Two-Dimensional
Viewing and Clipping

Much like what we see in real life through a small window on the wall or the viewfinder of a camera, a
computer-generated image often depicts a partial view of a large scene. Objects are placed into the scene
by modeling transformations to a master coordinate system, commonly referred to as the world coordinate
system (WCB). A rectangular window with its edges parallel to the axes of the WCS is used to select the
portion of tne scene for which an image is to be generated (see Fig. 5-1). Sometimes an additional
coordinate System called the viewing coordinate system is introduced to simulatethe effect of moving
and/or tilting the camera.

On the other hand, an image representing a view often becomes part of a larger image,.like a photo on
an album page, which models a computer monitor’s display area. Since album pages vary and monitor
sizes differ from one system to another, we want to introduce a device-independent tool to describe the
display area. "This tool is called the normalized device coordinate system (NDCS) in which a unit (1 x 1)
square whose ower left corner is at the origin of the coordinate system defines the display area of a virtual
display device. A rectangular viewport with its edges parallel to the axes of the NDCS is used to specify a
sub-region of the display area that embodies the image.

Viewing
coordinate
system
‘3 A Worksta
" O tion
3 Window A Workstation A vi ewport
1 window /

0 >

i 0 1 >
—> Normalized device Device/image
- World coordinate system coordinate system coordinate system

Fig. 5-1 Viewing transformation.
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The process that converts object coordinates in WCS to normalized device coordinates is called
window-to-viewport mapping or normalization transformation, which is the subject of Sect. 5.1. The
process that maps normalized device coordinates to discrete device/image coordinates is called work-
station transformation, which is essentially a second window-to-viewport mapping, with a workstation
window in the normalized device coordinate system and a workstation viewport in the device coordinate
system. Collectively, these two coordinate-mapping operations are referred to as viewing transformation.

Workstation transformation is dependent on the resolution of the display device/frame buffer. When
the whole display area of the virtual device is mapped to a physical device that does not have a 1/1 aspect
fatio, it may be mapped to a square sub-region (see Fig. 5-1) so as to avoid introducing unwanted
geometric distortion. ;

Along with the convenience and flexibility of using a window to specify a localized view comes the
. need for clipping, since objects in the scene may be completely inside the window, completely outside the
window, or partially visible through the window (e.g. the mountain-like polygon in Fig. 5-1). The clipping
operation eliminates objects or portions of objects that are not visible through the window to ensure the
proper construction of the corresponding image.

Note that clipping may occur in the world coordinate or viewing coordinate space, where the window
is used to clip the objects; it may also occur in the normalized device coordinate space, where the
viewport/workstation window is used to clip. In either case we refer to the window or the view-
port/workstation window as the clipping window. We discuss point clipping, line clipping, and polygon
clipping in Secs. 5.2, 5.3, and 5.4, respectively.

WINDOW-TO-VIEWPORT MAPPING

A window is specified by four world coordinates: WXy, WXmax» WYmin» a4 Wypa, (see Fig. 5-2).
Similarly, a viewport is described by four normalized device coordinates: UXpin, UXmaxs UWmin» and vy .
The objective of window-to-viewport mapping is to convert the world coordinates (wx, wy) of an arbitrary
point to its corresponding normalized device coordinates (vx, vy). In order to maintain the same relative
placement of the point in the viewport as in the window, we require: :

WX — Whpyin DX — UXinip WY = Wymin _ _ U~ Wain

= and =
WXmax — WXmin UXmax — UXmin WVmax — WVmin UWmax — Wmin
Thus )
VX, = DX
ox = —22% TR (WX — WiXipin) + Wmin
WXmax — WXmin
_ Wmax

— vy -
vy 2 (WY = Wynin) + Win

- Wmax — WWmin
Since the eight coordinate values that define the window and the viewport are just constants, we can
express these two formulas for computing (vx, vy) from (wx, wy) in terms of a translate-scale-translate

transformation N
vx wx
| =N-|w
1 1

where
Dy~ Pwin 0
1 0 vxpy WXmax — WXmin L 0. ~wmyy
0 0 i WWmax — WVmin 00 1



CHAP. 5] TWO-DIMENSIONAL VIEWING AND CLIPPING 91

1
(wx, wy) | viewpan

Fig. 5-2 Window-to-viewport mapping.

Note that geometric distortions occur (e.g. squares in the window become rectangles in the viewport)
whenever the two scaling constants differ.

\% POINT CLIPPING

Point clipping is essentially the evaluation of the following inequalities:
xminsxsxmax and Ymin =V = Ymax

Where Xpin, Xmaxs Ymin a0 Vi define the clipping window. A point (x, Y) is cogsidered inside the window
when the inequalities all evaluate to true. }

5.3 LINE CLIPPING

Lines that do not intersect the clipping window are either completely inside the window or completely
outside the window. On the other hand, a line that intersects the clipping window is divided by the
intersection point(s) into segments that are either inside or outside the window. The following algorithms
provide efficient ways to decide the spatial relationship between an arbitrary line and the clipping window
and to find intersection point(s).

% Gohen-Sutherland Algorithm

In this algorithm we divide-the line clipping process into two phases: (1) identify those lines which
intersect the clipping window and so need to be clipped and (2) perform the clipping.
All lines fall into one of the following clipping categories:

1. Visible—both endpoints of the line lie within the window.

2. Not visible—the line definitely lies outside the window. This will occur if the line from (x1, ) to
(x2, y,) satisfies-any one of the following four inequalities: ¢

X15 X3 > Xmax Y1:Y2 > Ymax

X12 X2 < Xmin Y1:72 < Vmin
-
3. Clipping candidate—the line is in neither category 1 nor 2. A

In Fig. 5-3, line 4B is in category 1 (visible); lines CD and EF are in category‘ 2 (not visible); and lines
GH, IJ, and KL are in category 3 (clipping candidate).
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Fig. 5-3

The algorithm employs an efficient procedure for finding the category of a line. It proceeds in two
steps: :
< 1. Assign a 4-bit region code to each endpoint of the line. The code is determined according to which
of the following nine regions of the plane the endpoint lies in

¥

1001 | 1000 ; 101d

Ymax =

0001 0000 | 0010

6101 ' 0io0 ! 010

Xmin Xmax

Ymin

Starting from the leftmost bit, each bit of the code is set to true (1) or false (0) according to the
scheme

Bit 1 = endpoint is above the window = sign (¥ — ¥max)

Bit 2 = endpoint is below the window = sign (ypin—»)~

Bit 3 = endpoint is to the right of the window = sign (x — Xpe,)

\ Bit 4 = endpoint is to the left of the window = sign (x,;, — x)
We use the convention that sign(a) = 1 if a is positive, 0 otherwise. Of course, a point with code
0000 is inside the window.
t2. The line is visible if both region codes are 0000, and not visible if the bitwise logical AND of the

codes is not 0000, and a candidate for clipping if the bitwise logical AND of the region codes is
0000 (see Prob. 5.8).

For a line in category 3 we proceed to find the intersection point of the line with one of the boundaries
of the clipping window, or to be exact, with the infinite extension of one of the boundaries (see Fig. 5-4).
We choose an endpoint of the line, say (x;,y;), that is outside the window, i.e., whose region code is not
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( Fig. 54

0000. We then select an extended boundary line by observing that those boundary lines that are candidates
for intersection are the ones for which the chosen endpoint must be “pushed across” so as to change a “1”
in its code to a “0” (see Fig. 5-4). This means:

If bit 1 is 1, intersect with line y =y, ...
If bit 2 is 1, intersect with line y = ;..

If bit 3 is 1, intersect with line x = xpq,. : -
P If bit 4 is 1, intersect with line x = x,;,. \/

Consider line CD in Fig. 5-4. If endpoint C is chosen, then the bottom boundary line y = y,;, is
selected for computing intersection. On the other hand, if endpoint D is chosen, then either the top
boundary line y = y,,, or the right boundary line x = x,,,, is used. The coordinates of the intersection
point are

‘\{x,. 0 Yo O X if the boundary line is vertical
Yi=y1+mx —x)

or

x=x1+W—-»)/m if the boundary line is horizontal -
La:—'_ym OF Yinax /
where m = (y; — y,)/(x; — x;) is the slope of the line.

Now we replace endpoint (x;, y;) with the intersection point (x;, y,), effectively eliminating the portion
of the original line that is on the outside of the selected window boundary. The new endpoint is then
assigned an updated region code and the clipped line re-categorized and handled in the same way. This
iterative process terminates when we finally reach a clipped line that belongs to either category 1 (visible)
or category 2 (not visible)..

\){ dpoint Subdivision

An alternative way to process a line in category 3 is based on bmary search. The line is divided at its
midpoint into two shorter line segments. The clipping categories of the two new line segments are then
determined by their region codes. Each segment in category 3 is divided again into shorter segments and
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categorized. This bisection and categorization process continues until each line segment that spans across a
window boundary (hence encompasses an intersection point) reaches a threshold for line size and all other
segments are either in category 1 (visible) or in category 2 (invisible). The midpoint coordinates (Xms Ym) of
a line joining (x;, y,) and (x,, y,) are given by

The example in Fig. 5-5 illustrates how midpoint subdivision is used to zoom in onto the two
intersection points /; and I, with 10 bisections. The process continues until we reach two line segments that
are, say, pixel-sized, i.e., mapped to one single pixel each in the image space. If the maximum number of
pixels in a line is M, this method will yield a pixel-sized line segment in N subdivisions, where 2¥ = M or
N =log, M. For instance, when M = 1024 we need at most N = log, 1024 = 10 subdivisions.

Fig. 5-5

\}l{e Liang—Barsky Algorithm

The following parametric equations represent a line from (x1,y1) to (x3, y5) along with its infinite
extension:

[x=x1+Ax-u
y=n+Ay-u

where Ax = x, — x; and Ay = y, — y,. The line itself corresponds to 0 < u < 1 (see Fig. 5-6). Notice that
when we traverse along the extended line with u increasing from —oo to +00, we first move from the
outside to the inside of the clipping window’s two boundary lines (bottom and left), and then move from
the inside to the outside of the other two boundary lines (top and right). If we use u, and uy, where u) < u,,
to represent the beginning and end of the visible portion of the line, we have #; = maximum(0, u;, uy) and
uy = minimum(l, u,, #,), where u;, u, u,, and u, correspond to the intersection point of the extended line
with the window’s left, bottom, top, and right boundary, respectively.
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Now consider the tools we need to turn this basic idea into an efficient algorithm. For point (x, y)

ingide the clipping window, we have

Xmin < X1 + A% U < Xy
Ymin SN +AY U < Yax

Rewrite the four inequalities as

where

Observe

pkusqk! k=l’2!314

p=—Ax 9 =X ~ Xmin (left)
py=Ax 9 =Xpax — % (right)
p3=—8y  G3=y1—Yman  (bottom)
ps=4ly 94 =Ymx—1  (top)
the following facts:
if p; = 0, the line is parallel to the corresponding boundary and

if g, <0, the line is completely outside the boundary and can be eliminated
if g, =0, the line is inside the boundary and needs further consideration,

if pp < 0, the extended line proceeds from the outside to the inside of the corresponding boundary
line,

if p > 0, the extended line proceeds from the inside to the outside of the corresponding boundary
line,

when p; # 0, the value of u that corresponds to the intersection point is gy /py.

The Liang—Barsky algorithm for finding the visible portion of the line, if any, can be stated as a four-step

process:
1.
2

If p; = 0 and g; < O for any %, eliminate the line and stop. Otherwise proceed to the next step.

For all k such that p, < 0, calculate r, = q;/p;. Let u, be the maximum of the set containing 0
and the calculated r values.

For all k such that p, > 0, calculate r, = g, /p,. Let u, be the minimum of the set contammg 1
and the calculated r values.

If u; > u,, eliminate the line since it is completely outside the clipping window. Otherw1se use u
and u, to calculate the endpoints of the clipped line. p
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5.4 POLYGON CLIPPING

In this section we consider the case of using a polygonal clipping window to clip a polygon.

\/6nvex Polygonal Clipping Windows

A polygon is called convex if the line joining any two interior points of the polygon lies combletely
inside the polygon (see Fig. 5-7). A non-convex polygon is said to be concave.

"

\
Convex . Concave
polygon polygon
Fig. 5-7
By convention, a polygon with vertices P;, ..., Py (and edges P, P, and PyP,) is said to be

positively oriented if a tour of the vertices in the given order produces a counterclockwise circuit.
Equivalently, the left hand of a person standing along any directed edge P,_,P; or PP, would be
pointing inside the polygon [see orientations in Figs. 5-8(a) and 5-8(b)].

. D C
R
B
E
A

(a) Positive oriemnsion. (b) Negative orientation.

Fig. 5-8

Let A(xy, ;) and B(xz, ,) be the endpoints of a directed line segment. A point P(x, y) will be to the
left of the line segment if the expression C = (x; — x;)(y — y;) — (r; =y )(x —x,) is positive (see Prob.
5.13). We say that the point is to the right of the line segment if this quantlty is negative. If a pomt Pisto
the right of any one edge of a posmvely oriented, convex polygon, it is outside the polygon. If it is to the
left of every edge of the polygon, it is inside the polygon.

This observation forms the basis for clipping any polygon, convex or concave, against a convex
polygonal clipping window.

\}yﬂe Sutherland—Hodgman Algorithm

Let Py,..., Py be the vertex list of the polygon to be clipped. Let edge E, determined by endpoints 4
and B, be any edge of the positively oriented, convex clipping polygon. We clip each edge of the polygon in
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turn against the edge E of the clipping polygon, forming a new polygon whose vertices are determined as

follows.
Consider the edge P;_,P;:

1. Ifboth P,_, and P; are to the left of the edge, vertex P; is placed on the vertex output list of the
clipped polygon [Fig. 5-9(a)}. ’ ‘ :
+2. Ifboth P,_; and P, are to the right of the edgé, nothing is placed on the vertex output list [Fig.
5-9(b)].
3. If P,_, is to the left and P is to the right of the edge E, the intersection point / of line segment

P,_,P, with the extended edge.E is calculated and placed on the vertex output list [Fig. 5-9(c)].

4. IfP_, is to the right and P; is to the left of edge E, the intersection point [ of the line segment
P,_,P; with the extended edge E is calculated. Both / and P; are placed on the vertex output list
[Fig. 5-9(d)].
The algorithm proceeds in stages by passing each clipped polygon to the next edge of the window and
clipping. See Probs. 5.14 and 5.15.

E E
| |
| I
I I
P, s I G ' e
Qutput
No output
A A
Py | | &
| |
Llr Llr
(@) &)
Fig. 5-9

Special attention is necessary in using the Sutherland-Hodgman algorithm in order to avoid unwanted
effects. Consider the example in Fig. 5-10(a). The correct result should consist of two disconnected parts, a
square in the lower left corner of the clipping window and a triangle at the top [see Fig. 5-10(5)]. However,
the algorithm produces a list of vertices (see Prob. 5.16) that forms a figure with the two parts connected by
extra edges [see Fig. 5-10(c)]. The fact that these edges are drawn twice in opposite direction can be used
to devise a post-processing step to eliminate them.

The Weiler-Atherton Algorithm

Let the clipping window be initially called the clip polygon, and the polygon to be clipped the subject
polygon [see Fig. 5-11(a)]. We start with an arbitrary vertex of the subject polygon and trace around its
border in the clockwise direction until an intersection with the clip polygon is encountered:

e Ifthe edge enters the clip polygon, record the intersection point and continue to trace the subject
polygon.
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P, Polygon P,

Extra

Py
P, F
Clipping
P, P, window

@ ®) ©
Fig. 5-10

e If the edge leaves the clip polygon, record the intersection point and make a right turn to follow
the clip polygon in the same manner (i.e., treat the clip polygon as subject polygon and the subject
polygon as clip polygon and proceed as before).

Whenever our path of traversal forms a sub-polygon we output the sub-polygon as part of the overall result.
We then continue to trace the rest of the original subject polygon from a recorded intersection point that
marks the beginning of a not-yet-traced edge or portion of an edge. The algorithm terminates when the
entire border of the original subject polygon has been traced exactly once. ,

Subject polygon

0 13 Starting vertex
11 12
% f 1
5 “8
4 M-;

3

Sl
N
s
w
<]
~
(-]
(%]

Clip polygon

@) (O]

Fig. 5-11

For example, the numbers in Fig. 5-11(a) indicate the order in which the edges and portions of edges
are traced. We begin at the starting vertex and continue along the same edge (from 1 to 2) of the subject
polygon as it enters the clip polygon. As we move along the edge that is leaving the clip polygon we make
a right turn (from 4 to 5) onto the clip polygon, which is now considered the subject polygon. Following
the same logic leads to the next right turn (from 5 to 6) onto the current clip polygon, which is really the
original subject polygon. With the next step done (from 7 to 8) in the same way we have a sub-polygon for
output [see Fig. 5-11(b)]. We then resume our traversal of the original subject polygon from the recorded
intersection point where we first changed our course. Going from 9 to 10 to 11 produces no output. After
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skipping the already-traversed 6 and 7, we continue with 12 and 13 and come to an end. The figure in Fig,
5-11(b) is the final result.

Applying the Weiler-Atherton algorithm to clip the polygon in Fig. 5-10(a) produces correct result
[see Fig. 5-12(a) and (b)).

7 3
6 6
8 x4 N4
. 9| 10 10
N AT Y 13 1
12°Y ., 12
Starting 15~
vertex .
(a) ®)
Fig. 5-12

5.5 EXAMPLE: A 2D GRAPHICS PIPELINE

Shared by many graphics systems is the overall system architecture called the graphics pipeline. The
operational organization of a 2D graphics pipeline is shown in Fig. 5-13. Although 2D graphics is typically
treated as a special case (z = 0) of three-dimensional graphics, it demonstrates the common working
principle and basic application of these pipelined systems.

Modeling Viewi Scan Displ
. - ewing splay
Ob-’[ ;c‘lliun_’ Trll:sﬂcru:‘)nhm | Transformation Conversion (frame buffer)
Transformations Window & viewport Color attributes
settings

Fig. 5-13 A 2D graphics pipeline.

At the beginning of the pipeline we have object data (e.g., vertex coordinates for lines and polygons
that make up individual objects) stored in application-specific data structures. A graphics application uses
system subroutines to initialize and to change, among other things, the transformations that are to be
applied to the original data, window and viewport settings, and the color attributes of the objects.
Whenever a drawing subroutine is called to render a pre-defined object, the graphics system first applies
the specified modeling transformation to the original data, then carries out viewing transformation using
the current window and viewport settings, and finally performs scan conversion to set the proper pixels in
the frame buffer with the specified color attributes.

Suppose that we have an object centered in its own coordinate system [see Fig. 5-14(a)], and we are to
construct a sequence of images that animates the object rotating around its center and moving along a
circular path in a square display area [see Fig. 5-14(b)]. We generate each image as follows: first rotate the
object around its center by angle a, then translate the rotated object by offset - I to position its center on the
positive x axis of the WCS, and rotate it with respect to the origin of the WCS by angle 8. We control the
amount of the first rotation from one image to the next by A, and that of the second rotation by AB.
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@ ' ®)
Fig. 5-14

window(-winsize/2, winsize/2, -winsize/2, winsize/2);

a=0;

while (1) {
setColor(background);
clear();
setColor(color);
pushCTM();
translate(offset, 0);
rotate(a);
drawObject();
'popCTM();
o= a+ Ax;
rotate(Af);

}

We first set the window of winsize by winsize to be sufficiently large and centered at the origin of the
WCS to cover the entire scene. The system’s default viewport coincides with the unit display area in'the
NDCS. The default workstation window is the same as the viewport and the default workstation viewport
corresponds to the whole square display area. : .

The graphics system maintains a stack of composite transformation matrices. The CTM on top of the
stack, called the current CTM, is initially an identity matrix and is automatically used in modeling
transformation. Each call to translate, scale, and rotate causes the system to generate a corresponding
transformation matrix and to reset the current CTM to take into account the generated matrix. The order of
transformation is maintained in such a way that the most recently specified transformation is applied first.
When pushCTM() is called, the system makes a copy of the current CTM and pushes it onto the stack (now
we have two copies of the current CTM on the stack). When popCTM() is called, the system simply
removes the CTM on top of the stack (now we have restored the CTM that was second to the removed
CTM to be the current CTM). . B

Panning and Zooming

Two simple camera effects can be achieved by changing the position or size of the window. When the
position of the window is, for example, moved to the left, an object in the scene that is visible through the
window would appear moved to the right, much like what we see in the viewfinder when we move or pan a
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camera. On the other hand, if’ we fix the window on an object but reduce or increase its size, the object
would appear bigger (zoom in) or smaller (zoom out), respectively.

Double Buffering

Producing an animation sequence by clearing the display screen and constructing the next frame of
image often leads to flicker, since an image is crased almost as soon as it is completed. An effective
solution to this problem is to have two frame buffers: one holds the image on display while the svstem
draws a new image into the other. Once the new image is drawn, a call that looks like swapBufTer( ) - uld
cause the two buffers to switch their roles.

Lookup Table Animation

We can sometimes animate a displayed image in the lookup table representation by changing or
cychng the color values in the lookup table. For example, we may draw the monochromatic object in Fig,
5-14(a) into the frame buffer in several pre-determined locations, using consecutive lookup table entries for
the color attribute in each location (see Fig. 5-15). We initialize lookup table entry 0 with the color of the
object, and all other entries with the background color. This mcans that in the beginning the object is
visible only in its first position (labeled 0). Now if we simply reset entry 0 with the background color and
entry 1 with the object color, we would have the object “moved” to its second position (labeled 1) without
redrawing the image. The object’s circular motion could hence be produced by cycling the object color
through all relevant lookup table entries.

o=
e

¢ %
A

Fig. 5-15




102 TWO-DIMENSIONAL VIEWING AND CLIPPING [CHAP. 5

Solved Problems

5.1 Let

_ YXmax — UXmin

— U .
s, = and g 5 UY max Ymin

=
WXmax — WXmin WVmax — Wmin

Express window-to-viewport mapping in the form of a composite transformation matrix.

SOLUTION
1 0 wvxp, s, 0 0 1 0 —wxyy
N=]10 1 wWnn 0 s, 0 0 1 —wynn
00 1 0 0 1 00 1
s, 0 —sowxpy + X,
=10 5, _syWymin"'vymin
0 0 1

5.2  Find the normalization transformation that maps a window whose lower left corner is at (1, 1) and:
upper right corner is at (3, 5) onto () a viewport that is the entire normalized device screen and (§)
a viewport that has lower left corner at (0, 0) and upper right corner &

2:2
SOLUTION

From Prob. 5.1, we need only identify the appropriate parameters.
(@) The window parameters are wx, = 1, WXy = 3, Wynin = 1, and wy,, = 5. The viewport parameters
are vxpin = 0, WXpax = 1, Win = 0, and vy, = 1. Then s, =4, 5, =}, and

N =

1

[ =
O a= O
Sl 1l

(b) The window parameters are the same as in (a). The viewport parameters are now Xy, = 0, Uxpe = 1
Wmin = 0, Wmex =4 Thens, =1, 5, =1, and

o
|

N=

S O b
< ool—
—

ER

53  Find the complete viewing transformation that maps a window in world coordinates with x extent 1
to 10 and y extent 1 to 10 onto a viewport with x extent } to % and y extent 0 to  in normalized
device space, and then maps a workstation wind-~ with x extent 1 to 1 and y extent } to } in the
normalized device space into a workstation viewport with x extent 1 to 10 and y extent 1 to 10 on
the physical display device.

SOLUTION

From Prob. 5.1, the parameters for the normalization transformation are wxyy, =1, wxp,, = 10,
Wyin = 1, Wymax = lo’mdvxmin=£vxmx:%rvyminzoiand"ymx:%'mcn

VS NV S

£ 18 9 18

8-B



CHAPF. 5] TWO-DIMENSIONAL VIEWING AND CLIPPING 103

54

55

and
w0 %
v=lo & -4
0 0 1

The parameters for the workstation transformation are Whinin = {1 Wange = 3, Wyin = 3 W =1,
mdum=l,uw=1mvym=l,mdwm=IO.THen

s_‘=%=36 sy=1/i4=36
and
(36 0 —8)
W= 0 36 -8
0 o 1
The complete viewing transformation ¥ is
36 0 -8 % 0 % 2 0 -1
Ve=W-N=]| 03 -s|lo & -4|=]0 2 -10
0 o 1 0 0 1 00 1

Find a normalization transformation from the window whose lower left corner is at (0, 0) and upper
right comner is at (4, 3) onto the normalized device screen so that aspect ratios are preserved.

SOLUTION
-

The window aspect ratio is a,, = %. Unless otherwise indicated, we shall choose a viewport that is as large
as possible with respect to the normalized device screen. To this end, we choose the x extent from 0 to 1 and

the y extent from 0 to 3. So
/1
T 3/4

Q,
As in Prob. 5.2, with parameters Wxnin = 0, WXy =4, Wy =0, Wymax =3 and vxpy =0, v, =1,
Wmin = 0, ”ymx:%v

-

(=]

0
0

i
N=]o
00 1

o s

Find the normalization transformation N which uses the rectangle A(1, 1), B(S, 3), C(4, 5), D(0, 3)
as a window [Fig. 5-16(a)] and the normalized device screen as a viewport [Fig. 5-16(b)].

SOLUTION

We will first rotate the rectangle about A so that it is aligned with the coordinate axes. Next, as in Prob.
5.1, we calculate s, and s, and finally we compose the rotation and the transformation N (from Prob. 5.1) to
find the required normalization transformation Np.

The slope of the line segment 4B is

wi|w
11
== e
(ST
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0, 0) 1

(@) Window. (b) Viewport.

Fig. 5-16

Looking at Fig. 5-11, we see that —0 will be the direction of the rotation. The angle f is determined from the

slope of a line (App. 1) by the cquation tan () = L. Then
1 I 2
sin( = i and so sin( =) = -~ i cost) = ‘75 cos(—H) = \/;

(Vi v
The rotation matrix about A(1, 11 is then (Chap. 4. Prob. 4.4):

2 ! (I I\

VS Ve

R W - | 2 [ 1
S D T V)
\/5 & ( v@

W

0 0 1

The x extent of the rotated window is the length of 18 Similarly. the y extent is the length of AD. Using
the distance formula (App. 1) to calculate these lengths vields

di4.B) = V2' + 4: = \//ji) = 2\/5 diA. 1) = \]_3:}?2 = \/5

Also, the x extent of the normalized device screen is 1, as is the v extent. Calculating s, and s,.

viewport x extent 1 viewport v extent |
§ = -——-—— = = e ——— =
T window x extent  2('S " window v extent /5
So
‘ 0
2.8 25
N = " | |
{ -
V/; V/5
0 0 !

The normalization transformation is then

5.6  Lect R be the rectangular window whose lower lefi-hand corner is at L(~3. 1) and upper right-hand
corner is at R(2,6). Find the region codes for the endpoints in Fig. 5-17.
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-

A\
)'IP
J(=2, 10)
|
(1001) : (1000) |- | (1010)
l D@3, 8
' pe ' (3, 8)
| B(-1,7)
(-4, 7 ' - '
| | R, 6)
Ymax = br— ————e———— et e y—— -
1 / Iy
c(-1. %)
(0001) i (0000) | (0010)
E(-2,3) HG. Y
A(-4,2) \
N
F,2
Ymin = | [ S S UEIN 17 Chye " " ————
L(-3, 1) [l.
1 i T R LA O BT (IO, 1 Is parset der e i AN
©101) : ©100) : ©110) %
| |
| 5 I
| G(1, -2 |
Xoiw = -3 5 Xax = 2
v
Fig. 5-17
SOLUTION

The region code for point (x, v) is set according to the scheme

Bit 1 = sign(y — ). ) = sign{y — 6) Bit 3 = sign(x — x,,, ) = sign(x - 2)

Bit 2 = sign(v,,,, - v) = sign(l — v) Bit 4 = sign(x - x) = sign(--3 — x)

min
Here

1 if a is positive

Sign(a) = |0 otherwise

So
A(-4,2) - 0001 F(1.2) - 0000
B(—1.7)— 1000 G(l, =2) — 0100
Ci—1.5) — 0000 H(3.3) - 0010

3 R) — 1010 Ii=4,7)— 1001
E(-2.3) - 0000 J(—=2.10) — 1000
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5.9

5.10
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Clipping: against rectangular windows whose sides are aligned with the *x and y axes involves
computing intersections with vertical and horizontal lines. Find the intersection of a line segment
P, P, [joining P,(x;,y;) to Py(x,, y,)] with (@) the vertical line x = g and (b) the horizontal line
y=ub,
SOLUTION

We write the equation of PP, in parametric form (App. 1, Prob. A1.23):

= - 5.1
{x X + 1(x; — x;) boa b i (5.1)
y=yn+ty=n (5.2)

(a) Since x = a, we substitute this into equation (5.1) and find f = (@ — x,;)/(x; — x;). Then, substituting this
value into equation (5.2), we find that the intersection point is x; = a and

Yr =A}'1 F (a = )(3‘5-;')’1)

X2 — X

(b) Substituting y = b into equation (5.2), we find ¢t = (b — y,)/(v, — y;). When this is placed into equation
(5.1), the intersection point is y; = b and

b—
X=X+ (y 4 )(xz —x)
s =¥

Find the clipping categories for the line segments in Prob. 5.6 (see Fig. 5-17).
SOLUTION
 We place the line segments in their appropriate categories by testing the region codes found in Prob. 5.6.
Category 1 (visible): EF since the region code for both endpoints is 0000.
Category 2 (not visible): IJ since (1001) AND (1000) = 1000 (which is not 0000).

Category 3 (candidates for clipping): 4B since (0001) AND (1000) = 0000, CD since (0000) AND
(1010) = 0000, and GH since (0100) AND (0010) = 0000.

Use the Cohen-Sutherland algorithm to clip the line segments in Prob. 5.6 (see Fig. 5-17).
SOLUTION

From Prob. 5.8, the candidates for clipping are 4B, CD, and GH.

In clipping 4B, the code for A is 0001. To push the 1 to 0, we clip against the boundary line X, = —3.
The resulting intersection point is /;(—3, 3 4). We clip (do not display) AT, and work on I;B. The code for I, is
0000. The clipping category for I, B is 3 since (0000) AND (1000) is (0000). Now B is outside the window
(i.e., its code is 1000), so we push the 1 to a 0 by clipping against the line y,.,, = 6. The resulting intersection
is I,(—1%, 6). Thus I, B is clipped. The code for J, is 0000. The remaining segment I; 1 is displayed since both
endpoints lie in the window (i.e., their codes are 0000).

For clipping CD, we start with D since it is outside the window. Its code is 1010. We push the first 1 to a 0
by clipping against the line y,,,, = 6. The resulting intersection J is (}, 6) and its code is 0000. Thus I, D is
clipped and the remaining segment CI, has both endpoints coded 0000 and so it is displayed.

For clipping GH, we can start with either G or H since both are outside the window. The code for G is
0100, and we push the 1 to a 0 by clipping against the line y,;, = 1. The resulting intersection point is
I,(2}, 1), and its code is 0010. We clip GI, and work on [;H. Segment I,H is not displayed since (0010)
AND (0010) = 0010. .

Clip line segment CD of Prob. 5.6 by using the midpoint subdivision process.
SOLUTION
The midpoint subdivision process is based on repeated bisections. To avoid continuing indefinitely, we
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5.11

agree to say that a point (x;, ,) lies on any of the boundary lines of the rectangle, say, boundary line x = xp,,,
for example, if —TOL < x; — Xy, < TOL. Here TOL is a prescribed tolerance, some small number, that is
set before the process begins. '

To clip CD, we determine that it is in category 3. For this problem we arbitrarily choose TOL = 0.1. We
find the midpoint of CD to be M,(1, 6.5). Its code is 1000. =

So M,D is not displayed since (1000) AND (1010) = 1000. We further subdivide CM, since (0000)
AND (1000) = 0000. The midpoint of CM, is M,(0, 5.75); the code for M, is 0000. Thus CM, is displayed
since both endpoints are 0000 and M, M, is a candidate for clipping. The midpoint of M; M is M;(0.5, 6.125),
and its code is 1000. Thus M;M, is chipped and MM, is subdivided. The midpoint of M)M; is
M,(0.25,5.9375), whose code is 0000. However, since y, = 5.9375 lies within the tolerance 0.1 of the
boundary line y,, = 6—that is, 6 — 5.9375 = 0.0625 < 0.1, we agree that M, lies on the boundary line
Ymax = 6. Thus M_-jq‘ is displayed and M, M, is not displayed. So the original line segment CD is clipped at
M, and the process stops.

Suppose that in an implementation of the Cohen—Sutherland algorithm we choose boundary lines in
the top—bottom-right-left order to clip a line in category 3, draw a picture to show a worst-case
scenario, i.e., one that involves the highest number of iterations.

SOLUTION
See Fig. 5-18. - #

Fig. 5-18

5.12 Use the Liang-Barsky algorithm to clip the lines in Fig. 5-19.

YA
L D@3, 10) B(11,10)
H(3,9)
y—=s ............ /
1 /
» G(6,6) A(11,6)
i F(8]4)
E(@2,3)
y_.=2 ...... L S ... e —
% \J(n.l)
tic. . PR I R i T >x
x_:=l x;¥9
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SOLUTION
For line AB, we have
=0 q, =10
p2=0 g =-2
p=-4 qg=4
ps=4 qs =2

Since'pz =0 and g, < -2, AB is completely outside the right boundary.
For line CD, we have

p=0 g =2

py=0 =6

p3=-3 QB = ’:='§
pa=3 g5 =1 ’4‘—‘%

Thus u; = max(0, —3) = 0 and w, = min(1, }) = .. Since u; < u,, the two endpoints of the clipped line arc
(3,7) and (3,7 + 3(]3)) = (3, 8).
For line EF, we have

pi=—6 q,=|' ’1=—%,
P = 4@ =7 ’z=%
==l @=l ry=-1
Py = 4s =5 "4=%

Thus 1, = max(0, —{, —1) = 0 and u, = min(1,}, 5) = 1. Since 4, = 0 and v, = 1, linc EF is completely
inside the clipping window.
For line GH, we have

py=-2 @1 =5 n=-3
pP2=2 =3 n=3
p==3 q=4 n=-3
pa=3 Gs =2 "4:%

Thus u; = max(0, -}, —%) = 0 and u, = min(1,2,3) = 2 Since u, < u,, the two endpoints of the clipped
line are (6, 6) and (6 + 2(3), 6 + 3(3)) = (71, 8).
For line 1/, we have

p=-12 g =-2 n=i
py=12 g@=10 =3
p3=6 43 =35 r=3
Py =—6 4s =1 re=—¢%

Thus &, = max(0,, —¢) = § and u; = min(1, $,3) = £, Since u) < u,, the two endpoints of the clipped line

are (=1 4+ 12(3). 7+ (=6)(})) = (1, 6) and (—1 +12(3), 7+ (-6)(})) = (9, 2).

How can we determine whether a point P(x, ) lics to the left or to the right of a line segment
joining the points A(x,, y,) and B(x,, y,)?

SOLUTION

Refer to Fig. 5-20. Form the vectors AB and AP. If the point P is to the left of AB, then by the definition
of the cross product of two vectors (App. 2) the vector AB x AP points in the direction of the vector K
perpendicular to the xy plane (see Fig. 5-20). If it lies to the right, the cross product points in the direction
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5.14

5.15

5.16

—~K. Now
AB = (x; =x )+ =) AP = (x = x) )+ (-2 M
So
AB x AP = [(x; — x;(r — ) = Oy = 3 = )IK
Then the direction of this cross product is determined by the number
C =y~ 3 =3~ 0 3 U = )

If € is positive, P lies to the Icft of AB. If € is negative, then P lies to the right of AB.

Alxu}

K%

Fig. 5-20

Draw a flowchart illustrating the logic of the Sutherland-Hodgman algorithm.
SOLUTION

The algorithm inputs the vertices of a polygon one at a time. For each input vertex, either zero, one, or
two output vertices will be generated depending on the relationship of the input vertices to the clipping edge
E.

We denote by P the input vertcx, S the previous input vertex, and £ the first arriving nput vertex. The
vertex or vertices to be output arc determined according to the logic illustrated in the flowchart in Fig. 5-21.
Recall that a polygon with n vertices Py, P. ... P, has ncdges P\ P,. ... P, P, and the edge PP, closing
the polygon. In order to avoid the need to duplicate the input of P, as the final input vertex (and a
corresponding mechanism to duplicate the final output vertex to close the polygon), the closing logic shown in
the flowchart in Fig. 5-22 is called after processing the final input vertex P,

Clip the polygon P,,..., Py in Fig. 5-23 against thc window ABCD using the Sutherland-
Hodgman algorithm.

SOLUTION

At each stage the new output polygon, whose vertices are determined by applying the Sutherland-
Hodgman algorithm (Prob. 5.14), is passed on to the next clipping edge of the window ABCD. The results are
illustrated in Figs. 5-24 through 5-27.

Clip the polygon Py, ....Ps in Fig. 5-10 against the rectangular clipping window using the
Sutherland-Hodgman algorithm.

SOLUTION

We first clip against the top boundary line, then the left, and finally the bottom. The nght boundary is
omitted since it docs not affect any vertex list. The intermediate and final results are n Fig. 5-28.
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Output
vertex /
S=p
Yes Is S on left
side of ET
1
Output
vertex S No
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5.17

5.18

|
G A e s ol

Fig. 5-24 Clip against 4B. Fig. 5-25 Clip against BC.

Use the Weiler—Atherton algorithm to clip the polygon in Fig. 5-29(a).
SOLUTION

See Fig. 5-29(b) and (c).

Consider the example in Sect. 5.5, where the object would appear turning slowly around its center
even if we set Aa = 0. How to keep the orientation of the object constant while making it rotate

_around the center of the display area?
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RiL
|
!
ITn Tio T. T,
2 \/ i
Si:p Sy S C R To
V 5 L 7y
. T 2\ 7y .
1o A T, T, B
|
. 5 i
S, A S B |
Fig. 526 Chp against CD. Fig. 5-27 Chp aganst DA,
¢ (28
vl | g\l
| Y
¢ Q
L ey o
1 ¢,
Clip agaunst Chp agamst Ul i
top boundary left boundary o houndary
Fig. 5-28
Subject
polygon
'( lip Starting s
polygon vertex
(4) th )
Fig. 5-29
SOLUTION

Az Af.ie. 2= —f.

How to amimate the flag in Tz $-3002) that may be 1 twvo different postions using lookup table
animation?
SOLUTION

See Fiz. 5-30(h) The area where posttion T overlups posttion 2 s assigned entry O that has the color of
the flag. The rest of position 11 asstgned entry | and that of position 2 entry 2. Now we only need to alternate

entrics 1 and 2 between the flag color and the backgronnd color.
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5.21

522

5.23

5.24

Position: 2

Positon |

(@) I

Fig. 5-30

Supplementary Problems

Find the workstation transformation that maps the normalized device screen onto a physical device whose x
extent is 0 1o 199 and v extent 15 0 10 639 where the origin is located at the (a) lower left coner and (b) upper
left coner of the device.

Show that for a viewing transformation, s, = s, if and only if a,, = a,. where a,, is the aspect ratio of the
window and g, the aspect ratio of the viewport.

Find the normalization transformation which uses a circle 1 radius five units and center (1, 1) as a window
and a circie of radius } and center (5. }) as a viewport

Describe how clipping a line against a circular window (or viewport) might procced. Refer to Fig. 5-31

L} |
| |
| |Rh + .k +1)
{Lth=r,k -1 |
| f
1 1

Fig. 8-31
Use the Sutherland Hodgman algonthn o chip the ane sopront joining Pyt- 1,20 to Paih d) agamst e

rotated window 1 Pron S5



CHAPTER 6

Three-Dimensional
Transformations

Manipulation, viewing, and construction of three-dimensional graphic images requires the use of three-
dimensional geometric and coordinate transformations. These transformations are formed by composing
the basic transformations of translation, scaling, and rotation. Each of these transformations can be
represented is a matrix transformation. This permits more complex transformations to be built up by use of
matrix multiplication or concatenation.

- As with two-dimensional transformations, two complementary points of view are adopted: either the
object is manipulated directly through the use of geometric transformations, or the object remains
stationary and the viewer’s coordinate system is changed by using coordinate transformations. In addition,
the construction of complex objects and scenes is facilitated by the use of instance transformations. The
concepts and transformations introduced here are direct generalizations of those introduced in Chap. 4 for
two-dimensional transformations.

6.1 GEOMETRIC TRANSFORMATIONS

With respect to some three-dimensional coordinate system, an object Obj is considered as a set of
points:

0bj = (P(x, y, z)}
If the object is moved to a new position, we can regard it as a new object Oby’, all of whose coordinate

points P(¥.)".z ) can be obtained from the original coordinate points P(x, »,z) of Obj through the
application of a geometric transformation. ’

Translation

An object is displaced a given distance and direction from its original position. The direction and
displacement of the translation is prescribed by a vector

V =al + bJ + cK

114
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The new coordinates of a translated point can be calculated by using the transformation

X =x+a
T:.{y=y+b
Z=z+4+c

(see Fig. 6-1). In order to represent this transformation as a matrix transformation, we need to use
homogeneous coordinates (App. 2). The required homogeneous matrix transformation can then be
expressed as

X\ (100 a\/[(x
y|_ o1 0 s]fy
Z]17]10 01 ¢ z ;
1) \ooo 1/\u \/_
z
v P’ul.yl'z')
Pix. 5, 2)
v,
y
X
Fig. 6-1

S

The process of scaling changes the dimensions of an object. The scale factor s determines whether the
scaling is a magnification, s > 1, or a reduction, s < 1.
Scaling with respect to the origin, where the origin remains fixed, is effected by the transformation

=9
SJ,..I,..I,: yl= y Y
Z=s;-z

In matrix form this is

‘%ntlﬁon

Rotation in three dimensions is considerably more complex than rotation in two dimensions. In two
dimensions, a rotation is prescribed by an angle of rotation § and a center of rotation P. Three-dimensional
rotations require the prescriptioin of an angle of rotation and an axis of rotation. The canonical rotations
are defined when one of the positive x, y, or z coordinate axes is chosen as the axis of rotation. Then the

o o0
o ©

S 15y05;

Il
Y T

o0

E&F
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construction of the rotation transformation proceeds just like that of a rotation in two dimensions about the
origin (see Fig. 6-2).

Pix, », 0)
Fig. 6-2

Rotation about the 7 Axis
From Chap. 4 we know that

X =xcosl) — ysinl
Ryx:{ ¥ =xsin0 + ycos( /

=z
Rotation about the y Axis
An analogous derivation leads to
X =xcos() +zsin0
RU,J" y’ =y
Z = —xsinf) 4 zcos () v/

Rotation about the x Axis

Similarly: \/
‘ X=X

Rpy:{ ¥ =ycosll —zsinl)
Z =ysinl +zcos(
Note that the direction of a positive angle of rotation is chosen in accordance to the right-hand rule with

respect to the axis of rotation (App. 2).
The corresponding matrix transformations are

{cos 0 —sinG 0 w \
Ry = | sinfl cost) 0

\ 0 0 1

( cos) 0 sin ()\
Ry, = 0 1 0

\ —sing 0 cosu)
( 10 0
Ryy=10 cost)l —sinf
\0 sinfl  cost
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The general use of rotation about an axis L can be built up from these canonical rotations using matrix
multiplication (Prob. 6.3). -

COORDINATE TRANSFORMATIONS

We can also achieve the effects of translation, scaling, and rotation by moving the observer who views
the object and by keeping the object stationary. This type of transformation is called a coordinate

Fig. 6-3

transformation. We first attach a coordinate system to the observer and then move the observer and the
attached coordinate system. Next, we recalculate the coordinates of the observed object with respect to this
new observer coordinate system. The new coordinate values will be exactly the same as if the observer had
remained stationary and the object had moved, corresponding to a geometric transformation (see Fig. 6-3).
If the displacement of the observer coordinate system to a new position is prescribed by a vector
V = al + bJ + ¢K, a point P(x, y, z) in the original coordinate system has coordinates P(¥', )/, Z) in the
new coordinate system, and
_ [¥=x-a
I,:{y=y-b

Z=z-c
The derivation of this transformation is completely analogous to that of the two-dimensional transforma-
tion (see Chap. 4).
Similar derivations hold for coordinate scaling and coordinate rotation transformations.
As in the two-dimensional case, we summarize the relationships between the matrix forms of the
coordinate transformations and the geometeric transformations:

Coordinate Transformations Geometric Transformations

Translation Ty T_y
Rotation _Ry R
Scaling Stotyn, 81 /5,145,105,

Inverse geometric and coordinate transformations are constructed by performing the reverse operation.
Thus, for coordinate transformations (and similarly for geometric transformations):

il B el 8L S':/x,.l/:,.l/:,

yoSyly

6.3 COMPOSITE TRANSFORMATIONS

More complex geometric and coordinate transformations are formed through the process of
composition of functions. For matrix functions, however, the process of composition is equivalent to

9-A
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matrix multiplication or concatenation. In Probs. 6.2, 6.3, 6.5, and 6.13, the following transformations are
constructed:

1. Ay = aligning a vector V with a vector N.

2. Ry, = rotation about an axis L. This axis is prescribed by giving a direction vector V and a point
P through which the axis passes.

3. 8, s,s,p = scaling with respect to an arbitrary point P.

In order to build these more complex transformations through matrix concatenation, we must be able
to multiply translation matrices with rotation and scaling matrices. This necessitates the use of
homogeneous coordinates and 4 x 4 matrices (App. 2). The standard 3 x 3 matrices of rotation and
scaling can be represented as 4 x 4 homogeneous matrices by adjoining an extra row and column as
follows:

a b ¢ 0
d e f 0
g h i O
0 0 0 1

These transformations are then applied to points P(x, y, z) having the homogeneous form:

—_N e X

EXAMPLE 1. The matrix of rotation about the y axis has the homogeneous 4 x 4 form:

cos) 0 sinf O
BinfF® 1T @ @
03~ | —sin@ 0 cosf U
0 0 0 1

6.4 INSTANCE TRANSFORMATIONS

If an object is created and described in coordinates with respect to its own object coordinate space, we
can place an instance or copy of it within a larger scene that is described in an independent coordinate
space by the use of three-dimensional coordinate transformations. In this case, the transformations are
referred to as instance transformations. The concepts and construction of three-dimensional instance
transformations and the composite transformation matrix are completely analogous to the two-dimensional
cases described in Chap. 4.

Solved Problems

6.1  Define tilting as a rotation about the x axis followed by a rotation about the y axis: () find the tilting
matrix; (b) does the order of performing the rotation matter?

9-B
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SOLUTION
(@) We can find the required transformation T by composing (concatenating) two rotation matrices:
T=Ry s Ry,
( cosf, 0 sin6, 0\ /1 0 0 0
0 1 0 0]]0 cosf, —sinb, 0
o sin, 0 cosd, 0|0 sinf, cosb, O
k 0 0o o 1/\0 0 0 1
( cosf), sinf,sin, sinf,cosf, 0
0 cos 6, —sin @, 0
N —sinf, cosf,sinf, cosb,cosb, 0
\ o 0 0 1

(b) We multiply Ry ;- Ry ; to obtain the matrix
cos 6, 0 sin 6, 0
sinf,sinf, cosf, —sinf cosd, 0
—cosf,sin0, sinf, cosf,cos Oy 0
0 0 0 1

This is not the same matrix as in part @; thus the order of rotation matters.

6.2 Finda trans.formation Ay which aligns a given vector V with the vector K along the positive z axis.
SOLUTION

See Fig. 6-4(a). Let V = al + bJ + cK. We perform the alignment through the following sequence of
transformations [Figs. 6-4(b) and 6-4(c)]:

1. Rotate about the x axis by an angle 6, so that ¥ rotates into the upper half of the xz plane (as the vector
V).

2. Rotate the vector V, about the y axis by an angle —6, so that V, rotates to the positive z axis (as the
vector V,).

Implementing step 1 from Fig. 6-4(b), we observe that the required angle of rotation 8, can be found by
looking at the projection of V onto the yz plane. (We assume that b and ¢ are not both zero.) From triangle

OP'B:
; b c
smB, = —W Ccos 0| = \/_ﬁ
The required rotation is
1 0 0 0
0 e gl b
3 B+
RG..I = b .
0 — —— 0
V3 SR+
0 0 0 1

Applying this rotation to the vector V produces the vector V; with the components (a, 0, VB + ).
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Implementing step 2 from Fig. 6-4(c), we see that a rotation of —8, degrees is required, and so from

triangle 0QQ":

a VE+ 3
in(—0,) = —sin b, = — —— and cos(—0,) = co8 0 = ————
sin(~0;) = 5 ind; =~ mpegr—y (O =emh =TT E TS

Then
N 0 —-a
Jal+ b+ Val + b+
e 0 1 0 0
e a . VBEFE
Vel + b+ Val + b+
’ 0 0 0 1
Since [V| = v/a% + 57 + &, and introducing the notation 4 = v/7 + &%, we find
Ay =R_g, 5 Rg1
(A —ab —ac o\
VI AVl AV
» c -b
i G B -
x Db ® S
vi v vl
Ko o 0 1)

[fboﬂlbandcarezcm,thcnv=al,andsol=0.lnthiscase,onlya:t90°mntionabouttheyaxis
is required. So if 4 =0, it follows that .
—a
0 0 — 0
lal
0 1 0 O

0o 0 0

Ay =R g 3=
lal
0 2 0 1
In the same manner we calculate the inverse transformation that aligns the vector K with the vector V:

A7 = (R_g 3+ Re )™ = R3)\ “RZp, 3 =R_g1 Ros

A 0 L 00

vl V]
b & L.y
= AVl 4 V]
i M 8 0
P T

\o o0 o0 1

6.3  Let an axis of rotation L be specified by a direction vector V and a location point P. Find the
transformation for a rotation of 6° about L. Refer to Fig. 6-5.
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'4

Fig. 6-5 Fig. 6-6

SOLUTION

We can find the required transformation by the following steps:
Translate P to the origin.

Align V with the vector K.

Rotate by 6° about K.

Reverse steps 2 and 1.

H W N -

So
Ry, =T} A7 Ry -Ay-T_p

Here, A, is the transformation described in Prob. 6.2.

6.4  The pyramid defined by the coordinates 4(0, 0, 0), B(1, 0, 0), C(0, 1, 0), and D(0, 0, 1) is rotated
45° about the line L that has the direction V = J + K and passing through point C(0, 1, 0) (Fig.
6-6). Find the coordinates of the rotated figure.

SOLUTION

From Prob. 6.3, the rotation matrix Ry, can be found by concatenating the matrices
Roy=Tp Ay -Roy-Ay-T_p

With P = (0, 1, 0), then

Tp=

oo o -
co—o
o~ 0
|
—
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Now V = J + K. So from Prob. 6.2, witha=0,b=1,c=1, we find 1 = V2, V| = v/2, and

1 0
1
g <=
V2
Av=
0 e
o)
0 0
Also
444
J2
1
Risx =| /2
0
0
Then
Ror =

\

0

I BN

| ls
o =
gagea T 3

0 1 0 0 0
11
0 Orfei wim W)
1YE 7
s -1 i
0 0 Lm0
V2 V2
1 0" 0 1
& 1 000
01 01
09 b=
0010
10
00 0 1
0 1

i ITRP S A

2 2 2

242 2-42 2-V2
4 4 4

2=, 2422
4 4 4
0 0 1)

To find the coordinates of the rotated figure, we apply the rotation matrix Ry to the matrix of homogeneous
coordinates of the vertices 4, B, C, and D:

C = (4ABCD) =

So

Ry -C=

0 151000
00 ¥0
0 0 6 1
. (EN S |

The rotated coordinates are (Fig. 6-7)

I

T

; (1 2-2 Ji4—2

) C'=(0,1,0)

2

4

4

B,=(1+Ji‘4—~/i‘\/z‘—4) n=(1,2_‘ﬁ Ji)
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6.7
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Fig. 6-7

Find a transformation 4y 5 which aligns a vector V with a vector N.
SOLUTION '

We form the transformation in two steps. First, align V with vector K, and second, align vector K with
vector N, So from Prob. 6.2, '

Ayn =AR'-Ay

Referring to Prob. 6.12, we could also get Ay y by rotating V towards N about the axis V x N.

Find the transformation for mirror reflection with respect to the xy plane.
SOLUTION

From Fig. 6-8, it is easy to see that the reflection of P(x, y,z) is P/(x, y, —z). The transformation that
performs this reflection is
1 0 0
M=]0 1 0

0 0 -1

Find the transformation for mirror reflection with respect to a given plane. Refer to Fig. 6-9.
SOLUTION

Let the plane of reflection be specified by a normal vector N and a reference point Py(xy, yp, 2g). To
reduce the reflection to a mirror reflection with respect to the xy plane:

1. Translate P, to the origin:

2. Align the normal vector N with the vector K normal to the xy plane.
3. Perform the mirror reflection in the xy plane (Prob. 6.6).

4. Reverse steps 1 and 2.

So, with translation vector V = —xoI — y,J — z,K
Myp, =Tv' AR M - Ay Ty

Here, Ay is the alignment matrix defined in Prob. 6.2. So if the vector N = m 1+ nyJ + nyK, then from Prob.
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Reflection plane

[ P(x, 5, 2)
o

d l y
Ly 0
|

|
‘.P’(x. Y, ~2)

Fig. 6-8 ‘ Fig. 6-9

6.2, with |N| = \/n? + nf + n} and A = \/nZ + 3, we find

A —mny —mny A ny
o =1 = e
NI ANl AIN] IN| IN|
ny —m TmR B3 m
p, £ =3 B ! TR
Ay = ‘ A A and Ay'=]| ANl 4 |N|
B B B g, i L M L PN
IN|IN| IN| ANl 4 NI
0 0 0 1 0 0 0 1
In addition
1 0 0 —x 100 x
o 1 0 -y a_[0 1 0
elo 0 1 -~ ' W=le 5 1.3
00 0 1 000 1

Finally, from Prob. 6.6, the homogeneous form of M is

1Al 0430
01 00
Mz 00 -1 0
00 01

6.8  Find the matrix for mirror reflection with respect to the plane passing through the origin and having
a normal vector whose direction is N=1+J + K.
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SOLUTION
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From Prob. 6.7, with Py(0,0,0) and N =1+ J + K, we find [N| = +/3 and 4 = V2. Then

(

\

and

The reflection matrix is

1
0
0
0

(V3

S

= -

0
1
0

(=]

0 0 1 0 0 0
0 0 01 00
(V =01 + 0J + 0K) T‘7|=
1 0 0 0 1 0
0 1 0 0 01
_____l__ __1_ o\ ﬁ 0 i 0

V2J3 V243 V3 V3
1 -1 0 -1 _l_ _l_ 0
AR & =| A D
i1 L.y -1 -1 o1
BB NN IR A
0 0 1 0 0 0 1
1 0 0 0
0 1 0 0
M=106 0 -1 0
0 0 1

f‘/lN'0=Tl\j!"L Ail MANTV

|
=T R
S W= Wi Wi
o O O

O Wi i Wi

[

Supplementary Problems

6.9 Align the vector V = I+ J + K with the vector K.

6.10  Find a transformation which aligns the vector V =1+ J + K with the vector N = 2l - J — K.

6.11  Show that the alignment transformation satisfies the relation 47! = A7.

6.12 Show that the alignment transformation 4y  is equivalent to a rotation of 0° about an axis having the
direction of the vector V x N and passing through the origin (see Fig. 6-10). Here 0 is the angle between

vectors V and N.
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N
VxN
~
N
N
N
N [)
oT\ —7
N
Fig. 6-10

6.13  How can scaling with respect to a point Py(xg. . 2,) be defined in terms of scaling with respect to the origin?



_/Mathematics of
Projection

Needless to say, there are fundamental differences between the true three-dimensional world and its
pictorial description. For centuries, artists, engineers, designers, drafters, and architects have tried to come
to terms with the difficulties and constraints imposed by the problem of representing a three-dimensional
object or scene in a two-dimensional medium—the problem of projection. The implementers of a computer
graphics system face the same challenge.

Projectian can be defined as a mapping of point P (x, y, z) onto its image P’ (%, )/, Z) in the projection
plane or view plane, which constitutes the display surface (see Fig. 7-1). The mapping is determined by a
projection line called the projector that passes through P and intersects the view plane. The intersection
point is P’

Projection/view P(x,%2)
plane

Projector

P'(x',y'\2)

i

4

Fig. 7-1 The problem of projection.

The result of projecting an object is dependent on the spatial relationship among the projectors that
project the points on the object, and the spatial relationship between the projectors and the view plane (see
Sec.*7.1). An important observation is that projection preserves lines. That is, the line joining the projected
images of the endpoints of the original line is the same as the projection of that line.

The two basic methods of projection—perspective and parallel—are designed to solve the basic but
mutually exclusive problems of pictorial representation: showing an object as it appears and preserving its

128
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true size and shape. We characterize each method and introduce the mathematical description of the
projection process in Sec. 7.2 and 7.3, respectively.

7.1 TAXONOMY OF PROJECTION

We can construct different projections according to the view that is desired.

Figure 7-2 provides a taxonomy of the families of perspective and parallel projections. Some
projections have names—cavalier, cabinet, isometric, and so on. Other projections qualify the main
type of projection—one principal vanishing-point perspective, and so forth.

Projections
[ ]
Perspective Parallel
?«mm) (parallel projectors)
l \ | ]
Orthographic Oblig
Onepoint Twopoint Three point e oo B Lo S
(e - (wo (e to view piane) © view plane)
e | s preey [ | |
point)  points) points) Multiview Axonometric General
(view plane (view plane / \
pq-nlieho noypgrﬂh&w
lm*g" principal Cavalier ~ Cabinet

planes)
FRON
Isometric Dimetric Trimetric

Fig. 7-2 Taxonomy of projection.

7.2 PERSPECTIVE PROJECTION
Basic Principles

The techniques of perspective projection are generalizations of the principles used by artists in
preparing perspective drawings of three-dimensional objects and scenes. The eye of the artist is placed at
the center of projection, and the canvas, or more precisely the plane containing the canvas, becomes the
view plane. An image point is determined by a projector that goes from an object point to the center of
projection (see Fig. 7-3).

Perspective drawings are characterized by perspective foreshortening and vanishing points. Perspective
foreshortening is the illusion that objects and lengths appear smaller as their distance from the center of
projection increases. The illusion that certain sets of parallel lines appear to meet at a point is another
feature of perspective drawings. These points are called vanishing points. Principal vanishing points are
formed by the apparent intersection of lines parallel to one of the three principal x, y, or z axes. The number
of principal vanishing points is determined by the number of principal axes intersected by the view plane
(Prop. 7.7).

Mathematical Description of a Perspective Projection

A perspective transformation is determined by prescribing a center of projection and a view plane. The
view plane is determined by its view reference point R, and view plane normal N. The object point P is
located in world coordinates at (x,y,z). The problem is to determine the image point coordinates
P, y,2) (see Fig. 7-3).
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P(x,y.2)

(2]

N PWY.0)

s
A2

Pi(x,y.2)

q

Center of
projection

80,0,z z
ey A s e
/

(0.0.0) d

(0,0, ~d)

Ro(xo. Yo, 20)
View reference
View planc

X normal

'

A(x, 0, x)

*/\jga
l

X¥

Fig. 7-3 Fig. 74

EXAMPLE 1. The standard perspective projection is shown in Fig. 7-4. Here, the view plane is the xy plane, and
the center of projection is taken as the point C(0, 0, —d) on the negative z axis.
Using similar triangles 4BC and 4'OC, we find

d-x d-y

f=z+d yL=z+d £ =0

The perspective transformation between object and image point is nonlinear and so cannot be represented as a
3 x 3 matrix transformation. However, if we use homogeneous coordinates, the perspective transformation can be
represented as a 4 x 4 matrix:

E 4. d-x d 0 0 0 x
Y)i_tdy ] _|0d 00 y
Z |~ 0 “10 0 0 0 z
1 z+d 0 01 d 1

The general form of a perspective transformation is developed in Prob. 7.5.

Perspective Anomalies

The process of constructing a perspective view introduces certain anomalies which enhance realism in
terms of depth cues but also distort actual sizes and shapes.

1. Perspective foreshortening. The farther an object is from the center of projection, the smaller it
appears (i.e. its projected size becomes smaller). Refer to Fig. 7-5.
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.é"d B z

€, 0, ~d) A

Note: Sphere B is 27 times the size of

sphere A, yet both spheres appear to be the
same size when projected onto the view plane

Fig. 7-5

2. Vanishing points. Projections of lines that are not parallel to the view plane (i.e. lines that are not
perpendicular to the view plane normal) appear to meet at some point on the view plane. A
common manifestation of this anomaly is the illusion that railroad tracks meet at a point on the
horizon.

EXAMPLE 2. For the standard perspective projection, the projections L] and L) of parallel lines L, and L, having
the direction of the vector K appear to meet at the origin (Prob. 7.8). Refer to Fig. 7-6.

€@, 0, -d)

Fig. 7-6 Fig. 7-7

3. View confusion. Objects behind the center of projection are projected upside down and backward
onto the view plane. Refer to Fig. 7-7.

4. Topological distortion. Consider the plane that passes through the center of projection and is
parallel to the view plane. The points of this plane are projected to infinity by the perspective
transformation. In particular, a finite line segment joining a point which lies in front of the viewer
to a point in back of the viewer is actually projected to a broken line of infinite extent (Prob. 7.2)
(see Fig. 7-8).
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Points P of linc L are projected, through C,
onto points 7’ on line L’ in the xy view plan
z P is projected to infinity

Fig. 7-8

7.3 PARALLEL PROJECTION
Basic Principles

Parallel projection methods are used by drafters and engineers to create working drawings of an object
which preserves its scale and shape. The complete representation of these details often requires two or
more views (projections) of the object onto different view planes.

In parallel projection, image points are found as the intersection of the view plane with a projector
drawn from the object point and having a fixed direction (see Fig. 7-9). The direction of projection is the
prescribed direction for all projectors. Orthographic projections are characterized by the fact that the
direction of projection is perpendicular to the view plane. When the direction of projection is parallel to
any of the principal axes, this produces the front, top, and side views of mechanical drawings (also referred
to as multiview drawings). Axonometric projections are orthographic projections in which the direction of
projection is not parallel to any of the three principal axes. Nonorthograhic parallel projections are called
obligue parallel projections. Further subcategories of these main types of parallel projection are described
in the problems. (See also Fig. 7-10.)

Mathematical Description of a Parallel Projection

A parallel projective transformation is determined by prescribing a direction of projection vector V
and a view plane. The view plane is specified by its view plane reference point R, anrd view plane normal
N. The object point P is located at (x, y, z) in world coordinates. The problem is to determine the image
point coordinates P'(x’, y/, Z). See Fig. 7-9.

If the projection vector V has the direction of the view plane normal N, the projection is said to be
orthographic. Otherwise it is called oblique (see Fig. 7-10).

Some common subcategories of orthographic projections are:

1. Isometric—the direction of projection makes equal angles with all of the three principal axes
(Prob. 7.14).

2. Dimetric—the direction of projection makes equal angles with exactly two of the pﬁncipal axes
(Prob. 7.15).

3. Trimetric—the direction of projection makes unequal angles with the three principal axes.
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Direction of V
o ——————f

projection

Vier“.plane

Oblique
Px. ¥ 2) q

2

P>

Orthographic ~_

Fig. 7-9 ' Fig. 7-10

Some common subcategories of oblique projections are:

1. Cavalier—the direction of projection is chosen so that there is no foreshortening of lines
perpendicular to the xy plane (Prob. 7.13).

2. Cabinet—the direction of projection is chosen so that lines perpendicular to the xy planes are
foreshortened by half their lengths (Prob. 7.13).

EXAMPLE 3. For orthographic projection onto the xy plane, from Fig. 7-11 it is easy to see that

Pary:

R R
[/ T
O w

The matrix form of Pary is

Pary =

OO -
SO~ O
S o oo
oo C

The general parallel projective transformation is derived in Prob. 7.11.

Solved Problems

7.1  The unit cube (Fig. 7-12) is projected onto the xy plane. Note the position of the x, ¥, and z axes.
Draw the projected image using the standard perspective transformation with (a) d = 1 and (b)
d = 10, where d is distance from the view plane.

10-A
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- v
2 L
/ h
*y /1
/ I
f"’""_ i EATRY 2)
| || !
! !
| by —&
| by '
| I/
| 1]
b { —_—— 4 i, v,
X
Fig. 7-11

SOLUTION

We represent the unit cube in terms of the, homogeneous coordinates of its vertices:

01 1000 11
V = (4BCDEFGH) = g g (1) (l) i tll (I) :
T 11T 1% 4

Fig. 7-12

10-B
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From Example | the standard perspective matrix is

d 0 0 0
0 d 0 0
Pere =10 0 0 o
00 1 4
(a) Withd = 1, the projected coordinates are found by applying the matrix Pery to the matnx of coordinates
V. Then
01100011
0011 1001
Perv-¥=10"0 0000 0 0
1 111 22 2 2

If these homogeneous coordinates are changed to three-dimensional coordinates, the projected
image has coordinates:

=000 £=(0,1.0
B=(1,0,00 F =(0,0.0)
C=(10 G=(,00
D=010 H=0310

We draw the projected image by preserving the edge connections of the original object (see Fig. 7-
13). [Note the vanishing point at (0, 0, 0).]

(b) With d = 10, the perspective matrix is

—_—

coco

(=~ ]

Perx=

—~—ooco
Sooo

Then

0 10 10 0o 0 O 10 10
0 0 10 1010 0 0 10
0O 0 0 0 0 0 0 o0
10 10 10 10 11 E1 11 11

Peryg -V =

is the matrix image coordinates in homogencous form. The projected image coordinates are then
A'=(0,0,0) E =(0,12,0)
B =(1,0,0) F'=(0,0,0)
C=(,10 G=0,00
D =(0,1,0) H’=({—"’.J|l|’.0)

Note the different perspectives of the face E'/F'G’H’ in Figs. 7-13 and 7-14. [To a viewer standing at the
center of projection (0, 0, —d), this face is the back face of the unit cube.]

7.2 Under the standard perspective transformation Pery, what is the projected image of (@) a point in
the plane z = —d and (b) the line segment joining P|(—1, 1, —2d) to P,(2, -2, 0)? (See Fig. 7-15.)

SOLUTION

(@) The plane z = —d is the plane parallel to the xy view plane and located | at the center of projection
C(0,0, —d). If P(x, y, —d) is any point in this plane, the line of projection CP does not intersect the xy
view plane. We then say that P is projected out to infinity (oc).

(b) The line P, P, passes through the plane z = —d. Writing the equation of the line (App. 2), we have
x==14+3% y=1-3% z=—2d + 2dt
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Wesee thatatt = }:x =1 y = —1 andz = —d. These are the coordinates of the intersection point /.
We now describe the perspective projection of this line segment.
Applying the standard projection to the equation of the line, we find

—1+ 3t —d + 3dt

d 0 00

0400 1=3¢ _ | d—3adt
00 0 0 —2d42dr |~ 0
00 . 1.d 1 —d + 2dt

Changing from homogeneous to three-dimensional coordinates, the equations of the projected line
segment are
_—d+3dt -1+43t _d=3da 1-3
T A —1+2 YT —d+2dt -1+%

x z=0

(In App. 1, Prob. A1.12, it is shown that this is the equation of a line.) When ¢ = 0, then x = 1 and
y = —1. These are the coordinates of the projection P} of point P,. When ¢ = 1, it follows that x = 2 and
y = —2 (the coordinates of the projection P, ¢f point P;). However, when ¢ = }, the denominator is 0.
Thus this line segment “passes” through the point at infinity in joining P{(1, —1) to P5(2, —2). In other
words, when a line segment joining endpoints P, and P, passes through the plane containing the center
of projection and which is parallel to the view plane, the projection of this line segment is not the simple
line segment joining the projected endpoints P} and P;. (See also Prob. Al.13 in App. 1.)

(ﬁ/’ Using the origin as the center of projection, derive the perspective transformation onto the plane
passing through the point Ry(xy, ¥y, zp) and having the normal vector N = n/ + n,J + n; K.
- ¥ . B Ml =

SOLUTION

Let P(x,y, z) be projected onto P'(x', )/, 7). From Fig. 7-16, the vectors PO and E have the same
direction. Thus there is a number a so that P'O = «PQO. Comparing component'.i,f we have

/D‘ ¥=ax Y=oy =z
?’b
/J z N=mI+nJ+nmK

P(x, ¥, 2)

~

/ L7 Pey
-
i<
: / .

Fig. 7-16
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We now find the value of a. Since any point P'(x',y/, Z) lying on the plane satisfies the equation (App. 2)
nx +ny +nd =d,
{where dy = nyxy + nyvg + ny2,), substitution of X' = ax, y = ay, and z/ = az into this equation gives
IO N
nx =+ n,y+ nyz

This projection transformation cannot be represented as a 3 x 3 matrix transformation. However, by
using the homogeneous coordinate representation for three-dimensional points, we can write the projection
transformation as a 4 x 4 matrix:

dy 0 0 0

o 4 o o
Pewn =10 0 & 0

n, ny ny 0O

Application of this matrix to the homogeneous representation P(x, y, z. 1) of points P gives P'(dyx, dyy,
dyz, nyx + nyy + n,z), which is the homogeneous representation of P/(x', y/, Z) found above.

Find the perspective projection cito the view plane z = d where the center of projection is the
ornigin (0, 0, 0).

SOLUTION

The plane z = d is parallel to the xy plane (and d units away from it). Thus the view plane normal vector
N is the same as the normal vector K to the xy plane, that is, N = K. Choosing the view reference point as
Ry(0, 0. d), then from Prob. 7.3, we identify the parameters

N(ny.ny,ny) = (0,0, 1) Rylxp. ¥, 29) = (0,0, d)
So
dy = mxy +nyyy+mzy=d

and then the projection matrix is

go00 Peyn fo, C
Per = .
k& 00 d o

0010

Derive the general perspective transformation onto a plane with reference ‘point Ry(xg, ¥o. 2p),
normal vector N = n,I + n,J + n,K, and using C(a, b, c) as the center of projection. Refer to Fig.

7-17. . e — !
SOLUTION ‘
As in Prob. 7.3, we can conclude that the vectors PC and P'C satisfy (sec Fig. 7-17) P'C = aPC. Then
XY =alx—a)+a yY=ay-b)+b Z=alz-c)+c
Also, we find (by using the equation of the view planc) that
- d
n(x —a)+ny(y = by + ny(z —¢)

[ie. P(x¥,y.7) is on the view plane and thus satisfies the view plane equation (¥ —x,) +
(Y = o) + ny(Z = z) = 0] Here, d = (n;xy + nyyg + myzg) — (mya + myb + nye).

From App. 2, Prob. A2.13, d is proportional to the distance D from the view plane to the center of
projection, that is, d = £|N|D.
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) N=ml+m] +mK

Ry(xg. Yor W)

View plane

P(x,y,2)

Fig. 7-17

To find the homogeneous coordinate matrix representation, it is easiest to proceed as follows:

1. Translate so that the center of projection C lies at the origin. Now Ry = (xo — @ yo— b, 29— c)

becomes the reference point of the translated plane (the normal vector is unchanged by translation).
2. Project onto the m’rm‘ateg_gla;n_glsing the origin as the center of pr_qjcctign by constructing the
transformation Pery g, (Prob. 7.3). i
3. Translate back.
Introducing the intermediate quantities
dy = nyxg + nyye + 13z and d =.=nl_a-_|—r12b‘+ nic

we obtain d = d, — d,, and so Pery g,.c = Tc - Perng, - T-c- Then with R used as the reference point in
constructing the projection Py g,

(lOOa[dOOOlOO—a
Pers _[o vo 0 4 0 o]lo 10 b
NRC =g 0.1 ¢llo o 4 offo 0 1 —c

0 1/\n, n, ny 0/\O 0 0 1

n ny ) —d
7.6  Find the (a) vanishing points for a given perspective msforﬁ)io(nin/the direction given by a
vector U and (b) principal vanishing points. :

SOLUTION

(a) The family of (parallel) lines having the direction of U = u,1 + u,J + u;K can be written in parametric
form as

x=ul+p y=ul+q z=ust+r
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where P(p, ¢, r) is any point (see App. 2). Application of the perspective transformation (Prob. 7.5) to
the homogeneous point (x, y, z, 1) produces the result (,y.z, h), where

X = (d +an))u,t + p) + any(uyt + q) + any(uyt + r) — ad,

Y = bny (1 +p) + (d + bny)(ust + q) + bny(uyt + r) — bd,

Z = eny(uyt + p) + cny(ust + q) + (d + eny)(uzt + r) — cd,

h=ny(ut +p) + ny(ust + q) + ny(uzt +r) — d,

The vanishing point corresponds to the infinite point obtained when r = c0. So after dividing X, y/, and
Z by h, we let £ — oo to find the coordinates of the vanishing point:

_(d+anu, + anyu; + ansuy ad du,

u X k

(Here, k = N - U = nju; + nyuy + nyus.)

bnyu; + (d + bny)u, + bnyu du
i kzz 33=b+—f
5o cnu, +cn2u2k+ (d + cny)uy =C+g'%3'

This point lies on the line passing through the center of projection and parallel to the vector U (see Fig.
7-18). Note that k = 0 only when U is parallel to the projection plane, in which case there is no vanishing

point,

Pg Center of projection

X

Lines L; and L; are parallel to vector U; @
Liand L3 arc projections, through C of
lines Ly and L; onto view plane

Fig. 7-18

(b) The principal vanishing points Py, Py, and Py correspond to the vector directions I, J, and K. In these

cases h
: n . d =

Pit,=p ™ Pi{m=b+Z  pu{" P

! " Z3=c+—:

Z=c L=c ‘ ny

(Recall from Prob. 7.5 that a, b, ¢ are the coordinates of the center of projection. Also, ny, ny, ny are the
components of the view plane normal vector and d is proportional to the distance D from the view plane
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to the center of projection.) (Note: If any of the components of the normal vector are zero, say, n, = 0,
then £ =N -1 = 0, and there is no principal vanishing point in the 1 direction.)

Describe the (a) one-principal-vanishing-point perspective, () two-principal-vanishing-point
perspective, and (c) three-principal-vanishing-point perspective.

SOLUTION

(@) The one-principal-vanishing-point perspective occurs when the projection planc is perpendicular to one

(&

of the principal axes (x, y, or z). Assume that it is the z axis. In this case the view plane nornial vector N
is the vector K, and from prob. 7.6, the principal vanishing point is

Xy=a
=05
Py d
3 =c+—
LA v n3

e
The two-principal-vanishing-point projection occurs when the projection planc intersects exactly two of
the principal axes. Refer to Fig. 7-19, which is a perspective drawing with two principal vanishing
points. In the case where the projection plane intersects the x and v axes, for example, the normal vector
satisfies the relatioinship N - K = 0 or », = 0, and so the principal vanishing points arc

d r
X =a o= X, =a d
E n i
P|. — ! I)Z' = b+ —
P = Hy
=c LH=cC

VP. ’/r\-_______“h VP,
Horizon line ~ L—___—_J e
~ ——
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(¢) The three-vanishing-point perspective projection occurs when the projection plane intersects all three of
the principal axes—x, y, and =z axes. Refer to Fig. 7-20, which 1s a perspective drawing with three
principal vanishing points. In this case, the principal vanishing points are points P, P, and P; from
Prob. 7.6(b).

What are the principal vanishing points for the standard perspective transforamtion?
SOLUTION

In this case, the view plane normal N is the vector K. From Prob. 7.6(b), since N-I1=0and N-J =0,
there are no vanishing points in the directions 1 and J. On the other hand, M - K = K- K = 1. Thus there is
only one principal vanishing point, and it is in the K direction. From Prob. 7.7(a), the coordinates of the
principal vanishing point VP in the K direction are

x=a=10 y=b=0 z=—d+T=0

So VP = (0, 0, 0) is the principal vanishing point.'

An artist constructs a two-vanishing-point perspective by locating the vanishing points VP, and VP,
on a given horizon line in the view plane. The horizon line is located by its height 4 above the
ground (Fig. 7-21). Construct the corresponding perspective projection transformation for the cube
shown in Fig. 7-21.

Horizon line

Fig. 7-21

SOLUTION

A two-principal-vanishing-point perspective must intersect two axes, say, X and y. We locate the view
plane at the point Ry(1, 1, 0) so that it makes angles of 30° and 60° with the corresponding faces of the cube
(see Fig. 7-21). In this plane we locate the horizon line a given height & above the “ground” (the xy plane).
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The vanishing points VP, and VP, arc located on this horizon line. To construct the perspective
transformation, we need to find the normal vector N = nj I+ nyJ + nyK of the view plane, the coordinates
Cla, b, c) of the center of projection, and the view parameters d,. d,, and d (Prob. 7.5). To calculate the
coordinates of the vamshmt, points, we first find the equation of the horizon line. Let 7, and /, be the points of
intersection of the view plane and the x and vy axes. The horizon line is parallel to the line 7,7, and lies 4 units
above it.

From trangles /,BR, and I,DR,, we find

1+V3
hH=(1 0,0 ,0,0 d 5L=(1 3,0
=(1+7500) = (0 00) = n=0a+vR0
The cquation of the line through /; and I, (App. 2) is
_(1+43 1443 . v
=55 - v amo

This line lies in the view plane. So if the equation of the horizon line is then taken to be a line parallel to this
line and / units above it, the horizon linc is guaranteed to be in the view plane. The equation of the horizon
line is then

x:(l—i£)(l—!) y=(14+v3r  z=h
v
The vanishing points VP, and VP, arc chosen to lie on the horizon line. So VP, has coordinates of the form
1 3 = 1 3
VP, = [( *:/ )n. e (4 \/3;11.1;] and VP, = [( ":[‘[ )u = 1) (143, l,]
V3 3

(Here. t; and ¢, are chosen so as to place the vanishing points at the desired locations.)
To find the normal vector N and the center of projection C, we use the equations in Prob. 7.6, part (b) for
locatmg the vanishing points of a given perspective transformation. So

d_(1+3 14+ V3
= e MY =
i v ST R o p) S
and
b=(++3), and b+;:i=(1+s/'5)!z and  c=h
2
Using the values

1 3
tl=( -r/if)“—lz) b=(|+\/§)fl c=hk

and then substituting, we find

d 143
= (e i
and
d
—=(1+3)6—1) (7.2)
L]

Since the plane does not intersect the z axis, then N - K = 0, or using components: n; = 0. Finally, we choose
the normal vector N to be of unit length:

INl = /n}+ni+n}= ‘/nf+n§ =l
From equations (7./) and (7.2)

dv3 — d B
(I +3)1, - 1) T+ B -1)

n =
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So
(d/3) & & B
\/n+f) 2y - 1) L+ V3 — 1)
or
2d 1+4/3
= N, and so d=———(t, — 1})
1+ 36 — 1) T
Also
n = ﬁl-(_—_l +V3)12) = —J—j and n UL\/——‘”/Z 1
! 1 +43 = 2 TR -

Finally, we have

V3l+/3 l I+ V3
d,=n,a+n2h+n_‘c=(r \/.3 )(l_'2)+5“+‘/§ﬂl:'—i—[l_(rl’rl)l
and
+V3
dy =d+d, =l——-\£
2
From Prob. 7.5, the perspective transformation matrix is then
1 1+ V3
-t —=(1 =1 0 ——= )0 -1
v/t ( V3 )( $
3t t 0 =(1 +V3)x
143 : . ‘
Pery g,.c = T | V3h h - P
1+4/3 1+483 27
V3 1
= 2 —_— 0 =l =(-1)
L+43 144/3 b= =t
In' Chap. 8, Prob. 8.2. it is shown how to convert the transformed image of the cube into x, v coordinates for

viewing.

7.10  Derive the equations of parallel projection onto the xy plane in the direction of projection
V =al + bJ + cK.

SOLUTION

From Fig. 7-22 we see that the vectors V and PP’ have the same dlrcctton This means that PP’ = kV.
“Comparing components, we see that 2

X —x=ka y-y=kb Z-z=ke

So
k-——‘—E X=x-2z and _v'=.v—éz
[ & { ¢4

In 3 x 3 matrix form, this is
1 00 =5
¢
Pary = 0 1 __1_7
«
0 0 0

and so P’ = Pary - P.
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V=al +b3 +cK

Plx. y.3)

Fig. 7-22

7.11  Derive the general equation of parallel projection onto a given view plane in the direction of a given
projector V (see Fig. 7-23).

ta

K N=ml+n +nmk

Ro(xo, yo. 20)

V=al +b) +cK 4 P v

Fig. 7-23

SOLUTION

We reduce the problem to parallel projection onto the xy planc in the direction of the projector
V =al + bJ + cK by means of these steps:
Translate the view reference point Ry of the view plane to the origin using the translation matrix T_g,-

2. Perform an alignment transformation  so that the view normal vector N of the view plane points in the

direction K of the normal to the xy plane. The direction of projection vector V is transformed to a new
vector V' = A\ V.

3. Project onto the xy planc using Fary-.
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4. Perform the inverse of steps 2 and 1. So finally Pary x g, = T4 - A§' - Pary - Ay - T_p,. From what we
learned in Chap. 6, we know that

1 0 0 —x

T 01 0 =y

RTH0 0 1 -z
0 0 0 1

and further from Chap. 6, Prob. 6.2, where /. = /n5 + n? and 4 # 0, that

A —mny —mny

— = 0
IN]  AIN| AN
0 2 2
Ay = A A
"y y ny
i —= 0
IN| NI IN|
0 0 0 1
Then, after muitiplying, we find
d, —an; —an, —any  ad,
o -—bnl dl = bnz —b’ls bdﬂ
Pary ng, = —cn, —cny, dy—eny cdy
0 0 0 d,

Here dy = nyxy + myyg + 3z and d; = nja + nyb + nyc. An alternative and much easier method to
derive this matrix is by finding the intersection of the projector through P with the equation of the view
plane (see¢ Prob. A2.14).

7.12 Find the general form of an oblique projection onto the xy plane.
SOLUTION

Refer to Fig. 7-24. Oblique projections (to the xy plane) can be specified by a number f and an angle 6.
The number f prescribes the ratio that any line L perpendicular to the . - plane will he foreshortened after
projection. The angle 8 is the angle that the projection of any line perpendicular to the .y plane makes with the
(positive) x axis.

Fig. 7-24
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To determine the projection transformation, we need to find the direction vector V. From Fig. 7-24, with
line L of iength 1, we sce that the vector P’P has the same direction as V. We choose V to be this vector:

V=PP=xX1+yJ-K (=al + bJ + cK)

From Fig. 7-24 we find a = x' = fcos0, b=y =fsinf, and ¢ = —1.
From Prob, 7.10, the required transformation is

1 0 fcosf 0
0 1 fsin® 0
0 0 0 0
0 0 0 1

Pary =

7.13  Find the transformation for (@) cavalier with 0 = 45° and (b) cabinet projections with 6 = 30°. (¢)
Draw the projection of the unit cube for each transformation.

SOLUTION

(@) A cavalier projection is an oblique projection where there is no foreshortening of lines perpendicular to
the xy plane. From Prob. 7.12 we then see that /' = 1. With § = 45°, we have

V2
1 0 — 0
. 2
l"ar‘,I =|0 1 g 0
00 0 O
0 -0 0 1

(b) A cabinet projection is an oblique projection with f = .. With 6 = 30°, we have

10?0
5 1
ary, =0 1 7 0
00 0 0
00 0 1

To construct the projections, we represent the vertices of the unit cube by a matrix whose columns
are homogeneous coordinates of the vertices (see Prob. 7.1): -

01100011
00111001
V=MBCDEFGH)=10, 0 0 0 1 1 1 1
I 14 %11 b1

(¢) To draw the cavalier projection, we find the image coordinates by applying the transformation matrix
Pary, to the coordinate matrix V:

0
1

Pary -V=10 0 1 1 1+§ 3? g l+§
0 0
i 1

=}
o
(=)
(=]
-
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The image coordinates are then

(CHAP. 7

2 2
A =(0,0,0) E’:(§,1+-—2\/—_-.0)
B =(1,0,0) F’:(JTE,?,O)
2 N2
C'=(1,1,0) G= l+§.{4,0)
/ 2
D=(0,10 H (1+£ 1+—‘ZC.0)
Refer to Fig. 7-25.
To draw the cabinet projection:
Vi V3 V3 V3
6 3 L% 3 [+ g
| 1 1
Pary V=19 4 = =
v, 01 1 14 Y 3 I
0000 0 o0 0 0
11 1 1 1 1 1 1
The iraage coordinates are then (see Fig. 7-26)
! o4 \/§ ]
A" =(0,0,0) El'= (~:4A,I£,())
4 ~f JB l
B =(1,0,0) F = (—4~.;. )
, ., V31
C' =(l, 1,.0) G—(I+T.Z,0)
V31
= 0 : —=. b =0
D=(0,10) H(1+4 14 )
y y
2= 1 =
E H
E’ ”!
i (ol l/ '
|D' D' c
" !
A 7 |
| / | )
b [ : &
JEPRCETS I ' .
A’ 1B’ 2 x A ' B! x
Fig. 7-25

Fig. 7-26
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7.14

11-A

Construct an isometric projection onto the xy plane. Refer to Fig. 7-27.

'/ 4  Projections of vectors I, 3/, K’ onto
‘i XY plane have the same length

Fig. 7-27
SOLUTION

We shall find a “tilting” of the x, y, z axes that transforms the IJK vector tried to a new set I'VK’ whose
orthographic projections onto the xy plane produce vectors of equal lengths.

Denoting the tilting transformation by T and the orthographic projection onto the xy plane by Pary, the
final projection can be written as Par = Pary - T, where Pary is as defined in Example 3 and T is as defined
in Prob. 6.1 in Chap. 6. Multiplying, we find

cosf, sinf,sinf, sinf,cosf, 0

0 cos @ —sin @, 0
=14 0 0 0
0 0 0 1

Now
Par - 1= (cos6,,0,0) Par -J = (sin 6, sin6,, cos 0,, 0) Par - K = (sin6, cos §,, —siné,, 0)
(the projections of the vectors I, J, and K). To complete the specification of the transformation M, we need to

find the angles 6, and 6,. To do this, we use the requirement that the images Par - I, Par - J, and Par - K are to
all have equal lengths. Now

\Par-X = Jeos?0, |Par-J| = \/sin® 6, sin® 6, + cos? 6,

and

|Par - K| = \/sin” 6, cos? 6, +sin’ 6,

Setting |Par - J| = |Par - K| leads to the conclusion that sin® 6, — cos? 8, = 0 and to a solution 8, = 45° (and
s0 sinf, = cosf, = +/2/2). Setting |Par - 1| = |Par - J| wads:ooos’e = L(sin’ 6, + 1). Multiplying both
nde!byZandaddmgeos’Bi;wbothsxdcs gives 3cos? 6, =2 mdasoluhmns@ = 35.26° (and so

sinf, = /173, cosf, = Finally
12
ﬁ 2‘/- V3 °
Par = ‘/_E _ﬂ 0
2 2
0 0 0 0
0 0 0 1
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7.15 Construct a dimetric projection onto the xy plane.

7.16

7.17

7.18

SOLUTION

Following the procedures in Prob. 7.14, we shall tilt the x, y, z axes and then project on the xy planc. We

then havz, as before,
\Par N| = \Jcost0,  |Par 3] = \[sin? 0, sin? 0, + cos? ),

and

\Par - K| = \/sin? 0, cos? 0, + sin’ 0,
To define a dimetric projection, we will specify the proportions
|Par - 1|:|Par-J|:|Par-K|=1:1:1 (l#1)

Setting |Par - J| = |Par - K|, we find sin’ 0, — cos? 0, = 0 and 0, = 45°, so sin0), = cos 0, = +/2/2. Setting
|Par - 1| = I|Par - J| gives

.
cos® 0, = i[s.m2 0,+1] (7.3)

Multiplying both sides by 2 and adding /% cos 0, to both sides gives
2+ P)cos? 0, =28

So
2
Ccos HV = m
From equation (7.3) we can also find
: 2-p . 212
sin’ 0, = iR and sind, = TR

2 2 -1 2 p-P

2402 2 \V2+P2 2V2+40R2

Par = 0 _[2_ “"_\/5 0
2 2
0 0 0 0
0 0 0 1
and 0 </ < V2.
Note that any other projection ratio, say, 1: 1:/, can be achieved by performing an appropriate rotation

before applying Par. In this example, a rotaiton of 90° about the y axis aligns the z axis with the x axis so that
Par can be applied.

Supplementary Problems

Construct a perspective transformation given three principal vanishing points and the distance D from the
center of projection to.the projection plane.

Draw the (a) isometric and () dimetric projections of the unit cube onto the xy plane.

How many view planes (at the origin) produce isometric projections of an object?

11-B



CHAPTER 8

Three-Dimensional
Viewing and Clipping

An important step in photography is to position and aim the camera at the scene in order to compose a
picture, This parallels the specification of 3D viewing parameters in computer graphics that prescribe the
projector (the center of projection for perspective projection or the direction of projection for parallel
projection) along with the position and orientation of the projection/view plane.

In addition, a view volume defines the spatial extent that is visible through a rectangular window in the
view planc. The bounding surfaces of this view volume is used to tailor/clip the objects that have been
placed in the scene via modeling transformations (Chaps. 4 and 6) prior to viewing. The clipped objects are
then projected into the window area, resulting in a specific view of the 3D scene that can be further mapped
1o the viewport in the NDCS (Chap. 5).

In this chapter we are concerned with the specification of 3D viewing parameters, including a viewing
coordinate system for defining the view planc window, and the formation of the corresponding view
volume (Sec. B.1). We also discuss 3D clipping strategies and algorithms (Sec. 8.2). We then summarize
the three-dimensional viewing process (Sec. 8.3). Finally, we examine the operaticnal organization of a
typical 3D graphics pipeline (Sec. 8.4).

8.1 THREE-DIMENSIONAL VIEWING

Three-dimensional viewing of objects requires the specification of a projection plane (called the view
plane), a center of projection (viewpoint) or the direction of projection, and a view volume in world
coordinates.

Specilying the View Plane

We specify the view plane by prescribing (1) a reference point Ry(x,. vy. z,) in world coordinates and
(2) a wnit normal vector N = n i+ n,J + n;K, |N| = I, to the view plane (see Fig. 8-1). From this
mformation. we can construct the projections used in presenting the required view with respect to the given
viewpaint or direction of projection (Chap. 7).

151
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Ru(xa. yo, o)
reference point

N unit normal vector

Fig. 8-1

View Plane Coordinates

The view plane coordinate system or viewing coordinate system can be specified as follows: (1) let the
reference point Ro(xq, ¥o, Zo) be the origin of the coordiante system and (2) determine the coordinate axes.
To do this, we first choose a reference vector U called the up vector. A unit vector J, can then be
determined by the projection of the vector U onto the view plane. We let the vector J, define the direction
of the positive ¢ axis for the view plane coordinate system. To calculate Jg, we proceed as follows: with N
being the view plane unit normal vector, let Uy = U — (N - U)N (App. 2, Prob. A2.14). Then

U
Jo=7

q
Ugl

is the mﬁt vecior that defines the direction of the positive ¢ axis (see Fig. 8-2).

¥

View
plane

Fig. 8-2
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Finally, the direction vector I, of the positive p axis is chosen so that it is perpendicular to Jg, and, by
convention, so that the triad Ip, Jo and N form a lefi-handed coordinate system. That is:
L= NxJg
PN x Jg

This coordinate system is called the view plane coordinate system or viewing coordinate system. A left-
handed system is traditionally chosen so that, if one thinks of the view plane as the face of a display device,
then with the p and g coordinate axes superimposed on the display device, the normal vector N will point
away from an observer facing the display. Thus the direction of increasing distance away from the observer
is measured along N [see Fig. 8-3(a)].

y
View
plane paxis y = 5
A (K P(S,3,2) P(G.3,-2),
3 3 e 3 ®
q/ Ro L |
5 o * 5 x
N
x z
World coordinate system  Viewing coordinate system
z (subscript w) (subscript v)
(@) ()]
il ‘ View

plane

yex 1q

N £

nd Ro L
® P(xu, Yo Zu)
(X, Yu )
K
Iw
(©
Fig. 8-3

EXAMPLE 1. If the view plane is the xy plane, then I, =1, J; = J, and the unit normal N = —K form a left-
handed system. The z coordinate of a point measures the depth or distance of the point from the view plane. The sign
indicates whether the point is in front or in back of the view plane with respect to the center or direction of projection.
In this example, we change from right-handed world coordinates (x,y,z) to left-handed view plane coordinates
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(', ¥, 7) [see Fig. 8-3(b)] be performing the transformation:

x =X
T: { Y =y
Zd=—z
In matrix form, for homogeneous coordinates:

1 0 0 0
0 1 0 0
Tw=19 0 -1 0
0 0 1

The general transformation for changing from world coordmates to view plane coordinates [see Fig. 8-
3(c)] is developed in Prob. 8.3.

Specifying the View Volume

The view volume bounds a region in world coordinate space that will be clipped and projected onto the
view plane. To define a view volume that projects onto a specified rectangular window defined in the view
plane, we use view plane coordinates (p, g), to locate points on the view plane. Then a rectangular view
plane window is defined by prescribing the coordinates of the lower left-hand comner L(p,;,, Gmin), and
upper right-hand corner R(Ppay, gmax), (S€€ Fig. 8-4). We can use the vectors I, and J; to find the
equivalent world coordinates of L and R (see Prob. 8.1).

For a perspective view, the view volume, corresponding to the given window, is a semi-infinite

yramld, with apex at the viewpoint (Fig. 8-5). For views created using parallel projections (Fig. 8-6), the
view volume is an infinite parallelepiped with sides parallel to the direction of projection.

Fig. 8-4



CHAP. 8] THREE-DIMENSIONAL VIEWING AND CLIPPING 155

e8]

Fig. 8-5

8.2 CLIPPING
Clipping against a Finite View Volume

The view volumes created above are infinite in extent. In practice, we prefer to use a finite volume to
limit the number of points to be projected. In addition, for perspective views, very distant objects from the
view plane, when projected, appear as indistinguishable spots, while objects very close to the center of
projection appear to have disjointed structure. This is another reason for using a finite view volume.

A finite volume is deliminated by using front (near) and back (far) clipping planes parallel to the view
plane. These planes are specified by giving the front distance / and back distance b relative to the view
plane reference point R, and measured along the normal vector N. The signed distance b and f can be
positive or negative (Figs. 8-7 and 8-8).

Clipping Strategies

Two differing strategies have been devised' to dcal with the extraordinary computational effort required
for three-dimensional clipping:

1. Direct clipping. In this method, as the name suggests, clipping is done directly against the view
volume.

2. Canonical clipping. In this method, normalizing transformations are applied which transform the
original view volume into a so-called canonical view volume. Clipping is then performed against
the canonical view volume.
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Y4

Fig. 8-6

)"}

Fig. 8-7 Pespective view volume.
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Ya

R, (xb)'v- Z)

Fig. 8-8 Parallel view volume.

The canonical view volume for parallel projection is the unit cube whose faces are defined by the
planesx=0,x=1,y=0,y=1,2=0, and z = 1. The corresponding normalization transformation N,
is constructed in Prob. 8.5 (Fig. 8-9). :

Fig. 8-9

The canonical view volume for perspective projections is the truncated pyramid whose faces are
defined by the planesx = z,x = —z,y =z, y = —z,z =z, and z = 1 (where z, is to be calculated) (Fig. 8-
10). The corresponding normalization transformation N, is constructed in Prob. 8.6.

The basis of the canonical clipping strategy is the fact that the computations involved such operations
as finding the intersections of a line segment with the planes forming the faces of the canonical view
volume are minimal (Prob. 8.9). This is balanced by the overhead involved in transforming points, many of
which will be subsequently clipped.

For perspective views, additional clipping may be required to avoid the perspective anomalies
produced by projecting objects that are behind the viewpoint (see Chap. 7).

Clipping Algorithms

Three-dimensional clipping algorithms are often direct adaptations of their two-dimensional counter-
parts (Chap. 5). The modifications necessary arise from the fact that we are now clipping against the six
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X=-z

/ /(4'&;’_.
P . Front

Figure 8-10

i

faces of the view volume, which are planes, as opposed to the four edges of the two-dimensional window,
which are lines.

The technical differences involve:

1. Finding the intersection of a line and a plane (Prob. 8.12),

2. Assigning region codes to the endpoints of line segments for the Cohen—Sutherland algorithm
(Prob. 8.8).

3. Deciding when a point is to the right (also said to be outside) or to the left (inside) of a plane for
the Sutherland-Hodgman algorithm (Prob. 8.7).

4. Determining the inequalities for points inside the view volume (Prob. 8.10).

8.3 VIEWING TRANSFORMATION
Normalized Viewing Coordinates

We can view the normalizing transformations Npar and N, from Sec. 8.2, under “Clipping
Strategies,” as geometric transformations. That is, Obj is an object defined in the world coordinate
system, the transformation

Obj =Ny -Obj  or  Obj' =Ny, Oby

yields an object Obj’ defined in the normalized viewing coordinate system.
Canonical clipping is now equivalent to clipping in normalized viewing coordinates. That is, the
transformed object Ob)’ is clipped against the canonical view volume. In Chap. 10, where hidden-surface

algorithms are discussed, it is assumed that the coordinate description of geometric objects refers to
normalized viewing coordinates.

Screen Projection Plane

After clipping in viewing coordinates, we project the resulting structure onto the screen projection
plane. This is the plane that results from applying the transformations Npar o1 N, to the given view plane.
In the case N,,,;, from Prob. 8.5, we find that the screen projection plane is the plane z = —f /(b — f) and
that the direction of projection is that of the vector K. Thus the parallel projection is orthographic (Chap.
. 7), and, since the plane z = —f /(b — f) is parallel to the xy plane, we can choose this latter plane as the
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projection plane. So parallel projection Par in normalized viewing coordinates reduces to orthographic
projection onto the xy plane. The projection matrix is (Chap. 7, Sec. 7.3)

1 000

0" 1 0 0

fr=1o 9 o0
0 0 0 1

In the case of perspective projections, the screen projection plane is the plane z = ¢ (c; + b) (Prob. 8.6).

The transformed center of projection is the origin. So perspective projection Per in normalized viewing

coordinates is accomplished by applying the matrix (Chap. 7, Prob. 7.4)

c
0 0
a+b )
C’
0 z 0 0
Per = c+b
C’
0 Z
0 c’z+b0
\ o 0 1 OJ

Constructing a Three-dimensional View
The complete three-dimensional viewing process (without hidden surface removal) is described by the
following steps:
1. Transform from world coordinates to normalized viewing coordinates by applying the transfor-
mations Ny, OF Nper.
2. Clip in normalized viewing coordinates against the canonical clipping volumes.
3. Project onto the screen projection plane using the projections Par or Per.
4. Apply the appropriate (two-dimensional) viewing transformations (Chap. 5).

In terms of transformations, we can describe the above process in terms of a viewing transformation
Vr, where

Vp=V,-Par-CL-Nyy, or Vi =V, -Per-CL-Nyy

Here CL and ¥, refer to the appropriate clipping operations and two-dimensional viewing transformations.

8.4 EXAMPLE: A 3D GRAPHICS PIPELINE

The two-dimensional graphics pipeline introduced in Chap. 5 can non be extended to three dimensions
(Fig. 8-11), where modeling transformation first places individually defined objectes into a common scene
(i.e. the 3D WCS). Viewing transformation and projection are then carried out according to the viewing
parameters set by the application. The result of projection in the view plane window is further mapped to

Modeling . alial D
ioct —#] Transf . o Viewing L ) Projection| | Viewing | ” Scan
Definiti 5..m (CT™) Transformation Transformation DR
I I Display

3 (frame buffer)
viewing parameters

Fig. 8-11 A 3D graphics pipeline
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the appropriate workstation viewpoint via 2D viewing transformation and scan-converted to a discrete
image in the frame buffer for display.
_ An application typically specifies the method of projection and the corresponding view volume with
" system calls such as

perspective (a . ay, Zf, 2p)

where the viewpoint of perspective projection C is assumed to be at the origin of the WCS and the
perspective view volume centers on the negative z axis (away from the viewer); a denotes the angle
between the top and bottom clipping planes, a,, the aspect ratio of the view plane window, z; the distance
from C to the front clipping plane (which is essentially also the view plane), and z, the distance from C to
the back clipping plane.

On the other hand, orthographic parallel projection can be specified by

orthographic (xmin' Xmax» Ymins Ymax» Z[v zb)

where the direction of projection is along the negative z axis of the WCS; the first four parameters of the
call define the left, right, bottom, and top clipping planes, respectively; and the role of z; and z, remains the
same as in the perspective case above. :

Other calls to the system library often provide additional functionality. For example, the center of
perspective projection can be placed anywhere in the WCS by a call that looks like

lookat (xc, yc, z¢, Xp, ¥p, 2p)

where x,, y,, z, are the coordinates of C and x,, y,, z, are the coordinates of a reference point P—the
perspective of view volume now centers on the line from C to P. The y axis of the WCS, or more precisely,
vector J, serves as the up vector that determines I, and J;. An additional parameter may be included to
allow rotation of the viewing coordinate system (with Ry = C,, the center of the view plane window) about
its z axis, i.e. line CP,

Using perspective( ) and lookat( ), we can conveniently produce a sequence of images that animate a
“walk-by” or “fly-by” experience by placing P on an object and moving C along the path of the camera
from one frame to the next (Fig. 8-12).

G
¥,

~C

3

Fig. 8-12

Finally, we want to note a couple of crucial operations of the 3D graphics pipeline that have not yet
been discussed. The first is to prevent objects and portions of objects that are hidden from the viewer’s
eyesight from being included in the projected view (Chap. 10). The second is to assign color attributes to
pixels in a way that makes the objects in the image look more realistic (Chap. 11).

Solved Problems

8.1  Let P(p, q), be the view plane coordinates of a point on the view plane. Find the world coordinates
P(x, y, z),, of the point.
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SOLUTION

Refer to Fig. 8-13. Let R, be the view plane reference point. Let R be the position vector of R, and W the
position vector of P, both with respect to the world coordinate origin (see Fig. 8-13). Let V be the position
vector of P with respect to the view plane origin R;. Now

V=pl, +qJ, and W=R+V

P(x, ¥, 2w

Rl xo. Yo, )

Fig. 8-13

W =R+pl, +qJ,
Let the components of I, and J; be
L=al+bJ+cK J =al+bJd+cK
Also
R = x5l + yoJ + 20K
and so from W = R + pI,, + ¢J,; we find '
W = (xo + pa, + qa )l + (vo + by, + gb ) + (2 + pec, + qc)K
The required world coordinates of P can be read off from W:
P(xy + pa, +qag, yo + b, + qby, 20 + pc, +9c,),

8.2 Find the projection of the unit cube onto the view plane in Prob. 7.9 in Chap. 7. Find the
corresponding view plane coordinates of the projected cube.
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SOLUTION

Following Prob. 7.9, we must specify several parameters in order to calculate the corresponding
perspective projection matrix Pery g c. Choosing h =1, t, = 1, and 1, = (1 — +/3)/(1 + +/3), we obtain

2

0 7 0 -2
, 1-/3

Pery =l+~/§ - 1+3 ’ 4%
ol ) V3 1 <23 1
20++3) 2(0++3) 1+3 -2

VE] 1 14343

\ T3 v, S _(1+~/§)

Applying Pery g, ¢ to the matrix ¥ of homogeneous coordinates of the unit cube, we have Pery gy c V=V,
where ¥ is the matrix (4'B'C’'D'E'F'G’'H’). After matrix multiplication, we have

V'=l+2ﬁx

" -2 W3 - 2B =2 -2 -2 =}
1443 1443 1443 1443
~2./3 -2/3
—(1++/3) -1 o -3 —-(1++/3) -1 7
i - 6 -3 =53 _(1+5J§) _(1+4ﬁ) —2/3
2 2(1++/3) 201++/3) 20+v3) \201++3 201++/3/ 1443
_(1+3J§) _‘1+2J§) -2v/3 -3/3 343 ~(1+3\/§) _(1+2J§) -2v/3

1443 (1+J§

1443 (+V3) 0+3) 1+v3 14++3) 1++3/
Changing from homogeneous coordinates to world coordinates (App. 2), we find the coordinates of the
projected cube to be
A,[2(1+ﬁ) 2(2+../“3“) 1++/3 } E,(g 1443 g)
14343/ 7\1 4+ 343/ 2(1 + 3V/3) 3' 3 6
B,[Z(l+\/§) 1+3 1 ] F,[2(1+J§ 22 +4/3) 1+5J§]
14243/ 142437201 + 2/3) 1+3v/3/)7 14343 201 +34/3)

' Jof 1443\ 1443 14443
sl G[z(wzﬁ)‘wzﬁ'z(uzﬁ)]

2 1+4/3 1
Dz, ———,- H(1, 1,
( 1A 6) (1, L1

To change from world coordinates to view plane coordinates, we first choose an up vector. Choosing the
vector K, the direction of the positive z axis, as the up vector, we next find the view plane coordinate vectors I

and J,.
q
With our choices ¢, and #,, we find that the unit normal vector N (Prob. 7.9) is
V3.1
N=— -
2 I+ 2"

Choosing U = K, and using Prob. A2.14 (App. 2), we find that

U =U-(N-UN=U (sinceN-U=0) =K and J,=—3=K
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(Note to student using equation (42-3) of Prob. A2.14: we have used the fact that [N| = 1 and replaced V,
with U, and V and U))

Now
. NxJ,
PN x Jg]
Calculating (App. 2), we obtain
1. V3
NXJ"=EI—TJ' and INx Jg|l =1
So
Lo W3
L= —2-1 - TJ
To convert a point P with world coordinates (x, y, z),, to view plane coordinates (p, g),, we use the equations
from Prob. 8.1:

x=xy+pa, +qa, Y=y, +pb, +qb, z =2+ pc, +qc,
where (xo, ), Zy) are the coordinates of the view plane reference point R;. Now

J3

1
L=gl+bJ+¢K=31-""0+0K  J=al+bJ+cK=01+0J+IK

Choosing Ry(1, 1, 0) as the view plane reference point, we find

1 -3
juapFl : yE-goptl E=g
Solving for p and ¢, we have
p=2x-1) and gz

Using these equations, we convert the transformed coordinates to view plane coordinates:
A,[z(l—ﬁ) 1++/3 ] E,(_g §)
1+434/3)2(1 +33) 3’6
B,[ 2 1 ] F,[z(l—ﬁ) 1+5~/§]
1+424/3"2(1 +24/3) 1434/3/72(1 +34/3)

G,[ 2 1+4J§]
1+42/3"2(1 +23)

C'(0,0)

D’(-g,—é) H'(0,1)

Refer to Fig. 8-14. Note also that the coordinates of the view point or center of projection C and the vanishing

Fig. 8-14
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points VP, and VP, can be found by using the equations from Prob. 7.9:

C(a, b,c) = c(z, 1+ +/3, %) VP, (o. 1+ /3, %) VPz(Z. 1 =3, %)

In view plane coordinates:
! ' 2 5 2 i 2 v

Find the transformation T, that relates world coordinates to view plane coordinates.
SOLUTION

The world coordinate axes are determined by the right-handed triad of unit vectors [I, J, K].

The view plane coordinate axes are determined by the left-handed triad of vectors [lp, R N] and the view
reference point Ry(xq, ¥o, Zo)-

Referrring to Fig. 8-3(a), we construct the transformation 7, through the concatenation of the matrices
determined by the following steps:

1. Translate the view plane reference point Ry(xy, ¥o, Zp) to the world coordinate origin via the translation
matrix T,. Here V is the vector with components —xpl — yoJ — z,K.

2. Align the view plane normal N with the vector —K (the direction of the negative z axis) using the
transformation Ay _ (Chap. 6, Prob. 6.5). Let I, be the new position of the vector I, after performing the
alignment transformation, i.e.

ll,p = AN.—-K : ]p

3. Rotate I, about the z axis so that it aligns with I, the direction of the x axis. With 0 being the angle
between I, and I, the rotation is Ry (Chap. 6).

4. Change from the right-handed coordinates to left-handed coordinates by applying the transformation Tg;
from Example 1. Then T, = Ty, - Rgx - An,—x * Ty. If (x,,, . 2,,) are the world coordinates of point P,
the view plane coordinates (x,, y,, z,) of P can be found by applying the transformation T,,,,.

Find the equations of the planes forming the view volume for the general parallel projection.
SOLUTION

The equation of a plane is determined by two vectors that are contained in the plane and a reference point
(App. 2, Prob. A2.10). The cross product of the two vectors determines the direction of the normal vector to
the plane.

In Fig. 8-8, the sides of the window in the view plane have the directions of the view plane coordinate
vectors I, and J,. With V as the vector determining the direction of projection, we find the following planes:

1. Top plane—determined by the vectors I, and V and reference point R;, measured f units along the unit
normal vector N = m I + n,J + n;K from the upper right comer R(r,, r3, r3) of the window. Reference
point R, has world coordinates (r; + fny, ry + fy, 73 + f3).

2. Bottom plane—determined by the vectors I, and V and the reference point L;, measured from the lower
left corer L(l;, I, I;) of the window. Point L, has world coordinates (/) + fa;, }, + fn, Iy + fi3).

3. Right side plane—determined by the vectors J; and V and the reference point R;.
4. Left side plane—determined by the vectors Jg and V and the reference point L;.

Front and back clipping planes are parallel to the view plane, and thus have the same normal vector
N= nll +ﬂ2J + H;K-

5. Fronmt (near) plane—determined by the normal vector N and reference point
Py(xg + fny, yo + fiiz, 2o + fns), measured from the view reference point Ry(xy, ¥, 2).
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Back  (far)  plane—determined by the normal vector N and reference  point
Py(xg + bny, yg + bny, 2y + bny), measured b units from the view plane reference point R,

Find the normalizing transformation that transforms the parallel view volume to the canonical view
volume determined by the planes x =0, x=1,y=0,y=1,z=0, and z = 1 (the unit cube).

SOLUTION

Referring to Fig. 8-8, we see that the required transformation N, is built by performing the following

series of transformations:

2.

Translate so that Ry, the view plane reference point, is at the origin. The required transformation is the
translation T_g, .

The vectors I,,, Jg, and N form the left-handed view plane coordinate system. We next align the view
plane normal vector N with the vector —K (the direction of the negative z axis). The alignment
transformation Ay _x was developed in Chap. 6, Prob. 6.5. Let I, be the new position of the vector I
that is, l’p = AN.—K L lp.

Align the vector I, with the vector I (the direction of the positive x axis) by rotating I, about the z axis.
The required transformation is Ry . Here, 0 is the angle between I, and I (Chap. 6). When R, i aligns I,
with I, the vector J; (where Jg = Ay _x - J,) is aligned with the vector J (the direction of the positive y
axis). :

We change from the right-handed world coordinate system to a lefi-handed coordinate system. The
required orientation changing transformation is [see Fig. 8-3(b)] (see also Example 1)

10 00
01 00
T’“‘oo-no
0 6 0~

Let V' be the new position of the direction of projection vector V; thatis, V' = T, - Ry - An—x ' Y. The
new position of the transformed view volume is illustrated in Fig. 8-i5. Note how the view volume is
skewed along the line having the direction of the vector V’. Suppose that the components of V' are
V' = 1 + v},J + v,K. We now perform a shearing transformation that transforms the newly skewed view
volume to a rectangular view volume aligned along the z axis. The required shearing transformation is
determined by preserving the new view volume base vectors I and J and shearing V' to the vector v.K
(the K component of V'); that is, I is transformed to I, J is transformed to J, and V' is transformed to vK.
The required transformation is the matrix

=]
|

=10 1

NQ' I“!c‘ Nq* |Hc‘

00

In order to concatenate the transformation so as to buld N,,,,, we use the 4 x 4 homogeneous form of Sh

—

Sh

0 0
We now translate the new view volume so that its lower left corner L will be at the origin. To do this, we
note that the first four transformations correspond to the view plane coordinate system transformation in
Prob. 8.3. So after performing these transformations, we find that the lower left corner of the view plane
window L(p,iy, Gmin), (View plane coordinates) transforms to a point L’ on the xy plane whose coordinates
are (Pmin+ Gmin. 0). Similarly, the upper right corner R is transformed to R'(P;nax» Gmax» 0)- After performing
the shearing transformation Sh, we see that the view volume is aligned with the z axis and the back and
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Fig. 8-15

front faces are, respectively, b and /" units from the xy plane. Thus the lower left corner of the view volume
is at L}(pm, qm.D and the ‘boqnds of the view volume are ppi <X < Praxs Imin <V < Cmax
f <z < b. The required translation is T_L}.

7. We now scale the rectangular view volume to the unit cube. The base of the present view volume has the
dimensions of the base of the original volume, which corresponds to the view plane window; that is
W = Proax — Pmin (Width) A = gpax — Gimin (height)

The depth of the new view volume is the distance from the front clipping plane to the back clipping
plane: d = b — f. The required scaling is the matrix (in 4 x 4 homogeneous form)

(=4
(=]

0

e F=
o
=]

Sl/w,l/ll,l/d ==

(=]
o (=] | -
(=W

The required transformation is then
Noae = Stywaynaza  T-y; - Sh - Tre - Roxc - An—x - T,

Note also that after performing the transformation M, the view plane transforms to the plane
z=—f/(b—f), parallel to the xy plane. Also, the direction of projection vector V transforms to a
vector parallel to the vector K having the direction of the z axis.

8.6 Find the normalizing transformation that transforms the perspective view volume to the canonical
view volume determined by the bounding planesx =z, x = —z,y =z, y=—-z,z=z;,andz = 1.

12-B
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SOLUTION

Referring to Fig. 8-7, we build the normalizing transformation N,er through a series of transformations.
As in Prob. 8.5:
1. Translate the center of projection C to the origin using the translation 7_.
2. Align the view plane normal N with the vector —K using Ay _g.
3. Rotate I} to the vector I using the rotation Ry . (Recall that L =An_x 1)
4

We now change from right-handed world coordinates to left-handed coordinates by applying the
transformation

Tp =

OO -
(=]
Ll =~ I~

5. The newly transformed view volume is skewed along the centerline joining the origin (the translated
center of projection) with the center of the (transformed) view plane window (Fig. 8-16). Let C,, be the
coordinates of the center of the original view plane window. Then C,, has view plane coordinates

(pmin +pmu Imin + qmn)
2 : 2 v

These are changed to world coordinates as in Prob. 8.1. Let CC,, be the vector from the center of

projection to the center of the window. Let (CCW) be the transformation of the vector CC,,; that is,

(CC,) = Ty, - Ry - An_x - CC,,. Then (CC,,)’ is the vector that joins the origin to the center of the

transformed view plane window (Fig. 8-16). Suppose that (CC,) = /I + c,J + c;K. We shear the view

volume so that it transforms to a view volume whose center line lies along thc z axis. As in Prob. 8.5, the

R}
Back
B I
N
\ -
Window
L \
\
\ Rf
Front r4
\ AN
L’ \
A 7
(EC.)" \ /
/
/

Fig. 8-16
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required shearing transformation is

S
L 6 =2 D

!
sh=]0 1 =2 0
00 1 0
00 0 1

The newly transformed window is, after applying the shearing transformation Sh, located on the z axis at
z; =k
Referring to Fig. 8-17, the transformed window is now centered on the z axis. The dimensions of the
window are

W = Pmax ~ Pmin (width) and h = Gax = Gmin (height)

The depth of the new view volume is the distance between the front and back clipping planes: d = b — f.
The transformed window is centered on the z axis at z, = c; and is bounded by

w<x<w ﬁ< <E

S¥=3 g =¥ =3
4

R}

*x

Fig. 8-17
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The transformed view plane is located at z, = c,. The transformed front clipping plane is located at
= ¢, +f. The back clxppmg plane is now located at z, = c; + b.
To uansfom: this view volume into the canonical view volume, we first scale in the z direction so that
the back-clipping plane is transformed to z = 1. The required scale factor is

1

Sy =

c+b

The scaling matrix is

1o o 0

01 0 0

S =
1ls, 0 c:-l’-b 0

00 O 1
To find the new window boundaries R” and L”, we apply this scaling transformation to the present
window coordinates

f(3hd) o(5-4e)

Then

L vl A

R/‘(z'z'c;+b) w4 ‘( 2'72'G+b

Next we scale in the x and y directions so that the window boundaries will be
¢ & _g m( < G G )
Rm(c;-f-b'c;+b'c;+b) wd L\ - s g+ g+

That is, the window boundaries will he on the planes x = z, x = —z, y =z ,and y = —z. The required
scale factors are

S, —i—— and S, g 2
* T Wc, +b) Y h(c, +b)

The corresponding scaling transformation is

2

—_— 00
w(c, + b)
e she
Sta = h(c, +b)
0 0 10
0 0 01
Multiplication of these scaling transformations into one transformation yields
(2 0}
we+n 0 °
2¢,
0 = 0o 0
s = h(c; + b)
1
0 0
0 c,+b
\ o 0 0o 1/
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To find the location of the front clipping plane, - 2y, we apply the transformation S, , 5y 1O the present
location of the center of the front clipping plane, which is C/(0, 0, ¢; + ). So

d+
Sn-"y-!: : C (0 0 : +£)

-+
+

That is

o
U

Zf=

£
o

The complete transformation can be written as

per = SJ,J,.J. ~Sh- TRL * RO.K * AN,—I( ‘T ¢
Note that after performing the transformation N, the view plane is transformed to the plane
e

z

parallel to the xy plane. Also, the center of projection C is transformed to the origin.

How do we determine whether a point P is inside or outside the view volume?
SOLUTION
A plane divides space into the two sides. The general equation of a plane is (App. 2)
ny(x = xo) + my(y — o) + my(z — 29) = 0
We define a scalar function, f(P), for any point P(x, y, z) by
SP)=f(xy.2) = ny(x — xp) + ny(y — yo) + n3(z — z9)
We say that a point P is on the same side (with respect to the plane) as point Q if sign f(P) = sign f(Q).
Referring to Figs. 8-7 or 8-8, let fr, /3, fz. /1, fy, and f be the functions associated with the top, bottom, right,
left, near (front), and far (back) planes, respectively (Probs. 8.4 and 8.10).
Also, L and R are the lower left and upper right comers of the window and P, and P; are the reference
points of the back and front chppmg planes, respectively.
Then a point P is inside the view volume if all the following hold:
P is on the same side as L with respect to f7
P is on the same side as R with respect to /3
P is on the same side as L with respect to /3
P is on the same side as R with respect to f
P is on the same side as P, with respect to fy
P is on the same side as P, with respect to fr
Equivalently
sign f7(P) =sign fr(L)  signfy(P) = sign fy(R)
sign f3(P) = sign fz(R) ~  sign fy(P) = sign fx(P)
sign fz(P) = sign fr(L)  sign fr(P) = sign fr(Py)

Show how region codes would be assigned to the endpoints of a line segment for the three-
dimensional Cohen—Sutherland clipping algorithm for (a) the canonical parallel view volume and
(b) the canonical perspective view volume.

SOLUTION

The procedure follows the logic of the two-dimensional algorithm in Chap. 5. For three dimensions, the
planes describing the view volume divide three-dimensional space into six overlapping exterior regions (i.e.,
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8.9

above, below, to right of, to left of, behind, and in front of view volume), pius the interior of the view volume;
thus 6-bit codes are used. Let P(x, y, z) be the coordinates of an endpoint.

(a) For the canonical parallel view volume, each bit is set to true (1) or false (0) according to the scheme

Bit 1 = endpoint is above view volume = sign (y — 1)
Bit 2 = endpoint is below view volume = sign (—y)
Bit 3 = endpoint is to the right of view volume = sign (x — 1)
Bit 4 = endpoint is to the left of view volume = sign (—x)
Bit 5 = endpoint is behind view volume = sign (z — 1)
Bit 6 = endpoint is in front of view volume = sign (—z)
Recall that sign (@) = 1 if a is positive, 0 otherwise.
(&) For the canonical perspective view volume:
Bit 1 = endpoint is above view volume = sign (y — z)
Bit 2 = endpoint is below view volume = sign (—z —y)
Bit 3 = endpoint is to the right of view volume = sign (x — z)
Bit 4 = endpoint is to the left of view volume = sign (—z — x)
Bit 5 = endpoint is behind view volume = sign (z — 1)
Bit 6 = endpoint is in front of view volume = sign (z; — 2)
The category of a line segment (Chap. 5) is (1) visible if both region codes are 000000, (2) not visible if

the bitwise logical AND of the region codes is not 000000, and (3) clipping candidate if the bitwise
logical AND of the region codes is 000000.

Find the intersecting points of a line segment with the bounding Slanes of the canonical view
volumes for (a) parallel and (b) perspective projections.
SOLUTION
Let Py(x;, ¥, 2;) and P,(x;, y,, z,) be the endpoints of the line segment. The parametric equations of the
line segment are i
x=x+Em-x) y=n+h-ynMt z=z+@-zk
From Prob. 8.11, the intersection parameter is ’
s ..
" NP,
where N is the normal vector and R, is a reference point on the plane.

(a) The bounding planes for the parallel canonical view volume are x=0,x=1,y=0,y=1,z=0, and
: = 1. For the plane x = 1, we have N =1 and R, (1, 0, 0). Then

" _= =1

P = el 4
X3 —X

If 0 < # < 1, the line segment intersects the plane. The point of intersection is then

x=x,+(xz—x|)(—:;___:l)=l g gy - y.)( x,——xl,)

2=n+6 (-2 )
The intersections with the other planes are found in the same way.

(b)) The bounding planes for the perspective canonical view volume are x =z, x=—z, y =z, y = —,
z=12;, and z = 1 (where z; is calculated as in Prob. 8.6).
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To find the intersection with the plane x = z, for example, we write the equation of the plane as
x — z = 0. From this equation, we read off the normal vector as N = I — K (App. 2, Prob. A2.9), and the
reference point is Ry(0, 0, 0). Then

X1 =2
(2 —x1) — (22— 2)
If 0 <t <1, we substitute ¢, into the parametric equations of the line segment to calculate the
intersection point.
The other intersections are found in the same way.

!['—"’"

8.10 Determine the inequalities that are needed to extend the Liang—Barsky line-clipping algorithm to
three dimensions for (a) the canonical parallel view volume and (b) the canonical perspective view

volume.
SOLUTION
Let P\(x,, 1, z,) and P,(x;, y;, ;) be the endpoints of a line. The parametric representation of the line is
x=x +Ax-u
y=n+dy-u
z=2z+ Az u

where 0 <u <1, Ax=x,—x, Ay=y, —y,, and Az =2z, —z,. The infinite extension of the line
corresponds to ¥ < 0 and 1 < u.

(a) Points inside the canonical parallel view volume satisfy
Xpin <X +Ax-u < xp.0
Ymin S 1+ AY U = Yay
Zmin <21+ Az u <z,

where Xin = Vinin = Zmin = 0 and X0 = Yinax = Zmax = 1.
Rewrite the six inequalities as

Pi U < gy, k=1,2,3,4,5,6

where -
v pp = —Ax, 1 =X — Xpin =X (left)
P2 = Ax, g2 =Xmax — X = 1—x (right)
PA=—8y, G =Y = Ymin =N (bottom)
Ps =4y, 44 =Ymax ~ V1 = 1=y (top)
ps=—Az, gs=z —zy, =2 (front)
p6=sz q6=zmn—21=l_zl (back)

(6) Points inside the canonical perspective view volume satisfy (see Fig. 8-10).

—Zz<x<z
—zZ=<y=<z

zfszsl

-z — Az u<x;+Ax-u<z+Az-u
-z —Az-u<y +Ay-u<z+Az-u
zp <z +Az-u<l

Rewrite the six inequalities as

Pr-u = Gy, k=1,2,3,4,56
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where
p=—bx—Az q=x+2z
py=0x— Az, 42 =2, —X
py=—8y—A4z, g =y+z
ps=Ay— Az, ga=21 =0

ps = —4z, qs =2, — Z
ps = Az, gs=1-2
Supplementary Problems

8.11  Find the equations of the planes forming the view volume for the general perspective projection.

8.12 Find the intersection point of a plane and a line segment.

(left)
(right)
(bottom)
(top)
(front)
(back)
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