
chapter objcii.res

9.1 Unders'.nd streams

9.2 Master file-systeip basics

93 Understand fear() an'i (error()

9.4 learn some higher-level text functions

9.5 Learn to read and write brnac) data

9.6 Understand random acccss

9.7 Learn about various file-systeu lunctions

9.8 Learn about the standard sucariis

257

17

258 TFAC14 VOIIRStU

V

I t

Ali

I ii'I. I (tInes not dc:tine aii' keywords tlldtl)(:rlornl
I 0, the (1 standard library :Ont;iiflS a very rich sit of

 0 tun(:tR)lls. Asvnii will see in this chapter, ('sapproichi
In I	 I:) Is 'liii 1:111,	 >1)wt1lt1l ,liI(l tICXII)le,

Note

Most C (ornj)i/ers Supply two complete sets of file I/O functions. One is called
i/in ANSI li/n system (sometimes called the buffered file system). This file
.cysO?ni is defined by the ANSI C standard The second file system is based on
the oiigtna/ UNIX operating environment and is called the UNIX-like file
system (sometimes called the unbuffered file system). This file system is not
(101/ned by the ANSI C standard. The ANSI standard only defines one file
system because the two file systems are redundant. Further, not all
envuoninents may be able to adapt to the UNIX-/the system. For these
ieason,s this book only discusses the ANSI file system. For a discussion of the
UNIX like file system, see my book C: The Complete Reference ('Berkeley.
GA. Osbornc'/McGraw-lIi/I,).

Review
Skills Check

\ UI 511001(1 be able to perforni these xercises
,iiitl ,iiis'''ri thiisi (ItleStiolis:

Whit is the difference between gct(:har() and gcchc()?
2, (riVr nile reason WilY you probably won't use scaiif()'s %8

01) 10)1) to rcail strings from the keyboard.

4 Write a program that prints a four-column table of the prime
no ube us hetwrc 1 2 and 1000. Make sore that the (:ohun)nS
ire

'I Wriu' a progrmii that inputs it 	 a character , and a string
a hi'iaer. th;mn 20 i:h,irac.ters Redisplay the values to confirm

Ii-If ,)o' W('ri' input col-iii liv.

'. \\ ri I	 .1 prcn.r,1 in 1 fiat o'.icls and discards le ;m(h j ii y hins a rid I hen
.1 SIMI1	 I 11111	 ti' •ii ,11154'i II I U'ItI ,.p.i'It mv

-	 IJNDERTAND STREAMS

(Iuri' wi: u.aii hcgiii our discussion of file I !Q , V00
must ulicl:rtnRS

fwt) ver y ituportailt concepts: ttl(ffl and the (th. 'l'he C I '0	 ,'
a consistent intertat:c (ii time f)rograiflmcr, jfl(1e1)eIldFllt of fli.

actual i/U ticvit:c being used. '1'o accomplish this. C provides a level ci
abstraction between the prt)gritnmler and the hardware This ihsrrctini
is 4LedJl stream. The actual ticvii(providitig 1 /() is cal led a file.

a file. As C dcliiit's the ic'rnl file,
it all relci to a disk file, tim screen. the keyboard nietnoly. a poFi, 1

We on lape, and various other t y pes iii I/o devices. The mcst (0i1)I1IU

form of tile is, of course, the disk file. Although files (hi hr in tot in and
t ipainlities all streams arc time same. The advaiitagc to this appm,ich
is that to you, the piograinnUr, one hardware device will 1(111k nih

like any other. llw stream au(onlatiCallv ii,iimdlcs tll4 dilfereticc.
A stream is linked to a file using au open operrlum. A strea mu is

disassociated from a Ijie using a close iqncoliwi.
'I'htere are two types of streams: text iii&l bitiarv. A (CXI .'1(i ((till

ont.lills ASCII characters. Win/fl a text stream is bring used, soiiw

t j iaiac:ter translations may take plate For cXilhill)l((%'IieIi t1l(iiewh

character is output, it is usuall y (:onverte(l into a carriage rrtll ii,
pair. For this mason, there ma y not he a jimme-to-olle. corrcsl11l1iefl* .e
between what is scilt to the stream and what is written to the file.
A hi;iarij ,slre(1fli IllilY bc iscd with an y type of data. No cluar.n:ter
t,iiisla1ions will occur, and tilde is a one-to-one ct)r res
brtwccn what is sent to the stream and what is actuall y contained

in the rile.
One final conccpt you need to understand is that of the cm, ciii

hiitwn. The current lo(-.ation, also referred to as the current position.

is the locationin a file where the next file access will occur. I'M

example, if a file is 100 bytes long and hiif the tile has bee ii mead, the
next read operation will occur at byte 50, which is the. current location

To summarize: In C, disk i/O likc certain other t y pes of I/O) is
performed through a logical intcrtat;(! called a stream. All streams have

similar properties, and all are operated oil b y the same I 0 t'umictitii)

fl) matter what type of file tiw Streitfi) IS aSSU(iit('d with. A lilt' is tin

60 TEACH YOURS-ELF
V

intl;hvsic;aI entit y that n :rivrs or supplies the tItt.t. Even though
Furs ltItcr, streams (1(1 not. (Of course, some dcvn:cs ma y not support
I ti(h ttil-acc;ess Operations br exam p1 C.S() their associated streams
Will OUt support such operations either.)

Now that your are familiar with the theory behind Cs fit (: system, it
is I hue to hr.giiu learruim about it ill practice.

!V1ASTER FILE-SYSTEM BASICS

Ii this SC(;tiofl Volt will learn htitv to OCfl and closi .1 fit(, . You will aist
Train how to read characters from and write charar;tcis 10 a file_

To open a file and mssoc:iatc it with j stream, use fopcn () its
proto(ypc is Sl1Ul%'hi here:

FILE fopen(cha friame, char rnode)

hue fopen() fLiliction like all tin: fit -sVtc!u1 tutu tious, uses the
h4:,Id(r sri)lO.I L Tin: name of the file to open is pointed to hy I,twm:.
It roust hi: a valid tile iiine, as defined b y the operating svstcni.
strimn pointed to by uiioclr: detcriiuities how the tile ma y he accessed.
I - I)c Ic'14.iI ValUes fOr ntoth: as defined b y the ANSI C standard ;tre shown
in lahie 1-1 \otir compiler ma y allow additional modes.

It tue open operation is successful, open() returns a valid tile
pointer. ihe tvpc: FIlE k defined in STDIO.FI. It is a structurc that
holds VariouS kinds of inlorrnation about the file, such as its size, the

urerit location cufthir file, and its access modes. It cSHntiallv
idriuti lies the file. (A tructurc is a gro'up of variables accessed tinder
crru: 11.1111C. You will learn about structures in the next chapter, hut YOU

do m nit mired to know anything about them to icaric and full y use C's
file system.) The fopcn() function r.turn	 potntr to the structuretIle
associated wit	 lie iv the open process. You will use this pointer
with ;iiTdn:r functions tHmt operate on t61ilc. I Iowcvcr, you must
iievcr a! icr it or the object it Points to.

it	 topcn) f(uiu t n Umils, it returns a null pointer. The luc:a(ler
SIDI().l ciiis1	 iiacroNUEL,whu17ismmucdto be a oct11 1xrurrtr.
It is vrm\' important to ensure that a valid tile pointer has been
retut iii-d. In (10 50, check the value returned b y f'opcn() to make
stirr i hurt it is riot NULL. For exanuphi', the proper way to ujuril a file

tiled :n'fak for text input is shown in this tragincirt:

File i/O 261

92 MASTERRL(-STEMPASJGS

FILE •fp;

if((fp	 fopen(myfi1E. -r")) == NU)
printfVE(rOr opening file. \n"

exit (1)	 • or rubst itule ycur own error hand 1'r

Although riioSt of the file modes are self-explanat(ir y , a few

comments are in order. (F, when	 4.moping a 111c.for rca(l-Oflly

operations, the file does not exist, fopcn(.) will fail. When open hg it

tile using append mode, if the mc does not exist, it will be created.
Further, when a file is opened for append all new data written to the
tile will be written to the cod of the file. The original contents will
remain unchange It, when a file is opcncd for writing, the tile (lO(S

not exist, it will he created. If it does exist, the contents of the original
file will be destroyed and a new file created. The dillere ui: 1)CtWrCfl

modes r+ and w + is that r + will not create a ti 	 tile it it nes not exist;

however, w + will. Further, if the file .ilrcady exists, opi:i ing it with
w + destroys its contents; opening it with r + does iuit

Mode

w

"a"

'rb"

'r+b"

'a+b"

Meaning

Open a text File For reading.

Create a text file for writing.

Append to a text file.

Open 'a binary file for reading.

Create a binary file for writing.

Append to a binary file.

Open a text file for read/write

Create a text file for read/write

Append or create a text file for read/write.

Open a binary file for read/write. You may also use "rb+".

Create a binary file for read/write. You may also use

Append or create a binary file for read/write. You may also use

•f1I!	 The Legal Values for Mode V

262 TtAc*f YOURSELF

V

I n iiosc if tIe, LISC fclosc() O'IIUS(' prototype is

mt Iclose(FILE fp):

IlI(' fc:Ios() Iucic:tic>ii (;ISs tll(til(issc,cititccI willi .111, whichIII lutist
hc it 	 file ()(nhiLcr prcviotislv o1)taillcd using lopcn(), and
clis;issoi'iates the sti-ciun from the tile. ill 	 lu) itU()flIVe cIficirm \',
oust (tic s\'Stc'rli imiipleiuic'ntatioiis write (ItI to disk- one sector at a

I iIli(flieiiluie, dat,i is hti((erecl until a secuit 'S worth cit iitoi uui;itiomm
li,is l)eell output hetore the buffcr is phvsic:ihIy writt(m to disk. Wimeim
You	 Ill f;lis(), it atitoniaticihi' wr	 il\'ites a	 itu(urtll,ltomli	 Ielll,iiII lug
ii 4 f)tilItIl\? full f)tl(hI' 10(115k	 thus isottil m'efericd tcias/iicslimg(iii'

Jmcffci

\ ' ciui lutist never call fclosc() with ;fit invalid argument. thong so
will dl,ilillC tlui' tile SVStCIU aI'IuI possibl y (11liS	 iti'etlle\'al)le tliti loss.

'Ihe tdose() tom tl()lu I(ttil 115 /.Cl'() it successful. If an error ocecum s,
10F is returned.

Oimce d file has hi't'ii (lpCi1(ii, (hi'1)eiudiilgUpOil its	 e, you lfl,l\'
react mid w . write livies (i.e., (li;irai:tc'rs) using tliea' two Iniuc lions;

mt fgetc(FlLE 1p):

mt Iputc(int ch, FILE 'Ip)

liii: Iget(;() III mo:t 011 reads the next b y te from the tile dcscriliid by
is an unsigmied char auiti i -etulrfls It as an illtm;er. ('liii'. cliarai.tc'r IS

retuiriircl in the low-order lwte.) Han error occurs, f'getc() lettlIuls

tOF. As Voul sh&itild tct.till fiomn Chapter 8, EOF is if 	 integer

(ustilIlv -1). The igctc() ltmnion illSO returns LOF cIieIi the ciud (it
tlut' (tie IS iar:hucd. Although fgi'tt() returns an Integer valui', vow
progI mlii (t111 assign it Ic) a char vari,ihlu 5111CC the tOtV-Or(.hCF hvti'
i:oult,iimcs the :haracti;m' read fiuni the tile.

'Ilic' Iputc() function writes the byte (;olitaimied in the lo -order
b y te of elm to the file associated with J)2 as an unsigned char. i\ltllciLIllI
elm is chtined as an mt, you may call it using a char, vhuchi is the
.conliluiill p c;eulurc:. Time f'putc() function rcturiis the character
vriUr'.n it stic(csS(ull or COF tan error, occurs.

I I iStOUiCil note The tr,lditioital names for fgetc() and t'putc() are
gctc() mid putc(). 'I'll(! ANSI C stamudarci still dCIincS thesc names,
,iuici tliiv ,ime essentiall y iiitCrr iiaruge.ble with tge(c() and f'putc().
One rC,I5(lfl the new iidmll('S were added was for consistenc y . All other
\ NJSI tile system tom lion lames I)egiml with 'f'' so 'I' was added to

Fiii iO 263
92 MASTIe rftbs,(MtC,cf

gCtE() .iiid P ut(: (). The ANSI standiid still SuJ C j)()i I S O IC ti.i(liii(Ci1.iI

ILIffiCS, however, hinause there are SC) fl)JI)V ('XiStttlg 1)FUi,IHIS ii at

use them. U	 programs that ur get(;() III d pu(), ihmt

\f)liV. I'll iv tire isseITti,illv rtillritit I i,inies lui I'ge.() md f1It(:()

1iive leattied about so l,mv. First, it cipells a ide 	 tiled m\1\' H IL Hi

cI (i ll)tlt. Next, it writes dic S(FiI) "This is ii uk SVS1(ITT lesI	 to

the	 IhtT1, it (,I()SCS the h t h:nd reo)ens it in e.md

()erILiOtS. Liii,.ihIv, it (IiSj)I,t\,.the <)ilt('iCtS CCI tICI' till , 1)11

MA 	 illiti C loses the I

rcclude 't.dio.h'
4	 :,;I. 	 .U.ti>

inc. main (v id)

c-ha c	 r	 —m i:5:5 is a t i i..' xync em C e.	 0
FT L.E
char •j;
tnt-

 • <'0Th nI'JLi le for output

itt (fp = fopn C "myf i"w") 1< NFLI,)

pc i n1 I "Cannct open ft 1 e ..\n "C

CXI I. I	 I

/ • write nt-c to disk • /

p	 stI:
wh j iel'i) I

ft f1:ut of p, Ep) ==EOF)

pr iriL€	 Er rat wc it. i nq Iii -

esii.T1)

I close ([p1

264 TEACH YOURSElF

V

r ,p' . ti ry file for input	 /

it((Ip	 feperi("myf ii e	 "r'))	 NULL)

px j ut.! ("C'ann't	 po11 file. \11

e>: it (I)

/	 reid hd"k tip- . f i le • /

f,r I	 I	 (

- f'; f, t	 p)

i. f I i = = tOt-') bLe(jk

put_c-h.ur Ii)

Ic) ose I Ip)

cl 11L'fl ()

tt dos vcrsi'ol, vIirn icading from the IiIi, (hr 1(11011 v.ihir (It

I'get.() is issiouiod to art iiltrgrr vai'iah!r calh'd i. flir v,i,Itin ol
this i 1Irtr r is to t (.Ilr(:krd to srr if thut (tn(l of (hr 1 ,11c bias twrll

loti. lot Illuls)	 ititti1 rrs , liowrvr, \'UIi can siIlIflb\' assi.gll

thr value rettirn('(l b y fgct(:() to a thar and shIl ehr(h (or EO1,

as is sliut 1 01 the h lbowirig Version:

i :uclud'_ <t;tduo. h=

i rue I ode	 ad 1 ib. h

lit	 n vu id,

char sri)BO) = "This is a file systen tesL.\n;

FILE Ip

(:h.lr u'}i	 p

• op€oi my! i le for output */

if I I I i'	 fDpen (my i le	 "w" I "NULL)

pr iii L [I 'Cannot open file \n

exit Ii

'.-.-ruu '	r	 i ru chink	 '1
p = sir;

viP Ir' I • p

LI IHJc) p . fp	 =1-cut) I

prior I "Cr iou wi itiog file ',rr)

(I);

File IO 265
9.2 MSTFJ FILE SYSflMM.JCS

V

p*+

fclose(fp)

! open nyu le for input /
if((fp= fopen("myfile, "r))==NULLI

printf("Cannct. open fjle\n').

/	 tead back th' fib
lot (;;)

cii = fget ci fp)

if(ch rr EUF) break;
putchat (ch

('1):C (fp)

I-et U111 0;

Hit r(:isui1 this approach works is tiiilC whrn it char is huitig
(:()mfsirrd to an ml the char value is m'tomnt it:illv eIcviieci tt I

;itiequivakiit mt value.
There is, llUlVCV(r, an even beticr V\' to (oil)' this iinuzini.

For CX1iflle thiic is no i1C((l iur .i se -raw (tflpnIisuu StI)
hC(1uiSC the assigIluIcnl and (lie cUniJ)nst)i1 tail be l)iitriiird
at (lit: Same time, within H it , if, as shown heii::

#include <sldioh>

K include <stdlih.h>

jut main(void)

char str 180] = This is, 	 file System test.\n";
FILE *tp;

char ch, 'p;

/* ('PPU In', I i 0 1	 ct i Pu	 /
if I (fp r ltpen) I r. f ii e,	 w") C =NUII.0

pt mt I (eann>r c'p'tt file. \n'•
exit Ci);

266 TEACH YOURSELF

V

/ write sLr to disk !
p	 s1r
whi1e*r(

i[lfputcVp fp)==EOF)

pr inLf I Frrot wt it I nj f I le. \n" I

exit I L I

p4

r	 [p1

• 01 eT i m1 i 1	 fr i fl) I i t	 *

if (((p	 fpEfl I m','[i t	 t (1	 J1.J

	

'.rinut opt n	 i 1 e
*xit (1);

/ • i'•i (3Ck Ole f r I.-•
(cj (;;((

if C Rh	 1y• c C (p1 1	 - E0r'(break;

pu Lc2l a I

[cl •.i: lip)

re urn il

Don't hi tll(: sCitrlfl(' iii

i INch z rqerc(fp(C	 - EPIC break;

tool V01i. IJPF(s \\IPIt IS 11,1plicning, First, IIisId(: tH i(, the

r'1itrn 'lue ol Igctu() is ISs j i?,IiPd to ch As \rfll nay ue;ihl, 014

assi1 I L1IPI1 I operation in C is an expression. I he entire va I tie ol

(cli = fgctc(Up)) is eqLt.Ll to the return vt!uC o fgctc()
'Ihltrl'lo((l, it is hits IL tCieF vtilue that is tPSIPAA aniinstEOF.

1X1),I oiling upiii this .1 p1)rotIch, you wihinrilially see this
piiiFiii1i writtt11 liv ti plut(sSiOiltil C progra ill nler as follows:

11iriclude <S L3
include <sLuiih.h>

irit mainlvol(l)

ch r ni r [icl I	 "This is a [i I e synt Pr I ccl \t

Fie/O 267
92 M.tS1LR I-Ill SrilFM1.&J(2

FILE •fp;

char ch. •p;

/ OpOfl my Ii)i, Cur a u tpU L *

i[Nfp = Iorji:1 1"try ti1e, "w))NLLLI

print U C-Cann< --)L open file, '.n
c'x i L (1);

/ • wr iLe ,-.Lr to d	 • /
P	 str;

Ie(p)

if (fputr I *1)4	 fp)	 EOF)

pr i nI I VErrol writing Ii le.\n)

Cc I are I

*	 ir,' I I a	 i nj>u	 • /

C	 i I p 7 f'.pan	 Ii c',	 r))	 '-NW.i.)

,(Intl (('arinot	 :. J' n fiCe.\i1
(':ILI H;

raid I,a(:k the f Ia	 -

whi let (rh	 fcjetc({p) I	 r;iw put char

r'? I. 	 a I);

I'4iitii;r that iloc\', (i(.il .hiro:1er is read, iSsiLIIi'tl to (:h, .110

tested against EUF, all within till' expression (It Ill' wliilc Imill
that C011trOlS thc iflJ)ttt J)E&lUss. Itviiti	 ijstre this with	 iìl:
original version you cati see 11()1%' 11(0(11 liturt' etlit.iiiil this (till'

is. In fact, tiit' ahil tv to mtcgratc siu:h 0Ci itt i011S is one c,ison
C is So p	 ertul It is Inportilllt thit \'oo t't tiie'd to tlii' kind of
lI)pl'O;l(; lljt(st sltit'n Eater on ill tills 1)00k we IN ill li*h 10' Sili h

assigninent Statenli:nts more I 1JIIV. 	 -
2 'I'Iic following progr;i in takes two iomm,inct-1 ito' octi iticilts. 'fur

list IS tile tunic ot a Ile, the sct;oiitl is a I :liIru hi 'lite pLug

SC III ICeS the sP l 'lthl'd tile, looking for till' eh;ii,ii hi. It tin' tile

268 TEACH YOURSELF

V

contains at least one of tficsc characters, it reports this fact.

Notice 110W it nsr.s argv to access the fIle name and the
character fur which to search.

/ Search specified file for specified characior.

Niriclude <stdio,h>

*niclude stdlib.h>

tnt rnair.tinr argc, char arqv())

FILE •[p;

char ch

/ • see if correct number of command lint- arquments • /

if(argc!3)

print 	 "Usage: find <file name> <ch'\n"l

exit (l};

/ • open file foi input

if lip	 [open far(, v [1)	 r" I) rNUtL) I

print(I <:annoL open file. \n

exit (1);

/ • look for character /

whiie((Cli = fgctc(fp)) 	 EOF)

if (ctraryv[2l) I

printf(%c found, ch):

break;

[close Ifp}

return U;

E(ERCISES

Write a program that displa ys the contents of the text Ille
sJ)eciiied on the i;otniiiand hiI)e

Re 1/0 269
93 UNQfRSM feoft) iWO Ierro4'()

2. Write a program that 1Ci(lS fl t(t filc and i;oiits how t11;Iov
times each letter From A to Z caitu's. I lave it displ.iv the cisijits.
(Do hot (l!th'r('hitidte het'ec:n upper- and lowercase httrt's

3. Write it H'Ugrhi11 that (1O l)ieS the contents ototie text file tic
another. 1 1, 1W, the progritu u:(cj)t three cornmalidjillC argthhIieihts.
i'lic: first is the name of , time source tile, the se:cind is tim ninme
cit the destin;itiori tile, the third is optional. It prsemit amid it it
cjiiais watch, have the program displ;mv ca(h rhi;iracter as it
copies (hi' files; otherwise, do not haVe (tic' program hsjl,i' aii'
sc:rr.emi otitolit. if the (hestimlation hh: does not CXist, create it.

NI3R4J.jf1 feof() AND ferror()

As YOU know, }irhl fgctc() r(:tmlrns (OF, either an error has occuii-rd
or Ilir end (ff 	 cen 'aCIU'd but how do you know wicic It
evi-ilt has taken place? l"tir(her ii'oti ,it'c: (}pi'hltiflg 1)11 a l)ihiarV liii', all
values are valid. This means it is possihic that a hvte will hive the
Same value (when elevated to au mo as EOF, so 11Mw do you know it
valid (1,11.1 has been returned or iFtice end of tim ihe has hicen rcac:hmcd?

lime solution tc these pm'obkms arc tim hinci ions fcof() and ferror(),
vIuusr protot y pes areshown lucre:	 -

mt feot(FILE I);

mt ferror(FitE fp):

l'hie Icot() function returns nonzero it the tile associated %%,itll 1j' has
u:ic.hmecj the end (it 'the file. Qthierwjs' it returns /A:I'O. This ftiiii.tioii
works h;r both binar y flies and text files. The krror() liulictiori
ret urfls lion-zero if the fIhc associated with Ij, has m's lmrieuic.cd an error;
otherwise it rcturrs zero.

Jsing the fcof() function. this code agrnjit, shows how to read to
the cud of'a file:

rxc- * fp,

while (feof Ip)) ch = fgeic (t p)

270 iT.Acf$ YOURSLIJ
V

This code wc u ks ir any t y pe of file and is better in gclIC11 , 01 titan

checking for EOF. I towcvcr, it still does not provide an y error
ieckiiig. Lrrnr rhecking is added here:

FILE. 'fp;

wIci le(feof (ft)

ch	 I getc C f p1

if {ferror(fpl)

print[(-File Error\fl");

break;

Keep in mind that fcrror() only reports the status of the file svstc:ill
relative to the last tilt: a(iL5s. 'Ticrc:lccrr, to provide the lLIllt's((run

cliet.kitrg, you must call it after each liIt operation.
The most damaging tile errors occur at the operdtiUg-syStIIII level

Freuently. it is the operating system that intcrccl)ts these errors ,indq
displays its own error messages. For example, it a bad sector is lint nd
()if 	 disk, most operating systems will, themselves stop the

execution of the program and report the error. Often the ((lilY tvp(S CII

errors that actually get passed back to your program are thc,sc uuise(l
by mistakes on your part, such as accessing a file in a way tcosistCilt
with the mode used to open it or when you cause ;ill
condition. Usually these tipc:s oh errors call he trapped by checking

Ow return type of the 001CV file system functions rather than by

calling Icrror(). For this reason, YOU will frequently see exanll)lCs of

C code in which there are relatively few (ii an y) calls to fcrror() One
last point: Not all of the tile systeni examples in this book will provide
full error checking, mostl' in the interest of kcping the programs
shoi m and easy to understand. I lowever, if you arc writing programs
hirr	 111:11 use. you should pa y special ;ittetitioli to error checking.

File 1/0 27i
I/N !1SJAM) eof() 4NPkrtor()

EXAMPLES

This progrdm copics illiv t ype W tile, hiniry et text. It iLrs t.
r .(nIl11nd-1i,1p art.urieiits.Iht- lirsi is the ntiite ol the sillirli
file, thSiitt)I1(I iS the I)IIflr(jI lll((l)sLillIt (Ill lih. I! 11111

(lClS1lfll[iuil IiI' Ihuls not exist it is 	 e.ttcil. It iiitliujt's lull 	 urul
Litelking. (You might want to eotipare this version with the
(.Dpy program you wrote tor 1(1st tiles in the mediiu s.. un.)

/ Copy o file.	 /

include 'stciiu.h'

#include <st:dJ.ih,h>

jut main tint IrJ, elinr	 arqv

FILE' (rein,	 1u;
friiar ch;

/*	 if correct, number of command I ri'r - j tn't s
if (arc c'3) {

	

r inL1Vusage: cepy • LJurce:	 de) ie.' '.)iI't
ex t C 1)

/* open sourcQ file •,'	 -
if(((from = fopc'ri targv Ill, rb I) - Null,)

prifltf(Cannot open sourre file. \n,);
exit(l)

open destination file *1
itt (to " mopen(ai'GVRI 1	 wb))'=htJJ,L)

p rintf(Canriot open destinatju Lile\rt);
exit (l);

/' copy the file •/

272 TEACH YOURSELF

v

whi Ic (fe(jf (from))

ch = fgel.c(frOm)

if(ferrot)from))
prinLLVEtlOr icading source fi1e.'II)

exit)1);

if(!feof(frOm)) EpuLc)ch	 to);

jf(ferrOr(tO))
printf(ErrOr writing (IestinatiOn file-\n");

exit) 1)

if([cloe(from)E0F)

pr;jjt . i("Errox closin g source file.\n")

exit)i)

if fclose (1.0) z)F)

print f{Erron c1osinci destination file. \n);

exit H;

return U;

2. This program compar(:s the two tilcs whose names arc sp.fied
on the conitnand line. It either prints Files arc the same, or it

displays the byte of the first mismatch. It also uses lull error

checking
,* Compare files. 1

include <stdio.l1

Ninôlude <stdlib.h>

mt maifl(iflt argc, char argv[I)

FILE fP1,	 fp2;

char chi, çh2, same;

unsigned long 1;

/ • see if correct
number of command i ne arguntefll s •

jf(arg:!I) C
printf(tJSag	 cc'rnpale .zfi,1e 1> <rile

	'\n);

exit)));

FUr I/O 273
93 UNDER5TAPJ'',ofU AND Ierroq()	 V

/ open first file */

if((fpl = fopen(argv[11, rb))=NULL)

printf(I CaflhIot open first fi1e.\n);

exit (1)

/ open second file /

if((fp2	 fopen(argv [2),	 rb))==NUL)

printf(Cannot open second file.\n)

exit (1)

I = 0;

same = 1;

/ compare the files 1

while(!feoflfpl)) I

chi = fgetc(fpl)

if(ferror(EpU) {
print(C'Error reading first file.\n);

exit (I)

ch2 = fgetc(fp2)

if([error(fp2)) {
printf("Error reading second fle.\n)

exit'fl-);

jf(chl!=ch2)
pzintfVFiles differ at byte number %1u,

same = 0;

break;

if(same) printf(Files are the sarn'.\n);

if(tclose(fpl)EOF) (
printt(Error closing first file.\n);

exit (1)

if(fc1oSe(fp2)EOF)

printf('Errr ciosir q cc;': file.\n)

exit (!);

'8

274 TEACH YOURSELF
V

return 0;

EXERCISES

• Write a program that counts the number of bytes in a file (text
or binary) and displays the result. Have the user specify the file
10 count on the command line

2. Write a program that exchanges the contents of the two files
whose names are specified on the command line. That is, given
two files called FILE] and FILEZ, after the program has rui.
FILEI will contain the contents that originally were in l"ILE2,
and FILE2 will contain FiLE] s original contents. (Hint: Use a
temporary file to aid in the exchange process.)

When working with text files, C provides four functions that make file
operations easier. The First two are called fputs() and fgcts(), which
write a string to and read a string from a file, respectivel y . Their
prototypes are

,,-i fputs(char 'sti FILE 'Ip);

iar 'fgetschar 'str, mt num. FILE 'fp;

lhe fputh() function writes the string pointed to by sir to the file
associated with fl). It returns EOF Van error occurs and a non-negative
vall. (,. iIsuccc,ssf'ul. The null that terminates sir is not written. Also,
cuLki: its related function puts() it does not automatically append a
' ITT 	 return, hneteecl pair.

F1l.i/O 275
9.4 LEARN SOME HIGHER 44L 7-WFUNCTIONS

.The fgcts() function reads characters front 	 file associated with
//) iiit() the string pointed to by si until 11141),-1 characters have been
reach, a newi ile character is encou htered, or the end of the file is
teached. Iii an y case, the string is mill-terminatcd. Unlike its related
III iletion gets(), the newT ole character is retained. The function
returns str it' successful and a mill pointer if an error occurs.

The C tile system contains two very powerful func t ions similar to
two you already know. 'l'hcy are f'printf() and fscanf(). These
functions operate exactly like printf'() and scanf() except that they
icork with files. Their prototypes are:

mt fprintf(FILE fp, char *control-string, ...);

mt fscanf (FILE fp, char control-string. ...);

Instead of directing their I/O operations to the console, these
functions operate oil 	 file specified b y I Otherwise their
operations arc the same as their console-based relatives. '[he
advantage, to fprintf() and Iscanf() is that they make it ver y ciisv to
write a wide variety of data to a file using a text format.

This program demonstrates fputs() and fgets(). It reads lines
entered b y the user and writes them to the file specified on the
conirnand line. When the user enters a blank line, the input
phase terminates, and the file is closed. Next, the file is
reopened for input, and the program uses fcts() to display
the contents of the file.

#include <stdio.h>

*include <stdljb.h>

linclude <string.h>

mt rnain(int argc, char argv[])

FILE fp;

char striCOl;

/ • check f c'x c:'mnnd

276 TEACH VOURS€U

V

if(argc!2) (

printf(Specify file name.\n);

exit (1);

1* open tile for output 'I

if((fp = fopen(argvtlJ, w))==NULL)

printf(*Cannot: open file.\n);

exit (1)

printt("Enter a blank line to stop.\n);

do(

printfV: •);

gets (str)

strcat(str,	 \n); / add newline

if)str	 =	 \n') fpuLs(str, fp);

while(str

fclose(tp);

/ * upon f Lie for input •/
if((fp = fopen argvt 1]	 r)) -NULL)

p juL [('CinrioL open f i Jo. \rV

exit(l)

/* read back the file * /

cio{

tqeLs(str.)9, fp);

if)lfeof(fp)) printflsti);
whileHfeof(fp));

fcloso(fp)

return 0;

1 his program demonstrates fprinti() and fscanf(). It first
'rites a double, an inL, and a string to the	 specified on the

command line. Next, it reads them hack ai,d tlplys their
vdnc as verification. It yOU examine the tile	 iated b y this

r ' oram, on will see that it contains 1 iiiaii-r, (1111k	 t liiis

RI. "} 277

	

94 LEARNSQME HIGHER 11FL	 .'JONS

is hct:ausr fpriritf'() writes to a disk fdc what ptintf() would

write to the screen. No internal data formats are used.

include	 tc3lo.h>

stinclude <stdljb.h>
c'ud <Etr1ncj.h

in main mt arcic char *argvl])

FILE *fp;

double Id;

mt ci;

char str[130

1* check for command line arg !

i[(argc2)
printf(SrCifY file narfle.\fl');

exit

1* open tile for output I

ifUfp = fopen(argv(l1, "w'))=NULL)

printf("cannOt open tile.\n');

exit (i)

fprintf U p	%f %d %s	 12345.342, 1908, 'hello I

fclose(fp);

1* open file for input 1

it (([p = foperi(argv(lI , 	 1-"))==NULL) I

printf(caflflOt open file.\n);

exit (1)

fscanf(fp,	 %lf%d%s', &lcl, &d, str);

printf('%f %d %s, Id, d, str);

fclose(fp)

return 0;

278 TEACH YouRsar
V

EXERCISES

In Chapter 6 you wrote a very simple telephone-dtiictory
prograni. Write a program that expands on this concept by
iIfowiiig the direttury to he saved to a disk file. Have the
program present a inenti that loo p s like this:

1.Enter the names and numbers
2. Find numbers
3.Save directory to disk
4.Load directory from disk
5.Quit

lie prograni should be capable of storing 100 mu mes a id
uiiuiihcrs. (Usc only first ulames if ynu like.) Use. fprintf() to
save the directory to disk and fscanf() to read it back into
inc uiiie

Write aprograni that uses fgcts() to display the contents of a
'sr Hl. uric S(reenfiul dt a time. After each screen is displyc

hOw program prompt the user thr more.
W rite ii r)ro.r rauri that OpieS a text file. Specify 1)0(11 (fir SOtir(T:
rid dcxi !1;itioui tile n:uines on the comiii;ind linc Use igcts()
nid fputs() to ropv tire tile. Include full error checking

_LEARN To READ AND WRITE BiNA/V,
DATA

As useful and convenient as fprntU() and fscanF() are, the y arc icr
n:essirlv if i1OSt efficient way to read and wriie numeric data. The
reason for this is that both funions perform conversions on the di: a
Or (:imple, when V()Il output a 11UMbel using iprintf() the flOn1i:

Is (.oriverte(l from its binary format into ASCII text. Conversely
Von ucad a nu mber using fscanf() it must he converted hack into
hi nary repicsentatiori. Vol many applications, this (.00 Version (line
w ill riot he meaningful; ftir others, it will be a severe linutatiori. Further,
for some types of data, a file created b y f'priiitf() will also he lugei

ii one that c	 mcontains a mirror iage of the data using its binary

,øi/O 279
o 5 LEARN TO READ .kNO WOJE f,','A/(r AM

format. For these reasons, the C file system ineludc.. li important

functions: fread() and fwrit(). These Functions can read and write
any type of data, using its binary representation. Their prototypes are

size_t Iread(void buffer, size_t size, sizet num, FILE fp):

size_t fwrite(void buffer, sizej size, size_t nurn, FILE 'ip);

As you can see, these prototypes introduce. Some unfamiliar elements.
I lowevcr, before discussing them, a brief description of each function

is necessary.
The fread() tun(:liuil reads From the file associated with to, nitoi

on tither of ohjects, ('acli object .size bytes long, into the huller point(!(]

to by bufJ.r. It returns the number of objects aCtUally read If this value
is less than unto, either the end of the file has been clleuuntered or an
error has occurred. You can use teof() or ferror() to md out which.

The fwrite() function is the opposite of 1rcacl() I vritcs to the

file associated with Jj', onto number of ohp' ts. each uh1ts.t sir:e byteS

long, from the buffer pointed to by bolter. It returii the jiumber of
Objects written. This value will he less than 10()1 onL y it an uiitl)ut

error has occurred
Before looking at an y exaiiiples, let's examine the nw ()ni

introduced by the functions' prototy pes.
The first concept is that of the void twinter. A void pointet iS ;i

pointer that can point to any t y pe of data without the use of ,i type
cast. This is generally referred to as a generic pointer. In C, void
pointers are used for two primary purposes. First, as illustrated by
f'read() and Iwritc(), they are a way for a function to r:ceivc a

pointer to any t ype of' data witliuu I causing a t y pe iiosin:iti:.h error. As

stated earlier, frcad() and f'write() can be used to read ()1 W rite 0
type of data. Thcrebnc, the functions must he capable ni cm .eicin any
sort of data pointed to by bnJjcr. void pointers make ihts possible. A

second purpose they serve is to allow a function to retu to a e11ic

pointei - You will see an (:xalflple of this later in this book
The second new item is the type size,_t. This t y pe is deFined :u the

STDIO. II header file. (You will learn how to define t y pes l.itc r iii this
hook.) A variable of this type is defined b y the ANSI C scand.it d is
being able to hold a value equal to the size of the largest hji'i
supporter) b y the compiler For our purposes, you can think uL sizc_t
as being the same as unsigned or unsigned long. The reason that

si'iet is used instead of its equivalent built-in type is to allow C

280 ITACI$ YOURSELF

rii;nlers running in di	 tit environments to accomnodate the
11C(iiS and (:()flfine.s Of those environments.

\heii using fread() or fwritc() to input or output binary data,
thr fiic must he opened for hiflarV operations. Forgetting this cain
ci ii 'a hard-to-find problems.

ii tulerstind the operation of fread() and fwiitc(), lets begin
a simple example The hollowing program 'vi lies iii intrgcr to a

tile c,ullcd MYFILL Using its uiternal, binary representation and then
nead: it back (The program assumes that integers are . b y tes long

iii cc ude stdio

in'uCle <std1ib.h

inc rnd .n (void)

FJ:A-;	 fp:

juL

/	 open file fr output */ 	 -

if ((I p = fopen 	 cnyfi ic"	 "w1j") I : NULL) I
print f) Cannot open I ile

exL Cl);

if (fwnite(&i, 2, 1, fp)	 1)

pr:inLf('Write error occurred.\n");

exit) 1)

fc- lose)fp(-

/ open file for input *1

ifNfp = Lopen("rnyfi le" , 	 rb">)==NULL)

printfVCannot open fiie.\nl;
exit (1)

if(fread(&j, 2. 1, fp) 	 = it {

printf(-Read error pccurred\n);

cxi t (1)

print f 	 is %C P, it
fciouoe(Cp)

FIle 110 281
-

95 LEARN TO READ AND WRITE 8/NARY DATA

rc'Lurn 0;

Notice hos' error checking is easily performed in this prociam by
Si mplv comparing the number of items written u with that
('IlIcSted. In some situations, however, you will stni 11c.1 to use

tcof() or ferror() to determine if the cod of ;,c 51t , HiS hcci
reached or if- an error has occurred

One thing wrong with the preceding example is that an assumption
about the size of an integer has been made and this size is]ijdcoded
into the program. Therefore, the program will not work properly with
ompil(rs that use 4-byte integers, for example. More generally, the

size of man y types of data changes between systems or is difficult to
determine manually. For this reason, C includes the keyword size,of,
which is a compile-time operator that returns the size, in b y tes, of a
data t y pe or variable. It takes the general forms

sizeof(type)

or

sizeof var_name;

For example, if floats are four bytes long and f is a float variable, both
of the following expressionS evaluate to 4:

sizeof f

sizeof(float)

When using sizcof with a t ype, the t ype must be enclosed between
parentheses. No parentheses are needed when using a variable name,
although the use of parentheses in this context is not an error.

By using sizeof, not only do you save yourself the drudgery of
computing the size of some object by hand, but you also cnsurc.the
portability of your code to new environments. An improved Version of
the preceding program is shown here, using sizcof.

#include <sLdio.h>

include <stdlibh>

mt main(void)

FILE •fp;

282 TWIH YOURSELF
V

j Ot: i;

/ open file for output: /

if((fp = fopen("myfi1e	 wb))NULL)

prinLf(CannOt open file.\n);

exil(i)

i = 100;

i{(fwrite(&i, sizeof(int), 1. fp) != 1)

printf(-Write error occurred.\n')

exit (1)

Lclose(fp)

/ open file for input /
ifNfp = fopen("myfi1e	 rb))'=NULL) I

print[("CrOflOL open file.\n);

exit (1)

it(fread(&i, sizeof 1, 1, fp)	 1) 1

prinfLRnad error.

exit.(1)

prInLf(i is %d	 I)

fclse I fpI

return C';

JL'I l j11
1 This program fills a ten-element array with floating-point

numbers, writes them to a tile, and then reads them hack. This
program writes each element of the array separately. Bccausc

binary data is being written using its internal format, the fIle
must he opened for binary 1/0 operations

ftinclude <stdio.h
inc1ude <stdllb.h>

FI.vo 2*3
95 LEARN It) I AD AtA4VTE 8/4Rv

double d[10]

10.23, 19.87, 1002.23, 12.9, 0.897,

11.45, 75.34, 0.0, 1.01, 875.875

ml main(void)

ir1t	 1.;

FILE •fp;

if ((fp = Eopeu)ryfj1e', "wb"))==NULL)
printf("Cano open file.\n);
exit. (1)

for(j=0; j'zjO; jt+)

if frrite (&d(i] , si zeof (double), 1. fp) 	 = 1) 1
pririt.f("wrjte err or. \rl';;
exit(1)

fc1osefp)

if((Ip = fopen("myfile, 	 rb()=NuLL)
printf('canrjot open [ile.\n');
exit. (1)

J* clear the array 1

for(j=O; 1<10; i) d[i) = -1.0;

tor(i=0; i<l0; i-+)

i f(fre1 (&clE	 , sizeof (double) , 1, ip) 	 = 1)
p rintf("Read error. \n")
?X1 1 (1)

fiose(fp)

/ • (iI SPlay Lhe ar iy
for (i=0; i<10; j+4	 prinlf)%f	 .

return 0;

284 TEACH YOURSELF
V

l'he array is cleared hetwceii the write and read operations wi'y

to j)rove that it is being filled by the frcad() statement.

2 The toflowing program does the same thing as the first, but here

1'01 ((Oc eall to Fwri!c() and ircad() is used bee.iuse the

entire array is writtrll ill one step, which is moth more

eftit ient 'I his example helps 11ustratC how powerful these

hln(:tions are.

itiruclude <stdi.o.h>
ic1ude <std1ib.h

double d(101 =
10.23, 19.87, 1002.23, 12.9, 0.897,

11.45, 75.34, 0.0, 1.01, 875.875

mt main(void)

mt i;

FILE •fp;

if ((fp = f open(.flYfile"	 wbHNU1L)

priri tf("Caflnot open fi1e.\n);

exit(1)

1* write the entire array in one step

if(twrite(d, sizeof d. 1, fp) 	 1)

printf(*write error.\rl")

exit (1)

fclose(fp)

if((fp = fopen("myfile,	 rb))NULL)

print.fVCanflOt open file.\nf; -

exit (1)

/ clear the -rray *1

for(i0; i<10; j++).dfi] = -1.0;.

1* read the ntire array in one step
*1

if(fread(d, sizeof d, 1. fp)	 1) t

printf(Read error.\n);

FIle 1'0 285
96 UNDERSTAND iAN[JQM ACCESS

exit (1)

fclose(fp)

f display the array /

for(i=0; 1<10; i++) pri.ntf(%L	 , d[i)};

return 0;

EXERCISES

I. Write a program that allows a user to input as many double
values as desired (up to 32,767) and writes them to a disk file as
they are entered. Call this file VALUES. Keep a count of the
number of values entered, and write this number to a hie called
COUNT.

2. Using the file you created in Exercise I write a program that
first reads the number of items in VALUES from COUNT. Next,
read the values in VALUES and display them.

UNDERSTAND RANDOM ACCESS

So far, the examples have either written or read a file sequentially
from its beginning to its end. I lowcvcr, using another of C's file
system functions, you can access any jxiT1t in a file at any time. The
[urn tiW) that lets you do this is called cck(), and its prototype is

nt fseck(FILE fp, long offset, i nt origin);

I let c, p is associated with the file being acces.sed. The value of otl.scf
deter trines the number of bytes forn nngiu to make ffie n' 	 117-1-rr1t

TEACH YOW*5LF

V

position, origin must be one iiHhcse macros, shown here with their
meanings:

Origin
	 Meaning

	

EE K_SET
	

Seek from start of file

	

SEEK-CUR
	

Seek from current location

	

EEK_ENO
	

Seek fiom end of file

Iiiesc macros are defined in S'IDIO.l I. For example, if you wattled to
set the current location 100 b y tes from the start or tl:e lift:, tlicii un:itr
will he SEEK SET and uJJseI wilt be 100.

The f'scck() function returns zero when succcssh :1 and noni.ec ii
a failure occurs. In most in)pten1enati()ns, you ma y seek past Ihc end
of the file, but you may never seek to a point before the start of Ow file.

You can determine the current location of a file iisiiti ftcll(),
iriiothcr of C's file system functions. Its prototype is

long ftell(FILE 'fp);

It returns the location of the current position of the file assu.i,ited with
f). If a failure occurs, it returns -1.

In general, you will want to use random access onl y on binar y files.
The reason for this is simple. Because text files may have character
translations performed on them, there may not he a direct
correspondence between what is in the file and the byte to whitli it
would appear that you want to seek. The only time you should use
fsee.k() with a text file is when seeking to a position previously
determined by ftdl(), using SEEK-SET as the origin.

Remember one important point: Even a rile tIi,it contains tiiilv text
can he opened as a binary file, if you like. There is no inherent
restriction about random access on files containing text. The
restriction applies only to files opened as text files-

following program uses fscek() to repot I tie' value of any
byte within the file spc'Uihr(l C)!! the utii niind

Flo v0 27

*include <stdio.h>

tinclude <stdljb.h>

mt mairi(jnt argc, char arv(])

long bc;

FILE *fp;

/ see if file name is specified
if(argc!=2) {

printf(Fjle name missjng,\n);
exit (1);

ifUfp = fopen(argv(tJ
prin tf(cannot open file.\n");
exit 11);

printf(Eflter byte to seek to:);
scanf("%1	 &loc):
if(fseek(fp bc, SEEK SET))

p r j r1tf)Seek error. \n*)

printf(Va1ue at bc %Id is %d, bc, geLc(fp));
fclose(fp)

return 0;

2. The following program uses ftefl() and fcck() to copy the
contents of one file into another in reverse order. Pa y Special
attention to how the end of the input file is found. Since the,
program has sought to the end of the file, the program backs up
one byte so that the current location of the tile associated with
in is at the last actual character in the file.

1* Copy a file in reverse order
#include <Stdjo.h>

#include <stdljbh>

inLmOjr-i(jnt argc, char '.arcjvl))

Cf

288 TIAc$4 YOURSF
C

long bc;
FILE in, out;

char ch;

/ see if correct number of command line arguments
1

if(argc!3) (
<source> <destinatiofl>.\"'

prin tf(USage revcopY
exit(l)

if((in = fopen(arQV(il,	 rh))==N.L)

printf('Caflflbt open input file.\n');

exit) 1)

ifNout = fopen(argV(21, wb'))NOLL)

printf(ICarmot open output file.\fl")

exit (1)

I find end of source file

£ek(ifl. OL. SEEK_END);

ion = fteil(in)

I
copy file in reverse order '

ion-1; 1*
back up past endoff1le mark

while(IOC ,= OL) r

fseek(in. ion. SEEK—SET);

ch = fget.c(in)

fputc(Ch, out);

lc--;

'-1ose(in)

f c lose (out)

return 0;

3 ['his program writes tra double values to disk. It then asks you

which one you 'iaflt to see. This example shows how you can

ra ilr!omly access c ta of any type. You simply need to multiply

the size j r the base data type by its index in the file.

jrn1ut' =31o.h
<5c3Li.b.h'

R4. I/O 289
9.6 UNDERSTAND RANDOM ACCESS V

double d[10)

10.23, 19.87, 1002.23, 12.9, 0.897,

11.45, 75.34, 0.0, 1.01, 875.875

mt main(void)

long icc;

double value;

FILE frfp;

ifUfp = fopen("myfiie', wb))==NTjLL)

printf('Camiot open file.\n");
exit (1)

I
write the entire array in one step

if(fwrite(d, sizeof d, 1, fp) 1= 1)

printf)Wrjte error.\n");	 -.
exit (1)

fclose(fp);

if ((fp = fopen(myfiie', rb))==tqTJLL)
pr±ntf(can	 open file.\n");
exit (1)

printf(whjch element? •);

scanf (%1d, &loc);
i(fseek(fp, loc* sizeof(doubie), SEEK SET))
printf(seek error.\n);
exit(i)

fread(&vaiue sizeof(double), 1, fp);
printf(Element %id is %f', bc, value);

fclose (fp);

return 0;

19

290 TEACH YOURSELF
V

Write a program that uses fseck() to display every other byte

in a text file. (Remember, you must open the text file as a

binary file in order fr fscek() to work properly.) Have the

user spccif' the file on the command line.

Write a program that searches a Fi le , specified on the command
line, for a specific integer value (also specified on the command
line), if this value is found, have the program display its
location, in bytes, relative to the art of the file -

EAR li_A 434) U J VA R 10 U S FILE-SYSiFM
- FLJNCTIa'N-S"

You can rename a file using renamc(), shown here:

mt rename(char o/dname, char *newname);

I crc, oldnome points to the original name of the file and ncu'nwne

points to its new name. The function returns zero if successful and
nonzero if an error occurs,

You can erase a file using reniove(). Its prototype is

nt remove(char *file-name);

This function will erase the file whose name matches that pointed to
by file-name. It returns zero if successful and nonzero if an error occurs.

You can position a file's current location to the start of the file using

rewind(). Its prototype is

void rewind(FILE 'fp);

It rewinds the file associated with fp. The rewind() function has no
return value, because any file that has been successfully opened can
be rewound.

FUe&/O 291

9.7 LEARN ABOUT VARIOUS FILE-SYSTEM FUNCJ?ONS

Although seldom necessary because of the way Cs file system
works, you can cause a tile's disk buffer to he flushed using Mush().

Its prototype is

mt fflush (FILE *fp).

It flushes the buffer of the file associated with fp. The function returns
zero if successful, EOF if a failure occurs. If you cal] Mush() using a
NULL 1orJ, all existing disk buffers arc flushed.

EXAMPLES

1. This program demonstrates re'iiovc(). It prompts the user for
the file to erase and also provides a safety check in case the user
entered the wrong name.

*include <stdio.h>

#include <stdlib.h>

ifinclude <ctype.h>

int main(void)

char fname[80];

printf(Enter name of file to erase:);
gets (fname);

printf('Are you sure? (YIN)
if(toupper(getchar))='y') rernove(fname);

return 0;

II

2. The following program denionstrates rewind() b y displaying
the contents of the file specified on the command line twice.

Hinclude <stdic'.h>

#include <stci. b.h>

nL maln(int argc, char *argvi)

292 1TACH YouRsaF

V	 -

FILE •fp;

/* see if file name is specified

if(argc=2)

printf('File name missing.\n);

exit (1)

if ((fp	 fopen(argv[11, "r'))==NULL)

printf("Cannot open file.\n);

exit (1)

1* show it once

while(ifeof(fp))

putchar(getc(fp));

rewind(fp);

/ show it twice I

while(!feof(fp))

putchar(getc(fp));

fclose(fp)

return 0;

3. This fragment causes the buffer associated with fp to be flushed
to disk.

FILE *fp;

fflush(fp)

lhs program renames a file called MYFILE,TXT to
OURFILE.TXT.
include <stdio.h>

main(void)

if(renante('myuile.txt, yourfile.txt))

FMe$/O 293
98 LEARN ABOUT THE STANDARD STREAMS

printf (Rename fai led -

else

printf ("Rename successful - \n'")

return

EXERCISES

1. Improve the erase program so that it notifies the user if he or
she tries to remove a nonexistent tile.

2. On your own, think of ways that rewind() and fflush() could
be useful in real applications.

LffANDARD

When a C program begins execution, three streams are automatically
opened and available for use. these streams are called standard input
(stdin), standard output (stdout), and standard error (stderr). By
default, they refer to the console, but in environments that support
redirectable I/O, they can he redirected by the operating system to
some other device.

Normall y , stdin inputs from the keyboard; stdout and stderr write
to the screen. These standard streams are FILE pointers and may be
used with any function that requires a variable of type FILE . For
example, you can use fprintf() to print formattcd output to the
screen by specifying stdout as its output stream. The following two
statements are functionally the same:

fpri.ntf(stdout, 	 %d %c %s, 100, 'C', "this is a string");

prntf("%d %c %s', 100, 'c', "this is a string");

In actuality , d makes little distinction between console I/O and fIle
I/O. As just shown, it is possible to perform console I/O using several

294 TEACH YOiJRSEL
I,

of the file-system functions. Although it may come as a hit ola
surprise, it is also possible to perform disk file I/o using console I/O
functions, such as printf(). Here's why.

All of the functions described in Chapter 8 and referred to as
console I/O functions are actually special-case file-system functions

that automatically operate on stdin and stdout. Thus, the console I/O
functions are just conveniences for you, the programmer. As far as C
is concerned, the console is simply another hardware device. You
don't actually need the console functions to access the console. Arty
file-system function can access it. (Of course, non-standard I/O
functions like getchc() arc differentiated from the standard
file-system functions and do, in fact, operate only on the console.) In
environments that allow redirection of 1/0, stdin and stdout could
refer to devices other than the keyboard and screen. Since the console
functions operate on stdin and stdout, if these streams are redirected,
the"console" functions can he made to operate on other devices. For
example, by redirecting the stdout to a disk file, you can use a
"console I/O function to write to a disk file.

One important point: stdin, 8tdout, and stderr are not variables.
They may not he assigned a value using fopen(), nor should you
attempt to close them using fclose(). These streams are maintained
internally by the compiler. You are free to use them, but not to
change them.

EXAMPLES

1. Consider this program:

#inc]ude <stdio.h>

mt main(void)

printf(This is an example of redirection.\n')

return 0;

Assume that this program is called TEST. If you execute TEST
normally, it displays the string on the screen. However, if an

File I/O 295
98 LEARN ABOUT THE STANDARD STREAMS

environment supports redirection of I/O, stdout can he

redirected to a file. For example, in a DOS, OS/2, Windows, or
UNIX environment, executing TEST like this

TEST > OUTPUT

causes the output of TEST to be written to a file, called OIi'l'I'UT
You might want to try this now for yourself.

2. Input can also be redirected. For example, consider the
following program;

*include <stdio.h>

mt main(void)

.iflt i;

scanf("%d', &i);

printf('%d", i);

return 0;

Assuming it is called TEST, executing it as

TEST < INPUT

causes stdin to he directed to the file called INPUT. Assuming
that INPUT contained the ASCII representation for an integer,
the value of this integer will be read from the file and printed on
the screen.

3. As mentioned earlier in this book, when using gets() it is
possible to OVCUfl the array that is being used to receive the
characters entered by the user because gets() provides no
hounds checking. One way around this problem is to use
fgets(), specifying stdin for the input stream. Since fgets()
requires you to specify a maximum length, it is possible to
prevent an array overrun. The only trouble is that fgcts() does

not remove the newline character and gets() does. This means

that you will have to manually remove it, as shown in the
following program.

*include zstc1io.h>

*include <string.h>

296 TEACH VOtJRSF[

V

irit main(void)

char str[101;

ir.t i;

printft'Eritr a string:
fgets(str, 10, stdin);

/ remove newljrje, if present
i	 Otr1entr)--1
Istr(1i='\n') str[jj =

p rjntf("This is your string: %s', Str):

return 0;

EXERCISES

• Write a program that copies the Contents of one text file to
another. However, use only"console" I/O functions and
redirection to accomplish the file copy.

2. Oil 	 own, experiment using fgets() to read strings entered
from the keyboard.

Mastery
Skills C heck

Before. continuing y ou should be able to answer these questions
and complete these exercises:

1. Write a program that displays the contents of text tile (specified
Oil the command line) one line at a time. After each line is
displayed, ask the user if lie or she wants to see another line.

File I/O 297
9.8 LEARN ABOUT THE STANDARD STREAMS

2. Write a program that copies a text file. Have the user specify
both file names on the command line Have the copy program
convert all lowercase letters into uppercase ones.

3. What do fprintf() and fscanf'() do?

4. Write a program that uses fwrite() to write iU randomly
generated integers to a file called RAND.

5. Write a program that uses frcad() to display the integers stored
in the file called RAND, created in Exercise 4.

(. Using the file called RAND, write a program that uses fscek()
to allow the user to access and display the value of any integer
in the file.

7. How do the"console" I/O functions relate to the file system?

AW'	 AN

%=^S^
ills
muIve

Check

This section checks how well you have integrated the material in
this chapter with that from earlier chapters.

1. Enhance the card-catalog program you wrote in Chapter 8 so
that it stores its information in a disk file called CATALOG.
When the program begins, have it read the catalog into memory.
Also, add an option to save the information to disk.

2. Write a program that copies a file. Have the user specify both
the source and destination files on the command line. Have the
program remove tab characters, substituting the appropriate
number of spaces.

3. Ony our own, create a small database to keep track of anything
you desire—your CD collection, for example.

il

0
3

10

Structures and Unions

chapter obJectives

10.1 Master structure basics

10.2 Declare pointers to structures

10.3 Work with nested structures

10.4 Understand bit-fields

10.5 Create unions

299
I,

300 TEACH YOURSELF

V

I

N this chapter you will learn about two of C's most important
user-defined t ypes: the structure and the union.

Review
Skills Check

Before proceeding you should be able to answer these questions and
perform these exercises:

• Write a program that copies a file. }-Iavc the user specify both
the source and destination file names on the command line.
I nd tide full error checking.

2. Write a program using fprintf()fO create a tile that contains
this information:

this is a string 130.23 1FFF A

Use a string a double, a hexadecimal integer, and character
format specifiers and values.

3. Write a program that contains a 20-element integer array.
Initialize the array so that it contains the numbers I through 20.
Using only one fwrite() statement, save this array to a file
called TEMP.

l. Write a program that reads the TEMP file created in Exercise 3
Into an integer array using only one fread() statement. I)ispla
the contents of the array.

5. What are stdin, stdout, and stderr?
6. I-{c)w do functions like printf() and scanf() relate to the C

file system?

I	 JI17ASTER STRUCTURE BASICS

A structure is an aggregate (or conglomerate) data t ype that is composed
of two or more related variables called members. Unlike an array in

STRUCTURES AND UNIOHS 301
10.1 MASTER SrRUCTURE BASICS

which each element is of the same type, each member of a structure
can have its own type, which may differ from the types of the other
members. Structures are defined in C using this general form:

struct tag-name
type memberl;
type membe,2;
type member3;

type memberN;
variable-list;

The keyword struct tells the compiler that a structure type is being
defined. Each type isa valid C type. The lag-name is essentially the
type name of the structure, and the variable-list is where actual
instances of the structure are declared. Either the tag-name or the
variable-list is optional, but one must be present (you will see why
shortly). The members of a structure are also commonly referred to as
fields or elements. This book will use these terms interchangeably.

Generally, he information contained in a structure is logically
related. For example, you might use a structure to hold a person's
address. Another structure might be used to support an inventory
program in which each item's name, retail and wholesale cost, and the
quantity on hand are stored. The structure shown here defines fields
that can hold card-catalog information:

Struct catalog

char namef401;	 /* author name
char title[40};	 /* title *7

char pub[40};	 /* publisher
unsigned date;	 /* copyright date

unsigned char ed; / edition

card;

Here, catalog is the type name of the structure. It is not the name
of a variable. The only variable defined by this fragment is card. It is
important to understand that a structure decla'ation defines only a
logical entity, which is a new data type. It is not until variables of that
type are declared than an object of that type actually exists Thus,
catalog is a logical template; card has physical reality. Figure 10-1

W12 TEACH YOURSELF

V

— 0111	 ti

How the card
structure variable

appears in
memoxy

(assuming 2-byte
integers)

V

name	 40 bytes

title	 40 bytes
pub	 40 bytes E9date	 2 bytes

ed	 1 byte	 I

shows how this structure will appear it , memory (using 2-byte
integers).

To access a member of a structure, you must specify both the
structure variable name and the member name, separated by a period.
For example, using card, the following statement assigns the date
field the value 1776:

card.date = 1776;

C programmers often refir to the period as the dot operator. To print
the cop y right date, you can use a statement such as:

printf(copyrtght date: %u', card.date);

To input the date, use a scanf() statement such as:

scanf('%u". &card.date);

Notice that the & goes before the structure name, not before the
member name. In a similar fashion, these statements input the
authors name and output the title:

gets (card,narne);

printf('%s", card..Litle);

To access an individual character in the title field, simply index
title. For example, the following statement prints the third letter:

printf(%c', card.title[21);

Once you have defined a structure type, you can create additional
variables of that type using this general form:

struct tag—name varjist

STRUCTURES AND UNIONS 303
10.1 MASTER STRUCTURE BAS/CS

Assuming, for example, that catalog has been defined as shown
earlier in this section, this statement declares three variables of type
struct catalog:

struct catalog van, var2, var3;

This is why it is not necessary to declare any variables when the
structure type is defined. You can declare them separately, as needed.

A key concept to understand is that each instance of a structure
contains its own copy of the members of the structure. For example,
given the preceding declaration, the title field of varl is completely
separate from the title field of var2. In fact, the only relationship that
varl, var2, and var3 have with one another is that the y are all
variables of the same type of structure. There is no other linkage
aniong the three.

If you know you only need a fixed number of structure variables,
you do not need to specify the tag name. For example, this code
creates two structure variables, but the structure itself is unnamed:

struCt (

mt a;

char ch;

van, var2;

In actual practice, however, you will usualh' want to Specify the tag name.
Structures can be arrayed in the same fashion as other data types.

For example, the following structure definition creates a 100-element
array of structures of type cat-.)log:

struct catalog cat[100];

To access an individual structure of the array, you must index the
array name. For example, the following accesses the first structure:

cat [01

To access a member within a specified structure, follow the index
with a period and the name of the member you want. For example,
the following statement loads the ed field of structure 33 with the
value of 2:

cat[331.ed = 2;

304 TEA*4 YOURSU
V

Structures may be passed as parameters to functions just like any
other type of value. A function may also return a structure.

You may assign the contents of one instance of a structure to
another as long as they are both of the same type. For example, this
fragment is perfectly valid:

struct S_type

mt a;
float f;

varl, var2;

varl.a = 10;

varl.f	 100.23;

var2 = van;

After this fragment executes, var2 will contain exactly the same thing
as van.

1. This program demonstrates some ways to access structure
members:

#include <stdio.h>

struct S_type

mt 1;
char ch;

double ci;

char,,8O];

) s;

mt main(void)

printf('Enter an integer:);
scanf("%d:, &s.i);

printf(nter a character: };

scanf(' %c, &s.ch);

printf(Enter a floating point number:
scanf(%1f", &s.d);

printfEnter a String: };

STRUCTURES AND UN	 305
Jo.; M4STERS7RL.CTUREMSI

scanf("%s, s.str)

printf(%d %c %f %s" s.i, s.ch, s.d, s.str);

return 0;

2. When you need to know the size of a structure, you should use
the sizeof compile-time operator. Do not try to manually add up
the number of bytes in each field. There are three good reasons
for this. First, as you learned in the preceding chapter, using
sizeof ensures that your code is portable to different
environments. Second, in some situations, the compiler may
need to align certain types of data on even word boundaries. In
this case, the size of the structure will be larger than the sum of
its individual elements. Finally, for computers based on the
8086 family of CPUs (such as the 80486 or the Pentium), there
are several different ways the compiler can organize memory.
Some of these ways cause pointers to take up twice the space
they do when memory is arranged differently.

When using si.zeof with a structure type, you must precede
the tag name with the keyword strict, as shown in this program:

#include <stdio.h>

struct S_type
mt i;
char ch;
mt *p;
double d;

} s;

mt main(void)

printf(s_type is %d bytes long, sizeof(struct S_type));

return 0;

To see how useful arrays of structures are, examine an
improved version of the card-catalog program developed in the
preceding two chapters. Notice how using a structure makes it
easier to organize the information about each book. Also notice

396 TEACH YOURSELF

C

how the entire structure array is written and read from disk in a
single operation.

/ An electronic card catalog.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define MAX 100

jOt menu(void);
void display(int i);

void author_search(void);

void title_search(void);

void enter(void);

void save(void);

void load(void);

struct catalog

char name[80J;	 / author name

char title[80] ;	 1* title /

char pub[80]	 /* publisher *1

unsigned date;	 7* copyright date

unsigned char ed; / edition

cat(MAX);

mt top = 0; /* last location used *7

mt main(void)

jot, choice;

load; 7* read in catalog I

do
choice = menu;

switch(choice) C

case 1: enterH; /* enter books

break;

case 2: authorsearch(); 7* search by author *7

break;

case 3: titlesearchU; /* search by title

break;

case 4: saveM;

STRUCTURES AND UNIONS 307
70.1 MASTER STRUCrURE8AS/Cs

whilechoice!=5);

return 0;

Return a menu selection. *1
menu (voidj

mt i;

char str[80];

printf(Card catalog:\n)

printf("	 1. Enter\n');

printf(" 2. Search by Author\rj");

printf(" 3. Search by Title\n);
printf(4. Save catalog\n);
printf("	 5 Qutt\n);

do {

printf(Choose your selection:)
gets(str)

i = atoi(str);
printf(\n')

while(izl II

return i;

/* Enter books into database.
void enter(void)

mt i

char ternp80

for(i=top; i<MAX; i+f)
printf('Enter author name (ENTER to qutt)
gets (cat [i] .name)

if(! *cat [jJ name) break;
priritf ("Enter title:
gets)cat(i] title):

printfEnter	 •);
gets(cat[i] .pub)

priritfVEnter copyright date:);
gets (temp)

cat [i]date = (unsigned) atoi(temp);

30'8 TEACH YOURSELF

'C
printf(Enter edition:);
gets(temp)
cat(i).ed = (unsigned char) atoi(temp);

top = 1;

/ Search by author. 1

void author—search(void)

char name[80];
irtt i, found;

printf)Narne:);
get s)narne)

found = 0;
for(i=O; i<tOp; i++)

if(!strcmp(name,cat[i}.narne))
display(i)
found = 1;
printf (

if(!found) printf('Not Found\n');

7* Search by title. /

void title—search(void)

char title[80]
mt. 1, found;

printf(Tit1e:
gets (title)

found = 0;
for(i=0; i<tOp; i++)

if(!strcrrip)title, cat[i].title))
display(i)
found = 1;
printf (\n')

if)!fourid) printf(Not. Found\n);
0

STRUCTURES AND UNIONS 300
Q• 7 MASTER STRUCTURE BASICS

/* Display catalog entry. *7

void display(int 1)

printf(%s\r-i", cat(j].tjtle);

printf("by %s\n', cat(i].narne);
printf(' publjshed by %s\n", cat[i) pub);
printfVcopyright: %u, %u edition\n', cat (i].date,

cat[i] .ed)

/* Load the catalog file. *7
void load(void)

FILE *fp;

if((fp = fopen(catalog", "rb"))==NTJLL(

printf(catalog file not on disk.\n');
return;

if(fread(&top, sizeof top, 1, fp) = 1) { 7* read count
printf('Error reading count.\n");
exit (1)

if(fread(cat, sizeof cat, 1, fp) 	 1) { /* read data */
print f('Error reading catalog data. \n");
exit (1)

fclose(fp)

/* Save the catalog file. *1
void save (void)

FILE *fp

if((fp = fopen('catalog, "wb'))==NULL)

printf("Cannot open catalog file.\n");
exit(l)

3 1 TEACH YOURSELF
V

if(fwrite(&top, sizeof top, 1, fp)	 1) (/* write count 1
printf("Error writing courit.\n');
exit (1)

if(fwrite(cat, sizeof cat, 1, fp) 	 1) { 1* write data *7

printf("Error writing catalog data.\n');
exitl)

fclose(fp)

4. In the preceding example, the entire catalog array is stored on
disk, even if the array is not full. If you like, you can change the
load() and save() routines as follows, so that only structures
actually holding data are stored on disk:
7* Load the catalog file. *7
void load(void)

FILE *fp;

mt i;

if((fp = fopen)catalog", "rb"))==NTJLL)

printf)'Catalog file not on disk.\n');
return;

if(fread(&top, sizeof top, 1, fp) != 1) { /* read count

printf(Error reading count\n);
exit(l)

for(i=O; i<top; i++) 7* read data */
if(fread(&cat[jI, sizeof(struct catalog), 1, fp)' 	 1)
printf('Error reading catalog data.\n');
exit(l);

fclose)fp)

STRUC11JRES AND UPONS 311
tot MASTER STRUCTURE BASICS

I save the catalog file. */

void save (void)

FILE *fp;

in i;

if((fp = fopen(catalog°, wb'))==NULL)

printf(Cannot open catalog file.\n');

exit (1)

if(fwrite(&top, si7of top, 1. fp) != 1) { /* write count */
printf("Error .'.ting count.\n');

exit (1)

for(i=O; i<=top; i++) / write data */
if(fwrite(&cat[i), sizeof(struct catalog), 1, fp)'= 1)

printf("Eror writing catalog data.\n")

exit) 1)

fclose(fp)

5. The names of structure members will not conflict with other
variables using the same names. Because the member name is
linked with the structure name, it is separate from other
variables of the same name. For example, this program prints
10 100 101 on the screen.

#include <stdio.h>

mt main(void)

struct s_type

mt i;

j ut j;

} s

iFit i;

i = 10;

3 1 TtAcHyouIsfu
V

si = 100;
s_i	 101;

printf("%d %d %d", i, si, s.j);

return 0;

F

The variable i and the structure member i have no relationship
to each other.

6. As stated earlier, a function may return a structure to the calling
procedure. The following program, for example, loads the
members of varl with the values 100 and 123.23 and then
displays them on the screen:

*include <stdio.h>

struct s_type

mt j;

double d;

struct s_type f(void);

mt main(void)

struct s_type van;

van = f;
pnintf(%d %f', varl.i, varld);

return 0;

stuct s_type f(void)

Struct s_type temp;

temp.i = 100;

temp.d = 123.23;

return temp;

STHUCTURES NU UMOW5 313
10.1 MASMRSMAMAWAUM 'V

7. This program passes a structure to a function:

#include <stdio.h>

struct s_type

mt i;

double d;

void f(struct s_type temp);

lot main(void)

struct s_type van;

varl.i = 99;

varl.d = 98.6;

f(vanl)

return 0;

void f(struct s_type temp)

printf(%d %f", temp.i, ternp.d);

). In Chapter 9, you wrote a program that created a telephone
directory that was stored on disk. Improve the program so that it
uses an array of structures, each containing a person's name,
area code, and telephone number. Store the area code as an
integer. Store the name and telephone number as strings. Make
the array MAX elements long, where MAX is any convenient
value that you choose.

2. What is wrong with this fragment?

struct s_type

jot i

314 TEACH YOURSELF

V

long 1;

char strt801;

} s;

i = 10;

3, On your own, examine the header file STDJO.H and look at how
the FILE structure is defined.

ECLARE POINTERS TO STRUCTURES
Mhow

It is ver' common to access a structure through a pointer. You declare
a pointer to a structure in the same wa y that you declare a pointer to
any other type of variable. For example, the following fragment
defines a structure called s_type and declares two variables. The first,
s, is an actual structure variable. The second, p, is a pointer to
structures of type s_type.

struct s_type

inC 1;
char	 L8Ol;

Given this definition, the following statement assigns to p the
address of s:

P =

Now that p points to s you can access s through p. However, to access
an individual element of s using p you cannot use the dot operator.
Instead, you must use the arrow operator, as shown in the following
example:

p->i = 1;

STRUCTURES AND UNIONS 315
10.2 DECLARE POINTERS TO STRUCTURES

This statement assigns ihe value 1 to element i of 8 through p. The
arrow operator is formed using a minus sign followed by a greater-than
sign. There must he no spaces between the two.

C passes structures to functions in their entirety. t .'.ever, if the
structure is very large the passing of a structure can cdusc a
considerable reduction in a program's execution speed For this
reason, when working ih large structures, you might want to pass a
pointer to a structure in situaucns that allow it instead of passing the
structure itself.

When accessing a member using a structure variable, use the dot operator.
When accessing a member using a pointer, use the arrow operator.

1. The following program illustrates how to use a pointer to a
structure

#include <stdio.h>

#irtclude <stririg.h>

struct s.type C

mt i;

char str[80J;

S,	 P.

it main (void)

P =

s.i = 10; /' th i s is functionally the same */

p->i	 10; 1* as this *.1

strcpy(p->srr,	 I like struct.res. ")

printf('%d %d %s', s.i, p->i, p->str);

return 0;

3 11 TEACH YOURSELF
I,

2. One very useful application of structure pointers is found in Cs
time and date functions. Several of these Functions use a pointer
to the current time and date of the system. The time and date
functions require the header file TIME.H, in which a structure
called tm is defined. This structure can hold the date and time
broken down into its elements. This is called the broken-down
time. The tm structure is defined as follows:

struct tm

mt tmsec;	 /* seconds, 0-61 */

mt tm_mm;	 / minutes, 0-59; */

mt tmhour; /* hours, 0-23 */

mt tm_mday; 1* day of the month, 1_31*/;

mt tm_non; / months since Jan. 0-11 */

mt. tm_year: / years from 1900 */

mt tm_wday; I' days since Sunday, 06*i

mt trn_yday; / days since Jan 1. 0-365 */

mt tm_isdst; /* Daylight Saving Time indicator

'Fhe value of tm_isdst will be positive if Daylight Saving Time is
in effect, zero if it is not in effect, and negative if there is no
information available. Also defined in TIME.H is the type
time _t. It is essentially a long integer capable of representing
the time and date of the system in an encoded implementation-
specific internal format. This is referred to as the calendar time.
To obtain the calendar time of the system you must use the
time() function, whose prototype is:

time_t time(time_t *systime);

The time() function returns the encoded calendar time of the
system or -1 if no system time is available. It also places this
encoded form of the time into the variable pointed to by systi me.
However, if systtine is null, the argument is ignored.

Since the calendar time is represented using an implementation-
specified internal format, you must use another of C's time and
date functions to convert it into a form that is easier to use. One
of these functions is called localtime(). Its prototype is

struct tm iocaltime(time_t *systime);

STRUCTURES AND UNIONS 317
10.2 DECLARE POINTERS TO STRUCTURES "

The localtime() function returns a pointer to the broken-down
form of systhne. The structure that holds the broken-clown time
is internally allocated by the compiler and will be overwritten
by each subsequent call.

This program demonstrates time() and localtime() by
displaying the current time of the system:

#include <stdio.h>

#include <time.h>

mt main(void)

struct.tm *SYStime.

time_t t;

= time(NIJLL);

systime = localtime(&t);

printf(Time is %.2d:%.2d:%.2d\n, systime->tm hour
syStirne->tmmjn, systime->trnsec)

printf("Date: %.2d/%.2d/96.2d' systime->trn_mon+1,

syst ime->tm_mday, systirne->trn year)

return 0;

Here is sample output produced by this program:

Time is 10:32:49
Date: 03/15/97

EXERCISES

I. Is this program fragment correct?

struct S_type

mt a;

mt b;

s, p

3 11 TEACH YOURSELF
V

mt main(void)

P

p.a = 100;

2. Another of C's time and date functions is called gmtimc(). as
prototype is

struct Em 'gmtime(time_t * time);

The gmtimc() function works exactly like localtime(),
except that it returns the Coordinated Universal Time (which is,
essentiall y , Greenwich Mean Time) of the system. Change the
program in Example 2 Sc) that it displays both local time and
Coordinated Universal Time. (Note: Coordinated Universal
Time may not be available on your system.)

I JAIORK WITH NESTED STRUCTURES
WW
So far, we have only been working with structures whose members
consist solely of C's basic types. However, members can also be other
structures. These are referred to as nested structures. Here is an
example that uses nested structures to hold information on the
performance of two assembl y lines, each with ten workers

#define NUM-ON-LINE 10

struct worker C

char name[80l;

mt avg_units_per_hour;

jut avg_errs_per_hour;

struct earn-line

jut product_code;

double material cost;

STRUCTURES AND UNIONS 319
103 WORK W1THNESTED STRUCTURES

struct worker wkers(NUM_ON_LINE);
I linel, line2;

To assign the value 12 to the avg_units .. per _hour of the second
wkers structure of linel, use this statement:

linel.wkers[1J .avg_units_per_hour = 12;

As you see, the structures are accessed from the outer to the inner.
This is also the general case. Whenever you have nested structures,
you begin with the outermost and end with the innermost.

EXAMPLE

1. A nested structure can be used to improve the card catalog
program. Here, the mechanical information about each book is
stored in its own structure, which, in turn, is part of the catalog
structure. The entire catalog program using this approach is
shown here. Notice how the program now stores the length of
the book in pages.

/* An electronic card catalog--3rd Improvement. *1

#include <stdio.h>

#include <string.h>

*include <stdlib.h>

#define MAX 100

mt menu(void);

void display(int i);

void author search(vojcj);

void title search(vojd)

void enter(vojd);

void save(void);

void load(vojd);

struct book—type

unsigned date;	 / copyright date *1

unsigned char ed; /* edition /
unsigned pages;	 / length of book i

320 TEACH YOURSELF

V

struct catalog

char name(803; 1* author name I

char titleEBO]; / title */

char pub[80];	 /* publisher */

struct book-type book; J* mechanical info
*/

) cat(MAX];

mt top = 0; /* last location used */

mt main(void)

mt choice;

load)); / read in catalog I

do

choice = menu;

switch(choice)
case 1: enter; / enter books */

break;

case 2: author-search; 1 search by author */

break;
case 3: title_searchO; /* search by title */

break;

case 4: save));

) while(choice=5);

return 0;

/ Return a menu selection.

menu (void)

mt i;

char strf801;

printf(I Card catalog:\n);

printf(1. Enter\n');

printf(I 2. Search by Author\n");

printf(* 3. Search by Title\n);

printf(4. Save catalog\n);

printf(' 5. Quit\n);

do

STRUCTURES AND UNIONS 321
103 WORK WITH NESTED STRUCTURES

printf("Choose your selection:
gets(str)

i = atoi ($tr)

printf (\ri")

) while(i<]. 11 i>5)

return i;

II

1* Enter books into database. *
void enter(void)

mt 1;

char tempf80);

for(i=top; i<MAX; i++)

printf(Enter author name (ENTER to quit)
gets (cat{i] .name);

if(!*cat[j J.name) break;
printf y Enr title:)

gets(cat[i] .title)
printf(Enter publisher:);
gets(cat(i .pub)

printf('Enter copyright date: (;
gets(temp);

cat (i).book.date = (unsigned) atoi(ternp);
printf(Enter edition:

gets(temp);

cat[i) .book.ed	 (unsigned char) atoi (ternp
printf (Enter number of pages:
gets (tamp)

catEij.book.pages = (unsigned) atci);emp

top = i;

/ Search by author. */

void author search (void)

char name[80];

mt i, found;

printf)Name:

gets(name)

21

322 TEACH YOURSELF

V

found = 0;

for(i=0; i<tOp; 14+)
if (!strcrup(name, car[i] name))

display(i

found = 1;

printf ('\n")

if(!found) printf(Not Found\n");

II

/* Search by title. */

void title-search(void)

char title[80];

mt i, found;

printf	 Tit1e: •)

gets(title);

found = 0;

for(i=0; i<top; j++)

if) !strcmp{tit]e, cat(i) .title)

display) 1)

found = 1;

printf('\n)

if(!found) printf("Not Found\n");

1 Display catalog entry. *1

void display(int i)

printf(%s\n, cat[i].tit]-e);

printfVby %\n', cat[i].name);
printfVPublished by %s\ri, cat[i] pub);

printf(Copyright: %u, edition: %u\n,

cat[i].book.date cat[i].book.ed);

printfVPages: %u\n, cat(i1 .book.pages);

/ Load the catalog file. */

SThUC1UES AND UNKINS 323
70.3 WORK VlTh NESTED STRUCTURES

void load (void)

FILE *fp;

if((fp = fopen("catalog, "rb'))=NULL)

printf("Catalog file not on disk.\n');

return;

'I

if(fread(&top, sizeof top, 1, fp) != 1) { / read count

printf("Error reading count.\n');

exit(l);

if(fread(cat, sizeof cat, 1, fp)	 1) { 1* read data */

printf("Error reading catalog data.\n');

exit (1)

fclose(fp)

/* Save the catalog file. *1

void save(void)

FILE *fp;

if((fp = fopen("catalog', wb))==NULL)

printf("Cannot open catalog file.\n);

exit (1)

if(fwrite(&top, sizeof top, 1, fp) != 1) { /* write count *1

printf(Error writing count.\n');

exit(l)

if(fwrite(cat, sizeof cat, 1, fp) 	 1) { 1* write data. */

printf("Error writing catalog data.\n);

exit(l)

324 TEACH YOURSELF

V	 .

fclose(fp)

EXERCISES

I Improve the telephone-directory program you wrote earlier in
this chapter so that it includes each person's mailing address.
Store the address in its own structure, called address, which is
nested inside the directory structure.

	

I	 UNDERSTAND BIT-FIELDS
C allows a variation on a structure member called a bu-Jreld. A bit-held
is composed of one or more hits. Usiag a bit-field, you can access by
name one or more bits within a b y te or word. To tIe. line. a hit-field use
this general form:

type name: size;

Here, tijpe is either mt or unsigned. If you specify a signed bit-field,
then the high-order hit is treated as a sign bit, if possible. The number
of hits in the field is specified by size. Notice that a colon separates the
name of tin: hit-field from its size in bits,

Bit-fields are useful when you want to pack information into the
smallest possible. space. For example, here is a structure that uses
lot-fields to 1101(1 inventory information-

tuct b_ type

unsigned department: 3; / up to 7 departments */

unsiqned inLe.uk : 1:	 /* I if in stock 0 if out * /

.risi gnd hnckrd.:'d: 1; /	 1 if backordered, 0 if not 	 /

STRUCTURES AND UNIONS 325
104 UNDERSTAND BIT-FIELDS

unsignedlead_time: 3
	 / order lead time in months "•1

mv I MAX_ITEM]

In this case one byte can he used to store information on an inventory
item that would normally have taken tour bytes withoLit the use of
hit-fields. You refer to a bit-field just like any other member of a
structure. The following statement, for example, assigns the value . to

the department field of item 10:

nv[9] department	 3;

The following statement determines whether item 5 is out of stock:

if(!inv]4).iflstoCk) printf('Out of Stock");

else printf ('li:

It is not necessary to completely define all hits within a byte or
word. For example, this is perfectly valid:

struct b_type

mt a: 2;

mt b: 3;

The C compiler is free to store hit-fields as it sees fit. However,
usually the compiler will automatically store hit-fields in the smallest
unit of memory that will hold them. Whether the bit-fields are stored
high-order to low-order or the other way around is implcnieritatiorl-
dependent. I lowever, many compilers use high-order to low-order.

You can mix bit-fields with other types of members in a structure's
definition. For example, this version of the inventory structure also

includes room for the name of each item:

struct b_type C

char name[40];

unsigned department: 3

unsigned instock: 1;

unsigned backordered:

unsigned lead-time: 3;

inv[M.AX_ITEII];

7* name of item /

/ up to 7 departments "I

7* 1 if in stock, 0 if not

7* 1 if backordered, 0 if not

7* order lead time in months */

Because the smallest addressable unit of memory is a byte, you

(:aflnOt obtain the address of a hit-field variable.

326 WACH YOURSELF
V

Bit-fields are often used to store Boolean (true/false) data because
they allow the efficient use of memory—remember, you can pack
eight Boolean values into a single byte.

1. It is not necessary to name every bit when using hit-fields. Ucre,
for example, is a structure that uses bit-fields to access the first
and last bit in a byte,

struct b_type

unsigned first: 1;

mt : 6;

unsigned last: 1;

The use of unnamed hit-fields makes it easy to reach the hits
you are interested in.

2. To see how useful hit-fields can be when working with Boolean
data, here is a crude simulation of a spaceship flight recorder.
By packing all the relevant information into one byte,
comparatively little disk space is used to record a flight.

/* Simulation of a 100 minute spaceship
flight recorder.

*1

#include <stdlib.h>

#include <stdio.h>

1* all fields indicate OK if 1,

malfunctioning or low if 0

struct telemetry

unsigned fuel: 1;

unsigned radio: 1;

unsigned tv: 1;

unsigned water: 1;

unsigned food: 1;

unsigned waste: 1;
flt_r.ecc;

void displaw (truct telemetry i);

S1HUCIUfiES AND UNIONS 327
104 UNDERSTAND BIT-FIELDS

mt main(void)

FILE *fp;

mt 1;

if((fp = fopen(flight"	 wb"))NULL)

printf(CannOt open file.\n);

exit (1)

1* Imagine that each minute a status report of

the spaceship is recorded on disk.

*1

for(i0; i<lOO; i++)

flt_recd.fuel = rand()%2;

flt_recd.radiO = rand()%2;

flt_recd.tv = randQ%2;

flt_recd.water = randO%2; -

fltrecd.fOod = randO%2;

flt_recd.waste = rand()%2;

display(flt.reCd)
fwrite(&flt_recd, sizeof flt_recd, 1, fp);

fclose(fp);

return 0;

void display(Struct telemetry i)

if(i.fuel) printf(Fuel OK\n);

else printf('Fuel low\n');
if(i.radio) printf(Radi(OK\n);

else printf('Radio failure\n);

if(i.tv) printf("TV system OK\n);
else printf(-TV malfunctiori\fl");

if(i.water) printf('Water supply OK\n);

else printf('Water supply low\n);

jf(i.food) printf("Food supply OK\n);

else printf (Food supply low\n);
if(i.raste) printf('Waste containment OK\n');

328 TEACH YOURSELF

V c

te con tai nn,enc failure'\r)-
mt I I"

I) pending on how your compiler packs the hit-fields, a ftc r you
I In this program, the file on disk may be as short as 100 bytes
long Now try the progr;i m after modifying the tclemctryr' u rc as shown here

'r:-t 'eiernetry
hat fuel;

Lar radio;

chat tV;

char Water;

char rood;

Char waste,

f 1 t_recd;

Ii this version no bit-fields are used and the resulting file is at
east 600 b y tes long. As you can see using bit-fields can provide

substantial space savings.

EXERCISES

Write a program that creates a structure that contains three
hit-fields called a b, and c. Make a and b three bits long and
make c two hits long. Next, assign each a value and display the
valtics

2 Mr'ifl\' compilers supply library functions that return the status
of various hardware devices, such as a serial port or the
keyboard by encoding information in a hit-by-hit fashion. On
your own consult the user's manual for your compiler to sec if
it Supports such functions. If it does, write some programs that
read and decode the status of one or more devices,

STRUCTURES AND UNIONS 329
105 CREATE UN1O/VS

nnnm
^CREATE UNIONS

In c:, a union is a single piece of memory that is shared by two or more
variables, The variables that share the memory may he of different
types. However, only one variable ma y be in use a 1	one time A
union is defined much like a structure. Its general fbrrn is

union tag-name
type member 7;
type membe
type member3

type memberW
I variable-names;

Like a structure, either the tag-name or the variable-names may he
missing. Members may he of any valid C data type. For example, here
is a union that contains three elements: an integer, a character array,
and a double:

union U_type

mt i;
char c[2];

double d;

) samples

This union will appear in memory as shown in Figure 10-2.

dHow an instance	 I—c[OJ 1- C[11-1
of the union

u_type appears
in memory	 L

(assuming 2-byte
Ints and 8-byte

doubles)
V

3*0
V c

To access a member of a union, use the dot and arrow operators just

as you do for structures. For example, this statement assigns 123.098

to d of sample:

sampled	 123.098:

If you are accessing a union through a pointer, you must USC the arrow

operator. For example, assume that p points to sampk. The following

statement assigns I the value 101:

p->j = 101:

It is important to understand that the size of a union is fixed at

(Qfl1pllC time and is large enough to accommodate the largest member

of the Union. Assuming 8-byte doubles, this means that sample will

be 8 bytes long. Even if sample is currently used to hold an mt value,

it will still occupy 8 bytes of memory. As is the case with structures,

you should use the sizcof compile-time operator to determine the size
of a union You should not simply assume-that it will he the size of the
largest clement, because in some environments, the compiler may pad

the union so that it aligns on a word boundary.

I. Unions are very useful when you need to interpret data in two
or more different ways. For example, the encode() function

shown below uses a union to encode an integer by swapping its
two low-order bytes. The same function can also be used to
decode an encoded integer by swapping the already exchanged

bytes back to their original positions.

#iriclude <stdio.h>

mt encode(int 1):

mt main(void)

mt 1;

1 = encode(lO); /* encode it /

STRUCTURES AND UNIONS 331
105 CREATE UNIONS

printf(10 encoded is %d\n, 1);

i = encode(i); I decode it /

printf('i decoded is %d, 1);

return 0;

Encode an integer, decode an encoded integer.

mt encode(int 1)

union crypt type

mt num;

char c[2];

crypt;

unsigned char ch;

crypt.nurn = 1;

/ swap bytes *1

ch = crypt.c[0J;

crypt.c[0] = crypt.c[1);

crypt.c(l] = ch;

/ return encoded integer *1

return crypt.num;

The program displays the following:

10 encoded is 2560
i decoded is 10

2. The following program uses the union of structure Containing
hit-fields and a character to display the binary representation of
a character typed at the keyboard:

1* This program displays the binary code for a

character entered at the keyboard.

*include <stdio.h>

linclude <conio.h>

struct sample

unsigned a: 1;

unsigned b: 1;

332 TEACH YOURSELF

C

unsigned c: 1;

unsigned d: 1;

unsigned e: 1;

unsigned f: 1;

unsigned g: 1;

unsigned h: 1;

union key__r.ype

char ch;

struct sample bits;

key;

jot main(void)

printf(Strike a key;

key.ch	 qetcheU;

printf('\nBinary code is:	 1:

if lkey.biLs.h(print.t (1

else printt(O ");

ifkey.bits.g) prinLf(l

else prinLf ("0

if(key,hits.f) printf("l

else printfVO

if(key.hits.e) printfvl	 (;

else printf("0 ");

if(key.biLs.d(printf("l

else printt ("0

if(key.bits.C) prinLf('l
U)

else priritfY'0 "I;

if(key.bitSb) printf('l U);

else printf ("0 ")

if(key.bits.a) printfvl

else printf("0 ");

return 0;

II

When a ke y is pressed, its ASCII code is assigned to key.ch,
which is a char. This data is reinterpreted as a series of hit-(iclds,
which allow the binary representation of the key to he
displayed. Sample output is shown here:

STRUCTURES AND UNIONS 333
W.5 CREATE UNIONS

Strike a key: X
Binary code is: 0 1 0 11 0 0 0

EXERCISES

• Using a union composed of a double and an 8-byte character
array, write a function that writes a double to a disk tile, a
character at a time. Write another function that reads this value
from the tile and reconstrLlcts the value using the same union.
(Note: If the length of a double tor your compiler is not ft bytes,
use an appropriately sized character ;errav.

2. Write a program that uses a on ion to convect an mt into a long.
Demonstrate that it works.

Jp
MasteLr
Ma

is
SkEflls Check

At this point you should he able to answer these questions and
perform these exercises:

• In general terms what is a structure, and what is a union?

2. Show how to create a structure type called s_type that corita ins
these five members:

char di;

float ci;

mt 1;
char str[80];

double balance;

Also, define one variable called s_var [15mg this structure.

3 What is wrong with this r;lgment?

struet s_type
mt a;

334 TEti VOUS(LF
'V

char b;

float bal;

myvar, *p;

p = &rnyvar;

p.a = 10;

4. Write a program that uses an array of structures to store
employee names, telephone numbers, hours worked, and
hourly wages. Allow for 10 employees. Have the program input
the information and save it to a disk file. Call the file EMP.

5. Write a program that reads the EMP file created in Exercise 4
and displays the information on the screen.

6. What is a bit-field?

7. Write a program that displays individually the values of the
high- and low-order bytes of a short integer. (Hint: Use a union
that contains as its two elements a short integer and a two-byte

character array.)

This section cecks how well you have integrated the material in
this chapter witH that from earlier chapters.

1. Write a program that contains two structure variables defined as:

struct s_type

mt i;

char ch;

double d;

I van, var2;

Have the program give each member of both structures initial
values, but make sure that the values differ between the two
structures. Using a function called struct_swap(), have the
program swap the contents of varl and var2.

2. As you know from Chapter 9, fgetc() returns an integer value,
even though it only reads a character from a file. Write a

STIC1UfI AND tJNIOSIS 335
10.5 CPfArE UNIONS

program that copies one flic to another. Assign the return value
of fgctc() to a union that contains an integer and character
member. Use the integer element to check for EOF. Write the
character element to the destination file. Have the user specify
both the source and destination file names on the command line.

3. What is wrong with this fragment?

struct s_type
mt a;
mt b: 2;

mt C: 6;

var;

scanf('%d, &var);

In C, as you know, you cannot pass an array to a function as a
parameter. (Only a pointer to an ay can be passed.) However,
there is one way around this restriction. If you enclose the array
within a structure, the array is passed using the standard
call-by ';lue convention. Write a program that demonstrates
this by passing a string inside a structure to a function, altering
its contents inside the function and demonstrating that the
original string is not altered after the function returns.

11

9
NI

Advanced Data Types
and Operators

chapter obJective.

11.1 Use the storage class specifiers

11.2 Use the access modifiers

11.3 Define enumerations

11.4 Understand typedel

11.5 Use Cs bitwise operators

11.6 Master the shirt operators

11.7 Understand the? operator

11.8 Do more with the assignment operator

11.9 Understand the comma operator

11.10 Know the precedence summary

337
V

22

338 TEACH YOURSELF

V

T

E C language includes a rich set of data type modifiers that
llow you to better fit the type of a variable to the information
 will be storing. Also, C includes a number of special
perators that permit the creation of very efficient routines.
oth of these items are the subject of this chapter.

Review

Skills Check

Before proceeding, you should be able to answer these questions
and perform these exercises:

1. Write a program that uses an array of structures to hold the
squares and cubes of the numbers 1 through 10. Display the
contents of the array.

2. Write a program that uses a union to display as a character the
individual bytes that make up a short integer entered by the
user.

3. What does this fragment display? (Assume two-byte ints and
eight-byte doubles.)
union

mt i;
double d;

pririrf(d,	 izeofuvar);

4. Wiat is wrong with this fragment?

struct

il-it I:

char strRQ];

double balance;
svar;

svar->i = 100;

5. What is a hit-field?

ADVANCED DATA TYPES AND OPERATORS 339
11.1 USE THE STORAGE CLASS SPEC/HERS

ImIUSE THE STORAGE CLASS SPECIFIERS

C defines four type modifiers that affect how a variable is stored. They are

auto
extern
register
static

These specifiers precede the type name. Let's look at each now.
The specifier auto is completely unnecessary. It is provided in C to

allow compatibility with its predecessor, B. Its use is to declare
au(ornatw variables. Automatic variables are simply local variables,
which are auto by default. You will almost never see auto used in any
C program.

Although the programs we have been working with in this book are
fairly short, programs in the real world tend to be quite long. As the
size of a program grows, it takes longer to compile. For this reason, C
allows you to break a program into two or more flies. You can
separately compile these files and then link them together. This saves
compilation time and makes your projects easier to work with. (The
actual method of separate compiiatior and linking will be explained in
the instructions that accompany your compiler.) When working with
multiple source files there is, however, one issue that needs to be
addressed. As a general rule, global data can only be defined once.
However, global data may need to be accessed by two or more files
that form a program. In this case, each source file must inform the
compiler about the global data it uses. To accomplish this you will
need to use the keyword extern. To understand why, consider the
followcng program, which is split between two flies:

FILE #1:

*include <stdio.h>

mt count;

void fl(void);

mt main(void)

mt i;

340 TEACH YOURSELF
V

ho; /* set count's value */

for(i=O; i<COUflt; i++)

printf("%d ", 1);

return 0;

FILE #2:

#include <stdlib.h>

void l(void)

count = rand I)

If you try to compile the second file, an error will be reported because
count is not defined. However, you cannot change FILE 11 2 as liil[ows:

#nc1ude <stdlib.h>

mt count;

void fl(void)

count = rand();

If you declare count asecond time, many linkers will report a
duplicate-symbol error, which means that count is defined twice, and
the linker doesn't know which to use.

The solution to this problem is C's extern specifier. By placing
extern in front of count's declaration in FILE #2 you are telling the
compiler that count is an integer defined elsewhere. In other words,
using cxtcrn informs the compiler about the existence and the type of
the variable it precedes, but it does not cause storage for that variable
to he Allocrited. The correct version of FILE 2 is

#inciude <stdlib.h>

ex!-ern tnt count;

void fl(void)

ADVANCED DATA TYPES AND OPERATORS 341
iLl USE THE SOAACE CLASS SPECIFIERS

count = randU;

Although rarely done, it is not incorrect to use extern inside a
Function to declare a global variable defined elsewhere in the same
file. For example, the following is valid;

#include <stdio.h>

mt count;

mt main(void)

extern mt coun ; / this refers to global count

count = 10;
printf("%d, count);

reLurn 0;

The reason you will rarely see this use of extern is that it is
redundant. Whenever the compiler encounters a variable name not
defined by the function as a local variable, it assumes that it is global.

One very important storage-class specifier is register. When you
specify a register variable you are telling the compiler that you want
access to that variable to be as fast as possible. In early versions of C,
register could only be applied to local variables (including formal
parameters) of types mt or char, or to a pointer type, It caused the
variables to be held in a register of the CPU. (This is how the name
register came about.) By using a register of the CPU, extremely fast
access times are achieved. In modern versions of C, the definition of
register has been broadened to include all types of variables and the
requirement that register variables must he held in a CPU register
was removed. Instead, the ANSI C standard stipulates that a register
variable will he stored in such a way as to minimize access time. In
practice, however, this means that register variablet' type mt and
char continue o he held in a CPU register—this is still the fastest way
to access them;

No matter what storage method is used, only so many variables
can be granted the fastest possible access time. For example, the CPU
has a limited number of registers. When fast-access locations are

342 TEACH YOURSar

V

exhausted the compiler is free to make register variables into regular
variables. For this reason, you must choose carefully which variables
you modify with register.

One good choice is to make a frequently used variable, such as the
variable that controls a loop, into a register variable. The more times a
variable is accessed, the greater the increase in performance when its
access time is decreased. Genprally, you can assume that at least two
variables per function can be truly optimized for access speed.

Important: Because a register variable may be stored in a register of
the CPU, it may not have a memory address. This means that you
cannot use the & to find the address of a register variable.

When you use the static modifier, you cause the contents of a local
variable to be preserved between function calls. Also, unlike normal
local variables, which are initialized each time a function is entered, a
static local variable is initialized only once. For example, take a look
at
this program,

#include <stc3ioh>

void f (void);

mt main (void)

mt i;

for(i=O; i 'zlO; i++) f;

return 0;

void f(void)

static jot count = 0;

Count +

printf(count is %d\n', count);

which displays the following output:

count is 1
count is 2

ADVANCED DATA TYPES AND OPERATORS 343
USE THE SOPAGE CLASS SPECIFIERS

count is 3
count is A
count is 5
count is 6
count is 7
count is B
count is 9
count is 10

As you can see, Count retains its value between function calls. The

advantage to using a static local variable over a global one is that the

static local variable is still known to and accessible by only the
function in which it is declared.

The static modifier may also be used on global variables. When it is,
it causes the global variable to be known to and accessible by only the
functions in the same file in which it is declared. Not only is a function
nOt declared in the same file as a static global variable unable to

access that global variable, it does not even know its name. This
means that there are no name conflicts if a static global variable in

one file has the same name as another global variable in a different file
of the same program. For example, consider these two fragments,
which are parts of the same program:

FILE #1	 FILE #2

jOt count;	 static mt count;

count = IC;	 count = 5;

printt('%d" count);	 printf(%d" count);

Because count is declared as static in FILE #2 no name conflicts

arise. The printf() statement in FILE #1 displays 10 and the printf()

statement in FILE #2 displays 5 because the two counts are

different variables

EXAMPLES

To get an idea about how much faster access to a register
variable is, try the following program. It makes use of another of

C's standard library functions called clock(), which returns the

344 TEACH YOURSELF
V

numberof system clock ticks since the program began
execution. It has this prototype:

clock_t clock(voicj);

It uses the TIME.H header. TIME.H also defines the clock
type, which is more or less the same as long. To time an event
using clock(), call it immediately before the event you wish to
time and save its return value. Next, call it a second time alter
the event finishes and subtract the starting value from the
ending value. This is the approach used by the program to time
how long it takes two loops to execute. One set of loops is
controlled by a register variable, the other is controlled by a
non-register variable,

#include <stdio.h>
#include <tirne.h>

mt. i; /* This will not be transformed into a
register variable because it is global.- /

mt main(void)

register mt j;

mt k;
clock_t start, finish;

start = clock;
for(k=0; k<100; k++)

for(i=0; 1<32000; i++)
finish	 clock();
print f('Non-regjster loop: %ld ticks\n', finish - start);

start = Clock();
for(k=O; k<100; k++)

for(j=0; j<32000; j++);
finish = clock();
pri ntf(Register loop: %ld ticks\n', finish - start);

return 0;

ADVANCED DATA TYPES AND OPERATORS 345
iLl USE THE STORAGE CLASS SPECIFIERS

For most compilers, the register-controlled loop will execute
about twice as fast as the non-register controlled loop.

The non-register variable is global because, when feasible,
virtually all compilers will automatically convert local variables
not specified as register types into register typus
automatic optimization. If you do not see the predicted resul'ts,
it may mean that the compiler has automatically optimized i
into a register variable, too. Although you can't declare global
variables as register, there is nothing that prevents a compiler
from optimizing your program to this effect. If you don't see
much difference between the two loops, try creating extra global
variables prior to i so that it will not be automatically optimized.

2 As you know, the compiler can optimize access speed for
only a limited number of register variables in any one function
(perhaps as few as two). However, this does not mean that your
program can only have a few register variables. Because of the
way a C program executes, each funCtion may utilize the
maximum number of register variables. For example, for the
average compiler, all the variables shown in the next program
will be optimized for speed:

#include <stdio.h>

void f2(void);
void f(void);

lilt main (void)

register mt a, b;

void f(void)

register mt i,

346 TEACH YOURSELF

V

void f2(void)

register mt. j, k;

3. Local static variables have several uses. One is to allow a
function to perform various initializations only once, when it is
first called. For example, consider this function:

void myfunc(void)

static mt first = 1;

if(first) (/* initialize the system

rewind(fp)

a = O,

bc = 0;
fprintf(-System initialized);

first = 0;

Because first is static, it will hold its value between calls. Thus,
the initialization code will he executed only the first time the
function is called.

4. Another interesting use for a local static variable is to control a
recursive function. For example, this program prints the
numbers 1 through 9 on the screen:

*include <stdio.h>

void f (void)

mt main (void)

f()

return 0;

ADVANCED DATA TYPES AND OPERATORS 347
11.1 USE THE STORAGE CLASS SPECIFIERS

void f(void)

static mt stop=O;

StOp++;

if(stop==lO) return;

printf('%d	 stop);

fO; /* recursive call */

Notice how stop is used to prevent a recursive call to f() when
it equals 10.

5. Here is another example of using extcrn to allow global data to
he accessed by two files:

FILE #1:

#include <stdio.h>

char str[80J;

void getnarne (void);

mt main(void)

getnaine ;

printf(Hello %s', str);

return 0;

FILE #2:

#include <stdio.h>

extern char str[80);

void getname (void)

printf("Enter your first name:);
gets(str)

II

348 TEACH YOURSELF

V

EXERCISES

I Assume that your compiler will actually optimize acce&s tune Of

only two register variables per function. In this program, which
two variables are the best ones to be made into register variables?

#inclucle <sLdio.h>

*include <conio.h>

mt main(void)

int 1, j, k, in;

do
printf("Enter a value:

scant("%d", &i);

in = 0;
for(j=0; j<i; j-s-+)

for(k=0; k<100; k++)

m = k + in;

} wh±le(i>0);

return 0;

2. Write a program that contains a function called sum—it() that

has this prototype:

void sum—it (mt value);

Have this function use a local static integer variable to maintain
and display a running total of the values of the parameters it is
called with. For example, if sum—it() is called three times with

the values 3, 6, 4, then sum—it() will display 3, 9, and 13.

3. Try the program described in Example 5. Be sure to actually Use
two files. If you are unsure how to compile and link a program
consisting of two files, check your compiler's user manual.

4. What is wrong with this fragment?

register lot 1;
mt. *p;

P=

ADVANCED DATA TYPES AND OPERATORS 349
112 USE WE ACCESS MODIFIERS

USE THE ACCESS MODIFIERS

C includes two type modifiers that affect the way variables are
accessed by both your program and the compiler. These modifiers are
const and volatile. This section examines these Lype modifiers.

lfyou precede a variable's type with const, you prevent that
variable from being modified by your program. The variable may
he given an initial value, however, through the use of an initialization
when it is declared. The compiler is free to locate const variables
in ROM (road-only memory) iii environments that support it. A
const variable may also have its value changed by hardware-
dependent means.

The const modifier has a second use. It can prevent a function
from rnodif'ing the object that a parameter points to. That is, when a
pointer parameter is preceded by const, no statement in the function
can modify the variable pointed to by that parameter.

When you precede a variables type with
'
volatile, you are telling

the compiler that the value of the variable may he changed in ways
not explicitly defined in the program. For example, a variable's
address might be given to an interrupt service routine, and its value
changed each time an interrupt occurs. The reason that volatile is
important is that most C corpilers apply complex and sophisticated
optimizations to your program to create faster and more efficient
executable programs. If the compiler does not know that the contents
of a variable may change in ways not explicitly specified by the
program, it may not actually examine the contents of the variable
each time it is referenced. (Unless it occurs on the left side of an
assignment statement, of course.)

I	 EXAMPLES

1. The folloving short program shows how a const variable can be
given an initial value and be used in the program as long as it is
not on the left side of an assignment statement.

*include <st.djo.h>

mt main(void)

COnSt mt i	 10;

350 TEACH YOURSELF
V

printf('%d, U; / this is OK /

return 0;

The following program tries to assign i another value. This
program will not compile because i cannot he modified by
the program.

*include <stdio.h>

mt rnain(void

const mt i = 10;

i	 20; /* this is wrong *1

printf("%d	 1);

return 0;

2. The next program shows how a pointer parameter can he
declared as conat to prevent the object it points to from
being modified.

#include <stdio.h>

void pr_str(const char *p);

mt main(void)

char str(801;

printflEnter a string:
gets (str)

pr_str(str);

return 0;

void pr_str(corist char *p)

hi1e(*p) putchar('p++); 1* this is ok /

ADVANCED DATA TYPES AND OPERATORS 351
112 USE THE ACCESS MOD/REPS "

If you change the program as shown below, it will not
compile because this version attempts to alter the string pointed
to by p.

#iriclude <stdio.h>.

#include <ctype.h>

void pr_str(const char ip);

mt main(void)

char str[80];

printfEnter a string;
gets(str)

pr_str(str);

return 0;

void prstr(const char *p)

while(/

*p = oupper(*p); I this will not compile
putchar(*p++)

Perhaps the most important feature of wrist pointer parameters
is that they guarantee that many standard library functions will
not modify the variables pointed to by their parameters. For
example, here is the actual prototype to strlen() specified by
the ANSI standard:

size_t strlen(coi-ist char *str);

Since str is specified as const, the string it points to cannot be
changed.

While short examples of volatile are hard to find, the following
fragment gives you the flavor of its use:

volatile unsigned U;

(&u);

352 TEACH YOURSELF

V

for(;;) (/ watch value of u

printf("%d, u):

In this example, if u had not bcn declared as volatile, the
compiler could have optimized the repeated calls to printf() ill
such a way that u was not reexamined each time. The use of
volatile forces the compiler to actually obtain the value of u
whenever it is used.

EXERCISES

1. One good time to use const is when you want to embed a
version control number into a program. By using a const
variable to hold the version, you prevent it from accidentally
being changed. Write a short program that illustrates how this
call 	 done. Use 6.01 as the version number.

2. Write your own version of 8trcpy() called mystrcpy(), which
has the prototype

char 'mystrcpy (char to, const char* from)-,

The function returns a pointer to to. Demonstrate your version
of mystrcpy() in a program.

3. On your own, see if you can think of any ways to use volatile..

pEFINE ENUMERATIONS
In C you can define a list of named integer constants called an
enumeration. These constants can then be used any place an integer
can. To define all 	 use this general form:

enum tag-name (enumeration list) variable-list,

Either the tag-name or the variable-list is optional. The tag-name is
essentially the type name of the enumeration. For example,

enum color_type (red, green, yellow) color;

ADVANCED DATA TYPES AND OPERATORS 353
113 DEFINE LNIJWFPA lIONS

I [ere, an enumeration consisting ot the constants red, green and
yellow is created. The enumeration tag is color t y pe and one
variable, called color, has been created

By default, the compiler assigns integer ValLies to cIuuineiation
constants, beginning with 0 at the far left side of the list. Each consta nt
to the right is one greater than the constant that precedes it.
Therefore, in the color enumeration, red is 0, green is 1 and yellow
is 2. However, von can override the compilers default values b'
explicitly giving a constant a value. For example, in this statement

enum color_type (red, green=9, yellow) color;

red is still 0, but green is 9, and yellow is 10.
Once you have defined an enumeration, von can use its tag nan

declare enumeration variables at other points iti the program. loi
example, assuming the color-type enumeration, this statcilionit i.
perfectly valid and declares m ycolor as a color- type variahie

enum co1)r ryL mycolor;

An enumeration is essentiall y an integer type and an enlinleratini
variable can hold an y integer valu -e inot just those defined b y rho
enumeration. But for clarity and structure, von should LISC
enumeration variables to hold onl y values that are defined b y their
enumeration type.

Two of the main uses of an eriunieration are to help provide
self-documenting code and to clarif y the structure of y our pro ra ci

I. This short program creates an enumeration Consisting of the
Parts of a computer. It assigns corup the value CPU and then
displays its value (which is I). Notice how the mu mci ationi tat
name is used to declare comp as an enumeration variable
separately from the actual declaration of computer.

#include <srdio.h>

enum computer (keyboard, CPU, screen, printed;

.nt main(vojj)

enurn computer coop;

354 TEACH YOURSELF

V	 .

CPU;

printfv%d", comp);

rturn C;

2. It takes a little work to displa y the string equivalent of an
enumerated constant. Remember, enumerated constants are not
strings: they are named integer constants. The following
program uses a switch statenient to output the string equivalent
of an enumerated value.. The program uses C's random-number
generator to choose a means of transportation. It then displays
the means on the screen. (This program is for people hocan't
make up their minds!)

#inclucie <tdio.h>
*include <stdlib.h>
i:;c1ude <coriio.h>

enuin transport (car, train, airplane, bus) tp;

mt main (void)

printf("Press a key to select transport:);

/* generate a new random number each time
the program is run

while) kbhit C)) rand(;)
getch; / read and discard character */

tp = rand)) % 4
switch) tp)

case car: priritf("car');
break,

case train: printf(train);
break;

case airplane: printf("airplane"):
break;

case bus: printf("bus);

:cturn 0;

ADVANCED DATA TYPES AND OPERATORS 355
773 DEFINE E.NUMEM lIONS

In some cases, there is an easier way to obtain a string
equivalent of an enumerated value. As long as you do not initialize
any of the constants, you can create a two-dimensional string array
that contains the string equivalents of the enumerated values in
the same order that the constants appear in the enumeration. You
can then index the array using an enumeration value to obtain its
corresponding string. The following version of the transportation-
choosing program, for example, uses this approach:

*include <stdio.h>

*include <stdlib.h>

include <conio.h>

enum transport (car, train, airplane, bus) tp;

char trans[] [20] =

"car",	 train". "airplane", "bus"

mt main(void)

printf(Press a key to select transport:

f* Generate a new random number each time

the program is run
*1

while(!kbhit()) randO;

getch(); /* read and discard character J

tp = rand() % 4;

printf('%s", trans[tpl);

return 0;

3. Remember, the names of enumerated constants are known only
to the program, not to any library functions. For example, given
the fragment

enum numbers (zero, one, two, three) nun;

printtVEnter a number:

scanf("%d", &nwn);

you cannot respond to scanf() by entering one.

356 TEACH YOURSELF

r

EXERCiSES

• Compile and run the example programs

2. Create an enumeration of the corns of the U.S. from penny
to dollar.

3. Is this fragment correct --'If not, why not?

enum cars (Ford, Chrysler, GM) make;

make = GM;

printf("car is %s, make);

I UNDERSTAND typedef

In C vou can create a new name for an existing t y pe using typedef
ilie eneral form of tvpedcf is

typedef old-name new-name;

l'his new name can be used to declare variables For (xamllple, in the
following program, smallint is a new flame for a signed char antI is
used to declare i.

include <stdlo.h,

typed.:f signed char smallint;

irid main(void)

Siva]11;t i

for(i=0; 1<10; i++)

printf("%d	 1);

return 0;

Keep two points firml y in mind: First, a typedef does not cause the
original name to he deactivated. For example, in the program, signed
char is still a valid type. Second, you can use several Erpedef,
Statements to create man y different, new names for the same type.

ADVANCED DATA TYPES AND OPERATORS 357
17 4 UNDERSTAND typedef

There are basically two reasons to its(, tvpcclef. The first is to create
portable programs. For example, if you know that y ou will he writing a
program that will be executed on computers using 16-bit integers as
well as on COMJ)IIWrS using 32-bit integers, and von want to ensure
that (;erta/1) variables arc 16 bits long in both environinenis, you might
want to use a tvpedcf' when compiling the prograrn for the 16-hit
machines as follows:

typedef in: myint;

Then, before compiling the code for a 32-bit computer, you can change
the typcdef statement like this:

typedef short int. j:nt:

This works because on computers usin g 32-hit integers, a short mt
will be 16 bits long. Assuming that you used myint to declare all
integer values that y ou wanted to he 16 bits long, you need change
only one statement to change the t y pe of all variables declared
using myint.

The second reason you might want to use typcdef is to help
provide self-documenting code. For example, if you are writing an
inventory program, you might use this typcclef statement.

typedef double subtotal;

Now, when an yone reacting your program sees a variable declared as
- subtotal, he or she will know that it is used to hold a subtotal.

1. The new name created b y one tvpedcf can he used in a
subsequent tvpcdef to create another name. For example,
consider this fragment:

typedef inS height;

typedef height length;

typedef length depth;

depth d;

Here, d is still an integer.

2. In addition to the the basic types, y ou can use typedef on more
complicated types. For example, the following is perfectly valid:

358 TEACH YOURSELF
V

enuin e_type (one, two, three

typedef enum e_type mynums;

mynwns num; / declare a variable i

Here, num is a variable of type c_type.

EXERCISES

1. Show how to make UL a new name for unsigned long.
Show that it works by writing a short program that declares a
variable using UL, assigns it a value, and displays the value
on the screen.

2. What is wrong with this fragment?

typedef balance float,-

USE C'S BITWISE OPERATORS

C contains four special operators that perform their operations on a
bit-by-hit level. These operators are

&	 bitwise AND
I	 bitwise OR
A	 bitwise XOR (eXclusive OR)
-	 l's complement

These operators work with character and integer t ypes; they cannot be
used with floating-point types.

The AND, OR, and XOR operators produce a result based on a
comparison of corresponding bits in each operand. The AND operator
sets a hit ilboth bits being compared are set. The OR sets a bit if either
of the hits being compared is set. The XOR operation sets a bit when
either of the two bits involved is 1, but not when both are I or both are
0. Here is an example ofabitwise AND:

ADVANCED DATA TYPES AND OPERATORS 359
175 USE cssirw,SEOPERATORS

1010 0110
&0011 1011

0010 0010

Notice how the resulting hit is set, based on the outcome Of the
operatioi!being applied to the corresponding bits in each operand.

The l's complement operator is a unar y operator that reverses the
state of each hit within an integer or character.

- EXAMPLES

1. The XOR operation has one interesting propert y . Given two
values A and B, when the outcome of A XOR B is XORed with g
a second time, A is prodLiced. For example, this output

initial value of E: 100
i after first XOR: 21895
after secoM XOR: 100

is produced by the following program:

#include <stdio.h>

mt main(void)

tnt i;

i = 100;
printf('initial value of i: %d\n, ii

I	 1	 21987;

printf("i after first XOR: %d\n', i)

i	 i	 21987;

printf('i after second XOR: %d\n", 1);

return 0;

2. The following program uses a bitwise AND to display, in binary,
the ASCII value of a character typed at the keyboard:

#include <stdio.h>
include <conio.h>

360 TEACH YOURSELF
V

ma	 (v 1.) id)

char ch:

mt 1;

pr:ntf (Enter a character
cn = getche();

printf

display binary repre::er.t	 irn
fc'rii128; 1>0; i=i/2)

if ! -, & ch(printf("I

rern C;

lic program works b' acljustinC the value of i so that onl y one
hit is set ca Ii tulle a comparison is made Since the high-order
hit in a byte represents 128, this value is used as a starting point.
i;a ii tulle through the loop, i is halved. This causes the next
hit position to be set and all otlicis cleared. Thus, each time
through the mop, a bit in cli is tested. If it is 1 the comparison
proclu ces a true result and a I is output. Otherwise a 0 is
displa yed. This process continues until all bits have been tested

. liv modifying the program from Example 2, it can be used to
show the etfect of the 1's complement operator.

inc1ude <stdio.h>

inc1ude <cor.io.h>

mt rr.ain)vojd(

char ch;

ch = 'a';

/ display binary representation *1

for(i=128; i>Q; i=i/2)

if(i & ch) printf('l);
else printf(O);

/ reverse bit pattern *1

ADVANCED DATA TYPES AND OPERATORS 361
0.5 USE CS RI7WISE OPERA TORS

ch =
printf (\n

/ disp lay binary representation
tor(i=228	 i>O; i=i/2)

it (1 & ch) printt(1 ")

else printt ("C ')

return 0;

When y ou run this program, YOU will see that the state of hits in
ch are reversed after the 	 operation has occurred.

, L The following program shows how to use the Fi operator to
determine if a signed integer is positive or negative. (The
program assumes short integers are 16 bits long.) Since negative
numbers are represented with their high-order hit set, the
comparison will he true onl y iii is negative. (The value 32768 is
the value of an unsigned short integer when only its high-order
hit is set This value is 1000 0000 in binary.)

*include <stdio.h>

mt main(void)

short i;

prir,tf("Enter a number:

scanf("%hd"	 &i);

11(1 & 32768) printf("Nuinber is negative\n");

return 0;

5. The following program makes i into a negative number
by setting its high-order bit. (Again, 16-bit short integers
are assumed)

#inciude 'stdio.h>

mt main(void)

short i;

362 TEACH YOURSELF

V

i = 1;
i = 1 1 32768;
printt(%hd', i);

return 0;

It displa ys -32,767.

EXERCISES

1. One very easy way to encode a file is to reverse the state of each
bit using the	 operator. Write a program that encodes a file
using this method. (To decode the file, simply run the program
a second time.) Have the user speci' the name of the file on
the command line.

2. A better method of coding a file uses the XOR operation
COtllbifled with a user-defined key. Write a program that
encodes a file using this method. Have the user specify the file
to code as well as a single character key on the command line.
(To decode the file, run the program a second time using the
same key.)

3. What is the outcome of these opations?

A. 1010 0011 & 0101 3101

1i. 0101 1101 J] 1111011

C. 0101 0110 A 1010 1011

4 Sometimes, the high-order hit ofa byte is used as a parity hit by
modem programs. It is used to verify the integrity of each byte
transferred. There are two types of parity: even and odd. If even
parity is used, the parity hit is used to ensure that each b yte has
an even number of I bits. If odd parity is used, the parit y bit is
used to ensure that each b y te has an odd number of 1 bits. Si
the parity bit is not part of the information being transferred,
show how \ou can clear the high-order bit of a character value.

ADVANCED DATA 1YPES AND OPERATORS 363
11	

V
.6 MASTER THE SHIFT OPERA TO

MASTER THE SHIFT OPERATORS
C includes two operators not commonly found in other computer
languages: the left and right hit-shift operators. The left shift operator
is <<, and the right shift operator is >>. These operators may
be applied only to character or integer operands. They take these
general forms:

value << number-of-bits

value >> number-of-bits

The integer expression specified b y nulnber-of-bits determines how
many places to the left or right the hits within ecloe are shifted. Each
left-shift causes all bits within the specified value to be shifted left one
position and a zero is brought in on the right. A right-shift shifts all bits
to the right one position and brings a zero in on the left. (Unless the
number is negative, in which case a one is brought in.) When bits are
shifted off an end, the y are lost.

A right shift is equivalent to dividing a number by 2, and a left shift
is the same as multiplying the number by 2. Because of the internal
operation of virtually all CPUs, shift operations are usually faster than
their equivalent arithmetic operations.

1. This program demonstrates the right and left shift operators:

#include <stdio.h>

void show_binary(unsigned U);

int main(void)

unsigned short U;

U = 45678;

show_brary(u);

U = U << 1;

show_binary(u);

U = U >> 1;

show_binary(u);

364 TEACH YOURSELF
V

return 0;

void show—binary (unsigned u)

unsigned n;

forn=32768,- n>0; ri=r,J2

ifu & n) printfvl
ese printf('O

printf(*'\n")

the out put troni this program is

1011001001101110
0110010011011100
0011001001101 110

Notice that atter the Icti shift, a bit of information has been lost.
When the right shift occurs, a zero is brought in. As stated
earlier, bits that are shifted off one end are lost.

2 Since a ri ght shift is the same as a division h' two, hut faster,
the show_binarv() function can be made niore efficient as
shown here:

void showbinary(unsigned u)

unsigned fl;

forz1=32768; n;	 n>>1)
if(u & n) printfVl

else printfV0

printf ("\n")

ADVANCED DATA TYPES AND OPERATORS 365
II 7 UNDERSTAND THE? OPERATOR

EXERCISES

1. Write a program that uses the shift operators to multipl y and
divide an integer. I lave the user enter the initial value. Display
the result of each operation.

2. C does not have a rotate operator. A iotute is similar to a shift.
cm, pt that the hit shifted oft one e rid is inserted onto the other.
For example, 1010 (J1)00 rotated kit one place is 0100 0001
Write a function called rotatc() that rotates a b y te left one
position each time it is called. (Hint, von will need to use a
Union so that von can have access to the hit shifted of the end
of the b y te.) 1)enlotlstratc the function hi a program.

UNDERSTAND THE ? OPERATOR

C contains one tertiar y operator: the'?. A (ci ;luiij ojcm(or requires
three operands. Flie ' operator is used to replace statements such as:

if(condition) var = expi

else var = exp2;

The general form of the ? operator is

var = condition? expi: exp2;

I lere, ccoulttwo is an expression that evaluates to trtie or Lilse. If it is
true, tar is assigned the value of exp] . If it is lalse, U)- is assigned the
value of cxp2. The reason for the ? operator is that a C compiler
can produce more chIc icnt code using it instead of the eqtiivale nt
if/else statement.

I. The following pro ,,;t'ain illustrates the ? operator. It inputs a
number and then t:onvmts the number into 1 it the tiumber is
positive and -1 if it is negative.

366 TEACH YOURSELF
V

include <stdioh>

mt main(void)

jot 1;

printf('Enter a number:)
scanf(%d', &i);

I = i>O ? 1: -1:

printfVoutcome: %d', ii;

return 0;

2 The next program is a computerized coin tos. It waits for you to
press a key and then prints either Heads or Tails.

#iriclude <stdio.h>
Include -<stdlib.h>

#include <conioh>

jot main (void)

mOt 1;

while(!kbhit()) rand))

= rand)) %2 ? 1: 0;

if(i) printf(Heads");
else printf ("Tails)

return 0;

The coin-toss program can he written in a more efficient
wa y . There is no tehnica1 reason that the 7 operator need
assign its value to ;niv variable. Therefore, the coin tOSS prograrr
can be written as:

*ic1ude	 h-. .
bjnc)ude

ADVANCED DATA IVP!S AND OPERATORS 367
71.8 DO MORE WITH THE ASSIGNMENT OPERATOR

mt main(void)

while(!kbhit.) randU;

rand()%2 ? printf("Heads") : printf(Tais);

return 0;

Remember, since a call to a function is a valid C expression, it is
perfectly valid to call printf() in the ? statement.

EXERCES

One particularly gOOCI use for the ? operator is to provide a
means of preventing a division-by-zero error. Write a program
that inputs two integers from the user and displa ys the result of
dividing the first by the second. Use ? to avoid division b y zero.

2. Convert the following statement into its equivalent ? statement.

.>b) count = iob;
else count = 0;

MORE WITH THE ASSIGNMENT
OPERA TOR

The assignment opeator is more powerful in C than in most other-
computer languages. In this section, you will learn some new things
about it.

You can assign several variables the same value using the
general form

van I = var2 = var3 = ... = yarN = value;

For example, this stay nient

j = j = k = 10.

360 TEACH YOURSELF
V

assigns i, j, and k the value IOU. in professionally written C code, it is
(A)fllnton to Sec such multiple-variable assignments.

Another variation oil 	 assieimwnt statement is sometinics called
C ,S1U)itli(ind In C, von an transform a Statement like

= a • 3;

11111) d statement like

a	 3;

In general an y time You have a statement of the form

var = var op expression;

YOU can write it in shorthand form as

var op= expression;

I tero 01) is one of the following oputalors.

4- - * / % << >> &

There must he no space between tilt; operator and the equal sign The
reason von will wait to use the shorthand hrnt is not that it Saves Voll
a little typing effort, but because the C: compiler can create more
efficient exeeLitable cotie.

• The following program illustrates tile multiple-assignment
Statement:

#include <sdio.h>

Lot main(void)

mt i, j, k;

i = i = k = 99;

printf(%d %d %(J", i, j, k);

return 0;

II

ADVANCED DATA TYPES AND OPERATORS 369
118 DO MORE KITH THE ASSIGNMENT OPERATOR

2. The next program counts to 98 by twos. Notice that it uses C
shorthand to increment the loop-control variable by two each
iteration.

#include .zstdio.h>

mt main(void)

mt i;

/ count by 2s I

for(i=O; i<100; i+=2)

printf("%d ", i);

return O

3. The following program uses the left-shift operator in shorthand
form to multiply the value of i by 2, three times. (The resulting
value is 8.)

#include .cstdio.h>

mt main(void)

mt i = 1;

i << 3; / multiply by 2, 3 times

printf("%d, 1);

return 0;

EXERCISES

1. Compile and run the program in Example 1 to prove to yourself
that the multiple-assignment statement works.

2. How is the following statement written using C shorthand?

X = X & y;

24

370 TEACH YOURSELF

V

3. Write a program that displays all the even multiples of 17 from
17 to 1000. Use C shorthand.

LINDERSTAND THE COMMA OPERATOR

The last operator we will examine is the comma. It has a very unique
function: it tells the compiler to "do this and this and this.' That is,
the comma is used to string together several operations. The most
common use of the comma is in the for loop. In the following loop,
the comma is used in the initialization portion to initialize two
loop-control variables, and in the increment portion to increment
i and j.

för(i=0, j0; i+j<count; i++ j++)

The value of a comma-separated list of expressions is the rightmost
expression. For example, the following statement assigns 100 to value:

value = (count, 99, 33, 100);

The parentheses are necessary because the comma operator is lower
in precedence than the assignment operator.

1. This program displays the numbers 0 through 49. It uses the
comma operator to maintain two loop-control variables.

#include <stdio.h>

mt maia(void),

mt i, j;

/* count to 49 */

for(iO, j"lOO; i.zj; i++, j--)

printf("%d ", i);

return 0;

ADVANCED DATA TYPES AND OPERATORS 371
11.9 UNOER.STAND THE COMMA OPERATOR V

2. In many places in C, it is actually syntactically correct to USC the
comma in place of the semicolon. For example, examine the
following short program:

include <stdio.h>

mt main (void)

char ch;

ch = getchar)), /* notice the comma here

putchar(ch+1)

return 0;

Because the comma tells the compiler to "do this and Ellis,' the
program runs the same with the comma after gctchar() as it
would had a semicolon been used. Using a comma in this way is
considered extremely had form, however. It is possible that an
unwanted side effect could occur. (This use of the comma
operator does make interesting coffee-break Conversation,
however! Many C programmers are not aware of this interesting
twist in the C syntax.)

EXERCISES

1. Write a program that uses the comma operator to maintain
three for loop-control variables. Have one variable run from 0
to 99, the second run from -50 to 49, and have the third set to
the sum of the first two, both initially and each time the loop
iterates. Have the loop stop when the first variable reaches 100.
Have the program display the value of the third variable each
time the loop repeats.

2. What is the value of i after the following statement executes?

i = (1, 2, 3);

372 TEACH YOURSELF
V

ffM- KNOW THE PRECEDENCE SUMMARY
RM

The following table shows the precedence of all the C operators.

Highest	 () [I ->
- + - ++ - - (type cast) * & sizeof

+ -
<< >>
< <= > >=

&

&&

=	 -= *= 1= etc.
Lowest

,paq3 iIPIS

At this point you should be able to answer these questions and
perform these exercises:

1. What does the register specifier do?

2. .What do the const and volatile modifiers do?

3. Write a program that sums the numbers 1 to 100. Make the
program execute as fast as possible.

4. Is this statement valid? If so, what does it do?

typedef long double bigfloat;

5. Write a program that inputs wo characters and compares
correspondLqg hi. l-Thve the program display the number of
each bit in which a match occurs. For example, if the two
mtegers are

ADVANCED DATA TYPES AND OPERATORS 373
1110 KNOW THE PRECEDENCE SUMMARY

1001 0110
1110 1010

the program will report that hits 7, 1 and C) match. (Use the
bitwise operators to solve this problem.)

6. What do the << and >> operators do?

7. Show how this statement can he rewritten:

C = C + 10;

8. Rewrite this statement using the ? operator:

if(!done) count
else count = 0;

9. What is an enum .tion? Show an example that c:numcrites
the planets.

,

This section checks how well you have integrated the material in
this chapter with that from earlier chapters.

I. Write a program that swaps the low-order four hits of a byte
with the high-order four bits. Demonstrate that your routine
works by displaying the contents of the byte before and after,
using the show-binary() function developed earlier.
(Change show ..binary() So that it works on an eight-hit
quantity, however.)

2. Earlier you wrote a program that encoded files using the l's
complement operator. Write a program that reads a text the
encoded using this method and displays its decoded contents.
Leave the actual file encoded, however.

3. Is this fragment correct?

register FiLE *fp;

4. Using the program you developed for Chapter 10, Section 10.3,
Exercise I, optimize the program by selecting appropriate local
variables to become register types.

01
	

12

The C Preprocessor
and Some Advanced
Topics

a.
chapter ohj.cthes

12.1 Learn more about *define and *include

12.2 Understand conditional compilation

12.3 Learn about #error. #unde(, #IIne, and
#pragma

12.4 Examine C's built-in macros

12.5 Use the # and ## operators

12.6 Understand function pointers

12.7 Master dynamic allocation

375
V

376 TEACH YOURSELF
V

C

ON(; RATIJ LAl IONS! Lfyou have worked your way
through all the preceding chapters, you can definitely call
yourself a C programmer. This chapter examines three
topics: the C preprocessor, pointers to functions, and C's
dynamic allocation system. All of the features discussed in

this chapter are important, and you need to be aware of their existence.
I lowever, you won't use many of them right away. This is not because
any of the features discussed in this chapter are particularly difficult,
hut because some features are more applicable to large programming
ciforts and the management of sophisticated systems. As your
proficiency in C increases, however, you will find these features
quite valuable.

tIsCjeCI

Before proceeding you should be able to answer these questions and
perform these exercises:

1. What is the major advantage gained when a variable is declared
using register?

2. What is wrong with this function?

void myfunc(const mt *j)

= • i / 2;

3. What is the outcome of these operations?

a. 1101 1101& 11100110

h. 1101 1101 1 1110 0110
C. 1101 1101 A 11100110

4. Write a program that uses the left and right shift operators to
double and halve a number entered by the user.

5. How can these statements be written differently?

a = 1;
b = 1;
C = 1;

THE C PREPROCESSOR AND SOME ADVANCED T(WCS 377
121 LEARN MORE ABOUT I'deie AND #Wiclud.

if(a<b) max = 100;

else max = 0;

I = j * 2;

6. What is the extern type specifier for?

_LEARN MORE ABOUT #define AND
#include

Although you have been using #define and #includc for some time,
both have more features than you've read about so far. Each is
examined here in detail.

In addition to using #deftne to define a macro name that will be
substituted by the character sequence associated with that macro, you
can use #dcfjne to create function-like macros. In a function-like
macro, arguments can he passed to the macro when it is expanded by
the preprocessor- For example, consider this program:

include •stdio.h>

$define SUM(i, 1) i+j

mt main(void)

mt sum;

sum = SUN(10, 20);

printf("%d", sum);

return 0;

The line

sum = SU4(10. 20);

is transformed into

sum = 10+20;

by the preprocessor. As you can see, the values 10 and 20 are
automatically substituted for the parameters i and j.

378 TEACH VOURSEIJ
V

A more practical example is RANGE(), illustrated in the following
simple program. it is used to confirm that parameter i is within the
range specified by parameters min and max. You can imagine how
useful a macro like RANGE() can he in programs that must perform
several range checks. This program uses it to display random numbers
between I and 100.

i*include <stdio.h>

#include <conio.h>

#inclucje <stdlib.h>

#define RANGE(i, min, max) (i<inun) 11 (i>rnax) ? 1	 0

mt main(void)

mt r;

/* print random numbers between 1 and 100 /
do (

do

r = rand));

while(R..ANGE(r, 1, 100));

printf("%d ",

whi1e(kbhitH);

return 0;

The advantage to using function-like macros instead of functions is
that in-line code is generated by the macro, thus avoiding the time it
takes to call and return from a function. Of course only relatively
simple operations can he made into function-like macros. Also,
because code is duplicated, the resulting program might he longer than
it would be if a function were used.

The #includc directive has these two general forms:

#inclucle <filename>
#include "filename'

So far, all the example programs have used the first form. The
reason for this will become apparent after you read the following
descriptions.

THE C PfEPROCESSOR AND SOME ADVANCED TOPICS 379
121 LEARN MORE ABOUT #deflne AND #nckad

If you specify the file name between angle brackets, you are
instructing the compiler to search for the file in some implementation'
defined manner. For most compilers, this means searching a special
directory devoted to the standard header files. This is why the sample
programs have been using this form to include the header files
required by the standard library functions. If you enclose the file
name between quotation marks, the compiler searches for the file in
another implementation-defined manner. If that search fails, the
search is restarted as if you had specified the file name between angle
brackets. For the majority of compilers, enclosing the name between
quotation marks causes the current working directory to he searched
first. Typically, you will use quotation marks to include header files
that you create.

I. Here is a program that uses the function-like macro MAX() to
compute which argument is larger. Pay close attention to the
last printf() statement.

*include stdio.h>

*define MAX(i, j) i>j ? I

mt main(void)

pxintf("%d\ri'. MAX(1, 2));

printf("%d\n, MAX(1. -1));

/* this statement does not work correctly */

printfV%d\n', MAX(100 && -1 O));

return 0;

When the preprocessor expands the final printf() statement,
the MAX() macro is transformed into this expression:

100 && -1 > 0 ? 100 && -1 : 0

380 TEACH YOURSELF

V

Because of Cs precedence rules, however, this expression is
executed as if parentheses had been added like this:

100 && (-1 > 0) ? 100 && -1	 0

As you can see, this causes the wrong answer to he computed.
To fix this problem, the macro needs to he rewritten as:

*define MAX(i, j) ((i)>(j)) ? (1) 	 (j)

Now the macro works in all po ssible situations. In general,
you will need to fully parenthesize all parameters to a
function-like macro,

The RANGE() macro discussed earlier will need similar
parenthesization as well if it is to work in all possible
situations. This is left as an exercise.

2. The next program uses quotes in the #inciudc directive.

include "stdio . h'

mt main(void)

printf ("This is a test")

return 0;

II

While not as efficient as using the angle brackets, the #includc
statement will still find and include the STDIO.JI header file.

3. It is permissible to use both forms of the # include directive in
the same program. For example,

#include <stdio.h

#include "stdlib.h'

mt main(void)

priritf('This is a random number: %d", rand)));

return 0;

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 381
?2.2 UNDERSTAND CONDITIONAL COMPILA lION

EXERCISES

I. Correct the RANGE() macro by adding parentheses in the
proper locations.

- 2. Write a program that uses a parameterized macro to compute
the absolute value of an integer, and demonstrate its use in a
program.

3. Compile Example 2. If your compiler does not find STDIO.H,
recheck the installation instructions that came with your
compiler.

UNDERSTAND CONDITIONAL
COMPILATION	 -.

The C preprocessor includes several directives that allow parts of the
source code of a program to he selectively compiled. This is called
conditional compilation. These directives are

#if
#else
#elif
#endif
#ifdef
#ifndef

This section examines these directives.
The general form of #if is shown here:

#if constant-expression
statement-sequence

#end,f

If the value of the constant-expression is true, the statement or
statements between #jf and #endif are compiled. If the

382 TEACH YOU!:!
V

constant expression is false, the compiler skips the statement or
statements. Keep in mind that the preprocessing stage is the
first stage of compilation, so the constant-expresswn nicaris exactly that.
No variables ma y he used.

You can use the #else to form an alternative to the #jf. Its general
form is shown here:

#if constant-expression
statement-sequence

#else
statement-sequence

#endif

Notice that, there is only one #endif. The #clse automatically
terminates the #jf block of statements. If the constant-cxprcscion is
false, the statement or statements associated with the #e.lsc are
iorn piled.

You can create an iIclse-if ladder using the #ehf directive,
as shown here:

#if constant-expression-I
statement-sequence

#el if constant-expression-2
statement-sequence

#elif constant-expression-3
statement-sequence

#endif

As soon as the first expression is true, the lines of code associated with
that expression are compiled, and the rest of the code is skipped.

Another approach to conditional compilation is the #ifdef directive.
It has this general form:

#ifdef macro-name
statement-sequence

#endif

If the macro-name is currently defined, then the statement-scqucncc
associated with the # ifdcf directive will he compiled. Otherwise, it is

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 383
122 UNDERSTAND CONDI1IONAL COMPILATION

skipped. The #else may also be used with # ifdef to provide an
alternative.

The complement of #ifdef is # ifndef. It has the same general form
as # ifdef. The only difference is that the statement sequence
associated with an #ifndcf directive is compiled only if the
macro-name is not defined.

In addition to #ifdef, there is a second way to determine if a macro
name is defined. You can use the #if directive in conjunction with
the defined compile-time. operator. The defined operator has this
general form:

defined macro-name

If macro-name is defined, then the outcome is true. Otherwise, it is
false. For example, the following two preprocessor directives are
equivalent:

#ifdef W1N32

*if defined W1N32

You (:ai also apply the I operator to defined to reverse the condition.

1. Sometimes you will want a program's behavior to depend on
a value defined within the program. Although examples that
are both short and rneniiigful are hard to find, the following
program gives the flavor of it. This program can be compiled
to display either the ASCII character set by itself, or the full
extended set, depending on the value of CHAR—SET. As you
know, the ASCII character set defines characters for thevalues 0
through 127. However, most computers reserve the values 128
through 255 for foreign-language characters and mathematical
and other special symbols. (You might want to try this program
with CHAR—SET set to 256. You will see some very interesting
characters!)

#include <stdio.h>

1* define CHAR—SET as either 256 or 128 */

384 TF.Ac*I YOURSELF
V

Idefine CHAR-SET 256

mt main (void)

mt i;

#if CHAR-SET ==256

printf(Displayirig ASCII character set plus extensions.\n");
#else

printf("Displaying only ASCII character set.\n");
*endif

for(i=O; .t<CHAR_SET; i++)

printf("%c, i);

return 0;

2. A good use of #ifdef is for imbedding debugging information
into your programs. For example, here is a program that copies
the contents of one file into another
I Copy a file. *1

#include <stdio.h>

linclude <stdlib,h>

#define DEBUG

mt main(int argc, char argv[])

FILE *from *to;

char chi

J see if correct number of command line arguments
if(argc!=3) (

printf(IJsage copy <source> <destination>\n");
exit (1)

1* open source file 1

if{(from = fopen(argv(l), *rb))==NULL)

printf(Caimot open source file.\n);

exit (1)

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 385
22 UNDERSTAND CONDO&4L COMFYLA liON

/open destination file */

if((to = fopen (argv[2J, "wb")) ==NULL) C

printf('Cannot open destination file.\n);

exit (1)

I copy the file I

while(!feof(from))

ch = fgetc(from);

if(ferror(from)) (
printf(Error reading source file.\n);

exit (1)

if(!feof(from)) {

fputc(ch, to);

#ifdef DEBUG

putchar(ch);
#endif

if(ferror(to) {

printf(Error writing destination file.\n);
exit (1)

fclose(froni)

fclose(to)

return 0;

If DEBUG is defined, the program displays each byte as it is
transferred. This can be helpful during the development phase.
Once the program is finished, the statement defining DEBUG is
removed, and the output is not displayed. However, if the
program ever misbehaves in the future, DEBUG can be defined
again, and output will again be shown on the screen. While this
might seem like a lot of work for such a simple program, in
actual practice programs may have many debugging statements,
and this procedure can greatly facilitate the development and
testing cycle.

386 TEACH YOURSELF
V	 -'1.

As shown in this program, to simply define a macro name,
you do not have to associate any character sequence with it

3. Continuing with the debugging theme, it is possible to use the
#if to allow several levels of debugging code to be easily managed.
For example, here is one of the encryption programs from the
answers to Chapter 11 that supports three debugging levels;

*include <stdio.h>
*include <stdlib.h>

/* DEBUG levels:

0: no debug
1; display byte read from source file

2. display byte written to destination file

3: display bytes read and bytes written

#define DEBUG 2

irit main(int argc, char *argv(3)

FILE in, *out;

ursigned char ch;

/ see if correct number of command line arguments

if(argc=4)
printf("Usage: code <in> <out> <key>);

exit(l);

/ open input file */
if((in = fopen(argv(ll. 'rb))=NULL)

printf('Canflot open input file.\n);

exit(l)

1* open output file *f

if((out = fopen(argv[21, wb))NULL)

printf(CaflflOt open output file.\n);

exit (l);

while(ifeof(ifl)) (

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 387
722 UNDERSTAND CONDIT7ONAL COMPILA liON 'V

ch = fgetc(in);

#if DEBUG ==,l 11 DEBUG == 3
putchar(ch);

#endif
ch = *argv[3] -' ch;

#if DEBUG >= 2

putchar (ch);

#endif

if(!feof(iri)) fputc(ch, cut);

fclose(in)

fclose(out)

return 0;

4. The following fragment illustrates the #elif. It displays NUM is
2 on the screen.

*define NUM 2

*if MUM == 1

printf("NUM is 1);

*elif MUM == 2

printf(NUl'1 is 2');

#elif MUM == 3

printf("NUM is 3•);

*elif MUM == 4

printf(NUM is 4");

#endif	 -

5. Here, the defined operator is used to determine if
TESTPROJECT is defined.

*include <stdio,h>

*define TESTPRO.JECT 29

*if defined TESTPROJECT

mt main(void)

printf(This is a test.\n);

388 TEACH YOURSELF

V

return 0;

*endif

EXERCISES

Write a program that defines three macros called INT, FLOAT,
and PWR_TYPE. Define tNT as 0, FLOAT as I, and
PWR_TYPE as either tNT or FLOAT. Have the program
request two numbers from the user and display the result of
the first number raised to the second number. Using #if and
depending upon the value of PWR_TYPE, have both numbers
be integers, or allow the first number to be a double.

2. Is this fragment correct? If not, show one way to fix it.

*define MIKE

#i.fdef !MIKE

*endif

LEARN ABOUT #error, #undef, #Iine,
- AND #pragma

C's preprocessor supports four special-use directives: #error, #undef,

"line, and #pragina. Each will be examined in turn here.
The #error directive has this general form:

terror error-message

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 389
12.3 LEARN ABOUT #ervOr, #und&, fUne, AND Ipragma

It causes the compiler to stop compilation and issue the error-message
along with other implementation-specific information, which will
generally include the number of the line the #error directive is in and
the name of the file. Note that the error-message is not enclosed
betwe quotes. The principal use of the #error directive is in

debugging.
The #undef directive undefincs a macro name. Its general form is

#undef macro-name

If the macro-name is currently undefined, #undef has no effect. The
principal use for #urdcf is to localize macro names.

When a C compiL compiles a source file, it maintains two pieces of
information: the number of the line currently being compiled and the
name of the source file currently being compiled. The #line directive
is used to change. these values. Its general form is

#ine fine-num "filename"

Here, line-num becomes the number of the next line of source code,
and filename becomes the name the compiler will associate with the
source file The value of lirie-nuni must be between I and 32,767. The
filename maybe a string consisting of any valid file name. The principal
use for #line is for debugging and for managing large projects.

The #pragma directive allows a compiler's implementor to define
other preprocessing instructions to be given to the compiler. It has this
general form:

#pragma instructions

If a compiler encounters a #pragma statement that it does not
recognize, it ignores it. Whether your compiler supports any
#pragmas depends on how your compiler was implemented.

EXAMPLES

1. This program ciemonstrates the #error directive.

include <stdio.h>

390 TEACH YOtJRSj

mt main(void)

mt it

i = 10;

error This is an error message.

printf(%cP, 1) / this line will not be Compiled */

return 0;

As soon as the #error directive is encountered, compilation
stops.

2. The next program demonstrates the #undef directive. As the
program states, only the first printf() statement is compiled.
#iriclude <stdio.h>

#define DOG

mt main(void)

#ifdef DOG

prinf(DOG is defined.\rr);
#endif

#undef DOG

*ifclef DOG

printf(Thjs line is not compiled. \n);
#endif

return 0;

3. The following program demonstrates the IJine directive. Since
virtually all implementations of #error display the line number
and name of the file, it is used here to verify that #line did, in
fact, perform its function correctly. (In the next section, you will
see how a C program can directly access the line number and
file name).

#include <stdio.h>

mt main(void)

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 391
124 EXAM/NE CS BUILT-IN MACROS

mt i;

/ reset line number to 1000 and file name to

myprog. c
a!

*line 1000 "myprog.c
#error Check the line number and file name.

return 0;

4. Although the ANSI C standard does not specify any #pragma
directives, on your own check your compiler's user manual and
learn about any supported by your system.

EXERCISE

.1. Try the example programs. See how these directives work on
your system.

EXAMINE C'S BUILT-IN MACROS
If your C compiler complies with the ANSI C standard, it will have
at least five predefined macro names that your program may use.
They are

LINE
FILE
DATE
TIME
STDC

Each of these is explained here.

392 TEACH YOURSELF
V

The - _LINE_ macro defines an integer value that is equivalent to
the line number of the source line currently being compiled.

The - _FILE_ macro defines a string that is the name of the file
currently being compiled.

The - _DATE_ . macro defines a string that holds the current
system date. The string has this general form:

month/day/year

The - _TIME_ - macro defines a string that contains the time the
compilation of a program began. The string has this general form:

hours.-minutes.-seconds

The _STDC_ _.macro is defined as the value 1 if the compiler
conforms to the ANSI standard.

This program demonstrates the macros - _LINE .. , - _FILE_ -,
DATE and TIME

#include <stdio.h>

irit main(void)

printf('Cornpiling %s, line: %d, on %s, at %s',
__FILE_, --LINE__, __DATE__,
__TIME__);

return 0;

It is important to understand that the values of the macros are
fixed at compile time. For example, if the above program is
called T.C, and it is compiled on March 18, 1997, at 10 AM.,

it will always display this output no matter when the
program is run.

Compiling T.C. line: 6, on Mar 18 1997, at 10:00:00

ThE C PREPROCESSOR AND SOME ADVANCED TOPICS 393
12.5 USE THE # AND #$OPERATORS

The main use of these macros is to create a time and date stamp,
which shows when the program was compiled.

2 As you learned in the previous section, yo can use the #line
directive to change the number of the current lire of source
code and the name of the file, When you dn this, you are
actually changing the values of - _LINE_ - and - FILE_ -. For
example, this program sets - LINE_ to 100 and _FILE_ - to

myprog.C:

#iriclude <stdio .h>

mt main(void)

*line 100 myprog.C'
prmntf("ComPilirlg %s, line: %d, on %s at %s,

FILE	 LINE , --DATE
--TIME--)

return 0;

The program displays the following output, assuming it was
compiled on March 18, 1997, at 10 A.M.

Compiling myprog.c, line: 101, on Mar 18 1997, at 10:00:00

• EXERCi::
1. Compile and run the example programs.

.SE THE # AND ## OPERATORSjJ
The C preprocessor contains two little-used but potentially valuable
operators: # and ##. The # operator turns the argument of a

394 TEACH YOURSELF
I,

function-like macro into a quoted string. The ## operator concatenates
two identifiers.

1. This program demonstrates the # operator.

#include <stdio.h>

#define MKSTRING(str) # str

mt main(void)

jot value;

value = 10;

printf("%s is %d, HKSTRING(value), value);

return 0;

The program displays value is 10. This output occurs because
MKSTRLNG() causes the identifier value to be made into a
quoted string.

2. The following program demonstrates the ## operator. It creates
the output() macro, which translates into a call to printf().
The value of two variables, which end in 1 or 2, is displayed.

#include <stdio.h>

define output(i) printf("%d %d\n', i ## 1, i ## 2)

lot main(void)

lot counti, count2;

lot ii, 12;

counti 10;

count2 = 20;

ii = 99;
i2 = -10;

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 395
26 UNDERSTAND FUNC77QNm/N7ERS

output(courlt);

output (1)

return 0;

The program displays 10 20 99 —10. In the calls to output(),
count and i are concatenated with 1 and 2 to form the variable
names counti, count2, ii and i2 in the printf() statements.

EXERCISES

1. Compile and run the example programs.

2. What does this program display?

#include <stdioh>

#define JOIN(a, b) a ## b -

mt main (void)

printf(JOIN("one ",

return 0;

)

3. On your own, experiment with the # and ## operators. Try to
think of ways they can be useful to you in your own
programming projects.

UNDERSTAND FUNCTION POINTERS
This section introduces one of Cs most important advanced features:
the function pointer. Although it is beyond the scope of this book to

396 TEAcH VOURSEIJ
V

discuss all the nuances and implications of function pointers, the main
issues are covered here.

A fu nction pointer is a variable that contains the address of the entry
point to a function. When the compiler compiles your program, it
creates an entry point for each function in the program. The entry
point is the address to which execution transfers when a function is
called. Since the entry point has an address, it is possible to have a
pointer variable point to it. Once you have a pointer to a function, it is
possible to actually call that function using the pointer. You will see
shortly why you might want to do this.

To create a variable that can point to a function, declare the pointer
as having the same type as the return type of the function, followed by
any parameters. For example, the following declares p as a pointer to
a function that returns an integer and has two integer parameters, x
and y.

jflt (*p) lint x, mt y);

The parentheses surrounding • p are necessary because of C's
precedence rules.

To assign the address of a function to a function pointer, simply use
its name without any parentheses. For example, assuming that sum()
has the prototype

mt surn(int a, mt b);

the assignment statement	 -

p = sum;

is correct. Once this has been done, you can call sum() indirectly
through p using a statement like

result = (*p) (10. 20);

Again, because of C's precedence rules, the parentheses are necessary
around 'p. Actually, you can also just use p directly, like this:

result = p(10, 20);

However, the ('p) form tips off anyone reading your code that a
function pointer is being used to indirectly call a function, instead of
calling a function named p.

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 397
126 UNDERSTAND FUNC77ON POINJERS

EXAMPLES

1. As a first example, this program fills in the details and
demonstrates the function pointer that wasjust described.

#include <stdio.h>

mt sum(int a, mt b)

mt main(void)

mt (*p) (mt x, mt y)
mt result;

p = sum; / get address of sun)

result = (*p) (10. 20);
printf(%d', result);

return 0;

mt suxn(int a mt b)

return a+b;

The program prompts the' user for two numbers, calls sum()
indirectly using p, and displays the result.

2. Although the program in Example 1 illustrates the mechanics of
using function pointers, it does not even hint at their power.
The following example, however, will give you a taste.

One of the most important uses of function pointers occurs
when a function-pointer array is created. Each element in the
array can point to a different function. To call any specific
function, the array is simply indexed. A function pointer array
allows very efficient code to be written when a variety of
different functions need to be called under differing
circumstances. Function-pointer arrays are typically used when
writing systems software, such as compilers, assemblers, and
interpreters. However, they are not limited to these applications.
While meaningful and short examples of function-pointer arrays
are difficult to find, the program shown next gives you an idea

398 TEACH YOURSELF
V

of their value. Like the program in Example 1, this program
prompts the user for two numbers. Next, it asks the user to
enter the number of the operation to perform. This number is
then used to index the function-pointer array to execute the
proper function. Finally, the result is displayed.

*include <stdio.h>

intL sum(int a, jot b);

IntL subt.ract(jnt a, mt b);

mt mul(int a, intL b);
irit div(intL a, jot b);

lot (*p[41) (lot x, intL y)

intL main (void)

mt result;

mt i, j, op;

P(01 = sum; /* get address of sum]) */

P(11 = subtract; /* get address of subtract() *1
p121 = mul; /* get address of mul() 1

p [31 = div; I get address of div() *1

printf('Enter two numbers:

scanf(%d%d', &i, &j);

printf("O: Add, 1: Subtract, 2; Multiply, 3; Divide\n);
do

printf(Enter number of operation:
scanf('%d, &op);

while(op<0 H op>3);

result = (*p[op)) (1, j);

printf('%d", result);

return 0;

lot sum(int & intb)

return a+b;

mt subtract(int a, mt b)

!!iE.PeEPR0CESS0R AND SOME ADVANCED TOPICS 399
126 UNDERSTAND P.JNCT1ONR)INTERS "

return a-b;

mt mul(int a, mt b)

return a*b;

mt div(int a, mt b)

if(b) return a/b;
else return 0;

When you study this code, it becomes clear that using a
function-pointer array to call the appropriate function is more
efficient than using a switch() statement.

Before leaving this example, we can use it to illustrate
one more point: function-pointer arrays can be initialized, just
like any other array. The following version of the program
shows this.	 -

*include <stdio.}i>

mt sum(int a, mt b);
mt subtract(int a, mt b);
jot mul(int a, jot b);
jot div(int a, jot b);

1* initialize the pointer array *1
mt (*p(4)) (mt x, jilt y) = C

sum, subtract, mul, div

mt main (void)

jot result;
mt 1, j, op;

printf(Enter two numbers:);
scanf(%d%d', &i, &j);
printf(0: Add, 1: Subtract, 2: Multiply, 3: Divide\n);
do

printf("Enter number of operation:);

400 TEACH YOURSELF
V

scanf("%d, &op);
while(op<O 11 op>3)

result = (*p[op]) (i,
printf("%d, result);

return 0;

mt sum(int a, intb)

return a+b;

mt subtract(int a, mt b)

return a-b;

mt mul(int a, mt b)	 -

return a*b;

mt div(int a, mt b)

if(b) return a/b;
else return 0;

3. One of the most common uses of a function pointer occurs
when utilizing another of C's standard library functions, qsort().
The qsort() function is a generic sort routine that can sort any
type of singly dimensioned array, using the Quicksort algorithm.
Its prototype is

void qsort(void *array, sizej number, size_t size,
mt ('compconst void a, const void Sb));

Here, array is a pointer to the first element in the array to be
sorted. The number of elements in the array is specified by
number, and the size of each element of the array is specified by

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 401
726 UNDERSTAND FUNCI7QN POWERS

size. (Remember, size _t is defined by the C compiler and is

loosely the same as unsigned.) The final parameter is a pointer
to a function (which you create) that compares two elements of
the array and returns the following results:

a < b	 returns a negative value

== *b	 returns a zero

*a > 'b	 returns a sitive value

The qsort() function has no return value. It uses the STDLII3.1I

header file.
The following program loads a 100-element integer array

with random numbers, sorts it, and displays the sorted form.
Notice the necessary type casts within the comp() function,

#include <stdio.h>
#include <stdlib.h>

irit comp(const void i, const void j);

mt main(void)

inC sort(1001, i;

for(i=O; 1<100; 14+)
sortEil = rand));

qsort(sort 100, sizeof(irit), comp);

for(i=0; 1<100; 1+4)

printf("%d\n	 sort[il);

return 0;

mt comp(const void i, corist void *j)

return *(int)i - *(int*)j;

402 TEACH YOURSELF

V

EXERCISES

1. Compile and run all of the example programs. Experiment with
them, making minor changes.

2 Another of Cs standard library functions is called bscarch().
This function searches a sorted arra y , given a key. It returns a
pointer to the f i rst entry in the array that matches the ke y . if no
match is found, a null pointer is returned. its prototype is

void bsearch(const void key, const void array, size_t number, size_t size,

nt comp)(const void 'a, const void 'b));

All the parameters to bsearcb() are the same as for qsort()
except the first, which is a pointer to key, the object being
sought. The comp() function operates the same for bscarch()
as it does t'r cjsort().

Modify :he program in Example 3 so that after the a , : iv is
sorted, the riser is prompted to enter a number. Next, USili

bsearch () search the sorted array and report if a match is
Ibund.

3. Add a fume ion called modulus() to the final version ofthe
arithrneth. arograrn in Example 2. Have the function return the
result of a	 b. Add this option to the menu and full y integrate

it into the program.

MASTERDYNAMICALLOCATION
Ibis tuial SUction of the 1)00k introduces YOU to C's dynamic-allocation

svstrill. IJijuonirC allocation is the process by which memory is
allocated as needed during runtime. This allocated memory can be
used for a variety of purposes. Most commonly, memory is allocated

by applications that need to take full advantage of all the memor y in
the cornpu ter. For example, a word processor will want to let the user
edit documents that are as large as possible. However, if the word
processor uses a normal character array, it must fix its size at compile
time. '[bus, it would have to he compiled to run in computers with the
in irrini urn amount of memorY, not allowing users with more memory

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 403
2.7 MASTER OYNAMICALLOC.A 1/ON

to edit larger documents. If memory is allocated dynamically (as
needed until memory is exhausted), however, any user may make full
use of the memory in the system. Other uses for dynamic allocation
include linked lists and binary trees.

The core of C's dynamic-allocation functions are malloc(), which
allocates memory, and free(), which releases previously allocated
memory. Their prototypes are

void malloc(size_t numbytes);

void freevoid ptr;

Here, numbytcs is the number of bytes of memory you wish to
allocate. The malloc() function returns a pointer to the start of the
allocated piece of memory. If malloc() cannot fulfill the memory
request—for example, there maybe insufficient memory available—it
returns a null pointer. To free memory, call free() with a pointer to
the start of the block of memory (previously allocated using nialloc())
you wish to free. Both functions use the header file STDLIB.l-I.

Memory is allocated from a region called the hcnp. Although the
actual physical layout of memory may differ, conceptually the heap
lies between your program and the stack. Since this is a finite area, an
allocation request can fail when memory is exhausted.

When a program terminates, all allocated memory is automatically
released.

1. YOU Iflust confirm that a call to nialloc() is successful befre
You use the pointer it returns. If you perform an operation on a
null pointer, you could crash your program and maybe even the
entire computer. The easiest way to check for a valid pointer is
shown in this fragment:

p = ma].loc(SIZE);

i	 pt
pr.nttVA1J.c>cation Errcr')

404 TEACH YOURSflJ

V

exit (1)

2. The following program allocates 80 bytes and assigns a
character pointer to it. This creates a dynamic character array.
It then uses the allocated memory to input a string using gets().
Finally, the string is redisplayed and the pointer is freed. (As
stated earlier, all memory is freed when the program ends, so
the call to free() is included in this program simply to
demonstrate its use.)

include <stdio.h>

#include <stdlib.h>

jOt main(void)

char *p.

P = malloc(80);

if(!p) I

printtVAllocation Failed");

exit (1);

printf ("Enter a string:

gets (p)

printf(p)

free(p);

return 0;

3. The next program tells you approximately how much free
memory is available to your program.

#incLude <stdio.h>

*include <stdlib.h>

jOt main(void)

char *p;

long 1;

1 = 0;

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 405
12.7 MASTER DYNAMIC ALLOCATION V

do
p = malloc(1000);

if(p) 1 += 1000;

} while(p)

print f("Approximately %ld bytes of free memory., 1);

return 0

The program works by allocating 1000-byte-long chunks of
memory until an allocation request fails. When rnalloc()
returns null, the heap is exhausted. Hence, the value of I
represents (within I (00 bytes) the amount of free memory
available to the pro	 n.

One good use for dynamic allocation is to create buffers for file
I/O when you are using frcad() and/or fwritc(). Often, you
only need a buffer for a short period of time, so it makes sense
to allocate it when needed and free it when dune. The following
program shows how dynamic allocation can be used to create
a buffer The program allocates enough space to hold ten
floating-point values. It then assigns ten random numbers to
the allocated memory, indexing the pointer as an array. Next,
it writes the values to disk and frees the memory. Finally, it
reallocates memory, reads the file and displays the random
numbers. Although there is no need to free and then reallocate
the rncnlory that serves as a file buffer in this short example, it
illustrates the basic idea.

include <stdio.h>

include <stdUb.h>

mt main(void)

irit i;

double *p;

FILE *fp;

/ get memory /

p = malloc(10 * sizeof (double));

if(!p) {

printf (A1location Error)

406 TEACH YOURSELF

V

exit (1)

/* generate 10 random numbers *1
for(i=0; i<10; i++)

p [i] = (double) rand;

if((fp	 fopen("myfjle', 'wb')(==NULL)
printf(cannot open file.\n");
exit (1)

/ write the entire array in one step *1
if(fwrite(p, lO*sizeof(double), 1, fp) 	 =1)
printf("Wrjte Error.\n');
exit (1);

fclose(fp)

free (p) ; / memory no need'd now /

1*

imagine something transpires here

WA

/ get memory, again /

P = malloc(l0 * sizeof (double));
if (!P)

printf("Allocation Error);
exit (1);

ifNfp = fopen('myfile, "rb'))==NtjLL(
printf('Cannot open file\n");

exit(1)

/* read the entire array in one step */
if(fread(p, 10*sizeof (double), 1, fp)	 1)
printf("Read Error.\n);

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 407
12.7 MASTER DYNAMIC ALLOCATION

exit (1);

fclose(fP)

1* display the array *f

for(i = O; i<lO; j++) printf(%f	 pt]j);

free(p)

return O

5. Just as array boundaries can be overrun, so can the boundaries
of allocated memory. For example this fragment is syntactically

valid, but wrong.

p = malloc(lO);

for(i=O; i<100; i) ph] =

EXERCISES

1. Compile and run the example programs.

2 Write a program that creates a ten-element dynamic integer
array. Next, using pointer arithmetic or array indexing, assign
the values 1 through 10 to the integers that comprise the array.
Finally, display the values and free the memory.

3. What's wrong with this fragment?

char •p;

= rnailoc(10)

ges(p)

408 TEACH YOURSELF
7 C

Mactaru
(kSkills

At this point you should be able to answer these questions and
perform these exercises:

1. What is the difference between using quotes and angle brackets
with the "include directive?

2. Using an # jfdcf show how to conditionally compile this
fragment of code based upon whether DEBUG is defined or not.

if(j%2)) {

printf(" j = %d\n, j)

= 0;	 4

3. Using the fragment from Exercise 2, show how you can
conditionall y compile the code when DEBUG is defined as I
(Hint Use "if).

.1. Ho do von undefinc a macro?

5. \Vliat is - _FILE_ - and what does it represent?

(3. What do the ft and	 preprocessor operators do?

7. Write a program that sorts the string 'this is a test of qsort.
Displa y the sorted output.

8. Write a program that dynamicall y allocates memory for one
double. I lave the program assign that location the value 99.01
dispLiv the value, and then free the memory.

Cumulative
Skills Check

This section checks how well you have integrated the material in
this chapter with that from eat her chapters.

1. Section 10.1, Example 3, presents a computerized card-catalog
program that uses an array of structures to hold information or
hooks. Change this program so that only an array of structure

THE C PREPROCESSOR AND SOME ADVANCED TOPICS 409
127 MASTER DYNAMICALLOC4TJQN

pointers is created, and use dynamically allocated memory to
actuall' hold the information for each book as it is entered. This
way, less memory is used when information on only a few
books is stored.

2. Show the macro equivalent of this function:

char code_it(char c)

return -C;

Demonstrate that your macro version works in a program.

3. On your own, look over the programs that you have written in
the course of working through this book. Try to find places
where you can:

V Use conditional compilation.

V Replace a short function with a function-like macro.

V Replace staticall y allocated arra ys with dynamic arrays.

V Use function pointers.

4. On your own, stud y the users manual or online documentation
for your C compiler, paying special attention to the description
of its standard library functions. The C standard library contains
several hundred library functions that can make your
programming tasks easier. Also, Appendix A in this book
discusses some of the most common library functions.

5. Now that you have finished this book, go back and skim through
each chapter, thinking about how each aspect of C relates to the
rest of it. As you will see, C is a highl y integrated language, in
which one feature complements another. The connection
between pointers and arrays, for example, is pure elegance.

6. C is a language best learned by doing! Continue to write
programs in C and to study other programmers' programs. You
will be surprised at how quickly C will become second natihe!

7. Finally, you now have the necessary foundation in C to allow
you to move onto C++ C'sohject-orieritedextension.lf C++
programming is in your future, proceed to Teach Yourself C++,
(Berkeley, CA, Osborne/McGraw-Hill). It picks up where this
book leaves off.

FAI

(9 Some Common C
Library Functions

411
'V

412 TEACH YOURSELF
V

T

His appendix discusses a number of the more frequen
ANSI C library functions. If you have looked through
library section in your C/C++ compilers clocumentat
are no doubt aware that there are a great man y librar.

functions. It is far beyond the scope of this hook to cover
one. However, the ones you will most commonly need are discuss

The library functions can be grouped into the following cate

V I/O functions

V String and character functions

V Mathematics functions

V Time and date functions

V D y namic allocation functions

V Miscellaneous functions

The I/O functions were thoroughly covered in Chapters 8 at
will not he expanded upon here.

Each function's description begins with the header file rcqui
the function followed by its prototype. The protot ype provides
with a quick way of knowing what types of arguments and how
of them the function takes and what t y pe of value it returns.

Keep in mind that ANSI C specifies man y data types, which
defined in the header files used by the functions. Nev, , ty pe nar
he discussed as they are introduced.

TRING AND CHARACTER FIJNCTIO

The C standard library has a rich and varied set of string- and
character-handling functions. In C, a string is a null-terminated
of characters. The declarations for the string functions are foun
header file STRINGA-l. The character functions use CTYPE.II a
header file.

Because C has no bounds-checking on array operations, it is
programmers responsibility to prevent an array overflow.

SOME COMMON C UBRARY FUNCTIONS 413
Al STRING AND CHARACTER FUNCTIONS

The character functions are declared with an integer parameter.
While this is true, only the low-order byte is used by the function.
Generally, you are free to use a character argument because it will
automatically be elevated to hit at the time of the call.

#include <ctype.h>
mt isalnum(int ch);

Description The isalnuni() function returns nonzero if its argument
is either a letter or a digit. If the character is not alphanumeric, then 0
is returned.

Example This program checks each character read from stdin and
reports all alphanumeric ones:

#include <ctype.h>

ifiriclude <stdio.h>

mt main(void)

char ch;

for(;;) {

ch	 getcharl);

if(ch=	 ') break;

if(isalnum(ch)) printfV%c is alphanumeric \n" chi;

return 0;

#include <ctype.h>
mt isaipha(int ch);

Descrip!on The isalpha() function returns nonzero if ch is a letter of
the alphabet; otherwise 0 is returned.

Example This program checks each character read from stdin and
reports all those that are letters of the alphabet:

414 TEACH YOURSELF

V

*include <ctype,h>

*include <stdio.h>

mt main(void)

char ch;

for);;)
ch = getchar ()

if(ch== ' ') break;	 -

if(isalpha(ch)) print f(%c is a let ter \n, ch);

return 0;

#include <ctype.h>
mt iscntrl(int ch);

Description The iscntrl () function returns nonzero if ch is between U
and Ox IF or is equal to Ox7F (DEL); otherwise 0 is returned.

Example This program checks each character read from stdin and
reports all control characters:

iric1ude <ctype.h>

#iriclude <stdio,h>

mt main(void)

char ch;

for(;;)

ch = getcnarH;
if(cb=	 break;

if (iscntrl(ch))

printf("c is a control character\n, ch);

rn 0;

SOME COMMON C LIBRARY FUNCTIONS 415
AlSTRiNG AND CHARACTER FUNCTIONS

*include <ctype.h>
mt isdigit(int ch);

Description The isdigit() function returns nonzero if ch is a digit (0
through 9); otherwise 0 is returned.

Example This program checks each character read from stdin and
reports all those that are digits:

*include <ctype.h>

*include <stdto.h>

mt main(void)

char cti;

for);;) C
ch = gerchar()

if(ch==' ') break;
if (isdigit (rh)) grintf('%c is a dtciit\rt 	 ch)

retur 0:

#include <ctype.h>
mt isgraph(int ch);

Description The isg-ra,h(' UflCtiofl returns nonzero if ch is any
printable character other than a space; otherwise () is returned.
Printable characters are in the range 0x2 I through Ox7E.

Example This program checks each character read from stclin and
reports all printing characters:

4inc1ude <ctype.h>

#include <stdio.h>

mt main(void)

C

har ci'.:

416 TEACH YOURSELF

V

for(;;) C
ch = getcharl);

if(ch' ') break;

if (isgraph(ch))
printf(%c is a printing character\n 	 ch);

return 0;

#include <ctype.h>
mt islower(int ch);

Description The islower() function returns nonzero if eli is a

lowercase letter (a through z); otherwise 0 is returned.

Example This program checks each character read from stdin and

reports all those that are lowercase letters:

*include .zctype.h>

*include <stdio.h>

mt main(void)

char ch;

for (;) -
ch = getchar;
if(ch=' ') break;
if(islower(ch)) printf("%c is lowçrcase\n, ch);

return 0;

#include <ctype.h>
mt isprint(int ch);

Description The isprint() function returns nonzero if cli is a
printable character, including a space; otherwise 0 is returned.
Printable characters are often in the range 0x20 through Ox7E.

SOME COMMON C UBIIARY FUNCTIONS 417
Al STRING AND CHARACTER FUNC770NS

Example This program checks each character read from stdin and

reports all those that are printable:

include <ctype.h>
#nc1ude <stdio.h>

mt main(void)

char ch;

for(;
ch = getcharM;

break;
if!sprrtt(ch)) prir;tf(%c is printahle\ri" 	 ch)

#include <ctype.h>
mt ispunct(int cli);

Description ilic ispunct() function returns nonzero if ch is a
punctuation (haracter, excluding the space; otherwise () is returned.
The term putictuation, as defined by this function, includes all
printing characters that are neither aiphanLimeric tiot a Si1CC.

Example This program checks each character read front stdin and

reports all those that. are punctuation:

Niriclude <ctype.h
include <stdic.h>

mt main(void)

char ch;

for(;;)
ch	 getchar I)
if(ch') break;
ifl(ispunct(Ch) I printf'Ac is punctuaicn'r.	 h;

418 TEACH YOURSELF
V

return 0;

#include <ctype.h>
mt isspace(int ch);

Description The isspacc() function returns nonzero if ch is either a
space,tab, vertical tab, form feed, carriage return, or newline
character: otherwise 0 is returned

Example This program checks each character read from stdin and
reports all those that are whitespace characters;

tinc1ude <ctype.h>

include <stdioh>

in main(void)

char ch;

for (; ;)
ch = getchar();

if(isspace(ch)) priruf("%c is whitespace\n, ch):

if(ch==') break;

return 0;

#iriclude <ctype.h>
mt isupper(int ch);

Description 1hc isupper() hinctiOn returns nonzero if c/i is an
uppe rcas letter (A through Z); otherwise 0 is returned.

Example This program checks each character read from stdin and
reports all those that are uppercase letters:

include <crype.h>

#iriclude <tdio.h>

SOME COMMON C LIBRARY FUNCTIONS 419
A.! STRING AND CHARACTER FUNCTIONS

mt main(void)

char ch;

far(;;)

ch	 getcharl);

if(ch==) break;
if(isupper(ch)) printf("%c is uppercase\n, ch);

return U;

#include <ctype.h>
mt isxdigil(int ch);

Description The isxdigit() function returns nonzero itch is a
hexadecimal digit; otherwise 0 is returned. A hexadecimal digit will h
in one of these ranges: A through F, a 011-OUgh f, or 0 throLtgh 9.

Example This program checks each character read from stdin and
reports all those that are hexadecimal digits:

*include <ctype.h>

include <stdio.h>

mt main(void)

char ch;

for);;)

ch = getchar))
if)ch=) break;	 -

if(isxdigit(ch)) crintf('%c is hexadecimal \n, ch);

return U;

420 TEACH YOURSELF

C

#include <string.h>
char strcat(char 'stri, const char *st);

Description The stt-cat() function Coilcatcnates a copy of str2 to Str)
and term lates so I with a null. The null terminator originall y ending

is overwritten b y the first character of srr	 the string SO 2 is
ii ntouched by the operation. The strcat() hi nction returns sfii

No bounds-checking takes place, so it is the programmer responsibility
to ensure that stri is large enough to hold both its onginaI contents and
those of str2.

Example This program appends thc first string read from stdin to the
secotirl. For example, assuming the user enters hello and there, the
program will print therchello.

Inc1ude <strirlct.h>

fttncid <std.[oh>

mt main(void)

char sl[80], s2[80;

printf("Enter two strings:
gets (s1)
gets(s2)

st:rcat)s2	 SI);
printf(2

return 0;

#include <string.h>
char *strchr(const char tstr, irit ch);

Description The strchr() fit nctioo returt is a pointer to the fit St
ceurre ncr of the low-ordcr b y te of di in the String pointed to by st,. If
;o match is found a null pointer is I eturned.

SOME COMMON C LIBRARY FUNCTiONS 421
A STPJNG AND C/1RACTER FUNCTIONS

Example This prints the string is a test:

#include <string-h>

itinclude <stdio.h>

mt ma.ri(void)

char p:

p = strchr("thi.s is a test",

printf (p) ;	 -

return 0;

#include <string.h>
mt strcmp(const char O strl, const char str2);

Description A strcflip() function lexicographically compares two
null-terminated strings and returns an integer based on the outcome,
iS show Ii here.:

Result	 Meaning

less than 0	 s1r7 is less than str2

0	 stri is equal to str2

greater than 0	 stn is greater thap str2

Example The following function can he used as a password
verification routine. It will return 0 oil 	 and I on success.

#include <string.h>

mt password(void)

char s[801;

printf("Enter password:

gets(s);

if(strcmp(s,"pass"))
printf (Invalid Password\n)

return 0;

422 TEACH YOURSELF
V

return 1;

#iriclude <string.h>
char sstrcpy(char *s trl , const char str2);

Description The strcpv() function is used to Copy the contents of str2
into stil; str2 must be it pointer to a nLrll-terminaccd string. The
Strcpv() function returns a pointer to sir!.

It so) and str2 overlap, the behavior of strcpv() is undelnied.

Example The following code fragment will COp y ' hello" into string str

char str[80];

rtrcoy(srr,-hello*,);

#include <string.h>
size_t strlen(const char 'str);

Description The strlcn() fir tic) ott returns the length of the
riiill-termmnatcd string poitited to b y .StF. The null is not counted. Jiir
sizct type is rietined in SI RFNC;.E-l.

Example The following code fragment will print 5 on the Screen

strcpy(s, "hello');

printf)'%d', strlen(r));

#include <stdio.h>
char strstr(const char tstrl, const char *str2);

Description The strstr() function returns a poftcr tthe first
occurrence of the string pointed to b y str2 in the string pointed to by
sir) (except sfr2's null terminator). It returns a null pointer if no iitatcli
is found.

Example This program displays the message is a test:

SOME COMMON C LIBRARY FUNCTIONS 423
Al STRING AND CHARACTER FUNCTIONS

*include <string.h>

*include <stdio.h>

mt main (void)

char p•

p = strscr("this is a test", 'is);

printf(p)

return O

#include <string.h>
char xstok(char *strl, const char str2);

Description The strtok() ftniction returns a pointer to the next uken
in the string pointed to b y srrl The characters making up the string
pointed to b y stv2 are the delimiters that separate each token. A troll
pointer is returned when there are no more tokens.

The first time strtok() is called, stil is actuall y used in the ;il I.
Subsequent calls use a null pointer for the first argument. In this nay
the entire string can he reduced to its tokens.

It is possible to use a different set of delimiters for each call to strtok()

Example '1 his program tokenizes the string 'The summer soldier, the
sunshine patriot with spaces and commas as the delimiters. ihi
output will be The I summer I soldier I the I sunshine I patriot.

include rstring—h>

#inciude <stdio.h>

mt main(void)

char •p;

P = strtokVThe summer soldier, the sunshine patriocTh 	 ,

print (p)

do I
p = strok('\O',

if(p) printf("j%s	 p};

424 TEACH YOURSELF
V

while (p);

return 0;

#include <ctype.h>
mt Iolower(,nt ch);

Description The tolower() function returns the lowercase cqLiiValent
ci (: if ch is a letter; otherwise cit is retririterl unchanged.

Example This fraginci it displays q.

pu::harrojc.er('Q))

#include <ctype.h>
mt toupper(int ch);

Description The toupper() function returns thc uppercase
ecuivilcnt of cit if c/i is a letter; otherwise c/i is returned unchanged

Example This displays A:

(oupper (a)

THE MATHEMATICS FUNCTIONS

r\NSF C tic lines several niathe mat ics functions that take double
arguments and return double values. These functions fall into the
h 11 oi ng categories:

V Trigonometric functions

V I Ivperholic functions

Y Exponential and logarithmic functions

V Miscellaneous functions

SOME COMMON C LIBRARY FUNCTIONS 425
A2 THE M4 THEMA TICS FUNCTIONS

Al) the math functions require that the header MATH.l-I he included
in any program that USCS tlicrn. In addition to declaring the math
functions, this header defines a macro called 11U(. VAL. If an
operation produces a result that is too large to be rcpt cscnted b y a
double, an overflow occurs, which CaUSeS the routine to return
IIUGEVAL. This is called a range error. For all the mathu uatk s
functions, if the input value is nut in the domain for wl:iich the
function is defined,ned, a dorncdn error occurs.

All angles are specified in radians.

#include <math.h>
double acos(double arg);

Description The acos() function returns tilt , arc cosine o are. The
argo nient to acos() 1111151 be in tin' 1,111 11 C -1 through I otherwise a
domain error will occur.

Example This prugrarit prints the arc cosines, in ow-tenth increments
Of the viii L1(S -1 tliroti.h I

i:;c1ude <rnath.h>

#iriclude <stdio.h>

inL main (void)

dc.uble val = -1.0;

CIO

printf(arc cosine of % is %f\re', val, acos(val));

val +	 0.1;

while (val<=L 0)

return 0;

Li

#include <math.h>
double asin(double arg);

Description The asin() function returns the arc sine of are. The
argument to asin() must he in the range -1 through 1, otherwise a
domain error will occur.

426 TEACH YOURSELF

V

Example This program prints the arc sines, in one-tenth increments,
of the values -1 through 1:

#include <rnath.h>

#include <stdio.h>

ir.t main(void)

double val=-1.0;

do
printfl"arc sine of %f is %f\n, va., asiri(val));

val += 01;

3 while(va.'=l.0);

return 0;

#include <math.h>
double atari(double arg);

Description The atan() tunction returns the arc tangent of org.

Example This proerani prints the arc: tangents, in one-tenth
increments, of the values -1 through I

#includo <math.h>

*include <stdio.h>

mt main (void)

double vol=-10;

do I
printf('arc tangent of if is %f\n, VOl atan(val));

val	 = 0.1;

while(val<=l.0);

return 0;

SOME COMMON C LIBRARY FUNCTIONS 427
42 THE MA THEMA TICS FUNCTIONS

#include <math.h>
double atan2(double y, double x);

Description The atan2() function returns tic arc tangent ofj/x. [1
uses the signs of its arguments to compute the quadrant of the return
value.

Example This program prints the arc tangents, in one-tenth
increments of y, from -1 through I:

iinn1ude <math.h>

#include <stdio.h>

inc rnan)void)

dub1u y-1C

do I

I rIf I 'ata:2 of %f is %f\n"	 y. atan2 (y, 1 .0));
y	 0.1;

} while(y<=1.0);

return 0;

#include <math.h>
double ceil(double num);

Description The ccil() function returns the smallest integer
(represented as a doubic) that is not less than own. For example, given
1 .02, cciI() would return 2.0; given - 1 .02, cciI() would return -)

Example This fragment prints 10.0 on the screen:

p mt f (% f	 cei 1(9 . 9))

428 TEACH YOURSELF
V

#include <math.h>
double cos(double arg);

Description The cos() function returns the Cosine of cog. The value
Of ari must he in radians.

Example This program prints the cosines in one-tenth increments, o
the values -1 through 1:

)includt. <math.h>

#jnclude <stdio.h>

mt rtairi(void)

double val=-1.0;

do

print f ('cosine of % 	 s 'f\n' . vol I. coo v1

vol •= 0.1;

while(val<=1 .0);

reLurn 0;

#include <mathh>
double cosh(double arg);

Description The cosh() function returns the hyperbolic cosine of org.

Example This program prints the hyperbolic Cosines, in one-tenth
increments, of the values -1 through 1:

iinclude <rnath.h>
linclude .rstdio.Jv'

mt main(void)

double va1-1.0;

do

printfVhyperbolic cosine of %f is %f\n', v1, cosh)vi))
val += 0.1;

SOME COMMON C LIBRARY FUNCTIONS 429
42 THE MA THEW TICS FUNCTIONS

.'hi1e(v1<1.0);

return 0;

Ii

#include <math.h>
double exp(double arg);

Description The cxp() function returns the njtiiral 1otartthm c raised

to the orlo p0r.

Example This fragment displays the value ot c (routlde(l to 2.718282):

printft"Value of e to the first: %f. expt..0);

#include <math.h>
double fabs(double num);

Description The fahs() function returns the absolute value of won.

Example This program prints the numbers 1 .0 1.0 on the screen:

#include <math.h>
*incude <stdio.h>

inS iiairi(votcl)

printf("%1. lf %1.lf". fabs(1.0), fabs(-1.0));

return 0;

#include <math.h>
double floor(double num);

Description 'I'he floor() Function rewriiS the largest integer

(represented as a double) not greater than num For example. given

1.02, floor() would return I . (); given -1 .02, floor() would return

-2.0.

430 TEACH YOURSELF
V

Example This fragment prints 10.0 on the Screen:
prirjtf("%f", UoorjlO.9))

#include <math.h>
double log(double num);

Description The log() tunct ion returns the natural logarithm for
nun. A domain error occurs if eon is negative and a range error
occurs if the argument is 0.

Example This program prints the natural logarithms for the numbers
1 through 10:

#include <rnath.h>

#i.nclude <stdio.h>

mt main(void)

double va11.0;

do

printf("%t %f\n", val, log(val));
Val-4-+;

whjle(val<11.0);

return 0;

#include <math.h>
double IoglO(double num);

Description The loglO() function returns the base 10 logarithm for
the variable man. A domain error occurs if num is negative and a
range error occurs if the argument is 0.

Example 'Ibis program prints the base 10 logarithms for the numbers
I through 10:

#include <inath.h>

$include <stdio.h>

SOME COMMON C LIBRARY FUNCTIONS 431
A2 THE MATHEMATiCS FUNCTIONS

mt main(void)

double val=l.O;

do
printf("%f %f\n, Val, IoglO(val));

val +

while(val<ll.Q);

return 0;

#include <math.h>
double pow(double base, double exp);

Description The pow() function returns base raised to the e.p power

(base'. A domain error may occur if base is and exp is less than or
equal to 0. A domain error will occur if base is.negative and cxp is not
an integer. An overflow produces a range error.

Example This program prints the first ten powers of 10:

*include <math.h>

*include <stdio.h>

mt main(void)

double x=10.0, y=O.O;

do
printf("%f ", pow(x, y));

+

while (Y<11);

return 0;

#include <math.h>
double sin(double arg);

Description The sin() function returns the sine ot (U' [l: vihi: ot
org must he in radians.

432 TEACH YOURSELF
y

Example This program prints the sines, in one-tenth increments, of
the values -1 through 1:

tttnclude <math.h>

fti.nclude <stciio.h>

mt main (vo,d)

double a1=-l.0;

do I

print f"sine of %f is %f\n", val, sin (vall);

val	 0.1;

} whi1e(val'z1.0);

return 0;

#include <math.h>
double sinti(double arg);

Description The sinh() function returns the hyperbolic sine of org.

Example The following program prints the hy perbolic sines, in
one-tenth increments, of the values -1 through 1:

#include <itath.h>

#includu <stdio.h>

mt main(void)

double val=_1.0;

do {

printf(hyperbo1ic sine of %f is %f\n, val, sinh(val));

val + 0.1;
while(val<=1.0);

return 0;

SOME COMMON C LIBRARY FUNCTiONS 433
A2 THE MA THEMA TICS FUNCTIONS

*include <math.h>
double sqrt(double num);

Description The sqrt() function returns the square root ot oom. If
called with a negative argument, a domain error will oc(;ur

Example This fragment prints 4.0 on the screen:

printfV%f" sqrt(16.0)

#include <math.h>
double tan(double arg);

Description The tan() function returns the tangent of ori. Tlit'

of org must he in radians.

Example This program prints the tangents, in one-tenth inreni
of the values -1 through I

*include <math.h>

#include <stdio.h>

in' rnain)void)

double val-1.0;

do
printf('tangert of %f	 f\n", vaL tan(vnl);

val	 0.1;

I whi1)val<=1 .0);

return C;

#include <math.h>
double tanh(double arg);

09$ cription The tanh() li netion returns the hyperbolic tangent Of C11.

434 TEACH YOURSELF
V

Example This prograrn prints the hyperbolic tangents, in one-tenth
ineremetits, of the values -1 through I

ir:c'.ude <mnth.h>
include <stdio.h>

in-. main(void)

double val=-1.0;

de
prir.tf('tenh of %f
vi	 0.1;

is %f\n", val, tanh(val));

reLIr; 0;

_7E AND DATE FUNCTIONS

The time and date functions require the header TIME,I I for their
prototy pes. This header file also defines foLir types and two macros.
The type tinic t is able to represent the system time and date as a
long integer. This is called the calendar time. The structure type tni
holds date and time broken down into its elements. The tni structure
is defiiied as shown here:

struct tm
n0 tm_seo;

mnt tm_ri n
nt tmhoer;

Int tmmciEfi:
mt tm_rnon;
mt tm_year;
jOt trnwday;
mt trn_yday;
lot tm_isdst

seconds 0-61 */
minutes, 0-59
hours 0-23 /

/' day of the month, 1-31/
/ months since Jan, 0-11
/* years from 1900 */
/ days since Sunday, 0-6
/ days since Jan 1, 0-365
1 Daylight Saving Time indicator i

11W value of tm_isdst will he positive if Daylight Saving Time is ii
i 0 ii' it is not in effect, and negative if there is no infhrmation

SOME COMMON C LIBRARY FUNC11ONS 435
A3 TIMEANU DATE FUNCTIONS V

ivailahie. When the date and time are represented in this wa y , they

ire referred to as broken-down time.
The type clock_t is defined the same as time—t. The header file

ilS() defines sizc_t.
The macros defined are NULL and CLOCK S..J'ER_SEC.

#include <time.h>
char asctime(const struct tm *ptr);

Description The asctimc() function returns a pointer to a string that
contains the time and date stored in the structure pointed to b y ptr

after it has been converted into the following form:

day month date hours:minutes:secondS year\n\0

For example:

Wed Jun 19 12:05:34 1999

The structure pointer passed to asctimc() is generall y obtained from

either localtirne() or gmtimc().
The buffer used by asctiine() to hold the formatted output string is

a statically allocated character array and is overwritten each time the
function is called. If you want to save the contents of the string, you
need to copy it elsewhere.

Example This program displays the local time defined by the svstenl:

*include <time.h>

include <stdio.h>

mt main(void)

struCt tm *ptr.
tirne_t it;

it = tirne(NtJLL);
ptr = iocaltitr.e(&it)
prtritf(asctime(ptr))

reurc 0;

436 TEACH YOURSELF

V

#include <time.h>
clock_t clock(void);

Description The clock() [unction returns the number of system
clock cycles that have occ:uried since the program began execution.
To conipute the number of seconds, divide this value by the
CLOCKS—PER—SEC macro.

Example The following program displays the number of system clod
e\'cles occurring since it began:

ftinclude <stciio.h>
4inc1ude <ttme.h>

tr main(voCi)

irLL 1;

for (i=O;	 uQGC; i

return 0;

#include time-h>
char ctirne(const time -t tinie);

Description The ctimc() function returns a pointer to a string of t

nUll

day month date hours:roinutes:sec.oflds year\n\O

given a pointer to the calendar time. The calendar time is gen:r ally
obtained through a call t o time() . The c time () Function is

equivalent to:

asceirne(1oca1timeiLirt)

The buffer used b y ctimc() to hold the lorniattecl output strin g is a

staticall y allocated chataiter arra y and is overwritten each zuiie till-

SOME COMMON C LIBRARY FUNCTIONS 437
A3 TIME AND DATE FUNCTIONS

function is called. If you wish to save the contents of the string, you
need to copy it elsewhere.

Example This program displays the local time defined by the system:

*include <tirne.h>

*include <stdioh>

mt main(void)

tiine_t lt

It = time(NULL)

priritf(ctime(&1t)

return 0

#include <time.h>
double difftime(time_t time2, time _t time 1);

Description The difftime() function returns the difference, in
seconds, between timel and timc2. That is, tune-` - rtmel

Example This program times the number of seconds that it takes for
the empty for loop to go from 0 to 500000.

#inciude <tirne.h>

4include <stdio.h>

tnt main(void)

time_t start, end;

long unsigned mt t;

start	 time (NULL);

for(t=O; t<500000L; t++);
end = time(NIJLL);

p:ntf(Loop required %t seconds\n 	 difftime(end, start));

return 0;

438 ikAcHiouRsrif
V

#include <time.h>
strut tm *gmtime(const time_t time);

Description The gmtime() function returns a pointer to the
broken-down form of trrnc in the form of a tm structure. The time is
represented in Coordinated Universal Time (i.e., Greenwich Mean
Time). The time value is generally obtained through a call to time().

The structure used by gmtime() to hold the broken-down time
statically allocated and is overwritten each time the function is calir
If you wish to save the contents of the structure, you need to cop y it
elsewhere.

Example This program prints both the local time and the Coordinated
Universal Time of the system:

#include <time.h>

#include <stdio.h>

/* print local and Coordinated Universal time

mt main(void)

struct tm *local, *coordinated

tj.me_t t;

t = time(NULL);

local = localtime(&t);
printf(Local time and date: %s, asctime(local));

coordinated = gmtime(&t)

printf("Coordinated Universal time and date: %s,

asctime (coordinated));

return 0;

#include <time.h>
struct trn 'Iocaltime(const time_t time);

Description The localtirnc() function returns a pointer to the
broken-down form of time in the form of a tm structure. The time is
represented in local time. The time value is generally obtained through
a call to the time() function.

SOME COMMON C LIBRARY FUNCTIONS 439
A.. TIME AND DATE FUNCTIONS

The structure used by localtimc() to hold the broken-down lime is
statically allocated and is overwritten each time the function is called.
If you wish to save the contents of the structure, you need to cops' it

elsewhere.

Example This program prints both the local time and the Coordinated
Universal time of the system:

*include <time.h>

#include <stdio.h>

/ print local and Coordinated Universal time

mt main(void)

struct tm local;

tet t;

t = time(NULL):

local = localtime(&t);
printf(Local time and date: %s, asctirne(locat)):

local = gmtime(&t);
printfVCoordinated Universal time and date: %s

asctime (local)

return 0

#include <time.h>
time_t time(time_t *systime);

Description The time() function returns the current calendar time of
the system. If the system has no timc-keeping mechanism, then I is
returned.

The time() function can he called either with a null pointer or
with a pointer to a variable of type time _t. If the latter is used, then
the argument will also he assigned the calendar time.

Example This prograni displays the local time dencd by the system:

#iriclude <time.h>

#jnclude <stdio.h>

440 TEACH YOURSELF

V

in(void)

strlict tm ptr;
tLrret it;

1 = tinie (NU LL
ptr = iocaitine(&1t)
printf asctirtie(ptr) I;

return 0;

DYNAMIC ALLOCATION
11w rc are two primary ways a C progi am can store information in the
nii in memory of the computer. The first uses global and local
variables— including arra ys and structures. In the case of global and
static local variables, the storage is fixed throughout the runtime of
y our program. For dynamic local variables, storage is allocated on the
stack. Although these variables are efficientl y implemented in C, they
require the programmer to know in advance the amount of storage
needed for every situation. The second way information can be stored
is with C's d y namic allocation system. In this method, storage for
information is allocated from the free memory area (called the heap)
aS it is needed.	 -

The ANSI C standard specifics that the header information
necessary to tlw d y namic allocation system is in STI)Lll3. II. In this
tile, the t\'pc sie_t is defined. This type is used extensivel y b y the
allocation functions and is essentiall y the equivalent of unsigned.

#include <stdlib.h>
void *calloc(size t num, size-t size);

Descripfio,, The cahloc() function returns a pointer to the allocated
memory. The amount of memor y allocated is equal to own * size. That
is, calloc() allocates sufficient memory for an array of nurn objects of
size size.

SOME COMMON C LIBRARY FUNCTIONS 441
A4 DYNAMIC ALLOCATION

The calloc() function returns a pointer to the first byte of the
allocated region. If there is not enough memory to satisfy the request,
a null pointer is returned.

It is always important to verify that the return ve ' : ut a null
pointer before attempting to use it.

Example This function returns a pointer to a dynamicall y allocated
array of 100 floats: -

#inclucie <stdlib.h>

#include <stdio.h>

float *getmem(vojd)

float *p;

P = calloc(lOO, sizeof(float));

if(!p)
printf(Allocation error - aborti.ng.'\n");

exit (1)

return p;

#include <stdlib.h>
void free(void *ptr);

Description The free() function deallocates the memory pointed to
by ptr. This makes the memory available for future allocation.

It is imperative that the free() function be called only with a
pointer that was previously allocated using one of the dynamic
allocation s ystem's functions, such as malloc() or calloc(). Using
an invalid pointer in the call will probably destroy the memory
management mechanism and cause a system crash.

Example This program first allocates room for 100 user-entec:l
strings and then frees them:

include <stdlib.h>

$inc1ude <stdio.h>

tnt main(void)

442 TEACH YOURSELF
V

char *sLr[iU0I

mt 1;

for(i=O; 1<100; j++)

ifNstr[i] = rnalloc(128))==MULL)

printf("Allocation error - ahortinçj.\n);
exit (0)

gets(str[i])

J now free the memory *1

for(i=0.- 1<100; i++) free(str[j]);

return 0;

#include <stdlib.h>
void *malloc(size t size);

Description The rnalloc() function returns a pointer to the first h'..tc
of a region of memor y of size size that has been allocated front the
heap. (Remember, the heap is a region of free memor y managed I;
Cs dynamic allocation subsystem.) If there is insufficient memory
the heap to satisfy the request, malloc() returns a null pointer. It
always important to verify that the return value is not a null poinr
before attenipting to use it. Attempting to use a null pointer will
usually result in a system crash.

Example This function allocates sufficient memory to hold structu
of type adclr:

#include <stdlib.h>

#include <stdjo.h>

struct addr

char name(40);

char street{40);

char city[401;

char state[3];

char zi.p10];

SOME COMMON C UBRARY FUNCTIONS 443
A4 DYNAMIC ALLOCATION

'F

struct addr *getstruct(void)

struct addr *p;

if((p	 malloc (sizeof (struct addr) ==NULL)

printf("Allocatiori error - aborting. \n)

exit (U)

return p

#include <stdlib.h>
void xrealloc(void tptr, size_t size);

Description The rcalloc() function changes the size of the allocated
memory pointed to by ptr to that specified by size. The value of size

may he greater or less than the original. A pointer to the memory
block is returned since it may be necessary for rcalloc() to move the
block to increase its size. If this occurs, the contents of the old block
are copied into the new block—no information is lost.

If there is not enough free memory in the heap to allocate size
by tes, a null pointer is returned. This means it is important to verify
the success of a call to realloc().

Example This program first allocates 17 characters, copies the string
this is 16 chars into the space, and then uses rcalloc() to increase

the size to 18 in order to place a period at the end.

#inciude zstd1ib.h>

#inclucle <stdioh>

#include <string.h>

mt main(void)

char

P = malloc(17);

444 TEACH YOURSELF

C

if(!p)
prind ('Allocation error - aborting. \n)

exit (1)

strcpy(p, 'this is 16 chars'

p = rea].loc(p,18);

if(!p)
priritt("Allocation error - aborting. \n")

ext (1)

strcat (p.	 -

printf(p)

free(p)

return 0

fy7 ISCELLANEOUS FUNCTIONS

Thu functions discussed in this section are all standard functions that
don't easily fit in any other category.

#include <stdlib.h>

void abort(void);

Description ['he abort() function causes immediate tcrminat!on
of a program. Whether it closes any open files is defined b y the
implementation, but generally it won't.

Example In this program, if the user enters A, the program will
terminate:

#include <stdlib.h>

tinC1ude <conio.h>

SOME COMMON C UBRARY FUNCTIONS 445
45 MISCELLANEOUS FUNCTIONS

mt main(void)

fort
f(getche()'A} abort));

return 0;

#inctude <stdlib.h>
mt abs(int num);

Description The As() function returns the absolute value of the

integer 1(1W).

Example This h.inc:tion converts the user-entered numbers into their
absolute values:

4.include <stcllih.h>

inc1ud <Lciio.h>

mt get_abs(voicfl

char num[80]

oets(num)

return abs (acoi (nun)

#include <stdlib.h>
double atof(const char * str);

Description The atof() function converts the string pointed to b y .tr

mto a double value. The string must Contain a valid tloatmg-uoint
number. If this is not the case, the returned value is C).

The number ma y be IC nn inaied b y an y character that cannot he
part of "l valid float lug-point number. Iiiis includes whitespace
characters, punctuation (other than periods), and characters other
than 'i: or c. Thus, if atof() is called with 100.001 IELLt)", the vaine
ii 10.00 will be returned.

445 TEACH YOURSELF

C

Example This program reads two floating-point numbers and displays
their sum:

flinclude <stdlib.h>

finclude <stdio.h>

in.t main(void)
C

har numl[80], num2(801;

printf(Enter first:
gets(numl)

orintf("Enter second: 	 t;
qets(nurn2)

Drintf("The sum is: %f", atofnujc1) -s- atof(nuni2))

return 0;

#include <stdlib.h>
irit atoj(const char str);

Description The atoi() function converts the string pointed to b y ser
N tO ilfl mt value. The string must contain a valid integer number. If

u:is is not the case, the returned value is 0.
The number may he terminated by any character that cannot he

part of a integer number. This includes whitcspace characters
punc[uation, and other characters. Thus, if atoi() is called with
1 '23.23, the integer value 123 will he returned, ant. the 0.23 ignored.

Example '['his program reads two integer numbers and displays
LilCif Sufli:

inciude <sLd1ib,h
1;du <stdio.h>

mt main(void)

ch,.ir r;uml [801	 num2[80

rntL("Er:ter first:

it f ("Enter second:

I

SOME COMMON C LIBRARY FUNCTIONS 447
A5 MISCELLANEOUS FUNCTIONS

gets(nui12)
printf(The sun is: %", atoi(nunfl 	 atoi(nurn2));

return 0;

#include <stdlibh>
long atol(const char str);

Description The atol() function converts the string pointed to by so
into a long mt value. The string must contain a valid long integer
number. If this is not the case, the returned value is 0.

The number may be terminated by any character that cannot be
,art of an integer number. This includes whitespace characters,
punctuation, and other characters. Thus, if atol() is called with
I 23.23, the integer value 123 will he returned, and the 0.23 ignored.

Example This program reads two long integer numbers and displays
hcir Sum:

r' clud <stdlib.h>
include <stdio.h>

lnt. main(void)

char numl(80), nurn21801;

printf ("Enter first:)
gets (mimi)
printf("Enter second;
gets (nunt2);
printfVThe sum is: %id, aoI(nunii) + atoi(num2));

return 0;

448 TEACH YOURSELF
V

#include <stdlib.h>
void bsearch(const void key, const void *base,

size_t num, size_t size,
int(*compare)(cOflSt void S, const void *));

Description The bscarch() function performs a binary search oil

sorted array pointed to by base and returns a pointer to the first

member that matches the ke y pointed to by keij. The number of

elements in the array is specified by num and the size (Hi by tes) of

each element is described by size. (The size_t type is defined in

STDIIB.H and is essentially the equivalent of unsigned.)

The function pointed to by compare is used to compare an element

of the array with the key. The form of compare must be

nt funct/onnarne(coflSt void 'argi. const void arg2

It must return the following values:

Less than 0	 If argi is less than arg2

0	 Ifarglis equal toarg2

Greater than 0	 If argi is greater than ar92

The array must be sorted in ascending order, with the lowest

address containing the h)wcSt clement.
If the array does not contain the key, then a null pointer is rctrnd

Example This program reads characters entered at the keyboard and

determines whether the y belong to the alphabet.

4$iiic'ude <srd1ibh>

#include <ctype.h>

4include <stdio.h>

char *alpha =

irlt comp(cOflst void ch, corist void

in. main(void)

c.r cli;

SOME COMMON C LIBRARY FUNCTIONS 449
/&5 MISCELLANEOUS FUNCTIONS

do
printf VEnter a character:
scanf("%c%*c.&ch);

ch = tolower(ch);

p = bsearch(&ch, alpha, 26, 1, comp);

if(p) printf('is in alphabet.\n');

else printf("is not in alphabet.\n");
while(p);

return 0;

1* compare two characters *7

inL comp(coñst void *ch const void *s)

return *(char *)ch - *(char *)s;

#include <stdlib.h>
void exit(int status);

Description The exit() function causes immediate normal
termination of a program.

The value of status is passed to the calling process, usually the
operating system, if the environment supports it. By convention, if
the value of status is 0, normal program termination is assumed. A
nonzero value may be used to indicate an error.

You may also use the predefined macros EXIT-SUCCESS and
EXIT FAILURE as arguments to exit.

Example This function performs menu selection for a mailing list
program. IfQis selected, the program is terminated,

char menu (void)

char ch;

do

printf("Enter names (E)\n');

printf("Delete name (D)\n");

printf)" prjnt (P)\n);

29

450 TEACH YOURSELF

V

printf("Quit (Q)\n')

whileUstrchr("EDPQ",toupper)ch)));
if(ch='Q') exit(0);

return ch;

#include <stdlib.h>
long labs(long num);

Description [he labs() function returns the absolute value ol the
long mt num.

Example This function converts the user-entered numbers into their
absolute values:

*include <stdlib.h>

*Include <stdio.h>

long mt get labs (void)

char num)80];

qets(num)

return labs (atol (nun)

#include <setjrnph>
void longjmp(jmpbuf envbuf, mt val);

Description The longjmp() function causes program execution to
resume at the point of the last call to sctjmp(). These two functions
are the way ANSI C provides for a jump between functions. Notice
that the header SETJMP.H is required.

The lon &jmp() function operates by resetting the stack as
described in enubuf, which must have been set by a prior call to
setjmp(). This causes program execution to resume at the statement
hdlowing the sctjmp() invocation— the computer is tricked into
thinking that it never left the function that called setjmp(). (As a
somewhat graphic explanation, the Iongjmp() function warps

SOME COMMON C LIBRARY RJNCTJONS 451
MISCELLANEOUS FUNCTIONS

across time and (memory) space to a previous point in your program,
without having to perform the normal function-return process.)

The butler enubufis of type jmp_huf, which is defined in the
header SETJM 1'. 11. The buffer must have been set through a cull to
sctjmp() prior to calling Iongjmp().

The value of cal becomes the return value of setjmp() and may he
interrogated to determine where the long jump came from. The only
value not allowed is 0.

It is important to understand that the Iongjmp() function must he
called before the function that called setjmp() returns. U not, the
result is technically undefined. In actuality, a crash will almost
certainly occur.

By far the most common use of Iongjmp() is to return from a
deeply nested set of routines when a catastrophic error occurs.

&smple This program prints 1 2 3:

#include <setjmp.h>

include <stdio.h>

void f2(void);

jmp_buf ebuf;

mt main (void)

char first=l;

mt I;

prinrfvl);
i = setjmp(ehuf);

if(first)

first = first;

f2();

printf("this will not be printed);

printf(%d", U;

return 0;

void f2(void)

452 TEACH YOURSELF

C

j.iritf(2

tong]mp(Chuf, 3);

#include <stdlib.h>
void qsort(void base, size _t num, sizet size,

int(compare)(const void, const voids));

Description The qsort() function sorts the array pointed to by base
using a Quicksort (which was developed by C.A.R. Hoare). The
Quicksort is generally considered the best general-purpose sorting
algorithm. Upon termination, the array will be sorted. The number of
elements in the array is specified by num and the size (in bytes) of
each element is described by size. (The sizc_t type is defined in
STDLIB.H and is essentially the equivalent of unsigned..)

The function pointed to by compare is used to compare two
elements in the array. The form of compare must he

mt function_narneconst void aarg 1, const void 'arg2J

It must return the following values:

Less than 0	 If argi is less than arg2

o	 If argi is equal to arg2

Greater than 0	 If argi is greater than arg2

The array is sorted in ascending order, with the lowest address
containing the lowest element.

Example This program sorts a list of integers.and displays the resule

#include <stdlib.h>
#inude <stdio.h>

mt cornp(const void i, const void *j);

mt num[101=

1,3, 6, 5, 8, 7, 9, 6, 2, 0

.nt main(void)

SOME COMMON C LIBRARY FUNCTIONS 453
A5 MISCELLANEOUS FUNCTIONS

I!
mt 1;

printf0rig ir1a1 array:

for(i=O; i<10; t++) printf(%d	 , num[i]

printf ("\n"

qsort(nurU, 10, sizeof(int), comp);

printf(Sorted array: ");

for(i = O; 1<10; 1+-'-) printf(%d ", rium[iJ);

return 0;

/* compare the integers /

ml comp(const void *j, const void *j)

return *(int *)j - 	 (int *)j;

#include <stdlib.h>
mt rand(void);

Description The rand() function generates a sequence of
pseudo-random numbers. Each time it is called, an integer between 0
and RAND—MAX is returned. RAND—MAX is defined in STDLIB.H.
The ANSI standard stipulates that the macro RAND—MAX will have a
value of at least 32,767.

Example This program displays ten pseudo-random numbers:

#include <stdlib.h>

#include <stdio.h>

ira main(void)

mt i.

Lori=0; 1<10; j++)

printf('%d ", rand)));

454 TEACH YOURSELF

'V

return 0;

#include <setjmp.h>
mt setjmp(jmp_buf envbtif);

Description The sctjmp() function saves the contents of the system
st;o k in the ho tier eiivbuf for later use by longjmp().

The stjmp() function returns 0 upon invocation. I Iowcvcr,
Iongjmp() passes an argument to sctjmp() when it executes, and it
is this value (always nonzero) that will appear to he the value of
sctjrnp() alter a call to 1onmp().

See the Iongjmp() section for more information.

Example This program prints 1 2 3:

#inciude <setjmp.h>

#include cstdio.h>

void 12(void);

jmp but ebuf;

mt rfl3in(void)

char first=l;

mt i;

printf("1);
I	 setjmp(ebuf);

if(first)

first = !first;

12));
printf(°this will not be printed');

printf("%d,i);

return 0;

void f2(void)

printfV2 ");

SOME COMMON C LIBRARY FUNCTIONS 455
AS MFSCFL IA NE GUS FUNCTIONS

longjmp(ebuf, 3);

*include <stdlib.h>
void srand(unsigned seed);

Description The srand() function is used to set ;I point for
the sequence generated by rand(), which returns pseudo-random
numbers.

Generally srand() is used to allow multiple program runs to use
iib1erent sequences of pseudo-random numbers.

Example This program uses the system time to randoml y initialize (1 1(
) function using srand():

tinc1uc1e <stdio.h

#include <stdUh.h>

include <time.h"

I , Seed rand with the system time

and display the first 100 numbers.
*1

mt main(void)

';t 1, utime;
long itime;

/ get the current calendar time I

itime = time(NTJLL);

utime = (unsigned int) itimel2;
srand(utime);

for)i=0; i<10; j+-s-) printf("%d	 rand)));

return 0;

X-:31

01 C Keyword Summary

457
V

458 TEACH YOURSELF
V

T ii R E arc 3m
	 defined
ke y words that, when conihincu with the formal

syntax, for the language as dened by the ANSI C
standard. 3hr.se keywords are shown in Table R-1

All C keywords USC lowe rc.ase letters. In C, Li ppffl•eaSC

and lowercase are different; for instance, else is a keyword,

ELSE is not.
An alphabetical sininiary 01 each of the keywords follows:

auto

auto is used to create temporary variables that are created upon entry
into a block and destroyed Upon exit. For example:plc:

incuc3e <sidio.h>

#iriclude conio,h>

mt main(void)

for (;

if(getche()=='a') {

auto mt L;
for(t=O: t<'a'; t-+)

prinLf (t)

break;

return 0;

auto
	

double	 mt	 struct
break
	

else	 long	 switch
case	 en urn	 register	 typedef
char	 extern	 return	 union
const
	

float	 short	 unsigned
continue	 for	 signed	 void
default	 goto	 sizeol	 volatile
do	 if	 static	 while

•L1:]:	 Ke}word List V

C KEYWORD SUMMARY 459
V

In this example, the variable t is created only if the user strikes an a.
Outside the if block, t is completely unknown; and any reference to it
would generate a compile-time syntax error. The use of auto is
completely optional since all local variables are auto by default.

break

break is used to exit from a do, for, or while loop, bypassing the
normal loop condition. It is also used to exit from a switch statement.

An example of break in a loop is shown here:

while (x<100)

x = get_new_x
if (kbhiL()) break; /* key hit on keyboard */

process(x)

here, if a key is pressed, the loop will terminate no matter what the
value of x is.

In a switch statement, break effectively keeps program execution
from "falling through" to the next case. (Refer to the switch section for

details.)

case

case is covered in conjunction with switch,

char

char is a data type used to declare character variables. For example, to
declare ch to be a character type, you would write:

char ch;

In C, a character is one byte long.

const

The, const modifier tells the compiler that the contents of;i variable
cannot he changed. It is also used to prevent a function from
modif y ing the object pointed to by one of its arguments.

460 TEACH YOURSELF

V

continue

Continue is used to bypass portions of code in a 1001) and forces the
conditional expression to be evaluated. For example, the following
while loop will simply read characters from the keyboard until an s is
typed:

while(ch=getche())

if(ch	 s') continue; / read another char

process (ch)

The call to process() will not occur until ch contains the character S.

default

default is used in the switch statement to signal a dehiult block of
code to be executed if no matches are found in the switch. Sec the
switch section.

do

The do loop is uric of three loop constructs available in C. The general
form of the do loop is

do
statement block

while (condition),-

If onl y one statement is repeated, the braces are not necessar y, but
they add clarity to the statement. The do loop repeats as long as the
condition is true.

The do loop is the only loop in C that will always have at least one
iteration because the condition is tested at the bottom of the loop.

A common use of the do loop is to read disk tiles. This code will
read a file until an EOF is encountered.

do

ch	 getc(fp);

if('feof(fp)) printf(%c, ch);

I whiie(!feof(fp));

C KEYWORD SUMMARY 461
V

double

double is a data type specifier used to declare double-precision
floating-point variables. To declare d to he of type double you would

write the following statement:

double d;

else

See the if section.

enum

The enum type specifier is used to create enumeration types. An
enumeration is simply a list of named integer constants. For example,
the following code declares an enumeration called color that consists

of three constants: red, green, and yellow.

#include 'zstdio.h>

enum color (red, green, yellow);

enum color C:

mt main(void)

c = red:

if(c==red) printf('is red\n);

return 0;

extern

The extern data type modifier tells the compiler that a variable is
defined elsewhere in the program. This is often used in conjunction
with separately compiled files that share the same global data and are
linked together. In essence, it notifies the compiler of a variable
WithoUt redefining it.

As an example, if first were declared in another file As an integer,
the following declaration would be used in subsequent files:

extern mt first;

462 TEACH YOURSELF
V

float

float is a data t ype specifier used to declare floating-point variables. 'to
declare f to he of type float you would write:

float f;

for

'['he for loop allows automatic initialization and incrrmenLi,i i of a
counter variable. The general form is

for(inhtial,'zatjon; condition; increment)
statement block

it the StatcrneiU block is only one statement the braces are not
11cccssary -

Although the for allows a number of variations , generally the
rurtiahzat,on is used to set a counter variable to its starting value The
(:ollnon is generally a relational statement that checks the coo nter
variable against a termination value and the increment increments (or
decrements) the counter value. The loop repeats until the condition
becomes false.

The following code will print hello ten times.

for(t=O; t<10; t++) printf(He110\n");

goto

The goto causes program execution to jump to the label spetillerl in
the goto statement. The general form of the goto is

goto label ;

label.'

All labels must end in a colon and must not conflict with keywords or
function names. Furthermore, a goto can branch only within the
current function, and riot from one 'unction to another.

C KEYWORD SUMMARY 463
V

The following example will print the message right but not the
message wrong:

goto labi;

printf (wrong);

labl:

printf(right)

if

The general form of the if statement is

if(condition) (
statement block 1

else
statement block 2

If single statements are used, the braces are not needed, The cisc is
optional.

The condition maybe any expression. If that expression evaluates to
any value other than 0, then statement block 1 will be executed;
otherwise, if it exists, statement block will be executed.

The following code fragment can be used for keyboard input and to
look for a 'q' which signifies quit.

ch = getche;

if(ch=='q')

printf (program Terminated);
exit (0)

else proceed();

mt

mt is the type specifier used to declare integer variables. For example,
to declare count as an integer you would write

jet count;

464 TEACH vouRsaF

V

long

long is a data type modifier used to declare long integer and long
double variables. For example, to declare count as a long integer you
would write

long mt count;

register

The register modifier requests that a variable be stored in the way

that allows the fastest possible access. In the case of characters or
integers, this usually means a register of the CPU. To declare ito he a
register integer, you would write

register mt 1;

return

The return statement forces a return from a function and can he used
to transfer a value back to the calling routine. For example, the
following function returns the product of its two integer arguments.

mt ml(int a, mt b)

return a*b;

Keep in mind that as soon as a return is encountered, the function
will return, skipping any other code in the function.

short

short is a data type modifier used to declare small integers. For
example, to declare sh to he a short integer you would write

short mt sh;

signed

The signed type modifier is most commonly used to sp&ify a signed
char data type.

C KEYWORD SUMMARY 465
V

sized

T.e sizeof keyword is a compile-time operator that returns the length
of the variable or type it precedes. If it precedes a type, the type must
be enclosed in parentheses. For example,

printf(%d", si.zeof(short int));

will print 2 for most C implementations.
The sizeof statement's principal use is in helping to generate

portable code when that code depends on the size of the C built-in data
types.

static

The static keyword is a data type modifier that causes the compiler to
create permanent storage for the local variable that it precedes. This
enables the specified variable to maintain its value between function
calls. For example, to declare last-time as a static integer, you would
write

static mt last—time;

static can also be used on global variables to limit their scope to the
file in which they are declared.

- struct

The struct statement is used to create aggregate data types, called
structures, that are made up of one or more members. The general
form of a structure is

struct struct-name (
type member!;
type member2;

type member N;
variable-list;

The individual members are referenced using the dot or arrow
operators.

466 TEACH YOURSELF
V

switch

The switch statement is C's multi-path branch statement. It is used to
route execution in one of several ways. The general form of the
statement is

switch(int-expression)
case constant 1: statement-set 1:

break:
case constant2 Statement-set 2;

break;

case constantN: statement-set N;
break:

default: default-statements;

Each statement-set may be one or many statements long. The default
portion is optional. The expression controlling the switch and all case
constants must be of integral or character types.

The switch works by checking the value of mt-expression against
the constants. As soon as a match is found, that set of statements is
executed. If the break statement is omitted, execution will continue
into the next case. You can think of the cases as labels. Execution will
continue until a break statement is found or the switch ends.

The following example can be used to process a menu selection:

ch = geLche.);

switch (ch)

case 'e': enter;

break;

case 1 1': list;

break;
case 's': sort;

break;
case 'q': exit(0);

break;
default: printf("Unknown Comrnand\n");

printf(Try Again\fl");

C KEYWORD SUMMARY 467
V

typedef

The typedef statement allows you to create a new name for an
existing data type. The general form of typedef is

typedef type-specifier new-name;

For example, to use the word "balance" in place of "float, you would
write

typedef float balance;

union

The union keyword creates an aggregate type in which two or more
variables share the same memory location. The form of the
declaration and the way a member is accessed are the same as for
struct. The general form is

union union-name
type member!,
type member2;

type member N;
variable-list;

unsigned

The unsigned type modifier tells the compiler to create a variable that
holds only unsigned (i.e., positive) values. For example, to declare big
to be an unsigned integer you would write

unsigned mt big;

void

The void type specifier is primarily used to declare void functions
(functions that do not return values). It is also used to create void
pointers (pointers to void) that are generic pointers capable of
pointing to any type of object and to specify an empty parameter list.

468 TEACH YOURSELF
C

volatile

The volatile modifier tells the compiler that a variable may have its
contents altered in ways not explicitly defined by the program.
Variables that are changed by the hardware, such as real-time clocks,
interrupts, or other inputs are examples.

while

The while loop has the general form:

while(condition)
statement block

If a single statement is the object of the while, the braces may he
omitted. The loop will repeat as long as the condition is true.

The while tests its condition at the top of the loop. Therefore, if the

condition is false to begin with, the loop will not execute at all. The
condition may be any expression.

An example of a while follows. It reads characters until end-of-file

is encountered-

= 0;

while(!feoL(fp)) I

s(tl = getc(fp);

C

•0
Building a Windows
Skeleton.

469
V

470 TEACH YOURSELF
V

C

is a popular language for Windows programming. As such
it makes sense that some coverage of this important topic
be included in this book. But be forewarned: Programming
for Windows requires a thorough knowledge of both C and
Windows. Frankly, before you can write useful Windows

programs, you will need to hone your C programming skills and then
invest substantial time in learning the ins and outs of the Windows
operating system. Keep in mind that just a description of-the functions
available within Windows requires approximately 2,000 printed pages!

The preceding notwithstanding, if you will he moving on to
Windows programming, you are probably anxious to begin. The
Purpose of this appendix is to give you a brief overview of Windows
programming and to explain a few of its most fundamental elements.
In essence, the information presented here is designed to give you a
"jump start into the world of Windows programming.

This appendix discusses in a general way what Windows is, how a
program must interact with it, and what rules must be followed by
every Windows application. It also develops an application skeleton
that you can use as a basis for your own Windows programs. As you
will see, all Windows programs share several common traits. It is these
shared attributes that will be contained in the application skeleton.

JJ4/HI C H VERSION OF WINDOWS?
At the time of this writing, there are three versions of the Windows
operating system in common use: Windows 3.1, Windows 95, and
Windox	 skeleton developed in this appendix is designed for
32-bit versions of Windows, such as Windows 95 or Windows NT, since
these are the most widely used versions. However, the basic principles
apply to all versions of Windows.

WNDOWS PROGRAMMING
PERSPECTIVE

The goal of Windows is to enable a person who has basic familiarity
with the system to sit down and run virtua l l y any application without
prior training. To accomplish this end, Windows provides a consistent
interface to the user. In theory, if you can run one Windows-based

BUILDING AW1NDOWS SKELETON 471
WINDOn PROGRAMMING PERSPECTIVE

program, you can run them all. Of course, in actuality, most useful
programs will still require some sort of training in order to he used
effectively, but at least this instruction can be restricted to what the

program does, not hurt' the user must i n teract with it. In fact, much of
the code in a Windows application is there just to support the user

interface.
Before continuing, it must be stated that not every program that

runs under Windows will necessarily present the user with a Windows-
style interface. It is possible to write Windows programs that do not
take advantage of the Windows interface elements. To create a

Windows-st yle program, you must purposely do so. Only those
programs written to take advantage of Windows will look and feel like
Windows programs. While you can override the basic Windows design
philosophy, you had better have a good reason to do so, because the
users of your programs will, most likely, be very disappointed. In
general, any application programs you are writing for Windows should
utilize the normal Windows interface and conform to the standard
Windows design practices.

Windows is graphics-oriented, which means that it provides a
Graphical User Interface (GUI). While graphics hardware and video
modes are quite diverse, many of the differences are handled by
Windows. This means that, for the most part, your program does not
need to worry about what type of graphics hardware or video mode is

being used.
Let's look at a few of the more important features of Windows.

THE DESKTOP MODEL

With few exceptions, the point of a window-based user interface is
to provide the equivalent of a desktop on the screen. On a desk you
might find several different pieces of paper, one on top of another,
often with fragments of different pages visible beneath the top page.
The equivalent of the desktop in Windows is the screen. The pieces of
paper are represented by windows on thescreen. On a desk you may
move pieces of paper about, maybe switching which piece of paper is
on top, or how much of another is exposed to view. Windows allows
the same type of operations on its windows. B y selecting a window,

2 TEACH YOURSELF

C

you can make it current, which means putting it on top of all the other
open windows. You can enlarge or shrink a window, or move it about
on the screen. In short, Windows lets you control the surface of the
screen the way you control the items on your desk.

While the desktop model forms the foundation of the Windows user
interface, Windows is not limited b y it. In fact, several Windows
interface elements emulate other t ypes of familiar devices, such as
slider controls, spin controls, property sheets, and toolbars. Windows
gives you, the programmer, a large array of features from which you
may choose those most appropriate to your specific application.

THE MOUSE

iclows allows the use of the mouse for almost all control,
se	 ion, and drawing operations. Of coLirse, to say that it a llows the
use of the mouse is an understateme nt. The fact is that the Windows
interlace was dcsigncd fw the mouse—it allows the use of the keyboard!
Although it is certainly possible for an application program to ignore
the mouse, it does so onl y in violation of a basic Windows design
principle.

ICONS AND BITMAPS

Windows encourages the use of icons antI bitmaps (graphics
images). The theory behind the use of icons and bitmaps is found in
the old adage 'a picture is worth a thousand words.'

An icon is a small symbol that represents some operation or
program. Generall y , the operation or program can he activated by
selecting the icon. A bitmap is often used to convey information
quickl y and simply to the user. However, bitmaps can also be used as
me tin elements.

MENUS AND DIALOG BOXES

Aside train standard windows, Windows also provides several
special-purpose windows. The most common of these are the menu
and the dialog box. A mcmi is, as you would expect, a special window
that contains choices froni which the user makes a selection. The

BUILDING Pt WINDOWS SKELETON 473
HOW WWOOWS AND YVUR PROGRAM 1N7ERACT

thing that makes menus valuable is that they are largely automated.
Instead of having to manage menu selection manually in your
program, you simply create a standard menu—Windows will handle

the details for you.
A dialog box is a special window that allows more complex

interaction with the application than that allowed by a menu. For
example, your application might use a dialog box to request a file
name. With few exceptions, non-menu input is accomplished via a

dialog box.

IJow WINDOWS AND YOUR PROGRAM

11INTERACT

When you write a program for man y operating systems, it is your
program that initiates interaction with the operating system. For example,
in a DOS program, it is the program that requests such things as input
and output. Put differently, programs written in the traditional way"
call the operating system. The operating system does not call your
program. However, Windows generally works in the opposite way. It is
Windows that calls your prograni. The process works like this: Your
program waits until it is sent a message by Windows. The message is
passed to your program through a special function that is called by
Windows. Once a message is received, your program is expected to
take an appropriate action. While your program may call Windows
when responding to a message, it is still Windows that initiates the
activity. More than anything else, it is the message-based interaction
with Windows that dictates the general form of all Windows programs.

There are many different types of messages that Windows may send
our program. For example, each time the mouse is clicked on a

window belonging to your program, a mouse-clicked message will be
sent to your program. Another type of message is sent each time a
window belonging to your program must be redrawn. Still another
message is sent each time the user presses a key when your program

is the focus of input. Keep one fact firmly in mind: As far as your
program is concerned, messages arrive randomly. This is why
Windows programs resemble interrupt-driven programs. You can't
know what message will be next.

One final point: Messages sent to your program are stored in a
message queue associated with your program. Therefore, no message

474 TEACH YOURSELF
V

will be lost because your program is busy processing another message.
The message will simply wait in the queue until your program is ready
for it.

14/IND0WS IS MULTITASKING

Since the start, Windows has been a multitasking operating system.
This means that it cai run two or more programs concurrently. All
32-bit versions of Windows (such as Windows NT and Windows 95)
use preemptive multitasking. Using this approach, each active
application receives a slice of CPU time. It is during its time slice that
an application actually executes. When the application's time slice
runs out, the next application begins executing. (The previously
executing application enters a suspended state in which it awaits
another time slice.) In this fashion, each application in the system
receives a portion of CPU time. Although the application skeleton
developed in this appendix is not concerned with the multitasking
aspects of Windows, they will be an important part of any application
you create.

Older, 16-bit versions of Windows used a form of multitasking called non -
preemptive multitasking.. With this approach, an application retained the CPU
until it explicitly released it. This allowed applications to monopolize the CPU
and effectively "lock out" other programs. Preemptive multitasking eliminates
this problem.

TH E

WIN32 API

In general, the Windows environment is accessed through a call-based
interface called the Application Program Interface (API). The API
consists of several hundred functions that your program calls as
needed. The API functions provide all the system services performed
by Windows. There is a subset to the API called the Graphics Device
Interface (GDI), which is the part of Windows that provides device-
independent graphics support. It is the QDI functions that make it
possible for a Windows application to run on a variety of hardware.

Programs designed for use by 32-bit versions of Windows, such as
Windows 95 and Windows NT, use the Win32 API. For the most part,
Win32 is a superset of the older Windows 3.1 API (Win16). Indeed, for

Border

5th WING A WINDOWS SKELEtON 475
THE COMPONENTS OFA IMNOOW

the most part, the functions are called by the same name and are used
in the same way. However, even though similar in spirit and purpose,.
the two APIs differ because Win32 supports 32-bit addressing while
Win16 supports only the 16-bit, segmented-memory model. Because of
this difference several of the older API functions have been widened
to accept 32-bit arguments and return 32-bit values. A few API
functions have had to be altered to accommodate the 32-bit archi-
tecture. API functions have also been added to support preemptive
multitasking, new interface elements, and other enhanced features.

Because modern versions of Windows support 32-bit addressing, it
makes sense that integers are also 32 bits long. This means that types

mt and unsigned are 32 bits long, not 16 bits, as is the case for
Windows 3.1. If you want to use a 16-bit integer, it must he declared as
short. Windows provides portable typedcf names for these types, as

you will see shortly.

THE COMPONENTS OF A WINDOW

Before moving on to specific aspects of Windows programming, a few
important terms need to be defined. Figure c-i shows a standard
window with each of its elements pointed out.

System menu icon	 Title Minimize box
e box

box

Vertical
scroll bar

Client area	 Horizontal scroll bar

.76 TEACH YOURSELF

V

All windows have a border that defines the limits of the window the
borders are also used when resizing the window. At the top of the
window are several items. On the far left is the system menu icon
(also called the title bar icon). Clicking on this box displays the system
menu. To the right of the system menu icon is the window's title. At
the far right are the minimize, maximize, and close boxes. The client
area is the part of the window in which your program activity takes
place. Most windows also have horizontal and vertical scroll bars that
are used to move information through the window.

SOME WINDOWS APPLICATION BASICS

Before developing the Windows a pplication skeleton, some basic
concepts common to all Windows programs need to he discussed.

WinMain()

All Windows programs begin execution with a call to WinMain().
(Windows programs do not have a main() function.) WinMain()
has some special properties that differentiate it from other functions
in your application. First, it must be compiled using the WENAPI
calling convention. (You will see APIENTRY used as well. The y both
mean the same thing.) By default, functions in your C programs use
the C calling convention. However, it is possible to compile a function
SO that it uses a different calling convention; Pascal is a common
alternative. For various technical reasons, the calling convention
Windows uses to call WinMain() is WINAPI, The return t ype of
WinMain() should be mt.

THE WINDOW FUNCTION

All Windows programs must contain a special function that is not
called by your program, but is called by Windows. This function is
generally referred to as the window function or the window procedure.
The window function is called by Windows when it needs to pass a
message to your program. It is through this function that Windows
communicates with your program. The window function receives the
message in its parameters. All window functions must be declared as

BUILDING A WINDOWS SKELETON 477
V

SOME IMNOOI4S APP'JcAT,ON MS/CS

returning type LRESULT CALLBACK. The type LRESULT is a
typedef that, at the time of this writing, is another name for a long
integer. The CALLBACK calling convention is used with those
functions that will be called by Windows. In Windows terminology,
any function that is called by Windows is referred to allback
fu nct ion.

In addition to receiving the messages sent by Windows, the window
function must initiate any actions indicated by a message. Typically, a
window function's body consists of a switch statement that links a
specific response to each message that the program will respond to.
Your program need not respond to every message that Windows sends.
For messages that your program doesn't care about, you can let
Windows provide default processing. Since there are hundreds of
different messages that Windows can generate, it is common for most
messages simply to be processed by Windows and not by your
program.

All messages are 32-bit integer values. Furthermore, all messages
are linked with any additional information that the messages require.

WINDOW CLASSES

When your Windows program first begins execution, it will need to

define and register a window class. When you register a window class,
you are telling Windows about the form and function of the window.
However, registering the window class does not cause a window
to come into existence. To actually create a window requires
additional steps.

THE MESSAGE LOOP

As explained earlier, Windows communicates with your program by
sending it messages. All Windows applications must establish a
message loop inside the WinMain() function. This loop reads any
pending message from the application's message queue and dispatches
that message back to Windows, which then calls your program's
window function with that message as a parameter. This may seem to
be an overly complex way of passing messages, but it is, nevertheless,
the way all Windows programs must function. (Part of the reason for
this scheme is to return control to Windows so that the scheduler can

478 TEACH vouRsaF

V

allocate CPU time as it sees fit rather than waiting for your
appl4cation's time slice to end.)

WINDOWS DATA TYPES

As you will soon see, Windows programs do not make extensive use

of standard C data types, such as mt or char . Instead, all data types
used by Windows have been typedefed within the WINDOWS-1-1 file
and/or its related flies. The WINDOWS.H file is supplied by your
Windows-compatible compiler and must be included in all Windows
programs. Some of the most common types are HANDLE, HWND,
BYTE, WORD, DWORD, UINT, LONG, BOOL, LPSTR, and
LPCSTR. HANDLE is a 32-hit integer that is used as a handle. As you
will see, there are a number of handle types, but they are all the same
size as HANDLE. A handle is simply a value that identifies some
resource. Also, all handle types begin with an H. For example, HWND
is a 32-bit integer used as a window handle. BYTE is an 8-hit unsigned
character. WORD is a 16-bit unsigned short integer. DWORD is an
unsigned long integer. UINT is a 32-bit unsigned integer. LONG is
another name for long. BOOL is an integer; this type is used to
indicate values that are either true or false. LPSTR is a pointer to a
string, and LPCSTR is a const pointer to a string.

In addition to the basic types described above, Windows defines
several structures. The two that are needed by the skeleton program
are MSG and WNDCLASSEX. The MSG structure holds a Windows
message, and WNDCLASSEX is a structure that defines a window
class. These structures will be discussed later in this appendix.

A WINDOWS SKELETON

Now that the necessary background information has been covered,
it's time to develop a minimal Windows application. As stated, all
Windows programs have certain things in common. This section
develops a Windows skeleton that provides these necessary features.
In the world of Windows programming, application skeletons are
commonly used because there is a substantial price of admission
when creating a Windows program. For instance, the short example
programs shown in this hook arc designed for a command-line
interface (such as DOS), in which a minimal program is about 5 lines

BUILDING A WINDOWS SKELEmN 479
SOME MNDO4S APPLIC4 lION MS/CS

long. A minimal Windows program, however, is approximately 50
lines long.

A minimal Windows program contains two functions: WinMain()
and the window function. The WinMain() function must perform
the following general steps:

1. Define a window class.

2. Register that class with Windows.

3. Create a window of that class.

4. Display the window.

5. Begin running the message loop.

The window function must respond to all relevant messages. Since
the skeleton program does nothing but display its window, the only
message that it must respond to is the one telling the application that
the user has terminated the program.

Before considering the specifics, examine the following program,
which is a minimal Windows skeleton. It creates a standard window
that includes a title. The window also contains the system menu and
is, therefore, capable of being minimized, maximized, moved, resized,
and cu A. It also contains the standard minimize, maximize, and
close boxes.

/* A minimal 32-bit Windows skeleton. */

#include <windows.

LRESULT CALLBACK WindowFunc(HWND, UINT, WPARAN, LPARAM);

char szWinNarne[] = MyWin; 1 name of window class /

mt WINAPI WjnMain(HINSTANCE hThislnst, HINSTANCE hPrevinst,

LPSTR lpszArgs, mt nWinNode)

HWND hwnd;
MSG msg;

WNDCLASSEX wcl;

/ Define a window class. 1

wcl.cbSize	 sjzeof(WNDCLASSEX); /* size of WNDCLASSEX

wcl.hlnstance = hThislnst; f handle to this instance *1

480 TEACH YOURSELF

y

wcl.lpszClassNaxne = szWinName; 1* window class name
wcl.lpfnWnd proc = WindowFunc; 1* window function
wcl.style = 0; / default style •f

wcl.hlcon = Loadlcon(NTJLL, IDI_APPLICATION); / icon style
wcl.hlconSm = Loadlcon(NULL, IDIWINLCO); /* small icon style *

wcl.hCursor = LoadCursor(NtJLL. IDC_ARROW); 1* cursor Style
wcl.lpszMenuNarne = NULL; / no menu 1

wcl.cbClsExtra = 0; / no extra *1

wcl.cbWndExtra = 0; / information needed *1

1* Make the window background white. *7

wcl .hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);

1 Register the window class. I

if(!RegisterClassEx(&wcl)) return 0;

/ Now that a window class has been registered, a window
can be created. /

hwnd = CreateWindowl
szWinNaine, / name of window class
'Windows Skeleton', 7* title I

WS_DVERLAPPEDWINDOW, / window style - normal I

CW_USEDEFAULT, / K coordinate - let Windows decide
CW_USEDEFAULT, / Y coordinate - let Windows decide *7
CW_USEDEFAULT. 7* width - let Windows decide
CW_.USEDEFAULT. 1* height - let Windows decide
HWND_DESKTOP, / no parent window *1

NULL, / no menu /
hThislnst, / handle of this instance of the program *7
NULL / no additional arguments /

1* Display the window. I
ShowWindow(hwnd, nWinNode);
tJpdatewindow(hwnd);

/* Create the message loop. *7
while(GetMessage(&msg, NULL 0, 0))

Tran1ateMessage(&flWg); /* translate keyboard messages *7

DispatchMessage(&msg); 7* return control to Windows */

return msg.wParam;

7* This function is called by Windows and is passed

messages from the message queue.
*7

LREStJLT CALLBACK WindowFunc(HWND hwnd, UINT message.

WPARAM wParam, LPAR.AM iParam)

switch (message)

case WM_DESTROY: / terminate the program

PostQuitMessage(0);

break;

default:

/ Let Windows process any messages not specified in

the preceding switch statement. /

return DefwindowProc(hwnd, message, wPararn, iParam)

return 0;

The window produced by this program is shown in Figure C-2. Now
let's go through this program step by step.

First, all Windows programs must include the header file
WINDOWS.H. As stated, this file (along with its support tiles) contains
the API function prototypes and various types, macros; and definitions
used by Windows. For example, the data types 1IWND and
WNDCLASSEX are defined in WINDOWS.H.

The window function used by the program is called WindowFunc().
It is declared as a callback function, because this is the function that
Windows calls to communicate with the program.

Program execution begins with WinMain(), which is passed four
parameters. hThislnst and hPrevinst are handles. hThistnst refers
to the current instance of the program. Remember, Windows is a
multitasking system, so more than one instance of your program may
be running at the same time. hPrcvinst will always be NULL. (In

31

The window

ptoduced by the
Windows s/efe(on

V

BUILDING A WiNDOWS SKELETON 481
SOME WINDOWS APPUCA lION &4SICs V

482 TEACH VOURSEI F

V

Windows 3.1 pr(crai11s, hI'revinst would be non-zero it (IlelO were

other instances ot the pruui;u1) currentl y xctcuting, but this doesn't

appl y to 32-bit versions of \induws.) The 1pszArgs paranietI is a

riog that holds aiiV i:utniiiifld hue arguments SpePointer to a St	 Lihed

when tIm apph R II 0111 WdS begun. him flWin\Ode paraineuir contains

a value that determi:ie.s how the wind w ill he displa yed 'hen your

program begins es (i:u t toil.
Inside the fit netion. three variables ire ii eater!. The hwnd vai ethic

will bohd the handie to the programs window. The msg stru lure

variable will hold window messages, and the wch structure variable

will he used to detote the window clas::.

DEFINING THE WINDOW CLASS

The first two actions that WinMain() takes are to dedne i

window class ;n id then register it. A wnidow class is defined hvilIing

i the Fields defined b y the WNDCLASSEX structulit. Its fields are

sliowii here:

UN c-bSi.e	 * size of the WNDCLASSEX strucLure

'dINT srye;	 type of window /

WNDPR() 1jf:ndProC;
/* address to window func

BUILDING A WINDOWS SKELETON 483
SOME WINDOi APPi leA lION fiAS/CS

mt cbClsExtra / extra class infn *7

jOt cbwndExt.ra; / exrra window info
IIINSTANCE hinstance; /* handle of this instance

iiICON hlcon; / handle of standard icon

HICON hlconSm; /* handle of small icon

HCURSOR hCursor; /* handle of mouse cursor

IIBRUSH hbrBackground; 7* background color

LPCSTR lpssMenuName;	 name of main menu

LPCSTP. lpszClassName; 7' name of window class

As you can see b y looking a the program cbSize is assigned the size

of the WNDCLASSEX structure. The hinstance field is assigned the

current instance handle as specified b y hThistn8t. The name of tim

window class is pointed to b y lpszClassName, which points to the
string MyWin" in this case. The address of the window function is
assigned to lpfnWndProc. No default st yle is specified, and no extra
information is needed.

All Windows applications need to define a default shape for the
mouse cursor and for the applications icons. An application can dclii ic

its own custom version of these reSOuI'LCS or it ma y use one of the

built-in st y les, as the skeleton does. In either case, handles to these
resources must he assigned to the appropriate rnemhers of the
WNDCLASSEX structure. To see how this is done, let's begin
with icons.

A modern Windows application has at least two icons associated
with it: one standard size and one small. The small icon is used When
the application is minimized and it is also the icon that is used for the
svtcm menu. The standard icon is displayed when you move or copy
an application to the desktop. Typically, standard icons are :32 by 32
litmapS and small icons are 16 h' 16 bitmaps. The st yle of each
icon is loaded by the API function Loadtcon(), whose protot y pe is
shown here:

HICON Loadhcon 0-IINSTANCE h/nsf, LPCSTR IpszName);

This function returns a handle to an icon I here, hlnst specifies the
handle of the module that contains the icon and the icon's name is
specified in lpszr*rrne. However, to use one of the built in icons, YOU

484 TEACH vOURSEIJ

V

must use NULL for the first parameter and specify one of the
following macros for the second:

Icon Macro	 Slap

101 —APPLICATION	 Default icon

101 ASTERISK	 Information icon

101 — EXCLAMATION	 Exclamation point icon

ID HAND	 Stop sign

101 —QUESTION	 Question mark icon

IDI_WINLOGO	 Windows Logo

In the skeleton, IDI_APPLICATION is used for the standard icon
and IDI_WINLOGO is used for the small icon.

To load the mouse cursor, USC the LoadCursor() API function.
This Function has the following prototype:

HCURSOR LoadCursor(HINSTANCE hInsL LPCSTR /pszName):

This function returns a handle to a cursor resource. Here, hlnst
specifics the handle of the module that contains the mouse cursor, and
the name of the mouse cursor is specified in lpszNarne. However, to
use one of the built-in cursors, you must use NULL for the first
parameter and specify one of the built-in cursors, using its macro, for
the second parameter. Some of the most common built-in cursors are
shown here:

Cursor Macro	 Shape

IOC ARROW	 Default arrow pointer

IDC_CROSS	 Cross hairs

IDC_IBEAM	 Vertical I-beam

IDC_WAIT	 Hourglass

The background color of the window created by the skeleton is
specified as white, and a handle to this brush is obtained using the API
function GetStockObject(). A brush is a resou'rcthat paints the
screen using a predetermined size, color, and pattern. The function
GctStockObjcct() is used to obtain a handle to a number of standard

BUILDING A WiNDOWS SKELETON 485
SOME W1ND(MSAPPf.1CA lION BASICS

display objects, including brushes, pens (which draw lines), and
character fonts. it has this prototype:

HGDIOBJ GetStockObjectcl rlt object);

The function returns a handle to the object specified by Objec t . (The

type HGDIOBJ is a GDI handle.) Here are some of the built-in
brushes available to your program:

B !hMe!_m	 BacNLrT!nd

BLACK BRUSH	 Black

DKGRAY_BRUSH	 Dark gray

HOLLOW _BRUSH	 See-through window

LIGRAY_BRUSH	 Light gray

WHITE-BRUSH	 White

You can use these macros as parameters to GetStockObject() to

obtain a brush.
Once the window class has been fully specified, it is registered with

Windows using the API function Registerclas8EX(), whose prototype

is shown here:

ATOM RegisterClassExtlCONST WNDCLASS 8IpWC1ass);

The function returns a value that identifies the window class. ATOM
is a typedef that means WORD. Each window class is given a unique

value. lpWCla&s must be the address of the WNDCLASSEX structure.

cREATING A WINDOW

Once a window class has been defined and registered, your
application can actually create a window of that class using the API
function CreateWindow(), whose prototype is shown here:

HWND CreateWindow(
LPCSTR IpC/assName, f name of window class
LPCSTR IpWinName, / title of window
DWORD dwStyle, 1 type of window
nt X, mt Y, i's upper-left coordinates /

488 TEACH YOURSELF

V

mt Width, mt Height, f dimensions of window 'I
HWND hParent. / handle of parent window 1
HMENU hMenu, / handle of main menu /
HINSTANCE hTh,.s/nst, / handle of creator 1
LPVOID /pszAddit,ona/1 pointer to additional info 'I

As you can see by looking at the skeleton program, many of the
parameters to CreatcWindow() may he dc laulted or specified as
NULL. In fact, most often the X, Y, Width, and 11ci0ir parameters will
simply LISC the macro CW USEDEFAULT which tells Windows to
select an appropriate size and location for the window. lithe window
has no parent, which is the case in the skeleton, then h[orrut must he
specified as HWND_DESKTOF. (You ma y also use NULL for this
parameter) If the window does not contain a main menu, tllefl 11Al
must be NULL. Also, if no additional infirniation is required, as is
most often the case, then /pszAdditiona(is NULL. (The type LI'VOID
is typcdcfid as void * . Historicall y , LPVOII) stands for "long punter
to void

The 'emainhrlg tour paranieters must be set explicitly by our
program. First, 1pszC1as,sNcone must point to the name of the window
class. ('this is the name you gave it when it was registered.) The title
of the window is a string pointed to b y Ipsz Wi>iNo nc. This can he a
null Strin, but usually a window will be given a title. The style (or
ty)Ie) of window actually creired is determined by the v,ilue of
ilu'S(ijlc. The macro W S_OVERLAL'PEDWINDO%%' specifies a standard
Window that has a systclii neon a border, and minimize, maximize,
Mid close boxes. While this style of window is the most common, you
(ar] construct on' to your own specifications to accomplish this,
simpl	 nV OR together the vaoi.s style macros that you winit. Sonic
other ('omilion st y les ' ire shown here:

Style Macros	 Window Feature

WS OVERLAPPED	 Overlapped window with border
WSMAXJMIZEBQX	 Maximize box
WSMINIM,ZEBQX	 Minimize box
WS_SYSMENU	 System menu
WSHSCROLL	 Horizontal scroll bar
WS VSCROLL	 Vertical scroll bar

BUILDING A WINDOWS SKELETON 487 488 TEACH YOURSELF
SOME WINDOWS APPLICA liON BASICS

V

The JiThisinst parameter must contain the current instance handle of

the application.
The Cre,ateWindow() function returns the handle ui the window it

creates or NULL if the window cannot be created.
Once the window has been created it still is not dispLived on the

screen. To cause the window to he displayed, call the ShowWindow()
API function. This function has the following prototvlie:

BOOL ShowWindow(HWND hwnd, mt ni-low);

The handle of the window to displa y is spr.ci fled in !zn'nd. The display

mode is specified in nliow. The first time die window is displayed, You

will want to pass WinMain()s nWinModc as the j il iou , parameter.

Remember, the value of nWinModc determines how the window will
he displayed when the program begins execution uhseqiient calls can
display (or remove) the window as necessar y . Sonic common values

fornllotv are shown here:

P!v'Y Macros

SW—HIDE	 Removes the window

SW—MINIMIZE	 Minimizes the window into an icon

SW MAXIMIZE	 Maximizes the window

SW—RESTORE	 Returns a window to normal size

The ShowWindow () function returns the previous display status
of the window, if the window was displayed, then nonzero is returned.

If the window was net displayed, zero is returned.
Although not technicall y necessar y 1r the skeleton, a call to

UpdatcWindow() is included because it is needed by virtually every
Windows application that you will create. It css(-.n' i.:l1l y tells Windows

to send a niessage to your application that the ma n wi ridow needs to
be updated.

THE MESSAGE LOOP

The final part of the skeletal WinMain(is the	 i0op lIie

message loop is a part of all Windows ipplh:ations. Its PUrIJ OS is to

receive and process messages sent b y Windows. When an application
is running, it is cOntinLially being sent messages. These niessages are

Stored in the application's message queue until they cn he read and
P ro cessed. Each time your application is ready to read another message
it must call the API function GetMesage() which has this prototype

BOOL GetMessage(LPMSG msg, HWND hwnd, UINI mm, UJNT ma4;

The message will be received by the structure pointed to by nisg.All
Windows messages are Contained in a structure of type MSG,

shown here:

/ Message structure *

Lypedef struct tagMsG

1-WiND hwrid;	 / window that message is for
UINT message; 7* message *,

WPARj wParam; 1*	
info *7

LPApj1 iParam; 7* moremessage-dependent info *1DWORD time;	 7*
time message posted *1

POINT pt;	 7* XY location of mouse *7
MSC;

In MSG, the handle of the window Io1: which the message is intended
is contained in hwnd. All Win32 messages pre 32-hit integers, and the
message is contained in message. Additional information relating to
each message is passed in wParam and IParam. The type WPARAMis a typedef for UINT, and LPARAM is a typedef for LONG

The time the message was sent (posted) is specified in milliseconds
in the time field.

The Pt member will contain the coordinates of the mouse when the
message was sent. The coordinates are held in a POINT structure
W hich is defined like this:

Lypedef struct tagPOINT
LONG x, y

POINT:

If there are no messages in the application's message queue, thecall to GetMessage() will pass control back to Windows. 	
n a

The hivrid parameter to GetMessage() specifies the Window for
which messages will be obtained. It is possible, and even likely, that an
ap

plication will contain several Windows, hut you only want to receive
messages for a spec ific window. If you want to receive all messagesdirected at your application , this parameter must be NULL.

BUILDING A WIN(XJWS SKELUOW 439
------ 	 V

THE WINDOW FUNCTION

The remaining two parameters to GetMessagc() specify a range of

messages that will be received. Generally, you want your application
to receive all messages. To accomplish this, specify both nun and max

s Q as the skeleton does.
(ctMeMsage() returns zero when the user tcminaLcs the program,

auing the message loop to terminate. Otherwise it returns nonzero
Inside the message loop, two functions are called. The first is the

AN function Tran8latcMe8SagC(). This function translates raw

Tyrab

board input into character messages. Although it is not necessary
 applications, most applications call TranslateMessage()

*cause it is needed to allow full integration of the keyboard into your

appliàation program.
Once the message has been read and translated, it is dispatched

hack to Windows using the DispatchMCssage() API function.

Windows then holds this message until it can he passed to the

program's window function.
'Once the message loop terminates, the WinMain() function ends

by returning the value of msg.wParaifl to Windows. This value

ccntains the return code generated when your program terminates.

THE WINDOW FUNCTION

The second function in the application skeleton is its window function.
In this case, the function is called WindoWFUflC(), but it could have

any name you like. The window function is passed the first four
member-, of the MSG structure as parameters. For the skeleton,
th&only parameter used is the message itself. However, actual
applications will use the other parameters to this function.

The skeleton's window function responds to only one message

explicitly WM_DESTROY. This message is sent when the user

terminates the program. When this message is received, your program

must execute a call to the API function postQuitMessage(). The

argument to this function is an exit code that is returned in

msg.wParam inside WinMain(). Calling postQuitMCs8age()

causes a WM_QUIT message to he sent to your application, which

causes GetMessagC() to return false, thus stopping your program.

Any other messages received by WindowFuflc() are passed to

Windows, via a call to DefWindOWPrOCO, for default processing.

This step is necessary because all messages must he dealt with in one

fashfon or another.

499 TtACH YOURSELF
'V.

A SHORT WORD ABOUT DEFINITION
FILES

You I11.1\ hive heard ((1 reid ,ibout (ic/mOron files. For I 6-hit versions
of Winnow5 Such as 3. 1, proiranis need to have a definition file
11 1S 1S01-. i A t P d with them. A definition file is simply a text file that
specifies certain information and settings required by a Wi ihlov's 3.
program f Owever, because of the 32-bit architecture (and other
I ill pr (V(! rne tits) of modern versions of Windows definition tiles are
longer needed.

NAMING CONVENTIONS

Before concluding this appendix, a short comment on the naming of
functions and variables needs to he made. Several of the variable and
p, inimeter names in the skeleton program and its description probably
seemed rather unusual. This is her:ause the y lidlow a set of nariling
conventions that was invented for Windows programming by
Microsoft. For functions, the 11,11m , consists of a verb followed b y a
noun. The first :harater of the verb and noun is capitali,ed.

} O 1 variable names, Microsoft chose to Lise a rather complex system
of i nihecldirig the data t y pe into the nanlle. 10 acciniphish this, a
lowercase type prefix is added to the start of the variables name. The
name itself be 	 with a capital letter. The type prefixes are shown in
Table C-I. Frankl y , the use of type prefixes is (;ontr()versial and is riot
o nivcrsmil]v supported. Many Windows programmers rise this method,
hut many do not. You are tree to use any naming convention you like.

TO LEARN MORE

or foregoing overview of Windows pri igranhmning just scrmitchies the
su rfice. In order to write Windows programs that are useful y ou most
learn much more about Windows programming. To lem-n inure about
Windows 95 programs y ou will want to read the fbllowing ho, 'ks

Schi/dt's Windows 95 Programminq in C and C++

Schi/dt's Advanced Windows 95 Programming in C and C++

BUILDING A WINDOWS SKELETON 491
TO LEARN MORE

Prefix	 Data Type

b	 Boolean (one byte)

c	 Character (one byte)

dw	 Long unsigned integer
16-bit bit-field (flags)

To	 Function

h	 Handle
Long integer

Ip	 Long pointer

o	 Short integer

p	 Pointer

Pt	 Long integer holding screen coordinates

w	 Short unsigned integer

sz	 Pointer to null-terminated string

lpsz	 Long pointer to null-terminated string

rgb	 Long integer holding RGB color values

• L 1!	 Variable Type Prefix Characters V

To learn more about Windows NT programming, you will find

Windows NT 4 Programming From the Ground Up

especiall y useful. These hooks are written by Herbert Schikit and
published by Osborne/ McGraw-Hill

0
Answers

Cl

493
V

494 it*cr 'flURSEtF
V

- CHAPTER 1

EXERCISES
2. M include - stclio.h>

mt main(void)

juL nurn;

nun = 1000;

print f ("%d is the value of nun" nun)

retuzn O

EXERCISES
2. 4 incliide <Lc1io.h.'

mt muirl(vTid)

float a, b;

print f ("Enter two number:;

scanf("%f", &a);

scanf("%f", &b);

prinLf(Thejr sun is ,f.". otb);

return 0;

EXERCISES
1. include <stdio.h=

mt main(void)

mt len, width, height;

printf(En er length: •);

ANSWERS 495
EXERc,sE.c

scanf("%d	 &len);

printfV1nter width:

scanf("%d	 &width)

printf ("Enter height:

scanf(" %d", &height)

printf("Volume is %d.", len • width • height);

return 0;

2 #include <sd.io.h>

mtmain(void)

printf)'Nwnber of seconds in a year:

ur±ntf(%f", 60.0 * 60.0 * 24.0 * 365.0);-

reLurr 0;

E R Cl S ES

2. Yes, a comment can contain nothing.

3. Yes you can temporarily remove a line of code from vent
program by making it into a comment. This is somet I rues called
"nnirflenting out a line of code.

•. EXERCISES

2 #incjude <stdioh>

void onvojd)

void two(vojd);

int main(void)

one o;

two();

496 TEACH YOtJIJ
V

return 0;

void one (void)

printf('The summer soldier,);

void two (void)

printf("the sunshine patriot.");

3. The compiler will report an error. The prototype is needed in:
order for the compiler to properly call f'uncl().

EXERCISES
2. *include <stdio.h>

inC convert (void);

mt main(void)

printf("%d', convert)));

return 0;

mt convert (void)

mt dollars;

printf('Enter number of dollars:

scanf("%d", &dollars);

return dollars / 2;

3. There is nothing technically wrong with the program. However,
function fl() returns an integer value, but it is being assigned
to a variable of type double. This would lead one to suspect
that perhaps the programmer has misunderstood the purpose of
the fl () funttion.

ANSWERS 497
M4STERYSKILLS CHECK

4. A function declared with a void return type cannot return
a value.

EXERCISES
1. #include <stdio.h>

void outnum(int num);

mt main(void)

outnum(lO);

return 0;

void outnum(int nun')

printf("%d, nun');

2. The sqr_it() function requires an integer argument, but it is
called with a floating-point value.

fASTERY SKILLS CHECK

1. *include <stdio.h>

mt main(void)

float weight;

printf VEnter your weight:

scanf('%f", Weight);
printf(Effective moon weight: %f, weight * 0.17);

return 0;

2. The comment is not terminated w L a /.

3. #include <stdio.h>

498 TEACH YOURSELF
V

mt oto_c(int 0)

mt main(void)

mt ounces;

mt cups;

print! VEnter ounces:

scanf(, %cP, &ounces);

cups = oto_c(ounces);

print! ('%d cups" cups);

return 0;

mt o_to_c(int 0)

return o / 8;

4. char, int, float, double, and void.

5. The variable names are wrong because

a. A dash may not be used in a variable name.

b. A dollar sign may not be used in a variable name.

c. A + sign may not be used in a variable name.

d. A digit may not begin a variable name.

CHAPTER 2

REVIEW SKILLS CHECK
1. All programs must have a main() function. This is the first

function called when your program begins executing.

2. #include <stdio.h>

mt main(void)

printf("This is the number %d, 100);

MWAM 499
2? EXLRJSES

return 0;

3. To include a header file, use the #include compiler directive.

For example,

*include <stdio.h>

includes the STDIO.H header.

4. The five basic data types are char, int, float, double, and void.

5. The invalid variable names are b, c, and e.

6. The scanf() function is used to input information from the

keyboard.

7. *include <stdio.h>

mt main (void)

mt i;

printf(Enter a number:);

scanf(%d", &i);

printf(%d'	 j*j);

return 0;

8. Comments must be surrounded by the and / comment
symbols. For example, this is a valid C comment.

1* This is a comment. *1

9. A function returns a value to the calling routine using return.

lO void Myfunc(irlt count, float balance, char ch);

Z!x_dl5Fs
1. b, d, and e are true.

2. #include <stdio.h'

mt main(void)

mt i;

500 TEACH VOUPsaj

printf VEnter a number:);

scanf("%d', &i);
if((1%2)==O) printfVEven'J;

if((i%2)=l) printfVOdd:

return 0;

F X ER C IS E

1. #include cstdio.h>

mt main(void)

mt a, b, op;

printf VEnter first number:

scanf("%d', &a);

printf("Enter second number: "V

scanf("%d", &b);

printf("Enter 0 to add, 1 to multiply:);

scanf("%d. &op);

if(op==0) printf('%cP, a+b);

else printf("%d", ab);

return 0;

2. #include <stdio.h>

mt main (void)

mt 1;

priritf VEnter a number:);

scanf("%d", &i);
if((i%2)=0) printf('Even');

else printf('Odd");

ANSWERS 501
2 EXERCISES

V

return 0;

I]

EXERCISES
1. *include <stdio.h'

mt main (void)

mt a b, Up;

printf ('Enter 0 to add, 1 to subtract: ')

scanf("%d", &op);

if(op==0)	 /* add 1
printf(U En ter first number:

scanf("%d", &a);
printf("Enter second number:

scanf("%d", &b);,
printf("%d', ai-b);

else { /* subtract

printf VEnter first number:);
scanf("%d U , &a);

printf VEnter second number: U);

scarrfV%d", &b);

printf("%d", a-b);

return 0;

2. No, the opening curly brace is missing.

Vx ERCISES

L Uinclude <stdio.h>

mt main (void)

mt 1;

for(i=l; 1<101; i=i+1) priritf(-%d	 , i);

502 TEACH YOURSELF
V

return 0;

2.* include <stdio.h>

mt main(void)

mt i;

for(i=17; i<101; iri+1)

if((i%17)==0) printf(%d

return 0;

3. #include <stdio.h>

tnt main(void)

tnt flWIL 1;

printf('Enter the number to test:

scanf(%d, &num);

for(i=2; i<(nurn/2)+1; i1+1)

if((rurn%i)==0) printt('%d	 i)

return 0;

VxERCISES
1. #include <stdio.h>

mt main(void)

tnt i;

for(i=1; 1<101; i++) printf(%d 	 i)

return 0;

ANSWERS 503
75 EXERCISES

*include <stdjo.h>

mt main(void)

mt i;

for(i=17; i<101; j++)

if((i%17)==O) printf%d

return 0;

#include <stdio.h>

mt main(void)

me riwn,

prmntf("Enter the number to test:
scanf("%d, &nwn);

for(i=2; i<(num/2)+1; j++)
if((num%i)==O) priritf(%cj ",

return 0;

2. #include <stdio.h>

mt main(void)

mt a, b;

a = 1;

b = a;

printf(%cl %d', a, b);

return 0;

504 TEACH YOURSELF
V

EXERCISES
I #inclurje <stdjo.h>

irit main (void)

mt 1;

for(i=i; i<11; i++)

printffl%cJ %d %d\n, j j*j

return 0;

2. #lnclude <stdio.h>

mt main(void)

irit i, j;

printf(Enter a number:)

scanf("%d, &i);

for(j=i; j>0; j--) printf("%d\n"	 j);
printf('\a")

return 0;

EXERCISES
1. The loop prints the numbers 0 through 99.
2. Yes,

3. No, the first is true, the second is false.

JI17A STERY SKILLS CHECK
1. #inciude <stdioh>

mt main(void)

mt magic; /* magic number *1

ANSWERS 505
MASTERYSKJLLS CHECK

mt guess; / user's guess

mt 1;

magic = 1325;

guess = 0;

for(i=0; i<10 && guess!=magic; i++)

printf VEnter your guess:);

scanf(*%d, &guess);

if (guess == magic)

printf(" RIGHT!);
printf(" %d is the magic number.\n", magic);

else

printf(. ..Sorry, you're wrong...);

if (guess > magic)

printf(" "our guess is too high.\n');
else priritf(" Your guess is too low.\n');

return 0;

2. #include <stdio.h>

mt main(void)

mt rooms, len, width, total;

mt i;

printfVNurnber of rooms? •);
scan! ("%d', &rooms);

total = 0;
for(i=roorns; i>0; i--) (

printf VEnter length:);

scanf('%d, &len);

printfVEnter width: •);
scanf ("%d, &width);

total = total + len	 width;

printf("Total square footage: %d. total);

506 TEACH YOURSELF
V

return 0;

3. The increment operator increases a variable by one and the
decrement operator decreases a variable by one.

4. #include <stdio.h>

mt main(void)

mt answer, count;

mt right, wrong;

right	 0;
wrong = 0;

for(count=l; count < 11; count=count+1)

printf("What is %d + %d? ", count, count);
scanf('%d', &answer);

if (answer == count+count)

printf("Right!

right++;

else

printf(Sorry, you're wrong. ")

printf("The answer is %d. ", count+count);
wrong++;

printf("You got %d right and %d wrong.", right, wrong);

return 0;

5. #include <stdio.h>

mt main(void)

mt i;

for(i=l; i<=100; i++) C
printf(%d\t", U;

ANSWERS 507
REV7EWSX/LLS CHEO(

jf((i%5)'O) printf("\n);

return 0;

CHAPTER 3

-I? EVIEW SKILLS CHECK

1. C's relational and logical operators are <, >,	 =, = = =,
•!&,andII.

2. A block of code is a group of logically connected statements. To
make a block, surround the statements with curly braces.

3. To output a newline, use the \n backslash character code.

4. *include <stdio.h>

mt main(void)

mt i;

for(i=-100; i<101; i++) printf("%d	 1);

return 0;

'. #include 'stdIo.h>

mt main(void)

mt i;

printf("Enter proverb number:

scanf("%d', &i);

if(i==l) printf("A bird in the hand...');

if(i==2) printf('A rolling stone...");

if(i = =3) printf("Once burned, twice shy.");

if(i==4) printf("Early to bed, early to rise...");

if(i = =5) printf('A penny saved is a penny earned.");

508 TEACH YOURSELF
V

return 0;

6. count-+;

/* or /

-count;

7. In C, true is any nonzero value. False is zero.

EXERCISES,
1. #include <stdio.h>

#include <conio.h>

mt main (void)

mt].;

char oh, smallest;

print f)Enter 10 letters. \n"

smallest = 'z' ; / make largest to begin with

for(i=0; i<lO; j++)
ch = getche;

if(ch < smallest) smallest = oh;

prjntf(\nThe smallest character is %c.', smallest);

return 0;

2. #include <stdio.h>

mt main(void)

char ch;

for)ch='A' ; ch<='Z'; ch++)
printf(%d , ch);

printf("\n")

for(ch='a' ; ch<='z'; ch++)

ANSWERS 509
2 EXERCISES

print f(%d	 ch);

return 0;

The codes differ by 32.

Vx ERCISES,

1. The else relates to the first if; it is not in the same block as
the second.

2. Iinclude <stdio.h>

mt main(void)

char ch;

mt si, s2;

float radius;

printf(Compute area of Circle, Square, or Triangle?
di = getcharM;
printf C "\n"

if(ch=='C') {

printf('Enter radius of circle:

scant (%f, &radius)
printf("Area 15: %f", 3.1416radius*radius);

else if(ch=='S')

printf VEnter length of first side:

scanf("%d, &sl);

printf ("Enter length of second side:

scanf("%d', &s2);

printf("Area is: %d', sl*s2);

else if(ch=='T')

printf("Enter length of base:
scanf('%d", &sl);

printf(Enter height:
scanf('%d', &s2);

printf("Area is: %d', (s1"sI2);

510 TEAcHYOURSEIF

C

return 0;

EXERCISES
1. #include <stdio.h>

mt main(void)

float dist, speed;

mt flulfl;

printf(Eflter number of drive time computations:);

scanf(, %d. &num);

for(; num; num--)

printf("\nEflter distance:)

scanf(%f'. &dist);

printf("Enter average speed:

scanf(%f, &speed);

printf("flrive time is %f\n, dist/speed);

return 0

2. #iriclude <stdio.h>

mt main(void)

mt i;

printf("Enter a number:

scanf(%d, &i);

for(i; i)

printf(*\a)

ANSWERS 511
4 EXORCISES

return 0;

3. #include <stdio.h>

mt main(void)

mt i;

for(i=1; i<1001; i=i+i) printf("%d

return 0;

ERcIs1
1. *include <stdio.h

mt main(void)

float dist, speed;

mt flWTl;

printf('Enter number of drive time computations:);

scanf(%d", &num);

while(nun) {

printfV\nEnter distance:);

scanf("%f", &dist);

printf("Enter average speed:);

scanf(%f", &speed)

printf("Drive time is %f\n, dist/speed);

num- -;

return 0;

2. #include <stdio.h'

$include <conio.h>

512 TEACH YOURSELF

V

mt main(void)

char ch;

printf ("Enter your encoded message.\n);

ch = getche;

while(ch!='\r')

printf("%c, ch-l);

ch = getcheo);

return 0;

EXERCISES
1. #iriclude <stdioh>

mt main(void)

float gallons;

printf(\nEnter gallons:);

scanf('%f', &gallons);

do
printf(Liters: %f\n, gallons*3 . 7854); -

printf VEnter gallons or 0 to quit.);

scarif (, %f	 &gallons)

while(gallons!0);

return 0;

2. *Lnclude <stdio.h>

t main(void)

mt choice;

prntf("r4ailing list inenu:\n\n);

ANSWUS 513

6 EXERCISES
'V

printf(1. Enter addresses\n);

printf(2. Delete addresses\n);

printf(3. Search the list\n);

printf(' 4. Print the 1ist\n);

printf(5. Quie\n);

do (
printf(Enter the number of the choice (1-5):

scnrif("%d' &choice)

} while(choi- 1 11 choice>5)

retur

FXERCISES
1. 1* This program finds the prime numbers from

2 to 1000
*1

#include <stdio.h>

mt main(void)

mt i, j, prime;

for(i=2; i<1000; i'-+)

prime = 1;

for(j'2; j <	 1/2; j++)

if(!(i%j)) prime0;
if (prime) printf(%d is prime.\n);

return 0;

2, *include <stdio.h>
#imclude <conio.h>

mt main(void)

mt i;

char ch;

TFArH YOURSFI F

V

for(i.0; 1<10; js-.)
printfV\riEnter a letter:);

ch = getche();

printf

for)	 ch; ch--) printf('%c".

return 0;

PIERCISES
2. #iriclude <stdio.h>

4inc1ude <conio.h>

irit rnain(vcid)

float 1;

char cii;

printfVTip (;omputer\fl);

for(i=l.O; i<101.0; jrd+1.0)
printf.(%f %f %f %f\n	 1, u-i .1, i+i .15, i+i .2)

printfvMore? (YIN) •);

oh = getcheH;

priritf (\ri)

tf(ch	 'N') break;

return 0;

E!XERCISES
1. *include <stdio.h>

mt main(void)

mt i;

for(i1; j<101; i++)
jf(!(i%2)) continue;

pkwjm 515
3.9 EXERCLSFS

printf('%d	 1);

return 0;

EXERCISES
1. Floating point values may not be used to control switch.

2. *include <stdio.h>

#include <conio.h>

mt main(void)

char ch;
mt digit, punc, letter;

printf('Eflter characters, ENTER to stop.\fl');

digit = 0;

punc = 0;

letter = 0;

do
ch = getcheLi;

switch(ch)

case '1':

case '2':

case '3':

case '4':

case '5':

case '6'

case '7':

case '8':

case '9':

case '0':

digit++;

break;

case

case

case

case
case ' : '

4

1 6 TEACH YOURS!:!

I-

case

pUflC++;

break;

default:

letter++;

whilech!='\r');

printf(*\nDigits: %d\n, digit);

printf("Punctuation: %d\n", punc)

printf(Letters: %d\n, letter);

return 0;

FXERCISES
L *include < -

mt main(void)

mt 1;

i = 1;

jump-label:

if(i>=11) goto done-label;

printf(%d	 U;

goto jump-label;

done-label: printf(*Done");

return 0;

7ASTERY SKILLS CHECK
ww1. *include <stdio.h>

*include <conio.h>

L

mt main(void)

char ch;

Awsw:
V

printf(Enter lowercase letters.);

printf((PreSS ENTER to Quit.)\n);

do {
ch = getcheO;
if(ch!'\r') printf(%c, ch-32);

} while(ch!'\r');

return 0;

2. #include <stdio.h>

jOt main(void)

mt 1;

printf(Enter a number:

scanf(%d, &i);

if(!i) printf("zero);

else if(i<0) printf("negatiVe);

else printf("positive);

return 0;

3. The fQr loop is valid. C allows any of its expressions to be empty.

4. for

5. /	 for

for(i1; i<ll; j++) printfV%d

J do

i = I;
do I

printf%d	 i)
j++;

) while(i<ll);

/* while */

1=1;

while (i<l1)

printfV%d	 U;

518 TEACH YOURSElF

V

6. The break statement causes immediate termination of the loop

7. Yes.

B. No, the label is missing the colon.

CUMULATIVE SKILLS CHECK

1. $tinciude <stdio.h>

#incl;ide cconic.h>

mt main(void)

char ch;

printt('Enter characters (q t(, quit):

do
ch = getche();

switch(ch)
case '\t': printf("tab\n);

break;
case '\b': printf("backspace\n");

break;
case '\r': printf(Entor\ri);

whi1e(ch'q')

return 0;

2. include <stdio.h>

mt main (void)

irmt i, j, k;

for(k=0; k<10; k++) 1 1 use increment operator

printf(Eflter first number:

scanf(%d, &i);

printf('Enter second number:);

scanf(%d, &j);

ANSWIRS 519
REVIEW SKALS CHECK

if(j) printf("%d'fl	 i/j);
1* simplify condition /

else priritf("Ca0t divide by zero. \n'); 1* use else
*/

return 0;

CHAPTER 4

REVIEW SKILLS CHECK

1. mt i;
for(i=l: i<ll: j+4-} printfV%d	 i)

i = 1;

do
printf('%d

j++;

) while(i-"ll)

whileill) C
prmntfV%d

2. switch(ch) {
case 'L' load;

break;
case 'S': save(};

break;
case 'E': enter(;

break:
case '0': display(;

break:
case Q': quite;

break:

3. *include <stdio.h>

*include <conio.h>

520 TEACH YOURSELF
V

mt main(void)

char ch;

do

ch = getche;

whjle(ch!='\r');

return 0;

4. The break statement causes immediate termination of the loop
that contains it. It also terminates a statement sequence in a
switch.

5. The continue statement causes the next iteration of a loop
to occur.

6. *include <stdjo.}-i>

nt main(void)

mt 1;
float f p t, meters, ounces, pounds;

do(

printf (Convert\ri\n")
printf(1 . feet to rneters\n");
.printf("2. meters to feet\r-i');

printf(3. ounces to pounds\n);

printf'4, pounds to ounces\n);

printf(5. Quit\n\n);
do

printf(Enter the number of your choice:);
scanf('%d, &i);
whi1e(iQ II '>5)

switch(i) C

case 1:

printf(Enter feet:

scanf("%f', &feet);

printf("Meters: %f \n", feet / 3.28);
break;

case 2:

printf(Enter meters:
scanf("%f', &meters)

ANSWEM 521
1.1 EXERSES

prirttf("Feet: %f\n", meter,	 3.28);

break;

case 3:
printf VEnter ounces:);

scanf(%f	 &ounces);

printf('Pourxds: %f\n, ounces / 16);

break;

case 4:

printfvEnter pounds:

scanf (%f', £s;
printf('ounces: %f\n" pounds * 16);

break;

while(i!5)

return 0;

EXERCISES
1. unsigned short jot lc—counter;

2. *include <stdio.h>

mt main(void)

unsigned long mt distance;

prmntf('Ertter distance:—');

scanf("%lu", &distance)

printf("%ld seconds 	 distance / 186000);

return 0;

3. The statement can be recoded using Cs shorthand as follows

short i;

522 TEACH YOURSELF
V

EXERCISES
1. Local variables are known only to the function in which they

are declared. Global variables are known to and accessible by all
functions. Further, local variables are created when the function
is entered and destroyed when the function is exited. Thus they
cannot maintain their values between function calls. However,
global variables stay in existence during the entire lifetime of
the program and maintain their values.

2. Here is the non-generalized version.

#include <stdio.h>

void soundspeed(void);

double distance;

mt main(void)

printf(Enter distance in feet:);

scanf(%lf", &distance);
soundspeed ;

return 0;

void soundapeed (void)

printf("Travel time: %f', distance / 1129);

Here is the parameterized version.

#include <stdioh>

void soundspeed(double distance);

jot main(void)

double distance;

printf('Enter distance in feet:
scanf(%1f, &distance)

souridspeed(distance);

ANSWERS 523
44 EKERCJSES

return 0;

void soufldSPeed(dOUble distance)

printf("TraVel time: %f 	 distance / 1129);

ExcIs

1. To cause a constant to be recognized by the compiler explicitly

as a float, follow the value with an F.

2. #include <stdio.h>

mt main(void)

long mt i

printf('Eflter a number:

scanf(%1d, &i);

printf(%ld'	 i);

return 0;

3. *include <stdio.h>

mt main(void)

printf("%s %s %s,	 I	 like.	 C');

return 0;

EXERCISES
1. *include <stdio.h>

mt main(void)

mt i=100;

524 TEACH YOURSa
V

for(i>O; I--) printf(%d	 i);

return 0;

2. No. You cannot initialize a global variable using another variable
3. Yes. A local variable can be initialized using any expression

valid at the time of the initialization.

EXERCISES
1. The entire expression is float.

2. The subexprcssion is unsigned long.

EXERCISES
1. The program displays 10.
2. The program displays 3.0.

EXERCISE
1. #include <stdjo.h>

mt main(void)

float f;

for(f=1.O;	 int) f<=9; ff + 0.1)
printf("%f	 f);

return 0;

2. Here is the corrected statement.

x = (int)123.23 % 3; /* now fixed /

ANSWERS 525
MASTERY S)QLLS CHECK

MASTERY SKILLS CHECK
1. The data-type modifiers are

unsigned
long
short
signed

They are used to modify the base type so that you can obtain
variables that best fit the needs of your program.

2. To define an unsigned constant, follow the value with a U. To
define a long constant, follow the value with an L. To specify a
long double, follow the value with an L.

3. float balance = 0.0;

4. When the C compiler evaluates an expression, it automatically
converts all chars and shorts to mt.

5. A signed integer uses the high-order bit as a sign flag. When the
bit is set, the number is negative, when it is cleared, the number
is positive. An unsigned integer uses all bits as part of the
number and can represent only positive values.

6. Global variables maintain their values throughout the lifetime of
the program. They are also accessible by all functions in the
nrogram.

7. #include <stdio.h>

mt series(void);

mt nuir

mt m.

mt 1;

for(i=0; i<10; j++)
printf(%d , seriesW;

return 0;

526 UAcYOU
V

mt series (void)

num = (rlum*1468) % 467;

return nun;

8. A type cast temporarily changes the type of a variable. For
example, here the mt I is temporarily changed into a double.

(double) i

r.
CUMULATiVE SKILLS CHECK

I. The fragment is not valid because to C, both Wand 65 are the
same thing, and no two case constants can be the same.

2. The reason that the return value of gctchar() or getche() can
be assigned to a char is because C automatically removes the
high-order byte.

3. No. Because I is a signed integer, its maximum value is 32767.
Therefore, it will never exceed 33,000.

CHAPTER 5
REVIEW SKILLS CHECK

1. A local variable is known only to the function in which it is
declared. Further, it is created when the function is eiitcrcC) and
destroyed when the function returns. A global variable is known
throughout the entire program and remains in existence the
entire time the program is executing.

2. C compiler will assign the following types:

a. mt
b. mt
c. doubit
d. long
C. long

ANSWERS 527
5.1 EXERCISES

3. *include <stdlo.h>

mt main(void)

long 1;
short s;

double d;

printf VEnter a long value:);

scanf("%1d, &l);

printf VEnter a short value: •):

scanf("%hd	 &s);

pri.ntt VEnter a double value:

scanf('%lf, &d);

printf('%ld\n 1);

printf("%hd\n, s);

printf("%f\n", d);

return 0;

4. A type cast temporarily changes the type of a value.

the else is associated with the ifO) statement, contrary to what
th (incorrect) indentation would, have you believe.

6. When i is 1, a is 2. When i is 4, a is 5.

EXERCISES
1. The array count is being overrun. It is only 10 elements long.

but the program requires one that is 100 elements long.

2. *include 'stdio.h>

mt main(void)

mt 1(10), j, k, match;

printf ('Enter 10 nuitthers:\n);

for(j=0; :i<10; j++) scanf('%d. &i{j]);

628 TEACH Youaj
V

/* see if any match *1

for(j=O; j<lO; j+i-)

match = i[jJ;

for(k=j+l; k<10; k+s-)
if(match==j(k]

printf(%d is duplicated\n, match);

return 0;

3. #include <stdio.h>

mt main(void)

float item[100] t;
mt a, b;

mt Count;

1 read in numbers

printf(How many numbers?

scanf ("%d", &count);

for(a=O; a<count; a++) scanf('%f, &jte'])

/* now sort them using a bubble sort
for(a=l; a<count; ++a)

for(b=count-l; b>=a; --b)

/* compare adjacent elements *1
if (j tem[b-l] > itembJ)

/* exchange elements *1

t = item[b-l];
i tem[b-1]	 item[b];

item[b] =

1 display sorted list *1

for(a=O; a<count; ai-+) printf(%f	 item(a);

return 0;

ANSWERS 529
5.2 EXERCISES

F XERCISES

1. 1* Reverse a string. J

*include <stdio.h>
#inclucie <stririg.h>

mt main(void)

char str[80);

mt i;

printfVEnter a string:

gets(str)
.4

for(i=strlen(str)-1; i>0; i--)

printfV%c", str[i]);

return 0;

2. The string str is not long enough to hold the string "this is a test'.

3. #include <stdio.h>
*include <string.h>

mt main(void)

char bigstr[1000] = "', strl801;

for) ; ;
printf VEnter a string:

gets(str)

if(!strcmp(str, "quit')) break;

strcat (str, "\n")
1* prevent an array overrun

if(strlen(bigstr)+strlen(Str) >= 1000) break;

strcat (bigstr, str)

printf (bigstr)

return 0;

530 TEACH YOURSELF
V

EXERCISES
I. k.nclude <stdio.h>

mt main (void)

mt threed[3] [3) 13]
mt i	 j, k, x;

= 1;
for(i=O; j<3; j++)

for(j=O; j<3; j++)

for(k=O; k<3; k++)

three_d[j] [j] [hi =
X++;
printf(%d	 three d[iJ 1 j) 1k)

return 0;

2. include <stdio.h>

mt main (void)

mt three_d[3] [3) [3)
mt i j, k, sun;

for(i=O; 1<3; i++)
for(j=0; j<3; j++)

for(k=0; k<3; k++)
three_d[i] [i] [k] = (1+1) * (j+l) * (k+l)
printf(%d	 thred[j] IjJ [k})

/ sum all elements 1
sum = 0;
for(i=0; 1<3; i++)

for(j=O; j<3; j++)
for(k=O; k<3; k++)

sum = sum + three d[iJ [j][k];

printf('\n%d	 sum);

ANSWERS 531
54 EXERCISES

return 0;

EXERCISES
1. No. The list must be enclosed between curly braces.

2. No. The array name is only 4 characters long. The attempted
call to strcpy() will cause the array to be overrun.

3, #iriclude <stdio.h>

mt main(void)

mt cube[3[31 =

1, 1, 1,

2, 4, 8,

3, 9, 27,

4, 16, 64,

5, 25, 125,

6, 36, 216,

7, 49, 343,

8, 64, 512,

9, 81, 729,

10, 100, 1000

mt num, i;

printf("Enter cube:

scanf(%d, &num);

for(i=0; i<10; j++)

if(cube[i] [23==nurn)
printf(Root: %d\n, cube[i][01);

printf(Square: %d, cube[i]f1]);

break;

if(i==10) printf("Cube not found.\n");

return 0;

532 TEACH YOURSELF

RFM

	 IS ES

1.

	

	 include "stdio.h>

1iriciudo 'zconio,h>

mt min(void)

char digits(10) [101 =

	

"zero", one",	 two	 "three"

	

four". "five"	 "six"	 "seven',

"eight", "nine"

char num;

printf("Enter number:

rium = getchel);

printf("\n")

num = num - '0';

if(num>=0 && num 'zlO) printf(".s", digits [nusj);

return 0;

II

M
ASTERY SKILLS CHECK

• An array is a list of like-type variables.

2• The statement will not generate an error message because C
provides no hounds checking on array operations, hut it is
wrong because it causes count to he overrun.

3. inc1ude 'zstdio,h>

mt main (void)

irit stats[20), i, i;
mt mode, count, oldcount, oldinode;

printf ("Enter 20 numbers: \n");

for(i=0; i<20; i++) scanf("%d", &stats[i[);

oldcount = 0;

/ find the mode "I

ANSWERS 533
MASTERY SKILLS CHECK

for(i=O; i'20; i+)
mode = stats[i];

count = 1;

/ count the occurrences of this value

for(j'i+1; j<20; j+±)

if(mode==stats[j}) counr*;

i if count is greater than old count, use new mode

if (count>oldcount)

oldrnode = mode;

oldcount = count;

printf("Th	 ode is %d\n, oldmode)

return 0;

4. mt items[] = (1, 2, 3, 4, t, 6, 7, R, 9,	 10}:

5. #ir,clude <stdio.h>
"include <string.h>

mt main(void)

char str[80];

do
priritf('Enter a string:

gets (str)
while (strcmp('quit", str));

return 0;

6. /* Computerized dictionary program.

#include <stdio.h>

#include <string.h>

mt main(void)

char dict[} [2] [40] =

534 TEACH YOURSELF
V

"house", "a place of dwelling",
"car" • a vehicle"

computer, "a thinking machine,

"program", "a sequence of instructions

char word(801;
mt i;

printf"Enter word: ");
gets (word;

/" look up the word 1
I = 0;
I . search while null string not yet encountered
while(strcmp(dict[iJ [0],' "))

if(strcrnp(word, dict[i][0]))

print f('maaning: %s", dict[j][1));

break;

ii(!strcmp(dict[i] [0],

printf(Not in dictionary\n');

return 0;

CUMULATIVE SKILLS CHECK

1

	

	 inude <stdio.h>
inc'iude <string.h>

jut main(void)

char str[80];

mt 1;

printf("Enter a string;

getsstr)

1* pad the string if necessary "I

for(i=strlen(str); 1<79; i^-*[

strcat(str,	 -

ANSWERS 535
CUMULATIVE SXJLLS CHECK

printf(str)

return 0;

2. /* A simple coding program. *7

*include <stdio.h>

#include <string.h>

mt main (void)

char str[80]';
mt j , j;

printf("Enter message:
gets(srr);

code it *7
i r O; j = strlen(str) - 1;
whiie(i<=j)

mf(i<j) priritf('%c%c", str[i], str[jl);
else prinrf("%c', str[i]);
j+-; j--;

return 0;

3. include <stdio.h>

ir.c1ude <strir.g.h>

1-n main(void)

char str[80J;

mt spaces, periods, commas;
irit 1;

prmntf)Enter a string: ")
gets(str)

spaces = 0;

commas = 0;

periods	 0;

536 TEACH YOURSELF!

V

for(i=O; i<strlen(str); j++)

switch(str[i]) (

case	 periods++;

break;
case	 cornlnas++;

break;
case	 spaces++;

printf)"spaces: %d\n", spaces);

printf(commas: %d\n, commas);

printf("periods: %d', periods);

return 0;

4. The gctchar() function returns a character, not a string.
I (ence, it cannot be used as shown. You must use gcts() t
ntc1 a string from the keyboard.

a.	 A simple game of Hangman */

#include <stdio.h>

include <string.h>

mt main(void)

char word(] = "concatenation";

char temp)] = " -

char ch;

mt i, Count;

count = 0; / count number of guesses "I

do
printf)"%s\n', temp);

printf) "Enter your guess:

ch = getcharU;
printf("\n")

1* see if letter matches any in word
for(i=0; i<Strlen)word); i++)
if(ch==word[i]) temp [i] = Ch;
COUflt++;

while(strcmp)temp, word));

ANSWERS 537
REVIEW SKILLS CHECK

printf("%s\fl", temp)
printf("You guessed the word and used %d guesses", count);

return 0;

CHAPTER 6

REVIEW SKILLS CHECK

1. *include <stdio.h>

jot main(void)

jot njxn[10), i, even, odd;

printf (Enter 10 integers: ")

tor(i=0; 1<10; i++) scanf('%d', &num(i});

even = 0; odd = 0;

for(i=O;	 i< 10; i++)
if(num(iJ%2) odd = odd + num[i];

else even = even + num[i];

printf('Sum of even numbers: %d\n', even);

printf(Sum of odd numbers: %d, odd);

return 0;

2. #include <stdio.h>
#include <string.h>

mt main(void)

char pw[80];

mt i;

for(i=0; i<3; j++)

printf(Password: ");

538 TEACH YOURSELF
y

gets (pW)
if)sLrcmp('Tristan", pw)) break;

if(i.==3) printE("Access Denied);

else print('Log-on Successful");

return 0;

3. The array , namc, is nor big enough to hold the string being
assigned to it.

4. A null string is a string that contains only the null character.

5 The strcpv() function copies the contents of one string into
another. The strcmp() function compares two strings and
returns less than zero if the first string is less than the second,
zero if the. strings match, or greater than zero if the first string is
greater than the second.

6. I' A Simple computerized telephone book. *1

4inc1udo <stdio.h>

#include <string.h>

char phone[l [2] [401 =
'Fred',	 555-1010

"Barney", '555-1234"

"Ralph",	 555-2347,

"Tom",	 555-8396',

mt main (void)

char narne[80];

mt i;

printf('Name?

gets (name I

for(i=0. phonefi) (0} [0]; j++)
if(!strcmp(naine, phone[i][0]))

printf("number: %s, phone[i])l))

ANSWERS 539
63 EXERCISES

return 0;

EXERCISE
1. A pointer is a variable that contains the address of another

variable.

2. The pointer operators are the * and the (1. The * operator

returns the value of the object pointed to by the pointer it
precedes. The & operator returns the address OF the variable it

p re cecles.

:3. ihc base t ype of a pointer is im rpotant because all pointer

arithmetic is done relative to it

4. 4include <stdio.b>

.:LL main (void)

:nt j

P .:

for(i=0; 1<10; i+) printf("%d ",	 p)

return 0;

EXERCISES
1. You cannot multiply a pointer.

2. No, you can only add or subtract integer values.

3. 100

FXERCISES
1. No, you cannot change the value of a pointer that is gCfleratC(l

by using an array name without an index.

2. 8

540 TEACH YOURSELF
V	 -

. #inciude <stdio.h>

tnt main(void)

char str803, *p;

printf('Enter a string:

gets (str)

p = str;

I hhile not at the end of the strina anc r:

space has been encountered, increen 	 to

point to next character.

whi1e(p && 'p!=' ') p++;

printf)p)

return 0;

EXERCISE
). #lncIucIo <stdioh>

mt rnan(vnid)

char *one = one';

char two = "two";

char * t hree = "three':

prinrf("%s %s %s\n", one, two, three);

printf("%s %s %s\n", one, three, two);

printf("%s %s %s\n", two, one, three);

printf)"%s %s %s\n", two, three, one):

print! ("%s %s %s\n", three, one, two);

print!) "%s %s %z\n' , three, two, one)

return 0;

ANSWERS 541
E6 EXERCISE

mbw

1. #include <stdio.h>

#include <string.h>

mt main(void)

chir p [3 =
'yes',	 'no,

maybe - rephrase the question'

char str[801;

printf(Enter your question: \n");

gets(str)

print.(p[sLr1en(str) % 31);

retiurn 0;

EXERCISE
1. include <stdio.h>

lot main(void)

ir,t 1	 p, •*mp;

p =
mp = &p;

mp	 10;

prinLf("%p %p %p", &i, p, mph

return 0;

542 TEACH YOURSELF

V

EXERCISES
1. #include <stdio.h>

#include <string.h>

void rnystrcat(char *to char *from).

lot main (void

char str[80];

strcpy(str,	 first part');

mystrcat(str,	 second part);
printf (str)

return 0;

void mystrcat(char *to char *from)

I find the end of to
while(*to) Lo++;

/ concatenate the string *1
while(*from) *to++	 from++;

/ add the null terminator
=

2. #include <stclio.h>

void f(int *p);

mt main(void)

int. 1;

f (&i)

printf(%d, 1);

return 0;

ANSWERS 543
CUMULA livE SXJLLS CHECK

void f(int *p)

= -1;

,.7ASTERY SKILLS CHECK
1. double p;

2. #include <stdjo.h>

mt main(void)

mt i, *p;

P = & i;

= 100;

printf(%d" i)

return 0;

3. No. The pointer p has never hecn initialized to point to a valid
Piece of memory that can hold a string.

4. Pointers and arrays are basically two ways of looking at the
same thing. They are virtually inthangeabIe.

5. str(2l

• (str+2)

• (p+2)

6. 108

CUMULATIVE SKILLS CHECK
1. Pointers are often more convenient than array indexing and

may be faster in some cases.

544 TEACH YOURSELF
V

2. nc1'jcle <std)oh>

iML main(void)

char str[80(

mt spaces;

printf(Eriter a string:

gets)str)

spaces - 0..
p = Str;
while(*p)

if(p==	 ') spaces++;
P++;

ijrintf)Nulber of spaces: %d, spaces);

return 0;

3. ((int *)count • (44 * 10) + 8) = 99;

CHAPTER 7

REVIEW SKILLS CHECK

1. The fragment assigro i the value 19 indirectly using a pointer.

2. An array name with no index generates a pointer to the start of
the array.

3. Yes, the fragment is correct. It works because the compiler
creates a string table entry for the string this is a string and
assigns p a pointer to the start of it.

4. #include <stdio.h>

mt main(void)

ANSWERS 545
RE EWSXJLLS CHECK

double d, *p;

P =

= 100.99;

printf(%f, d);

return 0;

5. *include <stdio.h>

mt mystrlen(char *p);

mt main(void)

char str[801;

printf('Enter a string:

gets(str)

printf('Length is %d, mystrlen(str));

return 0;

mt mystrlen(char *p)

mt i;

± = 0;
while(p) C

P++;

return i;

6. The fragment is correct. It displays C.

546 TEACH YOURSELF

C

EXERCISES
I.	 nclude <stdio.h>

double ovgM;

jot main(void)

printf(%f", avcjM);

return 0;

double avg)

jot 1;

double suni, nun;

SLIM = 0.0;

for(i=O; 1<10; i++)

printf("Enter next number:);
scanf(%lf', &num);

sum = sum + nun;

return sum / 10.0;

2. #jnclude <stdio.h>

double avg(void);

mt main(void)

printf('%f", avg());

return 0;

'I

double avg (void)

jot 1;
double sum, nun;

sum = 0.0;

ANSWERS 547
7.2 EXERCISES

for(i=O; i<lO; j++)
printf(Enter next number:);

scanf(%lf", &num);
sum = sum + nuts;

return sum I 10.0;

3. The program is correct. However, the program would be better
if a full function prototype were used when declaring myfunc()

4. double *Purge (void)

FXERCISES
1. #include <stdio.h>

jot fact(int 1)

irit main(void)

printf("5 factorial is %d", fact(5));

return 0;

mt fact(int i)

if(i==l) return 1;
else return i * fac(i-l);

2. The function will call itself repeatedly, until it crashes the
program, because there is no condition that prevents a recursive
call from occurring.

3. 4#include <stdio.h>

void display(char *p);

jot main(void)

display)Thhis is a test');

return 0;

548 TEACH YOURSELF

V

void display(char *p)

jf{*p) {

printf("%c",	 p);

display (p+l)

EXERCISES
1. No. The function myfunc() is being called with a pointer tc

the first parameter instead of the parameter itself.

2. #include <stdio.h>

void prompt(char *msg char str):

mt main (void)

char str[80];

prompt('Enter a string:	 str);

printf('Your string is: %s, str);

return 0;

void prompt(char *msg, char *p)

printf (msg)

gets(p)

3. In call by value, the value of an argument is passed to a
function. In call by reference, the address of an argument is
passed to a function.

EXERCISES
I. #include <stdio.h>

*include <string.h>

ANSWERS 549
7.4 EXERCISES

#include <stdlib,h>

mt main(irlt argc, char *argv(])

in , 1;

if(argc!=3)

print f("You must specify two arguments.");

exit(l);

i = strcmp(arav;i, argv[21);

if(i < 0) prin	 %s > %s", argv[2), argv[IH;

else if(i. > 0) printfV%s > %s", argv[l}, argv[21)

else printf("They are the same");

return 0;

2. #include <stdio.h>

#include <string.h>

#include <stdlib.h>

tnt main(int argc, char *argv[])

if(argc!=3)

printf("You must specify two numbers.');

exit(l) ;

printf("%f", atof(ar gv[l])	 atof(argv[21));

return 0;

3. #include <stdio.h>

#include <string.h>

#include <stdlib.h>

tnt main(int argc, char argv[])

if(argc!=4) C

printfVYou must specify the operation

printf('followed by two numbers.");

50 TEACH YOURSELF
-

T

exit (1)

if(!strcmp("add	 argv[l]))

printfV%f. atof(argv(21) 1- atof(argv[3J)};

else if(!strcmp('subtract" argv[l]))

printf(%f	 atof(argv[2)) - atof(argv[31));

else if!scrcmp(multiply'	 argv[lJ))

printfV%f, atof(argv{21) * atof(argv[3H);

if (strcmp(divide', argv[ll

printfV%f	 atof(argv[21) / atof{argv[31));

return 0;

EXERCISE
L tinclude <stdio.h>

double f_to_m(double f);

jot main(void)

double feet;

printfC'Enter feet:

scanf("%1f, &eet);
printf("Mecers: %f', f_torn(feet));

return 0;

/ use old-style declaration.

double f_to_m(f)

double f;

return f I 3.28;

MASTERY SKILLS CHECK
Affiff

1. A function that does not have parameters specifies void in th
parameter list of its prototype.

ANSWERS 551
MASTERY SKILLS CHECK

2. A function prototype tells the compiler these three things: the
return type of the function, the type of its parameters, and the
number of its parameters. It is useful because it allows the
compiler to find errors if the function is called incorrectly

3. Command-line arguments are passed to a C program through

the argc and argv parameters to main().

4. #include <stdio.h>

void alpha(char ch);

irit main(void)

alpha ('AS);

return 0;

void alpha (char ch)

printf("%c	 ch);
if(ch < Z) alpha(ch+1);

5. #include <stdio.h>
$include 'zstdlib.h>

mt main(int argc, char argvl))

char *p;

4.f(argc!2) {
printf (You need to specify a string");

exit (1);

p	 argv[lJ;

while (*P) C

printf('%c, (*p).1);
P++;

552 TEACH YOURSELF
V

return 0;

6. The prototype is shown here.

double myfunc(jnt x, mt y, char ch);

7. Using the old-style function declaration, the function from
Exercise 6 looks like this.

double mytunc(x, y , ch)
mt x, y;

char ch;

8. The exit() function causes immediate program termination
also returns a value to the operating system.

9. The atoi() function converts its string argument into its
equivalent integer form. The string must represent (in string
form) a valid integer.

cm
UMULATIVE SKILLS CHECK

1. #iriclucle <stdic.h>

include <string.h>

#inciude <sLdlib,h>

mt main(int argc, char *argv[})

if)argc!=2)

printf("Specify a password");
exit (1)

if!strcmp(argv[11, "password"))

printf ("Access Permitted')

else printf(Access Denied");

return 0;

ANSWERS 553
CUMUM l7IiE SKILLS CHECK

2. *include <stdio.h>
*include <ctype.h>

void strirtg_up(char *p);

mt main(void)

char str[] = 'this is a test';

string—up (str)
printf (str)

return 0;

void string_up(char p)

while(*p)
= toupper(p);

3. *include <stdio.h>

void avg(double *d mt nun);

mt main(void)

double nurrs[] = (1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0, 10.0);

avg(nums, 10);

return 0;

void avg(double *d, mt nun)

double SUXfl;
irit temp;

temp = nun-1;

for(sum=0; temp>=0; temp--)

554 TEACH YOURSELF
V

sun	 sum + ditemp];

print f(Average is %f", sum / (double) nun);

4. A pointer contains the address of another variable. When a
pointer is passed to a function, the function may alter the
contents of the object pointed to by the pointer. This is the
equivalent of call by reference.

CHAPTI? 8

REVIEW SKILLS CHECK
L To allow the compiler to vcrif that a function is being called

correctly, you must include its prototype.

2. Function prototypes enable the compiler to provide stronger
type checking between the arguments used to call a function
and the parameters of the function. Also, it lets the compiler
confirm that the function is called with the proper number of
a rgu men ts.

3. #include <stdio.h>
#include <math.h>

double hypot(douhle si, double s2);

mt main(void)

printf(°%f', hypot(12.2, 192));

return 0;

double hypot.(double si, double s2)

double h;

h = S l*sl + s2*s2;

return sqrt(h)

ANSWERS 555
8.1 EXERCISES

4. When a function does not return a value, its return type should
be specified as void.

5. kinclude <stdio.h>

tnt rstrlen(char p);

mt main(void)

printfV%d", rstrlenl"hello there));

return 0;

tnt rstrlen(char *p)

jf(*p)

return l+rstrleri(pi

else return 0;

6. *include <st!dio.h>

tnt main(int argc, char argv[))

printt("There were %d argulnents.\n, argc);

printf(The last one is %s., argvtargc-l]);

return 0;

7. func(a. cb, dl
mt a;

char ch;

double d;

F XERCIS ES

1. #include <stdio.h>

*define MAX 100

556 TEACH YOURSELF
V

define CO TJNTBY 3

mt main(void)

jot i;

for(i=O; 1<MAX; 1+4-)

if((i%COUNTtY)) printf(%d	 i);

return 0;

I]

2. No the fragment is wrong because a macro cannot he defined
terms of another before the second macro is defined. Stated
differently, MIN is not defined when MAX is being defined.

3. As the macro is used the fragment is wrong. The string needs
he within double quotes.

4. Yes.

ERCISES

1	 iriciude <stdio.h>

lot main(void)

jot 1;

cia {

i = getchar));
if(i==EOF) I

printf("Error on input.");

break;

lf(putchar(' fl==EOF) C
printt('Error on output.');

break;

while) (char) 1	 = '\n');

return 0;

ANSWERS 557
as EXERCISES

2. The putchar() function outputs a character. It cannot output a

string.

E^^cISES
1. *include <conio.h>

#iriclude <stdio.h>

mt main(void)

char ch;

ch = getch(i;
printt(%d, ch)

return 0;

2. #include <stdio.h>

#include <conio.h>

mt main(void)

do
printf(%c.

I while(!kbhit());

return 0;

EXERCISES

2. No. The program is incorrect because gets() must be called
with a pointer to an actual array.

1. #include stdio.h>

mt main (void)

558 TEACH YOURSELF

C

unsigned long t;

for(i=2; i<=100; i++)

printf(%-101u %-101u %-101u\n, i, jj, iii);

return 0;

2. printf(Clearance price: 40% off as marked);

printf(%.2f, 1023.03);

EVERCISES
1. frmnclude <stdio.h>

mt main(void)

char first.[21], middle[21], last[21];

printf('Enter your entire name:

scanf('%20s%20s%20s, first, middle, last);

printf(%s %s %s, first, middle, last);

return 0;

2. tinclude <stdio.h>

mt main(void)

char num(803;

printf(Enter a floating point number:

scanfV%[0-9.), nun);
printf (num)

return 0;

3. No, a character can only have a maximum field length of 1,

4. #include <stdio.h>

mt main(void)

SWERS 559
MASrERY SKILLS CHECK

char strIBO);

double d;

mt j, num;

pritf(Enter a string, a double, and an integer:

scanf('%s%lf%d%n, str, &d, &i, &nurn);

printf("Number of characters read: %d' num);

return 0;

5. #include <stdio.h>

jot main(void)

unsigned U;

printf(°Enter hexadecimal number:

scanf("%x", &u);
printf("Decirnal equivalent: %u'. U);

return 0;

fr7ASTERY SKILLS CHECK
1. All these functions input a character from the keyboard. The

getchar() function is often implemented using line-buffered
I/O which makes its use in interactive environments
undesirable. The getche() is an interactive equivalent to
gctchar(). The getch() function is the same as getchc()
except that it does not echo the character typed.

2. The %e specifier outputs a number in scientific notation using a
lowercase V. The %E specifier outputs a number in scientific
notation using an 'E'.

3. A scanset is a set of characters that scan-f() matches with
input. As long as the characters being read are part of the
scanset, scan-f() continues to input them into the array pointed
to by the scanset's corresponding argument.

560 TEACH YOURSELF
V

4. include 'zstdio.h>

mt main(void)

char name(80], date[BO], phonetBOl;

printf("Enter first name, birthdate);

printf('and phone nu.mber:\n");

scanf(%s%8s%8s', name, date, phone);

printf('%s %s %s*, name, date, phone);

return 0.-

5. The puts() function is much smaller and faster than printf()
But, it can only output strings.

6. #iriclude <stdio.h>

#define COUNT 100

mt main(void)

mt 1;

for(i=0; i<COUNT;i++)

printfV%d •, ii .-

return 0;

7. EOF is a macro that stands for end-of-file. It is defined in
STDIO. H.

CUMULATIVE SKILLS CHECK

1. #include <stdioh>

mt main(void)

char name(9)[80];

double b_avg(9];

mt 1, h, 1;

ANSWERS 561
CVMUM TIVE SKIt S CHECK

double high, low, team_avg;

for(i =0; i<9; j++) (
printf(Enter name %cl:	 1+1);

scanf(%s' riamei1);
printf("Eflter batting average:

scanf(%1f	 &b_avg[iJ)

priritf (\n")

high = 0.0;

low = 1000.0;

team_avg	 0.0;

for(i=0; i<9; i++)
if (b_avg [i) >high)

h	 1;
high = b_avgi);

if(b_avg[i]<low)

1

low = b_avg[iJ;

team_avg = team_avgtb_avgli];

print fVThe high is %s %f\n, name [h3, h_avyhH;

printIVThe low is %s %f\n, name[l], b_avgtl]);
orintf("The team average is %t, tearn_avg/9.0):

return 0;

2. Note: There are many ways you could have written this
program. This one is simpl y representative.

/ An electronic card citaog.

#iriclude <stdio.h>

#include <sdlih.h=

Itinclude <string.h>

define MAX 109

irit menu(void

void display(int

void author_seaLch(void);

void title—search (void)

562 TEACH YOURSELF

C

vnid enter(vojd);

cnur rames[MAJ(][801; 1 author names '/
char titles[MAX) [80]; 1* titles *7
char pubs[MAX) [80]; 7* publisher *1

	lot top = 	 /* last location used

mt main(void)

m

choice = menu));

switch(choice)
case 1: enter)); 1 enter books *7

break;

case 2: author-search); / search by author •,
break;

case 3: title-search(); / search by title *1
break;

while)chojce!=4)

return 0;

7* Return a menu selection.

menu (void)

char str[80);

jot i;

print f("Card Catalog:\n');

	

printf(1. Enter\n");

printf(" 2. Search by Author\ri');

	

printf(3. Search by Title\n");

	

printf ("	 4. Quit\n);

do

priotfVChooe your selection:
gets (str)

= atol (s t.

printL)\n);

while(11 11 i>4)

ANSWERS 563
CUMuIATrVE SKILLS CHECK

return i;

/* Enter books into database. */

void enter(void)

mt 1;

for(itop; i<MAX; i++) (
printf ("Enter author name (ENTER to quit):
gets (names [1)
jf(i*names(iJ) break;
pr±ntfVEnter title:
gets(titlesti)
printf VEnter publisher:
gets(pubs(i]);

top =

1 Search by author. */.

void author—search(void)

char naxne(80];
mt i, found;

printf('Narne:);
gets (name)

found = 0;
tor(i=0; i<top; i++)

if(!strcrsp(narne, namesli)))
display(i)
found = 1;
printf("\n');

if(!found) printf("Not Found\n');

1 Search by title.*/
void title—search(void)

char titlet801;

564 TEACH YOURSELF

C

mt 1, found;

printf(Tjtle; •);
gets It itle)

found = 0,-

fori=Q; i<tOp; i++)

ifHstrcmp(title, titles{ifl)

disp).ay C ii
found = 1;

printf("\n)

f (found) Orinti C No Founi

/ Display catalog erinry.
void display(inr. 1)

rintf("%s\n, titlasLij

princt ('by %s\n'	 r;arne.c[i I)
prir;tf('?ublishet by %s\n, pubs[i

C
HAPTER 9

11 EVIEW SKILLS CHECK

- [he gctcliar() fl.inction is d&tliicd by he ANSI sI;inclarcl and is
used to 1Ciiit chiractcrs from the Nomad. However, in most
implenicritations, it uses line-h;itferecl I C), which makes it
impractical for ;u1eret ye rise. The gc(che() tunction is not
defined b y the ANSI staridird, but it is quite common and is
essentially an interactive version of gctchar().

2. When scanf() is reading a string, it stops when it encounters
the first whitespace character.

:0 #inciude <stdio.h>

irit isprime(jnt U;

mt main(void)

ANSWERS 565
REVIEW SKILLS CHECK

mt i, count;

count = 0;
for(i2; 1<1001; i++)

f(1sprime(i))

print fC"%10(1 , 1)

COUflO++;
if(rourt==4)

printf (

count = 0;

return 0;

mt isprime(int i)

mt j

for(j=2; j<r{i/2); j4#

it(! (i%j)) return	 0;
return 1;

4. include <stdlo.h>

mt main(void)

double d;

char ch;

char strtROJ;

printf(Enter a double, a character, and a string\n)

scanf(%lf%c%20s, &d, &ch, str);
printf(%f %c %s, d, ch, str);

return 0;

5. #include <stdio.h>

mt main(void

char str[80);

566 TEACH YOURSELF
y

printf(E:iter leading digits followed by a string\n)

scanf("%[O-9]%s	 str);

printf(%s, str);

return 0;

EXERCISES
1. 4$include <stdio.h>

include <stdlib.h>

irit main(int argc, char *argv[])

FILE *fp;

char ch;

/ see if filename is specified

ifargc!=2)
printf("File name missing.\n);

exit (1)

if((fp = fopen(argv[l), "r"))==NULL)

printf(*Cannot open file. \n")

exit (1)

while((ch=fgetc(fp)) = EOF) putchar(ch);

fclose(fp)

return 0;

2. include <stdio.h>

*include <stdlib.h>
*include <ctype.h>

irit count[26];

mt main(int argc, char *arg.v(])

ANSWERS 567
92	 Xff'F

FILE 1fp;

char ch;

mt i;

1 see if file name is specified */

jf(argc!2)
printf('File name nissing.\fl);

exit (1)

if((tp = fopencargv[lI,	 rHN1JLLC

printf('Cannot open file.\n');
exit (l);

whilechrfgetC(fP))!EOF)

ch = t.oupper(ch);
jf(ch>='A && ch<'Z') count[ch-'A']++;

for(i=C; i<26; i++)
printf("%c occurred %d times\n', i-A, count[iC);

fclose(fp)

return 0;

3. /* Copy a file. */
include <stdio.h>

*include <stdlib.h>

*include <stringh>

mt main(int argc, char *argv(])

FILE *from, *to.

char ch, watch;

I see if correct number of command line argwae;-S

if(argc.c3)
printf("Usage: copy <source> <destination>\fl)

exit(l)

/ open source file /

568 TEACH YOURSELF
V

if((from = fopen(argvfl),	 r))==MjLL){
printf("Cannot open source file.\n");
exit (1)

i open destination file
= fopen(argv(21 	 "w-))==NULL)

printf(Cannot open destination file.\n")
exit (l);

;fargc4 && Strcmp(argv[31	 watch) watch = 1;
else watch = 0;

copy the file •/
wh:ieHchfget(fQ0)) '=EOF)

fputc(ch. to);

i f(watch) putchar(ch);

fciose(frorn)
fC1os(to)

return 0;

EXERCISES
1.	 lr3c1LCe <stdoh>

P'nclude <stdljbh>

mt maln(int argc, char *argv[J)

FILE •fp;

unsigned count;

see if file name Is Specified
f(argc!=2) I

pr j ntf("File name missing.\n.);
exit (1);

ffp = fopen(argv[ij	 "rb))NULL)
printf(cannot open file.\n").

ANSWERS 569
9 EXERCISES

exit (1)

count	 0;

while(feof(fp)) (

fgetc(fp)

if(ferror(fp)) {

prir'ttf("File error.\n');
exit (1);

COuflt++;

printf('Fiie has %u bytes, count-1);

fclose(fp)

return 0;

2. / Exchange two files.

#include <stdio.h>

#iriclude <stdlib.h>

#include <string.h>

mt main(int argc, char *argv[J)

FILE f1,	 f2, *temp;

char ch;

/ see if correct number of command line arguments *1

if(argc!=3) (

printf(usage: exchange<fi> <f2>\n")
exit (1)

1* open first file /
if((fl = fopen(argv(l), 'rb"))==NULL)

printf(Canncjt open first file.\n");
exit(i);

/ open second file *1

ift'(f2 = fopen(argv[2] rb'))==NtJLL)

printf(Cannot open second file.\n");
exit(l)

570 TEACH YOURSELF
V

LI

/* open temporary file /

if((temp = fopen(temp.tmp, wb"H==NULL)

printf(*Cannot open temporary tile.\ni;
exit (1)

/ copy fl to temp •/
while(!feof(fl)) {

ch = fgetc(fl);

if (! feof (El)) fputc (ch, temp)

ficlose(fl)

/ open first file for output
if((fl = fopen(argvl),	 wb"))==NtJLL)

printf("Cannot open first file.\n);
exit (1);

1* copy f2 to Li •

while(!feof(f2)) {

ch = fgetc(f2);

if(!feof(f2)) fputc(ch, fi)

fclose(f2)

fclose(temp);

1* open second file for output i

if((f2 = fopen(argvj2(,	 wb"))= r NtJLL) (
printf(Cannot open second file\n");
exit (1)

1 open temp file for input *1

if((temp = fopen(temp.tmp "rb))==NULL)
printf(*Canno t open temporary file.\n);
exit(l)

/ copy temp to f2 *1

while(!feof(temp))

ch = fgetc(temp);

if(!feof(temp)) fputc(ch, f2);

ANSWERS 57

9 4 EXERCISES

fciose(f1)
£close(f2)
fc lose (temp)

return 0;

E!^ E^SES

1. /* A simple computerized telephone book

#inClUde <stdioh>
#include <string.h>

4tjnclude .zstdlib.h>

char narnesi1001[40

char numbers'100U4°l

mt locO;

mt menu(void);

void enterV0id

void load(Void)

void save(void)

void find(void)

mt main(void)

mt choice;

do
choice = menu;

switch(choi ce) C

case It enterO;

break;

case 2: finth)

break;
case 3: saved;

break;
case 4: loadO;

) while(Ch0iCe5

return 0;

*1

572 TEACH YOURSELF
V

/ Get menu choice,
mt menu(void)

mt 1;
char str[80];

priritf(1. Enter names and rurnbers\");
printf(2. Find numbers\n');

printf("3. Save directory to disk\n);

prjntf(4. Load directory from disk\n');
printf(5. Quit\n);

do

printf('Enter your choice:

gets(str)

i = atoj(str)

printf(\n')
whlle(j<]. 11 1>5);

return 1;

void enter(void)

for(;loc<100; loc++)

if(loc<100) (

printf(Enter name and phone number:\n');
gets (names [bc]
if (!narnes[locJ) break;
gets (numbers [bocJ)

void find(void)

char narne[80);
mt 1;

printf(Enter flame:);
gets (name);

for(i=O; 1<100; 1+4)

573
94 EXERCISES

if(!strcmp(fl-'°	 narnes(tl))
priritH'%s %s\n	 nanieslil, nurnbers[i]);

void load(void)

FILE fp;

if ((fp = topen(phone"	 "r))=NULL)
printHCarIflOt open file .\n)
exit (1)

0;
hi1e(teo (fp))
fscan€(fp '%s%s, names (10c] numberstioc)
i 00 •

fcios(Lp)

void savo{voicl)

FILE *fp;
lot I;

i((p	 fopen(phofle	 w))rrNULL} (

1:.rintfVCa000t open file. \n");
ex-4t(l)

crr;il0C; j+*)
fprintf(fp, "ts%s ', narnes[i). nunthersi-l);

fcLose(fp)

2	 include 'zstdio.h>
include stdiib.h>
include <ctype.h>

j Ot main(i-nt argc, char •árgv[])

FILE *fp;
char oh;

574 TEACH YOURSELF

V

char str[80];

mt count;

1 see if correct number of common line argumcrtS

if(argc!=2) {
printf(Usage: display <uile>\n);

exit (1)

/ open the file i

if Nip = fopen(argv(lI , 'r'N==NULL)

printf("Cannot open the file.\ri');

exit (1)

count	 0;

while(!feof(fp))

fgets)str, 79, fp);

printt('%s", str);

couflt++

if(count==23)

printf("More? (yin) "N

gets(str)
if(toupper(*str)==N') break;

count = 0;

fclose(fp)

return 0;

3. /* Copy a file. */

*include <stdio.h>
include <stdlib.h>

4#include <string.h'

mt main(int argc, char *argv[])

FILE *from, *to;

char tr[128]

1 see if correct number of command line arqumentr /

ANSWERS 575
9.4 XERCJSES

if(argc<3) {
printf('Usage: copy <source> <destnation>\n)

exit (1)

/ open source file */
if(from = fopen(argv(11, 	 r))'NULL)

printf("Cannot open source file.\n);

exit (l);

/ open destination file */

ifNto	 fopen(argv[2)	 "w))==NTJLL) (

printf("anflOt open destination file.\n');

exit (1)

/* copy the file /
while(!feof(from)) (

fgets(str. 127, from);

if(ferror(frorn))

printf('Error oninput.\n);

break;

If)! feof (from)) fpucs(str, to);

if(ferror(to))
printf("Error on output.\n);

break;

if(fclose(from)EOF)

printf('Error closing source file.\n);

exit(1)

if(fclose(to)EOF) {

prinrf("Error closing destination tile.\n);

exit(l)

return 0;

576 TEACH YOURSELF
V

X7XERCISES
1. include <stdio.h>

include <stdlib.h>

lot main(void)

FILE *fn,	 fp2;

double d;

inc: i;

if(jfPi J fopen('values'	 "wb))==NULL)

intfCannot open file.\n'};

eit(l)

if) (f p 2 = f pen(count, "ub))=-NULL)

nrin:tVCanno open file.\n"):

exit)1)

} i

d = 1.0;

for(i=O; d0.0&& i "z32766; ii)

printf ("Enter a number (0 to quit):

scanf)'%lf. &d);
fwritc(&d, sizeof d, 1, fpl);

fwrite(&i sizeof 1, 1, fp2)

fclose(fpl)

fclose(fp2)

return 0:

2 #irclude <stdio.h>

#include <std1ib.h

mt main(void)

FILE "fpl, *fp2;
(L)UblC d;
101 1;

ANSWERS 577
9.6 EXERCISES

if((fpl = fopen(va1ues	 "rb"))==NULL) {

printf(, Cannot open file.\n');

exit (1)

if((fp2 = fopen(count, rb'))==NULL)

printf("Canriot open file.\n');

exit (1)

fread(&i, sizeof 1, 1, fp2); /* get count */

for(; i>O; i--)
fread(&d sizeof d, 1, fpl);

printf("%f\n, d);

fclose(fpl)

fclose(fp2)

return 0;

EPd15
1. *include <stdio.h>

include <stdlib.h>

mt raain(int argc, char *argv)

FILE *fp;

char ch;

long 1;

if(argc!=2) C

printf("You must specify the file.\n);

exit (1)

if((fp = fopen(argv(1), rb))== NULL)

printf(Cannot open file-\n");
exit(l)

I]

578 TEACH YOURSELF
V

fseek(fp, 0, SEEK—END); /' find end of file */
1 = fteil(fp);

/ go back to the start of the file I

fseek(fp, 0, SEEK SET);
for(; 1>0; 1 = 1 - 2L)

ch	 fgetc(fp);

putchar(ch)
fseek(fp, it, SEEK_CUR);

fclose(fp)

return 0;

2. #inciude <stdioh>
#include <stdlib.h>

mt rnain(int argc, char *arg)J)

FILE *fp;

unsigned char ch, val;

if(argc'=3) {

printf("Usage: find <filename> <value>);
exit (1);

if((fp = foperi(argv[l], 	 rb'))==NtJLL)
printf("Cannot open file.\n);
exit (1)

val = atoi(argv[21);

while(!feof(fp))

ch = fgetc(fp);

if(ch == val)

printf('Found value at %ld\n", fteli(fp));

fclose(fp)

ANWJEM 579
9.8 EXERCISE

return 0;

£SES

1. *include <stdio.h>
include <stdlib.h>

*include <ctype.h>

mt main(void)

char fnane(801

printf(Eflter name of file to erase:);

gets(f flame);
printf("Are you sure? (V/N));
jf(0pper(getCrY)

jf(remOve(fflame))
printf(\flFile not found or write protected.\n)

return 0;

EXCE

• / copy using redirection.

Executelike this:

C>NANE < in > out

*include <stdio.h>

mt main(void)

char ch;

while(!feOf(Stdi fl)) {

scanf(%c. &ch);
if(Ifeof(Stdifl)) printf(*%C" ch);

fl

580 TEACH YOURSELF

C	 -

return 0;
II

JJf7ASTERY SKILLS CHECK
1. include <stdjo.h>

*include <stdljb.h>
Ainclude <ctype.i-i>

mt main(jnt argc, char *argv[])

FILE *fp;
char str[801;

/* see if file name is specified */
if(argc!=2)

p rintf("File name rnissing.\n');
exit (1);

ifNfp = fopen(argv()	 "r'))=rNIJLL)
printfCannot open file.\n');
exit (1)

while (!feof(fp))
fgets(str, 79, fp);
i f(!feof(fp)) printf(%, str);
priritf(.More? (yin));

brerdc;
printf('\n).

fclose(fp);

return 0;

. /* Copy a file and convert to uppercase. *1
#include <stdjo.)-i>
#iriclude <stdlib.h>
*include <ctype.h>

ANSWERS 581
MASTERY SKJUS CHECK

mt main(int argc char *argv(J)

FILE *from, *to;

char ch;

I see if correct number of command line arguments *1

if(argc!=J) {

printf(Usage copy <source> <destination>\n');

exit (1)

/ open source	 le /

if((from = fopen(argv[l], "r'))==NULL) {

printf(Carinot open source file.\n);
exit (1)

I open destination file */

if ((to = fopen(argv(21, 'w"))==NULL)

printf(Cannot open destination file.\n");
exit(1);

1* copy the file */

while(!feof(from)) (

ch = fgetc(from);

if(!feof(from)) fputc(toupper(ch), to);

fclose(frorn);

fcicse(to)

return 0;

3. The fprintf() and fscanf() functions operate exactly like
printf() and scanf(), except that they work with files.

4. #include <stdio.j-t>

*include <stdlib.h>

mt main(void)

FILE *fp;

mt i, mum;

582 TEACH yosJfaI
V

if((fp = fopen('x-and . , Wb))=rULL)
printf(cannot open file.\n");
exit1)

for(i=O; i<lOO; i++)

nwn = randO;

fwrite(&nuzn, sizeof awn. 1, fp);

fclose(fp);

return 0;

5. # jncju	 <stdio.h>
iflclude <stdlibji>

mt main (void)

FILE *fp;

mt i, awn;

if((fp = fopen(ran . , rb'))==NULL)
printf("can0 open file.\n);
exit(].)

for(i=O; i<100; i++)

fread(&num sizeof awn, 1, fp);
prjntf (%d\n, num);

fclose(fp)

return 0;

6. #include <stdjo.h>
#include <stdlib.h>

mt main (void)

FILE *fp;

long i;

ANSWERS 583
CUMULATIVE SKiLLS CHECK

mt nun;

if((fp = fopen("rafld	 "rb))NIJLL)

printf(*Canflot open file-\n");

exit(l)

printfVwhiCh number (0-99)?);

scant ("%ld", &i);
fseek(fp, i * sizeof(i.nt). SEEK_SET);

fread(&nun, sizeof nun, 1, fp)

printf("%d\fl" nun);

fclose(fp)

return 0;

7. The console 1/0 functions are simply special cases of the

general file system.

CUMULATIVE SKILLS CHECK

1. 1* An electronic card catalog.
*include <stdio.h>
#include <string.h>

$include <stdlibh>

*define MAX 100

mt rnenu(void);

void display(int i);

void author-search(Void)

void title-search(Void)

void enter(void);

void save(void)

void load(void);

char names[MA-X1[BO); / 4 author names

char titles[MAX)[80); 1* titles */

char pubs [MAX) [80); /* publisher */

mt top	 0; /* last location used /

TEACH YOURSELF

mt main(void)

mt Choice;

load; /* read in catalog *

do (

choice = menu;

switch(choice)

case 1: enter)); j* enter books
break;

case 2: author -search; 7* search by author *1
break;

case 3: title search	 /* search by title
break;

case 4: save;

while (choice! =5)

return 0;

/* Return a menu selection; *,
menu (void)

mt 1;
char str[80];

prmntf(*Card Catalog:\n);

printf(-	 1. Enter\n');
printf(2. Search by autihor\n);
printf(" 3. Search by TiLle\n);

printf(' 4. Save catalog\n);
printf(' 5 Quit\n";

do (

printf(Choose your selection:
gets(str)

i	 atoi(str);
printf("\n")

} while(i<1 11 i>5)

return 1;

ANSWERS 585
CUMULATIVE SKILLS CHECK

/ Enter books into database.
void enter(void)

mt j;

for(i=top; i<MAX; i++)
printf(Enter author name (ENTER to quit)
gets(naines(jJ)
if(!*names[jJ) break;

printf(Enter title:);
gets (titles iJ

prirltf("Enter publisher:
gets (pubs[j])

top	 1;

/* Search by author. *1
void author-search(Void)

char name(80J;

mt 1, found;

printf("Name:

gets (name);

found = 0;

for(i=O; i<top; j++)
if(!strcmpn	 names(ij))
display(i)

found = 1;

prjntf C

if(!found) printf("Not Foyrid\n);

/ Search by title */

void title-search(void)

char title(80);

mt i, found;

prjntf('Tjtle.);
get s (title);

586 TEACH YOURSELF
V

found = 0;

for(i=0; i<tOp ; 1+4)
if(!strcmp(title, titlesti])) {

display(i)

found = 1;

printf(,\n')

if(found) printf("Not Found\n);

/ Display catalog entry.

void display(int ii

printfV%s\n. titles[i]);
printf("by %s\n", nanies]i]);

printfVPublished by %s\n", pubs(iI);

/ Load the catalog file.

void load(void)

FILE •fp;

if((fp = fopen("catalocf, r))==NULL)

printf('Tatal.og file not on disk.\ri");

return;

fread(&top, sizeof top, 1, fp); I" read count

fread(names, sizeof names, 1, fp);

fread(titles, sizeof titles, 1, fp)

fread(pubs, sizeof pubs, 1, fp);

fclose(fp)

/ 0 save the catalog file.

void save (void)

FILE *fp;

f((fp= fopen("catalog, 'w'))==NULL)

printf("Cannot open catalog file.\n);

xit(l)

ANSWERS 587
CUMULA MIF SKILLS CHECK

fwrit.e(&top, sizeof top, 1, fp);

fwrite(names, sizeof names, 1, fp)

fwrite(titles, sizeof titles, 1, fp);

fwrite(pubs, sizeof pubs, 1, fp);

fclose(fp)

2. /* Copy a file and remove tabs.
*include <stdio .h>

#include <stdlib.h>

#include <string.h>

mt main(int argc, char *argv[])

FILE *from, t0;

char di;

mt tab, Count;

/ see if correct number of command line arguments

if(argc!=3) {
printf("Usage: copy <source> <destination>\n');

exit (1)

1 open source file

ifUfrom = fopen(argv[11, "r"))==NULL)
printf(Canriot open source file.\n);

exit (1)

/ open destination file *7

if((to = fopen(argv[21, "w'))==NULL) f
printf(Cannot open destination file.\n");

exit (1)

/* copy the file

count = 0;

while(feof (from))

ch = fgetc(from);

if(ch=='\t') {

for(tab = count; tab<8; tab—)

588 TEACH vouRsaf

C

	fputc (, to)
count = 0;

else

if)feof(frorn)) fputc(ch. to);
COUnt++;

if(count==8 J1 ch==' \n) count = 0;

fclose (from)

fclosc(ro)

return 0;

CHAPTER 10

EVIEW SKILLS CHECK

1. / Copy a file. /
#irtclude <stdio.h>

*include <stdlib.h>

mt main(int argc, char *argv[])

RILE *from *to;
char ch;

/ I see if correct number of commend line arguments
if(argc!=3)

printf)'Ussge: copy <source> <destination>\n);

exit(l);

1* open source file *1

ifUfrom = fopen(argv[l), rb))==NULL) {

printf("Cannot open source file.\n);

exit(l);

/ open destination file

if ((to = fopen.(argv(2], wb'))==NULL)

printf(Cannot open destination file-\n");

ANSWERS 589
REVIEW SKiLLS CHECK

exit (1)

PA

1* copy the file /

while(!feof(from)) (

ch = fgetc(frorn);

if(ferror(from)) {

printf("Error on input.\n);

break;

if(!feof(from)) fputc(ch, to);

if(ferror(to)) (

printf("Error on output.\n);

break;

if(fclose(from)==EOF) (

printf("Error closing source file.\n");
exit (1)

if(fclose(to)==EOF) C

printf('Error closing destination file.\n);
exit (1)

return 0;

)	 'I

2. #include <stdio.h>
#include <stdlib.h>

mt main(void)

FILE *fp;

1* open file /

if((fp = fopen(myfile. "w))==NULL) C

printf(Cannot open file.\n);
exit(l)

,

fprintf(fp, %s %.2f %x %c, "this is a string",

1230.23, Ox1FFF, 'A');

590 TEACH YOURSELF
V

fclose(fp)

return 0;

3. *include <stdio.h>

#include <stdlib.h>

mt main(void)

FILE *fp;

int countj201. i;

7* open file */

ifUfp = fopen("TEMP", wb))NULL)

printf(Cannot open file.\n");

exit (1)

for(i=0; i<20; i++) count(i) 	 1+1;

fwrte(count sizeof count. 1, fp);

fclose(fp)

return 0;

4. #include <stdio.h>
#include <stdlib.h>

mt main (void)

FILE *fp;
mt count(20), 1;

7* open file /
if((fp = fopen("TEMP	 rb'))==NULL)

printf(Cannot open file.\n);

exit(l)

fread(count, sizeof count, 1, fp);

AISWERS 591
70? EXERCISES

for(i=0; 1<20; j ++) printf(%d 1 , count[j]);

fclose(fp)

return 0;

5. 8tdin, stdout, and stderr are three streams that are opened
automatically when your C program begins executing. By
default they refer to the console, but in operating systems that
support I/O redirection, they can be redirected to other devices.

6. The printf() and scan.f() functions are part of the C file
system. They are simply special case functions that
automatically use stdin and stdout.

EXERCISES
1. / A simple computerized telephone book. I

*irr:ude <stdio.h>

*include <string.h>

*include <stdlib.h.

tdefine MAX 100

struct phone—type

char name[40];

mt areacode;

char nurnberf91;
phone[MJ;

mt loc=0;

mt menu(vojd);

void enter(void);

void load(void);

void save(void);

void find(void);

mt main(void)

mt choice;

592 TEACH YOURSELF

V

do

choice = menu();

switch(choice)

case 1: enterO;

break;

case 2: find();
break;

case 3: save();

break;
case 4: load;

while (choice =5)

return 0;

/* Get menu choice. */

menu (void)

mt 1;
char str[80);

printf(l. Enter names and numbers\n');

printf("2. Find numbers\n);

printf("3. Save directory to disk\n);

printf("4. Load directory from disk\n);

printf("5. Quit\n);

do{	 -
printf("Enter your choice:);

gets(str)

i = atoi(str);

printf("\n)

while (i<l H 1>5);
return i;

void enter(void)

char texnpt80;

for(;loc<100; loc++)

if(loc<100) (
printf(Enter name:);

gets (phone(loc] .name);

ANSWERS 593
iai EXERCISES

if(!*phoneEloC).flaxfle) break;
printf("Enter area code:);
gets(ternp);
phone[loc].areaCOde = atoi(texnp);
printf(Enter number:);
gets (phone(loc] .nuinber>;

void find(void)

char naxne[80];
mt 1;

printf("Enter name: *);
gets (name);
jf(i*name) return;

for(i=O; i<100; j++)
if(!strcmp(naiue, phone[i].naifle))

printf(%s (%d) %s\n, phone(i].name,
phone[iJ. areacode , phone(il.number);

void load(void)

FILE *fp;

if ((f p = fopen(phone-, 'r))==NULL) (
printf('Cannot open file.\n");
exit(1)

bc	 0;
while(!feof(fp)) (

fscanf(fp "%s%d%s', phone(loc] .riarne,
&phone(bocl .areacode, phone[bocI number);

loc++;

fclose(fp);

void save(void)

594 TEACH YOURSELF
V

FILE *fp;
mt 1;

if((fp = fopen(phone, "w))==NULL)
priritf("Cannot open file.\n);
exit (1)

for(i=0; i<loc; i++) {
fprintf(fp. %s %d %s	 phone(i].narne

phone[i].areacode, phone(i).nuither);

fclose(fp)

2. The variable i is a member of structure stype. Therefore, i
cannot be used by itself. Instead, it must be accessed using s and
the dot operator, as shown here.

s.i = 10;

Vx
ER CISES

No. Since p is a pointer to a structure, you must use the arrow
operator, not the dot operator, to access a member.

2. #include <stdio.h>
#include <time.h>

mt main(void)

struct tm *systmne *gmt;
tirne_t t;

t = time(NULL);
systime = localtime(&t);

printf('Time is %.2d:%.2d:%.2d\n', systirne->tm_hour,
systime->trfl_mifl, systime->tm_sec)

gmt = gmtime(&t);
print f(Coordinated Universal Time is %.2d:%.2d:%.2d\n,

gmt->tm_hour,
gmt->tm_min, gmt->tm_sec);

ANS 595
O3 &ERYSES

printf('Date: %.2d/%.2d1%.2d, SyStirne->tni_mon+1,
systime->tm_mday, systime->tm_year);

return 0;

JCXERCISES
1. / A simple computerized telephone book. /

*include <stdio h>
*include <string.h>
I include <stdlib. h>

Idefirie MAX 100

struct address
char street[401;
char city[40);
char state(3);
char zip[12);

struct phone—type
char name[40];
mt areacode;
char nuinber(91;
struct address addr;
phone (MAX)

mt loc0;

jot menu(void);
void enter(void);
void load(void);
void save(void);
void find(vojd);

mt main (void)

jot choice;

do
choice = menu();

596 ThAHYOUW
V

switch(choice) C

case 1: enter();

break;

case 2: find));

break;

case 3: save();

break;

case 4: load();

) while(choice!5)

return 0;

/* Get menu choice. J

menu (void)

mt 1;

char str[80];

printf("1. Enter names and numbers\n');

prntf("2. Find nuiobers\n);
printf(3. Save directory to disk\n");-

pri.nrf(4. Load directory from disk\n);

printf ("5. Quit\n)

do
printf(Enter your choice:);

gets(str)

i = atoi(str);

printf(\n)

while(i<1 II
return i;

void enter(void)

char temp[80);

for(;loc<100; loc++) {

if1oc<100) (
priritf VEnter name: •);

gets (phone(10C) .name);
if (*phone(loc] .naine) break;

printf (*Enter area code: •);

-. 597
1a3 DERS

gets(temp);
phorie[loc).areacode = atoi(temp);
printf(Enter number: ');
gets (phone(1oc .number);

1* input address info /
printf("Enter street address:);
gets(phone[loc) .addrstreet);
printf)Eriter city: ");
gets(phone(loc] .addr.city);
printf(Enter State:);
gets (phone[loc} .addr.state);
printf 'Fer zip code:);
gets(.	 e[1oc] .addr.zip)

void find(void)

char name(80);
mt i;

printf(Enter name:);
gets (name);
if(!*name) return;

for(i=O; i<100; i++)
if) !strcmp(naine phone[i) name))

printf(%s (%d) %s\n, phone[i]name,
phonefiareacode, phone(i)number);

printf(%s\n%s %s %s\n, phone(i)addr.street,
phone[i).addr.city, phorie[i).addr.state,
phone[i] addr.zip);

void load(void)

FILE *fp;

if ((fp = fopen(*phone , "rb))==NtJLL)
printf(Cannot open file.\n);
exit(l)

598 TEACH YOUMW
V

bc = 0;

while(!feof(fp))

fread(&phone[loc), sizeof phorie(loc), 1, fp);
loc++;

fclose (fp)

void save(void)

FILE *fp;

mt i;

if((fp = fopen(phone, wb"))==NULL)

printf(Cannot open file.\n");

exit (1)

for(i=0; i<loc; i++)
fwrite(&phone[i], sizeof phone[i], 1, fp);

fclose(fp)

)

PERCISES
1. *include <stdio.h>

mt main(void)

struct b_type

int. a: 3;

mt b: 3;

mt C: 2;
bvar

bvar.a	 -1;

bvar.b	 3;

bvar.c = 1;

printf(%d %d %d	 bvar.a, bvar.b, bvar.c);

return 0;

V

ANSWERS 599
10.5 EXERC.SES

EXERCISES
1. *include .cstdio.h>

*include <stdlib.h>

union u_type
double d;
unsigned char c[8];

double uread(FILE *fp);

void uwrite(double nui, FILE kfp);

mt main(void)

FILE *fp;
double d;

ifNfp = fopen(myfi1e, "wb+))NULL)

printf(CaflflOt open fi1e.\n);

exit(l);

uwrite(100.23 fp);

d = uread(fp);
printf(*%1f, d);

return 0;

void uwrit (double nurn, FILE *fp)

mt i;
union u_type var;

var.d =
for(i=0; i<8; i++) fputc(var.C(i]	 fp);

double uread(FILE *fp)

jot i;

union u_type var;

600 TEACH YOURSELF
V

rewind(fp);

for(i=0; i<8; i++) var.c(iJ = fgetc(fp);

return var.d;

2. #include <stdjo.h>

irit main(void)

union t_type
long 1;

mt i;

uvar;

uvat.l = OL; / clear 1

uvar.i = 100;

pi1ntf("%1d", uvar. 1)

return 0;

MASTERY SKILLS CHECK
1. A structure is a named group of related variables. A union

defines a memory location shared by two or more variables of
different types.

2. struct s_type

char ch;

float d;

mt i;

char str(801;

double balance;

I s_var;

3. Because p is a pointer to a structure, ycu must use the arrow
operator to reference an element, not the dot operator.

4. #include <stdio.h>

#include <stdlib.h>

struct s_type

char name[40];

WB 601
M.4S7ERYSjQLLS C#lE

char phofle[14];
mt hours;

double wage;

) emp(IO);

mt main (void)

FILE •fp;

mt i;

char temp(80);

if ((fp = fopen("exnp, wb))NULL)
printf(Carinot open EMP file. \n")

exit (1)

for(i0; i<lO; i++)

printf VEnter name:);
gets (emp[i] .na.me);
printf ("Enter telephone number:

gets (emp[i] .phone);
printf VEnter hoursworked:);

gets(texnp);

emp[i] .hours = atoi(temp);
printf ("Enter hourly wage: •};

gets (temp)
emp(il.wage = atof(temp);

fwrite(emp, sizeof emp, 1, fp);

fclose(fp)

return 0;

5. #include <stdio.h>
#include <stdlib,h>

struct s_type

char namet0);
char phone[14];

mt hours;
double wage;

) emp[l0];

Oft TEAMU
V

jilt main(void)

FILE *fp;

mt 1;

if((fp = fopen("ernp, rb))=NULL)
printf("Cannot open EMP file.\n");

exit (1)

fread(emp, sizeof einp, 1, fp);

for(i0; 1<10; i++)
printf(%s %s\n, emp(iI.naiue , emp(1J phone);

printf(%d %f\n\n, emp(i).hoUrS, emp(il.wage);

fclose(fp)

return 0;

6. A bit-field is a structure member that specifies its length in bits.

7. tinclude <stdio.h>	 -

mt main(void)

union utype

short mt 1;
unsigned char c(2);

uvar;

uvar.i = 99;

printf(High order byte: %u\n, uvar.c(lI);

printf("Low order byte: %u\n", uvar.c[0));

return 0;

NRS .3
CUM" 7S1OLLS CHECK

CUMULATIVE SKILLS CHECK

1. #include <stdio.h>

struct 8—type

irit i;

char ch;

double d;

var1 var2;

void struct_swap(struct s_type i, struct S_type *j);

mt main(void)

vr1.i = 100;

var2.i = 99;
varl.ch =

var2.ch

varl.d = 1.0;

var2.d = 2.0;

printf(varl: %d %c %f\n, v.arl.i, varl.ch , varl.d);

printf(var2: %d %c %f\n, var2.i, var2.ch, var2.d);

struct_swap(&var1 &var2);

printf(After swap:\n);

printf(var1 %d %c %f\n	 varl.i, varl.ch , varl.d);

printf(var2: %d %c %f" var2i, var2.ch , var2.d);

return 0;

void struct_swap(struct s_type 	 Struct 8_type j)

Struct s_-type temp;

temp =
=

= tamp;

I

2. i Copy a file. /

linclude <stdio.h>

604 TEACH YOURSELF

V

#include <stdlib.h>

jot main(int argc, char *argv[])

FILE *from, t0;

union u_type

mt i;

char ch;

) uvar;

/ see if correct number of command line arguments

if(argc!=3) {
printf(Usage: copy <source> <destination>\n);

exit (1)

1* open source file */
if((from = fopen(argv[l], rbfl==NlJLL)
printf("Cannot open source file.\n");

exit (1)

/ I open destination file /
if ((to = fopen(argv[21, 'wb))==NULL)
prmntf(CanflOt open destination file.\n');

exit (1)

I copy the file */

for);;)
uvar.i = fgetc(from);

if(uvar.irEOF) break;

fputc(uvar.ch , to);

fclose(frorn)

fclose(to)

return 0;

3. You cannot use a structure as an argument to scanf().
However, you can use a structure element as an argument, as
shown here.

scanf(%d, &var.a);

ANSWERS

REWFW&'rJUS MECK

4. *include <string.h>

#include <stdio.h>

struct s.type

char str[80];

var;

void f(struct s_type i);

mt main(void)

strcpy(var.str, "this is original string");

f(var);
printf(%s* var.str);

return 0;

void f(struct s_type i)

strcpy(i.Str, "new string");

printf("%s\n". i.str);

CITER 11

REVIEW SKILLS CHECK
1. #include <stdio.h>

struct num_type

mt i;

irit sqr;

jot cube;

} nums(101;

jot main(void)

mt i;

for(i=l; i<ll; j++)

nums[i-1].i =

606 flPH YOtMSELF
'V

nuxns[i-1l.sqr = j*j;

nums[i-1l.cube = j*j*j;

for(i=O; i<10; j++)

printfV%d	 nums(il.i);

printfV%d	 nums(il.sqr);
printfV%d\n, nuzns(i].cube);

return 0;

2. #include <stdio.h>

union i_to_c

char c[21;
short mt i;

ic;

mt main(void)

printf(Enter an integer);

scanf("%hd, &ic.i);
printf("Character representation of each byte: %c %c,

ic.c[0], ic.c[13);

return 0;

3. The fragment displays 8, the size of the largest element of
the union.

4. To access a structure member when actually using a structure
variable, you must use the dot operator. The arrow operator is
used when accessing a member using a pointer to a structure.

5. A bit-field is a structure element whose size is specified in bits.

EXERCISES
1. The best variables to make into register types are k and m,

because they are accessed most frequently.

AN

112 EXERCISES

2. *include <stdio.h>

void sum_it(iflt value);

mt main(void)

sum_it (10)

sum_it (20)

suxn_it(30)

sum_it (40)

return 0;

void sum_it(int value)

static mt sum=0;

sun = sum + value;
printf(Current value: %d\n, sum);

4. Y r annot obtain the address of a register variable.

NOW

1. *include <stdio.h>

const double version = 6.01;

mt main(void)

printf(Versiofl %.2f, version);

return 0;

2. #include <stdio.h>

char *mystrcpy(char	 const char *from);

mt main(void)

608 m YOURSELF
V

char p, str(80];

p = mystrcpy(str, testing);

printf("%s %s, p, str);

return 0;

char *mystrcpy(char *to, const char *from)

char *temp;

temp = to

while(*from) to++ = 'fromi-+;
=	 ; / null terminator I

return temp;

KXERCISES

2. enum money (penny, nickel, quarter, half—dollar, dollar);

3. No, you cannot output an enumeration constant as a string as is
attempted in the printf() statement.

1. #jpclude <stdio.h>

typedef unsigned long UL;

mt main(void)

UL count;

count = 312323;

printf(%1u. count);

ANSWERS 609
11.5 EXERCISES

return 0;

2. The typedef statement is out of order. The correct foirn of
typcdef is

typedef oldname newname;

EXERCISES
1. include <stdio.h>

#include <stdlib.h>

mt main(int argc, char *argv[fl

FILE	 *out.

unsigned char ch;

if(argc3)

printf("Usage: code <in> <out>\n);

exit (1)

if((in = fopen(argv(11, 'rb))==NTJLL) C

printf("Cannot open input file.\n);

exit (1)

if((out	 fopen(argv[21, wb'))==NULL) C

printf("Cannot open output file.\n');

exit(].)

while (feof (in))

ch = fgetc(in);

if(!feof(in)) fputc(-ch out);

fclose(in)

fclose(out)

return 0;

610 TEACH YOURSELF
V

2. *include <stdio.h>

$include <stdlib.h>

mt mor(int argc, char argv[])

FILE III,	 out;
unsigned char ch;

if(argc!=4)

pi- n--f ('Usage: code <in> <out> <key>\n')

exit).)

if	 in	 f open)argv[1] 	 "rb))==NULL)

pr:ntfVCannot open input fi1e.\n')

exit(i)

if(lout	 fopen(argv[21.	 wb))==N1rLL)

prntf("Canr.ot open output file.\n);

exit (1)

while(!feof(in))

ch = fgetc(in);

ch = argv[3]	 ch;

if (! feof (in)) fputc (ch, Out)

fclQ5e(in)

fclnse)out)

re :rn 0;

LI

3. a. 0000 000

b. 1111 1111

1111 f101

4	 _h

ANSWIRS 611
II 6 EXERCISES

To zero high order bit, AND with 127, which

in binary is 0111 1111. This causes the high-

order bit to be zeroed and all other bits left

untouched.

ch = ch & 127;

EEs_
1. *inciu:e <staio.h>

mt main(void)

mt i, j, k;

printfVErV ?r a number;

scanf"%d'. &i);

j = i << 1;

k = i >> 1;
printf (%d 1culed: %d\n" , 1, j)

print f(hal.'od:	 i , k)

return 0;

2. *include <scdio.h>

void rotate(nsiqrvd char 'C)

mt main(void)

unsigned c}r ch;

irm i;

ch = 1;

12 TEACH YOURSELF
I.

return

H

void rotateunsigncd char c)

union

unsigned char ch[1;

unsigned U;
rot;

rot.0	 0; 1 . clear 16 biLo

rot.ch[O]

I' shift integer left 	 t

rot.0 = rotu << 1;

/* See if a bit got shifted into cli).

If so, OR it back onto the ether end.
if(rot.chfl]) rot.c h[O] = rot.ch[QJ 1 1;

= rot.ch[01;

EXERCISES
1. 4ic1ude <stdio.h'

sot: niajn(vojd

irit I, j, answer;

printf("Enter two integers:);
oanf(%d%d, &i, &j);

answer = j ? i/j: 0;

priritf(%d, answer)

return 0;

2. COu;:5 = a>h 7 100	 0;

ANSWERS 613
MASTERYSK/LLS CHECK

EXERCISES
2. x &= y;

3. *include z6:

mt main(vo-id)

mt i;

for(i=17;	 -j
print:

 0;

EXCI
L flinclude stdic.h-'

mt

mt i	 j, k;

for(i=0, j=-5C, k.-j; i<130; 1+', i-,
printf 'k = cri"

return 0;
ii

2. 3

MASTERY SKILLSCHECK
1. The register specifier causes the C compiin	 Ji,dw

fastest access possible for the variable it pI f ('(Ins.

2. The const specifier tells the C compiler that en Stile flict'it in tim
program may modify a variable declared as corist. Also, a const
pointer parameter ma y not he used to mc' ditv the object pointed
to b y the pointr:r. The volatile specifier tells the compiler that

614 TEACH YOURSELF

C

an y variable it precedes may have its value changed in ways not
explicitly specified by the program.

1 ir;c1ude <stdio.h>

mt main(void)

register mt i, sum;

sum = 0;

fori=1; 1<101; i+i

sum = sum +

printfV%d, sum);

return 0;

1. Yes, the statement is valid. It creates another name for the t"pe
long double.

5. *include <stdio.h>

4*include <conio.h>

mt main(void)

char chi, ch2;
char mask, i;

printf(Enter two characters: ")

chi = getcheM;

ch2 getche;

printf('\n);

mask = 1;

for(i=0; i<8; j+.i-)

if((mask & cM) && (mask & ch2;
printfVbits %d the same\n", ii;

mask <<= 1;

return 0;

6. The < < and >> are the it.;It and right sIitt operators,
res pee ti ye ly.

ANSWERS 615
CUMULA M/E SKILLS CHECK

7. c +	 10;

8. count = done 7 0	 100;

9. An enumeration is a list of named integer Constants. Here is one
that enumerates the planets.

enum planets (Mercury, Venus, Earth, Mars, Jupiter,

Saturn, Neptune, Uranus, P1'fc

CUMULATIVE SKILLS CHECK

1. include <stdio.h>

void show binary(unsigned U);

mt main(void)

unsigned char ch, ti, t2;

ch = 100;

show_binary(ch);

ti = cli;

t2 = ch;

ti << 4;

t2 >>= 4;

ch = ti I t2;

showbinary(ch);

return 0;

void show binary(unsigned u)

unsigned n;

for(n=128; n>0; n=n/2)
if(u & n) printf("l

else printf(0 •')

616 TEACH YOURSELF
V

print

2. 4 inc lude zstdio.h>

r:c1ude <stdljb.h>

main(int argc, cna: *er_\,[

FILE

nsci:ied char ch;

(argc!rr2)

pr:r.tfi ("Usage: code <an>' n")
exit (1);

f((in = fopen(ergv[1), 	 rb"})=NuLL) (
p ririrf("Cannot open input file.\n");
ex t (I

wh1ie(teof(jn)

ch = fgetc(in);

if(!feof(jn)) putchar(-ch);

fclose(in);

return 0

3. Yes, any type of variable can be specified using register.
However, on some types, it may have no effect.

4 ' A simple computerized telephone book.

#.nclucje <stdio.h>

ifinclude <string.h>

'1riclude <stdlib.h>

Udefjne MAX 100

struct address

char streec[401;

char city(40];

SWERS 617
CUMUIATIVESIcJUS CHECK	 '

char state[3J;

char zip[12];

struct phone—type

char narne(40);

mt areacode;

char nurnber[91;

struct address addr;

phone[MkC);

mt bc =0;

mt menu(void);

void enter(void);

void boad(void);

void save(void);

void find(void);

mt main(void)

register mt choice;

do

choice = menu;

switch(choice)

case 1: enter;

break;

case 2; find();

break;

case 3; save;

break;

case 4: load();

while(choice!=5);

return 0;

/* Get menu choice. i

menu (void)

register mt i;

char str[80];

618 TEACH YOURSELF
V

printf(1. Enter names and numbers \fl);
printf(2. Find nurnbers\n");
printf(3. Save directory to disk\n);
printf("4. Load directory from disk\n(;
printf ("5. Quit\n)

do
printf("Enter your choice:);
gets(str)
i = atoi(str);
printi (\n
while(i<1 11 i>5);

return i;

void enter(void)

char temp[80);

fork loc-clOO; loc++)
if(loc<100) C

printf(Enter name:
gets (phone (loc) name);
if(!phone[loc] .nazne) break;
printf("Enter area code:);
gets C temp
phone[1oc .areacode	 atoi(temp);
printf(Enter number:);
gets (phone(locJ -number);

1* input address into /
printf ("Enter street address: ");
gets (phone(locJ .addr.street);
printf(Enter city:);
gets(phone(locJ .addrcity);
printf("Eriter State: ");
gets(phone[loc] .addr.state);
printf("Enter zip code:);
gets(phone[locl .addr.zip);

void find(void;

ANSWERS 619
CUMUUI WE SKiLLS CHECK

char name[80);
register inc 1;

printf(Enter name:
gets (name);
if(!name) return:

for(i=O; 1<100; i++)
iE(!strcmpnarne, phone[i.) .ntrne)) (

printf(%s (%d) %s\n, phore[i].narne,
phone[i].areacode , phone(iJ.nwnber);

printf(%s\o%s %s %s\n, phone(i).addr.street,
phone[iJ.addr,city, phorte(i].addr.state,
phone(i) addr.zip);

II

void load(void)

FILE *fp;

if((fp = fopen(p.hone,	 rb))=N1JLL)
printf("Camot open t.i1e.\n);
exit (1)

bc = 0;
while(!feof(fp)) (

fread(&phone[loc], sizeof phone[boc], 1, Ip);

loc4-s-;

fcbose(fp)
I]

void save(void)

FILE * fp ; -
register mt i

if((fp = fopen(phone, wb))==NULL) (
printf(Cannot open file.\n);
exit(1)

for(i=0; i<boc; i++)

620 TEACH YOURSELF
V

fwrite(&phonetJ, sizeof phone(i], 1, fp);

fclose(fp)

CHAPTER 12

REVIEW SKILLS CHECK

• Modifying a variable with register causes the compiler to store
the variable in such a way that access to it is as fast as possible..
Fol integer and character types, this typically means storing it
in a register of the CPU.

2. l3ccause i is declared as cOnst the function cannot modify any
object pointed to by it.

3. a. I lot) 0100

b. liii liii

C. 0011 1011

4. #include <scdio.h>

mt main(void)

mt 1;

printf('Enter a number:

scanf(%d, Si);

printf(Doubleci: %drt, i.<< 1);

prinf Halved: %d\n	 i >> 1)

return 0;

5. a = b = c = 1;

max = a<b ? 100 : C;

i	 2;

ANSWERS 621
122 EXERCISES V

6. The extern modifier is principally used to inform the compiler
about global variables defined in a different file. Placing extern
in front of a variables declaration tells the compiler that the
variable is defined elsewhere, but allows the current file to
refer to it.

JCXERCISES

1. *define PANGS) i, mm, max) ((i)< (mm))	 I (i)>(rriax)) ? 1.	 0

2. include <stdio.h

define ABS)i) (i)<0 ? -(i) : I

mt main(void)

prinLf(%d %d', ABS(-l), ABS(1);

return 0;

E1
I. *include <stdio.h>

define IMT 0

#define FLOAT 1

#define PR'1P5 INT.

ir'.t main (void)

irit e;

if PR_TY?E==FLoAT

double base, result;

*elif PWR_TYPE==INT
mt base, result;

*endif

* if PWRT'IPE==FLOAT

printf("Erter floating point bd
scanf'.	 &base);

622 TEACH YOURSELF

V

eiif P1R_TYPE==INT

printf(Enter integer base;);
scarif(%d', &base);

Uendi f

printf(Enter integer exponent (greater than 0):
scanf("%d, &e);

result = 1;

for); e; e--)

rerult = result	 base;

#if PWR_TYPE==FLOAT

printf(Result: %f, result);

*elif PWR_TYPE==INT

printf(Result; %d". result);

#endif

return 0;

I'

2. No. You cannot use an expression like !MIKE with # ifdcf. Here
are two possible solutions.

#ifndef MIKE

ondif

"I. or

if duinod MIKE

ndifE'!
2 'lh c program clisphiys one two.

ANWAAS 623
?26 EXERC.ES

ER&s
2. *include <stdio.h>

*include <stdlib.h>

jot cornp(const void i, const void *j);

jot main (void)

mt sortElOOl, i, key;

mt *p;

for(i=O; i<100; i++)

sort(i = rand';

qsort(sort, 100, sizeof(int). coxnp);

for(i=0. i<100; i++)
printf(%d\n, sort[i));

printf VEnter number to find:

scanf("%d", &key);

p = bsearch(&key, sort, 100, sizeofint), comp);

if (p) print f("Number is in array. \n*)

else pr±ntf('Number noc found. \n');

return 0;

mt comp(const void., const void j)

return *(int*)i_*(jñt*)j;

3. *include <stdio.h>

jr-it suni(int a, mt b)

jot subtract(jnt a, jot

mt mul(int a, iOtb);

mt div(int a, mt b);

mt rnoduJus(jnt a, lot b;

/* iru.tiiize the po1r1t': arr.iy

mt (p[5]) (mt x, jot

624 TEACH YOURSELF
V

sum, subtract, mul, div, modulus

mt main(void)

mt result;

i.nt i, j, op;

printf("Enter two numbers:

scanf("%d%d, &i, &j);

printf('O: add, 1: subtract. 2: multiply, 3: divide,

printf("4: modulus\n');

do

printf("Enter number of operation:

scanf('%d", &op);

while(op<D 11 op>4);

result = (*p(op)) U, j);

printf(%d	 result):

return 0;

mt sum(int a, mt b)

return a+b;

mt subtract)int a, mt b)

return a-b;

mt mul(int a, mt h)

return	 b;

mt div(2nt a, in.t b

if(b) return a/b;

else return 0;

ANSWERS 625
12 EXERCISES

mt rnodulus(int a, mt b)

if(b) return a%b;

else return 0;

EXERCISES
2. #iriclude <stdio.h>

include <stdljb.h>

mt main (void)

intp, i;

P = malloc(10*sjzeof(jnt));
if(!p)

printf('A11oatjon Error");

exit (1)

for(i=0; i(10; i++) p [i) =

for(i=0; i 'zlO; i#+) printf('%d

free(p);

return 0;

3. The statement

malloc(l0)

.should be

P	 rn.alloc(1O);

Also, the value returned by malloc() is not verified as a
valid pointer.

626 TEACH YOURSELF

V

JØrASTERV SKILLS CHECK

• When you specify the file name within angle brackets, the
compiler searches for the file in an implementation-defined
manner. When you enclose the file name within double quotes,
the compiler first tries some other implementation-defined
manner to find the File. if that fails, it restarts the search as if
y ou had enclosed the file name within angle brackets.

2. #ifclef DEBUG
if ((j%2))	 I

prinrf (j =	 , 1)

j	 0;

3. #:f DE3UG-1

€	 (j2	 I

[c nJ Piic mi(-ro name use #uncicf.

3.	 II II	 .i prcdefined macro that contains the name of the
a LI tile	 rcntiv being compiled.

i. 1	 makes the argument it precedes into a quoted

r. 'n H; •	 o'rauc concatenates two ar,uments.

	

.	 .
... .LIL.fl>

	

- .:	 •	 .	 .

ac-•	 cons t v-a.c1	 j)

=	 :h'.s is 0 tect of qsort";

r1 en ,.scci	 comp);

ANSWERS 627
CUMULATIVE SKILLS CHECK

return 0;

mt comp(const void i, const void *j)

return *(har*) j - *(char)j;

8. *include <stdio.h>
*include <stdlib.h>

mt main(void)

double *p;

p = malloc(sizeof (double));

if (!P)
printf (-Allocation Error")

exit (1)

99.01;

printf(%f, *p)r

free(p);

return 0;

CUMULATIVE SKILLS CHECK

1. i An electronic card catalog. */

#include <stdio.h>
#include <string.h>

*include <stdlibh>

*define MAX 100

mt menu(void);
void display(int i);

void author_search(void);

void title_search(void);

void enter(void);

void save(void);

void load(void);

628 TEACH YOURSELF
V

stz.ruct catalog

cha: narne[80];	 J author name .'

char title[801;	 7* title •/

char pub[80);	 / publisher

unsigned date;	 7* date of publication *7

unsigned char ed; /* edition *7

carMAX]; /* notice that this declares a pointer array

iriL top = 0; / last location used /

mt main(void)

mt choice;

loadO; / read in catalog *1

do

choice = menu;

switch(choice)

case 1: enter; / enter books

break;

case 2: author_searchO; / search by author *7

break;

case 3: title_searchO; 1* search by title

break;

case 4: saveH;

} while(choice5);

return 0;

/ Return a menu selection.

mt rnenulvoid

mt i'

char str[801;

printf('Card Catalog:\n);

printf(I 1. Enter\n;

printf(I 2. Search by Author\n);

printf(3. Search by Title\n");

priritf(* 4. Save catalog\n);

printf(S. Quit\n)

ANSWERS 629
CUMULATIVE SKILLS CHECK

do .0
prtntf("Choose your selection:

gets (str)

i = utoi)str)

printf('\n")

} whilri<l

return i;

Enter books into database. */

void enter(void)

jOt 1;

char ternp(80];

for(i=top; i<MAX; j++)(

/ allocate memory for book info

cat[i] = malloc(sizeof(struct catalog));

if)!cat(i])

printf('Out of memory.\n");

return;

printf (Enter author name (ENTER to quit) :

gets(cat(i]->naroe)

if)! cat[i)->name) break;

printf('Enter title:

gets)cat[i]->title)

printf ("Enter publisher:

gets(catV]->pub)
printf(Enter copyright date: ')

gets(temp)

cat(; j->dare = (unsigned) ato(temp);

printf) Enter edition:

gets(ternp);

catLi j - >ed = (unsigned char) atoi(temp);

top = 14

/* Search by author. /

void author-search(void)

630 TEACH YOURSELF
V

char name[80];
irit i, found;

printf(Name:);
get s(rlame)
found = 0;
for 1=0; i<top; i+.)

if(!strcmp(name, cat[i]->narne))
display (1)
found = 1;
priritf(\n)

if) found) printf (Not Found\n')

	

/* Search by title.	 /
void title—search(void)

char title80;
ml j, found;

printf)Pitle:
gets(title)

found = 0;
for(i=0; i<top; j++)

if(!strcmp(title, cat(i]->title))
di splay(1)
found = 1;
printf(\n")

if found) printf(Not Found\n);

/A Display catalog entry. *1
void display(int i)

printfV%s\n', cat[i]->titic);
printf(by %s\n, cat(i]->name);
printf("Published by %s\n, cat(iI->pub);
print[(, Copyright: %u, %u edition\n, oat[i]->date,

cat[iI->ed)

ANSWERS 631-
CL MII.A FIVE SKILLS CHECK

1* Load the catalog file. */

void load(void)

FILE *fp;

irit i;

ifUfp = fopenVcatalog" "rb"))==NJLL)
printf("Catalog file not on disk-\r.');

return;

if)fread(&top, sizeof top, 1, f p)	 U	 rej count

printf('Error reading count.\n")

exit (1)

for(iO; i<top; i+)

cacti)	 inalloc (sizeof (s truct catalog)>;

if) cat [ii)
nrintf(Out of irrnory.\fl");

top	 i-i;

break;

if(fread(cat[i] , sizeof(st ruct catalog), 1, Ep> 	 U

print f("Error r'oding catalog dots.\r

exit (1)

fclose(fp)

Save the catalog file.

void save (void)

FILE *fp;

mt i;

if((fp = fopen('catalog',	 wo"))==NULL)

priotf('Cannot open catalog file.\n);

exit (1)

632 TEACH YOURSELF
V

if(fsrire(&top. szocf top, 1, fp)	 1) (/ write count
printf("Error writing count.\n)
exit (1);

for(i=O; i<top; i+)

if(fwrite(cat[j], sizeof(scruct catalog), 1, fp)	 1)
orntf("Error writing catalog c1ata.\n")
OXt (1);

fio;e)fp)

2. #jnc1;do <stdio,h>

#dein CO)E_T(cli) -ch

ir,t narjvojd

itit ch;

prant)"Er,Ler a character:

ch = getchar))

pri:itt('%c coded is %c', ch, CODEIT(ch);

return 0;

