)-1(00) o

h—0 h
Similarly, f,(0,0)=0.
From (1) and (2), we see that

£(0,y)=-3(y#0), £, (0) = x(x #0).

(h, )~ £,(0, 0
fy f\( )=Llﬁ=l,
h h—0 h

Again, fx),‘(O, 0)= Lt
" ko0

£(0,0)= Lt £0k)-£(00) _ , —k_
’ k=0 k k=0 k
" o (0,0)2 £, (0,0)

We have similar definitions and notations for partial derivatives of
order higher than two.

If, z = f{x,y ). the partial derivatives of z are very often denoted by
the following notations :

o _ % _ %2z _ . 3z _ 9% _ _ 2z _ .
—~ =p,—==9q,— =17, = — =5, — = 1.
ax dy ox? dxdy dydx oy’
Illustrations :

u=x3+x2y? 4y’

du 2 2. u 2. u

a3 v 2yt = = 6x 42y —— = 4xy.

o X P G T 5, T

! These notation was first introduced by Monge.-
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) - % 0?
o 3y‘2 + 2)‘2.\1; 2 ? =06y + 27 L 4xy.
oy dy? ax
12.4. Nlustrative Examples.
Ex.1. Ifx=rcos®, y = rsing,
sothat r = (22 +y2 ). 6 = wn /).
show that
ﬁ # 1 9£ and L)‘— # 1 00
or ox 9 A
ax or Yy r cos &)
— =cosf : — = - = < = = cos @
Bee. 5 = Jeey?) 7
Jx a8 v rsin0 sin 6
—4~~rmn();__:.~»~."—_=w ==
a0 ox 242 »2 r

Hence, the required results h)llow

Note. If yis a function of a single variable x, then we have seen that,

dx
under certain circumstances (see § 7.7), ~/—~ % )/-I A similar properiy
dv dy

is not r ue, as seen above, when y is a function of more than one variable.

Ex.2. If u=f 2 . show thai .xﬂ + v 91 =0.
x x dy

u=f (z) say, where z = v/x.

d i & SR ¥
Similarly, g8 = f'(Z)ij- = ‘l"f( .
dy X

du _ du 82,' f() c')z.____ y f'(z)

~
—

dy
du du R Y
M X (2 (e)=0
ox dy X X
Ex3. Show that
b fr X L gy g 2=¥

120 y230x+y  yo0 10 x+y

Leftside = Lt -* = 1r1=1.

r=30 x =0
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Rightside = L+ —= = Lt (-1)=-1.

y=0 y y—0
Hence, the result.

EXAMPLE-XII(A)
1. Find f, . f‘ for the following functions f(x, y) :

() ax? + 2hxy + by”. Gi) tan™' (y/x).

i /{24y ). @) log(x? +y2 ).
(v) .\'2/(12 + yz/hz 2=
2. Findf ,f.. j;‘ . f for the following functions f(x. y):
@ o432y 430 400 Gi) et Y
(ii)) xcos y + ycos x. (iv) logCx?y+xy?),
30 1 v=yx®+y?+ 77 showthat xV, +yV, + V. =2V,
@) If w= x’v + v z + z%x, show that
| ctuy vu, = (x+y+z )
(i) If u=f (A_\’Z),ShOW that
XUy = VU, =W,

z du du du

(iv) If u=l+-—+-—, rovethalx——+ —+z—=0.
z x oy P ox. 2 dy oz
CH. Ly x Y du du

4. (@) If u=sin"" = +tan” =, showthat x — + y— = 0.
: y X dx dy

[ VP 1995, ‘97 |

2 2
Gy i = T Y gy patUsd )”(l;x )
-+ (+xD) (14 y7)

prove that U, V, =U, V.

9%u 9%u

5. (a) Show that -+ — =0, if
ax?  9y?
M) u=log(x®+y?). [C.P. 1990 |
. (i) wu= mn_'(y/x). [C.P 1998 ]

(i) w=e"(xcosy—ysiny).



382

DIFFERENTIAL CALCULUS

10.

11.

v 2’v a3rv
+ +

=i P
() If V = ztan”' = then = 0%,
x Ix? ay2 azz
[ B.P. 1998 ]
A x2 yz (-.2
(l) Iff(x._v,z):. X y 2
! 1 1

showthat f, + /. +f. =0,

1 1 1 1
- X y z w
) If w=| , 2 2
X N b W
3
5 _\,3 N .

show that w, +u,  +u_+u, =0,

If V=ax?+ 2hxv + by2 , then show that
VIV, =2V, YV, +V, 'V, =8 (ab - hZ)V :

If u=1log o+ )'3 + 2% =3xyz), then show that

du du Jdu 3
=R . N B.P. 1989, 91, 97
¢ dx dy dz x+y+z - J ]
% u 'w 9w 3
(n) g o S summ——————p
ox dy 20 (x+v+z)
[V.P.'97 C. P 46, "85, 2007, B.F. 2001 ]
1f v = {32+ +27) showthat V, +V, +V =2V,
If v = l/\fi 7 & y? 4 2? ) showthat V.. +V, . +V, =0.
[C.P. 1976
If u=e™*, prove that
QJM 2 -
— = {I+3xyz+x y 2" Je™. C. P 1947
3x 3y 02 (1+302+ x'"%) [ ]

12. () If V=(ax+bv)? - (x> +y?), where a2 +b° = 2,

then show that Vi, +V, =0,
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(i) If u=3(ax+by+cz)—(x>+»° +2° %) and
‘u *u u

al +b* +c? = , find the value of
a‘,z (‘b,l 652
[C.P 1934]

(ll

Gii)) If v =ax® +by° +cz° +2fyz+2gzx+2hxy and z

showthat a+b+c=0.
z ) satisfies the equation

“

13. Show,that, if (X, y,

5 .

2

c“u Su CTu
s 1+ﬁ2_0,then

&x oy 0z

5
0] %E- X %yl ; %ﬁ satisfy it, and also
Y ' oz

on Su u
(i) x—+ y— + z— satisfiesit.
o oy oz

If v= Iog(x' + 4 zz), prove that

_ 2% &%
Oz o Ox dy
— \-2 + yl + _'._'z, pr()VC that

[C.P 1975, 2008 ]

14.
: 2%u
e

15. If w=logr and r
~2
_"J= .

> 821:+52u+c,
o’ o’ a2

f(x+cr)+¢(x-ct), show that

16. If y=
V 2 Bzv
F=e— (VP 2001
’ ar- . ox
17. If us= i"(aa2 + 2hxy + byz), v= {zﬁ(axz + 2y + by?-) show
that _?_(uf‘i)z el a2l [CHI934]
oy ox ax &
18 If (i) Usx+y+z, F=x? 43?427
2 = 3xyz,

W=x'+y 4

. ki
I =ixe +y2 +22,W:y_7+:.r+_ry,

(i) U=x+y+:,
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g, U, U
show that ineachcase |1V, V. V. |=0
Wx W_l‘ w:
19. If a, B,y be the roots of the cubic o+ p.\'2 + gx + r = 0, show that
L L8

a Jda da
op o ap
“Op  Oq or
o o o

vanishes when any two of the three roots are equal.
20. Show that

L&) A AE] | AR AE) AR
2. () () #0) =] () () &0
vi(z) v () v @) | W) wi () wile)

where dashes denote differentiations with respect to the variables

3

ox oy oz

concerned.
ANSWERS
L) 2(ax+hy) ; 2(x+by). i) -—=L. ==
X°4¥ Xy
hY i 3 2x 2y
(iif) - e ) T S
(J.z 3 i )s (,\‘2 5§ )? FERP L
2x 2y
=
a* b*

2. () 6(x+r).6(x+y ). 6(x+y). 6(x+_v).

) - {(2.\‘+_y I+ 2'}4 :f(l\-+y)(.\'+2'1-')+ L

H2x+y)(x+2p) 41}, 2 {(,\ #2v ) +2 }, where : = e st

@Gi) — ycosx. —(sinx+siny). -(sinx+siny). —xcosy.

L '}4! I N L )
2 (x+ P (.\-+‘r)1‘ (x+3 ) I\r (x+y)]

(m{
12. (i) O

2
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12.5. Homogeneous Functions.
A function f (x, ) iss  to pe homogeneous of degree n in the

variables x and y, if itcanbe . jressed in the form x" ¢(~}—,], or in the
x
form y" ¢ 21,
y
If V be a homogenen - function of degree n in x, y, z, then each of

_G_KBV 1%
ox ' dy’ 0z

' 2
Since ax’ +2hxjy+llry2 = x? {a+2h—y~ +b(l] }‘: xzd{&v-J
X X x

ax? + 2hxy + byt isa homogeneous function of degree 2in x, y.

—— is a homogeneous function of degree (n — 1).

Similarly, y/x, xtan™"( y/x ), x? log(y/x) arehomogeneous function
of degree 0, 1 and 2 respectively.

'Notel. An alternative test for a function f(x,y ) to be homogeneous
of degree n isthat f(mxzy)=¢"f(x y) forall values of 1, where ris
independent of x and y.

Note2. The test that a rational integral algebraic function of x and y
should be homogeneous of degree n is that the sum of the indices of x and
¥ in every term must be n.

Note 3. Similarly, a function f (x, Y2 ) is said to be homogeneous of
degree n in the variables x, y, z, if it can be put in the form Lf y L ,0r
x' x

if (1, o1z ) = ] (%32 ); and so on, for any number of variables.
Thus, f ( unz ) = ‘/; + J; -;-‘JZ is a homogeneous function of
degree 12- , since . '
f(ixiniz) = Jox + oy 4z =17 f(x3.2)-
12-.6. Euler’s Theorem on Homogeneous Functions. 7
If f ( X, ¥ ) be a homogeneous function of x and y of degree n then
xg—r- +y 9—f = nf (

dx oy
25 -
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Since f (x, y) is a homogeneous function of degree n,
let £ (x,y)=x"9(y/x)
=x"¢(v) where v=y/x.
Y it () ¢ ()2

="' (v)+ x" 0" (v). s

2 -

b
ERR O oR s
af af

x?a;'"—yg:nxn‘p(\’): l‘l'lf(-Y,y).‘

12.7. Differentiation of Implicit Functions.
Let the equation f (x,y) =0 R

define y as a differentiable function of x, and let f and f, be continuous.

Then, we can find % in terms of g. 3 Bl -as follows :

dx  dy
We have f(x+Ax,y+A__v):O.

f(x+Ax,y+A‘,v)'—f(x,y)=O v A2)
Now, by the Mean Value Theorem, [see §9.2 ]

fx+any+ay)-f(xy+ay)
e L el 0 By ) [0<8,<1].
dx
f(xy+ay)-r(xy)
)
-—Aygf(x,yszy) (0<6,<1].
Adding these two and using relation (2) and dividing by Ax, we get
—«f(x+8Ax,y+Ay)+ii 3 f(xy+6,4ay)=0... Q)

Since y is adifferentiable function of x,when Ax — 0, Ay — 0, and
since f, and f, are continuous, we get, by making Ax — 0 in (3),
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a—j‘- ﬂ-i:
reiirel vl
r
dy _ _ax__N @
dx_ i-f—- r, _(f!'*o)
dy

12.8. Total Differential Coefficient.

Let u=f(x,y), where x=9(r) y=w(r).
Then usually » is a function of 7 in this case.

C o d
To obtain the value of —ﬁ
_~" Let us suppose that f , j;.as also ¢" (1) w (1) arecontinuous.
When ¢ changesto t + Ar, let x and y changeto x + Ax, y + Ay.

Now, u = f{¢(r ), w (1 )}5 F (1), say.

du _ . F(r+A1)-F (1)
dt 150 At ‘ )
_ oy Lol w(+an}-r{o() v}
A0 AL
_ oy Lxranyeay)-f(xny)
Al—fﬂ At 2
_ oy [ £ ranyeay)-f(xy+dy) ax
Ar—=0 ; Ax At

Ay At
But, by the Mean Value Theorem, [ see §92]
f(x+Ax,y+Ay)-f(x,y+Ay)=Ax‘.f_,(x+0Ax,y+Ay)
and £ (xy+8y)-F(xy)=801, (xy+6"ay).
where @ and 0" each lies between 0 and 1.

+f(x,y+Ay)-f(x,y)_g}

’ Ax ’
When Ar — 0,Ax —» 0 and Ay— 0; also -A-r--—b(b (f) and
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Also f (x+0Ax, v+ by ) fx(-‘-y)i
5 (x,y+9'Ay)—> fulxy).

dx dy )
o = fe d b g o o (D
i, v Ou dx Ju dy
e at  ax dt dy dt v (2)

Note 1. As a parttcular case, if u = f(x,y). where 'y is a function of .

duzﬂ du dy

dat ax dy dt

-Z'i is called the total differential coefficient of u, o distinguish it
from its partial differntial coefficient.
Note2. The above result can easily be extended to the case when u isa
function of three or more variables.

Thus, If w = f(x,y,z), where x, v, z are all function of .

du _ Ou dx+au dy du dz

dr dx dt ay-dt a— di

12.9. Differentials.

We have already defined the differential of a function of a single
independent variable; we now give the corr esponding definition of the
differential of a function of two independent variables x, y. Thus, if

u = f(x ), wedefine du by the relation
du = f Ax+ f, dy

Putting u =x and u =y in tumn, we obtain
dx=dx, dv=Ay ws @)

sothat du = f, dx+f dy )

Multlplymg both sides of the relation (1) or Art. 12.8 by dt, and noting
that, since x, y are each function of 1,

die =2 dem s B
dr dr dr

we get du = f.\' dx + f." (J_)‘
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-which is same in form as (2) above. But x, y here are not independent, but
each is a function of .

Hence, the formula du = f, dx + f, dy istrue whether the varmbles
" x and y are independent or not.
' This remark is of great importance in applications
 Similarly,if u = £ (x, y, 2 ),
du =f, dx +f, dy + 1, dz,
whether x, y, z are independent or not.

Note. It should be noted that the relations (1) above are true only when x
and y are independent variables. If x .and y are not independent but
functions of a third independent variable 1, say, x=¢(i) y=w( 1 ), then
*dx=¢'(t)dr and dy=y'(r )dr, where dr=At.

12.10. - Exact (or Perfect) Diﬂ'erenﬁal. ‘ .
The expression

¢(xy)ax+y (xy)dy w0
is called an exact (or perfect) differential if a function u of x, y exists such
that its differential
du ou

du, ie., axdx+§—;dy (2)

is equal to (1) for all values of dx and dy.

Hence, comparing (1) and (2), we see Lhat if (1) be an exact differential
it is necessary that
. du du
s—=¢(xy) ad ——=y(xy).
- 0x ay ;
Differentiating these relations with respect to y and x respectively, we have
2 2
w0 a9 and d“u - 3_!;1
dydx T3y y dxdy Odx

. : ; » 32u 3%u
Since, in all ordmary cases, ., hence, in all ordinary
dydx ydx “x0y dy
cases, m order that (1) may be an exact dt_ﬁ“erennal it is necessary that
2¢ _9 v
Ay y x

It can be easily shown that this condition is, in general, also sufficient.
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12.11. Partial Derivatives of a Function of two Functions.

ifu=f(x,x)

where ¥ = ¢,(x.y ), x, =¢,(x y ),andx.yareindependent variables,
then

We have
: du du
du="dx, +-2% dr
T T w0
B =l g 05 e e P S,
= + d = +
T 9x dy o 27 9x dy e

When values of x;, x, interms of x, y of are substituted 1 becomes
a function of x, y; hence

du:a—“d_t+-a—ud_ @)
Ix Pl “i
Now, substituting the values of dx;, dx, in (1), we get
du dx, du dx Jdu dx;,  Jdu dx
du=| — L4 — " 2ldx4|——2L+———2|d
[ax, dx dx, E)x) dx, dy 0dx, dy .
Comparing this with (2), since dx, dx are independent, the required
relations follow.

Note. The above result admits of easy generalization to the cases of more
than two variables. Thus, If « = f(xl. X3, X3 ),where x;=¢, (x. Yz ),
xy=02(xrz), Xy =0, (x. Yz ) and x, ¥,z are independent
variables, then

du_ Jdu dx; du sz du dxjy

e s e

du_ du dx; Jdu dx; " du dxj3

3y 0x, dy 09x, dy 0x; oy
du_dudx, dudx; dudx
dz 0x) 0z 0xy 0z OX3 9z °
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12.12. Euler’s Theorem on Homogeneous Functions (generalisation).

Iff (x, y, 2) be a homogeneous function in x, y, z of degree n, having
continuous partial derivatives, ‘

a .
then f+y f+z—f=nf,
dy dz
Proof : Since f (x, y, z ) is a homogeneous function of degree n.
£ (1x, 1y, tz)=l"f(x, v, 2) g D)

for all values of .
Putting tu=u, ty=u, tz=w
differentiating both sides of (1) with respect to ¢, we have

u.éﬂ.}.ﬂ,ﬂ*.g_i.a_ui:,”"'lf(x’ A Z)

du dv dt ow Ot
_a_i 9f _f_ n=le(
xau+yav aw—nl J(.x,y,z)
Putting =1 in(2), .
8f o B3 o AF
a;”’ dy Zaz”"f

Notel. The above method of proof is applicable to a function of any
number of independent variables.

Note2. The above result can also be established as in the case of two
independent variables, i.e., by writing

f(x y z)=x"f(l,iJ=I"f(u, v), where u=l, y==%
x x x

12.13. Converst;. of Euler’s Theorem.

Iff (x, y, z) admits of continuous parrial derivatives and satisfies the
relation

LOf 8,
o 2 z L4 =nf(x, y z
32’3y f (x, y )
where n is a positive integer, prove that f _(x. Y. 2 )-u' a homogenous
Junction of degree n. ) [C.H. 1960]

Proof : Put é=§,ﬂ=%,{=z;
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thenx=§68, y=n(, z=¢. Suppose, when expressed in le_rms.of
§.1n.¢
f(x y2)=v(E. n, )

ey 3 2L x(glvgg dv an av4ag)

*ax d dx 9n ax 9 x
=x(a—g-é+—q—$-0+a—; 0)
=.§a—§.

Similarly, y %:nﬁ

e e
{ag L gag
Hence the given relation reduces to
PR e o LEEE
a C * o v g C I

whence log v = nlog { + a constant ,
where the constant is independent of- {, but may depend on & and 1 ; let
this constant by denoted by log ¢ (£,7 ).

Then v=¢"0(&m).

. x
ie, f(x,y,2)=7" ¢( -nl)
Zi Rz
which, according to the definition of a homogeneous function, shows that

f ( X ¥ Z‘) is a homogeneous function of degree n.

Note. If n be any rational number, the proof and the result remain
unchanged.

.
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12.14. Iustrative Examples. -
3,3
- Ex.1.If u=tan! _x_x+_y_ , show that
-y

X%% + )‘g—y- =sin 2u, [C.P. 1996, 98, B.P. '95, V.P.’99, 2002 )

From the given relation, we get

x-y x{1+- (y/x x

tan u is a homogeneous function of degree 2.

Let v =tanu; .. by Euler’s Theorem,
av+ 2_"._:2
31 ya_v
xseczuy—ﬁ-yseczu—qi:zlanu
dx dy

au du _ 2tanu
dy " sectu
Ex.2.  If Abethe areaof atriangle ABC, show that
dA =R (cos A"da + cos B db+cosC dc)
where R is the circum-radius of the triangle.
From trigonometry, we have

Al = i%(zbzcz +2c2a? +2a%% -a* —p* - ¢* )

= 2sinucosu = sinZu

Thus, A is a function of the three independent variables a, b, c,.
Hence, taking differentials of both sides,

2dA=T%{4a(b2‘+t:2-a2 )dt:l-i-t%b(r:z+a2—b2 )n‘l‘7+4c(az'-!»b2 -cz)dc}
= 1 (4a-2bc cos A da+4b-2ca cos B db+ 4c - 2ab cos C de)
=-ll,-abc(cosA da +cos B db +cos C dc)

~dA = %(cosA da +cos B db +c0s C dc)
= R(cos A da+cos B db+cosC dc)

Ex3. If Pdx+Qdy+R dscan be made a perfect differential of some
function of x, y, z on multiplication by a factor, prove that

a0 3R, (2R _2P), (2P 20
P[az ay]+Q[ax az)+.R(3y Bx]

[C. H. 1949, 1954 ]
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Suppose u isa functionof x,  z and
u(P de+Q dy +R dz )= du,

where W is some function of x, y, z.

Also,

since u is a function of x, y, 2.
Comparing (1) and (2),

9% _or w0 oy
T 9yox l‘lay dy dx dx

(on differentiating (3) with respect to y)

(on differentiating (4) with respect to x, assuming

Similarly,
aazzauyz“%ng_i‘:. %J' %’
aa,:a"f"g_f”z_‘::”%g”%%‘

From (6), (7), (8), we get on re-arranging
(52-55)- 1353

% u

M

@

®
)

5)

©)

_ % u
dydx dxdy|

M

®

©
. (10)

(1

Multiplying (9) by R. (10)by P, (11)by Q and adding together, we get

the required result.
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Note. If P dx+Q dv + R dz be itself a perfect differential, then we easily
deduce the conditions that
90 9R OR _dP _9P 9Q _

Az dy dx dz 'ay dx
‘Ex.4. If V be a function of x and y, prove that
v v _da*v 13w 1 'V
——t— = ——t——t———,
ax?r a3yl T ask ar r? 002

where x = rcosf, y =rsinf. . [C.H 1953]
r=yxl+y?, 6=tn'2.
: x
Hence, a—"}=cosﬂ; 9—’=—i‘¢—=£ﬂﬁ=cose.
dr dx x2 + y2 r
a—'X—-smﬂ i£= 2 Fany sin 6
ar y x2+y2 ’
96 _ 1 __X_)—_. 5= .y _ _rsn@ _ sinb
x 2 x2) 2+y? 2 2 5
| + - £
X"
90 _cos@

r
Since 'V is a function of (x,y),and x and y are functions of r, 9, s0
V isafunctienof (7 0 ).

Hence, a_V _ﬂi’i,,a_va_q

dx dr dx 98 Jx
= cos @ .a_‘./._ﬂ.a_‘: -
SR, L e D

=sinea_V cosf IV .
“ar r d8 e @
Thus we have the following equivalence of Cartesian and polar
operators :
a_a[c ei_sin()_ﬂ_]
dx ar . a0/
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i
i 4y 1. cosﬂ—a———‘v‘inei cosagz—smea—v
r ar r 08

sin @ 92 v 1av 1. 3%V
0 ——— -sinf — -~ ——cos@ ——sin@
r 0080r dr r do r 392)
3%y 2,0’V 2sinf cos® 9V  sin’0 9%V  sin2@ Vv
So—— =cos” @ — — + i -—
 x? 3r? r 9rdf: 2 3g2 r ar

% 2sinBcos@ AV

546
Similarly,
2%v 2,9V 2sin0 cos® AV cos’O 9V cos?@ AV
— =sin“ 0 + o + —
ay? ar r dradl r2 392 r ar
_2sinfcosh oV
r? 26
v v atv 1alv  1av

“9x% 2yl arl rag? rar
12.15. Miscellaneous Worked Out Examples
du 57u
axl 61' [C P 1986 ]

) 2 2
(ii) If u= x*, prove that % 556!;

Ex. 1. (i) Ifu_JA-,fndtheva[ucof

[C B 1986 2001, 2008 ]

52
(i) If f(x,y)=x3y+e2%, show that &5f 5 . [C P 1993]

|
Solution : (/) Here, u=x2-y2

; _11 52 11y =2 L 23
%=—;X 2y and ax:‘—_i(_..)x 2.y2=——x 2-y3
X
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173

1 - | . R2
gziixi-y Eand gy—::—%x;.y 5
e a_ﬁ_i[ﬁi__]i(__y_)
o2 8y? a| x/x yJ; T4 'xy\/x_y
(i) y=xv

or, -5—u=x3' -log
dy
82u 1
and, —=y-x>"!.logf+x¥ -—
dxdy - . x

=y- x>l logE+ x¥-! see ()
. Ou
Again, — = y. x»-1
g ox y
5
and _ayﬁl; =].x»1 +y.x}"‘1 ]Qg: i 2)
82u &%

From (1) and (2), Bxdy = W
2

(iii) Here, f(x, y)& x3y+e®
Y e (2xy)
oy
2 ,
nd gd= 352 +e7 2 (2m) e (2y)
Y
=3x2 +2ye"” (xy2 +1) tox D)

Again, -g{ =3x2y +e2? (y?)

2 v
and . . 3x2 +e9% (2xy)y? + e 2y =3x2 + 2yen? (xy? +1)

Sydx
()]
82f  82f
From (1) and (2) Al = Bydx
Ex. 2. () If w=r3 x2+y?+z2 =r2, then prove that
82 82u 8%

A : [C P 199]]
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i) If ur=)c2lan"-2,-—y2 tan' =, prove that
x v

2 2_y2
By oy (C P 1998]
&xdy x2+y?
(i) ¥ u = xlogy , show that . =Yy,

[ C. P. 1983, 96, 2003 ]

Solution : . () - rZ=x2+y2+?

S2u &r 3x2
———3 1+ 3——3 —_
Sx? e &x r

82u 3 2 2
similarly, E‘— =3r+ { al g 2 + =

8% 8%m S : PR 5
.&—2+&7+5;—_9 r+C (x +y2+42%)= 9r+— r2 =12r

: y
(i) u=x2tan"! = -y tan~! —
x

2—u-¢x2 ! oo l—2yl‘m 1 —y2x : 1’{'%}
T
X y
3 : 2 .
= ~2ytan~! —+ =x—-2ytan
x2+y? y xi+y? ¥
8%u - 1 -—l—-l~— 2yr _ xiiy?
Sxdy [x]z y x2+y? x4y
+| —
Y.
x 1
(iii) u=xlogy . u, =— and u,, =—
. y

1
Again u, =1-logy and iy, =—
y
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Ex. 3. (i) Show that f(x, y)=tan %-ksm — is a homogeneous

function of x.' y. Determine the degree of homogeneity. Hence, or

otherwise, find the value of x—+y-§f- [ C. P. 1991, B.P. 1996 ]
: Sy
1 4

(ii) Examine whether f(x, v)= x 3. y3 -tan s a homogeneous
. X

function of (x, y). If so, find its degree. [ CaP. 1993 )
(iii) Examine whether the function u(x,y)= 2+i2 is a

homogeneous function of x and y. [_ B. P. 1995 ]

Solution ':'".,;_(i-) f(x, y)=tan- 'y+sm 12— 1an-12 ¢ cosec1 2
A9, v e 3

=/x°{tan"’(§J+cosec I[x)} x°¢( )

Hence, f(x, y) is a homogeneous function of x, y of degree 0.
By Euler's theorem on homogeneous functions,

9 d
xgxf;+y.é_£=oxf=0_ [~ here n=0].

a 1 3
R ;
@) f(x, y)=x 3- y3 tan? = x¥ox 3.!7(;,"(_’1)
X =
3

4

o (1 (2 of2)

Hence, f(x, y) is a homogeneous function of x, y of degree 1.

(1+ 3) 1+(¥)3 :
Gii) u (x, y)= xz = xx B =xnx¢(_}i).
) o]
xz X
So, u (x, y) is a homogeneous function of x, y of degree 1.

Ex. 4. (i) If u= xsin“(-‘-v-)+ ytan~!| = | find the value of Py yai‘
X, y &x dy

at (1. : [ C. P 1988 ]
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@ If u=x-¢(y)+\u(x) prove that x6—+y§£—x¢( )
) Sy X
[C. P 1988 ]
Su  du
(iii) If g (x,))#(O 0) and x~—+y—=ku find the
,/x+y Sx 7 &y
value of k . [ C. P 1997, 2002, 2004 |

Solution : (i) u= \em“'(y)+ytan"( )
y

wof 2 Lo a2

So, u is a homogeneous function of x and y of degree 1.

By Euler's theorem, x6—+y%£= 1-u
y

:.ts;n—n(§)+ym,;-n(§.)

At (1, 1) x§+yg——lsm"(l)+ltan"(l)_— .j_=-3_".

(1) Let v= x-¢(—) and w = \p(m)
x x
Ther. v is a homogeneous function of x, y of degree I, and w is a
homogeneous function of x, y of degree 0.

So, x%%-y—g =lv=v [¢))
and x—+ vﬁ—"’zo w=0 B e 2
© 8y .

Su &v dw
U=v+w, =—4—
Sx &x  Ox
or, x@=x§-‘i+x§£
T & dx  &x
Su 8Bv  Ow
larly, y— = y—+y—
similarly, y&v vﬁv+yﬁv
xﬁ_u+ Su o x5V+ _61 x.s_“i+y§‘£ =v+0=v=x Q(X]
Bx T8 | & % 5 by e
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. g
o x2{1+(—-) }
x2+y x y
o)
Ax

(H.l.) u= = =X
So, u is a homogeneous function of x and y of degree % Hencé,

N w

)

by Euler's Theorem,

Lo, B 3
- yﬁy 5 : shw WL
But given that,x?;i+y§!—‘-=ku v sewm  A2)
dx 7 8y )

From (1) and (2), & =%

[ x+
Ex. 5. (i) If v=2cos-‘(-‘/f+fr], show that
x+4[y

x%«l—y%}-fcot%:& .[C,‘.R 1994, 2008 ]
@i If u=xyf( ) prove that x6—+yg—'f-—2u
by Euler's theorem,. ' [C. P 19841
(i) Verify that xg—+ygi 7,:: 0, if u=§+—i—+-’;.

[ C. P 1987, 2005 ]

v &V
show that x—+y—=1.[C. P. 1978 ]

) S
@iv) HV:logx 2y 5
i ¥ wiyl

_ & 7 Oy
y 2 Ln? -
() Find that valie of, ¥4y, Fa=XY 1c P 19901
& 8y x2 —xy

Solution : (i) V=2cos™!

x+y
| Jr+fy
v ey )

0[',(1()52 J_+J— %{‘F

)

o)

ﬁ ‘

26 -
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v 1
cos(?) is a homogeneous function of x, y of degree 7

Hence by Euler's theorem,

2 ) 8x y "2
l+ QZ+ tX-O
o " 8x y5y 2

e (G (}2) o)

Hence, « is a homogeneous function of x, y of degree 2.
By Euler's theorem

xélii- ﬁ--Zu
Sx yﬁy

2 2 o2

Z X Xy*© + +
iy u=24Z Koty rad
& i vz

{U{(}) ooy

X X

Hence, u is a homogeneous function of x, y, z of degree 0; by
Euler's theorem, :
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Thus ¢"' is a homogeneous function of x, y of degree 1.

. xi(éV)U.:;(EV)ﬂ.ev

Bx
. or,x-ev-%g+y'ev-85—:;—'ev
x-§z+ 6—V-l
& ) 8y

(v) Here, y=—— "= =
)
x

So, u is a homogeneous function of (x, y)of deg :e 0
i
ox
Ex. 6. (i) If u be a homogeneous function of x and y of degree n
having continuous partial derivatives, then j ove that

2
(x%%-y%) u=n( -Du

b
By Euler's theorem, x—u+y5—: =0-u=0.

[ C. P. 1985, '98, '2001; B. P. 1993 ]

2,2
(ii) lf.u:—f-y—, apply Euler's theorem to find the value of
X+y

2, 2 2
x-8~u+y@ and hence deduce that x28——-—+2 b + ij-f-ﬁu
& 7 oy 8x2 8x5y Sy

[ C..P. 1995, 200+ }

§. &Y
(iﬁ)“ If u=x¢(f)+ ‘l’(f‘)' piove that (X&;+y8y] u=0,
: [C. P 19901
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1
@) If f(x, y)= (x?- +y2)§. use Euler's theorem to find the value of

& , ¥ | 28%f , 82f  28%f 2

Ly — —+=f=

X 5x ysy andhenoepmvemaxx ol xyaxﬁyﬂ 52 9f
q..3 : [yC P 1995 ]

(v)y Ifu= tan—1 Lo , prove that

. X=y

du  du
(a) «"'5;"')’“5;:5'"2“ [ B. P 1995, C. P. 1984, 89, 96, 98 ]

2 2 2,
28%u o 0%, 25
b x o2 xyﬁxﬁy y

(l —4sin2 )sin 2u

[ C. P 1996, '98, 2003, B. P. 95 ]
Solution : (i) Since u is a homogeneous function of degree n,
we have by Euler's theorem,
Su  du .
_ xg*‘)’g;—"" (1)
sijfferentiating (1) wrt. x partially,
Su 8% 8% Bu P
ox by o 2)
Differentiating (1) w.r:t. y partially,
A du, By B o
Sydx By y<5y2_ Sy )
Multiplying (2) by x and (3) i}y y and adding

(28, 8% o8%u) ( Bu &) [ B« Bu
a2 ey ) 52 ) T Yoy Sc ” By )

h Hiave tak Blu B e b artial deiva
where we have taken 818y ayax, since [+ par 12 erivatives ar

continuous.

282u Su? 52
or, X9 —5 #2xy——r +y ———+rm n-nu

ax2 dxdy Sy2

xi+ —5—)2u—n(n—l)u
o Mox yﬁy h
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2
2,2 x4(1)
@ u=ZL eI 32
)
x
So, u is a homogeneous function of x and y of degree 3.
By Euler's theorem,
xﬁ+ B =3u
8y ®
Differentiating (1) w.rt. x partially,
B w5
82 Bx oxdy ox
2 2
28%u % bu_ . bu
or, x ™) +1y6x8 +x&-3xax @
Differentiating (1) w.rt. y partially,
| 18_2" + 5_2_’1 +@ o 35_u
Sxdy y& 2 & &
8%2u 8%  Su_., bu
ora\’}’&,d5 +y 82 yﬁy yﬁy 3
8% 82u
" Byax  &xdy o
Adding (2) and (3) 5
2 2 2
2 d<u d<u 2 8<u E . 514
8x2+2xy&x8 52 Us"%
=2%3u =6u-
iii) = x¢ (l) +‘w(-’i) I
x x

=V+W

where, y = x¢(l) ,a hbmogeneous function of x and y of degree 1,
x

and W= w(z), a homogeneous function of x and y of degrce 0.
x
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By Euler's theorem,

8V 14
x—é;-+y8—y~lV \'4
and
oW W
x§+y5—y—0-W-0
S gl (0 BT I e B
B Y8y U 8x by "oy
=V+0=V. ) . (1)

Differentjating (1) w.r.s. x. partially and then muluplymg both the sides
by x, we get

2 52u 52u ou 8V

_+ i '
X &2 &Sy xﬁx X " 2
82u 5 8%  du_ bV
Similarly, xyﬁ+y 5y2 +y-§—- y-a-; , 3)
52u _ 52u
Sydx  dxdy

Py -t ol
x sz 5x5y+y 2+ y5y
L
dx yﬁ
Y] B
on 25 o OCH . o BH_ g [by (1) ]

a2 Pady ) 52

12 g s

12 w3 24,
(iv) f(x,y)=(x2+y2)3=x3 l+(—) =x3¢(—)
x x

2
Thus f(x, y) is a homogeneous function of x and y of degree 3

By Euler's theorem,
o, 0 8

X5 y@ ;f . - . )
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Differentiating w.r.s. x partially

82f &, 82f 28

Rk Tbe by 3%

282 8%f af 2 &
&2 Tady e 3o
g 2f 82f & _2 5f

o 2

Simdladys A oY 82+y5y 37 5y

Adding (2) and (3), .

52 52 52 5

Dot B )

or, x

or, x +y

Sxdy y Sy2 &x 7 &y
2y, Y
3( +y5y]

52f 82f 62f 2, 22
2 29°J =
a2 Ty Y 52 3/=337
52 2 2
P 26 f 821 8%
ie., x +2xy 8x8y +?1 —5},2

2 2 2
28, 8% 8% 2
6x2 xy8x5y+y 5y2 9

-1 X3 +y3

=y

x3+,3_‘*3{“(;y-]} 2,;(_»)

(v) u=tan

or, tanu = = =xX°Q =

R N

8o, tan # is a homogeneous function of x and y of degree 2.

By Euler's theorem,

x--gx-(mnu)i-ya—sy(tanu) =2tanu

2 du 2 Ou_
, XSec“ u——+ysec“u— =2tan
or, u8x ys uﬁy u

@

K}
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x-a—u+_v§£=2m—m‘--coszu=2sinucosu=sin2u (1)
5x 5y cosu '

x&_u+1‘@+ —Si=2c052u-§—li
o2 oy dwdy o
2 2 .
Or,xz—gf-y- gx‘s';-t—x;—u =2x- cosZuS— @

Differentiating (1) w.rt. y., partially and then multiplying by y
82u 5 8%u  bu
+

xy ye—ty—=2v- cosus—"
axdy T &2 T 8y &y ®

82u _ 52u

Sydx  dxdy
Adding (2) and (3),

2 2,
¥ gxz +2xy gxﬁy +y2 %v— = (2005214- 1)(x§~»+y§u)
=(2cos2u- l)sinZy [ From (1) ]

= sin2u{2(l—25in2 u)—l}

= sin2u(l— 4sin2 u).

% (xz +y2)n
Ex. 7. If flx, 5)= o=y

theorem on homogeneous functions, show that

5 821 82f 252f 2
&x2+2v§x—5—y8y ( +y)_

Solution : Letf(x, y)=u(x, y)+v(x y)+w(x, ¥)

, 218 '

2n 1+(1) y
(x2 +y2)" * { ¥l [ . =R
. 2m@2n-1)  2n@2n-1)  2n(2n-1)’
a homogeneous function of x and y of degree 2n,

+x¢(l)+1y(2’-), then using Euler's
X X 3

[ B. P 1999 |

‘where, u(x. v)=
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wx, y)==x ¢(%), a homogeneous function of x and y of degree 1,

and w(x, y)=v (!-) a homogeneous function of x and y of degree 0.
X

We know, if f(x, y) is a homogeneous function of x and y of degree
n then ’
P 52f Wil i 52f 4

ox2 Sxdy
Using this general result to u(.r, y), v(x, y), wix, y),

52u 82u 52

y syf = n(n- l)f

205, o 0%0  DOE . ‘
x 5x2+2lan5y+y 8)’2—211(2n Du m
282 82 5 8% ‘
+2xy OV v i I ¢))
x2 8x2 8x8y y 6 (. 1v=0 |
82w 52w 58w
42y W4 32 2 — 00— 1)w=0 I )
= i i i

Adding (1), (2), 3),

2 2 2
[xz +21y585y szgsy—z- u+vfw)=2n(2n—l)u

52 2 2 x2 +y2 §
or, x2 ———‘ﬁ 8 f za—i=2n(2n—l)xL——)~
8x2 5x6 % 2n(2n-1)

=(x2'+y2)".
Ex. 8. () If z=f(x, y) anox:(h-\-v)z, 'yz(u—v)z then préve

i u&i— S _.f, AN f c P 1992
at % By Sx yﬁy 3 - [C'P ]

i) If Visa function of(x, y)and x =e¥ -cost, y =e¥ -sint» show that

(&) -l 6

[ C. P. 1993, 2003, 2008 ]
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* (iii)'If z is a function of x, y ,and x= e“ +e”V and y=e"" -¢¥ prove

S
Su &v " 6x yay'

& 8z _ 8z 8x Sz Oy
Su  Ox ou 5y du

[ C. P.1997, 2000 )
Solution :

= 2(u+v)—z+2(u—v)'8—z s me ol
5 ‘

2 8z &x 51 By
S ox o 5y v

- B 32
=2u+v) 5 2(u t)sy (@)

Adding (1) and (2),
u- §£+v2 = 2{ uZ fuviuy i VZ}E +2{u2 _m,_m,.;.‘,Z}éE
Su  dv , Sx Ty

-2(u+v)2 p +2(u - v)2 e

Let V= f(x,y). x=el cost, y= e“s}nt
av 8V &x LV Yy
E,t Su 5y du

. 114 ;
= B_V.eucosﬁ-—-- e sins

Sx &y

R - w

194

Sv
= ——(—e“ smr)+ — el cosrs
X oy

-y, ¥ - = D
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() (2 (22 ovY? [, 8v_ oV’
Bu Bt o Yoy ) sy Vax
sv 5P
=2
S )‘(ax) (ay)}

i) Let, z= f(x, y), where, x =et +eV, y=e7¥ —_ei’

3 Bz &x Bz by _ 48 -3 ;

Su Oox du &y du & Oy w0

8 8% & &by & & .

S 8 dv 8y v dy & = = B
From (1) and (2),

3z dz &z

— = (e"teV)— -

B Bv e ) +(e e” )Sy

5 Y8y
2 : Iz
Ex. 9. (@) If z=e®", x=tcost, y=tsint, ob(ain%a[l':%'
' [ C. P 2001 |

@i If u=f(x, y)‘and x=rcos0, y=rsin@, prove that

(3 (&) - ()
dx Oy dr r2\86) °
[ C. B 1990, 2001, 2008

Solution : () -: z—_;evz and x =tcost. y=tsint,
8z &z dx &z dy

S ox dt Oy dt
=e"'y2 -yz(cosr—tsinr)+e“'y2 -2xy(sint + t cost)

2
= ye {y(cosl —tsint)+2x(sinz +rcos !)} .

hen ! T X & cos’t 0 and y 7T’s‘inﬂ £
w :-—, = oe— — = = —_ —:—--
ity g g T MAIERTe e
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Hence, at ¢ = 2
2
§£— 1 E E(O_n\+0 __7(_3_
5t 212 2} 8
(i) Here, u= f(x, y) where, x=rcos8, y=rsin® .

Su _Su 8x du dy bu

——-cose+§£-¢.in8
8r & or o & o & - o=

Y
du _ Su dx Bu Sy du . Su
0 5 59+6y 55 ( rsnnﬂ)d-ay rcosf

1 Su Su

Su
o 56 ——5}- sm9+-6; -cos0 %))
From (1) and (2), ‘

2 2 2

(%:-) +— (2'{;) =(-§—;icose+«§-;smﬂ] (g—;cose——%smej
2

2 2 '
={(—g—!i) +(?) } (c0529+sin29)
X 'y

BEOEEEE]
Sx 5y or ,_—2 60) -

" 2xy .
Ex. 10. (/) Show that (%, y)lT(O, O) x2+y2 does not exist.

[ B. P 2001 |
2.2
@I fx =325,  (x p#0

=y

=0, xi4y2=0
Show that £,,(0, 0)= f,, (0, 0). [ C. P 19952006, B. P. 1999 |
@) If fo,(x, y)=xy

f(0, 0)=0.
show that £, (0, 0) 730, 0).

\

2.2 :
x—z—yz-.when both x, y#0
x“+y

[ C. P 1988, 1999, 2004, 2007 1
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. . : 2
Solution : (i) f(x, y)= __i_xv_z
x“+y
Let, y=mx
‘ 2x-mx 2m
(x, )= =
thes £ B2 el B

y)

li , i . :
Thus (x, y)_l_,m(o, 0)) s will assume different values for

different modes of aproach of (x, y) towards the origin. -

Hence, |, y}j:?o. ”) FCY) does not exist.
oy
() Here, 0 M="73-"5,  when x2+y2 20

=0, . when x2+y2=0_
f(h k)- f(h, 0)
k
h2k2
2.2
= lim BZtRT
k—0 k
tim
k—0 hZ+k2
f(0+k)—f(0. 0)
k
= lim 9:—Q=0
k-0 k

fy(h, 0)= lim
= k—0

&®,®=gfo

£ (h, 0)= £, (0,0)
fou(0, 0)= lim it L Siviaid
(0 h—0 h

I .. R
h—0 .
. f(h, kY- f(0, k)
o f.(0, k)= lim ————
Again, x( ) hoo h
h2k2
___0 2
W2+k? lim bk _
h—0 h h—0 h2+42
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; . f(h, 0)- f(0, 0)
and fx(o, 0)=hlil.->n0 _'_4-31__

= hm 28y
h—0 A

Fyx (0 0)= lim  lim 1(0, k)= £.(0. 0)
k=0 k—0 k

=¥ R

From (1) and (2), it follows that fx_v(o’ 0)=fyx 0. 0)

. 2 .2
MR el Jr2 yz , when x and y both £,
X +y

f(os 0):0
£yt 0= tim L D=1 0
k—0 k
h2 42
“[hthJ 0
= lim st N
k—-)o Lk
) h(h2_k2)*0
="I~TO ok [ k=0]
=h
ad £,(0 0)= im LOH-F00)
k—0 k
= b 22l g
k—>0 Kk |
Pl e g, A HE0

h—0" h

s B APy "
h—0 h
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fth )= 10, K
g in f.(0, k)= lim ——————FF——
Again, Jx he O

h .
h2 k2
Wl ——=1|-0
T (h2+k2]
= lim ———
=0 h
o kn2-k2)
The waez Dol
43
=k—2-=—k
£, 0)_ lim 1k 0)- /(0. 0)
h—0 h :
—lnmp—O—O
h=0 h
. £,(0, k)=1,(0, 0)
. .0, 0)= lim =X X
> k—0 k-
k-0
= = - L, @

From ( 1) and (2), we conclude that
Jry©. 0% £,0, 0),

EXAMPLE- XII(B)
1.  Verify Euler’s theorem for the following functions
O w=a’+ 2hxy + byz. Gi) u=x"+ y3 + 3x1y + 3)012

xt 4 y?
xy

) u =(x% * y% )/( x% +yi )

P
2. Find Ey in the following cases :

i) u=>""2Gv) u=sin

@ X" +y" =a". [C-HI1944]
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(i) (cosx )’ = smy) (iV) e* +e¥ = 2xy.
™ y +x =(x+y ).
3. G Ifu=¢ ( H ,,).where. H,, is a homogeneous function of degree n
in x,y, z, then show that
xéﬂ+ u v au _ ",F(u)

ox Ay F'u)
where F (u) =

ne

(i) If u=cos™ {(r + v)/ (1/; + J; )} then show that

o L _yg-'i +Lcotu = 0. [B.P. 1994, V.P.'96, 2001, 2008
X y °

4. If V =sin™ {(x2‘+ yz)/ (x+y) }. then show that
xV, + yV, =tanV,

5. I u=xp (y/x)+ w (v/x), then show that”

O S5+ ) = = x¢ (v/x).

(i ug 2x)-uxy + y uy, =0.
6. () If v= f (x), ubeing ahomogeneous function of degree n in x,
y, show that :

LA LI ]

ax Yay B [C. P 1948]

(ii) If V beahomogeneous function in x, y, z of degree n, prove that
?’- , %Y« and Z_V are each a homogeneous function in x, y,z of degree

X y Z :

(n—1). [C. P.2006 1
(i) If V be a homogeneous function of degree » in x, y, z and if

V = £ (X.Y.Z), where X, ¥ Z are respectively 3V, 9V 3V chow

dx Jdy 9z

av aVv av n
g2 aplt
il 5 T TR T

7. @) If H beahomogeneous function of degree n in x and y and if

& 4
U= (x2 + _\'2)_’", show that
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.®

2 (p2u), 2 (y2u)_,
ax\ @x) éy\ 9y .

(i) If H be a homogeneous function in x,y,z of degree n and if

u= (x2 +y° 4+ :2Tl’("+”, show that

11.

2 3] o
S lgee +_8_ Hﬂ +8_ Ha" - 0.
dx éx) Cy dy) ¢z ez
If x=rcosd, y =rsiné, prove that
® a?+dy? =dr’ +r*do?; ' [ B.P. 2001

(ii) xdy-ydx=r?df. [B.P. 2001 ]
If ¢ (x, y) =0, u/(.\:, z) = 0, prove that

ax oy Oz ax'E?

Express A, the area of A ABC, as a function of a, b, C and hence show that
g .8 = _f‘_"i 2 +cotC dC.
A a b

If x+ }:2 +22 - 2xyz = |, show that
dx " dy , dz
Ji-y? -2

W If ax? +by2 +czt =1 and Ix + my + nz = 0, show that

=0.

dx _dy d=
bny —emz . clz —anx  amx - bly’
2 2 33y 2 2 2
= - x y z
@) If 42X v 1 and + +— =],
a? b ad+A b +i P+

provethét x(bz —cz)+y(°'2 - ﬂ+z(“2 _bl)zo_
& & &

13. The radius of a right circular cone is measured as 5 cm with a possible
error of 0-01 cin, and altitude as 8 cm with a possible error of 0-024 ¢m. Find
the possible relative error and percentage error in the volume as calculated
from these measurements. i

27¢
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14. Theside a ofatriangle ABC is calculated from b, c, A. If there be small

errors db, dc, dA in the measured values of b, ¢, 4., show that the error in

the calculated value of a is given by
* da = cos Bdc + cos C.db £ sin C.dA .

2
'

15. If f(p,1, v) =0, show that

(

I A - IS
d v const dv  const dp { const -
16. If u = F(y—:,:—x,x y), prove that
" Qu du du
—+—+—=0.
o0x 02y 0z
[C.P. 1983, '88, '94, 98, 2002, 2007; V.P. 95)

Dicers shut

ou
— =(.

17. If r.4=1-"(x2 +yt4z® )f(x_v+yz+zx\,

L

A N Ou
(v 3tz x)—+(x—-y
LS P ( )ay ( })6
.y2 + 2.:x), prove that

2 du %

- =0
2y (z x’)a:

[ C.P 1981, 95, 2008; C.H. 1947 ]

18. If u:f(x3 +2yz

19. If F(v2 R B )= 0.
where v is a function of x, y, z, show that
1av tav 1dv 1
xdx ydoy z9z v
20. If u be ahomogeneous ft;nction of x and y of n dimensions, prove

that
&) 3] ¢
X—kiP—r = =
( ax .a)’) u n(n l)u,
2 2 2. .
"+2xy ' n +y2 C°u
oxdy Byz’

d 2Vu=,\'“ -
] ax?

5
where | x — + y —
( dx oy )
[V.F 1998, C.P. "85, B.P. 93, C.H. *46]
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2L If u=xp(x+y)+yy(x+y)
82 g O %u au
ax axay ay

22. If V be afunction of r alone, where r? = x? + y? + zz,v

%v _9’v v av+gav

show :ha: ey X
ox2 9y? 9z 9rr ror
ANSWERS
1
; A P A B Al E
2. (i) i (is) _—;I—vi—'
x3 xy +x7 logx
~ ytanx +logsin y ¥ G
(i) y tan x + log sm,y‘ i) e 2y )
logcos x — xcot y Dt i

¥ togy e = (xa y ' {log (w4 v ) o1}

v)

13.  0.007 (relative error); 0.7 (percentage error).

logx+xy* = (x+ v Y {log (x+y )41}



13|l Exmrema OF FUNCTIONS OF TWO OR MORE VARIABLES

13.1. Extrema with two variables.

A function f(x y) of two independent variables x, y is said to be
maximum for x = a, y = b provided fi (a,b) is greater than every other
values assumed by _f(x.y) in the immediate neighbourhood of
x=a, y= b. Similarly, a minimum value of fix y) is defined to be the
value which is less than every other values in the immediate neighbourhood.
A formal definition is as follows : '

A function 'j(x. y ) is said to have a maximum value at a point (a,b )
of the domain of f(x.y), f(x y). provided we can find a positive ’
quantity § such that for all values of %,y in a-8<x<a+d and
b-8<y<b+d, (x#a y#b) f(ab)> f(xy)

ie.if f(a+h b+k)-f(ab)<O,

for|hl<8 and |K{<3.

Similarly, the function f ( X, y) has a mininwm value at a point ( c,d),
provided we can find a positive quantity §° such that for all values of X,y in
-8 <x<c+d, d-&<y<d+d,(xzc, yzd) fled)< f(xy):

ie.if fc+h d+k)-f(cd)>0,
for|h| <& and |k|<8".

&

13.2. Necessary conditions for Maximum and Minimum of extrema with
two variables.

Ifafunction f (x, y ) be amaximum or a minimumat x = a, y =b
and if the first partial derivatives F (“- b ) and fy ( a,b ) exist, then
f:(a,b)=0and f,(ab)=0.

Proof. lff ( @, b ) be amaximum or a minimum value of f(xy ).
. then clearly it is also a maximum or a minimum value of the function f (x,b )

of one variable x for x = a and soits derivative f, (a,b ) for x =a must
be zero, provided it exists.

Similarly, f, (a,b ) =0.
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133. Determination of Maxima and Minima of extrema with two variables.

1f (a,b ) be a point in the domain in which the function f (xy)is
defined, and if fi(ab)=0, f,(a,b)=0.  and
fulab)-f,(ab)-{fo(ab)f >0, then f(ab) is a

maximum or a minimurn according as fc (a,b) < or > 0 (and consequently
Fi (a,b )< or > 0). But if ful(ab)- fw (a,b ) —{f_‘.y(a,b)}: <0,
f(a,b) is neither a’ maximum nor a minimum and if
fulab) f,(ab)- {f,y (a,b )P: 0 further analysis is necessary.

Proof of these results is beyond the scope of this elementary treatise.
Note. Points where f, =0 and fy = O arc called stationary points. These
points may be a maximum ora minimum but in certain cases it may so happen
that the points is a maximum in respect of one variable while a minimum in
respect of the other variable.

13.4. Illustrative Examples.
Ex. 1. Examine for extreme values of the function
e +(xry+1): [C.P. 1995]
Let f(xy)=x*+y?+(x+y+1)%
o fe=2x+2(x4y+1)=4ax+2y+ 2, .
L= 2y+2( x+y+1)=2x+4y+2,
So=4 Jw=4 Jo=2.
Tﬁcequations fx =0, fy =0 are equivalent to
9x+y+1=0 and x+2y+1=0.

' x y 1 x y 1
Th —_— e = — z = ==
ese give, 1-2 1-2 4-1° % = 1 =1 3
. 3’ 3’

The function may have an extreme value at (—?‘, 1 —-é)

Now, at (+4,-4), Soe Sy~ (Siy )2 =44-22=12>0.

Also, [f,>0. )
Therefore, f(x.y) isaminimum at (- 4% %)
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Ex.2.  Find all the maxima and -minima of the function
a2 a e Pyenf-oa
Let f(xy)=48-xy+ 4+ Py+xaf -4
We have f, = 8x—y+3x2y +5°
Jy=—x+8y+x*+3xf
S =8+6xy, fy=8+6xy, f =32 +32-1.
The equations f, =0, f, =0 give
8x- y+3%y+y® =0 (D
-x+8y+x*+3xa/ =0 ..t(2)
Adding (1) and (2) we get

7(x+y)+(x+y)P =0, or (2+ y){(x+ y) +7}=0,

o, (x+y)=0. - (x+yP+7>0
Y=-x. T
From (1) and (3) we get
9x-4x*=0, or, x(4*-9)=0.
x=0, +3,-3.

The corresponding values of y=0, -3, 3

The function has three stationary points (0,0), (%_2) \":'23 , _3)
AL(0,0). e =8, Jfiy=8, fiy=-1,
fn-’;f!l—(fxy)z =64-1=63>0 and f, =8>0,
the function is minimum at (0,0 ).
At(3.-2) frx=8-F=-4,
Sw=8-F=-4. fy=3(3+3)-1-%

Fe = ()2 = 22925 19600,

so that the function is neither a maximum nor a minimum
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3 03 27 11
22w Slme,
A‘( 2 2}[ 2

A .
o fafyy =(f) =-126<0.
so that the function is neither a maximum nor a minimum

The points (% .——g )and (— % - % )wherc the function s neither a

maximum nor a minimum are called Saddle Points.
Ex.3.  Show that _f( Xy ) =y +2x7y+ 2x* has a minimum at (0,0)

We have f, = 4xy+ 8¢’
fy=2y+2x")
fxx=4y“’24’_‘2» Sw=2, Sy=%
At (00).£=0. [,=0, Sy =0,
Since  f.=0, fy="". (0,0) isastationary point of flxy).

Again  fix fy!,—([\y)z =0, So further analysis is necessary.

We have f(0,0)=0 and f(x.y)= (y+x® )2+x4. which is
positive for positive as well as negative values of x.

Hence, f(x.y) is minimum at (00 ).

EXAMPLES- XTI (A)
1. Examine the following for extreme values :
® 2+ -3axy. @)  x'+ vt - 267+ axy - 2)°
a®  a®’ A 3. 3 '
) ¥ - — P @) 2y (l-x-y).
X y

(v) sin xsin ysin (x +y ) (vi) xzyz —5x% ~ 8xv - 5y2.

i) x* o+ 207y - x2 # 3y (i) 2(x-y)E - xt -yt
@ y*+xty+2xt ® MV +yi-dx+y.
(xi) xy(6a -X =y ). (xii) (;(2 + y2 )eﬁ'ﬂ'z": .

(xiii)(.x2 +y? )2 —B(xz - y? ) xiv)x? + y2 + (ax+by +¢ )’
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&v) x* +3xy? - 15x% - 15y% + T2x.
2. . Show that the function f (x,y )= x* + 2xy + y* + x* + y3 + 17
has neither a maximum nor a minimum at the origin. _
3. Show that the function (x+ y ) + (x~-3)° has a minimum at
(3-3). o
4. Show thatthe function f (x,y )= y? + 3x%y + 5x* has aminimum
at (0,0). o
5. Show that the function f ( x, y ) = 4x’y — y? — 8x* hasaminimum
a1 (0,0). ' .
6. Show that the function f(x,y)=3x>+4x’y-3x? -4y is

neither a maximum nor a minimum at ( 0,0 ) s

ANSWERS

’

1. () Max.at(aa)ifa<o and min. at (a.a)ifa>0.

@) Min. at (2.-y2) and V2, 2).
(i) Min. at (a‘:,ﬁJ @) Max.at(4.1).
(v) Max. al.(n'n +Z, nm+ % ) and

. . ’ ? s s
Min. at (nn—gl. nn-% ) n" being any integer or 0.

o)

(vi) Max. at (0. 0 ), no min. (vii) Nomax.,min.at| + = - % ]

2
(viii) Max, at (Ji,-ﬁ) and (—-ﬁ, J'z')
(x) Neithera max, noramin. (x)Max.ﬂat( —.:;.,- 2 )

(xi) At (;a.Za ) maximum if g > 0 and min.ifa < 0. .
(xii) Min. at (0,0 ) and (-1,0). (xiii) Min.at (2,0) and (-2,0).

-ac - bc )

;
+a?+b? 1+a® +b?

(xv) Max. at (4.0 ) and min. at (6,0).

(xiv) Min. at [ ;
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13.5. l.agrahge’s method of undetermined multipliers.

. Letu= f(x, x5 X3 cny) -

..(l)bea function of n variables
which are connected by m equations.

g1 (x1. 5. %3, .. "xn) 0
gz(xl'Xfosi - 'xn) 0 e
Im (1,263,

We have m (< n) equ'élions’ in n variables given in (2), so only
n — m variables are independent.

For u to be maximum or minimum, we should have

Ju du
du=s—idx + —
P PR T
Alsotheequationsn(2)give,
dg—-agl ag‘d.:g+ agldxI 0. )
9, 9 X, .
agm ) agm 39;,‘x
= et g =0
dgn = F oy axedx’* " Ix, dx,
Multiplying the equations in (3) by 1 Andy, iy, fespectively and
addmg we get
Fydx,+Fy dxy +...+ F, dx, =0 ..(4)
where F, = 2% +A,ag' sa, 382, +A,,,——-a""",
d x; 9 x; X ' dx,
k=1,2,....n).

The m quantities A, 47,....,4 n are at our choice. Let us choose
these quantities so as to satisfy m linear equations

F,=0, F;=0,...F,=0 . .5
Then the equation (4) I'ccomes '

Fn % pay + Foua dXpyyy +...t F, dx, = 0

... (6)
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We have already noted that only n — m variables are independent.
To be specific let X 41+ X p42----, X, be these independent variables.

Since the quantities dx,,,;, zix,,.+2. .++» dx, are all independent,

their coeficients must be separately zero.
Thus we get n—m extra equations

Fpnw=0 F,2=0..F,—* TR o7
Thus from (2), (5) and (7) we have n + m equations

81=0, g,=0....g,,=0

Boaily dyml Iy =0

From these cquations we can find the multipliers 4, A5,...., 4,

and varables X, Xa, ..., X, for which v is maximum or minimum.
10.06. Ilustrative Examples
Ex.1.  Find the minimum value of x* + y2 + 22, subject ot the condition
2x+ 3y+ 5z= 30 '
Let u=x2+y?+2? <2 (B
and  2x+3y+5z=30 . (D)
For a maximum or a minimum value of u, du = 0,

ie, 2xdx+2ydv+2zdz=0,

ie, xdxt+ydy+zdz=0. . < ()
‘Taking differentials we get, from equation (2),
2dx +3dv+5dz =0. (@)

Multiplying (3) by 1, (4) by A and then adding we get

(24 20 )does (y+ 3 )dy+ (z+ 5h)dz= 0
Equating the coefficients of dx, dy, dz to zero we get,

x+2A=0, ) ...(5
y+3A=0, s 1(6)
z+51=0, )

From the equation (5), (6) and (7) we get
X_Yy_z_ 2x+3y+5z 30 15
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From the equation (5), A = - 12

30 =45 = _5
u has an extreme value when x= 19° Y=13. 2=13-

From the equation (2), one of the three variables, say, z can be expressed

as a function of two independent variables x, y, thatis,z = 6— %x = % y.

dz_ 2 dz_ 3

x 5 3y 5

Now, 8u_2x 079% _ o, 42
ox dx 5
Ju _ 0z 62
ay ) 5
9%u 49z 8 58
——:2—————2 — D m—y
x> 50x 25 25
0% __63z_12
axdy 5Bax 25
_ajE:' 632 2+1—8:§§
ay? 53y 25 25
9%u 9% ((9%u)' 5868 (12" 152
ox? ay2 | dxdy 25 25 | 25 25
aéu
Also —>0.
ox?

1 1s minimum when x= 9-9 y 4—9 Z'E and this minimum
value of u is

30° +45° +79 _ 855C

19 361°

Ex.2. 'Find the maximum value of x> y3 2% subject 1o the éondition

t/.

X+ y+z=18
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u=x*y’z*
log u=2log x+ 3log y+4log z.
Taking differentials we get
du 2
—=>dx+ ydy+- dZ (D

u x

For a maximum or minimum value of u, du = 0.

g dx+ § dy+ 'ﬂ. dz=0 ’ (2)
g g ™
From the relation x+ y+z=18 1
we get dx+ dyt dz=0 (D)

- Multiplying (2) by 1 and (4) by A and adding we get

(g+l]dx+(§+l)dyi-(é +A)dz=0.
X y z "

Equating the coefficients of dx, dy, dz tozerowe get

2 s he b ' o)
X
- L (®)
y
£+)L=0, —
VA

From (5), (6) and (7) we get
2 3 4 2+3+4 9 1

x y z x+y+z 18 2°

ie., x=4, y=6, z=8, and A:-—z-_

From (3) one éf the three variables, say, z can be expressed as a
function of two independent variables x, y.

ie., z=18-x-y.
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| du ‘ 0z
Now = 5;=2xy’z4+4)?y3235;

=2:¢1,Pz4—4x°y’z’.
éi‘_“ 3,3 dz
T szyzz + 4Py 7y
= 3P - aly’2,

%}: 2+ f 0% - 120232
=2y3z4-8xy"z3‘—8xy’za+12€.zy322

= 2P7 - 1602 + 1287
=272 (2 -8 62 ).

2
% u 2.4 3392 2.2.3 12chyszza

= 6xy?z% +80°2% 512
dxdy e — dy RE

= 6xy?s? - 8xyz% —12x%y?2 + 12x2y3 22
= 2xy212(3zz —4yz - 6xz +06xy )

2
g = 67 yz -12x yzz —124 y z +|2A2)’322
y

=76x"’yzz(z2 —4yz+2yz)
For x=4, y=6, z=8.

2 5
-a—i‘- = -l92y _B_u_ = -06xy%2?, ;—‘; = -336x2yz2 .
’ y

ax” " 9xdy

2, 32 2, V
3w _[_i.i.] = (— 192 ) y*2% (- 336 )x?yz* --(%xyzz2 )2~

I x? ay oxdy

=192-336x%y%2* 96 - 96x7y*z* > 0.

%2u
Also — — <O0.
' 92
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u ismaximum when x=4, .y=6, z=8 andthe maximum
value of u is 42.6°.8%.

Ex.2.  Prove that of all rectangular paralielopiped of same volume, the
cube has the least surface-area.

Let X, Y. Z be the length of three coterminous edges of the
rectangular parallelopiped. The volume is given by

Xyz= & (given). ' skl 1)
If'S be the surface-area, then
S=2(yz+ zx+ xy) s ()
and we are o minimize § subject to the condition (1).
For a maximum or a minimum value of S, dS =0.
(y+z)dxt (2+x jey+ (x+ y )dz= 0 oa <)
Also, from (1), yzdx+ zxdy+ xydz=0. ... (4)
Multiplying (3) by 1, (4) by A and adding we get
(y+z+ ryz)doxe+ (z+ x+ rzx)dy+ (x+ y+ Axy)dz=0

Equating the coefficients of dx, dy, dz 1o zero we get

y+z+Ayz=0 . < u (D)
Z+x+Azx=0 : -+ (6)
X+ y+Axy=0 -

1,1 1,111

Yy z z x x y

1 1 1

—==== ie, x=y=z=(xyz)i=a

X Yy

that is, all the edges are equal. .

From (1), one of the variables, say, z can be expressed as a function of
the independent variables x, y.

(1) gives yz+xyE=0‘ e dz z
dx ax¥ x

Also Bty .
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dx dx dx

=2{ (y+ z)+(x+y)(—-z)}

=2 (xybxz-2x- yz) =2(X_Z.)”=2( y_z].

d
Now a—s=2[ yé—z+z+x~—§+y)

k!w

325 2yz 2yaz

a2 2 xox
2uz+2y_f 4yz
T xx 2
%S dzx
Similarly —— = ——",
TP
2
"5 o ,_2z_y oz
X0y X xdy

" For x= a, Yy=a, z=aq,
a?s a%s 2258

———:4 ——-=4, _“"‘—;2.
x> oy dxdy
325 a?s  a?s )

—e S S | 5412 0.
ax* dy? [E)xay y

9%S
Also —>0.
9x°
Therefore, when x = y= z, that is, when the rectangular parallelopiped
‘is a cube, its surface-area is minimum.
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EXAMPLES - X1II (B)

1. “Find the minimum values of x? + y? + z%,when
@ x+y+z=15, (i) yz+zx+xy =12, (i) xyz=8.

2. Find the extreme values of yz + 3zx + 2xy where x+ y + z = L.

3.  Find the extreme values of Xy where 2+ xy + y2 =1.

4. Delermine the maximum and minimum values of 7x* + 8xy + y> when
x4 y2 =1. :

5. Find the minimum distance of the point (1,2,3) from the plane
x+y-4z=9. .

6. Which pointof the sphere x? + y* + z* = | isatamaximum distance
form the point. ( 2, L3 ) o

7. If x, y, 2 are the angles of a triangle, then prove that the functions
(i) sinxsin ysinz;

' T
(i) cos xcos ycos z;areboth maximumat X =y = Z = 3
8. Find the maximum value of the function x2y”z?, subject to the

condition x* + y2 +2z2 =c2. .
9.  Find the rectangular parallelopiped of maximum volume that can be
2 2 2
inscribed in the ellipsoid = + 2~ + £ = 1.
a* B’
10. Divide the number 27 into three parts X, y,Z such that

2yz + 3zx + 4xy is maximum.
ANSWERS

1. @ 75for(5.55); (i) 12for(2,2,2), (-2,-2,-2);
@) 12for(2,2,2),(-2,-2,2),(-2.2,-2), (2,-2,-2).

2. 3 (max)at (-%,0.-'2*);nomin.
3. -I(min)at(l,~-1)and(-1,1);

*(max.)Aat[L_—-l—-]and(w—l—,—-l-—]. 4. 9,-1. 5. /18 .
3

2 1 3 e 8abc 270 . 243 162
{ ] 8. 9. < 10. 555505 -
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14.1. We shall now consider certain properties of curves represented by
continuous functions . If the equation of the curve is given in the explicit
form y = f (x), we shall assume that f (x) has a derivative at every point,
except, in some cases, at isolated points. If the equation of the curve is
given in the implicit form f(x, y) = 0, we shall assume that the function f(x, y)
possesses continuous partial derivatives f, and f, which are not
simultaneously zero. When the equation of the curve is given in the
parametric form x = ¢(r ), y=wy(t ),We shall assume that ¢’ (¢ )and \v'(l )
are not simultaneously zero. -

14.2. Equation of the tangent.

Def. The tangent at P to a given curve is defined as the limiting
position of the secant PQ (when such a limit exists) as the point Q
approaches P along the curve (whether Q is taken on one side or the other
of the point P).

(i) Letthe equatwn af the curve be y = f(x) and let the given point P
on the curve be (x, ¥) and any other neighbouring point Q on the curve be
(x+Ax,+y+Ay )

- The equation of the secant P—Q is.(X, Y denoting the current
co-ordinates) i
ytAy-y
Y—y=———=(X-x)=—(X-x
= r+Ax—x ( ) ( )
the equation of the tangent P is

_ Ay dy
Foye b A2 (x-x)= 22 (x )

provided dy/dx is finite.

Thus, the tangent to the curve y = f(x) at (x, y) (not parallel lo the
y-axis) is

Y-—y“———(X—x) N ()]
(ii) When the equation of the curve is f.(x, y)=0.
Since % = ——%—’. (f‘ # 0),

28 -
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the equation of the tangent 1o the curve at ( X,y )i.'i
(X=x)r+(Y-y)r, =0 0
(iii) When the equation of the curve is x = ¢(1 ) y= (r )
BB fde ) (),
dc dif di ¢'(r)
the equation of the tangent at the point ‘i’ is

row(0)=Y1 (xg(0)} }

since

(1) ©)

e,y () X =0 (1) =0( (1 )-w (e ) (1),
Note 1. When the left-hand and right-hand derivatives at (x, y)are infinite,
with equal or opposite signs, the tangent at (x,y) can be conveniently
obtained by using the alternatives form of the equation of the tangent
X = x=(Y - y)(dx/dy) which can be easily established as before.
| Sce Ex. 32, Examples XIV(A) ]

Note 2. In the notation of Co-ordinate Geometry, the equation of the tangent
tothe curve y = f(x ) at (x, . ¥, Jcan be written as

y=w=r"(x )("'_xl )

In the application of Differential Calculus 1o the theory of plane curves,
for the sake of convenience, the current co-ordinates in the equation of the
tangent and normal are usually denoted by (X, ¥) while those of any particular
point are denoted by (x, y). The current co-ordinates in the equation of the

curve are however, as usual, derioted by (x] o ¥y 1

¥
14.3.  Geometrical meaning of ey

Y

Fig 14.3.1
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The equation (1) of the tangent can be written as
Y =£1~X-X +| y— x-‘-jZ
- dx dx
which being of the form y = mx + c, the standard equation of a straight
line, we conclude that
dy . ,
2 s the ‘m’ of the tangent at (x, y).
If v be the anglc which the positive direction of the tangent at P

makes with the positive direction of the x-axis, then tany = m = Ey-
= X

d
Hence, the direvative ﬁ at (x, y) is equal to the trigonometrical
tangent of the angle which the tangent to the curve at (x,y) makes with
the positive direction of the x-axis. . [See Art. 7.14]

Note 1. Itis customary to denote the angle which the tangent at any point
on a curve makes with the x-axis by . '

Note 2. The pasmve direction of the-tangent is the direction of the
arc-length s increasing. Henceforth, this direciton will be ﬁpol\en of as the
direction of the tangent or simply as the tangent.

dy . " s .
Note3. tany ,ie, Z is also called the gradient of the curve at the point
P(x,).

Noted. The rangent at (x, y) is parallel to the x-axis if y = 0, Le., if
vt i AP

t =0,ie,if = =0,

an ¥ 158, e

The tangent at (x, y). is perpendicular to the x-axis ( i.e., parallel to the

y-axis)if ¢ = '%ft JLe if coty =0,

i.e.,if]/ﬂ o or, B =0.

dy

14.4 Tangent at the origin.

If a curve passing through the origin be given by « rational integral
algebraic equation, the equation of the tangent (or tangents) at the origin
is obtained by equating to zero, the teirms of the lowest degree in the
equation.
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.

. ;s Fig 14.4.1

Let the equation of a curve of the n-th degree passing through the
origin be .
apx +byy+axt +byxy+ eyt +eta,x" +oe +k,,y" =0
a
Let P(x,y)bea poml on the curve near the origin O. The equmon of

the secant OP is y=2x.
x

the equation of the tangentat O is - -
Vv
Y=Lt — X =mX (s
Lt =X =mX (say ). w1
y—=0

Thus, the ‘m’ of the !aggent at the origin is Lt =
i =—+g x
—_ . N

Casel. Let us suppose that m is finite, i. e, the y-axis is not the
_tangent at the origin.

(i) Let us suppose b, # 0

Dividing (1) by x, we get

a,+b—+a;c+b2y+(\'-‘!-+ ------ =0
X

Now, let x = 0, ¥y — 0, then Lt (y/x )= m.

a, + bym = 0, the other terms vanishing.

m=—a,/b . 3)
From (2) and (3), the equation of the tangem at thc ongm is

aX +bY =0,

or, taking x and y as current co-ordinates. a,x + by = 0.
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(i) If b, = 0, then from (3) it follows that q; = 0; now in this case,
let us suppose that b, and c, are not both zero. Then, the equation of the
curve (1) can be written as

azx2+b2xy+c2y2+a3x3+-;-#0 (C))

2
Dividingby %, a;+b, 1+c2[1J tagxtecee =0,
X X

When x = 0, y = 0, we have

a, + bym+ c2m2 = 0, the other terms vanishing. ... )
From (5) it is clear that there are two values of m and hence, there are
two tangents at the origin and their equation, which is obtained by eliminating
m between (2) and (5), is -
a,X? +b,XY +c,¥? = 0
or, taking x and y as current co-ordinates,
¢12x2 + byxy + <:2y2 =0.

Ifay=b =a,=by=¢c, =0 , itcan be shown similarly that the rule
holds good then also; and so on.

CaseIl. When the tangent at the origin is the y-axis, then Lt (x/y ), as x

and yboth — 0, being the tangent of the inclination of the tangent at the

origin to the y-axis, is zero. Hence, dividing throughout the equation of the

curve by y, and assuming a, # 0, and making x and y both approach’
zero, we find b =0 . Hence, the-equation of the curve now being

2 2 »
: ax+a,x" +byxy+cy v+ =0
we see that the theorem is still true in this case.

Ilustration : If the equation of a curve be x? — y +x3+3x%y- y =0

the tangents at the origin are given by - y =0, ie, x+y=0 and
x-v=0.

14.5. Equation of the normal.

Definition. The normal at any point af a curve is the straight line through
that point drawn perpendicular to the tangent at that point.

Let any line (not parallel to the co-ordinate axes) through the point be
(x,y) be

Y—y:m(x—x).' |
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This will be perpendicular to the tangent (not parallel to the co-ordinate
axes)tothecurve y = f (x )at (x,y ).
dy . dy / dy
e oY —y=—(X- m:—==l je ifm==1/—"
i.e. to y dx( x)lf ax Jie.,if P
Substituting this value of m in the above equation, we see that the normal
tothe curve y = f (x)ar (x,v) {when not parallel to the co-ordinate
axes) is .
d :
a%(Y~y)f(XHX)=0 e D)

Similarly, if the equation of the curve is f (x, y ) = 0, the equation of the
normal at is

=—= e oD

and if the parametric equations of the curve are x = ¢ ( t ), y=y (l ), the
equation of the normal at the point ‘¢’ is

()X +y(e)r=0() (e )+y G w(e) ... O

. « © ¥
Nete1l. When the tangents are parallel to OX and QY the nor mals are
X =xand Y = y respectively. ' '

Note2. The positive direction of the normal makes an angle + %n with

the tangent, or 4 T+ ¥ with the x-axis.

14.6. Angle of intersection of two curves.

The angle of intersection of two curves is the angle between the
* tangents to the two curves at their common point of intersection.

Suppose the two curves £ ( xy ) =0,¢ ( Xy ) = 0 intersect at the
point (x, y).
The tangents to the curves at (x, y) are 3
Xf, +¥f, - (xf, +3f, )=0. [by§14202)]

X9, + Yo, —(x0, + yp, )=0.
The angle @ at which these lines cut is given by
f9, ~ 0.1,
[0+ 1,9,
Hence, if the curves touch at (x. y ) a=0,ie, tana =0

ie., fx¢y = ¢xf_v -Le., f.\‘/¢x = f_\' /¢\ ’

tana =
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and if they cut orthogonally at at ( x, y ), o= %ﬂ.‘ Jie, cota=0.

ie, [+ fy‘¢_y =0,
Note. If the equation of the curves are given in the forms y= Fx ),
L S(0)-0(x)
1+ ()0 (x)

Hence, the curves cut orthogonally if f/(x)o'(x )=-1.

y= 4) ( x ) the angle of their intersection is glven by tan

14.7. Cartesian Subtangent and Subnormal.
Let the tangent and normal at any po: nt P ( X,y ) on a curve meet the

x-axisin T and N respectively and let PM be drawn perpendicular to OX .
Y

. )

N X

=]
T~
X

Fig. 14.7.1

Then, TM is called the subtangent, and MN the subnormal at P.
In the right-angled triangles PTM, PNM, -
since ZNPM = £ZPTM =y, and PM =

subtangent =TM =y cot ¥ =y/(%x!],

subnormal = MN =y tan w:y%x’—'.

Note. PT and PN are often called as the length of the tangent and the
length of the normal (or sometimes simply tangent and normal) respectively.
Thus, from A' PTM and PNM,

PT:ycosecw=y\fl+cotzw=y 1+(1/y, 2=-!-[le+)’12)
7 N =N,
PN =ysec y=yyl+tan?y = yy1+y* .
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14.8. Proofof Lt Mz
QP arcPQ

Let PP, P/ P,,....;P,_’Q be the sides of an open polygon
inscribed in arc PQ of the curve y = f (x ) If the sum of the n sides

Z.ﬁ{ tends to a definite limit when n — oo and the length of each side
tends 1o zero, -that limit is defined as the length of the arc PQ.

P2

7 \
Fig. 14.8.1
Let 8,, 6,,....,6, be the angles which the sides make with the chord

Fé, and let f'(x ) be continuous throughout PQ.
Projecting the sides on P—Q , we have
PQ = proj. P P, + proj. P, P, + ...+ proj. Py O
=PP cos@, +P P,cos@, +...+ P,  Qcosh,
itfollows that PO <P P, +P P, +..+ P, _, 0O
and > (PP, +P P, +..+P,_ 0)coso
where 0 is gumerically the greatest of the angles 6 108 30000,8

PQ "
PPy P Pyt v, 0

Hence, cos 6 < |5

Since the chords FP_I, 'PI_P;. woes By Q aswellas PQ are parallel
to the tangents to the arcs at points between their respective extremities (by
the Mean Value Theorem), it follows from the continuity of f* ( x ) that the
numerical value of @ can be made as small as we please by taking O
sufficiently near to P, and, -in the limiting position, cos§ — 1and
X PP, —arc PQ.

chord PQ 1
a—r arc PQ
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14.9. Derivative of arc-length (Cartesian).
Let P(x,y )be the given point, and Q(x +4x, y+ 4y ) beany
point near P on the curve.

Y

(0]

Fig 14.9.1

Let s denote the length of the arc AP measured from a fixed point A on
the curve, and let 5 + 4s denote the arc AQ . so thatarc PQ = 4s . Here,

s is obviously a function of x, and hence of y. We shall assume the
fundamental limit

chord PQ
Q-P arc PQ
From the figure, (chord PQ)2 = PR* + QR? = (4x )2 +(4ay ).

chord PQ 2 (s 2—l‘+ Ay 2
ds Ax . dax ) -

Now let @ — P as a limiting position; then 4 x — 0 and we have

ds ) () :
dx - dx | ° = 1)

1

2
ds dy R
— =1+ —
or ax ‘. [ e J 2)
o : d
Since L. = ) ﬂ , we get, on multiplying both sides of (2) by s i
dy. dx dy dy

o _ [ (ax) |
dy‘ ey 3)
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Cor. Multiplying both sides of (1), (2) and (3) by dx?, dx, dy, we get the
corresponding differential form
ds? = dx® & dy2 ;

2 ‘ 2
ds=.,1+ 31 cde; ds= |1+ ﬁ -dy.
dx dy

14.10  Values of siny, cosy .

. . RQ . Ay As
From APQOR [See Fig.,§ 14.9], sin QPR = — = — - —— |
r OR [See Fig.,§ 14.9), sin O 70 & PO
In the limiting position when @ — P, the secant PQ becomes the
» As arc PQ
tangent at P, ZOPR — y and As —» 0 and — = - <o ]
- & ke PQ ~ chord PQ
. . Ay dy
Sin = Ity = =—= )
Y R s e (D

' Ax
imi = Lt —=
~ Similarly, _cosw e

Since tany = % and coty = gx_ , we get, from (2) and (3) of
y

dx
e @)

ds ds
Art. 149, — = secyf.— = cosec ¥/ ,
. dx v dy 4

whence also cos y, sin iy are obtained.

: 2 N2
_d_.x_ d—y =
(ds)_ +(ds) o &)

- () & _dx ds dy dy ds
Cor. 1 x=0(), y = w ), dt ds di'dt ds i

¢ (2)-{2] (&7
GORG)

Note. Relations (2) and (3) of Art. 14.9 can also be deduced from the .values
of siny, cosy, tany . .

14.11. Illustrative Examples.
Ex. 1. Find the equation of the tangent at (x, y) to the curve

(x/a)%+(y’/b)%=l.'
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Here the cquation of the curve is fxy)= (x/a )% +(y/b )% -1=0.
The equation of the tangent is
(X -x)r +(¥-y)s, =0,

il A/ 2
ie., (er),%x 3/(1’ +(Y—;y)%y 3/!;’ =0,
1) 2 B2
ie, Xx ;/nl +Yy ;/bJ =(x/a)% +(y/b)%,
2 ; 2

Le., Xx—g/a‘-r)’y\g/b’ =1.
Note. The equation of the tangent should be simplified as much as possible
as in the above example.

Ex. 2. Find the angle of intersection of the curves x?* — y2=a® and
x2+y2=nz ‘/5 [ Patna, 1940 ]

Adding and subtracting the cquaﬁons of the two curves, we find their
common points of intersection given by 2x%=4? (ﬁ + 1). ie.,

x:ta\fis/5+l’/\/£ and 2y? = 42 (Ji-—-l),i.e., _yzia\/‘ﬁ—l)/ﬁ-

Since the equations of the curves can be written as

f(xy)=x®-y"~a*=0 and ¢(x,y)=x? +y? -a®J2=0
hence if o be the angle of intersection of the curves at (x, y), we have, by
Art. 14.6,

2x.2y~ (Zx)(— Zy) + 2xy

= =1
2x.2x+(-2y)Q2y) x?-y?
on substituting the values of x and y found above. Hence, a =-}n )

tano =

’

<. the curves intersect at an angle of 45°.

‘Ex. 3. Find the condition that the conics
ax® +by? =1 and ax®+b,y* =1
shall cut orthogonally.
- The equations of the conics are g
f(xy)=ax? +by? —1=0, : B (i
o(xy)=ax® +by* -1=0 ' . O
Now, the condition that they should cut orthogonally at (x, y) is, by
§14.6. :
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fe:+fy0,=0,
ie, 2ax.2a,x+2by.2bjy=0,

ie., aax +bb1y =0 : 3)

Since the point (x, y) is common to both (1) and (2), the requxred
condition is obtained by eliminating x, y from (1), (2) and (3).

Subtracting (2) from (1), (a-a, )x* +(b=b, )y’ =0 ... @
Comparing (3) and (4), we get
a-a; b-b 111 1

aa, bb, ' a, a b b

which is the required condition.

Ex.4. If xcosa + ysina= p touches the curve

X Y o
a"l b‘" L ) }
show that (acos o )= +(bsing )= 1 =p . [C.P 1996 ]

The equation of the tangent to the given curve at (x. v) by formula (2)
of Art. 14.2 is '
- -1
(X -x )5 o) Y y =0,
a”

ie Xxnl-l/am +me l/bm =xm/am+.m/bm:1 )
If Xcosa+Ysina=p N )]
touches thc given curve, equations (1) and (2) must be ldLﬂthEll

x™ l/am .m I/bmzl

Hence, o B 5
cos O sinQ P
- :xm—l/am—l ym—l/bm—l
1e., = " S
acoso bsino P

e "' acosa ¥ "' bsino
"\a p b P
Ty I o m m
acos o " bsino \"' [ x n A
P p a b

ie, (acosa)ﬁ}(bsina)ﬁ. =p .
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Ex.5. If x,.v, be the paris of the axes of x and y intercepted by the
tangent at any point (x, y) to the curve (x/a ) T+ (y/b ): =1, show that

x’[a® +y? [b? =1.
The equation of the tangent at (x, y) to the given curve is, as in Ex.1.

}(Jr%/a§ +Yy_-{/b§ =1-

; 11 24
Where it meets the x-axis, Y=0, hence X =a'x?,ie., x, =a’x*,and

2
where it meets the y-axis, X=0, hence Y—a’y-‘ ,i.e., y, b’

E
.

4 2
Lo /(1 +y12/b2—a3x3/a +b3 /b —(x/a)3 +(y/b)?

EXAMPLES - XIV(A) e
1. Find the equation of the tangent at the point (x, y) on each of the

foliowing curves :
x* v2 y"
W FrE=t (u)— o
Gi) xteyptadd . ) ¥ -3axy+y’ = 0.

® P4y =a? (- yh)-

2. () Find the equation of the tangent at the pomt 9 on each of the
following curves :

(@) x=acos@, y=hbhsinf.
(b) x=acos’@, y=bsin®0.
(¢) x=a(@+sin8), y=a(l-cosf).
(ii) Find the equation of the normal at ‘r* on the curve
x=a(2cost+cos2r ), y=a(2sint-sin2r).
3. (i) Find the tangent at the point (1,-1) to the curve
X4yt -3 +4x+5y+2=0. ‘
(i) Show that the tangent at (@, b) to the curve
(x/a)+(y/b)> =2 is xfa+y/b =2. [CP 1943)
(iii) Show that the normal at the point 9 = —zr _on the curve

x=3cosf —cos’ 9, y = 3sinf -sin® 0 passes through the
origin.
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(i) Find the tangent and the normal to the curve
y(x—2)(x--3)-x+7 =0
at the point where it cuts the x-axis.

(i) Show that of the tangents at the points where the curve
y= (x -1 )(x =2 )(x— 3) is met by the x-axis, two are parallel,
and the third makes an angie of 135" with the x-axis.

(iii) Find the tangent to the curve xy? = 4 ( 4 - x ) at the point where
itis cut by the line v =x.

(i) Find where the tangent is parallel to the x-axis for the curves :

(@ y=x-3x2-09x+15 (b)) ar®+2hxy+by? =1.
(i) Find where the tangent is perpendicular to the x-axis for the curves
(@ y*=x*(a-x). (b)) ax’ + 2y + by’ = 1.
© y=(x-3)*(x-2) [C.P1935]
(iii) Show that the tangents to the curve
33’ +4xy+5y2 -4 =0
at the points in which it is intersected by the lines
3x+2y=0and 2x+5y =0
arc parallel to the axes of co-ordinates.
(iv) Find at what points on the curve
y = 2x —15x% + 34x - 20
the tangents are parallclto y + 2x = 0,
(v) Find the points onthecurve y= x2 4+3x+4 the tangents at which
pass through the origin.
Show that the tangent to the curve x* + y* = 3axy at the point other
than the origin, where it meets the parabols _v2 = ax, 1s parallel to the
V-axis.
Prove that all points of the curve
v? = da{x + asin (x/a)}
at which the tangent is parallel to the x-axis lie on a parabola.
: [C.P. 1998 ]
Tangents are drawn from the origin to the curve y = sin x. Prove that

their points of contact lic on x°y? = x% - y?

() Show that the curve (xfa)” +{v/b)" =2 touches the
straightline x/a + y/b = 2 atihe point (a,b), whatever be the
value of n.



TANGENT AND NORMAL d : 447

10.

11.

12.

13.

14.

15.

16.

& x &
(ii) Prove that — + l =1 touches the curve > + log Zl=0,
a b a b

@ If lx+my =1 touches the curve (ax )" + (by )" =1, show

n

. that (I/a)"1 +(m/b)n1 =1. _ [B.P.1989]
@) If Ix + my =1 is a normal to the parabola y2 = 4ax , then show
that al® +2alm® =m?. [VP 1999]

Prove that the condition that xcosa + ysin @ = p should touch

xmyn - anr-m is pm+n m I (m+n )nnn m+n “nnacosma_

Find the angles of intersection of the following curves :

W x?- yz =24> and x? + yz = 4a°.

() x* =4y and y(x?+4)=8.

(i) y=x* and 6y =7- 2.

() Prove that the curves x—z +-ji =1 and -i + —}-’-i =1 will cut
a b a b

orthogonally if a—b =.da" - b".[ C.P 1980, ’90,2007 V.P 20001
() Find the condition that the curves ax'+by® =1 and

ax® +by* =1 should cut orthogonally.
(iii) Show that the curves x* - 3xy® = -2 and 3x%y—y* =2 cut

orthogonally. [C.P206G67 .
) Prove that the sum of the intercepts of the tangent to the curve

Jx + Jy =Ja upon the co-ordinate axes is constant.

[B.P. 1993 ]

(i) Find the abscissa of the point on each of the curves

(@) ay* = X3,

b) Jx_y = a + x, the normal at which cuts off cqual intercepts

from the co-ordinate axes.

Show that the portion of the tangent at any point on the following

curves intercepted between the axes is of constant lcngth.
2

(VR R, TR [C.P 1940 ]
(i) x=acos’, y:asin?O‘ '
If the tangent at (x,, ¥) to the curve x* 4 y? = a® meets the curve

againin (x,, y,). show that Xafx + y, [y, = -1
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17.

18.
19.

20.

21.

22.

23.

25.

26.

() Show that at any point on the parabola v? = 4ax , the subnormal
is constant and the subtangent varies as the abscissa of the point
of contact.

(i) Show that at any point on'the hypérbola xy = ¢, the subtangent

varies as the abscissa and the subnormal varies as the cube of the
ordinate of the point of contact.

Prove that the subtangent is of constant length for the curve
logy = xloga.

Show that for the curve by? = (x + a )* the square of the subtangent
varies as ti_le subnormal. [C.P. 2006

Show that at any point on the curve x™*" = k™ "y the m™ power
yp po

of the subtangent varies as the n" power of the subnormal.
[ C.P. 1995, 97,2002, 2004 ]

For the curve x"y" = ¢™*", show tha( the subtangent at any poml

_ varies as the abscissa of the point.

Show that for any curve the rectangle contained by the subtangent
and subnormal is equal-to the square on the corresponding ordinate.
[C.P.2005 ]

Find the lengths of the subtangent, subnormal, tangent and noﬁal of
the curves.

‘@) x=a(0+sin@), y=a(l-cos@)at'g’

(i) x=a(cost+tsint), y=a(sint—rcost)at't".
. - [C.P2006]
Find the value of n so that the subnormal at any point on the curve -
xy" = a"*' may be constant.
Show that in any curve . '
subnormal _ ( lengthof normal J )

subtangent _ length of tangent

Show that the length of the tangent at any point on lhe following
curves is constant :

f_
@ ~,/ - —l

a(cosr+lngmniz-l), y=asini.

]

() x

(i) s = alog(a/v).
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27.

28.

29.

31.

32.

33.

29

3 ; 1 2
K4 yz = 4ax. @ x> +y'=a’.

(i) If p,and p, be the perpendiculars from the origin on the tangent
and normal respectively at any point (x, y) on the curve, then show that
p, = xsiny - ycosy., p, =xcosy + ysiny,
where, as usual, tany = dy/dx.
(i) If, in the above case, the curve be x-% ¥ y‘} = a§ show that
4p12 + [’22 = aj".
In the curve "y" = a"*", show that the portion of the tangent '

intercepted between the axes is divided at-its point of contact into
segments which are in a constant ratio.

@) In the catenary y = ccosh (x/c )show thal the length of the
perpendicular from the foot of the ordinate on the tangent is of
constant length. : [C. P 1943]

(i) Show that for the-catenary y = ¢ cosh ( x/c )the length of the
~ normal at any pointis y2/c. i
Prove that the equation ofthe tangent to the curve x = af (t)/u/ (t),
y = ap )y (1) may be written in the form
X y a
Fe) o0 w)|=0
re o0 ve
Find the equation of the tangent at the origin of the curve
y=x2sin(1/x) for x#0
=0 for x=0.
Show that for the curve y = x% the tangent at the origin is x =0,
although dy/dx does not exist there. ’
If @ and B be the intercepts on the axes of x and y cut off by the
tangent to the curve (x/a)" + ( ylb )"‘ ='] thén show that28

(ﬂ/a)n 1+ (5B )n&l =1

ds
Find e for the followmg curves :

2
3
X x

i) y=La(e +e ).
(iv) x=a(1-cos@ ), y=a(6 +sin@)
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35. Iffortheellipse x2/a® + y?/b? =1, x = asin¢.show that

ds _
dy

1-¢? smz¢

36. Two curves are defined as follows :

(0]

(ii)

x =1

y=t3sin(l/f), for 1 #0

=0for r=0. .
x=2+0sin(1t), y=r2sin(1f1), for 1 # 0
x=0, y=0for=0

show that, for the first curve, although dx/dr . dv/dr are continuous
for t =0, the curve has no tangent at the point; and for the second
curve although dx/dr,dy/dr are not continuous for 1 = 0, the curve
has a tangent at the point.

ANSWERS
. Xx Yy _ B X" 1 yym—l
1. @ a2 5T L (i1) " * o =,
(i) Xx_-% + Yy'; = a-% . (iv) X (.\'2 —ay)+ Y(‘\'2 —ax):‘ axy .
W) X{Zx(xz +y2 )—azx }+ Y{2y(_x: + yz )f»a:,\' }: az(x2 - y?' )
2. @) -(a) lc050+-):s'm0=l.
a b
(b) bX sin@ + a¥ cos @ = absin O cos O -
© Xsin%ﬂ*Ycos—é-B = aOs'mjz—G_
() Xcostr—Ysindr=3acos3r.
3. () 2x+3y+1=0.
4. () Tangent x-20y~7 =0; normal 20x+ y - 140 = 0.
(i) x+y-4=0
5. @ () (3,-12), (-1,20).
(b) Where ax + hy = 0 intersects the curve.
@) @) (0.0), (a.0).

(b) Where hx + by = 0 intersects the curve.
(c) No such point exists

(iv) (2.4);(31). ) (2,14); (-2.2).
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12. () i=. @  @n'3. i) 1=
13, (i) aa’(b—b’)% +bb'(é—a’)§ =0.
14. (i) (2) ta ® ta/V2.

23. () asin0, 2a5in? 460 n 0, 2asin40, 2asinL0tan 0.
(i) ycots, ytant, ycosect, ysect .
24. i 3 y=0.

(u)[ ) Gii) = (iv)@.

14.12. Angle between Radius Vector and Tangent,

34. (i)

If ¢ be the angle between the tangent and radius vector ar any point
onthe curve r= f(0), then '

tan d’———ﬁ, sm(b-—r-(-l-g, cosq;-_-.‘.ii
dr ds ds

Let P(r,{)) be the given point on the curve r = [ (6 ) and

(r +4r,0 + 46 )be a point on the curve in the neighbourhood of P.
Let QP be the secant through Q, P. Draw PN perpendicular on OQ.

Then, ZPON = A0, PN = rsin 40, ON = rcos 46 .

Let ¢ be the angle which the tangent PT ar P makes with the radius
vector OP, ie., ZOPT = ¢

From the right-angled A PON,

tan PON = ﬂ PN ©rsin A0
NQ 00 - ()N r+d4dr —rcos 46
rsin 40 _ 7 sin 40

- r(1-cos 46)+ 4r ~ 2 sin? 140 + 4r
r-(sin40/46)
1rd6- (sm wAG/ZAB)z Ar/de)

[ i.e., dividing both numerator and denominator by 40 1]

Nowlet 0 — P, lhén 40 — 0, and secant QP becomes the tangent
PT,and ZPON — ZOPT , ie., ¢.
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Fig 14.12.1

r-(sin49/40 )

tang = o
200 1140 (sin %49/§Ae)z+(dr/ae)'
= :/5‘% (ie.=rfr)= %ﬁ“

[ since Lt (sin AG/AQ ) and Lt (sin 1a0/ine Jare each equal to 1 1.
Now, let s denote the length of the arc AP measured from a fixed point
A on the curve, and let s + As denote the arc AQ., so that the arc
PQ = As. Here s is obviously a function of @. and hence of
PN~ rsin 40 46 ds
. PO A6 As  PQ
Now let Q — P, then 46 -0, d4s-—0 and ther
4s[PQ = (arc PQ)/(chord PQ) — 1. ‘

sing = Lt ,_AB_= rig
As—) As ds
Again, cos PON = Qly 220N (r+4r)-reos 46
PQ PQ PO
_r(1-cos 48 )+ ar _r-2sin’ $46 +4r
PQ PQ

. 2
1,10 - M‘) .ﬂ._A_s+i1f'. as
L 140 | 4s PQ 45 PQ
Now let ¢ — P . Then, as before,

cos¢ = Lt i'; = r£

o As—0  As ds
Otherwise :
. dr rd0 _dr df _dr

cos ¢ =cot¢-sing = ;—E i —EE ‘ds 7
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Cor.1. Form AOPT, £LPTX = ZPOT + £ZOPT
y=0+0.

2 2 ‘
Cor. 2. dry g2 Eé =costp+sinZg =1
ds ds
14.13. Derivative of arc-length (Polar).
With the notations and the figure of the previous article, we have
PQ> = PN? +ON’ = (rsin46 )* + (r + 4r - rcos 46 )?
(rsind0 )2 +(r-2sin® 4 26-+.ar
=(rsind@ )’ +\r-2sin" 140 +4r | .
Dividing both sides by (46 )*we get

3 o 2 ; . :
PQ A5\ _ o sindOY" hi, 49 singd01 ar )
As 48 48 2 140 0)

" in the limiting position, when @ — P and 40 - 0.

2 2
[i’i woigl AN M
o 6

r2+[."_']2 ®
o de do .
— . de
._Mumplymg both sides of (2) by rrL we get
) =1 +{ r ‘_’2 )2 3)
dr " dr -

Cor. Multiplying (1), (2) and (3) by do?, de, dr, we get the corresponding
differential forms _
ds? = dr?+ r’de?.

2 ' ]
ds = | r’+ f[ do.
do i

Note. Relations (2) and (3) can also be deduced from the values of sin¢,
cosQ, tan ¢. ‘
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14.14.  Angle of intersection of two curves (Polar).-

Suppose two curves r = f (0 ), r= ¢ (6 ) intersect at the peint P,

and let F?l, p_1'2 be the tangents at P to the two curves, and let
ZOPT] =¢], AOPTI =¢2

Fig 14.14.1

Then, if & be the angle between the two curves, o = b, -9,.
tan ¢, — tan ¢,
tang@ = ———m—— =

I+tang¢, tang,
Since tan ¢, = r/r' = f (9 )r (e )and tang, = /' =06 )¢ @ ).
we get 1

f(0)¢(6)-r"(0 )¢ (0)

tan o = — > bl

r(6)e(6)+70)e(0)

14.15.  Polar Subtangent and Subnormal.

N

o0
) Fig 14.15.1
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Let ‘P be any point on the curve r = f (0 ), and let the tangent PT
and normal PN at P meet the line drawn through the pole O perpendicular
to the radius vector OP in T and N respectively.

Then OT is called the polar subtangent and ON is called the polar
subnormal.

Since, ZOPT =¢, OT = OPlan¢—rr%§—
r

2 do
polar subtangent =r? a

Again, ON =OPtanOPN =rcot¢ =r- dr

rd@ -
~. pol b l=—.
polar subnormal a0
Note. If u=l, d—":——l--d—r,
r de r2 do
A &
polar subtangent = TR

14.16. Perpendicular from the pole on Tangent.

Let p be the length of the perpendicular ON from the pole O on the
tangent PT at any point P.

X
N
T
Fig 14.16.1
Then from A OPN, ON = OPsin ¢ .
p=rsing. oo (D

1 1 1
Again, — = --2»cosec2¢ = -—z(l +cot’ ¢ )
p r r



456 IMFFERENTIAL CALCULUS

1 1 1(dr)? :
T 7 7| q @
The symbol u is generally used to denote 1/r, the reciprocél of the
radius vector.

Lo du 1 odr
= do 2 de
Hence, the relation (2) becomes
2
%:uu(d_“) _ )
p do/

14.17. The (p, r) or Pedal eqation of a curve.

The relation between the perpendicular (p) on the tangent at any point
P on a curve and the radius vector (r) of the point of contaet P, from some
given point O, is called the (p, r) or pedal equation of the curve with regard
to O. Such equations are found very useful in the application of the principles
of Statics and Dynamics.
(i) Pedal equation deduced from Curtesian equanon

Let us take the origin as the point with regard to which the pedal
equation is to be obtained, and let f ( x,y )= 0 be the equation of the
curve. -

" The tangent at (x, y) is Xf.+¥ S, = (.r fo+y fy):
If p be the perpendicular from the origin on it,

s lxftnk

= 1
TV @

Also, rz = _xl + _)'2 . 2)
and  f(xy)=0 - &)

If x and y be eliminated from (1), (2) and (3). the requlred pedal
equation is obtained.

(ii) Pedal equation deduced from polar equation.
Let us take the pole as the point with regard to which the pedal equanon
is to be obtained, and let f (,8 )= 0 be the eqation of the curve.

Let p be the perpendicular from the pole on the tangent at (r,0):
then :
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r(r8)=0; )
tan@:%ﬁ, Loswae @
. p=rsing. . (©)

If 0 and ¢ be eliminated from (1), (2) and (3), the reqmred pedal
equatioh is obtained.

Notel. When in any case nothing is mentioned about the given point
with regard to which the pedul equation is to be obtained, the given point is
to be taken as the origin in the Cartesian system and the pele in the Polar
system.

Note2. Insome elementary cascs, pedal equations can be easily obtained
from geometrical properties. | See Ex. 6.0f Art. 14.18 ]
14.18. Tustrative Examples.

Ex. 1. Obtain the values of sind, cos¢, wné and arc-differential in
polar co-ordinates by transformation from Cartesian system.

Since x=rcos®, yv=rsin0,
dy =cos O dr = rsin 00
and dy=sinQdr+rcos0dY,
A 4 dy? = dr? 407 o2,
ie. ds® = dr® +r? do?. (Y
Also, Ji'd_y ~ydv=r?do con (2)

Again, since x> +y2=r%, o xdvdvdv=rdr ... ()
Now, w=0+0, . 6=y-6.
cos¢=édswc059+sinwsin0
dx x dy Y xd‘x+ydy dr
_Es—7 ds r rds :(-l_&- Lby3)]
Again, sin ¢ =siny cos@-cosysin 6 ]
_dy x_dx y _xdy—ydx _rdd .
e e T L
raﬁ dr rdé

ta =sindp+cosh=
I e ™ e~

Ex. 2. Find the angle of intersection of the curves

r=sin8+cos® and r=2sin0.
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r _cos@+sin® 1+tan0
Here, tan¢p, =—= — =
r' cos@-sin® I1-tanB
2sin 0
2cos0
¢|:7n+9, ¢2=9_

=tan(%n+6).

It

o
tan ¢, = — =tan.
r

angle of intersection= ¢, = ¢, =1m.

Ex. 3. Prove that the curves
r* =a" cosn® and r" =b"sinnd
cut orthogonally.
Taking logarithm of the 1% equation,

nlogr=nloga+logcosnd.
Differentiating with respect to 0,

4 ldr _ nsinn
rdd  cosn
cotdp, =—tan ne=col(A2L'n+ no )
Similarly, from the 2" equation, we get

cot ¢, =cot nb
=] : =
=5n+n0; ¢, =n0.

angle of intersection = ¢, — ¢, = %ﬂ
Ex. 4. Find the pedal equation of the parabola y2

=4ax with regard to
its veriex. :

Differentiating the given equation, yy, =2a, . v, =2afv.
the tangentat (x,y)is Y-y=(2a/y )( X-x )

Le, 2uaX — vV +2ax=0 (= yz =4dax)
2 _ da’x? _ 4a 2y? _ ax’ )
’ _4112+y2 _4a +4a_x'_x+a (1)
and r? = x? +y? = x? +4ax. )
From (1) and (2),
axz—p:'x——ap2 =0 (3)
2

and x* +dax-r? =0 @

By eliminating x between (3) and (4) the required relation between p
and r will be obtained.
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By cross-multiplication,
x? X I
2

72 7
pzrz +4a°p ar® —ap 4a’ 4 p2

(p2r2 +402p2 )(4(11 +p? )=(‘”'2 -ap? )Z

is the required pedal equation.

EX. 5. Find the pedal equation of r" =a" cosm®.
Taking logarithm of the given equation,
mlogr =mloga+logcosmb .
Differentiating with respectto @,

1dr m sin m0

r do cosmb °
cot = —tan mB:cot(f?n+m9 ),
¢=4m+mb.

Again, p=rsing= rsin(%fwmﬂ ): r cos md
m

»
=r-—— from the equation of the curve.
a

r" = " p is the required pedal equation.

Ex. 6. Find geo;netrically the pedal-equation of an ellipse with respect to

a focus.

Fig 14.18.1

SN, S 'N ' are drawn perpendiculars on the tangent at any point P on
the ellipse. SP = r, S'P=r', SN =p, SN’= p’ We know from Co-ordinate

Geometry that
r+r'=2a and pp'=p,
Since ZSPN = /S'PN', . A" SPN, S'PN’ aresimilar.
r _L’__\/l'l" _Jr(lu—rj
p r \pp b’
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r? r(2a—r;) . s 2u i
e b? ’ ' P’ B
which is the required pzdal equation.
Noting that the semi-latus rectum / of the ellipse = 4/, the above
1 2 4

equation may be writtenas — = — - —
opt ¥

Ex. 7. Find the geometrical meaning of L. , and hence deduce

dy
e J +( dp } ‘
dys
We have p=rsing.
Differentiating with respect to v/
L/ rcaws¢—¢+:’m ¢E—
dw dy dyr .
-
. . H - '0
=,-c05¢ﬂ+c05¢_,-£@.._(ﬁ_ EL‘L‘E:L‘_.
dy dr dy cos¢p dr

=rcos¢—i(0+¢)
dhy )

-‘:I‘COS’GJJ (v O+¢= ).
= PN (Seefig,§13.16)
= projection of the radius vector on the tangent.

From AOPN. OP?=ON*+ PN’

C 't
P’ =p° +ldp :
hy j

14.19  Miscellaneous Worked Out Examples

Ex. 1. (/) At what point is the tangent to the parabola y = v? parallel

to the straight line y=4x-57 [C P 1982 ]
v the tangents at

which pass through the origin. | ¢ £ 1991, 2002 )
Solution : - r=x, ‘ sws KL

(/i) Find the points on the curve y=x"

o
P x = gradient of the tangent to the curve (1) at (x, ¥).

L/\ -
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If the tangent is parallel to the straight line y =4x-5, then 2x=4,
ie., x=2 and so _y=x2 =4.
Hence the required point is (2, 4).
(if) Here, equation of the curve is y =22 - 4x+9 3% 4))
Equation-of the tangent at (. y) is '
Y-y=2(x-2)(X-x),
(X,Y) being current coordinates.
If this tangent passes through the origin (0, 0), then
0-y=2(x-2)0-x)
ie, y= 2x2 —4x
or, x?—4x+9=2x"—4x . [ From (1) ]
or, x2=9, ie, x=13 :
when x=3, y=6 and when x=-3 y=30
Hence the required points are (3, 6) and (=3, 30).

z 2 2
Ex. 2. Find the slope of the curve v 4y3 =a3 at the point (x, ¥),
and hence obtain the equations of the tangent and normal at the point.
Also deduce that the portion of thé tangent at (x y;) intercepted
between the axes is of constant length.

[ C. P 1983 91.;-B. P. 1995 ]

2. 02 2
Solution : Equation of the curve is x3 + y3=a3 (¢))
1
_(;1 = _XT- = slope of the curve at the point (xl,yl).
ax -
_ x3 L 7
Equation of the tangent at (x,,_v,) is
b4
g e
Y-y xly’ (x xy)
o, X4 X cxdayizat (Fom®)] wis
x! 3 yl.‘ 3

is the equation of the tangent.
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Similarly, equation of the normal at (x,.y,) is

¥ —x'—'x(x— )
Y "yl}{ X

1 1
o, x3(X ~x)=y3(Y-y)
Equation (2) can be written in the form i

X Y
+ 7 =1
3

Wl

1 1
Xj3a’  yj3a

1 2 1
50 that the intercepts on the axes are x;3a? and v]aa‘ respectively.

119

Hence the length of the tangent intercepted between the axes

n n
Ex. 3. If p=xcoso+ ysinat touches the curve [iJ"-I +(1J"” =1

a b
then prove that p" = (acosa)" + (bsina)" . [C P 2001
Solution : Equation o’ the curve is '

H .{z)"-' =] U
a b
1

1
o, 22 "~l+l.(z SR
a \a b \b dx

2 (i
ie, ¥ __b (2}, ):)"*
dx a \a b

Equation of the tangent of the curve (1) at any point (x, v) is )

oot (G e

(X, ¥) being current coordinates.
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1 1 1 1
or, b(f)"“l X+ (-y—)"‘l)’sz(f)"_l +ay(l)"_I
a a b
=ab (i)n-l +(X)n—l
a b
1 I J
or,b(-)"l){ﬂz(yj_}’ ab con (B
a b
But X coso+VYsina=p U &)

touches the given curve. So, equations (2) and (3) should bc
identical.

cosa  _ sink _p
b

J_ b
a
1 Jd
(x)n_—_l' N\ (y)]_[
acosct=p-| — , bsina=p- i
a b

n n

Hence (acosa)” +(bsina)” = p” (5)"_1 +(%)’H
a
= p" [ From (1) ]
Ex. 4. (i) Find the length of the cartesian subtangent of the curve

X

3 = B E [C P 1983 ]

(i) For the parabola ),2 = 4gx, show that the subtangent is
bisected at the vertex and that the subnormal is constant. [ B. P. 1993 ]

Solution : (/) Equation of the curve is y = et

dy | N
] —-——e
Y1 di 2
o
Length of cartesian subtangent | P =|-2]|=2 units.
¥
Y1 ._Le—i
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(i) Equation of the parabola is v* = 4av P ¢
2}gy'= 4a je., il-‘y-=2—a
dx : dx y

Equation of the ‘tangent at any point P(x, y)on the parabola is

& -————(X x)

or, 2a X —_y)’=-y2 t2ax=-2ax R )

If this tangent meets the x-axisat T(a,0), then
2a0— y0 = -2ax Yo

ie, o0=-x.

So, coordinates of T(-x.0)

and coordinates of S (x,0). /

S
Evidently, the subtangent ST is L 7
Q S
bisected at the origin O, ¥ L \N X
since | 05 |=|OT|=x.
Also, lénglh of cartesian
Subnormal A

Vol

Ex. 5. (i) Find the length of the polar subtangent for the curve

<€

r:a(l+cos€))at9=§. { C. P 1990 ]

(ii) Find the length of perpendicular drawn from the pole upon
the tangent to the cardioide r=a(l+cos0)at the point whose vectorial

angle is % [C P 1992 ]
Solution : (i) Here, r=a(1+cos?)
% ir—=—asin9
do
, dO
Length of polar subtangent =|r" T
-
- a® (14 c0s0)>

T
- =a, when 0=—.
—asind 2
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(if) Here, r =a(1+cos0), %:—asinﬂ_

do a(1+éose) 0 (n 0) n 0
t ={—=——=—C0t— =L + = —4—
M T B Rk e 212

Now, length of perpendicular from pole upon the tangem at any
point (r, ) is,

)*rsimb—"rsin(i+g)—rcosg
f 272)7 "%

At the point where, 0 = g’ r=a(l +Cosrg-) :;a

3, S5 _ i

and cos—]—6=cos£=i§- and henceAp=—-aX :
2 6 2 2 2 4 .

Ex. 6. (i) Find the pedal equation of the following curves :

(@ r=e. © [ C. P 1983, 92, 2000, 02 ]
® r=a(l-cosh). ' [C P 1988 ]
i 960(1
© r=5e 7. [C P 1989 ]
P
(i) Show that the pedal eqation of the ellipse “2_+;i' =1 with
. a
. b’ 2a
respect to a focus is _Z—T_l' [C P 1985 B. P. 1993 ]
P
Solution : () (@) r=e® - AU ))
or, logr=0loge=20 '
1 dr :
oy ;e-"l or, cot¢=l=cot%, ¢=%

oe A
p=rsm¢=rsmz=—

2

2 is the required pedal equation.

L 2pt=r
®) r'=a(l—oose)=2asin2g SRPE (|

logr =log2a +2|ogsin—g—
30~
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&
™ |
8
N
[SHR--]

o 0
=cot — S.oocotp=cot—  je, 9=
cot > ] 5 e o

' . 0
Now, p=rsing = rsm~2-

2_2.20_ o r .
or, pr=risinT o =rt—— [ From (1) ]
2 2a "
or, 2ap® =r? is the required pedal equation.
(km-’i
©) r=5e 7 wes 1)

dr

L
or, logr=1log5+0cot— or, L S B
7 r 7 7

T
or, COi¢=C0i:7. ie, 0=

v-41=

: . T
Now, p=rsing= rsm-7—

.M
Hence, p=r 'SIH:]- is the required pedal equation.

B

(i) The polar equation of the ellipse ;;?4- -’};—2 =1

{
with focus as pole is given by = I+ecosO esw  ICL)
‘ 2 )
: 2 a”-b
where. ! =semi-latus rectum =—"and e =eccentricity = >
a (4]
From (1) on differentiation
I dr . 1 (drY &
~—-—=—esin0 —| = | ==-sin?0
+2 do or, A (dﬂ) 12
e?sin?8 1 (dr 1 |
or, [ r—4 E = ;5‘ “—rz— [ Vide Art. 1416 |
3 3
or, e?sin?0=12( & ) )
r'p ‘
Also, from (1)

I-r 4 §
e? cos’ﬁ=(~——) ey I3

r
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Adding (2) and (3)

._F(?-7) NE r) %

r'p r?
A S DR
or, pz —r—z+r—2—7+l—¢ =
2 2
'.l_._.ﬂ i_o l—g:z:-b—zzi
pPPor a a® a
2a al b .
of, == L=
r P p ‘
b Za
Hence, the required pedal equatlon is —=—-1.
D r
EXAMP'LES XIV(B)
1. Fmd 25 for the following curves :
() r—a(l+cose). @) r=gef™>.
(iii) r? =a?cos20. @(v) r" = a" cosnf.
2. Find % for the curves :
G r=a0; ‘ @) r=a/6.

3. Show thatin the equiangular spiral r=ae®™% | the tangent is inclined
at a constant angle to the radius vector. ' [C. P.2006]

4. Showthatforlogr=a@ +b, per.
Find ¢ interms of @ for the following curves :
() Cardioide r = a(1-cos@ ).
(i) Parabola r = 2a/(1-cos6 ).
(i) Hyperbola r? cos20 = a®.
(iv) Lemniscate r?=a?cos20.
6. Find the angle of intersection of the following curves :
) r=asin20. r=acos?20. )
@ r=6cos®, r=2(1+cosf )
Gii) r? =16sin20, r¥sin20 = 4.
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7. Show that the following curves cut orthogonally :
@ r=a(l+cos@), r=>b(1-cosd ).
()] r;=a/(1+c059 ¥ r=bf(1-cosf ).
8. Show that the curves
) " =a"sec(n@+a), r —h”sec(n0+ﬂ)
ihtersect at an angle-which :qmdependenl of a and b.
9. Prove that
_dy dy
tan¢=(xz—y)/(x+‘va)'
where ¢ is the angle which the tangent to a ¢urve makes with the
radius vector drawn from the origin. * . [ C. P 193F, 2006 ]
[Use p =y -0, tan 0 = y/x]
10. Show that for the curve ;@ = g, the polar subtangent is constant and
for the curve r = ats, the polar subnormal is constant.
11. Show that for the curve r = ¢?, the polar subtangent is equal to the
polar subnormal. [ C. P2007)
12. Find the polar subtangent of
W) r=ae™ (i) r=a(l-cos@ ). "
(i) r=2a/(1-cos0). (iv) r=1/(1+ecosd ).
13. Show that the locus of the extremity of the polar subtangent of the
curve u+f(0)=0 is u=f.'(-;-iz+6).
14. Prove that the locus of the extremity of the polar subnormal of the
curve r= f(@ ) is r=s'(0 -ir ).
Hence deduce that the locus of the extremity of the polar subnormal of
the equiangular spiral r = a ¢? % is another equiangular spiral.
15. Show that the pedal equation of the ellipse
xz/z:r2 + '\'2/112 =1.
with regard to the centre is a’h2/p? = a® + b* — r?.
[ C.P. 1988, 93, 2007, B.P. ‘95, V.P. '95]
16. (i)" Show that the pedal equation of the astroid x§ & y% = a§ is

rP+3p? =4 . ; [C. P.2006]
(ii) Show that the pedal equation of the parabola y? = 4a (x+a)is
p’=ar. - [CP1931,°93,°97, V.P.2000]
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17.

-18.

Show geometrically that the pedal equation of a circle with regard to
a point on the circumference is pd = r?, where d is the diameter of
the circle. .
Show that the pedal equation of :
() thecardioide r = a( 1+ cos@ ) is r* = 2qp?.
[B.P. 1997, V.P. '99}

(ii) the parabola r = 2af(1-cos@ ) is p? = ar.

[ B.P. 1992, '94, V.P. 2002 ]
(iti) the hyperbola ,2 ;o529 = g2 is pr=a’.

2 2 3

(iv) the lemniscate r* =a’cos20 is r* = a%p. :

[ C.P. 1998, 2001, 2008 ]

gea is p=rsina.

(v) the equiangular spiral r = g e
(vi) the class of curves r" = a" sinn@ is r"*' =a"p.

(vii) the reciprocal spiral 7@ = g is p? (a2 +rt )= a’r?.

[C. P 1938]
- ANSWERS

L () 2acos0. (i) r/c;seca.(iii) afr. (v _—

26 J,2+—,,2/,, ) ~Vr2+a?fr. |

5. () $0. (i) m-46. (i) 17-20. (iv) in+29.

6 () w4 Giylr O Gi) 2.

12.0) runa. G (2asin’ 10 )/ (cosdo).

(iii) 2acosec@. (iv) I/ (esin@ ).



