O

Exploring Arrays
and Strings

chapter objectives

5.1 Declare one-dimensional arrays
5.2 Use strings

5.3 Create multidimensional arrays
5.4 Injtialize arrays

5.5 Build arrays of strings

QPOO®

137
v

138 TEACH YOURSELF

LA

N this chapter you will learn about arrays. An array is essentially
a list of related variables and can be very useful in a variety of
situations. Since in C strings are simply arrays of characters, you
will also learn about strings and several of C's string functions.

Skills Check

Before proceeding, you should be able to answer these questions
and perform these exercises:

1. What is the difference between a local and a global variable?
2. What data type will a C compiler assign to these numbers?

(Assume 16-bit integers.)

a. 10

h. 10000

.-123.45

d. 123564

e. —45099

3. Write a program that inputs a long, a short, and a double and
then writes these values to the screen.

4. What does a type cast do?

5. To which if is the else in this fragment associated? What is the
general rule?
(1)
if(j) printf("i and j are true");
else printf("i is false");

6. Using the following fragment, what is the value of a when i is 1?7
What is a's value when i is 4?

switch(i) {
case 1: a = 1;
case 2: a = 2;
break;
case 3: a
break;

n

¥4

¢
Exploring Arrays and Strings 139
5.1 DECLARE ONE-DIMENSIONAL ARRAYS b 4

mDscmn'f, ONE-DIMENSIONAL{ARRAYS

In C, a one-dimensional array is a list of variables that are all of the
same type and are accessed through a common name. An individual
variablc in the array is called an array clement. Arrays form a
convenient way to handle groups of relat(:d data.

To declare a one-dimensional array, use the gencral form

type var_name(sizej];

-
where type is a valid C data type, var_name is the name of the array,

and size specifies the ‘number . @‘F(,l(’m(-ms in the array. For example, to

_dec Jare an integer drmy ‘with 20 clements called myarray, usc this
statement.

L]

int myarray(20];

An array element is accessed by indexing the array using the

number of the element. In C, all arrays begin at zero. This means that
‘———___,_.. e

if you want to access the first element in an array, use zero for the
index. To index an.array, specify the index of the element you want
inside square brackets. For example, the following refers to the sccond
clement of myarray:
myarray[1]

Remember, arrays start at zero, so an index of 1 references the sccond
clement. '

To assign an array element a value, put the array on the left side of
an assignment statement. For example, this gives the first element in

myarray the value 100:
myarray[0] = 100;

C stores one~-dimensional arrays in one contiguous memory location
with the first element at the lowest address. For cxample, after this
fragment executes,

a

140 TEACH YOURSELF

¥ G
int 1[5).:
int j;

for{j=0; J<5; j++&) L[I) = F:
array i will look like this:
0] i) iz i i)

i 0O 1(2)3]4

You may use the value of an array element anywhere you would
use a simple variable or constant. For example, the following program
loads the sqrs array with the squares of the numbers 1 through 10 and
then displays them. ' '

#include <stdio.h>

int main(veoid)

{
int sgrs(10];
int i:
for{i=1; i<l1ll; i++) sqrs[i-1] = i*i;

for(i=0;"i<10; i++) printf("%d ", sqrs([i]);

return 0;

When you want to use scanf() to input a numeric value into an
array clement, simply put the & in front of the array name. For
example, this call to scanf() reads an integer into count[9].

scanf ("%d", &count(9]);

C does not perform any bounds checking on array indexes. This
means that it is possible to overrun the end of an array. For example,
if an array called a is declared as having five elements, the compiler
will still let you access the (nonexistent) tenth element with a
statement like a[9]. Of course, attempting to access nonexistent
clements will generally have disastrous results, often causing the

Exploring Arrays and Strings § &7
51 DECLARE ONE-DIMENSIONAL ARRAYS ¥

program to crash. It is up to you, the programmer, to make sure that
the ends of arrays are never overrun.

In C, you may not assign one entire array to another. For example,
this fragment is incorrect.

char al[l10], a2[10];

a2 = al; /* this is wrong */

If you wish to copy the values of all *he elements of one array to
another, you must do so by copying each element separately.

j Arrays are very useful when lists of information nced to be
managed. For example, this program reads the noonday
temperature for each day of a month and then reports the
month's average temperature, as well as its hottest and
coolest days.
#tinclude <stdio.h>

int main(void)

(
int temp(31}, i, min, max, avg;
int days;

printf ("How many days in the month? ");
scanf ("%d", &days);

for (i=0; i<days; i++) {
printf ("Enter noonday temperature for da,/Z}jZ o ALY
scanf ("%d", &temp[i]);

fiE gind average */
avg = 0;
for{i=0; i<days; i++) avg = avg + templil;

142 TEACH YOURSELF
y T

C
printf (*Average temperature: $d\n", avg/days);
/* find min and max */
min = 200; /* initialize min and max */
max = 0;
for (i=0; i<days; i++) |
if(min>temp(i]) min = temp(i];
if (max<temp[i]) max = temp(i];
}
printf ("Minimum temperature: $d\n", min);
printf ("Maximum temperature: $d\n", max);
return 0;
}

7 As stated carlier, to copy the contents of one array to another,
you must explicitly copy each element separately. For example,
this program loads al with the numbers 1 through 10 and then
copies them into a2, ‘

#include <stdio.h>

int main(void)

{
int al[l0], a2[10];
{nt ate

for(i=1; i<1l; i++) al[i-1] = i;
for{i=0; i<10; is+) a2[i] = allil;
for(i=0; i<10; i++) printf("%d ", az2fil):

return 0;

}

3. The following program is an improved version of the code-
machine program developed in Chapter 3. In this version, the
user first enters the message, which is stored in a character
array. When the user presses ENTER, the entire message is then
encoded by adding 1 to each letter.

Exploring Arrays and Strings | §3
5.1 DECLARE ONE-DIMENSIONAL ARRAYS w

#include <stdio.h>
#include <conio.h>

int main(void)

{
char mess([80];
int i;

printf ("Enter message (less than 80 characters)\n");
for(i=0; i<80; i++) (

mess[1i] = getchel();

if(mess[i]l=='\r’) break;

}
printf("\n");

for(i=0; mess(i]!=‘\r’'; i++) printf("%c", mess[i]+1);

return Q;
}

. Arrays are especially useful when you want to sort information.
For example, this program lets the user enter up to 100
numbers and then sorts them. The sorting algorithm is the
bubble sort. The bubble sort algorithm is not very efficient, but
it is simple to understand and easy to code. The general concept
behind the bubble sort, indeed how it got its name, is the
repeated comparisons and, if necessary, exchanges of adjacent
elements. This is a little like bubbles in a tank of water with
cach bubble, in turn, secking its own level.

#include <stdio.h>
#include <stdlib.h>

int main(void)

(
int item(100];
int. a, b, t:
int count;

/* read in numbers */

ptintf ("How many numbers? ");

scanf ("%d", &count);

for(a=0; a<count; a++) scanf("3%d", &iteml[a]);

144 TEACH YOURSELF
Y ¢

/* now, sort them using a bubble sort */
for{a=1; a<count; ++a) ‘
for (b=count-1; b>»=a; --b) {
/* compare adjacent elements */
if(item[b-1] > item[b]) {
/* exchange elements */
t = item[b-1];
item[b-1] = item([b];:
item[b] = t;

/* display sorted list */ =

for (t=0: t<count; t++) printf("%d ", item(t]);

return 0;

EY ZRCISES

i. What is wrong with this program fragment?

#include <stdio.h>
. '

int main(void)

{
int 4, count[lO],_ . ;Ltiio
for (i=0; i<100% i++) {
printf(*Enter a number: *);
scanf ("%d", &count(i]);

2. Write a program that reads ten numbers entered by the user and
reports if any of them match.

3. Change the sorting program shown in the examples so that it
sorts data of type float.

Exploring Arrays and Strings 145
52 USESTRINGS Y

JsE sTrRiNGS Q@

The most common use of the one-dimensional array in C is the string.
Unlike most other computer languages, C has no built-in string data
type. Instead a string is defined as a null-terminated character arrr.z_aﬂ In
C, a null is zero. The fact that string must be terminated by a null"
means that you must define the array that is going to hold a string to
be one byte larger than the largest string it will be required to hold, to
make room for the null. A string constant is null-terminated by the
compiler automatically.

There are several ways to read a string from the keyboard. The
method we will use in this chapter employs another of C's standard
library functions: gets(). Like the other standard I/0 functions,
gets() also uses the STDIO.H header file. To use gets(), call it using
the name of a character array without any index.@khg ets() function
reads characters until you press ENTER. TheENTER Key (i.e., carriage
returnyis not stored, but is replaced by a null, which terminates the
string. For example, this program reads a string entered at the
keyboard. It then displays the contents of that string one character

t atime.

‘#I;clude <stdio.h>

int main(veoid)
{
char str(80];
int 1;

printf("Enter a string (less than 80 chars): ");
gets(str);
for{i=0; str(i]); i++) printf("sc", str(il);

return 0;
}

Notice how the program uses the fact that a null is false to control the
loop that outputs the string.

There is a potential problem with gets() that you need to be aware
of. The gets() function performs no bounds checking, so it is possible
for the user to enter more characters than the array receiving them
can hold. For example, if you call gets() with an array that is 20
characters long, there is no mechanism to stop you from entering

146 TEACH YOURSELF
Y ¢

more than 20 characters. If you do enter more than 20 characters, the
array will be overrun. This can obviously lead to trouble, including a
program crash. Later in this book you will learn some alternative ways
to read strings, although none are as convenient as using gets(). For
now, just be sure to call gets() with an array that is more than large
enough to hold the expected input.

In the previous program, the string that was entered by the user
was output to the screen a character at a time. There is, of course, a
much easier way to display a string using printf(), as shown in this
version of the program:

#include <stdio.h>

int main(wvoid)
{
char str(80];

printf ("Enter a string (less than 80 chars): "):
gets(str);
printf(str); /* output the string */

return 0;

}

Recall that the first argument to printf() is a string. Since str
contains a string it can be used as the first argument to printf().
The contents of str will then be displayed.

If you wanted to output other items in addition to str, you ¢ 7
display str using the %s format code. For example, to output a newline
after str, you could use this call to printf().

printf("%s\n", str};

This method uses the %s format specifier followed by the newline
character and uses str as a second argument to be matched by the %s
specifier. .

The C standard library supplies many string-related functions.
The four most important are strepy(), strcat(), stremp(), and
strlen(). These functions require the header file STRING.H. Let's
look at each now.

The strcpy() function has this general form:

strepy(to, from);

Exploring Arrays and Strings &7
52 USESTRINGS ¥

It copies the contents of from to to. The contents of from are
unchanged. For example, this fragment copies the string "hello" into
str and displays it on the screen:

char str[80];

strcpy(str, "hello*):
printf(“$s", str);

@qstrcpy() function performs no bounds checking, so you must %
make sure that the array on the receiving end is large enough to hold
what is being copied, including the null terminator. ¥ -

The strcat() function adds the contents of one string to another.
tI‘his is called concatenation. Its general form is

strcat(to, from):) ?

It adds the contents of from to the contents of to. It performs no
bounds checking, so you must make sure that to is large enough to
hold its current contents plus what it will be receiving. This fragment
displays hello there.

o

%tr[ﬂﬂ] ;

strcpy(str, "hello”);
strcat(str, * there");
printf(str);

The stremp() function compares two strings. It takes this general
form:;

stremp(s1, s2),, <~ E%

(It returns zero if the strings are the same. It returns less than zero if s1
is less than sZ and greater than zero if sT is greater than s2. The strings
are compared lexicographically; that is, in dictionary order. Therefore,
a string is less than another when it would appear before the other in a
dictionary. A string is greater than another when it would appear after
the other. The comparison is not based upon the length of the string.
Also, the comparison is Case-sensitive, lowercase characters being
greater than uppercase. This fragment prints 0, because the strings are
the same:

printf(*%d", strcmp(®one", "one"));

148 TEACH YOURSELF
Y ¢

The strlen() function returns the length, in characters, of a string.
Its general form is

strien(«tr);

The strlen() function does not count the null terminator. Thic .icans
that if strlen() is called using the string "test”, it will return 4.

1. This program requests input of two strings, then demonstrates
the four string functions with them.

#include <string.h>
#include <stdic.h> >

int main(void)

{
char strl[80], str2[80];
int i;

printf("Enter the first string: "); -
gets(strl);
printf ("Enter the second string: "};
gets(str2};

/* see how long the strings are */
printf("%s is %d chars long\n", strl, strlen(strlJ);
printf({"%s is %d chars long\n", str2, strlen(str2));

/* compare the strings */ !

i = strcmp{strl, str2);

if{!'i) printf(*The strings are equal.\n"J;

elce if(i<0) printf("%s is less than %s\n", strl, st¥x2};
else printf("%s is greater than %s\n", strl, str2);

/* concatenate str2 to end of strl if
there is enough room */
if (strlen(strl) + strlen(str2) < 80) {
strcat (strl, str2);
priotf(*%¥s\n"*, strl);

Exploring Arrays and Strings] 459
52 USESTRINGS ¥

{* copy str2 to strl */
strcpy(strl, str2);
printf(*"%s %s\n", strl, str2);

return 0;
}

_ue common use of strings is to support a command-based
interface. Unlike a menu, which allows the user to make a

“selection, a command-based interface displays a prompting
message, waits for the 1iser to enter a command, and then does
what the command reg, ..csts. Many operating systems, such as
Windows or DOS, support command-line interfaces, for
example. The following program is similar to a program
developed in Section 3.1. It allows the user to add, subtract,
multiply, or divide, hut does not use a menu. Instead, it uses a
command-based interface.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)

{
char command[80], temp[80];
int s >

forl & &% §
printf(*Operation? ");
gets{command) ;

/* see if user wants to stop */
if(!strcmp(command, "quit")) break;

printf("Enter first number: ");
gets(temp) ;
i = atoi(temp);

printf("Enter second number: ");
gets(temp) ;
j = atoi(temp);

150 TEACH YOURSELF

v

c

/* now, perform the operation */

if (!'stremp(command, “add"))
printf("%d\n", i+3j};:

else if (!strcmp(command, “subtract"))
printf(*%d\n*, i-3);

else if (!strcmp(command, rdivide")) |
if(j) printf("%d\n", i/3);

}

else if(!strcmp(command, "multiply®))
printf("%d\n", i*j);

else printf ("Unknown command. \n");

return 0;
}

Notice that this example also introduces another of C's standard
library functions: atoi(). The atoi() function returns the
integer equivalent of the number represented by its string
argument. For example, atoi("1 00") returns the value 100. The
reason that scanf() is not used to read the nu mbers is because,
in this context, it is incompatible with gets(). (You will need to
know more about C before you can understand the cause of this
incompatibility.) The atoi() function uses the header file
STDLIB.H.

. You can create a zero-length string using a strcpy() statement

like this:

strepy(str, "");

Such a string is called a null string. It contains only one element:
the null terminator.

EXERCISES

1. Write a program that inputs a string, then displays it backward
on the screen.

2. What is wrong with this program?

Exploring Arrays and Strings] 5
53 CREATE MULTIDIMENSIONAL ARRAYS Y

#¢include <string.h>
#include <stdio.h>

int main(void)
{
char str([5];

strecpy(str, "this is a test"};
printf(str);

return 0;

}

3. Write a program that repeatedly inputs strings. Each time a
string is input, concatenate it with a second string called bigstr.
Add newlines to the end of each string. If the user types quit,
stop inputting and display bigstr (which will contain a record of
all strings input). Also stop if bigstr will be overrun by the next
concatenation.

‘:REATE MULTIDIMENSIONAL ARRAYS

In addition to one-dimensional arrays, you can create arrays of two or
more dimensions. For example, to create a 10x12 two-dimensional
integer array called count, you would use this statement:

int count[10]([12];

As you can see, to add a dimension, you simply specify its size inside
square brackets.

A two-dimensional array is essentially an array of one-dimensional
arrays and is most easily thought of in a row, column format. For
example, given a 4x5 integer array called two_d, you can think of it
looking like that shown in Figure 5-1. Assuming this conceptual view,
a two-dimensional array is accessed a row at a time, from left to right.
This means that the rightmost index will change most quickly when
the array is accessed sequentially from the lowest to highest memory
address.

152 TEACH YOURSELF
——

v

c

| ricune 52 [

A conceptual view 1

of a 4x5
two-dimensional 2
array 3
v

Two-dimensional arrays are used like one-dimensional ones. For

example, this program loads a 4x5 array with the products of the
indices, then displays the array in row, column format.

#include <stdio.h>

int main(wveid)

{

}

int twod[4][5];
ine i. s

for(i=0; di=<4; i++])
for(j=0; 3j<5; j++)
twoed[il[3] = i*3;

for{i=0; i<4d; i++} (
for(j=0; j<5; j++)
printf("%d ", twod[i][]]};
printf("\n");

return 0;

The program output looks like this:

o o o o

(VR S R =
fo T~ S I =}
v we
= oo O
%]

Exploring Arrays and Strings] 53
53 CREATE MULTIDIMENSIONAL ARRAYS ¥

To create arrays of three dimensions or greater, simply add the size
of the additional dimension. For example, the following statement
creates a 10x12x8 three-dimensional array.

float values[10]([12]([8];

A three-dimensional array is essentially an array of two-dimensional
arrays.

You may create arrays of more than three dimensions, but this is
seldom done because the amount of memory they consume increases
exponentially with each additional dimension. For example, a
100-character one-dimensional array requires 100 bytes of memory. A
100x100 character array requires 10,000 bytes, and a 100x100x100
array requires 1,000,000 bytes. A 100x100x100x100 four-dimensional
array would require 100,000,000 bytes of storage—large even by
today's standards.

1. A good use of a two-dimensional array is to manage lists of
numbers. For example, you could use this two-dimensional
array to hold the noontime temperature for each day of the
year, grouped by month.

float yeartemp([12]([31];

In the same vein, the following program can be used to keep
track of the number of points scored per quarter by each
member of a basketball team.

tinclude <stdio.h>

int main(void)

{
int bball[4]1{5];
int i, j;

for{(i=0; i<d4; i++)
for(j=0; j<5; j++) {
printf("Quarter %d, player %d, ", i+l, 3j+1);
printf ("Enter number of points: *);

154 TEACH YOURSELF
v e

c
scanf ("%4d", &bball(i](j]);
)
* /* display results */
for(i=0; i<4; i++)
for{3=0; J=<5z j*+¥) |)
printf ("Quarter %d, player %d, *, i+l, j+1);
printf ("%d\n", bball(i] (j]);
}
return 0;
)
EXERCISES

T}-Write a program that defines a 3x3x3 three-dimensional array,
and load it with the numbers 1 to 27.

2. Have the program from the first exercise display the sum of its
elements. '

ITIALIZE ARRAYS

Like other types of variables, you can give the elements of arrays
initial values, This is accomplished by specifying a list of values the
array elements will have (The al form of array initialization for

one-dimensional arrays is shown here)
et e il

ype 3rray—name[s:ﬁe]r=r jyg[u@'isf_};

e
The value-list is a comma-separated list of constants that are type
compatible with the base type of the array. Moving from left to right,
the first constant will be placed in the first position of the array, the
second constant in the second position, and so on. Note that a
semicolon follows the }. In the following example, a five-element
integer array is initialized with the squares of the numbers 1 through 5.

Exploring Arrays and Strings [55
v
int i[5) = {1, 4, 9, 16, 25}; 54 INITIALIZE ARRAYS

This means that i[0] will have the value 1 and i[4] will have the
value 25.

You can initialize character arrays two ways. First, if the array is not
holding a null-terminated string, you simply specify each character
using a comma-separated list. For example, this initializes a with the
letters 'A', 'B’, and 'C".

char a(3) = ('A', 'B*', 'C’'};

If the character array is going to hold a string, you can initialize the
array using a quoted string, as shown here:

char name (5] = "Herb";

Notice that no curly braces surround the string. They are not used in
this form of initialization. Because strings in C must end with a null,
you must make sure that the array you declare is long enough to
include the null. This is why name is 5 characters long, even though
"Herb" is only 4. When a string constant is used, the compiler
automatically supplies the null terminator.

Multidimensional arrays are initialized in the same way as
one-dimensional arrays. For example, here the array sqr is initialized
with the values 1 through 9, using row order:

int sqgr(3]1(3) = {
1;: 25 3y
4 B By
7. 8, 9

i

This initialization causes sqr[0] [0] to have the value 1, sqr[0][1] to
contain 2, sqr[0][2] to hold 3, and so forth.

If you are initjalizing a one-dimensional array, you need not specify
the size of the array—simply put nothing inside the square brackets. If
you don't specify the size, the compiler counts the number of
initializers and uscs that value as the size of the array. For example,

int pwr(] = (1, 2, 4, 8, 16, 32, 64, 128};

causes the compiler to create an initialized array eight elements long.
Arrays that don't have their dimensions explicitly specified are called
unsized arrays. An unsized array is useful because the size of the array

156 TEACH YOURSELF
¥ e

will be automatically adjusted when you change the number of its
initializers. It also helps avoid counting errors on long lists, which is
especially important when initializing strings. For example, here an
unsized array is used to hold a prompting message.

char prompt[] = "Enter your name: ";

If, at a later date, you wanted to change the prompt to "Enter your last
name:", you would not have to count the characters and then change
the array size. The size of prompt would automatically be adjusted.

Unsized array initializations are not restricted to one-dimensional
arrays. However, for multidimensional arrays you must specify all but
the leftmost dimension to allow C to index the array properly. In this
way you may build tables of varying lengths with the compiler
allocating enough storage for them automatically. For example, the
declaration of sqr as an unsized array is shown here:

int sqr(J(3] = {
T, 2 3
4, 5, 6,
7, 8, 9

¥:

The advantage to this declaration over the sized version is that tables
may be lengthened or shortened without changing the array
dimensions.

1. A common use of an initialized array is to creafe a lookup table.
For example, in this program a 5x2 two-dimensional array is
initialized so that the first element in each row is the number of
a file server in a network and the second element contains the
number of users connected to that server. The program allows a
user to enter the number of a server. It then looks up the server
in the table and reports the number of users.

#include <stdio.h>

int main(void)
r

Exploring Amrays and Strings | 57
54 INIALIZE ARRAYS ¥

int ServerUsers(5] (2] = (
1, 14,
2, 28,
3, 19,
4, 8,
5, A5

}:

int server;
int-i;

printf ("Enter the server number: ");
scanf("%d", &server);

/* look it up in the table */
for(i=0; i<5; i++)
if (server == ServerUsers[i] [0]) {
printf ("There are %d users on server %d.\n",
ServerUsers[i] (1], server);
break;

/* report error if net found */
if (i==5) printf("Server not listed.\n");

return 0;
}

2. Even though an array has been given ap initial value, its
contents may be changed. For example, this program prints
hello on the screen.

#include <stdio.h>

#include <string.h>

int main(void)
{
char str[80] = "I like C";

strcpy(str, "hello");
printf(str);

return 0;

158 TEACH YOURSELF
Y ¢

As this program illustrates, in no way does an initialization fix the
contents of an array.

1. Is this fragment correct?
int balance[] = 10.0, 122.23, 100.0;

2. Is this fragment correct?

#include <stdio.h>
#include <string.h>

int main(void)
{

char name[] = "Tom";
strcpy (name, "Tom Brazwell");

3. Write a program that initializes a 10x3 array so that the first
element of each row contains a number, the second element
contains its square, and the third element contains its cube.
Start with 1 and stop at 10. For example, the first few rows will
look like this:

- (D I

1
2
3
4

Next, prompt the user for a cube, look up this value in the table,
and report the cube’s root and the root’s square. Use an unsized
array so that the table size may be easily changed.

Exploring Amays and Strings] 59
55 BUILD ARRAYS OF STRINGS ¥

55 | BuuD.ARRA'Ys OF STRINGS

Arrays of strings, often called string tables, are very common in C
programming. A string table is created like any other two-dimensional
array. However, the way you think about it will be slightly different.
For example, here is a small string table. What do you think it defines?

char names[10] [40);

This statement specifies a table that can contain 10 strings, each up to
40 characters long (including the null terminator). To access a string
within this table, specify only the left-most index. For example, to read
a string from the keyboard into the third string in names, use this
statement:

gets(names{2]);

By the same token, to output the first string, use this pnntf()
statement:

printf({names([0]);

The declaration that follows creates a three-dimensional table with
three lists of strings. Each list is five strings long, and each string can
hold 80 characters.

char animals(3](5]([80];

To access a specific string in this situation, you must specify the two
left-most indexes. For example, to access the second string in the third
list, specify animals[2][1].

EXAMPLES

1. This program lets you enter ten strings, then lets you display
them, one at a time, in any order you choose. To stop the
program, enter a negative number.

#include <stdio.h>

int main(void)

160 TEACH YOURSELF
v ~
int e (Vo'i(’)
char text([10][80]);
int 1j;

for(i=0; i<10; i++) {

printf("%d: =, i+l);

gets(text(i]);

do {

e
e i [""'j,.bZTL:h you

Tospum Ham, BN &Rt V1 4T3

printf ("Enter number of string (1-10) : ");

scanf ("%d", &i);

i--; /* adjust value to match array index */
if(i>=0 && i<10) printf("%s\n", text(i]):

} while(i>=0);

return 0;

)

2. You can initialize a string table as you would any other type of
array. For example, the following program uses an initialized
string table to translate between German and English. Notice
that curly braces are needed to surround the list. The only time
they are not needed is when a single string is being initialized.

/* English-to-German Translator. */

#include <stdio.h>
#include <string.h>

char words([][2](40] = {
"dog", "Hund",
"no", "nein",
*year", "Jahr",
*child", *Kind",
=L*. *Igh®,
*drive", "fahren",
"house", "Haus",
YEGr, “zav;

Y

int main({void)
{
char english[80];

Exploring Amrays and Strings 167
55 BUILD ARRAYS OF STRNGS ¥

int 1i;

printf("Enter English word: ");
gets(english);

/* look up the word */
i=0; '
/* search while null string not yet encountered */
while(strcmp (words(i] (0], "")) {
if(!stremp(english, words(i](0])) {
printf ("German translation: %s", words([i][1]);
break;
}
1++;
}
if(!strcmp(words(i] [0], ""))
printf("Not in dictionary\n");

return 0;

}

3. You can access the individual characters that comprise a string
within a string table by using the rightmost index, For example,
the following program prints the strings in the table one
character at a time.

#include <stdio.h>

int main(void)

(

char text([])[80) = {
"When", "in", "the",
"course", "of", "human",
"events", ""

1

int i; 5;

/* now, display them */
for(i=0; text[i][0]; i++) {
for(j=0; text([i][]]; j++)
printE("%c", text[il([]j]);
printf (™ ")

}
eturn oo

5

162 TEACH YOURSELF

v

c

return 0;

1. Write a program that creates a string table containing the
English words for the numbers 0 through 9. Using this table,
allow the user to enter a digit (as a character) and then have
your program display the word equivalent. (Hint: to obtain an
index into the table, subtract "0’ from the character entered.)

Skills Check

At this point you should be able to perform these exercises and
answer these questions:

1
2,

What is an array?
Given the array

int count([10];

will this statement generate an error message?

for(i=0; i<20; i++) count[i] = i;

In statistics, the mode of a group of numbers is the one that
occurs the most often. For example, given the list 1, 2, 3, 6, 4, 7,
5,4, 6, 9, 4, the mode is 4, because it occurs three times. Write a
programa that allows the user to enter a list of 20 numbers and
then finds and displays the mode.

. Show how to initialize an integer array called items with the

values 1 through 10,

Write a program that repeatedly reads strings from the keyboard
until the user enters quit.

Write a program that acts like an electronic dictionary. If the
user enters a word in the dictionary, the program displays its

Exploring Arrays and Strings | 63
55 BUILD ARRAYS OF STRINGS ¥

meaning. Use a three-dimensional character array to hold the
words and their meanings.

Cumulative
Skills Check

This section checks how well you have integrated the material in
this chapter with that from earlier chapters.

1. Write a program that inputs strings from the user. If the string is
less than 80 characters long, pad it with periods. Print out the
string to verify that you have correctly lengthéned the string.

2. Write a program that inputs a string and then encodes it by
taking the characters from each end, starting with the left side
and alternating, stopping when the middle of the string has been
reached. For example, the string "Hi there" would be "Heir eth".

3. Write a program that counts the number of spaces, commas, and
periods in a string. Use a switch to categorize the characters.

4. What is wrong with this fragment?

char str[80];
str = getchar();

5. Write a program that plays a computerized version of Hangman.
In the game of Hangman, you are shown the length of a magic
word (using hyphens) and you try to guess what the word is by
entering letters. Each time you enter a letter, the magic word is
checked to see if it contains that letter. If it does, that letter is
shown. Keep a count on the number of letters entered to
complete the word. For the sake of simplicity, a player wins
when the magic word is entirely filled by characters using 15 or
fewer guesses. For this exercise make the magic word
“concatenation.”

QeOO@®

Using Pointers

chapter objectives

6.1 Understand pointer basics

6.2 Leam restrictions to pointer expressions
6.3 Use pointers with arrays

6.4 Use pointers to string constants

6.5 Create arrays of pointers

6.6 Become acquainted with multiple indirection

6.7 Use pointers as parameters

165
v

166 TEACH YOURSELF

H IS chapter covers one of C's most important and sometimes

most troublesome features: the pointer. A pointer is basically

the address of an object. One reason that pointers are so

important is that much of the power of the C language is

derived from the unique way in which they are implemented.
You will learn about the special pointer operators, pointer arithmetic, i
and how arrays and pointers are related. Also, you will be introduced
to using pointers as parameters to functions.

Skills Check

Before proceeding, you should be able to answer these questions
and perform these exercises:

1. Write a program that inputs 10 integers into an array. Then
have the program display the sum of the even numbers and the
sum of the odd numbers.

2. Write a program that simulates a log-on to a remote system. The
system can be accessed only if the user knows the password,
which in this case is "Tristan." Give the user three tries to enter
the correct password. If the user succeeds, simply print Log-on
Successful and exit. If the user fails after three attempts to
enter the correct password, display Access Denied‘énd exit.

3. What is wrong with this fragment?

char name[10] = *"Thomas Jefferson”;

4. What is a null string?
What does strepy() do? What does stremp() do?

o

6. Write a program that creates a string table consisting of names
and telephone numbers. Initialize the array with some names of
people you know and their phone numbers. Next, have the
program request a name and print the associated telephone
number. In other words, create a computerized telephone book.

USING POINTERS 187
61 UNDERSTAND POINTERBASICS ¥

l’NDEgS_TﬁIND POINTER BASICS
7

/A pq%«aﬂablﬂhaﬁ.holduhe memory address of another

Bﬁ\jjécitaxmnr example, if a variable called p contains the address of

anothier variable called q, then p is said to point to q. Therefore if

q is at location 100 in memory, then p would have the value 100.
To declare a pointer variable, use this general form:

type *var-name;

Here, type is the base type of the pointer. The base type specifies the

type of the object that the pointer can point to. Notice that the variable
name is preceded by an asterisk. This tells the computer that a pointer
variable is being created. For example, the following statement creates

a pointer to an integer:

int *p;

C contains two special pointer operators: * and &. The & operator
returns the address of the variable it precedes. The * operator returns
the value stored at the address that it precedes. (The * pointer
operator has no relationship to the multiplication operator, which uses
the same symbol.) For example, examine this short program:

#include <stdio.h>
int main(void)
{

int: *p, q;

g = 199; /* assign q 199 */

P &g; /* assign p the address of g */
printf("%d", *p); /* display g's value using pointer */

return 0;

}

This program prints 199 on the screen. Let's see why.

168 TEACH YOURSELF
¥ @

First, the line
int *p; q;

defines two variables: p. which is declared as an integer pointer, and
q, which is an integer. Next, q is assigned the value 199. In the next
line, p is assigned the address of q. You can verbalize the & operator as
"address of." Therefore, this line can be read as "assign p the address
of q.” Finally, the value is displayed using the * operator applied to p.
The * operator can be verbalized as "at address.” Therefore, the
printf() statement can be read as "print the value at address q’
which is 199.

«When a variable's value is referenced through a pointer, the process
is called indirection.

It is possible to use the * operator on the left side of an assignment
statement in order to assign a variable a new value given a pointer to
it. For example, this program assigns q a value indirectly using the
pointer p:

#include <stdio.h>

int main(void)
{
ink *p,. g

P = &g; /* get g's address */
p = 199; / assign g a value using a pointer */
printf("q’'s value is %d", q);

return 0;
}

In the two simple example programs just shown, there is no reason to
use a pointer. However, as you learn more about C, you will understand
why pointers are important. Pointers are used to support linked lists
and binary trees, for example. '

The base type of a pointer is very important. Although C allows any
type of pointer to point anywhere in memory, it is the base type that
determines how the object pointed to will be treated. To understand
the importance of this, consider the following fragment:

int q; USING POINTERS 169
double *fp; 61 UNDERSTAND POINTER gasics ¥

fp = &q;

/* what does this line do? */
*fp = 100.23;

Although not syntactically incorrect, this fragment is wrong. The
pointer fp is assigned the address of an integer. This address is then
used on the left side of an assignment statement to assign a floating-
point value. However, ints are usually shorter than doubles, and this
assignment statement causes memory adjacent to q to be overwritten.
For example, in an environment in which integers are 2 bytes and
doubles are 8 bytes, the assignment statement uses the 2 bytes
allocated to q as well as 6 adjacent bytes, thus causing an error.

In general, the C compiler uses the base type to determine how
many bytes are in the object pointed to by the pointer. This is how C
knows how many bytes to copy when an indirect assignment is made,
or how many bytes to compare if an indirect comparison is made.
Therefore, it is very important that you always use the proper base
type for a pointer. Except in special cases, never use a pointer of one
type to point to an object of a different type.

If you attempt to use a pointer before it has been assigned the
address of a variable, your program will probably crash. Remember,
declaring a pointer variable simply creates a variable capable of
holding a memory address. It does not give it any meaningful initial
value. This is why the following fragment is incorrect. ’

int main(veoid)
{

int *p;

p = 10; / incorrect - p is not pointing to
anything */

As the comment notes, the pointer P is not pointing to any known
object. Hence, trying to indirectly assign a value using p is
meaningless and dangerous.

As pointers are defined in C, a pointer that contains a null value
(zero) is assumed to be unused and pointing at nothing. In C, a null is,
by convention, assumed to be an invalid memory address. However,

170 TEACH YOURSELF
Y ¢

the compiler will still let you use a null pointer, usually with
disastrous results.

1. To graphically illustrate how indirection works, assume these
declarations:

int *p, g;

Further assume that q is located at memory address 102 and
that p is right before it, at location 100. After this statement
P = &qg:

the pointer p contains the value 102. Therefore, after this
assignment, memory looks like this:

Location Contents
100 102 —
p points to q
102 unknown -
After the statement
*p = 1000;
executes, memory looks like this:
Location Contents
100 , 102 —
p points to q
102 1000 —

Remember, the value of p has nothing to do with the value of q.
It simply holds q's address, to which the indirection operator
may be appligd.

bcanlosollontl l &
61 UNDERSTAND POINTER BASICS ¥

2. To illustrate why you must make sure that the base type of a
pointer is the same as the object it points to, try this incorrect
but benign program. (Some compilers may generate a warning
message when you compile it, but none will issue an actual
error message and stop compilation.)

/* This program is wrong, but harmless. */
#include <stdio.h>

int main(void)
{
int *p:
double g, temp;

temp = 1234.34;

p = &temp; /* attempt to assign g a value using */
q = *p; /* indirection through an integer pointer */

printf("%£f", q); /* this will not print 1234.34 */

return 0;

)

Even though p points to temp, which does, indeed, hold the
value 1234.34, the assignment

q = *p;

fails to copy the number because only 2 bytes (assuming 2-byte
integers) will be transferred. Since p is an integer pointer, it
cannot be used to transfer an 8-byte quantity (assuming 8-byte
doubles).

1. What is a pointer?
2. What are the pointer operators and what are their effects?

172 TEACH YOURSELF
Y ¢

3. Why is the base type of a pointer important?

4. Write a program with a for loop that counts from 0 to 9,
displaying the numbers on the screen. Print the numbers
using a pointer.

EARN RESTRICTIONS TO POINTER
EXPRESSIONS

In general, pointers may be used like other variables. However, you
need to understand a few rules and restrictions.

In addition to the * and & operators, there are only four other
operators that may be applied to pointer variables: the arithmetic
operators +, ++, -, and - -. Further, you may add or subtract only
integer quantities. You cannot, for example, add a floating-point
number to a pointer.

Pointer arithmetic differs from "normal” arithmetic in one very
important way: it is performed relative to the base type of the pointer.
Each time a pointer is incremented, it will point to the next item, as
defined by its base type, beyond the one currently pointed to. For
example, assume that an integer pointer called p contains the address
200. After the statement

p++; -

executes, p will have the value 202, assuming integers are two bytes
long. By the same token, if p had been a float pointer (assuming
4-byte floats), then the resultant value contained in p would have
been 204.)

The only pointer arithmetic that appears as "normal” occurs when
char pointers are used. Because characters are one byte long, an
increment increases the pointer's value by one, and a decrement
decreases its value by one.

You may add or subtract any integer quantity to or from a pointer.
For example, the following is a valid fragment:

USING POINTERS 173

int *p >
62 LEARN RESTRICTIONS TO POINTER EXPRESSIONS

P =p + 200;:

This statement causes p to point to the 200th integer past the one to
which p was previously pointing.

Aside from addition and subtraction of an integer, you may not
perform any other type of arithmetic operations—you may not
multiply, divide, or take the modulus of a pointer. However, you may
subtract one pointer from another in order to find the number of
elements separating them.

It is possible to apply the increment and decrement operators to
either the pointer itself or the object to which it points. However, you
must be careful when attempting to modify the object pointed to by a
pointer. For example, assume that p points to an integer that contains
the value 1. What do you think the following statement will do?

*Dt+;

Contrary to what you might think, this statement first increments P
and then obtains the value at the new location. To increment what is
pointed to by a pointer, you must use a form like this-

(*p) ++;

The parentheses cause'the value pointed to by p to be incremented.

You may compare two pointers using the relational operators.
However, pointer comparisons make sense only if the pointers relate
to each other—if they both point to the same object, for example.
(Soon you will see an example of pointer comparisons.) You may also
compare a pointer to zero to see if it is a null pointer.

At this point you might be wondering what use there is for pointer
arithmetic. You will shortly see, however, that it is one of the most
valuable components of the C language.

174 TEACH YOURSELF
v ~

1. You can use printf() to display the memory address contained
in a pointer by using the %p format specifier. We can use this
printf() capability to illustrate several aspects of pointer
arithmetic. The following program, for example, shows how all
pointer arithmetic is relative to the base type of the pointer.

#include <stdio.h>

int main(void)

{
char *cp. ch;
int *ip, i;
float *fp. f:
double *dp, d;

cp = &ch;
ip = &i;
fp = &f:
dp = &d;

/* print the current values */
printf("%p %p $p %p\n", <p, ip, fp, dp);

/* now increment them by one 3
CcCp++t;
ip++;
fp++;
dp++;

/* print their new values */
printf("%p %p %p ¥p\n", cp. ip, fp., dp);

return 0;

}

Although the values contained in the pointer variables in this
program will vary widely between compilers and even between
versions of the same compiler, you will see that the address
pointed to by ch will be incremented by one byte. The others
will be incremented by the number of bytes in their base types.
For example, in a 16-bit environment this will typically be 2 for
ints, 4 for floats, and 8 for doukles.

USING POINTERS |75
62 LEARN RESTRICTIONS TO POINTER EXPRESSIONS ¥

2. The following program illustrates the need for parentheses
when you want to increment the object pointed to by a pointer
instead of the pointer itself.

#include <stdio.h>

int main(void)

{

int *p, q;
P = &Qq;
q=1;

printf(*sp ", p):

p++; / this will not increment q */
printf("%d %p", 4, p);

return 0;

)

After this program has executed, q still has the value 1,-but p

has been incremented. However, if the program is written
like this:

#include <stdio.h>

int main(void)
{

int *p, q:
p = &qQ;
q=1;

printf("$p ", p);

(*p)++; /* now q is incremented and p is unchanged *
printf("%d %p*, q. p);

return 0;

}

q is incremented to 2 and p is unchanged.

176 TEACH YOURSELF
Y e

1. What is wrong with this fragment?

int *p. i;

]
4l
o

p
pP=p*8;

2. Can you add a floating-point number to a pointer?

3. Assume that p is a float pointer that currently points to location
100 and that floats are 4 bytes long. What is the value of p after
this fragment has executed?
p=p+2;

i

SE POINTERS WITH ARRAY_S

In C, pointers and arrays are closely related. In fact, they are often
interchangeable. It is this relationship between the two that makes
their implementation both unique and powerful.

When you use an array name without an index, you are generating
a pointer to the start of the array. This is why no indexes are used -
when you read a string using gets(), for example. What is being
passed to gets() is not an array, but a pointer. In fact, you cannot
pass an array to a function in C; you may only pass a pointer to the
array. This important point was.not mentioned in the preceding
chapter on arrays because you had not yet learned about pointers.
However, this fact is crucial to understanding the C language. The
gets() function uses the pointer to load the array it points to with
the characters you enter at the keyboard. You will see how this
is done later.

Since an array name without an index is a pointer to the start of
the array, it stands to reason that you can assign that value to another
pointer and access the array using pointer arithmetic. And, in fact, this
is exactly what you can do. Consider this program:

USING POINTERS 177
63 USE POINTERS WITH ARRAYS ¥

#;ne;ggp <stdio.h:

int main(void)

{
int af10] = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};
int *p;

p = a; /* assign p the address of start of a */

/* this prints a’'s first, second and third elements */
printf("%d %d %d\n", *p, *(p+l), *(p+2)):

/* this does the same thing using a */
printf("%d %d %d", a(0], alll, a(2]});

return 0;

)

Here, both printf() statements display the same thing. The
parentheses in expressions such as *(p + 2) are necessary because
the * has a higher precedence than the + operator.

Now you should be able to fully understand why pointer arithmetic
is done relative to the base type—it allows arrays and pointers to relate
to each other.

To use a pointer to access multidimensional arrays, you must
manually do what the compiler does automatically. For example, in
this array:

float balance(10](5];:

each row is five elements long. Therefore, to access balance[3][1]
using a pointer you must use a fragment like this:

float *p;

p = (float *) balance;
*(p + (3*5) + 1)

To reach the desired element, you must multiply the row number by
the number of elements in the row and then add the number of the
element within the row. Generally, with multidimensional arrays it is
easier to use array indexing rather than pointer arithmetic.

178 TEACH YOURSELF
v C

In the preceding example, the cast of balance to float * was
necessary. Since the array is being indexed manually, the pointer
arithmetic must be relative to a float pointer. However, the type of
pointer generated by balance is to a two-dimensional array of floats
Thus, there is need for the cast.

Pointers and arrays are linked by more than the fact that by using
pointer arithmetic you can access array elements. You might be
surprised to'learn that you can index a pointer as if it were an array.
The following program, for example, is perfectly valid:

#iriclude <stdio.h>

int main(void)

{ .
char str[] = "Pointers are fun";
char *p;
ine i;

B = stk

/* loop until null is found */
for(i=0; p(i]; i++)
"printf("%c*, pli]);

return 0;

}

Keep one point firmly in mind: you should index a pointer only when
that pointer points to an array. While the following fragment is
syntactically correct, it is wrong; if you tried to execute it, you would
probably crash your computer.

char *p, ch;
int i;

p = &ch;
for(i=0; i<10; i++) pli) = 'A’+i; /* wrong */

Since ch is not an array, it cannot be meaningfully indexed.
Although you can index a pointer as if it were an array, you will

stldom want to do this because pointer arithmetic is usually more

~onvenient. Also, in some cases a C compiler can generate faster

USING POINTERS 179
63 USEPOINTERS WITH ARRAYS ¥

executable code for an expression involving pointers than for a
comparable expression using arrays.

Because an array name without an index is a pointer to the start of
the array, you can, if you choose, use pointer arithmetic rather than
array indexing to access elements of the array. For example, this
program is perfectly valid and prints ¢ on the screen:

#include <stdio.h>

int main(void) g
(
char str(80];

*(str+3) = 'c’';
printf("%c”, * (str+3));

return 0;

You cannot, however, modify the value of the pointer generated by
using an array name. For example, assuming the previous program,
this is an invalid statement:

str++;

The pointer that is generated by str must be thought of as a constant
that always points to the start of the array. Therefore, it is invalid to
modify it and the compiler will report an error.

| EXAMPLES |

1. Two of C's library functions, toupper() and tolower(), are
called using a character argument. In the case of toupper(),
if the character is a lowercase letter, the uppercase equivalent
is returned; otherwise the character is returned unchanged.
For tolower(), if the character is an uppercase letter, the
lowercase equivalent is returned; otherwise the character is
returned unchanged. These functions use the header file
CTYPE.H. The following program requests a string from the

180 TEACH YOURSELF
Y ¢

user and then prints the string, first in uppercase letters and
then in lowercase. This version uses array indexing to access
the characters in the string so they can be converted into the
appropriate case.

#include <ctype.h>
#include <stdio.h>

int main(void)
{

.
-

str[80];

p:intf("Enter a string: *");
gets(str);

for(i=0; strl[i]; i++)
str[i] = toupper (str[il]);

printf("%s\n", str); /* uppercase string */

for(i=0; str[i]; i++)
str(i] = tolower (str(il};

printf("%s\n", str); /* lowercase string */

return 0;

}

The same program is shown below, only this time, a pointer is
used to access the string. This second approach is the way you
would see this program written by professional C programmers
because incrementing a pointer is often faster than indexing
an array.

#include <ctype.h>

#include <stdio.h>

int main(void)
{
char str[80], *p;

printf ("Enter a string: ");

USING POINTERS 181
63 USE POINTERS WITH ARRAYS Y

gets(str);

p = str;

while(*p). {
*p = toupper{*p);
D++;

printf (*%s\n", str); /* uppercase string */

p = str; /* reset p */

while(*p) {
*p = tolower (*p);
0% i g

printf ("%s\n", str); /* lowercase string */

return 0;
}

Before leaving this example, a small digression is in order.
The routine

while(*p) {
*p = toupper(*p);
bPt+;

}

will generally be written by experienced programmers like this:

while(*p)
*p++ = toupper(*p):

Because the ++ follows the p, the value pointed to by p is first
modified and then p is incremented to point to the next
element. Since this is the way C code is often written, this book
will use the more compact form from time to time when it
seems appropriate.

Remember that although most of the examples have been
incrementing pointers, you can decrement a pointer as well. For
example, the following program uses a pointer to copy the
contents of one string into znother in reversed order.

182 TEACH YOURSELF

#include <stdio.h>
#include <string.h>

int main(void)

{
char strl[] = "Pointers are fun to use";

char str2([80], *pl, *p2;

/* make p point to end of strl */
pl = strl + strlen(strl) - 1;

p2 = str2;

while(pl >= strl)
*p2++ = *pl--;

/* null terminate str2 */
*p2 = '\0‘;

printf("%s %s", strl, str2);

return 0;

}

This program works by setting p1 to point to the end of strl,
and p2 to the start of str2. It then copies the contents of strl
into str2 in reverse order. Notice the pointer comparison in the
while loop. It is used to stop the copying process when the start
of strl is reached.

Also, notice the use of the compacted forms *p2++ and
*pl--. The loop is the equivalent of this one:

while(pl >= strl)
*p2 = *pl;
o8 gl
p2++;

}

Again, it is important for you to become familiar with the
compact form of these types of pointer operations.

USING POINTERS 183
64 USEPOINTERS TO STRING CONSTANTS ¥

1. Is this fragment correct?

int count[10];

count = count + 2;

2. What value does this fragment display?

int templs] = (10, 19, 23, 8. 9:
int *p;

p = temp;
printf("%d", *(p+3)):

3. Write a program that inputs a string. Have the program look for
the first space. If it finds one, print the remainder of the string.

S TO STRING CONSTANTS

_LLSE

As you know, C allows string constants enclosed between double
quotes to be used in a program. When the compiler encounters such a
string, it stores it in the program'’s string table and gencrates a pointer
to the string. For this reason, the following program is correct and
prints one two three on the screen.

#include <stdio.h>
int main(void)
{

char *p;

p = "one two three®;

printf(p); .

return 0;

T84 TEACH YOURSELF
¥ ¢

Let's see how this program works. First, p is declared as a character
pointer. This means that it may point to an array of characters. When
the compiler compiles the line

P = "one two three";

it stores the string in the program’s string table and assigns to p the

address of the string in the table. Therefore, when p is used in the

printf() statement, one two three is displayed on the screen.
This program can be written more efficiently, as shown here:

#include <gtdio.h>

in(void)
char *p = "one two three";
printf(p);

return 0;

Here, p is initialized to point to the-tri

1. This program continues to read strings until you enter stop:

#include <stdio.h>
#include <string.h>

int main(void)

{
char *p = “stop":
char str(80)];

do {

printf ("Enter a string: ");
gets(str);

} while(stremp(p, str));

USING POINTERS] 85
il
return 0; 64 USE POINTERS TO STRING CONSTANTS = ¥
}

2. Using pointers to string constants can be very helpful when
those constants are quite long. For example, suppose that yow
had a program that at various times would prompt the user to
insert a diskette into drive A. To save yourself some typing, vou
might elect to initialize a pointer to the string and then simply
use the pointer when the message needed to be displayed; for
example: '

char *InsDisk = "Insert disk into drive A, then press ENTER";

printf (InsDisk) ;

printf (InsDisk);

Another advantage to this approach is that to change the
prompt, you only need to change it once, and all references
to it will reflect the change.

1. Write a program that creates three character pointers and
initialize them so that one points to the string "one”, the second
to the string "two", and the third to the string "three". Next, have
the program print all six permutations of these three strings.
(For example, one permutation is "one two three", another is
"two one three".)

186 TEACH YOURSELF
b4 e

t:REATE ARRAYS OF POINTERS

Pointers may be arrayed like any other data type. For example, the
following statement declares an integer pointer array that has 20
elements:

int *pa[20];

The address of an integer variable called myvar is assigned to the
ninth element of the array as follows:

palB] = &myvar;

Because pa is an array of pointers, the only values that the array
elements may hold are the addresses of integer variables. To assign
the integer pointed to by the third element of pa the value 100, use
the statement:

*pal2} = 100;

| EXAMPLES |

1. Probably the single most COmMMmoIn use of arrays of pointers is to
create string tables in much the same way that unsized arrays
were used in the previous chapter. For example, this function
displays an error message based on the value of its parameter
err_num.

char *pl} = {
"Input exceeds field width",
*out of range”.,)
"printer not turned on”,
"pPaper out",
“pisk full",
*"Disk write error"”

}:

void error (int err_num)

{
printf(p[err_num]):

USING POINTERS 187
bashis bt
65 CREATE ARRAYS OF POINTERS

2. The following program uses a two-dimensional array of pointers

to create a string table that links apple varieties with their
colors. To use the program, enter the name of the apple, and the
program will tell you its colar.

#include <stdio.h>
#include <string.h>

char *p[]([2] = {
"Red Delicious", *"red",
"Golden Delicious", "yellow",
"Winesap", "red",
"Gala*, "reddish orange-,
"Lodi", "green",
"Mutsu", "yellow",
"“Cortland", "red",
"Jonathan", "red-",
", "" /* terminate the table with null strings */
Y

int main(void)
{
int i;
char apple[80]:;

printf ("Enter name of apple: *);
gets{apple) ;

for(i=0; *pl[i][0]; i++) {
if (!stremp(apple, pl[i](0]1))
printf("%s is %s\n", apple, p[i][1]);

return 0;

}

Look carefully at the condition controlling the for loop. The
expression *p[i] [0] gets the value of the first byte of the ith
string. Since the list is terminated by null strings, this value will
be zero (false) when the end of the table is reached. In all other
cases it will be nonzero, and the loop will repeat.

188 TEACH YOURSELF
¥ ¢

1. In this exercise, you will create an "executive decision aid.” This
is a program that answers yes, no, or maybe to a guestion
entered at the keyboard. To create this program use an array
of character pointers and initialize them to point to these three
strings: "Yes", "No", and "Maybe. Rephrase the question”. Next,
input the user’s question and find the length of the string. Next,
use this formula to compute an index into the pointer array:

index = length % 3

ECOME ACQUAINTED WITH
MULTIPLE INDIRECTION

It is possible in C to have a pointer point to another pointer. This is
Talled mulfiple indirection (see Figure 6-1). When a pointer points to
another pointer, the first pointer contains the address of the second
pointer, which points to the location containing the object.

To declare a pointer to a pointer, an additional asterisk is placed in
front of the pointer’s name. For example, this declaration tells the
compiler that mp is a pointer to a character pointer:

char **mp;

It is important to understand that mp is not a pointer to a character,
but rather a pointer to a character pointer.

Pointer to Pointer Variable
pointer

USING POINTERS 189
—_—
66 BECOME ACQUAINTED WITH MULTIPLE INDIRECTION ¥

Accessing the target value indirectly pointed to by a pointer to a
pointer requires that the asterisk operator be applied twice. For
example,

char **mp, *p, ch;

p = &ch; /* get address of ch */

mp = &p; /* get address of p */

**mp = 'A’; /* assign ch the value A using multiple
indirection */

As the comments suggest, ch is assigned a value indirectly using two
pointers.

Multiple indirection is not limited to merely "a pointer to a pointer.”
You can apply the * as often as needed. However, multiple indirection
beyond a pointer to a pointer is very difficult to follow and is not
recommended. '

You may not see the need for multiple indirection at this time, but
as you learn more about C, you will see some examples in which it is
very valuable.

1. The following program assigns val a value using multiple
indirection. It displays the value first directly, then througp
the use of multiple indirection.

#include <stdio.h>
int main(void)
{
float *fp, **mfp, val;

fp = &val;
mfp = &fp;

**mfp = 123.903;
printf ("%f $f", wval, *4+mfp) ;

return 0;

190 TEACH YOURSELF
¥ o

2. This program shows how you can input a string using gets() by
using a pointer to a pointer to the string.

#include <stdio.h>

int main(veoid)

(
char *p, **mp, str[80];

p = str;
mp = &p;

printf ("Enter your name: =) 7
gets (*mp);
printf ("Hi %s", *mp) ;

return 0;

)

Notice that when mp is used as an argument to both gets()
and printf(), only one * is used. This is because both of these
functions require a pointer to a string for their operation.
Remember, * *mp is a pointer to p. However, p is a pointer to
the string str. Therefore, *mpis a pointer to str. If you are a
little confused, don't worry. Over time, you will develop a
clearer concept of pointers to pointers.

1. To help you understand multiple indirection better, write a
program that assigns an integer a value using a pointer to a
pointer. Before the program ends, display the addresses of the
integer variable, the pointer, and the pointer to the pointer.
(Remember, use %p to display a pointer value.)

USING POINTERS 197
67 USE POINTERS AS PARAMETERS ¥

"SE POINTERS AS PARAMETERS

Pointers may be passed to functions. For example, when you call a
function like strlen() with the name of a string, you are actually
passing a pointer to a function. When you pass a pointer to a function,
the function must be declared as receiving a pointer of the same type.
In the case of strlen(), this is a character pointer. A complete
discussion of using pointers as parameters is presented in the next
chapter. However, some basic concepts are discussed here.

When you pass a pointer to a function, the code inside that function
has access to the variable pointed to by the parameter. This means
that the function can change the variable used to call the function.
This is why functions like strcpy(), for example, can work. Because
it is passed a pointer, the function is able to modify the array that
receives the string, :

Now you can understand why you need to precede a variable's
name with an & when using scanf{(). In order for scanf() to modify
the value of one of its arguments, it must be passed a pointer to that
argument,

1. Another of C’s standard library functions is called puts(); it
writes its string argunfent to the screen followed by a newline.
The program that follows creates its own version of puts()
called myputs().

#include <stdio.h>
void myputs (char *p);
int main(void)

{
myputs ("this is a test");

192 TEACH YOURSELF
—
¥ &

return 0;
}

void myputs(char *p)
{
while(*p) { /* loop as long as p does not point to the
null that terminates the string */
printf(*%c", *pP);
pt+; /* go to next character */
)
printf("\n");
}

This program illustrates a very important point that was
mentioned earlier in this chapter. When the compiler
encounters a string constant, it places it into the program’s
string table and generates a pointer to it. Thérefore, the
myputs() function is actually called with a character pointer,
and the parameter p must be declared as a character pointer in
order to receive it.

2. The following program shows one way to implement the
strcpy() function, called mystrepy()-

ginclude <stdio.h>
void mystrcpy(char *to, char *from);

int main(void)
(
char str(80];

mystrcpy (str, “this is a test");
printf(str);

return 0;

}

void mystrcpy (char *to, char *from)
{
while(*from) *to++ = *from++;
to = '\0’'; / null terminates the string */

USING POINTERS 193
—_— h
67 USE POINTERS AS PARAMETERS T

1. Write your own version of strcat() called mystrcat(), and
write a short program that demonstrates it.

2. Write a program that passes a pointer to an integer variable to a
function. Inside that function, assign the variable the value -1.
After the function has returned, demonstrate that the variable
does, indeed, contain -1 by printing its value.

Skillz Check

. At this point you should be able to perform these exercises and
answer these questions:

1. Show how to declare a pointer to a double.

2. Write a program that assigns a value to a variable indircctiy by
using a pointer to that variable.

3. Is this fragment correct? If not, why not?

int main(void)
{
char *p;

erintf ("Enter a string: ");
gets(p) ;

return 0;
}

4. How do pointers and arrays relate to each other?
5. Given this fragment:
char *p, str(80) = "this is a test";

p = str;

show two ways to access the 'i' in "this."

13

194 TEACH YOURSELF
¥ g

6. Assume that p is declared as a pointer to a double and contains
the address 100. Further, assume that doubles are 8 bytes long.
After p is incremented, what will its value be?

Cumulative
Skills Check

This section checks how well you have integrated the material in
this chapter with that from earlier chapters.

1. What is the adv'amagc of using pointers over array indexing?

2. Below is a program that counts the number of spaces in a string
entered by the user. Rewrite the program so that it uses pointer
arithmetic rather than array indexing.

#inc 1de <stdio.h>
int main(wvoid)
(

char str(80];
int i, spaces;

printf("Enter a string: ");
gets(str);

spaces = 0;
for (i=0; str(i); i++)
if(str[i]==" ') spaces++;

printf("Number of spaces: %d-", spaces) ;

return 0;
)

3. Rewrite the following array reference using pointer arithmetic.

; int count([100]([10];

count (44) [8] = 99;

A Closer ook
at Functions

7.2 Understand recursion

7.3 Take a closer look al parameters
7.4 Pass arguments 1o main()

7.5 Compare old-style to modern function
parameter declarations

QPOO®

196 TEACH YOURSELF

v

C

L4}

T the very foundation of C is the function. All action
statements must appear within one and an understanding
of its operation is crucial to successful C programming.
This chapter takes a close look at several important topics
related to functions.

Review

Skills Check

Before proceeding you should be able,to answer these questions and
perform these exercises: '

18

6.

What does this fragment do?
int i, *p;

p = &i;
*p o= 19:

What is generated when you use an array name without an
index?

Is this fragment correct? 1f it is correct, explain why it works.

char *p = "this is a string”;

. Write a short program that assigns a floating-point value to a

variable indirectly using a pointer to the variable.

Write your own version of strlen(), called mystrlen(), and
demonstrate it in a program.

is this fragment correct? If it is, what does the program display?

char stri[B8];

strcpy{str, "ABCDEFG");
printf ("%c*. *(str+2));

NDERSTAND FUNCTION PROTOTYPES

InChapter 1 you were briefly introduced to the function prototype.
Now it is time for you to understand precisely what a prototype does
and why it is important to C programming. Function prototypes were

A Closer Look at Functions § 97
71 UNDERSTAND FUNCTION PROTOTYPES ¥

not supported by the original version of C. They were added when C was
standardized in 1989. Many consider prototypes to be the single most
important addition made to the C language since its creation. Prototypes
are not technically necessary. However, for reasons that will become
self-evident, they should be used in all programs that you write.
@;.s;eneral form of a functicn prototype is shown hcre:J

lype function-name(type parameter-namel,
lype parameter-namez,

iype parameter-nameN);

A totype declares three attributes asscciated with a function:
y PO

Sl Its return type.
2. The number of its paramcters.

3. The type of its parametersv(/

Prototypes provide several benefits. They inform the compiler
about the return type of a function. They allow the compiler to find
and report illegal type conversions between the type of arguments
used to call a function and the type definition of its parameters.

{ Prototypes also enable the compiler to report when the number of
{arguments passed to a function is not the same as the number of
parameters declared by the function. Let's look at each of these.

When you call a function, the compiler needs to know the type of
data returned by that function so that it can generate the proper code
to handle that data. The reason for this is easy to understand: different
data types have different sizes. The code that handles an integer
return type will be different from thot which handles a double, for
example. If you use a function that is not prototyped, then the
compiler will simply assume that it is returning an integer. However,
it'it is actually returning some other type, an error will occur. If the
function is in the same file as the rest of your program, then the
compiler will catch this error. But if the function is in another file or a
library, then the error will go uncaught—and this will lead to trouble
when your program is execute:l.

In the absence of a function prototype, it is not syntactically wrong
to call a function with incompatible arguments or with more or less

198 TEACH YOURSELF
Y ¢

arguments than the function has parameters. Of course, doing cither
of these is obviously incorrect even though the compiler may accept
your program without complaint. The use of a function prototype
prevents these errors by enabling the compiler to find them. It is
important to understand, however, that not all kinds of type conversions
are illegal in a function call. In fact, C automatically converts most
types of arguments into the type of data specified by the parameter.
ISWM:}S are inherently wrong. For example, you
cannot convert an integer into a pointer. A function prototype allows
the compiler to catch and return this type of error,,

As mentioned, as important as prototypes are, they are not currently
required. Because of the need to maintain compatibility with older
code, all C compilers still support non-prototyped programs. Of course,
at some point in the future, this situation may change.

In early versions of C, before prototypes were invented, it was still
necessary to tell the compiler about the return type of a function
(unless it returned type int) for the reasons explained carlier. This
was done using a forerunner of the prototype, called a forward
declaration or a forward reference. A forward declaration is essentially a
truncated form of a prototype that declares only the return type of a
function—not the type and number of its parameters. Although
forward declarations are obsolete, they are still allowed for
compatibility with older code.

The following program demonstrates an old-style forward declaration,
It uscs it to inform the compiler of volume()'s return type.

#include <stdio.h>

double volume(); /* old-style forward declaration for
volume () */

int main(void)
{

double vol;

vol = volume(12.2, 5.67, 9.03);
printf ("Volume: %f*, vol);

return 0;

/* Compute the veclume of a cube. */

A Closer Look at Functions 199
71 UNDERSTAND FUNCTION PROTOTYPES v

double volume(double sl, double s2, double s3)

{
return sl * s2 * s3;

)

Since the old-style declaration docs not inform the compiler about any
of volume()'s parameters it is not a function prototype. Instead, it
simply states volume()'s rcturn type. The trouble is that the lack of a
full prototype will allow volume() to be called using an incorrect
type and/or number of arguments. For example, given the preceding
program, the following will not generate a compiler error message
even though it is wrong.

volume (120.2, 99.3); /* missing last arg */

Since the compiler has not been given information about volume()'s
parameters it won't catch the fact that this call is wrong,.

‘Although the old-style forward declaration is no ionger used in new
code, you will still find it quite frequently it older programs. If you
will be updating older programs, you should consider adding
prototypes to be your first job.

When function prototypes were added to C, two minor compatibility
problems between the old version of C and the ANSI version of C had
to be resolved. The first issue was how to handle the old-style forward
declaration, which does not usc a parameter list. To do so, the ANSI C
standard specifies that when a function declaration occurs without a
parameter list, nothing whatsocver is being said about the parameaters
to the function. It might have parameters, it might not. This allows
old-style declarations to coexist with prototypes. But it also leads to a
question: how do you prototype a function that takes no arguments?
For example, this function simply outputs a line of periods:

void line()
{
int i;

for(i=0; i<80; i++) printf(".");

) .

If you try to use the following as a prototype, it won't work because
the compiler will think that you are simply using the old-style
declaration method.

200 TEACH YOURSELF
Y ¢

void line();

The solution to this problem is through the use of the void
keyword. When a function has no parameters, its prototype uscs void
inside the parentheses. For example, here is line()'s proper
prototype:

void line(void);

This cxplicitly tells the compiler that the function has no parameters,
and any call to that function that has parameters is an error. You must
make sure to also use void when the function is defined. For example,
line() must look like this:

void line(void)

{

ink i

for(i=0; 1<80; i++) printf(".");
}

Since we have been using void to specify empty parameter lists since
Chapter 1, this mechanism is already familiar to you

The second issuc related to prototyping is the way it affects C's
automatic type promotions. Because of some features of the
environment in which C was developed, when a non-prototyped
function is called, all integral promotions take place (for example,
characters are converted to integers) and all floats are converted to
doubles. However, these type promotions seem to violate the purpose
of the prototype. The resolution to this problem is that when
prototype exists, the types specified in the prototvpe are maintained
and no type promotions will occur.

There is one other special case that relates to prototypes: variable
length argument lists. We won't be creating any functions in this book
that use a variable number of arguments because they require the use
of some advanced techniques, But it is possible to do so, and it is
sometimes quite useful. For example, both printf() and scanf()
accept a variable number of arguments. To specify a variable number
of arguments, use ... in the prototype. For example,

int myfunc(int a, ...);

A Closer Look at Functions 201
1 UNDERSTAND FUNCTION PROTOTYPES ¥

specifies a function that has one integer parameter and a variable
number of other parameters.

In C programming there has been a long-standing onfusion about
the usage of two terms: declaretion and defontion. A deciaration
specifies the type of an object. A definition causes storage for an ohject
to be created. As these terms relate (o functions, a prototype is a
declaration. The function, itself, which contains the body of the
function is a definition.

In C, it is also legal to fully define a function prior (o its first usc,
thus eliminating the need for a separate prototype. However, this
works only in very small programs. In real-world applications, this
option is not feasible. For all practical purpescs, function prototypes
must exist for all functions that your program will usce.

Remember that if a function does not return a value, then its return
type should be specified as void—both in its definition and in its
prototype.

Function prototypes enable you to write better, more reliable
programs because they help ensure that the tunctions in your
programs are being called with correct types and numbers of
arguments. Fully prototyped programs are the norm and represent the
current state of the art of C programming. Frankly, no professional C
programmer today would write programs without them. Also, future
versions of the ANSI C standard may mandate function prototypes and
C++ requires them now. Although prototypes are still technically
optional, their use isnearly universal. You should use them inall of the
programsyouwrite.

1. To see how a function prototype can catch an error, try
compiling this version of the volume program, which includes
volume()'s full prototype:

¢include <stdio.h>

/* this is volume()’s full prototype */
double volume (double sl1, double s2, double s3);

int main(void)
{

202 TEACH YOURSELF
Y ¢

double vol;

vol = volume(12.2, 5.67, 9.03, 10.2); /* error */
printf(“Vvolume: %f", vol);

return 0;

/* Compute the volume of a cube. */
double volume (double sl1, double s2, double s3)

{

return sl * s2 * s3;

}

As you will see, this program will not compile because the
compiler knows that volume() is declared as having only three
parameters, but the program is attempting to call it with four
parameters.

2. As explained, if a function is definéd before it is called, it does
not require a separate prototype. For example, the following
program is perfectly valid: ’

#include <stdio.h>

/* define getnum() prior to its first use */
flqat getnum(void) -
(

float x;

printf("Enter a number: ");
scanf ("%f", &x);
return x;

.

int main(void)
{
float i;

i = getnumi{);
printf ("%f-, i)

return 0;

A Closer Look at Functions 203
7.1 UNDERSTAND FUNCTION PROTOTYPES ¥

Since getnum() is defined before it is used, the compiler
knows what type of data it returns and that it has no
parameters. A separate prototype is not nceded. The reason that
you will seldom use this method is that large programs arc
typically spread across several files. Since you can't define a
function more than once, prototypes are the only way to inform
all files about a function. (Multi-file programs arc explained in
Chapter 11.)

. As you know, the standard library function sqrt() returns a
double value. You might be wondering how the compiler knows
this. The answer is that sqrt() is prototyped in its header file
MATH.H. To see the importance of using the header file, try
this program:

#include <stdio.h>

/* math.h is intentionally not included */

int main(void)
{

double answer;

answer = sqrt{(9.0);
printf("$f", answer);

return 0;

}

When you run this program, it displays something other than 3
because the compiler generates code that copies only two bytes
(assuming two-byte integers) into answer and not the 8 bytes
that typically comprise a double. If you include MATH.H, the
program will work correctly.

" In general, each of C’s standard library functions has its
prototype specified in a header file. For example, printf() and
scanf() have their prototypes in STDIO.H. This is one of the
reasons that it is important to include the appropriate header
file for cach library function you use.

. There is one situation that you will encounter quite frequently
that is, at first, unsettling. Some "character-hased” functions
have a return type of int rather than char. For example, the

204 TEACH YOURSELF
Y ¢

getchar() function's return type is int, not char. The reason
for this is found in the fact that C very cleanly handles the
conversion of characters to integers and integers back to
characters. There is no loss of information. For example, the
following program is perfectly valid:

#include <stdio.h>
int get_a_char({veid);

int main(veoid)
(
char ch;

ch = get_a_char();
printf("%c", chj;

return 0;

int get_a_char(void)
{

return ‘a’;
J

When get_a_char() returns, 1t elevates the character 'a’ to an
integer by adding a high-order byte (or bytes) containing zeros.
When this value is assigned to ch in main(), the high-order
byte (or bytes) is removed. One reason to declare functions hike
get_a_char() as returning an integer instead of a character is
to allow various error values to be returned that are
intentionally outside the range of a char.

% When a function returns a pointer, both the function and its
prototype must declare the same pointer return type. For
cxample, consider this short program:

#include <stdio.h>

int *init(int x);
int count;

int main(void)
{

A Closer Look at Functions 205
v

7.1 UNDERSTAND FUNCTION PROTOTYPES
int *p;
p = init(110); /* return pointer */
printf{“"count (through p) is %d", *p);

return 0;

int' *init(int x)
{

count = X;

return &count; /* return a pointer */

}

As you can see, the function init{) returns a pointer to the
global variable count. Notice the way that the return type for
init() is specified. This same general form is used for any sort
of pointer return type. Although this example is trivial,
functions that return pointers are quite valuable in many
programming situations. One other thing: if a function returns a
pointer, then it must make sure that the object being pointed to
does not go out-of-scope when the function returns. This means
that you must not return pointers to local variables.

3. The.main() function does not have (nor does it require) a
prototype. This allows you to define main() any way that is
supported by your compiler. This book uses

int main(void) {

because it is one of the most common forms. Another
frequently used form of main() is shown here:

void main(void) {

This form is used when no value is returned by main(). Later
in this chapter, you will see another form of main() that has
parameters. :

The reason main() does not have a prototype is to allow C
to be used in the widest variety of environments. Since the
precise conditions present at program start-up and what actions
must occur at program termination may differ widely from one

206 TEACH YOURSELF

e ——
v c

operating system to the next, C allows the acceptable forms of
main() to be determined by the compiler. However, nearly all
compilers will accept int main(void) and void main(void).

EXERCISES

. Write a program that creates a function, called avg(), that
reads ten floating-point numbers entered by the user and
returns their average. Use an old-style forward reference and

not a function prototype.

prototype.

3. Is the following program correct? Tf not, why not? If it is, can it

he made better?

#include <stdio.h>
double myfunc();

int main(void)

{
printf(*$f", myfunc(10.2));

return 0;

}

double myfunc (double num)
(
return num / 2.0;

}

. Show the prototype for a function called Purge() that has no
parameters and returns a pointer to a double.

section.

Rewrite the program from Exercise 1 so that it uses a function

On your own, experiment with the concepts presented in this

A Closer Look at Functions 207
72 UNDERSTAND RECURSION ¥

NDERSTAND RECURSION

@éfn?r;ion is the process by which something is defined in terms of
ltseifyhen applied to computer languages, recursion means that a
function can call itself. Not all computer languages support recursive
functions, but C does. A very simple example of recursion is shown in
this program: -

#include <stdio.h>
void recurse(int i);

int main(void)
{

recurse(0) ;

return 0;

void recurs#e(int 1i)
{
if(i<10) {
recurse(i+l); /* recursive call */
printf(*%d ", i);
}
)

This program prints
9876543210

on the screen. Let’s see why.

The recurse() function is first called with 0. This is recurse()'s
first activation. Since 0 is less than 10, _recurse() then calls itself with
the value of i (in thm) plus 1. This is the second activation of
rccurse(), andi equals 1. This causes recurse() to be called again
using the value 2. This process repeats until recurse() is called with
the value 10. This causes recurse() to return. Since it returns to the
point of its call, it will execute the printf() statement in its previous
activation, print 9, and return. This, then, returns to the point of its
call in the previous activation, which causes 8 to be displayed, The
process continues until all the calls return, and the program
terminates.

208 TEACH YOURSELF
szl
¥ &

It is important to understand that there are not multiple copies of a
recursive function. Instead, only one copy exists. when a function is
called, storage for its parameters and local data are allocated on the
stack. Thus, when a function is called recursively, the function begins
cxecuting with a new set of parameters and local variables, but the -
code that constitutes the function remains the same.

If you think about the preceding program, you will sce that
recursion is essentially a new type of program control mechanism.
This is why every recursive function you write will have a conditional
statement that controls whether the function will call itself again or
return. Without such a statement, a recursive function will simply run
wild, using up all the memory allocated to the stack and then crashing
the program.

Recursion is generally employed sparingly. However, it can be
quite useful in simplifying certain algorithms. For example, the
Quicksort sorting algorithm is difficult to implement without the
use of recursion. If you are new to programming in general, you
might find yourself uncomfortable with recursion. Don't worry; as
you become mare experienced, the use of recursive functions will
become more natural.

1. The recursive program described above can be altered to print
the numbers 0 through 9 on the screen. To accomplish this,
only the position of the printf() statement needs to be
changed, as shown here:

#include <stdio.h>
void recurse(int 1i);
int main(void)

{

recurse({0);

return 0;
) p

void recurse(int i)

A Closer Look at Functions 209
72 UNDERSTAND Recursion

if(i<10) {
printf("sd ", i):
recurse (i+l) ;
}
}

Because the call to printf() now precedes the recursive call to
recurse(), the numbers are printed in ascending order.

- The following program demonstrates how recursion can be used
to copy one string to another.

#include <stdio.h>
void rcopy(char *sl, char *s2);

int main(void)
{
char str([80);

rcopy (str, *"this is a test");
printf(str);

return 0;

/* Copy s2 to s1i using recursion. */
void rcopy(char *sl, char *s2)
{
if(*s2) { /* if not at end of s2 ¥/
*8l++ = *g244:
rcopy(sl, s2);
}
else *sl = *\Q~; s+ null terminate the string */

}

The program works by assigning the character currently pointed
to by 82 to the one pointed to by s1, and then incrementing both
pointers. These pointers are then used in a recursive call to
rcopy(), until 82 points to the null that terminates the string.
Although this program makes an interesting example of
recursion, no professional C programmer would actually code a
function like this for one simple reason: efficiency. It takes
more time to execute a function call than it does to execute a

14

970 TEACH YOURSELF
¥ &

loop. Therefore, tasks like this will almost always be coded
using an iterative approach.

3. It is possible to have a program in which two or more functions
are mutually recursive. Mutual recursion occurs when one
function calls another, which in turn calls the first. For example,
study this short program:

#include <stdio.h>

void f2(int b);
void fl(int a});

int main(void)
{
£1(30);

return 0;

}

void fl(int a)
{
if(a) f2(a-1);
printf(“sd ", a):
}

void f2(int b)
g
printf(".");
if(b) fl(b-1);
}

This program displays
.......... 0246810121416 182022242628 30

on the screen. Its output is caused by the way the two functions
f1() and f2() call each other. Each time f1() is called, it
checks to see if a is zero. If not, it calls £2() with a-1. The f2()
function first prints a period and then checks to see if b is zero.
If not, it calls f1() with b-1, and the process repeats.
Eventually, b is zero and the funttion calls start unraveling,
causing f1() to display the numbers 0 to 30 counting by twos.

A Closer Look st Functions 27 7
7.3 TAKEA CLOSER LOOK AT PARAMETERS ¥

EXERCISES

1. One of the best known examples of recursion is the recursive
version of a function that computes the factorial of a number.
The factorial of a number is obtained by multiplying the original
number by all integers less than it and greater than 1.
Therefore, 4 factorial is 4x3x2, or 24. Write a function, called
fact(), that uses recursion to compute the factorial of its
integer argument. Have it return the result. Also, demonstrate
its use in a program.

2. What is wrong with this recursive function?

void f(void)
{

int i;

printf(*in £() \n"*);

/* call £() 10 times */
for(i=0; i<10; i++) £();

}

3. Write a program that displays a string on the screen, one
character at a time, using a recursive function.

.

BEI JAKE A CLOSER LOOK AT PARAMETERS

For computer languages in general, a subroutine can be passed
arguments in one of two ways. The first is called call by value. This
method copies the value of an argument into the formal parameter of
the subroutine. Therefore, changes made to a parameter of the
subroutine have no effect on the argument used to call it. The second
way a subroutine can have arguments passed to it is through call by
reference. In this method, the address of an argument is copied into the
parameter. Inside the subroutine, the address is used to access the
actual argument. This means that changes made to the parameter will
affect the argument.

By default, C uses call by value to pass arguments. This means that
you cannot alter the arguments used in a call to a function. What

2712 TEACH YOURSELF
Y ¢

occurs to a parameter inside the function will have no effect on the
argument outside the function. However, as you saw in Chapter 6 , it
is possible to manually construct a call by reference by passing a
pointer to an argument. Since this causes the address of the argument
to be passed, it then is possible to change the value of the argument
outside the function.

The classic example of a call-by-reference function is swap(),
shown here. It exchanges the value of its two integer arguments.

(hinclude <stdio.h>

void swap(int *i, int *3j):
————
Sur<é

int main(void)

{
int numl, num2;

numl = 100;
num2 = BO0O;

printf(*numl: %d num2: %d\n", numl, num2);

U*$§wa95&numl. &numz2) ;

~ printf("numl: $d num2: %d\n*, numl, num2);

return 0;

}

/* Exchange the values pointed tc by two integer pointers. */
void swap(int *i, int *j)
{

int temp;

temp = *i;

*io= *j;

“*j = temp;
}

Since pointers to the two integers are passed to the function, the actual
values pointed to by the arguments are exchanged.

As you know, when an array is used as an argument to a function,
only the address of the array is passed, not a copy of the entire array,
which implies call-by-reference. This means that the parameter
declaration must be of a compatible pointer type. There are three

A Closer Look at Functions 213

7.3 TAKE A CLOSER LOOK AT PARAMETERS Y

ways to declare a parameter that is to receive a pointer to an array.
First, the parameter may be declared as an array of the same type and
size as that used to call the function. Second, it may be specified as an
unsized array. Finally, and most commonly, it may be specified as a
pointer to the base type of the array. The following program

demonstrates all three methods:

#include <stdio.h>

void fl(int num[5]), f£2(int num([]), f3(int *num);

int main(void)
{
int count(5] = {1, 2, 3, 4, 5};

fl(count);
f2 (count) ;
-£3 (count) ;

return 0;

/* parameter specified as array */
void fl(int num([5])
{

int i;

for(i=0; i<5; i++) printf("sd ", num(i]);
}

/* parameter specified as unsized array */
void f2(int num(]) '
{

int i;

for(i=0; i<5; i++) printf(*%d ", num(i]):;

/* parameter specified as pointer */
void f3(int *num)
{

ink i;

214& TEACH YOURSELF
T B

for (i=0; i<5; i++) printf("%d *, num[i]);
)

Even though the three methods of declaring a parameter that will
receive a pointer to an array look different, they all result in a pointer
parameter being created.

1. Some computer languages, such as BASIC, provide an input
function that allows you to specify a prompting message. C has
no counterpart for this type of function. However, you can
easily create one. The program shown here uses the function
prompt() to display a prompting message and then to read a
number entered by the uscr. -- ‘

#include <stdio.h>
void prompt (char *msg, int *num);

int main(void)

{

v ynk. A

'prompt("Enter a num: ", &1i);
printf ("Your number fae SAYy d);

return 0;
}

void prompt (char *msg, int *num)
{

printf (msg):

scanf ("%d", num);
}

Because the parameter num is already a pointer, you do not
need to precede it with an & in the call to scanf(). (In fact, it
would be an error to do s0.)

A Closer Look at Functions 2715
74 PASS ARGUMENTS TOmain() ¥

EXERCISES

G

1. Is this program correct? If not, why not?

#include <stdio.h>
myfunc(int num, int min, int max);

int main(void)
{
int i;

printf(*Enter a number between 1 and 10: ");
myfunc(&i, 1, 10);

return 0;

void myfunc(int num, int min, int max)
{
do {
scanf{“%d", num);
} while(*num<min || *num>max};

}

2. Write a program that creates an input function similar to
prompt() described earlier in this section. Have it input a
string rather than an integer.

3. Explain the difference between call by value and call by
reference.

BT PASS ARGUMENTS TO main()

Many programs allow command-line arguments to be specificd when
they are run. A command-line argument is the information that follows
the program'’s name on the command line of the operating system.
Command-line arguments are used to pass information into a program
For example, when you use a text editor, you probably specify the
name of the file ymi want to edit after the name of the text editor.

2716 TEACH YOURSELF
L

Assuming you usc a text editor called EDTEXT, then this line causes
the file TEST to be edited.

EDTEXT TEST

Here, TEST is a command-line argument.

Your C programs may also utilize command-line arguments. These
are passed to a C program through two arguments to the main()
tunction. The parameters are called arge and argv. As you probably
guessed, these parameters are optional and are not present when no
command-line arguments arc heing used. Let's look at arge and argv
more closely.

The arge parameter holds the number of arguments on the
command-line and is an integer. [t will always be at least 1 because the
name of the program qualifies as the first argument.

The argv parameter is an array of string pointers. The most common
method for declaring argv is shown here:

char *argvl(]:

The empty brackets indicate that it is an array of undetermined
length. All command-line arguments are passed to main() as strings.
To access an individual string, index argv. For example, argv[0]
points to the program'’s name and argv[1] points to the first argument.
This program displays all the command-line arguments that are
present when it is executed.

#include <stdio.h>

*int main(int argc, char *argvl(])
{
IintE i "

for(i=1; i<argc; i++) printf("%s ", argv[i]);

return 0;

C does not specify what constitutes a command-line argument,
because operating systems vary considerably on this point. However,
the most common convention is as follows: Each command-line
argument must'be separated by a space or a tab character. Commas,
semicolons, and the like are not considered separators. For example,

A Closer Look at Functions 2717
74 PASS ARGUMENTS TOmain() ¥

This is a test

is made up of four strings, but

this, that,and, another

is one string.

If you need to pass a command-line argument that does, in fact,
contain spaces, you must place it between quotes, as shown in this
example;

"this is a test"

The names of argv and argc are arbitrary—you can use any names
you like. However, arge and argv are traditional and have been used
since C's origin. It is a good idea to use these names so that anyone
reading your program can quickly identify them as the command-line
parameters,

One last point: the ANSI C standard only defines the arge and argv
parameters. However, your compiler may allow additional parameters
to main(). For example, some DOS or Windows compatible compilers
allow access to environmental information through a command-line
argument. Check your compiler’s user manual.

1. When you pass numeric data to a program, that data will be
received in its string form. Your program will need to convert
it into the proper internal format using one or another of C's
standard library functions. The most common conversion
functions are shown here, using their prototypes:

int atoi(char *str);
double atof (char *str);:

long atol (char *str);

These functions use the STDLIB.H header file. The atoi()
function returns the int equivalent of its string argument. The

218 TEACH YOURSELF

w

v

c

atof() returns the double equivalent of its string argument,
and the atol() returns the long equivalent of its string
argument. If you call one of these functions with a string that is
not a valid number, zero will be returned. The following program
demonstrates these functions. To use it, enter an integer, a long
integer, and a floating-point number on the command line. It
will then redisplay them on the screen.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv(])
{

int 1:

double d4;

long 1;

i = atoi(argv(1]);
atol (argv(2])); -
atof (argv(3]);

[=
1

printf("%d %14 %f-, i, 1, 4);

return 0;

}

. This program coverts ounces to pounds. To use it, specify the

number of ounces on the command line.

#include <stdio.h>
#include <stdlib.h>

int main{int argc, char *argv([])
{
double pounds;

pounds = atof(argv(l]) / 16.0;
printf ("%f pounds", pounds);

return 0;

}

. Although the examples up to this point haven't done so,

you should verify in real programs, that the right number of

A Closer Look st Functions 2719
74 PASS ARGUMENTS TOmain() ¥

command-line arguments have been supplied by the user. The
way to do this is to test the value of argc. For example, the
ounces-to-pounds program can be improved as shown here:

#include <stdio.h>
#include <stdlib.h>

int main({int argc, char *argv(])
(
double pounds;

if(argc!=2) {
printf ("Usage: CONVERT <ounces>\n") ;
printf ("Try Again®);

}

else (
pounds = atof(argv(1l]} / 16.0;
printf ("$f pounds”. pounds) ;

return 0;

}

This way the program will perform a conversion only if a
command-line argument is present, (Of course, you may
prompt the user for any missing information, if you choose.)

Generally, the preceding program will be written by a
professional C programmer like this:

#include <stdio.h>
#include <stdlib.h>

int main{int argc, char *argv(])
{
double pounds;

if (arge!=2) (
printf ("Usage: CONVERT <ounces>\n");
printf (“Try Again");
exit(l); /* stop the program */

pounds = atof(argv(l]) / 16.0;
printf("%f pounds", pounds};

220 TEACH YOURSELF
v [

return 0;

)

When some condition necessary for a program’s execution has
not been met, most C programmers call the standard library
function exit() to terminate the program. The exit() function
has this prototype:

void exit(int return-code);

and uses the STDLIB.H header file. When exit() terminates
the program, it returns the value of return-code to the operating
system. By convention, most operating systems use a return
code of zero to mean that a program has terminated normally,
Nonzero values indicate abnormal termination.

EXERCISES

1. Write a program that accepts two command-line arguments.
Have the program compare them and report which is
lexicographically greater than the other.,

2. Write a program that takes two numeric arguments and displays
their sum.

3. Expand the program in Exercise 2 so that it takes three
arguments. The first argument must be one of these words: add,
subtract, multiply, or divide. Based on the value of the first
argument, perform the requested operation on the remaining
two numeric arguments,

i

ECOMPARE OLD-STYLE TO MODERN
i “ FUNCTION PARAMETER DECLARATIONS

Early versions of C used a different parameter declaration method
than has been shown in this book. This original declaration method is

A Closer Look at Functions 227
7.5 COMPARE OLD-STYLE TO MODERN FUNCTION PARAMETER DECLARATIONS v

now called the old-style or classic form. The form used in this book is
the modern form. 1t was introduced when the ANSI C standard was
created. While the modern form should be used for all new programs, -
you will still find examples of old-style parameter declarations in older
programs and you need to be familiar with it.

The general form of the old-style parameter declaration is shown
here:

type function-name(parameterl, parameter2,.. parameterN).
lype parameterl,
lype parameter2;

.type parameterN;
{

function-code
}

Notice that the declaration is divided into two parts. Within the
parentheses, only the names of the parameters are specified. Outside
the parentheses, the types and names are specified. For example,
given the following modern declaration

float f(char ch, long size, double max)
(

}
the equivalent old-style declaration is

float f{ch, size, max)
char ch;)

long size;

double max;

{

222 TEACH YOURSELF
Y ¢

One other aspect of the old-style declaration is that you can specify
more than one parameter after the type name. For example, this is
perfectly valid:

myfunc(i, j, k)
it i, . X;
{

The ANSI C standard specifies that either the old-style or the
modern declaration form may be used. The reason for this is to
maintain compatibility with older C programs. (There are literally
millions of lines of C code still in existence that use the old-style
form.) So, if you see programs in books or magazines that use the
classic form, don't worry; your compiler will be able to compile
them. However for all new programs, you should definitely use the
modern form. o

EXAMPLE

1. This program uses the old declaration form:

#include <stdio.h>
int area(int 1, int w);

int main(void)

{
printf("area is %d", area(10, 13));
return 0;

int area(l, w)
int 1, w;
(

return 1 * w;

A Closer Look at Functions 223
75 COMPARE OLD-STVLE TO MODERN FUNCTION PARAMETER DECLARATIONS v

Notice that even though the old form of parameter declaration is
used to define the function, it is still possible to prototype the
function.

EXERCISES

1. Convert this program so that f_to_m() uses the old-style
declaration form.

#include <stdio.h>
double f_to_m{double f);

int main(void)
{ -
double feet;

printf("Enter feet: ");
scanf ("%1f", &feet);
printf ("Meters: %f*", f_to_m(feet));

return 0;

)

double f_to_m(double f)
(
return £ / 3.28;

Skills Check .

At this point you should be able to answer these questions and
perform these exercises:
1. How do you prototype a function that does not have parameters?
2. What i< a function prototype, and what are the benefits of it?

3. How do command-line arguments get passed to a C program?

224 TEACH YOURSELF
LA

4. Write a program that uses a recursive function to display the
letters of the alphabet.

5. Write a program that takes a string as a command-line
argument. Have it output the string in coded form. To code the
string, add 1 to each character.

6. What is the prototype for this function?

double myfunc(int x, int y, char ch)
{

}

7. Show how the function in Exercise 6 would be coded using the
old-style function declaration.
8. What does the exit() function do?

9. What does the atoi() function do? ™

Cumulative

Skills Check

This section checks how well you have integrated the material in
this chapter with that from earlier chapters.

1. Write a program that allows access only if the user enters the
correct password as a command-line parameter. If the user
enters the right word, print Access Permitted; otherwise print
Access Denied.

2. Create a function called string_up() that transforms the string
it is called with into uppercase characters. Demonstrate its use
in a program. (Hint, use the toupper() function to convert
lowercase characters into uppercase.)

A Closer Look at Functions 225
7.5 COMPARE OLD-STYLE TO MODERN FUNCTION PARAMETER pectaranions Y

3. Write a function called avg() that averages a list of floating-point
values. The function will have two arguments. The first is a
pointer to the array containing the numbers; the second is an
integer value, which specifies the size of the array. Demonstrate
its use in a program.

4. Explain how pointers allow C to construct a call-by-reference
parameter.

_-/
"
- /
> -
.‘/f'
.//
e
//
-
Yo
chapter objectives
BT Learn another preprocessor directive
8.2 Examine character and string input and
output
8.3 Examine some non-standard console
functions
8.4 Take a closer look at gets() and puts().
8.5 Master printf()
8.6 Master scanf()
227

2928 TEACH YOURSELF
v

r

N this chapter you will learn about C's console I/
These are the functions that read or write inform
the console. You have alread

/O functions.
ation to and from

y been using some of these functions.

Here we will look at them in detail. This chapter begins with a

short but necessary digression that introd

uces another of C's

preprocessor directives: #define.

Skills Check

Before proceeding, you should be able to answer these questions
and perform these exercises:

1.

What must you do to enable the compiler to check that a
function is being called correctly?

2. What are the principal advantages of using function prototypes?

Write a program that uses a function called hypot() that
returns the length of the hypotenuse of a right triangle when
‘passed the length of the two opposing sides. Have the function
return a double value. The type of the parameters must be
double as well. Demonstrate.the function in a program. (The
Pythagorean theorem states that the®um of the squares of the
two opposing sides equals the square,of the hypotenuse.)

. What return type should you use for a function that returns

no value?

. Write a recursive function‘called rstrlen() that uses recursion

to compute the length of a string. Demondtrate it in % program.

Write a program that reports how many command line
arguments it ha¢ been called with. Also, have it display the
coritents of the last one.

How is this declaration coded using the old-style function
declaration form?

.void func(int a, char ch, double d)

CONSOLEVO 229
871 LEARN ANOTHER PREPROCESSOR DIRECTIVE ¥

Wu ANOTHER PREPROCESSOR
DIRECTIVE

As you recall, the C preprocessor performs various manipulations on
the source code of your program before it is actually compiled. A
preprocessor directive is simply an instruction to the preprocessor. Up
to this point, you have learned about and have used one preprocessor
directive, #include. Before proceeding, you need to learn about
another: #define.

gelel) Lo .

The #define directive tells the preprocessor to perform a text
substitution throughout your entire program. That is, it causes one
sequence of characters to be replaced by another. This process is
generally referred to as macro substitution. The general form of the
#define statement i shown here:

. #define macro-name character-sequence

Notice that this line does not end in a semicolon. Each time the
macro-name is encountered in the program, the associated
character-sequence is substituted for it. For example, consider
this program:

#include <stdio.h>
tdefine MAX 100

int main(void)
{
ink 1i;

for (i=0; i<MAX; i++) printf("%d ", 1}

return 0;
}

When the identifier MAX is encountered by the preprocessor, 100 is
automatically substituted. Thus, the for loop will actually look like this
to the compiler:

for (i=0; i<100; i++) printf("sd ", i);

Keep one thing clearly in mind: At the time of the substitution, 100 is
simply a string of characters composed of a1 and two 0s. The

230 TEACH YOURSELF
Y. ¢

.
preprocessor does not convert a numeric string into its internal binary
format. This is left to the compiler.

The macro name can be any valid C identifier. Thus, macro names
must tollow the same naming rules as do variahles. Although macro
names can appear in cither upper- or lowercase letters, most
programmers have adopted the convention of using uppercasc for
macro names. This makes it easy for anyone reading your program to
know when a macro name is being used.

There must be one or more spaces between the macro fame and
the character sequence. The character sequence can contain any type
of character, including spaces. It is terminated by the end of the line.

Preprocessor directives in general and #define in particular are not
affected by C's code blocks. That is, whether you define a macro name
outside of all functions or within a function, once it is definced, all code
after that point may have access to it. For example, this program
prints 186000 on the screen,

#include <stdio.h>
veoid f(void);

int main{void)

{
#define LIGHTSPEED 186000
£10);
return 0;

}

void f(void)
{
printf{"%1d", LIGHTSPEED):;

There is one important point you must remember: Each
preprocessor directive must appear on its own line,

Macro substitutions are useful for two main reasons. First, many C
library functions use certain predefined values to indicate special
conditions or results. Your programs will need access to these values
when they use one of these functions. However, many times the
actual value will vary between programming environments. For this

consoLEvo 231
41 LEARN ANQTHER PREPROCESSOR DIRECTIVE

reason, these values are usually specified using macro names. The
macro names are defined inside the header file that relates to cach
specific function. You will sce an example of this in the next section.

The second reason macro substitution is important is that it can
help make it easier to maintain programs. For example, if you know
that a value, such as an array size, is going to be used scveral places in
your program, it is better to create a macro for this value. Then if vou
ever necd to change this value, you simply change the macro
definition. All references to it will be changed automatically when the
program is recompiled.

1. Since a macro substitution is simply a text replacement, you can
use a macro name in place of a quoted string. For example, the
following program prints Macro Substitutions are Fun,

#include <stdic.h>
#define FUN "Macro Substitutions are Fun’®

int main(void)
{
printf (FUN} ;

return 0;
}
To the compiler, the printf() statement looks like this:
printf({"Macro Substitutions are Fun");

2. Once a macro name has been defined, it can be used to help
define another macro name. For example, consider this program:
#include <stdio.h>
#define SMALL 1

#define MEDIUM SMALL+1
f#define LARGE MEDIUM+1

int main(veoid)
{
printf ("%d %d %d", SMALL, MEDIUM, LARCE):

232 TEACH YOURSELF
Y ¢

return 0;

As you might expect, it prints 1 2 3 on the screen.

3. It a macro name appears inside a quoted string, no substitution
will take place. For example, given this definition

#define ERROR “"catastrophic error occurred"

the following statement will not be affected.

printf ("ERROR: Try again");

EXERCISES

I. Create a program that defines two macto names, MAX and
COUNTBY. Have the program count from zero to MAX-1 by
whatever value COUNTBY is defined as. (Give COUNTBY the
value 3 for demonstration purposes.)

2. Is this fragment correct?
#define MAX MIN+100
#define MIN 10

3. Is this fragment correct?

#define STR this is a test

printf (STR) ;

4. Is this program correct?
#define STDIO <stdio.h>
#include STDIO

int main(void)
{ :
printf("This is a test.");

return 0;

CONSOLEVO 233
82 EXAMINE CHARACTER AND STRING INPUT AND OUTPUT ¥

2 | EXAMINE CHARACTER AND STRING
INPUT AND OUTPUT

Although you have already learned how to input and output characters
and strings, this section looks at these processes more formally.

The ANSI C standard defines these two functions that perform
character input and output, respectively: '

int getchar(void),
int putchar(int ch);

They both use the header file STDIO.H. As mentioned earlier in

this book, many compilers implement getchar() in a line-buffered
manner, which makes its use limited in an interactive environment.
Most compilers contain a non-standard function called getche(),
which operates like getchar(), except that it is interactive. Discussion
of getche() and other non-standard functions will occur in a later
section, '

The getchar() function returns the next character typed on the
keyboard. This character is read as an unsigned char converted
to an int. However, most commonly, your program will assign this
value to a char variable, cven though getchar() is declared as
returning an int. If you do this, the high-order byte(s) of the integer
is simply discarded.

The reason that getchar() returns an integer is that when an error
occurs while reading input, getchar() returns the macro EOF, which
is a negative integer (usually -1). The EOF macro, defined in
STDIO.H, stands for end-of-file. Since EOF is an integer value, to allow
it to be returned, getchar() must returh an integer. In the vast
majority of circumstances, if an error occurs when reading from the
keyboard, it means that the computer has ceased to function.
Therefore, most programmers don't usually bother checking for EOF
when using getéhar(). They just assume a valid character has been
returncd. Of course, there are circumstances in which this is not
appropriate—for example, when 170 is redirected, as explained in
Chapter 9. But most of the time you will not need to worry about
getchar() encountering an error.

The putchar() function outputs a single character to the screen.
Although its parameter is declared to be of type int, this value is
converted into an unsigned char by the function. Thus, only the

234 TEACH YOURSELF
Y I

low-order byte of ch is actually displayed. If the output operation is
successful, putchar() returns the character written. 1f an output
crror occurs, EOF is returned. For reasons similar to those given for
getchar(), if output to the screen fails, the computer has probably
crashed anyway, so most programmers don’t bother checking the
return value of putchar() for errors.

The reason you might want to use putchar() rather than printf()
with the %c specifier *o output a character is that putchar() is faster
and more efficient. Because printf() is more powerful and flexible, a
call to printf() gencrates greater overhead than a call to putchar().

I. As stated earlier, getchar() is generally implemented using
line buffering. When input is line butfered, no characters are
actually passcd back to the calling program until the user
presses ENTER . The following program demonstrates this:

#include <stdio.h>

int main(void)
{
char ch;
do {
ch = getchari();
putchar(’.');
} while(ch != *\n‘);

return 0;

}

Instead of printing a period between each character, what you
will see on the screen is all the letters you typed before pressing
ENTER, followed by a string of periods.

One other point: When entering characters using getchar(),
pressing ENTERwill cause the newlindcharacter (\n) to be
returncd. However, when using one of the alternative
non-standard functions, pressing ENTER will causc the carriage
return character (\r) to be returned. Keep this difference in mind.

2. The following program illustrates the fact that you can use C's
backslash character constants with putchar().

CONSOLEO 235
83 EXAMINE SOME NON-STANDARD CONSOLE FUNCTIONS ¥

#include <stdio.h>

int main(void)

{
putchar ('A’);
putchar(‘\n’);
putchar('B");

return 0;

)

This program displays

A
B

on the screen.

EXERCISES i

1. Rewrite the program shown in the first example so that it
checks for errors on both input and output operations.

2. What is wrong with this fragment?

char str[80] = "this is a test";

putchar (str);

[83 | EXAMINE SOME NON-STANDARD
- CONSOLE FUNCTIONS

Because character input using getchar() is usually line-buftered, many
compilers supply additional input routines that provide interactive
character input. You have already been introduced to one of these:
getche(). Here is its prototype and that of its close relative getch():

int getche(void);
int getch(void);

236 TEACH YOURSELF

¥ p—
Both functions use the neader file CONIO.H. The getche() function
waits until the next keystroke is entered at the keyboard. When a key
is pressed, getche() echoes it to the screen and then immediately
returns the character. The character is read as an unsigned char and
elevated to int. However, your routines can simply assign this value to
a char value. The getch() function is the same as getche(), except
that the keystroke is not echoed to the screen.

Another very useful non-ANSI-standard function commonly

supplied with a C compiler is kbhit(). It has this prototype:

int kbhit(void);

The kbhit() function also requires the header file CONIO.H. This
function is used to determine whether a key has been pressed or not.
If the user has pressed a key, this function returns true (nonzero), but
does not read the character. If a keystroke is waiting, you may read it
with getche() or getch(). It no keystroke is pending, kbhit()
returns false (zero). 2o

For some compilers, the non-standard 1/0 functions such as
getche() are not compatible with the standard [/O functions such
as printf() or scanf(). When this is the case, mixing the two can
cause unusual program behavior. Most troubles caused by this
incompatibility occur when inputting information (although problems
could occur on output). If the standard and non-standard 1/0
functions are not compatible in your compiler, you may need to use
non-standard versions of scanf() and/or printf(), too. These are
called cprintf() and cscanf().

The cprintf() function works like printf() except that it does not
translate the newline character (\n) into the carriage return, lincfeed
pair as does the printf() function. Therefore, it is necessary to
explicitly output the carriage return (\r) where desired. The cscanf()
function works like the scanf() function. Both cprintf() and
cscanf() use the CONIO.H header file. The cprintf() and cscanf()
functions are expressly designed to be compatible with getch() and
getche(), as well as other non-standard 1/0 functions.

Note

Microsoft C++ supports the functions just described. In addition, it provides
alternative names for the functions that begin with an underscore. For example,
when using Visual C++, you can specify getche() as _getche(), too.

CONSOLEV/0 237
43 EXAMINE SOME NON-STANDARD CONSOLE FUNCTIONS

One last point: Even for compilers that have incompatibilities
petween the standard and non-standard 1/0 functions, such
_incompatibilities sometimes only apply in one case and not another. If
you encounter a problem, just try substituting a different function.

1. The getch() function lets you take greater control of the
screen because you can determine what is displayed each time a
key is struck. For example, this program reads characters until a
'q’ is typed. All characters are displayed in uppercase using the
cprintf() function.

#include <stdio.h>
#include <conioc.h>
$include <ctype.h>

int main(void)
{ _—_
char ch;

do {

ch = getch{);

eprintf ("%c”, toupper(ch)}):
} while(ch !'= 'q’);

return 0;

}

2. The kbhit() function is very useful when you want to let a
user interrupt a routine without actually forcing the user to
continually respond to a prompt like "Continue?". For example,
this program prints a 5-percent sales-tax table in increments of
20 cents. The program continues to print the table until either
the user strikes a key or the maximum value is printed.

#include <stdio.h>
#include <conio.h>

iat main(void)
(

double amount

238 TEACH YOURSELF
v =

r
amount = 0.20;
cprintf("Printing 5-percent tax table\n\r");
cprintf("Press a key to stop.\n\n\r");
do {
cprintf ("amount: %f, tax: %f\n\r", amount,
amount*0.05);
if (kbhit()) break:;
amount = amount + 0.20;
} while(amount < 100.0};
return 0;
)
In the calls to cprintf(), notice how both the carriage return
(\r) and the newline (\n) must be output. As explaincd, .

cprintf() does not automatically convert newlines into
carriage return, linefeed pairs.

EXERCISES

1. Write a program that displays the ASCII code of each character
typed. Do not display the actual character, however.

2. Write a program that prints periods on the screen until vou
press a key.

EXM TAKE A CLOSER LOOK AT gets() AND
puts() '

Although both gets() and puts() were introduced carlier, let's take a
closer look at them now. Their function prototypes are

char *gets(char *str);
int puts(char *str);

These functions use the header file STDIO.H. The gets() function
reads characters entered at the keyboard until a carriage return is read
(i.e., until the user presses ENTER). It stores the characters in the array

CONSOLEVO 239
g4 TAKEA CLOSER LOOK ATgets() ANDputs() 7

pointed to by str. The carriage return 1s not added to the string.
Instead, it is converted into the null terminator. If successful, gets()
returns a pointer to the start of str. If an error occurs, a null pointer
is returned. A

The puts() function outputs the string pointed to hy str to the
screen. It automatically appends a carriage return, line-feed sequence.
If successful, puts() returns a non-negative value. If an error occurs,
EOF is returned.

The main reason you may want to use puts() instead of printf()
to output a string is that puts() is much smaller and faster. While this
is not important in the example programs shown in this book, it may
be in some applications.

1. This program shows how you can use the return value of gets()
to access the string holding the input information. Notice that
this program also confirms that no error has occurred hefore
attempting to use the string,

#include <stdio.h>

int main(void)
{
char *p, str(80];

printf ("Enter a string: "):

p = getsi{str);

if(p) /* if not null */
printf ("%s %s', p, strl;

return 0;
)

2. If you simply want to make sure that gets() did not encounter
an error before proceeding, you can place gets() directly inside
an if statement, as illustrated by the following program:

#include <stdio.h>

int main(void)
{
char str[80]:

240 TEACH YOURSELF
Y ¢

printf("Enter a string: ");
if (gets(str)) /* if not null */
printf(*Here is your string: %s", str);

return 0;

}

Because a null pointer is false, there is no need for the
intermediary variable p, and the gets() statement can be put
dire«tly inside the if.

3 ".1s important to understand that even though gets() returns a
pointer to the start of the string, it still must be called with a
pointer to an actual array. For example, the following is wrong:

char *p;
p = gets(p); /* wrong!!! */ -
Here, there is no array defined into which gets() can put the

string. This w:ll result in a program failure.

4. This program outputs the words one, two, and three on three
separate lines, using puts().

#include <stdio,h>

int main(void)

{
puts({"one") ;
puts("two");
puts("three");

return 0; %

EXERCISES

1. Compile the program shown in Example 2, above. Note the size
of the compiled code. Next, convert it so that it uses printf()
statements, instead of puts(). You will find that the printf()
version is several bytes larger.

CONSOLEVO 247
85 MASTERprintf() ¥
2, Is this program correct? If not, why not?
#include <stdio.hs>
int main(void)

{
char *p, *q;

printf("Enter a string: *);
P = gets(q);
printf(p);

return 0;

nqﬂlsrsn printf()

"Although you already know many things about printf(), you will be
surprised by how many more features it has. In this section you will
learn about some more of them. To begin, let's review what you
know so far.

The printf() function has this prototype:

int printf(char *control-string, ..);

-The periods indicate a variable-length argument list. The printf()
function returns the number of characters output. If an error occurs, it
returns a negative number. Frankly, few programmers hother with the
return value of printf() because, as mentioned earlier, if the console
is not working, the computer is probably not functional anyway.

The control string may contain two types of items: characters to be
output and format specifiers. All format specifiers begin with %. A
format specifier, also referred to as a format code, determines how its
matching argument will be displayed. Format specifiers and their
arguments are matched from left to right, and there must be as many
arguments as there are specifiers.

The format specifiers accepted by printf() are shown in Table 8-1.
You have already learned about the %c, %d, %s, %u, %p, and %f
specifiers. The others will be examined now.

2462 TEACH YOURSELF

¥
Code Format
Obc Character
%d Signed decimal integers
O Signed decimal integers
%e Scientific notation (owercase ')
%E Scientific notation (uppercase 'E)
Oof Decimal floating point
Ohg Uses %e or %f, whichever is shorter
%G Uses %E or %f, wnichever is shorter
%00 Unsigned octal
s String of characters
You Unsigned decimal integers
Oox Unsigned hexadecimal (lowercase letters)
YoX Unsigned hexadecimal (uppercase letters)
Ohp Displays a pointer
%n The associated argument is a pointer to an integer into which the
number of characters written so far is placed.
%% Prints a % sign

The printf() Format Specifiers 'V

The %i command is the same as %d and is redundant.

You can display numbers of type float or double using scientific
notation by using either %e or %E. The only difference between the
two is that %e uses a lowercase 'e’ and %E uses an uppercase 'E".
These specifiers may have the L modifier applied to them to allow
them to display values of type long double.

The %g and %G specifiers cause output to be in either normal or
scientific notation, depending upon which is shorter. The difference
between the %g and the %G is whether a lower- or uppercase 'e’ is
used in cases where scientific notation is shorter. These specifiers may
have the L modifier applied to them to allow them to display values of
type long double.

You can display an integer in octal format using %o or in
hexadecimal using %x or %X. Using %x causes the letters 'a’ through
'f to be displayed in lowercase. Using %X causes them to be displayed
in uppercase. These specifiers may have the h and 1 modifiers applied
to allow them to display short and long data types, respectively.

CONSOLELVD 243
85 MASTERprinf() ¥

The argument that matches the %n specifier must be a pointer to an
integer. When the %n is encountered, printf() assigns the integer
pointed to by the associated argument the number of characters
output so far.

Since all format commands begin with a percent sign, you must use
%% to output a percent sign.

All but the %%, %p, and %c specifiers may have a minimum-
field-width specifier and/or a precision specifier associated with them.
Both of these are integer quantities. If the item to output is shorter
than the specified minimum field width, the output is padded with
spaces, so that it equals the minimum width. However, if the
output is longer than the minimum, output is not truncated. The
minimum-field-width specifier is placed after the % sign and before
the format specifier.

The precision specifier follows the minimum-field-width specifier.
The two are separated by a period. The precision specifier affects
different types of format specifiers differently. If it is applied to the
%d, %i, %0, %u or %x specifiers, it determines how many digits are to
be shown. Leading zeros are added if needed. When applied to %f, %e,
or %E, it determines how many digits will be displayed after the
decimal point. For %g or %G, it determines the number of significant
digits. When applied to the %s, it specifies a maximum field width. If a
string is longer than the maximum-field-width specifier, it will be
truncated.

By default, all numeric outphit is right Jjustified. To left justify
output, put a minus sign directly after the % sign.

The general form of a format specifier is shown here. Optional
items are shown between brackets. E

Y%[-](minimum-field-width] [.](precision] format-specifier

For example, this format specifier tells printf() to output a double
value using a field width of 15, with 2 digits after the decimal point.

$15.2f

1. If you don’t want to specify a minimum field width, you can
still specify the precision. Simply put a period in front of the
precision value, as illustrated by the following program:

#include <stdio.h>

int main(void)

{
printf("%.5d\n", 10);
printf("$%.2f\n", 99.95); .
printf("%.10s", "Not all of this will be printed\n®);

return 0;

}
The output from this program looks like this:

00010
$99.95
Not all of

Notice the effect of the precision specifier as applied to each
data type.

. The minimum-field-width specifier is especially useful for
creating tables that contain columns of numbers that must line
up. For example, this program prints 1000 random numbers in
three columns. It uses another of C's standard library functions,
rand(), to generate the random numbers. The rand()
function returns a random integer value each time it is called. It
uses the header STDLIB.H. ’

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int i;
for(i=0; i<1000; i++)

printf("%104 %104 %10d\n", rand(), rand(), rand()):

return 0;

}

Part of the output from this program is shown here. Notice how
the columns are aligned. (Remember, if you try the program,
you will probably see different numbers.)

CONSOLEVO 245
85 MASTERprimti() ¥

10982 - 130 346
7117 11656 1090
22948 6415 17595
14558 9004 31126
18492 22879 3571
26721 5412 1360
27119 25047 22463
13985 7190 31441
30252 27509 31214
19816 14779 26571
17995 19651 21681
13310 3734 23593
15561 2.995 3979
11288 18489 16092
5892 8664 28466
5364 22766 13863
20427 21151 17639
8812 - 25795 100
12347 12666 15108

- This program prints the value 90 four different ways: decimal,
octal, lowercase hexadecimal, and uppercase hexadecimal. It
also prints a floating-point number using scientific notation with
a lowercase 'e’ and an uppercase 'E'. :

#include <stdio.h>
int main(void)
{

printf("%d %o %x ¥X\n", 90, 90, 90, 90) ;
printf("%e $E\n-, 99.231, 99.231);

return 0:
}

The output from this program is shown here:

90 132 5a 5A
9.92310e+01 9.92310E+01

. The following program demonstrates the %n specifier:

#include <stdio.h>

int main(void)
{

266 TEACH YOURSELF
Y g
Like printf(), scanf() has many more features than we have used
so far. In this section, several of these additional features are explored.
Let’s begin by reviewing what you have already learned.
The prototype for scanf() is shown here:

int scanf(char *control-string, ...).

The control-string consists mostly of format specifiers. However, it can
contain other characters. (You will learn about the effect of other
characters in the control string soon.) The format specifiers determine

mMASTER scanf()

int i

printf(*%d %f\n%n", 100, 123.23, &i);
printf("%d characters output so far", i);

return 0;

}
Its output looks like this:

100 123.230000
15 characters output so far

The fifteenth character is the newline.

et etk Ubemt o3

1. Write a program that prints a table of numbers, each line
consisting of a number, its square, and its cube. Have the table
begin at 2 and end at 100. Make the columns line up, and left
justify each column.

2. How would you output this line using printf()?
Clearance price: 40% off as marked

3. Show how to display 1023.03 so that only two decimal places
are printed.

CcONSOLEVO 27
85 MASTERscanf() ¥

how scanf() reads information into the variables pointed to by the
arguments that follow the control string. The specifiers are matched in
order, from left to right, with the arguments. There must be as many
arguments as there are specifiers. The format specifiers are shown in
Table 8-2. As you can see, the scanf() specifiers are very much like
the printf() specifiers.

The scanf() function returns the number of fields assigned values.
If an error occurs before any assignments are made, EOF is returned.

The specifiers %x and %o are used to read an unsigned integer
using hexadecimal and octal number bases, respectively.

The specifiers %d, %i, %u, %x, and %0 may be modified by the h
when inputting into a short variable and by 1 when inputting into a
long variable.

The specifiers %e, %f, and %g are equivalent. They all read
floating-point numbers represented in either scientific notation or
standard decimal notation. Unmodified, they input information into a
float variable. You can modify them using an 1 when inputting into a
double. To read a long double, modify them with an L.

You can use scanf() to read a string using the %s specifier, but you
probably won't want to. Here's why: When scanf() inputs a string, it
stops reading that string when the first whitespace character is
encountered. A whitespace character is either a space, a tab, or a

Code Meaning

Boc Read a single character

0hd Read a decimal integer

% Read a decimal integer

Yoe Read a floating-point number
Ohf Read a floating-point number
%g Read a floating-point number
%0 Read an octal number

s Read a string

Yox Read a hexadecimal number
Oop Read a pointer

%n Receives an integer value equal to the number of characters read so far
%ou Read an unsigned integer

%[] Scan for a set of characters

The scanf() Format Specifiers ¥

248 TEACH YOURSELF
Y ¢

newline. This means that you cannot easily use scanf() to read input
like this into a string:

this is one string

Because there is a space after "this,” scanf() will stop inputting
the string at that point. This is why gets() is generally used to
input strings.

The %p specifier inputs a memory address using the format
determined by the host environment. The %n specifier assigns the
number of characters input up to the point the %n is encountered to
the integer variable pointed to by its matching argument. The %n may
be modified by either 1 or h so that it may assign its value to either a
long or short variable.

A very interesting feature of scanf() is called a scanset. A scanset
specifier is created by putting a list of characters inside square
brackets. For example, here is a scanset specifier containing the
letters 'ABC.’

% [ABC)

When scanf() encounters a scanset, it begins reading input into
the character array pointed to by the scanset's matching argument. It
will only continue reading characters as long as the next character is
part of the scanset. As soon as a character that is not part of the
scanset is found, scanf() stops reading input for this specifier and
moves on to any others in the control string.

You can specify a range in a scanset using the - (hyphen). For
example, this scanset specifies the characters 'A’ through 'Z".

$(A-2°

Technically, the use of the hyphen to specify a range is not specified
by the ANSI C standard, but it is nearly universally accepted.

When the scanset is very large, sometimes it is easier to specify
what is not part of a scanset. To do this, precede the set with a A.
For example,

$(°0123456789)

When scanf() encounters this scanset, it will read any characters
except the digits 0 through 9.

CONSOLEVO 2469
86 MASTER scanf() v

You can suppress the assignment of a field by putting an asterisk
immediately after the % sign. This can be very useful when inputting
information that contains needless characters. For exar: ple, given this
scanf() statement

int first, second;
scanf ("%d%*c%d", &first, &second);

this input
555-2345

will cause scanf() to assign 555 to first, discard the -, and assign
2345 to second. Since the hyphen is not needed, there is no reason to
assign it to anything. Hence, no associated argument is supplied.

You can specify a maximum field width for all specifiers gxcept %c,
for which a field is always one character, and %n, to which the
concept does not apply. The maximum field width is specified as an
unsigned integer, and it immediately precedes the format specifier
character. For example, this limits the maximum length of a string
assigned to str to 20 characters:

scanf ("%20s", str);

If a space appears in the control string, then scanf() will begin
reading and discarding whitespace characters until the first
non-whitespace character is encountered. If any other character
appears in the control string, scanf() reads and discards all matching
characters until it reads the first character that does not match
that character.

One other point: As scanf() is generally implemented, it
line-bufters input in the same way that getchar() often does. While
this makes little difference when inputting numbers, its lack of
interactivity tends to make scanf() of limited value for other
types of input.

1. To see the effect of the %s specifier, try this program. When
prompted, type this is a test and press ENTER. You will see
only this redisplayed on the screen. This is because, when
reading strings, scanf() stops when it encounters the first
whitespace character. '

@50 TEACH YOURSELF

—_—

c

#include <stdio.h>

int main(void)
{
char str(80];

/* Enter "this is a test" */
printf(*Enter a string: ");
scanfi{“%s", str);
praintf{str) i

return 0;
}

2. Here's an example of a scanset that accepts both the upper- and

lowercase characters. Try entering some letters, then any other
character, and then some more letters. After you press ENTER,
only the letters that you entered before pressing the non-letter
key will be contained in str.

#include <stdio.h>
int main(void)

{
char str(B80];

printf("Enter letters, anything else to stop\n"):
scanf ("%[a-zA-Z]", str);

printf (str);

return 0;

)

. If you want to read a string containing spaces using scanf(),
you can do so using the scanset shown in this slight variation of
the previous program.

#include <stdio.h>
int main(void)
(

char str(80];

printf ("Enter letters and spaces\n");

CONSOLEVD 251
86 MASTERscanf() Y

gscanf ("%(a-zA-2Z]", str);
printf(str);

return 0;
}

You could also specify punctuation symbols and digits, so that
you can read virtually any type of string. However, this is a
fairly cumbersome way of doing things.

. This program lets the user enter a number followed by an
operator followed by a second number, such as 12+4. It then
performs the specified operation on the two numbers and
displays the results.

#include <stdio.h>

int main(void)
(
int 3, J:
char op;

printf ("Enter operation: ");
scanf ("%d¥c%d", &i, &op, &j);

switch(op) {
case ’'+’': printf("%d", i+j);

break;

case ‘-’': printf("%d", i-j);
break;

case ‘/‘: if(3j) printf("sd-, i/j);
break:

case '*’': printf(*%d", i*j);

return 0;

}

Notice that the format for entering the information is somewhat
restricted because no spaces are allowed between the first
number and the operator. It is possible to remove this
restriction. As you know, scanf() automatically discards
leading whitespace characters except when you use the %c
specifier. However, since you know that the operator will not be

252 TEACH YOURSELF

v

c

a whitespace character, you can modify the scanf() command
to look like this:

scanf("%d %c%d", &i, &op, &j);

Whenever there is a space in the control string, scanf() will
match and discard whitespace characters until the first
non-whitespace character is found. This includes matching zero
whitespace characters. With this change in place, you can enter
the information into the program using one or more spaces
between the first number and the operator.

. This program illustrates the maximum-field-width specifier:

#include <stdio.h>

int main(void)
{
int i, j;

printf("Enter an integer: ");
scanf ("%3d%d", &i, &j):
printf("%d %d", i, j):

return 0;

)

If you run this program and enter the number 12345, i will be
assigned 123, and j will have the value 45. The reason for this is
that scanf() is told that i's field is only three characters long.
The remainder of the input is then sent to j.

This program illustrates the effect of having non-whitespace
characters in the control string. It allows you to enter a decimal
value, but it assigns the digits to the left of the decimal point to
one integer and those to the right of the decimal to another. The
decimal point between the two %d specifiers causes the decimal
point in the number to be matched and discarded.

#include <stdio.h>
int main(void)
{

int 4, §;

printf ("Enter a decimal number: ");

CONSOLEL'0 253
86 MASTERscanf() ¥

scanf ("%d.%d", &i, &j);
printf("left part: %d, right part: %d*, i, j);

return 0;
}

1. Write a program that prompts for your name and then inputs
your first, middle, and last names. Have the program read no
more than 20 characters for each part of your name. Finally,
have the program redisplay your name.

2. Write a program that reads a floating-point number as a string

+ using a scanset.

3. Is this fragment correct? If not why not?

char ch;
scanf ("%2c", &ch);

4. Write a program that inputs a string, a double, and an integer.
After these items have been read, have the program display how
many characters were input. (Hint: use the %n specifier.)

5. Write a program that converts a hexadecimal number entered
by the user into its corresponding decimal and octal equivalents.

_Mastery
Skilis Check

Before proceeding you should be able to answer these questions and
perform these exercises:

1. What is the difference between getchar(), getche(), and
getch()? |

2. What is the difference between the %e and the %E printf()
format specifiers?

254 TEACH YOURSELF

v B

This section checks how well you have integrated the material in _
this chapter with that from earlier chapters.

1. Write a program that allows you to enter the batting averages for
the players on a little league team. (Assume there are exactly 9
players.) Have the user enter the first name and batting average
of each player. Use a two-dimensional character array to hold
the names and a one-dimensional double array to hold the
batting averages. Once all the names are entered, have the
program report the name and average of the players with the
highest and lowest averages. Also, have the program display the
team average.

2. Write a program that is a simple electronic library card catalog.
Have the program display this menu:

Card Catalog:
1. Enter
2. Search by Author
3. Search by Title
4. Quit
Choose your selection:

Cumulative

Skills Check

3. What is a scauset?

4. Write a program, using scanf(), that inputs your first name,
birth date (using the format mm/dd/yy), and telephone
number. Redisplay the information on the screen to verify that
it was input correctly.

5. What is one advantage to using puts() over printf() when
you only need to output a string? What is one disadvantage to
puts()? :

6. Write a program that defines a macro called COUNT as the
value 100. Have the program then use this macro to control a
for loop that displays the numbers 0 through 99.

7. What is EOF, and where is it defined?

CONSOLEVO 255
36 MASTERscanf() ¥

If you choose Enter, have the program repeatedly input the name,
author, and publisher of a book. Have this process continue until the
user enters a blank line for the name of the book.

For searches, prompt the user for the specified author or title and
then, if a match is found, display the rest of the information. After you
finish this program, keep your file, because in the next chapter you
will learn how to save the catalog to a disk file.

