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8.1. Definitions and Notations.

We have seen that the derivative of a funcçion of x, say 1(x), is in
general a function of x. This new function (i.e.. the derivative) may have a
derivative, which is called the second derivative (Or second differential
coefficient) of f(x), the original derivative being called the firs: derivative
(or first differential coefficient). Similarly, the derivative of the second
derivative is called the third derivative; and so on for the n-th derivative.

Thus, if y x3,	 .:. = 3x
dx

Again,	 ) =(3x2) = 6x
dxdxdx

d(dy'\	 a2	 dSince	 is denoted by	 . Therefore,	 (i.e., the seconddxyirj	 dx-

derivative of y with respect to x) in this case is 6x.

d(!Py)=Again, -	 d,6x)= 6
dx câ 2 	 dx

d (d2y	 d3y
Since	 is denoted by —3-

d3
(i.e., the third derivative ofy with respect to x) is 6 here.

Similarly, the n-th derivative of y with respect to x is generally

denoted by
dx-

If y =1(x), the successive derivatives are also denoted by

yl,	 y2, -	 Y31 .........

or, y',

or, y,	 j,	 .j ..........

or, f'(x),	 f(x),	 f(x) ...........f(x)

or, Df(x)	 02f(4, D3f(x) ........ D'f(x)

D standing for the symbol d
dx
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8.2. The n-th derivatives* of some special functions.

(i) y = x , where n is a positive integer.

=

Y2 = n(n-1 )x2;

y3 = n (n-I) (n -2 )x	 and proceeding in a similar manner.

y =n(n- l )(n-2).... {n-(r- l )	 (r<n)

y =n(n-l)(n-2) . . .

i.e., D(x) =

COr. Since y	 n which is a constant, y,,, 	 .... etc.'all zeroes
in this case.

(ii) y = (ax + b ) , where m is any number.

y j =na (ax +b);

y =m(m-1)a2(ax+b)'2;

Y3 =,n(m-1)(,n-2)a3(ax+b )'; and proceeding similarly,

y =m(ni-1)(m-2) ........ (m-n+l)a(ax+b).

D(ax+b)'=m(m-1)(m-2)(m-n+1)a(ax +b)

If m be a positive integer greater than n,

Sincem(m- I )(m-2) ...... (m-n+ I )= (rn-n)!

lY(ax+b)'	
m !

(in-n)!

m being a positive integer greater than n.

Note. If m be a positive integer less than n, !Y (ax + b 	 = 0
When m=n, D"(ax+b)=a.n!.

()	 y=e

y 1 =ae°'; y2 =a 2e";	 y3 =a3 e	 .... . y,,

D' (e" ) = a

Cor.(i)D(e)=e'

Cor.(ii) y=a =e"°, ..

* Strictly speaking, in these cases, the n-th derivatives are to be established
generally by the method of Induction.



248	 DIFFERENTIAL CALCULUS

(iv) y= 
1

—x+a

Y2 (-1)(--2)(x+a)-3 =(-1)2.2'(x+a3

Similarly. y =(-1)3.3!.(x+a) -4 etc.

.% 
1) ^( I = (-1)n!

x+a )	 (x + a)°1

Cor. Proceeding as above, D"	
} (-lYa(m-Fn-l)!

I(+b)'	 (m-l)!(ax+b)""

(v) y=Iog(x+a)

Y I	 +	 Hence, as in (iv) abovex a

D"{log(x + a)}= (-1)"_1(n-1)!

(x + a)"

-1)! a
Co DIog(ax+b)J=

(ax+b)"

(vi) y= sin (ax +b)

Yi =a cos (ax +b)=a sin (4x+ax+b)

Y2 
=a2 cos(1t.1ax+b)=a2 sin(2.fn+ax+b)

Y3 =03 COS (2. n+ax+b)=a	 (3.sin .. n+ax+b) etc

D°{sin(ax+b)} =a sin (x+ax+b)

Similarly, D"{cos (ax + b)}=a n cos (ir+ ax + b)

As particular cases when b = 0,

I
D"{sin ax}=a sin I

n
-n + ax);

(U
D{cos ax}=a" COS l-n+ ax).
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8.3. The n-th derivatives of rational algebraic functions.

The nth derivative of a fraction whose numerator and denominator
are both rational integral algebraic functions may be conveniently
obtained by resolving the fraction into partial fractions. This is shown
in Ex. 4, Art. 8.4. The rules for decomposing a fraction into partial
fractions are given in the Appendix.

Even when the denominator of a given algebraic fraction cannot be
broken up into real linear factors, the above method of decomposition
can be used by resolving the denominator into imaginary linear factors.
In this case, DeMoivre 's theorem is conveniently applied to put the final
result in the real form. This is illustrated in Ex. 5, Art. 8.4.

8.4. Illustrative Examples.

Ex. 1. If y= sin 3 x,find y,.

sin 3.x = 3 sin x —4 sin 3x

.3	 1
v=sm x=—(3sinx—sm3x)

	

i{ 

	 (i2

	

.
3 sin1— ,z+x - sini— nx+3xJ}

(	 L2

Ex.2./fi'=sin3x.cos2x,find y,.

, =!.2 sin 3x cos .x=!( sin 5x+ sin x)
2	 2

y =!I5'sin(±n1t+5x)+sin(!n,r+x
2	 (2	 )	 (2

Ex.3. Ify=esinbx.findy,.

Yi = e .a sinbx +e".cosbx . b

=e.(asinbx+b cos bx)

Let.a =rcos, b=r sin$,sothat

r =(a2+b2),=tan*.

Yi = re' sin (bx+Ø).

Similarly,	 y2 = re" la sin (bx+Q)+b cos (bx+$))

= r2 e' sin ( bx + 20 ), as before.
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In a similar way y3 = r 3e sin ( bx + 3$), etc. and generally

y	 re'sin(bx + n$ ),

b)
i.e., D(e sin bx) = (a2 +b 2 )esin (bx + n tan'

Note.	 Similarly,

D (e n' cos bx) = ( a 2 +b 2 ) . " ecOs (bx +n tan k )
Again, if y = e'sin(bi + c),

	Y.=(a 2 
+b 2 ) e sin (bx + c + n tan	

J
and if  = e' cos (bx+c),

y=(a2+b2)ecos(bx+c+ntan_J

Ex.4. If y=

	

	 . find y.X 3
 +x -6x

x 3 +x 2 -6x=x(x 2 +x-6)=x(x+3)(x-2)

x 2 +x-1	 A	 9	 C
Let

x 3 +x 2-6x 	 x	 x+3 x-2

Multiplying both sides by x(x+3)(x-2),we get

x 2 +x- I A(x+3)(x-2)+ fix (x-2)+.Cx (x + 3).

Putting x = 0, -3, 2 successively on both sides, we get

A=	 ,!,	 B=!	 .=!.
.6	 3	 2

II	 1	 1	 1	 1
Y =-"-+-.----+-.—:

6 x 3 x+3 2 x-2

I	 I	 I	 I	 I
Y. (-I) n! —.—+—.	 +—.

6 xt	 3 (x+3)'	 2 (x-2)'

Ex. 5. If y =

	

	
find y,,.

x2+02

I	 11	 ___
(x+ ,a)(x_:a)	 2:a ( x - za	 x+:a
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Yn

	

l(x-ia)' +'2ia 	
(x+ia)'}

= (-1)'n !	
- (x +:a)	 }

Put x=rcosO,	 a=rsinO

	

Sothat r=(x2+a2)2,	 O=tan'a/x.

	

Now -(,.*I)	 -("+1)	(x—Ia)	 = r	 (cosO—jsjnO)"

-(+ I)	= r	 {cos (n+I)$+isifl(n+1)0}

(x + ia)_("+-(.+I)	= r	 (cosO+jsin9)

=r' {cos (n + 1)O—isjn (n + I)O}

Y,, =

	

	 r" '.2i sin(n+I)8
2ia

	

Since r =__±_, -*I)	 a	 - sin"'G

	sinO	 sin" 0

1 )=LP!,i., O sin(n+1)0,

where O=tan=cot*!
X	 a

Note. Ify -	 I	 .,41 
Osin (n + 1)0,

(x+b) 2 +0 2 	a"2

where 0 = tan

Cur. If y= tan' x, y,!_ hence
I+x.

D o (tanx)=(—I)"' (n-1)!sjnO shsn0,

where	 n*L=cot 1i.
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EXAMPLES - Vifi (A)

1. Find y in the following cases:
(1) y=(a--bx).	 (ii) y=1I(ax+b)

(iii) y= 11(a—x).	 (iv) y=Iog (ax+b)'.

(v) y=log{(a—x)I(a+x)	 (vi)	 y=4x.

(vii)y=1/'x.	 (viii)	 y=(2-3.x).

(ix) y=log(ax+x 2 )	 - (x) y 1031.

(xi) y=x/(a+bx).	 (xii) y=(a—x)I(a+x).

(xiii)y=x/(x-1).	 (xiv)y =sin 2x.

(xv) y=cos2xcosx.	 (xvi)y= Cos 3x

(xvii)y=sin 2.x cos 2x.	 (xviii) y=sinx sin 2x sin3x

()ix) y=ecosx.	 (xx) y=e'sinxsin2x.

(ma) y= e ll sin 4x.	 (xxii)y=e-' sin 2x

2. Find y3 , if

(I) y=x 2 logx.	 (ii) y=e.

(iii) y = e	 (iv) 3, = sin- 1 x.

3. Find the n-th derivatives of the following functions:

1	 1
@ ' x2 —a2	

(ii) x2 +16	
c.P.1993 I (iii) tan X

a

x	 I
(iv)

x +a2	 2	 (v)
_a4

+b2)
(vii) (x2 

+.'T
(ix) (x-1)(x-2)

x2
(xi) (X+1)2 (x+2)

I+x
(xiu) tan-'

_	 —I
(xv) tani

(vi)
X2 i-x+1

(Viii) 
4x2 +4x+5

x 2 +1
(x)

(x—I)(x-2)(x-3) . 
[C.P.1993]

x2
(xii)

(x—a)(x—b)

(xiv) Sin	
2x

(xvi)cot 
Ix
 X.
a
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4. If y x 'i', where n is a positive integer, show that
y,=2f1.3.5...(2n—I))x.

S. If u = sin ax + cos ax, show that

	

u=a( 1+(—I)sin 2ax).	 [B. P. 19931

6. If ax 2 +2hxv+bv 2 =1. show that	 -

d 2 y	 j,2_,

- (hx+by)3

7. Find y2, if

(i) sinx+cosy=I.

(d) y=tan(x+y).

(iii) x3 + y3 - 3axy = 0.

8. (a) Find .fLl in the following cases:
dr2

(i) If x=acos0,	 y=bsin8.

(ii) If xa(0+sin0),	 ya(t—cos0).	 LC. P. 1988 1

(1,) If x= cos : and y= log r, then prove that at

d 2y ( dy)2
0.	 (J.E.E.1985J

dx

9. If x=f(r), y=4t), then

d 2 y - X1 V2 - y1x,

3	 [VP.1998j

where suffixes denote differentiations with respect toe.

10. If xsinO +ycosQ =aand xcos0 —ysinO = bthen provethat

is a constant.
dO" d

oq doq dO"

d" (
X2I 

'11. Show that	
;---iJ= (x2 +1)'

#i+1	 n+IJ (n+1)x' _1	 +1	 )X.- -d
3 )	 5
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12. If y=sin mx,showthat

Y Yi Y2

Yl Y4 Y5 =0.

Y6 Y7 Y8

where suffixs of y denote the order of differentiations of y with respect
to X.

ANSWERS

1.(i) (-lym(in-1)(rn-2)...Jfll - n +I)b(a-bx)

(ii) (-I)"m(m - 1) (m - 2).... (in - a +1)a'

(a + bx)
U, +,,

(iv)	
(-1)" pa" (n - I)!

(a-i)""	 -	 (ax +b)"

(v) (a - 1)!	 +	 -	 (vi)	 (-1)"	
L3.5 ... (2n - 3)

	

[(a_x)'	 (a+i)"J
2"x 2

(vii) (-1)"- 1.3.5...(2n-l) 	 (viii) (-1) 3"• a!
p1*-.

2"x 2

1	 1
() (-I)'(n - I)!	 +	 .	 (x) 10	 -2) .(1og 10)

	Li'	 (a+x)'J

(xi) (-I)''ab''.n!	
(xii)	

a!

(a + bx)""	 (a +x)"

(xiii)	 (xiv) - 2' cos[n7t + 2x)
(x - 1)'' 

(xv) 21	 2	 }	 (2 j

(xvi)
(i

cosi -nr+3x

	

(2	 )

(xvii) - 22 	 cOS(! n + 4x I
(xviii) !i4 sin	 nn + 4x+ 2sin (I

	
) 6n . SinI!ni + 6xl-n,r-i-2x -

4	 2	 )2	
(2
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2.

3.

(xix) 22 ?cos x+ —n,rl
-	 (	 1	 "

4)

102 Cos (3x+n tan '3() !eI2cos(x+!n_
2 1 	 t.	 4) 	 i

(xxi) 5"e3 sin 4x4X+fltafl -
3)

(xxii) eIl _52 cos (2x + n tan 2) .
2

(j ) 21x (ii)	 —eu'' cos x. sin x. (sin x + 3)

(iii)	 (l+6x+6x)e	
(iv)	

(I+2x)
-

(•i)	
(_.1)"n!J	 1

2a

1)'n!sin" 0 sin (n + 1)0	
"here 	 'ereO tan --

	

4..2	
-	 x

(iii) (- i)'' (a - I)! sin' 9 sin nO	 a

	

,
	

where = tan -_________
a'	 x

(iv) (1),,.s,n'' 0	 - a	cos (a + 1)0,	 where S = tan -a.	 x
(-1) n! (	 1	 1	 2

4a 7
(v) - —(x—a)" ( a)''

	 sin "9 sin (n+ l)Ot
x+ 	 a''

where x=acotO.

(vi) (—l)'.2"'2n!
sin'" U sin(n + 1)0. whereO = tan'{j I(2x +

(-1)" n!	 0 sin(n +1)0 sin" 4) sin (a +1)

a	
i 1(vu) 

—i- _b21	 bn*2	 a„+2
---

(viii) (-1)"n !! sin”' 0 sin (n+1)0, where cot  = x + -'
4	 2

16	 I-	 ,(ix) ( In!	 when u> .{ 

	

(x— )	 (x-l)
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J	 16	 5	 5(x) (_i)"n
(x-2r' + (x-3)'J

n+I
(xi) (—iY'ni	 -	

3	 4
,	 +1

(x +1)2 (5 +

	

2	 b2	 1

	

(_Irfl! r	 0	 _ 

(x+2r+ll

(xu)

	

________ 	 (x + a) I(a - b) (x-a)

(xiii)(-1)(n - 1)!sin 0 sin nO • where cot 0 = x.

(xiv) 2(-1)'(n - I)!sin 0 sin nO, where cotO = x.

(xv)!	 (n - 1)! sin, 0 sin nO ,where cot 0

(xvi) —" 
(n — I)! sin' 0 sin no Where 0 = cot

an	 a

7	
(I)	 2(1+?) (iii)	 -

sin' y	 y

8. (a) (I) —4-coseco (ii) 	 -seC 2.
4a 	 2

'eibnitz's Theorem*. (n-th derivative of the product of two

functions)
If u and v are two functions ofx, each possessing derivatives upto

nth order, then the nth derivative of their product, i.e.,

(uv) = uv + c 1 u ,_1 v 1 + c2u _ 2 v2 + . . 'cu ,,v, + . . + uv,

where the suffixes it and v denote the order of differentiations of u

and v with respect to x.
Let y=uv.
By actual differentiation, we have

Yt ='i" + UV1,

Y2 = I2V + 2UI V1 + UV2 = U2V + 2c1u 1 v1 +

Y3 =U 3 V + 3u2v1 +3uv2 +UV31 -

, U3V+ 3C1U2V1 + 3C2U1V2+MV31

The theorem is thus seen to be true when a = 2 and 3.

*Leibnitz (1646-1716) was a German mathematician, who invented Calculus

in Germany, as Newton did in Englançl.
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Let us assume, therefore, that

Y. u.,v+" C1 u,,_ i v1 +' C2U,._2V¼+....+"	 +....+UV,,,

where a has any particular value.

differentiating,

-	 =++(	 +(2 
+ n
 1 ) _ 12 +....

+ (n cr +" Cr_I	 +

Since Cr +" c_ 1 	Cr and "c 1 +1 ='- 
c1

yn+1 =u n+I v+ 1 C1 U,V j 	 C2 U,_ 1 V2 +....

+n+l
 Cr U n_r+l V r +....+UV,

Thus, if the theorem holds for a differentiations, it also holds for n+ 1.

But it is proved to hold for 2 and 3 differentiations; hence it holds for four,
and so on, and thus the therem is true for every positive integral value of a.

8.6. Important results of symbolic operation.
d

If F(D) be any rational integral algebraic function of D or	 (the
dx

symbolic operator), i.e., if

F(D) = AD -I- A,, 1 D' + .......+ AI D i-A

= I A,D'. where A, is independent of D, then

(i) F(D)e'' = F(a)e.

(ii) F(D) eV = eF(D + a) V, V being afunction of x.

(iii) F(D2) 
Is 

in (ax+b) = F (_a2) 
Jsin (ax+b)

cos (ax +b)	 Icos (ax+b)

Proof:
(i) Sine	 D'e' =a'e,

F(D)eVArD'e

=A,a'e"

A,. D'

= F(a)e
17-
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(ii) Let y = ?V. Since We- = a'e,

by Leibnitz's Theorem, we have

y, =e(aV + c1a''DV + 'c2a 2 D2V + ...+ DV)

which by analogy with the Binomial theorem may be written as

D" (eV)=e'(D+aYV,

F(D)e"V= (AD' )e''V

=ArDrC=V

=e"'>A,(D+a )v

=e'F(D+a)V.

(iii) We have D sin (ax+b) = a cos (ax +b),andsoon

D 2 sin (ax+b) = (_ a 2 )sin (ax + b);

D 21 sin (ax +b) =(- 2) sin (ax +b).

Hence, as in (I) and (ii), it follows that

F (D 2 )in(ax+b) = F (_a2)sin (ax+b)

Similarly, F(D 2 )cos(ax+b) =F(_a2)cos (ax+b)

8.7 Illustrative Examples

Ex. 1. if y=ex3, find y,,.

Let u=e, v=x3 .	 Now, u—a'e".

by Leibnitz's Theorem,

y =a'e''x3 +n.a e'.3x +

3!

=	 + 3na 2x2 + 3n(n - 1)ax +	 n(n - 1)(n - 2)}

Ex. 2. if y = a cos(log x) + b sin (log x) ,show that x2y2 +y + y =0.

Differentiating,

Yi =—a sin (log x).-
1 

+b cos (log x). 1
X	 x'
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xy 1 = —a sin (log x) + b cos(log x).

Differentiating again,

Y2 +y = _acosogx).!_bsinogx).!,

x 2 y 2 +xy 1 = —(acos logx+bsinlogx) = —y,

x2y2+xy1+v=0.

Note. This is called the differential equation formed from the above
equation.

Ex. 3. Differentiate ii fillies the equation

(l+x2)y2+(2x)y0.

By Leibni&z's Theorem,

d	 2 2	 n(n-1)
)1 = y, 2 (I+x	 .2x+	 2

21	
y,, 

—(y2(2x—l)}= y1(2x-1)+n.y,, .2
dx

adding,

(I+x 2 )y,, 2 + {2(n +1)x-1)y,,.,. +n(n+l)y,, =0.

Ex. 4. Find the value of y for  = 0, when y = e' . (C. P. 2004 J

From the value ofy, when x = 0, y = 1

,, Hem Yi = e'	 .a	 .	 (I)

=ay

y12(1_x2)=a2y2.

Differentiating, 2y!y2(I - 2)+ y1 2 (- 2x) = 2a2yy1,

or, (1_x 2 )y 2 _xy i _ a 2 y0.	...	 (2)

Differentiating this n times by Leibnitz's Theorem as in Ex. 3, we

easily get (i - 2)	 - (2n + l)iy,,. - (n 2 + a2)y, = 0.

Puttingx. = 0, (Y-2)0=	 2 + a 2 )(,, )	 . .	 (3)
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Replacing n by n —2. we get, similarly

o{(n-2)2+a2J(y2)o

=((n_2)2+a2Jn_4)2+a2}(y,4)0

Also from (l) and (2), (Y)o a,	 (Y2 )o —a

Thus (y. 	 .ia 2 }n_4) 2 +a2}

(4
2	 V

4+a 
' )(2'+a)a2 'if niseven

and	 {(n._2)2 +a 2 Jn_4) 2 +a2I.....

(32+a2)(12+a2)a2ifnisodd.

Note. The value of v for  = 0 is shortly denoted by (y,)0

8.12 Miscellaneous Worked Out Examples

Ex. 1. (1) If F(x) = f 	 (x) and f'(x) 4'(x) = k, (k is a constant),
then show that

fL_+_+.L..	 (F(x)*O)
F f

(it) If x = sin i,  y = sin k[ where k is a constant, show that

I_ x2 ^LY _ 	 +k 2Y  = 0.
th 2 &

Sohitiôn:	 (i)	 F(x) = f(x) 4(x),

F'(x) = f(x) 4(x) + f(x) f'(x)	 ..	 (1)

Differentiating (I) w.r.t. x,

F"(x) = f"(x) (x) + f '(x) 4'(x) + f'(x) 4'(x) + f '(x) "(x)

= f"(x) (x) + f(x) "(x) + 2k

F(x) = f(x) (x) * 0, dividing the left-hand side by

F (x) and the right-hand side by fix) ii(x), we get

F'(x) f"(x)$"(x)	 2k

F(x)	 f(x)	 •(x) f('-)(x)

F" f" 4" 2k
F f 0
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(ii)	
dx

x . S1fll, —=cost
dt

and y..sinkt,

	

	 =kcoskl
dt

dydydxkcOskf

	

dx di di	 cost

and 
d 2 v d (dy) d (kcoskI' di

cosi(_k 2 sin kt)–kcoskl(–sinf) • L

	

•	 -	
- Cos 2 1 	 cost

	

•	 {_0cosisinki+ksinicoskt}

(i_ sin2 t)cost

	

1	 1 2	 (k cos kt
= --t–k sinkt+sinil

1–x2t	
t. COSt

	

1	 1 2	 dy
=— . t--k y+x—

I.x2 1 	dx

d 2 y d
	or,	

X2
 )__j-_x j+k2y=O

Ex. 2. If y" +y" =2x, prove that (x2 — l)Y2 +xy 1 –m 2  	 O•,

	

dv	 d 
2

where, v 1 =—, y2=—.

	

dx	 dx2

	

I	 I

Solution:	 •.•	 =2x, a2 -2ax+1=O, where a=y

a= 2X_ =±1/ri

or, y=x±'J

Taking logarithm of both the sides,

•.iogy=iog(x±JTi)
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Differentiaing both the sides w. r. t. x,

1 i	 ______ 11± x	 dy
2<

m y	 (± J T ) j	
where Yi

dx

or,iL=± I
nky

or, (2 -
	 =

Differentiating 3n w.r.t.

(2 –1)2yt y2 + 2x•y , = nr, 2 Y Yi' where Y2 = 
d 2 y

or, (x2_I)y2+.ryi_m2y=0,	 2v1#0.

Ex-3. 0) If x=a(0-t. sin0), y=a(I–cos0) verify that

F 1988[C.	 J
d	 4a	 2

0i) If x=2cos8–cos29. y =2 sin 0+ sin 29 find 
d2y

at

C. P. 1990]

Solution :	 (i)	 x=a(8+sinO), 
—d.v 

=a(l-t-cosO)

and y=a(I–coso), dy
—=asin9
dO

	.0 	 02sjn–cos–d dv efr	 SIfl0 	 0
dx - I/O A- a(1+cosO)	 .2cos2	

- an 2.

2

d 2 dy( 0\ d ( O dO
= — 1 tan– I = — i tan.–

fr2 dx'	 2) dO . 2) dx

I
sec

,O
 ----- I=-----

2	 2 a(1+cosO)

1	 c40
=—. -

4a	 2
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(ii)	 x=2cosO—c0S20, 
dx =2sin2O-2sinO

and . y2sinO+stn20,

	

	 rr2cs0+2COS20
dO

30	 0
2(cos2O + cosO) 2cos--cos

dx dO dx 2(sin2O-sinO) — 2cossin
2	 2

dy	 0
- = Cot—
Jr	 2

d 2 y dl 0'\ dl 0'\dO
= - cot — 1=—I cot-

	

dx 2 dx'	 2) d0'. 2) dx

0
—cosec 

2

- 2.2(sin0-sin0)

-cosec 
j7t	 ________

at 0=	 2	
4(sin,—sin)

Ex. 4. (i) If sin x=-- coty=!.'_,find the value of
21	 dy2

I C. P. 1987 1

(ii) If y = -f-- , show that y, (0) = 5!	 1 C. p 1991, 2003 1

(iii) If y=2cosx(sinx-COSx)phOW that (yio)o 
= 210.

C. P.'1992, 2000, 2002, 2005, 2007 1

	

Solution: (1) •.'	 = __!,
1+t.

	

.	 2i
X=S'fl	 =2tan(t)

2i
coty=_. -_, tanY-----1

or, y=tan'-j----2taflt(t)	 (2)
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From (1) and (2) xy

dx
— =land d2x-=
dy

x	 x+1-1

	

(I') Y =-=	1-(x+1)
x+1	 x+1

Yi = (- 0(-J)(x+ 1)2

Y2 = (l)(-l)(-2)(x+ 1) -a = (-1)32!(x+ i)-

= (-1)' 3!(x +

Proceeding in this way, we have

y5=(-1)65!(x+1)-6	 -.

(Ys)o=(1)65!(1)=5!

(iii) y = 2. cos x(sin x - cos x)

2sinx cos x-2cos' x

= si n 2x - (I + cos 2x)

= sin2x- cos 2x-1

Yto _ 
lO sin{1O

.71 
+ 2x}_2b0 cos{10 .! +2x}

vide art. 52 (v)

If y = sin ax, y = a" - sin(n . +x
) . 

and

if y = cosax, y a" -cos (n+x)

= 2I0.sin57_2I0cos5i =2'°.O-2'°x(-l)= 210.

	

EL S. If , y = /T2
	

I x J <1 . show that

x2)y2_3xy1_y0

00 (i_x2)y+2 -(2n+3)xy,,1 -(n+1) 2 y,, =0	 C. P 1993



	

StJCCESSIVEDIFFERENI'IATION	 265

Solution:	 y =
 sin-'x

(I_x2)y2 = (sin' x)2

Differentiating w.r.t. .

	

(i_x2)2yy1-2xy2=	 X=2y

	

or, (l_x2)yi_.y1	 (... 2y 0)
Differentiating again w. r. t. t,

• I- 2)2_ 2xy 1 - y - xy 1 = 0

(1_x2)y2_3xy1_y=o	 ...	 (1)

Differentiating (1) n times by Leibnitzs theorem,

-I) : (-2)y,2(l_x2)+n.y+(_2x)+
1.2

	

-3	 •x+n -y	 - Y.=

or, (1_x2)y,,+2 -(2n+3)y, 1 7 n+1)2 y =

EL 6. If y cos(lOcos x), show that (i - x2)y12 = 2Ly11

I C.P. 19831

	

Solution: y = cos(lococ'x)	 •	 .

	

(-10)	 IOsin(IOcos' x)
.v1 =-sin(IOcos'x).

(l_x2 )y = lOOsin2(iocos_1 x)

Ioo{I —Cos 2(Iocosix)}

	

r100(1_y2)	
I from (1).]

Differentiating again w.,t. x

(1_x2)2y1y2_2x.y2 =-2.100y.y1

	

0_x2)y2=.xy_1ooy	 (... 2y 1 O)	 ..	 (2)
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Differentiating (2) 10 times with the help of Leibnitz's theorem,

2 (1_x )Y2 +10.ii(-2t)+-1.2
10-9.
-----io(-2)

X)' + 10 . Yto .(i) IOOYJO

, (i_x)	 =21XYii

Ex. 7. (i) If f(x) = x", prove that

-C(l)f"(l) f"(l)	 f(1)
f(1)+—+---+

	1!	 2!	 3!

(ii) If f(x) =tan x and n is a positive integer, prove with the

help of Leibnitzs theorem that

L CF. 19921

Solution : (i) .• f(x) =

f'(x) = nx"* f"(x) = n(n — 1)x"2

• f(x) = n(n-1)(n-2).(n-r+ 1) x'', ••, f'(x) =

I!	 2!	 3!

= , + n +  n(n — 1) + n(n — 1)(n -2) +...+-n!

	1!	 2!	 3!

i+c, +c2 +c + ....+c,, = (1 +	 =

f(x)=tanx= 
sinx
cos x

	

f(x) . cosx = sinx	 ... .	 (1)

Applying Leibnitz's theorem to differentiate both the sides n times
w.r.t. x, we get

f" (x)cosx+"C1 f(x)(- sin x)+"C2f'2(x)(- Cos x)

+ C3f'"(x)(sinx)+"C4f" 4 (x)(cosx) .. = sin(n +

Putting x = 0 on both the sides,

f (0)-C2f 2 (0)+C4f 4 (0) + ......=
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EL 8. If y = cos(msin' x), show that

(I) (1_x2)y2_.yi +m2y=O

(ii) (1_x2 )y,+2 -(2n+ 1).y, +1 +(m2 _n2)y= 0

Also, find the value of y,, when x=O.	 B. P19991

Solution: Given, y = cos(msin x)	 ()

Differentiating w.r:. x,

dy	 ____— = YI = _msin(nisin -1 
t):dx

or, (i - x2)y12 = m2 sin2(nisin x) = rn2 {i _cos2(,nsin_I )}

or, (i_x 2 )y =m2 (J_y 2 )	 from (1) j	 .	 (2)

Differentiating again wr.t. x

(1_x2)2y, Y2 +y? (-2x ) = -m2 23y

or, (i_x2)y2 .xy 1 +m2 y=0,	 2y0)	 ..	 (3)

Differentiating (3) n times by Leibnitz's theorem, we get

(t - x 2 )v,,,2 +"C1 y,, 1 (-2x)+"C,y,, (2) -	 X -" 1 y,, ( I) + m 2y,, 0

or, (1_x2)y,,+2 - 2n xy,,. 1 -n(n- l)y, -xy 1 - ny + m2 y,, = 0

or, (i_x2 )y ,2 -(2n +	 +(m2 - n 2	 = 0	 . . . (4)

Last part: From (1), (2), (3), we have y=l, Yi =0, Y2 = -m2 , when

x=0.
putting n = 1, 2, 3 successively in (4), we get

y3 =-m2y, =-m2xO=0

.}4 =(2.2 _m2 )y2 =_m2(22_m2)

y=(32_m2)y=0

,_ (42 _m 2 )y4 = _,nl(22 
_m2X42 

_m2)

Thus, y,, =0, when n is odd and.

Y" = _n,2(22 
_m2X42 

m2) ... .{(n_.2)2_m2}, when n is even.
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Ex. 9. If y = '°

	

	 . show that an equation connecting y, Y*i and

Y..+2 is given by (1_x 2 )y,,+2 —(2n+ l).ty,1 _(2 + i)y., = 0

C. P. 1980, B.P1996

Solution:	 y =	 (1)

Yi =	 x , .._.L.. = - ,Jj2
	 using (I)

or, (i_x 2 )y_y 2 =0	 ...	 C2)

Differentiating (2) again w.r.i. x.

(l_x 2 )2y 1 y2 +y(-.2x)-2y.y1 =0

or. (i_x 2 )y2 _y1 _y=O 	. . .	 (3)

Differentiating (3) n times with the help of Leibnitzs theorem, we have,

(i _x2)y,,,2+C1y,4j(_2x)+c2y,(_2)_.zy,,1

—"Cpy,,(1)—y, =0

or, (i_x2)y,,+2 —(2n+1).*y. 
_(2 +l)y =0.

Ex. 10. If x = sin 0, y = sin p0, then prove that

(0 (l_x2)y2_xvi+p2yr0

	

(ii) ( 1 _x2 )yn+2 —(2n+l)y,,+1 +(p2	
)Y. 0

where y, denotes the nth order derivative of y with respect to X.
F C. P 20021

Solution:	 Here, x = sinO and y = sin p0

Proceeding exactly as in EL 1. (ii), we have

(1_x 2 )y2 	 +p2y=0	 ... (1)

Differentiating (1) n times with the help of Leibnitz's theorem, we
get,.

n(n-1)
(1_x 2

 )y2+n.y+1(-2x)+ 
1•2

—n.1-y, +p2y., =0

or, (t_x2)y+2 -(2n+I).ty,,+1 + ( p2 -2 )y. =0.
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EXAMPLES - VIII (B)

I. Find y in the following cases:

(1)	 (ii) y=x 3 sin x..(dli)y=x 3 log x.
(iv)y=x2 tan -'x. (v) ye cos bx.	 (vi) y =log zx+x2)

(vu)y=r(l —x). (viii)y=xi(l+x).

2. If y = A sin mx+ B cos nix, prove that Y2 + m 2 y = 0.

•	 3. if y=Ae+B g , Prove that y 2 — m 2y= 0.

•

	

	 4. If y = e sin bx, show that y2 - 2ay1 +(a2 +b 2 )y = o.

.5. If y = lo(x + 4a 2 + x2) ,show that 
(,2+ X, ) y2 + xy1 =

6. If y log(x+.Jl+x2) ,thenprovethat

(t + x2 ) y2 + Xy, - M 2 = 0.

If y = tan- ' x, then prove that

(i) (i+x2)y1=1, and

(ii) (i+2)y, +2iay, +h(n—l)y 1	 0.

Find also the value of (y),,

If y = sin' .x, then show that

(i) (i_x2)y2_xy, =0,

(u) (I_x2 )Y,2 —(2n+1	 0.	 [c. P 19971

Find also the value of (y ) ,.

,-9' If Y= sin	
)2 , 

then show that

(i) (i_x2)y2_xy1_2=0,	 [C.P.1988,95,961

(fi)

,4. If log y = tan' x, then prove that

(1) (1 +x2)y2+(2X_I)y1 =0.

(ii) (i ± x2)y,2 + (2nx + 2x— 1)y,,, 1 +	 + 1) y,, = 0.
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11. If y = a'cos (log x) + b sin (log x), then prove that.

x 2 y,, 2 + (2n +	 + ( 2 
+ ii,, = 0.

C.? 1989, 96,2007 BY 1990,97, VP 19991

If y = (x - I 	 then show that

(2 — l)v,, 2 +2xy,, -n(n+1)y,, =0.

13. If v = ell—' ', then prove that

(I - x2)y2 - (2n + 1)xy,,, - (, 2 + a)y,,	 0.

[C.? 1985, 94, 98, 20041

44. If v = sin rn sin -' ), then show that

x 2 )v , -xy 1 + In y = 0,	 [C.? 1990, 2002. 2008]

x2 )Y+? - On + I)xy 1 + (m	 = o.

15. If y = (	 +bx +c)/(l_x), show that (I-x)v3 = 3y2.

16. If y = ecosx.provethat y4 +4y = 0.	 B. P. 1998, 20011

17. If y= x" Iogx,show that y,,

[C.P.1985. 2000,8.? 19911

18. Show that

19. If a, p, w be functions of x and if suffixes denote differentiations with
respect to x, prove that

U 1	 V1	 W1	 U	 V1	 W1

d
_dU2 V

2 W2 = U2 V2 W2.

U3 V3 W3	 U4 V4 W4

20. By forming in two different ways the nth derivatives of x1', show that

	

i+t+n2(n_I)2	 fl 2 (fl _ 1)2 (fl _ 2)2 	 (2n)!7	 12.22	 12.22.32	 (n!)2

[Equate the nth derivative of the product x. x" to that of x 2" .]
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21. Prove that i_(!)= {Psir{x+ 'J J+ Qcos(x+L!J}/x'

where P=x-n(n-l)x'2+n(n-j)(n-2)(n-3)x"-

and	 Q=nx' -n(n-1)(n-2)x"3 + ....

22. Prove that

I'nir
Pcosl x+ -- I

)	
2)Qsin(x+)}/x

where Pand Q have the same values as in Ex. 21.

23. Prove that

9= 
,r I (p sin x + Q cos 4

(n)x2 (n4
where 

Pl2!+Iuj

( " )

xand Q = 	 x-I	 —+
 3)3!	 5)5!

24. Show that

d" (logx '\	
n! (Logx

dx	

1	 1------(-l)----i-1 -----
X )
	 2 3	 ii]

25. Show that
"

d" ( -— e x
Ir ) (n — r)!' a> 

-1.
r=O( " +

26. If f(x) = tan x, prove that

j(o) — c 2f 2 (o) 
+" 

c4 f" 4 (o) sin —
2

27. Show that the nh differential coefficient of 1
	is

- (- 1)"n!sjn'19 {sin(n+ 1)0-cos(n+ I)O+(sit+coJ"}.

where 0 = cot' x.•
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ANSWERS

e.a_2{a2x2 + 2nax+ n(n_I)}

(ii) x3 sin( i mr+x)+ 3nxsin{..(n_t)+x}+3n(n_1)x

x sin{(n_2)m+x}+n(n_1)(n_2in{(n_3)+x}.

(iii) (- I)°.6(n -4) !L1.

(iv) (- I)" (n - 3)!sin" 2 6 {(n - 1)(n - 2)sin n  cos 2 6
- 2)sin (I - i)UcosO +n(n - 1)sin(n - 2)0} where cot  = x.

(v) cos bx +° c1 a"1, cos(bx + -!-

+?c,a2b2cosIbx+2.!+...+b cos (bx+n.!fl

	

-	
2)	 2

(vi)
(- 1)ni	 -	 +	 I

L x	 (x+a)

(vii) n (;— 4° - (" )2(j - x)''. + (C2 )2.i x)"2.x2

(viii)n! /(I +

7. 0, or (- i) "	 - I) L according as n is even or odd.

8. 0, or {1.3.....(0 _2)}2 according as n is even or odd.
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EXPANSION OF FUNCTIONS

9.1. RoIle's Theorem.

If (i) f( x ) is continuous in the closed interval a 5 x <— b -

(ii) f'(x ) exists in the open interval a < x < b

and	 (iii)f(a)=f(b),

then there exists at least one value of x ( say ) between a and b

[ie., a< <bj, such that f'( )=o
Sincef(a) = f(b) ,if f(x) be constant throughout the interval[a, bJ,

being equal to 1(a) or f(b) ,then evidently f'(x) = 0 at every point in

the interval.

If f(x) be not constant throughout, then it must have values either

greater than or less than f(a) or both, in the interval. Supposef(x) has

values greater than f(a). Now, since f(x) is continuous in the interval,

it must be bounded and M being its upper bound [which is> f(a) in this

case], there must be a value of x in the interval a <x < b for which

f()=M

f (. + ii)— f ( ):^ 0 for positive as well as negative values of h.

 ( )< 0
i

	/ 	
-	 f h be positive, and ^:O if h be negative.

	

Hence Li	 Li 
f(+h)—f( )>

h	 h

provided the limits exist.

Now, since f'( x ) exists for every value ofx in a <x <b
also exists, and so the above two limits must both exist and be equal,

and the only equal value they can have is zero. Hence f'( )=o
If f(x) has values less than f(a) in the interval, we can similarly

show that f'( , )= 0, where f( )='n, the lower bound of f(x) in
the interval.

If f (x ) has values both greater than and less than f (a). then there

must be an upper bound M which is greater than f (a) and a lower bound

in which is less than f (a )and for values ofx toç which either f (x ) = M
or f(x )= ni. f'( x ) will be zero.

18
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9.2 Geometrical interpretation of Rolle's Theorem

rig ,.z.t

Let LM be the points on the number axis OX representing the real

numbers a, b respectively. We draw the graph of the function y = f (x ) and

let A, B be the points on it corresponding to L, M respectively, that is,

L4=f(a) and MB=f(b).

From the condition (i) of Rolle's theorem, we say that the graph is a
Continuous curve between the points A and B: the condition (ii) says
that the curve has tangents at every point between A and B and the third

condition implies that LA =MR.

Now, f'( ) is the gradient of the tangent to the curve at x = 	 By

Rolle's theorem I (x) vanishes at least once between x = a and x = b.

Geometrictlly we say that we get at least one point C on the graph between

A and B such that the tangent at C is parallel to OX

Note. From the above graph, it is clear that there are more points D and

like C.



EXPANSION OF FUNCTION	 275

9.3. Mean Value Theorem. [Lagrange 'S form I

If (i) f(x) is Continuous in the closed interval a !^ x -5 b, and

(i) f'(x) exists in the open interval a< x < b, then there is at

least one value of x (say ) between a and b [i.e., a < 4 < b ], such

that

f(b)-f(a) = (b-a)f'().

Consider the function (x) defined in (a, b) by

(x) = f(b) - f(x) -	 {f(b) - f(. )}
b - a

Here '(x) is Continuous in a x :S b, since f ( v) and b- x
are so,

Ox) = -f'(x)+ 
fb)-f(a) 

exists in a < x < b, since

f (4 exists in a < x < b

Also, y(a)= 0, t,iI(b)= 0,	 .. 41(a) = '(b),

Hence, by Rolle's Theorem, ti' (9 vanishes for at least one value

of  (say ) between a and b, i.e., ui" () = 0,

i.e.,	 0f(çf(b)f(a)

b-a

Whence f(b)--f(a)=(b-o)f'(4), [a<<b].

Cor. Since 4 lies between a and b, 4 can be written as a+O(b-a)

where 0<0 < I. Putting b= a + h we get another form of the Mean
Value Theorem

f(a+ii)= f(a)+hf'(a -i-oh),	 where 0<0<1,

Or, f(x-i-h)= r(x)+hr(x+oh),	 where .c9<i.

Note. The value of 0 usually depends upon both x and h, but there
are cases where it is not so dependent. [See. Ex. 2 and 13, Examples IX
(A) J. Also 0 may have more than one value in a given range in some
cases. [ See Ex. 12, Examples IX (A)].
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9.4. Geometrical interpretation of Mean Value Theorem.

Let ACB be the graph of f (x) in the interval [a, b] and let

a, , b be the abscissae of th' "flints A, C, B on the curve y = 1(x),

such that the relation f(b)— fa) = (b — a) f'(.) is satisfied.

Draw AL, BM perpendiculars on OX and AB, perpendicular on

BM Then AL = f(a), BM = 1(b). Let CT, he the tangent at C.

Then,	 f(a) = BM - AL BN = tan BAN
b - a	 LM	 AN

Since f'() = tan CTX (as explained in § 7.14), it fol!ows from the

Mean Value Theorem that tan BAN= tan CTX, i.e., ,nLBAN = mLCTX i.e.,

AB is parallel to CT.

Hence, we have the following geometrical interpretation of the Mean
Value Theorem

If the graph ACB of .1 x) is a continuous curve having everywhere a

tangent, then there must be at least on poi nt C intermediate between A

and B at which the tangent is perallel to the chord AB

9.5. Taylor's Series in finite form. (Generalized Mean Value Theorem)

If f (x) possesses diffcrential coefficients of the first - 1) orders

for every value of x in the closed interval a x5 b and the nth

derivative of exists in the open interval a< x < b [ i.e., if (x) is

continuous in a S x !^ b and f" (4 exists in a < x < b ], then
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1(b) = f(a)+ (b - a)f'(a)+ 
(b-a)2 

f(a)+ ......
2!

(b-
+ (

b - a) I
I)!	

'(a)+	 f"(,),
(n- 

where a<<b	 ...	 (A)

and If b = a + h, So that b - a = h, then

f(a + h) = f(a)+ hf'(a)+ 
h2
—f(a)+ .......

h"-1I?"
+	 f"'(a)+—f'(a+6h),

(n-i)!

where 0 < 0 < 1	 ..	 (B)

or writing x for a,

li2
f(x + h) = f(x) + lif'(x)+	 f(x) +

2!
It

+

where 0<6<1	 ...	 (

Consider the function 1/1(x) defined in f a, b] by

W(x) =4(x) -
(b-xY'

(b - 
a)" 0(a),	 ...

where, Ø(x) = 1(b)- 1(x)- (b - x)f'(x)- f(x) -

- (b -	
2!

	

(n -I)! f"(x)
	 ...	 (2)

Then, evidently V(a) = 0 and i(b) = 0 [since 0(b) .0 is
identically],

Now,
O'(x) = -f'(4 + U'(x) - (b - x)f'(4	

2!

	

} +f(b-x)f(x)-	 f(x)}+...

+{

(b - xr2	 (b -

(n-2)!	 (n-I)! f(x)}

(b	 "- x)
-	 f"(x)
-- (n-i)!
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Hence, from (1)

41'(x) =
	

f.(x)+ n
	 x)	

0(a),	 ...	 (3)

Since i(a) = iji(b), and t'(x)exists in( a, b), by Rolle's Theorem,

,'()=o, where a< <b.

Substituting	 for x in (3), and cancelling the common factor

(b -r' we get ultimately

0 (a) = - (b—a)" j" (c), and since, from (2)

0(a) = f(b) - f(a) - (b - a)f'(a) -	
(b - a)	

f - '(), the
(n—i)!

required result in the form (A) follows by transposition.

Since a < <b,wecan write = a + (b - a)0,

i.e., 4 =a+h0, where . 0<0 <l,and b — a=Is,andhencethe

form (B) follows and writing x for a in the form (B), the form (C) can be
obtained.

Note!. The series (A), (B) or (C) is called Taylor's series with the
rem'der in Lagrange's form, the remainder (after n terms) being

(b—ar t'(), or —fa -fob), or !_-f'(x+Oh), 0<0 <I, which is

generally denoted by R.

Note 2. Putting n = I in Taylor's series, we get

f(a+h)=f(a)+hf'(a+Oh),	 0<0<1,

which is the Mean Value Theorem.

So, Taylor's theorem is sometimes called Mean Value Theorem of

the nth order.

Putting n = 2 in Taylor's series, we get

f(a + h) = f(a) + hf'(a) + h2-f"(a+l) 0<6<1,

which is often called the Mean Value Theorem of the second order and

so on.

Note 3. Yet another form of Taylor's series which is found some times
useful is obtained by putting x for b in (A). Thus,
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f(x)= f(a)+(x-a)f'(a)+ (x_a)2 f(a)+....+ 
(x-a)	

f(a)
2!	 (n-I)!

and the function 1(x) is said to be expanded about or in . the

neighbourhood of x = a.

9.6. Maclaurjn's series in finite form.
Putting x = 0, It = X 141 Taylor's series in finite form (C), we get

X
	 f"-t(o)+....fn(ox) 0<0<1

2!	 (n-i)!	 n!
the corresponding form of the remainder R being

The above is known as Maclaurin's series for f(x), and f(x) is said
to be expanded in the neighbourhood of x = 0.

Note. Putting ii = 1, 2, we get Maclaurin'sseries of the first and second
orders, viz.,

f(x)=f(o)+xj'(ox) andf(x)= f(0)+xf'(o)+f(ox), 0<0<1.

9.7. Cauchy's series in finite form.

In Art. 9.5, if we take V (x) = Øx)-

	

	 (a), the other conditions
b-a

remaining the same, and carry out the investigation as in that Art.,
we get

(4)

Since v (a) = v (b)and i'(x) exists in (a,b)byRolle's theorem, we
tver'( 4 )= 0, a < < b.

Substituting for  in (4), we get

= (b - a)(b	 )t	

...	 (5)r (4

Writing=a+(b-a)0,where 0<0<1,
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wehaveb—=b—a--bO +aO =(l —0)(h—a).

(b — )'= (I —O) 1- 1 (b—a)" '=(l—O)''h'-',since
b—a=h.

from (5), we get

(a+Oh).

Now replacing a by x, the required expression for the remainder R.

would come out as

"	 /	 ,n(
-	 /	 \X+	 ),0<0 <I.

n— 1 )!

This is known as Cauchycforiii of remainder in Taylor's expansion.
The corresponding form in Maclaurin's expansion is

"
R 0	f(Ox),	 0<0<1.

This form of remainder is sometimes more useful than that of
Lagrange's form. It should be noted that the value of 0 in the two forms
of the remainder for the same function need not be the same.

9.8 Illustrative Examples.

Ex. 1.	 (i) If f'(x)= 0 for all values of x in an interval, then f 	 is

constant in that interval.

(ii) If 0 ' (x)= y, ' (x) in an interval, then O (x) and , (4 ditfrr

by a constant in that interval.

(i) Suppose, ['(s)= 0 at every point in (a. b).

Let us take any two points x 1 , x2 in [a, b 1 such that x, >x1,

By Mean Value Theorem,

f(x2 )—f(xj )=(x2 —x1 )f'(c wherex <e<x2

= 0, since f'( c ) = 0 , by hypothesis.

f(x)=f(x).

Since x, x, are any two points in a, b 1, it follows that f(x) must

be constant throughout [ a, b 1.

(ii) Let f(x)=Ø(x)-41(x).

f'(x )='(x )-41 ' ( x) = o,everywhere in (a, b).
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f (x) = constant = k, say, by (I).

Note: The result (ii) is fundamental in the theory of integration.

Ex. 2. 1ff (h)=f(0)+hf'(0)+f"(0 h), 0 < 0 < 1, find 8. when h=1

andf(x)	 x)2	 CR 1944

We havef(h) = (1— h), sincef(x) = (I —x).

515
f'(h)= _(l_h) ;f"(h)=—(l—h)

from the given relation

5h+
 J7 2 15

(1-12)2 = l--— . --( l —0/1)2.

5	 15	 1 4
putting /i = i,o= 1—+	 0 -0/i), whence (1-0) =

25	 25

Ex. 3. Prove that the Lagrange's remainder after n terms in the

expansion of C U in powers of x is

(a 2 +b 2 )"	 /	 b'
x'e' 0 Cos b0x + ii tan -), 0<0<1.1 C.P. 19421

n!	 a

Lagrange's remainder after n terms in the expansion of f(x) is

—f(Qx),0<0<1.	 (by Art. 9.6.)	 (1)

Here, since f(x) = e" cos bx.

f(x)=(a2 +b2)2 e cos(bx+n tan 1	...	 (2)

[See Ex. 38.4I

writing Ox for x in (2), we get f1(O x), and substituting this

value of f'1 (0 x) in (1), the required remainder is obtained.
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Ex. 4. Prove that the Cauchy 's remainder after n terms in the expansion'

of (i + x )" (ni being a negative integer or fraction) in powers of x is

o-zo<l:
(n—I)!	 I+Ox)

Cauchy's remainder after n terms in the expansion of 1(x) is
)I

X" (.1f(0x)fl	 0<0<1 (bvArt. 9.7)	 -(I)

Here	 f(x)'=(l+x)'",

f" (x)=m(m—l)(ni-2) .-'•• (m—n+i)(i+x)"".

So, the expression (I) is equiva!en to

•	 (n—i)!

which is the required remainder.
Ex. 5. Show that the Cauchy's remainder after n terms in the

expansion of Jog( 1 + x) in powers of x is

0<0< 1.
I+Ox1+Ox)

Heref(x)=log(i+x), :.
(i+x)

Hence, x" (n1)!	
(Ox)(_' )"x" (i—o)' 	

(I+Ox)"
which is the required remainder in Cauchy's form.

Ex. 6.	 If (i) f'(x) exists in a x 5 b. (ii) f'(a )= a, f'(b )= 13.

and (iii) y lies between a and 13, then there exists a value of

x between a and b such that f'( )= y. 	 [Darboux's Theorem 1
Suppose, a-zy<13 and let

Since •'(x) exists in (a, b), 4) (x) iS continuous in [a, b ] and
therefore attains its lower bound at some point k in the interval. [§ 4.4
(viii)]
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• Now. this point cannot bi a orb. since 4)'(a )= f'(a )- y = a-y

which is negative and 4)'(b )= f'(b)-y=f3-y and which is positive.
Hence, the point is between a and b. and 4)' ( )=(). .%f'( )-y=0

f'()= 'y for a<t<b

Ex.7. (a)Jf (i) 4)(x) and w(x) are both continuous in 6:5x:5b

(ii) 0'(x) and '(x) exists in a<x<b.

and (iii) w'(x )* a anywhere in a

theti there is a value 'E of x between a and b for which

= (0)	 [Cauchy's Mean Value Theorem j
W(b)-W(a) 'v()

(b) If further 0(a)=w(a)=O and w'(x)* 0 in the

neighbourhood of a,

then Ii	 = Lt	 . if the latter limit exists.
c(a)	 (x)

•

	

	 [L'Hospital'smeoreml

(a) Consider the function 1(x) defined by the equation

f(x)=4)(b )-4)(x)- $(b )-(a)
ji(b )-xV

Now,	 f(a)=.f(b), since each =0 identically.

Also,	 f'(x)=-4)'(x)+

Since	 f(x) satisfies all the conditions of Rolle's theorem

for some , where a <<b ,whence the required

result follows.

Note 1. The condition is'(x);tO anywhere in (a, b) ensures that

W(a )# Nc(b); for, if i(a ) = c(b), tI(x ) then satisfying all the

conditions of Rolle's theorem, w(x) would vanish at some point x in
(a, b).
Note 2. Putting b - a = h, we get

0(a+h)-4)(a)4)'(a+oh)

W(a+h)-it(a)	 s'(a+0h)'
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or.
(x+h )-() - '(x+0h) 0<0<1.writing x for a,

W(x+h)-W( x) W'(x+Oh)
Note 3. Mean value Theorem can be deduced from this theorem by

putting w(x)=x

(b) Wehave,for a<x<b.

•()	 c(x)-$(a)

	

() 
W(X)_W(a)
	

•(a)=iv(a)=0 here.

a<<x, byCauchy'stheorem.
'I' ()

Taking limits, and noting that - a as x -> a

We get Li	 Li	 Li
.- *o ;(x )	 -r*ü j () . - *o ti (.x )

Again, when b 1 <x< a [assuming b1 sufficiently close to a such

that '(x) and iI'(x) exist at every point in the interval, and

x )# 0 in it], we may similarly write

(a ))-=R,, where x< <a 1 byCauchy's
J(a)-W(x) ii(E1)

Theorem, and making x-), a we get

Li	 Li	 Li
. -0 4f (x)	 .-- 	 ji'(E. ) . --o 141'(x)

Combining the two cases, L'Hospital's Theorem follows.

EXAMPLES - IX(A)

1. Find the value of in the Mean Value Theorem

f(b)-f(a)(b-a)f'()

(i)	 if f(x)=x 2 , a =1, b=2,	 -

(ii)iff(x).i.a4,b9,	 [C.P.2006]

() if f(x)=x(x-l)(x-2),a0, b=,

[C.P. 1987, BY 19971

(iv)iff(x)= Ax' +Bx+C in[a,b].
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2. In the Mean Value Theorem

f(x+h)=f(x)+hf'(x+Ok),

if f (x ) = Ax 2 + Bx + C, Where  * 0, show that 0 =

Give a geometrical interpretation of the result.

3. In the Mean Value Theorem
f(a+h)=f(a)+hf'(a+Oh),

ifa=1,h=3 and f(x)..j, find 0.

4. (I) In the Mean Value Theorem
f(h)=f(o)+/if'(oIi), 0<0<1,

show that the limiting value of 0 as Ii - 0 + is - or
2

according as f(x) is cosx or sin x.	 F C. P 1994, 2005]

(ii) In the Mean Value Theorem

f(x+h)=f(x)+hf'(x+Oh), 0<0<1,

show that the limiting value of 0 as Ii —> 0 + is	 whether .1 (x )

is sin  or Cos X.	 F C. P 1994, 2008]

5. If f(h)= j(o)+ hf'(0)+	 f'(Oh), 0<0 <1.find 0,

when /i=7 and f(x)=_±_.
l+x

6. From the relation

f(x)= f(0)+xf'(0)+f(0x), 0<6<1.

show that log (1+ x)> x — x2 , ifx>0,

and cosx>x--.x2,if0<x<..,r.

7. Show that sin  > x—x 3 , if0<x<7t.	 FVP 19951

8. Iff(x)=tanx, then f(0)=0 and f()=0.

Is Roile's theorem applicable to f (x ) in (0. ,r )?
[c.P. 1982, '86, '96, 2004]

9. Is the Mean Value Theorem applicable to the functions (i) and (ii) in
the intervals [-1,1] and [5,7] respectively?
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c,)	 f(x)=xcos	 for x;t0

=0	 for .x=0

(ii)	 f(x)= 4—(6—x).	 [C.P.20051

10. If f'(x ) exists and >Oeverywhere in the interval (a, b), then show

that f (x ) is an increasing function in a, b] and 1' ( x ) < 0

everywhere in (a, h), then show that f (x ) is decreasing function in
(a, b).

11. Show that 2X 3 + 2x 2 - lOx + 6 is positive if x>1.

12. (i) In the Mean Value Theorem

f(a+Ii)—f(a)=hf'(a+8h), 0<8<1,

If f(x)=x3—.-x2+2x, and a=O, h=3,

show that 0 has got two values and find them.

(ii) In the Mean Value Theorem

f(b)—f(a)=(b—)f'() a<<b,

find	 , if f(x)=.-3x—,a=4)-,b- and give a

geometrical interpretation of the result.

13. In the Mean Value Theorem

f (x + h ) = f (x ) + Ii f' (	 0h),

(i) find 0 where, (a) f(.)=  i , (b) f (x ) = e

(c) f(x)=logx.

(ii) if f(x)=a+bx+cm

then show that 0 is independent of x.

14. Show that

3 .i	 3	 1	 h 3	 I
,0<0<l

2	 2 2 2Lj+6h
Find 0, when x=0.

15. Expand in a finite series in powers of h, and find the remainder in each

Cse:

log (x+ h),	 (ii) sin (	 + ii),	 (iii) (x + h7: 	 )".
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16. (I) Apply. Taylor's Theorem to obtain the Binomial expansion of

(a + h )'. where n is a positive integer.

(ii) If f ( x) is a polynomial of degree r, then show that

f(a+h )= f( q )+hf'(a)+f(a)

+ .....+f' (a)

(iii) Expand 5x 2 + 7x + 3 in powers of (x —2).

17. Expand the following functions in a finite series in powers of x, with
the remainder in Lagrange's form in each case:

(i) e',	 (ii) a',	 (iii) Sfl X,
(iV) Cos X,	 (v) log(l+x),	 (vi) log( 1-x),

(Vii) (I + x )",	 (viii) tan x,	 (ix) e' cos x,

(x) e'" sin bx.

W. Find the value of 0 in the Lagrange's form of remainder R for the

expansion	 in powers of x.
I — x

19. Expand the following functions in the neighbourhood of x = 0 to three
terms plus remainder (in Lagrange's form):

(i) sin 2 x,	 (ii) cos 3 x,	 (iii)

20. Expand the following functions in a finite series in powers of x, with
the remainder in Cauchy's form in each case:

(i) e ,	 (ii) cos x,	 (iii) (i -. x

21. (i) Prove that Li
2h

provided f' (x ) is continuous.

(ii) Prove that tj f (a + h )- 2f (a )	
= f' (a ),

h2

Provided f' ( x) is continuous.



288	 V/Fr/RENT/AL CALCuLuS

22. (I) If f' ( x ) is continuous in the interval [a. a + h I and

f' (x );t 0, prove that Lu U = .-, where 0 is given by
h -.0

f(a+h)f(a)+hf'(a+Oh). 0<0<1.

(ii) Show that the limit when ii —* a of 0 which occurs in Lagrange's

formofrrnainder	 f 	 + u/i ) i n the expansionof f(x+h)

is ._±__ provided f'(x) is continuous and ;^ 0.
,i+l

23. In Cauchy's Mean Value Theorem,

(i) if O (x) = sin x and , (x ) = cos ..,or

(ii)ifO(x)=e' and VI(.v)=e,or

(iii) if O ( x ) = x ' + x + I and v (x ) = 2v 2 + 3x + 4, then

show that 0 is independent of both x and Ii, and is equal to

24. If f (x )= x', Ø(x )= x, then find a value of E in terms ofa and

b in Cauchy's Mean Value Theorem.

25. If f (x ) and 0 (x ) are continuous in a :^i. < b and differentiable

in a <x< b such that f'( x ) and 0' ( x ) never vanish for the same

value of x, then show that

f()—f(a) - 

26. If l/I"(x)# 0 for a < x < b. then prove that

Ø(b)—Ø(a)—(b—a)O(a) 	 o)
(b)—(a)—(b—a)W'(a) w(Y

where a < < b

27. If f ( x ) and g (x ) are differentiable in the interval (a, b) then

prove that there is a number , a < 4 < b, such that

f(a) f(b) 
=(b—a)	

f'()

g(a) g(b)	 g(a) g ' ( 4 )
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28. (1) If f (x), (x), ,j, ( x ) are continuous in a <x < b and

differentiable in a < x < b, then show that

1(a) 0(a) v(a)

f(b) 0(b) i1(b) =0

f'( . ) 014 	 v' (

(ii) If. F(	 G (x ), H(x)  are Continuous fl a x !C b and

diffcntiable in a < x <b, then prove that

1 F(b)-F(a)	 '(

1 G(b)-G(a) G'(	 =0.

I H(b)-ll(a) H' (

sinx sincx sin$

29. lff( x ) = cosx cosa cos/3 ,0<a<f3<17r,

tan 	 tan 	 tan 
show that f'( ) = 0, where a < < 13.	 CH. 19551

30. Deduce Taylors Theorem from Cauchy's Mean Value Theorem
[CH. 19611

Assume O(x)= f(b)-f(x)-(b-x)f'(x)-...

and

31. If f(a) = f(c) = f(b) O where a <c < b, and if f'( x ) satisfies

the conditions of Rolle's Theorem in [a, b], prove that there exists at

least one number such that f'( )= 0, where a	 < b.

2. Given that

(x-a )(x-b)
+

	

	 f(c)f(x)
(c-a)(c-b)

where a < c < b and f' ( x ) exists at all points in (a, b). Prove, by

considering the function 0(x), that there exists a number .

a<<b, such that
1(a) +	f(b)	 +

(a-b)(a--c) (b-c)(b-a) (c-G)(e--b) 2

19
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33. Given that

f(x) x2 x 1

f(b) b2 b I
' '	

1(a) a 2 a

f'(a) 2a

and f ( x ) exists at all points in (, h), deduce

f(b) = f(a)+(b—a)f'(a)+b-u)f"(), a<<b.

34. If f (x ) exists at all points in (a, b) and

f 	 (a) f(b)f(c)

c - a	 h - c

where a <c < b, then show that there is a number such that a < <b

and f'(çr)=O.

35. Given that

)F(a) f(b) f(x

Ø(x)=g(a) g(b) g(x

h(a) h(b) h(x)

and F(X)=O(X)_(xaXxO(C)

(c-aXc-b)

where a < c < b and f ( x ), g (	 h' ( x ) exists throughout
the interval (a, b), show that, by considering the function F (x),

(c)= (ca )(c — b )0' 	< <b

36. If f (x ) exists at all points in (a, h) and if .1 (a ) = f (b )= 0

and if f(c )> 0 where a <C < h, prove that there isat least one

value such that f' ( ) < 0, a	 < b.

ANSWERS

1. (i)	 15.	 (ii) 6.25.	 (iii) 1	 (iv)	 . (a + b ).

2. The tangent at the middle point of a parabolic arc is parallel to the
chord of the arc.

3. j.	 5. --.	 8. No.	 9. (i) No.	 (ii) No.

12. (1)0 = (3 ±
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(ii) = ±1; the tangents at these two points are parallel to the line

joining the points (a, I (a ) } and {b, 1(b) } which is parallel to the
x-axis in this case.

,jx2 + xh -x 	 x14 . --13. (i) (0) (b)	 log(c)	 (l+h/x)Ifh	 64

h	 /1

15. (i) .
x+-_ h 2

	

x+----j-+ ......... . +(-i	
n!(x+Olzr

	

113	 (	 fl7t
(iJ)sinx+hcosx--sinx-- COS x+...+—sinr x+Oh-f--

2!	 3!	 n!	 2

	

x", + in	 + 
m(rn- ! ),-22 

+ ..........

	

rn(m - I )( in 	 .. (rn - n + 1 ),	 +o,
1?

16. (i) a" + "c a" - 'h+ "c2 a" 2 h 2 +... + "c a_nIi +.-. + h"

(ii) 37 + 27(x -2 )+ 5(x 2)2.

In the following series, in every case, 0 < 0 < I

17. (I) l+x+ x—+ X
I

—+...+ x"---e

	

2!	 3!	 n'

(ii) 1-Fxloga+ 
x-
--(log a)+ 

x
---(loga )2 +...+—(loga)"a

2!	 3!

	x3	x5	 X'. . (nn

	

3!	 5!	 n!

x	 'fl2t 
+(IV) 1--+------...+--cosl—Gx

	2!	 4!	 n!	 L2

+

	

2	 3	 1	 -i	X	 x	 xt,-1,(v) x- —+ ---... 

	

2	 4	 n	 (i+oxr

(vi) -x----...+ 1	 r•"—

	

2	 0 (1-Ox)"

	

(vii) I•+rn	 2x+	
2	

+ ........

rn(t_I)(rn_2)". (m_n^1) "( 
+9h r", 
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—..+—(viii)	 x2— x3	 + ( I )"x	 n (cot	 x )sin n(cot Ox).x— 
3	 5

(ix)i+XJ	 cos (
r'

	

cos I.—	 -	 )	 l 2— 1+ ..........-

	

4	 4)

(x) — rsjn
•
 Ø+ 

x2
—+r 2 sin 2Ø+ ...... +—re 9  sin (bOx+nØ).

	

21	 it'

where ,=J02+b2 and 0 = tan -
a

-
18. 0	

(i - ) i/ ( +
=

X

3	 45 315

(ii)1_x 2 - 2- x , -----x(8lsin30x+sin Ox).
2	 8	 160

(iii) l_.x2 + X4 --xe	 (4O 

:°	

+ 150
2	 15

2O.()1+—+—+----+ .... + 	 e
1! 2!	 3!	 (n—i)!

x 2 x4	x" (i—o )_1	 ( ix(ii)	 .... ^	 cosi —+Ox
2! 4!	 (n—I)!.	 l 2

,, /	 \,,-1
2(uI)i+x+x +1- nx

- Ox )"

24. ..(b+a)

9.9. Expansion of functions in infinite power series. -
Taylor's series (extended to infinity).

If f(x), f'(x), f"(x).....f"(x) existJini1e/' however large n may

be in any interval f  -8, x + 8 ]enclosing the point xand if in addition
R tends to zero as n tends to infinity, then Taylor's series extended to
infinity is valid, and we have

to	 [jhl<o}

Denoting the first n terms ofthe expansion ofby S,  and the remainder
by R we have, by Art. 9.5.
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f(x+h)rS,,+R,, i.e., f(x+h)—R,,S,,,

Now, let n —oo then If R, —,0,wehave

h2
f(x+h)=IJ

Again, since f(x + h) — 5,, = 	 ,if f(x + h) = Li 5,,,
-	 -	 ,,-_

then Li R,, =0.
l -4=

Thus, LI R,, = 0 is both necessary and sufficient condition that

fx + h) can be expanded in an infinite series.

Cor. Another form of Taylor's series which is found often useful is
obtained by putting x — a for h in the form (B), Art. 9.5.

Thus, f(s) = f(a)+ (x — a)f'(a) +2(x — a) f"(a) +.-.
2!

Maclaurin's series (extended to infinity).

If f(x), f '(x), f"(x).....f" (x) existfinitely however large n may

be in any interval (— 8 ,8 .) and R . tends to zero as n tends to infinity,

then Maclaurin's series extended to infinity is valid, and we have

f(x) = ((0) + xf'(0) + —("(0) + ,where I x 1<8.
2!

Illustration.

Ex. Expand the following functions in powers of x in infinite series

stating in each case the conditions under which the expansion is valid:

(i) sins,	 (ii) cos x,	 (iii) e,	 (iv) log (I +.r),

(v) 0+ x),-

(I) Let f(x) = sins

f" (x )= sin ( f nit+x), so that f(x) possesses derivatives of

every order for every value of x. Also, f" (o )= sin -- nit which is  or

±1 according as n is even or odd.	 -

I,	 flx	 ,,	 x .1	 nfl
• R,, =—x" f (Ox)=—sinl Ox+—

	

n!	 2
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R
n!	 2 )1	 n!X` ^I s (

since sin (Ux+--niv )I

R	 *0 as n—eoo, since	 as 1°° for all values ofx.

IEx. 8,3II

Thus the conditions for Maclaurin's infinite expansion are satisfied.
- X 

3 X5 X7

SIflX =X++ ..... . tO°°, for all values ofx.

(ii) Let f(x)=cosx.

F' (x)=cos(n7t+x), ... f" (0)=cos(n.t), which isO

or ±1 according as n is odd or even.

R,, =f" (0x)=	 cos 10x+
2

Now proceeding as in the case of sin x. we can show that

R, —*0 as n —* , for all values of x.

X 2COS
x=l----+--"- ......t000, for all vatuesofx.

(iii) Let f(x)=e.

f" ( )= e, :. f" (o )= i , thus f" (o ) exists and is finite,

however large n may be.
n

• R5 =—j (Ox)= 
x 
-e'

	

n!	 a!

Now, since e 0 <c 1	 (a finite quantity for a given x)

and ---*-0asn—sco,R--*0 asn —*oo.
a

	

,	 3

•	 e' =i++L_+_+ ...... t000, for all values ofx.
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• (iv)Let f(x)=log(1+x).

(i +
Which exists for every value of n for x>-1.

f0(0)=(_1)(n-1)!

If R,, denotes Lagrange's form of remainder, we have

f " ( 0 x	
Y-t I ^ x

n 1+Ox)

(i) Let 0 !^ x:5 1, so that I --	 0 as n	 00, since
I + Ox )

---- is positive and less than 1.
1+Ox

Also, 1. - 0 as a 	 R,, -, 0 as it

(ii) Let —1 <x <0; in this case	 may not be numerically

less than unity and hence 
J 

may not tend 10 0 as n 00

Thus, we fail to draw any definite conclusion from Lagrange's form of
remainder. Using Cauchy's form of remainder, we have

R = f" (o =—' )' .
I+Ox ( I 

I 

+Ox

•	 1-0	 ( 1-0
Now,	 is positive and less than 1; hence	 j	

0

asn —>oo.	 1
Also, x—*0,as n—*, since --l<x<O;

	

	 is bounded
1+Ox

R —O as n —*oo,

•	 x2	 .x
is valid for —1<x!^1.

Proceeding similarly we can show that

log(1—x)=—x—----........is valid for —1!^x<1;
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(v) Let f(x) = (1 + x)", where in any real nzmber.

Binomial expansion]

(i) When mis a positive integer, f0 (x) = 0 , when n > m, for every
value of x. Hence the expansion stops after the (in l)fl term and the
binomial expansion, being a finite series, is valid for all values of x.

(ii) When in 	 a negative integer or a fraction,

f"(x)= m(m-1). . . (m-n+1)(1+x)"', for x> -1
Hence Cauchy'sTorm of remainder B is

R. -
(n-l)!	 l+Ox)

Let -1<x-<l, i.e., jx< I; also, 0< O<i.

0<1-0<1+0x.

	

1-0	 ( i-o0<	 <1.	 .. 0<1-! <1.

	

l+Ox	 l+0x)

(n. being a positive integer > I

1-0 I

	

I	 - 0 as n —p oo. Also, (i + Ox) 
-I 

is finite
1+Ox)

whether m - 1 ) is positive or negative.

Again, if IxI<1, m 
(in 

-I) ... (rn- nfl) -+0.

(Art. 3.11, Ex 8(iv)

x<1, R0 -0 as n-*.

for I xI<1, Maclaurin's infinite expansion for (1+x)' is valid,
in 

being a negative integer or a fraction.

9.10. Determination of the coefficients in the expansion of 1(x) and
I (x+h), (Alternative Method).

(i) Assuming thatf(x) admits of expansion in a convergent power
series in x for all values of x within a certiain range, and that the expansion
can be differentiated term by term any number of times within this range,
we can easily get the oefficient of different powers of x as follows:

Let .f(x)oa0 +a 1 x+a2 x2 +a3x3 + 	.-- ( I)

where a0 , a1 , a 2 ..........are constants.
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We have by successive differentiations,

f'(x)=a 1 +2a2x+3a3 x 2 +4a4x3 +	 .- (2)

f(x)= 2.1a 2 + 3.2a3x + 4.3a4 x 2 +	 (3)

f(x)=3.2.1a3 +4.3.2a4 x+ 	 •	 (4)
etc. -	 etc.	 etc.

Putting x = 0 in (1),(2),(3),(4) .......... we get

f(0)=ao, j'(o)= a1 ,.f(0)= 2!a 2 , f(0)=3!a3...

Hence; f(x)=f(0)+xf'(o)+f'(o)+f(o)+ .......

(ii) Letf(x + h) be a function of h ( x being independent of h), and let
us assume thatthat it can be expanded in powers of h, and that the expansion
can be differentiated with respect to h term by term any number of times
within a certain range of values of h. We can easily obtain the coefficients of
various powers of h as follows:

Let f(x+h)=a0 +a1 h+a2 h 2 + 3 h 3 + .........	 ... (I)

where a0 , a1 , a, ......... . are functions of x, and independent of h.

Since	 f(x+h)-f(z)-	 [wherez=x+h]

differentiating (1) successively with respect to Ii, we get

f(x+h)= a1 +2a3 h+3a3 h 2 +4a4 h 3 +	 (2)

f' (x + h)= 2.1a2 +3.2a3h + 4.3a4 h 2 +	 (3)

f" x + h)= 3.2.1 a3 +4.3.2a4 h +	 (4)

etc.	 etc.	 etc.

Putting h = 0 in (l),(2),(3),(4) .......... we get

f(x)=a0, f'(x)=a1 , f(x)=2!a,, f(x)=3!a3,

h 2 	 h3
f(x + h )f( x )+ hf'(x )+ f( x)+—f-(x)+

Note. Althoujh the forms of the series obtained above for f(x 4-h) and
.1(x) are identical with the Taylor's and Maclaurin's infinite series for the
çxpansions of these two functions, the above method of proof if used
for establishing these two series, is considered as defective in as much
as it does not enable us to determine exactly the value of x for which the



298	 DIFFERENTIAL CALCULUS

infinite series obtained from each of the functions converges to the
value of the function. In fact. Taylor's and Maclaurin's expansions in
infinite series do not converge to the functions from which they are
developed unless R,, -* 0 as n -+ , even though the function might
.possessfinite differential coefficients of all order and the infinite series
maybe convergent; e.g., f ( x ) = e" ( , ,o), j(o)= 0.

Here, f(O ) = 0 for every value of r. But Maclaurin's infinite series
for this function, though convergent for all values of x, is not equal to f(x).

9.11. Other methods of Expansion.

The use ofMaclaurin's (as also of Taylor's) theorem in expanding a
given function in infinite power series is limited in applications because
of the unwieldy form of the remainder (i.e., of the nth derivative of the
function) in many cases. So we employ other methods for expansion.
Now, in this connection it should be noted that the operatiohs of algebra
like addition, subtration, multiplication, division and operations of
calculus like term by term limit and term by term differentiation, though
applicable to the sum ofa finite noiiber of functions, are not applicable
without further examination to the case when the number of terms is
infinite, and hence to the infinite power series Ea,x" . Ifa power series
in x converges (i.e., has a finite sum) for values of x lying within a
certain range (called the interval of convergence), then for values of x
within that range, operations of algebra and calculus referred to above
are applicable, as in the case of polynomials, and the series obtained by
such operations would represent the function for which it stands only
for those values of x which lie within the interval of convergence. We
illustrate below some of these methods.

9.12. Illustrative Examples.

A. Algebraical Method.

Ex. 1. Expand tan x in powers of x asfar.as x.

x 3 X5
X - + -

!
	Since tanx= sinx

	 3 5!
-=

	

cosx	 x- - +
2!	 4!

we may, by actual division, show that

See Chapter 6
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tan x=x+x3 +-jX 5 +0..

Ex. 2. Expand log 
(1+x) 

in powers of x as far as

Multiplying the two series

log (l+x)=x—x 2 +x3 --x4 +... (—l<x<l)

and (i +x) =l—x +x2 _ X 3 +X1 -... (- 1< x<l )

and collecting together the coefficients of like powers of x, we have

log(i+x) 
= x_(l+. )x 2 +(i++)x	 +... for

Ix 1<1 (the common interval of convergence).

B. Method of Undetermined Coefficients.

Ex. 3. Expand log (i + x) in ascending powers of x. [ V. P 1998]

Let !og(1+x)=a 6 +a 1 x+a 2 x 2 +a 3 x 3 +...	 •..	 (I)

differentiating with respect to x,

1+x 
= a i +2a 2 x+3a3 x 2 + 	...	 ( 2)

(l+x)(a j +2a 2 x+3a3 x 2 + ... ) = l	 •..	 (3)

Equating coefficients of x" on both sides,

na, +(n+1)a,,,1 rO	 •..	 (4)

Putting x = 0 in (1) and (2), a0 = log!	 0, a 1 	 I

Putting n1,2,3,... in(4),weget a2 =---, a3	 31, a 4 =---,etc.

log(l+x)=x—x2+x3—....	 ... (5)

AIte,na1ii'ely

For IxI<!,(l+xf
	 4_ X2 —x 3 +x4

Hence, comparing coefficients of like powers of x on both sides of

(2),weobtain a1=1,a2—,a3,etc.

Note. We shall have now to find for which values of x the series is

convergent, and hence represents the function.

It can be shown that the series is convergent for -I C x < I.
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Ex. 4. Show that

-1	 1 x 3 	 1.3 x 5	 1.3.5 x7

	

Sin X=X+---+-----.+--
 ___ 

+	 ICP 19471

Let y = sin	 x= a,, + a 1 x + a2 X2 + ...... + a,,x" + .........(1)

Since	 y=sin x, .. differentiating y1 = ..±_ ...	 (2)

	

1.3	 1.3.5Yi =(i-x) 2 =l+_1 2x +x +x + ..... . (3)
2	 2.4	 2.4.6

for —1.<x<1 by Binomial expansion.

Also, y1	 a + 2a 2 x + 3a3 X2+ ...... + na,,x ... + ......... (4)
Hence, comparing the coefficients of (3) and (4), we get

a 1 =1, a 2 =0, a 3 =-, a 4 =0, a =--,CtC.
2.3	 2.4.5

Also, putting x=0 in (1), a0 = sin 0=0.
Hence, the result.

C. Method of formation of Differential equation.

Ex. S. Expand (sin x) 2 in a series of ascending poii . ei-.c of x.

Let y=(sin t x) 2 .	 ...	 ( I)

Differentiating, y 
= 2sin'x
 .	 . . .	 (2)

or,	 y 1 2 (l_x 2 )_4(SIfll •)
	 4y

Differentiating again, and dividing by 2y 1 # 0,

(i_x2 )y, —xy 1 —2 =0.	 ...	 (3)
Differentiating this n times by Leibnitz's theorem, we get

(1_2 )
y ,2 - 2n+, —n(n-1 ) y ,, —xy,, 1 —fly,, = 0,

or, (1_x2 )Y+2 —(2n+I )xy,, 1 —n 2 y,, =0	 ...	 (4)
From (1), (2) and (3), we get y0 = 0, (y),= 0, (y 2)0 = 2, and from (4),

putting x = 0, we get

(Y*2 ) =n2 (Y.)	 ...	 (5)
putting n = 1, 3,5 ...... in (5) we get

(Y3 ) =(v ) =(Y,)o = ........=0
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and putting n = 2, 4, 6......in (5), we have

(y4)O=22(y2 )=22.2,

(Y6 ) =42(y4 ) =42.22.2.

Similarly, (YE ) =6' . 4'.2 2 .2, etc.

Assuming that a Maclaurin's series exists for this function, the

coefficients are the values of y, y 1 . Y2	 y,.. ...... when x = 0.

Hence,

1 21._I 	 2	 '4
	 2 2

.4 2
	

6	 .4 2 "	 8
(
s in - ' 	 =—•2x +-2x +-2x +	 •2x +...

2!	 4!	 6!	 8!

Note. It can be shown that this series converges for x2 :^ I.

D. Differentiation of known series.

Ex. 6. Assuming expansion of sin x, prove that

cos x = 1 - 
x 2 x4 x6

2!	 4!	 6!

	

x3	 .	 .
From the series SIbXX-- +	 + ......

which converges for all values of x, we get the required result by
differentiation.

Ex. 7. Show that sec 2 x=1+x 2 + . x 4 + ......

• Since tanx=x+x3+x5+......
3	 15

we get the required relult by differentiation.

9.13 Miscellaneous Worked Out Examples

Ex. 1. (i) is Rolle's theorem applicable to f(x) 
=
	 X2 	- 1, 1 ,1 ?

Justify your answer. 	 I C. P 1989 1

(ii) Does f(x) = cos

	

	 satisfy Rolle's Theorem in the interval

[C.P.1993J

(iii) Is Rolles Theorem applicable to f(s) = I—x 3 in —1 !^x:5 1?

Justify your answer. 	 I C. P 1990 1



302	 DIFFERENTIAL CALCULUS

Solution : (I)	 is continuous in —l:5x:51.

	

f'(x) (-0(2— x2)2(_2x)=	 2x 2
	

which exists 'in 1< x <I.
(2_x2)

	

And[(1) = 
'-j = L f(—l)	 = 1

Thus f(—l) =f(1)
So, f (x) satiifies all the three conditions of Rolle's Theorem,

Hence; Rolles Theorem is applicable tof(x) in [-1, IL

(ii) f(x) =(±)

J(0) = COS 
(J . 

is undefined

So, f (x) is not continuous at x = 0 which is a point in the interval
— 1:5  < 1

Again. f'(x) = —'sin(.!_). which does not e.ist at x 0.

So, f (x) does not satisfy the first two conditions of Rolles
Theorem.

Rolle's Theorem is not applicable to f(x) = cos (±) in [—i. 11.

(iii) Here, f(X)=J—X3

if —0,

3x3

f'(0) does not exist.

f (x) is not derivable at all points in the , open interval —1< x < I.

2

Hence, Rolles Theorem is not applicable to f(x)=I —X3  in the

interval —I:5x:51.

Ex. 2. Explain whether Rolle's Theorem is applicable to the function

f(x) = x I in any interval containing the origin.
[C. P. 1980, '95, B. P '95 1
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Solution	 Here, f(x) = x,	 X>0

=0,	 x=0
=—x, x<0

Let us consider an interval —a !^ x 5 a, where a > 0. Obviously,
this interval contains the origin.

Here, ((a) = f(—a) = a

And since, Jim f(h) = 0, lint f(h) = 0

and f(0) = O, f(x) is Continuous at x = 0  and so at all points in
—a !^ x a -

Now, Lf'(0)= lim	
h)—J(0) Jim

h—,O+ It

and Rf'(0) urn f(0+h)—f(0) lim
/1	 h-,O+ h

Lf'(0)?E Rf'(0), J(x) is not derivable at x=O.

So, it is not derivable at all points in — a < x <a.

Second condition of Relies Theorem is not satisfied.

Hence, Rolle's Theorem is not applicable to 1(x) = x in [—a, a],

i.e., in any interval containing the origin.

Ex. 3. (i) Test the applicability of Roile's Theorem for the function

f(x) =(x—a)'".(x—b)"in ax!^b where in, n are positive integers.

(ii) If f(x) =(x—a)'"(x—b)° , where in 	 n are positive

integers, show that 'c' in Roile's Theorem divides the segment a !^ x 5 b
in the ratio in n.	 C. P 1998

Solution :	 (i) f (x) = (x-a)"'-(x- b)"

since in and n are positive integers, f(x) is a polynomial of
degree (m+n) which is continuous at every point, so it is continuous
in a5x:5b.

Also, f'(x) = m(x—a)"'(x—b)" +n (x—a)"(x—b)"

= (x — a)'' .(x—b)'-lfm(x—b)+n (x—a)} .	 (I)

which exists in a < x < b.

f(a)=0=f(b)

So f (x) satisfies all the conditions of Rolle's Theorem. Rolle's
theorem is applicable tof(x)in asx!5b.
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(ii) Since f(x) satisfies all the conditions of RoDe's Theorem,

there is at least one point c in a <x < b, such that f'(c)-O.

From (I), (c—a)'(c—b)" {m(c—b) + n(c—a)} = 0

:a<c<b, c—a*0, c—b;60

mb-I-na
m(c—b)+n(c—a)=0 or, C

M+11

so that the point x = c divides the segment a x!5 b internally in the
ratio m: n.

Ex. 4. Verify Rolles Theorem for the function f(x) =	 —5x+6 in

1<x<4.	 [C. P.1991]

Solution : f(x) =	 -,5.x + 6

f (x) is a polynomial function, it is continuous at every point,

so it is continuous is I !^ x < 4.

f'(x) = 2x-5, exists in I <x <4.

f(1) =2 =j(4)

Thus f(x) satisfies all the three conditions of Rolles theorem.
Then there exists at least one point .r = c in 1< .r < 4, such that
f'(c)=O.

2c-5=0, or. c=— , which lies is l<x <4.

Thus RoDe's theorem is verified.

Ex. S. Discuss the applicability of the Mean value value theorem
a << b.

Find , if the theorem is applicable.

(i) f(x)=x(x—t)(x-3), 05x4	 F C. P 1992, B. P 20021

(ii) f(x)=I x I, —1:5x:51	 IB.P 1995]

(iii)f(x)=IxI,05x!^1
I 	

[G.P1988]

(iv) f(x)=x(x1)(x2), a=0, b=— [ C. P. 1987, B. P 1997]

Solution:	 (i) f(x)=x(x—l)(x-3)

= x 3 —4x2 +3x

f'(x)= 3x 2 —8x+3.
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1(x) being a polynomial function of x is Continuous in 0:5x:^,4.

f'(x)also being a polynomial function of x, exists in 0<x<4.

So, 1(x) satisfies the conditions of Lagrange's Mean value
theorem in OSx54.

There exists at least one point t in 0 < x < 4, such that
f(b)—f(a)=(b—a)f'(t)

i.e., f(4)—f(0)=(4_0)f'()

or, 12_O=4(32_8+3)

or, 3,2 —8= 0 ..	 =0,

0 < < 4, = (the value : = o is rejected)

(ii) f(x)=I x I, —1:5x<1

Here .1(x) = x I is continuous in —1 :5 !^ I ,but f'(x) does not
exist at x = 0, in the interval [see Ex. 2 1. So, Mean Value theorem is
not applicable for the function f(x)=Jxj in the interval —1:5x:51

(iii) f (x) = J x I, 0<i-<I

f(x) = x I is continuous in the interval -o !^ x:5 land f'(.)
exists at all points in 0< x <I. f '(x) = I. Thus 1(x) = I x  satisfies the
conditions of Mean Value therorem in 0:5 x <'.

So, there exists at least one point 	 in 0<< I,
such that f(l)—f(0) = (1--0) f'()	 .	 ...	 (I)
i.e.,
so the relation (1) is satisfied identically.

Hence, is any number in the open interval 0 <x < I.

(iv) f(x) x(x — 1)(x —2), a = 0, b = -
Here, f(x)=x3-3x2+2x

f'(x)=3x2-6x-t-2

f(x) being a polynomial function is continuous is 0 :^ x ^ -- and

f'(x) also being a polynomial function exists i n  <x
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f(o)=o

f(!)_f(0) (----O)f'() gives

=

or. l27-24E,+5=0

-	 6

I	 6—

Ex. 6.	 (i) For what range of values of x. 2x 3 - 9x 2 + 12x —3

decreases as x increases? 	 iC. P. 1986, B. P 1989 1

(ii) Show that x 3 + x 2
 —5x+3 is monotone increasing when x >1

C. P 1992 1

Show that —2x 3 + 15x 2 -36x+6 is strictly increasing in

2<xe.	
C. P 1993 I

(in') Show that 2x 3 - 12x 2 + 24x +,", is increasing on the real line.
C. P. 1995

(v) Separate the intervals in which 2V3-15 
V2 +36k +1 is

increasing or decreasing.	 I B. P. 1994 1

Solution 	 i) Let. 'f(x) = 2x 3 —9x 2 'i-12x-3

= 6x 2 - lSx+ 12

= 6(x - 1)(x —2)

f(x) decreases as x i ncreases if f'(x) < 0

Obviously, f'(x) < 0, for 1 <x <2

Hence the required range of values of x is 1< x < 2

(ii) Here. f(x) = x3 -Ex 2
 —5x+ 3

f'(x)3x ij

Here, f'(l) 0 and f'(x) >0, when x >1.
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Hence,! (x) is monotone increasing when x >1.

(iii) Here, 1(x) = —2x 3 + 15x 2 - 36x + 6

f'(x)-6x2+30x-36=--6(x-2)(x-3)

f'(x) > 0 for all values of x satisfying 2 <.x <3.

Hence, 1(x) is Strictly increasing in 2 <x <3

(iv) Here, f(x)= 2x3 —12x2 +24x+6

f'(x)=6x2_24x+24=6(x_2)2

For all real values of x, f'(x) ^ 0.

Hence, f(x) is increasing on the real number line.

(v) Here, f(x)=2x3-15x2+36x+1

f'(x)=6x2 —3O.+36=6(x-2)(x-3)
Obviously, f'(x)> 0 if x >3 or x <2

and, f'(x)<Oif 2<x<3

So, f(x) is a decreasing function when 2 < x < 3 and it is an
increasing function in (--,2) and (3,

Ex. 7. (i) Show thatj- — <log(1+x)<x, ifx >0.

[C. P 1987, '89,, B. P 2000 1

Solution	 Let 4(x)= log (l+x)__L
1+x

Here 4(0) 0
I	 l+x—x	 x

=	 >0, for x>0
J+x	 (l+x) 2 	 (li-x)2

•(x)> 0 for x > 0, and consequen;h
x

--< log (1±x) for x>Ol±x	 (I)

Now let, iv(x)=x— log (1+x)

Here, c (0) = 0

and 'U '(x) = 1— -- =	 >0 for x >0
1+x l+x

W(x)>0. when xA

i.e., x - log (1 + x)> 0, when x >0
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i.e., log (1+x)<x, for x>O	 2)

From (1) and (2). j--< log (l+x)<x,ifx>O.

Ex. 8. Show that	 decreases steadily in 0 <x

C. P. 1983, B. P 1993

Solution : Let, f(x) = sin X-
x

f (x)= 
XCOSX — sin X ...	 (j)

x 2

Let F(x) = xcosx—sinx

then F'(x) =COSX—xsiflx—COSX

=—xsinx< 0, in 0 < x <—

7t
F(0) = 0 and F (x) is strictly decreasing function in 0 <X <3.

F(x)<0in0<x<.

i.e., xcosx—sinx< 0, in 0 <x<

So, flDrn (1) f(x)<0in0<x<.

sinx	 it
Hence, — decreases steadily in 0< x

x

2 sinx	 It
Ex.9. Show that —<	 <1, for 0< .r <—.

it x	 2

Solution	 Let us define a function 0, such that

s
4(x) 

in 
x 	 x 0

x

=1	 when x=0

Obviously, 4 (x) is continuous in 0 !^ x 	 and derivable in

it	 ,	 xcosx—snX
0<x< and 4(.t)=

2	 x
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Let us consider another function W (x), such that

f(x) = xcosx — sin x defined in {o. .]

V'(x)= —xsinx4 for 0< x

1(x) is strictly decreasing in 0:5 x <

W(X)<W(0)=O for all x 0:5x<-

$'(x)<O, for b:5x5.

So4i (x) is strictly decreasing in 0:5x<,

$(0)> $(x)>4(2)for 0<x<-.

sinx -
i.e., 1>—>!

X 2
2sinx

i.e.,	 <1 for 0<x<—.
x	 2

15Ex. 10. Show that tan —> .t--,for O<x<—
x sin 	 2

•	
[C.P.1983,B.P. 1993)

Solution Here, we shall have to show that
tanxsinx—x2

>O for o<x< -
xsinx.	 2

X sin	 0, when 0<x<_71

it will be enough to show that

tanxsinx—x2 >O, for O<x<

Let F(x)r tan x sin x_x2,

thee F'(x)=sec2xsjnx+tanxcosx_2x

srnx sec 2 x+ sin x —2x
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and F'(x) = cosxSec2 x+sin.r2SCCXSCCX tanx+COSr-2

= sec x + cosx -2 + 2 sin x tan x sec 2 x

(JJ_)2 +2sinxtaflxseC2x

It
>0, for 0<x<

So. F'r) is strictly increasing in the interval 05 .V 

i.e.. F(x)>O, for 0< x<

Therefore. F(x) is strictly increasing in 0<- x<	 and also

F(0) =0.

So, F(x)>0. for 0< x<

i.e., tanxSinx-x2 >0, for 0<

i

	

tanxsiflx — X2	. 	
IT

or,

	

	 >0, n 0< x< — . ( . xsinx>O in 0< x<ç)
XsInx

tnx	 x
> -, when 0< x< -.

X sin 

EXAMPLE -IX (B)

1. Expand in infinite series in powers of h:

(i)	
(ji)	 cos ( + h ). (iii) e 1' sin (x + Ii ).

2. Expand the following functions in powers of x in infinite series, stating
in each case the condition under which the expansion is valid:

(1) a	 (ii) sinh x.	 (iii) cosh X.

(iv)*tan-'x.	 (v) cot ' x	 (vi) e" in hx.

(vii) e" cosbx.	 (viii) e sin x.	 (ix) e' cos X.

II(x) 
1+x

3. Show that

tan(x + h )= tan- 'x +(i sinG ).sin0 - .2L
(hsin0 

)2 sin 20

-
+ . (h	 o 

)3 sin 3(1 ..., where 0 = cot-'
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4. Find approximately the value of sin6OP3423r to 4 places of decimals

from the expansion of sin (x +h) in a series of ascending powers of h
by putting

and	 of a radian (=34'23nearly).

S. Show that

(I) logx=(x-l)-4(x-1)2+.(x-i)3-...

is true for 0 < x :5 2.

(ii)

is true for O<x<4.

6. Expand e'. in powers of(x.-1).
Verify the following series (Ex. 7- 19):

7. sec x= l+x2 + . x4	-2	 24

&	 log( l+x)'	 =x+-_.+...

(	 \	 x2	 2 3 X9. logi) - x+X
2
 )=-x+-..-+-x

	

23	 4

2
X 3 X5

10. el slhx=x+x +—+--...
3 30
X2 2x3 9x5

e

X	 1	 .1	 2	 1
12	 1--x+—x --x

2	 12	 720

13.

2.	 3
14. :log(l+sinx)=x__+-_..;

x2 2x4 16x6Is. log sccx=—+---.-___+...
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16.

17. =1+x+----'...	 [C.P.19401

18.

19. (I+x)

20. (j) By differentiation the identity
-I

(1-x)	 =l+x+x ' +x 3 + .... . jxI<1.

show that
-	 3.4 ,	 3.4.5

(1-x) =1+3x+—x+—x +....
1.2	 1.2.3

(ii) Differentiating the expansion for log (i + sin x). obtain the

expansion for see  - tan 

21. (i) Show that Fx and 
X 
2 cannot be expanded in Maclaurin's

infinite series.

(ii) Given f ( ) = 
, show that for this function the expansion of

f ( x + h) fails when x = 0, but that there exists a proper

fraction U such that

f(x+ h)= f(x)+hf'(x)+ h2f(x+Oh)

	holds when x = 0. Find q.	 [C.P. 19491

22. If y=(1-i.x)" =a0 +ax+a2 x 2 + .... show that

(i + x )y, = ny

and hence obtain the expansion of (i +

23. If y =	 = 00 + a 1 x + 0 2x + a3x3+...,

prove that
(i) (I_x2)y2=xy1+a2y,

and hence obtain the expansion of e"

Deduce, from the expansion of e' "' -" , the expansion of sip - x.

IcR 19451



EXPANSION OF FUNCTION	
313

24. If yeao+aix+a2x2+.. show that

(i) (i	 =

(ij) (n+1)a. j +(n-1)a_i	 -

and hence obtain the expansion of e

25. If y = sin (msin 4 , show that

— x 2 )yn+2 — (2n + 1)xy + (m 2 n2	 = o

and hence obtain the expansion of sin (m sin x 	 C. P 19381

26. If y e cos bx,PrOVe that

y2_oyi+(a2+b2)y0.

and hence obtain the expansion of e" cos bx.

Deduce the expansion of e and cos bx.	 C. P 19371

ANSWERS

ft2	 h3
2! 

h 2 
3!	

)h3
: (i)

(ii) cosx – hsinx – —cosx + —s,nx +...

sin x+h sin (X+)+2? sin x+	
)...

2	 2

2.

(ii) X+ 
x3 x5

++..•	 forall valuesof x
3!	 5!
2

(iii) I+—+—+..
2! 4!

(w)x--+-j+...
for-1:5x:51

(v)_(x_+c.–...).
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(vI)-rsjflO+_r2sjn2+	
where r=Jd2+L?

	

(vil )1+rco$+r2 co 	 ....	 and 4=taxi'-.

	

r	 r7 (	 \2
(viii) x2 sin— + - i2 ) sin— +...+ _22 sun— +

(ix)

Ex. (vi)- (ix) are valid total! values olx.

(x) 1-x+ 2 -x3 i...	 1xI<1.
(xi) l-x2+4--.+	 -l<r<l.

	

I	 (xJ4.	 0 .8710.	 6.	 e11+(x_I)+ (x-i)
+

2! 
	

3!
20. (ii) I - x + . x2 - -x3 +...	 21.	 (ii)	 .

n(n-I) 222. l+nx+	 _—x +...
2!

	

'2	 12	 '	 2(2	 2	ax	 aa +1	 aa +2/ 423. I+ax^_+	 i +	 x

	

2!	 3!	

+ a(a 2 +1 2 ) 2 +32 )
	 +

	

sin x = +	 +	
5!

	

T .
	 nz2 (m2 - 8

	

,x	 )24. I+n+..—+	 x +	 x +...

	

2!	 3!	 1	
4!

25.	
_i)n2 _32

	

3!	

)

a 2 -b2 2 a(a2 _3b2)

	

26 l+IJX+	 X +
	

X 3 +...

	

2!	 3!
22ax

e = I + ax + -
2!

	

b2x2	b4x4cos bx = I----- + —
	2!	 4!



FAI MAXIMA AND MINIMA (Functions of a Single Varaible)

10.1. By the maximum value 0fhfunction f(x) in Calculus WedOnot

necessarily mean the absolutely greatest value attainable by the function.

A function f(x) is said to be maximum for a value c of x, provided

f(c) is greater than every other value assumed by f(x) in the

immediate neighbourhood of x = c. Similarly, a minimum value of f(x)

is defined to be the value which is less than other value in the immediate

neighbourhood. A formal definition is as follows:

Afunction f(x) is said to have a nzaxirnu,fl value for x = c, provided

we can get a positive quantity ? such that for all values of x in the

interval

c — ö <x<c+S , (x c) f(c)>f(x);

i.e..if f(c i-h)— f(c)< 0, for I I sufficiently small.

Similarly, thefunctionf (x) has a ininitnuni value for x = d, provided

we can gel on interval d - <x < d + ' within which

i.e.,if f(d + h) — f (d )> 0,rnr I It I sufficiently small.

Thus, in the Fig. 10.1.1 which represents graphically the function

1(x) (a Continuous function here), the function has maximum value at

P1 , as also at l'2 , P3 . P4 , etc. and has minimum values at Q1, Q2,

Q3, Q 4 , etc. At P 1 for instance. corresponding t0 x=0C1 (=c1 say),

the value of the function, namely, the ordinate PC 1 is not necessarily

bigger than the value Q2D2 at x = 0D2 , but we can get a range, say

L1 C1 L2 in the neighbourhood of C1 on either side of it, (i.e., we can find

a 6=L1C1 =C1 4. say) such that for every value of  within 4C, L2

(cxecept at C1 ), the value of the function (represented by the

corresponding ordinate) is less than P1 C1 (the value at C1).
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tlg 10.1.1

Hence, by definition, the function is maximum alx= OC,. Similarly,
we can find Out an interval M 1 D2M2 (MI D 2 = DM, = , say) in the
neighbourhood of D2 within which for every other values of x the
function is greater than that at D,. Hence, the function at D, (represerted
by Q,D,) is a minimum.

From the figure the following features regarçling maxima and minima
of a Continuous function will be apparent:

(i) that the function may have several maxima and minima in an
interval;

(ii) that a maximum value of the function at some poinit may be Le-
than a minimum value of it at another point (C,P, <D2Q);

(iii) maximum and minimum values of the function occur alternately,
i. e.,betwccn any two consecutive maximum values there is a minimum
value, and vu-c versa.

10.2. A necessary condition for maximum and minimum.

If f (x) be a maximum, or a minimum at .r = c, and if f' (c)
exists, then f'(c )= 0.

By definition, f (x ) is a maximum at x c, provided we can find
a positive number 5 such that

f ( c + h )- f(c)< 0 whenever - S <h <5, (h * 0).



MAXIMA AND MINIMA	
317

• [+ h)— f(c <0 ifhbe positive and suffiCiefltlYsmall, >0

if h be negative and numerically sufficiently small.

Thus, Li L(.i') f('):go,isee &t5,31l]
It

ànd,similarly.	
Li f(c+h)—f(c)>0

h

Now, if f'( c ) exists, the above two limits, which represent the

right-hand and left hand derivatives respectively of I () at x = c,

must be equal. Hence, the only common value of the limit is zero. Thus,

f'(c)=o.
Exactly similar is the proof when f(c) is a minimum.

Note. In case f'(c) does not exist, f(c) may be a maximum or a

miflimwn, as is apparent form the figure for points Q2 and P4. At the

former point f(x) is a minimum, and at the latter it is a maxiinum. f'(x)
is, however, not zero at these points, for, f(x) does not exist at all at

these points.

10.3. Determination of Maxima and Minima.
(A) If c be a point in the interval in which the function f(x) is

defined, and if f'(c ) = 0 and r(c);& 0, then 1(c) is

(I) a maximum if 1 (c) is negative and

(ii) a minimum if is positive.

Proof: Suppose f'(c)=O, and f(c) exists, and *O.

By the Mean Value Theorem',

f(c+h)_f(e)=hf'(c+Oh). where 0<0<1.

=01,2
Oh

Since 0<0<1, Oh -.+ 0 as It .- 0, and writing Oh

the coefficient of 0 h 2 on the right side	
f(C + k)— f'(k) = f(c)

Accordingly, since o h 2 is positive, j (c + h ) - f (c ) has the same sign as that

of t (c ) when I h I is sufficiently small.

Since f"(x) exists, f(x) also exists in the neighbourhood of c.
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If f(c) is positive, f(c + iz)- 1(e) is positive, whether h
is positive or negative, provided 1h I is small. Hence 1(c) is a minimum,

by definition.

Similarl y, If f(c) is negative, I (c + h )- 1(c) is negative,

whether  is positive or negative, when I h I is small.

Hence f (c) is a rnaxi,nu,n.

(B) Let c be an interior point of the interi'aI f deiniiion of the
function f ( x ), and let

f'(c ) f(c )=	 f'1(,)= U, and f" (c ) 0:

the,, (i) If n be even, 1(c) is a maximum or: minimum accoiding as f" (c)
is negative or positive,

and (ii) (n be odd, 1(c) is neither a minimum nor a maximum.

Proof: By the Mean Value Theorem of Higher order, here

f(e+h)-f(c)
	 I I 

f"'(c+Oh). 0<0<1,

- Oh"	 f" (c +0/i )- f"' (c)
(ti-I)!	 Oh

Since 0<0<1,as h -sO,Oh - O,and

the coefficient of Qh"/ (it 	 ) , on the right side --> f" (c

Now, suppose n is even: then Oh" / (, - j ) is positive.

f(c+h )- f(c ) has the same sign as o f 	 (c ), whether It

is positive or negative, provded 	 h is sufficiently small. Hence, if

f" (c) be positive, f (c -* Ii )- 1(c) is positive for ithcr sign of h,

whc	 Ii 1 is small, and so j ( ) is a ,ninin,utn. Sinii lady, if f' (
is negative, f (c ) is a maximum.

Next, suppose n is odd: then Oh"/ (a - i )! is positive or negative

according ash is positive or negative. Hence. f(e+/i )-j (c ) changes

in sign with the change cf I, whatever the sign of f' (c ) may be, and
so f(c ) cannot be 'iiliet a rnaimurn or a minimum at x = C.
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Hence, to determine maxima and minima of f ( x ), we proceed

with the following working rule:

Equate f'( x ) to zero, and let the roots be c, c2 1 c 3 ,.... Now

work Out the value of r (c 1 ). If it is negative, then x makes a

maximum. If be positive, then is a minimum of. Similarly test the sign of

for the other values of x for which is zero, and determine whether is a

maximum or a minimum at these points.

If, ij any case above, f ( c ) = 0 ,usc criterion (B).

Note I. The above criterion for determiniming maxima and minima of

f( x) falls at a point where f'(x) is non-existent, even though 1(x)
may be continuous.

In such a case we should bear in mind that if 1(x) be a maximum

at a point, immediately to the left of it the value of f(x) is less, and

gradually increases towards the value at the point and so. f'( x) [which

represents the rate of increase of /( .v) ] is positive. Immediately tGthO

right, the value off ( ) is again less, and so .1(x) decreases with s

increasing and, therefore, f'( x) is negative to the right. Thus changes

sign from positive on the left to negative towards the right of the point.

See point P 4 , in the figure ofArL 101 1

Similarly, if f ( .v ) be a minimum at any point. 1(x) is larger on the

left, and diminishes to the value at the point, and again becomes larger

on the right, i.e., f(x) increases to the right. Thus f'() changes

sign herc, being negative on the left and positive on the right of the

point.

Thus, we have the following alternative criterion for maxima and

minima At a point where f(x ) is a rnaxi,nurn or a minimum, f'(x )

changes sign, from positive on the left to negative on the right if f (x)

he a maximum, and from negative on the left to positive on the right if

r() beaminimum.

If .r'( • ) exists at such a point, its clt.tngc of sign from one

side to another takes place through the zero value of f'v ). so

that f'(x) = 0 at the point. If 1'(x)  be non existent at tiC p0int,

the left-hand and right-hand derivatives are of opposite signs at the

point.
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Even in the case where the successive derivates exist, instead of

proceeding to calculate their values at a point to apply the usual criteria

for maxima and minima of f( x ) at the point, we may apply effectively

in many cases this simple criterion of changing of sign of f'(x + h) as
h is changed from negailve to positive values, being numerically small,

[For illustration see Ex. 4, § 10.5]

Note 2. At points where f( x) is maximum or a minimum, f' (x) = 0

when it exists, and accordingly, at these points the tangent line to the

graph of f ( x) will be parallel to the x-axis (as at P, Q 1 1', Q2' P, Q,
etc. in figure of § 10.1). At points where 1(x) is a maximum or a

minimum, but f' ( x) does not exist (e.g., at Q1 and P), the tangent line

to the curve changes its direction abruptly while passing through the

point. A special case is where the tangent is parallel to the y-axis, the

change in the sign of f(x) taking place through an infinite value.

Note 3. A maximum or minimum is often called an 'exiremum' (extremal)

or 'turning value'.

The values of x for which f'(x) or l/f'(r)=o are often

called 'critical values' or critical points of f( x).

Note 4. The use of the following principles greatly simplifies the solution

of problems on maxima and minima.

(I) Since f (x )  and log f (x )  increase and decrease together,

log f ( x) is maximum or minimum for any value of x for which f( x)
is maximum or minimum.

(ii) When f ( x) increases, since I/f ( x) decreases, any value

of x which renders f( x) a maximum or minimum renders its reciprocal

1/1(x) a minimum or a maximum.

(iii) Any value of x which renders f( x) positive and a maximum

or a minimum renders { f( x ) }" a maximum or a rttinimum, n being a

positive integer.

For examples on maxima and minima of functions of two variables

connected by a relation, see Ex. 7 and Ex. 12 of Art. 10.5.
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10.4. Elementary methods (Algebraical and Trigonometrical).

Certain types of problems on maxima and minima can be solved
very simply by elementary algebra or trigonometry. The discussion of
the maxima and minima of the quadratic functions or the quotient oftwo
quadratic functions will be found in any text-book on algebra.'

In solving simpler problems of maxima and minima of functions of
more than one variable, the following elementary results are of great use:

-	 1	 12	 f	 12(I) xy(x+y)j —(x—y)j.
(ii) (x+y )2 = 41-Y 

+ (x — y )2

(iii) x 2 + y 2 = x + , )2 + I (x - y)2.

When the swn of two positive quantifies is given, it follows from
(i) that their product is greatest, and from
(iii) that the sum of their squares is least, when they are equal.

When the product of two quantities is given, from
(ii) their sum is least when they are equal.

The above theorems may easily be extended to the cases of more
than two quantities.

Thus, when the sum of any number of positive quantities is given,
their product is greatest when they are all equal, and so on.

For illustrative examples see Art. 30.5, Ex. 9 to 11.

Note. In algebraical or trigonometrical example, by maximum or minimum
value of a function we t'sually mean the greatest or the least value
attainable by the function out of all its possible values. In Calculus,
however, as has already been remarked, a maximum or a minimum value
indicates a local (or relative) maximum or minimum.
10.5 An absolute or Global maximum and an absolute or Global minimum

A real valued functionfx) defined in [a, b) is said to have an absolute

maximum (or, a global maximum) at a point c E [a, b] if f(x) !^ f(c) , for
all xc [a, b] and f (x) is said to have an absolute minu,num (or, global

minimu,n) at x = cc [a, b} , if f(x) ^! f(c) for all xE [a, b], f(c) being
called the absolute maximum or the absolute minimum value of f(x) in [a, b].

To find the Absolute maximum or the Absolute minimum of values of a
continuous function defined in a closed interval [a, b], the points X 1 , A2,

A, in [a, blare determined where f'()L r ) = 0, r= 1,2,... n.

Sec Das & Mukherjee's Higher Trigonometry, Chap. XV Sec. B.
2 See Ganguly & Mukherjee's Intermediate Algebra Chap. VI, Art. 6.12.
21-
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Then the Absolute or Global maximum of f(a) in [a, b] is given by

G = max{ f(a), f(A1), f(2 2 ) , ... I f(X ^ ), f(b)4 and the Absolute or

global minimum 011(a) in [a, b] is given by L = min(f(a), f(X j ), Ph),
,f(A),f(b)}.

Remarks!. Any absolute maximum (or, minimum off (x) is also a local
maximum (or, minimum) but the co verse is not true.

2. A functionf(x) in la, b] can have no local maximum (or, minimum)
or may have one or more points of local maxima (or minima).

Example 1. Find the global nzini,nu,n if the f(x) = x 3 - 6x 2 +9x + I in

[0, 11.

Solution. Here,. f(x) x 3 6x 2 + 9x +1 -

f'(x)= 3x 2 —12x+9

For maxima or minima off(x), f(x)= 0

or, 3(x2-4x+3)=0

or,	 (x—l)(x-3)=0	 :.x =1,3

But 3 [0, 11

Only critical point is x = I
Global maximum value = max )f(0), f(1), f(2)).

=max)1, 5, 3)	 -

Global minimum = min (f(0). f(l), f(2)1 = min1, 5, 31 I.

Hence the global maximum and global minimum 011(x) in [0, 1] are Sand I
respectively.

Example 2. Discuss the absolute maximum and absolute mnini,numof

	f(x)=tanx— log x in l,	 I.

Solution.	 f(x) = tan x - log x	 -.

1	 1 I	 (x—l)2
f(x)=---.—=—

	

1+x 2 2 x	 2x(l+x 2
 )

f'(x)=Ogives x=1.

	

Absolute maximum = max	 f(l).

	

fitl	 iijtl	 liti 
-log =max—+—loo3. -, -----Iog3 =—+-

	

6 4	 4 3 4	 J 6 4
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Absolute rtiinimum =min {f(_j_). f(J), f(..J)J

•	 .Iiti	 7t1t-:l
log3=min-+- log 3,-, ---

	

16 4	 4 3 4

iti= - - - log 3
64

Note : The Absolute max or absolute min does not cor respond to x = 1.
where f'(x)=O.

Example3. Examine the function f(x) =1 xl -2:5x:52,
for absolu genzaxi,nu,n and absolute inin)n,um.

Solution.	 Here, Ixl^:O
for all XE [-2. 2] andf(x)=O,
when x=O.

So, f( . ) ^ f(0) for all
xE[-2,2]

Hence f(x) has absolute X
minimum at x = 0 and the
absolute minimum value off(r)
is 0.

Also, I x j!^ 0 for all XE [-2, 23 andf(2) = 2, f(-2) = 2.

Sof(x) has absolute minima at x = -2, 2 and the absolute maximum
value of f (x) is 2.

Note: Here f'(x) does not exist atx=Oand f '(X)0 at x=±2.

10.6. Illustrative Examples.
Ex. 1. Find for what values of x, the following expression is maximum
and ,nini,nuni respectively

2x3-21x2-t-36x-20
Find also the ,naximunt and nzinimu,n values of the expression

[C.P. 1936]

Let f(x)=x3-2l2+36x-2o.

f'(x )= 6x 2 - 42x+36, which exists for all values of x.

Now, when f(x) is a maximum ora minimum, f'(x )=o.

we should have 6x 7 -42x +36 = 0, i.e., x 2 -7x+6 = 0,
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or, (x-l)(x-6)=0;	 xl or 6.

Again, f'(x)=l2x-42=6(2x-7).

Now,	 when x = 1, f"(x )= -30, which is negative.

when x=6,  f"( x )= 30, which is positive.
Hence, the given expression is maximum for x = 1, and minimum

for

The maximum and minimum values of the given expression are
respectively f (i ), Le., -3, and f (6 ),Le.. -128.

Ex. .2. In restigale Jbr what values of x,

f(x)=5x' -18x' +15x4 -10
is (1 !llQXjnIUfl? Of tin nirnum.

Herr,	 f'(x )= 30(x 5 -3x 4 +2x),

Putting f'(x )= 0, we have x3 (x2 — 3x+ 2

i.e.,x3(x_t)(x_2)=O, whence x=0,lor2.

Again, f(x)=30(5x 4 -12x 3 +6x2)

When x = I, f'(x) is negative, and hence f(s) is a maximum
for x= 1.

When x = 2, f( x ) is positive, and hence f(s) is a ,nini,nu,n
forx = 2.

When x = 0, f(x )= 0; so the test fails, and we have to examine
higher order derivatives.

f_(5)=120(5x3._9x2 +3x).	 jo)=o,

f' (x )= 360(5x2 '-6x+	 .. j o) is positive,

Since even order derivative is positive for x = 0,
for x=0, f(s) isamini,nun:,

Ex.3. Show that f (x ) = x 3 - 652 + 24x +4 has neither a maximum nor
a minimum.

Here,	 f'(x)=3(x 2 -4x+8)=3{(x'-2)2 +4)
which is always positive and can never be zero.

f(s) has neither a maximum nor a minimum.

Ex. 4. Examine f(x )= x3 _92 +24x-12 for maximum orminimu,n

values.
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Here,	 f(x)=3(x2 _6x+8)=3(x_2)(x_4).

Putting .f'(x)=O.wefind x=2 or 4.

Now,	 f'(2-h)=3(-h)(-2--h)-_+ve,

And f'(2+h)=3(h)(h-2)=--ve, since his positive and small.

by § 10.3. Note 1, for x = 2, 1(x) has a maximum value, and

this is f()=8.

Again, f'(4-/i )= 3.(2-h )(-h )= - ve,since h is positive and
small,

f(4+h)=3.(2-fh)(h)=+ve,

by § 10.3, Note 1, for x = 4,f(x) has a minimum value, and this

isf(4)=4.

Note. In this case we could have easily applied rule. of Art. 10.3.

Ex. 5. Find the maxima and minima of

l+2 sin x+3 COS 2x,	 (0!5x^+1T)

Let f(x)=1+2sinxi--3cos 2 x.

Then	 f'(x )= 2 COS x-6cosx sin x.

f'(x)=O when 2 COS x(1-3sinx)=0, i.e., when cos x=O.

and also when Sin .r =

f(x )= -2 sin X_6 (COS 2 x-sin2 4.
When COS x= 0, x = 2'n, :. sinx = 1, .. f'(x).= -2 + 6 = 4 (i-ye).

for cos x = 0,1(x) is a minimum, and the minimum value is 3.

When sinx r  - ,

f(x )= -2sin x_6(1_2sin 2 x)---1-6(1 - 2
3	 V )  (negative)

Therefore, for sinx=,f(x) is a maximum and the maximum

value is 1+2.++3.(I_..)=4-.

Ex. 6. Exaftiine whether X . possesses a maximum or a minimum and
determine the same	 C. P. 141, '45 1

Let y=x, :. logy= .! log x.
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Idy	 1	 1
--=----2-Iogx=---O_logx),	 (1)
ydx x x

dv..when	 =O,l_ 
log xo, ... 

logxl=Ioge,...xe.
dx

Again, differentiating (1) with respect to x,

,	 -
I ( dy	 I d - v x ( _ I /.V

	 + 2 log .rlog x)2s
2j) 2  

Yd 2	 x4	 -

	

d 2 y 	 1 -3+2	 ewhen x=e, ----e.	 =---- whidi is negative.
,IX 2I for x = e, 

(1),
-c- = ()
dx

for x= e, the function is maximum, and the maximum value is e.

Ex. 7. Find the maximum and nun,,nu,n values of it

4+ 36
u-+— and x+), = 2. 	 C. P.

X y

Eliminating y between the two given relations

4	 36	 du 	 3616 % 2 +.v—1

x 2-x ' " dx	 x 2 (2-x)2 	 x2(2-x)2

du	 d2u 8	 72- = 0 gives X=-j or -I. Also--=----+
d	 -	 dx	 .	 (2-J

	

d 2u	 8	 72
Wln x -2 = 

fl 
+ _

7
 Which is positive.

for x = ,',, it is a minimum.

4 36
minimum value of U

; 2-

d2u 	72When x = -1,— = - 8+ - which is negelive.
27

for x=-1, J4isa maximum.

4	 36
maxiiium value of u=—+----=S

-1 2+1
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Ex. 8. Examine the function f(x).'4-3(x-2) for maxima and

minima at x = 2.

Here,	 f'(-)=–
2

(x-2)

For x = 2, f'(x) does not exist, the left-hand derivative being

+ and the right-hand derivative - ; but i/i'( x) is zero for x = 2.

So, the test of Art. 10.2 fails. Let us apply the criterion of § I 1)3, Note!.

Now, f'(2–h) is positive and f'(2+h) is negative.

Hence, the function has a maximum value forx = 2, and the maximum

value is j . ( 2). i.e., 4.

Ex. 9. A conical tens of given capacity has to be constructed. Find the

ratio of the height to the radius of thebase for the minimum amount of

canvas required for the lent.

Let r be the radius of the base, 
It 

the height, V the volume and S

the surface-area of the conical tent.

Then,	 V=-tr 2 h	 ...	 (1)

and S=nr '1r 2 +h 2	...	 (2)

Here,	 V is given as constant.

S2=7t2r2(r2+h2)=m2r2(r2+2_.) lfrom(i)J

=n 2 r 4 +9V2.4.

Now, if S is a maximum or a minimum, S2 is so and herce for

2 \	 .	 d	 24
maximum or minimum of 

S. 
d1

S )—=O. I.e. - it r +9V.—)=O,
dr	 drt	 r2

9V 
	 I Vi

i.e., 47t2 r3 _18V2 ._L0. .. r6 ._L; r 21E2

Now, 7(
S2 )= 12it2r2 +54V 2 . _.-, which is positive for

rT	 r4
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for minimum amount of canvas,

IV	
27C 2	 2

i.e., r6=	 .,n2r4h2

i.e.,r2=h2,	 .•. r2:2=i	 or	 r:h=1;.

Ex. 10. Show that for a given perimeter, the area of a triangle is
maximum when it is equilateral.

The area  of  triangle ABC ..js(s—a )(s—b)(s—c):

The area A of  triangle ABC

Let s—a=x, s—b=y, .c—c=z,

x+y+z 3s_(a+b+c)3s_2s=s=cosE

Now, A = Since s is a constant, A will be maximum when xyz
will be maximum subject to the condition x + y + z = const, i.e., when
x=y=z, [See §10.41

i.e.,when s--a=s-j=scieab=c

Ex. 11. Show that the maximum triangle which can be inscribed in a
circle is equilateral:

Area A of a triangle ABC inscribed in a circle of radius R
= bcsin A = - . 2Rsin B. 2Rsin C.sin A

=2R 2  sin Asin Bsin C

= R 2  {cOs (A - B)— COS (n + n )}sin c.
Let us suppose C remains constant, while A and B vary. Since R is

Constant, the above expression will be maximum when A = B.
Hence, so long as any two of the angles A, B, C are unequal, the

expression 2R2 sin A sin B sin C is not a maximum, that is, it is maximum
when A=B=C.

Thus, A will be maximum when A = B = C.

Ex. 12 Find the maximum and minimum values o

asin x+bcos x.

Let arcosO, b=rsinO,

so that r 2 = a 2 + b 2 and tan  =h/a.
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Thus asinx+bcosx.=r(sinxcoso+cosxsino)=rsin(x+e)

42 +b 2 sin (x+tan'b/a)

Since the greatest and least values of sine of an angle are I and—I,
the requiredmaximum and minimum values of the given expression are

,Ja2+b2 and _Ja2+b2

EL 13. Assuming Fermatc theornz that a ray of light in passing from
a point A in one medium to a point B in another medium takes the path
for which the time of description is a minimum, prove the law of
refraction.

Fig 10.5.1

Let AOB be a possible path of the ray of light, 0 being the point where

it meets the surface of separation MON of the two media and let POQ be

the normal to the common surface MN at 0, and AM, RN the perpendiculars

from A and B on MN.

Let )n L4OP 0, mZBOQ = 0, and  let v and v' be the velocities

of light in the two media. If AM = a, BN = b, then AO=a see 0,

BO = b sec 4' . The time taken by the ray of light to travel the path AOB is

asecO bsec4'
T=	 +	 ...	 (I)

V	 V

and by Fernsat's theorem this is to be a mini mum.

Again, since A and B are fixed points,

atanO+btan$=MO+ON = MN = constant	 ... (2)

so that 0 and • are not independent, and we can, thus consider$ as a
function of 0 . which is then the only independent variable.
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For T to be minimum, .i = 0, giving
dO

a 
se	

b	 d4t
- c 0 tan 0 + - sec 4, tan 4 - = 0,

V

Also, from (2),

asec 2 O+bsec 2 4t—=0.
dO

di
From these two, eliminating	 ,wc :isily get

dO

sinO. sin4,	 sin 	 v
or, - = = t (say)

V	 v	 sin4, v

which is the law of refraction, satisfied for the actual path of the r;.v of
light.

10.7 Miscellaneous 'Worked Out Examples

Ex. I. (i) What do you mean by the maximum or minimum value ofa
function 1(x) at x = c? If f '(x) exists, what willbe the value of

f'(c)? Is it neccessary as well as sufficient conditio&i
[C. P. 1987, '96, B. P '96. 98

(ii) Cite an illustration to show that even if f'(c) does not exist.

f'( -v) may have a maximum or minimum at x = c	 I C. P 1987

Solution : (i) A function 1(x) is said to have a maximum ( or, a local

maximum) at x = c, iff (c) is greatest of all the values, i.e., 1(x) ^s f(c)

in some suitably small neighbourhood of c.

Analytically, this means

f(c+h)–f(c):^0, for I i sufficiently small.

Similarly, 1(x) is said to have a minimum (or, a local minimum) at

X = c, if 1(c) is smallest of all the value', i.e., f(x)^ 1(c) in some

suitably small neighbourhood of c, i.e.,

f(e + h) - 1(c) ^: 0, forj h I sufficiently small.

Second part: If 1(x) be a maximum or a minimum at x = c, and if

f'(c) exists, then f(c) =0.

Proof: By definition, f(x) is a maximum at x = c, provided we can
find a positive number & such that
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f(c+h)—f(c)<O, whenever —ö< i<8 (h#O)

f(c+h).-f(c) <0 
if h is positive and sufficiently small and

h

f(c+h)—f(c) >o if h is negative and numerically sufficiently
h

small.

Thus urn 1(c)—j'()
h

and ,l,	
f(c+/s)—f(c)

Now, if f'(c) exists, the above two limiting values which represent
the right-hand and left-hand derivati'es respectively of f(c) at x = c,
must be equal.

Hence, the only common value of the limit is zero, i.e.,.f'(c) = 0

Similarly, when f(c) is a minimum, f'(c) = 0.

Third Part : f'(c) =0, if it exists, is a necessary, but not sufficient

condition that f(x) may have a maximum or minimum value at x = c.

As an example, let us consider the function f(x) = x5.

Obviously .f'(0) = 0, but whenever x>0, 1(x)> 1(0). and whenever

<0, 1(x) <f(o). Hence, f(x) has neither a maximum nor a minimum

value at x=0	 -
(ii) Let us consider the function 4t(x) = N
Obviously, 4(x) is minimum at x = 0, but $'(0) does not exist.

Ex. 2. (i) Show that the maximum value of ry subject to the condition

•25
3x+4y=5 is j . 	[ C. P 1991, B. P 1996

(ii) Show that the function 1(x) = x 3 —3x + 6x + 3  does not

possess any maximum or minimum value. 	 f C. P 1994 1

Solution :	 3x+4v=5,

Let U = xv = !x(5._3x) = .!(5x .3x2).



332	 DIFFERENT/AL CALCULUS

du I
—(5-6x)

and
d2u	 6	 3
-=---=--.d,,	 4	 2

For a maximum or minimum of U =

du	 5	 5 d2u=•O, which gives x =	 Also, at x = , •- <0

5
u = ry is a maximum at x = and the maximum value of

I 1  
	

- 25
u=.y=-5x--3I( )

21
6	 6 	 48

(ii) f(x)=x3-3x2+6x+3

f(x)=3(x2_2x+2)

f'(x)=O gives x 2 -2x+2=0,or, x=l±i.

Thus f'(x) does not vanish for any real value of x.

Hence f(x) has neither a maximum nor a minimum.

Ex. 3. When does the function sin3x-3sinx attain its maximum or

minimum values in (0, 2it)?	 [ C. P 1981

Solution :	 Here, f(x)=sin3x-3sinx

f'(x) = cos 3x-3 cos x

f"(x)= —9 sin 3x + 3 sin x

For, maximum or minimum values of f(x),

f'(x) = 0, which gives 3(cos3x —cosx) = 0

or, 4cosx (COS x_I)=0

cosx=0, I, —I

t	 3i
x= —, --	 (.• 0<x<2t )
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it	 .3n	 .it
At x= —, f"(x)=-9sin—+3sin— >0

3m	 .9it	 .3m
At x= - , f (x)=r-9sin----+3sin_ <0

	

3m	 it
f(x) is maximum at X =	 and minimum at X

Ex. 4. (i) Show that of all rectangles of given area, the square has the

	

smallest perimeter.	 [ C. P 1984, 2008 1

(ii) Show that, of all rectangles of given perimeter, square has
the largest area.

Solution : Let x be the length and y be the breadth of a rectangle.

Its area = xy = k say, where k is constant.

k
y=—

x

If S be the perimeter of the rectangle, S = 2 (x + y) = 2 +

	

dS( k'	 d 2 4k—=2,1---- and
dx	 X2

	 j*2

dS
	For maximum or minimum of S, 	 = 0, which gives

dx

k

	• when : = ,	 2k = 2
d	 ( 	 10

	• So, S is minimum when x = 	 , and when jr = 'J, y =
(.. y=k),

i.e. x=y.

Hence the perimeter of the rectangle is smallest when the rectangle is
a square.

(ii) Let, x be the length and y be the breadth of a rectangle--
Perimeter of the rectangle =2(x+y)=2k , say, where k is

Constant.

y=k—x
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Area A of the rectangle is given by

A=xy=x(k-x)=kr-x2

dA	 d2A.	 -—=k-2x and —=-2
dx	

dA
For maximum or minimum of A,	 - = 0 , which gives k - 2x = 0.dv

i.e., x=k.

I	 d2 for, x=- -k, —=-2<O
2	 2

A is maximum when .x -k

1
when x.-k, y= -k thus x= V.

Hence, the rectangle of given perimeter has largest area when it is a
square.
Ex. 5. (1) Show that the rectangle inscribed in a circle has maximum area
when it is a square.

(ii) Find the largest rectangle that can be inscribed within the

ellipse 
v2h2	 I C. P 1993 I

Solution	 Let ABCD be the rectangle
inscithed within the circle of radius a.

0	 C

ABC=,

AC is a diameter of the circle./0
Let Z CAB = 8, then	 -	 A	 B

AB = ACcosE3 = 2acosO and
BC=2asin0.

Area S of the rectangle ABCD is given by

S = ABxBC = 42 sinOcos0= 2u 2 sin 20
(IS	 2	 dS	 2	= 4a cos 20,	 = -8a si n 20
dO	 dO2

For, .extrcmum of S,	 - = 0 , i.e., 4u2 cos20 = 0
dO
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7t	 It20=—. [ •.• O^O^! i.e.,] 	 0=—.
2	 2

For, o=! ,	 _...8a2sin!E_8a2<O
4 dO2	 2

Sis maximum when 0-.

Then, AB=2acos!=,ha and BC=2asin!=,Ja

AB = BC, the rectangle inscribed in the circle with largest area is

a square.
(ii) Let ABCD be the

rectangle inscribed in the ellipse

2X
--+--= I. The length and
a

breadth of the rectangle are
parallel to the axes of the x
ellipse which are coordinate
axes also.

Let coordinate of A be

(acosO,. bsinO).

S = area of the rectangle ABCD = 4 X area of the rectangle OPAQ

=4OPPA=4acosO.bsin9=2bsjn20

cis

= 4abcos2O; dS = —Sab sin 20
dO	 dO2

For extremum of S.
dS

 = 0, which gives cos29 = 0
dO

20=,j.e, o.=!.
2	 4

	

d2S	
7CFor, 0 =-7E , 	 = —8absin = —8ab <0

4 dO2	2

S is maximum when
4

TEIn that case, length of the rectangle = 20P = 2acos = ia
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and breadth of the rectangle = 2PA = 2bsin .! =
4

and area of the largest rectangle = 2ab.

Ex. 6. (i) Show that the maximum value of x2 
log(	 is

xj	 2eI C. P 1989]

(ii) Show that x (x > 0) is a maximum at x = e. Deduce that

e'>7t.	
[ C'. P 1992

Solution : (i) Let , f(x) = x2 log( —
XI

)= -x2 log X.

f'(x)=-2xlogxx 2 .!= -2xlogx-x

and f"(x)2logx2x.t1-2Iogx_3

For, extrenlum of f(x), j"(x) = 0, which gives -x(2logx+1) =0,

i.e., logx=_ ! , ..x=e 2

At x = e 2,

f(x) is maximum for x = e 2

Maximum value offlx)= fIe2 

J =
	 loge2 

J =
(ii) Let /(x) =

log f(x)=J-.logx

Differentiating,	 = iL!- ._!Iogx = -4(i-iogx)
f(x)	 X . X x	 x

f'(x) = f(x){4( 1 - logx)}
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f"(x) = f'(x){-4 (l - logx)} + f(x){__j.+4logx}

For, extremum of f(x), f'(x)=O, which gives

-4(l—Iogx)=O or, logx=1=loge, .. x = e

f"(e) = f'(e){4(l - Ioge)} +f(e){_4 +..-. ioge}

A1

e

f(x) is maximum at x=e.

and maximum value of f(x) is e.

Since f(x) is maximum for x=e.

f(e)>f(7t)

Of. e r .> 71"

i.e., e >7t.	 Le, 7r

 7. Find the point on the

parabola 2y = x 2 ,which is

nearest to the point (0, 3).

C. P 1990, 1997

Solution	 Let P(x, y) be
any point on the parabola

Y = 1 X2 and A (0, 3) is the fixed point

AP2 =(x_O)2+(y_3)2 =x2+[_3J =f(x) (say)

f'(x)2x+2x(_3) =x3-4x

f"(x)= 3x 2 —4.

when AP is minimum, AP  = f(x) is also minimum.

0

22
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For maximum or minimum of f(x), f'(x) = 0,

which gives, x(x2 —4) .. 0

i.e., x = 0, 2, —2 at x = 0, f "(x) = —4<0

at x=±2,  f"(x) = 3(4) —4 = 8> 0

f(x) is maximum when x=Oand minimum when x=±2.

AP is minimum when x = ±2. When x ±2, y = 2.

Hence, the points on the given parabola, nearest to the point (0. 3)

are (2, 2) and (-2, 2).

Ex. 8. Prove that the function f(x, y) =x3 +3x 2 t-4xy+y 2 attains a

minimum at the point	 .
(, — i). 	 I	 P /9901

Solution : f(x, y) = x3 +3X2 +4 +

f=4v+6x+3x2 . f. =6+6x, f=6x+2y , fr = 2, f,. =4.

For, extremum of f(x. y), f 0, fy =0, which give

4v+6x+3x 2 =0	 (I)

4v + 2v = 0	 i.e.,	 y —2x	 ...	 ...	 (2)

Now, from (I), - 8x + ôx + 3x 2 = 0

or, .v(3x —2) = 0, 	 :. x = 0,
2	 4

From (I) when x=0, v=0. and when x—

At ft., =10,	 =2, f,=4

So, fxJ—(f,) = 10x2—(4)2 =4>0

	

(2	 4
Thus f(x, y) has an extremum at 	 '

Also, .f=l0>0
(2	 4

hence, f(x, y) has a minimum at 
j ' -
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EL 9. Find the extreme value of f(x, y) = 2x 2 - xy + 2y 2 - 20x.

I C. P 2000 1

Solution: f(x, y) = 2x2 —.*y+ 2y 2 - 20x

f =4x—y-20, 4 =—x+4y , f, 4.	 f_ 1

For extremum of f(x, y), f = 0, f,. = 0
Le., 4x—y-20=0, —x+4y=0

which gives X= 
16	 4
-j-. Y =

Again at 16 4-
l 3 3

f- - f	 = 16-1=15>0

and f=4>0

Hence, f(x,y) has a minimum value atand

256 64 32	 16	 160
f =2x---+--20x—=—_

9	 9 9	 3	 3•

Ex. 19. (i) A wire of length Fis to be cut 'into two pieces, one being
bent to form a square and the other to form a circle. How should the
wire be cut if the sum of the areas enclosed by the two pieces to be a
minimum?

(ii) A wire of length 20 metre is bent so as to form a circular
sector of maximum area. Find the radius of the circular sector.

[C.P1983..961
Solution : (i) Let the wire be cut in two pieces ii the ratio 1: A. Then

lengths of the pieces will 
be- 

_ and _-_ respectively.
1^x	 1+x

If the length of each side of the square be x and the radius of the
circle r, then

I	 I
4(1+ A)

IAand 2,tr=—, I.e., r=
2n(1^A)
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Let A be the sum of the areas of the square and the circle.

12	 nil k2	 12(71+4x2)

+=
	16(1+A) 2 4 2 (1+X)2	 167t(1-t-A)2

(4A—x)	
.	 (1)

dA8it (H-A)3

d 2 A 12 (41+37t-8X)

	

and -=----------------	 ...	 ...	 ()2	 8it	 (li-A)4

For maximum or minimum value of A, dA = 0,

TEwhich gives from (1) A =

Also, from (2), when A	 ,

dAl 2 (4li-3x-21t) 12(41+x)

- 8it	 (1^A)4	 81t (l+A)4

It

Hence, A will be minimum, when A

In that case, the lengths of the pieces of the wire will be----j- and

It
lx—
__.4 respectively,

i
1+

t
—
4

41
i.e., - and	 respectively:4+jt	 4+n

(ii) Let, OAB be the circular sector

formed by the wire of length 20 metre, r

metre be the radius of the circle and

Z AOB = 0, where 0 is in circular
measure;

then 2r+s=20, i.e., s=2(10—r)
(I)
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Area of the sector AOB = S = - 126

r 1 r2 x±	 [s=rOJ

=—r .2(1O— r)

or, S=10r—r2

dSd2S
-=1O-2r and -=--2
dr	 dr-

dS	 d 
2

For an extremum of S, _O,.which gives r=5 and -=-2< 0
dr	 dr2

Hence, S is maximum when r =5 metre, i.e., radius of the circular,
sector is 5 metre.

EXAMPLES .. X

1. Find for which values of x the following functions are maximum and
minimum:

(1) X3
_
 9x 2 + 15x —3.	 (ii) 4x 3 —15x 2 + 12x —2.

x 2 —7x+6	 [C.P.1939]
x-10

(iv) x 2 + x +	 - 8x 3 + 22x 2 24x + 5.
x2—x+1

2. Find the maximum and minimum values of (iii), (iv) and (v) of Ex. 1.

3. . (i) Show that the maximum value of x± is less than its minimum

value.	 BY 1990. VP 20001

)()
(u) Show that the minimum value of 

(2x—1 x-8 is greater
(x—l)(x-4)

than its maximum value.

4. Show that x 3 - 6x 2 + 12x —3 is neither a maximum nor a minimum
when x=2.

5. Show that the following function possess neither a maximum nor a
minimum:
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(i)x3 -3x 2 +6x+3.	 (ii)	 x3-3x2+9x-1.

(iii) sin (x+a)/sin(x+b).	 (iv)	 (ax +b)/(cx+d).

6. Show that x 5 —5x 4 +5x 3 -J is ncjflier a maximum nor a minimum
when x = 3; neither when x = 0.

7. Examine for maxima and minima of the following functions:

(i) sin x.	 (ii)	 cos X.	 (iii)	 X5.

(iv) x 6 .	 (v)	 •k x5 - + x40(vi)	 e'. sin x

8. Test the following functions for maxima and minima at x = 0:

X3 2
(I) sinx — x+ —-------	 (ii)	 cosx-1+----.

3!	 5!	 2!	 4!

9. Show that

(i) 'Jsin x + 3 Cos x is a maximum for x = fir.
(i) sin x(l + cos x ) isa maximum for x= 13 n. [C.P 1942, 47]

(iii) Sin  x cos x is maximum when x 1/3 it

(iv) x sinx + 4 cos .v is maximum for x= 0.

(v) sec x + log cos 2 x is a maximum for x= 0 and a minimum for

X =

(vi) sin 20 (o > o) js maximum when 0	 ,r.

10. If y is defined as a function of x by the equations

y = a(l — Cos 0 ), x = a(0 - sin  ),

show that y isamaximum when 0 = it.

11. Show that

(i) the maximum value of (i /x ) is e•

[CY. 1990, B.? 1995. VP 2002]

(ii) the minimum value of x/log x is e.

(iii) the minimum value of 4e 2 + 9e 2 is 12.	 [C.? 1994]
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12. (I) Show that 4 - 8x log e 2 is minimum when x I.

(ii) Show that l2( log x + i)+ x 2 - lOx + 3 is a maximum when

x2 and a minimum when x = 3.

(iii) Show that x2 log (lIX) is a maximum for x = I /vre

13. If f' (x) = (x —' a)2'" (x - b)2"', when m and n arepositive

integers, show that x = a gives neither a maximum nor a minimum value

of f(x), but x = b gives aminimum.

14. Find the maxima and minima, if any, of
(x—I)(x—

ax+b

3)

15. If y =

	

	 has a turning value at (2,—l).find a and b
x—l)x-4)

and show that the turning value is a maximum.

16. Prove that Y, (x - a1 
)2 

is a minimum when x is the arithmetic

meanof a1,a,,a3.... . a,,.

17. (i) Given x/2 + y13 = I , find the maximum value of xy and minimum

value of x 2 +y 2 .	 -

(ii) Given xy = 4, find the maximum and minimum values of 4x + 9y.

I VP 2001]

18. (i) If f(x) = - /, whenthesquarerootistobetakenpositive,

show that x = 0 gives a maximum for f(x).

(ii) If f(x)=a+(x_b)t+(x_b)4. show that f(x)isminimum

for xb.

(iii) Show that (x—a)(2x—a) is a maximum for x =-a,a

minimum for x = a and neither for x=a. [a>0J

(iv) If 1(x) = x l, show that f(0) is a minimum although

f'(0) does not exist.

19. Show that

(i) the largest rectangle with a given perimeter a square;
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(ii) the maximum rectangle iiiribable in a circle is a square.
[C..? 19361

20. Find the point on the parabola 2y =X2 which is nearest to the point (0, 3).

21. P is any point on the curve yf(x) and C is a fixed point not on the
curve. If the length PC is either a maximum or a minimum, show that

the line PC is perpendicular to the tangent at P.

22. Find the length ofthe perpendicular from the point (0, 2) upon the line
3x + 4Y + 2. = 0, showing that it is the shortest distance of the point from
the line. Find also the foot of the perpendicular.

23. A cylindrical tin can, closed at both ends and of a given capacity, has
to be constructed. Show that the amount of tin required will be a
minimum when the height is equal to the diameter.

24. By the Post Office regulations, the combined length and girth of a
- parcel must not exceed 3 metre. Find the volume of the biggest

cylindrical (right circular) packet that can be sent by the parcel post.

25. A line drawn through the point P (I, 8) cuts the positive sides of the
axes OX and OY at A and B. Find the intercepts of this line on the
axes so that

(i) the area of the triangle OAB is a minimum;

(ii) the length of the line AS is minimum.

Find also in the above cases the area of the triangle and the length of
the line respectively.

26. P is  point on an ellipse whose centre is C, and Nis the foot of the
perpendicular from C upon the tangent to the ellipse at P; find the
maximum value of PA'.	 [C..P. 19451

27. The height of a particle projected with velocity u at an angle a with
the horizontal is u sin at - 4 g! 2 at any time I. Find the greatest
height attained and the time of reaching it.

28. The total waste per mile in an electric conductor is given by

W = C2R+__K2,where C is the current, R the resistance, and K a
R	 -

constant. What resistance will make-the waste a minimum ifthe current
C is kept constant.?
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29. The force F exerted by a circular electric current of radius a on a
magnet whose axis coincides with the axis of the coil is given by

5
Foc x(a2 +x2)

where x is the distance of the magnet from the centre of the circle.

Show that F is greatest when x = - a.

30. Assuming that the intensity of light at a point on an illuminated
surface varies directly as the sine of the angle at which the ray of
light strickes the surface, and inversely as the square of the distance
of the source from the point, find how high should a light be placed

directly over the centre of a circular field of radius 1 5,F2 in in order

to have a maximum illumination on the boundary.

31. (i) Find the altitude of the right cone of maximum volume that can
be inscribed in a sphere of radius a.

(ii) Find the altitude of the right circular cylinder of maximum volume
that can be inscribed in a given right circular cone of height Ii.

32. (I) For a given curved surface of a right circular cone when the
volume is maximum, show that the semi-vertical angle is

sin
-I
 

(ii) For a given volume of a right cone show that, when curved

surface is minimum, the semi-vertical angle is sin - ' -.-

33. An open tank of a given volume consists of a square base with
vertical sides. Show that the expense of lining the tank with lead
will be least if the height of the tank is half the width.

34. If POP' and QOQ' be any tow conjugate diameters of an ellipse,

and from P and Q are drawn two perpendiculars to the major axis
cutting it at M and N respectively, show that PM + QN is a

maximum when POP' and QOQ' are equi-conjugate diameters.

35. A window is in the form of rectangle surmounted by a semi-circle. If
the total perimeter be 10 m, find the dimensions so that the greatest
possible amount of light may be admitted.
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36. A particle is moving in a straight line. Its distance x cm from a fixed
point 0 at any time t second is given by the relation

x=1 4 	 10: 3 +24t 2 +36i-+12.

When is it moving most slowly?

37. In enclosing a rectangular lawn that has one side along a neigh-
bour's plot, a person has to pay for the fence for the three sides on
his own ground and for half of that along the dividing line. What
dimensions would give him the least cost if the lawn is to Contain
4800m2?

38. A gardener having 120 in of fencing wishes to enclose a rectangular
plo't of land and also to erect a fence across the land parallel to two
of the sides. What is the maximum area he can enclose?

39. A shot is fired with a velocity u at a vertical wall whose distance
from the point of projection is x. find the greatest height above the

.jevel of the point of projection at which the bullet can hit the wall.

40. From the fixed point A on the circumference ofa circle ofraditis the
perpendicular AY is let fall on the tangent at P. Show that the maximum

area of the triangle API is	 IC..P '9301

41. The intensity of light varies inversely as the square of the distance
from the source. If two lights are 15 in and one light is 8 times
as strong as the other, where should an object be placed between
the lights to have the least illumination ?

42. The boundary wall of a house is 2-7 in and is at a distance 80
cm from the house. Show that a ladder, one end of which rests on
the ground outside the wall and which passes over the wall, must at
least be 1-3 A3 in 	 in order to reach the house.

43. A man in a boat vF3 km from the bank wishes to reach a village that

is 11 km distant along the bank 'from the point nearest to him. He
can walk 8 km per hour and row 4 km per hour. Where should he
land in order to reach the village in the least time ? Find also the
time.

44. If for a steamer the Consumption of coal varies as the cube of its
speed, show that the most economical rate of steaming against a
current will be a speed equal to 1 1 times that of the current.
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45. For a train the cost of fuel varies as the square of its speed (in km
per hour), and the cost is Rs. 24 per hour when the speed is 12 km/h.
If other expenses total Rs. 96 per hour, find the most economical
speed and the cost for a journey of 100 kilometre.

46. Assuming Fermat's law, that a ray of light in passing from a point A
to a point S in the same medium after meeting a reflecting surface
takes the path for which the time is minimum, prove the law of
reflection.

47. Assuming the law of refraction, if a ray of light passes through a
prism in a plane erpendicular to its edge, prove that the deviation
in its direction is minimum when the angle of incidence is equal to
the angle of emergence.

ANSWERS

1. (i) x= 1 (max.), x= 5 (mm.),	 (ii) x = - (max.), x = 2(min.),

(iii) x=4(maL), x= 16(min.), 	 (iv)x= 1(max.), x=-1(min.),

(v) x=1(max.), x=2(min.), x=3(min.),

2. Max. value = I, mm. value = 25 for (iii),

Max. value = 3. mm. value = for (iv),

Max. value = —3, and mm. value = —4 in both cases for (v),

7. (i) x=(2n+-)ir(max.), X=(2n—.+)iL(min.),

(ii) x=2nit(max.). x=(2n+ 1)n (mm.),

(iii) Neither max. nor mm.	 (iv) x=Ogives minimum

(v) x=0(max.), x=1 (mm.),

(vi) x = 2nit+ it (max.), x = 2mr -- it (mm.),

8. (i) Neither max. nor min.	 (ii)	 Max. for x=0.

14. Mm. for x = 0, max. for x = .	 15.	 a=],  = 0.

17. (i). X,	 (ii) Max. value = --24; ruin, value = 24.2	 13

20. (± 3.2),	 22.	 2 units; (- . ).	 24.	 . m,

25. (i) :2. 16,	 (ii) 5, l0.Area fo the triangle in (i) = 16 sq. units;

length of the line in (ii) = 5,F5 units.
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26. a --b.	 27.	 (a2 sin' a )/(2g ); (u sin a)! g.

28. -	 units.	 30.	 15m.

31. (i) A a	 (ii)	 -h,
35. Height of the rectangle = radius of the semi-circle.

36. At the end of 4 second.	 37. 80m x 60 
38. 600m2,	 39. (11 	 g2x2

	 2U 2g ).

41. 10 m from the stronger light.

43. 1 km from the point nearest to him; I - hour.

45. 24km/h; Rs. 800.



[no 	
INDETERMINATE Fouuis (Evaluation of certain limits)

11.1. The limit of o (x )/i, (x ) as •x -, a is, in general, equal to the
quotient of the limiting values of the numerator and denominator [see Rule

(iii) of Art. 3.7 1, but when these two limits are both zero that rule is no

longer applicable since the quotient takes the form 2 which is meaningless.

We shall consider in the present chapter how to obtain the limiting values
of the quotient in such cases, and also the limiting values of the quotient in
such cases, and also the limiting values in other cases of meaningless forms,
apparently arising out of the indiscriminate use of the rules of Art. 3.7. The
name 'indeterminate forms', as applied to these cases, is rather misleading
and vague.	 -

11.2. Form (P Hospitals theorem)

if 4' (x ), V (x) as also their derivatives 4,'(x ), W'(x ) are

continuous at x = a, and if 4, (a )= iji (a ) = 0 [ i.e., ii 4 (x)
x —. a

= Li ,(x)=0 ],then
1-.3 (2

4,(x )_	 Ø'(x) 
0'(')

(x)V, a)

provided i (a )* 0.

Since	 Ø(a )= 0 and (a)= 0,we have

Ø(x)=Ø(x)-4,(a) and

Now, by the Mean Value Theorem,

0(x)— 0(a) = (x—a) O'Ia +0(x—a)}, 0<0 1 <I,

W(x) — '(a) = (x—a) 4/{a + 02(x—a) }, 0<02<1.

0(x) - 4,(x)-.-Ø(a) 

(x)	 ,(x) — ,( a) 	 I{a+O2(x—a)}'

Li
ji ( a)	 -*al/i (x)

provided W'(a )# 0.
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Generalization:
Incase O'(a ) and 41'(a )are both zero, applying the above theorem

again, we get

O'(x)	 L O(x)'(a)

-.at ' (x)	 -.ai(x)	 t(a)'
provided Ø'(a ) and i,u(a ) are continuous air = a, and i( a	 .O.
If, however, ' (a ) =	 (a ) = 0, then  we again apply the above theorem

and obtain the limiting value as 0(a )/ w(a ), and so on.

[For illustration. see Ex. I, Art. 11.81

Note 1. The above result can also be established by Cauchy's Mean
Value Theorem. [See Ex. 7(a), Art. 9.7 1

Note 2. In the theorem of this article if x send.., to 	 instead of a, then
the substitution 1/1 for x would reduce it to the above form when
tends to zero.

11.3. Form	 .

If Li O(x)= oo and Li t(x)=o,andzf Li 0'(x)x -, a	 ._. a	 x —3., tv (x

exists then ii 
a (x

0 (x ) will also exist, and it. value is equal to the— ji	 )
former limit.

Let Li 
071(7)

(-' 
= Then we can determine a positive number 8,—a 

	

such that jn the interval a — 5 < x < a +	 x A aJ,	 isasneal-to /
(x)

as we please. Also, since the limit exists, it follows that for x sufficiently
close to a [hut ^, a.] 0' (a ) and tj" (a ) roust both exist, and

a )7^ 0 there.

Now first consider the interval a <x :5 a + 8. and x., be any particular
value therein, and take another value x such that a <x < x.,.

Then, by Cauchy's Mean Value Theorem [see § 9.7, Ex. 7(a)],

o( )—Ø(x) - 
—(

where	 x0 and so a	 a +
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1o(x) ii
Okx /l 	 x)	 J	 o'()

Hence.

	

____	
MI

	

0( x )W( x )	 ø'()

vi ( x )	 o(x	 (1)

0(x)
Now keeping x 0 fixed, if we make x-+ a, MI (x ).3oo and

	

1O(xo )	 /fw(xo) i	
0-1

	

Ø(x)_9oo, and so	
y—' fl (x)	 'i'

Also, ,7
	 is as near to / as we like, by a proper choice of S.

MI ()

Hence, from (1), ( x) is a
I/i (x)	

bitrarily close to 1, as x -, a + 0.

Thus,.	
•

-+o MI ( )

Similarly, considering the interval a- 6 <x < a, and proceeding

	

exactly as before, we get 	 Li 0 X 
=1.-

-.--o , (xii)

O(x)=	
Ø'(x)

Hence, Li	 Li

	

MI (x )	 MI (x )

We can also prove a modified form of the above theorem as follows:

If Li Ø(x and Li ip(x) are both infinite, then
-11

Lt	 \X / (when it exists) = Lt
y x

	

LI 
0(x) 

Li 
l/MI( X )	 f  say.

	

x)	 r.-g(x)

[where f(x)=1/MI(x) and g(x)= 1/0(x)]

which, being of the form -2 ,- F see Art, 11.2, above
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(')	 Lt 	
w'(x) i(x) 

2

Ø'(x)

0(x)	 uI'(x)jx
^. 

w(x 
2	

(I)f(x)	 -.'(x)	 0(x)

Now, Let ii	
(x) 

= 1 	 ...	 (2)
i.."

Three cases arise:

Case!. I is neither zero, nor infinitely large.

Dividing both sides of (I) by 1', we obtain.

I
	

V , ( X
..1,i.e.. LI .

/	
07( 

x )
	 I V ( X )

	

)	 41 ( x )

Case!!. 1=0.

Adding 1 to each side of (2),

41(x) 	

X
41(x)

by case (l)]

0'(x)
=Lt	 +1.

X-

	

0(x )	 ____

i£-41IX) '-''t/1X

Case HI. When I is infinitely large,

1.1	
141(x)1I/J(x)

'.-'{O(x)/4I(x)} . —. 0(x ) £-.O'(x)

Li 
0(x)

1(X)	 41'(x)'

Hence, the theorem is proved in all cases.
For illustration see Lx. 3, Art. 11.08.

Note 1. Theorem is evidently true also when one or both the limits
tend to -

Note 2. By substituting x = lit, it can be shown that the theorem is

	

also true when x tends to	 instead of a.
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11.4. Form Oxo.

Such forms arise when we want to find the limiting value of

We can write

0('),Øx),Ijfx)-	 /	 , or,	 /
JJx

when being of the forms 0/0 and o/o, as .can be evaluated by the methods
of Arts. 11.2 and 11.3.' [See Illustrative Lx. 4, Art. 11.8]

11.5. Form 00 - 00.

Such forms arise when we want to find the limiting value of

Ø(x)-i (x ) as x-+ a where (.x )_-)	 and i ( x )-4-as.

We can write

( \	 I \ 
økX,ViX) 1/(x),(x)}

which being of the form 0/0 can be evaluated by the method of Art. 11.2.

[See Illustrative Example 4, Art. 11.8 1

11.6. Form 00 . 000. i.

These forms occur when we want to evaluate the limits of functions of
\Iw (the form fj I x;	 ) as x -*a,

When (i) both (x) and , (x .)-, o as x —4 a;

(ii) 0 (x)_400 and,(x)--.O asx-a

(iii) O(x)-41 and f(x)_±ooas x-a,

()	If(x)>O, let yr b(x)r	 ,... log y=r(x )log O(x)

Li log y reduces to the form discussed in Art. 11.4, and, hence,
can be evaluated.

Since Li log y = log Li y the required limit Li y can be obtained
See Illustrative Example 6, Art. 11.8.1

11.7 Use of power series.
In evaluating limits of certain expressions it is sometimes found

convenient to use the expansions of known functions in the expression in
power series in a finite form, and then to take the limit.

23.	
1 See Illustrative Example 7, Art. /1.8. 1
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11.8. illustrative Examples.

E.- 1- If $(	 '(a )4"(a	 (a) and	 (a ),ty'(a

iJ'(a L...,tI"'(a) are all zero, and t j" (a )* o. then

•(x)

uj" (x )

Put x = a + h so that, when x-,a, h-*0,

Now, by Taylor's theorem

a+h)=(a)+h'(a):(a)+....

+

	

	 t	 (a)+— (a+Ojlz)
(n-i)!

= ---(a+9jlt), where 0<0<1,

Similarly, 1lI(a1h)= !i__ 1l, A (a+O,h)where 0<02<1,

Lt 
4i(x)	 4(a+h)	 Ii" '(a+e1h)

LI
-..ii(x) i-oti(a+h)	 -Oh',jj'(a+0h)

=1
•-"() qc"(a)'

provided 4," (x) and " (x) are continuous at x = a.

Ex. 2. Evaluate Le	 e -2x	
C.P.[ 	 20011

-.o x-sinx
The required limit, as it stands, being of the form 0/0. [see § 11.21

= Lt e' + e— 2	 {form ]
-.O l-cosx	 0

= Ld e -e	 form
 0]

-.o sinx	 0

= Li 
e+e 

=2,
-.o cosx

since. ii (e" + e	 )= 1+ 1=2,..d       Li cos .r = I.
-.0
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X4
Ex. 3. Evaluate Li -.

.t-500

The given limit, as it stands, being of the form 	 can be written (by

§ 11.3] as

4x3(	 12x2(
= LI —I form — 1 = Li —i form-

e'	 °' J	 -"' e'

24x(	 X''l	 24
= Li —I form— 1= Li — =0

e T .	 ) '-"s e'

Ex. 4. Evaluate Li (l—sinx)tanx.
.T 4 ;lt

The given limit, as it stands, being of the form ox o, can be written as

si—nx [ fo 0=

	

Lt 
l	

I rm —
cOtxL	 0

— cos x
= Li	 =0

•-x—cosec2x

since cosxO and cosecx = I as x--)-,t.

(

	

EL 5. Evaluate Li I	
I	

2—

The given limit, as it stands, being ofthe form ao — oo, can be written as

---	 [	 0
= Li	

l— I form—

	

•.4Ix4 _I L	 0

I	 I
= Li

-Ix2 +I 2

	

Ex. 6. Evaluate L1(cosx)c0v.	 [Patna 1933, VP. 1997J

The given limit, as it stands, is of the form 1.

Let	 y =(cosx )cfh.

•log y=Cot x log COS x= log COS 
x 2

tan x

0Now,	 La' logy = Li 
log Cos x 1

I form—

	

•-..o tan 2 x	 L	 0
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= Li 
—(sinx/cosx) = Lt (_-cos2x)

2 tan xsec x

=1(•.• Li cos2x=l
-•o

Since	 Li logy =log Li y,	 ..	 log Lt y = —.-.

Li	 = e'.	 the required limit e.
 00

	

Ex. 7. Show that Li 
X Sill X = I	

[C.? 1932, 1995 1

	

.-.o	 x	 6

Writing down the expansion of sin x in a finite power series, we have

	

I	 x3 x5 	 (n 
x– sin x=x– . x--+—

S
inI —+Ox , O<<L

l 3!	 5!	 2	 )j

	

X x 5 	(Sit=---
S
in

3!	 5!	 2

	

3 11	 x 2 .(sit
=x < ---sini —+Ox

-	 [3!	 5!	 2

x–sinx	 i x? 
sin i —±Bx

x	 3!	 5!	 2

x–sinx	 I I	 x 2 	(5it	 '\1
Li	 = Li ---sini —+Ox I

x3	 .-.03!	 5!	 2	 3!	 6'

(s	 . (5it

	

since — sin — + Ox --+0 as x	 sin	 x	 being :5 1.

Note. This being of the form 0/0 can also be obtained by the metkod of Art.

112.

a2 ++x2	 2 —ax+x2
	Ex. 8. Evaluate Li	 —

Multiplying both the numerator and denominator by

(a2 +ax+x 2 i,ja2 _ax+x2
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and simplying, the required limit

-Li_______ _______
O2x(f.+x2+Ja2_+X2 )

a(I+JT)

...0(.12++2+42+x2)

Now, the limit of the numerator = a. 2 ,1a and that of the denominator

= 2a. Therefore the required limit = 'J.

Note. An algebraical or trigonometrical transformation often enables us to
obtain the limiting values without using calculus, as shown above, which
case belongs to the form 0/0.

Ex. 9. If Li 
sin 2x +a sin x be finite, find the value of 'a' and the

-.o
limit.	 C. P. 1931. 1994, 2000, 2006 1

The given limit, being of the form 0/0,

2 cos 2x+a cos x

= -*°	 3x2	
(by § 11.2.)

When x -p 0, the denominator 3x2 = 0 hence, in order that the
limiting value of the expression may be finite, the numerator
(2 cos 2x+a cos x) should be zero, as x-90. :. 2+a=0, i.e., a=-2.

When a = -. 2. the given limit becomes

Ij sin2x-2sinx 1	0
I form-

-O	 L	 0

2cos2x-2cosx 1 	0form-
-.O	 3x2	 L	 0

-4sin2x+2sinx	 -	 1
 form=Ls 	 Ini -

	6x	 L	 0

Li -8cos 2x+ 2cos x -

	

6	 - 6

ExtO. Evaluate	 Li (--'1 [C. P. 1947, 1994, 1997. VP. 1999
x
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'Let	 u= Li
X

 
(lanx y .

	

I	 (tanx'\	 (tanx)/X.logu=-logIJ=log_

	

X	 x )	 ,, x

tan x0Since Li —=1 Li logu isoftheform

	

.-,o x	 0

tan XLi log u= Li log	 X

'-to	 x 

V
( x xsec2x_tanx'x4 tan x	 x2	 (&' §11.2.)

=Lx
2x-sin2x 

=Li	
2-2cos2x

-,0 xsin 2x	 .-.O sin 2x+ 2x cos 2x

L	
4 sin 2x

=0.
,-.o 2 cos 2x-4xsin 2x 

Since Li log u = log Li u,	 .. log Li U = 0.
x-.0

	

Li
O 

u =	 = I , i.e., the required limit I.
.'• -t

Otherwise: Writing the finite form of the expansion of tan x by Maclaurin's
theorem,

tanx=x+-x 3a where U=sccOx(l +2tan 2 Ox), 0<9<1.

	

I	 ( tan x	 I	 X+X2a I	 1	 2Iogu=-logj---..-- 1=-log	 =-logI,)+x x

	

X	 x ) x	 x	 x

I	 I	 2	 \	 I
= j—j--logI, l+ 5 x a)xcx=-log(l+v).xa,

xc(
where vrxa

When x-30,v---0,atso Lt I Iog(l+v)=l.
"-tO V

Hence, Li log u= Li .!. log (l + v) Li (L xa

	

N-tO	 '-*0 V

Li log u=0. Hence, etc.
-.0
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Ex.fl. Evaluate

Given limit

It (e _i) tan 2x

-,O

LI  
e x -,_(tanx)21=

-	 Ie -1

	

=	 Li -xl Li
tan

-9O X	 l\	 x )

Now, Ii !..IL!(l,eingof the form 'L Li f-. =e 0 l

	o x	 0)	 I

Also, Li
tan x  ..	 the required limit =, 1x1 ? =1.

.-.o x

Note. Such forms are sometimes called Compound Indeterminate forms.

In evaluating limits of such forms, the use of the theorems on limit (Art. 3.8)

is of great help.

11.9 Miscellaneous Worked Out Examples

IX-1

x	

i-EL 1. Evaluate:	 i1

imSolution:	 l-.i	 -. i -; I
x logx - x + ii

=lim
-4I (x-1)logx I

I	 l
Iogx+x I-1

= urn

	

	 x

Iogx+(x_1)!j

xlogx

=lim Iogx+x-lJ.-." x

I C. P. 1981

[Form

[By L'Hospitals Rule I

I Form 0 -1
0
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1+logx	
lim(1+logx)

=lim	 1+0
-! 2+ log x 1im(2+logx)	 =j

I	 2	 1
--EL 2. Evaluate: Urn j1

ix x(er +i)j	 C. P 19821

I
Solution	 lIm i -2

._.ox x(i)J

= •rn I erl
u
•--+O x (e' +

•=hm	 e

O1+(x+1)e

Jim er

	m{l+(x+1)e}	 i=.

EL 3. Evaluate: Jim

Solution	 hm 
SiflX-X

X 3

=lim cOsx - 1
*O 3x2

Jim -SiflX

-.o 6x

-cosx=Iim
-.0 6	 6

EL 4. Find the value of

(I) Jim (cosx)?'.

[Form
0

[C. P 1995 1

Form 0 -
0

[Form

C. P 1989, 98 I



(h) lim

(iiOlim(1+x).

(iv) urn
.-.0

(v) lim(I+sinx)".
.0

Solution: (i) Let y = (cosx)1T

[C. P 1995 J

[C. P. 1996 1

(C. P 1996 1

C'. P 1993 1.
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1logcos
logy =--•logcos.r=	

2	 [Base of logarithm is e]X,	
x

Ilogcosxl	 0urn log y=hm	
2	 [Foim -1

.-.o1	 0

• —tanx
= urn

.-.O 2x

= u rn 
-sec 2 x	 -1
---- = --

	

'-*0	 2	 2

M iog{uim y}=_!

urn yre2
'-$0

(it) Le

	

1	 logx
or, logy — .logx—

I 	 1-x

•
urn {logy}= urn logx-

-$l I-x

•	 ( 1'\
=hm

-.1	 x)

[Form	 I

0
[Form
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iog{iimy}=_i

urn y=e
-. I

urn	 =

(iii) lim (i+x)

Let , Z = - then z-40  as x —to'
x

Let y=(I+x)

then IOYZ.uO(I+_)

Thus urn{Iogy}= uimJz.iog(i+!i1
z-.o	 z-ot	 .	 z)J

lo
=çi)	

(Form — I

1+
=hm

z-.O

kz

lim z as z—*O, z * 0 I
z-.O I + z

=0

Jog {Iim y}0

urn y.= e0 = I

Thus urn (I +X), =1.
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(iv) Let. , = 2in

or, log y=2 sin x• log x I Base of logarithm is e

or, urn {logy} = urn 2logx
—O COsecx

2

=lim
.--O -Cosecv cot 

2sin2v
= urn

-.o -xcosx
-2 Iiin 2sinxcosx
= 

_.o C0X —.VSlflX

0
[Form

0
(Form

limsin 2x

-2'-0.	 =-2 x=O.
Jim (cOsx — xslnx)

or, log {ujmy}=o
.0

i.e., urn y=e°=I

i.e.. Jim x 2 '"" =1

(v) Let y=(1+ sin x)'

or, logy = cot x log (J + sin X) I Base of logarithm is e]

log (l+ sin x)

tan x

l
urn logy= urnog (1+ sin
x-O.-.o	 tan x

cos x

= Jim
•—O S€2X

=

c0s3x
=Iim	 =1

.—.() I+sinx

0
[Form
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iog{iim y}=i

or, limy=e'=e

	

IIm+ sin 
x)cot.
	 e

EL 5. Evaluate

(i)
lim (,an x )—x	

B. P 1995, C. P 1994. '97

(ii) lim 
ixJi	

I C. P. 1990.

Solution:	 (i) Let, y(tanxJ

tim {log y} = tim {! lo)}

(tanx
0

	

= tim	 f Foim	 x-90, SIflCC as .%-40

	

-.o	 x

,i.e..	
tanx ), O

 J

sec2.y

=
.-+o

=IimI .- 
1)—.OLSiflxCOSx x

0

	

sIim 2x- sin 2,x
-----------	 [Form-]

-0 xsin2x	 0
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=2km
1-cos2x	 0

-.Osjn2x+2xcos2x	
[Form

2.sin2x	 02 urn
-.O 2cos2x+2cos2x-4xsin2x L Form

urn sin2x
=4x-=0tim (4cos2x-4xsin2x)	 4

.0

or.uog{Iim y}=0

Or, Jim y=e°=I
.-.0

(tanx I
limI—I =1
-.o•	x )

(ii) Let, y (sinxjF

sinx
log—1	 sinx

or, log y=-- . log ------=	
2x	 x

	1sinx	 .	 (sinx
km —J=l,	

X
Jim log—J=0

	

x)	 -O	 'J

sin x
log—	 0

urn (logy)= km	 X	 I FOrm	 I
-.o

xcOsx-sinx

= urn
2x

k• 
m 

xcOSx-sinx
=

-O 	 2x2 sinx

tim
cosx-xsinx-cosx

= 
-O 4xsinx+2x2cosx

0
Form



sin
= urn

-i IL(

0
I Form
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0
Form

•	 -stnx
= urn

-o  2xcox+4sinx

= h• m	 -cosx
-.o 2cosx-2xsinx+4cosx 	 6

log {iim y}rr_!

or, urn y=e6

(sinxkm —i•' x )
Ex. 6. Evaluate

log (1-x)
(i) Jimm cot (rr.x)

(ii) urn (cos ,)X'

Iog(I --x)
Solution: (1) km.-.i	 cot (ax)

I C. P. 1993

C. P 2002

I Form

urn	
(2-.v)

= 
-I -ltCoSe(' (ltr)

12 sin (1kv) cos(nx) In = lim (-2 sin 2itx) = 0= km	
nx(-1)

(ii) urn (cosmx)72

Let y=(cosmx)1
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then logy = _!- log(cosmx)

lint	
log(cesmx)	

Form 0flog 	 (Fo	 -],-40	 2x	 u

	

mn . tanmx	 0=-----hm	 (Form -
2-'o	 x

m2n	 sec2mx	 I 2=_—.Jim --m n
2-.o	 1.	 2

log {iimy}=_2m2n

or, lim y = e2

n

urn (cosmx)T1 = e 2

x(l+acosx)-bsinxEx. 7. WFind a, b such that lim	 =
X -

C P 1990 1
sin 2x + a sin x

(ii) If lim	 is finite, find a and the value of the limit..-..o
I C. P 1994, 2000]

•Solution: (i) 
Here, Jim x(l+acosx).-bsinx

(Forni 0

lim 1(1+acosx)-axsjnx-bcosx

	3x2	-

Jim I+(a-b)cosx-axsjnx=

	

	 •..	 ...	 (I)3x

For (1) to be of the form 0

i.e., b=1+a	 •..	 •..	 (2)

l-cosx-axsinx	 0
So, the given expression = Inn 	

3x2	
I Form	 1

11
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	hm	 Form
siflx — asiflx — LXCOSX	 0

=	 [ 
6x	 .	 0

COx-aCOSX-aCOSX+aXSiflX
= urn

6

	(I - 2a) cos x + ax sin 	 1-2a

	

=hm	 =glven
6	 6

5
1-2a=6,	 i.e.,

•	 5	 3
From (2),b=l

.53
Thus, a=—. b=— —,

sin2x+asinx	 0
(ii)	

•3	
[Form

u• 
rn 

2cos2x+acosx
= 

-.O	 3x

0
For this limit to be finite, the form should be 0

i.e., 2+a=6, Or, a=-2

sin2x+asinx	 . 2cos2x-2cosx	 0
lim	 = km	 2	 [ Form -1

	x 	 --°	 3x	 0

=lim

	

—4sin2x+2sinx	
Form 0[	 -]

	

—0 6x	 0

urn -8cos2x+2cosx
= 

6

6

Hence, a =-2 ai. the value of the limit is —1.
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EXAMPLES-)a

Evaluate the following limits I Ex. 1 -9]

in x Cos
1. (i) Li	

- 
	 Li tan x - X	

P. 20071
	-o	 x3	 - .Ox - Stflx

2.c	 ie	 -	
(iv)	

x -a

	

(iii) Li	 -	 Ii
	_n log (i + x )	 x - a

x3 -2x2 +2x-4	 e +e' - 2 Cos x

	

(v) Li	 2	 - (vi) Li	 [VP 1996]X2 -5x+6	 XSIfl X

a' -
(vii) 11

_..-+(i

(ix) Li 
I - Sifl' X

---.o	 sjn3 x

Li 
tan iix - a tan x

(xi) 
. • --O a sin x - sin nx

2 sin x - sin 2x
(xiii) Li

•-.o	 tan x

e'+ 'Sin x-1
(Viii)

-.o log(i+x)

-'. +	 sin .5

(x)	 Li	 _e
	

(C. P. 2004
-iO X-SlflX

(xii)	 Li	 -
.r-2 3x -

sin Jog (i + x )

.-, 0(xiv)	 '. 
Li Sin

. 

(sin2x+2 5 in 2 x-2 sin x	 l Cos x
(xv) Li	 I	 .,

cos x - cos x	
)	

cos x sin 2 x

	

(- ir - x)iog sin x	 cos x
(xvi) Li	 -	 ______	 +	 I

e°' _i+ log	 +x+

2. (i)	 Li tan Sx	
(ii)	 Li	 log x2

tan x	 -*0 log Cot  x

(iii) Li	 - ( n being positive ).
ex

24
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tan3,rx	 log v – cot
(iv) Li	 (v)	 Li

seclZX	 -.O+	 cot 7

(vi) Li 109 1 	 tan2 2x.	 (Vii)	 JJ
1 - 5x2

3.	 (i)	 Li x 2 log X 2 . ( ii)	 Li cosec (r- ) log x.

(iii) Li xlog sin  X.	 (iv)	 Li sec x(xsin -v -

(v) Li sin X. log x 2 	(vi)	 Li sec 5x cos 7i.

(vii) Li x" (log x 	 ni and n being positive

4.	 (i)	 Lt (sec x - tan x). (ii)	 (x i	 cot

(iii) Li (	 .	 I CP. 1996, B. P. 19981

	

-	 sin x )

(iv) Li I _L_ - __L 	 (v) Li	 -
. ' ix – I	 ]ogx)	 --2 x-4	 x2

	

I	 1
NO Li- - —i log (i + x)

X

(vii)-	 –9). (vi)	 2x - x).

(i) L,
	 -	 (ii)	 Li x 	 F CR 19961

flu)	 Li (sin x )21	 -	 ( iv)	 (cos x

[CR 1989, 19971

(v) i	 (sin x )'	 (vi)	 Li x

C. P. 20051

	

(C(),'
	 Sifl X	

1I	 2
1-0

(vii) Li 	 -	 )	 (viii)	 I1_,/x
-'	 - ii
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)	 Li ( log x	
/(I -iog)

(ix)	 Li (i - 
2 )I / log -	

(x) i-It-.1-

(xi)	
(I.' + -	 ).	 (xii)

	

x	 X-O ( X

I C.P 1985, B.P 1996, VP 1995 I

(xiii) LJ
o 	

(xiv)	 Li (sin x]

[C.P 1990. 1998, VP 19981

a0x + a 1 x"	 +	
2 + . + a,,

box".
 b1x" - + b2x"' -2 + .. + b,,,

(a 0 ;4 0, b0 + 0 according as n>=or<m (n and ni being

positive integers 1.

7. Li (ax` + a1.v "	 +	 + . . . + a,,,	 , ni being a positive

integer (a 0 + 0).

8. Li 2' sin '?_(a U) 	 [CP1946]

9. (i)	 Li	
+ Cos x	

(ii)	 Li	
- +	 - )

asin x— sin 2x .
10. If Li	 - is finite, find the value of a. and Inc limit.

I-*0	 tan 

IC.P 1997]

11. Adjust the constants a and b in order that

Li 
0(1+acos8)—bsinO_1

0-10

12. Determine the values of a, b.c so that

ae' — bcosx+ce
(i)

	

	 —*2, as x—i0.
x Sin X
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(a+b cos x)x- csinx
(u)	 ----------------------.-. --+1, as.

a sin x - bx + cx 2 + x3
	

may tend toa finite limit as
2x 2 log( l + x)- 2x 3 +

x -- 0, and  determine this limit.

Evaluate the following I Et. 13— /91

xe -Jog(l + x	
C. P. 20071

I

(ii) Li{!_
	 log (1+x)}.	 IC..1 1989, 1991O

x Cos 
x - log (1-i-x)

(iii) Li

(iv) Li 
tan x tan' X	 12

14 
L. 	 -	 + 2 sin x - 4x

X5

15.
Li Cos x- log (l+x)+ sin x--1

e'-(l+x)

16. Li [ 112+c052x - sin x - 	
r 2x

[Vt x sin 2. - +.i COS x J	 1,, 2 sin 2x )

17. Li	 [(a 2 - 2 ) . cot J ir
.-.K-() 

L	
2 V (I + .1

18.D
+ 2)-(3x ••2)

19.	 Li
--*O	 if 2	 2

-a
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Show that [Ex. 20-26]

20. Jja X sin __=O orb accordingaso<a<l,Ora>l.

21. Li { x _ x2 log ( 1+!)}=.

22	 Li 
log (I .* x + . )+ iog(i - x +

-.0	 sec x - cOsx

23. Li 
e --1 (3 sin x- sin 3xY

-O x sin x cos x - cos 3x 

Jog., (Cos x)
24 Li	 -4

.-.o Iog.,	 (cos --x )

25. Lj	 =-e.

26. Li
+ a2 1 +...+ a,'

-n	
)

27. Evaluate Ii 
asinbx-bs-jna
 —.

tanbx - tanax

28. If 0 (x )= x 2 sin (l/x ) and j, (x )r Ian x, show that,

although Li 0'(X), 	
does not exist, Li	 ---- exists and = 0.-.otj, (x)

ANSWERS

1. (I) f (ii)2.	 (iii) 2.	 (iv) na"- (v) -.

(vi) 2.	 (vii)	 log (-/b ).	 (viii) 2. (ix) - - .	 (x)	 1. (xi) 2.

(xii) 56. (xiii) 1. (xiv) 1.	 (xv) 16+.	 (xvi)

2. (i)	 . (ii) -1. (iii) 0. (iv) -(v) --2	 (vi)!. (vii)	 - -
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3. (i) 0.	 (ii) ( - I / r ). (iii) 0. (iv) -1 (v) 0 (vi) - . (vii)	 0

4. (i) 0. (1.1)0. (iii)-. (iv) -. (v) -.(vi).	 (vii) 0.	 (viii)	 I.

5. (i)	 I.	 (ii)	 1.	 (iii)	 I.	 (iv)	 e	 (v)	 1

(vi) I / e	 (vii)	 1.	 (viii)	 1.	 (ix)	 e.

(x)	 I / e .	 (xi)	 I.	 (xii)	 I	 (xiii)	 e	 (xiv)

6. +oor-	 (corresponding to a(,/b0 being positive or negative)

a0 lb0	 according as 11> =,< m

7. 1.	 8. a.	 9. (i) L (ii)-.	 10. a=2; limit =I.

11. a=-, b= — .

12. (i)	 a1, b2,cI.	 (ii)a=I20, b=60,cl8O.

(iii) a=6,b=6,c=0; limit =j.

13	 (i)	 .. (ii). 
(iii) I1. ( iv)	 .	 14.j.	 15.0.

16. -	 .	 17. 4a/Ir	 18.-8.	 19. i/J.
27. b' h cos br - sin bx) cos 2 bx



PARTIAL DIFFERENTIATION

Ing	 (Functions of two or more variables)

12.1.	 Definition.

If three variables u, x, y are so related that for every pair of values of x

and  within the defined domain, say, a x !^ band c < y 15 d, a has i

single definite value, a is said to be a function of the two independe?..

variables x and y, and this is denoted by u = f (x, ),

More generally (i.e., without restricting to single-valued functions
only), if the three variables u, x, V are so related that U is determined when
x and y are known, u is said to be a function of the two independent
variables x and y.

Illustration Since the area of a triangle is determined when its base and
altitude are given, the area of a triangle is a function of its base and altitude.

Similarly, the volume of a gas is a function of its pressure and temperature.

In a similar way, a function of three or more independent variables can be
defined.

Thus, the volume of a parallelojlped is a fuction of three variables, its
length, breadth and height.

Note 1. If to each pair of volues of x and y, u has a single defipite value,
U IS called a single- valuedfunction (to which the definition refers and with
which we are mainly concerned in all mathematical investigations), and if to
each set of values of x and y, a has more than one definite value, u is
called a tnulfiple-valued function. A multiple-valued function with proper
limitations imposed on its value can, in general, be treated as defining two
or more single-valued functions.

Note 2. Geometrical representation of z = f (x. y ).

When a single-valued function z = I (, y ) is given, for each pair of
values of x and y, there corresponds a point Q in the plane OXV and if a
perpendicular is then erected of length equal to the value of z obtained
from the given relation, the points like P describe what is called a surface in
three-dimensional space. Thus to a functional relation between three-variables
x,y, z, therefore, corresponds a surface referred to axes OX , 5i, 57Z in
space.

Note 3. Continuity	 -

The function f (x, r ) is said to be continuous at the point (a, b ), if
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corresponding to a pie-assigned positive number C, however small, there
exists a positive number 8 such that

whenever 05jx—aI:5 5 and 0!^Iv-bI!^8

12.2. Partial Derivatives.

The result of differentiating u	 ( x= f	 , y ), with respect tox. treating
y as a Constant, is cal led the partial derivative of it with respect lox, and

-is denoted by one of the symbols all af
- ,	 , A ( x, y ) UI bnefly,f 1. a,,
ax ax

etc.

Analytically,	 = Lu
av	 ' --.('

when this limit exists.

The partial derivative of a = f ( x, y ) with respect to ' is similarly

	

defined and is denoted by	 , 	 A (x, y) F or briefly,f I, u ,, etc.
aY ax

Thus,	 = Li
)'	 8v-O	 A)'

provided this limit exists.

If it 	 f ( x, v, z ), then the partial derivative of u with respect to x
is the derivative of it 	 respect to x, when both y and z are regarded as
constants.

Thus,	 = Li
ax	 —.o	 Ax

Similarly for L
ax az

Illustrations:

Let a=x2 +xy+y2 ; then

- 2x+y; -- = 2y+ x.

Let 'u=yz+zx+Ay; then

	

au	
all

----=v+z; ---=z+x;	 =5+)'
ax -	 ax	 az
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Note. The curl a is generally used to denote the symbol of partial derivative,

in order to distinguish it from the symbol d of ordinary derivative.

12.3. Successive Partial Derivatives.

au	 i)II
Since each of the partial derivatives 	 -- is, in general, a function

dx ay
of x and y, each may possess partial derivatives with respect to these two
independent variables, and these are called the second order partial

derivatives of a. The usual notailions for these second order partial

derivatives are

a(au	 d2u

TX YX i.e., —s- OIL,. etc.

( \a i aut	 du

	

i.e., 2	 or 	 etc.

TY
a

i.e.,	 , or f,

a (au'
i.e., or f" . etc.

Although for most ofthefunction.c that occur in applications we have

d 2u -
axdyayax

i.e.. the partial derivative has the same value whether we differentiate
partially first with respect to x and then with respect to y or the reverse, it

must not be supposed that the above relation holds good for ailfunetions;
because the equality implies that the two limiting operations involved therein
should be commutative, which may not be lnie always. Ex. 3, Art. 12.4 will

elucidate the point. We can prove, in particular, that if the funtions 
a2

—

'th

and	 both exist for a particular set of values of x, y, and one of them is
dxdy

Continuous there, the equality will hold good.

----Proof of the equality
axay ayax

If f,, 1,, f,, J., all exist, and f,, (orf,) is continuous tl,e,i
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Proo: It Ø(x)=f(.r,y+k)_f(x,,)	 (I)

Now applying Mean Value Theorem to 0 (x ), we get

0<0<!,

=h{f(x+oh,y+k)_f(X+ohY)}

h{F(\+k)_F(v)},say

[where F(y)=fjx+Oh, v)1

	=h(kF(y+O'k) 1,	 0<0' <l,	 -

by Mean Value Theorem

	

= /lk if, (x+oh, y+0'k) 1	 (2)
Again from (l), O(x + h )=f (x + h, y + k ) f(x +/z, y)

f(x, y+k)—f(x,y)	 (3)

Now, f . ( 2,V)	 + k)— f(x'

	

k,O	 k)

and	 f.	 y ) = it

	

f, (x + h,y	 (x)_Iv ,y)
( x, 

	

-	 h

L f(x+hy+k)_f(x+h,y)_j(X,+k)+f()

	

h-.Ok-.O	 hk

	

= Li Li	
(x + h )—Ø(x.)	

[from (3)]

	

h-.Ok--.0	 uk

=
! -

Li 
0 k -.

Li 
0
fvv(x+Oh,y+O'k)	 [from (2)]

= f( x, y ) , since f is cofltifluou,.

	

Illustration: if f(x,y)= xy-—	 , when x*0,ory#O,
x+y

when x=0, y=O,

	

show that at the point (0, 0), _a2_f.,._L.,	
[C. P 2004, 2007]

axay aox
i.e., f, (o,o	 (o,o).
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When x ;e 0, or y ;e 0.

	

I 2
2 - 2	 (x2 + 2 )2x - ( x2 - 2 )2x

f(x,y)=y
-	 x +Y	 (1 

2 
+Y 

2

	

I

2	 2	 22

22+2}	
•0	 (I)

	

Similarly, f . (x, y) = x	
-	 4xy	

...	 (2)
x +	 (x2+y2T

f(h,0)—f(0,0)0

h

Similarly, f(0,0)=0.

From (1) and (2), we see that

j1(0,y)=—y(y*0),fy(x,0)x(x*0).

f, (h, 0)— f, (0, 0)h
Again, f'(0. 0) = Li	 = Li - = I,

h-40	 h	 h—,Oh

f(o,k)—f(0,0)

-	 k—+O	 k	 k—O k

We have similar definitions and notations for partial derivatives of
order higher than two.

If, z = f ( x, y ),the partial derivatives of z are very often denoted by
the following notations:

2	 2	 2
az	 az	 a-z	 dz

Illustrations:

	

au = 3x2 + 2xy 2 	- = 6x 12 y 2 ---	 4xy.
ax	 a.	 axa,

These notation was first introduced by Monge.'
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2 +2x 1 ,; - r 6y+2x2 ; - =4xv.
OY

12.4. Illustrative Examples.

Ex. 1. If = r cos 0, r = r sin O

2So that r =	 2J, ^ y	 0	 lan (v/k ).

show that

3	 Ith	 r)	 /30— ^ It---- and
3r	 13x	 30	 ldx

05	 3,-	 r cos U
Here,	 --= cos i3	 _

X	
-+ 

2 )
	

r

30	 V	 r sin 0	 sine
.30' 3x	 x -	 r2

Hence, the required results follow,

Note. If y is a function of a single vai-wb/e x, then we have seen that.

under certain circumstances (see § 7.7), 	 A .cirnilarproperiv
(1.1 .	 dv

not true, as seen above, when v is a function of fliore Man one variable.

Ex. 2. If u = f	 s/iowtlza,x- +	 = o.du
IxJ	 3x	 3y

U = .1(z), say, where z = y/x

an	 all az	 ,	 z	 y , /
— =—.—= .f Z t — =— .1 za	 a ax	 ax	 -

.,/\	 I'Similarly, 
au	 3
- = f iz j	 =

V

+ .v	 =	 if'(z )+	 f'(z )= 0.
du	 VYax	

a)
Ex.3. Show that

X	 XLi Li	
)'

—* Lu fj	
V

	

S - I) y *O x + y	 ,- -O x *O A + y

Left side = Li	 = Li I = I.
x-+0 A
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Right side = Li 
y -+o y	 y-.o

Hence, the result.

EXAMPLE- XII (A)

I.	 Find t. 1, for the following functions f(x. ),):

(i) • ax 2 + 21xy + by	 (ii) tan ( ),Ix ).

(iii) +	 (iv) log( x 2 +y 2 ).

(v) x2/a2 + y2//,2	 I.

2. Find f, f, f, f for the following functions f(x. y):

(i) x 3 + 3X2  + 3x' 2 + y3. (ii)

(iii) xcos y + )' COS x.	 (iv) Iog(x2y+xy2).

3. (I) if v=x 2 +v 2 +z 2 , show that xV,. +yV, +zV =2V.

(ii) If u = x 2 v + v 2 z + z 2x, show that

14+a,+u=(x+v+z)2.

(iii) If u = f (xv:), show that

= ZU:

•	 V	 Z	 X	 ii

a 

u	 au
- t-y -----	

u
(iv)1fu=-+--+—,provethatx—+z --- =O.

• 	 X au	 3,,
4. (0 IT u sin' - + tan-'

  Y-, show that x - + y -- = 0.
a	 a

VP 1995, '971

(ii) If U =	 and	
x(l-y2)+y(I-x2)

1- xv	 (1+x2)(l+y2)

prove that U,. V = U V

5. (a) Show that ----- +—' = 0, if
3x2	 3)2

(i) u= log ( X
2 +v 2 ).	 IC.? 19901

(ii) u = tan (y Ix).	 C.? 1998!

(ii) a = i' ' (xcosy — ysin )
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a 2 v	 a2v	 a2 V,

(b) If V = z tan	 -, then	 +	 +	 = 0.

	

x	 ax2 V az2
[B.? 1998]

2	 2	 2X
	 )'	 2:

6. (I) If f (x, y, z ) =	 x	 y

I	 I

show that ,f -f .1, +	 = 0.

I	 1	 I

x	 1'	 2:	 W

(ii) If U = X 22	 2	 2	 7

X3 	 ' 2:

V

3	 3	 3	 3

show that u + u + u + u,	 0

7. If V ax 2 + 2hxv + 1n 2 ,then show that

V, ' V — 21/. V V.VV + V. 2 V, = 8 (h 12)V

8. If ulog(x 3 +)''+	 --3x),z),(hen show that

(i)	 +	 +	 =	 [13.11 1989, '91, '971
ax	 dv	 di.	 x ± y -4-

2	 7a	 a	 a
7 11	 3

	

(' I) —i- +--- +	
= ---,;i- + 

)2ax	
z

[ V P. '97, C. P-46, '85, 2007, BY 20011

9. If V=(i+vFJ). S how that V VV +V vV +V . =2/V.

10. If V = Ii.4. y 2 4 z 2 ). show that V+V.+V,0.

CF. 1976]

H. If u = el , prove that

d3u	 = ( I+3 Z +x 2 y 2 z 2 )e . 	 C. P.
ax ay a

12. (I) If V (ax +bv)2 _
(X 2 +),2), where a 2 + b 2 = 2,

then show that V + V,	 0.
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(ii) If u =3(ax-4-by+cz)–(x 2 +y2 +z2) and

2	 2	 a2 	 a 2 u	 a-u

	

a + b ± C 2
	 I, find the value of -	 + --•- +(2	

Eb'2aZ
2

(C. p 19341

(iii) If u = ux' +b 2 +c: 2 +2j5'z±2gzx+2hj' and	 = 0.
ax

show that a ^ b + c = 0.

13. Show• that, if u(, ly,: ) satisfies the equation

2	 •'a ,.	 a u	 a-u
—+ax—+----=0, then2	 '	 -2av - 	 C:

•	 m,	 a U	 all
-. - , - satisfy it, and also
ax	 a	 az

au	 au	 on(II) x — + v— + 1 — satisfies it.-	 '	 Oz

14. If ii = !og(x 2	,2 + z2), prove that

a2l,	
0-i,	 Thu

15. If it = log i- and 1.2 =	 +	 + 2, prove that

,21 0 u + a 2 11 + 0 2 11 
=1.	 [C.P1975,2008}

	OX 	 01'	 i3z2

16. If y=f(x+ct)+(x–ct), show that

a ly

17. that	 :D(v

I VP 2001]

v= 0( ax +2/n)'+by) show

(CH.1934j

18. lf(i) U=x-i-y4:, I'rZY2-4-I2-4-.

IV = x 1 + )' + z - 3xv:,

(ii) U = x + i' + : ,	 =	 + 1,2+ ,2 W= i'z + :x -4-
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U U y Ur

show that in each case V 	 t'.	 V = 0

W W W -

19. If a, i, y be the roots of the cubic x 3 + px 2 + qx + r = 0 ,show that

OP &I Or

Oa Oa Oa

Op Oq Or

O5 (?fl 0/3

	

Op all	Cr

Oy ay Cy

vanishes when any two of the three roots are equal.

20. Show that

f1(x) f2 (X) j(x)	 t' (x) f(x) /" (X)

01 () øU•) Ø(r) = 0() o;() o()

,j()	 ,,(:)	 ii(z)	 ii;(:)	 l//(:)	 yi,(:)

where dashes denote differentiations with respect to the variables
concerned.

ANSWERS

1. (I)	 2 (ax +hy) : 2(hxi-bv).	 (ii)	 -	
12

(iv)	 , --s---;-.
(2 + 2 )
	

(2 + l )	
+	 - + v

(v) 2x 2v

a	 b-

2. (i) 6(x+v). 6(x+1). 6(x+3 , ). 6(x+v).

(ii)

2x+)(x+2)+t}. z{(x+2v)2 +2,where :=e'2

— lcosx. —( Sill .v+ Sill ,).	 _( sin x+ sill 1). — x Cosy .

I	 I
(iv) -	 +2 -. I	 *I x	+ -, )2	 + 1 .	(. + Y)	 T(.v + r)

12. (ii) 0.
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12.5. Homogeneous Functions.

A function f (x, y ) is s	 to ke homogeneous of degree n in the

	

variables x and y, if it can be = ,ressed in the form x" 	 or in the

form y" 0 (

If V be a homogene'" . function of degree n in x, y, z, then each of

av av av 
i- . . -, 'a s a homogeneous function of degree (n - 1).

ax ayz
,	 2.

Since ax  +2hxy+by 2 x 2 a +2hX +bI -	 - 01 '
X	 I,X)	 V

+ 2h + by2 is a homogeneous function of degree 2 in x, y.

Similarly, y/x, x tan( y/x), x 2 log( v/x) are homogeneous function

of degree 0, 1 and 2 respectively.

Note 1 An alternative test for a function f ( x, y) to be homogeneous

of degree n is that f (tx,ty) :" j* (x,y) for all values of t, where i is
independent of x and y.

Note 2. The test that a rational integral algebraic function of x and y

should be homogeneous of degree n is that the sum of the indices of x and
y in every term must be n.

Note 3. Similarly, a function f ( x, y, z) is said to be homogeneous of

degree ,z in the variables x, y, z, if it can be put in the form !J( Y, - 

)1-1
xxif f (:. I-y,Iz) = t"f ( x, y, z ); and soon, for any number of variables.

Thus, f ( x, y, z) = IF, +	 is a homogeneous function of

degree . , since

f(tzly,rz) = ,JFtx + rty + Ftz = : f(xy,z).

12.6. Euler's Theorem on Homogeneous Functions.

If f (x, y ) be a homogeneous function of x and y of degree n then

a 	 a 
x - + y - = nf (x, y )
T ay

25
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Since f (x, y ) is  homogeneous function of degree n,

let f(x,y)=xØ(y/x)

= x'Ø(v), where v= y/x.

= nx" Ø (V)+ x°
ax	 ax

=

=fØ'(v)
ay a)

nfO(v)= nf(x,y).
ax	 ay

12.7. Differentiation of Implicit Functions.

Let the equation f (x, y) = 0	 ...	 (1)

define y as a differentiable function of x, and let I and f be continuous.

Then, we can find	 in terms ofas follows:
dx	 a' ay

Wehave f(x+&,y+itv)=o.

(2
Now, by the Mean Value Theorem, [see § 9.2]

f(x+ Ax, y + AY )- J(x,y+ Ay)

=x—f(x+oj A,v +) [ 0<0, < 11.

f(x,y+y)—f(x,v)

a
\y— f ( XI y+O2 Lsy )	 [0<0,< 11.

Adding these two and using relation (2) and dividing by Ax,weget

	

)=o...	 (3)
ax	 &ay
Since y is a differentiable function of x, when ii - 0, iv - 0, and

since J and f are continuous, we get, by making Av - 0 in (3),
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àrd.ry

a 
(r * o)	 •..	 (4)

dx	 !!	 f,	 7

a,

12.8. Total Differential Coefficient.

Let u = f(x,y), where x=sp(t), y=1(f).

Then usually u is a function oft in this case.

To obtain the value of 
dx

Let us suppose that f, f as also Ø'(i	 '(z ) are continuous.

When i changes to t + At ,let x and  change to x + Ax, y 4 Ay.

Now, u = I 10 (t I vi (i )1a F (i ), say.

duLi F(f+Af)-F(i)

di	 -o	 At

	

= Li f{(t+
. t	 (i+A I))-f{( : ,()}

Al

= Li 
f(xi&,y+Ay)-f(x,y)

A:

= Li I f(x+x,y+Ay)-f(x,y+Ay)Ax

t -.o t	 Ax	 Al.

f(x,y+Ay)-f(x,y)Ay

AY Al

But, by the Mean Value Theorem. [see § 9.2]

f(x+ Ax, y+Ay.)_f(x,y+Ay)=Av.f, (x+O AX, y +y)

and f(x,y+Ay)-f(x,y) Ay.f(x,y+O'Ay).

where 0 and 0' each lies between 0 and 1.

When Ai-*O,Ax->O and Ay-90; also 	 _90'(I) and
At

Ay
--vi(i).
At
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Also f(x+O&,v+1y)_4f(,y).

f (x,y+e'y)—, f(x,y).

du	 cL	 dy
-= f — +1 ' —	 ... ( 1)di	 di	 di

du au dx an dy
i.e.,	 ...	 (2)

Note 1. Asa parttcular case. if ii =f( x. y ). where y is a function of x.

dt ax dy dt

du is called the total differential coejiicienl of a, to distinguish it
dv

from its partial differntiaj coefficient.

Note 2. The above result can easily be extended to the case when u is a
function of three or more variables.

Thus, If it .f(x, y, z), where x, y, z are all function of 1.

du au dx audy an dz
----f— — +–-.--
di ax di ay di az di

12.9. Differentials.

We have already defined the differential of a function of a single
independent variable; we now give the corresponding definition of the
differential of a function of two independent variables x, Y. Thus, if
u = f (x, v ), we define du by the relation

du = h Ax + f,. 4y

Putting u = x and u = y in tum, we obtain

dx = Ax,	 dv = 4w	 ...	 (1)

so that	 du = f, dx i- f dy	 ...	 (2)
Multiplying both sides of the relation (I) or Art. 12.8 by di, and noting

that, since x, y are each function oft,

du	 dx	
dy dz,du= — dt, dx= .—dt, dv= —

di	 di	 dr

we get	 du = f . dx + f. dv



PARTIAL DIFFERENTIATION	 389

which is same in form as (2) above. But x, y here are not independent, but
each is a function oft.

Hence, the formula du = f, dx + 1, dy is true whether the variables
x and y are independent or nor.

This remark is of great importance in applications

Sinrilarly,ifu = f(x,y.z),

du = f dx 'i' f dy 1' f dz,

whether x, y, z are independent or not.

Note. It should be noted that the relations (I) above are true only when x

and y are independent variables, if x and y are not independent but

functions of a third independent variable r, say, x = 0(1)  y = 41(1 ), then

dx= Ø'(: )dt and dy = 41(1 )dt , where dt = 1st

12.10. Exact (or Perfect) Differenilal.

The expression

0(x,y)dx+41(x,y)dy	 ...	 (I)

is called an exact (or perfect) differential if a function u of x. y exists such
that its differential

du, i.e., }.dx+dY	 ...	 (2)

is equal to (1) for all values of dx and dy.

Hence, comparing (I) and (2), we see that if (1) be an exact differential
it is necessary that

auau

TX 
= O(x,y) and —=41(x,y).

ay
Differentiating these relations with respect toy and x respectively, we have

a 2u -	
and au -

ayaxay	 axayax

a2u	 d2uSince, in all ordinary cases, 	 =	 ,hence, in all ordinary
ayax axay -

cases, in order that (1) may be an exact differential it is necessary that

- a41

aya.x
It can be easily shown that this condition is, in general, also sufficient.
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12.11. Partial Derivatives ora Function of two Functions.

Ifu=f(x1,x2)

where x1 = Ø 1 (x, y ), x2 = 2 (x, y ), and x,y are independent variables,
then

du- 
an ax1 

+ au dx2
.	 .

du au ax 1 	 an ax2

ay	 X1 ay ax2 ay
We have

au
du= 

all
	 2

ax, 	 (I)

a.,	 ax 	 aX2	 ax
di1

	

2	 ax	 a

When values of x, x2 in terms of x, y of are substituted u becomes

a function of x, y; hence

all
—cLt+--dy
dx a 

Now, substituting the values of dx 1 , dx2 in (1), we get

(du 
ax, 

du dx2 	(du ax,	 du dx2

	

du=i --+ ------ idx +1	 + —	 Jdy
dx dx, dx)	 dx, dy dv, dy)

Comparing this with (2), since di, (lx are independent, the required

relations follow.

Note. The above result admits of easy generalization to the cases of more
than twovariables.Thus,lf u = f(x1 , x2 , x3 ),where x 1	 (x.y.z),

X 2	 , ( x, , z ), x 1 = Ø (x, y, z ) and x, y,z are independent
variables, then

du an dx 1 du dx2 an dx3
T

---+— — —+—,
x dx 1 Tx- dx 2 Tx- a

—
x' ax

du a n ax1 +
	 +

	

an dx2	 an dx3
-= -------------.
ay ax 1 dy dx2 dV	 dx3 ay

!!=	 h+ -!!i+ an ax3
dz ax, ax	 dx2 ax	 dx3 dz
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12.12. Euler's Theorem on Homogeneous Functions (generalisation).

iff(x, y, z) be a homogeneous function in x, y, z of degree n, having
continuous partial derivatives,

	

aj	 aj	 a
then	 x—+y--+z—=nf.

	

ax	 ay	 a 

Proof: Since f (x, y, z ) is a homogeneous function of degree n.

	

j (ix, ty, fz ) = t"f ( X, y, z)	 ...	 (I)

for all values of t.
Putting tu = u, ty = u, tz = w,

differentiating both sides of (I) with respect to t, we have

Y,
	au a,	 av a	 at

a 	 a	 a.i
• x—+y—+z—=nt f(x,y,z)

au	 av	 dw

Putting S =I in (2),

a 	 a

	

x + y -
a	 f

+ z = nf-
ax	 3y	 3z

Note 1. The above method of proof is applicable to a function of any
number of independent variables.

Note 2. The above result can also be established as in the case of two
independent variables, i.e., by writing

	

x)	 x

and then obtaining .-L a f df.

axay a 

12.13. Converse of Euler's Theorem.

1ff (x, y, z) admits of continuous partial derivatives and satisfies the

relation

a a
x—+y—

af 
+z—=nf(x, y, z)

ax

where n is a positive integer, prove that f (x, y, z ) is a homogenous

function of degree n.	 I C. H. 19601

Proof: Put =-,	 =

	

z	 Z
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then x =	 , y = 77	 z = . Suppose, when expressed in terms of

f(x, y, z)=v(, . C)

Then
ax	 d	 dx di dx d	 dx

(dv I dv	 dv= x	 -- — +	 .0 +	 .0

jrdV

,

a  a Similarly, v — = —

aj	 (dv ddv dt7 dv
Zd	

dz all dz ac az

a	 2	 2

dv	 dv	 dv
=	 -- —7)	 +

Hence the given relation reduces to

dv	 ldv	 n
—=nv, •oi; --=-,

vd

whence log v =, n log + a constant

where the constant is independent of , but may depend on and 11 let

this constant by denoted by log 0 (, q).

Then

i.e.,
X, Y)

which, according to the definition of a homogeneous function, shows that
f ( xi y, z- ) is a homogeneous function of degree n.

Note, if a be any rational nuniber, the proof and the result remain

unchanged.
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12.14. uIustrafiveExampI.

Ex. 1. if u =tan - ' 	 show that

au	 au
+ y-- = sin 2u. [C.P 1996, '98, B.P. '95. VP '99,2002]

dx	 dj,
From the given relation, we get

	

tanu = +	 x3l+(y/x)3}X21y
x - y	 x I .-(y/x)}	 ix

tan a is a homogeneous function of degree 2.

Let i' = tan a; .. by Euler's Theorem,
dv	 dv = 2v
dx	 dy

•	 2 a 	 2 du
xsec u—+ysec u—=2 tan u

dx	 dy

du	 au = 	.	 -.x—+y-------=2sinucosu =sin2u.
dx dy secu

Ex. 7. If A be the area of a triangle ABC, show that

d4 =.R (cos Ada+ cos B db+ cos C dc)

where R is the circum-radius of the triangle.
From trigonometry, we have

b2c2 +2	 +2a2+2a 2b 2 	 - b4 -c4 ).

Thus, A is a function of the three independent variables a, b, C,,

Hence, taking differentials of both sides,

2dS = {4Q (b 2 - c2 -a2 )da+*(c2 +a 2 -b2 )db+4c(a2 +b 2 _C2)dC}

= .1 (4a . 2bc cosA da+4b 2ca cosB db+ 'lc• 2ab cosC dc)

+abc(cosA da+ cos B db+ cos C dc)

...dA=.k( cos Ada+ cos Bdb+ cos CdC)
44

= R (cos A da+cosB db+ Cos C dc)

Ex.3. If P dx+ Q dy + R ds can be made aperfect differential of some

function of x, y, z on multiplication by a factor, prove that

a P + R (^—p - ^—Q = 0

	

P(^—Q -
dz ay )	 dx dz)	 dy ax)

 + Q ( ' , -
(C. H. 1949. 1954 1
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Suppose u is  function of x,	 z and

	

p(P dr+Q dyt-R dz)= du,	 ...	 (1)
where ji is some function of x, y, Z.

Also,	 du =±! dr+.!i dy+- dz.	 (2)dx	 dy	 dz
since u is a function of x, y, z.

Comparing (1) and (2),

	

AP	 (3)

du

dx

	

—JLQ	 ...	 (4)ay

(5)

	

3 2 E,	
ap	 ag	 a a,

	

dydx	 ay	 dv TI:dx	 6)

(on differentiating (3) with respect to ')

(on differentiating (4) with respect to x, assuming _f_ = a 2 , ) .

d'dx	 dxdy

Similarly,

	

3 2 u	 3Q	 dp 'dRdu
(7)

	

3 2 u	 3R	 di	 aPdp
(8)

	

dxdz	 ax	 ax	 dz	 dz
From (6),(7),(8), we get on re-arranging

JU 
(

'̂ —Y -^7) = a	 a	 (9)

ju(^—Q - 'R)= R ap - Q " (10)

	

(3R	 P)	 3u
(II)

Multiplying (9) by R. (10) by P, (11) by Q and adding together, we ge t

the required result.
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Note. If P a + Q dv + R dz be itselfaperfect differential, then we easily

deduce the conditions that

dQ dR_dR aPaP

dz ayax dzdy a 

Ex. 4. If V be afuncf ion of x and y, prove that

av a 2 v_a 2 v IdV.	 I d2v

TT +2 
dr2 + r d r + r 2 502

where x = r cos 6. y = r sinO.	 I CH. 1953 1

r = .,J52 +y 2 , 6 = tan' 2..

dx	 dr	 x	 rcosO
Hence, - = cos 0; - _________ 	 = cos 0.

dx Jx2+y2	 r

dy sin 0 ar	 y	 r sin O
Tr	

-=----= ,in O.
Ty J+y2

__	 2	 yrnO s in O

dx - j±1. x2 )	 x2+ y2 x2 -	 r2 -	 r
+ 

Similarly,.! coso ..
dv

Since V is a function of (x, y), and x and y are functions of r, 0, so

V is a function of (r 0).

a  dV dr dv do
Hence, —=—.----+—.—.

dx dr dx dO d'x

coso. av sinO dV

	

•	
...	 (I)

av dv drdv'dO

dy dr dy d0

dV cosO all=sinO.-1------	 (2)
r dO

Thus we have the following equivalence of Cartesian and polar

operators:

d	 (	 d	 -in Od
—
dx	 dr	 .r dO
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a a
.dy	 drrd0);

a av sine av'av
cosO--

dr	 rdo	 dr	 rdO)

c cosO-a 2 v sm8 a 2v dv Sin 
---

dr2	 ,-

sin O	 a2v	 a 	 a 	 I	 a2vcoso--SJno__--coso__slno-----
r	 dr r 

_
dO	 r

=cos 02 a2  2 sin O cos6 a 2v sin 2 U d 2v sin 2 o a 
dx2

	

	 5
--

r 2	r	 drdO	 2 do 2	r dr

+ 2sinOcosO dv

	

r 2	 do
Similarly,

a2v	 2	 2sinO cosO d 2 v	 cos 2 O d 2V cos 2 O dv- = sin O+
ay 2	dr2	 r	 drdO	 ,2 as2	r	 dr

2sin6cosO dv

	

r2	 dø
d 2 v .J 2 V	 d 2v I d 2 v	 i dv

12.15. Miscellaneous Worked Out Examples

ö 2 u öZu
Ex. 1. (i) If u =	 find the value of 	 II C. P 1986]

ö2u	 82U-
(ii) If u = xY, prove thdt — = -. [ C. P 1986, 2001, 2008 1

öx6y 8v8X

ö
(iii) If f(x,y)= x3y-fe-'Y 

2, 
Show  that 11 	 2j

=	 [ C. P 1993]

I	 I
Solution;	 (i) Here, u=x2 'y2

iu	 I	 I	 82u	 1 ( l'\ —	 !	 I —
2 y 2 and	 2 , y2 __, 2
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8u	 i ! –!	 82u	 1 •'- '--

	

2 and	 -=–x2y 2

-	 82u - if 'i	 j'	 i(L2+y2 )

(ii) u 	 .v

su

or, —=xY.Iog
8y

and, —=y.xY'.log+xY._
6x8y	 x

y . x Y ' . Iog+x Y	(I)

Again, 8u
— = y.XY'

82uand — =1 . xY ' + y . xY' 1og	 (2)

From (1) and (2), 
6 2 u	 82u

(iii) Here, f(x, y)=xy+e'2

• L_x3+e.ry2(2y)

and 
821 3x2

8xöy

=3x2 +2yeYZ (xy2+1)	 -	 (I)

Again, Sf
 = 3x2y+eY2 (y2)

and _L=3 2 +eY2. (2xv)y 2 +erY2 .2y=3x 2 +2yeY2(xy2 +1)
&y&r

(2)

From (1) and (2) 
62f	 L
ix8y y6x

	

Ex. 2. (I) If u r3 , x2 +y2 +	 = r 2 , then prove that

6 2, 82U 62u

[C. P ii
&v2 62
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(ii) If u = x 2 tan 1_2 tan-t !• prove that

82u X 2 _ 2
C. P. 1998

.3x6y X2 +y2

(iii) If u = .r log y . show that u . = y.	 C. P 1983, 96, 2003

Solution :	 (i)	 r2 = .2 +v 2 +

Sr	 &x
2r=2x,i.e.,

Sr V	 Sr z
similarly, - = and -- =

r	 r

.3,,	 , Sr
u=r3	

Sit

52U	 St.	 3x2
—=3r-l+x.3—=3r+-

r

62u	 3y2	 82u	
32Tsimilarly,	 3r+	 and —=3r-t--------
r

.32u .324 S 23
-- =9r+ --(x 2 +y2 .tz 2 )=9r+_ •r2 =12r

6x 2 .3 2 .3z 2	r

(ii) u = x 2 tan	 - . 2 tan-'
 y

I	 I	 x	 I
2(:y

X3	

x	

i+)

=	 —21ian--+------x--2ytafl'
x2 +y2
	-	 y	 y

—1-2	
1	 2y2 - 'c2—y2

SAY	
X)2 

Y)x2+y2x2+y2
1+1 -

1
(iii) u=x log y .. it, = X 	 110=—

Again u =lIogv a.id ,,, = !	 :. u, =u
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Ex. 3. (i) Show that f(x, y) tan - ' 1 + sin	 is a homogeneous
x	 y

function of x, y. Determine the degree of homogeneity. Hence, or

otherwise, find the value of 	 [C. P 1991, B.P 1996]
&

(ii) Examine whether f(i, y ) = x3 . y 3 tan - is a homogeneous

function of (x, y). If so, find its degree.	 [ C_-JP 1993

(iii) Examine whether the function u (x,y)= x
3 + ' is a

x2+y2
homogeneous function of x and Y.	 B. P 1995]

Solution 	 f(x, y)r tan 1 2-+sjn-	 = tan-' X + cos ec-1

=x0{tan(.)+ cos ec_i()}=

Hence, f(x, y) is a homogeneous function of x, y of degree 0.
By Euler's theorem on homogeneous functions,ffx+y-=Oxf=O	 here n=O].ax 8Y

4

(ii) f(x, y)x	 .x3.Lt .anh'X)
X	 -.

=x	

x)
4

.(!J.tan(rX)=x' .t(Y)

Hence, f(x, y) is a homogeneous function of x, y of degree I.

x3(1+2) J l^ff(iii) u(x, y)=	 =xx

X2 I+	 j	 x

So, u (x, y) is a homogeneous function of x, y of degree 1.

EL 4. (i) If uxsin1(2)+ytan.i)

	

	 u	 &4find the value of x--i- y- ---
& .5y

at (1.1).	 IC. P. 1988]
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(ii) If u = X.(+X)

	

	
6u	 u

prove that x—+y----x
x)	 ox	 by	 x)

I C. P. 1988 j

(iii) If u - x 2 +	 Ou 
+y-8u-	 (x,y)^(O, 0) and x—+y--=ku find the

Ox	 0"

	

value of k	 C. P 1997, 2002, 2004 I

Solution : (I) u = sin_t()+ytan_J(

=x{sin	 J+2cot1()}=xi

So, U is a homogeneous function of x and y of degree 1.

	

-,	 Ou	 Ou
By Euler

,
s theorem, x—+y----=l'u

	

Ox	 O)
(y\

=xsinj - I+ y n -
\XJ

At (1, 1),

(ii) Let v = 
x () 

and w =

The- is a homogeneous function of x, y of degree I, and w is a
homogeneous function of x, y of degree 0.

8 &
So, x

v
---+y-- =I-V=V
Ox by

Ow Ow
and x—+v----=O'w=O

Ou Ot' Ow
U = v+W,-=-+---

Ox a a
Ou Ov Ow

or, x-=x--+X---
Ox	 Ox Ox

Ou Ox Ow
similarly. y— =y—+y—

0:1	 v	 y

(I)

(2)

Ou	 ö	 ( o	 Ov ' (	 Ow '
x+y—I X—+y— 11 x o— +Y— 1 = v+0 vX4)l -

Ox	 0	 Ox	 Ox) i Ox	 '5y)	 '	 ' x
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x21+()

2)

3	 (x2+y2	 •	 J
u=	

__

_____

So, u is a homogeneous function of x and y of degree	 Hence,

by Euler's Theorem,

öu su 3
(1)

8x 8y 2

& 8U
But given that. x—

X	 8
+y

—)?
= k u	 .	 (2)

3
From (1) and (2), k = -.

Ex. 5. (i) If V = 2cos'I ( I, show that

8V	 811 

+cot
[C.P1994,2008J

8x	 8y	 •2

(ii) If u=xY f(!). prove that x-+y-=2u
x	 6x 8y

by Euler's theorem,.	 ( C. P 1984 1

(ui)Venfy that x 
6u
—+y 

8u
---+z 

8u
—=O, f u=—+

v --z +--
x

.
a

. P 1987, 2005]

8V 	 8V
(iv) If v=!ogX33 ,show that x 

5
+y

öy 
1. [c. P 1978]

X.2 +y2

(v) Find that value of, 	
if 

u 
= X2 Y	 [C p 1990]

8x	 8y	 x--xy

Solution:	 (i) V=2cos'	
X+)'

COS— 
r

26

7= =____
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(V'\
COS) is a homogeneous function of x, y of degree .

Hence by Euler's theorem,

61	 v'	 81	 V'\ 1	 V
x—I cos— I+y—I cos— 1—COS—

6x	 2)	 6yk.	 2) 2	 2

I I . V"6V	 I I	 V'\6V	 1	 V
	or, xi — Slfl	 I-+yl ---Sin — I— —COS----

t. 2	 2)&	 '. 2	 2)öy 2	 2

8V öv	 V
or, X+y - +WtO

()

Hence, it a homogeneous function of x, y of degree 2.
By Euler's theorem

8,4	 8u
x -

x 
+ y -by = 2 a

XYZ

6 

12	 2
+!x3fl'--')

-	 x) x\.x) x

-	 31--.	
-	 Sx' x

I.x xJ

Hence, it is a homogeneous function of x, y, z of degree 0; by
Euler's theorem.

6,4	 6u	 6u

öx . 8y. öz

(iv) V=Iog
x3 + V 3
 ,
x-. +y-

x3-s-y3	 t	 yor, e
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Thus e" is a homogeneous function of x, y of degree 1.

&
 (e V )+Y—

 ( v'
x—e )= 1e

6x	 6y

V . 8V	 , 8V.
or, x•e •—+y . e —=e

8v &v
x—+y—=1
6x	 sy

x2{J+(2)}

(v) Here, u	 = x°

I	 xJ

So, u is a homogeneous function of (x, y)of deg :e 0

8U 8U
By Euler's theorem, 

x+y&y 
=O.u=0.

&x 

Ex. 6. (I) if u be a homogeneous functio't of x and y of degree n
having continuous partial derivatives, then r ave that

/
I öu	 uj
Jx—+ 

&
y-

y
— 

)I 
11=n( –Pu.

t & 

where, —+y---I
2
 =x 2 

82
—+2 y 

&'
_	 2 

82u

& 8y)	 &2	 &v	 ,2

1 • P 1985, '98. 2001; B. P 1993]

2
(ii) if u=---3--_, apply Ei..Ier's theorem to find the value of

x+y

8u 6u 2 o2	 5U
x—+y	 2— and hence deduce that x —+2xv------f-y --6u.

6J'	 - &8y	 8Y2

[ C. P. 199., 2t)	 i

(iii) If u=x@(^)+ii(ZJ. ptove that (x+Y-)u0.

[C. P 1990 1
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(iv) if f(x, y)=(x2 + y2). use Euler's theorem to find the value of

	

f 8f	 22f	 821	 821 2
X+Y	 andhencepmvethatX	 +2.xy+y2 --+.f=O.

sy
	C. P. 1995

(v) if U = tan	 +, prove that.
x–y

814öu

	

x—+y—sin2u .	B. P. 1995 C. P 1984 89 96. 98]

	

2 62 l	 62u	 82a	 . 2
(b) x	 +	 + Y 2 	 = (i –4sin u)sln 2u.

8x8Y 	 8Y

C. P. 1996, '98 2003, B. P '95 1

Solution	 (i) Since u is a homogeneous function of degree n,

we have by Euler's theorem,

Su 5u

6x	
y (1)

$jfferentiating (1) w.r.t. x partially,

Su 8 2u	 82u	 8u
(2)

	

ox	 2	 (8y	 Ox

Differentiating (1) w.r.t. y partially,

	

•	 62u Su	 8 2 u	 By
(3)

Multiplying (2) by x and (3) by y and adding

	

( 82u	 82u	 O2	
I Su 5"	

I 8u Ou
I x2 —+2.xy-----+y2 -- I+X—^Y— J = nx—+y----

	

t Ox	 OxOy 	 8y2
 )	 Ox	 Oy	 &x Oy

8 2u 62u
where we have taken - -, since the partial derivatives an

OxOy Oyo.x

continuous.

	

.2 	 8u2	 22or, X --+ xv—
Ox8 

+ - V --+flUflflU

1 8 8\2
orIx— +yI un(n – l)u

	

i, Ox	 &y)
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i
4l

(ii) u
22 X

xy = ____	 y-
X+y 

x(1+fl	
x

t.	 x)
So, u is a homogeneous function of x and y of degree 3.

	

By Euler's theorem,	 -

öu 8U
(1)

Differentiating (1) wat. x partially,

	

82u	8u	 24	 8u	 -

	32,	 62u. Su	 6u
or, x2--+.y----+x--=3x-	 (2)

	

ox	 OxOy Ox	 Ox

Differentiating (1) w.rj. y partially,

	

2j	 8u 8u	 8u

	2 02 U OU	 Ou
or,	 +)'	 + y- =	 ,••	 (3)

	

[.. o2	 O2'

Adding (2) and (3)

X22xy 8
2u 2 02u ( Su

-----21 x—+y I
Ox2	 Sy )

= 2 x 3u = 6u

(iii) U = X0
()+()

=v+w

where, v =	 , a homogeneous function of x and y of degree I,

and w =	 a homogeneous function of x and y of degree o.
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By Euler's theorem,

8V öv
x— 
& + öy

y— = 1 . V = V

and

3w ow
Ox Ty- 

= 0 . W = 0

ou (Ov 3v'( 3w Ow
x—+y— = I x—+y— 1+1 x—+y—

	

a	 o

=v+o=v. (1)
Different)ating (1) w.r.I. x. partially and then multiplying both the sides
by x, we get

32u	 Ou	 OV
X2 -- +	 + x = x—

(2)
2	 ax^y 8x	 6x

	

•	 ',32u	 3u	 OV
	Similarly, xy—+y --+y—=y—	 ...	 (3)

	

OxOy	 3	 Oy	 Oy

52 U 82U

8yOx&&y

Adding (2) and (3)

3 2 t	 32u	 2 62u ( Ou &
X2 -+2YK+Y -++Y

3v ov
=x—+y--

Ox	 Oy

	

2 32u	 82U 	 82u
or, X 2 	

OX

	__+2y__
O

__+y2
Y

	T- = 0	 [bv(l)I
Ox2 

i 22

	

(iv) Ax, y)=(x2 +y2) 
= {t+()2 }	 _(Y)

Thus f(x, y) is a homogeneous function of x and y of degree

By Euler's theorem,

x1 +y1—f	 (1
ax Oy 3
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Differentiating wrf. x partially

82f 8f 62f 28!
X	

8x8x6y36x

2 82!	 2j 8f 2 8f
or, X	 ...	 ...	 (2)

. 82f 2 62 f 8f 2 6f
Similarly, XY	 + Y+	 = Y	 ...	 ...	 (3)

Adding (2) and (3),

or, x2 621 	82! 2L(
X-.-_+
6f 811v-

8x2	 8x8y	 8y2	 6x 6v)

2(
x 
of 6f

=—I  — +y ----

	

3 . 6x	 Oy

2 21 +21821+Y262f 
+ 

2 
f 

2
- .

2 
f

i.e., 821	 .L	 2 6 2! 4	 2
I X2 —+2.xy	 +y

82	 6x8y

•	 2 821x	 2 62f 2
•	 —+ 62j2.y----+y —y + --f

 
—O

8x2	6x8y	 oy 9

x3 +y3
(v) u=tan-

x—y

3Ji+(Zl
- I .x)J =x2j!)or, tanu=

x—y -

So, tan u is a homogeneous function of x and y of degree 2.

By Euler's theorem,

x .-
8
 (tan u)+y-

6
(tanu)= 2 tan u

8x	 8y

2 6u	 ', 6uor, xsec u+ysec u—=2tanu— 
6y
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514	 SU	 SflU	 2x—+y-2----cos u=2sinucosu=SIfl2U	 (1)
Sx	 Sy	 cosu

Differentiating (1) w.r.l. x., partially,

82u	 81(	 52u
x + 1•— + y - = 2 cos 2u -

2	 Sy'	 &xv

2 8 2u	 Su
or,x --+-----+x—=2xcos2u--- 	 (2)

5x2	 SxSy Sx

Differentiating (1) wi-f. y., partially and then multiplying by y

5 2u 2 52	 Su
xy-+y —+y-=2vcosu	 (3)

82. 62,

SySx SxSy

Adding (2) and (3),

2	 52U	 2 
82.	 ( 8U	 8U

X 2 	 _-=(2cos2u-1)x+y-
8X	 5y)

= (2cos2u- l)sin2u	 [ From (I)

= sin242(1_2sin 2 u)_i}

= sin2u(1-4sin 2 u).

Ex. 7. if f(x, y)= ((Y))
	 then using Euler's

theorem on homogeneous functions, show that

,2j	 52f 2521	 2 2x--+2xy +y _--(x +y )	 tB P 1999]

Solution : Letf(x, y) = u(x, y) + v(x, y) + w(x, y)

whew, u(- v)= 
(x2 +y2r	

x2n)

2n(2n-1)	 2n(2n-l)	 2n(2n-1)

a homogeneous function of x and y of degree 2n,

hhh-
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v(x, y) = x4(-), a homogeneous function of x and y of degree 1,

and w(x. y) = 
w (i), 

a homogeneous function of x and  of degree 0.

We know, if f(x y) is a homogeneous function of x and y of degree

then

Ô2	 2-

	

+	 + y2 —4j- 
= no- 1)f

&2

Using this general result to u(x, y), v(x, y), w(r, y)

	

2 j 	 2u	 ., 8u
x2--+2.xy—+Y —9-=2n(2n--l)u

	

x&v	 öy

x2+2x ' +y2 1 . (1-1)v0	 •..	
...	 (2)

	

6x2 	8x&v	 y2

x2__+2y_^Y2_0(0_1)w_0	 .. 	 (3)

	

xy	 .5y

Adding (1), (2), (3),

x2__ +2Xv+V2 _ u+v+w)2n(2n1)U
&r2	 öxöy	 y2)

ô 2f .2L	 (x2+y2)"
2n(2n - I) x+2xy—+

	

ôxöy	 y2	 2n(2n–l)

Ex. 8. (i) If z.f(x, y) anox(u+v)2 , y=(u–v)2 then prove

z + 	( öz	 6z'\.
that	 .	 C.!'. 1992)

(ii) If V•is a function of(x, y)and x=eu. cost. y=e" . sin t. show that

(6v 2 (8v'\2	 2 2 1(V 2 (ov'2

j—) +--) 
=(x +v	 +-)

[C. P. 1993. 2003. 20081
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(iii) If z is a function of x, y and x = e" + e' and y= e	 prove

that [C. R 1997, 2000JT. & Ky
8z z& 8zôySolution; (i) - = - - + -. -
8u x iu y bu

=2(u+v)+2(u—v)	
(1)

zz &T 8z 51,
& 8x öv 5y

oz

	

TX	 (2)

Adding (1)and (2),

8z	 8z = 2{u2 +uv+uv
&

	

	 +2{u26v

=2(u+v)2

	

Idz	 dz= 2 x + y -

	

(, (li	 dy

Let V = f(x, y). x = e11 cost, y e' sin

8V 8V ox ov o

8V	 5V
=—.e°cost+--.e' sift

Ox

8V OV
=x—+y—

Oy
—	 ...	

...	 (1)&': 

Ov OV Ox OV Oy
WT 8x Oy 8y 8:

Ov

Ox 

1	 '
—	 -e" s.n1)+	cost

M' Ov
(2)

=— Y 
TX	 v
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(öV 2	 v\2 ( ov 8v 2 ( ov
I-I +1-I = I x— + y— 1 .+Ix---y—

	u)	 I	 '.	 8Y)	 6y	 ox

	

–(x2+
y2)	

2	 2l

{(). +(
(iii) Let. z = f(x, y), where, x = e' + e s', v = eU _V

- Oz Ox Ox - Ox –u---.—+----e --e --	 ...	 (1)

8z 	 Ox Oz Oy
—.–+–.–=–e--e–	 ...	 ...	 (2)

From (I) and (2),

Oz Ox	 Ox	 .Oz
-- i- =(e" +e)–+(e –e")--

	

oz	 oz
=

	Ox	 0;

	

2dz	 It

	

Ex.9. (I) If z = e ' , x=(COSI, y=tSrnt, obtain	 at t.
di

C. P. 2001

(ii) If u = f(x, y) .and x rcosO, y = rsin8, prove that

( ö ..2 (o2 (5\2	 1
2 To) +-) =;) +-).

C. P 1990, 2001, 2008

	

Solution : (i)	 z=e	 and x=tcosi. y=tsint,

8z 8z thOz dy

&Ox di 8v di

	

= eXY2 . y2 (cos: - tsint)+	 .2.y(sint + (Cost)

= ye 7CY2 {y(cos: - tsini)+ 2 4sint +tcost)}

7C	 71	 TE	 IC	 71	 71

	when t-, x=
	
Cos	 O and y=Sifl.

eXYe°1
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Hence, at £ =
2

+i.1(o_!-"0=_ Ll!&	 2t2I	 2) J	 8

(ii) Here, u = f(x, y) where, x = rcosO, y = rsinO

614 6U 8x 6u 6y 6u
(I)

oa- Su 8y 8u

co
._+__..__(_rsjnO)+___.rCoSfi

8 6x68 Ty- 	 6x	 8y

18,1	 8u
sin0+— cosO	 ...or,=	

8v	 (2)
From (1) and (2),

8U ) 2 i(8)2 (&	 öu	
s2 

(64	 6u
+ r2 6	

=j —coso+—sino I +1 —cosO--sinO I

	

Q	 \&C	 öy	 )	 6y	 ox	 )

I	

) + & J 212 (co520+sin2O)
=i 

f \2 =

	

2

+

	,-iOu

)

, 

+

iOu

)

,	 iOu,	 I iOu

---)——

Ex. 10. (i) Show that (x, y) Jim	
2xy

 —* (0. 0) 2 + ,2 does not exist.

B. P 2001 1

(ii) If f(x,	 2	 2 '	 (x, y) # 0X2

=0,

Show that j,(0. O)= fyx (01 0).	 II C. P. 1995,2006, B. P. 1999]

	

y)=xy	 ,when both x. y O

f(0, 0)=0.

show that	 (0. 0)*f(0. 0).	 [ C. P 1988, 1999, 2004, 2007)
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Solution: (i) f(x,	
2xy

2
Let, y = mx	

x

	2x-ma	 2m
then f ' " x2 -I-rn 2x2 = 1i-rn2

	

urn	 f(x, y)
Thus (x, v) -4 (0, 0))	 will assume different values for

different modes of aproach of (x, y) towards the origin.

Hence, ( v
urn	 f(x, Y) does not exist.

2y2
(ii) Here, f(x, y)_	 when x 2 + y2 ^0

when x2-i-y2=0

f.9 (h, o)= urn	
k)_f(/z,0

	

k-40	 k

h2k2
-0

= im h 2 i-k2l 

	

k-40	 k

	

= urn	
h2k

=0
k-+0

f (0, o)= urn 
f(0+k)-f(0. 0)

k

0-0
= km —=0
k-0 k

f(h, 0)-f (0,0)
f (0, 0)= lim

	

h-0	 h

0-0
= km	 =0-
h-i-0 h

-	 f(h, k) — f(0, k)
Again. j(o. k) 

= h-0	 h

h2k2 -o
= urn

h2 
--0

= urn	
hk2

=0

	

h-i-0	 Ii	 !i-#0
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and	 0)	 urn 
f(h, 0)-f(o, 0)

	

h-40	 h

= urn
h-0 h

	

0)= Jim	 Jim	
k)-f(0. 0)

k-0 k-0	 k

0-0
(2

From (1) and (2), it follows that 4(0, 0)J, (0. 0)

(iii) Here, f(x, )	 1.	 2, when x and y both 0.
2

f(0, 0)=0

f (h, 0) = urn L' k) - f(/, 0)

k

= Jim	
(h2 +k2)

	

k0	 k

= Jim 
h(h2-k2)-0

t k*O]

=h

and fv(0, o)= jim j(o, k)-f(0, 0)

	

k-I)	 k

= jim
R-() k

	

• f(0, 0)= Jim	
f(h, O)-f(O. 0)

h

=

	

Jim	
hO - 1	

...	
...	 (1)

h 
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f(h, k)-f(0, k)

	

Again, f(0, 
k) = h-*0	 h

hkl
(h2_k2

01-
h2 +k2

= lim
h

+2 -k2)
= urn	 ----	 [h*o]
h-0

-k3
A

- A2 -

f(0, O)= liin	
f(h, 0)-f(o, o)

-	 h-30	 11

0-0
= urn -- = 0

h-.O h

f(O. O)= urn •1(
o, k)-f(0, 0)

A

urn
-k-0

= 
k-0 A

From (1) and (2), we conclude that
f(0, 0)*f,(0. 0)

EXAMPLE-)M(B)

1. Verify Euler's theorem for the following functions

(I) u _2 +7hxv+bv 2 . (ii) a	 + y 3 +3x2y+3.y2

x - y -	 x2+y2
(iii) U = - (lv) u = sin

x + y	 xy

(v) a (x3 + v+	 x +Y1)

2. Find 
dy 

in the following cases:
dx

(i) .r +y4	a•	 (ii)	 x' +y	 a' LC.H.19441
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	(iii) (cos x	 = (sin y )•' . (iv)	 e + e	 2xv.

(v) y+x(x+y).

3. (i) If u = 0 ( H,, ). where H. is a homogeneous function of degree n

in x, y, z, then show that

au	 all	 au F(u)
X — + --+Z — =

ax	 a	 az	 F(u)

where F(u) = H,.

	(ii) If u = cos' {( + y)/	 + Fy)), then show that

++ J- cotu = 0. [B.P 1994, VP. '96,2001,2008]

	

ax	 a ' 	-

4. If v = sin' {(x2 + y2 ) / (x + y) }, then show that

xV,+vV,, = tan V.

5. If u = xO(y/x ) + i,ei (y/x), then show that

a
(i) • -.- + y - = X0(y/x).

	,ix	 a
(x u + 2xvu, + y u i.,, = 0.

6. (I) If i' f (a), u being a homogeneous function of degree n-in x,

y, show that
a 	 a 	 3t'x—+y--=flU—	 IC P 19481
ax a 	 du'

(ii) If V be a homogeneous function in x, y, z of degree n, prove that

av av	 av- and - are each a homogeneous function in x, y, z of degree
ax ay	 az

(n—i).	 [C. P 20061

(iii) If V be a homogeneous function of degree ,, in x, y, z and if

V = j(x. Y, Z), where X YZ are respective'y---, X-, show
ax ay az

av	 av	 av
that X+Y---+Z---V.

a
—
x a	 Z n — i

7. (i) If H be a homogeneous function of degree n in x and y andif

2	 2'"
u = I,x + y' 	 show that
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-- hi	 + --- IH .	 =0.
Tx-	 ax) ay'. ay)

(ii) If H be a homogeneous function in x, y, z of degree a and if

	

u = x2 +y 2
 + _2)_	 show that

a ( au'l a ( au 	 a ( au	
0.

'l
— I H— 1+ — I H —)+ — I H—I =
ax	 ax) ay	 ay 	 azt az)

S. If x = r cost), v = r sin 0, prove that

(I) dx 2 +dy 2 -dr2 +r 2 d02	[B.P.2001]

(n) xdy-ydx=r 2 dO.	 [B.P.20011

9. If q(x,y)= 0, yi(x,z)= 0, prove that

a V, ()o ay-DO
ox ay Ox Ox Oz

10. Express A, the  area of A ABC, as a function of a, b, C and hence show that

dAda A
— - + — + cot C dC.

A	 a b

II. If x 2 + y 2 + z 2 - 2xyz = 1, show that

dx + dy + dz -
- o

	

- 2	 - 2 

12. (I) If a 2 +by ' +cz 2 =1 and Ix+ my + nz = 0, show that

dx	 - 	 d:

My - cmz ci; - wtr amr - bIy

2	 .2	 2	 2	 2	 2

(ii) If	 and	
X	 +	 +

a2	
,2 	 C-1

	 + A	 22 +A	c -i- A

prove that 
X(b - c2) +
	 + 

z(a 2 - b2) =

dx	 dy	 dx

13. The radius of a right circular cone is measured as 5 cm with a possible
error of 001 cm, and altitude as 8 c with a possible error of 0-024 cm. Find
the possible relative error an, percentage error in the volume as calculated
from these measurements.

27-
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14. The side a ofa triangle ABC is calculated from b, c, A. Ifthere be small
errors db, dc, dA in the measured values of b, c, A., show that the error in
the calculated value of a is given by

da = cos B.c/c + cos Cc/b ,ji, sin Ct/A.

IS. If f (p, t, v) 0, show that

(di	 (c/v

	

x .—I	 xI-..--.-I	 =–1
k di ) r	 t.. dv)	 q/i L

16. If u F (y - :,: x, x - y), prove that

au	 oil
- + - + . = 0
ax a 5 Dz

[C.P 1983, '88, '94, '98, 2002, 2007; VP '95]

17. If u=F(x 2 + 2 +2 )f(x,v+)'z+,	 -

() U Oil
(, .;--+(z–x)—+(x–y)--=0.

18. If U = f (x + 2yz, J , 2
+ 2:x), prove that

/	 \13U	 2	 'l	 2Iy –z)---+ 'x –yz)-----+z –.iy,l—=O
ax

CE 1981, '95, 2008; C.H. 1947]

19. If F( V 2 – x 2 ,
V 2 _,2	

2•_2 )= o,

where v is a function of x, y, z, show that

la y	los'	 lOs'	 I

xOx y O y :0: v

20. If u be a homogeneous function of x and y of ii dimensions, prove
that

( a
U =	 — I )u,

	where 1x-- + y_-'1	 +2+2
a	 Ox2	 OxOy	 Oj,2

V P 1998, C. P '85, BR '93, C. H. 46]
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21. Lfu=xØ(x+y)+y(x+y)

a2u 
2 

a l u	 a2u

dx2	axay ay2

22. If V be a function of r alone, where r 2 =	 +	 +

a2vvvvshow that	
az2	 r2	 r a,-

ANSWERS

yxt +y logy

-	 .xy 1 + x log x

y tan .x + log Sill y	
(iv)	

- 2)'
Jog cosx — xcot y	 2x -

Y , logy + yx	 — (x+ y )' {log (.. + v) -Fl}
(v)	

x log x +	 -	 +	 {log ( + )' ) 4 i }

13. 0.007 (relative error); 0.7 (percentage error).
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13.1. Extrema with two variables.

A function f(x, y) of two independent variables x, y is said to be

maximum for x = a, y = b provided j( a. b) is greater than every other

values assumed by f(x.y) in the immediate neighbourhood of

x= a, y = b. Similarly, a minimum value of f(x. y) is defined to be the

value which is less than every other values in the immediate neighbourhood.

A formal definition is as follows:

A function f( x, y ). is said to have a maximum value at a point (a, b)

of the domain of f(x, y), f (x, y ), provided we can find a positive

quantity 5 such that for all values of x, y in a— 8< x< a+ 8 and

b-6<y<bi-ö, (x*a,y*b)f(a.b)> f(x,y);

i.e.,iff(a+h, b+k)—f(a,b)<O,

for l hl <8 and lkj<o.

Similarly, the function f( x. y) has a in in zmwfl value at a point (c, d ).
provided we can find a positive quantity 5' such that for all values of X. y in

c-8'<x< c+5', d-8'< y<d+ö',(x# c, yd) f(c.d)< f(zy);

i.e.. eff(c+h. d-i-k)-f(c,d)>O,

forjhl<5' and k1<8'.

13.2. Necessary conditions for Maximum and Minimum of extrema with

two variables.

if a function f (x, y ) be a ,na.xiniunl or  minimum as x = a, y = b

and if the first partial derivatives f, (a, b ) and f, (a, b ) exist, then

f,(a,b) = O and f(a,b)O.

ProoL lff(a,b)bea maximum ora minimum value Of f(x,y).

then clearly it is also a maximum or a minimum value of the function f (x, b)

of one variable x for x = a and so its derivative f (a,b)forx=a must

be zero, provided it exists.

Similarly, f5(a,b)=O.
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133. Determination of Maxima and Minima of extrema with two variables.

If (a, b ) be a point in the domain in which the function f (x, y) is

defined,	 and	 if	 f, (a, b ) = 0,	 f',, ( a, b ) = 0.	 and

f(a,b).fyv(a,b){fy(a,b)}>0, then f(a,b) is 

maximum ora minimum according as f, (a, b < or > 0 (and consequently

f(a,b)<or >0). But if f,(a,b).f,.(a,b) _{fa,b) <0,

f (a, b) is neither a maximum nor a minimum and if

f,, (a, b ). f,, (a, b ) -	 (a,b ) )	 0 further analysis is necessary.

Proof of these results is beyond the scope of this elementary treatise.
Note. Points where f = 0 and f 0 are called stationary points. These
poiqts may be a maximum or  minimum but in certain cases it may so happen
that the points is a maximum in respect of one variable while a minimum in
respect of the other variable.

13.4. Illustrative Examples.

Lx. 1. Examine for extreme values ofthefunction

	

x2+y2+(x+y+1)2, 	 C.P. 19951

Let f(x.y)=x2+!?+(X+Y+1)2,

f=2x+2(.x+Y+1)=+2Y+2,

f, =2y+2(x+y+1)=2X+4Y+2,

f=4, f,51=4, f=2.

The equations f, = 0, fy = 0 are equivalent to

2x+y+10 and x+2y+1=0.

• xY	 I	 x Y
These give,	 ==	

or, 
-i = - = -

1	 1
or, X=—, Y=— 3'

The function may have an extreme value at (- - . -

Now, at (-•, --k),	
)z 4.4_22 12>0.= 

Also, f>0.
Therefore, f(x.y) isaminimumat (- .
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Ex, 2. Find all the maxima and minima of ihe function

4x2 - xy+ 4? + x3y+ xj 4.

We have f, =8x-y+3x2y+y3

f -x+8y+x3+3xy2

ç=8+ a, fyy 	 f=3x2+3y2-1.

The equations f = 0, fy = 0 give

8x-y+3x2y+y30

-x+8y+x3+3K1J=O
Adding () and (2) we get

7(x+y)+(x+y)=0, or, (x+y){(x+y)2+7}0,

or, (x+ y)= 0. .. (x+ y)2 +7>0
=-x.	 (3)

From (1) and (3) we get

9x-4.=0, or, x(-9)=O.

The corrcponding vaucs of y= 0, --. -

The function has three stationary points (o,o). (1,3 .
	

),

At(0,0),f,=8, f =8 , f,=-1,

f,j_(f2=64_1=63>0and f— 8>

the function is minimum at (o. o).

At(3	 -8 27_ 11'2 
' - fl .f

 - 2 - 2

' =8--- U f =3( . ^ 2 )_i ZJyy	 2	 2'Jt,	 4 4	 2

ff(f )2.121 625 126< 0
'-i 4 	 4

so that the function is neither a maximum nor a minimum
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(3	 27	 1!
At	 f = 8-- = - -i-

I f(f) 2 =-126<0,

so that the function is neither a maximum nor a minimum

The points ( ,-- )ami (- ', - )where the function 	 neither a

maximum nora minimum are called Saddle Points.

Ex. 3. Show that f( x, Y) = + 2-x-' y+ 2x4 has a minimum at (0,0)

We have f=4xy+&

f,=2y+2x2

f=4y+24x2 , J=2 , f=4x

At (o,o)j=o. j,=O, f=O,

Since	 f, = 0, f =	 (o,o) is a stationary point of f(x, y).

Again	 J	 -	
2 = 0. So further analysis is necessary.

We hav .r(o,o)= 0 and 
f(., Y ) = ( Y+ X,  

) 2 +x4 . which is

positive for positive as well as negative values of x.

Hence, Ax, Y) is minimum at (0, 0).

EXAMPLES- XIII (A)

Examine the following for extreme values:

(1) x3 -i-v 3 -3axy.	 (ii)	 4.xy

(1

	

+ -	 - (iv)	 x3y (i - x - y).
x	 y

(v) sin xsin y sin (x + y ). (vi)	 x2y2 - 5x 2 - 8xv - 5y2.

(Vii) X4 +2x 2 y—x 2 +3y 2 . (viii) 2(x— y) 2 —x4 —y4.

	

(1x)y 2 +x 2 y+2x4 .	 (x)	 x2+xv+y2-4x+y.

	

() xy (6a - x -y).	 (i)	 (2 + y2 )e62.

(XiiO(x2 +)' )2 -8 ( X 2  - p2). (XiV)x2 + ,2 + ( a + by + c 
)2
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(xv) x3 + 3y 2 - 15x 2 - 15y 2 + 72x.

2. Show that the function f(x,y )= x 2 + 2xy + y 2 + X3 +	 +

has neither a maximum nor a minimum at the origin.

3. Show that the function (x + y ) 4 
+ ( x - 3 ) has a minimum at

(3,-3 )

4. Show that the function f (, y ) =y 2 + 3x 2 y + 5x4 has a minimum

at(0,0).

S. Show that the function f (x, y ) = 4x2 y - Y2 - 8x4 has a minimum

at(0,0).

6. Show that the function f (x, y ) = 3x 3 + 4x2y 3;y2 - 4y is

neither a maximum nor a minimum at (0,0 ).

ANSWERS

1. (i) Max.at(a,a ) if,, <0 andmin.at (a,a )jfo >0.

(ii) Mm. at ( .i.- .i) and

(iii) Min. at0.0 
J	

(iv)	 Max.at(4).

(v) Max. at (n'+j, n'ir+j-)and

Mm. at (n'Jr - -, n'ir - i-
I	

)	

). n' being any integer or 0.
\	 .	 ..	 - m.	 I(vi) Max. at 0,0 , no mm.	 (vii)	 No max., m at

(viii) Max. at (.h,_.J) and (_.j,j).

(ix) Neither a max, nora min. (x)Max.at( _Z,_2

(xi) At(2a,2a )maximum if  >0 and min. ifa <0.

(xii)Min.at (0,0)and (-i.o). (xiii) Min.at (2,0) and (-2,0).

-ac	 -be
(xiv)Min.at 

(
- 2

 + b 2 ' I+a 2 +b2

(xv) Max. at ( 4.0)  and nun, at (6.0).
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13.5. Lagrange's method of undetermined multipliers.

Let it = f (x1 , x2, x.. ..... .r,,) . . . (1) be a function of n variables

which are connected by m equations.

91(x1,x2,x3.....
g2 ( x1 ,x2.x3 ......x,,)=O	

.. .(2)

gm(XI,3(2, X3 .....

We have in (< n ) equations in n variables given in (2), so only

n - m variables are independent.

For it to be maximum or minimum_we should have

dud.+----th+....+---d)cO.
ax1	 a	 ax,,

Also theequatlonn(2)giVe,

ax,	 a.	 ax,,

dg =	 cbj +	 dx + .... +	 = (1

	

ax1	 a	 ax,,

Multiplying the equations in (3) by I, A1 , A2. .... .A,,, respectively and

adding we get

Fdx 1 +F, ('r 2 1" dx,=O

	where F = --- + A1	 +,1"392 + . .. + A,,,
aX, .	 ax

(k = 1,2 .... . n).

Them quantities A I , A.. .... .A ,,, are at our choice. Let us choose

these quantities so as to satisfy m linear equations

F 1 =O, F2=O,...F,,,=O

Then the equation (4) hecomes

	

F,,,.. 1 dr,,, 1 + F,,, 2 d4,,, 2 +... + F,, dx,, = 0	 ... (6)
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We have already noted that only n - in variables are independent.

To be specific let x,,,, 1 . x,,,2.....Jr. be these independent variables.

Since the quantities dx,,,., dr ,,, 2 .... . dx,, are all independent,
their coeficients must be separately zero.

Thus we get 11 — in extra equations

= 0, F,,,., = 0.....F,, 	 . . .	 (7)

Thus froni (2), (5) and (7) we have n + in equations

g 1 =0, gO,...g,,,=0

F 1 = O. F,	 0. ... F, = 0.

From these equations we can find the multipliers A	 2 ......A,,,.
and variables.' , x, ,...,x,, for which u is maximum or minimum.

10.06. Illustrative Examples

Ex. 1.	 Find the ,nini,nwn value of x2 +	 + z2 , subject ot the condition

2x+3y+5z=30

Let u=x2+y2+z2

and	 2x+3y+5z=30	 . . (2)

Fora maximum or a minimum value of u, du = 0,

i.e., 2.Lr + 2ydv + 2zdz = 0,

i.e., xdx+ ydy+ zdz= 0.	 . . . (3)

Taking differentials we get, from equation (2),

2dx+3dv+5dz=0.	 ... (4)

Multiplying (3) by I, (4) by A and then adding we get

(x+ A )dx+(y+ a)dy+(z+ 5A)dz= 0

Equating the coefficients of dx, dy, dz to zero we get,
x+2A,r O,	 . . (5)
y+3A=0,	 ... (6)

z+5X=0,	 . . . (7)
From the equation (5),(6) and (7) we get

x _ y _ z 2x+3y+5z 3015

2 352.2+a3+5.5 38 19
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i.e., x=-, y = 4. z=.
From the equation (5), A= - -fe.

u has an extreme value when x=4. y=-, z=.
From the equation (2), one of the three variables, say,z can be expressed

as a function of two independent variables x,, that is, z = 6— x - y.

az 2 az 3
ax 5 ' ay 5

Now,	 = 2x+ 2z = 2x—
ax	 ax	 5

au	 az -	 6z
- = 2y+ 2z— = 2y--
ay	 ay	 5

a 2 1i	 4 a	 8 58-=2--- -2+---,
ax2	 5 a	 25 25

a 2u 6 a 12
axai, —5 —ax 25'

a2u 
- 2  

6az	 18= 68
ay2	say	 25 25

a 2u a 2u ( a2u25868 (12\2 152

I-j =•_) =7>o•

a2ti
Also —>0.

ax2

uisminiinumwhen x, y -, z=	 and this niinjmum19
value of u is

36' +4 + 75f - 855C
361°

EX-2. Find the maximum value of x2 y3 z4 subject to the londition

x+ y+ z= 18.
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Let u=x2y3z4.

lag u= 2log x+ 3log y+ 4log z.

Taking differentials we get

du 	 3 4
—=—dx+—dyi--dz
U X	 J	 Z

For a maximum or minimum value of u, iu = 0.

•	 x+dytdz=O
•. x	 y	 z

From the relation x+	 z 18

we get	 dx+dyidz=O

Multiplying (2) by 1 and (4) by A and adding we get

tX )	 jJ )	 (Z ')

Equating the coefficients of dx, dy, dz to zero we get

- + x =0.
Y

-+A=O.
z

From (5), (6) and (7) we get

2_342+3+4_ 9=1

x y z x+y+z 18 2

i.e.,	 x=4, y=6. z=8, and A= — .

From (3) one of the three variables, say, z can be expressed as a
function of two independent variables x, y,

i.e.,	 z=18—x—y.

1
ax	 '

(5)

(6)

(7)

(1)

• (2)

• . (3)

• . (1)
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Now

	

	 2,c?z4+4N2y3z1_z

= 24z4 - 4x2y3Z3.

-=3x2y2z4+4x2y3z3
ày

=

dx

	

ax,	 dx

= 22--2JI+12Y3Z2

=22-16'qjY+12y32

=2yY(2-thcz+6J).

= 6y 2 z4 + 8xv3 z 3 	 -12x2y2z3 - 12x2y3z2
a 	 a 

= 6 2 z4 8 3 z3 - 12x2 y 2 z 3 + 12x2y3z2

= 2xy 	 _4yz_6xz+6xy).

6x2 yz -12x2 y2z 3 -12x2y2 z3 +12x2y3z2
a y•

6x2z2 
(2 - 4yz + 2y2)

For x=4, y6, z=8.

=-, 92 y3Z2, 	 =-96x. 2z2 ,	 .. = -336x2yz2.
dx.	 àxdy	 ày

32u 
a2  (22

= (-192 )y 3 z 2 (-336 )x2yz2 - (96xy2z2 )2
3X2 aY2	 axayj

=192336 2y4 z 4 -96 96x2y 4z4 >0.

a2
Also —<O.

ai
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u is maximum when x= 4. y= 6, z= 8 and the maximum

value of u is 426384

EL 2. Prove that of all rectangular parallelopiped of same volume, the
cube has the least surface-area.

Let X. y. 2 be the length of three cotcrminous edges of the
rectangular parallclopiped. The volume is given by	 -

xyz= cL(given).

IfS he the surface-area then

S=2(yz-t-zx-i-xy)

and we are to minimize S subject to the condition (1).

Fora maximum or a minimum value of 5, dS = 0.

(y+z)th+(z+x),f(X+y)dZO

Also, from (1), yzdx+ zxdy+ xydz= 0.	 - (4)
Multiplying (3) by I, (4) by A and adding we get

(y+ z+Xyz)dx+(z+X+zK)dy+(x+ y+Axy)dz= 0

Equating the coefficients of dx. dy, dz to zero we get

y+z+Ayz=0	 -. (5)

z+x+Azx=O

x+y+Axy=0

1	 I = 1 + I = 1	 1
—+———+— (=-)
Y Z 2 X 	 y

1	 1	 :i	 \1
Le.,x=y=z=(jz)3a

xyz

that is, all the edges are equal.

Front 	 one of the variables, say, z can be expressed as a function of
the independent variables x, y.

(1) gives yz+xq-=O.	 i.e.,
ax 	ax

az
Also	 __.__ -

Il
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as	 dz
Now —=2 y—+z--x- —+y

dx	 dx

=2{ (+z)+(x+)(-)}

2	 (x-z)y (	 yz
=-(xtj+xz-zx-yz) =2	 =2j y--

x	 x	 x

d 2 S2yz 2ydz
dx2 x2 _x TX

2yz+ .! -
I?- xxx2

o.:, 4zxSimilarly
d 

= —
x2 y2

i--=21
x xdy

=21 1-^-	 =2.
x xy

For x= a, Y = 0, z= a,

a 2 s	 a2s	 a2s
3T4'	 dxdy2

d 2 Sd 2 S	 d2S 
2

=16-4=12>0.2 dxdy

d2s
Also —>0.

Therefore, when x= y= z, that is, when the rectangular parallelopiped
is a cube, its surface-area, is minimum.
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EXAMPLES - XIII (B)

1. ¶indthe minimum values of x 2 +y + Z2, when

(i) x+y+z=15, (ii)	 yz + zx + xy = 12., (iii) 	 .xyz=8.

2. Find the extreme values of yz + 3zx + 2.y where x + y + z = 1.

3. Find the extreme values of .xy where x2 + . y + y 2 = 1.

4. Determine the maximum and minimum values of 7x 2 + 8xy + y 2 when

x2+y2=l.

5. Find the minimum distance of the point (i, 2, 3 ) from the plane

x + y - 4z = 9.

6. Which point.ofthesphere x2 +	 + z 2 = 1 is at a maximum distance

form the point. ( 2, 1, 3 )

7. If x, y, z are the angles of a triangle, then prove that the functions

(I) sin x sin y sin z;
Ir

(ii) cos x cos y cos Z ; are both maximum at X y Z =

8. Find the maximum value of the function x2 y 2 z 2 . subject to the

condition x 2 +	 + z 2 = c2.

9. Find the rectangular parallelopiped of maximum volume that can be

inscribed in the ellipsoid	 +--- + --= I.

10. Divide the number 27 into three parts x, y , z such that

2yz + 3zx + 4.y is maximum.

ANSWERS

1. (i) 75for (5,5,5);	 (ii) 12foi(2,2.2), (-2,-2,-2);

(ii) 12 for (2,2,2),(-2,-2,2),(-2,2,-2), (2,-2,-2).

2. - ) (max.) at (1,o,.);nomin.

3. —1 (min.) at (1, —1) and (-1, 1);

(max.). at( _j.r._jr) and	 4. 9._I. 5. 'Iii.

6	
2	 1	 3 ' 	 8.	 C	 8abc9.

23' 23' 23
I	 TIT 714 714	 27	 3,F3
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14.1. We shall now consider certain properties of curves represented by
continuous functions If the equation of the curve is given in the explicit
form y =f (x), we shall assume that f(x) has a derivative at every point,
except, in some cases, at isolated points. If the equation of the curve is

given in the implicit formf(x, y) = 0, we shall assume that the functionf(x, y)

possesses continuous partial derivatives f, and f, which are not
simultaneously zero. When the eqution of the curve is given in the
parametric form x= (t)' y= tj,(t ), we shall assume that $'(, )and ,'(i)
are not simultaneously zero.

14.2. Equation of the tangeut.

Del. The tangent at? to a given curve is defined as the limiting

position of the secant PQ (when such a limit exists) as the point Q
approaches P along the curve (whether Q is taken on one side or the other
of the point P).

(i) Let the equation of the curve be y =f(x) and let the given point P
on the curve be ( y) and any other neighbouring point Q on the curve be
(x+,+y+y)

The equation of the secant PQ is,(X. Y denoting the Current

co-ordinates)

Y-y= Y+A y - y(X -X)=A1(X-X)

the equation of the tangent P is

Y - v= Li
d 

provided dy/dx is finite.

Thus, the tangent to the curve y =f() at (x, y) (not parallel to the
y-axis)is

Y-y=-(X-x).	 ...	 (1)
dx

(ii) When the equation of the curve is f (x, y ) = 0-

Since = -5-. ( j- ,, ^o),
dX
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the equation of the tangent to the curve at (x, y ) is

(X-x)r+(y-y)r=o	 (2)

(iii) When the equation of the curve is x = 4(t), y = ji(t )

since	 t"(t)#O.dr dif di o'(')
the equation of the tangent at the point 't' is

Y-W(t)=-?.{ x -(i )},	
(3)

i.e., '(t ) x —'(: ) y =o(t )'(, )- (t )'(t ),

Note!. When the left-hand and right-hand derivatives at (x, ),)are infinite,
with equal or opposite signs, the tangent at (x,y) can be conveniently
obtained by using the alternatives form of the equation of the tangent

X—x = (Y—y)(d/d),) which can be easily established as before.

[Sce Ex. 32, Examples XIV(A) I

Note 2. In the notation of Co-ordinate Geomctiy, the equation of the tangent
to the curve y = 1(x) at ( 1 . y 1 )can be written as

Y — v,

in the application of Differential Calculus to the theory of plane curves,
for the sake of convenience, the current co-ordinates in the equation of the
tangent and normal are usually denoted by (X, Y) while those of any particular
pohlt are denoted by (x, y). The current co-ordinates in the equation of the
curve are however, as usual, denoted by ( XI, Y1 ).

-
43.	 Geometrical meaning of dy

dx

rig 14j.I
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The equation (I) of the tangent can be written as

Y = 
dy. 

X+ Y-X 
dy)

	

dx	 dx

wh i ch being of the form y = t  + c, the standard equation of a straight
line, we conclude that

dy
is the ,n' of the tangent at (x, y).

dx

If is be the angle which the positive direction of the tangent at P

makes with the positive direction of the x-axis, then tan i = m =
dx

Hence, the direvative 2LV at (x, y) is equal to the trigonometrical
dx

tangent of i/zn angle which the tangent to the curve at (x, y) makes with

the positive direction of the x-axis.	 I [See Art. 7.14]

Note 1. It is customary to denote the angle which the tangent at any point
on a curve makes with the x-axis by iV.

Note 2. The positive direction of the tangent is the direction of the
arc-length s increasing. Henceforth, this direciton will he spoken of as the
directio'n of the tangent or simply as the tangent.

Note 3. tan 4i ,i.e.,

	

	 is also called the gradient of the curve at the pointdr
P(x,y).

Note 4. The tangent at (x, y) is parallel to the x-axis if i, = 0, i.e., if

dy
	tan, = 0,i.e.,if	 = 0.

th

The tangent at (x, y). is perpendicular to the x-axis (i.e., parallel to the

y-axis)ift/i = - 1r ,i.e.,if cot V = 0.

	

if 
/dy	 dx

or,-=0.

	

Ids	 dy

14.4 Tangent at the origin.
If a curve passing through the origin h, given b y a rational integral

algebraic equation, the equation oft/ic tOo n (or tangents) at the origin
is obtained by equating to zero. the tc,?n of the looe.s-' degree in the
equation.
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Let the equation of a curve of the n-th degree passing through the
origin be

ax + b 1 y + a2 X2 + b2 xv + c2 y 2 + ... + a,,x" +.•• +k,, y' = 0

(I)
Let P (x, y) be a point on the curve near the origin 0. The equation of

the secant OP is Y =2X

the equation of the tangent at 0 is

Y = Li	 X = mX (say) . 	(2)
OX

y-0

Thus, the 'm' of the tangent at the origin is Li -

- -

CASE!. Let us suppose that ,n is finite, i. e., the y-axis is not the

tangent at the origin.

(i) Let us suppose b 1 * 0

Dividing (1) by x, we get

a t +b1--+a2x+b2y+ei'..+ ......=0

Now, let x—* 0, y - 0, then Li(!.r)= in.

a 1 + b 1 m = 0, the other terms vanishing.

(3)
From (2) and (3), the equation of the tangent at the origin is

atX+bjY=0,

or, taking x and; as current co-ordinates, a .v + , i y = 0.
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(a) if b1 = 0 .then from (3) it follows that a 1 = 0; now in this case,

let us suppose that b2 and c2 are not both zero. Then, the equation of the

curve (1) can be written as

a2 
X2 +b2 .xy+c2 y 2 + a3x3 +	 0	 ...	 (4)

Dividing by x 2 , a2 +b2 + 2 [) +a 3 x+ ......=0.

When x -4 0, y —p 0, we have

a 2 + b2 m + c2 m 2 = O,the other terms vanishing....(5)

From (5) it is clear that there are two values of m and hence, there are
two tangents at the Origin and their equation, which is obtained by eliminating
,n between (2) and (5), is

a 2 X 2 + b,XY + c2 Y 2 =
or, taking x and  as current co-ordinates,

a2x 2 +b2xy+c2 y 2 = 0. -

If a1 = b1 = a2 = 112 = c2 = 0 , it can be shown similarly that the rule

holds good then also; and so on.

CASE II. When the tangent at the origin is they-axis, then Lt (x/y ), as .r

and y both -9 0, being the tangent of the inclination of the tangent at the
origin to the y-axis, is zero. Hence, dividing throughout the equation of the
curve by y, and assuming a 1 * 0, and making x and y both approach

zero, we find b 1 = 0 . Hence, the-equation of the curve now being

a 1 x + a 2 x 2 + b2 xy + C2 V2 + ..... = 0

we see that the theorem is still true in this case.

Illustration: If the equation of a curve be x 2 - y 2 +x3 +3x 2 y - y 3 = 0

the tangents at the origin are given by x 2 - y 2 = 0, i.e.,x + y = 0 and

x—y=0.

14.5. Equation of the normal.

Definition. The normal at any point of a curve is the straight line through

that point drawn perpendicular to the tangent at that point.

Let any line (not parallel to the co-ordinate axes) through the point be

(x,y)be

Y - y = m ( X - x).
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This will be perpendicular to the tangent (not parallel to the co-ordinate
axes) to the curve y = f (x ) at (x, y ).

dy	 dv	 Idyi.e.,to Y - y = — (x - x ) if in -i-- = —1 , i.e. if m - 1/ -,

Substituting this value of in in the above equation, we see that the normal
to the curve y = f (x ) at (, y ) (when not parallel to the co-ordinate
axes) is

dy 
(Y —y )+ (X—x)=O	 ...	 (1)dx

Similarly, if the equation of the curve is f (, y ) = 0 ,the equation of the
normal at is

X—x - Y 	
2

fy	 ()

and ifthe parametric equations ofthe curve are x =Ø(t 	 y = v'(' ),the
equation of the normal at the point 'I' is

)x+'(z )y = (, ) Ø'(z )+ V (' )w '( i ) ... (3)

Note 1. When the tangents are parallel to OX and OY the nor mals are
X = x and Y = y respectively.

Note 2. The positive direction of the normal makes an angle + 1 It with
the tangent, or I it + 41 with the x-axis.

14.6. Angle of intersection of two curves.
The angle of intersection of two curves is the angle between the

tangents to the two curves at their common point of intersection.

Suppose the two curves f (x, y ) 0, 0 (x, y ) = 0 intersect at the
point (x, v).

The tangents to the curves at (x, y) are

Xf,.+Yfy—(xf+yf)=O. [by*142(2)]

i- yø — (xO + y )= 0.

The angle a at which these lines cut is given by
f'P -

tan a=
+ fvøv

Hence, if the curves touch at (x, y ), a = 0, i.e.. tan a = 0

i.e.. .t;o. =	 i.e., f, /0, =
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and ((they cut orthogonally at at (x, y), a = 	 ,i.e., cot  =

i.e., f,b.+fy4v=O.

Note. If the equation of the curves are given in the forms y = 1(x),

y = 4> ( x ) the angle of their intersection is given by tan 	 . ,,
l+fx)4>x

Hence, the curves cut orthogonally if f'(x ) '(x )= —1.

14.7. Cartesian Subtangent and Subnormal.

Let the tangent and normal at any point P ( x, y ) on a curve meet the

x-axis in T and N respectively and let PM be drawn perpendicular to OX

r5. --

Then, TM is called the subtangent, and MN the subnormal at P.

In the right-angled triangles PTM, PNM,

since LNPM —LPTM =/,, and PM = y,

sublangent = TM = y cot ji = 
Y/(dy

dx

subnormal = MN = y tan i/i = y ddx

Note. PT and PN are often called as the length of the tangent and the

length of the normal (or sometimes simply tangent and normal) respectively.

Thus, from g PTM and PNM.

PT=y cosec	 yJ	 2 s = y,Ji+(i/y)	
(y">2)

2
PN=ysec
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14.8. Proolof 
Lt chordPQ 

=
Q-P arcPQ

Let PP 1 , T, P ..... P,, - , -Q be the sides of an open polygon
inscribed in arc PQ of the curve y = 1(x). If the sum of the n sides

tends to a definite limit when n —*	 and the length of each side
tends to zero, that limit is defined as the length of the arc PQ.

.P2

2=S
Fig. 14.8.1

Let 8 1, 0...... . 0,, be the angles which the sides make with the chord

PQ, and let f'( ,% ) be continuous throughout PQ.

Projecting the sides on PQ, we have

PQ=proj.PP 1 +proj.P1P2+...+proj.PQ

='PP i cos6 1 + P 1 P, cos0 2 + ...+ P, Qcos8

it follows that PQ <PP +P P 2 +...+P,,_1Q

and > ( p 1 + P 1 p 2 + .. . + P,, 
I Q ) cos o

where 0 isumei-ical ly the greatest of the angles 8 1, 8 "...' 0

Hence, cos 0 <

	

	 < I.
PP1+P1P2+...+pQ

Since the chords PP. P1P.. .... .P, -, Q as well as PQ are parallel
to the tangents to the arcs at points between their respective extremities (by
the Mean Value Theorem), it follows from the continuity of f' ( x) that the
numerical value of 8 can be made as small as we please by taking Q
sufficiently near to P, and, in the limiting position, cosO -4 land

PP1 —* arc PQ.

chord PQ
Li

(2-.P arc PQ
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14.9. Derivative of arc-length (Cartesian).

Let P(x,y)be the given point, and Q ( x + Ax, y+ ,iy) be any
point near P on the curve.

rig i'.Y.i

Lets denote the length of the arc A? measured from a fixed point A on

the curve, and let .c + js denote the arc . AQ. so that arc PQ = As Here,
s is obviously a function of x, and hence of y. We shall assume the
fundamental limit

Lj Chord PQ =
Q.-.P are PQ

From the figure, (chord PQ)' = PR' + QR 2 = (Ax )2 + (Ay )2.

hord PQ•
As )	 Ax)	 Ax)

Now let Q - P as a limiting position; then Ax -, 0 and we have

(dsY	 (a,:2
I — I =I+I---I	 •..	 (1)

dx)	 dx)

or	
=I+(_!L)2	

(2)

ds

OX	 dx

ds dsd	 .	 dx
Since - - 	

we get, on multiplying both sides of(2) by -.
dy. ds dy	dy

ds	 [ ( d̂.\
	 (3dy	 y)
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€or. Multiplying both sides of (1), (2) and (3) by d.c 2 . dx, dy, we get the
corresponding differential form

ds2 = dx2 + dy2;

2

ds1+(

dx; ds=	
dx) 

dy.

	

dx)	 \I	 (dy

14.10 Values of sin ji, cos w.

From tPQR [See Fig., 14.9], sin QPR =
PQ As

In the limiting position when Q - P, the secant PQ becomes the

As
tangent atP, ZQPR	 and	 0 and	

=	 -	
1.

PQ chord PQ

sin ty = Li	 =	 .	 ...	 (1)
A-0 As ds

	

Similarly, cost/i = Li	 =	 ...	 (2)
-	 -.O As	 ds

	

Ay-	 dx
Since tan Vand cot i = -, we get, from (2) and (3) of

dy
dxdx

Art. 14.9, - = Sec V. - = coscc w,
(Lx	 dy

	whence also cos ir, sin	 are obtained.

dx
2 ( dy
+-J	 1.	 ...	 (3)

()
dx dx ds . dy_dy dx

Cor.!fx=(1)(t), y='qs(t),—=—'—.-----
di dx di di d.c di

(
dX)2 (dy'\2(dx'2y'2'2
d 	 tdi)	 ds) (ds)	 dt

(dx '\2 (dy "2 (dsY
I—I +1—I = 1—I	 ...	 (4)
Idt)	 (dt)	 Idt)

Note. Relations (2) and (3) of Art. 14.9 can also be deduced from the values
of sin i, cos ti, tan t41,

14.11. Illustrative Examples.

Ex. 1. Find the equation of/he tangent at (x, y) to the curve

,	 '2
(x/a)' +(y/b) =1.
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Here the equation of the curve js f(x,y)(x/a)4 -i-(y/b) —1=0.
The equation of the tangent is

(x —x)f +(—y)j =0,

i.e.,

i.e., Xx/a +Yy /bi =(x/a) +(y/h),

I
i.e., Xx / a' i-Yy

A,
7 b

2
' 1.

Note. The equation of the tangent should be simplified as much as possible
as in the above example.

Ex. 2. Find the angle of intersection of the curves X2 - y2 =a 2  and

x 2 +y 2 =a 2 ,h. 	[ Patna, 1940]

Adding and subtracting the equations of the two curves, we find their

	

common points of intersection given by 2x2 =a2(,J +	 i.e..

and 2y2=a2(j_1),i.e., y=±aJ_i)/.J.

Since the equations of the curves can be written as

f(x,y)=x2 —y —a 2 =0 and ,(x, y)x 2 + 3, 2 _a2=O

hence if a be the angle of intersection of the curves at (x, y), we have, by
Art. 14.6.

tan a = 2224(_ 2 = ±2xy =1

2x.2x + (-2y)(2y) x2—y2

on substituting the values of x and y found above. Hence, a

the curves intersect at an angle of 45.

.Ex. 3. Find the condition that the conics

ax  +by 2 =1 and a1x2+b1y2=1
shall cut orthogonally.

The equations of the conics are

f(x,y)ax 2 +by 2 —1=0,	 ...	 (I)

4(x, y)a1x2 +by 2 —1=0	 ...	 (2)

Now, the condition that they should cut orthogonally at (x, y) is. by
§14.6.
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LO, +f'4, =0,

i.e., 2ax.2a1x+2by.2b1y=0,

i.e., aa 1 x2 + bb, y 2 =0	 ...	 (3)

Since the point (x, y) is common to both (1) and (2), the required
condition is obtained by eliminating x, y from (1), (2) and (3).

Subtracting (2) from (1), (a—a 1 )x2 +(b—b 1 ) 2 =0	 ...	 (4)

Comparing (3) and (4), we get

a—a 1	 b—b 1 	I	 Ii	 1

aa 1	 bb,	 or, a	 a b1 b

which is the required condition.

Ex. 4. If x cos a + ysin a = p touches the curve

'=1
am b"'

show that (acosa)Ti +(bsina) i = p".	 [C.R 1996]

The equation of the tangent to the given curve at (x. v) by formula (2)
of Art. 14.2 is

(x x)mflx	 +(r- y) — -0,

i.e., X x'°/a" + Y y"' lb" = x"/a" + y"' /b" = 1	 ...	 (I) -

If X' cos a+ Y sin a = p	 ...	 (2)

touches the given curve, equations (1) and (2) must be identical.

	

- y"''/b'	 I
Hence,	 -.	 - -,cosa	 sina	 p

.xm_h /a_ t	 ym_h/b_l	 I
i.e.,	 -acos(X	 bsina	 p

	

acOSa (Y	 b sin a

a)	 p 'tb)

(acosa')'+1bsina' irir =1
I\	 p	 )	 t\	 1' )	

a)	 b)

i.e., (a cos a)+(b sin a) f ' = p'.
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Ex. 5. If x,, v, be the parts of the axes of x and y intercepted by the

tangent at any point (x, y) to the curve (x/a ) + (y/b ) = 1. show that

xjh/a2+y12/b2	 1

The equation of the tangent at (x, y) to the given curve is, as in Ex. 1.

	

__1/2	 _.t/l
Xx /a'+Yy /b'=l.

Where it meets the x-axis, Y=0. hence X =ax ,i.e., x 1 =ax' and
2	 2	 I

where it meets the y-axis,X=0, hence Yay ,i.e., Y1 =by.

±/	 2	 2
X1 

2/(12 
+ y1 2 /b2 = a 3 x 3 /a 2 +b 3 y 3 /b 2 =(x/a) 3 +(y/b) 3 = 1

EXAMPLES - XIV(A)

1. Find the equation of the tangent at the point (x, y) on each of the
following curves:

x2y2	
(ii)

	

(iii) X+)'' =a3	 (iv) x3 -3a.xy+v 3	 0.

(v) (x2+y2)2=a2(x2-y2)_-.

2. (i) Find the equation of the tangent at the point 0 on each of the
following curves:

(a) x=a cos O, y=b sin 6.

(Li) x = acos3 9, y = bsjn3 0.

(c) x=a(6+sin8), y=a(1-cosO).

(ii) Find the equation of the normal at 'r' on the curve

x = a ( 2 cos t + cos 2t ), y=a(2 sin i- sin 2t).

3. (i) Find the tangent at the point (1, -1) to the curve
X3 +xy2 -3x2 +4x+5y+2 = 0.

(ii) Show that the tangent at (a, b) to the curve

(x/a )3 +(y/b )3 = 2 is x/a + y/b = 2.	 [C.? 19431

(iii) Show that the normal at the point 0 = - yr on the curve
X = 3 cos 0 - cos 3 6 , y = 3 sin  - sin 0 passes through the
origin.
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4. (i) Find the tangent and the normal to the curve

—2 )( x --3 )- x + 7 = 0
at the point where it Cuts the x-axis.

(ii) Show that of the tangents at the pints where the curve

Y = (x — i )(x— 2 )(x-3) is met by the x-axis, two are parallel,

and the third makes an angle of 135 with the x-axis.

(iii) Find the tangent to the curve xy 2 = 4 (4 -. x ) at the point where

it is cut by the line y = x.

S. (i) Find where the tangent is parallel to the x-axis for the curves

(a) v = x 3 -- 3x2	a

	

9x + 15	 (b) r' + 2/zxy + /,y
2 = 1.

(ii) Find where the tangent is perpendicular to the x-axis for the curves

(a) y 2 = x 2 (a - x).	 (I,) ) + 2/ixy + by 2 = 1.

	

(c) y= (x-3)2(x-2).	 [C.R1935]

(di) Show that the tangents to the curve

3x2 + 4xy + 5y 2 —4 = 0
at the points in which it is intersected b y the lines

3x 4- 2y = 0 and 2x -F 5y = 0
are parallel to the axes of co-ordinates.

(iv) Find at what points on the curve
y = 2x 3 - 15x 2 + 34x —20

the tangents are parallel to y + 2x = 0.

(v) Find the points on the curve y = xZ + lv -t- 4 the tangents at which
pass through the origin.

6. Show that the tangent to the curve -t v3 = 3uy at the point other
than the origin, where it meets the parabola y2 = ax ,is parallel to the
v-axis.

7. Prove that all points of the curve

= 4a{x-i-a sin (x/a))
at which the tangent is parallel to the x-axk lie on a parabola.

-	 [C.P.19981

8. Tangents are drawn from the origin to the curve y = sin x. Prove that

their points of contact lie oo .vy 2 = x2 - 1
,2 -

9. (i) Show that the curve (x/a 	 -F ( v/b )' = 2 touches the

straight line x/a + y/b = 2 at he pont (a, b), whatever be the
value of a.
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(ii) Prove that	 +	 1 touches the curve	 + log l.') = o.a b	 a
10. (i) If Li+ my= 1 touches the curve (ax )n +(by )f = I, show

	

• that (1/a)"-' +(m/b)-' = 1.	 [8.? 19891

(ii) If lx + my = I is a normal to the parabola y 2 = 4ax, then show

that a1 3 +2a1m 2 =m 2 .	 [ VP 19991

11. Prove that the condition that x cos a -t v sin a = p should touch

= a'" is p""'m"n" (m + a )"""" sin" a cos'" a.
12. Find the angles of intersection of the following curves

'	 2	 2	 2	 2	 '(0 x – y = 2a and x + y = 4a-

(ii) x2 = 4y and y(.2 + 4) =8.
Y = x3 and 6y =7—X2..

x2 - y2	 x2	 v213. (1) Prove that the curves — + — = I and ----- + -- = I will cut
a	 b	 a	 b

orthogonally if a -- h =a'—h'.[C:P 1980, '902007 VP. 20001

(ii) Find the condition that the curves a? + by -3 = 1 and
a? + h'v 3 = 1 should cut orthogonally.

(iii) Show that the curves x 3 -- 3xy 7 = —2 and 3x 2 y—y 3 =2 cut
orthogonally. 	 [C P. 20061

14. (i) Prove that the sum of the intercepts of the tangetit to the curve
+ .jy = la upon the co-ordinate axes is constant.

(B.P. 1993
(ii) Find the abscissa of the point on each of the curves

(a) ay 2 = x3.

(h) FU = a + x, the normal at which cuts off equal intercepts
from the co-ordinate axes.

15. Show that the portion of the tangent at any point on the following
curves intercepted between the axes is of constant length.

0) r + y = a ,3	 C.?. 1940]

(ii) x = a cos 3 0 , v	 a sin 3 0
16. if the tangent at (x,, y,) to the curve .v3 4 3.3	 a 3 meets the curve

again in Or, 32' show that X2 /-, +	 = — 1
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17. (i) Show that at any point on the parabola 1,2 = 4ax ,the subnormal

is constant and the subtangent varies as the abscissa of the point
of contact.

(ii) Show that at any point on the hyperbola xy = ,the subtangent
varies as the abscissa and the subnormal varies as the cube of the
ordinate of the point of contact.

18. Prove that the subtanent is of Constant length for the curve
logy= .v log a.

19. Show that for the curve by 2 = (x + ) 
3 the square of the subtangent

varies as the subnormal. 	 C. P 2006 J

20. Show that at any point on the curve x' = k- -Y2"" y2" the m' power
of the suhtangènt varies as the n" power of the subnormal.

[C.P. 1995, '97.2002, 2004]

21. For the curve X")" a"', show that the subtangent at any point

varies as the abscissa of the point. 	 -

22. Show that for any curve the rectangle contained by the subtangent
and subnormal is equal to the square on the corresponding ordinate.

[C. P. 2005 1

23. Find the lengths of the subtangent, subnormal, tangent and norn3al of
the curves.

(1) x=a(9+ sin 0), y=a(I— cos 0)at'B'

(ii) x=a( cos t+l sin l). y=a( sin z — t cos t)at':'.

I C. P 20061

24. Find the value of i so that the subnormal at any point on the curve

xv" = a	 may be constant.

25. Show that in any curve

subnormal = length ofnormal'1

subtangent	 I\ length of tangent)

26. Show that the length of the tangent at any point on the following
curves is constant

12	 ,	 a	 a_2_y2
(I) x = ja - Y2 - log

2	 a+a_y2

(ii) x = a(cost + log tan -r), y = asinl.

(iii) s = a log( a/v ).
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27. (i) If j, and p, be the perpendiculars from the origin on the tangent

and normal respectively at any point (x, y) on the curve, then show that

p 1 	 x sin I,ff - y cos i, p2 = x cos tjl + y sin !1,

where, as usual, tan ty = dy/dx.

(ü) If, in the above case, the curve be x + yi =	 show that

4p 1 't-p, =a

28. In the curve -T y" = a'" show that the portion of the tangent

intercepted between the axes is divided at its point of contact into

segments which are in a constant ratio.

29. (i) In the catenary y = c cosh (x/c )show that the length of the

perpendicular from the foot of the ordinate on the tangent is of

	

constant length.	 [C.? 19431

(ii) Show that for the' catenary y = c cosh (xfc ) the length of the

normal at any point is y2/c.

30. Prove that the equation ofthe tangent ' to the curve x = af ON (t),
y = aØ (i)/' (i) may be written in the form

	

X	 y	 a

f(r) 00 ,j,(t) =0

f' (t)	 '(z) v"(:)

31. Find the equation of the tangent at the origin of the curve

y=. 2 sin(1/x) for x'*O

=0	 for x=O.

32. Show that for the curve ) = x3 the tangent at the origin is x = 0,

although dy/dx does not exist there.

33. If a and 0 he the intercepts on the axes of x and y cut off by the

• tangent to the curve (x/a)" + (y/b )" =1 then show that28

(a1a)+(b1/3)il

ds
34. Find '	 for the following curves:

dx

(1) y 2 =4tir.	 (ii) x 3 +y' ra'.

(iii) y - a(e" +e

•	 (iv)x=a(l- cos O),ya(O+ sin O)
29-
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35. If for the ellipse x 2 /a 2 + y2 /b2 = 1, x = a sin 0 .show that

ds
do 

=al_e2sin2O

36. Two curves are defined as follows:
(I) x=t

y=t 3 sin (l/t), for i^,0

=0 for t=O.

(ii) x = 2t + 2 sin (I/i ), y = 2 sin (i/i ), for ,	 0

x=0,	 y0 for ,=O

show that, for the first curve, although d/dt . dv/dt are continuous
for : = 0, the cun'e has no lange,?t at the point; and for the second
curve, although dx/dt dy/th are not continuous fort = 0, the curve
has a tangent at the point.

ANSWERS
XrYy	 X"", Yv"1. (i)	 = .	 (ii)	 =a	 1'	 a

(ili) XX 1, +}	 05.(iv) X (x2_ay)+y(2_ax)axy.

(v) x	 + y2 )- a2x }+ Y2y (	 + 3,2 ) ay }= a2(x2 - 2 )•
2. (t) (a) -x	 ycos 0 + - sin 0 I.

a	 b

(b) bX sin O +aY Cos 6 absinU Cos O

(c) X sin -0 - Ycos 0 = aO sin -0

(ii)	 Xcosi - Ysin -- t =3a COS -t.

3. (i)	 2x + 3y + I = 0.
4. (i) Tangent x-20y-7 = 0; normal 20x+ y- 140 0.

(iii) x+y-4=O

5.	 i)	 (a) (3,-12), (-1,20).

(b) Where ax + hy = 0 intersects the curve.
(ii) • (a) (O.0),(a,O).

(b) Where hx + by = 0 intersects the curve.
(c) No such point exists

(iv) (2,4); (3,1).	 (v) (2,14): (-2,2).
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12. (i)	 ,r.	 (ii)	 -1

13. (ii) aa' (b - b' ) + bb'(a - a' )l = 0.

14. (ii) (a) A a	 (b)	 ±

23. (i) a sin 0, 2ain 2 1 0 tan . -0, 2a sin O, 2asin +0 tan

(ii) y cot I, y tan I, y cosec t, y sec I

24. –2.	 31. y=0.

34 (i)(Ii)	 (iii)	 (iv)

14.12. Angle between Radius Vector and Tangent.

If 0 be the angle between the tangent and radius vector a, any point

on the curve r = f (0 ), then

rd0rdO	 drtanZ = -, sit! = - cosø
dr	 ds'	 ds

	

Let P(r,0 ) be the given point on the curve r	 j (0 ), and
Q ( r + Ar, 0 + 46 )be a point on the curve in the neighbourhood of P.
Let QP be the secant through Q, P. Draw PN perpendicular on OQ.

Then, LPQN=AO, PN = ,-sin4O, ON=r cos 40.

Let 0 be the angle which the tangent PT at P makes with the radius
vector OF, i.e., LOFT =

From the right-angled E PQN,

tan PQN PN = PN
	 r sin AO=— 	 =

NQ OQ – ON. r+Ar– rco.sAO

r sin AO	 -	 rsin40

= r( 1 - cos 46) + Ar - 2r sin 2 40 + 4,

	=	 r.(sinzi0/A0) -

--rA0(sin .40/-A0)2+(4r/49)

(i.e., dividing both numerator and denominator by 40 1

Now let Q -+ P, then 40 ..-) 0, and secant QP becomes the tangent
PT, and LPQN -9 LOFT, i.e., 0.
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(,J
	

A

Fig 14.12.1

	

tanO = Ld	
r.(sin49/48)

M?-O ,rziO (sin --A01-A0)2+(4r1A6)

	

/dr .	 dO
= ri - ---- (i.e.. = r/r ) = r

idO	 dr

	

I since Li (sin AO/AO ) and Ii (sin - A19/1 	 )are each equal to 1!.

Now, lets denote the length of the arc AP measured from a fixed point

A on the curve and lei s + As denote the are AQ., so that the arc

PQ A s. Here s is obviously a function of 0. and hence of i:

sin PQN= PN r sin AO 46 As
—=

-	 -	 I'Q	 46	 As PQ

Now let Q —s P, then 40 --. 0, As -4 0 and then

As/PQ = (arc PQ)/(chord PQ) -9 1.	 -

sin O= Li r 46
	 dO

—r—

	

-.o	 As	 ds

Again, cos PQN =	 =	 ---	 =
PQ	 PQ	 PQ

= r(l--cosA9 )+Ar r.2sin 2 I 4O +4r

PQ	 PQ

(sin i. zie 2 46 As	 Jr As

	

= _i i17 0 .	 I	 -- + - -. -

	

2	 j.-A6) As PQ As PQ

Now let Q - P Then, as before,

.ir
cos Ø Li —=r dr--

	

-	 -o As	 ds
- Otherwisc:

	

-.	 dr rdO	 dr dO -dr

	

cosØ=cotØ - sinø	 --—
rdO ds	 dO ds ds
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Cor. 1. Form AOPT. ZPTX = ZPOT + LOFT

yO+f.

2Co2.	 + r 2( ')r. 	 = cos2 + sin' , =

14.13. Derivative of arc-length (Polar).

With the notations and the figure of the previous article, we have

PQ 2 = I'N 2 + QN 2 = ( rsifl 40 
)2 

+(r + 4r - rcos AU 
)2

=(rsin49)2 +(r.28in2+A0+4r)2.

Dividing both sides by (40 
)2 we get

PQ ..r2 1+ 1.r1--	 21

As 40)	 \ 40 )	
2	 40)

in the limiting position, when Q —3 P and AO--) O.

2

r+I'—-J	 (I)

dO)	 dO)

2

i.e.,ds = r 
+	

(2)do

dO 
Multiplying both sides of (2) by -,we get

dr

do
11+ r— I	 ...	 (3)

dr	 '	 dr)

Cor. Multiplying (1), (2) and (3) by dO 2 , 4[0, dr, we get the corresponding

differential forms
ds2 =dr2+r2d02.

ds=[]d0.

fl( ̂ dO"2
ds 1+1 r 	 I dr.

)

Note. Relations t2) and (3) can also be deduced from the values of sillk.

Cos 4t. tan 4.
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14.14. Angle of intersection of two curves (Polar)..
Suppose two curves r = f (o ), r = 0 (6 ) intersect at the point P

and let PT, , pi be the tangents at P to the two curves, and let
ZOPT1 =Ø 1 , ZOPT,=Ø.,

Fig 14.14.1

Then, if a be the angle between the two curves, a =	 -
tan Ø 1 - tan O,

tana= —
I + tan	 tan 0 2

Since tan	 = r/r = .f (0 )If' (a )and tan 0,	 r/r = 0 (0 )/(e).
we get

tan a = f( 0 )0'( o )- f , (0 ) 0 (0

1(0 )'(o )+o —)0 ( t ).

14.15. Polar Subtangent and Subnormal.

Fil

T



x
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Let P be any point on the curve r = f (o ), and let the tangent PT

and normal PN at P meet the line drawn through the pole 0 perpendicular

to the radius vector OP in T and N respectively.

Then OT is called the polar subtangen: and ON is called the polar

subnormal.

Since, LOPT = , OT = OP tan Ø = r.r -
dr

2d9
polar subtangent = r

dr
dr

Again, ON =OPtanOPN =rcotr--.
rdO

dr
polar subnormal=

dO
1 du	 ldr

Note. !fu=-,
r dO	 r2dO

ldO	 dO
P subtangent = -	 = -

14.16. Perpendicular from the pole on Tangent

Let p be the length of the perpendicular ON from the pole 0 on the

tangent PT at any point P

T
Fig 14.16.1

Then from A OPN, ON = OP sin 0.
p=r sin	 .	 ...	 (I)

I	 I	 2	 l
Again,	 = - cosec 0 =	 I + cor

p	 r	 r
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1
1
	1(dr't2
+-I-

r2	r2dO

1	 1	 1(drY
• —=—+—I—	 2P2	 r 2 r4dO

The symbol u is generally used to denote hr. the reciprocal of the
radius vector.

du_ I dr

dO	 rdO
Hence, the relation (2) becomes

2 (du'2
—=u + j	... 	 (3)
p2

14.17. The (p, r) or Pedal eqation of a curve.

The relation between the perpendicular (a) on the tangent at any point
P on a curve and the radius vector (r) of the point of contact P, from some
given point 0, is called the (p, r) or pedal equation of the curve with regard
to 0. Such equations are found very useful in the application of the principles

of Statics and Dynamics.

(i) Pedal equation deduced from Cartesian equation.
Let us take the origin as the point with regard to which the pedal

equation is to be obtained, and let .1 (x, y ) = 0 be the equation of the
curve.

The tangent at (x, y) is X f + Y , - (xi, +	 0.
If p be the perpendicular from the origin on it,

2 (xi +yf
'	 (1)

L 2 
+f

Also,	 y2 = 2 + 3,	. . .	 (2)

and	 f(x,y)=O	 ...	 (3)
If x and y be eliminated from (I). (2) and (3), the required pedal

equation is obtained.

(ii) Pedal equation deduced from polar equation.
Let us take the pole as the point with regard to which the pedal equation

is to be obtained, and let f ( r, 0 ) = 0 be the eqation of the curve.

Let p be the perpendicular from the pole on the tangent at (r,O ):

then
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f(r.O )= o;	 ...	 (1)

tan O=!i ,	 ...	 (2)
dr

prr sin	 .	 ...	 (3)

If 0 and 0 be eliminated front 	 (2) and (3), the required pedal

cquatioh is obtained.

Note!. When in any case nothing is mentioned about the given point

with regard to which the pedal equation is to be obtained, the given point is

to be taken as the origin in the Cartesian system and the pole in the Polar

system.

Note2. In some elementary cases, pedal equations can be easily obtained
from geometrical properties. I See Ex. 6of Art. 14.181

U18. illustrative Examples.

Ex. I. Obtain the value of sin 4,, ens 4,, tan ID and arc-differential in

polar co-ordinates by riaiisfor;nazion fi-oln Curie.s ion system.

Since	 .r = r CoS 0, v rsin 0,

(lx = cos 6 dr r sin OdO

and	 (Iv = sin 0 dr + CCOS 0 dO

1c 2 + 1v 2 = dr 2 + r 2 dO2,

i.e.	 d,52 = 1r 2 + r' j2 -	 - .	 (I)

Also,	 xdy— vdx = ,2 do	 ...	 (2)

Again, since	 x2 + y ' = r, :. xdx+ vdv = rd,	 ...	 (3)

Now,	 s=0+4,,	 ..

cos4=costcos0+sinti sin 0

dx x dyy xdx + ydy Jr
ibv(3)I

	

ds r ds r	 rds	 d.c	 -

Again, sln4)=sinslicos0—cos'.lisinO

= 4y . x dx y xdy—yd.c rd0
by (2)]

ds r ds r	 rds	 ds

rdE) dr rd0
tan 4, = sin 4, + cos 4) = ^ =

Ex. 2. Find the angle of intersection of the curves

r=sinO+cosO and r=2sinO.
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r cosQ+sjn0 1+ tan O	 (Here,	 tan 1	=	 = tan!7t+0
r cosO— sanO 1 —tan O

tan t -,	
r

= - = -	 tan 0
- r	

2sin0

2cos0

it+0, 4t2_0.

angle of in 	 =	 = It.

Ex. 3. Prove that the curves

r" = a" cos nO and r" = b" sin no

cut orthogoitalI

Taking logarithm of the P equation,

ii lug r = fl log a + Jog cos nO
Differentiating with respect to 0.

17
 I dr	 nsin no
- - = -
r dO	 Cos 110

•	 cot 1 =—tan n0=coi(--n+nO)
Similarly, from the 2 n' equation, we get

Cot 2 = cot no

02 =no

angle of intersection = 	 =

Ex. 4. Find the pedal equation of the parabola y 2 = 4ax with regard to
its vertex,

Differentiating the given equation, Y.V J = 2a, :.	 = 2a/ v.
the tangent at (x,) ,)is Y—y= (2a/y )(x —x).

i.e., 2aX —vY+2ax=O	 (. y 2 =4ax)

2-	 -4a 2 x 2 - 4a 2X 2
p	

402+y24a2+4axx+a	 .•.	 (I)

and r2=x2+y2=x2+4,,.	 ...	 (2)
From (1) and (2),

ax2_p2x_ap2 =0	 ...	 (3)
and x2+4ax_r2=O	 ...	 (4)
By eliminating x between (3) and (4) the required relation between p

and r will be obtained.
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By cross-multiplication

x	 I

p 2 r 2 +4a 2 p 2 - or 2 —op 2 - 402

( 22	 (.-2P2 +4ap ,4u +p 	
)2

is the required pedal equation.

Ex. 5. Find the pedal equation of r " = a' cos rnO

Taking logarithm of the given equation,

rn log r = ni log a+ log cos mO

Differentiating with respect to 9,

	

I dr	 m sin mO- _________

	

I. cM	 cos mO

cot=—tanmno=cot(4it+mo),

4=--7t+MO.

Again, p=r sin i =r sin (+1r+,nO)= r cos mO

r -f-- from the equation of the curve.

r '" =a p  is the required pedal equation.

Ex. 6. Find geometrically the pedal equationof an ellipse with respect to

ajbcus.

Fig 14.18.1

SN, S N are drawn perpendiculars on the tangent at any point P on
the ellipse. SP = r, SP= r', SN p, S?'I'=j, We know from Co-ordinate
Geometry that

r+r'=2a and pp'=b2,

Since LSPN = ZS'F'N', .. 	 ' SPN, S'I-'N' are similar.

rr'r r,r 2a—r)

PP' PP'	 b2
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r 2 	r(2a-r)	 I	 2o
__ = ----------	 or,	 =	 —
,n	 h
	 /12
	 r

which is the required p2dal equation.
Noting that the semi-latus rectum / of the ellipse = i,21, the above

equation may be written as 	 = - I
V U

Ex. 7. Find the geometrical meaning of -fe-, and hence deduce
d>i:

-,	 (dp')2
r =p+I---

d v'

We have p=rsin4.

Differentiating with respect to yt.

dj)	 d4> di
- = r cos 4k— + sin 4>

r

	

M dr	 sin 4> r elo
=r Cos 4--+cos4k.r---	 fl.--

cAp	 di d''	 L COS 4>	 di

= r cos 4k d (0+o
'I"

rcos t	 ; 0+0

=PN (See fig- /3.16)

projection of the radius vector on the tangent.

From L\OPN. OP7 = ON 7 + PA' 2 -

2 Idp
r =1'

(It!>

14.19 Miscellaneous Worked Out Examples

Ex. I. (i) At what point is the tangent to the parabola 1 rrx 2 parallel

to the straight line v=4x -5?	 .[ C. P /982

	

(ii) Find the points on the curve y = x
	 the tangents at

which pass through the origin.
	 / 1991, 3002 1

Solution	 y =
	 (I)

= 2x = gradient of the tangent to the curse 0) at
iiv
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If the tangent is parallel to the straight line y=4x-5. then 2x=4,

i.e., x 2 and so y = x 2
 = 4.

Hence the required point is (2, 4).

(ii) Here, equation of the curve is y = .t 2 - 4x + 9	 ...	 (1)

Equation of the tangent at (, v) is

Y— y = 2(. — 2)(X — x) .

(x. Y) being current coordinates.

If this tangent passes through(he origin (0. 0), then

0—y = 2(x-2)(0--x)

i.e., y = 2X 2 —4x

or, x2_4x+9=2x24x	 .	 EFrom(l)1

or, x=9, i.e., x=±3

when x=3, y=6 and when x=-3, y=30

Hence the required points are (3, 6) and (-3, 30).

Ex. 2. Find the slope of the rye . + = a 3 at the point (x,, y),

and hence obtain the equations of the tangent and normal at the point.

Also deduce that the portion of the tangent at (x 1 , YO intercepted

between the axes is of constant length.
[C.?. 1983, 91..B.P.1995]

Solution:	 Equation of the curve is x 3 + y 3 =a	 ...	 (1)

= _2I = slope of the curve at the point (x 1 , vi).
(!V	 -

Equation of the tangent at (X, ,Y,) is

Y-yl=—ZL7(x —x1)
xJ

or.	 ...	 (2)

is the equation of the tangent.
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Similarly, equation of the normal at (x1 .'y i) is

Y--y 1 =—'y-(X-x)

or, x(X-x1)=y1(y_y)

Equation (2) can be written in the form

X	 y

—+---=l.
X , i- , Y, -3a

so that the intercepts on the axes are X j 30 and v a respectively.

Hence the length of the tangent intercepted between the axes

X, _ )2

=	

", )21 

2jt7

x+'ii)]={[a.aJ} =a, a Constant.

Ex. 3. If p=xcosa+ysina touches the curve (J"' +(2-)"

(hen prove that p " = (acosa + (bsina)" .	 [ C. P 2(40/ 1

Solution	 Equation oT the curve is
•7

(I)(a)	 b)

I (x'i I (y	 dv
.II	 -•l-i	 -=0or,

a (a)	 b tb)	 dx

i.e.,

Equation of the tangent of the curve (I) at any point (x, v) is

Y-

(x, Y) being current coordinates.
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or, bV 	
.X+a()L)Y=bx()+ay(1)

(y'
ab

J( X )
+

1a	 kb

or. bVJ"1X+a(Z)1Y=ab	 ... (2)

But Xcosa+Ysinu= p	 .	 (3)

touches the given curve. So, equations (2) and (3) should he
identical.

COSC( -

 

sin u.	 p
—Lab

h(i )"'	 a(Y')

('t	 \
acos€x=p•-- 	 bsina=p- ---

ta)

Hence (acosa)" + (bsina =	
' ( Y)  }

=p" [From (1)1

Ex. 4. (i) Find the length of the cartesian snb(angent of the curve

F C. P 19831

(ii) For the parabola y2 = 4aV show that the subtangent is
bisected at the vertex and that the subnormal is constant. [ B. P. 1993

Solution	 i) Equation of the curve is y =e 2

x	 -
dy	 1----

Y1	 —e 2

dx	 2

Length of Cartesian subtangent 	 -Y_ =e	 =1-21=2 units.
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(ii) Equation of the parabola is 	 = 4a.	 (I)

dv	 dy 2a2y	 =4a . i.e.,
y

Equation of the tangent at any point P(x, ) ,)on the parabola is

2a
'TY =—(x -x)

y

or,	 2a X - y Y = _).2 t- 2ax = -2a A

If this tangent meets the	 x - a is at	 T(a, 0),	 then

2aa-y0=-2a.	 Y

i.e., a= -x.

So, coordinates of T(-x..0)
and coordinates of S (x, 0)<

SN

	

Evidently, the subtangcnt ST is 	 xbisected at the origin 0,

since j0SI=I0T=L
Also, length of cartesian

Subnormal

dyl	 2a1
= y —l=I y — I=2", (constant).

"I I YI

Ex. 5. (i) Find the length of the polar subtangent for the curve

r=a(1+cos0)at 0 7E—.	 [C. P. 1990]
2

(ii) Find the length of perpendicular drawn from the pole upon
the tangent to the cardioide r = a (I + cosO) at the point whose vectorial

angle is 
It
-.	 [ C. P 1992 1
3

Solution	 (i) Here, r=a(l+ cos t)

dr
--=-asin0
dO

11Length of polar subtangent = i r2j0- I

	

I	 dr

a2(1+coso)2 I

	

-	 I=a, when
—a sin
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(it) Here, r=a(1+ cos O), 	 =-a sin O
do

dO a(1+cosO)0	 (it O'\	 it 0

	

-cot-=tanj--4-- I 	 ...dr	 -asinO	 2	 2 2).	 —2+-2-2
Now, length of perpendicular from pole upon the tangent at any

point (r, 0) is,

(it O	 0
p=rsIn=rsInI —+— l=rcos-

k.2 2)	 2

At the point where, 0= 
—it

, r = a(I +cos-)
it
	- 3-a

	3 	 32

I	 it	 3	 ,/	 3,Jaand cos-0=cos-and hence P =-ax-
2	 6	 2	 2	 2	 4.

Ex. 6. (i) Find the pedal equation of the following curves

(a) r = e0.	 [ C. P 1983, 92, 2000, '02 1

(b) 1=a(j-cos0).	 [ C. P 19881
It

(c) r=5•e	 7.	 IC.P. 1989]

	

(ii) Show that the pedal eqation of the ellipse	 +-=l with
a2 b2

b2 2a
respect to a focus is ----1. 	 [C. P. 1985, B. P. 1993]

P	 r

Solution	 (i) (a) r = e0	... 	 (1)

or, logr=Ologe=0

ldr it 	 It
or,cot=l=cot-,	 ...•=—

=rsins=rsin!=_J

2p2 = 2 is the required pedal equation.

(b) r=a(1_CoS8)=2asin2	
...	 (I)

logr = log2a +2logsin

30-
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1	 9

Or, 
I dr 2

—c-
2OS2	

.. cotocot,	 =i, •-.

	

rdO	 2	 2	 2
sin
.2

9
Now. p=rsinrSin	 -	 -

2	 2Iror, 11 =rsi — r	 [From (l)
2	 2a

or, 2ap 2 = r3 is the required pedal equation.

ft

(c) r=5e	 7	 . . .	 ( 1)

or, logrlog5+Ocot!-,
7	 rdO	 7	 7

IE
or, Cot 4i = cot—, i.e., • =	 .

Now, p=rsin4i= .5jfl!

TE

Hence, p = r-sin-
7
-  is the required pedal equation.
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(ii) The polar equation of the ellipse , + -- =

with focus as pole is given by	 I +€COsO	 (I)

a2-2
where. 1 = semi-talus rectum = - and e =eccentricity =	 2a	 T	 '

From (1) on differentiation
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Adding (2) and (3)

12(r2_p2) (l-r)2	-
+

p2 	 r2
j2	 ,2 12 21

or, P2 r2	 I

1 2	 21 1 b 
,2

or, ----+—'O	 1. 1e
p2 r a	 a2 a

or,
2a	 a! b2
--1--
r	 .p	 p

•	 b2	 2a
Hence, the required pedal equation is = - - I.

p . 	 r

EXAMPLES- XIV (B)
ds

1. Find	 for the following curves:

(I) r=a(l+cosO).	 (ii) r=ae0•
(iii) r 2 = a 2 cos 20.	 (iv) r" = a" cos nO.

2. Find	 for the curves:
dr

(I) r = a 0;	 (ii) r = a/9

3. Show that in the equiangular spiral r = a eOcO, the tangent is inclined
at a constant angle to the radius vector.	 I C. P 20061

4. Showthatfor log r = aO + b, p r.

5. Find 4i in terms of 0 for the following curves:

(i) Cardioide r=a(1— Cos 9).

(ii) Parabola r = 2a/( I - cos 0

(iii) Hyperbola r 2 cos 20 = a2.

(iv) Lemniscate r2 = a 2 cos 20.

6. Find the angle of intersection of the following curves:

(i) r=asin2O. r=acos20.

(ii) r=6cos0, r=2(1+cos9)

(iii) r 2 = 16 sin 20, r 2 sin 20	 4.
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7. Show that the following curves cut orthogonally:

(i) r=a(1+ cos o),r=b(l— cos o)

(ii)ç= al( 1+ Cos o),r=b/(1— cos o)

8. Show that the curves

r" = a sec (no+a),r'rrh' sec (no+p)

i1tersect at an angle which is independent of a and b.

9. Prove that

tan	
(dy	 'I(	 dyXyj/

dX

where $ is the angle which the tangent to a curve makes with the
radius vector drawn from the origin. 	 C. P 1931 1006 I

[Use Ø=qi-6, zanO=y/x]

10. Show that for the curve rO = a. the polar subtangent is constant and
for the curve , = au • the polar subnormal is constant.

11. Show that for the curve r = e 0 ,the polar subtangent is equal to the
polar subnormal.	 [C. P 2007.1

12. Find the polar subtangeiir of

(i) r =,aea	 (j) r = a ( I — cosO ).

(iii)r=2a/(1_ cos 9).	 (iv)r=l/(li-e cos 8).

13. Show that the locus of the extremity of the polar subtangent of the

curve u+J(0)=oisu=f(-,r+o)
14. Prove that the locus of the extremity of the polar subnormal of the

curve r = i . (e ) is r = j'(e — r ).
Hence deduce that the locus of the extremity of the polar subnormal of

the equiangular spiral	 a e9 "" is another equiangular spiral.

15. Show that the pedal equation of the ellipse

x2 /a 2 + ),2 /b2 = I

with regard to the centre is a2b2/p 2 = a 2 + b2 - r2

[CR 1988, '93. 2007, B.P. 5, VP '951
16. (i)	 Show that the pedal equation of the astroid x + y = a is

r2+3p2=a2.	 .	 [ C.P.20061
(ii) Show that the pedal equation of the parabola > 2 = 4a (x + a) is

p2 =ar.	 . .	 [ C.P.1931. '93, '97, V.P.2000
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17. Show geometrically that the pedal equation of a circle with regard to

a point on the circumference is pd = r2 , where d is the diameter of

the circle.
18. Show that the pedal equation of

(i) the cardioide r = a(l+ Cos 9 ) is r = 2ap2.

[B.? 1997, VP. '991
(i) the parabola r = 2a/(l-. Cos O ) is p 2 = ar.

[8.? 1992. '94, VP 20021

(iii) the hyperbola r 2 COS 20 = a2 is pr = a2.

(iv) the lemniscate r2 = a 2 cos 20 is r3 = a2p.

F C.?. 1998, 2001, 20081

(v) the equiangular spiral r = a e000	 is p = r sin a.

(vi) the class of curves r" = a" sin no is r'* ' = a" p.

(vii)the reciprocal spiral rO = a is p2 (a2 + r2 )= a2r2.

[C. P 19381

ANSWERS

1. (I) 2a cos 8,	 (ii) rcoseca. (iii) a 2 1r.	 (iv) asec	 no.

2. (i) 1r 2 +a 2 /a. (ii) _Jr2+a2/r.

5. (I)	 O. (ii) ir- 2 O, (iii) .. ,r-20	 (iv) ',t+2O,

6 (i) tan -	 .	 (ii)	 ir	 (iii)	 r.

12.(i) r tan a.	 (ii) (2a Sin 3.8	 (COS -O ).

(iii) 2a cosec 0. 	 (iv) I / (e sin O ).'.


