C Fundamentals

chapter objectives

1.7 Understand the components of a C program
1.2 Create and compile a program

1.3 Declare variables and assign values

1.4 Input numbers from the keyboard

1.5 Perform calculations using arithmetic
expressions '

1.6 Add comments to a program
1.7 Write your own functions

1.8 Use functions to return values
1.9 Use function arguments

1.10 Remember the C keywords

2 TEACH YOURSELF
Y B

;7 indi idual elements of a computer language such as C do

not stand alone, but rather in conjunction with one another.

Therefore, it is necessary to understand several key aspects

of C before examining each element of the language in detail.

To this end, this chapter presents a quick overview of the C
language. Its goal is to give you sufficient working knowledge of C so
that you can understand the examples in later chapters.

As you work through this chapter, don’t worry if a few points are
not entirely clear. The main thing you need to understand is how and
why the example programs execute as they do. Keep in mind that
most of the topics introduced in this chapter will be discussed in
greater detail later in this book. In this chapter, you will learn about
the basic structure of a C program; what a C statement is; and what
variables, constants, and functions are. You will learn how to display
text on the screen and input information from the keyboard.

To use this book to the fullest, you must have a computer, a C
compiler, and a text editor. (You may also use a C++ compiler. C++

'compilers can also compile C programs.) Your compiler may include
its own text editor, in which case you won't need a separate one. For
the best results, you should work along with the examples and try the
exercises.

l JNDERSTAND THE COMPONENTS OF A
., .C PROGRAM //

All C'programs share certain essential components and traits. All C
programs consist of one or more functions, each of which contains one
or more statements. In C, a function is a named subroutine that can be
called by other parts of the program. Functions are the building blocks
of C. A statement specifies an action to be performed by the program.
In other words, statements are the parts of your program that actually
perform operations.

All C statements end with a semicolon. C does not recognize the
end of the line as a terminator. This meahs there are no constraints on
‘tite position of statements within a line. Also, you may place two or
more statements on one line.

C FUNDAMENTALS
1.1 UNDERSTAND THE COMPONENTS OF A C PROGRAM

The general form of a C function is shown here:
e e 2ot

/)et-type function-name(param-list)
{

statement sequence

)

Here,/ret-type specifies the type of data returned by the fgr_l_cg_ioy
AS yofu will see, it is possible for a function to return a value. THe
function-name is the name of the function)Information can be passed

a function through its parameters, which are specified in the
funiction’s parameter list, param-list. The statement sequence may be
one or more statements. (Technically, a function can contain no
statements, but since this means the function performs no action, it is
a degenerative case.) If return types and parameters are new CONcepts,
don’t worry, they will be explained later in this chapter.

With few exceptions, you can call a function by any name you like.
It must be composed of only the upper- and lowercase letters of the
alphabet, the digits 0-9, and the underscore. A digit cannot start a
function name, however. C is case-sensitive, which means that C
recognizes the difference between upper- and lowercase letters.

Thus, as far as C is concerned, Myfunc and myfunc are entirely
different names.

Although a C program may contain several functions, the only
function that it must have is main(). The main() function is where
execution of your program begins. That is, when your program begins
running, it starts executing the statements inside main(), beginning
with the first statement after the opening curly brace. Your program
ends when main()'s closing curly brace is reached. Of course, the
curly brace does not actually exist in the compiled version of your
program, but it is helpful to think of it in this way.

Throughout this book, when a function is referred to in text, it will
be prir *ed in bold and followed by parentheses. This way, you can see
imme:liately that the name refers to a function, not some other part
of the program.

Another important component of all C programs is library functions.
The ANSI C standard specifies a set of library functions to be supplied
by all C compilers, which your program may use. This collection of

40

& TEACH YOURSELF
Y ¢

functions is usually referred to as the C standard library. The standard
library contains functions to perform disk [/O (input/ output), string
manipulations, mathematical computations, and much more. When
your program is compiled, the code for each library function used by
your program is automatically included. This differs from the way
some other computer languages work. For example, in BASIC or
Pascal, operations such as writing to a file or computing a cosine are
performed using keywords that are built into the language. The
advantage C gains by having them as library functions is increased
flexibility. Library functions can be enhanced and expanded as needed
to accommodate changing circumstances. The C language itself does
not need to change. As you will see, virtually all C programs you
create will use functions from the C standard library.

(Qne of the most common library functions is called printf(). This
isC's g_';__era'f purpose outgut funct 10r9Thc printf()-function is quite

versatile, aﬂcm ing many variations. Ifs simplest form is shown here:

printf('string-to-output");

T'ifé-printf() function outputs the characters that are contained
between the beginning and ending double quotes to the screen. (The
double quotes are not displayed on the screen.) In C, one or more
characters enclosed between double quotes is called a string. The
quoted string between printf()’s parentheses is said to be an argument
to printf(). In general, information passed to a function is called an
argument. In C, calling a library function is a statement; therefore, it
must end with 2 semicolon.

To call a function, you specify its name followed by a parenthesized
list of arguments that you will be passing to it. If the function does
not require any arguments, no arguments will be specified—and the
parenthesized list will be empty. If there is more than one argument,
‘the arguments must be separated by commas.

Another component common to most C programs is the header file.
In C, information about the standard library functions is found in
various files supplied with your compiler. These files all end with a
.H extension. The C compiler uses the information in these files to
handle the library functions properly. You add these files to your
program using the #include preprocessor directive. All C compilers use
as their first phase of compilation a preprocessor, which performs
various manipulations on your source file before it is compiled.

C FUNDAMENTALS 5
1.1 UNDERSTAND THE COMPONENTS OF A C PROGRAM Y

Preprocessor directives are not actually part of the C language, but
rather instructions from you to the compiler. The #include directive
tells the preprocessor to read in another file and include it with your
program. You will learn more about the preprocessor later in this book.
The most commonly required header file is called STDIO.H. Here is

the directive that mcludes thls ﬁle =

//flnclude <stdio.h>

You can specify the file name in either upper- or lowercase, but
lowercase is the trac'tional method. The STDIO.H header file
contains, among other things, information related to the printf()
library function. Notice that the #include directive does not end with
a semicolon. The reason for this is that #include is not a C keyword
that can define a statement. Instead, it is an instruction to the C
compiler itself.

One last point: With few exceptions, C ignores spaces. That is, it
doesn't care where on a line a statement, curly brace, or function
-name occurs. If you like, you can even put two or more of these items
on the samre line. The examples you will see in this book reflect the
way C code is normally written; it is a form you should follow. The
actual positioning of statements, functions, and braces is a stylistic,
not a programming, decision.

1. Since all C programs share certain common traits,
understanding one program will help you understand many
others. One of the simplest C programs is shown here:

" #include <stdio.h>
int main(void)
{

printf(“This is a short C program.");

return 0;

6 TEACH YOURSELF

When compiled and executed, this program displays the message
This is a short C program. on the screen of your computer.
Even though this program is only six lines long, it illustrates
those aspects common to all C programs. Let's examine it line
by line.
The first line of the program is

#include <stdio.h>

It causes the file STDIO.H to be read by the C compiler and to
be included with the program. This file contains information
related to printf().

The second line,

int main(void)

begins the main() function. As stated earlier, all C programs
must have a main() function. This is where program execution
begins. The int specifies that main() returns an integer value.
The void tells the compiler that main() does not have any
parameters.

After main() is an opening curly brace. ThlS marks the
beginning of statements that make up the function.
The next line in the program is

printf ("This is a short C program.");

This is a C statement. It calls the standard library function,
printf(), which causes the string to be displayed.

The following line causes main() to return the value zero. In
this case, the value is returned to the calling process, which is
usually the operating system.

return 0;

By convention, a return value of zero from main() indicates
normal program termination. Any other value represents an
error. The operating system can test this value to determine
whether the program ran successfully or experienced an error. -
return is one of C's keywords and is examined more closely
later in this chapter.

Finally, the program is formally concluded when main()’s
closing curly brace is encountered.

C FUNDAMENTALS
bbbt
1.2 CREATE AND COMPILE A PROGRAM

2. Here is another simple C program:

#include <stdio.h>

int main(void)

{
printf("This is ");
printf ("another C "};
printf ("program.");

return 0;

}

This program displays This is another C program. on the
screen. The key point to this program is that statements are
executed sequentially, beginning with the opening curly brace
and ending with the closing curly brace.

4~

¥

,/
/ REATE AND COMPILE A PROGRAM

How you will create and compile a program is determined to a very
large extent by the compiler you are using and the operating system
under which it is running. If you are using a PC or compatible, you
have your choice of a number of excellent compilers, such as those by
Borland and Microsoft, that contain integrated program-development
environments. If you are using such an environment, you can edit,
compile, and run your programs directly inside this environment.
This is an excellent option for beginners—just follow the instructions
supplied with your compiler.

If you are using a traditional command-line compiler, then you
need to follow these steps to create and compile a program:

1. Create your program using an editor.
2. Compile the program.
3. Execute your program.

The exact method to accomplish these steps will be explained in the
user’s manual for your compiler.

3
v

TEACH YOURSELF

Nearly all modern C compilers are also C++ compilers. As you
may know, C++ is the object-oriented extension to C. Most likely you
will be using a C++ compiler to compile your C code. Don't worry. This
is perfectly acceptable because all C++ compilers are capable of
compiling C programs. For example, if you are using Borland C++ or
Microsoft Visual C++, theneverything will work just fine. However,
there is one thing about which you mustbe very careful: the extension
you give your files.

When naming your program's file, you must give it a .C—not
.CPP—extension. This is important. If you are using a C++ compiler,
then it willautomatically assume thata file using the .C extension
contains a C program and will compile it as a C program. But, if the file
usesa.CFP extension, then the compiler will assume that the program s
writtenin C++ and compile it as such. The problem is that while C is the
foundation for C++, not all C programs are valid C++ programs. Trying
to compile a C program as if it were a C++ program will cause errors ina
few cases. Since the programs in thisbook are C programs, they should Le
compiled as C programs. Using the .C extension ensures this,

Your program must be compiled as a C program—not a C++ program. To
ensure this, make sure that your programs use the .C, not the .CPP, extension,

The file that contains the C program that you create is called the
source file. The file that contains the compiled form of your program
that the computer executes is called the object file, or, sometimes, the
executable file.

If you enter something into your program incorrectly, the compiler
will report syntax error messages when it attempts to compile it. Most
C compilers attempt to make sense out of your source code no matter
what you have written. For this reason, the error that gets reported
may not always reflect the actual cause of the error. For example,
accidentally forgetting the opening curly brace to the main()
function in the preceding sample programs will cause some compilers
to report the printf() statement as an incorrect identifier. So, when
you receive a syntax error message, be prepared to look at the last few
lines of code in your program before the point at which the error is
reported to find its cause.

Many compilers 1 *port not only actual errors but also warning
errors. The C la- gu 1ve was designed to be very forgiving and to allow

CFUNDAMENTALS @
1.2 CREATE AND COMPILE A PROGRAM ¥

virtually anything that is syntactically correct to be compiled. However,
some things, even though syntactically correct, are highly suspicious.
When the compiler encounters one of these situaticis it prints a
warning. You, as the programmer, then decide whether its suspicions
are justified. Frankly, some compilers are a bit too helpful and flag
warnings on perfectly correct C statements. More important, some
compilers allow you to enable various options that simply report
information about your program that you might like to know. Sometimes
this type of information is reported in the form of a warning message,
even though there is nothing to be "warned" about. The programs in
this book are in compliance with the ANSI standard for C and will not
generate any warning messages about which you need be concerned.

1. If you are using Borland C++, you can create and compile your
program using the integrated environment. Online instructions
are provided. If you are using the command-line version of
Borland C++, you will use a command line such as this
(assuming that the name of your program is called TEST.C)
to compile the program once you have used a text editor to
create it.

BCC TEST.C

2. If you are using Microsoft Visual C++, you can use the
integrated environment to create and compile your program.
Online instructions are provided. When using the command line
compiler, this command line will compile your program after
using a text file to create it. (Again, assume that the program is
called TEST.C.)

CLTEST.C

3. If you are using another brand of compiler, refer to your user’s
manual for details on compiling your programs. :

—

10 TEACH YOURSELF
¥ ¢

1. Enter into your computer the example programs from Section
1.1. Compile them and run them.

(L /v ~
Ny 7

_DECLARE VARIABLES AND ASSIGN

VALUES/

'.A variable is a named memory location that can hold various values.)

Only the most trivial C programs do not include variables. In C, unlike
some computer languages, all variables must be declared before they
can be used. A variable’s declaration serves one important purpose: It
tells the compiler what type of variable is being used. C supports five
different basic data types, as shown in Table 1-1 along with the C
keywords that represent them. Don’t be confused by void. This is a
special-purpose data type that we will later examine closely.

A variable of type char is 8 bits long and is most commonly used to
hold a single character. Because C is very flexible, a variable of type
char can also be used as a "little integer™if desired.

Integer variables (int) may hold signed whole numbers (numbers

" with no fractional part). For 16-bit environments, such as DOS or
Windows 3.1, integers are usually 16 bits long and may hold values in
the range -32,768 to 32,767. In 32-bit environments, such as Windos 5
NT or Windows 95, mtegers are typically 32 bits in length. In this c:. =,
they may store values in the range -2,147,483,648 to 2,147,483,647.

e

</ Type Keyword
character data char
signed whole numbers int
floating-point numbers float
double-precision floating-point numbers double
valueless void

ELXEER C's Five Basic Data Types 'V

C FUNDAMENTALS 71
1.3 . DECLARE VARIABLES AND ASSIGN VALUES ¥

Variables of types float and double hold signed floating-point
values, which may have fractional components. One difference
between float and double is that double provides about twice the
precision (number of significant digits) as does float. Also, for most
uses of C, a variable of type double is capable of storing values with
absolute magnitudes larger than those stored by variables of type
float. Of course, in all cases, variables of types float and double can
hold yery large values.

/fo)gec]are a variable, use this general form:

>

_/ bype var-name;

where type is a C data type and var-name is the name of the variable.
For example, this declares counter to be of type int:

int counter;

In C, a variable declaration is a statement and it must end in a
semicolon.

There are two places where variables are declared: inside a function
or outside all functions. Variables declared outside all functions are
called global variables and they may be accessed by any function in
your program. Global variables exist the entire time your program
is executing. o

Variables declared inside a function are called local variables. A local
variable is known to—and may be accessed by—only the function in
which it is declared. It is common practice to declare all local variables
used by a function at the start of the function, after the opening curly
brace. There are two important points you need to know about local
variables at this time. First, the local variables in one function have
no relationship to the local variables in another function. That is, if
a variable called count is declared in one function, another variable
called count may also be declared in a second function—the two
variables are completely separate from and unrelated to each other.
The second thing you need to know is that local variables are created
when a function is called, and they are destroyed when the function is
exited. Therefore, local variables do not maintain their values between
function calls. The examples in this and the next few chapters will use
only local variables. Chapter 4 discusses more thoroughly the issues
and implications of global and local variables, ~

12 TEACH YOURSELF
¥ &

You can declare more than one variable of the same type by using a
comma-separated list. For example, this declares three floating-point
variables, x, y, and z:

float x, y, z;

Like function names, variable names in C can consist of the letters
of the alphabet, the digits 0 through 9, and the underscore. (But a digit
may not start a variable's name.) Remember, C is case-sensitive;
count and COUNT are two completely different variable names.

To assign a value to a variable, put its name to the left of an equal
sign. Put the value you want to give the variable to the right of the
equal sign. In C, an assignment operation is a statement; therefore, it
must be terminated by a semicolon. The general form of an
assignment statement is: T

variable-name = value,

For example, to assign an integer variable named num the value 100,
you can use this statement:

num = 100;

In the preceding assignment, 100 is a constant. Just as there are
different types of variables, there are different types of constants. A
constant is a fixed value used in your program. Constants are often
used to initialize variables at the beginning of a program'’s execution.

A character constant is specified by placing the character between
single quotes. For example, to specify the letter "A," you would use
'A’. Integers are specified as whole numbers. Floating-point values
must include a decimal point. For example, to specify 100.1, you
would use 100.1. If the floating-pdint value you wish to specify does
not have any digits to the right of the decimal point, then you must
use 0. For example, to tell the compiler that 100 is a floating-point
number, use 100.0.

You can use printf() to display values of characters, integers, and
floating-point values. To do so, however, requires that you know more
about the printf() function. Let's look first at an example. This
statement;

printf(*This prints the number %4", 99);

‘ CFUNDAMENTALY 13
13 DECLARE VARIABLES AND ASSIGN VALUES ¥

displays This prints the number 99 on the screen. As you can see,
this call to printf() contains not one, but two arguments. The first
is the quoted string and the other is the constant 99. Notice that the
arguments aré separated from each other by a comma. In general, .
when there is moge than one argument to a function, the arguments
are separated from each other by commas. The operation of the
printf() function is as follows. The first argument is a quoted string
that may contain either normal characters or format specifiers that
begin with the percent sign. Normal characters are simply displayed
as-is on the screen in the order in which they are encountered in the
string (reading left to right). A format specifier, also called a format
code, informs printf() that a different type item is to be displayed. In
this case, the %d means that an integer is to be output in decimal

format. The value to be displayed is ound in the second argument.
This value is then output to the screen at the point where the format
specifier is found in the string. To understand the relationship
between the normal characters and the format codes, examine this
statement:

printf("This displays %d, too", 99);

Now the call to printf() displays This displays 99, too. The key
point is that the value associated with a format code is displayed at the
point where that format code is encountered in the string.

If you want to specify a character value, the format specifier is %c.
To specify a floating-point value, use %f. The %f works for both float
and double. As you will see, printf() h has many more capabilities.

Keep in mind that the values matched with the format specifier
need not be constants; they may be variables, too.

’I%ram shown here illustrates the three new concepts
introduced in this section. First, it declares a variable named
num. Second, it assigns this variable the value 100. Finally, it
uses printf() to display The value is 100 on the screen.
Examine this program closely:

clude <stdio.h>

int main(void)
{

int num;

num = 100;
printf ("The value is %d", num);

return 0;

}

The statement

int num;

declares num to be an integer variable.
To display the value of num, the program uses this statement:

pgintf("The value is %d", num);

s

2" This program creates variables of typés char, float, and double;
" assigns each a value; and outputs these values to the screen.

#include <stdio.h>

int main(void)
{
char ch;
float £;
double d;

ch = ‘X';
£ = 100.123;
d = 123.009;

printf("ch is %c, ", ch};
printf("f is %f, ", £);
printf(*d is %f", 4);

return 0;

CFUNDAMENTALS 15
1.4 INPUT NUMBERS FROM THE KEYBOARD ¥

1. Enter, pile, and run the example programs in this section.
AWrite a program that declares one integer variable called num.
Give this variable the value 1000 and then, using one printf()

%- statement, display the value on the screen like this:

1000 is the value of num

T NUMBERS FROM THE KEYBOARD

lthough there are actually several ways to input numeric values from
the keyboard, one of the easiest is to use another of C’s standard
library functions called scanf(). Although it possesses considerable
versatility, we 'will use it in this chapter to read only integers and
floatir.y-point numbers entered from the keyboard.

To use scanf() to read an integer value from the keyboard, call it

using the general form

/aéa{f[‘%d &int-var-name);

where int-var-name is the name of the integer variable you wish to
receive the value. The first argument to scanf() is a string that
determines how the second argument will be treated. In this case, the
%d specifies that the second argument will be receiving an integer
value entered in-decimal format. This fragment, for example, reads an
integer entered from the keyboard. T

int num;
scanf ("%d", &num) ;

The & preceding the variable name is essential to the operation
of scanf(). Although a detailed explanation will have to wait until
later, loosely, the & allows a function to place a value into one of
its arguments.

16 TEACH YOURSELF
Y ¢

It is important to understand one key point: When you enter a
number at the keyboard, you are simply typing a string of digits. The
scanf() function waits until you have pressed ENTER before it
converts the string into the internal binary format used by the
computer. ‘

To read a floating-point number from the keyboard, call scanf()
using the generalt-form '

i §qqpff'°mf', &float-var-name);

wflere float-var-name is the name of a variable that is declared as being
of type float. If you want to input to a double variable, use the %If
specifier.

Notice that the format specifiers for scanf() are similar to those
used for printf() for the corresponding data types except that %If is
used to read a double. This is no coincidence—printf() and scanf()
are complementary functions.

___EXAMPLE |

/I/. /This program asks you to input an integer and a floating-point
+/ number. It then displays the values you enter.

#include <stdio.h>
t main(void)

int num;
float £;

printf ("Enter an integer: ");
scanf ("%d", &num);

printf ("Enter a floating point number: *);
scanf ("%f", &f);

printf("%d ", num);
printf ("%£f*, f);

return 0;

C FUNDAMENTALS 17
1.5 PERFORM CALCULATIONS USING ARITHMETIC EXPRESSIONS® ¥

1. Enter, compile, and run the example program.

2. Write a program that inputs two floating-point numbers (use type float)
and then displays their suim.__

_P;,A/;w/ CALCULATIONS USING

/ FTHMETIC EXPRESSIONS

n C, the expression plays a much more important role than it does in
most other programming languages. Part of the reason for this is that
detines many more operators than do most other languages. An
cxpression is a combination of operators & 1d operands. C expressions
follow the rules of alechra, so, for the most part, they will be familiar,
In this section we will look only at arithmetic expressions.

C defines these five arithmetic operators:

Operator Meaning

+ addition

- subtraction

) _, multiphcation
/ b division

Ny modulus

The +, - /. and * operator. 1nay be used with any ot the basic data
types. However, the % may he used with integer types only. The
modulus operator produces the remainder of an integer division
This has no meanmy when applied to floating-point types.

The - has two meanings. First, it is the subtraction operator
Second, it can be used as a unary minus to reverse the sign of a
number. A unary operator uses only one operand.

An expression inay appear on the right side of an assignment
statenmient. For cxample, this program fragment assizns the: intege
vatichle answer the value ¢f 1007 3)

L

int

18 TEACH YOURSELF

answer ;

answer = 100 * 31;

The *, /, and % are higher in precedence than the + and the -.
However, vou can use parentheses to alter the order of evaluation. For
example, this expression produces the value zero,

10-2*5

but this ane produces the value 40.

(10-2)*5

A C expression may contain variables, constants, or both. For
example, assuming that answer and count are variables, this
expression is perfectly valid:)

answer = count - 100;

Finally, you may use spaces liberally within an expression.

|___EXAMPLES |

%

s stated carlier, the modulus operator returns the remainder of
an integer division. The remainder of 10 % 3 equals 1, for
example. This program shows the outcome of some integer
divisions and their remainders:

#include <stdio.h>

int main{void)
{
printf("%d*, 5/2); *®
printf(~ %d“, 5%2);
printf(" %d", 4/2);
printf (" %d", 4%2);

return 0;
)

This program displays 21 2 0 on the screen.

C FUNDAMENTALS - 19
1.5 PERFORM CALCULATIONS USING ARITHMETIC EXPRESSIONS ¥

2 Inlong expressions, the use of parentheses and spaces can add
clarity, even if they are not necessary. For example, examine
this expression:

count *num+88/val-19%%count

This expression produces the same result, but is much easier
to read:

{cou * num) + (B8 / wval) - (19 % count)
%ﬂ:gmm computes the area of a rectangle, given its

mensions. It first prompts the user for the length and width of
the rectangle and then displays the area.

ginclude <stdic.h>

int main(void)
{
int len, width;

printf("Enter length: ");
scanf ("%d", &len);
printf("Enter width: ");
scanf ("%d", &width);

printf("Area is %d", len * width);

return 0;

)

4. As stated carlier, the = can be used as a unary operator to
reverse the sign of its operand. To see how this works, try
this program:

tinclude <stdio.h>

int majntvoid)

{
Ing 43
3 = 10z
3 o= =1y

printf ("This is i: %d", i);

20 TEACH YOURSELF
Y ¢

return 0;

EXERCISES

1. Write a program that computes the volume of a cube. Have the
program prompt the user for each dimension.

2. Write a program that computes the number of seconds in a year.

élDD COMMENTS TO A PROGRAM

Y A comment is a note to yourself (or others) that you put into your
source code. All comments are ignored by the compiler. They exist
solely for your benefit. Comments are used primarily to document the
meaning and purpose of your source code, so that you can remember
later how it functions and how to use it.

In C, the start of a comment is signaled by the /* character pair.
A comment is ended by */. For example, this is a syntactically correct
C comment:

This is a comment. */

Comments can extend over several lines, For example, this is completely
valid in C: ‘

This is a longer comment
hat

[

hat extends over
five lines.

X

In C, a comment can go anywhere except in thé middle of any C
kevword, function name, or variable name.

CFUNDAMENALS 27
16 ADD COMMENTS TO A PROGRAM ¥

You can use a comment to temporarily remove a line of code.
Simply surround the line with the comment symbols.

Although not currently defined by ANSI C standard, you may sce
another style of comment, called a single-line convment. It begins with
a // and stops at the end of the line. The single-line comment was
created by C++. Its use ina C program is technically invalid, but
most compilers will accept it. As such, many programmers havebegunto
use it in their C programs. Since the single-line commentis not defined by
the current ANSI C standard, thisbook will not use it. However, don'tbe
surprised if yousee itin commercially written
Cprograms.

One final point: In C, you can't have one comment within another
comment. That is, comments may not be nested. For example, C will
not accept this:

J* this is a comment /* this is another comment
nested inside the first — which will cause
a syntax error */ with a nested comment

.

/!

1. A year on Jupiter (the time it takes for Jupiter to make one
full circuit around the Sun) takes about 12 Earth years. The
following program allows you to convert Earth days to Jovian
years. Simply specify the number of Earth days, and it computes
the equivalent number of Jovian years. Notice the use of
comments throughout the frogram.

/* This program converts Earth days into Jovian years. */
#include <stdio.h>

int main(void)
{
float e_days; /* number of Earth days */
float j_years; /* eguivalent number of Jovian years */

/* get number of Earth days i

272 TEACH YOURSELF

B

printf("Enter number of Earth days: "):

scanf("%$f", &e_days):

/* now, compute Jovian years */

j_vyears = e_days / (365.0 * 12.80;

/* display the answer */

printf ("Equivalent Jovian years: $f", j_years);

return 0;

}
Notice that comments can appear on the same line as other C
program statements.

Comments are often used to help describe what the program
is doing. Although this program is easy to understand even without
the comments, many programs are very difficult to unde rstand
even with the liberal use of comments. For more complex
programs, the general approach is the same as used here:
simply describe the actions of the program. Also, notice the
comment at the start of the program. In general, it is a good idea
to identify the purpose of a program at the top of its source file.

2 You cannot place a comment inside the name of a function or
variable name. For example, this is an incorrect statement:
pri/= wrong */ntf("this won’t work");

EXERCISES

1. Go back and add comments to the programs developed in
previous sections.

2. Is this comment correct?

/ w ’n’
3. Is this comment correct?

/* printf("this is a test"}; LY

C FUNDAMENTALS - 23
17 WRITE YOUR OWN FUNCTIONS ¥

RITE YOUR OWN FUNCTIONS

Actions are the building blocks of C. So far, the programs you have
seen included only one function: main(). Most real-world programs,
however, will contain many functions. In this section you will begin to
learn how to write programs that contain multiple functions.

The general form of a C program that has multiple functions is
shown here:

/* include header files here */
/* function prototypes here */

int main(void)

{

1

1

ret-type fl1(param-lis()
(

P e

)

ret-type f2(param-fist)
{

7

}

ret-type fN(param-1ist)
(

o

}

Of course, you can call your functions by different names. Here,
ret-type specifies the type of data returned by the function. If a
function does not return a value, then its return type should be void.
1f a function does not use parameters, then its param-list should
contain the keyword void.

24 TEACH YOURSELF
Y ¢

Notice the comment about prototypes. A function prototype declares

a function before it is used and prior to its definition. A prototype
consists of a function’s name, its return type, and its parameter list.
It is terminated by a semicolon. The compiler needs to know this
information in order for it to properly execute a call to the function
For example, given this simple function:

:fvoxﬁ my func({void)
({

printf{"This is a test.");

[ts prototype is
void myfunc(void);

The only function that does not need a prototype is main() since
it is predefined by the C language.

Prototypes are an important part of C programming, but you will
need to learn more about C before vou can fullv understand their
purpose and value. For the next few chapters we will be using prototypes
without any further explanation. They will be included as needed in
all of the example programs shown in this book. You should also
include them in programs that you write. A full explanation of
prototypes is tound in Chapter 7.

Whena function is called, execution transfers to that function. When
the end of that function is reached, execution returns to a point
immediately after the place at which the function was called. Put
ditterently, when a function ends, exccution resumes at the point in
your program immediately following the call to the function. Any
function inside a program may call any other function within the same
program. Traditionally, main() is not called by any other function,
but there is no technical restriction to this effect.

In the examples that follow, you will learn to create the simplest
type of € functions: those that that do not return values and do not use
parameters. The skeletal form of such a function is shown here:

void FuncName (void) (
/* body of ‘unction here */

C FUNDAMENTALS 285
1.7 WRITE YOUR OWN FUNCTIONS ¥

Of course, the name of the function will vary. Because the function
does not return a value, its return type is void. Because the function
does not have parameters, its parameter list is voic

|__EXAMPLES | -

ézfollowing program contains two functions: main() and funcl(). Try to
determine what it displays on the screen before reading the description that
follows it.

/* A program with two functions */
#include <stdio.h>
void funcl(veid); /* prototype for funcl{() */

int main(void)
{
weEint R TNT =)
funél (i ;
ol g o ol i el el JEH

return 0;

void funcl{void)
{

printf(*like "};
}

This program displays I like C. on the screen. Here is how it
works. In main(), the first call to printf() executes, printing
the 1. Next, funcl() is called. This causes the printf() inside
funcl() to execute, displaying like. Since this is the only
statement inside funcl(), the function returns. This causes
execution to resume inside main() and the C. is printed.
Notice that the statement that calls funcl() ends with a
semicolon. (Remember a function call is a statement.)

26 TEACH YOURSELF
vy T

[

A key point to understand about writing vour own functions is
that when the closing curly brace is reached the function will
return, and execution resumes one line after the point at which
the function was called.

Notice the prototype for funcl(). As you can see, it consists
of its name, return type, and parameters list, but no body. It is
terminated by a semicolon.

This program prints 1 2 3 on the screen:

/* This program has three functions. */
#include <stdio.h>

void funcl(void); /* prototypes */
void func2(void);

int main{void)
(
func2() ;
printf{"3~);

return 0;

void func2(void)
{
funcl():
printg ("2 *);

void funcl(void)
{

DELEE (1.)G
)

In this program, main() first calls func2(), which then calls
funcl(). Next, funcl() displays 1 and then returns to fune2(),
which prints 2 and then returns to main(), which prints 3.

C FUNDAMENTALS - 27
b graitopdna i ol
1.8 USE FUNCTIONS TO RETURN VALUES ¥

1. Enter, compile, and run the two example programs in this
section..

!\J

Write a program that contains at least two functions and prints
the message The summer soldier, the sunshine patriot.

3. Remove the prototype from the first example program and then
compile it. What happens?

l’SE FUNCTIONS TO RETURN VALUES

In C, a function mav return a value to the calling routine. For
example, another of C's standard library functions is sqrt(), which
returns the square root ot its argument. For your program to obtain
the return value, vou must put the function on the right side of an
assignment statement. For example, this program prints the square
root ot 10:

tinclude <stdio.h>
¢include <math.h> /* needed by sqgrt() */

int main(void)
(
double answer;

answer = sgrt(10.0);
orintf("%£f", answer);

recurn 0;

3

This program calls sqre() and assigns its return value to answer.
Notice that sqre() uses the MATLLH header file

28 TEACH YOURSELF

v C

Actually, the assignment statement in the preceding program is not
technically necessary because sqrt() could simply be used as an
argument to printf(), as shown here:

#include <stdio.h>
#include <math.h> /* needed by sqrti{) */

int main(void)
(
printf("%f", sgrt{10.0));

return 0;

}

The rcason this works is that C will automatically call sqre() and
obtain its return value before calling printf(). The return value then
becomes the second argument to printf(). If this scems strange,
don't worry; you will understand this sort of situation better as you
learn more about C.

The sqrt() function requires a floating-point value for its
argcument, and the value it returns is of tvpe double. You must match
the type of value a function returns with the variable that the value
will be assigned to. As you learn more about C, vou will see why this is
important. It is also important that yvou match the types of a function’s
arguments to the types it requires.

When writing your own functions, you can return a value to the
calling routine using the return statement. The return statement
takes the general form ‘

return value,

where valuc is the value to be returned. For example, this program
prints 10 on the screen:

#include <stdio.h>

int func({void); /° prototype */
int thain(void)

{

int num;

num = func();

CFUNDAMENTALS 29
1.8 USE FUNCTIONS TO RETURN VALUES ¥

printf("%d4", num);

return 0;

int func(void)

{

return 10;

}

In this example, func() returns an integer value and its return type
is specified as int. Although vou can create functions that return any
tvpe of data, functions that return values of type int are quite common.
Later in this book, you will see many examples of functions that return
other types. Functions that are declared as void may not return values.
It a function does not explicitly specify a return type, it is assumed
to return an integer by default. For example, func() could have been
coded like this:

func(void)
{

return 10;
}

In this case, the int is implied. The use of the "default to int" rule is
very common in older C code. However, recently there has been a
move away from using the integer default. Whether this trend will
continue is unknown. In any event, to avoid misunderstandings, this
book will always explicitly specify int.

One important point: When the return statement is encountered,
the function returns immediately. No statements after it will be
exécuted. Thus, a return statement causes a tunction to return before
its closing curly brace is reached.

The value associated with the return statement need not be a
constant. [t can be any valid C expression.

A return statement can also be used by itself, without a return
value. This form of return looks like this:

reéturn

It is used mostly by void functions (i e, functions-that have a void
return type) te cause the function to return immediately, betore the
function's closing curly brace is reached. While not recommended,

30 TEACH YOURSELF
¥

you can also use this form of return in functions that are supposcd o
return values. However, doing so makes the returned value undefined
There can be mare than one return in a function. You will see
examples of this later in this book.
Even though a function returns a value, you don't necessarily have
to assign that value to anything. If the return value ot a function is not
used, it is lost, but no harm is done.

1. This program displays the square of a number entered from the
keyboard. The square is computed using the get_sqr()
. . -—______—-——“—-_—‘_—
function. Its operation should be clear.
L]

#include <stdio.h>
int get_sgr{void);
int main(void)

{

int sqr;

sqgr = get_sgr();
printf{*Sqguare: %d", sqr);

return 0;

int get_sqr(void)

{
int num;
printf("Enter a number:" *);
scanf ("%d", &num);
return num*num; /* square the number
}
) \ % o

2. vomed carlier, you can usc return without speciying «
value. This allows a function to return before its closing curly
brace is reached. For example, in the following program, the

C FUNDAMENTALS 379
1.8 USE FUNCTIONS TO RETURN VALUES = ¥

#include <stdio.h>
void funcl(void);

int main{veoid)
(i
funcl() ;

return 0;

void funcl(void)

{
printf ("This is printed.");
return; /* return with no value */
printf("This is never printed.");

EXERCISES

1. Enter, compile, and run the example programs in this section.

2. Write a program that uses a function called convert(), which
prompts the user for an amount in dollars and returns this value
converted into pounds. (Use an exchange rate of $2.00 per
pound.) Display the conversion.

3. What is wrong with this program?
#include <stéio.h>
int fl(void);
int main(void),
{

double answer;

answer = fl{();
printf("%£f", answer);

return 0;

3 TEACH YOURSELF
ol et i

¥ ¢

int f£1(void)
{

return 100;
}

/ at is wrong with this function?

void func(void)
{

int 1i;

printf ("Enter a number: W
scanf ("$d4", &i);

return i;

b As stated earlier, a function's araument is a value that is passed to the
function when the function is called. A function in € can have from
sero to several arguments. (Thie upper limit is determined by the

compiler you are using, but the ANSI C standard specifics that a
function must be able to take atledsi 31 arguments.) For a tunction
to be able to take arguments, special variables to receive argument
values must be declared. These are called the for mal pevameters ot the
function. The parameters are declared between the parentheses that
follow the function’s name. For example, the-function listed below
prints the sum of the two integer al suments used to call it

soid sum(int x, int y)
{
prinefl"%d "; X+ v

CFUNOAMENTALY 33
bttt o2
1.9 USE FUNCTION ARGUMENTS ¥

Each time sum() is called, it will sum the value passed to x with the
value passed to y. Remember, however, that x and y are simply the
function's operational variables, which receive the values you use
when calling the function. Consider the following short program,
which illustrates how to call sum().

/* A simple program that demonstrates sum(). */
#include <stdio.h>
void sum(int x, int y);

int main(void)
{
sum(1l, 20);
sum(9, .6);
sum(81, 9);

return 0;
}

void sum(int x, int y)
{

printf(*%d ", x + y);
}

This program will print 21, 15, and 90 on the screen. When sum()
is called, the value of each argument is copied into its matching

parameter. That is, in the first call to sum(), 1 is copied into x and 20

is copied into y. In the second call, 9 is copied into x and 6 into y. In
the third eall, gi s coptéd info x dnd 9 it y.

If you have never worked with a language that allows parameterized
functions, the preceding process may seem strange. Don’t worry—as
you see more examples of C programs, the concept of arguments,
parameters, and functions will become clear.

It is important to keep twa terms straight. First, argument refers to
the value that is passed to a function. The variable that receives the
value of the argument inside the function is the formal parameter of
the function. Funenons that take arguments are callea parameterized

34 TEACH YOURSELF

functions. Remember, if a variable is used as an argument to a function, it
has nothing to do with the formal parameter that receives its value.

In C functions, arguments are always separated by commas. In this
book, the term argument list will refer to comma-separated arguments.

All function parameters are declared in a fashion similar to that
used by sum(). You must specify the type and name of each
parameter and, if there is more than one parameter, you must use a
comma to separate them. Functions that do not have parameters
should use the keyword void in their parameter list.

|___EXAMPLES |

‘Wn argument to a function can consist of an expression. For
5 example, it is perfectly valid to call sum() as shown here:

sum(10-2, 9*7);

2. This program uses the outchar() function to output characters
__to the screen. The program prints ABC.

#incl&de <stdio.h>
void outchar (char ch);

int main(void)
{
outchar('A’);
outchar('B’');
outchar ('C");

return 0;

)

void outchar(char'ch)
{
printf("%c", ch);

C FUNDAMENTALS 35
100 REMEMBER THE C KEYWORDS ¥
EXERCISES

1. Write a program that uses a function called outnum() that
takes one integer argument and displays it on the screen.

2. What is wrong with this program?

#include <stdio.h>
void.sqr_it(int num) ;

int main(void)
{
sqr_it(10.0);

return 0;
}

void sqr_it(int num)
({
printf("%$d", num * num);

mﬂfMEMBER THE C KEYWORDS

" Before concluding this chapter, you should familiarize yourself with
the keywords that make up the C language. ANSI C standard has 32
keywords that may not be used as variable or function names. These
words, combined with the formal C syntax, form the C programming
language. They are listed in Table 1-2.

Many C compilers have added several additional keywords that are
used to take better advantage of the environment in which the
compiler is used, and that give support for interlanguage program-
ming, interrupts, and m’cmory organization. Some commonly used
extended keywords are shown in Table 1-3.

The lowercase lettering of the keywords is significant. C requires
that all keywords be in lowercase form. For example, RETURN will
not be recognized as the keyword return. Also, no keyword may be
used as a variable or function name.

36 TEACH YOURSELF
—

ELZXEEY e 32 Keywords as Defined by the ANSI C Standard W

Y ¢
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
,default goto sizeof volatile
do if static while

asm _Cs _ds _es
_SS cdecl far huge
interrupt near pascal

Some Common C Extended Keywords W

Mastery
Skills Check

. The moon'’s gravity is about 17 percent of Earth’s. Write a

program that allows you to enter your weight and computes
your effective weight on the moon.

. What is wrong with this program fragment?

/* this inputs a number
scanf ("%d", &num);

. There are 8 ounces in a cup. ‘Write a program that converts

ounces to cups. Use a function called o_to_c() to perform the
conversion. Call it with the number of ounces and have it return
the number of cups.

. What are the five basic data types in C?

CFUNDAMENTALS 37
110 REMEMBER THE C KEYWORDS ¥

5. What is wrong with each of these variable names?
a) short-fall
b) $balance
¢) last+name
d) 9times

2

Introducing C's
Program Control
Statements

A

chapter objectives

2.1 Become familiar with the if
2.2 Add the else

2.3 Create blocks of code

2.4 Use the for loop

2.5 Substitute C's increment and decrement
operators

2.6 Expand printf()'s capabilities

2.7 Program with C's relational and logical
operators

&0 TEACH YOURSEL:
v

(]

N this chapter you will learn about two of C's most important

program control statements: if and for. In general, program

control statements determine your program’s flow of execution.

As such, they form the backbone of your programs. In addition to

these, you will also learn about blocks of code, the relational and
logical operators, and more about the printf() function.

Skills Check

Before praceeding, you should be able to correctly answer these
questions and do these exercises:

1. All C programs are composed of one or more functions. What is
the name of the function that all programs must have? Further,
what special purpose does it perform?

2. The printf() function is used to output information to the
screen. Write a program that displays This is the number 100,
(Output the 100 as a number, not as a string.)

3. Header files contain information used by the standard library
functions. How do you tell the compiler to include one in your
program? Give an example.

4. C supports five basic types of data. Name them.
5. Which of these variable names are invalid in C?
a. _count
b. 123count
c. $test
d. This_is_a_long_name
e. new-word
6. What is scanf() used for?

7. Write a program that inputs an integer from the keyboard and
displays its square.

8. How are comments entered into a C program? Give an example.

9. How does a function return a value to the routine that called it?

INTRODUCING C'S PROGRAM CONTROL STATEMENTS 47
21 BECOMEFAMILIAR WITH THEW ¥

10. A function called Myfunc() has these three parameters: an int
called count, a float called balance, and a char called ch. The
function does not return a value. Show how this function is

prototyped.
\ ME FAMILIAR WITH THE if

The if statement is one of C’s selection statements (sometimes called
conditional statements). Its operation is governed by the outcome of a
conditional test that evaluates to either true or false. Simply put,
selection statements make decisions based upon the outcome of some-
condition.

In its simplest form, the if statement allows your program to
conditionally execute a statement. This form of the if is shown here:

£ if(expression) statement:

The expression may be any valid C expression. If the expression
evaluates as true, the statement will be executed. If it does not, the
statement is bypassed, and the line of code following the if is exccuted.
In C, an expression is true if it evaluates to any nonzero value. If it
evaluates to zero, it is false, The statement that follows an if is usually
referred to as the target of the if statement. '

Commonly, the expression inside the if compares one value with
another using a relational operator. Although you will learn about all
the relational operators later in this chapter, three are introduced here
so that we can create some example programs. A relational operator
tests how one value relates to another. For example, to see it one value
is greater than another, C uses the > relational operator. The outcome
of this comparison is either true or false. For example, 10 > 9 is true,
but9 > 10 is false. Therefore, the following if will cause the message
true to be displayed.

if (10 > 9) printf("true"):

However, because the expression in the fol]owihg statement is false,
the if does not execute its target statement.

if(5 » 9) printf(*"this will not print*");

£2 TEACH YOURSELF
Y ¢

C uses < as its less than operator. For example, 10 < 11 is true. To
test for equality, C provides the == operator. (There can be no space
between the two equal signs.) Therefore, 10 == 10 is true, but 10 ==
11 is not. '

Of course, the expression inside the if may involve variables. For
example, the following program tells whether an integer entered from
the keyboard is negative or non-negative.

#include <stdio.h>

int main{void) f
{

int num;

printf ("Enter an integer: "):
scanf ("%d", &numj;

if(num < 0) printf("Number is negative.");
if{num » -1) printf("Number is non-negative. ")

return 0;

Remember, in C, true is any nonzero value and false is zero.
Therefore, it is perfectly valid to have an if statement such as the one
shown here:

if({count+l) printf("Not Zero"):

1. This program forms the basis for an addition drill. 1t displays
two numbers and asks the user what the answer is. The
program then tells the user if the answer is right or wrong.

#include <stdio.h>

int main(void)
{
int answer;

INTRODUCING C'S PROGRAM CONTROL STATEMENTS §3
21 BECOME FAMILAR WITH THEW ¥

printf("what is 10 + 14?2 ");
scanf ("%d", &answer);
if (answer == 10+14) printf("Right!") ;"

return 0;

}

2. This program converts either feet to meters or meters to feet,
depending upon what the user requests.

#include <stdio.h>

int main(void)
(
float num;
int choice;

printf("Enter value: ");
scanf ("%£f", &num);

printf("1l: Feet to Meters, 2: Meters to Feet. ");
printf ("Enter choice: ");
scanf ("%d", &choice);

if(choice == 1) printf("$f", num / 3.28);
if(choice == 2) printf("%f", num * 3.28B);
return 0;
}
EXERCISES

1. Which of these expressions are true?

a. 0

b. 1

c. 10*9 < 90
d I1==1

&4y TEACH YOURSELF -
Y ¢

2. Write a‘program that asks the user for an integer and then tells
the user if that number is even or odd. (Hint, use C's modulus
operator %.) = '

" F

. =
m/ D THE else ‘\/)

You £an add an else statement to the if. When this is done, the if
statement looks like this:

Zif(expression) statement];
else statement2;

If the expression is true, then the target of the if will execute, and the
else portion will be skipped. However, if the expression is false, then
the target of the if is bypassed, and the target of the else will execute.
Under no circumstances will both statements execute. Thus, the
addition of the else provides a two-way decision path.

1. You can use the else to create more efficient code in some
cases. For example, here the else is used in place of a second if
: in the program from the preceding section, which determines
whether a number is negative or non-negative.

#include <stdio.h>
int main(void)

(,
int num;

printf (*Enter an integer: ");
scanf ("%d*, &num);

if(num < 0) printf("Number is negative.");
else printf ("Number is non-negative.");

INTRODUCING C'S PROGRAM CONTROL STATEMENTS 45
22 ADDTHEelse ¥

return 0;

)

Recall that the original version of this program explicitly tested
for non-negative numbers by comparing num to -1 using a
second if statement. But since there are only two possibilities—
num is either negative or non-negative—there is no reason for
this second test. Because of the way a C compiler generates
code, the else requires far fewer machine instructions than an
additional if and is, therefore, more efficient.

2. This program prompts the user for two numbers, divides the
first by the second, and displays the result. However, division by
zero is undefined, so the program uses an if and an else
statement to prevent division by zero from occurring.

#include <stdio.h>
int main(void)
{

int numl, num2;

printf ("Enter first number: ");
scanf ("%d", &numl);

printf ("Enter second number: ");
scanf (“%d", &num2);

if (num2 == 0) printf("Cannot divide by zerd.");
else printf("Answer is: %d4.", numl / num2);

return 0;

EXEHCISE* L

1. Write a program that requests two numbers and then displays
either their sum or product, depending on what the user selects.

&6 TEACH YOURSELF
v

(9]

2. Rewrite Exercise 2 from Section 2.1 so that it uses an else
statement. /

= T

BEEXEE \[“REATE BLOCKS OF CODE

In C, you can link two or more statements together. This is called a
block of code or a code block. To create a block of code, you su rround
the statements in the block with opening and closing curly braces.
Once this is done, the statements form one logical unit, which may
be used anywhere that a single statement may.

For example, the general form of the if using blocks of code is

if(expression) {
StatementT,
statement2;

statement N,
} i
else {
statermnent],
statement2;

statement N;

}

If the expression evaluates to true, then all the statements in the block
of code associated with the if will be executed. If the expression is false,
then all the statements in the else block will be executed. (Remember,
the else is optional and need not be present.) For example, this
fragment prints the message This is an example of a code block.

if the user enters any positive number.

INTRODUCING C'S PROGRAM CONTROL STATEMENTS &7
23 CREATE BLOCKS OF CODE = ¥

scanf ("%d", &num);

if(num > 0) {
printf(“This is ");
printf ("an example of ");
printf("a code block.");
)

Keep in mind that a block of code represents one indivisible logical
unit. This means that under no circumstances could one of the
printf() statements in this fragment execute without the others
also executing.

In the example shown, the statements that appear within the block
of code are indented. Although C does not care where a statement
appears on a line, it is common practice to indent one level at the
start of a block. Indenting makes the structure of a program casier
to understand. Also, the placement of the curly braces is arbitrary.
However, the way they are shown in the example is a common
method and will be used by the examples in this book.

In C, as vou will see, you can use a block of code anywhere you can
use a single statement.

1. This program is an improved version of the feet-to-meters,
meters-to-feet conversion program. Notice how the use of code
blocks allows the program to prompt specifically for each unit.

#include <stdio.h>

int main(void) ~
{

float num;

int choice;

printf("1l: Feet to Meters, 2: Meters to Feet. ");
printf("Enter choice: ");
scanf ("%d", &choice);

if (choice == 1) {
printf ("Enter number of feet: *);

“mvmmar
Y ¢

scanf (“%£", &num);
printf("Meters: %f", num / 3.28};

}

else (
printf (*Enter number of meters: ");
scanf ("%f", &num);
printf("Feet: %f", num * 3.28);

return 0;

)

2. Using code blocks, we can improve the addition drill program
so that it also prints the correct answer when the user makes
a mistake.

#include <stdio.h>

int main(void)
{
int answer;

printf ("What is 10 + 14?7 *);
scanf ("%d", &answer);

if (answer == 10+14) printf("Right!");
else {
printf("Sorry, you're wrong. ");
printf (*The answer is 24.");

return 0;

}

This example illustrates an important point: it is not necessary
for targets of both the if and the else statements ta be blocks of
code. In this case, the target of if is a single statement, while the

. target of else is a block. Remember, you are free to use cither a
single statement or a code block at either place.

INTRODUCING C'S PROGRAM CONTROL STATEMENTS 49
24 USETHEMorloop Y

1. Write a program that either adds or subtracts two integers. First,
prompt the user to choose an operation; then prompt for the
two numbers and display the result.

2. Is this fragment correct?

if{count < 100)
printf (“Number is less than 100.");
printf("Its square is %d.", count * count) ;

E for LOOP
|

The for loop is one of C's three loof)'_s'tgtements. It allows one or more
statements to be repeated. If you have programmed in any other
computer language, such as BASIC or Pascal, you will be pleased to
learn that the for behaves much like its equivalent in other languages.
The for loop is considered by many C programmers to be its most
flexible loop. Although the for loop allows a large number of
vrdations, we will examine only its most common form in this section.
The for loop is used to repeat a statement or block of statements a
specified number of times. Its general form for repeating a single

?ﬁment is shown here.
%ﬂi‘ni{faliz&rmn ; conditional-test; increment) statement ;

The initialization section is used to give an initial value to the variable

that controls the loop. This variable is usually referred to as the
loop-control variable. The initialization section is executed only once,
before the loop begins. The conditional-test portion of the loop tests the
loop-control variable against a target value. If the conditional test

5 TEACH YOURSELF
Y ¢

evaluates true, the loop repeats. If it is false, the loop stops, and
program execution picks up with the next line of code that follows the
loop. The conditional test is performed at the start or top of the loop
each time the loop is repeated. The increment portion of the for is
executed at the bottom of the l()ﬁp. That is, the increment portion is
executed after the statement or block that forms its body has been
executed. The purpose of the increment portion is to increase (or
decrease) the loop-control value by a certain amount.

As a simple first example, this program uses a for loop to print the
numbers 1 through 10 on the screen.

#include <stdio.h>
A

A/ér_ main (void)
{

int num;

for (num=1; num<ll; num=num+1) printf("%¥d ", num) ;
printf('terminating'];

t

return 0;

}
This program produces the following output:
12345678910 terminating

The program works like this: First, the loop control variable num is
initialized to 1. Next, the exprcséion num < 11 is evaluated. Since it
is true, the for loop begins running. After the number is printed, num
is incremented by one and the conditional test is evaluated again. This
process continues until num equals 11. When this happens, the for
loop stops,-and terminating is displayed. Keep in mind that the
initialization portion of the for loop is only executed once, when
the loop is first entered. A

As stated earlier, the conditional test is performed at the start of
cach iteration. This means that if the test is false to begin with, the
locp will not execute even once. For example, this program only
disnlays terminating because num is initialized to 11, causing the
conditional test to fail.

INTRODUCING C'S PROGRAM CONTROL STATEMENTS 5
24 USETHEforiooP ¥

#include <stdio.h>

int main(wvoid)
{

int num;

/* this loop will not execwpte. */
for (num=11; num<ll; num=num+1) printf(*%d ", num);

printf("terminating”);

return 0;

To repeat several statements, use a block of code as the target of the
for loop. For example, this program computes the product and sum of
the numbers from 1 to 5: ‘

#include <stdio.h>

int main(void)
{
int num, sum, prod;

sum = 0;
prod = 1;

for (num=1; num<6; num=num+1l) {
sum = sum + num; ‘
prod = prod * num;
}
printf ("product and sum: %d %d", prod, sum);

return 0;

A for loop can run negatively. For example, this fragment
decrements the loop-control variable.

for(num=20; num>0; num=num-1)...

Further, the !oop—contrbl variable may be incremented or decremented
by more than one. For example, this program counts to 100 by fives:

52 TEACHY S URSELF
v i

#influde <stdio.h>

--;int main(void)
(

ing. i:

for(i=0; i<101; i=i+5) printf(*%d ", i);

return 0;

1. The addition-drill program created earlier can be enhanced
using a for loop. The version shown here asks for the sums of
the numbers between 1 and 10. That is, it asks for 1 + 1, then 2
+ 2, and so on. This program would be useful to a first grader
who is learning to add.

#include <stdio.h>

int main(void)
(

int answer, count;

for (count=1; count<ll; count=count+l) {
printf ("what is %d + %d? ", count, count) ;
scanf ("%d", &answer);

if (answer == count+count) printf("Right! *);

else | - i
printf("Sorry, you're wrong..");
printf("The answer is %¥d. ", count+count);

return 0;

)

Notice that this program has an if statement as part of the for
block. Notice further that the target-of else is a block of code.
This is perfectly valid. In C, a code block may contain

INTRODUCING C'S PROGRAM CONTROL STATEMENTS 53
24 USETHEfortoop Y

statements that create other code blocks. Notice how the
indentation adds clarity to the structure of the program.

se a for loop to create a program that determines if a
ber is prime. The following program asks the user to enter
a number and then checks to see if it has any factors.

/* Prime number tester. */
#include <stdio.h>

int main(void)
{

int num, i, s _prime;

printf("Enter the number to test: ");
scanf ("%d", &num);
/* now test for factors */
is_prime = 1;
for(i=2; i<=num/2; i=i+1)
if ((num%i)==0) is_prime - 0;

if(is_prime==1) printf("THe number is prime.");
else printf("The number is not prime.");

return 0;

EXERCISES

1. Create a program that prints the nuhbers from 1 to 100.

2. Write a program that prints the numbers between 17 and 100
that can be evenly divided by 17.

3. Write a program similar to the prime-number tester, excépt that
it displays all the factors of a number entered by the user. For
example, if the user entered 8, it would respond with 2 and 4.

B4& TEACH YOURSELF
¥ ¢

UBSTITUTE C’'S INCREMENT AND
DECREMENT OPERATORS '

When you learned about the for in the preceding section, the increment
portion of the loop looked more or less like the one shown here:

for (num=0; num<some_value; num=num+1l}...

Although not incorrect, you will almost never see a statement like
num = num + lin professionally written C programs because C
prowdes a special operator that increments a variable by one. The
increment operator is ++(two pluses with no intervening space). Using

the increment operator, you can change this line of code:
i = 1 + 1;
into this:
ie+;
Therefore, the for shown earlier will normally be written like this:
for (num=0; num<5cme_value; num++) ...

In a similar fashion, to decrease a variable by one, you can use C's
decrement operator: - -. (There must be no space between the two
minus signs.) Therefore,

count = count - 1;

can be rewritten as

count--;

Aside from saving you a little typing effort, the reason you will want
to use the increment and decrement operators is that, for most C i
compilers, they will be faster than the equivalent assignment [
statements. The reason for this difference is that the C compiler can
often avoid separate load-and-store machine-language instructions and
substitute a single increment or decrement instruction in the
executable version of a program.

The increment and decrement operators do not need to follow the
variable; they can precede it. Although the effect on the variable is the

INTRODUCING C'S PROGRAM CONTROL STATEMENTS 5§
25 SUBSTITUTE C'S INCREMENT AND DECREMENT OPERATORS ¥

same, the position of the operator does affect when the operation is
performed. To see how, examine this program:

#include <stdio.h>

int main(void)

{

ink & 34
i = 10;
j = 3t+;

\/' this will print 11 10 */
printf(*i and j: %d %d", i, J);

return 0;

Donlt let the ji = i+ statement trouble you. The increment
operator may be used as part of any valid C expression. This statement
works like this. First, the current value of i is assigned to j. Then i is
incremented. This is why j has the value 10, not 11. When the
increment or decrement operator follows the variable, the operation
is performed after its value has been obtained for use in the
expression. Therefore, assuming that max has the value 1, an
expression such as this:

count = 10 * max++;

assigns the value 10 to count and increases max by one.

If the variable is preceded by the increment or decrement operator,
the operation is performed first, and then the value of the variable is
obtained for use in the expression. For example, rewriting the
previous program as follows causes j to be 11.

#include <stdiec.h>

int main(void)
{

int &, 3

i = 10;
++1;

.
"

56 TEACH YOURSELF
¥ ¢

/* this will print 11 11 */

printf("i and j: %4 %d", i. j):

return 0;

If you are simply using the increment or decrement operators to
replace equivalent assignment statements, it doesn’t matter if the
operator precedes or follows the variable. This is a matter of your own
personal style.

1. Here is the addition drill program developed in Section 2. It has
been rewritten using che increment operator.

#include <stdio.h>

int main(void)
(

int answer, count;

for (count=1; count<ll; count++) {
printf("what is %d + %d? ", count, count);
scanf ("%d", &answer):

if (answer == count+count} printf("Right! *);
else {
printf("Sorry, you're wrong. ");
printf("The answer is %d. ", count+count):;
)
)
return 0;

}

2. This program illustrates the use of the increment and
decrement operators:

#include <stdio.h>

int main(void)

INTRODUCING C'S PROGRAM CONTROL STATEMENTS &7
25 SUBSTITUTE C'S INCREMENT AND DECREMENT OPERATORS ¥

i+4+;
printf("%d *, i); /* prints 1 */
=iy
printf("sd ", i); /* prints Q0 */

return 0;

1. Rewrite the answer to the for loop exercises in the previous
section so that they use the increment or decrement operators.

2. Change all appropriate assignment statements in this program
to increment or decrement statements.

#include <stdio.h>

int main(void)

{

int a, b;

a=1; _
a=a+ 1;

b = a;

b=>b- 1;

printf("%d %d4d*, a, b);

return 0;

XPAND printf()’S CAPABILITIES

So far, we have used printf() to output strings and numbers.
However, you might have been wondering how to tell printf() that
you want the output to advance to the next line. The way to accomplish
this and other actions is to use C's backslash-character constants. The C
language defines several special character codes, shown in Table 2-1,
which represent characters that cannot be entered from the keyboard,
are non-printing characters, may not be found in all character sets,

or that serve other unique needs. You can use the backslash codes
anywhere you can use a normal character. The backslash constants
are also referred to as escape sequences.

Code Meaning

\b ~—— Backspace

\f Form feed

\n _—————Newline

\r Carriage return
| e S Horizontal tab
. i Double quote
L -Single quote '
\0 Null

\\ Backslash

W Vertical tab

\a o Alert

\? Question mark

W+ Qctal constant (where Nis an octal value)

\xN Hexadecimal constant (where N is a hexidecimal value)

ELSCEER C's Backslash Codes ¥

INTRODUCING C'S PROGRAM CONTROL STATEMENTS 58§
26 FYPAND orintf()'S CAPABILITES ¥

Perhaps the single most important backslash code is \n, which is
often referred to as the newline character. When the C compiler
encounters \n, it translates it into a carriage return/linefeed
combination. For example, this program:

#include <stdio.h>

int main(void)

{
printf("This is line one.\n");
printf(*This is line two.\n");
printf("This is line three."):

return 0;

}
displays

This is line one.
This is line two.
This is line three.

on the screen.

Remember, the backslash codes are character constants. Therefore,
to assign one to a character variable, you must enclose the backslash
code within single quotes, as shown in this fragment:

char ch;

ch = “\t’; /* assign ch the tab character */

1. This program sounds the bell:

#include <stdio.h>

int main(void)
{
printf(~\a"};

60 TEACH YOURSELF

v

c

return 0;
)

2. You can enter any special character by specifying it as an octal

or hexadecimal value following the backslash. The octal number
system is based on 8 and uses the digits 0 through 7. In octal,
the number 10 is the same as 8 in decimal. The hexadecimal
number system is based on 16 and uses the digits 0 through 9
plus the letters 'A’ through 'F’, which stand for 10, 11, 12, 13,
14, and 15. For example, the hexadecimal number 10 is 16 in
decimal. When specifying a character in hexadecimal, you must
follow the backslash with an 'x’, followed by the number.

The ASCII character set is defined from 0 to 127. However,
many computers, including most PCs, use the values 128 to 255
for special and graphics characters. If your computer supports
these extra characters, the following program will display a few
of them on the screen.

#include <stdio.h>
int main(void)

{
printf("\xA0 \xAl \xA2 \xA3");

return 0;

)

. The \n newline character does not have to go at the end of the

string that is being output by printf(); it can go anywherc in
the string. Further, there can be as many newline characters in
a string as you desire. The point is that there is no connection
between a newline and the end of a string. For example, this
program:

#include <stdio.h>
int main(void)
{

printf ("one\ntwo\nthree\nfour");

return 0;

INTHOD U MG C'S PROGRAM CONTROL STATEMENTS 61

27 PROGEM WITH C'S RELATIONAL AND LOGICAL OPERATORS Y

displays

one
-two

three

four

on the screen.

EXERCISES

1. Write a program that outputs a table of numbers. Each line in
the table contains three entries: the number, its square, and its
cube. Begin with 1 and end with 10. Also, use a for loop to

. generate the numbers.

2. Write a program that prompts the user for an integer value.
Next, using a for loop, make it count down from this value to 0,
displaying each number on its own line. When it reaches 0, have
it sound the bell.

3. Experiment on your own with the backslash codes.

JROGRAM WITH C'S RELATIONAL AND
G! OPERATORS

The C language contains a rich set of operators. In this section you will
learn about C's relational and logical operators. As you saw earlier, the
relational operators compare two values and return a true or false
result based upon that comparison. The logical operators connect
together true/false results. These operators are shown in Table 2-2
and Table 2-3.

Y ¢
Operator Action
)% Greater than
e Greater than or equal
< Less than
&= Less than or equal

Equal

Not equal

ELZCERY Relational Operators W

The logical operators are used to support the basic logical operations
of AND, OR, and NOT according to this truth table. The table uses 1

for true and 0 for false.

7

P
0 0
0 1
1 g 1
1 0

p&&q

0
0
1
0

plla

0
1
1
1

Ip
1
1
0
0

The relational and logical operators are both lower in precedence
than the arithmetic operators. This means that an expression like

10 + count > a + 12

&&
I

Action
AND

OR
NOT

ELTCERY (ogical Operators ¥

INTRODUCING C'S PROGRAM CONTROL STATEMENTS 3
27 PROGRAM WITH C'S RELATIONAL AND LOGICAL OPERATORS ¥

is evaluated as if it were written
{10 + count) > (a + 12)

You may link any number of relational operations together using
logical operators. For example, this expression joins three relational
operations.

var > max || ! (max==100) && 0 <= item

The table below shows the relative precedence of the relational and
logical operators.

Highest !

Lowest Il

There is one important fact to remember about the values produced
by the relational and logical operators: the result is either 0 or 1. Even
though C defines true as any nonzero value, the relational and logical
operators always produce the value 1 for true. Your programs may
make use of this fact.

You can use the relational and logical operators in both the if and
for statements. For example, the following statement reports when -
both a and b are positive:

if(a>0 && b>0) printf(“Both are positive."):

[exampLes |

e

1. In professionally written C code, it is uncommon to find a
statement like this:

if(count != 0)...
The reason is that in C, true is any nonzero value and false is zero.
Therefore, the preceding statement is generally written as this:

if(count)...

64 TEACH YOURSELF

Further, statements like this:

if (count == 0)...

are generally written as:

if(!count)...

The expression lcount is true only if count is zero.

2. It is important to remember that the outcome of a relational or
logical operation is 0 when false and 1 when true. For example,
the following program requests two integers, then displays the
outcome of each relational and logical operation when applied
to them. In all cases, the result willbe a0 ora 1.

#include <stdio.h>

int main(void)
{

int i, j;

printf("Enter first number: *);
scanf ("%d", &i);
printf ("Enter second number: *);
scanf ("%d", &j);

/* relational operations */
printf(*i < j %d\n", i < J);
printf(*i <= j %d\n", i <= j);
printf(*i == j %d\n", i == j);
printf("i > j %d\n*, i > 3);
‘printf(*i >= j %d\n", i >= j);

/* logical operations */
printf("i && j ¥d\n", i && j);
printf("i || j %a\n", L || 3):
printf(~!i !j %4 sd\n", 'i, !j);
return 0;

}

3. C does not define an exclusive-OR (XOR) logical operator.
However, it is easy to create a function that performs the
operation. The XOR operation uses this truth table:

INTRODUCING C'S PROGRAM CONTROL STATEMENTS §5

27 PROGRAM WITH C'S RELATIONAL AND LOGICAL OPERATORS '
p XOR
0 0 0
0 1 1
1 0 1
1 1 0

That is, the XOR operation produces a true result when one and
only one operand is true. The following function uses the &&

and || operators to construct an XOR operation. [t compares the
values of its two arguments and returns the outcome of an XOR

operation. b

int xor(int a, int b)

{
return (a || b) && !(a && b);
}

The following program uses this function. It displays the result
of an AND, OR, and XOR on the values you enter. -

/* This program demonstrates the xor() function. */
#include <stdio.h>

int xor(int a, int b);

int main(void)
{
int p, q;

printf("enter P (0 or 1): *);

scanf ("%d", &p);

printf("enter Q (0 or 1): ");

scanf ("%d", &q);

printf ("P AND Q: %d\n", p && q);
printf("P OR Q: %d\n", p || q);
printf("P XOR Q: %d\n", xor(p, q));

return 0;

int xor(int a, int b)

5

©6 TEACH YOURSELF

v

c

{
return (a || b) && !{a && b);

EXERCISES

1.

What does this loop do?

for(x=0; x<100; x++) printf("%d ", x);

Is this expression true?

1{10==9)

Do these two expressions evaluate to the same outcome?
a. 0&& 1|1

b. 0&& (1] 1)

On your own, experiment with the relational and logical
operators.

Mas!
Skills Check

I. Write a program that plays a computerized form of the "guess
the magic number" game. It works like this: The player has ten
trics to guess the magic number. If the number entered is the
value you have selected for your magic number, have the
program print the message "RIGHT!" and then terminate.
Otherwise, have the program report whether the guess was
high or low and then let the player enter another number. This
process goes on until the player guesses the number or the ten
trics have been used up. For fun, you might want to report the
number of tries it takes to guess the number.

INTRODUCING C'S PROGRAM CONTROL STATEMENTS 67
27 PROGRAM WITH C'S RELATIONAL AND LOGICAL OPERA TORS G

2. Write a program that computes the square footage of a house

given the dimensions of each room. Have the program ask the
user how many rooms are in the house and then request the
dimensions of each room. Display the resulting total square
footage.

3. What are the increment and decrement operators and what

do they do?

- Create an improved addition-drill program that keeps track of
the number of right and wrong answers and displays them when
the program ends.

. Write a program that prints the numbers 1 to 100 using 5
columns. Have each number separated from the next by a tab.

More C Program
Control Statements

chapter objectives

3.1 Input characters

3.2 Nest if statements

3.3 Examine for loop vanations

3.4 Understand C's while loop

3.5 Use the do loop

3.6 Create nested loops

3.7 Use break to exit a loop

3.8 Know when to use the continue stalement

3.9 Select among alternatives with Lhe switch
statement

3.10 Understand the goto statement

J0 TEACH YOURSELF
Y ¢

HIS chapter continues the discussion of C's program control

statements. Before doing so, however, the chapter begins

by explaining how to read characters from the keyhoard.

Although you know how to input numbers, it is now time

for you to know how to input individual characters because
several examples in this chapter will make use of them. Next, the
chapter finishes the discussion of the if and for statcments. Then it
presents C's two other loop statements, the while and do. Next you
will learn about nested loops and two more of C's control statements,
the break and continue. This chapter also covers C's other selection
statement, the switch. 1t ends with a short discussion of C's
unconditional jump statement, goto.

Review
Skills Check

Before proceeding, you should be able to answer these guestions
and perform these exercises:
. What are C’s relational and logical operators?
2. What is a block of code? How do you make one?
3. How do you output a newline using printf()?
4. Write a program that prints the numbers -100 to 100,

5. Write a program that prints 5 differcnt proverbs. The program
prompts the user for the number of the proverb to print and
then displays it. (Use any proverbs you like.)

. How can this statement be rewritten?

count = count + 1;
7. What values are true in C? What values are false?

“JNPUT CHARACTERS

Although numbers are important, your programs will also need to read
characters from the keyboard. In C you can do this in a variety of
ways. Untfortunately, this conceptually simple task is complicated by

MORE C PROGRAM CONTROL STATEMENTS 71
31 INPUT CHARACTERS ¥

some baggage left over from the origins of C. However, let's begin with
the traditional way characters are read from the keyboard. Later vou
will learn an alternative.

C defines a function called getchar(), which returns a single
character typed on the keyboard. When called, the function waits for a
key to be pressed. Then getchar() cchoes the keystroke to the soreen
and returns the value of the key to the caller. The getchar() furfction
is defined by the ANSI C standard and requires the header file STBIO.IL,
This program illustrates its use by reading a character and then telling
you what it received. (Remember, to display a character, use the %c
printf() format specifier.)

#include <stdio.h>

int main(veoid)
(

char ch;

ch = getchar(); /* read a char L7
printf (" you typed: %c", ch);

return 0;

If you try this program, it may behave differently than vou
expected. The trouble is this: in many C compilers, getchar() is
implemented in such a way that it line buffers input. That is, it does not
immediately return as soon as you have pressed a key, but waits until
you have entered an entire line, which may include several other
characters. This means that even though it will read and return only
one character, getchar() waits until you enter a carriage return (i.c.,
press ENTER) before doing so. When getchar() returns, it will return
the first character you typed. However, any other characters that you
entered, including the carriage return, will still be in the input buffer.
These characters will be consumed by subsequent input requests, such
as through calls to scanf(). In some circumstances, this can lead to_
trouble. This situation is examined more closely in Chapter 8. For
now, just be aware that getchar() may behave differently than vour
intuition would suggest. Of course, the programs shown in this book
behave properly.

72 TEACH YOURSELF

v ¢

The reason that getchar() works the way it does is that the version
of UNIX for which C was developed line-buffered input. When C
compilers were created for other interactive environments, developers
had to decide how to make getchar() behave. Many C compiler
developers have decided, for the sake of compatibility, to keep
getchar() line-buffered, even though there is no technical reason for
it. (In fact, the ANSI C standard states that getchar() need not be
line-buffered.) When getchar() is implemented in a line-butfered
fashion in a modern interactive environment, its use is scverely
limited.

Because many compilers have implemented line-buffered versions
of getchar(), most C compilers supply another function to perform
interactive console input. Although it is not defined by the ANSIC
standard, most compilers call this function getche(). You use it just
like getchar(), except that it will return its value immediately after a
key is pressed; it does not line-butfer input. For most compilers, this
function requires a header file called CONIO.1, but it might be called
somcthing different in your compiler. Thus, if you want to achieve
interactive character input, you will usually need to use the getche()
function rather than getchar().

since all readers will have access to the getchar() function, it will
he used by most of the examples in this book that require character
input. However, some examples will use the getche() function. If
your compiler does not include this function, substitute getchar().
You should feel free to experiment with getche() on your own.

Al the ume of this writing, when using Microsoft's Visual C++ compiler,
getche() is not compatible with C's standard input functions, such as scanf().
Instead, you must use special console versions of these of these functions,
such as escanf(). This and other non-standard I/0 functions are described in
Chapter 8. The examples in this book that use getche() work correctly with
Visual C++ because they avoid the use of the standard input functions.

Virtually all computers use the ASCII character codes when
representing characters. Therefore, characters returned by ecither
getchar() or getche() will be represented by their ASCII codes. This
is useful because the ASCII character codes are an ordered sequence;
cach letter's code is one greater than the previous letter; each digit's
code is one greater than the previous digit. This means that 'a’ is less

MORE C PROGRAM CONTROL STATEMENTS 73
21 INPUTCHARACTERS ¥

'
than'b’, '2’ is less than '3, and so on. You may compare characters just
like you compare numbers. For example,

ch = getchar();
if(ch < "f’ printf("character is less than f");

is a perfectly valiu fragment that will display its message if the user
enters any character that comes before £

1. This program reads a character and displays its ASCII code. This
illustrates an important feature of C: You can use a character as
it it were a "little integer.” The program also demonstrates the
use of the getche() function.

#include <conio.h>
#include <stdio.h>

int main(void)
(
char ch;

printf("Enter a character: ");
ch = getche();
printf("\nIts ASCII code is %d"., ch);

return 0;
}

Because this program uses getche(), it responds as soon as you
press a key. Before continuing, try substituting getchar() tor
getche() in this program and observe the results. As you will
sce, getchar() does not return a character to your program
until you press ENTER.

2. One of the most common uses of character input is to obtain a
menu selection. For example, this program allows the user to
add, subtract, multiply, or divide two numbers

#include <stdio.h>

74& TEACH YOURSELF

v

{47

int main(void)
{
int a, b;
char ch;

printf("Do you want to:\n");

printf ("Add, Subtract, Multiply, or Divide?\n");
printf("Enter first letter: "});

ch = getchar();

printt (%)

printf("Enter first number: ");
scanf ("$d", &a);
printf("Enter second number: ");
scanf ("%d", &b);

if{ch=="A") printf("%d", a+b);
if{chss*S") printf("%d;, a-b};
1f(eh=='M") printf (*%d", a*bj:
if{ch=='D'" && b!=0} printf("%d", a/b};

return 0;
)

One point to keep in mind is that C makes a distinction between
upper- and lowercase letters. So, if the user enters an s, the
program will not recognize it as a request to subtract. (Later,
you will learn how to convert the case of a character.)

Another common reason that your program will need to read a
character from the keyboard is to obtain a yes/no response from
the user. IF'or example, this fragment determines it the user
wants to proceed.

printf("Do you wish to continue? (Y/N : ");
ch = getche();
if(ch=="¥") {

/* continue with something */

MORE C PROGRAM CONTROL STATEMENTS 5
32 NESTif STATEMENTS Y

EXERCISES

. Write a program that reads ten letters. After the letters have
been read, display the one that comes earlicst in the alphabet.
(Hint: The one with the smallest value comes first.)

2. Write a program that displays the ASCII codes for the characters
A through Z and a through z. How do the codes ditter between
the upper- and lowercase characters?

e T

//

32 if STATEMENTS

When an if statement is the target of another if or else, it is said to be
nested within the outer if. Here is a simple example of a nested if: " 7

if (count > max) /* outer if */
it (error) printf’"» ror, try again."); /* nested if */

Here, the printf() statement will only execute if count is greater
than max and if error is nonzero. Notice how the nested if is
indented. This is common practice. It enables anyone reading your
program to know guickly that the if is nested and what actions are
nested. A nested if may also appear inside a block of statements that
are the target of the outer if.

An ANSI-standard compiler will allow you to nest ifs at least 15
levels deep. (However, it would be rare to find such a deep nesting,)
One confusing aspect ot nested ifs is illustrated by the tollowing

fragment:

if (p)
if(g) printf("a and b are true");
else printf("To which statement does this else apply?");

The question suggested by the sccond printf() is: which if is
associated with the else? Fortunately, the answer is quile casy: An
clse always associates with the nearest if in the same block that does
not already have an else associated with it. In this example, the else is
associated with the second if.

76 TEACH YOURSELF

1. It is possible to string together several ifs and elses into what is
sometimes called an if-elsetf ladder or if else-1f staivedse because
of its visual appearance. In this situation a nested if has as its
target another if. The general form of the if-clse-if ladder is
shown here:

if(expression) statement,
else
if(expression) statement,
else
J{(expressr‘on) statement;

else statement,

The expressions are evaluated from the top downward. As soon
as a truc cordition is found, the statement associated with it is
executed, and the rest of the ladder is bypassed. 1f none of the
expressions are true, the final else will be exceuted. That is, it
all other conditional tests fail, the last else statement is
performed. If the final else is not present, no action will take
place it all expressions are false.

Although the indentation of the general torm ot the il-else-if
ladder just shown is technically correct, it can lead to overly
deep indentation. Because of this, the if-else-if ladder s
venerally written like this:

if(expression) statement,
else if(expression) statement,
else if(expression) statement;

else statement;

We can improve the arithmetic program developed in
Section 3.1 by using an if-else-if ladder, as shown here:

MORE C PROGRAM CONTROL STATEMENTS 7

32 NESTH STATEMENTS

#include <stdio.h>

int main(void)

{

}

This is an improvement over the original version because once

int a, b;
char ch;

printf("Do you want to:\n");

printf ("Add, Subtract, Multiply, or Divide?\n"};
printf("Enter first letter: ");

ch = getchar();

printf ("\n"};

printf("Enter first number: ");
scanf (*%d", &a);

printf ("Enter second number: "};
scanf ("%d", &b);

if(ch=='A’) printf("%d", at+b);

else if(ch=='§’) printf("%d", a-b);

else if(ch=='M') printf(*%d", a*b);

else if(ch=='D’ && b!=0) printf("%d", a/b);

return 0;

v

a match is found, any remaining if statements are skipped. This
means that the program isn't wasting time on needless

operations. While this is not too important in this example, you

will encounter situations where it will be.

. Nested if statements are very common in programming, For
example, here is a further improvement to the addition drill
program developed in the preceding chapter. It lets the user
have a sccond try at getting the right answer,

#include <stdio.h>

int main(void)

{

int answer, count;

78 TEACH YOURSELF

¥ ¢
int again;
for (count=1; count<ll; count++) {
printf(*Wwhat is %d + %d? *, count, count);
scanf ("%d", &answer);
if (answer == count+count) printf("Right!\n"};
else |(
printf ("Sorry, you'’'re wrong\n");
printf ("Try again.\n *);
printf("\nwWhat is %d + %d? ", count, count);
scanf ("%d", &answer);
/* nested if */
if (answer == count+count) printf("Right!\n");
else
printf ("Wrong, the answer is %d\n",
count+count) ;
}
}
return 0;
}
liere, the second if is nested within the outer if's else block.
EXERCISES

1. To which if does the else relate to in this example?
if(ch=='8') (/* first if */
printf("Enter a number: *);
scanf ("%4Y, &y):

/* second if */
if(y) printf("Its square is %d.", y*y):

}
else printf("Make next selection.");

2. Write a program that computes the arca of cither a circle,
rectangle, or triangle. Use an if-else-if ladder.

MORE C PROGRAM CONTROL STATEMENTS 79
33 EXAMINE for LOOF VARIATIONS v

[33 EXAMINE for LOOP VARIATIONS

The for loop in C is significantly more powerful and flexible than in
most other computer languages. When you were introduced to the for
loop in Chapter 2, you were only shown the form similar to that used by
other languages. Hpwever, you will see that for is much more flexible.

The reason that for is so flexible is that the expressiornis we called
the iminalization, conditional-test, and increment portions of the loop are
not limited to these narrow roles. The for loop places no limits on the
types of expressions that occur inside it. For example, you do not have
to use the initialization section to initialize a loop-control variable.
Further, there does not need to be any loop-control variable because
the conditional expression may use some other means of stopping the
loop. Finally, the increment portion is technically just an expression that
is evaluated each time the loop iterates. It does not have to increment
or decrement a variable.

Another important reason that the for is so flexible is that one or
more of the expressions inside it may be empty. For example, if the
loop-control variable has already been initialized outside the for there
is no need for an initialization expression.

1. This program continues to loop until a q is entered at the
keyboard. Instead of testing a loop-control variable, the
conditional test in this for checks the value of a character
entered by the user.

#include <stdio.h>

#include <conio.h>

int main(void)

({

int i;

char ch;

ch = *a’; /* give ch an initial value */
for(i=0; ch !'= ‘g’; i++) {

printf(*pass: %d\n", i);

B0 TEACH YOURSELF

v

c
ch = getche();
}
return 0;
}

Here, the condition that controls the loop has nothing to do with
the loop-control variable. The reason ch is given an initial value
is to prevent it from accidentally containing a q when the
program begins,

As stated earlier, it is possible to leave an expression in a loop
empty. For example, this program asks the user for a value and
then counts down to zero from this number. Here, the
loop-control variable is initialized by the user outside the loop,
so the initialization portion of the loop is empty.

#include <stdio.h>
int main{void)
{

int i;

printf ("Enter an integer: "):
scanf ("%d", &i);

for(; i; i--) printf("%sd ", i);

return 0;

}

_ Another variation to for is that its target may be empty. For

example, this program simply keeps inputting characters until
the user types q.

#include <stdio.h>
#include <conio.h>’

int main(void)
{
char ch;

for (ch=getche(); cht="q"; ch=getche ());
printf("Found the q.");

MORE C PROGRAM CONTROL STATEMENTS G
33 EXAMINEfor LOOP VARIATIONS ¥

return 0;

-

}

Notice that the statements assigning ch a value have been
moved into the lgop. This means that when the loop starts,
getche() is called. Then, the value of ch is tested against q.
Next, conceptually, the nonexistent target of the for is executed,
and the call to getche() in the increment portion of the loop is
executed. This process repeats until the user enters a q.

The reason the target of the for can be empty is because C
allows null statements.

. Using the for, it is possible to create a loop that never stops.
This type of loop is usually called an infinite loop. Although
accidentally creating an infinite loop is a bug, you will sometimes
want to create one on purpose. (Later in this chapter, you will
see that there are ways to exit even an infinite loop!) To create
an infinite loop, use a for construct like this:

for{ =)} {

}

As you can see, there are no expressions in the for. When
there is no expression in the conditional portion, the compiler
assumes that it is true. Therefore, the loop continues to run.

. In C, unlike most other computer languages, it is perfectly valid
for the loop-control variable to be altered outside the increment
section. For example, the following program manually
sinerements i at the hettom of the loop.

#include <stdio.h>

int main(void)
{

int i;

for(i=0; i<10;) {
printf(*sd *, i);
i+44;

Kz [7A(H YOURSELF

EXERCISES

1. Write a program that computes driving time when given the
distance and the average speed. Let the user specify the
number of drive time computations he or she wants to perform

2. To create time-delay loops, for loops with empty targets are
often used. Create a program that asks the user for a number
and then iterates until zero is reached. Once the countdown is
done, sound the bell, but don't display anything on the screen.

3. Even if a for loop uses a loop-control variable, it need not be
incremented or decremented by a fixed amount. Instead, the
amount added or subtracted may vary. Write a program that
begins at 1 and runs to 1000. Have the program add the
loop-control variable to itself inside the increment expression.
This is an easy way to produce the arithmetic progression 1 24

8 16, and so on. !

l’NDERSTAND c’S while LOOP

" while(expression) statement;

{ i(
Of course, the target of while may also be a block of code. Th,_jzh: e
loop works by repeating its target as long as the expression is true.
When it becomes false, the loop stops. The value of the expression is
c]‘md\cd at the top of the loop. This means that if the expression is
false to begin with, the loop will not execute even once.

Anothcr of ¢’ s]oops is while. It has this general form;

MORE C PROGRAM CONTROL STATEMENTS 83
24 UNDERSTAND C'Swhile LOOP ¥

1. Even though the for is flexible enough to allow itself to be
controlled by factors not related to its traditional use, you should
generally select the loop that best fits the needs of the situation.
For example, a better way to wait for the letter q to be typed is
shown here using while. If you compare it to Example 3 in
Section 3.3, you will see how much clearer this version is.
(However, you will soon see that a better loop for this job exists.)

#include <stdio.h>
#include <conio.h>

int main{void)

(

)

char ch;
ch = getche();

while(ch!='q’) ch = getchel():
printf(*Found the q.");

return 0;

2. The following program is a simple code machine. It translates
the characters you type into a coded form by adding 1 to each
letter. That is, 'A’ becomes 'B,” and so forth. The program stops
when you press ENTER. (The getche() function returns \r
when ENTERIs pressed.)

#include <stdio.h>
#include <conio.h>

int main(void)

{

char ch;
printf("Enter your message.\n");

ch = getchel() ;

while(ch != *\r*) {

B84 TEACH YOURSELF
¥ ¢

printf("%c", ch+l);
ch = getche();

return 0;

1. In Exercise 1 of Section 3.3, you created a program that
computed driving time, given distance and average speed. You
used a for loop to let the user compuite several drive times.
Rework that program so that it uses a while loop.

2. Write a program that will decode messages that have been
encoded using the code machine program in the second
example in this section.

l‘SE THE do LOOP

C's final loop is do, which has this general form:

s T —-—

do{
statements
} while(expression),

w

If only one statement is béing repeated, the curly braces are not
necessary. Most programmers include them, however, so that they cat
easily recognize that the while that ends the do is part of a do loop,
not the beginning of a while loop.

The do loop repeats the statement or statements while the
expression is true. It stops when the expression becomes false. The da
loop is unique because it will always execute the code within the loop
at least once, since the expression controlling the loop is tested at the
hottom of the loop.

MORE C PROGRAM CONTROL STATEMENTS 8%
35 USETHEdoLOOP ¥

I. The fact that do will always execute the body of its loop at least
once makes it perfect for checking menu input. For example,
this version of the arithmetic program reprompts the user until
a valid response is entered.

#include <stdio.h>

int main{veid)

{

}

it a, b
char ch;
printf{"Do you want to:\n");
printf ("Add, Subtract, Multiply, or Divide2\n");

/* force user to enter a wvalid response */
do {
printf("Enter first letter: ");
ch = getchar(};
} while(ch!='A’ && ch!=‘S’ && ch!='M' && ch!='D"});
printf("\n*);

printf{"Enter first number: ") :

scanf ("%d", &a);

printf("Enter second number: *);

scanf {"%d", &b);

if{ch=="A") printf("%d", a+b);

else if(ch=='S’) printf("%d", a-b);

else if{ch=='M') printf("%d", a*b):

else if{ch=="D’' && b!=0) printf("%d", a/b);

return 0;

2. The do loop is especially useful when your program is waiting
for some event to occur. For example, this program waits for the
user to type a q. Notice that it contains one less call to getche()
than the equivalent program described in the section on the
while loop.

#include <stdio.h>
#include <conio.h>

86 TEACH YOURSELF
Y

int main(void)

(

char ch;
do {

ch = getche(};
} while(ch!='q’");

printf("Found the q."):

recturn 0;
}

Since the loop condition is tested at the bottom, it is not
necessary to initialize ch prior to entering the loop.

EXERCISES

1. Write a program that converts gallons to liters. Using a do loop,
allow the user to repeat the conversion. (One gallon is
approximately 3.7854 liters.)

2. Write a program that displays the menu below and uses a do
loop to check for valid responses. (Your program docs not need
to implement the actual functions shown in the menu.)

Mailing list menu:

1. Enter addresses

2. Delete address

3. Search the list

4. Print the list

5. Quit

Enter the number of your choice (1-5).

s

MORE C PROGRAM CONTROL STATEMENTS 87
16 CREATE NESTED LOOPS ¥

t :REA TE NESTED LOOPS

When the body of one loop contains another, the second is said to
be nested inside the first. Any of C's loops may be nested within any
other loop. The ANSI C standard specifies that loops may be nested
at least 15 levels deep. However, most compilers allow nesting to
virtually any level. As a simple example of nested fors, this fragment
prints the numbers 1 to 10 on the screen ten times.

for(i=0; i<10; i++)
for(j=1; j<11; j++) printf("%d ", j); /* nested loop */
printE("\n");

1. You can use a nested for to make another improvement to the
arithmetic drill. In the version shown below, the program will
give the user three chances to get the right answer. Notice the
use of the variable right to stop the loop early if the correct
answer is given.

#include <stdio.h>

int main(void) i

(

int answer, count, chances, right;

for (count=1; count<ll; count++) {
printf("what is %d + %d?", count, count);
scanf ("%d", &answer);

if (answer == count+count) printf ("Right!\n");
else {

printf ("Sorry, you’'re wrong.\n");
printh'Try again.\n");

right = 0;

88 TEACH YOURSELF
L
/* nested for */
for (chances=0; chances<3 && !right; chances++) {
printf("what is %¥d + %d? ", count, count) ;
scanf ("%d", &answer);

if (answer == count+count) (
printf ("Right!\n"):
right = 1;

)

/* if answer still wrong, tell user */
if(!right)
printf("The answer is %d.\n", count+count) ;

return 0;
}

2. This program uses three for loops to print the alphabet three
times, each time printing each letter twice:

#include <stdio.h>

int main(void)
{
ing. 32, J. ki
for(i=0; i<3; i++)
for(j=0; j<26; j++)
forik=0; k<2; k++) printf("%c", 'A""j)?

return 0;
}
The statement
printf(*%c", ‘A'+j);
works because ASCII codes for the letters of the alphabet are

strictly ascending—each one is greater than the letter that
precedes it.

. &

MORE C PROGRAM CONTROL STATEMENTS 8@
37 USEbreak TOEXTALOOP ¥

1. Write a program that finds all the prime numbers between 2
and 1000.

2. Write a program that reads ten characters from the keyboard.
Each time a character is read, use its ASCII code value to output
a string of periods equal in number to this code. For example,
given the letter 'A’, whose code is 65, your program would
output 65 periods.

l’SE break TO EXIT A LOOP

The break statement allows you to exit a loop from any point within
its body, bypassing its normal termination expression. When the break
statement is encountered inside a loop, the loop is immediately
stopped, and program control resumes at the next statement following
the loop. For example, this loop prints only the numbers 1 to 10:

#include <stdio.h>

int main(void)
{

ink &3

for(i=1; i<100; i++) {(
printf("%d *, i);
if(i==10) break; /* exit the loop */

return 0;
}

The break statement can be used with all three of C's loops.

You can have as many break statements within a loop as you
desire. However, since too many exit points from a loop tend to
destructure your code, it is generally best to use the break for special
purposes, not as your normal loop exit.

1. The break statement is commonly used in loops in which a
special condition can cause immediate termination. Here is an
example of such a situation. In this case, a keypress can stop the
execution of the program.

#include <stdio.h>
#include <conio.h>

int main(void)
i

int i;

char ch;

/* display all numbers that are multlples of & */
for(i=1; 1<10000; i++) {
1f(!(1%6)) ({
printf("%d, more? (Y/N)", i);
ch = getche(); .
if (ch=='N') break; /* stop the loop */
printt{*\n)

return 0;
}

. A break will cause an exit from only the innermo_s.f loop. For
example, this program prints the numbers 0 to 5 five times:

#include <stdio.h>

int main(void)
{
int 1, 3;

for(i=0; i<5; i++) {
for(j=0; j<100; j++) {
printf("sd*, 3j);
if(j==5) break;
}
pEInEET\n")

MORE C PROGRAM CONTROL STATEMENTS @]
37 USEbreak TOEXTALOOP ¥

return 0;
}

3. The reason C includes the break statement is to allow your
programs to be more efficient. For example, examine this
fragment:

do {
printf ("Load, Save, Edit, Quit?\n");
do {
printf ("Enter your selection: *);
ch = getchar():
} while(ch!='L' && ch!='S’ && ch!='E’' && ch!='Q");

if(ch '= Q') {
/* do something */
}
ifteh = wgry {(
/* do something else*/
}
f* etc. */
} while(ch != ‘'Q*)

In this situation, several additional tests are performed on ch to
see if it is equal to 'Q’' to avoid executing certain sections of code
when the Quit option is selected. Most C programmers would
write the preceding loop as shown here:

for(; ;)» { /* infinite for loop */
printf("Load, Save, Edit, Quit?\n");
do {

printf ("Enter your selection: ");
ch = getchar();
} while(ch!='L' && ch!='S' && ch!='E’ && ch!='Q’);

if{ch == Q") break:;
/* do something */

/* do something else */
f* etig. */f

Q2 TEACH YOURSELF
¥ ¢

In this version, ch need only be tested once to sec if it contains
a'Q’. As you can see, this implementation is more efticient
because only one if statement is required.

1. On your own, write several short programs that use break to
exit a loop. Be sure to try all three loop statements,

2. Write a program that prints a table showing the proper amount
of tip to leave. Start the table at $1 and stop at $100, using
increments of $1. Compute three tip percentages: 10%, 15%,
and 20%. After each line, ask the user if he or she wants to
continue. If not, use break to stop the loop and end the program

_KNOW WHEN TO USE THE continue
STATEMENT

The continue statement is somewhat the opposite of the break
statement. It forces the next iteration of the loop to take place,
skipping any code in between itself and the test condition of the loop.
For example, this program never displays any output:

#include <stdio.h>

int main(void)
{
int .3¢;

for(x=0; x<100; x++) {
continue;
printf{("sd *, x); /* this is never executed */

MORE C PROGRAM CONTROL STATEMENTS Q3
38 KNOW WHEN TO USE THE continue STATEMENT ¥

return 0;

1
i

Each time the continue statement is reached, it causes the loop to
repeat, skipping the printf() statement. .

In while and do-while loops, a continue statement will cause
control to go directly to the test condition and then continue the
looping process. In the case of for, the increment part of the loop is
performed, the conditional test is executed, and the loop continues.

Frankly, continue is seldom used, not because it is poor practice to
use it, but simply because good applications for it are not common.

1. One good use for continue is to restart a statement sequence
when an error occurs. For example, this program computes a
i anning total of numbers entered by the user. Before adding
a value to the running total, it verifies that the number was
correctly entered by having the user enter it a second time.
If the two numbers don't match, the program uses continue
to restart the loop.

#include <stdio.h>

int main(void)
{
int total, i, j:

total = 0;
do {
printf ("Enter next number (0 to stopl: ™)
scanf("%d", &i);
printf (*"Enter number again: ");
scanf ("%d", &j);
LE(L =3 {
printf("Mismatch\n");
continue;
}

total = total + i;

94 TEACH YOURSELF

¥ e
} while(i);
printf("Total is %d\n", total);
return 0;
}
EXERCISE

1. Write a program that prints only the odd numbers between 1
and 100. Use a for loop that looks like this:

for(i=1; i<101; i++)

Use a continue statement to avoid printing even numbers.

,\kﬁt’ﬂscr AMONG ALTERNATIVES WITH
THE switch STATEMENT
.————-'____—-T_'"f'f""

Wwhile if is good for choosing between two alternatives, it quickly
becomes cumbersome when several alternatives are needed. C’s
solution to this problem is the switch statement. The switch statement
is C’s multiple sclection statement. It is used to select one of several
alternative paths in program execution and works as follows. A value
is successively tested against a list of integer or character constants.
When a match is found, the statement sequence associated with that
match is executed. The general form of the switch statement is this:

switch(value) {
case constantl:
statement sequence
break;

MORE C PROGRAM CONTROL STATEMENTS @55
39 SELECT AMONG ALTERNATIVES WITH THE switch STATEMENT ¥

case constant2.
statement sequence
break;
case constant3.
Statement sequence
break;

default: o
statement sequence
break;

}

The default statement sequence is performed if no matches are

found. The default is optional. If all ' matches fail and default is

absent, no action takes place. When a match is found, the statements

associated with that case are executed until break is encountered or,

in the case of default or the last case, the end of the switch is reached.
As a very simple example, this program recognizes the numbers 1,

2, 3, and 4 and prints the name of the one you enter. That is, if you

enter 2, the program displays two.

#include <stdio.h>

int main(void)
{ -
int i;

printf ("Enter a number between 1 and 4: ");
scanf ("%d", &i);

switch(i) {

case 1:
Printf(‘one');
break;

case 2:
printf ("two"*);
break;

case 3:
printf("three");
break;

QG TEACH YOURSELF
bhiadal e
¥

case 4:
printf(~four"):
break;
default:
printf ("Unrecognized Number"”});

return 0;

The switch statement differs from if in that switch can only test
for equality, whereas the if conditional expression can be of any type.
Also, switch will work with only int or char types. You cannot, tor
example, use floating-point numbers.

The statement sequences associated with each case are not blocks;
they are not enclosed by curly braces.

The ANSI C standard states that at least 257 case statements will be
allowed. In practice, you should usually limit the amount of case
statements to a much smaller number for efficiency reasons. Also, no
two case constants in the same switch can have identical values.

It is possible to have a switch as part of the statement sequence of -
an outer switch. This is called a nested switch. 1f the case constants of
the inner and outer switch contain common values, no conflicts will
arise. For example, the following code fragment is perfectly acceptable:

switch(a) {
case 1:
switch(b) {
case 0: printf(*b is false");
break;
case 1: printf("b is true");
}
break;
case 2:

An ANSI-standard compiler will allow at least 15 levels of nesting
for switch statements.

MORE C PROGRAM CONTROL STATEMENTS

39 SELECT AMONG ALTERNATIVES WITH THE switch STATEMENT

97
v

I. The switch statement is often used to process menu
commands. For example, the arithmetic program cai
recoded as shown here. This version rellec ts the way
protessional C code is written.

#include <stdié.h>
int main(void)
{

int a, b;
char ch;

printf("Do you want to:\n"):

printf ("Add, Subtract, Multiply, or Divire?\
/* force user to enter a valid response
do (

printf ("Enter first letter: "),

ch = getchar();

} while(ch!="A" && chl="5" g4 ch!="M'" && rh!=

printf("\n");

printf("Enter first number: ")
scanf ("%d", &a):

printf ("Enter second number: i
scanf ("%d", &b);

switch(ch) {
case 'A’': printf("%d", a+bl;
break;
case 'S': printf("%d", a-b);
break;
case 'M’: printf("sd", a*b);
break;
case 'D’: if(b!=0) printf(*%d”, a/b);

return 0;

1|N
n"j
"D

98 TEACH YOURSELF
b A

2. Technically, the break statement is optional. The break
statement, when encountered within a switch, causes the
program flow to exit from the entire switch statcment and
continue on to the next statement outside the switch, This is
much the way it works.when breaking out of a loop. However,
it 4 break statement is omitted, execution continues into the
following case or default statement (if either exists). That is,
when a break statement is missing, execution *falls through”
into the next case and stops only when a break statement or
the end of the switch is encountered. For example, study this
program caretully:

#include <stdio.h>
#include <conio.h>

int main(void)
{

char ch;

do |(
printf ("\nEnter a character, g to quit: "}
ch = getche(); :
printfl“\n")ﬁ

switch(ch) {
case ‘'a’:
printf ("Now is ");
case ‘b':
printf(*the time ")
case ‘Cc’: N
printf("for all good men"};
break; :
case 'd’:
printf ("The summer ");
case 'e’:
printf ("soldier *);
}
} while(ch !'= ‘q’):

return 0;

)

If the user types a, the entire phrase Now is the time for all
good men is displayed ‘T'vping b displays the time for all

MORE C PROGRAM CONTROL STATEMENTS 99
39 SELECT AMONG ALTERNATIVES WITH THE switch STATEMENT ¥

good men. As you can sce, once execution begins inside a case,
it continues until a break statement or the end of the switch is
encountered.

3. The statement sequence associated with a case may be empty.
This allows two or more cases to share a common statemaent
sequence without duplication of code. For example, here is a
program that categorizes letters into vowels and consonants:

#include <stdio.h>
#include <conio.h>

int main(void)
{

char ch;

printf("Enter the letter: ");
ch = getchel();

switch(ch) {

case 'a’:

case 'e':

case 'i':

case 'o':

case 'u':

case 'y':
printf(" is a vowel\n");
break;

default:
printf(" is a consonant”) ;

return 0;

EXERCISES

1. What is wrong with this fragment?

float f;

scanf ("%f", &f): -

100 TEACH YOURSELF
¥ 3

switch(f) {
case 10.05:

2. Write a program that counts the numbers of letters, digits,
and common punctuation symbols entered by the user. Stop
inputting when the user presses ENTER. Use a switch statement
to categorize the characters into punctuation, digits, and letters.
When the program ends, report the number of characters in
cach category. (If you like, simply assume that, it a character is
not a digit or punctuation, it is a letter. Also, just use the most
common punctuation symbols.)

EXI S llmnfnsmmn THE goto STATEMEN]

C supports a non-conditional jump statement, called the goto. Becausce
C is a replacement for assembly code, the inclusion of goto is necessary
hecause it can be used to create very fast routines. | [owever, most
programmers do not usc goto because it destructures a program and,
if frequently used, can render the program virtually impossible to
understand later. Also, there is no routine that requires a goto. l'or
these reasons, it is not used in this bpok outside of this section.

The goto statement can perform a jump within a function. It cannot
jmp between functions. It works with a label. In C, a label is a valid
identificr name followed by a colon. For example, the following goto
jumps around the printf() statement:

quté mylabel;
printf("This will not print.”);
mylabel: printf("This will print.");

Ahout the only good use for goto is to jump out of a deeply nested
routine when a (‘.dt;lslruplli(' CIrror 0Ceurs.

MORE C PROGRAM CONTROL STATEMENTS J 01
310 UNDERSTAND THE goto STATEMENT Y

1. This program uscs goto Lo create the equivalent of a for loop
running from 1 to 10, (This is just an example of goto. In actual
practice, you should use a real for loop when one is needed.)

#include <stdio.h>

int main(veid)
(

THE 35

¥ o=

again:
printf (“%d ®y 1)y
144

if{i<10) goto again;

return 0;

EXERCISES

I Write a program that uses goto to emulate a while loop that
counts from 1 to 10,

At this point, you should be able to answer these questions and
pertorm these exercises:

1. Asillustrated by Exercise 2 in Section 3.1, the ASCII codes for
the lowercase letters are separated from the uppercase letters
by a ditference ot 32. Therefore, to convert a lowercase letter to

102 TEACH YOURSELF

4.

6.

yoouo SUMS | o .
annepowing

v

r

an uppercase one, simply subtract 32 from it. Write a program
that reads characters from the keyboard and displays lowercase
lctters as uppercase ones. Stop when ENTERIs pressed.

Using a nested if statement, write a program that prompts the
user for a number and then reports if the number is positive,
7ero, or negative.

Is this a valid for loop?

char ch;

ch = "%X';

for{ : ch t= * * ;) ch = getche();

show the traditional way to create an infinite loop in C.

Using the three loop statements, show three different ways to
count from 1 to 10.

what docs the break statement do when used in a loop?
Is this switch statement correct?

switch(i) (
case 1: printf(*nickel"),
break;
case 2: printf("dime");
break;
case 3: printf("quarter”);

Is this goto fragment correct?

goto alldone;

alldom

This section checks how well you have integrated the material in

this chapter with that from carlier chapters.

MORE C PROGRAM CONTROL STATEMENTS 103
v

310 UNDERSIANI) THE goto STATEMENT

I. Using a switch statement, write a program that reads characters
from the kevboard and watches for tabs, newlines, and
backspaces. When one is received, display what it is in words.
For example, when the user presses the Tagkev, print tab
Have the user enter a g to stop the program.

2. While this program is not incorrect, show how it would look it
written hy an experienced C programmer.,

#include <stdio.h>

int main(void)

{
it iy 3% ks

for(k=0; k<10; k=k+l) {
printf("Enter first number: 7);
scanf ("%d", &1);

printf{"Enter second number:
scanf ("%d", &Jj):

if(3 4= 10) printf (*%d\n" 1/]) ¢,

if(j == 0) printf("cannnt divide by zern\n");
}
return 0;

4

A Closer Look at
Data Types, Variables,
and Expressions

chapter objectives

4.1 Use C's data-type modifiers

4.2 Learn where variables are declared

4.3 Take a closer look at constants

4.4 Initialize variables

4.5 Understand type conversions in expressions
4.6 Understand type conversions in assignments

4.7 Program with type casts

105
v

106 TEACH YOURSELF

v c

H 1S chapter more fully examines several concepts presented
in Chapter 1. It covers C's data-type modifiers, global and
local variables, and constants. It also discusses how C handles
various type conversions.

Skills Che

Before proceeding, you should be able to answer these questions
and perform these exercises:

|. Using C's three loop statements, show three ways to write a loop
that counts from 1 to 10.

2. Convert this series of ifs into an equivalent switch.

if teh=="L") load();

else if(ch=='S"') save();
else if(ch=='E') enter();
else if(ch=='D') display();
else if(ch=='Q'} quit();:

3. Write a program that inputs characters until the user strikes the
ENTERKkey.

4. What does break do?

5. What does continue do?

6. Write a program that displays this menu, performs the selected
operation, and then repeats until the user selects Quit.

Convert
1. feet to meters
2. meters to feet
3. ounces to pounds
4. pounds to ounces
5. Quit
Enter the number of your choice:

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 1 Q7
41 USECSDATA TYPE MODIFERS T

IEXE [St C'S DATA-TYPE MODIFIERS

In Chapter 1 you learned that C has five basic data types: void, char,
int, float, and double. These basic types, except type void, can be
maditicd using C's (ype modifiers to more precisely fit your specitic
need. The type modifiers are

long
short
signed
unsigned

o,

The type modifier precedes the type name. For example, this declares
4 long integer:

long int 1i;

The cffect of each modifier is examined next.

The long and short modifiers may be applied to int. As a general
rule, short ints are otten smaller than ints and long ints are often
larger than ints. For ecxample, in most 16-bit environments, an int
is 16 hits long and a long int is 32 bits in length. However, the precise
meaning ot long and short is implementation dependent. When the
ANSI C standard was created, it specified minimum ranges tor integers,
short integers, and long integers. It did not set fixed sizes for these
items. (Sce Table 4-1.) For example, using the minimum ranges set
torth in the ANSI C standard, the smallest acceptable size for an int is
16 bits and the smallest acceptable size for a short int is also 16 bits.
Thus, it is permissible for integers and short integers to he the same
size! In fact, in most 16-bit environments, there is no difference between
an int and a short int. Further, in many 32-bit environments, you will
find that integers and long integers are the same size. Since the cxact
eftect of long and short on integers is determined by the environment
in which you are working and by the compiler you are using, you will
need to check your compiler’s documentation for their precise effects.

The long modifier may also be applied to double. Doing so roughly
doubles the precision of a floating point variable.

7108 TEACH YOURSELF
¥ =5

The signed modifier is ceify a signed integer value. (A
signed number means that it can be positive or negative.) Towever,
the use of signed on integers is redundant because the, de Tault inte eer
declaration automatically creates a signed variable. The main use
ol the signed modificr is with char, Whether char is signed or
unsigned by itself is implementation dependent. In some
implementations char is unsigned by default; in others, it is signed
T'o ensure a signed character variable in all environments, you must
declare it as signed char. Since most compilers implement char as
signed, this book simply assumes that characters are signed and will
not use the signed moditier.

The unsi cdmudlﬁtr__q,mﬂz__pphr'd to char a har nnd mt It may also
be used in combination with Tongorshort. It is use d to create an
unsigned integer. The différence between :-.ujnt:d and unsigned
integers is in the way the hig];:hrdcr bit of the integer is interpreted. I
a signed integer is specified, then the C compiler will generate code
that assumes the high-order bit is used as a sign flag. 1f the sign Hag is
0, the number is positive; ifitis 1, the number is negative. Negative
numbers are generally represented using the (wo's complement
approach. In this method, all bits in the number (except the sign flag)
are reversed, and 1 is added to this number. Finally, the sign flag is sct
to 1. (The reason for this method of representation is that it makes it
casier for the CPU to perform arithmetic operations on negative values.)

Signed integers are important for a great many algorithms, but they
only have half the absolute magnitude of their unsigned relatives. For
example, here is 32,767 shown in binary:

01111111 11111111

If this is a signed value and the high-order bit is set to 1, the number
would then be interpreted as -1 (assuming two's complement format).
However, if this is an unsigned value, then when the high-order bit

is set to 1, the number becomes 65,535.

Table 4-1 shows all allowed combinations of the basic types and
the type modifiers. The table also shows the most common size and
minimum range for each type as specified by the ANSI C standard.

It is important to understand that the ranges shown in Table 4-1 are
just the minimums that all compilers must provide. The compiler is
free to exceed them, and most compilers do for at least some data
types. As mentioned, an int in a 32-bit environment will usually have
a range larger than the minimum. Also, in environments that use

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 109

P 61 USECS DATA IVPE MOUIFIERS T
e
Type Typical Size in Bits Minimal Range
nar 8 =127 to 127
ZAunsigned char 8 0 to 255
signed char 8 -127 10 127
int 16 0r32 -32,767 to 32,767
{ynsigned int 16 or 32 0 to 65,535
signed int 16 or 32 same as int
short int 16 same as int
unsigned short int 16 0 to 65,535
signed short int 16 same as short int
long int 32 -2,147 483,647 to 2,147,483,647
signed long int 32 safne as long int
unsigned long int 32 0 to 4,294,967,295
oat 32 Six digits of precision
ouble 64, Ten digits of precision

long double 80 Ten digits of precision

KON A/ Data Types Defined by the ANSI C Standard W

two's complement arithmetic (which is the case for the vast majority
of computers), the lower bound for signed characters and integers is
one greater than the minimums shown. For instance, in most
environments, a signed char has @ range of =128 to 127 and a short
intis typically =32,768 to 32,767. You will need to check vour
compiler's documentation for the specific ranges of the data types
as they apply to vour compiler,

C allows a shorthand notation for declaring unsigned, short, or
long integers. You may simply use the word unsigned, short, or long
without the int. The int is implied. For example,

unsigned count;
unsigned int num;

both declare unsigned int variables.

It is important to remember that variables of type char may be used
to hold values other than just the ASCI character set. C makes little
distinction between a character and an integer, except tor the

7110 TEACH YOURSELF
¥ ¢

magnitudes of the values each may hold. Therefore, as mentioned
carlier, a signed char variable can also be used as a "small® integer
when the situation does not require larger numbers.

when outputting integers modificd by short, long, or unsigned
using printf(), you cannot simply use the %d specifier. The reason is
that printf() needs to know preciscly what type of data it is
receiving, To use printf() to output a short, use %hd. To output a
long, usc %ld. When outputting an unsigned value, usc %u. To
output an unsigned long int, use %lu. Also, to output a long doublec
use %Lf

The scanf() function operates in a fashion similar to printf().
When reading a short int using scanf(), use %hd. When reading a
long int, usc %ld. To read an unsigned long int, usc %Ilu. To read a
double, usc %1f. To read a long double, use %L{.

1. This program shows how to input and output short, long, and
unsigned values.

#include <stdio.h>

int main{void)
{
unsigned u;
léng g
short s;

printf("Enter an unsigned: ");
scanf ("%u", &u);
printf("Enter a long: ");
scanf ("%$1d", &l);

printf ("Enter a short: ");
scanf ("$hd", &s);

printf("$u %1d %hd\n", u, 1, s};

return 0;
)

2. To understand the difference between the way that signed and
unsigned integers are interpre’ed by C, run the following short
program. (This program assu acs that short integers are 16 bits wide.)

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 777

4.1 USE C'S DATA-TYPE MOIIFIERS v

#include <stdio.h>

int main(veoid)

{
short int i; /* a signed short integer */
unsigned short int u; /* an unsigned short integer */
u = 33000;
i= s
printf ("$hd ¥hu"; i; ul;
return 0;
}

When this program is run, the output is -32536 33000. The
reason for this is that the bit pattern that 33000 represents

as an unsigned short int is interpreted as 32536 as a signed
short int.

In C, you may use a char variable any place you would use an
int variable (assuming the differences in their ranges is not a
factor). i or example, the following program uses a char variable
to control the loop that is summing the numbers between 1 and
100. In some cases it takes the computer less time to access a
single byte (one character) than it does to access two bytes.
Therefore, many professional programmers use a character
variable rather than an integer one when the range permits.

#include <stdio.h>
int main({veid)
{

int i;

char 3j;

i=20;
for(j=1; j<101; j++) i = j +'1i;

printf ("Total is: '8d=, i);

return 0;

112 TEACH YOURSELF
v C

EXERCISES

1. show how to declare an unsigned short int called loc_counter.

2. Write a program that prompts the user for a distance and
computes how long it takes light to travel that distance. Use an
unsigned long int to hold the distance. (Light travels at
approximately 186,000 miles per second.)

3. Write this statement another way:

short int i;

(4.2 | l EARN WHERE VARIABLES ARE
DECLARED

As you learned in Chapter 1, there are two basic places where a
variable will be declared: inside a functiori’and outside all functons.
These variables are called local variahles and global variables,
respectively. It is now time to take a closer look at these two types
of variables and the scope rules that govern them.

Local variables (declared inside a function) may be referenced.only
by statements that are inside that funiction. They are not known
outside their own function. One of the most important things to
understand about local variables is that they exist only while the function
in which they are declared is executing. That is, a local variable is created
upon entry into its function and dcst}oyed upon exit.

Since local variables are not known outside their own tunction, it is
perfectly acceptable for local variables in different functions to have
the same name. Consider the following program:

#include <stdio.h>
void fl(void), £2(void);
int main(void)
{
£EL (5

return 0;

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 113
4.2 LEARN WHERE VARIABLES ARE DECLARED Y

void £l (void)

{
int count;
for (count=0; count<l0; count++) £2();
}
void £2(void)
{
int count;
for (count=0; count<l0; count++) printf(*%d ", count);
}

This program prints the numbers 0 through 9 on the screen ten tines.
The fact that both functions use a variable called count has no ei «
upon the operation of the code. Therefore, what happens to count
inside f2() has no effect on count in f1().

The C language contains the keyword auto, which can be used to
declare local variables. However, since all local variables are, by
default, assumed to be auto, it is virtually never used. Hence, vou will
not see it in any of the examples in this book.

Within a function, local variables can be declared at the start of any
block. They do not need to be declared only at the start of the block
that defines the function. For example, the following program is
perfectly valid:

#include <stdio.h>

int main(void)
{
int 4d;
for(i=0; i<10; i++) {
i€{i==5) {

int j; /* declare j within the if block */

¥ =a = A0
printf ("%4d", 3);

return 0;

T 14 TEACH YOURSELF
g preewee

A vanable declared within a block is known anly to other code within
that block. T'hus, j may not be used outside of its block. Frankly, most
C programmers declare all variables used by a function at the start of
the tunction's block hecause it is simply more convenient to do so.
This 15 the approach that will be used in this book.

Remember one important point: You must declare all local variables
at the start of the block in which they are defined, prior to any
program statements. For example, the following is incorrect:

#include <scdin.h>
int mainivedid)

print

n

("This program won’'t compile.");
int i; /* this should come first #*/

= 10;
printf{"%d i)
return G:

When a function is called, its local variables are created, and upon
its return, they are destroyed. This means that local variables cannot
retain their values between calls.

The formal parameters to a function are also local variables. Even
though these variables perform the special task of receiving the value
of the arguments passed to the function, they can be used like any
other local variahle within that function.

Unlike local variables, glohal variables are known throughout the
entire program and may be used by any piece of code in the program
Also, they will hold their value during the entire execution of the
program. Global variables are created by declaring them outside any
function. For example, consider this program:

#include <stdio.h>

void fl({void);

int max; /* this is a global variable */
int main({void)

{

max = 10;

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 115

w2 LEARN WHERE VARIABLES ARE DECLARED Y

£1 iz

return 0;

void f1(void)
{
ing A;

for(i=0; i<max; i++) printf("%d ", i)

}

Here, both main() and f1() usc the global variable max. The main()
function sets the value of max to 10, and f1() uses this value to
control its for loop.

___EXAMPLES |

1. In C, a local variable and a global variable may have the same
name. For example, this is a valid program:

#include <stdio.h>

void fl(void);

int count: /* global count */
int main(void)

{
count = 10;
s) I]
printf ("count in main(): %d\n", countl;

return 0;

void f1(void)

{
int count; /* local count *
count = 100;
printf ("count in £1() = %d\n", count);

116 TEACH YOURSELF
v

The program displavs this cutput

countin f1(): 100
countin main(): 10

In main(), the reterence to count is to the global varable.
Inside £1(), a local variable called count is also defined. When
the assignment statement inside f1() is encountered, the
compiler first looks to sce it there is a local variable called
count. Since there is, the local variable is used, not the global
one with the same name. That is, when local and global
variables share the same name, the compiler will always use the
local variable.

2. Global variables are very helpful when the same data is used by
many functions in vour program. However, vou should always
use local variables where vou can because the excessive use of
global variables has some negative consequences. First, global
variables use memory the entire time your program is
exccuting, not just when they are needed. In situations where
memory is in short supply, this could be a problem. Second,
using a global where a local variable will do makes a function
less general, because it relics on something that must be defined
outside itself. For example, here is a case where global variables
arc being used for no reason:

#include <stdio._-h>
int power (void);
int m, e;

int main(void)

printf("%d raised to the %d powesr is %d", m. e, powar()};

return 0;

/* Non-general version cof power. */

int power (void)

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 117
<7 LEARN WHIRE VARIABLES ARE DECLARED ¥

int temp, temp2;

temp = 1;
temp2 = €;
for({ ; temp2> 0; tempZ--) temp = temp * m;

return temp;
]

Here, the function power() is created to compute the value of
m raiscd to the e power. Since m and ¢ are global, the function
cannot be used to compute the power of other values. It can
only operate on those contained within m and e. However, if
the program is rewritten as follows, power() can be used with
any two values.

#include <stdio.h>

int power(int m, int e);

m =

printf{"#d to the %d is %d\n", m, e, power(m, e));
printf("4 to the 5th is %d\n", power (4, 5));
printf(*3 ta the 3rd is %d\n", power(3, 3));

return 0;

Parameterized v

ion of power. */
int power (int m, int e)
I

int temp;

temp = 1;
fort ; e> 0; e--) temp = temp * m;

ter

118 TEACH YOURSELF

c

By parameterizing power(), you can use it to recurn the
result of any value raised to some power, as the program
now shows.

The important point is that in the non-generalized version,
any program that uses power() must always declare m and e
as global variables and then load them with the desired values
each time power() is used. In the parameterized form, the
function is complete within itself—no extra bagzage need he
carried about when it is used.

Finally, using a large number of global variables can lead o
program errors because of unknown and unwanted side ettecrs
A major problem in developing large programs is the accidental
madification ot a variable’s value because it was used elsewhere
in the program. This can happen in C if you usc too manv ulobal
variables in your programs.

Remember, local variables do not maintain their values bonwveen
functions calls. For example, the following program will not
work correctly:

#include <stdio.h>
int series(wvoid);

int main(void)
{
int: i

for(i=0; 1i<10; i++) printf("%d ", series()):

return 0;

/* This is incorrect. */
int series(void)
(

int total;

total = (total + 1423) % 1422;
return total;

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS |19
4.3 TAKE A CLOSER L 00K AT CONSTANTS ¥

This program attempts to use series() to generate a number
series in which each number is based upon the value of the
preceding one. However, the value total will not be maintained
between function calls, and the function fails to carry our its
intended task.

EXERCISES

1. What are key differences between local and glohal variables?

2. Write a program that contains a function called soundspeed(),
which computes the number of seconds it will take sound o
travel a specitied distance. Write the program two wavs: Hrst,
with soundspeed() as a non-general function and sccond, with
soundspeed() parameterized. (For the specd of sound, use
1129 feet per second).

’AKE A CLOSER LOOK AT CONSTANTS

Constants refer to fixed values that may not be altered by the program.
For example, the number 100 is a constant. We have been using
constants in the preceding sample programs without much tantare
hecause, in most cases, their use is intuitive. However, the time has
come to cover them formally.

Integer constants are specified as numbers without fractional
components. For example, 10 and =100 are integer constints.
Floating-point constants require the use of the decimal point followed
by the number’s fractional component. For example, 11.123 is a
floating-point constant. C also allows you to use scientific notation fo
floating-point numbers. Constants using scientitic notation must follow
this general form:

number E sign exponent

The sign is optional. Although the general form is shown with spaces
between the component parts for clarity, there may be no spaces
between the parts in an actual number. For example, the following
defines the value 1234.56 using scientitic notation:

7120 7TEACH YOURSELF

Y ¢

123.456E1

Character constants are enclosed between single quotes. For
example 'a’ and '%’ are both character constants. As some of the
examples have shown, this means that if you wish to assign a
character to a variable of type char, you will use a statement similar to

ey = *gn

However, there is nothing in C that prevents you from assigning a
character variable a value using a numeric constant. For example, the
ASCII code for 'A’ is 65. Therefore, these two assignment statements
are equivalent.

ch = 65;

When you enter numeric constants into your program, the compiler
must decide what type of constant they are. For example, is 1000 an
int, an unsigned, or a short? The reason we haven't worried about
this earlier is that C automatically converts the type of the right side of
an assignment statement to that of the variable on the left. (We will
examine this process more fully later in this chapter.) So, for many
situations it doesn't matter what the compiler thinks 1000 is. However,
this can be important when you use a constant as an argument to a
function, such as in a call to printf().

By default, the C compiler fits a numeric constant into the smallest
compatible data type that will hold it. Assuming 16-bit integers, 10 is
an int by default and 100003 is a long. Even though the value 10 could
be fit into a char, the compiler will not do this because it means
crossing tvpe boundaries. The only exceptions to the smallest-type
rule are floating-point constants, which are assumed to be doubles.
For virtually all programs you will write as a beginner, the compiler
defaults are perfectly adequate. However, as you will see later in this
book, there will come a point when you will need to specify precisely
the tvpe of constant you want.

In cascs where the assumption that C makes about a numeric
constant is not what you want, C allows you to specify the exact type

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 121
43 TAKE A CLOSER LOOK AT CONSTANTS * Y

by using a suffix. For floating-point types, if you follow the number
with an 'F’, the number is treated as a float. If you follow it with an 'L’,
the number becomes a long double. For integer typrs, the *U’ suffix
stands for unsigned and the 'L’ stands for long.

As you may know, in programming it is sometimes easier to use a
number system based on 8 or 16 instead of 10. As you learned in
Chapter 2, the number system based on 8 is called octal and it uses the
digits 0 through 7. The base-16 number system is called hexadecimal
and uses the digits 0 through 9 plus the letters 'A’ through 'F’, which
stand for 10 through 15. C allows you to specify integer constants as
hexadecimal or octal instead of decimal if you prefer. A hexadecimal
constant must begin with '0x’ (a zero followed by an x) then the
constant in hexadecimal form. An octal constant begins with a zero.
For example, O0xAB is a hexadecimal constant, and 024 is an octal
constant. You may use either upper- or lowercase letters when
entering hexadecimal constants.

C supports one other type of constant in addition to those of the
predefined data types: the string. A string is a set of characters
enclosed by double quotes. You have been working with strings since
Chapter 1 because both the printf() and scanf() functions use
them. Keep in mind one important fact: although C allows vou to
define string constants, it does not formally have a string data type.
Instead, as you will see a little later in this book, strings arc supported
in C as character arrays. (Arrays are discussed in Chapter 5.)

To display a string using printf() you can either make it part of
the control string or pass it as a separate argument and display it using
the %s format code. For example, this program prints Once upon a
time on the screen:

#include <stdio.h>

int main(void)

{ 3
printf("%s %s %s", "Once", “upon®", "a time"):
return 0;

Here, each string is passed to printf() as an argument and
displayed using the %s specifier.

122 TEACH YOURSELF

v

"

|_EXAMPLES |

1. To sec why it is important to use the correct type specifier

with printf(), try this program. (It assumes that short
integers are 16 bits.) Instead of printing the number 42340,

it displays =23196, because it thinks that it is receiving a
signed short integer. The problem is that 42,340 is outside the
range of a short int. To make it work properly, you must use
the %hu specifier.

#include <stdio. h>
int main(void)

printf(*%hd", 42340); « this won't work right */

To see why vou may need to explicitly tell the compiler what
: try this program. For most

type of constant you are tsi
compilers, it will not produce the desired output. (It it does
work, it is enly by chance.)

#include <stdio.h=
int main{void)

printE("sE", 2303},

This program is telling printf() to expecta floating point
value, but the compiler assumes that 2309 is simply an int.
Hence, it does not output the correct value. To fix it, you must
specifv 2309 as 2309.0. Adding the decimal point forces the
conpiler to treat the value as a double.

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 23
44 INITIALIZE vARIAgtrs Y

EXERCISES

1. How do vou tell the C compiler that a tloating-point constant
should be represented as a float instead of a double?

2. Write a program that reads and writes a long int value.

3. Write a program that outputs I like C using three
separate strings.

’NITIA!.IZE VARIABLES

(;\ variable may-be given an initial value when it is declared. This is

alled varable initialization, The general form of variable initialization

15 shown }11:9 -

lype var-name = constant ;

" For example, this statement declares count as an int and gives it an
imitial value of 100.

The main advantage of using an initialization rather than a separate
assignment statement is that the compiler mav he able to produce
faster code, Also, this saves some typing effort on vour part,

Global yariables may be initialized using only constants. Local

variables can be initialized using constants, variahles, or function calls
as long as each is valid at the time of the initialization. However, most
often both global and local variables are initialized using consrants.

Global variables are initialized only once, ar the start of program
execution. Local variables are initialized each time a function
is entered. Em——

Global variables that are not explicitly initialized are automatically
setto zero. Local variables that are not initialized should be assumed
to contain unknown values. Although some € ¢ ompilers automatically
initialize un-inidalized local variables to 0, vou should not count
on this

124 TEACH YOURSELF
Y ¢

1. This program gives i the initial vilue of =1 and then displays
its value.

#include <stdio.h>
int main(void)

{

ing 3 = =21;
printf("i is initialized to %d", 1);

return 0;
)

2. When vou declare a list of variables, vou may initialize one ol
more of them. For example, this fragment initializes min to 0
and max to 100. It does not initialize count.

int min=0, count, max=100;

3. As stated earlier, local variables are initialized each time the
function is entered. For this reason, this program prints 10
threc times.

#include <stdio.h>
void f(void);

int main(void)
{

£ 7

£il) &

Eil} ;

return 0;
void f(void)
{

int i = 10;

printf("%d =, i):

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS § 25
44 INALIZE VARIABLES T

4. A local variable can be initialized by any expression valid
at the time the variable is declared. For example, consider
this program:
finclude <stdio.h>

int » = 10; /* initialize global variable */

—

int myfunc{intc i);
int main(void)

/* initialize a local variable using
a global variable */
int y = x;

/* initialize a local variable using another
local variable and a function call =/
int z = myfunc(y);

printE{"%d 4", ¥, z);

return 0;

int myfunc(int i)
{

return i/2;

The local variable y is initialized using the value of the global
variable x. Since x is initialized before main() is called, it is
valid to use its value to initialize a local variable. The value of z
is initialized by calling myfunc() using y as an argument.
Since y has already been initialized, it is entirely proper to use it
as an argument to myfunc() at this point

EXERCISES

i

5
i @“"l’itf-‘- a program that gives an integer variable called i an initial

value of 100 and then uses i to control a for loop that displays
the numbers 100 down to 1

126 TEACH YOURSELF
-
v

o
2. Assume that this line of code declares global variables. Is
it correct?

int a=1, b=2, c=a;

3. If the preceding declaration was for local variables, would
it be correct?

| NDERSTAND TYPE CONVERSIONS IN
EXPRESSIONS

Unlike many other computer languages, C lets you mix ditferent type
of data together in one expression. For example, this is perfectly valic
C code:

char ch;

Ink. 37

ch = it =

i = 10; ~
E £ 3.2

outcome = ¢h * 1 4 E;

C allows the mixing of types within an expression because it has a
strict set of conversion rules that dictate how type differences are
resolved. Let's look closely at them in this section.

One portion of C's conversion rules is called integral promoton In C,
whenever a char or a short int is used in an expression, its value is
automatically clevated to int during the evaluation of that expression.
This is why vou can use char variables as "little integers” anyvwhere
vou can usc an int variable. Keep in mind that the integral promotion
is onlv in effect during the evaluation of an expression. The variable
does not become physically larger. (In essence, the compiler just uses
a temporary copy of its value.)

After the automatic integral promotions have been applied, the C
compiler will convert all operands "up” to the type of the largest
operand. This is called type promonon and is done on an operation-

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 127
4.5 UNDERSTAND TYPE CONVERSIONS IN EXPRESSIONS b4

by-operation basis, as described in the following type-conversion
algorithm.

IF an operand is a long double

THEN the second is converted to long double
ELSE IF an operand is a double

THEN the second is converted to double
ELSE IF an operand is a float

THEN the second is converted to float

ELSE IF an operand is an unsigned long
THEN the second is converted to unsigned long
ELSE IF an operand is long

THEN the second is converted to long

ELSE IF an operand is unsigned

THEN the second is converted to unsigned

There is one additional special case: If one operand is long and the
other is unsigned int, and if the value of the unsigned int cannot be
represented by a long, both operands are converted to unsigned long

Once these conversion rules have been applied, each pair of
operands will be of the same type and the result of each operation will
be the saiue as the type of both operands.

____EXAMPLES

1. In this program, i is elevated to a float during the evaluation of
the expression i*f. Thus, the program prints 232.5,

#include <stdio. h>
int main({void)
({

int i;

float f;

1= 10;
f = 23.25;

printf(*%f", i+*f);

128 TEACH YOURSELF

Y ¢

2

This program illustrates how short ints are automatically
promoted to ints. The printf() statement works correctly eve’
though the %d modifier is used because i is automatically
elevated to int when printf() is called.

#include <stdio.h>

int main(void)
{

short int i;

i = -10;
printf("%d", i);

return 0;
)

Even though the final outcome of an expression will be of the
largest type, the type conversion rules are applied on an
operation-by-operation basis. For example, in this expression

100.0/(10/3)

the division of 10 by 3 produces an integer result, since both ar
integers. Then this value is elevated to 3.0 to divide 100.0.

1.

Given these variables,

char ch;
short i;
unsigned long ul;
fioat E;

what is the overall type of this expression:

f/ch - {(i*ul)

2. What is the type of the subexpression i*ul, above?

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 129

4.6 UNDERSTAND TYPE CONVERSIONS IN ASSIGNMENTS b

46 | llﬂnfnsmmu TYPE CONVERSIONS IN
ASSIGNMENTS

In an assignment statement in which the type of the right side ditters
from that of the left, the type of the right side is converted into that ol
the left. When the type of the lett side is larger than the type of the
right side, this process causes no problems. However, when the tvpe
of the left side is smaller than the type of the right, data loss mav ’
occur. For example, this program displays -24:

#include <stdio.h>

int main(void)
(

char ch;

int 1i;

e

i = 1000;
ch = i;

printf ("%d*, ch);

return 0;

The reason for this is that only the low-order eight bits of i are
copied into ch. Since this sort of assignment type conversion is not an
error in C, you will receive no error message. Remember, one reason
C was created was to replace assembly language, so it must allow all
sorts of type conversions. For example, in some instances you may
only want the low-order eight bits of i, and this sort of assignment is an
easy way to obtain them.

When there is an integer-to-character or a longer-integer to
shorter-integer type conversion across an assignment, the basic rule is
that the appropriate number of high-order bits will be removed. For
example, in many environments, this means 8 bits will be lost when
going from an int to a char, and 16 bits will be lost when going from a
long to an int.

When converting from a long double to a double or from a double
to a float, pregision is lost. When converting from a floating-point

9

130 TEACH YOURSELF
L

value tq an integer value, the fractional part is lost, and if the number
is too large to fit in the target type, a garbage value will result.

Remember two important points: First, the conversion of an inttoa
float or a float to double, and so on, will not add any precision or
accuracy. These kinds of conversions will only change the form in
which the value is represented. Second, some C compilers will always
treal a char variable as an unsigned value. Others will treat it as a
signed value. Thus, what will happen when a character variable holds
a value greater than 127 is implementation-dependent. If this is
important in a program that you write, it is best to declare the variable
cxplicitly as either signed or unsigned.

1. As stated, when converting from a floating-point value to an
integer value, the fractional portion of the number is lost. The
following program illustrates this fact. It prints 1234.0098 1234,

#include <stdio.h>

int main(void)

{
ift a4
float f;
f = 1234.0098;
i = f; /* convert to int */

printf("$f %d", L, i);

(
return 0;
}

2. When converting from a larger integer type to a smaller one, it
is possible to generate a garbage value, as this program
illustrates. (This program assumes that short integers are 16 bits
long and that long integers are 32 bits long.)

#include <stdio.h>

int main(void)
.short int si;
long int 1i;

A CLOSER LOGK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 131
46 UNDERSTAND TYPE CONVERSIONS IN ASSIGNMENTS ¥

1i = 100000;

si = 1i; /* convert to short ink */
printf("%hd", si);

return 0;

}

Since the largest value that a short integer can hold is 32,767, it
cannot hold 100,000. What the compiler does, however, is copy
the lower-order 16 bits of 1i into si. This produces the
meaningless value of =31072 on the screen.

EXERCISES

1. What will this program display?
#include <stdio.h>
int main(void)
{
int i;
long double 1d;

1d = 10.0;
i = 14;

printf("%d", i);
}

2. What does this program display?
<#include <stdio.h>
int main(void)
{
float f;

£ =10 / 3;
printf("sf", £);

return 0;

132 TEACH YOURSELF

Y ¢

ErSE PROGRLAM,,w:rn, TYPE CASTS

Sometimes you may want to transform the type of a variable
temporarily, For example, you may want to use a floating-point value
for one computation, but wish to apply the modulus operator to it
clsewhere. Since the modulus operator can only be used on integer
values, you have a problem. One solution is to create an integer
variable for use in the modulus operation and assign the value of the
floating-point variable to it when the time comes. This is a somewhat
melegant solution, however. The other way around this problem is to
use a (ype cast, which causes a temporary type change.

A type cast takes this general form:

(type) value
where type is the name of a valid C data type. For example,
float f;
£ = 100.2;

/* print f as an integer */
printf("%d", (int) f);

Here, the type cast causes the value of f to be converted to an int.

m r

1. As you learned in Chapter 1, sqrt(), onc of C's library

functions, returns the square root of its argument. It uses the
" MATH.H header file. Its single argument must be of type

double. It also returns a double value. The following program
prints the square roots of the numbers between 1 and 100 using
a for loop. It also prints the whole number portion and the
fractional part of each result separately. To do so, it uses a type
cast to convert sqrt()'s return value into an int.

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS 133
v

47 PROGRAM WITH TYPE CASTS

#include <stdio.h>
#include <math.h>

int main(void)

{
double 1i;

for(i=1.0; i<101.0; i++)
printf{"The square root of %1f is %1f\n", i, sqrt{i));
printfi whole number part: %d *, (intlsqrt(i));
printf("Fractional part: 31f\n", sgrt(i)-(int)sqgrt (i});
printf (“\Na"y;

return 0;

2. You cannot cast a variable that is on the lett side ot an
assignment statement. For example, this is an invalid
statement in C:

int num;

(float) num = 123.23; /* this is incorrect */

EXERCISES

1. Write a program that uses for toprint the numbers 1 to 10 by
tenths. Use a floating-point variable to control the loop.
However, use a type cast so that the conditional expression is
evaluated as an integer expression in the interest of speed.

2. Since a floating point value cannot be used with the % operator,
how can you fix this statement?

x = 123.23 % 3; /* fix this statement */

134 TEACH YOURSELF

- Mastery
Skills Check

At this point you should be able to answer these questions and
pertorm these exercises:

1.

What are C's data-type modifiers and what function do
they perform?

Itow do you explicitly definc an unsigned constant, a long
constant, and a long double constant?

Show how to give a float variable called balance an initial value
of 0.0. .

. What are C's automatic integral promotions?.

What is the difference between a signed and an unsigned
integer? =

i. Give one reason why you might want to use a global variable in

vour program.

. Write a program that contains a function called series(). Have

this function generate a series of numbers, based upon this
formula:

-

next-number = (previous-number * 1468) % 467

Give the number an initial value of 21. Use a global variable to
hold the last value between function calls. In main()
demonstrate that the function works by calling it ten times and
displaying the result.

What is a type cast? Give an example.

A CLOSER LOOK AT DATA TYPES, VARIABLES, AND EXPRESSIONS | 35
47 PROGRAM WITH TYPE CASTS T

[Cumulative
Skills Check

This section checks how well you have integrated the material in
this chapter with that from earlier chapters.

1. As you know from Chapter 3, no two casecs with the same
switch may use the same value. Therefore, is this switch valid
or invalid? Why? (Hint: the ASCII code for 'A’ is (5.)

switch(x) {

case ‘A’ : printf("is an A");
break;

case 65 : printf("is the number 65");
break;

]

2. Technically, for traditional reasons the getchar() and getche()
functions are declared as returning integers, not character
values. However, the character read from the keyboard is
contained in the low-order byte. CSn you explain why this value
can be assigned to char variables? '

3. In this fragment, will the loop ever terminate? Why? (Assume
integers are 16 bits long.)
int i .
for (i=0; 1<33000; i++);

