CHAPTER

Modern Theory of Solids

Onic of the great successes of modem physics has been the application of quantum
mechanics or the Schrodinger equation to the behavior of molecules and solids. For
example, quantum mechanics explains the nature of the bond between atoms, and its
consequences. How can carbon bond with four other carbon atoms? What determines
the direction and strength of a bond? An intuitively obvious outcome from quantum
mechanics is that the energy of the electron is still quantized in the molecule. In addi-
tion, the application of quantum mechanics to many atoms, as in a solid, leads to en-
ergy bands within which the electron energy levels are almost continuous. The eleetron
energy falls within possible values in a band of energies. It is nearly impossible o
comprehend the principles of operation of modern solid-state electronic devices with-
out a good grasp of the band theory of solids. Since we are dealing with a large nusu-
ber of electrons in the solid, we must consider a statistical way of describing their
behavior, just as we wse the Maxwell distribution of velocities to explain the behavior
of gas atoms. An equally important question, therefore, is “What is the probability that
an electron is in a state with energy E within an encrgy band?”

41 HYDROGEN MOLECULE: MOLECULAR ORBITAL
THEORY OF BONDING

Consider what happens when two hydrogen atoms approach each other to form the
hydrogen molecule. This is the H-H (or Hy) system. Let us examine the encrgy levels
of the H-H system as a function of the interatomic distance £. When the atoms are in-
finitely separated, each atom has its own set of energy levels, labeled 15, 25, 2p, etc.
The electron energy in each atom is — 13.6 eV with respect to the “free” state (electron
infinitely separated from the parent nucleus). The energy of the two isolated hydrogen
atoms is twice —13.6 eV.

As the atoms approach closer, the electrons interact both with each other and with
the other nuclei. To obtain the wavefunctions and the new energy of the electrons, we
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need to find the new potential energy function PE for the electrons in this new envi-
ronment and then solve the Schrodinger equation with this new PE function. The new
energy is actually lower than twice — lJ 6 eV, which means that the H, formation is
energetically favorable.

The bond formation between two H atoms can be easily explained by describing
the behavior of the electron within the molecule. We use a molecular orbital , which
depends on the interaction of individual atomic wavefunctions and is regarded as an
electron wavefunction within the molecule.

In the Hy molecule, we cannot have two sets of identical atomic ,, orbitals, for
two reasons. First, this would violate the Pauli exclusion principle, which requires that,
in a given system of electrons (those within the H, molecule), we cannot have two sets
of identical quantum numbers. When the atoms were separated, we did not have this
problem, because we had two isolated systems.

Second, as the two atoms approach cach other, as shown in Figure 4.1, the atomic
¥y, wavefunctions overlap. This overlap produces two new wavefunctions with differ-
ent energies and hence different quantum numbers. When the two atomic wavefunctions
interfere, they can overlap either in phase (both positive or both negative) or out of phase

@ . Two hydrogen atoms

approaching each other.

Bonding molecular orbital

b= bylr) + Vi ’

——

=W () -y r)
Antibonding molecular orbital

Figure 4.1 Formation of moleculor orbitals, bonding, and anfibonding [, and
Vr+) when twa H aloms opproach each other.
The two electrons pair their spins ond occupy the bonding orbital .
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(one positive and the other negative), as  result of which two molecular orbitals are
formed. These are conventionally labeled ¥, and 5. s illustrated in Figure 4.1. Thus,
two of the molecular ofbitals in the H-H system are

¥ra = s(ra) + V1) 4.1}
Vo = Vis(ra) = ¥1s(rs) [4.21

where the two hydrogen atoms are labeled A and B, and ry and ry are the respective
distances of the electrons from their parent nucleus. In generating two separate molec-
ular orbitals , and y,+ from a linear combination of two identical atorhic orbitals i,
we have used the linear combination of atomic orbitals (LCAQ) method.

The first molecular orbital , is symmetric and has considerable magnitude be-
tween the nuclei. whereas the second ¥+, is antisymmetric and has a node between the
nuclei. The resulting electron probability distributions [1,|* and [:* are shown in
Figure 4.2,

In an analogy to hydrogenic wavefunctions, sinice Y+ has a node, we weuld
expect it to have a higher energy than the , orbital and thercfore a different energy
quantum number, which means that the Pauli exclusion principle is no longer violated.
We can also expect that because |y, * has an appreciable electron concentration be-
tween the two nuclei, the electrostatic PE, and hence the total enérgy for the wave-
function ¥, , will be lower than that for 4., as well as those for the individual atomic
wavefunctions.

OF course, the true wavefunctions of the electrons in the H; system must be deter-
mined by solving the Schrodinger equation, but an intelligent guess is thal these must
look like ¥, and ¥,+. We can therefore use ¥, and y,- in the Schrodinger cquation,
with the correct form of the PE terin V., to evaluate the energics £, and E, - of ¥, and
¥, respectively, as a function of R. The PE function V' in the H-H system has
positive PE contributions arising from electron-electron repulsions and proton-praton

@@

() Lines representing contours of constant probability (darker lines represent
greater relafive probability).

Figure 4.2



CHAPTER & -+ MopErN THEORY OF SoLiDs

(ol Energy of , and /v gﬁ_cm
: ; R atoms

ki 2 Electrons
1 Electron/atom
1 Orbital/atom
~, Inleratoniic
> ;

R=c0 R Stparation
(f

b Schematic diogram showing E, ——E

the changes in the electron energy L3 e [d& = Bonding

as hwo isolated H atoms, for left \ i £ ' energy

and for right, come logether fo “a

form a hydrogen molecule. Hatom

Figure 4.3 Eleclion energy in the sysiem comprising two hydrogen otoms.

repulsions, but negative PE contributions arising from the attractions of the two elec-
trons to the two protons.

The two energies, E, and E,., are widely different, with E, below Ey, and E,.
above £, as shown schematically in Figure 4.3a. As R decreases and the two H atoms
gel closer, the energy of the yr, orbital state passes through a minimum at R = a. Each
orbital state can hold two electrons with spins paired, and within the two hydrogen
atoms, we have two electrons. If these enter the -, orbital and pair their spins, then
this new configuration is energetically more favorable than two isolated H atoms. It
corresponds to the hydrogen molecule H,. The energy difference between that of the
two isolated H atoms and the £, minimum energy at R = a is the bonding energy, as
illustrated in Figure 4.3a. When the two electrons in the Hy molecule occupy the v,
orbital, their probability distribution (and hence, the negative charge distribution) is
such that the negative PE, arising from the attractions of these two electrons to the two
protons, is stronger in magnitude than the positive PE, arising from electron—electron
repulsions and proton-proton repulsions and the kinetic energy of the two electrons.
Therefore, the H; molecule is energetically stable.

The wavefunction y, corresponding to the lowest electron energy is called the
bonding orbital, and .. is the antibonding orbital. When two atoms are brought to-
gether, the two identical atomic wavefunctions combine in two ways Lo generate two
different molecular orbitals, each with a different energy. Effectively, then, an‘atomic
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energy level, such as £y, splits into two, E, and E,». The splitting is due to the inter-
action (o overlap) between the atomic orbitals. Figure 4.3b schematically illustrates
the changes in the electron energy levels as two isolated H atoms are brought together
to form the H; molecule.

The splitting of a one-atom energy level when a molecule is formed is analogous
to the splitting of the resonant frequency in an RLC circuit when two such circuits are
brought together and coupled. Consider the RLC circuit shown in Figure 4.4a. The cir-
cuitis excited by an ac Voltage source. The current peaks at the resonant frequency wp,
as indicated in Figure 4.4a. When two such identical RLC circuits are coupled together
and driven by an ac voltage source, the cument develops hwo peaks, at frequencies
w; and wy, below.ad above wy, as illustrated in Figure 4.4b. The two peaks at o and
w; are due to the mutual inductance that cobples,the two circuits, allowing them to
interact. From this analogy, we €an intuitively accel the energy splitting observed in
Figwed3a % :

Consider what happens when two He sioms come together. Recall that the Is
orbital has paired electrons and is full: The 1+ atomic energy level will again split into
two levels, E, and E,», associated with the molecular orbitals y, and -, as dlus-
trated in Figure 4.5. However, in the He-He system, there are four electrons, so two
occupy the ¥, orbital state and two go to the - orbital state. Consequently, the
system energy is not lowered by bringing the two He atoms closer. Furthermore, quan-
tum mechanical calculations show that the antibonding energy level E,» shifls higher
than the bonding level E, shifts lower. By the same token, although we could put an
additional electron at E, in H to make H;, we could not make H; ™ by placing two
electrons at E,».

From the HeHe example, we can conclude that, as a general rule, the overlap of
full atomic orbital states does not lead to bonding. In fact, full orbitals repel each other,
because any overlap results in an increase in the system energy. To form a bond
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between two atoms, we essentially need an overlap of half-occupied orbitals, as in the
H; molecule.

311/ IXER HYDROGEN HALIDE MOLECULE (HF) We already know that H has a half-occupicd |s orbital,
which can take part in bonding. Since the F atom has the electronic structure Ls"2s’ p’, two of

the p orbitals are full and one p orbital, p, , is half full. This means that only the p, orbital can
participate in bonding. Figure 4.6 shows the electron orbitals in both H and F. When the H atom
and the F atom approach each other to form an HF molecule, the ,, orbital of H overlaps the
p, ombital of F. There are two possibilities for the overlap. First, ¢, and p, can overlap in phase
(both positive or both negative), to give a ¥, orbital that does not have a node between Hand F,
as shown in Figure 4.6. Second, they can overlap out of phase (one positive and the other neg-
ative), so that the overlap orbital .+ has a node (similar to y,« in Figure 4.1). We know from
hydrogen alomic wavefunctions in Chapter 3 that orbitals with more nodes have higher ener-
gies. The molecular orbital ¥, thercfore corresponds to a bonding orbital with a lower energy
than the .- orbital. The two electrons, one from v, and the other from p, , enter the ¥, orbital
with spins paired, thercby forming a bond between H and F.

Half-full
" Halffull p,
\

Figure 4.6 H has cne hollempty Y1, orbital.

F has one hallempty p, orbital but fll p, ond p, orbitals. The ovedap betveen 1, and p, produces o
bonding orbilal ard on antibonding orbital. The two electrons fill the bonding orbital and thereby form o
covalent bond between H and
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42 BAND THEORY OF SOLIDS
421 ENERGY BAND FORMATION

When we bring three hydrogen atoms (labeled A, B, and C) together, we generate
three separate molecular orbital states, Vas Vb, and ¥, from three ¥, atomic states.
Again, this occurs in three different ways, as illustrated in Figure 4.7a. As in the
case of the Hy molecule, each molecular orbital must be either symmetric or anli-
symmetric with respect to center atom B." The orbials that satisfy even and odd
requirements are

¥ = Ws(A) + *]J{B] + ¥,(C) 14.30]
¥ = ¥1:(4) - ¥,(C) [4.3b]
ﬁ( == *II(AJ = *I:[B} + ﬁisic) ll.&i

where ¥y, (A), ¥,(B), and ¥,,(C) are the Is atomic wavefunctions ceniered around
the atoms A, B, and C, respectively, as shown in Figure 4.7a. For example, the wave-
function y,(A) represents yy,(r), which is centered around A and has the form
exp(-ra/a,), where ry is the distance from the nucleus of A, and a, is the Bohr radius.
Notice that y,(B) is missing in Equation 4.3b, 0 ¥ is antisymmetric.

The energies Eq, Ep, and E. of ¥, ¥ and . can be calculated from the
Schradinger equation by using the PE function of this system (the PE also includes
proton-proton repulsions). It is clear that since ¥, ¥s, and . are different, their
energies E,, E;, and E, arealso different. Consequently, the Is energy level splits into
three separate levels, corresponding to the energies of yy, ¥, and ., as depicted by
Figure 4.7b. By analogy with the electron wavefunctions in the hydrogen afom, we can
arguie that if the molecular wavefunction has more nodes, its energy is higher. Thus, ¥,
has the lowest energy E,, ¥, has the next higher coergy £y, and yr. has the highest
energy .., as shown in Figure 4.7b. There are three electrons in the three-hydrogen
system. The first two pair their spins and enter orbital ¥, at energy E,, and the third
enters orbital ¥, at encrgy E,. Comparing Figures 4.7 and 4.3, we notice that although
H, and H; both have two electrons in the lowest energy level, Hy also has an extra elec-
tron at the higher cnergy level (E}), which tends (o increase the net energy of the atom.
Thus, the Hy molecule is much less stable than the H; molecule.” -

Now consider the formation of a solid. Take N Li (lithium) atoms from infinity
and bring them together to form the Li metal. Lithium has the clectronic configuration
1522s", which is somewhat like the hydrogen atom, since the K shell is closed and the
third electron is alone in the 25 orbital.

.Based on our previous discussions, we assume that the atomic energy levels will

“ splitinto N separate energy levels. Since the I subshell is full and is close to the nucleus,
it will not be affected much by the interatomic interactions; consequently, the cnergy of

1 The reason i thot the molectle: A-B-C, when A, B, and C ore idenical afoms, is symmetric with respect 1o 8. Thus
each wovehinchion must have odd o even pority [Chapter 3)

2Gee G. Pimentelrond R, Spralley, Undersionding Chemisiry, San Froncisco: Holden Day, Inc., 1972, . 682-687
for on exceflen discussion. »
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this state will experience only negligible splitting, if any. Since the 15 electrons will stay
close (o their parent nuclei, we will not consider them during formation of the solid.

In the system of N isolated Li atoms, we have N electrons in Ny, orbitals at the
energy Ey,, as illustrated in Figure 48 (at infinite interatomic separation). Let us
assume that N is large (typically, ~10%). As N atoms are brought together to form the
solid, the energy level at Es, splits into N finely separated enesgy levels. The maximum
width of the energy splitting depends on the closest interatomic distance « in the solid,
as apparent in Figure 4.3a. The atoms separated by a distance greater than R = a give
rise to a lesser amount of energy splitting. The interatomic interactions between Ny,
orbitals thus spread the N energy levels between the bottom and top levels, E and Er,
respectively, which are determined by the closest interatomic distance a. Put differently,
Ey and Er are determined by the distance between nearest neighbors, 1t is obvious that
with N very large, the energy separation between two conseculive energy levels is very
small; indeed, it is almost infinitesimal and not as exaggerated as in Figure 4.8,

Remember that each energy level £; in the Li metal of Figure 4.8 is the energy of
an electron wavefunction ¥q4(7) in the solid, where yr.4(i) is one particular combi-
nation of the N atomic wavefunctions y,. There are N difierent ways lo combine N
atomic. wavefunctions ¥y, since each can be added in phase or out of phase, as is ap-
parentin Equations 4.3a to ¢ (see also Figure 4,7a and b). For example, when all N
are summed in phase, the resulting wavefunction yrgyg(1) is like ¥, in Equation 4.3a,
and it has the lowest energy. On the other hand, when N, are summed with
alternating phases, + — +- -, the resulting wavefunction Via(N) is like ., and it
has the highest energy. Other combinations of yr;, give rise to different energy values
between Eg and E',r.

The single 25 energy level Es therefore splits into N (~107) finely separated
energy levels, forming an energy band, as illustrated in Figure 4.8, Consequently,
there are N separate energy levels, each of which can take two electrons with opposite
spins. The N electrons fill all the levels up to and including the level at N/2. There-
fore, the band is half full. We do not mean literally that the band is full to the half-
energy point. The levels are not spread equally over the band from Ep to E, which
means that the band cannot be full to the half-energy point. Half filled simply means
half the states in the band are filled from the bottom up.

We have generated a half-filled band from a half-filled isolated 25 energy level.
The energy band resulting from the splitting of the atomic 25 energy level is lousely
termed the 2s band. By the same token, the atomic 1s levels are full, soany s band thal
forms from these I+ states will also be full. We can get an idea of the separation of en-
ergy levels in the 25 band by noting that the maximum separation, Er — Ep, between
the top and bottom of the band is on the order of 10 eV, but there are some 10 atoms,
giving rise to lﬂnwgy levels between E g and Ey. Thus, the energy levels are finely
separated, forming, for all practical purposes, a continuum of energy levels.

The 2p energy level, as well as the higher levels at 35 and so on, also split into
finely separated energy levels, as shown in Figure 4.9. In fact, some of these energy
levels overlap the 2s band; hence, they provide further energy levels and “extend” the
2s band into higher energy levels, as indicated in Figure 4.10, which shows how en- -
ergy bands in metals are often represented. The vertical axis is the electron energy. The
top of the 2s band, which is half full, overlaps the bottom of the 2 p band, which itself

20-
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is overlapped ncar the top by the 35 band. We therefore have a band of energies that
stretches from the bottom of the 25 band all the way to the vacuum level, as depicted
in Figure 4.11. The reader may wonder what happened to the 3d, 45, eic., bands. In the
solid, the energies of these bands (including the top portion of the 3s band) arc above
the vacuum level, and the electron is free and far from the solid before it can acquire
those energies.

At a temperature of absolute zero, or nearly so, the thermal energy is insufficient to
excite the electrons to higher energy levels, so all the electrons pair their spins and fill
each energy level from E 5 up to an energy level Ero that we call the Fermi level at 0K,
as shownin Figure 4.11. The energy value for the Fermi level depends on where we take
the reference energy. For example, if we take the vacuum level as the zero reference, then
for the Limetal, E g is at =2.5 ¢V, The Fermi level is normally measured withrespect to
the bottom of the band, in which case, itis simply termed the Fermi energy and denoted
Byo. Forthe Limetal, Ero is 4.7 eV, which is with respect to the bottom of the band. The
Fermii level has considerable significance, as we will discover later in this chapter.
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At absolute zero, all the energy levels up to the Fermi level are full. The energy
required to excite an electron from the Fermi level to the vacuum level, that is, to
liberate the electron from the metal, is called the work function ® of the metal. As the
temperature increases, some of the electrons get excited to higher energy levels. To de-
termine the probability of finding an electron at an energy level £, we must consider
what is called “particle statistics,” a topic that is key to understanding the behavior of
electronic devices. Clearly, the probability of finding an eleciron at 0 K at some energy
E < Egp is unity, and al E > Egg, the probability is zero. Table 4.1 summarizes the
Fermi energy and work function of a few selected metals.

The electrons in the energy band of a metal are loosely bound valence electrons
which become free in the crystal and thereby form a kind of electron gas, It is this elec-
tron gas that holds the metal ions together in the crystal structure and constitutes the
metallic bond. This intuitive interpretation is shown in Figure 4.9. When solid Li is
formed from N atoms, the N electrons fill all the lower energy levels up to N /2. The
energy of the system of N Li atoms, according to Figure 4.9, is therefore much less
than that of N isolated Li atoms by virtue of the N electrons taking up lower energy
levels. It must be emphasized that the electrons within a band do not belong (o any
specific atom but to the whole solid. We cannot identify a given electron in the band
with a certain Li atom. All the 25 electrons essentially form an electron gas and have
energies that fall within the energy band. These electrons are constantly moving
around in the metal which in terms of quantum mechanics means that their wave-
functions must be of the traveling wave type and not the type that localizes the electron
around a given atom (e.g., ¥, ¢.u, in the hydrogen atom). We can represent each elec-
tron with a wavevector k so that its momentum p is k-

Table 4.1 Fermi energy ond work function of selected metols

Metal

Ag Al Au G Cu Li Mg _Nl

V) 45 428 50 2.4 4.65 13 17 =285
1% 10

BoleV) 55 an 55

L
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PROPERTIES OF ELECTRONS IN A BAND

Since the electrons inside the metal crystal are considered to be “free,” their energy is
KE. These electrons occupy all the energy levels up 0 Erp as shown in the band dia-
grunofﬁgured-.lla.'lheenergyﬁofmdmuminamali:mseswiﬂnilsm
mentum p as p/2m,. Figure 4.12b shows the energy versus momentum behavior of
the electeons in a hypothetical one-dimensional crystal. The energy increases with mo-
mentum whether the electron is moving toward the Jeft or right. Electrons take on all
available momentum values until their energy reaches Ero. For every electron thal is
moving right (such as a), there is another (such as b) with the same energy but moving
left with the same magnitude of momentum. Thus, the average momentum is zero and
there is no net current.

Consider what happens when an electric field £, is applied in the —x direction.
The electron  at the Fermi level and moving along in the +x direction experiences a
force ¢, along the same direction. It therefore accelerates and gains momentum and
hence has the energy as shown in Figure 4.12c. (The actual energy gained from the
field is very small compared with Ejo, so Figure 4,12¢ is highly exaggerated.) The
clectron a at Eso can move to higher energy levels because these adjacent higher lev-
¢ls are empfy. The momentum state vacated by a is filled by the electron immediately
below which now gninsmmymdmvesup,andsnan..&neleﬂmﬁuﬂismvingin
the —x direction, however, is decelerated (its momenium decreases) and hence loses
energy as indicated by b moving to b in Figure 4.12c. The electrons that are moving
inthe +x direction gain energy, and those that are moving inthe —x direction, lose en-
ergy. The whole electron momentum distribution therefore shifts in the 4x direction as
in Figure 4.12c. Eventually the electron a, now at a', is scattered by a lattice vibration.

Figure 4.12

ol Energy bond diagrom of o metol.

(b} In the obsence of a fiekd, here are mmqehdmwiqr#ﬂmhammﬁnghh.ﬁnmﬁmdmm
ot sach energy cancel each other os for o and b.

{c) In the presence of o field in the —x direciion, the elecion a occslerctes and goins energy o o where il is scattered ko an
emply skoke near Ero but moving in the —x&don.ﬂnmeddmhwhuisdughﬂ&mdhmﬂmuh
in @ net eleckric currenl.
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Typically lattice vibrations have small energies but substantial momentum. The scat-
tered electron must find an unoccupied momentum state with roughly the same energy,
and it must change its momentum substantially. The electron at o' is therefore scattered

~ 1o an empty state around Erp but with a momentum in the opposite direction. lis mo-
mentum is flipped as shown in Figure 4.12c. The average momentum of the electrons
is no longer zero but finite in the +x direction. Consequently there is a current flow
in the —x direction, along the field, as determined by this average momentum p,,.
Notice that @ moves up to.a’ and b falls down to b'. Under steady-state conduction, lat-
tice scattering simply replenishes the electrons at ' from a’. Notice that for energies
below b, for every electron moving right there is another moving left with the same
momentum magnitude that cancels it. Thus, electrons below the b’ energy level do not
contribute to conduction and are excluded from further consideration. Notice that elec-
trons above the b’ level are only moving right and their momenta are not canceled.
Thus, the conductivity is determined by the electrons in the energy range AE from b’
to a’ about the Fermi level as shown in Figure 4.12c. Further, as the energy change
from a to a' is orders of magnitude smaller than Ej-, we can summarize that conduc-
tion occurs by the drift of electrons at the Fermi level? (If we were to calculate A £ for
atypical metal for typical currents, it would be ~10° eV whereas Egg is I-10¢V. The
shift in the distribution in Figure 4.12¢ is very small indeed; a” and &', for all practical
purposes, are at the Fermi level.)

Conduction can be explained very simply and intuitively in terms of a band dia-
gram as shown in Figure 4.13. Notice that the application of the electric field bends the
energy band, because the electrostatic PE of the electron is —eV(x) where V(x) is the
voltage at position x. However, V(x) changes linearly from 0 to V, by virtue of

+ dV/dx = —E,. Since E = —eV(x) adds to the energy of the electron, the energy band
must bend to account for the additional electrostatic energy. Since only the electrons
near Ejg contribute to electrical conduction, we can represent this by drifting the elec-
trons at £ xo down the potential hill. Although these electrons possess a very high mean
velocity (~10° ms™"), as determined by the Fermi energy, they drift very slowly
(102-10"" ms™") with a velocity that is drift mobility x field.

When a metal is illuminated, provided the wavelength of the radiation is correct,
it will cause emission of electrons from the metal as in the photoelectric effect. Since
¢ is the “minimum energy” required to excite an electron into the vacuum level (out
from the metal), the longest wavelength radiation required is he/A = ®.

Addition of heat o a metal can excile some of the electrons in the band to higher
energy levels. Thus heat can also be absorbed by the conduction electrons of a metal.
We also know that the addition of heat increases the amplitude of atomic vibrations.
We can therefore guess that the heat capacity of a metal has two terms which are due
Lo energy absorption by the lattice vibrations and energy absorption by conduction
electrons. It tums out that at room temperature the energy absorption by lattice vibra-
tions dominates the heat capacity whereas at the lowest temperatures the electronic
contribution is important.

¥ln some books including the first edition of this lextbook) it is stoted that e elecirons af Era can goin energy from
hmﬂmﬁahmwmlmhpmhtmdﬂﬂmb‘|.|hiai;nsin|iﬁr:hmddh
loct that of o level below Exg there is ane eleciron maving clong in the +x diection ond gaining energy ond
anolher one ol the some energy but moving olong in the ~x direction ond losing snergy o that on average eleckon
of this level does not gain energy
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Figure 4.13 Conduction in @ melal is Erols
due o the drift of electrons oround the Feimi
leve! E,

Wuvolbgeimpplied,llnmgybm&

is bent 1o be lower al the positive lerminal so Epy- eV
that the electron’s polenfial energy
decreoses as i moves loward the positive E eV
terminal. Energy-band diagram (]
Molecular hydrogen and
helium
Liquid metallic hydrogen (with
helium)
Passible rocky core

Figure 4.14 ' The interior of Jupiler is
believed lo conlain Equicl hydrugen,
which is mefallic.

SOURCE: Drowing odapied from T. Hey ond Cloud tops (the atmospheric layer is

P. Waers, ﬂ;&mmlmur:l'm i comparatively thin compared with Jupiter's
1988, p. 96, figure 7.1. size)

ST RE  METALLIC LIQUID HYDROGEN IN JUPITER AND TS MAGNETIC FIELD - The surface of Jupiter,
as visualized schematically in Figure 4.14, mainly consists of a mixture of molecular hydrogen
and He gases. Deep in the planet, however, the pressure is so tremendous that the hydrogen mo-
lecular bond breaks, leaving a dense ocean of hydrogen atoms. Hydrogen has only one electron
in the 15 energy level. When atoms are densely packed, the 15 energy level forms an energy
band, which is then only half filled. This is just like the Li metal, which means we can treat lig-
uid hydrogen as a liguid metal, with electrical properties reminiscent of liquid mercury. Liquid
hydrogen can sustain electric currents, which in turn can give rise to the magoetic fields on
Jupiter. The origin of the electric currents are not known wilh certainty, We do know, however,
that the core of the planct is hot and emanates heat, which causes convection currents. Temper-
ature differences can readily give rise to electric currents, by virtue of thermoelectric effects, as
discussed in Section 4.8.2.
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WHAT MAKES A METAL?  The Be atom has an electronic structure of 15°2s*. Although the BCM

atom has a full 25 energy level, solid Be is a metal. Why?
SOLUMON

We will neglect the K shell (1s state), which is full and very close to the nucleus, and consider
only the higher energy states. In the solid, the 2s energy level splits into N levels, forming a 2s
band. With 2N electrons, each level is occupied by spin-paired clectrons. The 25 band i there-
fore full. However, the empty 2p band, from the empty 2p energy levels, overlaps the 2s band,
thereby providing empty energy levels to these 2N electrons. Thus, the conduction electrons are
in an energy band that is only partially filled; they can gain energy from the field to contribute
to electrical conduction. Solid Be is therefore a metal.

FERMI SPEED OF CONDUCTION ELECTRONS IN A METAL In copper, the Fermi energy
of conduction electrons is 7.0 eV. What is the speed of the conduction electrons around this

energy?

SOLUTION

Since the conduction electrons are not bound to any one atom, their PE must be zero within the
solid (but large outside), so all their energy is kinetic. For conduction electrons around the Fermi
energy Epp with a speed vy, we have

1
—mue = Erg

2

2o 2016 x 10-1° VeV)(7.0¢V) .
Vg = = —-——————-—-——-—-—-—:I.ﬁxlﬂ"ms
., 0.1 10-7kg)

Although the Fermi energy depends on the properties of the energy band, to a good ap-
proximation it is only weakly temperature dependent, 5o v will be relatively temperature in-
sensitive, as we will show later in Section 4.7.

so that

EXAMPLE 4.4

43 SEMICONDUCTORS

The Si atom has 14 electrons, which distribute themselves in the various atomic energy
levels as shown in Figure 4.15. The inner shells (n = | and n = 2) are full and there-
fore “closed.” Since these shells are near the nucleus, when Si atoms come together to
form the solid, they are not much affected and they stay around the parent Si atoms.
They can therefore be excluded from further discussion. The 35 and 3p subshells ar®
farther away from the nucleus. When two Si atoms approach, these electrons strongly
interact with each other. Therefore, in studying the formation of bands in the Si solid,
we will only consider the 35 and 3 p levels.

The first task is to examine why Si actually bonds with four neighbors, since the
3s orbital is full and there are only two electrons in the 3p orbitals. The full 3s orbital
should not overlap a neighbor and become involved in bonding. Since only two 3p or-
bitals are half full, bonds should be formed with two neighboring Si atoms. In reality,
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Figure 4.15 The electronic structure of Si.
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Figure 4.16

[0} Si isiuGroupNinﬂ\ePeriodicIubla_hniwhndSiahmhmhuhcmhbeSs
and two electrons in the Jp orbilals.

(b} When Si is about 1o bond, the one 3s orbital and the three 3p otbilols become
perturbed and mixed lo form four hybridized orbilals, Y, called sp? orbilals, which are
direcied loward the comers of o leirahedron. The i, orbital has  lorge major lobe and o
small bock lobe. Each yay orbitol tokes one of the four valence elecirons.

the 35 and 3p energy levels are quite close, and when five Si atoms approach each
other, the interaction results in the four orbitals ¥ (3s), ¥(3p,), ¥(3p,), and ¥ (3p,)
mixing together to form four new hybrid orbitals, which are directed in tetrahedral
directions: that is, each one is aimed as far away from the others as possible, as illus-
trated in Figure 4.16, We call this process sp* hybridization, since one s orbital and
three p orbitals are mixed. (The superscript 3 on p has nothing to do with the number
of electrons; it refers to the number of p orbitals used in the hybridization.)

The four sp* hybrid orbitals, Yy, each have one electron, so they are half occu-
pied. This means that four Si atoms can have their orbitals yry, overlap to form bonds
with one Si atom, which is what actually happens; thus, one Si atom bonds with four
other i atoms in tetrahedral directions.
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In the same way, one Si atom bonds with four H atoms to form the important gas
SiH,, known as silane, which is widely used in the semicondyctor technology to fabri-
cate Si devices. In SiHa, four hybridized orbitals of the Si atom overlap with the Is
ambitals of four H atoms. In exactly the same way, One carbon atom bonds with four
hydrogen atoms to form methane, CH.

There are two ways in which the hybrid orbital Yy, can overlap with that of the
neighboring Si atom to form two molecular orbitals. They can add in phase (both pos-
itive or both negative) or out of phase (one positive and the other ne gative) to produce
abonding or an antibonding molecular orbital yrp and ¥, respectively, with energics
Ep and E,. Bach Si-Si bond thus corresponds to two paired electrons in a bonding
molecular orbital . In the solid, there are N(~5 102¢m~>) Si atoms, and there
are nearly as many such ¥ bonds, The interactions between the V'3 orbilals (i.e., the
Si_Si bonds) lead to the splitting of the Ep energy level to N levels, thereby forming
an energy band labeled the valence band (VB) by virtue of the valence electrons il
contains. Since the energy level Ej is full, so is the valence band. Figure 4.17 illus-
trates the formation of the VB from E.

In the solid, the interactions between the N number of 4 orbitals result in the
splitting of the energy level Ex to N levels and the formation of an energy band that is

(ol bl i )

Figure 4.17 (o] Formalion of energy bands in the Si crystol first involves hybridization
dlsmd!porhitdsblouridarﬂiml h.,borbihk_%idw are af 109.5 lo each other os
shown in (b). fc) ¥y orbitols on two neighboring Si aloms can overlap o form gg o ¥ir
ﬂeﬁrﬂisbaﬂingofbihﬂhllmdﬂuewcnndismmlibondingoﬁohd}emplyi.lnﬂ-a

crystal, g overlap fo give the valence band [ful and v« overlap to give the conduction - 5
bond (empl) (d). Si crystal
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completely empty andseparated from the full valence band by a definite encrgy gap E,..
In this energy region, there are no states; therefore, the electron cannol haye energy
with a value within E,. The energy band formed from Ny, orbitals is a conduction
band (CB), as also indicated in Figure 4.17.

The electronic states in the VB (and also in the CB) extend throughout the whole
solid, because they result from Ny ; orbitals interfering and overlapping each other.
As before Ny, orbitals can overlap in N different ways to produce N distinct wave-
functions y,, that extend throughout the solid, We cannot relate a particular electron to
a particular bond o site because the wavefunctions y, corresponding to the VB ener-
gies are not concentrated at a single location. The electrical properties of solids are
based on the fact that in solids, such as semiconductors and insulators, there arc certain
bands of allowed energies for the electrons, and these bands are separated by energy
gaps, that is, bandgaps. The valence and conduction bands for the ideal Si crystal
shown in Figure 4.17 are separated by an energy gap, or a bandgap, E,, in which
there are no allowed electron energy levels.

At temperatures above absolute zero, the atoms in a solid vibrate due (o their
thermal energy. Some of the atoms can acquire a sufficiently high energy from thermal
fluctuations to strain and rupture their bonds. Physically, there is a possibility that the
atomic vibration will impart sufficient energy to the electron for it to surmount the
bonding energy and leave the bond. The electron must then enter a higher encrgy state,
In the case of Si, this means enteri ng astate in the CB, as shown in Figure 4.18. If there
is an applied electric field %, in the +x direction, then the excited electron will be
acted on by a force e, and it will iry to move in the —x direction. For it to do so,
there must be empty higher energy levels, so that as the electron accelerates and gains
energy, it moves up in the band. When an clectron collides with a lattice vibration, it
loses the energy acquired from the field and drops down within the CB. Again, it
should be emphasized that states in an energy band are extended; that is, the clectron
is not localized to any one atom.

Note also that the thermal generation of an electron from the VB to the CB leaves
behind a VB state with a missing electron. This unoccupied electron statc has an
apparent positive charge, because this crystal region was neutral prior to the removal
of the electron. The VB state with the missing electron is called a hole and is denoted
h*. The hole can “move” in the dircction of the field by exchanging places with a

Figure 4.18 Energy band dingram of o -
semiconducior.
CB i e conduction bond and VBis he B
valence band. A1 0 K, the VB is full wilh oll the
valence electrans.

Elecwon energy

Thermal
excitation

Y

0000000000000
00000000000000
00000000000000
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neighboring valence electron hence it contributes to conduction, as will be discussed
in Chapter 5.

CUTOFF WAVELENGTH OF A 5i PHOTODETECTOR - What wavelengths of light can be abs _M
by a Si photodetector given E, = 1.1eV?Can such a photodetector be used in fiber-optic com-

munications at light wavelengths of 1.31 ymand 1.55 pm?

SOLUTION

The energy bandgap E, of Siis 1.1 V. A photon must have al least this much energy to excile
an electron from the VB to the CB, where the electron can drift. Excitation corresponds (o the
breaking of a $i-Si bond. A photon of less energy does not get absorbed, because its energy will
put the electron in the bandgap where there are no states. Thus, he/) > E, gives
he  (6.6% 1071503 x 10° ms™")
< — =
E, (L1eV)(1.6 x 107" JfeV)

=1.03x10%m o - Llpm

Since optical communications networks use wavelengths of 1.3 and 1.55 jam, these light waves
will not be absorbed by Si and thus cannot be detected by a Si photodetector.

44 ELECTRON EFFECTIVE MASS

" When an electric field Z, is applied to a metal, an electron near the Fermi level can gain
energy from the field and move to higher energy levels, as shown in Figure 4.12. The
external force Fuy = €E, is in the x direction, and it drives the electron along x. The
acceleration of the electron is still given by @ = Fey/m., Where m, is the mass of the
electron in vacuum.

The law Fiy, = m.a cannot strictly be valid for the electron inside a solid, because
the electron intcracts with the host ions and experiences internal forces Fy, as it moves
around, as depicted in Figure 4.19. The electron therefore has a PE that varies with dis-
ance. Recall that we interpret mass as inertial resistance against acceleration per unit

o Py 6.0 ©
Q—’——Darf‘ -—pa:—‘i“‘
F . 3 \‘ uir
Vacuum (‘B Crystal G—)
> x > X
{o] An externol force F_ applied to on HAnuuendhquqqliadhmdx-
eleciron in o vocuum results in on occeler- fron in a crystol results in an aceeleration
ation G = Fi/ My °“7‘=Fw""'l'

Figure 4.19
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applied force. When an external force F., is applied to an electron in the vacuum level,
as in Figure 4.19a, the electron will accelerate by an amount

Oyae = — [44]

as determined by its mass m, in vacuum.

When the same force Fyy is applied to the electron inside a crystal, the accelera-
tion of the electron will be different, because it will also experience intemal forces, as
shown in Figure 4.19b. Its acceleration in the crystal will be .

Fou+ Fiy
me

where Fiy, is the sum of all the internal forces acting on the electron, which is quite dif-
ferent than Equation 4.4. To the outside agent applying the force Fy, the electron will
appear to be exhibiting a different inertial mass, since its acceleration will be different.
It would be most useful for the external agent if the effect of the internal forces in Fiy
could be accounted for in a simple way, and if the acceleration could be calculated from
the external force Fe;, alone, through something like Equation 4.4, This is indeed
possible.

Ina crystalline solid, the atoms are arranged periodically, and the variation of F,
and hence the PE, or V (x), of the electron with distance along x, is also periodic. [n
principle, then, the effect on the electron motion can be predicted and accounted for.
When we solve the Schrédinger equation with the periodic PE, or V (x), we essentially
obtain the effect of these internal forces on the electron motion. It has been found that
when the electron is in a band that is not full, we can still use Equation 4.4, but instead
of the mass in vacuum ., we must use the effective mass m of the electron in that
particular crystal. The effective mass is a quantum mechanical quantity that behaves in
the same way as the inertial mass in classical mechanics. The acceleration of the elec-
tron in the crystal is then simply

las)

ﬂm:

Ay = — “ﬂ

The effects of all internal forces are incorporated into m”. It should be emphasized
that m;, is obtained theoretically from the solution of the Schrodinger equation for the
electron in a particular crystal, 4 task that is by no means trivial. However, the effec-
tive mass can be readily measured. For some of the familiar metals, m! is very close
to m,. For example, in copper, m} = m, for all practical purposes, whereas in lithium
m, = 1.28m,, as shown in Table 4.2. On the other hand, m? for many metals and
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semiconductors is appreciably different than the electron mass in vacuum and can even
be negaive. (m* depends on the propetics of the band that contains the electron. This
is further discussed in Section 5.11.)

45 DENSITY OF STATES IN AN ENERGY BAND

Although we know there are many energy levels (perhaps ~10%) in a given band, we
have not yet considered how many states (or electron wavefunctions) there are per unil
energy per unit volume in that band. Consider the following intuitive argument. The
crystal will have N atoms and there will be N electron wavefunctions ¥, Voo U
that represent the electron within the whole crystal. These wavefunctions are con-
structed from N different combinations of atomic wavefunctions, Va ¥e.¥c, .. 85
schematically illustrated in Figure 4.20a," starting with

Vi=vat¥etyctvot-
all the way to allernating signs
Yn=va-vatvc-Vot

%E)

Figure 4.20 ; \
MhhﬁdhﬁﬂNMuﬂmeHdedmmkmhmﬁdhmh
rnmﬂmmwuwhm,mmmmmunnmmwdh
energy band.
Hﬂndiwhﬁimdmhhwbuﬂ:dn&amghuhmnﬁg\wn”dm.
methdmmﬂme

WwMWhml.&.thﬁthﬂb
sonal (30} ond we shoukd combins the dlomic wavelunciions ndl o1 0 in but on o 30 loffice.
hﬁmmhmhpndndm&uwnwﬂhhuﬁwﬁhbﬁ.
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and there are N (~10™) combinations. The lowest-energy wavefunction will be y con-
structed by adding all atomic wavefunctions (all in phase), and the highest-energy
wavefunction will be Y from alternating the signs of the atomic wavefunctions, which
will have the highest number of nodes. Between these two extremes, especially around
N/2, there will be many combinations that will have comparable energies and fall near
the middle of the band. (By analogy, if we arrange N = 10 coins by heads and tails,
there will be many combinations of coins in which there are 5 heads and 5 tails, and
only one combination in which there are 10 heads or 10 tails.) We therefore expect the
number of energy levels, cach corresponding to an clectron wavefunction in the crystal,
in the central regions of the band (o be very large as depicted in Figure 4.20b and c.

Figure 4.20c illustrates schematically how the energy and volume density of elec-
tronic states change across an encrgy band. We define the density of states g(E) such
that g(E) dE is the number of states (i.e., wavefunctions) in the energy interval E to
(E +dE) per unit volume of the sample. Thus, the number of states per unit volume
up lo some energy E' is

5
S,,{E'}zf HE)dE 47]
0

which is called the total number of states per unit volume with energies less than £,
This is denoted S, (E"). .

To determine the density of states function g(£), we must first determine the num-
ber of states with energies less than £ in a given band. This is tantamount to calculat-
ing 8,(E") in Equation 4.7. Instead, we will improvise and use the energy levels for an
electron in a three-dimensional potential well. Recall that the energy of an electron in
a cubic PE well of size L is given by

2

E= i-ii? (i +n3 +n3) [4.8)
where )., ny, and ny are integers 1, 23,.... The spatial dimension L of the well now
refers to the size of the entire solid, as the electron is confined to be somewhere inside
that solid. Thus, L is very lairge compared to atomic dimensions, which means that the
separation between (he energy levels is very small. We will use Equation 4.8 to de-
scribe the energies of free electrons inside the soljd (as in a metal).

Each combination of ny, my, and n; is one electron orbital state. For example,
Vi = Y112 18 one possiblg orbital state. Suppose that in Equation 48 E is given
s £”. We need to determine how many combinations of n, ny, n; (i.e., how many y)
have energies less than E',as given by Equation 4.8. Assume that (n] + a3 4+ nd) = "2
The object is to enumérate all possible choices of integers for ny, 5, nd n; that sat-
isfy nf + n3 4+ 03 <.

The two-dimensional case is easy to solve. Consider n? 4 n? < 52 and the two-
dimensional #-space where the axes are ny.and ny, as shown in Figure 4.21. The two-
dimensional space is divided by lines drawn atny =1,2,3,... andny = 1,2,3, ...
into infinitely many boxes (squares), each of which has a unit aréa and represents a
possible stte ¥, ... For example, the state n, = I, n, = 3 is shaded, as is that for

me=2 = "
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Figure 4.21 Eoch slate, or elecon wavefunction in Figure 4.22 |n three dimensions, the volume defined

the crysial, can be represented by box ot ny, . by a sphere of radius n' and the positive axes ny, m,
and g, contains all the possible combinations of posifive
n), i, ond m volues that salisfy ] + 4 nf < .

Clearly, the area contained by iy, n; and the circle defined by n'? = n? + n3 (justlike
#? = x? 4 y?) is the number of states that satisfy n? + n? < n'2. This area is | (xn"”).
In the three-dimensional case, n? + n3 +n} < n'? is required, as indicated in Fig-
ure 4.22. This is the volume contained by the positive ny, ny, and ny axes and the sur-
face of a sphere of radius n’. Each state has a unit volume, and within the sphere,
n? + nb+ n? < n'? is satisfied. Therefore, the number of orbital states S, (n') within

this volume is given by

1{4 l
Se(n) = é(ixn']) = arm']

Each orbital state can take two electrons with opposite spins, which means that the
number of states, including spin, is given by

i I 1 !
S(n') = W) = 37 ?
We need this expression in terms of energy. Substituting ' = $m, L’E'/ h* from
Equation 4.8 in §(n'), we get
rL38m EYV?
Ik

~ Since L is the physical volume of the solid, the number of states per unit volume
S.(E') w'rthendrgies E<E'is

S(E") =

x(8m E")?

)
W 49

S(E) =
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Furthermore, from Equation 4.7, 45, /dE = g(E). By different‘au' rg Equation 4.9
with respect (o energy, we get '

iDersityof R (ﬂ)m "
it oE) = Bn2'™)| 3 ) 10

Equation 4.10 shows that the density of states g(E) increases with energy as /2
from the bottom of the band. As we approach the top of the band, according to our
understanding in Figure 4.20d, g(E) should decrease with energy as (Ep ~ E)'2,
where Ey, is the top of the band, so that as E — Eyp, g(E) = 0. The electron mass
m, in Equation 4.10 should be the effective massm? as in Equation 4.6, Further, Equa-
tion 4. 10 strictly applies only to free electrons in acrystal. However, we will frequently
use it to approximate the true g(E) versus £ behavior near the band edges for both
metals and semiconductors.

Having found the distribution of the electron energy states, Equation 4.10, we now
wish o determine the number of states that actually contain electrons; that is, the prob-
ability of finding an electron at an energy level E. This is given by the Fermi-Dirac
statistics.

As an example, one convenient way of calculating the population of a city is to
find the density of houses in that city (i.e., the number of houses per unit area), multi-
ply that by the probability of finding a human in a house, and finally, integrate the
result over the area of the city. The problem is working out the chances of actually
finding someone at home, using a mathematical formula. For those who fike analogies,
if g(A) is the density of houses and f(A) is the probability that a house is occupied,
then the population of the city is

n= [ T(A)g(A) dA
City

where the integration is done over the entire area of the city. This equation can be used
to find the number of electrons per unit volume within a band. If E is the electron en-
ergy and f(E) is the probability thata state with energy £ is occupied, then

n= [ [(E)H(E) dE
Band

where the integration is done over all the energies of the band.

X-RAY EMISSION AND THE DENSITY OF STATES IN A METAL Consider what happens when a
metal sach as Al is bombarded with high-energy electrons. The inner atomic energy levels are
not disturbed in the solid, so these inner levels remain as distinct single levels, each one local-
ized to the parent atom. When an energetic electron hils an efectron in one of the inner atomic
energy levels, it knocks out this electron from the metal leaving behind a vacancy in the inner
core as depicted in Figure 4.23a. An electron in the energy band of the solid can then fall down
to occupy this empty state and emit a photon in the process. The energy difference between the
eaergies in the band and the inner atomic level is in the X-ray range, s0 the emitted photon is an
X-ray photon. Since electrons occupy the band from the bottom E; 10 the Fermi level E, the
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fa) High-energy eleciron bombordment knocks out an electron from the closed inner | shefl leaving
an emply skate. An electron from the energy band of the metal drops into the L shell to fll the
voconcy and emils a soft Xay photon in the process.

fb) The specirum [inkensity versus phoon energy] of soft kroy emission from o mefal involves o
wdmgimcmmpomiinghhrﬂimhmhbmomofhbundundhomﬂnfm
fevel 1o the L shell. The intensity increases wih energy uniil oround Er where it drops sharply.

|¢) and {d) conrast the emission specra from a solid and vapor [isoloted gos aloms}.

emitted X-ray photons have a range of energies corresponding to ransitions from £ andEy to
the inner atomic level as shown in Figure 4.23b. These energies are in the soft X-ray spectrum.
We assumed that the levels above E are almost empty, though, undoubtedly, there is no sharp
transition from full to cmpty kevels al £ s. Further, since the density of states increases from Eq
toward E , there are more and more electrons that can fall down to the atomic level as we move
front Ej toward E . Therefore the intensity of the emitted X-ray radiation increases with en-
ergy until the energy reaches the Fermi level beyond which there are only a small number of
clectrons available for the transit. Figure 4.23c and d contrasts the emission spectra from an alu-
minum crystal (solid) and its vapor. The line spectra from a vapor become an emission band in
the spectrum of the solid.

The X-ray intensity emitted from Al in Figure 4.23 starts to rise at around 60 ¢V and then
sharply falls around 72 ¢V. Thus the energy range is 12 €V, which represents approximately the
Fermi energy with respect to the botiom of the band, that is, E, = 72 - 60 = 12 eV with re-

spestto £,

21-
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10GLJG LY DENSITY OF STATES IN ABAND  Given that the width of an energy band is typically ~10 cV,
calculate the following, in per cm® and per eV uriits:

i The density of states at the center of the band.

b The number of states per unit volume within a small energy range k7 about the center,

¢ The density of states at kT above the bottom of the band

. The number of states per unil volume within a small energy range of kT 10 2k T from the
bottpm of the band.

SOLUTION

The density of states, or the number of states per unit energy range per unit volume g(F), is
given hy
By =@ g
oE) = (Bn2|
which gives the number of states per cubic meter per Joule of energy. Substituting E = § eV, we
have

91 x 10"
(6,626 x 10-H)?

1
G = :m'-‘*)[ ] Gx1L6x 107" =950 x 10%m~")""!

Converting tocm " and eV !, we gel
G = (950 % 10%m *17)(107 m*em (1.6 x 107" JeV ™)
=152 % 10% em eV

IT 3£ is a small energy range (such as kT), then, by definition, g(E) SE is the number
of states per unit volume in 8. To find the number of states per unit volume within kT at the
center of the band, we mulliply g, by kT or (152 x 102 cm 'eV=')(0.026¢V) to get
1.9 % 10% cm . This is not a small number!

ALKT above the buttom of the band, at Y00 K (kT = 0.026 eV), we have

9.1 % 107"

wn
W] (0,026 x 1.6 x 10 J?J"ﬂ

=684 % 10%m~*)!
Converting tocm™" and eV~ we gel
ha = (684 % 10 m~* )10 ¢ m* om )16 x 10 Jev ')
=110 % 10" cm~ev!
Within kT, the volume densily of states is
(110 % 10" em™ eV="){0.026 V) = 2.8 x 10" cm™?
This is very close to the bottom of the band and is still very large.
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TOTAL NUMBER OF STATES IN A BAND

a. Bused on the overlap of atomic orbitals o form the electron wavefunction in the crystal,
how many states should there be in a hand?

b, Consider the density of states function

m
9(E) = (sxz‘”)(:‘l;) B

By integrating g(E), estimate the fotal number of statesin aband per unit volume, and com-
pare this with the atomic concentration for silver. For silver, we have Eyp = 5.5¢V and
® = 4.5eV. (Note that “state” means a distinct wavefunction, including spin.)

SOLUTION

a. We know that when N atoms come together to form a solid, N atomic orbitals can overlap
. Ndifferent ways to produce Norbitals or 2N states in the crystal, since each orbital has two
statcs, spin up and spin down. These states form the band.

“b For silver, Erp = 5.5 ¢V and & = 4.5 ¢V, 5o the widih of the energy band is 10 V. To
estimate the total volume density of states, we assume that the density of states g(E)
reaches its maximum al the center of the band E = Egqe = 5eV. Integrating g(E) from
the bottom of the band, £ = 0, to the center, E = E ey, yiclds the number of states per
unit volume up 1o the center of the band. This is half the total number of states in the whole
ban), that is, S WHETE Sk 5 the number of states per unit volume in the band and is

determined by
l51 = ]"mﬂ E)dE = tex2 (”"}ln PG
2 ol — . Q‘ _— .‘ h! Lenber
or
's ""”2”2[ 9.1x10 kg 1" (5eV x 16% 107" 1ieV) "
- = M
27 = T3 16626 % 10-M )2
=508 % 10%m ' =5.08 x 10%em
Thus

St = 1016 x 102 states cm™*

We must now calculate the number of atoms per unit volume in silver. Given the
density d = 10.5 g " and the atomic mass M, = 107.9 g mol ! of silver, the atomic
cancentralion is

N "
i = A - 585 % 10° atoms cm ™
M

El

As expecied, the density of staes is almost twice the alomic concealration, even
though we used a crude approximation to estimate the density of stiles.
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46 STATISTICS: COLLECTIONS OF PARTICLES

46.1 BoLTZMANN CLASSICAL STATISTICS

Given a collection of particles in random motion and colliding with each other,’ we
need to determine the concentration of particles in the energy range E to (E + dE).
Consider the process shown in Figure 4.24, in which two electrons with energies E,
and E interact and then move off in dilferent directions, with energies Ey and E,. Let
the probability of an electron having an energy E be P(E), where P(E) is the fraction
of electrons with an energy E. Assume there are no restrictions to the electron energies,
that is, we can ignore the Pauli exclusion principle. The probability of this event is then
P(E)P(E3). The probability of the reverse process, in which electrons with energies
E; and E, interact, is P(E-)P(E,). Since we have thermal equilibrium, that is, the
system is in equilibrium, the forward process must be just as likely as the reverse

process, 5o

P(E))P(E;) = P(E;3)P(Eq) am
Furthermore, the energy in this collision must be conserved, so we also need
E\+E=E+E, [412]

We therefore need to find the P(E) that satisfies both Equations 4.11 and 4.12.
Based on our experience with the distribution of energies among gas molecules, we

can guess that the solution for Equations 4.11 and 4.12 would be

E
P(E) = Acxp( H) . [4nl
where k is the Boltzmann constant, T is the temperature, and A is a constant. We
can show that Equation 4.13 is a solution to Equations 4.11 and 4.12 by a simple
substitution. Equation 4.13 is the Boltzmann probability function and is shown in
Figure 4.25. The probability of finding a particle at an energy E therefore decreases
exponentially with energy. We assume, of course, that any number of particles may
have a given energy E. In other words, there is no restriction such as permitting
only one particle per state at an energy E, as in the Pauli exclusion principle. The
term kT appears in Equation 4.13 because the average energy as calculated
by using P(E) then agrees with experiments. (There is no kT in Equations 4.11
and 4.12.) .

Suppose that we have N, particles at energy level E; and N, particles at a higher
energy E;. Then, by Equation 4.13, we have

N; " £1 - E[)
m = up( T [4.14]

 From Chopler |, we con associote this with iha kineic theory of goses. The energies of the gos molecdes, which
um-ﬂmﬁ*mmmhhm%w
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b

Figure 8,24 Two eleckrons with inifol

E

- o Bl]){—ﬂ l‘n

Figure 4,25 The Bolzmam

wavehunctions ¥ and ¥z of Ey ond Ez infesact energy disribution describes the
ond end up of different energies E3 and E. slatistcs of porficles, such s electrons,
Their corresponding wavefunctions are ¥ when there are many more availoble
mdlh i sl siotes thon the number of porficles.

If E;~ E, » kT, then N, can be orders of magnitude smaller than N). As the
temperature increases, No/Ny also increases. Therefore, increasing the lemperature
populates the higher energy levels.

Classical particles obey the Boltzmann statistics. Whenever there are many
more states (by orders of magnitude) than the number of particles, the likelihood of
two particles having the same set of quantum numbers is negligible and we do not
have to worry about the Pauli exclusion principle. In these cases, we can use the
Boltzmann statistics. An important example is the statistics of electrons in the con-
duction band of a semiconductor where, in general, there are many more states than
electrons. )

462 FERMI-DIRAC STATISTICS

Now consider the interaction for which no two electrons can be in the same quantum
tate, which is essentially obedience to the Pauli exclusion principle, as shown in Fig-
ure 4.24. We assume thal we can have only one electron in a particular quantum state
¥ (including spin) associated with the energy value E. We therefore need those states
that have energies E; and Eq 1o be not occupied. Let f(E) be the probability that an
electron is in such a state, with energy E in this new interaction environment. The prob-
ability of the forward event in Figure 4.24is

FEDSENN = f(EIT - f(ED]

The square brackets represent the pmbabiiity that the states with energies E; and Eq
are empty. In thermal equilibrium, the reverse process, the electrons with E; and E4
interacting to transfer to E; and Ey, has just as equal alikelihood as the forward process.

n
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Thus, £(E) must satisfy the equation
SENSEN = JEDIT = f(ED]= fIESEQI = FCEDNL = [(ED] 14.15)
In addition, for energy conservation, we must have

E 4 Ey=E +E [0.16]

By an “intelligent guess,” the solution to Equations 4.15 and 4.16 is

[
f(E) = ———— [w.17)

E
1+ Aexp T

where A is a constant. You can check that this is a solution by substituting Equation 4.17
into 4.15 and using Equation 4.16. The reason for the term k7 in Equation 4.17 is not
obvious from Equations 4.15 and 4.16. It appears in Equation 4.17 so that the mean
properties of this system calculated by using f(E) agree with experiments, Letting
A = exp(—E¢/kT), we can write Equation 4.17 as

I
{1 4 F R co— [4.18]

E-E
l+exp( T F)

‘where E is a constant called the Fermi energy. The probability of finding an electron

in a state with energy E is given by Equation 4.18, which is called the Fermi-Dirac
function.

The behavior of the Fermi-Dirac function is shown in Figure 4.26. Note the effect
of temperature. As T increases, [ (E) extends to higher energies. At energies of a [ew
kT (0.026 V) above Ef, f(E) behaves almost like the Boltzmann function

E-E
f(E) = up[--{ “.E'F]] (E-Ep) » kT .91
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Figure 4.26

The Fermi-Dirac hunction f|E) describes the stastics of electrons in
i fE) g solid. The electrons inferact with each other ond the environment,
z obeying the Pauli exdlusion principle

Above absolute zero, at E = Er, f(EF) = !, We define the Fermi encrgy as that
energy for which the probability of occupancy f(E¢) equals 3. The approximation to
f(E) in Equation 4.19 at high energies is often referred to as the Boltzmann tail to the
Fermi-Dirac function. :

47 QUANTUM THEORY OF METALS

47.) Freg ELECTRON MopeL®

We know that the number of states g( £) for an electron, per unit energy per unit vol-
ume, increases with energy as g(E) « E'/. We have also calculated that the probabil-
ity of an electron being in a state with an energy E is the Fermi-Dirac function [(E).
Consider the energy band diagram for a metal and the density of states g(E) for thal
band, as shown in Figure 4.27a and b, respectively, .

At absolute zero, all the energy levels upto Ep are full, AtO K, f(E) has the step
form at E 5 (Figure 4.26). This clarifies why E in f(E) is termed the Fermi energy.
ALOK, f(E)=1for E < Ef, and f(E) =0for E > Ep,s0al 0 K, E r separates the
empty and full energy levels. This explains why we restricted ourselves (0 0Kor
thereabouts when we introduced E  in the band theory of metals.

At some finite temperature, f(E) is not zero beyond Ef, as indicated in Fig-
ure-4.27c. This means that some of the electrons are excited to, and thereby oceupy,
energy levels above E. If we multiply g(E). by f(E), we obtain the number of clec-
trons per unit energy per unit volume, denoted ng. The distribution of electrons in the
energy levels is described by n = g(E) J(E).

Since f(E)=1for E & Ep, the stales near the bottom of the band are all occu-
pied; thus, ng x E /2 initially. As E passes through E, [(E) starls decreasing

| #The kree elaciran model of metals is olso known as the Sommerfeld model. -
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Figure 4.27
{a] Above OK, due to thermal excitation, some of the electrons are of energies above Fr.
{b) The density of states, g[F| versus E in the band.
c) The probability of occupancy of a siale of on energy £ is f{E).
(d] The product g(E)AE) is the number of eleckrons per unil energy per unil volume, of the eleciron
concentration per unil energy. The area under the curve on the energy axis is the concentration of
electrons in the bond.
sharply. As a result, np takes a turn and begins to decrease sharply as well, as depicted
in Figure 4.27d.
In the small energy range E to (E + dE), there are ng dE clectrons per unit
volume. When we sum all ng dlE from the bottom to the top of the band (E = 0 to
E = Ep + @), we gel the total number of valence electrons per unit volume, n, in the
metal, as follows:
Topolband Top of band ‘
n =f ng dE =f 9E)f(E)dE [4.201
0 0
Since f(E) falls very sharply when E > Er, we can |:arr)r the integration to
£ = oo, rather than lo (£ + @), because f — 0 when E » E. Putting in the func-
tional forms of g(E) and f(E) (e.g., from Equations 4.10 and 4.18), we obtain
82 m}? (*  E'dE
o o=
o W'Y
If we could integrate this, we would obtain an expression relating n and Ej. At
OK, however, Er = Ey, and the integrand exists only for £ < Eg,. If we integrate at
0K, Equation 4.21 yiclds
fifmfm:rgy ¥ ( h? )(Jn)m
aT=0K Fo= 3:, % [4.72)
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It may be thought that E is temperature independent, since it was sketched that
way in Figure 4.26. However, in our derivation of the Fermi-Dirac statistics, there was
10 restriction that demanded this. Indeed, since the numbser of electrons in a band is
fixed, £ ¢ at a lemperature T'is implicitly determined by Equation 4.21, which can be
solved to express Ef in terms of n and T, It tums out that at 0 K, E is given by Equa-
tion4.22, and it changes very little with temperature. In fact, by utilizing various math-
ematical approximations, il is not too difficult to intcgraie Equation 4.21 1o obtain the
Fermi energy at a iemprature T, as follows:

EF(T) = Ero || "'1(”)2 ' a2
FET= R 12\ Er :
which shows that £¢(T) is only weakly temperature dependent, since Egp > kT.
The Fermi energy has an important significance in terms of the average energy Ea
of the conduction clectrons in a metal. In the energy range E to (E + dE), there are
ng dE electrons with cnergy E. The average energy of an electron will therefore be

[ EngdE
Eu=
TordE [4.24]
If we substitute g(E) f(E) for g and integrate, the result at 0 Kis
3
En(0) = gEm [4:25]

Above absolute zero, the average energy is approximalcly

F(T}—EE st?(kr)l [4:26)
TSR 12 \Eg '

Since Egg » kT, the second term in the square brackets is much smaller than
unity, and E,(T) shows only a very weak temperature dependence. Furthermore, in
our model of the metal, the electrons are free to move around within the metal, where
their potential energy PE is zero, whereas outside the metal, itis E + ® (Figured.11).
Therefore, their energy is purely kinetic. Thus, Equation 4.26 gives the average KE of
the electrons in a metal

13

2me"¢ =Eq® SEF(F
where v, is the root mean square (rms) speed of the electrons, which is simply called
the effective speed. The effective speed v, depends on the Fermi energy Erp and is
relatively insensitive to temperature. Compare this with the behavior of molecules in
an ideal gas. In thal case, the average KE = 3kT 50 Imu? = JkT. Clearly, the aver-
age speed of molecules in a gas increases with lemperature.

The relationship Jmv; = 2Ero is an important conclusion that comes from the
application of quantum mechanical concepts, ideas that lead to g(E) and f(E) and s0
on. It cannot be proved without invoking quantum mechanics. The fact that the aver-
age electronic speed is nearly constant is the only way to explain the observation that
the resistivity of a metal is proportional to T (and not 7%2), as we saw in Chapter 2.

w7

Fermi energy
alT(K)

Average
energy per -
elecion at 0K

Average ‘
energy per
electronal -
TK)
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472 CoNDUCTION IN METALS

We know from our energy band discussions that in metals only those clectrons in a
small range AE around the Fermi energy Ef contribute to clectrical conduction as
shown in Figure 4.12¢. The concentration ng of these electrons is approximately
9(Ey) AE inasmuch as A E is very small. The electron a moves 1o o', as shown in
Figure 4.12b und ¢, and then it is scattered to an empty state above b'. In steady
conduction, all the electrons in the energy range A E that are moving to the right are
not canceled by any moving to the left and hence contribute to the current. An elec-
tron at the bottom of the A E range gains energy AE to move a’ in a time interval At
that corresponds to the scattering time t. [t gains a momentum Ap,. Since Ap, /At =
external force =c¢f,, we have Ap, =rte®,. The electron o has an energy
E = pi/(2m!) which we can differentiate to obtain AE when the momentum
changes by Ap,,

; {m’vg)
AE = &&pl S L e Tk,
m: h;

The current J, is dueto all the electrons in the range A £ which are moving toward
the right in Figure 4.12c,

I, = enpvp = elQUE) AElve = el UE pJevptL Jvg = v} 1gUE})E,
The conductivity is therefore
0= cluf.-rg( Eg)

However, the numerical factor is wrong because Figure 4.12¢ considers only a hy-
pothetical onc-dimensional erystal. In a three-dimensional crystal, the conductivity is
one-third of the conductivity value just determined:

6—122 E
...3# Ul‘-l'ﬁ F) l4.2?i

This conductivity expression is in sharp contrast with the classical expression in
which all the electrons contribute to conduction. According to Equation 4.27, what is
important is the density of states at the Fermi energy g(£ ). For example, Cu and Mg
are metals with valencies [ and I1. Classically, Cu and Mg atoms each contribute one
and two conduction electrons, respectively, into the crystal. Thus, we would expect Mg
to have higher conductivity. However, the Fermi level in Mg is where the top tail of the
3y band overlaps the bottom tail of the 3p band where the density of states is small. In
Cu, on the other hand, E is nearly in the middle of the 45 band where the density of
stutes is high. Thus, Mg has a lower conductivity than Cu.

The scattering time 1 in Equation 4.27 assumes that the scattered electrons at Fy
remain in the same energy band. In certain metals, there are two different energy
bands that overlap at E . For example, in Ni (se¢ Figure 4.61), 3d and 45 bands over-
lap at Ep. An electron can be scattered from the 45 to the 3d band, and vice versa,
Electrons in the 3d band have very low drift mobilities and effectively do not
contribute to conduction, so only g(£r) of the 45 band operates in Equation 4.27.
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Since 4s 1o 3d band scattering is an additional scattering mechanism, by virtuc of:
Matthiessen's rule, the scatiering time 1 for the 45 band electrons is shoriened. Thus,
Ni has poorer conductivity than Cu.

In deriving Equation 4.27 we did not assume a particular density of states
model. If we now apply the free electron model for gLEf) as in Equation 4.10, and
also relate g 10 the total number of conduction electrons per unit volume 1 as in
Equation 4.22, we would find that the conductivity is the same as the Drude model,
that is,

b= Drude model
RS [4.28] and free
L elechons

MEAN SPEED OF CONDUCTION ELECTRONS IN A METAL  Calculate the Feimi cnergy £ a RadipLE
(VK for copper and estimate the average speed of the conduction electrons in Cu. The density of
Cuis8.96 g em™ and the relative atomic mass (wtomic weight) is 63.5.

SOLUTION

Assuming each Cu atom donates one free clectron, we <an find the concentration of electrons
from the density d, atomic mass My, and Avogadro's number Ny, as follows:

AN, 896 % 6.02% 107
M, 63.5
=85x10%em™ o 85x 10%m

n=

The Fermi energy at 0 K is given by Equation 422

) ﬁ: I R
= (Hm_r)(n_)

Substituting n = 8.5 x 10 m* and the values for hand m ., we obtain
Epg=1.1x 0" o Te¥

To estimate the mean speed of the clectons, we calculaie the ms speed v, from
'im,uf = if}'ﬂ‘mﬂ"ﬂﬂ“ speed will be close 1o the s speed. Thus, v, = (6 gy f5m )",

Substituting for £ ) and m,, we find v, = 1.2 x W' ms ',

CONDUCTION IN SIVER Consider silver whose density of states g(F) was calculated in
Example 4.8, assuming a free clectron model Tor g(E) as in Equation 4.10. For silver,
Ey = 5.5¢V, so from Equation 4.10, the density of states at E isglEy) = 1.60 % 107 m <
eV-!. The velocity of Fermi electrons, vy = (2E, /m. )" =139 10° m 5" The conduc-
fivity o of Ag ut room lemperature s 62.5 x 10°Q ' m ', Substituting for o, gUE ), and v
in Equation 4.27,

IXAMPLEA.16

160 x m”‘)

1 1
2625 x 10° = —ePieglEy) = —(16x 107")'E1.39 % 10 (
a 5% }eurig( ) jl (3 Vil 107 r TR

we find £ = 3.79 x 10 " 5. The mean free path € = vyt = 53 nm. The drifi mobility of Ey
clectrons is pu = ex/m, = 67 em? V' 57"
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From Example 4.8, since Ag has a valency of 1, the concentration of conduction electrons
ism=npy = 5.85 x 10" m . Substituting for n and o in Equation 4.28 gives

: 16 x 10°)? »
0=ﬁ2.5x]0“=£={ % )°(5.85 x 10%)r
i (9.1 x 10

we find r = 3.79 % 10 5 as expected because we have used the free electron model.

48 FERMI ENERGY SIGNIFICANCE
48.1 METAL-METAL CoNTACTS: CONTACT POTENTIAL

Suppose that two metals, platinum (Pt) with a work function 5.36.€V and molybdenum
(Mo) with a work function 4.20 eV, are brought together, as shown in Figure 4.28a. We
know that in metals, all the energy levels up to the Fermi level are full. Since the Fermi
level is higher in Mo (due to a smaller ®), the electrons in Mo are more energetic.
They therefore immediately go over to the Pt surface (by tunneling), where there are
empty states at lower energies, which they can occupy. This electron transfer from Mo
to the Pt surface reduces the total energy of the electrons in the Pt-Mo system, but at
the same time, the Pt surface becomes negatively charged with respect to the Mo sur-
face. Consequently, a contact voltage (or a potential difference) develops at the junc-
tion between Pt and Mo, with the Mo side being positive.

The electron transfer from Mo to Pt continues until the contact potential is large
cnough to prevent further electron transfer: the system reaches equilibrium. It should
be apparent that the transfer of energetic electrons from Mo to Pt continues until the
two Fermi levels are lined up, that is, until the Fermi level is uniform and the same in
both metals, so that no part of the system has more (or less) energetic electrons, as

$(P1) -B(Mo) = 116V = AV
/

Vacuem
Pt Mo 3 ‘ ! /

vaguum vacuum_ o - |
%l [« & ‘ Vacuum
0| I Ll >
i Fermi level |, ‘”i s
" & || Fermi level 3
=1 - * TR
= | Femilevel 4 =H
o Flectrons -

Eleclrons =t
Hihﬂwnmm?ﬁchﬂh,w (b) Equilibrium is reached when the Fermi
they tunnel fo the surfoce of P1 levels are lined up,

Figure 4.28 When two mefals are brough! logether, there is @ confact polential A V.
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LIV

Figure 429 There is no current when o dlosed circuitis formed
by o different meals, even though there is  contact potenial of
-— eoch conlodt.
LIV The conlac! polentials oppose each oher.

illustrated i Figure 4.28b. Otherwise, the energetic electrons in one part of the system
will flow toward a region with lower energy states. Under these conditions, the P-Mo
system is in equilibrium. The contact voltage AV is determined by the difference in
the work functions, that is,

e AV = B(Pt) - ®(Mo) = 5.36¢V — 4.20eV = | 16V

We should note that away from the junction on the Mo side, we must still provide
an energy of ® = 4.20V to free an electron, whereas away from the junction on the
P side. we must provide & = 5.36 ¢V to free an electron. This means that the vacvum
energy level going from Mo to Pt has a step A® at the junction. Since we must do
work equivalent to A® 1o get a free electron (e.g., on the metal surface) from the Mo
surface to the Pt surface, this represents a voliage of A® /e or 116 V.

From the second law of thermodynamics, this contact voltage cannot do work;
that is, it cannot drive current in an extemal circuit. To see this, we can close the
Pt metal-Mo metal circuit to fom a ring, as depicted in Figure 4.29. As soon as we
close the circuit, we create another junction with a contact voltage that is equal and op-
posite to that of the first junction. Consequently, going around the circuit, the net volt-
age is zero and the current is therefore zero.

There is a decp significance to the Fermi energy E r, which should at least be men-
tioned. For a given metal the Fermi energy represents the free cnergy per electron
called the electrochemical potential ;.. In other words, the Fermi energy is a measure
of the potential of an electron to do electrical work (e x V) or nonmechanical work,
through chemical or physical processes.” In general, when two metals are brought into
contact, the Fermi level (with respect o a vacuum) in each will be different. This
difference means a difference in the chemical potential Ay, which in turn means that
the system will do external work, which is obviously not possible. Instead, electrons
are immediately transferred from one metal to the other, until the free energy per elec-
tron i for the whole system is minimized and is uniform across the two metals, so that

rhhnr,hmmﬂwdhmdmioaimﬁywpﬁmmwmhnhmnwini\mhd

equilibrium ond do work [1.e., chorge » volloge]

¥ A change in any type of PE can, in principle, be used lo do work, thal s, A{PE) = work done. Chemical PE s the

pvhrﬂhd)mhunkdwtipg,éatdnmﬂb(ﬁméﬂipulwdmtdum.mw
FE per slectron is £ ond AF; = electricol work per election

m
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A = 0. We can guess thal if the Fermi level in one metal could be maintained al o
higher level than the other, by using an external encrgy source (¢.g.. light or heat), for
example, then the difference could be used to do electrical work.

482 Tue Serseck EFFECT AND THE THERMOCOUPLE

Consider a conductor such as an aluminum rod that is heated at one end and cooled at
the other end as depicted in Figure 4.30. The electrons in the hot region are more en-
ergetic and therefore have greater velocities than those in the cold region.’

Consequently there is a net diffusion of electrons from the hot end toward the cold
end which leaves behind exposed positive metal ions in the hot region and accumu-
lates clectrons in the cold region. This situation prevails until the electric field devel-
oped between the positive ions in the hot region and [he excess clectrons in the cold re-
gion prevents further electron motion from the hot to the cold end. A vollage therefore
develops between the hot and cold ends, with the hot end at positive potential. The
potential difference AV across a piece of metal due toa temperature difference AT is
called the Seebeck effect.”” To gauge the magnitude of this effect we introduce a
special coefficient which is defined as the potential difference developed per unit tem-
perature dilference, or s
v
B

By convention, the sign of § represents the potential of the cold side with respect
10 the ho side. If clectrons diffuse from the hot end to the cold end as in Figure 430,
then the cold side is negative with respect to the hot side and the Seebeck coefficient is
negative (as for aluminum). ;

In some metals, such as copper, this intuitive explanation fails to explain why clec-
trons actually diffuse from the cold to the hot region, giving rise to Jositive Scebeck
coefficients; the polacity of the voltage in Figure 4.30 is actually ‘reversed for copper.
The reason is that the net diffusion process depends on how the mean free path ¢ and
the mean free time (due to scatiering from lattice vibrations) change with the electron
energy, which can be quite complicated. Typical Scebeck coeflicients for various se-
Jected metals are listed in Table 4.3, .

Consider two neighboring regions H (hot) and C (cold) with widths cormesponding
10 the mean free paths €and ¢' in H and C as depicted in Figure 4.31a. Half the electrons
in Hwould be moving in the -+ direction and the other hall in the —x direction. Half of
the electrons in H therefore cross intoC, and half in C cross into H. Suppose that, very
roughly, the electron concentration r in H and C s about the same. The number of elec-
trons crossing from H 10 C is Ln¢, and the number crossing from C 1o His snt’. Then,

(429)

Net diffusion from H o C oc n(t ~ £') (430]

| % The conduchion eheckions around the Farm: energy have o mean speed that has only o small lemperoure

| dependence This small change ir the meon speed with lemp is, nonethcless, mtuitively signilicant in

| apoecating the thermoelectne eect. The octuol elledt, . depends on the mean free poth os discussed loter.

1 Thoumas Sechech chiserved the thermoslecmc efect 1821 two different metols o in the thermocouple,
which s tise anly w10 obses v the phenomencn, I was Williom {Loed Kelvin) who explained the

chseraed effrd
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Figure 4.30 The Seebeck effect.
A femperalure gradient along a conduclor gives rise lo @ pofenfiol difference.

Suppose that the scattering of clectrons is such that £ increascs strongly with the
electron energy. Then clectrons in H, which are more encrgetic, have a longer mean
firee path, that s, ¢ > ¢ as shown in Figure 4.31a. This means that the net migration is
from Hto C and § is negative, as in aluminum. In those metals such as copper in which
{ decreases strongly with the energy, electrons in the cold region have a longer mean
free path, € > € as shown in Figure 4.31b. The net electron migration is then from C
1o H and S is positive. Even this qualitative explanation is nof quite correct because nis
not the same in H and C (diffusion changes n) and, further, we neglected the change in
the mean scattering time with the electron energy.

The coefficient § is widely refemed to as the thermoelectric power even though
this term is misleading, as it refers to a voltage difference rather than power. A more ap-
propriate recent term is the Scebeck coefficient. § is a mate rial property that depends
on temperature, § = S(T), and is tabulated for many malerials as a function of

Toble 4.3 Seebeck coefficients of selected melals [fom various sources)

Sat0°C satnec

Metal WK WK EgleY) x
Al ~Lh ) -8 116 ;.
Au +LY +194 55 -148
Cu +10 - +184 70 -1
K . -125§ 20 18
Li +14 i 47 -91
Mg -13, 71 138
Na -5 3l 22
P BT -9.09
P —445 -5 I8

3
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Figure 8,31 Consider lwo neighboring regions H fhof) and C fcold] with widths corresponding fo
the meon free paths £ and €' in H and C.

Hall the electrons in H would be moving in the -+x direction and the other half in the —x direction.
Half of the elecirons in H therefore cross inio C, and half in C cross inlo H.

temperature. Given the Seebeck coefficient S(T) for a material, Equation 4.29 yields
the voltage difference between two points where temperatures are 7, and T as follows:

T
AV = f SdT [4.31)
L.

A proper explanation of the Seebeck effect has to consider how clectrons around
the Fermi energy E ¢, which contribute to clectrical conduction, are scatiered by lattice
vibrations, impurities, and crystal defects. This scatiering process controls the mean
free path and hence the Seebeck coefficient (Figure 4.31). The scattered electrons need
empty states, which in turn requires that we consider how the density of states changes
with the energy as well. Moreover, in certain metals such as Ni, there are overlapping
partially filled bands and the Fermi electron can be scattered from one electronic band
to another, for example from the 4s band (o the 3d band, which must also be consid-
ered (see Question 4.25). The Seebeck coefficient for many mefals is given by the
Mott and Jones equation,

T
- x
3eErp
where x is a numerical constant that takes into account bow various charge transport
parameters (such as ¢) depend on the electron energy. A few examples [or x are given
in Table 4.3. The reason for the kT/Egp factor in Equation 4.32 is that only those
electrons about 2 kT around the Fermi level Egg are involved in the transport and scat-
tering processes. Equation 4.32 does not apply directly to transition metals (Ni, Pd, PY)
that have overlapping bands. These metals have a negative Secbeck coefficient that is
proportional to temperature as in Equation 4.32, but the exact expression depends on

the band structure.

LS [4.32)
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Al Al

fa)
Figure 4,32
(o) If Al wires ore used to measure the Secbeck vollage ocross the Al rod, then the neteml
is 2810

b} The Al and Ni have different Seebeck coefficients. There is therefore a net emf in the
AN cireuil between the hot and cold ends that con be measured.

Suppose that we try to measure the voltage difference AV across the aluminum
rod by using aluminum connecting wires to a voltmeler as indicated in Figure 4,324,
The same (emperature difference now also exists across the aluminum connecting
wires; therefore an identical voltage also develops across the connecting wires, oppos-
ing that across the aluminum rod. Consequently no nel voltage will be registered by the
voltmeter. It is, however, possible 1o read a net vollage difference, if the connecting

wires are of different material, that is, have a dilferent Seebeck coefficient from that of

aluminum. Then the thermoelectric voltage across this material is different than that
across the aluminum rod, as in Figure 4.32b.

The Seeheck effect is fruitfully utilized in the thermocouple (TC), shown in Fig-
urc 4.32b, which uses two different metals with one junction maintained at a relerence
lemperawre T, and the other used to sense the temperature T The voltage across each
metal clement depends on its Seebeck coelficient. The potential difference between the
twa wires will depend on 54 — 5. By virtue of Equation 4.31, the electromotive force
(emf) between the twawires, Vyg = AV, — A Vg, is then given by

T T
v,,,:] (Sy - 8p)dT =f SapdT (433]
L T

where S, = 54 — Sy is defined as the thermoelectric power for the thermocouple pair
A-B. For the chromel-alumel (K-type) TC. for example, §5 # 40 1V K~ at 300 K.
The output voltage from a TC pair obviously depends on the two metals used. In-
stead of tabulating the emf from all possible pairs of materials in the waorld, which
would be a challenging task, engineérs have tabulated the emfs available when a given
material is used with a reference metal which is chosen to be platinum. The reference
junction is kept at 0."C (27316 K) which corresponds to a mixture of ice and water.
Some typical malerials and their emfs are fisied in Table 4.4,
Using the expression for lhe Seebeck cocfficient, Equation 4.32, in Equation 4.33,
and then integrating, leads to the familiar thermocouple equation,
5, Vg =a AT + b(AT)’ [4.34)

Thermo-
couple emf
between
mielals A
and B

Thermo-
couple
equation
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Toble 4.4 Thermoeleciric emf for metals af 100 and 200 °C with

raspect lo P and the reference juncfion ot 0 °C
emf (mV)

Material AL100°C A2 °C
Copper, Cu 076 183
Aluminum, Al 042 1.06
Nickel, Ni ~1.48 -110
Palladium, Pd -0.57 -1
Platinum, Py 0 0
Silver, Ag 074 .M
Alumel -1.29 =211
Chromel 281 596 -
Constantan =151 =14
ron, Fe 1.89 kR
%0% P-10% Rh 0.643 144
(plarinum-hodiuim)

where a and b are the thermocouple coefficients and AT = T - T, is the temperature
with respect (o the reference temperature T, (273.16 K). The inference from Equa-
tion 4.34 i that the emf output from the thermocouple wires does not depend linearly
on the lemperature difference AT Figure 4.33 shows the emf output versus tempera-
wre for various thermocouples. It should be immediately obvious that the voltages
are small, typically a few tens of a microvolt per degree temperature difference. At

Figure 4.33  Quiput emf versus emf (mV)
temperature (°C] for voricus 80
thermacouples between O o 1000 °C. ]

Etype
70

)
Su—|
40

30 K type

T T T T T T T T T 1
0 200 400 600 800 1000
Temperature ("C)



4.8 FerM1 ENERGY SIGNIFICANCE

0°C, by definition, the TC emf is zero. The K-type thermocouple, the chromel-alumcl
pair, is a widely mployed general-purposc thermocouple sensor up 0 about 1200 °C.

k)

THE THERMOCOUPLE EMF  Consider a thermocouple pair from Al and Cu which have Fermi
encrgies and x as in Tahle 4.3. Estimatc the emf available from this thermocouple if one junc-
tion is held ot (0"C and the other at 100 C.

SOLUTION

We essentially have the arrangement shown in Figure 4.32b but with Cu replacing Ni and Cu
having the cold end positive (§ is positive). For each metal there will be a vollage across it,
given by integraling the Seebeck coefficient from T, (at the low temperature end) to T. From the
Mol and Jones equation,

r ¥ T 1§t ?
av:] sar:] B e (P =T)
% . debgy beEra

The available emf (Vyy) is the difference in A V for the two metals (4 and 8), so

”IP[ Xy Xy ] 1
Va=AV, -AVy = ——| — - — T"_Tl
= ; i be LEso  Ermo ( )
where in thiscxample T = 373 Kand 7, = 273 K.
For Al (A), Egpy = 11.6 €V, x, = 278, and for copper (B), Epno = 7.0€V, xp = —1.79.

Thus,
Vg = —189 pV — (4201 4V) = =390V
Thermocouple emf calculations that closcly represent experimental observations require
thermocouple voltages for various metals listed against sonie reference metal. The reference is
usually Pt with the reference junction at 0 “C. From Table 4.4 we can read Al-Ptand Cu-Pt
emfs as Vy.p = 0.42 mV and Ve, iy = 0.76 mV at 100 °C with the experimental error being
around £0.01 mV, so that for the Al-Cu pair,

Vieco = Vaon — Viop = 042mV = 0,76 mV = —0.34 mV

There is a reasonable agreement with the calculation using the Mott and Jones equation.

EXAMPLE 4.11

THE THERMOCOUPLE EQUATION We know that we can only measure differences between
thermoelectric powers of materials. When two different metals A and B are connecied (o make
a thermocouple, as in Figure 4.32b, then the net emf is the voltage difference between the two
elements. From Example 4.11,

Ta

] r
AVyg= AV, - M,:f (S4—Sp)dT=| SudT
T

= _H._E[f_'- - ﬁ_][ﬁ_ 7}

Euu EHU
=C(1"-1,)

where Cis a constant that is independent of T but dependent on the material properties (x, Exy
for the metals).

EXAMPLEA.12
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We can now expand V45 about T, by using Taylor's expansion
F(T)= F(T,) + AT (dFdT), + HATY*FfdT?),
where the function F = Ve and AT =T = T, and the dcrival]vcs are evaluated a 7, The
result is the thermocouple equation:
Viu(T) = a(AT) +bIATY
where the coefficients aand b are 2CT, and C, respectively.
It is clear that the magnitude of the emf produced depends on Cor 53 — 54, which we can

Jabel as 845 . The greater the thermoclectric power difference 84y for the TC, the larger the emf
pruduccd‘ For _llx' copper constantan TC, 5y is about 43 g VK !

49  THERMIONIC EMISSION AND YACUUM
TUBE DEVICES

49.1 THERMIONIC EMISSION: RICHARDSON-DUSHMAN EQUATION

Even though most of us view vacuum tubes as electrical antiques, their basic principle of
operation (electrons emitted from a heated cathode) still finds application in cathode ray
and X-ray tubes and various RF microwave vacuum tubes, such as triodes, tetrodes,
klystrons, magnetrons, and traveling wave tubes and amplifiers. Therefore, itis useful to
examine how clectrons are emitted when a metal is heated,

When a metal is heated, the electrons become more energetic as the Fermi-Dirac
function extends to higher temperatures. Some of the electrons have sufficiently large
energies (o leave the metal and become [ree. This situation is sell-limiting because as
the electrons accumulale outside the metal, they prevent mere electrons from leaving
the metal. (Put differently, emitted electrons leave a nel positive charge behind, which
pulls the electrons in.) Consequently, we need to replenish the “lost” clectrons and col-
Ject the emitted ones, which is done most conveniently using the vacuum lube arrange-
ment in a closed circuit, as shown in Figure 4.34a. The cathode, heated by a filament,
emils electrons. A battery connected between the cathode and the anode replenishes

/'f g !
. Plate or anode Saturation current
v ==
T— Vacuum
Cathode
Filament 5 v
(o} Thermionic electron {b) Current-voltage characterisiics of
emission in a vocuum fube. o vacuum diode.

Figure 4.34
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the cathode electrons and provides a positive bias to the anode to collect the thermally
emitted electrons from the cathode. The vacuum inside the tube ensures that the elec-
trons do not collide with the air molecules and become dispersed, with some even
being returned to the cathode by collisions. Therefore, the vacuum is essential. The
current due to the flow of emitted electrons from the cathode to the anode depends on
the anode voltage as indicated in Figure 4.34b, The current increases with the anode
voltage until, at sufficiently high voltages, all the emitted electrons are collected by the
anode and the current saturates. The saturation current of the vacuum diode depends
on the rate of thermionic emission of electrons which we will derive below. The vac-
uum tube in Figure 4.34a acts as a rectifier because there is no current flow when the
anode voltage becomes negative; the anode then repels the electrons.

We know that only those elecirons with energies greater than Ef + @ (Fermi
energy + work function) which are moving toward the surface can leave the metal.
Their number depends on the temperature, by virtue of the Fermi-Dirac statistics. Fig-
ure 4.35 shows how the concentration of conduction electrons with energies above
Eg + ® increases with temperature. We know that conduction electrons behave as if
they are free within the metal. We can therefore take the PE to be zero within the metal,
but &5 + @ outside the metal. The energy E of the clectron within the metal is then
purely kinetic, or

I E a3 4
E= Em,uf - Em,v;-k 3 mev; [4.35)

Suppose thal the surface of the metal is perpendicular to the direction of emission,
say along x. For an electron to be emitted from the surface, its KE = %mvf along x
must be greater than the potential encrgy barrier £ + @, thatis,

1
5mvf>£;—+¢ 14.36)
E Figure 4.35 Fermi-Diroc function
} *fE) and the energy density of
electrons n{E) electrons per unit
energy ond per unit volume] ol three
ditfesent lemperalures.
NooT The electron concentrotion extends
iy AT e : /"T’ more and move lo higher energies as
L\ T! the lemperature increases. Elechons
JC with energies in excess of £ + ¢
________ - Sy can leave the mefal [thermionic
N emission),
——> f(E) >
0 10 0 nE)=GENE)
Probability Electron concentration

per unit energy

i
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Lek b right; Owen Williams Richardson, Robert
Andrews Milkan, ond Arfhur Holly Compion at an
infernational conference on nuclear physics, Rome,
1931, Richordson won the physics Mobel prize in 1928
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Letdn{v, ) be the number of electrons moving along x with velocities in the range
v, to (v, +dv, ), with v, satisfying emission in Equation 4.36. These electrons will
be emitted when they reach the surface. Their number dn(v,) can be determined from
the density of states and the Fermi-Dirac slatistics, since encrgy and velocity are
related through Equation 4.35. Close to E¢ + @, the Fermi-Dirac function will ap-
proximate the Boltzmann distribution, f(E) = exp[~(E ~ E)/kT]. The number
dnfv,) is therefore at least proportional to this exponential encrgy factor.,

The emission of dnfv,) electrons will give a thermionic current density
dJy = evydn(e,). This must be integrated (summed) for all velocities salisfying
Equation 4,360 obtain the total current density J,, or simply J. Since dn(v, ) includes
an exponential energy function, the integration also leads to an exponential. The final

result is

) b
J =B, exp (— T ) [4.37]

where B, = dzem k* . Equation 437 is called the Richardson-Dushman equalion,
and B, is the Richardson-Dushman constant, whose value is 1.20 x 10°A m2 K™% We
see from Equation 4.37 that the emitted current [rom 4 heated cathode varies exponen-
tially with temperature and is sensitive to the work function @ of the cathode material,
Both factors are apparent in Equation 4.37.

The wave nature of electrons means that when an electron approaches the surface,
there is a probability that it may be reflected back into the metal, instead of being emitted
over the potential barrier. A the potential energy barrier becomes very large, & — o,
the electrons are totally refleeted and there is no emission. Taking into account that waves
can be reflected, the thermionic emission equation is appropriately modified 1o

5 ]
J =BT exp(—ﬁ) 4.38]
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where B, = (1 - R) B, is the emission constant and R is the reflection coefficient,
The value of R will depend on the material and the surface conditions. For most met-
als, B, is about half of B,, whereas for some oxide coatings on Ni cathodes used in
thermionic tubes, B, can be as low as | x 107 Am ? K.

Equation 4.37 was derived by neglecting the effect of the applied hield on the emis-
sion process. Since the anode is positively biased with respect to the cathode, the field
will not only colleet the emitted electrons (by drifting them to the anode), but will also
enhance the process of thermal emission by lowering the potential energy barricr @,

‘There are many thermionic emission-based vacuum tubes that find applications in
which it is not possible or practical to use semiconductor devices, especially at high-
power and high-frequency operation at the same lime, such as in radio and TV broad-
casting, radars, microwave communications; for example, a letrode vacuum tube in
radio broadcasting equipment has to handle hundreds of kilowatts of power. X-ray tbes
operate on the thermionic emission principle in which electrons are thermally emitted.
and then accelerated and impacted on a metal target 1o generate X-ray photons.

VACUUM TUBES It is clear from the Richardson-Dushman equation that to obtain an efficient
thermionic cathode, we need high tlemperatures and low work functions. Metals such as tungsten
(W) and tantalum (Ta) have high melting temperatures but high work functions, For example, for
W. the melting temperature T, 15 3680 “C and its work function 1s about 4.5 V. Some metals
have low work [unctions, but also low melting temperatures, o typical example being Cs with
= 1 8eVand T, = 28.5 C. If we use a thin film coating of a low & materal, such as ThO or
Bu0, on a high-melting-temperature base metal such as W, we can maintin the high melting
properties and obtain a lower @. For example, Thon W has o & = 26 ¢V and 7, = 1845 C,
Most vacuum tuhes use indirectly heated cathodes that consist of the oxides of B, St and Ca on
abase metal of Ni. The aperating temperziures for these cathodes are typically 800 ¢

A certain wransmitler-type vacuum tube has 4 cylindrical Th-coated W {thoriated tung-
sten) cathode, which is 4 em long and 2 mm in diameter, Estimate the saturstaon current if the
tube 15 operated at 3 temperature of 1600 C, given that the cmission constant is B, = 3.0 x 10"
Am 2K for Thon W.

SOLUTION

Weapply the Richardson-Dushman equation with® = 2.6eV. T = (1600 + 273) K = 1871 K,
and B, = 3.0 % 10" A" K 7, 1o find the maximum current density that can be obtained from
the cathode at 1873 K, a8 follows:

: 4 5 (20 x 1.6 x10°™")
J=30x 10°Am K873 K) exp| —————
(L3 x 10" % IRTH)

=108 x 10'Am™
The emission surfice are is
A = x (diameter )(length) = 712 10 )4 x 10 %) =25 % 10 *m’

s0 the saturation current, which is the maximum current oblainable (ie., the thermionic cur-
rent), is

I=JA=(108x 10 Am?)25%10 'mY) =274

1
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(o] PE of the election near the surloce of o conducior
b} Electron PE due 1o on opplied field, thet is, '
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[c] The overall PE is the sum (o) d

492 ScrorTRY EFFECT AND FiELD EMISSION

When a positive voltage is applied to the anode with respect to the cathode, the clec-
tric field at the cathode helps the thermionic emission process by lowcring the PE bas-
rier &, This is called the Schotiky effect. Consider the PE of the electron just outside
the surface of the metal. The electron is pulled in by the effective positive charge left
in the metal. To represent this attractive PE we use the theorem of image charges in
electrostatics,' which says that an electron at a distance x from the surface of a con-
ductor possesses a potential encrgy that is
i

PEjupels) =~ [4.39]

16me,
where &, is the absolute permittivity.

This equation is valid for x much greater than the atomic separation a; otherwise,
we must consider the inferaction of the clectron with the individual ions. Further,
Equation 4.39 has a reference level of zero PE at infinity (x = 00), but we defined
PI = 0 to be inside the metal. We must therefore modify Equation 4.39 to conform to
our definition of zero PE as a reference. Figure 4.36a shows how this “image PE”
varies with x in this system. In the region x < x,, we artificially bring PE,e(x) 10
zero atx = (), so our definition PE = 0 within the metal is maintained. Far away from
the surfluce, the PE is expected to be (Fy- + &) (and not zero, as in Equation 4.39), so
we modify Equation 4.39 o read
2

PEmnp():) =(E¢ +®) - [4.40]

I(m.s,,x-
The present model, which takes PE 0 (x) from 010 (E; + ®) along Equation 4.40,
is in agreement with the thermionic emission analysis, since the electron must still
overcome a PE barner of Ex + ¢ to escape.

! An electron of o distance x from the surloce of o conduclor experiences o force os if there were  posiive charge
of +& ol o dislance 2x brom it The force is &[4 &.12x7] or €% {1 6mz,). The resul is colled the image chorge
theorem Inlegrating the force gives ihe potential energy in Equation 4.39.
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From the definition of potential, which s potential encrgy per unit charge, when @
voltage difference is applicd between the anode and cathode, there is a PE gradient just

outside the surface of the metal, given by eV (x), or

. PEJW]U:U{-‘} =-exl l‘<4]]
where % is the applied field and is assumed, for all practical purposes, to be uniform. The
Vaiation of PE e (x) With xis depicted in Figurc 4.36b. The total PE(x) of the electron
outside the metal is the sum of Equations 440 and 4.41, as sketched in Figure 4.36c,

?

PE(x) = (Ep + ®) - ~ exE (4.42]

l6me,x
Note that the PE(x) outside the metal no longer goes up to (E + ®), and the PE
harrier against thermal emission is effectively reduced 1o (E + D), where g is
new effective work function that takes into account the effect of the applied field. The
new barrier (E¢ + @) can be found by locating the maximum of PE(x), that is, by
differentiating Equation 4.42 and setting it to zero. The effective work function in the
presence of an applied field is therefore

AN
Pyr=9 - (4915 ) (4.43]

This lowering of the work function by the applied ficld, as predicted by Equa-
tion 4.43, is the Schottky effect. The current density is given by the Richardson-
Dushman equation, but with & instead of b,

(P - ﬁsTwJ]
J =B, T ex [-4~ 4.44
i o
where fs = ¢ f4ne,)'"" is the Schottky coefficient, whose value is 3.79 x 107

eV/VVm™).

When the ficld becomes very large, for example, £ > 10" Vem™' the PE(x) oul-
side the metal surface may bend sufficiently steeply to giverise to anarrow PE barrier.
In this case, there is a distinct probability that an electron at an encrgy £ will tunnel
through the barrier and escape into vacuum, as depicted in Figure 4.37. The likelihood
of tunneling depends on the effective height ®.q of the PE barrier above Efr, 4s well
as the width x; of the barrier at energy level . Since tunneling is temperature inde-
pendent, the emission process is termed field emission. The tunneling probability P

was calculated in Chapter 3, and depends on @ and x through the t:quatinrt‘2
[—2(2m,¢,ﬂ1 WJF]
P= exp ~—h—‘—‘

We can casily find x¢ by noting that when x = x, PE(xf) is level with Ef, as
shown in Figure 4.37. From Equation 4.42, when the field is very strong, then around

1211 Chaper 3 we showed thal he ransmission probobbty 7= I, exp|~2ac] where o” = 2m Vo~ EJ/A ond 015
MW.M&LnﬂmmnﬁdcmihmﬂmhwInbe"'i.cleurh\’,—f= 4 since elecirans with
E = E; ore tunneling ond 0 = x.

kKK

Field-assisted
thenmionic
emission
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Figure 4.37
[o] Field emission is the tunneling of on electron ot an energy F through the norrow PE barrier induced
by a lorge opplied field.

(b) For simplicity, we take the barrier Io be rectongular.

fc) A sharp point cathode hos the maximum field of the tip where the field emission of electrons occurs

x % xg the second term is negligible compared to the third, so putting x = x; and

PE(xf) = Ey in Equation 442 yields & = et£x;., Substituting 1 = & /e in Equa-

tion 4.45, we can obtain the tunneling probability P

E(_sz ¢EII'JW¢]
eh'E

P~ exp [r [4.45]
Equation 4.45 represents the probability P that an electron in the metal at £¢ will tun-
nel out from the metal, as in Figure 4,37a and b, and become field-emitted. In a more
rigorous analysis we have to consider that clectrons not just at Ep but at energies
below £ can also tunnel out (though with lower probability) and we have to abandon
the rough rectangular PE(x) approximation in Figure 4.37h.

To calculate the current density J we have to consider how many electrons are
moving loward the surface per sccond and per unit arca, the electron flux, and then
multiply this flow by the probability that they will wanel out. The final result of the
calculations is the Fowler-Nordheim equation, which still has the exponential field
dependence in Equation 4,45,

; £
Jhcld-emission CE? EIP(— Er‘) [4.46a]
in which € and %, ase temperature-independent constants
3 KN TH
v Ba(2m,®
C and E. = ( :_.)_ |4.46b]

~ Brhd ; 3eh
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Figure 4.38
(o] Spinditype cathode and the basic siructure of one of the pixels in the FED.

(&} Emission (anode] current versus gate volloge.
(c) Fowler-Nordheim plot tha confirms field emission.

tha depend on the work function & of the metal. Equation 4.46a can also be used for
field emission of electrons from a metal into an insulating material by using the elec-
tron PE barrier & from metal’s E into the insulator’s conduction band (where the
electron is free) instead of ®.

Notice that the field 7 in Equation 4.46a has taken over the role of temperature in

thermionic emission in Equation 4.38. Since field-assisted emission depends exponen-
tially on the field via Equation 4.46a, it can be enhanced by shaping the cathode into a
cone with a sharp point where the field is maximur and the electron emission occurs
from the tip as depicted in Figure 4.37c. The field £ in Equation 446ais the effective
field at the tip of the cathode that emits the electrans.

A popular field-emission tip design is based on the Spindt tip cathode, named
after its originator. As shown in Figure 4.384, the emission ca thode is an iceberg-type
sharp conc and there is a posilively biased gate above it with a hole to extract the emit-
ted electrons. A positively biased anode draws and accelerates the electrons pass ing
through the gate toward it, which impinge on a phosphor screen (0 generale light by
cathodoluminescence, a process in which light is emitted from a material when it is
bombarded with electrons. Arrays of such electron ficld-emitters are used in field
emission displays (FEDs) to generate bright images with vivid colors. Color is ob-
fained by using red, green, and blue phosphors. The field at the fip is controlled by the
potential difference between the gate and the cathode, the gate voltage Vg, which
thercfore controls field emission. Since £ o V;, Equation 4.46a can be written to ob-
(ain the emission current or the anode current /4 as

lh=aV} cxp(-i) a.47]
; Ve
where « and b are constants that depend on the particular field-emitting structure and
cathode material, Figure 4.38b shows the dependence of I, on Vg. There is a very
sharp increase with the voliage once the threshold voltages (around ~45 V in Figure
438b) are reached 10 start the electron emission. Once the emission s fully operating,

b
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" (o) A carbon nanotube [CNT] is o whiskerlike, very thin and long carbon molecule with rounded ends, almost the

perfect shape fo be an election fieldemiter,
[b) Muliiple CNTs as electron emitters.

{c] A single CNT as an emitier,
| SOURCE: Couttesy of Professor W. | Mdne, Uiniversity of Combridge; G. Piria ef ol Nanctechnelogy, 13, 1, 2002.

I4 versus Vg follows the Fowler-Nordheim emission. A plot of In(/,/ Vé} VEISuS
1/ Vg is a straight line as shown in Figure 4.38c.

Field emission has a number of distinct advantages. It is much more power effi-
cient than thermionic emission which requires heating the cathode to high tempera-
tures. In principle, field emission can be operated at high frequencies (fast switching
times) by reducing various capacitances in the emission device or controlling the elec-
tron flow with a grid. Field emission has a number of important realized and potential
applications: ficld emission microscopy, microwave amplifiers (high power and wide
bandwidth), parallel electron beam microscopy, nanolithography, portable X-ray gen-
erators, and FEDs. For example, FEDs are thin flat displays (~2 mm thick), that have
a low power consumption, quick start, and most significantly, a wide viewing angle of
about 170°. Monochrome FEDs are already on the market, and color FEDs are ex-
pected to be commercialized soon, probably before the fourth edition of this text.

Typically molybdenum, tungsten, and hafnium have been used as the field-emission
tip materials. Micromachining (microfabrication) has lead to the use of Si emission
tips as well. Good electron emission characteristics have been also reported for
diamond-like carbon films. Recently there has been a particular interest in using car-
bon nanotubes as emitlers. A carbon nanotube (CNT) is a very thin filament-like car-
bon molecule whose diameter is in the nanometer range but whose length can be quite
long, e.g., 10~100 microns, depending on how it is grown or prepared, A CNT is made
by rolling a graphite sheet into a tube and then capping the ends with hemispherical
buckminsterfullerene molecules (a half Buckyball) as shown in Figure 4.39%. De-
pending on how the graphite sheet is rolled up, the CNT may be a metal or a semi-
conductor. The high aspect ratio (length/diameter) of the CNT makes it an efficient

" Carbon nonokibes can be singlewolled or muliwalled [when the graphits sheats are wrapped more han once
and can have quile complicaled sinuchures. There is no doubl thal they possess some remarkable properfies, so if is
likefy that CNTs will eveniually be used in various engineering applications. See, for exomple, M. Bazendole,

J. Mater. Sci.: Mater Elactran, 14, 657, 2003,
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electron emitter, If one were to wonder what is the best shape for an efficient field
emission tip, one might guess that it should be a sharp cone with some suitable apex
angle. However, it turns out tha the best emiter is actually a whisker-type thin fila-
ment witha rounded tip, much like a CNT. Itis as if the CNT has been designed by na-
{ure 1o be the best field emitier. Figure 4.39b and ¢ shows SEM photographs of two
CNT Spind-type emiticrs. Figure 4.39b has several CNTs, and Figure 4.39 just one
CNT for electron emission. (Which is more efficient?)

FIELD EMISSION  Ficld cmission displays operate on the principle that electrons can be readily RLELUEAE
emitted from a microscopic sharp point source (cathode) thal is biased negatively with respect

o aneighboring electrode (gate or grid) as depicted in Figure 4384, Emitted electrons impinge

on colored phosphors on a screen and cause light emission by cathodoluminescence. There are

millions of these microscopic field emitters to constitute the image. A particular field emission

cathode ina field-emission-type flat panel display gives a current of 61.0 pA when the voltage

between the cathode and the grid is 50 V. The current is 279 pA when the voltage is 58.2 V. Whal

is the current when the voltage is 56.2 V7

SOLUTION
Equation 447 related 1, 1o V;,

; b
Iy =aVzexp i TH

i

where ¢ and b are constants that can be determined from the two sels of data given. Thus,

b) and 279 pA =aS8.2% ( b)
= - -
i L T

61.0 pA = aS0° exp(— &

Dividing the first by the second gives
610 507 [ (I I H
— = —exp| b == =
m 82 S0 582
which can be solved to obtain & = 431.75 V and hence a = 137.25 pAIVEL ALY = 582V,
1= (137.25)(56.2)" ex ( 43”5) = 200 pA
B e T

The cxperimental value for this device was 202 pA, which happens to be the'device in Figure
4.37b (close).

410 PHONONS
4.10.1 HARMONIC OSCILLATOR AND LATTICE WAVES

Quantum Harmonic Oscillafor Tn the classical picture of  solid, the constituent
atoms are held together by bonds which can be represented by springs. According lo
the Kinetic molecular theory, the atoms in a solid are constantly vibrating about their
equilibrium positions by stretching and compressing their springs. The oscillations are
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(o) Hormonic vibrotions of on alom about ifs equilibrium posiiion assuming ils neighbors ore fied.
[b) The PE curve V(x) versus displocement from equilibrium, x.
c] The energy is quantized.

assumed to be simple harmonic so that the average kinetic and polential energies are
the same. Figure 4.40a shows a one-dimensional independent simple harmonic oscil-
lator that represents an atom of mass M attached by springs to fixed neighbors. The
potential energy ¥ (x) is a function of displacement x from equilibrium. For small
displacements, V(x) is parabolic in x, as indicated in Figure 4.40b, that is,

1
Vir)= 55:* 4.46)

where B is a spring constant. The instantancous energy, in principle, can be of any
value. Equation 4.48 neglects the cubic term and is therefore symmelric about the
equilibrium position at x = 0, It is called a harmonic approximation to the PE
curve,
In modern physics, the energy of such a harmonic oscillator must be calculated
using the PE in Equation 4.48 in the Schridinger equation so that
d'y M |
—+ | E-=p )y =0 4.49)
d;2+az( 2’“)* b
The solution of Equation 4.49 shows that the energy E, of such a harmonic oscil-
lator is quantized, '

E,=(n+ é)hw 14.50]

where e is the angular frequency of the vibrations' and n is a quantum number
0.1,2.3,.... The oscillation frequency is determined by the spring constant § and the
mass M through w = (8/M)"". Figure 4 40c shows the allowed energies of the quan-
tum mechanical harmonic oscillator,

I "* Henceforth quuancym‘ﬂ lmply i,
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Figure 4.41

o) A chain of N otoms through & erysial in the absence of vibrations.

[} Coupled atomic vibrations generale  Iraveling longitudinal (L) wave dlong x. Atomic displocements (u) are
parallel to x.

c) A transverse (T) wave troveling along x. Alomic displocements Iu,loreperpendiwhrbli:st {b) ond

c) are snapshols ot one inslont.

It is apparent that the minimum energy of the oscillator can never be zero but must
be a finite value that is Eo = 3ho. This energy is called the zero-point energy. As the
temperature approaches 0 K, r.he harmonic oscill ator would have an energy of Eq and
not zero. The encrgy levels are equally spaced by an amount ke, which represents the
amount of energy absorbed or emitted by the oscillator when it is excited and de-
excited to a neighboring energy level. The vibrational energics of a molecule due to its
aloms vibrating relative to each other, e.g., the vibrations of the Cl; molecule in which
the C1-C1 bond is streiched and compressed, can also be described by Equation 4.50.

Phonons Atoms in a solid are coupled to each olher by bonds. Atomic vibrations are
therefore also coupled. These coupled vibrations lead to waves thal involve coopera-
tive vibrations of many atoms and cannot be represented by independent vibrations of
individual atoms. Figure 4.4 1a shows a chain of atoms in a crystal. As an atom vibrates
it transfers its energy to neighboring vibrating atoms and the coupled vibrations pro-
duce traveling wave-trains in the crystal.”* (Consider grabbing and strongly vibrating
the first atom in the atomic chain in Figure 4.41a. Your vibrations will be coupled and
transferred by the springs to neighboring atoms in the chain along x.) Two examples

are shown in Figure 4.41b and c. In the first, the atomic vibrations are parallel to the
direction of propagation x and the wave is a longitudinal wave. In the second, the
vibrations are transverse to the direction of propagation and the corresponding wave is
a transverse wave. Suppose that x, is the position of the rth atom in the absence of
vibrations, that is, x, = ra, where ris an integer from 0 to N, the number of atoms in
the chain, as indicated in Figure 4.41a. By wriling the mechanical equations (Newton’s

| 15 In the presance of coupling, the individual aloms do nol execule simple harmonic mation.
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second taw) for the coupled atoms in Figure 4.41a, we can show that the displacement
u, from equilibrium at a location x, is given by a traveling-wave-like behavior,”®

u, = Aexplj(Kx, = wn)) [4.51]

where A is the amplitude, K is a wavevector, und w is the angular frequency. Notice
that the K x, tenmis very much like the usual kx phase term of a traveling wave prop-
agating in-a continuous medium; the only difference is that K x, exists at discrete x,
locations. The wave-train described by Equation 4,51 in the crystal is called a lattice
wave. Along the x direction it has a wavelength A = 2r/K over which the longitudi-
nal {or transverse) displacement u, repeats itsell. The displacementa, repeats itsell at
one location over a time period 27 /o, A wave traveling in the opposite diregtion (o
Equation 4:51 is of caurse also possible. Indeed, two oppositely traveling waves of the
sume frequency can interfere (o set up a stationary wave which is also a lattice wave.

The lattice wave described by Equation 4.51 is o harmonic oscillasion with a [re-
quency e that itsell” has no coupling to another lattice wave, The energy possesscd by
this lattice vibration is quantized in much the same way as the energy of the quantized
harmonic oscillator in Equation 4.50. The encrgy of a lattice vibration therefore can
only be multiples of hw above the zero-point energy, %hw. The quantum of energy hw
i therefore the smallest unit of lattice vibrational energy that can be added or sub-
tracted from a latlice wave. The quantum of lattice vibration he 1s called a phonon in
analogy with the quantum of electromagnetic radiation, the photon. Whenever a lattice
vibration inleracts with another lattice vibration, an electron or a photon, in the crystal,
itdoes so as if it had possessed a momentum of hK. Thus,

EI*W“ =hw=hv [4.52]
Pitonn = HEK (4.53]

The frequency of vibrations w and the wavevector K of a latlice wave are related.
I we were (o use Equation 4.51 in the mechanical equations that deseribe the coupled
atomic vibrations, we would find that

QNS —

which relates w and K and is called the dispersion relation. Figurc 4.42 shows how
the frequency w of the lattice waves increases with increasing wavevector K, or de-
creasing wavelengih A. From Equation 4.54, there can be no frequencies higher than
W = 2(B/M)', which is the lattice cul-off freqency. Both longitudinal and
transverse waves exhibit this type of dispersion relationship shown in Figure 4.42a
though theii exact w-K curves would be different depending on the nature of
interatomic bonding and the crystal structure. The-dispersion relation in Equation 4.54
is periodic in K with a period 2 /a. Only values of K in the range ~n/a < K < /a
are physically meaningful. A pointA with K 4 is the same as a point B with K  because
we can shift K by the period, 2x /a as shown in Figure 4.42a.

' The exponentiol aotaficn for o wave is convenien!, but we have 1o consider only the real part io achually
represent the wave in the physicol world. :
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Figure 4.42
(o) Frequency @ versus wavevecior K relationship for lalfice waves
[b] Group velocity v, versus wavevector K. '

The velocity at which traveling waves carry energy s called the group velocity «,
of the wave.'” It depends on the slope dw/dK of the -K dispersion curve, so for
lattice waves,

# ﬁ)m (l )
=—=|=] acos| =K
%=k (M aces| 2Ka [4.55]

which is shown in Figure 4.42b. Points A and B in Figure 4.42a have the same group
velocity and are equivalent. .

The number of distinct or independent lattice waves, with different wavevectors,
in a crystal is not infinite but depends on the number of atoms N. Consider a lincar
crystal as in Figure 443 with many atoms. We will take N to be large and ignore the
difference between N and N — 2. The lattice waves in this crystal would be standing
waves represented by two oppositely traveling waves. The crystal length L = Na can
support multiples of the half-wavelength A as indicated in Figure 4.43,

A
q-i-=L=Na g=123.. |4.560}
or K:ﬂ:ﬂ q:l,2.3.... [m
L Na

where ¢ is an integer. Each particular K value K, represents one distinct lattice
wave with a particular frequency as determined by the dispersion relation. Four ex-
amples are shown in Figure 4.43. Each of these K, values defines a mode or state of
lattice vibration. Each mode is an independent lattice vibration. lts energy can be
increased or decreased only by a quantum amount of hw. Since K values outside the
range —1/a < K < n/a are the same as those in that range (A and B are the same

17 Fox those reoders who are not fomilior with the group velocity concepl, this s discussed in Chapter 9 without

22

Group
velocity

u
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in Figure 4.42a), it is apparcnt that the maximum value of g is ¥ and thus the num-
her of modes is also V. Notice that as ¢ increases, A decreases. The smallest A oc-
curs when alternating atoms in the crystal are moving in opposite directions which
corresponds 10 JA = a, that is, ¢ = N, as shown in Figure 443. In terms of the
wavevector, K = 2r/A = mfa. Smaller wavelengths or longer wavevectors are
meaningless and correspond to shifting X by a multiple of 2z /a. Since N is large,
the e versus K curve in Figure 4.42a consists ol very finely scparated distinct
points, each corresponding to a particular ¢, analogous to the energy levels in an en-
ergy band. -
The above ideas for the linear chain of atoms can be readily extended to a three-

dimensional erystal. If L,, L,, and L. are the sides of the solid along the x, v, and z
axes, with N, N, and N. number of aloms, respectively, then the wavevector compo-
nents along x, y, and 7 are

Latiice

vibrational . K,

modes in 3-D

o ) T -
= B g B

L, Ly i

where the integers g, ¢,, and g, run from 1 to N, ¥,, and N, respectively. The total
number of permitted modes is N, N, N or N, the total number of atoms in the solid.
Vibrations however can be set up independently along the x, v, and ¢ directions so thal
the actual number of independent modes is 3N .

[4.57]

4102 Desye Heat Capacity

The heat capacity of a solid represents the increase in the internal energy of the crystal
per unif increase in the temperature. The increase in the internal energy is due to an
increase in the energy of lattice vibrations. This is generally true for all the solids ex-
cept metals at very low temperatures where the heat capacity is due to the electrons
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near the Fermi level becoming excited to higher energies. For most practical lempera-

ture ranges of interest, the heal capacity of solids is determined by the excitation of lat- |

tice vibrations. The molar heat capacity C,, is the increase in the internal energy Uy
of acrystal of N4 atoms per unit increase in the iemperature at constant volume,™ that
is, Cp = dUn/dT .

The simplest approach to calculating the average energy is first to assume that all
the lattice vibrational modes have the same frequency w. (We will account for differ-
ent modes having different frequencies later.) If £, is the energy of a harmonic oscil-
Jator such as a lattice vibration, then the average energy, by definition, is given by

]
Y E,P(E:)

F=" | fasel
Y P(E) '

n=0

where P(E,) is the probability that the vibration has the cnergy E, which is pro-
portional 1o the Boltzmann factor. Thus we can use P(E,) ocexp(—E,/kT) and
E, = (n + $)hw in Equation 4.58. We can drop the zero-point energy as this does not
affect the heat capacity (which deals with energy changes). The substitution and cal-
culation of Equation 4.58 yields the vibrational mean energy at a frequency w,

ha
e [459)
ex.p( T ) 1

This energy increases with temperature. Each phonon has an energy of hw. Thus,
the phonon conceniration in the crystal increases with temperature; increasing the
femperature creates more phonons.

To find the intenal energy due to all the lattice vibrations we must also consider
how many modes there are at various frequencies, that is, the distribution of the modes
over the possible frequencies, the spectrum of the vibrations. Suppose that giw) is the
number of modes per unit frequency, that is, @lw) is the density of vibrational states

or modes, Then gl«) de is the number of states in the range dw. The internal energy
U, of all lattice vibrations for 1 mole of solid is

f{w] =

W _
s ='] E{w)glw)dw 14.601
LU

The integration is up to a certain allowed maximum frequency W (Figure 4.42a).
The density of states g(e) for the lattice vibrations can be found in a similar fashion to
the density of states for electrons in an energy band, and we will simply quote the result,

flo) % — = 14.61]

18 Cnstani volume in he defition meons fhal Ihe heal added 1o he system increases the internol ensrgy wibou!
doing mechonical work by changing the volume
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Figure 4.44 Density of stales for phonons in copper.
The salid curve is deduced from experiments on neutron .
scatiering. The broken curve s the threedimensional Debye i
approximalion, scaled so that the oreas under the two curves 2t | |
are the same. e
0 1 2 3 4 5
This requires that wee, 4.5 « 10 rod s !, or o Debye i : .
characteristic femperature Ty = 344 K w (10" rad 571 Oy

Density of states g(w)
~

where v is the mean velocity of longitudinal and transverse waves in the solid and Vis
the volume of the crystal. Figure 4.44 shows the spectrum g(w) for a real crystal such
as Cu and the expression in Equation 4.61, The maximum frequency is tig, and is de-
termined by the fact that the total number of modes up 0 w,.. must be 3N, It s called
the Debye frequency, Thus, integrating gle) up 10 wyy, we find,

Debe

frequency e~ V(61N V) 482l

This maximum frequency corresponds (o an energy ho,y and Lo a tempera-
ture T defined by,

Debye o 2

temperature Ty= k . [4.63]
and is called the Debye temperature, Qualitatively, it represents the temperature
above which all vibrational frequencies are executed by the lattice waves.

Thus, by using Equations 4.59 to 4,63 in Equation 4.60 we can evaluate U,, and
hence differentiate U, with respect to temperature to obtain the molar heat capacity at
constant volume,

fou 3ooTuiT 4
fpye T n LW 4 J
" Co= 9.?(—) f LS (a8
lattice To/ By (e=1)?
vibrations A :
: which is the Debye heat capacity expression,

Figure 4.45 represents the constant-volume molar heat capacity C,, of nearly
all crystals, Equation 4.64, as a function of temperature, normalized with respect
o the Debye temperatre. The Dulong-Petit rule of C, = 3R is only obeyed
when T > T). Notice that C, at T = 0.57, is 0825(3R) whereas at T = T, it
15 0.9523R). For most practical purposes, C,, is to within 6 percent of 3R when
the temperature is at 0.97p. For example, for copper Tp=315 K and above



.10 PHONONS

I3 By, =3
09 Cul
08— N Si(r,=65K) [
> 3 i
' 074 ! [
064 i - 15
E Ik 5 CIII
C3R) 03 7 : L 0K mol
04 i - 10
03 4 : I
02 3 | L5
: i i
Wi ]
n E l"l[llll‘lllllll’lllfl‘:|||||.K|I|Il'l|(llf|llll 0

0 010203040506070809 1

T/T,

Figure 4.45 Debye constantvolume molar heat copocily curve.

The dependence of the melar heat capacity Cyy 0n lemperalure wilh respect lo the
Debye e: G, versus T/To, For Si, Tp= 625 K, 5o of room lemperalure
{300 K}, T/Tp=0.48 ond Cyis only 0.81 [3R).

about 0,97, thatis, above 283 K (or 10°C),C,, & 3R, as borne out by experiments.”
Table 4.5 provides typical values for Ty, and heal capacities for a few selected ele-
ments. It is left as an exercise to check the accuracy of Equation 464 for predicting the
heat capacity given the Ty values. At the lowest temperalures when T « Tp, Equation
4,64 predicts that €,y o T°, and this is indeed observed in low-temperature heat ca-
pacity experiments on a variety of crystals.® -

It is useful to provide a physical picture of the Debye model inherent in Equa-
lion 4.64. As.the temperature increases from near zero, the increase in the crystal's
vibrational energy is due to more phonons being created and higher frequencies being
excited. The phonon conceniration increases as 77, and the mean phonon energy
" increases as T. Thus, the internal energy increases as T*. Al temperatures above T,
increasing the temperature creates more phonons but does not increase the mean
phonon energy and does not excite higher frequepcics. All frequencies up 10 Gy have
now been excited. The internal energy increases only due to more phonons being cre-
ated. The phonon concentration and hence the internal energy increase as T the heat
capacity is constant as expected from Equation 4.64. .

19 omeiimes it is stoked thot ihe Debye lemparalure is a choracleriics lemperaure for each matenial of which ol
the atoms are able fo possess vibrationol kinetic anecgieshuor&:mwhhh\nxwlewrﬁﬁmdw
principle tha s the averoge vibrationalkinehic energy wilbe 3 KT per ciom and average polential energy wil
also be 3 kT This means that the overoge energy per olom o 3 T, and hence the heat copocify is JkNy or 3R per
male which is the Dulong-Patt rule.

| Wekknown excepiions ore ghasses, noncrysialline solids, whose heal capocty i proportional fo ) T+ ol
where o) ond o; ore constants.
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Table 4.5 Debye temperatures Tp, heat capacities, and thermol conductivities of selected elements

Crystal
Ag Be Co  Dismond  Ge Hg Si w
TolKY A5 1000 31S 1860 100 65 30
CaUK ' mal ™) 256 1646 245 648 2 MG 197 45
o(K'gl 037 1825 0385 0540 0 0l 0 0133
kWm ' kN 29 I8 s 1000 0 865 148 173

* Ty is obiauned by Fiting the Debye curve Io the experimental molar heal copocity data of the point C,, == (IR).
1Cy, ¢, and i ore ot 25 °C.

SOURCE: Ty daig from J. De launay, Selid State Physics, vol. 2, F. Seitz and D. Turnbul, eds., Acadenmic Press,
New York, 1956

Itis apparent that, above the Debye temperature, the increase in temperature leads
to the creation of more phonons. [n Chapters | and 2, using classical concepts only, we
had mentioned that increasing the temperature increases the magnitude of atomic vi-
brations. This simple and intuitive classical coneept in terms of modern physics corre-
sponds to crealing more phonons with temperature. We can use the photon analogy
from Chapter 3. When we increase the intensity of light of a given frequency, classi-
cally we simply increase the electric field (magnitude of the vibrations), but in modern
physics we have to increase the number of photons flowing per unil arca.

SPECIFIC HEAT CAPACITY OF Si  Find the specific heat capacity ¢, of a silicon crystal at room
temperature given T, = 625 K for Si.
SOLUTION

At room temperature, T =300 K, (T/T,) = 0.48, and, from Figure 4.45, the molar heat
capacity is
Cy =081038) =2021K " mol ™'
The specific heat capacily ¢, from the Debye curve is
C. (081 x25)K" mol™
sutn T 2B R MY anin iy
M, (28.09 g mol ")

The experimental value of 0.70J K™' g~" is very close o the Debye value.

EXAMPLE 4.16

SPECIFIC HEAT CAPACITY OF GaAs Example 4.15 applied Equation 4.64, the Debye molar
heat capacity C,,, 1o the silicon crystal in which all atoms are of the same type. It was relatively
simple to calculate the specific heat capacity c, (what is really used in enginecring) from the
molar heat capacity C, by using ¢, = C,/M, where M, is the atomic mass of the type of stom
(only one) in the crystal. When the crystal has two types of atoms, we must modify the specific
heat capacity denvation. We can still keep the symbol C,, 1o represent the Debye molar heat
capacity given in Equation 4.64. Consider a GaAs crystal that has N, units of GaAs, that is,
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1 mole of GaAs. There will be | mole (N, atoms) of Gaand | mole of As atoms. To a reason-
able approximalion we Can assume that each mole of Ga and As contributes a C,, amount of heat
capacity so that the total heat capacity of | mole GaAs will be €, + C,, or2C,,, amaximum of
50 K- mol™". The total mass of this | mole of GaAs is M, + M. Thus, the specific heat
capacity of GaAs 15

Coa _ CatCy 2C

:"; M, ‘|'M.¢.: - ;M(iu +Mp

By =

which can altermatively be writien as
G &

T M4 M) M

€y

where M = (Mg, + Ma,)/2 is the average atomic mass of the constituent atoms. Although we
derived ¢, for GuAs, it can also be applied to other compounds by suitably calculiting an aver-
age alomic mass M. GaAs has a Debye icmperature Tp = 344 K, so that at a room temperature
of 300K, T/ T, =0.87, and from Figure 445, C,, J(3R) = 0.94. Therefore,
-1 Al
M LT gmol” + 7492 gmol ")

AL=40 °C, T Tp = 0.68, and C./(3R) = 090, so the new ¢, = (0.90/0.94)(0.323) =
0311 1K' g !, which isnot a large change in c..

The heat capacity per unit volume C, can be found from €, = ¢,p, Where p is the density.
Ths, at 30K, C, = (03251 K ' g ')5.32 gem Y= 173 1K em™'. The caleulaled €,
match the reported experimental values very clusely.

LATTICE WAVES AND SOUND VELOCITY  Consider fongitudinal waves ina linear crystal and

three aloms at ¢ — 1, r, and r + 1 as in Figure 4.46. The displacement of cach atom from equi-
Jibrium in the +x direction 5w, 4, and &4, respectively. Consider the rih atom. [ts bond
with the left neighbor stretches by {u, = v,.1). Tts hond with the right neighbor strelches by
(.4 — ;). The lell spring exerts a force fu, —u, ), and the right spring exerts o force
Bl 5 — ). The net force on the rth atom is mass x acceleration,

I 1,
Net force = f(u, 45 —n,) — Bl —u,-u:Ht—“—z
il
u,
50 . M-E‘— = ity ay — 2 H10,0) [4.65]
dr ;

This is the wave equation that describes the coupled longitudinal vibrations of the atoms
in the crystal. A similar expression can also be derived for transverse vibrations. We can substi-
tute Equation 4.5 in Equation 465 10 show that Equation 451 isindeed a solution of the wave

Figure 4.46 Aoms executing
longiredinal vibrations porollel fo x.
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equation. It is assumed that the crystal response is linear, that is, the et force is proportional to
nel displacement.
The group velocity of lattice waves is given by Equation 4,55, For sufficiently small K, or

long wavelengths, such that } Ka < 1,
I It}

o= (§) ooire)~(2) s
which is a constant. It is the slope of the straight-line region of @ versus X curve for small K
values in Figure 442, Furthermore, the elustic modulus ¥ depends on the slope of the net force
versus displacement curve as derived in Example 1.5, From Equation 448 Fy = dV Jdx = fx
and hence ¥ = /a. Moreover, each alom occupies a volume of a*, so the density p is M /a’.
Substituting both of these results in Equation 4.66 yiclds

¥ [
U= (p‘) 14671

The relationship has to be modified for an actual crystal incorporating 2 small numerical
factor multiplying ¥. Aluminum has a density of 2.7 g cm* and ¥ = 70 GPa, 50 the long-
wavelength longitudinal velocity from Equation 4.67is 5092 m s~ The sound velocity in Al is
SI00ms ', which is very close.

I

Thermal
conductivity
due ta
phonons

4103 TuermaL CONDUCTIVITY OF NONMETALS

Innonmetals the heat transfer invol ves lattice vibrations, that is, phonons. The heat ab-
sorbed in the hot region increases the amplitudes of the lattice vibrations, which is the
samc as generaling more phonons, These new phonons travel toward the cold regions
and thereby transport the lattice energy from the hot to cold end. The thermal
conductivity x measures the rate at which heat can be transported through a medium
per unit arca per unit temperature gradicnt. It is proportional to the rate at which a
medium can absorb energy; that is, « is proportional to the heat capacily. « is also pro-
portional to the rate at which phonons are transported which is determined by their
mean velocity vy, In addition, of course, i is proportional to the mean free path £, that
a phonon has to travel before losing its momentum just as the electrical conductivity is
proportional to the electron’s mean free path. A rigorous classical treatment gives  as

& = 1C, Ul (4.68)

wherc C, is the heat capacity per unit volume. The mean free path Eph depends on var-
iows processes that can scatter the phonons and hinder their propagation along the di-
rection of heat flow. Phonons collide with other phonons, crystal defects, impurities,
and crystal surfaces,

The mean phonon velocity vy, is constant and approximately independent of tem-
perature. At temperatures above the Debye temperature, C, is constant and, thus,
x & €. The mean free path of phonons at these temperatures is determined by
phonon-phonon collisions, that s, phonons interacting with other phonons as depicted
in Figure 4.47. Since the phonon concentration n,y increases with temperature, n y o T,
the mean free path decreases as £y, oc 1/ 7. Thus, & decreases with increasing lempera-
{ure as observed for most crystals at sufficiently high temperatures,



4.10 PHONONS

Wing WE\A}W Figm.l.l? Phanons

Hot | -\ 3 ‘-w',- i Cold  generoed in the hot region travel
3 toward the cold region and

"N\P’\W‘ Al\l\r' ' thereby transport heat energy.

Phonon-phonon unharmonic

inferaction generates @ new
- phonan whose momentum is
Direction of heat flow |:> toward the hol region.

The phonon—phonon collisions that are responsible for limiting the thermal con-
ductivity, that is, scattering the phonion momentum in the opposite direction to the heat
flow, are due to the unharmonicity (asymmetry) of the interatomic potential energy
curve. Stated differently, the net force £ acting on an atom is not simply fx but also has
an x? term; it is nonlinear, The greater the asymmetry or nonlinearity, the larger is the
effect of such momentum fipping collisions. The same asymmetry that is responsible
for thermal expansion of solids is also responsible for determining the thermal conduc-
tivity. When two phonons | and 2 interact in a crystal region as in Figure 4.47, the non-
linear behavior and the periodicity of the lattice cause a new phonon 3 to be generated.
This new phonon 3 has the same energy as the sum of 1 and 2, but it is traveling in the
wrong direction! (The frequency of 3 is the sum of the frequencies of 1 and 2.)

Atlow temperatures there are two factors. The phonon concentration is too low for
phonon-phonon collisions to be significant. Instead, the mean free path £ is deter-
mined by phonon collisions with crystal imperfections, most significantly, crystal
surfaces and grain boundaries. Thus, £, depends on the sample geometry and crys-
tallinity. Further, as we expect from the Debye model, C, depends on T, 50 x has the
same temperature dependence as C,, that is, x o« T°, Between the two temperature
regimes x exhibits a peak as shown in Figurc 4.48 for sapphire (crystalline Al,04) and

4

uy
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MgO crystals. Even though there are no conduction electrons in these wo example
erystals, they nonetheless exhibit substantial thermal conductivity.

PHONONS IN GoAs  Estimute the phonon mean free path in GaAs it room temperature 300 K
and it 20 K from its x, C,, and vy, using Equation 4.68. At reom temperature, semiconductor
dita handbooks list the following for GaAs: & = 45 Wm™' K ', clastic modulus ¥ = 85 GPa,
density p=5.32 g em ', and specific heal capacity ¢, = 03251 K "¢ AU K, v =
W0 Wm 'K ande, =00052JK 'g " ¥ and pand hence vy, do ot change significantly
with temperature compared with the changes in x and C, with lemperature.

SOLUTION

The phonon velocity 1y, from Equation 4.67 is approximately

¥ 85 % 10"Nm* i3
¥\ = = | e =400 ms
p §.32 %10 kgm

Heat capacity perunit volume €, = ¢.p = (351 K "k ')(5320 kg m H=1nmx K
m~". From Equation 4.68,x = 1 C, v fo.
3 (ESWm 'K )

fy= — = - : =20%10"'"m o 2w
Covg (LT3 x 10°JK 'm=)(4000ms ')

We can easily repeat the calculation al 20K, givenx % 4000 Wm' K Tande, = 521K
ke s € =ep® (520K kg )52 kg m Y=2T 2 10K 'm . ¥ and p and
hence oy 4000 w s '), donot change significantly with lemperature compared with x and €.
Thus,

i ) I
W AV ..l L SRR Y 11
Cov (277 % 10UK " (4000 ms Y
For small specimens, the above phonon mean free path will be comparable to the sample size,
which means that £, will actually be limited by the sample size. Consequently & will depend
on the sample dimensions, being smaller for smaller samples, similar to the dependence of the
electrical conductivity of thin films on the lm thickness.

4104 EvLecrricAl, CONDUCTIVITY

Except at low temperatares, the electrical conductivity of metals is primarily con-
trolled by scatiering of electrons around E by lattice vibrations, that is, phonons.
These electrons have a specd vy = (2E¢/m,)'" and a momentum of magnitude
it vy . We know (hat the electrical conductivity o is proportional lo the mean collision
time t of the electrons, that is. o o . This scattering lime assumes that each scatter-
ing process is 100 percent efficient in randomizing the clectron’s momentum, that is,
destroying the momientum gained fron! the field, which may not be the case. If it takes
on average N collisions to randomize the electron’s momentum, and ¢ is the mean
time between the scatiering events, then the effective scattering time is simply Nr and
o o Nr. (1/Nindicates the efficiency of each scattering process in randomizing the
velocity.)
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Figurc 4.49 shows an example in which an electron with an initial momentum p;
collides with a lattice vibration of momentum K. The resull of the interaction is that
the electron’s momentum is deflected through a small angle 8 to py which still has a
component along the original direction x. This is called a low-angle scattering process.
It will take many such collisions to reverse the electron’s momentum which come-
sponds to flipping the momentum along the +x direction to the —x direction. Recall
that the momentum gained from the field is actually very small compared with the mo-
mentum of the electron which is m,vg, A scattered electron must have an energy close
to E because lower energy states are filled. Thus, p, and p; have approximately the
same magnitude p; = p; = m,vr as shown in Figure 4.49.

At temperatures above the Debye temperature, we can assume that most of the
phonons are vibrating with the Debye frequency w,, and the phonon concentration
ng increases as T, These phonons have sufficient encrgies and momenta to fully scat-
ter the clectron on impact. Thus,

1
rrnxrocnphnxT 4.69%]

When T < T}, the phonon concentration follows n, o 7, and the mean phonon
energy Eyy, o T, because, as the temperature is raised, higher frequencies are excited.
However, these phonons have low energy and small momenta, thus they only cause
small-angle scaltering processes as in Figure 4.49. The average phonon momentum
hK is also proportional to the temperature (recall that at low frequencies Figure 4.42a
shows that hw oc AK ). It will take many such collisions, say N, to flip the electron’s
momentum by 2m g from +mvg to ~muvg. During each collision, a phonon of
momentumn kK is absorbed as shown in Figure 4.49. Thus, if all phonons deflected the
electron in the same angular direction, the collisions would sequentially add to 6 in
Figure 4.49, and we will nced (2mv¢)/(hK) number of steps to flip the electron’s mo-
mentum. The actual collisions add #°s randomly and the process is similar to particle
diffusion, random walk, in Example 1.12 (L% = Ne’, where L = displaced distance
after N jumps and a = jump step). Thus,

@me)? 1

“Teky O
The conductivity is therefore given by
1

N
oo Nrox —ox — [4.6%)
th T
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which is indeed observed for Cu in Figure 2.8 when T < Tp over the range where
impurity scattering is negligible.

ADDITIONAL TOPICS
411 BAND THEORY OF METALS: ELECTRON
DIFFRACTION IN CRYSTALS

Arigorous treatment of the band theory of solids involves extensive quantum mechan-
ical analysis and is beyond the scope of this book. However, we can attain a satisfac-
tory understanding through a semiquantitative treatment.

We know that the wavefunction of the electron moving freely along x in space is
a traveling wave of the spatial form ¥ (x) = exp(jkx), where k is the wavevector
k = 2 /) of the electron and #tk is its momentum. Here, 4 (x) represents a traveling
wave because it must be multiplied by exp(— jut), where @ = E/h, to get the total
wavefunction ¥ (x, t) = explj(kx — wt)].

We will assume that an electron moving frecly within the crystal and within a
given encrgy band should also have a traveling wave type of wavefunction,

Yil(x) = Aexp(jkx) [4.70]

where k is the electron wavevector in the crystal and A is the amplitude. This is a rea-
sonable expectation, since, to a first order, we can take the PE of the electror inside a
solid as zero, V = 0. Yet, the PE must be large outside, so the electron is containcd
within the crystal. When the PE is zero, Equation 4.70 is a solution to the Schrodinger
equation, The momentum of the electron described by the traveling wave Equation4.70
is then itk and its energy is

hk)?
IIL,___[ )

, 471
= o [

The electron, as a traveling wave, will freely propagate through the crysial. How-
ever, not all traveling waves, can propagate in the latice. The electron cannot have any
k value in Equation 4.70 and still move through the crystal. Waves can be reflected and
diffracted, whether they are electron waves, X-rays, or visible light. Diffraction occurs
when reflected waves interfere constructively. Certain k values will cause the electron
wave to be diffracted, preventing the wave from propagating,

The simplest illustration that certain k values will resultin the electron wave being
diffracted is shown in Figure 4.50 for a hypothetical linear lattice in which diffraction
is simply a reflection (what we call diffraction becomes Bragg reflection). The electron
is assumed 1o be propagating in the forward direction along x with a traveling wave
function of the type in Equation 4.70. At each atom, some of this wave will be re-
flected. At A, the reflected wave is A’ and has a magnitude A", If the reflected waves
A’ B', and C" will reinforce each other, a full reflected wave will be created, traveling
in the backward direction. The reflected waves A’, B', €', ... will reinforce each other
if the path difference between A', B',C', ... is nA, where A is the wavelength and
n=17273, ... isaninteger. When wave B reaches A', it has traveled an additional
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Figure 4,50 An eleciron wave propagaiion
though a linear lattice.

For cerfain k values, the reflected waves of
sucoessive atomic planes reinforce each ofher,
giving rise 1o a reflected wave iraveling in the
backward direction. The electron cannot then
propagale through the crystal.

distance of 2a. The path difference between A’ and B' is therefore 2a. For A" and B' to
reinforce each'other, we need

2a=nk n=123...

Substituting A = 2m/k, we obtain the condition in terms of &

nm
k= — n=l12,3.... [1.71]
a
Thus, whenever & is such that it satisfics the condition in Equation 4.72, all the re-
flected waves reinforce each other and produce a backward-traveling, reflected wave
of the following form (with a negative k value):

¥ i(x) = Aexp(- jkx) [4.73)

This wave will also probably suffer a reflection, since its  satisfics Equation 4.72,
and the reflections will continue. The crystal will then contain waves traveling in the
forward and backward directions. These waves will interfere o give standing waves
inside the crystal. Hence, whenever the k value satisfies Equation 4.72, traveling
waves cannol propagale through the lattice. Instead, there can only be standing waves.
For k satisfying Equation 4.72, the electron wavefunction consists of waves ¥; and
v interfering in two possible ways to give two possible standing waves:

Vo(x) = Aexp(jkx) + Aexp(—jkx) = A, cm(m) [4.74]
7]

¥o(x) = Aexp(jkx) = Aexp(=jkx) = A, sin(M—J) [4.75)
a

“The probability density distributions |y (x)[* and |, (x)|” for the two standing
waves are shown in Figure 4.51. The first standing wave ), (x) is at a maximum on the
ion cores, and the other ¥ (x) is al a maximum between the ion cores. Note also that
both the standing waves y(x) and ¥, (x) are solutions to the Schrodinger equation.

The closer the electron is to a positive nucleus, the lower is its electrostatic PE, by
virtue of —e? /4n e,r. The PE of the electron distribution in . (x) is lower than that in
V,(x), because the maxima for .(x) are nearer the positive ions, Therefore, the en-
ergy of the electron in ¥ (x) is lower than that of the electron in ¥,(x), or E. < E,.
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It is not difficult to evaluate the energies £, and E.. The kinetic energy of the elec-
tron is the same in both y(x) and ¥, (x), because these wavefunctions have the same
k value and KE is given by (hk)?/2m,. However, there is an electrostatic PE arising
from the interaction of the electron with the ion cores, and this PE is different for
the two wavefunctions. Suppose that V(x) is the electrostalic PE of the clectron at
position x. We then must find the average, using the probability density distribution.
Given that |y, (x)|*dx is the probability of finding the electron at.x in dx, the potential
encrgy V, of the electron is simply V(x) averaged over the entire lincar length L of the
crystal. Thus, the potential energy V. for ¥ (x) is

i
&

| L
V=7 f VOW ) dx = -V, [4.76)
0

where V, is the numerical result of the integration, which depends on k = nor /a orn,
by virtue of Equation 4.74. The integration in Equation 4.76 is a negative number that
depends on n. We do not necd (0 evaluate the integral, as we only need its final nu-
merical result,

Using |, (1) we can also find V,, the PE associated with i, (x). The result is
that V, is a positive quantity given by +V,, where V, is again the numerical result of
the integration in Equation 4,76, which depends on n. The energies of the wave-
functions ¥, and y; whenever k = n fa are

hk)? '
E = (__)_ s s i ok il
2m, a
. (nk)? nm
E.\ = + Vu k iy [4.78]
2w, a

Clearly, whenever k has the eritical values nx /a, there are only two possible val-
ues for the energies E, and E, as determined by Equations 4.77 and 4.78; no other
energies are allowed in between. These (wo crergies are separated by 2V,

Away from the critical k values determined by k = nx/a, the electron simply
propagales as a traveling wave; the wave does not get reflected. The energy is then
given by the free-running wave sofution to the Schridinger equation, that is, Equation
4.1, -

"y (?lk:lf ag

Ei Away from k = — [4.79]
a

(3
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There ore disconfinuilies in the energy at k= %1/ o, where the woves sufler Bragg reflections in the
erysial. For example, there con be no energy vahe for the eleciion between F. and E,. Theselore, £, - E
is on energy gap ol k= 11/o. Away from the crifcal k volues, the E-k behavior iz like thal of o free
eleciron, with E increasing with k as £ = [k} 2m |n o solid, these encrgies foll within on energy bond.

It seems that the energy of the electron increases parabolically with k along Equa-
tion 4.79 and then suddenly, at k = ar /a, it suffers a sharp discontinuity and increases
parabolically again. Although the discontinuities at the critical points k = nm fa arc
expected, by virtue of the Bragg reflection of waves, reflection effects will sull be
present to a certain exient, even within a small region around k = nx/a. The indivi-
dual reflections shown in Figure 4.50 do not occur exactly at the origins of the aioms
al x = a,2a,3, ... Rather, they occur over some distance, since the wave must
interact with the clectrons in the fon cores o be reflected. We therefore expect £+
behavior (0 deviate from Equation 4.79 in the neighborhood of the critical points, even
if & is not exactly nx/a. Figure 4.52 shows the E-k behavior we expect, based on
these arguments. '

*In Figurc 4.52, we notice that there are certain energy ranges occurring al
k = +(nnfa) in which there are no allowed energies for the electron. As we saw pre-
viously, the electron cannot possess an energy between E, and E. atk = 1/fa. These
energy ranges form energy gapé at the eritical points k = L(nx fa).

The range of k values from zero to the first energy gap at k = £(r /o) defines a
zone of k values called the first Brillouin zone, The zone between the first and second
energy gap defines (he second Brillouin zone, and so on. The Brilloun zone bound-
aries therefore identify where the cnergy discontinuities, or gaps, occur along the k axis.

355
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Figure 4.53 Diffroction of Ihe electronin o i S H A
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Diffraction occurs whenever k has o component L—a '_,J 3 5 !
salisfying by = +n/0, ky = 407/ a, or \/
kz = tnm v2fa. In generol terms, diffraction “”?_hm"‘
accurs when k sin f = nm fa. (10) Planes

Electron motion in the three-dimensional crystal can be readily understood based
on the concepts described here. For simplicity, we consider an electron propagating in
a two-dimensional crystal, which is analogous, for example, o propagation in the xy
plane of a crystal, as depicted in Figure 4.53. For certain k values and in certain direc-
tions, the electron will suffer diffraction and will be unable to propagate in the crystal.
Suppose that the electron’s k vector along x is k;. Whenever k; = £nn/a, the
electron will be diffracted by the planes perpendicular to x, that is, the (10) planes.”!
Similarly, it will be diffracted by the (01) planes whenever its k vector along y is
ks = +nx/a. The electron can also be diffracted by the (11) planes, whose separation
is a/+/2. 1f the component of & perpendicular to the (11) plane is ks, then whenever
ks = £nx(~'2/a), the electron will experience diffraction. These diffraction condi-
tions can all be expressed through the Bragg diffraction condition 2d sin@ = n, or
Bragg nn
diffraction. ksinf = — [4.80]
condition d
where d is the interplanar separation and n is an integer; d = a for (10) planes, and
d= a}ﬁ for (11) planes.
When we plot the energy of the electron as a function of k, we must consider the
direction of k, since the diffraction behavior in Equation 4.80 depends on sind. Along
x, at 0=0, the energy gap occurs at k = (nx/a). Along 6 =45° it is al
k = 4nn(v/2/a), whichis farther away. The Ek behavior for the electron in the two-
dimensional lattice is shown in Figure 4.54 for the [10] and [11] directions. The figure
shows that the first encrgy gap along x, in the [10] direction, is atk = x/a. Along the
(1] direction, which is at 45° tothe x axis, the first gap s at k = r+/2/a.

2 W yse Mille indices in two dimessions by dropping the third digit but the some interpretotion. The
IJJM::;HO]::::MMJMHHW e
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When we consider the overlap of the energy bands along [ 10] and [11], in the case
of a metal, there is no apparent energy gap. The electron can always find any energy
simply by changing its dircction. I

The effects of overlap between energy bands and of energy gaps in different di-
rections are illustrated in Figure 455, [n the case of a semiconductor, the energy gap
along [10] overlaps that along [ 1], so there is an overall energy gap. The electron in
the semiconductor cannot have an energy that falls into this energy gap.

The first and sccond Brillouin zones for the two-dimensional lattice of Figure 4.53
are shown in Figure 4.56. The zone boundarics mark the occurrences of energy gaps in
k space (space defined by k axes along the x and y directions). When we look at the
E— behavior, we must consider the crystal directions. This is most convenicntly done
by plotting energy contours in k space, as in Figure 4.57. Each contour connects all
those values of k that possess the same energy. A point such as P on an energy contour
gives the valuc of  for thal energy along the direction OP. Initially, the energy con-
tours are circles, as the energy follows (hk)*/2m, behavior, whatever the dircction of &.
However, near the critical values, that is, near the Brillouin zonc boundaries, E in-
creases more slowly than the parabolic relationship, as is apparen(.in Figure 4.52.
Therefore, the circles begin to bulge as critical k values are approached. In Figure 4.57,
the high-cnergy contours are concentrated in the corners of the zone, simply because
the critical value is reached last along [11]. The energy contours do not continue
smoothly across the zone boundary, because of the energy discontinuity in the E-k re-
[ationship at the boundary. Indeed, Figure 4.54 shows that the lowest encrgy in the sec-
ond Brillouin zone may be lower than the highest cnergy in the first Brillouin zone.

There are two cases of interest. In the first, there is no apparent energy gap, as in
Figure 4.57a, which comresponds 0 Figure 4.552. The electron can have any encrgy

24-
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(o] For the electron in @ metol, there is no apparen! energy gap becouse the second BZ [Brillovin zone] along [10]
overlaps the first BZ along [11]. Bands overlop the energy gups. Thus, the electron con always find ony energy by
changing its direclion.

b} For the electron in o semiconductor, tfere is on energy gop arising rom he overlap of the energy gops along the |10]
ond [11] directions. The eleciron con never have an energy within this energy gop E;.
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Figure 4.56 The Brillouin zones in two dimensions for / :
the cubic latlice
The Brillovin zones identify the boundories where there
ore disconlinuities in the energy [energy gops|

value. In the second case, there is a range of energics that are not allowed, as shown in
Figure 4.57h, which corresponds to Figure 4.55h.

In three dimensions, the E—k energy contour in Figure 4.57 becomes a surface in
three-dimensional & space. To understand the use of such E-k contours or surfaces,
consider that an E~k contour (or a surface) is made of many finely scparated indi-
vidual points, cach representing a possible electron wavefunction y; with a possible
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Figure 4.57 Energy conlours in k space [space defined by k,, k)
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k)

k 110]

Eoch conlour represents the same energy volue. Any point P on the contour gives the values of k; and k, for that energy in

that direction from O. For point P, E= 3 &Y and OP clong [11] s k.

{o] In a melal, the lowes! energy in the second zone (5 eV} is lower thon the highest energy (6 eV] in the first zone. There

is on overlap of energies between the Brillouin zones.

[b In @ semiconductor or an insulalor, there is an energy gap befween the highest energy confour (6 €] in the first zone

and the lowest energy contour {10 V] in the second zone.

energy K. At absolute zero, all the energies up o the Fermi cnergy are taken by the
valence clectrons. In k space, the energy surface, corresponding to the Fermi cnergy is
termed the Fermi surface. The shape of this Fermi surface provides a means of inter-
preting the clectrical and magnetic properties of solids.

For example, Na has onc 3 electron per atom. In the solid, the 3s band is half full.
The clectrons take encrgies up to E ¢, which corresponds to a spherical Fermi surface
within the first Brillouin zone, as indicated in Figure 4.58a. We can then say that all the
valence clectrons (or nearly all) in this alkali solid exhibit an £ = (ak )2/ 2m. type of
hehavior, as if they were free. When an external force is applied, such as an clectric or
magnetic field, we can treat the clectron behavior as if it were ree inside the metal with
4 constant mass. This is a desirable simplification for studying such metals. We can il-
lustrate this desirability with an example. The Hall coefficient Ry derived in Chapler 2
was hased on Ircating the electron as if it were a free particle inside the metal, or

Rﬂ =- "E' [t&ll

€n
For Na, the experimental value of Ry is =2.50 x 107 m* C". Using the density
(097 g em ') and atomic mass (23) of Na and one valence electron per atom, we can
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2nd BZ
lupz boundary

15t BZ boundary
Fermi surface /
-’
\

Ist BZ

fo] i, No,orK  [b) Cu, Ag, or Au () Be, Cd, Zn

Figure 4.58 Schematic skeiches of Fermi surfoces in two dimensions, represenling various materials qualilalively.
(o] Monovolent group IA metals.

[b) Group IB metals.

l¢) Be (Group IA), In, and Cd (Group IB).

{d) A semiconductor.

calculaten = 2.54 % 10% m~* and Ry = —2.46 x 10~"" m’ C™', which is very close
to the experimental value.

In the case of Cu, Ag, and Au (the IB metals in the Periodic Table), the Fermi sur-
face is inside the first Brillouin zone, but it is not spherical as depicted in Figure 4.58b.
Also, it touches the centers of the zone boundaries. Some of those electrons near the
zone boundary behave quite differently than E = (kk)?/2m,, although the majority of
the electrons in the sphere do exhibit this type of behavior. To an extent, we can expect
the free clectron derivations to hold. The experimental value of Ry for Cu is
~0.55 % 107" m® €', whereas the expected value, based on Equation 4.81 with one
electron per atom, is ~0.73 x 107 m’ C~, which is noticeably greater than the ex-
perimental value.

The divalent metals Be, Mg, and Ca have closed outer s subshells and should have
a full s band in the solid. Recall that electrons in a full band cannot respond to an ap-
plied field and drift. We also know that there should be an overlap between the s and
p bands, forming one partially filled continuous energy band, so these métals arg. in-
deed conductors. In terms of Brillpuin zones, their structure is based on Figure 4.55a,
which has the second zone overlapping the first Brillowin zone. The:Fermi surface ex-
tends into the second zone and the comers of the first zone are empty, as depicied in
Figure 4.58¢. Since there are empty energy levels next to the Fermi surface, the elec-
trons can gain energy and drift in response to an applied ficld. But the surface is not
spherical; indeed, near the comers of the first zone, it even has the wrong curvature.
Therefore, it is no longer possible to describe these clectrons on the Fermi surface as
obeying E = (hk)’/2m,. When a magnetic field is applied to a drifting electron to
bend its trajectory, its total behavior is different than that expected when it is acting as
a free particle. The extemal force changes the momentum hk and the corresponding
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change in the energy depends on the Fermi surface and can be quite complicated. To
finish the example on the Hall coefficient, we nole that based oni two valence electrons
per atom (Group 11A), the Hall coefficient for Be should be —0.23 x 10 "mC,
but the measured value is a posilive coefficient of +2.44 x 107 m* C'. Equa-
tion 4.81 is therefore useless. It seems that the electrons moving-at the Fermi surface

of Be are equivalent o the motion of positive charges (like holes), so the Hall effect -

registers a positive coefficient. _
“The Fermi surface of a semiconductor s simply the boundary of the first Brillouin

zone, because there is an energy gap between the first and the second Brillouin zones,
as depicted in Figure 4.55b. In a semiconductor, all the energy levels up to the energy
gap are taken up by the valence electrons. The first Brillouin zone forms the valence
band and the second forms the conduction band.

4.12 GRUNEISEN’S MODEL OF THERMAL EXPANSION

We considered thermal expansion in Section |.4.2 where the principle is illustrated
in Figure 1.18, which shows the potential energy curve U (r) for two atoms sepa-
rated by a distance r in a crystal. At lemperature T, we know that the atoms will be
vibrating about their equilibrium positions between positions B and C, compress-
ing (B) and stretching (C) the bond between them. The line BC corresponds to the
{otal energy E of the pair of aloms. The average separation at T is at A, halfway be-
tween B and €. We also know that the PE curve U(r) is asymmetric, and it is this
asymmelry that leads 10 the phenomenon of thermal expansion. When the tempera-
ture increases from Ty 10 Ty, the atoms vibrate between B' and C' and the average
separation between the atoms also increases, from A to A", which we identified as
thermal expansion. If the PE curve were symmetric, then there would be no ther-
mal expansion.

Since the linear expansion coefTicient A is related to the shape of the PE curve,
U(r), it is also related to the elastic bulk modulus K that measures how difficult it is to
stretch or compress the bonds. K depends on U(r) in the same way that the elastic
modulus ¥ depends on U (r) as explained in Example 1.5.2 Further, A also depends on

the amount of increase from BC 10 B'C' per degree of increase in the temperature. A

must therefore also depend on the heat capacity. When the temperature increases by a
small amount 87, the energy per atom increases by (C, 8T)/N where C, is the heat ca-
pacity per unit volume and N is the number of atoms per unit volume. If C, 87 is large,
then the line B'C" in Figure 1.18 will be higher up on the encrgy curve and the average
separation A’ will therefore be larger. Thus, the larger is the heat capacity, the greater
is the interatomic separation, which means A o« C,. Further, the average separalion,
point A, depends on how much the bonds are stretched and compressed. For large

1’Kisnmdhﬁﬂkdmgehhvdnuduho&;nmmhmupdiﬁprmmIomulfmeuns
o small change in voluma for a given pressure. ¥is o measure of the elosiic change in fhe lengh of the body in
wbmum&dﬁm.h@hmnwlchmmm. Both involve sietching or compressing

381
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amounts of displacement from cquilibrium, the average A will be greater as more
asymmetry of the PE curve is used. Thus, the smaller is the elastic modulus K., the
greater is ; we see that L o €,/ K.

If we were to expand U(r) about its minimum value Uy, at r = r,, we would ob-
tain the Taylor expansion,

U(r) = Upn +alr - !“}2 + m(r - "u)i i

where a; and ay are coefficients related 1o the second and third derivatives of U at ¥
The term (r —r,) 1s missing because we are expanding a series about Uy, where
dU Jdr = 0.The Uy, and the ay(r — r,)? term give a parabola about Uy, which is a
symmelric curve around r,, and therefore does not lead to thermal expansion. [Lis the
ay term that gives the cxpansion because it leads to asymmelry. Thus the amount of ex-
pansion A also depends on the amount of asymmetry with respect to symmetry, that is
ay/az. Thus,

ﬂlcu
P et

ar K

A

The ratio of ay and a» depends on the nature of the bond. A simplified analytical
treatment (beyond the scope of this book) gives X as
TR (482)
"% :
where  is a “constant” called the Griineisen parameter. The Griincisen constant y is
approximately - (r,a3)/(2a;) where r,, is the equilibrium atomic separation, and thus
y represents the asymmetry of the energy curve. The approximate equality simply em-
phasizes the number of assumptions that are typically made in deriving Equation 4.82.
The Griineisen parameter y is of the order of unity for many materigls; experimentally,
y = 0.1 = 1. We can also write the Griineisen law in terms of the molar heat capacity
(. (heat capacity per mole) or the specific heat capacity ¢, (heat capacity per unit
mass). If p is the density, and M, is the atomic mass of the constituent aloms of the
crystal, then '
PCu e

A=3 =Yyp— 1.
yMJ.K }’K [4.83]

We can calculate the Griincisen parameter y for materials that possess different
types of interatomic bonding and thereby obtain typical values for ¥ . This would also
expose the extent of unharmonicity in the bonding. Given the experimental values for
A, K, p and ¢, the Griineisen parameters have been calculated from Equation 4.83 and
are listed in Table 4.6. An interesting feature of the results is that the experimental y
values, within a factor of 2-3, are about the same, at least to an order of magnitude.
Equation 4.8 also indicates that the & versus T behavior should resemble the €, ver-
sus T dependence, which is approximately the case if one compares Figure 1.20 with
Figure 4.45. (K docs not change much with temperature.) There is one notable differ-
ence. At very low lemperatures X can change sign and become negative for certain
crystals, whereas C, cannot.
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Toble 48 The Griinsisen porometer for some selected materiols with different types of

inleralomic bonding

Materkal plgem™ AGICPRTY) KGR e kg IKh vy

Tron (metalli, BCC) 19 121 170 444 0.20
Copper (metallic, FCT) 896 1 140 180 0
Germanimn (covalent) 532 [ 1 m 0w
Glass (covalent-ionic) 145 H n 001 0o
NaCl (ionic) 216 5 bi] il {119
Tellurium (mxcd) 624 182 40 A2 (.1
Polystyrenc (van der Waals) s . 100 3 1200 0ty

a (D Selected Topics and Solved Problems

Selected Topics, e Solved Problems
Hall Effect The Water Molecule
Thermal Conductivily
Thermoelectric Effects in Metals:

Thermocouples

Thermal Expansion (Griingisen's Law)

Average energy £, of an electron ina mietal is deter-
mined by the Fermi-Dirac statistics and the density of
states. I increases with the Fermi energy and also with
the temperature.

Boltzmann statistics describes the behavior of %
collection of particles (e.g., gas atoms) i tems of
their encray distribution. 1t specilies the number of
particles N(E) with given encrgy, through N(E) o
exp(- E/kT), where & is the Bolzmann constant.
The description 15 nonguantumni mechanical i that
(here is no restriction on the number of particles that
can have the same state (the same wavelunction) with
an energy £ Also, it applies when there are only
few particles compared W the numher of possible
sates, so the likelihood of two particies having the
qame state becumes nealigible. This is generally the
case for thermally excited electrons in the conduction
band of a semiconductor, where there are many more
states than electrons. The kinetic energy distribution

of gas molecules it tank obeys the Boltzmann
slalistics.

Cathode is @ negative elecirode. It emits electrons or
atinacts positive charges, tiv is, cations.

Debye frequency iy the maximom frequency of kat
fice vibrations that can existin o particular crystal. 1L
the cut-off frequency for lattice vibrations.

Debye temperature 18 a charactenistic temperature
of o particalar crystal above which nearly all the
atoms are vibrating in accordance with the kinetic
moleculir theory, that s, cacl aton bas an average
energy (potential 4 kinetic) of %7 due o atomic vi-
prations, and the heal capaily is determined by the
Dulong- Petit rule '

Density of states: gt L) 15 the number of electron states
Je k.. wavelunctions, (. Lomome 1 per unit energy
per unil volume, Thus, gtk ok 1s the number of states
in the coerey range £ o (F 4+ dE) per unit volume.
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Density of vibrational states is the number of lattice
vibrational modes per umit angular frequency range.

Dispersion relation relates the angular frequency
and the wavevector K of a wave, In a crystal lattice,
the coupling of atomic oscillations leads to a particular
relationship between w and K which determines the
allowed lattice waves and their group velocities. The
dispersion relation is specific Lo the crystal structure,
that is, it depends on the latiice, basis, and bonding.

Effective electron mass m, represents the inertial re-
sistance of an electron inside a crystal against an accel-
eration imposed by an external force, such as the ap-
plied electric field. IT F., = ¢F, is the external
applied force due to the applied field 7, then the
effective mass m’ delermines the aceeleration a of the
electron by eE, = m'a. This takes into account the
effect of the internal fickds on the mation of the clec-
tron. In vacuum where there are no internal ficlds, m
15 the mass in vacuum m,.

Fermi-Dirac statistics determines the probability of
an clectron occupying a state at an encrgy level £ This
tikes into account that a collection of clectrons must
ohey the Pauli exclusion principle. The Fermi-Dirac
fuaction quantifics this prohability via f{E} = 1/{] 4
expl(E — E, )/ kT |]. where Ey is the Fermi encrpy.
Fermi energy is the maximum enerpy of the clectrons

m ametal at (0K, 3

Field emission is the tunneling of an electron from the
surface of a metal into vacuum, due o the application
of a strong electric field (typically £ > 10 V™),

Group velocity is the velocity al which traveling
waves carry energy. If @ is the angular frequency and

K is the wavevector of a wave, then the group velocity .

v, = dwfdk .

Harmonic oscillator is an oscillating system, for ex-
ample, wo masses joined by a spring, that can be de-
scribed by simple harmonic motion. In quantum me
chanics, the cnergy of a harmonic oscillator is
quantized and can only increase or decrease by o dis-
crele amount b, The minimum energy of a harmonic
oscillator is not zero but 1h (sce zero-point energy).
Lattice wave is a wave in a crystal due lo coupled os-
cillations of the atoms. Lattice waves may be traveling
ot slationary waves. '

Linear combination of atomic orbitals (LCAQ) is a
methad for obtaining the electron wavelunction in the
molecule from a linear combination of individual
alomic wavelunctions. For example, when two H aloms
Aand B come logether, the electron wavefunctions,
based on LCAO, are

Vo = ¥y, (A) + 4, (B)

Vi = Y5 (A4) - i (B)
where ¥, (A) and ), (B) are atomic wavefunctions
centered around the H atoms A and B, respectively, The
¥, and @, represent molecular orbital wavefunctions

for the electron; they reflect the behavior of the elec-
tron, or its probability distribulion, in the molecule,

Mode or state of lattice vibration is a distinct, inde-
pendent way in which acrystal lattice can vibrate with its
own particular frequency @ and wavevector K. There are
only @ finite number of vibrational modes in a crystal.

Molecular orbital wavefunction, or simply molecu-
Lar orbital, is a wavelunction for an electron within a
system of two or more nuclei (e.g.. molecule). A mo-
lecular orbital determines the probability distribution
of the electron within the molecule, just as the atomic
orbital determines the electron’s probability distribu-
tion within the atom. A molecular orbital can take two
clectrons with opposite spins.

Orbital is a region of space in an atom or molecule
where an electron with a iven energy may be found.
An orbit, which is a well-defined path for an electron,
canmot be used Lo describe the whereabouts of the elec-
fron in an atom or molecule because the electron has a
probability distribution. Orbitals are generally repre-
sented by a surface within which the total probability is
high, for example, 90 percent.

Orbital wavelunction, or simply orbital, describes
the spatial dependence of the electron. The orhital is
¥(r, 0, ¢), which dependson n, £, and m,, and the spin
dependence m, s excluded.

Phonon is a quantum of Jattice vibrational cnergy of
magnitude b, where w i the vibrational angular fre-
quency. A phonon has a momentum h K where K is the
waveveetor of the lattice wave.

Seebeck effect is the development of a built-in poten-
tal difference across a material as a result of a temper-
ature gradient. If dV is the built-in potential across a



temperature difference dT , then the Seebeck coefli-
cient § is defined as § = aV/dT. The cocllicient
gauges the magnitude of the Secheck effect. Only the
net Seebeck voltage difference between different mel-
als can be measurcd. The principle of the thermocouple
is bascd on the Seebeck effect.

State is a possible wavefunction for the clectron
that defines its spatial (orbital) and spin propertics,
for example, i, C.me.m,) is a stae of the elec
tron. From the Schridinger equation, cach state cor-
responds to a certain electron energy F. We thus
speak of a state with energy £, state of energy E, or
even an enerpy state. Generally there may be more
than one state ¢ with the same cnergy E.

QUESTIONS AND PROBLEMS

41 Phase of an alomic orbital

QUESTIONS AND PROBLEMS 365

Thermionic emission 15 the emission of electrons
from the surface of o heated metal.

Work function is the minimum energy needed (o free
an electron (rom the metal al a temperature of absolute
zero. It is the energy separation of the Fenmi level from
the vacuum fevel,

Zero-point energy is the minimum encrgy of a har-
monic oscillator ke Even at 0 K. an oscillator in
quantum mechanics will have a finile amount of en-
eray which is its zero-point energy. Heisenberg's un-
cerlamty principle docs not allow a hunnonic oscillator
10 have zevo energy heeause that would mean no un-
certainty i the momentum and consequently an infi-
nife uncertainty in space (g, Ax > h),

@ What is the functional form of 2 v wavelunction (r)? Sketch schenaically the aiomic wine
Tunction ¥, (r) as a Tunction of distance fron e nuclens

b What is the total wavefunction ¥y, (r.r)?

¢ What is meant by two wavelunctions Wy, (A} and Wy (8) that are oul of phise?
d Skewh schematcally the two wave lunctions Wi, (A ) and Wy LRl ome instam

42 Molecular orbitals and atomic orbitals Consider a linear chain of lour ientical sloms epresciting
i hypothetical molecule. Suppose that each atome wavelunction i it 1s wavelmerion, This system of
identical atoms has 2 center of symmetry O with respect b the center of the molevule (midway between
the second and the thind atom), and all molecubar wavelunctions must be esther symnsetric o utisym-

metne about C.

a  Using the LCAD principle, sketeh the possible molocular orbitals.

b Sketch the protability distribations ¢

¢ I more pockes i the wavelunction lead to preater energies, oler the cnenics of the molecular orbitils.
Note: The electron wavefunctios. aml the related prohability distnbations, in a simple patential cnergy
well thaatase shown i Figure 315 can be wsed as a rough grsade woward finding the appropriate molecu-
Far wavelunctions in the four-atom symmetric malocule, For cxample, if we were o smooth the clocton
potential energy m the four-atom makecule min s comstant potential encrgy, it is, generte i oential
encry well, we should be able 1 miodify o distort, without lipping, (e wolecular orbitals to somewhat
resemble iy 10 e sketched in Figure 315, Consider absio that U mumber of nodes mcreases [rom none

T gy tothree for gy in Fagure 315,

43 Diamond and tin  Germamium, silicon, and diamond have the same crystal stucire, thit of dianond,
Bonding in cach case ivalves sp hybridization. The bonding encrgy decreases as we go from C 1o 51

10 Ge, asnoted in Table 4.7.

a What would you cxpeet for the handgap of diamond” How does st compar: with the experimental

valoe of 5 5¢V?

b Tinhas a telragomal crystal structire, which mukes 1 different than i grosp members, diamond,

silicon, and germamimmn.

1 I it a metal or a semiconducior?

2. What expenmcats do you thiek would expose s semiconductor properies?
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Table 4.7
Property Dianiond Silkoon Gemamiom T
Melting temperature, °C 800 1417 97 m
Cavalent radius, nm nom 01 nin 1146
Bond cnergy, ¢V 160 1.4 1.7 12
First ionization energy, eV 112 £15 188 133
Bandgap, eV y 112 067 ;|

44

4.5

‘46

A7

4.8

49

Compound [1-V Semiconductors  lndnim as an elensent is @ metal. 1 has a vadency of 11 Sh as an
element s mctal ad has a valeney of ¥ InSb i a scoiconductor, with each aton boading 1 four
netghbors, just like m sihicon. Explan how this i possible and why InShos o sermeonductin and o a
metal alloy. (Comsider the clectronie structure and sp* hybridization or cach atom )

Compound H-VI semiconductors  CdTe is a semiconductor, with cach atom honding 1o lour neigh-
hors, just like m silicon. In wrms of covalent bonding and the positions ol ('d and Te m the Periodic
Table, explain how this is possible. Would you expect the bonding CdTe o have more wonic character
than that i 11V semiconducton?

Density of states for u two-cimensional electron pas  Consider a two-dumersional clectron gas in
which the electons are restiicted w move [recly within @ suie v a” i the vy phane. Following the
procesdure in Section 4.3, show that the densaty of states g(F ) 1 constant (imlependent of emtgy)

Fermi energy of Cu - The Fermi encrgy of clectons in copper at oom femperature is 70 eV, The clec-

teon drifi mobility i copper, from Hall elfect measurements, is 13 an’ VgL

. What is the speed g of conduction electrons with energies around Er in copper” By hiw many
times 1s thas lareer thn the average (hermal speed rgem) of electrons. o they hehaved ke an wdeal
s (Maxwell-Boltaman statistics /2 Why 1s e much larger than s

b What s the De Broglic wavelength of these eleetrons? Will the electons pet diffracted by the fat-
tice planes in copper, given tat iteqlmar sepuation in Cu = 209 K iSolution guide: Diffrac-
tion of waves oceurs when 2d sind? = &, which 1 the Bragg conditon. Find the relationship be-
tween & amd o that resulis ising - | amd hence m diffraction.)

e Caleulats the mean free path of electons sy s comment.

Free eloetron model, Fermi energy, and density of states  Na and Au both are valency | metals, that
15, each atom domates one electron 1o the sea of conduction electrons. Calculite the Fecmi energy (V)
of esch at 300K and (0 K. Caleulaie the mean speed of all the conduction elections and also the specd of
clectrons at £ for each mictsl, Calculate the density of stales i states pereV em ' at the Feni energy
and alsu al the center of the hand, 1o be tikenat (Ey + ®)/2 (See Table 4 1 lor )

Formi encrgy and electron concentration  Consider the metals in Table 4.8 from Groups 1 11, amd 11
it the Periodic Table, Calculate the Ferm energies st ahsolule zero, and compare the values with the ex-
perimental values, Whit is your conclusion?

Table 4.8

Ex(eV) ExleY)
Group My Density (g cm ) | Calculated] [Experiment]

Cu

Al

[ £3.55 896 . - 65
i 65.38 1.4 — 1o
1 Hi 70 - 18
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410  Temperature dependence of the Fermi cnergy
o Given that the Fermi energy for Cuis 70V an absolute zero, calculate the £y a1 300 K, What is
the percentage change in £y anl whitk 15 your conelusion”
b Given the Fermi enerzy for Ca at absolute oo, caleulate the average enctgy and mean speed per
conduction cleciron atabsoluie zero umd 3K K, and comment.

411 X-ray emission specieum from sodium  Steuciore of the Na atom is [Ne[3s ! Figure 4.5 shows the
formation of the 3r and 3p enerey hands n Na as a function of inernuckar separation. Figure 4.5%
shiows the X-ray ensission spectum (called the £-band) from crystalling sodium in the soft X-ray ringe
as explamed w Example 4.0
o From Figure 4 39, estimae the nearcst icighbor equilibrium sepasation between N adons in the
erystal if vome clectsons in the 3 band spill over mto the states i the $p band.

b Faplain the ocgin of the X-ray enssion hand i Figare 4,59 and the reason for cathng it the
1.-haml

¢ Whatis the Fermi energy of the cloctrons in Na from Figure 4.59h?

o Taking the valency of Na 1o be | what is the expected Fermi energy and how does it conmpare with
that in part (¢

Energy (eV)
in
L

Intensity of emitted radiation

-10 d T ¥ T J — T T
0 (15 I 1.5 25 26 27 B8 B W N
Inlernuclear distance (nm) Photon energy (V)

fal bl

Figure 4.59
a) Energy band formation in sodium.

b} L-emission band of X-rays from sodium.
| SOURCE: [bj Dota extracted from W. M. Codt and O H Tombouhan, Phys. Rex, 59, 1941, p. 381

412 Conductivity of metals in the free clectron model  Consider the general expression [ur the conduic-
tivity of mictals in teems of the densaty of states gE ) at Ep given by

n= !14"31'; rglEs)
Show thar within the free cloctran theory, this reduees o = ¢ o fun the Drude expression

413 Mean free path of conduction electrons in a metal - Show that withim the frec clectron theory, the

mean free path [ and conductivity 7 are related by e fee path
T and condutivity
' = TR = 00 “a i the free
eleciron model

Calculate £ for Cuwand Au. given cach metal s restsivity of 17 02 mand 220, respectively, and that
each has a vakency of 1, We are used 1o seing o & n, Can you explain why o ocn™*?
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Low-temperature heal capacily of metals  The heat capacity of conduction electrons in a metal is
proportional to the temperature. The overall heal capacity of @ metal is detcrmined by the athice heat ca-
pacity, cxcept at the fowest iemperatures. I 8E, 15 the imcrease in the total cnergy of the conduction clec-
trons (per unit volume ) and &1 is the increase in the temperature of the metal as a result of heat addition,
FE; has been calculated as follows:

L

2
E= [Egtfrm:w; = B0+ (:)

0

nikr)?

Era

whete £y (0)is the tolil encrgy per upit voluine at 0K n is the concentration vl conduetion electrons. and
Fp gy i the Fermi energy st 01K, Show that the heat capacity per unil volume due 1o conductinn clectrons
m the free electron model of metals is

at [ okt
Gz ( : )I':}-T [4.84)
1 \Ego
where ¥ = (1} /2)(nk” JE ). Calculate €, for Cu, and then using the Debye equation for the laltice
hcat capacity. find C, for Cuat 10 K. Compare the two values and comment. What is (he companson al
room temperature” (Nole: Cogume = Cigolar {2/ M), where p s the density in g cm } Cotame 16 0
TK Vem ¥ and My isthe atomic mass in g mal ")

dary emission and ph ltiplier tubes  When an energeiic (high velocity) projectile elec-
tron collides with a material with a low work function, it ean cause electron emission (rom the surface.
“This phenomenon is called secondary emission. 1t is frunfully utilized m photomulplier wbes as il-
Tusirated in Figure 4.60). The wube is evacuated and has 1 photocathode for receiving phutons as a signal.
An incoming photon causes photoemission of an electron from the photocathode material, The electron
1% then aceelerated by o positive voltage applied 10 an electmde called o dynode which has a work fune-
tion that easily allows secondary enussion, When the accelerated electron strikes dynode Iy, it can
release several electrons. All these electrons, the ariginal and the secondary electrans, are then acceler-
ated by the more positive voltage apphed 1o dynode B, On mpact with 1y, further electrons are re-
leased by secondary emission. The secondary emission process continues il each dynode stage until the
fmal electrode, called the anode, is reached whereupon all the cloctrons are collected which resulls ina
signal. Typical apphications for photomultiplier tubes are in Xeray and muclear medical instruments

Photon
Photocathode
D,
Phatomultiplier tubes
| SOURCE: Courtesy of Homamatsy.
=1 D
0y 4
Vacuum — r +
tube
Anode Sigoal

Figure 4.60 The pholomuliplier lube.
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QUESTIONS AND PROBLEMS

(X-ray CT scanner, positron CT scanncr, ganima camera, eic.), fadialion measuring mstruments e.g.
reddon counter), X-ray diffractometers, and radiaion measurcment in high-¢nergy physies research.

A particular photomultipliet tube has the following properties. The pholocathode is made of a
semiconductor-type matesial with E, = | eY, anelectron affinity y of 0.4 ¢V, and a quantum efficiency
of 20 percent at 400 mm. Quantun ¢fficiency is defined as the number of photoemitied electrons per
absorhei! photon. The diameter of the photocathode 15 18 ma. There are 10 dynode electrodes and an ap-
plied voltage of 1250 V between the photocathode and anode. Assuing that this voltage is cqually dis-
Iributed among all the electrodes
4 What is the longest threshold wavelength for the phutotube?

b Whatis the meximum kinetic energy of the einitted election if the photocathode 1s illuminated with

400 nm radiation”

(. What is the cmission current [rom the photcathode at 400 nm illumination per unit inensity of
radiation?

4 Whatisthe KE of the eleciron s it strikes the first dynode electrode?

¢, Ithas heen found that the b bas a gain of 10” electrons per cident photon. Whatis the average
number of secondary electrons released at each dynode”

Thermoeleetric effects and Ky - Consider a thermocouple pair that consists of gold and alumunun,
One junction is at 100 C and the other is at 0 C. A voltmeter (with a very luge input resistance) 1 -
serted into the aluninum wire, Use the properties of Au and Al in Table 4.3 to estimate the el regis-
fered by the voltmeter and identify the positive end.

The thermocouple equation  Althouigh inputiing the measured emf for V in the thermocouple equa
ion V = aAT + MATY leads (v a quadratic equation, which in principle can be solved for AT, in
general AT is related v the measured il via

AT =¥ +mV 4V 4

with the cocfTicients ay. iy, etc.. determined for cach pair of TCs. By carrying out a Taylor's expansion
of the TC equation, find the first two coefficients ay and oy, Using an cuf table for the K-type thermie-
couple or Figure 4.33, evaluate o) and .

Thermionic emission A vacuuii tube 15 required to have a cathode operating at 800 C and providing
an emission {saturation) eurment of 10 A, What should be the surface arca of the cathade for the two -
tertals in Table 4.97 What shookd be the operating temperalure for the Th on W eathude, if it it to have
he same surfuce anea as the ux&-m_m cathods?

Toble 4.9

B (Am2K?) @ feV)
Thon W S ety 26
Oxide coating 100 1

Field-assisted emission in MOS devices Metal-oxide-semiconductor (MOS) transistors in micio-
clectronics have 2 metal gate on an Si0; insulating Lager on the surface of a doped $i crystal. Consider
this as a parallel plite capacitor. Supposs the gaie is an Al clectrode of area 50 jtm x 50 am and has a
voltage of 10 V with respect o the i crystal. Consider two thicknesses forthe Si0y. (a) 100 A and (b)
40 A, where (1 A = 10~ m). The work function of Al is 4 2 eV, but tis refers 10 elecironemission inla
vacuum, whereas in this case. the clectron is emitted into the oxide. The poiential energy barrier ®y be-
tween Al and Si0; is about 3.1 ¢V, and the field-emission current density is given by Equaiion 4.46a and
b. Calculate the field-emission current for the two cases, For simplicily, take m, to be the electron mass
in free space. What is your conclusion?
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CNTsand Neld eniission  The electric Field 2 the tip of i sharp eaitier is much greater than the “applied
fichd, "L, The spyeficd fickd is simply defined as Vs /d where df is the distance from the cathode tip o the
gate or the prid, it reprosents the average nearly unitomi ikl that would exist il the tip were replced by 4
fhat surface o that the cathode and the gate woubd almost constitue a parallel plate capeciior, The ip ex-
periences an ellective fiekd £ thatis much greater than 2, which is expressed by a field enhancement fac-
for f# that depends vn |I|c gwmehy of the cathode-gate contier, and the shape of the emitier: & = £,
Further, we can tike ID oz @2 Fiaguution 4.46. The (inal expression for the lield-ciuission current
densaty then becomes

15ty (104 644 « 10707

L B (m‘?? J“p( B, ] (a8
where @ i in <V, For a particular ON'T emitler, @ = 49 ¢V, Estinnte the applied field required 10
achieve a field-emission cureent density of 100 mA et i the absence of fiehd calancement (= 1)
and with a field enbancement of # = 800 iypieal value for a ONT ennter).

Nordhcim-Fowler lickd emission in an FED - Table 4,10 shows the results of 1V measurements on i
Motorola FED microeniticr, By a suitable plot show thal the 1=V follows the Nordbeim-Fowler s
sion chancienstics

Table 4.10 Tests on o Molorola FED micro field emitier

TeV) M0 42 M 4% @ S 5 S8 562 2 604
i A) 040 214 940 204 M1 6 938 1425 202 209 36
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Lattice wavies andd heal capacily

a Comsider an salunivgm sample, The acarest sepitation 28 (2  atomie rdius) hetween the Al-Al
atoms i the crvstal s D286 wn Takang @ o be 2K, amd given the sound velocty in Al us
S0 ms | okl the force constant £ in Eguation 4066 Use the group veloeity v, from the
actual espersion selation, Eqguation 455, w caleulaie the “sound velocity™ at wavelengihs of
A = b, 1 gem, ond 1 What is volor conclusion’!

b Al B o Debye temperature of 394 K. Calewlae ats specific heat a0 30°C (Darwin,
Australin) anel ot =0 C (January, Resolute Nuava, Canada).

o Calowlaie the specific hear capacity of s gemmnium crystal at 25 °Cand compare it with the ey
perimental vailug in Table 2.5,

Specilic heal capaity of GaAs and InSh

o The Debye temperature T of GaAsis 344 K. Caleuliue its specfic heat capaity al 300 K anal #l
nc

B Faor laSh, Ty = 203 K. Calculae the room temiperiture specilic Ileallumm:ll:rn!'InShmMI compie
it with the value expected from the Dulong-Petit rule (7 > T).

Thermal conductivity

o Given that silicon bas 2 Young's modulus of about 110 GPaand adensity of 2.3 g cm | calculaie
the man frec: path of phonons in Si at wom temperatute

b Dramond has |I|: suttte crystal strueture as 8i but has a very lage thermal comductivity, about
1006 W m K- room temperature. Given that.diamwond bas a specific heat capaciy ¢, o
(500K g Young's moeulus ¥ of 830 GPa, and edensity pof 0.35 g em ' calculate the mean
frec paih of phoaons in diamond

o GaAs has a thenmal conductivity of 20Wm 'K a 100 K and B0 W ! K- 200K Gl
culate its thermal conductivity at 25 “C and conipare with the experimenial value of 44 W m!
KUt Takew oo T " i the temperatare region of interest; sov Figure 4.48)
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*4.25 Overlapping hands  Consider Cuand Ny will thear density of states as schematically sketched in Fig-
e 4 60, Hoth Bave overkappmg 3 and 4y hands, but the 3 band is very namow compared 1o the s
asid, I the case of Co the kand is ull, shensas in Ni, it s only partially filled
A Cu, o the ehectrons in the 3 bund contribute W electrical conduction? Eaplan.

B 10 N o electrons in ot bands consibae o canduction” Explain.

v Daclectms Bave the same eflective mass m the two bands” Explan,

o Canan elogiron in the 4o band with energy around g beeomwe seattered into the 3 band asa re-
satlt of 2 seattenng process™ Consider hath metals.

¢ Scalterng of clectrons from the 45 band 1o the 3 band and vice versa can be viewed as dn adduional
seatierimg process. How would you expeut the ressstivity of Nito compare with that of Cu, even
though Ni has two valence electrons and nearly the same density s Cu? lnwhich case would you cx-
et stronger teniperiture depeidence for the resistmty?

3d
qE) 3 gtk
Cu Ni
45 . % ds . 4
. - h\f‘ — \%K: P
EF E}.

Figure 4.61 Density of stotes and electron flling in Cu ond Ni.

*426  Overlapping bands at £y and higher resistivity - Figure 401 shows the density of states for Cu (or
Agpand Ni for Pd). The o bund in Cus filled. smd anly clectons at E g the s band make a contnba-
o 1o the conductivity. In N, on the other hand, there are clectrons o £y hoth in the s and of hands. The
ol tand is marrow compared with the s band, and the cledron’s effective mass in this o hand is large: for
situplicity, we will assume n? s “infinite” in this hand. Consequenily, the d-band electrons cannot be
accelerated by the fickd tinfinite an!). hirve o neghgible drift mobility, and make no contribution 1o fhe
condusctivity. Eloctrons i the « band can become scatiered by phonons into the o band, and hence b
come neatively immaobile unil they are scatiered back into the s band when they can dnift again. Con-
sader Ni and one particular conduction electron at Ep starting i the s band, Sketch schemarically the
ngnitude of the veloaty gamed [r, — | from the field £, as a fonction of time for 10 scattering
evens: py und i, are the instantancous and mitial velocities, and jv, - u, | increases linearly with e,
1 e eheetron aceeleraies in the s band and then drops 1o zero upon scatiering, If 7, 15 the mean time
foor + o 5-hand scattering, Tg i for s-hand 1o d-band scatiering, 7y, is for d-band o +-hand scatering,
v the following sequence of 10 events m vour sheteh” G, Toes Tt T T Teds T T T T
Wit wouhd a simibar shetch ook like fog Cu? Suppose that we wish o apply Fouation 427, What does
@by dand o reprosent Wt is the most importan factor thal makes Ni more resistive than Cu? Con-
swher Matthiessen's nabe. | Note: There are b clectron spin reluted elfects on the resistivity of Ni, bui
T implicaty these have heen neglecied |

427 Grineisen'slaw  Aland Co both have metallic bonding and the same erystal structore. Assuming that
the Cinmeasen's parameter  fon Al s the sanne as that for Cu, y =023, estimate the lincar expansion
cocllicient A of AL given that its bulk modulin & — 75 GPa, o, = 901K 'y Landp =27 gem™,
Compare vour estinate with the expermental vilue of 2.5 % 10 K !



First peinit-contact transistor invented af Bel Labs
| SQURCE: Courtesy of Bell Lobs

The thres invenlors of the Fransisior Wilkam Sl'm [sected), John Bordeen (leh], and Walter Brafioin

lright] in 1948, the theee invantors shared the
| SOURCE: Courtesy of Bell Lobs.

prize in 1956.
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Semiconductors

I this chapter we develop a basic understanding of the properties of intrinsic and
extrinsic semiconductors. Although most of our discussions and cxamples will be
based on Si, the ideas are applicable to Ge and to the compound semiconductors such
as GaAs, InP, and others. By intrinsic Si we mean an ideal perfect crystal of Si that has
no impurities or crystal defects such as dislocations and grain boundaries. The crystal
thus consists of Si atoms perfectly bonded to each other in the diamond structure. At
temperatures above absolute zero, we know that the Si atoms in the crystal lattice will
be vibrating with a distribution of energies. Even though the average energy of the vi-
brations is at most 3kT and incapable of breaking the Si-Si bond, a few of the lattice
vibrations in. certain crystal regions may nonetheless be sufficiently energetic to “rup-
ture™ a 8i-Si bond. When a Si-Si bond is broken, a “free” electron is created that can
wander around the crystal and also contribute to electrical conduction in the presence
of an applied ficld. The broken bond has a missing electron that causes this region to
be positively charged. The ydcancy left behind by the missing electron in the bonding
onbital is called a hole. An electron in a neighboring bond can readily tunnel into this
broken bond and fill it, thereby effectively causing the holé th be displaced to the orig-
inal position of the tunneling electron. By electron tnneling from a neighboring bond,
holes are therefore also free to wander around the crystal and also contribute to elec-
trical conduction in the presence of an applied field. kn an intrinsic semiconductor, the
number of thermally generated electrons is equal to the number of holes (broken
bonds). In an extrinsic semiconductor, impurities are added to the semiconductor that
can oontribute either Bxcess electrons or excess holes. For example, when an impurity
such as arsenic is added to Si, each As atom acts as a donor and contributes a frec elec-
tron to the crystal. Since these electrons do not come from broken bonds, the numbers
of electrons and holes are not equal in an extrinsic semiconductor, and the As-doped Si
in this example will have excess electrons. It will be an n-type Si since efectrical con-
duction will be mainly due to the motion of electrons. I is also possible to obtain a
p-type Si crystal in which hole concentration is in excess of the electron concentration
due to, for example, boron doping.

25

3
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CHAPTER 5 » SEMICONDUCTORS

5.1  INTRINSIC SEMICONDUCTORS

5.1.1 SiLicon CrySTAL AND ENERGY BAND DIAGRAM

The electronic configuration of an isolated Si atom is [Ne3sp?. However, in the
vicinity of other atoms, the 35 and 3p energy levels are so close that the interactions
resull in the four orbitals y (35), y (3p.), ¥(3p,),and (3 p,) mixing together to form
Jour new hybrid orbilals (called yy,) that are symmetrically directéd as far away from
each other as possible (toward the corners of a tetrahedron). In two dimensions, we can
simply view the orbitals pictorially as in Figure 5.1a. The four hybrid orbitals, yyy,,
each have one clectron so that they are hall-occupied. Therefore, a Y orbital of one
Si atom can overlap a y, orbital of a neighboring Si atom to form a covalent bond
with two spin-paired electrons. [n this manner one Si atom bonds with four other Si
atoms by overlapping the half-occupied y,, orbitals, as illustrated in Figure 5.1b.

Vhyb orbitals

Valence f\
electron 4

Si ion core (+4e)
)

Electron energy

E4y
Condiction bend ()
Emply of electrons 2t 0 K.

E ‘ '
Band gap = ‘Ea

E" O
LRy 10N

YLK
I RN R
RS Illlllll_J
prrpienn
I XX RENINENT)

TR i RN nin

Figure 5.1

o] A'simplified wo-dimensional illustration of o Si atom with four hybrid orbitals . Each orbitol
has one electron.

{b) A simphfied two-dimensional view of a region of the Si crystal showing covalent bonds.

i¢) The energy band diagram af absolute zero of temperature.
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A

Figure 5.2 A twodimensional picloriol view of the Si
crystal showing covalent bonds as two lines where each
line is @ vulence eleciron,

Each Si-Si bond corresponds to a bonding orbital, -5, obtained by overlapping two
ncighboring yy, orbitals. Each bonding orbital (y ) bas two spin-paired electrons and
is therefore full. Neighboring Si atoms can also form covalent bonds with other Si
aloms, thus forming a three-dimensional network of Si atoms. The resulting structure
is the Si crystal in which each Si atom bonds with four Si atoms in a tetrahedral
arrangement, The crystal structure is that of a diamond, wl‘iil:h was described in
Chapter 1. We can imagine the Si crystal in two dimensions as depioicd in Figure 5.1b.
"The electrons in the covalent bonds are the valence electrons. g

The energy band diagram of the silicon crystal is shown in,Figure 5.1c.! The
vertical axis is the electron energy in the crystal. The valence band (VB) contains
those electronic states that correspord to the overlap.of bonding orbitals (¥5).
since all the bonding orbitals (yg) are full with valence electrons in the crystal,
the VB is also full with these valence electrons at a temperature of absolute zero.
The conduction band (CB) contains electronic states that are at higher energies,
those corresponding to the overlap of antibonding orbitals. The ‘CB is separated
from the VB by an energy gap Ey, called the bandgap. The energy level E, marks
the top of the VB and E, marks the bottom of the CB. The energy distance from E,
{0 the vacuum level, the width of the CB, is called the electron affinity x. The gen-
cral energy band diagram in Figure 5. 1c applies to all crystalline semiconductors
with appropriate changes in the energies. .

The electrons shown in the VB in Figure 5.1c are those in the covalent bonds be-
tween the Si atoms in Figure 5.1b. An electron in the VB, however, is not localized to
an atomic site but extends throughout the whole solid. Although the electrons appear
localized in Figurg 5.1b, at the bonding orbitals between the Si atoms this is not, in fact,
true. In the crystal, the clectrons can tunnel from one bond to another and exchange
places. If we were to work out the wavefunction of a valence electron in the Si crystal,
we would find that it extends throughout the whole solid. This means that the electrons
in thé covalent bonds are indistinguishable. We cannot label an electron from the start
and say that the elettron s in the covalent bond between these two atoms.

We can crudely represent the silicon crystal in two dimensions as shown in
Figure 5.2. Each covalent bond between Si atoms is represented by two lines corre-
sponding to two spin-paired electrons. Each line represents a valence electron.

| ! The formation of ensrgy bands in the siicon crystal was described in detail in Chapler 4
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5.1.2 ELEcTRONS AND HOLES

The only empty electronic states in the silicon crystal are in the CB (Figure 5.1c). An
electron placed in the CB is free to move around the crystal and also respond o an
applied electric field because there are plenty of neighboring empty energy levels. An
electron in the CB can casily gain energy from the field and move to higher energy lev-
els because these states are empty. Generally we can treat an electron in the CB as if it
were free wilhin the crystal with certain modifications to its mass, s explained later in
Section 5.1.3,

Since the only empty states are in the CB, the excitation of an electron from the
VB requires a minimum energy of £,. Figure 5.3a shows wha happens when a pho-
ton of energy hv > E, is incident on an electron in the VB: This electron absorbs the
incideat photon and gains sufficient energy to surmount the cnergy gap E  and reach
the CB. Consequently, a free clectron and a “hole,” corresponding to a missing elec-
tron in the VB, are created. In some semiconductors such as Si and Ge, the photon ab-
sorption process also involves lattice vibrations (vibrations of the Si atoms), which we
have not shown in Figure 5.3b.

Although in this specific example a photon of energy hv > E, creates an electron-
hole pajr, this is not necessary. In fact, in the absence of radiation, there is an electron-
hale-generationprocess going on in the sample as a result of thermal generation. Due
to thermakeriergy, the atoms in the crystal are constantly vibrating, which corresponds
to the bonds befween the Si atoms being periodically deformed. In a certain region, the
atoms, at some instant, may be moving in such a way that a bond becomes over-
stretched, as pictorially depicted in Figure 5.4. This will result in the overstretched
bond rupturing and hence releasing an electron into the CB (the electron effectively

Electron energy

Figure 5.3

{a) A photon with an energy greater than E; con excile on electron from the VB to the CB,
{b) When a pholon breaks a Si-Si bond, a free eleciron and o hole in the Si-Si bond
ore crecied.
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Figure 5.4 Thermal vibrations of oloms con breck
bonds and thereby create eleciron-hole pairs.

becomes “free”). The empty electronic state of the missing electron in the bond is what
we call a hole in the valence band. The free electron, which is in the CB, can wander
around the crystal and contribute to the electrical conduction when an electric field is
applied. The region remaining around the hole in the VB is positively charged because
a charge of —e has been removed from an otherwise neutral region of the crystal. This
hole, denoted as h*, can also wander around the crystal as if it were free. This is be-
cause an electron in a neighboring bond can “jump,” that is, tunnel, into the hole to fill
the vacant electronic state at this site and thereby create a hole at its original position.
This is effectively equivalent to the hole being displaced in the opposite direction, as
illustrated in Figure 5.5a. This single step can reoccur, causing the hole to be further
displaced. As a result, the hole moves around the crystal as if it were a free positively
charged entity, as pictured in Figure 5.5a to d. Its motion is quite independent from that
of the original clectron. When an electric field is applied, the hole will drift in the di-
rection of the field and hence contribute to electrical conduction. It is now apparent
that there are essentially two types of charge carriers in semiconductors: elecirons and
holes. A hole is effectively an empty electronic state in the VB that behaves as if it were
a positively charged “particle” free to respond to an applied electric field.

When a wandering electron in the CB meets a hole in the VB, the electron has
found an empty state of lower energy and therefore occupies the hole. The electron
falls from the CB to the VB 1o fill the hole, as depicted in Figure 5.5¢ and f. This is
called recombination and results in the annihilation of an electron in the CB and a
hole in the VB. The excess energy of the electron falling from CB to VB in certain

“semijconductors such as GaAs and InP is emitted as a photon. In Si.and Ge the excess
energy is lost as lattice vibrations (heat).

[t must be emphasized that the illustrations in Figure 5.5 are pedagogical pictorial
visualizations of holc motion based on classical notions and cannot be taken too
seriously, as discussed in more advanced texts (see also Section 5.11). We should
remember that the electron has a wavefunction in the crystal that is extended and not
localized, as the pictures in Figure 5.5 imply. Further, the hole is a concept that corre-
sponds to an empty valence band wavefunction that normally has an electron. Again.
we cannot localize the hole to a particular site, as the pictures in Figure 5.5 imply.
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Figure 5.5 A pictorial lustrofion of a hole in the valence bond wandering oround the crystol due fo the funneling
of electrons from neighboring bonds.

5.1.3  ConDUCTION IN SEMICONDUCTORS

When an electric ficld is applied across a semiconductor as shown in Figure 5.6, the
energy bands bend. The total electron energy £ is KE + PE, but now there is an addi-
tional electrostatic PE contribution that is not constant in an applied electric field. A
uniform electric field %, implies a linearly decreasing potential V (x), by virtue of
(dV/dx) = —E,, that is, V = —Ax + B. This means that the PE, —eV (x), of the
electron is now eAx — B, which increases linearly across the sample. All the energy
levels and hence the energy bands must therefore Lilt up in the x direction, as shown in
Figure 5.6, in the presence of an applied field.

Under the action of ,, the electron in the CB moves to the leﬂ and immediately
starts gaining energy from the field. When the electron¢bllides with a thermal vibra-
tion of a Si atom, it loses some of this energy and thus “falls” down in energy in the
CB. After the collision, the electron starts to accelerate again, until the next collision,
and so on. We recognize this process as the drift of the electron in an applied field, as
illustrated in Figure 5.6. The drift velocity vy, of the electron is 12, £, where g, is the
drift mobility of the electron. In a similar fashion, the holes in the VB also drift in an
applied field, but here the drift is along the field. Notice that when a hole gains energy,
it moves "down” in the VB because the potential energy of the hole is of opposite sign
to that of the electron.
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T —
Electrostatic PE(x)

Electron Energy

= CB =
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ﬁ VB . Figure 5.6 When on elechic field is

- = applied, elecirons in fhe CB ond holes in the
——————VB Vﬂcnntilih and contribute 1o the
e P

, : {o) A simplified ilustration of drif in £,
| H {b) Applied field bends the energy bands
x=0 x=L * sirce the electrosiatic PE of the electron is
—aV]x) ond V]x) decreases in the direction of
] ) %,, whereas PE increases.

Hole energy

Since both electrons and holes contribute to electrical conduction, we may write
the current density J, from its definition, as

T =envy + epuam [5.11

where n is the electron concentration jn the CB. pr s the hole concentration in the VB,
and vy, and vgy are the drift velocities of electrans and holes in response 1o an applied
electric field Z,, Thus,

Ve = W E; and Uy = PyEc [5.2]

where jt, and ju; are the electron and hole drift mobilities. In Chapter 2 we derived the *
drift mobility 4, of the electrons in a conductor as

e = — [5.3]

where , is the mean free ime between scatering events and m. is the electronic mass.
The ideas on electron motion in metals can also be applied to the electron motion in the
CB of a semiconductor to rederive Equation 5.3. We must, however, usc an effective .
mass m_ for the electron in the crystal rather than the mass m, in free space. A “free”
electron in a crystalis not entirely free because as it moves it interacts with the potential
energy (PE) of the ions in the solid and therefore experiences various internal forces.
The effective mass m? accounts for these internal forces in such a way thal we can relate
the acceleration a of the electron in the CB to an external force Fey (e.8., =¢L,) by
Foy = m’a just as we do for the electron in vacuum by Fey = mcd. In-applying the
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Feu = ma type of description to the motion of the clectron, we are assuming, of course,
that the effective mass of the electron can be calculated or measured experimentally. It
is important to remark that the true behavior is governed by the solution of the
Schrodinger equation in a periodic lattice (crystal) from which it can be shown that we
can indeed describe the inertial resistance of the electron to acceleration in terms of an
effective mass m_. The effective mass depends on the interaction of the electr 1 with its
environment within the crystal,

We can now speculate on whether the hole can also have a mass. As long as we
view mass as resistance to acceleration, that is, inertia, there is no reason why the hole
should not have a mass. Accelerating the hole means accelerating electrons tunneling
from bond to bond in the opposite direction. Therefore it is apparent that the hole will
have a nonzero finite inertial mass because otherwise the smallest exiernal force will
impart an infinite acceleration to it. If we represent the effcctive mass of the hole in the
VB by mj, then the hole drift mobility will be

ety
=— [54]
My
where 1, is the mean free,time between scattering events for holes.

Taking Equation 5.1 for the current density further, we can write the conductivity

of a semiconductor as

G = enjt, + epy, i5.5)

where n and p are the electron and hole concentrations in the CB and VB, respectively.
This is a general equation valid for all semiconductors.

5.14 ELECTRON AND HOLE CONCENTRATIONS

The general equation for the conductivity of a semiconductor, Equation 5.5, depends
on a, the electron concentration, and p, the hole concentration. How do we determine
these quantities? We follow the procedure schematically shown in Figure 5.7a to d in
which the density of states is multiplied by the probability of a state being occupied
and integrated over the entire CB for n and over the entire VB for p.

® We define GenlE) as the density of states in the CB, that is, the number of states
per unit energy per unit volume. The probability of finding an electron in a state with
energy £ is given by the Fermi-Dirac function f(£)?which is discussed in Chapter 4.
Then g (E)f(E) is the actual number of electrons per unit energy per unit volume
ni{E) in the CB. Thus,

ng dE = g, (E)f(E) dE

is the number of electrons in the energy range E to £ 4 dE. Integrating this from the
bottom (E, ) to the top (E, + x ) of the CB gives the electron concentration n, number
of electrons per unit volume, in the CB. In other words,

E4x E+r
n= f me(E)AE = | gy(E)f(E)dE
E E
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We willassume that (E, — Er) KT (i, Erisatleasta few KT below E) sothat
[(E) % expl~(E — Ep)/KT]

We are thus replacing Fermi-Dirac statistics by Boltzmann statistics and thereby in-
herently assuming that the number of electrons inthe CB is far less than the number of
states in this band.

Further, we will take the upper limit o be E = 00 rather than E, + x since f(E)
decays rapidly with energy so that g, (E) f (£) - 0 near the top of the band. Further-
more, since g,(E) f (E) is significant only close (0 E,, we can use

g _8Vm” i’.fi?f
- Gl = h? (&-5 conduction

for an electron in a three-dimensional PE well without having to consider the exact
form of g, (E) across the whole band. Thus

gvam? [* E-
,.g?'__}_'."_f._ [ {E_Er)mexp[_[ EF]]“JE
R kT
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which leads to

E.-E
n=N, exp[- LTT{F]J 15.6]
where
2rmkT\
N.=2 B 1571

The result of the integration in Equation 5.6 seems lo be simple, but it is an
approximation as it assumes that (E. — E¢) » kT. N, is a temperature-dependent
constant, called the effective density of states at the CB edge. Equation 5.6 can be
interpreted as follows. [f we take all the states in the conduction band and replace
them with an effective concentration N, (number of states per unit volume) at E,
and then multiply this simply by the Boltzmann probability function, f(E,) =
expl—(E, - E¢)/kT], we obtain the concentration of electrons al £, that is, in the
conduction band. N, is thus an effective density of states at the CB band edge.

We can carry out a similar analysis for the concentration of holes in the VB. Mul-
tiplying the density of states g,,(E) in the VB with the probability of occupancy by a
hole [1 = f(E)], that is, the probability that an electron is absent, gives pg, the hole
concentration per unit energy. Integrating this over the VB gives the hole concentration

E, E
- f . ] Go(E(1 ~ f(E))dE
o 0

With the assumption that E is a few kT above E,, the integration simplifies to

Ep-E
p="N cxp[—“k—T"—)] (5.8
where N, is the cffective density of states at the VB edge and is given by
2emikT \ " ;
Nu =2 pr 59

We can now see the virtues of studying the density of states g(E) as a function of
energy E and the Fermi-Dirac function [ (E). Both were central factors in deriving the
expressions for # and p. There are no specific assumptions in our derivations, except
for E 5 being afew kT away from the band edges, which means that Equations 5.6 and
5.8 are generally valid.

The general equations that determine the free electron and hole concentrations are
thus given by Equations 5.6 and 5.8. It is interesting to consider the product np,

(E. - Ef) (Er - Ev)] [ (Ec - Eul]
= - = NN, = -
np =N, enp[ T ]N., cxp{ T N, exp i

or

E
np = N(N,cxp(— k—;) [5.10]
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where E; = E.— E, is the bandgap energy. First, we note that this is a general ex-
pression in which the right-hand side, NN, exp(-E, JKT), is a constant that depends
on the temperature and the material properties, for example, £, and not on the posi-
tion of the Fermi level. In the special case of an intrinsic semiconductor, n = p, which
we can denote as n;, the intrinsic concentration, so that NcN, exp(—E,/kT) must be
n?. From Equation 5.10 we therefore have

? £
np = n; = NN, exp T [s.11]

This is a general equation that is valid as long as we have thermal equilibrium.
External excitation, such as photogeneration, is excluded. It states that the product np
is a temperature-dependent constant. If we somehow increase the electron concentra-
tion, then we inevitably reduce the hole concentration, The constant n; has a special
significance because it represents the free clectron and hole concentrations in the in-
trinsic material.

An intrinsic semiconductor is a pure semiconductor crystal in which the clectron
and hole concentrations are equal. By pure we mean virtually no impurities in the
crystal. We should also exclude crystal defects that may captire carriers of one sign
and thus result in unequal electron and hole concentrations. Clearly in a pure semicon-
ductor, electrons and holes are generated in pairs by thermal excilation across the
bandgap. It must be emphasized that Equation 5.11 s generally valid and therefore
applies to both intrinsic and nonintrinsic (n # p) semiconductors,

When an electron and hole meet in the crystal, they “recombine.” The electron
falls in energy and occupies the empty electronic state that the hole represents. Con-
sequently, the broken bond is “repaired,” but we lose two free charge carmiers.
Recombination of an electron and hole results in their annihilation. In a semiconduc-
tor we therefore have thermal gencration of electron-hole pairs by thermal excitation
from the VB to the CB, and we also have recombination of electron-hole pairs that re-
moves them from their conduction and valence bands, respectively. The rate of re-
combination R will be proportional o the number of electrons and also to the number
of holes. Thus

R ccnp

The rate of generation G will depend on how many electrons are available for ex-
citation at E,, that is, N,; how many empty states are available at E., that is, N; and
the probability that the electron will make the transition, that is, exp(— E,/kT), sothat

G x NN ( by )
¥y ERP kT

Since in thermal equilibrium we have no continuous increase inn or p, we must
have the rate of generation equal to the rate of recombination, that is, G = R. Thisis
equivalent to Equation 5.11.

In sketching the diagrams in Figure 5.7atod to illustrate the derivation of the ex-
pressions for n and p (inEquations 56.and 5.8), we assumed that the Fermi level E¢
is somewhere around the middle of the energy bandgap. This was not an assumption in
the mathematical derivations but only in the sketches. From Equations 5.6 and 5.8 we
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also note that the position of Fermi level is important in determining the electron and
hole concentrations. It serves as a “mathematical crank” 10 determine n and p.

We first consider an intrinsic semiconductor, n = p = m;.Selting p = n; in Equa-
tion 5.8, we can solve for the Fermi energy in the intrinsic semiconductor, E ;, that is,

N, up[- (Ef - E.]] _ [N‘N"]mm(qf?f)

kT
which leads to
En=E,+ 15, i |n(£)' (5.2
20 2 N,
Furthermore, substituting the proper expressions for N, and N, we get
En=E,+ ! e~ gmn('l:) 5.13]
2 4 m;

Itis apparent from these equations that if N, = N, orm; = m;, then
1
Ep=E,+ EE‘

that is, E s is right in the middle of the energy gap. Normally, however, the effective
masses will not be equal and the Fermi level will be slightly shifted down from midgap
by an amount 3k In(m; /m;), which is quite small conypmlwith ! £,. For Si and
Ge, the hole effective mass (for density of states) is sligHf§maller than the electron
effective mass, so E; is slightly below the midgap.

The condition np = n} means that if we can somehow increase the electron concen-
tration in the CB over the intrinsic value—for example, by adding impurities into the Si
crystal that donate additional electrons to the CB—we will then have n > p. The semi-
conductor is then called n-type. The Fermi level must be closer to E, than E,,, so that

Ec—Er <Ef-E,

and Equations 5.6.and 5.8 yield n > p. The np product always yields n? in thermal
equilibrium in the absence of external excitation, for example, illumination.

It is also possible to have an excess of holes in the VB over electrons in the CB,
for example, by adding impurities that remove electrons from the VB and thereby gen-
erate holes. In that case E ¢ is closer to E, than to E,.. A semiconductor in which p>n
is called a p-type semiconductor. The general band diagrams with the appropriate
Fermi levels for intrinsic, n-type, and p-type semiconductors (e.g., i-8i, n-i, and p-Si,
respectively) are illustrated in Figure 5.8atoc.

Itis apparent that if e know where E ¢ is, then we have effectively determined n and
p by virtue of Equations 5.6 and 5.8. We can view E as a material property that is related
tothe concentration of charge carriers that contribute to electrical conduction. Its signifi-
cance, however, goes beyond n and p. It also determines the energy needed to remove an
clectron from the semiconductor. The energy difference between the vacuum level (where
the electron is free) and Ej is the work function ¢ of the semiconductor, the energy re-
quired to remove an electron even though there are no electrons at E y in a semiconductor.
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o bl {d In of cases, np = .

The Fermi level can also be interpreted ir: terms of the potential energy per electron
for electrical work similar to the interpretation of electrostatic PE. Just as e AV is the elec-
trical work involved in taking a charge e across a potential difference AV, any difference
in Ep in going from one end of a material (or system) to another is av-ilable to do an
amount A Ey of extemnal work. A corollary to this is that if electrical ffggi(W done on the
material, for example, by passing a cument through it, then the Fermi level is not uniform
in the material. A E - then represents the work done per electron. For a material in thermal
equilibrium and not subject to any external excitation such as illumination or connections
to a voltage supply, the Fermi level in the material must therefore be uniform, AEf = 0.

What is the average energy of an electron in the conduction band of a semiconduc-
tor? Also, what is the mean speed of an electron in the conduction band? We note that the
concentration of electrons with energies E to E + dE isng(E) dE or g, (E) f(E) dE.
Thus the average energy of electrons in the CB, by definition of the mean, is

1
Ea= —] Eg(E) f(E)dE

where the integration must be over the CB. Substituting the proper expressions for
0 (E) and f(E) in the ifegrand and carrying out the integration from £, to the top
of the band, we find the very simple result that

Ep=E .+ %kT [5.14]
Thus, an electron in the conduction band has an average energy of ; kT above E,.
Since we know that an electron at E, is “free” in the crystal, 3T must beits average
kinetic energy.

This is just like the average kinetic energy of gas atoms (such as He aloms) in  tank
assuming that the atoms (or the “gmsi8cs™) do not interact, thatis, they are independenL.
We know from the kinetic theory that the statistics of a collection of independent gas
aloms obeys the classical Maxwell-Bolizmann description with an average energy given
by lk T. We should also recall that the description of electron statistics in ametal involves
the Fermi-Dirac function, which is based on the Pauli exclusion principle. In a metal the
average energy of the conduction electron s 3 £ ¢ and, for all practical purposes, lemper-
ature independent, We see that the collective electron behavior is completely different in

Figure 5.8 Energy band diagroms for
foiniinsic, b} niype, and (c] piype

Average "r'
crmr in CB

the two solids. We can explain the difference by noting that the conduction bandina
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Toble 5.1 Seleced fypical propetes ofGe, 5, ond GoAs 300K B
o W) @) ) ) V) @tV Calm  miim 6
Ge 066 413 1.04x 10" "60x 10% 23x10% T 100 002 02 16
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GoAt L4 407 475007

NOTE: Effective mass related 1o conduchvity (lobeled o is difierent hon thot for density of siales (lobeled b). In mmerous texibooks, n,is

e

taken os 145 x 10'0 em 7 and is therelors the most widely used value of ; for i, though the comec! volue is odually 1.0 % 10" em %,
(M. A Green, J. Appl. Phys., 67, 2944, 1990

semiconductor is only scarcely populated by electrons, which means that there are many
more electronic states than electrons and thus the likelihood of two electrons trying tooc-
cupy the $ame electronic state is practically nil. We can then neglect the Pauli exclusion
principle and use the Boltzmann statistics. This is not the case for metals where the num-
ber of conduction electrons and the number of states are comparable in magnitude.

Tuble 5.1 is a comparative table of some of the properties of the important semi-
conductors, Ge, 51, and GaAs,

-~ EXAMPLE 5.1

INTRINSIC CONCENTRATION AND CONDUCTIVITY OF §i  Given that the density of states
related effective masses of electrons and holes in Si are approximately 1.08m, and (.60, '
respectively, and the clectron and hole drift mobilities at room temperature are 1350 and
450cm? V! 57! respectively, calculate the intrinsic concentration and intrinsic resistivity of Si

SOLUTION
We simply calculate the effective density of states N, and N, by

2amkT\ " mekT\
N,—_E( : ad N, =2|—

K h?
Thus
. ?[Zﬂl__[_m: 9.1x 10~ kg)(138 x 107 JK) (300 x)]‘”
A (.63 x 104 Js5)?
=281 x10%m ! o 281 x10%em”?
and

5 _Z[h(ﬂ_ﬁﬂ x 9.1 x 107 kg)(1.38 x 10 “JK"){J&)K]]”‘
o7 (6.63 x 10-3 Is)?2
=LI6x10%m” o 116x10%em™’

The intrinsic concentration is

. E
n = (NN clp(— ﬁ)
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so that
- ; (1.10eV)
1281 x 10® em HL16 x 10" em ™) Wayp| - :l
Ll : P = B0 K)(5.62 x 105 eVK)
=10 % 10%m™*
The conductivity s

T = enpe +eppy = e, + )
that is, )
o =(16x 1077 C)(1.0x 10" em ) (1350 4 450 em® V!5 ™)
=29x 10 em™
The resistivity is

! 5
p:a-=3.SxIU Qem
Although we calculated n, = 1.0 x 10 cm ™, the most widely used n, value in the literature
has been 1.45 x 10" cm™*. The difference arises from a number of factors but, most impor-
tanily, from what exact value of the effective hole mass should be used in calculating N,.
Henceforth we will simply use? n; = 1.0 x 10 cm™, which scems o be the “true” valuc.

387

MEAN SPEED OF ELECTRONS IN THE (B  Estimate the mean speed of electrons in the m

duction band of Si &t 300 K. If a is the magnitude of lattice vibrations, then the kinetic theory
predicts a” o T; or stated differently, the mean energy associated with lattice vibrations (pro-
portional to a?) increases with T. Given the temperature dependence of the mean speed of
electrons in the CB, what should be the temperature dependence of the drift mobility? The
effective mass of an electron in the conduction band is 0.26m,..

SOLMON

The fact that the average KE, %m; o7, of an electron inthe CB of a semiconductor is 3T means

that the effective mean speed v, must be
- (m)“‘ C[Bx138x 1077 x300)
=) Tl 02 x o<
The effective mean speed v, is called the thermal velocity vy, of the electron.
“The mean free time ¢ of the clectron between scattering events due to thermal vibrations of
the atoms is inversely proportional to both the mean speed v, of the clectron and the seallcring
crogs section of the thermal vibrations, that s,

i
=23x10ms"

i
T —
v (ras)
where.a i the amplitude of the atomic thermal vibrations. But, v, o T and (ra’) & kT', 50
that ¢ o 7 and consequently pr, o 7777
Experimentally ., is not exactly proportional to 7~ but 1o T~**, a higher power indcx.

The effective mass used in the density of states calculations is actually different than that usegd’

in transport calculations such as the mean speed, drifi mobility, and so on.

2 The cotrect valve appears fo be 1.0 % 10'7 cm? os discussed by M. A Green |1 Appl. Phys,, 67, 2944, 1990]
ond A B. Sproul and M. A, Green 1. Appl Phys , 70, 846, 1991



CHAPTER 5 + SEM'CONDUCTORS

52 EXTRINSIC SEMICONDUCTORS

By introducing small amounts of impurities into an otherwise pure Si crystal, it is possi-
ble to obtain a semiconductor in which the concentration «* “urriers of one polarity s
much in excess of the other type. Such semiconductors are reterred to as extrinsic semi-
conductors vis-a-vis the intrinsic casc of a pure and perfect crystal. For example, by
adding pentavalent impurities, such as arsenic, which have a valency of more than four,
we can obtain a semiconductor in which the electron concentration is much larger than
the hole concentration, In this case we will have an n-type semiconductor, If we add
trivalent impurities, such as boron, which have a valency of less than four, then we find
that we have an excess of holes over clectrons. We now have a p-lype semiconductor.
How do impurities change the concentrations of holes and electrons in a semiconductor?

521 n-Tyre Doring

Consider what happens when small amounts of a pentavalent (valency of 5) element
from Group V in the Periodic Table, such as As, P, b, are introduced into a pure i
crystal. We only add small amounts (e.g., one impurity atom for every million host
atoms) because we wish to surround cach impurity atom by millions of Si atoms,
thereby forcing the impurity atoms to bond with Si atoms in the same diamond crystal
structure. Arsenic has five valence electrons, whereas Si has four, Thus when an As
atom bonds with four Si atoms, it has one electron left unbonded. It cannot find a bond
to go into, so it is lefl orbiting around the As atom, as illustrated in Figure 5.9. The As*
ionic center with an electron e~ orbiting it s just like a hydrogen atom in a silicon en-
vironment. We can casily calculate how much eneray is required 1o free this electron
away from the As site, thereby ionizing the As impurity. Had this been a hydrogen
atom in frec Space, the energy required to remove the electron from its ground state
(@t n = 1) lo far away from the positive center wonld have been given by —E, with
n = 1. The binding energy of the electron in the H atom is thus
4

L m.e
Ey=—E = ——= 136V
P gep?

Figure 5.9 Arsenicdoped Si crystal.

The four valence elecirons of As allow if 1o bond jus!
ke 5, but the filth electron is left orbiting the As site.
The energy required lo release the free fith efectron
info the CB is very small
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If we wish to apply this to the electron around an As* core in the Si crystal envi-
ronment, we must use €,£, instead of &, where s, is the relative permittivity of silicon,
and also the effective mass of the electron m* in the silicon crystal. Thus, the binding
energy of the electron to the As* sitc in the Si crystal s

+.4

ES = ¢ — (136 v;("’:)(’) [5.151
b7 g2l A m /2 ;

r

Withe, = 11.9 and m} & {m, for silicon, we find ES' = 0.032 eV, which is com-
parable with the average thermal energy of atomic vibrations at room femperature,
~3kT (~0.07 eV). Thus, the fifth valence electron can be readily freed by thermal
vibrations of the S lattice. The electron will then be “free” in the semiconductor, or, in
other words, it will be in the CB. The'energy required to excite the electron to the CB -
is therefore 0.032 eV, The addition of As atoms introduces localized electronic states
al the As sites because the fifth electron has a localized wavefunction, of the hydro-
genic type, around As*. The energy E, of these states is 0032 eV below E, because
this is how much energy is required to take the electron away into the CB. Thermal ex-
citation by the lattice vibrations at room temperature is sufficient to ionize the As atom,
that is, excite the electron from E, into the CB. This process creates free electrons but
immobile As* ions, as shown in the energy band diagram of an n-type semiconductor
in Figure 5.10. Because the As ator' donates an electron into the CB, it is called a
donor atom. E, is the electron energy around the donor atom. Egiscloscto E,,sothe
spare fifth electron from the dopant can be readily donated to the CB. If Ny s the donor
ator concentration in the crystal, then provided that N, 3 n;, at room temperature the
electron concentration in the CB will be nearly equal to Ny, that is n ~ N;. The hole
concentration will be p = n2/Na, which is less than the intrinsic concentration be-
canse a few of the large number of electrons in the CB recombine with holes in the VB
50 as to maintain np = n?. The conduetivity will then be

n? .
o =eNap, te (F) iy % eNgjte (AT
d ‘ -

At Iuwtempuamm.lmrem.mnﬂmeﬂumwi!lbciuréudandweneedw
know the probability, denoted as f,(E,), of finding an electron in a state with enezgy

Figure 5.10 Energy bond diogrom for on
ype Si doped with 1 ppm As.

There are donor energy levels just below E.
around As* siles.

1T 0 e

As atom sites every 10° Si atoms
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E4 at a donor. This pwbablluy function is similar to the Fermi-Dirac function f (E,)
except that it has a factor of ! 7 multiplying the exponential term,

JilEy) = m [5.17]
T

2
The factor ; is due (o the fact that the electron state at the donor can take an elec-
tron with spin cither up or down but not both” (once the donor has been occupied, a
second electron cannot enter this site). Thus, the number of ionized donors at a tem-
perature T' is given by
N = N, x (probability of not finding an electron at E, )
= Nall = fEQ)]

N
... FE— (5.18]

142 exp[‘EFk; Ed}]

522 p-Tyee DorinG

We saw that introducing & pentavalent atom into a Si crystal results in n-type doping be-
cause the fifth electron cannot go into a bond and escapes from the donor into the CB by
thermal excitation. By similar arguments, we should anticipate that doping a Si crystal
witha trivalent atom (valency of 3) such as B, Al, Ga, or In will result in a p-type Si crys-
tal. We consider doping Si with small amounts of B as shown in Figure 5.11a. Because
B has only three valence electrons, when it shares them with four neighboring Si atoms,
one of the bonds has a missing electron, which of course is a hole. A nearby electron can
tunnel into this hole and displace the hole further away from the boron atom. As the hole
moves away, it gels altracted by the negative charge left behind on the boron atom and
therefore takes an orbit around the B ion, as shown in Figure 5.11b. The binding energy
of this holeto the B ion can be calculated using the hydrogenic atom analogy as in the
n-type Si case. This binding energy turns out to be very small, ~0.05 eV, so at room
temperature the thermal vibrations of the lattice can free the hole away from the B site.
Afree hole, we recall, exists in the VB. The escape of the hole from the B~ site involves
the B atom accepting an electron from a neighboring Si-Sibond (from the VB), which
effectively results in the hole being displaced away and its eventual escape to freedom in
the VB. The B atom introduced into the Si crystal therefore acts as an electron aceeptor
and, because of this, it is called aa acceptor impurity. The electron accepted by the
B atom comes from a nearby bond. Onthemergyhanddmgmn an electron leaves the
VB and gets accepted by a B atom, which becomes negatively dn'gul ‘This process
leaves ahole in the VB that s ffee to wander away, as illustrated in Figure 5.12.

It is apparent that doping a silicon crystal with a trivalent impurity results in a
p-type material. We have many more holes than electrons for electrical conduction

-

| 3 The proof can b found in odvanced solidtote physics texts,
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Figure 5.11 Boron-doped Si crysial.
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hos an electron missing ond therefore o hale, as shown in o). The hole orbits around
the B~ sile by the tunneling of electrons from neighboring bonds, os shown in (b).
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Figure 5.12 Energy bond
B B B diagram for a pype i doped with

B
[ ; ! ‘"0-05 eV There are oeceplor energy levels E,
. .

E 900 just cbove E, around B sites. These
‘e
"

acceplor levels accep! elechons from
the VB and therelore create holes in
the V8.
since the negatively charged B atoms are immobile and hence cannot contribute to the
conductivity. If the concentration of acceptor impurities N, in the crystal is much
greater than the intrinsic concentration a,, then at room temperature all the acceptors
would have been ionized and thus p & N,. The electron concentration is then deter-
mined by the mass action law, n = n’/N,, which is much smaller than p, and conse-
quently the conductivity is simply givenby o = eNapty.
Typical ionization energies for donor and acceptor atoms in the silicon crystal are
summarized in Table 5.2.

=

m
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523 CoMPENSATION DoPING

What happens when a semiconductor contains both donors and acceptors? Com-
pensation doping is a term used to describe the doping of a semiconductor with both
donors and acceptors to control the properties. For example, a p-type semiconductor
doped with N, acceptors can be converted to an n-type semiconductor by simply
adding donors until the concentration N4 exceeds N,. The effect of donors compen-
sates for the effect of acceplors and vice versa. The electron concentration is then
given by Ng— N, provided the latter is larger than n;. When both acceptors and
donors are present, what essentially happens is that electrons from donors recombine
with the holes from the acceptors so that the mass action law np = n? is obeyed. Re-
member that we cannot simultaneously increase the electron and hole concentrations
because that leads to an increase in the recombination rate that returns the electron
and hole concentrations to satisfy np = n?. When an acceptor atom accepts a valence
band electron, a hole is created in the VB. This hole then recombines with an elec-
tron from the CB. Suppose that we have more donors than acceptors. If we take the
initial electron concentration as n = Ny, then the recombination between the elec-
trons from the donors and N, holes generated by N, acceptors resalts in the electron
concentration reduced by N, to n = Ny — N,. By a similar argument, if we have
more acceptors than donors, the hole concentration becomes p = N, — Ny, with
- electrons from N; donors recombining with holes from N, acceptors. Thus there are
two compensation effects:

1. More donors: Ni— Ny nm; n=(N;-N,) and p=

2
h;

(Ne—No)
nj

(Ns = No)

These arguments assume that the temperature is sufficiently high for donors and
- acceptors to have been ionized. This will be the case at room temperature. At low tem-
peratures, we have to consider donor and acceptor statistics and the charge neutrality

of the whole crystal, as in Example 5.8.

2. More acceptors: Ny ~ Ny n; p=(No-No) md n=

LCLIIER] RESISTIVITY OF INTRINSIC AND DOPED Si  Find the resistance of a | cm’ pure silicon crystal.
What is the resistance when the crystal is doped with arsenic if the doping is 1 in 10°, thatis,
1 part per billion (ppb) (note tha this doping corresponds to one: foreigner living in China)?
Given data: Atomic concentration in silicon is §x 10%em™, m;=10x 10 cm™,
Be = 1350 con’ V= 5!, and gy = 450 cn? V™' 5.



5.2 ExTRINSIC SEMICONDUCTORS m

SOLUTION
For the intrinsic case, we apply
0 = enpte +eppn = enlie + )
50 o = (1.6 1077 0)(1.0 x 10° cm)(1350 + 450emV's7)
=288x107°0 " em™
Since L = I cmand A = | l:m’.llme.s'mmm is

E -}
2o =347x010°Q o 34Tk
aAd @

When the crystal is doped with 1 in 10°, then

Ng Sx10® ar
Ns—=——= 10"
= p i §x 107 cm

At room temperature all the donors are ionized, so

n=N,=5x10"%m™

The hole concentration is
al o (1L0x 107
=h YT ca0x 0t Tgn;
PE N, T BRI BRI
Therefore,
o =eng, = (16X 1070 C)(5 x 10% am (1350 em V-'s7")
—1.8x107'Q 'em™’
Further, R=i=!-=9léﬂ
s oA @

Notice the drastic fall in the resistance when the crystal is doped with only 1 in 10" atoms.
Dopinglﬁesi.licmuyslalwiﬂ:bumimud of arsenic, but still in amounts of 1 in 10%,
means that N, = 5 x 10 cm~®, which results in a conductivity of

o = epty = (16 x 107 C)(5 x 10" em™)(450em? V' s7")

=36x107'Q " em™
L 1

Therefore, R=—=—-=1184
oA o

The reason for a higher resistance with p-type doping compared with the same amount of n-type
doping s thal < e

COMPENSATION DOPING  An n-type Si semiconductor containing 10 pllosptluus-{du:}m
aloms cm~ has been doped with 10" boron (acceptor) atoms cm". Calculate the electron and
hole concentrations in this semiconductor.
SOLUTION
This semiconductor has been compensation doped with excess acceptors OVet donors, 50
N, - Ng=10"=10% =9 x 10®cm™
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This is much larger than the intrinsic concentration n; = 1.0 x 10 em™? al room tempera-
ture, 5o s
p=N—Ny=9x10%cm™?
The electron concentration
2 10, -1,
P (9 x 10 ecm-?)

Clearly, the electron concentration and hence its contribution 1o electrical conduction is
completely negligible compared with the hole concentration. Thus, by excessive boron doping,
the n-type semiconductor has been converted to a p-type semiconductor.

EXAMPLE 5.5

THE FERMI LEVEL IN n- AND pTYPE Si  An n-type Si wafer has been doped uniformly with
10" antimony (Sb) atoms cm™". Calculate the position of the Fermi energy with respect lo the
Fermi energy £, in intrinsic Si. The above n-type Si sample is further doped with 2 x 10"
boron atoms cm™>. Calculate the position of the Fermi energy with respect (o the Fermi energy
Ey, in intrinsic Si. (Assume that T = 300 K, and kT = 0.0259 eV)

SOWUTION
Sbgives n-type doping with ¥, = 10" cm™", and since N, > n, (=10 x 10 cm~?*), we have
n=N;=10%em?
For intrinsic Si,
n= N‘- HP[— (____E: = Eﬂ}]
kT .
whereas for doped Si,

E.-E
n= N;“P[-L—t}i}] =N

where E, and Ej, are the Fermi energies in the intrinsic and n-type Si. Dividing the two ex-

pressions,
N up[(sp. - sf.->]
;i kT
so that
N, 18
Egy ~ Ef; =kfln(;i-) = (0.0259 eV) In(m) =0.36eV

When the wafer is further doped with boron, the acceptor concentration is
Ny =2x10"em™ > Ny =10%cem™
The semiconductor is compensation doped and compensation converts the semiconduclor 1o
p-type Si. Thus
p=N,~Ny=(2x10"-10" =19 x 10" em™?
For intrinsic Si,
(Epi - E,)
n =N, I:l.]}[—- T]

whereas for doped Si,

(Epp - E,)
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where E; and E, are the Fermi energies in the intrinsic and p-type i, respectively. Dividing
the two expressions, )

Ef, - E¥i
r =c1p[_(_..._r" ”}
n; kT

so that

1.9 % lﬂ”)

; =—tth(2)=-
Epp - En= kT!n( )_ w.ozsuevnn(l‘“mm

nj
= —043eV

MMWGMWMWNMCTEDTOAWHW
SUPPLY (Consider the energy band diagram for an n-type semiconductor that is connected to a
voltage supply of V and is carrying a current. The applied voltage drops uniformly along the
semiconductor, so the electrons in the semiconductor now also have an imposed electrostatic
potential energy that decreases toward the positive terminal, as depicted in Figure 5.13. The
whole band structure, the CB and the VB, therefore tills. When an clectron drifts from A toward

nlype semiconduclor connected fo o voltoge
supply of ¥ volls,

——»x  The whole energy diagrom Hills becouse the’
eleciron now also has an electrostatic potentiol
energy. :

I{ V0 Figure 5.13  Energy band diagram of an

Electrostatic PE(x) = -eV

Electron energy
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B, its PE decreases because it is approaching the positive terminal, The Fermi level Eg is above
that for the intrinsic case, £5;. X

We should remember that an important property of the Fermi level is that 2 change in Ef
within a system is available externally to do electrical work. As a corollary we note that when
electrical work is done on the system, foy example, when a battery is connected to a semicon-
ductor, thes £ is not uniform throughout the system. A change in E,* within a system
A Ep is equivalent to electrical work per oreV. Eg therefore follows the electrostatic
PE behavior, and the change in £, from one end to the other, E (4) — Ef(B), is just eV, the
encigy expended in taking an electron through the semiconductor, as shown in Figure 5.13, -
Electron concentration in the semiconductor is uniform, so £, ~ E; must be constant from one
end to the other. Thus the CB, VB, and E; all bend by the same amount.

53 TEMPERATURE DEPENDENCE OF CONDUCTIVITY

So far we have been calculating conductivities and resistivities of doped semiconduc-
lors at room temperature by simply assuming. that n & N, for n-type and p ~ N, for
p-type doping, with the proviso that the concentration of dopants is much greater than
the intrinsic concentration n;. To obtain the conductivity at other temperatures we have
to consider two factors: the temperature dependence of the carrier concentration and
the drift mobility.

53.1 CARRIER CONCENTRATION TEMPERATURE DEPENDENCE

Consider an n-type semiconductor doped with N, donors per unit volume where
Ng > n;. We take the semiconductor down to very low temperatures until its con-
ductivity is practically nil. At this temperature, the donors will not be ionized be-
cause the thermal vibrational energy is insufficiently small. As the temperature is
increased, some of the donors become ionized and donate their electrons to the CB,
a shown in Figure 5.14a. The Si-Si bond breaking, that is, thermal excitation from
E, to E., is unlikely because it takes too much energy. Since the donor ionization
energy AE = E. - E, is very small («E,), thermal generation involves exciting
electrons from E, to E,.. The electron concentration at low temperatures is given by

the expression
| W ( as)

=[N, —e 5.1

n (2 d') exp & [5.19]

similar to the intrinsic case, that is,
E

= (N.N,)'"? (——') 15.20]
n=(NN,)" exp %uT

Equation 5.20 is valid when thermal generation occurs across the bandgap E,
from E, to E,.. Equation 5.19 is the counterpart of Equation 520 taking inio account
that at low temperatures the excitation is from £ to E, (across AE) and that instead
of N,, we have N, as the number of available electrons. The numerical factor % in
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T<T T <T<T. >T
1] I I 1

CB
e s
KRR
E
Il
VB
ol T=T, b=, @1=1,
Figure 5.14

(o) Below T, the eleciron concenirationis controlled by the ionization'of the donors.

[b) Between T, and T, the electron concentrofion is equal fo the concentration of donors
since they would ol have ionized,

fc]klid\bﬁpﬁﬂnm, thermally generoted electrons from the VB exceed the number
of elecirons from ionized donors and the semiconductor behaves os if infrinsic.

Equation 5.19 arises because donor occupation statistics is different by this factor from
the usual Fermi-Dirac function, as mentioned earlier.

As the temperature is increased further, eventually all the donors become ion-
ized and the electron concentration is equdl to the donor concentration, that is,
n = Ny, as depicted in Figure 5.14b. This state of affairs remains unchanged until
very high temperatures are reached, when thermal generation across the bandgap be-
gins to dominate. At very high temperatures, thermal vibrations of the atoms will be
so strong that many Si-Si bonds will be broken and thermal generation across E,
will dominate. The electron concentration in the CB will then be mainly due to ther-
- -mal excitation from the VB to the CB, as illustrated in Figure 5. 14c. But this process
als?ﬁycia;m;m equal concentration of holes in the VB. Accordingly, the semicon-
ductor behaves as if il were intrinsic. The electron concentration at these tempera-
tures will therefore be equal to the intrinsic concentration n;, which is given by
Equation 5.20.

The dependence of the electron concentration on temperature thus has three
regions:

1. Low-temperature range (T < T,). The increase in temperature at these low
iemperatures ionizes more and more donors. The donor ionization continues until we
reach a temperature Tx called the saturation temperature, when all donors have heen
ionized and we have saturation in the concentration of ionized donors, The electron
concentration is given by Equation 5.19. This temperature range is often referred to as
the ionization range.

2. Medium-temperature range (T, < T <T;). Since nearly all the donors
have been ionized in this range, n = N;. This condition remains unchanged until
T = T;, when n;, which is temperature dependent, becomes equal to Ny. It is this



398 CHAPTER 5 + SEMICONDUCTORS

temperature tange T, < T < T; that utilizes the n-type doping properties of the semi-
conductor in pn junction device applications. This lemperature range is often referred
to as the extrinsic range.

3. High-temperature range (T > T}). The concentration of electrons gener-
ated by thermal excitation across the bandgap n; is now much larger than Ny, so the
electron concentration n = n,(T). Furthermore, as excitation occurs from the VB to
the CB, the hole concentration p = n. This temperature range is referred to as the
intrinsic range.

Figure 5.15 shows the behavior of the electron concentration with temperature in
an n-lype semiconductor. By convention we plot In(rr) versus the reciprocal tempera-
ture -1, At low temperatures, In(n) versus T~ is almost a straight line with a slope
—(AE/2K), since the temperature dependence of N"*(ox ") is negligible com-
pared with the exp(—AE /2kT) part in Equation 5.19. In the high-temperature range,
however, the slope is quite steep and almost - E,/2k since Equation 5.20 implies
that

E
no T exp(—z—k-‘?)

and the exponential part again dominates over the %% part. In the intermediate range,
nis equal to N, and practically independent of the temperature.

I|II|lIlIIIlI.I]J_‘li'IIlIIlIItl

e |

In(n)

Intrinsic concentration (cm™)

In(N, | ] and

mj IIlITlIifl]lT71'|lTlf[1ll1|llll

18 2 A% 34380,
1000 (1/K)

Figure 5.15 The lemperalure dependence of the elecon  Figure 5.16 The lemperature dependence of the inlrinsic

concentralion in an nype semiconduclor. concentration.
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Figure 5.16 displays the temperature dependence of the intrinsic concentration in
Ge, Si, and GaAs as log(n,) versus 1/T where the slope of the lines is, of course, a
measure of the bandgap energy E,. The log(n;) versus 1 /T graphs can be used to find,
for example, whether the dopant concentration at a given temperature is more than the
intrinsic concentration. As we will find out in Chapter 6, the reverse saturation current
ina pn junction diode depends on a2, so Figure 5.16 also indicates how this saturation
current varies with temperature,

SATURATION AND INTRINSIC TEMPERATURES  An n-type Si sample has been doped with 10"
phosphorus atoms cm ™, The donor energy level for P in Si is 0,045 ¢V below the conduction
band edge energy.

a. Estimate the lemperature above which the sample behaves as if intrinsic.
b.  Estimate the lowest tlemperature above which most of the donors are ionized,

SOLUTION

Remember that n;(T) is highly temperature dependent, as shown in Figure 5.16 so that as T
increases, eventually al T = T;, n; becomes comparable to Ny, Beyond T, ni(T > i) 3 Ny.
Thus we need to solve

0 (T) =Ny = 10%em™’

From the log(n, ) versus 10"/ T graph for Si in Figure 5.16, when n, = 10" em %, (10%/T;) =
1.85, giving T, = 541 K or 268 °C.

We will assume that most of the donors are ionized, say at T = T, where the extrinsic and
the extrapolated ionization lines intersect in Figure 5.15:

1 i AE
=|-NN e
' (2 ‘ ") “p( m.) ‘

This is the temperature at which the ionization behavior intersects the extrinsic region. In the
above equation, Ny = 10% em™, AE = 0.045eV, and N, « T*2, that i, :

7\
NAT,) = N.(300 K}(E)

Clearly, then, the equation can only be solved numerically. Similar equations occur in a wide
range of physical problems where one lerm has the strongest temperature dependence. Here,
exp(~AE/kT,) has the strongest lemperature dependence. First assume N, is that at 300 K,
N.=28x 10" em™", and evaluate T,,

0,045V
ot L = 547K

' MY 28x 10" em
iln(J—) 8.62 % 10-5eVK") [——-]
el R T

AT = 47K,

47\
N (54.7K) = N, (300 m(ﬁ) =218x 10%cm™

EXAMPLE 5.7
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With this new N, at a lower temperature, the improved 7, is 74.6 K. Since we only need an
estimate of T,, the extrinsic range of this semiconductor is therefore from about 75 to 541 K or
—198 1o about 268 °C.

B{U113%] TEMPERATURE DEPENDENCE OF THE ELECTRON CONCENTRATION By considering the mass
action law, charge neutrality within the crystal, and occupation statistics of electronic states, we
can show that at the lowest temperatures the electron concentration in an a-type semiconductor

is given by
1 I (aE
=(=N.¥, e
" (z ‘) "y ur)

where AE = E, — E,. Furthermore, at the lowest temperatures, the Fermi energy is midway
between E, and E,.

There are only a few physical principles that must be considered to armive al the effect of
doping on the electron and hole concentrations. For an n-type semiconductor, these are

1. Charge carrier statistics.

(E. - Ef)
n=N.ex [— -T] )
2. Mass action law.
—, o
3. Electrical neutrality of the crystal. We must have the same number of positive and neg-
ative charges:
ptN =n 13)

where N is the concentration of ionized donors.
4. Statistics of ionization of the dopants.
N} = Nyx (probability of not finding an electron at E;) = Nl - JE)

Ny
i (Er — Eq) “
|+ 2 =

Solving Equations | to 4 for n will give the dependence of n on T and N,. For example,
from the mass action law, Equation 2, and the charge neutrality condition, Equation 3, we get

III i
— 4 J'-'n.' =N
n

This is a quadratic equation in n. Solving this equation gives

1 1 i
n= Eu.r;l + [Ew:)’ + nf]

Clearly, this equation should give the behavior of n us a function of T and N, when we also
consider the statistics in Equation 4. In the low-temperature region (T < 75), n? isnegligible in
the expression for 2 and we have i

u=N::

N 1 [_{Er - Ei)

R . M
Ep - Eg)
l+2=xp[t—"ﬁ—‘] ¢
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But the statistical description in Equation 1 is generally valid, so multiplying the low-
\emperature region equation by Equation 1 and taking the square oot eliminates £ from the

expression, giving
1 i E - E,)
o= (jun) el

To find the location of the Fermi energy, consider the general expression
E -E
n =N exp|- (__‘___r]}
kT

which must now correspond to n at low temperatures. Equating the two and rearranging to obtain
E wefind

which puts the Fermi energy near the middle of AE = E, - E, at low temperatures.

401

532 Drirr MOBILITY: TEMPERATURE AND IMPURITY DEPENDENCE

The temperature dependence of the drift mobility follows two distinctly different tem-
perature variations. In the high-temperature region, it is observed that the drift mobility
is limited by scattering from lattice vibrations. As the magnitude of atomic vibralions
increases with temperature, the drift mobility decreases in the fashion p oc 7-%2,
However, at low lemperatures the lattice vibrations are not sufficiently strong to be the
major limitation to the mobility of the electrons. It is observed that at low temperatures
the scattering of electrons by ionized impurities is the major mobility limiting mecha-
nism and g o T*?, as we will show below.
We recall from Chapter 2 that the electron drift mobility u depends on the mean
free time 7 between scattering events via
(44
p=— 5.2

L
mf

in which
= i
" Sugh,

where § is the cross-sectional area of the scatierer; vy, is the mean speed of the elec-
trons, called the thermal velocity; and N, is the number of scatterers per unit volume.
If  is the amplitude of the atomic vibrations about the equilibrium, then § = wa’. As
the temperature increases, so does the amplitude a of the lattice vibrations following
a’ « T behavior, as shown in Chapter 2. An electron in the CB is free to wander
around and therefore has only KE. We also know that the mean kinetic energy per elec-
tron in the CB is 3k, just as if the kinetic molecular theory could be applied to all
those electrons in the CB. Therefore,

[5.22]

T

¥ oy 3
Eﬂ:l."=5*r
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; KE={my? KE>IPA

‘ KE=IPEl

Figure 5.17 Scatering of eleciions by on ionized
impurity.
so that v, o T/ Thus the mean time 7, between scattering events from lattice vibra-
tions is
| |
= x

YT (matwgN, (YT

which leads fo 2 lattice vibration scattering limited mobility, denoted as p2, of the form
poa T [5.23]

=31

Al low temperatures, scattering of electrons by thermal vibrations of the lattice
will not be as strong as the electron scattering brought about by ionized donor impuri-
ties. As an electron passes by an ionized donor As", it is attracted and thus deflected
from its straight path, as schematically shown in Figure 5.17. This type of scattering of
an clectron is what limits the drift mobility at low temperatures.

The PE of an electron at a distance 7 from an As* ion is due to the Conlombic
altraction, and it magnitude is given by

¥
\PE| = ——
de,Er

If the KE of the electron approaching an As* ion is larger than its PE at distance r
from As" . then the electron will essentially continue without fecling the PE and thesefore
without being deflected, and we can say that it has not been scattered. Effectively, due
o its high KE, the electron does not feel the Coulombic pull of the donor On the other
hand, if the KE of the electron is less than its PE at r from As”, then the PE of the
Coulombic interaction will be so strong that the electron will be strongly deflected. This
is iliustrated in Figure 5.17. The critical radius r corresponds (o the case when the clec-
tron s justscaltered, whichis when KE & |PE(r,)|. Butaverage KE = kT, soatr = re
1

3
~kT = |PE(r.)) =
2 IPE(ea] dmE .1,

from which r, = e2/(6me,&,kT). As the temperature increases, the scatlering radius
decreases. The scattering cross section § = r? is thus given by

d= —Ed——-— a7
T (bme.e kT)?
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Incorporating vy, o '/ as well, the temperature dependence of the mean scattering
time 7, between impurities, from Equation 5.22, must be
' [ 1 e
U= S, © @@, * W
where Ny is the concentration of ionized impurities (all ionized impurities including
donorsand acceptors). Consequently, the jonized impurity scattering limited mobility
from Equation 5.21 is

(i
o N..
Note also that u; decreases with increasing ionized dopant concentration N,
which itself may be temperature dependent. Indeed, at the lowest temperatures, below
the saturation temperature 7, N; will be strongly temperature dependent because not
all the donors would have been fully ionized.
The overall temperature dependence of the drift mobility is then, simply, the recip-
rocal additions of the uu; and g, by virtue of Matthiessen’s rule, that is,
1 1 I
—_————
B Wy My
50 the scattering process having the lowest mobility determines the overall {effective)
drift mobility.
The experimental temperature dependence of the electron drift mobility in both
Ge and Si is shown in Figure 5.18 as a log-log plot for various donor concentrations.
The slope on this plot corresponds to the index n in w, o 7", The simple theorelical
sketches in the insets show how y and ¢, from Equations 5.23 and 5.24 depend on
the temperature. For:Ge, at low doping concentrations (e.g., N; = 10" cm™), the
experiments indicate a . o T~ type of behavior, which is in agreement with g1,
determined by 4z in Equation 5.23. Curves for Si at low-level doping (j1; negligible)

(5.24)

15.25]
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maobillty
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at high temperatures, however, exhibita e, o T 25 tye of behavior rather than 7',
which can be accounted for in a more rigorous theory. As the donor concentration
increases, the drift mobility decreases by virtue of p; gelling smaller. At the highest
doping concentrations and at low temperatures, the electron drift mobility in Si
exhibis almost a sz, o T/ type of behavior. Similar arguments can beextended to the
temperature dependence of the hole drift mobility.

The dependences of the room temperature electron and hole drift mobilities on the
dopant concentration for Si are shown in Figure 5.19 where, as expected, past a certain
amount of impurity addition, the drift mobility is overwhelmingly controlled by p; in
Equation 5.25. .

533 ConpucTIvITY TEMPERATURE DEPENDENCE

The conductivity of an extrinsic semiconductor doped with donors depends on the
electron concentration and the drift mobility, both of which have been determined
above. At the lowest temperatures in the ionization range, the electron concentration

depends exponentially on the lemperature by virtue of

;L -E
- (E”"”“) “"[_{Erm ‘)]

which then also dominates the temperature dependence of the conductivity. In the
intrinsic range al the highest temperatures, the conductivity is dominated by the
temperature depeadence of n; since .

- a = en(n.+ pa)

and n, is an exponential function of temperature in contrast to . T-37, In the extrinsic

range, n = N, and.is constant, so the conductivity follows the temperature
dependence of the drift mobility. Figure 5.20 shows schematically the semilogarithmic
pidof&umdnﬁiﬁlyasﬁﬂ:&emdpmdwmmucmimic
mgcucxlﬁbiuahud“S"duemﬂcwdqmdamoﬁk&iﬂmﬂﬁly.
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Logarithmic scale

Figure 5.20 Schemotic
illustration of the lemperature
dependence of electrical
conductivity for o doped (nype)
semiconducior.

pmmemEr

a. ASi sample has been doped with 10'7 arsenic atoms cm*. Calculate the conductivity of
the sample at 27 °C (300 K) and at 127 °C (400 K).

b. The above -type Si sample is further doped with 9 x 10'® boron atoms cm . Calculate
the conductivity of the sample at 27 °C and 127 °C.
L]

SOLUTION
4. The arsenic dopant concentration, N; = 10" cm~?, is much larger than the intrinsic con-
centration n;, which means thatn = N, and p = (n?/N,;) < n and can be neglected. Thus
n = 107 ¢m? and the electron drift mobility at N, = 10" cm™ is 800 em? V= 57! from
the drift mobility versus dopant concentration graph in Figure 5.19, so
o =enps, +epuy = eNgit, _
= (1.6x107°C)(10" em™)(800 ecm? V™'s ™) = 12.8 2" em™

AT =127°C =400 K,

p x40 em? Vs
(from the p, versus T graph in Figure 5.18). Thus
. a=eNy,=67120 " m
b. With further doping we have N, =9 x 10" cm™, so from the compensation effect
Ny=No=1x10" -9 10% =10% cm™

Simeh',-—H.»n‘,wehlw:nn-lypemlu‘ialwiﬂ!n=ﬂ,—h‘.=IU“ cm™*. Butthe
drift mobility mow is about ~ 600 cm® V' s™' because, even though Ny — N, is now
10% cm~ and not 10" cm™, all the donors and acceptors arc still ionized and hence still
scatter the charge carriers. The recombination of electrons from the donors and holes frmm
the acceptors does not alter the factthat at room lemperature all the dopants will be ionized.

27- |
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Effectively, the compensation effect is as if all electrons from the donors were being
.accepted by the acceptors. Although with compensation doping the net eleciron concentra-
tion is n = Ny — N, the drift mobilily scaltering is determined by (N, + N,), which in
this case is 10" 49 % 10 cm" = 1.9 % 10" ¢m~", which gives an electron drift mo-
ility of ~600 cm® V™' s~ at 0K and ~400 em? v ' 5 at 400 K. Then, neglecting the
hole concentration p = n: f(N; — N,), we have

ABOK, o =e(Ng— N, = (L6 107" C)(10" cm ) (600 em” V' 57"
=099 'em!

ALO0K, o =e(Ny~ N, = (1.6 % 107" C)(10" em~")(400 em® V' 57 1)
=064 02 " em™!

534 DEGENERATE AND NONDEGENERATE SEMICONDUCTORS -

The general exponential expression for the concentration of electron in the CB,

(E: - Er}]

———— 15.26]
kT

n=N, exp[—
is based on replacing Fermi-Dirac statistics with Boltzmann statisdcs, which is only
valid when E, is several kT above E . In other words, we assumed that the aumber of
states in the CB far exceeds the number of electrons there, so the likelihood of two
electrons trying to occupy the same state is aimost nil. This means that the Pauli
exclusion principle can be neglected and the electron statistics can be described by the
Boltzmann statistics. N, is a measure of the density of states in the CB. The Boltzmann
expression for  1s valid only when n < N, Thoac semiconductors for whichn < N,
and p « N, are termed nondegenerate semiconductors. They essentially follow all
the discussions above and exhibit all the normal semiconductor properties outlined
above.

When the semiconductor has been excessively doped with donors, then n may be so
large, typically 10"-10%em 2, thatit n 3 be comparable to or greater than N,.. In that
case the Pauli exclusion principle becomes important in the electron statistics and we
have to use the Fermi-Dirac statistics. Equation 5.26 for n is then no longer valid. Such
a semiconductor cxhibits propertics that are more metal-like than semiconductor-like;
for example, the resistivity follows p o T. Semiconductors that have n > N, or
p > N, are czlled degenerate semiconductors,

The large carrier concentration in a degenerale semiconductor is due 10 its
heavy doping. For example, as the donor concentration in an n-type semiconductor
is increased, at sufficiently high doping levels, the donor atoms become so close to
each other that their orbitals overlap to form a narrow energy band that overlaps and
becomes part of the conduction band. E, is therefore slightly shifted down and E,
becomes slightly narrower. The valence electrons from the donors fill the. band
from E.. This situation is reminiscent of the valence electrons filling overlapping
energy bands in-a metal. In a degenerate n-type semiconductor, the Fermi level is
therefore within the CB, or above E, just like Ef is within the band in a metal, The



5.4 RECOMBINATION AND MiNoRITY CARRIER INJECTION
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Figure 5.21
(o} Degenerale ntype semiconducior. Large number of donors form o band thot overlaps
the CB.

(b] Degenerate ptype semiconducior,

majority of the states between E. and Ef are full of electrons as indicated in Figure
5.21. In the case of a p-type degenerate semiconductor, the Fermi level lies in the
VB below E,. It should be emphasized that one cannot simply assume that n = N
or p = N, in a degenerate semiconductor because the dopant concentration is S0
large that they interact with each other. Not all dopants are able o become ionized,
and the carrier concentration eventually reaches a saturation typically around
~10% ¢m >, Furthermore, the mass action law np = n” is not valid for degenerate
semiconductors,

Degenerate semiconductors have many important uses. For example, they are used
in laser diodes, zener diodes, and ohmic contacts in ICs, and as metal gates in many
microelectronic MOS devices.

54 RECOMBINATION AND MINORITY
CARRIER INJECTION

5A1 DirecT AND INDIRECT RECOMBINATION

Above absolute zero of emperature, the thermal excitation of electrons from the VB
" 10 the CB continuously generates free electron-hole pairs. It should be apparent that
in equilibrium there should be some andiihilation mechanism that returns the electron
from the CB down o an empty state (a hole) in the VB. When a free electron, wan-
dering around in the CB. of a crystal, “meets” a hole, it falls into this low-encrgy
empty electronic state and fills it. This process is called recombination. Intuitively,
recombination corresponds o the free electron finding an incomplete bond with a
missing electron. The electron then enters and completes this bond. The free electron
in the CB and the free hole in the VB are consequently annihilated. On the energy
band diagram, the recombination process is represented by returning the electron
from the CB (where it is free) into a hole in the VB (where it is ina bond). Figure 5.22
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Energy

Figure 5.22 Direct recombination in GaAs.
ks = ky; 50 that momentum conservation is
satisfied.

shows a direct recombination mechanism, for example, as it occurs in GaAs, in which
 free electron recombines with a free hole when they meet at one location in the crys-
tal. The excess energy of the electron is lost as a photon of energy hv = E,. In fact, it
is this type of recombination that results in the emitied light from light emitting
diodes (LEDs).

The recombination process between an electron and a hole, like every other
process in nature, must obey the momentum conservation law. The wavefunction of an
electron in the CB, Y (kes), will have a certain momentum hky, associated with the
wavevector kg, and, similarly, the electron wavefunction yyy(kys) in the VB will have
a momentum hk,, associated with the wavevector k,,. Conservation of linear mo-
mentum during recombination requies that when the electron drops from the CB to
the VB, its wavevector should remain the same, k,, = k.. For the elemental semicon-
ductors, i and Ge, the electronic states Y (k) With ky, = ke are right in the middle
of the VB and are therefore fully occupied. Consequently, there are no empty states in
the VB that can satisfy ky, = kg, and so direct recombination in Si and Ge is next to
impossible. For some compound semiconductors, such as GaAs and InSb, for exam-
ple, the states with k,;, = k. are right at the top of the valence band, so they are essen-
tially empty (contain holes). Consequently, an electron in the CB of GaAs can drop
down to an empty electronic state at the top of the VB and maintain k., = k. Thus
direct recombination is highly probable in GaAs, andltmdnswymﬂmm
GaAs an LED material.

In elemental semiconductor crystals, for example, in Si and Ge, electrons and
holes usually recombine through recombination centers. A recombination center
increases the probability of recombination because it can “take up” any momentum
difference between a hole and electron. The process essentially involves a third body,
which may be an impurity atom or a crystal defect. The electron is captured by the
recombination center and thus becomes localized at this site. It is “held” at the center
until some hole arrives and recombines with it. In the energy band diagram picture
slnwmﬁgumSBa.ﬂumombmnonmmndesahwmddmwmle_
below E. in the bandgap, which is at  certain location in the crystal. When an electron
approaches the center, it is captured. The electron is then localized and bound to this



Figure 5.23 Recombination and kopping.

0] Recombinafion in Si via o recombinalion center
that hos a lacalized energy level at E, in the bandgap,
usually neor the middle.

[b] Trapping and detrapping of elecrons by rapping
) cenfers. A happing cenler hos a locolized energy

(b Trapping level in the bandgop.

center and “waits” there for a hole with which it can recombine. In this recombination
process, the energy of the electron is usually lost o lattice vibrations (as “sound”) via
the “recoiling” of the third body. Emitted lattice vibrations are called phonons. A
phonon is a quantum of energy associated with atomic vibrations in the crystal analo-
gous to the photon. _

Typical recombination centers, besides the donor and acceptor impurities, might
be metallic impurities and crystal defects such as dislocations, vacancies, or intersti-
tials. Each has its own peculiar behavior in aiding recombination, which will not be

1t is instructive to mention briefly the phenomenon of charge carrier trapping
since in many devices this can be the main limiting factor on the performance. An
electron in the conduction band can be captured by a localized state, just like a recom-
bination center, located in the bandgap, as shown in Figure 5.23b. The electron falls
into the trapping center at E, and becomes temporarily removed from the CB. At a
ater time, due to an incident energetic latiice vibration, it becomes excited back into
the CB and is available for conduction again. Thus trapping involves the temporary re-
moval of the electron from the CB, whereas in the case of recombination, the electron
is permanently removed from the CB since the capture is followed by recombination
witha hole. We can view a trap as essentially being a flaw in the crystal that results in
the creation of a localized electronic state, around the flaw site, with an energy in the
bandgap. A charge carrier passing by the flaw can be captured and lose ts freedom. The
flaw can be an impurity or a crystal imperfection in the same way as a recombination
center. The only difference is that when a charge carrier is captured at 2 recombination
site, it has no possibility of escaping again because the center aids recombination.
Although Figure 5.23b illusirates an electron trap, similar arguments also apply to
hole traps, which are normally closer to E,.. In general, flaws and defects that give lo-
calized states near the middle of the bandgap tend o act as recombination centers.
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semiconductor in which An, < ng,.
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54.2 MINORITY CARRIER LIFETIME

Consider whal happens when an n-type semiconductor, doped with § x 10 cm i
donors, is uniformly illuminated with appropriate wavelength light to photogenerate
electron-hole pairs (EHPs), as shown in Figure 5.24. We will now define thermal equi-
librium majority and minority carrier concentrations in an extrinsic semiconductor. In
general, the subscript  or p is used to denote the type of semiconductor, and o to refer
to thermal equilibrium in the dark.
In an n-type semiconductor, electrons are the majority carriers and holes are the
minority carriers
n,, i8 defined as the majority carrier concentration (electron concentration
in an n-type semiconductor) in thermal equilibrium in the dark. These electrons,
constituting the majority carriers, are thermally ionized from the donors.
Pno 1§ termed the minority carrier concentration (hole concentration in an
n-type semiconductor) in thermal equilibrium in the dark. These holes that
constitute the minority carriers are thermally generated across the bandgap.

In both cases the subscript no refers to an n-type semiconductor and thermal equi-

librium conditions, respectively. Thermal equilibrium means that the mass action law
is obeyed and n,, pn, = n’.

When we illuminate the semiconductor, we create excess EHPs by photogen-
eration. Suppose that the electron and hole concentrations at any instant are denoted by
n, and p,, which are defined as the instantaneous majority (clectron) and minority
(hole) concentrations, respectively. At any instant and at any location in the semi-
conductor, we define the departure from the equilibrium by excess concentrations as
follows:

An, is the excess electron (majority carrier) concentration: An, = n, — Ry

Apy is the excess hole (minority carrier) concentration: Apy = pa = Pao

Under illumination, at any instant, therefore

Ry = ng, + Any and Pn= Prot Ap,

Figure 5.24 Lowlevel pholoinjection info an niype
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Photoexcilation creates EHPs or an equal number of electrons and holes, as shown
in Figure 5.24, which means that

Apy = An,
and obviously the mass action law is not obeyed: n,p, # n’. It is worth remember-
ing thal
et " dApa
dr dt dr dt

dn, dAn, d
n n o dpa

SINCE Mo and 'p,., depend only on temperature.
Let us assume that we have “weak”illumination, which causes, say, only a 10 percent
change in n,,,, that is,

Any = 0.1n,,=05x 10%cm

Then
Ap,=An, =05x 10%em™

Figure 5.25 shows a single-axis plot of the majority (n,) and minority (p,) concentra-
tions in the dark and in light. The scale is logarithmic to allow large orders of magni-
tude changes to be recorded. Under illumination, the minority carrier concentration is

Pa= Dot Apa=20%10°+05x 10 %05 x 10" = Ap,

That is, p, = Ap,, which shows that although n, changes by only 10 percent, py
changes drastically, that is, by a factor of ~10", )

Figure 5.26 shows a pictorial view of what is happening inside an n-type semi-
conductor when light is switched on at a certain time and then later switched off again.
Obviously when the light is switched off, the condition p, = Ap, (state B in Fig-
ure 5.26) must eventually revert back to the dark case (state A) where p, = pp. In
other words, the excess minority carriers Ap, and excess majority carriers An, must

Figure 5,25 Lowlevel injection in an
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Figure 5.26 llumination of an Hype semiconduclor results in excess
electron ond hole concenirations.

Affer the illumination, the recombination process restores equilibrium; the
excess electrons and holes simply recombine.

be removed. This removal occurs by recombination. Excess holes recombine with the
electrons available and disappear. This, however, takes time because the electrons and
holes have to find each other. In order to describe the rate of recombination, we intro-
duce a temporal quantity, denoted by v, and called the minority carrier lifetime
(mean recombination time), which is defined as follows: 1, s the average time a hole
exists in the VB from its generation to its recombination, that is, the mean time the hole
is free before recombining with an clectron. An alternative and equivalent definition is
that |/1; is the average probability per unit time that a hole will recombine with an
electron. We must remember that the recombination process occurs through recombi-
nation centers, so the recombination time 1, will depend on the concentration of these
centers and their effectiveness in capturing the minority carriers. Once a minority
carrier has been captured by a recombination center, there are many majority carriers
available to recombine with il, 5o 7, in an indirect process is independent of the ma-
Jority carrier concentration. This is the reason for defining the recombination time as a
minority camier lifetime,

If the minority carrier recombination time s, say, 10 5, and if there are some:1000
excess holes, then it is clear that these excess holes will be disappearing at a rate of
1000/10's = 100 per second. The rate of recombination of excess minority carriers is
simply Ap, /ty. At any instant, therefore, :

— Rate of recombination
of excess holes

Rate of
photogeneration

Rate of increase in excess =
hole concentration

If Gy is the rate of photogeneration, then clearly the net rate of change of Ap, is

15271
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This is a general expression that describes the time evolution of the excess minor-
ity carrier concentration given the photogeneration rate G, the minority carrier life-
time ;. and the initial condition at ¢ = 0. The only assumption is weak injection

_(APH < fipg)-

We should note that the recombination time v depends on the semiconductor
material, impurities, crystal defects, temperature, and so forth, and there is no typical
value to quote. It can be anywhere from nanoseconds to seconds. Later it will be shown
that certain applications require a short 7, as in fast switching of pn junctions,
whereas others require a long 1, for example, persistent lumninescence.

PHOTORESPONSE TIME  Sketch the nol concentration when a step illumination is applied to
an n-type semiconductor at time ¢ = 0 and switched off at time 1 = fo (3> ).

SOLUTION

We use Equation 5.27 with Gy = constant in 0 < 1 < 1. Since Equation 5.27 is a first-order
differential equation, integrating it @simply find

"!"Fw)] 1
In| G —(——- =——4+C
[ r Ty T !

where C, is the integration constant. At ¢ = 0, Ap, = 0, 50 €y = In Gy, Therefore the solu-
tion is

Apy(1) = rﬁGﬁ[l - cxp(—!i)] 0<1 <ty {5.28)
h

‘We see that as soon as the illumination is turned on, the minority carrier concentration

rises exponentially toward its steady-state value Ap,(00) = £ Gpn. This is reached after a time -

127
At the instant the illumination is switched off, we assume that 1. > 7, s0 that from Equa-

tion 5.28,
Apuliai) = TG
We can define 1’ to be the time measured from ¢ = t, that is, ' = — foy. Then
Ap (' =0)=1,Gp
Solving Equation 5,2“If with Gy = 0in 1 > g ort > 0, we gel
Ap,(t') = Ap,(0)exp (— :—;-)

where Ap, (0) is actually an integration constant that is equivalent to the boundary condition on
Apy att' =0, Putting (' = 0 and Ap, = 1, Gy, gives s

‘,f
Ap () = uGp Clp(—;—) : f5.29]
]

We see that the excess minority carrier concentration decays exponentially from the
instant the light is switched off with a time constant equal to the minorily carrier recom-
bination time. The time evolution of the minority carrier concentration is sketched in
Figure 5.27.
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Ganu p (1)

G
" Light
lllumination

\ Ap(r) = Ap,(0) exp(-17r,)
J

Puot Bp,(e2)

Pan '
o rl ————> Time, !
o ey
Figure 5.27 Illumination is switched gn ol time 1= 0 and then off ot Figure 5.28 A semiconducior
b= by s!ubdlengﬁ'll,wldﬂﬂmurddepih
The excess minorily carrier cancentration Ap,{f rises exponentially to its Dis iluminoted with light of
sieady-state valve with o fime constonil 1. From g, the excess minority - wavelength A. L is the steady-siote
carrier conceniration decays exponentially o its equilibrium valve. photocurrent.

m PHOTOCONDUCTIVITY  Suppose that a direct bandgap semiconductor with no traps is illu-
minated with light of intensity (k) and wavelength X that will cause photogeneration as shown
in Figure 5.28, The area of illumination is A = (L x W), and the thickness (depth) of the
semiconductor is ). If n is the quantum efficiency (number of free EHPs pencrated per ab-
sorbed photon) and r is the recombination lifetime of the photogenerated carriers, show that the
steady-state photoconductivity, defined as

Ao = alin light) — afin dark)
is given by
enIhlpe + py)
Ap = ——
_ heD
A photoconductive cell has a CdS erystal 1 mm long, 1 mm wide, and 0.1 mm thick with
electrical contacts at the end, so the receiving area of radiation is 1 mm?, whereas the area of

each contact is 0.1 mm®. The cell is illuminated with a blue radiation of wavelength 450 nm and
intensity | mW/cm”, For unity quantum efficiency and an electron recombination time of 1 ms,

caleulate !
4. The number of EHPs generated per second
b.  The photoeonductivity of the sample
¢. The photocurrent produced if 50 V is applied to the sample
Note that a CdS photoconductot is a direct bandgap semiconductor with an energy gap

E,=26eV, elcctron mobility p, =003 m? V's', and hole mobility u, =0.0018
m' Vst '

15.30]

SOLUTION

If Iy, is the number of photons arriving per unit area per unit second (the photon flux), then
P = Ifhv where I is the light intensity (energy flowing per unit area per second) and hv
is the energy per photon. The quantum efficiency 1§ is defined as the number of free EHPs
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generaled per absorbed photon. Thus, the number of EHPs generated per unit volume per
second, the phologeneration rate per unit volume G, s given by

I
4 AT - W(E) B NIk

LY D kD
[n the steady state,
dan An ol
F
0
A a oIk
=T _— —
WEDRT 5D

But, by definition,
Ao = ep, An +epy Ap = e Anlpe, + s)

since electrons and holes are generated in pairs, An = Ap. Thus, substituting for An inthe Ao
expression. we get Equation 5.30: ;
enIit(p, + i)
AG = ———————
heD
a. The photogeneration rate per unit time is 10t Gpn, which is per unit time per unit volume.

We define EHPy as the total number of EHPs photogenerated per unit time in the whole
volume (A D). Thus

EHP,, = Total photogencration rate

nIh  ApIi
= (AD)Gg = (AD)—= = —
MDY =W = T

= [(107 x 107 m)(1)(10° x 10 Js™ m~?){450 x 10 m)]
=663 x 107*I5)(3x 10°ms )]
=226 x 10" EHPs ™"
b.  From Equation 5.30,

enIAT(p, + )
Ag = ————
hel

That is

o (16 x 10°°C)(1)(107 x 10° 15~ m~)(450 x 102 m)(1 x 107 5)(0.0358 m* V"' h

(663 x 104 §)(3 x 100 ms")(0.1 x 10~ m)
=1300"'m"
c. Photocurrent density will be
AL =T Ao = (1300 m ")(50V/10” m) = 6.50 x 10'Am i
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Thus the photocurrent \
Al=AAT = (107 % 0.1 % 107 m?){6.50 x 10° Am™?)
=65x107°A or 65mA
We assumed that all the incident radiation is absorbed,

Dﬁﬁfﬂmqf

5.5 DIFFUSION AND CONDUCTION EQUATIONS,
AND RANDOM MOTION

Itis well known that, by virtue of their random motion, gas particles diffuse from high-
concentration regions to low-concentration regions. When a perfume bottle is opened
at one end of a room, the molecules diffuse out from the bottle and, after a while, can
be smelled at the other end of the room. Whenever thereis a concentration gradient of
particles, there is a net diffusional motion of particles in the direction of decreasing
concentration, The origin of diffusion lies in the random motion of particles. To quan-
tify particle flow, we define the particle Rux I" just like current, as the number of par-
ticles (not charges) crossing unit area per unit time. Thus if AN particles cross an area
A intime A, then, by definition, the particle flux is

AN
T A

Clearly if the particles are charged with a charge Q (¢ for electrons and +-¢ for
holes), then the electric current densi l)' J, which is basically a charge flux, is related to
the particle flux T by

[5.31)

i

J=0r 5321

Suppose that the electron concentration at some time ¢ in a semiconductor de-
creases in the x dircction and has the profile n(x, r) shown in Figure 5.29a. This may
have been achieved, for example, by photogeneration at one end of a semiconductor.
We will assume that the electron concentration changes only in the x direction so that
the diffusion of electrons can be simplified to a one-dimensional problem as depicied
in Figure 5.292. We know thal in the absence of an electric field, the electron motion is
random and involves scattering from lattice vibrations and impurities. Suppose that £
is the mean free path in the x direction and t is the mean free time between the scat-
tering events. The electron moves a mean distance £ in the +x or —x direction and then
it is scattered and changes direction. lts mean speed along x is v, = {//1. Lel us evalu-
ate the flow of electrons in the +.x and —x directions through the plane at x, and hence
find the net flow in the -+ direction.

We can divide the x axis into hypothetical segments of length £ so that each segment
comesponds to a mean free path. Going across a segment, the electron experiences one
scattering process. Consider what happens during one mean free time, the time it takes
for the electrons to move across a segment toward the left or right. Half of the electrons
in (x, — €) would be moving toward x,, and the other half away from x,, and in time 7
half of them will reach x, and cross as shown in Figure 5.29b. If n, is the concentra-
tion of electrons at x, — 3¢, then the number of electrons moving toward the right to
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nlx. 1) u’ Net electron diffusion fhux

N J ;
o] xI! I

Figure 5.29
Hhﬁkuqmmdmﬂnﬂpdﬂuhnmbmdw,ﬂwehunddim
(Prux} o electrons from higher fo lower concenirafions. :

(b) Expanded view of wo adjacent seciions ot x,. There are more elecirons crossing X, coming
from the left (%, — ) than coming from the right fx, + £).

cross x, is n AL where A is the cross-sectional area and hence A is the volume of the
segment. Similarly half of the electrons in (x, + £) would be moving toward the left
and in time 7 would reach z,.. Their number is $n;A¢ where n; is the concentration at
I+ %t. The net number of electrons crossing X, per unit time per unit area in the +x
direction is the electron flux T,
' _ jmAL- jmAl
_ - At
that is,
' t
rf= __[ﬂl“nl} 15.33]
2t

As far as calculus of variations is concerned, the mean free path ¢ is small, so we
can calculate n ~ n; from the concentration gradient using

z(dn),g __’(dn)!
np —ny .dj I= E:;

We can now write the flux in Equation 5.33in terms of the concentration gradient as
N (4 (dn)
7 u\dx

£ sl
T

Ly
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where the quantity (£%/2r) has been defined as the diffusion coefficient of electrons
and denoted by D,. Thus, the net electron flux T, at a position x is prupﬂrlionai to the
concentration gradient and the diffusion coefficient. The steeper this gradient, the
larger the flux I",.. In fact, we can view the concentration gradient dn /dx as the driving
force for the diffusion flux, just like the clectric field — (dV /dx) is the driving force
for the electric current: J = o = —a{dV /dx).

Equation 5.34 is called Fick’s first law and represents the relationship between
the net particle flux and the driving force, which is the concentration gradient. It is the
counterpart of Ohm's law for diffusion. D, has the dimensions of m’ s™' and is a mea-
sure of how readily the particles (in this casc, electrons) diffuse in the medium. Nole
that Equation 5.34 gives the electron flux I'. at a position x where the electron con-
centration gradient is dnfdx. Since from Figure 5.29, the slope dn/dx is a negative
number, I, in Equation 5.34 comes out positive, which indicates that the flux is in the
positive x direction. The electric current (conventional current) due to the diffusion of
electrons to the right will be in the negative direction by virtue of Equation 5.32. Rep-
resenting this electric current density due to diffusion as Jp . we can wrile

Jhr=_¢'r'z=fnrff 15.35]
dx
In the case of  hole concentration gradient, as shown in Figure 5.30, the hole flux
['y(x) is given by
. dp
where Dy is the hole diffusion coeflicient. Putting in a negative number for the slope
dp/dx, as shown in Figure 5.30, results in  positive hole flux (in the positive x direc-
tion), which in turn implies a diffusion current density toward the right. The current
density due to hole diffusion is given by
dp

Ipp=ely = —eDy— [5.38]
. dx

Figure 5.30 Arbirary hole conceniration pix, (] profile plrd) ' Net hale diffaticn lat

in 0 semiconductor, s,
There is  nel diffusion (flux] of holes from higher o lower b ¥
concentrations, There are more holes crossing x, coming o
from the lelt {x, — ¢) thon coming from the right [x, + 1)
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” Figure 5.31 When there is an electric
field and also o cancentration grodient,
charge carriers move both by diffusion und
drifi

Suppose thal there is also a positive electric field £, acting along +.x in Figures 5.29
and 5.30. A practical example is shown in Figure 5.31 in which a semiconductor is
sandwiched between two electrodes, the left one semitransparent. By connecting 4 bat-
tery to the electrodes, an applied field of €, is set up in the semiconductor along +x.
The left electrode is continuously illuminated, so excess EHPs are generated at this
surface that give rise to concentration gradients in n and p. The applied field imposes
an electrical force on the charges, which then try to dnft. Holes drilt toward the right
and electrons toward the left. Charge motion then involves both drift and diffusion.
The total current density due to the electrons drifting, driven by £, , and also diffusing.
driven by dnfdx, is then given by adding Equation 5.35 to the usual electron drift
current density,

dn

Jo=enpE + el — 15.37]

dx

We note that as T, is along x, so is the drift current {first term), but the diffusion

carrent (second term) 1s actually in the opposite direction by virtue of a negative dn /dx.

Similarly, the hole current due 1o holes drifting and diffusing, Equation 5.36, is
given by

dp
Iy =epuyL, = eDy—
dx

[5.38]
In this case the drift and diffusion currents are in the same direction.

We mentioned that the diffusion coefficient is a measure of the ease with which the
diffusing charge carriers move in the medium. Bul diift mobility 15 also a measure of
the case with which the charge carriers move in the medium. The two quantities are
related through the Einstein relation,

Dy kT Dy, T
S T 2a—

e [ Hh ¢

[5.39]

In other words, the diffusion coefficient is proportional (o the temperature and
mobility. This is a reasonable expectation since mcreasing the temperature will
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increase the mean speed and thus accelerate diffusion. The randomizing effect against
diffusion in one particular dircction is introduced by the scattering of the carriers from
Jartice vibrations, impurities, and so forth, so that the longer the mean free path
between scattering events, the larger the diffusion coefficient. This is examined in
Eanple 5.12.

We equated the diffusion coefficient D to £ /2t in Equation 5,34, Our analysis, as
represented in Figure 5.29, is oversimplified because we simply assumed that all elec-
trons move a distance £ before scattering and all are free for atime 1. We essentially as-
sumed that all those at a distance £ from x, and moving toward x, crossthe plane exactly
intime t. This assumption is not entirly true because scattering is a stochastic process
and consequently not all electrons moving toward x, will cross it even in the segment
of thickness €. A rigorous statistical analysis shows that the diffusion coefficient is
given by

I
D=— [5.40]

T

EXAMPLE 5,12

THE EINSTEIN RELATION. Using the relation between the drift mobility and the mean free time
1 between scatlering events and the expression for the diffusion coefficient D = £/r, derive
the Einstein relation for electrons.

SOLUTION *

In one dimension, for example, along x, the diffusion coefficient for electrons is given by
D, = £/t where £ is the mean free path along v and 7 is the mean free time between scatler-
ing events for electrons. The mean free path £ = v, v, where v, is the mean (or effective) speed
of the electrons along x. Thus,

— i
D, =vr

In the conduction band and in one dimension, the mean KE of electrons is 2T, so 1T =
3m; v} where m} is the effective mass of the electron in the CB. This gives

Substituting for v, in the D, equation, we get,

el AL ()
m; e \m}

Further, we know from Chapter 2 that the electron drift mobility s, is related to the mean
free time ¢ via g, = ex/m}, 50 we can substitute for r to oblain

kT
D, = —p,
14

which is the Einstein relation. We assumed that Boltzmann statistics, that is, v} = kT/m
is applicable, which, of course, is true for the conduction band electrons in a semiconductor
but not for the conduction electrons in a metal, Thus, the Einstein relation is only valid for
electrans and holes in a nondegenerate semiconductor and certainly not valid for electrons in
anietal.
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DIFFUSION COEFFICIENT OF ELECTRONS IN§i  Calculate the diffusion cocfficient of eleclmm

at27 °C in n-type Si doped with 10" As atoms cm .
SOLUTION

From the p, versus dopant concentration graph, the electron drift mobility g, with 101 cm™
of dopants is about 1300 cm? V™'s™!, 50

s "'k = (1300 em! V' s)(0.0259 Vi =13 Tem’ 5"

3

BUILTN POTENTIAL DUE TO DOPING VARIATION Suppose that due to a variation in the
amount of donor doping in a semiconductor, the electron concentration is nonuniform across the
semiconduclor, that is, n = a(x). What will be the potential difference between two points in
the semiconductors where the electron concentrations are n; and a,? If the donor profile in an
n-lype semiconductor is ¥ (x) = N, exp(~x/b), wherc b is a characteristic of the exponential
doping profile, evaluate the built-in field £, . What is your conclusion?

Consider a nonuniformly doped a-type semiconductor in which immediatcly after doping the
donor concentration, and hence the electron concentration, decreases toward the right. Ini-
tially, the sample is neutral everywhere. The electrons will immediately diffuse from higher- to
lower-concentration regions. But this diffusion accumulates excess electrons in the right re-
gion and exposes the positively charged donors in the left region, as depicted in Figure 5.32.
The electric field between the accumulated negative charges and the exposed donors prevents
further accumulation. Equilibrium is reached when the diffusion toward the right is just bal-
anced by the drift of electrons toward the left. The total current in the sample must be zero (it
is an open circuit),
) dn
Je=enp,E +eD—=0
dx

But the field is related to the potential difference by E, = —(dV/dx), so

dav
es.u, + el, d— =0
Exposed n, n Figure 5,32 Nonuniform doping prolile results in
Astd ooV o—o electron diffusion loward the less concentrated

fegions.

This exposes positively charged danors and sets up o
builtin field T, In the steady state, the diffusion of
elecirons loward the right is balanced by their drif
toward the left,

28-

EXAMPLES.]4
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We can now use the Einstein relation D, /i, = kT /e to eliminate D, and «, and then can-
cel dx and integrate the equatiop,
Y kT [ dn
d¥=— —_
¥y

4 fl

L}

Integrating, we obtain the potential differcnce between points 1 and 2,

il p
V-V, = —-vln(fl) [541]
¢ ny
To find the built-in field, we will assume that (and this is a reasonable assumption) the dif-
fusion of electrans toward the right has not drastically upset the original n(x) = Ny (x) varia-
tion because the ficld builds up quickly to establish equilibrium. Thus

Xz

nix) = Ny(x) = N,cxp( b)

Substituting into the equation for J, = 0, and again using the Einstein relation, we obtain £, as

kT

123;

15.42|

Note: As a result of the fabrication process, the base region of a bipolar transistor has
nonuniform doping, which can be approximated by an exponential N, (x). The resulting electric
field £, in Equation 542 acts to drift minority carriers faster and therefore speeds up the tran-
sistar operation as discussed in Chapler 6.

56 CONTINUITY EQUATION'

361 Time-DepPENDENT Continutty EQUATION

Many semiconductor devices operate on the principle that excess charge carriers are
injected into a semiconductor by external means such as illumination or an applied
voltage. The injection of carriers upsels the equilibrium concentration. To determine
the carrier concentration at any point at any instant we need 1o solve the continuity
equation, which is based on accounting for the total charge at that location in the semi-
conductor, Consider an n-type semiconductor slab as shown in Figure 533 in which
the hole concentration has been upset along the x axis from its equilibrium value p,,
by some external means.

Consider an infinitesimally thin elemental volume A 8x as in Figure 5.33 in which ~
the hole concentration is p,(x. 1). The current density al x due to holes flowing into the
volume is 7, and thal due to holes flowing outat x + dx is Jy + 8. There is a change
in the hole current density J,; that is, J,(x, ) is not uniform along x. (Recall that the
lotal current will also have a component due to electrons.) We assume that J (x, 1) and
palx, 1) do ol change across the cross section along the y or 7 directions. If 87, is

I *This section may be skipped wiioul loss of confinuity. {No pun intended )
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Semiconducion

Figure 5.33 Cansider an
elemenial volume A §x in which the
hole concentration is pix, 1).

negative, then (he current leaving the volume is less than that entering the volume,
which leads to an increase in the hole concentration in A §x. Thus,

1 (-AW ) ; ,
e (_,-__") = Rate of merease in hole concentration [5.43]
Axy ¥ due to the change in J;

The negative sign ensures that negative &/, leads to an increase in p,. Recombination

taking place in A 8x removes holes from this volume. In addition, there may also be
photogencration at x at time . Thus,

The net rate of inerease in the hole concentration p, in A dx
= Rate of increase due to decrease in J; — Rate of recombination 4 Rate of

photogeneration
HPH | HJ}) s = Paa
i el B 5.44
it e(ar T THe b

whete 7, is the hole recombination time (lifetime), Gy, is the photogeneration rate at x
at time 1. and we used 8, /dx for §J, /8x since J;, depends on x and 1.

Equation 5.44 is called the continuity equation for holes. The current density Jy is
given by diffusion and drift components in Equations 5,37 and 5.38, There is a similar
expression for electrons as well, but the negative sign multiplying d /. /dx is changedito
positive (the charge e is negative for electrons).

The solutions of the continuity equation depend on the initial and boundary condi-
tions. Many device scientists and engineers have solved Equation 5.44 for various
semiconductor problems lo characterize the behavior of devices. In most cases mumer-
ical solutions are necessary as analytical solutions are no mathematically tractable. As
asimple example, consider uniform illumination of the surface of a semiconductor with
suitable electrodes al its end as in Figure 5.28. Photogeneration and current density do
not vary with distance along the sample length, so 4, /dx = 0. If Ap, is the excess
concentration, Ap, = p, — Pae. then the time derivative of p, in Equation 5.4 is the

same as Ap,,. Thus, the continuity equation becomes
s [5.45]
at 3 7% ph

which is identical to the semiquantitatively derived Equation 5.27 from which phote-
conductivity was calculated in Example 5.11.

23

Continuiry
equation for
holes. = - "

Continuity
equaltion with
uniform
phato- - o
generaiton -
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5.6.2 STEADY-STATE CONTINUTTY EQUATION

For certain problems, the continuily equation can be further simplified. Consider, for ex-
ample, the continuous illumination of one end of an n-type semiconductor slab by light
that is absorbed in a very small thickness x, at the surface as depicted in Figure 5.34a.
There is no bulk photogeneration, s0 G 4 = 0. Suppose we are interested in the steady-
state behavior; then the time derivative would be zero in Equation 5.44 (o give,

Seesiy-saje /
‘M : l(ﬁ) B . i . 15.48]
equation for - e\ dr u

The hole current density J, would have diffusion and drift components. If we
assume that the electric field is very small, we can use Equation 5.38 with € ~ 0 in
Equation 5.46. Further, since the excess concentration Apy(x) = py(x) = Pros We
obtain,

[5.47]

where, by definition, L, = /Dy, and is called the diffusion length of holes. Equa-
tion 547 describes the steady-state behavior of minority carrier concentration in a
semiconductor under time-invariant excitation. When the appropriate boundary condi-
tions are also included, its solution gives the spatial dependence of the excess minor-
ity carrier concentration Ap,(x).

In Figure 5.34a, both excess electrons and holes are photogenerated at the surface,
but the percentage increase in the concentration of holes is much more dramatic since

o .-'_ n-type semiconductor

T -
. i*F ~
Light g Fo™ e Currents (mA)
pE= e o T — Diffusion
- i w=== Drift
Excess concentration ] Dh
7 SRR ... .___jf{"_"_"_"

Figure 5.34

o) Steady-stale excess carrier conceniration profiles in an niype semiconducior thal is confinuously illuminoted al
one end.

[b) Majority and minority carrier current components in open circuil. Tohal current is zero,
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Poe & Nag. We will assume weak injection, that is, Ap, & ny,. Suppose that illumi-
pation is such that il causes the excess hole concentration al x = 0 to be Ap,(0). As
holes diffuse toward the right, they meel electrons and recombine as & result of which
the hole concentration p, (x) decays with distance into the semiconductor. If the bar is
very long, then far away from the injection end we would expect p, to be equal o the
thermal equilibrium concentration p,,. The solution of Equation 547 with these
boundary conditions shows that Ap,(x) decays exponentially as

h

"This decay in the hole concentration results in a hole difusion current /5 (x) that
hasthe same spatial dependence. Thus, if A is the cross-sectional area, the hole current is
dpy AeD

Rl - Ao, B 2.{m,.lm}mqa(ni) (5.49
dx Ly L,
We find Ap,(0) as follows. Under steady state, the holes generated per unit time
in x, mus! be removed by the hole current (at x = 0) at the same rate. Thus,

] AD,
A3,Gpn = ~Ipa(0) = == Apa(0)
4 L;,

_—
Ap,(0) = I,,G,g.(—) [5.50]
Dy
Similarly, electrons photogenerated in x,, diffuse toward the bulk, but their diffu-
sion coefficient D, and length L. are larger than those for holes. The excess electron
concentration An, decays as

By ﬁnn(ﬂ}ﬂp(— f-) 15.51)
where L, = /D,1; and An,(x) decays more slowly than Ap,(x) as L. > Ly. (Note
that 1, = 7;.) The electron diffusion current Iy, is

- dn,(x) AeD,
Bip= B
i L.

The field at the surface is zero. Under steady state, the electrons generated per unil
time in x, must be removed by the electron current at the same rate. Thus, similarly (o
Equation 5.50,

An,(0) enp(— Li) [5.52]

% i
An,(0) = ;ouw(ﬁ) [5.53]
so that
ﬁm@_(&yﬁ i
An,0)  \ Dy '

which is greater than unity for Si.
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Table 5.3 Currents in an infinile slab illuminaed af one end for weak injection near the surface -

Minority Majority
Diffysion Minority Drift [hffusion : Majority Drify Field £
Currents at Ina(mA) Taemp (mA) In, (mA) Tiein,e (mA) (Vem™)
=0 394 ] -1 0 e, 5
2l 0.70 0.0022 -1.45 0.75 0035

[t is apparent that the hole and electron diffusion currents are in appuosite direc-
tions. Al the surface, the electron and hole diffusion currents are equal and opposite, so
the total current is zero. As apparent from Equations 5.49 and 5.52, the hole diffusion
current decays more rapidly than the electron diffusion current, so there must be some
electron drift to keep the total current zero. The electrons are majority carriers which
means that even a small field can cause a marked majority carrier drift current. If Jy
is the electron drift current, then in an open circuit the total current | = Iy +1p. +
fﬂl‘ifl,e =0,50

fu:::mm o - Agine=~Tps—Ip, [5.55]

The electron drift current increases with distance, so the total current / at every

location is zero. [t must be emphasized that there must be some field E in the sample,
however small, to provide the necessary drift to balance the currents to zero. The ficld
can be found from Iy . ~ Aen,,p.E, inasmuch as n,, does not change significantly
(weak injection),

f .
€= _dife [5.58]
Aentyop,
The hole drift current due to this field is
Tying = Aeppp,(X)E ; 5.57]

and it will be negligibly small as p, & fing.

We can use actual values to gauge magnitudes. Suppose that A = | mm® and
Ng= 10" em™* 50 that gy = Ny = 10" cm™ and p,, = n2/Ny =1 x 10* cm™>.
The light intensity is adjusted to yield Ap,(0) =0.051,, =5 x 10" cm™: weak
injection. Typical values at 300 K for the material properties in this N,;-doped n-type
Si would be 7; = 480ns, , = 1350cm? V' 57\ D, = 34.9em® s L, = 0.0041 cm =
41 pm, oy = 450em? V'™, Dy = 116 em” 57, Ly = 0.0024 cn = 24 pm. We
can now calculate each current term using the Equations 5.49, 5.52, 5.55 and 5.57
above as shown in Figure 5.34b. The actual values at two locations, x =0 and
x = [, = 4] pm, are shown in Table 5.3

3 The reader may have observed that the currenis in Toble 5.3 do nol add exoctly o zero. The analysis here is only
approximote ond, lurther, |Imbmdmn*&ghus&ﬁmmmdﬁa the field as neary zero to use
oz:honﬁl?mdvmrqhmmmprdlm l"knhdhhdn‘!curruinm:hmhrhmh
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INFINITELY LONG SEMICONDUCTOR ILLUMINATED AT ONE END  Find the minority carrier
concentration profile p, (x) in an infinite a-type semiconductor that is illuminated continuously
at one end a8 in Figure 5.34. Assume that phologeneration occurs near the surface. Show that
the mean distance diffused by the minority carriers before recombination is Ly

SOLUTION

Continuous illumination means that we have sieady-state conditions and thus Equation 547 can
be used. The general solution of this second-order differential equation is

x X
Aplx) = Aexp(—-—-) 4 Ber.p(—) [5.58]
Ly L,
where A and B are constants that have to be found from the boundary conditions. For an infinite
bar, al x = 0o, Ap,(0c) = 0 gives B = 0.Atx = 0. Ap, = Ap,(0) s0 A = Ap,(0). Thus, the
excess (photoinjected) hole concentration at position x is

Ap,(x) = Ap,(0) exp{ - Li) [5.59)

]
which is shown in Figure 5.34a. To find the mean position of the photoinjected holes, we use the
definition of the “mean,” that is,
j: xAp,(x)dx
1 Apatn)dx
Substituting for Ap, (x) from Equation 5.59 and carrying out the integration gives x = L;.
We conclude that the diffusion length L, is the average distance diffused by the minority car-

riers before recombination. As a corollary, we should infer that 1/L;, is the mean probability per
unit distance that the hole recombines with an electron.

T
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57 OPTICAL ABSORPTION

We have already scen that a photon of energy hv greater than E, can be absorbed in
a semiconductor, resulting in the excitution of an electron from the valence band to
the conduction band, as illustrated in Figure 5.33. The average energy of electrons
in the conduction band is %kT above E, (average kinetic energy is ;k T), which
means that the electrons are very close to E,. If the photon energy is much larger
than the bandgap energy E,, then the excited electron is not near £, and has to lose
the exira energy hiv — E, to reach thermal equilibrium, The excess energy hu - E,
is lost 1o lattice vibrations as heat as the electron is scattered from one atomic vi-
bration (o another. This process is called thermalization. 1f, on the other hand, the
photon encrgy hv is less than the bandgap energy, the photon will not be absorbed
and we can say that the semiconductor is transparent to wavclengths longer than
he/E, provided that there are no energy states in the bandgap. There, of course, will
be reflections occurring at the air/semiconductor surface due to the change in the
refractive index.
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Suppose that I, is the intensity of abeam of photons incident on a semiconductor
matcrial. Thus, 1, is the energy incident per unit area per unit time. If I", is the pholon
[lux, then

Iy=hly,

When the photon energy is greater than E, photons from the incident radiation will be
absorbed by the semiconductor. The absorption of photons requires the excitation of
valence band electrons, and there are only so many of them with the right energy per
unit volume. Consequently, absorption depends on the thickness of the semiconductor.
Suppose that T(x) is the light intensity at x and 1 is the change in the light intensity
in the small elemental volume of thickness 8x at x due o photon absorption, as illus- .
trated in Figure 5.36. Then &1 will depend on the number of photons amiving at this
volume I(x) and the thickness é.x. Thus

I = —aldx
where a is a proportionality constant that,depends on the photon energy and hence
wavelength, thal is, @ = e(4). The negative sign ensures that §1 is a reduction. The

constant « as defined by this equation is called the absorption coefficient of the semi-
conductor, 1t is therefore defined by

0= —— [5.601

which has the dimensions of length™ (m~').

When we integrate Equation 5.60 for illomination with constant wavelength light,
we get the Beer-Lambert law, the transmitted inensity decreases exponentially with
the thickness,

I(x) = T,exp(-ax) [5.61)
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Figure 5.37  The absorption coefficient o depends on the photon energy hv and hence on the wavelengh.

Densily of stoles increases from band edges and usually exhibits peoks and troughs. Generolly ar increases with the pholon
energy grealer than E; because more energefic photons can excite elecirons from populated regions of the VB to numerous
availoble stotes deep in the CB.

As apparent from Equation 5.61, over a distance x = 1 /o, the light intensity falls
to a value 0.371,; that is, it decreases by 63 percent. This distance over which 67 per-
cent of the photons are absorbed is called the penetration depth, denoted by
§=l/a.

The absorption coefficient depends on the photon absorption processes occurring
in the semiconductor, In the case of hand-to-band (interband) absorption, «
increases rapidly with the photon energy hv above E, as shown for 8i (E, = 1.1 ¢V)
and GaAs (E, = 1.42 V) in Figure 5.37. Notice that « is plotted on a logarithmic
scale. The general trend of the a versus hv behavior can be inwitively understood from
the density of states diagram also shown in the same figure.

Density of states g( E) represents the number of states per unit energy per unit vol-
ume. We assume that the VB states are filled and the CB states are empty since the
number of electrons in the CB is much smaller than the number of states in this band
(n < N.). The photon absorption process increases when there are more VB states
available as more electrons can be excited. We also need available CB states into
which the electrons can be excited, otherwise the electrons cannol find empty states to
fill. The probability of photon absorption depends on both the density of VB states and
the density of CB states. For photons of energy hvy = Ey, the absorption can only
occur from E, to £ where the VB and CB densities of states are low and thus the
absorption coefficient is small, which is illustraied as A in Figure 5.37. For photon
energies hvg, which can Lgke electrons from very roughly the middle region of the VB
{o the middle of the CB, the densities of states are large and « is also large as indicated
by B in Figure 5.37. Furthermore, there are more choices of excitation for the hvy
photon as illustrated by the three arrows in the figure, At even higher photon energies,
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photon-absorption can of course excite electrons from the VB into vacuum, In reality,
the density of states g(E) of a real crystalline semiconductor is much more compli-
cated with various sharp peaks and troughs on the densily of states function, shown as
dashed curves in g(E) in Figure 5.37, particularly away from the band edges. In addi-
tion, the absorption process has to satisfy the conservation of momentum and quantum
mechanical transition rules which means that certain transitions from the CB to the VB
will be more favorable than others. For example, GaAs is a direct bandgap semicon-
ductor, so photon absorption can lead directly to the excitation of an clectron from the
CB tothe VB for photon energies just above £, just as direct recombination of an elec-
tron and hole results in photon emission, Si is an indirect bandgap semiconductor.
Just as direct electron and hole recombination is not pessible in silicon, the electron
excitation from states near , (o states near £, must be accompanied by the emission
or absorption of lattice vibrations, and hence the absorption is less efficient; a versus
hv for GaAs rises more sharply than that for Si above E, as apparent in Figure 5.37.
Atsufficiently high photon energies, it is possible o excite electrons directly from the
VB tothe CB in Siand this gives the sharp rise in @ versus hv before B in Figure 5.37.
(Band-to-band absorption is further discussed in Chapter 9.)

IEIEETEREY evioroconoucTVIT OF ATHIN SLAB. ity th photocontuciviy expresicn
- enLhr{p, + 1)
- heD

derived for a direct bandgap semiconductor in Figure 5.28 to take into account that some of the
light intensity is transmitted through the malerial,

Ao

SOLUTION
£ we assume that all the photons are absorbed (there is no transmitted light intensity), then the
photaconductivity expression is
7T eNI AT (e + )

heD
But, in reality, I exp(—a D) is the transmitted intensity through the specimen with thickness D,
50 absorption is determined by the intensity lost in the material I,[1 - exp(—a D)), which
means thal Aa must be accordingly scaled down to
_enL[1 —exp(—aD)lir (i, + py)
- heD

Ao

m PHOTOGENERATION IN GaAs AND THERMALIZATION  Suppose that a GaAs sample is illu-
minated with a 50 mW HeNe laser beam (wavelength 632.8 nm) on its surface. Caleulate how
much power is dissipated as heal in the sample during thermalization. Give your answer as mW.
The energy bandgap E, of GaAs is 1.42¢V.

SOLUTION

Suppose Py is the power in the laser beam; then P, = IA, where I is the intensity of the
beam and A is the area of incidence. The photon flux, photons arriving per unit area per unit
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time, is
g _ Pt
" by Ak
so the number of EHPs generated per unit time is
dN P,
P o
dt ph hy

These carriers thermalize—lose their excess energy as lattice vibrations (heat) via colli-
sions with the lattice—so cventually their average kinetic energy becomes JKT above E, as de-
picted in Figure 5.35. Remember that we assume that clectrons in the CB are nearly free, so they
must obey the kinetic theory and hence have an average kinelic energy of %*T,Th'ﬂ average en-
ergy of the electron is then E, + 2KT ~ 1.46 eV. The excess energy

3
as:nu-(5,+in]

is lost to the lattice as heat, that is, lattice vibrations, Since each electron loses an amount of
energy AE as heat, lhe heat power generated is

N (P,
Py = (I-)AE_ (;) (AE)

The incoming photon has an energy kv = he/A = 1.96 eV, so

(S0 mW)(1.9%6 eV — 1.46eV)
p=——————————— = 12.76mW
1.96eV

Notice that in this example, and also in Figure 5.35, we have assigned the excess energy
AE = hv - E; — kT 1o the electron rather than shase it between the electron and the hole that
is photogenerated. This assumption depends on the ratio of the electron and hole effective
masses, and hence depends on the semiconductor material. It is approximalely true in GaAs be-
cause the clectron is much lighter than the hole, almost 10 times, and consequently the absorbed
photon is able o “impart™ a much higher kinctic encrgy to the electron than to the hole; kv - E,
is used in the photogeneration, and the remainder goes to impart kinetic energy to the photo-
generated electron hole pair.
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58 PIEZORESISTIVITY

When a mechanical stress is applied to a semiconductor sample, as shown in Figure
§.38a, it is found that the resistivily of the semiconductor changes by an amount that
depends on the stress.® Piezoresistivity is the change in the resistivity of a semicon-
ductor (indeed, any material), due to an applied stress. Elastoresistivity refers (o the
change in the resistivity due to an induced strain in the substance. Since the applica-
tion of stress invariably leads to strain, piezoresistivity and elastoresistivity refer to

¢ Mechanicol siess is defined as the opplied force per unil orea, o, = F/A, and the resulfing siroin &, is the
Iractional change in the lengrh of a somple coused by o, £a = 4L/L, where Lis the somple lengh. The two are
reloted thiough the elasic modulus V; am = Yea. Subscript m is used o disbnguish the siress o, and shain &, lrom
the conductivity a and permittivity £.
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Longitodinal di
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Figure 5,38 Piezoresistivity and its applications.

o) Stress o, along the current (longifudinal] direction changes the resistivity by §5.

b) Stresses o and a; cause a resistivily change.

[c] A force applied to o cantilever bends it. A piezoresistor of the suppart end [where the
shress is lorge) measures the strass, which is proportional fa the force.

[d] A pressure sensor has four piezoresisiors R), R, Ry, Ry embedded in o diophragm. The
pressure bends the diaphragm, which generates siresses that are sensed by the four
piezoresisiors.

the same phenomenon. Piezoresistivity is fruitfully utilized in a variety of useful
sensor applications such as force, pressure and strain gauges, acceleromelers, and
microphones,

The change in the resistivity may be due 10 a change in the concentration of
carriers or due lo a change in the drift mobility of the carriers, both of which can be
modified by a strain in the crystal. Typically, in an extrinsie or doped semiconductor,
the concentration of carriers does not change as significantly as the drift mobility; the
piczoresistivity is then associated with the change in the mobility. For example, in an
n-type Si, the change in the electron mobility 2, with mechanical strain ¢,,, dy, /de,,,
is of the order of 10° em® V' 57!, so that a strain of 0.015 percent will result in a
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change in the mobility that is about 1 percent, and a similar change in the resistivity,
which is readily measurable. In this case, the change in the mobility y, is due Lo the
induced strain changing the effective mass m; which then modifies gz, (Recall that
e = et/m*, where t is the mean scattering time.)

The change in the resistivity 4p has been shown 1o be proportional to the induced
strain in the crystal and hence proportional to the applied siress ,. The fractional
change 4p/p can be wrilten as .

]
;A TOm [5.621

4

where  is a constant called the piezoresistive coefficient; 7 has the units of 1/stress,
e.g.. m* /N or |/Pa. The piczoresistive coefficient = depends on the type of doping,
p-or n-type; the dopant concentration; the temperature; and the crystallographic direc-
tion. A stress along a certain direction in a crystal, for example, along the length of a
semiconductor erystal, will change the resistivily not only in the same direction but also
in transverse directions. We know from elementary mechanics that a strain in one di-
rection is accompanied by a transverse strain, as implied by the Poisson ratio, so it is not
unexpected that a stress in one direction will also modify the resistivity in a transverse
direction. Thus, the change in the resistivily of a semiconductor in a “longitudinal”
direction, taken as the direction of current flow, is due to stresses in the longitudinal and
transversc directions. If oy is the stress along a longitudinal direction, the direction of
current flow, and o7 is the stress along a transverse direction, as in Figure 5.38b, then,
generally, the fractional change in the resistivity along the current flow direction (lon-
gitudinal direction} is given by

ép
— = myay + 1707 [5.63]

where r,, is Lhe piczoresistive coefficient along a longitudinal direction (different for
p- and n-type Si), and 7 is the piezoresistive coefficient in the transverse direction.

The piezoresistive effect is actually more complicated than what we have implied.
In reality, we have to consider six types of stresses, three uniaxial stresses along the x,
y, and z directions (¢. .. trying to pull the crystal along in three independent directions)
and three shear stresses (¢.g., irying to shear the crystal in three- independent ways). In
very simple terms, 2 change in the resistivity (3p/p); along a particular direction i (an
arbitrary direction) can be induced by a stress o; along another direction j (which may
or may not be identical to i). The two, (3p/p), and o), are then related through a
piezoresistivity coeflicient denoted by ,,.. Consequently, the full description of piczore-
sistivity involves tensors, and the piezoresistivity coefficients 7, form the elements of
this temsor; a treatment beyond the scepe of this book. Nonetheless, it is useful to be
able to calculate 7y and xy from various tabulated piezoresistivity coefficients m;;,
without having 1o learn tensors. 1t lurns out that it is sufficient to identify three princi-
pal piezoresistive coefficients (0 describe the piezoresistive effect in cubic crystals,
which are denoted s 71, 7,5, and w4 From the latter set we can casily calculate my
and 1ty for a crystallographic direction of intercst; the relevant equations can be found
in advanced texthooks,

Piezoresis-
tivity

tivity
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Advances in silicon fabrication fechnologies and micromachining (ability to [ab-
ricate micromechanical structures) have now enabled various piezoresistive silicon
microsensors (o be developed that bave a wide range of useful applications, Figure
5.38¢ shows a very simple Si microcantilever in which an applied force F 1o the free
end bends the cantilever; the tip of the cantilever is deflecied by a distance .
According to elementary mechanics, this deflection induces @ maximum stress a, that
is at the surface, at the support end, of the cantilever. A properly placed piczoresistor at
this end can be used to measure this stress a,,, and hence the deflection or the force.
The piezoresistor is implanted by sclectively diffusing dopants into the Si cantilever at
the support end. Obviously, we need (o relate the deflection A of the cantilever tip
to the stress a,,., which is well described in mechanics. In addition. / is proportional to
the applied force # through a factor that depends on the elastic modulus and the geom-
etry of the cantilever. Thus, we can measure both the displacement (h) and force (F),

Another useful application is in pressure sensors, which are commercially available,
Again, the structure is fabricated (rom Si. A very thin elastic membrane, called a di-
aphragm, has four piezoresistors embedded, by appropriate dopant diffusion, on its sur-
face as shown in Figure 5.38. Under pressure, the Si diaphragm deforms elastically, and
the stresses that are generated by this deformation cause the resistance of the piezoresistors
{0 change. There are four piezoresistors because the four are connected in a Wheatstone
bridge arrangement for better signal detection. The diaphragm area is typically | mm x
I mm, and the thickness is 20 pm. There is no doubt thal recent advances in microma-
chining have made piezoresistivity an important topic for 4 variety of sensor applications.

mﬂs’fm STRAIN GAUGE  Suppose that we appiy a stress o, along he length, taken

Semi-
eonducior

strain garige -

along the [110] direction, of a p-type silicon crystal sample. We will measure the resistivity
along this direction by passing a corent along the length and measuring the voltage drop be-
tween two fixed points as in Figure 5.38a. The stress ;. along the length will result in a sirain
¢ along the same length given by £, = a;/¥, where ¥ is the elastic modulus, From Equation
5.63 the change in the resistivity is

Ap ;

— =mop tapar =mle

p
where we have ignored the presence of any transverse stresses; oy = 0. These lransverse
stresses depend on how the piezoresistor is used, that is, whether it is allowed to contract later-
ally. 1f the resistor cagnot contract, it nust be experiencing a transverse stress. In agy even, for
the particular direction of interest, | 110], the Poisson tatio is very smiall (less than 0.1), and we
can simply negleet any o7 Clearly, we can find the strain ¢, from the measurement of Ap/p,
which is the principle of the strain gauge. The gauge faclor G of a strain gauge measurcs the
sensitivity of the gauge in terms of the fractiondl change in the resistance per unit strin,

(Mf' (E\p)
R ]
= f s P

®¥m

&

where we'have assumed that A R is dominated by Ap. since the effects from geomelric changes
in the-sumple shape can be ignored compared wih the piezoresistive effectin scmiconductors.
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Using typical values for a p-type Si piczoresistor which has a length along [110], ¥ % 170 GPa.
my =T x 107" Pa ' we find G =122 This is much greater than G = 1.7 for metal
resistor-based strain gauges. In most metals, the fractional change in the resistance AR/ R is
due Lo the geometric effect, the sample becoming elongated and namower, whereas in semicon-
ductors it is due to the piczoresistive effect.

435

59 SCHOTTKY JUNCHON

39.1 ScuorTky DiopE

We consider what happens when a metal and an n-type semiconductor are brought into
contact, In practice, this process is frequently carcied out by the evaporation of a metal
onto the surface of a semiconductar crystal in vacuum.

The energy band diagrams for the metal and the semiconductor are shown in
Figure 5.39. The work function, denoted as @, is the energy difference between the
vacuumn leveland the Fermi level. The vacuum level defines the energy where the elec-
tron is frec from that particular solid and where the electron has zero KE,

For the metal, the work function @, is the minimum encrgy required to remove an
electron [rom the solid. Ip the metal there are electrons at the Fermi level Ep,,, butin the

ddebeet [Chaper 1)

John Bordeen, Wallgr Schattky, ond Woker Brattain. Walter H
Schottky (1886~ 19748) abtained his PhD from the University of terin
in 1912 He mode mony distnct conributions to physical electionics
He invented the sereen griel vocuum tube in 1913, ond the letrode
vocoum lbie in 1919 while ot Siemens. The Scholtky junclion theory
wot formulated in 1938 He sho mode dishined conlributions fo
thermed ond shot naise in devices. His book Thermodynamik wos
pblished in 1929 and included an explanation of the Schotfky

| SOURCE: AP Emilio Segre Visuol Archives, Brotiain Collection,
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Figure 5.39 Formation of a Schoftky junction between o metol and an nype semiconduclor when ®,, > ®,.

semiconductor there are none at E s,.. Nonetheless, the semiconductor work function ®,
still represents the energy required to remove an electron from the semiconductor. It
may be thought that the minimum energy required to remove an electron from the semi-
conduetor is simply the electron affinity , but this is not so. Thermal equilibrium re-
quires that only a certain fraction of all the electrons in the semiconductor should be in
the CB at a given temperature. When an electron is removed from the conduction band,
then thermal equilibrium can be maintained only if an electron is excited from the VB
to CB, which involves absorbing heat (energy) from the environment; thus it takes more
energy than simply x. We will not derive the effective thermal energy required to re-
move an electron bul stale that, as for a metal, this is equal to @, even though there are
no electrons at Eg,. In fact, the thermionic emission of electrons from a heated semi-
conductor is also described by the Richardson—Dushman expression in Equation 4.37
but with ¢ representing the work function of the semiconductor, ®, in the present
n-type casc. (In contrast, the minimum photon energy required to remove an electron
from a semiconductor above absolute zero would be the electron affinity.)

We assume that ¢, > @,, the work function of the metal is greater than that of the
semiconductor. When the two solids come into contact, the more energetic electrons in
the CB of the semiconductor can readily tunnel into the metal in search of lower empty
energy levels (just above Ep,,) and accumulate near the surface of the metal, as illus-
trated in Figure 5.39. Electrons tunneling from the semiconductor leave behind an
electron-depleted region of width W in which there are ékposed positively charged
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donors, in other words, net positive space charge. The contact potential, called the
built-in potential V,, therefore develops between the metal and the semiconductor.
There is obviously also a built-in electric field £, from the positive charges to the neg-
ative charges on the metal surface. Eventually this built-in potential reaches a value
that prevents further accumulation of electrons at the metal surface and an equilibrium
is reached. The value of the built-in voltage V, is the same as that in the metal-metal
junction case in Chapter 4, namely, (®,, — ®,)/e. The depletion region has been de-
pleted of free carriers (¢lectrons) and hence contains the exposed positive donors. This
region thus constitutes a space charge layer (SCL) in which there is 2 nonuniform
internal field directed from the semiconductor to the metal surface. The maximum
value of this built-in field is denoted as ‘£, and oceurs right at the metal-semiconductor
junction (this is where there are a maximum number of field lines from positive (o neg-
ative charges).

The Fermi level throughout the whole solid, the metal and semiconductor in con-
tact, must be uniform in equilibrium. Otherwise, achange in the Fermi level AE; going
from one end to the other end will be available to do external (electrical) work. Thus,
Epy and Eg, line up. The W region, however, has been depleted of electrons, so in this
region E, — Ep, must increase so that n decreases. The bands must bend to increase
E. - Ex, toward the junction, as depicted in Figure 5.39. Far away [rom the junction,
we, of course, still have an a-type semiconductor. The bending is just enough for the
vacuum level 1o be continuous and changing by ®,, — ®, from the semiconductor to
the metal, as this much energy is needed to take an electron across from the semicon-
ductor to the metal. The PE barrier for electrons moving from the metal to the semicon-
ductor is called the Schottky barrier height ® s, which is given by

°E=¢a"x=¢v5+(£t_gh) [5.64]

which is greater thaneV,.

Under open circuit conditions, there is no net current flowing through the
metal-semiconductor junction. The number of electrons thermally emitted over the PE
barrier @5 from the metal to the semiconductor is equal to the number of electrons
thermally emitted over eV, from the semiconductor to the metal. Esmission probability

~depends on the PE barrier for emission through the Boltzmann factor. There are two
current components due to electrons flowing through the junction. The current due to
electrons being thermally emitted from the metal to the CB of the semiconductor is

&5
J;"—*C| exp “F m

where C, is some constant, whereas the current due to electrons being thermally
emitted from the CB of the semiconductor to the metal is

h=C ( !v") [5.66)
= Bpl——
1€Xp T
where C; is some constant different than C). ,

In equilibrium, that is, open circuit conditions in the:dark, the currents are equal
but in the reverse directions:

29 Jmamg=J‘]_a'|:a
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Under forward bias conditions, the semiconductor side is connected to the nega-
tive terminal, as depicted schematically in Figure 5.40a. Since the depletion region W
has a much larger resistance than the neutral n-region (outside W) and the metal side,
nearly all the voltage drop is across the depletion region. The applied bias is in the
opposite direction to the built-in voltage V,. Thus V, is reduced to V, — V. @ remains
unchanged. The semiconguctor band diagram outside the depletion region has been
cffectively shifted up with respect to the metal side by an amount eV because

PE = Charge x Voltage

n-type semiconductor

oV, +V,)

(o} Forword-biased Schottky (b) Reverse-biosed Schottky junction.
junction, Elecirans in the CB of the Elecirons in the melal connot easily
semiconductor can easily overcome overcome the PF barrier @y o enter the
the small PE barrier to enter the semicondudior.
metal,
!
1 mA A
1 pA
>V (dI-Veharoderistis of
| 02V Schattky junciion exhibits
10pA rectlying properiies negative
-wirent axis s in microamps).

Figure 5.40 The Schotky junclion
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The charge is negative but so is the voltage connected 1o the semiconductor, as shown

in Figure 5.40a.
The PE barrier for thermal emission of electrons from the semiconductor to the

metal is now e(V, — V). The electrons in the CB can now readily overcome the PE

barrier to the metal.
The current J&, due to the electron emission from the semiconductor to the metal,

15 now

[5.67]

e(V, - V]]
kT

Since @ i the same, J; remains unchanged. The net current is then

V,-V A
J=-’2’“_3I=Cgc;p[_‘{ o )]—Cgcxp(~e )

B =0 cxp{:—

kT %
1= -57) (7)1
=L - 1"
J’*J[u (ﬂ) I] [s68)
=J,|exp o ;

where J, is a constant that depends on the material and surface properties of the
two solids. In fact, examination of the above steps shows that J, is also J; in Equa-
tion 5.65.

When the Schottky junction is reverse biased, then the positive terminal is con-
nected to the semiconductor, as illustrated in Figure 5.40b. The applied voltage V,
drops across the depletion region since this region has very few carriers and is highly
resistive. The built-in voltage V, thus increases to V, + V. Effectively, the semicon-
ductor band diagram is shifted down with respect to the metal side because the charge
is negative but the voltage is positive and PE = Charge x Voltage . The PE barrier for
thermal emission of electrons from the CB to the metal becomes e(V, + V,), which
means that the corresponding current component becomes

elV,+V,)
(v, ]«J.

giving

15.69

=0 exp[——

Since generally V, is typically a fraction of a volt and the reverse bias is more than
afew volis, Ji™ « J, and the reverse bias current is essentially limited by J; only and
is very small. Thus, under reverse bias conditions, the current i primarily dug to the
thermal emission of clectrons over the barrier @ 5 from the metal o the CB of the
semiconductor as determined by Equation 5.65. Figure 5.40c illustrates the -V char-
acteristics of a typical Schottky junction. The -V characteristics exhibit rectifying
properties, and the device is called a Schottky diode. A

Bquation 5.68, which is derived for forward bias conditions, is also valid under
reverse bias by making V negative, that is, V = —V,.. Furthermore, it turns out o be
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applicable not only to Schottky-type metal-semicondugtor junctions but also to junc-
tions between a p-type and an n-type semiconductor, pn junctions, as we will show in
Chapter 6. Under a forward bias V;, which s greater than 25 mV at room temperature,
the forward current is simply ;
eV ! ) kT
I =1ep|— V> — ;
i exp( e = 15.70!
It should be mentioned that it is also possible to obtain a Schottky junction
between a metal and a p-type semiconductor. This arises when @, < &, where ®,, is
the work function for the p-type semiconductor.

592 ScHOTTKY JUNCTION SoLAR CELL

The built-in field in the depletion region of the Schottky junction allows this type of
device to function as a photovoltaic device and also as a photodetector. We consider a
Schottky device that has a thin metal film (usually Au) deposited onto an n-type semi-
conductor. The energy band diagram is shown in Figure 5.41. The metal is sufficiently
thin (~10 nm) to allow light to reach the semiconductor.

For photon energies greater than £, EHPs are generated in (he depletion region in
the semiconductor, as indicated in Figure 5.41. The field in this region scparates the
EHPs and drifts the electrons toward the semiconductor and boles toward the metal.
When an electron reaches the neutral n-region, there is now one extra electron there and
therefore an additional negative charge. This end therefore becomes more negative with
respect (o the situation in the dark or the equilibrium situation. When a hole reaches the
metal, it recombines with an electron and reduces the effective charge there by one elec-
tron, thus making it more positive relative to its dark state. Under open circuit condi-
tions, therefore, a voltage develops across the Schottky junction device with the metal
end positive and semiconductor end negative.

External load

Figure 5.81 The principle of the Schotiky unchion salar cell
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The photovoltaic explanation in terms of the energy band diagram is simiple. At the
point of photogeneration, the electron finds itself at a PE slope as E, is decreasing
toward the semiconductor, as shown in Figure S:41. It has no option but to roll down
the slope just as a ball that is let go ona slope would roll down the slope to decrease its
gravitational PE. Recall that there are many more empty states in the CB than elec-
trons, so there is nothing to prevent the electron from rolling down the CB in search of
Jower energy. When the electron reaches the neutral region (flat E, region), it upsets
the equilibrium there. There is now an additional electron in the CB and this side ac-
quires a negative charge. If we remember that hole energy increases downward on the
energy band diagram, then similar arguménts also apply to the photogenerated hole in
the VB, which rolls down its own PE slope to reach the surface of the metal and re-
combine with an electron there.

If the device i connected to an external load, then the extra electron in the neutral
n-region is conducted through the external lcads, through the load, toward the metal
side, where it replenishes the lost electron in the metal. As long as photons are gener-
ating EHP, the flow of electrons around the external circuit will continue and there
will be photon enecgy to electrical energy conversion. Sometimes it is useful to think
of the neutral n-type semiconductor region as a “conductor,” an extension of the

external wire (except that the n-type semiconductor has a higher resistivity). As soon

as the phologenerated electron crosses the depletion region, it reaches a conductor and
is conducted around the external circuit to the metal side to replenish the lost electron
there.

For photon energies less than E,, the device can still respond, providing that the
hv can excite an electron from E g, in the metal over the PE barrier @5 into the CB,
from where the electron will roll down toward the neulral n-region. In this case, hv
must only be greater than .

If the Schottky junction diode is reversc-biased, as shown in Figure 5.42, then
the reverse bias V, increases the buill-in potential V; 10 V, + V; (V, » V,). The in-
temal field increases to substantially high values. This has the advantage of increas-
ing the drift velocity of the EHPs (v4 = j14T) in the depletion region and therefore

hoE, V¥ Figure 542 Reversebiosed
prep Schottky photodiodes ore
hrequently used as fost
pholodetectors.
[ 3
oo
N
Sampling
resistor, R

M1
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shortening the transit time required to cross the depletion width. The device re-
sponds faster and is useful as a fast photodetector. The photocurrent ighoto 0 the ex-
ternal circuit is due to the drift of photogenerated carriers in the depletion region and
can be readily measured.

RCUIIFAL] THE SCHOTTKY DIODE The reversc saturation current J, in the Schottky junction, as ex-
pressed in Equation 5,68, is the same current that is given by the Richardson-Dushman
equation for thermionic emission over a potential barrier ®(= ®,) derived in Chapter 4. J, is
given by

by )
= BT x| 22
I, =B,T up( )
where B, is the effective Richardson constant that depends on the characteristics of the
mietal-semiconductor junction. B, for metal-semiconductor junctions, among other factors, de-
pends on the density of states related effective mass of the thermally emitted carriers in the
semiconductor. For example, for a metal to n-Si junction, 8, is about 110 A cm™* K, and for
ametal to p-$i junction, which involves holes, B, is about 30 Acm~? K2,
a. Consider a Schottky junction diode hetween W (tungsten) and n-Si, doped with 10'6
donors cm ™, The cross-sectional area is 1 mm". Given that the electron affinity x of Si is
4.01 eV and the work function of W is 4.55 eV, what is the theoretical barrier height &
from the metal to the semiconductor?
b. What is the built-in voltage V, with no applied bias?
¢ Given that the experimental barrier height @ is about 0.66 eV, what is the reverse satura-
tion current and the current when there is a forward bias of 0.2 V across the diode?

SOLUTION
a. From Figure 5.39, itis clear that the barrier height & is
by=, — x =455eV-4,01¢V=054¢eV

‘The experimental value is around 0.66 eV, which is greater than the theoretical value due to
various effects at the metal-semiconductor interface arising from dangling bonds, defects,
and so forth. For example, dangling bonds give rise to whal are called surface states within
the bandgap of the semiconductor that can capture electrons and modify the Schottky erergy
band diagram. (The energy band diagram in Figure 5.39 represents an ideal junction with no
surface states.) Further, in some cases, such as Pt on n-Si, the experimental value can be
lower than the theoretical value,

b, Wecan find E, - Eg, in Figure 539 from

E. - Eg,
n=Nd:N{e:p(--T’)

0.026eV

which gives AE = E, — E¢, = 0.206¢V. Thus, the built-in potential ¥, can be found
from

- E, - Er,
10%em™ = (2.8 x m"cm--‘)exp(_.‘ - )

Vo= — - =B 054V - 0206V =033V
é
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¢ I A is the cross-sectional area, 0.01 em’, taking B, to be 110 AK* cm %, and using the
experimental value for the barricr height @, the saturation current is

0.66 eV

®
I, = AB,T? exp(-—é) = (0011 mJW)exp(—m)

=936 x10"A o D94pA
When the applied voltage is Vy, the forward current /y is

= I.[up(:—;) = l] = (U.Npﬁ}[cnp(%) - I} =20mA

510 OHMIC CONTACTS AND
THERMOELECTRIC COOLERS

An ohmic contact is a junction between a metal and a semiconductor that does not
limit the current flow. The current s essentially limited by the resistance of the semi-
conductor outside the contact region rather than the thermal emission rate of carriers
across a potential barrier at the contact. In the Schottky diode, the /-V characteristics
were determined by the thermal emission rate of carriers across the contact. It should
be mentioned that, contrary (o intuition, when we talk about an ohmic contact, we do
not generally infer a lincar /-V characteristic for the ohmic contact itself. We only
imply that the contact does not limit the current flow.

Figure 5.43 shows the formation of an ohmic contact between a metal and an
n-type semiconductor. The work function of the metal ®,, is smaller than the work
function &, of the semiconductor, There are more energetic electrons in the metal than

Accumulation region Byl semiconductor
ohmiccontact N L. 1

Metal n-type semiconductor Metal  n-type semiconductor
Before contact After contact
Figure 5.43 When a mefol with o smaller work funclion than an niype semiconductor is put info conlact

with the ndype semicondudor, the resuling junciion is an ohmic conlact in the sense thal it does not limit the
current fow.
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in the CB, which means that the electrons (around £ ) tunael into the semiconductor

in search of lower energy levels, which they find around E,, as indicated in Fig-
ure 5.43. Consequently, many electrons pile in the CB of the semiconductor near the
junction. Equilibrium is reached when the accumulated electrons in the CB of the
semiconductor prevent further electrons tunneling from the metal. Put more rigor-
ously, equilibrium is reached when the Fermi level is uniform across the whole system
from one end to the other.

The semiconductor region near the junction in which there are excess electrons is
called the accumulation region. To show the increase in n, we draw the semiconduc-
tor energy bands bending downward to decrease E, — F,, which increases n. Going
from the far end of the metal to the far end of the semiconductor, there are always con-
duction electrons. In sharp contrast, the depletion region of the Schottky junction
separates the conduction electrons in the metal from those in the semiconductor. It can
be seen from the contact in Figure 5.43 that the conduction electrons immediately on
either side of the junction (at £, and E,) have about the same energy and therefore
there is no barrier involved when they cross the junction in either direction under the
influence of an applied field.

It is clear that the excess electrons in the accumulation region increase the
conductivity of the semiconductor in this region. When a voltage is applied to the
structure, the voltage drops across the higher resistance region, which is the bulk semi-
conductor region. Both the metal and the accumulation region have comparatively
high concentrations of electrons compared with the bulk of the semiconductor, The
current is therefore determined by the resistance of the bulk region. The current den-
sity is then -nmpiy J = o’E where o is the conductivity of the semiconductor in the
hulk and £ is the applied field in this region.

One of the interesting and important applications of semiconductors is in thermo-
electric, or Peltier, devices, which enable small volumes to be cooled by direct
currents. Whenever a dc current flows through a contact between two dissimilar materi-
als, heat is either released or absorbed in the contact region, depending on the direction
of the current. Suppose that there is a dc current flowing from an n-type semiconduc-
tor to a metal through an ohmic contact, as depicted in Figure 5.44a. Then electrons are
flowing from the metal to the CB of the semiconductor. We only consider the contact
region where the Peltier effect occurs. Current is carried by electrons near the Fermi
level Ep in the metal. These electrons then cross over into the CB of the semicon-
ductor and when they reach the end of the contact regmn, their energy is . plus aver-
age KE (which is 3kT). There is therefore an increase in the average energy
(PE + KE) per e]eclmn in the contact region. The electron must therefore absorb heat
from the environment (lattice vibrations) to gain this energy as it drifls through the
Junction. Thus, the passage of an electron from the metal to the CB of an n-type semi-
conductor involves the absorption of heat at the junction.

When the current direction is from the metal to the n-type semiconductor, the elec-
trons flow from the CB of the semiconductor to the Fermi level of the metal as they
pass through the contact. Since Egy, is lower than E, the passing electron has to lose
energy, which it does 10 lattice vibrations as heat. Thus, the passage of a CB electron
from the n-type semiconductor to the metal involves the release of heat at the junction,
as indicated in Figure 5.44b.
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Figure 5.44 ‘
(] Current from an nype semiconductor fo the metal resuls in heat absorption of
the junchion.
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It is apparent that depending on the direction of the current flow through a junc-
{ion between a metal and an n-type semiconductor, heat s cither absorbed or released
at the junction. Although we considered current flow between a metal and an n-type
semiconductor through an ohmic contact, this thermoelectric effect is a general phe-
nomenon that occurs at a junction between any two dissimilar materials. Itis called the
Peltier effect after its discoverer. In the case of metal-p-type semiconductor junctions,
heat iis absorbed for current flowing from the metal to the p-type semiconductor and
heat is released in the other direction. Thermoelectric effects occurring at metal-
semiconductor junctions are summarized in Figure 5.45. Itis important not to confuse
the Peltier effect with the Joule heating of the semiconductor and the metal. Joule heat-
ing, which we simply call 1R (or J*) heating, arises from the finile fesistivity of the
material. It is due to thesconduction electrons losing their energy gained from the field
to lattice vibrations when they become scattered by such vibrations, as discussed in
Chapter 2.

s sclf-cvident that when a current flows through a semiconductor sample with
metal contacts at its ends, as depicted in Figure 5.45, one of the contacts will always
absorb heat and the other will always release heat. The contact where heat is absorbed
will be cooled and is called the cold junction, whereas the other contact, where heat is
teleased, will warm up and is called the hot junction. One can use the cold junction to
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made, one junction absorbs heat and cools (the cold junction] and the other releoses heat and warms (the
hol junction|

Electrical insulation
(good heat conductor)

DC supply
Figure 5.46  Cross section of a fypical Ihermoeleckric cooler

cool another body, providing (hat the heat generated at the hot junction can be removed
from the semiconductor sufficiently quickly to reduce its conduction through the semi-
conductor to the cold junction. Furthermore, there will always be the Joule heating
(I*R) of the whole semiconductor sample since the bulk will always have a finite
resistance.

A simplified schematic diagram of a practical single-clement thermoelectric
cooling device is shown in Figure 5.46. It uses two semiconductors, one n-type and
the other p-type, each with ohmic contacts, The current direction therefore has oppo-
site thermoelectric effects. On one side, the sericonductors share the same metal
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Figure 5.47 Typical siucture of a commercial thermoelectric cooler.

electrode. Effectively, the structure is an n-type and a p-type semiconductor con-
nected in series through a common metal electrode. Typically, either BiyTes, BizSes,
or SbyTey is used as the semiconductor material with copper usually as the metal
electrode.

The current flowing through the n-type semiconductor (o the common metal elec-
trode causes heal absorption, which cools this junction and hence the metal. The same
current then enters the p-type semiconductor and causes heat absorption at this junc-
tion, which cools the same metal electrode. Thus the common metal electrode is
cooled at both ends. The other ends of the semiconductors are hot junctions. They are
connected 1o a Targe heat sink to remove the heat and thus prevent heat conduction
through the semiconductors toward the cold junctions. The other face of the common
metal electrode is in contact, through a thin ceramic plate (electrical insulator but ther-
mal conductor), with the body to be cooled. In commercial Peltier devices, many of
these clements arc connected in series, as illustrated in Figure 547, to increase the
cooling efficiency.

THE PELTIER COEFFICIENT Consider the motion of electrons across an ohmic contact between  JILUIHERA]
a metal and an n-type semiconductor and hence show that the rale of heat generation @' al the
contact is approximately

Q’ =40/

where 11, called the Peltier coefficient between the two maerials, is given by

| 3
n=- [{EI. - Er)+ '.&T]
¢ 2
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where E, — Ey, is the energy separation of E, from the Fermi level in the n-type semiconduc-
tor. The sign depends on the convention used for heat liberation or absorption.

SOLUTION

We consider Figure 5.44a, which shows only the ohmic contact region between a metal and an
n-type semiconductor when a current is passing through it. The majority of the applied voltage
drops across the bulk of the semiconductor because the contact region, o the accumulation re-
gion, has an accumulation of electrons in the CB. The current is limited by the bulk resistance
of the semiconductor. Thus, in the contact region we can take the Fermi level to be almast undis-
turbed and hence uniform, Ep, & Eg,. In the bulk of the metal, a conduction electron is at
around E ., (same as £, ), whereas just at the end of the contact region in the semiconductor
itis at E, plus an average KE of ;H‘, The energy difference is the heat absorbed per electron
going through the contact region. Since / /e is the rate at which electrons are flowing through
the contact,

] 3 !
Rate of energy absorption = [(E. + —H) - Ep.] (-)
2 e

E - Ep)+ 2T
Q= [(———in‘ Jr:nr

50 the Peltier coefficient is approximately given by the term in the square brackets. A more rig-
orous analysis gives IT as

1
M = ~((E, - Epy) + UT)
3

ADDITIONAL TOPICS
511 DIRECT AND INDIRECT BANDGAP
SEMICONDUCTORS

E-k Diagrams We know from quantum mechanics that when the electron is within
a potential well of size L, its energy is quantized and given by
~ (hk,)?

E, =
2m,

where the wavevector k, is essentially a quantum number determined by

where n = 1,2, 3, ... The energy increases parabolically with the wavevector k.
We also know that the electron momentum is given by Ak, This description can be
used to represent the behavior of electrons in a metal within which their average
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polcntial energy can be taken to be roughly zero. In other words, we take V(x) =0
within the metal crystal and V (x) to be large [e.g., V() = V] outside so that the elec-
tron is contained within the meal. This is the nearly free electron model of a metal
that has been quite successful in interpreting many of the properties. Indeed, we were
able to calculate the density of states g(E) based on the three-dimensional potential
well problem. It is quite obvious that this model is too simple since it does not take into
account the actual variation of the electron potential energy in the crystal.

The potential energy of the electron depends on its location within the crystal and
is periodic due to the regular arrangement of the atoms. How does a periodic potentil
e affect the relationship between E and k? It will no longer simply be E, =
(hky)"/2m,,

To find the energy of the electron in a crystal, we need to solve the Schrodinger
equation for a periedic potential energy function in three dimensions. We first con-
sider the hypothetical one-dimensional crystal shown in Figure 5.48. The electron
potential energy functions for each atom add (o give an overall potential energy
function V(x), which is clearly periodic in x with the periodicity of the crystal a.
Thus,

V)=Vl +a)=V(x+2) = Eﬂl 2

PE(r)
PE of the electron around an isoloted
alom.

@r?-ﬁ i When N aoms are arranged to form the
SIS 0 hE W e crysiol then there is an overlop of individual
: \ elaciron PE funclions.

P PE of the electron, VId, inside the
/- caystal i periodic with o period a.
T > I

Figure 5,48 The electron polential energy (PE), V], inside the crystal is periodic with the some periodicily 0 as
that of the crystal. For away outside the crystal, by choice, V=0 [ihe electron is free and PE =0).
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and so on. Our task is therefore to solve the Schriidinger equation
Schriidinger 'y m,
ek o + -thﬁ -Vnly =0 15.72]
subject (o the condition thal the potential encrgy V (x) is periodic in a, that is,
ﬁ:ﬂ"‘f"m V) =Vix+ma) m=123,... [.73]

The solution of Equation 5.72 will give the electron wavefunction in the crystal
and hence the electron energy. Since V (x) is periodic, we should expect, by intuition
al least, the solution (x) to be periodic. It tums out that the solutions to Equa-

: tion 5.72, which arc called Bloch wavefunctions, are of the form
it Vale) = Ulx) expl jkx) 574
~ where Uy(x) is a periodic function that depends on V (x) and has the same periodicity
a as V(x). The term exp( jkx), of course, represents a traveling wave. We should
remember that we have to multiply this by exp(—j E1/h), where E is the energy, to get
the overall wavefunction W (x, 1). Thus the electron wavefunction in the crystal is a
traveling wave that is modulated by Uy(x).

There are many such Bloch wavefunction solutions to the one-dimensional crys-
tal, each identified with a particular k value, say k,, which acts as a kind of quantum
number. Each 1 (x) solution corresponds Lo a particular k, and represents a state with
an energy E;. The dependence of the energy £y on the wavevector k is what we call
the £-k diagram. Figure 5.49 shows a typical E—k diagram for the hypothetical one-
dimensional solid for k values in the range — 7 /a to +x fa. Just as kk is the momen-
tum of a free electron, hk for the Bloch electron is the momentum involved in its
interaction with external fields, for example, those involved in the photon absorption
process. Indeed, the rate of change of hk is the externally applied force Fe,, on the
electron such as that due to an electric field (Fey, = ¢E). Thus, for the electron within

Figure 5.49 The F-k diagrom of o dired The E-k diagram The energy band
bandgap semiconductor such os Gads. E ) diagram
The E-k curve consists of many discrefe
poinis, sach coresponding fo o passible m‘{;,
stole, wavehunction ¥ ), that is ollowed 1o g
exist in the crystal. The points are so close %
thaf we normaly diaw the E-k relationship CBY
as 0 confinvous curve, In the energy range Q{'l .
E, Io E,, there ore no poinis [y Boucs
solutions). !:|
ll
VB
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the crystal,
d(hk)

—~ =F

a0

and consequently we call Ak the crystal momentum of the electron.”

Inasmuch as the momentum of the clectron in the x direction in the crystal is given
by hk, the E—k diagram is an emergy versus crystal momentum plot. The states
yi(x) in the lower E-k curve constitute the wavefunctions for the valence electrons
and thus correspond to the states in the VB. Those in the upper E- curve, on the other
hand, correspond (o the states in the conduction band (CB) since they have higher en-
ergies. All the valence clectrons at absolute zero of temperature therefore fill the states,
particular k, values, in the lower E- diagram.

It should be emphasized that an E~k carve consists of many discrete points, each
corresponding to a possible state, wavefunction ¥, (x), that is allowed to exist in the
crystal, The points are so close that we draw the E—& relationship as a continuous
curve. It is clear from the E—k diagram that there s a range of energies, from E, 10 E,,
for which there are no solutions to the Schrddinger equation and hence there are no
Vi(x) with energies in E, to E,.. Furthermore, we also note that the E- behavior is not
a simple parabolic relationship except near the bottom of the CB and the top of the VB.

Above absolule zero of temperature, due to thermal excitation, however, some of
the electrons from the top of the valence band will be excited to the bottom of the con-
duction band. According to the E~k diagram in Figure 5.49, when an electron and hole

recombine, the electron simply drops from the bottom of the CB to the top of the VB

without any change in its k value, so this transition is quite acceptable in terms of
momentum conservation. We should recall that the momentum of the emitted photon
is negligible compared with the momentum of the electron. The E— diagram in Fig-
ure 5.49 is therefore for a direct bandgap semiconductor.

The simple Ek diagram skeiched in Figurc 549 is for the hypothetical one-
dimensional crystal in which each atom simply bonds with two neighbors. In real
crystals, we have a three-dimensional arrangement of atoms with V (x, y, 2) showing
periodicity in more than one direction. The E—k curves are then nol as simple as that in
Figure 5.49 and often show unusual features. The £k diagram for GaAs, which is shown
in Figure 5.50a, as it tums out, has main features that are quite similar to that sketched in
Figure 5.49. GaAs is therefore a direct bandgap semiconductor in which electron-hole
pairs can recombine directly and emit a photon. It is quite apparent that light emitting
devices use direct bandgap semiconductors to make use of direct recombination,

7 The octual momentum of the eleciron, hofeever, is not kk becouse
ﬂ#fﬁuh‘w
d
wher® Fosen + Fraunl 07 0l orces acing on the electon. The rue momentum p, sotisfies
%=Fﬁ+Fﬁd

However, as we ore inkeresiad in interackions with external lorces such as on applied field, we frect Ak oy if it were
the momentum of the electron in fhe crysial ond use the nome crysial momenbum.
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[a] In GaAs the minimum of the CB is

directly above the maximum of the V8.

Gas s therelore a direct bandgop
semiconduclor.

[b} In Si, the minimum of the CB is

displaced from the maximum of he VB and

Si is an indiredt bandgop semicondudlor,
(c) Recombination of an election and a

hole in Si involves a recombination center. [} Si with @ recombination center

In the case of Si, the diamond crystal structure leads to an E- diagram that has the
essential features depicted in Figure 5.50b. We notice that the minimum of the CB is
not directly above the maximum of the VB. An electron at the bottom of the CB there-
fore cannot recombine directly with a hole at the top of the VB because, for the electron
to fall down to the top of the VB, its momentum must change from k., to k., which is
not allowed by the law of conservation of momentum. Thus direct electron-hole
recombination does not take place in Si and Ge. The recombination process in these
elemental semiconductors occurs via a recombination center at an energy level E,.
The electron is captured by the defect at E,, from where it can fall down into the top of
the VB. The indirect recombination process is illustrated in Figure 5.50c. The energy
of the clectron is lost by the emission of phonons, that is, lattice vibrations. The £k
diagram in Figure 5.50b for Si is an example of an indirect bandgap semiconductor.

In some indirect bandgap semiconductors such as GaP, the recombination of the
electron with a hole at certain recombination centers results in photon emission. The
E-k diagram is similar to that shown in Figure 5.50c except that the recombination
centers at E, are generated by the purposeful addition of nitrogen impurities to GaP.
The electron transition from E; to E, involves photon emission,

Flectron Motion and Drift We can understand the response of a conduction band
electron to an applied external force, for example, an applied field, by examining the
E-k diagram. Again, for simplicity, we consider the one-dimensional crystal. The
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{o] In the absence of a field, over a long lime, the average of oll k volues is zero; there is no nel
momentum in any one particlar direcfion.

[b) In the presence of o field in the —x direction, the electron occelerates in the +x direction increasing
its k value along x unil it is scattered 1o o random k volue. Over a long lime, the averoge of all k values
is along the +x direction Thus the electron diifts along +x.

electron is wandering around the crystal quite randomly due to scattering from lattice
vibrations. Thus the electron moves with a certain & value in the +x direction, say k4,
as illustrated in the E—k diagram of Figure 5.51a. When it is scattered by a lattice
vibration, its k value changes, perhaps to k_, which s also shown in Figure 5.51a. This
process of k changing randomly from one scattering to another scaltering process con-
tinues all the time, so over a long time the average value of k is zero; that is, average
k; is the same as average k_.

When an electric field is applied, say in the —x direction, then the electron gains
momentum in the +x direction from the force of the field eZ, . With time, while the
electron is not scattered, it moves up in the E-k diagram from k;; to kz4 10 ks, and so
on until a lattice vibration randomly scatiers the electron (o say k;_ (or to some other
random k value) as shown in Figure 5.51b. Over a long time, the average of all k. is no
longer equal to the average of all k_ and there is a net momentum in the +x direction,
which is tantamount o a drift in the same direction.

Effective Mass The usual definition of inertial mass of a particle in classical
physics is based on

Force = Mass x Acceleration
F=ma

When we treal the electron as a wave within the semiconductor crystal, we have to
determine whether we can still, in some way, use the convenient classical F = ma
relation to describe the motion of an electron under an applied force such as ¢Z, and,
if 0, what the apparent mass of the electron in the crystal should be.

30-
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We will evaluate the velocity and acceleration of the electron in the CB in
response to an electric field £, along —x that imposes an external force Foy = ¢, in
the +x direction, as shown in Figure 5.51b. Our treatment will make use of the quan-
tum mechanical £~ diagram.

Since we are treating the electron as a wave, we have o evaluate the group veloc-
ity v,, which, by definition, is v, = daw/dk. We know that the time dependence of the
wavelunction is exp(— j £¢ fh) where the energy £ = haw (@ 15 an “angular frequency"
associated with the wave motion of the clectron). Both E and w depend on k. Thus, the
group velocity is

Llectron s :

o 1 dE 575
frou IJIi = :
veloeity h dk

Thus the group velocity is determined by the gradient of the E- curve. In the
presence of an electric field, the electron experiences a force Fey = ¢E, from which it
gains energy and moves up in the E—k diagram until, later on, it collides with a lattice
vibration, as shown in Figure 5.51b. During a small time interval 8t between colli-
sions, the electron moves a distance v, 81 and hence gains energy 4 E, which is

BE = Fogu, b1 [5.76]

To find the acceleration of the electron and the effective mass, we somehow have
10 put this equation into a form that looks like Feyy = m.a, where a is the acceleration.
From Equation 5.76, the relationship between the external force and energy is

1 dE  dk
Fa= —— =h— 5.
gdt il

where we used Equation 5.75 for v, in Equation 5.76. Equation 5.77 is the reason for
interpreting ik as the crystal momentum inasmuch as the rate of change of hk is the
externally applied force,

The acceleration a is defined as dv, /dr. We can use Equation 5.75,

[
Cdu, Lhdk] VdEdk

= 5.
@ d hdlds 7%
From Equation 5.78, we can substitute for dk/dr in Equation 5.77, which is then
a elationship between Fe, and a of the form
nt
Feu= [dz'—é“]'ﬂ [5.79]
dk?
We know that the response of a free electron to the external force is Foy = m.a,
where m, is its mass in vacoum. Therefore it is quite clear from Equation §.79 that the
effective mass of the electron in the crystal is
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Thus, the election responds to an external force and moves as if its mass were given
by Fquation 5.80, The effective mass obviously depends on the F- relationship, whichin
turm depends on the crystal symmetry and the nature of bonding between the atoms. Lis
value is different for electrons inthe CB and for those in the VB, and moreover, it depends
on the energy of the electron since it is related to the curvature of the £-k behavior
(d*E /dk?). Further, it is clear from Equation 5,80 that the effective mass is a quantum
mechanical quaniity inasmuch as the £ behavior is a direct consequence of the applica-
fion of quantum mechanics (the Schrtidinger equation) to the electron in the crystal,

It is interesting that, according to Equation 5.80, when the E-k curve is a down-
ward concave as at the top of a band (e.g., Figure 5.49), the effective mass of an elec-
tron at these energies in a band is then negative. What does a negative effective mass
mean? When the electron moves up on the £~ curve by gaining energy from the ficld,
it actually decelerates, that is, moves more slowly. lis acceleration is therefore in the
opposite direction to an electron at the bottom of the band. Electrons in the CB are al
the bottom of a band, so their effective masses are positive quanitics. Al the top of a
valence band, however, we have plenty of electrons, These electrons have negative
effective masses and under the action of a field, they decelerate. Put differently, they
accelerate in the opposite direction to the applied external force Fyy. It turns out that
we can describe the collective motion of these electrons near the top of a band by con-
sidering the motion of a few holes with positive masscs.

Tt should be mentioned that Equation 5.80 defines the meaning of the effective
mass in quantum mechanical terms, Its usefulness as a concept lies in the fact that we
can measure it experimentally, for example, by cyclotron resonance experiments, and
have actual values for it. This means we can simply replace m,. by m in equations that
describe the effect of an external [orce on electron transport in semiconductors.

Holes To understand the concept of  hole, we consider the £ & curve corresponding
1o energies in the VB, as shown in Figure 5.52a. If all the states are filled, then there
are no emply states fof the electrons to move into and consequently an electron cannot
gain energy from the field. For each electron moving in the positive x direction with 4
momentum hik, , there is a corresponding electron with an equal and opposite momen-
wm hk_.. so there is no net motion. For example, the electron at bis moving toward the

1

E Figure 5,52 -y
[o) In o full valence band, there is no et contribution fo the
current. There ore equal numbers of electrons [e.g., of b

and b ) with opposite momenta.

[b] Ifthere is an empy siale [hole] of bt he lop of the band,
then the eleciron of b’ confributes to the current.

(b)
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right with k., but its effect is canceled by that at b’ moving toward the left with k_s.
This cancellation of momenta by electron pairs applies toall the electrons since the VB
is assumed to be full. Thus, a full VB cannol contribute to the clectric current.

Suppose that one of the states, labeled as b in Figure 5.52b, near the top of the va-
lence band has a missing electron, or a hole, because the electron normally at b has
been removed by some means of excitation to the conduction band. It is immediately
obvious that the motion of the electron at b toward the left, that is, k_, is now nof can-
celed, which means that this electron makes a net contribution to the current. We real-
ize that the reason the presence of a hole makes conduction possible is the fact that the
momenta of all the VB electrons are canceled except that at b", It is also clear that in
reaching this conclusion, we had to consider all the clectrons in the valence band.

Let us maintain strict sign rules so that quantities such as the field (%;), group
velocity (u,), and acceleration (a) along the +x direclion are positive and those along
the —x direction are negative. If £, is along the +x direction, then the acceleration of
a free electron from force/mass is [(-¢)(E,)]/m., which is negative and along —x as
we expect. Similarly, an electron at the bottom of the CB has a positive effective mass
and an acceleration that is also negative. Our treatment of conduction in metals by
clectrons in Chapler 2 inherently assumed that electrons accelerated in the opposite
direction to the applied field, that is, positive effective mass.

However, the electrons at the top of the VB have a negative effective mass, which we
can write as —|m*). The acceleration a of the electron at b’ contributing to the current is

a=

—eby +eE,

=lmyl m
which is positive, @ along .. This means that the acceleration of an electron with a
negative effective mass at the top of a VB is equivalent to the acceleration of a positive
charge +¢ with an effective mass |m}|. Put differently, we therefore can equivalently
describe current conduction by the motion of the hole alone by assigning to it a posi-
tive charge and a positive effective mass.

EXAMPLE 5.21

EFFECTIVE MASS  Show that the effective mass of a free electron is the same as its mass in
vacuum.

SOLUTION i
The expression for the energy of a free electron is

m,
- The effective mass, by definition, is given by

=
]2

E

Substituting E = (Mk)? [2m, we getm? = m,. Since the energy of a conduction electron in
a metal, within the nearly free electron mode!, will also have an energy E = (kk)’ /2m,, wecan
show that the effective mass of the electron in a metal is the same as the mass in vacuum,
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CURRENT DUE T0 A MISSING ELECTRON INTHE VB _ First, let us consider acompletely full va-
fence band that contains, say, N electrons. /2 of these are moving with momentum in the +x,
and N /2in the ~x direction. Suppose thal the crystal is unit volume. An electron with chiarge —¢
moving with a group velocity Vi contributes to the cument by an amount —ev,,. We can deter-
mine the current density Jy due 1o the motion of all the electrons (N of them) in the band,

N
Iv= -L'Z\"g, =0
i=l

3 is 7ero because for cach value of v, there is a corresponding velocity equal in magni-
tude but opposite in direction (b and b in Figure 5.52a). Our conclusion from this is that the
contribution (0 the current density from a full valence band is nil, as we expect.

Suppose now that the jth electron is missing (b in Figure 5.52b). The net current density is
due to N — | electrons in the band, so

N
Ji=-¢ Z LM [5.81]

i=hi#j

where the summationis fori = 1toNand i # j (jth electron is missing). We can writc the sum

as summiation to N including the jth electron and minus the missing jth electron contribution,
N
v = —rZ\f,‘, = {=evy)
i=l

that is,
Jyoi = tevy [5.82]

whee we used Jy = 0. We see that when there is 2 missing electron, there is a net current due
to that empty state ( jth). The current appears as the motion of a charge +¢ with a velocity v,
where v, is the group velocity of the missing electron. In other words, the current is due to the
motion of a positive charge +e at the site of the missing electron at k,, which is what we clla
hole. One should note that Equation 5.81 describes the current by considering the motions of all
the N - 1 electrons, whereas Equation 5.82 describes the same current by simply considering
the missing electron as if it were a positively charged particle (+¢) maving with a velocity equal
{o that of the missing electron. Equation 5.82 is the convenient description universally adopted
for a valcnce band containing missing electrons.

512 INDIRECT RECOMBINATION

We consider (he recombination of minority carriers in an extrinsic indireet bandgap
semiconductor such as Si or Ge. As an example, we consider the recombination of
lectrons in a p-type semiconductor. In an indirect bandgap semiconductor, the recom-
bination mechanism involves a recombination center, a third body that may be a crys-
tal defect or an impurity, in the recombination process 1 satisfy the requirements of
conservation of momentum. We can view the recombination process as follows. Re-
combination occurs when an electron is captured by the recombination center at the
energy level E,. As soon as the electron is captured, it will recombine with u hole

45T
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because holes are abundant in a p-type semiconductor. In other words, since there are
many majority carriers, the limitation on the rate of recombination is the actual capture
of the minority carrier by the center. Thus, if 7. is the clectron recombination time,
since the electrons will have to be captured by the centers, 1, 15 given by

|
T, SN (5.83]
where S, 15 the capture (or recombination) cross section of the center, N, is the con-
centration of centers, and vy, is the mean speed of the eleciron that you may take as its
effective thermal velocity,

Fquation 5.83 is valid under small injection conditions, that is, p, 3 n,,. Thefe is
amore general treatment of indirect recombination called the Shockley-Read statistics
ol indirect recombination and generation, which is treated in more advanced semicon-
ductor physics textbooks. That theory eventually arrives at Equation 5.83 for low-level
injection conditions. We derived Equation 5.83 from a purely physical reasoning,

Gold is frequently added 1o silicon to aid recombination. 1t 1s found that the
minority carrier recombination time 1s 1versely proportional to the gold concentra-
tion, following Equation 5.83.

513 AMORPHOUS SEMICONDUCTORS

Up to now we have been dealing with erystalline semiconductors, those crystals that
have perfect periodicity and are practically flawless unless purposefully doped for use
in device applications. They are used in numerous solid-state devices including large-
area solar cells. Today's microprocessor uses a single crystal of silicon that contains
millions of transistors; indeed, we are heading for the I-billion-transistor chip. There
are, however, various applications in electronics thal require inexpensive large-area
devices 1o be fabricated and hence require a semiconductor maternial that can be pre-
pared in a large arca. In other applications, the semiconductor material is required to
be deposited as a film on 4 flexible substrate for use as a sensor. Best known examples
of large-area devices are flat panel displays based on thin-film transistors (TFTs), in-
expensive solar cells, photoconductor drums (for printing and photocopying), image
sensors, and newly developed X-ray image detectors. Many of these applications typ-
ically use hydrogenated amorphous silicon, a-Si:H.

A distinctive property of an electron in a crystalline solid is that its wavefunction
is a traveling wave, a Bloch wave, iy, as in Equation 5.74. The Bloch wavelunction
is a consequence of the periodicily of an electron’s potential energy PE, V(x), within
the crystal. One can view the electron’s molion as tunneling through the periodic po-
tential energy hills. The wavelunctions . form extended states because they exiend
throughout the whole crystal. The electron belongs to the whole crystal, and there is an
equal probability of finding an clectron in any unit cell. The wavevector & in this trav-
cling wave y; acts us a quanwim number. There are many discrete &, values, which
form a nearly continuous set of & values (see Figure 5.49), We can describe the inter-
action of the electron with an external force, or with photons and phonons, by assign-
ing & momentum Ak 1o the electron, which is called the electron’s crystal momentum,
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The electron’s wavefunction ¥ is frequently scattered by latlice vibrations (or by de-
fects or impurities) from one k-value (o another, .., from yry to W The scatiering of
the wavefunction imposes a mean free path € on the electron’s motion, that is, a mean
distance over which a wave can travel without being scattering. Over the distance £,
the wavefunction is coherent, that is, well defined and predictable as a traveling Bloch
wave: £ is also known as the coherence length of the wavefunction. The mubility is de-
termined by the mean free path £, which at room temperature is typically of the order
of several hundreds of mean interatomic separations. The crystal periodicity and the
unit eell atomic structure control the types of Bloch wave solutions one can obtain to
the Schrodinger equation, The solutions allow the electron energy E (o be examined as
a function of k (or momentum hk) and these £ —k diagrams categorize crystalline
semiconductors into wo classes: direct bandgap (GaAs type) and indircct bandgap (Si
type) semiconductors,

Hydrogenated amorphous silicon (a-Si:H) is the noncrystalling form of silicon
in which the sgusture has no long-range order but only short-range order; that 1s, we
can only identify the nearest neighbors of a given atom. Each i atom has four neigh-
bors as in the crystal, but there is no periodicity or long-range order as illustrated in
Figure' 1.59. Without the hydrogen, pure a-Si would have dangling bonds. In such
structure sometimes a Si atom would not be able to find a fourth neighboring Si atom
to bond with and will be left with a dangling bond as in Figure 1.59b. The hydrogen in
{he structure (~10 percent) passivaes (i.e., neutralizes) the unsatisfied (“dangling”)
bonds inherent in a noncrystalline structure and so reduces the density of dangling bonds
or defects. a-Si:H belongs to a class of solids called amorphous semiconductors that
do not follow typical crystalline concepts such as Bloch wavefunctions. First, due to
the lack of periodicity, we cannot describe the electron as a Bloch wave. Consequently,
we cannot use & wavevector k, and hence ki, to describe the electron's motion. These
semiconductors however do have a short-range order and also possess an erergy
bandgap that separates a conduction band and a valence band. A window glass has a
nonerystalline structure but also has a bandgap, which makes it transparent. Photons
with energies less than the bandgap energy can pass through the window glass.

The examination of the structure of a-Si:H in Figure 1.5%¢ should make it appar-
ent that the potential energy V(x) of the electron in this noncrystalline structure {luc-
tuates randomly from site to site. In some cases, the local changes in V(x) can be
quite strong, forming effective local PE wells (obviously finite wells). Such fluctua-
tions in the PE within the solid can capture or trap electrons, that is, localize clec-
trons at certain spatial locations. A localized electron will have a wavefunction that
resembles the wavefunction in the hydrogen atom, so the probability of finding the
electron is localized to the site. Such locations that can trap electrons, give them
localized wavefunctions, are called localized states. The amorphous structure also
has electrons that possess extended wavefunctions; that is, they belong to the whole
solid. These extended wavefunctions are distinctly different than those in the crystal
because they have very short coherence lengths due to the random potential fluctua-
tions; the electron is scattered from site to site and hence the mean free path is of the
order of a few atomic spacings. The extended wavefunction has random phase fluc-
tuations. Figure 5.53 compares localized and extended wavelunctions in an amor-
phous semiconductor.
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Figure 5.53 Schematic representation of the density of stotes g{F) versus energy  for an amorphous
semiconductor and te associoled electron wavefunchions for an electron in the extended and localized siates.

Electronic properties of all amorphous semiconductors can be explained in terms
of the.cnergy distribution of their density of states (DOS) function, g(E). The DOS
function has well-defined energies £, and E, that separate extended states from local-
ized states as in Figure 5.53. There is a distribution of localized states, called tail states
below £, and above E, . The usual bandgap £, - E, is called the mobility gap. The
reason is that there is a change in the character of charge transport, and hence in the
camier mobility, in going from extended states above E, to localized states below E.

Electron transport above £, in the conduction band is dominated by scatiering
from random potential fluctuations arising from the disordered nature of the structure.
The electrons are scattered so frequently that their effective mobility is much less than
what it is in crystalline Si: 2, in a-SiH is typically S-10 em? V! s~! whereas it is
1400 cm* V' 5" in a single erystal Si. Electron transport below E,, on the other hand,
requires an electron 1o jump, or hop, from one localized state to another, aided by
thermal vibrations of the lattice, in an analogous way to the diffusion of an interstitial
impurity in a crystal. We know from Chapter | that the jump or diffusion of the impu-
rity is a thermally activated process because it relies on the thermal vibrations of all the
crystal atoms to occasionally give the impurity enough energy to make that jump. The
electron’s mobility associated with this type of hopping motion among localized states
is thermally activated, and its value is small. Thus, there is a change in the electron
mobility across ., which is called the conduction band muobility edge.

The localized states (frequently simply called traps) between E, and E, have a pro-
found effect on the overall electronic properties. The tail localized states are a direct
result of the struetural disorder that is inherent in noncrystalline solids, variations in the
bond angles and length. Various prominent peaks and features in the DOS within the
mobility gap have been associated with possible structural defects, such as under- and
overcoordinated atoms in the structure, dangling bonds, and dopants. Electrons that
drift in the conduction band can fall into localized states and become immobilized
(trapped) for a while, Thus, electron transport in a-Si:H oceurs by multiple [rapping in
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shallow localized stales. The effective clectron drift mobility in a-Si:H is therefore re-
ducedto ~1 em? V' 5! Low drift mobilities obviously prevent the use of amorphous
semiconductor materials in high-speed or high-gainelectronic applications. Nonethcless,
low-speed lectronics is just as important as high-speed electronics in the electronics
market in such applications s flat panel displays, solar cells, and image sensors. A low-
speed flat panel display made from hydrogenated amorphous silicon (a-Si:H) TFTs costs
very roughly the same as a high-speed crystalline Si microchip that runs the CPU.

ﬂ CD Selected Topics and Solved Problems

Solved Problems

Selected Topics

Hall Effect in Semiconductors
Transferred Electron Devices: Gunn Effect
* Flemeats of Photoconductivity _
Thpnaocic Efcts in S

Piczoresistance: Pressure Sensors and Strain Gauges

Hall Effect

lonization Region in Doped Semiconductors

Compensation Doping of Semiconduclors

Electron-Hole Recombination in Semiconductors and
Pholoconductiviy o

DEFINING TERMS

Acceptor aloms are dopants that have onc less valency
than the bost atom. They therefore accept electrons
from the VB and thereby create holes in the VB, which
leads toa p > n and hence 10 a p-type semiconductor.
Averape energy ofanclectroninthe CBis 3T asifthe
electrons were obeying Maxwell-Boltzmann statistics.
‘This s only true for a rondegencrate semiconductor.

" Bloch wave refers to an clectron wavefunction of the
form ¥, = Uglx)exp(jkx), which is a traveling wave
that is modulated by a function Uy(x) that has the peri-
odicity of the crystal. The Bloch wavefunciion is a
consequence of the periedicity of an electron’s poten-
fial energy within the crystal.

Compensated semiconductor contains both donors
and acceplors in the same crystal region tht compen-
sale for each other's effects. For example, if there are
more donors than acceptors, Ny > N, then some of
the electrons released by donors are caplured by accep-
tors and the net effect is that N, — N, number of elec-
trons per unit volume are left in the CB.

Conduction band (CB) is a band of energies for the
electron in a semiconductor where it can gain energy

from an applicd field and drift and thereby contribute to
electrical conduction. The clectron in the CB behaves
as if it were a “free” particle with an cffective mass m .
Degenerate semiconductor has so many dopants that
the electron concentration in the CB, or hole concentra-
tion in the VB, is comparable with the density of states
in the band. Consequently, the Pauli exclusion princi-
ple is significant and Fermi-Dirac slatistics must be
used. The Fermi level is citherin the CB fora n'-type
degenerate or in the VB fora p'-type degencrale semi-
conductor, The superscript + indicates a heavily doped
semiconductor

Diffusion is arandom processby which particles move
from high-concentration regions (0 low-concentration
regions.

Danor atoms are dopants that have a valency one more
than the host atom. They therefore donate clectrons Lo
the CB and thereby create clectrons in the (B, which
Jeads 1o n > p and hence (0 an A-type semiconductor.
Effective density of states (N;) at the CB edge 15a
quantity that represcnts all the states in the CB per unit
volume as if they were all al E.. Similarly, N, at the
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VB edge is quantit, that represents all the states in the
VB per unit volumne as if they were all at ..,
Effective mass () of an electron is a quantum me-
chanical guantity that behaves like the inertial mass in
classical mechanics, F = ma, in that it measures the
object's inertial resistance to acceleration. It relates the
acceleration a of an electron in a crystal to the applied
external force F.y by Fo, = m! a. The cxiernal force
15 most commonly the foree of an electric field ¢Z and
excludes all internal forces within the crystal,

Einstein relation relates the diffusion coefficient P
and the drift. mobility ¢ of & given species of charge
carriers through (D /) = (kT fe).

Electron affinity (x ) is the energy required to remove
an electron from E, 1o the vacuum level.

Energy of the electron in the crystal, whether in the
CB or VB. depends on its momentum hk through the
E—k behavior determined by the Schradinger equation,
E—k behavior is most conveniently represented graphi-
cally through £-k diagrams. For example, for an elec-
tron at the bottom of the CB, E increases as (hk)®/m?
where Ak is the momentum and m} is the effective mass
of the electron, which is determined from the E-k
hehavior.

Fxcess carrier concentration is the excess concen-
tration abeve the thermal equilibrium value. Excess
carmiers are generated by an external excitation such as
photogeneration.

Extended stae relers to an electron wavefunction ¢,
whose magnitude does not decay with distance; that is,
it is extended in the crystal. An extended wavelunction
of an electron in u crystal is a Bloch wave, that is,
iy = Uyfa)expl jhx), which is a traveling wave that is
modulated by a function U, (x) that has the periodicity
of the crystal. There is an equal probability of finding
an electron in any unit cell of the crystal. Scattering of
an electron in the crystal by lattice vibrations or impu-
rilies, efc., corresponds to the electron being scatiered
from one ¥ to another Yy, Le a change in the
wavevector from k to k'. Valence and conduction
bands in a crystal have extended states.

Extrinsic semiconductor is a semiconductor that has
been doped so that the concentration of one type of
charge carrier far exceeds that of the other. Adding

donor impurities releases electrons into the CB and n
far cxceeds p; thus, the semiconductor becornes n-lype.
Fermi energy or level (E¢) may be defined in several
cquivalent ways. The Fermi level is the energy level cor-
responding Lo the energy required to remove an electron
from the semiconductor, there need not be any actual
elecirons al this energy level. The energy needed to rc-
mave an electron defines the work function ®. We can
define the Fermi level 1o be @ below the vacuam level.
Ey can also be defined as that energy valwe below
which all states arc full and above which all states are
emply at ahsolute zero of temperature. £ can also be
defined through a difference. A difference in the Fermi
energy AEy in a system is the external electrical work
done per electron cither on the system or by the system
such as electrical work done when a charge ¢ moves
through an electrostatic PE difference is eA V. It can be
viewed as a fundamental material property.
Intrinsic carrier concentration (n;) is the electron
concentration in the CB of an intrinsic semiconductor,
The hole concentrationin the VB is equal to theelectron
concentration.
Intrinsic semiconductor has an equal number of
clectrons and holes due 1o thermal generation across
the bandgap E_. It corresponds 1o a pure semicoaduc-
tor crystal in which there are no impurities or crystal
defects.
Ionization energy is the energy required to ionize an
atom, for example, o remove an electron.
lonized impurity scattering limited mobility is the
mobility of the electrons when their motion is limited
by scattering from the ionized impurities in the semi-
conductor {e. ., donors and acceplors).
k 1s the wavevector of the electron’s wavefunction. Ina
crystal the electron wavefunction, ¥ (x) is a modulated
traveling wave of the form

Vi (x) = Us(x) exp(jkx)
where kis the wavevector and Uy (x) is a periodic func-
tion that depends on the PE of interaction between the
electron and the lattice atoms. k identifies all possible
stales y(x) that are allowed to exist in the crystal. hk
is called the erystal momentum of the electron as ils
rate of change is the externally applied force (o the
electron, d(hk)/dt = Fogma.



Lattice-scattering-limited mobility is the mobility of
the electrons when their motion is limited by seatering
from thermal vibrations of the lattice atoms.

Localized state refers to an eclectron wavefunction
Viseles  WhoSE magnitude, or the envelope of the
wavelunction, decays with distance, which localizes
the electron to a spatial region in the semiconductor,
For example, @ 1s-lype wavefunction of the form
Vreataes &€ EXp(—ar), where  is the distance measured
from some centerat v = 0, and e isa positive constanl,
would represent a localized state centered at r = 0.

Majority carriers are electrons inan i-type and holes
in a p-type semiconductor.

Mass action law in semiconductor science refers (o
the law np = n?, which is valid under thermal cquilib-
rium conditions and in the absence of external biases
and illumination.

Minority carrier diffusion length (L) is the mean
distance a minority carrier diffuses before recombina-
tion, L = /D, where D is the diffusion coefficient
and 7 s the minority carrier lifetime.

Minority carrier lifetime (t) is the mean time for a
minerity carrier to disappear by recombination. | /7 15
the mean probability per unit time that a minorily carrier
recombines with a majority carrier,

Minority carriers are electrons in a p-lype and holes
in an n-type semiconductor.

Nondegenerate semiconductor has electrons in the
CB and holes in the VB that obey Boltzmann statistics.
Put differently, the clectron concentration i in the CB
is much less than the effective density of stales N, and
similarly p & N,. It refers 1o a semiconductor that has
not been heavily doped so that these conditions are
maintained; typically, doping concentrations are less
than 10" cm ™",

Ohmic contact s a contact that can supply charge car-
riers (o a semiconductor at a rate determined by charge
transport through the semiconductor and nof by the
contact properties itself. Thus the current is limited by
the conductivity of the semiconductor and not by the
contact.

Peltier effect is the phenomenon of heat absorption or
liberation at the conlact between two dissimilar mate-
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rials as 2 result of a de current passing through the
junction, The rate of heat generation Q" is proportional
to the de current [ passing through the contact so that
Q' = +11/, where IT is called the Peltier coefficient
and the sign depends on whether heat is absorbed or
released.

Phonon is & quantum of encrgy associated with the
vibrations of the aloms in the crystal, analogous to
the photon. A phonan has an energy Ao where w is the
frequency of the latlice vibration.

Photoconductivity is the change in the conductivity
from dark to light, mim — g

Photogeneration is the excitation of an clectron nto
the CB by the absorption of a photon. If the photon is
absorbed by an electron in the VB, then its excitation to
the CB will gencrate an EHP.

Photoinjection is he photogeneration of carriersin the
semiconductor by illumination. Photogeneration may
be VB 1o CB excitation, in which case electrons and
holes are generated in pairs.

Piezoresistivity is the change in the resistivity of a
semiconductor due to an applied mechanical stress o,
Elastoresistivity refers to the change in the resistivity
due 10 an induced strain in the substance. Application of
stress normally Jeads o strain, so piczoresistivily and
elastoresistivity refer to the same phenomenon. In sim-
ple terms, the change in the resistivity may be due to a
change in the concentration of carriers or due o a
change in the drift mobility of the carriers. The fractional
change in the resistivity g/p is proportional to the ap-
plied siress ,,, and the proportionality constant is called
the piezoresistive coefficient n (1/Pa units), which isa
ensor quantity because a stress in one direction in 4
erystal can alter the resistivity in another direction.
Recombination of an electron-hole pair involves an
electron in the CB falling down in energy into an
emply state (hole) in the VB to occupy it. The result is
the annihilation of an EHP. Recombination is direct
when the electron falls dircctly down into an empty
state in the VB as in GaAs. Recombination 1 indirect
if the electron is first captured locally by adefect or an
impurity, called a recombination center, and from there
il falls down into an empty state (hole) in the VB as in
Si and Ge
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Schottky junction is a contact between a metal and a
semiconductor thal has rectifying properties. For a
metal/n-type semiconductor junction, electrons on the
metal side have to overcome a potential cnergy barrier
@y (o enter the conduction band of the semiconductor,
whereas the conduction electrons in the scmiconductor
have to overcome asmaller barvier e V, toenter the metal.
Forward bias decreases ¢ V, and thereby greally encour-
ages eleciron emissions over the bamer e(V,— V),
Under reverse bias, electrons have to overcome @ ; and
the current is very small.

Thermal equilibrium carrier concentrations are
those electron and hole concentrations that are solcly
determined by the statistics of the carriers and the den-
sily of states in the band. Thermal equilibrium concen-
trations obey the mass action law, np = /.,

Thermal velocity (1) of an electron in the CB s its
mean (or effective) speed in the semiconductor as it
moves around in the erystal. For a nondegenerate semi-

conductor, it can be obtained simply from Im;v} =
T

Vacuum level is the energy level where the PE of the
electron and the KE of the clectron are both zero, It
defines the energy level where the clectron is just free
from the solid.

Valence band (VB) is a band of energies for the elec-
trons in bonds in a semiconductor. The valence band is
made of all those states (wavefunctions) that constituie
the bonding between the atoms in the crystal. At ab-
solute zero of temperature, the VB is full of all the bond-
ing electrons of the atoms. When an electron is excited
t0 the CB, this leaves behind an empty state, which is
called a hole. It carries a positive charge and behaves as
il it were a “free” positively charged entity with an ef-
fective mass of m,. [t moves around the VB by having a
neighboring electron tunnel into the unoccupied state.

Work function (&) is the energy required to remove
an electron from the solid to the vacuum level,

QUESTIONS AND PROBLEMS

5.1 Bandgap and photodetection

. Delenmme the maximum value of the energy pap that a semicondnclor, used as a pholoconductor,
can have if il 18 to be sensitive to yellow light (600 nm).

b A photodetector whose area is 5 107 em? s imadiated with yellow light whose intensity is
2mWom ™, Assuming that each photon generates une electron-hole pair, caleulate the number of

pairs generated per second,

¢ From the known cnergy pap of the semiconductor Gads (£, = 142¢V), caleulate the primary
wavelength of photons emitted from this erystal s a resalt of electron-hole recombination.

d. s the above waveleagth visible?

e Wil asilicon photodetector be sensitive to the radiation from a GaAs laser? Why?

5.2

Intrinsic Ge  Using the values of the density of states effective masses m] and m} in Table 5.1, cal-

culute the intrimsic concentration in Ge. What is s, if you use N, and Ny from Tuble 5.17 Caleulate the

inlrinsic resistivity of Ge at 300 K

5.3

Fermi level in intrinsic semiconductors  Using the valucs of the density of states cffective masses m)

and mj, in Table 5.1, find the position of the Fermi energy in intrinsic Si, Ge, and GaAs with respect to

the mickfle of the bandgap (E,/2)
5.4

55
| Qem.

5.6 Minimum conductivity

Extrinsic 8§ A i crystal has been doped with P The donor concentration is 10'* emy™. Find the con-
ductivily and resistivity of the crystal.

Extrinsic $i  Find the concentration of acceptors required for a p-Si crysial 1o have a resistivity of

a. Consider the conductivity of # semiconductor, @ = en i + epyap. Will doping always increase the

conductivity?
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5.10

QUESTIONS AND PROBLEMS

b Show that the mininm conductivity for St s obtained when it is p-type doped such Whal the hule
congentrition 15

{ e
and the comesponding minimum conductivity (maximom resistivity) is
Omin = 200 [l Mk
e Caleulate g o e for 51 and compare with intrinsic vilues.
Exlrinsicp-Si A Sicrystil s e doped p-1ype with B acceptors. The biole drift mobility ju, depends
an e 1ot concentrution of inmzed dopants Nasgants in this case acceptors only, as

4n 3
P b B ¢ 7T T TV Vs
1+ 3745 % 107 gy

I

where Yo 1% imem . Find the required concentration of B duping forihe resistivity to be (1.1 52 em.

Thermal velocily and mean free path in Gads Given that the clectron clfective mass mry for the
Gads is 0.067m,., calewlate the thermal velocity of the conduction band (CB) clectrons. The eleclion
drift mobility ji, depends on he miean fice fime T, between eleciron Scattering evenls {between clec-
yrons and lattice vibrations). Given jte = ete/m3, and gr, = 800 em? V=15~ for Gaks, caleulte te,
aud heace the mean [ree path € of CB clectrons, How many it cells is € 1f the lattice constant a of
Gahs is 0.565 nm? Calculate the drift velocity 1y = L of the CB clectrons in an applicd field ‘Lof
10f ¥ m~". What is your conclusion?

Compensation doping inSi
u ASi waler has been doped n-type with 10" As atoms e %
1. Caleulate the conductivity of the simple at 27°C.
2 Where is the Fermi level in this sample at 27 *C with respect to the Fermi level (Eg;) in
intrinsic Si?
3. Calculate the conductivity of the sample at 127°C.
b The sbove irtype Si sample is further doped with 9 10 boron atoms ( p-type dopant) per cen-
timeter cubed.
I, Calculate the conductivity of the sumple a1 27 °C.
7 Where is the Fermi fevel in this sample with respect o the Fermi level in the sample in {ur) at
7707 Is this an n-type ot p-type 517

“Temperature dependence of conductivily - Ani-type i sauple has been doped with 10 phosphons

stoms e, The donor coergy level for P in Siis 0043 eV below the conduction hand edge enciyy.

o Caleulate the room temperature conductivity of the sample.

b, Estimatc the temperature above which the samphe hehiaves as il irinsic.

¢ Estimte to wilhin 20 percent the lowest temperature above which ull the donors are ivmzel.

4 Shetch schematically the dependence of the electron concentration in the conduction band on the
temperature as og() verss | [T, und ik the various imporant regi‘tms and critical temperatures.
For cach region draw an encEy baud diagram that clearly shows from where (he clectrons are
exciled into the conduction bind. :

¢ Skeich schematically the dependence of the conductivily on the temperalure a5 Togla ) versus 1T
and mark the various critical temperatures. and olher pelevant information.

5N Loaization al low lemperatures in doped semiconduclors Consider an n-lype seaiconductor, The

probability that a donor fewed By is occupied by an electron is

fu= S [5.84]

| Ej"'E.l'
14 - S
z‘“”( i )

Probability of

occupancy
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where £ s the Boltzoann constat, T 18 the temperature, £y 1% the Fermi energy, and j is a constant
called the degeneraey Tacton in Si, ¢ =2 for donors, and for the occupation stalistics of aceepion
& =4 Show that

Electron

concentrafion 2 N, N,

SIS - S

i exfringic n AE AE . (5.851

semiganductars S\ ) di W )
where i the electron concentration i the conduction band, ¥, i the effective density of skates at the
conduction b edge, Ny is the donor concentration, and AE = E, — Eq is the ionization energy of (he
donrs, Show 1hat Equation S8 at low lemperatures is equivakent to Equation 5,19, Consider i p-type
Si sample hat bas been doped with 10 gallium (Ga) atoms eim . The ueceplor encrgy level for Gain
Stis 0065 eV ybove the valence band edge energy, E,. Esumate the Towest temperalure (°C) above
which 9 percent of the acceptons are jomized by assuming that the acceptor degensracy factor g = 4.

312 Compensation doping in n-type Si An n-type Si samplebas been doped vath | x 107 phosphars ()

atoms - The drift nohifities uf holes and electrons in §i at 300 K depead on the total concentration
ol dopants N-l'r""' fem "y as follows:

Electron drifi 1252 Fliati

4 RB S " V7Y

mobilty e 60X 10 PNy ©
and

Hole ﬂ[l'l:ﬂ 407 1 _.1

e =543 e T T

mobiliy MR ITE e
a. Caleulate the room lemperature conductivity of the sample.
b Cileulae the secessary acceptor doping (i.e., N, ) thatis reguired 1o make this wnplc p-type with

approimately the same condue tivity.
53 GaAs Gabus o valency of 111 and As has V. When Ga and As atoms e Srought together 1o form the

Gads erysial, as depicted in Figure 5.54, the theee valence electrons in each Ga and the ive valence
electrons i each As arc all shared to formy four covalent bonds per aton. i the GaAs crystal wilh some
107 ar s el mumbers of Ga and As atoms, we have an average of lour valence electrons per atom,
whethier Gaof As, 5o we would expeet the bonding 1o be similar to that in the Sicrystal. four bonds per
e, The crystal structure, howewer, ss not thad of diamond but rather that of zinc blende (Chapter 1),
4 What s the average number of valence elections per atom for a pair of G and As stoms and in the
Gads crystal?
b Wit will happen if Se or Te, from Group V], are subsittued for s As atom in the Gads crysial?
¢ What will bappen if Zn o O, from Group 11, wre substituted for « Ga atom i the Gads crystal !
What will happen if 81, from Group V. is substituted for an As atom in the Gads erystal?
e What will happen if i, from Group IV, is substituted for a Ga atom in the GaAs erystal? What do
your think ampheteric dopant means”?
Based on the discussion of GaAs, whal do you think the crysial stuctures of the 11-V componnd
semiconductons ALAS, Gab, 1nAs, In®, and InSb will be?

Figure 5.54 The Gas crystal
shructure m two dimensions.
Averoge number of valence
electrons per atom is four. Each
Ga olom covalently bonds with
four neighboring As otoms and

vice versa
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*5.18

QUESTIONS AND PROBLEMS

Doped GaAs  Consider the GaAs caysial 2t 300 K.
@ Calculate the mininsic conductivily and resistavity. -
b nasumpie containing only 10" cm ™ jonized donors, where is the Fermi Jevel? What i the con-
ductivity of the sample?
& Inasample containing 10" cm ¥ jomized chonors ind 9 % 10" em* ionized acceptors, whit is the
free hoke concentration?
Varshni equation and the change in the bandgap with temperature The Varshai equation de-
scribes the changc in the energy bandgap £, of a semiconductor with temperature T in terms of
) AT?
E=bem pw
where £ is the bandgap al T =0 K. and A and B arc materiad-specific constants, For example, for
Gas, Ege = 15196V, 4 = 5405 x WAeVK ! B=204 K sothatat T = 300K, E, = 142¢eV.
Shaw that
db;  AT(T+2B) _ {E,.,-—E,](T+lﬂ) g
dr T (BHTP T \T#+8B

What is dE, [T for GaAs? The Varshini equation can be used to calculate the shift in the peak cmission
wdalighmdngﬁnd:{lﬂ)]wﬂhumpemmurlltm:rrfwavd:r@ﬂmfadelmur.!r
the caitid photon encrgy from an clectrun and hole recowbination is oy = Ey + KT find the shiftin
the emitied waveleagth from 27 °C down 1o ~30 °C from a GaAs LED,

Degenerate semiconductor Consider the pencral exponentis| expression for the concentration of
electrons in the CB,

n=N,ep|-

(E, - Ef)
kT

and the mass action law, np = 7. What happens whea the doping level is such that n approaches N, and
cxoceds it? Can you siill use the above expressions for nand p”

Coasider an a-type Si that has been beavily doped and the eleetron voncenttifiun i the CB is
10% cm ™. Wher is the Fermi level? Can you use npr = 7 to find the hole concentiation” What is its
resistivity? How does this compare witl 2 typical metal? What use is such a semiconductor?

Photsconductivity and speed  Consider twa p-type i samples both daped with 10 Batoms cm . Both

have identical dimensions of lengih 1. (1 mun), width W (1 mm), alﬂlhpﬂl{lhid:ww (0.4 mm). One sam

#Ma.h-mhfmdluwhmﬂ:uheausdedﬂ'hwﬂm"ﬂﬂ lifetime of 5 s

o Autime 7 = 0,a laser light of wavclength 750 nm is switched on 0 lumistte: the surfisce (L x W)
of both the samples. The icident laser hight infensity on both samples 16 10 mW e 1 Attme
1 = 0 s, the Laser is switched ofl. Sketch the time evolution of the minosf CETICH Conceniration
ou boths samples on the samc ancs.

b thmw[ammdu:willmuhnahﬂ|lurhsutq#i50"llmt‘ledlruI\’
baitery”

Hall effect in semiconductors “The Hall effect in a semiconductor sample in#!* S 1ot only the clec-

tvon and hole concentraios n nd p, respextively,but also the lectron and hoy ¥t mobiliic 1, and

m.mmmmmmmmn

—nb?

P i [5.86]

elp + uflP

where b = ji. /- )

. Given the mass action law s = n; . find o for meinimum |Ry| (negative a8V Ky) Asam
thast the drift mobilities remain relatively snaffocted as n changes (due to dopé Given the clection
and ol dirift mobiities 1, = 1350 ar Vs andpy = as0emt vl s sthicon, detenmme
w for maxmaum | Ry | in terms of iy .
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Warshni
equation

Banidgap shift
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b, Tuking b = 3, phot Ry s a function of electron concentration n/n; from 0.01 o 10,
¢ Show that, when n 3 g, Ry = 1 fen amd whean & n;, Ry = + 1ep.

Hall effect in sewiconductors  Most Hall-efTect high-sensitivity scnsors typically use 11}V scmicon-
ductors, such as GaAs, InAs, InSh. HkelTect integrated cirewits with inicgrated amplificrs, o the other
hand, use S1. Consider nearly intrinsic samples in which n == p = w,, and calculate Ky for each using
the datirsn Table 5.4. What is your conchesion? Which sensor would exhibit the worst temperature deifi?
(Consicler the bandgap, and drilt i n,.)

Table 5.4 Hall effect in selected semiconductors

EeV)  mfem™) e’V (el V) b Raler AT

§i L0 1xa0® 1350 450 3 31
GAs 142 2x1f 8500 400 ! !
InAs 036 Ix10Y 33,000 460 ? 7
1nSh W -2 x_w"' TRO00 850 7 7
*5.20 Compound semiconductor devices  Silicon and germanium crystalline semiconductors are what

521

e called elemental Group 1V semiconductors. T is possible o have compound semiconductors

from atoms in Groups 1 and ¥ For example. GaAs is a compound semiconductor that has Ga from

Growp 1L and As from Group ¥, so in the erystalline struciure we have an “effective”™ or “mean” va-

leney of IV per atom and the solid behaves like a semiconductor. Similarly GaSh (gallium anti-

monide) would be @ H1-V type semiconductor. Provided we have a stoichiometric compound, the
semiconductor will be ideally intrinsic. If, however, there 1s an excess of Shatoms in the solid

GaSh, then we will have nonstoichiometry and the semiconductor will be cxtrinsic. [n this case, ex-

cess Sb atoms will act as donors in the GaSb siructure. There are many vseful compound semicon-

ductors, the most important of which is GaAs, Some can be doped hoth #- and p-type, bul many are
one type only. For example, ZnO is a 11-V1 compound semiconductor with a direct bandgap of

3.2 ¢V, but unfortunately, due to the presence of excess Zn, it is saturally n-type and cannot be

doped to p-type.

o GuSh (gallium entimonide) is an interesting direct bandgap semiconductor with an cnergy bandgap
Ey = 06T eV, almost cqual o that of germanium. It can be used as an light emitting diode (LED)
or Jascr diode Merial. What would be the wavelength of emission from a GaSh LED? Will this be
visible?

b Caleulate the inwrinsic MGy of Gagh 31 300 K raking N, = 23 x 10" cm™, N, =
6.0 10" em™, gt =00t -t ot g 1000 en? V15, Compare. with he
intrinsic conductivity of Ge. '

¢ Excess Sb atonts will maKE By opionie nanstoichiometric, that s, GaSy 4, which will

result in an eMrinsic SNy Gioen that the density of GaSh £75.4 g em ™, calculate
§ (excess Sb) that wall Ul o o i o comductivity of 100 2! cn!. Willthis be am -
ar prtype semicondueton? You, . oo that the drift mobilities are relutively unaffected by the
doping.
Excess minority carvier Moy (e, 1 e semiconductor and weak injection cond
tions, ammﬁ-fﬂf“"’“"%amiumm, is constant {independent of injection—
hence the weak OO SR ) e of change of the instantancous hole concentraion
: is
pa i due to recombinalion g, by

P b 1587)

an 3
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QUESTIONS AND PROBLEMS

The net rate of increase (change) in p, is the sum of the tolal generation rate G and the rate of
change due to recombination, that is,
L. [5.88]

i A

d T

By separaling the generation lerm G into thermal generation G, and photogenertion (g, and con-
sidering the dark condition s one possible solution, show that

P‘A.”n ¥ - Apy
— =l =2 [5.89]

How does your derivation compare with Equation 5.277 What are the asswmptions inherent in
Equation 5.897
Direct recombination and GaAs - Consider recombination in a direet bandgap p-type semiconductor,
¢.g., GaAs doped with an acceptor concentration N, The recombination involves a direct meeting of an
clectron-hole pair as depicted in Figure .22, Suppose that excess electrons and ioles have been injected
(e.g.. by pholoexcitation), and that An, is the excess electron concentration and Ap, is the eacess hole
concentration. Assume An, is controlled by recombination and thennal g only; that i, recombi-
nation is the cquilibrium storing mechanisn. The recombination rate will be propartional to 1,p,.. and the
thermal generation rate will be proportional 10 15 g, In the dark, in equilibrum. thermal gencraion rue
is equal o the recombination rate. The latter is proportional o 11, .. The tate of change of A, is

aAn
?5 = —Blnppy — o) [5.90

where B is a proportionality constant, called the direct recombination capture coefficient. The
recombination lifetime r, is defined by

adn,  An,
i SR 91
a % 5911
o Show that for fow-level injection, n, & Any € puy, ¥, is constant and given by
o) 1597]
h=—0= )
By, BN,

b, Show that under high-level injection, Any  Pre.

aAn
=5, %~ BAp, Any =~ Bitm,)’ 15.93]

50 that the recombination lifetime 7, is now given by

1 1

—— 5.94

BAp, Ban, BN
that is, the lifetime , is inversely proportional 1o the injected carmier concentration

¢ Consider whal happens in the presence of photogeneration at a rate Giga (electron-hole pairs per
unit volume per unil time). Steady siate will be reached whea the photogencration ratc and recom-
bination rate becoie equal. That is,

T

fan,
G = T = Blnypp — s ppl

recombraaton
A photoconductive film of n-type GaAs doped with 10" cm™" danors is 2 mm long (L), 1| mm
wide (W), and 5 pm thick (D). The sample has electrodes attached (o its ends (electrode area is
therefore | mm x 5 pm) which are connected 10 a 1V supply through an smmeter. The GaAs
photoconductor 1 umformly illuminated over the surface area 2 mm x 1 mm wath a | mW laser
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5.24

5.25

5.26

radiation of wavelength & = 840 nm (infrared). The recombmnation cocflicient B for Gads is
720 % 107 m* ' AL = 840 nm, the absorption coellicient is aboat S x 107 em™ ", Caleulate
the photocurrent Ty, tnd the electrical power dissipated s Joule heating in the sample, What will
e the power dissipated as heat in the sample in an open circuit, where [ =2

Piezoresistivily application to deflection and force measurement  Consider the cantilever i Figun:
5 3¢ Suppose we apply a force F o the free end, which results ina defloction h of the up of the can-
tilever from its horizontal equilibrium posation. The maximum 5tress 9y, is induced at the suppon end
of the cantifever, # its suface where the piczoresistor is embedded fo measure ihe stress. When the
cantilever is bent, there is i tensile of longitadinal stress oy on the surface because the top surface is
extended and the bottom surface is contracted. If £, W, and D are respectively the length, width, and
thickness of the cantilever, then the refationshups between the force F and deflection h, and the mixi-
M stress o7 are
iy W'y

o (max) = ? and F= 'Ffl -
where ¥ is the elastic (Young's) modulus. A particular $i cantilever has a beagth (L) of 500 wm, width
(W) of 100 pm, and thickness (D] of 10 pm. Given ¥ = 170 GPa, md that the prezoresisior E:,nlnddud
in the cantilever s along the | 110] direction with g, % 72 % 10°" Pa™", fiod the pescentage change in
the resistance, AR/ R, of the piezoresistor when the deflection’is (1.1 ym. What is the force that would
give this deflection” (Neglect the transverse stresses on the piezoresistor.) How does the design choice
fior the length L of the cantilever depend on whether one is interested in measuring the deflection i or
the foree F7 (Note: oy, depends on the distance x from the support end; it decreases with x. Assume that
the length of the prezoresisior is very short compared with L so that o), does not change significantly
along its leagth.) 2.

Schottky junction

. Consider a Schottky junction diade between Auand n-Si, doped with 10® donorsem ™ Y The coss-
sectional area s | mm’. Given the work funetion of Au s 5.1 eV, what is the theoretical barries
Teght @ from the metal to the semiconductor?

b Given that the cxperimental bareier height @ is about 018 eV, what is the reverse saturation « ur-
rent and the cunrent when there is 4 forward bias of 0.3 V across the diede? (Use Equaton 4.37.)

Schottky junction Consider 1 Schottky junction diode between Al and n-Si, doped with § - 101
donors em . The cross-sectional area is | mm®. Given that the electron affinity y of Siis 401 2V and
the work function of Alis 428 eV, what is the theoretical barrier height @y from i metal 10 the semi
conductor? What is the built-in voltage? If the experimental bursier height g 8 about 0.6 ¢V, what 1s
the reverse saturation current and the current when there is a furward bigs gb 0.2 V across the diode?
Take B, = 110 Aan 2K T,

Schottky and ohmic contacts  Consider an a-type Si sample doped with 10% doaors em . The length
L is 100 jam; the cross-sectional area A s 10 jum % 10 pm. The two cnds of the sample are labeled as 8
and €. The electron affinity (x ) of Si 15401 eV and the work functions & of four potential metals for con-
tacts 1 B and C are listed in Table 5.5.

Toble 533 Wk functionsineV

Cs Li Al A
18 25 4.25 50

a Ideally, which metals vill result in 4 Sehoirky contact?
b Ideally, which metals-will result in an‘ohmic contact!
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QUESTIONS AND PROBLEMS

Sketch lfx, 1-V characteristics when both B and C ave ohmic contacts. What is the relationship be

tween [ and ¥?

. Sketch the -V charactenistics when B is ohonic and Cis a Schottky junction. What is the relation-
ship between [ and V!

e Sketch the -V charactenstics when both 8 and C are Schottky comtacts. What i the relationship

between [ and ¥?

Peltier effect and eleclrical contiets - Consider the Schottky junction and the ohmic contact shown ta
Figures 3.39 and 543 between a metal and a-type semiconductor

a. Juthe Peltier effect similar in both contacts?

b lsthesigain ¢ = £ the same for both contacis?

. Which junction would you choose for a thermoelectric cooler? Give reasons

Peltier coolers and fignre of merit (FOM) Consider the thermoelectric effect shown in Figure 5.45
1 which a semiconductor has two contacts al its ends and is comducting an electric eurrent 7. We assume
that the cold junction 15 o a temperature T, and the hot junction is at 7, and that there is a lemperature
differencenl AT = T — T, between the two ends of the semiconductor, The curent / flowing through
the cold junction absorbs Peltier heal at a rate (', given by

b 3 ’ 1
. 0p=n1 [5.95]
where [T is the Pellier coefficier . [or the janction between the metal and semiconductor. The current /
Mowing through the semiconductor penerates heat due (o the Joule heating of the semiconductor, The
rieof Joule heat gencrated Uwough the bulk of the semiconductor is

L
[ :(ni]r 15.96]

We asgumk that half of this heat Mows fo the cold junction,
I addition there 15 heat Mow from the hol to the cold junction through the semiconductor, given by

the thermal conduction equation

A
0, - (.[')M' (5.97]
The net rate of heat absorption (cooling rate)at the colll junction i then

‘ p_ b o

Oncvoms = 0= 3~ Ui (5.96]

By substitvting from Equtions 5.45 to 3.97 into Eqyatien 5.98, obiaie the nel cooling rele in terms

of the current 1 Then By diffesentiatng @, . with réspect o current, show thal maximum cooling is

A commercial thermoelectric cooler [by Mekor], an example of the Pelier effedt, The
device oreo is 5.5 cm x 5.5 em [approximately 2.2 inches « 2.2 inches), s moximum
current 13 |4 A, maximum heot pump ability is 6/ W, maxmun lempesature difference
betwean the hot and cold surfoces is &7 °C

an .
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abtained when the curren! is

b=(3)e (599)

and the maximum cooling rale is
i Al 4
Qi = 7|5 Wo-*aT [5.100]

Under steady-state operating conditions, the temperature difference AT reaches a steady-state value
and the net cooling mie al the junction is then zero (AT is constant). From Equation 5.100 show thal the
maximum lemperatire difference achicvable is

2
P L (5.101)
1x

The quantity M%a/k is defined as the figure of merit (FOM) for the semiconductor as it deter-
mines the maximum AT achievable. The same sxpression also applies to metals, though we will not de-
rive it here.

Use Table 5.6 to determine the FOM for various materials listed therein and discuss the significance
of your calculations. Would you recommend a themoelectric cooler based on a metal-to-metal junction?

Seebeck coelficient of semiconductors and thermal drift insemiconductor devices Considet an n-type
semiconductor that has a temperature gradient across it. The right end is hot and the left end is cold, as de-
picted in Figure 5.55. There are more energetic electrons in the hot region than in the cold region. Conse-
quently, electron diffusien occurs from hot to codd regions, which immediately exposes negatively charged
donors in the hot region and therefore builds up an intermal field and & buill-in voltage, as shown in Figure
5.55. Eventually an equilibrium is reached when the: diffusion of electrons is balanced by their drift driven by

. the built-in field. The net current must be zero. The Secheck coefficient (or thermoelectric power) § measires

Figure 5.55  n the presence of o g Electron diffusion
femperalure grodient, there is an intemal field - £l i

and a volioge difference. . . —
The Secbeck coefiientis defined as dV/dT, %, * " ® 09 84 o Do
?Mdhﬂupﬂmﬁw Cold

[ ] ] .@ [

i S D A lHDl

IR
f"‘—'—:_,.; Exposed

As* donor

dv

TS G VRPN -
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(QUESTIONS AND PROBLEMS

this effect in lerms of the voltape developed as o resull of an applied iemperature gradient as

dv
§=— .102
T [5.102)
o How is the Seebeck effect in a p-type semiconductor differcnl than that for an n-type semiconduc-
tor when both are placed in the same temperature gradient in Figure 5.557 Recall that the sign of
the Seebeck coefficientis the polarity of the valtage at the cold end with respect o the hot end (see
Section 4.8.2).

b Given that for an n-type semiconductor,

k[ (E-Ep)

s _;[u . (5.103]
what are iypical magnitades for S, in Si doped with 10" and 10'° donars cm™? What is the sig-
nificance of 5, at the semiconductor device level?

¢ Consider apn junction Si device that has the p-side doped with 10 acceptors cm > and the n-side
doped with 10 donors cmi . Suppose that this pn junction forms the input stage of an op amp
with a large gain, say 100. What will be the output signal if a small thermal fluctuation gives rise to
a | °C temperature difference across the pn junction?

Photogeneration and carrier kinetic energies Figure 5.35 shows what happens when a photon with
cnergy hv > E is absorbed in GaAs to photogenerate an electron and a hole. The figure shows that the
eleciron has a higher kinetic energy (KE), which is the excess energy above E., than the hole, since the
hole is almost at E,,. The reason is that the electron effective mass in GaAs 1s almost 10 times less than
the hole effective mass, so the photogenerated electron has 8 much higher KE'. When an electron and

hole are photog J in adirect bandgap semiconductor, they have the same k vector. Energy con-
servation requires that the photon energy hv divides according to
e (e}
hu= I‘,g + lm:- + R‘:

where k is the wavevector of the electron and hole and m} and m} are the effective masses of the clec-

tron and hole, respectively.

. Whal is the ratio of the electron to hole KE right afier photogeneration?

b, If the incoming photon has an energy of 2.0 eV, and E; = 1.42 eV for GaAs, caloulate the KEs of
the electron and the hole in eV, and calculate to which energy levels they have been excited with re-
spect to their band edges.

¢ Explain why the clectron and hole wavevector k should be approximately the same right after pho-
togeaegation. Consider kygyoq for the photon, and the momentum conservation.

extreme right is J. T Lost

figure 16 [Courlesy of IEEE |

473

Photogeneritig

William Shockley and his group celebrate Shockley's Mobel
prize in 1956 First leh, sitting, is G. E. Mocre [chairman
emeitys of Intel], standing fourth from right is R N. Noyce
inventor of the integrated circuit, and stonding of the

SOURCE: P. K. Bondyopodhyay, "W = Shockley, the
Transistor Pioneer—Portrail of on Inventive Genis,”
Froceedings IEEE, vol, 86, na. 1, Jonvary 1998, p. 202,



The first monolithic infegreled circuil, about fhe size of o fingertip, wos documented ond developed af Texas Instruments by Jock Kilby in
1958; he won the 2000 Nobel prize in physics for his conlribulion o the development « "the first integraled circuil. The IC was o chip of o
single Ge crysial conlaining one fransistor, one capacitor, ond one resisior. Left: Jock Kifly folding his IC (pholo, 1998). Right, The photo of
the chip.

| SOURCE: Courtesy of Texas Instruments,

Robert 2 ond Jean Hoerni
| Swiss physicisl) were
responsible for the invantion of

the first planar IC ot Fairchild Loff to right: Andrew Grove, Robert (19271990}, ond
11981], The planar fabrication Gordon Moore, who founded Inkel in 1968, Andrew Grove's
process was the key o the book Physics and Technology of Semiconductor Devices [Wikky,
success of their IC. The 1967) was one of the dassic fexts on devices in fhe sixfies ond
afagranh is that of the first seventies, “Moore's kow” that siorfed os a rough rule in 1965
i¢ chip af Fairchild slates thal the number of ironsisiors in a chip will double every

| SOURCE: Courtesy of Fairchid 18 months; Moare updated it in 1995 o every couple of years,
Semiconductor, | SOURCE: Courtesy of Intel.
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Semiconductor Devices

Most diodes are essentially pn junctions fabricated by forming a contact between a
p-type and an n-type semiconductor. The junction possesses rectifying properties in
that a current in one direction can flow quite casily whereas in the other direction it is
limited by a leakage current that is generally very small. A transistor is a three-lerminal
solid-state device in which a current flowing between two electrodes is controlled by
the voltage between the third and one of the other terminals. Transistors are capable of
providing current and voltage gains thereby enabling weak signals to be amplified.
Tra:wistors can also be used as swilches just like electromagnetic relays. Indeed, the
whole microcomputer industry is based on transistor switches. The majority of the tran-
sistors in microclectronics are of essentially two types: bipolar junction transistors
(BJTs) and field effect transistors (FETS). The appreciation of the underlying princi-
ples of the pn junction is essential to understanding the operation of not only the bipo-
lar transistor but also a varicty of related devices. The central fundamental concept is
the minority carrier injection as purported by William Shockley in his explanations
of the transistor operation. Field effect transistors operate on a totally diffesent princi-
ple than %75, Their characteristics arise from the effect of the applied ficld on a con-
ducting channel between two terminals. The last two decades have seen enormous ad-
vances and developments in optoclectronic and photonic devices which we now take
for granted, the best examples being light emitting diodes (LEDs), semiconductor
lasers, photodetectors, and solar eells, Nearly all these devices are based on pn junc-
tion principles. The present chapter takes the semiconductor concepts developed in
Chapter 5 1o device level applications, from the basic pn junction to heterojunction
laser diodes.
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6.1 IDEAL pn JUNCTION

6.1.1 No AreLiep Bias: OpenN Circuir

Consider what happens when one side of a sample of Si is doped n-type and the other
p-type, as shown in Figure 6.1a. We assume that there is an abrupt discontinuity
between the p- and n-regions, which we call the metallurgical junction and label as
M in Figure 6.1a, where the fixed (immobile) ionized donors and the free electrons (in
the conduction band, CB) in the n-region and fixed ionized acceptors and holes (in the
valence band, VB) in the p-region are also shown,

Due tothe hole concentration gradient from the p-side, where p = p, to the n-side,
where p = p,,, holes diffuse toward the right. Similarly the electron concentration

- r —n -
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Figure 6.1 FProperties of the pn junchion.
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gradient drives the electrons by diffusion toward the lefi. Holes diffusing and entering
the n-side recombine with the clectrons in the a-side near the junction. Similarly, elec-
trons diffusing and entering the p-side recombine with holes in the p-side near the
junction. The junction region consequently becomes depleted of free caiers in com-
parison with the bulk p- and n-regions far away from the junction. Note that we must,
under equilibrium conditions (¢.g., no applied bias or photoexcitation), have pn = n}
everywhere. Elcctrons leaving the n-side near the junction M leave behind exposed
positively charged donor ions, say As*, of concentration N, Similarly, holes leaving
the p-region near M expose negatively charged acceptor ions, say B~ of concentration
N,. There is therefore a space charge layer (SCL) around M. Figure 6.1b shows the
depletion region, or the space charge layer, around M, whercas Figure 6.1 ¢ illustrates
the hole and electron concentration profiles in which the vertical concentration scale is
logarithmic. The depletion region is also called the transition region.

It is clear that there is an internal electric field £, from positive ions lo negative
ions, that is, in the —x direction, that tries to drift the holes back into the p-region and
electrons back into the n-region. This field drives the holes in the oppasite direction
to their diffusion. As shown in Figure 6.1b, £, imposes a drift force on holes in the
—x direction, whereas the hole diffusion flux is in the +x direction, A similar situa-
tion also applies for electrons with the electric field attempting to drift the electrons
against diffusion from the n-region to the p-region. It is apparent that as more and
more holes diffuse toward the right, and electrons toward the left, the internal field
around M will increase until eventually an “equilibrium™ is reached when the rate of
holes diffusing toward the right s just balanced by holes drifting back to the left, dri-
ven by the field %,. The electron diffusion and drift fluxcs will also be balanced in
equilibrium.

For uniformly doped p- and n-regions, the net space charge density pue(x) across
the semiconductor will be as shown in Figure 6.1d. (Why are the edges rounded?) The
net space charge density py, is negative and equal to —eN, in the SCL from x = - W,
{0 x = 0 (where we take M to be) and then positive and equal to +eNy from x =0
to W,. The total charge on the left-hand side must be equal to that on the right-hand
side for overall charge neutrality, so

NoW, = NoW, (6.1

In Figure 6.1, we arbitrarily assumed that the donor concentration is less than the
acceptor concentration, Ny < N,. From Equation 6.1 this implies that W, > W,; that
is, the depletion region penetrates the n-side, the lightly doped side, more than the
p-side, the heavily doped side. Indeed, if N, 3> Ny, then the depletion region is almost
entircly on the n-side. We gencrally indicate heavily doped regions with the plus sign
as a superscripl, that is, p*.

The electric field Z(x) and the net space charge density paq(x) at a point are
related in electrostatics' by '

‘E = Pra(X)
dx ¢

' This is colled Gass's law in point form and comes from Gouss's low in eleckrostatics. Gouss's law is discussed in
Section 7.5

Depletion .
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where £ = ¢, is the permittivity of the medium and &, and ¢, are the absolute per-
inittivity and relative permittivity of the semiconductor material. We can thus integrate
pralv) across the diode and thus determine the electric field £(x), that s,

E(x) = -I"[ Pet (X) dx [6.2]
. wl_

The variation of the electric ficld across the pn junction is shown in Figure 6.1¢, The
negative field means that itis in the —.¢ direction. Note that £(x) reaches a maximum
value T, al the metallurgical junction M., .

The potential V(x) at any point x can be found by integrating the electric field since
by definition £ = —dV /dx. Taking the potential on the p-side far away from M as zero
(we have no applied voliage), which is an arbitrary reference level, then V(x) increases
in the depletion region toward the n-side, as indicated in Figure 6.1f, lis functional
form can be determined by integrating Equation 6.2, which is, of course, a parabola.
Notice that on the n-side the potential reaches V,,, which is called the built-in
potential,

The fact that we are considering an abrupt pn junction means thal pu(x) can sim-
ply be described by step functions, as displayed in Figure 6.1d. Using the step form of
Pralr) in Figure 6.1d in the integration of Equation 6.2 gives the clectric field at M as

' eNgW,  eN,W,

£ £

[6.3]

e

where ¢ = £,6,. We can integrate the expression for &(x) in Figure 6. Ic to evaluate
the potential V(x) and thus {ind V,, by putting in x = W,,. The graphical representation

of this integration is the step from Figure 6. Le to f. The result is o
| N, NgW]
Viwam: u:‘# [6.4]
2 ZEiNn + Nd':.

where W, = W, + W, is the total width of the depletion region under a zero applied
voltage. If we know W, then W, or W, follows readily from Equation 6.1. Equation 6.4
is a relationship between the built-in voltage V, and the depletion region width W, If
we know V,, we can calculaic W,

The simplest way lo relate V, to the doping parameters is to make use of the fact
that in the system consisting of p- and n-type semiconductors joined together, in equi-
librium, Boltzmann statistics” demands that the concentrations ny and n;, of carriers at
potential energies £, and E; are related by

ny [ (Ez—flll
— =exp| -
n kT

where £ = gV, where ¢ is the charge of the carrier. Considering electrons (¢ = —e),
we see from Figure 6.1g that £ = ¢ on the p-side far away from M where n = n ,,, and

¥ W use Boltzmann sitistics, thot is, n[E] o« exp|—E/AT), because the conceniration of eleclrans in the conduction
band, whether on the naide or pside, is never 5o large thol the Pouli exclusion principle becores imporiant, As
long as the corries cancentration in the conducion band is much smaller than N;, we con use Bolizmann stalistics.
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-

E = —¢V, on the n-side away from M where n = n,,. Thus
™ eV,
—=exp| —— [6.50]

This shows that V, depends on n,,, and np, and hence on Ny and N,. The corre-
sponding equation for hole concentrations is clearly

i (ﬂj [6.5b]
Pw _ ool -
P T

Thus, reanranging Equations 6.5a and b we obtain

kT L] kT L
¥,=— ln(r-i---) and Ve —]n( ‘LL)
¢ M ¢ P:m

We can now write p,, and p,, in terms of the dopant concentrations inasmuch as
P = N, and
.

onoo
P = Ny - Nr:
so V, becomes
kT NNy
Yy = —In| = l6.6]
e n

Clearly V, has been conveniently related to the dopant and material properties via
Nq, Ny, and n?. The built-in voltage (V,) is the voltage across a pn junction, going
from p- o n-ype semiconductor, in an open circuit. 1t is nor the voltage across the
diode, which is made up of V, as well as the contact potentials at the metal-to-
semiconductor junctions at the electrodes. If we add V,, and the conlact potentials at the
electroded ends, we will find zero.

Once we know the huilt-in potential from Equation 6.6, we can then calculate the
width of the depletion region from Equation 6.4, namely

[]“Nﬁ i er”vn} o
! '-’NWNH

[671

Notice that the depletion width W,, oc V2. This results in the capacitance of the
depletion region being voltage dependent, as we will see in Section 6.3.

Boltzmonn
statistics for
electrany

Bl

Depletion
region width

THE BUILT-IN POTENTIALS FOR Ge, 5i, AND GaAs pn JUNCTIONS A pn junction diode has a
concentration of 10'® acceptor atoms cm  on the p-side and a concentration of 10" donor
atoms em  on the n-side. What will be the buili-in potential for the semiconductor materials
Ge, Si, and GaAs?

SOLUTION

The built-in potential is given by Equation 6.6, which requires the knowledge of the intrin-
sic concentration for each semiconductor. From Chapter S we can tabulate the following
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at 300 K:
Semjeonductor iy (¢¥) ) AUl
ufelaais 07, . Mox0f s ey
b S RS T T ¥ L P oy
Gahs Do e S )
Using /

V= (i‘;’i],,(ﬂzf,)

for Siwith N, = 10" cm ' and N, = 10 em ™ kT e = 0.0259 Vat 0K, and n; = 1.0 %
10" ¢m~, we obtain :
(10"7)(10'%)

— [ =0.TI5V
{(L0x iﬂm}l]

¥, = (0.0259 V) In[

The results for all three semiconductors are summanzed in the last column of the table in
this example.

THE p*n JUNCTION  Consider a p* junction, which has a heavily doped p-side relative to the
n-side, that is, N, 3 Ny. Since the amount of charge @ on both sides of the metallurgical junc-
“tion must be the same (so that the junction is overall neutral)

0 =eN,W, =eNW,

itis clear that the depletion region essentially extends into the n-side. According to Eguation 6.7,
when Ny « N, the width is
s [?:E ﬁ ] 12

t‘N.i

What is the depletion width for a pn junction Si diode that has been doped with 10" acceptor
atoms cm * on the p-side and 10'® donor atoms cm~ on the n-side?

SOLUTION
To apply the above equation for W, we need the built-in potential, which is
KT\ [ NN, (10)(10")
= — | =5+ = (0.025 = 0835V
% ( - )In( ; ) (0.0259 V) 'n[{l.ﬂ T
Then with N, = 10 em ?, thatis, 10% m™, V, = 0.835V, and¢, = 11.9 in the equation
for W,

v Feu,]’” [ (11.9)(8.85 x m~'=)(n.335;]‘"
s (16 % 10-17) (102)
=3Nx10"'m  or 0.3 um

Nearly all of this region (99 percent of it) is on the n-side.
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BUNLT-IN VOLTAGE There is a rigorous derivation of the built-in voltage across a pn junction. m
[nasmuch as in equilibrium there is no net current through the pn junction, drift of holes dueto

he built-in field £(x) must be just balanced by their diffusion due to the concentration gradient

dp/dx. We can thus sef the total electron and hole current densities (drift + diffusion) through

the depletion region to zero. Considering holes alone, from Equation 5.38,

d
i _,
dx

The electric field is defined by £ = —d V /dx, so substituling we find,

Juaie (%) = ep(x)yuy Elx) — €Dy

—eppydV —eDydp=10
We can now use the Einstein relation Dy, /ity = kT fe 1o get
~epdV —kTdp =0

We can integrate this equation. According to Figure 6.1, in the p-side, p = pp, V =0, andin
the n-side, p = pp, ¥ = Vi, thus,

BT (T
[dn—f LA
0 ¢ P 4

_ T
thal is, Vot —In(pee) = In(pp)) =0
[ 4
, ' kT
giving Vo=— ln(Eﬁ)
¢ Paa

which is the same as Equation 6.5b and hence leads to Equation 6.6.

6.1.2 ForwArD BiAs: DIFFUSION CURRENT

Consider what happens when a battery is connected across a pn junction so that the
positive terminal of the battery is attached to the p-side and the negative terminal to the
n-side. Suppose that the applied voltage is V. Itis apparent that the negative polarity of
the supply will reduce the potential barricr V, by V, as shown in Figure 6.2a. The rea-
son for this is that the bulk regions outside the depletion width have high conductivities
due to plenty of majority carriers in the bulk, in comparison with the depletion region
in which there are mainly“immobile ions. Thus, the applied voltage drops mostly
across the depletion width W. Consequently, V directly opposes V, and the potential
barrier against diffusion is reduced to (V, - V), as depicted in Figure 6.2b. This has
drastic consequences because the probability that a hole will surmount this potential
barrier and diffuse to the right now becomes proportional to exp[—e(V, — V)/kT]. In
other words, the applied voltage effectively reduces the built-in potential and hence the
built-in field, which acts against diffusion. Consequently many holes can now diffuse
across the depletion region and enter the n-side. This results in the injection of excess
minority carriers, holes, into the n-region. Similarly, excess electrons can now
difuse toward the p-side and enter this region and thereby become injected minorily

caney
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Figure 6.2 Forwordbiosed pn junclion ond the injection of minarity carriers.
{o] Carrier concentration profiles across the device under forward bias. '
[b] The hole potential energy with and without an applied bias. W is the widih of the SCL with forward bias.
The hole concentration
pul0) = palx’ = 0)
just outside the depletion region at x* = 0 (x" is measured from W,) is due to the ex-
cess of holes diffusing as a result of the reduction io the built-in potential barrier, This
concentration p,(0) is determined by the probability of surmounting the new polential
energy barrier e(V, — V), _
gV~ V)
Pul0) = i exp {-—"—- o ) [6.8)
This follows directly from the Boltzmann equation, by virtwe of the hole potential
energy rising by e(V, — V) fromx = — W, tox = W,, asindicdled in Figure 6.2b, and
al the same time the hole concentration falling from py, (0 p,(0). By dividing Equa-
lion 6.8 by Equation 6.5b, we obtain the effect of the applied voltage directly, which
shows how the voltage V determines the amount of excess holes diffusing and artiving
at the n-region. Equation 6.8 divided by Equation 6.5b 1s ;
Law of the eV
Junction Pa(0) = puo €Xp (E) _ ey

which is called the law of the junction. Equation 6.9 i§ an important etyuation that we
will use again in dealing with pn junction devices. It describes the effect of the applied

voltage V on the injected minority carrier concentration just ouSide the depletion

region p, (0). Obviously, with no applied voltage, V = 0 and p(0) = p,,, which is

exactly what we expect.
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Injected holes diffuse in the n-region and eventually recombine with clectrons in
{his region as there are many electrons in the p-side. Those electrons lost by recombi-
nation are readily replenished by the negative terminal of the battery connected to this
side. The current due to holes diffusing in the r-region can be sustained because more
holes can be supplied by the p-region, which itsell can be replenished by the positive
terminal of the battery,

Flectrons are similarly injected from the n-side t the,p-side. The electron concen-
tration n,(0) just outside the depletion region at x = - W, is given by the equivalent
of Equation 6.9 for electrons, thatis,

eV {
Q) =ny exp(ﬁ) . _ [6.10] j::::i::;:jw
Tn the p-region, the injected electrons diffuse toward the positive terminal looking
v be collected. As they diffuse they recombine with some of the many holes in this re-
gion. Those holes lost by recombination can be readily repleniished by the positive ler-
minal of the battery connected to this side. The current due 1o the diffusion of electruns
in the p-side can be maintained by the supply of electrons from the #-side, which itsclf
can be replenished by the negative terminal of the battery. It is apparent that an clectric
current can be maintained through a pn junction under forward bias, and that the cur-
rent flow, surprisingly, seems to be due to the diffusion of-minority carriers. There is,
however, some drift of majority carriers as well.

IF the lengths of the p- and n-regions are longer than the minority carrier diffusion
lengths, then we will be justified to expect the hole concentration p, (x') on the n-side

to fall exponcntially toward the thermal equilibrium value py,, that is, Excess

2 minarity

Apa(x') = Ap,(0) cxp(——-) 611 carrer

. Ly profile

where Excess

Apa(x') = pla’) = P minarity
carrier

is the excess camier distribution and Ly s the hole diffusion length, defined by o conrration
Ly = Dyt in which 7, is the mean hole recombination lifetime (minority carrier
fifetime) in the n-region. We base Equition 6.11 on our experience with the minority
carrier injection in Chapler 53
The hole diffusion current density Jp o is therefore
dpy(x') dAp, (")

e ey — = —rDy
4 dx' da’

that is,

] (dlh)ﬂ o ( _[')
Jote =1 — AU ex o ——
e \ -L.fr r g \ j']l

 This is simphy the schstion of the coninu ty equotion in the obsence of on electic field. which 1s discussed in
Chaper 5. Equation 6.11 s identical 1o Equation 5 48,
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Although this equation shows that the hole diffusion current depends on location, the
total current at any location is the sum of hole and electron contributions, which is inde-
pendent of x, as indicated in Figure 6.3. The decrease in the minority carrier diffusion
current with x” is made up by the increase in the current due to the drift of the majority car-
riers, as schematically shown in Figure 6.3. The field in the neutral region is not totally
zero but a small value, just sufficient to drift the huge number of majority carriers there.

Atx' = 0, just outside the depletion region, the hole diffusion current is

el)
b hole = (!—*) Ap,(0)

o

We can now usc the law of the junction to substitute for Ap,(0) in terms of the
applied voltage V. Writing

eV
Apn(0) = pol0) = pra = P..[E&p(ﬁ) - I]

and substituting in Jp ek, We get

e (5 eo()

Thermal equilibrium hole concentration p,, is related to the donor concentration by
o
Pro = PH = N,

Thus,

e (B ()

=\ TN, LP\iT
There is a similar expression for the electron diffusion current density Jp ek in the
p-region. We will assume (quite reasonably) that the electron and hole currents do not
change across the depletion region because, in general, the width of this region is narrow
(reality is not quite like the schematic sketches in Figures 6.2 and 6.3). The electron
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cumrent at x = —W, is the same as thatalx = W,,. The total current density is then sim-
ply given by Jp pie + Ji tec, that is,

. (eﬂ,. 4 en,) z[ (eV) 1]
— Rl = | =
Ly L) P\

eV
J=,|exp T -1 a2

This is the familiar diode equation with

[( ED* ) (ED' )] 2
Jo= | =] +|—] |
LN/ T \LN,

It is frequently called the Shockley equation. The constant J, depends not only on
the doping, Ny and N, but also on the material vian;, Dy, D,, Ly, and L. Itis known
as the reverse saturation current density, as explained below. Writing

eV,
= (N.N,) exp(— E)

where V; = E, /e is the bandgap cnergy expressed in volts, we can write Equa-

tion 6.12 as
- (55 + Lo [on(i) -
LN LN 2 P\kr )~
thalis.v
el ol
= Jje —— J{ L
VAT H™ e
or
e(V - VE}} eV
=J {i — |
] |cxp[ 7 or RT» [6.13]
where
g (rD,-, eD, ){N N
YT\ LNg | LN,
is a new constanl.

The significance of Equation 6. 13 is that it reflects the dependence of /-V characteris-
tics on the handgap (via V,), as displayed in Figure 6.4 for the three important semicon-
ductors, Ge, i, and GaAs. Notice that the voltage across the pn junction for an appreciable
current of say ~0.1 mA is about 0.2 V for Ge, 0.6 V for Si, and 0.9 V for GaAs.

The diode equation, Equation 6.12, was derived by assuming that the lengths of the
pand n regions outside the depletion region are long in comparison with the diffusion
lengths Ly and L. Suppose that £, is the length of the p-side outside the depletion region

3.
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Figure 6.4 Schemafic skeich of the I-V Figure 6.5 Minoriy cartier injection and
choracleristics of Ge, Si, ond GaAs pn junctions, diffusion in a short diode.

and £, is that of the n-side outside the depletion region, If €, and £, are shorter than the
diffusion lengths L, and Ly, respectively, then we have what is called a short diode and
consequently the minority carrier distribution profiles fall almost lincarly with distance
{rom the depletion region, as depicled in Figure 6.5. This can be readily proved by solving
the continuity equation, but an intuitive explanation makes it clear. At x” = 0, the minority
carrier concentration is determined by the law of the junction, whereas at the battery termi-
nal there can be no excess carmicrs as the battery will simply collect these. Since the length
of the neutral region is shorter than the diffusion length, there are practically no holes lost
by recombination, and therefore the hole flow is expected to be uniform across £,,. This can
be so only if the driving force for diffusion, the concentration gradient, is linear,
The excess minority carrier pradient is

dAﬂn{Il) . _[Fn(m N pm]
dr' 1

The current density Jp i, due to the injection and diffusion of holes in the n-region
as a result of forward bias is
dér"n{-‘[.) - [PI(U] % ."nu]

D,
R T

"D.hlk = -—ED;,
We can now use the law of the junction

e (ev)
Pyl0) = pyo exp I

for p,(0) in the above equation and also oblain a similar equation for electrons diffus-
ing in the p-region and then sum the two for the total current J,

- ~(i7 i3 l=)-
Short diode J= (E,.Nd < pra)n' exp i 1 [6.14]
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It is clear that this expression is identical to that of a long diode, that is, Equa-
tion 6,12, if in the latter we replace the diffusion lengths L, and L, by the lengths €, and
£, of the n- and p-regions outside the SCL.

6.1.3  ForwaRD B1AS: RECOMBINATION AND TOTAL CURRENT

So far we have assumed that, under a forward bias, the minority carriers diffusing and
recombining in the ncutral regions are supplied by the extemnal current. However,
some of the minority carriers will recombine in the depletion region. The extemal cur-
rent must thercfore also supply the carniers lost in the recombination process in the
SCL. Consider for simplicity a symmetrical pa junction as in Figure 6.6 under forward
bias. At the metallurgical junction at the center C, the hole and electron concentrations
are poy and ny and are equal. We can find the SCL recombination current by consider-
ing electrons recombining in the p-side in Wy, and holes recombining in the r-side in
W, as shown by the shaded arcas ABC and BCD, respectively, in Figure 6.6, Suppose
that the mean hole recombination time in W, is t; and mean electron recom-
bination time in W, is 7. The rate at which the electrons in ABC are recombining is
the area ABC (nearly all injected electrons) divided by .. The electrons are replen-
ished by the diode current. Similarly, the rate at which holes in BCD are recombining
is the area BCD divided by 7. Thus, the recombination current density is

eABC g eBCD

If [*

Jrocom =

We can evaluate the arcas ABC and BCD by taking them as triangles, ABC ~

%anﬁ, ele., so that

I 1
_esWony o3 Wapy
Jﬂxnm e

T Ty
Under steady-state and equilibrium conditions, assuming a nondegenerate semi-
conductor, we can use Boltzmann statistics to relate these concentrations to the potential

Log (carrier concentration) Figure 6.6 Forwordbicsed pn
pide > T — junction and the injection of carriers
and their recombination in SCL.
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energy. At A, the potential is zero and at M it is %s['/,, - V), 50

P { e(V, - w]
—_— c;‘p gl
P[Jf.l zir

Since V, depends on dopant concentrations and #; as in Equation 6.6 and further
P = Ny, we can simplify this equation to

nenlzr)
Py =n,exp 2T

This means that the recombination current for V > kT /e is given by

] s (W’ + w,,) (ev) (6.51
moom = | — T — |eXp| ——
2 \% "o )®\ur

From a better quantitative analysis, the expression for the recombination current
can be shown to be*

Jrcom = dro [EXp(eV /2T) — 1] [6.16]

where J,, is the preexponential constant in Equation 6.15.

Equation 6.15 is the current that supplies the carriers that recombine in the deple-
tion region. The total current into the diode will supply carriers for minority carrier dif-
fusion in the neutral regions and recombination in the space charge layer, so it will be
the sum of Equations 6.12 and 6.15.

J !ex(ev)+! u(”) (v ”)
= o m AL o—
@0\ iT P\ur :

This expression is often lumped into a single exponential as

eV kT :
J=d —- V> — 7
B“p(mr) ( > e) ol

where J, is a new constant and n is an ideality factor, which is | when the current is
due to minority carrier diffusion in the neutral regions and 2 when it is due to recom-
bination in the space charge Jayer. Figure 6.7 shows typical expected [~V characteris-
tics of pn junction Ge, Si, and GaAs diodes. At the highest currends, invariably, the
bulk resistances of the newtral regions limit the current (why?). For Ge dipdes, typi-
cally n = | and the overall I~V characteristics are due to minonity carrier diffusion. In
the case of GaAs, n~ 2 and the current is limited by recombination in the space
charge layer. For Si, typically, n changes from 2 to 1 as the cument increases, indicat-
ing that both processes play an important role. In the case of heavily doped Si diodes,
heavy doping leads to short minority carrier recombination times and the current is
controlled by recombination in the space charge layer so that the 5 = 2 region extends
all the way to the onset of bulk resistance limitation.

| *This is generally proved in advonced tes,
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6.4 RevERSE BIAS

When a pn junction is reverse-biased, as shown in Figure 6.8a, the applied voltage, as
before, drops mainly across the depletion region, that is, the space charge layer (SCL),
which becomes wider. The negative terminal will attract the holes in the p-side to
move away from the SCL, which results in more exposed negative acceptor ions and
thus a wider SCL. Similarly, the positive terminal will attract electrons away from the
SCL, which exposes more positively charged donors. The depletion width on the n-side
also widens. The movement of electrons in the n-region toward the positive battery

/
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terminal cannot be sustained because there is no electron supply to this n-side. The
p-side cannot supply electrons to the n-side because it has almost none. However. there
is & small reverse current due 1o two causes. :

The applied voltage increases the built-in potential barrier, as depicted in Fig-
ure 6.8b. The electric field in the SCL is larger than the built-in internal field 7. The
small number of holes on the n-side near the SCL. become extracted and swept by (he
field across the SCLover to the p-side. This small current can be maintained by the dif-
fusion of holes from the n-side bulk to the SCL boundary.

Assume that the reverse bias V, > kT /e =25 mV. The hole concentration
Pall) Just outside the SCL is nearly zero by the ]’w of the junction, Equation 6.9,
whereas the hole concentration in the bulk (or near the negative terminal) is the
cquilibrium concentration p,,, which is small. There is therefore a small concen-
tration gradient and hence a small hole diffusion current toward the SCL as shown
in Figure 6.8, Similarly, there is a small electron diffusion current from bulk p-side
to the SCL. Within the SCL, these carriers arc drifted by the ficld. This minority
carrier diffusion current is cssentially the Shockley model. The reverse current is
given by Equation 6.12 with a negative voltage which leads to a diode current
density of —J,, called the reverse saturation current density. The value of J,,
depends only on the material via n;, juy, ., dopant concentrations, but not on the
voltage (V, > kT fe). Furthermore, as J,, depends on n2, it is strongly temperature
dependent. In some books it i stated that the causes of reverse current are the ther-
mal generation of minority carriers in the neutral region within a diffusion length
to the SCL, the dilfusion of these carriers to the SCL, and their subsequent drift
through the SCL. This description, in essence, is identical to the Shockley model
we Just described,

The thermal generation of electron—hole pairs (EHPs) in the SCL, as shown in Fig-
ure 6.4, can ulso contribute to the observed reverse current since the internal field in
this layer will separale the electron und hole and drift them toward the neutral regions,
This drift will result in an external current in addition (o the reverse current due to the
diffusion of minority carriers. The theoretical evaluation of SCL generation current
involves an in-depth knowledge of the charge carrier generation processes via recom-
bination centers, which is discussed in advanced texts. Suppose that t, is the mean
time to generate an electron-hole pair by virtue of the thermal vibrations of the lat-
lice; 7, is also called the mean thermal generation time. Given r,, the rate of thermal
generation per unit volume must be a; /1, because it takes on average 1, seconds o
create n; number of EHPs per unit volume. Furthermore, since WA, where A is the
cross-sectional area, is the volume of the depletion region, the rate of EHP, or charge
carrier, generation is (AWn,)/1,. Both holes and electrons drift in the SCL each con-
tributing equally to the current. The observed current density must be e(Wn,)/,.
Therefore the reverse current density component due to thermal generation of EHPs
within the SCL should be given by

eWn;
rﬁ

Jgﬂ: = l6.18]

The reverse bias widens the width W of the depletion layer and hence increases
Jgen The lotal reverse current density Ji is the sum of the diffusion and generation
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(o] Forward and reverse [-V characterssiics of o pn junction [the posifive and negative current oxes have different scales

ond hence the disconfinuity of the origin).

b} Reverse diode current in @ Ge pn junction as o function of temperature in a Infl,.) versus 1/T plot. Above 238 K,
hev is contralled by n?, and below 238 K, it is conirolled by n, The verfical axis is a logarithmic scale with actual

current values.
I SOURCE: (b) From D, Scarsen ord 5. O, Kosap, Cnd. . Physics, 70, 1070, 1992,

components,

eDy el Y, eWn
Ju=l—+ R f— 16.19]
LhNJ L,N,, ‘.['.=

which is shown schematically in Figure 6.9a. The thermal generation component Jye
in Equation 6.18 increases with reverse bias V, because the SCL width W increases
with V.. :

The terms in the reverse current in Equation 6,19 are predominantly controlled
by n? and m,. Their relative importance depends not only on the semiconductor prop-
erties but also on the temperature since n, o exp{—E, /2kT). Figure 6.9b shows the re-
verse current [, in dark in a Ge pn junction (a photodiode) plotted as In(l,) versus
1/T 1o highlight the two different processes in Equation 6.19. The measurements in
Figure 6.9b show that above 238 K, I is controlled by n? because the slope of In(/,)
versus | /T yields an E, of approximately (.63 eV, close to the expected E, of about
0.66 ¢V in Ge. Below 238 K, I, 1s controlled by m, because the slope of In(/,;,) versus
1/T s equivalent to E,/2 of approximately 0.33 eV. In this range, the reverse curent
Is due to EHP generation in the SCL via defects and impurities (recombination
centers).

citrrent = . .
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m FORWARD- AND REVERSE-BIASED Si DIODE  An abrupt Si »*n junction diode has a cross.
sectional area of | mm?, an acceptor concentration of 5 x 10" boron atoms cm ™ on the
pside, and a donor concentration of 10" arsenic atoms cm™ on the n-side. The lifetime of
holes in the n-region is 417 ns, whereas that of electrons in the p-region is 5 ns due (0 a
greater concentration of impurities (recombination centers) on that side. Mean thermal gen-
eration lifetime (r,) is about 1 ps. The lengths of the p- and n-regions are 5 and 100 microns,
respectively,

a. Caleulate the minority diffusion lengths and delermine what type of a diode this is.

b. What is the buil-in potential across the junction”

¢ Whatis the current when there is a forward bias of 0.6 V across the diode at 27 °C? Assume
that the current is by minority carrier diffusion.

d. Estimate the forward current at 100 °C when the voltage across the diode remains at 06 V,
Assume that the lemperature dependence of n; dominates over those of D, L, and p.

e. Whatis the reverse current when the diode is reverse-biased by a voltage v, = 5 V7

SOLUTION

The general expression for the diffusion length is L = +/D1 where Dis the diffusion coefficient
and 1 is the carrier lifetime. D is related to the carrier mobility it via the Einstein relationship
Dy = kT fe. We therefore nced to know g to calculate D and hence L. Flectrons diffuse in the
p-region and holes in the n-region, so we need g, in the presence of N, acceptors and g, in the
presence of Ny donors. From the drift mobility, s versus dopant concentration in Figure 5.19,

we have the following:
With Ne=5x10"em™ g~ 120 cm?v's!
With Ny=10"em™ iy 2 440 cm® V57!
Thus -

KTy,
D= 24 % (00259 VY120 em? ¥ 15 ') = 310 cm’s !
3
-

kT '
Dy =~ & (00259 V)40 em? V-"s”') = 11.39 em®s”!
£

Diffusion lengths are
L= yDr = /i3 10ants )5 x 10-79)]
&= 12x Wem o 12 um <5 pm
Ly =V Dym = YI(11.39 em? s 1)(417 x 1093
=218x10"cm o 28 pm < 100 gm -
We thereforc have a long diode. The built-in potential is
V= ( i}) m(”—:?—) = (0.0259 V) |n[———(5{’;lc:°:|;l:?:}] =087V

To calculate the forward current when V = 0.6 V, we necd to evaluate both the diffusion
and recombination components 1o the current, It is likely that the diffusion component w 'l
exceed the recombination component at this forward bias (this can be easily verified). Assuming
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that the forward current is due to minority carrier diffusion in neutral regions,

v kT
F=1, [up(%) i I] s, cxp(:F) for V3 = (= 00259 V)

D, D\ AenD,
e Al I'='4 ! ( ) ( ’ )] = |
o lm "'[ AT R

as N, 3 N,. Inother words, the current is mainly due to the diffusion of holcs in the n-region.
Thus,

where

00 em?)(1.6 x 107" €)(1.0 % 10" em (1139 em? s7")
" (20.8 % 10-* em)(10 cm )

=836x107"A o 0.084pA
Then the diode current is

9 eV _ ik [ 0.6V) ]
I= I,,clp(”) =(8.36 % 107" A)exp )

=09 x10°A o 096mA

We note that when a forward bias of 0.6 V is applied, the built-in polential is reduced from
0.877 V 10 0.256 V, which encourages minorily carrier injection, that is, diffusion of holes from
p- 10 neside and clectrons from n- to p-side. To find the current at 100 °C, first we assume that
I,o ccnl. Then al T = 273 + 100 = 373 K,m, % 1.0 x 10" cm™ (approximately from ; ver-
sus 1 /T graph in Figure 5.16), so

n (31 K}]’
n; (300 K)
1.0 x 107
1.0 x 10%

AL 100 °C, the forward current with 0.6 V across the diode is

_[D.ﬁ V)(300 K) _ 0104
(0.0259 V)(373 K)

1,373 K) = 1, (300 K}[

2
::(s..%xm'”)( ):a.snxm-"'p. or  0.836nA

¥
fs I,,c:]l(;-f) =(8.36% 107" .o.}up[
When a reverse bias of V, is applicd, the potential differcnce across the depletion region
becomes ¥, + V, and the width W of the depletion region is

e [mm V,J}“’ ) [2(”.9“#.35 x 10 )(0.877 + 5)]”’
LN ) (16 x 10-)(102)

=088 x10*m or 088 pm

" The thermal generation current with V, =5V 1s
eAWn  (16% 107 C)(0.01 cm?)(0.88 % 107 cm)(1.0 x 10 em ")

! = =
b (10-t5)

=141 x10"A o l40A

This thermal peneration current is much greater than the reverse saturation current
1,,(= 0.084 pA). The reverse current is therefore dominated by e, and it s 1.4 nA.
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6.2 pn JUNCTION BAND DIAGRAM
62,1 OpeN Circuir

Figure 6.10a shows the energy band diagrams for a p-type and an n-type semicon-
ductor of the same material (same E, o) when the semiconductors are isolated from each
other. In the p-type material the Fermi level Ep, is &, below the vacuum level and is
close to E,. In the n-type material the Fermi level Eg, is @, below the vacuum Jevel
and is close to E. The separation £, ~ Eg, determines the electron concentration n,,,
in the n-type and Eg, — E, determines the hole concentration Ppos in the p-type semi-
conductor under thermal equilibrium conditions.

An imporlant property of the Fermi encrgy Ej is that in a system in equilibrium,
the Fermi level must be spatially continuous. A difference in Fermi levels AEg is
equivalent to electrical work eV, which is cither done on the system or extracted from
the system. When the two semiconductors are brought together, as in Figure 6.10b, the
Fermi level must be uniform through the two materials and the junction at M, which
marks the position of the metallurgical junction. Far away from M, in the bulk of the
n-type semiconductor, we should still have an a-type semiconductor and E, — Ej,
should be the same as before. Similarly, £, — E, far away from M inside the piype
material should also be the same as before. These features are sketched in Figure
6.10bkeeping Ep, and Ef, the same through the whole system and, of course, kecping
the bandgap £, — E, the same. Clearly, to draw the energy band diagram, we have to
bend the bands &, and £, around the junction at M because £ on the n-side is close to
E, whereas on the p-side it is far away from Efp. How do bands bend and what does
it mean?

'“"“'"Er,. gy

B B R A ¢

Acceptons in SCL.
VB VB M

Figure 6.10

Bulk ™ scLiw) " Bulk
" B

[a] Twa iscloted p and rype semiconductors (same: material).

(bl A g junciion band diagram when the two semicenduciors are in conact. The Fermi level mus! be uniform in
equilibrium. The metollurgical junclion is at M. The region around M contoins the space charge layer [SCU. On the
nside of M, SCL has the exposed positively charged donors, whereas on the pside it hos the exposed negatively
charged acceptors,
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As soon as the two semiconductors arc brought |0'gcther to form the junction,
electrons diffuse from the n-side to the p-side and as they do so they deplete the n-side
near the junction. Thus E, must move away from Ej, toward M, which is exactly what
is sketched in Figure 6.10b. Holes diffuse from the p-side to the n-side and the loss of
holes in the p-type material near the junction means that £, moves away from Er,,
toward M, which is also in the figure. }

Furthermore, as electrons and holes diffuse toward cach other, most of them
recombine and disappear around M, which lcads to the formation of a depletion region
or the space charge layer, as we saw in Figure 6.1. The electrostatic potential energy
(PE) of the clectron decreases from 0 inside the p-region to ~eV,, inside the n-region,
as shown in Figure 6. 1g, The total energy of the electron must therefore decrease going
from the p- to the n-region by an amount V.. In other words, the electron in the n-side
al E, must overcome a PE barrier to go over to I in.the p-side. This PE barrier is eV,
where V, is the built-in potential that we evaluated in Section 6.1. Band bending
around M therefore accounts not only for the variation of electron and hole concentra-
tions in this region but also for the effect of the built-in potential (and hence the built-in
field as the two are related). i

In Figure 6.10b we have also schematically sketched in the positive donor (at Eyg)
and the negative acceptor (at E,) charges in the SCL around M to emphasize that there
are exposed charges near M. These charges are, of course, immobile and, generally,
they are not shown in band diagrams. It should be noted that in the SCL region, marked
as W,, the Fermi level is close to neither E, nor E,, compared with the hulk semicon-
ductor regions. This means that both n and p in this zone are much less than their bulk
values n,, and Pm-l The metallurgical junction zone has been depleted of carriers
compared with the bulk. Any applied voltage must therefore drop actoss the SCL.

622 FORWARD AND REVERSE BiAS

The energy band diagram of the pn junction under open circuit conditions is shown
in Figure 6.11a, There is no net current, so the diffusion current of electrons from the
n- to p-side is balanced by the electron drift current from the p- to n-side driven by the
built-in field %, Similar arguments apply to holes. The probability that an electron dif-
fuses from E, in the n-side to E, in the p-side determines the diffusion current density
Jsi. The probability of overcoming the PE barrier is proportional (0 exp(—eVy/kT).
Therefore, under zero bias,

Jua0) = B ( W") [6.201
) = Bexp T _ ;
Jot(0) = J5ig(0) + Jun(0) =0 l6.21]

where B is a proportionality constant and Juix(0) is the current due to the drifl of
electrons by .. Clearly Jgin (0) = —Jgar(0); that is, drift s in the opposite direction (o
diffusion. '

When the pn junction is forward-biased, the majority of the applied voltage drops
across the depletion region, so the applied voltage is in opposition to the built-in
potential V,. Figure 6.11b shows the effect of forward bias, which is o reduce the PE
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ol - b

Figure 6.11 Energy band diogroms for a pn junction: [a) open circuil, (b) forward bias, [c) reverse bios
conditions, (d) thermal generation of electron-hole pairs in the deplefion region resulls in o smoll reverse

currenl.

barrier from eV, to e(V, — V). The electrons at £, in the n-side can now readily
overcome the PE barrier and diffuse to the p-side. The diffusing electrons from the
n-side can be replenished easily by the negative terminal of the battery connected o
this side. Similarly holes can now diffuse from the p- to n-side. The positive terminal
of the battery can replenish those holes diffusing away from the p-side. There is there-

- fore a current flow through the junction and around the circuit.

The probability that an electron at E, in the n-side overcomes the new PE barrier
and diffuses to £, in the p-side is now proportional to exp[—e(V, — V)/kT. The latter
increases enormously even for small forward voltages. The new diffusion current due
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to electrons diffusing from the 2- to p-side is

e(V, - V]]
kT

There is still a drift current due to electrons being drified by the new field Z, - £
(£is the applied ficld) in the SCL. This drift current now has the value Jyi(V). The
net current is the diode current under forward bias

J = JggV) + Jgin(V)

Jyin(V) is difflicult to evaluate. As a first approximation we can assume that
although £, has decreased 1o £, — , there is, however, an increase in the electron con-
centration in the SCL due to diffusion so that we can approximately take Jin(V ) to re-
main the same as Jyiq(0). Thus

Jgr(V) =B c:p[—

V.-V Vs
J 2 Lig(V) + Jgap(0) = Bexp[—i[ e ]] - Bl:xp(-%?;-)

eV, eV
J = Bexp T exp T -1

We should also add to this the hole contribution, which has a similar form with a
different constant B. The diode current-voltage relationship then becomes the familiar

diode equation, J
1= 4fen(i) -1
=% "\ir

where J, is a temperature-dependent constant.?

When a reverse bias, V = =V, is applied to the pn junction, the voltage again
drops across the SCL. In this case, however, V, adds to the built-in potential V,,, so the
PE barrier becomes e(V,, 4+ V;), as shown in Figure 6.11c. The field in the SCL at M
increases 10 £, + £, where  is the applied field.

The diffusion current due o electrons diffusing from E, in the n-side to £, in the
p-side is now almost negligible because it is proportional to exp[—e(V, + V,)/kT],
which rapidly becomes very small with V,. There is, however, a small reverse current
arising from the drift component. When an electron-hole pair (EHP) is thermally gen-
erated in the SCL, as shown in Figure 6.11d, the field here separales the pair. The elec-
tron falls down the PE hill, down to E,, in the n:side to be collected by the battery. Sim-
ilaily the hole falls down its own PE hill (energy increases downward for holes) (o
make it to the p-side. The process of falling down a PE hill is the same process as being
driven by a field, in this case by %, + Z. Under reverse bias conditions, there is there-
fore a small reverse current that depends on the rate of thermal generation of EHPs in
the SCL. An electron in the p-side that is thermally generated within a diffusion length

Factoring leads to

|| The derivation is similor to that for the Schaltky diode. bu there were more assumplions here.

[
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I wthe SCL can diffuse to the SCL and consequently can become drifted by the field,
that is, roll down the PE hill in Figure 6.11d. Such minority carrier thermal generation
in neutral regions can also give rise to a small reverse current,

THE BUILTIN VOLTAGE V, FROM THE ENERGY BAND DIAGRAM  The energy band treatment
allows asimple way to calculate Vo, When the junction is formed in Figure 6,10 from ato b, £,
and Ey, must shift and line up. Using the energy band diagrams in this figure and semiconduc-
tor cquations for 2 and p, derive an expression for the built-in voltage V, in terms of the mae-
rial and doping propertics Ny, N, and ;.

SOLUTION

The shift in £z, and Ey, t line up is clearly &, — &, the work function difference. Thus the
PE barrier ¢V, is &, — &, From Figure 6.10, we have

eV, = b, b, = (E, - Eg,) — (F, ~ En)

Buton the p- and n-sides, the eleciron concentrations in thermal equilibrium arc given by

(E.—-Eg,
n, =N rlp[w—-- —Eij-l]

Mp[_q_{ “m."r]
k7

From these equations, we can now substitute for (£, — Eg,) and (E; - Eg,) in Lhe expres-
sion for eV, The N, cancel and we obtain

eV, _m( )
M as

Since m,,, = n*fN, and n,, = N, we readily obtain the built-in potential ¥,

Built-in = (tr)l [iﬁd_:]
vm'lage ~ [ n’

63 DEPLETION LAYER CAPACITANCE
OF THE pn JUNCTION

It is apparent that the depletion region of a pn junction has positive and negative
charges separated over a distance W similap toa parallcl plate capacitor. The stored
charge in the depletion regmn however, unllﬁc the case of-a parallel plate capacitor,
does not depend lipearly on’ [Iu: vullage It dseful to define an incremental capaci-
tance that relates the mcrcmnlal charge stoved to an incremental voltage change
across the pn junction.

The width of the depletion region is given by

Depletion 2e(N, 4 NV, - V)™
i ) W=t e [6.22]
region width e eN,N;

where, for forward bias, V is positive, which reduces V,,, and, for reverse bias, V is
negative, so V, is increased. We are interested in obtaining the capacitance of the
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Figure 6,12 The depletion region behaves like o capaciior

= Diode
V. volage

fo] The charge in the depleiion region depends on the applied volioge just os in o capocilor. A reverse bios example

(b) The incramental capacitance of the depletion wg?im increases with forward bios and decreases with reverse bios. lts

velue is typically in the range of picofurads per mm” of device arec.

depletion region under dynamic conditions, that is, when Vis a function of time. When
the applied voltage V changes by dV, to V 4 dV, then W also changes via Equa-
tion 622, and as a resull, the amounl of charge in the depletion region becomes
(0 +d0, as shown in Figure 6.12a for the reverse bias case, that is, V = -V, and
dV = —dV,. The depletion layer capacitance Cy,, is defined by

dgQ
dv

by = 16.23

where the amount of charge (on any one side of the depletion layer) is
' 101 = eNgW,h = eN, W, A

and W = W, + W, We can therefore substitute for Win Equation 6.22in terms ol Qand
then differentiate it to obtain d Q0 /d V. The final result for the dcp]clinn capacilance 1s

e 2 e @ [rf_{h..Mn] 5
CTW T (¥, - V)R LUAN, + N ’

We should nole that Cy is given by the same expression as that for the parallel
plate capacitor, e A/ W, but with W being voltage dependent by virtue of Equation 6.22.
The Cyyy — V behavior is skeiched in Figure 6. 12b. Notice that €y decreases with in-
creasing reverse bias, which is expected since the separation of the charges increases
via W o (V, + ¥,)'"%. The capacitance Cy, is present under both forward and reverse
bias conditions.

The vollage dependence of the depletion capacitance is ulilized in_ varactor

diodes (varicaps), which arc employed as voltage-dependent capacitors in tuning cir-

cuits. A varactor diode is reverse hiased to prevent conduction, and its depletion
capacitance 1s varied by the magnitude of the reverse bias,

Definition of
depletion
layer
capacitance

Depletion
capacitance
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64 DIFFUSION (STORAGE) CAPACITANCE
AND DYNAMIC RESISTANCE

The diffusion or storage capacitance arises under forward bias only. As shown in
Figure 6.2a, when the p'n junction is forward biased, we have stored a positive
charge on the n-side by the continuous injection and diftusion of minority carriers.
Similarly, a negative charge has been stored on the p*-side by clectron injection, but
the magnitude of this negative charge is small for the p*n junction. When the
applicd voltage is increased from Vito V + 4V, as shown in Figure 6.13, then p,(0)
changes from p,,(0) to p; (0). If dQ is the additional minority carrier charge injected
into the n-side, as a result of a small increase d V in V, then the incremental storage
or diffusion capacitance Cyy is defined as Cy = d Q/dV. At voltuge V, the in-
jected positive charge O on the n-side is disappearing by recombination at a rate
@/t where t, is the minority carrier lifetime. The diode current /is therefore Q /1y,

[rom which
eV
Q = l'h!' = Iﬁf,,[tlp("j) - |] Im]
k7
Thus,
d0  wel  ri(mA)
C T m—— I — 6.26
WAV T T 2 -

where we used e/kT = 1/0.025 at room temperature. Generally the value of the dif-
fusion capacitance, typically in the nanofarads range, far exceeds that of the depletion
layer capacitance.

Suppose that the voltage V across the diode is increased by an infinitesimally small
amount dV, as shown in an exaggerated way in Figure 6.14. This gives rise to a small
increase d/ in the diode current. We define the dynamic or incremental resistance r,
of the diode as d V/d1, so

dv kT 25 o
Ffp=——= ==
CTAL T ImA)
Figure 6.13  Consider the injection of holes ino the SCL Neulral n-region
nside during forward bias, - :
Storage or diffusion copacilonce orises because when the = P (0) when V+dV
diode voltage increases from V1o V + dV, more minority _p(0) when V
carriers are injecied and more minorily corrier charge is g

stored in the n-region,
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Ed.f

Voltage Figure 6,14 The dynomic resistance of the
dioda is defined os dV/di, which is the inverse of

the tangent at .

The dynamic resistance is therefore the inverse of the slope of the IV characteris-
lics at a point and hence depends on the current /. It relates the changes in the diode
current and voltage arising from the diode action alone, by which we mean the mod-
ulation oi the rate of minority carrier diffusion by the diode voltage. We could have
equivalently defined a dynamic conductance by

] B
av cndu
From Equations 6.26 and 6.27 we have
rq Cﬁ =T Eﬁ.ﬂ]

The dynamic resistance ry and diffusion capacitarice Cyiq 0f 2 diode determine
its response to small ac signals under forward bias conditions. By small we usually
mean voltages smaller than the thermal voltage kT /e or 25 mV at room temperature.
For small ac signals we can simply represent a forward-biased diode as a resistance r,
in paralle] with a capacitance Cei.

INCREMENTAL RESISTANCE AND CAPACTTANCE  An abrupt Si p*n junction diode of cross-
sectional area (A) | mm? with an acceptor concentration of 5 x 10'* boron atoms cm™ on the

p-side and a donor conoentration of 10'® arsenic atoms cm™ on the -side is forward biased to

carry a current of 5 mA. The lifetime of holes in the a-region is 417 ns, whercas tha ot slectrons

in the p-region is 5 ns. What are the small-signal ac resistance, incremental storage, and deple-

tion capacitances of the diode?

SOLWMON

This is the same diode we considered in Example 6.4 for which the built-in potential was
0877 V and /,, = 0.0836 pA. The current through the diode is 5 mA. Thus

1=1 ('v) v—(g)la(l)—(ﬂﬂtﬁﬁ}l( Sx10° )—'umv
=heiir) * TEU)NL) T ook 10/ T
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The dynamic diode resistance is given by

The depletion capacitance per unil area with N, 3 N is

ee(N,Ng) o eelN, "
Cag=A = A -
2N, + NV, - V) 2V, - V)
ALV = 0643V, with V, = 0871V, Ny = 10%m "6, = 119, and A = 10°° m?, the
above equalion gives

8 oot [{1.5 x 107")(11.9)(8.85 x 10 "}(iu”y]”’
= 2(0.877 - 0.643)
=60x10"F or 600 pF
The incremental diffusion capacitance Cyg due 1o holes injected and stored in the n-region is

_wlmA) (417 x 107°)(5)
s 25

Clearly the diffusion capacitance (83 nF) that arises during forward hias completely over-
whelms the depletion capacitance (600 pF).

We note that there is also a diffusion capacitance due o clections injected and stored in the
pregion. However, electron lifetime in the p-region is very shorl (here 5 ns), so the value of
this capacitance is much smaller than that due to holes in the n-region. In calculating the diffu-
sion capacitance, we nomally consider the minority carriers that have the longest recombina-
tion lifetime, here 7,.. These are the carriers that take a long time to disappear by recombination
when the bias is suddenly switched off.

Conr =83x0*'F o 83oF

65 REVERSE BREAKDOWN: AVALANCHE

AND ZENER BREAKDOWN
The reverse vollage across a pr junction cannot be increased without limit. Eventually
the pn junction breaks down either by the Avalanche or Zener breakdown mechanisms,

which lead to large reverse currents, as shown in Figure 6.15. Inthe ¥ = — Vi, region,
_ the reverse current increases dramatically with the reverse bias. If unlimited, the large

Figure 6.15 Reverse -V, choraclerishics of I
a pn junchion, r
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reverse current will increase the power dissipated, which in turn raises the lemperature
of the device, which leads to a further increase in the reversc current and so on. If the
temperature does not burn out the device, for example, by melting the contacts, then
the breakdown is recoverable. If the current is limited by an external resistance to
value within the power dissipation specifications, then there is no reason why the
device cannot operate under breakdown conditions.

6.5.1 AVALANCHE BREAKDOWN

As the reverse bias increases, the field in the SCL can become so large that an electron
drifting in this region can gain sufficient kinetic energy to impact on a Si atom and ion-
ie it, or break a Si-Si bond. The phenomenon by which a drifting electron gains suf-
ficient energy from the field to ionize a host crystal atom by bombardment is termed
impact fonization. The accelerated electron must gain at least an energy equal to £
as impact ionization breaks a Si-Si bond, which is tantamount to exciting an electron
from the valence band to the conduction band. Thus an additional electron-hole pair is
created by this process.

Consider what happens when a thermally generated electron just inside the SCL in
the p-side is accelerated by the field. The electron accelerates and gains sufficient
energy to collide with a host Si atom and release an EHP by impact ionization, as
depicted in Figure 6.16. It will lose at least E, amount of energy, but it can accelerate
and head for another ionizing collision further along the depletion region until it
reaches the neutral n-region. The EHPs gencrated by impact ionization themselves can
now be accelerated by the field and will themselves give rise to further EHPs by ion-
izing collisions and so on, leading to an avalanche effect. One initial carrier can thus
creale many carriers in the SCL through an avalanche of impact ionizations.

If the reverse current in the SCL in the absence of impact ionization is ,, then due
1o the avalanche of ionizing collisions in the SCL, the réverse current becomes
M1, where M is the multiplication. It is the net number of carriers generated by
the avalanche effect per carrier in the SCL. Impact ionization depends strongly on the
electric field. Small increases in the reverse bias can lead to dramatic increases in the

Figure 6.16 Avalonche breakdown
by impadt ionization.
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multiplication process. Typically

1
M=—— (%)

(%)
Vi

where V, is the reverse bias, Vi, is the breakdown voltage, and n is an index in the
range 3 to 5. IL is clear that the reverse current M1, increases sharply with V, near Vi,
as depicted in Figure 6. 15. Indeed, the voltage across a diode under reverse breakdown
remains around Vi, for very large current variations (several orders of magnitude). If
the reverse current under breakdown is limited by an appropriate external resistor R, as
shown in Figure 6.17, to prevent destructive power dissipation in the diode, then the
voltage across the diode remains approximately at Vi, Thus, as long as V, > Vi, the
diode clamps the voltage between A and B to approximately Viy. The reverse current in
the circuit is then (V, — Vy)/K.

Since the electric field in the SCL depends on the width of the depletion region W,
which in tumn depends on the doping parameters, Vi also depends on the doping, as
discussed in Example 6.7.

652 ZENER BREAKDOWN
Heavily doped pn junctions have narrow depletion widths, which lead to large electric
fields within this region. When a rgverse bias is applied to a pn junction, the energy

band diagram of the n-side can be viewed as being lowered with respect to the p-side,
as depicted in Figure 6,18, For a sufficient reverse bias (typically less than 10 V), E;

P :“—SCL—DE

.——:"l'

Vr> Vur

v v,

r

Figure 8.18  Zener breokdown involves elections

Figure 6.17 I the reverse breokdown cument when
V. > W is limiled by an extemol resistance Rio prevent
desiructive power dissipafion, then the diode con be used
to damp the voliage between A and B fo remoin

approximalely V..

tunneling from the VB of pside to the CB of nside when
the reverse bias reduces . o fine up with E..
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Figure 6,19 The breokdown field Ty in the
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Ey, (V/m)
=

0

on the n-side may be lowered to be below E, on the p-side. This means that clectrons
at the top of the VB in the p-side are now at the same energy level as the empty states
in the CB in the n-side. As the separation between the VB and CB narrows, shown as
a (< W), the electrons easily tunnel from the VB in the p-side to the CB in the n-side,
which leads (o a current, This process is called the Zener effect. As there are many
electrons in the VB and many empty states in the CB, the tunneling current can be sub-
stantial, The reverse voltage V,, which starts the tunneling current and hence the Zener
breakdown, is clearly that which lowers E, on the n-side to be below E, on the p-side
and thereby gives a separation that encourages tunneling. In nonquantum mechanical
{erms, one may intuitively view the Zener effect as the strong electric field in the
depletion region ripping out some of those lectrons in the Si-Si bonds and thereby
releasing them for conduction.

Figure 6.19 shows the dependence of the breakdown field £y in the depletion
region for the onset of avalanche or Zencr breakdown in a one-sided (p*n or pnt)
abrupt junction on the dopant concentration N in the lightly doped side. At high
fields, the tunneling becomes the dominant reverse breakdown mechanism.

AVALANCHE BREAKDOWN Consider a uniformly doped abrupt p*n junction (N, Nﬂm
reverse biased by V = =V,

g Whal is the relationship between the depletion width W and the potential difference
(V, + V,) across W7

b, If avalanche breakdown occurs when the maximum field in the depletion region £, reaches
the breakdown ficld T, show that the breakdown voltage Vi, (3> V) is then given by

oLy
" TN,

¢ An abrupt Si p*n junction has boron doping of 10'° cm " on the p-side and phosphorus
doping of 10'* cm * on the a-side. The dependence of the avalanche breakdown field on
the impurity concentration is shown in Figure 6.19.
1. What is the reverse breakdown voltage of this §i diode?
2 Ca]gmau‘l.hc reverse breakdown voltage when the phosphorus doping is increased o
10" em™,
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SOLUTION

Onc can assume that all the applied reverse bias drops across the depletion layer so that the
new vollage across Wis now V, + V,. We have lo integrale d'E/dx = py f£ as before across
W to find the maximum field. The most important fact to remember here is that the pr junc-
tion equations relating W, T,.V,, N,, Ny, and so on remain the same but with ¥, replaced
with V, + ¥, since the applied reverse bias of ¥, increascs V, to V, + V,. Then from Equa-
lion 6.4,
w2 et VN4 M) 2ev, 4 9)
e PNJ
since N, 3 Ny. The maximum field that corresponds to the breakdown field T, is given by
2V, + V)
W

Thus, from these two equations we can climinate W and obtain ¥, =V, as

2
£Ly,

wT N,

Given N, 3> Ny we have a p'n junction with N, = 10'® cm . The depletion region
extends into the n-region, so the maximum field actually occurs in the n-region. Here the
breakdown field Z,, depends on the doping level as given in the graph of the critical field
it breakdown £, versus doping concentration N, in Figure 6.19. Taking £, 7 40 V/um
or 4.0x 10°Vem™ at Ny =10" cm™" and using the above cquation for Vi, we get
Vie =53 V.

When N, = 10" em™", £ from the graph is about 6 x 10° V em™', which leads to
Uy = 118V,

6.6 BIPOLAR TRANSISTOR (BJT)

6.6.1 Common Base (CB) pc CHARACTERISTICS

As an example, we will consider the prp bipolar junction transistor (BJT) whose basic
structure is shown in Figure 6.20a. The pnp transistor has three differently doped
semiconductor regions, These regions of different doping occur within the same single
erystal by the variation of acceptor and donor concentrations resulting from the fabri-
cation process. The most heavily doped p-region (p') is called the emitter. In contact
with this region is the lightly doped n-region, which is called the base. The next region
is the p-type doped collector. The base region has the most narrow width for reasons
discussed below. Although the three regions in Figure 6.20a have identical cross-
sectional areas, in practice, due to the fabrication process, the cross-sectional area
increases from the emiller Lo the collector and the collector region has an extended
width. For simplicity, we will assume that the cross-sectional arca is uniform, as in
Figure 6.20a.

The pnp BIT connected as shown in Figure 6.20b is said to be operating under
normal and active conditions, which means that the base-emitter (BE) junction is for-
ward biased and the base~collector (BC) junction is reverse biased. The circuit in



6.6 BiroLAR TRansISTOR (BJT) 507

Input
g circuit
pnl p
_,_.r A
VAR AN
Emitter Base  Collector
o (e
E B C
T LE
i oy i
Electron 1| v ]
e /g Diffusion { ek i | 10 : .
el .
i} Rocombmation |
I | of
) Electom ‘I(‘ Leskage currend
Iﬂ
[ (d)

Figure 6.20

{o) A schematic ilusiration of the prp bipolar ransistor with three differently doped regions.
[b) The pnp bipokar operated under normal and active condilions.

(¢] The CB configuration with input ond outpul circuits ideniified.

{d) The illusiration of various current components under normol and active conditions.

Figure 6.20b, in which the base is common to both the collector and emitter bias volt-
ages, is known as the common base (CB) configuration.® Figure 6.20c shows the CB
wansistor circuit with the BIT represented by its circuit symbol. The arrow identifies
{he emilter junction and points in the direction of current flow when the EB junction
is forward biased. Figure 6.20c also identifies the emitter circuit, where Veg is con-
nected, as the input circuit. The collector circuit, where Vey is connected, is the out-
put circuit,

The base-emitter junction is simply called the emitter junction and the base-
collector junction is called the collector junction. As the emitter is heavily doped, the
basc-emitter depletion region Wy extends almost entirely into the base. Generally, the
base and collector regions have comparable doping, so the base-collector depletion
region Wy extends to both sides. The width of the neutral base region outside the
depletion regions is labeled as Wg. All these parameters are shown and defined in
Figure 6.200b.

| CB should not be confused with the canduction bond ebbreviation.
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We should note that all the applied voltages drop across the depletion widths. The
applied collector-base voltage Vip reverse biases the BC junction and hence increases
the field in the depletion region at the collector junction.

Since the EB junction is forward-biased, minority carriers are then injected into
the emitter and base exactly as they are in the forward-biased diode. Holes are injected
into the base and electrons into the emitter, as depicted in Figure 6.20d. Hole injection
inta the base, however, far exceeds the electron injection into the emitter because the
emitter is heavily doped. We can then assume that the emitter current is almost entirely
due to holes injected from the emitter into the base. Thus, when forward biased, the
emitter “emits,” that is, injects holes into the basc.

Injected holes into the base must diffuse toward the collector junction because
there is  hole concentration gradient in the base. Hole concentration p,(Wp) just out-
side the depletion region at the collector junction is negligibly small because the in-
creased field sweeps ncarly all the holes here across the junction into the collector (the
collector junction is reverse biased).

The hole concentration p,(0) in the base just outside the emitter junction de-
pletion region is given by the law of the junction. Measuring x from this point (Fig-
ure 6.20b),

fvé‘ﬂ)
n 0) = o =
a0 =p cxp( iT [6.30]

whereas at the collector end, x = Wy, p,(Wg) = 0.

If no holes are lost by recombination in the base, then all the injected holes diffuse
to the collector junction. There is no field in the base to drift the holes. Their motion is
by diffusion. When they reach the collector junction, they are quickly swept across into
the collector by the internal field £ in Wyc. It is apparent that all the injected holes
from the emitter become collected by the collector. The collector current is then the
same as the emitter current. The only difference is that the emitter current flows across
a smaller voltage difference Vey, whereas the collector current flows through a larger
voltage difference Veg. This means a net gain in power from the emitter circuit to the
collector circuit.

Since the current in the basc is by diffusion, to cvaluate the emitter and collec-
tor currents we must know the hole concentration gradient al x =0 and x = Wy
and therefore we must know the hole concentration profile p,(x) across the base.”
In the first instance, we can approximate the p,(x) profile in the base as a straight
line from p,(0) to p,(Wg) = 0, as shown in Figure 6.20b. This is only true in the
absence of any recombination in the base as in the short diode case. The emitter cur-
rent is then

dp, 0
.f;_-:—mn,(i) = ean, 0
dx ral) W;

7 The actual concenkation profle can be ealeulated by solving the sieodysiote confinuity equation, which con be
found in more advonced hexds, K i
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We can substitute for p,(0) from Equation 6.30 to obtain

""Dipu (‘VEB)
lg=— — 6.31
& = P\ 47 (631

It is apparent that I is determined by V. the forward bias applied across the EB
junction, and the base width W . In the absence of recombination, the collector current
is the same as the emitter current, Ie = /¢ The control of the collector current ¢ in
the output (collector) circuit by Vgz in the input (emilter) circuit is what constitutes the
tramsistor action. The commeon base circuit has a power gain because I in the oul-
pot in Figure 6.20c flows around a larger voltage difference Vey compared with [; in
the input, which flows across Vg (about 0.6 V).

The ratio of the collector current I to the emitter current /: is defined as the CB
current gain or current transfer ratio o of the transistor,

o= [6.32]

Typically, a s less than unty, in the range 0.99-0.999, duc to two reasons. First is
the limitation due o the cmitier injection efficiency. When the BE junction is forward-
biased, holes are injected from the emitter into the base, giving an emitter current
T quet)» and electrons are injected from the base into the emitter, giving an emitter cur-
rent I;m'lhlwlmmis, therefore,

1g = Ippote) + 1Eidectron

Only the holes injected into the base are useful in giving a collector current because
only they can reach the collector. The emitter injection cfficiency is defined as

I ) 1
p=—— = 6331
iy + I Efetecon) )i o E{clectron)
[

Consequently, the collector current, which depends on /g, only, is less than the
emitter current. We would like y to be as close to umlyaspmmbb, oty > 1 Efelectron) -
y can be readily calculated for the forward-biased pn junction current equations as
shown in Example 6.9.

Secondly, a small number of the diffusing holes in the narrow base inevitably be-
come lost by recombination with the large number of clectrons present in this region
as depicted in Figurc 6.20d. Thus, a fraction of /g, 1 lost in the base due (o recom-
bination, which further reduces the collector current. We define the base transport
factor o as

s e f634]
Tewi ¥l

I the emitier were a perfect injector, Iy = [gau), then the current gain o’ would
be . If 1 is the hole (minority carrier) lifetime in the base, then 1/t is the proba-
bility per unit time that a hole will recombine and disappear. We also know that in
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time 1, a particle diffuses a distance x, given by x = /2D where D is the diffusion
coefficient. The time 1, it takes for a hole to diffuse across W is then given by

= W} [6.35]

a7
This diffusion time is called the transit time of the minority carriers across the hase.
The probability of recombination in time r, is then 1, /7, The probability of not

recombining and therefore diffusing across is (1 — 1,/1,). Since [ represents the
holes entering the base per unit ime, /gl — 1,/1) represcnts the number of
holes leaving the base per unit time (without recombining) which is the collector
current I, Substituting for I and Iy in Equation 6.34 gives the base transport
factor ay,

f{‘ T

ey = = e [6.38]

T thote) Ty

Using Equations 6.32, 6.34, and 6.36 we can find the total CB current gain o:

a=uary :-(I—:l)y ’ 16371

The recombination of holes with electrons in the basc means that the base must be
replenished with electrons, which are supplicd by the external battery in the form of a
small base current 1, as shown in Figure 6.20d. I addition, the base current also has
to supply the electrons injected from the base into the emitter, that s, /5 decyon, and
shown as electron diffusion in the emitier in Figure 6.20d. The number of holes enter-
ing the base per unit time is represented by /g, and the number recombining per
unit time is then T ke (1 /13). Thus, T 18

T T
Iy = (;’) T boie) + Tetcioction) = ¥ ;: lg+ (1= yMg l6.38]
i

which further simphifies to 1g — /¢; the difference between the emitter current and the
collector current is the base current. (This is exactly what we expect from Kirchoff's
current law.)

The ratio of the collector current to the basc current is defined as the current gain
£ of the transistor® By using Equations 6.32, 6.37, and 6.38, we can relate § 10 a:

[6.39]

The base-collector junction in Figure 6.20b is reverse biased, which leads to a leak-
age cument into the collector terminal even in the absence of an emitter currenl. This
leakage current is due Lo thermally generated clectron-hole pairs in the depletion region
Wec being drified by the internal field, as schematically illustrated in Figure 6.20d.

¥8 is 0 usehi porameter uhnl!imﬂrnmdnn\dunﬁdﬁtmmmm'
which the input current is mode o flow into the base of the: fransisior, and the collecior cument is made 1o flow in

the: cutput circuit,
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."E:.’;mA
1,=2mA
I,=1mA
Figure 6,21 DC -V
>V choracterisiics of the pnp bipolar
“YCB  ironsistor [exoggerated o

highlight vrious efects.

Suppose that we open circuit the emitter (7 = 0). Then the collector current is simply
the leakage current, denoted by I The base current is then —Icgo (flowing out from
the base terminal), In the presence of an emitter current 1, we have

.P'f = leg + .“('m I&.m
.I'BE“ —ﬂ].‘g_.‘{w; Iﬁa"]

Equations 6.40 and 6.41 give the collector and base currents in terms of the input
current /g, which in turn depends on Vig. They only hold when the collector junction
is reverse biased and the cmitier junction is forward biased, which is defined as the
active region of the BIT. It should be emphasized that what constitutes the transistor
action is the control of I, and hence ¢, by Vg,

The de characteristics of the CB-connected BIT as in Figure 6.20b are normally
represented by plotting the collector current /¢ as a function of Vey for various fixed
values of the emitter current. A typical example of such dc characteristics for a pup
transistor is illustrated in Figure 6.21. The following characteristics are apparent. The
collector current when /5 = 0 isthe CB junction leakage current Jego, typically a frac-
tion of a microampere. As long as the collector is negatively biased with respect to the
base, the CB junction is reverse biased and the collector current is given by
e = wlg + Iy, which is close to the emitter current when [ > Icgo. When the
polarity of Vg is changed, the CB junction becomes forward biased. The collector
junction is then like a forward biased diode and the collector current is the difference
between the forward biased CB junction current and the forward biased EB junction
current. As they are in opposite directions, they subtract.

We note that /¢ increases slightly with the magnitude of Vey even when I is
constant. In our treatment /- did not directly depend on Vg, which simply reverse biased
the collector junction o collect the diffusing holes. In our discussions we assumed that
the base width W does not depend on the applied voltages. This is only approximately
true. Suppose that we increase the reverse bias Veg (for example, from =5 to —10'V).
Then the base—collector depletion width Wy also increases, as schematically depicted
in Figure 6.22. Consequently the base width Wy gets slightly narrower, which leads loa
slightly shorter base transit time 7,, The hase transport factor ey in Equation 6.36 and

511

Active region
collector
currenf

Active region
base curren
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hence a are then slightly larger, which leads to a small increase in /. The modulation
of the base width Wy by Vi is not very strong, which means that the slopes of the
Ic — Vg lines at a fixed /¢ are very small in Figure 6.21. The base width modulation
by Vg is called the Early effect.

EXAMPLE 6.8

A pnp TRANSISTOR  Consider a pup Si BJT that has the following properties. The emitter re-
gion mean acoepior doping is 2 x 10® cm~’, the base region mean donor doping is
[ % 10" cm *, and the collector region mean acceptor doping is 1 x 10 cm™>. The hole
drift mobility in the base is 400 cm” V' 5!, and the electron drift mobility in the emitter is
200 cm? V-" 57" The transistor emitter and base neuiral region widths are about 2 pm cach
when the transistor is under normal operating conditions, that is, when the EB junction is
forward-biased and the BC junction is reverse-biased. The effective cross-sectional area of the
device is 002 mm?. The hole lifetime in the base is approximately 400 ns. Assume that the
emitter has 100 percent injec.ion efficiency, y = 1. Calculate the CB current transfer ratio o
and the current gain f. What is the emitter-base voltage if the emitier current is 1 mA?

SOWTION
The hole drift mobility 1, = 400 cm® V' s~ ' (minority cariers in the base). From the Einstein
relationship we can easily find the difiusion coefTicient of holes,

kT 3
Bi= (—),,. = (0.0259 V)(400 e’ V' 5 ') = 10.36 cm® s !
[

The minority carrier ransit ime 7, across the base is
W exicta)
D, 21036cemis )

The base transport factor and hence the CB current gain is
1, 193 % 10 °s

ey S 099517
A= % 00x10 s

1Wx10® o 1.9

1
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Thecurrenlgahﬂufﬂlemmii

o 0.99517
T 1-a  1-099517
The emilter current is due to holes diffusing in the base (y = 1),

eVin
Iy =g HP(F)

=206.2

B

where

| s EADQ P = ”‘Dﬁﬂj
T W T N,

(16 107" €)(0.02 x 10" em?)(10.36 cm s~ )(1.0 x 10" cm %)

e (1 % 10% em—7)(2 x 10~ em)
= | .66 %

Thus,

-3
L m(i) = (0.0259 V) h(wl—"- '-"---'-‘--) —064V
I 166 x 10" A

The major assumplion is y = 1, which is generally not true, as shown in Example 6.9. The
actual a and hence § will be smaller due to less than 100 percent emitter injection. Note also
that Wy is the newiral region width, that is, the region of base outside the depletion regions. Itis
not difficult to calculate the depletion layer widths within the base, which are about 0.2 ym on
the emitter side and roughly about 0.7 m on the collector side, so that the total base width junc-
tion to junction is 2 + 0.2 + 0.7 = 2.9 pm.

The transit time of minorily carriers across the base is t,. If the input signal changes be-
fore the minority carriers have diffused across the base, then the collector current cannot re-
spond to the changes in the input. Thus, if the frequency of the input signal is greater than
Iz, , the minority carriers will nol have time to transit the base and the collector current will
remain unmodulated by the input signal. One can set the upper frequency limit at ~1/y,
which is 518 MHz.

EMITTER INJECTION EFRICIENCY y EXAMPLE 6.9

a Consider a pnp transistor wilh the paramelers as defined in Figure 6.20. Show that the
injection efficiency of the emitier, defincd as
_ Emitier current due to minority camiers injected into the base

¥ Total emitter curent
is given by
I
e :m
N Wity oy

b.  How would you modify the CB curent gain  to include the emitter injection cfficiency?
¢. Calculate the emitter injection efficiency for the pnp transistor in Example 6.8, which has
an acceptor doping of 2 x 10" cm™? in the emitier, donor doping of 1 x 10" cm™ in the
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base, emitter and base neutral region widths of 2 pm, and a minority carrier lifetime of
400 ns in the base. What are its « and # taking into account the emitter injection efficiency?
SOLUTION

When the BE junction is forward biascd, holes are injected into the base, giving an emitier cur-
rent e, and electrons are injected into the emitter, giving an emitter curment /e, - The
total emitter current is therefore
I = Moy + drooom
Only the holes injected into the base are useful in giving a collector current because only
they can reach the collector. Injection efficiency is defined as

-;mlul:i e I

r = =
J.l'ﬂ.*] + Imm 11 ;E[zlmmn
’Ethnk}

But, provided that Wy and Wy are shorter than minority carrier diffusion lengths,
_ eﬂﬂimnf (8'!"’5' eﬁﬂ,‘mnf (EVEN )
e = =g w, P\ Hr MW \r
When we substitute into the definition of y and use D = kT /e, we obtain
|

- NaWs Feefeminer)
14 ==
N, wr_'ﬂ—mm

) and 1 etecton) =

y=

The hole component of the emitter current is given as ylg. OF this, a fraction «; =
(1 - /) will give a collector current, Thus, the emitter-to-coflector current transfer ratio @,
taking into account the emitter injection efficiency, is

T
o= n'nr(l - —)
Ty

In the cmitter, Ny iemuey =2 x 10" cm ™" and gt icuigey = 200 cm® V"6, and in the
base, Nygae = 1% 10 cm™" and ptyue = 400 em? V=" 57, The emitier injection cffi-
ciency is

R SN
- +gxIWﬂﬂuﬂn)"
(2 % 10')(2)(400)
The transil time 1, = W:ﬂ[}, = 193 % 10""5 (as before), so the overall « is

99751

1.93 x tn~’)
=09951(1 - — | = 0.99269
: ( 300 x 10
and the overall f is
o
= - =135.8
P (I -a)

The same transistor with 100 percent emitter injection in Example 6.8 had a # of 206, It
is clear that the emitter injection efficiency y and the base transport factor «; have compara-
ble impacts in controlling the overall gain in the example. We neglected the recombination of
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clectrons and holes in the EB depletion region. In fact, if we werc o also consider this recom-
Hmmmdﬂtuﬁwmh“,wuddhmuhuvmwhmmwﬁ
the Total /-, which would make y and heace f cven lower.
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662 CoMMON BASE AMPLIFIER
According to Equation 6.31 the emitter current depends exponentially on Vg,

CVH

"_’E"ﬂ"( kT ) &
It is therefore apparent that small changes in Vg lead to large changes in /¢. Since
Ip % I, we see that small variations in Vg cause large changes in /¢ in the collector
circuit. This can be fruitfully used to obtain voltage amplification as shown in Fig-
ure 6.23. The baitery Ve, through R, provides a reversc bias for the base-collector
junction, The dc vollage Vgz forward biases the EB junction, which means thal it pro-
vides a dc current /¢ The input signal is the ac voltage v, applied in series with the dc
bizs voltage Vi to the EB junction. The applied signal v, modulates the total voltage
Vig across the EB junction and hence, by virtue of Equation 6.30, modulates the
injected hole concentration p, (0) up and down about the dc value determined by Ver
as depicted in Figure 6.23. This variation in p,(0) alters the concentration gradient and
therefore gives rise to a change in /¢, and hence a nearly identical change in /¢, The
change in the collector current can be converted to a voltage change by using a resistor
Re in the collector circuit as shown in Figure 6.23. However, the output is commonly
taken between the collector, and the base and this voltage Vg 1s

Vea=—Vee + Rele

E B C
v e e
B FU S -
4 a .
I+, 1w : I+, oo
1 ] 3 i |—‘
o [ L e N
Vol 1 : R
: : v, 0
v s

Figure 6.23 A pap ronsisior operoled in the ocfive region in the common base

- omplifier configurafion
The opplied (input) signal v modulates the dc volloge across the EB junction and
hence modulales the injecied hole concenlration up and down about the dc volue
paf0}. The solid line shows p.{x} when only the dc bias Ve is present. The doshed lines
show how p, 1 is modulaled up and down by the signal v.s, superimpased on Ver.
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Increasing the emitter-base voltage Viy (by increasing vy) increases /¢, -which
increases Vep. Since we are interested in ac signals, that voltage variation across CB is
tapped out through a dc blocking capacitor in Figure 6.23.

For simplicity we will assume that changes &V and §; in the dc values of Veg
and )‘g are Sl'l'la“, which means that JVE' lll.'”gﬁ' be related Ilydlﬂ.ﬂ'ﬂiﬁllg
Equation 6.42. We are hence Lacitly assuming an operation under small signals. Further,
we will take the changes to represent the ac signal magnitodes, vy = 8V, i, = 8¢,
fo=dlemdlg=i, vy =8V

The output signal voltage vy, corresponds to the change in Vg,

Up = i“"a = Rca’r-—_ RCH,_

The variation in the emitier current 5/ depends on the variation §Veg in Vg,
which can be determined by differentiating Equation 6.42,

By definition, §Vgg is the input signal v,. The change &/ in /; is the input signal
current (i,) flowing into the emitter as a result of §Vis. Therefore the quantity
5V /815 represenls an input resistance r, secn by the source v,

Vg kT3S

r,=- e T TR
iy elp IgmA) e
The output signal is then
vy = .Rc JIE = R(_'E
Te
50 the voltage amplification is
g2 640
Uy r.

To obtain a voltage gain we obviously need Re > r,., which is invariably the casc by the
appropriate choice of /¢, hence r,, and R¢. For example, when the BIT is biased so
that g is 10 mA and r, 15 2.5 Q, and if R is chosen 1o be 50 Q, then the gain is 20.

EXAMPLE .10

A COMMON BASE AMPLIFIER ~ Considera pnp Si BIT that has boen connected as in Figure 6.23.
The BIThasa f = 135 and has been hiased to operate with a 5 mA collector current. What s the
small-signal input resistance? What is the required R that will provide a voltage gain of 207 What
is the base current? What should be the Vo in Figure 6237 Suppose Vor = —6 V, what is the
largest swing in the output voltage Vi i Figure 6.23 s the input signal is increased and de-
creased about the bias point Vi, taken as 0.65 V? .

SOLUTION

The emitter and collector curments are approximately the same. From Equation 6.43,
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The voltage gain Ay from Equation 6.4 is

R R
Ap=—t B W=
r; 5Q
50 a gain of 20 requires Re = 100 82,
e SmaA
Base current [y = ; = =UTaA W ¥ A

There is a de voltage across Re given by Ie Re = (0.005 A)(100 $2) = 0.5 V. Ve has 1o
provide the latter voltage across Re- and also a sufficient voltage to keep the BC junction reverse
biased al all times under normal operation, Let us et Ve = —6 V. Thus, in the absence olany
input signal v, Veg issetto =6V 4 0.3 Y = =5.5 V. As we increase the signal vy, Vg and
hence I increase until the point  becomes nearly zero,” that is, Vep = 0, which oceurs when
I is maximum al fege = [Vecl/Re o 60 mA. As vy, decreases, so does Vig and hence {;.
Eventually I, will simply become zeso, and point € will be at -6 V. s0 Vig = Ver. Thus, Vg
can only swing from 5.5 V10 0V (for increasing input until /- = Ty, 08 from 5.5 to ~6
V (for decreasing input until I = 0).
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6.63 Common EMITTER (CE) D¢ CHARACTERISTICS

An npn bipolar transistor when connected in the common emilter (CE) configuration
has the emitter common to both the input and output eircuits, as shown in Figure 6.24a.
The de voltage Vye forward biases the BE junction and therchy injects electrons as
minority carriers into the base. These electrons diffuse to the collector junction where
the field T sweeps them into the collector to constitute the collector current . Vie
controls the current 1 and hence 1 and /. The advantage of the CE configuration is
that the input current is the current flowing between the ac source and the base, which
is the base current /5. This current is much smaller than the emitter current by about a
factor of f. The output current is the current flowing between Ve and the collector,
which is I¢. [n the CE configuration, the dc voltage Ve must be greater than Vi to
reverse bias the collector junction and collect the diffusing electrons in the base.

The de characteristics of the BJT in the CE configuration are normally given as /¢
versus Ve for various values of fixed base currents g, as shown in Figure 6.24b. The
chiaracteristics can be readily understood by Equations 6.40 and 6.41. We should
note that, in practice, we are essentially adjusting Vg to obtain the desired s because,
by Equation 6.41,

Iy =1 - allg — lcpo

and 1;; depends on Vi via Equation 6.42.
Increasing 5 requires increasing Ve, which increases Jc. Using Equations 6.40
and 6.41, we can obtain /- in terms of /5 alone,

le=plp+

!
(t-a) CBO

| ¥ Vorious sohuralion effects are ignored in this opproximate discussion.
VI
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i =
003 mA
002 mA
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et — 0 mA
¥
&F
£ 0
- [/
> Vi
Figure 6.24

Hhmmwihm*ihmﬂhm_ﬂemmhhtunﬂw
fiows between Vi ond the bose which is
[b} DC 1V chosoctentshcs of the npn bipalar homsisior in the CF configurotion [Exoggercied to highlight vorious effects )

Active regiom
collector

current

or
le=ply + Ierp f6.45]
where

is Lhe leakage current into the collector when the base is open circuited. This is much
larger in the CE circuit than in the CB configuration.

Even when Iy is kept constant, /- still exhibits a small increase with Ve, which,
according to Fquation 6.45. indicates an increase in the current gain ff with Ve This
is due to the Early effect o modulation of the base width by Ve, shown in Figurc 6.22.
Increasing V. increases Vg, which increases W, reduces Wy, and hence shortens
1, The resulting effect is a kager g (~ 1,/1,).

Whea Ve is fess than Vg, the collector junction becomes forward hiased and
Equation 6.45 is ot valid. The collector current is then the difference hetween forward
currents of emiticr and collector junctions. The tramsisior operating in this region is
said lo be saturated.

664 -Low-FREQUENCY SMALL-SIGNAL MODEL

The npn bipolar tramsistor in the CE (common emitier) amplifier configuration is
shown in Figure 6.25. Th input circuit has a de bias Vag to forward bias the
base-emitter (BE) junction and the output circuit has a de voltage Ve (larger than
Vis) 10 reverse bias the base-collector (BC) junction through a collector resistor R



6.6 Birorar Transistor (BJT) 519

Ir.+if;__-—|_1 IE";P:"}\
|

¢ |
';* | | _
Joa e : v ) Flnnrpﬁ.ﬂi J.ﬁngpniformslm np-af_u!ad
BT B | dilfasion - _+ £E in lhe aclive fegion in the common emilter
Input . — i"QB r i - amplifier configuration,
! P l =l The opplied signol v., modulotes the
r (A ) e - dc vologe ocross he BE juncion ond hence
L A modlulotes the injected electron concentration
i AT up and down obout the dc valve n {0}, The
Vy= ¢ solic i shows ] when only the dc bios Vi
T J is present. The doshed line shows how ng[x] is
’ Ieti, ¢ modukoted vp by o posilive small signal vie

—e superimposed on V5.

The actual reverse bias voltage across the BC junction is Vg — Ve, where Ve is
v('k' = lll;['l" == "‘(' R['

An input signal in the form of a small ac signal vy, is applied in serics with the bias
voltage Vs and modulates the voltage Vi across the BE junction about its dc value
Vyir. The varying voltage across the BE modulates n,(0) op and down about its de
value, which leads 1o varying emitter current and henee 1o an almost identically vary-
ing collector current in the output circuit. The variation in the collector current is con-
verted 1o an output voltage signal by the collector resistance Re-. Note that increasing
Ve increascs I, which leads o a decrease in Ve Thus, the output voltage is 180° out
of phase with the input vollage.

Since (he BE junction is forward-biased, the relationship between Jg and Vg is
exponential,

Vi Emiiter
I =1 f;i.'.\p(u ;-;'—) l6.48]  current and
k1 VBE

where I is a constant, We can differentiate this expression to relate small variations
in / and Vgp as in the presence of small signals superimposed on de values. For small
signals, we have wy, = 8Vyg, in = 81y, i = &g, i, = 8l Then from Equation 6.43
wesee hat 6l = 8y, 500 = fip. Since e & 1,0, .

What is the advantage of the CE circuit over the common base (CB) configuration”
First, the input current is the base current, which is about a fuctor of # smaller than the
emitter current. The ac input resistance of the CE circuit is therefore a factor, of p
higher than that of the CB circuit. This means that the amplifier does not load the ac
source; the input resistance of the amplifier is much greater than the internal (or output)
resistance of the ac source at the input. The small-signal inpul resisiance ry, 1
e WV WVe BRI 25 Input

i 8w 8le el Ie(mA) resistance

The =

where we differentiated Equation 6,46,
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The output ac signal v, develops across the CE and is tapped out through a ca-
pacilor. Since Veg = Voo — Ie Re, as I increases, Vey: decreases, Thus,

Uee = 8Veg = —Re 8lc = - Rei,
The voltage amplification is

Voltage gain Ay = E — :_ﬁ.l_(_fr - ﬂ - R_{M 6.48]
Upe Fhely Fie 25
which is the same as that in the CB configuration. However, in the CE configuration
the output to inpul current ratio i, /i, = f, whereas this is almost unity in the CB con-
figuration. Consequently, the CE configuration provides a greater power amplifica-
tion, which is the second advantage of the CE circuit.

The input signal v gives rise to an output current i,. This input voltage (o out-
pul current conversion is defined in a parameter called the mutual conductance, or
transconductance, g, .

Transcoriduc- _ e g dg(mA)

=—R—— == [6.49]
tance I v Vg 25 re

The voltage amplification of the CE amplifier is then
Voltage gain Av = -g,Rc (6.50]

We generally find it convenient to use a small-signal equivalent circuit for the
low-frequency behavior of a BIT in the CE configuration. Belween the base and
cmitter, the applied ac source voltage v, sees only an input resistance of ry,, as
shown in Figure 6.26. To underline the importance of the transistor input resistance,
the output (or the internal) resistance R, of the ac source is also shown. In the out-
put circuit there is a voltage-controlled current source i, which generates a current
of g, v The current i passcs through the load (or collector) resistance R across
which the voltage signal develops. As we are only interested in ac signals, the bat-
teries are taken as a short-circuit path for the ac current, which means that the in-
ternal resistances of the batleries are taken as zero. This model, of course, is valid
only under normal and active operating conditions and small signals about de val-
ues, and at low frequencies.

Figure 6.26 Lowdrequency smallsignal
simplified equivalent circuit of the bipolar ransistor
in the CE configuration with o load resistor R¢ in
the.colleclor circuil.
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Lelt The first commercial Si transistor from Texas nstruments (1954). Right. The first mansistar pocke! rodio [1954)
I hod kour Ge npn honsisiors.
| SOURCE: Courlesy of Texos Insiuments.

The bipolar transistor general de current equation I = fily, where f = 4 /1, isa
material-dependent constant, implies that the ac small-signal collector current is

dle=fp8ly  or i, =fi,

Thus the CE de and ac small-signal current gains are the same. This is a reason-
able approximation in the low-frequency range, typically at frequencies below | /r;. I
is useful to have a relationship between f, g, and ry,.. Using Equations 6.47 and 6.49,
we have

B at low
frequencies

b= Gt 1651]

In transistor data books, the de current gain Ie /1y is denoted as hpe whereas the

small-signal ac currenl gain i /iy is denoted as hy. Except at high frequencies,
hpe = hgg.

CE LOW-FREQUENCY SMALL-SIGNAL EQUIVALENT CIRCUIT  Consider a BIT with a g of 100, E3€1IIITE5A]
used in a CE amplifier in which the collector current is 2.5 mAand B is | K. 1 the ac source

has an rms voltage of 1 mV and an output resistance R, of 50 2, what is the ims output voltage?

What is the input and output power and the overall power amplification”

SOLUTION
As the collector current is 2.5 mA, the input resistance and the transconductance are
B3 (100)(25)
= e = 0 R
IptmA ) 25
and
l-(mA) 25 ——
A="g g ¥
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The magnitude of the voltage gain of the BIT small-sigual equivalent circuit is

rIIT
Ay = = =g, Ke = (01000) = 10
Ui
Wihen the ae source is connected fo the B and £ terminals (Figure 6.26), the nput resistance
ry, 0f the BIT loads the e source, so vy, across BE is
1000 2

.
U == (| MV ) — = 0.952 ¥
fry + K, (1000 2 § 50 9)

The output voltage (rms) is, therefore,
Ve = Ay, = 1000952 mV) = 95.2 mV
The loading effect makes the output less than 100 mV, To reduce the loading of the ac
source, we need 1o increase ry, fe., reduce the eollector current, but that also reduces the pain. So
to keep the gain the same, we need to reduce § and increase B However, B cannon be increased
indefinitely because Re-itself 15 louded by the input of the next stage and, w addition, there is an
incremental resistance between the collector and eminer terminals (typically ~ 100 kS2) tha
shunts Re- (not shown in Figure 6.26),
‘The power amplification of the CE BIT itsell is
I e
Ap =25 = BAy = (100)100) = 10,000
Tulpe
The put power into the BE terminuls is
Coup (0952 x 10T vy .
Po=tpip=—=————— =006 10 "W o 0906 0W
Fre 1000 82
The output power is

P = Pady = (006 10 )010.000) = 906 x ID0°W  or 906 1W

3

67  JUNCTION FIELD EFFECT TRANSISTOR (JFET)

6.7.1  GENERAL PRINCIPLES

The basic structure of the junction field effect transistor (JFET) with an p-type channel
(n-channel) is depicted in Figure 6.271. An n-type semiconductor slab is provided with
contacts dl its ends to pass current through it. These tenminals are called source (5)
and drain (D). Two of the opposite faces of the n-type semiconductor are hevily
p-type doped (o some small depth so that an a-type channel is formed between the
source and drain terminals, as shown in Figure 6.27a. The two p* regions are normally
clectrically connected and are called the gate (G). As the gate is heavily doped, the de-
pletion layers extend almost entirely into the n-channel, as shown in Figure 6.27. For
simplicity we will assume that the (wo gate regions are identical (hoth p* type) and that
the doping in the a-type semiconductor is uniform. We will define the n-channel 1o be
the region of conducting n-type material contained between the two depletion layers.

The basic and idealized symmetric structure in Figure 6.27a is useful in
explaining the principle of operation as discussed later but does not truly represent
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Channel '
thickness "

{.‘?

Circuit symbol __IJ_[ Figure 6.27
foenchand TET "1 o] The basic stuctwe of the nction field efiect womsistor [IFET) with on
achonnel. The wo p' regions are electricolly conneced and lorm the gale.
fol b] A simplified skeich of the cross section of o more procficol nchannel JFEL

the structure of a typical practical devicg, A simplified schematic sketch of the cross
section of a more practical device (as, for example, fabricated by the planar technol-
ogy) is shown in Figure 6.27h where it is apparent that the iwo gate regioas do not
have identical doping and that, except for one of the gates, all contacts are on onc
surface.

We first consider the hehavior of the JFET with the gatc and source shorted
(Vs = 0), as shown in Figure 6.28a. The resistance between § and D) is essentially
the resistance of the conducting n-channel between A and B. Ry, When a positive
voltage is applied 1o D) with respect 10 § (Vs > 0), then a currest flows from D 1o
§. which is called the drain current ;. There is a voltage drop along the channcl,
hetween A and B, as indicated in Figure 6.28a. The voltage in the n-channcl is zcro
at A and Vyyg at B. As the voltage along the n-channel is positive, the p*n junctions
between the gates and the n-channel become progressively more reverse-biased
from A 10 B. Consequently the depletion layers extend more info the channel and
therehy decrease the thickness of the conducting channel from A to B.

Increasing Vps increases the widths of the depletion layers, which penctrate more
into the channel and hence result in more channel narowing toward the drain. The re-
sistance of the n-channel Ry therefore increases with Vig. The dram carrent therefore
docs not increase linearly with Viys but falls below it because

Vs

fp=a
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l}cpls:litm'

" -Irh;umcl §
region 4
Vpg=1V
Figure 6,28

ol The gote and source are sharted (Vs = 0] and Vi is small

[bl Vs hos increased to a value thol llows the two depletion layers fo just louch, when Vs = Vs |= 5V} ond
the p'n jusction vollage of the drain end, Van= -~ Vis = Vo= ~5V.

(] Vos is large |Vos > Vi, s6 a shorl length of the channel is pinched ofl.

I =
““"M vﬂ.\]sal} h UP
10 gs Vis=0
5 ;
! [ <] 'l' Vv o= —2 A"
1 i i (i)
7 ) vmmz B vrwm' Voo =4V
[ Wiy
Figure 6.29 Typical Iy versis = e _;' 50y
Vos characteristics of a JFET for 0 4 8 12
vorious fixed gote voltages Vo, Vg

Fl

and Kgp increases with Vg, Thus fyy versus Vi exhibits a sublincar behavior, as shown
inthe Vpys < 5V region in Figure 6.29.

As Vi increases further, the depletion layers extend more into the channel and
eventually, when Vyyg = Vi (= 5 V), the two depletion fayers around B meet at point P
at the drain end of the channel, as depicted in Figure 6.28b. The channel is then said to
be “pinched off™ by the two depletion layers. The voltage Vy is called the pinch-off
voltage. It is equal to the magnitude of reverse bias needed across the p*n junctions to
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Ly o
.I.
—-— " S Figure 6.30  The pinchedaf
chonnel and conduciion for
Vps >S5V Vos = Vo |- 5V

make them just touch at the drain end. Since the actual bias voltage across the p*n
junctions al the drain end (B) is Vgp, the pinch-off occurs whenever

Vep=—Vp 16.52]

In the present case, gate to source is shorted, Vs = 0, 50 Vgp = —Vpgs and pinch-
off occurs when Vps = Vp (5 V). The drain current from pinch-off onwards, as shown
in Figure 6.29, does nol increase significantly with Vps for reasons given below.
Beyond Vis = Vi, there is a short pinched-off channel of length £,

The pinched-off channel is a reverse-biased depletion region thal separates the
drain from the s-channel, as depicted in Figure 6.30. There is a very strong electric
field Z in this pinched-off region in the D to § direction. This field is the vector sumof
the ficlds from positive donors to negative acceplors in the depletion regions of the
channel and the gate on the drain side. Electrons in the n-channel drift toward P, and
when they arrive at P, they are swept across the pinched-off channel by 7. This process
is similar lo minority carriers in the basc of a BJT reaching, the collector junction de-
pletion region, where the intenal field there sweeps them across the depletion layer
into the collector. Consequently the drain current is actually determined by the resis-
tance of the conducting n-channcl over Ly, from A to P in Figure 6.30 and not by the
pinched-ofl channel.

As Vyys increases, most of the additional voltage simply drops across £, as this
region is depleted of carriers and hence highly resistive. Point P, where the depletion
layers first meel, moves slightly toward A, thercby stightly reducing the channel leng(h
Ly Point P must still be at a potential Vp because it is this potential that just makes
‘the depletion layers touch. Thus the voltage drop across Ly, remains as Vp. Beyond
pinch-off then

hail s
D= R (Vps > Vp
Since Ryp is determined by Ly, which decreases slightly with Vg, 1y increases
slightly with V5. In many cases, Ip is conveniently taken to e saturated al a value s

for Vps > Vp. Typical Iy versus Vpg behavior is shown in Figure 6.29.

Pinch-off
condition

525



526

Pinch-off

condition

CHAPTER 6 + SEMICONDUCTOR DEVICES

Figure 6.31

(o] The JFET with o negalive Vs
volloge hos a narrower nchannel
af the start

[bl Compared to the Vs = 0 cose,
the some Vs gives less Iy os the
chonnel is narrower.

[c] The channel is pinched off ol
Vis = 3 ¥ sooner than the Ves=0
case, where il was Vps = 5 V. 1]

We now consider what happens when a negative voltage, say Vis= -2V, is ap-
plicd to the gate with respect to the source, as shown in Figure 6.31a with Vi = 0. The
p'n junctions are now reverse-biased from the start, the channel is narower, and the
channel resistance is now larger than in the V5 = 0 case. The drain current that flows
when asmall Viysis applied, as in Figure 6.31b, is now smaller than in the Vs = 0 case
as apparent in Figure 6.29. The p*n junctions are now progressively more reverse-
biascd from Vigy at the source end to Vg, = Vi — Vypg at the drain end, We therefore
need a smaller Vs (= 3V) o pinch off the channel, as shown in Figure 6.31c. When
Vs =3V, the G to D voltage Vi across the p*n junctions at the drain end is —5 V.,
which s —Vp, so the channel becomes pinched off, Beyond pinch-off, Iy is nearly sat-
urated just as in the Vg = 0 case, but its magnitude is obviously smaller as the thick-
ness of the channel at A is smaller; compare Figures 6.28 and 6.31. In the presence of
Viis. the pinch-ofl accurs al Vi = Vg0, and from Equation 6.52.

Vostan = Vi + Vs [6.531

where Vi is a negative voltage (reducing Vi), Beyond pinch-off when Vig > Vi,
the point P where the channcl is just pinched still remains at potential Vg, given
by Equation 6.53.

For Vs > Vpsgea, Iy hecomes nearly saturated at a value denoted as Ipg, which is
indicated in Figure 6.29. When G and S are shorted (Vs = 0), g 1s called Igg (which
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stands for ;s with shorted gate 1o source). Beyond pinch-off, with negative Vis Ins 18

Vm 5 vi' + V\‘.J.\'
Iy = lpg = '—’_1i S ""i'l.\l > Vissan [6.54]

Rar(Vas)  Rar(Ves)

where Ry (Vi) is the effective resistance of (he conducting n-channel from A o £
(Figure 6.31b), which depends on the channel thickness and hence on Ve, The resis-
ance increascs with more negative gate voltage as this increases the reverse bias
across the p*n junctions, which Ieads to the narrowing ol the channcl. For example,
when Vis = —4 V, the channel thickness at A becomes namower than in the case with
Vs = —2 V, thereby increasing the resistance, Kp, of the conducting channel and
thercfore decreasing fs. Further, there is also a reduction in the drain current by virtue
of Vpggun decreasing with negative Vs, as apparcnt in Bquation 6.54. Figure 6.29
shows the effect of the gate voltage on the /y versus Vg behavior, The two effects, that
from Vpsie and that (rom Rap (Ves) in Equation 654, lead to {ps almost decreasing
parabolically with — V.

When the gate voltage is such that Vgs = —Vp (= =5 V) with the source and drain
shorted (Vps = 0), then the two depletion layers touch over the entirc channel length
and the whole channel is closed, as illustrated in Figure 6.32. The channel is said to be
off. The only drain current that flows when a Vpgis applied is duc to the thermally gen-
erated carriers in the depletion layers. This current is very small.

Figure 6.29 summarizes the full I versus Vpg characteristics of the n-channel
JFET at various gate voltages Vgs. It is apparent that Ipy is relatively independent of
Vps and that it is controlled by the gate voltage Vs, as expected by Equation 6.54.
This is analogous to the BIT in which the collector current ke is controlled by the
base-emitter bias voltage Vge. Figure 6.33a shows the dependence of Ipg on the gate
voltage Vg The transistor action is the control of the drain current I, in the
drain-source (output) circuit by the voltage Ve in the gate-source (input circuit), as
shown in Figure 6.33b. This control is only possible if Vps > Vigesary When Vg = -V,
the drain current s nearly zero because the channel has been totally pinched off, This
gale-source voltage is denoled by Ve 45 the drain current has been swilched off.
Furthermore, we should note that as Vs reverse biases the p'n junction, the current
into the gate I; is the reverse leakage current of these junctions. [Lis usually very small.
In some JFETS, I;; is as low as a [raction of a nanoampere. We should also note that the
circuit symbol for the JFET, as shownin Figure 6.27a, has an arrow to identify the gate
and the pn junction direction.

Figure 6.32 When Vgs = -5 Y, the depletion loyers
close the whole channel from he siart, ot Vs = 0.

As Vi is increased, there is o very small drain current,
which is the smoll reverse leakage current due to fhermal

o generabon of carriers in the deplefion loyers
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Figure 6.33

(o] Typical hys versus Vigs charaderistics of

JFET

b The de circuil where Vi in the gate-souice
circuil finpul] controls the drain current kg in
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Is there a convenient relationship between £y and Viss? If we calculate the effec-
live resistance R p of the n-channel between A and P, we can obtain its dependence on
the channel thickness, and thus on the widths of the depletion layers and hence on Vg,
We can then find Fps from Equation 6.54. It urns out that a simple parabolic depen-
dence seems to represent the data reasonably well,

Vos \T'
Tps = Ipss| | - ) [6.55)
Vesiom

where I is the drain current when Vg = 0 (Figure 6.33) and Vg, is defined as
—Vp. that s, that gate-source voltage that just pinches off the channel. The pinch-off
voltage Vp here is a positive quantity because it was introduced through Vg, Vesem
however is negative, —Vp. We should note two important facts about the JFET. Iis
name originates from the effect that modulating the electric field in the reverse-biased
depletion laycrs (by changing Vyss) varies the depletion layer penetration into the chan-
ncl and hence the resistance of the channel. The transistor action hence can be thought
of as being based on a field effect. Since there is a p*n junction between the gate and
the channcl, the name has become JFET. This junction in reverse bias provides the iso-
lation between the pate and channel.

Secondly, the region beyond pinch-off, where Equations 6.54 and 6.55 hold, is
commonly called the current saturation region, as well as constant current region
and pentode region. The term saturation should not be confused with similar terms
used for saturation cffects in bipolar transistors. A saturated BIT cannot be used as an
amplifier, but JFETs are invariably used as amplifiers in the saturated curent region.

6.7.2 JFET AMPLIFIER

The transistor action in the JFET is the control of I, 5 by Vs, as shown in Figure 6.33.
The input circuit is therefore the gate-source circuit containing Vs and the outpul cir-
cuit is the drain-source circuit in which the drain current /55 llows, The JFET is almost
never used with the pn junction beiween the gate and channel forward-biased (V5 > ()
as this would lead 1o a very large gate current and near shorting of the gate (o source
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Figure 6.34
fo] Common source [CS) oc amplifier using o JFET

1) Explanction of how I is modulated by the signal v, in series with the dc bios volloge Ve

voltage. With Vg limited to negative voltages, (he maximum current in the outpul cir-
cuit can only be Ig5, as shown in Figure 6.33a. The maximum input voltage Vs should
therefore give an /ps less than Ipgs.

Figure 6.34a shows a simplified illustration of a typical JFET voltage amplifier. As
the source is common to both the input and output circuits, this is called a common
source (CS) amplifier. The input signal is tlze ac source v,, connected in series with a
negative dc bias voltage Vg of —1.5 V in thic GS circuit. First we will find out what
happens when there is no ac signal in the circuit (v, = 0). The de supply (—1.5 V) in
the input provides a negative de voltage 1o the gate and therefore gives a de current I
in the output circuit (less than /s). Figure 6.34b shows that when Vg = —1.5 V. point
(0 on the Ips versus Vs characteristics gives lps = 4.9 mA. Point 0, which determines
the dc operation, is called the quiescent point.

The ac source vy, is connecled in scries with the negative de bias voltage Ve;.
It therefore modulates Vg up and down about —1.5 V with time, as shown in Fig-
ure 6.34b. Suppose thal v, varies sinusoidally between —0.5 V and +0.5 V. Then, as
shown in Figure 6.34b when vy, is —0.5 V (point A), Vg = —2.0 V and the drain cur-
ren is given by point A on the Jps—Vs curve and is about 3.6 mA. When u,, is +0.5V
(point B), then Vzs = —1.0'V and the drain current is given by point B on the Ips-Vis
curve and is about 6.4 mA. The input variation from —0.5 V 10 +0.5 V has thus been
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Table 6.1 Vallage and current in the common source omplifier of Figure 6. 3da

Ugy Jf,'\j ,N l; Iy W
Vi V) wAl (mA) Vig=Vip— IRy (V) Gain Comment
] -15 49 u 82 0 de conditions, point 0
-0.5 =20 b =13 10K 26 -52 Point A
.5 =10 LT 1.5 52 -30 -6 Point B

| NOTE. Vyp = 18V ond Ry = 2000 9

converted o a drain current variation from 3.6 mA (o 6.4 mA as indicated in Fig-
ure 6.34b. We could have just as easily caleulated the drain current from Equalion 6.55,
Tuble 6.1 summarizes what happens to the drain current as the ac inpul voltage is var-
ied about zero.

The change in the drain current with respect to its de value is the output signal cur-
rent denoted as iy, Thus at A,

iy=36-49=-13mA
and al B,
iy=64-49=15mA

The vartation in the output current is not quite symmietric as that in the input signal v,,
because the Ipg-V; relationship, Equation 6.55, is not finear.

“The drain current variations in the DS circuit arc converted to vollage variations
by the resistance Rp. The voltage across DS is

Vs = Vip — s Ry 16.56]

where Viyp is the bias battery voltage in the DS circuit. Thus, variations in I result in

variations in Vo that are in the opposite direction or 180° out of phase. The ac output volt-

age between D) and § is tapped out through a capacitor €, as shown in Figure 6.34a. The

cupacitor Csimply blocks the dc. Suppose that R = 2000 £ and Vyyyy = 18V, then using

- Equation 6.56 we can calculate the de value of Vpg and also the minimum and maximum
vilues of Vi, as shownin Table 6.1. '

Tt is upparent that as vy, varies [rom —0.5 V, at A, to +0.5 V, al B, Vg varies from
10.8 V10 5.2 V, respectively. The change in Vs wilh respect 1o de is what constitutes
the output signal v, as only the ac is tapped out. From Equation 6.56, the change in
Vi 1s related to the change in fpyg by '

vt = = Rply l6.57)

Thus the vutput, v, changes from ~3.0V 10 2.6 V. The peak-to-peak voliage ampli-
fication is
AVps  Vaipheps g -3IV-(26V) 3

Av depd} = ——— = == =
T WV G O3VC (<05Y)
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The negative sign represents the fact that the output and input voltages are out of
phase by 180" This can also be scen from Table 6.1 where a negalive vy, resulls ina
positive vy, Even though the ac input signal v, is symmetric aboul zero, £0.5V, the
ac outpul signal v, is nol symmetric, which is duc 1o the /s versus Vg curve being
nonlinear, and thus varies hetween —3.0 V and 2.6 V. If we were to calculate the voll-
age amplification for the mosl negative input signal, we would find —5.2, whercas for
the most positive input signal, it would be —6. The peak-to-peak voltage amplification,
which was —5.6, represents a mean gain taking both negalive and positive inpul sig-
nals into account.

The amplification can of course be increased by increasing Ry, , bul we must main-
lain ¥y at all times above Vg (beyond pinch-off) to ensure that the drain current
Ipy in the output circuit is only controlled by Vi in the input circuit.

When the signals are small about dc valucs, we can use differentials to repre-
sent small signals. For example, v, = 8Visy, iy = 81ps, vg, = §Vpy, and so on. The
vaniation 8/ due to 8Vi;y about the de value may be used to define a mutual
transconductance g,, (sometimes denoled as g, ) for the JFET,

l”m f”m I

f-f Vs Mrm Vg

This transconductance can be found by differentiating Equation 6.55,

dl 2 Vi 2Assns]'?
g (o U R el
The output signal current is
1§ = Gy
s0 using Equation 6.57, the small-signal voltage amplification is
A= ZRolGat) —g.Rp 16.59)

Vg Ugs

Equation 6.59 is only valid under small-signal conditions in which the variations

about the de values are small compared with the de values themselves. The negative
sign indicates that vy, and v, are 180° out of phase.

THE JFET AMPUFIER  Consider the n-channel JFET common source ampllﬁcr shown in Fig-
wre .34, The JFET as an fyes of 10 mA and a pinch-off voliage Vp of 3 V as in Figure 6.34b.
Suppusc that the gate de bias vollage supply Vi = —1.5 V, the drain circuit supply Vpp = 18V,
and Ry = 2000 2. What is the voltage amplification for small signals? How does this compare
with the peak-to-peak amplification of —5.6 found Tor an input signal that had a peak-lo-peak
valueof 1V ?

SOIUTION

We first calculate the operating conditions at the bias point with no ac siguals. This corresponds
to posnt € in Figure 6.34b. The de bias voltage Vigs across the gate 10 souree is —1.5 V. The

531

Definition of
JFET trans-
conductance

JFET trans-
conductance

Small-signal

voltage gain
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resulting de drain current I can be calculated from Equation 6.55 with Vosoy= - Vp=—5V:

Ver \T' -15\T
lps = Ips | 1= -—— || =(10mA)1 =] — =49mA
Visian 5

The transconductance al this de current (at (J) is given by bquation 6.58,

Wlpsshps) A0 2107 F)4.9 x 10 2
2l psslns) ) i) ) o =28 x 10 *AV

Vesqam =3

The voltage amplification of small signals about paint (0 is
Ay =g Ry = (28 x 107)(2000) = -5.6

This turns oul to be the same as the peak-1o-peak voltage amphilication we caleulated in
Table 6.1 When the input ac signal v, varies between —0.5 and +0.5 ¥, as in Table 6.1, the out-
put signal is not symmetric. It varies between —3 Vand 2.8 V, so the vollage gain depends on
the inpul signal. The amplificr is thea said to exhibit nonlinearity.

68 METAL-OXIDE-SEMICONDUCTOR FIELD EFFECT
TRANSISTOR (MOSFET)

6.8.1 F1ELD EFFECT AND INVERSION

The metal-oxide-semiconductor ficld effect transistor is based on the effect of a field
penelrating into a semiconductor, Its operation can be understood by first considering
aparallel plate capacitor with metal electrodes and a vacuum as insulation in between,
as shown in Figure 6.350. When a voltage Vis applied between the plates, charges +()
and — @ (where () = CV) appear on the plates and there is an electric field given by
£ = V/L. The origins of these charges are the conduction electrons for —( and
exposed positively charged metal jons for +Q. Metallic bonding is based on all the
valence electrons forming a sea of conduction electrons and permeating the space
between metal ions that are fixed at crystal lattice sites. Since the electrons are mobile,
they are readily displaced by the field. Thus in the lower plate £ displaces some of the
conduction electrons (o the surface to form —(. In the top plate £ displaces some
electrons from the surface into the bulk to expose positively charged metal ions to
form 4().

Suppose that the plate arca is | cm” and spacing is 0.1 pm and that we apply 2 V
across it. The capacitance C is 8.85 nF and the magnitude of charge () on each plate
is 1.77 x 107* C, which corresponds to 1.1 x 10" electrons. A typical metal such as
copper has something like 1.9 x 10" atoms per cm® on the surface. Thus, there will
be that number of positive me(al ions and electrons on the surface (assuming one
conduction electron per atom). The charges +(? and —() can therefore be generaled by
the clectrons and metal ions at the surface alone. For example, if one in every 1.7 x
10" electrons on the surface moves one atomic spacing (~0.3 nm) into the bulk, then
the surface will have a charge of +Q due lo exposed positive metal ions. Itis clear that,
for all practical purposes, the electric field does not penetrate into the metal and termi-
nates at the metal surface.
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The same is not true when one of the electrodes 15 a semiconductor, as shown in
Figure 6.35h where the structure now is of the metal-insulator-semiconductor type.
Suppose that we replace the lower metal in Figure 6.35a with a p-type semiconductor
with an acceptor concentration of 10! em ™, The number of acceptor atoms on the sur-
face'is 1 x 10'°cm™ We may assume that at room temperature all the acceptors are
ionized and thus negatively charged. It is immediately apparent that we do not have
a sufficient number of negative acceplors at the surface 1o generate the charge (.
We must therefore also expose negative acceptors in the bulk, which means that
the field must penetrate into the semiconductor, Holes in the surface region of the
semiconductor become repelled toward the bulk and therehy expose more negative
acceptors. We can estimate the width W into which the ficld penetrates since the total
negative charge exposed eAWN, must be Q. We find that W is of the order of 1 um,
which is something like 4000 atomic layers. Our conclusion is that the field penetrates
into a semiconductor by an amount that depends on the duping concentration.

The penetrating field into the semiconductor drifts away most of the holes in this
region and thereby exposes negatively charged acceptors to make up the charge - (0.
The region into which the field penetrates has lost holes and is therefore depleted of
its equilibrium concentration of holes. We refer to this region as a depletion layer. As
long as p > n even though p < N, this still has p-type characteristics as holes are in
the majority.

If the voltage increases further, —() also increases, as the field becomes stronger
and penetrales more into the semiconductor hut eventual”it becomes more difficult to
make up the charge —Q by simply extending the depletizy Bayer width W into the bulk.
It becomes possible (and more favorable) to attracl conduction electrons into the de-
pletion layer and form a thin electron layer of width W, near the surface. The charge
—() is now made up of the fixed negative charge of acceptors in W, and of conduction
electrons in Wy, as shown in Figure 6.35c. Further increases m the voltage do not
change the width W, of the depletion layer but simply increase the electron concentra-
tion in W, . Where o these electrons come [rom as the semiconductor is doped p-type?
Some ure attracted into the depletion layer from the bulk, where they were minority
carriers. But most are thermally generated by the hrcakmg of §i=5i bonds (ie., across
the bandgap) in the depleted layer, Thcrmal generation in the depletion layer generates
clectron-hole pairs that become up.iralcd by the field. ‘The holes are then drifted by
the field into the bulk and the clectrons foward the surfacc. Recombination of the ther-
mally generated electrons and holes with other tarriers is greatly reduced because the
depletion layer has so few carriers. Since’ the -electron concentration in the clectron

 layer exceeds (he hole concentration and this layer is within a nunmily pype semi-
conductor, we call this an inversion layer. .. ;.

Itis now apparent tha increasing the field in the metal-insulator-semiconductor de-
vice first creates a depletion layer and then an inversion dayer at the surface when the
voltage exceeds some threshold value V.h This is the Basie principle of the field effect
device. As long as V > Vi, any increase in the ﬁcld and'hcm:{: —(? leads to more electrons
inthe inversion layer, whereas the wul!h uflhe dep]euun layer W, and hence the quantity

by
b= o

| ' Surfuce concentiation of cloms fatoms per wilt area] can be lound from ny = el
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of fixed negative charge remain constant. The insulator between the metal and the scmi-
conductor, that s, a vacuum in Figire 6.35, is typically $i0; in many devices.

682 ENHANCEMENT MOSFET

Figure 6.36 shows the basic structure of an eahancement n-channel MOSFET device
(NMOSFET). A metal-insulator-semiconductor structure is formed between a p-type
Si substrate and an aluminum electrode, which is called the gate (G). The insulator is
the Si0; oxide grown during fabrication. There are two a™ doped regions at the ends
of th#MOS device that form the source (§) and drain (D). A metal contact is also made
to the p-type Si substrate (or the bulk), which in many devices is connected to the
source lerminal as shown in Figure 6.36. Further, many MOSFETs have a degencrately
doped polycrystalline Si material as the gate that serves the same function as the metal
clectrode.

With no voltage applied to the gate, $ to [ is an n*pn structure that is always
reverse-biased whatever the polasity of the source to drain voltage. However, if the
substrate (bulk) is connected to the source, a negative Vpg will forward bias the n'p
junction between the drain and the substrate. As the n-channel MOSFET deviee is not
normally used with a negative Vpg, we will not'consider this polarity.

When a positive voltage less than Vy is applied to the gate, Vis < Vi, as shown
in Figure 6,374, the p-type semiconductor under the gate develops a depletion layer as
a result of the expulsion of holes into the bulk, just as in Figure 6.35b. Since $ and D
are tsolated by i low-conductivity p-doped region that has a depletion layer from §to
D, no current can flow for any positive Vyy.

With Vs = 0, as soon as Yoy s increased beyond the threshold voltage Vy, an
n-channel inversion layer is formed within the depletion layer under the gate and im-
mediately below the surface, as shown in Figure 6,375, This i-channel links the two
n' regions of source and drain. We then have a continuous a-type material with elec-
trons as mobile carriers between the source and drain. When a small Vpg is applied, &
drain current [y lows that is limited by the resistance of the n-channel Ri-:

f n= m I6.ﬁ°]
- Ru ~th

Thus, I initially increases with Vps almost lincuﬂi. as shown in Figure 6.37b.

535

Figure 6.36 The basic siructure of
the enhancement MOSFET and i circuit
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The voltage variation along the channel is from zcro at A (source end) to Vpsat B
(drain end). The gate to the n-channel voltage is then Vs at A and Vep = Vigs — Vpgal B.
Thus point A depends only on Visand remains undisturbed by Vps. As Vpgincreases, the
voltage at B (Vp ) decreases and thereby causes less inversion. This means that the chan-
nel gets narrower from A to B and its resistance R,-c, increases with Vps. Iy versus Vpg
then falls increasingly below the Iy o Vi line. Eventually when the gate to n-channel
voltage al B decreases to just below Vi, the inversion layer at B disappears and a deple-
tion layer is exposed, as illustrated in Figure 6.37c. The n-channel becomes pinched off at
this point P. This occurs when Viys = Vpgisu), satisfying

Ven = Vs = Vosian = Vi 16.61]

It is apparent that the whole process of the narrowing of the n-channel and its
eventual pinch-off is similar to the operation of the n-channel JFET. When the drift-
ing electrons in the n-channel reach P, the large electric field within the very nar-
row depletion layer at P sweeps the electrons across into the n* drain. The current
is limited by the supply of electrons from the n-channel to the depletion layer at P,
which means that itis limited by the effective resistance of the n-channel between
Aand P. ¢

When Vps exceeds Vg, the additional Vpg drops mainly across the highly
resistive depletion layer at P, which extends slightly to P' toward A, as shown in
Figure 6.37d. At P, the gate to channel voltage must still be just Viy as this is the volt-
age required to just pinch off the channel and just eliminate inversion. The widening of
the depletion layer (from B to ) at the drain end with Vg, however, is small com-
pared with the channel length AB. The resistance of the channel from A to P' does not
change significantly with increasing Vpg, which means that the drain current is then
nearly saturated at g,

VU.‘E[HIJ

ip lgg = Vos > Vosiaa l6.62)

AP'w=ch

As Viygiay depends on Vg, so does Ips. The overall Ipg versus Vpg characteristics
for various fixed gate voltages Vg of a typical enhancement MOSFET is shown in
Figure 6.38a. It can be scen that there is only a slight increase in s with Vg beyond
Vpsisay The Ips versus Vgy when Vg > Vogiay characteristics are shown in Fig-
ure 6.38b. It is appatent that as long as Vps > Vpsisa the salurated drain current Ipg in
{he source-drain (or output) circuil is almost totally controlled by the gate voltage Ves
in the sourcegate (or input) circuit. This is what constitutes the MOSFET action. Vari-
ations in Ve then lead to variations in the drain current Ing (just as in the JFET), which
forms the basis of the MOSFET amplificr. The term enhancement refers to the fact that
a gate voltage exceeding Vy, is required to enhance a conducting channel between the
source and drain. This contrasts with the JFET where the gate voltage depletes the
channel and decreases the drain current.

‘The experimental relationship between fpg and Vs (when Vg > Vpsisay) has been
found to be best described by a parabolic equation similar to that for the JFET, except
that now Vs enhances the channel when Vs > Vin s0 Is exists only when Vg > Vi,

Ips = K(Vgs = V) 6631

¥
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where K is a constant. For an ideal MOSFET, it can be expressed as

Enhancement Zie

NMOSFET K=

constant 2Lty
where . is the electron drift mobility in the channel, L and Z are the length and width
of the gate controlling the channel, and & and 1,, are the permiltivity (,£,) and thick-
ness of the oxide insulation under the gate. According to Equation 0.63, Ins is
independent of Vps. The shallow slopes of the fy versus Vpg lines beyond Vpgpua in
Figure 6.38a can be accounted for by writing Equation 6.63 as

isinia Is = K(Ves — V)1 + AVig) fo64

where A is a constant (hat is typicallyhm V- If we extend the Ipg versus Vg lines,
they intersect the —Vjgaxis al 1/4, which is called the Early voltage, I should be
apparent that /pgs, which is Ins with the gate and source shorted (Vs = @), is zero and
is not  useful quantity in describing the behavior of the enhancement MOSFET.

MTHE ENHANCEMENT NMOSFET A particular enhancement NMOS transistor has a gate witha
width (Z) of 50 jm, length (L) of 10 gem, and Si0; thickness of 430 A. The relative permittiv-
ity of $i0y is 3.9. The p-type bulk is doped with 10'° acceptors em™, Iis threshold voltage is
4 V. Estimate the drain current when Vs = 8 V and Vpg = 20V, given A = 0.01. Due (o the
strong scattering of electrans near the crystal surface assume that the electron drift mability g,
in the channel is half the dnft mobility in the bulk.

SOLUTION
Since Vg > Viy, we can assume that the drain current is saturated and we can use the /s versus
Viss relationship in Equation 6.64,

1'55 = K(V{jj —~ Vu,}:“ + J.'f..;;]

where
YA
g o et

T ALty
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The electron mobility in the bulk when N, = 10" e s 1300 em® V™' s ! (Chapler 5).
Thus

_ it (50 % 10 "*_1_[; % 1300 x 10 (39 x 885 x m_”_] i
iy 210 % 10-5)450 % 101

When Vio = &V and Vg = 20V, with L = 0.01, we have
Bas = UOO0I25(8 — 471 + (00120 =0.0024A  of  24mA

683 TurestoLp VOLTAGE

The threshold voltage is an important parameter in MOSFET devices. Its control in
device fabrication is therefore essential. Figure 6.3% shows an idealized MOS struc-
ture where all the clectric field lines from the metal pass through the oxide and pene-
trate the p-type semiconductor. The charge —{) is made up of fixed negative acceptors
in a surface region of W, and of conduction electrons in the inversion layer al the sur-
face, as shown in Figure 6.39a. The voltage drop across the MOS structure, however,

[ ) | Metal X X
R ’ [
Oxide 40
Invemion
- loyer
lr' = V T —
1 - / | .
B**p* ‘0% r
o bo0g | " ’ |
p-semiconductor " 1 ! / i Ve
saabees Depletion ~ 7 = e x
I oo Charge density Voltage, V
ol
meea6e 6
[ﬂ @ ('JI'HI
=] i ch
V=y — -{)
L - B n, B {J"
% Figure 639
0fo © 0g | The threshold voliage and the ideal MOS structure
’ [b) In practice, there ore several charges in the oxide and al the
. o oxide-semiconductor interface that affect the threshold vollage
bl G = mobile ionic chorge (e.g., Na*], G = tropped oxide

charge, Gy = fied oxide charge, and @; = charge kopped af

(b} the interface.
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is not uniform. As the field penctrates the semiconductor, there is a voltage drop V.
across the field penetration region of the semiconductor by virtue of £ = ~d V /dx, as
shown in Figure 6.39a. The field terminates on both electrons in the inversion layer and
acceptors in W,, so within the semiconduclor Z is not uniform and therefore the voll-
age drop is niot constant. But the field in the oxide is uniform, as we assumed fhere were
no charges inside the oxide. The voltage drop across the oxide is constant and is Vg, as
shown in Figure 6.3%. As the applied voltage is V), we must have Vi + Vo = V). The
actual voltage drop Vy, across the semiconductor determines the condition for inver-
sion. We can show this as follows. If the acceptor doping concentration is 10 cm™,
then the Fermi level £ in the bulk of the p-type semiconductor must be 0.347 eV
below E g in intrinsic Si. To make the surface n-type we need to shift Ey at the surface
1o go just above E,. Thus we need to shift £x from bulk to surface by at least 0.347 eV.
We have to bend the energy band by 0.347 ¢V at the surface. Since the voltage drop
across the semrconductor is Vi and the corresponding electrostatic PE change is eV,
this must be 0.347 eV or V. = 0.347 V. The gate voltage for the start of inversion will
then be V,, +0.347 V. By inversion, however, we generally infer that the electron con-
centration at the surface is comparable to the hole concentration in the bulk. This
means thal we actually have to shift E above Eg; by another 0.347 eV, so the gate
threshold voltage Vi, must be Vi, 4 0.694 V.

In practice there are a number of other important effects that must be considered in
evaluating the threshold voltage. Invariably (here are charges both within the oxide and at
the oxide-semiconductor interface that alter the field penetration into the semiconductor
and hence the threshold voltage needed at the gate (o causc inversion. Some of these are
depicled in Figure 6.39b and can be qualitatively summarized as follows.

There may be some mobile ions within the Si0;, such as alkaline ions (Na™, K*),
which are denoted as (O in Figure 6.39b. These may be introduced umntentionally, for

" example, during cleaning and etching processes in the fabrication. In addition there

may be various trapped (immobile) charges within the oxide (g due to structural
defects, for example, an interstitial Si*, Frequently these oxide trapped charges are cre-
ated as a result of radiation damage (irradiation by X-rays or other high-energy beams).
They can be reduced by annealing the device,

A significant number of fixed positive charges (0y) éxist in the uxide region close
to the interface. They are believed to originate from the nonstoichiometry of the oxide
near the oxide-semiconductor interface. They are generally attributed to positively
charged Si* ions. During the oxidation process, a i atom is removed [rom the Si sur-
face 1o react with the oxygen diffusing in through the oxide. When the oxidation
process is stopped suddenly, there are unfulfilled Si ions in this region. ¢ depends on
the erystal orientation and on the oxidation and annealing processes. The semiconduc-
tor to oxide interface itsell is a sudden change in the structure from crystalline Si to
antorphous oxide. The semiconductor surface itsell will have various defects, as dis-
cussed in Chapter 1. There is some inevitable mismatch between the two struclures at
the interface, and consequently there are broken bonds, dangling bonds, point defects
such as vacancies and Si*, and other defects at this interface that trap charges (e.g.,
holes). All these interface charges are represented as (; in Figure 6.39b. () depends
not anly on the crystal orientation but also on the chemical composition of the inter-
face. Both (p and ), overall represent a positive charge that effectively reduces the
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gate voltage needed for inversion. They are smaller for the (100) surface than the (111}
surface, so (100) is the preferred surface for the Si MOS device.

In addition to various charges in the oxide and at the interface shown in Figure 6.39,
there will also be a voltage dilference, denoted as Vi, between the semiconductor
surface and the metal surface, even in the absence of an applied voltage. Vig arises
from the work function difference between the metal and the p-type semiconductor, s
discussed in Chapter 4. The metal work function is generally smaller than the semi-
conductor work function, which means that the semiconductor surface will have an ac-
cumulation of electrons and the metal surface will have positive charges (exposed
metal ions). The gate voltage nceded for inversion will therefore also depend on V.
Since Viy is normally positive and O and ¢y are also positive, there may already be
an inversion layer formed at the semiconductor surface even withoul a positive gate
voltage. The fabrication of an enhancement MOSFET then requires special f abrication
procedures, such as ion implantation, to obtain a positive and predictable Vi

The simplest way Lo control the threshold gate voltage is 1o provide a separate
electrode to the bulk of an enhancement MOSFET, as shown in Figure 6.36, and to
apply a bias voltage to the bulk wilh respect (o the source to obtain the desired Vi,
between the gate and source. This technique has the disadvantage of requiring an -
ditional bias supply for the bulk and 1 udjusting the bulk to source voltage almost
individually for each MOSFET.

684 Ion IMpLANTED MOS TRANSISTORS AND POLY-S1 GATES

The most accurate method of controlling the threshold voltage is by ion implantation, as
the number of ions that are implanted into a device and their location can be closcly con-
trolled. Furthermore, ion implantation can also provide a self-alignment of the edges of
the gate electrode with the source and drain regions. In the case ol an n-channel
enhancement MOSFET, it is generally desirable to keep the p-type doping in the bulk
low to avoid small Vs for reverse breakdown between the drain and the bulk (see Fig-
ure 6.36). Consequently, the surface, in practice, already has an inversion layer {without
any gate voltage) due to various fixed positive charges residing in the o xide and at the
interface, as shown in Figure 6.39b (positive O and % and Vigg). [t then becomes
nccessary (o implant the surface region under the gate with boron acceplors (o femove
the clectrons and restore this region to a p-type behavior.

The ion implantation process is carried outin a vacuurm where the required impurity
ions are generated and then accelerated toward the deviee. The energy of the arriving
ions and hence their penetration into the device can be readily controlled. Typically,
the device is implanted with B acceptors under the gate oxide, as shown in Figure 6.40.
The distribution of implanted acceptors as a function of distance into the device from
the surface of the oxide is also shown in the figure. The position of the peak depends
on the energy of the ions and hence on the accelerating voltage. The peak of the con-
centration of implanted acceptors is made to occur just below the surface of the
semiconductor. Since ion implantation involves the impact of encrgetic ions with the
crystal structure, it results in the inevitable generation of various defects within the im-
planted region. The defects arc almost totally eliminated by anncaling the device al an
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elevated temperature. Annealing also broadens the acceptor implanted region as a re-
sult of increased diffusion of implanted acceplors.

lon implantation also has the advantage of providing self-alignment of the drain
and source with the edges of the gate electrode. In a MOS transistor, it is important that
the gate electrode cxtends all the way from the source o the drain regions so that the
channel formed under the gate can link the (wo regions; otherwise, an incomplete
channel will be formed. To aveid the possibility of forming an incomplete channcl, it
is necessary Lo allow for some overlap, as shown in Figure 6.41a, between the gate and
source and drain regions because of various tolerances and variations involved in the
fabrication of a MOSFET by conventional masking and diffusional techniques. The
overlap, however, results in additional capacitances between the gate and source and
the gate and drain and adverscly affects the high-frequency (or (ransicnt) response
of the device. It is therefore desirable to align the edges of the gate electrode with
the source and deain regions. Suppose that the gate electrode is made narrower so that
it does nol extend all the way between the source and drain regions, as shown in Fig-
ure 6.41b. If the device is now 1on implanted with donors, then doner ions passing
through the thin oxide will extend the n* regions up to the edges of the gate and
thereby align the drain and source with the edges of the gate. The thick metal gate is
practically impervious to the arriving donor ions.

Another method of controlling Vi, is to use silicon instead of Al for the gate elec-
trode. This technique is called silicon gate technology. Typically, the silicon for the
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gate is vacuum deposited (e.g., by chemical vapor deposition using silane gas) onto the
oxide, as shown in Figure 6.42. As the oxide is noncrystalline, the 51 gate is polycrys-
{alline (rather than a singlc crystal) and is therefore-called a poly-St gate. Normally it
is heavily doped to ensure that it has sufficiently low resistivity (o avoid RC time con-
stant limitations in charging and discharging the gate capacitance during tra nsfent or ac
operations. The advantage of the poly-Si gate is that its work function depends on the
doping (type and concentration) and can be controlled so that Vg arid hence Vy, can
also be controlled. There are also additional advantages in using the poly-Si gate. For
example, it can be raised to high temperaturcs (Al melts at 660 °C). Itcanbe uscd as a
mask over the gate region of the semiconductor during the formation of the source and
drain regions. If ion implantation is used to deposit donors into the semiconductor, then
the n* source and drain regions are self-aligned with the poly-Si gate, as shown in
Figure 6.42.

69 LIGHT EMITTING DIODES (LED)

69.1 LED PRINCIPLES

Alight emitting diode (LED) is essentially apr junction diode typically made from a
direct bandgap semiconductor, for example, GaAs, in whiclr the clectron-hole pair
(EHP) recombination results in the emission of a photon. The emitted photon cnergy
hv is approximately equal to the bandgap energy £,. Figure 0.43a shows the energy
band diagram of an unbiased pn* junction device in which the n-side is more heavily
doped than the p-side. The Fermi level £ is uniform through the device, which is a
requircment of equilibrium with no applied bias. The depletion region extends mainly
into the p-side. There is a PE barrier eV, from £, on the n-side to E, on the p-side
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where V, is the built-in voltage. The PE barrier ¢ V,, prevents the diffusion of electrons
from the n-side to the p-side.

When a forward bias V is applied, the built-in potential V, is reduced o V, — V,
which then allows the electrons from the n *-side (o diffuse, that is, become injected,
into the p-side as depicted in Figure 6.43b. The hole injection component from p into
the n*-side is much smaller than the electron injection component rom the a* -side to
the p-side. The recombination of injected electrons in the depletion region and within
a volume extending over the clectron diffusion length L, in the p-side leads to photon
emission, The phenomenon of light emission from the EHP recombination as a result
of minority carrier injection is called injection electroluminescence. Due to the sta-
tistical nature of the recambination process between electrons and holes, the emitted
photons are in random directions; they result from spontancous emission processes
The LED structure has to be such that the emitted photons can escape the device with-
out being reabsorbed by the sermconductor matersal. This means the p-side has to be
sufficiently narrow or we have to use heferostructure devices as discussed below.

One very simple LED siructure is shown in Figure 6.44. First a doped semi-
canductor layer is grown on a suitable substrate (GaAs or GaP). The growth 1s done
epitaxially; that 1, the crystal of the new layer is grown to follow the structure of the
substrate crystal. The substrate is essentially a sufficiently thick crystal that serves as a
mechanical support for the pn junction device (the doped layers) and can be of dif-
ferent erystal. The pn* junction is formed by growing another epitaxial layer but doped
p-type. Those photons that are emitted toward the n-side become either absorbed or
reflected back at the substrate interface depending on the substrate thickness and the
exact structure of the LED. If the epitaxial layer and the substrate crystals have different
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I’ Epilaxial layers

Figure 6.44 A schematic illusiration of
one possible LED device structure. First an
* layer is epilaxially grown on @ subsirate.
A thin p layer is then epitaxially grown on
- S = the first layer.

crystal lattice parameters, then there is a laitice mismatch between the two crystal struc-
tures. This causes lattice strain in the LED layer and hence leads to crystal defects. Such
crystal defects encourage radiationless EHP recombinations. That is, a defect acts as a
recombination center. Such defects are reduced by lattice matching the LED epitaxial
layer to the substrate crystal. It is therefore important to lattice match the LED layer to
the substrate crystal. For example, one of the AIGaAs alloys is a direct bandgap semi-
conductor that has a bandgap in the red-emission region. [t can be grown on GaAs sub-
strates with excellent lattice match which results in high-efficiency LED devices.

There are various dircct bandgap semiconductor materials that can be readily
doped to make commercial pn junction LEDs which emit radiation in the red and
infrared range of wavelengths. An important class of commercial semiconductor ma-
terials that covers the visible spectrum is the I1I-V ternary alloys based on alloying
GaAs and GaP and denoted as GaAs, _,P,. In this compound, As and P atoms from
Group V are distributed randomly at normal As sites in the GaAs crystal structure.
When y < 045, the alloy GaAs,.., P, is a direct bandgap semiconductor and hence the
EHP recombination process is direct as depicted in Figure 6.45a. The rate of recombi-
nation is directly proportional to the product of electron and hole concentrations. The .
emitted wavelengths range from about 630 nm, red, for y = 0.45 (GaAsgssPous) to
870 nm for y = 0 (GaAs).

GaAs;,P, alloys (which include GaP) with y > 0.45 are indirect bandgap
semiconductors. The EHP recombination processes occur through recombination cen-
ters and involve lattice vibrations rather than photon emission. However, if we add

Figure 6,43

. 1 [o) Photon emission in a direct bandgap
._Er _____EH s«mcnndudnl
HGothindmbarde
semiconductor, When il is with
= -\ rirogen, there is an eleckron
recombination center ol En. Direc!
recombination between o coplured
eleciron al E and o hole emits o photon.

—

fol GoAsy P, [y <045 (bl Ndooe-' Go?



External
efficiency

CHAPTER 6 » SEMICONDUCTOR DEVICES

Table 6.2 Sefected LED semiconductor matenils

Semiconductor Active Layer  Structure Dorl  A(0m)  nygpor (%) Comments

Gaths DH D 370-900 10 Infrared (IR)

Mo Gay. As (0 < 1< (L) DH D 60870 30 Redw IR

Inj., Gay As, Py, ' D 116 um =10 LEDs in communications
(v 2,002 v <047)

Ing.4eAl, Gagsy -, P DH D 59046530 =10 Amber, preen, red; high

Tuminous inensity

InGaN/GalN quantum well ow D 450-530 52 Bluetogeen

Gahs P (y < 0.45) HI D 6080 <l Redto IR

GaAsi— Py (v > 0.45) H [ 560-70 ] Red, orange, yellow
(N or Zn, O doping)

SiC HI I 460-470 0.0 Blue, low efficiency

GaP (Zn) HI 1 700 2-3 Red

GaP (N) HJ 1 565 <l Grom

NOTE: Optical communication channels are at 850 am flocol nemwork} and of 1.3 and 1.55 jam [lang distance).
0 = diree! bandgap, | = indirect bandgap. sn is typical ond may vary subsiantially depending on the devce
shocture, DH = double helerosinecture, HJ = homojunction, GW = quantum well

isgelectronic impurities such us nitrogen (in the same Group ¥V oas P) into the
semiconductor crystal, then some of these N atoms substitute for P atoms. Since N and
P have the same valency, N atoms substituting for P atoms form the same number of
bonds and do not act as donors or aceeptors. The electrdhic cores of N and P, however,
are different. The positive nuclevs of N is lesThiclded by electrons compared with
that of the P aton:. This méans thitt @ conduction eleetron in the neighborhood of a N
atom will be attracted and may become capturcd at this site. N atoms therefore intro-
duce localized energy levels, or electron traps, Ly near the conduction band (CB) edge
as depicted in Figure 6.45b, When a conduction clectron is captured at £y, il can at-
tract a hole (in the valence band) in its vicinity by Coulombic attraction and eventually
recombine with it directly and emit 1 photon. The emitted photon energy is only
slightly less than F, as Ey is typically close to .. As the recombination process
depends on N doping, it is not as efficient as direct recombination. Thus, the efficiency
of LEDs from N doped indirect bandgap GuAs P, semiconductors is less than those
from direct handgap semiconductors. Nitrogen doped indirect bandgap GaAs, P,
alloys are widely used in inexpensive green, yellow, and orange LEDs,

The externat efficiency 1), . 0f an LED guantifies the efficiency of conversion of
electric energy info an emitted external optical energy. It incorporates the intenal cffi-
ciency of the radiative recombination process and the subsequent efficiency of photon
extraction from the device. The input of eleetric powerinto an LED is simply the diode cur-
rent and diode voliage product (1 V). If Py i the optical power emitied by the device, then

P,I.;,(nplic:lij

Meximal = v x 100% 16.65]

and some typical values are listed in Table 6.2. For indirect bandgap semiconductors,
Nextemat dre generally less than 1 percent, whereas for direct handgap semiconductors
with the right device Structure, feyer,t can be substantial.
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692 HETEROJUNCTION HIGH-INTENSITY LEDs

A pn junction between two differently doped semiconductors that are of the same
material, that is, the same bandgap £, is called a homojunction. A junction between
two different bandgap semiconductors is called @ heterojunetion. A semiconductor
device structure that has junctions between different bandgap materials is called a
heterostructure device.

LED constructions for increasing the intensity of the output light make use of the
double heterostructure. Figure 6.46a shows a double-heterostructure (DH) device
based on two junctions between different semiconductor materials with different
bandgaps. In this case the semiconductors are AlGaAs with £, % 2 eV and GaAs with
E, ~ 1.4 ¢V. The double helerostructure in Figure 6.46a hasann * p heterojunction be-
tween ' -AlGaAs and p-GaAs. There is another helerojunction between p-GaAs and
p-AGaAs. The p-GaAs region is  thin layer, typically a fraction of a micron, and it

is lightly doped.
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The simplified encrgy band diagram for the whole device in the absence of an ap-
plicd voltage is shown in Figure 6.46b. The Fermi level E is continuous throughout
the whole structure. There is 4 potential energy barrier ¢V, for electrons in the CB of
n*-AlGaAs against diffusion into p-GaAs. There is a handgap change at the junction
between p-GaAs and p-AlGaAs which results in a step change A E, in £, between the
two conduction bands of p-GaAs and p-AlGaAs. This AE, is cffectively a potential
energy barrier that prevents any electrons in the CB in p-GaAs passing to the CB of
p-AlGaAs. (There is also a step change A £, in &, but this is small and is not shown.)

When a forward bias is applied, most of this voltge drops between the n'-
AlGaAs and p-GaAs and reduces the potential energy barrier eV, just as in the nor-
mal pn junction. This allows electrons in the CB of n*-AlGaAs 10 be injected into
p-GaAs as shown in Figure 6.46¢. These electrons, however, are confined to the CB of
p-GaAs since there is a barrier AE, between p-GaAs and p-AlGaAs. The wide
bandgap AlGaAs layers therefore act as confining layers that restrict injected elec-
trons to the p-GaAs layer. The recombination of injected clectrons and the holes
already present in this p-GaAs layer results in spontaneous photon emission, Since the
bandgap E, of AlGaAs is greater than GaAs, the emitted photons do not get reab-
sorbed as they escape the aclive region and can reach the surface of the device as de-
picted in Figure 6.46d. Since light is also not absorbed in p-AlGaAs, it canbe reflected
lo increase the light output.

69.3 LED CHARACTERISTICS

The cnergy of an emitted photon {rom an LED is not simply equal to the bandgap en-
ergy £, because electrons in the conduction band are istributed in energy and S0 are
the holca in the valence band (VB). Figure 6.47a and b illustrate the encrgy band dia-
gram and the encrgy distributions of electrons and holes in the CB and VB, respec-
fively. The electron concentration as a furction of cnergy in the CB is given by
QE)(E) where gE) is the densily of states and f(E) is the Fermi-Dirac functiog
(probability of finding an clectron in a state with energy £). The product o(E)f(E)
represents the electron concentration per unit energy or the concentration in energy
and is plotted along the horizontal axis in Figure 6.47b. There 15 a similar enesgy dis-
tribution for holes in the VB.

The electron concentration in the CB as a function of energy is asymmetrical and
has a peak at 1kT above E,. The energy spread of these electrons is typically ~2kT
from E, as shown in Figure 6.47b. The hole concentration is similarly spread from
E, in the valence band. Recall the rate of direct recombination is proportional to both
the electron and hole concentrations at the energics involved. The transition which is
identified as | in Figure 6.47a involves the direct recombination of an electron at E,
and a hole at E,. But the carrier-concentrations near the band edges are very small
and hence this type of recombination does not occur frequently. The relative intensity
of light at this photon energy hv; is small as shown in Figure 6.47c. The transitions
that involve the largest electron and hole concentrations occur most frequently. For
example, the transition 2 in Figure 6.47a has the maximum probability as both elec-
tron and hole concentrations are largest at these energies as shown in Figure 6.47b.
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[a) Energy band diogram with possible recombination paths.

(b) Energy disiiibution of electrons in the CB and holes in the VB. The highest electron concenralion is kT obove E.

{c] The relafive light intensity as a hunciion of pholon energy bosed on [b).
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The relative intensity of light corresponding to this transition ¢nergy v, is then max-
imum, or close to maximum, as indicated in Figure 6.47c." The transitions marked as
3 in Figure 6.47a that emit relatively high energy photons hv, involve energetic elec-
trons and holes whose concentrations are small as apparent in Figure 6.47b. Thus, the
light intensity at these relatively high photon energies is small. The fall in light inten-
sity with photon energy is shown in Figure 6.47c. The relative light intensity versus
photon energy characteristic of the output spectrum is shown in Figure 6.47c and rep-
resents an important LED characteristic. Given the spectrum in Figure 6.47c we can
also obtain the relative light intensity versus wavelength characteristic as shown in
Figure 6.47d since A = ¢/v. The linewidth of the output spectrum, Av or AZ, is de-
fined as the width between half-intensity points as shown in Figure 6.47c and d.

The wavelength for.the peak intensity and the linewidth AX of the emitted spec-
trum are obviously related to the energy distributions of the electrons and holes in the
conduction and valence bands and therefore to the density of states in these bands. The
photon energy for the peak emission is roughly E, + kT inasmuch as it comesponds lo
peak-to-peak transitions in the energy distributions of the electrons and holes in Figure
6.47b. The linewidth A(hv) of the output radiation between the half intensity points is
approximately 3kT as shown in Figure 6.47c. It is relatively straightforward to calcu-
late the corresponding spectral linewidth AX in terms of wavelength as explained in

Example 6.14.

e L

| L"T::emly is not necessorily maximum when both the eleciron and hole concentrations are moximum, but it will
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(6] A typical cutput spectrum frem o red GoAsP LED.
(b} Typical cutput light power versus forword current.
(c] Typical I-V charocteristics of a red LED. The hum-on voliage is around 1.5 V.

The output spectrum, or the relative intensity versus wavelength characteristics,
from an LED depends not only on the semiconductor material but also on the structure
of the pn junction diode, including the dopant concentration levels. The spectrum in
Figure 6.47d represents an idealized spectrum without including the effects of heavy

" doping on the encrgy bands and the reabsorption of some of the photons.

Typical characteristics of a red LED (655 nm), as an example, are shown in Fig-
ure 6484 to c. The output spectrum in Figure 6.48a exhibits less asymmetry than the
ideaflzed spectrum in Figure 6.47d. The width of the spectrum is about 24 nm, which
corresponds to a width of about 2.7k T in the encrgy distribution of the emitted photons.
As the LED current increases so does the injected minority camier concentration, and
thus the rate of recombination and hence the output light intensity, The increase in the
output light power is not however linear with the LED current as apparent in Figure
6.48b. At high current levels, a strong injection of minority carriers leads to the recom-
hination time depending on the injected camrier concentration and hence on the current
ilgelf; this leads to a nenlinear recombination rate with current. Tvpical current-voltage
characteristics are shown in Figure 6.48c where it can be scen that the turn-om, or
cwt-in, voltage is about .5 V frorh which point the current increases very steeply with
vokage. The turn-on vollage depends on the semiconductor and generally increases with
the energy bandgap E,. For example, typically, for a blue LED it is about 3.5-4.5 V,
for a yellow LED it is abowt 2 V, and for a GaAs infrared LED it is around 1 V.,

STV ALY SPECTRAL LINEWAQEH OF LEDS  We know that a spread in the output wavelengibs istekaied to

LED spectral
Tinewidth

a spread in the emitted photon cagrgies a5 depicted in Figure 6.41. The emited:photon energy
Ep = heft and the speead in the photon. energies, A £y = A(huh7: 347 bgtwygen ghe half-
inlensity points as shown in Figure 6.47c. Show that linccurrcspondmg linewidth A%, between

the half-intensity points in the outpul spectrum is
3T

C

AL =2 — [6.86]
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What is the speciral linewidth of an optical communications LED operating at 1550 nm and at
300 K?

Lt
First consider the relationship between the photon frequency wand A,
: | he
Ty hw

in which v is the photon energy. We can diffcrentiate this,
d he 2

)~ e
The ncgative sign implies that increasing the photon energy decreases the wavelength. We are
only interested in changes or spreads; thus A4/A(hv) = |dk/d(h¥)],

s = Xy = Lar
= — V)= —
he he

where we used AChv) = 3kT , and oblained Equation 6.66. We can substitute ). = 1550nm and
7= 300 K 1o calculate the linewidth of the 1550 nm LED:
T 3(1.38 x 10°)(300)

= = 1550 x 10— ————
A=k = I 0 103 x 1)

=150x10'm o 1500m

The spectral linewidth of an LED output is due to the spread in the photon cnergics, which is

fundamentally about 3% . The only option for decreasing Akal a given wavelength is toeduce
“the femperalurc. The output spectrum of a laser, on the other hand, has a much namower

linewidth. A single-mode faser can have an output linewidth less than | om. :

610 SOLARCELLS
$¥03  Puorovoutaic DEVIC PRINCIPLES

* A simplified schematic diagram of a typical solar cell is shown in Figure 6.49. Con- X
sider a pn junciioa with a very aarrow and more heavily doped n-region. The illumi-
nation is throug¥he thin a-side. The depletion region (W9 or the space charge layer
(SCL) extends prmasily into the p-side. There is a buitiin ficld Z, in this depletion
layer. The clectrodes aitached  the n-side must allow illuraination (o cater the device
arid at the same time resubl in a small series resistance. They are deposiled on the
n-side to forman array of finger electrodes on the surface as depicted in Figure 6.50.
A thin anlireflection coating on the surfuce (not shown in the figure) reduces reflec-
tions and allows more light to enter the device.

 As the m-side is very nasrow, most of the photons are absorbed within the deple-
tion region (W) and within the neutral p-side (¢,) and photogencrate EHPs in these
regions. EHPs photogenerated in the depletion region are immediaicly separated by
the basih-in field =, which drifts them apart. The electron drifis and reaches the neutral
n'*-sigle whercupon it makes this region negative by an amount of charge —e, Similarly,
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Figure 6,50 Finger electiodes on the surfoce _ P
of a solar cell reduce the series resisance.

the hole drifts and reaches the neutral p-side and thereby makes this side positive. Con-
sequently an open circuit voltage develops between the terminals of the device with
the p-side positive with respect to the n-side. If an external load is connected, then the
excess electron in the n-side can travel around the external circuit, do work, and reach
the p-side to recombine with the excess hole there. It is important to realize that with-
out the internal field %, it is not possible to drift apart the photogenerated EHPs and
accumulate excess electrons on the n-side and excess holes on the p-side.

The EHPs photogenerated by long-wavelength photons that are absorbed in the
neutral p-side diffuse around in this region as there is no electric field. If the recombi-
nation lifelime of the electron is ,, it diffuses a mean distance L, = +/2D,1, where D,
is its diffusion coefficient in the p-side. Those electrons within a distance L, (o the de-
pletion region can readily diffuse and reach this region whereupon they become drifted
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by Z, to the n-side as shown in Figure 6.49. Consequently only those EHPs photogen-
erated within the minority carrier diffusion length L, to the depletion layer can
contribute to the photovoltaic effect. Again the importance of the built-in field £, is
apparent, Once an clectron diffuses to the depletion region, it is swepl over to the
n-side by £, to give an additional negative charge there. Holes left behind in the p-side
contribute & net positive charge to this region. Those photogenerated EHPs further
away from the depletion region than L, are lost by recombination, It is therefore im-
portant to have the minority carrier diffusion length L, be as long as possible. This is
the reason for choosing this side of a Si pn junction to be p-type which makes
clectrons the minority carriers; the electron diffusion length in Si is longer than the
hole diffusion length. The same ideas also apply to EHPs photogenerated by short-
wavelength photons absorbed in the n-side. Those holes photogenerated within a dif-
fusion length L can reach the depletion laycr and become swept across lo the p-side.
The photogeneration of EHPs that contributes 1o the photovoltaic effect thercfore
occurs in & volume covering Ly + W+ L, If the terminals of the device are shorted,
as in Figure 6.51, then the excess electron in the n-side can flow through the external
circuit to neutralize the excess hole in the p-side. This current due to the flow of the
photogenerated carriers is called the photocurrent.

Under a steady-state operation, there can be no net current through an epen circuit
solar cell. This means the photocurrent inside the device due to the flow of photogen-
efated carriers must be exactly balanced by a flow of carriers in the opposite direction,
The latter carriers are minorily carriers that become injected by the appearance of the
photovoltaic voltage across the pn junction as in a normal diode. This is not shown in
Figure 6.49.

EHPs photogenerated by energetic photons absorbed in the n-side near the surface
region or outside the diffusion length Ly 1o the depletion layer arc los! by recombina-
tion as the lifetime in the n-side is generally very short (due to heavy doping). The
n-side is therefore made very thin, typically less than 0.2 pm. Indeed, the length €, of
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Salor cell inveniors of Bel Labs [feft lo righ]: Gerald Pearson, Doryd Chapin,
ond Calvin Fuller. They ore checking a 5i solar cell sample for the amounl
of volloge produced 1 954).

| SOURCE: Courtesy of Bell Lok, lucent Technologies.
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l SOURCE: Courlesy of NASA, Drydan Flight
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the n-side may be shorter than the hole diffusion length Lj. The EHPs photogenerated
very near the surface of the n-side, however, disappear by recombination due to vari-
ous surface defects acting as recombination centers as discussed below.

At long wavelengths, around 1-1.2 pm, the absorption coefficient of Si is small
and the absorption depth (1 /a) is typically greater than 100 pm. To capture these long-
wavelength photons, we therefore need a thick p-side and at the same time a long mi-
nority carrier diffusion length L,. Typically the p-side is 200-500 pm and L, tends to
be shorter than this.

Crystalline silicon has a bandgap of 1.1 eV which corresponds 1o a threshold
wavelength of L1 ym. The incident energy in the wavelength region greater than
1.1 ym i then wasted; this is not a negligible amount (~25 percent). The worst part
of the efficiency limitation however comes from the high-energy photons becoming
absorbed near the crystal surface and being lost by recombination in the surface re-
gion. Crystal surfaces and interfaces contain a high concentration of recombination
centers which facilitate the recombination of photogenerated EHPs near the surface.
Losses due to EHP recombinations near or at the surface can be as high as 40 percent.
These combined effects bring the efficiency down to about 45 percent. In addition,
the antireflection coating is not perfect, which reduces he total collected photons by
a factor of about 0.8-0.9. When we also include the limitations of the photoyoltaic
action itself (discussed below), the upper limit to a photovoltaic device that uses a
single crystal of Si is about 24-26 percent at room temperature.

Consider an ideal pn junction photovoltaic device connected (o a resistive load
R as shown in Figure 6.52a Note that [ and V in the figure define the convention for
the direction of posilive current and positive voltage. If the load is a short circuit,
then the only current in the circui is that generated by the incident light. This is the
photocurrent /4 shown in Figure 6.52b which depends on the fidmber of EHPs photo-
generated within the volume enclosing the depletion region (W) and the diffusion
lengths o the depletion region (Figure 6.51). The greater is the light inensity, the

n= =

-— - . ’—— ‘J
v AL 4
A, : !
R R
fol bl kI
Figure 6,52 .

(o) The solar cell connected 1o an external lood R and the convention for the definitions of positive voltoge and

positive currenl.
(b} The solor cell in short circuit. The current is the pholocurrent (s,
() The solor cell driving an externol load . There s a vollage ¥ and curren! fin the circuit.
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The short circuit current is ks and the open
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posilive curren! require an external bias
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higher is the photogeneration rate and the larger is /. If I is the light intensity, then
the short circuit current is

le = ~lw=—-KI 1667]

where K is a constant that depends on the particular device. The photocurrent does not
depend on the voltage across the pn junction because there is always some internal
field to drift the photogencrated EHP. We exclude the secondary effect of the voliage
modulating the width of the depletion region. The photocurrent 1, therefore flows
even when there is not a voltage across the device.

IF R is not a short circuit, then a positive voltage V appears across the pn junction as
aresult of the current passing through it as shown in Figure 6.52c. This voltage reduces
the buili-in potential of the pa junction and hence leads to minority carrier injection and
diffusion justas it would in a normal diode. Thus, in addition o 1, there is also a forward
diode current /, in the circuit as shown in Figure 6.52c which arises from the voltage de-
veloped across . Since [y is due to the normal pn junction behavior, it is given by the

diode characteristics,
eV
!JZ |"., exp qk'—r' -1

where /, is the “reverse Saturation current”” and n is the ideality factor (n = 1 - 2). Inan
open circuil, thie net current is zero. This means that the photocurrent /,,, develops just
enough photovoltaic voltage Vi to generale a diode current £y = fp.

Thus the total current through the solar cell, as shown in Figure 6.52¢, is

/ !+![ ('V) 1] f6.68)
== Llexpl — | -
Ll el T

The overall I-V characteristics of a typical Si solar cell are shown in Figure 6.53.
It can be seen that it coriesponds to the normal dark characteristics being shifted down

Typicol I-V choracteristics of I (mA)
10K} <
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by the photocurrent /p,, which depends on the light intensity I. The open circuil oul-
put voltage Vi, of the solar cell is given by the point where the /-V' curve cuts the
V axis (I = 0). It is apparent that although it depends on the light intensity, its value
typically lies in the range 0.5-0.7 V.

Equation 6.68 gives the /- characteristics of the solar ccll. When the solar cell is
connected o aload as in Figure 6.54a, the load has the same voltage as the solar cell and
carries the same current, But the current / through R is now in the opposite direction (o
the convention that current flows from high 1o low potential. Thus, as shown in Fig-

ure 6.54a,

V
=—— 16.691
‘R

The actual current I’ and voltage V' in the circuit must satisfy both the I-V char-
acteristics of the solar cell, Equation 6.68, and that of the load, Equation 6.69. We can
find I’ and V"' by solving these two equations simultancously or using a graphical
solution. ' and V" in the solar cell circuit are most easily found by using a load line
construction. The J-V characteristics of (he load in Equation 6.69 is a straight line
with a negative slope —1/R. This is called the Joad line and is shown in Figure 6.54b
along with the /-V characteristics of the solar cell under a given intensity of illumina-
tion. The load line cuts the solar cell characteristic at P where the load and the solar
cell have the same current and voltage I and V' Paint P therefore satisfies both
Equations 6.68 and 6.69 and thus represents the operating point of the circuit.

The power delivered (o the load is Py, = 1"V, which is the area of the rectangle
bound by the  and V axes and the dashed lines shown in Figure 6.54b. Maximum
power is delivered to the load when this rectangular area is maximized (by changing £
or the intensity of illumination), when /' = £, and V' = V,,. Since the maximum

The load fine”
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possible current is /. and the maximum possible voltage is V., [V, represents the
desirable goal in power delivery for a given solar cell. Therefore it makes sense to
compare the maximum power output /, V,, With Iy V. The fill Factor FF, which is a
figure of merit for the solar cell, is defined as

Definition of IV
fill factor FF IV [6.70]

The FF is a measure of the closencss of the solar cell -V curve to the rectangular
shape (the ideal shape). It is clearly advantageous to have the FF as close to unity as
possible, but the exponential pn junction-properties prevent this. Typically FF values
are in the range 70-85 percent and depend on the device material and structure,

A SOLAR CELL DRIVING A RESISTIVE LOAD  Consider the solar cell in Figure 6.54 that is
driving a load of 3. This cell has an area of 3 cm x 3 cm and is illuminated with light of
intensity 700 W m2. Find the current and voltage in the circuit. Find the power delivered (o the
load, the efficiency of the solar cell in this circuit, and the fill factor of the solar cell.

SOLUTION

The I-V characteristic of the load in Figure 6.544, is the load line in Equation 6.69; that is,
I'= =V/(3Q). The line is drawn in Figure 6.54b with a slope 1 /(3 ). It cuts the 1-V charac-
teristics of the solar cell at 1* = 157 mA and V' = 0.475 V as apparent in Figure 6.54b, which
are the current and voltage, respectively, in the photovoltaic circuil of Figure 6.54a. The power
delivered to the load is

Pua = 1'V' = (15T x 107" H0ATS V) = 0.0746 W or 746 mW

The input of sunlight power is -
P, = (Light intensity)Surface area) = (700 W m™?)(0.03 m)?* = 0.63 W
The efficiency is
(0.0746 W)

Pﬂ‘
e = (100%) % = (100%) =2 — |1.6%
Mot = (100%) = = (100 W)

This will increase if the load is adjusted to extract the maximum power from the solar cell,
but the increase will be small as the rectangular area 'V in Figure 6.54b is already quite close
1o the maximum.

The fill factor can also be calculated since point 7 in Figure 6.54b is close to the optimum
operation, maximum outpul power, in which the rectangular area 1V’ is maximuom:

FF LV TV ) (157 mA {0,475 V) _

= Bed S——" e mp— e I or 2%
1V LeVe (178 mA){0.SE V)

J0LJCERLE  OPEN CIRCUIT VOLTAGE AND ILLUMINATION A solar cell under an illumination of 500 W m
has a short circuit current /.. of 150 mA and an open circuit output voltage V. of 0.530 V. What
are the short circuit current and open circuit vollage when the light intensity is doubled? Assume
n = 1.5, a typical value for various Si pn junctions,
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SOLUTION
The gencral I-V characteristic under illumination is given by Eyuation .68, Setting 1 = 0 for

open circuil,
1=-I f[q{rv“) |] 0
= + 1 e b= -
" ’ kT

Assuming that Vi 3> nkT e, rearranging the above cquation we can find Vi,

o= 2{1)
¢ [

The photocurrent fy, depends on the light iniensity T via s = KT, where K is a constant.
Thus, at & given temperalure, the change in ¥, s
k[l T (1
VI\:: = Vm-l = f_ “E) = J—'_ll'l('—])
L4 L £ Iy

The short circuil current is the photocurrent, s0 at double the intensity this is
1
!‘ﬂ - Ld(l'_) = (!50 mM[l] =30 mA
1

Assuming i = 1.5, the new open circuit voltage is

qkT I3
Voo = Vo + — 0 ) = 0,530V + (1.5)(0.026) In(2) = 0557V
€

This is a 5 percenl increase compared with the 100 percent increase in illumination and the short
circuit current.

Open circuit
condition

Open circuit
oulpul
voltage

Open circuil
voltage and
light intensity

6102 SERIES AND SHUNT RESISTANCE

Practical solar cells can deviate substantially from the ideal pn junction solar cell be-
havior depicted in Figure 6.53 duc to a number of reasons. Consider an illuminated pr
junction driving a load resistance R, and assume that photogeneration takes place in
the depletion region. As shown i Figure 6.55, the photogenerated clectrons have to
waverse a surface semiconductor region 1o reach the nearest finger electrode. All these
electron paths in the n-layer surface region to finger electrodes introduce an effective
<eries resistance R, into the photovoltaic circuit. If the finger clectrodes are thin, then
the resistance of the electrodes themselves will further increase R,. There is also a se-
ries resistance due to the neutral p-region, but this is generally small compared with
the resistance of the clectron paths to the finger clectrodes. .

Figure 6.56a shows the equivalent circuit of an ideal pn junction solar cell. The
photogeneration process is represented by a constant current gencrator 4 Which gen-
erates a current that is proportional to the light intensity. The flow of photogenerated
carriers across the junction gives rise to a photovoltaic voltage difference V across the
junction, and this voltage leads to the normal diode current I, = I [exp(eV/kT) —1].
This-diode current 1, is represented by an ideal pn junction diode in the circuit as
s.hown in Figure 6.56a. As apparent, I and /, are in opposite directions (I is "up”
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Figure 6.56 The equivolent circuit of a solor cell.
{u) Ideal pn junction slar cell.
(b Farallel and series resislonces R, and

and 1 1s “down”), so in an open circuit the photovoltaic voltage is such that Lo and 1,
have the same magnitude and cancel each other. By convention, positive current / at
the output terminal is normally taken (o flow into the terminal and is given by Equa-
tion 6.68. (In reality, of course, the solar cell current is negative, as in Figure 6.53,
which represents a current that is flowing out into the load.)

Figure 6.56b shows the equivalent circuit of a more practical solar cell. The series
resistance K, in Figure 6.56b gives risc 10 a voltage drop and therefore prevents the
ideal photovoltaic voltage from developing at the ontput between A and B when a
current is drawn, A fraction (usually small) of the photogenerated carriers can also
flow through the crystal surfaces (edges of the device) or through grain houndaries in
polycrystalline devices instead of flowing though the external load R, These effects
that prevent photogencraled carriers from flowing in the external circuit can be repre-
sented by an effective internal shunt or parallel resistance R, thal diverts the pho-
tocurrent away from the load R;. Typically R, 15 less important than R, in overall
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of the solar cell.

F{m.‘\) M&I‘I‘ fﬁ, = 10mA.

Jevice behavior, unless the device is highly polycrystalline and the current componcnt
flowing through grain boundaries is not negligible.

The series resistance R, can significantly deteriorate the solar cell performance
as illustrated in Figure 6.57 where R, = 0 is the best solar cell case. 1t is apparent that
the available maximum output power decreases with the serics resistance which
therefore reduces the cell efficiency. Notice also that when R, is sufficiently large, it
Jimits the short circuit current. Similarly, low shunt resistance values, due to exten-
sive defects in the material, also reduce the cfficiency. The differcnce is that although
R, does not affect the open circuit voltage Vi, low R, leads to a reduced V.

6103 SOLAR CELL MATERIALS, DEVICES, AND EFFICIENCIES

Most solar cells use crystalline silicon because silicon-based scmiconductor fabrication
is now a mature technology that enables cost-cffective devices (0 be manufactured.
Typical Si-based solar cell efficiencies range from about 18 percent for polycrystalline
to 22-24 peccent in high-efficiency single-crystal devices that have special structures
10 absorh as many of the incident phiotons as possible. Solar cells fabricated by making
a pn junction in the same crystal are called homojunctions. The best Si homojunction
solar cell efficiencies are about 24 percent for expensive single-crystal passivaled
emitter rear locally diffused (PERL) cells.” The PERL and similar cells have a tex-
tured surface that is an array of “inverted pyramids” etched into the surface to capture
as much of the incoming light as possible as depicted in Figure 6.58. Normal reflec-
tions from a flat crystal surface lead to  loss of light, whereas reflections inside the
pyramid allow a second or even a third chance for absorption. Further, affer refraction,
photons would be entering the semiconductor at oblique angles which means that they
will be absorbed in the useful photogeneration volume, that is, within the electron dif-
fusion length of the depletion layer as shown in Figure 6.58.

12 Much of the pioneesing work for highefficiency PERL solar cells wos doae by Mortin Green and cowsrkers af the
ng
University of New South Wales.

361

R =200 Figure 6.57 The series resisiance broadens
the 1-V curve and reduces the maximum
available power ond hence the overoll efficiency

The exomple is o Si solor cell with 5 5 1.5 and
1 [, 3 % 106 mA, llumination is such that the
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Figure 6.58 A inverted pyramid textured ; )
surface substantially reduces reflection losses and NP .
increases absorplion probability in the device. '

Table 6.3 summarizes some typical characteristics of various solar cells. GaAs and
Si solar cells have comparable elficiencies though theoretically GaAs with a higher
bandgap is supposed to have a better efficiency. The largest Factors reducing the effi-
ciency of a 8i solar cell are the unabsorbed photons with v < E, and short wavelength
photons absorbed near the surface. Both these factors are improved if tandem cell
structures or heterojunctions are used. '

There are a number of HI-V semiconductor alloys that can be prepared with differ-
cnt bandgaps but with the same lattice constant. Heterojunctions (junctions between dif-
ferent materials) from these semiconductors have negligible interface defects. AlGaAs
has a wider bandgap than GaAs and would allow most solir photons to pass through, If
we use i thin AlGaAs layer on a GaAs pn junction, as shown in Figure 6.59, then this
layer passivates the surface defeets normally present in a homojunction GaAs cell, The
AlGaAs window layer therefore overcomes the surface recombination limitation and
improves the cell efficiency (such cells have efficiencies of about 24 percent).

Table 6.3 Typicol charocteristics of various solar cells ot room lemperoture under AMI.5 luminafion of 1000 W m=?

Semiconductor < EEV) VetM)  SemAem FF g(%) Commients

i, single cryital L nsa7 4 0.708  16-24  Singlecrystal, PERL

Si, polycrystalline 11 05068 # 0.7-08 1219

Amorphous Si:Ge:H film §-13 Amorphous film with tandem
i+ siricture, fonvenicnt large-

drea fabrication
GaAs, single crystal 142 1 3 RS U2 43
GaAIAY/GaAs, tandem . 103 29 0864 248 Diffcient handgap materials in
k& landem increases absorpiion
GalnP/GaAs, tandem 25 " 0.86 25-30  Different bandgap materials in
= ) : - efficiency
CiTe, thin film R Tt ] . SR ¥ RIS T IO
P single crystal ¢+ 1M 087 ¢ » 08 I

CulnSer 10 12-13

[}

*| NOTE: AMI 5 refers to o solor ilumination of “Auir Mass 1.5," which represents solor rodiotion folling o the Enrth's surboce with a lolo!
imensity for irrodbonce] of 1000 Wm  AMIS s widely used for comparing solar eefls.
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Figure .59 AlGaAs window loyer on GoAs -
passivates the surfoce skofes and thereby increases Figore 6.60 A helerojunction solor cel between wo
the phologeneration efficiency. diffecent bandgap semiconductors (GaAs and AlGaAs|.

Helerojunctions between different bandgap 11V semiconductors that are lat-
tice matched offer the potential of developing high-cfficiency solar cells. The sim-
plest single heterojunction example, shown in Figure 6.60, consists of a pn junction
using a wider bandgap n-AlGaAs with p-GaAs. Energetic pholons (kv > 2 eV) arc
absorbed in AlGaAs, whereas those with energies less than 2 eV but grealer than
1.4 ¢V are absorbed in the GaAs layer. In more sophisticated cells, the bandgap
of AlGaAs is graded slowly from the surface by varying the composition of the
AlGaAs layer. i

“Tandem or cascaded cells use two or more cells in tandem or in cascade o in-
crease the absorbed photons ffom ihe incident light as illustrated in Figure 6.61. The
first cell is made from a wider bandgap (E, ) matcrial ad only absorbs photons with
hv > Eq. The second cell with bandggp E,» absorbs photons that pass the first cell
and have kv > E,. The whole structure can be grown withiin a single crystal by using
lattice-matched crystalline layers leading to a monolittiic tandem écl: If, in addition,
light concentrators are atso used, the efficiency. can be further increased. For exam- . -
ple, a GaAs-GaSb tandem cell operating under a 100-sun condition, that is, 100times
that of osdinary sunlight, have exhibited an efficiency of about 34 percent. Tandem
cells have been used in thin-film a-SiH-(hydrogenated amorphous Si) pin (p-type, -
intrinsic, and n-type structure) solar cells fo obtain efficiencies up 1o about 12 percent.
These tandem cells have a-Si:H and a-Si:Ge:H cells and are easily fabricated in large
areas.

: Figure 6.61 A landen cel

fr=c Cell | hos o wider bandgop and absorbs energelic
photons with v > Eg1, Cell 2 obsorbs photons thot
pmshwg‘ncollmdhuvehu > Ep.

Cell H(E) Cell 2(Ep<Ey)
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ADDITIONAL TOPICS

6.11  pin DIODES, PHOTODIODES, AND SOLAR CELLS

The pin Si diode is a device that has a structure with three distinct layers: a heavily
doped thin p*-type layer, a relatively thick intrinsic (i-Si) layer, and a heavily doped
thin n*-type layer, as shown in Figure 6.62a. For simplicity we will assume that the
i-layer is truly intrinsic, or at lcast doped so lightly compared with p* and* layers that
it behaves almost as if intrinsic. The intrinsic layer is much wider than the p* and o’

regions, typically 5-50 pum depending on the particular application. When the structure
is first formed, holes diffuse from the p*-side and electrons from the n* -side into the i-
Si layer where they recombine and disappear. This leaves behind a thin layer of exposed
. negatively charged acceptor ions in the p*-side and a thin layer of exposed positively
charged donor ions in the n*-side as shown in Figure 6.22b. The two charges are sepa-
rated by the i-Si layer of thickness W . There is a uniform built-in ficld £, in the i-Si
layer from the exposed positive ions to the exposed negative ions as illustrated in Fig-
ure 6.22c. (Since there is no net space charge in the i -layer, from d'%fdx = pfe.e, = 0,
the ficld must be uniform.) In contrast, the built-in ficld in the depletion layer of a pn
Junction is not uniform. With no applied bias, the equilibrium is maintained by the built-
in ficld Z, which prevents further diffusion of majority carriers from the p* and n* lay-
ers into the i-Si layer. A hole that manages to diffuse from the p*-side into the i-layer
is drifted back by %, so the net current is zero. As in the pr junction, there is also a
buill-in potential V, from the edge of the p* -side depletion region to the edge of the n'*-
side depletion region. V,, (like %,) provides a potential barrier against further net diffu-
sion of holes and electrons into the i-layer and maintains the equilibrium in the open cir-
cuit (net current being zeru) as in the pn junction. It is apparent from Figure 6.62¢ that,
in the absence of an applied voltage, £, = V,/W.

One of the distinct advantages of pin diodes is that the depletion layer capacitance
is very small and independent of the voltage. The separation of two very thin layers of
negative and positive charges by a fixed distance, width W of the i-Si layer, is the same
as that in a paralle] plate capacitor. The junction or depletion layer capacitance of
the pin diode is simply given by

. kA
C = [&,’“
™

where A is the cross-scctional area and ¢,¢, is the permittivity of Lhe semiconductor
(1), respectively. Further, since the width W of the i-Si layer is fixed by the structure,
the junction capacitance does not depend on the applied voltage in contrast to that of
the pn junction. Cye, is typically of the order of a picofarad in fast pin photodiodes, so
with a 50 2 resistor, the RCy, time constant is about 50 ps.

When a reverse bias voltage V, is applied across the pin device, it drops almost en-
tirely across the width of the i-Si layer. The depletion layer widths of the thin sheets of
acceptor and donor charges in.the p* and n* sides are negligible compared with W.
The reverse bias V, increases the built-in voltage to ¥, 4 V, as shown in Figure 6.62d.
The field Z in the i-Si layer is still uniform and increases to

v, v, :
*E:T:n‘l"“jz_ V,»V,) - k71

=
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Figure 6.61

) The builtin field ocross the dode

Since the width of the i Jayer in  pin device 1s Lypically much larger than the depletion
layer widih in an ordinary pn junction, the pin devices usually have higher breakdown
voltages, which makes them useful where high breakdown voltages are required.

In pin photodetectors, the pin structure is designed so that photon absorption occurs
primarily over the i-Si layer. The photogenerated electron-hole pairs (EHPs) in the
i-Si layer are then separated by the field E and drified toward the n* and p* sides,

37-

565

LS ":wt |o] The schematic siructure of an idelized pin photodiode.
—@ ¢ [b) The net spoce charge denstty ocross the: phatodiode.

v [d) The pin photodiods in photodefection is reverse-biosed
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respectively, as illustrated in Figure 6.62d. While the photogenerated carriers are drifting
through the i-Si layer, they give rise to an extemal photocurrent which is easily detected as
a voltage across a small sampling resistor R in Figure 6.62d (or detected by a current-to-
voltage converter). The response time of the pin photodiode is determined by the transit
times of the photogenerated carriers across the width W of the i-Si layer. Increasing W al-
lows more photons to be absorbed, which increases the output signal per input light inten-
sity, but it slows down the speed of response because carrier transit times become longer,

The simple pr junction photodiode has two major drawbacks. Its junction or de-
pletion layer capacitance is not sufficiently small to allow photodetection athigh mod-
ulation frequencies. This is an RC time constant limitation. Secondly, its depletion
layer is at most a few microns. This means that at long wavelengths where the pene-
tration depth is greater than the depletion layer width, the majority of photons are ab-
sorbed outside the depletion layer where there is no field to separate the EHPs and drift
them, The photodetector efficiency is correspondingly low at these long wavelengths.
These problems are substantially reduced in the pin photodiode.” The pin photo-
voltaic devices, such as a-Si:H solar cells, are designed to have the photogeneration
occur in the i-layer as in the case of photodetectors. Obviously, there is no external ap-
plied bias, and the built-in ficld %, separates the EHPs and drives the photocurrent.

6,12 SEMICONDUCTOR OPTICAL AMPLIFIERS
AND LASERS
All practical semiconductor laser diodes are double heterostructures (DH) whose

energy band diagrams are similar to the LED diagram in Figure 6.46, The energy
band diagram of a forward biased DH laser diode is shown in Figure 6.63a and b.

ign the first semicon-

chalkboard with tho! in

Figure 6.63.)
| SCURCE: Courtesy ol Bell Labs, lucent
| Tachnologies.

| 1 The pin pholodiode was invented by ). Nishizawa and his research group in Japan in 1950,
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Figure 6.63

Densily of states bands in the octive layer.

In this case the semiconductors are AlGaAs with E, = 2 ¢V and GaAs with E, ~
1.4 eV. The p-GaAs region is a thin layer, typically 0.1-0.2 um, and constitutes
the active layer in which stimulated emissions take place. Both p-GaAs and
p-AlGaAs are heavily p-type doped and are degenerate with the Fermi level Er, in
the valence band. When a sufficiently large forward bias is applied, E, of n-AlGaAs
moves very close o the E, of p-GaAs which leads to a large injection of electrons
in the CB of n-AlGaAs into p-GaAs as shown in Figure 6.63b. In fact, with a
sufficient large forward bias, E. of AlGaAs can be moved above the E. of GaAs,
which causes an enormous clectron injection from n-AlGaAs into the CB of
p-GaAs. These injected electrons, however, are confined to the CB of p-GaAs
since there is a barrier A E, between p-GaAs and p-AlGaAs due to the change in
the bandgap.

The p-GaAs layer is degenerately doped. Thus, the top of its valence band (VB)
is full of holes, or it has all the electronic states empty above the Fermi level E,

la) A double heterostruciure diode has two
junctions which are between two differen!
bandgap semiconductors [GaAs and AlGaAs).

[b} Simplified energy band diagrom under @ large
forward bias. lasing recombination lakes place in
the pGas loyer, the aciive loyer

[c) The density of siates ond energy distribution of
elecirons and holes in the conduction and valence

561
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Figure 6.64 Semiconducior lasers have an optical covity to build up the required elecromognelic osciiotions.
In this sxample, one end of the cavity has o Bragg distribuled reflector, a reflection grofing, that reflects only certoin
wavelengths back inlo the cavity.

in this layer, The large forward bias injects a very large concentration of electrons
from n-AlGaAs into the conduction band of p-GaAs. Cansequently, as shown in
Figure 6.63¢, there is a large concentration of electrons in the CB and totally empty
states at the top of the VB, which means that there is a population inversion. An in-
coming photon with an energy hv, just above E,, can stimulate a conduction electron
in the p-GaAs layer to fall down from the CB to the VB and emit a photon by stimu-
lated emission as depicted in Figure 6.63c. Such a transition is a photon-stimulated
electron-hole recombination, or a lasing recombination. Thus, an avalanche of stimu-
lated emissions in the active layer provides an optical amplification of photons with
hv, in this layer. The amplification depends on the extent of population inversion and
lience on the diode forward current. The device operates as a semiconductor optical
amplifier which amplifics an optical signal that is passed through the active layer.
There is 4 threshold current below which there is no stimulated emission and no
optical amplification.

To construct a semiconductor laser with a self-sustained lasing emission we
have (o incorporate the active layer into an optical cavity just as in the case of the
HeNe lascr in Chapter 3. The optical cavity with reflecting ends, reflects the coher-
ent photons back and forward and enconrages their constructive interference within
the cavity as depicted in Figure 6.64. This leads to a buildup of high-energy electro-
magnetic oscillations in the cavity. Some of this clectromagnetic energy in the
cavily is tapped out as output radiation by having one end of the cavity as partially
reflecting. For example, one type of optical cavity, as shown in Figure 6.64, has a
special reflector, called a Bragg distributed reflector (BDR), at one end to reflect
only certain wavelengths back into the cavity.'" A BDR is a periodic corrugated

" Partial raﬂmiumluf waves from the corrugations in the DBR can interfere constuclively ond consfitute o reflected
wave only for certain waveleagths, called Bragg wavelengths, thal are related to e periodicity of the corrugalions
A DBR octs like o rellection grateng in opfics.
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Figure 6,65

(a] Typical opfical power output versus
g7 Jinm) forwerd eurrent for o laser diode and
0 50 100 14751550 1625 an LED.

Currenit (mA) (b} Comporison of spectral autpul
ol bl choraclerislics.

structure, like a reflection grating, etched in a semiconductor that reflects only certain
wavelengths that are related to the corrugation periodicity. This Bragg reflector has a
corrugation periodicity such that it reflects only one desirable wavelength that falls
within the optical gain of the active region. This wavelength sclective reflection leads
to only one possible electromagnetic radiation mode existing in the cavity, which
leads (0 4 very narrow oulput spectrum: a single-mode output, that is, only one peak
in the output spectrum shown in Figure 3.43. Semiconductor lasers (hat operate with
only one mode in the radiation output are called single-mode or single-frequency
lasers; the spectral linewidth of a single-mode laser output is typically ~0.1 nm,
which should be compared with an LED spectral width of 150 nm operating ata 1550 nm
emission.

The double heterostructure has further advantages. Wider bandgap semiconduc-
tors generally have lower refractive indices, which means AlGaAs has a lower refrac-
tive index than that of GaAs. The change in the refractive index defines an optical
dielectric waveguide that confines (he photons to the active region of the optical cav-
ity and thereby reduces photon losses and increases the photon concentration. This in-
crease in the photon concentration increases the rate of stimulated emissions and the
efficiency of the laser.

To achieve the necessary stimulated emissions from a lascr diode and build up
the necessary optical oscillations in the cavity (to overcome all the optical losses) the
current must exceed a certain threshold current I, as shown in Figure 6.65a.
The optical power output at a current / is then very roughly proportional to 4 = fy.
There is still some weak optical power output below /i, but this is simply due to
spontaneous recombinations of injected electrons and holes in the active layer; the
laser diode behaves like a “poor™ LED below k. The output light from an LED
however increases almost in proportion to the diode current. Figure 6.65b compares
the output spectrum from the two devices. Remember that the output light from the
laser diode is coherent radiation, whereas that from an LED is a stream of incoher-
ent photons.
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ﬂ CD Selected Topics and Solved Problems

Selected Topics

The pn Junction: Diffusion or Drift) Fick or
Ohm?

Shot Noise Generated by the pn Junction

Voltage Drift in Semiconductor Devices due
to Thermoelectric Effects

Transistor Swilches: Why the Saturated
Collector-Emitter Voltage is 0.2V

Semiconductor Device Fabrication
(Overview)

Photolithography and Minimum Line Width
in Semiconductor Fabrication

Depletion MOSFET Fundamentals

High-Frequency Small-Signal BJT Model

Solved Problems

pit Junction: The Shockley Mode!

Recombination Current and [-V Charactenistics of a
pn Junction Diode

Design of a pu Junction Diode

Bipolar Junction Transistors at Low Frequencies:
Principles and Solved Problems

BIT and Nonuniform Base Doping Effect

Junction Field Effeet Transistor (JFET)

Enhancement MOSFET and CS Amplifier

LED Emission Wavelength znd Temperature

DEFINING TERMS

Accumulation occurs when an applied voltage o the
gate (or metal electrode) of a MOS device causes the
semiconductor under the oxide 1o have a greater num-
ber of majority carriers than the equilibrium value. Ma-
Jurity carriers have been accumulated at the surface of
the semiconductor under the oxide.

Active deviee is adevice that exhibils gan (current or
voltage, or both) and has a directional electronic func-
tion. Transistors are active devices, whereas resistors,
capacitors, and inductors are passive devices.
Antireflection coating reduces light reflection froma
surfuce.

Avalanche breakdown is the enormous inerease in
the reverse current in a pn junction when the applicd
reverse field is sulficiently high o cause the gencration
of electron-hole pairs by impact ionization in the space
charge layer.

Base width modulation (the Early effect) is the
medulation of the base width by the voltage appearing
across the base—collector junction. An increase m the
base 10 collector voltage increases the collector june-
tion depletion layer width, which results in the nirrow-
ing of the base width,

Bipolar junction transistor (BJT) is a transistor
whose normal operation is based on the injection of
carriers from the emitter into the base region, where
they become minority carriers, and their subsequent
diffusion to the eollector, where they give rise o a col-
lector current. The voltage between the base and the
emitter controls the collector current.

Built-in field is the internal eleciric field in the deple-
tion tegion of a g junction that s masimum al the
metallurgical junction. 1t is due o exposed negative
acceptors on the p-side and positive donors on the
s-side of the junction

Built-in voltage (V,) 15 the voltage across a pr junc-
tion, going from a p- to #-lype semiconductor, in an
open circuil,

Channel is the conducting strip between the source
and drain regions of n MOSFET.

Chip isa picce (o # volume) of g semiconductor crys-
tal that contains many infegrated active and passive
comporients (o implement a circuil,

Colkector junction is the metallurgical junction
between the base and the collector of a bipolar
transistor.



Critical electric field is the field in the space charge
(or depletion) region at reverse breakdown (avalanche
or Zenet ).

Depletion layer (or space charge layer, SCL) is a
region around the metallurgical junction where recombi-
nation of electrons and holes has depleted this region
of its large number of cquilibrium majority carriers.
Depletion (space charge) layer capacitance is the in-
cremental capacitance (d @ [d V) due tothechange in the
exposed dopant charges in the depletion layer as a result
of the change in the vollage across the pn junction.
Diffusion is the flow of particles of a given species
from high- to low-concentration regions by virtue of
their random thermal motions.

Diffusion (storage) capacitance is the pn junétion ca-
pacitance duc to the diffusion and storage of minorily
carriers in the neutral regions when a forward bias is
applied.

Dynamic (incremental) resistance re of a diode is
the change in the voltage across the diode per unit
change in the curent through the diode ry = dV/d1. It
is the low-frequency ac resistance of the diode. Dy-
namic conductance g, is the reciprocal dynamic resis-
tance: g, = 1/ry.

Emitter junction is the metallurgical junction between
the emitter and the base. .
Enhancement MOSFET is a MOSFET device that
needs a gate to source voltage above the thieshold volt-
age to form a conducting channel between the source
and the drain. In the absence of a gate voltage, there is
no conduction between the source and drain. [n its
usual mode of operation, the gate voliage enhances the
conductance of the source Lo drain inversion layer and
increases the drain current.

Epitaxial layer is a thin layer of crystal that has been
grown on the surface of another crystal which is usu-
ally a substrate, a mechanical support for the new crys-
tal layer. The atoms of the new layer bond to follow the
crystal patiern of the substrate, so the crystal structure
of the epitaxial luyer is matched with the crystal struc-
ture of the substrate,

External quantum efficiency is the optical power
emitted from a light emilting device per unit electie
nput power,
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Field effect transistor (FET) is a transistor whose
normal operation is based on controlling the conduc-
tance of a channel between two electrodes by the
application of an external field. The effect of the
applied field is 1o control the current flow. The cur-
rent is due o majority carrier drift from the source
to the drain and is controlled by the voltage applied to
the gale.

Fill factor (FF)isa figure of merit for a solar cell that
represents, as a percentage, the maximum power /y Ve,
available to an exlernal load as a fraction of the ideal
theoretical power determined by the product of the
short circuit current f, and the open circuit vollage
Vie :FF = (1, V)1 Vic).

Forward bias is the application of an external voltage
1o a pn junction such that the positive terminal is con-
nected to the p-side and the negative to the n-side. The
applied voltage reduces the built-in potential,
Heterojunction is a junclion between different semi-
conductor materials, for example, between GaAs and
AlGaAs ternary alloy. There may or may not be achange
in the doping.

Homeojunction is a junction between differently doped
regions of the same semiconducting matenial, for ¢x-
ample, a pn junction in the same silicon crystal; there is
no change in the bandgap energy £.

Impact ionization is the process by which a high
electric field accelerates a free charge carrier (electron
in the CB), which then impacts with a Si-Si bond to
generate a free electron-hole pair. The impact excites
an electron from E, to E..

Integrated circuit (IC) is a chip of a semiconductor
crystal in which many active and passive components
have been miniaturized and integrated together to form
a sophisticated circuil

Inversion occurs when an applied voltage to the gate
{or metal electrode) of a MOS device causes the
semiconductor under the oxide to develop a conducting
layer (or a channel) at the surface of the semiconductor.
The conducting layer has opposite polarity camers to
the bulk semiconductor and hence is lermed an inver-
sion layer.

Ton implantation is a process that is used to hombard
a sample in a vacuum with ions of a given species of
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alom. Fiest the dopant aloms are ontzed i vicuim
and then acecleraled by applying voltage differences
tw impinge on a sample 1 be doped. The sample 15
promnded 0 neutralize the implanted 1ons.
Isoelectromic impurity atom has the sume valency as
the host atom.

Law of the junction relates the injected minority car-
rier concentration st outside the depletion layer to the
applicd voitage. For holes in the n-side, it 15

( .ll‘(]
h Y EN, oy
I flim € P[”,.

where 140 18 the hole concentration just outside the
depletion layer.

Linewidth s the width ol the mtensily versus wive-
length spectrum, usually between the half-mtensity
points, emitted from a light emitting device.

Long diode s a po juncton with newiral regions
longer than the minonty carrier diffusion lengths,
Metallurgical junction is where theve is an cffective
Junction hetween the pype and a-type doped re-
giony in the erystal, 1t is where the donor and acceplor
concentrtions are cqual or where there is a transilion
[rom n- 1o ptype doping
Metal-oxide-semiconductor transistor (MOST) is
a feld effect wansistor i which the conductance
between the source and dram is controlled by the voll-
age supplied o the gate clectrode, which is insulated
from the channel by an oxide layer.

Minority carrier injection is the flow of electrons
into the p-side and holes into the a-side of @ pir junction
when a voltage is applicd to reduce the huill-in voltage
across the junction,

MOS is short for @ metal-insulator-semiconductor
structure in which the insubator is typically silicon
oxide, It can also be a different type of dielectric; for
example. it can be the nitride S1,N;.

NMOS is an enhancement type n-channel MOSFEL
Passive device or component is a device that exhibils
no gain and no directional function. Resistors, capaci-
Lors, and induclors are pussive components,
Photocurrent is the current gencrawd by a light-
receiving device when itis illuminated.

Pinch-off voltage is the gate (o source voltage needed

10 just pinch off the conducting chamel between the

source and drain with no source (o drain volage
apphicd. 1t is also the source w drain voltage that just
pinches off the channel when the gate and source are
shorted. Beyond pinch-off, the dran current is almosl
constant and controlled by Vi

PMOS is an enhancement type p channel MOSFET.
Poly-Si gate 15 short for a polycrysialline and highly
doped St pate.

Recombination current flows under forward hias 1o
replenish the carriers recombining in the space charge
(depletion) Jayer. Typcally, it is described by [ =
LlexpleV/2kT) - 1]

Reverse hias is the application of an external voltage
0vit prt junction such that the positive terminal is con-
nected (o the a-side and the negative (o the p-side. The
applied voltage increases the built-in potential.
Reverse saturation current i the reverse current that
would fow ina reverse-biased ieal pn junction obey-
ing the Shockley equation.

Shockley dinde equation relates the diode corrent 10
the diode voltage through £ = [ [exp(eV /kT) 1. It
is based on the injection and diffusion of injected
minerity carriers by the application of a forward bias.
Short diode 15 a pn junction wn which the neutral
regions are shorter than the minority carrier diffusion
lengths.

Small-signal equivalent circuit of a tansistor re-
places the transistor with an equivalent circuil that
consists of resistances, capacitances, and dependent
sources (curent or voltage). The equivalent cireuit rep-
resents the tansistor behavior under small-signal ac
conditions. The battenes are replaced with short cir-
cuits (or their internal resistances). Small signals imply
sinatll vargutions about de values.

Substrate i a single mechanical support thal carnes
aclive aml passive devices. For example, in inlegrated
circuit technology, typically, many integrated circuits
are fabricated on a single silicon crystal wafer (hat
serves as the substrate.

‘Thermal generation current is the current that flows in
areverse-hiased pi junction as i result of the thermal



generation of clectron-hole pairs in the depletion layer
that hecome separated and swepl dcross by the buill-in
field.

Threshold voltage 15 the gate voltage needed 10
cstablish a conducting channcl between the source
and drain of an enhancement MOST (metal-oxide-
semicoiductor transistor),

Transistor is & three-terminal solid-state device in
which @ current flowing between two electrodes is con-
trofled by the voliage between the third and one of the
other teminals or by a current flowing into the third
terminal.

Turn-on, or cut-in, voltage of a diode s the voltage
hevond which there is 2 substantial merease in the
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gurrent. The turm-on voltage of & Si diede 15 about
(16 V whercas it is about 1 V for a GaAs LED. The
purn-on voltage of a pn junction diode depends on
the handgap of the semiconductor and the device
slruchure.

Zener breakdown is the enormous increase in the re-
verse current in i junction when the applied voltage
s sufficient 1o cause the tnneling of electrons from
the valence band in the jr-side to the conduction bl
it the n-side, Zener breakdown oceurs in pi junctions
that arc heavily doped on both sides so that the deple-
tion Jayer width is narrow.

61 Thepn junction Consider an abrupt §1pn” junction that has 10" acceptors cm on the pside and
10" domors on the a-side. The minonty carrier secombination times are 7. = 440 ns For clectrans in the
psideand ty = 2.5 ns for holes in (e neside. The cress-seclionial area is | min. Assuming a long diode,

calentate the current | through the diode al oam lemperal

ure when (e voltage V agoss itis 016 N What

are V{1 and the mcremental vesistance (v of the divde and why are they different?

62 The Sipn junction Consider a long pir junction diode with an accepior doping N, of 10" e *on the
p-side nd donor concentration of Ny on e peside. The diode 1s forwand-hiased and s o voltage uf
0.6V across 11 The diode eross-sectional area s | j?, The minority carrier recombution time 1 de-
pends an the dopant concentraion Noeganfem 3} through the following approsimate relution

§x 1077

[ = ———m—emm——
(12 10777 Mgt}

w Suppose that Ny = 101 e Then the deplerion layer extends essentinlly into the n-side and we

have to consider minonty camier recombination ne o m this region. Caleulite the difusion and
recombination contributions to the total diode carrent, Whet 1s your conclusion

b Suppose that Ny = N, = §01% e "Then W extends equally to both sides and, Tuther, 1, = T
Caleulate the diffusion and recombination contributions to the diode curent. What i your can
clusion?

63 Junction capacitance of 2 pir junclion The capecitince (€) of aeverse-hiased abrupt Sip'npune-
tion has been measured as a function of the reverse Paas voltage V, as Testeel 13 atele 0.4, The p juinee
wwon cross-sectional arca is SO0 s 2 SO0 g, By plotimg 1€ versus Vi, obtan the buili-m potential
¥, and the donor concentrition N in the B region What s N,

Table 6.4 Capacitonce af various valves aFreverse bias (V)

KV | 2 3 § 10 15 0
C(pF) B3 307 264 213 156 129 1.3
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6.4 Temperalure dependence of diode properties
@ Consider the reverse current in a prt junction. Show that

By ( Ey )H’
nkT |1

fm
where 4 = 2 for Siand Gas, in which thermal generation in the deplction layer dominates the re-
verse current, and i = | for Ge, in which the reverse current is due to minority carmier diffusion to
the depletion laycr 1t s assumed that £, 2 kT at room temperature, Order the semiconductors Ge,
S, and GaAs according to the sensitivity of the reverse current to temperature.
b, Consider 4 forward-biased pw junction caerying a constant current | Show that the change in the
voltage across the pu junction per unit change in the femperature is given by

dv (V¥

dr O\ T
where Vi, = £, /e is the cnergy gap expressed in volis. Calculate typical values for dV/dT for
Ge, Si, and GaAs assuming that, typically, V = 0.2 Y for Ge, 0.6 V for §i, and 0.9 V fur GaAs,
What is your conclusion? Can one assume that, wypically, dVAdT = 2V C for these

diodes?

65 Avalanche breakdown Considera $i p'n junction diode that is reguired to have an avalanche break-
down voltage of 25 V. Given the breakdown field i, in Figure 6,19, what should be the donor doping

concentration”

6.6 Design of apn junctiondiode Design an abrupt Si g’ junction that has a reverse breakdown voltpe
of 100V and provides a curmrent of 100 mA when the voltage across it is 0.6 V. Assume that, if L —
inem *, the minority camicr recombination time is given by

Mention any assumptions made.

6.7 Minority carrier profiles {the hyperbolic functions) Consider a pap BIT under normal operating
conditicns in which the EB junction is forward-biased and the BC junction is reverse-biased. The field
in the neuteal base region outside the depletion layers can be assumed to be negligibly small, The conti-
ity eqquation for holes p,(x) in the n-type base region is

Epo b,
it T

Iy =10 [6.71]

wikere px) is the hole concentration at x from just outside the depletion region and p,,, and 1, are the

equilibrivm hole concentration and hole recombination lifetme i the base,

o What are the boundary condions at 1+ = 0 and x = W, just outside the collector region depletion
layer? (Consider the law of the junction.)

b Show that the following expression for (x) is a solution of the continuity cquation

L)

uln) = :'...[np( 7 — ( w.a_)_
swh
L,
where V = Vg and Ly = Dy

¢ Show that Equation 6.72 satisfies the boundary conditions

6.8 The pap bipolar transistor Consider a pnp transistor in a common hase configusation and under
normal operating conditions, The emitler-base junction is forward-hiased and the base-collector
junction is reverse-biased. The emitter, base, and collector dupant concentrations are Ny g, Nyigy.



and Ny, respectively, where N
the regions. The base and emiller wi

(QUESTIONS AND PROBLEMS

13 Namy = Negey For simplicity, assume wniform doping m all
dths are Wi andd Wy, respectively, both much shorter than the i

pority canier diffusion lengths, £, and L. The ninority carrier fifetime in the hasc is the hole recom:

bination tin

12 7, The nunority carrier mohility m the base sinid emtler are denoted by g, and pie 1e-

spectively

'8

e menority carrier eoncentration profile in the hase can be sepresented by Equation 6.72.

Assuning hat the emitter injection clficiency is unity show that

rﬁﬂnﬁs cofh ifff )
Ly ( ey ]
axpl

| I —
LiNaimy kT

e L

eADpn; cosechf
Lf. (FVHT)
2 ep| =

T LiNaw ir

W
1= mh(—“]
l‘-h

] Wy
4 = Yoo oghere n= - isthebase transit lime.
it m,

L]

I~

Consider the total emitter curent [ through the EB junction, which has diffusion and pecomhina-
tion companents as fullows:

eV eVi
Iy = fﬁmpc"!‘( l?) + Lete) W(E; ]

Only the hole componcnt of the diffusion current {First term) can conteibute 1w the collector
current. Show that when N,gg) 3 Ni gy, the eniitter injection efliciency p is given by

Trwn r\"r.u) ot
g | g 220 L
F [ v Tggu) = ur

How does p < | modify the expressions denved in part {u)? Whill is your conclusion {ean-
sidder snuall and large emitter currents, or Ve = 04 and 0.7 V)

Ll
69  Characteristics of an upn SiBJT  Consider un wealized silicon np bipolar irnsisior with the prop-
aities in Tuble 5. Assume uniform dopig in each region. The emitter and base widths are belween
metallurgical junctions (not neutial regions). The croes-sectional area is 100 pm X LR e The tran-
sistor i biased to operatc in the normal active mode. The hase-emiticr forwand bias voltage is (L6 Y and
the reverse bias base—collector voltage is 18 V.

Table 6.5 Properties of an npn BT

Emitter
Width

10 win

Hole Flectron
Emitter Lifetime  Base Lifetime Collector
Doping in Emitter  Width Base Doping in Base Doping

1% 10™ em? 10ns Spm Dx 10%em™ 20008 1 10%em™

Calcutate the depletion layer width extending from the collectar nto the base and also fron the
emitter into the base. What is the width of the peutral base region?

" Caleulate @ and hence f for this transistor, essuming unity emiiter injeclion efficiency. How doer

and f5 change with Veg?

575
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*6.10

Bandgap

narrowing

Gandgap
narrowing

Mass action law

with bandgap

narrowing

&« What ss the cmtter injection efficiency and what are ot and A, taking it account that the emitter
injection efliciency s not unity?

o What are the emitter, collector, and hase currents?

e What is the collector current when Vg = 19V hut Vi = 0.6 N2 What i the incremental collec-
tor outpat resistance delined as A Vey,/ Al

Bandgap narrowing and emitter injection efficiency  Heavy doping in semiconductors beads 0 whiat
s called bandgap marrowing which 15 an effective narrowing of the bandgap Ee. If AE, is the reduc-
tion i the bandgap, then for an n-type semiconductor, according i Lanyon and Tuft (1979),

. . noy it
8EmeV) =225 = )
where n (inem’ )1 the concentration of majority camiers which is equal o the dopant concentration if

they are all ionized (for cxample, at room tempersture). The new effective intrinsie concentration il
dlue (o he reduced bandgap is piven hy

(E,-8E)]  ,  [AE
- i 5] ol 5

where g is the intansic concentration in the absence of ensitter bandgap namowing.
The cquilihrivin electron and hole concentrations Ty 01 Py, TESPECtively, abey

!
Mo Plua = "Jrﬁ

where ty, = Ny since nearly all donors would be ienized at room temperature,

Consider a Stnpn bipolar transistor operating under nomial active conditions with the hase-emiter
forward bigsed, and the hase—cullector reverse biased. The transistor has narrow emitter and hase
egions. The emifter neutral region width W is 1 pun, and the donor doping is 10" e, The width
Wy uf the nestrel base region is | yom, and the acceptor doping is 10'7 cm ™", Assume that W and Wy
are less than the minonty carvier diffusion lengths in the exmtter and the hise
d. Oblam an expression for the cmitter injection efficiency tking into sceount fhe emitier bandgap

narmowing cllcet ahove,

b Caleuute the emtter mjection efliciency with and without the emitter handgap narmowing.
. Calewlate the common emitter crrent gain A with and without the emitier handgap narrowing

effect given a perfect base transpor! factor {gy = 1)

611 The JVET pinch-off voltage Consider the symmeltie n-chasnel JFET shown in Figure 6.66, The
width of each depletion region extending into the n-channcl is W The thickness, or depth, of the chan-
nel, defined between the two metallurgical juncrions, s 2. Assuming an ahrupt pn Junction and
Vios = 0, show thit when the patc 1o source voltage is =V, the channel is pinched off where

a'eNy
= z
Figure 6.66 A symmetric JFET i Depletion
Gtle mg"m
.9
Source
O—F -
Channel

thickness
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6.13

6.14

QUESTIONS AND PROBLEMS

where ¥, is the built-in potential between it n juction and Ny is the donor concentration of the
chinnel.

Calculate the pinch-off voltage of aJFET that hasan acceptor concentration of 10" e in the p*
pite, a channel donor doping of 10/ e, and & channel thickness (depih) 2a of 2 pm.

The JFET  Consider an n-channel JFET that has a symmetne p i gale-channel stiucture as shown
Figures 6,272 and .66, Let L be the gate length, 2 the gate widh, and 20 the channe! thickness. The
pinch-off veltage 1s given by Question 611 The drain saturation current Ipsg 1 the deain current when
Vs = 0. This oceurs when Vps = Vogea = Ve (Figure 6.29), s0 [nsy = Vi Gps where Gy 15 the
conductance of the channe| between the source anl the pirched-off point (Figure 6.30). Taking mio g
count the shape of the channe a1 pinch-off, if Cicp is bout one-third of the conductance of the frec or
unmodulated {rectangular) channel, show that

| (eue N2l
Toss= Ve = e

()

A particular n-channel JFET with a symmetnc p' n gote-channel structure has 8 pinch-ofl voltage
of 19V and an [pss af 5.5 mA. I the gite and chanvel dopant eoncentrations are N, = 10" em ™ and
My = 1095 e, sespectively, find the channel thickness 2a and Z/L. I6L = 10 pwm, what is 27 What
is the gate-source capacitance when the JFET hias o woltage supplics connected wit?

The JFET amplifier Consider an -channel JFET that hus 2 pinch-off vollage (Vph of 5 Y and
Ipss = 10 mA. 11 is used 1n & common spurce configuration as in Figure 6344 in which the gate o
source hias voltage (Vig) is - 1.5 V. Suppose that Vpp = Y.

a, If a smiall-signal voltage gain of 10 1s needed, what should be the drain resistance (R p ) What is

Vig?

b Ifanacsipnal of 3V peak-to-peak is applied to the gate in series with the dc bias voltage, what will
be the ac outpul valtage peuk-o-peak? What s the vollage gain for positive and negalive input sig-
nals? What is your conelusion”

The enhancement NMOSFET amplifier - Consider an ni-channel Si enhancenient NMOS transis-

tor that has a gate width (2) of 150 wm, channe! Jergth (1) of 10 pm, and oxide thickness {ty ) of

500 A The channel has sz, = T cm? V7 and the threshold voltage (Vihis 2 ¥ (¢, = 39 for

$i0).

4 Calculate e drain current when Vig =5 Voand Vs = 5V and assuming 4 = (.01

b Whatis the small-signal voltage gain 1f the NMOSFET 18 connected s a common source amphiier,
45 shown in Figure 6.67, with a drain resistance Rp of 2.2 k&2, the pete biased at 5 V with respect 1

Figure 6.67 NMOSFET amplifier.
Output

signal

_— \/\
I'Idx
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'6.15

6.16

d

source (Vi = 5 Viand Vi 15 such that Vigs = 5V What1s Vi ? What will happenif the draim
supply 1s smaller?

Estimate the most positive and negative input signal voltages thal cin be amplified if Vpy is fixed
at the above value in part ().

What factoes will lead (o a lugher voliage amplification?

Ultimate limits o device performance

d.

Consider the speed of operation of an n-channel FET-1ype device. The time required for an electron

10 tritmsil from the source 10 the drain is 7, = Ly, where L is the channel length and vy is the drift

velocity, This transit time can he shortened by shorening L i increasing ug. As the field inerease,

the driff velocity eventually saturaics at about tgss = 10° s~ " when the field in the channel is

cqual oL, = 0P V' A short 1, requires a field thit is at Jeast 7,

1. Whal is the change in the PE of an electron whea it traverses ihe channel length £ [rom source
1o drain il the voltage difference is Vpy?

2. This cnergy must be greater than the energy due o thermal fuctuations, which is of the order
of kT Otherwise, electrons would be brought in and out of the drain due 10 thermal Muctua-
tions. Given the mimmum field and Vigg, what is the minimum channc! length and hence the
minimum iransit lime?

Heisenberg's uncertainty principle relates the encrgy and the time duration in which that energy is

possessed through a relationship of the form (Chapter 3) AE At > f, Given that during the transit

of the ehectron [rom the source (o the drain its enengy chianges by e¥pg, what is the shurtes! transic

time t satislying Heisenberg's uncertanty prnciple” How dues it compare with your calculation im

part (a)?

How does electron tunnching limit the thickness of the gale oxide and the channel length n a

MOSFET? What would be typical distances for wmineling to be effecuve? (Consider Exam-

ple 3.10.)

Enerpy distribution of electrons in the conduction band of a semiconductor aud LED emission
spectrum

LA

Consider the encrgy distribution of electrons ag (F) in the combuction band (CB). Assuming
that the density of stale Ga(F) o (€ - F,)'/2 and using Boltzmann statistics f(E) =
expl—{E = Ep)fkT], show that the energy disinbution of- the electrons an the CB can be
wiillen us

wy(x) = Cx' P expl—x)

where v = (E ~ E )T isclection cnergy in terms of k7 measured from £, and C is 4 temper-
ature-dependent constant (indepeadent of’ £, ‘
Setting arbitranly C = 1, plot n, versus ©. Where is the nraninum, and what is the full width ai
Trall max nuum (FWHM), e, between half maximum pomis?

Show that the average clectron energy in the CB is %l?’. by wsing the definition of the average,

x
fm.r.'l

Yawge = o

f iy d

o

where the integration is from = 0 () tosay x = [0 (far away from E. where w, - 0). You
neerd 1o use & numerical intcgration.

Show that the maximum in the encigy distribution is al x = 4 oral By = 14T above E,.
Consider the secombination of electrons and holes in GaAs. The recombination involves the
emission of a photon. Givep that both electron and hole concentrations Irave encrgy distabu-
tioas in the conduction and valeace hands, respectively, skeich schematically the expecied light
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intensity emitied from electron and hol: recombimations agans the photon energy. What 15
your conelusion?

6.17  LEDoutput specirum  Given that the width of the relative light intensity between half-intensity points
versus photon enerpy spectrum of an LD is typically ~3KT. what is the linewidih Ak in the owiput spec-
trum in tezns of the peak envission wavelength? Calculte the spetral linewidih AX of the pulput rxdiation
from a green LEED emitting at 570 nin al 300 K.

618 LED output wavelength variations - Show that the change in the emitied wavelengih A with lemper-
ature T fmm an LED is approaimately given by

dh ke (;m,

s R ] e

ar BT )
where E, is the handgap. Consider a GaAs LED. The bandgap of GaAs ai 300 K is 1.42 ¢V whieh
changes (decreases) with tcmperature a8 d £l T = 45 % 107 eV K~ What is the change in the
emitied wavelength if the temperature change is 10°C?

519 Linewidth of direct recombination LEDs Experiments carriec out on various direct barilgap semi-

conductor LEDs give the oulput spectral linewidth (between half-intensity pomis) listed in Table 6.6,
Since wavelength A = he/ Egg, where Eg, = hv is the photon encrgy, we know that the spread in the
wavelength is related to:a spread in the photon cnergy,

siw i
5o

i
Supposc that we writc Egy = he/d and AEy, = Alhv) = nkT where o is o numerical constanl.
Show that,
kT LED outpmt
A= F). apecirmn
linewidth

and by appropriately ploiting the data in Table 6.6 find n.

Toble 6,6 Linewidh ALz between halfpoits in the output spectrum (infensity versus wavelength]
of Gaks and AlGaAs LEDs

Peak wavelength of emission & (nm)
650 80 B0 B0 950  1s0 1270 1500

Ahypa () n % 4 0 5 %N o150
Matcial (dirct £,) AlGaAs  AlGaAs  AlGaAs Gahs GaAs InGaA®P InGaAsP  IoGaAsP

620  AlGaAs LED emitter AnAIGaAs LED emitier for usc in a local optical fiber network has the output

spectrum shown in Figure 6.68. 11is designed for peak crnission at §20 nm an 25 °C.

« Whal is the linewidth AX between half power points at temperatures 40 °C, 15 °C, and 83 i
Given these three temperatures, plot AX and T (in K) and find the cmpirical relationship hetween
AX and T. How does this compare with A(hv) = 25T to kT

b Why does the peak emission wavelengih increasc will temperature?

¢ What is the handgap of AIGaAs in this LED? *

d The bandgap £, of the ternary alloys Al,Ga;, As follows the empirical expression

Eg(eV) = 1424 + 12661 4 0.26604°

What is the composition of the AIGaAs in this LED?
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Figure 6,68 The culput specium fram an AlGaAs

Relative spectral output power

£D, 40 00 B0 88D 9
Values are nomalized lo peak emission at 25 °C. Wavelength (nm)

621 Solar coll driving a load

a ASEsolarcell of area 2.5 cm % 15 eon s compeeted to drive a load £ as in Figure 6.540. 1t has the
1=V eharacteristics in Figure 6,533, Suppose that the load is 2 € and it is used under 3 light intensity
of $00W m 2, What are the current and voltage in the curcoit? Whiat is the power delivered to the
load? What 15 the efficiency of the solar cell in this circuit?

b What should the load be to obtain naximum power transfer from the solar cell to the load at
800 W ™ illumination? What is this load at 400 W *2

¢ Consider using a number of such solar cells (o drive a calculator that needs a minimum of 3V and
A S0 A i 34 V. Ttis to be used at a light intensity of bout 400 W ™%, How many solar cells
waould you neetd and how would you conncet them”

622 Opencireuit voltage A sokir cell under an llumination of 1000 W ™" bas a short circuit current f;
0F 51 mA and an open circuit ouput vollage Vie of 065 V. What are the short cicnt current and open
cireuit voltages when the light intensity is halved?

623 Maximum power froma solarcell - Suppose that the power delivered by a solar cell, P = IV, is max-

i when [ = £, and V = V... Suppose that we define nurmalized voltage and current for maximum

POWET 35

Vi ! L

p=— ad =
" he

where ) is the ideality factor, Vr = kT /e 1 called the thermal voltage (0026 V- at 300 K), and
Ly = =l Suppose thal v = Ve (V) 1s the mommalized open cireuil voltage, Under illumiaation
wilh the solir cell delivermg power with V > ¥y,

v
=i¥ =1=I f. — 1V
reir [ oo )|

e can differentiate P = 1V witl respect 1o V, set it to zero for maxinum power, and [ind expressions
for l, and V,,, for maximum power. One can then use the opea circuit condition (1 = 0) to refate Vs to
1, Show that maximum power oceurs when

r=te-e+l)  and  i=1-expl-lvg—v)|
Considerasolascellwith 7 = 1.5, Vac = 0.60 V, 0 = 35 mA. with an area of |’ Find i and v,

and hence the current I, and voltage Va, for maximum power. {Note: Solve the first equation numer-
cally or graphically to find v = 12.76.) What is the fill factor
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(QUESTIONS AND PROBLEMS

Series resistance  The serics resistance causes & vollage drop when acurrent i dravwn from a solar cell
By conventioa, the positive current is taken 10 flow into the device. (IF calculations yicld a negative
value, it means that, physically, the curment is flowing out, which is the actual case under illumination )
I Vis the actual voltage across the solar cell output (accessed by the user), then the voltage across the
diode is V — IR, The solar cell equation becomes

V-Ik)
I=-lw+lo=-lnt J.,clp(%—i—---)

Plot J versus V fora Si solar cell that has g = | Sand £, = 3 x 107" mA, for an flumnation such that
lyn = L0 mA for R, = 0,20 and 50 2. What is your conclusion?

Shunt resistance  Consider the shunt resistance R, of a solar cell. Whenever there is a voltage V at the
terminals of the solar cell, the shint resistance draws 1 cument V/ R, Thus, the total current as seen 3¢
the terminals (and flowing in by convention) is
¥ eV v
== — =ty thapl— ]+ —=
I p.+fg+Rr p+,m(#r)+ﬂp (1]

Plol ] versus V' for a polycrystalline Si solar cell that has n = 1.5 and , =3 % 10 mA, for anillu-
mination such that Iy, = 10 mA. Use R, = oo, 1000, 100 2. What is your conclusion’

Series connecled solar cells  Consider two identical solar cells connected in series. There are two R,
in series and two pn junctions in series. If 1 is the total current through the devices, then the voliage
acrass one pa junetion is Vg = 5[V ~ [{2R,)] 5o that the curent [ flowing into the combined solar

cells is
V—1I{2R,) kT
Jk--fn-h',zlp[ hvr‘ Vg)q( |'-)

where ¥y = kT /e is the thermal voliage, Reamanging, for two cells in serics,

I+
vzz,,v,m(--f--'-“)ux..l

whereas for one cell,

verrin(2) e

I,

Suppose that the cels have the propenies £, =25 x 10* mA, 5 = 1.5, R, =20 %2, and both are sub-
mnt_mhhl’=mthw1—?dmhﬁnwhhf ¥
characteristics of the two cells in series, Find the maximum power that can be delivered by one cell and
two cells in sesics. Find the corresponding voltage and curent al the maximum power point.

A solar cell used in Eskimo Point  The intensity of light arriving at a point on Earth, where the solar
latitude is  can be approximated by the Meine! and Meinel equation:

1 = 13530R="" (W o

where coscc @ = | /{sin ). The solar latitude & is the angle between the sun's rays and the horizon. Around
Seplember 23 and March 22, the sum's rays arrive parallel tothe plane of the equator. What is the maximum
power availabe for a photovoltaic device panel of area | m? if its efficiency of conversion is . J percent?

A nianufacturer's characterization tests on a particular Si pn junction solar cell at 27 °C specifies
s open circuit output voltage of 0.45 V and a short circuit current of 400 mA when lluminated direcily
with a light of intensity 1 kW m~. The fill factor for the solar cell is 0.73. This solar cell is 10 be used
in 2 portable equipment application near Eskimo Point (Canads) at a geographical latitude (¢) of 63°.
Calculate the open circuit output voliage and the maximum available power when the solar cell is used
at noon on September 23 when the temperature: is around — 10 °C. What is the maximum curvent this
solar cell can supply io an clectronic equipment? What is. your conchusion? (Note: @ + ¢ =x/2, and
assume n = |, and that [, xn?)
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An HY capacitor bushing being subjected 1o mains. .
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