
Mathematics for
Two-Dimensional

Computer Graphics

The key to understanding how geometric objects can be described and manipulated within a computer
graphics system lies in understanding the interplay between geometry and numbers. While we have an
innate geometric intuition which enables us to understand verbal descriptions such as line, angle, and
shape and thscriptions of the manipulation of objects (rotating, shifting, distorting, etc.), we also have the
computer's ability to manipulate numbers. The problem then is to express our geometric ideas in -numeric
form so that the computer can do our bidding.

A coordinate system provides a framework for translating geometric ideas into numerical expressions.
We start with our intuitive understanding of the concept of a two-dimensional plane.

AI.1 THE TWO-DIMENSIONAL CARTESIAN COORDINATE SYSTEM

In a two-dimensional plane, we can pick any point and single it out as a reference point called the
origin. Through the origin we construct two perpendicular number lines called axes. These are traditionally
labeled the x axis and they axis. An orientation or sense of the plane is determined by the positions of the
positive sides of the x andy axes. If a counterclockwise rotation of 90° about the origin aligns the positive x
axis with the positive y axis, the coordinate system is said to have a right-handed orientation see Fig.
Al-l(a)]; otherwise, the coordinate system is called left-handed [see Fig. Al-l(b)].

The system of lines perpendicular to the x axis and perpendicular to they axis forms a rectangular grid
over the two-dimensional plane. Every point P in the plane lies at the intersection of exactly one line
perpendicular to the x axis and one line perpendicular to they axis. The number pair (x, v) associated with
the point I' is called the Cartesian coordinates of P. In this way every point in the plane is assigned a pair
of coordinates (.se Fig. A 1-2).

Measuring Distances in Cartesian System

The distance between any two points P and P2 with coordinates (x 1 Yi) and (x2 . ,Y2) can be found with
the formula

D= (x2 —x 1 )2 +2 —yi)2
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(.) RI-hsnded. (b) Left-hinded.
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Fig. Al-i

Fig. A1-2

The length of a line segment can be measured by finding the distance between the endpoints of the
segment using the formula.

EXAMPLE 1. The length of the line segment joining points P 0(—1, 2) and P1 (3, 5) can be found by

D= I(5 _2)2+[3 —(-1)? = .J32 +42 = 5

Measuring Angles in Cartesian System

The angles of a triangle can be measured in terms of the length of the sides of the triangle (see Fig.
Al-3), by using the Law of Cosines, which is stated as

C2 = a2 + b2 - 2ab(cos 0)



d

B

C

Fig. A1-3 Fig. A1-4

Y0

APPENDIX 1
	

275

EXAMPLE 2. Refer to Fig. A14. To find the angle 0, we use the Law of Cosines:

52 =42 +22 -2(4)(2) cos O	 or	
=T6

—5	 so	 0=108.210

The angle formed by two intersecting lines can be measured by forming a triangle and applying the Law of
Cosines.

Describing a Line in Cartesian System

The line is a basic concept of geometry. In a coordinate system, the description of a line involves an
equation which enables us to find the coordinates of all those points which make up the line. The fact that a
line is straight is incorporated in the quantity called the slope m of the line. Here m = tan 0, where U is the
angle formed by the line and the positive x axis.

From Fig. A 1-5 we see that tan 0 = Ay/Ax. This gives an alternate formula for the slope: m = Ay/x.

EXAMPLE 3. The slope of the line passing through the points P0(— 1, 2) and P 1 (3, 5) is found by

y=5-2=3	 ix=3—(—l)=4

so m = Lty/x = . The angle 0 is found by tan  = m = or 0 = 36.87°.

Fig. A1-5	 Fig. A1-6
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The straightness of a line is expressed by the fact that the slope of the line is the same regardless of which two
points are used to calculate it. This enables us to find the equation of a line.

EXAMPLE 4. To find the equation of the line whose slope is 2 and passes through the point P 0(l, 2), let P(x, y) be
any point on the line. The slope is the same regardless of which two points are used in calculating it. Using P and P0,

we obtain

by=y-2 Ax=x-1

so

m=— or 2=-
.r—1

Solving, we have y = 2x (see Fig. AI-6).

Every line has an equation which can be put in the form y = mx + b, where m is the slope of the line
and the point (0, b) is the y intercept of the line (the point where the line intercepts the y axis).

Curves and Parametric Equations

The equation of a curve is a mathematical expression which enables us to determine the coordinates of
the points that make up the curve.

The equation of a circle of radius r whose center lies at the point (h, k) is

(x - h) 2 + (y - k)2 = r2

It is often more convenient to write the equation of a curve in parametric form; that is

	

x=f(t)	 y=g(t)

where parameter t might be regarded as representing the "moment" at which the curve arrives at the point
(x, y).

The parametric equations of a line can be written in the form (Probs. A1.21 and A1.23)

	

x=at+x0	y=bt+y0

EXAMPLE 5. The parametric equation of a circle of radius r and center at the origin (0,0) can be written as
x = r cos t and  = r sin t, where I lies in the interval 0 t 2ir.

A geometric curve consists of an infinite number of points. Thus any plot of such a curve can only approximate
its real shape. Plotting a curve requires the calculation of the x and  coordinates of a certain number of the points of
the curve and the placing of these points on the coordinate system. The more points plotted, the better the
approximation to the actual shape.

EXAMPLE 6. Plot five points of the equations x = I, y = t2 for tin the interval [-1, 1].

u-II.--IIu
Plotting (x,y) gives Fig. A1-7. We can approximate the actual curve by joining the plotted points by line
segments.
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Fig. Al-i

A1.2 THE POLAR COORDINATE SYSTEM

The Cartesian coordinate system is only one of many schemes for attaching coordinates to the points
of a plane. Another useful system is the polar coordinate system. To develop it, we pick any point in the
plane and call it the origin. Through the origin we choose any ray (half-line) as the polar axis. Any point in
the plane can be located at the intersection of a circle of radius rand a ray from the origin making an angle
o with the polar axis (see Fig. A 1-8).

Fig. Al-S
19-A
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The polar coordinates of a point are given by the pair (r, ). The polar coordinates of a point are not
unique. This is because the addition or subtraction of any multiple of 21r (3600) to 0 describes the same ray
as that described by 0.

Changing Coordinate Systems

How are the Cartesian coordinates of a point related to the polar coordinates of that point? If (r, 0) are
the polar coordinates of point P, the Cartesian coordinates (x, y) are given by

x=rCOS& y—_rsrn0

Conversely, the polar coordinates of a point whose Cartesian coordinates are known can be found by

r2 =x2 +y2 	 0=arctan

A1.3 VECTORS

Vectors provide a link between geometric reasoning and arithmetic calculation. A vector is represented
by a family of directed tine segments that all have the same length or magnitude. That is, any two line
segments pointing in the same direction and having the same lengths are considered to be the same vector,
regardless of their location (see Fig. Al-9).

Fig. A1-9

Properties of Vectors

Vectors have special arithmetic properties:

1. If A is a vector, then —A is a vector with the same length as A but pointing in the opposite
direction.

2. If A is a vector, then kA is a vector whose direction is the same as or opposite that of A,
depending on the sign of the number k, and whose length is k times the length of A. This is an
example of scalar multiplication.

3. Two vectors can be added together to produce a third vector by using the parallelogram method or
the head-to-tail method. This is an example of vector addition.

In the parallelogwn method, vectors A and B are placed tail to tail. Their sum A + B is the vector
determined by the diagonal of the parallelogram for tri ed by the vectors A and B (see Fig. Al - to).

In the head-to-tail method, the tail of B is placed at the head of A. The vector A + B is determined by
the line segment pointing from the tail of A to the head of B (see Fig. Al -li).

Both methods of addition are equivalent, but the head-to-tail is easier to use when adding several
vectors.

19-B
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Fig. Al-to	 Fig. Al-11

Coordinate Vectors and Components

In a Cartesian coordinate system, vectors having lengths equal to I and pointing in the positive
direction along the x and  coordinate axes are called the natural coordinate vectors and are designated as Iand J (see Fig. A1-12).

Fig. Al-12

By use of scalar multiplication and vector addition, any vector V can be written as a linear
combination of the natural coordinate vectors. That is, we can find numbers a and b so that Va! + W. The numbers [a, b] are called the components of V. The components of a vector can be
determined from the coordinates of the head and the coordinates of the tail of the vector. If (hi , h) and(ti, 4) are the coordinates of the head and the tail, respectively, the components of V are given by

a=h, — t	 b=h,—t,,

Notice that if the tail of V is placed at the origin, the components of the vector are the coordinates of the
head of V.

The introduction of components allows us to translate the geometric properties of vectors into
computational properties. If the vector A has components [x 1 , y] and the vector .B has components [x2, Y2]
the length of A, denoted as JAI, can be computed by

IAI = V"x+y

To perform scalar multiplication by a number c, we have

cA = cx 4 l + cy1J
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and to perform vector addition

A + B =(x 1 +x2)I+(y 1 +y2)J

EXAMPLE 7. Find the components of the vector A whose tail is at P 1 (1, 2) and whose head is at P2 (3, 5) (see Fig.
Al-13). To find the components, we shift the tail of A to the origin. The head is at

x=3-1=2 y=5-2=3

Thus A = 21 + 3J. The length of A is

Al =	 =

IfB=-3!+2J, then A+B=(2-3)I+(3+2)J= -I+5J.

/P. (11 2)

12	 1

Fig. A1-13
	 Fig. Al-!4

The Dot Product

The dot product A . B is the translation of the Law of Cosines into the language of vectors. It is defined
as

A.B=IAIIBI cos O

where 0 is the smaller angle between the vectors A and B (see Fig. Al -14). If A has components [x 1 . Yi]
and B has components [x2 , y2 ], then A B = x 1 x2 +YIY2 (componentwise multiplication). (Note: since
cos 90° = 0, two nonzero vectors A and B are perpendicular if and only if A . B = 0.)

EXAMPLE 8. To find the angle 0 between the vectors A = 21 + 3J and B = J, we use the definition of the dot
product to find

AD
cos 0 

= IAMBI
A.B=(21+3J).(0l+J)=20+3l3

IAI= 122 +32 =JE	 IBI=s/+I 2 =

So

Cos 9=---	 and	 0=33.690
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A1.4 MATRICES

A matrix is a rectangular array or table of numbers, arranged in rows and columns. The notation a, is
used to designate the matrix entry at the intersection of row i with column j (see Fig. Al- 15).

Column I

Rowi(

Fig. A1-15

The size or dimension of a matrix is indicated by the notation m x n, where m is the number of rows in
the matrix and n is the number of columns.

A matrix can be used as an organizational tool to represent the information content of data in tabular
form. For example, a polygonal figure can be represented as an ordered array of the coordinates
of its vertices. The geometric transformations used in computer graphics can also be represented by
matrices.

Arithmetic Properties of Matrices

Examples of these properties are as follows.

1. Scalar multiplication. The matrix kA is the matrix obtained by multiplying every entry of A by the
number k.

2. Matrix addition. Two m x n matrices A and B can be added together to form a new m x n matrix
C whose entries are the sum of the corresponding entries of A and B. That is,

c = a +

3. Matrix multiplication. An m x p matrix A can be multiplied by ap x n matrix B to form an m x n
matrix C. The entry cij is found by taking the dot product of the i row of A with thej column of B
(see Fig. A1-16). So c = (row i) (columnj) = a 1 b, + a,b2 + .. + Matrix multi-
plication is not commutative in general. So AB 0 BA. Matrix multiplication is also called
matrix concatenation.

A

Row  (

,,) (

B
Column I

b
b1

;,Pi

Fig. A1-16

C

I

Cq

	

)
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4. Matrix transpose. The transpose of a matrix A is a matrix, denoted as A T, formed by exchanging
the rows and columns of A. If A is an m x n matrix, then AT is an  x m matrix. A matrix is said
to be symmetrical if A = AT.

Two basic properties of the transpose operation are (1) (A + B)T = AT + BT and (2) (AB) T BrAT.

EXAMPLE 9

-1 o\/3	 25\	 I
-1 2)	

( 2 3J
1 2

and B=	
/

_2A=_2(3 2 5\ /-6 -4 -1O\
1 -I 2)-2 2 -4)

-1 o\
AB=1	 23

/3	 2	

)	
( [3

. (-l)]+(2 . 2)+(5 . 1)	 (3•0)+(2.3)+(5.2) \
\ 1 -1 2	 = [1. (- 1 )1+[(- l ) .21+(2.1 ) (1.0)+[(-l).3]+(2.2))12

6 16\

U
/3	 i\

AT = 12 _i)
c5	 2/

Matrix Inversion and the Identity Matrix

The n x n matrix whose entries along the main diagonal are all equal to 1 and all other entries are 0 is
called the identity matrix and is denoted by I (Fig. Al-li).

100...0
010...0

1= 0 0 1 •.. 0

000 ...	1

Fig. Al-17

If A is also an n x n matrix, then Al = IA = A. That is, multiplication by the identity matrix I leaves
the matrix A unchanged. Therefore, multiplication by the identity matrix is analogous to multiplication of a
real number by 1.

An n x n matrix A is said to be invertible or to have an inverse if there can be found an n x n matrix,
denoted by A, such that A'A = AA' = I. The inverse matrix, if there is one, will be unique.

A basic property of matrix inversion is (AB)- 1 = B'A'.

EXAMPLE 10

A=( ?) and M=(	
?)

Then

(1 o)(i 0)(1.1+0.(-2) l•0+01 \	fi o\
2 . 1+l . (-2) 2 . 0+1 . 1) - 0	 )
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and

MA(i o)(i 
o)-( 

1 . 1 +O•2	 1 . 0+0• i\ (1 o\
—2 . l+1•2 —2.O+I.l)\O i)

So MA = AM = I. Thus M must be A'

A1.5 FUNCTIONS AND TRANSFORMATIONS

The concept of a function is at the very heart of mathematics and the application of mathematics as a
tool for modeling the real world. Stated simply, a function is any process or program which accepts an
input and produces a unique output according to a definite rule. Although a function is most often regarded
in mathematical terms, this need not be the case. The concept can be usefully extended to include processes
described in nonmathematical ways, such as a chemical formula, a recipe or a prescription, and such
related concepts as a computer subroutine or a program module. All convey the idea of changing an input
to an output Some synonyms for the word function are operator, mapping, and transformation.

The quantities used as input to the function are collectively Called the domain of the function. The
outputs are called the range of the function. Various notations are used to denote functions.

EXAMPLE 11. Some examples of functions are:

I. The equation f(x)=x2 +2x+1 is a numerical function whose domain consists of all real numbers and
whose range consists of all real numbers greater than or equal to 0.

2. The relationship T(V) = 2V is a transformation between vectors. The domain of T is all real vectors, as is
the range. This function transforms each vector into a new vector which is twice the original one.

3. The expression H(x,y) = (x, —y) represents a mapping between points of the plane. The domain consists of
all points of the plane, as does the range. Each individual point is mapped to that point which is the rseclion
of the original point about the x axis.

4. IfAisarnaxandXacolumnmaaiX,theColumflmatrixYfOUfldbymWflply1ngAandXbe
regarded as a function Y = AX.

Graphs of Functions

If x and  are real numbers (scalars), the graph of a flmction y =f(x) consists of all points in the plane
whose coordinates have the form [x,f(x)], where x lies in the domain off. The graph of a function is the
curve associated with the flmction, and it consists of an infinite number of points. In practice, plotting the
graph of a function is done by computing a table of values and plotting the results. This gives an
approximation to the actual graph of f.

EXAMPLE 12. Plot five points for the function y = over the interval [-1. 1].

I	 i	 -	 i	 i
x2I10I1ulI

Plotting the points (x, x2 ) calculated in the table and joining these points with line segments gives an approximation to
the actual graph ofy=x2 . See Fig. Al-i for the plot of the graph.

The plotting resolution is determined by the number of x values used in plotting the graph. The higher the
plotting resolution, the better the approximation.
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Composing Functions

If the process performed by a function H can be described by the successive steps of first applying a
function G and then applying a function F to the results of G, we say that H is the composition of? and C.
We write H = F o G. If the input to the function is denoted by the output H(x) is evaluated by

H(x) = F[G(x)]

That is, first G operates on x; then the result G(x) is passed to F as input.
Composition of functions is not commutative in general; that is, F o G 0 G o F.
The concept of composition is not restricted to only two functions but extends to any number of

functions. For functions that are represented by matrices, composition of functions is equivalent to matrix
multiplication; that is, A o B = AB.

EXAMPLE 13

1. lff(x)=x+2 and g(x)=2x+1,thenf[g(x)]=[g(x)} Z +2r(2.x+ 1)2+2=4x2+4x+3.
2. If

A=( ) and B=(1
)

then

3\f_5 4\	 1 io\AoB=AB=( 2) 2 2)
- 4 4)

The Inverse Function

The inverse of a function! (with respect to composition) is a function, denoted by f, that satisfies
the relationships f' of i and! of' = i, where i is the identity function 1(x) = x. Applying the above
compositions to an element x, we obtain the equivalent statements:

f- I if(x)l =x	 f[f(x)] =x

The inverse operator thus "undoes" the work thatf has performed.
Not every function has an inverse, and it is often very difficult to tell whether a given function has an

inverse. One must often rely on geometric intuition to establish the inverse of an operator.

EXAMPLE 14. Let R be the transformation which rotates every point in the plane by an angle of 300 (in the
positive or counterclockwise direction). Then it is clear that R' is the transformation that rotates every point by an
angle of 30° (a rotation of 300 in the clockwise direction).

Solved Problems

A1.1 Find the distance between the points whose coordinates are (a) (5,2) and (7, 3), (b) (-3, 1) and
(5, 2), (c) (-3, —1) and (-5,-2), and (d) (0,1) and (2, 0).
SOLUTION

(a) D=I(7_5)2+(3_2)222+12

(b) D=I[5_(_3)12+(2_ 1)2 = /(8)2+(I)2



285

(c) D =	 - (_3)12 + [-2— (_l)12 =	 + ()2 =

(d)

A1.2 Derive the equation for a straight line (see Fig. Al-5).

SOLUTION

A straight line never changes direction. We determine the direction of a line by the angle 0 the line makes
with the positive x axis. Then at any point P0 on the line, the angle formed by the line and a segment through
P parallel to the x axis is also equal to 0. Let P0(x0 ,y0 ) be a point on the line. Then if P(x,y) represents any
point on the line, drawing the right triangle with hypotenuse FO-P, we find

tan 0=
x -

The quantity tan  is called the slope of the line and its traditionally denoted by m
We rewrite the equation as

Y—Yo	 Ay
m=— or m=—x—xo

(The term Ay is often called the "rise" and Ax, the "run.") This can be solved fory in terms of x.

A1.3 Write the equation of the line whose slope is 2 and which passes through the point (-1, 2).

SOLUTION

Let P(x, y) represent any point on the line. Then

	

Iy=y-2	 IS.x=x—(—I)=x+l

and  = 2. I7Jsing Ay/Ax = m, we find

or	 y-2=2(x+l)=2x+2

thus y=2x+4.

A1.4 Write the equation of the line passing through P 1 (1, 2) and P2 (3, —2).

SOLUTION

Let P(x,y) represent any point on the line. Then using P1 , we compute
y=y-2 Ax=x —1

To find the slope m, we use P1 and P2 to find

y= -2 - 2= -4 &=3—l=2

Then

M=AY=-2   so Y-2 =-2LIr	 x — l
Then

y-2=-2x+2 and y=-2x+4

A1.5 Show that lines are parallel if and only if their slopes are equal.

SOLUTION

Refer to Fig. A1-18. Suppose that lines 1 and 12 are parallel. Then the alternate interior angles Oland 02are equal, and so are the slopes tan 0 1 and tan O.
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Fig. A1-18 Fig. A1-19

C(-4

Conversely, if the slopes tan 0 1 and tan 02 are equal, so are the alternate interior angles 0 1 and 02.
Consequently lines 11 and 12 are parallel.

A1.6 Let U(2, 3) and L(5, —2) be the upper left and lower right corners, respectively, of a rectangle
whose sides are parallel to the x and y axes. Find the coordinates of the remaining two vertices.

SOLUTION

Referring to Fig. Al-19, we see that the x coordinate of P1 is the same as that of L, namely 5, and they
coordinate that of U, namely 3. So P 1 (5, 3). Similarly, P2 = (2, —2).

A1.7 Plot the points A(l, 1), B(—I, 1), and C(-4, 2). Then (a) show that ABC is a right triangle and (b)
find a fourth point D such that ABCD is a rectangle (see Fig. Al-20).

Fig. A1-20.

SOLUTION

(a) Show that the Pythagorean theorem is satisfied:

=;& +
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Use the distance formula to compute the lengths of the sides of ABC:

=v'[' _(_012 +Ll _(_l)12 = 122 +22

=	 - (_4)]2 + (_l - 2)2 = 1(3)2 + (_3)2 =

= I[1 - (_4)12 + (1 - 2) 2 = 152 + (_)2 =

=26= 2 + 2 =8 + 18

(b) Let the unknown coordinates of D be denoted by (x, y). Use the fact that opposite sides of a rectangle are
parallel to find x and y. Since parallel lines have equal slopes, compute the slopes of all four sides:

Slope 7B 	 =—= I	 SloPe=	 2()4L

Slope = T rr_1	 Slope= —J

Then, for ABCD to be a rectangle

Slope CD = slope AB	 Slope DA = slope BC

or

y-2y.—1-=1 and -=---1x+4	 x—1
This leads to the equations

y-2=x+4	 and y— l= —x+l

or

—x+y=6 and x+y=2

Solving, x = —2 and  = 4.

A1.8 Find the equation of a circle that has radius r and its center at the point (h, k).
SOLUTION

Refer to Fig. A1-21. If P(x,y) is any point lying on the circle, its distance from the center of the circle
must be equal to r. Using the distance formula to express this mathematically, we have

D=/(x—h)2+(y—k)2r

So (x — h)2 + (y - k)2 = r2 , which is the equation of the circle.

A1.9 Given any three points, not all lying on a line, find the equation of the circle determined by them.
SOLUTION

Refer to Fig. A1-22. Let P1 (a 1 , b 1 ), P2 (a2 , b2 ), and P3 (a3 , b3 ) be the coordinates of the points. Let r be
the radius of the circle and (h, k) the Center. Since each point is distance r from the center, then

(aj_h)2+(bik)2p.2

(a2_h)2+(b2_k)2rzr2

(93 —h)2 -f(b3 —k)2 =?



P1 (4i. b,)

Fig. A1-22

12 (AZ. b2)

Fig. A1-21

P3 (a3, b3

This yields, after multiplying and collecting like terms:
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(a2 - a 1 )h +(b2 - b1)k = a
2 - O + b -

(a3 - a2 )h + (b3 - b2)k =!!!-  a + -

These equations can be solved for h and k to yield

—b2)]
2	 d

k__jtdI(02a3)+d2(a3aj)+d3(al —a2)1
2	 d

can be found:

r = /(a 1 - h)2 + (b - k)2

A1.10 Find the equation of the circle passing through the three points P 1 (1, 2), P2(3, 0), and P3 (0, —4).

SOLUTION

As in Prob. A1.9, we find

df=a+b=5	 a2 —a3 =3	 b2—b3=4
d=a+b=9	 a3--a1=-1	 b3—b1=-6
d=a+b=I6	 a1—a2=-2	 b1—b2=2

So

d= 1(4)+3(-6)+0(2)=-14

and

2	 1

-	 28	 28 14

k - 1[5(3) + 9(-1) + 16(-2)] _-26 —13

28	 - 28 = 14

Therefore, the center of the circle is located at

(i	 —13

\ii'	 14
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and the radius is calculated by

r=J(i 1)2 (2+ ) 2 5

A1.1 1 Show that x = r cost, y = r sin  are the parametric equations of a circle of radius r whose center is
at the origin.

SOLUTION

By Prob. A1.8 we must show that x2 +)12 = r2 . Using the trigonometric identity cos 2 I + sin2 I = 1, we
obtain

	

x2 + 	 (r cos t)2 + (r sin t)2 = ?cos2 i + ? sin2 t = ?.(cos2 i + sin 2 :) = r2

A1.12 Show that the parametric equations

a+bt	 c+dt

	

X_e+ft	
e+fi

are the equations of a line in the plane.

SOLUTION

We show that the slope

4_Y_Y2 -Yi
Ax - -

is a constant, independent of the parameter t. So

Y2 —yI - (c+dt2)/(e+ft2)—(c+dt1)(e+ft1)
x2 —x 1 - (a + bt2)1(e+ft2) - (a + bt1)/(e+ft1)

- ce + del2 + cfi 1 + dft2 t 1 - ce - cf:2 - det1 - dft2t1

- ae + aft, + bet2 + b/12 t 1 - ae - aft2 - eb:i - bft2t1

de(t2 —t1)—cf(t2—)de—cf

- be(12 - :) - af(t2 - t) - be - af

So if be - af 0 0, the slope AyJAx is constant, and so this is the equation of a line.

A1.13 Let the equations of a line be given by (Prob. Al. 12)

	

l+t	 2+t
Xj_t

Then (a) plot the line for all values oft, (b) plot the line segment over the interval [0, 2], and (c) find
the slope of the line.

SOLUTION

Making a table of values, we have

It_lI_1I0I1I2I3I
2 1 	 121	 I

	

x 	 1IlI3_3I_2I
3	

I	 I

I	 I	 21I	 2	 5	 —4	 -
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The resulting line is shown in Fig. A1-23.
(a) We observe the following: (1) the line is undefined at I = I, (2) (x, y) -+ (oo, oc) as I -+ 1, (3)

(x,y) -+ (—oo, —co) as: -+ 1, and (4) (x,y) ^ (-1,—I) as f -+ ±oo (see Fig. A1-23).
(b) The interval [0,2] includes the infinite point at I = I. The corresponding region is the exterior line

segment between points P I (1, 2) at : = 0 and P2 (-3, —4) at: = 2 (see Fig. Al-24).
(c) From Prob. Al.l2, the slope ofthe line is, with aI,bl,c=2,dl,eIandf=_I

Ay(I)(I)—(2)(—l) 3

A1.14 Let A = 21 + 7J, B = —31 + J, and C = I— 2J. Find (a) 2A - B and (b) —3A + 5B - 2C.
SOLUTION

Perform the scalar multiplication and then the addition.

(a) 2A—B=2(21+7J)_(_31+j)=(41+ 14J)+(31—J)
=(4+3)I+(14—l)J=71+13J

(b) —3A+5B-2C=_3(21+7J)+5(....31+J)2(I_2J)
=(-61-21J)+(-151+SJ)+(-21+4J)
=(-6-15-2)1+(-21+5+4)J-231—l2J

A1.15 Find x and  such that 2x1 + (y - I)J =yI +(3x+ l)J.

SOLUTION

Since vectors are equal only if their corresponding components are equal, we solve the equations (I)
2x=y and (2) y— 1 = 3x+ I. Substituting into equation (2), we have (2x)— I = 3x+l and —2 =x and
finally y = 2x = 2(-2) = —4, so x = —2 and  = —4.

A1.16 The tail of vector A is located atP(— l, 2), and the head is at Q(5, —3). Find the components of A.
SOLUTION

Translate vector A so that its tail is at the origin. In this position, the coordinates of the head will be the
components of A.

Translating P to the origin is the same as subtracting —1 from the x component and 2 from the y
component. Thus the new head of A will be located at point Q1, whose coordinates (x 1 Yi) can be found by

x1=5—(—l)=6 y1=-3-2=-5

Thus A = 61 - 5J.

A1.17 Given the vectors A = I + 21 and B = 2! - 3.1, find (a) the length, (b) the dot product, and (c) the
angle 0 between the vectors.

SOLUTION

(a) IAI=Il 2 +22 =,/	 IBI= JV+(_3)2 —,/J
(b) A•B=(1+2J).(2L-3J)=(1 .2)+(2.(3)J-2_6—....4
(c) From the definition of the dot product, we can solve for cos 9:

AB-4cos 0 = - =
IAItBI

SoO= 119.74°.
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Fig. A1-23

P, Z(12), t - 0

P2 (-3.

Fig. A1-24
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A1.18 Find the unit vector UA having the direction of A = 21— M.

SOLUTION

A
Since UA =	 it follows that

FAI

A	 21-3.1	 2	 3IAI=I22 +(_3)2 =Vj 	 and	 UA== 
,/j-

A1.19 Show that the commutative law for the dot product

A = B

holds for any vectors A and B.

SOLUTION

Let

	

A=a11+a2J	 B=b11+b2J

So

	

A•B=a1b1+a2b2	 B•A=b1a1+b2a2

Comparing both expressions, we see that they are equal.

A1.20 Show that the distributive law for the dot product

(A + B) . C = A . C + B . C

holds for any vectors A, B, and C.

SOLUTION

Let

A= a l l +a2 J 	 B= b i ll +b2J	 C=c11+c2J

So

A+B=(a1 +b1)1+(a2+b2)J

and

(A + B) . C = (a1 + b 1 )c1 + (a2 + b2)c2 = a 1 c1 + b 1 c 1 + a2 c2 + b2c2

On the other hand

A. C = ac1 + a2 c2	 B . C = b 1 c 1 + b2c2

so

A. C + B . C = a 1 c 1 + a2 c2 + b 1 c1 + b2c2

Comparing both expressions, we see that they are equal.

A1.21 Show that the equation of a line can be determined by specifying a vector V having the direction of
the line and by a point on the line.
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SOLUTION

Suppose that V has components [a, b] and the point P0(x0 , y0 ) is on the tine (see Fig. At-25). If P(x,y) is
any point on the line, the vector POP has the same direction as V, and so, by the definition of a vector, it must
be a (scalar) multiple of V. that is FO P = W. The components of P OP are [x - x0 ,y —yo] and those of fV are
t[a, bJ. Equating components, we obtain the parametric equations of the line:

x—x0 to y—yo=tb	 or	 xat+x0	 y=bt+y0

Fig. Al-25

The nonparametric form of the equation can be determined by eliminating the parameter t from both
equations. So

X - - = y -YO
a	 b

Solving for y, we have

b/	 b
= -X + Yo -

A1.22 Find the (a) parametric and (b) nonparametric equation of the line passing through the point
P0(l, 2) and parallel to the vector V = 21 +J.

SOLUTION

Asin Prob. Al.2l,we find, with a2,br 1, x 0 = 1,andy0 =2, that (a)x= 21+l,y=t+2 and (b)
with

A1.23 Find the parametric equation of the line passing through points P 1 (1, 2) and P2(4, 1). What is the
general form of the parametric equation of aline joining points P 1 (x 1 , y ) and P2 (x2 , Y2)?

SOLUTION

Refer to Fig. AI-26. Choosing V = P1 P 2 = (4— 1)1 +(1 - 2)J = 31— IJ. Then as in Prob. A1.21,
x=31— 1 and y— —e--2. In the general case, the direction vector V is chosen, as above, to be

= (x2 - x 1 )I + (Y2 - Yi )J. The equation of the line is then

X = x 1 +(x2 — x 1 )f	 y =y + (v2 —yi)'

A1.24 Find the number c such that the vector A = I + cJ is orthogonal to B = 21— J.

EI.1I'Iit.I]

Two nonzero vectors are orthogonal (perpendicular) if and only if their dot product is zero. So

A.B=(1+cJ).(21—J)=(I .2)+[c(—l)]2—c

So A and B are orthogonal if  —c = 0 or c = 2.
20- A



294
	

APPENDIX I

Fig. AI-26

A1.25 Compute:
15	 4 1

(a) t0 _i 7)±(2 -	 )
/5 3 I

(b) i 2 3)+(i	 )
/5	 4 i

(c) —I 7)

SOLUTION

(a) Adding corresponding entries, we obtain

(5	 4 1\ (2 —1 3\(5+2	 4—I I+3\(7	 3 4
1 7)k2	 0 I)o+2 —1+0 7+1)2 —t 8

(b) Since the matrices are of different sizes, we cannot add them.
(c) MukuIying each entry by 3, we have

Is	 4 l\(15 12	 3

	

—1 7)	 0 —3 21

A1.26 Let

A=(	
) 

s=( -)

Find 2A-3B.

SOLUTION

First multiply, and then add:

_7\ (6 4\ f —i5 21"	 16-15 4+21\ 1-9 25\2A_3s=2(	 )_3( _2)=o 2)+	 6)o_9 2+6 )-9 8)

A1.27 Determine the size of the following matrix multiplications A . B, where the sizes of A and B are
given as (a) (3 x 5), (5 x 2); (b) (1 x 2), (3 x 1); (c) (2 x 2), (2 x 1); and (d) (2 x 2), (2 x 2).

20-B



and

and

and

A1.30 Compute AB for

(a) A=(	
)

(b) A=(	
)

(c) A=(	
)

SOLUTION

B ()

B(i P9
B_( 7 6 10)
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SOLUTION

(a) (3 x 2); (b) undefined, since the column size of A (2) and the row size of B (3) are not equal; (c)
(2 x I); (d) (2 x 2).

A1.28 Find the sizes of A and B so that AR and BA can both be computed. Show that, if both A and B are
square matrices of the same size, both AB and BA are defined.

SOLUTION

Let the size of A be (m x n) and the size of B be (r x s). Then AB is defined only if r = n. Also, BA is
defined only if s = m. Thus, if A is (m x n), then B must be (n x rn). If A is square, say, (n x n), and B is also
(n x n), then both AB and BA are defined.

A1.29 Given

fl 2
A=f5 1

\6 3

find AT.

SOLUTION

Exchanging the rows and columns of A, we obtain

AT_It 5 6

	

I	 3

(a) Since A is (2 x 2) and B is (2 x 1), then AB is (2 x 1):
S

3\i'-4\	 (2.(_4)+3.7\
2)	 7)l.(_4)+2.7)(i0)

2 3\f-4 5" 12•(-4)+37 2 . 5+3 . 6\	 113 28\
(b) AB =(1 2)
	 7 6)l •(-4)+2•7 I . 5+2 . 6)lO 17)

(2 3\1-4 5	 9"	 1 2 . (-4)+3 . 7 2 . 5+3 . 6 2•9+3I0'\(c) A.B=1 
2)	 7 6 to )1.(-4)+2.7 1 . 5+26 1.9+2.10)

(13 28 48)
 29)
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A1.31 Let

	

( '5A= 	 61	 and	 B=(
2 1)

Find (a) AB and (b) BA.

SOLUTION

	

(a) AB=(5 6	

')=(2-6+1-3 2 . 2+1 5 2 . 1+1 . 8	 l5 9 10

5 . 6+6 . 3 52+65 5 . 1±6 . 81=148 40 531
/3 2)(6 2	

3.6+2.3 3.2+2.5 31+28' 	'24 16 19\

1	 /	 )	 )

	

3 2\	
6•3+2.5+1.2 6 . 2+2 . 6+11	 30 25

(	
)(5 .6) = (3

. 3+5 . 5+8 . 2 3-2+5-6+8 . i) = (50	 )

A1.32 Find the inverse of A =

SOLUTION

	We wish to find amatrix(t)	 so that
\t SJ

(I 2'\(p q'(i 0
3 4)r s) \ O 1

Multiplying, we have

(p+2r q+25\ (1 0

\3p+4r 3q+4s) ko i
Sop + 2r = 1, q + 2s = 0, 3p + 4r 0, and 3q + 4s = 1. Solving the first and third equations we find
p = —2, r= . Solving the second and fourth equations gives q = I ands = -. So

A-'=(	
)

A133 Let G be the function which multiplies a given vector by 2 and F be the function that adds the
vector b to a given vector. Find (a)F+ G, (b)Fo G, (c) GoF, (d) F- and (e) G1.

SOLUTION

If  is any vector, the functions F and G operate on v as F(v) = 2v and G(v) = v + b.

1. (F+G)(v)=F(v)+G(v)=(2v)+(v+b)=3v+b.
2. (F • G)(v) = F[G(v)] = 2[G(v)] = 2[v + b] = 2v + 2b.

3. (G0F)(v)=G[F(y)]=[F(y)]+b=2y+b.

4. We can guess that F' (v) = v. To check this, we set F' tF(v)] = [F(v)] = [2v] = v and
F[F(v)] = 2[F (v)1 = 2[(1)v] = V.

5. We can verify that G- I (v) v - b: G- I [G(v)] = G- I (v + b) = (v + b) - b = V and G[G - '(v)] =
G'(v)+ b = (v - b)+ b = v.

A1,34 Show that A o B = AS for any two matrices (that can be multiplied together).

SOLUTION

The terms A o B and AB produce the same effect on any column matrix X, i.e.. (A o B)(X) = ABX.
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Recall that any matrix function A(X) is defined by A(X) = AX So

(A o B)(X) = A IB(X)1 = A(BX) = ABX

A135 Given that A is a 2 x 2 matrix and b is a vector, show that the function F(X) = AX + b, called an
afline transformation, can be considered as either a transformation between vectors or as a mapping
between points of the plane.

SOLUTION

Suppose that

A=(0h1 a12
\a21 a

and b has components [b 1 , b2 ]. If X is a vector with components [x 1 , x2 ], tb.

(al : aiz)(xi
\a2 a22 j kx2

can be identified with the vector having components [a 11 x1 +a12x2 ,a21 x 1 +ax2 ]. And so AX+b is a
vector.

If X = (x 1 . x2) is a point of the plane, then as a point mapping, F(X) = [ f1(X),f2(.)flJ, whew the
coordinate functionsf1 and f2 are

f1 (X)=a11 x 1 +a 12x2 +b1	 and	 f2(X)=a21x1+ax2+b2

A1.36 Show that for any 2 x 2 matrix A and any vector b the transformation F(X) = AX + b transforms
lines into lines.

SOLUTION

Let x = at +x0 and  = bt +y0 be the parametric equations of a line. With X = (x,y) then

AX_- (0fl at2'\(at+xo\ - .\(a11at+a1ixo+a12b:+a12y0
1 a21 a22 )k,bt+yo)	 a21a:+a2lxO+a22bt+a22yO

So

1(a21a + a22b) + (a21x0 + a22y0 + b2)

This can be recognized as the parametric equation of a line (Prob. Al.21) passing through the point with
coordinates (a 11x0 +a12y0 +b 1 ,a21 x0 +a22y0 +b2 ) and having the direction of the vector v with compo-
nents [a11a+a2b,a21a+a22b].

A1.37 Show that the transformation F(X) = AX + b transforms a line passing through points P1 and P2
into a line passing through F(P1 ) and F(P2).

SOLUTION

As in Prob. AI.23, the parametric equation of the line passing through P1 and P2 o.ssb. wrft*.a as

x=x1 +(x2 — x 1 )t 	 y=y1+(y2—y1)t
As inProb. Al.36 with a=x2 —x 1 and b= y2 — y 1 ,we find that F transforms this line into 	 thcrline.

Now when t = 0, this line passes through the point

(a 11x1 +a12y1 +b 1 ,a21 x +a22y +b2)=F(P1)
and when t = 1, it passes through the point

(a 11 a+a 12b+a11 x 1 +a12y, +bi ,o2i a+a22b+a2jx i +ay1+b2)=F(P2)
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A2.1 THREE-DIMENSIONAL CARTESIAN COORDINATES

The three-dimensional Cartesian (rectangular) coordinate system consists of a reference point, called
the origin, and three mutually perpendicular lines passing through the origin. These mutually perpendi-
cular lines are taken to be number lines and are labeled the x, y, and z coordinate axes. The labels are
placed on the positive ends of the axes (see Fig. A2-1).

Orientation

The labeling of the x, y, and z axes is arbitrary. However, any labeling falls into one of two
classifications, called right- and left-handed orientation. The orientation is determined by the right-hand
rule.
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(a) Right-handed odentatlon. 	 (I,) Left-handed odentatlon.

Fig. A2-2
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The Right-Hand Rule

A labeling of the axes is a right-handed orientation if whenever the fingers of the right hand are
aligned with the positive x axis and are then rotated (through the smaller angle) toward the positive y axis,
then the thumb of the right-hand points in the direction of the positive: axis. Otherwise, the orientation is a
left-handed orientation (see Fig. A2-2).

Cartesian Coordinates of Points in Three-dimensional Space

Any point P in three-dimensional space can have coordinates (x, y, z) associated with it as follows:

1. Let the x coordinate be the directed distance that P is above or below the yz plane.
2. Let the y coordinate be the directed distance that P is above or below the xz plane.
3. Let the z coordinate be the directed distance that P is above or below the xy plane.

See Fig. A2-3.

£

L11X1I,I,
Fig. A2-3
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Distance Formula

If P0(x0 , yo, z0 ) and P 1 (x 1 Yi z1 ) are any two points in space, the distance D between these points is
given by the distance formula:

Dr v'(xi —x0)2 +(y 1 Yo)2 +(z 1 —z0)2

A2.2 CURVES AND SURFACES IN THREE-DIMENSIONS

Curves

A three-dimensional curve is an object in space that has direction only, much like a thread (see Fig.
A24). A curve is specified by an equation (or group of equations) that has only one free (independent)
variable or parameter, and the x, y, and z coordinates of any point on the curve are determined by this free
variable or parameter. There are two types of curve description, nonpararnetric and parametric.

Fig. A2-4

1. Nonparametric curve description.

(a) Explicit form. The equation for curve C are given in terms of a variable, say, x, as

C: y=f(x)	 z=g(x)

That is, y and z can be calculated explicitly in terms of x. Any point P on the curve has
coordinates P[x,f(x), g(x)].

(b) Implicit form. The equations of the curve are F(x, y, z) = 0 and G(x, y, z) = 0. Here, y and z
must be solved in terms of x.

2. Parametric curve description. The three equations for determining the coordinates of any point on
the curve are given in terms of an independent parameter, say, 1, in a parameter range [a, b], which
may be infinite:

x=f(t)
C: y=g(t),	 a<t<b

z = h(t)
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Any point P on the curve has coordinates [f(t), g(t), h(t)].
• Equations of a straight line. The equations of aline L determined by two points P0(x0 , Yo' z0) and

P1 (x j , y 1 , z 1 ) are given by:

nonparametric form

y=m1x+b = (Yi — YO )	 YoX)

L:	
1	 0	 ( 1-

l _YiXo

0

z=m2x+b	
(z1_ z0 ')	 z0x1—z1x0)

10	 (	 10
2

parametric form

xx0+ (XI -x0)t	 y=y0+(y 1 —y0)t	 z=z0+(z1-z0)t
Note that when t = 0, then x = x0 , y = yo, and z = z0 . When t 1, then x = x 1 , y = Yi and
a = z. Thus, when the parameter: is restricted to the range 0 t 1, the parametric equations
describe the line segment P.

Surfaces

A surface in three-dimensional space is an object that has breadth and width, much like a piece of cloth
(see Fig. A2-5).

Fig. A2-5

A surface is specified by an equation (or group of equations) that has two free (or independent)
variables or parameters. There are two types of surface description, nonparametric and parametrics.

Nonpwumetric surface description

(a) Explicit form. The z coordinate of any point on the surface S is given in terms of two free
variables x and y, that is, z =f(x,y). Any point P on the surface has coordinates
(x, y,f(x, y)].



Fig. A2-6
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(b) Implicit form. The equation of the surface is given in the form F(x,v, z) = 0. Here, z is to be
solved in terms of x and y. There is no restriction as to which variables are free. The
convention is to represent z in terms of x and y, but nothing disallows a representation of x in
terms of y and z or  in terms of x and z.

2. Parametric description. The three equations for determining the coordinates of any point on the
surface S are described in terms of parameters, say, s and t, and in parameter ranges [a, b] and
[c, d], which may be infinite:

	

x=f(s,t),	 as:b

	

S: y=g(s,t),	 c < t < d
z = h(s, t)

The coordinates of any point P on the surface have the form [f(s, I), g(s, t), h(s, 1)1.

• Equations )fa plane. The equation of a plane can be written in explicit form as z = ax + by + C
or in implicit form as Ax + By + C: + D = 0 (see Prob. A2.8). The equation of a plane is linear
in the variables x, y, and z. A plane divides three-dimensional space into two separate regions.
The implicit form of the equation of a plane can be used to determine whether two points are
on the same or opposite sides of the plane. Given the implicit equation of the plane
Ax + By + Cz + D = 0, let f( x ,v, z) =Ax+By+Cz+D. The two sides of the plane R, R-
are determined by the sign of f(x,y, z); that is, point P(x0 , yo, z0 ) lies in region R if
f(x0 , y0 , ZO) > 0 and in region R iff(x0 , y0 , z0 ) < 0. If f(x0 , y0 , Z) = 0, the point lies on the
plane. The equations x = 0, y = 0, and z = 0 represent the yz, xz, and xy planes, respectively.

• Quadric surfaces. Quadric surfaces have the (implicit) form Ax2 + By2 + Cz2 + Dxy + Exz +
Fyz + Gx + Hy + Iz + .1 = 0. The basic quadric surfaces are described in Chap. 9.

• Cylinder surfaces. In two dimensions, the equation  =f(x) represents a (planar) curve in the .'
plane. In three dimensions, the equation y =J'(x) is a surface. That is, the variables x and z are
free. This type of surface is called a cylinder surface (see Fig. A2- 6).

EXAMPLE 1. The equation x2 +y2 = 1 is a circle in the xy plane. However, in three dimensions, it represents a
cylinder (see Fig. A2-7).
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Fig. A2-7

A2.3 VECTORS IN THREE-DIMENSIONS

The definition of a vector and the concepts of magnitude, scalar multiplication, and vector addition are
completely analogous to the two-dimensional case in App. 1.

In three-dimensions, there are three natural coordinate vectors I, J, and K. These vectors are unit
vectors (magnitude I) having the direction of the positive x, y, and z axes, respectively. Any vector V can
be resolved into components in terms of I, J, and K: V = a! + bJ + cK.

The components [a, b, c] of vectors V are also the Cartesian coordinates of the head of the vector V
when the tail of V is placed at the origin of the Cartesian coordinate system (see Fig. A2-8).

Fig. A24
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EXAMPLE 2. Let P0 (x0 , Yo ' z0 ) and P 1 (x 1 Yi. z 1 ) be two points in space. The directed line segment P0P defines a
vector whose tail is at P0 and head is at P1.

To find the components of P0P 1 , we must translate so that the tail P0 is placed at the origin. The head of the
vector will then be at the point (x 1 — x0 , y1 — yo, z1 — z0). The components of P0P 1 are then

To—P, = (x1 — x0)i+(y 1 —y0)J+(z 1 —z0)K

Vector addition and scalar multiplication can be performed componentwise, as in App. 1. The magnitude of a vector
V lvi, is given by the formula

Ivi= '++C
For any vector V. a unit vector (magnitude 1) Uv having the direction of V can be written as

The Dot and the Cross Product

Let V 1 = a l l +b i J+c t K and V2 =a21+b2J+c2Kbe two vectors,
The dot or scalar product of two vectors is defined geometricallyas V 1 v2 lvi flY2 cos 0, where 0

is the smaller angle between V 1 and V2 (when the vectors are placed tail to tail). The component form of
the dot product can be shown to be

V 1 V2 = aa2 + b 1 b2 + c1c2

Note that the dot product of two vectors is a number and the order of the dot product is immaterial:
"i . V2 = V2 .. ..This formula enables us to calculate the angle 0 between two vectors from the formula

V, V, -	 a1a2+b1b2+c1c2
COS 0 =	 __________

1V 2 0v2 1 - ______

Note that two vectors are perpendicular (orthogonal) (i.e., 0 = 900) if and only if their dot product
V 1 . V2 = 0. This provides a rapid test for determining whether two vectors are perpendicular. (Equiva-
lently, we say that two vectors are parallel if they are scalar multiples of each other, i.e, V 1 = kV2 for some
number k.)

The cross product of two vectors, denoted V 1 x V2, produces a new vector defined geometrically as
follows: V 1 x V2 is a vector whose magnitude is IV, x V2 = lv i II V2 i sin 0, where 9 is the angle between
V and V2 and whose direction is determined by the right-hand rule: V 1 x V2 is a vector perpendicular to
both V 1 and V2 and whose direction is that of the thumb of the right hand when the fingers are aligned with
V 1 and rotated toward V2 through the smaller angle (see Fig. A2-9).

From this definition, we see that the order in which the cross product is performed is relevant. In fact:

V 1 x V2 = —(V2 X V0

Note also that V x V = 0 for any vector V, since 0 = 00 . The component form for the cross product can be
calculated as a determinant as follows:

I a2 b2 C2

I	 J KI

	

1	 I 1
V 1 xV2 =a 1 b1 cj

- lb 1 C1	 a1
J +	 1K

b2 c2 1 	 a2 Cl

c 1	ai b1

	

c2 1 	 Ia2 b21

1

= (b 1 c2 - b2c i )I + (c 1 a2 - c2a 1 )J + (a 1 b2 - a2b1)K

EXAMPLE 3. For a right-handed Cartesian coordinate system, we have I x .1 = K, J x K = I. 1 x K = —J.
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V2

Fig. A2-9

The Vector Equation of a Line

A line L in space is determined by its direction and a point P0 x0 , yo ' z0) that the line passes through. If
the direction is specified by a vector V = al + bJ + cK and if P(x, y, z) is any point on the line, the
direction of the vector 750P determined by the points P0 , and P is parallel to the vector V (see Fig. A2-I0).
Thus, P = tV for some number t.

Fig. A2-1O
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In component form, we find that (x - x0)1 + (y - y0)J + (z - z0)K = tal + tbJ + icK. Comparison of
components leads to the parametric equations:

x=x0 +af	 y=y0 +bt	 z=z0+ct

In Probs. A2.5 and A2.6 it is shown how the equations of a line are determined when given two points
on the line.

The Vector Equation of a Plane

A vector N is said to be a normal vector to a given plane if N is perpendicular to any vector V which
lies on the plane; that is, N . V = 0 for any v in the plane (see Fig. A2-I 1). A plane is uniquely determined
by specit,'ing a point P0(x0 , y0 , z3) that is on the plane and a normal vector N = n 1 1 + n2J + n 3 K Let
P(x, y, z) be any point on the plane. Then the vector P0P lies on the plane. Therefore, N is perpendicular to
it. So N . P0P = 0.

Fig. Al-il

In component form, we obtain

[n 1 1 + n2J + n3K] [(x - x0)I + (y — y0)J +(z - z0)K] = 0

or

ni(x—x0)+n2(y— YO) +n3 (z—z0)= 0

The equation of a plane can also be determined by specifiing (1) two vectors and a point (Prob. A2.10) and
(2) three points (Prob. A2.1 1). Using vector notation, we can write the distance  from a point P(,ji, ) to
a plane as

In IQ 	 or	
P,Pj

+ "72 + n 	 INI

where N = n 1 1 + n2J + n3K is a normal vector to the plane and P0(x0 . yo' z0 ) is a point on the plane (Prob.
A2.13).
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A2.4 HOMOGENEOUS COORDINATES

The Two-dimensional Projective Plane

The projective plane was introduced by geometers in order to study the geometric relationships of
figures under perspective transformations.

The two-dimensional projective plane P 3 is defined as follows.
In three-dimensional Cartesian space, consider the set of all lines through the origin and the Set of all

planes through the origin. In the projective plane, a line through the origin is called a point of the projective
plane, while a plane through the origin is called a line of the projective plane.

To see why this is "natural" from the point of view of a perspective projection, consider the
perspective projection onto the plane z 1 using the origin as the center of projection. Then a line through
the origin projects onto a point of the plane z = I, while a plane through the origin projects onto a line in
the plane z = 1 (Fig. A2-12).

Line

Projection of
line

FA

v 7, Projection of i
plane	 I

Plane

7
Fig. A2-12

In this projection, lines through points (x, y, 0) in the plane project to infinity. This leads to the notion
of ideal points, discussed later.

Homogeneous Coordinates of Points and Lines of the Projective Plane

If (a, b, c) is any point in Cartesian three-dimensional space, this point determines a line through the
origin whose equations are

x = at

y = bt	 (whercg is a number)

Z = Cl

That is, any other point (at, bi, ci) determines the same line. So two points (a 1 , b 1 , c 1 ) and (a2 , b2 , c2 ), are
on the same line through the origin if there is a number t so that

a2 =a l l	 b2 =b 1 :	 c2 =c1 r	 (A2.1)
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We say that two triples, (a 1 , b 1 , c 1 ) and (a2 , b2 , c2 ), are equivalent (i.e., define the same line through the
origin) if there is some number t so that the equations (A2.1) hold. We write (a 1 , b 1 , c 1 ) (a2 , b2 , c2 ). The
equivalence classes of all triples equivalent to (a, b, c), written as [a, b, c], are the points of the projective
plane. Any representative (a 1 , b 1 , c 1 ) equivalent to (a, b, c) is called the homogeneous coordinate of the
point [a, b, c] in the projective plane.

The points of the form (a, b, 0) are called ideal points of the projective plane. This arises from the fact
that lines in the plane z = 0 project to infinity. In a similar manner, any plane through the origin has an
equation n i x + n?y + n3z = 0. Note that any multiple 1mx + kn2y + kn3z = 0 defines the same plane.

Any triple of numbers (n 1 , n2 , n 3 ) defines a plane through the origin. Two triples are equivalent,
(n 1 , n 2 , n 3 ) (d1 , d2 , d3 ) (i.e., define the same plane), if there is a number k so that d1 = kn 1 , d2 1012,
and d3 = kn3 . The equivalence classes of all triples, [n 1 , n2 , n 3 ], are the lines of the projective plane. Any
representative (d1 , d2 , d3 ) of the equivalence class [n 1 , n2 , n3 ] is called the homogeneous line coordinate of
this line in the projective plane.

The ambiguity of whether a triple (a, b, c) represents a point or a line of the projection plane is
exploited as the Duality Principle of Projective Geometry. If the context is not clear, one usually writes
(a, b, c) to indicate a (projective) point and [a, b, c] to indicate a (projective) line.

Correlation between Homogeneous and Cartesian Coordinates

If (x 1 , y , z 1 ), z1 i4 0 are the homogeneous coordinates of a point of the projective plane, the equations
x =x 1 /z 1 and  =y1/z1 define a correspondence between points P 1 (x 1 , y 1 , z 1 ) of the projective plane and
points P(x, y) of the Cartesian plane.

There is no Cartesian point corresponding to the ideal point (x1, Yi. 0). However, it is convenient to
consider it as defining an infinitely distant point.

Also, any Cartesian point P(x, y) corresponds to a projective point P(x 1  y l , z,) whose homogeneous
coordinates are x 1 = x, Yi y, and z1 1. This correspondence between Cartesian coordinates and
homogeneous coordinates is exploited when using matrices to represent graphics transformations. The use
of homogeneous coordinates allows the translation transformation and the perspective projection
transformation to be represented by matrices (Chaps. 6 and 7).

To conform to the use of homogeneous coordinates, 2 x 2 matrices representing transformations of the
plane can be augmented to use homogeneous coordinates as follows:

f('a b\ 0\ fx
AX=C.c dJOIfy

\0 0 lJ\l
Finally, note that even though we have a correspondence between the points of the projective plane and
those of the Cartesian plane, the projective plane and the Cartesian plane have different topological
properties which must be taken into account in work with homogeneous coordinates in advanced
applications.

Three-dimensional Projective Plane and Homogeneous Coordinates

Everything stated about the two-dimensional projective plane and homogeneous cooruinates may be
generalized to the three-dimensional case. For example, if P 1 (x 1 , Yl ' z 1 , w 1 ) are the homogeneous
coordinates of a point in the three-dimensional projective plane, the corresponding three-dimensional
Cartesian point P(x, y, z) is, for w1 0 0,

Xl	 Yi Zi
5=- y=- z=-

WI	 WI	 WI
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In addition, if P(x,y, z) is  Cartesian point, it corresponds to the projective point P(x,y, z, 1). Finally,
3 x 3 matrices can be augmented to use homogeneous coordinates:

0

(3x3) 0
\	 0
0001

Solved Problems

A2.1 Describe the space curve whose parametric equations are x = cost, y = sin t, and z =
SOLUTION

Noting that x2 +y2 = cos2 t + sin  I =I (see Fig. A2 . 13), we find that the x, y variables lie on a unit
circle, while the z coordinate varies. The curve is a (cylindrical) spiral.

Fig. A2-13

A2.2 Find the equation of a sphere of radius r centered at the origin (0,0,0).
SOLUTION

Let P(x.y, z) be any point on the sphere. Then the distance D between this point and the center of the
sphere is equal to the length of the radius r. The distance formula yields

_0)2+(y_O)2+(z_0)2=r	 or	 x2+y2+z2=r2

This is the (implicit) equation of the sphere.

A2.3 Show that V . V = IV 2 for any vector V.

SOLUTION

If V= aI+bJ+cK, then

V . V = (al + bJ + cK) . (a! + bJ + cK) = a 2 + b2 + c2 = 1V12

A2.4 Let V 1 =21—J+K and V2 =I+J—K. Find (a) the angle between V 1 and V2, (b)avector
perpendicular to both V 1 and V2, and (c) a unit vector perpendicular to both V 1 and V2.

21-A
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SOLUTION

(a) We use the formula

cosO = 
lv i 11V21

Now

1V11 = J2 1 	 =	 l'2I = / 1 2 + 1 2 +(l)2

and

V1 V2 = (2)(1) +(—l)(1) +(l)(—l) = 0

Thus cos 0 = 0, and so 0 = 900. So the vectors are perpendicular.
(b) The vector V 1 x V2 is perpendicular to both V 1 and V2 . So

V 11 xV2 =2 —1 1=	 J—	 J+	 K=-2I—J+3K

(c) Since V 1 x V2 is perpendicular to both V 1 and V2 , we find a Unit vector having the direction of V 1 x V2.
This is

U't- V
1 ,< V2

- lv i x V21

From part (b), we have

1V1 x V21 = J(_2)2 +(_1) 2 +(3)2

So

=1—J+--3--K

A2.5 Find the equation of the line passing through two points P0 (x0 , Yo' z0 ) and P1 (V I , y 1 z1).

SOLUTION

To find the equation of a line, we need to know a point on the line and a vector having the direction of the
line. The vector determined by P0 and P1 , P0 P1 clearly has the direction of the line (see Fig. A2-14), and point
P0 lies on the line, so with direction vector

FOX = (X I —x0)1+(y, —y0)J+(z 1 —z0)K

and point P0(x0 . y0 , z0), the equation is

x = x0 +(x 1 —x0 )t	 y =yo + (yi —yo)t	 z = z0 +(z 1 —z0)l

A2.6 Find the equation of the line passing through P 0 (1, —5,2) and P 1 (6, 7, —3).

SOLUTION

From Prob. A2.5, the direction vector is

= (6— 1)1 + [7— (-5)]J + (-3— 2)K = 51 + 12J - 5K.

Using point P0(l, —5.2), we have x = I +5:, y = —5 + 12,, and z = 2— 5:.

A2.7 Let line segment L 1 be determined by points P 1 (a 1 , b 1 , c 1 ) and P2 (a2 , b2 , c2 ). Let line segment L2

21-B
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be determined by points Q 1 (u 1 , V I, w i ) and Q2 (u21 v21 w2 ). How can we determine whether the line
segments intersect?

SOLUTION

The parametric equations of L 1 are (Prob. A2.5)

x = a + (a2 - ai).c
y = b1 +(b2 -

Z = c1 + (c2 - c1)s

The equations of L2 are

X = u 1 + (u2 - u1)t

Y = v 1 + (v2 - v01

z = w1 + (w2 - w3)t

Equating, we find

(u2 - u i )t - (a2 - a 1 )s = a 1 - u1

(v2 — v 1 )t—(b2 —b 1 )s--b1 V1

(w2 - w 1 )t - (c, - c 1 )s = c 1 - w1

Using the first two equations, we solve for s and f:

- (b1 - v 1 )(a2 - a 1 ) - (a 1 - u 1 )(b2 - b1)

- (a2 - a 1 )(v2 - v 1 ) - (b2 - b 1 )(u2 - u0

(b - v 1 )(u2 - U I) - (a 1 - u 1 )(v2 - v1)

- (a2 - a 1 )(v2 - v 1 ) - (b2 - b 1 02 - u0

We now substitute the s value into equation L 1 and the i value into equation L2 . If all three corresponding
numbers x, y, and z are the same, the lines intersect; if not, the lines do not intersect. Next, if both 0 S S I
and 0	 1, the intersection point is on the line segments L 1 and L2, between P and "2 and Qi and Q2.

A2.8 Show that the equation of a pt..ne has the implicit form Ax + By + Cz ± D = 0, where A, B, and C
are the components of the normal vector.



Fig. A2-15

V 1 xV1
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SOLUTION

The equation of a plane with normal vector N = Al + BJ + CK and passing through a point
P0(zj, Yo, z0) is

A(x—x0)+B(y—yo)+C(z—z0)=O	 or Ax+By+Cz+(—Ax0— BYO —Cz0)=O

Calling the quantity D = (—Ax0 - By0 - Cz0) yields the equation of the plane:

Ax+By+Cz+D,=O

A2.9 Given the plane 5x - 3y + 6z = 7: (a) find the normal vector to the plane, and (b) determine
whether P, (1, 5,2) and P2(-3, —1,2) are on the same side of the plane.

SOLUTION

Write the equation in implicit form as 5x - 3y + 6z - 7 = 0.
(a) From Prob. A2.8, the coefficients 5, —3, and 6 are the components of a normal vector, that is,

N =51— 3J + 6K.
(b) Letf(x, y, z) = 5x - 3y+ 6z - 7. The plane has two sides, R wheref(x. y, z) is positive and R where

f(x, y, z) is negative. Now for point P (1, 5, 2), we have

f(1,5,2) = 5(1) —3(5)+6(2)— 7 = —5

and for point P2(-3, —1,2),

f(-3, —1,2) = 5(-3) - 3(-1) + 6(2) —7 = —7

Since bothf(l, 5,2) andf(-3, —1,2) are negative, P 1 and P2 are on the same side of the plane.

A2.I0 Find the equation of a plane passing through the point P0( 1, —1, 1) and containing the vectors
V 1 = 1 7 J + K and V2 = — I + J + 2K (see Fig. A2-15).

SOLUTION

To find the equation of a plane, we need to find a normal vector perpendicular to the plane. Since V 1 and
V2 are to lie on the plane, the cross product V 1 xV2 perpendicular to both V 1 and V2 can be chosen to be the
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normal vector N (see Fig. A2-15). So

N=V X V2	 I —i l =	 J+	 K=-31-3J+OK

So with N = —31-- 3J and the point P0(1, —1.1), the equation of the plane is

—3(x— l)-3[y--(—l)]+O(z— l)=O	 or	 —3x-3y=O

Finally, x +y 0 is the equation of the plane. This is an example of a cylinder surface, since z is a flee
variable and  = —x.

A2.11 Find the equation of the plane determined by the three points P 0(l, 5, —7), P1 (2, 6. 1), and
P2(0, l,Fig.1).	 -

Fig. A2-16

SOLUTION

To findthe equationpane, we must know a point on the plane and an rmal vector perpendicular to
the plant. 	-

To find the normal vector, we observe that the vectors PO-P,  and Pjlie on the plane,  and so the cross
prodlbe a vector perpendicular to both then vectors and —so woulbe our choice for the noal vector,
that is,

N = P0?1 x P0P

Now

=(2—l)l+(6-5).J+(l — (-7))K = I + J + 8K

and

1P = (0— 1)1 + (I - 5)J + (2— (-7))K = —1— 4.1 + 9K

So

	

I I	 .1 KI

	

1	 1 8=	 I 8I	 1	 lK4lIl7J3K

	

_4 91	
_1	 1-1 -1-1 —4 9
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So N = 411— 17J - 3K, and with point P0(I, 5, —7), the equation of the plane is

41(x - I) - I7(y —5)— 3 Ez - (-)1 = 0	 or	 41x - 17y - 3z 4-23 = 0

A2.12 Show that the equation of the plane that has x, y, and z intercepts A(a, 0, 0), B(O, b, 0), and
C(0, 0, c), respectively, is (see Fig. A2-17) x/a +y/b +z/c = 1..

Fig. A2-17

SOLUTION

As in Prob. A2.1 1, we form the vectors Ak = —al + bJ and A = —al + cK. The normal vector to the
plane is then	 -

I J K

	

N=Ak xA= —a b 0 = b 0	 —a 0	
—a b KbcL+acJ+abK

	

— 0	 j	 0 C	 —a c	 —a 0

The equation of the plane with this normal vector and passing through A(a, 0, 0) is

bc(x - a) + ac(y - 0) + ab(z - 0) = 0	 or	 bcx + acy + abz = abc

Dividing both sides by abc, we have x/a + y/b + z/c = I.

Find the distance from a point P j (x 1 ,y 1 ,z 1 ) to a given plane (see Fig. A2-18).
SOLUTION

Let N = n 1 1 + nJ + n3  be the normal vector to the plane, and let P0(x0 , y0 , z0 ) be any point on the
plane. The equation of the plane is

n i(x—xo)+n2(y—y0)+,,3 (z_20) = 0

The distance D from P 1 (xi, Yi, z 1 ) to the plane is measured along the perpendicular or normal to the plane.
Let LN be the line through P&1  , z 1 ) and having the direction of the normal vector N. The equation of
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\

P1 (xi. Y1. a1)

n

Fig. A2-18

LN is

x = x 1 + nit/

LN: yy1+n2t'/

th

z=z1+n3t,

We first find the intersection point P,(x,,y,,z,) of the line LN e plane. The distance from the point
P1 (x , Yi ' z1) to the plane will be the same as the distance from the point P1 (x 1 ,	 z1) to the intersection point
P,(xj.y,,zj).

Substituting the equations of the line LN into the equation of the plane, we find

n 1 (x1 ±P,iz—x0)+n2 (yt +n2 t — YO) + n3 (z 1 + nit — z0) =

Solving for 1, we have
n1(x1 — x0)+n21 — YO) +n3(z1 —z0) )

LI

Calling this number t,, we find that the coordinates of P, are

x1 =x 1 + n i t,	 y, =Yt +n2t1	z1 =i +n3 :1	 (A2.2)

The distance 	 from P(x 1 ,y j ,z1 ) to P,(x,,y,,z,) is

From equation (A2.2), we obtain
x1 —x 1 =n11	 y,—y1 =n2 ,	 21—%1--n3t1

Substitution into the formula for D yields

D = I(n1:,)2 + (n2:1 )2 + 03:1)2 = itiIIn + " +

or, substituting for fj
—x0)+n2(y1 — YO) +n3(z —zo)I
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We can rewrite this in vector form by observing that

NI=Jn+n+n

and that (x 1 .- x0 , y1 — y0, z1 —z0) are the components of the vector	 So

]NJ	 jNJ
where d = IN .

A2.14 Find the projection VofavectorV onto a given plane in the direction of the normal vector
SOLUTION

From Fig. A2-19, by the definition of (head-to-tail) vector addition (see App. 1), we have
V ±=V or V = V - kN

Fig. A2-19

To find the number k, we use the fact that V, lies on the plane, so N is perpendicular to V, i.e., V, . N =\-O.
So

N = V . N - k(N . N) V.N V.Nor	 k =	 =(since N. N = 1N12)

Then

VP =	 (42.3)

A2.15 Let a plane be determined by the normal vector N = I - J + Ij and a point P0(2, 3 - I).
(a) Find the distance from point P1 (5, 2,7) to the plane.
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(b) Let V = 21 + 3J - K be a vector. Find the projection of V, (in the direction of the normal) onto the
plane.

SOLUTION

(a) The vector PPj = 31—.! + 8K From Prob. A2.13 we have

D 
= IN .	= j(1)(3) + (—I )(-- I ) + (1)(8)I =	 = 4%/3

INI	 /(l)2+(_1)2+(I)2	 ,,,i:

(b) From Prob. A2.14, the projection vector V is given by

VP = V - ()

V.N(2)(I)+(3)(—I)+(_-1)(1) —2
(1)+(_1)2l(l)2	 T

V, =(21+3J—K)—(—)(!—J+K)
= (21 +3J - K) - (— i I +— K) = I + —K

A2.16 Given vectors A and B that are placed tail to tail we define the perpendicular projection of A Onto B
to be the vector V shown in Fig. A2-20. Find a formula for computing V from A and B.

Fig. A2-20

SOLUTION

We first find (see Fig. A2-20)

IVI= IAI cos(0) = Al	
.A B

IAIIBI iii

Using the unit vector

V = IVIUv

Since V and B have the seine direction, we have U,, = U 5 . Hence

AB BAB
V= IV I UB =—_ FBI =-__yB

Now

So

A2.17 Let (3, 1, —3) be the coordinate of point A. Find a point B on the line y = 2x in the xy plane such
that the line connecting A and B is perpendicular to y = 2x.
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SOLUTION 1

Since point B is on y = 2x, it has coordinates (x, 2x, 0). We introduce two vectors V 1 and V2 (see Fig.
A2-21):

V1 = xl + ZxJ

V2 =(3 —x)1+(l —2.x)J-3K

The line connecting A and B is perpendicular to y = 2x if

V 1 . V2 =0

or

x(3 - x) + 2x(l - 2x) = 0

This yields x(l - x) = 0. Since the angle between the line y = 2x and the line from the origin to point A is
verifiably not 90°, we have x 54 0. Hence x = 1, and the coordinates of point B are (1,2,0).

Fig. 42-21

SOLUTION 2

Referring to Fig. A2-21, let A be a vector whose tail is at the origin and whose head is at point A. From
Prob. A2.16, we can see that V is simply the perpendicular projection of A onto V 1 itself. Since
A = 31 + J - 3K and V 1 = xI + 2xJ, the projection V = V 1 is given by

V1
	

- 3X+2X(1J)12J
x2+4x2

This means that the coordinates of pont B are (1,2,0).

A2.18 Let a = Al and b = IBI. Show that the vector

aB + hA
a+b

bisects the angle between A and B.

SOLUTION 1

= aB + bA = abUa + baUA = ——(U
8 + UA)

a+b	 a+b	 a+b

Since vector C is in the direction of the diagonal line of the diamond figure formed by the two unit vectors UA
and U (see Fig. A2-22), it bisects the angle between UA and U, which is also the angle between A and B.
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U.

Fig. A2-22

SOLUTION 2

Let a be the angle between A and C, jibe the angle between B and C, and c = ICI. We have

aB -4- bA
A'C A —a—+ —b oAB+bAA AB+ba

ac	 ac	 ac(a+b)	 c(a+b)

and

aB + bA
B.0 B a+b	 aB.B+bA.Bab+A'B-	 =

bc	 bc	 bc(a+b)	 c(a+b)

Comparing the two expressions we get cos(a) = cos(/J), or a = fl.

A2.19 Prove the formula V1 'V7, = 1V 1 flV2 1 cos(0), where V 1 and V2 are two vectors and 6 is the smaller
angle between V 1 and V2 (when the vectors are placed tail to tail).

SOLUTION

Since V . V = 1V1 2 for any vector V (see Prob. A2.3), we have (see Fig. A2- 23):

1V 1 - V21 2 = (V 1 - V2 ) . (V 1 - V2)
= V 1 (V 1 - V2) - V2 . (V - V2 )	 (Prob. Al.20)
=V 1 V 1 -2V 1 . V2 +V2 . V2	(Prob. Al. 19)

=1V112--2V1.V2+1V212

On the other hand, using the Law of Cosines (see Sect. Al. 1), we have

V1 -V2 j 2 = IV, 11+ V2 2 —2lVjIIV2lcos(0)

Comparing the two expressions we get V1 'V2 = lv i 11V21 cos(6).

,,v

f v, ..v,

Fig. A2-23

A2.20 Use vectors to show that, if the two diagonals of a rectangle area perpendicular to each other, the
rectangle is a square.

SOLUTION

Let the lower left corner of the rectangle be at the origin and the upper right corner be at (x,y) or (x,y. 0).
The two diagonals of the rectangle can be expressed as V 1 = xI + yJ and V2 = xI - 4. When the two
diagonals are perpendicular to each other, we have xr - yy = 0, or x y. Hence the rectangle is a square.
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A2.21 (a) What three-dimensional line determines the homogeneous coordinate point (1, 5, —1)? (b) Do
the homogeneous coordinates (1, 5, —1) and (-2, —10, —3) represent the same projective point?
SOLUTION

(a) The line passes through the origin (0,0,0) and the Cartesian point (1,5,—i). So x = 1, y = 5t, and
z = —t is the equation of the line.

(b) The homogeneous coordinates represent the same projective point if and only if the coordinates are
proportional, i.e., there is some number: so that —2 = (I):, —10 = (5):, and —3 = (-1):. Since there is
no such number, these coordinates represent different projective points.



Answers to Supplementary Problems
Chapter 2

2.42 No, since there is a change in aspect ratio (5/3.5 54 6/4).

2.43 Yes, since 5.25/3.5 = 6/4 = 1.5.

2.44 Present the image at an aspect ratio that is lower than the original.

2.45	 mt i,j, c, rgb[3J;
for (j = O,j <height; j+-4-)

for (i = 0; i < width; i.4-+)

getPixel(i, I, rgb);
C = 0.299'rgb[O] + 0.587*rgb[1] + 0.144*rgb[2];
setPixel(i, j, c);

Chapter 3

3-35
	(a) y=4x+3 x	 (b) y=lx+0 x

11	 2	 2	 2
31	 7	 7	 7

7	 1	 1	 1

	

(c) y=-3x-4 x	 (d) y_--2x+l x

—10	 2	 —3	 2
—25	 7	 --13	 7
—7	 1	 —1	 1

3.36	 1. Compute the initial values. Prior to passing the variables to the line plotting routine, we exhange x and 
coordinates, (x, y) giving (y, x).

dr=y 1 — y2 Inc, =2dy
dy=x1 —x2 12=2(dy—dx)	 - nd -

2. Set (x, y) equal to the lower left-hand endpoint and X d equal to the largest valMe of x. If dx < 0, then
y = x2 , X = Y2 ' Xj = Yi• If dx> 0, then y = x 1 , x =Y1, X =Y2-

3. Plot a point at the current (y, x) coordinates. Note the coordinate values are exchanged before they are
passed to the plot routine.

4. Test to determine whether the entire line has been drawn. If x = X ,,d, stop.
5. Compute the location of the next pixeL If d <0, then d = d+!nc. If d>0, then d = d+Inc2,

y=y+ 1.
6. Increment x: x = x + 1.
7. Prior to plotting, the (x, y) coordinates are again exchanged. Plot a point at the current (x, y) coordinates.
8. Goto step 4.

3.37	 1. Set the initial values: (x 1 , y 1 ) = start of line; (X31 YO = end of line; c = tan-' ((y3 — y 1 )/(x3 —x1));
d = length of dash; c = length of blank

2. Test to see whether the entire line has been drawn. If x 1 x31 stop.

321
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3. Compute end of dash:

= x 1 + d cos()

Y2 Yj +dsin()

4. Send (x1,y1) and (x2,y2) to the line routine and plot dash.
5. Compute the starting point of the next dash:

X  =x,+ccos(x)
Yi Y2 +csin()

6. Go to step 2.

3.38 See Fig. S-I. Solving for U =

x=2cos(ir/4)+O=1.414	 y=lsin(ir/4)+0=0.7071

Solving for 0 = 3t/4:

x=2cos(3n/4)+0 = -1414

Solving for 6 = 51r/4:

x = 2cos(5m/4)+0 = -1.414

Solving for 0 = 7,t/4:

x=2cos(7it/4)+0 1.414

), = I sin(31t/4) + 0 = 0,7071

y = I sin(57t/4) ± 0 = -0.7071

y == 1 sin(77t/4) + 0 = -0.707

Fig. S-i

3.39 (a) Step 3 should be changed to read

x = acos(0)- b sin (0+)+h

y = b sin(0) + a cos(0 + + k
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(b) Step 3 should be changed to read

x=acos(6)—b sin (0-4-) +h

y=bsin(0)+a cos (6+) +k

(c) Step 3 should be changed to read

x = a cos(0) - b sin (O + + h

y= bsin(0)+a cos (0+_ +k

Note that rotating an ellipse 7r/2 requires only that the major and minor axes be interchanged. Therefore, the
rotation could also be accomplished by changing step 3 to read

x=b Cos 0	 y=asin(0)

3.40	 1. Set initial variables: I
ables: a = radius, (h, k) = coordinates of sector center, 9 = starting angle, 02 = ending

angle, and i = step size.
2. Plot line from sector center to coordinates of start of arc: plot (h, k) to (a cos(0 1 ) + h, a sin(01 ) + k).
3. Plot line from sector center to coordinates of end of arc: plot (h, k) to (a cos(82 ) + h, a sin(62 ) + h).
4. Plot arc.

3.41 When a region is to be filled with a pattern, the fill algorithm must look at a table containing the pattern before
filling each pixel. The correct value for the pixel is taken from the table and placed in the pixel examined by
the fill algorithm.

3.42 The human brain tends to compensate for deficiencies in models. For example, although the cube shown in
Fig. S-2 is lacking the visual cue, convergence, it is perceived as a cube. When the choice of aliasing is
inconsistent, the brain either cannot decode the model or can decode it only with difficulty because there is no
one rule that can be learned to compensate for the inconsistencies of the models.

Fig. S-2

3.43	 1. Initialize the edge list. For each nonhorizontal edge, find I /m(= Ax/Ay), y,, y,,,, and the x coordinate
of the edge's lower endpoint.

2. Begin with the first scan line y.
3. If y is beyond the last scan line, stop.
4. Activate all edges with y,,... = y and delete all edges for which y >
5. Sort the intersection points by x value.
6. Fill the pixels between and including each pair of intersection points.
7. Increment by t frn for each active edge.
8. Increment v by I and go to step 3.
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3.44 Overstrike can be eliminated by checking each pixel before writing to it. If the pixel has already been written
to, no point will be written. Or better yet, design scan-conversion algorithms that do not result in overstrike.

Chapter 4

4.19

R0= I	/cos6 —sin6 \	 (cos(-6) —sin(-6) \	 / cosO sin 6\
\smø	 cos 6)	

and	 R_0 
= k,sin(—ø)	 cos(—O)) = I —sine cos ø)

Also

-

	

Cs ins	

—sinB	 cos6 sinG

	

(sine	 cos 6)(_ sin 	 cos O)

- (	 (cos' 0 + sin2 0)	 (cos o sine - sine cos 0) 	 (1 0

	

- (sine cos 0 - cos 0 sin 6)	 (sin 20+ C
	 0)	 )	 .0 1

Therefore, R0 and R_ 0 are inverse. so R_ 0 = Ri'. In other words, the inverse of a rotation by 0 degrees is a
rotation in the opposite direction.

4.20 Magnification and reduction can be achieved by a uniform scaling of s units in both the X and Y directions. If
s- 1, the scaling produces magnification. If s < 1, the result is a reduction. The transformation can be written
as

(x, y) - (tx, sy)

In matrix form, this becomes

()e)=()

(a) Choosing s = 2 and applying the transformation to the coordinates of the points A, B, C yields the new
coordinates A'(O, 0), B'(2, 2), C'(lO, 4).

(b) Here, s = I and the new coordinates are A"(O, 0), B"(, ), C"(, I),

4.21 The line y = x has slope 1 and  intercept (0, 0). If point P has coordinates (x, y), then following Prob. 4.10 we
have

ML 
P—(0 1\(x)_('Y)
- I 0)y -	

or	 ML(x,y)—(y,x)

4.22 The rotation matrix is

	

/	 \
-	 0 I

12- -2

	

R45 =I,/	 I
01

	

IT	 I

	

'0	 0	 1)

The translation matrix is

11 0 1
1 0

\0 0 1
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The matrix of vertices [A B C] is

fl o I
v =I o 1 1

I	 I

(a)

-- I
iT 2

-

	

,/2- "	 "	

I(+l) (_+)

	

R = .J	 ,/	

J	
and	 T1 R45 • V =

	

TT	 2	 2

	

0	 0	 1	 1	 1	 1/

So the transformed vertices are A'(4 + i4). B' (_ Y +	 and C'(I, ,J).
(b)

and	 R45.Tt.V=[.[	 2)

The transformed coordinates are A"(,/2-,./2-), B"(0, and C"(.J12, 3,//2). From this we see that the
order in which the transformations are applied is important in the formation of composed or concatenated
transformations (see Fig. S-3). Figure S.3(b) represents the triangle of Fig. S-3(a) after application of the
transformation T1 . R45 ; Fig. S-3(c) represents the same triangle after the transformation R45. .

(a)	 (b)	 C',

Fig. S-3

4.23 To determine the coordinates of the displaced object from the observer's point of view, we must find the
coordinates of the object with respect to the observer's coordinate system. In our case we have performed an
object translation T, and a coordinate system translation T. The result is found by the composition 7',. 7',, (or
7', . 7',,):

(x\ fx+o\	 fx+a—a\ Iyx
I	 I I-* I	 I I-3. I	 I = I\y J	 \y+bj	 y+b—b) \

So the coordinates have remained the same.
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4.24	 We express the general form of an equation in the x'j1 coordinate system as F(x',)') = 0. Writing the
coordinate transformation in equation form as

x' = q(x, v)	 y' = r(x. y)

and substituting this into the expression for F, we get

F(q(x) ,), r(x,y)) = 0

which is an equation in xy coordinates.

4.25

SOLUTION 1

Let

	

V1 = tI + lJ	 and	 V2 = 11 + iJ

We have

Ti, Tv, (xy) = T1 (x + i,y + t) = (x + 1,2 + ç .y + 1y2 +

and

Tv, (x, y) = T, (x+ ç ,v + i,) = (x + t, + z.y + i,, + t)

Since

	

V1 + V2 =	 + 4)1 + (1)'.+ t)J

we also have

T+i,(x, y) = (x + i, + t y + 1, + t)

Therefore

Ti, Ti, = T Ti, = TV,+ v,

SOLUTION 2

Let

	

V1 = tI + ci	 and	 V2 = tt I-

and express the translation transformations in matrix form

(1 0	 (1 0
Ti, =	 I c I	 and	 Ti.. = ( 0 1

	

\0 0 1/	 \0 0 1

we have

	

/1 0 t\ (I 0 t\	 /1 0
Tv , • Ti, = f 0 1 c I ' 0 I ç J = 1 I i +

0	 I,, \0	 0 1,!	 \0 0	 1

and

	

/1 0t '	 ( 1 0 t \	 (1 0	 + t
Ti, = ( 0 1 t,	 • 0 I t	 = 0 1	 +

	\0 0 1) \0 0 1)	 \0 0	 1

Also since

V1 + V2 = ( t + t)I ± ( 'i, +
27-P
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we have

'0T+ = (0 I t, +t
0	 1	 J

Therefore

TV S	 =	 TV, =

4.26

SOLUTION 1

Since

S	 S.j (x,y) = Sb(cx, dy) = (ocx, bdy)
S j S,b(x, y) = Sä(ax, by) = (car, dhy)

S,,(x,y) = (ac,x, bdy)

we have Sb S = S	 S,,,1.

SOLUTION 2

Express the scaling transformations in matrix form

(a 0\	 Ic o\	 (ac 0

	

= 
0 b)	 = o a)'	

and	 = 0 bd

Since

	

\ 1 c 0\	 f a' o\
Sb'Sd=(O b)0 a)o bd)

and

	

o\ í a 0'	 (Ca 0\
S d .S b = (Od)'Ob = \ 0 db)

we have	 S = 3 ,a S,,, ,,, =

4.27 Express the rotation transformations in matrix form

= \,
(cos(a) —sin(a) \

sin()	 cos())	
and	

R = ( costfl) —sin(fl) \
, sin(fl)	 cos(fl))

we have

R R
- (cos(a) —sin(n) ' (cos() —sin(/J)

- sin(a)	 cos(n)) \. sin(/1)	 cos(fl)
- (cos(cc) cos(fl) - sin(n) sin(fl) —cos() sin(fl) - sin() cos(p)

sin(a) cos(fl) + cos(n) sin(fl) —sin(n) sin() + cos(c) cos(fl)

and

R 
R- (cos(/J) —sin(/) ' (cos(a) —sin(n)

- .sin(J3)	 Cos(fl)) \. sin(cc) 	 cos()
- (cos(fl) cos(a) - sin() sin(n) —cos(p) sin(o) - sin(J3) cos(a)

- . sin(fl) cos() + cos(fl) sin(n) —sin(fl) sin(a) + cos(/1) cos()

Using trigonometric identities

cos( + fi) = cos() cos(fl) —sin(a) sin(fl)
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and

sin( + /3) = sin(a) cos(fl) + cos(a) sin(fl)

we have

(cos(a + I) —sin(a + /3) \R -Rfl = R •R = sin( +fl)	 cos(a +fl)) 
=

4.28 First express scaling and rotation in matrix form

=

	

(0

S.. 0 \	 and	
fcos(9) —sin(0)

	

Sy )	 R0 = 
sin(6)	 cos(0))

we have

	

fs	 0 \ (cos(8) —sin(0) \	 fscos(0) —ssin(0)S,	 = ( 0	 sin(0)	 cos(0)) = s sin(6)	 s cos(0))

and

— (cos(0) —sin(0) \ fs 0 \	 I cos(0)s	 —sin(U)s
R0	

— sin(0)	 cos(0))	 o Sy	 sin(0)s,	 cos(0)sy)

In order to satisfy

= R0

we need

s, sin(0) = sin(0)s,

This yields 0 = nit, where n is an integer, or	 ;, which means that the scaling transformation is uniform.

4.29 No, since

Ii a \ f i 0\ 
(I+ab a).(1 a)

(o i) '	i)	 b	 1

and

/l O \ fi a\	 11	 a
b i)o l) = b ba+l)^(b )

4.30 A rotation followed by a simultaneous shearing can be expressed as

(cos(0) —sin(0) ' (1 a'\ — (cos(0) — b . sin(0) a cos(0) —sin(0)
sin(0)	 cos(0) )	 b 1) — k sin(0) + b . cos(9) a sin(0) + cos(0)

On the other hand, a simultaneous shearing followed by a rotation can he expressed as

(1 a'\ (cos(0) —sin(0) \ — (cos(0) + a sin(0) —sin(0) + a- cos(0)'
k. b 1) \ sin(9)	 cos(0) ) - 1 b cos(0) + sin(0) —b sin(0) ± cos(0)

In order for the two composite transformation matrices to be the same, we need

cos(0) — b . sin(0) = cos(0) + a . sin(0)

or

sin(9) = a sin(0)

which means 0 = nit, where n is an integer, or a = —b.
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4.31 Consider the following sequence of rotate—scale—rotate transformations

(cos(a) —sin() \ (s 0 \ (cos(fi) —sin(/)
R . S	 •R 

= sin(a)	 cos(a))	 0 s) ksin(fl)	 cos(fl)

- (cos(oc) cos(fl)s,—sin(co sin(fl)s, - cos(a) sin(fl)s - sin(s) cos(/3)s
- 

sin(s) cos()s + cos(s) sin(fl)s —sin(s) sin(/3)s + cos(s) cos(P)s

By equating the composite transformation matrix on the right-hand side to the matrix for a simultaneous
shearing transformation

(1 a
b I

we have four equations that can be solved for parameters a, fl, s and si,.

4.32 Consider the following sequence of shearing and scaling transformations:

	

(I a'\(s 0' ) (l 0	 (s+abs, a.s
	O 1) \0 s	 b 1)	 sy	 Sy

By equating the composite transformation matrix on the right to

R- ( cos(0) —sin(0)

	

- 
sin(9)	 cos(0)

we have

	

sin(0)	 sin(U)

	

a = -, b = -,	 =
	cos(0)	 cos(0)	 cos(0)	

s, = cos(0).

4.33 Consider the following sequence of shearing transformations:

	

(1 a j '\
)

(1 0\(1 o2	(1+a1b (1+a1b)a2+a1
\ 0 1	 1)	 0 l)k	 b	 ba2+1

By equating the composite transformation matrix on the right to

	

R	 (cos(6) —sin(6)

	

8 -- 1\ sin(9)	 cos(O

we have

a1 = a2 
= cos(0) -and
	 b = sin(0)

sin(0)

4.34 Let CTM be the composite transformation matrix representing the concatenation of n basic transformation
matrices. We prove, by mathematical induction on n, that CTM,, is always in the following form

(a b c
Id e f
\0 0 1

n = 1: The basis case is true since CTM 1 is simply a basic transformation matrix, which fits into the given
template.

n = k: Suppose that CTM k is indeed in the specified form.

(ak b Ct
CTM=(d et ft

\0 0 1
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n = k -4- 1: We now show that CTMk+i is in the same form:

(a b	 (a

CTMk+i = I d e JICTMt=Id
\0 0 1)

(a . ak+bdk a.bt-l-b.e*

= I da+e•d d.bk+e.ek

"	 0	 0

j

( ak bk Ck

Id* 4 1k

 0 0 1
0 • Ct + b IL + C
d CL + e lk +1

435 Let P(x',y') be the transformation of P1 (x 1 , y i ) and P(4,y) be the transformation of P2 (x2 ,y2). Also let
the composite transformation be expressed as

(a b c
(d e f
\0 0 1

we have

x=ax1+by1+c y'=fr1+ey1+f

and

x=ax2+by2+c j4=ir2+ey2+f

Now consider an arbitrary point P(x,y) on the line from P1 to P2 . We want to show that the transformed P,
denoted byP(r',/), wherex' = ax+by+c and }/ = dr+ey+f,ison the line between P and P.Inother
words, we want to show

X—X

which is
dr2 +ey2 +f–dr 1 –y –fd2+ey2+f–Lr–ey–f
ax2 +by2 +c–ax 1 –by1 – c ar2 + by2 + c – ax – by – c

and is

d+e)'2Y d+e-
x2 — xI 	xl – x

a + b)'2 - Yi - a -I-
x2 —xI	xZ—x

Since (x, y) satisfies
Y2 – Yi _. Y2 –y

X2 -X 1 X2 -X

we have established the equality that shows F' being on the line between P and P.

Chapter 5

5.20 From Prob. 5.1 we need only identify the appropriate parameters.

(a) The window parameters are wx = 0, wx, = 1, wy = 0, and wy = 1. The viewport parameters
are vx, = 0, vx = 199, VYmj = 0, and vy. = 639. Then; = 199, s, = 639, and

-	 /199	 0 0
w=( 0 639 0

\o	 01

(b) The parameters are the same, but the device y coordinate is now 639 - y (see Prob. 2.8) instead of they
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value computed by W in (a)

1199	 0	 o\
0 —639 639)

\ 0	 0	 1/

5.21	 If s	 s, then

- VX,rn, = V.Yfl... - VYmm	
or	 - "min - Vy -

— WX	 Wy,,. —	 WX,,. — WX,,,,,, 	 VX,,... —

Inverting, we have a = a,,.
A similar argument shows that if the aspect ratios are equal, a = a,,, the scale factors are equal, s = si,.

We form N by composing (1) a translation mapping the center (I, I) to the Center (,) and (2) a scaling about
C(. ) with uniform scaling factor s = , so

N = S1110

'.2" I

	

ITO	 2o

	

=Io	 1110
It	 2011
0 l)\O

o 
where	 v=—  I — J
00 Z)

1	 I I_Il)	 I	 2
211	 tO	 5

0	 iJ	 \o 0 1

5.23 Let the clipping region be a circle with center at O(h, k) and radius r. We reduce the number of candidates for
clipping by assigning region codes as in the Cohen—Sutherland algorithm. To do this, we use the
circumscribed square with lower left corner at (h — r, k — r) and upper light corner at (h + r, k + r) to
preprocess the line segments. However, we now have only two clipping categories—not displayed and
candidates for clipping. Next, we decide which line segments are to be displayed. Since the (nonparametric)
equation of the circle is (x — + (y — k)2 = r2 , the quantity K(x,y) = (x — h)2 + (y — k)2 — r2 determines

whether a point P(x,y) is inside, on, or outside the circle. So, if K 0 for both endpoints P 1 and P2 of a line
segment, both points are inside or on the circle and so the line segment is displayed. If K > 0 for either P 1 or

or both, we calculate the intersection(s) of the line sement and the circle. Using parametric representa-
tions, we find (App. 1, Prob. A1.24) that the intersection parameter is

-s +	 L2C

V

where

L2 = (X2 — x 1 )2 +(y2 Yi)

S=(x —h)(x2—x)+(y1 —k)(y2—y0

C=(x 1 —h) 2 +(y 1 —k)2—?

If 0	 i	 1, the actual intersection point(s) I(., .2) is (are)

=x 1 +t1(x2 — x1) 	.2=YI+tI(Y2—Y0

So, if K > 0 for either P 1 or P2 (or both), we first relabel the endpoints so that P 1 satisfies K > 0. Next we

calculate t1 . The following situations arise:

S2 — L2 C <0. Then t1 is undefined and no intersection takes place. The line segment is not displayed.

S2 — L2 C = 0. There is exactly one intersection. If t1 > I or i < 0, the intersection point is on the
extended line, and so there is no actual intersection. The line is not displayed. If 0 < t, I. PP2 is

tangent to the circle at point I, so only I is displayed.

S2 — L2 C> 0. Then there are two values for t, !tl Iid tI.!f 0 <	 It < I, the line segment 14 4 is

displayed and the segments (assuming tt > i) P 1 1 and I+P2 are clipped. If only one value, say, It,
satisfies 0 < < 1, there is one actual intersection and one apparent intersection. Since in this case P2 is
either point 1 or inside the circle, P 1 1 is clipped and j+p2 is displayed. If it, ij- > I or it, f <0, then

P 1 "2 is not displayed.

2.

3..



0

0

0

0 0

332
	

ANSWERS TO SUPPLEMENTARY PROBLEMS

5.24 Following the logic of the Sutherland—Hodgman algorithm as described in Prob. 5.14, we first clip the
"polygon" P I P, against edge AB of the window:

1. . We first determine which side of Th the points P1 and P2 lie. Calculating the quantity (see Prob.
5.13), we have

C=(x2 —x1)(y—y1)—(y2 —y1)(x—XI)

With point A = (x,y1 ) and point B = (x2 42 ), we find C 8 for point P1 and C = 2 for point P2 . So
both points lie on the left of AB. Consequently, the algorithm will output both P 1 and P2.

2. . Setting point B = (x,y 1 ) and C = ('242), we calculate C = 13 for pointP and C = —3 for point
'2. Thus P1 is to the left of BC and P is to right of BC. We now find the intersection point J of P P

with the extended line BC. From Prob. A2.7 in App. 2, we have I, = (4 U 3' 3 ). Following the algorithi.
points P and 1 are passed on to be clipped.

3. . Proceedings as before, we find that C = 2 for point P 1 and C = 6 2 for point I. So both points lie to
the left of CD and consequently are passed on.

4. DA—. Setting point D=(x 1 , y 1 ) and A =(x2 , y2 ),we find C= —3 for P, and C= 10 for ! 1 . Then P lies to

	

the right of DA and 11 to the left. The intersection point of	 with the extended edge DA is
12 = (, 2 ). The clipped line is the segment16

Chapter 6

6.9	 From Prob. 6.2, we identify the parameters

V=aI+bJ+cK=1+J+K

iVI=a2+b2+c=I12+12+I2='./
= fb -+ ,2 = ,/ 1 2 -+12 =

—I	 —1	
0

0	 0
AV	 72

6.10 From Prob. 6.5, AVN =A'	 We find AV first. From Prob. 6.2 we identify the parameters lvi =

A	
0

,,,

0

Then



2	 2	
0

0	 0	 0

I	 1	 1

2	 2
0	 0	 0

1	 1

0

0
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ForA, we have INI = .f6, A= ,/, a= 2, b= —1, and c= —1. So

176 
0

	

2	 —1
= 7276 172= 176 0

	

2	 1

7276 T2
	0 	 0

Note that V' = Av N .V=A .A	 so that V'=YN. In other words, the

image of V under 4VN is not the vector N, but a vector that has the direction of N.

6.11 This follows from comparing the matrices A with 4 from Prob. 6.2.

6.12 If we place vectors V and N at the origin, then from App. 2, V x N is perpendicular to both V and N. If 0 is
the angle between V and N, then a rotation of 00 about the axis L whose direction is that of V x N and which
passes through the origin will align V with N. So AVN = ROL.

6.13 As in the two-dimensional case in Chap. 4, we reduce the problem of scaling with respect to an arbitrary point
P0 to scaling with respect to the origin by translating P0 to the origin, performing the scaling about the origin
and then translating back to P0 . So

-
S%.S,,S,,P0 - —Po	 '—Po

Chapter 7

7.16 From Prob. 7.5, we need to evaluate the parameters (a, b, c), (n 1 , n2 , n,), (d, d0 , d) to construct the
transformation. From the equations in Prob. 7.6, part (b) [denoting the principal vanishing points as
Pi (xi ,yi ,zj ),P2(x2 , y2 , z2),andP3 (x3 , y3 , z3 )],we find a=x2 (or x3 )b=y 1 (or y3 ), and c=z 1 (or z2 ). Also

d	 d	 dn I =— n2=	 n3=x1 —a	 z3—c
To find d, d0 , and d 1 , we note (App. 2, Prob. A2.13) that the distance D from the point C(a, b, c) to the plane
can be expressed as D = IdI/INI, where INI is the magnitude of N. Since we need only find the direction of
the normal N, we can assume INI = I. Then d = ±D. The choice ±, based on the definition ofd in Prob. 7.5,
is dependent on the direction of the normal vector N, the reference point R0 , and the center of projection C.
Since these are not all specified, we are free to choose, and we shall choose the + sign, that is, d = D. Finally

	

d1 =n 1 a+n2b+n3 c	 and	 d0=d+d1

7.17 We use the coordinate matrix V constructed in Prob. 7.1 to represent the unit cube.

(a) From Problem 7.14, the isometric projection matrix Par is applied to the coordinate matrix V:

/3/l/	 /l/3/	 /
o V3 2V3 2V3 \13 2V3 2V3 2V3

Par.V= 0

0



I	 °'I,I,I,

F'

-I l--

G.

 S-4

D,	 C'

I
/

A'	 A

Fig. S-S

F'	 0'
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This is the matrix of the projected vertices, which can now be read off (see also Fig. S-4).

	

A'=(O,O,O)	 E'=(.00)

B' =	 0, o)	 F' = ( ^ 3̂', - ^, o)

C, 
(i3
/o)	 G'= 

i3 	 0)

= (	 ,	 , o)	 H' = (2. o,

(b) To produce a dimetric drawing, we proceed, as in part (a), by using the dimetric transformation Par from
Prob. 7.15. Choosing the projection ratio of:1:1 (i.e., 1= ), we have

vfi0

Par =[0

The projected image coordinates are found by multiplying the matrices Par and V:

0	
2v + ./	 /i ,/i4 1-14 2 / + ,/i ,J' + 'Iii

	3 	 6	 6	 3	 6	 6	 3

	

Par .V= 0 0	 0 -	 -	 0

	

2	 2	 2	 2
	00 	 0	 0	 0	 0	 0	 0

	

11	 1	 1	 1	 1	 1	 1
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The image coordinates are (see Fig. S-5)

A' = (0,0,0)

B' =
 (, 

o, o)

(2v :
	

, o)

(^)

E'= ,/_1 4
E'

F'= 	 o)

G' = 
(2±
_6 ' _

2 , o)

=(''H'	 .0.0)

7.18 Since the planes we seek are to be located at the origin, we need only find the normal vectors of these planes
so that orthographic projections onto these planes produce isometric projections. In Prob. 7.14, we rotated the
xyz triad first about the x axis and then about the y axis to produce an isometric projection onto the ..y plane.
Equivalently, we could have tilted the xv plane (and its normal vector K) to a new position, thus yielding a new
view plane which produces an isometric projection with respect to the (unrotated) xyz triad. Using this
approach to find all possible view planes, we shall use the equations from Prob. 7.14 to find the appropriate
rotation angles. From the equations

	

sin  0, —cos2 O = 0	 cos2 8,, = 1 [sin2 O + I]

we find the solutions

sin 0, = ±,	 cosO = :ir^	 and	 sinO,, = ±y,	 cost),, =

From Chap. 6, Prob. 6.1, part (b), the matrix that produces the tilting is

(	 cosO	 0	 sinO,, 	 ) 
R0, . R0 =	 sin 0. sin 0,	 cost), — sinOcosO,

—cos O, sin 0. sin V.	 cost), cos

Applying this to the vector K = (0, 0, I), we find the components of the tilted vector to be

x = sin 0,,	 y = —sin 0. cos 0,.	 z = cost), cost),,

Substituting the values found above, we have eight candidates for the normal vector N = xl + yJ + zK, where

X±\/	 =±c	 =±I
However, both N and —N dine normals to the same plane. So we finally have four solutions. These are the
view planes (through the origin) with normals

N 1 =	 (1 + J + K)
	

N, = (I - J + K)

N2 = I(1+J+K) N4 = 4 (1+ J - K)

Chapter 8

8.11	 Referring to Fig. 8-7 (and Prob. 8.4) we call CR the vector having the direction of the line from the center of
projection C to the window corner R. Similarly, we call CL the vector to the window corner L. Then:

1. Top plane—determined by the vectors 1, and CR and the reference point R1

2. Bottom plane—determined by the vectors I and CL and the reference point L1

3. Right side plane—determined by the vectors J q and OR and the reference point R1
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4. Left side plane—determined by the vectors Jq and CL and the reference point Lf
5. Front (near) plane—determined by the (view plane) normal vector N and the reference point Pf
6. Back (far) plane—determined by the normal vector N and the reference point Pb

8.12 Suppose that the plane passes through point Ro(x0 ,y0 , Z) and has a normal vector N = n 1 1 + n 2J + n 3 K Let
the points P1 (x , , z 1 ) and P2 (x2 , Y2. 2) determine aline segment. From App. 2, the equation of the plane is

n 1 (x - t) + n2 (y _ y ) + n3(z -Z0) = 0
and the parametric equation of the line is

	

X = x 1 + (x2 –x 1 )t	 y = y + (Y2 –y1 )t	 z = z1 + (z2 - z)t

Substituting these equations into the equations of the plane, we obtain

n i[x i + (2 - x 1 )t - Xo] + n2 1y 1 + (Y2 —y i)1 Yo] + n31z1 + (z2 - z 1 )t - z01 = 0
Solving this for t yields the parameter value t1 at the time of intersection:

- n(x j — x0)+n2(y1 — yo) +n3(z1 —20)

- n1 (x2 - x 1 ) + n22 - Yi) + n3(z2 - z)
We can rewrite this using vector notation as

N-R0P1

'

The intersection points I(x,, y,,, z) can be found from the parametric equations of the line:

	

X1 = x 1 +(x2 - x i)t,	 y, = Yi + (y2 –y)t,	 z; = z + (22 —z)t,

If 0	 t1 < 1, the intersection point I is on the line segment from P1 to P2 ; if not, the intersection point is on
the extended line.

Chapter 9

9.9	 Referring to Fig. 7-12 in Chap. 7, we define a vertex list as

V = {ABCDEFGH}

and an explicit edge list is:

E = (AB, AD, AF, BC, BG, CD, CH, DE, EF, EH, TG— , Gil)
The cube can be drawn by drawing the edges in list E. Referring to Prob. 9.2, we note that a typical polygon,
say, P 1 , can be represented in terms of its edges as

P1 = (AB, AD, BC, CD)

The polygons sharing a specific edge can be identified by extending the edge's representation to include
pointers to those polygons. For example:

AB–*P 1 ,P4	AD–.P,P3

9.10 The knot set can be represented as t0 , t0 + L. t0 + 2L,	 On the interval t . = to + (I - 1)L to
= t0 + (i + l)L, we have

B,1(x)–	 x— [to +(i — l)L]	
B4O(x)	

[to +(i+ l)L] – x

(t0 + iL) - [t + (I - 1)L]	 ^ 
ft0 + (i + l)L] - (t0 + iL)Bi+10

On the interval [t,, 	 that is, to +(i - 1)L <x t0 + IL, we have B4O(x) = I and B +10(x) = 0. On the
interval [t,+, t, 2 1, that is, t0 + iL <x < t0 + (i + 1)L, we have B 0(x) = 0 and B,1 o(x) = 1. Elsewhere both
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B4O (x) = 0 and B11 0 (x) = 0. So

x - to +(i - I)L

L
B11 (x)= 10+(i+l)L-x

L
0

t0+(i- l)L	 t0+iL

to + iL	 + (i+ l)L

elsewhere

on

on

9.11	 From the definition of a B-spline, B 3 (x) is nonzero only if t1 x < t.. In terms of the given knot set, this
equates to i x i + 4. With x = 5.5, B 3 (5.5) is nonzero for I = 2, 3, 4, and 5. Now

B,3(5.5)
- (5.5)-i	 (i+4)-(5.5)

B, 2 (5.5) + 
(i + 4)- (1 + 

1)Bi+12(5.5)

or

B, 2(5 5) 
_(5.5) 

' B 2 (5.5) + -	 5B11,2(5.5)
3	 3

Starting with i = 2,

B23 (5.5) = B2,2(5.5) +	 B32(5.5)

Now B22(x) is nonzero if 2 <x < 5. Thus B22 (5.5) = 0, and so B23 (5.5) = (0.5/3) B32(5.5). Because
B32 (x) is nonzero for 3 <x < 6, we find that

B32 (5.5)	 (55) + 6 655B41(5.5)5 -3
Now B31 (x) is nonzero if 3 x 5. So B3 . 1(5.5) = 0. Now B4.1 (x) is nonzero if 	 x 6. Thus

B32(5.5) = 2 B41(5.5)

Now

B4,1(5-5) - 
(5.5)- 4 

B4 (5.5 ) + 6-5
6-(5.5) B50(5.5)

5-4
Since B4,0 (x) is nonzero if 4 - x 5, we find that B40(5.5) = 0. So

B41 (5.5) = jB5,0(5.5)

However, B50(x) = I if 5 x 6. So B5 (5.5) = 1, B41 (5.5) = 0.5(1) = 0.5, and B32(5.5) =
(0.5/2)(0.5) = 0.25/2, and finally

B23 (5.5) =	 = 0.125 
= 0.0208333

The computations for B3,3 (5.5), B43 (5.5), and B53 (5.5) are carried out in the same way.

Chapter 10

10.25 The properties of parallel projection can be used to simplify calculations if the objects to be projected are
uansformed into "new objects" whose parallel projection results in the same image as the perspective
projection of the original object.

10.26 Since the Z-buffer algorithm changes colors at a pixel only if Z(x,y) <Z.(x,y), the first polygon written will
determine the color of the pixel (see Prob. 10.7).

10.27 A priority flag could be assigned to break the tie resulting in applying the Z-buffer algorithm.
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10.28 A system that distinguishes 224 depth values would require three bytes of memory to represent each z value.

Thus 3 x 1024 x 768 = 2304 K of memory would be needed.

10.29 The scan-line method can take advantage of (a) scan-line coherence, (h) edge coherence, (c) area coherence,

and (d) spatial coherence.

10.30 Scan-line coherence is based on the assumption that if a pixel belongs to the scan-converted Image of an
object, the pixels next to it will (most likely) also belong to this object.

10.31 Since this figure is a polygon, we need only find the maximum and minimum coordinate values of the vertices
A, B, and C. Then

= 0	 Xrnax = 2

Ymrn = 0 Yrnx = 2
Zm=2

The bounding box is shown in Fig. 10-26.

10.32 Horizontal line segments (v i. 	 lie on only one scan line; they are automatically displayed when
nonhorizontal edges are used in the scan-conversion process.

10.33 We search the z coordinates of the vertices of the polygon for the largest value. zm . The depth of the polygon

is then z,,.,.

10.34 Area coherence is exploited by classifying polygons with respect to a given screen area as either a surrounding
polygon, an intersecting polygon, a contained polygon, or a disjoint polygon. The key fact is that a polygon is
not visible if it is in back of a surrounding polygon.

10.35 When using a hidden-surface algorithm to eliminate hidden lines, we set the fill color of the polygons,
determined by the lines, to the background color.

Chapter 11

11.25 Let W, H, D, and P be defined in the same way as in Prob. 11.3. We can calculate saturation using
D  P/(W x H+D x P).

11.26 The color-sensitive cones in our eyes do not respond well to low intensity light. On the other hand, the rods
that are sensitive to low intensity light are color blind.

11.27 Yes. We can use

Z'	 Y=	 Z,	 Z=Z
l—x—y	 l—xy

11.28 The Y in CM)' means yellow, whereas the Y in Y!Q represents luminance.

11.29

N
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1130 The parametric representation for the target area is

(x=0	 0<0<3.0
y=l.2cos((p)	 0,ir/2

I. z = I.2sin((p)

Note the relationship between the corner points:

u=0,	 w=0-'O=0,
u=l,	 w=0-*0=3,
u=0,	 w=2-'0=0,
u=1,	 w=2-+0=3,

Substitute these into 0= Au + B and W = Cw + D, we get

4=3,	 B=0,	 C=-n/4,

Hence the mapping functions are

0=3u	 and

The inverse mapping functions are

= it/2

= t/2

(p=O

(p =O

D = t/2

0U	 and w=
3

Chapter 12

12.27 Let t be the time required for the light ray to travel from A to P, and 12 be the time required for the light ray to
travel from P to B (see Fig. 12-2 1). We have

- x2	- x)2 +

2
cl	 C2

To locate P (i.e., to determine x) such that the total travel time I = t + 12 is minimal, we find

di	 x	 -	 x8-x

dx - c 1 x2 +	
c21(x8 - 

x)2 +y

or

dt- sin() sin(fl)
&Ci	 C2

Notice that 0 x x8 and

/dA
¼a)0<°	 aL>°

These suggest that 1 reaches a minimum when

)-fl)=0
C l	 C2

Hence

sin()- C1

sin(fl) - C2
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12.28 Yes, these two procedures produce identical results when invoked with the same call. However, for a given
depth value the procedure in this question involves one more level of recursion than the one in the text. Hence
the procedure in Sect. 12.2 has better execution efficiency.

12.29 Find two points on the line

x = 0 - y = 0 —6 = —6

x = 1 - y = 2 —6 = —4

Use (0, —6) to be the starting point, we have

'= —6J

d = (1 - 0)1 +(-4 - (-6))J = I + 2J

and the parametric vector equation for the line is

L(t)=s+td	 where -oo <1 <+oo

12.30 Intersection of a ray with the yz plane can be determined by solving the following for t:

s + td = yJ + z1K

With s = x1 +yJ + zK and d = Xdl +YdJ + zd K, we have

X, + iX = 0
Y. + tV =
Z + tZ j = Z1

When xd = 0, the ray is parallel to the plane (no intersection). When x, = 0, the ray originates from the plane
(no intersection). Otherwise, we calculate t using the first equation

Xd

If t < 0, the negative extension of the ray intersects the plane. On the other hand, if t > 0, the ray itself
intersects the plane and the coordinates y, and z, of the intersection point can be calculated from the second
and third equations.

12.31 Let s = x,I + y,J + ;K and d = XdI + yJ + zaK. Substitute x + tXd and y + rYd for x and y, respectively

(;+ t)2 + (y + ty)2 - R2 = 0

Expand and regroup terms

0

or

At2 + 2Bt ± C = 0

where

	

A=x+	 B = X,Xd + YYd	 C=x+y—R2

When A = 0, the ray is parallel to the z axis and does not intersect the cylinder (the entire ray is on the cylinder
if the starting point is on the cylinder). Otherwise, the solution for the quadratic equation is

—B ± 'lB2 -- A C

A

with

	

<0	 no intersection

	

B2
 _ AC =0	 ray (or its negative extension) touching cylinder

	

> 0	 two (possible) intersection points
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The last case (82 —AC> 0) produces two: values; t j and 12 If t i < 0 and 12 < 0, the negative extension of
the ray intersects the cylinder (no intersection by the ray). If one of the two values is 0, the ray starts from a
point on the cylinder and intersects the cylinder only if the other value is positive. If 

t, and 12 differ in signs,
the ray originates from inside the cylinder and intersects the cylinder once. If both values are positive, the ray
intersects the cylinder twice (first enters and then exits), and the smaller value corresponds to the intersection
point that is closer to the starting point of the ray.

12.32 Substitute BinAz2 +B,+C_o with Dhave

+ Di +C = 0
and the solution is

—D ± / Z
24

Now let D = 28, the above equation becomes

4:2 +2B  + C =0
and the solution is

- —2B ± f i)-4AC- —28 ± 2./?J —B ±
24	 24	 A

23-



4-connected, 42
8-connected, 42

Adiptivc depth control, 259
Adaptive supersampling, 261
Aliasini, 2, 47
Ambient light, 235
Animation:

lookup table, 101
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Zooming. 100

Anti-aliasing, 2, 47, 260
Ar.ticyclie spline condition, 181
Appioxintation, 181

L3eztcr---13-splinc, 182
Bci.ier-Bcistein, 181

Area coherence, 205
Area sampling, 49
Aspect ratio, 6
Asvmmctry, 48
Axis, 273, 298
Axonometi-ic projections, 132

l3-splines, 178
interpolation. 180

Back-face removal, 200
Basis (blending) functions, 177
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Bernstein. polynomials, 179
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Bcinstein polynomials, 179
I3czier- Bernstein approximation, IS
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Bilevel image. 8
Bilinear interpolation, 237, 246
l3itniap font, 45
Blending functions (see Basis functions)
Boundary-till. 42, 43
Bounding box, 201
Itoti tiding Vo lu me. 259
Bounding volume extension, 259
13rcscnham's circle algorithm. 31
I3rcscnham's line algorithm, 27
Brightness, 230
Bump mapping. 240

C curve. 51
Cabinet projection, 133

Canonical clipping, 155
Cartesian coordinates:

correlation with homogeneous coordinates, 308
three-dimensional, 298
tWO-diiTteflSiOflaL 273

Cathode ray tube (CRT), 9
electrostatic deflection, 10
magnetic deflection. 30

Cavalier projection. 333
Center of projection, 129
Character size, 45

pica, 45

point, 45

Chromaticity coordinates. 233
CIE chromaticity diagram. 232
CIE XYZ color model, 232
Circle:

Bresenham's circle algorithm. 31
eight-way symmetry, 29
midpoint circle algorithm, 33

Circle, equation of:
non-parametric. 30
parametric, 31

Clamped spline, ISO
Clipping:

line, 91. 94, 170, 172
point, 91
polygon, 96
three-dimensional, 155
two-dimensional. 91

Clipping categories, 91
Clipping planes, 155

back (far), 355
front (near), 155

Clipping window, 90
CM Y color model. 7
Cohen-Sutherland line-clipping algorithm. 93. 170
Coherence, 204

area, 205
edge, 204
scan-line, 204
spatial. 205

Color gamut mapping. 233
Color map, 9
Color matching functions, 232
Color model:

additive, 7
CIE XYZ, 232
CMY, 7
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Color model (Cant.):	 Depth comparison, 197
NTSC YIQ, 234
	

Depth value. 199
RGB, 7
	

Device coordinate system, 89
subtractive. 7
	

Diffuse reflection, 235
Complex numbers, 16
	

Digital image. 6
Composing functions, 284

	
Dimetric projection. 132

Composite transformation matrix (CTM), 75, 118 	 Direct coding, 8
Compression. 15
	

Direction of projection, 132
run-length encoding (RLE), 15

	
Display monitor, 9

Computer-human interaction, 4
	

Distance from a point to a plane. 306, 314
Concave polygon, 96
	

Distance formula, 273, 300
Connected:	 Distributed, ray-tracing, 261

4-connected, 42
	

Dithering, 13
8-connected, 42
	

dither matrix, 13
Constant shading, 237
	

dither pattern, 12
Control electrode, 10
	

Dot product, 280, 304
Control points, 181
	

Double buffering, 101
Convex polygon, 96
	

Dropout, 48
Coons surfaces, 185
Coordinate system:

Cartesian coordinates, 273, 299
homogeneous, 307
left-handed, 299
polar coordinates, 277
right-handed, 299
three-dimensional, 298
two-dimensional, 273

Coordinate transformation, 68, 71, 117
inverse, 73
matrix description, 74
reflection (see Reflection)
rotation (see Rotation)
scaling (see Scaling)
translation (see Translation)
viewing transformation (see Viewing

transformation)
Cross product, 304
Cross-section curve, 186
CRT (see Cathode ray tube)
CTM (see Composite transformation matrix)
Curve design, 176
Curve segment, 177
Curved surface, 176
Curves, equation of, 300

explicit form, 300
implicit form, 300
non-parametric, 300
parametric, 300

Cyclic spline condition, 181
Cylinder surface, equation of, 302

Edge coherence, 204
Edge list, 44
Electron gun. 10
Ellipse:

four-way symmetry, 35
midpoint ellipse algorithm, 37

Ellipse, equation of:
non-parametric, 35
parametrii, 36

Environment mapping, 261
Error diffusion:

Floyd-Steinberg, 13
Excitation purity, 231
Explicit vertex list, 176
Extent, 201

Filtering. 49
lowpass filtering, 50
post-filtering, 49
pre-filtering, 49

Flicker, 10
Flood-fill, 42, 43
Floyd-Steinberg error diffusion, 13

Fluorescence, 10
Focusing electrode, 10
Font, 45

bitmap, 45
outline, 46
TrueType, 49

Frame buffer, 10
Function (mapping, operator, transformation), 283

Deflection:	 composition of, 284
electrostatic, 10	 domain, 283
magnetic, 10	 graph of, 283

Depth buffer (see Z-buffer) 	 inverse, 284
Depth buffer algorithm (see Z-buffer algorithm)	 matrix, 284
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Function (mapping, operator, transformation) (Cont.):
range, 283
(See also Composing functions)

Geometric representation, 174
curved surface, 176
curved surface patch, 184
line, 174
point, 174
polygon. 174
polygon mesh. 175
polyhedron, 176
polyline, 174
quadric surface, 186
wireframe, 175

Geometric transformation, 68, 114
matrix description, 74

Gouraud shading, 237
Graphics pipeline:

three-dimensional, 3, 159
two-dimensional, 2, 99

Gray axis, 7
Gray-scale image. 8
Guiding nets, 184

Bezier—B-spline surfaces, 185
Bezier-Bemstein surfaces, 184

Halftone, 12
Halftone approximation, 12
Halftoning, 11
Hermitian cubic polynomial interpolation, 179
Hidden surfaces, 197, 251
Homogeneous coordinates, 307

ideal point, 308
line. 307
point, 75, 307

Hue, 230

Ideal point, 308
Illuminant C, 233
Illumination model, 4, 234, 251

local, 4, 234
global, 4, 234, 251

Image, 6
Image, representation of:

direct coding, 8
lookup table, 9

Image files, 14
Image processing, 4
Image space, I
Inside-outside test of view volumes, 158
Inside test for polygons, 96
Instance, 76
Instance transformation, 76
Instancing, 76
Interlaced, 14
Interlacing, 10

Interpolating surface patches, 185
Coons surface, 185
lofted surface, 185

Interpolation, 179
Hermitian cubic, 179
Lagrange polynomial, 179
spline, 180

Interpolative shading methods (see Shading methods)
Intersection, computation of, 256
Inverse function, 284
Inverse matrix, 282
Isometric projection, 132

Julia sets, 18

Knots (nodes), 177
Koch curve, 52, 65

Lagrange polynomial, 177
interpolation, 179

Law of Cosines. 274
Left-right test, 96
Liang-Barsky line-clipping algorithm, 94, 172
Light, 229
Line, equation of:

parametric, 94
slope-intercept, 26

Line, scan-conversion of
Bresenhaxn's line algorithm, 27
digital differential algorithm (DDA), 27

Line clipping:
Cohen-Sutherland algorithm, 91, 170
midpoint subdivision, 93
LiangBarsky algorithm, 94, 172

Line segment, 26
Linear blending, 186, 195
Lofted surface, 185
Lofting, 185
Lookup table, 9
Lowpass filtering, 50
Luminance, 230

Mandelbrot set, 16
Mathematical surfaces, 209
Matrices, 281

addition, 281
concatenation (see Matrix concatenation)
homogeneous form, 308
identity, 282
inverse, 282
multiplication (see Matrix multiplication)
scalar multiplication, 281
transpose, 282

Matrix Concatenation, 75, 281
(See also Matrix multiplication)

Matrix multiplication, 281
composition of matrix functions as equivalent to,

284
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Int circle algorithm. 33
ipoint ellipse algorithm, 37

Midpoint subdivision clipping algorithm, 93
Modeling, 174

additive, 176
solid, 176
subtractive, 176

Monitor, 9
Motion blur, 262

Natural coordinate vector, 279, 303
Natural spline, 180
Nested instances, 76
Normal vector, 235, 238, 306
Normalization transformation, 90
Normalized device coordinate system, 89
Normalized perspective to parallel transform, 198,

213
Normalizing transformation for canonical view

volumes, 157
NTSC YIQ color model, 234

Object space, I
Oblique (parallel) projection, 129, 132
Orientation (right- and left-handed), 299
Orthographic (parallel) projection, 129, 132
Outline font, 46
Overstrike, 58

Painter's algorithm, 200
Panning (See Animation)
Parallel projection, 132

axonometric, 1 3
cabinet, 133
cavalier, 133
dimetric, 132
isometric, 132
oblique, 132
orthographic, 132
trimetric, 132

Parallel vectors, 278
Parametric equation, 300

circle; 31
curve, 300
line, 94, 301
surface, 301

Persistence, 10
Perspective to parallel transform, 198
Perspective anomalies, 130

perspective foreshortening, 130
topological distortion, 131
vanishing points, 129,131
view confusion, 131

Perspective foreshortening, 129, 130
Perspective projection, 129

one principal vanishing point, 141
three principal vanishing points, 142
two principal vanishing points, 141

Phong:
formula, 236
model, 234
shading. 238

Phosphor, 9
Phosphorescence, 10
Pica, 45
Picket fence problem, 48
Pinhole camera, 251
Pitch, II
Pixel, 6

coordinates, 6
Pixel phasing, 51
Planar polygon, 175
Planes, equation of, 302
Point clipping, 91
Point light, 234
Polar coordinates, 277
Polygon, 96, 174

orientation, 96
Polygon clipping, 96

Sutherland-Hodgman algorithm. 96
Weiler-Atherton algorithm, 97

Polygon mesh, 175
Polyhedron, 176

faces of, 176
hidden surfaces of, 200, 225

Polyline, 174
Polynomial, 177

piecewise, 177
Polynomial basis function, 177
Positively oriented polygon, 96
Post-filtering, 49
Pre-filtering, 49
Primary ray, 252
Principal vanishing point, 129
Printer, II
Projected texture, 239
Projection, 128

center of, 129
classification of, 129
direction of, 132
(See aLco Parallel projection; Perspective projection)

Projection of a vector onto a plane, 316
Projection plane, 128
Projective plane, 307
Projector, 128

Quadric surfaces, 302
equations of, 186

Raster, 6
Rasterization, 25
Ray, 251

primary, 252
reflected, 252
secondary, 252
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Ray (Cont.):
shadow, 252
transmitted, 252

Ray, vector representation of, 253
Ray tracing, 251

adaptive depth control, 259
bounding volume extension, 259
hierarchy of bounding volumes, 259
spatial coherence/spatial subdivision, 260

Ray-surface intersection, 256
arbitrary plane, 256
coordinate system plane, 256
cylinder, 272
elliptic paraboloid, 268, 269
general implicit surface, 258
region, 265
sphere, 257

Receptor cells, 231
cones, 231
rods, 231

Reflected ray, 252
Reflection, 235

blurry, 262
diffuse, 235
specular, 235
three-dimensional, 124, 125, 244
two-dimensional, 70, 81, 82

Reflection coefficients, 235
Refresh, 10

interlacing, 10
refreshing rate, 10

Region code, 92
Region filling, 42

boundary-fill, 43
flood-fill, 43
scan-line, 44

Resolution, 6
Retrace, 10

horizontal, 10
vertical, 10

kGB color model, 7
Rotation, 69, 115

three-dimensional, 115
two-dimensional, 69, 72, 78, 79

Run-length encoding (RLE), 15

Saturation, 231
Scaling, 70, 115

homogeneous, 70
magnification, 70, 115
reduction, 70, 115
three-dimensional, 4 15
two-dimensional, 70, 72, 75
uniform, 70

Scan conversion, 25
characters, 45
circles, 29

Scan conversion (Cont.):
ellipses, 35
incremental methods, 27
lines, 26
points, 25
polygons, 42
rectangles, 41
sectors and arcs, 40

Scan-line algorithms:
for hidden surface removal, 203
for region filling, 44

Scan-line coherence, 204
Secondary ray, 252
Shading methods, 236

constant, 237
Gouraud, 237
Phong, 238

Shadow mask, 11
Shadow ray, 252
Shearing transformation, 83
Side of a plane, 302, 312
Sierpinski gasket, 52, 66
Snell's law, 252, 271
Soft shadow, 262
Solid modeling, 176
Solid texture, 240
Spatial coherence, 205, 260
Spatial subdivision, 260
Spectral energy distribution function, 229
Spectral reproduction, 229
Specular reflection, 235
Splines, 180

anticyclic, 181
clamped, 180
cubic, 180
cyclic, 181
natural, 180
quadratic, 180

Standard perspective projection, 130
Standard white D 65 , 243
Stochastic Supersampling, 261
Subdivision algorithms, 93, 207
Supersampling, 50, 260

adaptive, 261
stochastic, 261

Surface patch, 185
(See also Interpolating surface patches)

Surfaces, equations of? 301
cylinder, 302
explicit form, 301
implicit form, 302
non-parametric, 301
parametric, 302
planes, 302, 306, 312, 313, 314
quadric surfaces, 186, 302
sphere, 257, 309

Sutherland-Hodgman polygon-clipping algorithm, 96
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Terrain generation, 189
Texture, 4, 239

mapping, 240, 248, 249, 250
projected, 239
solid, 240

Texture map, 239
Three-dimensional transformations, 114
Three-dimensional viewing, 151
Tilting transformation, 118.
Transformation, 68, 114

composite, 73, 1.17
coordinate, 68, 117
geometric. 68, 114
instance, 76, 118
normalization, 90
viewing, 90, 158
workstation, 90

Transformation matrix, 74, 115
Transforming curves and surfaces, 186
Translation, 69, 72, 114

matrix form, 75, 115
three-dimensional, 114
two-dimensional, 69, 72

Translation vector, 69, 72, 114
Translucency, 262
Transmitted ray, 252
Trichromatic generalization theory, 231
Trimetric projection, 132
True color representation, 8
TrueType font, 49
Two-dimensional transformations, 68
Typeface, 45

Unequal brightness, 47
Unit vector, 304
Up vector, 152
User interface, 4

Vanishing points, 129, 131
Vector components, 719, 30
Vector equation of:

line, 305
plane, 306
ray, 253

Vector equation of (Cont):
sphere, 257

Vectors, 278, 303
addition, 278
angle between, 280
cross product, 304
dot product, 280, 304
length (magnitude), 279, 304
normal, 306
orthogonal, 280, 293, 304, 309, 319
parallel, 278
unit, 304

Vertex list, 174
View plane, 128
View plane coordinate system, 152
View plane normal, 151
View reference point, 129
View volume, 151, 154

canonical, 157
parallel, 154
perspective, 154

Viewing coordinate system, 89. 152
up vector, 152

Viewing transformation, 90, 158
normalization transformation, 90
three-dimensional, 158
two-dimensional, 90

Viewport, 89
Virtual display device, 89
Visible polygon face, 227

Wavelength, 229
dominant, 230

Weiler-Atherton polygon-clipping algorithm, 97
Window, 89
Window-to-viewport mapping, 90
Wireframe, 175
Workstation transformation, 90
World coordinate system, 89
Wright algorithm for mathematical surfaces, 211

Z-buffer, 199
Z-buffer algorithm (depth buffer algorithm), 199
Zooming (see Animation)


