
Geometric
Representation

One of the concepts in computer graphics is modeling of objects. By this we mean numerical
description of the objects in terms of their geometric property (size, shape) and how they interact with light
(reflect. trarsmit). The focus of this chapter is on geometric representation of objects. We will discuss
illumination and shading models in subsequent chapters.

A graplics system typically uses a set of primitives or geometric forms that are simple enough to be
efficiently implemented on the computer but flexible enough to be easily manipulated (assembled,
dcformcd) to represent or model a variety of objects. Geometric forms that are often used as primitives
include, in order of complexity, points, lines, polylines, polygons, and polyhedra. More complex geometric
forms include curves, curved surface patches, and quadric surfaces.

9.1 SIMPLE GEOMETRIC FORMS

Points and Lines

Points and lines are the basic building blocks of computer graphics. We specify a point by giving its
coordiantes in three- (or two-) dimensional space. A line or line segment is specified by giving id endpoints
P 1 (x 1 .r 1 ,z 1) and P242,y2,z2).

Polylines

A polvline is a chain of connected line segments. It is specified by giving the vertices (nodes)
P0.....Pd.,, defining the line segments. The first vertex is called the initial or starling point and the last
vertex, the final or terminal point (see Fig. 9-1).

Polygons

A polygon is closed polyline, that is, one in which the initial and terminal points coincide. A polygon
is specified by its vertex list P0 N, P0 . The line segments P, P......No are called the edges
of the polygon. (In general, we need not specify P0 twice, especially when passing the polygon to the
Sutherland4lo4igman clipping algorithm.)

174

P.

P3	 Ps

Fig. 9-1	 Fig. 9-2

CHAR 91	 GEOMETRIC REPRESENTATION	 175

A planar polygon is a polygon in which all vertices (and thus the entire polygon) lie on the same plane
(see Fig. 9-2).

9.2 WIREFRAME MODELS

A wirefram model consists of edges, vertices, and polygons. Here vertices are connected by edges, and
polygons are sequences of vertices or edges. The edges may be curved or straight line segments. In the
latter case, the wireframe model is called a polygonal net or polygonal mesh (Fig. 9-3).

(a) Wire frime model.	 (b) I4jddefl lilies removed.

Fig. 9-3

176	 GEOMETRIC REPRESENTATION	 [CHAP. 9

Representing a Polygonal Net Model

There are several different ways of representing a polygonal net model.

I. Explicit vertex list V = (P0 ,P , P2.....PN). The points P . (x1 ,y1 , z) are the vertices of the
polygonal net, stored in the order in which they would be encountered by traveling around the
model. Although this form of representation is useful for single polygons, it is quite inefficient for
a complete polygonal net, in that shared vertices are repeated several times (see Prob. 9.1). In
addition, when displaying the model by drawing the edges, shared edges are drawn several times.

2. Polygon listing. In this form of representation, each vertex is stored exactly once in a vertex list
V = (P0.....PN), and each polygon is defined by pointing or indexing into this vertex list (see
Prob. 9.2). Again, shared edges are drawn several times in displaying the model.

3. Explicit edge listing. In this form of representation, we keep a vertex list in which each vertex is
stored exactly once and an edge list in which each edge is stored exactly once. Each edge in the
edge list points to the two vertices in the vertex list which define that edge. A polygon is now
represented as a list of pointers or indices into the edge list. Additional information, such as those
polygons sharing a given edge, can also be stored in the edge list (see Prob. 9.9). Explicit edge
listing can be used to represent the more general wireframe model. The wireframe model is
displayed by drawing all the edges, and each edge is drawn only once.

Polyhedron

A polyhedron is a closed polygonal net (i.e., one which encloses a definite volume) in which each
polygon is planar. The polygons are called the faces of the polyhedron. In modeling, polyhedrons are quite
often treated as solid (i.e., block) objects, as opposed to wireframes or two-dimensional surfaces.

Advantages and Disadvantages of Wireframe Models

Wireframe models are used in engineering applications. They are easy to construct and, if they are
composed of straight lines, easy to clip and manipulate through the use of geometric and coordinate
transformations. However, for building realistic models, especially of highly curved objects, we must use a
very large number of polygons to achieve the illusions of roundness and smoothness.

9.3 CURVED SURFACES

The use of curved surfaces allows for a higher level of modeling, especially for the constructiodn of
highly realistic models. There are several approaches to modeling curved surfaces. One is an analog of
polyhedral models. Instead of using polygons, we model an object by using small, curved surface patches
placed next to each other. Another approach is to use surfaces that define solid objectL such as polyhedra,
spheres, cylinders, and cones. A model can then be constructed with these solid objects used as building
blocks. This process is called solid modeling.

There are two ways to construct a model—additive modeling and subtractive modeling. Additive
modeling is the process of building the model by assembling many simpler objects. Subtractive modeling
is the process of removing pieces from a given object to create a new object, for example, creating a
(cylindrical) hole in a sphere or a cube. Subtractive modeling is akin to sculpting.

9.4 CURVE DESIGN
Given n + 1 data points, Po(xo,yo).....P(x,,,y) we wish to find a curve that, in some sense, fits the

shape outlined by these points. If we require the curve to pass through all the points, we are faced with the
problem of interpolation. If we require only that the curve be near these points, we arc,faced with the

CHAP 91	 GEOMETRIC REPRESENTATION	 177

problem of approximation. Interpolation arises, for example, in reconstructing the shape of a digitized
curved objects. Approximation is used in computer graphics to design curves that "look good" or must
meet some aesthetic goal. To solve these often quite distinct problems, it is necessary to find ways of
building curves out of smaller pieces, or curve segments, in order to meet the design criteria. (Note that
curves and curve segments can be modeled as polylines, i.e., drawn with extremely short line segments.)
When modeling a curve f(x) by using curve segments, we try to represent the curve as a sum of smaller
segments 0i(x) (called basis or blending functions):

N

f(x) =	 a.I'(x)
i=0

We choose these blending functions with an eye toward computation and display. For this reason,
polynomials are often the blending functions of choice.

A polynomial of degree n is a function that has the form

Q(x) = ax + a_ 1 x" + ... + a 1x + a0

This polynomial is determined by its n + 1 coefficients [aa0].
A continuous piecewise polynomial Q(x) of degree n is a set of k polynomials q,(x), each of degree n

and k + 1 knots (nodes) to,.... t so that

Q(x) = q .(-)	 for	 ti x	 and	 i = 0..... k - 1

Note that this definition requires the polynomials to match or piece together at the knots, that is,
= q,(11), i = 1..... k - 1. This requirement imposes no restrictions on how smoothly the

polynomials q .(x) fit together. For example, there can be corners or sharp contours at the knots (see
Fig. 9-4).

'I

Fig. 9-4

Polynomials of high degree are not very useful for curve designing because of their oscillatory nature.
The most useful piecewise polynomials are those for which the polynomiaL q,(x) are cubic (degree 3).

There are several reasons for this. One is that the piecewise cubic closely resembles the way a drafter uses a
mechanical spline. In addition, 3 is the smallest degree which has the required smoothness properties for
describing pleasing shapes. It is also the minimum number needed to represent three-dimensional curves.

9.5 POLYNOMIAL BASIS FUNCTIONS

Let P0(xo,yo).....P,,(x,, y,,) represent n + I data points. In addition, let t, t 1 , t2be any numbers
(called knots). The following are common choices for basis or blending functions.

Lagrange Polynomials of Degree n

,, x—x-
'L E x) = fl 	,	 1=0,1 n

joX1 - Xj
h.

I
(x - t,_ 1)2(x - 1)

-
i(x) =	

(1,

(x - tj(t,+1 -
(t, 1 - t,)2

X <

t	 X :5 tj.fj

5,	 '1+1	 11+2	 43	 44

-7/.\ I

's_I	 'I	 11+1

178	 GEOMETRIC REPRESENTATION 	 [CHAP. 9

Note that L,(x,) =1 and L,(x) = 0 for allj 76 i. (Here 11 represents term-by-term multiplication.)

Hermite Cubic Polynomials

Refer to Fig. 9-5.

I 2(x—t,_1)3 + 3(x t,_1)2

I

(1, - :_)	 (t, -

Hi(x)
=

- 2(t, 1 - x)3 3(t, - x)2

(t,+1 77t, + (ç+ -

t1_1	 Xt1

1 X

B-Splines

Refer to Fig. 9-6. For the knot set t, t1 , t2 the nth-degree B-splines B, ,,, are defined recursively:

B,,0(x) =	 B,,,,(x)
=	

B,,,,_j(x)+ "'+ '
—x

B,,,,_1(x)
{

1 t,x<g1
0 otherwise	 t+,, -1i ti+n+I - ti+I

for 1	 x t,4,,. 1 . Note that Bj ,,(x) is nonzero only in the interval It,,	 In particular, the cubic B-
spline B, 3 is nonzero over the interval [t,, :] (which spans the knots ,, 	 4+3, t,+). In addition,
for nonrepeated knots, the B-spline is zero at the endknots t, and t,+,,+ 1 (from Prob. 9.3), that is,

= 0
(n>1)

B,,,(t,+,,+1) = 0

Fig. 9-5 Hennite cubic basis functions.	 FIg. 9-6 Cubic B-spume B,3(x).

FA

CHAR 91	 GEOMETRIC REPRESENTATION 	 179

In using B-splines, we allow for repeated knots, that is, t1 =	 •... This means that B1 ,, can have the
form 2, in its definition. By letting g = 0, we extend the definition of B,, to incorporate repeated knots.

Bernstein Polynomials

Refer to Fig. 9-7. The Bernstein polynomials of degree n over the interval (0, 1] are defined as

BE,,(x) = I

U	 I	 x

Fig. 9-7 Cubic Bernstein polynomials.

The cubic Bernstein polynomials are

B03 (x) = 1 - 3x + 34— x3

B 13 (x) = 3(x - 2x2 +x3)

B23 (x) = 3(x2_.)

B3,3 (x) =

9.6 THE PROBLEM OF INTERPOLATION

Given data points P0(x0, yo)..... P,,(x,,, y,j, we wish to find a curve whki passea through these points.

Lagrange Polynomial Interpolation Solution

Here

L(x) = Ey1L1(x)

where L1(x) are the Lagrange polynomials and L(x) is the nth-degree polynomial interpolating the data
points.

Hermitian Cubic Interpolation Solution

We wish to find a piecewise polynomial 11(x) of degree 3 which passes through the data points and is
also continuously differentiable at these points. We also prescribe the values of the derivatives ji (or slope

180	 GEOMETRIC REPRESENTATION 	 [CHAR 9

of the tangent line) at the given data points, that is, we prescribe the points (x0,)). (x., A):

H(x)	 [y1H(x) +

where H(x) and (x) are the Hermitian cubic basis functions and t 0 = x09 t1 = x 1 , t2 = X2,	 t. = X. are
the choices for the knot set.

.);Plule Interpolation

If we require that the interpolating piecewise polynomial be joined as smoothly as possible at the data
points, the resulting curve is called a spline. Therefore, a spline of degree m has continuous derivatives up
to order m - 1 at the data points.

It can be shown that any mth-degree spline that passes through n + 1 data points can be represented in
terms of the B-spine basis functions B,, as

Sm(X) =	 a,B1,,,(x)

In order to define the B-spine functions B,,,,(x) so as to solve the interpolation problem, the knots
, 1.•••	 must be chosen to satisfy the Shoenberg-Whitney condition:

fj<x1<t+,,,+i,	 i=0.....n

The following choices for the knots satisfy this condition (see Prob. 9.4):

Step 1. Choose

	

10trn<xO	 t,,+1tmfn+1 >X,,

Step 2. Choose the remaining knots according to

	

- Xi+ +". +	 -
:-0.... . n-rn-i

m
For cubic splines (m = 3), an alternative to step 2, requiring less computation, is step 2'. Choose

	

ti+4 = x1+2,	 i=0.... . n-4

The splines S2(x) and S3 (x) are called quadratic and cubic splines, respectively:
n-F2

S2(x) =	 a1B12(x)	 and	 S3 (x) = E a,B1,3(x)
1=0	 1=0

Confining our attention to the cubic spline, we see that there are n + 3 coefficients a to evaluate, requiring
n +3 equations.

The interpolation criterion S3 (x) = y1,j = 0..... n provides n + 1 equations:

y1=S3(x)= >Ja1B13(x)
1=0

The remaining two equations are usually specified as boundary conditions at the endpoints x 0 and x,,.
Some choices for boundary conditions are

1. Natural spline condition

S'(x0) = 0	 S(x,,) = 0

2. Clamped spline condition
S(x0) = YO	 S(x,,) =y,

where and y are prescribed derivative values.

CHAR 91	 GEOMETRIC REPRESENTATION	 181

3. Cyclic spline condition
S(xo) = S(xft)	 S(x0) = S(x,,)

This is useful for producing closed curves.

4. Anticyclic spline condition

S(x0) = —S(x)	 S(x0) = —S'(x,)

This is useful in producing splines with parallel endings whose tangent vectors are equal in
magnitude but opposite in direction.

For technical reasons, boundary condition I, the so-called natural boundary condition, is the least
preferred choice.

9.7 THE PROBLEM OF APPROXIMATION

The problem is to provide a smooth representation of a three-dimensional curve which approximates
given data so as to yield a given shape. Usually the data is given interactively in the form of a guiding
polyline determined by control points P0(x0 , Yo ' z0), P (x 1 y. z).....P(x,, y, zn). We would like to find
a curve which approximates the shape of this guiding polyline (see Fig. 9-8).

PS	 P,

p0	 P4

Fig. 9-8

Bézier—Bernstein Approximation

Using the Bernstein polynomials, we form the parametric curves:

	

X(t) =	 xBE1,,,(t)

	

P(t): y(t) =	 y,BE1 ,,(t)	 0 I	 I

z(t) = Jz1BE,(t)

where P(t) is called the Bézier curve.
13-A

182	 GEOMETRIC REPRESENTATION	 [CHAP. 9

Properties of the Bézier—Bernstein Approximation

There arc four basic properties:

I. The Bézier curve has the same endpoints as the guiding polyline, that is:

	

P0 =P(0)=[x(0),y(0),z(0)]	 P,, =P(1)= NO, y(l),z(1)]

2. The direction of the tangent vector at the endpoints P0. P is the same as that of the vector

	

determined by the first and last segments 	 ,	 of the guiding polyline. In particular
P'(0) = n (P 1 - P0) [i.e., x'(0) = n(x 1 - x0), Y'(0) = n(y, yo), z'(0) n(z 1 - 20)] and P(I)
n . (P - P,,1).

3. The Bézier curve ties entirely within the convex hull of the guiding polyline. In two dimensions,
the convex hull is the polygon formed by placing a "rubber band" about the collection of points
P0.P,,.

4. Bézier curves are suited to interactive design. In fact, Bézier curves can be pieced together so as to
ensure continuous differentiability at their juncture by letting the edges of the two different
guiding polylines that are adjacent to the common endpoint be collinear (see Fig. 9-9).

0,	 Q3

Fig. 9-9

Bézier—B-Spline Approximation

For this approximation, we use B-splines (see Fig. 9-10)

X(t) =

P(t): y(t)=>y1B,,,,(t)	 0 t n—m+1

z(t)
=

The mth-degree B-splines B1 ,,,(t), i = 0.... . n, are defined for tin the parameter range [0, n - in + I].
The knot set to,	 is chosen tobe the set O.....0,1,2..... n—m,n—m+ln—rn+l.

This use of repeated knots ensures that the endpoints of the spline coincide with the endpoints of the
guiding polyline (Prob. 9.6).

Since the knot spacing is uniform, we can also use an explicit form for calculating the B-splines (Prob.
9.10).

13-B

CHAP. 91	 GEOMETRIC REPRESENTATION	 183

P,

P2

Fig. 9-10 Cubic Bézier B-spline.

Closed Curves

To construct a closed B-spline curve which approximates a given closed guiding polygon, we need
only choose the knots t0	 to be cyclic, i.e., [0, I n, 0, 1,.. .1 . So

	

t,,+] =1o =0	 1.f=11 =1 	 f,+I4j=tE

In practice, the quadratic and cubic B-splines B 2 and B 3 are the easiest to work with and provide
enough flexibility for use in a wide range of curve design problems.

Properties of Bézier—B-Spline Approximation

There are five basic properties:

1. The Bézier—B-spline approximation has the same properties as the Bézier—Bemstein approxima-
tion; in fact, they are the same piecewise polynomial if ,n = n. This includes the properties of
agreement with the guiding polygon and the tangent vectors at the endpoints and the convex hull
property.

2. If the guiding polyline has m + I consecutive vertices (control points) which are collinear, the
resulting span of the Bézier—B-spline will be linear. So this approximation allows for linear
sections to be embedded within the curve.

3. The Bézier—B-splinc approximation provides for the local control of curve shape. if a single
control point is changed, portions of the curve that lie far away are not disturbed. In fact, only
m + 1 of the spans are affected. This is due to the local nature of the B-spline basis functions.

4. Bézicr—B-splines produce a closer fit to the guiding polygon than does the Bézier—Bernstein
approximation.

5. The Bézier—B-spline approximation allows the use of control points P, counted with multiplicities
of 2 or more. That is, P . = P = = p +, fork > I. This results in an approximation which is
pulled closer toward this ntrol point. In fact, if the point has multiplicity m + 1, the curve will
pass through it.

184	 GEOMETRIC REPRESENTATION 	 [CHAP. 9

9.8 CURVED-SURFACE DESIGN

The modeling and approximation of curved surfaces is difficult and involves many complex issues. We
will look at two methods for representing a surface: guiding nets and interpolating surface patches.

Guiding Nets

This technique is a direct generalization of the Bézier-Bernstein and Bezier-B-spline approximation
methods for curves. A guiding net is a polygonal net with vertices z), i = 0.... . m, and
./=0..... n (sec Fig. 9-I1).

Fig. 9-Il

1. Baler-Bernstein surface. This is the surface with parametric equations:

x(s, t) = E x,BE,,,(s)BE,,,(t)
i=ojo

Q(s, t): As, t)
i=oj=o

z(s, t) = E E ZjBEim(S)BEj,(Z)
i=Oj=O

Here 0 s, t 1 and BE are the Bernstein polynomials. This approximation has properties
analogous to the one-dimensional case with respect to the corner points P, P,, P0,, and P.
The convex hull property is also satisfied.

PIE. 942

S

CHAP. 91	 GEOMETRIC REPRESENTATION	 185

2. Bézier—B-spline approximation. In parametric form this is expressed as

x(s, I) = E
i=Oj=O

Q(s, t): As, 1) = E yjBj(s)Bjp(t)
i=OjO

z(s, t) = E E z,B(s)B1(t)
i,-oj=o

where O<s<m—x+I and O<s<n—+1. The knot sets for s and t used to define the B-
splines B(s) and B(t) are determined as in the one-dimensional case.

Quadratic approximation occurs when a = fi = 2. Cubic approximation occurs when a= fi 3. In
general, quadratic or cubic B-splines are most often used. For both these methods, the construction of the
guiding net (by locating the control points P) is left to the user.

Interpolating Surface Patches

Instead of using a given set of points !Y to construct a given surface, the process of interpolating
surface patches is based upon prescribing boundary curves for a surface patch and "filling in" the interior
of the patch by interpolating between the boundary curves.

1. Coons surfaces. For this technique, a patch is determined by specifying four bounding curves,
denoted in parametric vector form as P(s, 0), P(s, 1), P(O, 1), and P(1, :), 0 s, t I (see Fig.
9-12).

The (linear) Cocms jsarface patch interpolating the boundary curves can be written in vector
form by using linear interpolation (or blending):

9(s, t) =P(s,OXI - r)+P(s. 1)t+P(O,tXl —s) +P(l, ls— P(0,O)(1 — sXl — 1)

- P(0, 1)(1 - s)t - P(I, Os(1 - 1) - P(l, 1)st

(The subtractions are required so that the interpolators between corner points are not counted
twice.) This idea can be extended to define more general surface patches.

2. Lofted surfaces. Lofting is used where the surface to be constructed stretches in a given direction;
an example is the hull of a ship.

Cross sectIon 2, P2 (.r)

186	 GEOMETRIC REPRESENTATION 	 [CHAP. 9

Given two or more space curves, called cross-section curves, lofting is the process of blending
the cross sections together using longitudinal blending curves. The simplest example is linear
blending between cross-section curves P 1 (s) and P2 (s). The lofted surface is Q(s, t) =
(1 - t)P 1 (s) + tP2(s) (see Fig. 9-13).

cross sectIon 1, P1 (s)

Fig. 9.13

9.9 TRANSFORMING CURVES AND SURFACES

All the curve and surface models that we have constructed have the general form

x = 1xi0i 	and y =

(Add a z component for three dimensions.)
If M is 2 x 2 transformation matrix

M= (a b)

we can apply M to the functions x and y:

(a b '\ (1x,D, \ - (a(Y.x 1) + b(y1 V 1)'\ - (Z(ax + by)'11
c d) I, yI) - c(Zx1 D,) + d(yj) - k. Z(cx, + dy1)1

The transformed functions are then

I = 1(ax, + by,)V1	 5' = Z(cr 1 + dy1)'D1

In other words, to transform these curves and surfaces, it is necessary only to transform the coefficients
(x1 , yj). In most cases these coefficients represent data or control points. So the transformation of the
approximation of a curve or surface is found by first transforming the control points and then forming the
approximation based on the transformed points.

9.10 QUADRIC SURFACES

Spheres, cylinders, and cones are part of the family of surfaces called quadric surfaces. A quadric
surface is defined by an equation which is of the second degree (in x, y, or z).

The canonical quadric surfaces are as follows:

/

CRAP. 91	 GEOMETRIC REPRESENTATION	 187

Sphere

From Fig. 9-14:

x2 + y2 + 22 R2

&

x

Fig. 9-14
	 Fig. 9-15

Ellipsoid

From Fig. 9-15:

x2z2

One-sheeted Hyperboloid

From Fig. 9-16:

X,	 Z2

a2 + b2 c2

Two-sheeted Hyperboloid

From Fig. 9-17:

22X2y21

c2a2b2

x

x

x

188	 GEOMETRIC REPRESENTATION 	 [CHAP 9

Fig. 9-16
	

Fig. 9-17

Elliptic Cylinder

From Fig. 9-18:

x2y2

When a = b = R, the cylinder is a circular cylinder of radius R.

Effipik Paraboloid

From Fig. 9-19:

x2 y2
+ 31 = cz

Fig. 9-I9	 Fig. 9-19

X x

CH". 9]	 GEOMETRIC REPRESENTATION	 189

Hyperbolic Parboloid

From Fig. 9-20:

X2
-

2
 - - = cz

a	 j,2

Fig. 9-20
	

Fig. 9-21

Elliptic Cone

From Fig. 9-21:

X2	 j,2

a2 + b2 -
When a = b = R, we have a right circular cone. If we restrict z so that z> 0, we have the upper cone.

Note that, except for spheres and ellipsoids, the mathematical definition produces a figure of infinite
extent. To use it for computer graphics, we must specify bounds for the surface in the form of bounding
clipping planes having the form z = h.

9.11 EXAMPLE: TERRAIN GENERATION
We show two different ways to generate a triangle mesh (i.e., a polynomial net consisting of triangles)

that models the random peaks and valleys of a mountainous landscape.

Midpoint Displacement

This is a recursive approach that begins with one or more triangles over the terrain area [see Fig.
9-22(a)]. We use the midpoints of the edges to subdivide each triangle into four smaller ones. The
midpoints are randomly elevated to produce a rugged appearance (see Fig. 9-22(b)]. The coordinates (Xm,
y,,,, z,,,) of the midpoint of the edge between P1 (x1, Yi, z 1) and P2 (x2 . Y2, z2) are calculated as follows:

x_ = (x2 —x)/2

Y, = (y —yj)/2+r

z. = (z —zi)/2

190	 GEOMETRIC REPRESENTATION	 [CHAP. 9

y (elevation)	 T y (elevation)

(xiy)	 P
.n

(0)	 (1')

Fig. 9-22

where r is a random displacement that can be expressed as the product of a random number 0 A 1 and
a function of the projected length (onto the x-z plane) of the edge. For example, if the function is
F(p) = p12, then the midpoint can be elevated by no more than half of the projected length of the edge.
The subdivision process terminates when all edges project to a preset threshold or shorter length.

Since the original vertices are not moved and each midpoint is displaced only once, the resulting
terrain tends to maintain the overall shape of the initial model. On the other hand, deep valleys that look
unrealistic may appear along the original edges. We can alleviate this problem by adding a random
displacement to the vertices as well as the midpoints at each recursion stage. The tradeoff here is less
control over the shape of the final terrain structure.

Brownian Distribution of Disks

In this approach we superimpose a grid onto the terrain area and initialize a counter for each grid cell
(see Fig. 9-23 for a rectangular area that can be represented by a two-dimensional counter array). We then
randomly move a circular disk over the area. At each disk position we increment the counter for every grid
cell that is covered by the disk. After a while the counter values form an elevation profile of a pile of
randomly placed disks. Each elevation value describes the height of a point/vertex above the correspond-
ing grid cell. A triangle-mesh model of the resulting terrain can thus be constructed by first connecting
each vertex to its four neighbors [analogous to the four neighbouring pixels in Fig. 3-18(a)] to form a
quadrilateral-mesh and then adding diagonal edges to divide each quadrilateral into two triangles.

Fig. 9-23

Fig. 9-25

CHAR 91	 GEOMETRIC REPRESENTATION	 191

Fig. 9-24

For example, the gray-scale image in Fig. 924 represents the values in a 512 x 512 counter array. The
values are obtained using a disk of radius 25 after 6000 random movements, each of which is a step of size
3 forward or backward and simultaneously a step of the same size to the left or to the right. Whenever the
center of the disk moves beyond the image boundary it is reset to the middle of the image. The Counter
values are normalized so that the maximum count corresponds to white in the image. The resultant
triangle-mesh is viewed in Fig. 9-25 using perspective projection, looking from a point near the lower-right
corner of Fig. 9-24 towrds the center (with hidden surfaces removed and visible surfaces lit by a light
source).

192	 GEOMETRIC REPRESENTATION 	 [CHAP. 9

Solved Problems

91	 Represent a cube by using an explicit vertex list.

SOLUTION

Using the notation in Fig. 7-12, one possible representation is

V = (ABCDAFEDCHEFGHG8)

Note the vertex repetitions in the list V and the repetition of edge FE as EF.

9.2	 Represent a cube by using polygon listing.

SOLUTION

Referring to Fig. 7-12, we form the vertex list

V = (ABCDEFGH)

The faces of the cube are polygons (which, in this case, are squares) P 1P61 where

P1 = (ABCD)	 P4 = (ABGF}

= {CDEHI P5 = {BCHGI

P3 = (ADEF)	 P6 = IEFGHI

Note the edge repetitions encountered in drawing the polygons. For example, polygons P2 aW P3 share the
edge DE.

9.3	 Show that the nth-degree B-spline basis ftnctions B 5(x) satisfy

B, 5(x) = 0 if x < tj or x>

SOLUTION

Since the B-spline basis functions B,,(x) are defined recursivejy in terms of the lower-order B-splines
B,.,,_(x) and B11 , _ 1 (x) of degree n - 1, we shall indicate only the fist step of a general induction argument.
Therefore, we illustrate what happens for the first-degree B-spline B,,(x).

Now suppose that x <ti . Then also x < t,, so at x the zero-degree B-splines have the values B 0 (x) = 0
and B11 0(x) =0. From these values we find, in turn, that B,,(x) =0.

	Now suppose that the knot set is nonrepeating. Let x = 4 . Then	 = F, but B110(t) = 0. So

B4O(1,) = ti - (1) +
1+2 - 1

(0) = 0
11+1 - $1	 tj2 -

Thus B, 1 (x) = 0 ifx t. Similar arguments show that B11 (x) = 0 ifx

9.4	 Let P0(Q,0), P1 (l,2), P2(2, 1), P3 (3,—l), P4(4, 10), and P5(5,5) be given data points. If
interpolation based on cubic 8-splines is used to find a curve interpolating these data points,
find a knot set to, .. . , tq that can be used to define the cubic B-splines.

SOLUTION

The knot set can be chosen according to one of two schemes. With in 3 and n = 5:

I, Choose

to = tj = t2 = t3 = —I (.<x0)	 and	 t6 = t7 = ts = tq = 6 (>x)

CHAP. 91	 GEOMETRIC REPRESENTATION	 193

The remaining knots are chosen according to

1i+_+]

	

	 = 0.....n - in - IM
So

• 1+2+3	 2+3+414 =	 =2	 i—_	 =3

2. An alternative scheme for cubic splines is

	

t0 = t1 t2=13 =1 	 16=17=18=19=6
and the remaining knots are chosen according to

4 4 = x 2 .	 i = 0.....n —4
So

	

14=2	 (5=3
The agreement between knot sets chosen according to these two schemes is a result of the uniform
spacing of the data points along the x axis.

9.5

	

	 Write the equations that can be used to find an interpolating cubic spline curve to fit the data in
Prob. 9.4 using cubic B-spline basis functions.

SOLUTION

With in = 3 and a = 5, the interpolating spline can be written in terms of cubic B-splines as

S3 (x) = E a,B,3(x)

The interpolation equations for the data points (x,y1),j = 0.....5 are
y1 =S3 (x1),	 j=0.....5

With the knot set chosen in Prob. 9.4, the intervals [t,, t] defined by the knots t. J = 0..... 9 are

j+4

0	 —1	 2
1	 —1	 3
2	 —I	 6
3	 —1	 &
4	 2	 6
5	 3	 1	 6

Because B 3 (x) is nonzero only for,, cx < 1,., the interpolation equations become
y,=S3(x,)

0 = a0B03(0) + a 1 B 1 3 (0) + a2 B2 3 (0) + a3B33(0)
2

I = a 1 B 1,3 (2) + a2823 (2) + a3B33(2)
- I = a282 3 (3) + a3B3 3 (3) + a4B43(3)
10 = a2 B23 (4) + a3 B3 3 (4) + a443(4) + a5853(4)
5 a2 B2 3 (5) + a3 B3 3 (5) + a4B43 (5) + a5B3(5)

P(O, 1)

X

Fig. 9-26

194	 GEOMETRIC REPRESENTATION 	 [CHAP 9

The remaining two equations can be chosen to satisfy prescribed boundary conditions at x0 = 0 and x 5 5.

9.6	 Show that the knot set used in constructing the Bézier-B-spline approximation to a guiding polyline
guarantees that the endpoints of the spline coincide with the endpoints of the guiding polyline.

SOLUTION

For an rn-degree Bézier-B-spline approximation, the knot set used is

0.....0,1,2,..., n-m,n--m+Ln-'n+ I,.... n-m+1

,n+I

Let P0 (x0 , Yo' z0) be the first control point of the guiding polyhne and P(x, y, z) the last. Now
x(t) =	 '..0x1B,,,(i) with similar expressions for y(t) and z(t). We wish to show that

X(0) =x0 ,y(0) = yØ..(0) =z0 	 and	 x(n -1) =x.y(n - 1) =y,,z(n - 1) =;

Let us restrict ourselves to m = 2 (quadratic) B-splines. Then the knot set is

0,0,0,1,2,3.....n-2,n-1,n-1,n-I

	

0' l' 2' 13 , 14, t5, 	 'r+2' l, .f. 3 , ,,+4

Since B, 2 (x) is nonzero only over the interval i <x < t+, it follows that B 2 (0) is nonzero only if i = 0, L,
and 2. So then

X(0) = Ex 1 B12 (0) = x0 B0,2 (0) +x 1 8 1,2 (0) +x2B2,2(0)
i3O

To calculate B02 , using the definition and the convention that = 0, we obtair,

B0,2(0) = B 11 (0)	 and	 B1(0) = B20 (0)	 and	 820(0) = I

So B02(0) = 1 (compare with Prob. 9.3).
To calculate B12(0), using the definition

B12(0) = B2, 1 (0)	 and	 B21 (0) =---1-B30(0)	 and	 B3 (0) = 0 since 0 13 = I

So we have B 1,2 (0) = 0. In a similar manner, we find 822(0) = 0. Thus, x(0) = x0 and the same for they and z
coordinates.

Similar calculations show that x(n - I) = x, An - I) = y, and z(n - I) = z,,.

9.7	 Find the linear Coons surface patch that interpolates the curves of Fig. 9-26.

CHAR 9]	 GEOMETRIC REPRESENTATION	 195

SOLUTION

The four bounding curves can be described parametrically as follows (see Fig. 9-26):
I. P(S,O)= (Cos ,O, sin irj)	 O<.<I
2. P(l,i)=(—1,O,O)	 0<11
3 P(S,1)= (Cos , sin my , 0)	 0<s<1
4. P(0,t)=(1,O,0)

Note that curves 2 and 4 are constant curves, that is, points.
The linear Coons surface interpolating these curves can be written as

Q(s, t) P(s, 0)(l - t) + P(s, 1)t + P(0, t)(1 - .c) + P(1, t)s - P(0, 0)(1 - s)(l - t)
- P(0, 1)(1 - s)t - P(l, 0)s(1 - t) —p(l, I)st

In terms of coordinates:

x(s, t) = (cosits)(1 - t) + (Cos gs)t+ (I)(1 - s) + (-1)s

- (00 —s)(I - t) - (0(1 —s)i —(-1)s(I -:) - (—t)sr

or

x(s, t) = cos its
Now

y(s, t) = (0)(I - e) + (sin ,rs)t + (0)(1 - s) + (0)s - (0)(I - s)(1 —1)-- (0)(l -	 - (0)s(I —t) - (0)st
or

As, 1) = I Sin its
Finally

z(s, 1) = (sinns)(i —1) + (0)t + (0)(1 - s) + (0)s - (0)(I - s)(1 - t) - (0)(1 - s)t - (0)s(1 - t) - (0)st

or

z(s,t)=(I — t)sinns
The linear Coons surface is

Q(s,:) = [Cos its,i sin rs,(1 - f) sin 2zs]	 0	 s,t	 I

9.8	 Find the lofting surface defined by linear blending between the cross-section curves in Fig. 9-27.
SOLUTION

The curves in Fig. 9-27 are circles whose equations can be defined parametrically as

P1 (s) = (cos2irs, sin 27rs, 0)	 0 <s< I
and

P2(s) (2 cos 2ns,2 sin 2irs,4)	 0 s	 1
The lofting surface is then

Q(s, t) = (I - t)P 1 (s) + tP2(s)

In terms of coordinates, we find that

x(s, t) = (1 - t)(cos2am)-i- t(2 Cos 2its) = (I + t) Cos 2its
As, 1) = (1 - t)(sin2gs)+ t(2 sin 2its)=(l + t) sin 2its
z(s,t) = (1 - 0(0) + :(4) = 4t

196	 GEOMETRIC REPRESENTATION	 [CHAP 9

X

P, (j)

Fig. 9-27

Thus

Q(s. t) = L(I + t) cos 2irs, (1 + () sin 2zs, 4t] 	 0 s, t	 I

Supplementary Problems

9.9	 Represent a cube using an explicit edge listing.

9.10 Find an explicit representation for linear (degree I) B-splines in the case of uniformly spaced knots, i.e.,
-:, = L-

9.11	 For the knot set:, = 1, : = 2.....: = 1, calculate B,.3

Hidden Surfaces

Opaque objects that are closer to the eye and in the line of sight of other objects will block those objects or
portions of those objects from view. In fact, some surfaces of these opaque objects themselves are not
vsible because they are eclipsed by the objects' visible parts. The surfaces that are blocked or hidden from
view must be "removed" in order to construct a realistic view of the 3D scene (see Fig. 1-3 where only
three of the six faces of the cube are shown). The identification and removal of these surfaces is called the
hidden-swjice problem. The solution involves the determination of the closest visible surface along each
projection line (Sec. 10.1).

There are many different hidden-surface algorithms. Each can be characterized as either an image-
space ,nerlwd, in which the pixel grid is used to guide the computational activities that determine visibility
at the pixel revel (Secs. 10.2, 10.5, and 10.6), or an object-space method, in which surface visibility is
determined using continuous models in the object space (Or its transformation) without involving pixel-
hased operations (Secs. 10.3 and 10.4).

Notice that the hidden-surface problem has ties to the calculation of shadows. If we place a light
source, such as a bulb, at the viewpoint, all surfaces that are visible from the viewpoint are lit directly by
the light source and all surfaces that are hidden from the viewpoint are in the shadow of some opaque
objects blockiig the light.

10.1 DEPTH COMPARISONS

We assume that all coordinates x, y, z) are described in the normalized viewing coordinate system
(Chap. 8).

Any hiddn-surface algorithm must determine which edges and surfaces are visible either from the
center of projection for perspective projections or along the direction of projection for parallel projections.

The questioo of visibility reduces to this: given two points P 1 (x 1 , Yt ' z 1) and P2 (x2 , Y. z2), does either
point obscure thu other? This is answered in two steps:

Are P 1 and P2 on the same projection line?

2. If not, ndither point obscures the other. If so, a depth comparison tells us which point is in front of
the other.

For an orthographic parallel projection onto the xy plane, P 1 and P2 are on the same projector if
= -2 and v1 = Y2 . In this case, depth comparison reduces to comparing z 1 and 22. If z 1 <z2 , then P1

obscures P [see Fig. 10-1(n}.
For a perstective projection [see Fig. 10-1(b)], the calculations are more complex (Prob. 10.1).

I !owe Cr. this Complication can be avoided by transforming all three-dimensional objects so that parallel

14-p	
197

Perspective projection of
this cOnflgUIILIOn Is

(ABCDE.FT.J

198	 HIDDEN SURFACES	 [CHAP. 10

Z

P2 (x2, y2. Z2)

P(x, y2. 2)

P 1 (XI, Y1. zi)
	

P 1 (X I,)'i, zi)

V
	

I'

to)

	

	
(b)

Fig. 10-I

projection of the transformed object is equivalent to a perspective projection of the original object (see Fig.
10-2). This is done with the use of the perspective to parallel transform 7,, (Prob. 10.2).

If the original object lies in the normalized perspective view volume (Chap. 8), the normalized
perspective to parallel transform

2

'	 0	 0 \

1	 012	 2

N7,= 0 0

lZj 1—z1

00	 I	 0/

IfAki
Parallel projection of
this configuration Is

(A BCDEFQ j

U

Fig. 10-2

14-B

CHAP tO]	 HIDDEN SURFACES	 199

(where z1 is the location of the front clipping plane , of the normalized perspective view volume) transforms
the normalized perspective view volume into the unit cube bounded by 0 x I, 0 y 1, 0 z 1
(Prob. 10.3). We call this cube the normalized display space. A critical fact is that the normalized
perspective to parallel transform preserves lines, planes, and depth relationships.

If our display device has display coordinates H x V, application of the scaling matrix

'H 0 0 o
(0 V

Sfi V t = I 0 0 1 01
\o 0 0.1)

transforms the normalized display space 0 x 1, 0 y I, 0 z < I onto the region 0 < x H,
0 <y V, 0 <z 1. We cal this region the display space. The display transform D7:

DT = SHJI NT,,

transforms the normalized perspective view volume onto the display space.
Clipping must be done against the normalized perspective view volume prior to applying the transform

NT,,. An alternative to this is to combine NT,, with the normalizing transformation N (Chap. 8), forming
the single transformation N7 = NT,, . N1,r. Then clipping is done in homogeneous coordinate space. This
method for performing clipping is not covered in this book.

We now describe several algorithms for removing hidden surfaces from scenes containing objects
defined with planar (i.e., flat), polygonal faces. We assume that the displays transform DT,, has been
applied (if a perspective projection is being used), so that we always deal with parallel projections in
display space.

10.2 Z-BUFFER ALGORITHM

We say that a point in display space is "seen" from pixel (x, y) if the projection of the point is scan-
converted to this pixel (Chap. 3). The Z-buffer algorithm essentially keeps track of the smallest z
coordinate (also called the depth value) of those points which are seen from pixel (x, y). These Z values are
stored in what is called the Z buffer.

Let Zbf (x, y) denote the current depth value that is stored in the Z buffer at pixel (x, y). We work with
the (already) projected polygons P of the scene to be rendered.

The Z-buffer algorithm Consists of the following steps.

I. Initialize the screen to a background color. Initialize the Z buffer to the depth of the back clipping
plane. That is, set

ZbUr(x, y) Zback,	 for every pixel (x, y)

2. Scan-convert each (projected) polygon P in the scene (Chap. 3) and during this scan-conversion
process, for each pixel (x, y) that lies inside the polygon:

(a) Calculate Z(x,y), the depth of the polygon at pixel (x, y).
(b) If Z(x, y) < ZbUf(x , y), Set ZbUf(x, y) = Z(x, y) and set the pixel value at (x, y) to the color of

the polygon P at (x, y). In Fig. 103, points P and P2 are both scan-converted to pixel (x, y);
however, since z < z2 , P 1 will obscure P2 and the P 1 z value, z1, will be stored in the Z
buffer.

Although the Z-buffer algorithm requires Z-buffer memory storage proportional to the number of
pixels on the screen, it does not require additional memory for storing all the objects comprising the scene.
In fact, since the algorithm processes polygons one at a time, the total number of objects in a scene can be
arbitrarily large.

-

Fig. 10-3

200
	

HIDDEN SURFACES	 [CHAP 10

10.3 BACK-FACE REMOVAL

Object surfaces that are orientated away from the viewer are called back-faces. The back-faces of an
opaque polyhedron are completely blocked by the polyhedron itself and hidden from view. We can
therefore identify and remove these back-faces based solely on their orientation without further processing
(projection and scan-conversion) and without regard to other surfaces and objects in the scene.

Let N = (A, B, C) be the normal vector of a planar polygonal face, with N pointing in the direction the
polygon is facing. Since the direction of viewing is the direction of the positive z axis (see Fig. 10-3), the
polygon is facing away from the viewer when C> 0 (the angle between N and the z axis is less than 90°).
The polygon is also classified as a back-face when C = 0, since in this case it is parallel to the line of sight
and its projection is either hidden or overlapped by the edge(s) of some visible polygon(s).

Although this method identifies and removes back-faces quickly it does not handle polygons that face
the viewer but are hidden (partially or completely) behind other surfaces. It can be used as a preprocessing
step for other algorithms.

10.4 THE PAINTER'S ALGORITHM

Also called the depth sort or priority algorithm, the painter's algorithm processes polygons as if they
were being painted onto the view plane in the order of their distance from the viewer. More distance
polygons are painted first. Nearer polygons are painted on or over more distance polygons, partially or
totally obscuring them from view. The key to implementing this concept is to find a priority ordering of the
polygons in order to determine which polygons are to be painted (i.e., scan-converted) first.

Any attempt at a priority ordering based on depth sorting alone results in ambiguities that must be
resolved in order to correctly assign priorities. For example, when two polygons overlap, how do we decide
which one obscures the other? (See Fig. 10-4.)

CHAR 101	 HIDDEN SURFACES	 201

Y

z

Z/112	 -

/	 1

y /
/
——f ,

7ti 'e -' 	
Projection of polygons

^D l / A,
B, C, and D Projection of polygons

- PandQ

-.
(a)	 o)

Fig. 10-4 Projection of opaque polygons.

Assigning Priorities

We assign priorities to polygons by determining if a given polygon P obscures other polygons. If the
answer is no, then P should be painted first. Hence the key test is to determine whether polygon P does not

obscure polygon Q.
The z extent of a polygon is the region between the planes z = zn^n and z =z.. (Fig. 10-5). Here, z

is the smallest of the z coordinates of all the polygon's vertices, and z	 is the largest.
Similar definitions hold for the x and extents of a polygon. The intersection of the x, y, and z extents

is called the extent, or bounding box, of the polygon.

Y

YLNT:.
extent

Fig. 10-5

Testing Whether P Obscures Q
Polygon P does not obscure polygon Q if any one of the following tests, applied in sequential order, is

true.

Test 0: the z extents of and Q do not overlap and ZQ of Q is smaller than Zp. of P. Refer to Fig.
10-6.

Test 1: the y extents of P and Q do not overlap. Refer to Fig. 10-7.
Test 2: the x extents of P and Q do not overlap.

202	 HIDDEN SURFACES	 [CHAP. 10

r(\
Sent of P

z extent
or Q	 i,,__> Qn

r
'.4
	 x

' Projection or pProjection of Q

Fig. 10-6

x

Fig. 10-7

Test 3: all the vertices of P lie on that side of the plane containing Q which is farthest from the
viewpoint. Refer to Fig. 10.8.

Test 4: all the vertices of Q lie on that side of the plane containing P which is closest to the
viewpoint. Refer to Fig. 10-9.

Test 5: the projections of the polygons P and Q onto the view plane do not overlap. This is checked
by comparing each edge of one polygon against each edge of the other polygon to search for
intersections.

The Algorithm

1. Sort all polygons into a polygon list according to z, (the largest z coordinate of each polygon's
vertices). Starting from the end of the list, assign priorities for each polygon P, in order, as
described in steps 2 and 3 (below).

0

Fig. 10-8

y

CHAP 101	 HIDDEN SURFACES 	 203

ç) ,lirc

,

Y

0	 x

Fig. 10-9

2. Find all polygons Q (preceding P) in the polygon list whose z extents overlap that of P (test 0).

3. For each Q, perform tests 1 through 5 until true.

(a) If every Q passes, scan-convert polygon P.

(b) If false for some Q, swap P and Q on the list. Tag Q as swapped. If Q has already been
tagged, use the plane containing polygon P to divide polygon Q into two polygons. Q and
Q2 [see Fig. 104(b)]. The polygon-clipping techniques described in Chap. 5 can be used to
perform the division. Remove Q from the list and place Q 1 and Q2 on the list, in sorted
order.

Sometimes the polygons are subdivided into triangles before processing, thus reducing the computa-
tional effort for polygon subdivision in step 3.

10.5 SCAN-LINE ALGORITHM

A scan-line algorithm consists essentially of two nested loops, an x-scan loop nested within a y-scan
loop.

Fig. 10-10

)lay
en

204
	

HIDDEN SURFACES	 [CHAP 10

y Scan

For each y value, say. y = , intersect the polygons to be rendered with the scan plane y = a. This
scan plane is parallel to the xz plane, and the resulting intersections are line segments in this plane (see
Fig. 10-10).

x Scan

1. For each x value, say, x = /3, intersect the line segments found above with the x-scan line x = /3
lying on the y-scan plane. This intersection results in a set of points that lies on the x-scan line.

2. Sort these points with respect to their z coordinates. The point (x, y, z) with the smallest z value is
visible, and the color of the polygon containing this point is the color set at the pixel
corresponding to this point.

In order to reduce the amount of calculation in each scan-line loop, we try to take advantage of
relationships and dependencies, called coherences, between different elements that comprise a scene.

Types of Coherence

1. Scan-line coherence. If a pixel on a scan line lies within a polygon, pixels near it will most likely
lie within the polygon.

2. Edge coherence. If an edge of a polygon intersects a given scan line, it will mot likely intersect
scan lines near the given one.

I 2 3 4 5 6 7 8 9 10 II

Fig. 10-11

P

CHAP 101	 HIDDEN SURFACES	 205

3. Area coherence. A small area of an image will most likely lie within a single polygon.
4. Spatial coherence. Certain properties of an object can be determined by examining the extent of

the object, that is, a geometric figure which circumscribes the given object. Usually the extent is a
rectangle or rectangle solid (also called a bounding box).

Scan-line coherence and edge coherence are both used to advantage in scan-converting polygons
(Chap: 3).

Spatial coherence is often used as a preprocessing step. For example, when determining whether
polygons intersect, we can eliminate those polygons that don't intersect by finding the rectangular extent of
each polygon and checking whether the extents intersect—a much simpler problem (see Fig. 10-11). [Note:
In Fig. 10- 11 objects A and B do not intersect; however, objects A and C, and B and C, do intersect. In
preprocessing, corner points would be compared to determine whether there is an intersection. For
example, the edge of object A is at coordinate P3 = (6, 4) and the edge of object B is at coordinate
P4 = (7, 3).] Of course, even if the extents intersect, this does not guarantee that the polygons intersect.
See Fig. 10-12 and note that the extents of A' and B' overlap even though the polygons do not.

A

Coherences can simplify calculations by making them incremental, as opposed to absolute. This is
illustrated in Prob. 10.13.

A Scan-line Algorithm

In the following algorithm, scan line and edge coherence are used to enhance the processing done in
the y-scan loop as follows. Since the y-scan loop constructs a list of potentially visible line segments,
instead of reconstructing this list each time the y-scan line changes (absolute calculation), we keep the list
and update it according to how it has changed (incremental calculation). This processing is facilitated by

Fig. 10-12

Y

206
	

HIDDEN SURFACES	 [CHAP. 10

the use of what is called the edge list, and its efficient construction and maintenance is at the heart of the
algorithm (see Chap. 3, Sec. 3.7, under "A Scan-line Algorithm").

The following data structures are created:

1. The edge list—contains all nonhorizontal edges (horizontal edges are automatically displayed) of
the projections of the polygons in the scene. The edges are sorted by the edge's smaller y
coordinate (y,). Each edge entry in the edge list also contains:

(a) The x coordinate of the end of the edge with the smaller y coordinate.
(b) The y coordinate of the edge's other end (y,,).
(c) The increment Ax = 1/rn.

(ci) A pointer indicating the polygon to which the edge belongs.

2. The polygon list—for each polygon, contains

(a) The equation of the plane within which the polygon lies—used for depth determination, i.e.,
to find the z value at 41'el (x, y).

(b) An IN/OUT flag, initi. tied to OUT (this flag is Set depending on whether a given scan line
is in or out of the polygon).

(c) Color information for the polygon.

The algorithm proceeds as follows.

1. Initialization.

(a) Initialize each screen pixel to a background color.
(b) Set y to the smallest	 value in the edge list.

Repeat steps II and III (below) until no further processing can be performed.

II. y-scan loop. Activate edges whose y,, is equal to y. Sort active edges in order of increasing x.
III. x-scan loop. Process, from left to right, each active edge as follows:

CHAP. 101	 HIDDEN SURFACES 	 207

(a) Invert the IN/OUT flag of the polygon in the polygon list which contains the edge. Count
the number of active polygons whose IN/OUT flag is set to IN. If this number is I, only one
polygon is visible. All pixel values from this edge and up to the next edge are set to the color
of the polygon. If this number is greater than I, determine the visible polygon by the
smallest z value of each polygon at the pixel under consideration. These z values are found
from the equation of the plane containing the polygon. The pixels from this edge and up to
the next edge are set to the color of this polygon, unless the polygon becomes obscured by
another before the next edge is reached, in which case we Set the remaining pixels to the
color of the obscuring polygon. If this number is 0, pixels from this edge and up to the next
one are left unchanged.

(b) When the last active edge is processed, we then proceed as follows:

I. Remove those edges for which the value of V,,,a equals the present scan-line value Y. If
no edges remain, the algorithm has finished.

2. For each remaining active edge, in order, replace x by x + 1/rn. This is the edge
intersection with the next scan line y + I (see Prob. 10.13).

3. Increment y to v + I, the next scan linç, and repeat step II.

10.6 SUBDIVISION ALGORITHM

The subdivision algorithm is a recursive procedure based on a two-step strategy that first decides
which projected polygons overlap a given area A on the screen and are therefore potentially visible in that
area. Second, in each area these polygons are further tested to determine which ones will be visible within
this area and should therefore be diplaycd. If a visibility decision cannot be made, this screen area, usually
a rectangular window, is further subdivided either until a visibility decision can be made, or until the screen
area is a single pixel.

Starting with the full screen as the initial area, the algorithm divides an area at each stage into four
smaller areas, thereby generating a quad tree (see Fig. 10-13).

1	 2

3	 4

A

(a) initial area.	 (b) First subdivision.

1	 2	 1	 2

3	 4	 3	 4

1	 2	 1	 2

3	 4	 3	 4

(c) Second subdivision. 	 (d) Third subdivision.

Fig. 10-13

1

(b) PlntersectaA.

P

(a) PaunoundsA.

12^^

208	 HIDDEN SURFACES	 [CHAP 10

The processing exploits area coherence by classifying polygons P with respect to a given screen area A
into the following categories: (1) surrounding polygon—polygon that completely contains the area [Fig.
10-14(a)], (2) interesecting polygon—polygon that intersects the area [Fig. 10-14(b)], (3) contained
polygon—polygon that is completely contained within the area [Fig. 10-14(c)], and (4) disjoint polygon—
polygon that is disjoint from the area [Fig. 10-14(d)].

(c) P is contained in A.	 (P Is disjoint from A.

Fig. 10-14

The classification of the polygons within a picture is the main cothputational expense of the algorithm
and is analogous to the clipping algorithms discussed in Chap. 5. With the use of one of these clipping
algorithms, a polygon in category 2 (intersecting polygon) can be clipped into a contained polygon and a
disjoint polygon (see Fig. 10-15). Therefore, we could proceed as if category 2 were eliminated.

Fig. 10-15

CHAP. 10]	 HIDDEN SURFACES	 209

For a given screen area, we keep a potentially visible polygons list (PVPL), those in categories 1, 2,
and 3. (Disjoint polygons are clearly not visible.) Also, note that on subdivision of a screen area,
surrounding and disjoint polygons remain surrounding and disjoint polygons of the newly formed areas.
Therefore, only contained and intersecting polygons need to be reclassified.

Removing Polygons Hidden by a Surrounding Polygon

The key to efficient visibility computation lies in the fact that a polygon is not visible if it is in back of
a surrounding polygon. Therefore, it can be removed from the PVPL. To facilitate processing, this list is
sorted by the smallest z coordinate of the polygon within this area. In addition, for each surrounding
polygon S, we also record its largest z coordinate,;.

If, for a polygon P on the list, z1 > z (for a surrounding polygon S), then P is hidden by S and
thus is not visible. In addition, all other polygons after P on the list will also be hidden by S, so we can
remove these polygons from the PVPL.

Subdivision Algorithm

1. Initialize the area to be the whole screen.

2. Create a PVPL with respect to an area, sorted on Zmm (the smallest z coordinate of the polygon
within the area). Place the polygons in their appropriate categories. Remove polygons hidden by a
surrounding polygon and remove disjoint polygons.

3. Perform the visibility decision tests:
(a) If the list is empty, set all pixels to the background color.
(b) If there is exactly one polygon in the list and it is a classified as intersecting (category 2) or

contained (category 3), color (scan-convert) the polygon, and color the remaining area to the
background color.

(c) If there is exactly one polygon on the list and it is a surrounding one, color the area the color
of the surrounding polygon.

(d) If the area is the pixel (x, 3'), and neither a, b, nor c applies, compute the z coordinate z(x, y)
at pixel (x, y) of all polygons on the PVPL. The pixel is then set to the color of the polygon
with the smallest z coordinate.

4. If none of the above cases has occurred, subdivide the screen area into fourths. For each area, go to
step 2.

10.7 HIDDEN-LINE ELIMINATION

Although there are special-purpose hidden-line algorithms, each of the above algorithms can be
modified to eliminate hidden lines or edges. This is especially useful for wireframe polygonal models
where the polygons are unfilled. The idea is to use a color rule which fills all the polygons with the
background color—say, black—and the edges and lines a different color—say, white. The use of a hidden-
surface algorithm now becomes a hidden-line algorithm.

10.8 THE RENDERING OF MATHEMATICAL SURFACES

In plotting a mathematical surface described by an equation z = F(x, y), where Xmin x x and
Ymin Y Ymn, we could use any of the hidden-surface algorithms so far described. However, these
general algorithms are inefficient when compared to specialized algorithms that take advantage of the
structure of this type of surface.

The mathematical surface is rendered as a wireframe model by drawing both the x-constant curves
= F(const,y) and they-constant curves z = F(x, const) (see Fig. 10-16). Each such curve is rendered as

I0

210	 HIDDEN SURFACES[CHAP. 10

a polylme, where the illusion of smoothness is achieved by using a fine resolution (i.e., short line
segments) in drawing the polyline (Chap. 3).

Fig. 10-16

Choose an M x N plotting resolution

x,.. <x 1 <x2 < ... <X ,f <x,	 and	 Y < Y2 < ... < Yw Yma

The corresponding z values are z!., = F(x, y). An x-constant polyline, say x = x1, has vertices

P(x1,y1)1'N(-f,YN)

Similarly, the y = Yk polyline has vertices

QI(x l , yk) Q%f(x1,yk)

Choosing a view plane and a center of projection or viewpoint C(a, b, c), we create a perspective view of
the surface onto this view plane by using the transformations developed in Chap. 7. So a point
[x, y, F(x, y)] on the surface projects to a point (p, q) in view plane coordinates. By applying an appropriate
2D viewing transformation (Chap. 5), we can suppose that p and q line within the horizontal and vertical
plotting dimensions of the plotting device, say, II x V pixels.

The Perimeter Method for Rendering the Surface

Each plotted x and constant polyline outlines a polygonal region on the plotting screen (Fig. 10-17).
The algorithm is based on the following observations: (1) ordering—the x- and y-constant curves (i.e.,

polylines) are drawn in order starting with the one closest to the viewpoint and (2) visibility—we draw only
that part of the polyline that is outside the perimeter of all previously drawn regions (Fig. 10-18). One
implementation of the visibility condition uses a mm–max array A, of length H (that of the plotting device),
which contains, at each horizontal pixel position i, the maximum (and/or minimum) vertical pixel value

10	 I
	

10

Fig. 10-17	 Fig. 10-18

I0

I	 10

.4: 0 0 0 0 0 0 0 0 0 0

I.

I	 to
.4: 5 4 4 3 4 6 4 3 2 2

I	 10

.4: 7 5 6 5 4 6 6 3 4 4

CHAP. 101	 HIDDEN SURFACES	 211

drawn thus far at i; that is A(i) = (vertical pixel values drawn so far at i) (Fig. 10-19). Selection of the
max results in a drawing of the top of the surface. The min is used to render the bottom of the surface, and
the max and min yields both top and bottom.

(0)	 (I)	 (2)

Fig. 10-19 Updating mm-max array A (using maximum values only).

The Visibility Test

Suppose that (p', q') is the pixel that corresponds to the point (p. q). Then this pixel is visible if either

> A(p')	 or	 q' <A(p')

where A is the mm-max array.
The visibility criteria for a line segment are: (I) the line segment is visible if both its endpoints are

visible; (2) the line segment is invisible if both its endpoints are not visible; and (3) if only one endpoint is
visible, the mm-max array is tested to find the visible part of the line.

Drawing the x- or y-constant polylines tus consists of testing for the visibility of each line segment
and updating the mm-max array as necessary. Since a line segment will, in general, span several horizontal
pixel positions (see segment P_I P2 in Fig. 10-19), the computation of A(i) for these intermediate pixels is
found by using the slope of tile line segment or by using Bresenham's method described in Chap. 3.

The Wright Algorithm for Rendering Mathematical Surfaces

The drawing of the surface z = F(x, y) proceeds as follows.

I. To perform initialization, determine whether the viewpoint is closer to the x or they axis. Suppose
that it is closer to the x axis. We next locate the x-constant curve that is closest to the viewpoint at
x= 1.
(a) Initialize the mm-max array to some base value, say, zero.
(b) Start with the x-constant curve found above.

2. Repeat the following steps using the visibility test for drawing line segments and updating the
mm-max array each time a line segment is drawn:
(a) Draw the x-constant polyline.
(b) Draw those parts of each y-constant polyline that lie between the previously drawn x-

constant polyline and the next one to be drawn.
(c) Proceed, in the direction of increasing x. to the next x-constant polyline.

212	 HIDDEN SURFACES	 [CHAP 10

Solved Problems

10.1 Given points P(l, 2, 0), P2 (3, 6,20), and P3 (2,4, 6) and a viewpoint C(0, 0, —10), determine
which points obscure the others when viewed from C.

SOLUTION

The line joining the viewpoint C(0, 0, —10) and point P 1 (1, 2,0) is (App. 2)

x=t	 y=2t	 z=—l0+lot

To determine whether P2 (3, 6,20) lies on this line, we see that x = 3 when t = 3, and then at I = 3, x = 3,
y = 6, and z = 20. So "2 lies on the projection line through C and P1.

Next we determine which point is in front with respect to C. Now C occurs on the line at I = 0, P 1 occurs
at: = I, and P2 occurs at I = 3. Thus comapring I values, P 1 is in front of P with respect to C; that is, P1

obscures P2.

We now determine whether P3(2, 4, 6) is on the line. Now = 2 when = 2 and then = 4, and = 10.
Thus P3 (2, 4, 6) is not on this projection line and so it nether obscures nor is obscured by P 1 and P2.

10.2 Construct the perspective to parallel transform T which 'produces an object whose parallel
projection onto the xy plane yields the same image as the perspective projection of the original
object onto the normalized view plane z c/(4 + h) (Chap. 8, Prob. 8.6) with respect to the
origin as the center of projection.

SOLUTION

The perspective projection onto the plane z = c/(c + b) with respect to the origin is (Chap. 7, Prob.
7.4):

= (ZV 0 0 0

Per
0 z, 0 0
0 0 z,, 0
o 0 i 0

where z = c/(c' + b). The perspective projection onto the view plane of a point P(x, y, z) is the point

Define the perspective to parallel transform T,,, to be

z,, 0	 0	 0
0 z0	 0	 0

0 0 _L fL
l—z l—zj

00	 1	 0

(where z = zf is the location of the normalized front clipping plane; see Chap. 8, Prob. 8.6).
Now, applying the perspective to parallel transform 7,, to the point P(x, y, z), we produce the point

zo.y ZZf

Q/ (
Z ,Z 'z(l—zj)

The parallel projection of Q' onto the xy plane produces the point

o)

So Q' and F' produce the same projective image. Furthermore, 1',, transforms the normalized perspective view
volume bounded by x = z, x = —z, y = z, y = —z, z = z1 , and z = Ito the rectangular volume bounded by
x=z,x = —z,y=z,,y = —zr , z=0, and = 1.

CHAP. 101	 HIDDEN SURFACES
	

213

a,

10.3 Show that the normalized perspective to parallel transform NT preserves the relationships of the
original perspective transformation while transforming the normalized perspective view volume
into the unit cube.

SOLUTION

From Prob. 10.2, the perspective to parallel transform T transforms a point P(x,y, z) to a point

z,y Z - Zj

Z 'z(1-z1)

The image under parallel projection of this point Onto the .y plane is

o)

The factor z, can be set equal to I without changing the relation between points Q and Q'.
z.-z

The matrix that transforms P(x, y, z) to the point Q
(Z'

'.
a 41-zj) is then),

10	 0	 0

01	 0	 0

0 0 _..L —f

I-z1 1—z1

00	 1	 0

In addition, this matrix transforms the normalized perspective view volume to the rectangular view
volume bounded byx = l,x= -1,y= l,y = -1,2=0, and z= I.

We next translate this view volume so that the corner point (-1, -1,0) translates to the origin. The
translation matrix that does this is

fI 0 0 I
10 I 0 I

71I.0) I0 0 1 0
\0 o 0 1

The new region isa volume bounded byx0,x=2,y=0,Y2.Z=O, and Z'l.

Finally, we scale in the x and direction by a factor 1 so that the final view volume is the unit cube: x = 0,
x = 1, y = 0, y = 1, z = 0, and z = 1. The scaling matrix is

0 0 0
10	 0 0
o 0 I 0

\o 0 0 I

The final normalized perspective to parallel transform is

[0

	 0

0 '	 1	 01

	

2	 I

0 0 ._L	 t

	

T	
. I

-z 1-z1

00	 1	 0/

10.4 Why are hidden-surface algorithms needed?

SOLUTION

Hidden-surface algorithms are needed to determine which objects and surface will obscure those objects
and surfaces that are in back of them, thus rendering a more realistic image.

15-A

Display space

214
	

HIDDEN SURFACES 	 [CHAP. 10

10.5 What two steps are required to determine whether any given points P1 (x j , y ' z,) obscures another
Point P2(x2 ,y2 ,z2)? (See Fig. 10-1.)

SOLUTION

It must be determined (1) whether the two points lie on the same projection line and (2) if they do, which
point is in front of the other.

10.6 Why is it easier to locate hidden surfaces when parallel projection is used?

SOLUTION

There are no vanishing points in parallel projection. As a result, any point P(a, b, z) will line on the same
projector as any other point having the same x and coordinates (a, b). Thus only the z component must be
compared to determine which point is closest to the viewer.

10.7 How does the Z-buffer algorithm determine which surfaces are hidden?

SOLUTION

The Z-buffer algorithm sets up a two-dimensional array which is like the frame buffer, however the Z
buffer stores the depth value at each pixel rather than the color, which is stored in the frame buffer. By setting
the initial values of the Z buffer to some large number, usually the distance of back clipping plane, the
problem of determining which surfaces are closer is reduced to simply comparing the present depth values
stored in the Z buffer at pixel (x, y) with the newly calculated depth value at pixel (x, y). If this new value is
less than the present Z-buffer value (i.e.. closer along the line of sight), this value replaces the present value
and the pixel color is changed to the color of the new surface.

10.8 Using a 2 x 2 pixel display, show how the Z-buffer algorithm would determine the color of each
pixel for the given objects A and B in Fig. 10-20.

Pixel coordinates

Fig. 11-20

15-B

CHAP. 101	 HIDDEN SURFACES	 215

SOLUTION

The display space for the 2 x 2 pixel display is the region 0 x 2,0 y 2, and 0 z I. In Fig.
10-20, A is the line with display space coordinates A 1 (, 1, 0) and A 2(2, 2,0); line A is on the display screen in
front of square B. B is the square with display space coordinates B 1 (0,0,), B2 (2,0,), B3 (2,2,), and
B4(0, 2, 1p. The displayed image of A (after projection and scan conversion) would appear on a 2 x 2 pixel
display as

l[ya
0 Ia y

01

where a is the color of A and is the background color. We have used the fact (Chap. 3, Sec. 3.1) that a point
(x,y) scan-converts to the pixel [Floor(x), Floor(y)]. (We assume for consistency that 2 1.99....) The
displayed image of B is

lNb b

0b

01

where b is the color of B. We apply the Z-buffer algorithm to the picture composed of objects A and B as
follows:

1. Perform initialization. The Z buffer is set equal to the depth of the back clipping plane z = I, and the
frame buffer is initialized to a background color y.

y'Frame buffer	
ly l

=	 I
0	 y

01

1	 1	 1
Z buffer =

oil

01

2. Apply the algorithm to object A.

(a) The present Z-buffer value at pixel (0,0) is that of the back clipping plane, i.e., Z(O, 0) = 1. The
depth vapue of A at pixel (0, 0) is z = 0. Then Zbf(O, 0) is changed to 0 and pixel (0, 0) has the
color of A.

lyly'
Frame buffer I= I	 I	 I

0 IaIyl
01

11	 1

0 01
Z buffer =

01

(b) Object A is not seen from pixel (1, 0), so the Z-buffer value is unchanged.

1 May
Frame =0	 7,, =

I 10'E'
	01

	
01

(c) Object A is not seen from pixel (0, 1), so the Z-buffer value is unchanged.

	

Frame=
May
	I I I4 =
 11111

0 	 010111
	01 	 01

216	 HIDDEN SURFACES	 [CHAP. 10

(d) The depth value of A at pixel (1, 1) is 0. Since this is less than the present Z-buffer value of!, pixel
(1, 1) takes the color ofA.

1 y a
Frame =

00 y

0	 I

1

1 'NoZbf =0 0

0	 I

3. Apply the algorithm to B.

(a) The depth value for B at pixel (0, 0) is 1 , and Zbf(O, 0) = 0. So the color of pixel (0, 0) is
unchanged.

I

Pa

a
Frame =

0 	 y

01

1

M'0
ZbUf =

0

0!

(b) The depth value of B at pixel (1,0) is . The present Z-buffer value is 1. So the Z-buffer value is set
to 1 and pixel (1, 0) takes the color of B.

	

lIyIaI	 lI1
Frame =	 I	 I	 =

0jabJ	 0

	

01	 0!

(c) The depth value of B at pixel (0, I) is The present Z-buffer value is I, so the color at pixel (0, 1) is
set to that of B, and the Z buffer is updated.

	

lMba	 I	 0
Frame=

G 	00

	

01	 01

(d) The depth value of B at pixel (1, 1) is . The present Z-buffer value is 0. So the color at pixel (1, 1)
remains unchanged.

	

I Iblal	 III	 ol

	

_______	 12Frame=	 I	 I	 ZbUI=	 I	 I	 I

	

0 I ab I 	 010uu1I

	

0!	 01

The final form of the Z buffer indicates that line A lines in front of B.

10.9 What is the maximum number of objects that can be presented by using the Z-buffer algorithm?

SOLUTION

The total number of objects that can be handled by the Z-buffer algorithm is arbitrary because each object
is processed one at a time.

10.10 How does the basic scan-line method determine which surfaces are hidden?

SOLUTION

The basic scan-line method looks one at a time at each of the horizontal lines of pixels in the display area.
For example, at the horizontal pixel line y = a, the graphics data structure (consisting of all scan-converted
polygons) is searched to find all polygons with any horizontal (y) pixel values equal to a.

CHAP tO]	 HIDDEN SURFACES	 217

Next, the algorithm looks at each individual pixel in the a row. At pixel (a, /3), the depth values (z values)
of each polygon found above are compared to find the polygon having the smallest z value at this pixel. The
color of pixel (a, /3) is then set to the color of the corresponding polygon at this pixel.

10.11 Using the four pixel display and the graphics objects A and B from Prob. 10.8, show how the basic
scan-line method would display these objects.

SOLUTION

First we initialize the display to the color y of the back clipping plane (located at z I).

1 MFrsmebuffer=
0

01

1. Set y = 0. The scan-converted representations of A and B contain pixels on they = 0 scan line.
(a) Set x = 0. Comparing the z 'a1ues of A and B at pixel (0, 0), we find that the smaller z value is 0,

which belongs to A. Thus A is seen from pixel (0, 0); that is, pixel (0, 0) is set to the color of A.

1 Y y
0 [ay

01

(b) Set x = 1. Since A is not seen from pixel (1, 0) while B is seen, the color of pixel (1, 0) is set to that
of B.

I PEN03

01

2. Set y = I. The scan-converted representations of ,4 and B contain pixels on the y = I scan line.

(a) Set = 0. Because A is not seen at pixel (0,) while B is seen, pixel (0, 1) is set to the color of B.

lb Jb
03

01

(b) Setx= 1. BothA and Bare "seen" from pix. l(l, I). The depth ofA at pixel (l, l)is0, that ofB is
. Thus A is visible at pixel (1, I).

lb a

0 a b

01

This represents the final image displayed.

Scan llncy - a +

Scan Iiney -

mx + b

218
	 HIDDEN SURFACES 	 [CHAP. 10

10.12 How does edge coherence help to reduce computational effort?

SOLUTION

It is based on the assumption that, if an edge or line intersects a given scan line, it will most likely
intersect these scan lines next to it. Thus if the pixels that intersect the edge are to be found, instead of
intersecting each scan line with the edge, it is necessary to locate only one intersection pixel and then find the
others using the slope m of the edge (see Prob. 10.13).

10.13 Show how the calculation ot'the intersection of an edge with a scan line can be made incremental as
opposed to absolute.

SOLUTION

The absolute calculation requires that we find the x intersection value of the edge (e.g., with equation
y = mx + b) with the scan line y = n for each a.

The incremental solution to the problem is based on the following observations. Suppose that x, is the x
intersection of the edge with the scan line a. Then the intersection x, I of the edge with the next scan line
Y = a+ I can be found as illustrated in Fig. 10-21. From Fig. 10-21, where mis the slope of the edge,

- (a(+ I) - -
m-

Solving for	 we obtain

X.1 X+

Thus the calculation of the next intersection point is incremental; that is, it is found from the previous
intersection point by adding 1/rn to it.

I"
Fig. 10-21

10.14 How does area coherence reduce computational effort?

SOLUTION

Area coherence is based on the assumption that a small enough region of pixels will most likely lie within
a single polygon. This reduces, as in the subdivision algorithm, computational effort in dealing with all those
polygons that are potentially visible in a given screen area (region of pixels).

10.15 How is spatial coherence determined?

SOLUTION

Spatial coherence is determined by examining the extent of an object. The rectangular extent (bounding
box) of an object is determined by finding the minimum and maximum x, y, and z coordinate values of the

M MIA

CHAP. 101	 HIDDEN SURFACES	 219

points that belong to the object. The extent is the rectangular region bounded by the planes z = z, z = z,,.,
y = y,,,,, y = y,, x = x,.,,,,, and x =

10.16 Draw two polygons such that their extents intersect but the polygons themselves don't intersect.

SOLUTION

Figure 10-22 shows one possible solution.

B

Fig. 10-22

10.17 Apply the scan-line algorithm from Sec. 10.5,under "A Scan-line algorithm," to the display of
objects A and B in Prob. 10.8.	 -

SOLUTION

As in Prob. 10.8, a point (x,y) scan converts to the pixel [Floor(x), Floor(y)3. Also note that a
nonhorizontal line can be treated as a special polygon: a scanline enters into and exits from the polygon at
the same pixel position.

We first construct the eAge 	 (EL) and the polygon list (PL). From Fig. 10-20, the edge entries for the
nonhorizontal edges A 1 A 2 , B 1 B4 , and B2B3 are

Edge	 x	 y,	 -	 Polygon pointer
m

AA	 2	 1	 A

0	 0	 2	 0	 B

0	 2	 2	 0	 B
I

	Here, y,, is the edge's smaller y coordinate and x the corresponding x coordinate; y 	 is the larger y
coordinate, and m is the slope of the edge. Form the PL:

Polygon	 Equation	 IN/OUT flag	 Color

PL =
	 A	 x=y	 OUT	 a

(line)	 z=0

B	 zOUT	 b

220
	

HIDDEN SURFACES	 [CHAP. 10

The algorithm proceeds as follows.

1.	 Initialization.
(a) We initialize the screen display to the color y of the back clipping plane (located at z = I).

MYY

Frame buffer =o

01

(b) Set the scan line toy = 0.
II. y-scan loop. Activate edges that satisfy F1oor(y,) = 0 and sort on x

Edges	 x

FIB--4	 0

B2B3	 2

Ill. x-scan loop.

(a) Process edge	 First invert the appropriate IN/OUT flags in the PL:

Polygon	 Equation	 [N/OUT flag	 Color

A	 x=y	 OUT	 a
PL	 Z=0

B	 Z=1	 IN	 b

The number of active polygons is one. Thus B is visible at pixel (0, 0) and all pixels on scan
line y = 0 between edges B 1 B4 and A 1 A2 are set to the color of B. In our case, this is just the pixel
(0, 0).

I II
ob11

01

(a) Now we repeat step (a), processing edge	 We update the FL:

Polygon	 Equation	 IN/OUT flag	 Color

A	 x=y	 IN	 a
Z=0

B	 Z=1	 IN	 b

PL =

The number of active polygons is 2. At pixel (0, 0) the depth value (z value) of polygon A is 0 and of

CHAP 101	 HIDDEN SURFACES
	

221

polygon B is 1. Thus polygon A is visible at pixel (0, 0), so the color is set to a.

I MayO

01

Since A is line, set the EN/OUT flag of line A to OUT. The color of all pixels between edges A1A2

and Y2Y3 are determined by the remaining active polygon B.

Polygon	 ...	 IN/OUT flag

	

PL= A	 -	 OUT	 -

	

B	 -	 IN	 -

This means that we set the color of pixel (1,0) to b.

I

0

[Y^^Y

01

(a) Again, we repeat step (a), processing edge ff2B3 . We update the PL:

Polygon	 ...	 EN/OUT flag

PL	 A	 -	 OUT	 -

B	 -	 OUT	 -

The number of active polygons is 0.

(b) Having processed B2fl, the last active edge, we proceed:

(I) All thcy values are equal to 2. These values scan-convert (see Prob. 10.8) to 1. The present
y scan line value is 0. So no edges are removed.

(2) Incrementing x by 1/rn,

WI-A2 I

82B3 2

(3) Set y=l.

Now we repeat steps II and III.
U. "can loop. Withy = I, no additional edge is activated. The result of sorting active edges remains as

above.
III. x-scan loop.

222
	

HIDDEN SURFACES	 [CHAP. 10

(a) Process edge	 We update the PL:

	

Polygon	 ...	 IN/OUT flag

PL= A	 -	 OUT	 -

B	 -	 IN	 -

The number of active polygons is I. Thus B is visible at pixel (0, I) and all pixels between edge
and A 1 A 2 on scan line = I are set to the color of B.

lFb^Nb

0

01

(a) Now we repeat step (a), processing edge	 We update the PL:

Polygon	 ...	 IN/OUT flag

	

PL= A	 -	 IN	 -

	

B	 -	 IN	 -

There are two active polygons. A depth comparison at pixel (1, 1) shows that it is set to the color of
line A1A2.

lPh a

0 	 b

01

Since A is a line, we set the IN/OUT flag of A to OUT And we proceed immediately to the next
edge at the same pixel location.

(a) Again we repeat step (a), processing edge Y2B3 . We update the PL:

	

Polygon	 Equation	 IN/OUT flag	 Color

A	 xy	 OUT	 a
z=0

B Z=1	 OUT	 b

The number of active polygons becomes 0.
(b) Having processed the last active edge	 we remove those edges for which y equals the y

scan value of 1. Since this includes all the edges, i.e., y,,... = 2, the algorithm stops.

10.13 What is the underlying concept of the painter's or the priority algorithm?

PL =

CHAP. 101	 HIDDEN SURFACES
	

223

SOLUTION
The painter's algorithm sorts polygons by depth and then paints (scan-converts) each polygon onto the

screen starting with the most distance polygon.

10.19 What difficulties are encountered in implementing the painter's algorithm?

SOLUTION
First, there is the question of what the "depth" of a polygon is, especially if the polygon is tilted out of

the xy plane. Second, if two polygons have the same depth, which one should be painted first?

10.20 If polygon Q has the same depth value as polygon P, which polygon has priority, that is, which is

painted first?

SOLUTION

We perform tests 0, 1,2,3,4, 5 (from Sec. 10.4, under "Testing Whether P obscures Q") in order. If any

one of the tests is true, we say that polygon P does not obscure polygon Q, and so polygon P is painted first.
If none of the tests is true, we have an ambiguity that must be resolved.
We resolve the ambiguity by switching the roles of P and Q and the reapply tests 0, 1, 2, 3, 4, and 5. If

any one of these tests is true, Q does not obscure polygon P and so polygon Q is painted first.
If again none of the tests is true, polygon Q must be subdivided into two polygons Q and Q2, using the

plane containing polygon P as the dividing plane [Fig. 104(b)).

10.21 Apply the painter's algorithm to display objects A and B in Prob. 10.8.

SOLUTION

We first find the depth values z, for A and B. Since z, is the largest z value from all the polygon

vertices, then for A, z4 = 0, and for B, z8 = . Then sorting on z,,.,,, we see that polygon B has a higher

depth value than polygon A.
Next, we assign priorities by applying tests 0 through 5 in order (see Sec. 10.4). In test 0, the z extent of B

is z, = , z	 = J. The z extent of is z,,,,,, = 0, z, = 0.
Thus the z extents of A and B do not overlap and z4 is smaller than Z8. Thus test 0 is true, and so we

scan-convert polygon B first:

I Pbb]
Frame buffer =

0

01

Next, we scan-convert polygon A (i.e., we "paint" over polygon B):

lb a

0 a b

01

This is the final image displayed in the frame buffer.

1012 What are the basic concepts underlying the subdivision algorithm?

SOLUTION
First, is that a polygon is seen from within a given area of the display screen if the projection of that

polygon overlaps the given area. Second, of all polygons that overlap a given screen area, the one that is
visible in this area is the one in front of all the others. Third, if we cannot decide which polygonis visible (in

224
	

HIDDEN SURFACES	 [CHAP. 10

front of the others) from a given region, we subdivide the region into smaller regions until visbility decisions
can be made (even if we must subdivide down to the pixel level).

10.23 Apply the subdivision algorithm to the display of objects A and B from Prob. 10.8.

SOLUTION

1. Initialization. We initialize the area to the whole screen.
2. Forming the potentially visible polygon list. We create the PVPL, sorted on 	 the smallest of the z

values of the polygon in the area..

Polygon	 z	 Category

PVPL =	 A	 0	 Contained

	

B	 12 Surrounding

3. Visibility decision. We apply criteria (a) through (in Sec. 10.6, step 3. Since all four tests fail, we pass
to step 4 and subdivide the area into four subregions.
After subdivision, the four newly formed regions are, in our example, the individual pixels. We apply the

algorithm to each pixel in turn.
Region I: pixel (0, 0).

2. Forming the PVPL.

	Polygon	 Zmm	 Category

PVPL =	 A	 0	 Intersecting

B	 1 Surrounding2

3. Visibility decision. Applying tests (a) thrpough (c), we now apply test (d) since the region is pixel size.
The z coordinate of A at pixel (0, 0) is 0, and that of B is 1. Thus A is visible at pixel (0, 0):

Frame buffer =
0 Ma

01

Region 2: pixel (0, 1).
2. Forming the PVPL. Note that A is disjoint from this region:

I

	

PVPL=
Polygon	 Zmn	 Category I

I	 I	 I

B	
21	 Surrounding I

3. Visibility decision. From test (c), there is only one polygon and it is surrounding, so we color pixel (0, 1)

CHAR 101	 HIDDEN SURFACES	 225

that of B:

0 M. b
01

Region 3: pixel (0, 1).

2. Forming the PVPL. Since A is disjoint from this region, we have

	

Polygon	 z,,,1,	 Category I
PVPL=	

I

I
	 I

B	 1	 Surrounding

3. VIsibility decision. From test (c), there is only one polygon B and it is surrounding. So region 3 is colored
b:

lMb

0

01

Region 4: pixel (I, I).

2. Forming thePVPL.

Polygon	 Category

PVPL =	 A	 0	 Intersecting

	

B	 i	 Surrounding

3. Visibility decision. Having applied tests (a) through (c), we now apply test (d). The z coordinate of A at
pixel (1, 1) is less than that of B. Thus pixel (I, 1) is set to the color ofA:

l

0 a

01

This is the final image in the frame buffer.

10.24 How can we use the special structure of a convex polyhedron to ideitii, its hidden faces for a
general parallel or perspective projection?

SOLUTION

Suppose that on each face of the polyhedron there is an outward-pointing normal vector N, attached at a
point P of the face (Fig. 10-23). For each face of the polyhedron, let the line-of-sight vector L be the vector
pointing from the face to the viewer. For a parallel projection, this is the direction of projection from the object
to the projection plane. For a perspective projection, it is the vector MC from the normal vector attached at
point P to the viewpoint at point C (Fig. 10-23).

226	 HIDDEN SURFACES	 [CHAP. 10

Fig. 10-23

Fig. 10-24	 Fig. 10-25

CHAP. 101	 HIDDEN SURFACES	 227

A face is visible if the angle 0 made by the line-of-sight vector L and the normal vector N is less than 90g.
1tishiddenifthis angle islargerthanorequalto90°.lf0 0< 90, then 0 < cosO 1; if9O° 0 180,
then —1 _< cos 0 <0. Since (from App. 2)

Cos 0 = L.N

the face is visible if

L.N
<<1

ILIINI -

and hidden otherwise. To use this visibility test, we need to find the outward-pointing normal vectors for the
faces of the polyhedron. To do this, we label the faces of the polyhedron so that the polyhedron is oriented.
That is, any edge shared by adjacent faces is traversed in opposite directions with respect to the faces (Fig.
10-24). This guarantees that the normal vectors will point outward. To construct the outward normal vectors,
we label each polygon with a counterclockwise labeling (Fig. 10-25). Then a normal vector can be found by
taking the cross product of vectors determined by two adjacent sides of the polygon and attaching it at one of
the vertices (Fig. 10-25).

Supplementary Problems

10.25 How may the properties of parallel projection be used to simplify hidden-surface calculations for any form of
projection?

10.26 What happens when two polygons have the same z value and the Z-buffer algorithm is used?

10.27 How would the Z-buffer algorithm be altered to allow figures to be superimposed on a surface (see Prob.
10.26)?

lOiS Assuming that one allows 224 depth value levels to be used, how much memory would a 1024 x 768 pixel
display require to store the Z buffer?

10.29 How can the amount of computation required by the scan-line method be .educed?

10.30 How does scan-line coherence help to reduce computation?

10.31 What is the extent of the polygon whose vertices are A(0, 0, 1), B(2, 0, 1), and C(l, 2,2) (see Fig. 10-26)?

10.32 Why are only nonhorizontal lines stored in the edge list of the scan-line algorithm?

1033 How is the depth of a polygon determined by the painter's algorithm?

10.34 How does the subdivision algorithm exploit are coherence?

1035 How can hidden-surface algorithms be used to eliminate hidden lines as applied to polygonal mesh models
(Chap. 9)7

228	 HIDDEN SURFACES	 (CRAP. 10

Fig. 10-26

Color and Shading
Models

ohr is ii fundamental attribute of our viewing experience. The perception of color arises from light
energy entering our visual system and triggering a chain of not-yet-fully-understood neurological and
psychological responses. This complex process is relevant to computer graphics because a realistic image
is one that siems indistinguishable from a true record of the light energy coming from the real scene. It has
been a constant challenge to find effective and efficient computational models for constructing such
images.

In Sect. 11.1, we first outline the basic relationship between light (the physical stimulus) and the
pi'cpon o color. This leads to an international standard for the specification and measurement of colors,
iiiiI a better understanding of the widely used RGB color model. In Sect. 11.2, we use a well-known
ftinnula to m imic the effect of objects being lit by light sources (A more elaborate illumination model is
discussed in (hap. 12). In Sects. 11.3 and 11.4, we describe several useful techniques for shading polygon-
mesh objects and for depicting delicate surface details (surface texture).

11.1 LIGHT ND COLOR

Light, or visitbie light, is electromagnetic energy in the 400 to 700 tim, i.e., nanometer (10 -9 meter),
wavelength () range of the spectrum (see Fig. 11-1). A typical light has its energy distributed across the
visible hand and the proportions are described by a spectral energy distribution function P(A) (see Fig.
11-2). To model a light or reproduce a given light with physical precision one would need to duplicate
the exact energy distribution, which is commonly referred to as spectral reproduction.

On the othet hand, it has been shown through carefully designed psychophysical experiments that
discrepancy in sIectra1 distribution does not necessarily lead to difference in perception. Less stringent
approaches exist to reproduce light to the extent that the reproduction causes the same color sensation to an
average human observer as the original. These results make it possible to specify or describe light in ways
that ire more perceptually oriented and are easier to handle.

16-A	 229

X(nm)
700400

230	 COLOR AND SHADING MODELS 	 [CHAP. I I

X (nm)

AM radio

FM radio & TV
Microwave

3000 1 Infrared

700 ^ Visible light

30	 Ultraviolet

X-ray

Fig. 11-1

Energy
density

Fig. 11-2

Basic Characteristics of Light

Light can be characterized in three perceptual terms. The first one is brightness, which corresponds to
its physical property called luminance. Luminance measures the total energy in the light. It is proportional
to the area bounded by P() and the , axis in the 4:.0 to 700 nm range. The area can be calculated by

J

The higher the luminance the brighter the light to the observer.
The second perceptual term is hue, which distinguishes a white light from a red light or a green light.

For a light with an idealized spectral distribution as shown in Fig. 11-3, hue corresponds to another
physical property called the dominant wavelength of the distribution.

6- B

CHAP. 11]	 COLOR AND SHADING MODELS	 231

P(X)	 Dominant wavelength

Pure color

White
(nm)

400	 700

Fig. 11-3

The third perceptual term is Saturation, which describes the degree of vividness. For example, two red
lights may differ in luminance/brightness, and they may differ in degree of vividness (e.g., pure/saturated
red vs. pale/unsaturated red). Saturation corresponds to the physical property called excitation purity
which is defined to be the percentage of luminance that is allocated to the dominant or pure color
component (see Fig. 11-3). In other words, we have

saturation
pure color

=
pure color + white color

Although this simple scheme has its weaknesses (e.g., not all lights have an identifiable dominant
wavelength), it bridges the physical aspects of light and the perceptual classification of color in a
straightforward fashion.

The Trichromatic Generalization Theory

Let S be a given light or color stimulus. The effect of S (the color sensation of a human subject
observing S) can be matched by combining light from three primary sources in appropriate proportions:

S = r . red+g . green+b . blue

In other words, the given light and the proportional mix of the three primaries look the same to the
observer.

Note that the theory stands with any triple of primaries. Three light sources form a triple of primaries
as long as none of the three can be expressed as/matched by a linear combination of the other two. We use
red, green, and blue in the formula mainly because they are the standard choice in color-matching
experiments (with red = 700 run, green = 546.1 nm, and blue = 435.8 nm). Moreover, these three colors
roughly coincide with the wavelength values that cause peak response from the three types of color-
sensitive receptor cells in the retina, a membrane that lines the back of the eye's wall. These receptor cells
are called f3, c, and p cones, respectively. They are most sensitive to light in the wavelength range of
13:440-445 nm, 5: 535-545 run, and p: 575-580 nm. Another kind of receptor cells called rods are color-
blind but are very sensitive to low intensity light.

A critical aspect of this ti-i-stimulus approach is that, in order to match all visible colors, the weight
values sometimes have to be negative. For example, when red, green, and blue are used as primaries the
value of b, the weight of the blue component, may be negative. A negative b value means that the effect of
the given stimulus S cannot be matched normally through the additive process. But if is mixed with some

400	 500	 600

X (nm)

700

232	 COLOR AND SHADING MODELS 	 [CHAP. 11

blue light, then the effect of the mix can be matched by a linear combination of red and green (Intuitively,
we move the term b blue to the other side of the equation).

CIE XYZ Color Model

Looking for a good compromise between the simple and effective tn-stimulus method and the fact that
no naturally occurring primaries can be used to match all visible colors, the International Commission on
Illumination (Commission Internationale de I'Eclairage, or CIE) defined three imaginary (non-realizable)
primaries, vis., X, 1', and Z, in 1931. They were the result of an affine transformation applied to three real
primaries to ensure that every single-wavelength light or spectral color can be expressed as a linear
combination of the CIE primaries without any negative weight.

The relative amounts of X, Y, and Z that are needed to describe each spectral color are shown in Fig.
114 in the form of three color-matching functions x(A), y), and z(A). In order to match a color light of
wavelength A, the proper proportion is found by the line A = A.., intersecting the curves representing the
three functions. In addition, matches the luminous efficiency of the human eye and corresponds to the
eye's response to light of constant luminance.

Fig. 11-4

To describe an arbitrary light S with spectral distribution P(A), we "add together" the respective
amounts of the CIE primaries that are necessary to match all the spectral components of S. This is done
with	 -

X = k P(A)x(A) dA,	 Y = k
J

P(A)y(A) d).,	 Z = k
JA

P(A)z(A)d)

where k is a light-source-dependent constant. The resultant X, Y (which carries luminance information due
to the way y(1) is defined), and Z are Used as weights to express S as follows:

S =X . X+ Y . Y+Z.Z

CIE Chromaticity Diagram

Now we define x, y, and z by normalizing the above weights against X + Y + Z:

x - Y	 z-
x=xYz, yx+Y+z, z_x+Y+z

Clearly x + y + z = 1, and we have z = I - x - y. The two variables x and represent colors by grouping
them into sets, each of which has members that differ only in luminance.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 11-5

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

CHAR 11]	 COLOR AND SHADING MODELS 	 233

Using x and y as the horizontal and vertical axes we can plot the well-known CE Chromaticity
Diagram (see Fig. 11-5). The curved triangular figure encompasses all perceivable colors by ignoring
luminance. Only when two colors differ in chromaticity (hue and/or saturation) are they represented by
two different points in the diagram (i.e., they have different chromaticity coordinates).

To convert from chromaticity coordinates (x, y) back to a specific color in the XYZ color space we need
an additional piece of information, typically Y:

Y= Y,	 Z=1Y
Y	 y

We can find all spectral colors along the figure's upper border. Point C (0.310,0.316) is known as
Illuminant C. It corresponds to a reference white that is obtained from a spectral distribution close to
daylight

The CE chromaticity diagram serves as a universal reference for the specification and comparison of
visible colors. The phosphors of a typical color monitor have the following chromaticity coordinates: R
(0.62,0.34), G (0.29, 0.59), and B (0.15,0.06). These cooinates define a triangular region within the
diagram. The region is referred to as the color gamut of the monitor, which represents (the chromaticity
range of) all the colors this monitor is able to display.

Color Gamut Mapping

Let (x,, y,), (xg , yg), and (xb,yb) be the chromaticity coordinates of the phosphors of an RGB color
monitor. What are the .XYZ coordinates of its co l-!.? We first introduce auxiliary variables
C,=X,+Y.+Z,, Cg =Xg +Y+Zg, and C6Xb +Yb +Zb, where (X,,Y,,Z,), (Xg.Yg .Zg), and
(Xb , Yb, Zb) denote the respective XYZ coordinates of the red, green, and blue colors the monitor can
display. We have

X =x,C,.	 1',. =y,.C,,	 Zr =z.C,.	 where z, = I —x,. —y,

Xg = X C,	 Y. = YgCg,	 Zg = zC	 where 1g 1 - Xg - Yg
Xb X6C6,	 Yb = Y6C6,	 Zb = Z6 C6	 where Zb = 1 - xb -

234	 COLOR AND SHADING MODELS 	 [CHAR I I

Thus the Xii coordinates of a composite RGB color can be expressed in terms of a transformation M:

fx\	 (R\ (XrCr Xg C5 xbCb\fR\ (x,. x9 Xb\IC, 0 o\(R)

I ' I =M t G = y,C,. Yg 2g YbC'b fl G = I Yr Yg Yb fl 0 C5 0	 G
\ZJ	 \B/	 \Z,.C,. Zg C5 zb Cb l \BJ \z,. Zg ZbJ \ 0 0 CJ B

There are two different ways to determine Cr, Cg , and Gb . One is to use a photometer to measure the
luminance levels Yr, Y5 , and Yb of the red, green, and blue colors at their maximum intensity/brightness,
respectively. Then

Cr = 1',/Yr,	 C5 = '5/Y5 ,	 Cb = 'b/Yb

The other is to find/measure the XYZ coordinates (X, Y,, Z,,.) of the monitor's white color
(R = G = B = 1). Using these we have

fX,,,, \	 (Xr X Xb f C,.

I	 I = Y Yg Yb	 C5

\Z,,,J	 Z, Zg Zb) \Cb

We can now solve for C,., C5 , and Cb.
If M1 is the transformation for monitor I and M2 is the transformation for monitor 2, then a color

(R 1 , G 1 , B) on monitor 1 can be matched by a corresponding color (R2 , G2 , B2) on monitor 2:

/R2\
G =MM I G1

\B2)

provided that (R2 , G2 , B2) is within the color gamut of monitor 2.

The NTSC YIQ Color Model

The NTSC (National Television System Committee) YIQ color model is used for commercial
television broadcasting in the US. It is defined to be a linear transformation of the RGB color model,
with the Y component purposely made to be the same as the Y in the CIE Xii color model. Since Y carries
luminance information, black-and-white television sets can use it to display color images as gray-scale
pictures. The mapping between RGB and YIQ is as follows:

fY\	 /0.299	 0.587	 0.1l4\ fR
I = 0.596 —0.275 —0.321 I G

\Q)	 \0.212 —0.523	 0.311) B

The quantities in the transformation matrix are obtained using the standard NTSC RGB phosphors whose
chromaticity coordinates are R (0.67,0.33), G (0.21,0.71), and B (0.14,0.08). It is also assumed that the
white point is at x = 0.3 1, y,,. = 0.316, and Y. = 1.0.

11.2 THE PHONG MODEL

This is a widely used and highly effective way to mimic the reflection of light from object surfaces to
the viewer's eye. It is considered an empirical approach because, although it is consistent with some basic
principles of physics, it is largely based on our observation of the phenomenon. It is also referred to as a
local illumination model because its main focus is on the direct impact of the light coming from the light
Source. On the other hand, a global illumination model attempts to include such secondary effects as light
going through transparent/translucent material and light bouncing from one object surface to another.

Now consider a point light source [see Fig. 11-6(a)], which is an idealized light with all its energy
coming out from a single point in space (a reasonable approximation to a bulb). Our eye is at the viewpoint

CHAR II]	 COLOR AND SHADING MODELS 	 235

Light source	 View point

(a)	 (b)

Fig. 11-6

looking at point Q on the surface of an object. What should be the color of Q? In other words, what should
be the color of the light reflected into our eye from Q (in the direction of vector V)?

There are two extreme cases of light reflection. The first is called d/Juse reflection. In this case light
energy from the light source (in the direction of —L) gets reflected/bounced off equally in all directions
(see the small arrows forming a half-circle/hemisphere). We also want the energy level of the reflection to
be a function of the incident angle 8 (between L and surface normal N). The smaller the angle, the higher
the reflection (kind of like bouncing a ball off a wall). The mathematical tool we use to achieve these is to
have the reflection proportional to cos(0).

The second case is called specular reflection. It attempts to capture the characteristic of a shiny or
mirror-like surface. Were the surface in Fig. 11-6(a) a perfect mirror, energy from the light source would be
reflected in exactly one direction (the direction of vector R). Since a perect mirror is nonexistent we want
to distribute reflected energy across a small cone-shaped space centered around R, with the reflection being
the strongest along the direction of R (i.e., (p = 0) and decreasing quickly as q' increases [see the bell-
shaped curve in Fig. 11-6(b)]. The mathematical means for modeling this effect is cos), where the
parameter k provides for a convenient way to vary the degree of shininess (k = 1 for a dull surface and
k = 100 for a mirror-like surface). For a given scene we can find out the amount of specular reflection in
the direction of V using the actual angle tp between R and V.

Furthermore, the complex inter-object reflection needs to be accounted for in some way because many
surfaces we see are not lit directly by the light source. They cTe lit by light that is bouncing around the
environment. For this we introduce a directionless ambient light, which illuminates all surfaces in the scene
and gets reflected uniformly in all directions by each surface.

Thus in the Phong model, object surfaces are thought to produce a combination of ambient-light
reflection and light-source-dependent diffuse/specular reflection. Mathematically we can state the total
reflected energy intensity I as

I = 4k + I(kd cos(8) + Ic cosk(q))

where 4 is the intensity of the ambient light; ! is the intensity of the point light; and 0 ka, kd, Ic1 < 1.0
are reflection coefficients that represent the surface's ability to reflect ambient light, to produce diffuse
reflection, and to produce specular reflection, respectively (e.g., Ic = 0.2 means 20% reflection of 4).

If L. N, R, and V are all unit vectors, then L . N = cos(0) and R . V = cos(q). We can write the
formula as

I =4k+Ip(kdL.N+k$(R.V)k)

236	 COLOR AND SHADING MODELS	 [CHAP. II

Note that the term L . N is used in computing R (see Prob. 11.10). When there are two or more light
sources in the scene, their effects are cumulative:

I = lk +	 1,, ' (k,, L . N + k(R, . V)k)

These formulas are typically used along with the RGB color model. Thus light intensity is in the form.
of an RGB color vector, e.g., I = (It, 1g' 'h) Reflection coefficients are also three-dimensional vectors. For
example, lc = (0.7, 0.7, 0.3) defines a surface that looks yellowish when illuminated with white light. The
ambient reflection coefficient ka can simply be the same as k. The three components of k are often made
equal since the color of the reflection of a light source is typically the same as the color of the light source
itself. When the light is white, the formula for a single point source becomes

I = Ik,, + JP (kdL . N + k, (R . V)k)
= Ik + IP (kdL . N +k(R . V)")

lb = jakab + lp(kdhL . N + k,(R . V)k)

Figure 11-7 shows a gray scale image with 16 views of a sphere shaded using the Phong formula. The
four rows from top to bottom are calculated using kd /k = 0.510.1, 0.5/0.3, 0.510.5, and 0.5/0.7,
respectively. The four columns from left to right represent k 3, 5, 20, and 100, respectively.

Fig. 11-7

11.3 INTERPOLATIVE SHADING METHODS

Computing surface color using an illumination model such as the Phong formula at every point of
interest can be very expensive. It is even unnecessary when the image is used to preview the scene, To

CHAP II]	 COLOR AND SHADING MODELS	 237

circumvent this problem, we apply the formula at full scale only at selected surface points. We then rely on
such techniques as color interpolation and surface-normal interpolation to shade other surface points.

Constant Shading

The least time-consuming approach is not to perform calculation for additional surface points at all.
The color values of those selected surface points are used to shade the entire surface.

For example, a cylindrical object may be modeled by a polygon mesh as shown in Fig. 11-8(a). We can
evaluate the Phong formula using the geometric center of each polygon and set the resultant color to every
pixel that belongs to the corresponding polygon [see Fig. 11-8(b)].

(a)	 (h)

Fig. 11-8

Constanf shading can produce good results for dull polyhedrons lit by light sources that are relatively
far away (hence the diffuse component varies little within each polygonal face). The primary weakness of
this method is that false contours appear between adjacent polygons that approximate a curved surface [see
the cylindrical object in Fig. 11-8(b)]. In addition, the specular reflection of the light source (often referred
to as the specular highlight) tends to get lost. On the other hand, if a selected surface point happens to be at
the location of the strongest specular reflection of the light source, then the color of the corresponding
polygon will be, for the most part, significantly distorted.

Gouraud Shading

In this approach we evaluate the illumination formula at the vertices of the polygon mesh. We then
interpolate the resultant color values to get a gradual shading within each polygon.

For example, we use bilinear interpolation to find the color of point P inside a triangle whose vertices
are P 1 , P2 , and P3 (see Fig. 11-9). The scan line containing P intersects the two edges at points P and P".
We interpolate the color of P 1 and the color of P2 to get the color of P. We then interpolate the color of P2
and the color of P3 to get the color of?". Finally, we interpolate the color of P and the color of?" to get
the color of (see Prob. 11.15).

When polygons are used to approximate a curved surface, there are two ways to determine the normal
vectors at the vertices in order to get a smooth-looking transition between adjacent polygons. The first is to
use the underlying curved surface to find the true surface normal at each vertex location. For example, the
vertices of the polygon mesh in Fig. 11-8(a) are on the surface of an underlying cylinder. The normal
vector at a point on the cylinder is perpendicular to the axis of the cylinder and points from the axis to the
point [see Fig. 11-10(a)].

On the other hand, it may sometimes be difficult to find normal vectors from the underlying surface, or
the polygon mesh may not come from any underlying surface. A second approach to deciding nonnal
vectors at the vertices is to average the normal vectors of adjacent polygons. For example, to determine

Fig. 11-11

F',

238	 COLOR AND SHADING MODELS	 (CHAP. II

P,

PAP I'

(b)

Fig. 11-9
	

Fig. 11-10

normal vector N at vertex P in Fig. Ii - I 0(b), we use the average of the normal vectors of the polygons that
meet at P:	 -

N = N 1 + N2 + N 3 + N4

where N is then normalized by dividing it by INI.
Common normal vectors at the vertices of a polygon mesh that approximates a curved surface result in

color values that are shared by adjacent polygons, eliminating abrupt changes in shading characteristics
across polygon edges. Even when the polygon mesh is relatively coarse, Gouraud shading is very effective
in suppressing false contours. However, a much finer mesh is needed in order to show reasonably good
specular reflection.

Phong Shading

Instead of color values, we may also interpolate normal vectors. For example, to find the normal vector
N at point Pin a triangle (see Fig. Il - Il). we first interpolate N 1 and N2 to get N', then interpolate N 2 and
N 3 to get N", finally interpolate N' and N" to get N.

CHAP. II]	 COLOR AND SHADING MODELS	 239

This technique is relatively time-consuming since the illumination model is evaluated at every point of
interest using the interpolated normal vectors. However, it is very effective in dealing with specular
highlights.

11.4 TEXTURE
While gradual shading based on illumination is an important step towards achieving photo-realism,

most real-life objects have regular or irregular surface features (e.g., wood grain). These surface details are
collectively referred to as surface texture, in this section we present three approaches to adding surface
texture: projected texture, texture mapping, and solid texture.

Projected Texture

Imagine putting a plain object between a slide projector and the projection screen. The surfaces of the
object that face the projector will be covered by the projected image. If the image depicts wood grain then
the affected surfaces will have the intricate wood texture superimposed onto its original shading.

In computer graphics, projecting texture onto an object is effectively the inverse of projecting an object
onto the view plane (compare Fig. 7-1 and Fig. 11-12) . We now refer to the view plane as the reference
plane, which contains a two-dimensional texture definition called the texture map. The projection line that
associates point P with its image P allows the shading of P to be determined or influenced by information
in the texture map at location P.

Objcct surface

Fig. 11-12

The texture map is often a synthesized or scanned image, in which case it contains color attributes.
There are several ways for the color attributes of!" to be used to shade point P First, we may simply assign
these attributes to P. replacing whatever color attributes P currently has. The net effect of this approach is
to paint the color of the texture onto the object. Second, we may interpolate between the color C of P and
the original color C of using (1 - k)C + IcC' where 0 k 1.0 to come up with a new color for P The
result of this calculation makes the texture appear blended into the original shading. Third, we may use a
logical operation involving C and C to compute a new color for P For example, when the AND Operation
is used, a texture area with magenta shades will appear unaltered if the original color is white, but it will
take on red shades if the original is yellow.

Projected texture is an effective tool when target surfaces are relatively flat and facing the reference
plane. On the other hand, "hidden surfaces" are not affected, and features of the texture are distorted by the
curvature of the surface.

240	 COLOR AND SHADING MODELS 	 [CHAP. II

Texture Mapping

Now imagine the texture map being a thin and flexible sheet made of elastic material. When we wrap it
around the surface of an object we can stretch or shrink it so as to follow the shape of the object.

This approach is referred to as texture mapping. We describe the texture map in a two-dimensional
space called the texture space with coordinates (u, w), and we represent the surface of an object in
parametric form using (0, (p). The mapping from the texture space to the object space is then defined by

0 =f(u, w)	 = g(u, w)
and the inverse mapping by

u=r(0,Q)	 w—_s(0,p)

Although not necessary, these mapping functions are generally assumed to be linear (so the texture map
stretches and shrinks proportionally). Thus we can write

0=Au+B p=Cw+D

where the constants A, B, C, and D are obtained from the relationship between known points in the two
spaces (e.g., corners of the texture map and the corresponding surface points).

As mentioned early, the texture map often contains color attributes that can be used in different ways to
alter the original shading. In addition, its role may be extended to provide other kind of information that
affects the outcome of the shading process. For example, a technique called bump mapping uses the
quantities in the texture map to displace or perturb the normal vectors of the surface to produce an
appearance of roughness (see Fig. 11-13 for a one-dimensional illustration of the effect).

Smooth-looking	 A bump map to	 Rough-looking
surface	 perturb the	 surface

magnitude and
direction of the
surface normals

Fig. 11-13

In comparison with projected texture, the method of texture mapping can Ifetter adapt to a curved
surface. However, complex shapes deter the derivation of mapping functions. Furthennore, both methods
are particularly weak when features of the texture on one surface should "match" those on others. Consider
a wood cube, for instance: the wood grain on one side should exhibit continuity and consistency with the
wood grain on all adjacent sides. As we turn the wood cube into a'sculpture, the complexity of this texture-
matching problem simply multiplies.

Solid Texture

The weaknesses of projected texture and texture mapping largely stem from the inherent mismatch
between a two-dimensional texture map and a three-dimensional surface. In this approach we define texture
using a three-dimensional texture space. The texture definition, referred to as solid texture, is a three-
dimensional representation of the internal structure of some nonhomogeneous material such as wood,
marble, etc.

When rendering an object made of a specific material, we use transformations to place the object into
the coordinate system where the texture for the material is defined. In other words, we map a surface point
P(x,y, z) to its coordinates (u, v, w) in the texture space. Information associated with this location is then
used to control the shading of P This makes the object look as if it were carved out of a solid piece of the
chosen material.

'4

CHAP. ii]	 COLOR AND SHADING MODELS	 241

('i)	 (b)	 (',)

Fig. 11-14

Solid texture is often defined procedurally. The following is an example that shows the development of
a model for wood grain. We begin by representing the most prominent feature of the material with a series
of concentric cylinders in the texture space [see Fig. 11-14(a)]). When an object such as the parallelepiped
in Fig. 11-14(b) is placed into the texture field, the object intersects the cylinders, leaving intersection
contours on its surfaces. The contours we get by aligning the object coordinate axes with the texture
coordinate axes are shown in Fig. 11-14(c). We now rotate the front end of the parallelepiped slightly to the
left about the v axis, and slightly up about the u axis. The result is our first approximation to wood grain
(see Fig. 11-15).

Fig. 11-15

We can see that the contours on different sides are consistent with the underlying three-dimensional
structure, but they are just too smooth and too perfect to look real, in order to incorporate some asymmetry
and irregularity we need to bring two updates to the model. The first is to add ripples or sinusoidal
perturbations to the cylinders so the intersection contours will have some minor and natural-looking
oscillations. The second is to turn or twist the ripples slowly along the w axis to give the contours a skewed
appearance. An implementation of the improved cylinder model is shown in the following pseudo-code
procedure:

woodGrain(pt, kd)

float radius, angle;
radius sqrt(pt[u]2 + Pt[V]2);
angle (pt[u] == 0)? 7r/2 : arctan(pt[v}/pI[u]);
radius = radius ± m*sin(f*angle + rp1[wI);

242	 COLOR AND SHADING MODELS	 CHAP. I I

if ((int)radius % p <ci)
set the components of lcd to produce a dark shade;

else
set the components of lcd to produce a light shade;

where array parameter pt represents the coordinates of surface point P in the texture space, and array
parameter lcd is used to return the proper reflection coefficients for shading point P

The first instruction in woodGrain is to determine the radius of the cylinder that intersects P The next
instruction sets the base parameter value for the sine function that delivers the ripple effects. The
magnitude of the perturbation is controlled by ,n, the frequency or number of ripples in a full circle is
controlled byf, and the rate at which the ripples rotate along the w axis is controlled by r. Finally, we treat
wood grain as alternating bands of dark and light cylinders of period p. Within a period the two bands are
separated by threshold d. Although only two shades are shown in the procedure, the value of lcd should be
made to vary based on the relative position of P within each band to produce better results (sec Fig. 11-16
for a ray-traced sphere).

Fig. 11-16

Solved Problems

11.1 Assuming that the medium of interest is air (or a vacuum) express the visible band of the spectrum
in terms of a frequency range.

SOLUTION

Since frequency=speed of light/ wavelength, and speed of light3.0 x 10 8 m/s, we obtain the
frequency range (3.0 x 10)/(700 x 10) to (3.0 x 10g)/(400 x 10) lIz or 4.3 x 1014 to 7.5 x 1014liz.

11.2 Name the three perceptual terms for describing color and the corresponding physical properties of
light.

CHAP. I 1) 	 COLOR AND SHADING MODELS 	 243

SOLUTION

Brightness/luminance, hue/dominant wavelength, saturation/excitation purity.

11.3 Derive a simple formula to calculate the area bounded by the distribution function P(..) in Fig. 11-3.

Let Wand Hbe the width and height of the rectangular area that corresponds to white, and D and P be the
width and height of the rectangular area that corresponds to pure color. The area bounded by P(1) is
W x H + D x P.

11.4 Name the two kinds of receptor cells in the retina and describe their basic function.
SOLUTION

They are cones for seeing colors, and rods for perceiving low intensity light.

11.5 Why did we say that red, green, and blue only roughly coincide with the wavelength values that
cause peak response from the three types of color-sensitive cones?
SOLUTION

The three colors have the following typical wavelength: ftd=lOOnm, green=546.lnm, and
blue= 435.8 nm. Although blue and green closely match the sensitive range of two types of cones,

440-445nm and 5: 535-545 run, the sensitive range of the third type, p : 575-5SOTun, is actually
yellow, not red.

11.6 Do we have to use Yin order to convert from chromaticity coordinates (x, y) back to a specific color
in the XYZ color space?
SOLUTION

No. If we know X, we can use

x=x,	 y=x,	 z='"x

11.7 Presume that a monitor produces what is called the standard white D 65 with x, = 0,313,
= 0.329, and Y = 1.0 when R = G = B = I, and the chromaticit coordinates of its phosphors

are as given in Sec. 11. I. Find the color transformation matrix M for the monitor.
SOLUTION

Since Y,.,= 1.0, we have
X,=x,,/y,,, =0.951	 and	 Z,, =(1 —x,,, —y,)/y, = 1.088

Use these and the chromaticity coordinates of the phosphors

(1.08

80.95l\ 	 /0.62 0.29 0.l5\ IC,
1.0	 I = I 0.34 0.59 0.06 II Cg

) \0.04 0.12 0.79) \Cb

Solve and get C, = 0.705, Cg = 1.170, and Cb = 1.164. Now

fx,C, XgCg xbCb \	 (0.437 0.339 0.175
M =	

C, Yg'
2g YbCt. I = 0.240 0.690 0.070

\z,	 ZgCg ZbCb)	 0.028 0.140 0.920

244	 COLOR AND SHADING MODELS	 [CHAP Ii

11.8 Verify the fact that the Yin the CIE .XYZ color model is the same as the Yin the NTSC YIQ color
model.

SOLUTION

Find the transformation to XYZ for the standard NTSC RGB display (see Sec. 11.1). Since
x = 0.3I,y = 0.316, and Y. = 1.0, we have

	

X,.=x,/y,=0.981	 and	 Z,,,_—(1—x—y)/y,,,_—t.1S4

Use these and the chromaticity coordinates of the standard NTSC phosphors

	

f0.981\	 /0.67 0.21 0.l4\ (C,
1.0	 I = I 0.33 0.71 0.08 I I Cg

	\1.184)	 0.0 0.08 0.78) \Cb

Solve and get C, = 0.906, C = 0.826, and Cb = 1.432. Now

fx,C, x5C5 XbCb\	 (0.607 0.173 0.200
M=	 ygCg YbCb I = 1 0.299 0.587 0.114

\z,C, z5 C5 ZbCbJ	 \0.0	 0.066 1.117

Since the middle row of M is the same as the top row of the matrix for mapping from RGB to YJQ, we can see
that the Yin Cm X}7 is the same as the Yin NTSC YIQ.

11.9 What is the difference between a local illumination model and a global illumination model?

I.1k'rgr•11
A local illumination model focuses on the direct impact of the light coming from the light source. On the

other hand, a global illumination model attempts to include such secondary effects as light going through
transparent/translucent material and light bouncing from one object surface to another.

11.10 Refer to Fig. 11-6 in Sec. 11.2. Find a formula to compute R, the reflection of vector L with respect
to normal vector N.

SOLUTION

Introducing auxiliary vectors e and m (see Fig. 11-17), we can write

R = m - e

	

e	 -e

Fig. 11-17

Since L = e + m, we have e = L - m and

R = m - (L - in) = 2m - L

Note that mis simply the perpendicular projection of L onto N (see Prob. A2.16) and N is a unit vector, hence

m = (L . N)N

CHAP. II]	 COLOR AND SHADING MODELS	 245

Finally we have

R = 2(L . N)N - L

11.11 The term R . V in the Phong formula is sometimes replaced by N H, where H is a unit vector that
bisects the angle between L and V. Show that R V 0 N H.

SOLUTION

Let L, N, and V be coplanar. Since L, N, and R must be coplanar from the laws of optics, and L, V, and
H, the bisector of the angle between L and V, must also be coplanar, all the vectors are coplanar (see Fig.
11-18). From the angles shown on the left half of the drawing we have

fl=O+a

Fig. Il-IS

From the angles shown on the right half of the drawing we have

r+fJ=O+çp
Combining the two expressions we get

= 2a

Unless q = a = 0, we have q, 56 a and cos((p) 36 costa). Since R . V = cos((p) and N - H = cos(a), we have

R - V 36 N . 11

11.12 The color of an object is largely determined by its diffuse reflection coefficient. If ka = (0.8, 0.4, 0)
and the light is blue, what is the color of the object?

SOLUTION

Black, since the object does not reflect blue light and there is no red and green light for it to reflect.

11.13 Refer to Prob. 11.12. What if we use magenta light?

SOLUTION

Red, since the object only reflects the red component of the magenta light.

11.14 When a light source is relatively far away from a polyhedron, the diffuse reflection determined by
the Phong formula varies little within each polygonal face. Why?

SOLUTION

All points on a polygonal face share the same normal vector N. When the light is relatively far away.
vector L (see Fig. 11-6) varies little from one surface point to another. (If the light is very distant, say, the sun.

17-A

246	 COLOR AND SHADING MODELS 	 [CHAP. II

then L becomes a constant vector.) Hence L . N, the term that determines the diffuse component in the Phong
formula varies little within each polygonal face.

11.15 Refer to Fig. 11-9, and show exactly how to compute the color of P using bilinear interpolation.

SOLUTION

Let the coordinates of P,P 1 ,P2 ,P3 ,P, and 1'" be (x,y),(x1, YO, (x2,y2),(x3,y3),(x'.y'), and
respectively. Also let the color/intensity values at those points be I, J, 12 , 13 , 1', and I", and respectively. We
have

	

11Y2Y'+1)'Yl	 JJY"Y3+JY2/'
Y2 -Y1	 Y2 -Y1	 Y2 - Y3	 Y2 —Y3

and

x" — x	 x—x'
;;-:-:;

For RGB colors, these formulas are applied to the values of each color component.

11.16 Suppose point P1 with intensity I is on scan 1iney, and point P2 with intensity 12 is on scan liney2.
Find an incremental formula to compute intensity values I' for all the scan lines between P 1 and P2

using linear interpolation in the y direction.

SOLUTION

Let P1 be the starting point, then the intensity change from one scan line to the next is

Al = (1 - 'I)/(y - Yi)

Hence

ij=i	 and 1=1_ 1 +M	 where i=2.... . Y2-YI

11.17 Refer to Prob. 11.16. If point P 1 on line 5 has an RGB color (1, 0.5, 0) and point P2 on line 15 has
an RGB color (0.2, 0.5, 0.6), what is the color for line 8?

SOLUTION

Since

AR = (0.2— 1)/(15 —5) = —0.08
AG = (0.5— 0.5)1(15 —5) = 0
AR = (0.6 - 0)1(15-5) = 0.06

we have (I + 3 x (-0.08), 0.5 + 3 x 0,0 + 3 x 0.06) = (0.76, 0.5, 0.18) as the color for line 8.

11.18 Refer to Fig. 11-10(a). The vertices are shared by the rectangles that approximate the cylinder and
the two polygons that represent the top and bottom of the object. Does each vertex have a unique
normal vector?

i.iui'iir.ii

No. When a vertex is used to describe the top or bottom face, its normal vector is the normal of the
corresponding face. When it is used to define the rectangle mesh, its normal vector is perpendicular to the
cylinder as shown in the figure.

17-B

CHAP. 11]	 COLOR AND SHADING MODELS 	 247

11.19 Refer to Fig. 11-I1 and see Prob. 11.15. If the two normal vectors at P and 1-'" are

N' - -I +	 N" - - I +
2	 2	 2	 2

and point P is half way between P and P", what is N?
SOLUTION

Since P is in the middle of I" and F", the last formula in Prob. 11.15 for linear interpolation in the x
direction becomes

I' 1"

Use it to interpolate each component of N' and N":

('\ "J ' K— '
	 /2-
	 'I	 J	 K\ 4• 4) + 4

+4 - 2 + 4 +4

The magnitude of this vector is

+(
,J\2	

2 2 2

---) =++=--

Use it to normalize the interpolated vector and get

N = —çI+J+çK

11.20 Show that when averaging or interpolating normal vectors we will get incorrect result if the vectors
are not unit vectors (or vectors of equal magnitude).

SOLUTION

Consider N 1 = I and N 2 = J: the average of the two is I + J, which bisects the 900 angle between I and
J. We can normalize it to get

—//N— 2 1+
2

Now if we set N2 = 2J, which has the same direction as J, the average of N 1 and N2 becomes I + 2J.
Clearly, the direction of this vector differs from that of N.

As for interpolation we can see from Prob. 11.19 that to compute a vector for the point halfway
between two given points we apply

I' I"

to each vector component. For N 1 = I and N2 = J. this produces

which is, after normalization, the same as N above. But, if we use N 2 = 2J, the result of interpolation
becomes

I+J

which has the direction of! + 2.1, not the direction of N.

248	 COLOR AND SHADING MODELS 	 [CHAP. I I

11.21 Consider the texture-blending formula (1 - k)C + kC where 0 k 1.0, C is the original color of

the object, and C' is the color of the texture map. Describe in simple words the results that
correspond to the two extreme cases: k = 0 and k = I.

SOLUTION

The case k = 0 means no texture at all, whereas the case k = I means painting the texture over the
original shading of the object.

11.22 When we use the logical-operation AND to combine the original color of the object and the color of
the texture map, a texture area with magenta shades will appear unaltered if the original color is
white, but it will take on red shades if the original is yellow. Why?

SOLUTION

Various shades of magenta can be described by RGB color vectors in the form of(rn, 0, m) The result of
white (I, 1, 1)AND (m, 0, m) is (m, 0, m), whereas the result of yellow (I, 1,0) AND (m, 0, m) is (m, 0, 0),

which represents shades of red.

11.23 See Fig. 11-19, and find the linear functions that map the normalized image onto a square area of
50 x 50 in the middle of the front face of the cubic object.

I00

too

Fig. 11-19

SOLUTION

First find a parametric representation for the target area

x=O	 25075

y='p	 25q75
= 100

Note the relationship between the corner points

u=0, w=0—*0=25, ,=25
u= 1, w=0—"0=75, q,=25
u=0, w=1 —* 0=25, q'=75
u= 1, w=1—.0=75, Q=75

Substitute these into 0 = Au + B and 'p = Cw 1 .), we get

	

A = 50,	 B =	 25,	 C =50, and D =25

Hence the mapping functions are

	

0=50u+25	 and	 q=5Ow+2S

The inverse mapping functions are

	

0-25 and	 W
= 50

Fig. 11-20

x

CHAR I I]	 COLOR AND SHADING MODELS 	 249

11.24 See Fig. 11-20. Find the linear functions that map the normalized grid pattern onto the bottom
portion (it/4 q	 n/2) of the spherical surface in the first octant.

W

1.01

00	 1.0

SOLUTION

The parametric representation for the target area is

x = Rsin(9)sin()	 0< 9 7t/2

y=Rcos()
z = Rcos(8) sin q,)

Note the relationship between the corner points

u=O, w=0-.0=0, q= n/2
u=l, w=O–i0=i/2, ço=n/2
u=0, w=l–*9=0, Q= R/4
u=l, w=l–*.9=ir/2, 9 =n/4

Substitute these into 0= Au + B and q = Cw + D, we get

A = it/2,	 B = 0,	 C = –n/4, and D =

Hence the mapping functions are

and

The inverse mapping functions are

0
u=— and w_.

it/4

Supplementary Problems

11.25 Given the distribution function P(A) in Fig. 11-3, derive a tormula to calculate saturation.

11.26 Why everything looks gray or black in a dark room where we can barely see?

11.27 Can we use Z to convert from chromaticity coordinates (x, y) back to a specific color in the XYZ color space?

1118 What's the difference between the Yin CMYand the Yin Y!Q?

250	 COLOR AND SHADING MODELS 	 [CHAR II

11.29 Consider a sphere of radius R, centered at (x,, y., zr). What is the normal vector N at point (x, y, z) on the
sphere?

11.30 Find the linear functions that map a 1.0 x 2.0 texture map onto a cylindrical surface in the first octant (see Fig.
11-21) . The short sides of the texture map should align with the straight edges of the surface.

w

2.0

0''0	 1.0

Fig. 11-21

Ray Tracing

Ray tracing is a global illumination model that accounts for the transport of light energy beyond the
direct/local contribution from the light sources. Its operation is largely based on the principles of
geometric optics. By tracing the path of light rays it is able to integrate the tasks of shading, shadow
generation, hidden surface removal, projection, and scan conversion into one single computational process.

In this chapter we first introduce the fundamental concepts that underlie this elegant approach (Sect.
12.1). We then discuss the basic ray-tracing algorithm (Sect. 12.2), the parametric vector representation of
a Jay (Sect. 12.3), and the mathematics of ray–surface intersection (Sect. 12.4). We also present techniques
For improving execution efficiency (Sect. 12.5), anti-atiasing (Sect. 12.6), and achieving some desired
visual cflect (Sect. 12.7).

12.1 THE PINHOLE CAMERA

In theory one can take perfect pictures using a pinhole camera—a closed box with a tiny hole in the
center of the front panel (see Fig. 12-1). The hole is so small that only one light ray passing through it can
strike a partic t lar point on the negative, which is mounted on the inside of the back panel. As light rays
from across the scene expose the negative by hitting their respective target precisely, a sharp image
depicting the scene emerges.	 -

Negative

Image of object	

inhole	 Light trays

ltiiecct

Fig. 12-1 A pinhole camera.

Now we place a screen between the pinhole and the object (see Fig. 12-2), causing the light rays to
Intersect the screc n. If we can record each light ray as it intersects the screen, we will have a perfect picture
of the object on 11e screen. Or, to put this in terms of image synthesis, if the screen resolution is arbitrarily
high and we cart set the pixel at each intersection point to match the color of the corresponding light ray,
then the image will be indistinguishable from the real scene when viewed from the position of the pinhole.

251

')Wray

(Specularly) transmitted ray

(Specularly) reflected ray

252	 RAY TRACING	 [CHAP. 12

Pinhole

Screen	
bject

Fig. 12-2

12.2 A RECURSIVE RAY-TRACER

In order to construct an image based on the pinhole-camera model we need to determine the light rays
that are responsible for the pixels. We do so by following their path in the opposite direction, i.e., from the
viewpoint through the center of each pixel into the scene (see Fig. 12-3). These are called the primary rays.
If a primary ray does not intersect any object in the scene, then the corresponding pixel is simply set to
some background color.

Pnn-y my

Screen

Fig. 12-3 Ray tracing.

On the other hand, if a primary ray intersects an object, then the color of the corresponding pixel is
determined by the surface shading of the object at the intersection point. Several secondary rays are used to
compute-the three components of this surface shading. The first component is called the local contribution,
which refers to the direct contribution from the light source(s). We send a shadow ray or illumination ray
from the surface point to a light source. If the ray is blocked before reaching the light source, the surface
point is in shadow (relative to this light source). The second component is called the reflected contribution,
which refers to the reflection of light energy coming from another object surface (inter-object reflection).
This is determined by a (specularly) reflected ray, a ray that represents the reflection of the primary ray with
respect to normal vector N. The third component is called the transmitted contribution, which refers to the
transmission of light energy coming from behind the surface (transparent object). This is determined by a
(specularly) transmitted ray, a ray that represents the refraction of the primary ray with respect to N.

Note that, were the object surface a perfect mirror, the specularly reflected ray would represent the sole
direction of light reflected towards the viewpoint. Also, if the object were made of perfectly homogeneous
material, the specularly transmitted ray would represent the sole direction of light refracted towards the
viewpoint.

Snell's law determines the relationship between angles a and /3 (see Fig. 12-3):

sin() -
sin(fl) - '11

CHAR 121	 RAY TRACING	 253

where q, is the refraction index of the medium in which a is defined and 12 is the refraction index of the
medium in which /3 is defined. Although the refraction index of a medium is a function of temperature and
wavelength, we can often use such values as 1.0 for air, 1.3 for water, and 1.5 for glass.

Employing the Phong formula to describe the local contribution, we express the intensity I of the light
energy represented by the primary ray as

= 61(a + E 1p (kaL, . N + k5(R1 . V)k) + k'1' + k1

where the ambient term now represents the portion of inter-object reflection that is not accounted for by the
term kTIy, which describes the reflected contribution as the product of the reflection coefficient icr and the
intensity 4 of the reflected ray; the last term k1I describes the transmitted contribution as the product of the
transmission coefficient k and the intensity 4 of the transmitted ray. Both k, and Ac, are in the range of
[0, 1.0]. 4 and It are obtained recursively by treating the reflected ray and the transmitted ray as a primary
ray. In other words, we calculate 4 by evaluating the above equation at the closest surface the reflected ray
intersects, in exactly the same way as the primary ray is handled. A pseudo-code description of the basic
ray-tracing algorithm is as follows:

rayTrace{ray, depth, color)

determine closest intersection of ray with an object;
if (no intersection) color = background;
else

color = local contribution;
if (depth> 1) {

calculate reflected ray;
rayTrace(reflected ray, depth-I, ref_color);
calculate transmitted ray;
rayTrace(transmitted ray, depth-I, trans_color);
color = color + k ref—color + Ic, trans—color;

}
)

This procedure takes a ray and a depth value that is greater than or equal to 1 as input, and returns a
color as output (typically an RGB vector, the above formula is used to compute the intensity of each
individual color component). It ti-eats the given ray as a primary ray and (when depth> I) makes recursive
calls to obtain thd color (ref_color) of the reflected ray and the color (trans_color) of the transmitted ray.

Figures 124, 12-5, and 12-6 show the results of ray-tracing a scene consisting of three opaque spheres.
The smaller one in the front is dull whereas the two larger ones in the back are shiny. The first image
(depth = 1) is obtained using only the primary ray and shadow ray. The second image (depth = 2) depicts
the effect of adding reflected contribution (one level beyond the primary ray). The third image (depth = 3)
shows the cumulative effect of two levels of reflected contribution. In Fig. 12-7 (also depth = 3), the dull
sphere is replaced by a shiny glass sphere (a check-board floor is also added) to illustrate the combined
effect of all three shading components.

12.3 PARAMETRIC VECTOR REPRESENTATION OF A RAY

A ray is not a vector although it may look like one (see Fig. 12-3). The difference between the two is
that, while a vector is defined by its direction and magnitude, a ray is determined by its direction and
starting point.

Fig. 12-4

Fig. 12-5

254
	

RAY TRACING	 [CHAP 12

We may represent a ray in terms of two vectors: s to specify its starting point, and d to describe its
direction (see Fig. 12-8). These two vectors are used to provide a parametric vector representation for the
ray:

r(t)=s+:d	 (Os)

where r(t) denotes a family of vectors. When the tails of these vectors are placed at the origin, their heads
make up the ray.

Fig. 12-6

Fig. 12-7

CHAP. 121	 RAY TRACING	 255

Fig. 12-8 Vector representation of a ray.

Fig. 12-9

z

point

256	 RAY TRACING	 [CHAP. 12

12.4 RAY—SURFACE INTERSECTION

A critical step in the implementation of ray tracing is to determine whether a ray intersects an object.
This operation is performed for each primary ray (or a ray that is treated as a primary ray in a recursive call)
and shadow ray. If a primary ray does intersect an object, we need to know exactly where the intersection
point is.

Coordinate System Plane

Intersection of a ray with the xy plane can be determined by solving the following for i(see Fig. 12-9):

s + td = x11 + y1J

With s = x11 +yJ + ;K and d = XdI +yJ + zK, we have

I+ L j =
Y.+ tYd = Yi
Z. + £Zd = 0

When Zd 0, the ray is parallel to the plane (no intersection). When z, = 0, the ray originates from the
plane (no intersection). Otherwise, we calculate t using the third equation

Zd

If: <0, the negative extension of the ray intersects the plane. On the other hand, if t> 0, the ray itself
intersects the plane and the coordinates x i and yi of the intersection point can be calculated from the first
two equations.

Intersection with other coordinate system planes and planes that are parallel to a coordinate system
plane can be handled similarly (see Probs. 12.9 and 12.30). We can also test to see if the intersection point
is within a region (see Probs. 12.10, 12.11, and 12.12).

Arbitrary Plane

Let n = xI +yJ + zK be the normal vector to an arbitrary plane and P0 (x0 , Yo. z0) a point on the
plane (see Fig. 12-10). The vector equation or point-normal equation of the plane is then (from App. 2,
Sect. A2.3)

0

To determine if a ray s + td (s = x,I +y,J + z,K and d = XdI + YdJ + zdK) intersects the plane, we
substitute x + txd , y + tyd , and z, + tZd for x, y, and z, respectively:

x1(x, + tX4 o) +y(y1 + tya — YO) +z(z1 + Zf —z0) = 0

CHAP 121	 RAY TRACING
	

257

y

p

z

Fig. 12-10

Solving for t we get

= x(x1 —x0) + y (y1 Yo) +z.(; -0)

XflXd + Y.Yd + Z.Zd

Introducing p = (x0 - .r,)I + (y0 - y1)J + (z0 -	 we can express t in vector form:

t
n.p
n'd

When n d = 0, the ray is parallel to the plane (no intersection). Otherwise, if t < 0, the negative
extension of the ray intersects the plane; if t = 0, the ray originates from the plane. The ray intersects the
plane only when I > 0.

Sometimes we want to further distinguish the two cases of intersection; intersecting the outside (front)
of a plane versus intersecting its inside (back). The former occurs when ii d < 0 whereas the latter occurs
when n d > 0.

Sphere

Consider a sphere of radius R centered at (xe, Yc ' z) and an arbitrary point (x, y, z) on the sphere (see
Fig. 12-11). Define vectors c = xI + yJ + zK and p = xl + yJ + zK. The vector equation for the sphere
is

- c =R

To determine if a ray r(t) = s + :d intersects the sphere, we substitute i - td and p and square both
sides:

Is + td - C l 2 = R2

Since v v = 1 v 1 2 for any vector v (see Prob. A2.3), we have

Is—c+:d1 2 =(s—c+ td) (s—c+td)

= (s—c) . (s—c+td) +td . (s—c+td)	 (Prob. Al.20)

= (s - c) (s - c) + 2(s - c) . td + td . td	 (Prob. Al. 19)

= IS_ c1 2 +2t(s—c)'d+t2 1d1 2 =R2

This is in the form of a quadratic equation in I:

At2 + 2Bt + C =0

258
	

RAY TRACING	 [CHAR 12

Fig. 12-11

where A = 1d1 2 , B = (s - c) d, C = IS_
C1 2 - R2 , and the solution is

_B±,1B2 -AC

A

with

	

<0	 no intersection

	

B2 - AC =0	 ray (or its negative extension) touching sphere

	

> 0	 two (possible) intersection points

When B2 - AC> 0 we get two t values: t j and 12. If both are less than 0, the negative extension of the ray
intersects the sphere (no intersection by the ray). If one of them is 0, the ray starts from a point on the
sphere and intersects the sphere only if the other value is positive. If the two values differ in signs, the ray
originates from inside the sphere and intersects the sphere once. If both are positive, the ray intersects the
sphere twice (first enters and then exits), and the smaller t value corresponds to the intersection point that is
closer to the starting point of the ray.

General Implicit Surface

Generally, to determine if a ray s + Id (s = x,I +y1J + zK and d = XdI + YdJ + zdK) intersects a
surface that is represented by an implicit equation F(x, y, z) = 0, we solve

F(; + d , Y. + tYd, Z + tZd) = 0

fort (see Probs. 12.16, 12.17, and 12.31).

12.5 EXECUTION EFFICIENCY

Ray-tracing is time-consuming largely due to the recursive nature of the algorithm and the demanding
task of computing ray—surface intersections. Several techniques are designed to improve execution
efficiency by means of object/scene-dependent deployment of system resources.

CHAR 121	 RAY TRACING	 259

Adaptive Depth Control

An opaque object (k = 0) does not transmit light. A dull object (Ic = 0) does not produce specular
reflection. In these extreme cases there is clearly no need to trace the transmitted/reflected ray, since the
transmitted/reflected contribution is zero regardless of the value of I/4.

Even in a more general situation, say, Ic > 0, the cumulative effect of the reflection coefficients of the
surfaces along the path of reflection can render the contribution from additional recursive steps negligible.
For example (see Fig. 12.12), if the reflection coefficients of the objects along the path of reflection are
k, and k, respectively, the eventual contribution of 43 to the primary ray is k k2kJr3 . When

= k2 = 43 = 0. 1, this contribution is 0.00143 (negligible in most applications).

Fig. 12-12

Using adaptive depth control, the my-tracer keeps track of the cumulative attenuation along the path of
reflection (and transmission in a similar manner) and, before working on another reflected ray, compares
the current value of cumulative attenuation to a present threshold. It continues its recursive execution to the
required depth only if the cumulative attenuation does not fall below the threshold. For the example in Fig.
12-12, if k = k2 = kr3 = 0.1 and the threshold is 0,0 1, then the ray-tracer will not go beyond the second
reflected ray because k1k2k3 <0.01.

Bounding Volume Extension

Since a ray travels along a narrow path in one specific direction, it normally misses most of the objects
in the scene. This means that an object is more likely to get a "no" answer in a ray—surface-intersection test
than a "yes" answer. The purpose of this technique is to identify objects, es' zially complex objects, that
are definitely not intersected by the ray as quickly as possible.

Each object or group of objects in close spatial proximity is surrounded by a capsule/bounding
volume (e.g., a sphere, a box, etc.) that permits a simple intersection check. If the ray does not intersect the
capsule, it does not intersect the object(s) inside the capsule, and no further testing involving the object(s)
is necessary. On the other hand, if the ray does intersect the capsule, further testing involving the enclosed
object(s) is necessary in order to reach a conclusion ("yes" or "no").

Hierarchy of Bounding Volumes

The bounding volume technique can be extended to a hierarchy of bounding volumes. For example, if
a monitor and a printer are on top of a desk, we may introduce a large bounding volume encompassing all
three objects, and three smaller bounding volumes inside the large one for the individual objects,
respectively. Only if a ray intersects the large bounding volume it is necessary to go to the next level of
the hierarchy to test against the three smaller bounding volumes.

260	 RAY TRACING	 [CHAP. 12

Bounding volume techniques incur two types of overhead: maintaining bounding volumes and testing
against bounding volumes. It is often worth the effort when the objects are complex and are not loosely
distributed across the scene (see Prob. 12.20).

Spatial Coherence/Spatial Subdivision

This technique is based on the observation that only objects that are in the vicinity of the path of a ray
may be intersected by the ray, objects that are away from the path do not have anything to do with the ray
(and should be ignored in intersection testing).

We subdivide the scene space into regions (see Fig. 12-13 for a 2D illustration) and associate objects
with the regions in which they appear. In other words, each region is linked to a list of objects that appear
in that region. Since the regions are typically regularly spaced and aligned with the coordinate system
axes/planes, only a minimum amount of computation is necessary to identify the regions that are
intersected by a given ray (see Prob. 12.21). The actual test for ray-surface intersection is then performed
only with the objects that appear in the identified regions.

Fig. 12-13

Furthermore, we follow the ray from one region to the next and perform intersection tests as we enter
each region (since an object may be associated with more than one region, care should be taken to avoid
repeating intersection tests with the same object). Once an intersection point (closest to the starting point of
the ray) is identified with the objects in the current region, there is no need to move forward into other
regions.

The overhead for spatial subdivision is mainly the need to preprocess the scene in order to assign
objects to regions. The technique is complementary to the bounding volume approach in that it is quite
capable of dealing with objects that are scattered around the scene.

12.6 ANTI-ALIASJNG

Ray-tracing depicts a continuous scene by taking discrete samples from the scene. Hence the aliasing
artifacts associated with scan-conversion (e.g., jagged edges, dropout of small parts/objects) are also
present in ray-traced images. The following are some anti-aliasing techniques that can be incorporated into
the ray-tracing process to alleviate the problem.

Supersampling

Each pixel is divided into subpixels (see Chap. 3, Fig. 3-27) and a separate primary ray is sent and
traced through the center of each subpixel. The color/intensity values of the primary rays for the subpixels
are then combined (averaged) to produce a value for the parent pixel.

CHAP. 12]	 RAY TRACING	 261

Adaptive Supersampling

Supersampling often drastically increases the computational burden of ray tracing. In this approach we
send one ray through the Center of a pixel and four additional rays through its corners. If the five rays return
similar colors the pixel will not be subdivided (it probably corresponds to a smoothly shaded area in the
scene). Only if the returned colors are sufficiently different do we subdivide the pixel (it probably covers
both sides of an edge) into 2 x 2 subpixels. Each subpixel is then handled in the same way, and the process
terminates when a preset level of subdivision is reached.

Stochastic Supersampling

The effect of supersampling can often be enhanced with stochastic or distributed ray-tracing. In this
approach we deviate from using the fixed (sub)pixel grid by scattering the rays evenly across the pixel area
in a random fashion. A typical way to achieve this is to displace each ray from its normal position in the
grid (see Prob. 12.24).

12.7 ADDITIONAL VISUAL EFFECTS

Various techniques have been developed to achieve certain desirable visual effects. Some methods
below are applications of distributed ray-tracing, which means that we scatter rays around with respect to a
certain parameter in the ray-tracing process (recall that in stochastic supersampling we displace rays from
their normal position in the pixel grid).

Environment Mapping

A shiny (mirror-like) object reflects the surrounding environment. Instead of ray-tracing the three-
dimensional scene to obtain the global reflection, we may map a picture of the environment onto the object
(see Fig. 12-14). The object is typically placed in the middle of an enclosure such as a cube, cylinder, or
sphere, with the environment map attached to the inside of the enclosing surface (facing the object). The
color of a pixel is then a function (e.g., average by supersampling) of the area in the environment map that
corresponds to the pixel.

Clearly this is only an approximation to ray-tracing the three-dimensional scene. The quality of the
mapped reflection is dependent on the size (relative to the enclosure) and shape of the object. However,

A p1CWe of the

(n1imOfl1 map)

minw-ww
Surface

Fig. 12-14

18-A	 A

262	 RAY TRACING	 [CHAP. 12

environment mapping is often faster, and it is particularly useful in creating the illusion of a computer-
generated shiny object amidst a real-world scene (which of course Cannot be ray-traced).

Soft Shadow

Ray-traced images of scene involving fixed point-lights are characterized by the harsh edges of the
shadow areas. However real lights are not mathematical points and they cast soft shadows, which consist of
an umbra area surrounded by a penumbra area (see Fig. 12- 15).

Penumbra

Fig. 12-15

In order to produce soft shadows we model a light source by a region, called an area light. The area is
subdivided into subareas or zones. Shadow rays are then distributed to these zones via random selection
(with equal probability for each zone or weights that favor zones that correspond to higher intensity
values).

Blurry Reflection

To get a blurry reflection of the surroundings on a glossy (not mirror-like) object, we distribute the
reflected rays. This can be done by displacing a reflected ray from the position of its mirror reflection by a
small angle. The distribution of the angle is subject to the same bell-shaped reflectance function that
governs specular highlights (see Fig. 11-6).

Translucency

The difference between transparency (specular transmission) and translucency is somewhat analogous
to the difference between specular reflection and blurry reflection. To achieve the effect of light going
through translucent material, we distribute the transmitted rays by displacing each from the position of
specular transmission by a small angle. The distribution of the angle is subject to a transmittance function
similar to the aforementioned reflectance function. Furthermore, we may attenuate the transmitted intensity
to account for the loss of energy.

Motion Blur

A fast-moving object tends to look blurry in a photograph (especially if the photo was taken with a low
shutter speed). To mimic this phenomenon we distribute rays over time. In other words, we predetermine

18-B

CHAP 121	 RAY TRACING	 263

the path or a series of positions of a moving object based on the characteristics of the movement. We then
displace the object along its path or between positions as each ray is traced.

Solved Problems

12.1 Describe how hidden surface removal and projection are integrated into, the ray-tracing process.

SOLUTION

Each primary ray plays the role of a projector that maps a surface point P to its image P in the view
plane. If all primary rays emanate from a view point C we have the effect of perspective projection. If all
primary rays are parallel to each other we have the effect of parallel projection. Furthermore, if a primary ray
intersects several object surfaces, only the surface that is the closest to the view plane is chosen to determine
the color of the corresponding pixel; all others are effectively treated as hidden surfaces and removed (not
displayed).

12.2 Name the three components of surface shading and the secondary ray for computing each.

SOLUTION

Local contribution (shadow ray), reflected contribution (specularly reflected ray), and transmitted
contribution (specularly transmitted ray).

12.3 The refraction index of a medium is the ratio of the speed of light in vacuum to the speed of light in
that medium. Rewrite Snell's law in terms of the speed of light in the two participating media.

SOLUTION

Let c be the speed of light in vacuum, c 1 be the speed of light in the medium whose refraction index is
and c2 be the speed of tight in the medium whose refraction index is r1 2 .We have q I = c/c, and '72 =

Hence Snell's law can be written as

sin(s) — '72 — C/C2 - C1

sin(fl) — q, — C1c1 - C2

12.4 What is the difference between a vector and a ray?

SOLUTION

A vector is defined by its direction and magnitude, whereas a ray is determined by its direction and
starting point.

12.5 A ray is represented by r(:) = s + td where s = 21 + J — 3K and d = I + 2K. Find the coordinates
of the points on the ray that correspond to t = 0, 1, 2.5, and 3, respectively.

SOLUTION

r(0) = (2 + 0)I + J + (-3 + O)K = 21+J -3K —* (2, 1, -3)
r(1) =(2 + 1)1 + J +(-3 + 2)K = 31 + .1-• K — (3, 1,-I)

r(2.5) = (2 + 2.5)1 + .1 +(-3 + 5)K = 4.51 + J + 2K — (4.5, 1.2)
r(3)=(2+3)1+J+(-3+6)K=51+J+3K-- (5, 1,3)

264	 RAY TRACING	 [CHAP 12

12.6 Let the viewpoint be at (a, b, c) and the center of a pixel at (x, y, z). Find vectors s and d to represent
the corresponding primary ray.

SOLUTION

$ = al + bJ + cX

d = (x — a)I + (y — b)J + (z — c)K

12.7 Lines in two-dimensional space can be re presented by either the algebraic equation y = mx + b or
the parametric vector equation L(t) = a + td, where -oo <1 < +oo. For s = I + J and d = I -
find the equivalent algebraic representation.

SOLUTION 1

Since L(:) = a + td = (1 + t)I + (1 - t)J, we have

x=1+t	 and	 y=1—t

Hence x+y=2, ory= —x+2.

SOLUTION 2

Find two points on the line

L(0)= s=I+J—' (1,1)
L(l)=s+d=21-+(2,O)

We have(y — i)/(x— 1)=(O— 1)1(2—i), i.e.,y= —x+2.

12.8 Refer to Fig. 12-16(a), where d represents the direction of the primary ray, t the direction of the
transmitted ray, and n the normal vector at the intersection point. Express t in terms of d, n, and the
two angles a and P.

U

m
a cos(cz)n

d
sm()

t

(a)	 (1')

Fig. 12-16

SOLUTION

Let d, t, n be unit vectors [see Fig. 12-16(b)]. We have

J m = d + cos(a)n

I Imi = sin(a)

CHAP. 121	 RAY TRACING	 265

and

t = sin(fl)u, - cos(fl)n

=	 (d + cos(n)n) - cos(ft)n
sin(a)

12.9 Determine if a ray intersects a plane that is parallel to the xy plane.

SOLUTION
The equation for such a plane is z = c where c is a constant. If a ray does intersect the plane, the

intersection point is at (x1 ,y1 , c). In order to find x1 and y1 we solve the following for I:

8 + Id =x1 1 +y,J+ cK

With s =x,1+yJ+z,K and d = xdl+ydJ+zd K, we have

X, + t = Xi

Y. + lyj =

2 + tZ = C

When Zd = 0, the ray is parallel to the plane (no intersection). When z = c, the ray originates from the plane
(no intersection). Otherwise, we calculate t using the third equation

Zd

If t < 0, the negative extension of the ray intersects the plane. On the other hand, if t> 0, the ray itself
intersects the plane and the coordinates x1 and y1 of the intersection point can be calculated from the first two
equations.

12.10 Determine if a ray intersects a rectangular region defined bfx, x, ynin and y in the xy plane.

SOLUTION
First determine if the ray intersects the xy plane (see Sect. 12.4 under "Coordinate System Plane"). If not,

the ray does not intersect the region. Otherwise, find the coordinates x, and y, of the intersection point. If
x1 x	 and y , y, y	 the ray intersects the region; otherwise it does not.

12.11 Determine if a ray intersects a triangular (or convex polygonal) region in the xy plane.

SOLUTION
First determine if the ray intersects the xy plane (see Sect. 12.4 under "Coordinate System Plane"). If not,

the ray does not intersect any region in the plane. Otherwise, find the coordinates x1 and yi of the intersection
point. The point is inside a triangular or convex polygonal region if it is on/inside all bounding edges of the
region.

Now focus on just the xy plane (ignore z). To test if the intersection point (x,, y) is inside or outside an
edge in the plane, we choose a point on the edge (e.g., one of its endpoints) and define an outward normal
vector a that points to the outside of the edge (see Fig. 12 . 17). We also use the chosen point to define vector v,
and the intersection point to define vector v,. We have

	

> 0	 (x1.y1) is outside the edge	 (0 < 900)

	

n . (v,—v) =0	 (x1,y,)ison the edge	 (0=900)
	<0	 (x1, y1) is inside the edge	 (0 > 900)

12.12 A unit square is placed in the xy plane with one corner at the origin and the diagonal corner on the
positive y axis [see Fig. 12-18(a)]. Determine if a ray emanating from (0, 1,2) going in the direction
of the negative z axis intersects the square.

Fig. 12-17

('i)	 (b)

Fig. 12-18

Y

x

(0, 1,2) (0, 1,2)

266	 RAY TRAC[NG	 [CHAP 12

SOLUTION

From the given condition we have

s=J±2K and d= —K

Since; = 2 0 01 Z = — 1 0 0, and: = —Z, /Zd = 2>0, the ray intersects the xyplane (see Sect. 12.4 under
"Coordinate System Plane"). Using x, = 0, Xd 0, y = 1, and Yd = 0, we get

x=0+2x0=0	 and y1=l+2xO=I

To determine if the intersection point is inside the square, we may follow the solution for Prob. 12.10.
Alternatively, we may perform a coordinate transformation from system xyz to x'y'z' in order to align the x' and

axes with the sides of the square [see Fig. 12-18(b)]. This requires a 450 rotation of the xyz system with
respect to the z axis (Or the origin if we ignore the z dimension). The square is now bounded by x,,.,, = 0,

= 1, y,,,, = 0, and y,,. = 1 in the new coordinate system, where the coordinate of the intersection point
are (see Sect. 4.2)

= x1 cos(45°) + y, sin(45°) =

= —xi sin(45°) +y1 cos(450) =

Since

x <x <x,	 and	 y)/j

the my does intersect the square.

12.13 Let n = I + J + 2K be the normal vector of a plane that passes through point P0 (1, 1, 0).
Determine if a ray with s - — 21 + J + 2K and d I - K intersects the plane.

CHAP. 121	 RAY TRACING	 267

UJItt.I

Refer to Sect. 12.4 under arbitrary plane. Since

nd = I x I + I x 0+2 x(-1)= —1 <0

the ray intersects the plane. We introduce

p = (x0 - x,)I + (y - y,)J + (z0 -
=(I —(--2))I+(1 - I)J+(0-2)K
=31-2K

and compute

- n . p I x 3+1 x 0+2 x(-2)
t d	 —1

The intersection point is at (x, +X,y, + Yd ,Zn +Zd) = (- 1, 1, 1).

12.14 Double check that the intersection point found in Prob. 12.13 is indeed on the given plane.

SOLUTION

The vector equation for the plane is

x,,(x—x0)+y,,(y —y0)+z(z—z0)= 0

Since

1(-1 - 1)+ 1(1— I)+2(l —0) = 0

the intersection point (-1,1, 1) is indeed on the plane.

12.15 Let S1 be a sphere of radius 8 centered at (2,4, 1) and S2 a sphere of radius 10 centered at
(10, —2, —5). Determine if a ray with s = 2.1 + 5K and d = I - 2K intersects the spheres.

SOLUTION

First consider sphere S1 . We have

A =]d12 = 1 2 +(_2)2 = 5

B =(s — c) . d = [(0— 2)1 +(2 - 4)J+(5 - 1)K) . (I - 2K) = —10

C = IS - c 2 - R2 = (_2)2 + (_2)2 + 42 - 82 = —40

Since B2 —AC = (_10)2 - 5(-40) = 300 > 0, there are two tvalues:

	

= 10+ö2(1,)0	 and	 1, 10=2(1_/)<0

From these we know that the ray starts from inside S 1 . Now considering sphere S2 , we have

A =1d12 = 1 2 +(_2)2 =
B = (s - c) . d = [(0— 10)1 + (2 + 2)J + (5 + 5)K] (I - 2K) = —30

C=Is—c12—R2=(-10)2+(4)2+102-102=116

Since B2 —AC = (_30)2 —5 x 116 = 320 > 0, there are also two (values:

31 — 1321

	

320I
30+v616,0	 and	 t4 ==6— 1.6./> 0

From these we know that the ray intersects 52 in two different places. By comparing t j 5.464, (3 9.578,
and 14 2.422, we see that the ray first enters S 2 , then leaves S 1 , and finally exits from S2 (the two spheres
overlap each other).

268	 RAY TRACING	 [CHAR 12

12.16 The (implicit) equation for a sphere of radius R centered at the origin is x2 + y2 + z2 - R2 = 0.
Determine if a ray c + td intersects the sphere.

SOLUTION

Lets = xI +y,J +zK and =xd l +Y4J +zd K. Substitute; +tr., ,y, + tya, and; + tZd forx,y, and
z, respectively:

(x, + tXd)2 + (y + tYd) + (; + a)2 	= 0

Expand and regroup terms:

(+ y +	 + 2(xxd + Y.Yd + ;zd)t + (x +)?. + z) - R2 =0

or

1d1212 + 2s dt + 1 8 1 2 - R2 = 0

This matches the quadratic equation derived in the text (see Sect. 12.4 under "Sphere"), with the center of the
sphere being set to (0,0,0).

12.17 The (implicit) canonical equation for an elliptic paraboloid is x2 +y2 .- z = 0 (see Chap. 9, Sect.
9. 10, Fig. 9-19). Determine if a ray s + td intersects the paraboloid.

SOLUTION

Lets= xI+y,J +z,K and d = XdI + ydJ + zdK. Substitute; + tcd ,y, + (Yd' and; + tz, forx,y, and
z, respectively:

(;+ Ad)2 + (y + tyd) - (; + tz) = 0
Expand and regroup terms:

(x +))t2 + (2X1Xd + 2Y.Yd - zd)t + W + —;) =0

When the ray is parallel to the z axis (i.e., Xd = 0 and Yd = 0), the equation degenerates into

—Zdt+X+Y Z 0

From this we can find

=x +.Y.1—;
Zd

where

<0	 ray's negative extension intersects paraboloid
= 0	 ray's starting point on paraboloid
> 0	 ray intersects paraboloid

Otherwise, we can rewrite the quadratic equation as

At2 +Bt+C=0
where

A = X,' + yd	 B=2x.xd+2yflyd—zd 	 C=x+y—;

and the solution for the equation is (note A 34 0)

- —B ± ./B2 - 4AC
14

If B2 - 4AC < 0, the ray does not intersect (or touches) the paraboloid. If B2 - 4AC = 0 and t> 0, the ray
intersects (or touches) the paraboloid once. If B2 - 4AC> 0, we get two t values; t 1 and 12 . If t 1 <0 and
2 <0, the negative extension of the ray intersects the paraboloid (no intersection by the ray). If one of the two

values is 0, the ray starts from a point on the paraboloid and intersects the paraboloid only if the other value is

CHAR 121	 RAY TRACING	 269

positive. If it and t2 differ in signs, the ray originates from inside the paraboloid (i.e., x - z <0) and
intersects the paraboloid once. If both values are positive, the ray intersects the paraboloid twice (first enters
and then exits), and the smaller value corresponds to the intersection point that is closer to the starting point of
the ray.

12.18 Figure 12-19 shows a ray $ + td and a canonical paraboloid (see Prob. 12.17) that is defined in its
own coordinate system x'y'z'. Describe how to make use of the result in Prob. 12.17 to determine if
the ray intersects this paraboloid.

Fig. 12-19

SOLUTION

Find the coordinate transformation M from system xyz to x'y'z'. Apply M to transform (x• ,y,;) to
and defines' = xI +J + zK. Apply M to transfonn the origin (0, 0,0) ofxyz to	 z), and

transform (xd, yd, zd) to Define d' =(4 — x'0)I + Wd —/)J+(z —z)K, which describes the
same vector as d. Now represent the ray by s' + Id' in the x'y'z' coordinate system. Use the solution to Prob.
12.17 to determine if the ray intersects the paraboloid.

12.19 Refer to Fig. 12-12. If k = .k2 = 43 = 0.3, the threshold is 0.01, and the desired depth is 2, will
the ray-tracer proceed to work on the third reflected ray?

SOLUTION

No, since the desired depth is 2. It would if the desired depth were 3 because 1 Iç2 Iç3 = 0.027>0.01.

12.20 Describe a scene where the bounding volume techniques are definitely not applicable. Explain why.

SOLUTION

A number of spheres scattered across the scene. First of all, there is no simpler bounding volume for
intersection testing. Furthermore, any bounding volume that encompasses several spheres is going to occupy a
relatively large section of the scene. This brings about a relatively high probability for a ray to intersect the
bounding volume, resulting in further testing against the enclosed spheres (something the bounding volume is
supposed to help avoid in the first place).

12.21 In spatial subdivision we need to identify the regions along the ray's path. Since the ray exits from
the current region and enters into the next region at the same point in space, a basic operation to
guide the ray-tracer from one region to the next is: given the direction d of the ray and its entry
point P1 into the current region, find point P2 through which the ray exits. Describe the operation
for a parallelepiped region whose faces are parallel to the coordinate system planes.

270	 RAY TRACING	 [CHAP. 12

Such a region is bounded by the following planes:

X =	 x =

Y = Yrnin	 YYmx

Z= Zrnü,	 z=zm

Since we are looking for the exit point, only planes that satisfy n d > 0, where n is the plane's normal vector,
should be considered. The normal vectors of the planes listed above are simply —1, I, —J, .1, —K, and K,
respectivçly. Now we use P 1 to be the starting point of the ray. For each chosen plane, say, z = Zmm, the t value
that represents where the ray intersects the plane is (see Prob. 12.8)

t =
zn,in —;

Zd

(see Prob. 12.22 for similarformulae for the other planes). Once all eligible planes have been processed, the
smallest t value from the calculation represents P2.

12.22 Refer to Prob. 12.2 1, and write down the formulae for computing f for the other five planes.

SOLUTION

The formulae for planes x = Xmjn, X = Xm,, Y = Y.in, y = y,,, and z = z_ are

z = X,,,,, —;	 , = X,,, _X"	
t =

Ymin — Y,	 =)',., _ Y"	 =	 — Z.

Yd	 '	 Yd	 Zd

respectively.

12.23 Consider supersampling and adaptive supersampling. Which one is likely to perform better in
reducing dropout?

SOLUTION

Supersampling is likely to perform better since the adaptive method will not subdivide a pixel if the
center ray and corner rays return similar colors (but a small object may lie between those rays).

12.24 How to displace a ray from its normal position in the pixel grid?

SOLUTION

• Let (x, y) be the ray's normal position in the grid. Define Ax and Ay such that [x - x, x + .x] and
[y — Ay, y + y] encompass the area for the new position (normally the area of the corresponding subpixel).
Choose two random numbers ö and by in the range of [—.x, .x] and [—ay, Ay], respectively. The
new/displaced position for the ray is (x + 6,y +

12.25 Illustrate why the relative size of an object affects the quality of environment mapping.

SOLUTION

The environment map is obtained by projecting the scene (a pyramid) from viewpoint C [see Fig.
12.20(a)]. When a small object is placed at C, the mapped reflection approximates the result of ray-tracing
with the actual pyramid [see Fig. 12-20(b)]. On the other hand, if a relatively large object is placed at C, we
may see a falsely reflected pyramid on the object when the pyramid is really behind the object [see Fig.
12-20(c)].

TC

CHAP. 121	 RAY TRACING	 271

(a)	 (b)	 (c)

Fig. 12-20

12.26 Explain why the shape of an object affects the quality of environment mapping.

SOLUTION

A concave object may reflect part of itself. However, since the object is not depicted in the environment
map, any self-reflection will be missing from the result of environment mapping.

Supplementary Problems

12.27 Snell's law is a consequence of Fennat's principle in optics: light travels from point A to point B along the path
that takes the shortest time. Let A be in one medium where the speed of light is c 1 , and B be in another
medium where the speed of light is c2 (see Fig. 12-21 where the x axis separates the two media). The path that
takes the shortest time must be a straight line from A to a point P on the x axis followed by a straight line from
P to B (since the light ray has to cross the x axis at some point and the shortest path within a medium is a
straight line). Prove that the following holds for this path:

sin(s) - c1
sin(fl) - C2

Fig. 12-21

12.28 The following pseudo-code procedure shows another way to describe the basic ray-tracing algorithm. The
parameters are identical to those used in the procedure in Sect. 12.2, with the exception that the range for
depth now includes value 0. Do these two procedures produce identical results when invoked with the same
call? If yes, are they the same in terms of execution efficiency?

OU
	

RAY TRACING	 [CHAP. 12

rayTrace(ray, depth, color)

if (depth < 1) color = black;
else

determine closest intersection of ray with an object;
if (no intersection) color = background;
else

color = local contribution;
calculate reflected ray;
rayTrace(reflected ray, depth-1, ref color);
calculate transmitted ray;
rayTrace (transmitted ray, depth-1, trans_color);
color = color + Ic . ref—color + k . trans_color;

}

12.29 Refer to Prob. 12.7, and convert y = 2x - 6 to parametric vector representation.

12.30 Determine if a ray intersects the yz plane.

12.31 The implicit equation for a cylinder of radius R along the z-axis is x2 +y2 - R2 = 0. Determine if a rays + td
intersects the cylinder.

12.32 Show that the solution to equation At' + 2Bt + C = 0:

_B±IB2 AC

A
and the solution to equation At2 + Bt + C = 0

—B ± ../B2 - 4AC
1=	

2A
are essentially the same.

