File I/

chapter objzciives
9.1 Understand streams

9.2 Master file-system basics
4

9.3 Understand feof() and ferror()
9.4 Learn some higher-leve! text functions
9.5 Learn to read and write binany dala

9.6 Understand random accuss

9.7 Learn about various file-systein functions

9.8 Learn about the standard stieams

257
v

i7

258 TeacH YOURSELF
v

PR
Lot Cdoes not define any keywords that erform
fle 170, the € standard library contains a very rich setof
O functions, As vou will sec in this chapter, C's approach
to 1O s efficient, powerlul, and flexible,

Moast C compiters supply two complete sets of file I/0 functions. One is called
the ANSI file system (sometimes called the buffered file system). This file
system s defined by the ANSI C standard. The second file system is based on
the ongmal UNIX operating environment and is called the UNIX-like file
system (sometimes called the unbuffered file system). This file system is not
defined by the ANSI C standard. The ANSI standard only defines one file
system because the two file systems are redundant. Further, not al/
environments may be able to adapt to the UNIX-like system. For these
reasons, this book only discusses the ANSI file system. For a discussion of the
UNIX-like file system, see my book C: The Complete Reference (Berkeley,

CA, Osborne/McGraw-Hill).

Petere proceeding you should be able to perform these txercises
and answer these questions;

1. Whatis the difference between getchar() and getche()?

2. Give one reason why you probably won't use scanf()'s %s
option to read strings from the keyboard.
S0 Write a program that prints a four-calumn table of the "primr:
numbers between 2 and 1000, Make sure that the colunmns
are aligned.
4. Write a program that inputs a double, a character, and a string
notlongerthan 20 characters. Redisplay the values to confirm
that they were input correctly.
Write o program that reads and discards leading digits and then
reads astring (Hnt Use o seanset to l('.l(l_,p.l‘.‘it anv eacding divits,)
) &

gt

EXEN [JNOERSTAND ST

Before we can begin our discussion ot file 170, vou must understand
(wo very important concepts: the stream and the file. The C 1O syswe
supplies a consistent interface to the programmer, independent of th
actual 170 device being used. To accomplish this, C provides level ol
abstraction between the programmer and the hardware. ‘This abs(raction
is called a stream. The acuial device providing 1/0 is called a file.
Thus, a stream is a logical interface o a file. As G defines the term file,
S ——— =
it can refer to a disk file, the screen, the keyboard, memory, a port, a
file on tape, and various other types of 170 devices. The mest comnon
form of file is, of course, the disk file. Although files difterin form and
capabilities, all strecams are the same. The advantage to this approach
is that to you, the programmer, one hardware device will look much
like: any other. The stream automatically handles the difterences.

A stream is linked to a file using an open operation. A stream is
disassociated from a file using a closc operation.

There are two types of streams: text and hinarv. A text sbeam
contains ASCl1! characters. When a text stream is heing used, some
character translations m;iy take place. For example, when the newlin
character is output, it is usually converted into a carriage retuin, lincleed
pair. For this reason, there may not be a sme-to-one correspondence
between what is sent to the stream and what is written to the file.

A Dinary stream may be wsed with any type of data. No character
translations will oceur, and there is a one-to-one correspondence
between what is sent to the stream and what is actually contained
in the file.

One final concept you need to understand is that of the current .
location. The current location, also referred to as the current Pposition,
is the location in a file where the next file access will occur. For
example, if a file is 100 bytes long and half the file has been read, the
next read operation will occur at byte 50, which is the current location

To summarize: In C, disk 170 (like certain other types of 170) is
performed through a logical interface called a stream. All streams have
similar properties, and all are operated on by the same 1O functions,
no matter what type of file the stream is associated with, A ile is the

\
\

260 TEACH YOURSELF
v

actual physical entity that receives or supplics the data, Even though
liles differ, streams do not. (Of course, some devices may not support
rndom-aceess operations, for example, so their associated streams
will not support such operations cither.)

Now that you are familiar with the theory behind C's file system, it
is time to begin learning about it in practice.

‘E-MASTER FILE-SYSTEM BASICS

In this section you will learn how to open and close a file. You will alsc
learn how to read characters from and write characters to a file.

To apen a file and associate it with a stream, use fopen(). Its
prototype is shoivn here:

FILE *fopen(char *fname, char *mode);

The fopen() function, like all the file-system functions, uses the
header STDIOLUHL The name of the file to open is pointed to by fheone.
It must be a valid tile name, as detined by the operating systen. The
string pointed to by maode determines how the file may be accessed.
The legal values for mode as defined by the ANSI C standard are shown
inTable 91, Your compiler may allow additional modes.

It the open operation is successtul, fopen() returns a valid file
pointer. The type FILE is defined in STDIO.H. 1t is a structure that
holds various kinds of information about the file, su¢h as its size, the
current location of the file, and its access modes. [t essantially
identifies the file. (A structure is a group of variables acéessed under
one name. You will learn about structures in the next chapter, but you
do not need to know anything about them to learn an(l fully use C's
file system.) The fopen() function r:ﬂgp,aj_pumtcrﬂ) the structure
associated with the file by the open process. You will use this pointer
with all other functions that operate on the file. However, you must
never alter it or the object it points to.

If the fopen() function fails, it returns a null pointer. The header
STDIOLT defines the macro .L, which is defined to be a null pointer.

It is very important to ensure that a valid file pointer has been
returned. To do so, check the value returned by fopen() w make
sure that it is not NULL. For example, the proper way to open a file
called myfile for text input is shown in this fragment:

Fievo 261
92 MASTER FILE-SYSTEM BASICS ¥

FILE *fp:

if((fp = fopen("myfile~”, “r*}) == NULL) {
printf ("Error opening file.\n"); jy
exit(1l); /* or substitute your own error handlier */

)

Although most of the file modes are self-explanatory, a few
comments arc in order. [f, when opening a tile for read-only
opcrations, the file does not exist, fopen() will fail. When opening a
file using append mode, if the file does not exist, it will be created.
Further, when a file is opened for append all new data written to the
file will be written to the end of the file. The original contents will
remain unchanged It, when a file is opened for writing, the file does
not exist, it will be created. 1t it does exist, the contents of the original
file will be destroyed and a new file created. The ditference between
modes T+ and w + is that r+ will not create a file it it does not CXist;
however, w + will. Further, if the file alrcady exists, apening it with
w + destroys its contents; opening it with r+ does not,

Mode Meaning
"' Open a text file for reading.

"w" Create a text file for writing.

"a" Append to a text file.

“rb" Open a binéry file for reading.

"wb" Create a binary file for writing.

"ab" -Append to a binary file.

"r4" Open a text file for read/write

w+" Create a text file for read/write

"a+" Append or create a text file for read/write.

"r+b" Open a binary file for read/write. You may also use "rb+".
"w+b" Create a binary file for read/write. You maj also use "wb+".

",

"a+b" Append or create a binary file for read/write. You may also use "ab+".

The Legal Values for Mode ¥

262 TEACH YOURSELF
Y ¢

1o close a file, use fclose(). whose prototype is
int fclose(FILE */p);

The felose() function closes the file associated with fp, which must
be a valid file pointer previously obtained using fopen(), and
disassociates the stream from the file. In order to improve eHiciency,
most file system implementations write data to disk one scctor at i
time. Therefore, data is buffered until a sector’s worth of information
has been output before the buffer is physically written to disk. When
vou call Felose(), it automatically’ writes any information remaining
in a partially full butfer to disk. This is often referred to as fheshung the
budfler .

You must never call felose() with an invalid argument. Doing so
will damage the file system and possibly cause irretricvable data Toss.

The felose() function retrns zero if successtul. I an error ocous,
LOF is returned. ,

Once a file has been opened, depending upon its mode, you may
read and “or write hytes (i.e., characters) using these two functions: 7

int fgetc(FILE */p):
int fpute(int ch, FILE */p);

The fgete() function reads the next byte from the file described by
fpr as an unsigned char and returns it as an integer. (The character is
returned in the low-order byte.) [f an error occurs, fgete() returns
EOF. As vou should rccall from Chapter 8, EOF is a negative integer
(usually =1). The fgete() funation also returns EOF when the end of
the file is reached. Although fgete() returns an integer value, vour
program can assign it to a char variable since the low-order byte
contains the character read from the file, '

The fpute() function writes the byte contained in the low-order
bvte of ¢h to the file associated with fp as an unsigned char. Although
¢l is dedined as an int, you may call it using a char, which is the
common procedure. The fpute() function returns the character
written it successful or EOF il an error occurs.,

Historical note: The trdditional names for fgete() and fpute() are
gete() and pute(). The ANSI C standard still defines these names,
and they are essentially interchangeable with fgete() and tpute().
One reason the new names were added was for consistency. All other
ANST file system function names begin with ') so 'F was added to

Fie /O 263

92 MASILRFILE-SYSIEMpases

geto() and pute(). The ANSI standard still supports the traditional
nantes, however, hecause there are so many existing programs that
use them. If you sce programs that use gete() and pute(), don’t
worry. They are essentially ditferent names for fgete() and fpute()

| ___EXAMPLES |

1 S program demonstrates the four Ale-system lunctions vou
have learned about so far. First, it apens a file called MYPTLE Tor
output. Next, it writes the stritg “This is a file svstem test” to
the file. ‘Then, it closes the tile and reopens it tor read
operations. Vinally, it displaysthe contents of the file on the
screen and closes the file. '.'

#include -stdio.h>
#include <stdlib. he

int main{void)

(

char strl80] = *“This is a file system test.\n";

FILE *fp:

char *p:

int ij;

/* open myfile for output */

1f((fp = fopen{'myfile”, "w"))==NULL) {
printf ("Cannct open file.\n"};
exit(1);

}

/* write str to disk */

p = str;

while('p) |
iftfputel*p, [p)==EOQOF) [
print{("Frror writing Filo.gq"):-
exit{l);
, s
Py
}
fclosellp);

264 TEACH YOURSELF

v ¢

/* open mylile for input */

if((fp = fopen("mylile”, "r"))==NULL) {
Arintf ("Cannot cpen file.\n");
exit(1l);

/* read back the file */

Cort=1 |
i = (gewc(fp); *
if(i == EOF) break;
putchar (i)

}

fclase({ip);

return 0;

J

In this version, when reading from the tile, the returm value of
fgete() is assigned toan integer variable called i The value of
this integer is then checked o see il the end of the file has been
reached. For most compilers, however, you can simply assign
the value returned by fgete() to a char and still check tor EOT,
as is shown in the following version:

#include <stdio.h>
finclude <stdlib.h-~

int. main(void)

{ : . .
char str[80] = "This is a file systemvtest.\n';
FILE *fp;
char ch. *p;

/* open myfile for output */

if((tp - fopen("myfile”, "w"))}==NULL) {
printf("Cannot open file.\n"});:
exit(1);

‘* write str to disk */
P = st
while(*p) |
if (fputci{*p, fp)==ECGF) (
printf("Error writing file.\n");

exiv(l);

HhUD :Mis
92 MASTERFILE- .ST’S‘IEMMS!(E

)

P+t
} .
fclose(fp);

/* open myfile for input */

if({fp = fopen("myfile", "r=))==NULL) ({
printf (“Cannot open file.\n"):
exit (1)

/* tead bhack the file 24

tor(;;) (.
ch = fgetc(ip); \;{f
if{ch == EOF) break; s NS
putcha:r {(ch); -7

)

fclose(fp);

return 0;

The reason this approach works is that when a char is heing
compared Lo an int, the char value is automatically clevated to
an equivalent int value,)

There is, however, an even better way to code this program.
For example, there is no need for a sepatate comparison step
hecause the assignment and the comparison can he performed
at the same time, within the if, as shown heri:

#include <stdio.h>
#include <stdlib. h>

int main(void)

(
char str[80) = *This is a file system test.\n"
FILE *Ep;
char ch, *p;

/* open wytile for output 4/

10(([p = fopen{=myfile®, *w"))==NULL) |
printf (*Cannot open file.\n");
exit i)

266 TEACH YOURSELF
¥ e

/* write str to disk */
p = sir;
while(*p) {
if({fputc(*p, fp)==EOF} |
printf(“Error writing file.\n");
exil(L);
I
})II
}
fclose(fp);
S open mylile for inpul %/
if((fp = fopen("myfile”, "r"))==NULL) |
priati{"cannot open tile.nin™);
exit(l);

/* read back the file */

fotrtert | .
if{tch = fyerc(fp)) == EOF) break;
putctiar (vh) g

)

fclose{ip};

return 0;

~ bon't et the statement

iE((ch = fgetc{fp)) == ENF) break;

fool vou. Here's what is happening. First, inside the if, the
return valud of fgete() is assigned to che As vou may recall, the
assighment operation in G is an expression. The entire value of
(ch = fgete(p)) is equal o the return value of fgete().
Therefore, it is this integer value that is tested against EOF.
Expanding upon this approach, you will norrmll\' see this
program written by a protessional C pmunmmm as follows:

#include <stdio.h>
$include <stdlib.h>

int main{void)

(
char str[80) = "This is a file system test.\n";

Fieli0 2867
92 MASICRHIL SYSTEMBASIS ¥

FILE *fp;
char ch, *p;

/* open myfile [or outpul */

i[l(Lp = fopen(tmyfile”, "w"))==HLLL) |
printf("Cannot open file.'n");
exit(1);

/* wrile sbLr Lo disk ¢/
p = str;
while(*p)
if (fputci*pee, fp)==EOr) |
printf("Error writing file.\n");
exit (1),

)

[close(lp);

/% open myfile for input */
i6((fp = fopen("myfile”, "r®)}==NULL) |
printf("Cannot open file .\

et G ¢

/* read back the [ile */
while((ch = fgetc{fp)) != EOF) putchar (¢l ;
fclose(fp);

return 0;

Notice that now, cach character is read, assigned to ch, and
tested against EOF, all within the expression of the while loop
that controls the input process. It vou compare this with the
original version, you can sce how much more efficient this one
is. In fact, the ability to integrate such operations is one reason
Cis so powertul. It is important that vou get used to the kind ol
approach just shown, Later on in this hbook we will explore such
assighment statements more fully, o

2. The lollowing program takes two command-line arenments. The

first is the name of a file, the scoond is a cluaracter, The program
scarches the specitied fle, looking for the character 1t the dile

268 TEACH YOURSELF
¥ e

contains at least one of these characters, it reports this fact.
Notice how it uses argy to access the file name and the
character tor which to scarch.

/* Scarch specified file for specified character. */
#include <stdio.h> :
#include <stdlib.h>

int main(int arge, char *argv(])

(
FILE *Lp;
char ch;
/* see if correct number of command line arguments */
iflargc!=3) {)
printf ("Usage: find <file name> <ch>\n"};:
exit(l); =
}
/* open file for input */
1E{{ip = Eogeniargvll]. "r=))==NULL) {
printf ("Cannot open file.\n"};
exit(1);
}
/* look for character */
while((ch = fgetc(fp)) != EO¥F)
if (ch==*aryv[2]) {
printf (=%c found", ch};
break;
)
fclosel(fp);
return 0;
)
EXERCISES

1. Write a program that displays the contents of the text file
specified on the command line.

’

Fie 0 269

93 UNDERSIANDfeol() ANDferrort) ¥

2. Write a program that reads a tekt fle and counts now manvy
times cach letter from "A' to 2" oecurs. Have it display the results,
(Do not differentiate between upper- and lowercase letters,)

3. Write a program that copies the contents of one Lext file to !
another. Have the program accept three command-line arguments,
The first is the name of the source lile, the second is the name
ot the destination file, the third is optional. It present and if it
equals “watch,* have the program displav cach character as it
copics the files; otherwise, do not have the program display any
screen outpul. U the destination file does not exist, create it. ’

93 | Ulvmr\n feof() AND ferror()

As you know, when fgete() returns BOF, cither an error has occurred

or the end he file has been reached, h-l_ll_hu;\g do vou know which
event has taken place? Further it you are operating on a binary ftile, all

“values are valid. This means it is possible that a hyte will have the
same value (when elevated to an int) as EOF, so how do vou know it
valid data has been returned or i the end of the file has heen reached?
The solution to these problems are the functions feof() and ferror(),
whaose prototypes are shown here: -

int feof(FILE */n); ¥
int ferror(FiLE */p);

The feof() function returns nonzero it the file associated with /i» has
reached the end of the file. Otherwise it returns zero. This function
works for both binary files and text tiles. The ferror() function
returns nonzero if the file associated with fj has experienced an crror;
otherwise, it retures zero. '

Using the feof() function. this code {ragment shows how to read to
the end of a file; ' -

FILE *fp;

while(!feof(fp)) ch = fgetc(fp);

270 TEACH YOURSELF
¥ ¢

This code works for any type of file and is better in general than
checking for EOF. However, it still does not provide any crror
¢hecking, Lrror checking is added here:

FILE *fp;

while('feol (fp))
ch = fgetcifp):
if (ferror(fp)) {
printf{~File Errorin"j;
break;

4 U ‘ '

Keep in mind that ferror() only reports the status ol the file system
relative to the last file aceess. Therclore, to provide the [ullest error
checking, you must call italter cach tile operation.

‘The most damaging file errors oceur at the operating-system level
Frequently, itis the operating system that intercepts these errors and
displays its own error messages. For example, it a bad scotor is found
on the disk, most operating systems will, themselves, stop the
exccution of the program and report the error. Often the only (ypes of
crrors that actually get passed back to your program are those caused
by mistakes on your part, such as accessing a file in a way inconsistent
with the mode used to open it or when you cause an out-of-range
condition. Usually these types of errors can be trapped by checking
the return type of the other file system functions rather than by
calling ferror(). For this reason, vou will frequently sce examples of
C code in which there are relatively few (if any) calls to ferror(). One
last point: Not all of the file system examples in this book will provide
full error checking, mostly in the interest of keeping the programs
short and casy to understand. However, if you are writing programs
for actoa! use, vou should pay special attention to error checking,.

Fite /0 271
05 UNIERSIAND feol() AWDterror() ¥

1. This program copies any tvpe ol lile, binary or text. I Likes oo
command-line arguments. ‘The 1irsUis the name of Uhe sotre
file, the second is the mame of the destination fiie. 1t the
destination file does not exist, it is created. It mclhudes fall vreo
checking. (You might want to compare this version with the
copy program you wrote tor text files in the preceding se., tion.)

/* Copy a tile, */
#include <stdio.h>
#include <stdlib.h>

int main(int arge, char ‘ézgv[])
{
FILE *from, *to;
= &har ch;
/* see if correct number of command 1ine Argument s ¢
iflargct=3) {
erinLfl("Usage: copy <sources <deslination-y\n-");
exit(l);

/* open source file */

if{(from = fopen(argv(1], "rb*))=-NULL) |
printf(~Cannot cpen source file.\n*}:
exit(1):

/* open destination file */

it((to = fopen(argv(2], “"wb"))==NULL) {
printf ("Cannot open destination [ile,\n-):
exit(l);

/* copy the file */

272 TEACH YOURSELF
® F
while(!feof (Erom)) |
ch = fgetc(from);
if(ferror(from)) |
p1int£['ELlor_reading gsource file.\n"};
exit(1);
)
if(!feof (from)) fputc(ch, to):
if(ferror(to)l} {
printf ("Error writing destination file.\n"};
exit(1);

i

i[([clope{from)=:EOF) {
printi ("Errov closing scurce file.\n");
exit(i):

if(fclose(to)==EOF) {
printf("Error closing destination gl T
exit(l):

return U;

}

2. This program comparcs the two files whose names are specified

. on the command line. It cither prints Filcs arc the same, or it
displays the byte of the first mismatch. It also uscs full error
checking.

/* Compare files. */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argvl(])
{

FILE *fpl, *fp2;

char chl, c¢cnh2, same;

unsignad long 1

/* see if correct number of command 1ine arguments o
iflargc!=3) {

printf(“Usage: compare <file 1> <file 2>\n"):

exit (1)

Flel/0

93 UNDERSTANN fagf() AND ferror()

/* open first file */

if ((fpl = fopenlargv(1l], "rb*"))==NULL) {
printf ("Cannot open first file.\n");
exit(1l);

)

/* open second file */

if((fp2 = fopenfargv (2], "rb"))==NULL) {
printf(*Cannot open second file.\n"};
exit(l);

1l =0;
same = 1;
/* compare the files */
while(!feof (fpl)) (
chl = fgetc(fpl);
if(ferror(fpl))
printf("Error reading first file.\n");
exit(1);
}
ch2 = fgetc(fp2);
if(ferror(fp2)) {
printf ("Error reading second file.\n"):
exitY1l);
)
if (chl!=ch2) (

printf(*Files differ at byte number %lu", 1):

same = 0;
break;
}
Les;
} y
if (same) printf("Files are the same.\n");

if(fclose (fpl)==EOF) {
printf (*Error closing first file.\n");
exit(l);

)

if (fclose(fp2)==EOF) (
printf (*Error closing second file.\n"):
exit(1l});

18

73
v

274, TEACH YOURSELF -

L

return 0;

EXERCISES

I. Write a program that counts the number of bytes in a file (text
or binary) and displays the result. Have the user specify the file
to count on the command line.

2. Write a program that exchanges the contents of the two files
whose names are specified on the command line. That is, given
two files called FILE] and FILE2, after the program has run,
FILE] will contain the contents that originally were in FILEZ,
and FILEZ will contain FILE1's original contents. (Hint: Use a
temporary file to aid in the exchange process.)

|

“/LEWE HIGHER-LEVEL TEXT
N"N_"FUNCTIONS

When working with text files, C provides four functions that make file
operations easier. The first two are called fputs() and fgets(), which
write a string to and read a string from a file, respectively. Their
prototypes are

At fputs(char *str, FILE *fp);
ar *fgets(char *str, int num, FILE *fp);

The fputs() function writes the string pointed to by sir to the file
associated with fp. It returns EOF if an error oceurs and a non-negative
value if successful. The null that terminates str is not written. Alsa,
unlike its related function puts() it does not automatically append a
carriage return, linefeed pair.

fFile /0 275

9.4 LEARN SOME HIGHER-LEVEL TEXT FUNCTIONS '

The Fgets() tunction reads characters from the file associated with
Ip into the string pointed to by st until num-1 characters have been
read, a newline character is encountered, or the end of the file is
reached. In any case, the string is null4erminated. Unlike its related
function gets(), the newline character is retained. The funclion
returns str it successful and a null pointer if an error occurs.

The C file system contains two very powerful functions similar to
two you already know. They are fprintf() and fscanf(). These
functions operate exactly like printf() and scanf() except that they
work with files. Their prototypes are:

»

int fprintf(FILE *fp. char *controf-string, ..);
int fscanf(FILE *fp, char *control-string, ...);

Instead of dirccting their 1/0 operations to the console, these
functions operate on the file specified by fp. Otherwise their
operations are the same as their console-based relatives. The
advantage to fprintf() and fscanf() is that they make it very casy to
write a wide varicty of data to a file using a text format.

1. This program demonstrates fputs() and fgets(). It reads lincs
cntered by the user and writes them to the file specified on the
command linc. When the user enters a blank line, the input
phase terminates, and the file is closed. Next, the file is
reopencd for input, and the program uses fgets() to display
the contents of the file.

#include <stdio.h>
#include <stdlib.h»>
#finclude <string.h>

int main{int argc, char *argv([])
{

FILE *fp;

char str{80];

/* check for command :ine arg */

276 TEACH YOURSELH
¥ ¢

if{argec!=2}) {
printf{*Specify file name.\n"};
exit(l);

/* open file for output ™/

if((fp = fopen(argv[l], "w"))==NULL) ({
printf(*Cannot open file.\n");
exit(l);

}

printf("Enter a blank line to stop.\n");
do (
printf{®s *);
gets(str);
strcat(str, "\n*); /* add newline */
if(#str !'= ‘\n’) fputs(str. Ip};
)} while(*str != '\n’);
fclose(fp): -~

/* open file for input */

if((fp = fopen{argv(l], "r"))==NULL} {
printf ("Cannot open file.\n");
exit(l);

/* read back the file */ :
do { .
fgets(str, 79, fp);
if({!feof(fp)) printf(str};
} while(!feof (fp));
fclose(fp);

return 0;

)

2. This program demonstrates fprintf() and fscanf(). It first
writes a double, an int, and a string to the file specified on the
command line. Next, it reads them back and displays their
values as verification. It you examine the tile created by this
program, you will sce that it contains human-rcadable text. This

File /0 277

94 LEARN SOME HIGHER (FVEL ™ =" CTIONS ¥

1HUNS

is because fprintf() writes to a disk file what printf() would
write to the screen. No internal data formats arc uscd.

#include <stdio.h>
#include <stdlib.h>
4include <string.h->

int main{int argc,lchar *argvl|])
{

FILE *fp:

double 1d:

int d:

char str(80};

/* check for command line arg ety
if(argc!=2) |
printf("Specify file name.\n");
exit(1);
)

/* open file for output */
if((fp = fopen(argv(l], "w"))==NULL) {
printf ("Cannot open file.\n");
- exit(l);
] -
fprintf(fp, "%f %d $s", 12345.342, 1908, "hello");
fclose(fp);: 2

/* open file for input */

it ((fp =4 fopen{argv(l], *r=}))==NULL) (
printf("Cannot open file.\n");
exit(1l);

fscanf (fp, "%1fidss", &ld, &d, str);
printf("%f %d %s", 1d, 4, str);
fclose(fp):

return 0;

Q278 TEACH YOURSELF
Y ¢

¢ EXERCISES

I In Chapter 6 you wrote a very simple telephone-directory
program. Write a program that expands on this concept hy
allowing the directory o he saved to a disk file. Have the
programn present a menu that looks like this:

1. Enter the names and numbers
2. Find numbers

3. Save direclory to disk

4. Load directory from disk

5. Quit .

The program should be capable of storing 100 names and
numbers. (Use only first names it you like.) Use fprintf() to
save the directory to disk and fscanf() to read it back into
memory

20 Write a program that uses fgets() to display the contents of a
text file, one screenful at a time. After each screen is displayed,
have the program prompt the user for more.

i Write a program that copies a text file. Specify both the source
and destination file names on the command line. Use fgets()
and fputs() o copy the tile. Include full crror checking,

»

p £ EARN TO READ AND WRITE BINAHY“
DATA g

As usctul and convenient as fprintf() and fscanf() are, they arc not
necessarily the most efficient way to read and write numeric data, The
rceason for this is that both fun@®ions perform conversions on the data.
For example, when you output a number using fprintf() the number
15 converted from its binary format into ASCII texl. Conversely, when . f
vou read a number using fscanf(), it must be converted back into its
hinary representation. For many applications, this conversion time

will not be meaningful; for others, it will be a severe limitation. Further,
for some types of data, a file created by fprintf() will also be larger
than one that contains a mirror image of the data using its hinary

iel/o 279

a5 LEARN TO READ AND WIlIE DINALY CATA T

format. For these reasons, the C file system includan oo important
functions: fread() and fwrite(). These functions can read and write
any type of data, using its hinary representation. Their prototypes arc

size_t fread(void *huffer, size_t size, size_t num, FILE *fp);
size_t fwrite(void *buffer, size_t size, size_t num, FILE */p);

As you can sce, these prototy pes introduce some unfamiliar clements.
However, before discussing them, a bricf description of cach function
is neeessary. _

The fread() function reads from the file associated with [p, num
number of objects, each object size bytes long, into the butfer pointed
to by buffer. It returns the number of abjects actually rcad. If this value
is less than men, cither the end of the file has been cncountered or an
error has occurred. You can use feof() or ferror() to find out which.

. The fwrite() function is the opposite of fread(). It writes to the
file associated with fp, num number of objects, cach object size bytes
long, from the buffer pointed to by buffer. It returns the number of
objects written. This value will be less than nun only it an output
error has occurred.

Before looking at any examples, let's examine the new concepts
introduced by the functions' prototy pes.

The first concept is that of the void hointer. A void pointer is a
pointer that can point to any type of data without the use of a type
cast; This is generally referred to as a generic pointer. In €, void
pointers are used for two primary purposes. First, as illustrated by
fread() and fwrite(), they are a way for a function to receive a
pointer to any type of data without causing a type mismatch crror. As
stated carlicr, fread() and fwrite() can be used to read or write any
type of data. Therefore, the functions must be capable of receiving any
sort of data pointed to by bufJer. void pointers make this possible. A
second purpose they serve is to allow a function to return a generic
pointer. You will see an example of this later in this book.

The second new item is the type size_t. This type is defined in the
STDIOH header file. (You will learn how to define types later in this
hook.) A variable of this type is defined by the ANSI C standard as
heing able to hold a value equal to the size of the largest object
supported by the compiler. For our purposes, you can think ol size_t
as being the same as unsigned or unsigned long. The reason that
size_t is used instead of its equivalent built-in type 15 to allow C

2B TEACH YOURSELF
¥ &

compilers running in ditferent environments to accommodate the
needs and confines of those environments.

When using fread() or fwrite() to input or output binary data,
the file must be opened for binary operations. Forgetting this can
cause hard-to-find problems.

To understand the operation of fread() and fwrite(), let's begin
withia simple example. The following program writes an integer to a
tile called MYFILE using its internal, binary representation and then
reads it back. (The program assumes that integers are 2 bytes long.)

#include <stdio.h>
#include <stdlib.h>

int main(veoid)
{
FILE *fp:
cank i;
/* open file for cutput */ &8
1f((fp = fopen("myfile”, "wb"))==NULL)} {
printf{“Cannot open file.\n");

exit(l);

)

i = 100;

1f (fwrite(&i, 2, 1, fp) 1= 1} {
printf("Write error occurred.\n"); .
exit(1);

}
fclose({fp);

/* open file for input */

if((fp = fopen{(*myfile*, "rb"))==NULL) {(
printf ("Cannot open file.\n");
exit(1l);

1f(fread(&i, 2, 1, fp) '= 1} (
printf("Read errar occurred.\n");
exit(1);

}

printf (*i 45 sav. 1);

fclose(fp);

Fevo 287

95 LEARN TO READ AND WRITE BINARY DATA

return 0;

}

Notice how error checking is casily performed in this program by
simply comparing the number of items written oo v ad with that

requested. In some situations, however, you will still necd to use
feof() or ferror() to determine if the end of the file has been .
reached or if an error has occurred.

One thing wrong with the preceding example is that an assumption
about the size of an integer has been made and this size is hardcoded
into the program. Therefore, the program will not work properly with
compilers that use 4-byte integers, for example. More gencrally, the
size of many types of data changes between systems or is difticult to
determine manually. For this reason, C includes the keyword sizcof,
which is'a compile-time operator that returns the size, in bytes, of a
data type or variable. It takes the general forms

sizeol(type)

or
sizeof var_name,

For example, if floats are four bytes long and f is a float variable, both
of the following expressions evaluate to 4:

sizeof f
‘sizeof (float)

When using sizeof with a type, the Lype must be enclosed between
parentheses. No parentheses are needed when using a variable name,
although the use of parentheses in this context is not an error.

By using sizeof, not only do you save yourself the drudgery of
computing the size of some object by hand, but you also ensure the
portability of your code to new environments. An improved version of
the preceding program is shown here, using sizcof.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *fp;

282 TEACH YOURSEL

v c :

int i;

/* open file for output */

if((fp = fopen{ myfile", "wb"))==NULL) {
printf("Cannot open file.\n");
exit(l);

i = 100;

if (fwrite(&i, sizeof(int), 1, fp) !'= 1) (
printf("wWrite error occurred.\n");
exit(l);

}

fclose(fp);

/* open file for input */

if ((fp = fopen({"myfile", *rb"))==NULL) {
printf ("Cannot open file.\n"});
exit(1); p 4

if (fread(&i, sizeof i, 1, fp) != 1} |
printf{"Read error occurred.\n"};
exit(1);

]

printf(*i 4= wad™,1);

fclose(fp);

return 0;

1. This program fills a ten-clement array with floating-point
numbers, writes them to a file, and then reads them back. This
program writes each element of the array separatcly. Becausc
binary data is being written using its internal format, the file
must be opened for binary 170 operations.

#include <stdio.h>
#include <stdlib.h>

95 LEARN TO HZAD AND\WRITE BINARY DATA '

double d[10) = (_ .
10.23, 19.87, 1002.23, 12.9, 0.837,
11.45, 75.34, 0.0, 1.01, 875.875

ki

int main(void)
{

int i;

FILE *fp;

if((fp = fopen("myfile", "wb"))==NULL} {

printf("Cannot open file.\n");
exit(l);

for(i=0; i<10; it+)

if(fwrite(&d[i], sizeof(double}, 1, fp) 1= 1) {
printf(*Write error.\n"); ..
exit(l);

}
fclose(fp);

if((fp = fopen("myfile", "rb"))==NULL} ({
printf ("Cannot open file.\n").
exie (1)

/* clear the array */
for(i=0; i<10; i++) d[i] = -1.0;

for(i=0; i<10; i++)
if(fread(&d[i], sizeof (double), I, EgY i=1) {(
printf("Read error.\n"):
exit(l);
)
fclose(fp);

/* display the array */
for(i=0; i<10; i++) printf("sf * dfi]ys

return 0;

L)
v

284 TEACH YOURSELF
Y ¢

‘The array is cleared between the write and read operations only

to "prove® that it is being filled by the fread() statement.

2. The following program does the same thing as the first, but here

cnly one call to fwrite() and fread() is used because the
cntire array is written in one step, which is much more
officient. This example helps illustrate how powerful these
functions are.

#include <stdio.h>
#include <stdlib.h>

double d[10] = {
10.23, 19.87, 1002.23, 129 0.897,
11.45, 75.34, 0.0, 1.01, 875.875

¥

int main(void)
{

int i;

FILE *fp:

if ((fp = fopen(~myfile", "wb"))==NULL) {
printf ("Cannot open file.\n");
exit (1)

)

/* write the entire array in cne step */
“if(twriteld, sizeof d. I, fp) !'= 9 §
printf("Write érror.\n");
exit(l);
}
fclose(fp);

if((fp = fopen("myfile", "rb"))==NULL) {
printf ("Cannot open file.\n"):
exit(1l);

}

/* clear the array ./
for (i=0; i<10; i++).dli] = -1.0:,

/* read the entire array in one step £/
if (fread(d, sizeof 4, 1, fp) t= 1) {
printf ("Read error.\n");

Fie /0 285
96 UNDERSTAND RANDOM Access ¥

exit(1);
}
fclose(fp);:

/* display the array */
for{(i=0; i<10; i++) printf("%f -, d[i]);

return 0;

EXERCISES

- 1. Write a program that allows a user to input as many double
values as desired (up to 32,767) and writes them to a disk file as
they are entered. Call this file VALUES. Keep a count of the
number of values entered, and write this number to a file called
COUNT.

2. Using the file you created in Exercise 1, write a program that
first reads the number of items in VALUES from COUNT. Next,
rcad the values in VALUES and display them.

| 96 UNDERSMND RANDOM ACCESS

so far, the examples have either written or read a file sequentially
from its beginning to its end. However, using another ot C's file
system functions, you can access any point in a file at any time. The
function that lets you do this is called i'seek(), and its prototype is

L2

int fseek(FILE *fp, long offset, int origin);

—

Here, fppis associated with the file being accessed. The value of offset
determines the number of bytes from orgin to make the new current

c

position. erigin must be one of these macros, shown here with their

meanings:
Origin Meaning
EEK_SET - Seek from start of file
/GEEK_CUR 1 Seek from current location
EEK_END Seek from end of file

_These macros are defined in STDIO.H. For example, if you wanted to
“set the current location 100 bytes from ‘the start of the file, then orgin
will be SEEK_SET and offset will be 100.

The fseck() function returns zero when successfil and nonzero it
a failure occurs. In most implementations, you may scek past the cnd
of the file, but you may never seck to a point before the start of the fiie.
. You can determine the current location of a file using ftell(),
another of C's file system functions. Its prototype is

long fteli(FILE */p);

It returns the location of the current position of the file associated with
fp. If a failure occurs, it returns -1.

In general, you will want to use random access only on binary files.
The reason for this is simple. Because text files may have character
translations performed on them, there may not be a dircct
correspondence between what is in the file and the byte to which it
would appear that you want to seck. The only time you should use
fseek() with a text file is when secking to a position previously
determined by ftell(), using SEEK_SET as the origin.

Remember one important point: Even a file that contains only text
can be opened as a binary file, if you like. There is no inherent
restriction about random access on files containing text. The
restriction applies only to files opened as text files.

L3

1. The following program uses fseck() to report the value of any
byte within the file specified on the command line

.

Fle /0 287
96 UNDERSTAND RANDOM AcCEss ¥

#include <stdio.h>
#include <stdlib.h>

int main{int argc, char *argv(})
{

long loc;

FILE *fp;

/* see if file name is specified */
if(argec!=2) {
printf("File name missing.\n");
exit(1); ' '

if((fp = fopen(argv(i] , "rb"))==NULL) ({
printf (“Cannot open file.\n");
exit(l);

}

printf ("Enter byte to seek to: i i

scanf ("%1d4", &loc):

if(fseek(fp, loc, SEEK_SET)) ({
printf ("Seek error.\n");
exit(1);

printf("value at loc %14 is %d", loc, getc(fp));
fclose(fp):

return 0;

}

2. The following program uses ftell() and fseck() to copy the
contents of one file into another in reverse order. Pay special
attention to how the end of the input file is found. Since the
program has sought to the end of the file, the program backs up
one byte so that the current location of the file associated with
in is at the last actual character in the file.

/* Copy a file'in reverse order */
#include <stdio.h>
#include <stdlib.hs>

int main(int arge, char *argv(])

[

{

288 TEACH YOURSELF
v

C

long loc:

FILE *in, *out:

char ch;

/* see if correct number of command line arguments */

if(arge!=3) {
printf{"Usage: Tevcopy <source> <destination>.\n");
exit(1l);

}

if((in = fopen{argv(l]. =rb"))==NULL) {
printf ("Cannot open input file.\n");
exit(1l):

)

if ((out = fopen(argv(2]. *wb"))==NULL) {
printf (*Cannot open output file.\n"):
exit(l):

]

/ find end of source file o

fceek(in, OL, SEEK_END) ;

loc = ftell(in);

7/ copy file in reverse order */

fee = loo-1; /™ back up past end-of-file mark */

while(loc >= OL] F
fseek(in, loc. SEEK_SET) ;
ch = fgetc(in): : :
fputc(ch, out):
loc~-;

}

c-lose(in);

fclose(out);

return 0:

}

3. 'This program writes . double values to disk. It then asks you
which one you want to sce. This example shows how you can
randomly access dita of any type. You simply need to multiply
the size of the base data type by its index in the file.

¢include <stdio.h>
¢iaclude <stdlib.h>

Fiel/0 289

96 UNDERSTAND RANDOM ACCESS ¥

double d[10] = {
10.23, 19.87, 1002.23, 12.9, 0.897,
11.4S, 75.34; 0.0; 1.01, B75.875

Fx

int main(void) -
{
long loc;
double value;
FILE *fp;

if((fp = fopen("myfile", "wb"))==NULL) {(
printf ("Cannot open file.\n");
exit(1);

}

/* write the entire array in one step: */

if(fwrite(d, sizeof d, 1, fp) 1= 1) ¢
printf{"Write error.\n");
exit(l);

}

fclose(fp);

if ((fp = fopen(*myfile", *rb"))==NULL) (
printf ("Cannot open file.\n");
exit(1);

)

printf("which element? *);

scanf ("%1d", &loc);

if (fseek(fp, loc*sizeof (double), SEEK_SET)) {
printf(*Seek error.\n");
exit(1);

}

fread(&value, sizeof (double), 1, fp);
printf("Element %1d is $f*, loc, value):;

fclose (fp) ;

return 0;

19

290 TEACH YOURSELF
LY

1. Write a program that uses fseek() to display every other byte
in a text file. (Remember, you must open the text file as a
binary file in order for fseek() to work properly.) Have the
user specify the file on the command linc.

(8]

Write a program that searches a file, specified on the command
line, for a specific integer value (also specified on the command
line). If this value is found, have the program display its
location, in bytes, relative to th{?zﬂ of the file.

2%

v
e J EARM%;/VARJOUS FILE-SYSiEM
F

CTIONS

You can rename a file using rename(), shown here:
int rename(char *oldname, char *newnarne),

Here, oldname points to the original name of the file and newname
points to its new name. The function returns zero if successtul and
nonzero if an error occurs.

You can erase a file using remove(). Its prototype is

int remove(char *file-name);

This function will erase the file whose name matches that pointed to
by file-name. It returns zero if successful and nonzero if an error occurs.

You can position a file’s current location to the start of the file using
rewind(). Its prototype is

void rewind(FILE */p);

It rewinds the file associated with fp. The rewind() function has no
return value, because any file that has been successfully opened can
be rewound.

Filevo 291
97 LEARN ABOUT VARIOUS FILE-SYSTEM FUNCTIONS v

Although seldom necessary because of the way C’s file system
works, you can cause a file’s disk buffer to be flushed using fflush().
[ts prototype is

int fflush(FILE */p);

It flushes the buffer of the file associated with fp. The function returns
zero if successful, EOF if a failure occurs. If you call fflush() using a
NULL for [p, all existing disk buffers are flushed.

1. This program demonstrates remove(). It prompts the user for
the file to erase and also provides a safety check in case the user
entered the wrong name.

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(void) -
{
char fname(80];

printf("Enter name of file to erase: ");
gets (fname) ;

printf ("Are you sure? (Y/N) ");
if (toupper (getchar())=='Y"*) remove (fname) ;

return 0;

)

2. The tollowing program demonstrates rewind() by displaying
the contents of the file specified on the command line twice.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

292 TEACH YOURSELF
¥y o

c

{
FILE *fp:

~/* see if file name is specified */
if (argc!=2) {
printf("File name missing.\n");:

exit(1l);

}

if((fp = fopen(argv([l], "r"))==NULL) {
printf ("Cannot open file.\n");
exit (1) ;

y

/* show it once */
while(!feof (fp))
putchar (getc(fp));

rewind(fp);

/* show it twice */
while(!feof (fp))
putchar (getc (£p));

fclose(fp);

return 0;
}

3. This fragment causes the buffer associated with fp to be flushed
to disk.

FILE *fp;

fflush(fp);
i This program renames a file called MYFILE. TXT to
YOURFILE. TXT.
#include <stdio.h>
int main(void,

i

if(rename("myfile.txt", “"yourfile.txt"))

revo 203
98 LEARN ABOUT THE STANDARD STREAMS Y
printf ("Rename Eailed.\n"){

else
printf ("Rename successful.\n")

return 0;

EXERCISES

1. Improve the erase program so that it notifies the user if he or
she tries to remove a nonexistent file.

2. On your own, think of ways that rewind() and fflush() could
be useful in real applications.

—

B | EARN ABOUT STANDARD

When a C program begins execution, three streams are automatically
opened and available for use. These streams are called standard input
(stdin), standard output (stdout), and standard error (stderr). By
default, they refer to the console, but in environments that support
redirectable 1/0, they can be redirected by the operating system to
some other device.

Normally, stdin inputs from the keyboard; stdout and stderr write
to the screen. These standard streams are FILE pointers and may be
used with any function that requires a variable of type FILE *. For
cxample, you can use fprintf() to print formatted output to the
screen by specifying stdout as its output stream. The following two
statements are functionally the same:

fpréntf(stdout. "$4d %c %s", 100, ‘c’, "this is a string");
printf("%d %c %s*, 100, ‘c’, "this is a string"):

In actuality, ¢ makes little distinction between console 170 and file
I/0. As just shown, it is possible to perform console /0 using several

294 TEACH YOURSELF
v &

of the file-system functions. Although it may come as a bit of a
surprise, it is also possible to perform disk file I/O using console /0O
functions, such as printf(). Here's why.

All of the functions described in Chapter 8 and referred to as
"console I/0 functions® are actually special-case file-system functions
that automatically operate on stdin and stdout. Thus, the console 1/0
functions are just conveniences for you, the programmer. As far as C
is concerned, the console is simply another hardware device. You
don't actually need the console functions to access the console. Any
file-system function can access it. (Of course, non-standard 1/0
functions like getche() are differentiated from the standard
file-system functions and do, in fact, operate only on the console.) In
environments that allow redirection of /0, stdin and stdout could
refer to devices other than the keyboard and screen. Since the console
functions operate on stdin and stdout, if these streams are redirected,
the "console” functions can be made to operate on other devices. For
example, by redirecting the stdout to a disk file, you can use a
"console” 170 function to write to a disk file.

One important point: stdin, stdout, and stderr are not variables.
They may not be assigned a value using fopen(), nor should you
attempt to close them using fclose(). These streams are maintained
internally by the compiler. You are free to use them, but not to
change them.

1. Consider this program:
" #include <stdio.h>
int main(void)

{
printf ("This is an example of redirection.\n");

return 0;
)

Assume that this program is called TEST. If you execute TEST
normally, it displays the string on the screen. However, if an

Filel’/0 295

98 LEARN ABOUT THE STANDARD STREAMS v

environment supports redirection of 1/0, stdout can be
redirected to a file. For example, in a DOS, 0S/2, Windows, or
UNIX environment, executing TEST like this

TEST > OUTPUT

causes the output of TEST to be written to a file called OUTPUT.
You might want to try this now for yourself.

_ Input can also be redirected. For example, consider the
following program:

#include <stdio.h>

int main(void)
{

<A Ef

scanf ("%d", &i);
printf("%d", 1i):

return 0;

)

Assuming it is called TEST, executing it as

TEST < INPUT

causes stdin to be directed to the file called INPUT. Assuming
that INPUT contained the ASCII representation for an integer,

the value of this integer will be read from the file and printed on
the screen.

3. As mentioned earlier in this book, when using gets() it is

possible to overrun the array that is being used to receive the
characters entered by the user because gets() provides no
bounds checking. One way around this problem is to use

fgets(), specifying stdin for the input stream. Since fgets()
requires you to specify a maximum length, it is possible to
prevent an array overrun. The only trouble is that fgets() does
not remove the newline character and gets() does. This means
that you will have to manually remove it, as shown in the
following program: ‘

#include <stdio.h>
#include <string.h>

296 TEACH YOURSELF
e

v

c

int main(void)

{

char str(10];
in€ iy

printf("Enter a string: "):
fgets(str, 10, stdin);

/* remove newline, if present */
i = strlen{str)-1;
if(str{i]=='\n") stri] = *\O';

printf(*This is your string: %s", str):

return 0;

EXERCISES

I. Write a program that copies the contents of one text file to
another. However, use only "console” 1/0 functions and
redirection to accomplish the file copy.

2. On your own, experiment using fgets() to read strings entered
from the keyboard.

Before continuing, you should be able to answer these questions
and complete these exercises:

e

Write a program that displays the contents of a text file (specified
on the command line), one line at a time. After each line is
displayed, ask the user if he or she wants to see another line.

File /0 297

98 LEARN ABOUT THE STANDARD STREAMS ¥

2. Write a program that copies a text file. Have the user specify
both file names on the command line. Have the copy program
convert all lowercase letters into uppercase ones.

3. What do fprintf() and fscanf() do?

4. Write a program that uses fwrite() to write 100 randomly
generated integers to a file called RAND.

5. Write a program that uses fread() to display the integers stored
in the file called RAND, created in Exercise 4.

6. Using the file called RAND, write a program that uses fscek()
to allow the user to access and display the value of any integer
in the file.

7. How do the "console” 1/0 functions relate to the file system?

Cumulative
Skills Check

This section checks how well you have intt:grated the material in
this chapter with that from earlier chapters.

1. Enhance the card-catalog program you wrote in Chapter 8 so
that it stores its information in a disk file called CATALOG.
When the program begins, have it read the catalog into memory.
Also, add an option to save the information to disk.

2. Write a program that copies a file. Have the user specify both
the source and destination files on the command line. Have the
program remove tab characters, substituting the appropriate
number of spaces.

3. On your own, create a small database to keep track of anything
you desire—your CD collection, for example.

10

Structures and Unions

chapter objectives

10.7 Master structure basics
10.2 Declare pointers to structures
10.3 Work with nested structures
10.4 Understand bit-fields

10.5 Create unions

299
v

300 TEACH YOURSELF

v

c

perte

6.

N this chapter you will learn about two of C's most important
user-defined types: the structure and the union.

Skills Check

Before proceeding you should be able to answer these questions and

»rm these exercises:

Write a program that copies a file. Have the user specify both
the source and destination file names on the command line.
Include full error checking,

Write a program using fprintf()to create a file that contains
this information:

this is a string 1230.23 1FFF A

Use a string, a double, a hexadecimal integer, and character
format specifiers and values.

Write a program that contains a 20-element integer array.
Initialize the array so that it contains the numbers 1 through 20.
Using only one fwrite() statement, save this array to a file
called TEMP,

Write a program that reads the TEMP file created in Exercise 3
into an integer array using only one fread() statement. Display
the contents of the array.

What are stdin, stdout, and stderr?

How do functions like printf() and scanf() relate to the C
file system?

T MAerR STRUCTURE BASICS

A structure is an aggregate (or conglomerate) data type that is composed
of two or more related variables called members. Unlike an array in

STRUCTURES AND UNIONS 301
101 MASTER STRUCTURE BASICS ¥

which each element is of the same type, each member of a structure
can have its own type, which may differ from the types of the other
members. Structures are defined in C using this general form:

struct tag-name {
type memberl;
type member2;
type member3;

type memberN;
} variable-fist;

The keyword struct tells the compiler that a structure type is being
defined. Each type is'a valid C type. The tag-name is essentially the
type name of the structure, and the variable-list is where actual
instances of the structure are declared. Either the tag-name or the
variable-list is optional, but one must be present (you will see why
shortly). The members of a structure are also commonly referred to as
fields or elements. This book will use these terms interchangeably.
Generally, the information contained in a structure is logically
_ related. For example, you might use a structure to hold a person's
address. Another structure might be used to support an inventory
program in which each item's name, retail and wholesale cost, and the
quantity on hand are stored. The structure shown here defines fields
that can hold card-catalog information:

struct catalog {

char name(40]; /* author name */
char title[40]; F% EiEla X/
char pub[40]; /* publisher */
unsigned date; /* copyright date */
unsigned char ed; /* edition */

} card;

Here, catalog is the type name of the structure. It is not the name
of a variable. The only variable defined by this fragment is card. It is
important to understand that a structure declaration defines only a
logical entity, which is a new data type. It is not until variables of that
type are declared than an object of that type actually exists. Thus,

- catalog is a logical template; card has physical reality. Figure 10-1

302 TEACH YOURSELF

¥ e
How the card hame 40 bytes //
Structure variable -
appears in title 40 bytes Pt
memory pub 40 bytes \ N
(assuming 2-byte date 2 bytes J
integers i
3 o ed 1 byte I

shows how this structure will appear ir memory (using 2-byte
integers).

To access a member of a structure, you must specify both the
structure variable name and the member name, separated by a period.
For example, using card, the following statement assigns the date
field the value 1776:
card.date = 1776;

C programmers often refer to the period as the dot operator. To print
the copyright date, you can use a statement such as:

printf ("Copyright date: %u", card.date);
To input the date, use a scanf() statement such as:

scanf ("$u", &card.date);

Notice that the & goes before the structure name, not before the
member name. In a similar fashion, these statements input the
author's name and output the title:

gets (card.name) ;
printf(*%s", card.title);

To access an individual character in the title field, simply index
title. For example, the following statement prints the third letter:

printf("%c", card.title([2]);

Once you have defined a structure type, you can create additional
variables of that type using this general form:

struct tag_name var_list,

STRUCTURES AND UNIONS 303
101 MASTER STRUCTURE BASICS ¥

Assuming, for example, that catalog has been defined as shown
earlier in this section, this statement declares three variables of type
struct catalog:

struct catalog varl, var2, var3;

This is why it is not necessary to declare any variables when the
structure type is defined. You can declare them separately, as nceded.

A key concept to understand is that each instance of a structure
contains its own copy of the members of the structure. For example,
given the preceding declaration, the title field of varl is completely
separate from the title field of var2. In fact, the only relationship that
varl, var2, and var3 have with one another is that they are all
variables of the same type of structure. There is no other linkage
among the three.

If you know you only need a fixed number of structure variables,
you do not need to specify the tag name. For example, this code
creates two structure variables, but the structure itself is unnamed:

struct
int &aj
char ch;
) varl, var2;

In actual practice, however, you will usually want to specify the tag name.

Structures can be arrayed in the same fashion as other data types.
For example, the following structure definition creates a 100-clement
array of structures of type catalog:

struct catalog cat[100];

To access an individual structure of the array, you must index the
array name. For example, the following accesses the first structure:

cat[0]

To access a member within a specified structure, follow the index
with a period and the name of the member you want. For example,
the following statement loads the ed field of structure 33 with the
value of 2:

cat[33].ed = 2;

B04& TEACH YOURSELF
Y ¢

Structures may be passed as parameters to functions just like any
other type of value. A function may also return a structure.

You may assign the contents of one instance of a structure to
another as long as they are both of the same type. For example, this
fragment is perfectly valid:
struct s_type {

int a;

float f;

} varl, var2;

varl.a = 10;
varl.f = 100.23;

var2 = varl;

After this fragment executes, var2 will contain exactly the same thing
‘as varl,

v 1. This program demonstrates some ways to access structure
members: i

#ihclude <gtdio.h>

struct s_type {
int i;
char ch;
double d;
char,.str[80];

-} 8;

int main(void)
{
printf(*Enter an integer: *);
scanf ("%d:", &s.i);
printf("Enter a character: *);
scanf (* %c", &s.ch);’
printf("Enter a floating point number: i 1
scanf (*$1f", &s.d);
printf("Enter a string: ");

scanf ("%s", s.str);
printf("%d %c %f %s", s.i, s.ch, s.d, s.str);

return 0;
}

2. When you need to know the size of a structure, you should use
the sizeof compile-time operator. Do not try to manually add up
the number of bytes in each field. There are three good reasons
for this. First, as you learned in the preceding chapter, using
sizeof ensures that your code is portable to different
environments. Second, in some situations, the compiler may
need to align certain types of data on even word boundaries. In
this case, the size of the structure will be larger than the sum of
its individual elements. Finally, for computers based on the
8086 family of CPUs (such as the 80486 or the Pentium), there
are several different ways the compiler can organize memory.
Some of these ways cause pointers to take up twice the space
they do when memory is arranged differently.

When using sizeof with a structure type, you must precede
the tag name with the keyword struct, as shown in this program:

#include <stdio.h>

struct s_type {
int i;
char ch;
int *p;
double d;

} s;

int main(void)
{
printf("s_type is %d bytes long®, sizeof (struct s_type));

return 0;

}

3. To see how useful arrays of structures are, examine an
improved version of the card-catalog program developed in the
preceding two chapters. Notice how using a structure makes it
easier to organize the information about each book. Also notice

\yg TEACH YOURSELF
Y ¢

how the entire structure array is written and read from disk in a
single operation.

/* An electronic card catalog. */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

fidefine MAX 100

int menu(void);

void display(int 1i);
void author_search(void) ;
void title_search(void);
void enter(veoid) ;

void save(void);

void leoad(void) ;

struct catalog {

char name[B80]; /* author name */
char title([BO0]; £* title &/
char pub[80]; /* publisher */
unsigned date; /* copyright date */
unsigned char ed; /* edition */

} cat(MAX];

int top = 0; /* last location used */

int main(void)
{

int choice;
load(); /* read in catalog */
do {

choice = menu() ;
switch{choice) {

case 1: enter(); /* enter books */
break;

case 2: author_search(); /* search by author */
break;

case 3: title_search(}); /* search by title */
break;

case 4: savel();

L

STRUCTURES AND UNIONS 307
101 MASTER STRUCTURE 8ASICS = ¥

} while(choice!=5);

return 0;

/* Return a menu selection. */
menu (void)
{

int i;

char str[80];

printf ("Card catalog:\n");
printf(" 1. Enter\n"):

printf(" 2. Search by Author\n");
printf(" 3. Search by Title\n");
printf(" 4. Save catalcg\n");
printf (" 5. Quit\n");
do {
printf(“Choose your selection: "};
gets (str) ;

i = atoi(str);
priotf (*Xn")
} while(i<l || i»5);

return i;

/* Enter books into database. */
void enter(void)
{

inet 1

char temp[80];

-for(i=top; i<MAX; i++) (
printf("Enter author name (ENTER to quit): "};
gets(cat(i].name);
if(!*cat[i].name) break:
printf("Enter title: ");
gets(cat(i].title);
printf("Enter publisher: *);
gets(cat([i].pub);
printf ("Enter copyright date: "):
gets(temp) ;
cat[i].date = (unsigned) atoi (temp) ;

3& TEACH YOURSELF
Y ¢

printf ("Enter edition: ");

gets(temp) ;

cat[i).ed = (unsigned char) atoi(temp);
}
top = i;

/* Search by author. */
void author_search(void)
{

char name[80];

int i, found;

printf({"Name: *);
gets(name) ;

found = 0;
for(i=0; i<top; i++)
if(!strcmp(name, cat(i].name)) (
display(i);
found = 1;
printf ("\n*);
} 5

if(!found) printf("Not Found\n"):;

/* Search by title. */-
void title_search(void)
{ .

char title(80];

int i, found;

printf("Title: *);
gets(title);

found = 0;
for(i=0; i<top; i++)
if(!strcmp(title, cat[i).title)) {
display (i) ;
found = 1;
printf("\n");
}
if (!{found) printf("Not Found\n®*);

\g
STRUCTURES AND UNIONS 309

101 MASTER STRUCTURE BASICS

/* Display catalog entry. */
void display(int i)

{

printf ("$s\n", cat(i).title);

printf ("by %s\n", cat(i).name);

printf ("Published by %s\n", cat[i].pub); ‘

printf("Copyright: %u, %u edition\n", cat[i].date,
cat[i].ed);

/* Load the catalog file. */
void leoad(void)

{

}

FILE *fp;

if((fp = fopen("catalog", "rb*))==NULL} {
printf("Catalog file not on disk.\n");
return;

}

if (fread(&top, sizeof top, 1, fp) != 1) { /* read count */
printf ("Error reading count.\n");
exit(1l);

}

if (fread(cat, sizeof cat, 1, fp) != 1) { /* read data */
printf ("Error reading catalog data.\n"):
exit(1l}); '

}

fclose(fp);

/* Save the catalog file. */
void save (void)

{

FILE *fp;

if((fp = fopen("catalog", "wb"))==NULL) {
printf ("Cannot open catalog file.\n");
exic(1);

310 TEACH YOURSELF
v

}

“/

if(fwrite(&top, sizeof top, 1, £p) != 1) { /* write count */
printf("Error writing count.\n");
exit(1);

}

if (fwrite(cat, sizeof cat, 1, fp) != 1) { /* write data */
printf("Error writing catalog data.\n"};
exit!l);

}

fclose(fp);

N~

4. In the preceding example, the entire catalog array is stored on
disk, even if the array is not full. If you like, you can change the
load() and save() routines as follows, so that only structures
actually holding data are stored on disk:

/* Load the catalog file. */
void load(void)

{

FILE *fp;

int 1i;

if((fp = fopen("catalog", "rb"))==NULL) {
printf("Cataleg file not on disk.\n"):
return;

¥

if(fread(&top, sizeof top, 1, fp) != 1) { /* read count */
printf("Error reading count.\n");
exit(1l);

}
for(i=0; i<=top; i++) /* read data */

if (fread(&cat{i], sizeof (struct catalog}, 1, fp)!= 1) {
printf("Error reading catalog data.\n"); i
exit(1);
}
fclose(fp);

STRUCTURES AND UNIONS 311
101 MASTER STRUCTURE BASICS ¥

/* Save the catalog file. */
void save(void)
{

FILE *fp;
int 4
if((fp = fopen("catalog", "wb"))==NULL) {
printf ("Cannot open catalog file.\n");
exit(1l);
b {
if (fwrite(&top, size=of top, 1, fp) !=1) { /* write count */
printf ("Error .riting count.\n");
exit(1);

)
for(i=0; i<=top; i++) /* write data */
if (fwrite(&cat[i], sizeof (struct catalog), 1, fp)'!'= 1) {
printf("Error writing catalog data.\n");
exit(1l);

fclose(fp):
}

5. The names of structure members will not conflict with other
variables using the same names. Because the member name is
linked with the structure name, it is separate from other
variables of the same name. For example, this program prints
10 100 101 on the screen.

#include <stdio.h>

int main(void)
{
struct s_type {
int 1;
ing g5
} s;

.= .
int 1;

1., = 10

312 TEACH YOURSELF

v

c

8.4 = 100;
101;

n

printf("%d %d %47, i, s.i, s.3);

return 0;
}

The variable i and the structure member i have no relationship

" to each other.

. As stated earlier, a function may return a structure to the calling

procedure. The following program, for example, loads the
members of varl with the values 100 and 123.23 and then
displays them on the screen:

#include <stdio.h>
struct s_type {
int i;
double d;
Yi

struct s_type f(void);
int main(void)
{

struct s_type varl;

varl = £();
printf(“%d %£*, varl.i, varl.d);

return 0;
struct s_type f(void)
{

struct s_type temp;

temp.i = 100;
temp.d = 123,.23;

L]
return temp;

STRUCTURES AND UNIONS 313
101 MASTER STRUCTURE BAsics ¥

7. This program passes a structure to a function:

#include <stdio.h>

struct s_type (
int 1i;
double 4;

};

void f(struct s_type temp);

int main(void)
{
struct s_type varl;

varl.i = 99;
varl.d = 98.6;
f(varl);

return 0;

void f(struct s_type temp)
{

printf(*%d $f", temp.i, temp.d);
} [

1. In Chapter 9, you wrote a program that created a telephone
directory that was stored on disk. Improve the program so that it
uses an array of structures, each containing a person’s name,
area code, and telephone number. Store the area code as an
integer. Store the name and telephone number as strings. Make
the array MAX elements long, where MAX is any convenient
value that you choose.

2. What is wrong with this fragment?

struct s_type (
int 1i;

314 TEACH YOURSELF
¥ ¢

long 1;
char str(80];
} s;

i =10;:

3. On your own, examine the header file STDIO.H and look at how
the FILE structure is defined.

_DECLARE POINTERS TO STRUCTURES

It is very common to access a structure through a pointer. You declare
a pointer to a structure in the same way that you declare a pointer to
any other type of variable. For example, the following fragment
defines a structure called s_type and declares two variables. The first,
s, is an actual structure variable. The second, p, 1s a pointer to
structures of type s_type.

struct s_type {
int i;

charﬁigélﬁol;

} s, B

Given this definition, the following statement assigns to p the
address of s:

p = &s:.

Now that p points to s you can access s through p. However, to access
an individual element of s using p you cannot use the dot operator.
Instead, you must use the arrow operator, as shown in the following
example:

STRUCTURES AND UNIONS 315
102 DECLARE POINTERS TO STRUCTURES Y

This statement assigns che value 1 to element i of s through p. The
arrow operator is formed using a minus sign followed by a greater-than
sign. There must be no spaces between the two.

C passes structures to functions in their entirety. However, if the
structure is very large, the nassing of a structure can causc a
considerable reduction in a program’s execution speed. For this
reason, when working with large structures, you might want to pass a
pointer to a structure in situaticns that allow it instead of passing the
structure itself.

When accessing a member using a structure variable, use the dot operator.
When accessing a member using a pointer, use the arrow operator.

1. The following program illustrates how to use a pointer to a
structure:

#include <stdio.h>
#include <string.h>

struct s_type (

int i;
char str[80]; %
: peligi
Y & *py

int main(void)

r
L

p = &s;

s.i = 10; /* this is functionally the same */
p->i = 10; /* as this */

strcpy(p->str, "I like structures.");

printf("%d %d %s", s.i, p->i, p-»str);

return 0;

316 TEACH YOURSELF
| A

2. One very useful application of structure pointers is found in C's
time and date functions. Several of these functions use a pointer
to the current time and date of the system. The time and date
functions require the header file TIME.H, in which a structure
called tm is defined. This structure can hold the date and time
broken down into its elements. This is called the broken-down
time. The tm structure is defined as follows:

struct tm {
int tm_sec; /* seconds, 0-61 */
int tm_min; /* minutes, 0-59; */
int tm_hour; /* hours, 0-23 */
int tm_mday; /* day of the month, 1-31*/;
int tm_mon; /* months since Jan, 0-11 */
int tm_year; /* years from 1900 */
int tm_wday; /* days since Sunday, 0-6*/
int tm_yday; /* days since Jan 1, 0-365 */
int tm_isdst; /* Daylight Saving Time indicator */

Yii

The value of tm_isdst will be positive if Daylight Saving Time is
in effect, zero if it is not in effect, and negative if there is no
information available. Also defined in TIME.H is the type
time_t. It is essentially a long integer capable of representing
the time and date of the system in an encoded implementation-
specific internal format. This is referred to as the calendar time.
To obtain the calendar time of the system, you must use the
time() function, whose prototype is: -

time_t time(time_t *systime) ;

The time() function returns the encoded calendar time of the
system or -1 if no system time is available. It also places this
encoded form of the time into the variable pointed to by systime.
However, if systime is null, the argument is ignored.

Since the calendar time is represented using an implementation-
specified internal format, you must use another of C's time and
date functions to convert it into a form that is easier to use. One
of these functions is called localtime(). Its prototype is

-
struct tm *localtime(time_t *systime) ;

STRUCTURES AND UNIONS 317
102 DECLARE POINTERS TO STRUCTURES ¥

The localtime() function returns a pointer to the broken-down
form of systime. The structure that holds the broken-down time
is internally allocated by the compiler and will be overwritten
by each subsequent call.

This program demonstrates time() and localtime() by
displaying the current time of the system:

#include <stdio.h>
#include <time.h>

int main{void)

{
struct.tm *systime;
time_t t;

t = time(NULL) ;
systime = localtime (&t);

printf ("Time is %.2d:%.2d:%.2d\n", systime->tm_hour,
systime->tm_min, systime->tm_sec);

printf("Date: %.2d/%.2d/%.2d", systime->tm_mon+1,
systime->tm_mday, systime->tm_year);

return 0;

)
Here is sample output produced by this program:

Time is 10:32:49 -
Date: 03/15/97

. Is this program fragment correct?

struct s_type (
int a:
int b;

} s, 'p

B 18 TEACH YOURSELF
Y ¢

int main(void)

2. Another of C's time and date functions is called gmtime(). Its
prototype is

struct tm *gmtime(time_t *time);

The gmtime() function works exactly like localtime(),
except that it returns the Coordinated Universal Time (which is,
essentially, Greenwich Mean Time) of the system. Change the
program in Example 2 so that it displays both local time and
Coordinated Universal Time. (Note: Coordinated Universal
Time may not be available on your system.)

L d

L_Wonx WITH NESTED STRUCTURES

So far, we have only been working with structures whose members
consist solely of C's basic types. However, members can also be other
structures. These are referred to as nested structures. Here is an
example that uses nested structures to hold informartion on the
performance of two assembly lines, each with ten workers:

#define NUM_ON_LINE 10

struct worker {
char name[80];
int avg_units_per_hour;
int avg_errs_per_hour;

struct asm_line {
int product_code;
double material_cost;

g

STRUCTURES AND UNIONS 319
103 WORK WITH NESTED STRUCTURES ¥

struct worker wkers|[NUM_ON_LINE];
} linel, line2;

To assign the value 12 to the avg_units_per_hour of the second
wkers structure of linel, use this statement:

linel.wkers[l].avg_units_per_hour = 12;

As you see, the structures are accessed from the outer to the inner.
This is also the general case. Whenever you have nested structures,
“you begin with the outermost and end with the innermost.

1. A nested structure can be used to improve the card catalog
program. Here, the mechanical information about each book is
stored in its own structure, which, in turn, is part of the catalog
structure. The entire catalog program using this approach is
shown here. Notice how the program now stores the length of
the book in pages.

/* An electronic card catalog--3rd Improvement. */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAX 100

int menu(void);

void display(int i) ;
void author_search(void);
void title_search(void);
void enter(veid);

void save(void);

void load(void);

struct book_type {
unsigned date; /* copyright date */
unsigned char ed; /* edition */
unsigned pages; /* length of book */
b

2
370

TEACH YOURSELF
[%
struct catalog {
char name(80]; /* author name */
char title(80]; /* title */
char pub[80]; /* publisher */
struct book_type book; /* mechanical info */
} cat[MAX];
int top = 0; /* last location used */

int main(void)

{

int choice;

load(); /* read in catalog */

do {

-

choice = menu();
switch({choice) {
case 1: enter(); /* enter books */

break;

case 2: author_search(); /* search by author */
break;

case 3: title_search(); /* search by title */
break;

case 4: savel();

}

} while(choice!=5);

return 0;

/* Return a menu selection. */

r

menu (void)

(

int i

char

str(80];

printf ("Card catalog:\n");
printf(" 1. Enter\n");

printf(" 2. Search by Author\n-}:
printf(" 3. Search by Title\n");
printf(" 4. Save catalog\n");
printf(* 5. Quit\n");

do {

STRUCTURES AND UNIONS 327
103 WORK WITH NESTED STRUCTURES Y

printf (“Choose your selection: ");
gets(str)
i = atoi(str);
printf("\n");
} while(i<l || i»5);

return i;

/* Enter books into database. */
void enter (void)
{

int i;

char temp([80];

for(i=top; i<MAX; i++) {
printf("Enter author name (ENTER to quit): "),
gets(cat(i) .name);
if(!*cat[i].name) break:;
printf ("Enter title: *):
gets(cat[i].title);
printf({"Enter publisher: ");
gets(cat(i].pub);
printf ("Enter copyright date: Vi
gets(temp) ;
cat[i] .book.date = (unsigned) atoi{temp):
printf ("Enter edition: ");
gets (temp) ;
cat[i] .book.ed = (unsigned char) atoi (temp) :
printf("Enter number of pages: "“);
gets (temp) ;
cat[i] .book.pages = (unsigned) atol(temp)

}

top = i;

/* Search by author. */
void author_search(void)
{

char name[80):

int 1, found;

printf ("Name: =).
gets(name) :

21

W

322 TEACH YOURSELF
LA

found = 0;
for(i=0; i<top; i++)
if (!strcmp (name, cat[i].name)) {
display(i);
found: & 17
prinef {“\n"™);
}

if(!found) printf ("Not Found\n");

/* Search by title. */
void title_search(void)
{

char title[80]:

int i, found:

prinéft'Title: LA
gets(title);

found = 0;

for(i=0; i<top; i++)
if{!strcmp{title, cat[i].title)) {
display(i):
found = 1;
printf("\n");
}
if (! found) printf("Not Found\n");

/* Display catalog entry. */

void display({int i)
printf(“%s\n", cat[i].title);
printf (“by %s\n", cat[i].name);
printf("Published by %$s\n", cat[i].pub);
printf("Copyright: %u, edition: %u\n*",

cat[i] .book.date, cat[i].book.ed);

printf("Pages: %u\n", cat[i].book.pages);

}

/* Load the catalog file. */

o

STRUCTURES AND UNIONS 323

103 WORK WITH NESTED STRUCTURES ¥
voidﬂlpad[Void)
{
FILE *fp;
if((fp = fopen{"catalog", "rb"))==NULL) {
printf("Catalog file not on disk.\n");
return;
}
if (fread(&top, sizeof top, 1, fp} != 1) { /* read count */
printf ("Error reading count.\n");
T oexit(l); . ’
} - .
if {fread(cat, sizeof cat, 1, fp) != 1) { /* read data */
printf ("Error reading catalog data.\n");
exit(1l);
1
fclose(fp);
}
/* Save the catalog file. */
void save(void)
{
FILE *fp;
"if((fp = fopen("catalog", "wb"))==NULL) {
printf ("Cannot open catalog file.\n");
exit (1)
}
if (fwrite(&top, sizeof top, 1, fp) != 1) { /* write count */
printf ("Error writing count.\n");
exit(1);
)
if (fwrite(cat, sizeof cat, 1, fp) != 1) { /* write data. */

printf ("Error writing catalog data.\n");
exic(1l);

324 TEACH YOURSELF
¥ e
}

fclose(fp);

L

EXERCISES

1. Improve the telephone-directory program you wrote earlier in
this chapter so that it includes each person’s mailing address.
Store the address in its own structure, called address, which is
nested inside the directory structure,

[104 | vansns TAND BIT-FIELDS

C allows a variation on a structure member called a bit-field. A bu-field
is composed of one or more bits. Using a bit-field, you can access by
name one or more hits within a byte or word. To define a bit-field, use
this general form:

type name . size,

Here, type is either int or unsigned. If you specify a signed bit-field,
then the high-order bit is treated as a sign bit, if possible. The number
of bits in the field is specified by size. Notice that a colon separates the
name of the bit-field from its size in bits.

Bit-ficlds are useful when you want to pack information into the
smallest possible space. For example, here is a structure that uses
bit-ficlds to hold inventory information.

struct b_type (
unsigned department: 3; /* up to 7 departments */
unsigned instock: 1; % Lf AR SEoek,; 'O 2F QuUE Y/
unsigned backordered: 1; /* 1 if backordered, 0 if not */

STRUCTURES AND UNIONS 325
104 UNDERSTAND BIT-FIELDS ¥

unsigned-lead_time: 3; /* order lead time in months */
} inv[MAX_ITEM]:

In this case one byte can be used to store information on an inventory
item that would normally have taken four bytes without the use of
bit-ficlds. You refer to a bit-field just like any other member of a
structure. The following statement, for example, assigns the value 3 to
the department field of item 10:

inv[9] .department = 3;
The following statement determines whether item 5 is out of stock:

if(linv([4]).instock) printf("Out of Stock™);:
else printf("In Stock"):

-
It is not necessary to completely define all bits within a byte or
word. For example, this is perfectly valid:

struct b_type {
Tt A 23
int bz 3;

} o

The C compiler is free to store bit-fields as it sees fit. However,
usually the compiler will automatically store bit-fields in the smallest
unit of memory that will hold them. Whether the bit-fields are stored
high-order to low-order or the other way around is impleme ntation-
dependent. However, many compilers use high-order to low-order.

You can mix bit-fields with other types of members in a structure’s
definition. For example, this version of the inventory structure also
includes room for the name of each item:

struct b_type (

char name[40]; /* name of item */

unsigned department: 3; /* up teo 7 departments ¥
unsigned instock: 1; sl i f in gtock, 0 1f met %/
unsigned backordered: 1; /* 1 if backordered, 0 if not */
unsigned lead time: 3; /* order lead time in months */

} inv{MAX_ITEM];

Because the smallest addressable unit of memory is a byte, you
cannot obtain the address of a bit-field variable.

326 TEACH YOURSELF

v

c

Bit-fields are often used to store Boolean (true/false) data because
they allow the efficient use of memory —remember, you can pack
eight Boolean values into a single byte.

1.

It is not necessary to name every bit when using bit-ficlds. Here,
for example, is a structure that uses bit-fields to access the first
and last bit in a byte.

struct b_type {
unsigned first: 1;
int : 6;
unsigned last: 1;
}i

The use of unnamed bit-fields makes it easy to reach the bits
you are interested in.

. To see how useful bit-fields can be when working with Boolean

data, here is a crude simulation of a spaceship flight recorder.
By packing all the relevant information into one byte,
comparatively little disk space is used to record a flight.

/* Simulation of a 100 minute spaceship
flight recorder.

*/

#include <stdlib.h>

#include <stdio.h>

/* all fields indicate OK if 1,
malfunctioning or low if 0 */
struct telemetry {
unsigned fuel: 1;
unsigned radio: 1;
unsigned tv: 1;
unsigned water: 1;
unsigned food: 1;
unsigned waste: 1;
} flt_recd:;

void display(struct telemetry i):

STRUCTURES AND UNIONS 327
104 UNDERSTAND BIT-FIELDS ¥

int main(void)

{

FILE *fp;

int i;

if ((fp = fopen("flight", "wb*))==NULL) (
printf (“Cannot open file.\n");
exit(1);

)

/* Imagine that each minute a status report of

the spaceship is recorded on disk.

wi

for(i=0; i<100; i++) (
flt_recd.fuel = rand()%2;
flt_recd.radio = rand()%2;
flt_recd.tv = rand()%2Z;
flt_recd.water = rand()%2; -
flt_recd.food = rand{()%2;
flt_recd.waste = rand ()%2;
display(flt_recd);
fwrite(&flt_recd, sizeof flt_recd, 1, fp);:

)

fclose (fp);

return 0;

}

void display(struct telemetry i)

(
if(i.fuel) printf("Fuel OK\n");
else printf("Fuel low\n");
if (i.radio) printf("Radic OK\n");
else printf("Radio failure\n"):
if(i.tv) printf("TV system OK\n");
else printf("TV malfunctioni\n");
if (i.water) printf("Water supply OKANn") ;
else printf ("Water supply low\n");
if(i.food) printf("Food supply OK\n");
else printf ("Food supply low\n");
if(i.raste) printf("Waste containment OK\Nn");

328 TEACH YOURSELF

v

C

eise printf("Waste containment failure\n*);

printf("\n");

Depending on how your compiler packs the bit-fields, after you
run this program, the file on disk may be as short as 100 bytes
long. Now try the program after modifying the telemetry
structure as shown here:

struct telemetry |
“har fuel;
char radio;
char tv;
char water:;
char food;
char waste;
} flt_recd;

In this version, no bit-fields are used and the resulting file is at
least 600 bytes long. As you can see, using bit-fields can provide
substantial space savings.

EXERCISES

i

Write a program that creates a structure that contains three
bit-ficlds called a, b, and ¢. Make a and b three bits long and
make ¢ two bits long. Next, assign each a value and display the
values.

Many compilers supply library functions that return the status
of various hardware devices, such as a serial port or the
keyboard, by encoding information in a bit-by-bit fashion. On
your own, consult the user’s manual for your compiler to see if
it supports such functions. If it does, write some programs that
read and decode the status of one or more devices,

STRUCTURES AND UNIONS 329
105 CREATEumions ¥

[105 | CREA TE UNIONS

In C, a union is a single picce of memory that is shared by two or more
variables. The variables that share the mermory may be of different
‘types. However, only one variable may be in use at .- v one time. A
union is defined much like a structure. Its general form is

union tag-name {
type memberl,
type member2:
type member3,

type memberN,
} variable-names;

Like a structure, either the tag-name or the variable-names may be
missing, Members may be of any valid C data type. For example, here
is a union that contains three elements: an integer, a character array,
and a double:
union u_type ({

int i;

char c([2];

double d;
} sample;

This union will appear in memory as shown in Figure 10-2.

Lrcure 102 [N d

How an instance Fc[0] + c[1]4

of the union
u_type appears

in memory
(assuming 2-byte
ints and 8-byte
doubles)
v

330 TEACH YOURSELF

Y ¢

To access a member of a union, use the dot and arrow operators just
as you do for structures. For example, this statement assigns 123.098
to d of sample:

sample.d = 123.098;

If you are accessing a union through a pointer, you must usc the arrow
operator. For example, assume that p points to sample. The following
statement assigns i the value 101:

p->i = 101;

* It is important to understand that the size of a union is fixed at
compile time and is large enough to accommodate the largest member
of the union. Assuming 8-byte doubles, this means that sample will
be 8 bytes long. Even if sample is currently used to hold an int value,
it will still occupy 8 bytes of memory. As is the case with structurcs,
you should use the sizeof compile-time operator to determine the size
of a union. You should not simply assume-that it will be the size of the
largest element, because in some environments, the compiler may pad
the union so that it aligns on a word boundary.

1. Unions are very useful when you need to interpret data in two
or more different ways. For example, the encode() function
shown below uses a union to encode an integer by swapping its
two low-order bytes. The same function can also be used to
decode an encoded integer by swapping the already exchanged
bytes back to their original positions.

#include <stdio.h>
int encode(int i);
int main(void)
{

int i;

L = encode(10); /* encode it */

STRUCTURES AND UNIONS 33 1
105 CREATEUNiONS ¥

printf("10 encoded is %d\n", i);
i = encode(i); /* decode it */
printf("i decoded is %d4d", 1i);

return 0;

/* Encode an integer, decode an encoded integer. */
int encode(int i}
{
union crypt_type {
int num;
char c[2];
} crypt;
unsigned char ch;

crypt.num = i;

/* swap bytes */
ch = crypt.c[0);
crypt.c[0] = crypt.c(l]);
crypt.cll]} ch;

/* return encoded integer */
return crypt.num;

)

The program displays the following:

10 encoded is 2560
i decoded is 10

2. The following program uses the union of a structure containing
bit-fields and a character to display the binary representation of
a character typed at the keyboard:

/* This program displays the binary code for a
character entered at the keyboard.

*f

#include <stdio.h>

#include <conio.h>

struct sample {
unsigned a: 1;
unsigned b: 1;

332 TEACH YOURSELF
¥ &

unsigned
unsigned
unsigned
unsigned
unsigned

TQ MO0 AN

unsigned

}i

union key type {

char ch;

struct sample bits;
} key;

int main(void)
o

{
printf("Strike a key: "]

key.ch = getchel();
printf(*\nBinary code 1is: ")

if (key.bits.h] printf("1 ");
else printf ("0 "):
if({key.bits.g) printf("1 ");
else printf("0 ");
if{key.bits.f) printf ("1l ");
else printf ("0 ");)

if (key.bits.e) printf("1l "};
else printf("0 *);
if(key.bits.d) printf("1 ");
else printf ("0 ");

if (key.bits.c) printf ("1 ");
else printf("0 "};
if(key.bits.b) printf ("l ");
else printf ("0 ");

if (key.bits.a) printf("1 ");
else printf ("0 ");

return 0;
}

When a key is pressed, its ASCII code is assigned to key.ch,
which is a char. This data is reinterpreted as a series of bit-fields,
which allow the binary representation of the key to be
displayed. Sample output is shown here:

STRUCTURES AND UNIONS 333
105 CREATEUNIONS Y

Strike a key: X
Binary codeis: 01011000

EXERCISES

1. Using a union composed of a double and an 8-byte character
array, write a function that writes a double to a disk file, a
character at a time. Write another function that reads this value
from the file and reconstructs the value using the same union.
(Note: If the length of a double for your compiler is not 8 bytes,
use an appropriately sized character array.)

- 2. Write a program that uses a urnion to convert an int into a long.
Demonstrate that it works.

Skills Check

At this point you should be able to answer these questions and
perform these exercises:

l. In general terms what is a structure, and what is a union?

2. Show how to create a structure type called s_type that contains
these five members:
char ch;
float d;
int i;
char str([80];
double balance;

Also, define one variable called s_var using this structure
3 What is wrong with this fragment?

struct s_type
int a;

¥
char b;
float bal;
} myvar, *p:

p = &myvar;
p.a = 10;

4. Write a program that uses an array of structures to store
employee names, telephone numbers, hours worked, and
hourly wages. Allow for 10 employees. Have the program input
the information and save it to a disk file. Call the file EMP.

5. Write a program that reads the EMP file created in Exercise 4
and displays the information on the screen.

6. What is a bit-field?

7. Write a program that displays individually the values of the

" high- and low-order bytes of a short integer. (Hint: Use a union
that contains as its two elements a short integer and a two-byte
character array.)

This section checks how well you have integrated the material in
this chapter witH that from earlier chapters.

1. Write a program that contains two structure variables defined as:

struct s_type {
int 1i;
char ch;
double 4;

} varl, var2;

Have the program give each member of both structures initial
values, but make sure that the values differ between the two
structures. Using a function called struct_swap(), have the
program swap the contents of varl and var2.

2. As you know from Chapter 9, fgetc() returns an integer value,
even though it only reads a character from a file. Write a

STRUCTURES AND UNIONS 335
105 CREATEUMIONS ¥

program that copies one file to another. Assign the return value
of fgetc() to a union that contains an integer and character
member. Use the integer element to check for EOF. Write the
character element to the destination file. Have the user specity
both the source and destination file names on the command line.

. What is wrong with this fragment?

struct s_type {

int a;

int bo 2;

int c: 6;
} wvar;

scanf ("%d", &var);

. In C, as you know, you cannot pass an array to a function as a
parameter. (Only a pointer to an array can be passed.) However,
there is one way around this restriction. If you enclose the array
within a structure, the array is passed using the standard

call-by value convention. Write a program that demonstrates
this by passing a string inside a structure to a function, altering
its contents inside the function and demonstrating that the
original string is not altered after the function returns.

22

11

Advanced Data Types
and Operators

11.1 Use the storage class specifiers

11.2 Use the access modifiers

11.3 Define enumerations

11.4 Understand typedef

11.5 Use C's bitwise operators

11.6 Master the shift operators

11.7 Understand the ? operator

11.8 Do more with the assignment operator
11.9 Understand the comma operator

11.10 Know the precedence summary

337
v

338 TEACH YOURSELF
v =
c

E C language includes a rich set of data type modifiers that
allow you to better fit the type of a variable to the information
it will be storing. Also, C includes a number of special
operators that permit the creation of very efficient routines.
Both of these items are the subject of this chapter.

Skills Check

Before proceeding, you should be able to answer these questions
and perform these exercises:

1. Write a program that uses an array of structures to hold the
squares and cubes of the numbers 1 through 10. Display the
contents of the array.

2. Write a program that uses a union to display as a character the
individual bytes that make up a short integer entered by the

\USEt

3. What does this fragment display? (Assume two-byte ints and
eight-byte doubles.) ‘
union (
int i;
double d;
} uvar;

printf("%d", sizeof uvar);

4. What is wrong with this fragment?
struct {
int i;
char str(80];
double balance;
} svar;

svar->i = 100;

5. What is a bit-field?

ADVANCED DATA TYPES AND OPERATORS m
1.1 USE THE STORAGE CLASS SPECIFIERS, ¥

mUse THE STORAGE CLASS SPECIFIERS

C defines four type modifiers that affect how a variable is stored. They are

auto
extern
register
static

These specifiers precede the type name. Let's look at each now.

The specifier auto is completely unnecessary. It is provided in C to
allow compatibility with its predecessor, B. Its use is to declare
automatic variables. Automatic variables are simply local variables,
which are auto by default. You will almost never see auto used in any
C program.

Although the programs we have been working with in this book are
fairly short, programs in the real world tend to be quite long. As the
size of a program grows, it takes longer to compile. For this reason, C
allows you to break a program into two or more files. You can
separately compile these files and then link them together. This saves
compilation time and makes your projects easier to work with. (The
actual method of separate compilatior. and linking will be explained in
the instructions that accompany your compiler.) When working with
multiple source files there is, however, one issue that needs to be
addressed. As a general rule, global data can only be defined once.
However, global data may need to be accessed by two or more files
that form a program. In this case, each source file must inform the
compiler about the global data it uses. To accomplish this you will
need to use the keyword extern. To understand why, consider the
following program, which is split between two files:

FILE #1:

#include <stdio.h>
int count;

void fl(joid);

int main(void)

{

inE 1

340 TEACH YOURSELF
Y ¢

£1(); /* set count‘s value */

for (i=0; i<count; i++)
printf("%d ", i);

return 0;
}

FILE #2:

#include <stdlib.h>

void f1(void)
{

count = rand();
}

If you try to compile the second file, an error will be reported because
count is not defined. However, you cannot change FILE #2 as follows:

#include <stdlib.h>
int count ;

void f1(void)
{

count = rand () ;

}

If you declare count a second time, many linkers will report a
duplicate-symbol error, which means that count is defined twice, and
the linker doesn’t know which to use.

The solution to this problem is C's extern specifier. By placing
extern in front of count's declaration in FILE #2, you arc telling the
compiler that count is an integer defined elsewhere. In other words,
using extern informs the compiler about the existence and the type of
the variable it precedes, but it does not cause storage for that variable
to be allocated. The correct version of FILE #2 is

#include <stdlib.h>
extern int count:

void f1(veoid)

ADVANCED DATA TYPES AND OPERATORS 341
111 USE THE STORAGE CLASS SPECIFIERS ¥

count = rand();

Although rarely done, it is not incorrect to use extern inside a
function to declare a global variable defined elsewhere in the same
file. For example, the following is valid: '

#include <stdio.h>
int count;

int main(void)
{

extern int coun-: /* this refers to global count */

count = 10;
.printf ("%d", count);

return 0;

}

The reason you will rarely see this use of extern is that it is
redundant. Whenever the compiler encounters a variable name not
defined by the function as a local variable, it assumes that it is global.

One very important storage-class specifier is register. When you
specify a register variable you are telling the compiler that you want
access to that variable to be as fast as possible. In early versions of C,
register could only be applied to local variables (including formal
parameters) of types int or char, or to a pointer type. It caused the
variables to be held in a register of the CPU. (This is how the name
register came about.) By using a register of the CPU, extremely fast
access times are achieved. In modern versions of C, the definition of
register has been broadened to include all types of variables and the
requirement that register variables must be held in a CPU register
was removed. Instead, the ANSI C standard stipulates that a register
variable will be stored in such a way as to minimize access time. In
practice, howeyer, this means that register variableawf type int and
char continue %o be held in a CPU register—this is still the fastest way
to access them:

No matter what storage method is used, only so many variables
can be granted the fastest possible access time. For example, the CPU
has a limited number of registers. When fast-access locations are

342 TEACH YOURSELF
v
c

exhausted, the compiler is free to make register variables into regular
variables. For this reason, you must choose carefully which variables
you modify with register. ,

One good choice is to make a frequently used variable, such as the
variable that controls a loop, into a register variablc. The more times a
variable is accessed, the greater the increase in performance when its
access time is decreased. Gengrally, you can assume that at least two
variables per function can be truly optimized for access speed.

Important: Because a register variable may be stored in a register of
the CPU, it may not have a memory address. This means that you
cannot use the & to find the address of a register variable.

When you use the static modifier, you cause the contents of a local
variable to be preserved between function calls. Also, unlike normal .
local variables, which are initialized each time a function is entered, a
static local variable is initialized only once. For example, take a look
at
this program,

#include <stdio.h>
void f(void);
int main(void)
(
int i;
for(i=0; i<10; i++) f();

return 0;

void f (void)

(
static int count = 0;

count++;

printf(®"count is %d\n", count);
}
which displays the following output:

countis 1
count is 2

ADVANCED DATA TYPES AND OPERATORS 343
111 USE THE STORAGE CLASS SPECIFIERS ¥

count is 3
count is 4
countis 5
count is 6
count is 7
count is 8
countis 9
count is 10

As you can see, count retains its value between function calls. The
advantage to using a static local variable over a global one is that the
static local variable is still known to and accessible by only the
function in which it is declared.

The static modifier may also be used on global variables. When it is,
it causes the global variable to be known to and accessible by only the
functions in the same file in which it is declared. Not only is a function
not declared in the same file as a static global variable unable to
access that global variable, it does not even-know its name. This
means that there are no name conflicts if a static global variable in
one file has the same name as another global variable in a different file
of the same program. For example, consider these two fragments,
which are parts of the same program:

FILE #1 FILE #2

int count; static int count;
count = 10; count = 5;

printf ("%d", count); printf("%d", count);

Because count is declared as static in FILE #2, no name conflicts
arise. The printf() statement in FILE #1 displays 10 and the printf()
statement in FILE #2 displays 5 because the two counts are

different variables.

1. To get an idea about how much faster access to a register
variable is, try the following program. It makes use of another of
C’s standard library functions called clock(), which returns the

344 TEACH YOURSELF
Y ¢

number of system clock ticks since the program began
execution. It has this prototype:

clock_t clock(void);

It uses the TIME.H headér. TIME.H also defines the clock_t
type, which is more or less the same as long. To time an event
using clock(), call it immediately before the event you wish to
time and save its return value. Next, call it a second time after
the event finishes and subtract the starting value from the
ending value. This is the approach used by the program to time
how long it takes two loops to execute. One set of loops is
controlled by a register variable, the other is controlled by a
non-register variable,

#include <stdio.h>
#include <time.h>

int i; /* This will not be transformed into a
register variable because it is global.*/

int main(void)
(
register int j;

int k;
clock_t start, finish;

start = clock();

for (k=0; k<100; k++)
for(i=0; i<32000; i++) ;

finish = clock();

printf("Non-register loop: %1d ticks\n", finish - start):

start = clock():;
for(k=0; k<100; k++)
for(j=0; j<32000; j++);
finish = clock():
printf("Register loop: %ld ticks\n", finish - start);

return 0;

ADVANCED DATA TYPES AND OPERATORS 345
107 USE THE STORAGE CLASS SPECIFIERs

For most compilers, the register-controlled loop will execute
about twice as fast as the non-register controlled loop.

The non-register variable is global because, when feasible,
virtually all compilers will automatically convert local variables
not specified as register types into register typcs .. an
automatic optimization. If you do not see the predicted results,
it may mean that the compiler has automatically optimized i
into a register variable, too. Although you can’t declare global
variables as register, there is nothing that prevents a compiler
from optimizing your program to this effect. If you don't see
much difference between the two loops, try creating extra global
variables prior to i so that it will not be automatically optimized.

As you know, the compiler can optimize access speed for

only a limited number of register variables in any one function
(perhaps as few as two). However, this does not mean that your
program can only have a few register variables. Because of the
way a C program executes, each funttion may utilize the ’
maximum number of register variables. For example, for the
average compiler, all the variables shown in the next program
will be optimized for speed:

#include <stdio.h>

void £f2(void);
void f(void);

int main(void)
{
register int a, b;

void f(void)
{ g

register int i, j;

346 TEACH YOURSELF
¥ ¢

void £2(void)

(
register int j, k;

}

3. Local static variables have several uses. One is to allow a
function to perform various initializations only once, when it is
first called. For example, consider this function:

void myfunc (void)
{

static int first = 1;

if (first) { /* initialize the system */
rewind(fp);
a=0;
loc = 0;
fprintf ("System Initialized"):
first = 0;

}

Because first is static, it will hold its value between calls. Thus,
the initialization code will be executed only the first time the
function is called.

4. Another interesting use for a local static variable is to control a
recursive function. For example, this program prints the
numbers 1 through 9 on the screen:

#include <stdio.h>
void £ (void);
int main(void)
{
sl

return 0;

ADVANCED DATA TYPES AND OPERATORS 347
111 USE THE STORAGE CLASS SPECIFIERS ¥

void f(void)

(
static int stop=0;

Stop++;

if(stop==10) return;

printf("%d ", stop);

f(); /* recursive call */
)

Notice how stop is used to prevent a recursive call to f() when
it equals 10.

. Here is another example of using extern to allow global data to
be accessed by two files:

FILE #1:

#include <stdio.h>
char str[80];
void getname (void) ;

int main(void)
{
getname () ;
printf("Hello %s", str);

return 0;
}

FILE #2:

#include <stdioc.h>
extern char str[80];

void getname(void)

¢ -
printf ("Enter your first name: ");
gets(str);

348 TEACH YOURSELF

v

¢4

EXERCISES

1. Assume that your compiler will actually optimize access time of

only two register variables per function. In this program, which
two variables are the best ones to be made into register variables?

#include <stdio.h>
#include <conio.h>

int main(void)
{

int i, Jj. k, m;

do {
printf ("Enter a value: ");
scanf ("%d", &i);

m = 0;
fori(j=0; j<is j++)
for (k=0; k<100; k++)
m=k + m;
} while(i>0);

return 0;

}

. Write a program that contains a function called sum_it() that

has this prototype:

void sum_it (int wvalue);

Have this function use a local static integer variable to maintain
and display a running total of the values of the parameters it is
called with. For example, if sum_it() is called three times with
the values 3, 6, 4, then sum_it() will display 3, 9, and 13.

. Try the program described in Example 5. Be sure to actually use

two files. If you are unsure how to compile and link a program
consisting of two files, check your compiler's user manual.

. What is wrong with this fragment?

register int i;
int *p;

P = &i;

ADVANCED DATA TYPES AND OPERATORS 349
112 USE THE ACCESS MODIFIERS ¥

112 | USE THE ACCESS MODIFIERS

C includes two type modifiers that affect the way variables are
accessed by both your program and the compiler. These modificrs are
const and volatile. This section examines these ype modifiers.

If you precede a variable's type with const, you prevent that
variable from being modified by your program. The variable may
be given an initial value, however, through the use of an initialization
when it is dectared. The compiler is free to locate const variables
in ROM (read-only memory) in environments that support it. A
const variable may also have its value changed by hardware-
dependent means,

The const modifier has a second use. It can prevent a function
from modifying the object that a parameter points to. That is, when a
pointer parameter is preceded by const, no statement in the function
can modify the variable pointed to by that parameter.

When you precede a variable's type with volatile, you are telling
the compiler that the value of the variable rhay be changed in ways
not explicitly defined in the program. For example, a variable's
address might be given to an interrupt service routine, and its value
changed each time an interrupt occurs. The reason that volatile is
important is that most C compilers apply complex and sophisticated
optimizations to your program to create faster and more efficient
executable programs. If the compiler does not know that the contents
of a variable may change in ways not explicitly specified by the
program, it may not actually examine the contents of the variable
each time it is referenced. (Unless it occurs on the left side of an
assignment statement, of course.)

1. The following short program shows how a const variable can be
given an initial value and be used in the program, as long as it is
not on the left side of an assignment statement.

#include <stdio.h>
int main(void)

{
const int i = 10;

350 TEACH YOURSELF
Y ¢

printf("sd", i): /* this is OK */

return 0;

The following program tries to assign i another value. This
program will not compile because i cannot be modified by
the program.

#include <stdio.h>

int main(void)
{

const int i = 10;
i = 20; /* this is wrong */
printf("%d", 1i);

return 0;
}

2. The next program shows how a pointer parameter can be
declared as const to prevent the object it points to from
being modified.

#include <stdio.h>

void pr_str(const char *p);
int main(wvoid)

{

char str(80];

printf("Enter a string: ");
gets(str);

pr_str(str);
return 0;
void pr_str(const char *p)

(
while (*p) putchar(*p++); /* this is ok */

ADVANCED DATA TYPES AND OPERATORS 357
112 USE THE ACCESS MODIFIERS ¥

If you change the program as shown below, it will not
compile because this version attempts to alter the string pointed

to by p.

#include <stdio.h>.
#include <ctype.h>

void pr_str(const char *p);

. int main(void)
(
char str(80];

printf{"Enter a string: ");
gets(str);
pr_str(str);

return 0;

void pr_str(const char *p)
{
while(*r) {
*pP = toupper(*p); /* this will not compile */
putchar (*p++) ;
) :
}

. Perhaps the most important feature of const pointer parameters
is that they guarantee that many standard library functions will

~ not modify the variables pointed to by their parameters. For
example, here is the actual prototype to strlen() specified by
the ANSI standard: N

size_t strien(const char *str);

Since str is specified as const, the string it poix:lts to cannot be
changed. '

. While short examples of volatile are hard to find, the following
fragment gives you the flavor of its use:

volatile unsigned u;

give_address_to_some_interrupt(&u);

352 TEACH YOURSELF

v

c

for(;;) { /* watch value of u */
printfi("sdY, au);

In this example, if u had not been declared as volatile, the |
compiler could have optimized the repeated calls to printf() in
such a way that u was not reexamined each time. The use of
volatile forces the compiler to actually obtain the value of u
whenever it is used.

EXERCISES

1.

One good time to use const is when you want to embed a
version control number into a program. By using a const
variable to hold the version, you prevent it from accidentally
being changed. Write a short program that illustrates how this
can be done. Use 6.01 as the version number.

Write your own version of strepy() called mystrepy(), which
has the prototype

char *mystrcpy (char *to, const char *from);

The function returns a pointer to to. Demonstrate your version
of mystrcpy() in a program.

. On your own, see if you can think of any ways to use volatile.

BRI gfrmf ENUMERATIONS

P | AV e ST

In C you can ‘define a list of named mteger constants called an
enumeration. These constants can then be used any place an integer
can. To define an enumeration, use this general form:

enum tag-name { enumeration list } variable-list;

Either the tag-name or the variable-list is optional. The tag-name is
essentially the type name of the enumeration. For example,

enum color_type {red, green, yellow)} color;

ADVANCED DATA TYPES AND OPERATORS 353
v

11.3 DEFINE ENUMFRATIONS

Here, an enumeration consisting ot the constants red, green, and
yellow is created. The enumeration tag is color_type and one
variable, called color, has been created.

By default, the compiler assigns integer values to enumeration
constants, beginning with 0 at the far left side of the list. Each constant
to the right is one greater than the constant that precedes it.
Therefore, in the color enumeration, red is 0, green is 1, and yellow
is 2. However, you can override the compiler's default values by
explicitly giving a constant a value. For example, in this statement

enum color_type (red, green=9, yellow) color;

red is still 0, but green is 9, and yellow is 10.

Once you have defined an enumeration, you can use its tag namie to
declare enumeration variables at other points in the program. Fo:
example, assuming the color_type enumeration, this statement is
perfectly valid and declares mycolor as a color_type variable-

enum coler_type mycolor;

An enumeration is essentially an integer type and an enumeration
variable can hold any integer value—not just those defined by the
enumeration. But for clarity and structure, you should usc
enumeration variables to hold only values that are defined by their
enumeration type.

Two of the main uses of an enumeration are to help provide
self-documenting code and to clarify the structure of your program.

1. This short program creates an enumeration consisting of the
parts of a computer. It assigns comp the value CPU and then
displays its value (which is 1). Notice how the enumeration tag
name is used to declare comp as an enumeration variable
separately from the actual declaration of computer.

#include <stdio.h>
enum computer (keyboard, CPU, screen, printer};
int main(veid)

{

enum computer comp;

354 TEACH YOURSELF
S it
¥ -

comp = CPU;
printf("%d", comp);

return 0;

)

2. It takes a little work to display the string equivalent of an
enumerated constant. Remember, enumerated constants are not
strings; they are named integer constants. The following
program uses a switch statement to output the string equivalent
of an enumerated value. The program uses C's random-number
generator to choose a means of transportation. It then displays
the means on the screen. (This program is for people who can't
make up their minds!)

#include <stdio.h>

#include <stdlib.h>
#include <conio.h>

enum transport {car, train, airplane, bus} tp;
int main{void)
{

printf("Press a key to select transport: "};

/* generate a new random number each time
the program is run

'y
while(!kbhit()) rand();
getch(); /* read and discard character */

tp = rand() % 4;
switch({tp) |
case car: printf("car");
break:;
case train: printf(*train");
break;
case airplane: printf("airplane”);
break;
case bus: printf("bus”);

ADVANCED DATA TYPES AND OPERATORS 355
11.3 DEFINE ENUMERATIONS ¥

In some cases, there is an easier way to obtain a string
equivalent of an enumerated value. As long as you do not initialize
any of the constants, you can create a two-dimensional string array
that contains the string equivalents of the enumerated values in
the same order that the constants appear in the enumeration. You
can then index the array using an enumeration value to obtain its
corresponding string. The following version of the transportation-
choosing program, for example, uses this approach:

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

enum transport (car, train, airplane, bus} tp;

char trans(][20] = {
“car", "train", "airplane", "bus"
)i

int main(void)
{
printf ("Press a key to select transport: ");

/* Generate a new random number each time
the program is run

*/

while(!kbhit()) rand();

getch(); /* read and discard character */

tp = rand() % 4;
printf ("%s", trans[tpl);

return 0;

)

. Remember, the names of enumerated constants are known only
to the program, not to any library functions. For example, given
the fragment

enum numbers (zero, one, two, three} num;

printf ("Enter a number: ");
scanf ("%d4", &num);

you cannot respond to scanf() by entering one.

356 TEACH YOURSELF
Y ¢

EXERCISES

1. Compile and run the example programs.

2. Create an enumeration of the coins of the U.S. from penny
to dollar.

3. Is this fragment correct? If not, why not?
enum cars {Ford, Chrysler, GM)} make;

make = GM;
printf("car is %s", make);

| l’NDERSTAND typedef

In C you can create a new name for an existing tvpe using typedef.
The general form of typedef is

typedef old-name new-name;

This new name can be used to declare variables. For example, in the
following program, smallint is a new name for a signed char and is
used to declare i.

#include <stdio.h>
typedef signed char smallint;

int main(void)
(
smallint i;

for{i=0; i<10; i++)
printf(~%d ", i);

return 0;

Keep two points firmly in mind: First, a typedef does not cause the
original name to be deactivated. For example, in the program, signed
char is still a valid type. Second, you can use several typedef
statements to create many different, new names for the same type.

ADVANCED DATA TYPES AND OPERATORS 357
114 UNDERSTAND typedef ¥

There are basically two reasons to use typedef. The first is to create
portable programs. For example, if you know that vou will be writing a
program that will be executed on computers using 16-bit integers as
well as on computers using 32-bit integers, and vou want to ensure
that certain variables are 16 bits long in both environments, you might
want to use a typedef when compiling the program for the 16-bit
machines as follows:

typedef int myint;

Then, before compiling the code for a 32-bit computer, you can change
the typedef statement like this:

typedef short int myint;

This works because on computers using 32-bit integers, a short int
will be 16 bits long. Assuming that you used myint to declare all
integer values that vou wanted to be 16 bits long, vou need change
only one statement to change the type of all variables declared
using myint.

The second reason vou might want to use typedef is to help
provide self-documenting code. For example, if you are writing an
inventory program, you might use this typedef statement.

typedef double subtotal;

Now, when anyone reading your program sees a variable declared as
- subtotal, he or she will know that it is used to hold a subtotal.

1. The new name created by one typedef can be used in a
subsequent typedef to create another name. For example,
consider this fragment:

typedef int height;
typedef height length;
typedef length depth;

depth d;

Here, d is still an integer.

2. In addition to the the basic types, you can use typedef on more
complicated types. For example, the following is perfectly valid:

358 TEACH YOURSELF
Y ¢

enum e_type {one, two, three } ;
typedef enum e_type mynums;
mynums num; /* declare a variable */

Here, num is a variable of type e_type.

1. Show how to make UL a new name for unsigned long.
Show that it works by writing a short program that declares a
variable using UL, assigns it a value, and displays the value
on the screen.

2. What is wrong with this fragment?

typedef balance float;

l’SE C’'S BITWISE OPERATORS

C contains four special operators that perform their operations on a
bit-by-hit level. These operators are

& bitwise AND
| bitwise OR
A bitwise XOR (eXclusive OR)

~ 1's complement

These operators work with character and integer types; they cannot be
used with floating-point types.

The AND, OR, and XOR operators produce a result based on a
comparison of corresponding bits in each operand. The AND operator
sets a bit if both bits being compared are set. The OR sets a bit if either
of the bits being compared is set. The XOR operation sets a bit when
either of the two bits involved is 1, but not when both are 1 or both are
0. Here is an example of a bitwise AND:

ADVANCED DATA TYPES AND OPERATORS 359
115 USECS BITWISE OPERATORS ¥

10100110
& 0011101

0010 0010

Notice how the resulting bit is set, based on the outcome of the
opemtior?being applied to the corresponding bits in each operand.

The 1's complement operator is a unary operator that reverses the
state of each bit within an integer or character.

1. The XOR operation has one interesting property. Given two
values A and B, when the outcome of A XOR B is XORed with B
a second time, A is produced. For example, this output

initial value of i: 100
i after first XOR: 21895
i after second XOR: 100

is produced by the following program:
#include <stdio.h>
int main(void)

(

int 4;

i = 100;
printf("initial value of i: %d\n", 1i):

i=i1i "~ 21987;
printf("i after first XOR: %d\n", 1i);

i= i 21987;
printf("i after second XOR: %d\n", 1i);

return 0;
}

2. The following program uses a bitwise AND to display, in binary,
the ASCII value of a character typed at the keyboard:

¢include <stdio.h>
#include <conio.h>

360 TEACH YOURSELF

b

e
int main(void)
{

char ch;

int i;

printf{"Enter a character: *):
ch = getchel);
printf(“\m*) ;

/* display binary representaticn */
for(i=128; 1>0; i=i/2)

if¢d & ch) primtfinl)

else printf("0 *);

return 0;

T'he program works by adjusting the value of i so that only one
bit is set each time a comparison is made. Since the high-order
bit in a byte represents 128, this value is used as a starting point.
Each time through the loop, i is halved. This causes the next

bit position to be set and all others cleared. Thus, each time
through the loop, a bit in ch is tested. If it is 1, the comparison
produces a true result and a 1 is output. Otherwise a 0 is
displaved. This process continues until all bits have been tested.

By madifying the program from Example 2, it can be used to
show the effect of the 1's complement operator.
kinclude <stdio.h>

#include <conio.h>

int main(void)

{

char ch;
int i;
ch = “a%;

/* display binary representation */
for(i=128; i>0; i=i/2)

1f(i & ch) printE{*l *);

else printf(=0 =);

/* reverse bit pattern */

ADVANCED DATA TYPES AND OPERATORS 36
115 USECS BITWISE OPERATORS ¥

ch = ~-ch;
printf ("\n");

/* display binary representation */
for(i=128; i>0; i=i/2)

ifli & ‘eh) prin€f("I *ji

else printf ("0 ");

return 0;
}

When you run this program, you will see that the state of bits in
ch are reversed after the ~ operation has occurred.

. The following program shows how to use the & operator to
determine if a signed integer is positive or negative. (The
program assumes short integers are 16 bits long.) Since negative
numbers are represented with their high-order bit set, the
comparison will be true only if i is negative. (The value 32768 is
the value of an unsigned short integer when only its high-order
bit is set. This value is 1000 0000 in binary.)

#include <stdio.h>
int main(void)

{

short i;

printf ("Enter a number: *);
scanf ("$hd", &i);

if(i & 32768) printf("Number is negative.\n");

return 0;
}

. The following program makes i into a negative number
by setting its high-order bit. (Again, 16-bit short integers
are assumed.)

#include <stdio.h>

int main(void)
{
short i;

362 TEACH YOURSELF

LA

i= 1;
i = 1. || 32768;
printf("%hd~, i);
return 0;

)

It displays -32,767.

EXERCISES

1. One very easy way to encode a file is to reverse the state of each
bit using the ~ operator. Write a program that encodes a file
using this method. (To decode the file, simply run the program
a second time.) Have the user specify the name of the file on
the command line.

2. A better method of coding a file uses the XOR operation
combined with a user-defined key. Write a program that
encodes a file using this method. Have the user specify the file
to code as well as a single character key on the command line.
(To decode the file, run the program a second time using the
same key.)

3. What is the outcome of these oparations?

A. 10100011 & 0101 1101
B. 0101 1101] 1111 1011
C. 0101 0110~ 1010 1011
4. Sometimes, the high-order bit of a byte is used as a parity bit by

modem programs. It is used to verify the integrity of cach byte
transferred. There are two types of parity: even and odd. If even
parity is used, the parity bit is used to ensure that cach byte has
an even number of 1 bits. If odd parity is used, the parity bit is
used to ensure that each byte has an odd number of 1 bits. Si~. «
the parity bit is not part of the information being transferred,
show how you can clear the high-order bit of a character value.

ADVANCED DATA TYPES AND OPERATORS 363
1.6 MASTER THE SHIFT OPERATORS ¥

ﬂdASTER THE SHIFT OPERATORS

C includes two operators not commonly found in other computer
languages: the left and right bit-shift operators. The left shift operator
is <<, and the right shift operator is >>. These operators may

be applied only to character or integer operands. They take these
general forms:

value << number-of-bits
value >> number-of-bits

The integer expression specified by number-of-bits determines how
many places to the left or right the bits within value are shifted. Each
left-shift causes all bits within the specified value to be shifted left one
position and a zero is brought in on the right. A right-shift shifts all bits
to the right one position and brings a zero in on the left. (Unless the
number is negative, in which case a one is brought in.) When bits are
shifted off an end, they are lost.

A right shift is equivalent to dividing a number by 2, and a left shift
is the same as multiplying the number by 2. Because of the internal
operation of virtually all CPUs, shift operations are usually faster than
their equivalent arithmetic operations.

_ 1. This program demonstrates the right and left shift operators:

#include <stdio.h>
void show_binary{unsigned u);

int main(void)
{
unsigned short u;

u = 45678;

show_binary (u);
u = u << 1;
show_binary(u);
us=u>1;
show_binary (u) ;

v

364 TEACH YOURSELF
-—.__———-—_

c

return 0;

void show_binary{unsigned u)

[
{

unsigned n;

for(n=32768; n>0; n=n/2)
if(u & n) printf("1 ");
else printf("0 =);

printf {*in%)
}

The output from this program is

1011001001101 110
011001001101 1100
0O011001001101110

Notice that after the left shift, a bit of information has becn lost.
When the right shift occurs, a zero is brought in. As stated
carlier, bits that are shifted off one end are lost.

. Since a right shift is the same as a division by two, but faster,

the show_binary() function can be made more efficient as
shown here:
void show_binary(unsigned u)

{

unsigned n;
for(n=32768; n; n=n>>1)
if(u & n) printf(*1 ");

else printf ("0 *);

printf (P\nt) ;

ADVANCED DATA TYPES AND OPERATORS 365

EXERCISES

11.7 UNDERSTAND THE ? OPERATOR Y

1. Write a program that uses the shift operators to multiply and
divide an integer. Have the user enter the initial value, Display

the result of each operation.

2. Cdoes not have a rotate operator. A rotate s similar to a shift,
except that the bit shifted oft one end is inserted onto the other.
For example, 1010 0000 rotated left one place is 0100 0001,
Write a function called rotate() that rotates a byte left one
position each time it is called. (Hint, vou will need to use a
union so that you can have access to the bit shifted oft the end
of the byte.) Demonstrate the function in a program.

"NDERSTAND THE ?

OPERATOR

C contains one ternary operator: the 2. A ternary operator requires
three operands. The 2 operator is used to replace statements such as:

if (condition) var = expl;
else var = exp2;

The general form of the ? operator is

var = condition ? expl: exp2 ;

Here, condition is an expression that evaluates to true or false. If it is
true, var is assigned the value of expl. 1f it is false, vear is assigned the
value of exp2. The reason for the ? operator is that a C compiler

can produce more efficient code using it instead of the cquivalent

if/else statement.

1. The following program illustrates the ? operator. It inputs a
number and then converts the number into 1 it the number is

positive and -1 if it is negative.

366 TEACH YOURSELF
Y ¢

#include <stdio.h>

int main(void)
{

ine i;

printf("Enter a number: ");
scanf ("%d", &i);

i.=1=0 2 1 =1;
printf(*"Outcome: %4", i);

return 0;

}

2. The next program is a computerized coin tass. It waits for you to
press a key and then prints either Heads or Tails.

#include <stdio.h>
#include -<stdlib.h>
#include <conio.h>

int main(void)
{

.

ine- 4z
.while(!kbhit()) rand();
i = rand() %2 ? 1: 0;

if(i) printf("Heads");
else printf("Tails");

return 0;

The coin-toss program can be written in a more efficient
way. There is no technical reason that the ? operator need
assign its value to any variable. Therefore, the coin toss program
can be written as:

#include <stdioc.h>
ib.h>
#include <cornio.h>

finclude <str

ADVANCED DATA TYPES AND OPERATORS 3G7
1.8 DO MORE WITH THE ASSIGNMENT OPERATOR ¥,

int main(void)
{
while(!kbhit()) rand(};

rand()%2 ? printf("Heads") : printf("Tails");

return 0;

}

Remember, since a call to a function is a valid C expression, it is
perfectly valid to call printf() in the ? statement.

1. One particularly good use for the ? O'peralor is to provide a
means of preventing a division-hy-zero error. Write a program
that inputs two integers from the user and displays the result of
dividing the first by the second. Use ? to avoid division by zcro.

2. Convert the following statement into its equivalent ? statement.

i/ {a>b) count = 10b;
else count = 0;

_Do MORE WITH THE ASSIGNMENT
OPERATOR

The assignment operator is more powerful in C than in most other
computer languages. In this section, you will learn some new things
about it.

You can assign several variables the same value using the
general form

varl = var2 = var3= .. = varN = value;

For example, this statcment

368 TEACH YOURSELF
Y ¢

assigns i, j, and k the value 100, In professionally written C code, it is
common to see such multiple-variable assignments.

Another variation on the assignment statement is sometimes called
C sharthand. In C, you can transform a statement like

In general, any time vou have a statement of the form

var = var op expression;
you can write it in shorthand form as
var op = expression;
Here, op is one of the tollowing operators.
£ - TP B | A

reason you will want to use the shorthand form is not that
al

There must be no space hetween the operator and the equal sign. The
ittle typing effort, but because the ¢ compiler can create more
ctficient executable code.

it saves you

1. The following program illustrates the multiple-assignment
statement:

finclude <stdio,h>
int main({void)
{

ot 37 J; ke
= k = 99;
printf(*%d %4 %d-, i, j, k):
return 0;

ADVANCED DATA TYPES AND OPERATORS 369
118 DO MORE WITH THE ASSIGNMENT OPERATOR ¥

2. The next program counts to 98 by twos. Notice that it uses C
shorthand to increment the loop-control variable by two each
iteration. '

#¢include <stdio.h>
int main(void)

{

int i

/* count by 25 */
for (i=0; i<100; i+=2)
printf(*%d ", i);

return 0;
}

. 3. The following program uses the left-shift operator in shorthand
form to multiply the value of i by 2, three times. (The resulting
value is 8.)

#include <stdio.h>
int main(void)
{
int 3 = 1;
i <<= 3; /* multiply by 2, 3 times */

printf("%d", i);

return 0;

EXERCISES

1. Compile and run the program in Example 1 to prove to yourself
that the multiple-assignment statement works.

2. How is the following statement written using C shorthand?

X = X & Y

870 TEACH YOURSELF
Y ¢

3. Write a program that displays all the even multiples of 17 from
17 to 1000. Use C shorthand.

ngllﬁufnsmﬂu THE COMMA OPERATOR

The last operator we will examine is the comma. It has a very unique
function: it tells the compiler to "do this and this and this.” That is,
the comma is used to string together several operations. The most
common use of the comma is in the for loop. In the following loop,
the comma is used in the initialization portion to initialize two
loop-control variables, and in the increment portion to increment
iandj.

for(i=0, j=0; i+j<count; i++, Jj++)

The value of a comma-separated list of expressions is the rightmost
expression. For example, the following statement assigns 100 to value:

value = (count, 99, 33, 100);

The parentheses are necessary because the comma operator is lower
in precedence than the assignment operator.

|__EXAMPLES

1. This program displays the numbers 0 through 49. It uses the
comma operator to maintain two loop-control variables.

#include <stdio.h>

int main(veoid)
{
int i, i
/* count to 49 */
for(i=0, 3=100; i<j; i++, j--)
printf("%d *, 1i);:

" return 0;

ADVANCED DATA TYPES AND OPERATORS 371
119 UNDERSTAND THE COMMA OPERATOR ¥

2. In many places in C, it is actually syntactically correct to use the
comma in place of the semicolon. For example, examine the
following short program:

#include <stdio.h>

int main(void)
{

char ch;

ch = getchar(), /* notice the comma here */
putchar(ch+1) ;

return 0;

}

Because the comma tells the compiler to "do this and this,” the
program runs the same with the comma after getchar() as it
would had a semicolon been used. Using a comma in this way is
considered extremely bad form, however. It is possible that an
unwanted side effect could occur. (This use of the comma
operator does make interesting coffee-break conversation,
however! Many C programmers are not aware of this interesting
twist in the C syntax.)

EXERCISES

1. Write a program that uses the comma operator to maintain
three for loop-control variables. Have one variable run from 0
to 99, the second run from -50 to 49, and have the third set to
the sum of the first two, both initially and each time the loop
iterates. Have the loop stop when the first variable reaches 100.
Have the program display the value of the third variable each
time the loop repeats.

2. What is the value of i after the following statement exccutes?

i= (2, 2, 3);

372 TEACH YOURSELF
¥ &

mnnow THE PRECEDENCE SUMMARY

. The following table shows the precedence of all the C operators.

Highest {1 %1 ==
! ~+ - ++ — - (type cast) * & sizeof
* /%
+ -
<< >>

= += -= *= /= etc.
Lowest s

¥o8uD SIS
SeN

At this point you should be able to answer these questions and
perform these exercises:

1. What does the register specifier do?

2. What do the const and volatile modifiers do?

3. Write a program that sums the numbers 1 to 100. Make the
program execute as fast as possible.

4. Is this statement valid? If so, what does it do?

typedef long double bigfloat;

5. Write a program that inputswo characters and compares
corresponding bits. Have the program display the number of
each bit in which a match occurs. For example, if the two
integers are

ADVANCED DATA TYPES AND OPERATORS 373

11.10 KNOW THE PRECEDENCE SUMMARY Y
1001 0110
1110 1010
the program will report that bits 7, 1, and 0 match. (Use the
bitwise operators to solve this problem.)
6. What do the << and >> operators do?
7. Show how this statement can be rewritten:
c ¢+ 10;
8. Rewrite this statement using the ? operator:
if (!done) count
else count = 0;
9. What is an enum: ration? Show an example that cnumerates
the planets.
aAneinWNg
L

This section checks how well you have integrated the material in
this chapter with that from earlier chapters.

Write a program that swaps the low-order four bits of a byte
with the high-order four bits. Demonstrate that your routine
works by displaying the contents of the byte before and after,
using the show_binary() function developed earlier.
(Change show_binary() so that it works on an eight-hit
quantity, however.)

. Earlier you wrote a program hat encoded files using the 1's

complement operator. Write a program that reads a text file
encoded using this method and displays its decoded contents.
Leave the actual file encoded, however.

Is this fragment correct?

register FILE *fp;

. Using the program you developed for Chapter 10, Section 10.3,

Exercise 1, optimize the program by selecting appropriate local
variables to become register types.

®D®O®

12

The C Preprocessor
and Some Advanced
Topics

chapter objectives
12.1 Learn more about #define and #include
12.2 Understand conditional compilation

12.3 Learn about #ervor, #undef, #line, and
#pragma

12.4 Examine C's built-in macros
12.5 Use the # and ## operators
12.6 Understand function pointers

12.7 Master dynamic allocation

376 TEACH YOURSELF
Y ¢

ONGRATULATIONS! If you have worked your way

through all the preceding chapters, you can definitely call

yourself a C programmer. This chapter examines three

topics: the C preprocessor, pointers to functions, and C's

dynamic allocation system. All of the features discussed in
this chapter are important, and you need to be aware of their existence.
However, you won't use many of them right away. This is not because
any of the features discussed in this chapter are particularly difficult,
hut because some features are more applicable to large programming
cftorts and the management of sophisticated systems. As your
proficiency in C increases, however, you will find these features
quite valuable.

Before proceeding you should be able to answer these questions and
perform these exercises:

1. What is the major advantage gained when a variable is declared
using register?

v

2. What is wrong with this function?

void myfunc (const int *i)
{

*Lo= Rhop 2%
)
3. What is the outcome of these operations?
a. 1101 1101 & 11100110
b. 1101 1101 | 11100110
c. 1101 1101 ~ 11100110

4. Write a program that uses the left and right shift operators to
double and halve a number entered by the user.

5. How can these statements be written differently?

a = 1;

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 377
121 LEARN MORE ABOUT #define AND #include ¥

if(a<b) max = 100;
else max = 0;

1= 4 2y
6. What is the extern type specifier for?

[EXEM] EARN MORE ABOUT #define AND
#include

~ Although you have been using #define and #include for somc time,
_both have more features than you've read about so far. Each is
‘examined here in detail.

In addition to using #define to define a macro name that will be
substituted by the character sequence associated with that macro, you
can use #define to create function-like macros. In a function-like
macro, arguments can be passed to the macro when it is expanded by
the preprocessor. For example, consider this program:

#include <stdio.h>
#define SUM(i, j) 1i+]
int main(yoid)

{

int sum;

sum = SUM(10, 20);
printf("%d", sum);

return 0;
)

The line

sum = SUM(10, 20);
is transformed into
sum = 10+20;

by the preprocessor. As you can see, the values 10 and 20 are
automatically substituted for the parameters i and j.

378 TEACH YOURSELF
v r

A more practical example is RANGE(), illustrated in the following
simple program. It is used to confirm that parameter i is within the
range specified by parameters min and max. You can imagine how
uscful a macro like RANGE() can be in programs that must perform
several range checks. This program uses it to display random numbers
between 1 and 100.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

#define RANGE(i, min, max) (i<min) || (i>max) 2 1 : 0

int main(void)
{
inG x;

" /* print random numbers between 1 and 100 */
do (B
do {
r = rand();
) while(RANGE(r, 1, 100}); 2
printf(“%d ", r):
} while(!kbhit());

return 0;

The advantage to using function-like macros instead of functions is
that in-line code is generated by the macro, thus avoiding the time it
takes to call and return from a function. Of course, only relatively
simple operations can be made into function-like macros. Also,
because code is duplicated, the resulting program might be longer than
it would be if a function were used.

The #include directive has these two general forms:

#include <filename>
#include "filename"

So far, all the example programs have used the first form. The
reason for this will become apparent after you read the following
descriptions.

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 379
121 LEARN MORE ABOUT #define AND #include ¥

If you specify the file name between angle brackets, you are
instructing the compiler to search for the file in some implementationa
defined manner. For most compilers, this means searching a special
dircctory devoted to the standard header files. This is why the sample
programs have been using this form to include the header files
required by the standard library functions. If you enclose the file
name between guotation marks, the compiler searches for the file in
another implementation-defined manner. If that search fails, the
search is restarted as if you had specified the file name between angle
brackets. For the majority of compilers, enclosing the name between
quotation marks causes the current working directory to be searched
first. Typically, you will use quotation marks to include header files
that you create.

1. Here is a program that uses the function-like macro MAX() to
compute which argument is larger. Pay close attention to the
last printf() statement.

#include <stdio.h>
#define MAX (i, j) i>3 2 1 : 3J

int main(void)

(
printf("sd\n", MAX(l, 2));
printf (*%d\n", MAX(1l, -1));

/* this statement does not work correctly */
printf("%d\n", MAX(100 && -1, 0));

return 0;

}

When the preprocessor expands the final printf() statement,
the MAX() macro is transformed into this expression:

100 && -1 > 0 ? 100 && -1 : O

380 TEACH YOURSELF
¥ e
Because of C's precedence rules, however, this expression is
executed as if parentheses had been added like this:

100 && (-1 > 0) ? 100 && -1 : 0

As you can see, this causes the wrong answer to be computed.
To fix this problem, the macro needs to be rewritten as:

#define MAX (i, J) ((i)>(3)) ? (i) : (])

Now the macro works in all pessible situations. In general,
you will need to fully parenthesize all parameters to a
function-like macro.
The RANGE() macro discussed earlier will need similar
parenthesization as well if it is to work in all possible
situations. This is left as an exercise.

2. The next program uses quotes in the #include dircctive.
#include "stdio.h"

int main(void)

{
printf("This is a test");

.return 0;

)
While not as efficient as using the angle brackets, the #include
statement will still find and include the STDIO.H header file.

3. It is permissible to use both forms of the #include directive in
the same program. For example,

#include <stdio.h>
#include "stdlib.h"

int main(void)
{
printf("This is a random number: %d", rand{());

return 0;

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 381
122 UNDERSTAND CONDITIONAL COMPUATION ¥

EXERCISES

1. Correct the RANGE() macro by adding parentheses in the
proper locations.

2. Write a program that uses a parameterized macro to compute
the absolute value of an integer, and demonstrate its use in a
program.

3. Compile Example 2. If your compiler does not find STDIO.H,
recheck the installation instructions that came with your
compiler.

122 u:vosnsm ND CONDITIONAL
COMPILATION

The C preprocessor includes several directives that allow parts of the
source code of a program to be selectively compiled. This is called
conditional compilation. These directives are

#if
#else
#elif
#endif
#ifdef
#ifndef

This section examines these directives.
The general form of #if is shown here:

#if constant-expression
statement-sequence
#endif

If the value of the constant-expression is true, the statement or
statements between #if and #endif are compiled. If the

QB2 TEACH YOURSELF
v 5

constant-expression is false, the compiler skips the statement or
statements. Keep in mind that the preprocessing stage is the
first stage of compilation, so the constant-expression means exactly that.
No variables may be used. ’

You can use the #else to form an alternative to the #if. Its gencral
form is shown here:

#if constant-expression
statement-sequence
#else
statement-sequence
#endif

Notice that there is only one #endif. The #else automatically
terminates the #if block of statements. If the constant-cxpression is
false, the statement or statements associated with the #else arc
compiled.

You can create an if-else-if ladder using the #elif directive,
as shown here:

#if constant-expression-1
statement-sequence

#elif constant-expression-2
statement-sequence

#elif constant-expression-3
statement-sequence

#endif

As soon as the first expression is true, the lines of code associated with
that expression are compiled, and the rest of the code is skipped.

Another approach to conditional compilation is the #ifdef dircctive.
It has this general form:

#ifdef macro-name
Statement-sequence
#endif

If the macro-name is currently defined, then the statement-sequence
associated with the #ifdef directive will be compiled. Otherwise, it is

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 383
122 UNDERSTAND CONDITIONAL COMPILATION ¥

skipped. The #else may also be used with #ifdef to provide an
alternative.

The complement of #ifdef is #ifndef. It has the same general form
as #ifdef. The only difference is that the statement sequence
associated with an #ifndef directive is compiled only if the
macro-name is not defined.

In addition to #ifdef, there is a second way to determine if a macro
name is defined. You can use the #if directive in conjunction with
the defined compile-time operator. The defined operator has this
general form:

defined macro-name

If macro-name is defined, then the outcome is true. Otherwise, it is
false. For example, the following two preprocessor directives are
equivalent:

#ifdef WIN32
#if defined WIN32

You can also apply the ! operator to defined to reverse the condition.

1. Sometimes you will want a program'’s behavior to depend on
a value defined within the program. Although examples that
are both short and meaningful are hard to find, the following
program gives the flavor of it. This program can be compiled
to display either the ASCII character set by itself, or the full
extended set, depending on the value of CHAR_SET. As you .
know, the ASCII character set defines characters for the values 0
through 127. However, most computers reserve the values 128
through 255 for foreign-language characters and mathematical
and other special symbols. (You might want to try this program
with CHAR_SET set to 256. You w1ll see some very interesting
characters!) .

#include <stdio.h>

/* define CHAR_SET as either 256_or 128 */

384 TEACH YOURSELF
¥ ¢

#define CHAR_SET 256

int main(void)
(

int i;
#if CHAR_SET ==256

printf("Displaying ASCII character set plus extensions.\n"):
#else

printf("Displaying only ASCII character set.\n");
#endif

for(i=0; i<CHAR_SET; i++)
printf("%c*, i);

return 0;

}

2. A good use of #ifdef is for imbedding debugging information
into your programs. For example, here is a program that copies
the contents of one file into another- 3

/* Copy a file., */
#include <stdio.h>
#include <stdlib.h>

#define DEBUG

int main(int argc, char *argv[])
{

FILE *from, *to;

char Ch;

/* see if correct number of command line arguments */
if(argc!=3) {
printf("Usage: copy <source> <destination>\n");
exit(1);

/* open source file */

if((from = fopen(argv[l], "rb"))==NULL) {
printf(*"Cannot open source file.\n");
exit(1l);

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 385

122 UNDERSTAND CONDITIONAL COMPILATION

/*open destination file */

if((to = fopen (argv(2], "wb")) ==NULL) {
printf ("Cannot open destination file.\n");
exit(1l);

}

/* copy the file */
while(!feof (from)) (
ch = fgetc(from);
if (ferror(from)) (
printf("Error reading source file.\n");
exit(1);
} .
if (tfeof (from)) (
fputc(ch, to);

#ifdef DEBUG

putchar (ch) ;

#endif

}

}
if(ferror(to)) {
printf("Error writing destination file.\n");
exit(l);
} .
}
fclose(from);
fclose(to);

return 0;

If DEBUG is defined, the program displays each byte as it is
transferred. This can be helpful during the development phase.
Once the program is finished, the statement defining DEBUG is
removed, and the output is not displayed. However, if the
program ever misbehaves in the future, DEBUG can be defined
again, and output will again be shown on the screen. While this
might seem like a lot of work for such a simple program, in 7
actual practice programs may have many debugging statements,

and this procedure can greatly facilitate the development and

testing cycle.

v

386 TEACH YOURSELF
Y ¢

As shown in this program, to simply define a macro name,

e you do not have to associate any character sequence with it

3. Continuing with the debugging theme, it is possible to use the
#if to allow several levels of debugging code to be easily managed.
For example, here is one of the encryption programs from the
answers to Chapter 11 that supports three debugging levels:

#include <stdio.h>
#include <stdlib.h>

/* DEBUG levels:
0: no debug
1: display byte read from source file
2. display byte written to destination file
3: display bytes read and bytes written
*.1
#define DEBUG 2

int main{int argc, char *argv(])
{

“"FILE *in, *out;

unisigned char ch;

/* see if correct number of command line arguments */
if(argc!=4) (

printf ("Usage: code <in> <out> <key>");

exit(1);
}

/* open input file */

if((in = fopen(argv([l], "rb"))==NULL) {
printf (*Cannot open input file.\n");
exit(1);

}

/* open output file */

if ((out = fopen(argv[2], "wb"))==NULL) {
printf ("Cannot open output file.\n");
exit(1l);

}

while(!feof (in)) {

- THE C PREPROCESSOR AND SOME ADVANCED TOPICS 387
122 UNDERSTAND CONDITIONAL COMPILATION ¥

ch = fgetc(in);

#if DEBUG == 1 || DEBUG ==
putchar (ch) ;
#endif

ch = *argv(3] ~ ch;
#if DEBUG >= 2
putchar (ch);
#endif
if(!'feocf(in)) fputc(ch, out);

fclose(in);
fclose(out);

return 0;

}

. The following fragment illustrates the #elif. It displays NUM is
2 on the screen.

#define NUM 2

#if NUM ==
printf ("NUM is 1*});
#elif NUM ==
printf (*NUM is 2");
#elif NUM == -
printf ("NUM is 3");
#elif NUM ==
printf("NUM is 4");
#endif -

. Here, the defined operator is used to determine if
TESTPROJECT is defined.

#include <stdio.h>
#define TESTPROJECT 29

#if defined TESTPROJECT
int main(void)
{
printf("This is a test.\n");

:3!NB TEACH YOURSELF

¥ ¢

return 0;
}
#endif

1. Write a program that defines three macros called INT, FLOAT,
and PWR_TYPE. Define INT as 0, FLOAT as 1, and
PWR_TYPE as either INT or FLOAT. Have the program
request two numbers from the user and display the result of

" the first number raised to the second number. Using #if and
depending upon the value of PWR_TYPE, have both numbers
be integers, or allow the first number to be a double. '

2. Is this fragment correct? If not, show one way to fix it.

#¢define MIKE

#ifdef !MIKE

#endif

LEARN ABOUT #error, #undef, #line,
AND #pragma

C's preprocessor supports four special-use directives: #error, #undef,
#line, and #pragma. Each will be examined in turn here.
The #error directive has this general form:

#error error-message

THE C PREPROCESSOR AND SOME ADVANCED TOPicS 389
123 LEARN ABOUT #error, #undel, Hine, AND #pragma ¥

It causes the compiler to stop compilation and issue the error-message
along with other implementation-specific information, which will _
generally include the number of the line the #error directive is in and
the name of the file. Note that the error-message is not enclosed
between quotes. The principal use of the #error directive is in
debugging.

The #undef directive undefines a macro name. Its general form is

#undef macro-name

If the macro-name is currently undefined, #undef has no effect. The
principal use for #undef is to localize macro names.

When a C compilc: compiles a source file, it maintains two pieces of
information: the number of the line currently being compiled and the
name of the source file currently being compiled. The #line directive
is used to change these values. Its general form is

#line fine-num " filename"

Here, line-num becomes the number of the next line of source code,
and filename becomes the name the compiler will associate with the
source file. The value of line-num must be between 1 and 32,767. The
filename may be a string consisting of any valid file name. The principal
use for #line is for debugging and for managing large projects.

The #pragma directive allows a compiler's implementor to define
other preprocessing instructions to be given to the compiler. It has this
general form:

#pragma instructions

If a compiler encounters a #pragma statement that it does not
recognize, it ignores it. Whether your compiler supports any
#pragmas depends on how your compiler was implemented.

EXAMPLES

1
1. This program demonstrates the #error directive.

#include <stdio.h>

‘

390 TEACH YOURSELF
¥ G
int main(void)
{
int i;

i=10;
#error This is .an error message,
printf(*%d", i); /* this line will not be compiled */

return 0;
}

As soon as the #error directive is encountered, compilation
stops.

2. The next program demonstrates the #undef directive. As the
program states, only the first printf() statement is compiled.

#include <stdio.h>
#define DOG

int main(void)
{
#ifdef DOG
printf ("DOG is defined.\n");
#endif

#undef DOG

#ifdef DOG
printf("This line is not compiled.\n"):
f#fendif

return 0;
}

3. The following program demonstrates the #line directive. Since
virtually all implementations of #error display the line number
and name of the file, it is used here to verify that #line did, in
fact, perform its function correctly. (In the next section, you will
see how a C program can directly access the line number and
file name).

#include <stdio.h>

int main(void)

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 397
124 EXAMINE C'S BUILT-IN MACROS d

{

int i;

/* reset line number to 1000 and file name to
myprog.c

0

#line 1000 "myprog.c"”

#error Check the line number and file name.

return 0;
)

4, Although the ANSI C standard does not specify any #pragma
directives, on your own check your compiler's user manual and
learn about any supported by your system.

-1. Try the example programs. See how these directives work on
your system.

_Exnmmf C’'S BUILT-IN MACROS

If your C compiler complies with the ANSI C standard, it will have
at least five predefined macro names that your program may use.
They are

_ _LINE_ _
__FILE_ _
__DATE_ _
__TIME_ _
__STDC_ _

Each of these is explained here.

392 TEACH YOURSELF
Y ¢

The _ _LINE_ _ macro defines an integer value that is equivalent to
the line number of the source line currently being compiled.

The _ _FILE_ _ macro defines a string that is the name of the file
currently being compiled.

The _ _DATE_ _ macro defines a string that holds the current
system date. The string has this general form:

month/day/year

The _ _TIME_ _ macro defines a string that contains the time the
compilation of a program began. The string has this general form:

hours:minutes.seconds

The _ _STDC_ _macro is defined as the value 1 if the compiler
conforms to the ANSI standard.

1. This program demonstrates the macros _ _LINE_ _, _ _FILE_ _,
__DATE__ and _ _TIME_ _.

#include <stdio.h>

int main{void)
{
printf("Compiling %s., line: %d, on %s, at %s",
__FILE__, __LINE__, __DATE__,
__TIME__);

return 0;

}

It is important to understand that the values of the macros are
fixed at compile time. For example, if the above program is
called T.C, and it is compiled on March 18, 1997, at 10 AM,

it will always display this output no matter when the
program is run.

Compiling T.C. line: 6, on Mar 18 1997, at 10:00:00

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 383
125 USE THE # AND ## OPERATORS ¥

The main use of these macros is to create a time and date stamp,
which shows when the program was compiled.

2." As you learned in the previous section, you can use the #line
directive to change the number of the current line of source
code and the name of the file. When you do this, you are
actually changing the values of _ _LINE_ _ and _ _FILE_ _. For
example, this program sets _ _LINE_ _to 100 and _ _FILE_ _to
myprog.c:

#include <stdio.h>

int main(void)
{
#line 100 "myprog.c"
printf("Compiling %s, line: %d, on %s, at %s",
__FILE__, __LINE__, = DATE v
__TIME__);

return 0;

)

The program displays the following output, assuming it was
compiled on March 18, 1997, at 10 AM.

Compiling myprog.c, line: 101, on Mar 18 1997, at 10:00:00

1. Compile and run the example programs.

"SE THE # AND ## OPERATORS

The C preprocessor contains two little-used but potentially valuable
operators: # and ##. The # operator turns the argument of a

394 TEACH YOURSELF
v e ———
C

function-like macro into a quoted string. The ## operator concatenates
two identifiers.

1. This program demonstrates the # operator.

#include <stdio.h>
#define MKSTRING(str) # str

int main(void)
{

int value;
value = 10;
printf("%s is %d", MKSTRING(value), value);

return 0;
}

The program displays value is 10. This output occurs because
MKSTRING() causes the identifier value to be made into a
quoted string.

2. The following program demonstrates the ## operator. It creates
the output() macro, which translates into a call to printf(). -
The value of two variables, which end in 1 or 2, is displayed.

#include <stdio.h>
#define output(i) printf("sd %d\n", i ## 1, i ##4 2)
int main(void)

{
int countl, count2;

int i1, i2;
countl = 10;
count2 = 20;
il = 99;

i2 = -10;

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 395
126 UNDERSTAND FUNCTION POINTERS ¥

output (count) ;
output (i) ;

return 0;

}

The program displays 10 20 99 -10. In the calls to output(),
count and i are concatenated with 1 and 2 to form the variable
names countl, count2, il and i2 in the printf() statements.

1. Compile and run the example programs.
2. What does this program display?

#include <stdio.h>
#define JOIN(a, b) a ## b

int main(void)
{
printf (JOIN("cne *, "two"));

return 0;

}

3. On your own, experiment with the # and ## operators. Try to
think of ways they can be useful to you in your own
programming projects.

_UNDERS TAND FUNCTION POINTERS

This section introduces one of C's most important advanced features:
the function pointer. Although it is beyond the scope of this book to

396 TEACH YOURSELF
v c

discuss all the nuances and implications of function pointers, the main
issues are covered here.

A function pointer is a variable that contains the address of the entry
point to a function. When the compiler compiles your program, it
creates an entry point for each function in the program. The entry
point is the address to which execution transfers when a function is
called. Since the entry point has an address, it is possible to have a
pointer variable point to it. Once you have a pointer to a function, it is
possible to actually call that function using the pointer. You will see
shortly why you might want to do this.

To create a variable that can point to a function, declare the pointer
as having the same type as the return type of the function, followed by
any parameters. For example, the following declares p as a pointer to
a function that returns an integer and has two integer parameters, x
andy. .

ing (*p) (int x, dnt y)s

The parentheses surrounding *p are necessary because of C's
precedence rules.

To assign the address of a function to a function pointer, simply use
its name without any parentheses. For example, assuming that sum()
has the prototype

int sum(int a, int b);
the assignment statement
p = sum;

is correct. Once this has been done, you can call sum() indirectly
through p using a statement like

result = (*p) (10, 20);

Again, because of C's precedence rules, the parentheses are necessary
around *p. Actually, you can also just use p directly, like this:

result = p(10, 20);

However, the (*p) form tips off anyone reading your code that a
function pointer is being used to indirectly call a function, instead of
calling a function named p.

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 397
126 UNDERSTAND FUNCTION POINTERS ¥

1. As a first example, this program fills in the details and

demonstrates the function pointer that was just described.

#include <stdio.h>
int sum(int a, int b);

int main(void)

{
int (*p) (int x, int y):
int result;

p = sum; /* get address of sum() */

result = (*p) (10, 20);
printf(*%d", result);

return 0;

int sum(int a, int b)
{
return a+b;

}

- The program prompts the user for two numbers, calls sum()
indirectly using p, and displays the result.

. Although the program in Example 1 illustrates the mechanics of
using function pointers, it does not even hint at their power.
The following example, however, will give you a taste.

One of the most important uses of function pointers occurs
when a function-pointer array is created. Each element in the
array can point to a different function. To call any specific
function, the array is simply indexed. A function pointer array
allows very efficient code to be written when a variety of
different functions need to be called under differing
circumstances. Function-pointer arrays are typically used when
writing systems software, such as compilers, assemblers, and
interpreters. However, they are not limited to these applications.
While meaningful and short examples of function-pointer arrays
are difficult to find, the program shown next gives you an idea

B398 TEACH YOURSELF
Y ¢

of their value. Like the program in Example 1, this program
prompts the user for two numbers. Next, it asks the user to
enter the number of the operation to perform. This number is
then used to index the function-pointer array to execute the
proper function. Finally, the result is displayed.

#include <stdio.h>

int sum(int a, int b);
int subtract(int a, int b);
int mul(int a, int b);
int div({int a, int b);

int (*pl[4]) (int x, int y);

int main(void)
(
int result;
int i; 3. ops

pl0] = sum; /* get address of sum() */
pll] = subtract; /* get address of subtract() */
pl2] = mul; /* get address of mul() */
pl3] = div; /* get address of div() */

printf ("Enter two numbers: *);
scanf ("%d%d", &i, &j);
printf("0: Add, 1: Subtract, 2: Multiply, 3: Divide\n*);
do {
printf ("Enter number of operation: ");
scanf ("%d", &op);
} while(op<0 || op>3);

result = (*plop]) (i, j);
printf("%d", result);

return 0;

int sum(int a, int b)
{

return a+b;

int subtract(int a, int b)

THE C PREPROCESSOR AND SOME ADVANCED TOPICS - 399
126 UNDERSTAND FUNCTION POINTERS ¥

return a-b;

int mul(int a, int b)
{
return a*b;

int div(int a, int b)
{
if(b) return a/b;
else return 0;

}

When you study this code, it becomes clear that using a
function-pointer array to call the appropriate function is more
efficient than using a switch() statement.

Before leaving this example, we can use it to illustrate
one more point: function-pointer arrays can be initialized, just
like any other array. The following version of the program
shows this.

#include <stdio.H>

int sum(int a, int b);
int subtract{int a, int b);
int mul({int a, int b);
int div(int a, int b);

/* initialize the pointer array */

int (*pl4]) (int x, int y) = {
sum, subtract, mul, div

)

int main(void)
{
int result;
int i, j, op;

printf("Enter two numbers: ");
scanf ("%d%d", &i, &3j);
printf("0: Add, 1: Subtract, 2: Multiply, 3: Divide\n"):
do {
printf ("Enter number of operation: ");

&00 TEACH YOURSELF

scanf ("%d", &op);
} while(op<0 || op>3);

result = (*plopl) (i, J):
printf("%d", result);

return 0;
}

int sum(int a, int'b)
{

return a+b;

}

int subtract(int a, int b)
{

return a-b;

}

int mul (int a, int b)
{

return a*b;

)

int div(int a, int b)
{
if (b) return a/b;
else return 0;

}

. One of the most common uses of a function pointer occurs
when utilizing another of C’s standard library functions, gsort().
The gsort() function is a generic sort routine that can sort any
type of singly dimensioned array, using the Quicksort algorithm.
Its prototype is

void gsort(void *array, size_t number, size_t size,
int (*comp)(const void *a, const void *b));

Here, array is a pointer to the first element in the array to be
sorted. The number of elements in the array is specified by
number, and the size of each element of the array is specified by

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 401
126 UNDERSTAND FUNCTION POINTERS Y

size. (Remember, size_t is defined by the C compiler and is
loosely the same as unsigned.) The final parameter is a pointer
to a function (which you create) that compares two elements of
the array and returns the following results:

*a<'b returns a negative value
*a=="b returns a zero
. *a>"b returns a pRositive value

The gsort() function has no return value. It uses the STDLIB.H
header file.

The following program loads a 100-element integer array
with random numbers, sorts it, and displays the sorted form.
Notice the necessary type casts within the comp() function.

#include <stdio.h>
#include <stdlib.h>

int comp(const void *i, const void L Y1

int main(veid)
(
int sort(100], i;

for(i=0; i<100; i++)
sort(i] = rand();

gsort (sort, 100, sizeof(int), comp) ;

for(i=0; i<100; i++)
printf("%d\n", sort[i]);

return 0;

)

int comp(const void *i, const void *j)
{

return *(int*)i - *(int*)j:

402 TEACH YOURSELF
R T
¥ g

EXERCISES

1. Compile and run all of the example programs. Experiment with
them, making minor changes.

2. Another of C's standard library functions is called bsearch().
This function searches a sorted array, given a key. It returns a
pointer to the first entry in the array that matches the key. If no
match is found, a null pointer is returned. Its prototype is

void *bsearch(const void *key, const void *array, size_t number, size_t size,
int (*comp)(const void *a, const void *b));

All the parameters to bsearch() are the same as for qsort()
except the first, which is a pointer to key, the object being
sought. The comp() function operates the same for bsearch()
as it does for gsort().

Modify the program in Example 3 so that after the arrav is
sorted, the user is prompted to enter a number. Next, using
bsearch(), search the sorted array and report if a match is
found.

3. Add a function called modulus() to the final version of the
arithmetic program in Example 2. Have the function return the
result of a % b. Add this option to the menu and fully integrate
it into the program.

MASTER DYNAMIC ALLOCATION

This final section of the book introduces you to C's dynamic-allocation
system. Dynamug allocation is the process by which memory is
allocated as needed during runtime. This allocated memory can be
used for a variety of purposes. Most commonly, memory is allocated
by applications that need to take full advantage of all the memory in
the computer. For example, a word processor will want to let the user
edit documents that are as large as possible. However, if the word
processor uses a norral character array, it must fix its size at compile
time. Thus, it would have to be compiled to run in computers with the
minimum amount of memory, not allowing users with more memory

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 503
127 MASTER DYNAMIC ALLOCATION ¥

to edit larger documents. If memory is allocated dynamically (as
needed until memory is exhausted), however, any user may make full
use of the memory in the system. Other uses for dynamic allocation
include linked lists and binary trees.

The core of C's dynamic-allocation functions are malloc(), which
allocates memory, and free(), which releases previously allocated
memory. Their prototypes are

void *malloc(size_t numbytes);
void free(void *ptn);

Here, numbytes is the number of bytes of memory you wish to
allocate. The malloc() function returns a pointer to the start of the
allocated piece of memory. If malloc() cannot fulfill the memory
request—for example, there may be insufficient memory available —it
returns a null pointer. To free memory, call free() with a pointer to
the start of the block of memory (previously allocated using malloc())
you wish to free. Both functions use the header file STDLIB.H.

Memory is allocated from a region called the heap. Although the
actual physical layout of memory may differ, conceptually the heap
lies between your program and the stack. Since this is a finite area, an
allocation request can fail when memory is exhausted.

When a program terminates, all allocated memory is automatically
released.

1. You must confirm that a call to malloc() is successful before
you use the pointer it returns. If you perform an operation on a
null pointer, you could crash your program and maybe even the

entire computer. The easiest way to check for a valid pointer is
shown in this fragment:

p = malloc(SIZE);

if(ip) |
printf("Allocation Error");

&4 TEACH YOURSELF

v

2

3.

c
exit(1);

}

The following program allocates 80 bytes and assigns a
character pointer to it. This creates a dynamic character array.
It then uses the allocated memory to input a string using gets().
Finally, the string is redisplayed and the pointer is freed. (As
stated earlier, all memory is freed when the program ends, so
the call to free() is included in this program simply to
demonstrate its use.)

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char *p;
p = malloc(80);

if(!p) {
printf("Allocation Failed");
exit(1l);

}

printf ("Enter a string: ");
gets(p):

printf(p);

free(p);

return 0;
)

The next program tells you approximately how much free
memory is available to your program.

$inciude <stdio.h>
#include <stdlib.h>

int main(void)
{
char *p;
long 1;

1 =20;

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 505
127 MASTER DYNAMIC ALLOCATION ¥

do (
p = malloc(1000);
if{p) 1 += 1000;
} while(p);

printf ("Approximately %1d bytes of free memory.", 1);

return 0;

}

The program works by allocating 1000-byte-long chunks of
memory until an allocation request fails. When malloc()
returns null, the heap is exhausted. Hence, the value of 1
represents (within 1000 bytes) the amount of free memory
available to the program.

. One good use for dynamic allocation is to create buffers for file
1/0 when you are using fread() and/or fwrite(). Often, you
only need a buffer for a short period of time, so it makes sense
to allocate it when needed and free it when done. The following
program shows how dynamic allocation can be used to create

a buffer The program allocates enough space to hold ten
floating-point values. It then assigns ten random numbers to
the allocated memory, indexing the pointer as an array. Next,
it writes the values to disk and frees the memory. Finally, it
reallocates memory, reads the file and displays the random
numbers. Although there is no need to free and then reallocate
the memory that serves as a file buffer in this short example, it
illustrates the basic idea.

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

int i;
double *p;
FILE *fp;

/* get memory */
p = malloc(1l0 * sizeof (double));
if(p) {

printf ("Allocation Error");

606 TEACH YOURSELF
Y B

exitc(l);

/* generate 10 random numbers */
for (i=0; i<10; i++)
pli] = (double) rand();

if((fp = fopen("myfile", "wb"))==NULL) ({
printf(*Cannot open file.\n");
exit(l);

}

/* write the entire array in one step */

if (fwrite(p, 10*sizeof (double), 1: fp) l=-1} {
printf("Write Error.\n");
exit(1);

}

fclose(fp);

free(p); /* memory not needed now */

,f*
imagine something transpires here

t’/'

/* get memory. again */
P = malloc(1l0 * sizeof (double)):

if(tp) |
printf("Allocation Error");
exit(1);
}
if((fp = fopen("myfile", *rb"))==NULL) (
printf("Cannot open file.\n");
exit (1) ;
}
/* read the entire array in one step */
if (fread(p, 10*sizeof(double), 1, o) E= 1) T

printf("Read Error.\n");

THE C PREPROCESSOR AND SOME ADVANCED TOPICS &407
127 MASTER DYNAMIC ALLOGATION ¥

exit(1l):

}
fclose(fp):

/* display the array */
for(i=0; i<10; i++) printf("%f ", plil);
free(p);

return 0;
}

5. Just as array boundaries can be overrun, so can the boundaries
of allocated memory. For example, this fragment is syntactically
valid, but wrong.

p = malloc(10):

for(i=0; i<100; i) pli] = i3

EXERCISES

1. Compile and run the example programs.

2. Write a program that creates a ten-element dynamic integer
array. Next, using pointer arithmetic or array indexing, assign
the values 1 through 10 to the integers that comprise the array.
Finally, display the values and free the memaory.

3. What's wrong with this fragment?

char *p;
*p = malloc(1l0);

gets(p);

£08 TEACH YOURSELF

At this point you should be able to answer these questions and
perform these cxercises:

1. What is the difference between using quotes and angle brackets
with the #include directive?

2. Using an #ifdef, show how to conditionally compile this
fragment of code based upon whether DEBUG is defined or not.
1E(1(i%2)) |

printf("j = %d\n", 3j);
i = 0; .
}

3. Using the fragment from Exercise 2, show how you can
conditionally compile the code when DEBUG is defined as 1.
(Hint: Use #if).

4. How do you undefine a macro?

5. Whatis _ _FILE_ _ and what does it represent?

6. What do the # and ## preprocessor operators do?

7. Write a program that sorts the string "this is a test of gsort".
Display the sorted output.

8. Write a program that dynamically allocates memory for one
double. Have the program assign that location the value 99.01,
display the value, and then free the memory.

umulative
Skills Check

This section checks how well you have integrated the material in
this chapter with that from earlier chapters,

1. Section 10.1, Example 3, presents a computerized card-catalog
program that uses an array of structures to hold information or,
books. Change this program so that only an array of structure

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 409
127 MASTER DYNAMIC ALLOCATION ¥

pointers is created, and use dynamically allocated memory to
actually hold the information for each book as it is entered. This
way, less memory is used when information on only a few
books is stored.

2. Show the macro equivalent of this function:

char code_it (char c)

{
return ~c;

}

Demonstrate that your macro version works in a program.

. On vour own, look over the programs that you have written in
the course of working through this book. Try to find places
where you can:

¥ Use conditional compilation.

¥ Replace a short function with a function-like macro.

¥ Replace statically allocated arrays with dynamic arrays.
¥ Use function pointers.

. On your own, study the user's manual or online documentation
for your C compiler, paying special attention to the description
of its standard library functions. The C standard library contains
several hundred library functions that can make your
programming tasks easier. Also, Appendix A in this book
discusses some of the most common library functions.

. Now that you have finished this book, go back and skim through
each chapter, thinking about how each aspect of C relates to the
rest of it. As you will see, C is a highly integrated language, in
which one feature complements another. The connection
between pointers and arrays, for example, is pure elegance.

. Cis a language best learned by doing! Continue to write
programs in C and to study other programmers’ programs. You
will be surprised at how quickly C will become second natitre!

. Finally, you now have the necessary foundation in C to allow
you to move on to C++, C'sobject-oriented extension. If C++
programming is in your future, proceed to Teach Yourself C++,
(Berkeley, CA, Osborne/McGraw-Hill). It picks up where this
book leaves off.

A

Some Common C
Library Functions

411
v

£372 TEACH YOURSELF

v

c

His appendix discusses a number of the more frequen

ANSI C library functions. If you have looked through

library section in your C/C++ compiler’s documentat
are no doubt aware that there are a great many librar,
functions. It is far beyond the scope of this book to cover

one. However, the ones you will most commonly need are discuss
The library functions can be grouped into the following cate

1/0 functions
String and character functions
Mathematics functions

Time and date functions

4 4 4 4

Dynamic allocation functions
¥ Miscellaneous functions

The 170 functions were thoroughly covered in Chapters 8 ar
will not be expanded upon here.

Each function's description begins with the header file requi
the function followed by its prototype. The prototype provides
with a quick way of knowing what types of arguments and how
of them the function takes and what type of value it returns.

Keep in mind that ANSI C specifies many data types, which.
defined in the header files used by the functions. New type nar
be discussed as they are introduced.

STRING AND CHARACTER FUNCTIO

The C standard library has a rich and varied set of string- and
character-handling functions. In C, a string is a null-terminated
of characters. The declarations for the string functions are foun
header file STRING.H. The character functions use CTYPE.H a¢
header file.

Because C has no bounds-checking on array operations, it is
programmer’s responsibility to prevent an array overflow.

SOME COMMON C LIBRARY FUNCTIONS 4§73
Al STRING AND CHARACTER FUNCTIONS ¥

The character functions are declared with an integer parameter.
While this is true, only the low-order byte is used by the function,
Generally, you are free to use a character argument because it will
automatically be elevated to int at the time of the call.

#include <ctype.h>
int isalnum(int ch);

Description The isalnum() function returns nonzero if its argument
is either a letter or a digit. If the character is not alphanumeric, then 0
is returned.

Example This program checks each character read from stdin and
reports all alphanumeric ones:

#include <ctype.h>
#include <stdio.h>

int main(void)
{

char ch;

for(;;) {
ch = getchar();
if(ch==") break;

if(isalnum(ch)) printf("%c is alphanumeric\n", ch);
} .

return 0;
#include <ctype.h>

int isalpha(int ch);

Description The isalpha() function returns nonzero if ch is a letter of
the alphabet; otherwise 0 is returned.

Example This program checks each character read from stdin and
reports all those that are letters of the alphabet:

L1 4 TEACH YOURSELF
bl b iooe
¥ ¢

#include <ctype.h>
#include <stdio.h>

int main(veoid)
{
char ch;

fordzs)
ch = getchar():
if{ch==" ‘) break;
if{isalpha[chj) printf("%c is a letter\n", ch);

return 0;

#include <ctype.h>
int iscntri(int ch);

Description The iscntrl() function returns nonzero if ch is between 0
and 0x1F or is equal to 0x7F (DEL); otherwise 0 is returned.

Example ‘This program checks each character read from stdin and
reports all control characters:

#include <ctype.h>
#include <stdio.h>

int main{void)

{

char ch;
for(;:) { J
ch = getchar(): /

if (ch==" ') break; /
if (iscntrl(ch)) :
printf("%c is a control character\n", ch);

return 0;

SOME COMMON C LIBRARY FUNCTIONS 415
Al STRING AND CHARACTER FUNCTIONS Y

#include <ctype.h>
int isdigit(int ch);

Description The isdigit() function returns nonzero if ch is a digit (0 _
through 9); otherwise 0 is returned.

Example This program checks each character read from stdin and
reports all those that are digits:

#include <ctype.h>
#include <stdio.h>

int main(void)
{
char ch;

Forlye) A
ch = getchar();
if(ch==* ') break;
if(isdigit(ch}) printf("%$c is a digit\n", ch);

return 0;

}

#include <ctype.h>
int isgraph(int ch);

Description The isgraph() function returns nonzero if ch is any
printable character other than a space; otherwise 0 is returned.
Printable characters are in the range 0x21 through 0x7E.

Example This program checks each character read from stdin and
reports all printing characters:

#include <ctype, L h>
#include <stdio.h>

int main(void)

char ch;

6716 TEACH YOURSELF
¥ @
for(;:) (
ch = getchar();
if (ch=="' ') break;
if (isgraph(ch))
printf("%c is a printing character\n", ch);

return 0;

#include <ctype.h>
int islower(int ch);

Description The islower() function returns nonzero if ch is a
lowercase letter (a through z); otherwise 0 is returned.

Example This program checks each character read from stdin and
reports all those that are lowercase letters:

#include <ctype.h>
#include <stdio.h>

int main(void)
(
char ch;

for(;:) (
ch = getchar(};
if (ch==" ') break;
if (islower (ch)) printf("%c is lowercase\n", ch);

}

return 0;

)

#include <ctype.h>
int isprint(int ch);

Description The isprint() function returns nonzero if ch is a
printable character, including a space; otherwise 0 is returned.
Printable characters are often in the range 0x20 through 0x7E.

SOME COMMON C UIBRARY FUNCTIONS 517
Al STRING AND CHARACTER FUNCTIONS ¥

Example This program checks each character read from stdin and
reports all those that are printable:

#include <ctype.h>
#include <stdio.h>

int main(void)

{
char c¢h;
gor{:) {
ch = getchar();
if{ch=='Q') break:
if (isprint(ch)) printf("%c is printable\n”, ch) ;
}
return 0;
}
#include <ctype.h>

int ispunct(int ch);

Description The ispunct() function returns nonzero if ch is a
punctuation character, excluding the space; otherwise 0 is returned.
The term "punctuation,” as defined by this function, includes all
printing characters that are neither alphanumeric nor a space.

Example This program checks each character read from stdin and
reports all those that are punctuation:

#include <ctype.h>
#include <stdio.h>

int main(void)
(

char ch;

Eoeliz) (
ch = getchar();
if(ch==" ') break;

if(ispunct{ch)) printf("%c is punctuationin®, chl;

‘

£ 718 TEACH YOURSELF

#include <ctype.h>
int isspace(int ch);

Description The isspace() function returns nonzero if ch is either a
space, tab, vertical tab, form feed, carriage return, or newline
character; otherwise 0 is returned.

Example This program checks each character read from stdin and
reports all those that are whitespace characters:

#include <ctype.h>
#include <stdic.h>

int main(void)
{

char ch;

for(;;) {
ch = getchar():
if (isspace(ch)) printf("%c is whitespace\n", ch);
if(ch==" ') break;

return 0;

#include <ctype.h>
int isupper(int ch);

Description The isupper() function returns nonzero if ch is an
uppercase lecter (A through Z); otherwise 0 is returned.

Example This program checks each character read from stdin and
reports all those that are uppercase letters:

#include <ctype.h>
#include <stdio.h>

SOME COMMON C LIBRARY FUNCTIONS £719
Al STRING AND CHARACTER FUNCTIONS v

int main(void)

{
char ch;
for{s») o
ch = getchar{);
if(ch==" ') break;

if(isupper(ch})) printf("%c is uppercase\n", ch);

}

return 0;

#include <ctype.h>
int isxdigit(int ch);

Description The isxdigit() function returns nonzero if ch is a
hexadecimal digit; otherwise 0 is returned. A hexadecimal digit will be
in one of these ranges: A through F, a through f, or 0 through 9.

Example This program checks each character read from stdin and
reports all those that are hexadecimal digits:

#include <ctype.h>
#¢include <stdio.h>

int main(void)

(

char ch;

ford;) 1
ch = getchar();
if(ch==' ') break:;

if(isxdigit(ch)) printf("%c is hexadecimal \n", ch);
)

return 0;

5420 TEACH YOURSELF
Y ¢

#include <string.h>
char *strcat(char *str1, const char *str2);

Description The strcat() function concatenates a copy of str2 to strl
and terminates strl with a null. The null terminator originally ending
strl s overwritten by the first character of str?, The string str2 is
untouched by the operation. The strcat() function returns seri.

No bounds-checking takes place, so it is the programmer’s responsibility
to ensure that strlis farge enough to hold both its original contents and
those of str2.

Example This program appends the first string read from stdin to the
sccond. For example, assuming the user enters hello and there, the
program will print therchello.

#include <string.h>
#tinclude <stdio.h»

int main(void)

r

1
char s1(80], s2[80];

printf("Enter two strings: *):
gers(sl);
gets(s2);

strcat(s2, sl);
printfis2);

return 0;

#include <string.h>
char *strchr(const char *str, int ch);

Description The strchr() function returns a pointer to the first
occurrence of the low-order byte of ch in the string pointed to by str. If
no match is found, a null pointer is returned.

SOME COMMON C LIBRARY FUNCTIONS 521
Al STRING AND CHARACTER FUNCTIONS ¥

Example This prints the string is a test:

#include <string.h=>
#include <stdio.h>

int main(void)
{
chiar *D;

p = strchr("this is a test", ' ');
printf(p);

return 0;

#include <string.h>
int strcmp(const char *str1, const char *str2);

Description A stremp() function lexicographically compares two
null-terminated strings and returns an integer based on the outcome,
as shown here:

Result Meaning

less than O strl is less than str2

0 str1 is equal to str2
greater than 0 strl is greater thap str2

Example The following function can be used as a password
verification routine. It will return 0 on failure and 1 on success.

#include <string.h>

int password(void)
(
char s[80];

printf ("Enter password: ");
gets(s);

if(strcmp(s, "pass”)) {
printf(*Invalid Password\n®):
return 0;

422 TEACH YOURSELF
¥ ¢

}
return 1;

#include <string.h>
char *strcpy(char *str1, const char *str2);

Description The strcpy() function is used to copy the contents of str2
into strl; str2 must be a pointer to a null-terminated string. The
strepy() function returns a pointer to strl.

It strl and str2 overlap, the behavior of strepy () is undefined.

Example The following code fragment will copy "hello” into string str:

char str[80];
strcpy(str, "hello");

#include <string.h>
size_t strlen(const char *str);

Description ‘The strlen() function returns the lengeh of the
null-terminated string pointed to by str. The null is not counted. The
size_t type is defined in STRING. H.

Example The following code fragment will print 5 on the screen:

strepy (s, "hello");
printf({"%d", strlen(s));

#include <stdio.h>
char *strstr(const char *str1, const char *str2);

~ . -~ -
Description 'The strstr() function returns a pointer tiythe first
occurrence of the string pointed to by str2 in the string pointed to by
strl (except str2's null terminator). It returns a null pointer if no match
is found.

Example This program displays the message is a test: -

SOME COMMON C LIBRARY FUNCTIONS 423
A1 STRING AND CHARACTER FUNCTIONS Y

#include <string.h>
¢include <stdio.h>

int main{void)

{

char *p:

p = strstr{“this is a test", "is");
printf(p):

return 0;

#include <string.h>
char *strtok(char *str1, const char *str2);

Description The strtok() function returns a pointer to the next token
in the string pointed to by strl. The characters making up the string
pointed to by str2 are the delimiters that separate each token. A null
pointer is returned when there are no more tokens.

The first time strtok() is called, strl is actually used in the call,
Subsequent calls use a null pointer for the first argument. In this way
the entire string can be reduced to its tokens.

It is possible to use a different set of delimiters for each call to strtok()

Example This program tokenizes the string "The summer soldicr, the
sunshine patriot" with spaces and commas as the delimiters. The
output will be The | summer | soldicr | the | sunshine | patriot.

#include <string.h>
#include <stdio.h>

int main(void)
(
char *p:;

p = strtok("The summer soldier, the sunshine patriot", " ,");

printfi(p);

do {
p = streok{'\0*, ", ");
if (p) printf("|%s", p);:

£&24s TEACH YOURSELF

T

) while(p):

return 0;

#include <ctype.h>
int tolower(int ch);

Description The tolower() function returns the lowercase equivalent
of ¢l if ch is a letter; otherwise ch is returned unchanged.

Example This fragment displays q:
putchar (tolower('Q’)):

#include <ctype.h>
int toupper(int ch);

Description The toupper() function returns the uppercase
cquivalent of ch if ch is a letter; otherwise ch is returned unchanged.

Example This displays A:

putchar (toupper(‘a‘’)) :

'HE MATHEMATICS FUNCTIONS

ANSI C defines several mathematics functions that take double
arguments and return double values. These functions fall into the
following categories:

¥ Trigonometric functions
¥ Hyperbolic functions
¥ Exponential and logarithmic functions

¥ Miscellaneous functions

SOME COMMON C LIBRARY FUNCTIONS 425
A2 THE MATHEMATICS FUNCTIONS Y

All the math functions require that the header MATH.H be included
in any program that uses them. In addition to declaring the math
functions, this header defines a macro called HUGY,_VAL. If an
operation produces a result that is too large to be represented by a
double, an overflow occurs, which causes the routine to return
HUGE_VAL. This is called a range error. For all the mathematics
functions, if the input value is not in the domain for which the
function is defined, a domain error occurs.

All angles are specified in radians.

#include <math.h>
double acos(double arg);

Description The acos() function returns the arc cosine of arg. The
argument to acos() must be in the range -1 through I; otherwise a
domain error will occur.

Example This program prints the arc cosines, in one-tenth increments,
ot the values -1 through 1:

#include <math.h>
#include <stdio.h=>

int main(void)
{
double val = -1.0;

do {
printf (*arc cosine of %f is %f\n", wval, acosl(val));
val += 0.1;

} while(val<=1.0);

return 0;

#include <math.h>
double asin(double arg);

Description The asin() function returns the arc sine of arg. The
argument to asin() must be in the range -1 through 1; otherwise a
domain error will occur.

£26 TEACH YOURSELF
¥ ¢

Example This program prints the arc sines, in one-tenth increments,
of the values -1 through 1:

#include <math.h>
#include <stdio.h>

int main(void)

(
double val=-1.0;

do (
printf("arc sine of %f is %f\n", val, asin(val));
val += 0.1;

} while{val<=1.0);

return 0;

#include <math.h>
double atan(double arg);

Description 'The atan() function returns the arc tangent of arg.
Example This program prints the arc tangents, in one-tenth

increments, of the values -1 through 1:°

#include <math.h>
#include <stdio.h>

int main(void)
{
double val=-1.0;

de (
printf("arc tangent of %f is %f\n", val, atan(val));
val += 0.1;

} while(val<=1.0);

return 0;

SOME COMMON C LIBRARY FUNCTIONS &2
A2 THE MATHEMATICS FUNCTIONS - T

#include <math.h> ‘
double atan2(double y, double x);

Description The atan2() function returns the arc tangent of y/x. It
uses the signs of its arguments to compute the quadrant of the return
value.

Example This program prints the arc tangents, in one-tenth
increments of y, from -1 through 1:

#include <math.h=>
#include <stdio.h>

int main(veoid)
(
double y=-1,0;

<
do |

printf("atan2 of %f is %f\n", y, atan2(y, 1.0));:
Yy 25 0.1;
} while({y<=1.0);

return 0;

#include <math.h>
double ceil(double num);

Description The ceil() function returns the smallest integer
(represented as a double) that is not less than num. For example, given
1.02, ceil() would return 2.0; given -1.02, ceil() would return -1.
Example This fragment prints 10.0 on the screen:

printf("%£f", ceil(9.9));

428 TEACH YOURSELF
v g

#include <math.h>
double cos(double arg);

Description The cos() function returns the cosine of arg. The value
of arg must be in radians.

Example This program prints the cosines, in one-tenth increments, of
the values -1 through 1.

#include <math.h>
#include <stdio.h>

int main(veoid)
{
double val=-1.0;

do {
printf ("cosine of %f is %f\n", val, coslival));
val += 0.1;

] while(val<=1.0);

return 0;

—~—

#include <math.h>
double cosh(double arg);

Description 'The cosh() function returns the hyperbolic cosine of arg.

Example This program prints the hyperbolic cosines, in one-tenth
increments, of the values -1 through 1:

#include <math.h>
#include <stdio.h>

int main(void)
{
double val=-1.0;

do {
printf ("hyperbolic cosine of %f is %f\n", wval, cosh(val))
val += 0.1;

SOME COMMON C LIBRARY FUNCTIONS 4§29

A2 THE MATHEMATICS FUNCTIONS Y

} while(val<=1.0);

return 0;

#include <math.h>
double exp(double arg);

Description The exp() function returns the natural lotarithm e raised
to the arg power.
Example This fragment displays the value ot ¢ (rounded to 2.718282):

printf{"Value of e to the first: %f", exp(l1.0));

#include <math.h>
double fabs(double num);

Description The fabs() function returns the absolute value of num.

Example This program prints the numbers 1.0 1.0 on the screen:

#include <math.h>
#include <stdio.h>

int main(void)
{
printf("%1.1f %1.1f", fabs(1.0), fabs(-1.0));

return 0;

#include <math.h>
double floor(double num);

Description The floor() function returns the largest integer
(represented as a double) not greater than nwm. For example, given
1.02, floor() would return 1.0; given -1.02, floor() would return
-2.0.

&30 TEACH YOURSELF
Y ¢

Example This fragment prints 10.0 on the screen:

printf("%f*, floor(10.9));

#include <math.h>
double log(double num);

Description The log() function returns the natural logarithm for
num. A domain error occurs if 7um is negative and a range error
occurs if the argument is 0.

Example This program prints the natural logarithms for the numbers
1 through 10:

#include <math.h>
#include <stdio.h>

int main(veid)
{
double val=1.0;

do (
printf("%f %f\n", wval, logl(val));
val++;

} while(val<11.0);

return 0;

}

#include <math.h>
double log10(double num);

Description The log10() function returns the base 10 logarithm for
the variable num. A domain error occurs if num is negative and a
range error occurs if the argument is 0.

Example This program prints the base 10 logarithms for the numbers
1 through 10:

#include <math.h>
#include <stdio.h>

SOME COMMON C LIBRARY FUNCTIONS 431
A2 THE MATHEMATICS FUNCTIONS Y

int main{void)
(
double val=1.0;

do {
printf("%f %$f\n*, val, loglO(val));
val++;

} while(val<11l.0):

return 0;

#include <math.h>
double pow(double base, double exp);

Description The pow() function returns base raised to the exp power
(base®™). A domain error may occur if base is 0 and exp is less than or
equal to 0. A domain error will occur if base is-negative and exp is not
an integer. An overflow produces a range error.

Example This program prints the first ten powers of 10:

#include <math.h>
#include <stdio.h>

int main(void)
{
double x=10.0, y=0.0;

do {
printf("%f ", powl(x, y));
Y++;

} while(y<1l);

return 0;

#include <math.h>
double sin(double arg);

Description The sin() function returns the sine of arg The value of
-arg must be in radians.

£32 TEACH YOURSELF

Y ¢

Example This program prints the sines, in one-tenth increments, of
the values -1 through 1:

#include <math.h>
#include <stdio.h>

int main(void)

{
double val=-1.0;
do (
printf("sine of %t is %f\n", wval, sin(val));
val += 0.1;
} while(val<=1.0);
return 0;
}
#include <math.h>

double sinh(double arg);
Description The sinh() function returns the hyperbolic sine of arg.

Example The following program prints the hyperholic sines, in
one-tenth increments, of the values -1 through 1:

#include <math.h>
$include <stdio.h>

int main{void)
{
double val=-1.0;

do {
printf ("hyperbelic sine of %f is %$f\n", val, sinh(val)):
val += 0.1;

} while(val<=1.0);

return 0;

SOME COMMON C LIBRARY FUNCTIONS 433
A2 THE MATHEMATICS FUNCTIONS T

#include <math.h>
double sqrt(double num);

Description 'The sqrt() function returns the square root of nuom. If
called with a negative argument, a domain error will occur.

Example This fragment prints 4.0 on the screen:

printf("%f", sqrt(l6.0}));

#include <math.h>
double tan(double arg);

Description The tan() function returns the tangent of arg. The
of arg must be in radians.

Example This program prints the tangents, in one-tenth increments,
of the values -1 through 1:

#include <math.h>
#include <stdio.h>

int main(void)
{
double val=-1.0;

do |
printf(~tangent of %f
val += 0.1;

} while(val<=1.0);

n
o0
(2]

\n", wval, tan(val));

return 0;

#include <math.h>
double tanh(double arg);

Description The tanh() function returns the hyperbolic tangent of arg.

£34; TEACH YOURSELF
e

Example This program prints the hyperbolic tangents, in one-tenth
increments, of the values -1 through 1:

#include <math.h>
#inciude <stdio.h>

int main(void)
{

double val=-1.0;

do |
printf(*tanh of %f is Sf\n"; wal, ‘tanh{val});
val += 0.1;)

} while(wval<=1.0);

'lME AND DATE FUNCTIONS

The time and date functions require the header TIME.H for their
prototypes. This header file also defines four types and two macros.
The type time_t 1s able to represent the system time and date as a
long integer. This is called the calendar time. The structure type tm
holds date and time broken down into its elements. The tm structure
is defined as shown here:

struct tm {

int tm_sec; /* seconds, 0-61 */

int tm_min; /* minutes, 0-59 */

int tm_hour; /* hours, 0-23 */

int tm_mday; /* day of the month, 1-31*/

int tm_mon; /* months since Jan, 0-11 */

int tm_year; /* years from 1900 */

int tm_wday; /* days since Sunday, 0-6 */

int tm_yday; /* days since Jan 1, 0-365 *;

int tm_isdst; /* Daylight Saving Time indicator */
35

r -

The value of tm_isdst will be positive if Daylight Saving Time is in
cftect, 0 if it is not in effect, and negative if there is no information

SOME COMMON C LIBRARY FUNCTIONS 435
A3 TIME AND DATE FUNCTIONS ¥

wailable. When the date and time are represented in this way, they
ire referred to as broken-down time.

The type clock_t is defined the same as time_t. The header file
1lso defines size_t.

The macros defined are NULL and CLOCKS_PER_SEC.

#include <time.h>
char *asctime(const struct tm *ptr);

Description The asctime() function returns a pointer to a string that
contains the time and date stored in the structure pointed to by ptr
after it has been converted into the following form:

day month date hours:minutes:seconds year\n\0

For example:
Wed Jun 19 12:05:34 1999

The structure pointer passed to asctime() is generally obtained from
either localtime() or gmtime().

The buffer used by asctime() to hold the formatted output string is
a statically allocated character array and is overwritten each time the
function is called. If you want to save the contents of the string, you
need to copy it elsewhere.

Example This program displays the local time defined by the system:

#include <time.h>
#include <stdio.h>

int main(void)

(
struct tm *ptr;
time_t 1lt;

1t = time(NULL) ;
ptr = localtime(<);
printf (asctime(ptr));

return 0;

[

£ 36 TEACH YOURSELF
¥ &

#include <time.h>
clock_t clock(void);

Description The clock() function returns the number of system
clock cycles that have occurred since the program began exccution.
To compute the number of seconds, divide this value by the
CLOCKS_PER_SEC macro.

Example The following program displays the number of system clocl
cvcles occurring since it began:

#include <stdio.h>
#include <time.h>

int main(void)

{

for(i=0; 1i<10000; i++);
printf("%u", clock());:

return 0;

#include <time.h>
char *ctime(const time_t *time);

Description The ctime() function returns a pointer to a string of th
form
day month date hours:minutes:seconds year\n\0

given a pointer to the calendar time. The calendar time is generally
obtained through a call to time(). The ctime() function is
equivalent to:

asctime(localtime(time))

The buffer used by ctime() to hold the formatted output string is a
statically allocated character array and is overwritten each time the

SOME COMMON C LIBRARY FUNCTIONS 437
A3 TIME AND DATE FUNCTIONS ¥

function is called. If you wish to save the contents of the string, you
need to copy it elsewhere.

Example This program displays the local time defined by the system:

#include <time.h>
#include <stdio.h>

int main(void)
{
time_t 1lt;

1t = time(NULL);
printf(ctime(<));

return 0;

#include <time.h>
double difftime(time_t time2, time_t time1);

Description The difftime() function returns the difference, in
seconds, between timel and time2. That is, time2 - timel.

Example This program times the number of seconds that it takes for
the empty for loop to go from 0 to 500000,

#include <time.h>
#include <stdio.h>

int main(void)

{
time_t start, end;
long unsigned int t;

start = time(NULL) ;
for(t=0; t<500000L; t++);
end = time (NULL);
rintf("Loop required %f seconds.\n", difftime(end, start)):

return 0;

£,38 TEACH YOURSEOLF
Y ¢

#include <time.h>
strut tm *gmtime(const time_t *time);

Description The gmtime() function returns a pointer to the
broken-down form of time in the form of a tm structure. The time is
represented in Coordinated Universal Time (i.e., Greenwich Mean
Time). The time value is generally obtained through a call to time().

The structure used by gmtime() to hold the broken-down time is
statically allocated and is overwritten each time the function is called.
If you wish to save the contents of the structure, you need to copy it
elsewhere.

Example This program prints both the local time and the Coordinated
Universal Time of the system:

#include <time.h>
#include <stdio.h>

/* print local and Coordinated Universal time */
int main(void)

{ %
struct tm *local, *coordinated;
time_t t;

t = time(NULL) ;

local = localtime(&t);

printf{"Local time and date: %s", asctime(local)};

coordinated = gmtime(&t);

printf("Coordinated Universal time and date: %s",
asctime(coordinated));

return 0;

#include <time.h>
struct tm *localtime(const time_t *time);

Description 'The localtime() function returns a pointer to the
broken-down form of time in the form of a tm structure. The time is
represented in local time. The time value is generally obtained through
a call to the time() function.

SOME COMMON C LIBRARY FUNCTIONS £39
A3 TIMEANO DATE FUNCTIONS ¥

The structure used by localtime() to hold the broken-down time is
statically allocated and is overwritten each time the function is called.
If you wish to save the contents of the structure, you need to copy it
elsewhere.

Example This program prints both the local time and the Coordinated
Universal time of the system:

#include <time.h>
#include <stdio.h>

/* print local and Coordinated Universal time */
int main(void)
(

struct tm *local;

time_t t;

t = time(NULL) ;

local = localtime(&t);

printf("Local time and date: %s", asctime(local));

local = gmtime (&t);

printf("Coordinated Universal time and date: %s®
asctime(local)); '

r

return 0;

#include <time.h>
time_t time(time_t *systime);

Description 'The time() function returns the current calendar time of
the system. If the system has no time-keeping mechanism, then -1 is
returned.

The time() function can be called either with a null pointer or
with a pointer to a variable of type time_t. If the latter is used, then
the argument wilt also be assigned the calendar time.

Example This program displays the local time defined by the system:

#include <time.h>
#include <stdio.h>

&40 TEACH YOURSELF
¥ ¢

inrt main(wvoid)

{
struct tm *ptr;
time_t 1t;

lt = time (NULL) ;
ptr = localtime(<);

printf (asctime(ptr));

return 0;

_DYNAMIC ALLOCATION

There are two primary ways a C program can store information in the
main memory of the computer. The first uses global and local
variables—including arrays and structures. In the case of global and
static local variables, the storage is fixed throughout the runtime of
vour program. For dynamic local variables, storage is allocated on the
stack. Although these variables are efficiently implemented in C, they
require the programmer to know in advance the amount of storage
nceded for every situation. The second way information can be stored
is with C’s dynamic allocation system. In this method, storage for
information is allocated from the free memory area (called the heap)
as it is needed. - -

The ANSI C standard specifies that the header information
necessary to the dynamic allocation system is in STDLIB.H. In this
file, the type size_t is defined. This type is used extensively by the
allocation functions and is essentially the equivalent of unsigned.

#include <stdlib.h>
void *calloc(size_t num, size_t size);

Description The calloc() function returns a pointer to the allocated
memory. The amount of memory allocated is equal to num * size. That
is, calloc() allocates sufficient memory for an array of num objects of
size size.

SOME COMMON C LIBRARY FUNCTIONS 441
A4 DYNAMICALLOCATION ¥

The calloc() function returns a pointer to the first byte of the
allocated region. If there is not enough memory to satisfy the request,
a null pointer is returned.

It is always important to verify that the return vaiue s not a null
pointer before attempting to use it.

Example This function returns a pointer to a dynamically allocated
array of 100 floats: -

#include <stdlib.h>
#include <stdio.h>

float *get_mem(void)
{
float *p;

p = calloc(100, sizeof(float));

if(!'p) (
printf("Allocation errer - aborting.\n");
exic(1l);

}

return p;

#include <stdlib.h>
void free(void *ptr);

Description The free() function deallocates the memory pointed to
by ptr. This makes the memory available for future allocation.

It is imperative that the free() function be called only with a
pointer that was previously allocated using one of the dynamic
allocation system'’s functions, such as malloc() or calloc(). Using
an invalid pointer in the call will probably destroy the memory
management mechanism and cause a system crash.

Example This program first allocates room for 100 user-entered
strings and then frees them: ’

#include <stdlib.h>
#include <stdio.h>

int main(void)

&42 TEACH YOURSELF
Y ¢

char *str[100];
ine 4

for(i=0; i<100; i++) {
if((str[i]) = malloc(128))==NULL) {
printf(*"Allocation error - aborting.\n"):
exit(0);
}
gets(strli]);

/* now free the memory */
for(i=0; i<100; i++) free(str[i]);

return 0;

#include <stdlib.h>
void *malloc(size_t size);

Description The malloc() function returns a pointer to the first bvte
of a region of memory of size size that has been allocated from the
heap. (Remember, the heap is a region of free memory managed b
C’s dynamic allocation subsystem.) If there is insufficient memory
the heap.to satisfy the request, malloc() returns a null pointer. It
always important to verify that the return value is not a null pointc:
before attempting to use it. Attempting to use a null pointer will
usually result in a system crash.

Example This function allocates sufficient memory to hold structis
of type addr:

#include <stdlib.h>
#include <stdio.h>

struct addr {
char name(40]);
char street[40];
char city(40];
char state(3];
char zip[1l0];

SOME COMMON C LIBRARY FUNCTIONS 543
A4 DYNAMICALLOCATION ¥

struct addr *get_struct(void)
{
struct addr *p;

if((p = malloc(sizeof({struct addr)))==NULL)
{

printf{"Allocation error - aborting.\n"};
exit(0);
}

return p;

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description The realloc() function changes the size of the allocated
memory pointed to by ptr to that specified by size. The value of size
may be greater or less than the original. A pointer to the memory
block is returned since it may be necessary for realloc() to move the
block to increase its size. If this occurs, the contents of the old block
are copied into the new block—no information is lost.

If there is not enough free memory in the heap to allocate size
bytes, a null pointer is returned. This means it is important to verify
the success of a call to realloc().

Example This program first allocates 17 characters, copies thHe string
"this is 16 chars” into the space, and then uses realloc() to increase
the size to 18 in order to place a period at the end.

i

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
(

char *p:

p = malloc(17);

L bafy TEACH YOURSELF

ifiip) (
printf("Allocation error - aborting.\n");:
exit(1);

strcpylp; "this ig 16 «chars™];

p = realloc(p,iB];

1E(!p) {
printf("Allocation error - aborting.\n");
exit(1l);

strcat(p, "-");

printE(o);

free(p):

return 0;

Mscnmmfous FUNCTIONS

The functions discussed in this section are all standard functions that
don't easily fit in any other category.

#include <stdlib.h>
void abort(void);

Description he abort() function causes immediate termination
of a program. Whether it closes any open files is defined by the
implementation, but generally it won't.

Example In this program, if the user enters A, the program will
terminate:

#include <stdlib.h>
#include <conio.h>

SOME COMMON C LIBRARY FUNCTIONS 445
A5 MISCELLANEOUS FUNCTIONS .

int main(void)
i

L

fori()
if (getche()=='A") abort(};

return 0;

#include <stdlib.h>
int abs(int num);

Description The abs() function returns the absolute value of the
integer num.

Example This function converts the user-entered numbers into their
absolute values:

#include <stdlib.h>
¢include <stdio.h>

int get_abs(void)
{ .
char num(80];

gets (num) ;

return abs(atoi (num));

#include <stdlib.h>
double atof(const char * str);

Description The atof() function converts the string pointed to by str
into a double value. The string must contain a valid floating-point
number. If this is not the case, the returned value is 0.

The number may be terminated by any character that cannot be
part of a valid floating-point number. This includes whitespace
characters, punctuation (other than periods), and characters other
than 'E’ or '¢’. Thus, if atof() is called with "100.00HELLO", the value
100.00 will be returned.

~

&L66 TEACH YOURSELF

Y = -
Example This program reads two floating-point numbers and displays
their sum:

#include <stdlib.h>
#include <stdio.h>

int main(void)
(
char numl [(80], num2([80];

printf("Enter first: *);

gets (numl) ;

printf ("Enter second: ");

gets (num2) ;

printf{"The sum is: %f", atof(numl) + atof (num2)):

return 0;

#include <stdlib.h>
int atoi(const char *str);

Description 'The atoi() function converts the string pointed to by str
into an int value. The string must contain a valid integer number. If
this is not the case, the returned value is 0.

The number may be terminated by any character that cannot be
part of a integer number. This includes whitespace characters,
punctuation, and other characters. Thus, if atoi() is called with
123.23, the integer value 123 will be returned, anc the 0.23 ignored.

Example This program reads two integer numbers and displays
their sum:

#include <stdlib.h>
#tinclude <stdio.h>

int main(void)
{
char numl {80}, num2(B0];

printf{"Enter first: *);
gets (numl) ;
printf ("Enter second: ");

SOME COMMON C LIBRARY FUNCTIONS 547
A5 MISCELLANEOUS FUNCTIONS Y

gets (num2) ;
printf("The sum is: %a", atoi(numl) + atoi(num2));

return 0;

#include <stdlib.h>
long atol(const char *str);

Description The atol() function converts the string pointed to by str
into a long int value. The string must contain a valid long integer
number. If this is not the case, the returned value is 0.

The number may be terminated by any character that cannot be
part of an integer number. This includes whitespace characters,
punctuation, and other characters. Thus, if atol() is called with
123.23, the integer value 123 will be returned, and the 0.23 ignored.

Example ‘This program reads two long integer numbers and displays
their sum:

#include <stdlib.h>

#include <stdio.h>

int main(wvoid)

char numl [80], num2(80];

printf ("Enter first: ");

gets(numl) ;

printf("Enter second: ");

gets(num2) ;

printf("The sum is: %1d*, atol(numl) + atol(num2));

return 0;

L4468 TEACH YOURSELF
L

#include <stdlib.h>

void *bsearch(const void *key, const void *base,
size_t num, size_t size,
int(*compare)(const void *, const void *));

Description The bsearch() function performs a binary search on the
sorted array pointed to by base and returns a pointer to the first’
member that matches the key pointed to by key. The number of
elements in the array is specified by num and the size (in bytes) of
each element is described by size. (The size_t type is defined in
STDLIB.H and is essentially the equivalent of unsigned.)

The function pointed to by compare is used to compare an element
of the array with the key. The form of compare must be

int function_name(const void *argl, const void *arg2)

It must return the following values:

Less than 0 If argl is less than arg2
0 If argl is equal to arg2
Greater than 0 If arg1 is greater than arg2

The array must be sorted in ascending order, with the lowest
address containing the lowest element.
If the array does not contain the key, then a null pointer is returned.

Example This program reads characters entered at the keyboard and
determines whether they belong to the alphabet.

¢include <stdlib.h>
#include <ctype.h>
#¢include <stdio.h>

char *alpha = v"abcdefghijklmnopgrstuvwxyz";

L3

int comp(const void *ch, const void *s);

int main(void)
(

char: chyp
"

char *p;

SOME COMMON C LIBRARY FUNCTIONS 549
A5 MISCELLANEOUS FUNCTIONS ¥

do {
printf ("Enter a character; ");
scanf ("%c%*c", &ch) ;
ch = tolower(ch);
p = bsearch(&ch, alpha, 26, 1, comp);
if(p) printf(*is in alphabet.\n"):
else printf("is not in alphabet.\n");
} while(p);

return 0;

/* compare two characters */
int comp(const void *ch, const void *s)

{ .
return *(char *)ch - *(char *)s;

ks,

#include <stdlib.h>
void _exit(int status);

Description The exit() function causes immediate normal
termination of a program.

The value of status is passed to the calling process, usually the
operating system, if the environment supports it. By convention, if
the value of status is 0, normal program termination is assumed. A
nonzero value may be used to indicate an error.

You may also use the predefined macros EXIT_SUCCESS and
EXIT_FAILURE as arguments to exit().

Example This function performs me:wu selection for a mailing list
program. If Q is selected, the program is terminated.

char menu(void)
{
char ch;

do (
printf("Enter names (E)\n");
printf("Delete name (D)\n");
printf("Print (P)\n");

29

£5() TEACH YOURSELF
v

printf{("Quit (Q)\n");
} whilel(!strchr("EDPQ", toupper (ch)));
if (ch=="Q") exit(0);
return ch;

#include <stdlib.h>
long labs(long num);

Description The labs() function returns the absolute value of the
long int num.

Example This function converts the user-entered numbers into their
absolute values:

#include <stdlib.h>
#include <stdio.h>

long int get_labs(void)

{
char num[80] ;

gets (num) ;

return labs(atol (num));

#include <setjmp.h>
void longjmp(jmp_buf envbuf, int val);

Description 'The longjmp() function causes program execution to
resume at the point of the last call to setjmp(). These two functions
are the way ANSI C provides for a jump between functions. Notice
that the header SETIJMP.H is required.

The longjmp() function operates by resetting the stack as
described in envbuf, which must have been set by a prior call to
sctjmp(). This causes program execution to resume at the statement
tollowing the setjmp() invocation—*he computer is "tricked" into
thinking that it never left the function that called setjmp(). (As a
somewhat graphic explanation, the longjmp() function "warps"

SOME COMMON C LIBRARY FUNCTIONS 451

A& MISCELLANEQUS FUNCTIONS

across time and (memory) space to a previous point in your program,
without having to perform the normal function-return process.)

“The buffer envbuf is of type jmp_buf, which is detined in the
header SETIMP.H. The buffer must have heen set through a call to
setjmp() prior to calling longjmp().

The value of val becomes the return value of setjmp() and may be
interrogated to determine where the long jump came from. The only
value not allowed is 0.

It is important to understand that the longjmp() function must be
called before the function that called setjmp() returns. If not, the
result is technically undefined. In actuality, a crash will almost
certainly occur. ’

By far the most common use of longjmp() is to return from a
deeply nested set of routines when a catastrophic error occurs.

Example This program prints 1 2 3:

#include <setjmp.h>
#include <stdio.h>

void f2(void);
jmp_buf ebuf;

int main(void)
{
char first=1;
int i;

printf (1 ")g
i = setjmp(ebuf);
if(first) (
first = !first;
f2();
printf(“"this will not be printed");
}
printf("%d", i);

return 0;

wvoid £2(void)

£52 TEACH YOURSELF
—
¥y =
printf{"2 *j;
longjmp (ebuf, 3);

#include <stdlib.h>
void gsort(void *base, size_t num, size_t size,
int(*compare)(const void®*, const void*));

Description The gsort() function sorts the array pointed to by base
using a Quicksort (which was developed by C.A.R. Hoare). The
Quicksort is generally considered the best general-purpose sorting
algorithm. Upon termination, the array will be sorted. The number of
elements in the array is specified by num and the size (in bytes) of
each element is described by size. (The size_t type is defined in
STDLIB.H and is essentially the equivalent of unsigned.)

. The function pointed to by compare is used to compare two
elements in the array. The form of compare must be

int function_name(const void *arg1, const void *arg2)

it must return the following values:

Less than 0 If arg1 is less than arg2
0 If arg1 is equal to arg2
Greater than 0 If argl is greater than arg2

The array is sorted in ascending order, with the lowest address
containing the lowest element.

Example This program sorts a list of integers.and displays the result:

#include <stdlib.h>
#indtude <stdio.h>

int comp(const void *i, const void *j);
int num[10]= {

1;3; 65 5; B; 7 9 65 25 0
¥

;nt main(void)

SOME COMMON € LIBRARY FUNCTIONS §53
A5 MISCELLANEOUS FUNCTIONS ¥

int i; .-
printf(“Original array: ");

for(i=0; i<10; i++) printf("%d ", num([i]);
printf("\n"};

gsort (num, 10, sizeof(int), comp);

printf ("Sorted array: ");
for(i=0; i<10; i++) printf("%d ", numli]);

return 0;

/* compare the integers */
int comp(const void *i, const void *j)
fi%)

return *{int *)i - *lint *)Jj;

#include <stdlib.h>
int rand(void);

Description 'The rand() function generates a sequence of

pseudo-random numbers. Each time it is called, an integer between 0

and RAND_MAX is returned. RAND_MAX is defined in STDLIB.H.

The ANSI standard stipulates that the macro RAND_MAX will have a
- value of at least 32,767.

Example This program displays ten pseudo-random numbers:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{

int i;

for (i=0; i<10; i++)
printf("%d ", rand()):

£&54 TEACH YOURSELF
v

c

return 0;

#include <setjmp.h>
int setyimp(jmp_buf envbuf);

Description 'The setjmp() function saves the contents of the system
stack in the buffer envhuf for later use by longjmp().

The setjmp() function returns 0 upon invocation. However,
longjmp() passes an argument to setjmp() when it exccutes, and it
is this value (always nonzero) that will appear to he the value of
setyimp() after a call to longjmp().

See the longjmp() section for more information.

Example This program prints 1 2 3:

#include <setjmp.h>
#include <stdio.h>

void f2(void);
jop_buf ebuf;

int main(void)
'
char first=1;
int i;

printf (o1) - -
i = setjmp(ebuf);
if(first) {
first = 'first;
£2:0 g
printf("this will not be printed");
}
printf ("%d"*,1i);

return 0;
void f2(void)

{
printf("2 "):

SOME COMMON C LIBRARY FUNCTIONS 555
A5 MISCELLANEOUS FUNCTIONS ¥

longjmp(ebuf: 35
}

#include <stdlib.h>
void srand(unsigned seed);

Description The srand() function is used to set a starting point for
the sequence generated by rand(), which returns pscudo-random
numbers.

Generally srand() is used to allow multiple program runs to use
different sequences of pseudo-random numbers.

Example This program uses the system time to randomly initialize the
rand() function using srand():

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

/* Seed rand with the system time
and display the first 100 numbers.
L
int main(void)
{
int 1, utime;
leng ltime;

/* get the current calendar time */
ltime = time(NULL) ;

utime = (unsigned int) ltime/2:
srand(utime) ;

for(i=0; i<10; i++) printf(*%d ", rand());

return 0;

2

C Keyword Summary

458 TEACH YOURSELF
Y ¢

1 ERE are 32 keywords that, when combined with the formal
C syntax, form the C language as defined by the ANSIC
standard. These keywords are shown in Table B-1.

All C keywords use lowercase letters. In C, uppercase
and lowercase are different; for instance, else is a keyword,
ELSE is not. '

An alphabetical summary of each of the keywords follows:

auto

auto is used to create temporary variables that are created upon entry
into a block and destroyed upon exit. For example:

#include <stdio.h>
#include <conio.h>

int main(void)
{
for{;;) (
if (getche()=="a"}) {
auto int t;
for{t=0; t<'a"; t++)
prince (“%d ., E)s

break;
}
}
return 0;
}

auto double _lnt - struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Keyword List W

C KEYWORD SUMMARY 4559
v

In this example, the variable t is created only if the user strikes an a.
Outside the if block, t is completely unknown; and any reference to it
would generate a compile-time syntax error. The use of auto is
completely optional since all local variables are auto by default.

. break

break is used to exit from a do, for, or while loop, hypassing the
normal loop condition. It is also used to exit from a switch statement.
An example of break in a loop is shown here:

while(x<100) {
x = get_new_x();
if(kbhit ()) break; /* key hit on keyboard */
process|(x);

)

Here, if a key is pressed, the loop will terminate no matter what the
value of x is,

In a switch statement, break effectively keeps program exccution
from "falling through" to the next case. (Refer to the switch section for
details.)
case

case is covered in conjunction with switch.

char

char is a data type uscd to declare character variables. For example, to
declare ch to be a character type, you would write:

char ch;

In C, a character is one byte long.

const

The const modifier tells the compiler that the contents of a variable
cannot be changed. It is also used to prevent a function from
modifying the object pointed to by one of its arguments.

4680 TIACH YOURSELF
btk
v

~

continue

continue is used to bypass portions of code in a loop and forces the
conditional expression to be evaluated. For example, the following
while loop will simply read characters from the keyboard until an s is

tvped:
while (ch=getche()) {
if(ch != ’s') continue; /* read another char */

process (ch) ;
}

The call to process() will not occur until ch contains the character s.

default

.default is used in the switch statement to signal a default block of
code to be executed if no matches are found in the switch. See the

switch section.

do

The do loop is one of three loop constructs available in C. The gencral
form of the do loop is

do {
statement block
} while(condition);

If only one statement is repeated, the braces are not necessary, but
they add clarity to the statement. The do loop repeats as long as the
condition is true.

The do loop is the only loop in C that will always have at lcast one
iteration because the condition is tested at the bottom of the loop.

A common use of the do loop is to read disk files. This code will
read a file until an EOF is encountered.

do {

ch = getc(fp);

if(!feof(fp)) printf(*%c", ch);
) while(!feof(fp));

C KEYWORD SUMMARY 4§67

double

double is a data type specifier used to declare double-precision
floating-point variables. To declare d to be of type double you would
write the following statement:

double d;

See the if section.

enum

The enum type specifier is used to create enumeration types. An
enumeration is simply a list of named integer constants. For example,
the following code declares an enumeration called color that consists
of three constants: red, green, and yellow.

#include <stdio.h>

enum color {red, green, yellow};
enum color c;

int main(void)
{
c = red;
if (c==red) printf("is red\n");

return 0;

extern

The extern data type modifier tells the compiler that a variable is
defined elsewhere in the program. This is often used in conjunction
with separately compiled files that share the same global data and are
linked together. In essence, it notifies the compiler of a variable
without redefining it.

As an example, if first were declared in another file as an integer,
the following declaration would be used in subsequent files:

extern int first;

&62 TEACH YOURSELF
Y ¢

float

float is a data type specifier used to declare floating-point variables. To
declare f to be of type float you would write:

float f;

for

The for loop allows automatic initialization and incrementation ot a
counter variable. The general form is

for(initialization; condition; increment) {
statermnent block

}

It the statement block is only one statement, the braces are nat
nt:t:r:sselry.

Although the for allows a number of variations, gencrally the
initialization is used to set a counter variable to its starting valuc. The
condition is generally a relational statement that checks the counter
variable against a termination value, and the increment increments (or
decrements) the counter value. The loop repeats until the condition
becomes false.

The following code will print hello ten times,

for(t=0; t<l10; t++) printf("Hello\n");

goto

The goto causes program exccution to jump to the label specificd in
the goto statement. The general form of the goto is

-goto label ;

label:

All labels must end in a colon and must not conflict with keywords or
function names. Furthermore, a goto can branch only within the
current function, and not from one fanction to another.

C KEYWORD SUMMARY 463
v

The following example will print the message right but not the
message wrong:

goto labl;
printf(”wrong')f

labl:
printf(*"right");

if
The general form of the if statement is

if(condition) {
statement block 1

)

else {

. Statement block 2

)

If single statements are used, the braces are not needed. The else is
optional.

The condition may be any expression. If that expression evaluates to
any value other than 0, then statement block 1 will be executed;
otherwise, if it exists, statement block - will be executed.

The following code fragment can be used for keyboard input and to
look for a 'q’ which signifies "quit."

ch = getche();

if(ch=="q") (-
printf(*Program Terminated");
exit(0);

)

else proceed|();
int

int is the type specifier used to declare integer variables. For example,
to declare count as an integer you would write

int count;

&64 TEACH YOURSELF
L

long

long is a data type modifier used to declare long integer and long
double variables. For example, to declare count as a long integer you
would write

long int count;

register

The register modifier requests that a variable be stored in the way
that allows the fastest possible access. In the case of characters or
integers, this usually means a register of the CPU. To declare i to be a
register integer, you would write

register int i;

retum

The return statement forces a return from a function and can be used
to transfer a value back to the calling routine. For example, the
following function returns the product of its two integer arguments.

int mml(int a, int b)

{

return a*b;

Keep in mind that as soon as a return is encountered, the function
will return, skipping any other code in the function.

short

short is a data type modifier used to declare small integers. For
example, to declare sh to be a short integer you would write

short int sh;

signed

The signed type modifier is most commonly used to spekify a signed
char data type.

C KEYWORD SUMMARY 565
v

sizeof

Tae sizeof keyword is a compile-time operator that returns the length
of the variable or type it precedes. If it precedes a type, the type must
be enclosed in parentheses. For example,

printf("%d*, sizeof(short int});

will print 2 for most C implementations.

The sizeof statement’s principal use is in helping to generate
portable code when that code depends on the size of the C built-in data
types.

static

»

The static keyword is a data type modifier that causes the compiler to
create permanent storage for the local variable that it precedes. This
enables the specified variable to maintain its value between function
calls. For example, to declare last_time as a static integer, you would
write

static int last_time;

static can also be used on global variables to limit their scope to the
file in which they are declared.

struct

The struct statement is used to create aggregate data types, called
structures, that are made up of one or more members. The general
form of a structure is

struct struct-name {
type memberl ;
type member2 ;

type member N ;
} variable-list ;

The individual members are referenced using the dot or arrow
operators.

&£66 TEACH YOURSELF
LA

switch

The switch statement is C's multi-path branch statement. It is used to
route execution in one of several ways. The general form of the
statement is

switch(int-expression) {
case constantl: statement-set 1,
break;
case constant2 : statement-set 2 ;
break;

case constantN: statement-set N ;
break;
default: default-statements,
)

Each statement-set may be one or many statements long. The default
portion is optional. The expression controlling the switch and all case
constants must be of integral or character types.

The switch works by checking the value of int-expression against
the constants. As soon as a match is found, that set of statements is
executed. If the break statement is omitted, execution will continue
into the next case. You can think of the cases as labels. Execution will
continue until a break statement is found or the switch ends.

The following example can be used to process a menu selection:

ch = getche();

switch(ch) {

case ‘e’': enter();
break;

case ‘l’: list();
break;

case ‘s': sort();
break;

case ‘qg’': exit(0);
break;

default: printf ("Unknown Command\n");
printf("Try Again\n");

C KEYWORD SUMMARY 567
v

typedef

The typedef statement allows you to create a new name for an
existing data type. The general form of typedef is

typedef type-specifier new-name ;

For example, to use the word "balance" in place of "float,” you would
write

typedef float balance:;

union

The union keyword creates an aggregate type in which two or more
variables share the same memory location. The form of the
declaration and the way a member is accessed are the same as for
struct. The general form is

union union-name {
type memberl
type member2 ;

type member N ;
} variable-list ;

unsigned

The unsigned type modifier tells the compiler to create a variable that
holds only unsigned (i.e., positive) values. For example, to declare big
to be an unsigned integer you would write

unsigned int big;
void

The void type specifier is primarily used to declare void functions
(functions that do not return values). It is also used to create void
pointers (pointers to void) that are generic pointers capable of
pointing to any type of object and to specify an empty parameter list.

&BB TEACH YOURSELF
¥ ¢

volatile

The volatile modifier tells the compiler that a variable may have its
contents altered in ways not explicitly defined by the program.
Variables that are changed by the hardware, such as real-time clocks,
interrupts, or other inputs are examples.

while
The while loop has the general form:

while(condition) {
statement block
}

If a single statement is the object of the while, the braces may be
omitted. The loop will repeat as long as the condition is true.

The while tests its condition at the top of the loop. Therefore, if the
condition is false to begin with, the loop will not execute at all. The
condition may be any expression.

An example of a while follows. It reads characters until end-of-file
is encountered.

£ = 0;

while(!feof (fp)) {
s[t] = getc(fp);
C++;

C

Building a Windows
Skeleton .

£70 TEACH YOURSELF
Y ¢

is a popular language for Windows programming. As such,
it makes sense that some coverage of this important topic
be included in this book. But be forewarned: Programming
for Windows requires a thorough knowledge of both C and
Windows. Frankly, before you can write useful Windows
programs, you will need to hone your C programming skills and then
invest substantial time in learning the ins and outs of the Windows
operating system. Keep in mind that just a description of the functions
available within Windows requires approximately 2,000 printed pages!

The preceding notwithstanding, if you will be moving on to
Windows programming, you are probably anxious to begin. The
purpose of this appendix is to give you a brief overview of Windows
programming and to explain a few of its most fundamental elements.
In essence, the information presented here is designed to give you a
"jump start” into the world of Windows programming.

This appendix discusses in a general way what Windows is, how a
program must interact with it, and what rules must be followed by
every Windows application. It also develops an application skeleton
that you can use as a basis for your own Windows programs. As you
will see, all Windows programs share several common traits. It is these
shared attributes that will be contained in the application skeleton.

_Wmcn VERSION OF WINDOWS?

At the time of this writing, there are three versions of the Windows
operating system in common use: Windows 3.1, Windows 95, and
windot. 71,1 skeleton developed in this appendix is designed for
32-bit versions of Windows, such as Windows 95 or Windows NT, since
these are the most widely used versions. However, the basic principles
apply to all versions of Windows.

_Wmoows PROGRAMMING
PERSPECTIVE

The goal of Windows is to enable a person who has basic familiarity
with the system to sit down and run virtually any application without
prior training. To accomplish this end, Windows provides a consistent
interface to the user. In theory, if you can run one Windows-based

BUILDING A WINDOWS SKELETON &F 1
WINDOWS PROGRAMMING PERSPECTIVE ¥

program, you can run them all. Of course, in actuality, most useful
programs will still require some sort of training in order to be used
effectively, but at least this'instruction can be restricted to what the
program does, not how the user must interact with it. In fact, much of
the code in a Windows application is there just to support the user
interface.

Before continuing, it must be stated that not every program that
runs under Windows will necessarily present the user with a Windows-
style interface. It is possible to write windows programs that do not
take advantage of the Windows interface elements. To create a
Windows-style program, you must purposely do so. Only those
programs written to take advantage of Windows will look and feel like
Windows programs. While you can override the basic Windows design
philosophy, you had better have a good reason to do so, because the
users of your programs will, most likely, be very disappointed. In
general, any application programs you are writing for Windows should
utilize the normal Windows interface and conform to the standard
wWindows design practices.

windows is graphics-oriented, which means that it provides a
Graphical User Interface (GUI). While graphics hardware and video -
modes are quite diverse, many of the differences are handled by
Windows. This means that, for the most part, your program does not
need to worry about what type of graphics hardware or video mode is
being used.

Let's look at a few of the more important features of Windows.

THE DESKTOP MODEL

With few exceptions, the point of a window-based user interface is
to provide the equivalent of a desktop on the screen. On a desk you
might find several different pieces of paper, one on top of another,
often with fragments of different pages visible beneath the top page.
The equivalent of the desktop in Windows is the screen. The pieces of
paper are represented by windows on the'screen. On a desk you may
move pieces of paper about, maybe switching which piece of paper is
on top, or how much of another is exposed to view. Windows allows
the same type of operations on its windows. By selecting a window,

2 TEACH YOURSELF

(o
you can make it current, which means putting it on top of all the other
open windows. You can enlarge or shrink a window, or move it about
on the screen. In short, Windows lets you control the surface of the
screen the way you control the items on your desk.

While the desktop model forms the foundation of the Windows user
interface, Windows is not limited by it. In fact, several Windows
interface elements emulate other types of familiar devices, such as
slider controls, spin controls, property sheets, and toolbars. Windows
gives you, the programmer, a large array of features from which you
may choose those most appropriate to your specific application.

THE MOUSE

vindows allows the use of the mouse for almost all control,
se'cction, and drawing operations. Of course, to say that it allows the
use of the mouse is an understatement. The fact is that the Windows
interface was designed for the mouse—it allows the use of the keyboard!
Although it is certainly possible for an application program to ignore
the mouse, it does so only in violation of a hasic Windows design
principle.

ICONS AND BITMAPS

Windows encourages the use of icons and bitmaps (graphics
images). The theory behind the use of icons and bitmaps is found in
the old adage "a picture is worth a thousand words.”

An icon is a small symbol that represents some operation or
program. Generally, the operation or program can be activated by
selecting the icon. A bitmap is often used to convey information
quickly and simply to the user. However, bitmaps can also be used as
menu elements.

MENUS AND DIALOG BOXES

Aside from standard windows, Windows also provides several
special-purpose windows. The most common of these are the menu
and the dialog box. A menu is, as you would expect, a special window
that contains choices from which the user makes a selection. The

BUILDING A WINDOWS SKELETON 573
HOW WINDOWS AND YOUR PROGRAM INTERACT ¥

thing that makes menus valuable is that they are largely automated.
[nstead of having to manage menu selection manually in your
program, you simply create a standard menu—Windows will handle
the details for you.

A dialog box is a special window that allows more complex
interaction with the application than that allowed by a menu. For
example, your application might use a dialog box to request a file
name. With few exceptions, non-menu input is accomplished via a
dialog box.

OW WINDOWS AND YOUR PROGRAM
INTERACT

When you write a program for many operating systems, it is your
program that initiates interaction with the operating system. For example,
in a DOS program, it is the program that requests such things as input
and output. Put difterently, programs written in the "traditional way"
call the operating system. The operating system does not call your
program. However, Windows ge nerally works in the opposite way. It is
windows that calls your program. The process works like this: Your
program waits until it is sent a message by Windows. The message is
passed to your program through a special function that is called by
Windows. Once a message is received, your program is expected to
take an appropriate action. While your program may call Windows
when responding to a message, it is still Windows that initiates the
activity. More than anything else, it is the message-based interaction
with Windows that dictates the general form of all Windows programs.

There are many different types of messages that Windows may send
your program. For example, each time the mouse is clicked on a
window belonging to your program, a mouse-clicked message will be
sent to your program. Another type of message is sent each time a
window belonging to your program must be redrawn. Still another
message is sent each time the user presses a key when your program
is the focus of input. Keep one fact firmly in mind: As far as your
program is concerned, messages arrive randomly. This is why
Windows programs resemble interrupt-driven programs. You can't
know what message will be next.

One final point: Messages sent to your program are stored in a
message queue associated with your program. Therefore, no message

£74& TEACH YOURSELF
¥ ¢

will be lost because your program is busy processing another message.
The message will simply wait in the queue until your program is ready
for it.

_Mlmoows IS MULTITASKING

Since the start, Windows has been a multitasking operating system.
This means that it can run two or more programs concurrently. All
32-bit versions of Windows (such as Windows NT and Windows 95)
use preemptive multitasking. Using this approach, each active
application receives a slice of CPU time. It is during its time slice that
an application actually executes. When the application’s time slice
runs out, the next application begins executing. (The previously
executing application enters a suspended state in which it awaits
another time slice.) In this fashion, each application in the system
receives a portion of CPU time. Although the application skeleton
developed in this appendix is not concerned with the multitasking
aspects of Windows, they will be an important part of any application
you create.

Older, 16-bit versions of Windows used a form of multitasking cafled non-
preemptive multitasking. With this approach, an application retained the CPU
until it explicitly released it. This allowed applications to monopolize the CPU
and effectively "lock out" other programs. Preemptive multitasking efiminates
this problem.

’HE WIN32 API

In general, the Windows environment is accessed through a call-based
interface called the Application Program Interface (API). The API
consists of several hundred functions that your program calls as
needed. The API functions provide all the system services performed
by Windows. There is a subset to the API called the Graphics Device
Interface (GDI), which is the part of Windows that provides device-
independent graphics support. It is the GDI functions that make it
possible for a Windows application to run on a variety of hardware.
Programs designed for use by 32-bit versions of Windows, such as
Windows 95 and Windows NT, use the Win32 API. For the most part,
Win32 is a superset of the older Windows 3.1 API (Winl6). Indeed, for

BUILDING A WINDOWS SKELETON 475
THE COMPONENTS OF AWINDOW Y

the most part, the functions are called by the same name and are used
in the same way. However, even though similar in spirit and purpose, ,
the two APIs differ because Win32 supports 32-bit addressing while
Winl6 supports only the 16-bit, segmented-memory model. Because of
this difference, several of the older API functions have been widened
to accept 32-bit arguments and return 32-bit values. A few API
functions have had to be altered to accommodate the 32-bit archi-
tecture. API functions have also been added to support preemptive
multitasking, new interface elements, and other enhanced features.
Because modern versions of Windows support 32-bit addressing, it

~ makes sense that integers are also 32 bits long. This means that types
int and unsigned are 32 bits long, not 16 bits, as is the case for
windows 3.1. If you want to use a 16-bit integer, it must be declared as
short, Windows provides portable typedef names for these types, as
you will see shortly.

’HE COMPONENTS OF A WINDOW

Before moving on to specific aspects of Windows programming, a few
important terms need to be defined. Figure C-1 shows a standard
window with each of its elements pointed out.

System menu icon Title Minimize box
"Maximize box
Close box

— Window Title

Border ——

Vertical
scroll bar

Client area Horizontal scroll bar

$76 TEACH YOURSELF
Y g

All windows have a border that defines the limits of the window:; the
borders are also used when resizing the window. At the top of the
window are several items. On the far left is the system menu icon
(also called the title bar icon). Clicking on this box displays the system
menu. To the right of the system menu icon is the window’s title. At
the far right are the minimize, maximize, and close boxes. The client
area is the part of the window in which your program activity takes
place. Most windows also have horizontal and vertical scroll bars that
are used to move information through the window.

SOM’E WINDOWS APPLICATION BASICS

Before developing the Windows a pplication skeleton, some basic
concepts common to all Windows programs need to be discussed,

WinMain()

All Windows programs begin execution with a call to WinMain().
(Windows programs do not have a main() function.) WinMain()
has some special properties that differentiate it from other functions
in your application. First, it must be compiled using the WINAPI
calling convention. (You will see APIENTRY used as well. They both
mean the same thing.) By default, functions in your C programs use
the C calling convention. However, it is possible to compile a function
so that it uses a different calling convention; Pascal is a common
alternative. For various technical reasons, the calling convention
Windows uses to call WinMain() is WINAPI. The return type of
WinMain() should be int.

THE WINDOW FUNCTION

All Windows programs must contain a special function that is not
called by your program, but is called by Windows. This function is
generally referred to as the window function or the window procedure.
The window function is called by Windows when it needs to pass a
message to your program. It is through this function that Windows
communicates with your program. The window function receives the
message in its parameters. All window functions must be declared as

BUILDING A WINDOWS SKELETON 5§77
SOME WINDOWS APPLICATION BASICS ¥

returning type LRESULT CALLBACK. The type LRESULT is a
typedef that, at the time of this writing, is another name for a long
integer. The CALLBACK calling convention is used with those
functions that will be called by Windows. In Windows terminology,
any function that is called by Windows is referred to awer Zillback
function.

In addition to receiving the messages sent by Windows, the window
function must initiate any actions indicated by a message. Typically, a
window function's body consists of a switch statement that links a
specific response to each message that the program will respond to.
Your program need not respond to every message that Windows sends.
For messages that your program doesn’t care about, you can let
Windows provide default processing. Since there are hundreds of
different messages that Windows can generate, it is common for most
messages simply to be processed by Windows and not by your
program.

All messages are 32-bit integer values. Furthermore, all messages
are linked with any additional information that the messages require.

WINDOW CLASSES

When your Windows program first begins execution, it will need to
define and register a window class. When you register a window class,
you are telling Windows about the form and function of the window.
However, registering the window class does not cause a window
to come into existence. To actually create a window requires
additional steps.

THE MESSAGE LOOP

As explained earlier, Windows communicates with your program by
sending it messages. All Windows applications must establish a
message loop inside the WinMain() function. This loop reads any
pending message from the application’s message queue and dispatches
that message back to Windows, which then calls your program’s
window function with that message as a parameter. This may seem to
be an overly complex way of passing messages, but it is, nevertheless,
the way all Windows programs must function. (Part of the reason for
this scheme is to return control to Windows so that the scheduler can

&7T8 TEACH YOURSELF
¥ ¢

allocate CPU time as it sees fit rather than waiting for your
app#cation’s time slice to end.)

WINDOWS DATA TYPES

As you will soon see, Windows programs do not make extensive use
of standard C data types, such as int or char *. Instead, all data types
used by Windows have been typedefed within the WINDOWS H file
and/or its related files. The WINDOWS.H file is supplied by your
Windows-compatible compiler and must be included in all Windows
programs. Some of the most common types are HANDLE, HWND,
BYTE, WORD, DWORD, UINT, LONG, BOOL, LPSTR, and
LPCSTR. HANDLE is a 32-bit integer that is used as a handle. As you
will see, there are a number of handle types, but they are all the same
size as HANDLE. A handle is simply a value that identifies some
resource. Also, all handle types begin with an H. For example, HWND
is a 32-bit integer used as a window handle. BYTE is an 8-bit unsigned
character. WORD is a 16-bit unsigned short integer. DWORD is an
unsigned long integer. UINT is a 32-bit unsigned integer. LONG is
another name for long. BOOL is an integer; this type is used to
indicate values that are either truc or false. LPSTR is a pointer to a
string, and LPCSTR is a const pointer to a string.

In addition to the basic types described above, Windows defines
several structures. The two that are needed by the skeleton program
are MSG and WNDCLASSEX. The MSG structure holds a Windows
message, and WNDCLASSEX is a structure that defines a window
class. These structures will be discussed later in this appendix.

A WINDOWS SKELETON

Now that the necessary background information has been covered,
it’s time to develop a minimal Windows application. As stated, all
Windows programs have certain things in common. This section
develops a Windows skeleton that provides these necessary features.
In the world of Windows programming, application skeletons are
commonly used because there is a substantial "price of admission"
when creating a Windows program. For instance, the short example
programs shown in this book are designed for a command-line
interface (such as DOS), in which a minimal program is about 5 lines

BUILDING A WINDOWS SKELETON &79
SOME WINDOWS APPLICATION BASICS ¥

long. A minimal Windows program, however, is approximately 50
lines long.

A minimal Windows program contains two functions: WinMain()
and the window function. The WinMain() function must perform
the following general steps:

Define a window class.
Register that class with Windows.
Create a window of that class.

Display the window.

s Ok cho b

Begin running the message loop.

The window function must respond to all relevant messages. Since
the skeleton program does nothing but display its window, the only
message that it must respond to is the one telling the application that
the user has terminated the program.

Before considering the specifics, examine the following program,
which is a minimal Windows skeleton. It creates a standard window
that includes a title. The window also contains the system menu and
is, therefore, capable of being minimized, maximized, moved, resized,
and cios~d. It also contains the standard minimize, maximize, and
close boxes.

/* A minimal 32-bit Windows skeleton. */

#include <windows.h>

LRESULT CALLBACK WindowFunc (HWND, UINT, WPARAM, LPARAM) ;
char szWinName[] = "MyWin"; /* name of window class */

int WINAPI WinMain (HINSTANCE hThisInst, HINSTANCE hPrevInst,
LPSTR lpszArgs, int nWinMode)

HWND hwnd;
MSG msg;
WNDCLASSEX wcl;

/* Define a window class. */
wcl.cbSize = sizeof (WNDCLASSEX); /* size of WNDCLASSEX */

wcl.hInstance = hThisInst; /* handle to this instance */

£80 TEACH YOURSELF
v =
c

wcl.lpszClassName = szWinName; /* window class name */
wcl.lpfnWndProc = WindowFunc; /* window function */
wcl.style = 0; /* default style */

wcl . hIcon = LoadIcon(NULL, IDI_APPLICATION); /* icon style */
wcl.hIconSm = LoadIcon (NULL, IDI_WINLOGO); /* small icon style */

wcl.hCursor = LoadCursor (NULL, IDC_ARROW); /* cursor style */
wcl.lpszMenuName = NULL; /* no menu */

wcl.cbClsExtra
wcl.cbWndExtra

0; /* no extra */
0; /* information needed */

/* Make the window background white. */
wcl.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;

/* Register the window class. */
if(!RegisterClassEx(&wcl)) return 0;

/* Now that a window class has been registered, a window
can be created. */

hwnd = CreateWindow(
szWinName, /* name of window class */
"Windows Skeleton", /* title */
WS_OVERLAPPEDWINDOW, /* window style - normal */
CW_USEDEFAULT, /* X coordinate - let Windows decide */
CW_USEDEFAULT, /* Y coordinate - let Windows decide */
CW_USEDEFAULT, /* width - let Windows decide */
CW_USEDEFAULT, /* height - let Windows decide */
HWND_DESKTOP, /* no parent window */
NULL, /* no menu */
hThisInst, /* handle of this instance of the program */
NULL /* no additional arguments */

N

/* Display the window. */
ShowWindow (hwnd, nWinMode) ;
UpdateWindow (hwnd) ;

/* Create the message loop. */
_ while (GetMessage (&msg, NULL, 0, 0))
{

TranslateMessage (&msg); /* translate keyboard messages */
DispatchMessage(&msg); /* return contrecl to Windows */
)

return msg.wParam;

}

/* This function is called by Windows and is passed
messages from the message queue.
*/)
LRESULT CALLBACK WindowFunc{HWND hwnd, UINT message,
WPARAM wParam, LPARAM lParam)
{
switch (message) {
case WM_DESTROY: /* terminate the program */
PostQuitMessage (0) ;
break;
default:
/* Let Windows process any messages not specified in
the preceding switch statement. */)
return DefWindowProc (hwnd, message, wParam, lParam);

)

return 0;
} .

The window produced by this program is shown in Figure C-2. Now
let's go through this program step by step.

First, all Windows programs must include the header file
WINDOWS.H. As stated, this file (along with its support files) contains
the API function prototypes and various types, macros; and definitions
used by Windows. For example, the data types HWND and
WNDCLASSEX are defined in WINDOWS.H.

The window function used by the program is called WindowFunc().
It is declared as a callback function, because this is the function that ~
Windows calls to communicate with the program.

Program execution begins with WinMain(), which is passed four
parameters. hThisInst and hPrevinst are handles. hThisInst refers
to the current instance of the program. Remember, Windows is a
multitasking system, so more than one instance of your program may
be running at the same time. hPrevInst will always be NULL. (In

31

BUILDING A WINDOWS SKELETON £81
SOME WINDOWS APPLICATION BASICS Y

£82 TEACH YOURSELF
* &

The window ‘

produced by the
Windows skeleton
v

windows 3.1 programs, hPrevinst would be non-zero if there were
other instances of the program currently executing, but this doesn't
apply to 32-bit versions of windows.) The 1pszArgs parameter is a
pointer to a string that holds any command line arguments specified
when the application was begun. The nWinMode parameter containg
a value that determines how the window will be displayed when your
program hegins execution.

Inside the function, three variables are created. The hwnd variable
will hold the handie to the program’s window. The msg structure
variable will hold window messages, and the wcl structure variable
will be used to define the window clas:.

DEFINING THE WINDOW CLASS

The first two actions that WinMain() takes arc to define g -
window class and then register it. A window class is defined hj.-'ﬁﬁlling
in the fields defined by the WNDCLASSEX structure. Its fields are

shown here:

UINT chSize:; /* size of the WNDCLASSEX structure */
UINT style; /* type of window */
WNDPROC 1pfnwWndProc; /* address to window func */

BUILDING A WINDOWS SKELETON 483
SOME WINDOWS APPLICATION BASICS Y

int cbClsExtra; /* extra class info */

int cbwndExtra; /* extra window info */

HINSTANCE hlnstance; /* handle of this instance */
HICON hlcon; (* handle of standard icon */

HICON hIconSm; /* handle of small icon */

HCURSOR hCursor; /* handle of mouse cursor */
HBRUSH hbrBackground; /* backgroﬁnd color */
LPCSTR lpszMenuName; /* name of main menu */
LPCSTR lpszClassName; /* name of window class */

As you can see by looking at the program, cb8ize is assigned the size
of the WNDCLASSEX structure. The hInstance ficld is assigned the
current instance handle as specified by hThisInst. The name of the
window class is pointed to by IpszClassName, which points to the
string "MyWin" in this case. The address of the window function is
assigned to IpfnwndProc. No default style is specified, and no cxtra
information is needed.

All Windows applications need to define a default shape for the
mouse cursor and for the application’s icons. An application can define
its own custom version of these resources or it may usc one of the
built-in styles, as the skeleton does. In cither case, handles to these
resources must be assigned to the appropriate members of the
WNDCLASSEX structure. To see how this is done, let’s begin
with icons.

A modern Windows application has at least two icons associated
with it: one standard size and one small, The small icon is used when
the application is minimized and it is also the icon that is used for the
syStem menu. The standard icon is displayed when you move or copy
an application to the desktop. Typically, standard icons are 32 by 32
Bitmaps and small icons are 16 by 16 bitmaps. The style of each
icon is loaded by-the API function Loadlcon(), whose prototype is
shown here:

HICON Loadlcon(HINSTANCE hinst, LPCSTR /pszName),

This function returns a handle to an icon. Here, hinst specifies the
handle of the module that contains the icon and the icon’'s name is
specified in lpszName. However, to use one of the built in icons, you

&84 TEACH YOURSELF
Y ¢

must use NULL for the first parameter and specify one of the
following macros for the second:

Icon Macro Shape
IDI_APPLICATION Default icon
IDI_ASTERISK Information icon
IDI_EXCLAMATION Exclamation point icon
IDI_HAND Stop sign
IDI_QUESTION Question mark icon
IDI_WINLOGO Windows Logo

In the skeleton, IDI_APPLICATION is used for the standard icon
and IDI_WINLOGO is used for the small icon.
To load the mouse cursor, use the LoadCursor() API function.
" This function has the following prototype: '

HCURSOR LoadCursor(HINSTANCE hinst, LPCSTR [pszName);

This function returns a handle to a cursor resource. Here, hinst
specifies the handle of the module that contains the mouse cursor, and
the name of the mouse cursor is specified in IpszName. However, to
use one of the built-in cursors, you must use NULL for the first
parameter and specify one of the built-in cursors, using its macro, for’
the second parameter. Some of the most common built-in cursors are
shown here: . '

Cursor Macro Shape

IDC_ARROW : Default arrow pointer
IDC_CROSS Cross hairs
IDC_IBEAM Vertical I-beam
IDC_WAIT Hourglass

The background color of the window created by the skeleton is
specified as white, and a handle to this brush is obtained using the API
function GetStockObject(). A brush is a resource‘that paints the
screen using a predetermined size, color, and pattern. The function

_GetStockObject() is used to obtain a handle to a number of standard

" BUILDING A WINDOWS SKELETON 585
SOME WINDOWS APPLICATION BASICS T

display objects, including brushes, pens (which draw lines), and
character fonts. It has this prototype:

HGDIOBJ GetStockObject(int object);

The function returns a handle to the object specified by object. (The
type HGDIOBJ is a GDI handle.) Here are some of the built-in
brushes available to your program:

Brush Macro Background Type
BLACK_BRUSH Black
DKGRAY_BRUSH Dark gray
HOLLOW_BRUSH See-through window
LTGRAY_BRUSH Light gray
WHITE_BRUSH White

You can use these macros as parameters to GetStockObject() to
obtain a brush. '

Once the window class has been fully specified, it is registered with
Windows using the API function RegisterClassEx(), whose prototype
is shown here:

ATOM RegisterClassEx(CONST WNDCLASS *[pWClass);

The function returns a value that identifies the window class. ATOM
is a typedef that means WORD. Each window class is given a unique
value. [pWClass must be the address of the WNDCLASSEX structure.

Once a window class has been defined and registered, your
application can actually create a window of that class using the API
function CreateWindow (), whose prototype is shown here:

HWND CreateWindow(
LPCSTR ipClassName, /* name of window class */
LPCSTR IpWinName, /* title of window */
DWORD dwStyle, /* type of window */
int X, int Y, /* upper-left coordinates */

£86 TEACH YOURSELF
vy -

int Width, int Height, /* dimensions of window */
HWND hParent, /* handle of parent window */
HMENU AMenu, /* handle of main menu */
HINSTANCE hThisinst, /* handle of creator */
LPVOID IpszAdditional /* pointer to additional info */

)

As you can see by looking at the skeleton program, many of the
parameters to CreateWindow () may be defaulted or specified as
NULL. In fact, most often the X, Y, Width, and Height parameters will
simply use the macro CW_USEDEFAULT, which tells Windows to
select an appropriate size and location for the window. If the window
has no parent, which is the casc in the skeleton, then hParent must be
specified as HWND_DESKTOP. (You may also use NULL for this
parameter.) If the window does not contain a main menu, then hiMenu
must be NULL. Also, if no additional information is required, as is
most often the case, then lpszAdditional is NULL. (The type LPVOID
is typedefed as void *. Historicallv, LPVOID stands for "long pointer
to void ")

The remaining four parameters must be set explicitly by your
program. First, IpszClassName must point to the name of the window
class. (This is the name you gave it when it was registered.) The title
of the window is a string pointed to by [pszWinName. This can be a
null string, but usually a window will be given a title. The style (or
type) of window actually created is determined hy the value of
dwStyle. The macro WS_OVERLAPPEDWINDOW spec.ties a standard
window that has a system menu, a border, and minimize, maximize,
and close boxes. While this style of window is the most common, you
tan construct one to your own specifications. To accomplish this,
simply OR together the various style macros that you want. Some
other common styles are shown here:

Style Macros Window Feature
WS_OVERL_APPED Overlapped window with border
WS_MAXIMIZEBOX Maximize bnx
WS_MINIMIZEBOX Minimize box

WS_SYSMENU System menu

WS_HSCROLL Harizontal scroll bar

WS VSCROLL Vertical scroll bar

BUILDING A WINDOWS SKELETON 587
v £88 TEACH YOURSELF
SOME WINDOWS APPLICATION BASICS e

The hThisInst parameter must contain the current instance handle of
the application.

The CreateWindow () function returns the handle of the window it
creates or NULL if the window cannot be created.

Once the window has been created, it still is not displayed on the
screen. To cause the window to be displayed, call the ShowWindow()
API function. This function has the following prototype:

BOOL ShowWindow(HWND fwnd, int nHow);

The handle of the window to display is specified in uwnd. The display
mode is specified in nHow. The first time the window is displayed, you
will want to pass WinMain()'s nWinMode as the nf{ow parameter.
Remember, the value of nWinMode determines how the window will
be displayed when the program begins execution. Subscquent calls can
display (or remove) the window as necessary. Some common values
for'niow are shown here:

Display Macros Effect

SW_HIDE Removes the window
SW_MINIMIZE Minimizes the window into an icon
SW_MAXIMIZE Maximizes the window
SW_RESTORE Returns a window to normal size

The ShowWindow() function returns the previous display status
of the window. If the window was displayed, then nonzero is returned.
If the window was nct displayed, zero is returned.

Although not technically necessary for the skeleton, a call to
UpdateWindow() is included because it is needed by virtually every
Windows application that you will create. 1t essentially tells Windows
to send a message to your application that the main window needs to
be updated.

THE MESSAGE LOOP

The final part of the skeletal WinMain() is the message loop. The
message loop is a part of all Windows applications. Its purpose is to
receive and process messages sent by Windows. When an application
is running, it is continually being sent messages. These messages arc

stored in the application’s message queue until they can be read and
processed. Each time your application is ready to read another message,
it must call the API function GetMessage(), which has this prototype

BOOL GetMessage(LPMSG msg, HWND hwnd, UINT min, UINT max);

The message will be received by the structure pointed to by msg.
All Windows messages are contained in a structure of type MSG,
shown here:

/* Message Structure */

typedef struct tagMsG

{
HWND hwnd; /* window that message is for +/
UINT message; /+* message */
WPARAM wParam; /+ message-dependent infg */
LPARAM l1Param; /+ more message-dependent info */

DWORD time: /* time message posted */
POINT pt; /* X,Y location of mouse */
} MSG; f

In MSG, the handle of the window for which the message is intended
is contained in hwnd. All Win32 messages are 32-bit integers, and the
message is contained in message. Additional information relating to
cach message is passed in wParam and IParam. The type WPARAM
18 a typedef for UINT, and LPARAM is a typedef for LONG.

The time the message was sent (posted) is specified in milliseconds
in the time field.

The pt member will contain the coordinates of the mouse when the
message was sent. The coordinates are held in a POINT structure,
which is defined like this.

typedef struct tagPOINT ({
LONG x, vy;
} POINT;

If there are no messages in the application's message queue, then a
call to GetMessage() will pass control back to Windows.

The hwnd parameter to GetMessage() specifies the window for
which messages will be obtained. It is possible, and even likely, that an
application will contain several windows, but you only want to receive
messages for a specific window. If you want to receive all messages
directed at your application, this parameter must be NULL,

BUILDING A WINDOWS SKELETON &89
THE WINDOW FUNCTION ¥

The remaining two parameters to GetMessage() specify a range of
messages that will be received. Generally, you want your application
o receive all messages. To accomplish this, specify both min and max
&s 0, as the skeleton does.

GetMessage() returns zero when the user terminates the program,
¢ausing the message loop to terminate. Otherwise it returns nonzero

Inside the message loop, two functions are called. The first is the
API function TranslateMessage(). This function translates raw

:yboard input into character messages. Although it is not necessary
a:‘r all applications, most applications call TranslateMessage()
hecause it is needed to allow full integration of the keyboard into your
application program.

" Once the message has been read and translated, it is dispatched
back to Windows using the DispatchMessage() API function.
Windows then holds this message until it can be passed to the
progra':m's window function.

:Oncc the message loop terminates, the WinMain() function ends
by returning the value of msg.wParam to Windows. This value
cdntains the return code generated when your program terminates.

—— IHE WINDOW FUNCTION

The second function in the application skeleton is its window function.
In this case, the function is called windowFunc(), but it could have
any name you like. The window function is passed the first four
members of the MSG structure as parameters. For the skeleton,
the.only parameter used is the message itself. However, actual
applications will use the other parameters to this function.

The skeleton’s window function responds to only one message
explicitly: WM_DESTROY. This message is sent when the user
terminates the program. When this message is received, your program
must execute a call to the API function PostQuitMessage(). The
argument to this function is an exit code that is returned in
msg.wParam inside WinMain(). Calling PostQuitMessage()
causes a WM_QUIT message to be sent to your application, which
causes GetMessage() to return false, thus stopping your program.

Any other messages received by WindowFunc() are passed to
windows, via a call to DefWindowProc(), for default processing.
This step is necessary because all messages must be dealt with in one
fashfon or another.

&9Q TEACH YOURSELF
¥ 8

- -] SHORT WORD ABOUT DEFINITION
FILES

You may have heard or read about definition files. For 16-hit versioris
of Windows, such as 3.1, programs nced to have a definition file
associated with them. A definition file is simply a text file that
specifies certain information and settings required by a Windows 3.1,
program. However, because of the 32-bit architecture (and other
improvements) of modern versions of Windows, definition files are no
longer needed.

_WA MING CONVENTIONS

Before concluding this appendix, a short comment on the naming of
functions and variables needs to be made. Several of the variable and
parameter names in the skeleton program and its description probably
scemed rather unusual. This is because they follow a set of naming -
conventions that was invented for Windows programming by
Microsolt. For functions, the name consists of a verb followed by a
noun. The first character of the verb and noun is capitalized.

For variable names, Microsoft chose to use a rather complex system
ot embedding the data type into the name. To accomplish thig, a *
lowercase type prefix is added to the start of the variable’s name. The
name itself begins with a capital letter. The type prefixes are shows in
Table C-1. Frankly, the use of type prefixes is controversial and is not
universally supported. Many Windows programmers use this method,
but many do not. You are frec to use any naming convention vou like.

—lo LEARN MORE

I he foregoing overview of Windows programming just scratches the
surface. In order to write Windows programs that arc useful, you must
learn much more about Windows programming. To learn more about
Windows 95 programs you will want to read the following hooks:

Schildt’s Windows 95 Programming in C and C++

Schildt's Advanced Windows 95 Programming in C and C++

Prefix

sz
Ipsz
rgh

BUILDING A WINDOWS SKELETON £97
TO (EARN MORE ¥

Data Type
Boolean (one byte)

Character (one byte)

Long unsigned integer

16-bit bit-field (flags)

Function

Handle

Long integer

Long pointer

Short integer

Pointer

Long integer holding screen coordinates
Short unsigned integer

Pointer to null-terminated string

Long pointer to null-terminated string
Long integer holding RGB color values

LSRN Variable Type Prefix Characters 'V

To learn more about Windows NT programming, you will find

Windows NT 4 Programming From the Ground Up

especially useful. These books are written by Herbert Schildt and
published by Oshorne/McGraw-Hill.

&94 TEACY “OURSELF
e T

_QAPTER 1
Eore— Exsnc;snss

2. #include <stdio.h>

int main(void)
{
int num;

num = 1000;
printf("%d is the value of num", num):

return 0;

-m-ix.mc:sss

2. #include <stdio.h>

int mainfvoid)

{
float a, b:
printf ("Enter two numbers: ");
scanf ("%f", &a);
scanf ("$f", &b);
printf ("Their sum is %f.", a+b);
return 0;

}

s | Exsnc:sss

1. #include <stdio.h>

int main(void)

({
int len, width, height;

printf ("En er length: ");

ANSWERS 4695

17 EXERCISES v
scanf (*%d", &len);

printf("Enter width: ");
scanf (*%d", &width);

printf ("Enter height: ");
scanf ("%d", &height);

printf("volume is %d.", len * width * height);

return 0;

2. #include <stdio.h>
int main(void)

printf (“Number of seconds in a year: ");
yetpeE(vSEY . 60.0 * 60.0 * 24.0 * 36%.0)

return 0;

Y RE Exmc:sss

2. Yes, a comment can contain nothing.

3. Yes, you can u’mpnmnlv remove a line of code from your
pm;gram by making it into a comment. This is sometimes called
"‘commenting out” a line of code. ‘

-_ Exsnc‘:sss

. o5
2\ #include %stdio.h>

void one(void) ;
void two(void);

1int main(void)
{
one () ;
two () ;

return 0;

void one(void)

{
printf ("The summer soldier, ");

)

void two(void)
{
printf("the sunshine patriot.");

}

.

3. The compiler will report an error. The prototype is needed in
order for the compiler to properly call funcl().

EETEE Exenc:sss

2. #include <stdio.h>

int convert(void);

int main(veid)

(
printf("%d", convert());

return 0;

int convert (void)

{
int dollars;

printf ("Enter number of dollars: ");
scanf ("%d", &dollars);
return dollars / 2;

}

3. There is nothing technically wrong with the program. However,
function f1() returns an integer value, but it is being assigned
to a variable of type double. This would lead one to suspect
that perhaps the programmer has misunderstood the purpose of
the f1() furtttion.

ANSWERS 597
MASTERY SKILLS CHECK ¥

4. A function declared with a void return type cannot return
a value.

Exmc:sss

1. #include <stdio.h>
void outnum(int num);
int main(void)

{

outnum(10) ;

return 0;

void outnum(int num)
{

printf("%d", num);
}

2. The sqr_it() function requires an integer argument, but it is
called with a floating-point value.

_MASTERY SKILLS CHECK

1. #include <stdio.h>
int main(void)
{
float weight;
printf ("Enter your weight: ");
scanf ("%f", &weight);

printf(*Effective moon weight: %f", weight * 0.17);

return 0;

}
2. The comment is not terminated w' ' h a */.

3. #include <stdio.h>

£98 TEACH YOURSELF
¥ ¢

int o_to_c(int o);

int main(void}
{
int ounces;
int cups;

printf ("Enter ounces: *);
scanf ("%d", &ounces);

cups = o_to_c{ounces);
printf(*%d cups", cups);

return 0;

int o_to_c(int o)
{

return o / 8;
}
4. char, int, float, double, and void.
5. The variable names are wrong because
a. A dash may not be used in a variable name.
b. A dollar sign may not be used in a variable name.
c. A + sign may not be used in a variable name.

d. A digit may not begin a variable name.

_CHA P n:rn 2

_RE VIEW SKILLS CHECK

1. All programs must have a main() function. This is the first
function called when your program begins executing.

2. #include <stdio.h>
int main(void)

{
printf("This is the number %d", 100);

21 ExEROSES Y
return 0;
}
3. To include a header file, use the #include compiler directive.
For example,

#include <stdio.h>

includes the ST DIO.H header.
4. The five basic data types are char, int, float, double, and void.
5. The invalid variable names are b, c, and e.

6. The scanf() function is used to input information from the
keyboard.

7. #include <stdio.h>
int main(void).

(
int 1i;

printf ("Enter a number: ")
scanf ("%d", &i):
printf(=%d", i*i);

return 0;

}

"8. Comments must be surrounded by the /* and */ comment
symbols. For example, this is a valid C comment.

/* This is a comment. */

9. A function returns a value to the calling routine using return.

10. void Myfunc (int count, float balance, char ch);

Exmc:sss

1. b, d, and e are true.

2. #include <stdio.h>

int main(void)
{

int 1;

500 TEACH YOURSELF

v ——

c

printf ("Enter a number: ");
scanf ("%d", &i);

if({i%2)==0) printf("Even");
if((i%2)==1) printf(*0odd");

return 0;

E XERCISES

. #include <stdio.h>

int main(void)

{

}

int a. b, op;

printf("Enter first number: ");
scanf ("%d", &a);

printf ("Enter second number: ");
scanf ("%d*, &b);

printf("Enter 0 to add, 1 to multiply:

scanf ("%d", &op):

if (op==0) printf("%d", a+b);
else printf("%d", a*b);

return 0;

2. #include <stdio.h>

int main(void)

{

int 1i;

printf("Enter a number: ");
scanf ("%d", &i);
if((i%2)==0) printf("Even");
else printf(*0dd");

ANswers 501
24 EXERCISES

return 0;

_Exsnc:sss

1. #include <stdio.h>

int main(void)
{
int a, b, op:;

printf("Enter 0 to add, 1 to subtract: ");
scanf("%d", &op);

if(op==0) { /* add */
printf ("Enter first number: ");
scanf ("%d", &a);
printf ("Enter second number: ");
scanf ("%$d4", &b):,
printf ("%d", a+b):

}

else { /* subtract */
printf("Enter first number: ");
scanf ("%d", &a);
printf ("Enter second number: ");
scanf ("%d", &b);
printf("%d", a-b);

return 0;

}

2. No, the opening curly brace is missing.

_Exsnc:szs

1. #include <stdio.h>
int main(void)
{

int i;

for(i=1; i<101; i=i+1l) printf("sd ", i);

502 TEACH YOURSELF

return 0;

2. #include <stdio.h>

int main(void)

{
int iy
for(i=17; i<l01l; i=i+l)
if((i%17)==0) printf("sd ", i);
return 0;
}

3. #include <stdio.h>

int main{void)

{
int num, i;
printf("Enter the number to test: ");
scanf ("%d", &num);
for(i=2; i<(num/2)+1; i=i+1)

if((num%i)==0) printf(*sd *, i);

return 0;

}

_EXERCISES

1. #include <stdioc.h>
int main(void)
{
ing 4

for(i=1; i<10l; i++) printf(*sd ", 1i);

return 0;

25

#include <stdio.h>

int main(void)

{
int 4;
for(i=17; i<101; i++)
if((i%17)==0) printf("%d =, i);
return 0;
}

#include <stdioc.h>
int main(veid)
{

int num, i;

printf(“Enter the number to test: ");
scanf ("%d", &num);

for(i=2; i<(num/2)+1; i++)
if ((num%i)==0) printf("%d -, i);

return 0;

. #include <stdio.h>
int main(void)

{
int a, b;

printf("%d %d", a, b);

return 0;

ANSWERS 503
EXERCISES

504& TEACH YOURSELF
Y ¢

Emc:us

1. #include <stdio.h>

int main(void)

{
int i
for(i=1; i<ll; i++)
printf(*%d %d %d\n", i, i*i, 1%y %419 3
return 0;
)

2. #include <stdio.h>
int main{void)
{

iWE. & 99

printf("Enter a number: I
scanf ("%d", &i);

for(j=i; j>0; j--) printf ("%d\n", 35
printf("\a");

return 0;

_Exsnc:ses

L. The loop prints the numbers 0 through 99.
2. Yes,

3. No, the first is true, the second is false.

MASTERY SKILLS CHECK

l. #include <stdio.h>

int main(void)
{
int magic; /* magic number */

}

MASTERY SKILLS CHECK
int guess; /* user’s guess */
int 1i;

magic = 1325;
guess 0;

for(i=0; i<10 && guess!=magic; i++) {
printf ("Enter your guess: ");
scanf ("%d", &guess);

if (guess == magic) {

printf (*RIGHT!");

printf(* %d is the magic number.\n", magic);
}
else {

printf("...Sorry, you're wrong...");

if (guess > magic)

printf (" VYour guess is too high.\n");
else printf(" Your guess is too low.\n");

]

return 0;

2. #include <stdio.h>

int main(veid)

(

int rooms, len, width, total;
int i;

printf ("Number of rooms? ");
scanf ("%d", &rooms);

total = 0;

for(i=rooms; i>0; i--) {
printf ("Enter length: ");
scanf ("%d", &len);

printf (*Enter width: *);
scanf ("%d", &width);

total = total + len * width;

printf ("Total square footage: %d", total);

508 TEACH YOURSELF
¥ ¢

return 0;
}

3. The increment operator increases a variable by one and the
decrement operator decreases a variable by one.

4. #include <stdio.h>

int main(void)

(
int answer, count;
int right, wrong;

0;
0;

right
wrong

for(count=1; count < 11; count=count+1l) {
printf("What is %d + %d4? ", count, count);
scanf ("%d", &answer) ;

if (answer == count+count) (
printf(*Right! ™);
right++;

}

else {

printf("Sorry, you’'re wrong. ");
printf("The answer is %d. ", count+count);
WIrong++;

}
printf(*You got %d right and %d wrong.", right, wrong):

return 0;

5. #include <stdio.h>

int main(void)
(
int i;

for{i=1; i<=100; i++) ¢
pEIntE(“RdNE"; 1)

ANSWERS 507
REVIEW SKILLS CHECK ¥

if((i%5)==0) printf(*"\n");
}

return 0;

_&Aprsn 3

_REWEW SKILLS CHECK

1. C's relational and logical operators are <, >, <=, >=,!=, ==,
-1, &&, and ||.

2. A block of code is a group of logically connected statements. To
make a block, surround the statements with curly braces.

3. To output a newline, use the \n backslash character code.
1. #include <stdio.h>
int main(void)
(
int i;
for(i=-100; i<101; i++) printf("%d *, i);

return 0;
}

. #include <stdio.h>

w

int main(void)
{
int 1i;

printf("Enter proverb number: ");
scanf ("%d", &i):

if(i==1) printf("A bird in the hand...");

if(i==2) printf("A rolling stone...");

if(i==3) printf("Once burned, twice shy.");

if(i==4) printf("Early to bed, early to rise...");
if(i==5) printf("A penny saved is a penny earned.");

508 TEACH YOURSELF
Y ¢

return 0;

6. count++;
PR - LT
++count;

7. In C, true is any nonzero value. False is zero.

_Exsnb:sss

1. #include <stdio.h>
#include <conio.h>

int main(veoid)
{
int i;
char ch, smallest;
printf{*Enter 10 letters.\n"):
smallest = 'z’ ; /* make largest to begin with */
for(i=0; i<10; i++) {
ch = getche();
if{ch < smallest) smallest = ch;
}

printf ("\nThe smallest character is %c.", smallest);

return 0;

}

2. #include <stdio.h>
int main(void)
{

char ch;

for{(ch='"A"; ch<='2'; ch++)
printf{"%d ", ch);

printf("\n");

for(ch='a’; ch<='z"; ch++)

}

printf(%d *, ch);

return 0;

The codes differ by 32.

Efnmsss

ANSWERS 509
32 EXERCISES Y

. The else relates to the first if; it is not in the same block as
the second.

2. #include <stdio.h>

int main(void)

{

char ch;
int sl, s2;
float radius;

printf("Compute area of Circle, Square, or Triangle? ");

ch = getchar();
printf("\n"};

if{ch=='C") {
printf("Enter radius

scanf ("%$f", &radius);
printf("Area is: %f*,

}

else if(ch=='S") {
printf ("Enter length
scanf ("%d", &sl);
printf("Enter length
scanf ("%d", &s2);

printf ("Area is: %d",

}

else if(ch=='T") {
printf ("Enter length
scanf ("%d", &sl);

printf(*Enter height:

scanf (*%d", &s2);

printf("Area is: %d",

of circle: "};

3.1416*radius*radius) ;

of first side: *");
of second side: ");

sl*s2);

of base: ");
b

{sl*s2)/2});

510 TEACH YOURSELF
Y ¢

return 0;

Emc:sss

1. #include <stdio.h>

int main(void)

(.
float dist, speed;
int num;

printf ("Enter number of drive time computations: ");
scanf ("%d", &num);

for(; num; num--) {
printf("\nEnter distance: ");

scanf("%f", &dist);

printf ("Enter average speed: *);
scanf ("%f", &speed);

printf(*Drive time is %f\n-", dist/speed) ;

return 0;

2. #include <stdio.h>
int main(void)

{

int i;
printf ("Enter a number: ");
scanf ("%d", &i);:

for(@ s ==Y ;

printf("\a");

ANSWERs 511
34 EXERCISES ¥

return 0;

)

3. #include <stdio.h>
int main(void)
{
int i;

for(i=1; i<1001; i=i+i) printf("sd ", i);

return 0;

_Exsnc:sss

1. #include <stdio.h>

int main(void)

[l

float dist, speed;
int num;

printf("Enter number of drive time computations: *);
scanf (*%d", &num);

while(num) {
printf("\nEnter distance: *};

scanf ("%f", &dist);

printf ("Enter average speed: ");
scanf ("%f", &speed);

printf("Drive time is %f\n", dist/speed);
num--;

return 0;
}

2. #include <stdio.h>
#include <conio.h>

5712 TEACH YOURSELF
¥ g

int main(void)
{
char ch;

printf ("Enter your encoded message.\n");
ch = getche();
while(ch!='\r’') {

printf("%c®, ch-1);
ch = getchel();

return 0;

Exsnc:sss

1. #include <stdio.h>

int main(void)
{
float gallons;

printf("\nEnter gallons: ");
scanf ("%$£f", &gallons);

do {
printf("Liters: %f\n*, gallons*3.7854); -

printf (“Enter gallons or 0 to quit. *);
scanf ("%£f", &gallons);

} while(gallons!=0);

return 0;

}
2. #include <stdio.h>
‘nt main(void)

int choice;

printf("Mailing list menu:\n\n");

printf(* 1. Enter addresses\n");
printf(* 2. Delete addresses\n");
printf(* 3. Search the list\n");
printf(* 4. Print the list\n"};
printf(* 5. Quit\n"):

do (

Answers 513
36 EXERCisEs Y

printf (*Enter the number of the choice (1-5): ");

scanf("%d". &choice);
} while(choi.:<1 || choice>5);

return °

Exsnctsss

1. /* This program finds the prime numbers from

*/

2 to 1000

#include <stdio.h>

int main(void)

{

}

int i, j, prime;

for(i=2; i<1000; i++)

prime = 1;
for(j=2; j <= i/2; j++)
if (! (i%])) prime=0;

if (prime) printf(-%d is prime.\n", 1i);

veturn 0;

2. #include <stdio.h>
#include <conio.h>

int main(void)

(

int i;
char ch;

< 74 TFACH YOURSELF
w
for (i=0; 1<10; i++)} {
printf("\nEnter a letter: *);
ch = getche();
printf(=\n");
for(; ch; ch--) printf("%c", '

return 0;

Exsnc:ses

2. #include <stdio.h>
#include <conio.h>

int main(void)

{
float i;
char ch;
printf ("Tip Computerin”);
for(i=1.0: i<101.0; i=i+1.0) {
printf("%f $f %f ¥f\n", Tgy AN
printf ("More? (Y/N) ")
ch = getchel);
printf("\n"):
if (ch=='N") break;
}
return 0;
i
_Exsnc:sss

1. #include <stdio.h>

int main(void)
{

int i;

for(i=1; i<101; i++) {
if(!(i%2)) continue;

Y

1,

i+d ¥ 15,

i+i*.

205

answers 518
39 EXERCISFS

printf("%d *. 1);

return 0;

Exenc:s.fs

1.
2.

Floating point values may not be used to control switch.

$¢include <stdio.h>
#include <conio.h>

int main(void)
(
char ch;
int digit, punc, letter;

printf ("Enter characters, ENTER to stop.\n");

digit = 0;
punc = 0;
letter = 0;

do {
ch = getchel();
switch(ch}) (
case ‘1':
case ‘2':
case '3':
case ‘'4':
case '5':
case '6':
case '7':
case ‘8':
case ‘9':
case '0':
digit++;
break;
case ‘.':
case ‘,':
case '?':
case '!’":
case ‘:’':

B16 TEACH YOURSELF

case ';’':
punc++;
break;
default:
letter++;
}
} while({ch!="\r");
printf("\nDigits: %d\n", digit);
printf ("Punctuation: %d\n", punc);
printf("Letters: %d\n", letter);

return 0;

(310 | Exsnc:sss

1. #include < =+in b=

int main(void)

{

nt i
¥ &= il

jump_label:
if(i>=11) goto done_label;
printf("%d ", i);
i++;
goto jump_label;
done_label: printf("Done");

return 0;

] Msrfnv SKILLS CHECK

1. #include <stdio.h>
#include <conio.h>

int main(void)
{
char ch;

¥

ANSWERS 557 7
el

MARTERY SKILLE CHEL

printf({"Enter lowercase letters. ");
printf (" (Press ENTER to Quit.)\n");
do { .

ch = getchel();

if(ch!='\r’) printf(*S%c", ch-32);
} while(ch!='\r‘);

return 0;

}

2. #include <stdio.h>

int main(void)
{

int i;

printf(*Enter a number: ");
scanf ("%d", &i);

if(!i) printf("zero");
else if(i<0) printf("negative");
else printf("positive");

return 0;

}

3. The for loop is valid. C allows any of its expressions to be empty.

4, for(; ;)

5. /* for */
for(i=1; i<11; i++) printf("%d =, 1i);

/* do */

i=1;

do {
printf(*%d *,i);
i++;

} while(i<1l);

/* while */

i=1;

while (i<11) (
printf(*%d *, i);:

518 TEACH YOURSELF

6. The break statement causes immediate termination of the loop

7. Yes.
8. No, the label is missing the colon.

CUMULA TIVE SKILLS CHECK

|. #include <stdio.h>
#include <conio.h>

int main(void)

{

char ch;

printf("Enter characters (g te gquit): \n");:
do {
ch = getche():
switch(ch) (
case "\t’: printf("tab\n");:
break;
case ‘\b‘: printf("backspace\n");
break;
case ‘\r': printf("Enter\n");

}
} while(ch!='q");

return 0;

}

2. include <stdio.h>

int main(void)

{

int i, 3. ki

for(k=0: k<1Q; k++) (/* use increment operator */
printf(*Enter first number: ");
scanf ("%d", &i);

printf ("Enter second number: *);
scanf("%d", &j);

ANSWERS 519
REVIEW SKILLS CHECK ¥

if(3) printf{'%d\n', ir3ys J® simplify condition */

else printf("Cannot divide by zero.\n"); /* use else */

}

return 0;

_ciMPrfn 4

RevieEw SKILLS CHECK

1. int i;
for(i=1; i<ll; i++) printf(*%d ", i)

i=1;

do {
printf("%d ", i}):
i+4;

} while(i<1ll);

i=1;

while{i<ll){
printf(*%d ", 1i):
i+4;

}

2. switch(ch) {

case 'L': load();
break;

case 'S': savel();
break;

case 'E': enter();
break;

case 'D': displayl():
break;

case ‘Q': quit():
break;

}

3. #include <stdio.h>
#include <conio.h>

520 TEACH YOURSELF
¥ g

int main(void)
{

char ch;

do {
ch = getche();
} while(ch!='\r");

return 0;

}

4. The break statement causes immediate termination of the loop

that contains it. It also terminates a statement sequence in a
switch.

5. The continue statement causes the next iteration of a loop
to occur.

6. #include <stdio.h>

int main(void)
(
int i;

float feet, meters, ounces, pounds;

do ()
printf("Convert\n\n");
printf(*1. feet to meters\n");
-printf("2. meters to feet\n");
printf("3. ounces to pounds\n");
printf("4. pounds to ounces\n");
printf("5. Quit\n\n"):
do {
printf(*Enter the number of your choice: ")
scanf("%d", &i);
} while(i<0 || i>5);

switch(i) {

case 1:
printf(*Enter feet: *);
scanf ("%f", &feet);
printf("Meters: %f\n", feet / 3.28):
break;

case 2:-
printf ("Enter meters: *);
scanf ("%f", &meters);

ANSWERS 521
41 ExeRCISES YV

printf ("Feet: %f\n", meters * 3.28);
break;

case 3:
printf ("Enter ounces: ");
scanf (*%f", &ounces);
printf("Pounds: %f\n", ounces / 16);
break;

case 4:
printf("Enter pounds: “);
scanf ("%f", £s) ;
printf("ounces: %f\n", pounds * 16);
break;

}
) while(i!=5)

return 0;

_Exsnc:sss

1. unsigned short int loc_counter;

2. #include <stdio.h>

int main(void)

{ s ~
.unsigned long int distance;
printf (“Enter distance: ");
scanf("%lu", &distance);

printf(*%ld seconds®, distance / 186000);

return 0;
}

3. The statement can be recoded using C's shorthand as follows

short i;

B22 TEACH YOURSELF

v

C

EERCISES

1. Local variables are known only to the function in which they

are declared. Global variables are known to and accessible by all
functions. Further, local variables are created when the function
is entered and destroyed when the function is exited. Thus they
cannot maintain their values between function calls. However,
global variables stay in existence during the entire lifetime of
the program and maintain their values.

. Here is the non-generalized version.

#include <stdio.h>
void soundspeed (void) ;
double distance;

int main(void)

{
printf (“Enter distance in feet: ");
scanf ("%1f", &distance);
soundspeed() ;

return Q;

void soundspeed(void)

{ :
printf("Travel time: %f", distance / 1129);

}
Here is the parameterized version.

#include <stdio.h>
void soundspeed(double distance);

int main(void)
{
double distance;

printf ("Enter distance in feet: ");
scanf ("$1f", &distance);
soundspeed (distance) ;

return 0;

}

void soundspeed (double distance)

{ -
printf ("Travel time: %f*, distance / 1129);

EXERCISES

1.

(o]

To cause a constant to be recognized by the compiler explicitly
as a float, follow the value with an F.

. #include <stdio.h>

int main(wvoid)
(

long int 1i;

printf("Enter a number: ")
scanf ("%¥1ld", &i);
printf("%ld", i):

return 0;
}

#include <stdio.h>
int main(void)
{

printf(*%s %s %s”, ape. =like®; “C"};

return 0;

Emc:sss

1.

#include <stdio.h>

int main(void)
{
int 1=100;

B24& TEACH YOURSELF
y —
C

for(; i»>0; i--) printf("%d " Y

return 0;
)

2. No. You cannot initialize a global variable using another variable

3. Yes. A local variable can be initialized using any expression
valid at the time of the initialization.

EERCISES

1. The entire expression is float.
2. The subexpression is unsigned long.

_Exsnc:sss

1. The program displays 10.

2. The program displays 3.0.

_EXERCISE

1. #include <stdio.h»

int main(void)
{
float f;

for(f=1.0; (int) f<=9; f=f + 0.1)
printf(*sf ~, f£);

return 0;
}

2. Here is the corrected statement.

X = (int)123.23 % 3; /* now fixed *y

MASTERY SKILLS CHECK ¥

MASTERY SKILLS CHECK

1.

The data-type modifiers are

unsigned
long
short
signed

They are used to modify the base type so that you can obtain
variables that best fit the needs of your program.

. To define an unsigned constant, follow the value with a U. To

define a long constant, follow the value with an L. To specify a
long double, follow the value with an L.

float balance = 0.0;

. When the C compiler evaluates an expression, it automatically

converts all chars and shorts to int.

. A signed integer uses the high-order bit as a sign flag. When the

bit is set, the number is negative, when it is cleared, the number
is positive. An unsigned integer uses all bits as part of the
number and can represent only positive values.

. Global variables maintain their values throughout the lifetime of

the program. They are also accessible by all functions in the
orogram.

. #include <stdio.h>

int series(void);
int num =

int me .

{

int i;

for(i=0; i<10; i++)
printf("%d ", series()):

return 0;

m TEACH YOURSELH
Y r
int series(void)
{
num = (num*1468) % 467;
return num;

}

8. A type cast temporarily changes the type of a variable. For
example, here the int i is temporarily changed into a double.

{(double) i

‘:UMULATIVE SKILLS CHECK

1. The fragment is not valid because to C, both 'A’ and 65 are the
same thing, and no two case constants can be the same.

2. The reason that the return value of getchar() or getche() can
be assigned to a char is because C automatically removes the
high-order byte.

3. No. Because i is a signed integer, its maximum value is 32,767,
Therefore, it will never exceed 33,000.

_CHA PTER 5

mwfw SKILLS CHECK

1. A local variable is known only to the function in which it is
declared. Further, it is created when the function 1s entered and
destroyed when the function returns. A global variable is known
throughout the entire program and remains in existence the
entire time the program is executing.

2. C compiler will assign the following types:
a. int
. int

b

c. doublc
d. long

e

. long

51 EXERCISES ¥

3. #include <stdio.h>

int main(void)

{
long 1;
short s;
double 4d:

printf("Enter a long value: ");
scanf ("%1d", &l);

printf("Enter a short value: "};
scanf ("%hd*, &s);

printf("Enter a double value: ~);
scanf ("%1f", &d);

printf("$1d\n", 1};
printf (*%hd\n", s);
printf ("%f\n", d);

return 0;

4. A type cast temporarily changes the type of a value.

_. L'he else is associated with the if(j) statement, contrary to what
the (incorrect) indentation would have you believe.

6. Wheniisl,ais2. Wheniis4,ais5.

Exsnc:sss

1. The array count is being overrun. It is only 10 elements long.
but the program requires one that is 100 elements long.

2. #include <stdio.h>
int main(void)

{
int i(10), j, k, match;

printf(*Enter 10 numbers:\n");
for(j=0; j<10; j++) scanf("%d", &i[j]};

628 TEACH YOURSELF
v
c

/* see if any match */
for(j=0; 3<10; j++) (
match = i[j];
for(k=j+1; k<10; k++)
if (match==i[k])
printf("$d is duplicated\n-®, match) ;

return 0;
)

3. #include <stdio.h>

int main(void)

{
float item[100], t;
int a, b;
int count;

/* read in numbers */

printf("How many numbers? ");

scanf ("$d", &count);

fof(a=0; a<count; a++) scanf("$f", &ite' .]):

/* now sort them using a bubble sort */
for(a=1; a<count; ++a)
for (b=count-1; b»=a; --b) {
/* compare adjacent elements */
if(item[b-1] > item(b]) {
/* exchange elements */
t = item[b-1];
item[b-1] = item[b];
item[b] = t;

/* display sorted list */
for(a=0; a<count; a++) printf(*3%f ", item([a]);

return 0;

ANSWERS 529
52 EXERCISES ¥

_Exsnc.:sss

1. /* Reverse a string. */
f#include <stdio.h>
#include <string.h>

int main(void)
{
char str[80];
e a;

printf("Enter a string: ");
gets(str);

for(i=strlen{str)-1; i>=0; i--)
printf ("%c*, str(i]);:

return 0;

}

2. The string str is not long enough to hold the string "this is a test".

3. #include <stdioc.h>
#include <string.h>

int main(void)

{
char bigstr[1000] = "", str(80];
forll : ¥ 3 4
printf("Enter a string: "};
gets(str);

if(!'stremp{str, "quit®)) break:
§Ercat (str, "Anry;
/* prevent an array overrun */ .
if (strlen(bigstr)+strlen(str). >= 1000) break;
strcat (bigstr, str);
} 4

printf (bigstr);

return 0;

530 TEACH YOURSELF
Y ¢

mixsncrsss

1. #include <stdio.h>

int main(void)

{

}

int three_d[3](3](3];
int i, j. k, %;

x = 1;
for{i=0; i<3; i++)
for (j=0; j<3; J++)
for(k=0; k<3; k++) {
three_d[i] (j][k] = x:
X++;
printf("%d *, three_d([i][j][k];

return 0;

2. #include <stdio.h>

int main(void)

{

int three_d[3]3;
inks Ay P K SUMS

for(i=0; i<3; i++)
for(j=0; j<3; j++)
for (k=0; k<3; k++) {
three_d[i] (] [k] = (i+1) * (j+1)
printf("%d *, three d[i)([]][k]);
}

/* sum all elements */

. sum = 0;

for(i=0; i<3; i++)
for(j=0; j<3; j++)
for(k=0; k<3; k++)
sum = sum + three_d[i)[j][k];

printf(*\n%d", sum);

*

(k+1);

Answirs 531
54 EXERCISES

return 0;

_Exsnc:sss

. No. The list must be enclosed between curly braces.

2. No. The array name is only 4 characters long. The attempted
call to strcpy() will cause the array to be overrun.

3. #include <stdio.h>
int main(void)

(
int cube(]([3] = {

1. 4 2,

2, 4, 8,

3z ¥, 2%

4, 16, 64,

S, 25, 125,
6, 36, 216,

7, 49, 343,

8, 64, 512,
9, 81, 729,
10, 100, 1000

}i
int num, 1i;

printf ("Enter cube: ");
scanf ("%d", &num);

for(i=0; i<10; i++)
if (cube(i][2]==num) {
printf("Root: %d\n", cube(i] [0]);
printf ("Square: %d", cubel(i][1]);
break;

if (i==10) printf("Cube not found.\n"):

return 0;

532 TEACH YOURSELF

v

o

_Ex.enc:sss

#include <stdio.h>

#include <conioc.h>

int main(void)

{

——

char digits(10])(10] = {

¥, “two"; "three",
“four", "five", "six", "seven"
"eight", "nine"

}i

char num;

"zero", "one

printf ("Enter number: ") ;
num = getche();
printf("\n"};

num = num - ‘0’ ;
if(num>=0 && num<l1l0) printf("%s", digits[num]);

return 0;

_MASTERY SKILLS CHECK

1
2,

An array is a list of like-type variables.

The statement will not generate an error message because C
provides no bounds checking on array operations, but it is
wrong because it causes count to be overrun.

. #include <stdio.h>

int main(void)

{

int stats([20), i, 3J:
int mode, count, oldcount, oldmode;

printf(*Enter 20 numbers: \n");
for(i=0; i<20; i++) scanf("%d", &stats([i]);

oldcount = 0;
/* find the mode */

ANSWERS 533
MASTERY SKILLS CHECK =~ T

for (i=0; i<20; i++} {
mode = stats[i]:
count = 1;

/* count the cccurrences of this value */
for =1+ §<20; ja4)
if {mode==stats[j]) count++;

/* if count is greater than old count, use new mode */
i f {count>oldcount) {

oldmode = mode;

oldcount = count;

}
printf ("The node is %d\n", oldmode);

return 0;

4 dre dtemst] = {1, 2. 3, 4, 5 B8 T 8;: 8 10)y

5. #include <stdio.h>
#include <string.h>

int main(void)
{
char str(80];

do:
printf ("Enter a string: ");
gets(str);

} while(strcmp("quit", str));

return 0;

6. /* Computerized dictionary program. */

#include <stdioc.h>
#include <string.h>

int main(void)
{
char dict[](2](40) = {

534 TEACH YOURSELF
¥ e

"house*, "a place of dwelling",
"car", "a vehicle",
“computer®, "a thinking machine-",
"program®", "a sequence of instructions®,
Yer
char word[80];
int 1;

printf("Enter word: ");
gets (word) ;

/* look up the word */
i=0;
/* search while null string not vet encountered */
while(stremp(dice (1] [0), "*)) (
if (1stremp(word, dict([i][0]1)) |
printf("meaning: %s", dict[i][1l]);
break;
)
1++4;
}
if(!stremp(dict([i] [0], =~"))
printf(*Not in dictionary\n");

return 0;

cumum TIVE SKILLS CHECK

1. #include <stdio.h>
#include <string.h>

int main(void)
{
char str[80];
inE i
printf("Enter a string: "};

gets(str);

/* pad the string if necessary */
for(i=strlen(str); i<79; i++)
streatlstr; ".%);

ANSWERS 535
CUMULATIVE SKILLS CHECK Y

printf(str);

return 0;

2. /* A simple coding program. */

#include <stdio.h>
#include <string.h>

int main(void)
{
char str(80];
int i, j;

printf ("Enter message: ");
gets(str}; .

/* code it */
i=0; j = strlen(str) - 1;
while(i<=3j) {)
if(i<j) printf("$c%c*, strlil, str(jl):
eélse printe(“%e", SEtcli])s

iy g==;
return 0;

3. #include <stdio.h>
#include <string.h>

int main(void)

{
char str(80];)
int spaces, periods, commas;
int i;

printf("Enter a string: *);
gets(str);

spaces = 0;
commas = 0;

periods = 0;

536 TEACH YOURSELF
bl Ao
¥ g

for(i=0; i<strlen(str); i++)
switch(str(i]) (

case ‘.’: periods++;
break;

case °‘,": commas++;
break;

case ' ': Spaces++;

printf{"spaces: %d\n", .spaces);
printf{“commas: %d\n", commas);
printf(“periods: %d", periods);

return 0;

4. The getchar() function returns a character, not a string,
Hence, it cannot be used as shown. You must use gets() tc
read a string from the keyboard.

3. /* A simple game of Hangman */

#1include <stdio.h»>
#include <string.h>

int main{void)
char word[] = "concatenatiocn";
char templ]

char ch;
int i, count;

count = 0; /* count number of guesses */

do {
printf{"%s\n", temp);
printf{"Enter your guess: ");
ch = getchar();
pTintE t\n");

/* see if letter matches any in word */
for(i=0; i<strlen(word); i++)
if (ch==word(i]) temp[i] = ch;
count++;
} while(strcmp(temp, word));

ANSWERS 537
REVIEW SKILLS CHECK T

printf ("%¥s\n", temp);
printf ("You guessed the word and used %d guesses", count);

return 0;

_CHA PTER 6

_REWEW SKILLS CHECK

1. #include <stdio.h>

int main{void)
{
int num(10], i, even, odd;

printf ("Enter 10 integers: "}:
for (i=0; i<10; i++) scanf("%d", &num[i]);

even = D; odd = 0;

for(i=0; i< 10; i++) {
if(num[i]%2) odd = odd + num(i];
else even = even + num(i];

printf("Sum of even numbers: %d\n", even);
printf("Sum of odd numbers: %d", odd);

return 0;

}

2. #include <stdio.h>
#include <string.h>

int main(void)
{
char pw[80];
ah o { I 1

for (i=0; i<3; i++) (
printf (*Password: ");

538 TEACH YOURSELF

v

c

gets (pw) ;
if (!strecmp("Tristan", pw)) break;

if{i==3) printf("Access Denied");

else printf("Log-on Successful");

return 0;

}

. The arrav, name, is not big enough to hold the string being

assigned to it.

4. A null string is a string that contains only the null character.

. The strepy() function copies the contents of one string into

another. The stremp() function compares two strings and
returns less than zero if the first string is less than the second,
zero if the strings match, or greater than zero if the first string is
greater than the second.

. /* A Simple computerized telephone book. */

#include <stdio.h>
#include <string.h>

char phone(][2][40] = {
"Fred", "555-1010",
"Barney", "555-1234",
"Ralph", "555-2347",
*"Tom", "555-83%6",

oo "o
.

}i

int main(veid)

{
char name[80];
ink 4
printf("Name? ");

gets(name) ;

for(i=0; phone[i] [0] [0]; i++)
if (!strcmp(name, phone(i] [0]))
printf("number: %s", phone[i][1]);

ANSWERS 539
63 EXERCISES Y

return 0;

Esnc:scs

1. A pointer is a variable that contains the address of another
variable.

2. The pointer operators are the * and the &. The * operator
returns the value of the object pointed to by the pointer it
precedes. The & operator returns the address of the variable it
precedes.

3. The base type of a pointer is important because all pointer
arithmetic is done relative to it.

4. #include <stdio.h>
int main{void)
{
p = &ij
for(i=0; i<10; i++} princf("%d ", Yol

return 0;

_Exznc:sss

1. You cannot multiply a pointer.
2. No, vou can only add or subtract integer values.
3. 108

Exsnc:sss

1. No, you cannot change the value of a pointer that is generated
by using an array name without an index.

2.8

540 TEACH YOURSELF

Y e

3. #include <stdio.h>

&

{

nt main(void)

char str[80], *p:;

printf ("Enter a string: "}:
gets(str);

ol str;

/* While not at the end of the string and no

space has been encountered, increment p to
point to next character.

gl
while(*p && *p!=' ‘) p++;
princfipd:;
return 0;

}

EXERCISE
1. #include <stdio.h>

int main(void)

(
char *one = "one'";
char *two = "two";
char *three = "three";
printf("%s %s %s\n", one, two, three);
printf("%s %s %s\n", one, three, two);
printf("%s %s %s\n", two, one, three);
printf("%s %s %s\n", two, three, one);
printf{"%s %s %s\n", three, one, two);
printf("%s %s %s\n", three, two, one);

return 0;

ANSWERs 541
66 EXERCISE

EXERCISE

1. #include <stdio.h>
#include <string.h>
int main(void)
{
char *p[3] = {
"yes", "no",
"maybe - rephrase the guestion”
}
char str[80];
printf{"Enter your gquestion: \n");
gets(str);
printf(p[strlen(str) % 3]);
return 0;
}
Exmc:ss
1. #include <stdio.h>

int main(void)
{
int i, *p, **mp;

p = &i;
mp = &p;
**mp = 10;

printf("%p %p %p", &i, p, mp);

return 0;

542 TEACH YOURSELF
Y ¢

| 8.7 | Exenc:sss

1. #include <stdio.h>
#include <string.h>

void mystrcat(char *to, char *from);
int main(void)
{
char str(80];
strecpy(str, "first part");
mystrcat(str, " second part*);
printf (str);
return 0;
void mystrcat (char *to, char *from)
{
/* find the end of to */

while(*to) to++;

/* concatenate the string */
while(*from) *to++ = *from++;

/* add the null terminator */

*to = *“\N@';
}

2. #include <stdio.h>
void f(int *p);
int main(void)

{
int i;
f(&i);
printf("3d4", i);

return 0;

ANSWERS 543
CUMULATIVE SKILLS CHECk T

void f(int *p)
{

*Dp = =1;
)

_MASTERY SKILLS CHECK
1. double *p;
2. #include <stdio.h>

int main(void)
{

int i, *p;
p = &i;
*o = 100;

printf("sd", i);

return 0;

}

3. No. The pointer p has never been initialized to point to a valid
piece of memory that can hold a string.

4. Pointers and arrays are basically two ways of looking at the
same thing. They are virtually inte#changeable.

5. str[2)
*(str+2)

*(p+2)

6. 108

t :UMULA TIVE SKILLS CHECK

1. Pointers are often more convenient than array indexing and
may be faster in some cases.

544 TEACH YOURSELF
———

Y ¢

2. #include <stdio.h>
int main(void)
(

char str{B80], *p:
int spaces;

printf("Enter a string: ");
gets(str);

spaces = 0;

p: = |Skx;

while(*p) (
if (*p==' ‘) spaces++;
p++:;

printf ("Number of spaces: %d", spaces);

return 0;
}

3. *{({int *)count + (44 * 10) + 8) = 99;

_CHA PTER 7

_REVIEW SKILLS CHECK

1. The fragment assigrmto i the value 19 indirectly using a pointer.

2. An array name with no index generates a pointer to the start of
the array.

3. Yes, the fragment is correct. It works because the compiler
creates a string table entry for the string "this is a string" and
assigns p a pointer to the start of it.

4. #include <stdio.h>

int main(void)

{

ANSWERS 545
REVIEW SKILLS CHECK ¥
double d, *p;
p = &d;
*p = 100.99;
printf("$£", d);

return 0;
<3

5. #include <stdio.h>
int mystrlen({char *p};

int main(void)

(
char str(80];

printf("Enter a string: ");
gets(str);

printf("Length is %d*, mystrlen(str));

return 0;

int mystrlen(char *p)
{

int i:

i=0;
while(*p) {
i++;
D++:
)
return i;

}

6. The fragment is correct. It displays C.

546 TEACH YOURSELF
Y &

“EXERCISES

1

#include <stdio.h>

double avg();

int main(veid)
(
printE{ S LY, avgd))

return 0;

double avg()
[.
int i;
double sum, num;
(6 98
for(i=0; i<10;

sum =

i++) {

printf ("Enter next number:

scanfi("s1lE";
sum = sum + num;

&num) ;

}

return sum / 10.0;

#include <stdio.h>

doubkle avg(void);

int main(void)
{
printf("%£f", avg());

return 0;

double avg(void)
{
Ine. &
double sum, num;

sum = 0.0;

"3

72 EXERCISES Y
for(i=0; i<10; i++) {
printf ("Enter next number: *); -
scanf ("%$1f", &num);
sum = sum + num;
}
return sum / 10.0;

}

3. The program is correct. However, the program would be better

if a full function prototype were used when declaring myfunc().

4. double *Purge(void);

Exsnc:s.e's

1

#include <stdio.h>
int fact(int 1i);

int main(void)
{
printf ("5 factorial is %d", fact(5));

return 0;

int fact(int i)
{
if(i==1) return 1;
else return i * fact(i-1);

)

The function will call itself repeatedly, until it crashes the
program, because there is no condition that prevents a recursive
call from occurring,

#include <stdio.h>
void display(char *p);
int main(void)

{

display("this is a test");

return 0;

B48 TEACH YOURSELF

void display(char *p)
{
LE(TR) 1
printEl“ser.: 0y
display(p+1);

Erfnc:s.fs

1. No. The function myfunc() is being called with a pointer to
the first parameter ‘instead of the parameter itself.

2. #include <stdio.h>
void prompt{char *msg, char *str);

int main(void)
{
char str([80];

prompt {“Enter a string: ", str);
printf{"Your string is: %s", str);

return 0;

void prompt{char *msg, char *p)
{

printf (msg) ;

gets(p):
}

3. In call by value, the value of an argument is passed to a
function. In call by reference, the address of an argument is
passed to a function.

Exsnc:sss

1. #include <stdio.h>
#$include <string.h>

ANSWERS 549

7.4 EXERCISES

#include <stdlib.h>

int main(int argc, char *argv(])
(

ink 4;

if (argec!=3) |
printf(“You must specify two arguments.");
exit (1) ;

i = stremp(argvil], argv([2]);

if(i < 0) print’ "%s > %s", argv(2], argv([l]);

else if(i > 0) printf("%s > %s", argv(l], argv(2]);
else printf (“They are the same");

return 0;

2. #include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argec, char *argv(])
(
iflarge!=3) {
printf(*You must specify two numbers.");
exit(1l);

printf("%£f", atof(argv(l]) + atof({argv(2]));

return -0;

3. #include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char *argv[])

{
if {argc!=4) {

printf("You must specify the operation ");
printf("followed by two numbers.");

550 TEACH YOURSELF
———-——_—-_-
¥ e

exit(l);

if(!strcmp("add", argv([1l]))
printf ("%f", atof(argv(2]) + atoflargv[3]));
else if(!strcmp(*"subtract", argv[1l]})
printf("%f*, atof(argv([2]) - atof(argv(3])):
else if(!strcmp("multiply”, argv[1l]))
printf("%£f", atof(argv(2]) * atof(argv[3]));
if(!strcmp(*divide", argv[1l]))
printf("%f", atof(argv(2]) / atoflargv(3]));

return 0;

EXERCISE

1. #include <stdio.h>

double f_to_m(double f);

int main(void)
(
double feet;

printf ("Enter feet: ");
scanf ("%1f", &feet);
printf("Meters: %f", f_to_m(feet));

return 0;
}

/* use old-style declaration. */
double f_to_m(f)
double £f;
(
return £ / 3.28;

Ms TERY SKILLS CHECK

1. A function that does not have parameters specifies void in the
parameter list of its prototype.

ANSWERS 551
MASTERY SKILLS CHECK ¥

2. A function prototype tells the compiler these three things: the
return type of the function, the type of its parameters, and the
number of its parameters. It is useful because it allows the
compiler to find errors if the function is called incorrectly.

3. Command-line arguments are passed to a C program through
the argc and argv parameters to main().

4. #include <stdio.h>
void alpha(char ch);

int main(void)
{
alpha('A’');

return 0;
}

void alpha(char ch)
({

printf£("%c", ch);

if(ch < "2’} alpha(ch+1);
}

5. #include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argvl(])
{
char *p;

if (argec!=2) {
printf("You need to specify a string"):
exit(l);

p = argv(l];

while(*p) {
printf{"%c", (*p)+l);
p++;

552 TEACH YOURSELF
Y ¢

return 0;
}

6. The prototype is shown here.
double myfunc(int x, int Y. char ch);

7. Using the old-style function declaration, the function from
Exercise 6 looks like this.

double myfunc(x, y, ch)
int x; v
char ch;

{

}

8. The exit() function causes immediate program termination
also returns a value to the operating system.

9. The atoi() function converts its string argument into its
equivalent integer form. The string must represent (in string
form) a valid integer.

t:UMULA TIVE SKILLS CHECK

1. #include <stdioc.h>
#include <string.h>
#include <stdlib.h>

int main(int argec, char *argv(])
(
if(argc!=2) {
printf ("Specify a password®);
exit(1l);
}
if(!strcmp(argv(l], "password"))
printf("Access Permitted");
else printf("Access Denied");

return 0;

ANSWERS 553
CUMULATIVE sKiLLS crecx ¥

2. #include <stdio.h>
#include <ctype.h>

void string_up(char *p);
int main(void)
{

char str([] = "this is a test*;

string_up(str);
printf(str);

return 0;

void string_up({char *p)
{
while(*p) {
*p = toupper(*p);
p++;

}
3. #include <stdio.h>

void avg(double *d, int num);

int main(veid)

(
double nums() = (1.0, 2.0, 3.0, 4.0, 5.0,

6.0, T.0; B.0; 9:0; 10.0);

avg (nums, 10);
return 0;

void avg(double *d, int num)

{
double sum;
int temp;

temp = num-1;

for(sum=0; temp>=0; temp--)

554 TEACH YOURSELF
Y ¢

sum = sum + d[temp];

printf ("Average is %f", sum / (double) num);:
}

4. A pointer contains the address of another variable. When a
pointer is passed to a function, the function may alter the
contents of the object pointed to by the pointer. This is the
equivalent of call by reference.

_CHA PTER 8

_REIHEW SKILLS CHECK

1. To allow the compiler to verify that a function is being called
correctly, you must include its prototype.

2. Function prototypes enable the compiler to provide stronger
type checking between the arguments used to call a function
and the parameters of the function. Also, it lets the compiler
confirm that the function is called with the proper number of
arguments,

3. #include <stdio.h>
#include <math.h>

double hypot (double sl1, double s2);

int main(void)
{
printf("%$£f", hypot(12.2, 19.2));

return 0;
double hypot(double sl, double s2)
{

double h;

h = sl*sl + s2*s2;
return sqrt (h);

ANSWERS 55§
81 exeroises Y

4. When a function does not return a value; its return type should
be specified as void.

5. #include <stdio.h>
int rstrlen{char *p);

int main(void)
{
printf("%d*, rstrlen("hello there"));

return 0;

int rstrlen(char *p)
{ g
if(*p) {
p++;
return l+rstrlen(p);
}
else return 0;
}

6. #include <sfdio.h>

int main(int argc, char *argv/[])

{
printf("There were %d arguments.\n", argc);
printf("The last one is %s.", argv[argc-1]);

return 0;

7. func(a. ch, 4d)
int a;
char ch;
double d;
{

Exenc:sss

1. #include <stdio.h>

#define MAX 100

556 TEACH YOURSELF
¥ e

#define COUNTBY 3

int main(void)
(

int i:
for(i=0; i<MAX; i++)

if (! (i%COUNTBY)) printf("%d =, i);

return 0;

}

2. No, the fragment is wror{g because a macro cannot be defined
terms of another before the second macro is defined. Stated
differently, MIN is not defined when MAX is being defined.

3. As the macro is used, the fragment is wrong. The string needs
be within double guotes.

4. Yes.

_Exsnc:sss

#include <stdio.h>

int main(void)
{
int i;

do {
i = getchar();
if (i==EOF) {
printf("Error on input.%};

break;
}
if(putchar(’.')==EOF) ({
printf("Error on output.“);
break;
}
} while((char) i != *\n’});

return 0;

2. The putchar() function outputs a character.

string.

EERCISES

1. #include <conio.h>
#include <stdio.h>

int main(void)
{

char ch;

ch = getch();
printf("%d", ch);

return 0;

}

2. #include <stdio.h>
tinclude <conio.h>

int main{void)
{
do {

peiREE (e s "« ") 7

} while(!kbhit ());

return 0;

_Exsnc:sss

ANSWERS 557
85 EXERCISES Y

It cannot output a

2. No. The program is incorrect because gets() must be called

with a pointer to an actual array.

_Exsnc:sss

1. #include <stdio.h>

int main(void)

{

558 TEACH YOURSELF
¥ c

unsigned long i;

for(i=2; i<=100; i++)
printf(*$-101u %-10lu %-10lu\n*, i, i*i,

return 0;

2. printf("Clearance price: 40% off as marked"):

3: printE(%28, 1023.03);

Exsnc:sss

1. #include <stdio.h>

int main(void)
{
char first[21], middle(21], last[21];

printf ("Enter your entire name: ");
scanf ("%20s%20s%20s", first, middle, last);
printf(*%s %s %s", first, middle, last):

return 0;

2. #include <stdio.h>

int main(void)
{

char num([80] ;

printf("Enter a floating point number: ");
scanf ("%[(0-9.]", num);
printf (num) ;

return 0;

}

b el HLi W I

3. No, a character can only have a maximum field length of 1.

4. #include <stdio.h>

int main{void)

ANSWERS 559
MASTERY SKILLS CHECK T

char str(80];
double d;
int i, num;

printf("Enter a string, a double, and an integer: "};
scanf (*%$s%1f%d%n", str, &d, &i, &num);
printf ("Number of characters read: %d", num);

- return 0;
}

5. #include <stdio.h>

int main(void)
{

unsigned u;
printf ("Enter hexadecimal number: ");
scanf ("%x", &u);

printf (“Decimal equivalent: %u", u);

return 0;

MASTERY SKILLS CHECK

- 1. All these functions input a character from the keyboard. The
getchar() function is often implemented using line-buffered
I/0 which makes its use in interactive environments
undesirable. The getche() is an interactive equivalent to
getchar(). The getch() function is the same as getche()
except that it does not echo the character typed.

2. The %e specifier outputs a number in scientific notation using a
lowercase 'e’. The %E specifier outputs a number in scientific
notation using an 'E’.

3. A scanset is a set of characters that scanf() matches with
input. As long as the characters being read are part of the
scanset, scanf() continues to input them into the array pointed
to by the scanset’s corresponding argument.

560 TEACH YOURSELF
Y e

4. #include <stdio.h>

int main(void)
(
char name(80)], date([80], phone[80];

printf("Enter first name, birthdate ");
printf (*and phone number:\n");

scanf ("%s%8s%8s", name, date, phone);
printf("%s %s %s", name, date, phone);

return 0;

}

5. The puts() function is much smaller and faster than printf()
But, it can only output strings.

6. #include <stdio.h>
#define COUNT 100
int main(void)

{
int i;

for(i=0; i<COUNT;i++)
printf(*%d ", i);

return 0;
)

7. EOF is a macro that stands for end-of-file. It is defined in
STDIO.H.

_CUMULA TIVE SKILLS CHECK

1. #include <stdio.h>

int main(void)

(
char name(9][80];
double b_avg([9];
int i, h, 1;

ANSWERS 561
CUMULATIVE SKILLS CHECK ¥

double high, low, team_avg;

for(i=0; i<9; i++) {
printf ("Enter name %d: ", i+l)
scanf("%s", name(i]);
printf(*Enter batting average: "):
scanf ("%1£f", &b_avgli]);
printf("\n");

high = 0.0;

low = 1000.0;

team_avg = 0.0;

for(i=0; i<9; i++) {
if(b_avgl[i)>high) {

h =1;
high = b_avgl(il];
}
if(b_avg(i]<low) {
1 =i

low = b_avgl[i]:
}
team_avg = team_avg+b_avgl(i];
¥
printf("The high is %s %f\n", name(h], b_avg(h]);
printf("The low is %s $f\n", name([l], b_avg(l]):
printf{"The team average is %tf", team_avg/9.0):

return 0;

)

2. Note: There are many ways vou could have written this
program. This one is simply representative.

/* An electronic card catalog. */
#include <stdio.h> ’
#include <stdlib.h>

#include <string.h>

#define MAX 100

int menu(void, :

void display(int 1i);

void author_search(void);
void title_searchi(void};

B56B2 TEACH YOURSELF

v

C

void enter (void);

char names|[MAX] (80]; /* author names */
char titles([MAX])[80]; /* titles */
char pubs[MAX][80]; /* publisher */

int top = 0; /* last location used */

int main(veid)

{

/*

int choice;

do (
choice = menu();
switch(choice) (
case 1: enter(); /* enter books */

break;

case 2: author_search(); /* search by author *,
break;

case 3: title search(); /* search by title */
break;

}
} while(choice!=4);

return 0;

Return a menu selection. */

menu (void)

(

char str(80];
int 42

printf("Card Catalecg:\n");
printf(* 1. Enter\n");

printf(" 2. Search by Author\n");
printf(* 3. Search by Title\n");
printf(™ 4. ouitin®);
o A
printf("Choose your selection: ");
gets(str);

i = atoil(str);
print " Nn™)
)} while(i<l || i»4);

ANSWERS 563

CUMULATIVE SKILLS CHECK

return i;

}

/* Enter books into database. */
void enter (void)
{

int i;

for(i=top; i<MAX; i++) {
printf(*Enter author name (ENTER to quityz. YN
gets(names[i]);
if(!*names[i]) break;
printf ("Enter title: ");
gets(titles[i]);
printf ("Enter publisher: "):
gets(pubs[i]):
}
top = 1i;

/* Search by author. */-
void author_search(void)
(B

char name([80];

int i, found;

printf ("Name: ");
gets(name) ;

found = 0;
tor(i=0; i<top; i++)
if (!strcmp(name, names([i])) {
display(i);
found = 1;

printf(*“\n");
}

if(!found) printf("Not Found\n");

/* Search by title.*/
void title_search(void)
{

char title[80];

v

564 TEACH YOURSELF
b4 G

int i, found;

printf("Title: *);
gets(title);

found = 0;
for(i=0; i<top; i++)
if(!stremp{title, titles(i])) {
display(i};
found = 1;
print€("\n");
}

if(!found) printf("Not Found\n");

/* Display catalog entry. */
void display(int i)

r
\

printf({~%s\n", titles[il]};
printf{"by %s\n", namesl[i]);
printf{ ("Published by %s\n", pubs [1]);

}

_CHAPTER 9

REVH:'W SKILLS CHECK

1. The getchar() function is defined by the ANSI standard and is
used to input characters from the keyboard. However, in most
implementations, it uses line-buffered 170, which makes it
impractical for interactive use. The getche() function is not
defined by the ANSI standard, but it is quite common and is
essentially an interactive version of getchar().

2. When scanf() is reading a string, it stops when it encounters
the first whitespace character.

3. #include <stdio.h>
int isprime(int i);

int main(void)
{

ANSWERS 565
REVIEW SKILLS CHECK Y

int i, count;

count = 0;
for(i=2; i<1001; i#++)
if(isprime(i)) {
printcf("%104", i);
count++;
if (count==4) {
printf("\n*);
count = 0;

}

return 0;

int isprime(int i)
{
AnE 4

for(j=2; j<=(i/2); j++)
if(!(i%3j)) return O;
return 1;

. #include <stdio.h>

int main(void)
(
double d;
char ch;
char str[80];

printf("Enter a double, a character, and a string\n");
scanf ("$1£f%c%20s", &d, &ch, str);
printf ("%f %c %s", d, ch, str);

return 0;

. #include <stdio.h>

int main(void)
{
char str([80];

506 TEACH YOURSELF

Y ¢
printf ("Enter leading digits followed by a string\n");
scanf ("%*[0-9])%s", str);
printf("%s*, str);
return 0;
}
_EXERCISES

1. #include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv([])

{
FILE *fp;
char ch;
/* see if filename is specified */
if(argc!=2) (
printf(*"File name missing.\n");
exit(1l);
}
if((fp = fopen(argv([l], "r"))==NULL) {
printf("Cannot open file.\n");
exit(1l);
}
while({ch=fgetc(fp)) != EOF) putchar(ch);
fclose(fp);
return 0;
}

2. #include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int count([26];:

int main(int argc, char *argv([])
{

ANSWERS 567
82 EXERCISES ¥

FILE *fp;
char ch;
int 1i;

/* see if file name is specified */
if(argc!=2) |
printf("File name missing.\n");

exit(1l);

)

if((fp = fopen(argv[l], "r"))==NULL) {
printf{"Cannot open file.\n");
exit(l);

}

while((ch=fgetc(fp)) !=EOF) {
ch = toupper(ch);
if(ch>='A’' && ch<='Z") count[ch-‘A"]++;

for(i=0; 1i<26; i++)
printf("%c occurred %d times\n", i+'A’, count[il]);

fclose (fp):

return 0;

3. /* Copy a file. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argvil)
{

FILE *from, *to;

char ch, watch;

/* see if correct number of command line argumente */
if (arge<3) {
printf ("Usage: copy <source> <destination>\n");
exit(1l);

/* open source file */

568 TEACH YOURSELF
el

Y =
if((from = fopen(argvii), ")y ==NULL) {
printf {"Cannot open source file.\n");
exit (1)

}

/7 open destination file *i

if((to = fopen(argv[2], "w"))==NULL) (
printf("Cannot open destination file.\n");
exit(1l);

if(argc==4 &g !stremp (argv(3], "watch”)) watch = 1;
else watch = 0;

+* copy the file */
while((ch=fgetc(from))l=EOF) {
fpute(ch, to);
if (watch) putchar (ch);
}
tclose (from) ;
fclose(to);

return Q;

E\’ERCISES

1. #include <stdio.h>
#include <stdlib.h»>

int main(int argc, char *argv(])
;
FILE *fp;

unsigned count;

/* see if file name is specified */
if(argec!=2) {
printf ("File name missing.\n");
exitir) i

if((fp = fopen(argv(1], "rb"))==NULL) {
printf ("Cannot open file.\n");

93 EXERCISES ¥
exit(1);
} —
count = 0;
while(!feof(fp)) {
fgetc (fp);

if (ferror(fp)) {
printf("File error.\n");
exit(1l);

}

count++;

printf("File has %u bytes", count-1);
fclose(fp);

return 0;
}

2. /* Exchange two files. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argec, char *argv[])
(

FILE *f1, *£f2, *temp;

char ch;

/* see if correct number of command line arguments */
if(argc!=3) {(

printf ("Usage: exchange<fl> <f2>\n");

exit(1l);

/* open first file */

if((fl = fopen{argv([l], "rb"))==NULL) (
printf (*Cannot open first file.\n");
exit(1);

/* open second file */

if((f2 = fopen(argv[2],"rb"))==NULL) {
printf ("Cannot open second file.\n");
exit(l);

570 TEACH YOURSELF
¥ &

/* open temporary file */

if((temp = fopen("temp.tmp", "wb"))==NULL) {
printf("Cannot cpen temporary file.\n");
exit(1);

/* copy fl to temp */
while(!feof (fl1)) (

ch = fgetc(fl);

if(!feof(f1l)) fputc(ch, temp):

fclose(£1);

/* open first file for output */

if((£1 = fopen(argv(l], "wb"))==NULL) {
printf("Cannot open first file.\n"};
exit(l);

/* copy £2 to fl */
while(!'feof(£2)) {

ch = fgetc(f2);

if(!feof (£2)) fputc(ch, f1);
}
fclose(£f2);
fclose(temp) ;

/* open second file for output *=/

if((f2 = fopen(argv[2]), "wb"))==NULL) {
printf("Cannot open second file.\n");
exit(l);

}

/* open temp file for input */

if((temp = fopen(“temp.tmp", *rb") ==NULL) {
printf("Cannot open temporary file.\n"};
exit(1l);

/* copy temp to f2 */
while(!feof (temp)) (
ch = fgetc(temp);
if(!feof(temp)) fputc(ch, £2);

ANSWERS 571
94 EXERCISES Y

fclose (£1):
fclose (£2):
fcloseltemp)

return 0;

EXERCISES

1. /* A simple computerized telephone book. */
#include <stdio.h>
#include ¢string.h>
#include <stdlib.h>

char names (1001 (401 ;
char numbers[lGD]t401;

int loc=0;

int menu (void) ;

void enter (void):
void load(void):
void savel(void)i
void find(veid);

int main(void)

{

int choice;

do {
choice = menul();
switchichoice) {
case 1: enter();
break;
case 2: find():
break;
case 3: savel):
break;
case 4: load():
}
} while{choice!=5);

return 0;

572 TEACH YOURSELF
Y ¢

/* Get menu choice. */
int menu(void)
{

int i;

char str[80]:

printf(*1. Enter names and numbers\n") ;
printf("2. Find numbers\n");

printf ("3, Save directory to disk\n");
printf(*4. Load directory from disk\n");
printf ("5, Quit\n");

do {
printf("Enter your choice: ");
gets(str) ;
i = atoi(str);
printf (*\n");
} while(i<l || i>5);
return i;

void enter (void)

{

for(;loc<100; loc++) {
if (loc<100) ¢
printf ("Enter name and phone number:\n") ;
gets(names[loc)) ;
if (!*names[loc]) break;
gets (numbers([loc])):

void find(void)
{
char name(80];
int i;

printf("Enter name: ");
gets (name) ;

for(i=0; i<100; i++)

e £
94 EXFRCISES v

if({!strcmp(name, names[i]})
printf("%s %s\n", names(i], numbers(i]);

void load(void)

{
FILE *fp;
if(({fp = fopen("phone®, "r"))==NULL} ({
printf("Cannot open file.\n"):
exit(l);
}
loc = 0; g
while(!feocf(fp)) (
fscanf (fp, "%s%s", names[loc], numbers[loc)) ;
loc++;
}
fclose(fp);
}

void save(void)
(

FILE *fp;:

int i:

if((fp = fopen("phone", "w")})==NULL) {
printf ("Cannot open file.\n");
exit(l);

For(i=0; i<loc; is+} (

fprintE(fp, "%s %s ", names[i]., numbers(i]);
}
fclose(fp):

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(int argc, char *argv([])
{

FILE *fp:

char .ch;

574 TEACH YOURSELF

v

c

char str(80];
int count;

/* see if correct number of common line arguments

if(argc!=2) {
printf ("Usage: display <file>\n");
exit(1l);

/* open the file */

if((fp = fopen(argv(1l], "r"))==NULL) ({
printf (*"Cannot open the file.\n");
exit (1) ;

count = 0;

while(!feof (fp)) {
fgets(str, 79, fp);
printE(*%s”, str)j;
count++;

if (count==23) (
printf ("More? (y/n) ");
gets(str);
if({toupper(*str)=='N") break;
count = 0;

fclose(fp);

return 0;

3. /* Copy a file. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argec, char *argvl(])

FILE *from, *to;
char str(128]);

/* see if correct number of commanc line arguments

*

L 4

ANSWERS BT75
94 EXERCISES Y

if (argc<3) {
printf("Usage: copy <source> <destination>\n");
exit(1l);

}

/* open source file */

if ((from = fopen(argv(1l]), *r®))==NULL)
printf("Cannot open source file.\n");
exit(l};

/* open destination file */

if((to = fopenlargv(2], "w"))==NULL) {
printf("Cannot open destination file.\n");
exit(1);

/* copy the file */
while(!feof(from)) (
fgets(str, 127, from):
if(ferror(from)) {
printf ("Error on-input.\n");

break:
}
if(!feof (from)) fputs(str, to);
if (ferror(to)) {
printf ("Error on output.\n");
break;

if(fclose(from)==EOF) ({
printf ("Error cleosing source file.\n");
exit(l);

if{fclose(to)==EOF) {
printf ("Error closing destination file.\n");
exit(1l);

return 0;

576 TEACH YOURSELF
Y ¢

Exenc:sss

1. #include <stdio.h>
#include <stdlib.h>

int main(void)

{
FIGE *fpl, *Epd;
double d;
b 14 o1, D B

if (ffpl # fopen{*values", "wb"))==NULL) (
intf (*Cannot open file.\n");

ekit(1);

y

if((fp2 = fopen("count", "wb"))==NULL) {
printf ("Cannot open file.\n"):
exit({l);

[§

d = 4.0

for(i=0; d!=0.0 && 1<32766; i++) {
printf("Enter a number (0 to quit): "});
scanf ("$1f*, &d);
fwrite(&d, sizeof d, 1, fpl):

fwrite(&i, sizeof i, 1, fp2):

fclose(fpl);
fclose(fp2);

return 0;

2. #include <stdio.h>
finclude <stdlib.h>

int main(void)

{
FILE *fpl, *Ep2Z;
double d4;

ine &;

ANSWERS 577
96 EXERCISES ¥

if((fpl = fopen("values", "rb"))==NULL) ({

printf("Cannot open file.\n");
exit(1l);

if ((fp2 = fopen("count®, "rb"))==NULL) {
printf("Cannot open file.\n"};
exit (1) ;
fread(&i, sizeof i, 1, fp2); /* get count */
for{; i>D; i--) {

fread(&d, sizeof d, 1, fpl);
printf(*"$f\n", d);

fclose(fpl);
fclose(fp2);

return 0;

_Exsn CISES

1. #include <stdic.h>
#include <stdlib.h>

int main(int argc, char *argv([])
(

FILE *fp;

char ch;

long 1;

if(argc!=2) {
printf ("You must specify the file.\n");

exit(1l);

}

if((fp = fopen(argv(l], *"rb"))== NULL) {
printf ("Cannot open file.\n");
exit(l);

578 TEACH YOURSELF

fseek(fp, 0, SEEK_END); /* find end of file */
1l = ftell(fp);

/* go back to the start of the file */
fseek(fp, 0, SEEK_SET);
for(; 1>=0; 1 =1 - 2L) {

ch = fgetc(fp);

putchar (ch) ;

fseek (fp, 1L, SEEK_CUR);

fclose(fp);

return 0;
)

2. #include <stdio.h>
#include <stdlib.h>

int main(int arge, char *argv[])
(3

FILE *fp;

unsigned char ch, val;

if (arge!=3) {
printf("Usage: find <filename> <value>");
exit (1)

if((fp = fopen(argv[1l], "rb"))==NULL) {
printf("Cannot open file.\n*);
exit(1);

val = atoi(argv[2]);
while(!feof(fp))
ch = fgetc(fp);

if(ch == val)
printf("Found value at %1ld\n-", frell (fp));

fclose(fp);

return 0;

Efnc:sw

1. #include <stdio.h>
$include <stdlib.h>
#include <ctype.h>

int main(void)

{

char fname(80];:
printf("Enter name of file to erase:)
gets (fname) ;
printf("Are you sure? (Y/N) "):
if(toupper(getchar())=='Y‘)
if (remove (fname))
printf('\nFile not found or write p

return 0;

EXERCISE

l.lf Copy using redirection.

‘Execute like this:
C>NAME < in > out

L

#include <stdio.h>

int main(void)

{
char ch;
while(!feof (stdin)) {

scanf ("%c", &ch);
if(1feof (stdin)) printf("%c”, ch);

98 EXEROSE YV

rotected.\n"};

580 TEACH YOURSELF

return 0;

Msrsny SKILLS CHECK

1. #include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(int argc, char *argv(])
{

FILE *fp;

char str[80];

/* see if file name is specified */
iffargec!=2) {

printf(“File name missing.\n");
exit(1);

} Ay

if{(fp = fopen({argv(1], "r")}==NULL) {(
printf (“Cannot open file.\n");
exit(1l};

while {!feof(fp)) {

- fgets(str, 79, fp);
if(!feof(fp)) printf("%s", str);
printf(".. .More? (y/n) =);
if(toupper(getchar()]=='N') break;
printf("\n");

fclose(fp) ;
return 0;
. /* Copy a file and convert to uppercase. */
#include <stdio.h>

#include <stdlib.h>
#include <ctype.h>

int main(int argc, char *argv([])
{

FILE *from, *to;

char ch;

/* see if correct number of command line arguments */
if (argc!=3) {
printf("Usage: copy <source> <destination>\n"):;
exit(1);

/* open source ' le */

if((from = fopen(argv(1l], "r"))==NULL) ({
printf(*Cannot open source file.\n");
exit (1) ;

/* open destination file */

if((to = fopen(argv[2], *w"))==NULL) {
printf ("Cannot open destination file.\n*);
exit(;);

}

/* copy the file */
while(!feof(from)) {
ch = fgetc(from);
. if(!feof(from)) fputc(toupper(ch), to);
}
fclose(from) ;
fclose(to);

return 0;

}

3. The fprintf() and fscanf() functions operate exactly like
printf() and scanf(), except that they work with files.

4. #include <stdio.h>
#include <stdlib.h>

int main(veoid)
{
FILE *fp;
int i, num;

582 TEACH YOURSELF

if((fp = fopen("rand-, "wb"))==NULL) {
printf (*Cannot open file.\n"):
exit(1);

}

for(i=0; i<100; i++) {

num = rand();

fwrite(&num, sizeof num, 1, fp);
}

fclose (fp) ;

return 0;
} i

5. #include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *fp;
int i, num;

if((fp = fopen("rand-", "rb"))==NULL) ¢{
printf (“Cannot open file.\n");
exit(1);

}

for(i=0; i<100; i++) {
fread (&num, sizeof num, 1, fp);
printf("%d\n", num);

}

fclose(fp);

return 0;

}

6. #include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *fp;
long i;

ANSWERS 583

CUMULATIVE SKILLS CHECK ¥

int num;

if((fp = fopen("rand", "rb*))==NULL)

printf (*Cannot open file.\n");
exit(1l);
}

printf (*Which number (0-99})2 ");
scanf("%1@", &i);

fseek (fp, i * sizeof(int), SEEK_SET) ;

fread(&num, sizeof num, 1, fp):
printf ("%d\n", num);

fclosel(fp);

return 0;
}

(

7. The "console” 1/0 functions are simply special cases of the

general file system.

CUMULA TIVE SKILLS CHECK

1.

/* An electronic card catalog. X
#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define MAX 100

int menu(void) ;

void display(int i);

void author_search(void);
void title_search(void);
void enter (void);

void save(void);

void load(void);

char names [MAX] [80]; /* author names */

char titles[MAX] [80); /* titles */
char pubs(MAX] (B0]): /* publisher */

int top = 0; /* last location used */

iy TEACH YOURSELF
" —_————

c

int main(veid)
{

int choice;
load(); /* read in catalog */
do {

choice = menu();
switch(choice} {

case 1l: enter(); /* enter books 4
break;

case 2: author_search(); /* search by author */
break;

case 3: title _search(); /* search by title */
break:;

case 4: save():

)
} while(choice!=5);

return 0;

}

/* Return a menu selection.’ */
menu (void)
{

ine 5

char str[80);

printf({"card Catalog:\n");
printf(" 1. Enter\n");

printf(" 2. Search by author\n");
printf(" 3. Search by Title\n"):
printf(". 4. Save catalog\n*®);
printf(" 5. Quit\n");
~do {
printf("Choose your selection: *¥3
gets(str);

i = atoi(str);
printf (*"\n");
} while{i<l || i>5);

return i;

/* Enter books into database.
void enter (void)

(

int i;

for(i=top; i<MAX; i++) {
printf("Enter author name
gets (names(i]);
if(!*names[i]) break;
printf(“Enter title:
gets(titles[i]);

")

ANSWERS 55
CUMULATIVE skiLLs creck Y

')

(ENTER to quit) ")z

printf ("Enter publisher: LR

gets(pubs(i]);
}

top = i;

/* Search by author. =*/
void author_search(void)
{

char name[80];

int i, found;

printf ("Name: ");
gets (name) ; .

found = 0;
for(i=0; i<top; i++)

if (!strcmp (name, names([i])) ¢

display(i);

found = 1;

printf(*\n");
} .-

if(!found) printf("Not Found\n") ;

)

/* Search by title. wi
void title_search(void)
{

char title([80];

int i, found;

printf("Title:
gets(title);

)

586 TEACH YOURSELF
Y ¢

found = 0;
for(i=0; i<top; i++)
if(!stremp(title, titles([i])) (
display(i);
found = 1;
princf("\n");
}
if(!'found) printf ("Not Found\n");

/* Display catalog entry. */

void display(int 1)

{
printf("%s\n*, titles([i]):
printf ("by %s\n", names(i]);
printf("Published by %s\n", pubs[il);

/* Load the catalog file. */
void load(veid)
{

FILE *fp;

if((fp = fopen(*catalog", "r"))==NULL) {
printf("Catalog file not on disk.\n");
return;

fread(&top, sizeof top, 1, fp); /* read count */
fread(names, sizeof names, 1, fp);

fread(titles, sizeof titles, 1, fp);

fread(pubs, sizeof pubs, 1, fp);

fclose(fp);
}

/* save the catalog file. */
void save(void)
{

FILE *fp:

if((fp = fopen("catalog", "w"))==NULL) ({
printf("Cannot open catalog file.\n");
exit(l);

CUMULATIVE skiLLs creck Y

fwrite(&top, sizeof top, 1, fp);
fwrite (names, sizeof names, 1, fp);

fwrite(titles, sizeof titles, 1, fp);
fwrite(pubs, sizeof pubs, 1, fp):

fclose(fp):
)

2. /* Copy a file and remove tabs. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv(])
{

FILE *from, *to;

char ch;

int tab, count;

/* see if correct number of command line arguments */
if (argc!=3). {
printf ("Usage: copy <source> <destination>\n");
exit(1l);

"/* open source file */)

if ((from = fopen(argv(l], "r"))==NULL) (
printf("Cannot open source file.\n");
exit (1) ;

/* open destination file */

if((to = fopen{argv(2], "w"))==NULL) (
printf ("Cannot open destination file.\n");
exit(1);

}

/* copy the file */
count = 0;
while(!feof (from)) {
ch = fgetc(from);
if(ch=="\t"} {
for(tab = count; tab<8; tab++)

588 TEACH YOURSELF

tputcl> 7, Bo)S
count = 0;
}

else (
if(!'fecf(from)) fputc(ch, to);
count++;
if (count==8 || ch==‘\n’) count = 0;
}

}
fclose(from) ;
fclose(to);

return: 0;

‘:HAPTER 10

_REVIEW SKILLS CHECK

1. /* Copy a file. */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv(])
{

FILE *from, *to:;

char ch;

/* see if correct number of command line arguments
if(argc!=3) (
printf("Usage: copy <source> <destination>\n");
exit(1l);

/* open source file */

if((from = fopen(argv[l], "rb"))==NULL) {
printf("Cannot open source file.\n"):
exit(1);

/* open destination file */
if((to = fopen(argv(2], "wb"))==NULL) (
printf(*"Cannot open destination file.\n");

ANSWERS 589
REVIBW SKILLS CHECK T

exit(1l);
}

/* copy the file */
while(!feof(from)) {
ch = fgetc(from);
if (ferror(from)) {
printf ("Error on input.\n*);
break;
}
if(!feof(from)) fputc(ch, to);
if (ferror(to)) (
printf ("Error on‘output.\n“);
break;

if(fclose(from)==EQOF) {
printf("Error closing source file.\n");
exit(1l);

if(fclose(tg)::EOFJ {
printf("Error closing destination file.\n"):;
exit(l);

‘return 0;
] L]

2. #include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *fp;

/* open file */

if((fp = fopen(*myfile", "w"))==NULL) {(
printf (“Cannot open file.\n");
exit(1l);

}

fprintf(fp, *%s %.2f %X %c", "this is a string”,
1230.23, Ox1FFF, ‘A’):

590 TEACH YOURSELF

v

[

}

fclose(fp);

return 0;

3. #include <stdio.h>
#include <stdlib.h>

int main(void)

{

}

FILE *fp;
int count(20], i;

/* open file */

if({fp = fopen("TEMP", "wb"))==NULL)
printf("Cannot open file.\n");
exit({l);

for(i=0; 1<20; i++) count(i] = i+1l;

fwrite(count, sizeof count, 1, fp);

fclose(fp);

return 0;

4. #include <stdio.h>
$include <stdlib.h> ”

int main(void)

(

FILE *fp;
int count([20], i;

/* open file */

if((fp = fopen("TEMP", "rb"))==NULL)
printf ("Cannot open file.\n");
exit(1);

fread(count, sizeof count, 1, fp);

(

{

ANSWERS 57
101 excroses Y

for(i=0; i<20; i++) printf("%d *, count(i]);
fclose(fp):

return 0;

}

5. stdin, stdout, and stderr are three streams that are opened
automatically when your C program begins executing. By
default they refer to the console, but in operating systems that
support I/0 redirection, they can be redirected to other devices.

6. The printf() and scanf() functions are part of the C file
system. They are simply special case functions that
automatically use stdin and stdout.

Exsn CISES

1. /* A simple computerized telephone book. */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAX 100

struct phone_type {
char name[40];
int areacode;
char number (9] ;

} phone [MAX];

int loc=0;

int menu(void) ;

void enter (void);
void load(void);
void save(void) ;
void find(void):

int main(void)
{
int choice;

592 TEACH YOURSELF
¥ ¢
do {
choice = menu{);
switch(choice) {
case 1: enter();
break;
case 2: find();
break;
case 3: savel();
break;
case 4: load();
3
} while(choice!=5);

return 0;

/* Get menu choice. */
menu (void)
{

int i;

char str(80];

printf{"l. Enter names and numbers\n");
printf(*2. Find numbers\n®*};

printf("3. Save directory to disk\n");
printf(*4. Load directory from disk\n");
printf("5. Quit\n");

do { «
printf ("Enter your choice: "};
gets{str);
i = atoi(str);
printf("\n");
'} while (i<l || i>5);
return i;

}

void enter (void)

{
char temp([B80];

for(;loc<100; loc++) {
if (loc<100) (

printf ("Enter name: ");

gets (phone(loc] .name) ;

101 EXERCSES Y

if(!*phone([loc] .name} break;
printf(*Enter area code: ");
gets(temp);

' phone[loc] .areacode = atoi(temp);
printf ("Enter number: ");
gets (phone [loc] .number) ;

}

void find(void)
{ -
char name(80);
int i;

printf ("Enter name: ");
gets (name) ;
if(!*name) return;
for(i=0; i<100; i++) §
if (!strcmp(name, phone(i).name))
printf(*%s (%d) %s\n*, phonel[i].name,
phone[i] .areacode, phone (i} .number) ;

}

void load(void)

{
JFILE *fp;

if{(fp = fopen("phone®, *"r"))==NULL) ({
printf ("Cannot open file.\n"};
exit(l);

loc = 0;

while(!feof (fp)) {
fscanf (fp, "%s%d%¥s", phone[loc].name,

&phone(loc] .areacode, phone[loc].number);

loc++;

}

fclose(fp);

}

void save(void)
{

594 TEACH YOURSELF

v ¢

}

FILE *fp;
ine {;

if((fp = fopen("phone", "w"))==NULL) {
printf ("Cannot open file.\n");
exit(1l);

for(i=0; i<loc; i++} {
fprintf(fp, "%s %d %s ", phone([i].name,
" phone[i].areacode, phone[i].number);

}
fclose (£fp);

2. The variable i is a member of structure s_type. Therefore, i*
cannot be used by itself. Instead, it must be accessed using s and
the dot operator, as shown here.

S.

i=10;

Exsnc:sss

1. No. Since p is a pointer to a structure, you must use the arrow
operator, not the dot operator, to access a member.

2. #include <stdio.h>
#include <time.h>

int main(void)

{

struct tm *systime, *gmt;
time_t t;

t = time(NULL);
systime = localtime(&t);

printf("Time is %.2d:%.2d:%.2d\n", systime->tm_hour,
systime->tm_min, systime->tm_sec);

gmt = gmtime(&t);

printf ("Coordinated Universal Time is %.2d:%.2d:%.2d\n",
gmt->tm_hour,
gmt->tm_min, gmt->tm_sec);

ANSWERS GO85
103 EXEROISES Y

printf("Date: %.2d/%.2d/%.2d4", systime->tm_mon+1,
systime->tm_mday, systime->tm_year);

return 0;

-_Exsn CISES

l. /* A simple computerized telephone book. */

. #include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAX 100

struct address {
char street[40];
char city(40];
char state(3];
char zip([12];

}:

struct phone_type (
char name(40];
int areacode;
.char number([9];
struct address addr;
} phone [MAX];

int loc=0;

int menu(void) ;

void enter(void);
void load(void);
void save(void);
void find(void);

int main(void)
{

int choice;

do {
choice = menu();

BOG TEACH YOURSELF

switch(choice) {
case 1: enter();
break;
case 2: find();
break;
case 3: save();
break;
case 4: load():
}
} while(choice!=5);

return 0;
}

/* Get menu choice. */
menu (void)
{

int 45

char str(80];

printf("l. Enter names and numbers\n”}) ;

printf("2. Find numbers\n");

printf(-3. Save directory to disk\n") ;-

printf(-4. Load directory from disk\n");
printf("5. Quit\n");

do {
printf ("Enter your choice: ");
gets(str);
i = atoi(str);
printf(*\n");

} while(i<l || i>5);:

return i;

}

void enter (void)
{
char temp[80];

for(;loc<100; loc++) {
if {loc<100) {
printf ("Enter name: ");
gets(phone(loc] .name) ;
if (!*phone(loc] .name) break;
printf (*Enter area code: ");

? ANSWERS 5Q7
103 exrcses ¥

gets (temp) ;

phone[loc) .areacode = atoi (temp);
printf ("Enter number: ");

gets (phone[loc] .number) ;

/* input address info */
printf("Enter street address: ");
gets (phone[loc] .addr.street) ;
printf ("Enter city: *);
gets({phone(loc].addr.city);
printf ("Enter State: *);
gets(phone[loc] .addr.state) ;
printf "Enter zip code: ");

gets (gt nelloc].addr.zip) ;

void find(void)
{
char name(80];
int i;

printf("Enter name: ")};
gets (name) ;
if (! *name) return:;

for(i=0; i<100; i++)
if(!strcmp (name, phone(i] .name)) {
printf(*%s (%d) %s\n", phone[i].name,
phone [i] .areacode, phone[i].number) ;
printf(*%s\n%s %s %s\n", phone(i).addr.street,
phone[i] .addr.city, phone[i].addr.state,
phone[i] .addr.zip);

void load(void)
{
FILE *fp;

if((fp = fopen("phone”, "rb"))==NULL) (
printf(~Cannot open file.\n");
exit(1);

8598 TEACH YOURSELF

loc = 0;

while(!feof (fp)) (
fread (&phone[loc], sizeof phone[loc],
loc++;

}

fclose(fp);

void save(void)

{

FILE *fp;
int i;

if((fp = fopen("phone®, *"wb"))==NULL) {
printf (*Cannot open file.\n");
exit(l):

for{i=0; i<loc; i++) (
fwrite(&phone([i], sizeof phone([i], 1,

}

fclose(fp);

Exen CISES

1. #include <stdio.h>

int main(void)

{

struct b_type (
int a: 3;
int: b: 3;
int e: 2;

} bvar;

bvar.a = -1;
bvar.b = 3;
bvar.c = 1;

1, fp);

fp);

printf(*%d %4 %d", bvar.a, bvar.b, bvar.c);

return 0;

Esnc:sss

1. #include <stdio.h>
#include <stdlib.h>

union u_type {
double d;
unsigned char c[B]:

double uread(FILE *£fp);
void uwrite(double num, FILE *fp);

int main(void)
{
FILE *fp:
double d;

if((fp = fopen("myfile~, "wb+")) ==NULL)
printf (*Cannot open file.\n");
exit(1l);

}

uwrite(100.23, fp):
d = uread(fp);
printf (*%1f", d4);

» return 0;

}

void uwrite (double num, FILE *fp)
{

int 1i;

union u_type var;

var.d = num;
for (i=0; i<8; i++) fputc(var.cl(i], fp):
}

double uread(FILE *fp)
{

int i;

union u_type var;

105 EXERCISES Y

BG00 TEACH YOURSELF
Y ¢

rewind (fp);
for(i=0; i<8; i++) var.cli] = fgetc(fp);

return var.d;
)

2. #include <stdio.h>

int main(void)
{
union t_type {
long 1;
iFE
} uvar;

uvar.l = 0L; /* clear 1 */
uvar.i 100;

printf ("%14", uvar.l);

return 0;

MA STERY SKILLS CHECK

1. A structure is a named group of related variables. A union
defines a memory location shared by two or more variables of
different types.

2. struct s_type {
char ch;
float d;
int: qs
char str(80];
double balance;
) s_var;

3. Because p is a pointer to a structure, you must use the arrow
operator to reference an element, not the dot operator.
4. #include <stdio.h>

#include <stdlib.h>

struct s_type {
char name([40];

MASTERY SKILLS CHECK
char phone[l14];
int hours;
double wage;
} emp[10];

int main(void)
{
FILE *fp;
int i;
char temp([80];

if ((fp = fopen(®"emp*, "wb"))==NULL) {
printf (*Cannot open EMP file.\n");
exic(l);

for(i=0; i<10; i++) (
printf ("Enter name: ");
gets (emp[i] .name);
printf ("Enter telephone number: ");
gets (emp[i]) .phone) ;
printf ("Enter hours worked: ");
gets (temp) ; 3
emp[i] .hours = atoi(temp);
printf (*Enter hourly wage: "):
gets (temp) ;
emp[i] .wage = atof (temp);

fwrite (emp, sizeof emp, 1, fp);
fclose(fp):

return 0;

}

5. #include <stdio.h>
#include <stdlib.h>

struct s_type {
char name(40];
char phone(14];
int hours;
double wage;

} emp[10];

int main(void)

{
FILE *fp;
int i;
if((fp = fopen("emp", "rb"))==NULL) {
printf ("Cannot open EMP file.\n");
exit(l);
}
fread(emp, sizeof emp, 1, fp):
for(i=0; i<10; i++) {
printf("%s %s\n", emp[i].name, emp(i] .phone) ;
printf("%d %f\n\n", emp[i]} .hoéurs, empl[i].wage);
}
fclosel(fp);
return 0;
}

6. A bit-field is a structure member that specifies its length in bits.

7. #include <stdio.h> 5 -

int main(void)
{
union u_type (
short int i;
unsigned char c[2];
} uvar;

uvar.i = 99;

printf ("High order byte: $u\n", uvar.c(l]):
printf("Low order byte: %u\n”, uvar.c[0]);

return 0;

‘ :UMULA TIVE SKILLS

1. #include <stdio.h>

struct s_type {
int i;
char ch;
double 4d;

} varl, var2;

void struct_swap(struct s_type *i,

int main(void)
{

100;
99;
varl. ‘ra’;
var2.ch = 'b’;
varl.d = 1.0
var2z.d = 2.0

varl.i
var2.i =

printf("varl: %d %c %f\n*,
printf("var2: %d %c %f\n*,
struct_swap (&varl,

&var2) ;

printf(*After swap:\n");
* printf(*varl: %d %c %f\n",

CUMULATIVE SKILLS CHECK ¥
CHECK

struct s_type *3j):

varl.i, varl.ch, varl.d);

var2.i, var2.ch, var2.d);

varl.i, varl.ch, varl.d);

printf(*var2: %d %c %f", var2.i, var2.ch, var2.d);

return 0;

void struct_swap(struct s_type *i, struct s_type *j)

{
struct s_type temp;
temp = *i;
= #
*j = temp;
}

2. /* Copy a file. */
#include <stdio.h>

B04& TEACH YOURSELF

¥ @
#include <stdlib.h>

int main(int argc, char *argv(])

{

FILE *from, *to;

union u_type {
int i;
char ch;

} uvar;

/* see if correct number of command line arguments */

if (arge!=3) {
printf("Usage: copy <source> <destination>\n");
exit (1);

}

/* open source file */

if((from = fopen(argv(l], "rb"))==NULL) {
printf ("Cannot open source file.\n");
exit(1l);

}

/* open destination file */

if((to = fopen(argv[2], "wb"))==NULL) (
printf ("Cannot open destination file.\n"});
exit(1l);

}

/* copy the file */

for(::) f
uvar.i = fgetc(from);
if (uvar.i==EOF) break;
fputc (uvar.ch, to);

}

fclose(from) ;

fclose(to);

return 0;

}

3. You cannot use a structure as an argument to scanf().
However, you can use a structure element as an argument, as
shown here.

scanf ("%d", &var.a);

REVIEW SKILLS CHECK
4. #include <string.h>
ginclude <stdio.h>

struct s_type |
char str(B0];
} var;

void f(struct s_type i};

int main(veid)

{
strepy(var.str, "this is original string”);
f(var) ;
printf{"%s", var.str);

return 0;

}

void f(struct s_type i)

{
strcpy(i.str, "new string"};
printf{*%¥s\n", i.str);

cuﬁprsn 11

REWEW SKILLS CHECK

1. #include <stdio.h>

struct num_type {
int i;
int sqr:
int cube;

} nums[10];

int main(void)
{

int i;

for(i=1; i<l1l; i++) {
nums [i-1].1 = i;

nums[i-1].sqr = i*i;

nums[i-1].cube = i*i*i;

for(i=0; i<10; i++) (
printf("%d *, nums(i].i);
printf("%d ", nums([i) .sqr);
printf("%d\n", nums(i].cube);

return 0;
}

2. #include <stdio.h>

union i_to_c {

char c[2];
short int i;
} dc;

int main(void)
{
printf ("Enter an integer *);
scanf ("%hd", &ic.i);
printf("Character representation of each byte: %c %c*",
ic.ec[0], ic.c(1]);

return 0;
}

3. The fragment displays 8, the size of the largest element of
the union.

4. To access a structure member when actually using a structure
variable, you must use the dot operator. The arrow operator is
used when accessing a member using a pointer to a structure.

5. A bit-field is a structure element whose size is specified in bits.

_Exsnc:sss

1. The best variables to make into register types are k and m,
because they are accessed most frequently.

112 EXERCises Y
2. #include <stdio.h>
void sum_it(int value);

int main(void)
{
sum_it(10);
sum_it (20);
sum_it (30);
sum_it (40);

return 0;

)

void sum_it(int value)
{
static int sum=0;

sum = sum + value;
printf(*Current value: %d\n", sum);

}

4. Yr - rannot obtain the address of a register variable.

Exsn CISES

1. #include <stdio.h>
const double version = 6.01;
int main(void)
{

printf ("Version %.2f", version);

return 0;

}
2. #include <stdio.h>
char *mystrcpy(char *to, const char *from);

int main(wveid)

{

B08 TEACH YOURSELF

char *p, str([80];
p = mystrcﬁy(str, *testing");
printf("%s %s", p, str);

return 0;

}
char *mystrcpy(char *to, const char *from)
{

char *temp;

temp = to;

while(*from) *to++ = *from++;
to = ‘\0’ ; / null terminator */

return temp;

_Efnc:s.ss

2. enum money {penny, nickel, gquarter, half_dollar, dollar}:

3. No, you cannot output an enumeration constant as a string as is
attempted in the printf() statement.

_Exsnc:sss

1. #include <stdio.h>

typedef unsigned long UL;
int main(void)
(

UL count;

count = 312323;

printf(*%lu", count);

)

ANSWERS G0G
115 exercises Y

return 0;

2. The typedef statement is out of order. The correct form of
typedef is

typedef oldname newname;

_Exsnc:sss

. #include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv(])

({

FILE *in, *out;
unsigned char ch;

if{argc!=3) ¢
printf (“Usage: cede <in> <out>\n");
exit(1);

if((in = fopen{argv(l], "rb"))==NULL) {
printf("Cannot open input file.\n"}:

exitc(l);

if((out = fopen(argv[2], "wb"))==NULL) {
printf("Cannot open output file.\n");
exit(l);

while(!feof(in)) {
ch = fgetc(in);
if(!feof (in)) fputc(-ch, out);

fclose(in);
fclose(out);

return 0;

e

610 TEACH YOURSELF
¥ ¢

2. #include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argvl[])
{

FILE *in, *out;

unsigned char ch;

if(argc!=4) {
printf(*Usage: code <in> <out> <key>\n"):
exit(l);

if((in = fopen(argv([l], "rb"))==NULL) {
printf{"Cannot open input file.\n");
exit(l);

if{({out = fopenlargv[2], "wb"))==NULL) ({
printf {"Cannot open output file.\n");
exit(1l};

while(!feof(in)) {
ch = fgetc(in);
ch = *argv{3]) 't ¢hy
if (!feof{in)) fputc(ch, out);

fclosa(in);
fclose(out);

return 0;
}
3. a. 0000 0001
b. 11111111
& 1111 1161

4. char ch;

ANSWERS 6§71
116 EXERCISES Y

/* To zerc high order bit, AND with 127, which
in binary is 0111 1111. This causes the high-
order bit to be zeroed and all other bits left
untouched.

*f

ch = ch & 127;

Emc:sfs

1. #incluje <stdio.h>

int main{void)
{
int 1. 3. ks

printf("Enter a number: ");

scanf ("%d", &i);

3 = A s A

k= 1i> 1;

printf (*%d doubled: %d\n*, i, j);:
printf(*3d halved: %d", i, k);

return 0;

}
2. #include <stdio.h>
void rotate(unsigned char *c);

int main{void)

{
unsigned char ch;
ot ol
ch = 1;
for(i=N; i<16; i++) {

512 TEACH YOURSELF

Y ¢

return @,

void rotate(unsigned char *c)

{

union {
unsigned char ch(2);
unsigned u;

E robs

rot.u = 0; /* clear 16 bits */
rot.eh[Q] = g

/* shift integer left +/
rot.u = rot.u << 1;

/* See if a bit got shifted into c[1].
If so, OR it back onto the other end. */
if(rot.ch[1l}) rot.ch(0) = rot.ch(0] | 1;

*e = .rot.chl[d] ;

Exsnc:sss

1. #include <stdio.h>

int main(void)
{

}

int i, j, answer:

printf("Enter two integers: ");
scanf (*%d%d”, &i, &j);

answer = j ? i/j: 0O;
printf(*%d", answer);

return 0;

2. count = a>b ? 100 : O;

Exsnc:srs
2. X &= ¥
3. #include <stdic.

int main(void)

{
int i
fordi=1T7; ix=1000; 3+=17
printf(*%d\n", 1i);
return 0;
}
EXERCISES

1. #include <stdio.h>

int main(void)

{
int i, 3, k:
for(i=0, j=-50, k=i+j; i<100; i++,
printf("k = sd\n", k):
return 0;
}
2. 3

_MASTERY SKILLS CHECK

ANSWERS B
MASTERY SKILLS CHECK

1. The register specifier causes the C compiler to provide the
fastest access possible for the variable it precedes.

13
¥

2. The const specifier tells the C compiler that no statement in the
program may modify a variable declared as const. Also, a const
pointer parameter may not be used to modify the object pointed
to by the pointer. The volatile specifier tells the compiler that

614 TEACH YOURSELF
' R ———
c
any variable it precedes may have its value changed in ways not
explicitly specified by the program.

3. #include <stdio.h>

int main(void)
{

register int i, sum;

sum = 0;
for(i=1; i<101; i++)
sum = sum + i;

printf{*%d", sum);

return 0;
}

4. Yes, the statement is valid. It creates another name for the tpe
long double.

5. #include <stdio.h>
#include <conio.h>

int main(void)

{
char chl, ch2;
char mask, 1i;

printf ("Enter two characters: ");
chl = getchel();

ch2 getche();

printEi*\n") ;

mask = 1;
for(i=0; 1<8; i++) {
if((mask & chl) && (mask & ch2))
printf("bits %d the same\n", i];:
mask <<= 1;

return 0;
}

6. The << and >> are the left and right shift operators,
respectively.

ANSWERS 615
CUMULATIVE SKILLS CHECK Y

7. ¢ += 10;
8. count = done ? 0 : 100;

9. An enumeration is a list of named integer constants. Here is one
that enumerates the planets.

enum planets {Mercury, Venus, Earth, Mars, Jupiter,
Saturn, Neptune, Uranus, Pluto}

‘:UMU’LA TIVE SKILLS CHECK

1. #include <stdio.h>
void show_binary(unsigned u);
int main{(void)
(

unsigned char ch, tl, t2;

ch = 100;
show_binary(ch);

tl = ch;
t2 = ch;

Ll <<= 4;
t2 >>= 4;

ch = £1 | €2;
show_binary(ch);
return 0;
void show_binary(unsigned u)
{
unsigned n;
for(n=128; n>0; n=n/2)

iffd & n) prinEE(Y *)s
else printf("0 ");

G116 TEACH YOURSELF
¥ g

printE{™\n*):
2. #include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])

FILE *in;
unsigned char ch;

Lf(arge!=2) {
printf("Usage: code <in>\n"):

exit{l});

}

if((in = fopen(argv(l], "rb"))==NULL) {
printf("Cannot open input file.\n");
exit(1l);

while(!feof(in)) (
ch = fgetc{in);
if{!feof(in)) putchar(~ch);

fclose(in);
return 0;

3. Yes, any type of variable can be specified using register.
However, on some types, it may have no effect.

4. /* A simple computerized telephone book. */
#include <stdio.h>

#include <string.h>
#include <stdlib.h>

#define MAX 100
struct address (

char street[40];
char city([40];

I

ANSWERS §17
rsiiming
CUMULATIVE SKILLS CHECK = ¥

char state[3];
char zip(12];

struct phone_type {

char name[40];

int areacode;

char number[9];
struct address addr;
phone [MAX) ;

int loc =0;

int menu(void) ;

void enter(void) ;
void load(void);
void save(void) ;
void find(void);

int main(void)

{

)

register int choice;

do {
choice = menu();
switch(choice) {
case 1: enter();
break;
case 2: find();
break; ‘
case 3: save();
break;
case 4: load():
}
} while(choice!=5);

return 0;

/* Get menu choice. */
menu (void)

{

register int i;
char str(80];

618 TEACH YOURSELF

v

c

PEInEE(" 1
printfi=2.
printf (3 .
printf("4.
printfi{*s;

do {(

Enter names and numbers \n");
Find numbers\n");

Save directory to disk\n");
Load directory from disk\n");
Quit\n®);

printf("Enter your choice: ");
gets(str);
i = atoi(str);
printf("\n");
} while(i<l || i>5);

return 1i;

void enter(void)

(

char temp(80];

for(; loc<100: loc++) (

if(loc<100) {
printf("Enter name: ");
gets (phone[loc] .name) ;
if(!*phone(loc] .name) break;
printf("Enter area code: ");
gets(temp) ;
phone[loc) .areacode = atoi(temp);
printf(*"Enter number: *);
gets (phone[loc] .number) ;

/* input address info */

printf (“Enter street address: *);
gets(phone[loc].addr.street) ;
printf ("Enter city: ");
gets(phone[loc]).addr.city) ;
printf ("Enter State: ");

gets (phone([loc] .addr.state) ;
printf ("Enter zip code: ");

gets (phone(loc] .addr.zip):;

void find(void)

(

ANSWERS 'i]!'
CUMULATIVE SKiLLS CHECK
char name([80);
register int 1i;

printf ("Enter name: ");
gets (name) ;
if(!*name) return;

for(i=0; i<100; i++)
if(!strcmp{name, phoneli).name)) {
printf("%s (%d) %s\n", phone(i].name,
phone[i] .areacode, phone(i].number) ;
printf{"%s\n%s %s %s\n", phone(i].addr.street,
phone(i] .addr.city, phone[i].addr.state,
phone(i] .addr.zip);

void load{void)

(
FILE *fp;

if((fp = fopen(*phone", "rb"))==NULL) {
printf ("Cannot open file.\n");
exit(1);

loc = 0;

‘while(!feof (fp)) {
fread (&phone[loc], sizeof phone[loc], 1, fp):
loc++;

}

fclose(fp):;

void save(void)

(
FILE *fp;
register int i;

if((fp = fopen(*phone", "wb"))==NULL) (
printf ("Cannot copen file.\n");
exit(l);

}

for(i=0; i<loc; i++) (

620 TEACH YOURSELF
Y ¢

fwrite(&phone(i], sizeof phone[i], 1, fp);
}
fclose(fp);

cHAPTER 12

_REVIEW SKILLS CHECK

—

1. Modifying a variable with register causes the compiler to store
the variable in such a way that access to it is as fast as possible.
For integer and character types, this typically means storing it
in a register of the CPU,

2. Because i is declared as const the function cannot modifv any
object pointed to by it.

3. a. 1100 0100
b, 1111 1111
c. 0011 1011
4. #include <stdio.h>

int main(void)

{
Ant: A

printf("Enter a number: ");
scanf("%d", &i);

printf ("Doubled: %d\n", i << 1});
printf ("Halved: %d\n", i >> 1);

return 0;

max = a<b ? 100 : 0;

ANSWERS §21
122 Exercises ¥

6. The extern modifier is principally used to inform the compiler

about global variables defined in a different file. Placing extern
in front of a variable's declaration tells the compiler that the
variable is defined elsewhere, but allows the current file to
refer to it.

_Exsnc:sss

b

#define RANGE(i, min, max) ((i)<(min)) || ((i)>(max)) ? 1L : O

2. #include <stdio.h>

#define ABS(i) (i)<0 7 -(i) : i
int main(void)
{
printf("%d %d4d", ABS(-1), ABS(1));

return 0;

Exsnc:szs‘

L.

#include <stdio.h>

#define INT 0
#define FLOAT 1
#define PWR_TYPE INT.

int main(void)
(
int e;
#if PWR_TYPE==FLOAT
double base, result:
#elif PWR_TYPE==INT
int base, result;
#endif i

#if PWR_TYPE==FLOAT
printf ("Enter flecating point base: °);
scanf ("%L.", &base);

622 TEACH YOURSELF
Y ¢

#elif PWR_TYPE==INT
printf("Enter integer base: *):
scanf ("%d", &base);
#endif
printf ("Enter integer exponent (greater than 0): ");
scanf ("%d", &e);

result = 1;
for(; e; e--)
result = result * base;
#1f PWR_TYPE==FLOAT
printf("Result: %f", result);
#elif PWR_TYPE==INT
printf ("Result: %d", result);
#endif
return 0;

2. No. You cannot use an expression like !MIKE with #ifdef. Here
are two possible solutions,

#ifndef MIKE

$endif
Y op: ®p

#if 'defined MIKE

#endif

Exmc;sss o

2. The program displ'ays one two.

ANSWERS G223
126 EXeRCSES Y

_Exr.nc:sss

2. #include <stdio.h>
#include <stdlib.h>

int comp(const void *i, const void *j);

int main(void)

{
int sort([100), i, key:
int *p;

for(i=0; 1<100; i++)
sort[i] = rand();

gsort(sort, 100, sizeof(int), comp);

for(i=0; i<100; i++)
printf ("%d\n", sort[i}};

printf ("Enter number to find: ");

scanf ("%d", &key):

p = bsearch(&key, sort, 100, sizeof(int), comp):;
if(p) printf("Number is in array.\n");

else printf{*Number not found.\n");

return 0;

int comp(const void *i, const void *j)
(
. return *(int*)i - *(int*)j;
)
3. #include <stdio.h>

int sum(int a, int b);

int subtract(int a, int b);

int mul{int a, imt b);

int div(int a, int b);

int modulus(int a, int b); -

/* initialize the pointer array */
int (*p[5]) (int x, int y) =

G246 TEACH YOURSELF
Y ¢

sum, subtract, mul, div, modulus
} ¢

int main(void)

(
int result;
int i, j, op;
printf ("Enter two numbers: ");
scanf ("%d%d", &i, &j);
printf("0: add, 1: subtract, 2: multiply, 3: divide, "):
printf("4: modulus\n");
do {
printf("Enter number of operation: ");
scanf("%d", &op):
} while(op<0 || op>4);
result = (*plopl) (i; j}):
printf(*%d*, result);
return 0;
}

int sum{int a, int b)
{
return a+b;

int subtract(int a, int b)
{

return a-b;

int mul(int a, int b)
{
return a*b;

int div(int a, int b}
{
if(b) return a/b;
else return 0;

AN&NHE lﬂzs

127 EXERCISES

int modulus(int a, int b)
{

if(b) return a%b;

else return 0;

Exenc:sss

2.

3.

#include <stdioc.h>
#include <stdlib.h>

int main(void)
{
IEE**p, i
p = malloc(1l0*sizeof (int));
if(!p) |
pfintf('Allocation Exrar®);

exit(l);
}

for(i=0; i<10; i++) pl[i] = i+1;
for(i=0; i<10; i++) printf(=%d ", *(p+i));
"free(p);

~return 0;

}

The statement

*p = malloc(10);

_should be

- P ='malloc(10);

'Also the value returned by malloc() is not verified as a

valid pointer.

626 TEACH YOURSELF

v

c

_MASTERY SKILLS CHECK

1=

When you specify the file name within angle brackets, the
compiler scarches for the file in an implementation-defined
manner. When vou enclose the file name within double quotes,
the compiler first tries some other implementation-defined
manner to find the file. If that fails, it restarts the search as if
you had enclosed the file name within angle brackets. '

#ifdef DEBUG

iE()(3%2)) {
printf(*j = sd\n", 1)
S

wrincf(5 = Sd\n%, J);

#endif

Teo undefine a macro name use #undef.

FILL s a predefined macro that contains the name of the
source tile currently being compiled.

Tl # operator makes the argument it precedes into a quoted
sty Uhe ## operator concatenates two arguments,

rdio . k>

o N B ot ok raid i, const wegid *3);

ANSWERS G27
CUMULATIVE SKILLS CHECK ¥

return 0;
}

int comp(const void *i, const veoid *j)

{

return *(char*)i - *(char*)j;

}

8. #include <stdio.h>
#include <stdlib.h>

int main(void) .
{
double *p;

p = malloc(sizeof (double));
if(lp) {
printf("Allocation Error");
exit(1l);

s 89005
printf ("S$£%,. *p)r
free(p);

return 0;

}

CUMULA TIVE SKILLS CHECK

1. /* An electronic card catalog. */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAX 100

int menu(void);

void display(int 1i);

void author_search(void); -
void title_search(void);
void enter(void) ;

void save(void);

void load(void) ;

628 TEACH YOURSELF
¥ ¢

struct catalog (

char name[80]; /* author name */

char title(80]; Pkl =t o2

char pub{80]; /* publisher */

unsigned date; /* date of publication */

unsigned char ed; /* edition */
} *cat(MAX]; /* notice that this declares a pointer array */

int top = 0; /* last location used */

int main(void)
{
int choice;

load(); /* read in catalog */

do {
choice = menu();
switch(choice) (
case 1: enter(); /* enter books */
break;
case 2: author_search(); /* search by author */
break;
case 3: title_search(); /* search by title */
break;
case 4: savel);
}

} while(choice!=5);

return 0;

/* Return a menu selection., */
int menu(void)
{

int i;

char str(80]:

printf("Card Catalog:\n");
printf(" 1. Enter\n");

printf(" 2. Search by Author\n");
printf(" 3. Search by Title\n");
printf(* 4. Save catalog\n");
printf(* 5. Quit\n");

. ANSWERS §29

CUMULATIVE SKILLS CHECK
do {
printf (“Choose your selection: ");
gets(str);

i = atoi(str);
printf ("\n");
} while(i<l || i>5);

return i;

/* Enter books into database. */
void enter (void)
{

int 1i;

char temp(80];

for(i=top; i<MAX; i++){
/* allocate memory for book info */
cat[i] = malloc(sizeof(struct catalog));
if(!tcat{i]) (
printf ("Qut of memory.\n");
return;

printf ("Enter author name (ENTER to quit): ");

gets{cat[i]->name) ;
if(!*cat[i)->name) break;
printf(*Enter title: ");
gets(cat[i)->title);
printf ("Enter publisher: ");
gets (cat[i]->pub);
printf{"Enter copyright date: ");
gets(temp) ;
cat[i]->date = (unsigned) atoi(temp);
printf (“Enter edition: ");
gets(temp) ;
cat[i)->ed = {unsigned char) atoi(temp);
}
top = i;

/* Search by author. */
void author_search(void)
{

v

630 TEACH YOURSELF

v

C

char name([80];
int i, found:

printf (*Name: ");
gets (name) ;
found = 0;
for(i=0; i<top; i++)
if (!stremp(name, cat[i]->name)) (
display(i);
found = 1;
printfi~in~);

if(!found) printf ("Not Found\n");

/* Search by title. */
void title_search(void)

{

char title[80];
int i, found;

printf("Title: ");
gets(title);

found = 0;
for(i=0; i<top; i++)
if{!strcmp(title, cat[i]->title)) {

display(i);
found = 1;
printf("\n");

}

if (! found) printf("Not Found\n");

/* Display catalog entry. */
void display({int i)

{

printf i~¥shnr, caklil-statle) ;

printf("by %s\n", cat[i]->name);

printf("Published by %s\n-", cat[i]l->pub);

printf("Copyright: %u, %u edition\n", cat[i]->date,
cat[i]->ed);

answers 631
CUMULATIVE SKILLS CHECK ¥

/* Load the catalog file. */
void load(void)

{

FILE *fp;

int i

if((fp = fopen{®catalog", "rb"))==NULL) {
printf("Catalog file not on disk.\n");
return;

}

if (fread(&top, sizeof top, 1, fp) != 1) { /* read count */
printf ("Error reading count.\n"}:
exit (1) ;

for(i=0; i<top; i++) (

cat[i] = malloc(sizeof (struct cataleg));

LEfecab i) {
printf(*Out of memory.\n"):
top = i-1;
break;

}

if(fread(cat[i], sizeof(struct catalog), 1., fp)!= 1} {
printf("Error reading catalog data.\n"):
exic(l);

fclose(fp);

/* Save the catalog file. */
void save (void)
{

FILE *fp;

int i

if((fp = fopen("catalog”, "wb"))==NULL) (
printf("Cannot open catalog fileNn*)
exit(1l);

632 TEACH YOURSELF

v

C
if(fwrite(&top, sizeof top, 1, fp) !=1) { /* write count *
printf("Error writing count.\n");
exit(l);

for(i=0; i<top; i++)
if (fwrite(cat(i], sizeof(struct cataleg), 1. Ep)i= 1)
printf("Error writing catalog data.\n"):
exit(l);

fclose(fp);

2. #include <stdio.h»

#define CODE_IT(ch) -ch

int main{void)
(
Int ichy
printf("Enter a character: ");
ch = getchar{) ;
printf("%c coded is %c", ch, CODE IT(ch}):

return 0;

