15] | CurvATne

15.1. Definitions.

Let P be a given point on a curve, and Q be a point on the curve
near P. Let the arc AP measured from some fixed point A on the curve be s,
and the arc AQ be s + As ; then the arc PQ = As. Let TPL, MRQ be the
tangents to the curve at P and Q, and let mZPTM =y and
mZRMX =y + Ay ; then mZQRL = Ay . Thus, Ay is the change in
the inclination of the tangent linc as the point of contact of the tangent
line describes the arc PQ (=As).

¥

Fig 15.1.1

AAY is called the average curvature of the arc PQ.

The curvature at P (denoted by X ) is the limiting value, when it exists,
of the average curvature when Q — P (from either side) along the curve,
i.e., curvature at P.

AW d ay
As—-ao As ds
Thus, the curvature is the rate of change of direction of the curve with
respect to the arc, or roughly speaking, the curvature is the “rate at which
the curve curves"”.

The reciprocal of the curvature at any point P is called the radius of
curvature at P, and is denoted by p. Thus,
ds

P’—';;
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o T X
Fig 15.1.2

If alength PC equalto p is measured from P along the positive direction
of the normal, the point C is called the centre of curvature at P, and the
circle with centre Cand radius CP (ie., p) is called the circle of curvature
arP. ’

Any chord of this circle through the point of contact is called a chord
of curvature.

Note 1. The line PG which makes an angle + %n with the positive direction
of the tangent (i.e., the direction in which s increases) is called the positive
direction of the normal at P. To avoid ambiguities we make the
convention that p is positive or negative according as C is on the
positive or negative side of the normal.

Note 2. The above formula is convenient only when the equation of the
curve is given in terms of s and y (i.e., when the intrinsic equation of
the curve is given). So in the next article we shall obtain different
transformations of the above formula for the radius of curvature for
different forms of the above formula for the radius of curvature for
different forms of the equations of the curve, and henceforth whenever
we require the curvature of a curve we shall take the reciprocals of those
radii of curvature.

Note 3. Since the radius of curvature of a circle is equal to its radius
(See Ex. I, § 15.6), it follows that the radius of curvature at any point P
is the radius of a circle which has the same curvature at P as the curve has,
and this explains the nomenclature of the above circle. Since, the curve and
the circle of curvature at any point P (x,y) have the same tangent and the

same curvature, hence x,\ 1¢. " have the same values at P for the circle of
curvature and the curve. [See Art. 13.2]
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15.2. Formulae for radius ofCurva(ure.

(A) Forthe Cartesian equation y = f (x).

dy
— = tan
We know o .
differentiating with respect to x,

2. 1
AY ses? By wtig T B
odi? dx ds  dx

. 5 B
Since secy = (l+'tan2u/)* ={I+(jl] } :
, fx

)

where y, # 0.

3
Note 1. Making the convention of attaching positive sign to (1+Y12 )i‘,
p s positive or negative according as y, is positive or negative.

Note2. The above formula fails when at any point y, becomes infinite,
i.e., when the tangent at the point is parallel to the y-axis (For illustration,
see Ex. 4,“§}7‘5. 6). In such cases the following formula, for the equation of

the curve as x = ¢(y), would be found useful.

a ; o 5
d_T =coty, . differentiating with respect to y,
y : ‘
2
43 = — cosec’ wd—w = - cosec’ w-d—w 2
d_'t'z d} ds afy
G e o] d . ]
= ~cosec” ¢ - — = =siny
I ds d

3 d*x
P = —cosec” | —-
dv”
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dx
Since cosec? = 1+ cot? pr =14+ = ro
?

considering the magnitude only of the radius of curvature

2 3 .
dx .
1+ 'J; e 3
_ . _!l+.\'l_!z
PR T & e
d_v2

where x; # 0.
(B) For the Parametric equations x = 45((), y= (;f(t).

dy b fde Y (o
Here, prile o g 7 (x #0),

where dashes denote differentiations with respect to «.

dy_d iJ_i[i).ﬁ_M
a?  de\x') di\x') x?

Then substituting the values of .di i{__)_ in fhe formula (1) above, we get
: de’
x4y H
e e @
Xy -yx -

where dashes denote differentiations with respect to 1, and where
x" - x" 2 0.
(C) For the Implicit equation f(x,y)=0.

Here, & _ _ s, (£ 20) iens v E=0

dx
Differentiating tf'us with respect to x.

Codv dy \dy d’y
=+ o+ f = |+ = =0
x L[‘f (f)r f_l_\ d)‘ ] dx

’ d [4)] d‘y
or, f.r\'+"' “d.\‘ f (—d;] +fl‘ d.\'z =D

d
d

St

[

I weassumehere [, = [, I
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whence, replacing _ S for dy and simplifying,
y

dy _ Sl = 2SSy ¥ Lt
FE i 1} '

' 2
Substituting the values of % d_iv in the formula (1) above, and

dx
considering the magnitude of P only, we get

(fx2 +f"1 y

p.e ..
Fo -2 6,0, +0,, 1,7 3
where f\.‘.f.\.z SR LR f.‘,_\,f‘_2 #0
D) For the polar equation r =f (0)
_ds _ds do _ ds [dy
dy 0 dy del de cx (4
Now, ¥ =0 +¢ =e.f|un"—'; where 1, .
. '3 ' de’
3
Z—g=1+ l 2 A 2"2'
1+5
h
='1+.,12—f-,§=f+2liz—ﬂ’2 5)
r2+li2 r2+r]2
ds :
Again, — = \)r_’ +1? ... (6)
[See Ari. 14.13 )
from (4), (5) and (6), we get
rien? ) .
s (1)

= 3
r42r7 —rr,



' CURVATURE 475

Cor. For the Polar equation u=£(0), where u=Yr.

2
Since u=Yyr, .. l'=-—ul; r:-ﬂ_
Substituting these values of r, r,, r, in the formula (7) above, we get
3
2, .2
‘; el ...(Ta)
(u+u,

where u:’(u+u2 )#o0.
() Forthe Pedal equation p = f (r).

We have p=rsing.
Differentiating with respect to r.

dp _ d¢
— = + g sia:
i sing +r cos [} T
=r£ i¢L-fil=.rf-‘£+r-ﬂ@-
ds dr ds - ds ds
_od dy 1 '
=rz(6+¢)=r-&?=r-;. {9T¢:w]
g pdr |
P - _ . ...(8).

(F) Forthe Tangential polar equation p = f (w)
When the tangential polar equation, i.e., the relation between p and ¥
of a curve is given, ’

) 5 '
P2 +[£’_)) =r? sin2¢ + r? cos? ¢ = !‘2.

2pH2—-—= - — =12
dy dy* dp dp
) a’p :
SopEpr— :
pP=P dy? ' ...
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Alternative Method :

If p be the length of the perpendicular frém the origin on the tangent
at(x,y), viz, Y-y X +xy -y =0

-— ‘ —_y
then p=xy' L L8 ).
\/l w32 ittty
P =xsiny - ycosy . g
dp _ dx

dy . -
=——siny — xcosy + ——coYy £. vsinyr
e v v v Tab il

= xXcosy + ysin 738

Since L W0 O 8 peosy . - . P siny
dy ds dy dy ds dy
dx dy o
Snmldi]y, Ll ——CosY - xsinyf + ——siny  ycosy
dy? dw dy
= pcos” y - xsiny + psin® g + veosy
=p—(xsiny - ycosy )=p-p
Hence, the result follows.

15.3. A Theorem on curvature.

If a circle be drawn 1ouching a curve at P and cutting it at another

point P, then, as B, — P, the circle tends 1o the circle of curvature

P

=
Fig 15.3.1

Let C be the centre of curvature at P, and let y = f (x) be the equation
of the curve, where f”(x) and f*(x) exist.

Let 0(§ n ) be the centre of a circle touching the curve at P and

cutting it again at P, and let r be its radius; also let Q( X,y ) be any point
onthe arc PP, of the curve
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00" =(&-x)+(n-y)* =F)-
Since OP? = OP,Z = r2, it follows that. F (x) has the same value
both at P and P,. Hence by Rolle’s Theorem, there exists a point 0 (1., v )
between P and P, such that F’ (11) =0,

e (£- 5 )+ (n-y )(“—] 0.

a

dx

which is evidently she condition that 09, is the normal to the curve at Q.

Now let B, — P then Q, also — P and hence by Art. 15.8, O, the pointof

intersection of the normals at O and P, tends to C, the centre of curvature
and thus r also tends to CP, i.e., p.

Thus, the circle tends to the circle of curvature.

15.4. Curvature at the origin.
(i) Method of substitution.

Radius of curvature at the origin ¢an be found by substituting x =0,
y = 0 inthe value of p obtained from Art. 15.2, or by directly substituting
_the values of ()’1 )n and (Yz )0 in the formula.
(i) Method of Expansion.

In some cases the above method fails, or becomes laborious. In such
cases, the values of ( » )0 and ( Y2 )0 can be easily obtained in the

following way by assuming the equation of the curve tobe y = f (x)'?tnd

writing for y in the given equation its expansion by Maclaurin’s theorem,
. 3 :

viz., 2" (0)+ % fO)+...1f (0) being zero here, since the curve passes

through the origin], i.e., px+qx?[2!+.... where p, g stand for £ (0).

) ie., ( » )0 : ( ¥, ) o » and then equating coefficients of like powers
of x in the identity obtained.

This is illustrated in Example 9 of Art. 15.6.
(iii) Newton’s Formula.

If the curve passes through the origin, and the axis of x is the tungent
at the origin, we have

x=0,y=0, (y. )n.i.e.. p=0.
by Maclaurin’s Theorem,



478 - . . DIFFERENTIAL CALCULUS

y=gx[21+...
Dividing by x?/2! and taking limits as x — 0, we get

L (2v/2 )= 4.
It should be noted here that as x — 0, yalso - 0,

e 1+ p2 )7 )
But from formula of Art. 15.2. at the origin p = = ;,
2
X
Sp= Lt —
P x—02y ) ...(D

y—0

Similarly, ifa curve passes through the origin, and the axis of ‘_,v is the
langent there, we have at the ongin
i
= Ll =
P o ..2)

v

Geometrically :
Let the x-axis be the tangent at the origin.

Y

Draw a circle touching the curve gl%),lgﬁ% %)assi-xg through a point P
(x, y) near O on the curve. Now, when P — 0, along the curve, the liriting
position of the circle is the circle of the curvature. . (Art. 15.3)

Let OB be the diameter of the circle, and draw PN perpendicularto it,
and PM perpendicularto OX . Let r be the radius of the circle.
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Then, ON.NB= PN?,ic,ON(OB~ON)= PN*.

2 2 2
. opu PNl on - PN ON'_OF
ON ON ON
2 2, .2 2
j.c._ 2r=£=g_=f_+y_
PM y v

In the limit when P - O, x - 0, y = 0, r = P, and hence we

get as before

2

1. x*
=—L1—
p g e
Similarly, when the y-axis is the tangent at the origin,
i 2
we obtain 'p=—-LJ2-—.
2 x
Analytically ?

The equation of the circle pasamc through the origin and having the x-
- axis as the tangent at the origin is
2+ y2-2f=0. .. (3)

If r be the radius of the circle. then r=/.
Since (3) passes through the point (x, y) on the curve,

x* + y? = 2fp = 0, whence f = (xz +y? )/(2_\:).
2
24y’ Lx

Lr=Lf=1L"
p=Lr I= 2 o

General Case :
If ax + by = 0 be the tangent at the origin, then proceeding as above,
we get
_ ()P2 ey
™M (wmby)/,[(a +b’ )
f 2, p2 x’+y?
p=4va'+b’. Lt ——. (W

x—0 ax+ by
y—0

Note. It should be noted lhal as x 20, y—=0, ¥/ —)(— L) the ‘m’ of

the tangent line ax + by = 0. Here_ it is supposed that a# 0, b #0-
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15.5. Chord of curvature through the origin (pole).

Let PQ be a chord passing through the origin O of the circle of curvature
at P on the given curve, and let C be the centre of curvature and PT be the
tangent at P.

o . X
Fig 15.5.1
Join PC; produce it to D 1 join DQ.
Then £PQOD =a rt. «, being in a semi-circle.

ZOPT = ¢ and £PTX = V.
From APQOD ,chord PQ= PD cos DPQ
' ' =2pcos(%n—¢)
= 2psing
dr p

= Dok

dp r

Notel. From above it is clear that the chord of curvature through the
origin can be easily obtained when the pedal equation of the curve is given.

Note2. If the chord PQ, instead of passing through the origin, makes an
angle o with the tangent PT, iLe, ZOPT = ¢, then obviously ZPDQ = q,
and hence PQ = 2psina

Hence, the chord of curvature parallel 10 the x-axis.is 2psiny

(+ here 2PDQ =y )
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and the chord of curvature parallel to y-axis is 2p cosy
( here APDQ——:: Vl)

15.6. Illustrative Examples.

Ex. 1. Show that a circle is a curve of uniform curvature and its radius of
curvature at every point is constant, being équal to the radius of the
circle.

Y
0.
Fig 15.6.1
Let C be the centre of acircle of radiusa. Let P bethegiv =~ nt,Q

a point near it, and let PT, OM be tangents at P, Q andlet £ (=W,
Z@MX =y + Ay ; join CP, CQ. '
éPCQ= ZPRM = Ay .

A\u anglePCQ As/a 1 , since /PCQ is measured ir

.- As As As a
radian.
asin Art. 151,
curvature = Lt é_‘l’ = Lt —1=_1 (constant) and hence p =a.

AssQ As aAss0a a

Ex. 2. Find the radius of curvature at the point (s, ) of the curve

s=asecy tany +aiog(secw +tany )

Here, pP=—= a(secw.sed' W + tar? y secys ) )

ds
dy

—— - seqy ( secy + tamu)
se(:\y +lany

= asecy (,se(? y+sedy -1 )+ asecy = 2asec’ v
31- :
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Ex. 3. Find the radius of curvature at the point (x, y) on the curve

- y=dlog sedx/a).
Here, Y= a‘a}@'sec(x/ atan(yf ﬂ)'—:f tan(x/a),
vz = (Ydsec® (ya)
Also, 1+ y2 = 1+ tart(x )= sed(ya).
- (1+ yl2 )i;" _ {S¢C2 (x/a)}% . »
e T b

Ex. 4. Find the radius of curvature of the parabola y? = 4x at the vertex
(0,0). ‘

dy
The tangent at the vertex being the y-axis, E) at the vertex (0, 0) is

infinite. Hence, formula (1) of Art. 15.2 being not applicahle_, let us apply
formula (1a). [ See Note 2, Art. 15.2.]

g
Hence, ix:-%y; —x=_%
dy dyf
at the vertex, x; =0, X, :—; .
g
1+x,2 )2
at the vertex, p = L—l—)— =%=2_

X
Ex. 5. Find the radius of curvature at the point ‘0’ on the cvcloid
x=a(0+sind ), y=a(1-cos6 ). [ C.P. 1944, V.P. 2000, ‘96 |
Here, X =a(l+cosB), Y = asind,
- X'=-asin®, Y = acosh,
by formula (2) of Art. 15.2,
a8

B {@(1+cosp)?+ &sm?e}= . 8cos’1o .

@ cosh(1+cosd )+ & sir’0 2cos’ 10

= 4acosl6.

Note. p can also be obtained by using formula (1) of Art. 15.2 by first
obtaining the-values of y, and v, intermsof 6.
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Ex. 6. Find the radius of curvature at the point ( r, 8 ) on the cardioide
r=a{ 1-cosB ), and show that it variesas \Jf. | V. P. 2002; C. P.007]
Her, r;=asind, r,=acosd.
. by applying formula (7) of Art. 15.2,

_ idz(l—cose)2+fslnzﬁﬁ
o d (1-cosh f +2c sir? 8- & cos6 ( 1- cosf )

Ni=

a(2-2c0s8)3 2iq 98 ,0
= = (l—cosﬂ ):—— 2sin” — ]
SE 1-cosb ) 3 : 2
=%sin-;—9. ‘ . 7 (D)

Since  r=a(1-cosd )=a2sin’ 10,

sin 10 = [(172a).
chce,frqm(l),p=%f2_61.\/i:. pecr.

Note. In the cases where it is easier to transform a polar equation into a
pedal one, to find the radius of curvature, it is convenient to transform the
polar equation into the pedal form first, and then use formula (8) of Ant. 15.2.

.

Ex. 7. Find the radius of curvarure at the point ( p, r ) of the curve
Pl d"p. ) '

m+1 ( m
We have pP= EE-_—M
dr a
a__ d
dp (m+1)r™
dr a" a"
pz[‘—:r- =

dp (m+1)r™ (m+1)r™ !
Ex.8.  Find the radius of curvature at the origin for the curve
| x3+y3—2x"+6y=0.
Here, y=0, ie., the x-axis is the tangent at the origin,

2
at the origin Lt — = 2p .
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- Dividing the equation of the curve by y, we have
at =
x-—+y?-22-46=0.
P y :
Now, taking limits as x— 0, and y— O, we have

-2.20+6=0, o, p=3.
Ex. 9. Find the radius of curvature at the origin of the conic
y—x=x2 +2xy+y>. [C. P 1948
First Method : Differentiating the equation successively with respect to x,
v =1=2(x+xv, + v+ )
and B 2(1+xy2 +2y, +yy, + y,2 )

at the origin, ie.,when x=0, y=0, y,=1and y, =8.

k}
2 )2 1
at the origin, p= (1+"' ) = (1+1 )‘ =-J—§=£=0.35 nearly.
ya 8 8 4
Second Method :
@’
Putting v= px+ 57 +....... on both sides of the equation, we have

2
(p—l )x+q;—|+ higher powers of x = (1 +2p+ ,,2 )x2
' + higher powers of x.
Equating coefficients of x and x’ on both sides,
p-1=0,ie, p=1,
and -%q:l+2p+'p2. . q=8.
Since here p and g are the values of y,, y, at the origin, using the

3
2 1>
1+ # o ®
formula p = L-LL, we get p at the origin.
P get p g

Y2
Third Method (Newtonian Method) :
Since y—x=0is the tangent at the origin here, by the formula for the

Newtonian method at the origin,

ST 252

R ) LS A W, B S
y—Xx x“+2xy+y
( from the equation of the curve )
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! l"'(Y/")z
rlﬁ.ul”()/)ﬂh(ﬁk)’g

(on dividing the numerator and denominator by x?)

1+1 '
=22 - =12
2 +2+1 4 %

since Lt (y/x ), being the value of ‘m’ of the tangent at the origin, viz.

" y-x=0,isequalto I.

Ex.10. Show that the chord of curvature through the pole of the curve
lm . m 0 : 2r
r™ =a™ cosm@ is T

Taking logarithm of the given equation,

_ mlog r =mloga+logcos mf.
Differentiating with respect to 8, we have

cot ¢ = cot (%m—mﬂ ) ie,0=Ln+mo.

p=rsin¢=rcosmb= r.rfa™ = L fgm

dp _ (m+1)r"
dr am )

ar,
dp
m rm+l 2

chord of curvature = 2psin ¢'= ZI'ngE =2
dp r

a

(m+1)r'" am T m+l

=2.

-Ex.11. For any curve prove that

2 2
1 (e d’y
=731 Ylaz]
p ds ds

2
i_?x=-gin\y%m—=—sintp.l wam G0)
ds P

We have £x—:cosq; i &
ds
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dy . dz)’_ _ﬂ{_ 1
and =, =sinw. % :’?—COSWdS —COSW-; e @

Now, squaring (1) and (2) and adding, the required relation follows.
Ex.12.  For any curve prove that

p=—-r—;i—,where tan¢=r;£.
sin¢(l+—¢) J
dd
sind l'\"ﬂ =sin¢+ﬂsjn¢ r£+ﬂ. 0
d0 do ds d8 ds
_ ﬁ d¢ 46 19 ¢
ds d9 ds ds ds
d\
=r(0+0)=rZt (Lgigoy)
i)
ht sid. fo P
right side = =—=p.
ight si ,-id_‘"_ o P
ds
EXAMPLES-XV(A)
1. Find the radius of curvature at any point ( s, y ) on the following curves:
i s=ay, (i) s=dasiny. -
(i) s=ctany . (iv) s=8asin2-é\|l.
W) s= a(e'"“f —l) (vi) s =c log secy

(vii).r:m(scczw—l). (viii) s=alogmn(a}7z+-zlw)
2.  Find the radius of curvature at any point (x, y ) for the curves (i)to

(viii), and at the points indicated for the curves (ix) to (xiv) :

@) y? = dax. @ e =sec(xfa).

(m) y = logsin x. @iv)y ay2 =x3.

X X
(v) xy=c. M) y=1a- [e"+e"]
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2 2
i) x?/a* + y* /b = 1. (viii) x* +y? =a’.

[ C.P 1943, B.P. 93]

i

@) y = x> — 2x? + 7x atthe origin.
® vy =4sinx—sin2x at x = in.

@) 932+ 4y% = 36x a2,3).  Gi)  y=e at(01)

(xiii) Jx + ,/— = Ja atthe point where y = x cuts it.

(xiv) y = xe™* atits maximum point. [C.P 1988, 96

Find the radius of curvatute at any point of the curves (i) to (vi), and
the points indicated for the curves (vii) and (viii) :

@ x=acos@, v=asin@. i) x=ar? y=2at.
(i) x = acosp, y=>bsing.

(iv) x=asec¢, y=>btan¢

o) x=alcost +1sint), y=alsinr—rcost).

(vi) x = asin20 (1+cos28 ), y=acos20(1-cos29 ).

»(vii)x=acos’6. y=asin®@ at 6 =%1n. [BP199]

(vii) x=a(@ +sin@), y=a(l-cos@)at 6=0.

Find the radius of curvature at any poim- (r, 0 ) for the curves (i) to (xi),
and at the points indicated for the curves (xii) to (xvi):

@) r=aB () r=acos8. (i) r=asec’16.

) r=a (1-cos@). [ C.P. 1999, B.P. 89, '91, 98]
W) r*=a’cos29. [C.P.1992)
) r=ae®. (vii) r* = a®cos 36

(viii) r =a + b cos®. o (ix) r™ =a" cosmb .

© (x) rlcos20 =a® .[V.P.1998) ‘(xi) r = asec20 .

(xii) r =2acos@ —a at 8 =0.

(xiii) r = @ sin n@ at the 6rigin.

xiv)r=1/(14ecos8)at @ =x.[e<1]. [CP200506)
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®xv) r2 = acos20 at 9 = 0.
(xvi) r = a(8 +sinB ) at g = 0. [C.P 1989]

Find the radius of curvature at any point ( p, r ) on the following
curves whose pedal equations are

@O p=rsina. (i) P2 =2ap. (iii) p? =ar.
: [C.P. 1982)
(iv) pr=a?’. ™ P =2ap?. (i) 3 =a?p.
2,2 :
i) 22 4 12 = a? 4 52, [C.P. 1998 ]
p .

Find the radius of curvature at any point on the curves :

) p=a(l+siny). (ii) p = acosec y .

(i) p? +a?cos2y = 0.

Find the radius of curvature at the origin of the following curves :

@ y=x*-4ax’-185%. (i) 2x2-xy+y?-y=0.
(i) 3x% + 4y? = 2x. Gv) 3x2 +xy+ y? —4x = 0.
() 3x* —2y* +5x%y + 2xy - 2y + 4x = 0.

vi) 4x* +3y® ~8x%y + 2x2 - 3xy - 6y - 8y = 0.

vil) x* + y® =3axy. (viii) x? + 6y + 2x - y = 0.
) x*+y?=6a(x+y). [C. P.2006)
® sx*+y? +6x+8y=0.

o) y2 =x*(a+x)(a-x).

(i) ax + by + a’x® + 2h'xy + by = 0.

(i) y? - 22y - 3x7? - 4x -xly? =0.

(xiv) y2—3xy—412+513+x4y—y5=0. )

Show that the chord of curvature'throuéh the pole for the curve
p=f(r)isgivenby 2f(r)/ s'(r).

Find the chord of curvature through the pole of the curves :

® r=a(l+cos®). (i) ,2=4%c0s20.

(iii) r*cos20 = a’. (V) r=ae®™e,

™) " =a"sinng.
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10.

11.

12.

13.

14.

15.
16.
17.

18.

Show that the ci’lord of curvature parallel to the axis of y for the curve
@) y = a logsec(x/a) is constant.
(i) y = c cosh (x/c) is double of the ordinate.
Show that in a parébola the chords of curvature
(i) through the focus, and
(i) parallel to the axis are each equal to four times the focal distance of
the point.
Show that for the ellipse x2/a? + y2/b? = 1, the radius of curvature
at an extremity of the major axis is equal to half the latus rectum.
. ' [ C.P. 1990, ‘94
If C be the centre of the ellipse x2/a? + y*/b? = 1, show that at any
point P,
_ cp® _ a%b?

p

]

ab p3

where CD is the semi-diameter conjugate to CP, and p is the
perpendicular from the centre on the tangent at P.

If p,and P, be the radii of curvature at the ends P and D of

conjugate diameters of the ellipse x2/a® + y2/b? =1, then
pd+pt =(a?+0? f@).  (CP1988)

Prove that the radius of curvature of the catenary y = a cosh (x/a) at
any point is equal in length to the portion of the normal inlercepted

between the curve and the axis of x.

Show that for the cycloid x = a (9 — sin G). y=a(l- cos 0) the

radius of curvature at any point is twice the portion of the normal
intercepted between the curve and the axis of x. [C. P.2004)

Show that in a parabola the radius of curvature is twice the part of the
normal intercepted between the curve and the directrix.

If P yand P, be the radii of curvature at the ends of a focal chord of

" the parabola y? = 4ax, then show that

po> 4+ py s =(2ayi. (VP 99, C.P 1986,2006]
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19.

20.

21.

22

23.
24.

25.

Show that in any curve

p={(%r+(si-rff

1

W 557 2=

pds2

Show that in the curve for which
@) y=acos™ y, p is m times the normal;
i) y =ae™, p is m times the tangent.
Show that
(@ for the cycloid for which 52 = 8ay,
p = 4af{1- v/(2a)}:
(ii) for the catenary for which v = ¢? + 52, p - yile.

Prove that in any curve
2 213
F 2 2
o L.JL_tfar}y _d7el L _[oY] .
P r rl\ds ds” ds

(i]) p—ri‘g..q. riﬂ.z_&
. ds ds dst |

Show that the radius of curvature at any point of the equinngular spiral

subtends a right angle at the pole.

Show that at the points in which the curves r = af and r@ = a
A intersect, their curvatures are in the ratio 3:1.

Show that when the angle between the tangent to a curve and the
radius vector of the point of contact has a maximum or minimum value,

p=r’lp.
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26. Prove thatin any curve
dp _3yy. - y(1+n?)
ds J’zz
and show that at every point of a circle

Sy,_vzz =V, (1 + y,z).

ANSWERS

[ In the following examples, generally the magnitudes of the radii of
curvature are given. ]

L @ a (ii) dacosy . (iii) csec? . (i) fasinly.
(v) ame™ . (vi) ctany. (vii)  3msec’ ytany. '
(viii) asecy . -

2 0 2(x+a)i/Na- | sabewelira) iy e,
@) (savox Bt fl6a) (2432 }/e2)

@) y*/fa. i) (562 + aty? /st
vii)  ag)l. @ {2sZ) w545
o) 4.0 4. i) iz (xiv) e.

3 0 a @ 2a(:2+1)';'-('ii) (azsin2¢+bzcosz¢)%/ah-
@v) (azlanz¢+b2xcz¢)%/d,. ™) . i) 4acosd.

(vii) 3 a. (viii) 4a.

4\. @) (r2 +a’ )% /('.2 + 24’ ) © (i) Jz“ll
(i) 2asec’ £6. vy iJ2ar. ® a3
(vi) rcoseca. (vii) 'a3/4r2 .
" _
(wiii) (a? + 2abcost + b2 )? w l_l .

a® + 3abcos 0 + 2b° , mEL ¥
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9.

0 5 G

® rifa?. (xi)r(4r2—3az)%/3a3. i) La.
(xiii) 4 na. ®v) 1. (xv) 1a  (xvi) a.
() ~toseca. @ a @ 277a.
Gv) 73fa?. v  2fzar). i) a3

(vii) 122[12/‘03 :

M a. () 2a cosec . (iii) a4/p3.

[ RPN

vi)2 i) 2a, 2al (i) 545,

) 6a¥2.00) 5.  (x) . +av2.

s !az +b2'!§ ‘ 2 i) ¥2.11
(xii) o (xiii) 5\/7); 2., (xiv) 2.72—\/5.

a'b® -2 ab+ ba®

@ 4r.6)  3r @ 2. G 2. () 2/ (n+1)

15.7. Centre of Curvature.

Let (% ¥) be the co-ordirates of the centre of curvature C

corresponding o any point P( X, y) on the curve.

Since C (X, S')ligson the normal at P, viz,,
(x-x)+(r-y)y =0,
(x=x)+(y-»)y =0.

Again, since PC = p ,i.e., PC* = pz, :

2 )3
(;_x)u(;_y)z:pz:il_*y_;L
Y2
Substituting — ( y-y )yl for (J_c -x ) from (1) in (2) we get

(5-3)(1+52)=p? =b+y_y’l2)i'
E 2
ie., ()',_y)2=(l+_y|2)i

v2

()

. «{2)

- (3)



CURVATURE v 493

- 1+ y’
(y~.v.)=—’—;y : e @
2
Again, from (1),
- - Y, l+yz
x-x=-(.v—y)y.=-~'(7'—-) )

from (4) and (5), we get
o » (|+.\'12) - 1+ )’,2 ’
BE e ¥} =Y ... (6)
Y2 Y2
Cor. Hence the equation of the circle of curvature is
(x-%)* +(y-7)"=p"

Note 1. . According to our convention, we take the positive sign only in
(4); for, if y, is positive, p is positive and hence y — y is positive. Similarly
if y, is negative, p is negative and hence y - y is negative.

Note2. Since the normal at P makes anangle (7 + W ) with the x-axis, it
follows from the definition of the centre of curvature that

S X-x y-y
cos 1-1t+w)= sin(lu+w)=p'
o) 2
ie, X=x—psiny, y=ytpcosy, .. (D

. s M 1
Now, since tan Y= y,, Sin Y =—=——= and COS Y = —— .
Y=y v r——l+ )'.2 h 5 ylz

Thus substituting the values of P, Siny, cos¥ in terms of y,and
y, in(7), values (6) of X, can be obtained.
Note3. By writing the relation (1) as (X-x )x, +(¥ - )=0, and using

3
the values p” = (l +x,2 xzz of (from Art. 15.2, Sec. A) we can similarly

obtain _
2
1+x.2 - x!l+x '
T=xsTM, y=y-—BH 1 (8
X, X2
dx d’x
where x; =—, X, =—.
d dy?

This form is useful when y, becomes infinite.
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Noted4. The centre of curvature can also be obtained geometrically as
follows:

Let C (3(' ¥) be the centre of curvature corresponding to the point
P(x, y) on the curve.

Y

] s o Ao

19 ' T L
Fig 15.7.1

Then PC=p
Let PT bethe tangent at P, so that ZPTX =y .

Draw PN, CL perpendiculars on OX, PM perpendicular on CL.
Then  ZPCM =y :

X=0L=ON-MP

=x— PCsin PCM .

=x—psiny, .
¥y=LC=LM+MC=PN+MC=y+PCcos PCM

=y+p cosy )

y

¥ I
———=—and COS |y = ———
‘/l+ \l2 ) \fl+\|3

Now subsmutmg the values of 'p, sin w, cosY in (l) and (2), the -

Since tan y =y, sin y =
L

required values of X and ¥ are obtained.

15.8.  Property of the Centre of curvature.

The centre of curvature C for a point P on a curve is the limiting
position of the intersection of the normal to the curve at P with a

neighbouring normal at Q , as Q — P along the curve.
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P
(0] ' X
Fig 15.8.1

Let P (x, y) be the given point and @ (Ji +d4x, y + Ay) be a point ncar

Ponthecurve y = f (.\'); let us suppose y,, y,existat P and y, # 0.
The normal at P is .

(Y-y)n+(x-x)=0, M
o, (Y-y)ol)+(x-x)=0, )|
putting v, =¢ (x)
the normal at Q is
.(Y—)'—Ay)¢(x+dx.)+()(—,\‘—_le)=0 ‘ A )]
Suppose the normals at P, Q, i.¢.. (2) and (3) intersect at N (5, DK
and let (¥, ¥)be the point C to which N tendsas Q — P.
Sublrac;ing (2) from (3) and putting 71 for Y, we have
(n - y){¢ (x + A.r)— ¢(x)}- Ay¢ (x + AJ‘)~ dx =0 s (4
IDividing by Ax, and making Ax — 0and noting that in that case

n — y, we have

(3-y)¢ ()-yolx)-1=0,

i, (¥=y)y, -y’ -1=0 o
Again, since (X, ¥) is a point on (I),
w (3-y)y+GE-x)=0 . (6)

The value of (J_t, }) obtained from (5) and (6) are identical with those
‘of the co-ordinates of the centre of curvature obtained in Art. 15.7.

* Hence, (¥,7),i.e.” C is the centre of curvature.
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15.9. Evolute and Involute.

The locus of the centre of curvature of a given curve is called its
Evolute. - )

If the evolute itself be regarded as the original curve, a curve of which
it is the evolute, is called an Involute. .

Formulz (6) and (8) of Art. 15.7 give the co-ordinates of any point
(¥,) on the evolute, experssed in terms of the co-ordinates of the
corresponding point (x, y) of the given curve; since y is a function of x,

these formule give us the parametric equations of the evolute in terms of
the parameter x.

Ordinary cartesian equation of the evolute is obtained by eliminating

x and y between the two expressions for x; ¥ and the equation of the
curve. ' [See Arr. 15.1LEx. 2. )

15.10 Properties of the Evolute

(M) The normal at any point to the given curve is the tangent of the
evolute at the corresponding point of the evolute.

Let (}, }) be the centre of curvature corresponding to the point (x, y)
on the curve. Then from Note 2. Art. 15.7.

X=x-psiny, y=y+pcosy,

dx dy . dp
— =1-p cos Y ——siny —
P v T 1 'J’dx

= _ﬁ.ﬂ.ﬂ_ nwa:_simyi’Z
dy ds dx dx - dx”

Th —d—i‘——sinwgﬁ 1)
hus, pr de o
- dy dp

2 = cosy— s w2

Similarly, 2 osy e @)

dividing (2) by (1)

dy dx

—= = —cCol¥ = —— whichis the ‘m’ of the normal at (x. ,V)-
dx dy :

- ‘m’ of the tangent to the evolute at (36, _Ya) ='m' of the normal to the
given curve at the corresponding point (x, y), and since both tangent to the

evolute and the normal to the curve pass through the same point (%),
they are identical. Hence the result.
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(I) Length of an arc of the Evolute

The length of an arc of the evolute of a curve is lhe difference between
the radii of curvature of the given curve, which are tangents to this arc of
the evolute at its extremities. -

Y

Fig 15.10.1

Let 5 be the length of the arc of the evolute measured from some fixed

‘pointon it up to the centre of curvature (}, ?:) . Then from (1) and (2) above,
we have
& 2 X ﬂ dp
dx \ dr dx
2 2 N2
Also we have L] + Lij = & ;
dr ) - | dx | dx
d_p
dx
- p =C(aconstant), i.e, 5 =p+C.

.oood
, ie., ;;(S -p)=0, Hence [ by Art. 9.7, Ex.1 |

‘—nl a_l&

Hence, 5 =5, = P, = P 5, where p 12 P, arethe values of P atthe.
two points P, P, on the curve and 5, 5, are tae values of 5 of the
corresponding points C ;. Con the evolute.

Thus, the arc €| C; of the evolute = P, C, - P, C,.

Hence, if a string is wrapped round the curve C, C,, it is clear that
when the string is unwrapped. being kept tight all the time, the point on the
thread which was at P» will describe the curve Ps P,

32-
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(II) Radius of curvature of the Evolute

v

o

Fig 15:10.2

Let ¥’ be the angle which the tangent at the point C (x,¥) on the
‘evolute [ corresponding to the point P( s y) on the original curve ] makes

with the x-axis, then is the angle which the normal at on the given curve
makes with the x-axis. :

ul' = —: LW, ., B dw = 1;also from (II) above _{f_ =]
E dy’ dp
Let p be the radius of curvature of the evolute at (E, 5)_

_ d5 _ds dp dw dp_d[ds)=dzs

15.11. Hiustrative Examples.
Ex. 1. Find the centre of curvature at any point (x.y) on the parabola
y 2 = 4a_x .

\r=F _ 1 Ja

Here, Vi

(,;y) e ) )

If (x,7) be the centre of curvature, we have

1+, .
X= x—y—|(—+:—yl—)=x+2(x+d)=3x+2¢z_
Y2
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2 A
= _ +l+}’| _y_Z\/;(x:I—a).

¥ )’z-. \/lI_

2Vx (x+ __2 3
:2&——-—%‘9 (._.y2=4ﬂ)——ﬁx

Ex. 2. Find the evolute of the parabola rvz =4dax.

As proved above, its centre of curvature (E, i) at any point (x, y) is

givenby ¥=3x+2a ...(D
& 2 3

y=-~J;——X’ @
me(l).x:-x—;ﬁ

Fom(), 7= 2-2)°
rom (2), =——
Ja| 3

$quaring and writing x, v for X, ¥, the required evolute is give
by 27ay’ =4(x-2a)’
Ex.3. Find the equation of the circle of curvature at the point (3, 1)
the curve y =x? -6x+10.

Here, y =2x-6;. y,=2.
atthe point(3,1), y, =0, y, =2.

If (}, Xz) be the centre and P the radius, of curvature at (3, 1‘).

Ty ey 1+ y,?
}_z_x'._;yl(_yl)=3’ y=y+ N ‘:1_*_%:%-
Y2 : Y2 o
(3%
1+ :
Also, p=-—Al_1
Y2

*. _the equation of the required circle of curvature is
2 .3)2 '
(x-3) +(y-.%) =%

o x*+y2=6x-3y+11=0.
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15.12 Miscellaneous Worked Out Exnmpls.

y 5 x
Ex. 1. Show that the radius of curvature of the curve y=c-cosh (—)

g c
5 £ [ C. P 1980, 95 ]
C
Solution : - y:c.cosh(i) : cia
c
Yi & ﬂ: c-l-sinh (£)=sinh (i)
dx < c y
d? 1 x
and y2=—§’=—-cosh(—)=l, [ From (1) ]
dx c [4 &
3
= 21X 2
l+y[2)2 {1+s|n h (;)}
Radius of curvature p= =
¥2 X
(.‘2
3
cz{cos hz(i)}l
e lcos h2x --sin h2x =1]
Y
2 X ?
cosh| =
a { (6)} e i
y yec ¢

Ex. 2. (i) For the tractrix s=clogsecy , prove that p=ctany and in

case of the equiangular spiral 5= a(e""" - 1) , p=mae™.
[ B. P 1995 ]
(ii) For the curve s=asecy +log(secy +tany), show that
p=secy(l+atany). [C P 1995 ]

(iii) Find the radius of curvature of s=asecy +log(secy tany)at
any position ¥ . [ C. P 2001])
Solution : (i) s=clogsecy
ds _secytany

=—= —_— =t
dlll c SBC\!! c-tany
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Again » ‘s = q(ému - l)
ds . my
L p=—=mae
dyr
(if) s=asecy +log(secy +tany)

secy tany + sec’ Y
secy +tany

p——ds——aseclp tany +
™ S

sec Y (secy +tany)
secy + tan

=asecy tany + =secy (l+atany).

(iii) s=asecy +log (secy - tany)
=asecVy +logsecy + log tan y

secytany sec? y
. sec\y tany
=asecytany +tany +coty .

ds
p=——=asecytany +
dy 2

Ex. 3. Find the radius of curvature for the curve
x=a(@+sinB), y=a(l-cosB) at 8=0.
[ C. P 1987, 91, 97, 2000, 2008 ]
Solution: “+ x=a(B+sin@), x° =a(l+cosB), x”=-asin@
y=a (l—cosG), y'=asin®, y” =acos0

At 0=0, x"=2a; x"=0, y'=0, y"=a

*Ex. 4. Find the radius of curvature at any point '/’ on the curve

x=a (cost+tsint), y=a (sint—1cost). [C P 2002 ]
Solution : Here, x=a (cost+¢ sinf) - == '
.. x'=atcost, x”=a/(cost~—1sint)
and y=a(sint -1 cost)

y' =atsint, y”=a/(sint+1?cost)
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502
Now,
' 3 . 3
(x’z + y'2)2 {azrz(sirl2 t +cos’ t)}2
xy"—yx” a"t{sint cOs? +1cos’ t —sint cost +¢sin’ r}
ey !
=——=aqat.
a’r?

Ex. 5. (i) Find the least value of the radius of curvature of the curve
x=5t, y=>5logsect. [C. P 1983]
(ii) Find the radius of curvature of the parabola y? =16x at the

end of its latus rectum. [ B. P 1988, 1997 ]

Solution : (i) Here x=5¢t and y=>5logsect.
' =5, x" =0 y’zStam,y”:Sseczz
: 3 L
C(x24y2)z {250+mn?0)} 9ssecds
xy“—yx”  25sec1-0  25sec?t

ol p = Ssecr
Since numerically the least value of sec 1 is 1, least value of P is 5.

(if) Equation of the parabola is y° = 16x .

One end of latus rectum is at (4, 8).

dy
2y—=16
Now, ydx

&’ 8 dy_ 8(8)_ 64
—dxz yz dx yz - 3

1
At the point (4, 8), yi=dy = ._g )

=8-2J2=16J2.

. (1) =|(1+;)3
LRYE



CUR VATURE : T 503

EXAMPLES -XV (B)

1.

Find the centres of curvature of the following curves at the points
indicated:

@ xy=12a(3,4). [ C. P 1934, 2008 ]

i) y= 2 +2x% +x+1a(0,1).

(i) xy=x?+4at(2,4).

(iv) v =sin’x at (0,0;.

V) x=e¢Zcos2, y=esin2tatt=0.

Determine the centres of curvature of the following curves at any buinl
(xy):

@i x? = 4day. \(ii) a2 - . ('lii)‘xz/a2 +y?/b2 =1

=x
1 2 2
@iv) xy = a’. ) x’ +y' =al.

. ™) y =%a(e!’/u +e—x/a )

(vii) x = acos¢, y=bsing. Do) x =@, y=2ar.-
(ix) x=a(9—sin0). y=a(l—-cosB).
® x=a(cost+tsint), y=alsintr—1scost).

Find the evolutes of the curves (iii), (iv), (v), (ix), (x) of Ex. 2, above.

If ( o, fp ) be the co-ordinates of the centre of curvature of the parabola
J_.\—' + J; = v';, at (x, y ) then show that
a+pf=3(x+y).
Show that the co-ordinates ( X,y ) of the centre of curvature at any
point (x, y) on a curve are given by
dy _ dx

0 x=x-2L j=y+2,
ag TP i

-

(@) x=x+p", y=y+p?,
where dashes denote differentiations with respect to the arc s.

Prove that the distance r; between the pole and the centre of curvature
cbm:sponding to any point on the curve r = f (8 ) is given by

r|2 = r2 +p2 _2ppv
where 0 and phave the usual significance
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7. For the equlangular spiral r = ae® @ , prove that the centre of
curvature is at the point where the perpendicular to the radius vector
through the pole intersects the normal.
8.  Find the circle of curvature of the curves :
() y=x+4/x at(2,4). ; [C. P 2006)
(M) y=x'+2x2+x+1at(0,1).
(iii) x = e at the point where it crosses the x-axis.
(iv) y? = 4x at at the ends of the fatus rectum.
) x+y=ax?+by? +cx® at the origin.
ANSWERS
L0 i?%ﬂg). @ (-4.2) @ @9 ‘
v (0. 1) v (©O-).
I RS I 1 O30 S
2. ® —a—z S 4_£l ' (“) 2 4:14 § 2 a2 6x °
N A . ) S.¢ 5. &
(iii) 2 &w= b ¥l (iv) EX gv?’ 2 |
I 2 2 i )’\’)’2 -a’ s
) (x+3x’y’. y+3x-‘y-‘) (vi) o= mel |
a? - p? 3 b -a? . 3 '
(vii)[ ——cos’ 9, sin’ @ | wiii) {a(2+32), - 20%),
(x) {a@+sin6),-al-cos0)}. () {acoss, asinr}.
30 (@)i+@y)i=(a-0)"
(ii) (x+ y)z- f(x— ))% = (4a)§-
(iii) (x+ y)}‘+ (= yﬁ st
(iv) x=a(@+sin@), y=-a(l-cos8). (v} 2+y? =q%.
4 () x’+y>-4a-10y+28=0. (i) x> + y2 +x-3y+2=0.

(i) x*+y? -6x+4y+5=0. (V) x?+y? -10x24y-3=0.

) (a+b)(x2+y2 )=2(x+y).



E’ , 1 AsYMPTOTES

16.1. In some cases a curve may have a branch or branches extending
beyond the finite region. In this case if P be a point on such a branch of the
curve, having co-ordinates (x, y), and if P moves along the curve so that at
least one of x and y tends to + oo or to — e, then P is said to tend to infinity,
and this we denote by P — oo.

Definition. If P be a point on a branch of a curve extending bevond the
finite region, and a straight line exists at a finite distance from the origin
Sfrom which the distance of P gradually diminishes and ultimately tends
to zero as P — oo (imoving along the curve), then such a straight line is
called on asymptote of the curve.

16.2.  Asymptotesnot parallel to y-axis.
If y=mx + ¢ be an asymptote corresponding to an infinite branch of
a curve, where m and c are.both finite (including zero), then

m= L 2 and c= Lt (y—mx)
X—yoo X X=—3oo

where (x, y) are the co-ordinates of a point P on the branch of the curve.
The distance of the point P from the straight line y —mx ¢ = 0 is
given by )
y'_m"_c,andifly = mx + ¢ be an asymptote,
1+ m?
d — 0 as x — - and since m is finite here,

Lt (y-mx-c)=0,0r L (y-m)=c.

d=

oo
. Again, denoting y - mx ¢, ie., d‘/ 1+m? by u,
y c+u

——-m=
Now making x — o, since y — 0 in this case, and c is finite.

ul2-ml=0,0r Lt L=m.

x—eo| X X—es X

Accordingly, to find asymptotes (which are not parallel to the
y-axis) of a curve y = f (x)}{or F(Xx,'y )= 0}, we first of all find out

L+ 2 from the equation to the curve, which may have several finite values

- rea W
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(inclusive of zero). Conespoﬁding to any such value (m say), we next procéed
tofind Lt (y— mx), using the equation to the curve.
T X —=3eo E

If this limit i#found to be finite, say c, then y=inx+cisan asymptote.
[See Ex.7,§ 16.8]

Note. An alternative definition of a rectilinear asymptote is sometimes given
as follows : If P bea point on a branch of a curve extending to infinity and
if a straight line at a finite distance from the origin exists towards which
the tangent line to the curve at P approaches as a limit when P — oo, then
the straight line is an asymprote of the curve.
With this definition also, we can prove the results of the above article;
for, the equation of the tangent at P (x, y) to the curve is
Y-y =Q(X ~.t),0!‘, Y:iy.x+( y—xi\: ],
dx dx dx
and as x — o, if this tends to ¥ = mX +c , where m and c are finite, clearly

X—poo X—oo X—300

m= Lt i ,and c= Lt (y—x?): Lt (v —mx).!
; x

It should be noted that when P — oo, if the tangent line tends to a
straight line as its limiting position, that line is an asymptote. The converse,
however, is not true, i.e., even if the tangent line has no definite limiting
position when P —» o, there may be an asymptote. [ See £x. 8, § 16.8]

16.3. Asymptotes parallel to y-axis.

The necessary and sufficient condition that the straight line x = a is
an asymptote to the curve y = f (x)'.r's that | f (x)| — e when either
x—=a+0o0orx—>a-0.

For, suppose x — a — 0. Since | y| = = in this case. P being the
point(x, y) on the curve, P —  in this case ; [conversely, if P — o in this
case, | y| — oo , and hence the necessity of the condition]. Now the
perpendicular distance of P from the line x = a is x—u (the axes being

rectangular),and | x—a|—> 0 as x— a—0. hence, x=a is an asymptote.
Similarly, for the case when x — a+0.

Thus to find asymptotes parallel to y-axis, we may write z for 1/y. in
the equation to the curve, and then make z — 0. If then the result leads to

' A rigorous proof of this Tast equality requires the use of integration. -
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a finite value or values of x of the type x = a, these will give us the
corresponding asymptotes parallel to y-axis. [SesEx. 7,§ 16.8]
Note. In a similar way we may get asymptotes parallel to x-axis thus if as
y—=b+0, |x|—)m (where x, yisa pomt on the curve) then y = b is an
asymptote.
16.4. Asymptotm of algebraic curves.

The most useful case of determination of asymptotes is for algebraic
curves. The general form of the equation of an algebralc curve of the nth
degree is, arranging in groups of homogeneous terms,

(ao.r tapx" My a2yt vt a,y” )

+(b0,\~"" P e S +b,,_,y"")
+(c0.\‘""2 + e Iy i +cn'_2y"_f) -
e =0, (1)

which can af$o be written as

x¢,,[ ]+x" ‘¢,,_1(-y-)+x"'2¢,.-z(z)+ ------ =0, . @
X X

where ¢, is an algebraic polynomial of degree r.
For asymptotes of this curve, we proceed to prove the following rules:

Rule 1. Asymptotes not parallel to y-axis will all be given by y=mx+c,
where m is any of the real finite roots of ¢, (m) =0 and for each such
values of m, ¢ = —¢, _; (m)/¢:. (m) provided it gives a definite value of c.

Proof:
The equation (2) of the curve can be put in the form

¢[;']+ b .[ ] <0 2[ ) ...... 0 O

Now if y ='mx+ c be an asymptote, where m and c are finite,
xﬁl., (y/x) =m (See § 16.2). Hence from (3), making x — o, since m is
finite, and the functions ¢, (m), ¢,_, (m), etc. which are algebraic
polynomials in m are accordingly finite, we get ¢,, (m)= 0.

Again, since in this case Lt '(y - mx) = c (See § 16.2 ) we can write

X'=p
y=mx=c+u, where u is a function of x such that 4 — (0 when
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. ) ctu
x—-)oo.Thus,~}i=m+
x

X
From (3), now we get

¢, é[m+c+"]+l¢n_l[m+c+uJ
X X X
")+...=0

Expanding each term by Taylor’s theorem, since the functions ¢, are

1 ¢
+—2¢"_2[m+
X

all algebraic polynomials and will each lead to a finite series, and remembering
that ¢, (m 0, we get

«I-—-
—-—*—

2
n I :" ¢;—l(m)+ (Cx-:;') ¢;—](’n)+ }

%{«p,,_ (

PR | e @
Now multiplying throughout by x and making x — o=, we get
(- u — 0 now).

c¢, (m)+ 9, (m) = 0,0r, ¢ = =9, 3 ()8, (m].

Each finite root of ¢, (m) =0 wil give ore value of ¢ (provided
@, (m) # 0 for this value), and accordingly we get the corresponding '
asymptote ¥ =nmx+c, '
Special cases

If any value of m satisfying 9 ,, (m) = 0 (say m = m, ) makes ¢, (m) =0
also (which requires m, to be amultiple root ¢ ,, () = 0 of as we know from the
theory of equations), and if ¢ ,1.(m) # 0 for this value, then ¢ —» o as

m—m. Acéordingly there is no asymptote corresponding to this value of m.
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Iffor ni = m,, weget ¢, (m), ., (m) ¢, _, (m), each = 0, then from (4),
multiplying throughout by x?, and making x —> w0, we derive ‘
12-c2¢,'; (m)+ c¢',,_l. (m)+¢,2(m)=0
giving two values (say ¢,.¢, ) of ¢ in general [ provided ¢',(m)# 0], and
thereby giving two parallel asymptotes of the type y=mx+c,,
Y=myx+c,.

If #,(m) is also zero (i.e., if m, isatriple root of 4, (m) = 0, and if

a2 (m| ) $n-2 (M.) are also identically zero, we shall, proceeding in a similar

manner, get three parallel asymptotes in general corresponding to m =. m,';
and so on.

)
RuleIl. Asymptotes parallel to y-axis exist only when a,, (the coefficient

of the highest power of y, i.e., of y") is zero, and in this case the coefficient
of the highest available power of y in the equation (provided it involves
x, and is not merely a constant) equated to zero will give us those
asymptotes.

A similar rule will apply to asymptotes parallel to x-axis.

Proof : After dividing by y", andreplacing 1|y by z, the equation (1) of
the curve can be written in ascending powers of z in the form

a, +z( 9%+ "l)+.. ("_2.\ +b, 2\+c”_,) =0 ...(5)

This will have an asymptote parallel to y-axis of the type x = a where a
is finite, provided = > 0 when x - a+ 0 or a—0.[See Ex. §16.3]

Hence making = — 0, since x now tends to a finite value, we must
have the necessary condition a, = 0.
_Assuming this to be satisfied, we get from (5), dividing by z and making
20,
‘ Ay X + b e (6)
giving a finite value of x(prov:ded a,_, isnot zero) which makes | 1'| - ®
and thus represents an asymptote.

Incase a,_, isalso zero along with g, in order that we may have an
asymptote parallel to y-axis, since x is to be finite, we must have, from (6),
b,_, = 0. Hence, from (5), dividing by =* and making - — 0 now we get
the asymptotes parallel to y-axis (two in this case) given by

[

2
Gy_3X" + b, ,x+¢,,=0
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provided this giyes finite values of x. In case a,_», b, 5, ¢, > are all

identically zero, we proceed in similar manner with the coefficient of z

(5), i.e., the coefficient of "2

_ proving the rule.

in the original equation (1), and so on,

Note. By interchanging y and x in arranging the given equation (1), and
_proceeding in a simi'ar manner, (making 1/x - 0) we can prove the
corresponding rule for finding the asymptotes parallel to the x-axis.

16.5. Working rule for asymptotes of algebraic curves.

For an algebraic curve of the nth degree with equation given by (1) of
the previous article, first of all see if the term involving " is absent, in
which case, the coefficient of the highest power of y involved in the
equation (unless it is merely a constant independent of x) equated to zero
will give asymptotes parallel to the y-axis.

Similarly, if the term involving x" is absent, the coefficient of the
highest available power of x equated to zero will in general give asymptotes
parallel to the x-axis.

Next, replacing x by 1 and y by m in the homogeneous n" degree
terms, get @, () [as is apparent from the alternative form +"¢"(y/x)].
Similarly, get ¢,_, (m) from the (n—1)" degree terms, and if necessary (see
later), #,_» (m) from the (n — 2)* degree terms, and so on. Now equating
é, (m) to zero, obtain the real finite roots m, m,, etc. which will indicate the
directions of the corresponding asymptotes (repeated roots giving in general
a set of parallel asymptotes).

For each non-repeated root (m,, say), a definite value c, of

c==9,, (’")/ 4’;("’)
is obtained, and the corresponding asymptote y = m» + c, is determined.

For repeated roots the several values of ¢ may be obtained as explained
under the head ‘Special cases’ of Rule 1.

16.6. Alternative method of finding asymptotes of algebraic curves.
Let the equation to an algebraic curve be
P+P_+P +.=0, sz )

where P [=apx” +ax" ' y+....+a,)" =x"g,(y/x)] consists of
homogeneous terms of degree n, P, ,is homogeneous of degree n— 1, and
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soon.Nowm,m,m,,...... being the roots of ¢ ,, (m) = 0,“we know fromr
the theory,,of equations that m—m , m-m,, .. .... are factors o
¢, (m) and accordingly F, = a, (y m,x)(y mzx)..'. The possibli
asymptotes are parallelto y - m,x =0, y-myx =0,etc., as proved in !
16.4, and their directions are thus all easily found from the factors of P,

- CastL. Let y—mx beanon -repegted factorof P,'s, Equation (1) cai
then be written as

(y&ml'x)Qn-l +F-l =0 1
or, y-mx+(F,_/[0,)=0 S

where O, [= (y—mzx)(y-—mgx)-----]_ is a homogeneous expression of
degree n -1 which does not contain y - m,x as a factor, and
Fo[= Py +P,_5 +.....] consists of (n = 1)™ and lower degree terms.
Nowtheasymptotepmliel Wy-mx=0isy-m, x=c, where
= Lt (y - mlx)= 'l_{_’ (— F. /Q,,_l) [from (2) above ], it being

X—joo
remembered that Lt (y/x )= m in this case [See § /6.2 ]. In other
X—oo .
words, the particular asymptote in question is
y-myx+ Lt (-F, ,/Q,_1)=0,
X—oo

where in determining the limit involved, we are to put ¥ = m; x and then,
make x — oo,

CaseIi. Let P, have arepeated factor ( y-m_x ) The equation (1)can
then be written as :

(y_mrx)ZQn—2+Pn..|+F_2=0, v €3)

where @, , isa homogeneous expression of degreg n-2 and

Fu-2l= Py +Pys +.....] consists of (n ~2)" and lower degree terms.
Now the asymptotes parallel to y — m, x=0 wﬂlbe y-m.x=c,
where ¢, = Lt (y m x} and this from (3) is glven by
+F,
c,z + Lt £ n-2

X—doo

= Oa
Qn—2

it being remembered that Lt (y/x )= m , here.
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If P,_, does not cox:ain ¥ — m , X as a factor, then it is easily seen
that c,2 , as given above, does not tend to a finite limit, and accordingly

there are no asymptotes paraliclto y=m,x.

If , on the other hand, P,_, has a factor y —m, x, assuming

P, = (y -m,x ) R ,_;,wecanwrite (3)in the form
R= F_
- (y-—m,x)!+(_v—m,x) B §=ER i,
QnAZ QnA'.!
and arguing as before, the required asymptotes will be given by
' R, Py
(y—mrxy-i-(y-—in,_\')u =2 5 i B o

k=0 Q5 = Q.
it being remembered that in proceeding to determine the limits we are to use

Lt (y/x)=m, here.

X—yoo

The two parallel asymptotes corresponding to the two repeated factors
of P, are thus obtained.

. Similarly, we mdy proceed in cases of factors of P, repeated more than
twice.

Note. If,in P, theterminvolving y" be absent, thatis, a , =0 clearly 7,

will have a factor x , and corresponding to this there will be in general an
asymptote parallel to y-axis, i.e., parallel to x=0, L (m) (which is in
general of degree n) will have its degree lower than »n in this case. If, for
instance, x> beafactorof P,, ¢, (m) will be of degree n—2,as x2y"?

‘will be the term involving the highest power of y in P, . In this case, there
will be in general two asymptotes parallel to v-axis (i.e., x=0)and n—2

asymptotes corresponding to the roots of O (nz)= 0, i.e., corresponding to
the other factor of P, .

. Thus, dll the possible directions of the asymptotes of the algebruic
curve (including those parallel to y-axis) will be indicated by the factors of
, and the asymptotes may be very effectively determined by the method of
the present article. [For illustrations, see Ex. I-5,§ 16.8. ]

A special case (Asymptotes by inspection).
If the yuation to an algebraic curve can be put in the form

F,+ F,_, =0,whereF, consists of n™ and lower degree terms which
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can be expressed as a product of n linear f'ctors none of which is repeated,
and F,_, consists of terms at most of degree n — 2 , then all the asymptotes

are giveby F, = 0.
For, let F, =(a,x+b,y+cl)(a,_x+b2y+c2)....
(a"x+b,,_y+c")
=la,x+b,y+c, )@ (say),

where Q,,_, isof degree n -] .

The cquation of the curve can then be written as

alx‘+bky+cl +Fn_2/Q"_l =0,

and the asymptote parallelto @, x+bh, y =0 is, as shown above,
f’lx*'bl)""cl +xl_f; (Fn-Z/Qn-l):O
vlvhere, in calculating ‘the limit of the last term, we are to put
y= '(“l/bl)x:
and then make x — oo, and this limit is easily scen to be zero, since F,_,
is at most of degree n — 2,and @ ,_, is of degree - 1.

Thus, a;x+b,y+c, =0 is an asymptote. Similarly, each of
a,x+b,y+c, =0, etc. will be an asymptote. As there are n
asymptotes here, F, = 0 represent all the asymptotes.

Note. If in the above case, F, consists of real linear factors, some repeated,
and some non-repeated, the non-repeated linear factors equated to zero will
be asympiotes to the curve. The asymptotes corresponding to the repeated
factors, however, will have (o be obtained as in the general case.

16.7.  Asymptote of Polar curves.

Letr=f (9) be the polar equation to a curve. This may be written as

L1 __Frlp) Gay. . s (1)

A0 )

P béing any point (r.B )'on the curve, P — co as r —> oo which
requires F (9) — 0. Let the solutions of F(@)=0be 8 =a,f,7,...etc.
Then these are the only directions along which the branches of the curve
tend to infinity. Consider the branch corresponding to § = . Let the
33
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straight line r cos (9 -0, ) = p...(2) be the asymptote to this branch.

0/ X

Fig 16.7.1

Then p = ON , Where ON is the perpendicular from the pole O on
the line, and ZNOX = «, .Let OP produced meet this line at Q. If PM be
the perpendicular from P on the line, then

PM = PQ cos QPM = (0Q - OP ) cos QON
= {p sec(@ —a,)- r(e )}cos (9 —al)
[From(1)&(2)]
- f(0)cos (0-a,).

Now since (2) is an asymptote, PM — 0 as P — oo, l.€.,350 —
for the branch in question.

Lip-10)cos 0-a))}=
or, GL’a f (6) cos (9 = a|)= p and as p is finite, and f‘(ﬂ) — oo

as g — a, Ll coq(é' a,) O

0-yu

a-a, =-£-7t or,alza—-!z-ﬂ:

Again, P:BIja 7(0) cos (g—a')—oLfaﬂslg(B) )
a,)

(L 0 -sin(6 -
Which | being of the form — | = __,______.
0] o5a F(0)

l) 1

o —

sin( o ~
Fla) . Fla)
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Hence, (2) reduces to r cos (6 —a+in ) = -ifF (@),
or, rsin (0-a)=1/F(a)
which is the required asymptote.

Similarly, the other possible asymptotes corresponding to the other
branches are rsin (6 - 8 ): YF (B ) rsin (0 -y )= l/F'(y ).elc.

16.8. Illustrative Examples.

Ex. 1. Find the asympiotes of the cubic
=2yt ay(2x=y )+ y(x-y)+1=0 [C. P. 1949, '97]
The curve bemg an algebraic curve of the third degree, since the terms

involving x Sand v* are both present, there are no asymptotes parallel to
either the x-axis or the y-axis in this case.

To find the asymptotes of the type y =rux+c, which are oblique,
considering respectively the third and second degree terms (putting 1 for x
and m for y), we get here

b -2 i (2 {1 Yo} (120,
and @, (m)=m(1-m)

Now, ¢, (m)=0 gives m=1, -1, -1,
G- (’”)__ m(l'-m)

O, (m) " —6m?+2-2m

m=‘“l,(.‘z='—I;,'_1|1df()rn'1"—*l (,1-—%. .

Also, ¢ =

sand thus for m=1, ¢, =0; for

Hence the required asymptotes are
v=x, y==x-1 and _\'=~%x+%.
ie, x=y=0, x+ y+1=0and x+2y=1.
Note. It may be noted that the equation to determine m and ¢ might be

obiained in practice by putting vy =mx+c in the given equation, cid
then equating to zero the coefficients of the two highest powers of x.

Alernative methed :

Writing the highest degree terms in factorised form, the equation can
be written as

(,r-—- Av-)('x_'+ » ){ X+ 2y )+ _\v(’_r - y')+l =0,
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Hence the possible asymptotes are parallel to x—=y =0, x+y =0
and x+ 2y = 0, and these asymptotes are respectively
x-y+ U y(x-v)+l

(—un

5 (t+\)(1+2v)=0

)
v(x-y )
A stk *
r+y+_‘.3@lm+1\] @
N==K
and x+2y+ L plazplyl =) @
x—yon (-"“)’)(X+y)
y=-Lx
y==y
) ) x(.\'—x)+l
- = Lt =0
The limit, involved in (1), Ry oy PETTY B
—x(x+x)+1 -l 41
« = T :I
thatin (2),= wm—"‘ﬂ-ﬁ—j ,Hw 2?
—dylx+da )+l -2
and thatin (3),= ( ) ;

L x +|_ .
’“’G"'I'X‘—l")_"”"’ %-3 T

Hence the asymptotes are

x-y=0, x+y+1=0, x+ 2v-1=0
Ex.2

. Find the asymptotes of 21(_}, S) _3(_\/—2)(x—l)

As the curve is algebraic, arranging the terms in descending degrees
the equation can be written as

xy(2y—3x )+ 2x(3x-7y )+38x-3y+6=0

RN
The possible asymptotes ave parallel to x = 0, y=0and 2y-3x=0
T'he asymptote parallel to x=0; /e to th

e y-axis, is (equating to zero the
coefficient of y?, the highest available power of y in (1), since the term
involving 3 is 2bsent here) 2x=0,i.e., x=0,the y-axis itself.
The asymptote parallel to y =
absent here), is =3y +6=0,0r

0, (in asimilar manner, since ? term is
,y=2.

The third asymptote is

x—Ty )+ 38x—
2y-3x+ Lt 2.((31: 7y )+38x-3y+6

X=doo

=0
Xy
y=ty
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and since the limit involved = Lt
: A—3on %x

the asymptote is 2y—-3x-10=0.
Hence the required asymptotes are x =0, y=2, 2y =3x+10,
Ex. 3. Determine the asymptotes of
x’ -}-.\'zy—xy3 -yJ +2x_v+2_v2 =3x+y=0 [C.P.2008)
Writing the equation as '
(_\'+_\;)2(.\'-—y)+2y(x+y)-3x+y=0, sww1)
we note that there are presumably two parallel asymptotes parallel to
x+»=0,and one parallél tox—-y=0.

The asymptotes parallel to x + y=0 are given by

-y _

(x+yP+2(x+y). Lo —2—— Lt
X0 X=) x-0 X—y

v=-x y=-y

0 ...(2)

provided the limits involved exist.

y -x

Now, Lt = Lt
Y0 X—Y xm X+ X
yv=-x

(S0

3x-p © 3x+x
and Lt —= Lt =
Xepmo Yo P f2x X+ X
y=—x

Hence, the asymptotes from (2) are

2.

(x+y)? ~(x+y)-2=0,0r, (x+y+1)(x+y-2)=0.
Again, the asymptote parallel to x— y =0 is given from (1) by

eoys 1 2lxay)sxey

:':)\nﬁ ( Xty )2 '

0,

2. (x+x)-3x+x

ie, x—y+ Lt —=0,ie,x=-y+1=0.

Xhen (x+x )2
Thus. the required asymptotes are
X+y+1=0, x+y-2=0 and x-y+1=0.
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Ex.4.  Find the asymptotes of the Folium of Descartes

x4yt =3avy. [B.P 1993]

The equation can be writtenas (x + ») (x*- xy+ y2 ) =3axy, and since

the highest degree terms have got only one real linear factor x + y, (the

linear factors of x° —,vcy+y2 being clearly imaginary), there is only one

possible asymptote here, which is parallel to x + y = 0. The asymptotes in
question is

3ax 3ax?
axy —3ax
X+y=. Lt 24)’= Lt ’—2—1=—(:,
X—=w> l ._'r)lv+}l' R 227 _\‘_ +x +_\‘-

r=-x

ie, x+y+a=0.

Ex. 5. Find the asymptotes of _\-( X-y )‘ —3( =y )+ 8y =0

The possible asymptotes here are one parallel to x=0 and a pair
parallelto x —y=0.

The first one, which is parallel to y-axis, is found by equating the
coefficient of ) to zero, (the term involving )’ being absent, as it should be
under the circumstances), namely, x +3=0.

The other two are given by

Yig ir L= 0,

—1)1—:(\—y) Lr
\Aoﬁ\
. e, (x—_\')z—3(.\'—'\').2+8=0‘ or, (»\’-*}"“4)(-\'")"‘2):0-
Thus, the required asymptotes are

x+3=0, x-y=4 and .\'—y=2:
Ex. 6. Prove that the asymptotes of the cubic

(Jr2 -y? )y—2ay2 +5x=7=0
form a triangle of area a’.

The equation to the curve may be written as’
_l-'(x3 —¥2=2ay )+5x— 7=0
or y {\‘1 ~(y+a )2 }+ uzy-‘+-5A\'—7 =0,

ie, y(x+y+a )(..:c-—_v-a)Jray2 +5x-7=0
which is of the form F;+# =0, F; having three non-repeated linear



ASYMPTOTES ' 519

factors, and so the required asymptoles are given by equating these factors
to zero, namely,

y=0,x+y+a=0 and x-y-a=0.

By solving in pairs, their points of intersection are easily seen to be
(-a,0), (a,0) and (0,-a).

‘The area of the triénglc with these as vertices is

a 0 1
- 2
g e 9 i =124’ =a".
0 -a 1| °
Ex. 7. Find the asymptotes, if any, of the curve .

y =alogsec(x/a).
This is not an algebraic curve. To find its asymptotes, if any, which are
not parallel to v-axis, we know that v = my+¢ will be an asymptote, where

v
m= Lt — and c= L1 (y-vmx),
N—yeo )} X—doo

; y alogsec\x/a
Now in the curve, m= Lt == Lt ai—i/—)
X—peo Y V=300 X
which limit does not exist.
Hence there is no asymptote non-parallel to y-axis in this case.

To find if there be any asymptote parallel to y-axis, we notice that
y—> when x/a— 2nmt % 1t and accordingly the asymptotes parallel to
y-qxis are (See § 16.3)
x= (Zmr +d 1t)a
" which are the only asymptotes of the gi;/en curve.
Ex. 8. An asymptote is defined in the following two ways :

(A) An asymptote is a straight line, the distance of which from a point
on a curve diminishes without limit as the point on the curve moves to an
infinite distance from the origin.

. (B) An asymptote to a curve is the limiting position of the tangent
when the point of contact moves to an'infinite distance from the origin,

Consider the two curves

i c .. c+sinx
(i) y=ax+b+—, (i) y=ax+b+——m—-r.
X
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Show that for the first curve, an asymptote exists according to both
the definitions, but for the second curve, an asympiote exists according to
the first definition, but not according 1o the second.

Let us consider the first definition. According to this it has been proved
(§ 76.2) that the straight line y =mx+c¢ will be an asymptote to a curve,

“where m= Lt 2 and c= Lt (y—mx), (x, ¥) being a point on the curve,
X =300 X X—joo

provided the limits exist.
Now for the curve (i),

m= It Lo l_,lm(a+£+£v)=a,
X=—oo X X X .[2
and e= Iy (y-m.x): Lt (y—ax): Ll_(b+£)=b-
x—3o0 X—yoo r— X

Accordingly the asymptote éxisls, givenby y=ax+b.
Again, for the curve (ii),

= Lt X: a+ b f—:til"lf =a ['.'ISianSl]
X—des X X X 1-2
L]
; +8inx
and c= L:(y mx Lr(y ax) U,(b C—l—)—b
: X0 x
Thus, the asymptote exists here also, given by y=ax+b.
Next, consider the send definition.

For curve (i), ﬂ -

X

(x,y)isY-y= (a——)(x ~x)

X

or, Y =[a—%)x +y—x(a——%]=(a—%)x +(b+£)
x X x x

As x —eo, the equation becomes Y =aX +b, which is then the
definite straight line towards which the tangent line approaches, as the

point of contact (x, y) moves to an infinite distance. Hence this is the

asymptote.

xcos x—(c+sinx)

2

For curve (ii), ﬂ =a+
dx : X
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and the equation to the langefll line at (x, y) is

y_y={a+xcosx—(c+sinx)}(x_x)

x2

" or substituting the value of y from (ii),

y=(3+ws""_c+s'"'t])(+[ 2(c+smx)_cosx+b }

X X Z X‘z

Now, as x — o, cos x does not tend to any definite limit. Hence the -

tangent line at (x, y) does not tend to any definite limiting position and so
the asymptote does not exist in this case, according to the second definition.

Ex:9. Find the asvinptotes, if any, of the curve ( r—a)sinf=>b.
The equation can be written as u = __§£19_ =F ( 0 )(my).
b+asin®
The directions in which r — co arc given by n=0, or sin0=0, giving

O=nm.

du _cosO(b+asin® )-sin0.a.cos0
@ (b+asing )’

_ bcosO

¥ (IJ-H:zsinG‘)1 ’

. bcosnm _ cosnm
and for @=nm, this = —b—z—-_ %

Hence, as in § /6.7, the required asymptote is given by
rsin (8- nm )=l F'(nm)= bsecnr
which, whether' is even or odd, reduces to

rsin0=>.

Now F’(0), ie.,

16.9 Miscellaneous Worked Out Examples
Ex. 1. Find the asymptotes of :

) -4y’ =1. [C. P 1982, 94 ]
(i x-y?=9. [C. P 1998 ]
(i) x*¥* = a?(x? +5?). " [BPI90]

(iv) xy—-3x-4y=0. ' | C. P 20001
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Solution :
() x*-4y*-1=0
or, (x+2y)x-2y)-1=0 or, F, +Fy=0

where F, = (x+2y)(x—2y) is of degree 2 and F, =-1, which is
of degree 0.

So, asymptotes of the given curve are given by F, =0
ie, (x+ 2_\')(1 - 2‘\1) =0
Hence, the asymptotes are x+2y=0, x-2v=0
(i) x> =v'-9=0
o, 5+, =0

where F, =(x+y)(x-y) is of degree 2 in x and y and Fy=-9.
is of degree 0.

e

Hence the asymptotes are given by F, =0.
ie, x+y=0and x—y=0.

(i) v —a’x2-a?v? =0 o5 5 1610
This is a fourth degree equation in x and y ; So the curve
represented by (1) may have ar most four asympiotes.

Here, terms containing ,;4 and _\r" are absent, so the curve has
asymptotes parallel 1o x-axis and y-axis.

The coefficient of highest available power of x, i.e. of x° is
y>~a” and the coefficient of ytis x2-a%. '

So, asymptotes parallel to the x-axis are : y: -a®>=0

ie, yta=0.

and asymptotes parallel to the y-axis are : x> —a> =0

Le, xta=0."
(iv) xy=3x—4v=0 w i 5 (1)

As in the earlier problem, the asymptote parallel to the y-axis is
y—=3=0 and the asymptote parallel to y-axis is x--4=0.
Ex. 2. Fiﬁd the asymptotes of :

B P +2%y+ 9 —x+1=0 [C. P 1992 ]

(i) (x+y)(x+2v+2) = x4+ 9y+2. [ C. P 2000 ]

(i) 4x* =307 —y* 4207 —ay—y-1=0. | C. P 1998, 2001 |
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Solution : () x*+2x’y+x’-x+1=0 | .. (D
or, x(x+y+1)(x+y-1)+1=0
o, +F=0 -
where, F3=x(x +__v+l)(x+y—l) is of degree 3 and it has three

non-repeated linear factors and F, =1, which is of degree 0.
The asymptotes of the curve (1) are given by

Fy=0,0r, x(x+y+l)(x+y-1)=0

ie, x=0, x+y+1=0, x+y-1=0

Gi) (x+3) (x+2y+2)=x+9y+2
or, (x+ ¥ (x+2y+2)=(x42y+2)+7y
or, (x+y)(x+2y+2)-(x+2y+2)-Ty=0
or, (x+2y+2)f(x+ v -1}-7y=0
or, (x+2y+2)(x+ v+ 1)(x+y-1)-7y=0
o, F;+F =0
where Fy=(x+2y+2)(x+y+1)(x+y-1) which is of degree 3

and it has three non-repeated linear factors, while F, = -7y, which is
of degree 1. Hence, the asymptotes of the curve are given by

x+2y+2=0, x+y+1=0 and x+y—-1=0.
Gin 4x =307 -y} 420 - xv= i -1=0 s o )
This is a third degree curve, so it may have three asymptotes at
" most. Since the terms involving x3and y3 are both present, it has no

asymptotes parallel to x-2xis and y-axis.
Equation (1) can be be written as

' —dxnt s -y a2t —xy-yr-1=0 _
or, 4x(x+y)(x=y)+y (x—y)+2x* —xy-y’ —=1=0
or, (x—y)(2x+y)2 +2x =2y +y-yr-1=0
or, (x—y)(2x+y)’ +2x(x- y)+ y(x-y)-1=0
or, (x=y)(2x+y)(2x+y+1)-1=0 o, F;+F=0
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where Fj is of degree three and it has threc different linear factors,
while Fy =~—1, which is of degree 0.
Hence, the asymptotes of the curve (1) are given by

(x-—y)(2.t+y)(2x+_v+l)=0
ie, x—y=0, 2x+y=0 and, 2x+yv+1=0.
EXAMPLES-XVI

Find the asymptotes of the following curves [ £x. 1-317 ]

1. ¥ -xT-2x-2y-3=0.

2 Yoo +1ty -6t 4y a2 +2x-3y-1=0.
3 Aaa?y-x? -3+t - 2043 +4x+ 5= 0.
4. 33 +2X%y - Txy + 2y —14xy + 7y’ +4x+ 5y = 0.
[ C.P. 1943 ]

5 P42xly-x? -2y +4y? + 2xy—-5y+6=0.

XZ )’2 3 5 [ }
6. —2—?.—_1_ 7. X' —9 —3)r(x+y,,

a

8 Xy 43y +307 +ay=0.
9, 4x'-5x?y?+y' 4y -3y +5x-8=0
10. ) xy-2y-3x=0. G 52 (< -a?)= x.
(iii) x(x2 + _v2 )+u(J\‘2 -y ): 0.
1. 3%y’ -4(x-yF+2v-3=0.
12 2y -y —-x? +x+y+1=0. [C.P. 1937)
13. vx? =3y =5 + 227 4687 —x-3y+2=0.
M -2+l y?—a? =0.
15. ¥ -yl +y?+x2-4=0.
16. xz(x—y)z—az(x2+y2)::0. [C.P. 1945]
17. x:"—4xy2—3x2 +12yx— 12y + 8x+ 2y + 4 = 0.
18. 2 +3%y-4y  —x+y+3=0. [ C.P.2003]
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19. V' -xyl-xPy+xt+x7—y?-1=0. [C.P. 1939]
20. ' +xly+2xt - y+1=0. [ C.P. 1941, '44, 87, '90, 96 ]
21. (x’ -yt )2 —8(12 +y’ )+ 8x-16=0-
22. y(y—-x)z(_y—2xj+3x2(y—x)—2x2 =0.
23 2 (x+y)(x- vy +2° (x - y)-4y’ = 0.
24 (x+y)(x—2y)-yf +300(x-y)+ 4yt =0
55, (x4 y) (emof ~2(x+ yF (x=yF -2(2 £57 )4 v)
+2(.l‘—y)2 +4(x~ y): 0.

26. y* — Sxy? + 8x2y —4x® — 4y® +12xy - 8x? +3y-3x+2=0.
27. .G) .f(y(xz -y? )= 2y

@ (a2 y? )= -0
28. (i = y? )5 - 9y? )+ 3y - 6x -5y +2=0.
29. () © —6xyt +1lxy? =6y’ +2x-y+1=0.

i) -5 +dyt 4 a =252 4204y 7 =0,
30. (x—y+1)(x+ y+1)(x=2y+3)=2x-5y+L.
31. () y = tanx. G) y=e™.

@) y=e™ - (v) y=logx.
32. Show that the asymptotes of the curve

x2y? =a’ (x2 +y? )f()rm a square of side 2a.

33. Show that the asymptotes of the curve

34.

3s.

xz_vz - a? (xz + y2 )-aj(,\' + y)+ a* =0
form a square, two of whose angular points lic on the curve.
| C.P. 1947}

Show that the finite points of intersection of the asymptotes of
xy(xl iyt )+ a ();2 +y? )w a® = 0 with the curve lie on a circle
whose centre is at the origin. ‘ 3

Find the equation of the cubic which has the same asymptotes as the
curve Zx( ¥y-3 )2 = 3_v( x—1 )2 and which touches the axis of x at
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. the origin and goes through the point (1, 1).
36. If any of the asymptotes of the curve
wx® + 2hxy +by? + 2gx + 2fy + ¢ = 0 (112 > ab)
passes through the origin, prove that
af? + bg* = 2feh.
37. If the equation of a curve can be put in the form
Y = ax+ 1)+¢(.t )‘whcrc q)(.x‘)——) 0as x — oo,
then show that y = ax+ b is an asymptote of the curve. Apply this
method in determining the asymptotes of the curve
,\’23’— -zt =3x+2=0.

38. *Anasympote is sometimes defined as a straicht Jine which cuts the
curve in two points at infinity without being it-clf at infinity.” Comment
on this definition. Attempt a correct definition and use it to obtain the
asymptotes of (_r +y )2 ( X+ 2y+2 ) =x+9y-2.

39. Find the asymptotes of @

) r=a(cosd +secq ). () rcos® = 2asing .

(i) r=asecO +bian - (V) reosd =asin -

(V) r=acosecl +b. ™) rsinnd = a.

i) 1@ = a. (viit) " sinn@ = " (n >1 )

40. Show that there is an infinite series of parallel asymptotes to the curve

= (.l +b
0sing

41. Show that all the asymptotes of the curve rtann@ = a touch the
circle r =a/n.

42. Show that the curve r=asccnl + btann® has two sets of
asymptotes, members of each set touching a fixed circle.

ANSWERS

1 y-—x=2, y+x=0. 2. v=ux, y=2x+3, y=3x-4.

3. 4412y +9=0. 2+ 2y -3=0, dx-4y+1=0.

4, 6v-6x+7=0,2v-6x+3=0, 6y+3x+5=0,

5, x+42y=0,x4y-1=0, x-v+l=0.
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b
6. )'=i—a‘x. A x—-y=2.
8. x+y=0, 2x=2y+3=0.
9. 3x-3y-1=0,3x+3y+1=0,12x-6y—-1=0, 12x+6y+1=0.

10. () x=2 y=3." (i) y=0, x=ta.
(i) x=a.
1. x=12; y=12, 12. x=0,x=1 y=0, y=1

v
13. x=2.x=3,y=L y=2. 14, x==%1; y=1%x.
15. y=1, y=x-1, y=-x~-1. 16. x =+a: x—y=ia\/§-
17. x+3=0; x-2y=0; x4+2y=6.

18. ¥
19. y=z2x; y=x+l1. 220, y=0, x+y==%I.

2l. y=xt2; y=—-xt2.

22. 2y+3=0; x—y+1=0; x—y+2=0; 4x-2y-3=0.

23. x=42; x-y+2=0; x-y-1=0; x+y+1=0,

24, x-y-2=0; 2x-2y+1=0; 2x+2y~-1=0; x-2y+2=0.

x; x42v=1=0; x42y+1=0.

25. x+y—-2=0:x+y==%1; x-y==%I.
26. y=ux; y=2x+1; y=2x+3.
27. () x=0. y=0, x+y=0, x-y =0. (i) x=0, y=0.
28. x+y=0 x-y=0, x+3y=0, x-3y=0.
29. () x-y=0 x-2y=0 x-3v=0,
(i) x+2y=040, x—2y=0,qx+y=0, x—-y=0.
30, x—-y+1=0, x+y+1=0, x=-2y+3=0.
31. () v=(2u+1)lm. where n is zero or any integer positive or
negative. ’
@ v=0. (i) y=0. av) =x=0.
35. 22 -3a%v-6xv+7y=0. 37 y=x+1.
38. .l’+2_\'+2=0:.\’+_\’=12\/5~
39. () rcosf=a- (i) rcos@ =+2a. (i) rcosO =ath.

(iv) rcos@ =a. V) _rsin0=a.

% ‘ nmi a 3 3
(viL. 7 sin (,9 - V—J = —secmm , where m is an integer.
n

.s 2 g s mn . .
(vit) rsin® = a (vi) @ =——" where m is an integer.
n . 5



17 Sec. A. ENVELOPE OF STRAIGHT LiNes

17.1. Introduction. '
Let us consider the equation
xcosa + ysina = a.

This represents a straight line; by giving different values to ¢, we shall
obtain the equations of different straight lines but all these different straight
lines have one characteristic feature common to each of them, viz., cach
straight line is at the same distance a from the origin. On account of this
property these straight lines are said to constitute a family and o which is
a constant for one but different for different lines, and whose different
values give different members of the family, is called the parameter of the
Jainily. 1t should be noted that the position of the line varies with a.

As we have a family of straight lines, we have a family of curve. Thus
the equation

(x-aP+y’ ="+

represents a family of circles for different values of ¢, all the individual
members of the family having the common characteristic, viz., they are of
equal radii ‘r" and their centres lic on x-axis. Here is the parameter of the
family. 3

In gencral, rhe equation of a family of curves is represenied by
F(x y, a)=0, when & isthe parameter.

17.2. Definition of Envelope.

If each of the members of the family of ciurves C = F (x, y, a ) =0
touches a fixed curve E, then E is called the envelope of the family of
curves C. The curve E also, at cach point, is touched by some member of
the family C.

Miustration :

2 at

We know that xcosol+ ysin 0.=a touches the circle Xy y2 =a
(acos o, asino ) Thus, each of the members of the family of straight lines
C =xcosa+ ysino=a (for different values of ) touches the fixed circle
E= .r,z + y2 =a”, and hence the circle X+ y2 =a? is the envelope of the
family of straight lines x cosa.+ ysint=a ; also the circle x?+ ),2 =a’ at
each point (a COS O asin ol ) obtained by varying values a, is touched by some

member of the family of straight lines.
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~/
Fig17.2.1 -

In the present section we shall confine ourselves to the determination
of the simplest type of envelope, ie., the envelopes of straight lines.

17.3. Envelope of straight lines.

The equation of the envelope of the family of straight lines
F(x, ya ) =y-f (a ).x - ¢(a ) = 0 (o being the parameter) is the

oF
-elimi = d —=0.
o-eliminant of ¥ =0 an o 0
FromF=Oandg-F—=0.wchavcrespeclively
a . .
y=f(a)x+¢(x) (D)
and 0=f"(a)x+¢'(a) )
. s a
from (2), x=‘%‘%=8(a),say ...(3)

andfrom (1), y = L (“)¢(a2("f)(“)¢ (a)_ h(a)say ...(8
a
Hence the curve (i.e., the envelope) whose equation is obtained by
eliminating ¢ between (1) and (2) is the same as the curve whose equation
is given parametrically as )

x=g(a)

Now, the equation of the tangent at the point ‘a’ on the curve (5) is
y-h(a)=h—,(—a-l{x—g(a)}, : ... (6)
T gla)

34
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Substituting from (3) and (4) values of g (a ! h(a ).g'(a), K (a)in©)

and noting that A’ (a )&’ (a ) reducesto f (@ ), and simplifying, we get

the equation (6), i.e., the equation of the tangent at ‘e’ on the curve (5) as
y=f(a)x+¢(a)

which is the same as the equation of hte given family of straight lines.

- 'I'I‘lus. every member of the family of straight lines £ (xy a ) =0

touches the curve whose equation is. given as the o-eliminant of F = 0

oF G i : : ’
and Fo = 0, and hence the a-eliminant curve is the envelope of the family
o
of straight lines.
Cor.1. From the definition, it at once follows that every curve, is the
envelope of its tangents.

Cor.2. Since we have seen that normals at different points on a curve
touch the evolute at the corresponding points, it follows that the evolute of
a curve is the envelope of its normals.

Thus, if N ( Xy, 0 ): 0 be the equation of the normal of a curve at a
point with parameter a, the evolute is obtained by eliminating a between

oN 5 i :

N (x. ¥, O ): 0 (l)and i- =0 (2). Since the evolute is the locus of centres
of curvature, the co-ordinates of the centre of curvature are obtained in
parametric form by solving the above two equations for x and y in terms of a.

The above methods of determining the evolute and centre of curvature
are much simpler than the methods already given in chapter XV (curvature).
[Sec Ex. 4 and Ex. 5,Art. 17.4. ] I

17.4.  Nlustrative Examples.

Ex 1. Find the envelope of the straight line y = mxt— , m being the

m
variable parameter (m#0 ) ’ [C.P 1994, 2008 V. P. ‘95 ]
a
Here, mx+—-y=0 ..
n
Differentiating with respect to m,
X~ 07:0. mz=9-. S m=F 2.
m- X o
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Substituting these values of m in (1),

i[ﬁ.m/‘g]_'y:o, |

ie, +2Jax =y, o, y* =4ax (parabola)
which is the required envelope.
Ex. 2. Find the envelupe of the family of straight lines
Ac? +Ba+C=0, _
where o is the variable parameter, and A, B, C are linear function of x, y.
 We have Ao’ +Ba+C=0 | )
Differentiating this with respect to o, we have
240+B=0,ie, a=-B/(2A).
Substituting this value of ot in (1). we get
B> B?
A—r-—+C=0 2
A 2A ) or, B =4AC-
Thus, the envelope of the family of straight lines Aa’+Bo+C=0is
the curve B? = 4AC.

Note. When the parameter occurs as a quadratic in any equation the above
result is sometimes used in determining the envelope. '

Ex. 3. Find the envelope of the straight lines

i + _y_. =1 .
a b ' .
where a and b are variable parameters, connected by the relation g+b=c,
¢ being a non-zero constant. { C. P. 1998, 2006 ]
Since a+b=c, b=c-u.

the equation of the straight lines becomes

5_+_;"‘_-=|1 or, (c—a)x+ﬂy=a(c—a),
a c¢—a

o, a’ +a(y—x—c)+c"x=0.

Since it is in the form Aa® +Ba+C =0, its enveiope is
B =4AC, ie, (y-x-c) =4ex,
which represents a parabola.
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The above equation can be written as

2 +y? +c? =2xv+2cx+2cy.
or, Jx +J; =Jc (which represents a parabola).
Otherwise : ‘

The climination of a and b can also be performed thus :
Differentiating the equation of the line and the given relation with
respect o a, we get B

. db
On equating the values of T from these two, we get

b “a+b

G Jredy f+J_
ol ol
Jx+fy’ N

Substituting these values of @ and b in the equation of the line, we get

(\/;+J;)2 =c, ie., x+\/7=s/;-

Ex. 4. Find the evolute of the parabola y2 = 4dax (evolute being regarded

as the envelope of its normals).

The equation of the normal to the parabola at any point ‘m’ is

y = nmx—2anm—am®. ' ..

Let us find the envelope of this, i being the parameter. leferenuatmg
(1) wnh respect to m,

0=x-2a-3am?. o, m* =(x-2a)/(3a). (2
From(1), y = m(x— 2a —am’ ): m(3am2 Zam? )>= 2am3,
' 3
y? =4a’m® = 44> (x-2a) from (2).
27q*

ie, 27ay’ = 4(x—2a )" ,
which is the envelope of the normals, i.e., the required evolute of the parabola.
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X

Ex.5.  Find the centre of curvature of the ellipse ik blz =1,
a

The normal at the point '¢' is

axsec ¢ bycosec¢=a® —b?. e (D
Difiercntiau‘ng this partially with respect to ¢,

axsccdtan ¢+ bycosec pcot ¢ =0. 2
Solving for x and y from (1) and (2), we easily get

az_ 2 a?_bz

b :
Xx= cos3¢. y=
a

sin3¢.

EXAMPLES - XVII(A)
Find the envelopes of the following families of straight lines
(Ex. 1--9):
1. xcosa+ ysina = a,parameter .
2. axsecca - bycoscc @ = a® —b?, parameter ..
3. xcos30 + ysin30 = a(cos 20 )2 , parameter 0.

4. xcosa + ysina = acosa sin ¢ , parameter O [V.P. 199({]

5. y= mx+ayl+ m? ,parameterm. | C.P. 1993,2004, ‘06 V. P. '96 %

6. v =mx+Va’m? + b? ,parameter m. |

[ C.P. 1990, '97, B.P. '86, ‘94, '96, V.P. 2001 ]
7. xsec’ 6 + ycosec’ 0-= a,parameter 6.
8. xJcos6 + yfsin@ = a,parameter .

9. xcos" @ + ysin" @ = a, parameter 6.

\

10. Find the envelopes of the straight line

L
_+.¥.=]‘
a b .

where the parameters a and b are connected by the relations
@) a* +b =c* [C.P 1989, 9,2001,'03 B.P. 1989, 95, V.P. '99, 97)

@iy ab=c*, [B.P. 1988. 93]
¢ being a constant.
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12.

13.

14.

16.

17.

18.

19.

20.

Find the envelopes of the straight line

.'f.+_.y.=|
I m g

where [ and m are paraméters connected by the relation

l/a + m{b = 1, a and b being constants.
Find the envelopes of straight lines at right angles to the radii of the
following curves drawn through their extremities :
@) r=a(l+cos0). (i) r’ =a’cos20. (i) r = ae
From any point P on a parabola, PM and PN are drawn perpendiculars

to the axis and tangent at the vertex : show that the envelope of MN is
another parabola. | C.P. 1996, ‘99, 2005 ]

Show that the envelope of straight lines wkich join the extremities of a
pair of conjugate diameters of an ellipse is a similar ellipse.

m@

If PM, PN be the perpendiculars drawn {rom any point P on the curve

y = ax® upon the co-ordinate axes, show that the envelope of MN is
27y + dax® = 0. »

From any point P on the ellipse _\'2/02 + \vZ/b2 = I, perpendiculars

PM and PN are drawn upon the co-ordinate axes. Show that MN always

touches the curve ( x/a )‘: +(y/b )'1 ey

Find the envelope, when 1 varies, of

(a,l2 + 2a,t + ay ).\' + (.b,f2 + 2byt + by ) ¥y +(q12 + 20y +¢4 ): 0.

Find the evolutes of the following curves (evolute being regarded as

envelope of normals) : :

(i) x=acos¢, v=Dbsing. @) x= ar’ , ¥y =2ar,

-

(iii) \% + y3 =, (V) .\"2/(12 + )’2/1)2 = ik,
) x=a(6-sin0), y=a(l-cos0).
i) x=a(cosr+rsinr), y=al(sinr—rcosr).

-t

Two particles P, Q move along parallel straight lines one with uniform
velocity u and the other with the same initial velocity u but with uniform
acceleration f. Show: that the line joining them always touches a fixed
hyperbola.

Show that the radius of curvature of the envelope of the line
xcosar+ ysina = f (@) is fle)+ f"(@).
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ANSWERS

L. P2+y:=al- 2. (ax§+(bv§=(a2—b2)%
3 (tz+y2)z=a2(_r2—y2) 4 x%+y§=a§_

5. Peyt=d 6. [ +y[p =1.

2. - J —
9, xThopyTa=qg¥u.

10. ) 4+ yi = c"; 2 (ii) 4xy = ¢l
ll. JZ + JI =1.
a b
12. () acircle through the pole : (ii) arectangular hyperbola ;

‘(iii) an equiangular spiral.
17, (apx+by+¢ Yazx + byy +c3 )= (asx +byy + 5 Y-
18. () (av )'; +( by )“ = ("2' - )Z‘ . ‘(ii) 27“."2 =4(x-2a )2 :

i) (xoyfa(amy)i=2a. (V) sameas(i).
(v) 0-eliminentof x = a(@ +sin@ ), y = —a(1-cos0 ).

(vi) X+ _\'2 =a*.
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SEC. B. ENVELOPE OF CURVES

17.5. If a curve E exists, which touches each member of a family of curves
Cl=7(x y. a)=0], the curve Eis called the Envelope of the curves
C. Since E is the locus of the points of contact of the family of curves
f(x y a@)=0 the point where the curve f(x y,a)=0 for a
particular value of o. touches E, depends upon that value of o Accordingly
the co-ordinates of any pointon E are functions of the parameter & [being
of the forms x=¢(), y=y(a) ] and they satisfy the equation
/ (x. Y. a ) = 0 of the enveloping curve which touches E at that point.
The equation of the tangent 10 a C-curve at (x, ¥)is

~x )Ly - y8L
(X -x)5=+(r il )

and that of the tangent to the E-curve at ( X, ¥ ) is

X-x Y-y

= o s (2
& ﬂ' (2)
do do

[since equation of E is of the form v = o), y=w(a)]

or, (X—x)%—(}'—y)-:—;-zo e (3)

Since the lines (1) and (3) are coincident, coefficients of X and ¥ in the
above two equations are proportional. ‘

of 9f

x _9y e 9y ax df dy . (4)
cdy  dx dxda dyda

da do

Now, differentiating f (x, y, @ ) = 0 with respect to o, remembering
that x and y are now functions of a, we get

2'-f-+a—f—-‘i)(—+af L] =0

da oJdxda dyda -+ (9)
af
ok S
from (4), 3 (6)

Hence the equation of the envelope, in case an envelope exists, is to
be found by eliminating the parameter o between the equations
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f(x y.a)=0
and ~ 2 g e
da

Cor. Itis shown in Art. 18.1 (iii) that the circle on the radius vector of a curve
as diameter touches the pedal of the curve, so the pedal of a curve can be
obtained as the envelope of the c:rdes described on the radius vectors of
the curve as diameters. [SeeArt. 17.9, Ex. 6. ]

Note. It should be noted that the o-climinant between [ (x. »a )=0

of

and 5— =0 may contain other loci, besides thc envelope, for instance
o

nodal locus, cuspidal locus, tac-locus, etc., in case the family of curves C
has singular points.

17.6. The envclope is, in general, the locus of the ultimate points of
intersection of neighbouring curves of a family.

The co-ordinates of the point of intersection P of two nemhbmn ing
curves of the family must satisfy

f(x y.o)=0and f(x, y,a+8a)=0,

0
ie, f(x y,a)=0and S(x yarda)-f(x y’a)=0,
’ Aa

the second relation by Mean Value Theorem becomes
if()\',_v,a+8Aoz)=0, where 0 <@ <1.
Jda” .
of _
Now as Aa — 0, P satisfies f =0, a

the required locus is the o-eliminantof f =0, gf
Note 1. ' Although the above theorem is generally true, but it is not always
true. For example, consider the family of semi-cubical parabolas

y =(x-a)}. Here for different values of &, we have different semi-cubical
parabolas, no two of which intersect but every one of which touches the
x-axis. So here the x-axis is the envelope, although no two members of the
family intersect. From the graphs of the curves the whole thing becomes at
once clear.
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Note2. Alternative definition of Envelope.
The points of intersection of the curves I y.a):O and

33& [ (x, ¥ a): 0 (0. being given) are called characteristic points of the

family f(x, v, o:)= 0 (for the given @) if these points exist (i.e., if f=0
9f

and T =0 intersect) and if those points are not singlilar points of

a .
f (x, y, &)= 0. The locus of the characteristic points of a family of curves

is sometimes called the envelope of the family.

17.7. Envelope of a special family.
If the curve f (x, ¥, @ )= 0 be algebraic, the o-eliminant of f=0,

%i =0 is the condition that f =0 (considercd as an equation in o) has
o

cqual roots. '[ Theory of Equation ]

Thus, if f(x, y.a)=A(xy Ya? +B(x,v)a+C=0 [ie, if
i (\ ya )= 0 be a quadratic in o, the parameter ], the envelope of the
family is given by

B® = 4AC-
[ For illustration see Ex. 2 of Art. 17.9']

17.8. Envelope of two-parameter family. '

If the equation of a family of curves involves two paramelers & and 3
connected by a given equation, then we can proceed by two methods in
finding out the envelope. Suppose the equation of the family is .

f(x.\y,a,ﬁ)=0 (D
where o and B are connected by the equation
¢(a. B)=0 . (2)

First Method : Suppose we can solve ¢ (a, B)=0 for B interms of
o; then we substitute this value of B in (1) and now (1) reduces to one

parameter family and we eliminate o.between f=0and %. =0.
. o

Second Method : For a particular point (x, y) on the envelope

af ) i
'a:dfﬁgadﬁﬂ 240
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99
d from (2), — ... (4
and from (2) Yo a+aBdB 0 4)

Eliminating da, df8 between these two equations (we may regard o
as the independent variable and B the dependent variable), we get

¢f df

oa_ab

a¢ atb <o)
do 9P '

“If we climinate o and  from (1), (2) ﬂnd (5), we obtain the equation of
the cnvelope.

Note. This method can be extended to obtain the envelope of a family
depending upon n parameters which are connected by (n ~1 ) cquations.
17.9. Hlustrative Examples.

Ex. 1. Find the envelope of the fumily of ellipses

2 Vv
—t =],
- (a i 1 )“ .
o being the paramercr:
We have .\‘3(1‘2+y2(u—a)_2=1. ...(D
Differentiating with respect to ¢, we have
2 2
;'1T . s L2
o' (a-a) >
Aok P
5 o ). 2 o, o ]
o _(a-af o (a-a) 1 [by(])]
a a—o a a ‘
z 2 v 1 e yi I x4y
e, —z: - 1: —_— T
(a-a) a o a-o i a

i+ y'= a*, whichis the required o -eliminant between (1) and
(2), is the equation of the required envelope.

Ex. 2. Find the envelope of the system of parabolas

Ax2+Xy =1, A being the parameter.
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Since the equalion of the family is

Ay+ix’-1=0,
and since itisa quadratlc in A, the parameter, by Art. 17.7, its envelope is
x+ay=0.

Ex. 3. Prove that the envelope of the paths of projemles in vacuum from
the same point with the same velocity in the same vertical plane is a
parabola with the point of projection as focus.
The equation of the path of the projectile with the point of projection
'O as origin and the horizontal and the vertical lines through O as axes of x
and y is
42

2 ;
y =xtana-1 gz————xlana—-—g— 1+tan’ o
u“cos’ o

[ See Authors’ Dynamics : Art. 11.5]

[S]

x ,
=mx——;-g_,(l+m2 ) where tano.=m,
o8

L .
ie., n? gu—mx+y+zg =0.

Here o, and hcnce tane , !.E., m being the variable parametcr, the
cquation of the envelope is, by Art. 17.7,

2 2 2 2
. u X 2 2u u
e, — = +% o X=—— y-—|.
2g Yy _guz [ )

2
Transferring the origin to the point [0,%—], the equation of the
8

: ; 2? ks ona ‘ ,
envelope is P=- ¥, which is a parabola with its vertex on the y-axis at
8

2

thclpoinl (0. "211-] and its concavity turned downwards and latus rectum
8

1 2
4a'= -2-!— and hence. a’ being equal to L. , the focus is at the origin.
B



ENVELOPE OF CURVES ) 541

Ex. 4. Find the envelope of circles whose centres lic on the rectangular
hyperbola xy = c* and which pass through its centre.

Let the equation of a circle having centre at (o, B) and passing
theough the centre of xy = ¢?, which is the origin here, be '

4y’ -20x-2By=0 ...(1) where af=c® . - (2
. This is the case of two-parameter family, where the parameters are
connected by a given relation.

'Following the first method of Art. 17.8, i.e., eliminating B between (1)
and (2), the equation of the circle becomes

. ol 2
c x c
x2+y2‘-20tx—2—-,v.=0' since from (2), f= —,
3 o o

or, Zsz—a(xz + y2 )+ 2c2y =0.
by Art. 17.7, the required envelope is
v .
(x2 + yz ) = 4.2x.2t:2_v = 16c2,r_v .
Note. By transformation to polars, this equation can be shown to be

transformed to r? =8c?cos2¢, where ¢=1m-0; i, the required

envelope is a lemniscate.

EX. 5. Find the envelope of the parabola

a b

where ab = k'z_, a and b being variable parameters.

We have JE+JE=I, 4 «5:(1)
a .

ab=k* . « va{2)
We apply here the second method of Art. 17.8. Taking differentials of
both (1) and (i) with respect to a and b, we have

£fdu+'£,ydb=o. I )|
a? b2
_d_a_+_d_b= , ...(4)
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From (3)and (4)

Sy s b [x. [r
I a Vs _Va'Vb _1
L:—’ ' _ __‘_'_=___=__(!_____.=._ from (1
T T or, = A 35 -4 n
a b

x JE —

a Vb 1 . ‘Jj"-" |

- =—, ie. —=—=T==.

1.1 4 ab 4

Squaring and using (2), we get (d, b )—cliﬁ\inum.l 16xy =k 2 and hence,
this is the required envelope. This obviously represents & hyperbola.
Ex. 6. Find the pedal of the cardioide r=a (1+cos® ) with respect to the
pole (origin). ;

We shall here find out the first positive pedal by considering it as the
envelope of the circles described on the radii vectors as diameters.

' , [ See Cor, Art. 17.5]
Let (p, o) be the polar co-ordinates of any point on the cardioide.

Then p=a(l+cosf), s+ (1)
Again, the equation of the circle on the radius vector (- as diameler is
r=pcos(9—(x), w2

or, r=a(l+cosa )cos(0-a)from() el

Here 0. is the parameter.
Differentiating (3) with respect to @,

Q= ~5inacos(0—cx_)+(l+cd.\'o:)sin(O—a) -
sin a.cos (0 - @ )-cos a sin (020 )=sin(06-a ),
e, sin(20-0)=sin(0-a),
ie, 20-0=0—-0., ic., 01:-%9, DR L))
Substituting this value of & in (3), we have the required envelope as
r:a(l+cos%a)cos%9 =2aces’ 18. o #3 = (2a).“: cos10.
Ex.7.  Show that the pedal equation of the envelope of the line

xcos 20+ ysin 20 = 2acos o,

. o2 _af,2_ 2
where ¢ is the parameter, is p~ =3\r" —a” ).
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Let (x, y) be the co-ordinates of any point P on the envelope.

Then x, y satisfy the equations f(x, y, a)=0, .a_f__o,
a

ie., xcos 20+ ysin 20 = 2acos o, . (D)
Xxsin 20— ycos2a =asino , ...(2)

From the definition of the envelope, it follows that (1) is lhe l.mgenl to
the envelope at P (x, y).

Let p be the length of the perpendicular from the origin O upon the
tangent (1) to the envelope at P and r be the distance of P from O,

- =4ag.cosl a, g . (3)
rl=xy+ y- —_4a2 cos’a+a’sin’ o,
[ Squaring and adding (1) and (2)

=3a%cos’ a+a?- . ... (4)
Eliminating o between (3) and (4), the required pedal equ.mon of the
envelope is obtained.

EXAMPLES - XVII (B)
1. Find the envelopes of the following curves, o being the parameter :
@ circles (x—a ' +y? —4a = 0,
(i) parabolas o y? =2x+12a°,
(iii) ellipses x? + a’y® = 4q .
2. Find the envelopes of the family of curv'cs, 6 being the paramcter.
(i) x?cosO + y?sin@ = a?.
(i) P(xy)cos8 +Q(xy)sin0=R(xy).
(i) . A(x, y)cos™ 6 + B(x,y )sin™ 0~'=’C(x, ¥ )
3. Find the envelope of the family of curves ‘
LAY +3MA% + 3NA+ P = 0.
where A is a parameter and L, M, N, P are functions of x and y.
4.  Show that the envelope of the family of ellipses, (¢t being the parameter)
a’x?sec? a+b‘v‘f'0§eca (@ -b%).

is the evolute of the ellipse x*/a® + yZ/a’ =1
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10.

11

Find the envelopes of the family of circles which arc described on the
double ordinates of

@® the parabola y? = 4ax as diameters,

(i) theellipse x*/a® + y*/a® =1 as diameters.

Find in each case the envelope of circles described upon OP as
diameters, where O is the origin and P is a point on

@) thecircles x2+ _v2 = 2ax,

(i) the parabolas y* = dax,

(iii) the cllipses b%x? + a’y* = a’b*.

(iv) the rectangular hyperbolas xy = .

If the centre of a circle lies upon the parabola y? = 4ax and thecircle
passes through the vertex of the parabola, show that the envelope of
the circleis y? (2a + x )+ x* = 0.

2 2
Find the envelopes of the family of ellipses X—, + 'ygi’ =1.
. o’
() whose sum of semi-axes is constant ( =¢),

(i) whose area is constant (= T ¢?).

Show that the envelope of the circles X+ y? - 2ax - 2Byt B =0,
where @, B arc parameters and whose centres lie on the parabola
2 = 4ax,is x(xz +yz - 2ax)= 0.

Find the envelopes of
7 2

(i) of the family ofelhpses 5 + —X,T = | and

(ii) the family of parabolas J’ J_ =]y

where a” + b" = c" (a, bbcing the paraineters).

Show that the envelope of the ellipses
2 2
(x-a)  (y-B) _
2 2
where the parameters @,  are connected by the relation

2 2 : 3 i
a i ipse
=% E‘z‘ =1, istheellipse — + yz =4.
o b a-
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12.
13.
‘14.

15.

16.

n ‘yn

Find the envelope of the family of curves Ly ;"—'= 1, where the
a

n
parameters a and b are connected by the equation a” +b” = ¢’

2 = a%cos 26 .

Find the pedal with respect to the pole of the curve r
Find the envelope of the circles described on the radii vectors of the
curve r" = a" cos m@ as diameters. :

Show that the pedal equation of the envelope of the line

"xcos ma + ysinma = acosna, (m # n ), where ais the parameter,

2 mzrz —nzaz

J8 P gy

m —n

: . T TR RS L i
Given that the astroid x3 # y? = ¢* isthe envelope of the family of
2

. 2
the'ellipses % + %2— = 1, where a and b are parameters, show that a
a

and b are connected by the relation a +b = c.

ANSWERS
L @ y?-4x-4=0. @) y*==+18. (i) n:&z.
2. ) 4yt =at. (ii) I P2+ = R?,
2 £ 2.
(iii) A‘l-ul +B?—- =C1—-. )
3. (Mn-1pP =a(mp-N? v -m? )
2 2
! 2 _ " x y
5. () y'=4a(x+a). G) az+b2+_bT-l
5. (i)'.(x2+yz—ax)2=az(x‘lz+y2).
(@) x(+?+y° )+ay2 =0. () o 452 =(xz iyt )3_
e (o 2 : ) ;
@v) ‘(.t' + yz ) = kzxy-
8. (i) I§ + y‘} = c§ . (i.i) ’ ny = 02.
10. ) 557 4 7o =T (i) o Uﬁ ey
np np 2 2
12 (707 4 747 o civs 3. r3=a’cos2
14.

35

r"=a"cosn® where n=m [(m+1).



18.1. Pedal curve.

The locus of the foot of the perpendicular drawn from a fixed point on .
the tangent to a curve, is called the pedal of the curve with regard to the
fixed point.

()  Tofind the pedal with regard o the origin of any curve whose cartesian
equation is given.
Let the equation of the curve be f (x, y) 0. L)
Let xcosa + ysina = p be the equation of the tangent PT to the
@ Curve at any point P.
Now, the condition that the line xcosa + ysma = p should touch

the curve is of the form-¢ ( p.a ) 0. [ —)

o St F X
' Fig 18.1.1
Since ( p, & ) are the polar co-ordinates of the foot of the perpendicular
N on the tangent PT, hence in (2), if r, @ are written for p, a, the polar
equation of the locus of N, i.e., of the pedal curve will be obtained as
¢(r.0)=0 .. 3)
which can now be transformed into cartesian.
. Alternative Method :

Let (x. y ) be the co-ordmales of P ; then the equation of the tangent
PTis

dy
il ==({X - £
T gi= =2 x) (D)
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and the equation of ON, which passes through the origin and is perpendicular
to PT,is

"yy 0. )

Hence the Iocus of N, (: e., the pedal) which is the intersection of (1)
and (2) is obtained by eliminating x and y from (1) and (2) and from the
equation of the curve f(x, y)=0.

(i) To find the pedal with mgara’ to the pole of any curve whose
polar equation is given.

Let the polar equation of the curve be f (r, 8 ) =0, szais CE
and let ( n. 8, ) be the polar co-ordinates of the foot of the perpendicular N
drawn from O on the tangentat P(r, 0 ).

‘ de
Now f denoting ZOPN, tan¢ = r— . (2

%
/ Fig 18.1.2

Also 8 = £ZXOP =.4XON+.£NOP=»9, +iz-9¢ ...(3)

and since ON = OPsin ¢, =rsing, ,,l ..

If r,0,¢ be eliminated fmm (1), (2) (3) and (4), a relation between r and
0, will be obtained, and from this relation, by dropping the suffixes, we get,
lhe requlred polar equation of the pedal.

(iii) The circle on radius vector as diameter touches the pedal. ~

ZXON = /PTX - ZONT . [ See Fig. of (ii) |
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e
red

X
N
N T
Fig 18.1.3
0, =y-in; ~also p=ON=n.
Again, P '
gain, Zl; =rcos¢. [See Ex. 7, §13.17 ]

If ¢  be the angle between the tangent NT, and the radius vegtor ON of
the pedal at any point N (i.e., ZONT,= ¢ ) then

-[an¢l=rld_8.l=rld—6i.i£.ﬁg
dr; dy dp dn

ot W FEOP =tan¢

dp rcos¢ "

9, =90, ie, ZONT, = LOPN.

T,N touches the circle passing through OPN.
Hence the result. ‘ :

V) If p, be the perpendicular from the pole on the tangent to the

pedal, then pr = p*.

Draw OT, perpendicular from O on the tangent NT to the pedal.
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Since ZOPN = ZONT,, .. A’ OPN, ONT, aresimilar.

ﬂ’.__o_h_' i L:L ‘e P"—Pz-
ON OT pl‘a|~ !

(v) To find the pedal of a curve when its pedal equation is given.
Let the pedal equation of the curve be p = f (r) ...(D

and let p, r denote the usual entities of the original curve and p, r, the
corresponding things of the. pedal curve.

p? r?
Then p = r].alsofromabove r=—=-=1
PP

Hence from equation (1), we get

)

the pedal equation.of the pedal curve is

Note. I there be a series of curves designated as
P B, B 1B,
such that each is the pedal of the one which immediately precedes it, then
R, P,......, P, arecalled the first, the second, . . . ., the n* positive pedal of
" P. Also r:gardmg any one curve of the series, say P, , as the original curve,
the preceding curves By, B, P are called respectively the first, second and
third negative pedals of P,.

18.2. Inverse curve.

If on the radius vector OP (or OP pl‘OdI:lCed) from the origin O to any
point P mmfing on a curve, a second point Q be taken such that OP. 0Q =
a constant. say k%, then the locus of Q is called the inverse of the curve
along which P moves, with respect to a circle of radius k and cetre O, or
briefly with respect to O.
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(8 To find the i inverse of a given curve whose cartesian equation is
given.

Fig18.2.1

(x,y) be the co-ordinates of any point P on the curve
f(x y)=0 andlet @(x', 5 ) be a point on OP such that OP. 0Q = k2.
Draw PM, ON perpendiculars on OX.

OM OP y
Now, LA ~ AY OPM, OQN are similar
¥ ON 09 ( & )
_oroQ K
00 X4yt
2. 2.0
x= % "Similarly, y = qk ] =
X" +y- X"ty

Since f(x,y)=0.

( "2' K%y’ J=o.

x +y? x4 y?

Herice, by dropping the dashes, the equation of the inverse curve is

f k’x kly -0
xz-p-yz'x2+y2 :

i.e., the equation of the inverse of a curve is obtained by writing

kzx/(.x\:2 +y? ). kzy/( X +y? ) for x, y in the cartesian equation of hte
curve.

-



ASSOCIATED LOCI . 551

(i) To find the inverse of a given curve whose polar equatwn is
given.

Let £(r,8 )= 0 be the cquation of the given curve and let ( 7,8 ) be

the co-ordinates of Pand (.0 ) be the co-ordinates of Q.

Since OP.0Q=R, .. =k =~ r=KkYF.

r

2
Again, since f( r,9)= 0, .. f[i,—. B]=

Hence the polar equation of the inverse curve is

f(k_’, e] -0,
r

Thus, the equation of the inverse of a curve is obtained by writing
k2/r for rin the polar equation of the curve.

(iii) Tangents to a curve and its inverse are inclined to the radius

vector at supplementary angles.

Let ¢,¢" denote the angles between the tangents and radius vetor at
the corresponding points of a curve and its inverse.

rd@ ’ :dﬂ .
t = — t. = —
Then, tan¢ o ang =r ik
(2 = 2)dr’=_d_ KY__k* dr
Now, "de a8l s T
., .de _KkK*[ r’)de  do .
=rL =—|-—=|—=-r—=-u
tang’ = r 7 [ ol ar n¢

O =n—-9 ic, 0+¢'=m.
(iv) To find the inverse 6f a curve when its pedal equation is given.

Let the pedal equation of the given curve be
p=£(r)

Let p, 'r.¢ denote the usual entities of the original curve, and let
p',r’,¢" denote the corresponding things of the inverse.
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Then =k, e, r=k¥r.
Also, £7=sin¢'v=sin(n:—¢)=sin¢=£.
ro r
_.rpr_”’p:_kz P,
] re it

" -from equation (1), we get

)

18.3. Polar reciprocal.

If on the perpendicular ON (or ON produced) from the origin on the
tangent at any point P on a curve, a second point Q be taken such that
ON.OQ = a constant (say k2), then the locus of Q’is called the polar
reciprocal of the given curve with respect to a circle of radius k and

centre O.

From the definition, it follows that the polar reciprocal of a curve is
the inverse of its pedal. Hence the equation of the polar reciprocal of a
curve can be obtained by the first finding the pedal of the curve and then its

inverse.

Let NN, be the tangent to the pedal at N and let M be the tangent to
the polar reciprocal at Q meeting OP produced at M.

N

Fig 18.3.1
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n

Now, § = ZOPN = ZONN, [by § 18.1(iii) ). Since QM is'the tangent
to the inverse of the pedal, hence by §18.2 (iii), )

ZOQM = LONN, = ZOPN .
* Hence the quadrilateral PMQN is cyclic.

- OM.OP =0Q.ON = k?

Also, *» ZPNQ =90°, ZPMQ =90°, i.e., OM is perpendicular to OM.
Hence the locus of P, i.e., the original curve is the polar reciprocal of the
locus of Q, i.e., of the polar reciprocal. Thus, the polar reciprocal of the
polar reciprocal of a curve is the curve itself,

18.4 Ilustrative Examples.

Ex. 1. Find the Pedal of the parahola y? = 4ax with respect to the vertex.
" The condition that X cos a+Y sin a=p will touch the parabola
y? = 4ax is obtained .by comparing the equation with the equation of the
tarigent at (x, y) to the parabola, i.e., with
' Yy=2a(X +x),or —2aX +Yy=2ax.

Hence
__la_g'._'!__=2_a£_ 3% y:—zama’ x=-pseco,
coso.  sina  p

' Since.y’ =4ax, &, 4a2 [an2a=_4a.pseca‘

Hence the required condition of tangerncy is p+asinatana=0.
the polar equation of the pedal is
r+asin®1an0=0 - ‘ '

or, . r?+arsin6tan@=0-
Wriling rP=x’+ y2, rsin@=y and tan®= y/x, we get cartesian
equation of the pedal as

x(xz +y2 )+ay2 =0 .

" Alternatively :
y=mx+afm ... - (1) i~atangent to the parabola y? =4ax
Cy= -( 1/m )x ... (2) is aequation of the perpendicular from the

origin on the above tangent.



554 DIFFERENTIAL CALCULUS

the locus of the point intersection of (1) and (2), i.e., the locus of
the foot of the perpendicular, i.e., the equation of the pedal is obtained by
eliminating m between (1) and (2).

B ¢

From(2), m=—-=; substitutingin (1), y=-2- -2,
Y y

Le., xy?+x° +ay? =0. Hence the result.

Ex. 2. Show that the pedal of the circle r=2acos® with respect 1o the

origin is the cardioide r= a(l +cosO )

Since the given equation is r = 2acosf, (D
tan¢ =r, dr—Mz-cote lan(—'-u+9)
d® -2asinB
0=1in+0 ' . (2)

Let (r 1> 0, ) be the co-ordinates of the foot of the perpendicular; then

asin(2)of § 18.1,
0=0,+in-¢=0, +in-(in+0);
0=:0, ; , .2 3)
Again, r| = rsin¢ = 2a cos 0 -sin (—an +0 )
[from (1) and(2) ]
=2a cos’ 6=2acos’ 10, =¢;t(l+cos(9l )

Hence, the required locus is r = a (14 cos@ ).

Ex. 3. Show that the inverse of the straight line ax+by+c =0 isacircle.

2 2
Writing 7k x and zk 2 s for x, y in the given equation of the
X° + y2 x°+y

straight line, the equation of the inverse is

2 2
akx+bk‘y

+c=0
iyl xlay?

or, c(12 +y1 )+ak2x'+bk2y =0

which obviously represents a circle.
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Ex. 4. Find the inverse of the parabola r=1 { (1+cos®).
Writing k?/r for r in the equation of the parabola, the equation of the
inverse is

2 2 i .
Ll ,or.r:%—(HcosB):a(HcosB)

r l+cos@
: &2
[where a =T]

Ex. 5. Find the polar reciprocal of the parabola y* = 4ax. with respect to

which represents a cardioide.

the vertex.

The pedal of the.parabola with respect to the vertex is

.r(xz +y2 )+ay2'=0 [See Ex. 1]
Its inverse is
k2x k452 Ky k‘yz e
e e e

6r, lch:+ay2 =0,ie, y? =—(k2/a )_r

which represents a parabola.

Ex. 6. Find the polar reciprocal of the curve p = f (r)

r

2
By Art. 18.1(v), the pedal equation of its pedal is r = f [ ]
P

2 2
Now, to bbtain its inverse, writing k_ for r and 5‘-2— p’ forp
r

tsee §182 (ivj 1, we get T

kz_f, i e
r’ .rlz k]pa

Hence on simplifying and dropping the dashes, the pedal equation of
the polar reciprocgl is

2 2\
£_=,(!<_].
. & 14
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EXAMPLES - XVIII
1.  Find the pedals of
" 2 2
@ the ellipse. =5 + %
a

-5? = 1 with respect to the centre and focus.

(i) the parabola y? = dax with respect to the focus.

2. Find the equations of the pi:da.ls of the following curves with respect
to the origin :-

@) x"+y"=a". (@ J’£+JE=1,
. i a b

@) —+I-=1.
aﬂl bl" ; i
3. Show that the first pdsitive pedal of the rectangular hyperbola
2

x* — y? = a® with respect to the centre is the lemniscate
2 2 :
r° =a" cos20.

4. Find the pedals with'respect to the pole of the curves :

) r’cos20 =a?. Gi) r*'=a’cos20.
(i) r=a(1+cosd). ' [ C. P 2006)
(iv) r = ae® <.

v) " =a" cosm@.

5. Show that the pedal of a circle with respect to any point is the curve
r = a + bcos 8 , where a is the radius of the circle and b the distance
of the centre from the origin.

6. . Find the inverses of the following curves with respect to the origin.
M x*+y? =a?. @ x*/a® + yz/b2 =1.

@) r=a(l+cos@). (iv) r=ae®™°,

7. Show that the inverses of the lines 2x + 3y = 4 and 3x - 2v = 6 are
a pair of orthogonal circles.

l
8. Show that the inverse of the conic r = ——— with regard to the
1+ecos@ p

focus is a curve of the form r = a + bcos8 .
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9. Show that the inverse of a rectangular hyperbola is a Iemmscatc, and
© conversely. .
10. Find the polar reciprocals, with regard o a ¢ircle of radius k and centre
at the origin, of the curves :

0 x*a*+y /p? =1. ) y? = dax.
(i) r =acos@. (iv) r=a(l+cos@).
v) r" =a" cosm@.
ANSWERS
L0 (@eyfeat@esty? 24pi=a®. G x=0.
2 ® a(xm+y")=(2492)" wheremzn/(n-1).
@ (2 + N ax + by )= abay.
i) (ax)" +(by)" = (2% + 52
4 0 Podlome @D S

an

Wheml:¥m/(m—]).

2
Y =gq? cosle

(dii) r-{ =(20ﬁm-‘-8.

(iv) r"ﬂeawa where a = asina. e(*‘ “)ma
V) r" =a cosnB.whcmn=m/(m+l).

6. @) (12 + y2)= lc“/a2 ;

@ (2 +52)7 = k4(x2a? + 2 /2).
iy r=—0 2
(i) ©= {5 oo=g where b = k?/a.
(V) r=ae " where a, = k*/a.

10. @) a’x? +b%y? = k4.

(ii) ,‘“}'2+k2«"=0. (i) r= I+b ,whercb=2kz/a_

cos @
@) rieoslo=(k/2a)"

) r"cosﬁ@:(k’/a)‘ ,wheren = mf (m +T)



ﬁl ~ Concaviry Anp Convexiry POINT OF INFLEXION

19.1. Concavity and Convexity (with respect to a given point).

T
P

. A
Fig (i) Fig(ii)

Fig 19.1.1

Let PT be the tangent to a curve at P. Then the curve at P is said to
be concave or convex with respect to a point A not!lying on PT),
according as a small portion of the curve in the immediate neighbourhood
of P (on both side of it) lies entirely on the same side of PT as A [ as in
Fig. (i) ], or on opposite sides of PT with respect to A [ as in Fig. (i) 1.

P

Fig19.1.2

Thus, in Fig. 19.1.2, the curve at P is convex with respect to A, and
concave with respect to B or C. The curve at Q is concave with respect
to A. Again, the curve at R is convex to B and concave to C.

Note. A curve at a point Pon it is Convex or Concave with respect to a
given line according as it is convex or concave with respect to the foot
of the.perpendicular from P on the line.
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19.2. Poiatof Inflexion.

Fig 19.2.1

* In some curves, at a particular point P on it, the tangent line crosses
the curve, as in Fig. 19.2.1. Atthis point, clearly the curve, on one side of
P, is convex, and on the other side it is concave to any point A (not lying

on the tangent line). Such a point on a curve is dcfmcd to be a point of
inflexion (or a point of contrary flexure).

19.3. Analytical Test of Concavity or Convexity
(with respect to the x-axis).

Y e

.

o N M X 0 "N M X
T Fig 19.3.1 . Fe@®

Let P(x, y)be a point on the curve y = f (x ). Q a neighbouring
point whose abscissa isx + h (h being small, positive or negative). Let
PT be the tangent at P, and let the ordinate OM of Q intersect PT at R.

The equation to PT is

Y-y=7()(X -x)
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and abscissa X of R being x + h, its ordinate
RM =Y =y +hf' (x).
Also the ordinate of Qis :
oM = f(x+h)

2
= f(x)+ b (x)+ %!—f'(:r +€h), 0<@<l.

2
QJ\I—RM=%f'(.r+6h). s D

Now assuming f"(x) to be continuous at P and =0 there,
#"(x + 8 h') has the same sign as that of f"'(x) when | 4| is sufficiently
small.

Hence from (1), QM — RM has the same sign as that of f~ (x), for
positive as well as negative values of A, provided it is sufficiently small in
magnitude.

Firstly, let the ordinate PN or y be positive.

2 ‘
Then if /" (x) | or %ﬂt PJ is positive, from (1) OM > RM for Q on

either side of P in its neighbourhood, and so the curve in the
neighbourhood of P (on either side of it) is entirely above the tangent,
i.e., on the side opposite to the foot N on the x-axis of the ordinate PN,
as in Fig. (i). Hence, the curve at P is convex with respect to the x-axis.

Again if [ (x) is negative, OM < RM on either side of P, and so
the curve near P is entirely below the tangent, on the same side of N, as
in Fig. (ii). Hence the curve at P is concave to the x-axis.

Secondly, let y or PN be negative.

f

Vv
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I (x) is positive, from (1), as before, QM > RM on either side of P,
and as both are negative, QM is numerically less than RM, as in Fig. (i) of Fig
19.3.2. The curve, therefore, at P lies on the same side as N with respect to
the tangent PT. Hence, the curve at P is concave with respect to the x-axis.

Irr "(x) is negative, we similarly get the curve at P convex with
respect to the x-axis, as in Fig. (if) of Fig 16.3.2. Combining the two cases,
we get the following criterion for convexity or concavity of a curve at%a
point with respect to the x-axis :

2

d aee
ify —d { is positive at P, the curve at P is convex fo the x-axis.
X

d? ‘
Ify d—{ is negative at P, the curve at Pis concave fo the x-axis.
x

‘Note. Atapoint where the tangent is parallel to the y-axis, % is infinite. At
such a point, instead of considering with respect to the x-axis, we investigate
convexity or concavity of the curve with respect to the y-axis. The criterion,
as obtained by a method similar to above, is as follows :

The curve at P isconvex or concave with respect to the y-axis according
2
X . e .
as .r;z— is positive or negative at P.

19.4.  Analytical condition for Point of Inflexion.
Y

qd N M X
Fig 194.1

In the above investigation, let /" (x)=0 at P, and f™(x) = 0.

Then, OM = f(x+n)=/()+ hfl"(x)Jc%f"(x«L&h r
36 : =
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\ .
OM - RM =g—'f"(x+eh).
and the sign of this for sufficiently small | k| is the same as that of

N .
30 f ( x ), which has got opposite signs for positive and negetive values

of h, whatever be the sign of f”(x) at P. Thus, near P the curve is above
the tangent on one side of P, and below the tangent on the other side, as in
the above figure. Hence, P is a point of inflexion.

Thus, the condition that P is a point of inflexion on the curve y = f (x)
is that, at P,

- 3
4 0 and L z0.
dx dx
Note. If ? is infinite at 2, the condition that P is a point on inflexion is that,
x
at P,
2. 3
i; =0 and d—; #0.
dy dy
19.5. A more general criteriop.
Suppose that at P, f"(x)= f"(x)=....... = f"'(x)=0 and
Vi (x) # 0. )
Then, QM = f (x+h )= f(x)+hf" (x)+ —h—Tf" (x+0h).
. n!
E<0<ﬂ
OM — RM = h—l = (x + 0 It ) which, for sufficiently small
: n!

n
values of | k2|, has the same sign as that of !'—Tf" (£).
n!

If n iseven, K" is positive and the sign is the same as thatof f" (x)
n
or 47Y a1 P for both positive and negative values of h. Considering both
L

the cases when y of P is positive and negative, we find that the curve at P is
n

d'y

[x"

convex or concave with respect to the x-axis according as 'y is positive

. or negative.
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0

n
“If n is odd, h—'f" (x) will have opposite signs for pusitve
n! E

negative values of h, whatever be the sign of f* ( x ). Hence, Q les o
.opposite sides of the tangent for positive and negative values of k. Thus, P
is a point of inflexion. n?

Note. Since from (1) Art. 19.3, QM — RM = oy F(x+0n),if f(x+01)

has opposite signs for opposite signs of /1 when | h| is sufficiently small,

QM > RM on oneside,and OM < RM on the other side of P'an the curve
in the immediate neighbourhood, and thus the tangent at P crosses the
curve al P, and so P is a point of inflexion. Thus, since g is positive and
numerically less than 1, an alternative criterion for a poini of inflexion is
that f '(x +0h ) should have opposite signs for opposite signs of h whe:
N is numerically sufficiently small ; in other words, f"(x ) changes sign i
passing through P from one side to the other. '

19.6. Illustrative Examples. -

Ex. 1. Examine the curve y = sin x regarding its convexity or coi 1%
the x-axis, and determine its point of inflexion, if any.
‘ . d 4 . . d’ ’
As y=sinyx, = cosx and —- = —sinx.Hence, y-— sin x
' dx dx’ dx

which is negative for all values of x excepting those which make  ax=0 .
i.e., for x=kn, k being any integer, positive or negative.
Thus, the curve is concave to the x-axis at every point, excepting af
points where it crosses the x-axis. )
- g 2

. 3 d”y d-y _
- At these points, given by x=4n, — =0, and —(—1—2}- =-cosx#"
2 I _
Hence, those points where the curve crosses the x-axis are points of

inflexion. )

Ex. 2. Show that the curve y* =8x? is concave to the foot of the ordinate
everywhere except at the origin.

. - 2
From the given equation, y=2x7,

Ev
A 4 TTdE_ 45
d« 3 a9
2
N AR 8
e T T LS
de- Y
3
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‘ L
Thus, excepting at the origin, x* being positive for all values of x,

2
y L g is negative.
dx*

Hence, the curve is concave everywhere to the foot of the ordinate
excepting at the origin.

Ex. 3. Prove that (a—Z, -2/e2 ) is a point of inflexion of the curve
x-a

_\,'=(x—a )e

Here, at points on the curve,

& _
dx

x-a

*4(xra)e” =(1+x~a)e*,

d’y :
m—r e +(l+x a)e*™ =(2+x-a)e*™

dl -t
and, similarly, :xal = (3 +x—a )e"

d”y d3 _
Hence, at x=a- 2, (where —2¢7%), 4 2 =0 and T:‘X:e 220,
: Ix dx

Hence, the point (a— 2; —2/ e? ) is a point of inflexion.

Ex. 4. Find if there is any point of inflexion on the curve
y-f‘)zﬁ(;o:—2‘)5

d; d?
Here, ny—=30(x-2 7 ﬁ =120(x-2).

~

2

: d ) i
Thus, d} =0 whery x=2 (and so y =3).

In the neighbourhood of this point, where x=2+ /1 (h numerically
small, positive or negative),

Q =120R%, which has opposite signs for positive and negative

2
values of 4. Hence, i_zji changes sign in passing through x=2.
. a% ;

Thus, (2, 3) is the only point of inflexion.
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Alternatively
d’y il gy Eye
Here, E:sﬁo(x—z) ._—d}—;—?zo(x 2), ;x_;=720,

3 5 K
Thusat x—Z.Q_.‘_i_-Z_f_X_(),andg—X #0.
a*  dd  dx* “dx®

Hence x =2 gives the point of inflexion.

1. Prove that the curve y =¢* is convex to the x-axis at every ;;oint.

dx 3 .
. (which is of odd order)

2. Prove that the curve y=cos™ x is everywhere concave to the y-axis
excepting where it crosses the y-axis.

3. Prove that the curve y =log x is convex to the foot of the ordinate in
the range 0 < x < 1, and concave where x> 1. Prove also that the curve
is convex everywhere to the y-axis.

4.  Show that the curve (y - a) =a®-2a’x+ax?,wherea>0, isalways -
concave to the x-axis. How is it situated with respect to the y-axis ?

5. Show that the origin is a point of inflexion on the curves :
M y=x"log(1-x), (i) y=xcos2x.

6.  Find the points of inflexion, if any, on the curves :

e Mo

(x+1 ) £

Gi) Py=(x-a)’. (iv) y=ae

M y= @) y?=x(x+1)2.

-8x?

7. Show that the points of inflexion on the curve y? =(x-a)?(x-b)
lie on the line 3x+a=4b.

8. Show that the curve y(x +a ) a’x - has three points of inflexion
which lie'on a straight line. ‘

ANSWERS
4. Concave where 0 < x < a, convex everywhere else.

6. 0 (-2 -1),[|+J§‘ Jﬁi{—l].{l—ﬁ, -—l;‘fi}

(ii) (l‘. t -;—\E). - (i) :(a, O),_ (iv) (:t-%. ae? )
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20.1. We give below diagrams, equations, and a few characteristics of some
well-known curves which have been used in the preceding pages in obtaining
their properties. The student is supposed to be familiar with conic sections
and graphs of circular functions, so they are not given here.

20.2. Cycloid.

The cycloid is the curve traced out by a point on the circumference of
a circle which rolls (without sliding) on a straight line.

0L M D o X
© . x=a(0 -sin0) v=a(l-cos0)
Fig 20.2.1

Lei P be the point on the circle MP, called the generating circle, which
traccs out the cycloid. Let the line OMX on which the circle rolls be taken as
x-axis and the point O on 0X, with which P was in contact when the circle
bcgan rolling, be taken as origin.

Let a be the radius of the generating c1rcle and C its centre, P the
point (x, y) orrit, and let ~/PCM = 0 . Then 0 is the angle through which the
circle turns as the point P traces out the locus.

OM = arc PM = af.

Let PL be drawn perpendicular to OX.
x=0L=0M~1LM =ab - PN = af —asin0

~a(6—sm8)
y=PL=NM =CM -CN =a-acosf
=a(l-cos@ ).

Thus, the parametric equations of the cycloid with the starting point
as the origin and the line on which rhe circle rolls, called the base, as the
x-axis are :
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x=a(0-sin0), y=a(l-cosd) o (1)
The point A at the greatest diétance from the base OX is called the
vertex. Thus, for the vertex, vy, ie., a (l —cos 6 ) is maximum. Hence,
cos@ =-1,ie,0 =m.
AD =a(l-cosm )= 2a.
vertex is (an ,2a). :
ForOand O’, y=0, .. cos@ =1. S @ =0and 27.

As the circle rolls on, arches like OAQ’ are generated over and over
again, and any single arch is called a cycloid.

0’ D | 4 0

x=a(0+sin 0) A T y=a(l-cos @) X
Fig 20.2.2

Since the vertex is the point ( an, 2a ) the equation of the cycloid
with the vertex as the origin and the tangent at the vertex as the x-axis can be
obtained from the previous equation by transferring the originto (ar , 2a )
and turning the axes through 7, , i.e., by writing

am+ x'cosm - y'sinm and 2a+ " sinz + y cosm
forxand yrespectively. i

~_Hence, a(@-sin@ )=an-x
o, ¥=a(z-0)+asing
=a(0 +sin@"), where 6’ = -0

and a(l-cos@ )=2a-)

o, y=2a-a+acos@ =a+acos8
=a-acos(n-0)=a(l-cos8”).

Hence, (replacing 6’ by 6 ) the equation of the cycloid with the vertex
as the origin and the tangent at 'lic vertex as the x-axis are

x=a(0+sin0), y=a(l1-cos0) V)
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Inthis equation, § = 0 forthe veriex,0 = r forO,and @ = -z for o'
The characteristic properties are

(i) Forthecycloid x = a(6—-sin@ ), y = a(1 - cos 8 ), radius of
curvature = twice the length of the normal, (the centre of curvature and the
x-axis being on the same side of the curvature).

(i) The evolute of the cycloid is an equal cycloid.
(iii) For the cycloid x = a (6 +sin@), y =a(1-cosf ),

y = —'iﬂ and s? = 8ay , s being measured from the vertex.

Note. The above equation (2) can also be obtained from Fig. (i) geometrically
as follows :
If (,\ 3 y be the co-ordinates of P referred to the vcnex as the origin
and the tangent at the vertex as the X-axis.
¥ =LD=0D-0OL=an~ x=a(n-0 )+asm0
y'=AD-PL=2a-y=2a—-a(l-cos@ )=a(l+cos0),

Hence, writing 8" (or@ ) for -0, etc.

20.3. Catenary.

The catenary is the curve in which a uniform heavy flexible string will
hang under the action of gravity when suspended from two points. Itis also
called the chainette.

orT N X
Fig 20.3.1

Its equation, as shown in books on Statics, is

i =)
=—| e+e " |
2

y = ccosh

LRE]
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C is called the vertex, OC = ¢, OX is called the directrix.
The characteristic properties are

(i) The perpendicular from the foot of the ordinate upon the tangent
at any point is of constant length. ’

(i) Radius of curvature at any point = length of the normal at the point
(the ‘centre of curvature and the x-axis being on the opposite sides of the
curve).

(iii) _‘,v2 =ct+st,s being mgasuréd from the vertex C.
(iv) s=ctany, y =csecy.
(v) x=clog(sccy +tany ).

20.4. Tractrix.

Its equation is
2 2 4 3—\132—}'2
x=\/a -y +=log—F———,
2 a+\/:|2—y2

or, x:a(costﬂogtan%t), y =asint .

Here, OA = a.

Fig 20.4.1

The characteristic properties are

() The portion of the tangent intercepted between the curve and the
X-axis is constant.

.. (ii) The radius of curvature varies inversely as the normal (the centre
of curvature and the x-axis being on the opposite sides of the curve).

(iii) The evolute of the tractrix is the catenary

y = acosh (x/a).
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20.5.  Four cusped Hypo-cycloid.

Y
B
A (0} A X
B
Fig 20.5.1
s
Its equation is (EJ +[%) =1
3 3
or. X=acos ¢,y =bsin"¢.

Here, OA = OA'=a; OB =0B"=b.
The astroid is a special case of this when g = p.

20.6.  Astroid.

Y
B
A o A X
B
Fig 20.6.1
. 2 2 2
Its equation is  x3 4+ y3 = g3

or, x=acos’d, y=a sin*0
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Here, OA=0B=0A"=0B =a.

The whole figure lies completely within a circle of radius a and centre
O. The points A, A', B, B" are called cusps. It is a special type of a
four-cusped hypo-cycloid. ) i [See §205]

The characteristic property of this curve is that the tangent at any
point to the curve intercepted between the axes is of constant length.

20.7. Evolutes of Parabola and Ellipse.
(i) The equation of the evolute of the para*»la
y? = dax i§
27ay? = 4(x - 2a)°>.

This curve is called a semi-cubical parabola.

Y

"Fig 20.7.1

Transferring the origin to (2a, 0 ), its equation assumes the form

y? = kx3 where k = 4/ (27a ), which is the standard equation of the
semi-cubical parabola with its vertex at the origin.

Hence, the vertex C of the evolute is (24, 0).

(i) The equation of the evolute of the ellipse

)c2/a2-&-y2/l.')2 =1lis

@)} + oy)d = (a7 -0? )}



572 DIFFERENTIAL CALCULUS

A\ § / S /A X

Fig 20.7.2
which can be written in the form

3 g
a B
wherea:(izz—bz)/a, B:(az—bz)/b.
Hence, it is a four-cusped hypo-cycloid.

20.8. Folium of Descartes.

i

AN

Fig 20.8.1

Its equation is x? +y 3 = 3axy
Itis symmetrical about the line y = x.

The axes of co-ordinates are tangents at the origin, and there is a loop
in the first quadrant.

It has an asymptote x + v +a = 0 and its radii of curvature at the

origin are each = % a.
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20.9. Logarithmic and exponential curves.

i The equation of the Logarithmic curve is y = log x. x is always
positive; y =0 when x =1 and as x becomes smaller and smaller, y,
being negative, becomes numerically larger and larger. For x > 0, the curve
is continuous. '

Y ‘ ‘\:-.' ¥
o X (0] X
i) y=logx Fig 209.1 Y. e

(i) The equation of the Exponential curve is y = ¢* . xmay be positive
or-ncgative but y is always positive, and y becomes smaller and smaller,

Y

X 0 X

Y' Fig20.10.1

as x, being negative, becomes numerically larger and larger. The curve is
continuous for all values of x. "B

20.10. Probability Curve.

The equation of the probability curve is y =gt
The x-axis is an asymptote.

The area between the curve and the asymptote is

o0 z -
=2J' ede=24r = .
0



574 _ DIFFERENTIAL CALCULUS

20.11. Cissoid of Diocles.
Its cartesian equation is y? (2a —x ) = x*.

Y

X o A X

YI
Fig 20.11.1
OA = 2a; x = 2q isanasymptote.
2asin’ 6

Its polar equation is r =
cos 0

20.12. Strophoid.

) +
The equation of the curve is yZ =x*. LS5 s
(7 Shal® &
OA=0B=a. OCBP is aloop.
= a is an asymptote.
Y
B N A b'e
P
Fig 20.12.1

The curve y2 =x. Rl similar, just the reverse of strophoid,
a+x
the loop being on the right side of the origin and the asymptote on the left

side.
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20.13. Witch of Agnesi.
The equation of the curve is xy? = 4a® (2a -X )
Y

Fig 20.13.1

Here, OA = 2a.

This curve was first discussed by the Italian lady mathemdtician Maria
Gactaua Agnesi, Professor of Mathematics at Bologna. '

20.14. 'Logarithmi'c (or Equiangular) spiral.

6 col a a

. . . m
Its equation is r = ae (or, r = ae

)1

where cot @ or m is constant.

Characteristic Properties . }

(i) The tangent at any point makes constant angle with the radils
vector (¢ = ).

(i) Its pedal, inverse, polar reciprocal and evolute are all equiangular
sprials.

Fig 20.14.1

(i) The radiv: of curvature subtends a right angle at the pole.

Note.  Because of the property (i), the spiral is called equiunguiar.
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@

20.15. Spiral of Archimedes.

Fig 20.15.1

Its equation r = a@ .
Its characteristic property is that its polar subnormal is constant.

20.16. Cardioide.
Its equationis (i) r = a(i+cosB ).or (i) r =a(1-cos0 ),
In(i), 8 =0 forA,and § = = for O.
In(ii), 6 = & forA,and @ = Q for O.
In both cases, the curve is symmetrical about the initial line, which
divides the whole curve into two equal halves and for the upper half, 8

varies from Oto 7, and QA = 2a.
Y g Y

\_

() r=a(l +cos8) (fiyr=a(l —cos 8)

Fig 20.16.1
The curve (ii) is really the same as (i) turned through 180°. -
The curve passes through the origin, its tangent there being the initial
line, and tangent at A is perpendicular to the initial line.
The evolute of the cardioide is a cardioide.
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Note. Because of its shape like human heaut, its is called a cardioide. The
cardioide r=a(1+cos@ ) is the pedal of the circle r=2acos® with
respect to a point on the circumference of the circle, and inverse of the
parabola r=a / (1+cos 6 )

20.17. Limacon. : ‘

The equation of the curve is T = a + bcos§ .

When a > b, we have the outer curve, and when a < b, we have the
inner curve with the loop.

When a = b, the curve reduces to a cardioide. [ See fig. in § 20.16]

Y

i

K
|

¥ ,
Fig 20.17.1
Limacon is the pedal of a circle with respect to a point outside the
circumference of the circle.

20.18. Lemniscate.

A

: 2_ 2
Fig 20.18.1 r=a cos

2

Its equation is r” = a?cos 20

37 o, (Jr2 + _vz)2 =a? (,\r2 - yzA).
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It consists of two equal loops each symmetrical about the initial
line, which divides each loop into two equal halves.

Here, OA=0A"=a.

The tangents at the origin are y = +x.

For the upper half of the right-hand loop, 8 varies from 0 to %n 4

A characteristic property of it is that the product of the distances
of ahy point on it from each of the points (ia/ 42, 0) is constant.

Y
A

o X

7 =d sin 20

A ’
. | Fig 20.18.2
The lemniscate is the pedal of the rectangular hyperbola r2cos26 = a?.

The curve represented by r2 =g%sin20 is also sometimes called
" lemniscate or rose lemniscate, to distinguish it from the first lemniscate
which is sometimes called lemniscate of Bernoulli after the name of the
mathematician J. Bernoulli who first studied its properties.

“The curve consists of two equal loops, situated in the first and
third quardants, and symmetrical about the line y = x. It is the first

curve turned through 45°.
The tangents at the origin are the axes of x and y.

20.19. Rose-Petals (r = a sinnd, r =a cosné@).

Y.
C(3),
s A(l)
e A(l)
: X
O X
r=asin 30 e r=acos 30
B(2)

Fig 20.19.1
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The curve represented by r = asin 30, or, r = acos 38 is called a
. three-leaved rose, each consisting of three equal loops. The order in
which the loops are described is indicated in the figures by numbers. In

cach case, OA = OB = OC = a,and ZAOB=£BOC = £COA=120°.
The curve represented by r =asin20, or, r = acos 28 is called

a four-leaved rose, each consisting of four equal loops. In each
case, OA = OB =0C=aand ZAOB = ZBOC = ZCOD = £/DOA=9%0".

Y
D4)
4 Y :
% ) A(l)
4 A(l)
X ¢3) X
B(2
aa3) . i r=acos 20
r=asin 20 : B(2)

Fig 20.19.2

The class of curves represented by r = asinn @, or, r =acosnéd
where n is a positive integer is called rose-petal, there being n or 2n equal”
loops according as n is odd or even, all being arranged symmetrically about
the origiti and lying entirely within a circle whose centre is the pole and
radius a.

20.20. Sine Spiral (r" = a"sinn 0, or, r" =a"cosn ﬂ).
The class of curves represented by (i) r" = a" sinn8, or (ii)

r" = a" cos n 6 is called sine spiral and embraces several important and
well-known curves as particular cases.

Thus, forthe values n = =1,/ 1, =2, 2, — % ,and -; , the sine spiral is
_ respectively a straight line, a circle, a rectangular hyperbola, a lemniscate, a
parabola and a cardioide. - -

For (i) ¢ = n0; for (ii) ¢ = lzu':l-n()
The pedal equation in both the cases is

p= ,rnl/ a.
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21.1. Double Points. g

If two branches of a pl;mc curve pass through a point P, that is, two
tangents at P can be drawn to the curve, then the point is called a Double
point on the curve.

21.2. Classification of Double Points.
Node : If the tangents at a double point P on a plane curve be real and
distinct, the double point is called a Node.

? Fig 21.2.1

Cusp : If the tangents at a double point P on the plance curve be real
‘but coincident and the curve has real branches in the neighbourhood of P,
then the double point is called a Cusp.

Isolated Point : If the tangents at a double point P on a plane curve be
either non-real or real , coincident but the curve has no real branches in the
neighbourhood of P, then the double point is called an Isoluted point.

21.3. Different types of cusps.
Single Cusp :

: @i
o\
Single cusp,first species Single cusp,second species

If P be a cusp on a plane curve and both the branches of the curve lie on
the same side of the normal at P, then the cusp is called a Single Cusp.
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Double Cusp:

~

ot

@ (@)

Double cusp, first species = Fig 21.3.2 Double cusp, second species

Ifa plane curve has branches on either side of the normal at a cusp
P, then the cusp is called a Double Cusp.

21.4. Species of a Cusp.

Cusp of the Fist Species (or Keratoid Cusp) :

If the branches of a curve at a cusp P (single or double) lie on either
side of the tangent at P, then the cusp is of the first species or it is called
a Keratoid Cusp.

Cusp of the Second Species (or Ramphoid Cusp) :

If the branches of a curve at a cusp P (single or double) lie on one
side of the tangent at P, then the cusp is of the second species or it is
called a Ramphoid Cusp.

Osculinflexion :

If a curve has double cusp at P and it is Keratond on one side of the
normal at P and Ramphoid on the other, then P is called a Point of

osculinflexion.

\/o\_x

Fig
Double cur.p. change of species
Osculinflexion
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21.5. Searchi for double points.

Let the given curve be represented by a rational algebraic equation.
Let (a, B) be a double point on the curve. We shift the origin to (a, B)
through parallel axes. In the transformed equation the constant term and
the terms of the first degree must be absent in order that the new origin may
be a double point. We get three equations in o and B. Take any two of them
to find & and B. If these values of ot and B satisfy the remaining equation,
then the point (a, B) will be a double point.

If no such values of ., B are available to satisfy all these three equations,
then we say there is no double peint on the curve.

21.6. Conditions for existence of double points on an algebraic curve.
Let f(x,y)=0 o ()
be a rational algebraic curve. g

If we shift our origin to the point (@, g) through parallel axes, the
above equation transforms into

f(X+a,Y+B)=0 )}
By Taylor’s therom, we get
f(x+a,v+B8)=f (e ﬁ)+x(af] [ ]
(@.8) (e.8)
+l[x2{?.z..{.) +2xr[ ] (az] +
& 9x° Jap) o2 (37" ) ws)

Therefore, the equation (2) becomes

af 1r- a2 f) - -
f e, ﬁ)+[ ( ) +Y[ ] ]+— X’[ ]
0% Jwp) 97 )amy] 2| |02 )@ p

. I
2 2
+2xr[aaaf] +y2[a {] J+...=o
X9 ) @.p) 25" ) @.p) )

(@, B) will be a double point on (1) if origin is a double point on (3) which

requires
f af .

f(x,y) 0, ( ) -Oand[ ] —0.
9% ) a.p) 95 ) @p)
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If these equations be consistent, the tangents at the new ongm are
given by

2 2 ‘ 2
xz[a__{) +2XY[———; af ) +Y?[9—{-} =0
9 ) wm) 9 )ep). 2V
)

In general, the double point will be a node, cusp or an isolated point
according, as

2 2 2
B e
ey (d.ﬁ) aI (a.,ﬂ) a_)' (ﬂ.ﬂ)

21.7. Nlustrative Examples. ’

Ex. 1. Daemme the existence and nature of the double points on the curve

(x-2)*=y(y-1)*-

The given curve is
fley)=(-2)*-y(y-1)*=0 e (D)
(g‘f] Oglves 2(x- 2) 0,ie, x=2, ... (2)

[”) 0 gives 2y(y-1)+(y- 1)’=o.

ie. (y-1{3y-1)=0,
ie, y=1,4. )
Equations (2) and (3) say that the possible points are (21} (2.4 ).
_The point (2,1) satisfies equation (1) but the point (2,13- ) does not.
So, there is a double point at the point (2,1). I
Let us shift the origin to (2,1) through parallel axes. Equation (1)
becomes- X2 =(Y +1)Y2, ie, Y +Y2-X2=0.
The tangents at the new origin are given by
Y2-X2=0,ie,¥Y=%X,
which are real and distinct.
Hence, there is a node on the given curve.

Ex. 2. Examine the character of the origin on the curve -
y2 = 2xz_v+x3_y+x3.
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The given equation is

fry)=ry++2x22y-y2 =0 ‘ (D)
Now, 3£=3x2y+3x2 +4xy ;
x
%—j;=x3+212—2y,
y .

At 0,0), f(xy)=0, 2L _ganda 2L o0,
© o dx dy
— So, there is a double point at (0,0) on the given curve.
Tengents at (0. 0) are given by yz =0, thatis, y=0, y=0 which
are real but repeated. The double point is either a cusp or an isolated point.
Take a point P(x, y) on the curve in the neighbourhood of (O, 0)‘
Distance of P from the tangent y =0 is given by
p=y ... (2)
Eliminating y between (1) and (2) we get
x3p+x3+2x2p—p2=0 ' )
ie., 192 (x +2x2 )p 2 =0 on 5o D)
Wthh is a quadratic in p whose discriminant is

(x +.2x) +4x® =4x7 +4x* +4x° + 0

=4x° , since x is small.

Itis positive if x>0, that s, (3) can have two real roots if x> 0, that is,
(1) has two real branches on the right of the y-axis in the nelghbourhood of
(0, 0). So, there is a single cusp at the origin.

The product of the roots of (3) is — x> <0 for x>0 , that is, the roots
of (3) are opposite signs, that is, the two branches of the curve lie on opposite

sides of the tangent y=0. The cusp is of the first species.
Hence there is a single cusp of the first species at the origin.

Ex. 3. Is origin a double point on the curve y? = 2x*y + x*y - 2x* ?If so, -
state its nature.
The given curve is .
f(x,y)sx4y~2x4+212_v—y2=O wses (1)
o : '
Now, -a—’ = 45" v—8x? +4xy ;
Ay
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gf—x +2x -2y.

y ;

At (0,0), we see that f(x.y)=0, 6_f=0 and —ai=0._
‘ dx dy

So, there is a double point at (0, 0).

The tangents at origin are given by y2 =0, thatis, y=0, y=0
which are real and coincident. The double point may be a cusp or an isolated
point.

We take a point P(x, y) on the curve in the neighbourhood of the origin.
Distance of P from the tangent y=0 is given by

' p=y 2 (@)

Eliminating y between (1) and (2) we get

xp-2xt +2x2p-p? =0,
ie, p? ——(212 +x4)p +2x* =0 ... (3)
which is a quadratic in p whose discriminant is -
(2xz +.1c")2 —8x* =—ax? +4x8 4+ x* =—4x* <0 forall x,
that is, the roots of (3) are complex, that is, there is no real branch of the

curve in the neighbourhood of (0, 0).
Hence, the origin is an isolated point on the curve.

Ex. 4. Search for double points on the curve

xzy+x3y+5x4 =y?.

The curve is f(x,y)55x4+x3y+x2y-—y2=0 ; 5u ()
af =0 gives 20x> +3x°y+2xy =0,
ie., x(20x +3xy+2y)=0.' 2i:(2)
g'f ngeSx +x2-2y=0,
2
X +X'
ie, y= .3
y , €)]
Eliminating y between (2) and (3) we get
3
20x +3xx2+x +x2+x* =0,

ie., x’ {40+ 3x(1+x)+2(1+x)} =0

ie., x>(3x> +5x+42) =
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-5+.[25-504

e

-5%i 4719

S e

Only x =0 is acceptable as the other two values of x are complex

When x=0,weget y=0.
We see that (1) is satisfied with x=0, y=0.

ie, x=0or

=0 or

So (0, 0) (0. 0) is a double point on the giyen curve.

Tangents at (0, O)Iare given by yz =0,thatis, y=0, y=0 which are
real but repeated, that is, the double point is either a cusp or an isolated
point.

Let us take a point P (x, y) on the curve in the neighbourhood of (0, 0).

Its distance from the tangent y = 0 is given by

=y .. (4)

Eliminating y between (1) and (4) we get

x2p+x3p+5x4 = p2 .
that is, pz—(_:cz-{-_x3 )p—S:c‘—O . )
which is a quadratic in p and sotwo branches of the curve exist in lhe
neighbourhood of (0, 0) depending on the roots of (5).

Its discriminant is (x +x )+ 20x* = 21x* >0 for positive as well as
negative values of x, that is, the curve has real branches on either side of
the y-axis. The origin is, therefore, a double cusp.

Product of the roots of (5) is =5x* <0 for all x. The roots are of
opposite signs implying that the branches lie on either side of the x-axis,
that is, the cusp is of the first species.

Hence, the origin is a double cusp of the first species.
EXAMPLES - XXI
1. Examine the character of the origin on each of the following curves
(a > O) :
0 ay® = () a(y-x) =x* (i) (a-x)y?=
T x* - ax?y -2t 4 4:y2 =0.

X

W x'—aly + an? +a’y? =0.
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wi) x* -3x%y - 3’ +9y? =

(vii) x* - 2ax?y — axy? + a y2—0

(viii) y? = 2x? y+x y+xt.

x x* +x3y+5.\:3 - 2x%y + x* -3xy+2y2 =0

® Sx’y+x’y-5x =y,

o) (2x+ y)? - 6xy(2x + y)-7x* = 0.

Search for double points on each of the following curves :

B x*+y’+2x?+3y? =0.

G y(y-6)=x*{(x-2)-9.

@ x>-y*-7x? +4y+15x-13=0.

) x*-2y°-3y*-2x> +1=0. "

™z + y2)=ay?. ™) x* +y® - 3axy = 0.
i) y? = (x-1)(x-2)2 i) y? = (x-2)" (x-5)-
(ix) x’+2x’+2ry—-y? +5x-2y=0.

® (+y)?=ylp-x+2)?.

o) Q2y+x+1)2<=4(1-x)°.

(i) siy? +2a2y—¢u'? -3a’x-3a>=0.

(i) x* +4x> + 2y +4x? + 3y -1=0. :
(xiv) y* =8y - 12xy? + 16y + 48xy + 4x? — 64x =

Show that the curve (xy +1)? +(x—1)* (x—2) = 0 has asingle cusp of
the first species at (1, -1).

Prove that the curve ay = (#-a)?(x—-b) has, at x = a, an isolated
pointifa<b,anodeifa>b,andacuspifa=b. ‘
Examine the nature of the point (0,—1) on the curve
x! -hzy-—xyz - 2x? -2xy+y2.-x+2y+l=0

Examine ~ the nature of the point on the curve

cy=2= x(l +x + xJ;) where it cuts the y-axis.

Examine the nature of the point (-1, -2)on the curve
X+ 25 +21ry—y2 +5x-2y=0.
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Show that each of the curves

(xcosa—ysina—b )’ = c(xsina+ ycosa )’
where o is a variable, has a cusp and that all cusps lie on a circle.
Show that each of the curves

x3-—212x2—y2+t4x+4(y—4.r2 -0
where ¢ is a variable, has a node and that all these nbdes lie on a
parabola. *

ANSWERS

L

S.
6.
2.

(i) Single cusp of the first species.

(i) Single cusp of the first species.

(iii) Single cusp of the first species.

(iv) Single cusp of the second species. .

(v) Isolated point. (vi) Isolated point.

(vii) Single cusp of the second species.

(viii) Double cusp of the first species. (ix) Node.

(x) Double éusp of the second species.

(xi) Single cusp of the first species.

(i) Isolated point at (0,0 ).

(ii) Isolated point at (0_,3 ) and a single cusp of the first species at
(2:3)

(iii) Node at (3,2).

(iv) Nodes at (0,-1); (1,0)and (-1,0)

(v) Single cusp of the first species at (0,0 ).

(vi) Node at (0, 0). . (vii) Node at (2, 0).

(viii)Isolated point at (2, 0).

(ix) Single cusp of the first species at (—1, —2).

(x) Single cusp of the first species at (1, —1).

(xi) Single cusp of the first species at (1, —1).

(xii) Single cusp of the first species at ( —a, 0).

(xiii) Nodes at (0, —1),(~1,0)and (=2, = 1).

(xiv) Node at (2, 2).

Single cusp of the second species.

Single cusp of the second species.

Single cusp of the first species.



