schaum's Ou *lines* COMPUTER GRAPHICS **Second Edition**

ZHIGANG XIANG

ROY PLASTOCK

The perfect aid for higher grades!

Covers Computer Graphics in 2D and 3D sypplements any class text

Simplifies all aspects of creating digital graphics

Over 350 solved problems step-by-step

Ideal for independent study!

Explains new techniques in shadowing and photo-realism

Use with these courses: 🗹 Introduction to Computer Graphics 🗹 Computer Graphics in C 🗹 Computer Design Computer Presentations 🗹 Fundamentals of Computer Graphics 🗹 3D Computer Graphics 🗹 Advanced Placement Computer Science 🧭 Introduction to Computer Animation 🧭 Computer Animation I and II

SCHÁUM'S **OUTLINE OF**

THEORY AND PROBLEMS OF COMPUTER GRAPHICS

ZHIGANG XIANG, Ph.D.

Associate Professor of Computer Science Queens College of the City University of New York

ROY A. PLASTOCK, Ph.D

Associate Professor of Mathemat New Jersey Institute of Technology

2004-2005

SCHAUM'S OUTLINE SERIES

McGRAW-HILL

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto Zhigang Xiang, is currently an associate professor of computer science at Queens College and the Graduate School and University Center of the City University of New York (CUNY). He received a BS degree in computer science and engineering from Beijing Polytechnic University, Beijing, China, in 1982, and the MS and Ph.D degrees in computer science from the State University of New York at Buffalo in 1984 and 1988, respectively. He has published numerous articles in well-respected computer graphics journals.

Roy A. Plastock, is an Associate Professor of Mathematics at New Jersey Institute of Technology. He is listed in *Who's Who in Frontier Science and Technology*. His special interests are computer graphics, computer vision, and artificial intelligence.

Schaum's Outline of Theory and Problems of COMPUTER GRAPHICS

Copyright ©2004 1992, by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 PBT PBT 0 9 8 7 6 5 4 3 2 1 0

ISBN 0-07-135781-5

Sponsoring Editor: Barbara Gilson Production Supervisor: Tina Cameron Editing liaison: Maureen B. Walker Project Supervision: Techset Composition Limited

Library of Congress Cataloging-in-Publication Data

McGraw-Hill

A Division of The McGnaw-Hill Companies

To Qian, Wei, and my teachers ZHIGANG XIANG

To Sharon, Adam, Sam, and the memory of Gordon S. Kalley ROY PLASTOCK

PREFACE

We live in a world full of scientific and technological advances. In recent years it has become quite difficult not to notice the proliferation of something called computer graphics. Almost every computer system is set up to allow the user to interact with the system through a graphical user interface, where information on the display screen is conveyed in both textual and graphical forms. Movies and video games are popular showcases of the latest technology for people, both young and old. Watching the TV for a while, the likelihood is that you will see the magic touch of computer graphics in a commercial.

This book is both a self-contained text and a valuable study aid on the fundamental principles of computer graphics. It takes a goal-oriented approach to discuss the important concepts, the underlying mathematics, and the algorithmic aspects of the computerized image synthesis process. It contains hundreds of solved problems that help reinforce one's understanding of the field and exemplify effective problem-solving techniques.

Although the primary audience are college students taking a computer graphics course in a computer science or computer engineering program, any educated person with a desire to look into the inner workings of computer graphics should be able to learn from this concise introduction. The recommended prerequisites are some working knowledge of a computer system, the equivalent of one or two semesters of programming, a basic understanding of data structures and algorithms, and a basic knowledge of linear algebra and analytical geometry.

The field of computer graphics is characterized by rapid changes in how the technology is used in everyday applications and by constant evolution of graphics systems. The life span of graphics hardware seems to be getting shorter and shorter. An industry standard for computer graphics often becomes obsolete before it is finalized. A programming language that is a popular vehicle for graphics applications when a student begins his or her college study is likely to be on its way out by the time he or she graduates.

In this book we try to cover the key ingredients of computer graphics that tend to have a lasting value (only in relative terms, of course). Instead of compiling highly equipment-specific or computing environment-specific information, we strive to provide a good explanation of the fundamental concepts and the relationship between them. We discuss subject matters in the overall framework of computer graphics and emphasize mathematical and/or algorithmic solutions. Algorithms are presented in pseudo-code rather than a particular programming language. Examples are given with specifics to the extent that they can be easily made into working versions on a particular computer system.

We believe that this approach brings unique benefit to a diverse group of readers. First, the book can be read by itself as a general introduction to computer graphics for people who want technical substance but not the burden of implementational overhead. Second, it can be used by instructors and students as a resource book to supplement any comprehensive primary text. Third, it may serve as a stepping-stone for practitioners who want something that is more understandable than their graphics system's programmer's manuals.

The first edition of this book has served its audience well for over a decade. I would like to salute and thank my coauthors for their invaluable groundwork. The current version represents a significant revision to the original, with several chapters replaced to cover new topics, and the remaining material updated throughout the rest of the book. I hope that it can serve our future audience as well for years to come.

Thank you for choosing our book. May you find it stimulating and rewarding.

CONTENTS -

1]

	· 这些人,这些不是这些问题。""这种你们。""这种你们是你不能是我的。"	
CHAPTER 1	INTRODUCTION	1
	1.1 A Mini-survey	1
	1.2 What's Ahead	5
CHAPTER 2	IMAGE REPRESENTATION	6
	2.1 The RGB Color Model	7
	2.2 Direct Coding	8
	2.3 Lookup Table	9
	2.4 Display Monitor	9
	2.5 Printer	11
1. 1. 1. 2017	2.6 Image Files	14
	2.7 Setting the Color Attribute of Pixels	15
	2.8 Example: Visualizing the Mandelbrot Set	16
CHAPTER 3	SCAN CONVERSION	25
	3.1 Scan-Converting a Point	25
	3.2 Scan-Converting a Line	25
	3.3 Scan-Converting a Circle	20
	3.4 Scan-Converting an Ellipse	35
	3.5 Scan-Converting Arcs and Sectors	40
	3.6 Scan-Converting a Rectangle	41
	3.7 Region Filling	42
	3.8 Scan-Converting a Character	45
	3.9 Anti-Aliasing	47
1. A.M.	3.10 Example: Recursively Defined Drawings	51
4		
CHAPTER 4	TWO-DIMENSIONAL TRANSFORMATIONS	68
	4.1 Geometric Transformations	68
	4.2 Coordinate Transformations	71
	4.3 Composite Transformations	73
	4.4 Instance Transformations	76
CHAPTER 5	TWO-DIMENSIONAL VIEWING AND CLIPPING	89
	5.1 Window-to-Viewport Manning	00

CONTENTS

	5.2 Point Clipping	91
	5.3 Line Clipping 5.4 Polygon Clipping	91
	5.5 Example: A 2D Graphics Pipeline	96 99
	ene Example. A 20 Graphies Tipeline	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CHAPTER 6	THREE-DIMENSIONAL TRANSFORMATIONS	114
V	6.1 Geometric Transformations	114
	6.2 Coordinate Transformations	117
	6.3 Composite Transformations6.4 Instance Transformations	117
1	0.4 Instance Transformations	118
CHAPTER 7	MATHEMATICS OF PROJECTION	128
V.	7.1 Taxonomy of Projection	129
V	7.2 Perspective Projection	129
	7.3 Parallel Projection	132
CHAPTER 8	THREE-DIMENSIONAL VIEWING AND CLIPPING	151
CITATIEN O		
	8.1 Three-Dimensional Viewing8.2 Clipping	151
	8.3 Viewing Transformation	155 158
	8.4 Example: A 3D Graphics Pipeline	159
CHAPTER 9	GEOMETRIC REPRESENTATION	174
	9.1 Simple Geometric Forms	174
	9.2 Wireframe Models	175
	9.3 Curved Surfaces	176
	9.4 Curve Design9.5 Polynomial Basis Functions	176
	9.5 Polynomial Basis Functions9.6 The Problem of Interpolation	177
	9.7 The Problem of Approximation	179 181
	9.8 Curved-Surface Design	181
	9.9 Transforming Curves and Surfaces	186
	9.10 Quadric Surfaces	186
	9.11 Example: Terrain Generation	189
CHAPTER 10	HIDDEN SURFACES	197
	10.1 Depth Comparisons	197
	10.2 Z-Buffer Algorithm	197
	10.3 Back-Face Removal	200
	10.4 The Painter's Algorithm	200
	10.5 Scan-Line Algorithm	203
	10.6 Subdivision Algorithm	207

and a second		
	10.7 Miller Line Fliningting	209
	10.7 Hidden-Line Elimination	209
	10.8 The Rendering of Mathematical Surfaces	209
CHAPTER 11	COLOR AND SHADING MODELS	229
		229
	11.1 Light and Color 11.2 The Phong Model	234
	11.3 Interpolative Shading Methods	236
	11.4 Texture	239
CHAPTER 12	RAY TRACING	251
	12.1 The Pinhole Camera	251
	12.2 A Recursive Ray-Tracer	252
	12.3 Parametric Vector Representation of a Ray	253
	12.4 Ray-Surface Intersection	256
	12.5 Execution Efficiency	258
	12.6 Anti-Aliasing	260
	12.7 Additional Visual Effects	261
Annondix 1	MATHEMATICS FOR TWO-DIMENSIONAL	
Appendix 1	COMPUTER GRAPHICS	273
	A1.1 The Two-Dimensional Cartesian Coordinate System	273
	A1.2 The Polar Coordinate System	277
	A1.3 Vectors	278
	A14 Matrices	281

CONTENTS

A1.5 Functions and Transformations

Appendix 2

MATHEMAT	ICS F	OR T	HREE-DIMEN	SIONAL	
OMPUTER	GRAI	PHICS	5		

A2.1 Three-Dimensional Cartesian Coordinates	298
A2.2 Curves and Surfaces in Three Dimensions	300
A2.3 Vectors in Three Dimensions	303
A2.4 Homogeneous Coordinates	307

ANSWERS TO SUPPLEMENTARY PROBLEMS

I

INDEX

321

283

298

ix