
Workstation
l	 window
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Viewing
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Window

Two-Dimensional
Viewing and Clipping

Much like what we see in real life through a small window on the wall or the viewfinder of a camera, a
computer-generated image often depicts a partial view of a large scene. Objects are placed into the scene
by modeling transformations to a master coordinate system, commonly referred to as the world coordinate
system (WC). A rectangular window with its edges parallel to the axes of the WCS is used to select the
portion of tOe scene for which an image is to be generated (see Fig. 5-1). Sometimes an additional
coordinate System called the viewing coordinate system is introduced to simuIat the effect of moving
and/or tilting the camera.

On the other hand, an image representing a view often becomes part of a larger image, like a photo on
an album page, which models a computer monitor's display area. Since album pages vary and monitor
sizes differ fr)m one system to another, we want to introduce a device-independent tool to describe the
display area. This tool is called the normalized device coordinate system (NDCS) in which a unit (1 x 1)
square whose ower left corner is at the origin of the coordinate system defines the display area of a virtual
display device. A rectangular viewport with its edges parallel to the axes of the NDCS is used to specify a
sub-region of the display area that embodies the image.

World coordinate system
Normalized deice	 Device) image
coordinate system	 coordinate system

Fig. 5-1 Viewing transformation.
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The process that converts object coordinates in WCS to normalized device coordinates is called
window-to-viewport mapping or normalization transformation, which is the subject of Sect. 5.1. The
process that maps normalized device coordinates to discrete device/image coordinates is called work-

station transformation, which is essentially a second window-to-viewport mapping, with a workstation
window in the normalized device coordinate system and a workstation viewport in the device coordinate
system. Collectively, these two coordinate-mapping operations are referred to as viewing transformation.

Workstation transformation is dependent on the resolution of the display device/frame buffer. When
the whole display area of the virtual device is mapped to a physical device that does not have a 1/I aspect
ratio, it may be mapped to a square sub-region (see Fig. 5-1) so as to avoid introducing unwanted
geometric distortion.

Along with the convenience and flexibility of using a window to specify a localized view comes the
need for clipping, since objects in the scene may be completely inside the window, completely outside the
window, or partially visible through the window (e.g. the mountain-like polygon in Fig. 5-1). The clipping
operation eliminates objects or portions of objects that are not visible through the window to ensure the
proper construction of the corresponding image.

Note that clipping may occur in the world coordinate or viewing coordinate space, where the window
is used to clip the objects; it may also occur in the normalized device coordinate space, where the
viewport/workstation window is used to clip. In either case we refer to the window or the view-
port/workstation window as the clipping window. We discuss point clipping, line clipping, and polygon
clipping in Sees. 5.2, 5.3, and 5.4, respectively.

WINDOW-TO-VIEWPORT MAPPING

A window is specified by four world coordinates: wx,,..., wx, wy nin , and wy. (see Fig. 5-2).
Similarly, a viewport is described by four normalized device coordinates: VXmm, VXm, vy, and vy.
The objective of window-to-viewport mapping is to convert the world coordinates (wx, wy) of an arbitrary
point to its corresponding normalized device coordinates (vx, vy). In order to maintain the same relative
placement of the point in the viewport as in the window, we require:

WX - WX	 - VX VXmm
and 	-	 =Ymm	 V' - Vy

- 
WX - WX,,.	 VXm - VX	 Ymax - 'Ymrn V)' -

Thus

VX
I= VX -. VXmjn (wx - w) + vxn,jn

WX,r - WI

VY	

X.

 -vy	
wymin) + VYmin

max - Ymin

Since the eight coordinate values that define the window and the viewport are just constants, we can
express these two formulas for computing (vx, vy) from (wx, wy) in terms of a translate—scale—translate
transformation N

(;)=N.(:)

VXm - VXmin	 0	 0
WXrr -

0	 )VYmin 0
14Ym,x -

0	 0	 1

where

/1 0 VX

N=I0 1 VYmm.

0	 1

/1 0	 min

10 1	 WYflthi

\o 0	 1



Fig. 5.2 Window-to-.viewport mapping.
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Note that geometric distortions occur (e.g. squares in the window become rectangles in the viewport)
whenever the two scaling constants differ.

',,_/2 POINT CLIPPING

Point clipping is essentially the evaluation of the following inequalities:

Xmm X X.	 and Ymin y
where x, x, y and y define the clipping window. A point (x, y) is cosidered inside the window
when the inequalities all evaluate to true.

5.3 LINE CLIPPING

Lines that do not intersect the clipping window are either càmpletely inside the window or completely
outside the window. On the other hand, a line that intersects the clipping window is divided by the
intersection point(s) into segments that are either inside or outside the window. The following algorithms
provide efficient ways to decide the spatial relationship between an arbitrary line and the clipping window
and to find intersection point(s).

ah.^Qhn—Sutherland Algorithm

In this algorithm we divide the line clipping process into two phases: (1) identify those lines which
intersect the clipping window and so need to be clipped and (2) perform the clipping.

A.11- lines fall into one of the following clipping categories:

1. Visible—both endpoints of the line lie within the window.
2. Not visible—the line definitely lies outside the window. This will occur if the line from (x 1 , y ) to

(x2 ,y2) satisfies any one of the following four inequalities:

X1,X2>Xr	 YI1Y2>Ymax

X1,X2<X	 YI,Y2<Ymin

3. Clipping candidate—the line is in neither category 1 nor 2.

In Fig. 5-3, line AB is in category I (visible); lines CD and EF are in category 2 (not visible); and lines
GH, If, and KL are in category 3 (clipping candidate).
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I	 I

Fig. 5-3

The algorithm employs an efficient procedure for finding the category of a line. It proceeds in two
steps:

( 1. Assign a 4-bit region code to each endpoint of the line. The code is determined according to which
of the following nine regions of the plane the endpoint lies in

1001 1 i000	 1010
Ymx

0001	 0000	 0010
ymin ---	 -

6101	 0100	 0110
Xmin	 X

Starting from the leftmost bit, each bit of the code is set to true (1) or false (0) according to the
scheme

t. Bit 1 endpoint is above the window = sign (y -
Bit 2 endpoint is below the window = sign ( y,, -
Bit 3 endpoint is to the right of the window = sign (x - Xm)

Bit 4 endpoint is to the left of the window = sign (x,, - x)

We use the convention that sign(a) 1 if a is positive, 0 otherwise. Of course, a point with code
0000 is inside the window.

12.._The line is visible if both region codes are 0000, and not visible if the bitwise logical AND of the
codes is not 0000, and a candidate for clipping if the bitwise logical AND of the region codes is
0000 (see Prob.

For a line in category 3 we proceed to find the intersection point of the line with one of the boundaries
of the clipping window, or to be exact, with the infinite extension of one of the boundaries (see Fig. 5-4).
We choose an endpoint of the line, say (x 1 , y), that is outside the window, i.e., whose region code is not
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I	 C(Oi0O)
Xn.b.

Fig. 5-4

0000. We then select an extended boundary line by observing that those boundary lines that are candidates
for intersection are the ones for which the chosen endpoint must be "pushed across" so as to change a "1"
in its code to a "0" (see Fig. 5-4). This means:

If bit 1 is 1, intersect with line  =.y,,,.
If bit 2 is 1, intersect with line y = y.
If bit 3 is 1, intersect with line x =x.
If bit 4 is 1, intersect with line x = x.

Consider line CD in Fig. 5-4. If endpoint C is chosen, then the bottom boundary line y y is
/ selected for computing intersection. On the other hand, if endpoint D is chosen, then either the top

boundary line y = y	 or the right boundary line x = x	 is used. The coordinates of the intersectionuit
point are

I

J x1=xorx
	

if the boundary line is vertical
= Yi + m(; - x1)

or

Xi =X1 +(y, —y1)/m
	

if the boundary line is horizontal>_
VL ymin ory

where m = (y2 — y 1 )/(x2 —x 1 ) is the slope of the line.
Now we replace endpoint (x1, .v 1 ) with the intersection point (x 1 , y,), effectively eliminating the portion

of the original line that is on the outside of the selected window boundary. The new endpoint is then
assigned an updated region Code and the clipped line re-categorized and handled in the same way. This
iterative process terminates when we finally reach a clipped line that belongs to either category I (visible)
or category 2 (not visible).

Jntision	 ..	

i.An alternative way to process a line m category 3 s based on binary search. The line is divided at its
midpoint into two shorter line segments. The clipping categories of the two new line segments are then
determined by their region codes. Each segment in category 3 is divided again into shorter segments and
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categorized. This bisection and categorization process continues until each line segment that spans across a
window boundary (hence encompasses an intersection point) reaches a threshold for line size and all other
segments are either in category I (visible) or in category 2 (invisible). The midpoint coordinates (Xm, Ym) of
a line joining (x1, y 1 ) and (X2 , Y2) are given by

^2)X,_ 
2 Ym

The example in Fig. 5-5 illustrates how midpoint subdivision is used to zoom in onto the two
intersection points I and 12 with 10 bisections. The process continues until we reach two line segments that
are, say, pixel-sized, i.e., mapped to one single pixel each in the image space. If the maximum number of
pixels in a line is M, this method will yield a pixel-sized line segment in N subdivisions, where 2 1" = M or
N = 1092 M. For instance, when M = 1024 we need at most N = log, 1024 = 10 subdivisions.

Fig. 5-5

Liang—Barsky Algorithm

The following parametric equations represent a line from (x 1 y) to (X21 y2) along with its infinite
extension:

Jx = x i + Ax . u
l y = y ' +Ay.0

where Ax = x2 - x 1 and Ay = .Y2 - Yi . The line itself corresponds to 0 < u 1 (see Fig. 5-6). Notice that
when we traverse along the extended line with u increasing from —oc to +oc, we first move from the
outside to the inside of the clipping window's two boundary lines (bottom and left), and then move from
the inside to the outside of the other two boundary lines (top and right). If we use u 1 and u,, where u 1 u2,
to represent the beginning and end of the visible portion of the line, we have u1 = maximum(0, u1, u,,) and
U2 = minjmum(l, u,, ut), where u1, Ub, u, and u correspond to the intersection point of the extended line
with the window's left, bottom, top, and right boundary, respectively.
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X_

Fig. 5-6

Now consider the tools we need to turn this basic idea into an efficient algorithm. For point (x,y)
inside the clipping window, we have

Xj1 <X1 +LXU <X

Y	 Yi + AY • U

Rewrite the four inequalities as
k=l,2,3,4

where

= —Ax	 q 1 = - Xmm	 (left)

P2 =&	q2=x—x1	 (right)

P3 = Y	 q3 = Yi - jmm	 (bottom)

p4 —_ Ay	 q4=y—y1	 (top)

Observe the following facts:

• if P* = 0, the line is parallel to the corresponding boundary and

	

J if q <0,	 the line is completely outside the boundary and can be eliminated
if q	 0 1	the line is inside the boundary and needs further consideration,

• ifpk <0, the extended line proceeds from the outside to the inside of the corresponding boundary
line,

• ifpk > 0, the extended line proceeds from the inside to the outside of the corresponding boundary
line,

• when pk i4 0, the value of u that corresponds to the intersection point is qk/pk.

The Liang—Barsky algorithm for finding the visible portion of the line, if any, can be stated as a four-step
process:

1. If Ph = 0 and q <0 for any k, eliminate the line and stop. Otherwise proceed to the next step.

2. For all k such thatpk <0, calculate rk = qk/pk . Let u 1 be the maximum of the set containing 0
and the calculated r values.

3. For all k such that Ph > 0, calculate r = qk/pk- Let u2 be the minimum of the set containing I
and the calculated r values.

4. If u1 > u21 eliminate the line since it is completely outside the clipping window. Otherwise, use u1

and u2 to calculate the endpoints of the clipped line.
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5.4 POLYGON CLIPPING

In this section we consider the case of using a polygonal clipping window to clip a polygon.

, /nvex P	 nal Cli ing Windows

A polygon is called convex if the line joining any two interior points of the polygon lies completely
inside the polygon (see Fig. 5-7). A non-convex polygon is said to be concave.

J
Convex
polygon

C >
Concave
polygon

Fig. 5-7

By convention, a polygon with vertices P i , . . P (and edges P1 .. 1 P1 and PNPI) is said to be
positively oriented if a tour of the vertices in the given order produces a counterclockwise circuit.

Equivalently, the left hand of a person standing along any directed edge P .1 P1 or FNPI would be
pointing inside the polygon [see orientations in Figs. 5-8(a) and 5-8(b)].

A	 A

(a) Positive orientation.	 (b) Negative orientation.

Fig. 5-8

Let A(x 1 , Yl) and B(x2 , Y2) be the endpoints of a directed line segment. A point P(x, y) will be to the
left of the line segment if the expression C = (x2 - x 1 )(y - Y) - (Y2 - Yi )(x - x 1 ) is positive (see Prob.
5.13). We say that the point is to the right of the line segment if this quantity is negative. If a point P is to
the right of any one edge of a positively oriented, convex polygon, it is outside the polygon. If it is to the
left of every edge of the polygon, it is inside the polygon.

This observation forms the basis for clipping any polygon, convex or concave, against a convex
polygonal clipping window.4. Sutherland—Hodgman Algorithm

Let P1 , ... , PN be the vertex list of the polygon to be clipped. Let edge E, determined by endpoints A
and B, be any edge of the positively oriented, convex clipping polygon. We clip each edge of the polygon in
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turn against the edge E of the clipping polygon, forming a new polygon whose vertices are determined as
follo)w 

,./Consider the edge Pi-,Pi:

If both P,_ I and P1 are to the left of the edge, vertex P1 is placed on the vertex output list of the
clipped polygon [rig. 5-9(a)].
If both P1_ I and P1 are to the right of the edg, nothing is placed on the vertex output list [Fig.
5-9(b)].
If P ._ 1 is to the left and P1 is to the right of the edge E, the intersection point I of line segment
P1_ 1P1 with the extended edge E is calculated and placed on the vertex output list [Fig. 5-9(c)].

If P,_ 1 is to the right and P1 is to the left of edge E, the intersection point I of the line segment
P_ 1 P1 with the extended edge E is calculated. Both I and P1 are placed on the vertex output list
[Fig. 5-9(d)).

The algorithm proceeds in stages by passing each clipped polygon to the next edge of the window and
clipping. See Probs. 5.14 and 5.15.

2.

3

4.

E

TtT

Pi I

LIR
(a)

E

/;F,
P,

Output

A
p1-I

L 
(c)

//

P,	 Output
Output I

L I 
(d)

-

/No output

L 
(b)

Fig. 5-9

Special attention is necessary in using the Sutherland-Hodgman algorithm in order to avoid unwanted
effects. Consider the example in Fig. 5-10(a). The correct result should consist of two disconnected parts, a
square in the lower left corner of the clipping window and a triangle at the top [see Fig. 5-10(b)]. However,
the algorithm produces a list of vertices (see Prob. 5.16) that forms a figure with the two parts connected by
extra edges [see Fig. 5-10(c)]. The fact that these edges are drawn twice in opposite direction can be used
to devise a post-processing step to eliminate them.

The Weiler-Atherton Algorithm

Let the clipping window be initially called the clip polygon, and the polygon to be clipped the subject
polygon [see Fig. 5-11(a)]. We start with an arbitrary vertex of the subject polygon and trace around its
border in the clockwise direction until an intersection with the clip polygon is encountered:

If the edge enters the clip polygon, record the intersection point and continue to trace the subject
polygon.
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(a)	 (b)	 (c)

Fig. 5-10

• If the edge leaves the clip polygon, record the intersection point and make a right turn to follow
the clip polygon in the same manner (i.e., treat the clip polygon as subject polygon and the subject
polygon as clip polygon and proceed as before).

Whenever our path of traversal forms a sub-polygon we output the sub-polygon as part of the overall result.
We then continue to trace the rest of the original subject polygon from a recorded intersection point that
marks the beginning of a not-yet-traced edge or portion of an edge. The algorithm terminates when the
entire border of the original subject polygon has been traced exactly once.

Subject polygon

For example, the numbers in Fig. 5-11(a) indicate the order in which the edges and portions of edges
are traced. We begin at the starting vertex and continue along the same edge (from I to 2) of the subject
polygon as it enters the clip polygon. As we move along the edge that is leaving the clip polygon we make
a right turn (from 4 to 5) onto the clip polygon, which is now considered the subject polygon. Following
the same logic leads to the next right turn (from 5 to 6) onto the current clip polygon, which is really the
original subject polygon. With the next step done (from 7 to 8) in the same way we have a sub-polygon for
output [see Fig. 5-11 (b)]. We then resume our traversal of the original subject polygon from the recorded
intersection point where we first changed our course. Going from 9 to 10 to 11 produces no output. After
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skipping the already-traversed 6 and 7, we continue with 12 and 13 and come to an end. The figure in Fig.
5-11(b) is the final result.

Applying the Weiler—Atherton algorithm to clip the polygon in Fig. 5-10(a) produces correct result
[see Fig. 5-12(a) and (b)J.

(a)

	

	 (b)

Fig. 5-12

5.5 EXAMPLE: A 2D GRAPHICS PIPELINE

Shared by many graphics systems is the overall system architecture called the graphics pipeline. The
operational organization of a 2D graphics pipeline is shown in Fig. 5-13. Although 2D graphics is typically
treated as a special case (z = 0) of three-dimensional graphics, it demonstrates the common working
principle and basic application of these pipelined systems.

Modeling Viwrng	 Scm,O*ct	 Tnsfmtion
Coaveision(fmrne buffer)

{	

i
Wmw & viispod	 Color Utnbut.o
ietflogo

Fig. 5-13 A 2D graphics pipeline.

At the beginning of the pipeline we have object data (e.g., vertex coordinates for lines and polygons
that make up individual objects) stored in application-specific data structures. A graphics application uses
system subroutines to initialize and to change, among other things, the transformations that are to be
applied to the original data, window and viewport settings, and the color attributes of the objects.
Whenever a drawing subroutine is called to render a pre-defined object, the graphics system first applies
the specified modeling transformation to the original data, then carries out viewing transformation using
the current window and viewport settings, and finally performs scan conversion to set the proper pixels in
the frame buffer with the specified color attributes.

Suppose that we have an object centered in its own coordinate system [see Fig. 5-14(a)], and we are to
construct a sequence of images that animates the object rotating around its center and moving along a
circular path in a square display area [see Fig. 5-14(b)]. We generate each image as follows: first rotate the
object around its center by angle a, then translate the rotated object by offset . Ito position its center on the
positive x axis of the WCS, and rotate it with respect to the origin of the WCS by angle P. We control the
amount of the first rotation from one image to the next by i.a, and that of the second rotation by Afl.
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EM E3

('i)

	

	 (b)

Fig. 544

window(-winsize/2, winsize/2, -winsize/2, winsize/2);
= 0;

while (1)
setColor(background);
clearO;
setColor(color);
pushCTMO;
translate(offset, 0);
rotate();
drawObjectO;
popCTMO;

= rz + ;
rotate(i/3);

We first set the window of winsize by winsize to be sufficiently large and centered at the origin of the
WCS to cover the entire scene. The system's default viewport coincides with the unit display area in the
NDCS. The default workstation window is the same as the viewport and the default workstation viewport
corresponds to the whole square display area.

The graphics system maintains a stack of composite transformation matrices. The CTM on top of the
stack, called the current CTM, is initially an identity matrix and is automatically used in modeling
transformation. Each call to translate, scale, and rotate causes the system to generate a corresponding
transformation matrix and to reset the current CTM to take into account the generated matrix. The order of
transformation is maintained in such a way that the most recently specified transformation is applied first.
When pushCTMO is called, the system makes a copy of the current CTM and pushes it onto the stack (now
we have two copies of the current CTM on the stack). When popCTMO is called, the system simply
removes the CTM on top of the stack (now we have restored the CTM that was second to the removed
CTM to be the current CTM).

Panning and Zooming

Two simple camera effects can be achieved by changing the position or size of the window. When the
position of the window is, for example, moved to the left, an object in the scene that is visible through the
window would appear moved to the right, much like what we see in the viewfinder when we move or pan a



CHAP. 5]	 TWO-DIMENSIONAL VIEWING ANt) CI I'PL\i. 	 1W

camera. On the other hand, if we fix the window on an object but reduce or in rease its site, the object
would appear bigger (Loom in or smatter (zoom out), respectively.

Double Buffering

Producing an animation sequence by clearing the display screen and cOnstruetintL , the next tiame of
image often leads to flicker, since an image is erased almost as soon as it is completed. An efletivc
solution to this problem is to have two frame buffers: one holds the image on displa while the 'vstcm
draws a new image into the other. Once the new image is drawn, a call that looks like sv.apl3iifThri
cause the two buffers to switch their roles.

Lookup Table Animation

We can sometimes animate a displayed image in the lookup table representation by changing or
cycling the color values in the lookup table. For example, we may draw the monochromatic object in Fig.
5-14a) into the frame buffer in several pre-determined locations, using consecutive lookup table entries for
the color attribute in each location (see Fig. 5-15). We initialize lookup table entry 0 with the color of the
object, and all other entries with the background color. This means that in the beginning the object is
visible only in its first position (labeled 0). Now if we simply reset entry () with the background color and
entry I with the object color, we would have the object "moved" to its second position (labeled I) without
redrawing the image. The object's circular motion could hence be produced by cycling the object color
through all relevant lookup table entries.

E1& 
I4I% &

I	 I

II,	 &

Fig. 5-IS

8-A
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Solved Problems

5.1	 Let

VX - VXmm	 and	 s 
= tY. - VYmin

WX - WX	 -

Express window-to-viewport mapping in the form of a composite transformation matrix.

SOLUTION

/1 0 Vxmm\ (Sx00\(10—wx,

N=I0 I v:y,,nI 	 0	 °I 1 01 —wy,,..,
\o 0.	 i )	 o 0 1/ \o o	 1

(S	 0	 SWX,,,,,, + VX,

	

= 0 
S,	 SYW.Y,= + vy,,,

\o o	 I

5.2 Find the normalization transformation that maps a window whose lower left corner is at (1, 1) and
upper right corner is at (3, 5) onto (a) a viewport that is the entire normalized device screen and ()
a viewport that has lower left corner at (0, 0) and upper right corner (, ).

SOLUTION

From Prob. 5.1, we need only identify the appropriate parameters.
(a) The window parameters are wx,,,,,, = 1, wx = 3,	 = 1, and wy = 5. The viewport parameters

are vx., ,, = 0, ux, = I, uy,,... = 0, and vy,,,, = I. Then s = s = , and

0 - 
1 )

	

N =I 0 	-0
\0 0 i

(b) The window parameters are the same as in (a). The viewport parameters are now vx,, = 01 vx =
vy, = 0,	 = Then s = I1 s. = k. and

	

It	 I

	

14	 4

	

N=(0	 -
\o  o I

5.3 Find the complete viewing transformation that maps a window in world coordinates with x extent 1
to 10 and  extent I to 10 Onto a viewport with x extent to and  extent 0 to in normalized
device space, and then maps a workstation wind'- with x extent 1 to 1 and y extent 1 to 1 in the
normalized device space into a workstation viewp ..wt with x extent 1 to 10 and y extent 1 to 10 on
the physical display device.

SOLUTION

From Prob. 5.1, the parameters for the normalization transformation are wx,,...,,, = I, wr.,, = 10,
= 1, wy,,, = 10, and vx = , vx,,j= , vy,, = 0, and vy, = . Then

1/2	 1	 1/2	 1
S_--_i

8-B
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and

	

( JO0
	 7

18

N= 	

-o o	 1
The parameters for the workstation transformation are wx, = , wx = , wy = , v.y =and t	 = I, vx = I0 vy = 1, and vy. 10. Then

s =j-=36	 s,	 =36

and

(36 0 —8
W= 0 36 —8

	

O 0	 1
The complete viewing transformation V is

(36 0 _8\(

0 36 —8 
110

0

360	 ) = ( /2 0 —1'

I	 .LlB	 IS	 0 2

0	 I	 \0 0	 I/

5.4 Find a normalization transformation from the window whose lower left corner is at (0, 0) and upper
right corner is at (4, 3) Onto the normalized device screen so that aspect ratios are preserved.
SOLUTION

The window aspect ratio is a,,, = . Unless otherwise indicated, we shall choose a viewport that is as large
as possible with respect to the normalized device screen. To this end, we choose the x extent from 0 to I and
they extent from 0 to 3 . So

As in Prob. 5.2, with parameters wx = 0, wr,, = 4, wy,,,,,, 0, wy, = 3 and vx,,., = 0, vx	 = I,=0, VYm..* =

(

1000N= 	0

0 i

5.5	 Find the normalization transformation N which uses the rectangle A( 1, 1), B(5, 3), C(4, 5), D(0, 3)as a window [Fig. 5-16(a)] and the normalized device screen as a viewport [Fig. 5-16(b)].
SOLUTION

We will first rotate the rectangle about A so that it is aligned with the coordinate axes. Next, as in Prob.5. 1, we calculate s, and sy and finally we compose the rotation and the transformation N (from Prob. 5.1) tofind the required normalization transformation NR.
The slope of the line segment AB is

3—t	 I
M =	 = -

S—I 2
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5.6

Fig. -I6

Looking at Fig. 5-11, we see that -.I will be the direction of the rotation. The angle I) is determined from the

slope of a line (App. 1) by the equation tan 0 = 	 Then

sin O= - -:	 and so	 sinl-O) --.-.	 coSO=	 .

The rotation matrix about Ai l I is then (('hap. 4. Prob, 4.4j:

2	 I	 /	 3

	

5	 I	 '

	

R	 -	 I	
(i--)

The x extent of the rotated window is the length tif.ill	 milarIy. the 'v extent is the length of AD. Using

the distance formula (App. 1) 10 calculate these lengths vteld.

	

d(.l.R).2:±4=LO=2v'5	 ,,.l.I))	 I2+22=5

Also, the x extent of the noniialiied de' ice screen is I. as is the I extent. Calculating ., and .c.

- viewpoil . extent	 I	 viewport extent - I

- window extent	 " - window v extent -

So

	

0	 --

	

S	 2.15

--

The normali,an"n tian,ionnation is then

Let R be the rectangular windo\\ k hose lowerleft-hand comer is at L( - 3. 1 and upper right-hand

corner is at R(2. 6). Find ih .:ii odes hr the endpoints in Fig. 5-17.
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010s

y

J(-2. 10)

(lOOI)	 (1000)

8(-1, 7)

y. 0-6---
I)

C(-1,5)
'I

(0001)(0000)-

E(-2, 3)

A(-4.2)

F(I, 2)

I	 (1010

I R(2. 6)

(0010)

11(3. 3)

- I - ------

I	 I	 I	 -

(0101)

-

13

((0100)	 0110)

G(I. -2) I
-	 x,-2

x

Fig. 5-17

SOLUTION

The region code for point (x. y) is set according to the 1,11CIM,

Bit I = Ign(v-t,,,) = signIl - 6)	 Bit 3 = slgn(.i -	 signx-- 2)

Bit 2 -r sigfl{t.,, -y)	 sign(] -o	 Bit 4-= sign(.i,	 v)	 sign --3 - v)

Here

I	 if a is positive
Sign(o) - 0 otherwise

So

	

Al -4.2) -. 0001	 111.2) • (101)0

BC-I.	 1000	 01. -2 --. 0)0(1

Cl - I 51	 (tOOt)	 H(3.3)-- 0010

1)13	 )	 ItIlO	 11-471 --. 1001

	

2. 3 j --. 1)011()	 it --2. If)) -. 1000
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5.7 Clipping against rectangular windows whose sides are aligned with the r and y axes involves
computing intersections with vertical and horizontal lines. Find the intersection of a line segment

homing P,(x,y,) to P2(x2 ,y2)] with (a) the vertical line x = a and (b) the horizontal line
y = b.

SOLUTION

We write the equation of	 in parametric form (App. 1, Prob. Al.23):

lx=x,+:(x2-x,)
0 t	 l	

(5.1)

1 y=y,+t(y2 -YO,	 (5.2)

(a) Since x = a, we substitute this into equation (5.1) and find t = (a - x1 )/(x2 - x1 ). Then, substituting this
value into equation (5.2), we find that the intersection point is x1 = a and

yj=y,+(	 )6-i)\X2 -X1

(b) Substituting y = b into equation (5.2), we find I= (b - y, )/(Y2 - y, ). When this is placed into equation
(5. 1). the intersection point is y, = b and

	

/b	 \
xj x i +	

-y
(,,	 ' (x2_ x)i)

2 T

5.8	 Find the clipping categories for the line segments in Prob. 5.6 (see Fig. 5-17).

SOLUTION

We place the line segments in their appropriate categories by testing the region codes found in Prob. 5.6.

Category I (visible): FFF since the region code for both endpoints is 0000.
Category 2 (not visible): ii since (1001) AND (1000) = 1000 (which is not 0000).
Category 3 (candidates for clipping): TB- since (0001) AND (1000) = 0000, 	 since (0000) AND
(1010) = 0000, and 'OH since (0100) AND (0010) = 0000.

5.9	 Use the Cohen-Sutherland algorithm to clip the line segments in Prob. 5.6 (see Fig. 5-17).

From Prob.58, the candidates for clipping are AB, CD, and Gil.
In clipping AB, the code for A is 0001. To push the 1 to 0, we clip against the boundary line x, -3.

The resulting intersection point is',( 3 ). We clip (do not display) A!, and work on 4L The code for!, is
0000. The clipping category for 1 is 3 since (0000) AND (1000) is (0000). Now B is outside the window
(i.e., its code is 1000), so we push the 1 to a 0 by clipping against the line y, = 6.The resulting intersection
is I(- I, 6). Thus 1 is clipped. The code for '2 is 0000. The remaining segment 'j'2 is displayed since both
endpoints lie in the window (i.e., their codes are 0000).

For clipping CD, we start with D since it is outside the window. Its code is 1010. We push the first 1 to a 0
by clipping against the liney = 6The resulting intersection! 3 is (,6) and its code is 0000. Thus 1 is
clipped and the remaining segment C!3 has both endpoints coded 0000 and so it is displayed.

For clipping GH, we can start with either G or H since both are outside the window. The code for G is
0100, and we push the I to a 0 by clipping against the line y, = 1. The resulting intersection point is
I4(2, I), and its code is 0010. We clip G!4 and work on 411. Segment 411 is not displayed since (0010)
AND (0010) = 0010.

5.10 Clip line segment	 of Prob. 5.6 by using the midpoint subdivision process.

1k'hr.1i

The midpoint subdivision process is based on repeated bisections. To avoid continuing indefinitely, we
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agree to say that apoint (x1 , y1 ) lies on any of the boundary lines of the rectangle, say, boundary line  =
for example, if -TOL <x 1 - x <TOL. Here TOL is a prescribed tolerance, some small number, that is
set before th1rocess begins.

To clip CD, we determine that it is in category 3. For this problem we arbitrarily choose TOL = 0.1. We
find the midpoint of CD to be M1 (1. 6.5). Its code is 1000.	 -

So A?b is not displayed since (1000) AND (1010) = 1000. We further subdivide (M since (0000)
AND (1000) = 0000. The midpoint of CM 1 is M2 (0, 5.75); the code for M2 is 0000. Thus CM2 is displayed
since both endpoints are 0000 and M--291- is a candidate for clipping. The midpoint ofM2 M1 is M3(0.5.6 125),
and its code is 1000. Thus W3M, is chipped and M2M3 is subdivided. The midpoint of M2M3 is
M4(0.25, 5.9375), whose code is 0000. However, since Yi = 5.9375 lies within the tolerance 0.1 of the
boundary line y,. = 6—that is, 6- 5.9375 = 0.0625 <0.1, we agree that M4 lies on the boundary line

= 6. Thus MM is displayed and MW is not displayed. So the original line segment CD is clipped at
M4 and the process stops.

5.11 Suppose that in an implementation of the Cohen-Sutherland algorithm we choose boundary lines in
the top-bottom--right-left order to clip a line in category 3, draw a picture to show a worst-case
scenario, i.e., one that involves the highest number of iterations.

SOLUTION

See Fig. 5-18.

or	

.......	 ..	 .. ....

Fig. 5-18

5.12 Use the Liang-Barsky algorithm to clip the lines in Fig. 5-19.

I D(3, 10)
H(S,9)

Fig. 5-19

B (II, 10)

A(I 1,6)

J(II, I)
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SOLUTION

For line AB. we have

Pi	 q1=l0
P2°	 q2=-2
p 3 = —4	 q3=4
p, = 4	 q4=2

Since P2 = 0 and q 2 < — 2, AB is completely outside the right boundary.
For line CD, we have

Pi0	 q1=2
P2°	 q2=6
P3 = -3	 73=5	 r3=—
p=3	 q.=l	 r4=

Thus u 1 = max(0, - ) = 0 and u 2 = rnin(l, ) = . Since u 1 < a2 , the two endpoints of the clipped line arc
(3,7) and (3, 7+3(i)) = (3, 8).

For line EF, we have

Pt = —6	 q, = 	 r,= -

P2 6	q2=7	 r2=
P3	 q3 =I	 r3=-1

P4	 q4=5	 r4=

Thus u 1 = max(0, -, — l)= 0 and U2 = min(1.,5)= 1. Since U t = 0 and a2 = I, lincEF is completely
inside the clipping window.

For line GH, we have

p=2	 q1=5	 r1=—
P2 2	 q2=3	 r2=

P3 = -3	 q3=4	 r3=—
P4 =3	 q=2	 r4=4

Thus U 1 = mac(0, -. —) = 0 and a2 =min(l, , 4) = 4 . Since a 1 < u 2 , the two endpoints of the clipped
line are (6,6) and (6 + 2(i), 6 + 3(4)) = (7 , 8).

For line If, we have

Pi'2	 q 1 =-2	 rt=
P2 = ' 2	q2=10	 r2=
P3 = 6	 q, = 5	 r3=
p4 =-6	 q4=1	 r4=—

Thus U t = max(0, , — ) = and u2 min(l, , ) = . Since U t < u2 , the two endpoints of the clipped line
are (-1 + 12(k), 7 + (-6)()) = (1,6) and (—I + 12(),7 + (-6)()) = (9. 2).

5.13 How can we determine whether a point P(x.y) lies to the left or to the right of a line segment
joining the points A(x 1 , y 1 ) and B(x2,y2)?

SOLUTION

Refer to Fig. 5-20. Form the vectors AR and AP. If the point P is to the left of AB, then by the definition
of the cross product of two vectors (App. 2) the vector AR x AP points in the direction of the vector K
perpendicular to the xv plane (Sec Fig. 5-20). If it lies to the right, the cross product points in the direction



Fig. 5-20

AIX
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-K. Now

AB=(x2-xj)I+(j.-)J	 AP=(s-t.)l+(- ,)J

So

Then the direction of this cross product is determined by the number

t

If C is 1ositive. P lies to the left of AB. If C is negative, then I' lie, ti the right of It 13.

5.14 Draw a flowchart illustrating the logic of the Sutherland-Hodgman algorithm.

SOLUTION

The algorithm inputs the vertices of a polygon one at a time. For each input vcilc.x. either zero. one. or
two output vertices will be generated depending on the relationship of the input erticcs to the clipping edge
E.

We denote by P the input vertex, S the previous input vertex, and F the first arriving input et1ex The
vertex or vertices to be output are determined according to the logic illustrated in the flowehan in Fig 5 . 2 I.
Recall that a polygon with a vertices P1 . P2 ..... I',, has it edges PP2.......,, P,, and the edge P,,1' 1 closing
the polygon. In order to avoid the need to duplicate the input of P 1 as the final input sertex land a
corresponding mechanism to duplicate the final output vertex to close the pol ygon), the Ji 'sing logic shown in
the flowchart in Fig. 5-22 is called after processing the final input vertex P.

5.15 Clip the polygon P 1 ,	 Pq in Fig. 5-23 against the window ABCD using the Suthei.land-
Hodgman algorithm.

SOLUTION

At each stage the new output polygon, whose vertices are determined by applying the Sutherland--
Hodgman algorithm (Prob. 5.14). is passed on to the next clipping edge of the window ..l&'D. The results are
illustrated in Figs. 5-24 through 5-27.

5.16 Clip the polygon P 1 , . . . . P in Fig. 5-10 against the rectangular clipping window using the
Sutherland-Hodgman algorithm.

SOLUTION

We first clip against the top boundary line, then the left, and finally the bottom [he right boundary is
omitted since it does not affect any vertex list. The intermediate and final result , are in Fig.
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Fig. 5-21
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R10

/	 \,	 JR,

0	 RaA R) R5

Qio
I)Q'\_A__1

LIR
R	 Q3A QQ,	 Q.B

Fig. 5-24 Clip against A.	 Fig. 5-25 Clip against	 .

5.17 Use the Weiler—Atherton algorithm to clip the polygon in Fig. 5-29(a).

SOLUTION

See Fig. 5-29(b) and (c).

5.18 Consider the example in Sect. 5.5, where the object would appear turning slowly around its center
even if we set Aa = 0. How to keep the orientation of the object constant while making it rotate
around the center of the display area?
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S1 p 	 S, C	 R

	

So	 L

s,(

S.

\. A
S2  	 SR

Fig. 5-26 (lip iginst (I).

RIL

T i .	 T,0

At
	

r, T.

Fig. 5-27 (lip against 1).-L

R.

R IR
(1111 dI!UITbI

k!i hunda.

Fig. 5-28

Subject
polygon

ç.oiygon	 ver!c

ME

Hg. 5-29

SOLUTION

X:	 \fl. i.e..	 =

5.19	 I-low to animate the t1a in I	 3,)4,o that :mtv he	 .v& dIeT tti p •	 its uIng lookup t,ihle
animation?

SOLUTION

See Fig 5- 3,00 , 1 [he area where p ii 	 as,.ncif entr U that hits the .ir if
the flag. The rest fp'sitinii 	 s is;zne' nlrs I and tt., it ;syiItIii .. erlra 2 \v we ,nl\ need ii alternate
entries I and 2	 ccv the thig cd.i	 'he h.t.kgr tr.d color.
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ZZ

Fig. -3If

Supplementary Problems

5.20 Find the workstation transfonnatton that maps the normalized device screen onto a physical device whose x
extent is 0 to 199 and v extent is  to (39 where the origin is located at the (a) lower left corner and (h) upper

left corner of the device.

	

5.21	 Show that for a viewing transformation. .c, ., if and only if a = a, where a is the aspect ratio of the

window and a the aspect ratio of the vlewpon.

	

5.22	 Find the normalization transformation which uses a ciri .1 radius five units and center (1, I) as a window

and a circle of radius L and center (. ) as a viewporl

	

5.23	 Describe how clipping a line against a circular indow (or viewpsirl) might proceed. Refer to Fig. 5- U

IN (h  + r. k + r)

L(II - r, * -

t

5.24	 Lc the ,uthcrhiitd 11 demar'.	 ',n'.h,	 il	 -• nc /',I	 j . 2j to 1 1 i,,,4t ag.i'.ln'

rotated mdos n 'n



Three-Dimensional
Transformations

Manipulation, viewing, and Construction of three-dimensional graphic images requires the use of three-
dimensional geometric and coordinate transformations. These transformations are formed by composing
the basic transformations of translation, scaling, and rotation. Each of these transformations can be
represented is a matrix transformation. This permits more complex transformations to be built up by use of
matrix multiplication or concatenation

As 
with two-dimensional transformations two complementary points of view are adopted: either the

object is manipulated directly through the use of geometric transformations, or the object remains
stationary and the viewer's coordinate system is changed by using coordinate transformations In addition,
the Construction of complex objects and scenes is facilitated by the use of instance transformations. Theconcepts and transformations introduced here are direct generalizations of those introduced in Chap. 4 fortwo-dirnensiottal transformations.

6.1 GEOMETRIC TRANSFORMATIONS

With respect to some three-dimensional coordinate system', an object Obj is considered as a set ofpoints:

Obj= (P(x,y,z))

lIthc object is moved to a new position, we can regard it as a new object Obj', all of whose coordinatepoints I"(v'.	 can be obtained from the original coordinate points P(x, y, z) of Obj through theapplication of a Veometric transformation.

Translation

An object is disptaced a given distance and direction from its original position. The direction and
displacement of the translation is prescribed by a vector

V = a! + bJ + cK

114
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The new coordinates of a translated point cap be calculated by using the transformation

X'=x+a

7;,: /=y+b
2' =Z+C

(see Fig. 6-1). In order to represent this transformation as a matrix transformation, we need to use
homogeneous coordinates (App. 2). The required homogeneous matrix transformation can then be
expressed as

fx'\	 10 0 a	 x
Iy'I	 0 1 0 b	 y

0 0 1 c	 z

\iJ	 0 0 0 1	 1

I

_;__P'X'•Y

P(r.y. 4

VA

X

Fig. 6-1

aling

The process of scaling changes the dimensions of an object. The scale factor sdetennipe whether the
scaling is a magnification, s> 1, or-a reductio n, s < 1.

Scaling with respect to the origin, where the origin remains fixed, is effected by the transformation

F x' = s .

S,,: y'=s.y

I. z' = S

In matrix form this is

S'.-sy-^. = ('j soy 00)
0 0 s

>/otation
Rotation in three dimensions is considerably more complex than rotation in two dimensions. In two

dimensions, a rotation is prescribed by an angle of rotation S and a center of rotation P. Three-dimensional
rotations require the prescriptioin of an angle of rotation and an axis of rotation. The canonical rotations
are defined when one of the positive x, y, or z coordinate axes is chosen as the axis of rotation. Then the
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construction of the rotation transformation proceeds just like that ola rotation in two dimensions about the
origin (see Fig. 6-2).

z

y

P(x. Y, 0)

P'(x', y'. 0)

X

Fig. 6-2

Rotation about the: Axis
From Chap. 4 we know that

V = xcosO —ysinO
&'l, : =x sin U+v Cos O	 j

Rotation about the y AxL

An analogous derivation leads to

= x COS 0 ± sin ()

R:	 =
= —xsin0+:cost)

Rotation about the x Axis
Similarly:

= x
!?oi: V = vcos0 - : sin O

z' =v sin 0±: Cos ()

Note that the direction of a positive angle of rotation is chosen in accordance to the right-hand rule with
respect to the axis of rotation (App. 2).

The corresponding matrix transformations are

/ cosO — sine

Rk = sin 	 cosO 0
k o	 o	 i

/ cos 0 0 sin 0

=	
0	 I	 0

\ —sinU 0 cosO

/1	 0	 0

R,1 = 0 cost) - sinG

\0 51110 coo
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The general use of rotation about an axis L can be built up from these canonical rotations using matrix
multiplication (Prob. 6.3).

COORDINATE TRANSFORMATIONS

We can also achieve the effects of translation, scaling, and rotation by moving the observer who views
the object and by keeping the object stationary. This type of transformation is called a coordinate

7
S

Fig. 6-3

transformation. We first attach a coordinate system to the observer and then move the observer and the
attached coordinate system. Next, we recalculate the coordinates of the observed object with respect to this
new observer coordinate system. The new coordinate values will be exactly the same as if the observer had
remained stationary and the object had moved, corresponding to a geometric transformation (see Fig. 6-3).

If the displacement of the observer coordinate system to a new position is prescribed by a vector
V = a! +bJ+cK, a point P(x,y,z) in the original coordinate system has coordinates P(x', /,z') in the
new coordinate system, and

= x - a
y'=y—b
z' = z - C

The derivation of this transformation is completely analogous to that of the two-dimensional transforma-
tion (see Chap. 4).

Similar derivations hold for coordinate scaling and coordinate rotation transformations.
As in the two-dimensional case, we summarize the relationships between the matrix forms of the

coordinate transformations and the geometeric transformations:
Coordinate Transformations 	 Geometric Transformation.

Translation	 'v
Rotation	 -	 R_9

Scaling	 S,	 S1 /,

Inverse geometric and coordinate transformations are constructed by performing the reverse operation.
Thus, for coordinate transformations (and similarly for geometric transformations):

=	 = k -0
	

=

6.3 COMPOSITE TRANSFORMATIONS

More complex geometric and coordinate transformations are formed through the process of
composition of functions. For matrix functions, however, the process of composition is equivalent to

9-A
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matrix multiplication or concatenation. In Probs. 6.2, 6.3, 6.5, and 6.13, the following transformations are
constructed:

1. AV,N = aligning a vector V with a vector N.

2. RO L = rotation about an axis L. This axis is prescribed by giving a direction vector V and a point
P through which the axis passes.

3. = scaling with respect to an arbitrary point P.

In order to build these more complex transformations through matrix concatenation, we must be able
to multiply translation matrices with rotation and scaling matrices. This necessitates the use of
homogeneous coordinates and 4 x 4 matrices (App. 2). The standard 3 x 3 matrices of rotation and
scaling can be represented as 4 x 4 homogeneous matrices by adjoining an extra row and column as
follows:

fa b c 0
I d e f 0

h i 0
\0 0 0 1

These transformations are then applied to points P(x, y, z) having the homogeneous form:

(n

EXAMPLE 1. The matrix of rotation about the y axis has the homogeneous 4 x 4 form:

R0	

( 

cosO 0 sin 	 0\
o	 i	 0

= —sinO 0 cosO vi
o	 o	 0	 1)

6.4 INSTANCE TRANSFORMATIONS

If an object is created and described in coordinates with respect to its own object coordinate space, we
can place an instance or copy of it within a larger scene that is described in an independent coordinate
space by the use of three-dimensional coordinate transformations. In this case, the transformations are
referred to as instance transformations. The concepts and construction of three-dimensional instance
transformations and the composite transformation matrix are completely analogous to the two-dimensional
cases described in Chap. 4.

Solved Problems

6.1	 Define tilting as a rotation about the x axis followed by a rotation about they axis: (a) find the tilting
matrix; (b) does the order of performing the rotation matter?

9-B
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SOLUTION

(a) We can find the required transformation T by composing (concatenating) two rotation matrices:

T = R9, R81

	

cos 0Y 0 sin O, 0	 1	 0	 0	 0

-	 0	 1	 0	 0	 0 cos 0 - sin 0 0

-

	

sin 0Y 0 cos 0Y 0	 0 sin 0.	 cos 0. 0

o	 0	 0	 1	 0	 0	 0	 1

cos 0)	 Sin 0, sin 0	 sin 0, cos 0	 0

-	 0	 cos0	 —sin0	 0

—sin 0, cos 0,. sin 0 cos 0, cos 0 0

o	 o	 0	 I

(b) We multiply R 1 Ro,,j to obtain the matrix

cos 0y	0	 sin 0Y	0
sin 0. sin 0,	 cos 0. — sin 0 cos 0, 0

— cos 0 sin 0, sin 0. cos 0 cos O	 0
0	 0	 0	 1

This is not the same matrix as in part a; thus the order of rotation matters.

6.2	 Find a transformation Av which aligns a given vector V with the vector K along the positive z axis.

SOLUTION

See Fig. 64(a). Let V = al + bJ + cK. We perform the alignment through the following sequence of
transformations [Figs. 6-4(b) and 64(c)]:

I. Rotate about the x axis by an angle 0 1 so that V rotates into the upper half of the xz plane (az the vector
V1).

2. Rotate the vector V 1 about the y axis by an angle 02 so that V 1 rotates to the positive z axis (as the
vector V2).

Implementing step I from Fig. 6-4(b), we observe that the required angle of rotation 0 1 can be found by
looking at the projection of V onto the y7 plane. (We assume that b and c are not both zero.) From triangle
OFB:

sin 01=	
b -
	 cos01=

./b2 +c2	.1b2+c2

The required rotation is

1	 0	 0	 0

	

c.	 h

-.1b2 +c2 77+7
R01=	

b	 c
	0 

.1b2 -t-c2 	 .1b2+c2	
0

0	 0	 0

Applying this rotation to the vector V produces the vector V 1 with the components (a, 0, Ib2 + c2).
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Implementing step 2 from Fig. 6-4(c), we see that a rotation of -0 2 degrees is required, and so from
triangle OQ:

sin(-02) = -sin 02	
a	 and	 cos(-02) = COS 02

-

	

./a2+b2+c2	 ,/a2+b2+c2

Then

,/c2	 —a
,/ä2 +b2 +c2	,l2b2+c2

	0 	 1	 0	 0

	

a	 .1b2+c2	 0
'la2 +b2 +c2	,/ä2+b2+c2

	O 	 0	 0

Since lVi = ./a2 + b2 + c2 , and introducing the notation 1= lb2 + c2 , we find

AV  R_9 R1

A -ab -ac
lvi	 ivi AIVI 0

•'

	

a	 b	 a
iv	 vi	 vi 0

	

0	 0	 0	 1

If both band care zero, then V = a!, and so A = 0. In this case, only a ±90 rotation about they axis
is required. So if A = 0, it follows that

0 0
-a

0100
a—000
a!

	0 	 )	 0	 1

In the same manner we calculate the inverse transformation that aligns the vector K with the vector V:

A;' =	 R9,,)-' =	 R:,,3 = R_0,, R8

A	 0	
a 

0
vi	 ivi

	

-ab c	 b

	= A I V I	 A

V1

0

	

-ac	 b c

	

A I V I	 A vi 0

0	 0	 01

6.3	 Let an axis of rotation L be specified by a direction vector V and a location point P. Find the

transformation for a rotation of 90 about L. Refer to Fig. 6-5.
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SOLUTION

We can find the required transformation by the following steps:

1. Translate P to the origin.
2. Align V with the vector K.
3. Rotate by 0° about K.
4. Reverse steps 2 and I.

So

	

ROL = T J. .	 R0	 As,. T

Here, A, is the transformation described in Prob. 6.2.

6.4 The pyramid defined by the coordinates A(O, 0, 0), B(l, 0, 0), C(Q, I, 0), and D(0, 0, I) is rotated
450 about the line L that has the direction V = J + K and passing through point C(0, I, 0) (Fig.
6-6). Find the coordinates of the rotated figure.

SOLUTION

From Prob. 6.3, the rotation matrix RO L can be found by concatenating the matrices

= r:, .A . ROK .A.

With P = (0, I, 0), then

-

	

/ 1 0 0	 0\
0 1 0

	

0 0 1	 ol

	

(	 0 0	 I)
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Now V = J + K. So from Prob. 6.2, with a = 0, b =1, c = I, we find A = .J, 1 VI = ./. and

0,f120
AV	

00	 070

00	 01	 00	 01

Also

I	 —1
00

72= T2

1	 I
00

R45-.K	 T2 72

0	 010

0	 001

1000

0101
=

() 0	 1	 0

o 0 0 I

Then

	

I	 I	 I

2

	

2+	 2—v'2 2—v

ROL=
	 4	 4	 4

2—/ 2 + ./2 /-2
2
	

4	 4	 4

0
	

0	 0	 1

To find the coordinates of the rotated figure, we apply the rotation matrix RIL to the matrix of homogeneous

coordinates of the vertices A, B. C, and D:

/0 10 0\
(o o I

C=(ABCD)= I 0 0 0 1

1	 1	 1	 I)

So

	

1	 I+/ 0
2

	

2_	

4—	 2—II
ROL . C =	4	 2

—2	 —4 
0	

j
4	 4

	

1	 1	 1	 I,

The rotated coordinates are (Fig. 6-7)

/12—	 ñ-2\
A' =	 4	

C' =(0. 10)

fI+	 4—'/
4	 ,	 4
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a

L

-

I y

I 
A

/

Fig. 6-7

63 Find a transformation AVN which aligns a vector V with a vector N.

SOLUTION

We form the transformation in two steps. First, align V with vector K, and second, align vector K with
vector N. So from Prob. 6.2,

AvN= AN ' .Av

Referring to Prob. 6.12, we could also get AVN by rotating V towards N about the axis V x N.

	

6.6	 Find the transformation for mirror reflection with respect to the .xy plane.

SOLUTION

From Fig. 6-8, it is easy to see that the reflection of P(x,y, z) is P'(x,y, —z). The transformation that
performs this reflection is

/1 0	 0
M= I 0 1 0

O 0 —1

	

6.7	 Find the transformation for mirror reflection with respect to a given plane. Refer to Fig. 6-9.

SOLUTION

Let the plane of reflection be specified by a normal vector N and a reference point P0 (x0 , Yo' z0). To
reduce the reflection to a mirror reflection with respect to the Xy plane:

I. Translate P0 to the origin:
2. Align the normal vector N with the vector K normal to the .y plane.
3. Perform the mirror reflection in the xy plane (Prob. 6.6).
4. Reverse steps I and 2.

So, with translation vector V = —x01 - y,J -. z0K

MNP0 = Ty AN- ' ° M . A N .

Here, A N is the alignment matrix defined in Prob. 6.2. So if the vector N = n 1 1 + n2J + n3 K, then from Prob.
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z

P(x, Y. z)

0.

Y. 0)

6 P(X, Y, -z)

Fig. 6-S

6.2, with INI = .,/nf + n + n and A = ., /n-2f—+—n,7, we find

Fig. 6-9

	'A	 23'0\(ii TI N	 A I N I 	 I

	

°	

n3	 '

AN=	

7 T

	

n I	n2	
ol

2

I
0I

	

ii	 INI	 NI

	

0	 0	 0	 1/

In addition

/1 0 0 —x0\

iry 0 1 0 —YO

0 0 0	 1
- 00 1 _z0J

	

I A	
0

P	
IN I

0I232

and	 A'=	 A I N I	 A	 iii	 I
0I

AINI	 2	 INI	 I

	

0	 0	 0 i)

/1 0 0 x0\

1 0 Yo
and	 T=10 0 I z01

0 0 i)

Finally, from Prob. 6.6, the homogeneous form of M is

/ 1 0	 0 o\
—M	

0 1 0 0
- 0 0 —1 01

0 0

6.8	 Find the matrix for mirror reflection with respect to the plane passing through the origin and having
a normal vector whose direction is N = I + J + K.
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SOLUTION

From Prob. 6.7, with P0(0, 0,0) and N = I + J + K, we find INI = ,/ and A = -/i Then

1000	 1000

0100	 0100
(V=01+OJ+OK)	 T%,=

0010	 0010

0001	 0001

	

I-1	 —1

I
	I 	 —1	

o0	 f
AN = 	 7	 I

I	 I	 I
ol

^73 73 173

0	 0	 0	 I,

r72 73=

 

010

—1	 I	 I
0

—1	 —1 —I

0	 0	 01

and

1 0	 0 O\

	

M—	
1	 0 01

- 0 0 —1 0!
0 0	 0 i)

The reflection matrix is

MNO=T' A .M.ANTV

	

1	 2	 2

	

3	 3	 3

	

2	 I	 20

	

-	 3	 3	 3

	

-	 2	 2

	

3	 3	 3

	0 	 0	 01

Supplementary Problems

6.9	 Align the vector V = I + J + K with the vector K

6.10 Find a transformation which aligns the vector V = I + J + K with the vector N = 21 - J - K.

6.11	 Show that the alignment transformation satisfies the relation A' = 4.

6.12 Show that the alignment transformation 4 	 is equivalent to a rotation of 00 about an axis having the
direction of the vector V x N and pas ..ing through the origin (see Fig. 6-10). Here 0 is the angle between
vectors V and N.
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6.13	 How can scaling with respect to a point P0 (x0 , y0 . Z) be defined in tenns of scaling with respect to the origin?
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Mathematics of
Projection

Needless to say, there are fundamental differences between the true three-dimensional world and its
pictorial decnption. For centuries, artists, engineers, designers, drafters, and architects have tried to come
to terms with the difficulties and constraints imposed by the problem of representing a three-dimensional
object or scene in a two-dimensional medium—the problem of projection. The implementers of a computer
graphics system face the same challenge.

Projection can be defined as a mapping of point P (x, y, z) onto its image P' (X', )/, z') in the projection
plane or vieitp plane, which constitutes the display surface (see Fig. 7-I). The mapping is determined by a
projection line called the projector that passes through P and intersects the view plane. The intersection
point is P.

Fig. 7-1 The problem of projection.

The result of projecting an object is dependent on the spatial relationship among the projectors that
project the points on the object, and the spatial relationship between the projectors and the view plane (see
Sec. '7.1). An important observation is that projection preserves lines. That is, the line joining the projected
images of the endpoints of the original line is the same as the projection of that line.

The two basic methods of projection—perspective and parallel—are designed to solve the basic but
mutually exclusive problems of pictorial representation: showing an object as it appears and preserving its

128
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true size and shape. We characterize each method and introduce the mathematical description of the
projection process in Sec. 7.2 and 7.3, respectively.

7.1 TAXONOMY OF PROJECTION
We can construct different projections according to the view that is desired.
Figure 7-2 provides a taxonomy of the families of perspective and parallel projections. Some

projections have names—cavalier, cabinet, isometric, and so on. Other projections qualify the main
type of projection—one principal vanishing-point perspective, and so forth.

Projections

Perspective

(eonvet5mg

One point Two point Three point
(ore	 (Iwo	 (three
_psI vmcqw -
vanI.hiu.	 vani.hütg	 v.ni.bing
point)	 point-)	 points)

Parallel
(p.relLel	 ton)

Orthographic	 Oblique
(projectote popeedioster	 (peojectore not pposdiotelar
to view plane)	 to v.ow plane)

Multiview	 Axonometrk	 General
(view plane	 (view plan.
perelloito	 not p.r.11eI to
priwipla	 P°P"	 Cavalier Cabinet
pIanos)	 pianos)

/ \

/
Isometric Dimetrtc Trimetric

Fig. 7-2 Taxonomy of projection.

7.2 PERSPECTIVE PROJECTION
Basic Principles

The techniques of perspective projection are generalizations of the principles used by artists in
preparing perspective drawings of three-dimensional objects and scenes. The eye of the artist is placed at
the center ofprojection, and the canvas, or more precisely the plane containing the canvas, becomes the
view plane. An image point is determined by a projector that goes from an object point to the center of
projection (see Fig. 7-3).

Perspective drawings are characterized by perspective foreshortening and vanishing points. Perspective
foreshortening is the illusion that objects and lengths appear smaller as their distance from the center of
projection increases. The illusion that certain sets of parallel lines appear to meet at a point is another
feature of perspective drawings. These points are called vanishing points. Principal vanishing points are
formed by the apparent intersection of lines parallel to one of the three principal x, y, or z axes. The number
of principal vanishing points is determined by the number of principal axes intersected by the view plane
(Prop. 7.7).

Mathematical Description of a Perspective Projection

A perspective transformation is determined by prescribing a center of projection and a view plane. The
view plane is determined by its view reference point R0 and view plane normal N. The object point P is
located in world coordinates at (x, y, z). The problem is to determine the image point coordinates
P'(x',)', ) (see Fig. 7.3).
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P(x.y.:)

N
N.	 r(.. v' 0)

View
plane

Ccntcr of-
projection

Rcxo,,za)	
NView rcIcrcncc

	

point	 View plane

	

X	 normal

Pi(x,r.z)

P2	-

y N	 .4(x,O,x)

C(O.O.-d)

Fig. 7-3	 Fig. 74

EXAMPLE 1. The standard perspective projection is shown in Fig. 7-4. Here, the view plane is the xy plane, and
the center of projection is taken as the point C(O, 0, —d) on the negative z axis.

Using similar triangles ABC and AOC, we find

	

x'=—
d.x
	 ± z' =O

	

z+d	 z+d

The perspective transformation between object and image point is nonlinear and so cannot be represented as a
3 x 3 matrix transformation. However, if we use homogeneous coordinates, the perspective transformation can be
represented as a 4 x 4 matrix:

fx'	 dx	 d 0 0 0 (x)
- d . y - 0 d 0 0 y
-	 0	 0000	 z

z+d	 0 0 1 d	 I

The general form of a perspective transformation is developed in Prob. 7.5.

Perspective Anomalies

The process of constructing a perspective view introduces certain anomalies which enhance realism in
terms of depth cues but also distort actual sizes and shapes.

1. Perspective foreshortening. The farther an object is from the center of projection, the smaller it
appears (i.e. its projected size becomes smaller). Refer to Fig. 7-5.



Fig. 7-6 Fig. 7-7
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Vkw -

C—i)	 I	 A	 B z

Nodr SpheBis2f dmthesIeof

iplicre A. yet both sphcrss appear to be the
lame elm when projected onto the view plane

Fig. 7-5

2. Vanishing points. Projections of lines that are not parallel to the view plane (i.e. lines that are not
perpendicular to the view plane normal) appear to meet at some point on the view plane. A
common manifestation of this anomaly is the illusion that railroad tracks meet at a point on the
horizon.

EXAMPLE 2. For the standard perspective projection, the projections L, 	 L'2 of parallel lines L1 and L2 having
the direction of the vector K appear to meet at the origin (Prob. 7.8). Refer to Fig. 7-6.

3. View confusion. Objects behind the center of projection are projected upside down and backward
onto the view plane. Refer to Fig. 7-7.

4. Topological distortion. Consider the plane that passes through the center of projection and is
parallel to the view plane. The points of this plane are projected to infinity by the perspective
transfonnation. In particular, a finite line segment joining a point which lies in front of the viewer
to a point in back of the viewer is actually projected to a broken line of infinite extent (Prob. 7.2)
(see Fig. 7-8).
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C(O, 0,

dl,'

-3
,

/
P2	 '

/

.v4
C

S
Points P of line L are projected, through C.

onto points Pon line U in the .xy view plan
P3 is projected to infinity

Fig. 7-8

7.3 PARALLEL PROJECTION

Basic Principles

Parallel projection methods are used by drafters and engineers to create working drawings of an object
which preserves its scale and shape. The complete representation of these details often requires two or
more views (projections) of the object onto different view planes.

In parallel projection, image points are found as the intersection of the view plane with a projector
drawn from the object point and having a fixed direction (see Fig. 7-9). The direction ofprojection is the
prescribed direction for all projectors. Orthographic projections are characterized by the fact that the
direction of projection is perpendicular to the view plane. When the direction of projection is parallel to
any of the principal axes, this produces the front, top, and side views of mechanical drawings (also referred
to as multiview drawings). Axonometric projections are orthographic projections in which the direction of
projection is not parallel to any of the three principal axes. Nonorthograhic parallel projections are called
oblique parallel projections. Further subcategories of these main types of parallel projection are described
in the problems. (See also Fig. 7-10.)

Mathematics! Description of a Parallel Projection

A parallel projective transformation is determined by prescribing a direction of projection vector V
and a view plane. The view plane is specified by its view plane reference point R0, azid view plane normal
N. The object point P is located at (x, y, z) in world coordinates. The problem is to determine the image
point coordinates P'(x',.>/,z'). See Fig. 7-9.

If the projection vector V has the direction of the view plane normal N, the projection is said to be
orthographic. Otherwise it is called oblique (see Fig. 7-10).

Some common subcategories of orthographic projections are:

I. Isometric—the direction of projection makes equal angles with all of the three principal axes
(Prob. 7.14).

2. Dimetric—the direction of projection makes equal angles with exactly two of the principal axes
(Prob. 7.15).

3. Trimetric—the direction of projection makes unequal angles with the three principal axes.
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Y	 Direction of V
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projection
Vie. plane

P(x. Y. )

Orthographic..

N

R

B

.4	 _ Oblique

Lf'\! \\
Y
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z

A

Fig. 7-9	 Fig. 7-10

Some common subcategories of oblique projections are:

I. Cavalier—the direction of projection is chosen so that there is no foreshortening of lines
perpendicular to the xv plane (Prob. 7.13).

2. Cabinet—the direction of projection is chosen so that lines perpendicular to the ty planes are
foreshortened by half their lengths (Prob. 7.13).

EXAMPLE 3. For orthographic project i on onto the xy plane, from Fig. 7-I1 it is easy to see that

ParkJ

A' = X

.V=
= 0

The matrix form of Park is

1000
0100

Par= 
0 0 0 0
0001

The general parallel projective transformation is derived in Prob. 7.11.

Solved Problems

7.1 The unit cube (Fig. 7-12) is projected onto the xv plane. Note the position of the x, y, and: axes.
Draw the projected image u...ing the standard perspective transformation with (a) d = I and (b)
d = 10, where il is distance from the view plane.

10-A



/C(O, 0. — d)

z

Fig. 7-12
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S

Fig. 7-Il

SOLUTION
We represent the unit cube in terms of the, homogeneous coordinates of its vertices:

	

/ 0 I 10 0 0 1	 i\

	

0 0 1	 I I 00
V = (ABcDEFGH)

	

- 0000 1 1	 I	 iJ
I	 I	 I	 I	 1	 1	 1	 I,

10-B
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From Example I the standard perspective matrix is

cI000
o I 0 0

Pcrk=	 0 0
ooId

(a) With d = I, the projected coordinates are found by applying the matrix Perk to the matnx of coordinates
V. Then

01100011
0 0 1	 I	 I 0 0 I

Perk'V= 0 0 0 0 0 0 0 0
11112222

If these homogeneous coordinates are changed to three-dimensional coordinates, the projected
image has coordinates:

A'=(O,O,O)	 E'=(O,LO)
ff=(t.0,0)	 F'=(O,O.0)
C'=(l,I,O)	 G'=(l,O,O)
D'=(O,l,O)	 H'=(,,0)

We draw the projected image by preserving the edge connections of the original object (see Fig. 7-
13). [Note the vanishing point at (0, 0, 0).]

(b) With d = 10, the perspective matrix is

10 0 0 0
0 tO 0 0

PerK= 0 0 0 0
0	 0 1 10

Then

(0 10 JO	 0	 0	 0 10 JOI 0	 0 10 10 JO	 0 0 10
PerxV=1 0 0 0 0 0 0 0 0

	

to 10 10 10	 II	 ii	 11	 II

is the matrix image coordinates in homogeneous form. The projected image coordinates are then

A'=(O,O,O)	 E'=(0,,0)
B=(1,0,0)	 F'=(O,O,O)

C=(1,1,0)	 G'=(,0,0)

IY=(0,1,0)	 /f=(,.0)It
	

11

Note the different perspectives of the face E'FG'H' in Figs. 7-13 and 7-14. [To a viewer standing at the
center of projection (0, 0, —d), this face is the back face of the unit cube.]

7.2	 Under the standard perspective transformation PerK , what is the projected image of (a) a point in
the plane z = —d and (b) the line segment joining P 1 (-1, I, —2d) to P2 (2, —2. 0)? (See Fig. 7-15.)

SOLUTION

(a) The plane z = —d is the plane parallel to the xv view plane and located at the center of projection
C(0, 0, —d). If P(x,y, —a) is any point in this plane, the line of projection CP does not intersect the xy
view plane. We then say that P is projected out to infinity (oc).

(b) The line P	 passes through the plane z = —d. Writing the equation of the line (App. 2), we have

x=—l+3t	 y=l-3g	 z=-2d+2dz



Fig. 7-13 Fig. 7-14
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Fig. 7-15
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We see that at t = 1 : x = , y - , and z = —d. These are the coordinates of the intersection point I.
We now describe the perspective projection of this line segment.
Applying the standard projection to the equation of the line, we find

	

d 0 0 0 	 —1 +3t	 —d+3dt

	

o d 0 0	 1-3t	 d-3dt

	

o 0 0 0	 —2d+2dt =	 0

	

o o I d	 I	 —d+2dt

Changing from homogeneous to three-dimensional coordinates, the equations of the projected line
Segment arc

—d+3d:-1+3t- d-3dt - 1-3t

	

X_d+2dt_I+2	 —d+2dt-1+2,

(In App. I. Prob. Al.12, it is shown that this is the equation of a line.) When t = 0, then x = I and
y = —1. These are the coordinates of the projection Pj of point P1 . When t = 1, it follows that x = 2 and
y = —2 (the coordinates of the projection P c  point P2 ). However, when I = , the denominator is 0.
Thus this line segment "passes" through the point at infinity in joining P( I, - I) to P(2, —2). In other
words, when a line segment joining endpoints P 1 and P2 passes through the plane containing the center
of projection and which is parallel to the view plane, the projection of this line segment is not the simple
line segment joining the projected endpoints P and P. (See also Prob. A 1.13 in App. I.)

Using the origin as the center of projection, derive the perspective transformation onto the plane
passing through the point R0(x0 , Yo, z0 ) and having the normal vector N = n 1 1 -I-n2.! + n3K.

SOLUTION

\,Let P(xy, z) be projected onto P'(x'..j). From Fig. 7-16, the vectors PO and FO have the same
direction. Thus there is a number a so that P'O = aPO. Comparing componenlwe have

X, = ax	 a	 = ax

b )

x

Fig. 7-16
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We now find the value of a. Since any point P'(x', )', z') lying on the plane satisfies the equation (App. 2)

n i x' + n7y' + n3z' =

(where d0 = n 1 x0 + n2,v + n:11 ), substitution of x' = ax, y' ay, and z' = r into this equation gives

d0
n ix +nly+n3z

This projection transformation cannot be represented as a 3 x 3 matrix transformation. However, by
using the homogeneous coordinate representation for three-dimensional points, we can write the projection
transformation as a 4 x 4 matrix:

(n,

d0 0 0 o\
o d0 0
0 0 d0

n2 fl3 0)

Application of this matrix to the homogeneous representation 'x, .y, z, I) of points P gives P'(d0x, day,

d0z, nix + n2y + it3:), which is the homogeneous representation of P'(x',y, z') found above.

Find the perspective projeenm oia the view plane z = d where the center of projection is the
origin (0, 0, 0).

SOLUTION

The planer = d is parallel To the xv plane (and 1 units away from it). Thus the view plane normal vector
N is the same as the normal sector K to thcxy plane, that is, N = K. Choosing the view reference point as
R010, 0. d), then front Prob. 7.3, we identify the parameters

N(.' 1 , n2 , n) = (0, 01 1)	 Is,( r, V. .) = ( 0, 0, d)

So	 I t

fljX5 1- Fi) {) + n:0 = d

and then the projection matrix is

/d 0 0 o\
I 0 d 0 0 1

= I 0 0 d 0 I
0 I o)

7.5	 Derive the general pccspective transformation onto a plane with reference point R0(x0 , Yo' z0),
normal vector N = n 1 1 + n 2 3 + nK, and using CIa, b, c) as the center of projection. Refer to Fig.
7-17.

SOLUTION

As in Prob. 7.3, we can conclude that the vectors 	 and PC satisfy (see Fig. 7-17) PC = ai'. Then

x'-=:(X--a)+a	 1=a(y-b)+h	 z'=(z—c)+c

Also, we find (by using the equation of the view plane) that

a

[i.e. P'(x'.y',') is on the view plane and thus satisfies the view plane equation n 1 (x' -x0 ) +
n 2 (y -y,) + ii( ' - Zt) = 0. Here. d = (n 1 x0 + n2y0 + n3.-t)) - (n 1 a + n2 h + n3c).

From Apo. 2, Prob. A2.13, d is proportional to the distance D from the view plane to the center of
projection, that is, d = ±INID.

138
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N = ni l + n2J + inK

R0(.r0 . y. z0)

View plane
Y. z)

C(),b.c)
— -I	 ""

0	 I	 Y

X

Fig. 7-17

To find the homogeneous coordinate matrix representation, it is easiest to proceed as follows:

1. Translate so that the center of projection C lies at the origin. Now R = (x0 - a, yo, - b, z0 - c)

becomes the reference point of the translated plane (the normal vector isunchanged by translation).

2. Project Onto the tran sl 	using the origin as the centeL of pmjectin by constructing the

	

transformation Per,( (Prob. 7.3).	 -

3. Translate back.

Introducing the intermediate quantities
d0 =n 1 x0 +n 7yo+fl3 Zo	 and	 d=nia±n2b+73C

we obtain d = do - d, and so FerN R,.c = T . . Perp.y T_ . . Then with R'0 used as the reference point in

constructing the projection PN , R. 1

10 0 a	 d 0 0 0\ 1 0 0 —a

o 10
,L	

b	 0 d 0 ol 0 1 0—b

	

PerN,c= 0 O 1	 .	 0	 d 0	 0 0 1 —c

0 0 0 1	 n1 n2 n3 0) 0 0 0	 1

d+an 1	an2	an3	 —ado

	

-	 bn1	 d+bn2	 bn3	 -bd0

	

-	 cn1	 cn2	 d+cn3 —cd0

n3

7.6 Find the (a) vanishing points for a given perspective transfor ̂ ionin e direction given by a

vector U and (b) principal vanishing points.

SOLUTION

(a) The family of (parallel) lines having the direction of U = it 1 1 + u2 J + u3 K can be written in parametric

form as
x=u11+p	 y=u21+q	 z=u31+r
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where P(p, q, r) is any point (see App. 2). Application of the perspective transformation (Prob. 7.5) to
the homogeneous point (x, y, z, I) produces the result (x', y', z', h), where

X' = (d -4- an 1 )(u 1 t +p) + an2 (u1 1 + q) + an3 (u3 1 + r) -ado
y' = bn 1 (u 1 t +p) + (d+ bn 2 )(u2 1 -4- q) + bn 3 (u3 1 + r) - bd0

= -I (Ult  +p) + cn2 (u2 f + q) + (d + cn 3 )(u3 t + r) - cd0
h = n 1 (u 1 t +p) + n2 (u2 t +q) + n3(u3t + r) - d1

The vanishing point corresponds to the infinite point obtained when t = 00. So after dividing x', j/, and
z' by h, we let t -	 to find the coordinates of the vanishing point:

X.= (d + an 1 )u 1 + an,u2 +an3 u 3	du1
k	 =a+T

(Here,k=N . U=n 1 u 1 +n2u2+n3u3.)

Y.
bn 1 u 1 +(d+bn2 )u2 +bn3u3

k	 -
Z. Cfljt4 + Cn2 u2 ± (d + cn 3 )u3	du3

_c+

This point lies on the line passing through the center of projection and parallel to the vector U (see Fig.
7-18). Note that k = 0 only when U is parallel to the projection plane, in which case there is no vanishing
point.

Center of projection

Z	 k
•"	 View plane

N'
N

Q \ r',
P1

Vanish'ng\<

x

	 L, \

Lines L1 and L2 are parallel to vQ
L and L are projections. thro

lines L1 and L2 Onto view plane

Fig. 7-18

(b) The principal vanishing points P 1 , P2 , and P3 correspond to the vector directions 1, J, and K. In these
cases

Xi=a+ d—	 x2 =a	 x3 =a

Yi =b	 P,: Y2 =b+-	 P3:	 =b

= C	 2 =	
2	 3 = C +

n3

(Recall from Prob. 7.5 that a, h, care the coordinates of the center of projection. Also, n 1 , n 2 , n3 are the
components of the view plane normal vector and d is proportional to the distance D from the view plane
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to the center of projection.) (Note: If any of the components of the normal Vector are zero, say. n=
then k = N I = 0, and there is no principal vanishing point in the I direction.)

7.7

	

	 Describe the (a) one-principal-vanishing-point perspective. (h) two-priitcipaIvanishingpojiit
perspective, and (c) three-principal-vanishing-point perspective.

SOLUTI)N

(a) The one-principal-vanishing-point perspective occurs when the projection plane is perpendicular To

of the principal axes (x,r, or:). Assume that it is the: axis. fit 	 case the view plane nom:il vCctor N
is the vector K, and from prob 7.6, the principal vanishing point is

(b) Thetwo-principal-vanishing-point protection occurs when the projection plane intersects exactl y two of
the principal axes. Refer to Fig. 7-19. which is a perspective drawing with two principal ani sit ill e
points. In the case where the projection plane intersects the x and v axes, for example, the normal vector
satisfies the relattoinship N . K --- I) or n	 1, and so the principal vanishing points are

1
= a -4- --	 - = a

a-	 d
=	 = h +

VP	 —I —	 ----.------..-.	 VP2

Horizon One SE	 — —	 ,. -s

Fig. 7-19

VP1	 VP2

— —,
-"S	 -

N	 .---
-.p..	 • /

N'1
'I!

'U

PP3

Fig. 7-20
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(c) The three-vanishing-point perspective projection occurs when the projection plane intersects all three of
the principal axes—x, y, and z axes. Refer to Fig. 7-20, which is a perspective drawing with three
principal vanishing points. In this case, the principal vanishing points are points 1'. P,, and P 3 from

Prob. 7.6(h).

7.8	 What are the principal vanishing points for the standard perspective transforamtion?

SOLUTION

In this case, the view plane normal N is the vector K. From Prob. 7.6(h). since N . I = 0 and N . J = 0,

there are no vanishing points in the directions I and J. On the other hand. N K = K . K = 1. Thus there is
only one principal vanishing point, and it is in the K direction. From Prob. 7.7(a), the coordinates of the

principal vanishing point VP in the K direction are

1
x=aO	 i'=b0

So VP = (0, 0, 0) is the principal vanishing point.

7.9 An artist constructs a two-vanishing-point perspective by locating the vanishing points VP, and VP,

on a given horizon line in the view plane. The horizon line is located by its height h above the

ground (Fig. 7-2!). Construct the corresponding perspective projection transformation for the cube

shown in Fig. 7-21.

Fig. 7-2!

SOLUTION

A two-principal-vanishing-point perspective must intersect two axes, say, x and v. We locate the view

plane at the point R0 ( 1, I, 0) so that it makes angles of 30 and 60 with the corresponding faces of the cube

(see Fig. 7-2!). In this plane we locate the horizon line a given height h above the "ground" (the xy plane).
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The vanishing points VP, and VI', are located on thk horizon line. 6) construct IIW perspective
transformation, we need to find the normal vector N = nl ± n.j 4- n 1 K of the view plane, the coordinates
C(a,h,c) of the center of projection, and the view parameters J0 . d 1 . and d (Prob. 7.5). To calculate the
coordinates of the vanishing points, we first find the equation of the horizon line. Let I and 12 be the points of
intersection of the view plane and the y and y axes. The horizon line is parallel to the line 1l 12 and lies It units
above it.

From Aangles 1 1 BR5 and 12 DR0, we find

= (i +	 ,0. o) = (_±, o, o) and	 12 (0, I +	 0)

The equation of the line through 1 1 and 12 (App. 2) is

fl+.J\ fI+,J'\
x=(----l—I------)i	 (I	 J3)1	 :=0

\ v3 /	 \ ''3

This line lies in the view plane. So if the equation of the horizon line is then taken to be a lint parallel to this
line and ii units above it, the horizon line is guaranteed to be in the view plane. The equation of the horizon
line is then

x=	 )(l — I)	 i=(I +''3)i	 : -_Ii
'V

The vanishing points l'I' and 17', are chosen to lie on the horizon line. So IT, has coordinates of the form

[(I	
H	 ii *	 and	 VP,= [(I 7)(l —(.),(l

(Here r; and t , 110	 cii so as to place the vanishing points at the desired locations.)
To find the noinial cetor N and the center ofproection C, we use the equations in Prob. 7.6. part (h) for

loca lung the vaiiishiiig points of a gi en perspective transformation. So

fl+ 7 = 	 ti—:1)	 and	 a=(_-7 _- (I	 2)

and

b=(l+)t1	 and	 b+=(l+I3)t,	 and	 e=h
n2

Using the values

+ -/') ( 1 b=(l+.ñ)t1	 c=/r

and then substituting, we find

d(l+/\
111 	

)(1—')	 (7.1)

and

= (I +	 )('2 - f 1 )	 ( 7.2)

Since the plane does not intersect the: axis, then N . K = 0, or using components: n = 0. Finally, we choose
the normal vector N to be of unit length:

NI =V + n + n =	 -4- ,, =

From equations (7.1) and (7.2)

d.,/	 11

= (I + 'J )( fa —iI)	 '2 = ( l+13)(h-11)
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So

II=	
d2	

=1

	

\' (1 + J3)(i - t 1 Y 	 (I +
or

2J

	

= I	 and so	 d =	 - 1)
	(I + J3)(t - 1)	 2

Also

v'3F(l + v'))/21	 .J	 (I -1-.13)/2=	 --	 = --	 and	 n2 =	 = -
	l+J3	 2	 I+/3	 2

Finally, we have

d1 =n 1 a+n2 h+ne= ()(I —)+(l +V3)f =
	
2 
	 tj)]

and

d2 = d + d,=

From Prob. 7.5, the perspective transformation matrix is then

	

- t	 7(I - ,,)	 _( 7_) I -- 1)

---II
I - J3	

'2

Per RC = ------	 h

	

-	 -	 Il
	l+'3	 l+

	

j---	 0	 —[I —('2—
+73

In Chap. 8, Prob. 8.2, it is shown how to convert the transformed image of the cube into x, .v coordinates for
viewing.

7.10 Derive the equations of parallel projection Onto the .y plane in the direction of projection
V = al + hJ + cK.

SOLUTION

From Fig. 7-22 we see that the vectors V and PP' have the same direction. This means that PP = kV.
comparing components, we sec that

	

x' — x=ka	 i'—v=k/i	 t'—:=ke

So

	

k=_:	 x'=x---z	 and	 v'=v— —z
C	 C	 -	 C

In 3 x 3 matrix form, this is

a
/i 0

C

	

Parv= f	hi
PU 1	 --I

( J0 0 0

and so P' = Pars, . p



Fig. 7-22
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P(. I. C)

7.11 Derive the general equation of parallel projection onto a given view plane in the direction of a given
projector V (see Fig. 7-23).

1K View plane

Fig. 7-23

SOLUTION

We reduce the problem to parallel projection onto the it plane in the direction of the projector
V = al + bJ + cK by means of these steps:

1. Translate the view rcfirence point R. of the view plane to the origin using the translation matrix
2. Perform an alignment transformation so that the view normal vector N of the view plane points in the

direction K of the normal to the xi , plane. The direction of projection vector V is transformed to a new
vector V'

3. Project Onto the xi plane usintz Pj-



Fig. 7-24

FJ
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4. Perform the inverse of steps 2 and 1. So finally ParVN =	 A' . Parv' AN' T_. From what we
learned in Chap. 6, we know that

1 0 0 —x0

T	
- ()I 0	 Yo

—R	 0 0 1

	

000	 1

and further from Chap. 6, Prob. 6.2, where ). = s1W2 +--n7 and .. j4 0, that

±0

	

;N'I	 AI	 )lI

	

II .,	 —fl,

Al

	

I)	 -	 0

0

	

I IN!	 IN!	 IN!

	

0	 0	 1

Then, after multiplying, we find

(d 1 - an 1 	—an2 	—an1	 ad0

— I —bn 1 	d 1 - bn2	—bn3	bd0
ParvN - I

I —cn 1	 —cit2	 d 1 —cit 3 cd0

'	 0	 0	 0	 a1

Here d0 = n.x0 ± no + n 3z0 and d 1 = n 1 a + n 2 b + n-ic. An alternative and much easier method to
derive this matrix is by finding the intersection of the projector through P with the equation of the view
plane (see Prob. A2.14).

7.12 Find the general form of an oblique projection Onto the xy plane.

SOLUTION

Refer to Fig. 7-24. Oblique projections (to the xy plane) can he specified by a numberf and an angle 0.
The numberf prescribes the ratio that any line L perpendicular to the plane will he foreshortened after
projection. The angle 0 is the angle that the projection of any line perpendiculas to th v plane makes with the
(positive) x axis.
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To determine the projection transformation, we need to find the direction vector V. From Fig. 7-24, with
line L of length I, we see that the vector PT has the same direction as V. We choose V to be this vector:

V==xI+VJ—K (=aI+bJ+cK)

From Fig. 7-24 we find a =x' =f cosO. b =y' =1 sin 0, and c = —I.
From Prob. 7.10, the required transformation is

(1 0 fcos0 0

- _	 0 1 f sin O 0

	

0	 0	 0

	

\ 0 0	 0	 1

7.13 Find the transformation for (a) cavalier with 0 = 450 and (b) cabinet projections with 0 = 30 (c)
Draw the projection of the unit cube for each transformation.

SOLUTION

(a) A cavalier projection is an oblique projection where there is no foreshortening of lines perpendicular to
the xy plane. From Prob. 7.12 we then see that! = 1. With 0 = 450, we have

	

I 0	 0

	

Parv= 0 i	 0

(b) A cabinet projection is an oblique projection with f = . With 0 = 300, we have

	

1 0	 0

Pary= o i ! ;

To construct the projections, we represent the vertices of the unit cube by a matrix whose columns
are homogeneous coordinates of the vertices (see Prob. 7.1):

01100011

	

V=(ABCDEFGH)=	 I 1 1)

(c) To draw the cavalier projection, we find the image coordinates by applying the transformation matrix
Parv, to the coordinate matrix V.

101 10 -
	 I+	 1+

	

2	 2	 2	 2

Parv.V=Io

0 I I +4
	0000	 0	 0	 0	 0

	

1111	 1	 1	 1	 1,



Fig. 7-25

I	 '0	 £	 .1A'

Fig. 7-26
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The image coordinates are then

A' = (0,0,0)

B' = (1,0,0)

C, 	(1, 1,0)

LV =(0, 1,0)

Refer to Fig. 7-25.
To draw the cabinet projection:

E' = (,1 + x• o)

0
2

G'=1+--,--,0

it, 
= ( 

- I-
	

. 1 +-.o)

I0hb0

1+4 1+4

	

Pary . V = 0 0 1 1 I	 i

	

00000	 0	 0	 0	
JI	 III	 I	 I	 I	 I

The u.iage coordinates are then (See Fig. 7-26)

A' = (0,0,0)

B' =(1,0,0)	

= (, . o)

C = (1, 1,0)
	

G=(I+o)

LV = (0,1,0)
	

H(1 +. i.o)
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7.14 Construct an isometric projection onto the xy plane. Refer to Fig. 7-27.

I

Projections ofvcctotsl',J',X'onto
XV plane have the same length

Fig. 7-27

SOLUTION

We shall find a "tilting" of the x y, z axes that transforms the IJK vector tried to a new Set I'J'K' whose
orthographic projections onto the xy plane produce vectors of equal lengths.

Denoting the tilting transformation by T and the orthographic projection onto the xy plane by POl-K, the
final projection can be written as Par = Pal-K . T, where ParK is as defined in Example 3 and T is as defined
in Prob. 6.1 in Chap. 6. Multiplying, we find

(

cos O, sin6,sinO sin9,,cos6 0

	

o	 cosO	 —sin	 o)

Now

Par . I = (cos 9,,O,O)	 ParJ = (sin 9, sin O, cos O,,0)	 ParK =(sin O, Cos O,, —sin O,O)

(the projections of the vectors I, J, and K). To complete the specification of the transformation M, we need to
find the angles O and 0.. To do this, we use the requirement that the images Par . I, Par . J, and Par . K are to
all have equal lengths. Now

	

IPar.1I=Jcos2O,	 lPar.JI=./sin29y sin 2O+COs2O

and

IPar KI =	 9, cos2 0, + sin2 a,

Setting JPar . JI = IPar Kj leads to the conclusion that sin 2 9 - 2 00 and to a solution 0, = 45 (and
so sin 0. = cos 0, = .//2). Setting lParll = lPar'JI leads to cos0, =(sin2 0,+ I). Multiplying both
sides by 2 and adding cos 2 0 to both sides gives 3cos2 0,=2 and a solution is 9,=35.26° (and so
sin 0, = fI7, cos 0, = J2735. Finally

V3 2V3 2Y3

Par =(0 'J	 ,J o]

11-A
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7.15 Construct a dimetric projection onto the ..y plane.

SOLUTION

Following the procedures in Prob. 7.14, we shall tilt the x, y, z axes and then project on the xv plane. We
then have, as before,

	

Par II = /co12 
01	

[Par	 = /n2U,sin2 0, + CO5 2 0,

and

IPar- KI = /sin 2 B. cos2 0, + sin  0,

To define a dimetric projection, we will specify the proportions

IPar . l: IPar .11 IPar .	 = 1: I I	 I)

Setting IPar JI = IPar- K I, we find sin  O, - cos2 0, = 0 and O = 45°, so sin 0, = cos 0. = / /2. Setting
Par . II = l I Par . J I gives

Cos' 0y= [sin 2Oy+I]	 (7.3)

Multiplying both sides by 2 and adding 12 cos2 0, to both sides gives

(2 + 12) cos2 0,, = 212

So

Cos 0, =

From equation (7.3) we can also find

2_12	2_12
sin2 O	 7T=	 and	 sin 0=

(Note the restriction / < .J.) Thus

-F 2 /2+/2 I

	

Par =[ o 	
-,/2-

- - 01
2	 2	 I

	

0	 0	 0	 oJ

	0 	 0	 0	 1!

and 0 <1 <
Note that any other projection ratio, say, I: I: I, can be achieved by performing an appropriate rotation

before applying Par. In this example, a rotaiton of 90 about they axis aligns the: axis with the x axis so that
Par can be applied.

Supplementary Problems

	7.16	 Construct a perspective transformation given three principal vanishing points and the distance D from the
center of projection to the projection plane.

	

7.17	 Draw the (a) isometric and (b) dimetric projections of the unit cube onto the .'y plane.

	

7.18	 How many view planes (at the origin) produce isometric projections of an object?

11-B



Three- Dimensional
Viewing and Clipping

.•\ii IInp(i1Int step in photography is to position and aim the camera at the scene in order to compose a
This parallels the specification of 3D viewing parameters in computer graphics that prescribe the

pqecIoE (t}C center of projection for perspective projection or the direction of projection for parallel
protection) along with the position and orientation of the projection /view plane.

In addition, a view volume defines the spatial extent that is visible through a rectangular window in the
view plane. The bounding surfaces of this view volume is used to tailor/clip the objects that have been
placed in the scene via modeling transformations (Chaps, 4 and 6) prior to viewing. The clipped objects are
then projected into the window area, resulting in a specific view of the 3D scene that can be further mapped
to the viewport in the NDCS (Chap. 5).

lii this chapter we are concerned with the specification of 3D viewing parameters, including a viewing
coordinate system for defining the view plane window, and the formation of the corresponding view
voltitne (Sec. 8.1). We also discuss 3D clipping strategies and algorithms (Sec. 8.2). We then summarize
the three-d i mensional viewing process (Sec. 8.3). Finally, we examine the operatienal organization of a
typical 31) graphics pipeline (Sec. 8.4).

8.1 THREE-DIMENSIONAL VIEWING

lhrcc-dirnensional viewing of objects requires the specification of a projection plane (called the view
p/aiu. a center of projection (viewpoint) or the direction of projection, and a view volume in world

iii i

Spvcihing the View Plane

N\c specify the view plane by prescribing (I) a reference point R0 (v0 , v0 . :) in world coordinates and
I a unii normal vector N = n I + n 2J + n 1 K. I NI = I, to the view plane (see Fig. 8-I). From this

inhrmation. we can construct the projections used in presentin g the required view with respect to the given
out or direction of projection (Chap. 7).

151
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Fig. 8-1

View Plane Coordinates

The view plane coordinate s ystem or viewing coordinate system can be specified as follows: (I) let the

reference point R0 (x0 ,y0 , z0 ) be the origin of the coordiante system and (2) determine the coordinate axes.
To do this, we first choose a reference vector U called the up vector. A unit vector Jq can then be
determined by the projection of the vector U onto the view plane. We let the vector Jq define the direction

of the positive q axis for the view plane coordinate system. To calculate Jq we proceed as follows: w i th N
being the view plane unit normal vector, let U. = U - (N . U)N (App. 2, Prob. A2.14). Then

j
U___

q - lUqi

is the unit vector that defines the direction of the positive q axis (see Fig. 8-2).

V

View f

plane/

-

N
x

z

Fig. 8-2
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Finally, the direction vector IP of the positive p axis is chosen so that it is perpendicular to Jq, and, by
convention, so that the triad I i,, J, and N form a left-handed coordinate system. That is:

J,
- IN X JqI

This coordinate system is called the view plane coordinate system or viewing coordinate system. A left-
handed system is traditionally chosen so that, if one thinks of the view plane as the face of a display device,
then with the p and q coordinate axes superimposed on the display device, the normal vector N will point
away from an observer facing the display. Thus the direction of increasing distance away from the observer
is measured along N [see Fig. 8-3(a)].

z
(a)

P(5,3,2). 

World coordinate system Viewing coordinate system
(subscript w)	 (subscript v)

(b)

Y.	
View
plane

Y'\ Jq -

Z"	 Ro1'
• P(x.., Y. z.)

(x,, Y. z)

X.

Z.

(c)

Fig. 8-3

EXAMPLE 1. If the view plane is the .'y plane, then I, = I, J q = J, and the unit normal N = —K form a left-
handed system. The z coordinate of a point measures the depth or distance of the point from the view plane. The sign
indicates whether the point is in front or in back of the view plane with respect to the center or direction of projection.
In this example, we change from right-handed world coordinates (x,y,z) to left-handed view plane coordinates
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(x', Y, z') [see Fig. 8 .3(b)] h performing the transformation:

r'=x
T: y'=y

= —z

In matrix form, for homogeneous coordinates:

	

/ 1 0	 0 o

-	

\

	

T— 
0 1	 0 0
0 0 —1 01

	

0	 0 1)

The general transformation for changing from world coordinates to view plane coordinates [see Fig. 8-
3(c)] is developed in Prob. 8.3.

Specifying the View Volume

The view volume bounds a region in world coordinate space that will be clipped and projected onto the
view plane. To define a view volume that projects onto a specified rectangular window defined in the view
plane, we use view plane coordinates (p, q) to locate points on the view plane. Then a rectangular view
plane window is defined by prescribing the coordinates of the lower left-hand corner L(pmm, and
upper right-hand corner R(p, q) (see Fig. 84). We can use the vectors 1 P and J to find the
equivalent world coordinates of L and R (see Prob. 8.1).

For a perspective view, the view volume, corresponding to the given window, is a semi-infinite
pyramid, with apex at the viewpoint (Fig. 8-5). For views created using parallel projections (Fig. 8-6), the
view volume is an infinite parallelepiped with sides parallel to the direction of projection.

V

x

Fig. 84
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X

Fig. 8-5

8.2 CLIPPING

Clipping against a Finite View Volume

The view volumes created above are infinite in extent. In practice, we prefer to use a finite volume to
limit the number of points to be projected. In addition, for perspective views, very distant objects from the
view plane, when projected, appear as indistinguishable spots, while objects very close to the center of
projection appear to have disjointed structure. This is another reason for using a finite view volume.

A finite volume is deliminated by usingfivnt (near) and back (far) clipping planes parallel to the view
plane. These planes are specified by giving the front distance  and back distance b relative to the view
plane reference point R0 and measured along the normal vector N. The signed distance b andf can be
positive or negative (Figs. 8-7 and 8-8).

Clipping Strategies

Two differing strategies have been devised to dcal with the extraordinary computational effort required
for three-dimensional clipping:

1. Direct clipping. In this method, as the name suggests, clipping is done directly against the view
volume.

2. Canonical clipping. In this method, normalizing transformations are applied which transform the
original view volume into a so-called canonical view volume. Clipping is then performed against
the canonical view volume.
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Fig. 8-6

Fig. 8-7 Pespective view volume.
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of pmjtiofl

Fig. 8-8 Parallel view volume.

The canonical view volume for parallel projection is the unit cube whose faces are defined by the
planes x = 0, x = 1, y = 0, y = 1, z = 0, and z = I. The corresponding normalization transformation
is constructed in Probe 8.5 (Fig. 8-9).

Fig. 8-9

The canonical view volume for perspective projections is the truncated pyramid whose faces are
defined by the planes x = z, x = —z, y = z, y = —z, z = z1, and z = I (where Zj is to be calculated) (Fig. 8-
10). The corresponding normalization transformation N is constructed in Prob. 8.6.

The basis of the canonical clipping strategy is the fact that the computations involved such operations
as finding the intersections of a line segment with the planes forming the faces of the canonical view
volume are minimal (Prob. 8.9). This is balanced by the overhead involved in transforming points, many of
which will be subsequently clipped.

For perspective views, additional clipping may be required to avoid the perspective anomalies
produced by projecting objects that are behind the viewpoint (see Chap. 7).

Clipping Algorithms

Three-dimensional clipping algorithms are often direct adaptations of their two-dimensional counter-
parts (Chap. 5). The modifications necessary arise from the fact that we are now clipping against the six
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Figure 8-10

faces of the view volume, which are planes, as opposed to the four edges of the two-dimensional window,
which are lines.

The technical differences involve:

1. Finding the intersection of a line and a plane (Prob. 8.12).
2. Assigning region codes to the endpoints of line segments for the Cohen—Sutherland algorithm

(Prob. 8.8).
3. Deciding when a point is to the right (also said to be outside) or to the left (inside) of a plane for

the Sutherland—Hodgman algorithm (Prob. 8.7).
4. Determining the inequalities for points inside the view volume (Prob. 8.10).

8.3 VIEWING TRANSFORMATION

Normalized Viewing Coordinates

We can view the normalizing transformations Npar and Nper from Sec. 8.2, under "Clipping
Strategies," as geometric transformations. That is, Obj is an object defined in the world coordinate
system, the transformation

Obi' =	 .Obj	 or	 Ohj' = Nper . OhJ

yields an object Obj' defined in the normalized viewing coordinate system.
Canonical clipping is now equivalent to clipping in normalized viewing coordinates. That is, the

transformed object Obj' is clipped against the canonical view volume. In Chap. 10, where hidden-surface
algorithms are discussed, it is assumed that the coordinate description of geometric objects refers to
normalized viewing coordinates.

Screen Projection Plane

After clipping in viewing coordinates, we project the resulting structure onto the screen projection
plane. This is the plane that results from applying the transformations NP. or Nper to the given view plane.
In the case Np., from Prob. 8.5, we find that the screen projection plane is the plane z = —f/(h -f) and
that the direction of projection is that of the vector K. Thus the parallel projection is orthographic (Chap.
7), and, since the plane z = —f/(b -f) is parallel to the xy plane, we can choose this latter plane as the
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projection plane. So parallel projection Par in normalized viewing coordinates reduces to orthographic
projection Onto the xv plane. The projection matrix is (Chap. 7, Sec. 7.3)

1000
0100

Par= 0 0 0 0
0001

In the case of perspective projections, the screen projection plane is the plane z = c(c + b) (Prob. 8.6).
The transformed center of projection is the origin. So perspective projection Per in normalized viewing
coordinates is accomplished by applying the matrix (Chap. 7, Prob. 7.4)

/ '1

E _ l
00	 0\

	

0	 0	 0
Per =	 c+b

	0 	 0	 01
c,' + b

	0 	 0	 1	 01

Constructing a Three-dimensional View

The complete three-dimensional viewing process (without hidden surface removal) is described by the
following steps:

1. Transform from world coordinates to normalized viewing coordinates by applying the transfor-
mations Np. or N.

2. Clip in normalized viewing coordinates against the canonical clipping volumes.

3. Project onto the screen projection plane using the projections Par or Per.

4. Apply the appropriate (two-dimensional) viewing transformations (Chap. 5).

In terms of transformations, we can describe the above process in terms of a viewing transformation

V, where

VT = V2 . Par CL .	 or	 VT = V2 . Per . CL .

Here CL and V2 refer to the appropriate clipping operations and two-dimensional viewing transformations.

8.4 EXAMPLE: A 31) GRAPHICS PIPELINE

The two-dimensional graphics pipeline introduced in Chap. 5 can non be extended to three dimensions
(Fig. 8-11), where modeling transformation first places individually defined objectes into a common scene
(i.e. the 3D WCS). Viewing transformation and projection are then carried out according to the viewing
parameters set by the application. The result of projection in the view plane window is further mapped to

Object	
Modeling	 2DL41 Viewiiig	

TrnnnfomiIion
Viewing	 Conver,,o

Dni	 ()
Trf,i,nUon	

Trrifrmlion

I (ft,ne boffcr)
viewing paramelern

Fig. 8-11 A 3D graphics pipeline
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the appropriate workstation viewpoint via 2D viewing transformation and scan-converted to a discrete
image in the frame buffer for display.

An application typically specifies the method of projection and the corresponding view volume with
system calls such as -

perspective (, a s,, z1 , Zh)

where the viewpoint of perspective projection C is assumed to be at the origin of the WCS and the
perspective view volume centers on the negative z axis (away from the viewer); a denotes the angle
between the top and bottom clipping planes, a the aspect ratio of the view plane window, Zj the distance
from C to the front clipping plane (which is essentially also the view plane), and z, the distance from C to
the back clipping plane.

On the other hand, orthographic parallel projection can be specified by

orthographic (Xm jn, x,, Ymin,Ymax, Zj. Zb)

where the direction of projection is along the negative z axis of the WCS; the first four parameters of the
call define the left, right, bottom, and top clipping planes, respectively; and the role of z j and z,, remains the
same as in the perspective case above.

Other calls to the system library often provide additional functionality. For example, the center of
perspective projection can be placed anywhere in the WCS by a call that looks like

lookat (XC, Yc ' Zc, Xp,yp, Zp)

where Xr, y, z are the coordinates of C and xi,, y,,, z, are the coordinates of a reference point P—the
perspective of view volume now centers on the line from C to P. They axis of the WCS, or more precisely,
vector J, serves as the up vector that determines 1 P and Jq . An additional parameter may be included to
allow rotation of the viewing coordinate system (with R0 = C, the center of the view plane window) about
its z axis, i.e. line CR

Using perspective( ) and lookat( ), we can conveniently produce a sequence of images that animate a
"walk-by" or "fly-by" experience by placing P on an object and moving C along the path of the camera
from one frame to the next (Fig. 8-12).

,- c

C.

Fig. 8-12

Finally, we want to note a couple of crucial operations of the 3D graphics pipeline that have not yet
been discussed. The first is to prevent objects and portions of objects that are hidden from the viewer's
eyesight from being included in the projected view (Chap. 10). The second is to assign color attributes to
pixels in a way that makes the objects in the image look more realistic (Chap. 11).

Solved Problems

8.1	 Let P(p, q), be the view plane coordinates of a point on the view plane. Find the world coordinates
P(x, y, z) of the point.
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SOLUTION

Refer to Fig. 8 .13. Let R0 be the view plane reference point. Let R be the position vector of R0 and W the
position vector of P, both with respect to the world coordinate origin (see Fig. 8-13). Let V be the position
vector of P with respect to the view plane origin R0 . Now

V= PI P +qJq and W=R+V

ZJ,q,\	 N

P(x, y.	 /
n. zi,)

(0. 0)

x

Fig. 8-13

So

W = R +PIp + qJq

Let the components of 1. and Jq be

Ip =aI+bJ+cK	 Jq=aql+bqJ+cqK

Also

R=x01+y0J+z0K

and so from W= R+PIP +qJq we find

W = (x0 +pa + qaq)I + (y +pb + qbg)J +(z0 +pc + qcq)K

The required world coordinates of P can be read off from W:

P(s +pa + qag.yo +pb + qbq .zo +pc,, + qcg)w

z

F]

8.2	 Find the projection of the unit cube onto the view plane in Prob. 7.9 in Chap. 7. Find the
corresponding view plane coordinates of the projected cube.



	—2,/3- -2/	 —2.,/'3-2
—2

i+J 1+ -/3- 1+03
—2,/3-2

	

—3	 —3

2

—2

2

(1 +3./i'

—..,/	 —5J	 (l+5/
2(1+,/) 2(l+/.)	 2(l+,/

-3 'J 	 -3,/3-3 'J	 (l+3,/
(l+.J)	 (l4')

-2
	 —2

(I+4/\ —2J
k.2(l+5) l+,J

(1+2%/\ —2/
\l+./) l+'J

—2

2(l+./)	
0

l+2/\ —2.J
T, -43  '+'/
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SOLUTION

Following Prob. 7.9, we must specify several parameters in order to calculate the corresponding
perspective projection matrix PerNR,,C. Choosing h = , t = I, and t2 = (1 - 0)/(1 + ../), we obtain

	

00	 —2

'	 0	 —(1 + ,/3-)
i+.J

Pe. NC = 2	 I	 — 2 ,f3
	2(I+.( ) 2(l-1-') l+/	 2

____

/ 	
1	 (l+3/

I+,	 i+.J
Applying PerNC to the matrix V of homogeneous coordinates of the unit cube, we have PerN0C. V =
where V' is the matrix (A'B'C'TYE'F'(7H'). After matrix multiplication, we have

Changing from homogeneous coordinates to world coordinates (App. 2), we find the coordinates of the
projected cube to be

A'12(' 2(2+'\ l+*/
L J+3./)' l+3.J)'2(l+3./)

L

C'(l, 1,0)

E' 
(

+ ,J 5

F,I2	 ,/(l+' 2(2+JN) l+5, 1
L l+3) ' l+3	 '2(I+3)j

G[2(1+'' l+,/	 1+4,/il
L l +2) ' i+2'2(l +2)]

H'(1,l,l)

To change from world coordinates to view plane coordinates, we first choose an up vector. Choosing the
vector K, the direction of the positive z axis, as the up vector, we next find the view plane coordinate vectors
and Jq.

With our choices t and 12, we find that the unit normal vector N (Prob. 7.9) is

N=^I-4-J

Choosing U = K, and using Prob. A2.14 (App. 2), we find that

Uq =U(N•U)N=U (sinceN•U=0) =K	 and	 Jq=jij=K



Fig. 8-14
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(Note to student using equation (A2-3) of Prob. A2.14: we have used the fact that INI = I and replaced V,
With Uq and V and U.)

Now
N x Jq

= IN x JqI

Calculating (App. 2), we obtain

NXJq =I_çJ. and	 INXJqI=1

So

	

1	 v'
2

To convert a point P with world coordinates (x, y, z),, to view plane coordinates (p, q),, we use the equations
from Prob. 8.1:

x=xo+pap+qaq y=yo+pbp +qbq	z=z0+pcp+qcq

where (x0, yo' z0) are the coordinates of the view plane reference point R0 . Now

J =aql+bqJ+cg K=Ol+OJ+ 1K

Choosing R(l, 1,0) as the view plane reference point, we find

—.vxp+1 y=--p±l z=q

Solving for p and q, we have

	

p=2(x—l)	 and	 q = z

Using these equations, we convert the transformed coordinates to view plane coordinates:

1

_____ l+/ 1 
E'—

	2 '..1+3.,/)'2(l+3,/)J	 k 3'6

2	 1	 1	 F,[21l'\ 1+5v'

	

L1+2/'2(l+2./J	 L 1+3vT)'2(l+3./)

C(O0)	 G'I 
2	 1+4J

LI+2,/'2l+2/

H'(0, 1)

Refer to Fig. 8-14. Note also that the coordinates of the view point or center of projection C and the vanishing
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points VP! and VP2 can be found by using the equations from Prob. 7.9:

C(abc)=C(2.l + i)
	

I	 VP2(2. I

In view plane coordinates:

VP! (-2,)
	

and	 VP2(2)

	8.3
	

Find the transformation T, that relates world coordinates to view plane coordinates.

SOLUTION

The world coordinate axes are determined by the right-handed triad of unit vectors [I, J, K].
The view plane coordinate axes are determined by the left-handed triad of vectors [l i,, J, NI and the view

reference point R0 (x0 , Yo' z0).

Referrring to Fig. 8-3(a), we construct the transformation T through the concatenation of the matrices
determined by the following steps:

1. Translate the view plane reference point R0 (x0 ,yo,	 to the world coordinate origin via the translation
matrix T. Here V is the vector with components —x0 1 —y0J - z0K.

2. Align the view plane normal N with the vector —K (the direction of the negative z axis) using the
transformation A N, _K (Chap. 6, Prob. 6.5). Let I', be the new position of the vector 1, after performing the
alignment nansformation, i.e.

= A1 I

3. Rotate l about the z axis so that it aligns with 1, the direction of the x axis. With 0 being the angle
between and I, the rotation is ROK (Chap. 6).

4. Change from the right-handed coordinates to left-handed coordinates by applying the transformation Tja
from Example 1. Then T = TRL . . AN,_K . T,. If (x,,,y, z,,,) are the world coordinates of point P,
the view plane coordinates (xv , y, z) of P can be found by applying the transformation T,,.,,.

	

8.4	 Find the equations of the planes forming the view volume for the general parallel projection.

SOLUTION

The equation of a plane is determined by two vectors that are contained in the plane and a reference point
(App. 2, Prob. A2. 10). The cross product of the two vectors determines the direction of the normal vector to
the plane.

In Fig. 8-8, the sides of the window in the view plane have the directions of the view plane coordinate
vectors I. and Jq. With V as the vector determining the direction of projection, we find the following planes:

I. Top plane—determined by the vectors I p and V and reference point R1 , measuredf units along the unit
normal vector N = n 1 1+n2.J +n3 K from the upper right corner R(r1 , r2,r3 ) of the window. Rekvence
point R1 has world coordinates (r +j5e, r2 +fii2, r3 +fi!3).

2. Bottom plane—determined by the vectors I, and V and the reference point L1 , measured from the lower
left corner L(11 , 12 , 13 ) of the window. Point Lf has world coordinates ('! +fi 1 , 12 +A21 13 +fii3).

3. Right side plane—determined by the vectors Jq and V and the reference point R1.
4. Left side plane—determined by the vectors J. and V and the reference point Lf.

Front and back clipping planes are parallel to the view plane, and thus have the same normal vector
N = n 1 1 + n2 J + n3K.

5. Front (near) plane—determined by the normal vector N and reference point
Pj(x0 +fii 1 .y0 +fii2 , z0 +fi?3), measured from the view reference point R0(x0,y0,z0).
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6. Back (far) plane—determined by the normal vector N and reference point
P&(x0 + bn,y0 + bn2 , z0 + bn3), measured b Units from the view plane reference point R0.

	8.5

	

	 Find the normalizing transformation that transforms 	 the parallel view volume to the canonical view
volume determined by the planes x = 0, x = 1, y = 0, y = 1, z = 0, and z 1 (the unit cube).

SOLUTION

Referring to Fig. 8 .8, we see that the required transformation N. is built by performing the following
series of transformations:

1. Translate so that R0, the view plane reference point, is at the origin. The required transformation is the
translation T-R..

2. The vectors Ii,, J, and N form the left-handed view plane coordinate system. We next align the view
plane normal vector N with the vector —X (the direction of the negative z axis). The alignment
transformation AN . K was developed in Chap. 6, Prob. 6.5. Let I, be the new position of the vector
that is, 1' =AN....K 'p-

3. Align the vector I', with the vector I (the direction of the positive x axis) by rotating 1, about the z axis.
The required transformation is ROK. Here, 0 is the angle between I, and I (Chap. 6). When RO K aligns 1,
with I, the vector Eq (where Jq AN. —K Jq) is aligned with the vector J (the direction of the positive y
axis).

4. We change from the right-handed world coordinate system to a left-handed coordinate system. The
required orientation changing transformation is [see Fig. 8-3(b)] (see also Example I)

	

10
	 0 0\

	

0 1	 0 0
TpL -
	

1
0 0 —1 01

	

0	 0 i)

5. Let V' be the new position of the direction of projection vector V; that is, V = TRL . R8 . AN . _K . V. The
new position of the transformed view volume is illustrated in Fig. 8-i5. Note how the view volume is
skewed along the line having the direction of the vector V'. Suppose that the components of V' are

= t1I + v,J + V.K. We now perform a shearing transformation that transforms the newly skewed view
volume to a rectangular view volume aligned along the z axis. The required shearing transformation is
determined by preserving the new view volume base vectors I and J and shearing V to the vector vK
(the K component of V'); that is, I is transformed to I, J is transformed to J, and V is transformed to vK.
The required transformation is the matrix

I 0 -

Sh= 0 I -
v

	

00	 I

In order to concatenate the transformation so as to buld Np,,, we use the 4 x 4 homogeneous form of S/i

iO
S/i	 0

0
0001

6. We now translate the new view volume so that its lower left corner L will be at the origin. To do this, we
note that the first four transformations correspond to the view plane coordinate system transformation in
Prob. 8.3. So after performing these transformations, we find that the lower left corner of the view plane
window L(p,,, q,,.,,,) (view plane coordinates) transforms to a point L' on the xv plane whose coordinates
are (p,,,,,,. q,,,,, 0). Similarly, the upper right corner R is transformed to R'(p,,,, q_, 0). After performing
the shearing transformation Sh, we see that the view volume is aligned with the z axis and the back and

12-A
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0	 x

Fig. 8-15

front faces are, respectively, b andf units from the xy plane. Thus the lower left corner of the view volume
is at L(p, q,f) and the bounds of the view volume are p, x p, q,,,,, y
f <z < b. The required translation is

7. We now scale the rectangular view volume to the unit cube. The base of the present view volume has the
dimensions of the base of the original volume, which corresponds to the view plane window; that is

W =	 -	 (width)	 h =	 -	 (height)

The depth of the new view volume is the distance from the front clipping plane to the back clipping
plane: d = b -f. The required scaling is the matrix (in 4 x 4 homogeneous form)

00 0
w

	0
	

0
S11,11h,11d =

	0
	

0

	

0
	

1

The required transformation is then

N, = S1 ,,, I/h I/J	 . Sh	 . RØ . AN_K . T_Ro

Note also that after performing the transformation N, the view plane transforms to the plane
z = —f/(b --f), parallel to the xy plane. Also, the direction of projection vector V transforms to a
vector parallel to the vector K having the direction of the z axis.

	

8.6

	

	
Find the normalizing transformation that transforms 	 the perspective view volume to the canonical
view volume determined by the bounding planes  = z, x = —z,y = z,y = —z, z = z1, and z 1.

12-b



Fig. 8-16
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SOLUTION

Referring to Fig. 8-7, we build the normalizing transformation N through a series of transformations.
As in Prob. 8.5:

I. Translate the center of projecti'-n C to the origin using the translation T_.
2. Align the view plane normal N with the vector —K using AN_K.

3. Rotate	 to the vector I using the rotation Rg K. (Recall that I' = AN,_K . Ii,.)
4. We now change from right-handed world coordinates to left-handed coordinates by applying the

transformation

	

/1 0	 0 o\

-TRL	
0 1	 0

00 —1 01
0 o

5. The newly transformed view volume is skewed along the centerline joining the origin (the translated
center of projection) with the center of the (transformed) view plane window (Fig. 8-16). Let C. be the
coordinates of the center of the original view plane window. Then C. has view plane coordinates

(Prnin+P	 qmth+q\
\ _2 '  2 1,,

These are changed to world coordinates as inProb. 8.1. Let _ be the vector from the center of
projection to the center of the window. Let (CC,,,)' be the transformation of the vector CC,,,; that is,
(CC,,,)' = R0 - AN_ K - CC,,,. Then (CC,,,)' is the vector that joins the origin to the center of the
transformed view plane window (Fig. 8-16). Suppose that (CC,,,)' = cI + cyJ + cK. We shear the view
volume so that it transforms to a view volume whose center line lies along the z axis. As in Prob. 8.5, the
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required shearing transformation is

Sh=[

1 0 - 0

0 i 40)

The newly transformed window is, after applying the shearing transformation Sh, located on the z axis at

Z. = c.

6. Referring to Fig. 8-17, the transformed window is now centered on the z axis. The dimensions of the
window are

w =	 - p,, (width)	 and	 h =	 - q,, (height)

The depth of the new view volume is the distance between the front and back clipping planes: d = b
The transformed window is centered on the z axis at z = c and is bounded by

W	 w	 h	 h

	

-- <x < -	 -- V -
22	 2	 2 

lit

Fig. 8-17

Ak
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The transformed view plane is located at z = c. The transformed front clipping plane is located at
c +f. The back clipping plane is now located at Zb = c + b.

To transform this view volume into the canonical view volume, we first scale in the z direction so that
the back-clipping plane is transformed to z = 1. The required scale factor is

s.= c+b	 -

The scaling matrix is

10	 0	 0

=	

b 0]0 

To find the new window boundaries R" and L", we apply this scaling transformation to the present
window coordinates

L'(_._c)

Then

(wh  and 
L" (w h c\

=
Next we scale in the x and ydirections so that the window boundaries will be

ir ( L -f-- -sL\	
c

e.d L"-----

	

c+b'c+b'c+b)	 '	 +b' 4+b'c+b

That is, the window boundaries Will lie on the planes x z, x = —z, y = z and y = —a. The required
scale factors are

-2c'• 2c
S=eb)	 and	 h(4+b)

The corresponding scaling transformation is

24	 0 00
w(c+b)	 I

24	 I
o	 0 0 1

	

= [	

+

0	 0	 1 0'

o	 0	 0 1)

Multiplication of these scaling transformations into one transformation yields

/24 0	 0
,.<e. + m

0
24	 I

=	
h(c + b)	

0	 0

0	 0

0	 0	 0	 lj
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To find the location of the front clipping plane, 'Zp we apply the transformation	 to the present
location of the center of the front clipping plane, which is C1(0, 0. C" +f). So

= (o. o. -)

That is

Zj - 
c; +1

The complete transformation can be written as

N =	 Sh. TE

Note that after performing the transformation N, the view plane is transformed to the plane

Z = 
c,

parallel to the xy plane. Also, the center of projection C is transformed to the origin.

8.7 How do we determine whether a point P is inside or outside the view volume?

SOLUTION

A plane divides space into the two sides. The general equation of a plane is (App. 2)

n 1 (x —x0)+ n2(y Yo) + n3(z - z0) = 0

We define a scalar function, f(P), for any point P(x, y, z) by

f(P)asf(x,y,z)= n 1 (x — x0)+n2(y—y0)+n3 (z —z0)

We say that a point P is on the same side (with respect to the plane) as point Q if sign f(P) = signf(Q).
Referring to Figs. 8-7 or 8-8, let fr.ffi.fR'fj.fN. andJ be the functions associated with the top, bottom, right,
left, near (front), and far (back) planes, respectively (Probs. 8.4 and 8.10).

Also, L and R are the lower left and upper right corners of the window and Pb and P1 are the reference
points of the back and front clipping planes, respectively.

Then a point P is inside the view volume if all the following hold:

• is on the same side as L with respect tofr
• is on the same side as R with respect to !3
• is on the same side as L with respect tofR
• is on the same side as R with respect tofL
• is on the same side as Pb with respect tOfN
• is on the same side as P1 with respect to!,

Equivalently

signfT(P) = sign fr(L)	 sign Jj(P) = signfL(R)
signf9(P) = sign fB(R)	 sign JN(P) = sign fN(Pb)
sign fR(s) = sign fR(L)	 sign JF(P) = 58nf,(1'f)

8.8 Show how region codes would be assigned to the endpoints of a line segment for the three-
dimensional Cohen—Sutherland clipping algorithm for (a) the canonical parallel view volume and
(b) the canonical perspective view volume.

SOLUTION

The procedure follows the logic of the two-dimensional algorithm in Chap. 5. For three dimensions, the
planes describing the view volume divide three-dimensional space into six overlapping exterior regions (i.e.,
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above, below, to right of, to left of, behind, and in front of view volume), plus the interior of the view volume;
thus 6-bit codes are used. Let P(x, y, z) be the coordinates of an endpoint.
(a) For the canonical parallel view volume, each bit is set to true (1) or false (0) according to the scheme

Bit I as endpoint is above view volume = sign (y - 1)
Bit 2 es endpoint is below view volume = sign (—y)
Bit 3 m endpoint is to the right of view volume = sign (x - I)
Bit 4 ss endpoint is to the left of view volume = sign (—x)
Bit 5 ss endpoint is behind view volume = sign (z - I)
Bit 6 as endpoint is in front of view volume = sign (—z)

Recall that sign (a) = I if a is positive, 0 otherwise.
(b) For the canonical perspective view volume:

Bit 1 w endpoint is above view volume = sign (y - z)

Bit 2 is endpoint is below view volume = sign (—z - y)
Bit 3 endpoint is to the right of view volume = sign (x - z)

Bit 4 endpoint is to the left of view volume = sign (—z - x)
Bit 5 endpoint is behind view volume = sign (z - I)
Bit 6 m endpoint is in front of view volume = sign (z1 - z)

The category of a line segment (Chap. 5) is (I) visible if both region codes are 000000, (2) not visible if
the bitwise logical AND of the region codes is not 000000, and (3) clipping candidate if the bitwise
logical AND of the region codes is 000000.

8.9 Find the intersecting points of a line segment with the bounding planes of the canonical view
volumes for (a) parallel and (b) perspective projections.

SOLUTION

Let P1 (x1 , y, i) and P2(x2 ,y2 , z2 ) be the endpoints of the line segment. The parametric equations of the
line segment are

xx1 +(x2 —x1 )t	 y=yi+(Y—yi)t	 z—z1+(z2—z1)t

From Prob. 8. 11, the intersection parameter is

- —N.R(.P
F4. PIT'

where N is the normal vector and R0 is a reference point on the plane.
(a) The bounding planes for the parallel canonical view volume are x = 0, x = 1, y = 0. y = 1, z = 0, and

z=l. For the plane x=I,we have N=I and R0(1,0,0).Then

= —(x 1 - 1)

If 0:, 1, the line segment intersects the plane. The point of intersection is then

x=x1+(x2_x)(_=1	 Y=YI+(Y2 —Yl) 
/

x2 	 (	 )

z=z1 +(z2_z1)(_xt_—_l'
\ X2X1J

The intersections with the other planes are found in the same way.
(b) The bounding planes for the perspective canonical view volume are x = z, x = —z, y = z, y = —z,

z = z1, and z = I (where zj is calculated as in Prob. 8.6).
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To find the intersection with the plane x = z, for example, we write the equation of the plane as
x - z = 0. From this equation, we read off the normal vector as N = I - K (App. 2, Prob. A2.9), and the
reference point is R0(0, 0, 0). Then

-	 x1—;

(x2 —x 1 ) - (z2 —z1)

If 0 :, 1, we substitute ij into the parametric equations of the line segment to calculate the
intersection point.

The other intersections are found in the same way.

8.10 Determine the inequalities that are needed to extend the Liang—Barsky line-clipping algorithm to
three dimensions for (a) the canonical parallel view volume and (b) the canonical perspective view
volume.

SOLUTION

Let P 1 (x 1 , y , z 1 ) and P2 (x2 , Y2 z2 ) be the endpoints of a line. The parametric representation of the line is

x=x +Aru

YYi +Ayu
z = z1 + Az . u

where 0 u 5 1, Ax = x2 -x1, Ay = Y2 _Y1, and Az = z2 _Z1. The infinite extension of the line
corresponds to u < 0 and I <u.

(a) Points inside the canonical parallel view volume satisfy

Xmj,, <X j + & U

Yflm, Yj + Ay- u 5Yr.
Zmth 5 Z1 + Az . u

where x, —y,, = z = 0 and x,,.., =y,,. = zm = 1.
Rewrite the six inequalities as

pu<q,	 k= 1,2,3,4.5,6

where

Pi = —Ax,	 q1 =x 1 — x,,.,,, =x 1 	(left)
P2 =Ax,	 q2 =x,,.. — x1 = I - x 1	 (right)
J)3 = —Ay,	 q3 = Yi - Ymin = .Yi	 (bottom)

= Ay,	 q4 =y —y = I Yi	 (top)
p5 =—Az,	 q5 =z1 —z,,., =z1	 (front)
P6 = &,	 q6=z,—z1=l—z	 (back)

(b) Points inside the canonical perspective view volume satisfy (see Fig. 8-10).

—z <x <z

—z y <z

z1. z	 I

i.e.

—z1 - Azu x1 +Ax'u <z 1 +Az'u
—z—Az•u<y1+Ay.u<z1+Az.0

Z1 z1 +Az•u . 1

Rewrite the six inequalities as

pk u<q,	 k=l,2,3,4,5,6
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where

Pt = - X -	 q1 =x, +z 1 	 (left)
P2 =&,	 q2_—z1—x1	 (tight)

	

P3 = -Ay Az, q3 =y1 +z 1	 (bottom)

	

q4 =z1 —y 1	 (top)

	

P5 = -Az , q5 Z1 Z1	 (front)

P6—.	 q6=1—z1	 (back)

Supplementary Problems

8.11 Find the equations of the planes forming the view volume for the general perspective projection.

8.12 Find the intersection point of a plane and a line segment.


