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ItI1l	 CURVATURE

15.1. Definitions.

Let P be a given point on a curve, and Q be a point on the curve
near P. Let the arc AP measured from some fixed point Aon the curve be s,

and the arc AQ be s + 1ss; then the arc PQ=s. Let TPL, MRQ be the
tangents to the curve at P and Q, and let mLPTM = I' and
mLRMX = V + then mZQRL = AV. Thus, At,ti is the change in
the inclination of the tangent line as the point of contact of the tangent
line describes the arc PQ (= Ar).

AV is called the average curvature of the arc PQ.
As

The curvature at P (denoted by X) is the limiting value, when it exists,
of the average curvature when Q -, 1' (from either side) along the curve,
i.e.,curvature at P -

x= Li
As ds

Thus, the curvature is the raze of change of direction of the curve with
respect to the arc, or roughly speaking, the curvature is the "rate at which
the curve curves

The reciprocal of the curvature at any point P is called the radius of
curvature at P. and is denoted by p. Thus,

ds
dip
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0	 T	 X

Fig 15.1.2

If a length PC equal top is measured from I' along the positive direction
of the normal, the point C is called the centre of curvature at P. and the
circle with centre Cand radius CP (i.e., p) is called the circle of curvature
at?.

Any chord of this circle through the point of contact is called a chord

of curvature.

Note I. The line PG which makes an angle + I it with the positive direction
of the tangent (i.e.. the direction in which s increases) is called the positive
direction of the normal at P. To avoid ambiguities we make the
Convention that p is positive or negative according as C is on the
positive or negative side of the normal.

Note 2. The above formula is convenient only when the equation of the
curve is given in terms of s and y' (i.e., when the intrinsic equation of

the curve is given). So in the next article we shall obtain different

transformations of the above formula for the radius of curvature for
different forms of the above formula for the radius of curvature for
different forms of the equations of the curve, and henceforth whenever
we require the curvature of a curve we shall take th reciprocals of those
radii of curvature.

Note 3. Since the radius of curvature of a circle is equal to its radius
(See Lx. I. § 15.6), it follows that the radius of curvature at any point P
is the radius of a circle which has the same curvature at P as the curve has,
and this explains the nomenclature of the above circle. Since, the curve and
the circle of curvature at any point P (x, y) have the same tangent and the

same curvature, hence x. i i e. y have the same values at Pfor the circle of

curvature and the curve.	 [See Art. 15.2
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15.2.	 Formulae for radius of Curvature.

(A) For the Cartesian equation y = 1(x).

We know	 = tan W

differentiating with respect to x,

d 2 v	 , dqi	 dy' ds
Vi dx
	 dx dx

dii [	 dx
= sec y, a
	

LCOS I'
ds

	

ds	 i /d2r
p= — =sec '/-----

	

d/'	 ldx

2

Since	 secw = (i + tan 2 1P ) = 

I 

I + (d 

dx

{ +()2}i _____

	d 2 y 	 Y2
2

where ',	 0.

Note 1. Making the convention of attaching positive sign to (i + y 32 )

p is positive or negative according as y, is positive or negative.

Note 2. The above formula fails when at any point y becomes infinite,
i.e., when the tangent at the point is parallel to the y-axis (For illustration,
see Ex. 4.j5.6). In such cases the following formula, for the equation of

the curve as x = ( y), would be found useful.

dy- = cot v', :.	 differentiating with respect to y,
dy

d 2 x	 2	 di,ii -'	 dpds	= – cosec	 = –cosec w I - —
ds o'

coscc
I dx=-	 i' — .	 I•.•

P	 L d.

P = - COSCC 3/'!

/
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Since cosec 2 cli - I + cot 2 ip = I +

considering the magnitude only of the radius of curvature

3

dx22

d') }

p=.

	

	 (1)
d 2 x

where x, *0.

(B) For the Parametric equations x = #(t), y =

	

dv-
	 (x'	 o).Here,

dx di di x'
where dashes denote differentiations with respect to t.

•	 d 2 y	 d (Y"1 d(y" di x'y' -

dx 2 - dxx') di'x) dx	 x'3

	Then substituting the values of i , 	 in the formula (I) above, we get
dvdx

=	 (2)

where dashes denote differentiations with respect to t, and where

(C) For the Implicit equation c (x,y) o.

Here.4,,_i, (11. ;'o),..,j+j,S'-L=o

Differentiating düs with respect to x.

j x + ,	 +	 +	 + ,.	 = 0

	

dx -	 th dx	 clx

or. f +2j1 I +i (i)	 = 0

we assume here	 -f,.
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whence, replacing	 for dy and simplifying,
.1,	 dx

d2y
= -	 - 2fff, + jj2

dx2 3
fy

Substituting the values of 4V d 2y
in the formula (1) above, and

dx dr2
considering the magnitude of p only, we get

2 )

- 2f, f f. +	 (3)

where	 -	 + ff2 ^, o

(D) For the polar equation r = f (e).

ds ds dO dc /dt

Now, V/ = 0 + 0 = tJ -t tan -f-. where r	
dr

Pi 	 dO

diji 1	 I	 12—rr,

dO	 r

2
I	 -_"	

2
2 - r + 2r 2 

-rr2
- + 

2'	 2r +i	 r +l

ds	 i	 2Again,	 = Jr + t	 ... (6)

[See Art. 14.131

from (4), (5) and (6), we get

(7).r2+2r12—rr2
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Car. For the Polar equation U = f(0), where u= yr.

Since u= 	 r1=--i-

	

tL2'	

UL,.
r2–

Substituting these values of r, r 1 , r2 in the formula (7) above, we get

(u2+ui2)

(u*u2)'	
...(7a)

u 

where u 3 (u + u2 ) # 0.

(E) For the Pedal equation p = I (r).

We have p = rsinØ.
Differentiating with respect to r.

= sin + rcosØ-
dr

dO	 d41 dr	 dO	 d
=r—+r----r--1-r--

ds	 drds	 d	 ds

	

dij,	 I
j•.•o+=ig.]

dr

dp

(F) For the Tangential polar equation p = I (ii,).
When the tangential polar equation, i.e., the relation between p and W

of a curve is given,

	

dp dp ar ds dp	 d1	 dr
_=_..-—.cosØ.p—••cosØ•r—

	

d' dr ds dVI dr	 dr	 dp

=rcosØ.	 -

p2 + (-?- 2 = r 2 sin  0 + r2 cos 2 0 = r2.

Differentiating with respect top,

2p+2-4 -–"	 = 2r
4w diji 2 d1,(10

d2p
(9)

dip
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Alternative Method

If p be the length of the perpendicular frm the origin on the tangent
at (x. y), viz., Y - y1 X + sy1 y = 0,

then	 p=	 =
xvi — y	 xtant/I-y

l+ tan,

p = xsinI - ycosVi.

dp dx.	 dy.• - = — Slfli/f — XCOS/I + —COy f. i'Sifl!/f.
diii	 Ill/i	 (/111

= xcosiv + ysinlitI .	 dx	 dx dc	 dv	 di, IsSi n ce ----=--•---=pcosi----=.-.- •----=psiny
L	 dqi	 d.c dW	 dig	 ds dv'

01
22p 	(IX	 (IVSimilarly, -
	 = —cosip -.csln vi+--

	

---slnhJf	 -cosl//
dip	 di/i	 dvi

= 9 COS8 l - S II1 I/f + /) S1fl I/f + V COS I/I

= p-(xsin, y COS ip )= -

Hence, the result follows.

15.3.	 A Theorem on curvature.

If a circle be drawn lonc/th:ç' a curve at P and cuuin' it at another

Point P 1 , then, as P, -, I', the (trek tends to the eircle o[cun'alure.

0

C	 P,

P.
Fig 15.3.1

Let C be the centre of curvature at P, and let y = f(s) be the equation

of the curve, where f' (x) and f' (4 exist.
Let	 ) be the centre of a circle touching the curve at I' and

cutting it again at P 1 .and let r be its radius; also let Q ( x, y ) be any point
on the are PP, of the curve.
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. 0Q2 =(—x)2+(-y)2 F(x).

Since OP2 = OP = r 2 , It follows that. F (x) has the same value

both at P and P 1 . Hence by Rolle's Theorem, there exists a point Q1 (x , Y )

between P and P 1 such that F'(-.) = 0,

x 	 0I — Y, ))=o.
dx

which is evidently the condition that 0Q1 is the normal to the curve at Q1.

Now let I - P then Q, also - P and hence by Art. 15.8, 0, the point of

intersection of the normals at Q and P. tends to C, the centre of curvature
and thus r also tends to CP, i.e., p.

Thus, the circle tends to the circle of curvature.

15.4. Curvature at the origin.

(i) Method of substitution.

Radius of curvature at the origin can be found by substituting x = 0,

y = 0 in the value of p obtained from Art. 15.2, or by directly substituting

the values of (1 )o and ( 2 ) in the formula.

'ii) Method of Expansion.

In some cases the above method fails, or becomes laborious. In such

cases, the values of (y1 ) u and (y2 ) can be easily obtained in the

following way by assuming the equation of the curve to be y I (x) ?d

writing for y in the given equation its expansion by Maclaurin's theorem,

.f' (o) + f (0) + .. . j (o) being zero here, since the curve passes

through the origin], i.e., px + qx2 /2! +..., where p, q stand for ('(a),

f (0), i.e., ( y1 ) , (y2 ) 0 , and then equating coefficients of like powers

of x in the identity obtained.

•	 This is illustrated in Example 9 of Art. 15.6.

cii) Newton's Formula

If the curve passes through the origin, and the axis of x is the tangent

at the origin, we have

x=O, y = 0, (y 1	 p =

by Maclaurin's Theorem.
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y = qx212!+...

Dividing by x212! and taking limits as x —+ 0, we get

ij (Yi'x 	 q.

It should be noted here that as x —, 0, y also -4 0,

But	 (t)	 iutfromformulaofAn	
+2

	15.2. at the 	 p	 = -,
q	 q

p= Lt-
-.o2y

Similarly, ifa curve parses through the origin, and the axis of p is the
tangent there, we have at the orin

p = Lt

s-.0

Geometrically:

Let the x-axis be the tangent at the origin.

g j5 4 1.Draw a circle touching the curve atFi u, and passl'tg through a point P
(x, y) near 0 on the curve. Now, when p -, 0, along  the curve, the limiting
position of the circle is the circle of the curvature..	 (Art. 15.3)

Let OB be the diametclofthe circle, anddraw PN perpendicularto it,
and PM perpendicular to OX Let r be the radius of the circle.
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Then, ON. NB=PN2,i.c..ON(OJ3-ON)=PN.

ON 2 Op-2

	

ON	 ON	 ON

0P	 .? + ).2 x2
i.e.,	 2r = — =	 = — + Y.

PM	 y	 v

In the limit when P	 0, x	 y -'0. r ---I P. and hence we

get as before
,

	

I	 x-P

2 y
Similarly, when the y-axis is the tangent at the origin,

we obtain	 pr.Lj2._.
	2 	 x

Analytically
The equation of the circle passing through the origin and having the x-

axis as the tangent at the origin is

x2+y2-2fr0.

If :- be the radius of the circle, then r =f
Since (3) passes through the point (x, y) oil 	 curve,'

+ - 2fr = . whence j = ( X + y

'2

	

pfJrr/Jf r L	 =Lj —
 .2y

General Case:	 -

If ax + by = 0 be the tangent a, the oratni, then proceeding as above.

we get

p2	 X 2
	 2

iy ) 1 J(a +b9

	p1Ja2+b2. Li X+Y	 (4)

	

2	 x- .oax+by
, -.0

	Note. It should be noted that as x	 0,y -s 0, y/. 
—> (- ), 

the rn' of

the tangent line ax + by = 0. Here, it is supposed that 	 0. b * 0.
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15.5. Chord of curvature through the origin (pole).

Let PQ be a chord passing through the origin 0 of the circle of curvature
at P on the given curve, and let C be the centre of curvature and PT be the
tangent at P.

0	 T.	 x

Fie 15.5.1
Join PC; produce it to D ;join DQ.

Then LPQD =a ii. L, being in a semi-circle.

LOFT = 0 and ZPTX

From tPQI) ,cbord PQ = PD cos DPQ

= 2p cos ( 1 7r -

= 2psin0

dr
=2.r!.E

dp

d
2p —

r

dp

Note 1. From above it is clear that the chord of curvature through the
origin can be easily obtained when the pedal equation of the curve is given.
Note 2. If the chord PQ, instead of passing through the origin, makes an
angle a with the tangent PT, i.e., LQPT = a, then obviously LPDQ = a,
and hence PQ 2p sin a,

Hence, the chord of curvature parallel to the x-axis is 2p sin 

(: here LPDQ=)
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and the chord of curvature parallel to y-axis is 2p cos i

(... here LPDQ=7rr-W).

15.6. Illustrative Examples.

Ex. 1. Show that a circle is a curve of uniform curvature and its radius of
curvature at every point is constant, being equal to the radius of the

circle.

Let C be the centre of a circle of radius a. Let P be the Si'	 [it, Q

a point near it, and let PT. QM be tangents at P, Q and let L	 =

LQMX=s+ic;join CP,CQ.

LPCQ=ZPRM=Ai'.

• Al.r = anglePCQ =	 ., since /PCQ is measured ir.
1s	 As	 As a

radian.
as in Art. 15. 1,

curvature = IiLt - = - (constant) and hence p = a.

	

s-.OAs	 -.oa a

Ex. 2. Find the radius of curvature at the point (s, 'v) of the cun'

s=asectan+alog(sec+ tan V ).

ds i
Here,	 p==akSeCti.Scc l,+ta1PWsec14l

+ a- -----.--- -- . secjc ( sec + tanW)
secw + trnw

	

= asectc	 i + SeC2 sc - i asecw= 2asec
31•-
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Ex. 3. Find the radius of curvature at the point (x, y) on the curve

y= a1ogsec(4.

Hem,	 Yi = 
a'--see	

.SeC()9'a)tafl() 	 tanc,

Y2 =(Vcsec2(c/4

Also,	 1+ y = 1+ tad2 (çia)= se?(ç/c.

(i+12 
	 {sec(x/a)}
=	 =asec(x/a)

Y2	 (i/a)sec2(x/a)

E. 4. Find the radius of curvature of the parabola y 2 = 4x at the vertex

(0,0).

dy
The tangent at the vertex being the y-axis, 	 at the vertex (0, 0) is

dx
infinite. Hence, formula (1) of Art. 15.2 being not applicable, let us apply
formula (la). [See Note 2, Art. 15.2.

cix 1 	 d2x 1
d-VHence, -----2 y ;	 2

at the vertex, x 1 = 0, x2 =

	

()	 i
at the vertex, p = 

1+x12
	 = = 2.

2

Ex. 5. Find the radius of curvature at the point '0' on the cycloid

	x=a(0+sInO), y=a(1_coso).	 [CP1944,VP.2000. '961

Here,	 x'=a(l+cosO), I=asin0,

x'=-asinO, y'=acosO,

by formula (2) of Art. 15.2,

{d2(1+co)2+ci2s1d20} _ a.&00

P d2co(i+co)+&siri2.9 - 2co0

= 4ucos 0.

Note. p can aio be obtained by using formula (I) of Art. 15.2 by first
obtaining the-values of y 1 and v, in terms of 0.
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Ex. 6. Find the radius of curvature at the point ( r 0 ) on the cardiolde

r= a( 1—cosO ), and show that it varies as .j.	 V P. 2002; C. P.007]

Here,	 r1=1riO. r2=acos0.

by applying formula (7) of Art. 15.2,

-	 {c?(1_cos0)2+.2s1ri20}

dF (1—cosO+Gsiii0—ccosO(1—cosO)

= a(2-2cos0)	 22a(i	
o) 

2a( 
2s1n2

3-- 17 cosOT 3	 3 l,	 2

=- sin -0.
41

3	 2.
	 (I)

Since r=a(1—cos0)=a2sin210,

sin-! O= J(r/2a).

Hence, from (1),p=i..	 ...	 poc,/.

Note. In the cases where it is easier to transform a polar equation into a
pedal one, to find the radius of curvature, it is convenient to transform the

polar equation into the pedal form first, and then use formula (8) of Art. 15.2.

Ex. 7. Find the radius of cari'aare at the point ( p, r ) of the curve
rm =

We have p=
rm+I	 dp (.+1)r-
dn

-•--. .•.	 =
dr	 d

dr	 d
dp (rn+1)rm

- dr_	 am	 am

EL 8. Find the radius of curvature at the origin for the curve

x3 +y 3 -2x +by=O.

Here,	 y = 0, i.e., the x-xls is the tangent at the origin,

at the origin LL— = 21
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Dividing the equation of the curve by y, we have

x2x2
x—+y 2 -2—+6=O.

Y	 y

Now, taking limits as X -4 0, and y -4 0, we have

-2.+6=0,	 or,

Ex. 9. Find the radius of curvature at the origin of ihe conic

y-x=x2+2xv+y2	 [C.P.19481

First Method: Differentiating the equation successively with respect to x,

Yi -1=2(x-i-xr 1 +v+yy1 ),

and	 )'2 =2(l+xy, +2r 1 +yy2 +y12 ).

at the origin, i.e.. when x = 0, y = 0, y = I and ), 2 = 8.

(I+%,,2 )
	 ( i+i)	 ,

atiheongin, p=	 -	 =	 =—=—=0.35 nearly.
Y2	 8	 8	 4

Second Method:

Putting y px +	 + .......on both sides of the equation, we have

(,) _l)x+-+ higher powers of x=(j+2p+p 2 )2

+ higher powers of x.
Equating coefficients of x and x' on both sides,

p-h.-O, i.e.,p=I,

and	 -q=l+ 2p +- 	 :.	 q=8.

Since here p and q are the values of y, y2 at the origin, using the

formula p	
+Y2 )'

,weget p at the origin.

Third Meth.d (Newtonian Method)

Since y - x = 0 is the tangent at the origin here, by the formula for the

Newtonian method at the origin,

p=.x2+y2 =I.0Lj 

yX	 x+2xy+y

(from the equation of the curve)
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i+(y/x)2

1+2(y/x)+(y/x)2-

(On dividing the numerator and denominator by 2)

=IJi__±
2	 1+2+1

since Li (y/x), being the value of 'rn' of the tangent at the origin, vi:.

y— x= 0, is equal to!.

Ex. 10. Show that the chord of curvature through the pole of the curve

I	 2r
r 	 cos:nO is

in + I

Taking logarithm of the given equation,

in Jog r = m log a + log cos mO.

Differentiating with respect to 0, we have

1 dr –ammO
=–tanm0.

rdO cosm0

i.e.. 0=427t+mO.

p = rsin Q = r cos mO = r.r"/a'" =

dp(m+1)r'

	

dr	 a"

dr
chord of curvature = 2p sin 4=2r 

dr p
--2'P
dp r dp

=2._
a m	rm1' 2r

(m+l)rm am	 m+l

Ex. 11. For any curve prove that

' 2
J d2x 1 +IL.

' I2J	 2

	

dx	 d2x 	 d'4i
	 sin

I
Wehave — =cosW . ...

	 _
,inW tli	...	 (I)

	

ds	
'j
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and -1= sinqI.
dw

CO5141	 COSI.—	 (2),is• d 2	ds	 p
Now,squaring (1) and (2) and adding, the required relation follows.

EL 12. For any curve prove that

___where tan 4,= r 
dO

drSin
dO)

d.	
--dU

	

5104) 1+	 S1fl 4)4- —
$
— S1fl4)=r +—d .r—do

A)	 dO	 ds dO dr

(do d4) d9" (do d4)
=rl—+--.—l=rI__.f_

çd do dc)	 ,, ds dr

d	 dW=r–_(O+i1)=r__	 (. e+=,).

right side =

ds

EXAMPLES - XV(A)

I. Find the radius of curvature at any point ( s, ii ) on the following curves:
(I) s = aw.	 (ii)	 s=4asini.

(iii) S = c tan l/(.	 (iv)	 s=8cssin2 w.

(v) s = a (e"' -	 (vi)	 s = c log sec cv

(vu)5	 s _i).	 (viii) s = a log tan(Jr +i)

2. Find the radius of curvature at any point (, ) for the curves (I) to
(viii), and at the points indicated for the curves (ix) to (xiv):

(I) y 2 = 4a..	 (ii)	 e 1 ' = see (x/a).

(iii) y = logsin X.	 (iv)	 ay 2	x3.

	(v) X),= C2.	 ()	 y = + a .[eo + en].
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(vii) x2 /a2 + 2 1b 2	1.	 (Viii) x I +	 = a3.

(C.P 1943, B. P. '931

fix) y =	 —2? + 7x at the origin.

(x) y = 4sin x - sin 2x at x = .4 it

(xi) 9x2 + 4y2 = 36x at(2,3).	 (xii)	 y = e	 at (0, 1)

(xiii) .JFx + jy = F,, at the point where v = x cuts it.

(xiv) y = xe at its maximum point. . 	 [v.P 1988, '96 1

3. Find the radius of curvatute at any point of the curves (i) to (vi), an
the points indicated for the curves (vii) and (viii):

(i) X = acos 9, y = a sin G.	 (ii)	 x	 a, 2 , y = 2al.

(iii) x = a cos , y = b sin 0 .

(iv)x=aseCø, y=b tan ib

(v) x=a(cosr+:sinl), y=a(sini—i'cosf).

(vi) x=a sin 2O(l+ cog 29). v=a co
g 2O(1— co

g
 29).

(vij)x = acos 3 G, y= a sin 3 G at 0 = .,r. IB.P.19991

(viii)x=a(0+ sin 0). y=a(I— Cos 9)at 9=0.

4. Find the radius of curvature atany point (r, 0 ) for the curves (I) to (xi),

and at the points indicated for the curves (xii) to (xvi):

(i) r=aO	 (ii)	 r=a cog 0.(iii)	 r=asec2 _L O .

(iv) r = a (1—cog ).	 [(P. I999.B.R '89, '91,981

(v) r2=a2 COS 2O.	 [C.P.19921

(vi) r = ae° 
a	 (vii) , = a 3 cog 3O.

(viii) r = a +b cog 0.	 (ix) r" = a cog m0.

(x) r2 cog 29=a2.[V.P.19981 (xi)ra see 2O.

(xii) r= 2a cog O — a at 0=0.

(xiii) r = a sin nO at the origin.

.(xiv)r=I/(1+e co
g
 0)at 0=,r, [<i].	 [C.P.2005,O6]
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(Xv)r 2 =a 2 Cos 2O.aj 6=0.

(Xvi) r = a(O + sin O) at 0 = 0.	 [C..P 19891

S. Find the radius of curvature at any point (p, r) on the following
curves whose pedal equations are

(i) p = r sin a.	 (ii) r 2 = 2ap.	 (iii) p2 = at.
IC..P.1982)

(iv) pr = a 2	 (v) r 1 = 2ap 2 .	 (vi) r 3 = a2p.

-. a 2 b 2	 2	 2	 2(vfl)--+r	 a +b .	 [ C..P.1998j

6. Find the radius of curvature at any point on the curves:

(I) p = a( I  + sin y ).	 (ii) p = a cosec j,.

(iii) p 2 +a 2 Cos 2W =0.

7. Find the radius of curvature at the origin of the following curves:

(I) y = x 4 - 4x3 - 18x 2 .	 (ii) 2x 2 - xy + y 2 - y = 0.

(iii) 3x 2 +4y 2 =2x.	 (iv) 3x2+xy+y2-4x=0.

(v) 3x4_2y4+5x2yf2xy_2y2+4x0.

(vi) 4x4 +3 Y3  - 8x 2 y + 2x 2 - 3-ty - 6y2 -	 0.

(vii) x3 + y3 = 3 axv.	 (viii) x2 + 6 Y2  + 2x - y = 0.

(ix)x4 +y 2 =6a(x+y).	 [C.P.20061

(x) Sx2+y2+6x+8yr0.

(xi) y 2 =x2(a+x)/(a—x).

NO ax + by + a'x 2 + 2h'xy + b 'y 2 = 0

(xiii)y 2 - 2xy - 3x 2 - 4x3 - x 2 y 2 = 0.

(xiv) y2-3.ry-4x2+5x3+xy—y=0.

8. Show that the chord of curvature through the pole for the curve

p = 1(r) is given by 2f (r)/ f'(r).

9. Find the chord of curvature through the pole of the curves:
(i) r = a(1 + cos0 ).	 (ii) r2 = a Cos 20
(iii) r 2 Cos 2O = a 2	 (iv) r = ae0 a

(v) r' = asin nO.



CURVATURE	 489

10. Show that the chord Of curvature parallel to the axis of y for the curve

(i) y = a log sec (x/a) is constant.

(ii) y = c cosh (x/c) is double of the ordinate.

11. Show that in a parabola the chords of curvature

(I) through the focus, and

(ii) parallel to the axis are each equal to four times the focal distance of
the point.

12. Show that for the ellipse x 2 /a 2 + y 2 /b2 = I the radius of curvature

at an extremity of the major axis is equal to half the latus rectum.
IC.?. 1990. '94)

13. IfCbe the centre ofthe ellipse x2/a2 + y 2 /b 2 = 1 ,show that atany

point P.

CD3 a2b2
-	 --p,

ab	 p

where CD is the semi-diameter conjugate to C?, and p is the
perpendicular from the centre on the tangent at P.

A. If P 1 and P, be the radii of curvature at the ends P and D of

conjugate diameters of the ellipse x2/a2 + y2 /b2 = 1 ,then

	

P, J + P2 3
= (a2 + b2 )/(,,b)'3	 IC.P 19881

15. Prove that the radius of curvature of the catenary y = a cosh (x/a) at

any point is equal in length to the portion of the normal intercepted
between the curve and the axis of x.

M. Show that for the cycloid x = a0 - sin 0). ,' = a(l - cos 0) the

radius of curvature at any point is twice the portion of the normal

	

intercepted between the curve and the axis of x.	 [C. P. 2004 1

17. Show that in a paraboh the radius of curvature is twice the part of the
normal intercepted between the curve and the directrix.

18. If p 1 and p 2 be the radii of curvature at the ends of a focal chord of

the parabola y 2 = 4ax, then show that

	

p1T+ p; =(2a) .	[ VP. '99,C..P. 1986,20061
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19. Show that in any curve

(2 (dy2
(j	 = I—I +1—

Idyr)	 di

1 d2x /dy d 2y /dx
(ii)

I - d 2x d 3y d2y d3x
(ui)3—j	

ds

20. Show that in the curve for which

(i) y = a cos" Vi, p is in times the normal;

(ii) y = ae",, p is in times the tangent.

21. Show that

(I) for the cycloid for which s 2 = Say.

p = 4aJ{l - v/(2a)};

(ii) for the catenary for which -
,2 = c 2 + s 2 , p = y2/c.

22. Prove that in any curve

1	 11(dr'2	 (dr2
____ - d2- + 1—I—

p	 r	 rlds)	 iI.-

dO	 (dO2'd2r j.
0i) p=r—r—I-

ds	 ds)	 2

23. Show that the radius of curvature at any point of the equiangular spiral
subtends a right angle at the pole.

24. Show that at the points in which the curves r = aO and rO = a
intersect, their curvatures are in the ratio 3:1.

25. Show that when the angle between the tangent to a curve and the
radius vector of the point of contact has a maximum or minimum value,

P = r2/p.
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26. Prove that in any curve

=3y!y22_y3(1+yI2)

ds	 Y22

and show that at every point of a circle

	3y1y,2 =	 ( +. 2)

ANSWERS

I In the following examples, generally the magnitudes of the radii of
curvature are given.)

1.	 (i) a.	 (ii) 4a cos '. (iii) c sec2 V.	 (iv) . a sin I V.

(v) ante". (vi) c tan V.	 (vii) 3 in see3 V tan V.
(viii) a sec V.

2.	 (i) 2(x+ a )/..j.	 (ii) a sec (x/a).	 (iii) coseex,

(IV) (4a+9x)h h /6a). 	(v) (2

(vi) y2/a.	 (vii)(b4X2 + a4 y 2 )/a4b4

(viii)	 3(a.y)1.	 (ix)	 (125h).	 (x) f/i.
(xi) 13 . (xi)	 .	 (xiii)	 u/.J.	 (Xiv) C.

3. (1) a. (ii)	 (,2 + )L ()	 (a sin 2 0 + b 2 cos2 ) /-

b-(iv) (a2 tan 2 0 +b2 see2 ) /ab	 (v)	 al.	 (vi)	 4acos3O -

(vii) I a. (viii)	 4a.

4.	 ii (r2 + a2 )3 /(r2 + 
2.2 	 a.

(iii) 2a sec 3 (iv)	 .	 (v)	 a 2 / 3r.

(vi) r cosec a.	 (vii)	 a314r2

	

(a2 + 2abcosO + h2 )	 a'"	 t
(viii)	 (ix)	 -.

-	 a2+3abcos0+2b2	 n,+l r'"
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(x) r3/a 2 .	 (xi) r(4r2 _2 )/3a 3 .	 (xii)	 4a.

4 na.	 (xiv) 1 .	(xv)	 a	 (xvi) a.

5. ()	 tosec a.	 (ii)	 a.	 (iii)	 2

(iv) r3/a 2 .	 (v)	 1 VT 2ar	 (vi)	 a2/3r.

(Vii) 22b2/p3.

6. (i) 0. (ii)	 2a cosec 3 f. (iii)	 a/p

7. (I)	 Ji'	 (ii)	 -	 (iii)	 .	 (iv)	 2.	 (v)4.

(vi) 2.	 (vii) a, Ia	 (viii)	 -Lj.

(ix) 6	 . (x) 5.	 (xi)	 ± a

(xii) '.	
(a2 +b2 )

(xiii) sJTh;J. (xiv)
2	 ''ab —2h'ah+b'a2

9.	 (1)	 -31 r . (ii)	 - r.	 (iii)	 2r.	 (iv)	 2r.	 (v) 2r/ (n + I

15.7. Centre of Curvature.

Let (, 5, ) be the co-ordi?atcs of the Centre of curvature C

corresponding to any point P(-, y) on the curve.

Since C ( .,	 ) lies on the normal at P. viz.,

(x —x)+(Y — y ) y1 = 0,

(—x)+(5,—y)y =0.

Again, since PC = p,i.e., PC2 =

Substituting —(5,— y ) y1 for ( — x ) from (I) in (2) we get

(5, ) 2 
(i	

2	 2 = ( i +	 . . . 
(3)—	 +yI )= p	

y22

I-	 \2
—	 2	 l+v12)

i.e., (y — y ) =
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(4)

Again, from (1),

(5)

from (4) and(S), we get

	

______	 =	
I+v12	

...	 (6)
Y2	 Y2

o, Hence the equation of/lie circle of curvature is

	

(x— )2 +(y- 
)2	 2

Note 1. According to our convention, we take the positive sign only in

(4); for, if y 2 is positive, p is positive and hence - y is positive. Similarly

if Y2 is negative, p is negative and hence y - y is negative.

Note 2. Since the normal at P makes an angle ( 1 71+ 14 ) with the x-axis, it

follows from the definition of the centre of curvature that

I	Cos (t+)	 n1+)

i.e., i=x-psinw, 5=y+pcosi/	 ... (7)

Now, since tan iV = y 1 , sin i, =	 Yt	 and cos t1 
=	

2

Thus substituting the values of p , sin,!!, cOS,!! in terms of y j and

Y2 in (7), values (6) of x, can be obtained.

Note3. By writing the relation (1) as (i-x)x1 +( .-v)=O, and using
\/

the values p
, =( 

I + x" ) / x 2 , of (from Art. 15.2, Sec. A) we can similarly

obtain

	

=x+1+xI2	
x1(1^x12)	

..

	

X2	 x2

dx	 d2x
	where x1=—,x2=----.	 -

dy2

This form is useful when v 1 becomes infinite.
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Note 4. The centre of curvature can also be obtained geometrical!)' as
follows:

Let C (i, ) be the centre of curvature corresponding to the point
P (x, y) on the curve.

Fig 15.7.1

Then PC=p

Let PT be the tangent at P, so that LPTX = 141

Draw PN, CL perpendiculars on OX, PM perpendicular on CL.
Then ZPCM=lt,

i=OL=ON—MP

=x—PCs1nPCM

	=x-p sin W,	 . . .(1)
5=LC= LM + MC = PN + MC = y + PC cos PCM

=y+p Cos llI

	Since tan ic=v1 , sin i=	 and cosllI=

VII + 2

Now substituting the values of p. sin 141, cosi in (I) and (2), the
required values of x and y are obtained.

15.8.	 Property of the Centre ofcurvature.

The centre of curvature C for a point P on a curve is the limiting
position of the intersection of the normal to the curve at P with a

neighbouring normal at Q, as Q	 P along the curve.
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Y

r

0!	 X

Fig 15.8.1

Let P (x, y) be the given point and Q (x + Ax, y + Ay) be a point near

P on the curve y = f (x); let us suppose y y2 exist at P and y2 ;4 0.
The normal at P is

(Y—y)y1+(X—x)=o,	 ...	 (I)

or, (i — y)Øx)+(X —x)= 0,	 ...	 (2)

putting y1 = 0 ()

... the normalat Q is

1y)0(x + 44+(X —x-x)= 0	 ...	 (3)

Suppose the normals at P. Q, ii.. (2) and (3) intersect at N (, r
and let (.i, j) be the point C to which N tends as Q -4 P.

Subtracting (2) from (3) and putting TI for Y, we have

- y) (x + Ax) - 0 4} - AvØ (x + Ax) - 4x = 0	 .. 4)

Dividing by Ax, and making Ax -+ 0 and noting that in that case

7 -9 y, we have

(—y)O'(x)—y10(x)—l=o,

y)y2_y12_l=O
Again, since (, ) is a point on (I),

(—y)y1 +—x)= 0

The value of (, ) obtained from (5) and (6) are identical with those
of the co-ordinates of the centre of curvature obtained in Art. 15.7.

Hence, (, ), i.e.: C is the centre of curvature.
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15.9. Evolute and Involute.

The locus of the centre of curvature of a given curve is called its

Evolute.	 -

If the evolute itself be regarded as the original curve, a curve of which
it is the evolute, is called an Involute.

Formul (6) and (8) of Art. 15.7 give the co-ordinates of any point

(, ) on the evolute, expersscd in terms of the co-ordinates of the

corresponding point (x, y) of the 'given curve; since y is a function of x,

these formulx give us the parametric equations of the eolaie in terms of
the parameter x.

Ordinary cartesian equation of the evolute is obtained by eliminating

x and y between the two expressions for i,Y and the equation of the
curve. [See Art. 15. It Ex. 2. )

15.10 Properties of the Evotute

The normal at any point to the given curve is the tangent of the

evolute at the corresponding point of the 'evolute.

Let (it, ) be the centre of curvature corresponding to the point (x, y)
on the curve. Then from Note 2. Art. 15.7.

xp sin Vi, y)'+COSt/.

dji	 .	 •dp
.— =l—pcosqi-----sinyi——

	

dx	 dx	 dx

ds dxdVi.	 dp	 .	 dp
= 1-- •-•--sin !JI- = - sln(-

dtjf as dx	 dx	 dx

dX	 dp
Thus,	 = — slfl/,-	 . . ( 1)

IFY
Similarly, —cosljl dp—
	

... (2)
dx	 dx

dividing (2) by (I)

	

dy	 dx
= - cotij/ = - ,which is the 'in' of the normal at (x, v).

	

dx	 dy

'in' of the tangent to the evolute at ( , i) ='m' of the normal to the

given curve at [he corresponding point (x, )), and since both tangent to the

evolute and the normal to the curve pass through the same point (:,

they are identical. Hence the result.
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(II) Length olan arc of the Evolute

The tenth of an arc of the evolute of a curve is the difference between

the radii of curvature of the givesi curve, which are tangents to this arc of

the evolute at its extremities.

Fig 15.10.1

Let s be the length of the arc of the evolute measured from some fixed

point on it up to the centre of curvature (, ). Then from (I) and (2) above,
we have

diI 2 +
(6^v ) 2 
 (d2

dx)	 dx	 dx)

2
Also we have F !. )^	 41

dx) . dx) 'dx

& up .

- p = C (a constant), i.e., i = p + C.
Hence, s,- S2 = p 1 - p , ,where P j , P2 are the values of Pat the.

two points P 1 . P 2 on the curve and are te values of of the

corresponding points Cl' C 2 0n the evolute.

Thus, the arc C 1 C 2 of the evolute = P 1 C 1 - P, C,.

Hence, if a string is wrapped round the curve C I C 2, it is clear that
when the string is unwrapped, being kept tight all the time, the point on the
thread which was at P, will describe the curve' P, P1

32-
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(ifi) Radius of curvature of the Evolute

Fig 15;l0.2

Let ' be the angle which the tangent at the point C (, 5') on the

evolute I corresponding to the point P(x, y) on the original curve] makes
with the x-axis, then is the angle which the normal at on the given curve
makes wih the x-axis.

'1" =  -4 r + yi.	 ..	 = I also from (II) above	 = I.
dv	 dp

Let j5 be the radius of Curvature of the evolute at (, 5').

-- di	 ds dp diji_dp_ d(ds)_d2s

dji'dp dyI

15.11. illustrative Examples.

Ex. 1. Find the centre of curvature at any point (x, y) on the parabola

Y 2 =4x.

Here,	 y,=	 Y2

(x+a)

If (. 5') be the centre of curvature, we have

=x+2(x+a)3x+2a.
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!-t-y 1 2	 2L(x+a)
y–y	 -

 j-
Y2

r— 2vfx 	 2
=2ijax–	

,_.	
(..y2_4ax)=FX2
I.

Ex. 2. Find the evoluze oft/ic parabola y2 4ax.

As proved above, its centre of curvature (, ) at any point (x, y) is

given byj3x+2a

2
y = -	 x'	 (2)

–2a
From (l),x=----_

-	 i
From (2)	

2 (j-2a
,	 Y-7-------)

squaring and writing r, y for ir, , the required evolute is giv

by 27ay2 =4x-2a)3

Ex.3. Find the equation of the circle of curvature at the point (3, 1)

the curve y =x 2 –6x+1O.

Hem,	 y j =2x-6;. y2 =2.

at the point (3,I), y 1 = O,	 y2=2.

If (i, j) be the centre and p the radius of curvature at (3, 1),

x'
	 y1(1+12)	 -	 ____	 3=3, y=y-f

Y2	 Y2	 -

Also,	 p
Y2

the equation of the required circle of curvature is

(x_3)2+(y7)2 =,

or



500	 DIFFERENTIAL CALCULUS

15.12 Miscellaneous Worked Out Examples

Ex. 1. Show that the radius of curvature of the curve yc.cosh1

is 
2

--.	 EC.P.198095]

Solution	 y =c-cosh ()
	

(1)

dy
yj =- -- c—sinh- =sinh -

Ac	 \c}

,12Y	
I	and y2 =COSh()4	 From (1)

3

	

(i+v?)	
1	

h 
21X'\)2

Radius of curvature p = ________- =
Y2

3

	

= c2{cOsh2(i)}2	

Icos h 2 x -- sin h 2 x I)

	2 {cos (
X )1 3

	2Y3	 2 -
	

-

Y	 YC	 c

Ex. 2. (i) For the tractrix s=c log sec J prove that p=ctanp and in

case of the equiangular spiral s = a(e'"'' - i). p = in a

B. P. 1995

(ii) For the curve s=asec1 flog(secw+tan4l), show that

p = secs(1+atanW).	 IC.?. 1995]

(iii) Find the radius of curvature of s=aseci+log(secU/ tanW)at

any position W.	 [ C. P. 2001

Solution :	 (i) s = c logsecw

dssecw tan 14l =c tan 141
dW see 
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Again, ' s=a(e"' .i)

ds
p=—=mae "

thji

(ii) s=aecqc+log(secw+tanhls)

ds	 secwtanw+sectI
p = — = asecw tanqI+

dW

	

	 see 1+ tan I

sec(secW + tan I)
=a 

secw+ tan 1I	
= see  (1+atanW).

(iii) s=a see s+ log (see . tan i)

= a sec iji + log sec W + log tan w

ds	 see tptan W sec2l4s
p=—=asecwtanw+ +

dW	 see  taint!

= a Sec l tan jI + tan 4I + Cot W.

Ex. 3. Find the radius of curvature for the curve

x=a(0+sin0), ya(1–coso) at 0=0.
C. P 1987, 91, 97, 2000, 2008

Solution:	 x =a(0+sinO), x'=a(l-i-cosO), x" = –asin0

y=a(1–cos0), y'=asinO, y"=acosO

At 0=0, x=2a; x"=O, y'=O. y"=a

(x2 +2)	
(2 +o)	 8a3At 0=0,

X3")?'X"	 2a-a-0	 2

Ex. 4. Find the radius of curvature at any point 'f on the curve

x=a (cost +t sin t), y=a (sin f–tcosz). 	 [C. P 2002

Solution: Here, x=a (cost +t sin:)

x'=aicost, x"=a (cost –tsini)

and y=a(sine'–Icost)

y'=atsint, v"=a(sin:+tcost)
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Now,

= (x+	

=	

{a2t2'(sin2t + cos2 r)}	

-xy yx	 2a t{stntcosf+tcos t —sIntcost+f sin 2

a313

at

Ex. 5. (I) Find the least value of the radius of Curvature of the curve

x=51, y=Slog sect . 	 [C. P. 19831

(ii) Find the radius of curvature of the parabola y 2 = 16x at the

end of its latus rectum.	 F B. P J988, 1997

Solution :	 (i) Here x = 5s and y = 5log sect.

x'=5, x"=O, y'=5tan:,y"=5sec2t

- (x12 +y'2) - 125(l + tan 2 t)1 2 - l25sec3t

- 25sec 2 r-0 - 25sec2t

oip=5sect

Since numerically the least value of sec t is 1, least value of P is 5.

(ii) Equation of the parabola is y2 16x.

One end of latus rectum is at (4, 8).

Now, 2y16
dx

•	 dy	 8
i.e., —=y1 =-

dx	 y

Y2 
d 2 	 8 dy	 8(8)64

At the point (4, 8), Y	 1 Y2 =
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EXAMPLES - XV (B)

1. Find the centres of curvature of the following curves at the points
indicated:

(1) xy =12 at(3,4).	 [C. P 1934, 2008]

(ii) y=x3+2x2+x+lat(O,l).

(iii) xy=x2+4at(2.4).

(iv) y =sin 2 x at(O,O).

(v) x=e' cos 2Z, ye 2' sin 2t att=O.

2. Determine the centres of curvature of the following curves at any point
(x,y):

(i) x2 = 4ay.	 (ii) a 2 y = x 3 .	 (iii) x 2/a 2 + y 2 /b2 = I.

(iv) xv=a 2 .	 (v) x i +y 3 =a•

NO y = i2 a(e4" +e4' ).

(vii) x = a cos , y = b sin 0.	 (viii) x = a!2 , y = 2a/.

(ix) x=a(O– sin 9), y=a(I– cos o).

(x) x= a( cos t+: sin l ), y = a(sint – lcosl ).

3.	 Find the evolutes of the curves (iii), (iv), (v), (ix). (x) ofEx. 2, abOve.

4. If (a, /3 ) be the co-ordinates of the centre of curvature of the parabola

vFx + vFy = ja, at (x,y). then show that

a+f3=3(x+y).

5. Show that the co-ordinates (, ) of the centre of curvature at any

point (x, y) on a curve are given by

-	 dy -
(i) x=x--	

dx
 y=v+—.

dtjf	 di,ií	 -

(ii) =r.+p2x, y=y+p2y,

where dashes denote differentiations with respect to the arc s.

6. Prove that the distance r1 between the pole and the centre of curvature
corresponding to any point on the curve r = f (o ) is given by

r 1 2 =r2+p2-2pp,

where P and p have the usual significance
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7 For the equiangular spiral r = ae° prove that the centre of
curvature is at the point where the perpendicular to the radius vector
through the pole intersects the normal.

8. Find the circle of curvature of the curves

(1) y = x+ 41x at(2,4). 	 [C. P 2006]

(ii) y=x3+2x2+x+lal(0,l).

(iii) x =	 at the point where it crosses the x-axis.

(iv) y2 = 4x at at the ends of the latus rectum.

(v) x + y = ax  + by2 + cx3 at the origin.

	

(- 1, •).	 (iii)	 (2,5).

(0,-i).

	

X ( l	 4 ),(	 3	 29x5x	 a
(ü)

v3)(-23

	 y3 3	 x3
	(iv) 	 2a2

(	 1 2	 2	 ( - 
J2 - 02

(v) X3XY' Y + 3x Y J	 (vi)	 ,2y I
a

(vu)
{a2 a

	
,

-	
COS

b2 	 b2 —

b 

a 2	3 1
(viii) (a (2+12 ) - 2a13}.

(ix) {a(O+ sin O),—a(l— cos 0)}.	 (x)	 {a cos :, a sin t}.

(i) (ax) +(by) = ( 2 _b2).

(ii) (x+ y)i	 — (40L

(x+y)4+(- y) = 2a1.

(iv) x a(O +sinO ), y = -a(1-cos8). (v)	 x2 +y2 =a2.

(i) x2 +y2 -4a-I0y+28=0. (iI)x2+y2+x-3y+20.

x2 +y2 -6x+4y+5=0. ( iV)x 2 +y2 -IOx±4y-3=0.

(v) (a+b)(x2+y2)=2(x+y).

3.

4.

ANSWERS

(i) 71)	 (ii)1. -g'

 (v) '

.?	 2a±-_12. (i)

	

	 4aJ

(a2 -b2 3 a 2 -b2

a4	b



II	 ASYMPTOTES

16.1. In some cases a curve may have a branch or branches extending
beyond the finite region. In this case if P be a point on such a branch of the
curve, having co-ordinates (x, y), and if P moves along the curve so that at
least one of x and v tends to + or to - , then P is said to tend to infinity,
and this we denote by P

Definition. If P be a point on a branch of a curve extending beyond the

finite region, and a straight line exists at a finite distance from the origin

from which the distance of P gradual!)' diminishes and ultimately fends

to zero as p _ (moving along the curve), then such a straight line is
called on asymptote of the curve.

16.2.	 Asymptátes not parallel toy-axis.

If y = nix + c be an asymptote corresponding to an infinite branch of

a cun'e, where ni and care -both finite (including zero), then

nz=L1 l and c=Lt(y-mx)

where (x, y) are the co-ordinates of a point P on the branch of the curve.

The distance of the point P from the straight line y - mx - c = 0 is

given by

d y - mx - c , and if y = mx + c be an asymptote,
i +

d -* 0 as x -+ and since in is finite here,

LI (y-nu-c)=0,or, Li (y-mx)=c.
if.-.-

Again, denoting y - mx - C, i.e., d fl + m2 by u,

y

	

	 c+u
- In = -

x	 x
Now making -v - =' , since u -4 o in this case, and c is finite.

bL-m=0,Or, IJZ=m.
x	 )

Accordingly, to find asymptotes (which are not parallel to the

y-axis) of a curve y = f(x){or F(x,y )= o}, we first of all find out

Li 2 from the equation to the curve, which may have several finite values



506	 DIFFERENTiAL CALCULUS

(inclusive of zero). Corresponding to any such value (m say), we next proceed

to find. Lz( y - mx), using the equation to the curve.

If this limit is.found to be finite, say c, then y = nix + c is an asymptote.
[ See Ex. 7,*16.81

Note. An alternative definition of a rectilinear asymptote is sometimes given
as follows: 1! P be a point on a branch of a curve extending to infinity and

if a straight line at a finite distance from the origin exists towards which

the tangent line to the curve at P approaches as a limit when p then

the straight line is an asymptote of the curve.

With this definition also, we can prove the results of the above article;
for, the equation of the tangent at P (x, y) to the curve is

Y -y =(x _.r),or, Y=X+Iy-x
dx	 ds	 dx

and as x -	 ,if this tends to Y = ,nX +c, where  m and care finite, clearly

1	 '\
m= Li dy- and c= Lt I y -x

dy
--- 1= Li (y-mx).

dx .	 dx )

It should be noted that when P-.-+oo, if the tangent line tends to a
straight line as its limiting position, that line is an asymptote. The converse,
however, is not true, i.e., even if the tangent line has no definite limiting
position when p _ ,there may be an asymptote. 	 (See Ex. 8, § 16.81

163. Asymptotes parallel toy-axis.
The necessary and sufficient condition that the straight lihe x = a is

an asymptote to the curve y = f (x) is that j f (x) 
I -
	 when either

x -9 a + 0 or x - a - 0.

For, suppose x - a - 0. Since I yI -* in this case. P being the
point (x, y) on the curve, p	 in this case [con ve,el?, if p - 	 in this
case,	 , and hence the necessit y of the condition]. Now the
perpendicular distance of P front 	 line x = a is .v - a (the axes being

rectangular), and I x - a 1-3 0 as x -i a -0. hence, x = a is an asymptote.

Similarly, for the case when x -* a + 0.

Thus to find asymptotes parallel to y-axis, we may write z for 1/v . in

the equation to the curve, and then make z - 0. If then the result leads to

A rigorous proof of this last equality requires the use of integration.
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a finite value or values of x of the type x = a, these will give us the
corresponding asymptotes parallel to y-axis. 	 [Sec Ex. 7, § 16.8]

Note. In a similar way we may get asymptotes parallel to x-axis thus if as
y—)b±O, JxI_i oo , (where x, y isa point on the curve) then y=bisan
asymptote.

16.4.	 Asymptotes of algebraic curves.

The most useful case of determination of asymptotes is for algebraic
curves. The general form of the equation of an algebraic curve of the nth
degree is, arranging in groups of homogeneous terms,

+ a1x -I y  + a2x - 2y2 + ............+ ay )

+ (box"	 + x 2 y + ............+ h,,_1y	 )

	

+ ........=0,	 . . (1)

which can ao be written as

	

(y't	 (y'
-	 I—I	 ,,-i ,.-iI—I	

-2	
-2Il	 ......=0 ,	 ...	 (2)V)	 X)	 X)

where 0, is an algebraic polynomial of degree r.

For asymptotes of this curve, we proceed to prove the following rules:

Rule 1. Asymptotes not parallel toy-axis will al/be given by y = mx + c,

where in 
any of the real finite roots of O,, (m) = 0 and for each such

values of in, c = .- (m)/ (m) provided it gives a definite value of c.

Proof:

The equation (2) of the curve can be put in the form

............................=0

	

Now if y = mx + c be an asymptote, where in 	 c are finite,

Li (y/x) = in 	 § 16.2). Hence from (3), making x -+ o, since in

finite, and the functions 0,, (m), 0._t (m), etc. which are algebraic
polynomials in in 	 accordingly finite, we get 0,, (m)= o.

- Again, since in this case 11 (y - mx) = c (See § 16.2) we can write

y— nix = c .i-u,where u is a function of x such that u —*O when
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x —*o".Thus, y- =m+ c —+u
X	 x

From (3), now we get

0. .(
	 c+u	 i	 I	 c+u

= I"^- I+—Øtjm+--------X)X

m+- •• =
X )--

Expanding each term by Taylor's theorem, since the functions 0, are

all algebraic polynomials and will each lead to a finite series, and remembering

that 0,, (m) = 0, we get

Ic+u 	 - (c+)

x3!	 }

l-u)2
Ø 1 (

	

(m)+ 
c+u

O1(m)+ 
(C ,

	
in)+... }

X 1	 x	 x

+ - {_ 
(m)+ 

C+u
--ø,..2(m)+ ... }

+..... . =0.	 ...	 (4)
Now multiplying throughout by x and making , x —, . we get

(vu—Onow).

co,', (m) +	 (m) = U ,or, c = - Ø,,	 (in).

Each finite root of 0, (m) = 0 will give oic value of c (provided

(m) # 0 for this value), and accordingly xvc get the corresponding

asymptote y = tax + C.

Special cases

If any value of m satisfying	 (m) = 0 (say in = nil ) makes 0 (m) = 0

	

also (which requires in, to be a multiple root 	 (m) = 0 of as we know from the

	

theory of equations), and if 0 ,,_ 1 (in) * 0 for this value, then c -	 as

in - m - Accordingly there is no asymptote corresponding to this value of rn
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If for ni = m 1 ,we get si,, (!fl), ,, (rn) ,,-i (. ) ,each 'O, then from (4),

multiplying throughout by x 7 , and making x -* cc, we derive

4c 2 (rn)+ ctt',,_ j (m)+	 -2 (in) = 0

giving two values (say c 1 . c, ) of c in general ( provided ,(1' 1 ) * 0] , and

thereby giving two parallel asymptotes of the type 3' =

Y = ,n 2 x +c2.

If ø, (ini) is also zero (i.e., if in, is a triple root of 0,, (in) 0, and if
(n	 ,,	 are also identically zero, we shall, proceeding in a similar

manner, get three parallel asymptotes in general corresponding to in =, rn;

and so on.	 -

Rule U. Asymptotes parallel to ;'-axis exist only when a,, (the coefficient

of the highest power ofy. i.e., of y") is zero, and in this case the coefficient

of the highest available power of y in the equation (provided it involves

x, and is not merely a constant) equaled to zero will give us those
asymptotes.

A similar rule will apply to asymptotes parallel to x-axis.

Proof: After dividing by y", and replacing 1/3' by z, the equation (l) of

the curve can be written in ascending powers of z in tile form

a,,+ z(ax + h+ z 2 (a,,_2x2 +b-2X + c,,)+... = 0 . . .(5)

This will have an asymptote parallel to -axis of the types = a where a
is finite, provided z - 0 when x —*a+0 or a-0.[ See Ex. /6.3]

Hence making Z - 0, since x now tends to a finite value, we must

have the necessary condition a,, = 0.

Assuming this to be satisfied, we get from (5), dividing by: and making

z —*0,

a,,x + b,,_ 1 = 0	 ...	 (6)

giving a finite value of x(provided u,, isnotzero) which makes I 31 -4
and thus represents an asymptote. 	 -

Incase o,, is also zero along with a, in order that we may have an
asymptote parallel to v-axis, since xis to be finite, we must have, from (6),

= 0. Hence, from (5), dividing by :2 and making = - 0 now we get
the asymptotes parallel to v-axis (two in this case) given by

a,,_ 2x 2 +b . ,x+c,,, =0



510	 DIFFERENTIAL CALCULUS

provided this gives finite values of x. In case a,,, b,,_ 2 , c,,_2 are all

identically zero, we proceed in similar manner with the coefficient of Z3 in

(5), ie., the coefficient of j"	 in the original equation (I), and so on,
proving the rule.

Note. By interchanging y and x in arranging the given equation (1), and

proceeding in a similar manner, (making l/x -* o) we can prove the
corresponding rule for finding the asymptotes parallel to the x-axis.

16.5. Working rule for asymptotes of algebraic curves.

For an algebraic curve of the nth degree with equation given by (I) of

the previous article, first of all see if the term involving v" is absent, in

which case, the coefficient of the highest power of y involved in the
equation (unless it is merely a constant independent of x) equated to zero
will give asymptotes parallel to the y-axis.

Similarly, if the term involving x" is absent, the coefficient of the
highest available power of x equated to zero will in general give asymptotes
parallel to the x-axis.

Next, replacing x by I and ;' by m in the homogeneous nth degree

terms, get 0 ,, (in) [as is apparent from the alternative form ,-"" (y/x) 1
Similarly, get 0_1 from the (n - 1)' degree terms, and if necessary (see

later), ,,-2 (rn) from the (n - 2)1 degree terms, and so on. Now equating

$,, (m) to zero, obtain the real finite roots rn, m1, etc. which will indicate the

directions ofthe corresponding asymptotes (repeated roots giving in general

a set of parallel asymptotes).

For each non-repeated root (m 1 , say), a definite value C 1 of

c = -0,,1 (m/(m)

is obtained, and the corresponding asymptote y = ny ± c, is determined.

For repeated roots the several values of c may be obtained as explained
under the head Special cases' of Rule 1.

16.6. Alternative method of finding asymptotes 0 algebraic curves.

Let the equation to an algebraic curve be

(I)

where	 I, [ax +ci1 x''y + ....... ±a,,i' - x"ç, (y/x)j	 consists	 of

homogeneous terms of degree n, P , is homogeneous of degree n - I and
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so on. Now m,, m2, m........ being the roots of 0,, (m) = 0 , we  know fron-
the theory,pf equations that in 

m1, in 
in . .....are factors o

0,, (m) and accordingly P. a,, (y - m1x)(y - m2x)... The possibb
asymptotes are parallel to y - m1x = 0, y - m2x = 0, etc., as proved in

16.4, and their directions are thus all easily found from the factors of F',,.

CASE L Let y - m 1 X be a non-repented factor of P, 's, Equation (I) cat
then be written as

=0

where Q,,_, [= (y - m 2 x )(y—rn3 I ).....] is a homogeneous expression ol

degree ii - I which does not contain y - m 1 x as a factor, and
F,_ 1 [ P,,_ +	 +..... I consists of	 - i)" and lower degree terms.

Now the asymptote parallel toy - m 1 x = 0 is y -	 x = c1 ,where

= Li (y - rn 1 I 1j (- / Q,,1) [from (2)above], it being

remembered that Li (y/x) = m in this case [See § 16.2 J. In other

words, the particular asymptote in question is

y-- 1x+ Lt (—F_1/Q.1)=0,

x--where in determining the limit involved, we are to put y = in X and then.
make x -, .

CASE II. Let F',, have a repeated factor '_ III I x ). The equation (I) can
then be written as

(y_mx)2 
Q,, + P,,. i + F,, 2 =0, . .(3)

where Q,,_ 2 is a homogeneous expression of degree n - 2 and

F,,_2 1 P,,_ 2 + 1P,,_3 +.... .I consists of (n - 2)th and lower degree terms.

Now the asymptotes parallel to y — m,x = 0 willbe y —m,x = Cr,

where cr = Li (y - in, x ), and this from (3) is given by	 -

Cr2 + LI	
+	

=
i- Q,,_2

it being remembered that LI (j ) = in here.
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If P,, 1 does not co.ain y — m x as a factor, then it is easily seen

that c, 2 , as given above, does not tend to a finite limit, and accordingly

there are no asymptotes parallcl to Y = n,x

If , on the other hand, ',,_ has a factor y — m ,. x, assuming

= (y - m r x ) R,,. 2 ,wecanwritc (3)intheform

R, F2
(y_m,x) +(y_m,.x )-'_- +-- =

and arguing as before, the required asymptote, ill be given by

(y–mx)2+(y_ in, x)Li —-+ Li

_,-_ Qfl__2	 Qn-.2

it being remembered that in proceeding to determine the limits we are to use

Li (y/x ) = m, here.

The two parallel asymptotes corresponding to the two repeated factors

of P,, are thus obtained.

Similarly, we may proceed in cases of factors of P. repeated more than

twice.

Note. If, in P,, the term involving v" be absent, that is, a,, = 0 clearly P,,

will have a factor x , and corresponding to this there will be in general an

asymptote parallel to y-axis, i.e., parallel to x = o. •(In) (which is in

general of degree n) will have its degree lower than ii in this case. If, for

instance, X2 be a factor of I',,, P,, (ni) will be of degree n –2, as x2y"2

will he the term involving the highest power of y in P,, . In this case, there

will be in general two asymptotes parallel to y-axis (i.e., x = o) and n 2

asymptotes corresponding to the roots of 0, (en) = 0, i.e., corresponding to

the other factor of P,

Thus, all the possible directions of the asymptotes of the algebraic

curve (including those parallel to -axis) will be indicated by the factors of

and the asymptotes may be very effectively determined by the method of
the present article. [For illustrations, see Ex. 1-5, § 16.8. 1

A special case (Asyin plates by inspection).

If the (/Ilation to an algebraic curve can be put in the form

F,, + F,,, = 0 , where F,, consists of it and lower degree ter,ns which
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can be expressed as a product of n linear fectors none of which is repeated,

and F,,_ 2 consists of terms at most of degree n — 2, then all the asymptote.

are give by F, 0.

For, let F. = (a t x+ b 1 y + c 1 )a2x+b2y+c2)

(a,,x+b,y+c )

= (a 1 x+b 1 y+c 1 )Q,,_i (say),

where Q_ 1 is of degree n — i.

The equation of the curve can then be written as

a 1 x+b 1 y+c 1 +F,_2/Q,,.1	 0,

and the asymptote parallel to a x + b y = 0 is, as shown above,

a 1 x+b 1 yl-c 1 +Ii (F,,_2/Q,,J 0

where, in calculating the limit of the last term, we are to put

y=_(a1/bjx,

and then make x —+ ,and this limit is easily seen to be zero, since F,,2

is at most of degree n —2, and Q,,_ 1 is of degree ,i —1.

Thus, a 1 x + b 1 v + c 1 = 0 is an asymptote. Similarly, each of

a 2 x + b 2 y + c 2 = 0, etc. will be an asymptote. As there are n

asymptotes here, F. = 0 represent all the asymptotes.

Note. If in the above case, F,, consists of real linear factors, some repeated,

and some non-repeated, the non-repeated linear factors equated to zero will
be asymptotes to the curve. The asymptotes corresponding to the repeated
factors, however, will have to be obtained as in the general case.

16.7.	 Asymptote of Polar curves.

Let r = f o) be the polar equation to a curve. This may be written as

u__=_r=Fo)(saY).

P being any point (r, 6 ) on the 'curve, p — o as r -	 which

requires F o) -4 0. Let the solutions of F o) = 0 be U = a, /3, y,... etc.

Then these are the only directions along which the branches of the curve
tend to infinity. Consider the branch corresponding to U = a. Let the

33
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straight line r cos (o - a) p . (2) be the asymptote to this branch.

rig iu.,.i

Then p = ON ,Where ON is the perpendicular from the pole 0 on

the line, and .LNOX = a1 Let OP produced meet this line at Q. if PM be

the perpendicular from P on the line, then

I'M = PQ cos QPM = (OQ .- o) cos QON

= (p see (0 -(X 1 ) .r(o )}cos (o - at)

[Front (1) & (2)

=-f(0)cos (0-a1),

Now since (2) is an asymptote, PM —> 0 as p	 , i.e., as () - a
for the branch in question.

Li(p-f(0)Cos	 -a)}=0
0 -

or, Li jo) cos	 _a1)= p and as!) is finite, and f((9)-

as0-a, ii cos(0-a1)rO;

a-a 1 =-ir or,a1

cos (o - a
Again, p = Li f (ü ) cos (o -a = Li 

	

0-,a	 F(0)

Which being of the form	
-sin(6.-a1)

= LI
	F'(0

	sin(a - a)	 1

-	 F' (a)	 F'(a)
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Hence, (2) reduces to rcos (o - a + 1- 71 ) = -

or, rsin (Q.-a)=1/F'(a)

which is the required asymptote.

Similarly, the other possible asymptotes corresponding to the other

branches are rsin (e - /3) = IJF'(0 ), rsin (o - y ) = 1/F'(y ),elc.

16.8. Illustrative Examples.

Ex. 1. Find the asymptotes of the cubic

x3 —2y 3 +y(2x—y)+y(x—y)+!=o	 C. P 1949, '971

The curve being an algebraic curve of the third degree, since the terms
involving x3 and y3 are both present, there are no asymptotes parallel to
either the x-axis or the y-axis in this case.

To find the asymptotes of (he type y=nrr+c, which are oblique,
considering respectively the third and second degree terms (putting I for x
and in for), we gel here

,, (in ) I - 2nz + in (2—ni )= (i—ni )(i +m ) ( i +21z ),

and	 O._i- (in )=m( I—rn)

Now, 4,, (m)=0 gives n,!, —1, -.,

(in)	 n( r— 171 )Also, c=

	

	 -	 , and thus for m=l, c 1 =0; for
(in) —6w 2 + 2-2w

=L c 2 = — 1 and for 111 = — -i, C 3 = .

Hence the required asymptotes are

Y = -r, y =—x— j and

i.e., x—y0, x+ v+1=0 and x+2y=l.

Note. It may be noted that the equation to determine in and c might be

obtained in practice by jiulihig V = nix + c in the given equation, and
then equaling to zero the coefficients of the two highest powers of x.

Alternative method

Writing the highest degree terms in factorised form, the equation can
be written as

(.V - -)(+ ) ( x ± 2v )+ v(r - )+ I =  0.
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Hence the possible asymptotes are parallel to - - Y = 0.. + y 0

and x ± 21 , = 0, and these asymptotes are respectively

ii

	

	
y(xy)+10	 (I)

(x+y)(x+2y)

x+ y+ (2)

	

–y)v) = 0
	 ... 

and	 x + 2v + LI	 0	 .-•	 (3)
(x– y )(x +)')

The limit. involved in (l),= Li
(x±x)(.v+2.)

-	 –x(x+x)+l	 –2x2+l
that in (2). = Li 	 =LI

+ .r )(—x--27)  ,---- -. 2x'

	

_ 1 X(X+ . )+ I	 X2 +1
and that in (3),	 TiT	 3x2

1-lence the asymptotes arc

x--v0. x +ylO, x +2v-- 10.

Ex. 2. Find the asymptotes of 2x(y _5)i =3(y– 2 )(x-- 1)2

As the curve is algebraic, arranging the terms in descending degrees

the equation can be written as

xv(2y-3x )+2x(3x--7y )+38x-3y+ 6=0 	 ... (I)

The po
ssible asymptotes are parallel to v =(), :r=0 and 2Y-3x=().

The asymptote parallel to x.--O; i.e., to the v-axis, is (equating to zero the

coefficient of y2, the highest available power of v in (1), since the let in

involving v 3 is absent here) 2x = 0, i.e.. ,v - 0, the '-axis itself.

The asymptote parallel to y =0, (in  a similar manner, since 	 term is

absenthere),is –3y+60,or, v=2.

The third asymptote is

2x(3x-7v )-i-38x-3y+6
2y--x+ Li ---------------	 =0

xv
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2x(3x_x)+(38.-)x+6
	and since the limit involved = Li	 -	 .,	 -	 = - tO,

the asymptote is 2y-3x--I0=0.

Hence tile required asymptotes are x=O, y=2 , 2i'=3x+10.

Ex. 3. Determine the asymptotes of

	

X +x 2 y-xy2 -y 3 +2xv+2v 2 -3x-i-y=O	 (C. P. 200SJ

Writing the equation as

(x+v ) (x-y )+2y( x + y )-3x+y = 0, ... (1)

we note that (here are presumably two parallel asymptotes parallel to

.v + y = 0, and one parallel to x - y = 0.

The asymptotes parallel to x + y = 0 are given by

(x+v +2(x+y).Lt_1__Lt.i_L=0	 (2)

provided the limits involved exist.

Now,	 Li ...L = LI
,-=ox-v ..-+-,x+x

3x-i'	 3x+x
and	 Lt --=LI —=2.

X - y . -. = x + x=

Hence, the asymptotes from (2) are

(x-t-v)2 -(x+),)-2=O, or, (x+),+l)(x+),-2)=O.

Again, the asymptote parallel to x - y = 0 is given from (I) by

Li 2v(x+v)-3x+y

(x+y)

2x.(x+x)-3x+x
I. e., x- v-t- Li

( X 
+X)2	

=0,,.e., x-y+l=0.

Thus, the required asymptotes are

x+ y +1=0, x+y-2=0 and x-y+1=0.
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Lx. 4. Find the asymptotes of the Folium of Descartes

	x' + y 3 =3axy.	 [8.P 1993]

The equation can be written as (x + y) (2 - xv + y 2 ) = 3axj, and since

the highest degree terms have got only one real linear factor x +Y ,  (the

linear factors of x2 _N y+ v 2 being clearly imaginary), there is only one

possible asymptote here, which is parallel to x + y = 0. The asymptotes in
question is

	

3axj'	 3av2

x +

 1 = . Li	 2	 2 
= Lt	

2 	 2.=

	

- xy + y	 •'	 t 
+ X2 +

i.e., x+y+a=0.

Ex. 5. Find the asymptotes ofx(x_v) 2 _3(x2._y )+8v=0.

The possible aymptotes here are one parallel to x = 0 and a pair

parallel to x - Y = 0.

The first one, which is parallel to y-axis, is found by equating the
coefficient ofy1 to zero, (the term involving y being absent, as it should be

under the circumstances), namely, x + 3 = 0.
The other two are given by

	

x+r	 V
(x-v	 Lt_-_-+8Lt- =0,

i.e.. (x-) 2 -3(x-v).2+8=0. or, (x-.'-4)(x-y-2)=0.

Thus, the required asymptotes are

x+3=0,	 x-'=4 and x-y=2.

Ex. 6. Prove that the asymptotes of the cubic

(2 
-),2 )y_2m' +5x-7=0

form a triangle of area a2.

The equation to the curve may be written as

v(x2 _ y2 -2' )+5x-7=0

1
or	 -(y+a)

2
 j+a

2 j'+5x-7=0,

i.e., y(x+,'+a)(x-v-a)+av2 +5x-70

which is of the form F3 + F1 = 0, F3 having three non-repeated linear
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factors, and so the required asymptotes are given by equating these factors
to zero, namely,

y = 0, x+y + aO and x—y—a=0.

By solving in pairs, their points of intersection are easily seen to be

(—a,0),	 (a,O) and (0,—a).

The area of the triangle with these as vertices is

aOl

- —a 0 I =
. 2a 2 =a2

0 —a I

Ex. 7. Find the asymptotes, ,fanv, of the curve

y =a log sec: (x/a).

This is not an algebraic curve. To find its asymptotes, if any, which ale

not parallel to y-axis, we know that v = mx + c will be all asymptote, where

in Li I and c = Li (y — tax).
.V_3 A

Now in the curve, in = Li v
	 a log sec (x/a)
= Ii

__ _V	 •-=	 N

which limit does not exist.
Hence there is no asymptote non-parallel to y-axis in this case.

To find if there he any asymptote parallel to y-axis, we notice that

Y —*00 when .x/a —* 2mm ± it, and accordingly the asymptotes parallel to

y-axis are (See § 16.3)

x=(2rnI±.n)a

which are the only asymptotes of the given curve.

Ex. 8. An asymptote is defined in the following two ways:

(A) An asymptote iv it hoe, the distance ofwhich from a point

on a curve diminishes without limit as the point on the curve moves to all

infinite distance froni the origin.

(B) An asymptote to a curve is the limiting position of the tangent

when the point of contact moves to an infinite distance from the origin,

Consider the two curves

C	
(ii)	 y=ax+b+ 

C+SiflX

(i) y=ax+b+—. 
X	 x
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Show that for the first curve, an asymptote exists according to both

the definitions, but for the second curve, an asymptote exists according to

the first definition, but not according to the second.

Let us consider the first definition. According to this it has been proved

( 16.2) that the straight line y = nzx+c will be an asymptote to a curve.

where in 	 Lt I and c
	

Lt(y—mx), (x, v) being a point on the curve.
.'.-	 x

provided the limits exist.
Now for the curve (i),

y qa+ h c"

	

m= El -=	 —+-- I=a,
X	 x V 2

and	 c = Lt(y—mx)= Lt(—ax)= Lt.,(b+)= b.

Accordingly the asymptote exists, given by y = ax+b.

Again, for the curve (ii),

y
	
qa b c+sinx"i

=	 +—+-------,— )I =a	 I.'sin xI!5l
X	 x	 X 

S

and	 c=Ls(y— nix) =Lt(y—ax)	
c+sInx

=
X) 

=b.

Thus, the asymptote exists here also, given by y = ax+b.

Next, consider the send definition.

For curve (i),	 = a -	 and so the equation to the tangent line at

	

dx	 x2

(x,y)is Y_Y=(a—)(X_x)

(.— '\

	
)=(a—"ior, Y= 	

c
— Ix+ y— xI

( 
a-----

c
	--c.!X+Ib+ 2c

x) I x 	 x)	 X

As x - , the equation becomes Y = aX +b, which is then the
definite straight line towards which the tangent line approaches, as the
point of contact (x, y) moves to an infinite distance. Hence this is the
asymptote.

	

dy	 xcosx—(c-+- sin x
Forcurve(ii), —=a+

	

dx	 x2
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and the equation to the tangent line at (x, ') is

•	 I	 xcosx—(c+sinx)1
•	 Y—y=a+	 2	

(x-x)
X

or substituting the value of y from (ii),

Y=
( osx c+sinx'\	 I 2(c-t-sinx)
aI +--------- )IX-H	 •--cosx+b

X	 2 

Now, as x+oo • cosx does not tend to any definite limit. Hence the

tangent line at (x, y) does not tend to any definite limiting position and so
the asymptote does not exist in this case, according to the second definition.

Ex: 9. Find the aswnptotes, ifany, of the curve (r—a )sinO = b.

sinO
The equation can be written as u =

	

	 1' (0 )(sav).
b+asinO

The directions in which r -4 o are given by ii = 0, or sin  = 0, giving

0= nit.	 -

du cos0(b+ain0)-sin0.a.cos0
Now F'(0), 'f.. - =

dO	 (b+asin0)2

— bcosO

(b+asin0

bcos-nit cosnit
and for 0= nit , this =

b	 b

Hence, as in § 16.7, the required asymptote is given by

r sin(0 —  mt ) = l/F'(nit) = b sec nit

which, whcther'n is even or odd, reduces to

rsinOb.

16.9 Miscellaneous Worked Out Examples

Lx. 1. Find the asymptotes of:

(') .t 2 -4y2 = I.	 [C. P. 1982, 94 1

(ii) x2—y2'9.	 [C. P 19981

(iii) x2y2 =a2(x2 +2).	 I B. P 19901

(iv) xv-3x-4yO.	 I C. P 20001



522	 DII CI RENT/AL CALCULUS

Solution

(i) x2-4y2—l=0

or, (x+2yXx - 2y) —l=o	 or, F,+i=0

where F2 = (x +2y)(x-2y) is of degree 2 and F0 = — I, which is
of degree 0.

So, asymptotes of the given curve are given by / = 0

i.e., (x + 2v)(x - 2v) = 0

Hence, the asymptotes are x+2y=0. x-2'=0

(ii) x2—v2-9=0

or, F,+J=0

where F, = (x-ty)(x—y) is of degree 2 in x and v and F0 = —9,
is of degree 0.

Hence the asymptotes are given by F, 0
i.e., x+v0 and x—y=O.
, ,	 .7

(in) xm' —a 
.7 

x, —crv
, 
	 =0	 ... (I)

This is a fourth degree equation in x and r So the curve
represented by (1) may have at ,nosz four asymptotes.

Here, terms containing x 4 and 114 are absent, so the curve has
asymptotes parallel to .v-axis and y-axis.

The coefficient of highest available power of x, i.e. of x 2 is
Y2 —a 2 and the coefficient of y2 is X 2 —a2.

So, asymptotes parallel to the x-axis are : 	 = 0
i.e., y±a=0.

and asymptotes parallel to the y-axis are x 2 - a 2 = 0
i.e.. x±a=O.

(it) x'-3x-4v=0	 ... (I)
As in the earlier problem, the asymptote parallel to the x-axis is

y —3 = 0 and the asymptote parallel to y-axis is x - 4 = 0.

Ex. 2. Find the asymptotes of:

(1) x3+2x?y+.y2_x+1=0 	 F C. P19921

(ii) (x+y)2(x+2v+2)=x+9y+2. 	 IC. P. 20001

(iii) 4x3_3xv2_v3+2x2_xv_v2_l=0. 1 C. P 1998. 2001 1
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Solution : (i) x 3 +2x2 y+ 2 -x+1 =0	 ... (I)

or, x(x+y+l)(x+y-1)+l=0

or, F+F0=0

where, F3 =x(x-t-)'+l)(x+y--l) is of degree 3 and it has three

non-repeated linear factors and F() = I, which is of decree 0.
The asymptotes of the curve (I) are given by

F3 =0, or, x(x+vi-l)(x+y-1)0

i.e., x=0, x+y+1=0. x+v-1=0

(i/) (x+i)2(x+2),+2)=x+9r+2

or, (x+v)2(x+2y+2) = (x+2y+2)+7y

or, (x+),)2(x+2v+2)-(x+2y+2)-7,'O

or, (x ±2v + 2){(v+ 
)2 

i}_ 7y = 0

or, (. + 2v+ 2)(..v v+	 + v - i) -- 7y = 0

or, F3 + i=0

where F3 =(x+2v-1-2)(x+v+i)(x+y-l) which is of degree 3

and it has three non-repealed linear factors, while F, = - 'Tv. which is

of degree I. Hence, the asymptotes of the curve are given by

x+2'i1+2=0. -+y+1=0 and x+y-1=0.

(in) 4x 3 -3xv ' -y 3 +2x -,'-y-l=O	 ... (1)

This is a third degree curve, so it may have three asymptotes at

most. Since the terms involving x3 and y3 are both present, it has no

asymptotes parallel to x-xis and y-axis. 	 -

Equation (1) can be be written as

3	 3	 3	 1	 3
4x -4x +xv - v +2x - .' - y -1=0

or, 4x(x+y)(x-v)+y 2 (x-y)+2x2 -.ty- y2 -1=0

or, (x_y)(2x+y)3+2x2_2y+y_y2_l0

or, (x - ),)(2x +),)2 +2x(x- y)+ y(x- y)- I 0

or, (x-y)(2x+y)(2x+3+1)-1'0	 or, F3 + F0 =0
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where F3 is of degree three and it has three d i fferent linear factors,

while F0 = -1, which is of degree 0.
Hence, the asymptotes of the curve (I) are given by

(x - y)(2x + ), )(2x + y + 1) = 0
i.e., x-y=O, 2x+y=O and. 2x+v+1=0.

EXAMPLES - XVI

Find the asymptotes of the following curves I Ex. 1-31]

1. v2-x2-2x-2)'-3=O.

2. 336xy+llx2y_6x3+v2_xI+2x3y_1=0.

3. x3+3x2y_xy2-3y3+x2-2.n+3v2+4x+5=r0.

4. 3x3+2x2y-7xy2+2y3-14xy+7y7+4x+5y=0.
I C.!' ]943]

5. x3+2x2y-xy2-2y3-f4y2+2xy-5y+6=0.

6. -=1.	 7.x3-y3=3.y(x+y).
a 2 	b2

4	 4	 2	 '8. x -y +3xy+3xy+xy=0.

9. 4x4-5x2y2+y4+y3-3x2y+5x-8=0

10. (i) xy -	 - 3x = o.	 (ii) y2 (x2 - a2 ) = x.

12	 2\	 '(in) xx ^ y J+ a 
I 
x -
 Y 2

 ) = 0.

11. x 2 y 2 -4(x- y)2 +2v-3 = 0.

12. x2y2 -x2 y- xy2 + x + y + I = 0.	 [C.P 19371

13. y2x
2 
- 3 

YX2 
 - 5X 

V2 + 2x
' 

+ 6ç
'
 - x - 3y + 2 = 0.

414. x - x2
 y

2 	 2	 '+ x + y - ' = 0.

15. y3-yx2+y2+x2-4=0.

16. x 2 (x- y Y _a2(x2 + ),2 )= 0.	 IC.P 1945]

17. x 3 -4xy2 -3x2 +l2v-12y2+8x+2y+4=0.

18. x3 +3x2 y-4 3 - x+ y+3 =0.	 IC.? 2003]
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19. y3_xy2_x2y+x3+x2_Y21	 [Cr1939]

20. y +x2 y + 2xy2 - y + I = 0.	 [Ci'. 1941, '44, 87, '90, '961

21. (x2 - Y2 )2 - 8(x 2 ±2 )+ 8x —16 = 0-

Z.2. y ( y _ x ) 2 (y_2x)+3x2 (y_x)_2x2 =0.

23. x 2 (x+v)(x_y+2x 3 (x_), ) 4Y 3 =0.

24. (x + y )( x - 2 )(x - y + 3x), ( x -)' ) +	 + y 2 	0.

• (+v)3(x_v)2_2(x+y(xY)22(x22)(.+

	

+2 	
- )2 +4(x ) , ) = O-

26. y3_5xy2+8x2y_4X34Y7+I2.V8+3Y_32O

27. (i)	 - 2 )= x2 + y2.

(\
(it) xs'ix 2 

+ y 2	 ')= x - v2

28. (v2_y2)(x2_9v2)+3vv_6x_5Y1.2=0.

29. (i) x' _6x), i +llxy2 _6y 3 +2x—y+l=O-

	

2	 '(a) x4 —5x2 y2 +4y4 +x —2v+2.+yf70

30. (.y+1)(x+), +)(x_2Y+3)25Y+1.

31. (I)	 y = tan .x.	 (ii)	 y

(lii) y	 e-	 (iv)	 y = log x.

32. Show that the asymptotes of the curve

x 2 v 2 = a 2 (x2 + y2 ) form a square of side 2a.

33. Show that the asymptotes of the curve

x2y2 - 2 (2 + )2 )- a 3 (x 4 y )+ a 4 = 0

form a squale. , two of whose angular points lie oil 	 curve.
iCr /947]

34. Show that the finite points of intersection of the asymptotes of

xy(x2 - y 2 )+a (X2 + y2 )- a 3 = 0 with the curve lie oil circle

whose centre is at the origin.

35. Find the equation of the cubic which has the same asymptotes as the

curve 2x( v _3)2 = 3Y (x - 1 )2 and which touches the axis of x at
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the origin and goes through the point

36. If any of the asymptotes of the curve
11,2 

+2hxy+by 2 +2gx+2fs'+c = o (/2 > ab)
passes through the origin, prove that

af2 + bg 2 = 2fg/z.

37. If the equation of a curve can be put in the form

y = ax + h + 0 (. ), where 0 (x)	 0 as 

then show that y = ax + /, is an asymptote of the curve. Apply this

method in deterrninin2 the asymptotes of the cut .

 - V 2 - 3x + 2 0.
38. 'An asymptote is sometimes dehncd as a stra:ltt line which cuts the

curve in two points at infinity svt(Iiout being it'.clfat infinity.' Comment
Ott his definition. Attempt a correct defi nit i tt and USC it to Obtain the
asymptotes of(x+v)2(x+7V.f7)+9,_2

39. Find the asymptotes of:

(I)	 r = a( cos Q + ,cc ()).	 (ii) r cos O	 2a.cin0.

(iii) r = a see  + b tan  .	 (tv) rcosO = asinO

(v) r = a cosec O +1.	 (Vi) rsinnO = a.

(vii) rO = a .	(viii) r" sin nO = a" (n > i).

40. Show that there is an infinite series of parallel asymptotes to the curve
a=	 + h.

U sill O
41. Show that all the asymptotes ol the curve r tan nO = a touch the

circle r = a / n.

42. Show that the curve I = a sccnO + bout no has two Sets of
asymptotes, members of each set touching a fixed circle.

ANSWERS

1.	 1 1 —x=2, 3, +x=O	 2.	 vrx, 3'=2v+, v=3x-4.

3. 4x+12v+9=0 2x+2-3=O, 4x-41-41=0

4. 6r-6x+7=0, 2v6vf3=0. 61 1 +3x +5=0.
5. .v+2v=O,x+v_1()xv+l=o
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6.	 Y
	

X.	 7.	 x-y=2.

8. x-fy=O, 2x2y+30.

9. 3x-3y-I =0. 3x43y+1 =0, 12x-6y-1 =0, 12.x+6y+I = 0.

10. (i) x2, y=3.	 (ii) y=0, x=±a.

x=a.

11. x±2; v=±2.	 12. x=0,x=I,y0,y1.

13. x = 2.x = 3, y= t,v2. 14. x=±Iy±.r.

15. y=ly=x-J.y-x--I. 16. x 	 x-y=±aJ.

17. x+3=O; x-2y=O; x+2y=6.

18. i=x; x+2v-!=0; x+2y+l=O.

19. v=±x;y=x+I.	 .20. v=O, x+y=±I.

21. y =x±2 v=-x±2.

22. 2y+3=0x_y+1=0;x_y+20;4x-231_30.

23. x =±2; .r-y-f2=0x--y--1=O;x+y+l=O.

24.x-y _2=0;2x2+lr0;2x+2y-lO;x--2Y+2O.

25. x+y-20,x +r=±I; x-y=±I.

26. y=.v; v=2v+I:y = 2x-f3.

27. (i) x=O. v=O.x -+v=0. x - y O.	 (ii) V=O. v=O.

28.x+y =0, .r-'=O, .'+3v=0.x-3yO.

29. (I) .i-v=0.x -2y=0.x-3v=0.

(ii) x+2v=0, x-2v=0,.s+y=O, x-- y=O.

30. x-y+i0, x+v+I=0 .v-2v+3O.

31. (I) -v = ( 2,, + i )-- 7t. where n is zero or any integer positive or

negative.

(ii) Y=O.	 (iii)	 )'O.	 (iv)	 x=O.

35. 2xv 2 -3x7v-6xv+7v=o. 37.

38. x+2i'+2=0;x+v=±2.

39. (i) r cos O	 a.	 (ii)	 r cos O	 ±2z.	 (iii) r cos () 	a ±/

(iv) r cos 8 = a. 	 (v)	 r sin U = a.

( vii.. r sin 0-	 = - Sec rnir , where in is an integer.

('it) r Sifl 0 = a	 (yin) 0 = - . where m Is an Integer.
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17.1. Introduction.

Let us consider the equation

x cos a 4 y sin a = a.

This represents a straight line; by giving different values to a, we shall
obtain the equations of different straight lines but all these different straight
lines have one characteristic feature common to each of them, tic., each
straight line is at the same distance a from the origin. On account of this
property these stiaiht lines are said to constitute afamily and a which is
a constant for one but different for different lines, and whose different
values give different members of the family, is called the parameter oft/ic

family. It should be noted that the position of the line varies with a.

As we have a family of straight lines, we have a family of curve. Thus
the equation

(x—a+y2=r2

represents a family of circles for different values of a, all the individual
members of the family having the common characteristic, viz., they are of
equal radii and their centres lie on x-axis. Here is the parameter of the
family.

In general, 1/ic equation of a family of curves is represented by

F (x, . a ) = 0, when a is the parameter.

17.2. Definition of Envelope.

If each of the members of the family ofciirves C F ( x, y. a ) = 0

touches a fixed curve F, then F is called the envelope of the family of

curves C. The cuive F also, at each point, is touched by some member of
the family C.

Illustration

We know hat xcosa+ ysin a = ci touches the circle x 2 + y 2 =a 2 at

(a cos a, a sin a ). 'fhns, each of the members of the family of straight lines

C x cos a + \Sin (1 a (for different values of a) touches the fixed circle

E x2 + y 2 = a 2 , and hence the circle X 2 + ),2 = 
a 2 is the envelope of (he

family of straight hues x cos a + y sin a = a also the circle x 2 + y 2 = a 2 at

each point (a cos a, a sin a ) obtained by varying values a, is touched by some

member 0/ i/ic fanuulv of straight lines.
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Fig 17.2. I

In the present section we shall confine ourselves to the determination
of the simplest type of envelope, i.e., the envelopes of straight lines.

17.3. Envelope of straight lines.

The equation of she envelope of the family of straight lines

x, y, a) M y - f ( a ).x - 0(a) = 0 (a being the parameter) is the

cz-elun,nan: of F = 0 and W- = 0.

From F = 0 and
aF

aa 
0, we have respectively

• y =f(a).x+0(a)

	and	 0=f'(a).x+Ø'(a)	 . . .(2)

	from (2),	 • = - 
T- ) - gl,a) say	 . .. (3)

and from (l),y= f'(a)O(a)_f(a)'(a),,(à)say	 ...(4)
f(a)

Hence the curve (i.e., the envelope) whose equation is obtained by
eliminating a between (1) and (2) is the same as the curve whose equation
is given parametrically as

•	 x=g(a)1

	

•	 y=h(a)

Now, the equation of the tangent at the point 'a' on the curve (5) is

yh(a) h'(a)

	

-	 =	 {x—(a)},	 . (6)
g(a)

34
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Substituting from (3) and (4) values of g (a), h(a ), g'(a ), h'(a )in (6)

and noting that h' (a )/g (a ) reduces to f (a ), and simplifying, we get

the equation (6), i.e., the equation of the tangent at 'cx' on the curve (5) as

y=f(a).x+.p(a)

which s the same as the equation of hte given family of straight lines.

Thus, every member of the family of straight lines F ( x, Y. a ) = 0

touches the curve whose equation is given as the a-eliminant of F = 0

and .- = 0, and  hence the a-eliminant curve is the envelope of the family

of straight lines.

Cur. 1. From the definition, it at once follows that every curve, is the

envelope of its tangents.

Cot.2. Since we have seen that normals at different points on a curve

touch the e.volutc at the corresponding points, it follows that the evolute of

a curve is the envelope of its normals.

Thus, if N ( x, y,  a) = 0 be the equation of the normal of a curve at a

point with parameter a, the evolute is obtained by eliminating a between

dN
N (, y, a )= 0 (1) and

	

	 = 0 (2). Since the evolute is the locus of centres
aa

of curvature, the co-ordinates of the centre of curvature are obtained in
parametric form by solving the above two equations for x and yin terms of a.

The above methods of determiningihe evolute and centre of curvature
are much simpler than the methods already given in chapter XV (curvature).
[Sec Lx. 4 and Ex. 5, An. 17.4.1

17.4.	 Illustrative Examples.

Ex. 1. Find the envelope of the straight line y = ,nx+--, in being the
in

	

variable parameter (,n * o).	 C.P 1994, 2008 V P '95]

Here, mx+--y=0
in

Differentiating with respect to ni.

10120	 ..	 in =,	 ..
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Substituting these values of in in (I),

±[

.x+a/)_Y=O.

i.e., ±2I = y. or. Y2 = 4ax (parabola)

which is the required envelope.

Ex. 2. Find the envelope of the family afstraight lines

Acx 2 +Ba+C=O'

where a is the variable parameter. and A, B, Care linear function of x, y

We have Aa 2 +Ba+C0	 (I)

Differentiating this with respect to a. we have

2Aa+f1=0,i.e.,	 a=-B/(2A).

Substituting this valie of a in (I). we get

B2 B 2
M	 B2=4AC.

Thus, the envelope of the family of straight lines Au 2 + Ba + C = 0 is

the curve B 2 = 4AC.

Note. When the parameter occurs as a quadratic in any equation the above
result is sometimes used in determining the envelope.

Ex. 3. Find the envelope of the straight lines

a 
where a and bare variable parameters, connected In' the relation a + h = c

c being a non-zero constant.	 j C. P. 1998, 2006

Since	 a+b=c,	 :.	 bc - a.

the equation of the straight lines becomes

X	 V	 (	 \	 I
or,	 c-a)x+av=aC-a

a c-a

or, a 2 +a(y-x-c)+cx"O.

Since it is in the form Act 2 + Ba + C = 0, its envelope is

B2 = 4AC, i.e.,	 (v - x- '	 = 4cx,

which represents a parabola.
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The above equation can be written as

x 2 +y2 +c 2 =2xy+2cx+2cy.

,	 = .J	 (which represents a parabola).

Otherwise

The elimination ofa and b can also be performed thus:
Differentiating the equation of the line and the given relation With

respect to a, we get

	

xv db	 A
------=0 and l+—=O.

	

a 2 b 2 do	 do

On equating the values of dl,
- from these two, we get
do

a 	 a-fl,	 c

TX Vy +JT+

c  __
aTT.

Substituting these values of a and bin the equation of the line, we get

i.e.,

Ex. 4. Find the evolute of the parabola y 2 = 4ax (evolute being regarded

as the envelope of its normals).

The equation of the- normal to the parabola at any point 'm' is

y= nix –2am–am 3 .	 ... (1)

Let us find the envelope of th is, in being the parameter. Differentiating
(1) with respect to in,

0=x-2a-3a,n 2 . or, 12 =(x-2a.)/(3a).	 ...(2)

From (1), y = m(x-2a_arn2 )= ,n(am 2 Lam2 )= 2am3,

y2 =4a 2m6
 =4a2 (x-2a )3 

from (2).
27a3

i.e., 27ay 2 =4(x-2a)3,

which is the envelope of the normals, i.e., the required evolute of the parabola.
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Ex.5. Find the centre of curvature of the ellipse x +	 = 1.

The normal at the point '4)' is

ax sec 4)-by cosec $=a 2 -b2 .	 ,.•	 ( I)

Differentiating this partially with respect to 4),

axsec$ tan 4)+by cosec 4) cot $=O.	 ...	 (2)

Solving for  and)' from ( I ) and (2), we easily get

a2-h2a2-b2
cos 4), y=	 sin 4).

a	 h

EXAMPLES- XVII (A)

Find the envelopes of the following families of straight lines

(Et i--9):

1. x Cos a + y sin a = a, parameter a.

2. aA sec a - bycoscca = a 2 - b2 . parameter a.

3. x Cos 30 + Y sin 30 = a( Cos 20 Y2' , parameter Q.

4. x Cos a + y sin a a Cos a sin a, parameter a. 	 I V.P. 199tfl

5. y = ,nx+ all +,n 2 ,parameterm. CP. 1993,2004, '05VP 96}.,

6. v= mx + ..Ja2ni2 + b2 parameter m.

CP 1990, '97. B.? '86, '94. '96, VP 20011

7. x sec 2 0 + y cosec2 0 = a, parametcr 0.

8. x,J j + y.J0 = a, parameter 0.

9. xcos' 0 + ysin 0 = a, parameter 0.

10. Find the envelopes of the straight line

a b

where the parameters a and b are connected by the relations

i) a2 + b2 = c2 Ic.? 1989, '96,200/, '03 B.? 1989, 95, VP '99, '971

(ii) ab = c2 ,	 [ 8.? 1988. '93 1
c being a constant.
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11. Find the envelopes of the straight line

=1
I	 in

where I and ,n are parameters connected by the relation

I/a + rn/b = l,a and b being Constants.

12. Find the envelopes of straight lines at right angles to the radii of the
following curves drawn through their extremities:

(i) r=a(l+ COS O). (ii) 2 =a2 COS 2U.	 (iii) r=

13. From any point P on a parabola, PM and M arc  drawn perpendiculars
to the axis and langcnt at the vertex : show that the envelope of MN i.s

another parabola. 	 [ C. 1996, 99, 2005]

14. Show that the envelope of straight lines which join the extremities of a
pair ofconjugate diameters ofan ellip se is a similar ellipse.

15. If PM, PN be the perpendiculars drawn I rom any point P on the curve

y = ax upon the co-ordinate axes, show that the envelope of MN is

27v + 4ax 3 = 0

16. From any point P on the ellipse x 2 / 2 + 1 ,2 /1, 2 = I. perpendiculars

PM and PNarc drawn upon the co-ordinate axes. Show that MNalways

touches the curve (x/a Y + ( v/I, ) = I.

17. Find the envelope, wheni varies, of
(2	 \	 (2	 \	 I
a1! + 2a2t +a, )x +b 1 s +2b2 1 +I,. )y+ic[ +2c21+c, j0.

18. Find the evolutes of the following curves (evolute being regarded as
envelope of normals):
(i) x=a COS Ø. y= b sin Ø.	 (ii)	 k(118

-	 . 2 	 21'(ill)	 ' + y3 =	 .	 (iv) X2 
la +.v 	 v	 = I -

(v) x = a(0 —sinO ), y = a(l —cosO ).

(vi) x = a (cost + t sin , ), y = C (Sin I - i cost ).

19. Two particles P. Q move along parallel straight lines one with uniform
velocity u and the other with the same initial velocity ii but with uniform
accelerationf. Show that the line joining them always touches a fixed
hyperbola.

20. Show that the radius of curvature of the envelope of the line

xcosa+ysina=f(a) is f(a)+f'(cr).
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ANSWERS

1.	 x+y2a2.	 2. (+(bv	 =(a2_b2

3.	
(2+y2)2=a2(x2_y2) 4. x+y=a.

5.	 x 2 +v2 a 2 .	 6. x2/0 2 +y2 1b2	 I.

7.	 8. x+ya.

1.	 X" +V 2 " = a'"•

10. (i) X , +y3c'	 (ii)	 4xy=c2

11. I+fly
Va 

12. (i) a circle through the pole 	 (ii) a rectangular hyperbola;

(iii) an equiangular spiral.

17. (aj x +	 + c1	 ax + i,v + C3 ) = (u,x + I,2 y + c2

18. (I)(ii) 27a V 2 4

	

	 )2(2a.

(ill) (.+y) +(-y) =2a•	 (iv) same as(i).

(v) o -eliminentof .v a(9 + sin 6), y = _a(i - cosO ).

(vi) x2 +1.2 = e1 2.
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SEC. B. ENVELOPE OF CURVES

17.5. If a curve Eexists, which touches each member of a family of curves
C [ f(x, y, a)= OI. the curve Ejs called the Envelope of the curves
C. Since E is the locus of the points of contact of the family of curves
f(x, y, a)= 0 the point where the curve f(x, y, a)= 0 for a
particular value of a. touches E, depends upon that value of a. Accordingly
the co-ordinates of any point on E are functions of the parameter a [being
of the forms x = 0(a), y = v(a)] and they satisfy the equation

f (x, y. a) = 0 of the enveloping curve which touches E at that point.

The equation of the tangent to a C-curve at (x, y) is

(x-x)-L+(y).)L=o
and that of the tangent to the E-curve at (x, y) is

(

	

'IX	 (2) dy

	

da	 dot

[since equation of E is of the form .v = 0(a), y = V(a) I

or,	 yty

	

da	 'da

Since the lines (1) and (3) are coincident, coefficients of X and Yin the
above two equations are proportional.

If If

i.e.,
'v	 dx	 axda ayda
da da

Now, differentiating f (r, y, a ) = 0 with respect to a, remembering
that x and y are now functions of a, we get

?_L+ aiaf dy
aa axda

from (4),-L=O
aa

Hence the equation of the envelope, in case an envelope exists, is to
be found by eliminating the parameter a between the equations
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f(x, y,a)=0

and	 L=O.

oi It is shown in Art. 18.l (iii) that the circle on the radius vector of a curve
as diameter touches the pedal of the curve, so the pedal of a curve can be

obtained as the envelope of the circles described on the radius vectors of
the curve as diameters.	 F See Art. 17.9, Es. 6.

Note. It should be noted that the a-eliminant between f (, y, a )= 0

and ii = 0 may contain other loci, besides the envelope, for instance
ax

nodal locus, cuspidal locus, tac-locus, etc., in case the family of curves C
has singular points.

17.6. The envelope is, in general, the locus of the ultimate points of
intersection of neighbouring curves qf a family.

The co-ordinates of the point of intersection P of two neighbou, ing
curves of the family must satisfy

f(x, y,a)=.0 and f(x, y,a+Aa)=0,

i.e f(x, y,a)=Oand f(x, y,a+La)-f(.r,,a)- 0

ta 

the second relation by Mean Value Theorem becomes

--f(x,y,a+Oa)=O,	 Whei0<O<j.
aa

	

Now as Aa -*0, P satisfies f = 0,	 = o.
Ocx

the required locus is the a-eliminant of f = o, .L = 0.
aa

Note l. Although the above theorem is generally true, but it is not always
true. For example, consider the family of semi-cubical parabolas

y = (x- a)3 . Here for different values of a, we have different semi-cubical

parabolas, no two of which intersect but every one of which touches the

x-axis. So here the x-axis is the envelope, although no two members of the

family intersect. From the graphs of the curves the whole thing becomes at
once clear.
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Note 2. Alternative definition of Envelope.

The points of intersection of the curves f(x, y,cz)r0 and

-. --f (x, y, a) = 0 (a being given) are called characteristic points of the
aa
family f (x, y, a) = 0 (for the given (x) if these points exist (i.e., if f = 0

and = 0 intersect) and if those points are not singular points of

f (x, y, a) = 0. The locus oft/ic characteristic points of afaniily of curl'es

is sometimes called the envelope of the family.

117.7. Envelope of a special family.

If the curve f (x, v, a )= 0 be algebraic, the a-eliminant of f = 0,

af 
= 0 is the condition that .1 = 0 (considered as an equation in a) has

aa
equal roots.	 I Theory of Equation I

Thus, if f(x. y . a)= fl(x,y)a 2 + B(x.v )cr+C =0 (i.e., if

f (.v, y, a ) = 0 be a quadratic in a, the parameter ], the envelope of the

family is given by

For illustration see Ex. 2 ofArl. 17.91

17.8: Envelope of two-parameter family.

If the equation of a family of curves involves two parameters a and (3

connected by a given equation, then we can proceed by two methods in

finding out the envelope. Suppose the equation of the family is

J. 	), a, i)=°	 ... (I)

where a and (3 are connected by the equation

First Method: Suppose we can solve 0 (a. fJ ) = 0 for 13 in terms of

a; then we substitute this value of 13 in (1) and now (I) reduces to one

parameter family and we eliminate a between f=0 and Lf = 0.
aa

Second Method: For a particular point (x, y) on the envelope

(3)
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and from (2),	 -du+d13=O	 .. .(4)
act

Eliminating da, d13 between these two equations (we may regard a

as the independent variable and j the dependent variable), we get

af f

da

If we eliminate a and 3 from (I), (2) and (5), we obtain the equation of
the envelope.

Note. This method can be extended to obtain the envelope of a family

depending upon it which are connected by ( - i ) equations.

17.9. Illustrative Examples.

Ex. 1. Find the envelope of ihe /wn,ly of ellipses

y ,=,
(a-a)

cx being the parameter

	We have	 xcx 2 +y 2 (a-(X ) 2 =1.	 (I)

Differentiating with respect to a, we have

- i__	 ... (2)

	

V2	 )..2	 •V2	 -

by(i)J
a	 a-a	 a	 a

	

2	 ' X, +

	cz (a-ay (I	 a a-a	 a

X- 4-y' =a, which is the required a -eliminantbelween(l)and

(2), is the equation of the required envelope.

Ex. 2. Find the envelope of the system of parabolas

X + ),2 v = I. A bei:ig the ,,aran:eleI:
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Since the equation of the family is

2y+Ax2-1 =0,
and since it is a quadratic in A, the parameter, by Art. 17.7, its envelope is

x4+4y=0.

Ex. 3. Prove that the envelope of the paths of projectiles in vacuum from

the same point with the same velocity in the same vertical plane is a

parabola with the point of projection as focus.

The equation of the path of the projectile with the point of projection
0 as origin and the horizontal and the vertical lines through 0 as axes of.
and y is

y =xtana--g 
2	 2 =xtana—g_.-(1+tan

x2 	 c2	 2 a)
ucosu	 U

F See Authors' Dynamics: Art. 11.5]

= mx_g (J+m2 ), where tan a=in,

I	

-

i.e., in

	

2	

U	

I

-

Here a, and hence lana, i.e., ni being the variable parameter, the
equation of the envelope is, by Art. 17.7,

x2

(	
2

I.e.,	 ...	 .t
2 
 =-- I U2	 9	 2g

Transferring the origin to the point 10,	 the equation of the
2g)

21?
envelope is x2 = ------ y , which is a parabola with its vertex on they-axis at

8

the point 1. .!L ') and its concavity turned downwards and latus rectum

	

i	 2j
2u2	 u2

4a = - and hence, a' being equal to —,the focus is at the origin.
9	 9
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Ex. 4. Find the envelope of circles whose centres lie on the rectangular

hyperbola .y = c 2 and which pass through its centre.

Let the eqtiation of a circle having centre at (a, 3) and passing

through the centre of sy = c2 , which is the origin here, be

x2 +)' 2 -2ax-2v0 ... (1) where (Z=c2	 ...	 2)

This is the case of two-parameter family, where the parameters are
connected by a given relation.

Following the first method of Art. 17.8, ie.,eliminating 0 between (I)
and (2), the equation of the circle becomes

x2+y2_2ax_2ivo, since from (2), =f

or, 2a2xa(x2+y2)+2c2y,,,0

by Art. 17.7, the required envelope is

(2 +	
= 4.2x.2c 2 v = l6c2xv.

Note. By transformation to polars, this quaLion can be shown to be

transformed to r2 =8c2 cns2, where	 7r—O: i.e., the required
envelope is a lemniscate. 	 -

Ex. 5. Find the envelope oft/ic parabola

where ab = k 2 , a and b being variable parameters.

We have	 .

ab=k2.

We apply here the second method of Art. 17.8. Taking differentials of
both (1) and () with respect to a and b, we have

IrX 
da+J-idb=O,	

. . .(3)

do db
—+—=o.
a b



542	
DIFFERENTIAL CALCULUS

From (3) and (4)

ifi+f
or Va '4bVn_]A.._! from (1)

1	 I	 I	 I	 2	 2

a 	 .

?.e..

Squaring and using (2), we get (a,.', )-eiiminanL l6xv = k 2 and hence,

this is the required envelope. This obviously represents a hyperbola.

Ex. 6. Find the pedal of the cardioide , = a (I + cos 0 ) with respect to the

pole (origin).

We shall here find out the fi rst positive pedal by considering it as the

envelope of the circles described oil 	 radii vectors as diameters.

I See Gor., Art. 17.51

Let (p, a) be the polar co-ordinates of any point on the cardiolde.

Then	 pa(l+Cos6).	 .. (I)

	

Again, the equation of the circle oil 	 radius vector j, as diameter is

	r=pcos(0—a).	 .. .(2)

or, r=a(l+cosa)cos(0_a)fr0mU>	 ... (3)

Here a is the parameter.

Differentiating (3) with respect to a,

0= sinacos(0_a)+(1+cds(x )sin (0)

sin acos(0 .-a)—cosa sin (o a )= sin(0—a)

i.e., sin (2a_0) sin (O—a),

i.e., 2a-0=0—U,	 i.e.,	 0,

Substituting this value of a in (3), we have the required envelope as

IIl+cosa)cos0=2ac30. or,r = a ( 

Ex. 7. Show that the pedal equation of the envelope of the line

xcos 2a+ y s i n 2a = 2a COS a,

where a is the para?neiel; is 1) 2 = ( r _ ,2 )
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Let (., y ) be the co-ordinates of any point P on the envelope.

Then x, y satisfy the equations I ( .x, y, a )= o,	 =
aa

i.e.,	 xcos2a-i-vsin2a=2a COS a,	 .

x sin 2a—y COS 2a=a sin a,

From the definition of the envelope, it follows that (I) is the tangent to
the envelope at P ( x. y).

Let p he the length of the perpendicular from the origin 0 upon the
tangent (I) to the envelope at P and r be the distance of P from 0,

= 4a2, COS 2 a.	 . . (3)

r 2 =x2 +v 2 =4a 2 cos 2 a-f a 2 sin 2 a,

I Squaring and adding (1) and (2)j

=3a2 COS ?a+a2.

Eliminating a between (3) and (4), the required pedal equation of the
envelope is obtained.

EXAMPLES - XVII (B)

1. Find the envelopes of the following curves, a being the parameter:

(I) circles (x —a )2 + y 2 — 4a = 0,

(ii) parabolas ay2 =2x+12a7,

(iii) ellipses r 2 + a 2 y 2 =4a.

2. Find the envelopes of the family of curves, 0 being the parameter.

(0 x2 cosO + y 2 sin  = a2

(ii) P(x,v )cpsO + Q(x,y )sinO '= R(x.y ).

(iii) A (x, y )cos" 0 + B(x,y )sin"0= C(x,). ).

3. Find the envelope of the family of curves

LA3 +. 3M) 2 + 3NA + P = 0-
where A is a parameter and L, M, N, P are functions of x and y.

4. Show that the envelope of the family of ellipses, ((x being the parameter)

ax2 sec 4 a+h 2 v 7 cos eca =(a 2 —b2).

is the evolute of the ellipse x2/a 2 + y2/a2 =
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5. Find the envelopes of the family of circles which arc described on the
double ordinates of

(i) the parabola y2 = 4ax as diameters.

(ii) the ellipse x21a 2 + y 2 /a 2 = 1 as diameters.

6. Find in each case the envelope of circles described upon OP as

diameters, where 0 is the origin and I' is a point on

(i) the circles x 2 +	 = 2ax,

(ii) the parabolas y 2 = 4ax,

(iii) the ellipses b 2x2 + a 2 y 2	 a2b2

(iv) the rectangular hyperbolas y = c2

7. If the centre of a circle lies upon the parabola y 2 = 4ax and the circle

passes through the vertex of the parabola, show that the envelope of

the circle is y 2 (2a + x )+ f = 0.

x2	 y28. Find the envelopes of the family of ellipses —s- + 	 =
a 2

 whose sum of semi-axes is constant =

(ii) whose area is constant (= c).

9. Show that the envelope ofthccircles x 2 1- y 2 - 2ar - 20y +	 = 0,

where a, P are parameters and whose centres lie on the parabola

4av,is x (x + y2 - 2ax ) = 6.

10. Find the envelopes of

(i) of the family of ellipses L +	 = I and

	

a	 b2

(ii) the family of parabolas 	 +fy = I,
where a" +	 = c" (a, b being the parameters).

11. Show that the envelope of the ellipses

(x - a ) 
2 +

a2	 b2
where the parameters a, 0 are connected by the relation

a2
	 P2	

i s
x

= I. is the ellipse - + L+
a	 b2
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12. Find the envelope of the family of curves	 +	 = 1, where th

parameters a and b are connected by the equation a 1' + b" = c1'.

13. Find the pedal with respect to the pole of the curve r2 = a 2 cos 20

14. Find the envelope of the circles described on the radii vectors of the

curve	 = a cos mO as diameters.

15. Show that the pedal equation of the envelope of the line

xcosnux+ ysinmcr = acosna, (m n ),whemctistheparameter,

•	 ,	 m2r2-n2a2
2	 2M2
 —fl

16. Given that the_astroid x ,+ y = c 3 is the envelope of the family of

theIlipses - +	 = I, where a and bare parameters, show that a
a b

and bare connected by the relation a +b = c.

ANSWERS

1. (i) Y2 -4x-4 =0. (ii)	 y2 = ±lSx. (iii)	 xv = ±2.

2. (i) x4 + y4 = a4 .	 (ii)	 P2 + Q2 = R2.
-

(iii) A 2- "' +B 2-" = C2-".

3. (MN_LPy=4(MP_N2)(u.I_M2).

5. 0	 2	
( x + a). (ii)	

a2+b2 +

. (i) (	 +Y 2 -	
)2 

a2 (2 + y2 )

(ii) x(v2+y2)+ay2=o.	 clii)	 a2x2+b2y7=(x2+y2)2.

(he) (x + 2 )2 = 
4c2 AY

8. (1) x 13 + Y 13 = L	 (ii) • 2xy = c2.

10. (i) x+y 2 =c.	 (ii) x+y'=c
"p	 Ir_

12. XT--, + Y .+, C . + p	 13. r' =a 3 cos .-8

14. r"=a"cosnO where pim/(m+l)

35



18.1. Pedal curve.

The locus of the foot of the perpendicular drawn from a fixed point on.

the tangent to a curve, is called the pedal of the curve with regard to the
fixed point.

(i) To find the pedal with regard to the origin of any curve whose cartesian

equation is given.

Let the equation of the curve be f(x, y ) = 0.	 . . .(l)
Let x cos a + y sin a = p be the equation of the tangent PT to the

curve at any point P.

Now, the condition that the line x cos a + y sin a p should touch
the curve is of the form Ø ( p,a ) = 0.	 . . . (2)

Fig 18.1.1

Since (p, a ) are the polar co-ordinates of the foot of the perpendicular
Non the tangent PT, hence in (2), ii r, 0 are written for p, a, the polar
equation of the locus of N, i.e., of the pedal curve will be obtained as

Ø(.r, o)=o
which can now be transformed into cartesian.

Alternative Method:

Let (x. y) be the co-ordinates of P; then the equation of the tangent
PTis

dv,
Y—y= ---tX — x)
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and the equation of ON, which passes through the origin and is perpendicular
to PT, is

Hence the locus of N, (i.e., the pedal) which is the intersection of (I)
and (2) is obtained by eliminating x and y from (1) and (2) and from the
equation of the curvef(x, y) 0.

(ii) To find the pedal with regard to the pole of am' curve whose
polar equation is given.

Let the polar equation of the curve be f(r, o)= o,

and let (ii. o ) be the polar co-ordinates of the foot of the perpendicuhtrN

drawn from 0 o the tangent at P r, o ).

Nowf denoting LOPN, tan	 r dO
	

... (2)

--	 Fig 18.1.2

Also 0 = LXOP=LXON+.LNOP=9 1 + .4,r -

and since ON = OP sin it,,	 = r sin 0,	 , .. (4)

If r, 0, be eliminated from (1), (2) (3) and (4), a relation between r and
0, will be obtained, and from this relation, by dropping the suffixes, we get.
the required polar equation of the pedal.

(iii) The circle on radius vector as diameter touches the pedal.

LXON = LP1X - LONT. 	 I See Fig. of(ii) J



548	 DIFFERENTIAL CALCULUS

Fie 18.1.3

O =#--,r;	 also p=ON=ij.

Again, dP = rcosØ.	 See E%. 7, § 13.171
dqi

1f 1 be the angle between the tangent NT, and the radius vector ON of

the pedal at any point N (i.e.,ZONT1 = 0 1 ) then

	dO1	dO1 dVI dp
tanØ4=r—=r—•—.—

	

'di 1	 4 djí dp dj

rsinØ = tan 4l

	

dp	 rcos4i

010,i.e.,LONT4=ZOPN.

TI N touches the circle passing through OPN.

Hence the result.

•(iv) If p 1 be the perpendicular from the pole on the tangent to the

pedal, then p 1r = p2.

Draw O7'4 perpendicular from 0 on the tangent NT, to the pedal.



ASSOCIATED LOCI	 549

Since LOPN LONT1 , :. N OPN, ONT are similar.

OP ON . r p

	

_	 .	 2

	

ON -
	 -, i.e., -p = -.. i.e.. p 1 r = p

(v) To find the pedal of a curve when its pedal equation is given.

Let the pedal equation of the curve be p 1(r)

and let p, r denote the usual entities of the original curve and p 1 , r1 the
corresponding things of the pedal curve.

Then p ,j ;also from above, r= - zJ-.

	

Pt	 Pt

Hence from equation (I), we get

the pedal equation of the pedal curve is

(r2

"-p

Note.	 If there be a series of curves designated as

P,PI,P2, ...... .

such that each is the pedal of the one which immediately precedes it, then

PI , P2 ........ I, are called the first, the second,...., the n" positive pedal of

P. Also regarding any one curve of the series, say P3 , as the original curve,

the preceding curves P2 , P1 , P are called respectively thefirst, second and

third negative pedals of 1.

18.2. Inverse curve.

•

If on the radius vector OP (or OP produced) from the origin 0 to any

point P moving on a curve, a second point Q be taken such that OP. OQ =

a constant, say P. then the locus of Q is called the inverse of the curve

along which P moves, with respect to a circle of radius k and centre o, or

briefly with respect to 0.
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(13 To find the inverse of a given curve whose cartesian equation is
given.

Fig 18.2.1

Let (x, y) be the co-ordinates of any point P on the curve

f(x,y)=O and let Q(x',y')bea point onOp such that OP. OQ=k2.

Draw PM, QNperpendiculars on OX.

Now, - =	 =	 (. A' OPM, OQN are similar )
x' ON OQ

_OP.OQ	 k2

0Q2	x'2 +

2'k
2
x

'	
..	 ky

1 2	 "
	

Similarly,	 = '2	 '2	x +y-	 x

Since j( x, y ) = 0.	 f ( k 2x'	 k2y'
+	 '2 + ,12 J = 0.

Hence, by dropping the dashes, i he equation of the inverse curve is

(_k2x	 k2y )
'1 2	 2' 2	 2 -x +y x +ys 

i.e., the equation of the inverse of a curve is obtained by writing

k24(x2 + y2 ), k 2y/( x2 + y2 ) for x, y in the cartesian equation of hte
curve.
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(ii) To find the inverse of a given curve whose polar equation is

given.

Let f(r,9 )= 0 be the equation of the given curve and let (r,0 )be

the co-ordinates of P and (r, 0 ) be the co-ordinates of Q.

Since	 OP. OQ = k2 ,	 rr' = k2. .. r = k2/r'.

:1.
( 

r

k 2	"
Again, since f(r,0 )= 0, . f --, 0 =0.

)
Hence the polar equation of the inverse curve is

(
f

k2
t—, 01=0.

r	
)

Thus, the equation of the inverse of a Curve is obtained by writing

k 2/r for r in the polar equation of the curve.

(iii) Tangents to a curve and its inverse are inclined to the radius

vector at supplementary angles.

Let	 denote the angles between the tangents and radius vetor at

the corresponding points of a curve and its inverse.

Then, tan	
rdO

=	 tan = r dO
dr	

-
dr

I1	 2 \ dr'	 d (k2'	 k2 dr
Now,	 k;rr=k

dO k2 ( ? )de	 dO
tan = r - =—i -- i—=–r—=–tanø

dr	 r( k 2 )dr	 dr

= tan (2r–).

i.e., 0+0' =7r.

(iv) To find the inverse of a curve when its pedal equation is given.

Let the pedal equation of the given curve be

p=f(r).

Let p, r, denote the usual entities of the original curve, and let

P', r', 0' denote the corresponding things of the inverse.
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Then	 rr'=k 2 , i.e., r=k2/r'.

	

. 	 pAlso, 7p =SInØ= sin(2z—)=sinØ =-.

r	 .,
r.	

r;P--
r
;1p
 -

from equation (1), we get

• k2,	 (k2
-p'=fI---).
r

Hence the pedal equation of the inverse curve is

r 2 (k2
Pf('.

183. Polar reciprocal.

If on the perpendicular ON (or ON produced) from the origin on the
tangent at any point P on a curve, a second point Q be taken such that
ON. OQ = a constant (say k2), then the locus of Q is called the polar
reciprocal of the given curve with respect to a circle of radius k and
centre 0.

From the definition, it follows that the polar reciprocal of a curve is
the inverse of its pedal. Hence the equation of the polar reciprocal of a
curve can be obtained by the first finding the pedal of the curve and then its
inverse.

Let N/V1 be the tangent to the pedal at N and let QM be the tangent to
the polar reciprocal at Q meeting OP produced at M.

Fig lltJ.I
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Now, 4' = IOPN = ZONN 1 E by § 18.1 (iii)]. Since QM isthe tangent

to the inverse of the pedal, hence by § 18.2 (iii),

.LOQM = LON,V 1 = LOPN.

Hence the quadrilateral PMQN is cyclic.

OM. OP=OQ.ON=k2

Also, LPNQ 900 ZPMQ = 900 ,i.e., OM is perpendicular to QM.

Hence the locus of P. i.e., the original curve is the polar reciprocal of the
locus of Q, i.e., of the polar reciprocal. Thus, the polar reciprocal of the
polar reciprocal of a curve is the curve itself.

18.4 Illustrative Examples.

Ex. 1. Find the Pedal of the parabola y 2 = 4ax with respect to the vertex.

The condition that X cos a + Y sin a = p will touch the parabola

y 2 = 4ax is obtained by comparing the equation with the equation of the

tangent at (x, y) to the parabola, i.e., with

Yy = 2a (X + x), or —2aX+Yy=2ax.

Hence

y=-2atana, x=—pscca.
cosu sina p

Since. Y 2 =4ax,	 .. 4a2tan2a=-4a.pseca.

Hence the required condition of tangency is p + a sin a tan (x = 0.

the polar equation of the pedal is
r+asin01an0=0

or,- r2+arin0tan6r0.

Writing ,.2 =x 2 +y 2 , rsinO=y and tanOy/x, we get cancsian

equation of the pedal as

x(x2+v7)+ay2=o

Alternatively

y=m.c+a/rn ...	 (1) i.a tangent to the parabola y 2 =4ox

v = - (I / m )x ...	 (2) is a equation of the perpendicular from the
origin on the above tangent.
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the locus of the point intersection of (1) and (2), i.e., the locus of
the foot of the perpendicular, i.e., the equation of the pedal is obtained by
eliminating ni between (1) and (2).

X	 x2 aFrom (2), 'n = --; substituting in (1), Y=
Y	 y x

Le.,	 xp2 -s-x 3 +ay 2 =0. Hence the result.

Ex. 2. Show that the pedal of the circle r = 2a cos 8 with respect to the

origin is the eardioide r=a(1+cos8).

Since the given equation is r = 2acosO,	 .. (1)

Idr 2a cos 0	 I
tan=rI—

d9
 = 

-2asrn
- O
	 2

cot 8= tan L7t+9
I 

Let (r 1 , 01 ) be the co-ordinates of the foot of the perpendicular; then

as in (2)of 18.1.

0=0 1 +7t- = 0 +-(-n+0);

(3)

Again, r 1 =rsinq=2a cos0.sin(7t+8)

[front 	 and (2) I
=2a COS 2O=2aCos2 _LO t=a(I+cos0i)

Hence, the required locus is r = a(1 + cosO ).

Ex. 3. Show that the inverse of the straight line ax + by + c = 0 is a circle.

Writing k x	
and	 ' for x, y in the given equation of the

x- +y
2 	 .x 2 +y

straight line, the equation of the inverse is

k 2	 k 2
a	 i-b	 +c=O

x 2 +y 2	.z2+y2

Or, c(x 2 +y2 )+ak2x+bk2y=O

which obviously represents a circle.
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Ex. 4. Find the inverse of the parabola r =1/ (i + cos o).

Writing k 2/r fort in the equation of the parabola, the equation of the
inverse is

2	 2
-=	 ,or, r=—(l1-cos0)=a(1+cosO)
r 1+ 

COS 
O	 1

[	 k
where a = -

which represents a cardioide.

Ex. 5. Find the polar reciprocal of the parabola y2 = 4ax with respect to

the vertex.

The pedal of the-parabola with respect to the vertex is

x(x2 +y2 ),y2_ø	 [SeeEx. 1]

Its inverse is

k 2x I k 4 x2	k4y2 1	 k4y2
H-a	 =0.

	

x2+3,21(2+y2T +(x2 +,V2 	 (x2+y2

or, k 2 x+ay 2 =0,i.e., y2(k2/a)x

which represents a parabola.

Ex. 6. Find the polar reciprocal of the curve p = I (r).

By Art. 18.1(v), the pedal equation of its pedal is r = I ( 
r' ) _

p

Now, to obtain its inverse, writing - for,' and k2 p' forp

	

r 	 r'
see §1&2 (iv) J, we get

k 2 =f( k 
4 r'2

r	 r'2 kp

Hence on simplifying and dropping the dashes, the pedal equation of
the polar reciprocal is

k 2 
= f ( 2
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EXANHUES-XVIU

1. Find the pedals of

(I) theeilipse- +	 = 1 with respect to the centre and focus.

(ü) the parabola y2 = 4ax with respect to the focus.

2. Find the equations of the pedals of the following curves with respect
to the origin:

(i) X + y" = a".	 (ii)	
+.

JI = i.

a"
3. Show that the first positive pedal of the rectangular hyperbola

- )' = a2 with respect to the centre is the lemniscate

r2 = a 2 cos 29.

4. Find the pedals with' respect to the pole of the curves:

(i) r2 COS 2O=a2.	 (;I) r 2 =a 2 Cos 2O.

r=a(l+ cos 9).	 [C.P.2006]

(iv) r=ae!"°".

(v) r' = a" cos mU.

5. Show that the pedal of a circle with respect to any point is the curve

r a + b cos B ,where a is the radius of the circle and b the distance

of the centre from the origin.

6. Find the inverses of the following curves with respect to the origin.

(i) x2 + y2 =a2 .	
(1i) x2/a2 + y2 /b2 = I.

(iii) r = a(l+ cos O).	 (iv) r = ae°".

7. Show that the inverses of the lines Zr + 3y = 4 and 3x - 2v = 6 are

a pair of orthogonal circles.

8. Show that the inverse of the conic r =

	

	 with regard to the
1+e cos 0

focus is a curve of the form p = a+b Cos 8.
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9. Show that the inverse of a rectangular hyperbola is a lemniscate, and
conversely.

10. Find the polar reciprocals, with regard to a circle of radius k and Centre
at the origin, of the curves:

(i) x2/a2 + y- lb' = I.	 (ii) y 2 = 4ax.

(Iii) r=acosO.	 (iv)r=a(J+ Cos O).
(v) r" = a' cos mO.

ANSWERS

1. (i)	 2+ 4- 22 +b2 ' x2 +v =a 2 	(ii)	 x=O.

2. (I)

	

a" (x' + Y. ) ( +	 )", where rn F n/(n - i).

(ii) (XI +y2)(ax+by)=absy.

where i=m/(m-.1).

4. C') r 2 =a2 COS 2O	 (ii)	 r =a Cos O.

(iii)r4 _-(2a)i Cos ..O.

(iv) r = a,eOc0 ( , where a 1 = osin a (br-a )ro.a

(v) r"=a" Cos nO, Where n=rn/(m+I).

6. (i) (X2+2)k412

(ii) (2 + p2)2 = k4(X2/,2 + ),21,,2).

(iii) r=b 	
where bPia.

Uv) r = aj e OG ,where a 1 = * 2/

10. c a 2 x 2 +b 2 y 2 =k4.

(ii) a 2 + k 2 x = 0.	 (iii) r =
	 b	

,where b = 2* 21a.
I + cos B

(iv) rCos9=(*2/2a).

(v) rcosnO=(&2/a)',wheren ml (m i- i)
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19.1. Concavity and Convexity (with respect to a given point).

Fig (i)
	

Fig(ii)

Fig 19.1.1

Let PT be the tangent to a curve at P. Then the curve at  is said to
be concave or convex with respect to a point A not lying on PT),

according as a small portion of the curve in the immediate neighbourhood
of P (on both side of it) lies entirely on the same side of PTas A [ as in
Fig. (I) ], or on opposite sides of PTwith respect to A (as in Fig. (ii) 1.

Fig 19.1.2

Thus, in Fig. 19.1.2, the curve at P is convex with respect to A. and
concave with respect to B or C. The curve at Q is concave with respect
to A. Again, the curve at R is convex to Band concave to C.

Note. A curve at a point P on it is Convex or Concave with respect to a
given line according as it is convex or concave with respect to the foot
of the perpendicular from P on the line'T
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19.2. PoipAoflnflexion.

r.

A
Fig 19.2.1

In some curves, at a particular point Pon it, the tangent line crosses
the curve, as in Fig. 19.2.1. At this point, clearly the curve, on one side of
P, is convex, and on the other side it is concave to any point A (not lying
on the tangent line). Such a point on a curve is defined to be a point of
inflexion (or a point of contrary flexure).

19.3. Analytical Test of Concavity or Convexity

(with respect to the x-axis).

Fig (i)	
Fig 19.3.1	

Fig (ii)

Let P ( x. y) be a point on the curve y = j (x), Q a neighbouring
point whose abscissa is x + h (h being small, positive or negative). Let
PT be the tangent at P. and let the ordinate QM of Q intersect PTat R.

The equation to PT is

Y - y =	 -



T

Fig (ii)FIg(i)
Fig. 19.3.2
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and abscissa XofR being .x + h, its ordinate

RM = V y+hf'(x).

Also the ordinate of Q is

QM = f(x4-h)

= f(x)+ hf'(x)+	 f* (x + Oh), 0<0<1.

QM—RM=P(x+Oh).

Now assuming f" (x) to be Continuous at P and * o there,

x + Oh ) has the same sign as that of f"(x) when I h i is sufficiently

small.

Hence from (I), QM— RM has the same sign -as that of f'(x), for
positive as well as negative values of /i, provided it is sufficientiy small in
magnitude.

Firstly, let the ordinate PN or y be positive.

Then if f'(x) (orat) is positive, from (l)QM>RM for Qon

either side of P in its neighbourhood, and so the curve in the
neighbourhood of P (on either side of it) is entirely above the tangent,
i.e., on the side opposite to the foot Non the x-axis of the ordinate PN,

as in Fig. (i). Hence, the curve at P is convex with respect to the i-axis.

Again f f"(x) is negative, QM < RM on either side of P, and so

the curve near P is entirely below the tangent, on the same side of N, as
in Fig. (ii). Hence the curve at P is concave to the x-axis.

Secondly, let y or PN be negative.
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if f" (x) is positive, from (1), as before, QM> RMon either side of P,
and as both are negative, QM is numerically less than RM, as in Fig. () of Fig
19.3.2. The curve, therefore, at P lies on the same side as N with respect to
the tangent PT Hence, the curve at P is concave with respect to the x-axis.

If f" (9 is negative, we similarly get the curve at P convex with

respect to the x-axis, as in Fig. (ii) of Fig 16.3.2. Combining the two cases,
we get the following criterion for convexity or concavity of a curve at
point with respect to the x-axis:

If yis positive at P, the curve at P is convex to the x-axis.
dxz

1fY d2y is Negative at P, the curve at P is concave to the x-axis.
dx

Note. At a point where the tangent is parallel to the y-axis, 	 is infinite. At
dx

such a point, instead of considering with respect to the x-axis, we investigate
cOnvexity or concavity of the curve with respect to the y-axis. The criterion,
as obtained by a method similar to above, is as follows:

The curve at P is'convex or concave with respect to they-axis according
d2x .

as x W is positive or negative at P.

19.4.	 Analytical condition for Point of Inflexion.

Fig /9.4.!

In the above investigation, let /' (4 = 0 at P, and f (x) # 0.

36 Tn, QM=J(x+h)f(X)+hf')f(x+9h)
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QM_RM=!f'(x+Oh).

and the sign of this for sufficiently small I h I is the same as that of

f ( x ), which has got opposite signs for positive and negetive values

of h, whatever be the sign of f (x) at P. Thus, near P the curve is above

the tangent on one side of P. and below the tangent on the other side, as in
the above figure. Hence, P is a point of inflexion.

Thus, the condition that P is a point of inflexion on the curve y = f (x)

is that, at P,

A2,	 d3
= 0 and	 t- 0.

dx2	dx3

Note. If

	

	 is infinite at P. the condition that P isa point on inflexion is th.it,
dx

at P.

and
dv2	dy3

19.5. A more general criteriop.

Suppose that at I 14= f- (X) = ...... . = in_i (4=0 and

f"x)* 0.

Then, QM = f ( x + Ii ) .= f (4 + hf' (4 + n! " (x + B h).

[o<o <i}

QM - RM =	 f" (x + 0 h ) which, for sufficiently small

values of j hi. has the same sign as that of 	 f" (x).

If n is even, h" is positive and the sign is the same as that of f" (

or	 at P for both positive and negative values of h. Considering both

the cases when y of P is positive and negative, we find that the curve at P is

convex or concave .vith respect to the x-axis according as y

	

	 is positive
dx

or negative.
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1f  n is odd, 
n!' 

(x ) will have opposite signs for gsil e.

negative values of h, whatever be the sign of 	 (i). Hence, Q ls
opposite sides of the tangent for positive and negative values of/i. Thus, P
is a point of inflexion.
Note. Since from (1)Art.19.3, QM–RM =--  f(s+O/r),iff(x+O/r)

has opposite signs for opposite signs of It when I It is sufficiently small,
QM > RM on one side, and QM <RM on the other side of Pon the curve
in the immediate neighbourhood, and thus the tangent at P crosses the
culve at P. and so P is a point of inflexion. Thus, since q is positive and
numerically less than I, an alternative criterionfora pain, of in/le'.-ion is
that f' ( x + Oh ) should have opposite signs for opposite signs of It
Ii is numerically sufficiently small; in other words, f"( x ) change r igri
passing through P from one side to the other.

19.6. Illustrative Examples.

Ex. 1. Examine the curve y = sin x regarding its con vexitv or co,'v

the x-axis, and determine its point of inflexioir, if any

dy	 dv	 -2As y – sin x, —=cosx and	 --sinx.lience, v–	 tn x
dx

which is negative for all values ofx excepting those which mak	 = 0,

i.e., for s =	 , k being any integer, positive or negative.

Titus, the curve is concave to the x-axis at every point, excepting at
points where it crosses the x-axis.

At these points, given by x=kit,	 =0, and	 '

Hence, those points Where the curve crosses the x-axis are points of
inflexion.	 -

Ex. 2. Show that the curve y 3 = 8x2 is concave to I/re foot oft/re ordinate
everywhere except at the irin.

From the given equation, v = 2x'.
1.	 4

a"

dx	 3	 It	 ()

- 1
y----.	 .	 -	 =--

(L1	 'I
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Thus, excepting at the origin, x being positive for all values of x,

is negative.

Hence, the curve is concave everywhere to the foot of the ordinate
excepting at the origin.

Ex. 3. Prove that (a —2, - 2/e2 ) is a point of inflexion of the curve

I	 \yx — a)e

Here, at points on the curve,

dy

dX

=e +(1+x—a)e =(2+x—a )e.

dy
and, similarly, _-3-=(3+x--a )e

Hence, atx=a-2,(where —2e 2 ),	 O and	 .e_2 #O.
dx	 dx3

Hence, the point (a —2. —2/e ) is a point of inflexion.

Ex. 4. Find if there is any point of inflexion on the curve

y-3=6(x-2)5.

Here,	 =3O(x-2) ,	-

Thus,	 wheix=2 (and so y=3).

In the neighbourhood of this point, where x = 2 + I, (h numerically
small, positive or negative),

=120h 3  .which has opposite signs for positive and negative

values of h. Hence,	 changes sign in passing through x = 2.

Thus. (2,3) is the only point of inflexion.
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Alternatively

Here, _236O(x_2)2, "y 720(x-2), .272O.
d3	 dr4	 dx5

Thus at x =2,	 =	 = O and	 * 0.
•	 di? dx3 dx4•	 (which is of odd order)
Hencex = 2 gives the point of inflexion.

EXAMPLES -XIX

1. Prove that the curve y = e is convex to the x-axis at every point.

2. Prove that the curve y = cos' x is everywhere concave to the y-axis
excepting where it crosses the y-axis.

3. Prove that the curve y= log x is convex to the foot of the ordinate in
the range 0 <x < 1, and concave where x> 1. Prove also that the curve
is convex everywhere to they-axis.

4. Show that the curve (y—a) 3 = a 3 - 2a 2 x+ax2 where a>0, is always
concave to the x-axis. How is ii situated with respect to they-axis?

5. Show that the origin is a point of inflexion on the curves:

(i) y=x 2 1og(l—x),	 (ii) yrxcos2x.

6. Find the points of inflexion, if any, on the curves:

X	 2(ii) y2 =x(x+1.)
(x+1) 2 +1

(iii) cy = (x—a ) 3 .
	(iv) y = ae

7. Show that the points of inflexion on the curve y 2 = ( x —a ).2 (x—b)
lieonthe line 3x+a=4b.

8. Show that the curve y(x 2 + a 2 )=a 2x has three points of inflexion
which lie on a straight line.

ANSWERS

4. Concave where 0 < x < a. convex everywhere else.

6.	 (I)

(ü) (, ± Jfl.	 • (iii)	 (a, 0),.	 (iv)	 (± 4, ae ).



FAI	 ON SOME WELL-KNOWN CURVES

20.1. We give below diagrams, equations, and a few characteristics of some
well-known curves which have been used in the preceding pages in obtaining
their properties. The student is supposed to be familiar with conic sections

and graphs of circular functions, so they are not given here.

20.2. Cycloid.

The cycloid is the curve traced out by a point on the circumference of

a circle which rolls (without sliding) on a straight line.

OL M	 D	 0 X
t=a(O- sin O)	 v=a(1- cos O)

Fie 2O.2.1

Let P be the point on the circle MP called the generating circle, which

trêesoiit the cycloid. Let the line OMX on which the circle rolls be taken as

x-axis and the point 0 on OX, with which P was in contact when the circle

began rolling, be taken as origin.

Let a be the radius of the generating circle and C its centre, P the

point (x, y) orrit, and let zPCM = e . Then 0 is the angle through which the

circle turns as the point P traces out the locus.

OM = arc PM = all

Let PL be drawn perpendicular to OX.

x=OL=OM-LM=aO-PN = aO-a sin ll

= a(O - sinU ).

y= PL= NM =CM -CN =a - acosll

=a(l- cos ll).

Thus, the parametric equations of the cycloid with the starting point

as the origin and the line on which the circle rolls, called the base, as the

x-axis are
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x=a(O—sinO), y=a(1—cos0). 	 .

The point . A at the greatest distance from the base OX is called the

vertex. Thus, for the vertex, y, i.e., a (i - cos 8 ) is maximum. Hence,

cos O=-1,i.e.,O=n.

AD=a(l— cos n)=2a.

vertex is (an ,2a).

For O and O', y=O. .. cosO = I. 	 :. 0 = Oand 2n.
As the circle rolls on, arches like OAO' are generated over and over

again, and any single arch is called a cycloid.

x=a(O+ sin O)	 A	 T	 y=a(t— cos 9)	 x
Fie 20.2.2

Since the vertex is the point (an, 2a ) the equation of the cycloid
with the vertex as the origin and the tangent at the vertex as the x-axis can be

obtained from the previous equation by transferring the origin to an 2a )
and turning the axes through it, , i.e, by writing

air + x'cosn - y'sin ir and 2a + x'sinn + y'coslr

for  and y respectively.

Hence, a (o - sin 0 ) = air -x'

or, x'=a(n—O )+a sin O

= a(0'+ sill O'), where 0' = n — U

and	 a(l— cos 0 )= 2a—v'

or, y' = 2a —a+a cos; 0 = a+a cos U

= a— a cos (ir -o )= a(l - cos 0').

Hence, (replacing 0' by 0) the equation of the cycloid with the vertex

as the origin and the tangent at ehe vertex as the x-axis are

x=a(O+ sin o), y=a(— cos O)
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In this equation, 8 = 0 for the vertex, 9 = ir forO, and 0 = -7r for 0'.

The characteristic properties are

(i) For the cycloid x = a(0— sin  ), y = a(1 — cosO ), radius of
curvature = twice the length of the normal, (the centre of curvature and the
x-axis being on the same side of the curvature).

(ii) The evolute of the cycloid is an equal cycloid.

(iii) Forthecycloid x = a(O+sin0 ), y = a(1—cosO ),

= - 0 and 2 = 8a y s being measured from the vertex.

Note. The above equation (2) can also be obtained from Fig. (i) geometrically

as follows

If (x', ') be the co-ordinates of!' referred to the vertex as the origin
and the tangent at the vertex as the x-axis.

= LD = OD - OL = - x = a —0 )-- a sin 0,

y'= AD— PL = 2a - y 2a —a(l —cos 0 )= a(1 +cosO),

Hence, writing 0'(or0 )ibr it-0,etc.

203. Catenary.
The catenary is the curve in which a uniform heavy flexible string will

hang under the action of gravity when suspended from two points. It is also
called the chainetle.

OT N X

Fig 20.3.1

Its equation, as shown in books on Statics, is

y=ccosh[er+erJ.
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C is called the vertex, OC = c, OX is called the directrLr.

The characteristic properties are

(i) The perpendicular from the foot of the ordinate upon the tangent
at any point is of constant length.

(ii) Radius of curvature at any point= length of the normal at the point
(the centre of curvature and the .x-axis being on the opposite sides of the
curvc).

(id) y2 = c2 + s2 $ being measured from the vertex C.

(iv) s = c tan 11, y = c sec V.

(v) .i=c log ( sec v+ tan yi).

20.4. Tractrix.

Its equation is

x	 a2	
2 a

=	 —y +—log

	

2	 a+a2_y2

or, x=a(cost+Iogtant), y = asint.

Here, OA = a.

ox
Fig 20.4.1

The characteristic properties are

(I) The portion of the tangent intercepted between the curve and the
x-axis is constant.

(ii) The radius of curvature varies inversely as the normal (the centre
of curvature and the x-axis being on the opposite sides of the curve).

(iii)The evolute of the tractrix is the catenary

Y = a cosh (x/a ).
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20.5.	 Four cusped Hypo-cyctoid.

V

Fig 20.5.1

2
(x' 3	 yIts equation is I - I +	 - 1
a)	 [bJ -.

or.	 x = acos 3Ø, y = bsin'.

Hcrc, OA= OA' =a; OB=OB'=b.

The astroid is a special case of this when a = b.

20.6.	 Astroid.

Fig 20.6.1

2	 2	 2
Its equation is x 3 + y' = a'

Or,	 x=acos38,y=a sin 'O
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Here, OA=OB=OA'=OB'=a•

The whole figure lies completely within a circle of radius a and centre

0. The points A, A', B, B' are called cusps. It is a special type of a
our-cusped hypo-cycloid. 	 (See § 20.5 1

The characteristic property of this curve is that the tangent at any
point to the curve intercepted between the axes is of constant length.

20.7. Evolutes of Parabola and Ellipse.

(i) The equation of the evolute of the para' )la

= 4ax i

27ay 2 =4(x.-2a)3.

This curve is called a semi-cubical parabola.

Fig 20.7.1

• Transferring the origin to (2a, o), its equation assumes the form

2 = Ia where k 4 / (27a ), which is the standard equation of the

semi-cubical parabola with its vertex at the origin.

Hence, the vertex C of the evolute is (2a. 0 ).

(ii) The equation of the evolute of the ellipse

X 2/a 2 + y 2/b 2 = I is

(ax) 3 +(by)	 b2 )I
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Fig 20.7.2

which can be written in the form

(X) 
I fl)

where a=(ä2_b2)/a, J3=(a2_b2)/b.

Hence, it is a four-cusped hypo-cycloid.

20.8. Folium of Descartes.

Fig 20.8.1

Its equation is x 3 +y 3 = 3axy

It is symmetrical about the line y = x.

The axes of co-ordinates are tangents at the origin, and there is a loop
in the first quadrant.

It has an asymptote x + y + a = 0 and its radii of curvature at the

origin are each = 1 a.
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20.9. Logarithmic and exponential curves.

(i) The equation of the Logarithmic curve is y = log x. x is always

positive; y = 0 when x = I and as x becomes smaller and smaller, y,

being negative, becomes numerically larger and larger. For x > 0, the  curve

is Continuous.

PA

Y.

oil	 x

(i) y=logx	
Fig 20.9.1

C

(ii) The equation of the Exponential curve is y e. x may be positive

or-ncgative but y is always positive, and v becomes smaller and smaller.

V

I'	 rig zu. IV. i

as x, being negative, becomes numerically larger and larger. The curve is

continuous for all values of x.

20.10. Probability Curve.

The equation of the probability curve is y e

The x-axis is an asymptote.

The area between the curve and the asymptote is

= 2f e-" d, = 2. Ivrn=



x
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20.1I. Cissoid of Diodes.

Its cartesian equation is y2 (2a - x ) = x3.

VA

Fig 20.11.1

QA = 2a; x = 2a isanasymptote-

2asin2O
Its polar equation is r =

cos 0

20.12. Strophoid.

The equation of the curve is y2 =
U - X

OA=OB=a.	 OCBPisaloop.
x = a is an asymptote.

Fig 20.12A

The curve y2 =	 .	 is similar, just the reverse of strophoid,
a +x

the loop being on the right side of the origin and the asymptote on the left
side.
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20.13. Witch olAgnesi.

The equation of the curve is .y2 = 4a 2 (2a -

Y

	

0	 A X

Fig 20.13.1

Here, OA = 2a.

This curve was first discussed by the Italian lady mathcm1tician Maria
Gactaua Agnesi, Professor of Mathematics at Bologna.

20.14. Logarithmic (or Equiangular) spiral..

Its equation is r = ae 	 (or, r = ae" 0),

where cot a or ?it 	 constant.

Characteristic Properties

(i) The tangent at any point makes constant angle with the radii
vector (0 = a).

(ii) Its pedal, inverse, polar reciprocal and evolute area)] equiangular
sprials.

P

cI1)1X
Fig 20.14.1

(iii) The radi: of curvature subtends a right angle at the pole.

Note.	 Because of the property (i), the spiral is called equiangular



(i)r=a(I - cosO)

K

(i) r=a(l+ cos O) Fig 20.16.1

K
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20.15. Spiral of Archimedes.

Its equation r = aO.
Its characteristic property is that its polar subnormal is constant.

20.16. Cardioide.

Its equation is (i) r = a (1 + cos B ). or (ii) r = a (i - cos o ).

Jr. (i), B = 0 for A,and 0 = ir for 0.

In (ii), 0 = 2t for A, and O = ° for 0.
In both cases, the curve is symmetrical about the initial line, which

divides the whole curve into two equal halves and for the upper half. 0
varies from 0 to it, and On = 2a.

V	 V

The curve (ii) is really the same as (i) turned through 180°.
The curve passes through the origin, its tangent there being the initial

line, and tangent at A is perpendicular to the initial line.
The evolute of the cardioide is a cardioide.



Ri
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Note. Because of its shape like human head, its is called a cardioide. The

cardioide r = a (i -,- cos 0 ) is the pedal of the circle r = 2a cos 0 with

respect to a point on the circumference of the circle, and inverse of the

parabola r=a/(l+ cos O)

20.17. Limacou.

The equation of the curve is r = a + b cos 0

When a> b, we have the outer curve, and when a < b, we have the

inner curve with the loop.
When a = b, the curve reduces to a cardioide. [Seefig. in § O. 161

Fig 20. 17. 1

Limacon is the pedal of a circle with respect to a point outside the

circumference of the circle.

20.18. Lemniscate.

x

2	 2
Fig 20.18.1	 r = a COS

Its equation is r 2 = a 2 cos 20

or, (.x2+y2)2	
2	 2

-	 =a (x -),).



Fig 20.18.2

If

Fig 20. 19.1

I)

r=a

B(2)
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It consists of two equal loops each symmetrical about the initial
line, which divides each loop into two equal halves.

Here, OA = OA' = a.
The tangents at the origin are y = ± x.

For the upper half of the right-hand loop, 0 varies from 0 to -1 it.
A characteristic property of it is that the product of the distances

of any point on it from each of the points (±a/ .fi, 0) is constant.

The lemniscate is the pedal of the rectangular hyperbola r.2 cos 28 = a2.
The curve represented by r2 =a 2 sin 2O is also sometimes called
lemniscate or rose lemnisca:e, to distinguish it from the first lçmniscate
which is sometimes called lemniscate of Bernoulli after the name of the
mathematician J. Bernoulli who first studied its properties.

The curve consists of two equal loops, situH4ed in the first and
third quardants, and symmetrical about the line y = X . It is the first
curve turned through 45°.

The tangents at the origin are the axes of x and y.

20.19. Rose-Petals (r = a smug , r = a cosnO).



Fig 20.19.2

D(4)
I	 A(i)

I	 B(2)
C(3)	 I r=asin2O
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The curve represented by r = a sin 30, or. r = a cos 30 is called a

three-leaved rose, each consisting of three equal loops. The order in
which the loops are described is indicated in the figures by numbers. In

each case, OA = OB = OC = a, and LAOB = iBOC = ZCOA = 1200.

The curve represented by r = a sin 20, or, r = a cos28 is called

a four-leaved rose, each consisting of four equal loops. In each

case, OA=OBOC=aand LAOB= LBOC= LCOD =LDOA=90°.

The class of curves represented by r = a sin n 0, or, r = a cos n 0

where n is a positive integer is called rose-petal, there being t or 2n equal

loops according as n is odd or even, all being arranged symmetrically about
the origin and lying entirely within a circle whose centre is the pole and

radius a.

20.20. Sine Spiral (r' = a sin nO, or, r = a cos no).

The class of curves represented by (i) r" = a sin it 	 or (ii)

= a' cos n 0 is called sine spiral and embraces several important and

well-known curves as particular cases.

Thus, for the values n -2, 2, - - ,and the sine spiral is

respectively a straight line, a circle, a rectangular hyperbola, a lemniscate, a
parabola and a cardioide.

For 	 0 = nO; for (ii)0 = 1 ir+n6

The pedal equation in both the cases is
fl-I-I I 

a 
n

p=r 



(ii)
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21.1. Double Points.

If two branches of a pinc curve pass through a point P. that is, two
tangents at P can be drawn to the curve, then the point is called a Double
point on the curve.

21.2. Classification of Double Points.
Node : If the tangents at a double point P on a plane curve be real and
distinct, the double point is called a Node.

Fig 21.2.1

Cusp : If the tangents at a double point P on the plance curve be real
but coincident and the curve has real branches in the neighbourhood of P,
then the double point is called a Cusp.

Isolated Point: If the tangents at a double point P on a plane curve be
either non-real or real, coincident but the curve has no real branches in the
neighbourhood of P, then the double point is called an Isolated point.

21.3. Different types of cusps.
Single Cusp:

Single cusp,first species	 Single cusp,second species

lfP be a cusp on a plane curve and both the branches of the curve lie on
the same side of the normal at P, then the cusp is called a Single Cusp.
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Double Cusp:

(ii)

Double cusp, first species	 Fig 21.3.2
	 Double cusp, second species

If a plane curve has branches on eiTher side of the normal at a cusp
P, then the cusp is called a Double Cusp.

21.4. Species of a Cusp.

Cusp of the Fist Species (or Keratoid Cusp):
If the branches of a curve at a cusp P (single or double) lie on either

side of thd tangent at F, then the cusp is of the first species or it is called
a Keratoid Cusp.

Cusp of the Second Species (or Ramphoid Cusp):
If the branches of a curve at a cusp P (single or double) lie on one

side of the tangent at P, then the cusp is of the second species or it is
called a Ramphoid Cusp.

Osculinflexion:
If a curve has double cusp at P and it is Keratoid on one side of the

normal at P and Ramphoid on the other, then P is called a Point of

osculinflexion.

Fig 21.4.1
Double cusp, change-of species

Osculinflexion
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21.5. Search for double points.

Let the given curve be represented by a rational algebraic equation.

Let (a, ) be a double point on the curve. We shift the origin to (a, fi)
through parallel axes. In the transformed equation the constant term and
the terms of the first degree must be absent in order that the new origin may
be a double point. We get three equations in a and 13. Take any two of them
to find a and 13 . If these va1ue of a and 13 satisfy the remaining equation,
then the point (a, fi) will be a double point.

If no such values of a, 13 are available to satisfy all these three equations,
then we say there is no double point on the curve.

21.6. CondItions for existence of double points on an algebraic curve.

Let f(x,y)=0

be a rational algebraic curve.

If we shift our origin to the point (a, p) through parallel axes, the
above equation transforms into

f(x+a,Y+)=o	 .
By Taylor's therom, we get

f(x+a, Y+fl)=f(a,fl)+x1.a—[	
Y

)
ax)()	 t)(ap)

+! X 2 I_L)	 i-2XYI_
a2 	 Ia2f)

2	 ( ax 2 )(a.)	 axaY)(0fl)

Therefore, the equation (2) becomes

j (a,p ) + x1_L 1 	 ^y1 L) 1+! f

	

dX )(ap)	 aY)(B)j 2	 a.x	 (a.$)

+ 2XY	
2i)	 +y21)	 l+...=o

	

aXaY) $)	(aY2))]	
...

(a, p) will be a double point on (1) if origin is a double point on (3) which
requires

f(x,y)=o, [L '	 =0and1-L 1	 =0.
dXJ($)
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If these equations be consistent, the tangents at the new origin are -
given by

X 2 I_fI 	 -i-2XYI _a
	)	 + y2 I_L)	 =0

aX2 )(afi)	 axaY)(ap)	 ay2)0)
(4)

In general, the double point will be a node, cusp or an isolated point
according, as

( a2 j '	 ( a2f	 (a2f
I	 >,=,or<I—I I-

aXa Y)(a p) 	 (s ax	 aY2 (a.

21.7. fllustmve examples.

Ex. 1. Determine the existence and nature of the double points on the curve

(x-2) 2 =y(y-l)2.
The given curve is

f(x,y)n(x-2) 2 -y(y-1) 2 =0	 ... (1)

=0 gives 2 (x - 2)= 0, i.e., x=2,	 ... (2)
dx)

1 .L1=o gives 2y(y-1)+(y-1)2 =01
kaY)
i.e., (y-lX3y.-1)=0,

i.e.. y=1,.	 ... (3)

Equations (2) and (3) say That the possible points are (2,1

The point (2,1) satisfies equation (1) but the point (2,1) does not.
So, there isadouble point at the point (2,1).

Let us shift the origin to (2,1) through parallel axes. Equation (1)

becomesX 2 (Y+1)Y 2 ,	 i.e., Y3+Y2-X2=0.

The tangents at the new origin are given by
Y 2 - X 2 =0,i.e., Y=±X,

which are real and distinct.
Hence, there is a node on the given curve.

EL 2. Examine the character of the origin on the curve

-	 y2 =2x2v+x3y+x3.
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The given equation is

f(x,y)Ex3v+x322y._y2	
(I)

Now,	 =3X2y+3X2+4y;
ax

af =X 3 +2x2-2y.
ay

At (0, 0), f (x, y)r 0, 	 =0 and	 =0.

	

ax	 ay
So, there is a double point at (o, o) on the given curve.

Tangents at (0,0) are given by y 2 =0, that is, Y = O, y=O which
are real but repeated. The double point is either a cusp or an isolated point.

Take a point P(x, y) on the curve in the neighbourhood of (0, 0).
Distance of P from the tangent y = 0 is given by

	

p=y	 (2)
Eliminating y between(1)and (2) we get

x3 p+x3 +2x 2 p—p 2 =0

	

i.e.. pz_(x3+2X2)PX3_o	 (3)
which is a quadratic in p whose discriminant is

(x3 +.2x2)2 +4x 3 =4x 3 +4x4 +4x 5 +x6

4x3 , since  is small.

It is positive if x>0, that is, (3) can have two real roots ifx>0, that is,
(1)has two real branches on the right of they-axis in the neighbourhood of
(0, 0). So, there is a single cusp at the origin.

The product of the roots of (3) is - x 3 <0 for x >0, that is, the roots
of(3) are opposite signs, that is, the two branches of the curve lie on opposite

sides of the tangent y = 0. The cusp is of the first species.
Hence there is a single cusp of the first species at the origin.

Ex. 3. Is origin a double point on the curve y 2 = 2x 2 y + x4 y - 2x4 ? if so,
state its nature.

The given curve is

f(x,v)= x 4y -2x 4 +2	 V2 =0	 (1)

Now,
aj

 +4.y;
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+2x 2 —2y.
dy

At (o, o), we see that f (x, y )= 0 -0 and	 =0.
ax

So, there is a double point at (0, 0).

The tangents at origin are given by y 2 =0, that is, y = 0, y = 0

which are real and coincident. The double point may be a cusp or an isolated
point.

We take a point P(x, y) on the curve in the neighbourhood of the origin.

Distance 'of P from the tangent y = 0 is given by

p=y	 ... (2)

Eliminating y between (1) and (2) we get

xp .-2x+2x 2 p—p 2 =0,

i.e.,	 2_(2X 2 +x 4 )p+2X 4 o	 ... (3)

which is a quadratic in p whose discriminant is

(2x2 +x 4 ) 2 —8x 4 =-4x 4 +4x 6 +x t —4x 4 <0 for all x,

that is, the roots of (3) are complex, that is, there is no real branch of the
curve in the neighbourhood of (0, 0).

Hence, the origin is an isolated point on the curve.

Ex. 4. Search for double points on the curve

x2y+x3y+5x4 ± y2.
The curve isf(x,y)5x4+x3y+x2y_y2=0

I32= 0 gives 20x + 3x y + 2.y = 0,
ax

i.e., x(20x2 + 3xy + 2y) = 0:	 ... (2)

gives x 3 +x 2 —2y=O,

x2+x3
i.e., y—	 ... (3)

Eliminating y between (2) and (3) we get

2O2+c2)+X2 +X3	 0,

i.e., x3(40+3x(1+x)+2(l+x)}0

i.e., x 3 (3x 2 +5x+42) =0.



586.	 DIFFERENT/AL CALCULUS.

•	 —5±J25-504

	

i.e. x=Oor	
6

-5±if
	=Oor	

6
Only x = 0 is acceptable as the other two values of x are complex.

When x=0,weget yO.

We see that (l)js satisfied with x=0, y=Q.

So (0,0) (0,0) is a double point on the given curve.

Tangentsat(0,0) are given by y 2 =O, that is, y=O, y0 which are

real but repeated, that is, the double point is either a cusp or an isolated
point.

Let us take a point P (x, y) on the curve in the neighbourhood of(0, 0).
Its distance from the tangent y = 0 is given by

py
Eliminating y between (1) and (4) we get

x2p+x3p+5x4=p2,

that is,	 p2 - (x2 + x3 )p — 5x4 = 0	 . . . (5)

which is a quadratic in p and so two branches of the curve exist in the
neighbourhood of (0, 0) depending on the roots of (5).

Its discriminant is (x2 +x3 )+2ox4 =21x4 >0 for positive as well as

negative values of x, that is, the curve has real branches on either side of
the y-axis. The origin is, therefore, a double cusp.

Product of the roots of (5) is -5x 4 <0 for all x. The roots are of
opposite signs implying that the branches lie on either side of the x-axis,
that is, the cusp is of the first species.

Hence, the origin is a double cusp of the first species.

EXAMPLFS - XXI

1. Examine the character of the origin on each of the following curves
(a>0):

	

(i) ay 2 = x 3 .	 (ü) a(y—,)2 = x 3 . (iii) (2a—.) y2 = x3.

(iv) x.4 - 412 y - 2xy2 + 4y 2 = 0.

(v) x - aA 2 y + axy 2 + a 22 = 0.
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(vi) x4 - 3x 2 y - 3.y 2 + 9y 2 = 0.

(vii) x4 - 2ax 2 y - axy 2 + a 2 
y 2 = 0.

(viii) y 2 =2x2y+.4y+x4.

(1x)x4+x3y+5x32.x2y+x2_3xy+2y2=0

(x) 5x2 y+x3 y-5x4 y2.

(xi) (2x+y) 2 —6y(2x+y)-7x3 =0.

2. Search for double points on each of the following curves:

(i) x4 + y + 2X I + 3y 2 = 0.

(d) y(y-6)=x2(x-2)3-9'.

(ii) x3—y2-7x2+4y+I5x-130.

(iv) x -2 Y3  - 3y2 - 2x2 + 1 = 0.

(v) X ( 2 y2):= ay 2 .	 (vi) x + y 3 - 3axy = 0.

(vii)y2=(x_l)(x_.2)2.	 (viui)y2=(x._2)2(x_5).

(ix) x3 + 2x2 + 2xy - y2 + 5x - 2y = 0.

(x) (x+y)3=y(y—x+2)2.

()i) (2y++1)2.=4(1—x)5.

(xii) 1y 2 + 2a 2 y - ax2 - 3a 2 X- 3a 3 0.

(xiii) x4 + 4x3 + 2 Y3  
t 4x 2 + 3y 2• —1 = 0.

(xiv) y4 - 8y 3 12.y2 + 16y 2 + 48xy + 4x 2 - 64x = 0.

3. Show that the curve (.zy+ 1)2 +(x—I)3 (x-2) = 0 has a single cusp of

the first species at (1, —1).

4. Prove that the curve ay2 = (i—a)2(x—b) has, at x = a, an isolated

point if a< b, anode if a>b, and a cusp if a= b.

5. Examine the nature of the point (0,—I) on the curve

- 2X2 	 - 2x2 - 2.y + y2 - x + 2y + 1 = 0.

6. Examine the nature of the point on the curve

y —2 = x(l + x + xI) where it cuts they-axis.

7. Examine the nature of the point (-1, —2) on the curve
x 3 +2x 2 +2.y—y 2 +5x-2y=0.
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8. Show that each of the curves

(xcosa — ysina .-b) 3 = c(xsina+ ycosa )2

where a is a variable, has a cusp and that all cusps lie on a circle.
9. Show that each of the curves

- 212x2 - y 2 + 1 4 x + 4 - 412 =

where t is a variable, has a node and that all these nodes lie on a
parabola.

ANSWERS

1.	 (i) Single cusp of the first species.

(ii) Single cusp of the first species.

(iii) Single cusp of the first spedes.

(iv) Single cusp of the second species.

(v) Isolated point.	 (vi) Isolated point.

(vii) Single cusp of the second species.

(viii) Double cusp of the first species.	 (ix) Node.

(x) Double cusp of the second species.

(xi) Single cusp of the first species.

2.	 (I) Isolated point at (0,0).

(ii) Isolated point at (0,3) and a single cusp of the first species at
(2,3 )

(iii) Node at (3,2 ).

(iv) Nodes at (0,— 1 ): (i,o ) and ( - 1,0

(v) Single cusp of the first species at (0,0 ).
(vi) Node at (0, 0).	 (vii) Node at (2, 0).
(viii)Isolated point at (2, 0).
(ix) Single cusp of the first species at (-1, —2).
(x) Single cusp of the first species at (I, - I).
(xi) Single cusp of the first species at (1, —1).
(xii) Single cusp of the first species at (—a, 0).
(xiii) Nodes at(0, —1),(—I,0) and (-2, —1).
(xiv) Node at (2, 2).

5. Single cusp of the second species.
6. Single cusp of the second species.
7. Single cusp of the first species.


